



## INTRODUCTION

This TTL DATA BOOK is a complete reference source for all Fairchild semiconductor SSI/MSI TTL products (except Fairchild Advanced Schottky TTL, FAST, devices). It is organized into the following sections:

## Section 1 - Product Indices and Selection Guides

The Product Indices are divided according to the numbering system used, i.e., 54/74 Family TTL, 9XXX Family TTL, etc. Each index indicates which speed versions are available for the given product number and on which page the data sheet can be found. Selection Guides within this section are divided according to the device function. SSI functions are tabulated by speed family, MSI functions by their significant parameters.

## Section 2 - TTL Characteristics

Section 2 defines the dc and ac parameter symbols used throughout this data book and discusses the general scheme for naming the various types of logic inputs and outputs. Speed/power trade-offs and basic gate schematics are compared for the different TTL circuit families. Input/output characteristics, thresholds and noise margins are discussed. Wiring, line driving and decoupling recommendations, as well as specific examples of interfacing TTL to other types of logic circuits, are included.

## Section 3-Loading, Specifications and Waveforms

This section contains dc specifications and ratings common to all devices in each family of circuits. Included is a discussion of the unit load method of normalizing the input and output characteristics of a circuit, and how to translate the numbers given in the Input Loading/Fan-Out table of a data sheet into the actual values of IIH, IIL, $\mathrm{IOH}_{\text {and }}$ IoL currents. The various load configurations for ac testing, a table of $\mathrm{R}_{\mathrm{L}}$ and $\mathrm{C}_{\mathrm{L}}$ values for SSI gates and waveforms that help to define the various ac parameters are also included.

## Section 4 through 7 - Family Data Sheets

Individual data sheets are grouped by product family (i.e., 54/74, 9XXX TTL, etc.) and arranged in numerical order within these families. The last two digits of the device number are repeated on the outside corner of each page for the convenience of the reader.

## Section 8 - Other Digital Products

Shortform information on older logic families (DTL, CTL, RTL) is given for reference.

## Section 9-Ordering Information and Package Outlines

The simplified purchasing code which identifies not only the device type, but also the package type and temperature range, is explained. Detailed physical dimension drawings for each package are given.

[^0]
## TABLE OF CONTENTS

SECTION 1 PRODUCT INDICES AND SELECTION GUIDES
Indices
54/74 Family TTL ..... 1-3
9XXX Family TTL ..... 1-10
93XX Family TTL ..... 1-10
96XX Family TTL ..... 1-12
Selection Guides
SSI Functions ..... 1-12
Single and Dual Flip-Flops ..... 1-15
Latches ..... 1-16
Multiple Flip-Flops ..... 1-17
Multiplexers ..... 1-17
Decoders/Demultiplexers ..... 1-19
Registers ..... 1-20
Counters ..... 1-23
Monostables (One-Shots) ..... 1-24
Line and Bus Drivers/Transceivers/Receivers ..... 1-25
Display Decoder/Drivers ..... 1-26
Arithmetic Operators ..... 1-27
Random Access Memories ..... 1-28
SECTION 2 TTL CHARACTERISTICS
Glossary ..... 2-3
Logic Symbols and Terminology ..... 2-6
TTL Circuit Families ..... 2-8
Input Characteristics ..... 2-12
Unused Inputs ..... 2-13
Output Characteristics ..... 2-13
Increasing Fan-Out ..... 2-15
3-State Outputs ..... 2-15
Open-Collector Outputs ..... 2-16
Thresholds and Noise Margins ..... 2-17
Crosstalk ..... 2-19
Transmission Lines ..... 2-20
Transmission Line Effects ..... 2-21
Backplane Data Bus ..... 2-24
Decoupling ..... 2-24
Grounds ..... 2-24
Supply Voltage and Temperature ..... 2-25
Interfacing ..... 2-25
SECTION 3 LOADING, SPECIFICATIONS AND WAVEFORMS
Unit Loads (U.L.) ..... 3-3
Absolute Maximum Ratings ..... 3-4
Recommended Operating Conditions ..... 3-4
DC Characteristics Tables ..... 3-5
AC Loading and Waveforms ..... 3-11
SECTION 4 54/74 FAMILY DATA SHEETS ..... 4-3
SECTION 5 9XXX FAMILY DATA SHEETS ..... 5-3
SECTION 6 93XX FAMILY DATA SHEETS ..... 6-3
SECTION 7 96XX FAMILY DATA SHEETS ..... 7-3
SECTION 8 OTHER DIGITAL PRODUCTS
RTL Micrologic and CTL Counting Micrologic Elements ..... 8-3
DTL Micrologic ..... 8-3
SECTION 9 ORDERING INFORMATION AND PACKAGE OUTLINES
Ordering Information ..... 9-3
Package Outlines ..... 9-4
SECTION 10 FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS ..... 10-3

54/74 FAMILY DATA SHEETS $\quad 4$
9000 FAMILY DATA SHEETS 5

| 9300 FAMILY DATA SHEETS | 6 |
| :--- | :---: |
| 9600 FAMILY DATA SHEETS | 7 |
| OTHER DIGITAL PRODUCTS | 8 |
| ORDERING INFORMATION AND <br> PACKAGE OUTLINES | 9 |

FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

## SECTION 1

- Indices

54/74 Family TTL
9XXX Family TTL
93XX Family TTL
96XX Family TTL

- Selection Guides

SSI Functions
Single and Dual Flip-Flops
Latches
Multiple Flip-Flops
Multiplexers
Decoders/Demultiplexers
Registers
Counters
Monostables (One-Shots)
Line and Bus Drivers/Transceivers/Receivers
Display Decoder/Drivers
Arithmetic Operators
Random Access Memories

## Section 1 PRODUCT INDICES AND SELECTION GUIDES

INDICES
54/74 FAMILY TTL

| DEVICE NO. | DESCRIPTION | $\begin{gathered} 54 / 74 \\ \text { TTL } \end{gathered}$ | 54H/74H <br> H-TTL | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { 54LS/74LS } \\ \text { LS-TTL } \\ \hline \end{array}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | Quad 2-Input NAND Gate | X | X | X | X | 4-3 |
| 01 | Quad 2-Input NAND Gate | X | X |  |  | 4-4 |
| 02 | Quad 2-Input NOR Gate | X |  | x | x | 4-5 |
| 03 | Quad 2-Input NAND Gate | X |  | X | X | 4-6 |
| 04 | Hex Inverter | X | X | X | X | 4-7 |
| 04A | Hex Inverter |  |  | X |  | 4-7 |
| 05 | Hex Inverter | X | X | X | x | 4-8 |
| 05A | Hex Inverter |  |  | X |  | 4-8 |
| 06 | Hex Inverter Buffer/Driver | x |  |  |  | 4-9 |
| 07 | Hex Buffer/Driver | X |  |  |  | 4-10 |
| 08 | Quad 2-Input AND Gate | X | X | X | x | 4-11 |
| 09 | Quad 2-Input AND Gate | X |  | X | X | 4-12 |
| 10 | Triple 3-Input NAND Gate | X | X | X | X | 4-13 |
| 11 | Triple 3-Input AND Gate | X | X | X | X | 4-14 |
| 12 | Triple 3-Input NAND Gate | X |  |  |  | 4-15 |
| 13 | Dual 4-Input Schmitt Trigger | X |  |  | x | 4-16 |
| 14 | Hex Schmitt Trigger Inverter | X |  |  | X | 4-17 |
| 15 | Triple 3-Input AND Gate |  |  | X | X | 4-18 |
| 16 | Hex Inverter Buffer/Driver | X |  |  |  | 4-19 |
| 17 | Hex Buffer/Driver | X |  | 1 |  | 4-20 |
| 20 | Dual 4-Input NAND Gate | X | X | X | x | 4-21 |
| 21 | Dual 4-Input Positive AND Gate | X | X |  | x | 4-22 |
| 22 | Dual 4-Input NAND Gate | X | X | X | X | 4-23 |
| 23 | Expan dable Dual 4-Input NOR Gate | X |  |  |  | 4-24 |
| 25 | Dual 4-Input NOR Gate | X |  |  |  | 4-26 |
| 26 | Quad 2-Input NAND Buffer | X |  |  | X | 4-27 |
| 27 | Triple 3-Input NOR Gate | X |  |  | X | 4-28 |
| 28 | Quad 2-Input NOR Buffer |  |  |  | x | 4-29 |
| 30 | 8-Input NAND Gate | X | X | X | X | 4-30 |

PRODUCT INDICES AND SELECTION GUIDES

| 54/74 FAMILY TTL (Cont'd) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \mathrm{TTL} \end{gathered}$ | 54H/74H <br> H-TTL | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | 54LS/74LS LS-TTL | PAGE NO. |
| 32 | Quad 2-Input OR Gate | X |  | X | X | 4-31 |
| 33 | Quad 2-Input NOR Buffer |  |  |  | X | 4-32 |
| 37 | Quad 2-Input NAND Buffer | X |  |  | X | 4-33 |
| 38 | Quad 2-Input NAND Buffer | X |  |  | X | 4-34 |
| 39 | Quad 2-Input NAND Buffer | X |  |  |  | 4-35 |
| 40 | Dual 4-Input NAND Buffer | X | X | X | X | 4-36 |
| 41 | 1-of-10 Decoder/Driver (Nixie) | 9315 |  |  |  | 6-48 |
| 42 | 1-of-10 Decoder |  |  |  | X | 4-37 |
| 42A | 1-of-10 Decoder | x |  |  |  | 4-37 |
| 43A | 1-of-10 Decoder | X |  |  |  | 4-37 |
| 44A | 1-of-10 Decoder | X |  |  |  | 4-37 |
| 45 | 1-of-10 Decoder/Driver | X |  |  |  | 4-41 |
| 46A | BCD to 7-Segment Decoder/Driver | X |  |  |  | 4-44 |
| 47 | BCD to 7-Segment Decoder/Driver |  |  |  | X | 4-44 |
| 47A | BCD to 7-Segment Decoder/Driver | X |  |  |  | 4-44 |
| 48 | BCD to 7-Segment Decoder | X |  |  | X | 4-48 |
| 49 | BCD to 7-Segment Decoder | X |  |  | X | 4-51 |
| 50 | Expandable Dual 2-Wide, 2-Input AND-OR-Invert Gate | X | X |  |  | 4-54 |
| 51 | Dual 2-Wide AND-OR-Invert Gate | X | X | X | X | 4-56 |
| 52 | Expandable 2-2-2-3-Input AND-OR Gate |  | x |  |  | 4-57 |
| 53 | Expandable AND-OR-Invert Gate | X | x |  |  | 4-59 |
| 54 | 4-Wide, 2-Input AND-OR-Invert Gate | X | X |  | X | 4-61 |
| 55 | AND-OR-Invert Gate |  | X |  | X | 4-63 |
| 60 | Dual 4-Input Expander | X | X |  |  | 4-64 |
| 61 | Triple 3-Input Expander |  | X |  |  | 4-67 |
| 62 | 3-2-2-3-Input AND-OR Expander |  | X |  |  | 4-68 |
| 64 | 4-2-3-2-Input AND-OR-Invert Gate |  |  | X |  | 4-70 |
| 65 | 4-2-3-2-Input AND-OR-Invert Gate |  |  | X |  | 4-71 |
| 70 | JK Edge-Trigger Flip-Flop | X |  |  |  | 4-72 |
| 71 | JK Master/Slave Flip-Flop |  | X |  |  | 4-74 |
| 72 | JK Master/Slave Flip-Flop | X | X |  |  | 4-76 |
| 73 | Dual JK Flip-Flop | X | X |  | X | 4-78 |

PRODUCT INDICES AND SELECTION GUIDES
54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \mathrm{TTL} \end{gathered}$ | $54 \mathrm{H} / 74 \mathrm{H}$ H-TTL | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | 54LS/74LS LS-TTL | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74 | Dual D-Type Positive Edge-Triggered Flip-Flop | X | X | X | X | 4-81 |
| 75 | 4-Bit Bistable Latch | X |  |  |  | 4-84 |
| 76 | Dual JK Flip-Flop | X | X |  | x | 4-86 |
| 77 | Quad D-Type Latch | X |  |  |  | 4-89 |
| 78 | Dual JK Flip-Flop |  | X |  | X | 4-90 |
| 80 | Gated Full Adder | X |  |  |  | 4-93 |
| 82 | 2-Bit Full Adder | X |  |  |  | 4-95 |
| 83A | 4-Bit Binary Full Adder | X |  |  | X | 4-98 |
| 85 | 4-Bit Magnitude Comparator | X |  |  | X | 4-101 |
| 86 | Quad 2-Input Exclusive-OR Gate | X |  | X | X | 4-105 |
| 87 | 4-Bit True/Complement, Zero/One Element |  | X |  |  | 4-106 |
| 89 | 64-Bit Random Access Memory | X |  |  | X | 4-108 |
| 90 | Decade Counter |  |  |  | X | 4-111 |
| 90A | Decade Counter | X |  |  |  | 4-111 |
| 91A | 8-Bit Shift Register | X |  |  |  | 4-114 |
| 92 | Divide-by-Twelve Counter |  |  |  | X | 4-117 |
| 92A | Divide-by-Twelve Counter | X |  |  |  | 4-117 |
| 93 | Divide-by-Sixteen Counter |  |  |  | X | 4-120 |
| 93A | Divide-by-Sixteen Counter | x |  |  |  | 4-120 |
| 94 | 4-Bit Shift Register | X |  |  |  | 4-123 |
| 95A | 4-Bit Right/Left Shift Register | X |  |  |  | 4-126 |
| 95B | 4-Bit Right/Left Shift Register |  |  |  | X | 4-126 |
| 96 | 5-Bit Shift Register | x |  |  |  | 4-129 |
| 97 | Synchronous Modulo-64 Bit Rate Multiplier | X |  |  |  | 4-132 |
| 101 | JK Edge-Triggered Flip-Flop |  | X |  |  | 4-138 |
| 102 | JK Edge-Triggered Flip-Flop |  | X |  |  | 4-140 |
| 103 | Dual JK Edge-Triggered Flip-Flop |  | X |  |  | 4-142 |
| 106 | Dual JK Edge-Triggered Flip-Flop |  | X |  |  | 4-144 |
| 107 | Dual JK Flip-Flop | X |  |  | X | 4-146 |
| 108 | Dual JK Edge-Triggered Flip-Flop |  | X |  |  | 4-149 |
| 109 | Dual J $\bar{K}$ Positive Edge-Triggered Flip-Flop |  |  | X | X | 4-151 |

PRODUCT INDICES AND SELECTION GUIDES
54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \text { TTL } \end{gathered}$ | 54H/74H H-TTL | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{aligned} & \text { 54LS/74LS } \\ & \text { LS-TTL } \end{aligned}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 112 | Dual JK Negative <br> Edge-Triggered Flip-Flop |  |  | x | X | 4-153 |
| 113 | Dual JK Edge-Triggered Flip-Flop |  |  | X | X | 4-155 |
| 114 | Dual Negative Edge-Triggered Flip-Flop |  |  | X | X | 4-157 |
| 116 | Dual 4-Bit Latch | 9308 |  |  |  | 6-24 |
| 121 | Monostable Multivibrator | X |  |  |  | 4-159 |
| 122 | Retriggerable Resettable Multivibrator | X |  |  |  | 4-163 |
| 123 | Dual Retriggerable Resettable Multivibrator | X |  |  |  | 4-166 |
| 125 | Quad Bus Buffer Gate | X |  |  |  | 4-169 |
| 125A | Quad Bus Buffer Gate |  |  |  | x | 4-169 |
| 126 | Quad Bus Buffer Gate | $x$ |  |  | X | 4-170 |
| 132 | Quad 2-Input Schmitt Trigger NAND Gate | X |  | x | x | 4-171 |
| 133 | 13-Input NAND Gate |  |  | X | X | 4-172 |
| 134 | 12-Input NAND Gate |  |  | X |  | 4-173 |
| 135 | Quad Exclusive-OR/NOR Gate |  |  | X |  | 4-174 |
| 136 | Quad 2-Input Exclusive-OR Gate |  |  |  | X | 4-175 |
| 137 | 1-of-8 Decoder/Demultiplexer |  |  | X |  | 4-176 |
| 138 | 1-of-8 Decoder/Demultiplexer. |  |  | X | X | 4-180 |
| 139 | Dual 1-of-4 Decoder |  |  | X | X | 4-183 |
| 140 | Dual 4-Input NAND Line Driver |  |  | X |  | 4-186 |
| 141 | 1-of-10 Decoder/Driver (Nixie) | x |  |  |  | 4-187 |
| 145 | 1-of-10 Decoder/Driver | X |  |  |  | 4-189 |
| 150 | 16-Input Multiplexer | X |  |  |  | 4-192 |
| 151 | 8 -Input Multiplexer |  |  | X | X | 4-194 |
| 151A | 8-Input Multiplexer | X |  |  |  | 4-194 |
| 152 | 8-Input Multiplexer |  |  |  | X | 4-197 |
| 152A | 8-Input Multiplexer | x |  |  |  | 4-197 |
| 153 | Dual 4-Input Multiplexer | X |  | X | X | 4-199 |
| 154 | 1-of-16 Decoder/Demultiplexer | X |  |  |  | 4-202 |
| 155 | Dual 1-of-4 Decoder/Demultiplexer | X |  |  | X | 4-205 |
| 156 | Dual 1-of-4 Decoder/Demultiplexer | X |  |  | X | 4-208 |
| 157 | Quad 2-Input Multiplexer | X |  | X | X | 4-210 |

PRODUCT INDICES AND SELECTION GUIDES

54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \text { TTL } \end{gathered}$ | $\begin{gathered} \text { 54H/74H } \\ \mathrm{H}-\mathrm{TTL} \end{gathered}$ | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{gathered} \text { 54LS/74LS } \\ \text { LS-TTL } \end{gathered}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 158 | Quad 2-Input Multiplexer |  |  | X | X | 4-213 |
| 160 | Synchronous Presettable BCD Decade Counter | X |  | 93 S 10 | X | $\begin{aligned} & 4-215 / \\ & 6-30 \end{aligned}$ |
| 161 | Synchronous Presettable <br> Binary Counter | X |  |  | X | 4-221 |
| 162 | Synchronous Presettable BCD Decade Counter | X |  |  | x | 4-215 |
| 163 | Synchronous Presettable Binary Counter | x |  |  | X | 4-221 |
| 164 | Serial-In Parallel-Out Shift Register | x |  |  | X | 4-224 |
| 165 | 8-Bit Parallel-to-Serial Converter | X |  |  | X | 4-227 |
| 166 | 8-Bit Shift Register | X |  |  |  | 4-230 |
| 167 | Synchronous Decade Rate Multiplier | X |  |  |  | 4-232 |
| 168 | Synchronous Bidirectional BCD Decade Counter |  |  |  | X | 4-239 |
| 169 | Synchronous Bidirectional Modulo-16 Binary Counter |  |  |  | X | 4-242 |
| 170 | $4 \times 4$ Register File | X |  |  | X | 4-244 |
| 173 | 4-Bit D-Type Register | X |  |  | X | 4-247 |
| 174 | Hex D Flip-Flop | X |  | x | X | 4-250 |
| 175 | Quad D Flip-Flop | X |  | X | X | 4-253 |
| 176 | Presettable Decade Counter | X |  |  |  | 4-256 |
| 177 | Presettable Binary Counter | X |  |  |  | 4-260 |
| 178 | 4-Bit Shift Register | X |  |  |  | 4-262 |
| 179 | 4-Bit Shift Register | X |  |  |  | 4-264 |
| 180 | 8-Bit Parity Generator/Checker | X |  |  |  | 4-267 |
| 181 | 4-Bit Arithmetic Logic Unit | 9341 |  | 93541 | X | $\begin{aligned} & 4-269 / \\ & 6-87 \end{aligned}$ |
| 182 | Carry Lookahead Generator | 9342 |  | 93542 |  | 6-94 |
| 183 | Dual High Speed Adder |  | X |  |  | 4-275 |
| 189 | 64-Bit Random Access Memory |  |  | X | X | 4-277 |
| 190 | Up/Down Decade Counter | X |  |  | X | 4-280 |
| 191 | Up/Down Binary Counter | X |  |  | X | 4-285 |
| 192 | Up/Down Decade Counter | X |  |  | X | 4-287 |
| 193 | Up/Down Binary Counter | X |  |  | X | 4-291 |

## PRODUCT INDICES AND SELECTION GUIDES

## 54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \text { TTL } \end{gathered}$ | 54H/74H H-TTL | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{gathered} \text { 54LS/74LS } \\ \text { LS-TTL } \end{gathered}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 194 | 4-Bit Bidirectional Universal Shift Register | X |  | x |  | 4-293 |
| 194A | 4-Bit Bidirectional Universal Shift Register |  |  |  | X | 4-293 |
| 195 | Universal 4-Bit Shift Register | X | 93H00 | 93500 |  | $\begin{aligned} & 4-296 / \\ & 6-3 \end{aligned}$ |
| 195A | Universal 4-Bit Shift Register |  |  |  | X | 4-296 |
| 196 | Presettable Decade Counter | X |  |  | X | 4-299 |
| 197 | Presettable Binary Counter | X |  |  | X | 4-303 |
| 198 | 8-Bit Right/Left Shift Register | X |  |  |  | 4-305 |
| 199 | 8-Bit Parallel I/O Shift Register | X |  |  |  | 4-308 |
| 240 | Octal Buffer/Line Driver |  |  | X | X | 4-311 |
| 241 | Octal Buffer/Line Driver |  |  | X | X | 4-311 |
| 242 | Quad Bus Transceiver |  |  |  | X | 4-314 |
| 243 | Quad Bus Transceiver |  |  |  | X | 4-314 |
| 244 | Octal Buffer/Line Driver |  |  |  | X | 4-311 |
| 245 | Octal Bus Transceiver |  |  |  | X | 4-316 |
| 247 | BCD to 7-Segment Decoder/Driver |  |  |  | X | 4-318 |
| 248 | BCD to 7-Segment Decoder |  |  |  | X | 4-319 |
| 249 | BCD to 7-Segment Decoder |  |  |  | X | 4-320 |
| 251 | 8-Input Multiplexer |  |  | X | X | 4-321 |
| 253 | Dual 4-Input Multiplexer |  |  | X | X | 4-324 |
| 256 | Dual 4-Bit Addressable Latch |  |  |  | X | 4-327 |
| 257 | Quad 2-Input Multiplexer |  |  | X | X | 4-330 |
| 257A | Quad 2-Input Multiplexer |  |  |  | X | 4-333 |
| 258 | Quad 2-Input Multiplexer |  |  | X | X | 4-334 |
| 258A | Quad 2-Input Multiplexer |  |  |  | X | 4-337 |
| 259 | 8-Bit Addressable Latch |  |  |  | X | 4-338 |
| 260 | Dual 5-Input NOR Gate |  |  | X | X | 4-341 |
| 266 | Quad 2-Input Exclusive-NOR Gate |  |  |  | X | 4-342 |
| 273 | 8-Bit Register |  |  |  | X | 4-343 |
| 279 | Quad Set-Reset Latch | X |  |  | X | 4-345 |
| 280 | 9-Bit Parity Generator/Checker |  |  | X |  | 4-346 |
| 283 | 4-Bit Binary Full Adder | X |  |  | X | 4-348 |
| 289 | 64-Bit Random Access Memory |  |  | X | X | 4-352 |

PRODUCT INDICES AND SELECTION GUIDES

54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \text { TTL } \end{gathered}$ | $\begin{gathered} \text { 54H/74H } \\ \mathrm{H}-\mathrm{TTL} \end{gathered}$ | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{array}{c\|} \hline \text { 54LS/74LS } \\ \text { LS-TTL } \end{array}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 290 | BCD Decade Counter | X |  |  | X | 4-355 |
| 293 | Modulo-16 Binary Counter | X |  |  | X | 4-356 |
| 295A | 4-Bit Shift Register |  |  |  | X | 4-357 |
| 298 | Quad 2-Port Register | X |  |  | X | 4-360 |
| 299 | 8-Input Universal Shift/Storage Register |  |  |  | X | 4-363 |
| 322 | 8-Bit Serial/Parallel Register |  |  |  | X | 4-366 |
| 323 | 8-Bit Universal Shift/Storage Register |  |  |  | X | 4-370 |
| 347 | BCD to 7-Segment Decoder |  |  |  | X | 4-373 |
| 352 | Dual 4-Input Multiplexer |  |  |  | X | 4-374 |
| 353 | Dual 4-Input Multiplexer |  |  |  | X | 4-377 |
| 365A | Hex 3-State Buffer |  |  |  | X | 4-380 |
| 366A | Hex 3-State Inverter Buffer |  |  |  | X | 4-381 |
| 367A | Hex 3-State Buffer |  |  |  | X | 4-382 |
| 368A | Hex 3-State Inverter Buffer |  |  |  | X | 4-383 |
| 373 | Octal Transparent Latch |  |  |  | X | 4-384 |
| 374 | Octal D-Type Flip-Flop |  |  |  | X | 4-387 |
| 375 | 4-Bit Latch |  |  |  | X | 4-389 |
| 377 | Octal D Flip-Flop |  |  |  | X | 4-391 |
| 378 | Parallel D Register |  |  |  | X | 4-394 |
| 379 | Quad Parallel Register |  |  |  | X | 4-397 |
| 384 | 8-Bit Serial/Parallel Twos Complement Multiplier |  |  |  | X | 4-400 |
| 390 | Dual Decade Counter |  |  |  | X | 4-405 |
| 393 | Dual Modulo-16 Counter |  |  |  | X | 4-408 |
| 395 | Shift Register |  |  |  | X | 4-410 |
| 447 | BCD to 7-Segment Decoder |  |  |  | X | 4-413 |
| 490 | Dual Decade Counter |  |  |  | X | 4-414 |
| 502 | 8-Bit Successive <br> Approximation Register |  |  |  | X | 4-416 |
| 503 | 8-Bit Successive Approximation Register |  |  |  | X | 4-420 |
| 504 | 12-Bit Successive <br> Approximation Register |  |  |  | x | 4-423 |
| 533 | Octal Transparent Latch |  |  |  | X | 4-425 |

PRODUCT INDICES AND SELECTION GUIDES

54/74 FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} \text { 54/74 } \\ \text { TTL } \end{gathered}$ | $\begin{gathered} 54 \mathrm{H} / 74 \mathrm{H} \\ \mathrm{H}-\mathrm{TTL} \end{gathered}$ | $\begin{gathered} \text { 54S/74S } \\ \text { S-TTL } \end{gathered}$ | $\begin{gathered} \text { 54LS/74LS } \\ \text { LS-TTL } \end{gathered}$ | $\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 534 | Octal D-Type Flip-Flop |  |  |  | $X$ | 4-426 |
| 540 | Octal Buffer/Line Driver |  |  |  | X | 4-427 |
| 541 | Octal Buffer/Line Driver |  |  |  | X | 4-427 |
| 563 | Octal D-Type Latch |  |  |  | X | 4-429 |
| 564 | Octal D-Type Latch |  |  |  | X | 4-430 |
| 573 | Octal D-Type Flip-Flop |  |  |  | X | 4-431 |
| 574 | Octal D-Type Flip-Flop |  |  |  | X | 4-432 |
| 670 | $4 \times 4$ Register File |  |  |  | X | 4-433 |

9XXX FAMILY TTL

| DEVICE <br> NO. | DESCRIPTION | PAGE <br> NO. | DEVICE <br> NO. | DESCRIPTION | PAGE <br> NO. |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 9000 | JK Flip-Flop | $5-3$ | 9009 | NAND Buffer | $5-17$ |
| 9001 | JK Flip-Flop | $5-3$ | 9012 | NAND Gate | $5-10$ |
| 9002 | NAND Gate | $5-10$ | 9014 | Quad Exclusive-OR Gate | $5-19$ |
| 9003 | NAND Gate | $5-10$ | 9015 | Quad NOR Gate | $5-22$ |
| 9004 | NAND Gate | $5-10$ | 9016 | Hex Inverter | $5-10$ |
| 9005 | Extendable AND-OR-Invert Gate | $5-13$ | 9017 | Hex Inverter | $5-10$ |
| 9006 | Extender | $5-13$ | 9020 | Dual JK Flip-Flop | $5-3$ |
| 9007 | NAND Gate | $5-10$ | 9022 | Dual JK Flip-Flop | $5-3$ |
| 9008 | Entendable AND-OR-Invert Gate | $5-13$ | 9024 | Dual JK (or D) Flip-Flop | $5-24$ |

## 93XX FAMILY TTL

| DEVICE <br> NO. | DESCRIPTION | 93XX <br> TTL | 93H <br> H-TTL | 93L <br> L-TTL | 93S <br> S-TTL | PAGE <br> NO. |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 4-Bit Universal Shift Register | X | X | X | X | $6-3$ |
| $\mathbf{0 1}$ | 1-of-10 Decoder | X |  | X |  | $6-7$ |
| $\mathbf{0 2}$ | 1-of-10 Decoder | X |  |  |  | $6-10$ |
| $\mathbf{0 4}$ | Dual Full Adder | X |  |  |  | $6-13$ |
| $\mathbf{0 5}$ | Variable Modulus Counter | X |  |  |  | $6-16$ |
| $\mathbf{0 7}$ | 7-Segment Decoder | X |  |  |  | $6-20$ |
| $\mathbf{0 8}$ | Dual 4-Bit Latch | X |  | X |  | $6-24$ |
| $\mathbf{0 9}$ | Dual 4-Input Multiplexer | X |  | X |  | $6-27$ |

PRODUCT INDICES AND SELECTION GUIDES
93XX FAMILY TTL (Cont'd)

| DEVICE NO. | DESCRIPTION | $\begin{gathered} 93 X X \\ \mathrm{TTL} \end{gathered}$ | $\begin{gathered} \text { 93H } \\ \text { H-TTL } \end{gathered}$ | $\begin{gathered} \text { 93L } \\ \text { L-TTL } \end{gathered}$ | $\begin{gathered} \text { 93S } \\ \text { S-TTL } \end{gathered}$ | PAGE NO. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | BCD Decade Counter | X |  | x | X | 6-30 |
| 11 | 1-of-16 Decoder/Demultiplexer | X |  | X |  | 6-36 |
| 12 | 8-Input Multiplexer | X |  | X | X | 6-39 |
| 13 | 8-Input Multiplexer | X |  |  |  | 6-42 |
| 14 | Quad Latch | X |  | x |  | 6-45 |
| 15 | 1-of-10 Decoder | X |  |  |  | 6-48 |
| 16 | 4-Bit Binary Counter | X |  | X | X | 6-30 |
| 17B | 7-Segment Decoder/Driver | X |  |  |  | 6-51 |
| 17 C | 7-Segment Decoder/Driver | X |  |  |  | 6-51 |
| 18 | 8-Input Priority Encoder | X |  | x |  | 6-56 |
| 19 | Decade Sequencer | X |  |  |  | 6-59 |
| 20 | Decade Sequencer | X |  |  |  | 6-59 |
| 21 | Dual 1-of-4 Decoder | X |  | $x$ |  | 6-64 |
| 22 | Quad 2-Input Multiplexer | X |  | X |  | 6-66 |
| 24 | 5-Bit Comparator | X |  | X |  | 6-69 |
| 28 | Dual 8-Bit Shift Register | X |  | X |  | 6-72 |
| 34 | 8-Input Addressable Latch | X |  | X |  | 6-75 |
| 38 | 8-Bit Multiple Port Register | X |  | X |  | 6-78 |
| 40 | 4-Bit Arithmetic Logic Unit | X |  |  |  | 6-82 |
| 41 | 4-Bit Arithmetic Logic Unit | X |  | X | X | 6-87 |
| 42 | Carry Lookahead Generator | X |  |  | X | 6-94 |
| 43 | 4-Bit by 2-Bit Twos Complement Multiplier |  |  |  | X | 6-98 |
| 44 | Binary (4-Bit by 2-Bit) Full Multiplier | X |  |  |  | 6-101 |
| 46 | High Speed 6-Bit Identity Comparator |  |  |  | X | 6-106 |
| 47 | High Speed 6-Bit Identity Comparator |  |  |  | X | 6-109 |
| 48 | 12-Input Parity Checker/Generator | X |  |  |  | 6-111 |
| 62 | 9-Input Parity Checker/Generator |  |  |  | X | 6-114 |
| 68 | 7-Segment Decoder/Driver/Latch | x |  |  |  | 6-117 |
| 70 | 7-Segment Decoder/Driver/Latch | X |  |  |  | 6-123 |
| 72 | High Speed 4-Bit Shift Register |  | X |  |  | 6-127 |
| 74 | 7-Segment Decoder/Driver/Latch | x |  |  |  | 6-130 |
| 86 | 4-Bit Quad Exclusive-NOR | X |  |  |  | 6-138 |

PRODUCT INDICES AND SELECTION GUIDES
96XX FAMILY TTL

| DEVICE <br> NO. | DESCRIPTION | 96XX <br> TTL | 96L <br> L-TTL | 96S <br> S-TTL | 96LS <br> LS-TTL | PAGE <br> NO. |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | Retriggerable Resettable <br> Monostable Multivibrator | X |  |  |  | $7-3$ |
| $\mathbf{0 1}$ | Retriggerable Monostable Multivibrator | X |  |  |  | $7-8$ |
| $\mathbf{0 2}$ | Dual Retriggerable Resettable <br> Monostable Multivibrator | X | X | X | X | $7-14 /$ <br> $7-20$ |
| $\mathbf{3 2}$ | Address Multiplexer/Refresh Counter |  |  |  | X | $7-27$ |
| $\mathbf{4 2}$ | Address Multiplexer/Refresh Counter |  |  |  | X | $7-30$ |
| $\mathbf{1 0 1}$ | Quad 2-Input Positive NAND Buffer | X |  |  |  | $7-33$ |
| $\mathbf{1 0 3}$ | Quad Bus Transceiver | X |  |  |  | $7-34$ |
| $\mathbf{1 0 6}$ | Quad 2-Input NOR Receiver | X |  |  |  | $7-36$ |

## SELECTION GUIDES

SSI FUNCTIONS

| FUNCTION | 9XXX | 54/74 | 54H/74H | 54S/74S | 54LS/74LS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NAND Gates |  |  |  |  |  |
| Hex Inverters | 9016 | 54/7404 | 54H/74H04 | $\begin{aligned} & \text { 54S/74S04 } \\ & 54 \mathrm{~S} / 74 \mathrm{~S} 04 \mathrm{~A} \end{aligned}$ | 54LS/74LS04 |
| Hex Inverters (OC*) | 9017 | 54/7405 | 54H/74H05 | $\begin{aligned} & \text { 54S/74S05 } \\ & 54 \mathrm{~S} / 74 \mathrm{~S} 05 \mathrm{~A} \end{aligned}$ | 54LS/74LS05 |
| Hex Inverter (15 V) |  | 54/7416 |  |  |  |
| Hex Inverter (30 V) |  | 54/7406 |  |  |  |
| Hex Schmitt Trigger |  | 54/7414 |  |  | 54LS/74LS14 |
| Quad 2-Input | 9002 | 54/7400 | 54H/74H00 | 54S/74S00 | 54LS/74LS00 |
| Quad 2-Input (OC*) | 9012 | 54/7403 |  | 54S/74S03 | 54LS/74LS03 |
| Quad 2-Input (OC*) |  | 54/7401 | 54H/74H01 |  |  |
| Quad 2-Input (12 V) |  | 7426 |  |  | 54LS/74LS26 |
| Quad 2-Input (48 V) |  | 54/7437 |  |  | 54LS/74LS37 |

*OC $=$ Open-collector; $3 S=3$-State

## SSI FUNCTIONS (Cont'd)

| FUNCTION | 9XXX | 54/74 | 54H/74H | 54S/74S | 54LS/74LS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NAND Gates (Cont'd) |  |  |  |  |  |
| Quad 2-Input (OC*/48 mA) |  | 54/7438 |  |  | 54LS/74LS38 |
| Quad 2-Input Line Driver | 96101 | 54/7439 |  |  |  |
| Quad 2-Input Schmitt |  | 54/74132 |  | 54S/74S132 | 54LS/74LS132 |
| Triple 3-Input | 9003 | 54/7410 | 54H/74H10 | 54S/74S10 | 54LS/74LS10 |
| Triple 3-Input (OC*) |  | 54/7412 |  |  |  |
| Dual 4-Input | 9004 | 54/7420 | 54H/74H20 | 54S/74S20 | 54LS/74LS20 |
| Dual 4-Input Schmitt |  | 54/7413 |  |  | 54LS/74LS13 |
| Dual 4-Input (OC*) |  | 54/7422 | $54 \mathrm{H} / 74 \mathrm{H} 22$ | 54S/74S22 | 54LS/74LS22 |
| Dual 4-Input Buffer | 9009 | 54/7440 | $54 \mathrm{H} / 74 \mathrm{H} 40$ | 54S/74S40 | 54LS/74LS40 |
| Dual 4-Input Line Driver |  |  |  | 54S/74S140 |  |
| 8-Input | 9007 |  |  |  |  |
| 8-Input |  | 54/7430 | 54H/74H30 | 54S/74S30 | 54LS/74LS30 |
| 13-Input |  |  |  | 54S/74S133 | 54LS/74LS133 |
| 12-Input (3S*) |  |  |  | 54S/74S134 |  |
| NOR Gates |  |  |  |  |  |
| Quad 2-Input |  | 54/7402 |  | 54S/74S02 | 54LS/74LS02 |
| Quad 2-Input | 9015 |  |  |  |  |
| Triple 3-Input |  | 54/7427 |  |  | 54LS/74LS27 |
| Dual 4-Input w/Strobe |  | 54/7425 |  |  |  |
| Dual 4-Input (Exp) |  | 54/7423 |  |  |  |
| Dual 5-Input |  |  |  | 54S/74S260 | 54LS/74LS260 |
| Quad 2-Input |  |  |  |  | 54LS/74LS28 |
| Quad 2-Input (OC*) |  |  |  |  | 54LS/74LS33 |

AND Gates

| Hex Buffer (OC*/15 V) |  | $54 / 7417$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Hex Buffer (OC*/30 V) |  | $54 / 7407$ |  |  |  |
| Quad 2-Input |  | $54 / 7408$ | $54 \mathrm{H} / 74 \mathrm{H} 08$ | $54 \mathrm{~S} / 74 \mathrm{~S} 08$ | $54 \mathrm{LS} / 74 \mathrm{LS} 08$ |
| Quad 2-Input (OC*) |  | $54 / 7409$ |  | $54 \mathrm{~S} / 74 \mathrm{~S} 09$ | $54 \mathrm{LS} / 74 \mathrm{LS} 09$ |
| Triple 3-Input |  | $54 / 7411$ | $54 \mathrm{H} / 74 \mathrm{H} 11$ | $54 \mathrm{~S} / 74 \mathrm{~S} 11$ | $54 \mathrm{LS} / 74 \mathrm{LS} 11$ |
| Triple 3-Input (OC*) |  |  |  | $54 \mathrm{~S} / 74 \mathrm{~S} 15$ | $54 \mathrm{LS} / 74 \mathrm{LS} 15$ |
| Dual 4-Input |  | $54 / 7421$ | $54 \mathrm{H} / 74 \mathrm{H} 21$ |  | $54 \mathrm{LS} / 74 \mathrm{LS} 21$ |

*OC $=$ Open-Collector; $3 S=3$-State

PRODUCT INDICES AND SELECTION GUIDES
SSI FUNCTIONS (Cont'd)

| FUNCTION | 9XxX | 54/74 | 54H/74H | 54S/74S | 54LS/74LS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OR Gates |  |  |  |  |  |
| Quad 2-Input |  | 54/7432 |  | 54S/74S32 | 54LS/74LS32 |
| Exclusive-OR Gates |  |  |  |  |  |
| Quad 2-Input |  | 54/7486 |  | 54S/74S86 | 54LS/74LS86 |
| Quad 2-Input (OC*) |  |  |  |  | 54LS/74LS136 |
| Quad 2-Input OR/NOR | 9014 |  |  |  |  |
| Quad 2-Input OR/NOR |  |  |  | 54S/74S135 |  |
| Exclusive-NOR Gate |  |  |  |  |  |
| Quad 2-Input (OC*) |  | 9386 (8242) |  |  | 54LS/74LS266 |
| AND-OR Gates |  |  |  |  |  |
| 2-2-2-3 Input (Exp) |  |  | 54H/74H52 |  |  |
| AND-OR-INVERT Gates |  |  |  |  |  |
| Dual 2-2 Input (Exp) | 9005 | 54/7450 | 54H/74H50 |  |  |
| Dual 2-2 Input |  | 54/7451 | $54 \mathrm{H} / 74 \mathrm{H} 51$ | 54S/74S51 | 54LS/74LS51 |
| 2-2-2-3 Input (Exp) | 9008 | 54/7453 | $54 \mathrm{H} / 74 \mathrm{H} 53$ |  |  |
| 2-2-2-3 Input |  | 54/7454 | $54 \mathrm{H} / 74 \mathrm{H} 54$ |  |  |
| 2-2-3-3 Input |  |  |  |  | 54LS/74LS54 |
| 2-2-3-4 Input |  |  |  | 54S/74S64 |  |
| 2-2-3-4 Input (OC*) |  |  |  | 54S/74S65 |  |
| 4-4 Input (Exp) |  |  | 54H/74H55 |  |  |
| 4-4 Input |  |  |  |  | 54LS/74LS55 |
| Gate Expanders |  |  |  |  |  |
| Triple 3-Input |  |  | 54H/74H61 |  |  |
| Dual 4-Input | 9006 | 54/7460 | $54 \mathrm{H} / 74 \mathrm{H} 60$ |  |  |
| 2-2-3-3 AND-OR |  |  | $54 \mathrm{H} / 74 \mathrm{H} 62$ |  |  |
| Buffer Gates and Drivers |  |  |  |  |  |
| Quad Buffer (3S*) |  | 54/74125 |  |  | 54LS/74LS125A |
| Quad Buffer (3S*) |  | 54/74126 |  |  | 54LS/74LS126 |
| Hex (3S*) |  |  |  |  | 54LS/74LS365A |
| Hex Inverter (3S*) |  |  |  |  | 54LS/74LS366A |
| Hex (3S*) |  |  |  |  | 54LS/74LS367A |
| Hex Inverter (3S*) |  |  |  |  | 54LS/74LS368A |

*OC $=$ Open-Collector; $3 S=3$-State

PRODUCT INDICES AND SELECTION GUIDES

SINGLE AND DUAL FLIP-FLOPS

| FUNCTION | DEVICE NO. | INPUTS | CLOCK EDGE | DIRECT SET | DIRECT CLEAR | GUARANTEED CLOCK FREQ. MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single JK | 9000 | 3J, 3K, JK | $\Gamma$ | X | X | 20 (Typ) |
| Single JK | 9001 | 2J, 2K, J, K, JK | ノ | X | X | 50 (Typ) |
| Single JK | 54H/74H71 | $\begin{gathered} (A O I) \\ (2+2) \mathrm{J},(2+2) \mathrm{K} \end{gathered}$ | $\checkmark$ | X |  | 25 |
| Single JK | 54H/74H101 | $\begin{gathered} (\mathrm{AOI}) \\ (2+2) \mathrm{J},(2+2) \mathrm{K} \end{gathered}$ | 乙 | x |  | 40 |
| Single JK | 54/7472 | 3J, 3K | $\checkmark$ | X | X | 15 |
| Single JK | 54H/74H72 | 3J, 3K | 2 | X | X | 25 |
| Single JK | 54H/74H102 | 3J, 3K | 2 | X | X | 40 |
| Single JK | 54/7470 | 2J, 2K, J, $\overline{\mathrm{K}}$ | $\Gamma$ | X | X | 20 |
| Dual D | 54/7474 | D | $\Gamma$ | X | X | 15 |
| Dual D | 54H/74H74 | D | $\checkmark$ | X | X | 35 |
| Dual D | 54S/74S74 | D | $\digamma$ | X | X | 75 |
| Dual D | 54LS/74LS74 | D | $\Gamma$ | X | X | 30 |
| Dual JK | 9020 | J, K, J, $\overline{\mathrm{K}}, \mathrm{JK}$ | $\Gamma$ |  | X | 50 (Typ) |
| Dual JK | 9022 | J, $\overline{\mathrm{K}}, \mathrm{JK}$ | - | X | X | 50 (Typ) |
| Dual JK | 54/7473 | J, K | L |  | X | 15 |
| Dual JK | 54/74107 | J, K | 2 |  | X | 15 |
| Dual JK | 54H/74H73 | J, K | 2 |  | X | 25 |
| Dual JK | 54H/74H103 | J, K | $\checkmark$ |  | X | 40 |
| Dual JK | 54S/74S113 | J, K | 2 | X |  | 80 |
| Dual JK | 54LS/74LS113 | J, K | $\checkmark$ | X |  | 30 |
| Dual JK | 54/7476 | J, K | 2 | X | X | 15 |
| Dual JK | 54H/74H76 | J, K | 2 | X | X | 25 |
| Dual JK | 54H/74H106 | J, K | 7 | X | X | 40 |
| Dual JK | 54S/74S112 | J, K | $\checkmark$ | X | X | 80 |
| Dual JK | 54LS/74LS112 | J, K | 2 | X | X | 30 |
| Dual JK | 54H/74H78 | J, K | 2 | X | X | 25 |
| Dual JK | 54H/74H108 | J, K | 2 | X | X | 40 |
| Dual JK | 54LS/74LS73 | J, K | 2 |  | X | 30 |
| Dual JK | 54S/74S114 | J, K | 2 | X | X | 80 |
| Dual JK | 54LS/74LS114 | J, K | 2 | X | X | 30 |
| Dual JK | 9024, 54/74109 | J, K | $\Gamma$ | X | X | 25 |

PRODUCT INDICES AND SELECTION GUIDES

SINGLE AND DUAL FLIP-FLOPS (Cont'd)

| FUNCTION | DEVICE NO. | INPUTS | CLOCK EDGE | $\begin{aligned} & \text { DIRECT } \\ & \text { SET } \end{aligned}$ | DIRECT CLEAR | GUARANTEED CLOCK FREQ. MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dual JK | 54S/74S109 | J, K | $\Gamma$ | X | X | 75 |
| Dual JK | 54LS/74LS109 | J, K | $\Gamma$ | X | X | 30 |
| Dual JK | 54LS/74LS76 | J, K | $\checkmark$ | X | X | 30 |
| Dual JK | 54LS/74LS107 | J, K | 2 |  | X | 30 |
| Dual JK | 54LS/74LS78 | J, K | 2 | X | X | 30 |

LATCHES

| FUNCTION | DEVICE NO. | DATA INPUTS | COMMON CLEAR | ENABLE INPUTS (LEVEL) | MIN ENABLE PULSE WIDTH ns | MAX DELAY ENABLE TO OUTPUT-ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4-Bit RS Latch | 9314 | $4 \times\left(\bar{R}_{1} \bar{S}_{1}\right)$ | L | 1 (L) | 18 | 24 |
| 4-Bit RS Latch | 93 L 14 | $4 \times\left(\bar{R}_{1} \bar{S}_{1}\right)$ | L | 1 (L) | 30 | 45 |
| 4-Bit D Latch | 9314 | $4 \times \mathrm{D}$ | L | 1 (L) | 18 | 24 |
| 4-Bit D Latch | 93 L 14 | $4 \times \mathrm{D}$ | L | 1 (L) | 30 | 45 |
| Dual 4-Bit D Latch | $\begin{aligned} & 9308 \\ & (54 / 74116) \end{aligned}$ | $8 \times \mathrm{D}$ | $2 \times \mathrm{L}$ | $2 \times 2$ AND | 18 | 30 |
| Dual 4-Bit D Latch | 93L08 | $8 \times \mathrm{D}$ | 2 XL | $2 \times 2$ AND | 30 | 45 |
| 4-Bit RS Latch | 54/74279 | $4 \times(\bar{R} \bar{S})$ |  |  |  |  |
| 4-Bit RS Latch | 54LS/74LS279 | $4 \times(\overline{\mathrm{R}}$ S $)$ |  |  |  |  |
| 4-Bit D Latch | 54/7475 | $4 \times \mathrm{D}$ |  | $2(\mathrm{H})$ | 20 | 30 |
| 4-Bit D Latch | 54/7477 | $4 \times \mathrm{D}$ |  | 2 (H) | 20 | 30 |
| 4-Bit D Latch | 54LS/74LS375 | $4 \times \mathrm{D}$ |  | 2 (H) | 20 | 30 |
| Dual 4-Bit <br> Addr. Latch | 54LS/74LS256 | $8 \times \mathrm{D}$ | L | 2 (L) | 17 | 27 |
| 8-Bit Addr. Latch | 9334 | $1 \times \mathrm{D}$ | L | 1 (L) | 17 | 24 |
| 8-Bit Addr. Latch | 93L34 | $1 \times \mathrm{D}$ | L | 1 (L) | 26 | 45 |
| 8-Bit D Latch | 54LS/74LS373 | $8 \times \mathrm{D}$ |  | 1 (H) | 15 | 30 |
| 8-Bit D Latch | 54LS/74LS573 | $8 \times \mathrm{D}$ |  | 1 (L) | 15 | 30 |
| 8-Bit D Latch | 54LS/74LS533 | $8 \times \mathrm{D}$ |  | 1 (H) | 15 | 30 |
| 8-Bit D Latch | 54LS/74LS563 | $8 \times \mathrm{D}$ |  | 1 (H) | 15 | 30 |
| 8-Bit Addr. Latch | 54LS/74LS259 | $1 \times \mathrm{D}$ | L | 1 (L) | 17 | 27 |
| 16-Bit D Latch | 54/74170 | $4 \times \mathrm{D}$ |  | 2 | 25 | 45 |
| 16-Bit D Latch | 54LS/74LS170 | $4 \times \mathrm{D}$ |  | 2 | 25 | 35 |
| 16-Bit D Latch | 54LS/74LS670 | $4 \times \mathrm{D}$ |  | 2 | 25 | 35 |
| 64-Bit Memory | 54/7489 | $4 \times \mathrm{D}$ |  | 2 (L) | 40 | 70 |

PRODUCT INDICES AND SELECTION GUIDES

| LATCHES（Cont＇d） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUNCTION | DEVICE NO． | DATA INPUTS | COMMON CLEAR | ENABLE INPUTS （LEVEL） | MIN ENABLE PULSE WIDTH ns | MAX DELAY ENABLE TO OUTPUT－ns |
| 64－Bit Memory | 54LS／74LS89 | $4 \times \mathrm{D}$ |  | 2 （L） | 25 （Typ） | 30 （Typ） |
| 64－Bit Memory | 54S／74S189 | $4 \times \mathrm{D}$ |  | 2 （L） | 20 | 40 |
| 64－Bit Memory | 54LS／74LS189 | $4 \times \mathrm{D}$ |  | 2 （L） | 25 （Typ） | 30 （Typ） |
| 64－Bit Memory | 54S／74S289 | $4 \times \mathrm{D}$ |  | 2 （L） | 20 | 40 |
| 64－Bit Memory | 54LS／74LS289 | $4 \times \mathrm{D}$ |  | 2 （L） | 25 （Typ） | 30 （Typ） |

MULTIPLE FLIP－FLOPS

| FUNCTION | DEVICE NO． | DATA INPUTS | COMMON CLEAR | CP INPUTS （LEVEL） | GUARANTEED CLOCK FREQ． MHz |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4－Bit D Flip－Flop | 54／74175 | $4 \times \mathrm{D}$ | L | 1（ 厄） | 25 |
| 4－Bit D Flip－Flop | 54S／74S175 | $4 \times \mathrm{D}$ | L | 1（ $/$ ） | 75 |
| 4－Bit D Flip－Flop | 54LS／74LS175 | $4 \times \mathrm{D}$ | L | 1（ 」） | 30 |
| 4－Bit D Flip－Flop | 54／74298 | $2 \times 4 \times \mathrm{D}$ |  | 1（2） | 25 |
| 4－Bit D Flip－Flop | 54LS／74LS298 | $2 \times 4 \times D$ |  | 1（乙） | 25 |
| 6－Bit D Flip－Flop | 54／74174 | $6 \times \mathrm{D}$ | L | 1（ 斤） | 25 |
| 6－Bit D Flip－Flop | 54S／74S174 | $6 \times \mathrm{D}$ | L | 1（ 5 ） | 75 |
| 6－Bit D Flip－Flop | 54LS／74LS174 | $6 \times \mathrm{D}$ | L | 1（ $\Gamma$ ） | 30 |
| 8－Bit Multiple Port Register | 9338 | $1 \times \mathrm{D}$ |  | 1 （L） | 27 |
| 8－Bit Multiple Port Register | 93L38 | $1 \times \mathrm{D}$ |  | 1 （L） | 14 |
| 8－Bit D Flip－Flop | 54LS／74LS374 | $8 \times \mathrm{D}$ |  | 1（J） | 35 |
| 8－Bit D Flip－Flop | 54LS／74LS534 | $8 \times \mathrm{D}$ |  | 1（ $\sim$ ） | 35 |
| 8－Bit D Flip－Flop | 54LS／74LS564 | $8 \times \mathrm{D}$ |  | 1（ $\Gamma$ ） | 35 |

MULTIPLEXERS

| FUNCTION | DEVICE NO． | ENABLE INPUTS | TRUE OUTPUT | COMPLEMENT OUTPUT |
| :---: | :---: | :---: | :---: | :---: |
| Quad 2－Input | 9322 | 1 | X |  |
| Quad 2－Input | 93 L 22 | 1 | X |  |
| Quad 2－Input | 54／74157 | 1 | X |  |
| Quad 2－Input | 54S／74S157 | 1 | X |  |
| Quad 2－Input | 54LS／74LS157 | 1 | X |  |
| Quad 2－Input | 54S／74S158 | 1 |  | X |
| Quad 2－Input | 54LS／74LS158 | 1 |  | X |

PRODUCT INDICES AND SELECTION GUIDES

MULTIPLEXERS (Cont'd)

| FUNCTION | DEVICE NO. | ENABLE INPUTS | TRUE OUTPUT | COMPLEMENT OUTPUT |
| :---: | :---: | :---: | :---: | :---: |
| Quad 2-Input | 54S/74S257 | 1 | 3S* |  |
| Quad 2-Input | 54LS/74LS257 | 1 | 3S* |  |
| Quad 2-Input | 54LS/74LS257A | 1 | 3S* |  |
| Quad 2-Input | 54S/74S258 | 1 |  | 3S* |
| Quad 2-Input | 54LS/74LS258 | 1 |  | 3S* |
| Quad 2-Input | 54LS/74LS258A | 1 |  | $3 S^{*}$ |
| Quad 2-Input | 54/74298 | Clocked (Edge-Trigger) | X (Latched) |  |
| Quad 2-Input | 54LS/74LS298 | Clocked (Edge-Trigger) | X (Latched) |  |
| Dual 4-Input | 9309 |  | X | X |
| Dual 4-Input | 93L09 |  | X | X |
| Dual 4-Input | 54/74153 | 2 | X |  |
| Dual 4-Input | 54S/74S153 | 2 | X |  |
| Dual 4-Input | 54LS/74LS153 | 2 | X |  |
| Dual 4-Input | 54S/74S253 | 2 | $3 S^{*}$ |  |
| Dual 4-Input | 54LS/74LS253 | 2 | $3 S^{*}$ |  |
| Dual 4-Input | 54LS/74LS352 | 2 |  | X |
| Dual 4-Input | 54LS/74LS353 | 2 |  | $3 S^{*}$ |
| 8-Input | 9312 | 1 | X | $X$ |
| 8-Input | 93 L 12 | 1 | X | X |
| 8-Input | 93512 | 1 | X | X |
| 8-Input | 9313 | 1 | X | OC* |
| 8-Input | 54/74151A | 1 | X | X |
| 8-Input | 54S/74S151 | 1 | X | X |
| 8-Input | 54LS/74LS151 | 1 | X | X |
| 8-Input | 54S/74S251 | 1 | 3S* | 3S* |
| 8-Input | 54LS/74LS251 | 1 | 3S* | $3 S^{*}$ |
| 8-Input | 54/74152A |  |  | X |
| 8-Input | 54LS/74LS152 |  |  | X |
| 12-Input | 96LS42 | 1 |  | X |
| 14-Input | 96LS32 | 1 |  | X |
| 16-Input | 54/74150 | 1 |  | X |

*OC $=$ Open-Collector; $3 S=3$-State

PRODUCT INDICES AND SELECTION GUIDES

DECODERS/DEMULTIPLEXERS

| FUNCTION | DEVICE NO. | ADDRESS INPUTS | ACTIVE LOW ENABLE | ACTIVE LOW OUTPUTS | OPEN-COLLECTOR OUTPUT VOLTAGE V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dual 1-of-4 | 9321 | $2+2$ | $1+1$ | $4+4$ |  |
| Dual 1-of-4 | 93L21 | $2+2$ | $1+1$ | $4+4$ |  |
| Dual 1-of-4 | 54S/74S139 | $2+2$ | $1+1$ | $4+4$ |  |
| Dual 1-of-4 | 54LS/74LS139 | $2+2$ | $1+1$ | $4+4$ |  |
| Dual 1-of-4 | 54/74155 | 2 | $2+1$ | $4+4$ |  |
| Dual 1-of-4 | 54LS/73LS155 | 2 | $2+1$ | $4+4$ |  |
| Dual 1-of-4 | 54/74156 | 2 | $2+1$ | $4+4$ | 5.5 |
| Dual 1-of-4 | 54LS/74LS156 | 2 | $2+1$ | $4+4$ | 5.5 |
| 1-of-8 | 9301 | 3 | 1 | 8 |  |
| 1-of-8 | 93L01 | 3 | 1 | 8 |  |
| 1-of-8 | 9302 | 3 | 1 | 8 | 5.5 |
| 1-of-8 | 9334 | 3 | 1 | 8 |  |
| 1-of-8 | 93L34 | 3 | 1 | 8 |  |
| 1-of-8 | 54LS/74LS259 | 3 | 1 | 8 H |  |
| 1-of-8 | 54/7445 | 3 | 1 | 8 | 30 |
| 1-of-8 | 54/7442A | 3 | 1 | 8 |  |
| 1-of-8 | 54LS/74LS42 | 3 | 1 | 8 |  |
| 1-of-8 | 54S/74S138 | 3 | 2 | 8 |  |
| 1-of-8 | 54LS/74LS138 | 3 | 2 | 8 |  |
| 1-of-8 | 54/74145 | 3 | 1 | 8 | 15 |
| 1-of-8 w/Input Latches | 54S/74S137 | 3 | 2 | 8 |  |
| 1-of-10 | 9301 | 4 (BCD) |  | 10 |  |
| 1-of-10 | 93L01 | 4 (BCD) |  | 10 |  |
| 1-of-10 | 9302 | 4 (BCD) |  | 10 | 5.5 |
| 1-of-10 | 54/7445 | 4 (BCD) |  | 10 | 30 |
| 1-of-10 | 54/7442A | 4 (BCD) |  | 10 |  |
| 1-of-10 | 54LS/74LS42 | 4 (BCD) |  | 10 |  |
| 1-of-10 | 54/7443A | 4 (Excess-3) |  | 10 |  |
| 1-of-10 | 54/7444A | 4 (Excess-3 Gray) |  | 10 |  |
| 1-of-10 | 54/74145 | 4 (BCD) |  | 10 | 15 |
| 1-of-16 | 9311 | 4 | 2 | 16 |  |

## DECODERS/DEMULTIPLEXERS (Cont'd)

| FUNCTION | DEVICE NO. | ADDRESS <br> INPUTS | ACTIVE LOW <br> ENABLE | ACTIVE LOW <br> OUTPUTS | OPEN-COLLECTOR <br> OUTPUT VOLTAGE <br> V |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $1-\mathrm{of}-16$ | 93 L11 | 4 | 2 | 16 |  |
| $1-\mathrm{of}-16$ | $54 / 74154$ | 4 | 2 | 16 |  |
| $1-$ of-10 <br> Decade Sequencer | 9319 |  | Clock | 10 |  |
| 1-of-10 <br> Decade Sequencer | 9320 |  | Clock | 10 | 3 K Pull-up |

REGISTERS

| FUNCTION | DEVICE NO. | NO. OF BITS | SERIAL ENTRY | PARALLEL ENTRY NO. OF BITS ${ }^{1}$ | CLOCK EDGE | GUARANTEED CLOCK FREQ. MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parallel-in/Parallel-out Shift Right | 9300 | 4 | J, $\bar{K}$ | 4S | ノ | 30 |
| Parallel-in/Parallel-out Shift Right | 93H00 | 4 | J, $\bar{K}$ | 4S | $\digamma$ | 45 |
| Parallel-in/Parallel-out Shift Right | 93L00 | 4 | J, $\bar{K}$ | 4S | $\digamma$ | 10 |
| Parallel-in/Parallel-out Shift Right | 93500 | 4 | J, $\bar{K}$ | 4S | $\Gamma$ | 70 |
| Parallel-in/Parallel-out Shift Right | 93H72 | 4 | D | 4S | $\Gamma$ | 45 |
| Serial/Parallel-in, Parallel-out, Shift Right | 54/7494 | 4 | D | $2 \times 4 \mathrm{~A}$ (MUX) | $\Gamma$ | 10 |
| Parallel-in/Parallel-out Shift Right | 54/7495A | 4 | D | 4S | 2 | 25 |
| Parallel-in/Parallel-out Shift Right | 54LS/74LS95B | 4 | D | 4S | 2 | 30 |
| Parallel-in/Parallel-out Shift Right | 54/74178 | 4 | D | 4S | 2 | 25 |
| Parallel-in/Parallel-out Shift Right | 54/74179 | 4 | D | 4S | 乙 | 25 |
| Parallel-in/Parallel-out Shift Right | 54LS/74LS195A | 4 | J, $\overline{\mathrm{K}}$ | 4 S | $\digamma$ | 30 |
| Parallel-in/Parallel-out Shift Right (3S2) | 54LS/74LS295A | 4 | D | 4 S | 2 | 30 |
| 1. $S=$ Synchronous; $A=$ Asynchronous <br> 2. $O C=$ Open-Collector; $3 S=3$-State |  |  |  |  |  |  |

PRODUCT INDICES AND SELECTION GUIDES

| REGISTERS (Cont'd |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUNCTION | DEVICE NO. | NO. OF BITS | SERIAL ENTRY | PARALLEL <br> ENTRY <br> NO. OF BITS 1 | CLOCK EDGE | GUARANTEED CLOCK FREQ. MHz |
| Parallel-in/Parallel-out Shift Right (3S2) | 54LS/74LS395 | 4 | D | 4S | 乙 | 30 |
| Parallel-in/Parallel-out Bidirectional | 54/74194 | 4 | DR, DL | 4S | $\digamma$ | 25 |
| Parallel-in/Parallel-out Bidirectional | 54S/74S194 | 4 | DR, DL | 4S | $\Gamma$ | 70 |
| Parallel-in/Parallel-out Bidirectional | 54LS/74LS194A | 4 | DR, DL | 4S | $\Gamma$ | 30 |
| Quad D (3S2) | 54/74173 | 4 |  | 4S | $\Gamma$ | 25 |
| Quad D (3S2) | 54LS/74LS173 | 4 |  | 4 S | $\Gamma$ | 30 |
| Quad D Flip-Flop | 54/74175 | 4 |  | 4S | - | 25 |
| Quad D Flip-Flop | 54S/74S175 | 4 |  | 4S | $\Gamma$ | 75 |
| Quad D Flip-Flop | 54LS/74LS175 | 4 |  | 4S | $\checkmark$ | 30 |
| Quad 2-Port Register | 54/74298 | 4 |  | 2 D (MUX) | 2 | 30 |
| Quad 2-Port Register | 54LS/74LS298 | 4 |  | 2 D (MUX) | 2 | 30 |
| Quad D | 54LS/74LS379 | 4 |  | 4S | $\checkmark$ | 30 |
| Parallel-in/Parallel-out Shift Right | 54/7496 | 5 | D | 5A | $\widetilde{ }$ | 10 |
| Hex D Flip-Flop | 54/74174 | 6 |  | 6S | $\Gamma$ | 25 |
| Hex D Flip-Flop | 54S/74S174 | 6 |  | 6 S | $\Gamma$ | 75 |
| Hex D Flip-Flop | 54LS/74LS174 | 6 |  | 6 S | $\Gamma$ | 30 |
| Parallel D Register | 54LS/74LS378 | 6 |  | 6 S | $\Gamma$ | 30 |
| Multiport Register | 9338 | 8 | D |  | $\Gamma$ | 25 |
| Multiport Register | 93 L 38 | 8 | D |  | $\Gamma$ | 20 |
| Parallel-in/Parallel-out Shift Right | 54/74199 | 8 | J, $\bar{K}$ | 8S | $\Gamma$ | 25 |
| Serial/Parallel-in, Parallel/Serial-out Shift Right (3S2) | 54LS/74LS322 | 8 | 2D | 8S | $\Gamma$ | 35 |
| Serial-in/Parallel-out Shift Right | 54/74164 | 8 | 2D |  | $\Gamma$ | 25 |
| Serial-in/Parallel-out Shift Right | 54LS/74LS164 | 8 | 2D |  | $\Gamma$ | 25 |
| $\begin{aligned} & \text { 1. } S=\text { Synchronous; } A=\text { Asynchronous } \\ & \text { 2. } O C=\text { Open-Collector; } 3 S=\text { State } \end{aligned}$ |  |  |  |  |  |  |


| REGISTERS (Cont'd) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUNCTION | DEVICE NO. | NO. OF BITS | SERIAL ENTRY | $\square$ | CLOCK EDGE | GUARANTEED CLOCK FREQ. MHz |
| Parallel/Serial-in, <br> Serial-out, Shift Right | 54/74165 | 8 | D | 8A | - | 25 |
| Parallel/Serial-in, Serial-out, Shift Right | 54LS/74LS165 | 8 | D | 8A | - | 30 |
| Parallel/Serial-in, Serial-out, Shift Right | 54/74166 | 8 | D | 8 S | $\Gamma$ | 25 |
| Serial-in/Serial-out Shift Right | 54/7491A | 8 | 2D |  | $\Upsilon$ | 10 |
| Successive Approx Register | 54LS/74LS502 | 8 | D |  | - | 15 |
| Successive Approx Register | 54LS/74LS503 | 8 | D |  | $\digamma$ | 15 |
| Parallel-in/Parallel-out Bidirectional | 54/74198 | 8 | DR, DL | 8 S | $\Gamma$ | 25 |
| Parallel-in/Parallel-out Bidirectional (3S2) | 54LS/74LS299 | 8 | DR, DL | 85 | $\Gamma$ | 35 |
| Parallel-in/Parallel-out Bidirectional (3S2) | 54LS/74LS323 | 8 | DR, DL | 85 | $\Gamma$ | 35 |
| Octal D Register | 54LS/74LS273 | 8 |  | 8 S | $\Gamma$ | 30 |
| Octal D Flip-Flop (3S2) | 54LS/74LS374 | 8 |  | 8 S | $\Gamma$ | 35 |
| Octal D Flip-Flop | 54LS/74LS377 | 8 |  | 8 S | $\Gamma$ | 30 |
| Octal D Flip-Flop (3S2) | 54LS/74LS574 | 8 |  | 8 S | $\Gamma$ | 35 |
| Successive Approx Register | 54LS/74LS504 | 12 | D |  | ת | 15 |
| Serial-in/Serial-out Shift Right | 9328 | $2 \times 8$ | $\begin{gathered} 2 \times 2 \mathrm{D} \\ \text { (MUX) } \end{gathered}$ |  | - | 20 |
| Serial-in/Serial-out Shift Right | 93L28 | $2 \times 8$ | $\begin{aligned} & 2 \times 2 \mathrm{D} \\ & \text { (MUX) } \end{aligned}$ |  | $\checkmark$ | 5.0 |
| Register File (OC2) | 54/74170 | $4 \times 4$ |  | 4A | $\checkmark$ |  |
| Register File (OC2) | 54LS/74LS170 | $4 \times 4$ |  | 4A | 2 |  |
| Register File (3S2) | 54LS/74LS670 | $4 \times 4$ |  | 4A | 2 |  |

PRODUCT INDICES AND SELECTION GUIDES

## COUNTERS

| FUNCTION | DEVICE NO. | MODULUS | PARALLEL ENTRY* | CLOCK EDGE | GUARANTEED CLOCK FREQ. MHz |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Asynchronous | 54/74290 | $2 \times 5$ |  | L | 32 |
| Asynchronous | 54/7490A | $2 \times 5$ |  | 2 | 32 |
| Asynchronous | 54LS/74LS90 | $2 \times 5$ |  | L | 32 |
| Asynchronous | 54/7492A | $2 \times 6$ |  | 2 | 32 |
| Asynchronous | 54LS/74LS92 | $2 \times 6$ |  | L | 32 |
| Asynchronous | 54/74293 | $2 \times 8$ |  | 2 | 32 |
| Asynchronous | 54/7493A | $2 \times 8$ |  | L | 32 |
| Asynchronous | 54LS/74LS93 | $2 \times 8$ |  | 2 | 32 |
| Asynchronous | 54/74176 | $2 \times 5$ | A | L | 35 |
| Asynchronous | 54/74177 | $2 \times 8$ | A | 2 | 35 |
| Asynchronous | 54/74196 | $2 \times 5$ | A | 2 | 50 |
| Asynchronous | 54LS/74LS196 | $2 \times 5$ | A | 2 | 45 |
| Asynchronous | 54/74197 | $2 \times 8$ | A | 2 | 50 |
| Asynchronous | 54LS/74LS197 | $2 \times 8$ | A | 2 | 50 |
| Asynchronous | 54LS/74LS290 | $2 \times 5$ |  | 2 | 32 |
| Asynchronous | 54LS/74LS293 | $2 \times 8$ |  | 2 | 32 |
| Asynchronous | 54LS/74LS390 | $2 \times 5$ |  | 2 | 40 |
| Asynchronous | 54LS/74LS393 | $2 \times 8$ |  | L | 40 |
| Asynchronous | 54LS/74LS490 | $2 \times 5$ |  | L | 40 |
| Variable Modulo | 9305 | $2 \times 5,6,7,8$ |  | $\Gamma$ | 23 |
| Synchronous | 9310 | 10 (Presettable) | S | $\Gamma$ | 30 |
| Synchronous | 93 L 10 | 10 (Presettable) | S | $\Gamma$ | 13 |
| Synchronous | 93510 | 10 (Presettable) | S | $\Gamma$ | 70 |
| Synchronous | 9316 | 16 (Presettable) | S | $\Gamma$ | 30 |
| Synchronous | 93 L 16 | 16 (Presettable) | S | $\Gamma$ | 13 |
| Synchronous | 93516 | 16 (Presettable) | S | $\Gamma$ | 70 |
| Synchronous | 54/74160 | 10 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54LS/74LS160 | 10 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54/74161 | 16 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54LS/74LS161 | 16 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54/74162 | 10 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54LS/74LS162 | 10 (Presettable) | S | $\Gamma$ | 25 |
| Synchronous | 54/74163 | 16 (Presettable) | S | $\Gamma$ | 25 |

[^1]PRODUCT INDICES AND SELECTION GUIDES

| COUNTERS (Cont'd) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FUNCTION | DEVICE NO. | MODULUS | PARALLEL ENTRY* | CLOCK EDGE | GUARANTEED CLOCK FREQ. MHz |
| Synchronous | 54LS/74LS163 | 16 (Presettable) | S | $\digamma$ | 25 |
| Up/Down | 54LS/74LS168 | 10 (Presettable) | S | $\checkmark$ | 25 |
| Up/Down | 54LS/74LS169 | 16 (Presettable) | S | ノ | 25 |
| Up/Down | 54/74192 | 10 | A | $\Gamma$ | 25 |
| Up/Down | 54LS/74LS192 | 10 | A | $\Gamma$ | 30 |
| Up/Down | 54/74193 | 16 | A | $\Omega$ | 25 |
| Up/Down | 54LS/74LS193 | 16 | A | $\Gamma$ | 30 |
| Up/Down | 54/74190 | 10 | A | $\Gamma$ | 20 |
| Up/Down | 54LS/74LS190 | 10 | A | $\digamma$ | 20 |
| Up/Down | 54/74191 | 16 | A | $\Gamma$ | 20 |
| Up/Down | 54LS/74LS191 | 16 | A | $\Gamma$ | 20 |
| Rate Multiplier | 54/7497 | m.f./64 |  | $\Omega$ | 25 |
| Rate Multiplier | 54/74167 | m.f./10 |  | $\Gamma$ | 25 |

MONOSTABLES (ONE-SHOTS)

| FUNCTION | DEVICE NO. | PULSE WIDTH VARIATION (\%) |  | NO. OF INPUTS |  | RESETTABLE | MIN OUTPUT ( $t_{w}$ ) ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | vs. TEMP | vs. $V_{C c}$ | POS | NEG |  |  |
| Single Retriggerable | 9600 | $\pm 1.5$ | $\pm 1.5$ | 3 | 2 | X | 75 |
| Single Retriggerable | 9601 | $\pm 2.7$ | $\pm 1.0$ | 2 | 2 |  | 50 |
| Dual Retriggerable | 9602 | $\pm 1.5$ | $\pm 1.5$ | 1 | 1 | X | 72 |
| Dual Retriggerable | $96 \mathrm{LO2}$ | $\pm 1.6$ | $\pm 1.5$ | 1 | 1 | X | 110 |
| Dual Retriggerable | 96S02 | $\pm 1.0$ | $\pm 1.0$ | 1 | 1 | X | 27 |
| Single Non-Retriggerable | 54/74121 | $\pm 0.25$ | $\pm 0.15$ | 1 | 2 |  | 40 |
| Single Retriggerable | 54/74122 | $\pm 2.7$ | $\pm 1.0$ | 2 | 2 | X | 45 |
| Dual Retriggerable | 54/74123 | $\pm 2.7$ | $\pm 1.0$ | 1 | 1 | X | 45 |
| Dual Retriggerable | 96LS02 | $\pm 1.0$ | $\pm 0.8$ | 1 | 1 | X | 35 |

[^2]PRODUCT INDICES AND SELECTION GUIDES
LINE AND BUS DRIVERS/TRANSCEIVERS/RECEIVERS

| FUNCTION | DEVICE NO. | COMPANION RECEIVER | $\begin{aligned} & \mathrm{IOL} \\ & \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \operatorname{los} \\ \mathrm{mA}(\mathrm{MIN}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Quad 2 NAND Driver | 54/7437 | Any TTL | 48 | -20 |
| Quad 2 NAND Driver (OC*) | 54/7438 | 96106 | 48 | OC* |
| Quad 2 NAND Driver (OC*) | 96101 | 96106 | 80 | OC* |
| Quad 2 NAND Driver | 9009 | Any TTL | 52.8 | -40 |
| Dual 2 NAND Driver | 54/7440 | Any TTL | 48 | -20 |
| Dual 2 NAND Driver | 54H/74H40 | Any TTL | 60 | -40 |
| Dual 2 NAND Driver | 54S/74S40 | Any TTL | 60 | -50 |
| Dual 2 NAND Driver (50 $\Omega$ ) | 54S/74S140 | Any TTL | 60 | -50 |
| Octal Inverting Bus Driver (3S*) | 54LS/74LS240 | Any TTL | 64 | -40 |
| Octal Inverting Bus Driver (3S*) | 54S/74S240 | Any TTL | 64 | -50 |
| Octal Non-Inverting Bus Driver (3S*) | 54LS/74LS241 | Any TTL | 64 | -40 |
| Octal Non-Inverting Bus Driver (3S*) | 54S/74S241 | Any TTL | 64 | -50 |
| Octal Bus Transceiver | 54LS/74LS245 | Any TTL | 24 | -40 |
| Octal Inverting Bus Transceiver | 54LS/74LS540 | Any TTL | 64 | -40 |
| Octal Non-Inverting Bus Transceiver | 54LS/74LS541 | Any TTL | 64 | -40 |
| Quad Inverting Bus Transceiver | 54LS/74LS242 | Any TTL | 24 | -40 |
| Quad Non-Inverting Bus Transceiver | 54LS/74LS243 | Any TTL | 24 | -40 |
| Quad Bus Transceiver | 96103 | 96103 | 70 | -18 |
| Quad 2-NOR Receiver | 96106 |  | 7.8 | -18 |

*OC $=$ Open-Collector; 3S $=3$-State

PRODUCT INDICES AND SELECTION GUIDES

DISPLAY DECODER/DRIVERS

| FUNCTION | DEVICE NO. | OUTPUT CURRENT mA | OUTPUT <br> VOLTAGE V | ACTIVE HIGH/LOW | RIPPLE BLANKING | BLANKING ABOVE BCD 9-INPUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-of-10 Cold Cathode (OC*) | 9315 (54/7441) | 7.0 | 55 | L |  |  |
| 1-of-10 Cold Cathode | 74141 | 7.0 | 55 | L |  | X |
| 1-of-10 Driver (OC*) | 9302 | 16 | 5.5 | L |  | X |
| 1-of-10 Driver (OC*) | 54/7445 | 80 | 30 | L |  | X |
| 1-of-10 Driver (OC*) | 54/74145 | 80 | 15 | L |  | X |
| 7-Seg Decoder | 9307 | 12.5 | 5.5 | H | X |  |
| 7-Seg Decoder | 54/7448 | 1.3 | 5.5 | H | X |  |
| 7-Seg Decoder (OC*) | 54/7449 | 10 | 5.5 | H | X |  |
| 7-Seg Decoder/Driver | 9317B | 40 | 20 | L | X | X |
| 7-Seg Decoder/Driver | 9317C | 20 | 30 | L | X | X |
| 7-Seg Decoder/Driver (OC*) | 54/7446A | 40 | 30 | L | X |  |
| 7-Seg Decoder/Driver (OC*) | 54/7447A | 40 | 15 | L | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS47 | 24 | 15 | L | X |  |
| 7-Seg Decoder/Driver | 54LS/74LS48 | 1.3 | 5.5 | H | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS49 | 8.0 | 5.5 | H | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS247 | 24 | 15 | L | X |  |
| 7-Seg Decoder/Driver | 54LS/74LS248 | 1.3 | 5.5 | H | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS249 | 8.0 | 5.5 | H | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS347 | 24 | 7.0 | L | X |  |
| 7-Seg Decoder/Driver (OC*) | 54LS/74LS447 | 24 | 7.0 | L | X |  |
| 7-Seg LED Driver Common Cathode | 9368 | 20 | 1.7 | H | X |  |
| 7-Seg LED Driver Common Anode (OC*) | 9370 | 25 | 5.5 | L | X |  |
| 7-Seg LED Driver Common Anode (OC*) | 9374 | 15 | 10 | L | X |  |
| *OC = Open-Collector |  |  |  |  |  |  |

PRODUCT INDICES AND SELECTION GUIDES

ARITHMETIC OPERATORS

| FUNCTION | DEVICE NO. | DESCRIPTION | NO. OF BITS |
| :---: | :---: | :---: | :---: |
| Adder | 54/7480 | Gated 1-Bit with Carry | 1 |
| Adder | 9304 | Dual 1-Bit with Carry | 2 |
| Adder | 54H/74H183 | Dual 1-Bit with Carry | 2 |
| Adder | 54/7482 | Full 2-Bit with Carry | 2 |
| Adder | 54/7483A | Full Binary 4-Bit with Carry | 4 |
| Adder | 54LS/74LS83A | Full Binary 4-Bit with Carry | 4 |
| Adder | 54/74283 | Full Binary 4-Bit with Carry | 4 |
| Adder | 54LS/74LS283 | Full Binary 4-Bit with Carry | 4 |
| Arithmetic Logic Unit | 9340 | ALU with Internal CLA* | 4 |
| Arithmetic Logic Unit | 9341 (54/74181) | ALU with External CLA* | 4 |
| Arithmetic Logic Unit | 93 L 41 | ALU with External CLA* | 4 |
| Arithmetic Logic Unit | 54LS/74LS181 | ALU with External CLA* | 4 |
| Arithmetic Logic Unit | 93541 | ALU with External CLA* | 4 |
| Carry Lookahead | 9342 (54/74182) | CLA generator for 9341 |  |
| Carry Lookahead | 93542 (54S/74S182) | CLA generator for 93S41/9405 |  |
| Comparator | 9386 (8242) | 4-Bit Indentity Exclusive-NOR (OC*) | 4 |
| Comparator | 54/7485 | 4-Bit Magnitude with Expander | 4 |
| Comparator | 54LS/74LS85 | 4-Bit Magnitude with Expander | 4 |
| Comparator | 9324 | 5-Bit Magnitude | 5 |
| Comparator | 93 L 24 | 5-Bit Magnitude | 5 |
| Comparator | 93546 | 6-Bit Identity with Expander | 6 |
| Comparator | $93 \mathrm{S47}$ | 6-Bit Identity ( $\mathrm{OC}^{*}$ ) | 6 |
| Encoder | 9318 | Priority 8-Bit with Expander | 8 |
| Encoder | 93 L 18 | Priority 8-Bit with Expander | 8 |
| Multiplier | 9344 | Binary $4 \times 2$-Bit | $4 \times 2$ |
| Multiplier | 93543 | 2s Complement | $4 \times 2$ |
| Multiplier | 54LS/74LS384 | Serial/Parallel 2s Complement | 8 |
| Parity | 54/74180 | 8-Bit Parity Generator/Checker | 8 |
| Parity | 93562 | 9-Bit Parity Generator/Checker | 9 |
| Parity | 9348 | 12-Bit Parity Generator/Checker | 12 |
| Parity | 54LS/74LS280 | 9-Bit Parity Generator/Checker | 9 |
| True/Complement | 54H/74H87 | 4-Bit True/Complement Zero/One Element | 4 |
| True/Complement | 54S/74S135 | Dual 2-Bit Exclusive OR/NOR | 4 |
| ${ }^{\text {C CLA }}=$ Carry Lookahead; OC $=$ Open-Collector |  |  |  |

PRODUCT INDICES AND SELECTION GUIDES

RANDOM ACCESS MEMORIES

| ORGANIZATION | DEVICE NO. | DESCRIPTION | ADDRESS <br> ACCESS TIME-ns (MAX) MIL/COM | CHIP <br> SELECT <br> ACCESS <br> TIME-ns <br> (MAX) <br> MIL/COM | READ/WRITE CYCLE TIME |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | COM | MIL |
|  |  |  |  |  | $\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { ns (MAX) } \end{gathered}$ | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { ns (MAX) } \end{gathered}$ |
| TTL |  |  |  |  |  |  |
| $16 \times 4$ | 7489 | OC1 | 60/60 | 50/50 | 115 | 115 |
| SCHOTTKY |  |  |  |  |  |  |
| $16 \times 4$ | 54S/74S189 | $3 S^{1}$ | 50/35 | 32/22 | 55 | 70 |
| $16 \times 4$ | 54S/74S289 | OC1 | 50/35 | 25/17 | 55 | 70 |
| LOW POWER SCHOTTKY |  |  |  |  |  |  |
| $16 \times 4$ | 54LS/74LS89 | OC1 | 37/372 | 10/102 | 722 | 722 |
| $16 \times 4$ | 54LS/74LS189 | 3 S 1 | 37/372 | 10/102 | 722 | 722 |
| $16 \times 4$ | 54LS/74LS289 | OC1 | 37/372 | 10/102 | 722 | 722 |

1. $O C=$ Open-Collector; $3 S=3$-State
2. Typical Value

9300 FAMILY DATA SHEETS $=\left[\sum_{6}\right.$
9600 FAMILY DATA SHEETS $=\left[\sum_{0}\right.$


## SECTION 2

- Glossary
- Logic Symbols and Terminology
- TTL Circuit Families
- Input Characteristics
- Unused Inputs
- Output Characteristics
- Increasing Fan-Out
- 3-State Outputs
- Open-Collector Outputs
- Thresholds and Noise Margins
- Crosstalk
- Transmission Lines
- Transmission Line Effects
- Backplane Data Bus
- Decoupling
- Grounds
- Supply Voltage and Temperature
- Interfacing


## Section 2 TTL CHARACTERISTICS

## GLOSSARY

Currents - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specified as absolute values.

ICC Supply Current - The current flowing into the VCC supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation.

IIH Input HIGH Current - The current flowing into an input when a specified HIGH voltage is applied.

IIL Input LOW Current - The current flowing out of an input when a specified LOW voltage is applied.
IOH Output HIGH Current - The leakage current flowing into a turned off open-collector output with a specified HIGH output voltage applied. For an output with an internal pull-up circuit, the loH is the current flowing out of the output when it is in the HIGH state.

IOL Output LOW Current - The current flowing into an output when it is in the LOW state.

Ios Output Short Circuit Current - The current flowing out of a HIGH-state output when that output is short circuited to ground (or other specified potential).
lozh Output OFF Current HIGH - The current flowing into a disabled 3-state output with a specified HIGH output voltage applied.

IOZL Output OFF Current LOW - The current flowing out of a disabled 3-state output with a specified LOW output voltage applied.

Voltages - All voltages are referenced to the ground pin. Negative voltage limits are specified as absolute values (i.e., -10 V is greater than -1.0 V ).

VCC Supply Voltage - The range of power supply voltage over which the device is guaranteed to operate within the specified limits.
$V_{C D}(\operatorname{Max}) \quad$ Input Clamp Diode Voltage - The most negative voltage at an input when a specified current is forced out of that input terminal. This parameter guarantees the integrity of the input diode, intended to clamp negative ringing at the input terminal.
$V_{I H} \quad$ Input HIGH Voltage - The range of input voltages that represents a logic HIGH in the system.
$\mathrm{V}_{\mathrm{IH}(\mathrm{Min})} \quad$ Minimum Input HIGH Voltage - The minimum allowed input HIGH in a logic system. This value represents the guaranteed input HIGH threshold for the device.

VIL Input LOW Voltage - The range of input voltages that represents a logic LOW in the system.
$\mathrm{V}_{\mathrm{IL}(\text { Max })} \quad$ Maximum Input LOW Voltage - The maximum allowed input LOW in a system. This value represents the guaranteed input LOW threshold for the device.

| GLOSSARY (Cont'd) |  |
| :---: | :---: |
| $\mathrm{VOH}(\mathrm{Min})$ | Output HIGH Voltage - The minimum voltage at an output terminal for the specified output current $\mathrm{IOH}_{\mathrm{H}}$ and at the minimum value of $\mathrm{V}_{\mathrm{CC}}$. |
| Vol(Max) | Output LOW Voltage - The maximum voltage at an output terminal sinking the maximum specified load current lol. |
| $\mathrm{V}_{\mathrm{T}+}$ | Positive-Going Threshold Voltage - The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a $\mathrm{V}_{\mathrm{IH}}$ as the input transition rises from below $\mathrm{V}_{\mathrm{T} \text {-(Min). }}$ |
| $\mathrm{V}_{\mathrm{T}}$ - | Negative-Going Threshold Voltage - The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a $\mathrm{V}_{\mathrm{IL}}$ as the input transition falls from above $\mathrm{V}_{\mathrm{T}+(\mathrm{Max})}$. |
| AC Switching Parameters |  |
| $f_{\text {max }}$ | Toggle Frequency/Operating Frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function. |
| tPLH | Propagation Delay Time - The time between the specified reference points, normally 1.5 V (1.3 V for LS) on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level. |
| tPHL | Propagation Delay Time - The time between the specified reference points, normally 1.5 V (1.3 V for LS) on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level. |
| $t_{w}$ | Pulse Width - The time between 1.5 V (1.3 V for LS $)$ amplitude points on the leading and trailing edges of a pulse. |
| th | Hold Time - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized. |
| $\mathrm{t}_{\text {s }}$ | Setup Time - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized. |
| tPHZ | Output Disable Time (of a 3-State Output) from HIGH Level - The time between the 1.5 V (1.3 V for LS) level on the input and a voltage 0.5 V below the steady state output HIGH level with the 3-state output changing from the defined HIGH level to a high impedance (off) state. |
| tplz | Output Disable Time (of a 3-State Output) from LOW Level - The time between the 1.5 V (1.3 V for LS) level on the input and a voltage 0.5 V above the steady state output LOW level with the 3state output changing from the defined LOW level to a high impedance (off) state. |
| tPZH | Output Enable Time (of a 3-State Output) to a HIGH Level - The time between the 1.5 V (1.3 V for LS) levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (off) state to a HIGH level. |

## GLOSSARY (Cont'd)

tpzl Output Enable Time (of a 3-State Output) to a LOW Level - The time between the 1.5 V (1.3 V for LS) levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (off) state to a LOW level.
trec Recovery Time - The time between the 1.5 V (1.3 V for LS) level on the trailing edge of an asynchronous input control pulse and the same level on a synchronous input (clock) pulse such that the device will respond to the synchronous input.

## Miscellaneous

C Marking code letter indicating that the device is guaranteed to meet the specifications for the Commercial temperature range.

D Package code letter for ceramic Dual In-line Packages.
F Package code letter for ceramic flatpaks.
$M \quad$ Marking code letter indicating that the device is guaranteed to meet the specifications for the Military temperature range.

P Package code letter for plastic Dual In-line Packages.
QB Marking code indicating in-house 38510, level B reliability screening (military grade only).
QM, QR Marking code indicating Matrix VI commercial/industrial reliability screening.
XC, XM Shorthand for the commercial or military temperature range specifications or devices; the letter $X$ stands for the code letter of any package in which the device is available.

## TTL CHARACTERISTICS

## LOGIC SYMBOLS AND TERMINOLOGY

The logic symbols used to represent the MSI devices follow Mil Std 806B for logic symbols. MSI elements are represented by rectangular blocks with appropriate external AND/OR gates when necessary. A small circle at an external input means that the specific input is active LOW; i.e., it produces the desired function, in conjunction with other inputs, if its voltage is the lower of the two logic levels in the system. A circle at the output indicates that when the function designated is True, the output is LOW. Generally, inputs are at the top and left and outputs appear at the bottom and right of the logic symbol. An exception is the asynchronous Master Reset in some sequential circuits which is always at the left hand bottom corner.

Inputs and outputs are labeled with mnemonic letters as illustrated in Table 2-1. Note that an active LOW function labeled outside of the logic symbol is given a bar over the label, while the same function inside the symbol is labeled without the bar. When several inputs or outputs use the same letter, subscript numbers starting with zero are used in an order natural for device operation.

This nomenclature is used throughout this book and may differ from nomenclature used on other data books (notably early 7400 MSI ), where outputs use alphabetic subscripts or use number sequences starting with one.

TABLE 2-1

| LABEL | MEANING | EXAMPLE |
| :---: | :---: | :---: |
| 1 x | General term for inputs to combinatorial circuits. |  |
| $\begin{aligned} & \text { J, K } \\ & \text { S, R } \\ & \mathrm{D} \end{aligned}$ | Inputs to JK, SR, and D flip-flops and latches. |  |
| Ax, Sx | Address or Select inputs, used to select an input, output, data route, junction, or memory location. | 9999999999 <br> ,nno.e.e, |
| $\bar{E}$ | Enable, active LOW on all TTL/MSI. A latch can receive new data when its Enable input is in the active state. |  |
| $\overline{P E}$ $P$ | Parallel Enable, a control input used to synchronously load information in parallel into an otherwise autonomous circuit. <br> Parallel data inputs to shift registers and counters. |  |

## LOGIC SYMBOLS AND TERMINOLOGY (Cont'd)

TABLE 2-1 (Cont'd)

| LABEL | MEANING | EXAMPLE |
| :---: | :---: | :---: |
| $\overline{P L}$ | Parallel Load; similar to Parallel Enable except that $\overline{P L}$ overrides the clock and forces parallel loading asynchronously. |  |
| $\overline{M R}$ | Master Reset, asynchronously resets all outputs to zero, overriding all other inputs. |  |
| $\overline{C L}$ | Clear, resets outputs to zero but does not override all other inputs. |  |
| CP CE, CEP, CET | Clock Pulse, generally a HIGH-to-LOW-to-HIGH transition. An active HIGH clock (no circle) means outputs change on LOW-toHIGH clock transition. <br> Count Enable inputs for counters. |  |
| Zx, Ox, Fx | General terms for outputs of combinatorial circuits. |  |
| Qx TC | General term for latch and flip-flop outputs. If they pass through an enable gate before exiting the package, Q or $\overline{\mathrm{Q}}$ changes to O or $\overline{\mathrm{O}}$. <br> Terminal Count output (1111 for up binary counters, 1001 for up decimal counters, or 0000 for down counters). |  |
| $\overline{O E}$ | Output Enable, used to force 3-state outputs into the high impeddance state. |  |

## TTL CIRCUIT FAMILIES

Each family is designed around certain performance objectives, within the economic limitations of a particular process. The key performance factors that distinguish the families are power consumption, speed and the ability to drive wiring capacitance. For comparison purposes the power supply current and propagation delay or switching rate for several popular circuit types in the various families are shown in Table 2-2 below. The propagation delays are in ns, the supply currents in mA and the toggle frequencies in MHz . All values listed are worst-case guaranteed, rather than typical figures.

TABLE 2-2

| CIRCUIT TYPE |  | TTL | H-TTL | S-TTL | LP-TTL | LS-TTL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-Input NAND <br> 7400 | tPLH/tphL Icc | $\begin{gathered} 22 / 15 \\ 2.0 / 5.5 \end{gathered}$ | $\begin{aligned} & 10 / 10 \\ & 4.2 / 10 \end{aligned}$ | $\begin{aligned} & 4.5 / 5.0 \\ & 4.0 / 9.0 \end{aligned}$ |  | $\begin{gathered} 10 / 10 \\ 0.4 / 1.1 \end{gathered}$ |
| D-Type Flip-Flop 7474 | $f_{\text {max }}$ Icc | $\begin{aligned} & 15 \\ & 7.0 \end{aligned}$ | $\begin{aligned} & 35 \\ & 38 \end{aligned}$ | $\begin{aligned} & 75 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 4.0 \end{aligned}$ |
| JK Flip-flop 9024/74112/74H108 | $f_{\text {max }}$ Icc | $\begin{aligned} & 25 \\ & 7.0 \end{aligned}$ | $\begin{aligned} & 40 \\ & 38 \end{aligned}$ | $\begin{aligned} & 80 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 4.0 \end{aligned}$ |
| 4-Input Multiplexer 9322/74157 | $\begin{aligned} & \text { tPLH/tpHL } \\ & \text { ICC } \end{aligned}$ | $\begin{gathered} 14 / 14 \\ 23.5 \end{gathered}$ |  | $\begin{gathered} 7.5 / 6.5 \\ 39 \end{gathered}$ | $\begin{gathered} 22 / 30 \\ 6.6 \end{gathered}$ | $\begin{gathered} 14 / 14 \\ 8.0 \end{gathered}$ |
| Synchronous Counter 9310/74160 | $f_{\text {max }}$ Icc | $\begin{aligned} & 30 \\ & 92 \end{aligned}$ |  | $\begin{gathered} 70 \\ 127 \end{gathered}$ | $\begin{gathered} 13 \\ 27.5 \end{gathered}$ | $\begin{aligned} & 25 \\ & 32 \end{aligned}$ |
| 4-Bit Shift Register 9300/74195 | $f_{\text {max }}$ Icc | $\begin{aligned} & 30 \\ & 63 \end{aligned}$ | $\begin{gathered} 45 \\ 112 \end{gathered}$ | $\begin{gathered} 70 \\ 120 \end{gathered}$ | $\begin{aligned} & 10 \\ & 23 \end{aligned}$ | $\begin{aligned} & 30 \\ & 21 \end{aligned}$ |

In three of the families - TTL, H-TTL and LP-TTL - the transistors are turned on by applying sufficient base current for the lowest expected current gain. The average transistor, having greater current gain, receives far more base current than necessary, which forward biases the collector-base junction and saturates the transistor. In order to turn off such a saturated transistor, the excess base charge must first be removed, resulting in considerable delay. Gold doping is commonly used to speed up the charge recombination, but this decreases the current gain.

Schottky clamped transistors (Figure 2-1) overcome this limitation. They use a surface barrier diode with very low forward voltage drop ( 0.3 V ) as a bypass between base and collector. When the transistor starts conducting and is about to become saturated, the excess input current is not fed into the base, but routed through the Schottky diode into the collector (Baker Clamp). As a result the transistor is never fully saturated and recovers quickly when the base current is interrupted. Since gold doping is not required, the transistors also have higher current gain, require less base current, and turn on faster.

As a result of the faster turn-on and recovery, S-TTL circuits achieve roughly twice the speed of H-TTL at about the same level of power consumption, as indicated in the table. On the other hand, LS-TTL circuits (also Schottky clamped) use much less power than H-TTL, yet operate at about the same speed. Compared to S-TTL, LS-TTL processing produces shallower diffusions and smaller transistors with greater bandwidth. Thus, LSTTL circuits operate at about half the speed of S-TTL while using only about $20 \%$ as much power.


Fig. 2-1 Schottky Transistor

TTL CIRCUIT FAMILIES (Cont'd)
Schematics of the basic gates of the various families are shown in Figures 2-2 through 2-7. All are similar, containing an input AND gate, a phase splitter Q2 with emitter and collector load resistors, a pull-up mechanism Q3/Q4 and a pull-down transistor Q5. In all except the LS-TTL circuit, the AND function is formed by a multiemitter transistor in which the emitter-base junctions serve to isolate the input signal sources from each other and steer the current from the $4 \mathrm{k} \Omega$ gate resistor. When an input is LOW, the gate current flows out through the base-emitter junction and Q1 is saturated, making the base voltage of Q2 only slightly more positive than the LOW input voltage, and Q2 does not conduct. Moreover, the low emitter-to-collector resistance of Q1 in this condition allows the input signal source to withdraw charge from the base of Q2 and help to turn it off quickly. With all inputs HIGH, the gate current flows through the base-collector junction of Q1 and turns on Q2. In this situation, a small quantity of charge is injected into the base of Q1. Part of this charge recombines in the base region and part of it drifts over to be "collected" by the emitters. This inverse beta current is a significant part of the input leakage current llн. This same phenomenon occurs when the gate current exits through a LOW input. Current is injected into the base from the LOW emitter and part of it is collected by the HIGH emitters. An input signal exceeding the +5.5 V rating applied to one input can cause breakdown between it and a LOW input, with the possibility of damage or of being biased in a negative resistance region, depending on the source impedance. Biasing in the negative resistance region can lead to oscillation that is difficult to diagnose.

The phase splitter Q2 is so named because the collector and emitter voltages change in opposite directions when Q2 turns on or off. When Q2 turns off, the emitter voltage falls and it stops providing base current to the pull-down transistor Q5; simultaneously the Q2 collector voltage rises and pulls up the base of Q3. The Q3/Q4 circuitry provides current gain and the low impedance necessary to pull the output up to the HIGH level while charging wiring capacitance. The amount of current available to charge capacitance is limited by the small resistor (s) connected from $V_{c c}$ to the collector(s) of Q3/Q4. This charging current shows up as a current spike at the $\mathrm{V}_{C C}$ pin and it is normal practice to add rf bypass capacitors on logic boards to supply this sudden demand for current and thus prevent negative-going spikes on Vcc.

When Q2 turns on, the collector voltage falls and pulls down the base of Q3; simultaneously Q2 emitter voltage rises and supplies base current to Q5. As Q5 starts conducting, it begins to discharge load capacitance and pull the output down to the LOW level. The discharge current shows up as a current spike at the ground pin and is one of the principal reasons for recommending that system designers allow generous a mounts of ground metal on circuit boards.


Fig. 2-2 7410 Gate


Fig. 2-3 9003 Gate

## TTL CIRCUIT FAMILIES (Cont'd)

Although Fairchild does not offer LP-TTL gates or flip-flops, the input and output circuitry of Figure 2-4 is representative of 93L Series MSI. As shown, the resistor values are four times those of Figures 2-2 and 2-3. This decreases the input loading IIL, the output drive capability and the power consumption. The speed-power tradeoff is evident from the values listed in the table for the LP-TTL multiplexer, counter and shift register, compared to the TTL counterparts.

Another speed-power trade-off is evident in the H-TTL gate of Figure 2-5. Compared to Figure 2-2, several resistor values are halved and the output pull-up changed to a Darlington configuration. As seen from the values listed in the table, both speed and power consumption are approximately doubled.

The S-TTL gate of Figure 2-6 is quite similar to the H-TTL gate and consumes about the same amount of power, yet operates at twice the speed. The base of the pull-down output transistor Q5 is returned to ground through Q6 and a pair of resistors instead of through a simple resistor. This arrangement is called a squaring network since it squares up the transfer characteristics by preventing conduction in the phase splitter Q2 until the input voltage rises high enough to allow Q2 to supply base current to Q5. The squaring network also improves the propagation delay by providing a low resistance path to discharge capacitance at the base of Q5 during turn-off.


Fig. 2-4 LP-TTL Gate


Fig. 2-5 74H10 Gate


Fig. 2-6 74S00 Gate
Fig. 2-7 74LS00 Gate

TTL CIRCUIT FAMILIES (Cont'd)
With a few exceptions, LS-TTL circuits do not use the multi-emitter input structure that originally gave TTL its name. Most LS elements use a DTL type input circuit with Schottky diodes to perform the AND function, as exemplified by D3 and D4 in Figure 2-7. Compared to the classical multi-emitter structure, this circuit is faster and it increases the input breakdown voltage. Inputs of this type are tested for leakage with an applied input voltage of 10 V , and the input breakdown voltage is guaranteed to be 15 V or more.

Another input arrangement often used in LS-TTL MSI has three diodes connected as shown in Figure 2-8. This configuration gives a slightly higher input threshold than that of Figure 2-7. A third input configuration sometimes used employs a vertical pnp transistor as shown in Figure 2-9. This arrangement also gives a higher input threshold and has the additional advantage of reducing the amount of current that the signal source must sink. Both the diode cluster arrangement and the pnp input configuration have breakdown voltage ratings greater than 15 V .

A few LS-TTL circuits use the traditional emitter inputs and thus have input breakdown ratings of 5.5 V . These circuits are the open-collector gate types 'LS03, 'LS05, 'LS22, 'LS26 and 'LS136; flip-flop types 'LS74, 'LS109, 'LS112, 'LS113 and 'LS114; and the clock inputs of ripple counter types 'LS90, 'LS92, 'LS93, 'LS196, 'LS197, 'LS290, 'LS293, 'LS390, 'LS393 and 'LS490.

The LS-TTL pull-up circuitry has some features not found in the other TTL circuits. The $5 \mathrm{k} \Omega$ resistor bridging the base-emitter junction of Q4 is diffused into the same isolation region as the Q4/Q5 collectors, thus the sneak diode D5 does not return to VCC as it does in other diffused resistors. This feature, in conjunction with the blocking diode D6, allows a HIGH state output to be pulled up higher than $\mathrm{V}_{\mathrm{cc}}$, e.g., to +10 V , convenient for interfacing with CMOS. Some early FSC LS designs - the 'LS00, 'LS02, 'LS04, 'LS10, 'LS11, 'LS20, 'LS32, 'LS74, 'LS86, 'LS109, 'LS112,'LS113 and 'LS114 - do not have the diode in series with the Darlington collector resistor. These outputs are, therefore, clamped one diode drop above the positive supply voltage Vcc.


Fig. 2-8 Diode Cluster Input
Fig. 2-9 PNP Input

## INPUT CHARACTERISTICS

Figure 2-10 shows the input current-voltage characteristics of a TTL buffer. For input voltage levels around 6.0 V the emitter inputs avalanche. In this condition an input has very low series resistance and the avalanche current increases rapidly with input voltage. To avoid permanent damage, the input signal source must have either a current limit of 5.0 mA or less, or the input voltage must be limited to 5.5 V . For input voltages between 2.0 V and 5.5 V , the current flow is only the input leakage current lin, guaranteed not to exceed $40 \mu \mathrm{~A}$ or $50 \mu \mathrm{~A}$, depending on the circuit family, for a single input. As the input voltage decreases below 2.0 V , current starts flowing from the input and increases rapidly as the voltage decreases. The slope of the characteristics in this region is only about $200 \Omega$, indicating that part of the current from the gate pull-up resistor is still flowing inward through the internal junctions of the circuit. This marks the transition region, since at some point the buffer pull-down transistor will not have sufficient base current to stay on and the output will start to switch from LOW to HIGH.

As the input voltage decreases from about 1.0 V to -0.5 V , the slope of the characteristic equals the gate pull-up resistor, in this case about $2 \mathrm{k} \Omega$. As the input goes below about -0.7 V the current increases rapidly as the input clamping diode conducts.

Figure 2-11 shows the input characteristic of an LS-TTL circuit. Input diode breakdown is typically greater than 15 V and input leakage current above 1.5 V is negligible. As the input voltage falls below 1.3 V , gate current starts flowing out of the input, denoting the transition region. For input voltage between 1.0 V and -0.3 V , the $\mathrm{I}-\mathrm{V}$ characteristic has the slope of the $24 \mathrm{k} \Omega$ gate pull-up resistor. The clamping diode conducts and the current increases rapidly when the input voltage goes below about -0.3 V . The LS-TTL clamping diodes are intended only for the suppression of transient currents and should not be used as steady-state clamps in interface applications. A clamp current exceeding 2.0 mA and with a duration greater than 500 ns can activate a parasitic lateral npn transistor, which in turn can steal current from internal nodes of the LS circuit and thus cause logic errors. The effective capacitance of a TTL input is 5.0 pF for DIP and 4.0 pF for Flatpak. For an input that serves more than one internal function, each additional function adds 1.5 pF .

In the 9000 series, the input leakage $\mathrm{I}_{\mathrm{IH}}$ is measured at a reverse bias of 4.5 V , as opposed to 2.4 V for the other families. This is a more severe test and a standard 9000 series input has a limit of $60 \mu \mathrm{~A}$. At the more conventional bias of 2.4 V , the leakage will not exceed $40 \mu \mathrm{~A}$ under most operating conditions.


Fig. 2-10 TTL Buffer Input Characteristics


Fig. 2-11 LS-TTL Input Characteristics

## UNUSED INPUTS

Theoretically, an unconnected input assumes the HIGH logic level, but practically speaking it is in an undefined logic state because it tends to act as an antenna for noise. Only a few hundred millivolts of noise causes the unconnected input to go to the logic LOW state. On devices with memory (flip-flops, latches, registers, counters), it is particularly important to terminate unused inputs (MR, PE, PL, CP) properly since a noise spike on these inputs might change the contents of the memory. It is poor design practice to leave unused inputs floating.

If the logic function calls for a LOW input, such as in NOR or OR gates, ground the unused inputs. For a permanent HIGH signal, unused inputs can be tied to $\mathrm{V}_{\mathrm{Cc}}$. A current limiting resistor, in the range of $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$, is recommended for emitter-type inputs since these break down at some unspecified voltage above 5.5 V and power supply misadjustment or malfunction can cause damage unless the current is limited. Note that one resistor can serve several inputs, provided only that the cumulative lif current does not cause the voltage to drop below 2.4 V . Note also that diode-type LS-TTL inputs have breakdown voltages above 15 V and thus protective resistors are not normally required. An unused input may also be tied to a used input having the same logic function, such as NAND or AND gates, provided that the driver can handle the added $\mathrm{IIH}_{\mathrm{H}}$. This practice is not recommended for diode-type LS-TTL inputs in a noisy environment, since each diode represents a small capacitor and two or more in parallel can act as an entry port for negative spikes superimposed on a HIGH level and cause momentary turn-off of Q2 (Figure 2-7).

## OUTPUT CHARACTERISTICS

Figure 2-12 shows the LOW state output characteristics of a 5400 gate at three temperatures. With no load current the output level is the offset voltage of about 90 mV . The slope of the $25^{\circ} \mathrm{C}$ characteristic indicates a saturation resistance of $8 \Omega$, increasing to $9 \Omega$ at $125^{\circ} \mathrm{C}$ and decreasing to $6 \Omega$ at $-55^{\circ} \mathrm{C}$. At low temperature, transistor beta decreases such that the output transistor pulls out of saturation for currents above 25 mA . Not shown is the effect of the collector-substrate junction for negative output currents. In some cases a negative output current can occur as a reflection from the unterminated end of a long interconnection following a HIGH-to-LOW transition. The collector-substrate diode acts as a negative current clamp and limits the undershoot to the -0.7 V to -1.0 V range, depending on the current.

Figure 2-13 shows the LOW state output characteristics of an LS-TTL gate. For LOW loL values, the pull-down transistor is clamped out of deep saturation to shorten the turn-off delay. The curves also show the clamping effect when IOL tends to go negative. In S-TTL and LS-TTL circuits, the anti-saturation clamping of Q5 means that the output LOW voltage will be slightly higher than for the equivalent saturated circuits at the same current levels. For example, both the 74 SOO and 74 HOO are guaranteed to sink 20 mA ( 12.5 unit loads) but the VOL specifications are 0.5 V and 0.4 V , respectively. Similarly, standard 93L and 74 LS circuits are guaranteed to sink 8.0 mA ( 5 unit loads) but the VOL specifications are 0.4 V and 0.5 V respectively.


Fig. 2-12 TTL Gate Output LOW Characteristics


Fig. 2-13 LS-TTL Gate Output LOW Characteristics

OUTPUT CHARACTERISTICS (Cont'd)
In the HIGH state a totem-pole output presents a low impedance and is capable of sourcing considerable current. Figure $2-14$ shows the output HIGH characteristics of a 5400 gate at three temperatures. With no load current the V OH is about 3.5 V at $25^{\circ} \mathrm{C}$. For Іон increasing to about 6.0 mA , the characteristic has the shape of a fixed voltage minus the logarithmically increasing voltage drop across two pn junctions. For loн greater than 6.0 mA , the pull-up transistor Q3 (Figure 2-2) saturates and the slope of the characteristic is just the $130 \Omega$ current limiting resistor plus the saturation resistance of Q3. The maximum loH current, where the characteristic intersects the horizontal axis, correlates with the short-circuit output current parameter los and is often regarded as a measure of the circuit's ability to charge line capacitance.

The output HIGH characteristics of the 54S140 Line Driver are shown in Figure 2-15, with the axes oriented differently than in Figure 2-13. The 'S140 pull-up is a Darlington circuit with a $25 \Omega$ collector resistor to limit the short-circuit output current. This low resistance allows the 'S140 to source very large values of loh, as suggested by the graph. The ' S 140 is guaranteed to force a 2.0 V signal across a $50 \Omega$ load to ground, making it an attractive circuit for driving long interconnections that must be treated as transmission lines.

Figure 2-16 shows the 54LS00 output HIGH characteristic, which is quite similar to the 5400 gate of Figure 2-14. Due to the $5.0 \mathrm{k} \Omega$ resistor from Q3 to output (Figure 2-7) the LS circuits provide higher output voltage for low values of Іон, as shown in Figure 2-17. This provides greater protection against negative-going noise on a quiescent HIGH signal.


Fig. 2-14 TTL Output HIGH Characteristics


Fig. 2-16 LS-TTL Gate Output HIGH Characteristics


Fig. 2-15 S-TTL Line Driver Output HIGH Characteristics


Fig. 2-17 LS-TTL Gate Output HIGH Characteristics at Low Loading

## INCREASING FAN OUT

To increase fan-out, inputs and outputs of gates on the same package may be paralleled. It is advisable to limit the gates being paralleled to those in a single package to avoid large transient supply currents due to different switching times of the gates. This is not detrimental to the devices, but could cause logic problems if the gates are being used as clock drivers.

## 3-STATE OUTPUTS

In the newer TTL families there are many circuits that have an auxilliary control input whereby both the output pull-up and pull-down circuitry can be disabled. This condition is called the high impedance (high-Z) state and allows the outputs of different circuits to be connected to a common line or data bus. A typical 3-state output, shown in Figure 2-18, has pull-up and pull-down circuitry quite similar to Figure 2-7. The significant difference is that the enable function is connected through a diode to the base of Q3. A LOW signal on the enable turns off both Q2 and Q3 and thus disables both the pull-up and pull-down circuitry. In this disabled condition the outputs are tested for leakage at $2.4 \mathrm{~V}(\mathrm{IOZH})$ and at 0.4 V or $0.5 \mathrm{~V}(\mathrm{lOZL})$ to ensure that they do not cause excessive loading on a data bus. When the circuit is in the bi-state mode, i.e., enabled, the output HIGH and LOW characteristics are the same as those of other circuit types having the same drive capabilities.


Fig. 2-18 Typical 3-State Output Control

## OPEN-COLLECTOR OUTPUTS

A number of available circuits have no pull-up circuit on the outputs. Some are special purpose, such as the 74141 high voltage display driver, the 7445 high current display driver, the 9370 LED driver or the 96101 terminated bus driver. For circuits of this type, no external pull-up is necessary other than the intended load. Other open-collector circuits, less dedicated in nature, are used for interfacing or for wired-OR (actually wiredAND) functions. The latter is achieved by connecting open-collector outputs together and adding an external pull-up resistor.

The value of the pull-up resistor is determined by considering the fan-out of the OR tie and the number of devices in the OR tie. The pull-up resistor value is chosen from a range between maximum value (established to maintain the required VOH with all the OR-tied outputs HIGH) and a minimum value (established so that the OR tie fan-out is not exceeded when only one output is LOW).

MINIMUM AND MAXIMUM PULL-UP RESISTOR VALUES
where: Rx = External Pull-Up Resistor
$\mathrm{N}_{1} \quad=$ Number of Wired-OR Outputs
$\mathrm{N}_{2} \quad=$ Number of Input Unit Loads Being Driven
IOH = ICEX $\quad=$ Output HIGH Leakage Current
IoL $\quad=$ LOW Level Fan-Out Current of Driving Element
VoL $\quad=$ Output LOW Voltage Level ( 0.5 V )
$\mathrm{VOH} \quad=$ Output HIGH Voltage Level ( 2.4 V )
VCC $\quad=$ Power Supply Voltage

Example: Four 74LS03 gate outputs driving four other LS gates or MSI inputs.

$$
\begin{aligned}
& \mathrm{RX}_{(\text {Min })}=\left(\frac{5.25 \mathrm{~V}-0.5 \mathrm{~V}}{8.0 \mathrm{~mA}-1.6 \mathrm{~mA}}=\frac{4.75 \mathrm{~V}}{6.4 \mathrm{~mA}}\right)=742 \Omega \\
& \mathrm{RX}_{(\text {Max })}=\left(\frac{4.75 \mathrm{~V}-2.4 \mathrm{~V}}{4 \bullet 100 \mu \mathrm{~A}+2 \bullet 40 \mu \mathrm{~A}}=\frac{2.35 \mathrm{~V}}{0.48 \mathrm{~mA}}\right)=4.9 \mathrm{k} \Omega
\end{aligned}
$$

where: $\mathrm{N}_{1}=4$

| $\mathrm{N}_{2}(\mathrm{HIGH})$ | $=4 \cdot 0.5$ U.L. $=2$ U.L. |
| :---: | :---: |
| $\mathrm{N}_{2}(\mathrm{LOW})$ | $=4 \bullet 0.25$ U.L. $=1$ U.L. |
| IOH | $=100 \mu \mathrm{~A}$ |
| lol | $=8.0 \mathrm{~mA}$ |
| Vol | $=0.5 \mathrm{~V}$ |
| Vor | $=2.4 \mathrm{~V}$ |

Any value of pull-up resistor between $742 \Omega$ and $4.9 \Omega$ can be used. The lower values yield the fastest speeds while the higher values yield the lowest power dissipation.

## THRESHOLDS AND NOISE MARGINS

The noise margins most often cited for TTL are obtained by subtracting the guaranteed maximum input HIGH level $\mathrm{V}_{\mathrm{IH}}$ of a driven input from the guaranteed minimum output HIGH level $\mathrm{V}_{\mathrm{OH}}$ of the driving source, and subtracting the guaranteed maximum output LOW level VoL of the driver from the guaranteed minimum input LOW level VIL of a driven circuit. The guaranteed worst-case values of these parameters vary slightly among the various circuit families and are summarized in Table 2-3. Note that although the 9000 Series $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ specifications have different limits at different temperatures (see data sheets), they are grouped with the 54/74 family in the table as a matter of convenience. Note also that the Vol limit listed for 74LS is 0.5 V , whereas these circuits are also specified at 0.4 V at a lower level of lol. Noise margins obtained by the aforementioned subtractions are listed in Tables 2-4 through 2-7, for all combinations of driving and driven circuit types in the various circuit families. Noise margins calculated in this manner are quite conservative, since it is assumed that both the driver output characteristics and the receiver input characteristics are worst-case and that $\mathrm{V}_{\mathrm{Cc}}$ is on the low side for the driver and on the high side for the receiver.

Table 2-3 Parameter Limits

| Fairchild TTL Families |  | $\begin{gathered} \text { Military } \\ \left(-55 \text { to }+125^{\circ} \mathrm{C}\right) \end{gathered}$ |  |  |  | Commercial ( 0 to $+70^{\circ} \mathrm{C}$ ) |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | VIL | $\mathrm{V}_{\mathrm{IH}}$ | VOL | VOH | VIL | $\mathrm{V}_{\mathrm{IH}}$ | VoL | VOH |  |
| TTL | Standard TTL, 9000, 54/74 | 0.8 | 2.0 | 0.4 | 2.4 | 0.8 | 2.0 | 0.4 | 2.4 | V |
| H-TTL | High Speed TTL, 54H/74H | 0.8 | 2.0 | 0.4 | 2.4 | 0.8 | 2.0 | 0.4 | 2.4 | V |
| LP-TTL | Low Power TTL, 93L (MSI) | 0.7 | 2.0 | 0.3 | 2.4 | 0.8 | 2.0 | 0.3 | 2.4 | V |
| S-TTL | Schottky TTL, 54S/74S, 93S | 0.8 | 2.0 | 0.5 | 2.5 | 0.8 | 2.0 | 0.5 | 2.7 | V |
| LS-TTL | Low Power Schottky TTL, 54LS/74LS | 0.7 | 2.0 | 0.4 | 2.5 | 0.8 | 2.0 | 0.5 | 2.7 | V |

$V_{O L}$ and $V_{O H}$ are the voltges generated at the output. $V_{I L}$ and $V_{I H}$ are the voltage required at the input to generate the appropriate levels. The numbers given above are guaranteed worst-case values.

Table 2-4 LOW Level Noise Margins (Military)

| From | To | TTL | H-TTL | LP-TTL | S-TTL | LS-TTL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Units |  |  |  |  |  |  |
| TTL | 400 | 400 | 300 | 400 | 300 | mV |
| H-TTL | 400 | 400 | 300 | 400 | 300 | mV |
| LP-TTL | 500 | 500 | 400 | 500 | 400 | mV |
| S-TTL | 300 | 300 | 200 | 300 | 200 | mV |
| LS-TTL | 400 | 400 | 300 | 400 | 300 | mV |

From "VoL" to "VIL"

Table 2-5 HIGH Level Noise Margins (Military)

| From | To | TTL | H-TTL | LP-TTL | S-TTL | LS-TTL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Units |  |  |  |  |  |  |
| TTL | 400 | 400 | 400 | 400 | 400 | mV |
| H-TTL | 400 | 400 | 400 | 400 | 400 | mV |
| LP-TTL | 400 | 400 | 400 | 400 | 400 | mV |
| S-TTL | 500 | 500 | 500 | 500 | 500 | mV |
| LS-TTL | 500 | 500 | 500 | 500 | 500 | mV |

From " $\mathrm{VOH}^{\prime}$ " to " $\mathrm{V}_{\mathrm{IH}}$ "

Table 2-6 LOW Level Noise Margins (Commercial)

| Trom | TTL | H-TTL | LP-TTL | S-TTL | LS-TTL | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| TTL | 400 | 400 | 400 | 400 | 400 | mV |
| H-TTL | 400 | 400 | 400 | 400 | 400 | mV |
| LP-TTL | 500 | 500 | 500 | 500 | 500 | mV |
| S-TTL | 300 | 300 | 300 | 300 | 300 | mV |
| LS-TTL | 300 | 300 | 300 | 300 | 300 | mV |

From "VoL" to "VIL"

Table 2-7 HIGH Level Noise Margins (Commercial)

| From | To | TTL | H-TTL | LP-TTL | S-TTL | LS-TTL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| UNITS |  |  |  |  |  |  |
| TTL | 400 | 400 | 400 | 400 | 400 | mV |
| H-TTL | 400 | 400 | 400 | 400 | 400 | mV |
| LP-TTL | 400 | 400 | 400 | 400 | 400 | mV |
| S-TTL | 700 | 700 | 700 | 700 | 700 | mV |
| LS-TTL | 700 | 700 | 700 | 700 | 700 | mV |

From " $\mathrm{VOH}^{\prime}$ to " $\mathrm{VIH}^{\prime}$ "

THRESHOLDS AND NOISE MARGINS (Cont'd)
A more meaningful interpretation of noise margin can be gained by examining the relationship between input and output voltage of circuit. Figures 2-19, 2-20 and 2-21 show the voltage transfer function of TTL, S-TTL and LS-TTL inverting gates, respectively. The steepest part of a particular curve, where the output changes rapidly for small changes in input, is called the threshold region. Input signals above or below this region cause little or no change in output and thus are of no concern. Problems can occur when an input voltage, whether steadystate, transient or a combination of both, causes an output voltage to rise or fall into the threshold region of its driven loads. Thus, noise of this magnitude can propagate, which is a useful criterion.

The transfer characteristics of Figures 2-19 through 2-21 are essentially steady-state and thus apply for noise disturbances of long duration. For short pulses, however, the finite response time of a circuit has an effect on noise sensitivity. Figure 2-22 illustrates pulse noise immunity of TTL gates of the various families. These data are obtained by applying positive pulses to an otherwise LOW input and noting the combinations of pulse amplitude and duration required to cause the output to fall to 2.0 V , which is the guaranteed input HIGH level for TTL circuits. The curves show that S-TTL responds to the shortest pulses, as might be expected, and that pulse durations greater than about 4.0 ns have essentailly the same effect as dc input voltge. The curves show that plain TTL (7400) is the least sensitive to noise pulses, with H-TTL and LS-TTL responses intermediate between those of 7400 and S-TTL. The flat portion of the various curves shows that LS-TTL is the most sensitive to long duration pulses, while 7400 is least sensitive. This can also be deduced by comparing the transfer functions of Figures 2-19 and 2-21; the LS-TTL threshold regions are nearer the left hand axis, indicating that a lower value of input voltage is required to affect the output voltage than is the case with plain TTL.


Fig. 2-19 Voltage Transfer Function of a 9000 Series Gate


Fig. 2-21 Voltage Transfer Function of an LS-TTL Gate


Fig. 2-20 Voltage Transfer Function of an S-TTL Gate


Fig. 2-22 Pulse Noise Immunity of TTL Gates

## CROSSTALK

Crosstalk, the coupling of energy from one circuit to another via parasitic capacitance and inductance, causes increased problems in digital systems as the rise and fall times of the circuit decrease. The subject is extremely complicated, and no simple formula can give correct values in all cases for the amplitude of noise coupled from one circuit to another. In some circumstances where the input and output resistances of the circuits are high, a lumped equivalent circuit model can be drawn and reasonable calculations made. However, when the connections act as transmission lines, the situation is extremely complicated. TTL elements have a low output impedance in both HIGH and LOW logic states, and it is very difficult to couple enough energy into a short interconnection between devices to switch an adjacent circuit erroneously.

Noise introduced via capacitive coupling will have the same polarity as the disturbing signal and its amplitude will be inversely proportional to the rise or fall time of the disturbing signal. Noise introduced via magnetic coupling can be of either polarity. Open wire connections between TTL circuits should not be bundled, tied or routed together.

CROSSTALK (Cont'd)
Long parallel signal wires should be separated by ground wires to minimize coupling, particularly if one leads to the Clock (or asynchronous Set or Clear) input of a flip-flop, counter or register. In the case of ripple counters such as the 'LS90/'92/'93/'290/'293/'390/'393 and '490, the output of one stage may be internally connected to the Clock input of the next stage. Excessive coupling between outputs can therefore cause erratic counting. This situation most often occurs when counter outputs are taken off-card to a display unit by means of flat cable. In these cases it is best to use every other wire in the cable for ground in order to prevent erratic operation. In the case of parallel signal wires that do not involve a Clock or Asynchronous Set/Reset input, and close coupling of signal wires is unavoidable, it is advisable to wait until induced disturbances (following a signal change on one or more wires) have died out before sampling the data on a line. A disturbance induced in one wire by a signal change on another will have a time duration equal to twice the propagation delay of the wires. If two wires are closely coupled over a distance of three feet, involving a propagation delay of perhaps 5.0 ns , for example, an induced disturbance will have a duration of 10 ns .

## TRANSMISSION LINES

Practical transmission lines, cables and strip lines used for TTL interconnections have a characteristic impedance between $50 \Omega$ and $150 \Omega$. Thus none of the standard or low power TTL circuits can drive a transmission line, and only the 'S40/'S140 is truly capable of driving a $50 \Omega$ line under worst case condifions.

These considerations, applicable only when the round trip delay of the line is longer than the rise or fall time of the driving signal ( $2 t_{d}>t_{r}$ ), do not affect most TTL interconnections. Short interconnections do not behave like a resistive transmission line, but more like a capacitive load. Since the rise time of different TTL outputs is known, the longest interconnection that can be tolerated without causing transmission line effects can easily be calculated and is listed in Table 2-8 below.

Table 2-8 PC Board Interconnections

| TTL FAMILY | RISE TIME | FALL TIME | MAX INTERCONNECTION LENGTH |
| :---: | :---: | :---: | :---: |
| 93L | 14-18 ns | 4-6 ns | $18 \mathrm{in} .(45 \mathrm{~cm}$ ) |
| $\begin{aligned} & 9 \times X X, 93 X X, \\ & 54 / 74 \end{aligned}$ | 6-9 ns | 4-6ns | $18 \mathrm{in} .(45 \mathrm{~cm})$ |
| $\begin{aligned} & 54 \mathrm{H} / 74 \mathrm{H}, \\ & 54 \mathrm{LS} / 74 \mathrm{LS} \end{aligned}$ | 4-6 ns | $2-3 \mathrm{~ns}$ | $9 \mathrm{in} .(22.5 \mathrm{~cm})$ |
| 54S/74S, 93S | $1.8-2.8 \mathrm{~ns}$ | $1.6-2.6 \mathrm{~ns}$ | $7.5 \mathrm{in} .(19 \mathrm{~cm})$ |

Assuming $1.7 \mathrm{~ns} /$ foot propagation speed, typical for epoxy fiberglass $P C$ boards with $\Sigma_{r}=4.7$.

Slightly longer interconnections show minimal transmission line effects; the longer the interconnections, the greater the chance that system performance may be degraded due to reflections and ringing. The discussion of transmission line effects gives additional information on transmission line phenomena on longer lines. Good system operation can generally be obtained by designing around $100 \Omega$ lines. A 0.026 inch ( 0.65 mm ) trace on an epoxy-glass board ( $\Sigma_{r}=4.7$ ) with a ground plane on the other side represents a $100 \Omega$ line. Wire of 28 to 30 gauge $(0.25 \mathrm{~mm}$ to 0.30 mm$)$ twisted together forms a twisted pair line with a characteristic impedance of $100 \Omega$ to $115 \Omega$. Wire over ground screen ( $3 / 4$ " squares) gives $150 \Omega$ to $250 \Omega$ impedance with a significant improvement in propagation speed, since the dielectric constant approaches that of air.

Transmission lines are also discussed in the FAIRCHILD ECL DATABOOK, the FAIRCHILD INTERFACE HANDBOOK and the FAIRCHILD TTL APPLICATIONS BOOK.

## TRANSMISSION LINE EFFECTS

The fast rise and fall times of TTL outputs ( 2.0 ns to 6.0 ns ) produce transmission line effects even with relatively short (<2 ft ) interconnections. Consider one TTL device driving another, and the driver switching from the LOW to the HIGH state. If the propagation delay of the interconnection is long compared to the rise time of the signal, the arrangement behaves like a transmission line driven by a generator with a non-linear output impedance. Simple transmission line theory shows that the initial voltage step at the output just after the driver has switched is

$$
V_{\text {OUT }}=V_{E}\left(\frac{Z_{0}}{Z_{0}+R_{0}}\right)
$$

where $Z_{0}$ is the characteristic impedance of the line, $R_{0}$ is the output impedance of the driver, and $V_{E}$ is the equivalent output voltage source in the driver, Vcc minus the forward drop of the pull-up transistors.

Figure 2-23 shows how the initial voltge step can be determined graphically by superimposing lines of constant impedance on the static input and output characteristics of TTL elements. The constant impedance lines are drawn from the intersection of the VIN and VOL characteristics, which is the quiescent condition preceding a LOW-to-HIGH transition. After this transition the Voh characteristic applies, and the intersection of a particular impedance line with the $\mathrm{VOH}_{\mathrm{OH}}$ characteristic determines the initial voltage step. The $\mathrm{VOH}_{\mathrm{O}}$ characteristic shown in Figure 2-23 has an $\mathrm{R}_{0}$ of about $80 \Omega$ and $\mathrm{V}_{\mathrm{E}}$ of approximately 4.0 V , for calculation purposes.


Fig. 2-23 Initial Output Voltage of TTL Driving Transmission Line

TRANSMISSION LINE EFFECTS (Cont'd)
This initial voltage step propagates down the line and reflects at the end, assuming the typical case where the line is open-ended or terminated in an impedance greater than its characteristic impedance $Z_{0}$. Arriving back at the source, this reflected wave increases Vout. If the total round-trip delay is larger than the rise time of the driving signal, there is a staircase response at the driver output and anywhere along the line. If one of the loads (gate inputs) is connected to the line close to the driver, the initial output voltage Vout might not exceed $\mathrm{V}_{\mathrm{IH}}$. This input is then undetermined until after the round trip of the transmission line, thus slowing down the response of the system. Figure $2-24$ shows the driver output waveform for four different line impedances. For $\mathrm{Z}_{\circ}$ of $25 \Omega$ and $50 \Omega$ the initial voltage step is in the threshold region of a TTL input and the output voltage only rises above the guaranteed $2.0 \mathrm{~V} \mathrm{~V}_{\text {IH }}$ level after a reflection returns from the end of the line. If Vout is increased to $>2.0 \mathrm{~V}$ by either increasing $\mathrm{Z}_{0}$ or decreasing $\mathrm{R}_{\mathrm{o}}$, additional delay does not occur. $\mathrm{R}_{0}$ is a characteristic of the driver output configuration, varying between the different TTL speed categories. $Z_{0}$ can be changed by varying the width of the conductor and its distance from ground. Table 2-9 lists the lowest transmission line impedance that can be driven by different TTL devices to insure an initial voltage step of 2.0 V . Note that the worst case value, assuming a $+30 \%$ tolerance on the current limiting resistor and a $-10 \%$ tolerance on $\mathrm{V}_{\mathrm{cc}}$, is $80 \%$ higher than the value for nominal conditions.

Table 2-9 Transmission Line Drive Capability

|  |  |  | owest T | mission Line | edance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TTL FAMILY OR DEVICE | RESISTOR R $\Omega$ | WOR (R | CASE <br> 0\%) | NOMINAL | $\begin{gathered} \text { BES } \\ \text { (R } \end{gathered}$ | ASE |
| 54/74 | 130 | 241.4 | 204.8 | 136.8 | 84.6 | 75.8 |
| 9XXX, 93xX | 80 | 148.5 | 126.0 | 84.2 | 52.0 | 46.6 |
| 54H/74H | 58 | 107.7 | 91.3 | 61.0 | 37.7 | 33.8 |
| 54S/74S | 55 | 110.0 | 92.2 | 61.1 | 37.5 | 33.4 |
| 93L | 320 | 594.2 | 504.2 | 336.8 | 208.3 | 186.6 |
| 9009 | 50 | 92.8 | 78.7 | 52.6 | 32.5 | 29.1 |
| 5440/7440 | 100 | 185.7 | 157.5 | 105.2 | 65.1 | 58.3 |
| 54H/74H40 | 60 | 111.4 | 94.5 | 63.1 | 39.0 | 35.0 |
| $\begin{aligned} & \text { 54S/74S40 } \\ & 54 \mathrm{~S} 140 / 74 \mathrm{~S} 140 \end{aligned}$ | 25 | 50.0 | 41.9 | 27.7 | 17.0 | 15.2 |
| Supply.Voltage (VCC) |  | 4.50 | 4.75 | 5.00 | 5.25 | 5.50 |

A graphical method provides excellent insight into the effects of high speed digital circuits driving interconnections acting as transmission lines. The method is basically to draw a load line for each input and output situation. Each load line starts at the previous quiescent point, determined where the previous load line cuts the appropriate characteristic. The magnitude of the slope of the load lines is identical and equal to the characteristic impedance of the line, but alternate load lines have opposite signs representing the change in direction of current flow. The points where the load lines cut the input and output characteristics represent the voltage and current value at the input or output, respectively, for that reflection. This method, illustrated in Figure 2-25, is shown with and without the input diode, and illustrates how the input diode on TTL elements assists in eliminating spurious switching due to reflection.

TTL CHARACTERISTICS


Fig. 2-24 TTL Driving Transmission Line


Fig. 2-25 Ringing Caused by Reflections

## BACKPLANE DATA BUS

Unterminated lines can impose a limitation on maximum data rate because of the waiting time required for reflections and ringing to damp out. For higher data rates, wherein terminations are required to control reflections, a common technique is to use open-collector drivers and terminate each end of a signal wire with a resistive divider between $V_{C C}$ and ground as shown in Figure 2-26. To terminate a $120 \Omega$ twisted pair, for example, a $180 \Omega$ resistor to $V_{C C}$ and a $390 \Omega$ resistor to ground offers a Thevenin equivalent resistance of $123 \Omega$ and a no-load voltage of 3.4 V with a $\mathrm{V}_{c c}$ of 5.0 V . Under nominal conditions and assuming a quiescent LOW level of 0.5 V , a driver must be able to sink about 24 mA from each end of the line, or 48 mA total. The quiescent LOW current flowing in the line furnishes the pull-up mechanism when a driver turns off. When the quiescent current is interrupted, a voltage change is generated whose magnitude is the product of the line impedance and the current. Thus the interruption of 24 mA flowing in a $120 \Omega$ line causes a voltage rise of about 2.9 V , from the quiescent 0.5 V to 3.4 V . With variations in VCc and resistor tolerances, the quiescent LOW current can be considerably more than 48 mA , and a circuit such as the 96101 Quad Bus Driver, which is guaranteed to sink 80 mA , is recommended. The 96106 Quad NOR has higher noise margin and lower input loading than other TTL gates and is therefore well suited as a line receiver. The 96103 Quad Transceiver combines the input attributes of the 96106 with an open-collector driver capable of sinking 70 mA .

For communications between subsystems that are located in separate enclosures, wherein attenuation and noise are important factors, the general practice is to use specialized drivers and receivers. Drivers with complementary outputs*, such as the 9614,9634 or 9638 , can drive terminated twisted pair lines. Line receivers with differential inputs*, such as the 9615,9620 or 9637 provide good common-mode noise rejection and accommodate attenuated input signals.

## DECOUPLING

Decoupling capacitors should be used on every pc card, at least one for every 5 to 10 standard TTL packages, one for every five 74H and 74S packages and one for every one-shot (monostable), line driver and line receiver package. They should be good quality rf capacitors of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ with short leads. It is particularly important to place good rf capacitors near sequential (bistable) devices. In addition, a larger capacitor (preferably a tantalum capacitor) of $2.0 \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$ should be included on each card.

## GROUNDS

A good ground system is essential for a pc card containing a large number of packages. The ground can either be a good ground bus, or better yet, a ground plane which, incorporated with the Vcc supply, forms a transmission line power system. Power transmission systems, which can be attached to a pc card to give an excellent power system without the cost of a multilayer pc card, are commercially available. Ground loops on or off pc cards are to be avoided unless they approximate a ground plane.


Fig. 2-26 High Speed Backplane Data Bus Using Twisted Pair or Flat Cable
*Refer to FAIRCHILD LINEAR INTEGRATED CIRCUIT DATA BOOK

## SUPPLY VOLTAGE AND TEMPERATURE

The nominal supply voltage $V_{C C}$ for all TTL circuits is +5.0 V . Commercial grade parts are guaranteed to perform with $\pm 5 \%$ supply tolerance ( $\pm 250 \mathrm{mV}$ ) over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ (some to $70^{\circ} \mathrm{C}$ ). Mil grade parts are guaranteed to perform with a $\pm 10 \%$ supply tolerance ( $\pm 500 \mathrm{mV}$ ) over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

The actual junction temperature can be calculated by multiplying the power dissipation of the device with the thermal resistance of the package and adding it to the measured ambient temperature $T_{A}$ or package (case) temperature Tc.

Table 2-1 lists some of the standard Dual In-line Packages (DIP) and Flatpaks used by Fairchild, including typical junction-to-ambient thermal resistance $\theta_{\mathrm{JA}}$ and typical junction-to-case thermal resistance $\theta_{\mathrm{Jc}}$. Designers should bear in mind that localized temperatures can rise well above the general ambient in a system enclosure. On a large pc board mounted in a horizontal plane, for example, the local temperature surrounding an IC in the middle of the board can be quite high due to the heating effect of the surrounding packages and the very poor natural convection. Low velocity forced air cooling is usually sufficient to alleviate such stagnant air conditions.

Table 2-10 Thermal Resistances

| PACKAGE | $\theta \mathrm{JA},{ }^{\circ} \mathrm{C} / \mathrm{W}$ | $\theta \mathrm{Jc},{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :---: | :---: |
| 14-Pin Flatpak | 128 | 50 |
| 16-Pin Flatpak | 123 | 47 |
| 24-Pin Flatpak | 90 | 44 |
| 14-Pin CerDIP | 115 | 35 |
| 16-Pin CerDIP | 100 | 30 |
| 24-Pin CerDIP | 60 | 25 |
| 14-Pin Plastic DIP | 125 | 48 |
| 16-Pin Plastic DIP | 120 | 45 |
| 24-Pin Plastic DIP | 74 | 40 |

Example: A 9301 in CerDIP dissipates typically 145 mW . At $+55^{\circ} \mathrm{C}$ ambient temperature the junction temperature is:

$$
T_{J}=(0.145 \times 100)+55=70^{\circ} \mathrm{C}
$$

## INTERFACING

All circuits in the Fairchild TTL families, in fact all TTL devices presently manufactured, are compatible. Any TTL output can drive a certain number of TTL inputs, as described in Section 3. There are only subtle differences in the worst case noise immunity when low power, standard and Schottky TTL circuits are intermixed. Open-collector outputs, however, require a pull-up resistor to drive TTL inputs reliably, as discussed earlier.

While TTL is the dominating logic family, and many systems use TTL exclusively, there are cases where different semiconductor technologies are used in one system, either to improve the performance or to lower the cost, size and power dissipation. The following explains how TTL circuits can interface with DTL, ECL (CML), CTL, and discrete transistors.

Interfacing TTL and DTL - Both DTL and TTL are current sinking families, operating on a +5.0 V supply. They interface perfectly. When TTL drives DTL, one DTL input represents 1 U.L. in the LOW state, much less than $1 \mathrm{U} . \mathrm{L}$. in the HIGH state. When DTL drives TTL, a $2 \mathrm{k} \Omega$ output has a drive capability of $8 \mathrm{U} . \mathrm{L} ., \mathrm{a} 6 \mathrm{k} \Omega$ output has a drive capability of 4 U.L.

INTERFACING (Cont'd)
Interfacing TTL and ECL - Mixing ECL and TTL logic families offers the design engineer a new level of freedom and opens the entire vhf frequency spectrum to the advantages of digital measurement, control and logic operation.

The chief advantages of emitter coupled logic are high speed, flexibility, design versatility and transmission line compatibility. But application and interfacing cost problems have traditionally discouraged the use of ECL in many areas, particularly in low cost, less sophisticated systems. Using 95 K or 10 K compensated ECL with new ECL/TTL interface devices and several new interfacing methods promises to extend the advantages of ECL to many low cost systems.

The most practical interfacing method for smaller systems involves using a common supply of +5.0 V to +5.2 V . Care must be exercised with both logic families when using this technique to assure proper bypassing of the power supply to prevent any coupling of noise between circuit families. If only a few 95 K or 10 K ECL packages are designed into a predominantly TTL system the safest method is to use a $0.01 \mu \mathrm{~F}$ miniature ceramic capacitor across each ECL device. This value capacitor has the highest $Q$, or bypassing efficiency. When larger systems are operated on a common supply, separate power busses to each logic family help prevent problems. Otherwise, good high frequency bypassing techniques are usually sufficient.

95 K series ECL devices are fully compensated so that input thresholds and output levels are immune to broad variations in ambient temperature and supply voltage. This feature makes it easier to interface with TTL and to operate with the TTL power supply. 95 K and 10 K devices have high input impedance with input pull-down resistors (> $20 \mathrm{k} \Omega$ ) to the negative supply. In the TTL to ECL interface circuits in Figure 2-27 it is assumed that the ECL devices have high input impedance.

9500 series ECL elements are temperature compensated and have internal $2 \mathrm{k} \Omega$ pull-down resistors at each input and output. These resistors provide partial termination of interconnecting transmission lines, in many cases eliminating the need for external terminations. For ECL inputs with $2 \cdot \mathrm{k} \Omega$ pull-down resistors, the $750 \Omega$ resistors shown in the TTL to ECL circuits should be changed to $1.2 \mathrm{k} \Omega$ in order to provide the proper ECL input signal levels.

All circuits described operate with $\pm 5 \% \mathrm{ECL}$ and $\pm 10 \%$ TTL supply variations, except those with ECL and TTL on a common supply. In those cases the supply can be $\pm 10 \%$ with 95 K or 10 K ECL, $\pm 5 \%$ with 9500 series ECL. All resistors are $1 / 4 \mathrm{~W}, \pm 5 \%$ composition type.

TTL to ECL conversion is easily accomplished with resistors, which simultaneously attenuate the TTL signal swing, shift the signal levels, and provide low impedance for damping and immunity to stray noise pick-up. The resistors should be located as near as possible to the ECL circuit for optimum effect. The circuits in Figure 2-27 assume an unloaded TTL gate as the standard TTL source. ECL input impedance is predominately capacitive $(\approx 3 \mathrm{pF})$; the net RC time constant of this capacitance with the indicated resistors assures a net propagation delay governed primarily by the TTL signal.


Fig. 2-27 TTL to ECL Conversion

INTERFACING (Cont'd)
When interfacing between high voltage-swing TTL logic and low voltage-swing ECL logic, the more difficult conversion is from ECL to TTL. This requires a voltage amplifier to build up the 0.8 V logic swing to a minimum of 2.5 V . The circuits shown in Figure $2-28$ may be used to interface from ECL to TTL.

The higher speed converters usually have the lowest fan-out - only one or two TTL gates. This fan-out can be increased simply by adding a TTL buffer gate to the output of the converter. Another option, if ultimate speed is required, is to use additional logic converters.

Interfacing TTL and CTL — CTL (Complementary Transistor Logic) is a family of high speed digital circuits used mainly in computers. It uses AND gates and wired-OR outputs for logic flexibility, but logic levels are not restored in each gate. Level restoring buffers (956) are therefore required, and all interfacing should be done with restored logic levels. The CTL input threshold is $\approx 1 \mathrm{~V}$, similar to TTL , but 1.0 mA to 2.0 mA are required to pull the CTL input reliably over the threshold. A normal TTL output can drive a CTL input, but noise immunity is improved considerably by a $1 \mathrm{k} \Omega$ pull-up resistor (Figure 2-29). The CTL output emitter follower can source $>30 \mathrm{~mA}$ but cannot sink current. A resistive termination is therefore required. When the resistor is returned to ground, it may not exceed $250 \Omega$ to guarantee a V ol of $<400 \mathrm{mV}$ at a fan-out of $1 \mathrm{U} . \mathrm{L}$. A better, less power consuming way for a fan-out of $1 \mathrm{U} . \mathrm{L}$. is to use the built-in pull-down resistor ( $1 \mathrm{k} \Omega$ to -2.0 V ). For increased fanout, this resistor can be reduced by a parallel external resistor to $180 \Omega$ ( 8 U.L.), as indicated in Figure 2-30.


SEPARATE POWER SUPPLIES

Fig. 2-28 ECL to TTL Conversion


Fig. 2-29 TTL to CTL Conversion


Fig. 2-30 CTL to TTL Conversion

## INTERFACING (Cont'd)

Interfacing TTL and CMOS - With a 5.0 V power supply, a B Series (buffered) CMOS output is guaranteed to sink 0.4 mA at $\mathrm{VOL}=0.4 \mathrm{~V}$, which matches the input requirements of a standard LS-TTL input. If the CMOS supply voltage $V_{D D}$ is greater than 5.0 V , the LS-TTL input must be one having an input diode, as opposed to an emitter. This insures that the high $\mathrm{VOH}_{\mathrm{O}}$ of $\mathrm{CMOS}\left(\sim \mathrm{V}_{\mathrm{DD}}\right)$ will not cause breakdown of the LS-TTL input. A CMOS input threshold $V_{I H}$ may be as high as $70 \%$ of $V_{D D}$, while its $V_{I L}$ will be no lower than $30 \%$ of $V_{D D}$. Thus a TTL output signal is satisfactory at the LOW level, but a pull-up resistor is required to ensure an adequate HIGH level for the CMOS input. The resistor should connect to the CMOS VDD supply, and if this exceeds 5.5 V , the TTL driver must have the capability of not conducting appreciably at this higher voltage. Most LS-TTL outputs can withstand 10 V , as discussed in Section 3.

TTL Driving Transistors - Although high voltage, high current ICs, such as the 9644, are available, it is sometimes necessary to control greater currents or voltages than integrated circuits are capable of handling. When this condition arises, a discrete transistor with sufficient capacity can be driven from a TTL output. Discrete transistors are also used to shift voltages from TTL levels to logic levels for which a standard interface driver is not available.

The two circuits of Figure 2-31 show how TTL can drive npn transistors. The first circuit is the most efficient but requires an open-collector TTL or DTL output. The other circuit limits the output current from the TTL totempole output through a series resistor.

Shifting a TTL Output to Negative Levels - The circuit of Figure 2-32 uses a pnp transistor to shift the TTL output to a negative level. When the TTL output is HIGH , the transistor is cut off and the output voltage is -Vx . When the TTL output is LOW, the transistor conducts and the output voltage is

$$
-V_{x}+\frac{R 1}{R 2}\left(V_{c c}-2.0 \mathrm{~V}\right)
$$

if the transistor is not saturated, or slightly positive if the transistor is allowed to saturate.


Fig. 2-31 TTL Driving NPN Transistors


Fig. 2-32 PNP Transistor Shifting TTL Output

## INTERFACING (Cont'd)

High Voltage Drivers - A TTL output can be used to drive high voltage, low current loads through the simple, non-inverting circuits shown in Figure 2-33. This can be useful for driving gas discharge displays or small relays, where the TTL output can handle the current but not the voltage. Load current should not exceed (lol-4) mA.

Transistors Driving TTL - It is sometimes difficult to drive the relatively low impedance and narrow voltage range of TTL inputs directly from external sources, particularly in a rough, electrically noisy environment. The circuits shown in Figure 2-34 can handle input signal swings in excess of $\pm 100 \mathrm{~V}$ without harming the circuits. The second circuit has an input RC filter that suppresses noise. Unambiguous TTL voltage levels are generated by the positive feedback (Schmitt trigger) connection.


Fig. 2-33 Non-Inverting High Voltage Drivers


Fig. 2-34 Transistors Driving TTL

9600 FAMILY DATA SHEETS $-\square$
OTHER DIGITAL PRODUCTS $\sum=8$
ORDERING INFORMATION AND $\quad \square$
PACKAGE OUTLINES

> FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

## SECTION 3

- Unit Loads (U.L.)
- Absolute Maximum Ratings
- Recommended Operating Conditions
- DC Characteristics Tables

54XX, 74XX \& 93XX Family DC Characteristics
54H, 74H, \& 93H Family DC Characteristics
54S, 74S \& 93S Family DC Characteristics
54LS, 74LS \& 96LS Family DC Characteristics
9XXX Family DC Characteristics
93L Family DC Characteristics

- AC Loading and Waveforms

AC Loads for SSI Gates Waveforms

## Section 3 LOADING, SPECIFICATIONS AND WAVEFORMS

This section contains dc specifications and ratings common to all devices in each family of circuits. These specifications plus the distinctive characteristics given in the individual data sheet are necessary to fully define a circuit for testing or procurement purposes. Included is a discussion of the Unit Load method of normalizing the input and output characteristics of a circuit, and how to translate the numbers given in the Input Loading/Fan-Out table of a data sheet into the actual values of lif, IIL, Іон and lol currents. The various load configurations for ac testing, a table of RL and CL values for SSI gates and waveforms that help to define the various ac parameters are also included.

## UNIT LOADS (U.L.)

For convenience in system design the input loading and fan-out characteristics of each circuit are specified in terms of unit loads. One unit load in the HIGH state is defined as $40 \mu \mathrm{~A}$; thus both the input HIGH leakage current $\mathrm{IIH}_{\mathrm{H}}$ and the output HIGH current sourcing capability $\mathrm{IOH}_{\mathrm{H}}$ are normalized to $40 \mu \mathrm{~A}$. Similarly, one unit load in the LOW state is defined as 1.6 mA and both the input LOW current IL and the output LOW current sinking capability lol are normalized to 1.6 mA . On the data sheets the input and output load factors are listed in the Input Loading/Fan-Out table. The table from the 54/7404 Hex Inverter is reproduced below.

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $12.5 / 12.5$ | $25 / 12.5$ | $10 / 5.0$ <br> $(2.5)$ |

The input loading and fan-out factors are arranged in four columns, since this hex inverter is available in standard TTL, H-TTL, S-TTL and LS-TTL. Under the 54/74H heading, for example, the input HIGH/LOW load factors are 1.25/1.25, with the first number representing $\mathrm{I}_{\mathrm{H}}$ and the second representing $\mathrm{ILL}_{\mathrm{L}}$. For purposes of testing or procurement these load factors can be easily translated to actual test limits by simply multiplying them by $40 \mu \mathrm{~A}$ and 1.6 mA , respectively. The second set of numbers represents the rated output HIGH/LOW load currents loH and loL, respectively. In the 54/74S column the output HIGH/LOW drive factors of 25/12.5 translate to 1.0 mA and 20 mA by multiplying them by $40 \mu \mathrm{~A}$ and 1.6 mA , respectively.

For any input or output for which the Military and Commercial grade specifications differ, the Military grade loading or fan-out factors are shown in parenthesis immediately below the Commercial grade factors. In the case of the 54/74LSO4 in the sample table shown, the output LOW fan-out for the Commercial grade (74LS04) is shown as 5.0 (equivalent to 8.0 mA ), while the rating for the Military grade ( $54 \mathrm{LSO4}$ ) is 2.5 (or 4.0 mA ). The output HIGH fan-out rating for the Military grade is the same as for the Commercial grade and thus the rating of 10 loads (or $400 \mu \mathrm{~A}$ lOH) is not repeated in parenthesis.

For convenience in system design the input and output loading factors should not be translated into $\mu \mathrm{A}$ and mA . It is only necessary to add up the input loading factors of all inputs connected to a particular logic function and compare the total unit loading with the fan-out capability of the source of that particular function. For example, a function that connects to one input of each of the hex inverter types in the table above must drive the total loading calculated below.

Input HIGH Loading $=1.0+1.25+1.25+0.5=4.0$ Unit Loads
Input LOW Loading $=1.0+1.25+1.25+0.25=3.75$ Unit Loads

UNIT LOADS (U.L.) (Cont'd)
To extend the example, this amount of loading can be driven by any one of the hex inverters in the Commercial grade, since all outputs have fan-out capabilities greater than 4.0/3.75. In the Military grade, however, the 54LS04 has a rated output LOW drive factor of only 2.5 and thus could not be guaranteed to drive 3.75 unit loads. Thus a different type of driver would be selected for operation over the Military temperature range.

In the case of an open-collector output, which is not capable of supplying loH current or of establishing a $\mathrm{V}_{\mathrm{OH}}$ level, the output HIGH load factor does not apply and thus the abbreviation OC is substituted. It is assumed that the system designer will specify a pull-up resistor value that will establish the desired $\mathrm{V}_{\mathrm{OH}}$ while supplying the cumulative $\mathrm{IIH}_{\mathrm{H}}$ of the driven loads plus the loн leakage current of the output (or outputs, in the case of wiredcollector logic) as specified in either the pertinent Family DC Characteristics table or on the data sheet.

ABSOLUTE MAXIMUM RATINGS1 (beyond which useful life may be impaired)

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Ambient Temperature Under Bias | $-55^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ |
| Junction Temperature Under Bias | $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ |
| Vcc Pin Potential to Ground Pin | -0.5 V to +7.0 V |
| Input Voltage2: | -0.5 V to +5.5 V |
| $\quad$ Emitter Inputs | -0.5 V to +15 V |
| LS-TTL3 Diode and pnp Inputs | -30 mA to +5.0 mA |
| Input Current2,4 |  |
| Voltage Applied to Outputs in HIGH State: | -0.5 V to +7.0 V |
| $\quad$ Open Collector | -0.5 V to VCc Value |
| Standard TTL, H-TTL, S-TTL, LP-TTL | -0.5 V to +10 V |
| $\quad$ Standard LS-TTL5 (with recommended operating VCC) | -0.5 V to +5.5 V |
| 3-State LS-TTL (with Vcc $=0 \mathrm{~V}$ ) | twice the rated loL |

RECOMMENDED OPERATING CONDITIONS 1

|  | Min | Max |
| :---: | :---: | :---: |
| Free Air Ambient Temperature |  |  |
| Military (XM) | $-55^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ |
| Commercial (XC) | $0^{\circ} \mathrm{C}$ | $+70^{\circ} \mathrm{C}$ |
| Supply Voltage |  |  |
| Military (XM) | +4.5 V | +5.5 V |
| Commercial (XC) | +4.75 V | +5.25 V |

## NOTES:

1. Unless otherwise restricted or extended by detail specifications.
2. Either input voltage limit or input current limit is sufficient to protect inputs.
3. Refer to input breakdown test in 54LS/74LS family DC Characteristics or individual data sheets for emitter type LS-TTL inputs.
4. Except $9315 / 7441$ limited to -10 mA to +1.0 mA . Also, steady-state clamp diode currents greater than -2.0 mA in LS-TTL inputs can cause logic malfunctions; see discussion in Section 2.
5. Except 'LS00, 'LS02, 'LS04, 'LS10, 'LS11, 'LS20, 'LS32, 'LS74, 'LS86, 'LS109, 'LS112, 'LS113 and 'LS114 limited to -0.5 V to + Vcc Value.

## DC CHARACTERISTICS TABLES

Most of the circuits described in this data book were designed within the general framework of one of the distinctive families of TTL circuits, i.e., TTL, H-TTL, S-TTL, LP-TTL or LS-TTL. Many dc specifications are common to almost all circuits of a particular family, e.g., $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{CD}}$, etc. and to avoid needless repetition these common parameters do not appear on the individual data sheets. On the following pages are tables of dc characteristics containing the parameters, limits and conditions common to the various families of TTL circuits. These are intended to augment the distinctive parameters, such as ac characteristics, input loading, fan-out and power supply current listed on the individual data sheets. In some cases a particular circuit will depart from its family characteristics in one or more parameters and in these cases the limits or conditions shown on the individual data sheets take precedence over the values listed in the family characteristics table.

54XX, 74XX, 93XX \& 96XX FAMILY DC CHARACTERISTICS 1

| SYMBOL2 | PARAMETER |  |  |  | LIMITS |  | UNITS | $\mathrm{Vcc}^{5}$ | CONDITIONS ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ ${ }^{4}$ | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal Over Recommended $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{T}_{\mathrm{A}}$ Range |
| VIL | Input LOW Voltage |  |  |  |  | 0.8 | V |  | Recognized as a LOW Signal Over Recommended $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{T}_{\mathrm{A}}$ Range |
| $V_{C D}$ | Input Clamp Diode Voltage |  |  |  |  | -1.5 | V | Min | $\mathrm{l} \mathrm{N}=-12 \mathrm{~mA}$ |
| V OH | Output HIGH Voltage |  |  | 2.4 | 3.4 |  | V | Min | $\mathrm{IOH}=40 \mu \mathrm{~A}$ Multiplied by Output HIGH U.L. <br> Shown on Data Sheet |
| Vol | Output LOW Voltage |  |  |  | 0.2 | 0.4 | V | Min | IoL $=1.6 \mathrm{~mA}$ Multiplied by Output LOW U.L. <br> Shown on Data Sheet |
| IH | Input HIGH Current |  | $\begin{array}{\|r\|} \hline \text { 1.0 U.L. } \\ \hline \text { 2.0 U.L. } \\ \hline \text { n U.L. } \\ \hline \end{array}$ |  |  | $\begin{array}{r} 40 \\ 80 \\ \mathrm{n}(40) \\ \hline \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{I}_{\mathrm{IH}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ |
|  | Input HIGH Current, Breakdown Test, All Inputs |  |  |  |  | 1.0 | mA | Max | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |
| ILL | Input LOW Current |  | $\begin{array}{\|r\|} \hline \text { 1.0 U.L. } \\ \hline \text { 2.0 U.L. } \\ \hline \text { n U.L. } \\ \hline \end{array}$ |  |  | $\begin{gathered} -1.6 \\ -3.2 \\ \mathrm{n}(-1.6) \end{gathered}$ | mA | Max | IIL $=1.6 \mathrm{~mA}$ Multiplied by Input LOW U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ |
| IOH | Output HIGH Current, Open-Collector |  |  |  |  | 250 | $\mu \mathrm{A}$ | Min | $\mathrm{VOH}=5.5 \mathrm{~V}$ |
| lozH | 3-State Output OFF Current HIGH |  |  |  |  | 40 | $\mu \mathrm{A}$ | Max | Vout $=2.4 \mathrm{~V}$ |
| lozl | 3-State Output OFF Current LOW |  |  |  |  | -40 | $\mu \mathrm{A}$ | Max | Vout $=0.4 \mathrm{~V}$ |
| los ${ }^{6}$ | Output Short Circuit Current | $\begin{array}{ll} \text { Std. } 7 \\ 74 \mathrm{XXX} \end{array}$ |  | $\begin{array}{\|l\|} \hline-20 \\ -18 \\ \hline \end{array}$ |  | $\begin{aligned} & -57 \\ & -57 \\ & \hline \end{aligned}$ | mA | Max | Vout $=0 \mathrm{~V}$ |
|  |  | Buff | ers $\begin{aligned} & 54 \mathrm{XX} \\ & 74 \mathrm{XX}\end{aligned}$ | $\begin{array}{\|c\|} \hline-20 \\ -18 \end{array}$ |  | -70 -70 |  |  |  |
|  |  |  | 93XX | -20 |  | -70 |  |  |  |

[^3]54H, 74H, \& 93H FAMILY DC CHARACTERISTICS 1

| SYMBOL2 | PARAMETER |  |  | LIMITS |  | UNITS | $\mathrm{Vccc}^{5}$ | CONDITIONS ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ ${ }^{4}$ | Max |  |  |  |
| VIH | Input HIGH Voltage |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal Over Recommended $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{T}_{\mathrm{A}}$ Range |
| VIL | Input LOW Voltage |  |  |  | 0.8 | V |  | Recognized as a LOW Signal Over Recommended $V_{C C}$ and $T_{A}$ Range |
| $\mathrm{V}_{C D}$ | Input Clamp Diode Voltage |  |  |  | -1.5 | V | Min | $\mathrm{lln}=-12 \mathrm{~mA}$ |
| Vor | Output HIGH Voltage |  | 2.4 | 3.4 |  | V | Min | IOH $=40 \mu \mathrm{~A}$ Multiplied by Output HIGH U.L. <br> Shown on Data Sheet |
| Vol | Output LOW Voltage |  |  | 0.2 | 0.4 | V | Min | $\mathrm{IOL}=1.6 \mathrm{~mA}$ Multiplied by Output LOW U.L. <br> Shown on Data Sheet |
| IH | Input HIGH Current | $\frac{1.25 \text { U.L. }}{2.5 \text { U.L. }} \frac{\mathrm{n} \mathrm{U.L}}{}$ |  |  | $\begin{array}{r} 50 \\ 100 \\ n(40) \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{I}_{\mathrm{IH}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ |
|  | Input HIGH Current, Breakdown Test, All Inputs |  |  |  | 1.0 | mA | Max | V IN $=5.5 \mathrm{~V}$ |
| IIL | Input LOW Current | $\begin{array}{\|c} 1.25 \text { U.L. } \\ \hline 2.5 \text { U.L. } \\ \hline n \text { U.L. } \end{array}$ |  |  | $\begin{array}{c\|} \hline-2.0 \\ -4.0 \\ \mathrm{n}(-1.6) \\ \hline \end{array}$ | mA | Max | IIL $=1.6 \mathrm{~mA}$ Multiplied by Input LOW U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ |
| IOH | Output HIGH Current, Open-Collector |  |  |  | 250 | $\mu \mathrm{A}$ | Min | $\mathrm{V} \mathrm{OH}=5.5 \mathrm{~V}$ |
| los ${ }^{6}$ | Output Short Circuit Current |  | -40 |  | -100 | mA | Max | Vout $=0 \mathrm{~V}$ |

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. For definitions of symbols and terminology please see Section 2.
3. Unless otherwise stated on individual data sheets.
4. Typical characteristics refer to $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.
5. Min and Max refer to the values listed in the table of recommended operating conditions
6. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.

LOADING, SPECIFICATIONS AND WAVEFORMS

54S, 74S \& 93S FAMILY DC CHARACTERISTICS 1

| SYMBOL2 | PARAMETER |  |  | LIMITS |  | UNITS | Vcc ${ }^{5}$ | CONDITIONS ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ4 | Max |  |  |  |
| V IH | Input HIGH Voltage |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal Over Recommended Vcc and TA Range |
| VIL | Input LOW Voltage |  |  |  | 0.8 | v |  | Recognized as a LOW Signal Over Recommended Vcc and TA Range |
| $\mathrm{V}_{C D}$ | Input Clamp Diode Voltage |  |  |  | -1.2 | V | Min | $1 \mathrm{~N}=-18 \mathrm{~mA}$ |
| Vor | Output <br> HIGH Voltage | Std. 7 Mil. <br> Std. 7 Com. <br> 3-State | $\begin{aligned} & 2.5 \\ & 2.7 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 3.4 \\ & 3.2 \end{aligned}$ |  | V | Min | IOH $=40 \mu \mathrm{~A}$ Multiplied by Output HIGH U.L. Shown on Data Sheet |
| Vol | Output LOW Voltage |  |  | 0.35 | 0.5 | V | Min | $\mathrm{lOL}=1.6 \mathrm{~mA}$ Multiplied by Output LOW U.L. Shown on Data Sheet |
| IIH | Input HIGH Curren | $\begin{array}{c\|c}  & 1.25 \text { U.L. } \\ \cline { 2 - 4 } & 2.5 \text { U.L. } \\ & n \text { U.L. } \end{array}$ |  |  | $\begin{array}{r} 50 \\ 100 \\ \mathrm{n}(40) \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{IIH}_{\mathrm{H}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |
|  | Input HIGH Current, Breakdown Test, All Inputs |  |  |  | 1.0 | mA | Max | $\mathrm{VIN}=5.5 \mathrm{~V}$ |
| IIL | Input LOW Curren | 1.25 U.L. <br> 2.5 U.L. <br> $n$ U.L. |  |  | $\begin{array}{r\|} \hline-2.0 \\ -4.0 \\ \mathrm{n}(-1.6) \end{array}$ | mA | Max | IIL $=-1.6 \mathrm{~mA}$ Multiplied by Input LOW U.L. Shown on Data Sheet; VIN $=0.5 \mathrm{~V}$ |
| Ion | Output HIGH Current, Open-Collector |  |  |  | 250 | $\mu \mathrm{A}$ | Min | $\mathrm{V} \mathrm{OH}=5.5 \mathrm{~V}$ |
| IozH | 3-State Output OFF Current HIGH |  |  |  | 50 | $\mu \mathrm{A}$ | Max | Vout $=2.4 \mathrm{~V}$ |
| lozL | 3-State Output OFF Current LOW |  |  |  | -50 | $\mu \mathrm{A}$ | Max | Vout $=0.5 \mathrm{~V}$ |
| $\operatorname{los}^{6}$ | Output Short Circuit Current | Standard7/ <br> 3-State <br> Buffers/ <br> Line Dvrs | $\begin{aligned} & -40 \\ & -50 \end{aligned}$ |  | $\begin{aligned} & -100 \\ & -225 \end{aligned}$ | mA | Max | Vout $=0 \mathrm{~V}$ |

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. For definitions of symbols and terminology please see Section 2.
3. Unless otherwise stated on individual data sheets.
4. Typical characteristics refer to $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{C C}=+5.0 \mathrm{~V}$.
5. Min and Max refer to the values listed in the table of recommended operating conditions.
6. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.

54LS, 74LS \& 96LS FAMILY DC CHARACTERISTICS1

| SYMBOL2 | PARAMETER |  |  |  | LIMIT |  | UNITS | $\mathrm{Vcc}^{5}$ | CONDITIONS ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ4 | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal Over Recommended VCc and $T_{A}$ Range |
| VIL | Input LOW Voltage |  | $\begin{array}{r}\text { Mil. } \\ \hline \text { Com. }\end{array}$ |  |  | $\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$ | V |  | Recognized as a LOW Signal Over Recommended $V_{C C}$ and $T_{A}$ Range |
| $\mathrm{V}_{\text {CD }}$ | Input Clamp Diode Voltage |  |  |  |  | -1.5 | V | Min | $\mathrm{lin}=-18 \mathrm{~mA}$ |
| Voh | Output HIGH <br> Voltage | $\begin{array}{\|r\|} \hline \text { St } \\ \hline \text { 3-Stat } \\ \hline \end{array}$ | Std. 7 Mil. <br> Std. 7 Com. <br> te/Buffers Line Dvrs | $\begin{array}{\|l\|} \hline 2.5 \\ 2.7 \\ 2.4 \\ 2.0 \end{array}$ | $\begin{aligned} & 3.4 \\ & 3.4 \\ & 3.3 \\ & 2.9 \end{aligned}$ |  | V | Min | $\mathrm{IOH}^{2}=40 \mu \mathrm{~A}$ Multiplied by Output HIGH U.L. <br> Shown on Data Sheet |
| Vol | Output LOW Voltage |  | Com. |  | 0.35 | 0.5 | V | Min | $\mathrm{IOL}=1.6 \mathrm{~mA}$ Multiplied by Output LOW U.L. <br> Shown on Data Sheet |
|  |  | Mil. \& Com. |  |  | 0.25 | 0.4 | V | Min | IOL $=1.6 \mathrm{~mA}$ Multiplied by Output LOW U.L. Shown in Parenthesis on Data Sheet |
| IIH | Input HIGH Current |  | $\frac{0.5 \text { U.L. }}{\frac{1.0 \text { U.L. }}{n \text { U.L. }}}$ |  |  | $\begin{array}{r} 20 \\ 40 \\ \mathrm{n}(40) \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{IIH}_{\mathrm{H}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |
|  | Input HIGH Current, Breakdown Test, All Inputs |  |  |  |  | 100 | $\mu \mathrm{A}$ | Max | $\mathrm{VIN}=10 \mathrm{~V} 8$ |
| IIL | Input LOW Current |  | $\begin{array}{r} \hline 0.25 \text { U.L. } \\ \hline 0.5 \text { U.L. } \\ \hline n \text { U.L. } \end{array}$ |  |  | $\begin{gathered} -0.4 \\ -0.8 \\ n(-1.6) \end{gathered}$ | mA | Max | IIL $=-1.6 \mathrm{~mA}$ Multiplied by Input LOW U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ |
| Іон | Output HIGH Current, Open-Collector |  |  |  |  | 100 | $\mu \mathrm{A}$ | Min | V OH $=5.5 \mathrm{~V}$ |
| IozH | 3-State Output OFF Current HIGH |  |  |  |  | 20 | $\mu \mathrm{A}$ | Max | Vout $=2.4 \mathrm{~V}$ |
| lozL | 3-State Output OFF Current LOW |  |  |  |  | -20 | $\mu \mathrm{A}$ | Max | Vout $=0.4 \mathrm{~V}$ |
| los ${ }^{6}$ | Output Short Circuit Current |  | $\begin{gathered} \hline \text { Standard } 7 \\ \hline \text { 3-State/ } \\ \text { Buffers } \\ \hline \text { Line Dvrs } \end{gathered}$ | -20 -30 -40 |  | -100 -130 -225 | mA | Max | Vout $=0 \mathrm{~V}$ |

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. For definitions of symbols and terminology please see Section 2.
3. Unless otherwise stated on individual data sheets.
4. Typical characteristics refer to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.
5. Min and Max refer to the values listed in the table of recommended operating conditions.
6. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.
8. Except 5.5 V for 'LS03, 'LS05, 'LS22, 'LS74, 'LS109, 'LS112, 'LS113, 'LS114, 'LS136 (which have emitter inputs) and as shown on other data sheets.

LOADING, SPECIFICATIONS AND WAVEFORMS

9XXX FAMILY DC CHARACTERISTICS 1

| SYMB OL2 | PARAMETER |  |  | LIMIT |  | UNITS | Vcc ${ }^{5}$ | CONDITIONS ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ4 | Max |  |  |  |
| V IH | Input HIGH Voltage (See Data Sheets) |  |  |  |  | V |  | Recognized as a HIGH Signal Over Recommended $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{T}_{\mathrm{A}}$ Range |
| VIL | Input LOW Voltage (See Data Sheets) |  |  |  |  | V |  | Recognized as a LOW Signal Over Recommended $V_{c c}$ and $T_{A}$ Range |
| $\mathrm{V}_{C D}$ | Input Clamp Diode Voltage |  |  |  | -1.5 | V | Min | $\mathrm{lin}=-12 \mathrm{~mA}$ |
| Vor | Output HIGH Voltage |  | 2.4 | 3.4 |  | V | Min | IOH $=40 \mu$ A Multiplied by Output HIGH U.L. Shown on Data Sheet |
| Vol | Output LOW Voltage (See Data Sheets) |  |  |  |  |  |  |  |
| IIH | Input HIGH Curren | 1.0 U.L. <br> 2.0 U.L. <br> $\mathrm{n} \mathrm{U.L}$. |  |  | $\begin{array}{r} 40 \\ 80 \\ \mathrm{n}(40) \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{I}_{\mathrm{IH}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN $=4.5 \mathrm{~V}$ |
| IIL | Input LOW Current (See Data Sheets) |  |  |  |  |  |  |  |
| Ioh | Output HIGH Current, Open-Collector |  |  |  | 250 | $\mu \mathrm{A}$ | Min | V OH $=5.5 \mathrm{~V}$ |
| $\operatorname{los}^{6}$ | Output Short Circuit Current | Std. 7 Mil. | -30 |  | -100 | mA | Max | Vout $=0 \mathrm{~V}$ |
|  |  | Std. 7 Com. | -30 |  | -120 |  |  |  |
|  |  | 9009 | -40 |  | -150 |  |  |  |
|  |  | 9024 Mil. | -40 |  | -100 -110 |  |  |  |
|  |  |  |  |  |  |  |  |  |

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. For definitions of symbols and terminology please see Section 2.
3. Unless otherwise stated on individual data sheets.
4. Typical characteristics refer to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{c c}=+5.0 \mathrm{~V}$.
5. Min and Max refer to the values listed in the table of recommended operating conditions.
6. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs.

LOADING, SPECIFICATIONS AND WAVEFORMS

## 93L FAMILY DC CHARACTERISTICS1

| SYMBOL2 | PARAMETER |  |  |  | LIMITS |  | UNITS | Vcc ${ }^{5}$ | CONDITIONS3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ4 | Max |  |  |  |
| VIH | Input HIGH Voltage |  |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal Over Recommended Vcc and $T_{A}$ Range |
| VIL | Input LOW Voltage |  | Mil. |  |  | $\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$ | V |  | Recognized as a LOW Signal Over Recommended VCC and $\mathrm{T}_{\mathrm{A}}$ Range |
| $V_{C D}$ | Input Clamp Diode Voltage |  |  |  |  | -1.5 | V | Min | $\mathrm{lin}=-10 \mathrm{~mA}$ |
| Vor | Output HIGH Voltage |  |  | 2.4 | 3.6 |  | V | Min | $1 \mathrm{OH}=-400 \mu \mathrm{~A}$ |
| Vol | Output LOW Voltage | $\frac{\text { Mil. \& Com. }}{\text { Com. }}$ |  |  |  | $\begin{aligned} & \hline 0.3 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ | $\begin{aligned} & \text { Min } \\ & \text { Min } \end{aligned}$ | $\begin{aligned} & \mathrm{IOL}=4.8 \mathrm{~mA} \\ & \mathrm{lOL}=8.0 \mathrm{~mA} \end{aligned}$ |
| IIH | Input HIGH Current |  | $\frac{0.5 \text { U.L. }}{\frac{1}{1.0 \text { U.L. }}} \mathrm{n} \mathrm{U.L.} .$ |  |  | $\begin{array}{r} 20 \\ 40 \\ \mathrm{n}(40) \end{array}$ | $\mu \mathrm{A}$ | Max | $\mathrm{I}_{\mathrm{IH}}=40 \mu \mathrm{~A}$ Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN $=2.4 \mathrm{~V}$ |
|  | Input HIGH Current, Breakdown Test, All Inputs |  |  |  |  | 1.0 | mA | Max | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |
| IIL | Input LOW Current |  | $\frac{0.25 \text { U.L. }}{0.5 \text { U.L. }} \frac{n \text { U.L. }}{}$ |  |  | $\begin{gathered} -0.4 \\ -0.8 \\ \mathrm{n}(-1.6) \end{gathered}$ | mA | Max | IIL $=-1.6 \mathrm{~mA}$ Multiplied by Input LOW U.L. Shown on Data Sheet; $\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}$ |
| 10s ${ }^{6}$ | Output Short Circuit Current |  |  | -2.5 |  | -25 | mA | Max | Vout $=0 \mathrm{~V}$ |

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. For definitions of symbols and terminology please see Section 2.
3. Unless otherwise stated on individual data sheets.
4. Typical characteristics refer to $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}_{C}=+5.0 \mathrm{~V}$.
5. Min and Max refer to the values listed in the table of recommended operating conditions.
6. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

## AC LOADING AND WAVEFORMS

Figure 3-1 shows the ac test load configuration used for circuits of the 54/74, 54/74 H and $54 / 74 \mathrm{~S}$ families having totem-pole outputs. The diodes and resistor are not used for testing circuits of the 54/74LS, 9XXX,93XX,93H, 93S, 93L, 96XX or 96LS families. Figure $3-2$ shows the test load configuration for open-collector outputs. For SSI gates, $R_{L}$ and $C_{L}$ values are listed in the table below. For flip-flops and MSI, $R_{L}$ and $C_{L}$ values are listed in the column headings of the ac tables on the data sheets. Figure 3-3 shows the test circuit for measuring Enable and Disable times of 3-state outputs; $R_{L}$ and $C_{L}$ values are given in the column headings of the ac table in the data sheet, except in certain tests they are superceded by $R_{L}$ or $C_{L}$ values listed in the Test Conditions column of the same table.

A pulse generator signal swing of 0 V to +3.0 V , terminated at the test socket, is recommended for ac testing. A 1.0 MHz square wave is recommended for most propagation delay tests, with rise and fall times of 2.5 ns for S TTL, 10 ns for LP-TTL and 6.0 ns for circuits of other families. The generator PRR must necessarily be increased for testing $f_{\max }$ and decreased for testing one-shot pulse widths. Two pulse generators are usually required for testing such parameters as set-up time, hold time, recovery time, etc.

## AC LOADS FOR SSI GATES

| SSI DEVICES | AC TEST | 54/74 |  | 54H/74H |  | 54S/74S |  | 54LS/74LS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CL | RL | CL | RL | CL | RL | CL | RL |
| $\begin{aligned} & \text { '01, '03, '05 } \\ & \text { '12, '22 } \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | $\begin{aligned} & 15 \mathrm{pF} \\ & 15 \mathrm{pF} \end{aligned}$ | $\begin{gathered} 4 \mathrm{k} \Omega \\ 400 \Omega \\ \hline \end{gathered}$ | $\begin{aligned} & 25 \mathrm{pF} \\ & 25 \mathrm{pF} \end{aligned}$ | $\begin{aligned} & 280 \Omega \\ & 280 \Omega \end{aligned}$ | $\begin{aligned} & 15 \mathrm{pF} \\ & 15 \mathrm{pF} \end{aligned}$ | $\begin{aligned} & 280 \Omega \\ & 280 \Omega \end{aligned}$ | $\begin{aligned} & 15 \mathrm{pF} \\ & 15 \mathrm{pF} \end{aligned}$ | $\begin{aligned} & 2 \mathrm{k} \Omega \\ & 2 \mathrm{k} \Omega \end{aligned}$ |
| '09, '15, '65 | tPLH/tPHL | 15 pF | $400 \Omega$ |  |  | 15 pF | $280 \Omega$ | 15 pF | $2 \mathrm{k} \Omega$ |
| '06, '07, '16, '17 | tPLH/tphL | 15 pF | $110 \Omega$ |  |  |  |  |  |  |
| '26 | tPLH/tPHL | 15 pF | $1 \mathrm{k} \Omega$ |  |  |  |  | 15 pF | $2 \mathrm{k} \Omega$ |
| '28, '33, '37, '38 | tPLH/tPHL | 45 pF | $133 \Omega$ |  |  |  |  | 50 pF | $667 \Omega$ |
| '40, '140 | tPLH/tPhL | 15 pF | $133 \Omega$ | 25 pF | $93 \Omega$ | 50 pF | $93 \Omega$ | 50 pF | $667 \Omega$ |
| '125, '126, '365 '366, '367, '368 | $\begin{aligned} & \mathrm{tPLH}, \mathrm{HL}, \mathrm{ZL}, \mathrm{ZH} \\ & \mathrm{tPHZ}, \mathrm{LZ} \end{aligned}$ | $\begin{gathered} 50 \mathrm{pF} \\ 5 \mathrm{pF} \end{gathered}$ | $\begin{aligned} & 400 \Omega \\ & 400 \Omega \end{aligned}$ |  |  |  |  | $\begin{gathered} 50 \mathrm{pF} \\ 5 \mathrm{pF} \end{gathered}$ | $\begin{aligned} & 667 \Omega \\ & 667 \Omega \end{aligned}$ |
| '134 | $\begin{aligned} & \text { tpLH/tphL } \\ & \text { tpZH/tpZ } \\ & \text { tPHZ/tpLZ } \\ & \hline \end{aligned}$ |  |  |  |  | $\begin{aligned} & 15 \mathrm{pF} \\ & 50 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$ | $\begin{aligned} & 280 \Omega \\ & 280 \Omega \\ & 280 \Omega \end{aligned}$ |  |  |
| All Standard Gates with Totem Pole Outputs | tPLH/tPhL | 15 pF | $400 \Omega$ | 25 pF | $280 \Omega$ | 15 pF | $280 \Omega$ | 15 pF | - |


*Not Used for LS-TTL
**Includes Jig and Probe Capacitance

Fig. 3-1 Test Load for Totem-Pole Outputs in Bi-State Mode


Fig. 3-2 Test Load for Open-Collector Outputs


Fig. 3-3 Enable and Disable Test Loads for 3-State Outputs

$V_{m}=1.5 \mathrm{~V}$ (1.3 $\mathbf{V}$ for LS)

Fig. 3-4. Waveform for Inverting Functions


Fig. 3-5 Waveform for Non-Inverting Functions


Fig. 3-6 Set-up and Hold Times, Rising-Edge Clock


Fig. 3-7 Set-up and Hold Times, Falling-Edge Clock


Fig. 3-8 Propagation Delays from Rising-Edge Clock or Enable


Fig. 3-9 Propagation Delays from Falling-Edge Clock or Enable


Fig. 3-10 Propagation Delays from Set and Clear (or Reset)


Fig. 3-11 3-State Output LOW Enable and Disable Times


Fig. 3-12 3-State Output HIGH Enable and Disable Times


Fig. 3-13 Setup and Hold Times to Active LOW Enable or Parallel Load


Fig. 3-14 Setup and Hold Times to Active HIGH Enable or Parallel Load


| PARAMETER | FAMILY |  |  |
| :---: | :---: | :---: | :---: |
|  | 54/74 | 54LS/74LS | 54S/74S |
|  | 1.7 V | 1.6 V | 1.8 V |
| $\mathrm{~V}_{\text {ref }}(\mathrm{H})$ | V | 1.2 V |  |
| $\mathrm{~V}_{\text {ref }}(\mathrm{L})$ | 0.9 V | 0.8 V | 1.5 V |
| $\mathrm{~V}_{\mathrm{m}}$ | 1.5 V | 1.3 V | 1.2 |

Fig. 3-15 Waveforms for Schmitt Trigger Devices


Fig. 3-16 Asynchronous Set, Reset, Parallel Load or Clear, Active Rising Edge Clock or Active LOW Enable


Fig. 3-17 Asynchronous Set, Reset, Parallel Load or Clear, Active Falling Edge Clock or Active HIGH Enable


Fig. 3-18 Setup and Hold Times, Active HIGH Clock


Fig. 3-19 Setup and Hold Times, Active LOW Clock


Fig. 3-20 Whether Response is Inverting or Non-Inverting Depends on Specific Truth Table Conditions


Fig. 3-21 Storage Address Setup and Hold Times

PRODUCT INDEXES AND
SELECTION GUIDES
TTL CHARACTERISTICS 2

$\square$
9000 FAMILY DATA SHEETS
9300 FAMILY DATA SHEETS $\quad[2$
$\square$
9600 FAMILY DATA SHEETS
OTHER DIGITAL PRODUCTS


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74H | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max | Min Max |  |  |
| ICCH | Power Supply | 8.0 | 16.8 | 16 | 1.6 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| ICCL | Current | 22 | 40 | 36 | 4.4 |  | $\mathrm{V}_{\text {IN }}=$ Open |
| tPLH | Propagation Delay | 22 | 10 | 2.0 | 10 | ns | Figs. 3-1, 3-4 |
| tPHL | Propagation Delay | 15 | 10 | $2.0 \quad 5.0$ | 10 | ns |  |

[^4]

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| ICCH IcCL | Power Supply <br> Current | $\begin{aligned} & 8.0 \\ & 22 \end{aligned}$ | 10 | mA | V IN $=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  | 40 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay | $\begin{aligned} & 45 \\ & 15 \end{aligned}$ | $\begin{aligned} & 15 \\ & 12 \end{aligned}$ | ns | Figs. 3-2, 3-4 |  |
| *DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{v}$. *OC-Open Collector |  |  |  |  |  |  |


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | $54 / 74$ (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | OC $^{\star * / 10}$ | $O C^{*} / 12.5$ | $O C^{* *} / 5.0$ |
|  |  | $(2.5)$ |  |



DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74S |  | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min | Max | Min Max |  |  |  |
| ICCH | Power Supply Current | 8.0 | $13.2$$36$ |  | 1.6 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $V_{C c}=\operatorname{Max}$ |
| ICCL |  | 22 |  |  | 4.4 |  | VIN $=$ Open |  |
| tpLH tphL | Propagation Delay | 45 | 2.0 2.0 | 7.5 | 22 18 | mA | Figs. 3-2, 3-4 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}_{\mathrm{Cc}}=+5.0 \mathrm{~V}$.
**OC-Open Collector


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |  |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \end{aligned}$ | Power Supply Current |  | 12 |  | 26 |  | 24 |  | 2.4 | mA | V IN $=$ Gnd | $V_{c c}=$ Max |
|  |  |  | 33 |  | 58 |  | 54 |  | 6.6 |  | $\mathrm{V}_{\mathrm{IN}}=$ Open |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 22 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{array}{\|l} \hline 2.0 \\ 2.0 \end{array}$ | $\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | ns | Fig. 3-1, 3-4 |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay (54/74S04A only) |  |  |  |  | 1.0 1.0 | 3.5 4.0 |  |  | ns | Fig. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.


## 54/7406 <br> HEX INVERTER BUFFER/DRIVER <br> (With Open-Collector High-Voltage Output)

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7406PC |  | 9A |
| Ceramic DIP (D) | A | 7406DC | 5406DM | 6A |
| Flatpak (F) | A | 7406FC | 5406FM | 31 |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |
| PINS | 54/74 (U.L.) HIGH/LOW |  |  |  |
| Inputs Outputs | $\begin{array}{r} 1.0 / 1.0 \\ \mathrm{OC}^{* * / 10} \end{array}$ |  |  |  |

DC AND AC CHARATERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | xC | $\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.4 \end{aligned}$ |  | V | $\mathrm{IOL}=40 \mathrm{~mA}$ | $\begin{aligned} \mathrm{VCC}_{\mathrm{C}} & =\mathrm{Min} \\ \mathrm{~V}_{\mathrm{IN}} & =\mathrm{V}_{\mathbf{I H}} \end{aligned}$ |
|  |  | XM |  |  | $\mathrm{loL}=30 \mathrm{~mA}$ |  |  |  |
|  |  | XC, XM |  |  | $\mathrm{IOL}=16 \mathrm{~mA}$ |  |  |  |
| IOH | Output HIGH Current |  |  | 0.25 |  | mA | $\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  |
| ICCH | Power Supply Current |  |  | 48 |  | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $\mathrm{Vcc}=$ Max |
| Iccl |  |  |  | 51 | $\mathrm{V}_{\mathrm{IN}}=$ Open |  |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay |  |  | 15 23 | ns | Fig. 3-2, 3-4 |  |  |

[^5]| ORDERIN | With <br> COD | 54/740 <br> HEX BUFFER/D <br> Open-Collector High <br> See Section 9 | RIVER <br> -Voltage Output) |  | CONNECTION DIAGRAM PINOUT A |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG | $2-5$ |  |
| PKGS | OUT | $\begin{aligned} & \mathrm{VCc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | TYPE |  | $\begin{array}{\|l} 12 \\ \hline 11 \\ \hline \end{array}$ |
| Plastic DIP (P) | A | 7407PC |  | 9A |  | $10$ |
| Ceramic DIP (D) | A | 7407DC | 5407DM | 6A | $\text { GND } 7$ | 8 |
| Flatpak (F) | A | 7407FC | 5407FM | 31 |  |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |
| PINS |  | 54/74 (U.L.) <br> HIGH/LOW |  |  |  |  |
| Inputs Outputs |  | $\begin{array}{r} 1.0 / 1.0 \\ \mathrm{OC}^{* *} / 10 \end{array}$ |  |  |  |  |

DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| VoL | Output LOW Voltage | XC | $\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.4 \end{aligned}$ |  | V | $1 \mathrm{LL}=40 \mathrm{~mA}$ | $\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{~V}_{\mathrm{IN}} & =\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
|  |  | XM |  |  | $\mathrm{loL}=30 \mathrm{~mA}$ |  |  |  |
|  |  | XC, XM |  |  | $\mathrm{IOL}=16 \mathrm{~mA}$ |  |  |  |
| IOH | Output HIGH Current |  |  | 0.25 |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$ |  |
| ICCH | Power Supply Current |  |  | 41 |  | mA | $\mathrm{V}_{\mathrm{IN}}=$ Open | $V_{c c}=$ Max |
| ICCL |  |  |  | 30 | VIN = Gnd |  |  |  |
| tpLh tphL | Propagation Delay |  |  | $\begin{aligned} & 10 \\ & 30 \end{aligned}$ | ns | Fig. 3-2, 3-5 |  |  |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.
**OC - Open Collector

| ORDERIN | COD | QUAD | 2-INPUT <br> tion 9 | 8 <br> 08 <br> 08 <br> S08 <br> ND GATE |  |  | CONNECTION DIAGRAMS PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE |  | MILITARY GRADE |  | PKG <br> TYPE |  |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |
| Plastic DIP (P) | A | 7408PC, 74H08PC 74S08PC, 74LS08PC |  |  |  | 9A | PINOUT B |
| Ceramic DIP (D) | A | $\begin{array}{\|l\|l\|} 7408 \mathrm{DC} \\ 74 \mathrm{SOBD} \end{array}$ | $\begin{aligned} & \text { 74H08DC } \\ & , 74 \mathrm{LS} 08 \mathrm{DC} \end{aligned}$ | 5408DM, 54H08 54S08DM, 54LS | $\begin{aligned} & \text { JM } \\ & \text { j8DM } \end{aligned}$ | 6A |  |
| Flatpak (F) | A | $\begin{aligned} & \text { 7408FC, 74S08FC } \\ & \text { 74LS08FC } \end{aligned}$ |  | 5408FM, 54S08FM 54LS08FM |  | 31 |  |
|  | B | 74H08FC |  | 54H08FM |  |  |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |  |
| PINS | 54/7 HIG | $\begin{aligned} & 4 \text { (U.L.) } \\ & \text { H/LOW } \end{aligned}$ | 54/74H (U.L.) HIGH/LOW | $\begin{gathered} \text { 54/74S (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$ | 54/74LS (U.L.) HIGH/LOW |  |  |
| Inputs Outputs | $\begin{array}{r} 1.0 / 1.0 \\ 20 / 10 \end{array}$ |  | $\begin{aligned} & 1.25 / 1.25 \\ & 12.5 / 12.5 \end{aligned}$ | $\begin{array}{r} 1.25 / 1.25 \\ 25 / 12.5 \end{array}$ | $\begin{array}{r} 0.5 / 0.25 \\ 10 / 5.0 \\ (2.5) \end{array}$ |  |  |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 | 54/74H | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max | Min Max |  |  |
| ICCH | Power Supply | 21 | 40 | 32 | 4.8 | mA | $\mathrm{V}_{\text {IN }}=$ Open $V_{\text {c }}=\mathrm{Max}$ |
| ICCL | Current | 33 | 64 | 57 | 8.8 |  | $\mathrm{VIN}^{\prime}=$ Gnd |
| tPLH <br> tPhL | Propagation Delay | $\begin{aligned} & 27 \\ & 19 \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{array}{ll} 2.5 & 7.0 \\ 2.5 & 7.5 \end{array}$ | $\begin{aligned} & 13 \\ & 11 \end{aligned}$ | ns | Fig. 3-1, 3-5 |

${ }^{*}$ DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |  |
| IcCH | Power Supply Current |  | 21 |  | 32 |  | 4.8 | mA | $\mathrm{V}_{\text {IN }}=$ Open | $\mathrm{Vcc}=\mathrm{Max}$ |
| IcCL |  |  | 33 |  | 57 |  | 8.8 |  | $\mathrm{V}_{\mathrm{IN}}=$ Gnd |  |
| $\begin{aligned} & \overline{\text { tPLH }} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 32 \\ & 24 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.0 \\ 2.0 \end{array}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | ns | Fig. 3-2, 3-5 |  |

[^6]
# 54/7410 54H/74H10 54S/74S10 54LS/74LS10 <br> TRIPLE 3-INPUT NAND GATE 



ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7410PC, 74H10PC 74S10PC, 74LS10PC |  | 9A |
| Ceramic DIP (D) | A | 7410DC, 74H10DC 74S10DC, 74LS10DC | 5410DM, 54H10DM 54S10DM, 54LS10DM | 6A |
| Flatpak (F) | A | 74S10FC, 74LS10FC | 54S10FM, 54LS10FM | 31 |
|  | B | 7410FC, 74H10FC | 5410FM, 54H10FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | $54 / 74$ (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $12.5 / 12.5$ | $25 / 12.5$ | $10 / 5.0$ |
|  |  |  |  | $(2.5)$ |



DC AND AC CHARATERISTICS: See Section 3*


[^7]

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |  |
| ICCH | Power Supply Current | 1524 |  |  | 30 | $\begin{aligned} & 24 \\ & 42 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 3.6 \\ 6.6 \\ \hline \end{array}$ |  | mA | $\mathrm{V}_{\text {IN }}=$ Open | $\mathrm{Vcc}=\mathrm{Max}$ |
| ICCL |  |  |  |  | 48 |  |  | $\mathrm{V}_{\mathbf{I N}}=$ Gnd |  |  |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 27 \\ & 19 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.5 \\ 2.5 \end{array}$ | $\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$ |  |  |  | $\begin{aligned} & 13 \\ & 11 \end{aligned}$ | ns | Figs. 3-1, 3-5 |  |

${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.

| 54/7412 <br> TRIPLE 3-INPUT NAND GATE (With Open-Collector Output) |  |  |  |  |  | CONNECTION DIAGRAM PINOUT A |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 14 <br> $v_{c c}$ <br> 13 <br> 13 <br> 12 <br> 12 <br> 10 <br> 10 <br> 10 |
| PKGS | PIN OUT | COMMERCIAL GRADE | MILIT | GRADE | PKG <br> TYPE | GND |  |
|  |  | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}= \\ & T_{A}=-5 \end{aligned}$ | $\begin{gathered} \mathrm{V} \pm 10 \%, \\ \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |
| Plastic DIP (P) | A | 7412PC |  |  | 9A |  |  |
| Ceramic DIP (D) | A | 7412DC | 5412DM |  | 6A |  |  |
| $\begin{aligned} & \text { Flatpak } \\ & \text { (F) } \\ & \hline \end{aligned}$ | A | 7412FC | 5412FM |  | 31 |  |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |  |
| PINS | 54/74 (U.L.) HIGH/LOW |  |  |  |  |  |  |
| Inputs Outputs | $\begin{array}{r} 1.0 / 1.0 \\ \mathrm{OC}^{* * / 10} \\ \hline \end{array}$ |  |  |  |  |  |  |
| DC AND AC CHARACTERISTICS: See Section 3* |  |  |  |  |  |  |  |
| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
|  |  |  | Min | Max |  |  |  |  |
| $\begin{aligned} & \hline \mathrm{IcCH} \\ & \mathrm{ICCL} \end{aligned}$ | Power Supply Current |  |  | 6.0 | mA | VIN = Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  |  | 16.5 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay |  |  | $\begin{aligned} & 45 \\ & 15 \end{aligned}$ | ns | Figs. 3-2, 3-4 |  |
| ${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$. -.OC-Open Collector |  |  |  |  |  |  |  |



DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| $\mathrm{V}_{\mathrm{T}+}$ | Positive-going Threshold Voltage | 1.52 .0 | $1.5 \quad 2.0$ | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {T- }}$ | Negative-going Threshold Voltage | 0.61 .1 | 0.61 .1 | V | $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {T+ }}-\mathrm{V}_{\text {T- }}$ | Hysteresis Voltage | 0.4 | 0.4 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| IT+ | Input Current at Positivegoing Threshold | -0.65** | -0.14** | mA | $\mathrm{VCC}_{\text {c }}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}^{+}+$ |
| IT- | Input Current at Negativegoing Threshold | -0.85** | -0.18** | mA | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}}-$ |
| los | Output Short Circuit Current | -18 -55 | -20-100 | mA | $\mathrm{Vcc}=$ Max |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{IcCL} \end{aligned}$ | Power Supply Current | 2332 | 6.0 | mA |  |
|  |  |  | 7.0 |  | VIN = Open |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay | 27 <br> 22 | 22 <br> 27 | ns | Fig. 3-1, 3-15 |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$. **Typical Value

|  | EX <br> COD | $\begin{array}{r} 54 / 741 \\ 54 L S / 74 L \end{array}$ <br> SCHMITT TRIGG <br> E: See Section 9 | 4 S14 GER INV | ERTER |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | PKG <br> TYPE |  |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |  |
| Plastic DIP (P) | A | 7414PC, 74LS14PC |  |  | 9A |  |
| Ceramic <br> DIP (D) | A | 7414DC, 74LS14DC | 5414DM, 54LS14DM |  | 6A |  |
| Flatpak (F) | A | 7414FC, 74LS14FC | 5414FM, 54LS14FM |  | 31 |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |
| PINS |  | 54/74 (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |  |  |  |
| Inputs Outputs |  | $\begin{array}{r} \hline 1.0 / 1.0 \\ 20 / 10 \end{array}$ | $\begin{array}{r} \hline 0.5 / 0.25 \\ 10 / 5.0 \\ (2.5) \end{array}$ |  |  |  |
| DC AND AC CHARACTERISTICS: See Section 3* |  |  |  |  |  |  |
| SYMBOL | PARAMETER |  | 54/74 | 54/74LS | UNITS | CONDITIONS |
|  |  |  | Min Max | Min Max |  |  |
| $V_{T+}$ | Positi <br> Thres | ve-going hold Voltage | $1.5 \quad 2.0$ | $1.5 \quad 2.0$ | V | $\mathrm{Vcc}_{\mathrm{cc}}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {T- }}$ | Nega <br> Thres | ive-going hold Voltage | 0.61 .1 | 0.61 .1 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {T }}-\mathrm{V}_{\text {T- }}$ | Hyste | resis Voltage | 0.4 | 0.4 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| IT+ | Input going | Current at PositiveThreshold | -0.43** | -0.14** | mA | $\mathrm{V}_{\text {cc }}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}^{+}+$ |
| IT- | Input going | Current at NegativeThreshold | -0.56 ** | -0.18 ** | mA | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {T- }}$ |
| ILL | Input | LOW Current | -1.2 | -0.4 | mA | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ |
| los | Outp | t Short Circuit Current | $\begin{array}{lll}-18 & -55\end{array}$ | -20-100 | mA | $\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ |
| IcCH | Powe | r Supply Current | 36 | 16 | mA |  $V_{\text {IN }}=$ Gnd $V_{c c}=M a x$ |
| ICCL |  |  | 60 | 21 |  | $\mathrm{VIN}=$ Open |
| $\overline{\mathrm{tPLH}}$ tPHL | Prop | agation Delay | 22 22 | $\begin{aligned} & 22 \\ & 22 \end{aligned}$ | ns | Figs. 3-1, 3-15 |

[^8]

DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |  |
| IcCH | Power Supply |  | 19.5 |  | 3.6 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Open | Vcc $=$ Max |
| IcCL | Current |  | 42 |  | 6.6 |  | $\mathrm{V}_{\mathrm{IN}}=$ Gnd |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | 8.5 9.0 |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | ns | Figs. 3-2, 3-5 |  |

${ }^{*} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}$. "-OC-Open Collector


DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XC | $\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.4 \end{aligned}$ |  | V | $\mathrm{loL}=40 \mathrm{~mA}$ | $\begin{aligned} V_{C C} & =M i n \\ V_{I N} & =V_{I H} \end{aligned}$ |
|  |  | XM |  |  | $\mathrm{IOL}=30 \mathrm{~mA}$ |  |  |  |
|  |  | XC, XM |  |  | $\mathrm{IOL}=16 \mathrm{~mA}$ |  |  |  |
| IOH | Output HIGH Current |  |  | 0.25 |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  |
| IcCH | Power Supply Current |  |  | 48 |  | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
| IcCL |  |  |  | 51 | $\mathrm{V}_{1}$ = Open |  |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay |  |  | 15 23 | ns | Figs. 3-2, 3-4 |  |  |

[^9]

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XC | $\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.4 \end{aligned}$ |  | V | $\mathrm{lOL}=40 \mathrm{~mA}$ | $\begin{aligned} V_{C C} & =M i n \\ V_{I N} & =V_{I L} \end{aligned}$ |
|  |  | XM |  |  | $\mathrm{IOL}=30 \mathrm{~mA}$ |  |  |  |
|  |  | XC, XM |  |  | $\mathrm{IOL}=16 \mathrm{~mA}$ |  |  |  |
| IOH | Output HIGH Current |  |  | 0.25 |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$ |  |
| ICCH | Power Supply Current |  |  | 41 |  | mA | $\mathrm{V}_{\text {IN }}=$ Open | $\mathrm{Vcc}=\mathrm{Max}$ |
| lcCL |  |  |  | 30 | $\mathrm{VIN}_{\text {I }}=$ Gnd |  |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{tLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | Propagation Delay |  |  | 10 30 | ns | Figs. 3-2, 3-5 |  |  |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V}$.
**OC-Open Collector


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

DC AND AC CHARACTERISTICS: See Section $3^{*}$

${ }^{*} D C$ limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$.
$54 / 7421$
$54 \mathrm{H} / 74 \mathrm{H} 21$
$54 \mathrm{LS} / 74 \mathrm{LS} 21$
DUAL 4-INPUT POSITIVE AND GATE


ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V C c=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 7421PC, 74H21PC } \\ & \text { 74LS21PC } \end{aligned}$ |  | 9A |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 7421DC, 74H21DC } \\ & \text { 74LS21DC } \end{aligned}$ | $\begin{aligned} & \text { 5421DM, 54H21DM } \\ & \text { 54LS21DM } \end{aligned}$ | 6A |
| Flatpak (F) | A | 7421FC, 74LS21FC | 5421FM, 54LS21FM | 31 |
|  | B | 74H21FC | 54H21FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $12.5 / 12.5$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |



PINOUT B

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 | 54/74H | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| ICCH | Power Supply Current | 10 | 20 | 2.4 | mA | $\mathrm{V}_{\text {IN }}=$ Open $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| ICCL |  | 16 | 32 | 4.4 |  | $\mathrm{VCC}=\mathrm{Max}$ |
| tPLH <br> tPHL | Propagation Delay | 27 19 | 12 12 | 15 15 | ns | Figs. 3-1, 3-5 |

- DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74H | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max | Min Max |  |  |
| Icch | Power Supply | 4.0 | 5.0 | 6.6 | 0.8 | mA |  |
| ICCL | Current | 11 | 20 | 18 | 2.2 |  | V IN $=$ Open |
| tPLH | Propagation Delay | $45$ | $15$ | $\begin{array}{\|ll\|} \hline 2.0 & 7.5 \\ 2.0 & 7.0 \end{array}$ | $22$ | ns | Figs. 3-2, 3-4 |

[^10]**OC-Open Collector


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Expander Inputs Open

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| ICCH Iccl | Power Supply Current |  |  | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  | 19 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Inputs

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| $\mathrm{Vbe}(\mathrm{Q})$ | Base-Emitter Voltage of Output Transistor Q | XM | $\begin{aligned} & 1.1 \\ & 1.0 \\ & \hline \end{aligned}$ |  | V | $\mathrm{I}_{1}=0.41 \mathrm{~mA}$ | $\begin{array}{r} \text { lOL }=16 \mathrm{~mA} \\ \mathrm{R}_{1}=0 \Omega \end{array}$ |
|  |  | XC |  |  | $\mathrm{H}_{1}=0.62 \mathrm{~mA}$ |  |  |  |
| VOH | Output HIGH Voltage | XM | 2.4 |  |  | V | $\begin{aligned} & \mathrm{I}_{1}=0.15 \mathrm{~mA} \\ & \mathrm{I}_{2}=-0.15 \mathrm{~mA} \end{aligned}$ | $\mathrm{IOH}=-400 \mu \mathrm{~A}$ |
|  |  | XC | 2.4 |  | $\begin{aligned} & \mathrm{I}_{1}=0.27 \mathrm{~mA} \\ & \mathrm{I}_{2}=-0.27 \mathrm{~mA} \end{aligned}$ |  |  |  |
| Vol | Output LOW Voltage | XM |  | 0.4 | V | $\begin{aligned} & \mathrm{I}_{1}=0.3 \mathrm{~mA} \\ & \mathrm{R}_{1}=138 \Omega \end{aligned}$ | $\mathrm{loL}=16 \mathrm{~mA}$ |  |
|  |  | XC |  | 0.4 |  | $\begin{aligned} & I_{1}=0.43 \mathrm{~mA} \\ & R_{1}=130 \Omega \end{aligned}$ |  |  |
| Ix | Expander Current | XM |  | -2.9 | V | $\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{loL}=16 \mathrm{~mA}$ |  |  |
|  |  | XC |  | -3.1 |  |  |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $\mathbf{5 4 / 7 4}$ | UNITS | CONDITIONS |
| :--- | :--- | ---: | :---: | :--- |
|  |  |  |  |  |
| tPLH | Propagation Delay | 22 | ns | Expander Pins Open <br> tPHL |


| 54/7425 <br> DUAL 4-INPUT NOR GATE <br> (With Strobe) <br> ORDERING CODE: See Section 9 |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | COMMERCIAL GRADE | MILITARY GRADE |  |  |
| PKGS |  | $\begin{aligned} & \text { Vcc }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 7425PC |  | 9A |  |
| Ceramic DIP (D) | A | 7425DC | 5425DM | 6A |  |
| Flatpak (F) | A | 7425FC | 5425FM | 31 |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |
| PINS |  | $\begin{aligned} & \text { 54/74 (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |  |  |  |
| Data Inputs Strobe Inputs Outputs |  | $\begin{array}{r} 1.0 / 1.0 \\ 4.0 / 4.0 \\ 20 / 10 \end{array}$ |  |  |  |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \\ & \hline \end{aligned}$ | Power Supply Current |  | 16 | mA | $\mathrm{V}_{\text {IN }}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  | 19 |  | $\mathrm{V}_{\mathrm{IN}}=$ Open |  |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay |  | $\begin{aligned} & 22 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{C C}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| Іон | Output HIGH Current | 50 | 50 | $\mu \mathrm{A}$ | $\mathrm{VOH}=12 \mathrm{~V}$ | $\begin{aligned} & \mathrm{V} C \mathrm{C}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
|  |  | 1000 | 1000 |  | $\mathrm{V}_{\text {OH }}=15 \mathrm{~V}$ |  |
| IcCH | Power Supply Current | 8.0 | 1.6 | mA | V IN $=$ Gnd | $\mathrm{Vcc}=$ Max |
| IcCL |  | 22 | 4.4 |  | VIN = Open |  |
| tPLH tPHL | Propagation Delay | 24 17 | 22 18 | ns | Figs. 3-2, 3-4 |  |

[^11]
## 54/7427 <br> 54LS/74LS27 <br> TRIPLE 3-INPUT NOR GATE

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \pm 5 \%$, <br> $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
| Plastic <br> DIP (P) | A | $7427 \mathrm{PC}, 74 \mathrm{LS} 27 \mathrm{PC}$ |  | 9 A |
| Ceramic <br> DIP (D) | A | $7427 \mathrm{DC}, 74 \mathrm{LS} 27 \mathrm{DC}$ | $5427 \mathrm{DM}, 54 \mathrm{LS} 27 \mathrm{DM}$ | 6 A |
| Flatpak <br> (F) | A | $7427 \mathrm{FC}, 74 \mathrm{LS} 27 \mathrm{FC}$ | $5427 \mathrm{FM}, 54 \mathrm{LS} 27 \mathrm{FM}$ | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $10 / 5.0$ |
|  |  | $(2.5)$ |



DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| ICCH | Power Supply Current | 16 | 4.0 | mA | $\mathrm{VIN}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
| ICCL |  | 26 | 6.8 |  | VIN $=$ Open |  |
| tpLH <br> tpHL | Propagation Delay | 15 11 | $\begin{aligned} & 13 \\ & 13 \end{aligned}$ | ns | Figs. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |  |
| ICCH | Power Supply Current | 3.6 | mA | $\mathrm{V}_{\text {IN }}=$ Gnd | Vcc $=$ Max |
| lccl |  | 13.8 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tpHL } \end{aligned}$ | Propagation Delay | 20 20 | ns | Figs. 3-1, 3-4 |  |

${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74H | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max | Min Max |  |  |
| IcCH | Power Supply | 2.0 | 4.2 | 5.0 | 0.5 | mA | $\mathrm{V}_{\mathrm{IN}}=\mathrm{Gnd} \mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| IcCL | Current | 6.0 | 10 | 10 | 1.1 |  | $\mathrm{V}_{\mathrm{IN}}=$ Open |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay | $\begin{aligned} & 22 \\ & 15 \end{aligned}$ | $\begin{aligned} & 10 \\ & 12 \end{aligned}$ | $\begin{array}{\|ll\|} \hline 2.0 & 6.0 \\ 2.0 & 7.0 \end{array}$ | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section 3 for U.L. definitions

| SYMBOL | PARAMETER | 54/74 | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| IcCH | Power Supply Current | 22 | 32 | 6.2 | mA | $\mathrm{V}_{\text {IN }}=$ Open $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| IcCL |  | 38 | 68 | 9.8 |  | VIN $=$ Gnd |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay | $\begin{aligned} & 15 \\ & 22 \end{aligned}$ | $\begin{array}{\|ll} 2.0 & 7.0 \\ 2.0 & 7.0 \end{array}$ | 15 15 | ns | Figs. 3-1, 3-5 |

${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.

| ORDERIN | CODI | 54LS/74L <br> UAD 2-INPUT NO (With Open-Collecto <br> See Section 9 | S33 <br> OR BUFFER <br> or Outputs) |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG | $1{ }^{14} \mathrm{vcc}$ |
| PKGS | OUT | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | $3-8<$ |
| Plastic DIP (P) | A | 74LS33PC |  | 9A |  |
| Ceramic DIP (D) | A | 74LS33DC | 54LS33DM | 6A |  |
| Flatpak (F) | A | 74LS33FC | 54LS33FM | 31 |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |
| PINS | 54/74LS (U.L.) HIGH/LOW |  |  |  |  |
| Inputs Outputs | $\begin{array}{r} 0.5 / 0.25 \\ \text { OC**/15 } \\ \quad(7.5) \end{array}$ |  |  |  |  |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XM, XC |  | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ | V | $\mathrm{IOL}=12 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Min}$ |
|  |  | xc |  |  |  | $\mathrm{loL}=24 \mathrm{~mA}$ | $\mathrm{Vin}=2.0 \mathrm{~V}$ |
| IOH | Output HIGH Current |  |  | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ | $=\mathrm{Min},$ |
| IcCH | Power Supply Current |  |  | 3.6 | mA | $\mathrm{V}_{\text {IN }}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
| IcCL |  |  |  | 13.8 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |
| $\begin{aligned} & \overline{\text { tPLH }} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  |  | 22 22 | ns | Figs. 3-2, 3-4 |  |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=+5.0 \mathrm{~V}$.
**OC - Open Collector

# 54/7437 54LS/74LS37 QUAD 2-INPUT NAND BUFFER 

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7437PC, 74LS37PC |  | 9A |
| Ceramic DIP (D) | A | 7437DC, 74LS37DC | 5437DM, 54LS37DM | 6A |
| Flatpak (F) | A | 7437FC, 74LS37FC | 5437FM, 54LS37FM | 31 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| Outputs | $30 / 30$ | $30 / 15$ |
|  |  | $(7.5)$ |

DC AND AC CHARACTERISTICS: See Section 3*

${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Vol | Output LOW Voltage | 0.4 |  | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{VCC}=\mathrm{Min}, \\ & \mathrm{COL}=48 \mathrm{~mA} \end{aligned}$ |
| IOH | Output HIGH Current |  | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{O H}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| IcCH | nt | 8.5 | 2.0 | mA | VIN $=$ Gnd $\quad \quad \mathrm{VCC}=\mathrm{Max}$ |
|  |  | 54 | 12 |  | VIN $=$ Open |
| tple tpHL | Propagation Delay | 22 18 | 22 22 | ns | Figs. 3-2, 3-4 |

[^12] *OC-Open Collector



ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7440PC, 74H40PC 74S40PC, 74LS40PC |  | 9A |
| Ceramic DIP (D) | A | 7440DC, 74H40DC 74S40DC, 74LS40DC | 5440DM, 54H40DM 54S40DM, 54LS40DM | 6A |
| $\begin{gathered} \text { Flatpak } \\ \text { (F) } \end{gathered}$ | A | 74S40FC, 74LS40FC | 54S40FM, 54LS40FM | 31 |
|  | B | 7440FC, 74H40FC | 5440FM, 54H40FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $2.5 / 2.5$ | $2.5 / 2.5$ | $0.5 / 0.25$ |
| Outputs | $30 / 30$ | $37.5 / 37.5$ | $70 / 37.5$ | $30 / 15$ |
|  |  |  |  | $(7.5)$ |

CONNECTION DIAGRAMS


PINOUT B


DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XC | $\begin{aligned} & -18 \\ & -20 \end{aligned}$ | -70 -70 | $\begin{aligned} & -40 \\ & -40 \end{aligned}$ | $\begin{aligned} & -125 \\ & -125 \end{aligned}$ | $\begin{aligned} & -50 \\ & -50 \end{aligned}$ | $\begin{aligned} & -225 \\ & -225 \end{aligned}$ |  |  | mA | $\begin{aligned} & \text { VCC }=M a x, \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$ |
| Icch | Power Supply Current |  |  | $\begin{array}{r} 8.0 \\ 27 \end{array}$ |  | $\begin{aligned} & 16 \\ & 40 \end{aligned}$ |  | 18 44 |  | 1.0 6.0 | mA | $\frac{\mathrm{V}_{\text {IN }}=\text { Gnd }}{} \mathrm{V}_{\text {IN }}=$ Open $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  |  | 22 15 |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

# 54/7442A • 54LS/74LS42 54/7443A • 54/7444A <br> <br> 1-of-10 DECODER 

 <br> <br> 1-of-10 DECODER}

DESCRIPTION-The ' 42 , ' 43 and '44 are multipurpose decoders. For any valid input combination, one and only one output is LOW. For all invalid input combinations all outputs are HIGH. The ' 42 accepts four BCD inputs and provides ten mutually exclusive outputs; the ' 43 accepts four lines of EXCESS-3 encoded data and provides ten mutually exclusive outputs; the '44 accepts four lines of EXCESS-3 Gray encoded data and provides ten mutually exclusive totem pole outputs.

- MULTIFUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- fULLY TTL AND CMOS COMPATIBLE


ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7442APC, 74LS42PC 7443APC, 7444APC |  | 9B |
| Ceramic DIP (D) | A | 7442ADC, 74LS42DC 7443ADC, 7444ADC | 5442ADM, 54LS42DM 5443ADM, 5444ADM | 6B |
| Flatpak (F) | A | 7442AFC, 74LS42FC 7443AFC, 7444AFC | 5442AFM, 54LS42FM 5443AFM, 5444AFM | 4L |

LOGIC SYMBOL


$$
\begin{aligned}
& \mathrm{VCc}=\operatorname{Pin} 16 \\
& \text { GND }=\operatorname{Pin} 8
\end{aligned}
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs ('42) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{~A}_{0}-\mathrm{A}_{3}$ | EXCESS-3 Inputs ('43) | $1.0 / 1.0$ |  |
| $\mathrm{~A}_{0}-\mathrm{A}_{3}$ | $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{0}$ | EXCESS-3 GRAY Inputs ('44) | $1.0 / 1.0$ |
|  | Decimal Outputs (Active LOW) | $20 / 10$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - Logically, the ' 42 , ' 43 and '44 differ only in their input codes. The ' 42 accepts the standard 8421 BCD code. The ' 43 accepts the EXCESS- 3 decimal code while the ' 44 accepts the EXCESS-3 Gray code. For any input combination within the assigned ten states, only one output is LOW, as shown in the Truth Table. For all invalid input combinations, all ten outputs are HIGH.

The ' 42 can be used as a conventional 1-of-8 decoder by treating the most significant input A3 as an active LOW Enable. Similarly, it can be used as an 8 -output demultiplexer by using $A_{3}$ as the data input.

## TRUTH TABLE

| '42A •'LS42 <br> BCD INPUT |  |  |  | '43A <br> EXCESS-3 INPUT |  |  |  | $\begin{gathered} \text { '44A } \\ \text { EXCESS-3 } \\ \text { GRAY INPUT } \end{gathered}$ |  |  |  | ALL TYPES DECIMAL OUTPUT |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ |  | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | $A_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ | Ōo | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\bar{O}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ |
| L | L | L | L | L | L | H | H | L | L | H | L | L | H | H | H | H | H | H | H | H | H |
| L | L | L | H | L | H | L | L | L | H | H | L | H | L | H | H | H | H | H | H | H | H |
| L | L | H | L | L | H | L | H | L | H | H | H | H | H | L | H | H | H | H | H | H | H |
| L | L | H | H | L | H | H | L | L | H | L | H | H | H | H | L | H | H | H | H | H | H |
| L | H | L | L | L | H | H | H | L | H | L | L | H | H | H | H | L | H | H | H | H | H |
| L | H | L | H | H | L | L | L | H | H | L | L | H | H | H | H | H | L | H | H | H | H |
| L | H | H | L | H | L | L | H | H | H | L | H | H | H | H | H | H | H | L | H | H | H |
| L | H | H | H | H | L | H | L | H | H | H | H | H | H | H | H | H | H | H | L | H | H |
| H | L | L | L | H | L | H | H | H | H | H | L | H | H | H | H | H | H | H | H | L | H |
| H | L | L | H | H | H | L | L | H | L | H | L | H | H | H | H | H | H | H | H | H | L |
| H | L | H | L | H | H | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | H | H | H | H | H | L | H | L | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | L | L | H | H | H | H | H | L | L | L | H | H | H | H | H | H | H | H | H | H |
| H | H | L | H | L | L | L | L | L | L | L | L | H | H | H | H | H | H | H | H | H | H |
| H | H | H | L | L | L | L | H | L | L | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | H | H | L | L | H | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAMS

'42A •'LS42

'43A

'44A


| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM |  | -55 |  |  | mA | $V_{c c}=$ Max |
|  |  | XC | -18 | -55 | -20 | -100 |  |  |
| Icc | Power Supply Current | XM |  | 41 |  | 12 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC |  | 56 |  | 12 |  |  |

AC CHARACTERISTICS: $\mathrm{VCC}_{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tPhL | Propagation Delay $A_{n}$ to $\bar{O}_{n}, 2$ Levels | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 18 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay <br> $A_{n}$ to $\bar{O}_{n}, 3$ Levels | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | 20 | ns | Figs. 3-1, 3-20 |

CONNECTION DIAGRAM PINOUT A

## 54/7445 <br> 1-OF-10 DECODER/DRIVER <br> (With Open-Collector Outputs)

DESCRIPTION - The ' 45 decoder/drivers are designed to accept BCD inputs and provide appropriate outputs to drive 10-digit numerical displays. All outputs remain OFF for all invalid binary input conditions. These devices are designed for use as indicator/relay drivers or as open-collector logic circuit drivers. Each of the high breakdown ( 30 V ) output transistors will sink up to 80 mA of current.

- OPEN-COLLECTOR OUTPUTS
- 80 mA CURRENT SINKING
- 30 V GUARANTEED BREAKDOWN

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7445PC |  | 9B |
| Ceramic DIP (D) | A | 7445DC | 5445DM | 7B |
| Flatpak (F) | A | 7445FC | 5445FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | $1.0 / 1.0$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | Outputs (Active LOW) | $\mathrm{OC}^{*} / 12.5$ |

*OC-Open Collector
LOGIC SYMBOL


TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $A_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\overline{\mathrm{O}}_{4}$ | $\overline{\mathrm{O}}_{5}$ | $\overline{\mathrm{O}}_{6}$ | $\bar{O}_{7}$ | $\overline{\mathrm{O}}_{8}$ | $\overline{\mathrm{O}} 9$ |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H |
| H | L | L | L | H | L | H | H | H | H | H | H | H | H |
| L | H | L | L | H | H | L | H | H | H | H | H | H | H |
| H | H | L | L | H | H | H | L | H | H | H | H | H | H |
| L | L | H | L | H | H | H | H | L | H | H | H | H | H |
| H | L | H | L | H | H | H | H | H | L | H | H | H | H |
| L | H | H | L | H | H | H | H | H | H | L | H | H | H |
| H | H | H | L | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | L | H |
| H | L | L | H | H | H | H | H | H | H | H | H | H | L |
| L | H | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | L | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | H | H | H | H | H | H | H | H | H | H | H | H | H |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| VOL | Output LOW Voltage |  |  | 0.9 | V | $\mathrm{VCC}=\mathrm{Min}, \mathrm{lOL}=80 \mathrm{~mA}$ |
| IOH | Output HIGH Current |  |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {OH }}=30 \mathrm{~V}$ |
| Icc | Power Supply Current | XC |  |  | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
|  |  | XM |  | 62 |  |  |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | ns | Figs. 3-2, 3-20 |

## 54/7446A • 54/7447A 54LS/74LS47 BCD TO 7-SEGMENT DECODER/DRIVER

DESCRIPTION - The '46A, '47A and 'LS47 accept four lines of BCD (8421) input data, generate their complements internally and decode the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink $40 \mathrm{~mA}(24 \mathrm{~mA}$ for the 'LS47) in the ON (LOW) state and withstand 15 V ( 30 V for the '46A) in the OFF (HIGH) state with a maximum leakage current of $250 \mu \mathrm{~A}$. Auxiliary inputs provide blanking, lamp test and cascadable zero-suppression fuctions. Also see the 'LS247 data sheet.

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | 1.0/1.0 | 0.5/0.25 |
| RBI | Ripple Blanking Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| LT | Lamp Test Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{BI} / \text { RBO }}$ | Blanking Input (Active LOW) or | -/2.5 | -/0.75 |
|  | Ripple Blanking Output (Active LOW) | 5.0/5.0 | $\begin{array}{r} 1.25 / 2.0 \\ (1.0) \end{array}$ |
| $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | Segment Outputs (Active LOW) | OC*/25 | $\begin{array}{r} \mathrm{OC}^{*} / 15 \\ (7.5) \end{array}$ |
| *oc-Open Collector |  |  |  |

FUNCTIONAL DESCRIPTION - The '46A, '47A and 'LS47 decode the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the $\overline{\mathrm{RBI}}$ blanks the display and causes a multidigit display. For example, by grounding the $\overline{\mathrm{RBI}}$ of the highest order decoder and connecting its $\overline{\mathrm{BI} / \mathrm{RBO}}$ to $\overline{\mathrm{RBI}}$ of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding $\overline{\mathrm{RBI}}$ of the lowest order decoder and connecting its $\overline{\mathrm{BI} / R B O}$ to $\overline{\mathrm{RBI}}$ of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, ie: by driving $\overline{\text { RBI }}$ of an intermediate decoder from an OR gate whose inputs are $\overline{\mathrm{BI} / \mathrm{RBO}}$ of the next highest and lowest order decoders. $\overline{\mathrm{BI} / \mathrm{RBO}}$ also serves as an unconditional blanking input. The internal NAND gate that generates the $\overline{\mathrm{RBO}}$ signal has a resistive pull-up, as opposed to a totem pole, and thus $\overline{\mathrm{BI} / R B O}$ can be forced LOW by enternal means, using wired-collector logic. A LOW signal thus applied to $\overline{\mathrm{BI} / R B O}$ turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to $\overline{\mathrm{LT}}$ turns on all segment outputs, provided that $\overline{\mathrm{BI} / \mathrm{RBO}}$ is not forced LOW.

## LOGIC DIAGRAM



## NUMERICAL DESIGNATIONS - RESULTANT DISPLAYS



## TRUTH TABLE



NOTES:
(1) $\overline{\mathrm{BI} / \mathrm{RBO}}$ is wire-AND logic serving as blanking input $(\overline{\mathrm{BI})}$ and/or ripple-blanking output $(\overline{\mathrm{RBO}})$. The blanking out $(\overline{\mathrm{BI}})$ must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input ( $\overline{\mathrm{RBI})}$ must be open or at a HIGH level if blanking or a decimal 0 is not desired. $X=$ input may be HIGH or LOW.
(2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.
(3) When ripple-blanking input ( $\overline{\mathrm{RBI})}$ and inputs $A_{0}, A_{1}, A_{2}$ and $A_{3}$ are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output ( $\overline{\mathrm{RBO}})$ goes to a LOW level (response condition).
(4) When the blanking input/ripple-blanking output $(\overline{\mathrm{BI} / \mathrm{RBO}})$ is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

| SYMBOL | PARAMETER |  | 54/74 | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min Max |  |  |  |
| IOH | Output HIGH Current OFF State at $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | '46 | 250 |  | $\mu$ | $\mathrm{VOH}=30 \mathrm{~V}$ | M |
|  |  | '47 | 250 | 250 |  | $\mathrm{V}_{\text {OH }}=15 \mathrm{~V}$ |  |
| los | Output Short Circuit Current at $\overline{\mathrm{BI} / \mathrm{RBO}}$ |  | -4.0 | -0.3 -2.0 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |  |
| Icc | Power Supply Current | XM | $\begin{array}{r} 85 \\ 103 \end{array}$ | $\begin{aligned} & 13 \\ & 13 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=120 \Omega \end{aligned}$ | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=665 \Omega \end{aligned}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{a}-\bar{g}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$ | ns | Figs. 3-2, 3-20 |
| $\begin{aligned} & \text { tpLL } \\ & \text { tpH } \end{aligned}$ | Propagation Delay $\overline{\text { RBI }}$ to $\bar{a}-\bar{f}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-2,3-4 \\ & \begin{array}{l} L T \end{array}=H I G H, A_{0}-A_{3}=L O W \end{aligned}$ |

CONNECTION DIAGRAM PINOUT A

## 54/7448 54LS/74LS48 BCD TO 7-SEGMENT DECODER

DESCRIPTION - The '48 translates four lines of BCD (8421) input data into the 7 -segment numeral code and provides seven corresponding outputs having pull-up resistors, as opposed to totem pole pull-ups. These outputs can serve as logic signals, with a HIGH output corresponding to a lighted lamp segment, or can provide a 1.3 mA base current to npn lamp driver transistors. Auxiliary inputs provide lamp test, blanking and cascadable zerosuppression functions.

The ' 48 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. For a detailed description of the blanking, lamp test and zero-suppression functions refer to the '46A data sheet, but note that the segment output states of the ' 48 are the logical inverse of those of the '46A. Also see the 'LS248 data sheet.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V \mathrm{CC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7448PC, 74LS48PC |  | 9B |
| Ceramic DIP (D) | A | 7448DC, 74LS48DC | 5448DM, 54LS48DM | 7B |
| Flatpak <br> (F) | A | 7448FC, 74LS48FC | 5448FM, 54LS48FM | 4L |



LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $A_{0}-A_{3}$ | BCD Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{RBI}}$ | Ripple Blanking Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| LT | Lamp Test Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\text { BI/RBO }}$ | Blanking Input (Active LOW) or | -/2.5 | -/0.75 |
|  | Ripple Blanking Output (Active LOW) | 5.0/5.0 | $\begin{array}{r} 1.25 / 2.0 \\ (1.0) \end{array}$ |
| $a-g$ | Segment Outputs (Active HIGH) | 10/4.0 | $\begin{array}{r} 2.5 / 3.75 \\ (1.25) \end{array}$ |



TRUTH TABLE


NOTES:
(1) $\overline{\mathrm{BI} / \mathrm{RBO}}$ is wired-AND logic serving as blanking input $(\overline{\mathrm{BI}})$ and/or ripple-blanking output ( $\overline{\mathrm{RBO}})$. The blanking out ( $\overline{\mathrm{BI} I}$ ) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input ( $\overline{\mathrm{RBI}}$ ) must be open or at a HIGH level if blanking of a decimal 0 is not desired. $X=$ input may be HIGH or LOW.
(2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.
(3) When ripple-blanking input ( $\overline{\mathrm{RBI}}$ ) and inputs $A_{0}, A_{1}, A_{2}$, and $A_{3}$ are at LOW level, with the lamp test input at HIGH level, all segment outputs go to a LOW level and the ripple-blanking output (RBO) goes to a LOW level (response condition).
(4) When the blanking input/ripple-blanking output $(\overline{\mathrm{BI} / \mathrm{RBO}})$ is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a HIGH level.

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| Іон | Output HIGH Current at a - ${ }^{\text {g }}$ |  | -1.3 |  | -1.3 |  | mA | $\mathrm{Vcc}=\mathrm{Min}, \mathrm{V}$ OUt $=0.85 \mathrm{~V}$ |
| los | Output Short Circuit Current at $\overline{\mathrm{BI} / \mathrm{RBO}}$ |  |  | -4.0 | -0.3 | -2.0 | mA | $\mathrm{VCC}=\mathrm{Max}, \mathrm{VOUt}=0 \mathrm{~V}$ |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & 76 \\ & 90 \end{aligned}$ |  | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ | mA | $\begin{aligned} & \text { Vcc }=\text { Max } \\ & \text { All Inputs }=4.5 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $a-g$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\overline{\mathrm{RBI}} \text { to } \mathrm{a}-\mathrm{f}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | ns | Figs. 3-1, 3-5 $\overline{\mathrm{LT}}=\mathrm{HIGH}, \mathrm{~A}_{0}-\mathrm{A}_{3}=\mathrm{HIGH}$ |

## 54/7449 54LS/74LS49 BCD TO 7-SEGMENT DECODER

DESCRIPTION - The '49 translates four lines of BCD (8421) input data into the 7 -segment numeral code as shown in the Truth Table. It has open-collector outputs and is logically the 14 -pin version of the ' 48 , without the lamp test and ripple blanking features. Also see the 'LS249 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS49PC |  | 9A |
| Ceramic DIP (D) | A | 74LS49DC | 54LS49DM | 6A |
| Flatpak (F) | A | 7449FC, 74LS49FC | 5449FM, 54LS49FM | 31 |

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| A0 $-\mathrm{A}_{3}$ | BCD Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| BI | Blanking Input (Active LOW) | 1.01 .0 | 0.50 .02 |
| $\mathrm{a}-\mathrm{g}$ | Segment Outputs (Active HIGH) | $\mathrm{OC}^{*} / 6.25$ | $\mathrm{OC}^{*} / 5.0$ |

* OC - Open Collector

NUMERICAL DESIGNATIONS - RESULTANT DISPLAYS


## TRUTH TABLE

| DECIMAL OR FUNCTION | INPUTS |  |  |  |  | OUTPUTS |  |  |  |  |  |  | NOTE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{3}$ | $A_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ | $\overline{\text { BI }}$ | a | b | c | d | e | f | g |  |
| 0 | L | L | L | L | H | H | H | H | H | H | H | L | 1 |
| 1 | L | L | L | H | H | L | H | H | L | L | L | L |  |
| 2 | L | L | H | L | H | H | H | L | H | H | L | H |  |
| 3 | L | L | H | H | H | H | H | H | H | L | L | H |  |
| 4 | L | H | L | L | H | L | H | H | L | L | H | H |  |
| 5 | L | H | L | H | H | H | L | H | H | L | H | H |  |
| 6 | L | H | H | L | H | L | L | H | H | H | H | H |  |
| 7 | L | H | H | H | H | H | H | H | L | L | L | L |  |
| 8 | H | L | L | L | H | H | H | H | H | H | H | H |  |
| 9 | H | L | L | H | H | H | H | H | L | L | H | H |  |
| 10 | H | L | H | L | H | L | L | L | H | H | L | H |  |
| 11 | H | L | H | H | H | L | L | H | H | L | L | H |  |
| 12 | H | H | L | L | H | L | H | L | L | L | H | H |  |
| 13 | H | H | L | H | H | H | L | L | H | L | H | H |  |
| 14 | H | H | H | L | H | L | L | L | H | H | H | H |  |
| 15 | H | H | H | H | H | L | L | L | L | L | L | L |  |
| BI | x | x | x | x | L | L | L | L | L | L | L | L | 2 |

NOTES:
(1) The blanking input must be open or held at a HIGH level when output functions 0 through 15 are desired. (2) When a LOW level is applied to the blanking input all segment outputs go to a LOW level regardless of the state of any other input condition. $X=$ input may be HIGH or LOW.
$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

LOGIC DIAGRAM


| SYMBOL | PARAMETER |  | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min Max |  |  |
| VIL | Input LOW Voltage | XM | 0.6 | 0.7 | V |  |
|  |  | XC | 0.8 | 0.8 |  |  |
| IOH | Output HIGH Current |  | 250 | 250 | $\mu \mathrm{A}$ | $\mathrm{VCC}=\mathrm{Min}, \mathrm{V}_{\text {OH }}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | XM | 47 | 15 | mA | $\mathrm{V}_{C C}=$ Max, Inputs $=4.5 \mathrm{~V}$ |
|  |  | XC | 56 | 15 |  | Vcc $=$ Max, Inputs $=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=665 \Omega \end{aligned}$ | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \end{aligned}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHLL } \end{aligned}$ | Propagation Delay $A_{n}$ to $a-g$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | ns | Figs. 3-2, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Bi to a-g | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-2, 3-5 } \\ & \mathrm{RL}=6 \mathrm{k} \Omega \text { for 'LS49 } \end{aligned}$ |


dC ChARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay | $\begin{aligned} & 22 \\ & 15 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | ns | Expander Pins Open Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{gathered} 11^{*} \\ 7.4^{*} \end{gathered}$ | ns | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{CX}_{\mathrm{X}}=15 \mathrm{pF} \end{aligned}$ |

*Typical Value
ADDED PROPAGATION DELAY TIME vs EXPANDER-NODE CAPACITANCE



# 54/7451 <br> 54H/74H51 54S/74S51 <br> 54LS/74LS51 <br> DUAL 2-WIDE, 2-INPUT AOI GATE <br> DUAL 2-WIDE, 2-INPUT/3-INPUT AOI GATE ('LS51) 



PINOUT B


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: | :---: |
| Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $12.5 / 12.5$ | $25 / 12.5$ | 105.0 |
|  |  |  |  | $(2.5)$ |

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 7451PC, } 74 \mathrm{H} 51 P \mathrm{C} \\ & \text { 74S51PC } \end{aligned}$ |  | 9A |
|  | B | 74LS51PC |  |  |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 7451DC, 74H51DC } \\ & \text { 74S51DC } \end{aligned}$ | 5451DM, 54H51DM 54S51DM | 6A |
|  | B | 74LS51DC | 54LS51DM |  |
| Flatpak <br> (F) | A | 74S51FC | 54S51FM | 31 |
|  | B | 74LS51FC | 54LS51FM |  |
|  | C | 7451FC, 74H51FC | 5451FM, 54H51FM |  |

DC AND AC CHARACTERISTICS: See Section 3*


[^13]
dC Characteristics over operating temperature range: Expander Pins Open

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| Icch | Power Supply Current |  | 31 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Open | $\mathrm{Vcc}_{\text {c }}=\mathrm{Max}$ |
| Iccl |  |  | 24 |  | VIN $=$ Gnd |  |

dC ChARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins

| SYMBOL | PARAMETER |  | 54/74H |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Voh | Output HIGH Voltage | XM | $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$ |  | V | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | $\begin{array}{r} V_{c c}=\mathrm{Min}, \\ \mathrm{VX}=1.0 \mathrm{~V} \\ \mathrm{IOH}=-500 \mu \mathrm{~A} \end{array}$ |
|  |  | XC |  |  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |
| Vol | Output LOW Voltage | XM | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ |  | V | $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ | $\begin{array}{r} \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Min}, \\ \mathrm{INX}=-300 \mu \mathrm{~A} \\ \mathrm{IOL}=20 \mathrm{~mA} \end{array}$ |
|  |  | XC |  |  | $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ |  |  |  |
| linx | Expander-Node Input Current | XM | $\begin{aligned} & -2.7 \\ & -2.9 \end{aligned}$ | $\begin{array}{r} -4.5 \\ -5.35 \end{array}$ |  | mA | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | $\begin{array}{r} \mathrm{VCC}=\mathrm{Min}, \\ \mathrm{VX}=1.0 \mathrm{~V}, \\ \mathrm{IOH}=-500 \mu \mathrm{~A} \end{array}$ |
|  |  | XC |  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  |  |

AC CHARACTERISITCS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ( See Section 3 for waveforms and load configurations)

| SYMB OL | PARAMETER | 54/74H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |
| tpLH tphL | Propagation Delay | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Expander Pins Open Figs. 3-1, 3-5 |
| $\overline{\text { tPLH }}$ tPHL | Propagation Delay | $\begin{gathered} \hline 14.8^{*} \\ 9.8^{*} \end{gathered}$ | ns | $C \mathrm{x}=15 \mathrm{pF}$ |

-Typical Value
added propagation delay time vs expander-node capacitance



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| tpli tpHL | Propagation Delay | $\begin{aligned} & 22 \\ & 15 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | ns | Expander Pins Open Figs. 3-1, 3-4 |
| tpLH tPHL | Propagation Delay |  | $\begin{gathered} \hline 11.4^{*} \\ 7.4^{*} \end{gathered}$ | ns | $C \mathrm{X}=15 \mathrm{pF}$ |

*Typical Value


DC AND AC CHARACTERISTICS: See Section 3*

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

## 54H/74H55 54LS/74LS55

EXPANDABLE 4-INPUT AOI GATE ('H55) 2-WIDE, 4-INPUT AOI GATE ('LS55)

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74H55PC |  | 9A |
|  | B | 74LS55PC |  |  |
| CeramicDIP (D) | A | 74H55DC | 54H55DM | 6A |
|  | B | 74LS55DC | 54LS55DM |  |
| $\begin{aligned} & \text { Flatpak } \\ & \text { (F) } \end{aligned}$ | B | 74LS55FC | 54LS55FM | 31 |
|  | C | 74H55FC | 54H55FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74H (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $12.5 / 12.5$ | 105.0 |




PINOUT C


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74H | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| $\begin{array}{\|l\|l\|l\|} \hline \text { tPLH } \\ \hline \text { tPHL } \end{array}$ | Propagation Delay | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Expander Pins Open Figs. 3-1, 3-4 |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay | $11.4^{*}$ $7.7^{*}$ |  | ns | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}(\text { Gnd to } \overline{\mathrm{X}}) \\ & \mathrm{C}_{\mathrm{X}}=15 \mathrm{pF} \end{aligned}$ |

*Typical Value


DC AND AC CHARACTERISTICS: See Section 31 (Cont'd)

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS ${ }^{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| Ioff | Output OFF Current | $\begin{aligned} & 150 \\ & 270 \end{aligned}$ |  | $\mu \mathrm{A}$ | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{1}=4.5 \mathrm{~V}, \\ & \mathrm{R}=1.2 \mathrm{k} \Omega \end{aligned}$ |
|  |  |  |  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |
| loff | Output OFF Current |  | 320 | $\mu \mathrm{A}$ | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | $\begin{aligned} \mathrm{V} \mathrm{cc} & =\mathrm{Min} \\ \mathrm{~V} \mathrm{IN} & =0.8 \mathrm{~V} \\ \mathrm{~V}_{1} & =4.5 \mathrm{~V} \\ \mathrm{R} & =575 \Omega \end{aligned}$ |
|  |  |  | $570$ |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |
| Ion | Output ON Current | $\left\lvert\, \begin{array}{r} -0.3 \\ -0.43 \end{array}\right.$ | $\begin{array}{r} -0.47 \\ -0.6 \end{array}$ | mA | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | $\begin{aligned} \mathrm{VCC} & =\mathrm{Min}, \\ \mathrm{VIN} & =2.0 \mathrm{~V}, \\ \mathrm{~V}_{1} & =1.0 \mathrm{~V} \end{aligned}$ |
|  |  |  |  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |
| IcC(OfF) | Power Supply Current | 4.0 |  | mA | VIN $=$ Open | $\begin{aligned} & V_{c c}=M a x, \\ & V_{1}=0.85 \mathrm{~V} \end{aligned}$ |
| ICC(ON) |  | 2.5 | 3.5 |  | $\mathrm{V}_{\mathrm{IN}}=$ Gnd |  |
| $\overline{\mathrm{tpLL}}$ tPHL | Propagation Delay | 30 20 |  | ns | Figs. 3-1, 3-4 |  |

OUTPUT CAPACITANCE: Vcc and Ground Terminals Open

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| C $\overline{\text { I }}$ | Effective Capacitance of Output Transistor Q1 |  | 1.33 | pF | $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |

[^14]| 54H/74H61 <br> TRIPLE 3-INPUT EXPANDE |  |  |  |  | CONNECTION DIAGRAMS PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74H61PC |  | 9A | PINOUT B |
| Ceramic DIP (D) | A | 74H61DC | 54H61DM | 6A | $1 \square{ }^{14}$ |
| Flatpak (F) | B | 74H61FC | 54H61FM | 31 |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |
| PINS | $\begin{gathered} \text { 54/74H (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$ |  |  |  |  |
| Inputs Outputs | $\begin{array}{r} 1.25 / 1.25 \\ * / * \end{array}$ |  |  |  |  |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |  |
| Von | Output ON Voltage | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | V | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{ION}=4.5 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ \mathrm{~V}_{I H}=2.0 \mathrm{~V} \end{gathered}$ |
|  |  |  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \mathrm{ION}=5.35 \mathrm{~mA} \end{aligned}$ |  |
| loff | Output OFF Current | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{OFF}}=2.2 \mathrm{~V} \end{aligned}$ |  |
| ICC(ON) Icc(OFF) | Power Supply Current | 16 | mA | $\mathrm{V}_{\text {IN }}=$ Open | $\mathrm{V}_{\text {cc }}=$ Max |
|  |  | 7.0 |  | VIN $=$ Gnd |  |

OUTPUT CAPACITANCE: VCc and Ground Terminals Open

| SYMBOL | PARAMETER | 54/74H |  | UNITS |
| :--- | :--- | ---: | :---: | :---: |

[^15]|  |  |  |  |  | CONNECTION DIAGRAMS PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ORDERIN | $3-2-2$ CODI | 54H/74H -3-INPUT AND-O <br> E: See Section 9 | $162$ <br> R EXPANDER |  |  |
|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PK | $10$ |
| PKGS | OUT | $\begin{aligned} & \mathrm{VCC}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | TYPE |  |
| Plastic DIP (P) | A | 74H62PC |  | 9A | PINOUT B |
| Ceramic DIP (D) | A | 74H62DC | 54H62DM | 6A |  |
| Flatpak <br> (F) | B | 74H62FC | 54H62FM | 31 | $2,40$ |
| INPUT LO | DING | /FAN-OUT: See Section 3 | for U.L. definitions |  | $5 \cdot 5$ |
| PINS |  | $\begin{gathered} \text { 54/74H (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$ |  |  |  |
| Inputs Outputs 1 |  | $\begin{array}{r} 1.25 / 1.25 \\ \text { Note } 2 \end{array}$ |  |  |  |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H | UNITS | CONDITIONS ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |  |
| Von | Output ON Voltage | 0.4 0.4 | V | $\begin{aligned} & \mathrm{T}=-55^{\circ} \mathrm{C} \\ & \mathrm{ION}=5.85 \mathrm{~mA} \\ & \hline \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \mathrm{ION}=6.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} \mathrm{V}_{\mathrm{cc}} & =\mathrm{Min}, \\ \mathrm{~V}_{\mathrm{IN}} & =2.0 \mathrm{~V}, \\ \mathrm{~V}_{1} & =1.0 \mathrm{~V} \end{aligned}$ |
| Von | Output ON Voltage | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | V | $\begin{aligned} & T_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{ION}=7.85 \mathrm{~mA} \\ & \hline \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \mathrm{ION}^{2}=7.4 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} \mathrm{V}_{\mathrm{cc}} & =\mathrm{Max}, \\ \mathrm{~V}_{1 \mathrm{~N}} & =2.0 \mathrm{~V}, \\ \mathrm{~V}_{1} & =0.6 \mathrm{~V} \end{aligned}$ |
| loff | Output OFF Current | $\begin{aligned} & 320 \\ & 570 \end{aligned}$ | $\mu \mathrm{A}$ | $T_{A}=-55^{\circ} \mathrm{C}$ $T_{A}=0^{\circ} \mathrm{C}$ | $\begin{aligned} \mathrm{V}_{\mathrm{cc}} & =\mathrm{Min}, \\ \mathrm{~V}_{\mathrm{IN}} & =0.8 \mathrm{~V}, \\ \mathrm{~V}_{1} & =4.5 \mathrm{~V}, \\ \mathrm{R} & =575 \Omega \end{aligned}$ |
| Ion | Output ON Current | $\begin{aligned} & -470 \\ & -600 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$ | $\begin{array}{rl} \mathrm{VCC}_{C C} & \mathrm{Min}, \\ \mathrm{~V}_{\mathrm{IN}} & =2.0 \mathrm{~V}, \\ \mathrm{~V}_{1} & =1.0 \mathrm{~V} \end{array}$ |
| Icc(ON) Icc(OFF) | Power Supply Current | $\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$ | mA | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\text { Open } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{Gnd} \end{aligned}$ | $\begin{aligned} & V c c=M a x, \\ & V_{1}=0.85 V \end{aligned}$ |
| 1. A maximu <br> 2. Expander <br> 3. $\mathrm{V}_{1}$ is appli | of one expander may be connec utputs <br> to x output terminal during test | dable AND-OR-Invert |  |  |  |

OUTPUT CAPACITANCE: Vcc and Ground Terminals Open

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| C $\bar{X}$ | Effective Capacitance of Output Transistor Q1 |  | 1.3* | pF | $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |

*Typical Value

## 54S/74S64

## 4-2-3-2-INPUT AND-OR-INVERT GATE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74S64PC |  | 9A |
| Ceramic DIP (D) | A | 74S64DC | 54S64DM | 6A |
| Flatpak (F) | A | 74S64FC | 54S64FM | 31 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

| PINS | 54/74S (U.L.) <br> HIGH/LOW |
| :--- | :---: |
| Inputs | $1.25 / 1.25$ |
| Outputs | $25 / 12.5$ |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74S |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| ICCH | Power Supply Current |  | 12.5 | mA | $\mathrm{V}_{\text {IN }}=$ Gnd | $\mathrm{Vcc}=\mathrm{Max}$ |
| ICCL |  |  | 16 |  | ** |  |
| $\begin{array}{\|l\|l\|} \hline \text { tpLL } \\ \text { tphe } \end{array}$ | Propagation Delay | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$ | ns | Figs. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.
**ICCL is measured with all inputs of one gate open and remaining inputs grounded.

## 54S/74S65 <br> 4-2-3-2-INPUT AND-OR-INVERT GATE (With Open-Collector Output)

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74S65PC |  | 9A |
| Ceramic DIP (D) | A | 74S65DC | 54S65DM | 6A |
| Flatpak (F) | A | 74S65FC | 54S65FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74S (U.L.) <br> HIGH/LOW |
| :--- | :---: |
| Inputs | $1.25 / 1.25$ |
| Outputs | OC $1 / 12.5$ |

DC AND AC CHARACTERISTICS: See Section 32

| SYMBOL | PARAMETER | 54/74S |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |  |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{IcCL} \end{aligned}$ | Power Supply Current |  | 11 | mA | $\mathrm{VIN}=0 \mathrm{~V}$ | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  | 16 |  | Note 3 |  |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$ | ns | Figs. 3-2, 3-4 |  |

1OC - Open Collector
${ }^{2} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=+5.0 \mathrm{~V}$.
3 ICCL is measured with all inputs of one gate open and remaining inputs grounded.

CONNECTION DIAGRAMS PINOUT A

## 54/7470

## JK EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The '70 is a gated input edge-triggered JK flip-flop offering Direct Clear and Set inputs, and complementary Q and $\overline{\mathrm{Q}}$ outputs. Information at the J and K inputs is tranferred to the outputs on the positive edge of the clock pulse. Direct-coupled clock triggering occurs at a specified voltage level of the clock pulse. When the clock input threshold voltage has been passed, the gate inputs are locked out. These flip-flops are designed for medium to high speed applications and offer a significant saving in system power dissipation and package count where input gating is required.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear or Set function can only occur when clock input is LOW Simultaneous LOW on $\bar{C}_{D}$ and $\bar{S}_{D}$ is indeterminate
$J=J_{1} \bullet J_{2} \bullet J_{3}$
$K=K_{1} \cdot K_{2} \cdot \bar{K}_{3}$
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+1=$ Bit time after clock pulse.
If inputs $\bar{J}_{3}$ or $\bar{K}_{3}$ are not used
they must be grounded.
H = HIGH Voltage Level
L = LOW Voltage Level


PINOUT B


LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 14$ (4)
GND $=\operatorname{Pin} 7$ (11)

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\left.\begin{array}{l} \mathrm{J}_{1}, \mathrm{~J}_{2}, \bar{J}_{3} \\ \mathrm{~K}_{1}, \mathrm{~K}_{2}, \overline{\mathrm{~K}_{3}} \end{array}\right\}$ | Data Inputs | 1.0/1.0 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 |
| $\overline{\mathrm{C}}^{\text {D }}$ | Direct Clear Input (Active LOW) | 2.0/2.0 |
| $\bar{S}_{\text {S }}$ | Direct Set Input (Active LOW) | 2.0/2.0 |
| Q, $\overline{\mathrm{Q}}$ | Outputs | 20/10 |



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 | UNITS | CONDITIONS |
| :--- | :--- | :---: | :---: | :---: |
|  |  |  |  |  |
| ICC | Power Supply Current | 26 | mA | $\mathrm{~V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | DESCRIPTION |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 20 |  | MHz | Fig. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay CP to Q or $\overline{\mathrm{Q}}$ |  | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLL } \\ & \text { tple } \end{aligned}$ | Propagation Delay $\bar{S}_{D}$ or $\bar{C}_{D}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| ts (H) | Setup Time HIGH, $\mathrm{J}_{n}$ or $\mathrm{K}_{\mathrm{n}}$ to CP | 20 |  | ns | Fig. 3-6 |
| th (H) | Hold Time HIGH, $\mathrm{J}_{\mathrm{n}}$ or $\mathrm{K}_{\mathrm{n}}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| ts (L) | Setup Time LOW, $J_{n}$ or $K_{n}$ to CP | 20 |  | ns | Fig. 3-6 |
| th (L) | Hold Time LOW, $\mathrm{J}_{\mathrm{n}}$ or $\mathrm{K}_{\mathrm{n}}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| $\begin{aligned} & \mathrm{tw}_{w}(\mathrm{H}) \\ & t_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | ns | Fig. 3-8 |
| tw (L) | $\bar{S}_{\text {S }}$ or $\bar{C}_{D}$ Pulse Width LOW | 25 |  | ns | Fig. 3-10 |

CONNECTION DIAGRAMS PINOUT A


PINOUT B


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14(4)$
GND $=\operatorname{Pin} 7$ (11)

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\left.\begin{array}{l} J_{1 A}, J_{1 B}, J_{2 A}, J_{2 B} \\ K_{1 A}, K_{1 B}, K_{2 A}, K_{2 B} \end{array}\right\}$ | Data Inputs | 1.25/1.25 |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | 2.5/2.5 |
| $\bar{S}_{\text {S }} \mathrm{D}$ | Direct Set Input (Active LOW) | 3.75/3.75 |
| Q, $\overline{\mathrm{Q}}$ | Outputs | 12.5/12.5 |



## 54/7472 54H/74H72

## JK MASTER/SLAVE FLIP-FLOP <br> (With AND Inputs)

DESCRIPTION - The ' 72 is a high speed JK master/slave flip-flop with AND gate inputs. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from AND gate inputs to master; 3) disable AND gate inputs; 4) transfer information from master to slave. The logic state of J and K inputs must not be allowed to change when the clock pulse is in a HIGH state.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :---: | :---: | :---: |
| $@ \mathrm{t}_{\mathrm{n}}$ |  | $@ \mathrm{t}_{\mathrm{n}}+1$ |
| J | K | Q |
| L | L | $\mathrm{Q}_{\mathrm{n}}$ |
| L | H | L |
| H | L | H |
| H | H | $\mathrm{Q}_{\mathrm{n}}$ |

$J=\left(J_{1 A} \cdot J_{1 B}\right)+\left(J_{2 A} \cdot J_{2 B}\right)$ $K=\left(K_{1 A} \cdot K_{1 B}\right)+\left(K_{2 A} \cdot K_{2 B}\right)$
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}+1}=$ Bit time after clock pulse.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7472PC, 74H72PC |  | 9A |
| Ceramic DIP (D) | A | 7472DC, 74H72DC | 5472DM, 54H72DM | 6A |
| $\begin{aligned} & \text { Flatpak } \\ & \text { (F) } \end{aligned}$ | B | 7472FC, 74H72FC | 5472FM, 54H72FM | 31 |

## CLOCK WAVEFORM



Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{D}$ and $\overline{\mathrm{S}}_{D}$ is indeterminate


PINOUT B


LOGIC SYMBOL

$\mathrm{V}_{\mathrm{cc}}=\operatorname{Pin} 14$ (4)
GND $=\operatorname{Pin} 7(11)$
$N C=\operatorname{Pin} 1(6)$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | $\begin{aligned} & \text { 54/74H (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{J}_{1}-\mathrm{J}_{3}, \mathrm{~K}_{1}-\mathrm{K}_{3}$ | Data Inputs | 1.0/1.0 | 1.25/1.25 |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | 2.0/2.0 | 2.5/2.5 |
| $\overline{\mathrm{C}}^{\text {D }}$ | Direct Clear Input (Active LOW) | 2.0/2.0 | 2.5/2.5 |
| $\bar{S}_{\text {S }}$ | Direct Set Input (Active LOW) | 2.0/2.0 | 2.5/2.5 |
| Q, $\overline{\mathbf{Q}}$ | Outputs | 20/10 | 12.5/12.5 |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 | 54/74H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 20 | 25 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 |  | 54/7 | 4H | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & C_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 15 |  | 25 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ to Q or $\overline{\mathrm{Q}}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 27 \\ & \hline \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tPLH tPHL | Propagation Delay $\bar{S}_{D}$ or $\overline{\mathrm{C}}_{\mathrm{D}}$ to Q or $\overline{\mathrm{Q}}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 0 |  | ns | Fig. 3-18 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 0 |  | ns | Fig. 3-18 |
| $\begin{aligned} & \mathrm{tw}_{w}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | $\overline{\mathrm{CP}}$ Pulse Width | $\begin{aligned} & 20 \\ & 47 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 28 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {( }} \mathrm{L}$ ) | $\bar{S}_{\text {S }}$ or $\bar{C}_{D}$ Pulse Width LOW | 25 |  | 16 |  | ns | Fig. 3-10 |

# 54/7473 <br> 54H/74H73 54LS/74LS73 <br> <br> DUAL JK FLIP-FLOP <br> <br> DUAL JK FLIP-FLOP (With Separate Clears and Clocks) 

DESCRIPTION - The '73 and 'H73 dual JK master/slave flip-flops have a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1 ) isolate slave from master; 2 ) enter information from $J$ and $K$ inputs to master; 3) disable $J$ and $K$ inputs; 4) transfer information from master to slave.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ \mathrm{t}_{\mathrm{n}}$ |  | $@ \mathrm{t}_{\mathrm{n}}+1$ |
| J | K | Q |
| L | L | $\mathrm{Q}_{\mathrm{n}}$ |
| L | H | L |
| H | L | H |
| H | H | $\bar{Q}_{\mathrm{n}}$ |

H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level $\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse. $\mathrm{t}_{\mathrm{n}}+1=$ Bit time after clock pulse.

## CLOCK WAVEFORM



Asynchronous Input:
LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear is independent of clock

The 'LS73 offers individual J, K, clear, and clock inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the $J$ and $K$ inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7473PC, 74H73PC <br> 74LS73PC |  | 9A |
| Ceramic DIP (D) | A | 7473DC, 74H73DC 74LS73DC | 5473DM, 54H73DM <br> 54LS73DM | 6A |
| Flatpak (F) | A | 7473FC, 74H73FC <br> 74LS73FC | 5473FM, 54H73FM 54LS73FM | 31 |


$V_{c c}=\operatorname{Pin} 4$ GND $=\operatorname{Pin} 11$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74H (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | 2.0/2.0 | 1.25/1.25 | 2.0/0.5 |
| $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs (Active LOW) | 2.0/2.0 | 2.5/2.5 | 1.5/0.5 |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Outputs | 20/10 | 12.5/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

LOGIC DIAGRAMS (one half shown)
'73, 'H73


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 40 |  | 50 |  | 8.0 | mA | $\begin{aligned} & V_{C C}=M a x, \\ & V_{C P}=0 V \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 15 |  | 25 |  | 30 |  | MHz | Fig. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\overline{C P}_{n}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{Vcc}=+5.0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH $\mathrm{J}_{\mathrm{n}}$ or $\mathrm{K}_{\mathrm{n}}$ to $\mathrm{CP}_{\mathrm{n}}$ | 0 |  | 0 |  | 20 |  | ns | Fig. 3-18 <br> ('73, 'H73) <br> Fig. 3-7 ('LS73) |
| th (H) | Hold Time HIGH $J_{n}$ or $K_{n}$ to $C_{n}$ | 0 |  | 0 |  | 0 |  | ns |  |
| ts (L) | Setup Time LOW $\mathrm{J}_{\mathrm{n}}$ or $\mathrm{K}_{\mathrm{n}}$ to $\mathrm{CP}_{\mathrm{n}}$ | 0 |  | 0 |  | 20 |  | ns |  |
| th (L) | Hold Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | $\overline{C P P}_{n}$ Pulse Width | $\begin{aligned} & 20 \\ & 47 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 16 \\ & \hline \end{aligned}$ |  | $\begin{array}{r} 13.5 \\ 20 \\ \hline \end{array}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {( }} \mathrm{L}$ ) | $\bar{C}_{\text {Dn }}$ Pulse Width LOW | 25 |  | 16 |  | 25 |  | ns | Figs. 3-1, 3-10 |

## 54/7474 54H/74H74 54S/74S74 54LS/74LS74 <br> DUAL D-TYPE POSITIVE EDGETRIGGERED FLIP-FLOP

DESCRIPTION - The '74 devices are dual D-type flip-flops with Direct Clear and Set inputs and complementary ( $\mathrm{Q}, \overline{\mathrm{Q}}$ ) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

TRUTH TABLE
(Each Half)

| INPUT | OUTPUTS |  |
| :--- | :---: | :---: |
| $@ t_{n}$ | $@ \mathrm{t}_{\mathrm{n}}+1$ |  |
| D | Q | $\overline{\mathrm{Q}}$ |
| L | L | H |
| H | H | L |

Asynchronous Inputs:
LOW input to $\overline{\mathrm{S}} \mathrm{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both $Q$ and $\bar{Q}$ HIGH
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$t_{n}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}+1}=$ Bit time after clock pulse.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7474PC, 74H74PC <br> 74S74PC, 74LS74PC |  | 9A |
| Ceramic DIP (D) | A | 7474DC, 74H74DC <br> 74S74DC, 74LS74DC | 5474DM, 54H74DM <br> 54S74DM, 54LS74DM | 6A |
| Flatpak (F) | A | 74S74FC, 74LS74FC | 54S74FM, 54LS74FM | 31 |
|  | B | 7474FC, 74H74FC | 5474FM, 54H74FM |  |

CONNECTION DIAGRAMS PINOUT A



LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14(4)$ GND $=\operatorname{Pin} 7(11)$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74H (U.L.) <br> HIGH/LOW | $54 / 74 \mathrm{~S}$ (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{1}, \mathrm{D}_{2}$ | $1.0 / 1.0$ | $1.25 / 1.25$ | $1.25 / 1.25$ | $0.5 / 0.25$ |  |
| $\mathrm{CP}_{1}, \mathrm{CP}_{2}$ | Data Inputs <br> Clock Pulse Inputs <br> (Active Rising Edge) | $2.0 / 2.0$ | $2.5 / 2.5$ | $2.5 / 2.5$ | $1.0 / 0.5$ |
| $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs <br> (Active LOW) | $3.0 / 2.0$ | $3.75 / 2.5$ | $3.75 / 3.75$ | $1.5 / 0.75$ |
| $\overline{\mathrm{~S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$ | Direct Set Inputs <br> (Active LOW) <br> Outputs | $2.0 / 1.0$ | $2.5 / 1.25$ | $2.5 / 2.5$ | $1.0 / 0.5$ |
| $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$ | $20 / 10$ | $12.5 / 12.5$ | $25 / 12.5$ | $10 / 5.0$ <br> $(2.5)$ |  |

LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current | $\frac{X M}{X C}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 42 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$ | mA | $\begin{aligned} & V_{C C}=M a x, \\ & V C P=0 V \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{RL}=280 \Omega \end{aligned}$ |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=280 \Omega \end{aligned}$ |  | $C \mathrm{~L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 15 |  | 35 |  | 75 |  | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ |  | $\begin{array}{r} 9.0 \\ 11 \end{array}$ |  | $\begin{aligned} & 25 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$ |  | $\begin{array}{r} 6.0 \\ 13.5 \\ \hline \end{array}$ |  | $\begin{aligned} & 15 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & \hline 6.0 \\ & 8.0 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 24 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \leq 0.8 \vee \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| ts (H) | Setup Time HIGH $\mathrm{D}_{\mathrm{n}}$ to CP n | 20 |  | 10 |  | 3.0 |  | 10 |  | ns | Fig. 3-6 |
| th (H) | Hold Time HIGH <br> $D_{n}$ to $C P_{n}$ | 5.0 |  | 0 |  | 0 |  | 5.0 |  | ns |  |
| ts (L) | $\begin{array}{\|l} \text { Setup Time LOW } \\ D_{n} \text { to } C P_{n} \\ \hline \end{array}$ | 20 |  | 15 |  | 3.0 |  | 20 |  | ns | Fig. 3-6 |
| th (L) | Hold Time LOW $D_{n} \text { to } C P_{n}$ | 5.0 |  | 0 |  | 0 |  | 5.0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CPn Pulse Width | $\begin{aligned} & 30 \\ & 37 \end{aligned}$ |  | $\begin{array}{r} 15 \\ 13.5 \end{array}$ |  | $\begin{aligned} & 6.0 \\ & 7.3 \end{aligned}$ |  | $\begin{array}{r} 18 \\ 15.5 \end{array}$ |  | ns | Fig. 3-8 |
| tw (L) | $\bar{C}_{D n}$ or $\bar{S}_{D n}$ Pulse Width LOW | 30 |  | 25 |  | 7.0 |  | 15 |  | ns | Fig. 3-10 |

## 54/7475 <br> 4-BIT BISTABLE LATCH

DESCRIPTION - The '75 latch is used as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the $Q$ output when the Enable is HIGH and the Q output will follow the data input as long as the Enable remains HIGH. When the Enable goes LOW, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the Enable is permitted to go HIGH.

The' 75 features complementary $Q$ and $\bar{Q}$ output from a 4-bit latch and is available in 16-pin packages. For higher component density applications, the '77 4-bit latch is available in the 14-pin package with $\overline{\mathrm{Q}}$ outputs omitted.

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $2.0 / 2.0$ |
| $\mathrm{E}_{1,2}$ | Enable Input, Latches 1, 2 | $4.0 / 4.0$ |
| $\mathrm{E}_{2}, 3$ | Enable Input, Latches 3, 4 | $4.0 / 4.0$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{4}$ | Latch Outputs | 1010 |
| $\mathrm{Q}_{1}-\mathrm{Q}_{4}$ | Complementary Latch Outputs. | $10 / 10$ |



AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{RL}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay D to Q |  | $\begin{aligned} & 30 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay D to $\bar{Q}$ |  | $\begin{aligned} & 40 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphe } \end{aligned}$ | Propagation Delay E to $\mathrm{Q}, \overline{\mathrm{Q}}$ |  | $\begin{aligned} & 30 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-8 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| ts (H) | Setup Time HIGH, D to E | 20 |  | ns | Fig. 3-14 |
| $\mathrm{th}^{\text {( }} \mathrm{H}$ ) | Hold Time HIGH, D to E | 0 |  | ns | Fig. 3-14 |
| $\mathrm{ts}_{\text {s }}(\mathrm{L})$ | Setup Time LOW, D to E | 20 |  | ns | Fig. 3-14 |
| $\mathrm{th}_{\text {h }}(\mathrm{L})$ | Hold Time LOW, D to E | 0 |  | ns | Fig. 3-14 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | E Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |

# 54/7476 54H/74H76 54LS/74LS76 DUAL JK FLIP-FLOP (With Separate Sets, Clears and Clocks) 

DESCRIPTION - The '76 and 'H76 are dual JK master/slave flip-flops with separate Direct Set, Direct Clear and Clock Pulse inputs for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1 ) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and Kinputs; 4) transfer information from master to slave.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :---: | :---: | :--- |
| $@ \mathrm{t}_{\mathrm{n}}$ |  | $@ \mathrm{t}_{\mathrm{n}}+1$ |
| J | K | Q |
| L | L | $\mathrm{Q}_{\mathrm{n}}$ |
| L | H | L |
| H | L | $\mathrm{H}^{2}$ |
| H | H | $\bar{Q}_{\mathrm{n}}$ |

H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$t_{n}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+\mathbf{1}=$ Bit time after clock pulse.

CLOCK WAVEFORM


Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\bar{C}_{D}$ and $\bar{S}_{D}$ makes both Q and $\overline{\mathrm{Q}} \mathrm{HIGH}$

The 'LS76 is a dual JK, negative edge-triggered flip-flop also offering individual Direct Set, Direct Clear and Clock Pulse inputs. When the Clock Pulse input is HIGH, the JK inputs are enabled and data is accepted. This data will be transferred to the outputs according to the Truth Table on the HIGH-toLOW clock transitions.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Vcc }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7476PC, 74H76PC <br> 74LS76PC |  | 9B |
| Ceramic DIP (D) | A | 7476DC, 74H76DC 74LS76DC | 5476DM, 54H76DM 54LS76DM | 6B |
| Flatpak <br> (F) | A | 7476FC, 74H76FC <br> 74LS76FC | 5476FM, 54H76FM 54LS76FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW | $54 / 74 \mathrm{H}$ (U.L.) <br> HIGH/LOW | $54 / 74 \mathrm{LS}$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: | ---: | ---: |
| $J_{1}, J_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{C P}_{1}, \overline{C P}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | $2.0 / 2.0$ | $2.5 / 2.5$ | $2.0 / 0.5$ |
| $\bar{C}_{D}, \bar{C}_{D 2}$ | Direct Clear Inputs (Active LOW) | $2.0 / 2.0$ | $2.5 / 2.5$ | $1.5 / 0.5$ |
| $\bar{S}_{D_{1}}, \bar{S}_{\mathrm{D} 2}$ | Direct Set Inputs (Active LOW) | $2.0 / 2.0$ | $2.5 / 2.5$ | $1.5 / 0.5$ |
| $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$ | Outputs | $20 / 10$ | $12.5 / 12.5$ | $10 / 5.0$ |
|  |  |  |  | (2.5) |

LOGIC DIAGRAMS (one half shown)
'76, 'H76



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 40 |  | 50 |  | 8.0 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \\ & \mathrm{~V} \text { CP }=0 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & C_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C \mathrm{~L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 15 |  | 25 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| tpLh tPHL | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tPHL | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ts (H) | Setup Time HIGH $J_{n}$ or $K_{n}$ to $\overline{\mathrm{CP}}_{\mathrm{n}}$ | 0 |  | 0 |  | 20 |  | ns | Fig. 3-18 <br> ('76, 'H76) <br> Fig. 3-7 <br> ('LS76) |
| th (H) | Hold Time HIGH $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\mathrm{ts}^{\text {( }}$ L) | Setup Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 |  | 0 |  | 20 |  | ns |  |
| th (L) | Hold Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(H) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$ | $\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width | $\begin{aligned} & 20 \\ & 47 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 28 \end{aligned}$ |  | $\begin{array}{\|r} 20 \\ 13.5 \end{array}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ Pulse Width LOW | 25 |  | 16 |  | 25 |  | ns | Fig. 3-10 |

## 54/7477 QUAD D-TYPE LATCH

DESCRIPTION - The ' 77 contains four D-type latches used for temporary storage. Each latch shares an Enable input with one other latch. When the Enable input is HIGH, a latch is transparent, i.e., the Q output follows the D input each time it changes. When the Enable goes LOW, the information(that was present at the $D$ input when the transition occurred) is retained at the $Q$ output. For Truth Table, specifications, and logic diagrams, refer to the '75 data sheet, but note that $\overline{\mathrm{Q}}$ is not available on the ' 77 .

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ | $\mathbf{Q}_{\mathbf{1}} \mathrm{O}_{\mathbf{2}} \quad \mathbf{Q}_{3} \quad \mathbf{a}_{4}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | $\begin{array}{rrr} 14 & 13 & 9 \end{array}$ | 8 |
| Plastic DIP (P) | A | 7477PC |  | 9A | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 4 \\ & \mathrm{GND}=\operatorname{Pin} 11 \end{aligned}$ |  |
| Ceramic DIP (D) | A | 7477DC | 5477DM | 6A |  |  |
| Flatpak (F) | A | 7477FC | 5477FM | 31 |  |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $D_{1}-D_{4}$ | Data Inputs | $2.0 / 2.0$ |
| E1,2 $^{\text {Enable Input, Latches 1, 2 }}$ | Enable Input, Latches 3, 4 | $4.0 / 4.0$ |
| Q $_{1}-$ Q $_{4}$ | Latch Outputs | $4.0 / 4.0$ |

# 54H/74H78 <br> 54LS/74LS78 <br> DUAL JK FLIP-FLOP 

(With Common Clear and Clock and Separate Set Inputs)

DESCRIPTION - The 'H78 is a dual JK master/slave flip-flop with separate Direct Set inputs, a common Direct Clear input and a common Clock Pulse input. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows: 1 ) isolate slave from mas2ter; 2) enter information from J and K inputs to master; 3) disable J and K inputs; 4) transfer information from master to slave. The logic state of the J and K inputs must not be allowed to change when the clock pulse is in a HIGH state.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}+1}=$ Bit time after clock pulse.

## CLOCK WAVEFORM



Asynchronous Inputs:
LOW input to $\overline{\text { S }}$ d sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\bar{C}_{D}$ and $\bar{S}_{D}$ is makes both $Q$ and $\bar{Q}$ HIGH

The 'LS78 is a dual JK, negative edge-triggered flip-flop which also offers separate Direct Set inputs, a common Direct Clear and common Clock Pulse input. When the Clock Pulse input is HIGH, the JK inputs are enabled and data is accepted. This data will be transferred to the outputs according to the Truth Table on the HIGH-to-LOW clock transitions.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74H78PC |  | 9A |
|  | B | 74LS78PC |  |  |
| Ceramic DIP (D) | A | 74H78DC | 54H78DM | 6A |
|  | B | 74LS78DC | 54LS78DM |  |
| Flatpak (F) | A | 74H78FC | 54H78FM | 31 |
|  | B | 74LS78FC | 54LS78FM |  |


$V_{C c}=\operatorname{Pin} 14(4)$
GND $=\operatorname{Pin} 7$ (11)

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $J_{1}, J_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | $2.5 / 2.5$ | $4.0 / 1.0$ |
| $\overline{\mathrm{C}}_{\mathrm{D}}$ | $5.0 / 5.0$ | $3.0 / 1.0$ |  |
| $\bar{S}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$ | Direct Clear Input (Active LOW) | $2.5 / 2.5$ | $1.5 / 0.5$ |
| $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$ | Direct Set Inputs (Active LOW) | Outputs | $12.5 / 12.5$ |

## LOGIC DIAGRAM

(one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $54 / 74 \mathrm{H}$ |  | 54/74LS |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | Min $\operatorname{Max}$ | Min $\operatorname{Max}$ |  |  |
| ICC | Power Supply Current |  | 50 | 8.0 | mA |

AC CHARACTERISITICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 | 74H | 54/ | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 21 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 13 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74H |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $t_{s}(H)$ | Setup Time HIGH $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 20 |  | ns | Fig. 3-18 ('H78) <br> Fig. 3-7 ('LS78) |
| th (H) | Hold Time HIGH $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 0 |  | ns |  |
| ts (L) | Setup Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 20 |  | ns |  |
| th (L) | Hold Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 |  | 0 |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | $\overline{\mathrm{CP}}$ Pulse Width | $\begin{aligned} & 12 \\ & 28 \end{aligned}$ |  | $\begin{array}{r} 20 \\ 13.5 \end{array}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {( }}$ L | $\bar{C}_{D}$ or $\bar{S}_{\text {Dn }}$ Pulse Width LOW | 16 |  | 25 |  | ns | Fig. 3-10 |

## 54/7480 GATED FULL ADDER

DESCRIPTION - The '80 is a single-bit, high speed, binary full adder with gated complementary inputs, complementary sum ( $\Sigma$ and $\bar{\Sigma}$ ) outputs and inverted carry output. It is designed for medium and high speed, multiplebit, parallel-add/serial carry applications. The circuit utilizes DTL for the gated inputs and high speed, high fan-out TTL for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high speed, Darlingtion-connected serial-carry circuit minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7480PC |  | 9A |
| Ceramic DIP (D) | A | 7480DC | 5480DM | 6A |
| Flatpak <br> (F) | B | 7480FC | 5480FM | 31 |

CONNECTION DIAGRAMS PINOUT A


PINOUT B


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ | Operand Inputs | $0.4 / 1.0$ |
| $\mathrm{~A}^{*}, \mathrm{~B}^{*}$ | Inverted Operand Inputs | $-/ 1.63$ |
| $\mathrm{Ac}_{\mathrm{C}}, \mathrm{BC}_{\mathrm{C}}$ | Control Inputs | $0.4 / 1.0$ |
| $\mathrm{C}_{n}$ | Carry Input | $5.0 / 5.0$ |
| $\mathrm{C}_{n+1}$ | Inverted Carry Output | $5.0 / 5.0$ |
| $\Sigma, \bar{\Sigma}$ | Sum Outputs | $10 / 10$ |
| $\mathrm{~A}^{*}, \mathrm{~B}^{*}$ | When Used As Outputs | $3.0 / 3.0$ |

TRUTH TABLE

| INPUTS |  |  | OUTPUTS |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $C_{n}$ | $B$ | $A$ | $\overline{C_{n}+1}$ |  | $\bar{\Sigma}$ |
| $L$ | $L$ | $L$ | $H$ | $H$ | $L$ |
| L | L | $H$ | $H$ | $L$ | $H$ |
| $L$ | $H$ | $L$ | $H$ | $L$ | $H$ |
| $L$ | $H$ | $H$ | $L$ | $H$ | $L$ |
| $H$ | $L$ | $L$ | $H$ | $L$ | $H$ |
| $H$ | $L$ | $H$ | $L$ | $H$ | $L$ |
| $H$ | $H$ | $L$ | $L$ | $H$ | $L$ |
| $H$ | $H$ | $H$ | $L$ | $L$ | $H$ |

NOTES:
(1) $A=\overline{A^{*} \bullet A_{C}}, B=\overline{B^{*} \bullet B_{C}}$ where $\overline{A_{1} \bullet A_{2}}$. $B^{*}=B_{1} \cdot B_{2}$
(2) When $A^{*}$ or $B^{*}$ are used as inputs, $A_{1}$ and $A_{2}$ or $B_{1}$ and $B_{2}$ respectively must be connected to Gnd.
(3) When $A_{1}$ and $A_{2}$ or $B_{1}$ and $B_{2}$ are used as inputs, $A^{*}$ or $B^{*}$ respectively must be open or used to perform Dot-OR logic.

LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unlsess otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit Current at $\overline{\mathrm{C}}_{\mathrm{n}}+1$ | XM | -20 | -70 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC | -18 | -70 |  |  |
| los | Output Short Circuit Current at $\mathrm{A}^{*}, \mathrm{~B}^{*}$ | XM | -0.9 | -2.9 |  |  |
|  |  | XC | -0.9 | -2.9 | mA | $\mathrm{VCC}=$ Max |
| Icc | Power Supply Current | XM |  | 31 | mA |  |
|  |  | XC |  | 35 | mA | $V_{C C}=\operatorname{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| tpLH <br> tPHL | Propagation Delay $C_{n}$ to $\bar{C}_{n+1}$ |  | $\begin{aligned} & 17 \\ & 12 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-4 } \\ & R_{L}=780 \Omega \end{aligned}$ |
| tPLH <br> tPHL | Propagation Delay Bc to $\bar{C}_{n+1}$ |  | $\begin{aligned} & 25 \\ & 55 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \mathrm{RL}_{\mathrm{L}}=780 \Omega \end{aligned}$ |
| tpLH <br> tPHL | Propagation Delay Ac to $\Sigma$ |  | $\begin{aligned} & 70 \\ & 80 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-4 } \\ & R_{L}=400 \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Bc to $\bar{\Sigma}$ |  | $\begin{aligned} & 55 \\ & 75 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |
| tpLH <br> tphL | Propagation Delay $A_{1}$ to $A^{*}$ or $B_{1}$ to $B^{*}$ |  | $\begin{aligned} & 65 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-4 $R_{\mathrm{L}}$ not used |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\mathbf{5 4 / 7 4}$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{1}, \mathrm{~B}_{1}$ | Bit 1 Operand Inputs | $4.0 / 4.0$ |
| $\mathrm{~A}_{2}, \mathrm{~B}_{2}$ | Bit 2 Operand Inputs | $1.0 / 1.0$ |
| $\mathrm{C}_{1}$ | Bit 1 Carry Input | $4.0 / 4.0$ |
| $\Sigma_{1}$ | Bit 1 Sum Output | $10 / 10$ |
| $\Sigma_{2}$ | Bit 2 Sum Output | $10 / 10$ |
| $\mathrm{C}_{2}$ | Bit 2 Carry Output | $5.0 / 5.0$ |




DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit | XM | -20 | -55 | mA | $V_{c c}=$ Max |
|  | Current at $\mathrm{\Sigma}_{\mathrm{n}}$ | XC | -18 | -55 |  |  |
| los | Output Short Circuit Current at $\mathrm{C}_{2}$ | XM | -20 | -70 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
|  |  | XC | -18 | -70 |  |  |
| Icc | Power Supply Current | XM |  | 5058 | mA | $\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$; <br> $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{C}_{\mathrm{IN}}=4.5 \mathrm{~V}$; <br> $B_{1}, B_{2}=G n d$ |
|  |  | XC |  |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay $\mathrm{C}_{\mathrm{IN}}$ to $\Sigma_{1}$ |  | $\begin{aligned} & 34 \\ & 40 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{B}_{2}$ to $\mathrm{\Sigma}_{2}$ |  | $\begin{aligned} & 40 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CIN to $\Sigma_{2}$ |  | $\begin{aligned} & 38 \\ & 42 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{ClN}_{1 \mathrm{~N}}$ to $\mathrm{C}_{2}$ |  | $\begin{aligned} & 19 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-5 $R=780 \Omega$ $\mathrm{R}_{\mathrm{L}}=780 \Omega$ |

# 54/7483A 54LS/74LS83A 4-BIT BINARY FULL ADDER (With Fast Carry) 

DESCRIPTION - The '83A high speed 4-bit binary full adders with internal carry lookahead accept two 4-bit binary words ( $A_{0}-A_{3}, B_{0}-B_{3}$ ) and a Carry input ( $C_{0}$ ). They generate the binary Sum outputs ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ) and the Carry output ( $\mathrm{C}_{4}$ ) from the most significant bit. They operate with either HIGH or active LOW operands (positive or negative logic). The '283 is recommended for new designs since it features standard corner power pins.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \vee \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7483APC, 74LS83APC |  | 9B |
| Ceramic DIP (D) | A | 7483ADC, 74LS83ADC | 5483ADM, 54LS83ADM | 6B |
| Flatpak (F) | A | 7483AFC, 74LS83AFC | 5483AFM, 54LS83AFM | 4L |

## LOGIC SYMBOL



$$
V_{C C}=\operatorname{Pin} 5
$$

$$
\text { GND }=\operatorname{Pin} 12
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | A Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $\mathrm{~B}_{0}-\mathrm{B}_{3}$ | B Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $\mathrm{C}_{0}$ | Carry Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{~S}_{0}-\mathrm{S}_{3}$ | Sum Outputs | $20 / 10$ | $10 / 5.0$ |
| $\mathrm{C}_{4}$ | Carry Output |  | $(2.5)$ |
|  |  | $10 / 5.0$ | $10 / 5.0$ |

FUNCTIONAL DESCRIPTION - The'83A adds two 4-bit binary words ( $A$ and B) plus the incoming carry. The binary sum appears on the sum outputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs.

$$
\begin{gathered}
C_{0}+\left(A_{0}+B_{0}\right)+2\left(A_{1}+B_{1}\right)+4\left(A_{2}+B_{2}\right)+8\left(A_{3}+B_{3}\right)=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
\text { Where: }(+)=\text { plus }
\end{gathered}
$$

Due to the symmetry of the binary add function the '83A can be used with either all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that with active HIGH inputs, Carry In can not be left open, but must be held LOW when no carry in is intended.

Interchanging inputs of equal weight does not affect the operation, thus $\mathrm{C}_{0}, \mathrm{~A}_{0}, \mathrm{~B}_{0}$ can be arbitrarily assigned to pins 10, 11, 13, etc.

TRUTH TABLE

|  | INPUTS |  |  |  |  |  |  |  |  | OUTPUTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Co | $\mathrm{A}_{0}$ | $\mathrm{A}_{1}$ | A2 | $\mathrm{A}_{3}$ | $\mathrm{B}_{0}$ | $\mathrm{B}_{1}$ | $\mathrm{B}_{2}$ | B3 | So | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | S3 | $\mathrm{C}_{4}$ |
| Logic Levels | L | L | H | L | H | H | L | L | H | H | H | L | L | H |
| Active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| Active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |

$$
\begin{aligned}
& (10+9=19) \\
& (\text { carry }+5+6=12)
\end{aligned}
$$

$H=H I G H$ Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current at $\mathrm{Sn}_{n}$ | XM |  | -55 |  | -100 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC | -18 | -55 |  | -100 |  |  |
| los | Output Short Circuit Current at $\mathrm{C}_{4}$ | XM |  |  |  |  | mA | $\mathrm{VCC}=\mathrm{Max}$ |
|  |  | XC | -18 | -70 |  | -100 |  |  |
| Icc | Power Supply Current | XM |  | 99 |  | 39 | mA | $\begin{aligned} & \text { VCc = Max } \\ & \text { Inputs = Gnd ('LS83A) } \end{aligned}$ |
|  |  | XC |  | 110 |  | 39 |  | Inputs $=4.5 \mathrm{~V}$ ('83A) |

AC CHARACTERISTICS: $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tphL | Propagation Delay $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ | 21 | 24 | ns | Figs. 3-1, 3-20 |
| tpLH <br> tphL | Propagation Delay $A_{n}$ or $B_{n}$ to $S_{n}$ | 24 24 | 24 24 | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Co to $\mathrm{C}_{4}$ | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-1,3-5 \\ & R_{L}=780 \Omega \text { ('83A) } \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ or $B_{n}$ to $C_{4}$ | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-1,3-5 \\ & R_{L}=780 \Omega \text { ('83A) } \end{aligned}$ |

## 54/7485 <br> 54LS/74LS85 4-BIT MAGNITUDE COMPARATOR

DESCRIPTION - The ' 85 is a high speed, expandable 4-bit magnitude comparator which compares two 4-bit words in any monotonic code (binary, $B C D$ or other) and generates three outputs: A less than B, A greater than B, and $A$ equal to $B$. Three expansion inputs allow serial (ripple) expansion over any word length without external gates:

- EASILY EXPANDABLE
- BINARY OR BCD COMPARISON
- $\mathbf{A}>B, A<B, A=B$ OUTPUTS AVAILABLE

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7485PC, 74LS85PC |  | 9B |
| Ceramic DIP (D) | A | 7485DC, 74LS85DC | 5485DM, 54LS85DM | 6B |
| Flatpak <br> (F) | A | 7485FC, 74LS85FC | 5485FM, 54LS85FM | 4L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Word A Inputs | 3.0/3.0 | 1.5/0.75 |
| $\mathrm{B}_{0}-\mathrm{B}_{3}$ | Word B Inputs | 3.0/3.0 | 1.5/0.75 |
| $\mathrm{I}_{\mathrm{A}}=\mathrm{B}$ | $A=B$ Expansion Input | 3.0/3.0 | 1.5/0.75 |
| $I_{A}<{ }_{B}, I_{A}>{ }_{B}$ | $\mathrm{A}<\mathrm{B}, \mathrm{A}>\mathrm{B}$ Expansion Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{OA}_{A}>{ }_{B}$ | A Greater Than B Output | 10/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{OA}_{\mathrm{A}}<\mathrm{B}$ | A Less Than B Output | 10/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{OA}_{\mathrm{A}}=\mathrm{B}$ | A Equal B Output | 10/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION-The ' 85 compares two 4-bit words (A, B). Each word has four parallel inputs $\left(A_{0}-A_{3}, B_{0}-B_{3}\right)$ of which $A_{3}$ and $B_{3}$ are the most significant. Three expander inputs $\left(I_{A}>B, I_{A}<B, I_{A}=B\right)$ allow cascading without external gates. The three outputs $\left(O_{A}>B, O_{A}<B, O_{A}=B\right)$ have only two gate delays from the expander inputs, thus reducing the delay time when units are cascaded for long words. The $I_{A}=B$ input to the least significant position must be held HIGH for proper compare operation. For serial (ripple) expansion, the $A>$ $B, A<B$ and $A=B$ outputs are connected respectively to the $I_{A}>B, I_{A}<B$, and $I_{A}=B$ inputs of the next most significant comparator.

LOGIC DIAGRAM


TRUTH TABLE

| COMPARING INPUTS |  |  |  | CASCADING INPUTS |  |  | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{3}, \mathrm{~B}_{3}$ | $A_{2}, B_{2}$ | $\mathrm{A}_{1}, \mathrm{~B}_{1}$ | $\mathrm{A}_{0}, \mathrm{~B}_{0}$ | $\mathrm{IA}^{\prime}>\mathrm{B}$ | $I_{A}<{ }_{\text {B }}$ | $I_{A}=B$ | $\mathrm{O}_{\mathrm{A}}>\mathrm{B}$ | $\mathrm{O}_{\mathrm{A}}<\mathrm{B}$ | $\mathrm{O}_{\mathrm{A}}=\mathrm{B}$ |
| $A_{3}>B_{3}$ | X | X | X | X | X | X | H | L | L |
| $\mathrm{A}_{3}<\mathrm{B}_{3}$ | X | X | X | X | X | X | L | H | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}>\mathrm{B}_{2}$ | X | X | X | X | X | H | L | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}<\mathrm{B}_{2}$ | X | X | X | X | X | L | H | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}>B_{1}$ | X | X | X | X | H | L | L |
| $A_{3}=B_{3}$ | $A_{2}=B_{2}$ | $\mathrm{A}_{1}<\mathrm{B}_{1}$ | X | X | X | X | L | H | L |
| $A_{3}=B_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}>B_{0}$ | X | X | X | H | L | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}<B_{0}$ | X | X | X | L | H | L |
| $A_{3}=B_{3}$ | $A_{2}=B_{2}$ | $A_{1}=B_{1}$ | $A_{0}=B_{0}$ | H | L | L | H | L | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}=B_{0}$ | - | H | L | L | H | L |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}=B_{0}$ | X | X | H | L | L | H |
| $\mathrm{A}_{3}=\mathrm{B}_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}=B_{0}$ | L | L | L | H | H | L |
| $A_{3}=B_{3}$ | $\mathrm{A}_{2}=\mathrm{B}_{2}$ | $A_{1}=B_{1}$ | $A_{0}=B_{0}$ | H | H | L | L | 1 | L |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
APPLICATIONS - Figure a shows a high speed method of comparing two 24-bit words with only two levels of device delay. With the technique shown in Figure $b$ six levels of device delay result when comparing two 24-bit words. The parallel technique can be expanded to any number of bits, see Table I.

TABLE I

| WORD LENGTH | NUMBER OF PKGS. |
| :---: | :---: |
| $1-4$ Bits | 1 |
| $5-24$ Bits | $2-6$ |
| $25-120$ Bits | $8-31$ |

NOTE:
The 54LS/74LS85 can be used as a 5 -bit comparator only when the outputs are used to drive the $A_{0}$ - $A_{3}$ and $\mathrm{B}_{0}-\mathrm{B}_{3}$ inputs of another 54LS/74LS85 as shown in Figure 2 in positions \#1, 2, 3, and 4.


Fig. a Comparison of Two 24-Bit Words


$$
\begin{aligned}
& \mathrm{L}=\text { LOW Level } \\
& \mathrm{H}=\mathrm{HIGH} \text { Level }
\end{aligned}
$$

Fig. b Comparison of Two n-Bit Words

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | $54 / 74$ |  | $54 / 74 \mathrm{LS}$ | UNITS |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tplH tpHL | Propagation Delay <br> $A_{n}$ or $B_{n}$ to $O_{A}>B$ or $O_{A}<B$ | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | 36 30 | ns | Figs. 3-1, 3-20 |
| tpLH <br> tpHL | Propagation Delay $A_{n}$ or $B_{n}$ to $O_{A}=B$ | $\begin{aligned} & 35 \\ & 30 \end{aligned}$ | $\begin{aligned} & 45 \\ & 45 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH <br> tphL | Propagation Delay <br> $A_{n} I_{x x}$ to $O_{A}>B$ or $O_{A}<B$ | $\begin{aligned} & 11 \\ & 17 \end{aligned}$ | 22 17 | ns | Figs. 3-1, 3-4 |
| tpLH <br> tphL | Propagation Delay $I_{A}=B \text { to } O_{A}=B$ | 20 17 | 22 17 | ns | Figs. 3-1, 3-5 |


| ORDERIN | UAD <br> COD | 2-INP <br> E: See Sec |  | 6 | GATE |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | COMME | GRADE | MIL | GRADE |  |  |
| PKGS |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \\ & \mathrm{T}_{\mathrm{A}}=0 \end{aligned}$ | +5\%, | $\begin{aligned} & V_{C C} \\ & T_{A}=. \end{aligned}$ | $\begin{aligned} & \mathrm{V} \pm 10 \%, \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | TYPE | $\sqrt[3]{4}$ |
| Plastic DIP (P) | A | $\begin{array}{\|l\|} 7486 \mathrm{PC}, 7 \\ 74 \mathrm{LS} 86 \mathrm{PC} \end{array}$ |  |  |  | 9A |  |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 7486DC, } 7 \\ & \text { 74LS86DC } \end{aligned}$ |  | $\begin{aligned} & \text { 5486DN } \\ & \text { 54LS86 } \end{aligned}$ | 36DM | 6A | $\text { and } 7$ $\square$ |
| Flatpak (F) | A | $\begin{aligned} & \text { 7486FC, } 7 \\ & \text { 74LS86FC } \end{aligned}$ |  | $\begin{aligned} & \text { 5486FM } \\ & 54 \mathrm{LS} 6 \\ & \hline \end{aligned}$ | 6FM | 31 |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |  |
| PINS |  | $\begin{aligned} & \text { 4/74 (U.L.) } \\ & -1 \text { GH/LOW } \end{aligned}$ | $\begin{gathered} \text { 54/74S (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$ |  | $\begin{aligned} & \text { 54/74LS (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |  |  |
| Inputs Outputs |  | $\begin{aligned} & 1.0 / 1.0 \\ & 20 / 0 \end{aligned}$ | $\begin{array}{r} 1.25 / 1.25 \\ 25 / 12.5 \end{array}$ |  | $\begin{array}{r} 1.0 / 0.375 \\ 10 / 5.0 \\ (2.5) \end{array}$ |  |  |

DC AND AC CHARACTERISTICS: See Section $3^{*}$

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.

DESCRIPTION - The ' 87 performs four operations at its outputs, depending on the state of the Select inputs $S_{1}$ and $S_{2}$. The outputs can be forced HIGH or LOW, or can follow the Data inputs in either the True or Complement form. The Select input coding and the output responses are shown in the Truth Table.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
| Plastic <br> DIP (P) | A | 74 H 87 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 74 H 87 DC | 54 H 87 DM | 6 A |
| Flatpak <br> (F) | A | 74 H 87 FC | 54 H 87 FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\mathbf{5 4 / 7 4 H}$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{I}_{1}-\mathrm{I}_{4}$ | Data Inputs | $1.25 / 1.25$ |
| $\mathrm{~S}_{1}, \mathrm{~S}_{2}$ | Select Inputs | $1.25 / 1.25$ |
| $\mathrm{O}_{1}-\mathrm{O}_{4}$ | Outputs | $25 / 12.5$ | <br> \section*{\title{

54H/74H87 <br> \section*{\title{
54H/74H87 4-BIT TRUE/COMPLEMENT, 4-BIT TRUE/COMPLEMENT, ZERO/ONE ELEMENT
}} ZERO/ONE ELEMENT
}}


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

TRUTH TABLE

| SELECT <br> INPUTS | OUTPUTS |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ |
| L | L | $\mathrm{~T}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ |
| L | H | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{4}$ |
| H | L | H | H | H | H |
| H | H | L | L | L | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74H |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$ | Propagation Delay $I_{n}$ to $O_{n}$ |  | $\begin{aligned} & 20 \\ & 19 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to $\mathrm{On}_{\mathrm{n}}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns |  |

CONNECTION DIAGRAM PINOUT A

## 54/7489

54LS/74LS89
64-BIT RANDOM ACCESS MEMORY (With Open-Collector Outputs)

DESCRIPTION - The '89 a high speed, low power 64-bit Random Access Memory organized as a 16 -word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the off (HIGH) state when both the Chip Select ( $\overline{\mathrm{CS}}$ ) and Write Enable ( $\overline{\mathrm{WE}}$ ) are HIGH. For all other combinations of $\overline{\mathrm{CS}}$ and $\overline{\text { WE }}$ the outputs are active, presenting the complement of either the stored data (READ mode) or the information present on the $D$ inputs.

- OPEN-COLLECTOR OUTPUTS FOR WIRED-AND APPLICATIONS
- BUFFERED INPUTS MINIMIZE LOADING
- ADDRESS DECODING ON-CHIP
- DIODE CLAMPED INPUTS MINIMIZE RINGING

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7489PC, 74LS89PC |  | 9B |
| Ceramic DIP (D) | A | 7489DC, 74LS89DC | 5489DM, 54LS89DM | 7B |
| Flatpak <br> (F) | A | 7489FC, 74LS89FC | 5489FM, 54LS89FM | 4L |

LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.013$ |
| CS | Chip Select Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.013$ |
| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.013$ |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $1.0 / 1.0$ | $0.5 / 0.013$ |
| $\overline{\mathrm{O}}_{1}-\overline{\mathrm{O}}_{4}$ | Inverted Data Outputs | $\mathrm{OC}^{*} / 7.5$ | $\mathrm{OC}^{*} / 10$ |
|  |  |  | $(5.0)$ |

[^16]FUNCTION TABLE

| INPUTS |  | OPERATION | CONDITION OF OUTPUTS |
| :--- | :--- | :--- | :--- |
| $\overline{\text { CS }}$ | $\overline{\text { WE }}$ |  |  |
| L | L | Write | Complement of Data Inputs |
| L | H | Read | Complement of Selected Word |
| H | L | Inhibit Entry <br> H | H |
| Hold | Undetermined |  |  |
| (Off) HIGH |  |  |  |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

LOGIC DIAGRAM

dC ChARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| IOH | Output HIGH Current | 20 | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {OH }}=5.5 \mathrm{~V}$ |
| Vol |  | $\begin{array}{r} 0.4 \\ 0.45 \\ \hline \end{array}$ |  | V |  |
|  | Output LOW Voltage ${ }^{\text {a }}$ |  | 0.4 | V |  |
|  | XC |  | 0.5 | $v$ | IOL $=16 \mathrm{~mA} \quad \mathrm{VCC}=\mathrm{Min}$ |
| Icc | Power Supply Current | 105 | 40 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Min}, \overline{\mathrm{CS}}=\mathrm{Gnd}$ |
| Co | Off-State Output Capacitance | 4.0* | 4.0* | pF | $\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \end{aligned}$ | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CS}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 10^{*} \\ & 10^{*} \end{aligned}$ | ns | Figs. 3-2, 3-5 <br> ' 89 has $600 \Omega$ to Gnd |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 37^{*} \\ & 37^{*} \end{aligned}$ | ns | Figs. 3-2, 3-20 ' 89 has $600 \Omega$ to Gnd |
| trec | Recovery Time $\overline{W E}$ to $\bar{O}_{n}$ | 70 | 30* | ns | Figs. 3-2, 3-4, 3-5 ' 89 has $600 \Omega$ to Gnd |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min Max |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to $\overline{W E}$ | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 25^{*} \\ & 25^{*} \end{aligned}$ | ns | Fig. 3-13 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 10^{*} \\ & 10^{*} \end{aligned}$ | ns | Fig. 3-21 |
| $\begin{aligned} & \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW <br> $D_{n}$ or $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 0^{*} \\ & 0^{\star} \\ & \hline \end{aligned}$ | ns | Figs. 3-13, 3-21 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { WE Pulse Width LOW }}$ | 40 |  | 25* | ns | Fig. 3-21 |

*Typical Value

## 54/7490A 54LS/74LS90 DECADE COUNTER

DESCRIPTION - The '90 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-five counter. It can be connected to operate with a conventional BCD output pattern or it can be connected to provide a $50 \%$ duty cycle output. In the BCD mode, HIGH signals on the Master Set (MS) inputs set the outputs to BCD nine. HIGH signals on the Master Reset (MR) inputs force all outputs LOW. For a similar counter with corner power pins, see the 'LS290; for dual versions, see the 'LS390 and 'LS490.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7490APC, 74LS90PC |  | 9A |
| Ceramic <br> DIP (D) | A | 7490ADC, 74LS90DC | 5490ADM, 54LS90DM | 6A |
| Flatpak (F) | A | 7490AFC, 74LS90FC | 5490AFM, 54LS90FM | 31 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 5$
GND $=\operatorname{Pin} 10$
$N C=P$ ins 4,13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CP}} 0_{0}$ | $\div 2$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 0.125/1.5 |
| $\overline{C P}_{1}$ | $\div 5$ Section Clock Input (Active Falling Edge) | 3.0/3.0 | 0.250/2.0 |
| MR1, MR2 | Asynchronous Master Reset Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| MS ${ }_{1}, \mathrm{MS}_{2}$ | Asynchronous Master Set (Preset 9) Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| Qo | $\div 2$ Section Output* | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | $\div 5$ Section Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \\ \hline \end{array}$ |

[^17]FUNCTIONAL DESCRIPTION - The '90 is a 4-bit ripple type decade counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the $Q$ outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Qo output of each device is designed and specified to drive the rated fan-out plus the $\overline{C P}_{1}$ input. A gated AND asynchronous Master Reset ( $M R_{1}, M R_{2}$ ) is provided which overrides the clocks and resets (clears) all the flip-flops. A gated AND asy nchronous Master Set $\left(M S_{1}, M S_{2}\right)$ is provided which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH). Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.:
A. BCD Decade (8421) Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the $\mathrm{Q}_{0}$ output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The $\mathrm{Q}_{3}$ output must be externally connected to the $\overline{\mathrm{CP}}_{0}$ input. The input count is then applied to the $\overline{\mathrm{CP}}_{1}$ input and a divide-by-ten square wave is obtained at output Qo.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ( $\overline{\mathrm{CP}}_{0}$ as the input and $\mathrm{Q}_{0}$ as the output). The $\overline{\mathrm{CP}}_{1}$ input is used to obtain binary divide-by-five operation at the $\mathrm{Q}_{3}$ output.

MODE SELECTION

| RESET/SET INPUTS |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR $_{1}$ | MR $_{2}$ | MS $_{1}$ | MS $_{2}$ | Q $_{0}$ | Q1 $_{1}$ | Q $_{3}$ | Q $_{3}$ |
| H | H | L | X | L | L | L | L |
| H | $H$ | X | L | L | L | L | L |
| X | X | H | H | H | L | L | H |
| L | X | L | X |  | Count |  |  |
| X | L | X | L |  | Count |  |  |
| L | X | X | L |  | Count |  |  |
| X | L | L | X |  | Count |  |  |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

BCD COUNT SEQUENCE

| COUNT | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Qo | Q1 | Q2 | Q3 |
| 0 | L | L | L | L |
| 1 | H | L | L | L |
| 2 | L | H | L | L |
| 3 | H | H | L | L |
| 4 | L | L | H | L |
| 5 | H | L | H | L |
| 6 | L | H | H | L |
| 7 | H | H | H | L |
| 8 | L | L | L | H |
| 9 | H | L | L | H |

NOTE: Output $Q_{0}$ is connected to Input $\overline{\mathrm{CP}}_{1}$ for BCD count.

LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $54 / 74$ |  | $54 / 74 \mathrm{LS}$ | UNITS |
| :--- | :--- | ---: | ---: | ---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PAR AMETER | 54/ | /74 | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency, $\overline{\mathrm{CP}}_{0}$ | 32 |  | 32 |  | MHz | Figs. 3-1, 3-9 |
| $f_{\text {max }}$ | Maximum Count Frequency, $\overline{\mathrm{CP}}_{1}$ | 16 |  | 16 |  | MHz | Figs. 3-1, 3-9 |
| tple tPHL | Propagation Delay $\overline{\mathrm{CP}} 0$ to $\mathrm{Q}_{0}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tplH <br> tphL | Propagation Delay $\overline{C P}_{0}$ to $\mathrm{Q}_{3}$ |  | $\begin{aligned} & 48 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 48 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tpHL | Propagation Delay $\overline{C P}_{1}$ to $\mathrm{Q}_{3}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tPLH | Propagation Delay MS to $\mathrm{Q}_{0}$ and $\mathrm{Q}_{3}$ |  | 30 |  | 30 | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay MS to $Q_{1}$ and $Q_{3}$ |  | 40 |  | 40 | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay MR to $Q_{n}$ |  | 40 |  | 40 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | $\overline{\mathrm{CP}}_{0}$ Pulse Width HIGH | 15 |  | 15 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{w}(\mathrm{H})$ | $\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH | 30 |  | 30 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{w}(\mathrm{H})$ | MS Pulse Width HIGH | 15 |  | 15 |  | ns | Fig. 3-17 |
| $\mathrm{tw}_{w}(\mathrm{H})$ | MR Pulse Width HIGH | 15 |  | 15 |  | ns | Fig. 3-17 |
| trec | Recovery Time, MS to $\overline{\mathrm{CP}}$ | 25 |  | 25 |  | ns | Fig. 3-17 |
| trec | Recovery Time, MR to $\overline{\mathrm{CP}}$ | 25 |  | 25 |  | ns | Fig. 3-17 |

## 54/7491A <br> 8-BIT SHIFT REGISTER

DESCRIPTION - The '91 is a serial-in, serial-out, 8-bit shift register. It is composed of eight RS master/slave flip-flops, input gating and a clock driver. The register is capable of storing and transferring data at clock rates up to 18 MHz while maintaining a typical noise immunity level of 1.0 V .

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCc}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7491APC |  | 9A |
| Ceramic DIP (D) | A | 7491ADC | 7491ADM | 6A |
| Flatpak (F) | B | 7491AFC | 7491AFM | 31 |

CONNECTION DIAGRAMS PINOUT A


PINOUT B


LOGIC SYMBOL (Pinout A only)


$$
\mathrm{V}_{\mathrm{Cc}}=\operatorname{Pin} 5
$$

$$
\text { GND }=\operatorname{Pin} 10
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| A, B | Serial Data Inputs | $1.0 / 1.0$ |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| Q $_{7}$ | Data Output | $10 / 10$ |
| $\bar{Q}_{7}$ | Complementary Data Output | $10 / 10$ |

FUNCTIONAL DESCRIPTION - Single-rail data and input control are gated through inputs $A$ and $B$ and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. Each of the inputs (A, B, and CP) appear as only one TTL input load. The clock pulse inverter/driver causes these circuits to shift information to the output on the positive edge of an input clock pulse, thus enabling the shift register to be fully compatible with other edge-triggered synchronous functions.

## LOGIC DIAGRAM



TRUTH TABLE

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{n}}$ |  | $\mathrm{t}_{\mathrm{n}}+8$ |
| A | B | $\mathrm{Q}_{7}$ |
| L | L | L |
| L | H | L |
| H | L | L |
| H | H | H |

NOTES:
$t_{n}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+8=$ Bit time after eight clock pulses.
$H=$ HIGH Voltage Level
L = LOW Voltage Level

TYPICAL INPUT/OUTPUT WAVEFORMS


| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & \hline 50 \\ & 58 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}^{*}$ |

*Icc is measured after the eighth clock pulse with the output open and $A$ and $B$ inputs grounded

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Shift Frequency | 10 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $C P$ to $Q_{7}$ or $\bar{Q}_{7}$ |  | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | ns | Figs. 3-1, 3-8 |

AC OPERATING REQUIREMENTS: $\mathrm{Vcc}+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $t_{s}(H)$ | Setup Time HIGH, D to CP | 25 |  | ns | Fig. 3-6 |
| $t_{n}(H)$ | Hold Time HIGH, D to CP | 0 |  | ns | Fig. 3-6 |
| $t_{s}(L)$ | Setup Time LOW, D to CP | 25 |  | ns | Fig. 3-6 |
| $t{ }_{\text {n }}(\mathrm{L})$ | Hold Time LOW, D to CP | 0 |  | ns | Fig. 3-6 |
| $\mathrm{tw}_{w}(\mathrm{H})$ | CP Pulse Width HIGH | 25 |  | ns | Fig. 3-8 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\overline{\mathrm{CP}}_{0}$ | $\div 2$ Section Clock Input <br> (Active Falling Edge) <br> $\div 6$ Section Clock Input <br> (Active Falling Edge) <br> Asynchronous Master Reset Input <br> (Active HIGH) <br> $\div 2$ Section Output | $3.0 / 2.0$ | $0.125 / 1.5$ |
| $\overline{\mathrm{CP}}_{1}$ | $1.0 / 1.0$ | $0.250 / 2.0$ |  |
| MR $_{1}$, MR $_{2}$ | $20 / 10$ | $0.5 / 0.25$ |  |
| $Q_{0}$ | $\div 6$ Section Outputs | $20 / 10$ | $10 / 5.0$ |
| $Q_{1}-Q_{3}$ |  | $(2.5)$ |  |

[^18]FUNCTIONAL DESCRIPTION - The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-toLOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Qo output of each device is designed and specified to drive the rated fan-out plus the $\overline{C P}_{1}$ input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:
A. Modulo 12, Divide-By-Twelve Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the $\mathrm{Q}_{0}$ output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and $\mathrm{Q}_{3}$ produces a symmetrical divide-by-twelve square wave output.
B. Divide-By-Two and Divide-By-Six Counter - No external interconnections are required. The first flipflop is used as a binary element for the divide-by-two function. The $\overline{\mathrm{CP}}_{1}$ input is used to obtain divide-by-three operation at the $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ outputs and divide-by-six operation at the $\mathrm{Q}_{3}$ output.

MODE SELECTION TABLE

| RESET <br> INPUTS |  | OUTPUTS |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MR $_{1}$ | $\mathrm{MR}_{2}$ | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ |
| H | H | L | L | L | L |
| L | H |  | Count |  |  |
| H | L |  | Count |  |  |
| L | L |  | Count |  |  |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level

TRUTH TABLE

| COUNT | OUTPUT |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Q0 | Q1 | $\mathrm{Q}_{2}$ | Q3 |
| 0 | L | L | L | L |
| 1 | H | L | L | L |
| 2 | L | H | L | L |
| 3 | H | H | L | L |
| 4 | L | L | H | L |
| 5 | H | L | H | L |
| 6 | L | L | L | H |
| 7 | H | L | L | H |
| 8 | L | H | L | H |
| 9 | H | H | L | H |
| 10 | L | L | H | H |
| 11 | H | L | H | H |

NOTE: Output Qo connected to $\overline{\mathrm{CP}}{ }_{1}$

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| IH | Input HIGH Current, $\overline{\mathrm{CP}}_{0}$ | 1.0 | 0.2 | mA | $\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}$ IN $=5.5 \mathrm{~V}$ |
| liH | Input HIGH Current, $\overline{\mathrm{CP}}_{1}$ | 1.0 | 0.4 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}$ IN $=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | 39 | 15 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 |  | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C \mathrm{~L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency, $\overline{\mathrm{CP}} 0$ Input | 32 |  | 32 |  | MHz | Figs. 3-1, 3-9 |
| $f_{\text {max }}$ | Maximum Count Frequency, $\overline{\mathrm{CP}}_{1}$ Input | 16 |  | 16 |  | MHz | Figs. 3-1, 3-9 |
| tpLH <br> tPHL | Propagation Delay $\overline{\mathrm{CP}} 0$ to $\mathrm{Q}_{0}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tphL | Propagation Delay $\overline{\mathrm{CP}} 0$ to $\mathrm{Q}_{3}$ |  | $\begin{aligned} & 48 \\ & 50 \end{aligned}$ |  | 48 50 | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{1}$ to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ |  | 16 | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ |  | 16 | ns | Figs. 3-1, 3-9 |
| tplH tphL | Propagation Delay $\overline{\mathrm{CP}} 1$ to $\mathrm{Q}_{3}$ |  | 32 35 |  | 32 35 | ns | Figs. 3-1, 3-9 |
| tPHL | Propagation Delay, MR to $\mathrm{Qn}_{\mathrm{n}}$ |  | 40 |  | 40 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{tw}_{w}(\mathrm{H})$ | $\overline{\mathrm{CP}}_{0}$ Pulse Width HIGH | 15 |  | 15 |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {( }} \mathrm{H}$ ) | $\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH | 30 |  | 30 |  | ns |  |
| $\mathrm{tw}_{\text {w }}(\mathrm{H})$ | MR Pulse Width HIGH | 15 |  | 15 |  | ns | Fig. 3-17 |
| trec | Recovery Time, MR to CP | 25 |  | 25 |  | ns |  |

## 54/7493A 54LS/74LS93 <br> DIVIDE-BY-SIXTEEN COUNTER

DESCRIPTION - The ' 93 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 7493APC, 74LS93PC |  | 9A |
| Ceramic DIP (D) | A | 7493ADC, 74LS93DC | 5493ADM, 54LS93DM | 6A |
| Flatpak (F) | A | 7493AFC, 74LS93FC | 5493AFM, 54LS93FM | 31 |



LOGIC SYMBOL

$V_{C C}=P$ in 5
GND $=\operatorname{Pin} 10$
$N C=$ Pins 4, 6, 7, 13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CP}} 0$ | $\div 2$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/1.5 |
| $\overline{\mathrm{CP}}_{1}$ | $\div 5$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/1.0 |
| MR1, MR ${ }_{2}$ | Asynchronous Master Reset Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| Q0 | $\div 2$ Section Output* | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | $\div 8$ Section Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

[^19]FUNCTIONAL DESCRIPTION - The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The $Q_{0}$ output of each device is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device. A gated AND asynchronous Master Reset $\left(M R R_{1}, M R_{2}\right)$ is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.
A. 4-Bit Ripple Counter - The output $Q_{0}$ must be externally connected to input $\overline{C P}_{1}$. The input count pulses are applied to input $\overline{\mathrm{CP}}_{0}$. Simultaneous divisions of $2,4,8$, and 16 are performed at the $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and $\mathrm{Q}_{3}$ outputs as shown in the Truth Table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2,4 , and 8 are available at the $Q_{1}, Q_{2}$, and $Q_{3}$ outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

MODE SELECTION

| RESET <br> INPUTS | OUTPUTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MR $_{1}$ | MR $_{2}$ | Q $_{0}$ | Q $_{1}$ | Q $_{2}$ | Q $_{3}$ |
| H | H | L | L | L | L |
| L | H |  | Count |  |  |
| H | L |  | Count |  |  |
| L | L |  | Count |  |  |

$H=H I G H$ Voltage Level
L = LOW Voltage Level

TRUTH TABLE

| count | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Q $_{0}$ | Q $_{1}$ | Q $_{2}$ | Q $_{3}$ |
| 0 | L | L | L | L |
| 1 | H | L | L | L |
| 2 | L | H | L | L |
| 3 | H | H | L | L |
| 4 | L | L | H | L |
| 5 | H | L | H | L |
| 6 | L | H | H | L |
| 7 | H | H | H | L |
| 8 | L | L | L | H |
| 9 | H | L | L | H |
| 10 | L | H | L | H |
| 11 | H | H | L | H |
| 12 | L | L | H | H |
| 13 | H | L | H | H |
| 14 | L | H | H | H |
| 15 | H | H | H | H |

NOTE: Output Qo connected to $\overline{\mathrm{CP}} 1$.

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| IIH | Input HIGH Currẹnt $\overline{\mathrm{CP}}_{0}$ or $\overline{\mathrm{CP}}_{1}$ | 1.0 | 0.2 | mA | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | 39 | 15 | mA | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $\begin{array}{\|c\|} \hline 54 / 74 \\ \hline C_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=400 \Omega \\ \hline \end{array}$ |  | $\begin{array}{\|c\|} \hline \text { 54/74LS } \\ \hline C_{L}=15 \mathrm{pF} \\ \hline \end{array}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency $\overline{\mathrm{CP}}_{0}$ Input | 32 |  | 32 |  | MHz | Figs. 3-1; 3-9 |
| $f_{\text {max }}$ | Maximum Count Frequency $\overline{\mathrm{CP}}_{1}$ Input | 16 |  | 16 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{0}$ to $\mathrm{Q}_{0}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tphL | Propagation Delay $\overline{\mathrm{CP}}_{0}$ to $\mathrm{Q}_{3}$ |  | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ |  | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tplh tphL | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpli tphl | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpli tPHL | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{3}$ |  | $51$ |  | $\begin{aligned} & 51 \\ & 51 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tPHL | Propagation Delay MR to $Q_{n}$ |  | 40 |  | 40 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  | $54 / 74$ |  | $54 / 74 \mathrm{LS}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | UNITS | CONDITIONS |  |  |  |
|  |  |  | Min Max |  |  |
| $t_{w}(H)$ | $\overline{C P}_{0}$ Pulse Width HIGH | 15 | 15 | ns | Fig. 3-9 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | $\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH | 30 | 30 | ns | Fig. 3-9 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | MR Pulse Width HIGH | 15 | 15 | ns | Fig. 3-17 |
| $t_{\text {rec }}$ | Recovery Time, MR to $\overline{\mathrm{CP}}$ | 25 | 25 | ns | Fig. 3-17 |



TRUTH TABLE

| INPUTS |  |  |  |  | OUTPUTS |
| :--- | :---: | :---: | :---: | :---: | :--- |
| CP | CL | $\mathrm{PL}_{1} \bullet \mathrm{P}_{1 \mathrm{D}}$ | $\mathrm{PL}_{2} \bullet \mathrm{P}_{2 \mathrm{D}}$ | RESPONSE |  |
| QD | REP |  |  |  |  |
| X | H | L | L | L | Clear |
| X | L | H | X | H | Preset |
| X | L | X | H | H | Preset |
| X | H | H | X | H | Indeterminate |
| X | H | X | H | H | Indeterminate |
| $\Gamma$ | L | L | L | Qc | Shift Right |

NOTE: All four flip-flops respond in a similar manner.
$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level $\mathrm{X}=$ Immaterial

## LOGIC DIAGRAM



## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & 50 \\ & 58 \end{aligned}$ | mA | $V_{c c}=\operatorname{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 10 |  | MHz | Figs. 3-1, 3-8 |
| tpLH <br> tpHL | Propagation Delay CP to Qd |  | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tpLH | Propagation Delay, PLn to QD |  | 35 | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay, CL to QD |  | 40 |  |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{ts}^{\text {(H) }}$ | Setup Time HIGH, Ds to CP | 35 |  | ns | Fig. 3-6 |
| th (H) | Hold Time HIGH, Ds to CP | 0 |  | ns |  |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | Setup Time LOW, Ds to CP | 25 |  | ns | Fig. 3-6 |
| th (L) | Hold Time LOW, Ds to CP | 0 |  | ns |  |
| $t_{w}(H)$ | CP Pulse Width HIGH | 35 |  | ns | Fig. 3-8 |
| $\left.\mathrm{tw}^{\text {( }} \mathrm{H}\right)$ | CL Pulse Width HIGH | 30 |  | ns | Fig. 3-16 |
| $\mathrm{tw}^{(H)}$ | PLn Pulse Width HIGH | 30 |  | ns | Fig. 3-16 |

## 54/7495A

54LS/74LS95B
4-BIT RIGHT/LEFT SHIFT REGISTER

DESCRIPTION - The ' 95 is a 4-bit shift register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH-to-LOW transition of the appropriate clock input.

- SYNCHRONOUS, EXPANDABLE SHIFT RIGHT
- SYNCHRONOUS SHIFT LEFT CAPABILITY
- SYNCHRONOUS PARALLEL LOAD
- SEPARATE SHIFT AND LOAD CLOCK INPUTS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7495APC, 74LS95BPC |  | 9A |
| Ceramic DIP (D) | A | 7495ADC, 74LS95BDC | 5495ADM, 54LS95BDM | 6A |
| Flatpak <br> (F) | A | 7495AFC, 74LS95BFC | 5495AFM, 54LS95BFM | 31 |


$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\overline{\overline{C P}_{1}}$ | Serial Clock Input (Active Falling Edge) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{C P}_{2}$ | Parallel Clock Input (Active Falling Edge) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{Ds}_{3}$ | Serial Data Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{Po}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| PE | Parallel Enable Input (Active HIGH) | $2.0 / 2.0$ | $1.0 / 0.5$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Parallel Outputs | $20 / 10$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (Ds) and four Parallel ( $\mathrm{P}_{0}-\mathrm{P}_{3}$ ) Data inputs and four Parallel Data outputs ( $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ ). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs, $\overline{\mathrm{CP}}_{1}$ and $\overline{\mathrm{CP}}_{2}$. The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOW transition of the selected clock input.

When PE is HIGH, $\overline{\mathrm{CP}}_{2}$ is enabled. A HIGH-to-LOW transition on enabled $\overline{\mathrm{CP}}_{2}$ transfers parallel data from the $P_{0}-P_{3}$ inputs to the $Q_{0}-Q_{3}$ outputs. When PE is LOW, $\overline{C P}_{1}$ is enabled. AHIGH-to-LOW transition on enabled $\overline{C P} 1$ transfers the data from Serial input (Ds) to $Q_{0}$ and shifts the data in $Q_{0}$ to $Q_{1}, Q_{1}$ to $Q_{2}$, and $Q_{2}$ to $Q_{3}$ respectively (right-shift). A left-shift is accomplished by externally connecting $Q_{3}$ to $P_{2}, Q_{2}$ to $P_{1}$, and $Q_{1}$ to $P_{0}$, and operating the ' 95 in the parallel mode ( $\mathrm{PE}=\mathrm{HIGH}$ ). For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PE from LOW to HIGH while $\overline{\mathrm{CP}}_{2}$ is HIGH , or changing PE from HIGH to LOW while $\overline{\mathrm{CP}}_{1}$ is HIGH and $\overline{\mathrm{CP}}_{2}$ is LOW will not cause any changes on the register outputs.

MODE SELECT TABLE

| OPERATING MODE | INPUTS |  |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PE | $\overline{\mathrm{CP}} 1$ | $\overline{\mathrm{CP}_{2}}$ | Ds | $\mathrm{P}_{\mathrm{n}}$ | Q0 | Q1 | Q2 | Q3 |
| Shift | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{l} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$ | h | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{q} 0 \\ & \mathrm{q} 0 \end{aligned}$ | $\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$ |
| Parallel Load | H | X | L | X | $\mathrm{p}_{\mathrm{n}}$ | po | $\mathrm{p}_{1}$ | p2 | p3 |
| Mode Change | 2 5 2 5 2 5 2 5 | L H H L L H H | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \hline x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ |  | Chan Chan Chan eter <br> eterm <br> Chan eter Chan | ge <br> ge <br> ge <br> ine <br> ine <br> ge <br> ine <br> ge |  |

I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition. $h=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition. $p_{n}=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
$H=$ HIGH Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage Level
$X=$ Immaterial
LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $54 / 74$ | $54 / 74 L S$ | UNITS | CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Min $\operatorname{Max}$ | Min $\operatorname{Max}$ |  |  |
| Icc | Power Supply Current | 63 | 21 | mA | $\mathrm{~V}_{\mathrm{cc}}=$ Max |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/ |  | 54/7 | 4LS | UNITS | CONDITONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 25 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ or $\overline{\mathrm{CP}}_{2}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 27 \\ & 32 \end{aligned}$ |  | $\begin{aligned} & 27 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW Ds or $P_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW <br> Ds or $\mathrm{P}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}_{\mathrm{n}}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-7 |
| tw (H) | $\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width HIGH | 20 |  | 20 |  | ns | Fig. 3-9 |
| ten (L) | Enable Time LOW PE to $\overline{C P}_{1}$ | 15 |  | 25 |  | ns | Fig. a |
| tinh (H) | Inhibit Time HIGH PE to $\overline{\mathrm{CP}_{1}}$ | 5.0 |  | 20 |  | ns | Fig. a |
| ten (H) | Enable Time HIGH <br> PE to $\overline{\mathrm{CP}_{2}}$ | 15 |  | 25 |  | ns | Fig. a |
| tinh (L) | Inhibit Time LOW PE to $\overline{\mathrm{CP}_{2}}$ | 5.0 |  | 20 |  | ns | Fig. a |



Fig. a

## 54/7496 5-BIT SHIFT REGISTER

DESCRIPTION - The '96 consists of five RS master/slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to the LOW state by applying a low level voltage to the clear input. This condition may be applied independent of the state of the clock input.

The flip-flops may be independently set to the HIGH state by applying a high level voltage to both the preset input of the specific flip-flop and the common parallel load input. The parallel enable input is provided to allow setting each flip-flop independently or setting two or more flip-flops simultaneously. Preset is independent of the state of the clock input or clear input.

Transfer of information to the output pins occurs when the clock input goes from a LOW level to a HIGH level. Since the flip-flops are RS master/slave circuits, the proper information must appear at the RS inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining RS inputs. The clear input must be at a HIGH level and the parallel load input must be at a LOW level for serial shifting.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7496PC |  | 9 B |
| Ceramic DIP (D) | A | 7496DC | 5496DM | 7B |
| Flatpak <br> (F) | A | 7496FC | 5496FM | 4L |

CONNECTION DIAGRAM PINOUT A

$V_{c c}=\operatorname{Pin} 5$
GND $=\operatorname{Pin} 12$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| CL | Asynchronous Clear Input (Active LOW) | $1.0 / 1.0$ |
| Ds | Serial Data Input | $1.0 / 1.0$ |
| $\mathrm{P}_{0}-\mathrm{P}_{4}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| PL | Asynchronous Parallel Load Input (Active HIGH) | $5.0 / 5.0$ |
| Q $-\mathrm{Q}_{4}$ | Parallel Outputs | $10 / 10$ |

MODE SELECT TABLE

| INPUTS |  |  |  |  |  | OPERATION* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PL | $\mathrm{P}_{\mathrm{n}}$ | $\overline{\mathrm{C}}$ |  | CP | $Q_{n}$ |  |
| L | X | L | x | X | L | Clear; all outputs forced LOW |
| H | H** | H | X | X | H | Selectively Preset; each output |
| H | L** | H | X | X | L | set to its P input |
| L | X | H | H, L | $\Gamma$ | $\mathrm{Q}_{\mathrm{n}-1}$ | Shift right; $\mathrm{Ds} \rightarrow \mathrm{Q}_{0} ; \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc. |

*Simultaneous Preset and Clear operations produce undefined states.
**To insure proper presetting, P inputs must remain stable while PL is LOW.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | CONDITIONS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 10 |  | MHz | Figs. 3-1, 3-8 |
| tpLH tPHL | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tpl | Propagation Delay, PL or $P_{n}$ to $Q_{n}$ |  | 35 | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay, $\overline{C L}$ to $Q_{n}$ |  | 55 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/54 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | CP Pulse Width LOW | 35 |  | ns | Fig. 3-8 |
| tw (L) | $\overline{C L}$ Pulse Width LOW | 30 |  | ns | Fig. 3-16 |
| $\mathrm{tw}_{w}(\mathrm{H})$ | PL Pulse Width HIGH | 30 |  | ns | Fig. 3-16 |
| $\mathrm{t}_{\mathrm{s}}(\mathrm{H})$ | Setup Time HIGH, Ds to CP | 30 |  | ns | Fig. 3-6 |
| $\operatorname{th}^{\text {(H) }}$ | Hold Time HIGH, Ds to CP | 0 |  | ns | Fig. 3-6 |
| $\mathrm{ts}_{\text {s }}(\mathrm{L})$ | Setup Time LOW, Ds to CP | 30 |  | ns | Fig. 3-6 |
| $\mathrm{th}^{\text {(L) }}$ | Hold Time LOW, Ds to CP | 0 |  | ns | Fig. 3-6 |

## 54/7497 <br> SYNCHRONOUS MODULO-64 BIT RATE MULTIPLIER

DESCRIPTION - The '97 contains a synchronous 6-stage binary counter and six decoding gates that serve to gate the clock through to the output at a sub-multiple of the input frequency. The output pulse rate, relative to the clock frequency, is determined by signals applied to the Select ( $\mathrm{S}_{0}-\mathrm{S}_{5}$ ) inputs. Both true and complement outputs are available, along with an enable input for each. A Count Enable input and a Terminal Count output are provided for cascading two or more packages. An asynchronous Master Reset input prevents counting and resets the counter.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 7497PC |  | 9B |
| Ceramic DIP (D) | A | 7497DC | 5497DM | 7B |
| Flatpak <br> (F) | A | 7497FC | 5497FM | 4L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\begin{aligned} & \text { 54/74 (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |
| :---: | :---: | :---: |
| $\mathrm{So}_{0}-\mathrm{S}_{5}$ | Rate Select Inputs | 1.0/1.0 |
| $\bar{E} Z$ | $\bar{O}_{Z}$ Enable Input (Active LOW) | 1.0/1.0 |
| EY | Oy Enable Input | 1.0/1.0 |
| $\overline{C E}$ | Count Enable Input (Active LOW) | 1.0/1.0 |
| CP | Clock Pulse Input (Active Rising Edge) | 2.0/2.0 |
| MR | Asynchronous Master Reset Input (Active HIGH) | 1.0/1.0 |
| $\overline{\mathrm{O}} \mathrm{z}$ | Gated Clock Output (Active LOW) | 10/10 |
| Oy | Complement Output (Active HIGH) | 10/10 |
| $\overline{T C}$ | Terminal Count Output (Active LOW) | 10/10 |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '97 contains six JK flip-flops connected as a synchronous modulo-64 binary counter. A LOW signal on the Count Enable ( $\overline{\mathrm{CE}})$ input permits counting, with all state changes initiated simultaneously by the rising edge of the clock. When the count reaches maximum (63), with all Qs HIGH, the Terminal Count ( $\overline{\mathrm{TC}}$ ) output will be LOW if $\overline{\mathrm{CE}}$ is LOW. A HIGH signal on Master Reset (MR) resets the flip-flops and prevents counting, although output pulses can still occur if the clock is running, $\bar{E}_{2}$ is LOW and $\mathrm{S}_{5}$ is HIGH .

The flip-flop outputs are decoded by a 6-wide AND-OR-INVERT gate. Each AND gate also contains the buffered and inverted CP and Z-enable ( $\bar{E}_{Z}$ ) functions, as well as one of the Select ( $\mathrm{S}_{0}-\mathrm{S}_{5}$ ) inputs. The Z output, $\overline{\mathrm{O}}_{Z}$ is normally HIGH and goes LOW when CP and $\bar{E}_{z}$ are LOW and any of the AND gates has its other inputs HIGH. The AND gates are enabled by the counter at different times and different rates relative to the clock. For example, the gate to which $\mathrm{S}_{5}$ is connected is enabled during every other clock period, assuming $\mathrm{S}_{5}$ is HIGH . Thus, during one complete cycle of the counter ( 64 clocks) the $\mathrm{S}_{5}$ gate is enabled 32 times and can therefore gate 32 clocks per cycle to the output. The $S_{4}$ gate is enabled 16 times per cycle, the $S_{3}$ gate 8 times per cycle, etc. The output pulse rate thus depends on the clock rate and which of the $\mathrm{S}_{0}-\mathrm{S}_{5}$ inputs is HIGH .

$$
\begin{gathered}
{\text { fout }=\frac{m}{64} \bullet f_{\text {in }}}^{\text {Where: } m=S_{5} \bullet 2^{5}+S_{4} \bullet 24+S_{3} \bullet 2^{3}+S_{2} \bullet 2^{2}+S_{1} \bullet 21+S_{0} \bullet 20}
\end{gathered}
$$

Thus by appropriate choice of signals applied to the $S_{0}-S_{5}$ inputs, the output pulse rate can range from $1 / 64$ to $63 / 64$ of the clock rate, as suggested in the Rate Select Table. There is no output pulse when the counter is in the "all ones" condition. When $m$ is $1,2,4,8,16$ or 32 , the output pulses are evenly spaced, assuming that the clock frequency is constant. For any other value of $m$ the output pulses are not evenly spaced, since the pulse train is formed by interleaving pulses passed by two or more of the AND gates. The Pulse Pattern Table indicates the output pattern for several values of $m$. In each row, a one means that the $\overline{\mathrm{O}}$ z output will be HIGH during that entire clock period, while a zero means that $\overline{\mathrm{O}} \mathrm{Z}$ will be LOW when the clock is LOW in that period. The first column in the output field coincides with the "all zeroes" condition of the counter, while the last column represents the "all ones" condition. The pulse pattern for any particular value of m can be deduced by factoring it into the sum of appropriate powers of two (e.g. $19=16+2+1$ ) and combining the pulses (i.e., the zeroes) shown for each for the relevant powers of two (e.g., for $m=16,2$ and 1 ).

The $Y$ output $O_{Y}$ is the complement of $\bar{O}_{Z}$ and is thus normally LOW. A LOW signal on the $Y$-enable input, EY, disables Oy. To expand the multiplier to 12-bit rate select, two packages can be cascaded as shown in Figure a. Both circuits operate from the basic clock, with the $\overline{\mathrm{TC}}$ output of the first acting to enable both counting and the output pulses of the second package. Thus the second counter advances at only $1 / 64$ the rate of the first and a full cycle.of the two counters combined requires 4096 clocks. Each rate select input of the first package has 64 times the weight of its counterpart in the second package.

$$
\begin{gathered}
f_{o u t}=\frac{m_{1}+m_{2}}{64 \bullet 64} \bullet f_{\text {in }} \\
\text { Where: } \quad m_{1}=S_{5} \bullet 211+S_{4} \bullet 210+S_{3} \bullet 29+S_{2} \bullet 2^{8}+S_{1} \bullet 2^{7}+S_{0} \bullet 2^{6} \text { (first package) } \\
m_{2}=S_{5} \bullet 2^{2}+S_{4} \bullet 24+S_{3} \bullet 2^{3}+S_{2} \bullet 2^{2}+S_{1} \bullet 2^{1}+S_{0} \bullet 2^{0} \text { (second package) }
\end{gathered}
$$

Combined output pulses are obtained in Figure a by letting the $Z$ output of the first circuit act as the $Y$-enable function for the second, with the interleaved pulses obtained from the $Y$ output of the second package being opposite in phase to the clock.


Fig. a. Cascading for $\mathbf{1 2 - b i t ~ R a t e ~ S e l e c t ~}$

LOGIC DIAGRAM


MODE AND RATE SELECT TABLE (Note 1)

| INPUTS |  |  |  |  |  |  |  |  | CLOCK PULSES | OUTPUTS |  |  |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR | $\overline{\mathrm{CE}}$ | $E_{z}$ | $\mathrm{S}_{5}$ | $S_{4}$ | $\mathrm{S}_{3}$ | $S_{2}$ | $S_{1}$ | So |  | EY | Or | $\bar{O}_{z}$ | $\overline{\text { TC }}$ |  |
| H | X | H | X | X | X | X | X | X | X | H |  | H | H | 2 |
| L | L | L | L | L | L | L | L | L | 64 | H | L | H | 1 | 3 |
| L | L | L | L | L | L | L | L | H | 64 | H | 1 | 1 | 1 | 3 |
| L | L | L | L | L | L | L | H | L | 64 | H | 2 | 2 | 1 | 3 |
| L | L | L | L | L | L | H | L | L | 64 | H | 4 | 4 | 1 | 3 |
| L | L | L | L | L | H | L | L | L | 64 | H | 8 | 8 | 1 | 3 |
| L | L | L | L | H | L | L | L | L | 64 | H | 16 | 16 | 1 | 3 |
| L | L | L | H | L | L | L | L | L | 64 | H | 32 | 32 | 1 | 3 |
| L | L | L | H | H | H | H | H | H | 64 | H | 63 | 63 | 1 | 3 |
| L | L | L | H | H | H | H | H | H | 64 | L | H | 63 | 1 | 4 |
| L | L | L | H | L | H | L | L | L | 64 | H | 40 | 40 | 1 | 5 |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
NOTES:

1. Numerals indicate number of pulses per cycle.
2. This is a simplified illustration of the clear function. CP and $\bar{E}_{Z}$ also affect the logic level of $\mathrm{O}_{\mathrm{Y}}$ and $\overline{\mathrm{O}}_{z}$. A LOW signal on Ey will cause Oy to remain HIGH.
3. Each rate illustrated assumes $\mathrm{S}_{0}-\mathrm{S}_{5}$ are constant throughout the cycle; however, these illustrations in no way prohibit variable-rate operation.
4. EY is used to inhibit output $Y$.
5. $\mathrm{f}_{\text {out }}=\mathrm{m} \bullet \frac{\mathrm{f}_{\text {in }}}{64}=\frac{(32+8) \mathrm{fin}=\frac{40 \mathrm{f}}{64}=0.625 \mathrm{fin},}{64}$

## PULSE PATTERN TABLE

| m | OUTPUT PULSE PATTERN AT O$z$ |
| ---: | :---: |
| 1 | 1111111111111111111111111111111011111111111111111111111111111111 |
| 2 | 1111111111111110111111111111111111111111111111101111111111111111 |
| 3 | 1111111111111110111111111111111011111111111111101111111111111111 |
| 4 | 11111110111111111111110111111111111110111111111111111011111111 |
| 5 | 11111110111111111111110111111101111111011111111111111011111111 |
| 6 | 1111111011111110111111101111111111111110111111101111111 l 11111111 |
| 8 | 1110111111101111111011111110111111101111111011111110111111101111 |
| 10 | 1110111111101110111011111110111111101111111011101110111111101111 |
| 12 | 1110111011101111111011101110111111101110111011111110111011101111 |
| 14 | 111011101110111011101110111011111101110111011101110111011101111 |
| 16 | 10111011101110111011101110111011101110111011101110111011101111011 |
| 20 | 1011101010111011101110101011101110111010101110111011101110111011 |
| 24 | 1010101110101011101010111010101110101011101010111010101110101011 |
| 28 | 1010101010101011101010101010101110101010101010111010101010101011 |
| 32 | $010101 \ldots .$. |


| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Ios | Output Short Circuit Current | -18 | -55 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| Icc | Power Supply Current |  | 120 | mA | $\begin{aligned} & \text { Vcc }=\text { Max } \\ & \text { All Inputs }=4.5 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\bar{E}_{z}$ to $\bar{O} z$ |  | $\begin{aligned} & 18 \\ & 23 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\bar{E}_{Z}$ to $\mathrm{O}_{\mathrm{Y}}$ |  | $\begin{aligned} & 30 \\ & 33 \\ & \hline \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \overline{\text { tPLH }} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Ey to Or |  | $\begin{aligned} & 14 \\ & 10 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{r}}$ |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{tpH} \end{aligned}$ | Propagation Delay <br> $\mathrm{S}_{\mathrm{n}}$ to $\overline{\mathrm{O}}_{\mathrm{z}}$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay CP to Oy |  | $\begin{aligned} & 39 \\ & 30 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHH } \end{aligned}$ | Propagation Delay CP to $\bar{O} z$ |  | $\begin{aligned} & 18 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $\overline{T C}$ |  | $\begin{aligned} & 30 \\ & 33 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CE to TC |  | $\begin{aligned} & 20 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tPLH | Propagation Delay MR to OY |  | 36 | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay MR to $\overline{\mathrm{O}} \mathrm{Z}$ |  | 23 | ns |  |


| AC OPERATING REQUIREMENTS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
|  |  | Min | Max |  |  |
| ts (L) | Setup Time LOW $\overline{C E}$ to CP Rising | 25 |  | ns | Fig. b |
| th (L) | Hold Time LOW $\overline{C E}$ to CP Rising | 0 | tw CP -10 | ns |  |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | Setup Time LOW $\overline{C E}$ to CP Falling | 0 | tw CP -10 | ns | Fig. c |
| th (L) | Hold Time LOW $\overline{\mathrm{CE}}$ to CP Falling | 20 | T-10 | ns |  |
| tinh (H) | Inhibit Time HIGH $\overline{\mathrm{CE}}$ to CP Falling | 10 |  | ns | Fig. b |
| $\mathrm{taj}_{\mathbf{w}}(\mathrm{H})$ | CP Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {(H) }}$ | MR Pulse Width HIGH | 15 |  | ns | Fig. 3-16 |



Fig. $\mathbf{b}$


Fig. c

| TRUTH TABLE |  |
| :--- | :---: |
| INPUTS OUTPUT  <br> @ $t_{n}$ $@ t_{n}+1$  <br> $J$ $K$ $Q$ <br> $L$ $L$ $Q_{n}$ <br> $L$ $H$ $L$ <br> $H$ $L$ $H$ <br> $H$ $H$ $\bar{Q}_{n}$ |  |

Asynchronous Input:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level Set is independent of clock
$J=\left(J_{1 A} \cdot J_{1 B}\right)+\left(J_{2 A} \bullet J_{2 B}\right)$
$K=\left(K_{1 A} \cdot K_{1 B}\right)+\left(K_{2 A} \cdot K_{2 B}\right)$
$t_{n}=$ Bit time before clock pulse.
$t_{n+1}=$ Bit time after clock pulse.
H = HIGH Voltage Level
L = LOW Voltage Level

CONNECTION DIAGRAMS PINOUT A


PINOUT B


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\left.\begin{array}{l} J_{1 A}, J_{1 B}, J_{2 A}, J_{2 B} \\ K_{1 A}, K_{1 B}, K_{2 A}, K_{2 B} \end{array}\right\}$ | Data Inputs | 1.25/1.25 |
| $\overline{\overline{C P}}$ | Clock Pulse Input (Active Falling Edge) | 0*/3.0 |
| $\bar{S}_{D}$ | Direct Set Input (Active LOW) | 2.5/1.25 |
| Q, $\overline{\mathbf{Q}}$ | Outputs | 12.5/12.5 |

* $\overline{\mathrm{P} P}$ Sourcing Current, see DC Characteristics Table


## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| IH | Input HIGH Current at $\overline{\text { CP }}$ | 0 | -1.0 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {cP }}=2.4 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 38 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {cP }}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ to Q or $\overline{\mathrm{Q}}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{S}_{D}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{S}_{D}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 12 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \leq 0.8 \quad \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | $\overline{C P}$ Pulse Width | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | S] Pulse Width LOW | 16 |  | ns | Fig. 3-10 |



PINOUT B


LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$ (4)
GND $=\operatorname{Pin} 7(11)$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION <br> HIGH/LOW |  |
| :--- | :--- | ---: |
| $\left.\begin{array}{l}J_{1}, J_{2}, J_{3} \\ K_{1}, K_{2}, K_{3}\end{array}\right\}$ | Data Inputs | $1.25 / 1.25$ |
| $\overline{C P}$ | Clock Pulse Input (Active Falling Edge) | $0{ }^{*} / 3.0$ |
| $\overline{\bar{C}_{D}}$ | Direct Clear Input (Active LOW) | $2.5 / 1.25$ |
| $\bar{S}_{D}$ | Direct Set Input (Active LOW) | $2.5 / 1.25$ |
| $Q, \bar{Q}$ | Outputs | $12.5 / 12.5$ |

[^20]
## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | Min |  |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current at $\overline{\mathrm{CP}}$ | 0 | -1.0 | mA | $\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{CP}}=2.4 \mathrm{~V}$ |
| ICC | Power Supply Current |  | 38 | mA | $\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V} \mathrm{CP}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\overline{C P}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tPhL | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \\ \hline \end{array}$ | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 12 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \leq 0.8 \vee \\ & \text { Figs. 3-1, 3-10 } \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMB OL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \hline t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \mathrm{th}(\mathrm{H}) \\ & t_{n}(\mathrm{Cl}) \end{aligned}$ | Hold Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | $\overline{\mathrm{CP}}$ Pulse Width | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| tw (L) | $\bar{C}_{D}$ or $\bar{S}_{\text {D }}$ Pulse Width LOW | 16 |  | ns | Fig. 3-10 |

## 54H/74H103 <br> DUAL JK EDGE-TRIGGERED FLIP-FLOP (With Separate Clears and Clocks)

DESCRIPTION - The '103 is a high speed JK negative edge-triggered flipflop. It features individual J, K, clock and asynchronous clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.
TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ \mathrm{t}_{\mathrm{n}}$ |  |  |
| J | K | $\mathrm{t}_{\mathrm{n}}+1$ |
| L | L | $\mathrm{Q}_{\mathrm{n}}$ |
| L | H | L |
| H | L | $\mathrm{H}_{\mathrm{n}}$ |
| H | H | $\bar{Q}_{\mathrm{n}}$ |

Asynchronous Input:
LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear is independent of clock
$t_{n}=$ Bit time before clock pulse.
$t_{n+1}=$ Bit time after clock pulse.
H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74H103PC |  | 9A |
| Ceramic DIP (D) | A | 74H103DC | 54H103DM | 6A |
| Flatpak (F) | A | 74H103FC | 54H103FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $J_{1}, J_{2}, K_{1}, K_{2}$ | Data Inputs | $1.25 / 1.25$ |
| $\overline{C P}_{1}, \overline{C P}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | $0 \times 3.0$ |
| $\bar{C}_{D_{1}}, \bar{C}_{D_{2}}$ | Direct Clear Inputs (Active LOW) | $2.5 / 1.25$ |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \bar{Q}_{2}$ | Outputs | $12.5 / 12.5$ |

[^21]
## LOGIC DIAGRAM (one half shown)



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| IH | Input HIGH Current at $\overline{\mathrm{CP}}$ | 0 | -1.0 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {CP }}=2.4 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 76 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$ |
| AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations) |  |  |  |  |  |
| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{RL}=280 \Omega \\ & \hline \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> $\bar{C}_{\mathrm{D}}$ to $\mathrm{Q}_{\mathrm{n}}$ or $\overline{\mathrm{Q}}_{\mathrm{n}}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{array}{\|l} \mathrm{tPLH} \\ \text { tPHL } \\ \hline \end{array}$ | Propagation Delay $\bar{C}_{\mathrm{D}}$ to $\mathrm{Q}_{\mathrm{n}}$ or $\overline{\mathrm{Q}}_{\mathrm{n}}$ |  | $\begin{aligned} & 12 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & \hline V_{C P} \leq 0.8 \vee \\ & \text { Figs. } 3-1,3-10 \\ & \hline \end{aligned}$ |
| AC OPERATING REQUIREMENTS: V CC $=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  |  |  |  |
| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time $J_{n}$ or $\mathrm{K}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}_{\mathrm{n}}$ | $\begin{aligned} & 10 \\ & 13 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{th}(H) \\ & t_{n}(L) \end{aligned}$ | Hold Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | $\overline{\mathrm{CP}} \mathrm{n}_{\mathrm{n}}$ Pulse Width | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| tw (L) | $\bar{C}_{\text {Dn }}$ Pulse Width LOW | 16 |  | ns | Fig. 3-10 |

# 54H/74H106 <br> DUAL JK EDGE-TRIGGERED FLIP-FLOP (With Separate Sets, Clear and Clocks) 

DESCRIPTION - The '106 is a high speed JK negative edge-triggered flipflop. It features individual J, K, clock and asynchronous set and clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.
TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| @ $\mathrm{t}_{\mathrm{n}}$ |  | $@ \mathrm{t}_{\mathrm{n}}+1$ |
| J | K | Q |
| L | L | $\mathrm{Q}_{\mathrm{n}}$ |
| L | H | L |
| H | L | H |
| H | H | $\bar{Q}_{\mathrm{n}}$ |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LoW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both $Q$ and $\bar{Q}$ HIGH
$t_{n}=$ Bit time before clock pulse.
$t_{n+1}=$ Bit time after clock pulse.
$H=H I G H$ Voltage Level
L = LOW Voltage Level

ORDERING CODE: See Section 9

|  |  | COMMERCIAL GRADE | MILITARY GRADE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | OUT | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | TYPE |  |
| Plastic DIP (P) | A | 74H106PC |  | 9B | $\begin{aligned} & \mathrm{VCC}=\operatorname{Pin} 5 \\ & \mathrm{GND}=\operatorname{Pin} 13 \end{aligned}$ |
| Ceramic DIP (D) | A | 74H106DC | 54H106DM | 6B |  |
| Flatpak (F) | A | 74H106FC | 54H106FM | 4L |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | 1.25/1.25 |
|  | Clock Pulse Inputs (Active Falling Edge) | 0*/3.0 |
| $\underline{\bar{C}}_{\text {D1 }}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs (Active LOW) | 2.5/1.25 |
| $\bar{S}_{\mathrm{D}_{1}}, \overline{\mathrm{~S}}_{\mathrm{D}_{2}}$ | Direct Set Inputs (Active LOW) | 2.5/1.25 |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Outputs | 12.5/12.5 |

[^22]

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| IH | Input HIGH Current at $\overline{\mathrm{CP}}_{\mathrm{n}}$ | 0 | -1.0 | mA | $\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {CP }}=2.4 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 76 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {cP }}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{CP}} \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 12 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \leq 0.8 \vee \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tn}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$ | $\overline{C P P}_{n}$ Pulse Width | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { Cun }}^{\text {n }}$ or $\bar{S}_{\text {Dn }}$ Pulse Width LOW | 16 |  | ns | Fig. 3-10 |

# 54/74107 54LS/74LS107 <br> DUAL JK FLIP-FLOP (With Separate Clears and Clocks) 

DESCRIPTION - The '107 dual JK master/slave flip-flops have a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; 4) transfer information from master to slave.

## TRUTH TABLE

| INPUTS |  | OUTPUT |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

H = HIGH Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage Level
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+1=$ Bit time after clock pulse.

## CLOCK WAVEFORM



Asynchronous Input:
LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear is independent of clock

The 'LS107 offers individual J, K, clear, and clock inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the $J$ and $K$ inputs may be allowed to change when the clock is HIGH and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :---: | :---: | :---: | :---: | :---: |
|  | OUT | VCC <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74107 \mathrm{PC}, 74 \mathrm{LS} 107 \mathrm{PC}$ |  | 9 A |
| Ceramic <br> DIP (D) | A | $74107 \mathrm{DC}, 74 \mathrm{LS} 107 \mathrm{DC}$ | $54107 \mathrm{DM}, 54 \mathrm{LS} 107 \mathrm{DM}$ | 6 A |
| Flatpak <br> (F) | A | $74107 \mathrm{FC}, 74 \mathrm{LS} 107 \mathrm{FC}$ | $54107 \mathrm{FM}, 54 \mathrm{LS} 107 \mathrm{FM}$ | 31 |


$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |
| :---: | :---: | :---: | :---: |
| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\overline{C P}_{1}}, \overline{\mathrm{CP}}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | 2.0/2.0 | 2.0/0.5 |
| $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs (Active LOW) | 2.0/2.0 | 1.5/0.5 |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Outputs | 20/10 | 10/5.0 |

LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $54 / 74$ |  | 54/74LS |  |
| :--- | :--- | ---: | ---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | Min $\operatorname{Max}$ | Min Max |  |  |
| ICC | Power Supply Current |  | 40 | 8.0 | mA |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/ | 774 | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 15 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| tpLH tphL | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tplH <br> tpHL | Propagation Delay $\bar{C}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ |  | 20 30 | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 | 20 | ns | Fig. 3-18 ('107) Fig. 3-7 ('LS107) |
| th (H) | Hold Time HIGH $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 | 0 | ns |  |
| ts (L) | Setup Time LOW $J_{n}$ or $\mathrm{K}_{\mathrm{n}}$ to $\mathrm{CP}_{\mathrm{n}}$ | 0 | 20 | ns |  |
| th (L) | Hold Time LOW $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 | 0 | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$ | $\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width | $\begin{aligned} & 20 \\ & 47 \end{aligned}$ | $\begin{array}{\|r\|} \hline 13.5 \\ 20 \end{array}$ | ns | Fig. 3-9 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\bar{C}_{\text {Dn }}$ Pulse Width LOW | 25 | 25 | ns | Fig. 3-10 |

# 54H/74H108 <br> DUAL JK EDGE-TRIGGERED FLIP-FLOP (With Separate Sets, A Common Clear and Clock) 

DESCRIPTION - The '108 is a high speed JK negative edge-triggered flipflop. It features individual J, K, and asynchronous Set inputs to each flip-flop as well as common clock and asynchronous Clear inputs. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of $J$ and $K$ inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{D}$ and $\overline{\mathrm{S}}_{D}$ makes both Q and $\overline{\mathrm{Q}}$ HIGH
$t_{n}=$ Bit time before clock pulse.
$t_{n}+1=$ Bit time after clock pulse.
H = HIGH Voltage Level
L = LOW Voltage Level

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74H108PC |  | 9A | $\mathrm{VCC}=\operatorname{Pin} 14$ |
| Ceramic DIP (D) | A | 74H108DC | 54H108DM | 6A | GND $=$ Pin 7 |
| Flatpak (F) | A | 74H108FC | 54H108FM | 31 |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | 1.25/1.25 |
| $\overline{C P}$ | Clock Pulse Input (Active Falling Edge) | 0*/6.0 |
| $\overline{\mathrm{C}}_{\text {D }}$ | Direct Clear Input (Active LOW) | 5.0/2.5 |
| $\bar{S}_{\text {D1 }}, \bar{S}_{\text {D2 }}$ | Direct Set Inputs (Active LOW) | 2.5/1.25 |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Outputs | 12.5/12.5 |

[^23]LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| liH | Input HIGH Current at $\overline{\mathrm{CP}}$ | 0 | -1.0 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{VCP}=2.4 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 76 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{C P}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\overline{C P}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & V C P=\geq 2.0 \mathrm{~V} \\ & \text { Figs. 3-1, 3-10 } \end{aligned}$ |
| tPLH <br> tPHL | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 12 \\ & 35 \end{aligned}$ | ns | $V_{C P}=\leq 0.8 \mathrm{~V}$ <br> Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | 0 0 |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | $\overline{\mathrm{CP}}$ Pulse Width | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\mathrm{C}}_{\mathrm{D}}$ or $\bar{S}_{\text {Dn }}$ Pulse Width LOW | 16 |  | ns | Fig. 3-10 |

## 54S/74S109 54LS/74LS109 DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The '109 consists of two high speed, completely independent transition clocked $J \bar{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $J \bar{K}$ design allows operation as a D flip-flop (refer to ' 74 data sheet) by connecting the $J$ and $\bar{K}$ inputs together. The '109 is functionally equivalent to the 9024.

TRUTH TABLE

| INPUTS |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: |
| $@ t_{n}$ |  | $@ t_{n}+1$ |  |
| $J$ | $K$ | Q $\quad$ Q |  |
| $L$ | $H$ | No Change |  |
| $L$ | $L$ | $L$ |  |
| $H$ | $H$ | $H$ |  |
| $H$ |  |  |  |
| $H$ | $L$ | Toggles |  |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level Clear and Set are independent of clock Simultaneous LOW on $\bar{C}_{D}$ and $\bar{S}_{D}$ makes both $Q$ and $\bar{Q}$ HIGH
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$t_{n+1}=$ Bit time after clock pulse.
H = HIGH Voltage Level
L = LOW Voltage Level

## ORDERING CODE: See Section 9



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $J_{1}, J_{2}, \bar{K}_{1}, \bar{K}_{2}$ | Data Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{CP}_{1}, \mathrm{CP}_{2}$ | Clock Pulse Inputs (Active Rising Edge) | $2.5 / 2.5$ | $1.0 / 0.5$ |
| $\bar{C}_{D 1}, \bar{C}_{D 2}$ | Direct Clear Inputs (Active LOW) | $5.0 / 5.0$ | $1.0 / 1.0$ |
| $\bar{S}_{D 1}, \bar{S}_{D 2}$ | $2.5 / 2.5$ | $1.0 / 0.5$ |  |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \bar{Q}_{1}, \bar{Q}_{2}$ | Direct Set Inputs (Active LOW) | $25 / 12.5$ | $10 / 5.0$ |
|  | Outputs |  | $(2.5)$ |

LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | $54 / 74 \mathrm{LS}$ |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | Min Max | Min $\operatorname{Max}$ |  |  |
| ICC | Power Supply Current |  | 52 | 8.0 | mA |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ | $\mathrm{CL}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 75 | 30 | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ | $\begin{gathered} 9.0 \\ 11 \end{gathered}$ | $\begin{aligned} & 25 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ | $\begin{array}{r} 6.0 \\ 12 \\ \hline \end{array}$ | $\begin{aligned} & 15 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & \text { VCP } \geq 2.0 \mathrm{~V} \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay <br> $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ | $\begin{array}{r} 6.0 \\ 12 \end{array}$ | $\begin{aligned} & 15 \\ & 24 \end{aligned}$ | ns | $\begin{aligned} & V_{C P} \leq 0.8 \vee \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | $54 / 74 \mathrm{~S}$ |  | $54 / 74 \mathrm{LS}$ | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | CONDITIONS

# 54S/74S112 54LS/74LS112 <br> DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP 

DESCRIPTION - The '112 features individual J, K, Clock and asynchronous Set and Clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the $J$ and $K$ inputs may change when the clock is HIGH and the bistable will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\bar{C}_{D}$ sets $Q$ to LOW level
Clear and Set are independent of clock
Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both $Q$ and $\bar{Q}$ HIGH
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+1=$ Bit time after clock pulse.
H = HIGH Voltage Level
L = LOW Voltage Level

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | $\begin{gathered} \text { PKG } \\ \text { TYPE } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74S112PC, 74LS112PC |  | 9B |
| Ceramic DIP (D) | A | 74S112DC, 74LS112DC | 54S112DM, 54LS112DM | 6B |
| Flatpak (F) | A | 74S112FC, 74LS112FC | 54S112FM, 54LS112FM | 4L |

CONNECTION DIAGRAM PINOUT A


$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $J_{1}, J_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | $1.25 / 1.0$ | $0.5 / 0.25$ |
| $\overline{C P}_{1}, \overline{C P}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | $2.5 / 2.5$ | $2.0 / 0.5$ |
| $\bar{C}_{D_{1}}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs (Active LOW) | $2.5 / 4.375$ | $1.5 / 0.5$ |
| $\bar{S}_{\mathrm{D} 1}, \bar{S}_{\mathrm{D} 2}$ | $2.5 / 4.375$ | $1.5 / 0.5$ |  |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Direct Set Inputs (Active LOW) | Outputs | $25 / 12.5$ |

## LOGIC DIAGRAM (one half shown)



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 50 |  | 8.0 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {cP }}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 | 74S | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  |  | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 80 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time <br> $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | 0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$ | $\overline{C P P}_{n}$ Pulse Width | $\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| $t_{w}(L)$ | $\bar{C}_{\text {Dn }}$ or $\bar{S}_{\text {Dn }}$ Pulse Width LOW | 8.0 |  | 15 |  | ns | Fig. 3-10 |

## 54S/74S113 <br> 54LS/74LS113 <br> DUAL JK EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The'113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the $J$ and $K$ inputs may be changed when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :---: | :---: | :---: |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| $L$ | $H$ | $L$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

Asynchronous Input:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level Set is independent of clock
$t_{n}=$ Bit time before clock pulse.
$t_{n}+1=$ Bit time after clock pulse.
$H=H I G H$ Voltage Level
L = LOW Voltage Level

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74 \mathrm{~S} 113 \mathrm{PC}, 74 \mathrm{LS} 113 \mathrm{PC}$ |  | 9 A |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 113 \mathrm{DC}, 74 \mathrm{LS} 113 \mathrm{DC}$ | $54 \mathrm{~S} 113 \mathrm{DM}, 54 \mathrm{LS} 113 \mathrm{DM}$ | 6 A |
| Flatpak <br> (F) | A | $74 \mathrm{~S} 113 \mathrm{FC}, 74 \mathrm{LS} 113 \mathrm{FC}$ | $54 \mathrm{~S} 113 \mathrm{FM}, 54 \mathrm{LS} 113 \mathrm{FM}$ | 31 |


$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $J_{1}, J_{2}, K_{1}, K_{2}$ | Data Inputs | $1.25 / 1.0$ | $0.5 / 0.25$ |
| $\overline{C P}_{1}, \overline{C P}_{2}$ | Clock Pulse Inputs (Active Falling Edge) | $2.5 / 2.5$ | $2.0 / 0.5$ |
| $\bar{S}_{D 1}, \bar{S}_{D 2}$ | $2.5 / 4.375$ | $1.5 / 0.5$ |  |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \bar{Q}_{2}$ | Direct Set Inputs (Active LOW) | $25 / 12.5$ | $10 / 5.0$ |

LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 50 |  | 8.0 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{C P}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 | 745 | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 80 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH <br> tpHL | Propagation Delay $\bar{S}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{ts}_{s}(\mathrm{H})$ | Setup Time | 7.0 |  | 2015 |  | ns | Fig. 3-7 |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | $J_{n}$ or $\mathrm{K}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}_{\mathrm{n}}$ | 7.0 |  |  |  |  |  |
| $t_{n}(\mathrm{H})$ | Hold Time | 0 |  | 0 |  | ns |  |
| $t_{n}(\mathrm{~L})$ | $J_{n}$ or $K_{n}$ to $\overline{C P}_{n}$ | 0 |  | 0 |  |  |  |
| $t_{w}(\mathrm{H})$ | $\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width | 6.0 |  | 20 |  | ns | Fig. 3-9 |
| $t_{w}$ (L) |  | 6.5 |  | 15 |  |  |  |
| $t_{w}(\mathrm{~L})$ | $\bar{S}_{\text {Dn }}$ Pulse Width LOW | 8.0 |  | 15 |  | ns | Fig. 3-10 |

## 54S/74S114 54LS/74LS114

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP
(With Common Clocks and Clears)

DESCRIPTION - The '114 features individual J, K and set inputs and common clock and common clear inputs. When the clock goes HIGH the inputs are enabled and data will be accepted. The logic level of the $J$ and $K$ inputs may be allowed to change when the Clock Pulse is HIGH and the bistable will perform according to the truth table as long as the minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

TRUTH TABLE

| INPUTS | OUTPUT |  |
| :--- | :--- | :--- |
| $@ t_{n}$ |  | $@ t_{n}+1$ |
| $J$ | $K$ | $Q$ |
| $L$ | $L$ | $Q_{n}$ |
| L | $H$ | L |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $\bar{Q}_{n}$ |

Asynchronous Inputs:
LOW input to $\bar{S}_{D}$ sets $Q$ to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and $\overline{\mathrm{Q}}$ HIGH

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
$\mathrm{t}_{\mathrm{n}}+\mathbf{1}=$ Bit time after clock pulse.

## ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ | $\frac{{ }^{2-c_{c_{0}} 90-6}}{?} \frac{12{ }^{k_{c_{0}}}{ }^{90-8}}{?}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74S114PC, 74LS114PC |  | 9A | $\mathrm{Vcc}=\operatorname{Pin} 14$ |
| Ceramic DIP (D) | A | 74S114DC, 74LS114DC | 54S114DM, 54LS114DM | 6A |  |
| Flatpak (F) | A | 74S114FC, 74LS114FC | 54S114FM, 54LS114FM | 31 |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ | Data Inputs | 1.25/1.0 | 0.5/0.25 |
| CP | Clock Pulse Input (Active Falling Edge) | 5.0/5.0 | 2.0/0.5 |
| $\overline{\mathrm{C}}_{\text {D }}$ | Direct Clear Input (Active LOW) | 5.0/8.75 | 1.5/0.5 |
| $\overline{\mathrm{S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$ | Direct Set Inputs (Active LOW) | 2.5/4.375 | 1.5/0.5 |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$ | Outputs | 25/12.5 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |

## LOGIC DIAGRAM (one half shown)



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 50 | 8.0 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{C P}=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 | 74S | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 80 |  | 30 |  | MHz | Figs. 3-1, 3-9 |
| tpLH <br> tphL | Propagation Delay $\overline{C P}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH <br> tphL | Propagation Delay $\bar{C}_{D}$ or $\bar{S}_{D n}$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time $\qquad$ <br> $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{th}_{\mathrm{h}}(H) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time $J_{n}$ or $K_{n}$ to $\overline{C P}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | $\overline{\mathrm{CP}}$ Pulse Width | $\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}^{\text {w }}$ | $\bar{C}_{\text {D }}$ or $\bar{S}_{\text {Dn }}$ Pulse Width | 8.0 |  | 15 |  | ns | Fig. 3-10 |

## 54/74121 <br> MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The '121 features positive and negative dc level triggering inputs and complementary outputs. Input pin 5 directly activates a Schmitt circuit which provides temperature compensated level detection, increases immunity to positive-going noise and assures jitter-free response to slowly rising triggers.

When triggering occurs, internal feedback latches the circuit, prevents retriggering while the output pulse is in progress and increases immunity to negative-going noise. Noise immunity is typically 1.2 V at the inputs and 1.5 V on Vcc.

Output pulse width stability is primarily a function of the external $R_{x}$ and $C_{x}$ chosen for the application. A $2 \mathrm{k} \Omega$ internal resistor is provided for optional use where output pulse width stability requirements are less stringent. Maximum duty cycle capability ranges from $67 \%$ with a $2 \mathrm{k} \Omega$ resistor to $90 \%$ with a $40 \mathrm{k} \Omega$ resistor. Duty cycles beyond this range tend to reduce the output pulse width. Otherwise, output pulse width follows the relationship:

$$
t_{w}=0.69 R x C x
$$

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic <br> DIP (P) | A | 74121PC |  | 9A |
| Ceramic DIP (D) | A | 74121DC | 54121DM | 6A |
| Flatpak (F) | A | 74121FC | 54121FM | 31 |


$\mathrm{VCC}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
$N C=$ Pins 2,8,12,13

INPUT LOADING/FAN-OUT: See Section 3 for U.L.definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\bar{A}_{1}, \bar{A}_{2}$ | Trigger Inputs (Active Falling Edge) | $1.0 / 1.0$ |
| $B$ | Schmitt Trigger Input (Active Rising Edge) | $2.0 / 2.0$ |
| Q, $\bar{Q}$ | Outputs | $20 / 10$ |

## TRIGGERING TRUTH TABLE

| INPUTS | RESPONSE |
| :---: | :---: |
| $\bar{A}_{1}$ $\bar{A}_{2}$ B <br> $H$ $H$  |  |
| $\mathrm{H} \quad \mathrm{H} \quad$ J | No Trigger |
| $\begin{array}{llll}\mathrm{L} & \mathrm{X} & \mathrm{J} \\ \mathrm{X} & \mathrm{L} & \mathrm{S}\end{array}$ | Trigger |
| $x$ L $\quad$ L | Trigger |
| L L $\quad$ L | No Trigger |
| 乙 X L | No Trigger |
| L H H | Trigger |
| $L$ L X | No Trigger |
| $x \quad$ L L | No Trigger |
| H ㄴ H | Trigger |

NOTE:
Triggering occurs only when the $\overline{\mathbf{Q}}$ output is HIGH (not in timing cycle) and one of the above triggering situations is satisfied.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| $\mathrm{V}_{\mathrm{T}+}$ | Positive-going Threshold Voltage at $\bar{A}_{n}$ or B Inputs |  |  |  | 2.0 | V | $\mathrm{Vcc}=\mathrm{Min}$ |
| $\mathrm{V}_{\mathrm{T}}$ - | Negative-going Threshold Voltage at $\bar{A}_{n}$ or B Inputs |  |  | 0.8 |  | V | $\mathrm{Vcc}=\mathrm{Min}$ |
| Ios | Output Short Circuit Current |  | $\frac{X M}{X C}$ | $\begin{aligned} & -20 \\ & -18 \end{aligned}$ | $\begin{aligned} & \hline-55 \\ & -55 \end{aligned}$ | mA | $V_{C c}=\operatorname{Max}$ |
| Icc | Power Supply Current | Quiescent State Fired State |  |  | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |  |
|  |  | Min | Max |  |  |  |
| tPLH | Propagation Delay B to Q | 15 | 55 | ns | $\mathrm{C}_{\mathrm{x}}=80 \mathrm{pF}$ <br> Fig. 3-1, Fig. a |  |
| tPLH | Propagation Delay $\bar{A}_{n}$ to $Q$ | 25 | 70 | ns |  |  |
| tPHL | Propagation Delay $B$ to $\bar{Q}$ | 20 | 65 | ns |  |  |
| tPHL | Propagation Delay $\bar{A}_{n}$ to $\bar{Q}$ | 30 | 80 | ns |  |  |
| tw | Pulse Width Using Internal Timing Resistor | 70 | 150 | ns | $\mathrm{Cx}=80 \mathrm{pF}$ | $\begin{array}{r} \mathrm{Rx}=\text { Open } \\ \text { Fig. } 3-1 \end{array}$ |
| tw | Pulse Width with Zero <br> Timing Capacitance | 20 | 50 | ns | $C_{x}=0 \mathrm{pF}$ | Fig. a $\operatorname{Pin} 9=V c c$ |
| tw | Pulse Width Using External Timing Resistor | 600 | 800 | ns | $C^{\text {c }}=100 \mathrm{pF}$ | $\begin{array}{r} \mathrm{Rx}=10 \mathrm{k} \Omega \\ \text { Pin } 9=\text { Open } \\ \text { Fig. } 3-1, \mathrm{a} \\ \hline \end{array}$ |
|  |  | 6.0 | 8.0 | ms | $\mathrm{C}_{\mathrm{x}}=1.0 \mu \mathrm{~F}$ |  |
| thold | Minimum Duration of Trigger Pulse |  | 50 | ns | $\begin{aligned} & \text { Cx }=80 \mathrm{pF}, \text { Rx }=\text { Open } \\ & \text { Pin } 9=\text { Vcc, Fig. } \mathrm{a} \end{aligned}$ |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYBMOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| $V_{r-f}$ | Input Pulse Rise/Fall Slew Rate | $@ A_{n}$ |  | 1.0 | $\mathrm{V} / \mu \mathrm{S}$ |  |
|  |  | @ B |  | 1.0 | V/s |  |
| Rx | External Timing Resistor | XC | 1.4 | 40 | k |  |
|  |  | XM | 1.4 | 30 | $k \Omega$ |  |
| Cx | External Timing Capacitor |  | 0 | 1000 | $\mu \mathrm{F}$ |  |
| tw | Output Pulse Width |  |  | 40 | sec | Fig. a |
|  | Duty Cycle | XM, XC | 679090 |  | \% | $R \mathrm{x}=2 \mathrm{k} \Omega$ |
|  |  | XM |  |  | $\mathrm{R}_{\mathrm{x}}=30 \mathrm{k} \Omega$ |  |
|  |  | XC |  |  | $R \mathrm{X}=40 \mathrm{k} \Omega$ |  |



Fig. a

## TYPICAL CHARACTERISTICS



Fig. b Variation in Internal Timing Resistor Value Versus Amblent Temperaure


Fig. e Schmitt
Trigger Threshold Voltage Versus Ambient Temperature


Fig. c Variation in Output Pulse Width Versus Supply Voltage


Fig. f Propagation Delay
Time B Input to Q Output Versus Ambient Temperature


Fig. d Variation in Output Pulse Width Versus Ambient Temperature


Fig. g Propagation Delay
Time B Input to $\overline{\mathbf{Q}}$ Output Versus Ambient Temperature


Fig. h Output Pulse Width Versus Timing Resistor Value


Fig. I Output Pulse Width Versus External Capacitance

## 54/74122

## RETRIGGERABLE RESETTABLE MULTIVIBRATOR

DESCRIPTION - The '122 features positive and negative dc level triggering inputs, complementary outputs, an optional $10 \mathrm{k} \Omega$ internal timing resistor and an overiding Direct Clear ( $\overline{\mathrm{C}}_{\mathrm{D}}$ ) input. When the circuit is in the quasi-stable (delay) state, another trigger applied to the inputs (per Truth Table) will cause the delay period to start again, without disturbing the outputs. This process can be repeated indefinitely and thus the output pulse period (Q HIGH, $\bar{Q}$ LOW) can be made as long as desired. Alternatively, a delay period can be terminated by a LOW signal applied to $\overline{\mathrm{C}}_{\mathrm{D}}$, which also prevents triggering. An internal connection from $\overline{\mathrm{C}}_{\mathrm{D}}$ to the input gate makes it possible to trigger the circuit by a positive-going signal on $\overline{\mathrm{C}}_{\mathrm{D}}$, as shown in the Truth Table. For timing capacitor values greater than 1000 pF , the output pulse width is defined as follows:

$$
t_{w}=0.32 R_{x} C_{x}(1.0+0.7 / R x)
$$

Where $t_{w}$ is in ns, $R x$ is in $k \Omega$ and $C_{x}$ is in $p F$.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | $\mathrm{VCC}=+5.0 \mathrm{~V}, \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | 74122 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 74122 DC | 54122 DM | 6 A |
| Flatpak <br> (F) | A | 74122 FC | 54122 FM | 31 |



## LOGIC SYMBOL



VCC $=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
NC = Pins 10, and 12

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{\bar{A}}_{1}, \bar{A}_{2}$ | Trigger Inputs (Active Falling Edge) | $1.0 / 1.0$ |
| $\mathrm{~B}_{1}, \mathrm{~B}_{2}$ | Trigger Inputs (Active Rising Edge) | $1.0 / 1.0$ |
| $\mathrm{C}_{D}$ | Direct Clear Inputs (Active LOW) | $2.0 / 2.0$ |
| $\mathrm{Q}, \overline{\mathrm{Q}}$ | Outputs | $20 / 10$ |

TRIGGERING TRUTH TABLE

| INPUTS* |  |  |  |  | RESPONSE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\bar{C}_{D}$ | $\bar{A}_{1}$ | $\bar{A}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{2}$ |  |
| L | X | X | X | X | No Trigger |
| X | L | L | X | X | No Trigger |
| X | $\mathcal{L}$ | X | L | X | No Trigger |
| H | L | H | H | H | Trigger |
| X | X | X | $\Gamma$ | L | No Trigger |
| X | H | H | $\Gamma$ | X | No Trigger |
| H | L | X | $\Gamma$ | H | Trigger |
| $\Gamma$ | L | X | H | H | Trigger |

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
*Input pins 1 and 2 are logically
interchangeable, as are input pins 3 and 4.

PULSE WIDTH vs Rx AND Cx



Fig. a

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :--- | :--- | :---: | :---: | :---: | :--- |
|  |  | Min | Max |  |  |
| Ios | Output Short <br> Circuit Current | -10 | -40 | Max |  |
| Icc | Power Supply Current |  | 28 | mA | $\mathrm{Vcc}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{RL}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tPLH | Propagation Delay B to Q |  | 28 | ns | $\mathrm{Cx}=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega$ <br> Fig. 3-1, Fig. a |
| tPLH | Propagation Delay $\bar{A}_{n}$ to $Q$ |  | 33 | ns |  |
| tPHL | Propagation Delay B to $\bar{Q}$ |  | 36 | ns |  |
| tpHL | Propagation Delay $\bar{A}_{n}$ to $\bar{Q}$ |  | 40 | ns |  |
| tPLH | Propagation Delay $\bar{C}_{D}$ to $\overline{\mathrm{Q}}$ |  | 40 | ns | $\begin{aligned} & C x=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| tPHL | Propagation Delay $\bar{C}_{D}$ to $Q$ |  | 27 | ns |  |
| tw(out) | Pulse Width at Q with Zero <br> Timing Capacitor |  | 65 | ns | $\mathrm{Cx}_{\mathrm{x}}=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega$ <br> Fig. 3-1, Fig. a |
| tw(out) | Pulse Width with External <br> Timing Components | 3.08 | 3.76 | $\mu \mathrm{S}$ | $C_{x}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$ Figs. 3-1, Fig. a |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| tw | Trigger Pulse Width |  | 40 |  | ns | Over Operating Vcc and Temperature Range |
| Rx | External Timing Resistor | XC | $\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 50 \\ & 25 \end{aligned}$ | $\mathrm{k} \Omega$ |  |
| Cx | External Timing Capacitor |  | No Restrictions |  | pF |  |

CONNECTION DIAGRAM PINOUT A

## 54/74123

## DUAL RETRIGGERABLE RESETTABLE MULTIVIBRATOR

DESCRIPTION - Each half of the' 123 features retriggerable capability, complementary dc level triggering and overriding Direct Clear. When a circuit is in the quasi-stable (delay) state, another trigger applied to the inputs (per the Truth Table) will cause the delay period to start again, without disturbing the outputs. By repeating this process, the output pulse period (Q HIGH, $\overline{\mathrm{Q}}$ LOW) can be made as long as desired. Alternatively, a delay period can be terminated at any time by a LOW signal on $\overline{\mathrm{C}}_{\mathrm{D}}$, which also inhibits triggering. An internal connection from $\overline{\mathrm{C}}_{D}$ to the input gate makes it possible to trigger the circuit by a positive-going signal on $\overline{\mathrm{C}}_{\mathrm{D}}$, as shown in the Truth Table. For timing capacitor values greater than 1000 pF , the output pulse width is defined as follows.

$$
t_{w}=0.28 R_{x} C_{x}(1.0+0.7 / R x)
$$

Where $t_{w}$ is in $n s, R x$ is in $k \Omega$ and $C x$ is in $p F$.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74123PC |  | 9B |
| Ceramic DIP (D) | A | 74123DC | 54123DM | 6B |
| Flatpak (F) | A | 74123FC | 54123FM | 4L |


(3)

Vcc $=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\bar{A}_{1}, \bar{A}_{2}$ | Trigger Inputs (Active Falling Edge) | $1.0 / 1.0$ |
| $\mathrm{~B}_{1}, \mathrm{~B}_{2}$ | Trigger Inputs (Active Rising Edge) | $1.0 / 1.0$ |
| $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ | Direct Clear Inputs (Active LOW) | $2.0 / 2.0$ |
| $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ | Positive Pulse Output | $20 / 10$ |
| $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{2}$ | Negative Pulse Output | $20 / 10$ |


| TRIGGERING TRUTH TABLE |  |
| :---: | :---: |
| INPUTS | R |
| A B $\bar{C}_{D}$ |  |
| $X \quad X \quad L$ | No Trigger |
| L L X | No Trigger |
| L H H | Trigger |
| $H \int X$ | No Trigger |
| L $\int$ H | Trigger |
| L H $\quad$ | Trigger |

$H=H I G H$ Voltage Level $L=$ LOW Voltage Level $X=$ Immaterial



Fig. a.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| los | Output Short Circuit Current | -10 | -40 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| Icc | Power Supply Current |  | 66 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tpLH | Propagation Delay B to Q |  | 28 | ns | $\mathrm{Cx}=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega$ <br> Fig. 3-1, Fig. a |
| tplH | Propagation Delay $\bar{A}$ to $Q$ |  | 33 | ns |  |
| tphL | Propagation Delay $B$ to $\bar{Q}$ |  | 36 | ns |  |
| tPHL | Propagation Delay $\bar{A}$ to $\bar{Q}$ |  | 40 | ns |  |
| tple | Propagation Delay $\bar{C}_{D n}$ to $\bar{Q}$ |  | 40 | ns | $\begin{aligned} & \mathrm{Cx}=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega \\ & \text { Figs. } 3-1,3-10 \end{aligned}$ |
| tphL | Propagation Delay $\bar{C}_{D n}$ to Q |  | 27 | ns |  |
| $\mathrm{tw}_{\text {( }}$ min) | Pulse Width with Zero Timing Capacitor |  | 65 | ns | $C x=0 \mathrm{pF}, \mathrm{Rx}=5 \mathrm{k} \Omega$ <br> Fig. 3-1, Fig. a |
| tw | Pulse Width with External Timing Components | 2.76 | 3.37 | $\mu \mathrm{S}$ | $\mathrm{Cx}_{\mathrm{x}}=1000 \mathrm{pF}, \mathrm{Rx}=10 \mathrm{k} \Omega$ <br> Fig. 3-1, Fig. a |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| tw | Trigger Pulse Width |  | 40 |  | ns | Over Operating Temperature Range |
| Rx | External Timing Resistor | $\frac{X C}{X M}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 50 \\ & 25 \end{aligned}$ | k $\Omega$ |  |
| Cx | External Timing Capacitor |  | No Restrictions |  | pF |  |



DC AND AC CHARACTERISTICS: See Seciton 3*

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |  |
| VOH | Output HIGH Voltage | XM | 2.4 |  |  |  |  | $1 \mathrm{OH}=-2.0 \mathrm{~mA}$ |  |
|  |  | XC | 2.4 |  |  |  | v | $1 \mathrm{OH}=-5.2 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$, |
|  |  | XM |  |  | 2.4 |  | V | $1 \mathrm{OH}=-1.0 \mathrm{~mA}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |
|  |  | XC |  |  | 2.4 |  |  | $1 \mathrm{OH}=-2.6 \mathrm{~mA}$ |  |
| los | Output Short Circuit Current | XM | -30 | -70 | -30 | -130 | mA | $\mathrm{VCC}=\mathrm{Max}$ |  |
|  |  | XC | -28 | -70 | -30 | -130 |  |  |  |
| Icc | Power Supply Current |  |  | 54 |  | 20 | mA | Outputs OFF, VIN = Gnd $\mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$ |  |
| $\overline{\mathrm{tpLL}}$ tpHL | Propagation Delay Data to Output |  |  | $\begin{aligned} & 13 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | ns | Figs. 3-3, 3-5 |  |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  |  | $\begin{aligned} & 17 \\ & 25 \\ & \hline \end{aligned}$ |  | 16 25 | ns | Figs. 3-3, 3-11, 3-12 |  |
| $\begin{aligned} & \overline{\mathrm{tPLZ}} \\ & \mathrm{tPHZ} \end{aligned}$ | Output Disable Time |  |  | $\begin{array}{r} 8.0 \\ 12 \end{array}$ |  | 25 25 | ns | Figs. 3-3, 3-11, | , 3-12 |

[^24]

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min Max |  |  |  |  |
| Vor | Output HIGH Voltage | XM | $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$ |  | $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$ |  | V | $1 \mathrm{OH}=-2.0 \mathrm{~mA}$ |  |
|  |  | XC |  |  |  |  | $1 \mathrm{OH}=-5.2 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Min}$, |
|  |  | XM |  |  |  |  | $1 \mathrm{OH}=-1.0 \mathrm{~mA}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |
|  |  | XC |  |  |  |  | $1 \mathrm{OH}=-2.6 \mathrm{~mA}$ |  |
| los | Output Short Circuit Current | XM | -30 | -70 | -30 | -130 |  | mA | $\mathrm{Vac}=\mathrm{Max}$ |  |
|  |  | XC | -28 | -70 | -30 | -130 |  | mA | $\mathrm{Vcc}=$ Max |  |
| Icc | Power Supply Current |  | 62 |  |  | 24 |  | mA | Outputs LOW, $V_{E}=4.5 \mathrm{~V}$ | $\begin{aligned} V_{c C} & =M a x \\ V_{I N} & =G n d \end{aligned}$ |
|  |  |  |  | 20 | Outputs OFF, $V_{E}=0 V$ |  |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay Data to Output |  |  |  |  | $\begin{aligned} & 13 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | ns | Figs. 3-3, 3-5 |  |
| $\begin{aligned} & \text { tpzen } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  |  | $\begin{aligned} & 18 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-3, 3-11, | 3-12 |  |
| $\begin{aligned} & \text { tpLz } \\ & \text { tPHZ } \end{aligned}$ | Output Disable Time |  |  | $\begin{aligned} & 16 \\ & 18 \end{aligned}$ |  | 30 30 | ns | Figs. 3-3, 3-11, | 3-12 |  |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.

## 54/74132 54S/74S132 54LS/74LS132 <br> QUAD 2-INPUT <br> SCHMITT TRIGGER NAND GATE

## ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 74132PC, 74S132PC } \\ & \text { 74LS132PC } \end{aligned}$ |  | 9A |
| Ceramic <br> DIP (D) | A | $\begin{aligned} & \text { 74132DC, 74S132DC } \\ & \text { 74LS132DC } \end{aligned}$ | $\begin{aligned} & \text { 54132DM, 54S132DM } \\ & \text { 54LS132DM } \end{aligned}$ | 6A |
| Flatpak (F) | A | $\begin{aligned} & \text { 74132FC, 74S132FC } \\ & \text { 74LS132FC } \end{aligned}$ | $\begin{aligned} & \text { 54132FM, 54S132FM } \\ & \text { 54LS132FM } \end{aligned}$ | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions

| PINS | 54/74 (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: | :---: |
| Inputs | $1.0 / 0.75$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $20 / 10$ | $25 / 12.5$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |

CONNECTION DIAGRAM PINOUT A


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74 | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| $\mathrm{V}_{\mathrm{T}+}$ | Positive-going Threshold Voltage | 1.52 .0 | 1.61 .9 | 1.41 .9 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{T} \text { - }}$ | Negative-going Threshold Voltage | 0.61 .1 | 1.11 .4 | 0.51 .0 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| $\mathrm{V}_{T+}-\mathrm{V}_{\text {T- }}$ | Hysteresis Voltage | 0.4 | 0.2 | 0.4 | V | $\mathrm{Vcc}=+5.0 \mathrm{~V}$ |
| $1{ }^{+}+$ | Input Current at Positivegoing Threshold | -0.43** | -0.9 ** | -0.14** | mA | $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{T}+}$ |
| ${ }^{\text {T }}$ - | Input Current at Negativegoing Threshold | -0.56** | -1.1 ** | -0.18** | mA | $\mathrm{Vcc}_{\text {c }}=+5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {T- }}$ |
| los | Output Short Circuit Current | -18 $\quad-55$ |  |  | mA | $\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \end{aligned}$ | Power Supply Current | $\begin{aligned} & 24 \\ & 40 \end{aligned}$ | $\begin{aligned} & 44 \\ & 68 \end{aligned}$ | $\begin{aligned} & 11 \\ & 14 \end{aligned}$ | mA |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay | $\begin{aligned} & 22 \\ & 22 \end{aligned}$ | $\begin{array}{r\|} 10.5 \\ 13 \\ \hline \end{array}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

[^25]
## 54S/74S133 54LS/74LS133 <br> 13-INPUT NAND GATE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74S133PC, 74LS133PC |  | 9B |
| Ceramic DIP (D) | A | 74S133DC, 74LS133DC | 54S133DM, 54LS133DM | 6B |
| Flatpak (F) | A | 74S133FC, 74LS133FC | 54S133FM, 54LS133FM | 4L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L: definitions

| PINS | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $25 / 12.5$ | $10 / 5.0$ |
|  |  | $(2.5)$ |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74S 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| ICCH | Power Supply Current | 5.0 | 0.5 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $V_{\text {cc }}=$ Max |
| ICCL |  | 10 | 1.1 |  | $\mathrm{V}_{\text {IN }}=$ Open |  |
| tplh <br> tPHL | Propagation Delay | 6.0 7.0 | $\begin{aligned} & 15 \\ & 38 \end{aligned}$ | ns | Figs. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

| 54S/74S134 <br> 12-INPUT NAND GA <br> (With 3-State Outputs) |  |  |  |  |  |  |  | CONNECTION DIAGRAM PINOUT A |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE |  |  | MILITARY GRADE |  | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |  |  |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  |  | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  | TRUTH TABLE |  |  |
| Plastic DIP (P) | A | 74S134PC |  |  |  |  | 9B |  |  |  |
| Ceramic DIP (D) | A | 74S134DC |  |  | 54S134DM |  | 6B | INPUTS | OUTPU | UTS |
| Flatpak <br> (F) | A | 74S134FC |  |  | 54S134FM |  | 4L | $\frac{\text { A........ L }}{\text { H........ }}$ | Enable |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |  |  | H = HIGH Voltage Level <br> $\mathrm{L}=$ LOW Voltage Level <br> $\mathrm{X}=$ Immaterial <br> Z $=$ High Impedance |  |  |
| PINS | 54/74S (U.L.) <br> HIGH/LOW |  |  |  |  |  |  |  |  |  |
| Inputs Outputs | $\begin{array}{r} 1.25 / 1.25 \\ 50 / 12.5 \end{array}$ |  |  |  |  |  |  |  |  |  |
| DC AND AC CHARACTERISTICS: See Section $3^{*}$ |  |  |  |  |  |  |  |  |  |  |
| SYMBOL | PARAMETER |  |  |  | 54/74S |  | UNITS | CONDITIONS |  |  |
|  |  |  |  |  | Min | Max |  |  |  |  |
| VOH | Output HIGH Voltage |  |  | XM | $\begin{aligned} & 2.4 \\ & 0 \end{aligned}$ |  | V | $\frac{\mathrm{IOH}=-2.0 \mathrm{~mA}}{\mathrm{IOH}=-6.5 \mathrm{~mA}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{VIN}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$ |  |
| Icc | Power Supply Current |  | Outputs HIGH <br> Outputs LOW <br> Outputs OFF |  | $\begin{aligned} & 13 \\ & 16 \\ & 25 \\ & \hline \end{aligned}$ |  | mA | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$ |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}= \\ & \mathrm{Max} \end{aligned}$ |
|  |  |  | $\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{VE}=$ | 0 V |  |  |  |  |  |  |  |
|  |  |  | V IN $=5.0 \mathrm{~V}, \mathrm{VE}=$ | 5.0 V |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay Data to Output |  |  |  | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$ | ns | Figs. 3-3, 3-4 |  |  |
| $\begin{aligned} & \text { tpZH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  |  |  |  | $\begin{array}{r} 19.5 \\ 21 \end{array}$ | ns | Figs. 3-3, 3-11, 3 | 3-12 |  |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$ | Output Disable Time |  |  |  |  | $\begin{gathered} 8.5 \\ 14 \end{gathered}$ | ns | Figs. 3-3, 3-11, 3 | 3-12 |  |
| ${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{v}$. |  |  |  |  |  |  |  |  |  |  |



DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 99 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=$ Gnd |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay from $A$ or $B$ to $Y$ |  | $\begin{aligned} & 13 \\ & 10 \end{aligned}$ | ns | A or $B=L, C=L$ <br> Fig. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay from A or B to Y |  | $\begin{array}{r} 12 \\ 13.5 \end{array}$ | ns | $A$ or $B=H, C=L$ <br> Fig. 3-1, 3-4 |
| tpLH tPHL | Propagation Delay from $A$ or $B$ to $Y$ |  | $\begin{aligned} & 13 \\ & 10 \end{aligned}$ | ns | $A$ or $B=L, C=H$ <br> Fig. 3-1, 3-4 |
| tpLH tPHL | Propagation Delay from A or B to Y |  | $\begin{aligned} & 12 \\ & 13 \end{aligned}$ | ns | $A$ or $B=H, C=H$ Fig. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay from C to $Y$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | A = B, Fig. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay from $C$ to $Y$ |  | $\begin{array}{r} 11.5 \\ 12 \end{array}$ | ns | A $\neq$ B, Fig. 3-1, 3-4 |

[^26]

DC AND AC CHARACTERISTICS: See Section $3^{*}$

[^27]
## 54S/74S137 <br> 1-OF-8 DECODER/DEMULTIPLEXER <br> (With Input Latches)

DESCRIPTION - The 'S137 is a very high speed 1-of-8 decoder/demultiplexer with latches on the three address inputs. This device essentially combines the function and speed of the 'S138 1-of-8 decoder with a 3-bit storage latch. When the latch is enabled ( $\overline{\mathrm{LE}}=\mathrm{LOW}$ ), the 'S137 acts as a 1 -of-8 active LOW decoder. When the Latch Enable (LE) goes from LOW to HIGH, the last data present at the inputs before this transition is stored in the latches. Further address changes are ignored as long as $\overline{\operatorname{EE}}$ remains HIGH. The output enable gate ( $\bar{E}_{1} \bullet E_{2}$ ) controls the state of the outputs independent of the Address inputs or latch operation. All outputs are HIGH unless $\bar{E}_{1}$ is LOW and $\mathrm{E}_{2}$ is HIGH. The 'S137 is ideally suited for implementing non-overlapping decoders in 3 -state systems and strobed (stored address) applications in bus oriented systems. The 'S137 is fabricated with the Schottky barrier diode process for high speed.

- SCHOTTKY PROCESS FOR HIGH SPEED
- COMBINES 1-OF-8 DECODER WITH 3-BIT LATCH
- MULTIPLE INPUT ENABLE FOR EASY EXPANSION OR INDEPENDENT CONTROLS
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74S137PC |  | 9B |
| Ceramic DIP (D) | A | 74S137DC | 54S137DM | 6B |
| Flatpak (F) | A | 74S137FC | 54S137FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\frac{A_{0}-A_{2}}{\text { LE }}$ | Address Inputs | $1.25 / 1.25$ |
| $\bar{E}_{1}$ | Latch Enable Input (Active LOW) | $1.25 / 1.25$ |
| $\mathrm{E}_{2}$ | Enable Input (Active LOW) | $1.25 / 1.25$ |
| $\bar{O}_{0}-\bar{O}_{7}$ | Enable Input (Active HIGH) | $1.25 / 1.25$ |
|  | Outputs (Active LOW) | $25 / 12.5$ |

TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{L E}$ | $\bar{E}_{1}$ | $\mathrm{E}_{2}$ | A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\overline{\mathrm{O}}_{0}$ | $\overline{\mathrm{O}}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\bar{O}_{3}$ | $\overline{\mathrm{O}}_{4}$ | $\overline{\mathrm{O}}_{5}$ | $\bar{O}_{6}$ | $\overline{\mathrm{O}}_{7}$ |
| H | L | H | X | $X$ | X |  |  |  |  | ABL |  |  |  |
| X | H | X | X | X | X | H | H | H | H | H | H | H | H |
| X | X | L | X | X | X | H | H | H | H | H | H | H | H |
| L | L | H | L | L | L | L | H | H | H | H | H | H | H |
| L | L | H | H | L | L | H | L | H | H | H | H | H | H |
| L | L | H | L | H | L | H | H | L | H | H | H | H | H |
| L | L | H | H | H | L | H | H | H | L | H | H | H | H |
| L | L | H | L | L | H | H | H | H | H | L | H | H | H |
| L | L | H | H | L | H | H | H | H | H | H | L | H | H |
| L | L | H | L | H | H | H | H | H | H | H | H | L | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | L |

H = HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

## LOGIC DIAGRAM



FUNCTIONAL DESCRIPTION - The 'S137. is a very high speed 1-of-8 decoder/demultiplexer fabricated with the Schottky barrier diode process. The decoder accepts three binary weighted inputs ( $A_{0}, A_{1}, A_{2}$ ) and when enabled provides eight mutually exclusive active LOW outputs ( $\bar{O}_{0}-\bar{O}_{7}$ ). The'S137 also features a 3-bit latch on the Address inputs. The device functions as a $1-0$ - 8 decoder (same as ' S 138 ) when the Latch Enable ( $\overline{\mathrm{LE}}$ ) is LOW. When $\overline{\mathrm{LE}}$ is HIGH, the address present one setup time prior to the LOW-to-HIGH transition of $\overline{\mathrm{LE}}$ will be stored in the address latches and the outputs will not be affected by further address changes. The output enable control is an AND gate comprised of one active LOW input ( $\bar{E}_{1}$ ) and one active HIGH input ( $E_{2}$ ). All outputs are HIGH unless the enable inputs ( $\bar{E}_{1} \bullet E_{2}$ ) are in their true (active) state.

A non-overlapping decoder with edge-triggered address inputs can be easily implemented by tying the Latch Enable input $\overline{L E}$ to the active HIGH Enable input ( $E_{2}$ ). When this input ( $\overline{L E} \cdot E_{2}$ ) is LOW, all outputs are forced HIGH and a new address enters the latches. When the $\overline{L E} \bullet E_{2}$ input goes HIGH, the address is stored in the latches and the corresponding output gate is enabled (goes LOW). In this configuration, the address must be stable only one setup time prior to the LOW-to-HIGH transition of the LE $\cdot \mathrm{E}_{2}$ input. The addressed output remains active LOW as long as the ( $\overline{L E} \bullet E_{2}$ ) input remains HIGH, even if the address changes. Data or control information can thus be strobed into the 'S137 from very noisy or bus oriented systems using a LOW pulse width equal to the minimum latch enable pulse width $t_{w}(\mathrm{~L})$.

The multiple enable inputs along with the address latches allows easy expansion to a 1-of-64 decoder with nonoverlapping outputs (see Figure a).


Fig. a High Speed 1-of-64 Decoder with Input Data Storage

| DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYMBOL | PARAMETER | 54/74S |  | UNITS | CONDITIONS |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 95 | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{array}{\|l\|l\|} \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\bar{E}_{1}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 10 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay $\mathrm{E}_{2}$ to $\bar{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPH } \end{aligned}\right.$ | Propagation Delay $\overline{\text { LE }}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 12 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| ts (H) | Setup Time HIGH $A_{n}$ to $\overline{L E}$ | 4.5 |  | ns | Fig. 3-13 |
| $\mathrm{th}_{\text {c }}(\mathrm{H})$ | Hold Time HIGH $A_{n}$ to $\overline{L E}$ | 0 |  | ns |  |
| ts (L) | Setup Time LOW $A_{n}$ to $\overline{L E}$ | 6.5 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW $A_{n}$ to $\overline{L E}$ | 0 |  | ns |  |
| $\mathrm{tw}^{\text {( }} \mathrm{L}$ ) | $\overline{\text { LE Pulse Width LOW }}$ | 7.0 |  | ns | Fig. 3-21 |

## 54S/74S138 54LS/74LS138 1-OF-8 DECODER/DEMULTIPLEXER

DESCRIPTION - The ' 138 is a high speed 1 -of- 8 decoder/demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of- 24 decoder using just three ' 138 devices or to a 1 -of- 32 decoder using four '138 devices and one inverter. The '138 is fabricated with the Schottky barrier diode process for high speed.

- SCHOTTKY PROCESS FOR HIGH SPEED
- DEMULTIPLEXING CAPABILITY
- MULTIPLE INPUT ENABLE FOR EASY EXPANSION
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
|  | A | $74 \mathrm{~S} 138 \mathrm{PC}, 74 \mathrm{LS} 138 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 138 \mathrm{DC}, 74 \mathrm{LS} 138 \mathrm{DC}$ | $54 \mathrm{~S} 138 \mathrm{DM}, 54 \mathrm{LS} 138 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $74 \mathrm{~S} 138 \mathrm{FC}, 74 \mathrm{LS} 138 \mathrm{FC}$ | $54 \mathrm{~S} 138 \mathrm{FM}, 54 \mathrm{LS} 138 \mathrm{FM}$ | 4 L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$\mathrm{V}_{\mathrm{cc}}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{2}$ | Address Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{1}, \mathrm{E}_{2}$ | Enable Inputs (Active LOW) | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{E}_{3}$ | $1.25 / 1.25$ | $0.5 / 0.25$ |  |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$ | Enable Input (Active HIGH) | $25 / 12.5$ | 10.5 .0 |
|  | Outputs (Active LOW) | (2.5) |  |

FUNCTIONAL DESCRIPTION - The'138 is a high speed 1-of-8 decoder/demultiplexer fabricated with the low power Schottky barrrier diode process. The decoder accepts three binary weighted inputs ( $A_{0}, A_{1}, A_{2}$ ) and when enabled provides eight mutually exclusive active LOW outputs ( $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$ ). The' 138 features three Enable inputs, two active LOW ( $\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$ ) and one active $\mathrm{HIGH}\left(\mathrm{E}_{3}\right)$. All outputs will be HIGH unless $\overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{E}}_{2}$ are LOW and $\mathrm{E}_{3}$ is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1 -of-32 ( 5 lines to 32 lines) decoder with just four ' 138 devices and one inverter. (See Figure a.) The' 138 can be used as an 8 -output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1}$ | $\bar{E}_{2}$ | E3 | $\mathrm{A}_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\bar{O}_{2}$ | $\bar{O}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\bar{O}_{7}$ |
| H | X | X | X | X | X | H | H | H | H | H | H | H | H |
| X | H | X | X | X | X | H | H | H | H | H | H | H | H |
| x | X | L | X | X | X | H | H | H | H | H | H | H | H |
| L | L | H | L | L | L | L | H | H | H | H | H | H | H |
| L | L | H | H | L | L | H | L | H | H | H | H | H | H |
| L | L | H | L | H | L | H | H | L | H | H | H | H | H |
| L | L | H | H | H | L | H | H | H | L | H | H | H | H |
| L | L | H | L | L | H | H | H | H | H | L | H | H | H |
| L | L | H | H | L | H | H | H | H | H | H | L | H | H |
| L | L | H | L | H | H | H | H | H | H | H | H | L | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM




Fig. a

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 74 |  | 10 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | 18 27 | ns | Figs. 3-1, 3-4, 3-5 |
| tpLH <br> tpHL | Propagation Delay $\bar{E}_{1}$ or $\bar{E}_{2}$ to $\overline{\mathrm{O}}_{n}$ | $\begin{array}{r} 8.0 \\ 11 \end{array}$ | 15 24 | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{E}_{3}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | 11 11 | 18 28 | ns | Figs. 3-1, 3-4 |

## 54S/74S139 54LS/74LS139 DUAL 1-OF-4 DECODER

DESCRIPTION - The '139 is a high speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the '139 can be used as a function generator providing all four minterms of two variables. The '139 is fabricated with the Schottky barrier diode process for high speed.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- TWO COMPLETELY INDEPENDENT 1-OF-4 DECODERS
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ | ${ }_{4}^{9} 99_{5} 9$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74S139PC, 74LS139PC |  | 9B | $\begin{aligned} & \mathrm{VCC}=\operatorname{Pin} 16 \\ & \mathrm{GND}=\operatorname{Pin} 8 \end{aligned}$ |
| Ceramic DIP (D) | A | 74S139DC, 74LS139DC | 54S139DM, 54LS139DM | 6B |  |
| Flatpak (F) | A | 74S139FC, 74LS139FC | 54S139FM, 54LS139FM | 4L |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Address Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}$ | $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ | Enable Input (Active LOW) | $25 / 1.25$ |
| Outputs (Active LOW) | $25 / 12.5$ | $0.5 / 0.25$ |  |

FUNCTIONAL DESCRIPTION - The '139 is a high speed dual 1-of-4 decoder/demultiplexer fabricated with the Schottky barrier diode process. The device has two independent decoders, each of which accepts two binary weighted inputs ( $\mathrm{A}_{0}, \mathrm{~A}_{1}$ ) and provides four mutually exclusive active LOW outputs ( $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ ). Each decoder has an active LOW enable ( $\overline{\mathrm{E}}$ ). When $\overline{\mathrm{E}}$ is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the ' 139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure a, and thereby reducing the number of packages required in a logic network.

TRUTH TABLE

| INPUTS |  |  | OUTPUTS |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bar{E}$ | $A_{0}$ | $A_{1}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ |
| $H$ | $X$ | $X$ | $H$ | $H$ | $H$ | $H$ |
| $L$ | $L$ | $L$ | $L$ | $H$ | $H$ | $H$ |
| $L$ | $H$ | $L$ | $H$ | $L$ | $H$ | $H$ |
| $L$ | $L$ | $H$ | $H$ | $H$ | $L$ | $H$ |
| $L$ | $H$ | $H$ | $H$ | $H$ | $H$ | $L$ |

$H=$ HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial





A


Fig. a

LOGIC DIAGRAM

dC ChARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwisespecified)

| SYMBOL | PARAMETER | $54 / 74 \mathrm{LS}$ |  | $54 / 74 \mathrm{~S}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | Min $\operatorname{Max}$ | $\operatorname{Min} \operatorname{Max}$ |  |  |
| Icc | Power Supply Current | 11 | 90 | mA | $\mathrm{~V}_{\mathrm{cc}}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74LS | 54/74S | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{0}$ or $A_{1}$ to $\bar{O}_{n}$ | 18 | 12 12 | ns | Figs. 3-1, 3-4, 3-5 |
| tplH tpHL | Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | 15 24 | 8.0 10 | ns | Figs. 3-1, 3-5 |



## 74141 <br> 1-OF-10 DECODER/DRIVER (NIXIE) <br> (With Open-Collector Outputs)

CONNECTION DIAGRAM PINOUT A


DESCRIPTION - The '141 is a BCD-to-decimal decoder driver that is designed to accept a 4-bit BCD code input and drive cold-cathode indicator tubes. This decoder utilizes design improvements that minimize switching transients in order to maintain a stable display. The segments and numeric designations chosen to represent the decimal numbers are shown in the Truth Table. For binary inputs 10 through 15, the outputs are OFF. These invalid codes can be used in blanking leading or trailing-edge zeroes in a display. The ten high performance, npn output transistors have a maximum reverse current of $50 \mu \mathrm{~A}$ at 55 V . Typical power dissipation is 55 mW .

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | $\begin{array}{c}\text { PKG } \\$\end{array} OUT |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{l}VCC=+5.0 \mathrm{~V} \pm 5 \%, <br>

\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} to+70^{\circ} \mathrm{C}\end{array}\right]\)

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 74XX (U.L.) |
| :--- | :--- | ---: |
| HIGH/LOW |  |  |
| $\mathrm{A}_{0}$ | BCD Input | $1.0 / 1.0$ |
| $\mathrm{~A}_{1}-\mathrm{A}_{3}$ | BCD Inputs | $2.0 / 2.0$ |
| $\bar{O}_{0}-\overline{\mathrm{O}}_{9}$ | Outputs (Active LOW) | $\mathrm{OC}^{*} / 7.0 \mathrm{~mA}$ |

[^28]FUNCTIONAL DESCRIPTION - The 1-of-10 decoder/driver accepts BCD inputs from all TTL circuits and produces the correct output selection to directly drive gas filled cold cathode indicator tubes. The outputs are selected as shown in the Truth Table. It is capable of driving all known available cold cathode indicator tubes having 7.0 mA or less cathode current.

LOGIC DIAGRAM


TRUTH TABLE

| INPUTS |  |  |  | OUTPUT ON $\dagger$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{3}$ | A2 | $\mathrm{A}_{1}$ | A0 |  |
| L | L | L | L | 0 |
| L | L | L | H | 1 |
| L | L | H | L | 2 |
| L | L | H | H | 3 |
| L | H | L | L | 4 |
| L | H | L | H | 5 |
| L | H | H | L | 6 |
| L | H | H | H | 7 |
| H | L | L | L | 8 |
| H | L | L | H | 9 |
| H | X | H | X | NONE |
| H | H | X | X | NONE |

$\dagger$ All other outputs are off
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 74XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Vol | Output LOW Voltage |  | 2.5 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Min} \\ & \mathrm{l}=7.0 \mathrm{~mA} \end{aligned}$ |
| VOH | Output HIGH Voltage (for Input Counts 0 thru 9) | 60 |  | V | $\begin{aligned} & V_{c c}=\mathrm{Max} \\ & \mathrm{lo}=0.5 \mathrm{~mA} \end{aligned}$ |
| loH | Output HIGH Current |  | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{c c}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{O}}=55 \mathrm{~V} \end{aligned}$ |
| IOH | Output HIGH Current (for Input Counts 10 thru 15) |  | $\begin{array}{r} 5.0 \\ 15 \end{array}$ | $\mu \mathrm{A}$ | $\begin{array}{r\|r} \hline \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{Cc}}=\mathrm{Max} \\ \cline { 1 - 1 } \mathrm{~T}=70^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V} \\ \hline \end{array}$ |
| Icc | Power Supply Current |  | 25 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { All Inputs = Gnd } \end{aligned}$ |

# 54/74145 <br> 1-OF-10 DECODER/DRIVER (With Open-Collector Outputs) 

DESCRIPTION - The '145 decoder/drivers are designed to accept BCD inputs and provide appropriate outputs to drive 7 -segment numerical displays. All outputs remain OFF for all invalid binary input conditions. These devices are designed for use as indicator/relay drivers or as open-collector logic circuit drivers. Each of the high breakdown (15 V) output transistors will sink up to 80 mA of current.

- OPEN-COLLECTOR OUTPUTS
- 80 mA CURRENT SINKING
- 15 V GUARANTEED BREAKDOWN

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74145PC |  | 9B |
| Ceramic <br> DIP (D) | A | 74145DC | 54145DM | 7B |
| Flatpak <br> (F) | A | 74145FC | 54145FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | $1.0 / 1.0$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | Outputs (Active LOW) | $\mathrm{OC}^{*} / 12.5$ |

- OC-Open Collector


## LOGIC SYMBOL

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $A_{1}$ | $\mathrm{A}_{2}$ | $A_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\overline{\mathrm{O}}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\overline{\mathrm{O}}_{7}$ | $\bar{O}_{8}$ | $\overline{\mathrm{O}} 9$ |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H |
| H | L | L | L | H | L | H | H | H | H | H | H | H | H |
| L | H | L | L | H | H | L | H | H | H | H | H | H | H |
| H | H | L | L | H | H | H | L | H | H | H | H | H | H |
| L | L | H | L | H | H | H | H | L | H | H | H | H | H |
| H | L | H | L | H | H | H | H | H | L | H | H | H | H |
| L | H | H | L | H | H | H | H | H | H | L | H | H | H |
| H | H | H | L | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | L | H |
| H | L | L | H | H | H | H | H | H | H | H | H | H | L |
| L | H | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | L | H | H | H. | H | H | H | H | H | H | H | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | H | H | H | H | H | H | H | H | H | H | H | H | H |

H = HIGH Voltage Level L = LOW Voltage Level

LOGIC DIAGRAM


| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Vol | Output LOW Voltage |  |  | 0.9 | V | $\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=80 \mathrm{~mA}$ |
| IOH | Output HIGH Current |  |  | 250 | $\mu \mathrm{A}$ | $\mathrm{VCC}=\mathrm{Max}, \mathrm{VOH}_{\text {O }}=15 \mathrm{~V}$ |
| lcc | Power Supply Current | XC |  | 70 | mA | $V_{c c}=$ Max, $V_{\text {IN }}=$ Gnd |
|  |  | XM |  | 62 |  |  |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{RL}=100 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | ns | Figs. 3-2, 3-20 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{I}_{0}-\mathrm{l}_{15}$ | Data Inputs | $1.0 / 1.0$ |
| SO S | Select Inputs | $1.0 / 1.0$ |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | $1.0 / 1.0$ |
| $\overline{\mathrm{Z}}$ | Inverted Data Output | $20 / 10$ |

## LOGIC SYMBOL



Vcc $=$ Pin 24
GND $=\operatorname{Pin} 12$



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $10-17$ | Data Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{S}_{0}-\mathrm{S}_{2}$ | Select Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| Z | Data Output | 20/10 | 25/12.5 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\bar{z}$ | Inverted Data Output | 20/10 | 25/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - The '151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $S_{0}, S_{1}, S_{2}$. Both assertion and negation outputs are provided. The Enable input $\overline{(E)}$ is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$
\begin{gathered}
Z=\overline{\mathrm{E}} \bullet\left(\mathrm{I}_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \bar{S}_{2}+\right. \\
\left.\mathrm{I}_{4} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{5} \bullet \mathrm{~S}_{0} \bullet \bar{S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{6} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right)
\end{gathered}
$$

The '151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '151 can provide any logic function of four variables and its negation.

TRUTH TABLE

|  | INPUTS |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{E}}$ | S2 | $\mathrm{S}_{1}$ | So | $\bar{Z}$ | Z |
| H | X | X | X | H | L |
| L | L | L | L | $\bar{I}_{0}$ | 10 |
| L | L | L | H | $\bar{I}_{1}$ | $I_{1}$ |
| L | L | H | L | $\bar{T}_{2}$ | $\mathrm{l}_{2}$ |
| L | L | H | H | $]_{3}$ | 13 |
| L | H | L | L | $\bar{T}_{4}$ | 14 |
| L | H | L | H | $T_{5}$ | 15 |
| L | H | H | L | $\underline{T_{6}}$ | 16 |
| L | H | H | H | $\overline{1}$ | 17 |

$$
H=H I G H \text { Voltage Level }
$$ L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  |  | 74S | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| Ios | Output Short Circuit Current | XM | $\begin{aligned} & -20 \\ & -18 \end{aligned}$ | $\begin{aligned} & -55 \\ & -55 \end{aligned}$ | -40 | -100 | -20 | -100 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
|  |  | XC |  |  | -40 | -100 | -20 | -100 |  |  |
| Ic. | Power Supply Current |  |  | 48 |  | 70 |  | 10 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $\begin{array}{\|c\|} \mathbf{5 4 / 7 4} \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=400 \Omega \end{array}$ |  | $\mathbf{5 4 / 7 4 S}$ <br> $C_{L}=15 \mathrm{pF}$ <br> $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  | $\begin{array}{\|c\|} \hline \text { 54/74LS } \\ \hline C_{L}=15 \mathrm{pF} \\ \hline \end{array}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tpLH tphL | Propagation Delay $S_{n}$ to $\bar{Z}$ |  | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ |  | $\begin{array}{r} 15 \\ 13.5 \end{array}$ |  | $\begin{aligned} & 23 \\ & 34 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to Z |  | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 48 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tpHL} \end{aligned}$ | Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$ |  | $\begin{aligned} & 21 \\ & 23 \end{aligned}$ |  | $\begin{aligned} & 13 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{E}}$ to Z |  | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ |  | $\begin{array}{r} 16.5 \\ 18 \end{array}$ |  | $\begin{aligned} & 42 \\ & 32 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $I_{n}$ to $\bar{Z}$ |  | $\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\overline{\operatorname{tpLH}}$ tphL | Propagation Delay $\mathrm{I}_{\mathrm{n}}$ to Z |  | $\begin{aligned} & 20 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-5 |

## 54/74152A <br> 54LS/74LS152 8-INPUT MULTIPLEXER

DESCRIPTION - The '152 is a high speed 8 -input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The ' 152 can be used as a universal function generator to generate any logic function of four variables. It is supplied in Flatpak only; for Dual In-line Package applications use the 'LS151.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :---: | :---: | :---: | :---: | :---: |
|  | OUT | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
|  | A | $74152 \mathrm{AFC}, 74 \mathrm{LS} 152 \mathrm{FC}$ | $54152 \mathrm{AFM}, 54 \mathrm{LS} 152 \mathrm{FM}$ | 31 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{I}_{0}-\mathrm{I}_{7}$ | Data Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{~S}_{0}-\mathrm{S}_{2}$ | Select Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| Z | Inverted Data Output | $20 / 10$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |



FUNCTIONAL DESCRIPTION - The '152 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. The logic function provided at the output is:

$$
\begin{aligned}
\mathrm{Z}= & \left(\mathrm{I}_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\right. \\
& \left.\mathrm{I}_{4} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{5} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{6} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right) .
\end{aligned}
$$

The '152 provides the ability, in one package, to select from eight sources of data or control information.

TRUTH TABLE

| INPUTS |  |  | $\begin{gathered} \text { OUTPUT } \\ \overline{\mathbf{z}} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| S2 | S1 | So |  |
| L | L | L | $\mathrm{T}_{0}$ |
| L | L | H | $\bar{T}_{1}$ |
| L | H | L | $\mathrm{T}_{2}$ |
| L | H | H | $\bar{T}_{3}$ |
| H | L | L | $T_{4}$ |
| H | L | H | T 5 |
| H | H | L | $\bar{T}_{6}$ |
| H | H | H | $\bar{T}$ |

H = HIGH Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | $\begin{aligned} & -20 \\ & -18 \end{aligned}$ | $\begin{aligned} & -55 \\ & -55 \end{aligned}$ |  | -100 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC |  |  |  | -100 |  |  |
| Icc | Power Supply Current |  |  | 43 |  | 9.0 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PAR AMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tphL | Propagation Delay $S_{n}$ to $\bar{Z}$ | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | $\begin{aligned} & 23 \\ & 32 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay In to $\bar{Z}$ | 14 14 | 21 20 | ns | Figs. 3-1, 3-4 |

## 54/74153 <br> 54S/74S153 <br> 54LS/74LS153 <br> DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The '153 is a high speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the ' 153 can generate any two functions of three variables.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 74153PC, 74S153PC } \\ & \text { 74LS153PC } \end{aligned}$ |  | 9B |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 74153DC, 74S153DC } \\ & \text { 74LS153DC } \end{aligned}$ | 54153DM, 54S153DM 53LS153DM | 6B |
| Flatpak (F) | A | $\begin{aligned} & \text { 74153FC, 74S153FC } \\ & \text { 74LS153FC } \end{aligned}$ | 54153FM, 54S153FM 54LS153FM | 4L |

CONNECTION DIAGRAM PINOUT A


## INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $10 \mathrm{a}-\mathrm{I}_{3}$ | Side A Data Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $10 \mathrm{~b}-\mathrm{l} \mathrm{b}_{\mathrm{b}}$ | Side B Data Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| So, $\mathrm{S}_{1}$ | Common Select Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{E}_{\mathrm{a}}$ | Side A Enable Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\bar{E}_{\text {b }}$ | Side B Enable Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{Z}_{\mathrm{a}}$ | Side A Output | 20/10 | 25/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Z}_{\mathrm{b}}$ | Side B Output | 20/10 | 25/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

## LOGIC SYMBOL



FUNCTIONAL DESCRIPTION - The'153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. The two 4 -input multiplexer circuits have individual active LOW Enables ( $\bar{E}_{a}, \bar{E}_{b}$ ) which can be used to strobe the outputs independently. When the Enables ( $\bar{E}_{a}, \bar{E}_{b}$ ) are HIGH, the corresponding outputs $\left(Z_{a}, Z_{b}\right)$ are forced LOW. The ' 153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& Z_{a}=\bar{E}_{a} \bullet\left(I_{0 a} \bullet \bar{S}_{1} \bullet \bar{S}_{0}+I_{1 a} \bullet \bar{S}_{1} \bullet S_{0}+I_{2 a} \bullet S_{1} \bullet \bar{S}_{0}+I_{3 a} \bullet S_{1} \bullet S_{0}\right) \\
& Z_{b}=\bar{E}_{b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 b} \bullet S_{1} \bullet \bar{S}_{0}+I_{3 b} \bullet S_{1} \bullet S_{0}\right)
\end{aligned}
$$

The '153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is a function generator. The '153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

| SELECT <br> INPUTS |  | INPUTS (a or b) |  |  |  |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| So | S1 | $\overline{\mathrm{E}}$ | 10 | 11 | 12 | 13 | Z |
| X | X | H | X | X | X | X | L |
| L | L | L | L | X | X | X | L |
| L | L | L | H | X | X | X | H |
| H | L | L | X | L | X | X | L |
| H | L | L | X | H | X | $X$ | H |
| L | H | L | X | X | L | X | L |
| L | H | L | X | X | H | X | H |
| H | H | L | X | X | X | L | L |
| H | H | L | X | X | X | H | H |

$H=H I G H$ Voltage Level L = LOW Voltage Level $X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| S YMBOL | PARAMETER |  | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | -40 | -100 | -20 | -100 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC | -18 | -57 | -40 | -100 | -20 | -100 |  |  |
| ICC | Power Supply Current | XM |  | 52 |  | 70 |  | 10 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC |  | 60 |  | 70 |  | 10 |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configuration)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tpLH <br> tphL | Propagation Delay $S_{n}$ to $Z_{n}$ |  | $\begin{aligned} & 34 \\ & 34 \end{aligned}$ |  | 18 18 |  | 29 | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}_{\mathrm{n}}$ to $\mathrm{Z}_{\mathrm{n}}$ |  | $\begin{aligned} & 30 \\ & 23 \end{aligned}$ |  | 15 13.5 |  | 29 32 | ns | Figs. 3-1, 3-4 |
| tpLH <br> tPHL | Propagation Delay $\mathrm{In}_{\mathrm{n}}$ to $\mathrm{Z}_{\mathrm{n}}$ |  | 18 |  | 9.0 9.0 |  | 15 20 | ns | Figs. 3-1, 3-5 |

## 54/74154 1-OF-16 DECODER/DEMULTIPLEXER

DESCRIPTION - The'154 is a multipurpose decoder designed to accept four inputs and provide 16 mutually exclusive outputs. By means of the Address ( $A_{0}-A_{3}$ ) inputs, data applied to one of the Enable inputs can be routed to any one of the outputs in True (non-inverted) form.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |  | ${ }^{17} \overline{0}_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  | ${ }^{16} \bar{O}_{14}$ |
| Plastic DIP (P) | A | 74154PC |  | 9 N | $\bar{o}_{10} \sqrt[11]{1}$ | 14] $\overline{0}_{12}$ |
| Ceramic DIP (D) | A | 74154DC | 54154DM | 6N | 12 | ${ }^{13} \overline{0}_{11}$ |
| Flatpak (F) | A | 74154FC | 54154FM | 4M |  |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ |
| $\overline{\mathrm{E}}_{0}, \overline{\mathrm{E}}_{1}$ | Enable Inputs (Active LOW) | $1.0 / 1.0$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{15}$ | Outputs (Active LOW) | $20 / 10$ |

## LOGIC SYMBOL



$$
\begin{aligned}
& \mathrm{VCC}=\operatorname{Pin} 24 \\
& \mathrm{GND}=\operatorname{Pin} 12
\end{aligned}
$$

TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{0}$ | $\bar{E}_{1}$ | $A_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\bar{O}_{2}$ | $\bar{O}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ |  |  |  |  |  | $\bar{O}_{15}$ |
| H | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | X | X | X | x | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | L | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | L | L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | H | L | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | H | L | L | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | L | H | L | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | L | H | L | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H |
| L | L | L | H | H | L | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H |
| L | L | H | H | H | L | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H |
| L | L | H | L | L | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H |
| L | L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H |
| L | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H |
| L | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H |
| L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The '154 decoder accepts four inputs and provides 16 mutually exclusive active LOW outputs, as shown by the logic symbol. The active LOW outputs facilitate addressing other MSI units with active LOW enable.

The '154 can demultiplex data by routing it from one input to one of 16 possible decoder outputs. The desired output is addressed and the data is applied to one of the enable inputs. Providing that the other enable is LOW, the addressed output will follow the state of the applied data.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | mA | $V_{C C}=\operatorname{Max}$ |
|  |  | XC | -18 | -57 | mA | $V_{C C}=$ Max |
| Icc | Power Supply Current | XM |  | 49 | mA | Voc = Max |
|  |  | XC |  | 56 | mA | $V_{C C}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tplH tphL. | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 31 \\ & 28 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tplH tpHL | Propagation Delay $\bar{E}_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 23 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-5 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$ | Enable Inputs (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{E}_{\mathrm{a}}$ | $1.0 / 1.0$ | $0.5 / 0.25$ |  |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ | Enable Input (Active HIGH) | $20 / 10$ | $10 / 5.0$ |
|  | Outputs (Active LOW) | $(2.5)$ |  |

## LOGIC DIAGRAM



Vcc $=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - The '155 and '156 are dual 1-of-4 decoder/demultiplexers with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs ( $A_{0}, A_{1}$ ) and provides four mutually exclusive active LOW outputs ( $\bar{O}_{0}-\bar{O}_{3}$ ). If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH.

Each decoder section has a 2-input enable gate. The enable gate for decoder "a" requires one active HIGH input and one active LOW input ( $\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{a}}$ ). In demultiplexing applications, decoder "a" can accept either true or complemented data by using the $\mathrm{E}_{\mathrm{a}}$ or $\mathrm{E}_{\mathrm{a}}$ inputs respectively. The enable gate for decoder " b " requires two active LOW inputs ( $\bar{E}_{b}, \bar{E}_{b}$ ). The devices can be used as a 1-of-8 decoder/demultiplexer by tying $E_{a}$ to $\bar{E}_{b}$ and relabeling the common connection as $\mathrm{A}_{2}$. The other $\overline{\mathrm{E}}_{\mathrm{b}}$ and $\overline{\mathrm{E}}_{\mathrm{a}}$ are connected together to form the common enable.

The '155 and '156 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Figure a. The'156 has the further advantage of being able to AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown below.

$$
\begin{gathered}
f=\left(E+A_{0}+A_{1}\right) \bullet\left(E+\bar{A}_{0}+A_{1}\right) \bullet\left(E+A_{0}+\bar{A}_{1}\right) \bullet\left(E+\bar{A}_{0}+\bar{A}_{1}\right) \\
\text { where }=E=E_{a}+\bar{E}_{a} ; E=E_{b}+E_{b}
\end{gathered}
$$



Fig. a

## LOGIC DIAGRAM



TRUTH TABLE

| ADDRESS |  | ENABLE a |  | OUTPUT a |  |  |  | ENABLE b |  | OUTPUT b |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $\mathrm{A}_{1}$ | Ea | $\bar{E}_{a}$ | $\overline{\mathrm{O}}_{0}$ | $\overline{\mathrm{O}}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\bar{E}_{\text {b }}$ | $\bar{E}_{\text {b }}$ | $\overline{\mathrm{O}}_{0}$ | $\overline{\mathrm{O}}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ |
| X | X | L | X | H | H | H | H | H | X | H | H | H | H |
| X | X | X | H | H | H | H | H | X | H | H | H | H | H |
| L | L | H | L | L | H | H | H | L | L | L | H | H | H |
| H | L | H | L | H | L | H | H | L | L | H | L | H | H |
| L | H | H | L | H | H | L | H | L | L | H | H | L | H |
| H | H | H | L | H | H | H | L | L | L | H | H | H | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | -20 | -100 | ns | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC | -18 | -57 |  | -100 |  |  |
| Icc | Power Supply Current | XM |  | 35 |  | 10 | mA | $\begin{aligned} & V_{c c}=M a x ; \bar{E}_{a}, \bar{E}_{b}=\text { Gnd } \\ & A_{0}, A_{1}, E_{a}=4.5 \mathrm{~V} \end{aligned}$ |
|  |  | XC |  | 40 |  | 10 |  |  |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$ | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ | $\begin{aligned} & 32 \\ & 32 \end{aligned}$ | $\begin{aligned} & 18 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}_{a}$ or $\bar{E}_{b}$ to $\bar{O}_{n}$ | $\begin{aligned} & 20 \\ & 27 \end{aligned}$ | $\begin{aligned} & 15 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH tPHL | Propagation Delay $\mathrm{E}_{\mathrm{a}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | 24 30 | 25 | ns | Figs. 3-1, 3-4 |

DESCRIPTION - The ' 156 contains two decoders with common Address ( $A_{0}, A_{1}$ ) inputs and separate enable gates. Decoder "a" has an enable gate with one active. HIGH and one active LOW input, while decoder "b" has two active LOW inputs. If the enable functions are satistied, one output of each decoder will be LOW, as selected by the Address inputs. For functional description, truth table and logic diagram, please refer to the ' 155 data sheet.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74156PC, 74LS156PC |  | 9B |
| Ceramic DIP (D) | A | 74156DC, 74LS156DC | 54156DM, 54LS156DM | 6B |
| Flatpak (F) | A | 74156FC, 74LS156FC | 54156FM, 54LS156FM | 4L |



LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$ | Enable Inputs (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{\mathrm{a}}-\overline{\mathrm{O}}_{3}$ | Enable Input (Active HIGH) | $1.0 / 1.0$ | $0.5 / 0.25$ |
|  | Outputs (Active LOW) | $\mathrm{OC}^{*} / 10$ | $\mathrm{OC}^{*} / 5.0$ |
| $(2.5)$ |  |  |  |

[^29]
## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| loH | Output HIGH Current, OFF State |  |  | 250 |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | XM |  | 35 40 |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | mA | $\begin{aligned} & V_{C C}=M a x ; E_{a}, E_{b}=G N D \\ & A_{0}, A_{1}, E_{a}=4.5 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: Vcc $=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54 |  | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 34 \\ & 34 \end{aligned}$ |  | $\begin{aligned} & 28 \\ & 33 \end{aligned}$ | ns | Figs. 3-2, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}_{a}$ or $\bar{E}_{b}$ to $\bar{O}_{n}$ |  | 23 30 |  | $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | ns | Figs. 3-2, 3-5 |
| tpLH <br> tphL | Propagation Delay $\mathrm{E}_{\mathrm{a}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ |  | 27 33 |  | 34 34 | ns | Figs. 3-2, 3-4 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{l}_{\mathrm{a}}-\mathrm{l}_{\mathrm{od}}$ | Source 0 Data Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{I}_{1 \mathrm{a}}-\mathrm{l}_{\mathrm{d}}$ | Source 1 Data Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| E | Enable Input (Active LOW) | 1.01 .1 .0 | $2.5 / 2.5$ | $1.0 / 0.5$ |
| S | Select Input | 1.01 .0 | $2.5 / 2.5$ | $1.0 / 0.5$ |
| $\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$ | Outputs | $20 / 10$ | $25 / 12.5$ | $10 / 5.0$ |
|  |  |  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The '157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input ( S ). The Enable input ( $\overline{\mathrm{E}}$ ) is active LOW. When $\overline{\mathrm{E}}$ is HIGH, all of the outputs $(Z)$ are forced LOW regardless of all other inputs. The'157 is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{\mathrm{a}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{a}} \bullet \mathrm{~S}+\mathrm{loa}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}\right) & Z_{\mathrm{b}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{~b}} \bullet \mathrm{~S}+\mathrm{l}_{\mathrm{bb}} \bullet \overline{\mathrm{~S}}\right) \\
\mathrm{Z}_{\mathrm{c}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{c}} \bullet \mathrm{~S}+\mathrm{loc}_{\mathrm{c}} \bullet \overline{\mathrm{~S}}\right) & Z_{\mathrm{d}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{~d}} \bullet \mathrm{~S}+\mathrm{l}_{\mathrm{d}} \bullet \overline{\mathrm{~S}}\right)
\end{array}
$$

A common use of the '157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The '157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

LOGIC DIAGRAMS
'157

'S157•'LS157


## TRUTH TABLE

| INPUTS |  |  |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{E}$ | S | $I_{0}$ | $I_{1}$ | $Z$ |
| $H$ | $X$ | $X$ | $X$ | $L$ |
| $L$ | $H$ | $X$ | $L$ | $L$ |
| $L$ | $H$ | $X$ | $H$ | $H$ |
| $L$ | $L$ | $L$ | $X$ | $L$ |
| L | L | $H$ | $X$ | $H$ |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | -40 | -100 | -20 | -100 | mA | $V_{c c}=\operatorname{Max}$ |
|  |  | XC | -18 | -55 | -40 | -100 | -20 | -100 |  |  |
| Icc | Power Supply Current |  |  | 48 |  | 78 |  | 16 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max} \\ & \text { All Inputs }=4.5 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{\|l\|} \hline C_{L}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=400 \Omega \end{array}$ |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay S to $\mathrm{Z}_{\mathrm{n}}$ |  | $\begin{aligned} & 23 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | $\begin{array}{r} 26 \\ 24 \\ \hline \end{array}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}$ to $Z_{n}$ |  | $\begin{aligned} & 20 \\ & 21 \end{aligned}$ |  | $\begin{array}{r} 12.5 \\ 12 \end{array}$ |  | 20 | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $I_{n}$ to $Z_{n}$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ |  | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ |  | 14 14 | ns | Figs. 3-1, 3-5 |

# 54S/74S158 <br> 54LS/74LS158 <br> QUAD 2-INPUT MULTIPLEXER 

DESCRIPTION - The '158 is a high speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The ' 158 can also generate any four of the 16 different functions of two variables.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG <br>  <br> OUT |
| :--- | :---: | :---: | :---: | :---: |
| VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |  |  |
| Plastic <br> DIP (P) | A | $74 \mathrm{~S} 158 \mathrm{PC}, 74 \mathrm{LS} 158 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 158 \mathrm{DC}, 74 \mathrm{LS} 158 \mathrm{DC}$ | $54 \mathrm{~S} 158 \mathrm{DM}, 54 \mathrm{LS} 158 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $74 \mathrm{~S} 158 \mathrm{FC}, 74 \mathrm{LS} 158 \mathrm{FC}$ | $54 \mathrm{~S} 158 \mathrm{FM}, 54 \mathrm{LS} 158 \mathrm{FM}$ | 4 L |

CONNECTION DIAGRAM PINOUT A


## LOGIC SYMBOL


$\mathrm{VCC}=\operatorname{Pin} 16$
$\mathrm{GND}=\operatorname{Pin} 8$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $10 \mathrm{a}-\mathrm{lod}$ | Source 0 Data Inputs | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{l}_{1 \mathrm{a}}-\mathrm{l}_{1 \mathrm{~d}}$ | Source 1 Data Inputs | 1.25/1.25 | 0.5/0.25 |
| $\bar{E}$ | Enable Input (Active LOW) | 2.5/2.5 | 1.0/0.5 |
| S | Select Input | 2.5/2.5 | 1.0/0.5 |
| $\overline{\mathbf{Z}}_{\mathbf{a}}-\overline{\mathbf{Z}}_{\text {d }}$ | Inverted Outputs | 25/12.5 | 10/5.0 |

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |
| :--- | :--- | :--- | :--- | :--- | :---: |
| E | S | $I_{0}$ | I $_{1}$ | Z |
| H | X | X | X | H |
| L | L | L | X | H |
| L | L | H | X | L |
| L | H | X | L | H |
| L | H | X | H | L |

[^30]FUNCTIONAL DESCRIPTION - The '158 is a quad 2-input multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input ( $\overline{\mathrm{E}}$ ) is active LOW. When $\overline{\mathrm{E}}$ is HIGH, all of the outputs $(\bar{Z})$ are forced HIGH regardless of all other inputs. The' 158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.

A common use of the '158 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The '158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $54 / 74 S$ |  | $54 / 74 \mathrm{LS}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | Min $\operatorname{Max}$ | $\operatorname{Min} \quad \operatorname{Max}$ |  |  |
| ICc | Power Supply Current | 61 | 8.0 | mA | $\mathrm{~V}_{\mathrm{Cc}}=\mathrm{Max}^{*}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=280 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tpHL | Propagation Delay, S to $\overline{\mathbf{Z}}$ | 12 12 | $\begin{aligned} & 20 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tPLH <br> tPHL | Propagation Delay, $\overline{\mathbf{E}}$ to $\overline{\mathbf{Z}}$ | 11.5 12 | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tPLH <br> tphL | Propagation Delay, In to $\overline{\mathbf{Z}}$ | 6.0 | $\begin{aligned} & 13 \\ & 11 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

*Icc measured with outputs open and 4.5 V applied to all inputs.

## 54/74160 • 54LS/74LS160 54/74162•54LS/74LS162 SYNCHRONOUS PRESETTABLE BCD DECADE COUNTERS

DESCRIPTION - The '160 and '162 are high speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The ' 160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The '162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock. For the S-TTL and LP-TTL versions, please see the 9310 data sheet.

- SYNCHRONOUS COUNTING AND LOADING
- HIGH SPEED SYNCHRONOUS EXPANSION
- TYPICAL COUNT RATE OF 35 MHz
- LS VERSIONS FULLY EDGE TRIGGERED

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74160PC, 74LS160PC <br> 74162PC, 74LS162PC |  | 9B |
| Ceramic DIP (D) | A | 74160DC, 74LS160DC <br> 74162DC, 74LS162DC | 54160DM, 54LS160DM <br> 54162DM, 54LS162DM | 7B |
| Flatpak (F) | A | 74160FC, 74LS160FC <br> 74162FC, 74LS162FC | 54160FM, 54LS160FM 54162FM, 54LS162FM | 4L |

CONNECTION DIAGRAM
PINOUT A


* $\overline{M R}$ for ' 160
* $\overline{\mathrm{SR}}$ for '162

LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16 \quad * \overline{M R}$ for ' 160 GND $=\operatorname{Pin} 8 \quad * \overline{\mathrm{SR}}$ for ' 162

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| CEP | Count Enable Parallel Input | 1.0/1.0 | 0.6/0.3 |
| CET | Count Enable Trickle Input | 2.0/2.0 | 1.0/0.5 |
| CP | Clock Pulse Input (Active Rising Edge) | 2.0/2.0 | 0.6/0.3 |
| $\overline{\mathrm{MR}}$ ('160) | Asynchronous Master Reset Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\overline{S R}$ ('162) | Synchronous Reset Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{P E}$ | Parallel Enable Input (Active LOW) | 1.0/1.0 | 0.6/0.3 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| TC | Terminal Count Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |



## LOGIC DIAGRAMS 'LS160


'LS162


FUNCTIONAL DESCRIPTION - The'160 and '162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The '161 and ' 163 count modulo-16 binary sequence. From state 15 ( HHHH ) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master, Reset of the '160 and '161) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('160 and '161), synchronous reset ('162 and '163), parallel load, count-up and hold. Five control inputs - Master Reset ( $\overline{M R}$, ' 160 and '161), Synchronous Reset ( $\overline{S R}$, '162 and '163), Parallel Enable ( $\overline{P E}$ ), Count Enable Parallel (CEP) and Count Enable Trickle (CET) determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{M R}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{S R}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{P E}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of $C P$. With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{MR}}$ ('160, '161) or $\overline{\mathrm{SR}}$ ('162, '163) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The TTL versions ('160 - '163, as opposed to the 'LS160 - 'LS163) contain master/slave flip-flops which are "next-state catching" because of the JK feedback. This means that when CP is LOW, information that would change the state of a flip-flop, whether from the counting logic or the parallel entry logic if either mode is momentarily enabled, enters the master and is locked in. Thus to avoid inadvertently changing the state of a master latch, and the subsequent transfer of the erroneous information to the slave when the clock rises, it is necessary to insure that neither the counting mode, the synchronous reset mode, nor the parallel entry mode is momentarily enabled while CP is LOW.

The LS-TTL versions ('LS160 - 'LS163) use D-type edge-triggered flip-flops and changing the $\overline{S R}, \overline{P E}, C E P$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in the 9310 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the LS-TTL versions ('LS160, 'LS162) of the decade counters, the TC output is fully decoded and can only beHIGH in state 9. In the TTL versions ('160, '162), however, the TC output can also be HIGH in the illegal states 11, 13 and 15. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the state diagrams.

LOGIC EQUATIONS: Count Enable = CEP - CET • PE
('160, '162) TC = Q 0 Q3 $\cdot \mathrm{CET}$
('LS160, 'LS162) TC $=\mathrm{Q}_{0} \bullet \bar{Q}_{1} \bullet \overline{\mathrm{Q}}_{2} \cdot \mathrm{Q}_{3} \cdot C E T$
('161, 'LS161, '163, 'LS163) TC $=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \cdot C E T$

MODE SELECT TABLE

| * $\overline{S R}$ | $\overline{\text { PE }}$ | CET | CEP | Action on the Rising Clock Edge ( $\Gamma$ ) |
| :---: | :---: | :---: | :---: | :---: |
| L | X | X | X | RESET (Clear) |
| H | L | X | X | LOAD ( $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$ ) |
| H | H | H | H | COUNT (Increment) |
| H | H | L | X | NO CHANGE (Hold) |
| H | H | X | L | NO CHANGE (Hold) |

*For the '162 and '163 only.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Max | Min | Max |  |  |
| ІсСн | Power Supply Current Outputs HIGH | $\frac{\mathrm{XM}}{\mathrm{XC}}$ |  | $\begin{aligned} & 85 \\ & 94 \end{aligned}$ |  | $\begin{aligned} & 31 \\ & 31 \end{aligned}$ | mA | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \overline{\mathrm{PE}}=\mathrm{Gnd}$ <br> Other Inputs $=4.5 \mathrm{~V}$ <br> $C P=\swarrow$ |
| Iccl | Power Supply Current Outputs LOW | $\frac{X M}{X C}$ |  | $\begin{array}{r} 91 \\ 101 \end{array}$ |  | $\begin{aligned} & 32 \\ & 32 \end{aligned}$ | mA | $\begin{aligned} & V_{C C}=\mathrm{Max} \\ & \text { All Inputs = Gnd } \\ & \mathrm{CP}=\widetilde{ } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  | /74 | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Count Frequency | 25 |  | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{gathered} \text { tPLH } \\ \text { tPHL } \\ \hline \end{gathered}$ | Propagation Delay CP to TC |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagtion Delay CP to $Q_{n}$ |  | $\begin{aligned} & 20 \\ & 23 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 27 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-8 } \\ & \mathrm{PE}=4.5 \mathrm{~V} \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagtion Delay CP to $Q_{n}$ |  | $\begin{aligned} & 25 \\ & 29 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 27 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-8 } \\ & \overline{\mathrm{PE}}=\mathrm{Gnd} \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CET to TC |  | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  | $\begin{aligned} & 14 \\ & 23 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ ('160 and '161) |  | 38 |  | 28 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L}) \end{aligned}$ | Setup Time, HIGH or LOW $P_{n}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time, HIGH or LOW $P_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time, HIGH or LOW $\overline{P E}$ to CP | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time, HIGH or LOW $\overline{\text { PE to CP }}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time, HIGH or LOW CEP, CET or $\overline{\mathrm{SR}}$ to CP | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time, HIGH or LOW CEP, CET or $\overline{S R}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width, HIGH or LOW | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ |  | ns | Fig. 3-8 |
| $t_{w}(\mathrm{~L})$ | $\overline{\mathrm{MR}}$ Pulse Width LOW ('160 and '161) | 20 |  | 15 |  | ns | Fig. 3-16 |
| trec | Recovery Time <br> $\overline{\mathrm{MR}}$ to CP ('160 and '161) |  |  | 20 |  | ns | Fig. 3-16 |

## 54/74161 • 54LS/74LS161 54/74163 • 54LS/74LS163 SYNCHRONOUS PRESETTABLE BINARY COUNTERS

DESCRIPTION - The '161 and '163 are high speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The '161 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The '163 has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. For functional description and detail specifications please refer to the '160 data sheet. For S-TTL and LP-TTL versions please see the 9316 data sheet.

- SYNCHRONOUS COUNTING AND LOADING
- HIGH SPEED SYNCHRONOUS EXPANSION
- LS VERSIONS FULLY EDGE TRIGGERED

ORDERING CODE: See Section 9

| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74161PC, 74LS161PC 74163PC, 74LS163PC |  | 9B |
| Ceramic <br> DIP (D) | A | 74161DC, 74LS161DC 74163DC, 74LS163DC | 54161DM, 54LS161DM 54163DM, 54LS163DM | 7B |
| Flatpak (F) | A | $\begin{aligned} & \text { 74161FC, 74LS161FC } \\ & \text { 74163FC, 74LS163FC } \end{aligned}$ | 54161FM, 54LS161FM 54163FM, 54LS163FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| CEP | Count Enable Parallel Input | $1.0 / 1.0$ | $0.6 / 0.3$ |
| CET | Count Enable Trickle Input | $1.0 / 0.5$ |  |
| CP | Clock Pulse Input (Active Rising Edge) | $2.0 / 2.0$ | $0.6 / 0.3$ |
| $\overline{M R}$ ('161) | Asynchronous Master Reset Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| (Active LOW) |  |  |  |
| SR |  | $1.0 / 1.0$ | $0.5 / 0.25$ |
| Po-P3 | Synchronous Reset Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| PE | Parallel Data Inputs | $1.0 / 1.0$ | $0.6 / 0.3$ |
| Q0-Q3 | Parallel Enable Input (Active LOW) | $20 / 10$ | $10 / 5.0$ |
| TC | Flip-flop Outputs |  | $(2.5)$ |
|  | Terminal Count Output | $20 / 10$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |


'LS161



## 54/74164 54LS/74LS164 <br> SERIAL-IN PARALLEL-OUT SHIFT REGISTER

DESCRIPTION - The '164 is a high speed 8-bit serial-in parallel-out shift register. Serial data is entered through a 2-input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register setting all outputs LOW independent of the clock. It utilizes the Schottky diode clamped process to achieve high speeds.

- TYPICAL SHIFT FREQUENCY OF 35 MHz
- ASYNCHRONOUS MASTER RESET
- GATED SERIAL DATA INPUT
- FULLY SYNCHRONOUS DATA TRANSFERS

ORDERING CODE: See Section 9

|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
| PKGS | OUT | VCC $=+5.0 \mathrm{~V}+5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74164 \mathrm{PC}, 74 \mathrm{LS} 164 \mathrm{PC}$ |  | 9 A |
| Ceramic <br> DIP (D) | A | $74164 \mathrm{DC}, 74 \mathrm{LS} 164 \mathrm{DC}$ | $54164 \mathrm{DM}, 54 \mathrm{LS} 164 \mathrm{DM}$ | 6 A |
| Flatpak <br> (F) | A | $74164 \mathrm{FC}, 74 \mathrm{LS} 164 \mathrm{FC}$ | $54164 \mathrm{FM}, 54 \mathrm{LS} 164 \mathrm{FM}$ | 31 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| A, B | Data Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{C P}$ | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| MR | Master Reset Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| Q $_{0}-Q_{7}$ | Outputs | $10 / 5.0$ | 10.5 .0 |

LOGIC SYMBOL

$\mathrm{Vcc}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

FUNCTIONAL DESCRIPTION - The '164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into $Q_{0}$ the logical AND of the two data inputs (A•B) that existed before the rising clock edge. A LOW level on the Master Reset ( $\overline{\mathrm{MR}}$ ) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

MODE SELECT TABLE

| OPERATING MODE | INPUTS |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{M R}$ | A | B | Qo | $\mathrm{Q}_{1}-\mathrm{Q}_{7}$ |
| Reset (Clear) | L | X | X | L | L - L |
| Shift | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | 1 1 $h$ $h$ | $\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \\ & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \\ & H \end{aligned}$ | $\begin{aligned} & q 0-q_{6} \\ & q 0-q 6 \\ & q 0-q 6 \\ & q 0-q 6 \end{aligned}$ |

$L(1)=$ LOW Voltage Levels
$H(h)=H I G H$ Voltage Levels
$X=$ Immaterial
$q_{n}=$ Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

## LOGIC DIAGRAM



## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMTER |  | $54 / 74$ |  | 54/74LS |  | UNITS |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=800 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 | 25 | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $\mathrm{Qn}_{n}$ | $\begin{aligned} & 27 \\ & 32 \end{aligned}$ | $\begin{aligned} & 27 \\ & 32 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $Q_{n}$ | $\begin{aligned} & 30 \\ & 37 \end{aligned}$ |  | ns | Figs. 3-1, 3-8 $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ | 36 | 36 | ns | Figs. 3-1, 3-16 |
| tphL | Propagation Delay $\overline{M R}$ to $Q_{n}$ | 42 |  | ns | Figs. 3-1, 3-16 $C_{L}=50 \mathrm{pF}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW A or B to CP | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW A or B to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {w }}$ (L) | $\overline{\mathrm{MR}}$ Pulse Width LOW | 20 |  | 20 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R} \text { to } C P$ |  |  | 20 |  | ns | Fig. 3-16 |

## 54/74165 54LS/74LS165 <br> 8-BIT PARALLEL-TO-SERIAL CONVERTER

DESCRIPTION - The '165 is an 8-bit parallel load or serial-in register with complementary outputs available from the last stage. Parallel inputing occurs asynchronously when the Parallel Load ( $\overline{\mathrm{PL}}$ ) input is LOW. With $\overline{\mathrm{PL}} \mathrm{HIGH}$, serial shifting occurs on the rising edge of the clock; new data enters via the Serial Data ( $\mathrm{Ds}_{\mathrm{s}}$ ) input. The 2-input OR clock can be used to combine two independent clock sources, or one input can act as an active LOW clock enable.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | ---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74165 \mathrm{PC}, 74 \mathrm{LS} 165 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $74165 \mathrm{DC}, 74 \mathrm{LS} 165 \mathrm{DC}$ | $54165 \mathrm{DM}, 54 \mathrm{LS} 165 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $74165 \mathrm{FC}, 74 \mathrm{LS} 165 \mathrm{FC}$ | $54165 \mathrm{FM}, 54 \mathrm{LS} 165 \mathrm{FM}$ | 4 L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\mathbf{5 4 / 7 4}$ (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{CP}_{1}, \mathrm{CP}_{2}$ | Clock Pulse Inputs (Active Rising Edge) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{DS}_{\mathrm{S}}$ | Serial Data Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| PL | Asynchronous Parallel Load Input | $2.0 / 2.0$ | $1.5 / 0.75$ |
| $\mathrm{P}_{0}-\mathrm{P}_{7}$ | (Active LOW) |  |  |
| $\mathrm{Q}_{7}$ | Parallel Data Inputs |  |  |
| $\bar{Q}_{7}$ | Serial Output From Last Stage | $1.0 / 1.0$ | $0.5 / 0.25$ |
|  | Complementary Output | $20 / 10$ | $10 / 5.0$ |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '165 contains eight clocked master/slave RS flip-flops connected as a shift register with auxiliary gating to provide overriding asynchronous parallel entry. Parallel data enters when the $\overline{P L}$ signal is LOW. The parallel data can change while $\overline{P L}$ is LOW provided that the recommended setup and hold times are observed.

For clocked operation, $\overline{\mathrm{PL}}$ must be HIGH. The two clock inputs perform identically; one can be used as a clock inhibit by applying a HIGH signal. To avoid double clocking, however, the inhibit signal should only go HIGH while the clock is HIGH. Otherwise, the rising inhibit signal will cause the same response as a rising clock edge. The flip-flops are edge-triggered for serial operations. The serial input data can change at any time, provided only that the recommended setup and hold times are observed, with respect to the rising edge of the clock.

TRUTH TABLE

|  | CP |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | PL | 1 | 2 | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ | $\mathrm{Q}_{5}$ | $\mathrm{Q}_{6}$ | $\mathrm{Q}_{7}$ |
| RESPONSE |  |  |  |  |  |  |  |  |  |  |  |
|  | X | X | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{P}_{3}$ | $\mathrm{P}_{4}$ | $\mathrm{P}_{5}$ | $\mathrm{P}_{6}$ | $\mathrm{P}_{7}$ | Parallel Entry |
| H | L | $\Gamma$ | $\mathrm{D}_{5}$ | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ | $\mathrm{Q}_{5}$ | $\mathrm{Q}_{6}$ | Right Shift |
| H | H | $\Gamma$ | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ | $\mathrm{Q}_{5}$ | $\mathrm{Q}_{6}$ | $\mathrm{Q}_{7}$ | No Change |
| H | $\Gamma$ | L | $\mathrm{DS}_{5}$ | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ | $\mathrm{Q}_{5}$ | $\mathrm{Q}_{6}$ | Right Shift |
| H | $\Gamma$ | H | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ | $\mathrm{Q}_{5}$ | $\mathrm{Q}_{6}$ | $\mathrm{Q}_{7}$ | No Change |

$H=H I G H$ Voltage Level
L = LOW Voltage Level
X = Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | $54 / 74$ |  | $54 / 74 L S$ |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 20 |  | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$ | Propagation Delay <br> $\overline{\mathrm{PL}}$ to Q7 or $\bar{Q}_{7}$ |  | $\begin{aligned} & 31 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-16 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{CP}_{1}$ to $\mathrm{Q}_{7}$ or $\bar{Q}_{7}$ |  | $\begin{aligned} & 24 \\ & 31 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $P_{7}$ to $Q_{7}$ |  | $\begin{aligned} & 17 \\ & 36 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{P}_{7}$ to $\overline{\mathrm{Q}}_{7}$ |  | $\begin{aligned} & 27 \\ & 27 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & \mathrm{P}_{\mathrm{n}} \text { to } \overline{\mathrm{PL}} \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & t_{h}(H) \\ & t_{n}(L) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ to $\overline{\mathrm{PL}}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW Ds to CPn | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW Ds to CPn | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH $C P_{1}$ to $C P_{2}$ or $C P_{2}$ to $C P_{1}$ | 30 |  | 30 |  | ns |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | CP ${ }_{\text {n }}$ Pulse Width HIGH | 25 |  | 20 |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {w }}$ (L) | $\overline{\text { PL Pulse Width LOW }}$ | 15 |  | 15 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{\mathrm{PL}}$ to $\mathrm{CP} \mathrm{P}_{\mathrm{n}}$ | 45 |  | 15 |  | ns |  |

## 54/74166 8 -BIT SHIFT REGISTER

> be used to trigger the other.
> - 35 MHz TYPICAL SHIFT FREQUENCY
> - ASYNCHRONOUS MASTER RESET
> - SYNCHRONOUS PARALLEL ENTRY
> - GATED CLOCK INPUT CIRCUITRY

DESCRIPTION - The '166 is an 8-bit, serial- or parallel-in, serial-out shift register using edge triggered D-type flip-flops. Serial and parallel entry are synchronous, with state changes initiated by the rising edge of the clock. An asynchronous Master Reset overrides other inputs and clears all flipflops. The circuit can be clocked from two sources or one CP input can

ORDERING CODE: See Section' 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74166PC |  | 9B |
| Ceramic <br> DIP (D) | A | 74166DC | 54166DM | 7B |
| Flatpak (F) | A | 74166FC | 54166FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{CP}_{1}, \mathrm{CP}_{2}$ | Clock Pulse Inputs (Active Rising Edge) | $1.0 / 1.0$ |
| Ds | Serial Data Input | $1.0 / 1.0$ |
| PE | Parallel Enable Input (Active LOW) | $1.0 / 1.0$ |
| P0 $-\mathrm{P}_{7}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| MR | Asynchronous Master Reset Input (Active LOW) | $1.0 / 1.0$ |
| Q7 | Last Stage Output | $20 / 10$ |

## LOGIC SYMBOL


$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - Operation is synchronous (except for Master Reset) and state changes are initiated by the rising edge of either clock input if the other clock input is LOW. When one of the clock inputs is used as an active HIGH clock inhibit, it should attain the HIGH state while the other clock is still in the HIGH state following the previous operation. When the Parallel Enable ( $\overline{\mathrm{PE}})$ input is LOW, data is loaded into the register from the Parallel Data ( $\mathrm{P}_{0}-\mathrm{P}_{7}$ ) inputs on the next rising edge of the clock. When $\overline{\mathrm{PE}}$ is HIGH , information is shifted from the Serial Data ( $\mathrm{Ds}_{5}$ ) input to $Q_{0}$ and all data in the register is shifted one bit position (i.e., $Q_{0} \rightarrow Q_{1}, Q_{1} \rightarrow Q_{2}$, etc.) on the rising edge of the clock.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{MR}}$ | $\overline{P E}$ | $\mathrm{CP}_{1}$ | $\mathrm{CP}_{2}$ |  |
| L | $X$ | X | X | Asynchronous Reset; $\mathrm{Q}_{\mathrm{n}}=$ LOW |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & X \\ & X \end{aligned}$ | $\begin{aligned} & \mathrm{H}^{\star} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H}^{*} \end{aligned}$ | Hold |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\stackrel{\mathrm{L}}{\Gamma}$ | $\Gamma$ | Parallel Load; $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$ |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{gathered} \mathrm{L} \\ \sim \end{gathered}$ | $\Gamma$ | Shift; $\mathrm{Ds}_{s} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \longrightarrow \mathrm{Q}_{1}$, etc. |

*The HIGH signal on one CP input must be established while the other CP input is HIGH.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial


## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | UNITS |
| :--- | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $C_{n}$ to $Q_{7}$ |  | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | ns |  |
| tPhL | Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{7}$ |  | 35 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW Ds or $\mathrm{P}_{\mathrm{n}}$ to CP n | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{D}_{\mathrm{s}}$ or $\mathrm{P}_{\mathrm{n}}$ to CP n | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{P E}$ to $C P_{n}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW $\overline{P E}$ to $C P_{n}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | CPn Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {( }} \mathrm{L}$ ) | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-16 |

## 54/74167

## SYNCHRONOUS DECADE RATE MULTIPLIER

DESCRIPTION - The '167 contains a synchronous decade counter and four decoding gates that serve to gate the clock through to the output at a submultiple of the clock frequency. The output pulse rate, relative to the clock frequency, is determined by signals applied to the Select ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ) inputs. Both true and complement outputs are available, along with an enable input for each. A Count Enable input and a Terminal Count output are provided for cascading two or more packages. Asynchronous Master Reset and Master Set inputs prevent counting and clear the counter or set it to maximum, respectively.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :---: | :---: | :--- | :--- | :---: |
|  | OUT | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
|  | A | 74167 PC |  | 9 B |
| Ceramic <br> DIP (D) | A | 74167 DC | 54167 DM | 7 B |
| Flatpak <br> (F) | A | 74167 FC | 54167 FM | 4 L |

CONNECTION DIAGRAM PINOUT A


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| So $-\mathrm{S}_{3}$ | Rate Select Inputs | 1.0/1.0 |
| $\mathrm{E}_{z}$ | $\bar{O}_{\text {z }}$ Enable Input (Active LOW) | 1.0/1.0 |
| Ey | Oy Enable Input | 1.0/1.0 |
| $\overline{C E}$ | Count Enable Input (Active LOW) | 1.0/1.0 |
| CP | Clock Pulse Input (Active Rising Edge) | 2.0/2.0 |
| MS | Asynchronous Master Set Input (Active HIGH) (Set to 9) | 1.0/1.0 |
| MR | Asynchronous Master Reset Input (Active HIGH) | 1.0/1.0 |
| $\overline{\mathrm{O}} \mathrm{z}$ | Gated Clock Output (Active LOW) | 10/10 |
| Or | Complement Output (Active HIGH) | 10/10 |
| TC | Terminal Count Output (Active LOW) | 10/10 |



TRUTH TABLE

| INPUTS |  |  |  |  |  |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR | $\overline{C E}$ | $\bar{E}_{Z}$ | S3 | S2 | $S_{1}$ | So | CLOCK <br> PULSES | Ey | OY | $\bar{O}_{z}$ | $\overline{\mathrm{TC}}$ | NOTES |
| H | X | H | X | X | X | X | X | H | L | H | H | 1 |
| L | L | L | L | L | L | L | 10 | H | L | H | 1 | 2 |
| L | L | L | L | L | L | H | 10 | H |  | 1 | 1 | 2 |
| L | L | L | L | L | H | L | 10 | H | 2 | 2 | 1 | 2 |
| L | L | L | L | L | H | H | 10 | H | 3 | 3 | 1 | 2 |
| L | L | L | L | H | L | L | 10 | H | 4 | 4 | 1 | 2 |
| L | L | L | L | H | L | H | 10 | H | 5 | 5 | 1 | 2 |
| L | L | L | L | H | H | L | 10 | H | 6 | 6 | 1 | 2 |
| L | L | L | L | H | H | H | 10 | H | 7 | 7 | 1 | 2 |
| L | L | L | H | L | L | L | 10 | H | 8 | 8 | 1 | 2 |
| L | L | L | H | L | L | H | 10 | H |  | 9 | 1 | 2 |
| L | L | L | H | L | H | L | 10 | H | 8 | 8 | 1 | 2, 3 |
| L | L | L | H | L | H | H | 10 | H | 9 | 9 | 1 | 2, 3 |
| L | L | L | H | H | L | L | 10 | H | 8 | 8 | 1 | 2, 3 |
| L | L | L | H | H | L | H | 10 | H | 9 | 9 | 1 | 2, 3 |
| L | L | L | H | H | H | L | 10 | H | 8 | 8 | 1 | 2, 3 |
| L | L | L | H | H | H | H | 10 | H |  | 9 | 1 | 2, 3 |
| L | L | L | H | L | L | H | 10 | L | H | 9 | 1 | 4 |

1. This is a simplified illustration of the clear function. $C P$ and $\bar{E}_{Z}$ also affect the logic level of $O_{Y}$ and $\bar{O}_{Z}$. A LOW signal on Ey will cause Oy to remain HIGH.
2. Each rate illustrated assumes $\mathrm{S}_{0}-\mathrm{S}_{3}$ are constant throughtout the cycle; however, these illustrations in no way prohibit variable-rate operation.
3. These input condtions exceed the range of the decade rate Select inputs.
4. Ey can be used to inhibit output Oy.
$H=H I G H$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

PULSE PATTERN TABLE

| S3 | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | So | m | $\bar{O} z$ PULSE PATTERN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | H | 1 | 11110111111 |
| L | L | H | L | 2 | 1100111110011 |
| L | L | H | H | 3 | 11010011011 |
| L | H | L | L | 4 | 1010110101 |
| L | H | L | H | 5 | 1010010101 |
| L | H | H | L | 6 | 1000110001 |
| L | H | H | H | 7 | 1000010001 |
| H | L | L | L | 8 | 0000100001 |
| H | L | L | H | 9 | 0000000001 |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
L = LOW Voltage Level

FUNCTIONAL DESCRIPTION - The '167 contains four JK flip-flops connected as a synchronous decade counter with a count sequence of 0-1-2-3-4-8-9-10-11-12. A LOW signal on the Count Enable $(\overline{C E})$ input permits counting, with all state changes initiated simultaneously by the rising edge of the clock. When the count reaches maximum (12) the Terminal Count ( $\overline{\mathrm{TC}}$ ) output goes LOW if $\overline{\mathrm{CE}}$ is LOW. A HIGH signal on Master Reset (MR) clears the flip-flops and prevents counting, although output pulses can still occur if the clock is running, $\overline{E_{z}}$ is LOW and $\mathrm{S}_{3}$ is HIGH. A HIGH signal on Master Set (MS) prevents counting and sets the counter to 12, the only state in which no output pulses can occur.

The flip-flop outputs are decoded by a 4-wide AND-OR-INVERT gate. Each AND gate also contains the buffered and inverted CP and Z-enable ( $\bar{E}_{Z}$ ) functions, as well as one of the Select ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ) inputs. The Z output $\overline{\mathrm{O}_{z}}$ is normally HIGH and goes LOW when CP and EZ are LOW and any of the AND gates has its other inputs HIGH. The AND gates are enabled at different times and different rates relative to the clock. For example, the gate to which $S_{0}$ is connected is enabled only when the counter is in state five, assuming that $\mathrm{S}_{0}$ is HIGH . Thus, during one complete cycle of the counter ( 10 clocks) the $\mathrm{S}_{0}$ gate can contribute only pulse to the output rate. The $\mathrm{S}_{1}$ gate is enabled twice per cycle, the $\mathrm{S}_{2}$ gate four times per cycle(etc.). The output pulse rate thus depends on the clock rate and which of the $\mathrm{S}_{0}-\mathrm{S}_{3}$ inputs are HIGH , as expressed in the following formula.

$$
\begin{gathered}
\text { fout }=\frac{m}{10} \bullet f_{\text {in }} \\
\text { where } m=S_{3} \bullet 2^{3}+S_{2} \bullet 2^{2}+S_{1} \bullet 21+S_{0} \bullet 20
\end{gathered}
$$

Thus by appropriate choice of signals applied to the $S_{0}-S_{3}$ inputs, the output pulse rate can range from $1 / 10$ to $9 / 10$ of the clock rate. The select codes, $m$ values and $\bar{O}_{z}$ pulse pattern are shown in the Pulse Pattern Table. In the $\overline{\mathrm{O}} \mathrm{z}$ pattern, each column represents a clock period, with the state-12 column on the right. A one indicates that the $\overline{\mathrm{O}}_{Z}$ output will be HIGH during that entire clock period, while a zero indicates that $\overline{\mathrm{O}} \mathrm{Z}$ will be LOW when the clock is LOW during that period. Note that the output pulses are evenly spaced only when $m$ is one or two, assuming that the clock frequency is constant, and that no output pulses can occur in state 12 of the counter.

The $Y$ output $O Y$ is the complement of $\bar{O}_{Z}$ and is thus normally LOW. A LOW signal on the $Y$-enable input $E_{Y}$ disables Oy. To expand the multiplier to 2-digit rate select, two packages can be cascaded as shown in Figure a. Both circuits operate from the basic clock, with the $\overline{T C}$ output of the first acting to enable both counting and the output pulses of the second package. Thus the second counter advances at only $1 / 10$ the rate of the first and a full cycle of the two counters combined requires 100 clocks. Output pulses contributed by the second counter occur only when the first counter is in state 12. All output pulses are opposite in phase to the clock.


Fig. a Cascading for 2-Digit Rate Select

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | Min | CONDITIONS |  |  |
| IOs | Output Short Circuit Current | -18 | -55 | mA | $\mathrm{~V}_{\mathrm{cc}}=$ Max |
| Icc | Power Supply Current |  | 99 | mA | Vcc $=$ Max; MS $=$ Gnd <br> Other Inputs $=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz |  |

Figs. 3-1, 3-8

Figs. 3-1, 3-4

Figs. 3-1, 3-5

Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| ts (L) | Setup Time LOW CE to CP Rising | 25 |  | ns | Fig. b |
| th (H) | Hold Time HIGH $\overline{C E}$ to CP Rising | 0 | $t_{w}$ CP-10 | ns |  |
| $\mathrm{t}_{s}$ (L) | Setup Time LOW CE to CP Falling | 0 | $t_{w} \mathrm{CP}-10$ | ns | Fig. c |
| th (L) | Hold Time LOW $\overline{C E}$ to CP Falling | 20 | T-10 | ns |  |
| tinh (H) | Inhibit Time HIGH $\overline{C E}$ to CP Falling | 10 |  | ns | Fig. b |
| $t_{w}(H)$ | CP Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |
| $t_{w}(H)$ | MR Pulse Width HIGH | 15 |  | ns | Fig. 3-16 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | MS Pulse Width HIGH | 15 |  | ns |  |



Fig. $b$


Fig. c

DESCRIPTION - The '168 is a fully synchronous 4-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/ $\overline{\mathrm{D}}$ input to control the direction of counting. It counts in the BCD (8421) sequence and all state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V C C=+5.0 \vee \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS168PC |  | 9B |
| Ceramic DIP (D) | A | 74LS168DC | 54LS168DM | 6B |
| Flatpak (F) | A | 74LS168FC | 54LS168FM | 4L |

## 54LS/74LS168 SYNCHRONOUS BI-DIRECTIONAL BCD DECADE COUNTER

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL


$$
V_{c c}=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{C E P}$ | Count Enable Parallel Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{C E T}$ | Count Enable Trickle Input (Active LOW) | $1.0 / 0.5$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\mathrm{P}-\mathrm{P}_{3}$ | Parallel Data Inputs | $0.5 / 0.25$ |
| $\overline{P E}$ | Parallel Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{U} / \overline{\mathrm{D}}$ | Up-Down Count Control Input | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 105.0 |
| $\overline{T C}$ | Terminal Count Output (Active LOW) | $12.5)$ |
|  |  | $10 / 5.0$ |

FUNCTIONAL DESCRIPTION - The '168 and '169 use edge-triggered D-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When $\overline{P E}$ is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both $\overline{\text { CEP }}$ and $\overline{\text { CET }}$ must be LOW and $\overline{\text { PE }}$ must be HIGH. The U/D input then determines the direction of counting. The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 9 ( 15 for the '169) in the COUNT UP mode. The TC output state is not a function of the Count Enable Parallel ( $\overline{\mathrm{CEP}}$ ) input level. The $\overline{\mathrm{TC}}$ output of the' 168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If an illegal state occurs, the ' 168 will return to the legitimate sequence within two counts. Since the $\overline{T C}$ signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on $\overline{T C}$. For this reason the use of $\overline{\mathrm{TC}}$ as a clock signal is not recommended (see logic equations below).

1) Count Enable $=\overline{\mathrm{CEP}} \bullet \overline{\mathrm{CET}} \bullet \overline{\mathrm{PE}}$
2) $\mathrm{Up}: \overline{\mathrm{TC}}=\mathrm{Q}_{0} \cdot \mathrm{Q}_{3} \cdot(\mathrm{U} / \overline{\mathrm{D}}) \cdot \overline{\mathrm{CET}}$
3) Down: $\overline{\mathrm{TC}}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet(U / \overline{\mathrm{D}}) \bullet \overline{\mathrm{CET}}$
'168 and '169 MODE SELECT TABLE

| $\overline{P E}$ | $\overline{C E P}$ | $\overline{C E T}$ | $U / \bar{D}$ | Action on Rising Clock Edge |
| :--- | :--- | :--- | :--- | :--- |
| L | X | X | X | Load (Pn $\left.\rightarrow Q_{n}\right)$ |
| $H$ | L | L | H | Count Up (increment) |
| $H$ | L | L | L | Count Down (decrement) |
| $H$ | $H$ | X | X | No Change (Hold) |
| $H$ | X | $H$ | X | No Change (Hold) |

$H=$ HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

STATE DIAGRAM 54LS/74LS168

$\longrightarrow \quad$ Count Up

LOGIC DIAGRAM


| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 34 | mA | $\mathrm{Vcc}=$ Max |
| AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations) |  |  |  |  |  |
| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
|  |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{array}{\|l\|l\|} \hline \text { tpLH } \\ \hline \end{array}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to TC |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{C E T}$ to $\overline{T C}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \hline \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $U / \bar{D}$ to $\overline{T C}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  |  |  |  |
| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{P}_{\mathrm{n}}, \mathrm{CEP}$ or $\overline{\mathrm{CET}}$ to CP | $\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{P}_{\mathrm{n}}, \overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{\mathrm{PE}}$ to CP | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \\ & \hline \end{aligned}$ | Hold Time HIGH or LOW $\overline{\text { PE }}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW U/ $\overline{\mathrm{D}}$ to CP | $\begin{array}{r} 25 \\ 25 \\ \hline \end{array}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \mathrm{th}(\mathrm{H}) \\ & \operatorname{tn}(\mathrm{L}) \\ & \hline \end{aligned}$ | Hold Time HIGH or LOW U/D to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \mathrm{tw}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-8 |

## 54LS/74LS169 SYNCHRONOUS BI-DIRECTIONAL MODULO-16 BINARY COUNTER

DESCRIPTION - The '169 is a fully synchronous 4-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a $U / \bar{D}$ input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-toHIGH transition of the clock. For a functional description and detail specifications, please refer to the ' 168 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS169PC |  | 9B |
| Ceramic DIP (D) | A | 74LS169DC | 54LS169DM | 6B |
| Flatpak (F) | A | 74LS169FC | 54LS169FM | 4L |


$V_{C c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{\overline{C E P}}$ | Count Enable Parallel Input (Active LOW) | $0.5 / 0.25$ |
| CET | Count Enable Trickle Input (Active LOW) | $1.0 / 0.5$ |
| CP | Parallel Pulse Inputa Inctictive Rising Edge) | $0.5 / 0.25$ |
| $\overline{P_{0}}-P_{3}$ | Parallel Enable Input (Active LOW) | $0.5 / 0.25$ |
| PE | Up-Down Count Control Input | $0.5 / 0.25$ |
| U/D | Flip-flop Outputs | $0.5 / 0.25$ |
| $Q_{0}-Q_{3}$ | Terminal Count Output (Active LOW) | $10 / 5.0$ |
| $\overline{T C}$ |  | $(2.5)$ |
|  |  | $10 / 5.0$ |

## LOGIC DIAGRAM



MODE SELECT TABLE

| $\overline{P E}$ | $\overline{\text { CEP }}$ | $\overline{\mathrm{CET}}$ | U/D | Action on Rising Clock Edge |
| :--- | :--- | :--- | :--- | :--- |
| L | X | X | X | Load (Pn $\rightarrow \mathrm{Q}_{n}$ ) |
| $H$ | L | L | H | Count Up (increment) |
| $H$ | L | L | L | Count Down (decrement) |
| $H$ | $H$ | X | X | No Change (Hold) |
| $H$ | X | $H$ | X | No Change (Hold) |

H = HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

STATE DIAGRAM


# 54/74170 54LS/74LS170 $4 \times 4$ REGISTER FILE (With Open-Collector Outputs) 

DESCRIPTION - The ' 170 contains 16 high speed, low power, transparent D-type latches arranged as four words of four bits each, to function as a 4 X 4 register file. Separate read and write inputs, both address and en able, allow simultaneous read and write operation. Open-collector outputs make it possible to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an $n$-bit length. The ' 670 provides a similar function to this device but it features 3 -state outputs.

- SIMULTANEOUS READ/WRITE OPERATION
- EXPANDABLE TO 512 WORDS OF n-BITS
- TYPICAL ACCESS TIME OF 20 ns
- LOW LEAKAGE OPEN-COLLECTOR OUTPUTS FOR EXPANSION

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74170 \mathrm{PC}, 74 \mathrm{LS} 170 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $74170 \mathrm{DC}, 74 \mathrm{LS} 170 \mathrm{DC}$ | $54170 \mathrm{DM}, 54 \mathrm{LS} 170 \mathrm{DM}$ | 7 B |
| Flatpak <br> (F) | A | $74170 \mathrm{FC}, 74 \mathrm{LS} 170 \mathrm{FC}$ | $54170 \mathrm{FM}, 54 \mathrm{LS} 170 \mathrm{DM}$ | 4 L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{WA}_{0}, W_{1}$ | Write Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $\mathrm{RA}, \mathrm{RA}_{1}$ | Read Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{RE}}$ | Read Enable Input (Active LOW) | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $\mathrm{O}_{1}-\mathrm{O}_{4}$ | Data Outputs | $\mathrm{OC}^{*} / 10$ | $\mathrm{OC}^{*} / 5.0$ |
|  |  |  | $(2.5)$ |

[^31]| WRITE FUNCTION TABLE |  |  |  |
| :---: | :---: | :---: | :---: |
| WRITE INPUTS  D INPUTS TO <br> $\overline{\text { WE }}$ WA $_{1}$  <br>    <br> L L L <br> L Word 0  <br> L H Word 1 <br> L H L <br> H W Word 2 <br> H X Word 3 <br> None (hold)   |  |  |  |

READ FUNCTION TABLE

| READ INPUTS |  | OUTPUTS FROM |  |
| :---: | :---: | :---: | :---: |
| $\overline{\text { RE }}$ | RA $_{1}$ |  |  |
| L | L | L | Word O |
| L | L | H | Word 1 |
| L | H | L | Word 2 |
| L | H | H | Word 3 |
| H | X | X | None (HIGH Z) |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| IOH | Output HIGH Current |  |  | 30 |  | 20 | $\mu \mathrm{A}$ | $\mathrm{VCC}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | XC |  | $\begin{aligned} & 150 \\ & 140 \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | mA | $\begin{aligned} & V_{c c}=M a x ; D_{n}, \overline{W E}, \\ & \overline{R E}=4.5 \mathrm{~V} ; W A_{n}, R A_{n}=G n d \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tple <br> tpHL | Propagation Delay* $R A_{0}$ or $\mathrm{RA}_{1}$ to $\mathrm{On}_{n}$ | 35 40 | 35 35 | ns | Figs. 3-1, 3-20 |
| tpLH <br> tphL | Propagation Delay $\overline{R E}$ to $\mathrm{O}_{\mathrm{n}}$ | 15 30 | 30 30 | ns | Figs. 3-1, 3-5 |
| tpLH <br> tphl. | Propagation Delay $\overline{W E} \text { to } O_{n}$ | 40 | 35 35 | ns | Figs. 3-1, 3-9 |
| tpLH <br> tphL | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n}}$ | 30 45 | 35 35 | ns | Figs. 3-1, 3-5 |

*Measured at least 25 ns after entry of new data at selected location.
AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| ts | Setup Time HIGH or LOW $D_{n}$ to rising $\overline{W E}$ | 10 |  | 10 |  | ns | Fig. a |
| th | Hold Time HIGH or LOW $D_{n}$ to rising $\overline{W E}$ | 15 |  | 5.0 |  | ns |  |
| $\mathrm{t}_{\text {s }}$ | Setup Time HIGH or LOW $W A_{n}$ to falling $\overline{W E}$ | 15 |  | 10 |  | ns |  |
| $t_{\text {h }}$ | Hold Time HIGH or LOW $W A_{n}$ to rising $\overline{W E}$ | 5.0 |  | 5.0 |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { WE }}$ or $\overline{\mathrm{RE}}$ Pulse Width LOW | 25 |  | 25 |  | ns |  |



Fig. a

# 54/74173 54LS/74LS173 4-BIT D-TYPE REGISTER <br> (With 3-State Outputs) 

DESCRIPTION - The '173 is a high speed 4-bit register featuring 3-state outputs for use in bus-organized systems. The clock is fully edge-triggered allowing either a load from the D inputs or a hold (retain register contents) depending on the state of the Input Enable lines ( $\overline{\mathrm{I}} \mathrm{E}_{1}, \overline{\mathrm{E}}_{2}$ ). A HIGH on either Output Enable line $\left(\overline{O E}_{1}, \overline{\mathrm{OE}}_{2}\right)$ brings the output to a high impedence state without affecting the actual register contents. A HIGH on the Master Reset (MR) input resets the register regardless of the state of the Clock (CP), the Output Enable ( $\overline{\mathrm{OE}}, \overline{\mathrm{OE}}_{2}$ ) or the Input Enable ( $\left(\overline{\mathrm{IE}}, \overline{\mathrm{E}} \mathrm{E}_{2}\right)$ lines.

- FULLY EDGE-TRIGGERED
- 3-STATE OUTPUTS
- GATED INPUT AND OUTPUT ENABLES

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{IE}}, \overline{\mathrm{I}}_{2}$ | Input Enable Inputs (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\overline{O E}_{1}, \overline{O E}_{2}$ | 3-State Output Enable Inputs (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| MR | Asynchronous Master Reset Input (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{O} 0-\mathrm{O}_{3}$ | 3-State Outputs | $\begin{aligned} & 130 / 10 \\ & (50) \end{aligned}$ | $\begin{array}{r} 65 / 5.0 \\ (25) /(2.5) \end{array}$ |

TRUTH TABLE

| INPUTS |  |  |  |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MR | $C P$ | $\bar{E}_{1}$ | $\overline{I E}_{2}$ | $D_{n}$ | $Q_{n}$ |
| $H$ | $X$ | $X$ | $X$ | $X$ | $L$ |
| $L$ | $L$ | $X$ | $X$ | $X$ | $Q_{n}$ |
| $L$ | $\Gamma$ | $H$ | $X$ | $X$ | $Q_{n}$ |
| $L$ | $J$ | $X$ | $H$ | $X$ | $Q_{n}$ |
| $L$ | $J$ | $L$ | $L$ | $L$ | $L$ |
| $L$ | $\Gamma$ | $L$ | $L$ | $H$ | $H$ |

When either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ are HIGH, the output is in the OFF state (high impedenace); however this does not affect the contents or sequential operating of the register.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM


| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIn | Max | Min | Max |  |  |
| los | Output Short Circuit Current | -30 | -70 |  | -100 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| Icc | Power Supply Current |  | 72 |  | 28 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{MR}=\mathrm{L} \\ & \mathrm{CP}, \overline{\mathrm{OE}} 1=4.5 \mathrm{~V} \\ & \overline{\mathrm{OE}} \mathrm{E}_{2}, \overline{\mathrm{I}}, \bar{I}, \mathrm{E}_{2}, \mathrm{D}_{\mathrm{n}}=\mathrm{Gnd} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/7 |  | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| ${ }_{\text {f max }}$ | Maximum Clock Frequency | 25 |  | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 43 \\ & 31 \\ & \hline \end{aligned}$ |  | $\begin{array}{r} 40 \\ 25 \\ \hline \end{array}$ | ns |  |
| tPHL | Propagation Delay, MR to On |  | 27 |  | 25 | ns | Figs. 3-1, 3-16 |
| $\begin{array}{\|l\|l\|} \hline \text { tpzH } \\ \text { tpzL } \end{array}$ | Output Enable Time |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=\mathbf{2 \mathrm { k } \Omega} \text { ('LS173) } \end{aligned}$ |
| $\begin{array}{\|l\|l\|l\|} \hline \text { tphz } \\ \text { tpLz } \end{array}$ | Output Disable Time |  | $\begin{aligned} & 14 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R \mathrm{~L}=2 \mathrm{k} \Omega(\mathrm{LS} 173) \\ & \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| sYMBOL | PARAMETER | $\mathbf{5 4 / 7 4}$ |  | $\mathbf{5 4 / 7 4 L} \mathbf{S}$ | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |

## 54/74174 <br> 54S/74S174 54LS/74LS174 <br> HEX D FLIP-FLOP

DESCRIPTION - The '174 is a high speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the $D$ inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- ASYNCHRONOUS COMMON RESET

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 74174PC, } \\ & 74 \mathrm{~S} 174 \mathrm{PC}, 74 \mathrm{LS} 174 \mathrm{PC} \end{aligned}$ |  | 9B |
| Ceramic DIP (D) | A | $\begin{aligned} & 74174 \mathrm{DC}, \\ & \text { 74S174DC, 74LS174DC } \end{aligned}$ | 54174DM, <br> 54S174DM, 54LS174DM | 6B |
| Flatpak (F) | A | $\begin{aligned} & \text { 74174FC, } \\ & \text { 74S174FC, 74LS174FC } \end{aligned}$ | $\begin{aligned} & \text { 54174FM, } \\ & \text { 54S174FM, 54LS174FM } \end{aligned}$ | 4L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW | $54 / 74 S$ <br> HIGH/LOW | $54 / 74$ LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{5}$ | Data Inputs | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{M R}$ | Master Reset Input (Active LOW) | $1.0 / 1.0$ | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Q $_{0}-Q_{5}$ | Flip-Flop Outputs | $20 / 10$ | $25 / 12.5$ | $10 / 5.0$ |
|  |  |  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The '174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset ( $\overline{\mathrm{MR}}$ ) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset ( $\overline{M R}$ ) will force all outputs LOW independent of Clock or Data inputs. The'174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

TRUTH TABLE

| INPUTS | OUTPUTS |
| :---: | :---: |
| $@ t_{n}, \overline{M R}=H$ | $@ t_{n}+1$ |
| $D_{n}$ | $Q_{n}$ |
| $H$ | $H$ |
| $L$ | $L$ |

$t_{n}=$ Bit time before positive-going clock transition $\mathrm{t}_{\mathrm{n}}+1=$ Bit time after positive-going clock transition $H=$ HIGH Voltage Level L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 65 |  | 144 |  | 26 | mA | $\begin{aligned} & \mathrm{VCc}=\mathrm{Max} \\ & \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=4.5 \mathrm{~V} \\ & \mathrm{CP}= \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | 75 |  | 30 |  | MHz | Figs. 3-1, 3-8 |
| tPLH <br> tphL | Propagation Delay CP to $Q_{n}$ |  | 30 35 |  | 12 17 |  | 25 | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 35 |  | 22 |  | 35 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $t_{w}(H)$ | CP Pulse Width HIGH | 20 |  | 7.0 |  | 18 |  | ns | Fig. 3-8 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{M R}$ Pulse Width LOW | 20 |  | 7.0 |  | 18 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R}$ to CP | 25 |  | 5.0 |  | 12 |  | ns |  |

## 54/74175 54S/74S175 54LS/74LS175

 QUAD D FLIP-FLOPDESCRIPTION - The' 175 is a high speed quad $D$ flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, when LOW.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- ASYNCHRONOUS COMMON RESET
- tRUE AND COMPLEMENT OUTPUT

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74175PC, 74S175PC <br> 74LS175PC |  | 9 B |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 74175DC, 74S175DC } \\ & \text { 74LS175DC } \end{aligned}$ | $\begin{aligned} & \text { 54175DM, 54S175DM } \\ & \text { 54LS175DM } \end{aligned}$ | 6B |
| Flatpak (F) | A | 74175FC, 74S175FC <br> 74LS175FC | 54175FM, 54S175FM 54LS175FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\overline{\mathrm{MR}}$ | Master Reset Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | True Outputs | 20/10 | 25/12.5 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$ | Complement Outputs | 20/10 | 25/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION — The '175 consists of four edge-triggered D flip-flops with individual D inputs and Q and $\overline{\mathrm{Q}}$ outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual $Q$ and $\bar{Q}$ outputs to follow. $A$ LOW input on the Master Reset ( $\overline{\mathrm{MR}}$ ) will force all Q outputs LOW and $\overline{\mathrm{Q}}$ outputs HIGH independent of Clock or Data inputs. The ' 175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

TRUTH TABLE

| INPUTS | OUTPUTS |  |
| :---: | :---: | :---: |
| $@ \mathrm{t}_{\mathrm{n}}, \overline{\mathrm{MR}}=\mathrm{H}$ | $@ \mathrm{t}_{\mathrm{n}}+1$ |  |
| $\mathrm{D}_{\mathrm{n}}$ | $\mathrm{Q}_{\mathrm{n}}$ | $\overline{\mathrm{Q}}_{\mathrm{n}}$ |
| L | L | H |
| H | H | L |

$t_{n}=$ Bit time before clock positive-going transition $t_{n}+1=$ Bit time after clock positive-going transition $H=$ HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 45 |  | 96 |  | 18 | mA | $\begin{aligned} & V_{C C}=M a x \\ & D_{n}=\overline{M R}=4.5 \mathrm{~V} \\ & C P=\varsigma \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C L=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | 75 |  | 30 |  | MHz | Figs. 3-1, 3-8 |
| tple tpHL | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 30 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 17 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 35 |  | 22 |  | 33 | ns | Figs. 3-1, 3-16 |
| tplH | Propagation Delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{\mathrm{n}}$ |  | 25 |  | 15 |  | 24 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \left.\mathrm{t}_{\mathrm{L}} \mathrm{~L}\right) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $t_{w}(\mathrm{H})$ | CP Pulse Width HIGH | 20 |  | 7.0 |  | 15 |  | ns | Fig. 3-8 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | 7.0 |  | 18 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R}$ to $C P$ | 25 |  | 5.0 |  | 12 |  | ns | Fig. 3-16 |

## 54/74176 PRESETTABLE DECADE COUNTER

DESCRIPTION - The '176 is a presettable decade ripple counter partitioned into divide-by-two and divide-by-five sections, with separate clock inputs for the two sections. It can be connected to operate either in a BCD (8421) sequence or in a bi-quinary sequence producing a $50 \%$ duty cycle output. A LOW signal on the Master Reset $(\overline{\mathrm{MR}})$ input overrides all other inputs and forces the Q outputs LOW. A LOW signal on the Parallel Load ( $\overline{\mathrm{PL}}$ ) input causes the Q outputs to assume the state of their respective Parallel Data $\left(P_{n}\right)$ inputs, regardless of the clock. In the counting mode, state changes are initiated by the falling edge of the clock.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74176PC |  | 9A |
| Ceramic DIP (D) | A | 74176DC | 54176DM | 6A |
| Flatpak (F) | A | 74176FC | 54176FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\overline{\mathrm{CP}} 0_{0}$ | $\div 2$ Section Clock Input (Active Falling Edge) | 2.0/3.0 |
| $\overline{\overline{C P}_{1}}$ | $\div 5$ Section Clock Input (Active Falling Edge) | 3.0/3.0 |
| $\overline{\mathrm{MR}}$ | Asynchronous Master Reset Input (Active LOW) | 2.0/2.0 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 |
| $\overline{\mathrm{PL}}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs* | 20/10 |

[^32]FUNCTIONAL DESCRIPTION - The '176 is an asynchronously presettable decade ripple counter partitioned into divide-by-two and divide-by-five sections. In the counting modes, state changes are initiated by the HIGH -to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\mathrm{CP}}_{0}$ input serves the $\mathrm{Q}_{0}$ flip-flop while the $\overline{\mathrm{CP}}_{1}$ input serves the divide-by-five section. The Qo output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

The '176 can be connected up to operate in two different count sequences. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and with $\mathrm{Q}_{0}$ driving $\overline{\mathrm{CP}}_{1}$, the circuit counts in the $\mathrm{BCD}(8421)$ sequence. With the input frequency connected to $\overline{\mathrm{CP}}_{1}$ and $\mathrm{Q}_{3}$ driving $\overline{\mathrm{CP}}_{0}, \mathrm{Q}_{0}$ becomes the low frequency output and has a $50 \%$ duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.

The '176 has an asynchronous active LOW Master Reset input (MR) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input ( $\overline{P L}$ ) overrides the clock inputs and loads the data from Parallel Data ( $P_{0}-P_{3}$ ) inputs into flip-flops. While $\overline{P L}$ is LOW, the counters act as transparent latches and any change in the $P_{n}$ inputs will be reflectedin the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of $\overline{P L}$ should be observed.

LOGIC DIAGRAM

$\div 5$ STATE DIAGRAM


BCD STATE DIAGRAM


MODE SELECT TABLE

| INPUTS |  |  | RESPONSE |
| :--- | :--- | :--- | :--- | :--- |
| $\overline{\mathrm{MR}}$ | $\overline{\mathrm{PL}}$ | $\overline{\mathrm{CP}}$ |  |
| L | $X$ | $X$ | $Q_{n}$ forced LOW |
| H | L | X | $P_{n} \rightarrow \mathrm{Q}_{n}$ |
| H | H | L | Count Up |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 48 | mA | $\begin{aligned} & \mathrm{Vcc}_{\mathrm{C}}=\mathrm{Max} \\ & \text { All inputs }=\text { Gnd } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency at $\overline{\mathrm{CP}_{0}}$ | 35 |  | MHz | Figs. 3-1, 3-9 |
| $f_{\text {max }}$ | Maximum Count Frequency at $\overline{\mathrm{CP}}_{1}$ | 17.5 |  | MHz | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay $\overline{\mathrm{CP}} 0$ to $\mathrm{Q}_{0}$ |  | $\begin{aligned} & 13 \\ & 17 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{array}{\|l\|l\|} \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 17 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 41 \\ & 51 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \\ \hline \end{array}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{3}$ for ' 176 |  | $20$ | ns | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { tpHH } \end{aligned}\right.$ | Propagation Delay $\mathrm{CP}_{1}$ to Q3 for '177 |  | $\begin{aligned} & 66 \\ & 75 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $P_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 29 \\ & 46 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{P L}$ to $Q_{n}$ |  | $\begin{aligned} & 43 \\ & 48 \end{aligned}$ | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 48 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{ts}_{\text {( }}(\mathrm{H})$ | Setup Time HIGH $P_{n}$ to $\overline{P L}$ | 15 |  | ns | Fig. 3-13 |
| th (H) | Hold Time HIGH $P_{n}$ to $\overline{\mathrm{PL}}$ | 0 |  | ns | Fig. 3-13 |
| $t_{s}(\mathrm{~L})$ | Setup Time LOW $P_{n}$ to $\overline{P L}$ | 20 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW <br> $P_{n}$ to $\overline{P L}$ | 0 |  | ns | Fig. 3-13 |
| tw (H) | $\overline{\mathrm{CP}}_{0}$ Pulse Width HIGH | 14 |  | ns | Fig. 3-9 |
| tw (H) | $\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH | 28 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | $\overline{\text { PL }}$ Pulse Width LOW | 25 |  | ns | Fig. 3-16 |
| $\mathrm{tw}^{\text {( } L \text { ) }}$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{\mathrm{MR}}$ or $\overline{\mathrm{PL}}$ to $\overline{\mathrm{CP}}_{\mathrm{n}}$ | 25 |  | ns | Fig. 3-16 |

## 54/74177 <br> PRESETTABLE BINARY COUNTER

DESCRIPTION - The'177 is a presettable modulo-16 ripple counter partitioned into divide-by-two and divide-by-eight sections, with a separate clock input for each section. In the counting mode, state changes are initiated by the falling edge of the clock. A LOW signal on the Master Reset ( $\overline{\mathrm{MR}})$ input overrides all other inputs and forces the outputs LOW. A LOW signal on the Parallel Load ( $\overline{\mathrm{PL}}$ ) input overrides the clocks and causes the $Q$ outputs to assume the state of their respective Parallel Data $\left(P_{n}\right)$ inputs. For detail specifications, please refer to the ' 176 data sheet.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74177PC |  | 9A |
| Ceramic DIP (D) | A | 74177DC | 54177DM | 6A |
| Flatpak (F) | A | 74177FC | 54177FM | 31 |



LOGIC SYMBOL

$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{\overline{C P}_{0}}$ | $\div 2$ Section Clock Input (Active Falling Edge) | $2.0 / 3.0$ |
| $\overline{\overline{C P}} 1$ | $\div 8$ Section Clock Input (Active Falling Edge) | $2.0 / 2.0$ |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | $2.0 / 2.0$ |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| $\mathrm{PL}_{0}-\mathrm{Q}_{3}$ | Asynchronous Parallel Load Input (Active LOW) | $1.0 / 1.0$ |
| $\mathrm{Q}_{0}$ | Flip-flop Outputs* | $20 / 10$ |

[^33]FUNCTIONAL DESCRIPTION-The '177 is an asynchronously presettable binary ripple counter partitioned into divide-by-two and divide-by-eight sections. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the $Q$ outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the $Q_{n}$ outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\mathrm{CP}}_{0}$ input serves the $\mathrm{Q}_{0}$ flip-flop while the $\overline{\mathrm{CP}}_{1}$ input serves the divide-by-eight section. The $\mathrm{Q}_{0}$ output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and with $\mathrm{Q}_{0}$ driving $\overline{\mathrm{CP}}_{1}$, the '177 forms a straightforward modulo-16 counter, with $Q_{0}$ the least significant output and $Q_{3}$ the most significant output.

The '177 has an asynchronous active LOW Master Reset input ( $\overline{\mathrm{MR}}$ ) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input $(\overline{P L})$ overrides the clock inputs and loads the data from Parallel Data ( $P_{0}-P_{3}$ ) inputs into the flip-flops. While $\overline{P L}$ is LOW, the counters act as transparent latches and any change in the $P_{n}$ inputs will be reflected in the outputs.
mode select table

| INPUTS |  |  | RESPONSE |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{MR}}$ | $\overline{\text { PL }}$ | $\overline{\mathrm{CP}}$ |  |
|  | x | X | $Q_{n}$ forced LOW |
| H | L | X | $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | H | L | Count Up |

H = HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

STATE DIAGRAM


LOGIC DIAGRAM


## 54/74178 4-BIT SHIFT REGISTER

DESCRIPTION - The '178 features synchronous parallel or serial entry and parallel outputs. The flip-flops are fully edge-triggered, with state changes initiated by a HIGH-to-LOW transition of the clock. Parallel Enable and Serial Enable inputs are used to select Load, Shift and Hold modes of operation. The'178 is the 14-pin version of the'179. For detail specifications, please refer to the ' 179 data sheet.

ORDERING CODE: See Section 9

|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | 74178 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 74178 DC | 54178 DM | 6 A |
| Flatpak <br> (F) | A | 74178 FC | 54178 FM | 31 |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| PE | Parallel Enable Input | $1.0 / 1.0$ |
| $P_{0}-P_{3}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| Ds | Serial Data Input | $1.0 / 1.0$ |
| SE | Shift Enable Input | $1.0 / 1.0$ |
| CP | Clock Pulse Input (Active Falling Edge) | $1.0 / 1.0$ |
| Q $-Q_{3}$ | Flip-flop Outputs | $20 / 10$ |

FUNCTIONAL DESCRIPTION - The '178 contains four D-type edge-triggered flip-flops and sufficient interstage logic to perform parallel load, shift right or hold operations. All state changes are initiated by a HIGH-to-LOW transition of the clock. A HIGH signal on the Shift Enable (SE) input prevents parallel loading and permits a right shift each time the clock makes a negative transition. When the SE input is LOW, the signal applied to the Parallel Enable (PE) input determines whether the circuit is in a parallel load or a hold mode, as shown in the Mode Select Table. The SE, PE, Ds and Pn inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.
mode select table

| INPUTS |  |  | RESPONSE |
| :---: | :---: | :---: | :---: |
| SE | PE | $\overline{\mathrm{CP}}$ |  |
| H L L | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\stackrel{L}{2}$ | Right Shift. $\mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{Q}_{0} ; \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc. Parallel load $P_{n} \longrightarrow Q_{n}$. Hold |



## 54/74179 <br> 4-BIT SHIFT REGISTER

DESCRIPTION - The '179 features synchronous parallel or serial entry, asynchronous reset and parallel outputs, with the complement output of the fourth stage also available. The flip-flops are fully edge-triggered, with state changes initiated by a HIGH-to-LOW transition of the clock. Parallel Enable and Serial Enable inputs are used to select Load, Shift and Hold modes of operation. A LOW signal on the Master Reset input overrides all other inputs and forces the Q outputs to the LOW state.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74179PC |  | 9B |
| Ceramic DIP (D) | A | 74179DC | 54179DM | 6B |
| Flatpak <br> (F) | A | 74179FC | 54179FM | 4L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| PE | Parallel Enable Input | $1.0 / 1.0$ |
| $P_{0}-P_{3}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| Ds | Serial Data Input | $1.0 / 1.0$ |
| SE | Shift Enable Input | $1.0 / 1.0$ |
| $\overline{C P}$ | Clock Pulse Input (Active Falling Edge) | $1.0 / 1.0$ |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | $1.0 / 1.0$ |
| Q $_{0}-Q_{3}$ | Flip-flop Outputs | $20 / 10$ |
|  | Fourth Stage Complement Output | $20 / 10$ |

FUNCTIONAL DESCRIPTION - The '179 contains four D-type edge-triggered flip-flops and sufficient interstage logic to perform parallel load, shift right or hold operations. All state changes except reset are initiated by a HIGH-to-LOW transition of the clock. A LOW signal on MR overrides all other inputs and forces the Q outputs LOW and $\bar{Q}_{3}$ HIGH. With $\overline{\text { MR }}$ HIGH, a HIGH signal on SE prevents parallel loading and permits a right shift each time the clock makes a HIGH-to-LOW transition. When $\overline{M R}$ and SE are LOW, the signal applied to PE determines whether the circuit is in a parallel load or a hold mode, as shown in the Mode Select Table. The SE, PE, Ds and $P_{n}$ inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{MR}}$ | SE | PE | $\overline{\mathrm{CP}}$ |  |
| L | X | X | X | Asynchronous Reset; $\mathrm{Q}_{\mathrm{n}} \rightarrow$ LOW; $\mathrm{Q}_{3} \rightarrow \mathrm{HIGH}$ |
| H | H | X | L |  |
| H | L | H | L | Parallel load. $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | L | L | X | Hold |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & 70 \\ & 75 \end{aligned}$ | mA | $\begin{aligned} & \mathrm{VCc}=\mathrm{Max}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{Ds}, \overline{\mathrm{PE}}, \mathrm{SE}, \mathrm{MR}=4.5 \mathrm{~V} \\ & \mathrm{CP}=\mathrm{Z} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 26 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH | Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{3}$ |  | 23 | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 36 | ns |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW Ds or $P_{n}$ to $\overline{C P}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tr}_{\mathrm{n}}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW Ds or $\mathrm{P}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW PE or SE to $\overline{C P}$ | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW PE or SE to $\overline{C P}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}^{\text {( }} \mathrm{H}$ ) | $\overline{\mathrm{CP}}$ Pulse Width HIGH | 20 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { MR }}$ Pulse Width LOW | 20 |  | ns | Fig. 3-17 |
| $\mathrm{trec}^{\text {c }}$ | Recovery Time $\overline{M R} \text { to } \overline{\mathrm{CP}}$ | 15 |  | ns | Fig. 3-17 |

## 54/74180 <br> 8-BIT PARITY GENERATOR/CHECKER

DESCRIPTION - The '180 is a monolithic, 8-bit parity checker/generator which features control inputs and even/odd outputs to enhance operation in either odd or even parity applications. Cascading these circuits allows unlimited word length expansion. Typical application would be to generate and check parity on data being transmitted from one register to another. Typical power dissipation is 170 mW .

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V}, \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | VCC $=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
|  | A | 74180 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 74180 DC | 54180 DM | 6 A |
| Flatpak <br> (F) | A | 74180 FC | 54180 FM | 31 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $I_{0}-I_{7}$ | Data Inputs | $1.0 / 1.0$ |
| OI | Odd Input | $2.0 / 2.0$ |
| EI | Even Input | $2.0 / 2.0$ |
| $\Sigma_{O}$ | Odd Parity Output | $20 / 10$ |
| $\Sigma_{E}$ | Even Parity Output | $20 / 10$ |

TRUTH TABLE

| INPUTS |  |  | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \Sigma \text { OF } 1 \text { 's AT } \\ & 0 \text { THRU } 7 \end{aligned}$ | EVEN | ODD | $\Sigma$ <br> EVEN | $\underset{\text { ODD }}{\Sigma}$ |  |
| EVEN | H | L | H | L |  |
| ODD | H | L | L | H |  |
| EVEN | L | H | L | H |  |
| ODD | L | H | H | L |  |
| X | H | H | L | L | H $=$ HIGH Voltage Level |
| X | L | L | H | H | $\mathrm{L}=$ LOW Voltage Level $\mathrm{X}=$ Immaterial |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | mA | $\mathrm{VCC}=\mathrm{Max}$ |
|  |  | XC | -18 | -55 |  | Vcc $=$ Max |
| Icc | Power Supply Current | XM |  | 49 |  | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{ln}=$ Open |
|  |  | XC |  | 56 | mA | $\mathrm{OI}, \mathrm{EI}=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{RL}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { tPH } \end{aligned}\right.$ | Propagation Delay In to $\mathrm{VE}_{\mathrm{E}}$ |  | $\begin{aligned} & 60 \\ & 68 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \text { OI = Gnd } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay In to $\mathrm{\Sigma o}$ |  | $\begin{aligned} & 48 \\ & 38 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-4 } \\ & \text { OI = Gnd } \end{aligned}$ |
| tpLH tphl | Propagation Delay In to $\sum_{E}$ |  | $\begin{aligned} & 48 \\ & 38 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \text { EI = Gnd } \end{aligned}$ |
| tPLH tpHL | Propagation Delay In to EO |  | $\begin{aligned} & 60 \\ & 68 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-4 } \\ & \text { EI = Gnd } \end{aligned}$ |
| tPLH $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay <br> El or Ol to $\mathrm{SE}_{\mathrm{E}}$ |  | $\begin{aligned} & 20 \\ & 10 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay <br> El or Ol to $\mathrm{\Sigma o}$ |  | $\begin{aligned} & 20 \\ & 10 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

## 54LS/74LS181 <br> 4-BIT ARITHMETIC LOGIC UNIT

DESCRIPTION - The ' 181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. For improved TTL, S-TTL and LP-TTL versions, please see the 9341 data sheet.

- PROVIDES 16 ARITHMETIC OPERATIONS ADD, SUBTRACT, COMPARE, DOUBLE, PLUS TWELVE OTHER ARITHMETIC OPERATIONS
- PROVIDES ALL 16 LOGIC OPERATIONS OF TWO VARIABLES EXCLUSIVE-OR, COMPARE, AND, NAND, OR, NOR, plus ten other logic operations
- FULL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION ON LONG WORDS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS181PC |  | 9 N |
| Ceramic DIP (D) | A | 74LS181DC | 54LS181DM | 6 N |
| Flatpak (F) | A | 74LS181FC | 54LS181FM | 4M |


$\mathrm{VCC}=\operatorname{Pin} 24$
$\mathrm{GND}=\operatorname{Pin} 12$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $54 / 74$ LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\bar{A}_{0}-\bar{A}_{3}$ | Operand Inputs (Active LOW) | $1.5 / 0.75$ |
| $\bar{B}_{0}-\bar{B}_{3}$ | Operand Inputs (Active LOW) | $1.5 / 0.75$ |
| $\mathrm{~S}_{0}-\mathrm{S}_{3}$ | Function Select Inputs | $2.0 / 1.0$ |
| M | Mode Control Input | $0.5 / 0.25$ |
| $\mathrm{C}_{n}$ | Carry Input | $2.5 / 1.25$ |
| $\bar{F}_{0}-\bar{F}_{3}$ | Function Outputs (Active LOW) | $10 / 5.0$ |
|  | $(2.5)$ |  |
| $\mathrm{A}=\mathrm{B}$ | Comparator Output | $0 \mathrm{OC}^{*} / 5.0$ |
|  |  | $(2.5)$ |
| $\overline{\mathrm{G}}$ | Carry Generate Output (Active LOW) | $10 / 10$ |
| $\overline{\mathrm{P}}$ | Carry Propagate Output (Active LOW) | $10 / 5.0$ |
| $\mathrm{C}_{\mathrm{n}}+4$ | Carry Output | $10 / 5.0$ |
|  |  | $(2.5)$ |

[^34]FUNCTIONAL DESCRIPTION - The 'LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_{n}+4$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). In the ADD mode, $\overline{\mathrm{P}}$ indicates that $\bar{F}$ is 15 or more, while $\bar{G}$ indicates that $\bar{F}$ is 16 or more. In the SUBTRACT mode, $\bar{P}$ indicates that $\bar{F}$ is zero or less, while $\bar{G}$ indicates that $\bar{F}$ is less than zero. $\bar{P}$ and $\bar{G}$ are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output ( $C_{n}+4$ ) signal to the Carry input ( $C_{n}$ ) of the next unit. For high speed operation the device is used in conjunction with the 9342 or 93542 carry lookahead circuit. One carry lookahead package is required for each group of four'LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.

The $A=B$ output from the device goes HIGH when all four $\bar{F}$ outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $A=B$ output is open-collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the $C_{n}+4$ signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 ( 2 s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE

| MODE SELECT INPUTS |  |  |  | ACTIVE LOW OPERANDS \& $\mathrm{F}_{\mathrm{n}}$ OUTPUTS |  | ACTIVE HIGH OPERANDS \& $F_{n}$ OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 | S2 | S1 | So | $\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$ | ARITHMETIC** $(M=L)\left(C_{n}=L\right)$ | LOGIC $(M=H)$ | ARITHMETIC** $(M=L)\left(C_{n}=H\right)$ |
| L | L | L | L | $\bar{A}$ | A minus 1 | $\overline{\mathrm{A}}$ | A |
| L | L | L | H | $\overline{\mathrm{AB}}$ | $A B$ minus 1 | $\overline{A+B}$ | $A+B$ |
| L | L | H | L | $\overline{A+B}$ | $A \bar{B}$ minus 1 | $\bar{A} B$ | $A+\bar{B}$ |
| L | L | H | H | Logic 1 | minus 1 | Logic 0 | minus 1 |
| L | H | L | L | $\overline{A+B}$ | A plus $(A+\bar{B})$ | $\overline{\mathrm{AB}}$ | A plus $A \bar{B}$ |
| L | H | L | H | $\bar{B}$ | $A B$ plus $(A+\bar{B})$ | $\bar{B}$ | $(A+B)$ plus $A \bar{B}$ |
| L | H | H | L | $\overline{A \oplus} \mathrm{~B}$ | $A$ minus $B$ minus 1 | $A \oplus B$ | $A$ minus $B$ minus 1 |
| L | H | H | H | $A+\bar{B}$ | $A+\bar{B}$ | $A \bar{B}$ | $A B$ minus 1 |
| H | L | L | L | $\bar{A} B$ | A plus ( $A+B$ ) | $\bar{A}+B$ | $A$ plus AB |
| H | L | L | H | $A \oplus B$ | $A$ plus $B$ | $\overline{A \oplus} \mathrm{~B}$ | $A$ plus $B$ |
| H | L | H | L | B | $A \bar{B}$ plus ( $A+B$ ) | B | $(A+\bar{B})$ plus $A B$ |
| H | L | H | H | $A+B$ | $A+B$ | AB | $A B$ minus 1 |
| H | H | L | L | Logic 0 | A plus $\mathrm{A}^{*}$ | Logic 1 | A plus $A^{*}$ |
| H | H | L | H | $A \bar{B}$ | $A B$ plus $A$ | $A+\bar{B}$ | ( $A+B$ ) plus $A$ |
| H | H | H | L | $A B$ | $A \bar{B}$ minus $A$ | $A+B$ | $(A+\bar{B})$ plus $A$ |
| H | H | H | H | A | A | A | A minus 1 |

[^35]
## LOGIC SYMBOLS



ACTIVE LOW OPERANDS


LOGIC DIAGRAM


| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| IOH | Output HIGH Current, A = B |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | $\frac{\text { XM }}{\text { XC }}$ |  | $\begin{aligned} & 32 \\ & 34 \end{aligned}$ | mA | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$ <br> $\bar{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}=$ Gnd <br> $\mathrm{S}_{\mathrm{n}}, \mathrm{M}, \bar{A}_{\mathrm{n}}=4.5 \mathrm{~V}$ |
|  |  | XM |  | $\begin{aligned} & 35 \\ & 37 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ <br> $\bar{A}_{n}, \bar{B}_{n}, C_{n}=$ Gnd <br> $\mathrm{M}, \mathrm{S}_{\mathrm{n}}=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| tpLH tphL | Propagation Delay $\mathrm{C}_{n}$ to $\mathrm{C}_{n}+4$ |  | $\begin{aligned} & 27 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}=\text { Gnd, Figs. 3-1, 3-5 } \\ & \text { Tables I \& II } \end{aligned}$ |
| $\begin{array}{\|l\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $C_{n}$ to $\bar{F}$ |  | $\begin{aligned} & 26 \\ & 20 \end{aligned}$ | ns | $\mathrm{M}=\text { Gnd, Figs. 3-1, 3-5 }$ Table I |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPH} \end{aligned}\right.$ | Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$ |  | $\begin{aligned} & 29 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. } 3-1,3-5 \\ & \text { Table I } \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$ |  | $\begin{aligned} & 32 \\ & 26 \end{aligned}$ | ns | $\begin{aligned} & \text { M, So, } \mathrm{S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\bar{A}$ or $\bar{B}$ to $\bar{P}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{0}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. } 3-1,3-4 ; \end{aligned}$ Table I |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{P}}$ |  | $\begin{aligned} & 30 \\ & 33 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$ |
| tpLH tPHL | Propagation Delay $\bar{A}_{i}$ or $\bar{B}_{i}$ to $\bar{F}_{i}$ |  | $\begin{aligned} & 32 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{0}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-5: } \\ & \text { Table I } \end{aligned}$ |
| tpLH tpHL | Propagation Delay $\bar{A}_{i}$ or $\bar{B}_{i}$ to $\bar{F}_{i}$ |  | $\begin{aligned} & 32 \\ & 32 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$ |
| tpLH tphL | Propagation Delay <br> $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{F}}$ |  | $\begin{aligned} & 33 \\ & 29 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-5; } \\ & \text { Table III } \end{aligned}$ |
| tpLH tphL | Propagation Delay <br> $\bar{A}$ or $\bar{B}$ to $\mathrm{C}_{n}+4$ |  | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\text { Gnd; } \mathrm{S}_{0}, \\ & \mathrm{~S}_{3}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4; } \\ & \text { Table I } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Cont'd)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  |  | Max |  |  |
| tpLH tphl | Propagation Delay $\bar{A}$ or $\bar{B}$ to $C_{n+4}$ |  | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\text { Gnd; } \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} \text {; Figs. 3-1, 3-4, } \\ & 3-5 ; \text { Table II } \end{aligned}$ |
| tpl tphL | Propagation Delay $\bar{A}$ or $\bar{B}$ to $A=B$ |  | $\begin{aligned} & 50 \\ & 62 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} ; \mathrm{S}_{1}, \\ & \mathrm{~S}_{2}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \\ & 5.0 \mathrm{~V} ; \text { Figs. 3-2, 3-4, 3-5; } \\ & \text { Table II } \end{aligned}$ |

SUM MODE TEST TABLE I
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$ | APPLY GND | $\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} . \end{gathered}$ | APPLY GND |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | $\bar{A}_{i}$ | $\bar{B}_{i}$ | None | $\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}} \end{gathered}$ | $\mathrm{C}_{n}$ | $\overline{F_{i}}$ |
| tpLH tphL | $\overline{\mathrm{B}} \mathrm{i}$ | $\overline{\bar{A}_{i}}$ | None | $\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B} \end{aligned}$ | $\mathrm{C}_{n}$ | $\overline{F_{i}}$ |
| tple tphL | $\overline{\text { A }}$ | $\overline{\text { B }}$ | None | None | $\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{n} \end{aligned}$ | $\overline{\mathrm{P}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | $\overline{\text { B }}$ | $\bar{A}$ | None | None | Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\overline{\mathrm{P}}$ |
| tpLH tpHL | $\overline{\text { A }}$ | None | $\bar{B}$ | ${\underset{\bar{B}}{ }}_{\text {Remaining }}$ | $\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$ | $\overline{\mathrm{G}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | $\overline{\text { B }}$ | None | $\overline{\text { A }}$ | $\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$ | $\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$ | $\overline{\mathrm{G}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | $\overline{\text { A }}$ | None | $\bar{B}$ | $\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$ | $\begin{gathered} \text { Remaining } \\ \bar{A}, C_{n} \end{gathered}$ | $\mathrm{C}_{\mathrm{n}+4}$ |
| tpLH tpHL | $\bar{B}$ | None | $\overline{\text { A }}$ | ${ }_{\bar{B}}^{\text {Remaining }}$ | $\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{gathered}$ | $\mathrm{C}_{\mathrm{n}+4}$ |
| tPLH tpHL | $\mathrm{C}_{n}$ | None | None | $\frac{\mathrm{A} I I}{\bar{A}}$ | $\frac{A l l}{\bar{B}}$ | $\begin{aligned} & \text { Any } \bar{F} \\ & \text { or } C_{n}+4 \end{aligned}$ |

DIFF MODE TEST TABLE II
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$ | APPLY GND | $\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$ | APPLY GND |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | $\overline{\text { A }}$ | None | $\overline{\text { B }}$ | $\operatorname{Remaining~}_{\bar{A}}$ | $\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ & \hline \end{aligned}$ | $\bar{F}_{i}$ |
| $\begin{aligned} & \text { tpLL } \\ & \text { tp } \end{aligned}$ | $\bar{B}$ | $\overline{\text { A }}$ | None | $\operatorname{Remaining~}_{\bar{A}}$ | Remaining $\bar{B}, C_{n}$ | $\overline{F_{i}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\overline{\text { A }}$ | None | $\overline{\text { B }}$ | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\overline{\mathrm{P}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\bar{B}$ | $\overline{\text { A }}$ | None | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\bar{P}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpH } \end{aligned}$ | $\overline{\text { A }}$ | $\overline{\text { B }}$ | None | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\overline{\mathrm{G}}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | $\bar{B}$ | None | $\overline{\text { A }}$ | None | Remaining <br> $\bar{A}$ and $\bar{B}, C_{n}$ | $\overline{\mathrm{G}}$ |
| tple tpHL | $\bar{A}$ | None | $\bar{B}$ | $\operatorname{Remaining~}_{\bar{A}}$ | $\begin{gathered} \text { Remaining } \\ \bar{B}, C_{n} \end{gathered}$ | $\mathrm{A}=\mathrm{B}$ |
| $\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{tpHL} \end{aligned}$ | $\bar{B}$ | $\overline{\text { A }}$ | None | $\operatorname{Remaining~}_{\bar{A}}$ | $\begin{aligned} & \text { Remaining } \\ & \bar{B}, C_{n} \end{aligned}$ | $A=B$ |
| $\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{tpH} \end{aligned}$ | $\bar{A}$ | $\overline{\text { B }}$ | None | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\mathrm{C}_{n}+4$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\overline{\text { B }}$ | None | $\overline{\text { A }}$ | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\mathrm{C}_{\mathrm{n}+4}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\mathrm{C}_{n}$ | None | None | $\begin{gathered} \mathrm{All} \\ \overline{\mathrm{~A}} \text { and } \overline{\mathrm{B}} \end{gathered}$ | None | $\mathrm{C}+\mathrm{t}$ |

LOGIC MODE TEST TABLE III
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT <br> UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | APPLY $4.5 \text { V }$ | APPLY GND | APPLY <br> 4.5 V | APPLY GND |  |
| tplH tphL | $\overline{\mathrm{A}}$ | $\bar{B}$ | None | None | Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | Any $\overline{\mathrm{F}}$ |
| tple <br> tphL | $\bar{B}$ | $\bar{A}$ | None | None | Remaining <br> $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | Any $\overline{\mathrm{F}}$ |

## 54H/74H183 DUAL HIGH SPEED ADDER

DESCRIPTION - The '183 contains two independent full adders. Each adder has an individual carry output for use in multiple-input, carry-save techniques to produce the true sum and true carry outputs with no more than two gate delays. Typical propagation delay is 12 ns .

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  |  | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
|  | A | 74 H 183 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 74 H 183 DC | 54 H 183 DM | 6 A |
| Flatpak <br> (F) | A | 74 H 183 FC | 54 H 183 FM | 31 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL


$$
V_{c c}=\operatorname{Pin} 14
$$

$$
\text { GND }=\operatorname{Pin} 7
$$

TRUTH TABLE
(Each Half)

| INPUTS |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: |
| A | B | $\mathrm{Ci}^{\text {i }}$ | S | Co |
| L | L | L | L | L |
| H | L | L | H | L |
| L | H | L | H | L |
| L | L | H | H | L |
| H | H | L | L | H |
| H | L | H | L | H |
| L | H | H | L | H |
| H | H | H | H | H |

$H=$ HIGH Voltage Level L = LOW Voltage Level

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74H (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{\mathrm{a}}, \mathrm{B}_{\mathrm{a}}$ | Side a Operand Inputs | $3.75 / 3.75$ |
| $\mathrm{~A}_{\mathrm{b}}, \mathrm{B}_{\mathrm{b}}$ | Side b Operand Inputs | $3.75 / 3.75$ |
| $\mathrm{C}_{\mathrm{ia}}, \mathrm{C}_{\mathrm{ib}}$ | Carry Inputs | $3.75 / 3.75$ |
| $\mathrm{~S}_{\mathrm{a}}, \mathrm{B}_{\mathrm{b}}$ | Sum Outputs | $25 / 12.5$ |
| $\mathrm{C}_{\mathrm{oa}}, \mathrm{C}_{\mathrm{ob}}$ | Carry Outputs | $25 / 12.5$ |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74H |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | CONDITIONS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\mathrm{A}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}$ or $\mathrm{C}_{\mathrm{ix}}$ to $\mathrm{S}_{\mathrm{x}}$ |  | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH <br> tphL | Propagation Delay $\mathrm{A}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}$ or $\mathrm{C}_{\mathrm{ix}}$ to $\mathrm{C}_{0 \mathrm{x}}$ |  | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-5 |

## 54S/74S189 54LS/74LS189 64-BIT RANDOM ACCESS MEMORY <br> (With 3-State Outputs)

DESCRIPTION - The '189 is a high speed 64-bit RAM organized as a 16word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-state and are in the high impedance state whenever the Chip Select ( $\overline{\mathrm{CS}}$ ) input is HIGH. The outputs are active only in the Read mode and the output data is the complement of the stored data.

- 3-STATE OUTPUTS FOR DATA BUS APPLICATIONS
- BUFFERED INPUTS MINIMIZE LOADING
- ADDRESS DECODING ON-CHIP
- DIODE CLAMPED INPUTS MINIMIZE RINGING

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74S189PC, 74LS189PC |  | 9B |
| Ceramic DIP (D) | A | 74S189DC, 74LS189DC | 54S189DM, 54LS189DM | 6B |
| Flatpak (F) | A | 74S189FC, 74LS189FC | 54S189FM, 54LS189FM | 4L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $0.63 / 0.16$ | $0.5 / 0.013$ |
| $\overline{\mathrm{CS}}$ | Chip Select Input (Active LOW) | $0.63 / 0.16$ | $0.5 / 0.013$ |
| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) | $0.63 / 0.16$ | $0.5 / 0.013$ |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $0.63 / 0.16$ | $0.5 / 0.013$ |
| $\overline{\mathrm{O}}_{1}-\overline{\mathrm{O}}_{4}$ | Inverted Data Outputs | $162 / 10$ | $10 / 10$ |
|  |  | $(50)$ | $(5.0)$ |



LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74S |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min Max |  |  |
| Vol | Output LOW Voltage | $\frac{\mathrm{XM}}{\mathrm{XC}}$ | $\begin{array}{r} 0.5 \\ 0.45 \end{array}$ |  | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ | V | $\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{IOL}=16 \mathrm{~mA}(\text { 'S189 }) \\ & \mathrm{IOL}=8.0 \mathrm{~mA}(54 \mathrm{LS} 189) \\ & \mathrm{IOL}=16 \mathrm{~mA}(74 \mathrm{LS} 189) \end{aligned}$ |
| VOH | Output HIGH Voltage | $\frac{\mathrm{XM}}{\mathrm{XC}}$ |  | $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$ | V | $\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{IOH}_{\mathrm{C}}=2.0 \mathrm{~mA}(54 \mathrm{~S} 189) \\ & \mathrm{IOH}=6.5 \mathrm{~mA}(74 \mathrm{~S} 189) \\ & \mathrm{IOH}=0.4 \mathrm{~mA}(\text { 'LS189 }) \end{aligned}$ |
| los | Output Short Circuit Current |  | -30 | -100 | -80* | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| Icc | Power Supply Current |  |  | 110 | 40 | mA | $V_{C C}=$ Max; $\overline{W E}, \overline{C S}$, Gnd |

[^36]AC CHARACTERISTICS OVER RECOMMENDED VCC AND TA RANGE (unless otherwise specified)

| SYMB OL | PARAMETER |  | 54/ |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{r} C_{L}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega \end{array}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Access Time, HIGH or LOW, $A_{n}$ to $\bar{O}_{n}$ | $\frac{X M}{X C}$ |  | $\begin{aligned} & 50 \\ & 35 \end{aligned}$ | $\begin{aligned} & 37^{*} \\ & 37^{*} \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$ | Access Time, HIGH or LOW, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | XM |  | $\begin{aligned} & 32 \\ & 22 \end{aligned}$ | $\begin{aligned} & 10^{*} \\ & 10^{*} \end{aligned}$ | ns | Figs. 3-3, 3-11, 3-12 $R_{L}=2 \mathrm{k} \Omega$ ('LS189) |
| tPHZ | Disable Time $\overline{\mathrm{CS}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | XM |  | $\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$ |  | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { ('LS189) } \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$ |
| tplz | $\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{CS}} \text { to } \overline{\mathrm{O}}_{n} \end{aligned}$ | XM |  | $\begin{aligned} & \hline 25 \\ & 17 \\ & \hline \end{aligned}$ |  |  |  |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Access Time, HIGH or LOW, $\overline{W E}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | XM |  | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ |  | ns | Figs. 3-3, 3-11, 3-12 $R_{L}=2 \mathrm{k} \Omega$ ('LS189) |
| tPHZ | Disable Time $\overline{W E}$ to $\bar{O}_{n}$ | XM |  | $\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$ |  | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega(' \mathrm{LS} 189) \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$ |
| tpLZ | $\begin{aligned} & \text { Disable Time } \\ & \overline{W E} \text { to } \bar{O}_{n} \end{aligned}$ | XM |  | $\begin{aligned} & 32 \\ & 20 \end{aligned}$ |  |  |  |

AC OPERATING REQUIREMENTS OVER RECOMMENDED VCC AND TA RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 10^{*} \\ & 10^{*} \end{aligned}$ | ns | Fig. 3-21 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0^{*} \\ & 0^{*} \end{aligned}$ | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{WE}}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 25^{*} \\ & 25^{*} \end{aligned}$ | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0^{\star} \\ & 0^{\star} \end{aligned}$ | ns |  |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | Setup Time LOW $\overline{C S}$ to $\overline{W E}$ | 0 |  |  | ns | Fig. 3-14 |
| $t \mathrm{t}$ (L) | Hold Time LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ | 0 |  |  | ns | Fig. 3-13 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | WE Pulse Width LOW | 20 |  | 25* | ns | Fig. 3-14 |

[^37]

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | $\begin{aligned} & \text { 54/74LS (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\overline{C E}$ | Count Enable Input (Active LOW) | 3.0/3.0 | 1.5/0.75 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{PL}}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\bar{U} / \mathrm{D}$ | Up/Down Count Control Input | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 20/10 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\overline{\mathrm{RC}}$ | Ripple Clock Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| TC | Terminal Count Output (Active HIGH) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

MODE SELECT TABLE

| INPUTS |  |  |  | MODE |
| :---: | :---: | :---: | :---: | :--- |
| $\overline{P L}$ | $\overline{C E}$ | $\bar{U} / D$ | $C P$ |  |
| $H$ | $L$ | $L$ | $\Gamma$ | Count Up |
| $H$ | $L$ | $H$ | $\zeta$ | Count Down |
| $L$ | $X$ | $X$ | $X$ | Preset (Asyn.) |
| $H$ | $H$ | $X$ | $X$ | No Change (Hold) |

H = HIGH Votage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM


RC TRUTH TABLE

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| $\overline{C E}$ | TC $^{\star}$ | $C P$ | $\overline{R C}$ |
| $L$ | $H$ | $Z$ | $\Psi$ |
| $H$ | $X$ | $X$ | $H$ |
| $X$ | $L$ | $X$ | $H$ |

*TC is generated internally

STATE DIAGRAM


FUNCTIONAL DESCRIPTION - The '190 is a synchronous up/down BCD decade counter and the '191 is a synchronous up/down 4-bit binary counter. The operating modes of the ' 190 decade counter and the '191 binary counter are identical, with the only difference being the count sequences as noted in the state diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load $(\overline{P L})$ input is LOW, information present on the Parallel Data inputs $\left(P_{0}-P_{3}\right)$ is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

A HIGH signal on the $\overline{C E}$ input inhibits counting. When $\overline{C E}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the $\bar{U} / D$ input signal, as indicated in the Mode Select $T$ able. When counting is to be enabled, the $\overline{C E}$ signal can be made LOW when the clock is in either state. However, when counting is to be inhibited, the LOW-to-HIGH $\overline{C E}$ transition must occur only while the clock is HIGH. Similarly, the $\bar{U} / D$ signal should only be changed when either $\overline{\mathrm{CE}}$ or the clock is HIGH. These restrictions do not apply to the 'LS190 and 'LS191; $\overline{\mathrm{CE}}$ and $\overline{\mathrm{U}} / \mathrm{D}$ can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches maximum ( 9 for the '190, 15 for the '191) in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until $\bar{U} / D$ is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple Clock ( $\overline{\mathrm{RC}}$ ) output. The $\overline{\mathrm{RC}}$ output is normally HIGH. When $\overline{C E}$ is LOW and TC is HIGH, the $\overline{R C}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multi-stage counters, as indicated in Figures $a$ and b. In Figure a, each $\overline{R C}$ output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on $\overline{C E}$ inhibits the $\overline{R C}$ output pulse, as indicated in the $\overline{R C}$ Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages in shown in Figure b. All clock inputs are driven in parallel and the $\overline{\mathrm{RC}}$ outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\mathrm{RC}}$ output of any package goes HIGH shortly after its CP input goes HIGH.

The configuration shown in Figure $c$ avoids ripple delays and their associated restrictions. The $\overline{C E}$ input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figures a and b doesn't apply, because the TC output of a given stage is not affected by its own $\overline{\mathrm{CE}}$.


Fig. a N-Stage Counter Using Ripple Clock


Fig. b Synchronous N-Stage Counter Using Ripple Carry/Borrow


Fig. c Synchronous N-Stage Counter with Parallel Gated Carry/Borrow


Fig. $d$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/ | 74 | 54/7 | 74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{RL}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency | 20 |  | 20 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 24 \\ & 36 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 36 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay CP to TC |  | $\begin{aligned} & 42 \\ & 52 \end{aligned}$ |  | $\begin{aligned} & 42 \\ & 52 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay CP to $\overline{R C}$ |  | $\begin{aligned} & 20 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $P_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 22 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 22 \\ & 50 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{C E}$ to $\overline{R C}$ |  | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ |  | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{PL}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 33 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 33 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-16 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{U} / D$ to $\overline{R C}$ |  | $\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$ | ns | Fig. 3-1, Fig. d |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{U} / D$ to $\overline{T C}$ |  | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ |  | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ | ns |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \hline \text { ts (H) } \\ & \text { ts (L) } \end{aligned}$ | Setup Time HIGH or LOW $P_{n}$ to $\overline{P L}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ to $\overline{P L}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| ts (L) | Setup Time LOW CE to CP | 20 |  | 20 |  | ns | Fig. 3-6 |
| $t_{n}(\mathrm{~L})$ | Hold Time LOW $\overline{C E}$ to CP | 0 |  | 0 |  | ns |  |
| tw (L) | CP Pulse Width LOW | 25 |  | 20 |  | ns | Fig. 3-8 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | PL Pulse Width LOW | 35 |  | 35 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{P L}$ to $C P$ | 20 |  | 20 |  | ns | Fig. 3-16 |

# 54/74191 54LS/74LS191 <br> <br> UP/DOWN BINARY COUNTER 

 <br> <br> UP/DOWN BINARY COUNTER}

## (With Preset and Ripple Clock)

DESCRIPTION - The '191 is a reversible modulo-16 binary counter featuring synchronous counting and asychronous presetting. The preset feature allows the ' 191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multi-stage counters. In the counting modes, state changes are initiated by the rising edge of the clock. For detail specifications and functional description, please refer to the '190 data sheet.

- HIGH SPEED - 30 MHz TYPICAL COUNT FREQUENCY
- SYNCHRONOUS COUNTING
- ASYNCHRONOUS PARALLEL LOAD
- CASCADABLE

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\overline{C E}}$ | Count Enable Input (Active LOW) | 3.0/3.0 | 1.5/0.75 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{PL}}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\bar{U} / \mathrm{D}$ | Up/Down Count Control Input | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\overline{\mathrm{RC}}$ | Ripple Clock Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| TC | Terminal Count Output (Active HIGH) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

STATE DIAGRAM


LOGIC DIAGRAM


## 54/74192 54LS/74LS192 UP/DOWN DECADE COUNTER (With Separate Up/Down Clockss)

DESCRIPTION - The '192 is an up/down BCD decade (8421) counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stage without extra logic, thus simplifying multistage counter.designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load $(\overline{\mathrm{PL}})$ and the Master Reset (MR) inputs asynchronously override the clocks.

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| CPu | Count Up Clock Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| CPD | Count Down Clock Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| MR | Asynchronous Master Reset Input (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{PL}}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\overline{\mathrm{TC}}{ }_{\mathrm{D}}$ | Terminal Count Down (Borrow) Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\overline{\mathrm{TC}}$ | Terminal Count Up (Carry) Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - The '192 and '193 are asynchronously presettable decade and 4-bit binary synchronous up/down (reversible) counters. The operating modes of the '192 decade counter and the '193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagram. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

The Terminal Count Up ( $\overline{\mathrm{TC}}_{U}$ ) and Terminal Count Down ( $\overline{\mathrm{TC}}_{\mathrm{D}}$ ) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the '192, 15 for the '193), the next HIGH-to-LOW transition of the Count Up Clock will cause $\overline{T C} u$ to go LOW. $\overline{T C} u$ will stay LOW until CPu goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the ${ }^{T C}$ D output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the $\overline{\text { TC }}$ outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$
\begin{gathered}
\overline{\mathrm{TC}}_{\mathrm{U}}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}_{\mathrm{C}}} \\
\overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}}_{0} \cdot \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \cdot \overline{\mathrm{Q}}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{gathered}
$$

Each circuit has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ( $\overline{P L}$ ) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs ( $\mathrm{P}_{0}-\mathrm{P}_{3}$ ) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.


MODE SELECT TABLE

| $M R$ | $\overline{P L}$ | $C P U$ | CPD | MODE |
| :---: | :---: | :---: | :---: | :--- |
| $H$ | $X$ | $X$ | $X$ | Reset (Asyn.) |
| $L$ | $L$ | $X$ | $X$ | Preset (Asyn.) |
| $L$ | $H$ | $H$ | $H$ | No Change |
| $L$ | $H$ | J | $H$ | Count Up |
| $L$ | $H$ | $H$ | - | Count Down |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

STATE DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIn | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -65 |  | -100 | mA | $\mathrm{VCC}=\mathrm{Max}$ |
|  |  | XC | -18 | -65 | -20 | -100 |  |  |
| Icc | Power Supply Current | XM |  | 89 |  | 34 |  | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max} ; \mathrm{MR}, \overline{\mathrm{PL}}=\mathrm{Gnd}$ |
|  |  | XC |  | 102 |  | 34 | mA | Other Inputs $=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\mathrm{fmax}^{\text {max }}$ | Maximum Count Frequency | 25 | 30 | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay CPu or CPD to $\mathrm{Qn}_{n}$ | $\begin{aligned} & 38 \\ & 47 \end{aligned}$ | $\begin{aligned} & 31 \\ & 28 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay CPu to $\overline{T C u}$ | $\begin{aligned} & 26 \\ & 24 \end{aligned}$ | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay CPD to TCD | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 16 \\ & 24 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $P_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\overline{\text { PL }}$ to $Q_{n}$ | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | $\begin{aligned} & 32 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay, MR to $Q_{n}$ | 35 | 25 |  |  |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | $\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & P_{n} \text { to } \overline{P L} \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-13 <br> $\mathrm{CPU}=\mathrm{CPD}=\mathrm{LOW}$ |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ to $\overline{P L}$ | $\begin{array}{\|r\|} \hline 0 \\ 3.0 \end{array}$ |  | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ |  |  |  |
| $\mathrm{tw}_{\text {w }}(L)$ | CP Pulse Width LOW | 20 |  | 17 |  | ns | Fig. 3-8 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { PL Pulse Width LOW }}$ | 20 |  | 20 |  | ns | Fig. 3-16 |
| $\mathrm{tw}_{\text {w }}(\mathrm{H})$ | MR Pulse Width HIGH | 20 |  | 15 |  |  |  |
| trec | Recovery Time, MR to CP | 6.0 |  | 3.0 |  |  |  |
| trec | Recovery Time, $\overline{\text { PL }}$ to CP | 6.0 |  | 10 |  |  |  |

## 54/74193 54LS/74LS193 UP/DOWN BINARY COUNTER

## (With Separate Up/down Clocks)

DESCRIPTION - The '193 is an up/down modulo-16 binary counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to, be used as programmable counters. Both the Parallel Load ( $\overline{\mathrm{PL}}$ ) and the Master Reset (MR) inputs asynchronously override the clocks. For functional description and detail specifications please refer to the '192 data sheet.

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| CPu | Count Up Clock Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| CPd | Count Down Clock Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| MR | Asynchronous Master Reset Input (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| $\overline{P L}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
|  | Terminal Count Down (Borrow) Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\overline{\mathrm{TC}}$ | Terminal Count Up (Carry) Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |



LOGIC EQUATIONS FOR TERMINAL COUNT

$$
\begin{aligned}
& \overline{\mathrm{TC}} \mathrm{U}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}}{ }_{\mathrm{U}} \\
& \overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \cdot \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{aligned}
$$

LOGIC DIAGRAM


## 54/74194 54S/74S194 54LS/74LS194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

DESCRIPTION - The '194 is a high speed 4-bit bidirectional universal shift register. As a high speed multifunctional sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. The '194 is similar in operation to the '195 universal shift register, with added features of shift left without external connections and hold (do nothing) modes of operation.

- GUARANTEED SHIFT FREQUENCY OF 30 MHz ('LS194A) OR 70 MHz ('S194)
- ASYNCHRONOUS MASTER RESET
- HOLD (DO NOTHING) MODE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 74194PC } \\ & \text { 74S194PC, 74LS194APC } \end{aligned}$ |  | 9B |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 74194DC, } \\ & \text { 74S194DC, 74LS194ADC } \end{aligned}$ | 54194DM <br> 54S194DM, 54LS194ADM | 6B |
| Flatpak (F) | A | $\begin{aligned} & \text { 74194FC, } \\ & \text { 74S194FC, 74LS194AFC } \end{aligned}$ | 54194FM <br> 54S194FM, 54LS194AFM | 4L |

CONNECTION DIAGRAM PINOUT A


$$
\begin{aligned}
& \text { VCC }=\operatorname{Pin} 16 \\
& \text { GND }=\operatorname{Pin} 8
\end{aligned}
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}, \mathrm{~S}_{1}$ | Mode Control Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 |
| DSR | Serial Data Input (Shift Right) | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 |
| Dst | Serial Data Input (Shift Left) | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Parallel Outputs | 20/10 | 25/12.5 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - The '194 contains four edge-triggered D flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ) inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data ( $P_{0}-P_{3}$ ) and Serial data ( $D_{S R}, D_{S L}$ ) inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. Synchronous state changes occur within 8.0 ns (typical, '194) or 15 ns (typical, 'LS194A), making the devices especially useful for implementing high speed memory or CPU buffer registers. A LOW signal on Master Reset ( $\overline{\mathrm{MR}}$ ) overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

| OPERATINGMODE | INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{M R}$ | $S_{1}$ | S0 | DSR | DsL | $\mathrm{P}_{\mathrm{n}}$ | Q0 | Q1 | Q2 | Q ${ }^{\text {a }}$ |
| Reset | L | X | x | X | X | X | L | L | L | L |
| Hold | H | 1 | 1 | X | X | X | qo | $\mathrm{q}_{1}$ | q2 | q3 |
| Shift Left | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$ | $\begin{aligned} & 1 \\ & \text { I } \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$ | q2 | $\begin{aligned} & \mathrm{q}_{3} \\ & \text { q3 } \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| Shift Right | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \text { । } \\ & \text { I } \end{aligned}$ | $\begin{aligned} & h \\ & h \end{aligned}$ | h | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{q0} \\ & \mathrm{qo} \end{aligned}$ | $\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{q} 2 \\ & \text { q2 } \end{aligned}$ |
| Parallel Load | H | h | h | x | X | $\mathrm{p}_{n}$ | po | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | $\mathrm{p}_{3}$ |

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.
$h=$ HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW-to-HIGH clock transition.
$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ICC | Power Supply Current |  | 63 |  | 135 |  | 23 | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{C}}=\mathrm{Max} \\ & \mathrm{~S}_{\mathrm{n}}, \overline{\mathrm{MR}}, \mathrm{D}_{\mathrm{SR}}, \\ & \mathrm{DSL}^{2}=4.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{CP}=- \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configuration)

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 25 |  | 70 |  | 30 |  | MHz | igs. 3-1, 3 |
| tpLH <br> tphL | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 22 \\ & 26 \end{aligned}$ |  | 8.0 12 |  | $\begin{aligned} & 21 \\ & 24 \end{aligned}$ | ns |  |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 30 |  | 23 |  | 26 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $P_{n}$ or DSR or DSL to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ or DSR or DSL to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{S}_{\mathrm{n}}$ to CP | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}^{(L)} \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{S}_{\mathrm{n}}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}_{\text {w }}(\mathrm{H})$ | CP Pulse Width HIGH | 20 |  | 7.0 |  | 17 |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | 12 |  | 12 |  | ns | Fig. 3-16 |
| $\mathrm{trec}^{\text {c }}$ | Recovery Time $\overline{M R}$ to CP | 25 |  | 5.0 |  | 18 |  | ns |  |

## 54/74195 54LS/74LS195A UNIVERSAL 4-BIT SHIFT REGISTER

DESCRIPTION - The '195 is a high speed 4-bit shift register offering typical shift frequencies of 50 MHz . It is useful for a wide variety of register and counting applications. The '195 is pin and functionally identical to the 9300, 93LOO and 93H00.

- TYPICAL SHIFT RIGHT FREQUENCY OF 50 MHz ('LS195A)
- ASYNCHRONOUS MASTER RESET
- J, $\bar{K}$ INPUTS TO FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74195PC, 74LS195APC |  | 9B |
| Ceramic DIP (D) | A | 74195DC, 74LS195ADC | 54195DM, 54LS195ADM | 6B |
| Flatpak (F) | A | 74195FC, 74LS195AFC | 54195FM, 54LS195AFM | 4L |


$V_{c c}=\operatorname{Pin} 16$ Gnd $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\text { PE }}$ | Parallel Enable Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| J | First Stage J Input (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{K}}$ | First Stage K Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{MR}}$ | Asynchronous Master Reset Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Parallel Outputs | 20/10 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\overline{\mathrm{Q}}_{3}$ | Complementary Last Stage Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \\ \hline \end{array}$ |

FUNCTIONAL DESCRIPTION - The Logic Diagram and Truth Table indicate the functional characteristics of the '195 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The '195 has two primary modes of operation, shift right ( $Q_{0} \rightarrow Q_{1}$ ) and parallel load, which are controlled by the state of the Parallel Enable ( $(\overline{\mathrm{PE}})$ input. When the $\overline{\text { PE input is HIGH, serial data enters the first flip-flop } Q_{0} \text { via the } J}$ and $\bar{K}$ inputs and is shifted one bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW-to-HIGH clock transition. The $J \bar{K}$ inputs provide the flexibility of the JK type input for special applications, and the simple D type input for general applications by tying the two pins together. When the PEinput is LOW, the'195 appears as four common clocked $D$ flip-flops. The data on the parallel inputs $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ is transferred to the respective $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ outputs following the LOW-to-HIGH clock transition. Shift left operation ( $Q_{3} \rightarrow Q_{2}$ ) can be achieved by tying the $Q_{n}$ outputs to the $P_{n-1}$ inputs and holding the $\overline{P E}$ input LOW.

All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the '195 utilizes edge-triggering, there is no restriction on the activity of the $J, \overline{\mathrm{~K}}, \mathrm{P}_{\mathrm{n}}$ and $\overline{\mathrm{PE}}$ inputs for logic operation - except for the setup and release time requirements. A LOW on the asynchronous Master Reset $(\overline{\mathrm{MR}})$ input sets all Q outputs LOW, independent of any other input condition.

MODE SELECT TABLE

| OPERATING MODES | INPUTS |  |  |  |  | OUTPUTS |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\overline{\mathrm{MR}}$ | $\overline{\mathrm{PE}}$ | J | $\overline{\mathrm{K}}$ | $\mathrm{P}_{\mathrm{n}}$ | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\overline{\mathrm{Q}}_{3}$ |
| Asynchronous Reset | L | X | X | X | X | L | L | L | L | H |
| Shift, Set First Stage | H | h | h | h | x | H | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\overline{\mathrm{q}}_{2}$ |
| Shift, Reset First Stage | H | h | l | l | X | L | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\overline{\mathrm{q}}_{2}$ |
| Shift, Toggle First Stage | H | h | h | l | X | $\overline{q_{0}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\overline{\mathrm{q}}_{2}$ |
| Shift, Retain First Stage | H | h | l | h | X | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\overline{\mathrm{q}}_{2}$ |
| Parallel Load | H | l | X | X | $\mathrm{p}_{\mathrm{n}}$ | $\mathrm{po}_{0}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | $\mathrm{p}_{3}$ | $\overline{\mathrm{p}}_{3}$ |

$H=$ HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial
I = LOW voltage level one setup time prior to the LOW to HIGH clock transition. $h=$ HIGH voltage level one setup time prior to the LOW to HIGH clock transition. $p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW to HIGH clock transition.

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 63 | 21 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{PE}}=\mathrm{Gnd} \\ & \mathrm{~J}, \overline{\mathrm{~K}}, \mathrm{P}_{\mathrm{n}}, \overline{\mathrm{MR}}=4.5 \mathrm{~V} \\ & \mathrm{CP}=\Gamma \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| ${ }^{\text {max }}$ | Maximum Clock Frequency | 30 | 30 | MHz | Figs. 3-1, 3-8 |
| tpLH tph | Propagation Delay CP to $Q_{n}$ | $\begin{aligned} & 22 \\ & 26 \end{aligned}$ | $\begin{aligned} & 21 \\ & 24 \end{aligned}$ | ns |  |
| tpHL | Propagation Delay, $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{\mathrm{n}}$ | 30 | 26 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $J, \bar{K}$ or $P_{n}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW <br> $J, \bar{K}$ or $P_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \hline t_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{\text { PE to CP }}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \hline \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{\text { PE to CP }}$ | $\begin{aligned} & -10 \\ & -10 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | CP Pulse Width HIGH | 16 |  | 16 |  | ns | Fig. 3-8 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | MR Pulse Width LOW | 12 |  | 12 |  | ns | Fig. 3-16 |
| trec | Recovery Time, $\overline{\mathrm{MR}}$ to CP | 25 |  | 20 |  | ns |  |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

[^38]FUNCTIONAL DESCRIPTION - The '196 and '197 are asynchronous presettable decade and binary ripple counters. The '196 decade counter is partitioned into divide-by-two and divide-by-five sections while the'197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the $Q$ outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\mathrm{CP}}_{0}$ input serves the $\mathrm{Q}_{0}$ flip-flop in both circuit types while the $\overline{\mathrm{CP}}_{1}$ input serves the divide-by-five or divide-by-eight section. The $\mathrm{Q}_{0}$ output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and with $\mathrm{Q}_{0}$ driving $\overline{\mathrm{CP}}_{1}$, the '197 forms a straight forward modulo-16 counter, with $\mathrm{Q}_{0}$ the least significant output and $Q_{3}$ the most significant output.

The '196 decade counter can be connected up to operate in two different count sequences. With the input frequency connected to $\overline{C P}_{0}$ and with $Q_{0}$ driving $\overline{C P}_{1}$, the circuit counts in the $\mathrm{BCD}(8421)$ sequence. With the input frequency connected to $\overline{\mathrm{CP}}_{1}$ and $\mathrm{Q}_{3}$ driving $\overline{\mathrm{CP}}_{0}, \mathrm{Q}_{0}$ becomes the low frequency output and has a $50 \%$ duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.

The '196 and '197 have an asynchronous active LOW Master Reset input ( $\overline{\mathrm{MR}}$ ) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input ( $\overline{P L}$ ) overrides the clock inputs and loads the data from Parallel Data ( $\mathrm{P}_{0}-\mathrm{P}_{3}$ ) inputs into the flip-flops. While $\overline{\mathrm{PL}}$ is LOW, the counters act as transparent latches and any change in the $P_{n}$ inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of $\overline{P L}$ should be observed.

## LOGIC DIAGRAM


$\div 5$ STATE DIAGRAM


BCD STATE DIAGRAM


MODE SELECT TABLE

| INPUTS |  |  | RESPONSE |  |
| :--- | :--- | :--- | :--- | :---: |
| $\overline{\mathrm{MR}}$ | $\overline{\mathrm{PL}}$ | $\overline{\mathrm{CP}}$ |  |  |
| L | X | X | $\mathrm{Q}_{n}$ forced LOW |  |
| H | L | X | $\mathrm{P}_{n} \rightarrow \mathrm{Q}_{n}$ |  |
| H | H | L | Count Up |  |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARMETER |  | $54 / 74$ |  | $54 / 74 \mathrm{LS}$ | UNITS |
| :--- | :--- | ---: | ---: | ---: | ---: | :--- |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  | 54/ | /74 | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  |  | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency at $\overline{\mathrm{CP}}{ }_{0}$ | '196 '197 | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 45 \\ & 50 \end{aligned}$ |  | MHz | Figs. 3-1, 3-9 |
| $f_{\text {max }}$ | Maximum Count Frequency at $\overline{\mathrm{CP}} 1$ | $\begin{aligned} & \text { '196 } \\ & \text { '197 } \end{aligned}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | $\begin{array}{\|r\|r} 22.5 \\ 25 \end{array}$ |  | MHz | Fig. 3-9 |
| tplH tpHL | Propagation Delay CPo to Qo |  |  | $\begin{aligned} & 12 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{C P}_{1}$ to $Q_{1}$ |  |  | $\begin{aligned} & 18 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH <br> tphL | Propagation Delay $\overline{\mathrm{CP}}_{1} \text { to } \mathrm{Q}_{2}$ | '196 |  | $\begin{aligned} & 36 \\ & 42 \end{aligned}$ |  | $\begin{aligned} & 34 \\ & 32 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1} \text { to } \mathrm{Q}_{2}$ | '197 |  | $\begin{aligned} & 36 \\ & 42 \end{aligned}$ |  | $\begin{aligned} & 36 \\ & 34 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{1}$ to $Q_{3}$ | '196 |  | $\begin{aligned} & 21 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{1}$ to $Q_{3}$ | '197 |  | 54 63 |  | $\begin{aligned} & 50 \\ & 55 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $P_{n}$ to $Q_{n}$ |  |  | $\begin{aligned} & 24 \\ & 38 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 35 \end{aligned}$ | ns | Figs. 3-2, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{P L}$ to $Q_{n}$ |  |  | $\begin{aligned} & 33 \\ & 36 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  |  | 37 |  | 37 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \hline t_{\mathrm{s}}(H) \\ & t_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | $\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & \mathrm{P}_{\mathrm{n}} \text { to } \overline{\mathrm{PL}} \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | $\begin{array}{r} 8.0 \\ 12 \end{array}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ to $\overline{P L}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | 0 6.0 |  | ns | Fig. 3-13 |
| tw (H) | $\overline{\mathrm{CP}}_{0}$ Pulse Width HIGH | $\begin{aligned} & \hline \text { '196 } \\ & \hline 197 \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-9 |
| tw (H) | $\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH | $\begin{aligned} & \hline \text { '196 } \\ & \hline \text { '197 } \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\text {w }} \mathrm{L}$ ) | $\overline{\text { PL Pulse Width LOW }}$ |  | 20 |  | 18 |  | ns | Fig. 3-17 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | $\overline{M R}$ Pulse Width. LOW |  | 15 |  | 12 |  | ns | Fig. 3-17 |
| trec | Recovery Time $\overline{\mathrm{PL}}$ to $\overline{\mathrm{CP}} \mathrm{n}$ |  | 20 |  | 16 |  | ns | Fig. 3-17 |
| trec | $\frac{\text { Recovery Time }}{\overline{\mathrm{MR}} \text { to } \overline{\mathrm{CP}} \mathrm{n}}$ |  | 20 |  | 18 |  | ns | Fig. 3-17 |

## 54/74197 54LS/74LS197 <br> PRESETTABLE BINARY COUNTERS

DESCRIPTION - The '197 ripple counter contains divide-by-two and divide-by-eight sections which can be combined to form a modulo-16 binary counter. State changes are initiated by the falling edge of the clock. The '197 has a Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input ( $\overline{\mathrm{PL}}$ ) overrides clocked operations and asynchronously loads the data on the Parallel Data inputs ( $\mathrm{P}_{\mathrm{n}}$ ) into the flip-flops.This preset feature makes the circuit usable as a programmable counter. The circuit can also be used as a 4-bit latch, loading data from the Parallel Data inputs when $\overline{P L}$ is LOW and storing the data when $\overline{P L}$ is HIGH. For detail specifications and functional description, please refer to the '196 data sheet.

- HIGH COUNTING RATES - TYPICALLY 70 MHz
- ASYNCHRONOUS PRESET
- ASYNCHRONOUS MASTER RESET

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | MILITARY GRADE <br> $\mathrm{V}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ | PKG <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
| Plastic <br> DIP (P) | A | $74197 \mathrm{PC}, 74 \mathrm{LS} 197 \mathrm{PC}$ |  | 9 A |
| Ceramic <br> DIP (D) | A | $74197 \mathrm{DC}, 74 \mathrm{LS} 197 \mathrm{DC}$ | $54197 \mathrm{DM}, 54 \mathrm{LS} 197 \mathrm{DM}$ | 6 A |
| Flatpak <br> (F) | A | $74197 \mathrm{FC}, 74 \mathrm{LS} 197 \mathrm{FC}$ | $54197 \mathrm{FM}, 54 \mathrm{LS} 197 \mathrm{FM}$ | 31 |



LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CP}}{ }_{0}$ | $\div 2$ Section Clock Input <br> (Active Falling Edge) | 2.0/3.0 | 1.0/1.5 |
| $\overline{\mathrm{CP}} 1$ | $\div 8$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/0.81 |
| $\overline{\mathrm{MR}}$ | Asynchronous Master Reset Input (Active LOW) | 2.0/2.0 | 1.0/0.5 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\overline{\text { PL }}$ | Asynchronous Parallel Load Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| Qo | $\div 2$ Section Output* | 20/10 | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | $\div 8$ Section Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

[^39]

CONNECTION DIAGRAM PINOUT A

## 54/74198

 8-BIT R/L SHIFT REGISTERDESCRIPTION - The '198 features synchronous parallel load, hold, shift right and shift left modes, as determined by the Select ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ) inputs. State changes are initiated by the rising edge of the clock. An asynchronous Master Reset ( $\overline{\mathrm{MR}}$ ) input overrides all other inputs and clears the register. The '198 is useful for serial-serial, serial-parallel, parallel-serial and parallel-parallel register transfers.

- PARALLEL IN/PARALLEL OUT
- SYNCHRONOUS PARALLEL LOAD
- SHIFT RIGHT AND SHIFT LEFT CAPABILITY
- ASYNCHRONOUS OVERRIDING CLEAR

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic <br> DIP (P) | A | 74198PC |  | 9 N |
| Ceramic DIP (D) | A | 74198DC | 54198DM | 6 N |
| Flatpak (F) | A | 74198FC | 54198FM | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\mathbf{5 4 / 7 4}$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| So, S | Mode Select Inputs | $1.0 / 1.0$ |
| $P_{0}-P_{7}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| DSR | Serial Data Input (Shift Right) | $1.0 / 1.0$ |
| DsL | Serial Data Input (Shift Left) | $1.0 / 1.0$ |
| $\overline{C P}$ | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| MR | Asynchronous Master Reset Input (Active LOW) | 1.01 .0 |
| Q $-Q_{7}$ | Flip-flop Outputs | $20 / 10$ |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '198 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load, shift right, and shift left operations. Serial data enters at DSR for shift right and at DSL for shift left operations. Parallel data is applied to the $P_{0}-P_{7}$ inputs. State changes are initiated by the rising edge of the clock. The DSR, DSL and $P_{0}-P_{7}$ inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.

The operating mode is determined by $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$, as shown in the Mode Select Table. Clocking of the flip-flops is inhibited when both $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ are LOW. To avoid inadvertently clocking the register, the Select inputs should only be changed while CP is HIGH. A LOW signal on $\overline{M R}$ overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{M R}$ | CP | So* | $\mathrm{S}_{1}$ * |  |
| L | X | X | X | Asynchronous Reset; Outputs = LOW |
| H | - | H | H | Parallel Load; $\mathrm{P}_{\mathrm{n}} \longrightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | - | L | H | Shift Right; $\mathrm{DSR} \longrightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \longrightarrow \mathrm{Q}_{1}$, etc. |
| H | 5 | H | L | Shift Left; DSL $\rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \longrightarrow \mathrm{Q}_{6}$, etc. |
| H | X | L | L | Hold |

*Select inputs should be changed only while CP is HIGH H = HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XC |  | 116 | mA | $\begin{aligned} & \mathrm{VCc}=\mathrm{Max} ; \mathrm{S}_{0}, \mathrm{~S}_{1}=4.5 \mathrm{~V} \\ & \mathrm{CP}=\varsigma ; \overline{\mathrm{MR}}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \end{aligned}$ |
|  |  | XM |  | 104 |  |  |

AC CHARACTERISTICS: $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Shift Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 35 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMB OL | PARAMETER | $\mathbf{5 4 / 7 4}$ |  | UNITS |
| :--- | :--- | :---: | :---: | :---: |

## 54/74199 <br> 8-BIT PARALLEL I/O SHIFT REGISTER

DESCRIPTION - The '199 is a parallel in, parallel out register featuring synchronous parallel load, shift right and hold modes. State changes are initiated by the rising edge of the clock. Serial entry into the first stage is via $J$ and $\overline{\mathrm{K}}$ inputs for maximum flexibility. Two clock inputs are provided and it is possible to use one as an inhibit. An asynchronous Master Reset ( $\overline{\mathrm{MR}}$ ) input overrides all other inputs and clears the register.

- PARALLEL IN/PARALLEL OUT
- SYNCHRONOUS PARALLEL LOAD
- ASYNCHRONOUS OVERRIDING CLEAR
- JK ENTRY TO FIRST STAGE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74199PC |  | 9N |
| Ceramic DIP (D) | A | 74199DC | 54199DM | 6N |
| Flatpak (F) | A | 74199FC | 54199FM | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\overline{\mathrm{K}}$ | Serial Data Input (Active LOW) | 1.0/1.0 |
| J | Serial Data Input (Active HIGH) | 1.0/1.0 |
| $\mathrm{P}_{0}-\mathrm{P}_{7}$ | Parallel Data Inputs | 1.0/1.0 |
| $\mathrm{CP}_{1}, \mathrm{CP}_{2}$ | Clock Pulse Inputs (Active Rising Edge) | 1.0/1.0 |
| $\overline{\mathrm{MR}}$ | Asynchronous Master Reset Input (Active LOW) | 1.0/1.0 |
| $\overline{\mathrm{PE}}$ | Parallel Enable Input (Active LOW) | 1.0/1.0 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{7}$ | Flip-flop Outputs | 20/10 |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '199 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load and shift right operations. Parallel input data is applied to the $P_{0}-P_{7}$ inputs, while serial entry to $Q_{0}$ is via $J$ and $\bar{K}$. State changes are initiated by the rising edge of the clock. The $J, \bar{K}, P_{0}-P_{7}$ and $\overline{P E}$ inputs can change while the clock is in either state, provided only that the recommended setup and hold times are observed.

Either CP input can be used as the clock; if one is not used it must be tied LOW. One CP input can be used to inhibit the other by applying a HIGH signal, but this should only be done while the other CP is in the HIGH state or else false triggering may result. A LOW signal on $\overline{M R}$ overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\text { PE }}$ | CP ${ }_{1}{ }^{*}$ | $\mathrm{CP}_{2}{ }^{*}$ |  |
| L | X | X | X | Asynchronous Reset; Outputs = LOW |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & X \\ & H \end{aligned}$ | Hold |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\stackrel{L}{\text { L }}$ | $\mathcal{L}$ | Parallel Load; $\mathrm{P}_{\mathrm{n}} \longrightarrow \mathrm{Qn}_{n}$ |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\xrightarrow{\mathrm{L}}$ | $\stackrel{\Gamma}{L}$ | Shift Right, $\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}, \mathrm{Q}_{1} \rightarrow \mathrm{Q}_{2}$, etc. |

*See discussion for precautions on CP changes $H=$ HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XC |  | $\begin{aligned} & 116 \\ & 104 \end{aligned}$ | mA | $\begin{aligned} & V_{C C}=M a x ; J, \bar{K}, P_{n}=4.5 \mathrm{~V} \\ & C P_{1}=\bar{J} \\ & C P_{2}, \overline{M R}, \overline{P E}=G n d \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{CP}_{1}$ or $\mathrm{CP}_{2}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 26 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tphL | Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | 35 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $P_{n}, \bar{K}, J$ to $C P$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}_{\mathrm{n}}(\mathrm{H}) \\ & \operatorname{tn}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}, \bar{K}, J$ to $C P$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{P E}$ to CP | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}_{n}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{\text { PE to }} \mathrm{CP}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | CP Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {( }} \mathrm{L}$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-16 |

## 54S/74S240•54LS/74LS240 54S/74S241 • 54LS/74LS241 54LS/74LS244 OCTAL BUFFER/LINE DRIVER <br> (With 3-State Outputs)

DESCRIPTION - The ' 240 , ' 241 and ' 244 are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus oriented transmitters/receivers which provide improved PC board density.

- HYSTERESIS AT INPUTS TO IMPROVE NOISE MARGINS
- 3-STATE OUTPUTS DRIVE BUS LINES OR BUFFER MEMORY ADDRESS REGISTERS
- OUTPUTS SINK 24 mA (74LS) OR 40 mA (74S)
- 15 mA SOURCE CURRENT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V}, \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V}, \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic <br> DIP (P) | A | 74S240PC, 74LS240PC |  | $9 Z$ |
|  | B | 74S241PC, 74LS241PC |  |  |
|  | C | 74LS244PC |  |  |
| Ceramic <br> DIP (D) | A | 74S240DC, 74LS240DC | 54S240DM, 54LS240DM | 4E |
|  | B | 74S241DC, 74LS241DC | 54S241DM, 54LS241DM |  |
|  | C | 74LS244DC | 54LS244DM |  |
| Flatpak (F) | A | 74S240FC, 74LS240FC | 54S240FM, 54LS240FM | 4F |
|  | B | 74S241FC, 74LS241FC | 54S241FM, 54LS241FM |  |
|  | C | 74LS244FC | 54LS244FM |  |

CONNECTION DIAGRAMS


PINOUT B


PINOUT C


INPUT LOADING/FAN-OUT: See Section 9

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: | ---: |
| $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$ | 3-State Output Enable (Active LOW) | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{OE}_{2}$ | 3-State Output Enable (Active HIGH) | $1.25 / 1.25$ | $0.5 / 0.25$ |
|  | Inputs | $1.25 / 0.25$ | $0.5 / 0.125$ |
|  | Outputs | $75 / 40$ | $75 / 15$ |
|  |  | $(30)$ | $(7.5)$ |

## TRUTH TABLES

'S240, 'LS240

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$ | D |  |
| L | L | H |
| L | H | L |
| H | X | Z |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
'S241, 'LS241

| INPUTS |  | OUTPUT |  |
| :--- | :--- | :---: | :---: |
| $\overline{O E}_{1}$ | $O_{2}$ |  |  |
| $L$ | $H$ | $L$ | $L$ |
| $L$ | $H$ | $H$ | $H$ |
| $H$ | $L$ | $X$ | $Z$ |

'LS244

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $\overline{O E}_{1}, \overline{O E}_{2}$ | $D$ |  |
| $L$ | $L$ | $L$ |
| $L$ | $H$ | $H$ |
| $H$ | $X$ | $Z$ |

L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


| AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
|  |  | $\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =90 \Omega \end{aligned}$ | $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tpHL | Propagation Delay Data to Output ('240) | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ | $\begin{aligned} & 14 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| tpLH <br> tphL | Propagation Delay Data to Output ('241) | $\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | 3-1, 3- |
| tpLH <br> tPHL | Propagation Delay Data to Output ('244) |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | Figs. 3-1,3-5 |
| $\begin{array}{l\|l} \text { tpZH } \\ \text { tpZL } \end{array}$ | Output Enable Time ('S240) | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |  | ns | Figs. 3-3, 3-11, 3-12 |
| $\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$ | Output Enable Time ('LS240, 'LS241, 'S241) | $\begin{aligned} & 12 \\ & 15 \end{aligned}$ | $\begin{aligned} & 23 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \text { ('LS) } \end{aligned}$ |
| $\begin{aligned} & \text { tpLz } \\ & \text { tphz } \end{aligned}$ | Output Disable Time | $\begin{array}{r} 15 \\ 9.0 \end{array}$ | $\begin{aligned} & 25 \\ & 18 \\ & \hline \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{\mathrm{L}}=667 \Omega, C_{L}=5 \mathrm{pF}(' \mathrm{LS}) \end{aligned}$ |

## 54LS/74LS242 54LS/74LS243 QUAD BUS TRANSCEIVER (With 3-State Outputs)

DESCRIPTION - The 'LS242 and '243 are quad bus transmitters/receivers designed for 4 -line asynchronous 2-way data communications between data buses.

- HYSTERESIS AT INPUTS TO IMPROVE NOISE IMMUNITY
- 2-WAY ASYNCHRONOUS DATA BUS COMMUNICATION
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS - FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Vcc }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS242PC |  | 9A |
|  | B | 74LS243PC |  |  |
| Ceramic DIP (D) | A | 74LS242DC | 54LS242DM | 6A |
|  | B | 74LS243DC | 54LS243DM |  |
| Flatpak (F) | A | 74LS242FC | 54LS242FM | 31 |
|  | B | 74LS243FC | 54LS243FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: |
| Inputs | $0.5 / 0.125$ |
| Outputs | $75 / 15$ |
|  | $(7.5)$ |

CONNECTION DIAGRAMS PINOUT A


PINOUT B


## TRUTH TABLES

'LS242

| INPUTS |  | OUTPUT | INPUTS |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1}$ | D |  | E2 | D |  |
| L | L | H | L | x | z |
| L | H | L | L | X | Z |
| H | X | Z | H | L | H |
| H | X | Z | H | H | L |

'LS243

| INPUTS |  | OUTPUT | INPUTS |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D |  | E2 | D |  |
| L | L | L | L | x | z |
| L | H | H | L | X | Z |
| H | X | z | H | L | L |
| H | X | Z | H | H | H |

$H=$ HIGH Voltage Level $L=$ LOW Voltage Level $X=$ Immaterial $Z=$ High Impedance
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |  |
| Vон | Output HIGH Voltage |  | XM | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ |  | V | $\mathrm{IOH}=-12 \mathrm{~mA}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$ |
|  |  |  | XC |  |  |  | $\mathrm{IOH}=-15 \mathrm{~mA}$ |  |
| Vor | Output HIGH Voltage |  |  | 2.4 |  | V | $\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{~V} C \mathrm{C}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$ |  |
| los | Output Short Circuit Current |  |  | -40 | -225 | mA | $\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |  |
| Icc | Power Supply Current | HIGH |  |  | 38 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |  |
|  |  | LOW |  |  | 50 |  |  |  |  |
|  |  | OFF | $\begin{aligned} & \text { ('242) } \\ & \text { ('243) } \end{aligned}$ |  | 50 54 |  |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=45 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> Data to Output ('242) |  | $\begin{aligned} & 14 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay <br> Data to Output ('243) |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 23 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { tpLZ } \\ & \text { tph } \end{aligned}\right.$ | Output Disable Time |  | $\begin{aligned} & 25 \\ & 18 \end{aligned}$ | ns | Figs. 3-3, 3-11, 3-12 $R_{L}=667 \Omega, C_{L}=5 \mathrm{pF}$ |

## 54LS/74LS245

## OCTAL BUS TRANSCEIVER

(With 3-State Outputs)

DESCRIPTION - The 'LS245 is an octal bus transmitter/receiver designed for 8-line asynchronous 2-way data communication between data busses. Direction input (DR) controls transmission of data from bus $A$ to bus $B$ or bus $B$ to bus $A$ depending upon its logic level. The Enable input ( $\bar{E}$ ) can be used to isolate the busses.

- HYSTERESIS INPUTS TO IMPROVE NOISE IMMUNITY
- 2-WAY ASYNCHRONOUS DATA BUS COMMUNICATION
- INPUT DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS245PC |  | 97 |
| Ceramic DIP (D) | A | 74LS245DC | 54LS245DM | 4E |
| Flatpak (F) | A | 74LS245FC | 54LS245FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: |
| Inputs | $0.5 / 0.125$ |
| Outputs | $75 / 15$ |
|  | $(7.5)$ |



TRUTH TABLE

| INPUTS |  | OUTPUT |
| :--- | :--- | :--- |
| E | DR |  |
| L | L | Bus B Data to Bus A |
| L | H | Bus A Data to Bus B |
| H | X | Isolation |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

| SYBMOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vor | Output HIGH Voltage | XM | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ |  | V | $\frac{\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}}{\mathrm{IOH}^{2}=-15 \mathrm{~mA}}$ | $\begin{gathered} \mathrm{VCC}_{\text {CO }}=\mathrm{Min} \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \\ \text { or } \mathrm{V}_{\text {IL Per }} \\ \text { Truth Table } \end{gathered}$ |
| VOH | Output HIGH Voltage |  | 2.4 |  | V | $\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\text { Min } \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$ | Hysteresis Voltage |  | 0.2 |  | V | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ |  |
| los | Output Short Circuit Current |  | -40 | -225 | mA | VCC $=$ Max, Vout $=0 \mathrm{~V}$ |  |
| Icc | Power Supply Current | $\begin{array}{\|c\|} \hline \text { HIGH } \\ \hline \text { LOW } \\ \hline \text { OFF } \end{array}$ |  | 70 90 95 | mA | $\mathrm{Vcc}=$ Max |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CLL}^{\text {}}=45 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Data to Output |  | $\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \\ & \hline \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tpLZ } \\ & \text { tPHz } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 25 \\ & 18 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

## 54LS/74LS247 BCD TO 7-SEGMENT DECODER/DRIVER (With Open-Collector Outputs)

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL anteed to sink 12 mA (Military) or 24 mA (Commercial). It has the same electrical characteristics and pin connections as the 'LS47. The only difference is that the 'LS247 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9. For detailed description and specifications please refer to the 'LS47 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
|  | A | 74 LS 247 PC |  | 9 B |
|  | A | 74 LS 247 DC | 54 LS 247 DM | 6 B |
| Flatpak <br> (F) | A | 74 LS 247 FC | 54 LS 247 FM | 4 L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | 0.5/0.25 |
| $\overline{\text { RBI }}$ | Ripple Blanking Input (Active LOW) | 0.5/0.25 |
| LT | Lamp Test Input (Active LOW) | 0.5/0.25 |
| $\overline{\mathrm{BI} / \mathrm{RBO}}$ | Blanking Input (Active LOW) or | 0.5/0.25 |
|  | Ripple Blanking Output (Active LOW) | 1.25/2.0 |
| $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | Segment Outputs (Active LOW) | $\begin{array}{r} \mathrm{OC}^{*} / 15 \\ (7.5) \end{array}$ |

[^40]
## 54LS/74LS248 BCD TO 7-SEGMENT DECODER <br> (With $2 \mathrm{k} \Omega$ Pull-up Resistors)

CONNECTION DIAGRAM PINOUT A

pull-up resistors. It has the same electrical characteristics and pin connections as the 'LS48. The only difference is that the 'LS248 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9 . For detailed description and specifications please refer to the 'LS48 data sheet.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS248PC |  | 9B |
| Ceramic DIP (D) | A | 74LS248DC | 54LS248DM | 6B |
| Flatpak <br> (F) | A | 74LS248FC | 54LS248FM | 4L |

$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{RBI}}$ | Ripple Blanking Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{LT}}$ | Lamp Test Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{BI} / \mathrm{RBO}$ | Blanking Input (Active LOW) or | $0.5 / 0.25$ |
|  | Ripple Blanking Output (Active LOW) | $1.25 / 2.0$ |
|  | Segment Outputs (Active HIGH) | $2.50)$ |
| $\mathrm{a}-\mathrm{g}$ |  | $(1.25)$ |

CONNECTION DIAGRAM PINOUT A

## 54LS/74LS249 BCD TO 7-SEGMENT DECODER <br> (With Open-Collector Outputs)

DESCRIPTION - The 'LS249 has active HIGH open-collector outputs and is the 16-pin version of the 14-pin 'LS49. The'LS249 incorporates the Lamp Test and $\overline{\mathrm{BI} / \mathrm{RBO}}$ inputs that are omitted in the 'LS49. Additionally, the 'LS249 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9. For detailed description and specifications please refer to the 'LS49 data sheet.

ORDERING CODE: See Section 9

|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
| PKGS <br> OUT | $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |  |
| Plastic <br> DIP (P) | A | 74 LS 249 PC |  | 9 B |
| Ceramic <br> DIP (D) | A | 74 LS 249 DC | 54 LS 249 DM | 6 B |
| Flatpak <br> (F) | A | 74 LS 249 FC | 54 LS 249 FM | 4 L |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPTU LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | $0.5 / 0.25$ |
| $\overline{B I}$ | Blanking Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{L T}$ | Lamp Test Input (Active LOW) | $0.5 / 0.25$ |
| BI/RBO | Blanking Input (Active LOW) or | $0.5 / 0.25$ |
|  | Ripple Blanking Output (Active LOW) | $1.25 / 2.0$ |
|  | Segment Outputs (Active HIGH) | $(1.0)$ |
| $\mathrm{a}-\mathrm{g}$ |  | $\mathrm{OC}^{*} / 5.0$ |
|  | $(2.5)$ |  |

*OC-Open Collector

| 54S/74S251 54LS/74LS251 8-INPUT MULTIPLEXER <br> (With 3-State Outputs) <br> DESCRIPTION - The ' 251 is a high speed 8 -input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided. <br> - MULTIFUNCTIONAL CAPABILITY <br> - ON-CHIP SELECT LOGIC DECODING <br> - INVERTING AND NON-INVERTING 3-STATE OUTPUTS <br> ORDERING CODE: See Section 9 |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | LOGIC SYMBOL |
|  | P | COMMERCIAL GRADE | MILITARY GRADE |  |  |
| PKGS | OUT | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74S251PC, 74LS251PC |  | 9B |  |
| Ceramic DIP (D) | A | 74S251DC, 74LS251DC | 54S251DM, 54LS251DM | 6B | $\begin{aligned} & V_{c c}=\operatorname{Pin} 16 \\ & \text { GND } 4 \text { Pin } 8 \end{aligned}$ |
| Flatpak (F) | A | 74S251FC, 74LS251FC | 54S251FM, 54LS251FM | 4L |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{S}_{0}-\mathrm{S}_{2}$ | Select Inputs <br> OE | 3-State Output Enable Inputs <br> (Active LOW) | $1.25 / 1.25$ |
| $\mathrm{I}_{0}-17$ | Multiplexer Input | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Z | Multiplexer Output | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{\mathrm{Z}}$ | Complementary Multiplexer Output | $162 / 12.5$ | $0.5 / 0.25$ |
|  |  | 150 | $65 / 5.0$ |

FUNCTIONAL DESCRIPTION - This device is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input $(\overline{O E})$ is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{array}{r}
\mathrm{Z}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\right. \\
\left.\mathrm{I}_{4} \bullet \bar{S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{5} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{6} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right)
\end{array}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{OE}}$ | $\mathrm{S}_{2}$ | S1 | So | $\bar{Z}$ | Z |  |
| H | X | X | X | $\underline{Z}$ | Z |  |
| L | L | L | L | 10 | 10 |  |
| L | L | L | H | $\underline{T}$ | $\mathrm{I}_{1}$ |  |
| L | L | H | L | $\mathrm{T}_{2}$ | 12 |  |
| L | L | H | H | $\underline{\underline{1}}$ | 13 |  |
| L | H | L | L | $\underline{I}_{4}$ | 14 |  |
| L | H | L | H | $\underline{15}$ | 15 | H = HIGH Voltage Level |
| L | H | H | L | $\underline{1}$ | 16 | L = LOW Voltage Level |
| L | H | H | H | $\overline{17}$ | 17 | $X=$ Immaterial <br> $Z=$ High Impedance |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current |  | -40 | -100 | -20 | -100 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| Icc | Power Supply Current | Outputs ON | 85 |  |  | 10 | mA | $\begin{aligned} & V C C=M a x ; I_{n}, S_{n}=4.5 \mathrm{~V} \\ & \overline{O E}=\text { Gnd } \end{aligned}$ |
|  |  | Outputs OFF |  |  |  | 12 |  | $\mathrm{Vcc}=\mathrm{Max} ; \overline{\mathrm{OE}}, \mathrm{In}=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=280 \Omega \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to $\overline{\mathrm{Z}}$ | $\begin{array}{r} 15 \\ 13.5 \end{array}$ | $\begin{aligned} & 23 \\ & 33 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\overline{\operatorname{tPLH}}$ tPHL | Propagation Delay $S_{n}$ to $Z$ | $\begin{array}{r} 18 \\ 19.5 \end{array}$ | $\begin{aligned} & 45 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\overline{\text { tpLH }}$ tPHL | Propagation Delay In to Z | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 28 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $I_{n}$ to $\bar{Z}$ | $\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \overline{\text { tpzH }} \\ & \text { tPZL } \end{aligned}$ | Output Enable Time $\overline{\mathrm{OE}}$ to Z or $\overline{\mathrm{Z}}$ | $\begin{array}{r} 19.5 \\ 21 \end{array}$ | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | Figs. 3-3, 3-11, 3-12 <br> $R_{L}=2 \mathrm{k} \Omega$ ('LS251) |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$ | Output Disable Time $\overline{\mathrm{OE}}$ to Z or $\overline{\mathrm{Z}}$ | $\begin{gathered} 8.5 \\ 14 \end{gathered}$ | 25 20 | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { ('LS251) } \\ & \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$ |

## 54S/74S253 <br> 54LS/74LS253

DUAL 4-INPUT MULTIPLEXER
(With 3-State Outputs)

DESCRIPTION - The '253 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable ( $\overline{\mathrm{OE}}$ ) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON-INVERTING 3-STATE OUTPUTS

ORDERING CODE: See Section 9


| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $74 \mathrm{~S} 253 \mathrm{PC}, 74 \mathrm{LS} 253 \mathrm{PC}$ |  | 9 C |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 253 \mathrm{DC}, 74 \mathrm{LS} 253 \mathrm{DC}$ | $54 \mathrm{~S} 253 \mathrm{DM}, 54 \mathrm{LS} 253 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $74 \mathrm{~S} 253 \mathrm{FC}, 74 \mathrm{LS} 253 \mathrm{FC}$ | $54 \mathrm{~S} 253 \mathrm{FM}, 54 \mathrm{LS} 253 \mathrm{FM}$ | 4 L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$ | Side A Data Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{l}_{\mathrm{ob}}-\mathrm{I}_{3 \mathrm{~b}}$ | Side B Data Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{~S}_{0} \mathrm{~S}_{1}$ | Common Select Inputs | $1.25 / 1.25$ | 0.50 .25 |
| $\mathrm{OE}_{\mathrm{a}}$ | Side A Output Enable Input (Active LOW) | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}_{\mathrm{b}}$ | Side B Output Enable Input (Active LOW) | $1.25 / 1.25$ | $0.5 / 0.25$ |
| $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$ | 3-State Outputs | $162 / 12.5$ | $65 / 5.0$ |
|  |  | $(50)$ | $(25) /(2.5)$ |

LOGIC SYMBOL


FUNCTIONAL DESCRITION - This device contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common select inputs ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ). The 4-input multiplexers have individual Output Enable ( $\overline{O E}_{a}, \overline{O E}_{b}$ ) inputs which when HIGH, force the outputs to a high impedance (high Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \bullet\left(\mathrm{I}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \bullet\left(\mathrm{I}_{\mathrm{ob}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{lb}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{bb}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{aligned}
$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

| SELECTINPUTS |  | DATA INPUTS |  |  |  | OUTPUT <br> ENABLE | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| So | $\mathrm{S}_{1}$ | 10 | 11 | $\mathrm{l}_{2}$ | 13 | $\overline{O E}$ | Z |
| X | X | X | X | X | x | H | (Z) |
| L | L | L | X | $x$ | x | L | L |
| L | L | H | X | X | x | L | H |
| H | L | X | L | $x$ | X | L | L |
| H | L | X | H | X | x | L | H |
| L | H | X | X | L | X | L | L |
| L | H | X | X | H | X | L | H |
| H | H | X | X | X | L | L | L |
| H | H | X | X | X | H |  | H |

Address inputs $S_{0}$ and $S_{1}$ are common to both sections.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| Ios | Output Short Circuit Current |  | -40 | -100 | -20 | -100 | mA | $\mathrm{Vcc}=$ Max |
| Icc | Power Supply Current | Outputs HIGH | 7080 |  | 1214 |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max, } \overline{O E_{n}}=\mathrm{Gnd} \\ & \mathrm{I}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{n}}=4.5 \mathrm{~V} \end{aligned}$ |
|  |  | Outputs LOW |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{n}}, \overline{\mathrm{OE}} \mathrm{n}=\mathrm{Gnd} \end{aligned}$ |  |  |
|  |  | Outputs OFF |  | 100 |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\operatorname{Max}, \overline{\mathrm{OE}} \overline{\mathrm{n}}_{\mathrm{n}}=4.5 \mathrm{~V} \\ & \mathrm{In}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{n}}=\mathrm{Gnd} \end{aligned}$ |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{array}{\|l} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to $\mathrm{Z}_{\mathrm{n}}$ | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | $\begin{aligned} & 29 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay In to $\mathrm{Z}_{\mathrm{n}}$ | $\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
|  | Output Enable Time | 19.5 21 | 22 22 | ns | Figs. 3-3, 3-11, 3-12 $R_{L}=2 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$ ('LS253); CL=50 pF ('S253) |
| $\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { tphz } \\ \hline \end{array}$ | Output Disable Time | $\begin{gathered} 8.5 \\ 14 \end{gathered}$ | $\begin{aligned} & 32 \\ & 22 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, ('LS253) } \\ & \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$ |

## 54LS/74LS256 <br> DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION - The ' 256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs ( $A_{0}, A_{1}$ ), an active LOW Enable input ( $\bar{E}$ ) and an active LOW Clear input ( $\overline{\mathrm{CL}}$ ). Each latch has a Data input ( $D$ ) and four outputs ( $Q_{0}-Q_{3}$ ).

When the Enable $(\overline{\mathrm{E}})$ is HIGH and the Clear input $\left(\overline{\mathrm{CL}}\right.$ ) is LOW, all outputs ( $\mathrm{Q}_{0}$ $Q_{3}$ ) are LOW. Dual 4-channel demultiplexing occurs when the $\overline{C L}$ and $\bar{E}$ are both LOW. When $\overline{C L}$ is HIGH and $\overline{\mathrm{E}}$ is LOW, the selected output ( $Q_{0}-Q_{3}$ ), determined by the Address inputs, follows D. When the $\bar{E}$ goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ( $\bar{E}=$ LOW, $\overline{C L}=$ HIGH), changing more than one bit of the Address $\left(A_{0}, A_{1}\right)$ could impose a transient wrong address. Therefore, this should be done only while in the memory mode ( $\bar{E}=\overline{C L}=$ HIGH).

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- EASILY EXPANDABLE
- ACTIVE LOW COMMON CLEAR

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V C C=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS256PC |  | 9B |
| Ceramic DIP (D) | A | 74LS256DC | 54LS256DM | 6B |
| Flatpak <br> (F) | A | 74LS256FC | 54LS256FM | 4L |

CONNECTION DIAGRAM PINOUT A


$V_{C C}=$ Pin 16
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Common Address Inputs | $0.5 / 0.25$ |
| $\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$ | Data Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}$ | Common Enable Input (Active LOW) | $1.0 / 0.5$ |
| $\overline{\mathrm{CL}}$ | Conditional Clear Input (Active LOW) | $0.5 / 0.25$ |
| Qoa-Q3a | Side A Latch Outputs | $10 / 5.0$ |
| Qob $-Q_{3 b}$ | Side B Latch Outputs | $(2.5)$ |
|  |  | $10 / 5.0$ |

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |  | MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{C L}$ | $\overline{\mathrm{E}}$ | A0 | $\mathrm{A}_{1}$ | Q0 | Q1 | Q2 | Q3 |  |
| L | H | X | X | L | L | L | L | Clear |
| L L L L | L $L$ $L$ $L$ | $L$ $H$ $L$ $H$ | $\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$ | D L L L | $L$ $D$ $L$ $L$ | $L$ $L$ $D$ $L$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{D} \end{aligned}$ | Demultiplex |
| H | H | X | X | $\mathrm{Q}_{\mathrm{t}-1}$ | $Q_{t-1}$ | $Q_{t-1}$ | $Q_{t-1}$ | Memory |
| H | L | L | L | D | $Q_{t-1}$ | $Q_{t-1}$ | $Q_{t-1}$ | Addressable |
| H | L | H | L | $Q_{\text {t-1 }}$ | D | $Q_{t-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | Latch |
| H | L | L | H | Qt-1 | $Q_{t-1}$ | D | $Q_{t-1}$ |  |
| H | L | H | H | $\mathrm{Q}_{\mathrm{t}-1}$ | Qt-1 | $Q_{t-1}$ | D |  |

$\mathrm{t}-1=$ Bit time before address change or rising edge of E
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level X = Immaterial

MODE SELECTION

| $\overline{\mathrm{E}}$ | $\overline{\mathrm{CL}}$ | MODE |
| :--- | :--- | :--- |
| L | H | Addressable Latch |
| H | H | Memory |
| L | L | Active HIGH 4-Channel Demultiplexers |
| H | L | Clear |

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 25 | mA | $=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}$ to $Q_{n}$ |  | $\begin{aligned} & 27 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH tphl | Propagation Delay $D_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 30 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 30 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tPHL | Propagation Delay $\overline{C L}$ to $Q_{n}$ |  | 18 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH $\mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{E}}$ | 20 |  | ns | Fig. 3-13 |
| th (H) | Hold Time HIGH $D_{n}$ to $\bar{E}$ | 0 |  | ns | Fig. 3-13 |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | Setup Time LOW $\mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{E}}$ | 15 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW <br> $D_{n}$ to $\bar{E}$ | 0 |  | ns | Fig. 3-13 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW, $A_{n}$ to $\bar{E}$ | 0 |  | ns | Fig. 3-21 |
| $\mathrm{tw}^{\text {( } L \text { ) }}$ | $\bar{E}$ Pulse Width LOW | 17 |  | ns | Fig. 3-21 |


| 54S/74S257 54LS/74LS257 <br> QUAD 2-INPUT MULTIPLEXER <br> (With 3-State Outputs) <br> DESCRIPTION - The '257 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ( $\overline{\mathrm{OE}}$ ) input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed. |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - SCHOTTKY PROCESS FOR HIGH SPEED <br> - MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER <br> - NON-INVERTING 3-STATE OUTPUTS <br> - INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS |  |  |  |  | LOGIC SYMBOL |
|  |  | COMMERCIAL GRADE | MILITARY GRADE |  | $\mathbf{z b}^{-} \quad \mathbf{2}_{\mathrm{c}}$ |
| PKGS |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | $\prod_{4} \prod_{7} \prod_{12}$ |
| Plastic DIP (P) | A | 74S257PC, 74LS257PC |  | 9B |  |
| Ceramic DIP (D) | A | 74S257DC, 74LS257DC | 54S257DM, 54LS257DM | 6B | Gnd $=\operatorname{Pin} 8$ |
| Flatpak (F) | A | 74S257FC, 74LS257FC | 54S257FM, 54LS257FM | 4L |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| S | Common Data Select Input | 2.5/2.5 | 1.0/0.5 |
| $\overline{O E}$ | 3-State Output Enable Input (Active LOW) | 1.25/1.25 | 0.5/0.25 |
| loa - lod | Data Inputs from Source 0 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{l}_{1 \mathrm{a}}-\mathrm{l}_{1 \mathrm{~d}}$ | Data Inputs from Source 1 | 1.25/1.25 | 0.5/0.25 |
| $\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$ | Multiplexer Outputs | $\begin{aligned} & 162 / 12.5 \\ & (50) \end{aligned}$ | $\begin{array}{r} 65 / 5.0 \\ (25) /(2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - This device is a quad 2-input mulitplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the lox inputs are selected and when Select is HIGH, the lix inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& Z_{a}=\overline{O E} \bullet\left(1_{1 a} \bullet S+I_{a} \bullet \bar{S}\right) \quad Z_{b}=\overline{O E} \bullet\left(I_{1 b} \bullet S+l_{0 b} \bullet \bar{S}\right) \\
& Z_{c}=\overline{O E} \bullet\left(1_{1 c} \bullet S+l_{0 c} \bullet \bar{S}\right) \quad Z_{d}=\overline{O E} \bullet\left(I_{1 d} \bullet S+I_{0 d} \bullet \bar{S}\right)
\end{aligned}
$$

When the Output Enable input ( $\overline{\mathrm{OE}}$ ) is HIGH , the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

| OUTPUT <br> ENABLE | SELECT <br> INPUT | DATA <br> INPUTS | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{O E}$ | S | $\mathrm{I}_{0}$ | $\mathrm{I}_{1}$ | Z |
| H | X | X | X | $(\mathrm{Z})$ |
| L | H | X | L | L |
| L | H | X | H | H |
| L | L | L | X | L |
| L | L | H | X | H |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=280 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tple tPHL | Propagation Delay $I_{n}$ to $Z_{n}$ | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH tPHL | Propagation Delay $S$ to $Z_{n}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time | $\begin{array}{r} 19.5 \\ 21 \end{array}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-3, 3-11, 3-12 $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ ('LS257) |
| $\begin{array}{\|l} \hline \text { tphz } \\ \text { tpLz } \end{array}$ | Output Disable Time | 8.5 14 | 30 25 | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \text { RL=2 k }, C_{L}=5 \mathrm{pF} \\ & \text { ('LS257) } \end{aligned}$ |

# 54LS/74LS257A <br> QUAD 2-INPUT MULTIPLEXER <br> (With .3-State Outputs) 

DESCRIPTION - The '257A is the same as the '257, except that the output drive capability is increased as indicated in the tables below. The ac test limits are the same as the ' 257 but with the test load changed to $667 \Omega$ and 45 pF , except for the Output Disable Time tests, whose load is $667 \Omega$ and 5 pF . For all other information please refer to the ' 257 data sheet.

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $Z_{n}$ | 3-State Outputs | $65 / 15$ |

## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XM, XC | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ |  | V | $\mathrm{IOL}=12 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Min}$ |
|  |  | XC |  |  | IOL $=24 \mathrm{~mA}$ |  |  |  |
| los | Output Short Circuit Current |  | -30 | -130 |  | mA | $\mathrm{Vcc}=$ Max |  |

## 54S/74S258 54LS/74LS258 QUAD 2-INPUT MULTIPLEXER (With 3-State Outputs)

DESCRIPTION - The'258 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable $(\overline{\mathrm{OE}})$ Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER - INVERTING 3-STATE OUTPUTS

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
|  | A | $74 \mathrm{~S} 258 \mathrm{PC}, 74 \mathrm{LS} 258 \mathrm{PC}$ |  | 9 C |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 258 \mathrm{DC}, 74 \mathrm{LS} 258 \mathrm{DC}$ | $54 \mathrm{~S} 258 \mathrm{DM}, 54 \mathrm{LS} 258 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $74 \mathrm{~S} 258 \mathrm{FC}, 74 \mathrm{LS} 258 \mathrm{FC}$ | $54 \mathrm{~S} 258 \mathrm{FM}, 54 \mathrm{LS} 258 \mathrm{FM}$ | 4 L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) HIGH/LOW | 54/74L.S (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| S | Common Data Select Input | 2.5/2.5 | 1.0/0.5 |
| $\overline{O E}$ | 3-State Output Enable Input (Active LOW) | 1.25/1.25 | 0.5/0.25 |
| loa-lod | Data Inputs from Source 0 | 1.25/1.25 | 0.5/0.25 |
| $\underline{l}_{1} \mathrm{a}-\underline{l}_{1} \mathrm{~d}$ | Data Inputs from Source 1 | 1.25/1.25 | 0.5/0.25 |
| $\bar{Z}_{a}-\bar{Z}_{\text {d }}$ | Inverting Data Outputs | $162 / 12.5$ | $\begin{array}{r} 65 / 15 \\ (25) /(7.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - This device is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the lox inputs are selected and when Select is HIGH , the $\mathrm{I}_{1 \mathrm{x}}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The '258 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
\bar{Z}_{\mathrm{a}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{l}_{1 \mathrm{a}} \bullet \mathrm{~S}+\mathrm{loa}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}\right) & \overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{l}_{1 \mathrm{~b}} \bullet \mathrm{~S}+\mathrm{lob} \bullet \overline{\mathrm{~S}}\right) \\
\overline{\mathrm{Z}}_{\mathrm{c}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{l}_{1 \mathrm{c}} \bullet \mathrm{~S}+\mathrm{loc}_{\mathrm{oc}} \bullet \overline{\mathrm{~S})}\right. & \overline{\mathrm{Z}}_{\mathrm{d}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{l}_{1 \mathrm{~d}} \bullet \mathrm{~S}+\mathrm{lod}_{\mathrm{d}} \bullet \overline{\mathrm{~S}}\right)
\end{array}
$$

When the Output Enable input $(\overline{\mathrm{OE}})$ is HIGH, the outputs are forced to a high impedance OFF state. If the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

| OUTPUT <br> ENABLE | SELECT <br> INPUT | DATA <br> INPUTS | OUTPUTS |  |
| :---: | :---: | :--- | :---: | :---: |
| $\overline{\mathrm{OE}}$ | S | $\mathrm{I}_{0}$ | $\mathrm{I}_{1}$ | $\overline{\mathrm{Z}}$ |
| H | X | X | X | Z |
| L | H | X | L | H |
| L | H | X | H | L |
| L | L | L | X | H |
| L | L | H | X | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

## LOGIC DIAGRAM



| SYMBOL | PARAMETER |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current |  |  | -100 | -20 | -100 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| Icc | Power Supply Current | Outputs HIGH |  | 56 |  | 7.0 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max; } \mathrm{S}, \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \\ & \mathrm{OE}, 1_{0 \mathrm{x}}=\mathrm{Gnd} \end{aligned}$ |
|  |  | Outputs LOW |  | 81 |  | 14 |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=M a x ; \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \\ & \mathrm{OE}, \mathrm{I}_{\mathrm{Ox}}, \mathrm{~S}=\text { Gnd } \end{aligned}$ |
|  |  | Outputs OFF |  | 87 |  | 19 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ; \mathrm{S}, \mathrm{I}_{\mathrm{x}}=\mathrm{Gnd} \\ & \mathrm{OE}=I_{1 \mathrm{x}}=4.5 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $I_{n}$ to $\bar{Z}_{n}$ | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay S to $\bar{Z}_{\mathrm{n}}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \overline{\text { tPZH }} \\ & \text { tPZL } \end{aligned}$ | Output Enable Time | $\begin{array}{r} 19.5 \\ 21 \end{array}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \text { ('LS258) } \end{aligned}$ |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$ | Output Disable Time | 8.5 14 | 30 25 | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ ('LS258) |

# 54LS/74LS258A <br> QUAD 2-INPUT MULTIPLEXER <br> (With 3-State Outputs) 

DESCRIPTION - The '258A is the same as the '258, except that the output drive capability is increased as indicated in the tables below. The ac test limits are the same as the ' 258 but with the test load changed to $667 \Omega$ and 45 pF , except for the Output Disable Time tests, whose load is $667 \Omega$ and 5 pF . For all other information please refer to the ' 258 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS258APC |  | 9B |
| Ceramic DIP (D) | A | 74LS258ADC | 54LS258ADM | 6B |
| Flatpak (F) | A | 74LS258AFC | 54LS258AFM | 4L |

$$
V_{c c}=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{\mathrm{Z}}_{n}$ | Inverting 3-State Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XM, XC | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ |  | V | $\mathrm{IOL}=12 \mathrm{~mA}$ | $V_{c c}=\operatorname{Min}$ |
|  |  | XC |  |  | $\mathrm{IOL}=24 \mathrm{~mA}$ |  |  |  |
| los | Output Short Circuit Current |  | -30 | -130 |  | mA | $\mathrm{VCC}=\mathrm{Max}$ |  |



FUNCTIONAL DESCRIPTION - The '259 has four modes of operation as shown in the Mode Selection Table. In the addressable latch mode, data on the Data line ( $D$ ) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. in the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the ' 259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The Truth Table below summarizes the operations of the ' 259 .

MODE SELECT TABLE

| $\overline{\mathrm{E}}$ | $\overline{\mathrm{CL}}$ | MODE |
| :--- | :--- | :--- |
| L | H | Addressable Latch |
| H | H | Memory |
| L | L | Active HIGH 8-Channel Demultiplexer |
| H | L | Clear |

TRUTH TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{INPUTS} \& \multicolumn{8}{|c|}{OUTPUTS} \& \multirow[b]{2}{*}{MODE} \\
\hline \(\overline{C L}\) \& \(\overline{\mathrm{E}}\) \& D \& A0 \& \(A_{1}\) \& \(\mathrm{A}_{2}\) \& Q0 \& Q1 \& Q2 \& Q3 \& Q4 \& Q5 \& Q6 \& Q7 \& \\
\hline \[
\begin{gathered}
\hline \text { L } \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{~L} \\
\& \mathrm{~L} \\
\& \mathrm{~L} \\
\& \mathrm{~L} \\
\& \vdots \\
\& \vdots \\
\& \vdots \\
\& \vdots \\
\& \mathrm{~L}
\end{aligned}
\] \& \[
\begin{gathered}
\text { X } \\
\text { L } \\
\text { H } \\
\text { L } \\
\text { H } \\
\vdots \\
\vdots \\
\vdots \\
\text { H }
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{~L} \\
\& \mathrm{~L} \\
\& \mathrm{H} \\
\& \mathrm{H} \\
\& \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{gathered}
\text { X } \\
\text { L } \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
\] \& \begin{tabular}{l}
X \\
L \\
L \\
L \\
L \\
H
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& L \\
\& L \\
\& H \\
\& L \\
\& L
\end{aligned}
\] \\
L
\end{tabular} \& L
L
L
L
\(H\) \& \begin{tabular}{l}
L
L
L
\(L\) \\
L
\end{tabular} \& \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(\vdots\)
\(\vdots\)
\(\vdots\) \& \(L\)
\(L\)
\(L\)
\(L\) \& L
L
L
L \& \begin{tabular}{l}
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) \\
L
\end{tabular} \& \begin{tabular}{l}
L \\
L \\
L \\
L \\
L \\
H
\end{tabular} \& Clear Demultiplex \\
\hline H \& H \& X \& X \& X \& X \& \(Q_{\text {t-1 }}\) \& Qt-1 \& \(Q_{t-1}\) \& \(Q_{t-1}\) \& \(Q_{t-1}\) \& \(\mathrm{Q}_{\mathrm{t}-1}\) \& \(\mathrm{Q}_{\mathrm{t}-1}\) \& \(\mathrm{Q}_{\mathrm{t}-1}\) \& Memory \\
\hline \[
\begin{array}{|c}
\hline \mathrm{H} \\
\mathrm{H} \\
\mathrm{H} \\
\mathrm{H} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\mathrm{H} \\
\mathrm{H}
\end{array}
\] \& I
\(L\)
\(L\)
\(L\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(L\)
\(L\) \& \[
\begin{aligned}
\& \mathrm{I} \\
\& \mathrm{H} \\
\& \mathrm{~L} \\
\& \mathrm{H} \\
\& \vdots \\
\& \vdots \\
\& \vdots \\
\& \mathrm{~L} \\
\& \mathrm{H}
\end{aligned}
\] \& \(L\)
\(L\)
\(H\)
\(H\)

$H$

$H$ \& $$
\begin{gathered}
\mathrm{L} \\
\mathrm{~L} \\
\mathrm{~L} \\
\mathrm{~L} \\
\vdots \\
\vdots \\
\vdots \\
\mathrm{H} \\
\mathrm{H}
\end{gathered}
$$ \& $L$

$L$
$L$
$L$

$H$

$H$ \& | L |
| :--- |
| H |
| $Q_{t-1}$ |
| $Q_{t-1}$ $\begin{aligned} & Q_{t-1} \\ & Q_{t-1} \end{aligned}$ | \& | $Q_{t-1}$ |
| :--- |
| $Q_{t-1}$ |
| L |
| H $\begin{aligned} & Q_{t-1} \\ & Q_{t-1} \end{aligned}$ | \& \[

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{t}-1} \\
\mathrm{Q}_{\mathrm{t}-1} \\
\mathrm{Q}_{\mathrm{t}-1} \\
\mathrm{Q}_{\mathrm{t}-1} \\
\vdots \\
\vdots \\
\mathrm{Q}_{\mathrm{t}-1} \\
\mathrm{Q}_{\mathrm{t}-1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$
\]

$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$
\]

\[
$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$

\] \& | $Q_{t-1}$ |
| :--- |
| $Q_{t-1}$ |
| $Q_{t-1}$ |
| $Q_{t-1}$ $\begin{aligned} & Q_{t-1} \\ & Q_{t-1} \end{aligned}$ | \& \[

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{t}-1} \\
& \mathrm{Q}_{\mathrm{t}-1} \\
& \mathrm{Q}_{\mathrm{t}-1} \\
& \mathrm{Q}_{\mathrm{t}-1}
\end{aligned}
$$
\]

$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1} \\
& Q_{t-1}
\end{aligned}
$$
\] \& Addressable Latch <br>

\hline
\end{tabular}

$Q_{t-1}=$ Previous Output State
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay, $\overline{\mathrm{E}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 27 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay, D to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 30 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay, $\mathrm{A}_{\mathrm{n}}$ to $\mathrm{Qn}_{n}$ |  | 30 20 | ns | Figs. 3-1, 3-20 |
| tPhL | Propagation Delay, $\overline{\mathrm{CL}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | 18 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH, D to E | 20 |  | ns | Fig. 3-13 |
| $\mathrm{th}^{(H)}$ | Hold Time HIGH, D to $\bar{E}$ | 0 |  | ns |  |
| $\mathrm{ts}_{\mathrm{s}}(\mathrm{L})$ | Setup Time LOW, D to $\overline{\mathrm{E}}$ | 15 |  | ns |  |
| th (L) | Hold Time LOW, D to E | 0 |  | ns |  |
| ts | Setup Time HIGH or LOW, An to E | 0 |  | ns | Fig. 3-21 |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\mathrm{E}}$ Pulse Width LOW | 17 |  |  |  |


| 54S/74S260 54LS/74LS260 DUAL 5-INPUT NOR GATE <br> ORDERING CODE: See Section 9 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic <br> DIP (P) | A | 74S260PC, 74LS260PC |  | 9A |
| Ceramic DIP (D) | A | 74S260DC, 74LS260DC | 54S260DM, 54LS260DM | 6A |
| Flatpak (F) | A | 74S260FC, 74LS260FC | 54S260FM, 54LS260FM | 31 |

CONNECTION DIAGRAM PINOUT A

54LS/74LS260
DUAL 5-INPUT NOR GATE

ORDERING CODE: See Section 9

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74S (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| Inputs | $1.25 / 1.25$ | $0.5 / 0.25$ |
| Outputs | $25 / 12.5$ | $10 / 5.0$ |
|  |  | $(2.5)$ |

DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74S | 54/74LS | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |  |
| Icch | Power Supply Current | 29 | 4.0 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Gnd | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |
| ICCL |  | 45 | 5.5 |  | VIN $=$ Open |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay | $\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 10 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-4 |  |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 13 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| tpLH <br> tpHL | Propagation Delay |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | Other Input LOW Figs. 3-2, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | Other Input HIGH Figs. 3-2, 3-5 |

[^41]**OC-Open Collector

## 54LS/74LS273 <br> 8-BIT REGISTER <br> (With Clear)

DESCRIPTION - The '273 is a high speed 8-bit register, consisting of eight D-type flip-flops with a common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch row spacing.

- EDGE-TRIGGERED
- 8-BIT HIGH SPEED REGISTER
- PARALLEL IN AND OUT
- COMMON CLOCK AND MASTER RESET

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS273PC |  | 9Z |
| Ceramic DIP (D) | A | 74LS273DC | 54LS273DM | 4E |
| Flatpak (F) | A | 74LS273FC | 54LS273FM | 4F |



LOGIC SYMBOL


VCc $=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\mathrm{D}_{0} — \mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{7}$ | Flip-flop Outputs | $10 / 5.0$ |
|  |  | $(2.5)$ |

LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The '273 is an 8 -bit parallel register with a common Clock and common Master Reset. When the $\overline{M R}$ input is LOW, the Q outputs are LOW, independent of the other inputs. Information meeting the setup and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

TRUTH TABLE

| INPUTS |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: |
| $M R$ | $C P$ | $D_{n}$ | $Q_{n}$ |
| $L$ | $X$ | X | L |
| $H$ | $\ddots$ | $H$ | $H$ |
| $H$ | $\digamma$ | L | L |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level $\mathrm{X}=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specifed)

| SYMBOL | PARAMETER | 54/74LS | UNITS | CONDITIONS |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Icc | Power Supply Current | 27 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| fmax | Maximum Clock Frequency | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \mathrm{tpLH} \\ & \text { tpH } \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 27 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R}$ to CP | 15 |  | ns | Fig. 3-16 |



## 54S/74S280 9-BIT PARITY GENERATOR/CHECKER

DESCRIPTION - The '280 is a high speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number or these inputs are HIGH. If an even number of inputs are HIGH, the Sum Even output is HIGH. If an odd number are HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74S280PC | - | 9A |
| Ceramic DIP (D) | A | 74S280DC | 54S280DM | 6A |
| Flatpak (F) | A | 74S280FC | 54S280FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| IO $-I_{8}$ | Data Inputs | 1.25 .1 .25 |
| $\Sigma_{0}$ | Odd Parity Output | $25 / 12.5$ |
| $\Sigma_{\text {E }}$ | Even Parity Output | $25 / 12.5$ |

TRUTH TABLE

| NUMBER OF INPUTS <br> Io- I 8 THAT ARE HIGH | OUTPUTS |  |
| :---: | :---: | :---: |
|  | $\Sigma$ EVEN | $\Sigma$ ODD |
| $0,2,4,6,8$, | H | L |
| $1,3,5,7,9$ | L | H |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | 99 | mA | $\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  |  | XC |  | 105 |  | All Inputs = Gnd |
|  |  | XM |  | 94 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & \text { All Inputs }=\text { Gnd } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tPLH tphl | Propagation Delay In to $\mathrm{IE}_{\mathrm{E}}$ |  | $\begin{aligned} & 21 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay In to EO |  | $\begin{aligned} & 21 \\ & 18 \end{aligned}$ | ns | Figs. 3-1, 3-20 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $A_{0}-A_{3}$ | A Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $B_{0}-B_{3}$ | B Operand Inputs | $1.0 / 1.0$ | $1.0 / 0.5$ |
| $C_{0}-S_{3}$ | Carry Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $S_{0}-S_{3}$ | $20 / 10$ | $10 / 5.0$ |  |
| $C_{4}$ | Sum Outputs | $10 / 5.0$ | $(2.5)$ |
|  | Carry Output |  | $10 / 5.0$ |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The ' 283 adds two 4-bit binary words (A plus B) plus the incoming carry $\mathrm{C}_{0}$. The binary sum appears on the Sum $\left(S_{0}-S_{3}\right)$ and outgoing carry $\left(C_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{gathered}
2^{\circ}\left(A_{0}+B_{0}+C_{0}\right)+21\left(A_{1}+B_{1}\right)+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right)=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
\text { Where }(+)=\text { plus }
\end{gathered}
$$

Interchanging inputs of equal weight does not affect the operation. Thus $C_{0}, A_{0}, B_{0}$ can be arbitrarily assigned to pins 5, 6 and 7. Due to the symmetry of the binary add function, the ' 283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that if $\mathrm{C}_{0}$ is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.

Example:

|  | $\mathrm{C}_{0}$ | $\mathrm{~A}_{0}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{3}$ | $\mathrm{~B}_{0}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{3}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{C}_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Logic Levels | L | L | H | L | H | H | L | L | H | H | H | L | L | H |
| Active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| Active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |

$$
\text { Active HIGH: } 0+10+9=3+16 \quad \text { Active LOW: } 1+5+6=12+0
$$

Due to pin limitations, the intermediate carries of the '283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure a shows a way of making a 3-bit adder. Tying the operand inputs of the fourth adder ( $\mathrm{A}_{3}, \mathrm{~B}_{3}$ ) LOW makes $S_{3}$ dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the '283 into a 2-bit and a 1-bit adder. The third stage adder ( $A_{2}, B_{2}, S_{2}$ ) is used merely as a means of getting a carry ( $C_{10}$ ) signal into the fourth stage (via $A_{2}$ and $B_{2}$ ) and bringing out the carry from the second stage on $\mathrm{S}_{2}$. Note that as long as $\mathrm{A}_{2}$ and $\mathrm{B}_{2}$ are the same, whether HIGH or LOW, they do not influence $\mathrm{S}_{2}$. Similarly, when $\mathrm{A}_{2}$ and $\mathrm{B}_{2}$ are the same the carry into the third stage does not influence the carry out of the third stage. Figure $c$ shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs $S_{0}, S_{1}$ and $S_{2}$ present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure $d$ shows one method of implementing a 5-input majority gate. When three or more of the inputs $l_{1}-l_{5}$ are true, the output $\mathrm{M}_{5}$ is true.


Fig. a 3-Bit Adder


Fig. b 2-Bit and 1-Bit Adders


Fig. c 5-Input Encoder


Fig. d 5-Input Majority Gate

LOGIC DIAGRAM


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74 |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| Ios | Output Short Circuit Current at Sn | XM | -20 | -55 | -20 | $\begin{aligned} & \hline-100 \\ & -100 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| Ios | Output Short Circuit Current at $\mathrm{C}_{4}$ | XM |  | $\begin{aligned} & -70 \\ & -70 \end{aligned}$ | -20 -20 | $\begin{array}{l\|} \hline-100 \\ -100 \end{array}$ | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| Icc | Power Supply Current | XM | $\begin{array}{r} 99 \\ 110 \end{array}$ |  |  | 39 39 | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max}, \\ & \text { Inputs = Gnd ('LS283) } \end{aligned}$ $\text { Inputs }=4.5 \mathrm{~V} \text { ('283) }$ |
|  |  | XM, XC |  |  |  | 34 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max} \\ & \text { Inputs }=4.5 \mathrm{~V} \text { ('LS283) } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/ |  | 54/7 | 4LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{array}{\|l\|l\|l\|} \text { tPLH } \\ \text { tphe } \end{array}$ | Propagation Delay $\mathrm{C}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ |  | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
|  | Propagation Delay $A_{n}$ or $B_{n}$ to $S_{n}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ |  | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ |  | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \text { RL }=780 \Omega \text { ('283) } \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ or $B_{n}$ to $C_{4}$ |  | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ |  | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\begin{aligned} & \hline \text { Figs. 3-1, 3-5 } \\ & R_{\mathrm{L}}=780 \Omega \text { ('283) } \end{aligned}$ |

## 54S/74S289 54LS/74LS289 64-BIT RANDOM ACCESS MEMORY (With Open-Collector Outputs)

DESCRIPTION - The '289 is a high speed 64-bit RAM organized as a 16word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the off ( HIGH ) state whenever the Chip Select ( $\overline{\mathrm{CS}}$ ) input is HIGH. The outputs are active only in the Read mode; output data is the complement of the stored data.

- OPEN-COLLECTOR OUTPUTS FOR WIRED-AND APPLICATIONS
- BUFFERED INPUTS MINIMIZE LOADING
- ADDRESS DECODING ON-CHIP
- DIODE CLAMPED INPUTS MINIMIZE RINGING

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :---: | :---: | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
| Plastic <br> DIP (P) | A | $74 \mathrm{~S} 289 \mathrm{PC}, 74 \mathrm{LS} 289 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $74 \mathrm{~S} 289 \mathrm{DC}, 74 \mathrm{LS} 289 \mathrm{DC}$ | 54 S289DM, 54LS289DM | 6 B |
| Flatpak <br> (F) | A | 74 S289FC, 74LS289FC | 54 S289FM, 54LS289FM | 4 L |


$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74S (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | 0.63/0.16 | 0.5/0.013 |
| $\overline{\mathrm{CS}}$ | Chip Select Input (Active LOW) | 0.63/0.16 | 0.5/0.013 |
| $\overline{W E}$ | Write Enable Input (Active LOW) | 0.63/0.16 | 0.5/0.013 |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | 0.63/0.16 | 0.5/0.013 |
| $\overline{\mathrm{O}_{1}}-\overline{\mathrm{O}_{4}}$ | Inverted Data Outputs | OC*/10 | $\begin{array}{r} O C * / 10 \\ (5.0) \end{array}$ |

[^42]FUNCTION TABLE

| INPUTS |  | OPERATION | CONDITION OF OUTPUTS |
| :---: | :---: | :---: | :--- |
| $\overline{\mathrm{CS}}$ | $\overline{\text { WE }}$ |  |  |
| L | L | Write | Off (HIGH) |
| L | $H$ | Read | Complement of Stored Data |
| $H$ | $X$ | Inhibit | Off (HIGH) |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74S |  | 54/74LS |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XM | $\begin{array}{r} 0.5 \\ 0.45 \end{array}$ |  | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ |  | V | $\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{IOL}=16 \mathrm{~mA}(\text { 'S289 }) \\ & \mathrm{IOL}=8.0 \mathrm{~mA}(54 \mathrm{LS} 289) \\ & \mathrm{lOL}=16 \mathrm{~mA}(74 \mathrm{LS} 289) \end{aligned}$ |  |
| IOH | Output HIGH Current |  |  | $\begin{array}{r} 40 \\ 100 \end{array}$ |  | $\begin{array}{r} 20 \\ 100 \end{array}$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \hline \mathrm{VOH}=5.5 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ |
| Icc | Power Supply Current |  |  | 105 |  | 40 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |  |

AC CHARACTERISTICS OVER RECOMMENDED VCC AND TA RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/7 |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}={ }^{2} \end{gathered}$ |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ |  |  |
|  |  |  | Min | Max | Min Max |  |  |
| tpLH | Access Time, HIGH or LOW, $A_{n}$ to $\bar{O}_{n}$ | XM |  | 50 | $33^{* * *}$ | ns | Figs. 3-2, 3-20 |
| tPHL |  | XC |  | 35 | 37** | ns | Figs. 3-2, 3-20 |
| tpHL | Access Time$\overline{\mathrm{CS}} \text { to } \overline{\mathrm{O}}_{n}$ | XM |  | 25 | 10** | ns | Figs. 3-2, 3-5 |
|  |  | XC |  | 17 | 10** |  |  |
| tplH | $\begin{aligned} & \text { Disable Time } \\ & \overline{C S} \text { to } \overline{\mathrm{O}}_{\mathrm{n}} \end{aligned}$ | XM |  | 20 |  | ns |  |
|  |  | XC |  | 17 |  |  |  |
| tPHL | $\begin{aligned} & \text { Recovery Time } \\ & \overline{W E} \text { to } \overline{\bar{O}}_{n} \end{aligned}$ | XM |  | 40 | $30^{* *}$ | ns | Figs. 3-2, 3-4 |
| tPhL |  | XC |  | 35 | 30** |  |  |
| tplH | $\begin{aligned} & \text { Disable Time } \\ & \overline{W E} \text { to } \overline{\mathrm{O}}_{\mathrm{n}} \end{aligned}$ | XM |  | $\begin{aligned} & 30 \\ & 25 \end{aligned}$ |  | ns |  |

AC OPERATING REQUIREMENTS OVER RECOMMENDED VCC AND TA RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74S |  | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time, HIGH or LOW $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 10^{* *} \\ & 10^{* *} \end{aligned}$ | ns | Fig. 3-21 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time, HIGH or LOW $A_{n}$ to $\overline{W E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0^{* *} \\ & 0^{* *} \end{aligned}$ | ns |  |
| $\begin{aligned} & \hline \mathbf{t}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time, HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{WE}}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 25^{* *} \\ & 25^{* *} \end{aligned}$ | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to WE | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0^{*} \\ & 0^{*} \end{aligned}$ | ns |  |
| $\mathrm{ts}_{s}(\mathrm{~L})$ | Setup Time LOW $\overline{C S}$ to $\overline{W E}$ | 0 |  |  | ns | Fig. 3-14 |
| th (L) | Hold Time LOW $\overline{C S}$ to $\overline{W E}$ | 0 |  |  | ns | Fig. 3-13 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { WE Pulse Width LOW }}$ | 20 |  | 25** | ns | Fig. 3-14 |
| $\begin{aligned} & \text { *R } \mathrm{R}=300 \Omega \text { to } V_{C C} \text { and } 600 \Omega \text { to Gnd. } \\ & \text { *Typical Value } \end{aligned}$ |  |  |  |  |  |  |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CP}}{ }_{0}$ | $\div 2$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/1.5 |
| $\overline{\mathrm{CP}}_{1}$ | $\div 5$ Section Clock Input (Active Falling Edge) | 3.0/3.0 | 2.0/2.0 |
| MR1, MR2 | Asynchronous Master Reset Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| MS ${ }_{1}, \mathrm{MS}_{2}$ | Asynchronous Master Set (Set to 9) Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| Qo | $\div 2$ Flip-flop Output* | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | $\div 5$ Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \\ \hline \end{array}$ |

*The $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) <br> HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CP}} 0_{0}$ | $\div 2$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/1.5 |
| $\overline{\mathrm{CP}}{ }_{1}$ | $\div 8$ Section Clock Input (Active Falling Edge) | 2.0/2.0 | 1.0/1.0 |
| MR1, MR ${ }_{2}$ | Asynchronous Master Reset Inputs (Active HIGH) | 1.0/1.0 | 0.5/0.25 |
| Qo | $\div 2$ Flip-flop Output* | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | $\div 8$ Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

[^43]
## 54LS/74LS295A <br> 4-BIT SHIFT REGISTER <br> (With 3-State Outputs)

DESCRIPTION - The '295A is a 4-bit shift register with serial and parallel synchronous operating modes, and independent 3-state output buffers. The Parallel Enable input (PE) controls the shift-right or parallel load operation. All data transfers and shifting occur synchronous with the HIGH-to-LOW clock transition.

The 3-state output buffers are controlled by an active HIGH Output Enable input (OE). Disabling the output buffers does not affect the shifting or loading of input data, but it does inhibit serial expansion. The device is fabricated with the Schottky barrier diode process for high speed.

- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- NEGATIVE EDGE-TRIGGERED CLOCK INPUT
- PARALLEL ENABLE MODE CONTROL INPUT
- 3-STATE BUSSABLE OUTPUT BUFFERS

ORDERING CODE: See Section 9

| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C c}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS295APC |  | 9A |
| Ceramic DIP (D) | A | 74LS295ADC | 54LS295ADM | 6A |
| Flatpak (F) | A | 74LS295AFC | 54LS295AFM | 31 |


$V_{c c}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| PE | Parallel Enable Input (Active HIGH) | $0.5 / 0.25$ |
| DS | Serial Data Input | $0.5 / 0.25$ |
| P0- $\mathrm{P}_{3}$ | Parallel Data Inputs | $0.5 / 0.25$ |
| OE | 3-State Output Enable Input (Active HIGH) | 0.50 .25 |
| CP | Clock Pulse Input (Active Falling Edge) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{3}$ | 3-State Outputs | $65 / 5.0$ |
|  |  | $(25) /(2.5)$ |

FUNCTIONAL DESCRIPTION - This device is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial Data ( $\mathrm{Ds}_{\mathrm{s}}$ ) and four Parallel Data ( $\mathrm{P}_{0}-\mathrm{P}_{3}$ ) inputs and four parallel 3-State output buffers $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$. When the Parallel Enable (PE) input is HIGH , data is transferred from the Parallel Data inputs $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ into the register synchronous with the HIGH-to-LOW transition of the Clock $(\overline{\mathrm{CP}})$. When the PE is LOW, a HIGH-to-LOW transition on the clock transfers the serial data on the Ds input to register Qo, and shifts data from $Q_{0}$ to $Q_{1}, Q_{1}$ to $Q_{2}$ and $Q_{2}$ to $Q_{3}$. The input data and parallel enable are fully edged-triggered and must be stable only one setup time before the HIGH-to-LOW clock transition.

The 3-state output buffers are controlled by an active HIGH Output Enable input (OE). When the OE is HIGH, the four register outputs appear at the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs. When OE is LOW, the outputs are forced to a high impedance OFF state. The 3-state output buffers are completely independent of the register operation, i.e., the input transitions on the OE input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

MODE SELECT TABLE

| OPERATING MODE | INPUTS |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PE | $\overline{\mathrm{CP}}$ | Ds | $\mathrm{P}_{\mathrm{n}}$ | Q0 | Q1 | Q2 | Q ${ }^{1}$ |
| Shift Right | I | $\stackrel{\imath}{2}$ | h | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | qo | $\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$ |
| Parallel Load | h | 乙 | X | $\mathrm{p}_{\mathrm{n}}$ | po | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | P3 |

*The indicated data appears at the Q outputs when OE is HIGH. When OE is LOW, the indicated data is loaded into the register, but the outputs are all foreced to the high impedance OFF state.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition
$h=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM


| $\begin{array}{\|l\|} \hline \text { DC CHAR } \\ \text { SYMBOL } \end{array}$ | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit Curent |  | -20 | -100 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| Icc | Power Supply Current | Outputs ON |  | 2325 | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \\ & \mathrm{PE}, \mathrm{DS}_{\mathrm{S}}, \mathrm{OE}=4.5 \mathrm{~V} \\ & \mathrm{CP}=\square \end{aligned}$ |
|  |  | Outputs OFF |  |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{PE}, \mathrm{DS}=4.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{n}}, \mathrm{OE}, \overline{\mathrm{CP}}=\mathrm{Gnd} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{Q}_{\mathrm{n}}$ |  | $\begin{aligned} & 30 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 18 \\ & 20 \end{aligned}$ | ns | $\text { Figs. } 3-3,3-11,3-12$ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,$ |
|  | Output Disable Time |  | $\begin{aligned} & 24 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW Ds, $\mathrm{P}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}_{n}(L) \end{aligned}$ | Hold Time HIGH or LOW Ds, $P_{n}$ to $\overline{C P}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW PE to $\overline{C P}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW PE to $\overline{C P}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\mathrm{CP}}$ Pulse Width LOW | 20 |  | ns | Fig. 3-9 |

# 54/74298 <br> 54LS/74LS298 <br> QUAD 2-PORT REGISTER <br> (Multiplexer with Storage) 

DESCRIPTION - The'298 is a quad 2-port register. It is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input.

- SELECT FROM TWO DATA SOURCES
- FULLY EDGE-TRIGGERED OPERATION
- TYPICAL POWER DISSIPATION OF 65 mW ('LS298)

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74298PC, 74LS298PC |  | 9B |
| Ceramic DIP (D) | A | 74298DC, 74LS298DC | 54298DM, 54LS298DM | 6B |
| Flatpak (F) | A | 74298FC, 74LS298FC | 54298FM, 54LS298FM | 4L |



$$
\text { Vcc }=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74 (U.L.) HIGH/LOW | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: | :---: |
| S | Common Select Input | 1.0/1.0 | 0.5/0.25 |
| $\overline{C P}$ | Clock Pulse Input (Active Falling Edge) | 1.0/1.0 | 0.5/0.25 |
| loa-lod | Source 0 Data Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{l}_{1 \mathrm{a}}-\mathrm{l} \mathrm{l}_{\text {d }}$ | Source 1 Data Inputs | 1.01/.0 | 0.5/0.25 |
| $\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$ | Flip-flop Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

FUNCTIONAL DESCRIPTION - This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input ( $\overline{\mathrm{CP}}$ ). The 4-bit output register is fully edge-triggered. The Data inputs ( $I_{n x}$ ) and Select input ( S ) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predicatable operation.

TRUTH TABLE

| INPUTS |  | OUTPUT |  |
| :---: | :---: | :---: | :---: |
| $S$ | $l_{0 x}$ | $l_{1 x}$ | $Q_{x}$ |
| $I_{1}$ | $I$ | $X$ | $L$ |
| $I$ | $h$ | $X$ | $H$ |
| $h$ | $X$ | $I$ | $L$ |
| $h$ | $X$ | $h$ | $H$ |

I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock transition.
$h=$ HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock transition.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |  |
| Icc | Power Supply Current | 65 | 21 | mA | $\begin{aligned} & \text { Ion, Inn, } S=G n d \\ & \overline{C P}=G, V C C=\operatorname{Max} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74 | 54/74LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tPLH tPHL | Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{Q}_{\mathrm{n}}$ | $\begin{aligned} & 27 \\ & 32 \end{aligned}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| sYMBOL | PARAMETER | $\mathbf{5 4 / 7 4}$ |  | 54/74LS | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |


\section*{54LS/74LS299 <br> 8-INPUT UNIVERSAL SHIFT/STORAGE REGISTER (With Common Parallel I/O Pins) <br> DESCRIPTION - The '299 is an 8-bit universal shift/storage register with 3state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops $Q_{0}$ and $Q_{7}$ to allow easy cascading. A separate active LOW Master Reset is used to reset the register. <br> - COMMON I/O FOR REDUCED PIN COUNT <br> - FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, LOAD AND STORE <br> - SEPARATE SHIFT RIGHT SERIAL INPUT AND SHIfT LEFT SERIAL INPUT FOR EASY CASCADING <br> - 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS <br> ORDERING CODE: See Section 9 <br> | PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS299PC |  | 9 Z |
| Ceramic DIP (D) | A | 74LS299DC | 54LS299DM | 4E |
| Flatpak (F) | A | 74LS299FC | 54LS299FM | 4F | <br> }

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| CP | Clock Pulse Input (Active Rising Edge) | 0.5/0.25 |
| Dso | Serial Data Input for Right Shift | 0.5/0.25 |
| Ds7 | Serial Data Input for Left Shift | 0.5/0.25 |
| $\mathrm{S}_{0}, \mathrm{~S}_{1}$ | Mode Select Inputs | 1.0/0.50 |
| MR | Asynchronous Master Reset Input (Active LOW) | 0.5/0.25 |
| $\overline{O E}_{1}, \overline{O E}_{2}$ | 3-State Output Enable Inputs (Active LOW) | 0.5/0.25 |
| $1 / O_{0}-1 / O_{7}$ | Parallel Data Inputs or | 0.5/0.25 |
|  | 3-State Parallel Outputs | 65/15 |
|  |  | (25)/(7.5) |
| Q0, Q7 | Serial Outputs | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

## LOGIC SYMBOL



FUNCTIONAL DESCRIPTION - The '299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3 -state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. $\mathrm{Q}_{0}$ and $\mathrm{Q}_{7}$ are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ in preparation for a parallel load operation.
mode select table

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{MR}}$ | $\mathrm{S}_{1}$ | So | CP |  |
| L | X | X | X | Asynchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW |
| H | H | H | J | Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \longrightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | L | H | 5 | Shift Right; $\mathrm{Ds}_{\text {s }} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc. |
| H | H | L | $\checkmark$ | Shift Left; $\mathrm{DS7}^{\longrightarrow} \mathrm{Q}_{7}, \mathrm{Q}_{7} \longrightarrow \mathrm{Q}_{6}$, etc. |
| H | L | L | X | Hold |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level $\mathrm{L}=$ LOW Voltage Level
$\mathbf{X}=$ Immaterial

LOGIC DIAGRAM


| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 65 | mA | $\mathrm{V}_{C C}=\mathrm{Max}, \overline{\mathrm{OE}}=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $54 / 74 \mathrm{LS}$ |  | UNITS |
| :--- | :--- | :--- | :--- | :--- |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW So or $\mathrm{S}_{1}$ to CP | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $S_{0}$ or $S_{1}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW I/On, Dso, Ds7 to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW I/On, Dso, Ds7 to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-8 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { MR Pulse Width LOW }}$ | 15 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R}$ to $C P$ | 10 |  | ns | Fig. 3-16 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\overline{\mathrm{RE}}$ | Register Enable Input (Active LOW) | 0.5/0.23 |
| S/ $\bar{P}$ | Serial (HIGH) or Parallel (LOW) Mode Control Input | 0.5/0.23 |
| $\overline{S E}$ | Sign Extend Input (Active LOW) | 1.5/0.68 |
| S | Serial Data Select Input | 1.0/0.45 |
| $\mathrm{D}_{0}, \mathrm{D}_{1}$ | Serial Data Inputs | 0.5/0.23 |
| CP | Clock Pulse Input (Active Rising Edge) | 0.5/0.23 |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | 0.5/0.23 |
| $\overline{O E}$ | 3-State Output Enable Input (Active LOW) | 0.5/0.23 |
| Q0 | Bi-State Serial Output | 11/5.0 |
| $1 / O_{0}-1 / O_{7}$ | Multiplexed Parallel Inputs or | $(2.5)$ $0.5 / 0.23$ |
|  | 3-State Parallel Outputs | $\begin{gathered} 65 / 5.0 \\ (25) /(2.5) \end{gathered}$ |

FUNCTIONAL DESCRIPTION - The '322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on $\overline{R E}$ enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/ $\bar{P}$ enables shift right, while a LOW signal disables the 3 -state output buffers and enables parallel loading. In the shift right mode a HIGH signal on SE enables serial entry from either $D_{0}$ or $D_{1}$, as determined by the $S$ input. A LOW signal on $\overline{S E}$ enables shift right but $Q_{7}$ reloads its contents, thus performing the sign extend function required for the ' 384 Twos Complement Multiplier. A HIGH signal on $\overline{\mathrm{OE}}$ disables the $3-$ state output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

LOGIC SYMBOL


## LOGIC DIAGRAM



## MODE TABLE

| MODE | INPUTS |  |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{MR}}$ | $\overline{\mathrm{RE}}$ | S／P | $\overline{\text { SE }}$ | S | $\overline{\mathrm{OE}}$＊ | CP | 1／07 | 1／O6 | 1／O5 | $1 / \mathrm{O}_{4}$ | 1／O3 | $1 / \mathrm{O}_{2}$ | 1／O1 | $1 / \mathrm{O}_{0}$ | Q0 |
| Clear | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{Z} \end{aligned}$ | $\begin{aligned} & L \\ & Z \end{aligned}$ | $\begin{aligned} & L \\ & Z \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ |
| Parallel Load | H | L | L | X | X | X | 」 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 |
| Shift Right | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & \mathrm{D}_{0} \\ & \mathrm{D}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{7} \\ & \mathrm{O}_{7} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{6} \\ & \mathrm{O}_{4} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{5} \\ & \mathrm{O}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{4} \\ & \mathrm{O}_{4} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{3} \\ & \mathrm{O}_{3} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{O}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{1} \\ & \mathrm{O}_{1} \end{aligned}$ | O <br> O <br> O |
| Sign Extend | H | L | H | L | X | L | 」 | $\mathrm{O}_{7}$ | $\mathrm{O}_{7}$ | O6 | O5 | $\mathrm{O}_{4}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{1}$ |
| Hold | H | H | x | X | X | L | 」 | NC |

＊When the $\overline{\mathrm{OE}}$ input is HIGH ，all I／On terminals are at the high－impedance state；sequential operation or clearing of the register is not affected．
1．$I_{7}-I_{0}=$ The level of the steady－state input at the respective $I / O$ terminal is loaded into the flip－flop while the flip－flop outputs（except $Q_{0}$ ）are isolated from the I／O terminal．
2． $\mathrm{D}_{0}, \mathrm{D}_{1}=$ The level of the steady－state inputs to the serial multiplexer input．
3． $\mathrm{O}_{7}-\mathrm{O}_{0}=$ The level of the respective $Q_{n}$ flip－flop prior to the last Clock LOW－to－HIGH transition．
$N C=$ No Change $\quad Z=$ High－Impedance Output State $\quad H=H I G H$ Voltage Level $L=L O W$ Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE（unless otherwise specified）

| SYMBOL | PARAMETER | 54／74LS |  | UNITS |
| :--- | :--- | :--- | :---: | :---: |

AC CHARACTERISTICS： $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$（See Section 3 for waveforms and load configurations）

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| ${ }^{\text {max }}$ | Maximum Clock Frequency | 35 |  | MHz | Figs．3－1，3－8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay CP to $1 / \mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 23 \\ & 25 \end{aligned}$ | ns |  |
| $\overline{\mathrm{tPLH}}$ tphl | Propagation Delay CP to Qo |  | $\begin{aligned} & 25 \\ & 29 \end{aligned}$ | ns | Figs．3－1，3－16 |
| tPHL | Propagation Delay $\overline{M R}$ to $I / O_{n}$ |  | 33 | ns |  |
| tPHL | Propagation Delay $\overline{M R}$ to $Q_{0}$ |  | 30 | ns |  |
| $\begin{aligned} & \text { tpZH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time $\overline{O E}$ to $I / O_{n}$ |  | $\begin{aligned} & 18 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ |
| tpHz | Output Disable Time $\overline{O E}$ to $I / O_{n}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |
| tpzit | Output Enable Time $S / \bar{P}$ to $I / O_{n}$ |  | $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ |
| $\begin{array}{\|l\|l\|} \hline \text { tphz } \\ \hline \text { tpLz } \end{array}$ | Output Disable Time $S / \bar{P}$ to $I / O_{n}$ |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{R E}$ to CP | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{R E}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{D}_{0}, \mathrm{D}_{1}$ or $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{D}_{0}, \mathrm{D}_{1}$ or $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \text { ts (H) } \\ & \text { ts (L) } \end{aligned}$ | Setup Time HIGH or LOW SE to CP | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{S E}$ to CP | 0 |  | ns |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $S / \bar{P}$ to $C P$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{c}(L) \end{aligned}$ | Setup Time HIGH or LOW $S$ to CP | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $S$ or $S / \bar{P}$ to $C P$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}_{\text {w }}(\mathrm{H})$ | CP Pulse Width HIGH | 15 |  | ns | Fig. 3-8 |
| tw (L) | $\overline{M R}$ Pulse Width LOW | 15 |  | ns | Fig. 3-16 |
| trec | $\begin{aligned} & \text { Recovery Time } \\ & \frac{M R}{} \text { to CP } \end{aligned}$ | 15 |  | ns |  |

## 54LS/74LS323 <br> 8-BIT UNIVERSAL SHIFT/STORAGE REGISTER (With Synchronous Reset and Common I/O Pins)

DESCRIPTION - The '323 is an 8-bit universal shift/storage register with 3state outputs. Its function is similar to the ' 299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate inputs and outputs are provided for flip-flops $Q_{0}$ and $Q_{7}$ to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right, and parallel load. All modes are activated on the LOW-to-HIGH transition of the Clock.

- COMMON I/O FOR REDUCED PIN COUNT
- FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, PARALLEL LOAD AND STORE
- SEPARATE CONTINUOUS INPUTS AND OUTPUTS FROM Q $Q_{0}$ AND $Q_{7}$ ALLOW EASY CASCADING
- FULLY SYNCHRONOUS RESET
- 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS323PC |  | $9 Z$ |
| Ceramic DIP (D) | A | 74LS323DC | 54LS323DM | 4E |
| Flapak (F) | A | 74LS323FC | 54LS323FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| CP | Clock Pulse Input (Active Rising Edge) | 0.5/0.25 |
| Dso | Serial Data Input for Right Shift | 0.5/0.25 |
| Ds7 | Serial Data Input for Left Shift | 0.5/0.25 |
| $\mathrm{S}_{0} \mathrm{~S}_{1}$ | Mode Select Inputs | 1.0/0.50 |
| $\overline{\text { SR }}$ | Synchronous Reset Input (Active LOW) | 0.5/0.25 |
| $\overline{O E} \bar{E}_{1}, \overline{O E}_{2}$ | 3-State Output Enable Inputs (Active LOW) | 0.5/0.25 |
| $\mathrm{I} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$ | Parallel Data Inputs or | 1.0/0.50 |
|  | 3-State Parallel Outputs | 65/15 |
|  |  | (25)/(7.5) |
| Q0, Q7 | Serial Outputs | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |



FUNCTIONAL DESCRIPTION - The ' 323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ as shown in the Mode Select Table. All flip-flop outputs are brought out through 3 -state buffers to separate $\mathrm{I} / \mathrm{O}$ pins that also serve as data inputs in the parallel load mode. $Q_{0}$ and $Q_{7}$ are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{\mathrm{SR}}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of $C P$, are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ in preparation for a parallel load operation.

MODE SELECT TABLE

| INPUTS |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { SR }}$ | $\mathrm{S}_{1}$ | So | CP |  |
| L | X | X | 」 | Synchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW |
| H | H | H | 5 | Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | L | H | 5 | Shift Right; Dso $-\mathrm{Q}_{0}, \mathrm{Q}_{0}-\mathrm{Q}_{1}$, etc. |
| H | H | L | J | Shift Left; $\mathrm{DS7}^{-} \mathrm{Q}_{7}, \mathrm{Q}_{7}-\mathrm{Q}_{6}$, etc. |
| H | H | H | X | Hold |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :---: | :---: | :---: |
|  | CONDITIONS |  |  |  |
| IcC | Power Supply Current | 60 | mA | VCc $=$ Max, <br> Outputs Disabled |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

|  | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Input Frequency | 35 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay CP to Qo or Q7 |  | $\begin{aligned} & 23 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLh } \\ & \text { tpht } \end{aligned}$ | Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 25 \\ & 29 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpZH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 18 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Figs. 3-3, 3-11, 3-12 $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW So or $S_{1}$ to CP | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{S}_{0}$ or $\mathrm{S}_{1}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW I/On, Ds0, Ds7 to CP | $\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW I/On, Dso, Ds7 to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{S R}$ to $C P$ | $\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{S R}$ to $C P$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(H) \\ & t_{w}(L) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-8 |

## 54LS/74LS347 <br> BCD TO 7-SEGMENT DECODER/DRIVER

DESCRIPTION - The '347 is the same as the '47 except that the Output OFF Voltage, VOH , is specified as 7.0 V rather than 15 V , with the same loH limit of $250 \mu \mathrm{~A}$. For all other information please refer to the ' 47 data sheet.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS347PC |  | 9B |
| Ceramic DIP (D) | A | 74LS347DC | 54LS347DM | 7B |
| Flatpak (F) | A | 74LS347FC | 54LS347FM | 4L |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | 0.5/0.25 |
| RBI | Ripple Blanking Input (Active LOW) | 0.5/0.25 |
| $\overline{\text { LT }}$ | Lamp Test Input (Active LOW) | 0.5/0.25 |
| $\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$ | Blanking Input (Active LOW) or | -/0.75 |
|  | Ripple Blanking Output (Active LOW) | 1.25/2.0 |
|  |  | (1.0) |
| $\overline{\mathrm{a}}$ - $\overline{\mathrm{g}}$ | Segment Outputs (Active LOW) | $\begin{gathered} O C^{* / 15} \\ (7.5) \end{gathered}$ |

[^44]CONNECTION DIAGRAM PINOUT A

## 54LS/74LS352

## DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The '352 is a very high speed dual 4-input multiplexer with Common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The ' 352 is the functional equivalent of the '153 except with inverted outputs.

- INVERTED VERSION OF THE '153
- SEPARATE ENABLES FOR EACH MULTIPLEXER
- INPUT CLAMP DIODE LIMIT HIGH SPEED TERMINATION EFFECTS - FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS352PC |  | 9B |
| Ceramic DIP (D) | A | 74LS352DC | 54LS352DM | 6B |
| Flatpak <br> (F) | A | 74LS352FC | 54LS352FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $I_{0 a}-I_{3 a}$ | Side A Data Inputs | $0.5 / 0.25$ |
| $l_{0 b}-I_{3 b}$ | Side B Data Inputs | $0.5 / 0.25$ |
| $\mathrm{~S}_{0}, \mathrm{~S}_{1}$ | Common Select Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{\mathrm{a}}$ | Side A Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{\mathrm{b}}$ | Side B Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{Z}}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$ | Multiplexer Outputs (Inverted) | $10 / 5.0$ |
|  |  | $(2.5)$ |

LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - The '352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ). The two 4-input multiplexer circuits have individual active LOW Enables ( $\bar{E}_{a}, \bar{E}_{b}$ ) which can be used to strobe the outputs independently. When the Enables ( $\overline{\mathrm{E}}_{a}, \overline{\mathrm{E}}_{\mathrm{b}}$ ) are HIGH, the corresponding outputs ( $\bar{Z}_{a}, \bar{Z}_{b}$ ) are forced HIGH.

The logic equations for the outputs are shown below.

$$
\begin{aligned}
& \bar{Z}_{a}=\overline{\mathrm{E}_{\mathrm{a}} \bullet\left(\mathrm{I}_{0 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{1 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)} \\
& \bar{Z}_{\mathrm{b}}=\overline{\mathrm{E}_{\mathrm{b}} \bullet\left(I_{0 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{1 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+I_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)}
\end{aligned}
$$

The ' 352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is a function generator. The ' 352 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

| SELECT <br> INPUTS | INPUTS (a or b) |  |  |  |  | OUTPUT |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| So | S $_{1}$ | E | Io $_{0}$ | I $_{1}$ | I $_{2}$ | I $_{3}$ | Z |
| X | X | H | X | X | X | X | H |
| L | L | L | L | X | X | X | H |
| L | L | L | H | X | X | X | L |
| H | L | L | X | L | X | X | H |
| H | L | L | X | H | X | X | L |
| L | H | L | X | X | L | X | H |
| L | H | L | X | X | H | X | L |
| H | H | L | X | X | X | L | H |

[^45]
## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :--- | :--- | :--- |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $S_{n}$ to $Z_{n}$ |  | $\begin{aligned} & 22 \\ & 38 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tple tphL | Propagation Delay $\bar{E}_{n}$ to $\bar{Z}_{n}$ |  | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH tPHL | Propagation Delay In to $\bar{Z}_{n}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

## 54LS/74LS353 <br> DUAL 4-INPUT MULTIPLEXER <br> (With 3-State Outputs)

DESCRIPTION - The ' 353 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output ( $\overline{\mathrm{OE}}$ ) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- INVERTED VERSION OF 'LS253
- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS353PC |  | 9B |
| Ceramic DIP (D) | A | 74LS353DC | 54LS353DM | 6B |
| Flatpak (F) | A | 74LS353FC | 54LS353FM | 4L |

INPUT LOADINGG/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$ | Side A Data Inputs | $0.5 / 0.25$ |
| $\mathrm{IOb}_{\mathrm{b}} \mathrm{I}_{\mathrm{b}}$ | Side B Data Inputs | $0.5 . / 0.25$ |
| $\mathrm{~S}_{0}, \mathrm{~S}_{1}$ | Common Select Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}_{\mathrm{a}}$ | Side A Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}_{\mathrm{b}}$ | Side B Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{Z}}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$ | 3-State Outputs (Inverted) | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

## LOGIC SYMBOL


$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - The '353 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs ( $\mathrm{S}_{0}, \mathrm{~S}_{1}$ ). The 4-input multiplexers have individual Output Enable ( $\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{b}$ ) inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \bar{Z}_{a}=\overline{\overline{\mathrm{EE}_{a}} \bullet\left(I_{0 a} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+I_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+I_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+I_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)} \\
& \bar{Z}_{\mathrm{b}}=\overline{\overline{\mathrm{OE}}} \mathrm{E}_{\mathrm{b}} \bullet\left(I_{0 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+I_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+I_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+I_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{aligned}
$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

| SELECT INPUTS |  | DATA INPUTS |  |  |  | OUTPUT ENABLE | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| So | $S_{1}$ | 10 | $I_{1}$ | $\mathrm{I}_{2}$ | 13 | $\overline{\mathrm{OE}}$ | $\bar{Z}$ |
| X | X | X | X | X | X | H | (Z) |
| L | L | L | X | X | X | L | H |
| L | L | H | X | X | X | L | L |
| H | L | X | L | X | X | L | H |
| H | L | $x$ | H | X | $X$ | L | L |
| L | H | $x$ | X | L | X | L | H |
| L | H | $x$ | X | H | X | L | L |
| H | H | $x$ | $X$ | X | L | L | H |
| H | H | X | X | X | H | L | L |

Address inputs $S_{0}$ and $S_{1}$ are common to both sections.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphl } \end{aligned}$ | Propagation Delay $S_{n}$ to $\bar{Z}_{n}$ |  | $\begin{aligned} & 24 \\ & 32 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay In to $\bar{Z}_{n}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & \mathrm{RL}_{\mathrm{L}}=667 \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{L}=667 \Omega, C L=5 p F \end{aligned}$ |


| 54LS/74LS365A <br> HEX 3-STATE BUFFER <br> (With Common 2-Input NOR Enable) |  |  |  |  | CONNECTION DIAGRAM PINOUT A |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ | TRUTH TABLE |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V C C=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |
| Plastic DIP (P) | A | 74LS365APC |  | 9B | INPUTS | OUTPUTS |
| Ceramic DIP (D) | A | 74LS365ADC | 54LS365ADM | 6B |  | L |
| Flatpak (F) | A | 74LS365AFC | 54LS365AFM | 4L | $\begin{array}{ll\|l} \mathrm{L} & \mathrm{~L} & \mathrm{H} \\ \mathrm{H} & \mathrm{X} & \mathrm{X} \\ \mathrm{X} & \mathrm{H} & \mathrm{X} \\ \hline \end{array}$ | H Z Z |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  | $\begin{aligned} & H=\text { HIGH Voltage Level } \\ & L=\text { LOW Votiage Level } \\ & X=\text { = mmaterial } \\ & z=\text { High Impedance } \end{aligned}$ |  |
| PINS | 54/74LS (U.L.) HIGH/LOW |  |  |  |  |  |
| Inputs Outputs | $\begin{array}{r} 0.5 / 0.25 \\ 25 / 15 \\ (7.5) \end{array}$ |  |  |  |  |  |

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 24 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{VE}=4.5 \mathrm{~V}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Data to Output |  | $\begin{aligned} & 16 \\ & 22 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-4 } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \text { tPZH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 24 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\left\lvert\, \begin{array}{\|l\|l\|l\|} \text { tPLZ } \\ \text { tPHz } \end{array}\right.$ | Output Disable Time |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

*DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.


DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 21 | mA | $\mathrm{VCC}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{VE}=4.5 \mathrm{~V}$ |
| $\begin{aligned} & \overline{\text { tPLH }} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 12 \\ & 22 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \text { tpzH } \\ & \text { tPZL } \\ & \hline \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 24 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \text { tpLZ } \\ & \text { tPHZ } \\ & \hline \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |
| ${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$. |  |  |  |  |  |




DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 21 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  | $\begin{aligned} & 12 \\ & 22 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 24 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{L}=667 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \mathrm{tPLZ} \\ & \text { tPHZ } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

[^46]
# 54LS/74LS373 <br> OCTAL TRANSPARENT LATCH <br> (With 3-State Outputs) 

DESCRIPTION - The '373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{O E})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state.

- Eight latches in a single package
- 3-STATE OUTPUTS FOR BUS INTERFACING

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{c c}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS373PC |  | 9Z |
| Ceramic DIP (D) | A | 74LS373DC | 54LS373DM | 4E |
| Flatpak (F) | A | 74LS373FC | 54LS373FM | 4F |

$\mathrm{V}_{\mathrm{cc}}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| LE | Latch Enable Input (Active HIGH) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | 3-State Latch Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

FUNCTIONAL DESCRIPTION - The '373 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the $\mathrm{D}_{\mathrm{n}}$ inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its $D$ input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable ( $\overline{O E}$ ) input. When $\overline{O E}$ is LOW, the buffers are in the bi-state mode. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

## LOGIC DIAGRAM



| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | Outputs OFF |  | 40 | mA | $\begin{aligned} & V_{C C}=\operatorname{Max}, \overline{O E}=4.5 \mathrm{~V} \\ & \mathrm{D}_{\mathrm{n}}, \mathrm{LE}=\mathrm{Gnd} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=50 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 18 \\ & 20 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay LE to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpzh } \\ & \text { tpz } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 28 \\ & 36 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{L}=667 \Omega, C L=5.0 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to LE | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns | Fig. 3-14 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to LE | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \hline t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | LE Pulse Width HIGH or LOW | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-8 |

# 54LS/74LS374 OCTAL D-TYPE FLIP-FLOP <br> (With 3-State Outputs) 

DESCRIPTION - The '374 is a high speed, low power octal D-type flip-flop featuring separate $D$-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable ( $\overline{\mathrm{OE}}$ ) is common to all flip-flops. The '374 is manufactured using advanced low power Schottky technology and is compatible with all Fairchild TTL families.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | VCC $=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | 74 LS 374 PC |  | 9 Z |
| Ceramic <br> DIP (D) | A | 74 LS 374 DC | 54 LS 374 DM | 4 E |
| Flatpak <br> (F) | A | 74 LS 374 FC | 54 LS 374 FM | 4 F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| OE | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | 3-State Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The '374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual $D$ inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ( $\overline{O E}$ ) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH , the outputs go to the high impedence state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

TRUTH TABLE

| INPUTS OUTPUTS |  |  |  | $\mathrm{H}=\mathrm{HIGH}$ Voltage Level <br> L = LOW Voltage Level <br> X = Immaterial <br> $\mathrm{Z}=$ High Impedance |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\mathrm{n}}$ | CP | OE | On |  |
| H | $\Gamma$ | L | H |  |
| L | $\Gamma$ | L | L |  |
| X | X | H | Z |  |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}_{\mathrm{L}}=45 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 35 |  | MHz | Figs. 3-1, 3-8 |
| tpLH <br> tphL | Propagation Delay CP to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tphZ } \\ & \text { tpLZ } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=667 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-8 |

## 54LS/74LS375

## 4-BIT LATCH



4

## LOGIC SYMBOL



$$
V_{C C}=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L.definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $0.5 / 0.25$ |
| $\mathrm{E}_{1,2}$ | Latches 1, 2 Enable Input | $2.0 / 1.0$ |
| $\mathrm{E}_{3,4}$ | Latches 3, 4 Enable Input | $2.0 / 1.0$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{4}$ | Latch Outputs | $10 / 5.0$ |
| $\bar{Q}_{1}-\bar{Q}_{4}$ | Complementary Latch Outputs | $(2.5)$ |
|  |  | $10 / 5.0$ |



AC CHARACTERISTICS: $V_{C C}=+5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $D_{n}$ to $Q_{n}$ |  | $\begin{aligned} & 27 \\ & 17 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH <br> tphL | Propagation Delay $D_{n}$ to $\bar{Q}_{n}$ |  | 20 15 | ns | Figs. 3-1, 3-4 |
| tplH <br> tpHL | Propagation Delay $E_{n}$ to $Q_{n}$ |  | 27 25 | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $E_{n}$ to $\bar{Q}_{n}$ |  | 30 15 | ns |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to $E_{n}$ | 20 |  | ns | Fig. 3-14 |
| $\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to $E_{n}$ | 0 |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{H})$ | En Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |

# 54LS/74LS377 <br> OCTAL D FLIP-FLOP (With Common Enable and Clock) 

DESCRIPTION - The '377 is an 8-bit register built using advanced low power Schottky technology. This register consists of eight D-type flip-flops with a buffered common clock and a buffered common input enable. The device is packaged in the space-saving ( 0.3 inch row spacing) 20-pin package.

- 8-BIT HIGH SPEED PARALLEL REGISTERS
- POSITIVE EDGE-TRIGGERED D-TYPE FLIP-FLOPS
- FULLY BUFFERED COMMON CLOCK AND ENABLE INPUTS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS377PC |  | 9Z |
| Ceramic DIP (D) | A | 74LS377DC | 54LS377DM | 4E |
| Flatpak (F) | A | 74LS377FC | 54LS377FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| Q $_{0}-Q_{7}$ | Flip-flop Outputs | $10 / 5.0$ |
|  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The '377 consists of eight edge-triggered D flip-flops with individual D inputs and $Q$ outputs. The Clock (CP) and Enable input ( $\bar{E}$ ) are common to all flip-flops.

When $\bar{E}$ is LOW, new data is entered into the register on the next LOW-to-HIGH transition of CP. When $\bar{E}$ is HIGH , the register will retain the present data independent of the CP.

TRUTH TABLE

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{E}}$ | CP | $\mathrm{D}_{\mathrm{n}}$ | $Q_{n}$ |
| H | X | X | No change |
| L | - | H | H |
| L | - | L | L |
| $\begin{aligned} & H=H I G H \text { Voltage Level } \\ & L=\text { LOW Voltage Level } \\ & X=\text { Immaterial } \end{aligned}$ |  |  |  |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS | UNITS | CONDITIONS |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ICC | Power Supply Current | 28 | mA | $\mathrm{~V}_{\mathrm{cc}}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | 25 | ns | Figs. 3-1, 3-8 |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $\bar{E}$ to CP | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold Time HIGH or LOW $\bar{E}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-8 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\bar{E}$ | Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{D}_{0}-\mathrm{D}_{5}$ | Data Inputs | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| Q0 $-Q_{5}$ | Flip-flop Outputs | 105.0 |
|  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The ' 378 consists of eight edge-triggered D-type flip-flops with individual D inputs and $Q$ outputs. The Clock (CP) and Enable ( $\bar{E}$ ) inputs are common to all flip-flops.

When the $\bar{E}$ input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the $\bar{E}$ input is HIGH the register will retain the present data independent of the CP input.

TRUTH TABLE

| INPUTS |  |  | OUTPUT |
| :--- | :--- | :--- | :---: |
| $\bar{E}$ | $C P$ | $D_{n}$ | $Q_{n}$ |
| $H$ | - | $X$ | No change |
| $L$ | - | $H$ | $H$ |
| $L$ | - | $L$ | $L$ |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial

## LOGIC DIAGRAM



378

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 22 | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{E}}=\mathrm{Gnd} \\ & \mathrm{CP}=\Gamma \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{tpHL} \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 27 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-8 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $t_{s}(H)$ | Setup Time HIGH, $\mathrm{D}_{\mathrm{n}}$ to CP | 20 |  | ns | Fig. 3-6 |
| th (H) | Hold Time HIGH, $\mathrm{D}_{\mathrm{n}}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| $\mathrm{ts}_{\mathrm{s}}(\mathrm{L})$ | Setup Time LOW, $\mathrm{D}_{\mathrm{n}}$ to CP | 20 |  | ns | Fig. 3-6 |
| $t h$ (L) | Hold Time LOW, $\mathrm{D}_{\mathrm{n}}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| $t_{s}(H)$ | Setup Time HIGH, $\overline{\mathrm{E}}$ to CP | 30 |  | ns | Fig. 3-6 |
| th (H) | Hold Time HIGH, $\overline{\mathrm{E}}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| $t_{s}$ (L) | Setup Time LOW, $\overline{\mathrm{E}}$ to CP | 30 |  | ns | Fig. 3-6 |
| $t{ }_{\text {th }}(\mathrm{L})$ | Hold Time LOW, $\bar{E}$ to CP | 5.0 |  | ns | Fig. 3-6 |
| $t_{w}(H)$ | CP Pulse Width HIGH | 20 |  | ns | Fig. 3-8 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | $10 / 5.0$ |
| $\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$ | Complement Outputs | $(2.5)$ |
|  |  | $10 / 5.0$ |

FUNCTIONAL DESCRIPTION - The '379 consists of four edge-triggered D-type flip-flops with individual D inputs and $Q$ and $\bar{Q}$ outputs. The Clock (CP) and Enable $(\bar{E})$ inputs are common to all flip-flops. When the $\bar{E}$ input is HIGH, the register will retain the present data independent of the CP input. The $D_{n}$ and $\bar{E}$ inputs can change when the clock is in either state, provided that the recommended setup and hold times are observed.

TRUTH TABLE

| INPUTS |  | OUTPUTS |  |  |
| :--- | :---: | :--- | :---: | :---: |
| $\bar{E}$ | $C P$ |  | $D_{n}$ | $Q_{n}$ |
| $H$ | - | $X$ | No | $\bar{Q}_{n}$ |
| $L$ | $J$ | $H$ | No |  |
| $L$ | $\Gamma$ | $L$ | $H$ | $L$ |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

LOGIC DIAGRAM


| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 18 | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Clock Frequency | 30 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 27 \\ & 27 \end{aligned}$ | ns |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to CP | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\bar{E}$ to CP | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $\bar{E}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\mathrm{tw}_{\mathbf{w}}(\mathrm{L})$ | CP Pulse Width LOW | 17 |  | ns | Fig. 3-8 |

# 54LS/74LS384 <br> 8-BIT SERIAL/PARALLEL TWOS COMPLEMENT MULTIPLIER 

DESCRIPTION - The ' 384 is an 8 -bit by 1 -bit sequential logic element that multiplies two numbers represented in twos complement notation. The device implements Booth's algorithm internally to produce a twos complement product that needs no subsequent correction. Parallel inputs accept and store an 8-bit multiplicand ( $\mathrm{X}_{0}-\mathrm{X}_{7}$ ). The multiplier word is applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the $S$ output, least significant bit first.

The K input is used for expansion to longer X words, using two or more 384 packages. The Mode Control (M) input is used to establish the most significant package. An asynchronous Master Reset ( $\overline{\mathrm{MR}}$ ) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data.

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| K | Serial Expansion Input | $0.75 / 0.75$ |
| $M$ | Mode Control Input | $0.5 / 0.3$ |
| $M R$ | Asynchronous Master Reset Input (Active LOW) | $0.75 / 0.75$ |
| $X_{0}-X_{7}$ | Multiplicand Data Inputs | 0.50 .3 |
| Y | Serial Multiplier Input | $2.0 / 2.0$ |
| S | Serial Product Output | $25 / 7.5$ |
|  |  | $(5.0)$ |



FUNCTION TABLE

| INPUTS |  |  |  |  |  | INTERNAL | OUTPUT | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CP | K | M | Xi | Y | $\mathrm{Y}_{\mathrm{a}-1}$ | S |  |
| - |  | L | L |  |  |  |  | Most Significant Multiplier Device |
| - |  | CS | H |  |  |  |  | Devices Cascaded in Multiplier String |
| L |  |  |  | OP |  | L | L | Load New Multiplicand and Clear Internal Sum and Carry Registers |
| H |  |  |  |  |  |  |  | Device Enabled |
| H | - |  |  |  | L | L | AR | Shift Sum Register |
| H | $\checkmark$ |  |  |  | L | H | AR | Add Multiplicand to Sum Register and Shift |
| H | - |  |  |  | H | L | AR | Subtract Multiplicand from Sum Register and Shift |
| H | - |  |  |  | H | H | AR | Shift Sum Register |

[^47]FUNCTIONAL DESCRIPTION - Referring to the logic diagram, the multiplicand ( $\mathrm{X}_{0}-\mathrm{X}_{7}$ ) latches are enabled to receive new data when $\overline{M R}$ is LOW. Data that meet the setup time requirements is latched and stored when $\overline{M R}$ goes HIGH. The LOW signal on MR also clears the $Y_{a-1}$ flip-flop as well as the carry-save flip-flops and the partial product register in the arithmetic section. Figure a is a conceptual logic diagram of a typical cell in the arithmetic section, except for the first ( $X_{7}$ ) cell, in which $K$ is the $B_{i}$ input and $M$ is incorporated into the carry logic. The cells use the carry-save technique to avoid the complexity and delays inherent in look-ahead carry schemes for longer words.

Figure $b$ is a timing diagram for an $8 \times 8$ multiplication process. New multiplicand data enters the $X$ latches during bit time To. It is assumed that MR goes LOW shortly after the CP rising edge that marks the beginning of $\mathrm{T}_{0}$ and goes HIGH again shortly after the beginning of $\mathrm{T}_{1}$. The LSB $\left(\mathrm{Y}_{0}\right)$ of the multiplier is applied to the Y input during $T_{1}$ and combines with $X_{0}$ in the least significant cell to form the appropriate $D$ input ( $X_{0} Y_{0}$ ) to the sum flipflop. This is clocked into the sum flip-flop by the CP rising edge at the beginning of $T_{2}$ and this LSB ( $S_{0}$ ) of the product is available shortly thereafter at the $S$ output of the package. The next-least bit $Y_{1}$ of the multiplier is also applied during $T_{2}$. The detailed logic design of the cell is such that during $T_{2}$ the $D$ input to the sum flip-flop of the least significant cell contains not only $X_{0} Y_{1}$ but also, thanks to storage in its carry flip-flop and in the sum flip-flop of the next-least cell, the $X_{1} Y_{0}$ product. Thus the term $\left(X_{1} Y_{0}+X_{0} Y_{1}\right)$ is formed at the $D$ input of the least significant sum flip-flop during $T_{2}$ and this next-least term $S_{1}$ of the product is available at the $S$ output shortly after the $C P$ rising edge at the beginning of $T_{3}$. Due to storage in the two preceding cells and in its own carry flipflop, the $D$ input to the least significant sum flip-flop during $T_{3}$ will contain the products $X_{2} Y_{0}$ and $X_{1} Y_{1}$ as well as $X_{0} Y_{2}$. During each succeeding bit time the $S$ output contains information formed one stage further upstream. For example, the $S$ output during $\mathrm{T}_{9}$ contains $\mathrm{X}_{7} \mathrm{Y}_{0}$, which was actually formed during $\mathrm{T}_{1}$.

The MSB $Y_{7}$ (the sign bit $Y_{S}$ ) of the multiplier is first applied to the $Y$ input during $T_{8}$ and must also be applied during bit times $\mathrm{T}_{9}$ through $\mathrm{T}_{16}$. This extension of the sign bit is a necessary adjunct to the implementation of Booth's algorithm and is a built-in feature of the '322 Shift Register. Figure $c$ shows the method of using two ' 384 s to perform a $12 \times n$ bit multiplication. Notice that the sign of $X$ is effectively extended by connecting $X_{11}$ to $X_{4}-X_{7}$ of the most significant package. Whereas the $8 \times 8$ multiplication required 18 clock periods ( $m+n$ to form the product terms plus $T_{0}$ to clear the multiplier plus $T_{17}$ to recognize and store $\mathrm{S}_{15}$ ), the arrangement of Figure c requires $12+n$ bits to form the product terms plus the bit times to clear the multiplier and to recognize and store $\mathrm{S}_{\mathrm{n}}+11$.


Fig. a Conceptual Carry Save Adder Cell

Fig. b Timing Diagram Showing 18 Clock Cycle Operation of $8 \times 8$ Multiplication


Fig. c A 12-Bit by N-Bit Two's Complement Multiplier

DC CHARATERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 54/74LS |  | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHe } \end{aligned}$ | Propagation Delay CP to S |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns |  |
| tphL | Propagation Delay $\overline{\mathrm{MR}}$ to S |  | 25 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & t_{0}(1) \end{aligned}$ | Setup Time HIGH or LOW K to CP | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW Y to CP | $\begin{aligned} & 32 \\ & 32 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \operatorname{tn}_{\mathrm{n}}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW K or Y to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{X}_{\mathrm{i}}$ to $\overline{\mathrm{MR}}$ | $\begin{aligned} & 13 \\ & 13 \end{aligned}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{n}}(1) \end{aligned}$ | Hold Time HIGH or LOW $\mathrm{X}_{\mathrm{i}}$ to $\overline{\mathrm{MR}}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | ns | Fig. 3-8 |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{M R}$ to $C P$ | 18 |  | ns |  |

## 54LS/74LS390 DUAL DECADE COUNTER

DESCRIPTION - The '390 contains a pair of high speed 4-stage ripple counters. Each half of the ' 390 is partitioned into a divide-by-two section and a divide-by-five section, with a separate clock input for each section. The two sections can be connected to count in the 8421 BCD code or they can count in a bi-quinary sequence to provide a square wave ( $50 \%$ duty cycle) at the final output.

Each half of the ' 390 contains $\mathrm{a} \div 5$ section that is independent except for the common MR function. The $\div 5$ section operates in 421 binary sequence, as shown in the $\div 5$ Truth Table, with the third stage output exhibiting a $20 \%$ duty cycle when the input frequency is constant. To obtain a $\div 10$ function having a $50 \%$ duty cycle output, connect the input signal to $\overline{\mathrm{CP}}_{1}$ and connect the $Q_{3}$ output to the $\overline{C P}_{0}$ input; the $Q_{0}$ output provides the desired $50 \%$ duty cycle output. If the input frequency is connected to $\overline{\mathrm{CP}}_{0}$ and the $Q_{0}$ output is connected to $\overline{C P}_{1}$, a decade divider operating in the 8421 BCD code is obtained, as shown in the BCD Truth Table. Since the flipflops change state asynchronously, logic signals derived from combinations of ' 390 outputs are also subject to decoding spikes. A HIGH signal on MR forces all outputs LOW and prevents counting.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS390PC |  | 9B |
| Ceramic DIP (D) | A | 74LS390DC | 54LS390DM | 6B |
| Flatpak (F) | A | 74LS390FC | 54LS390FM | 4L |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| ${\overline{\overline{C P}}{ }_{0}}$ | $\div 2$ Section Clock Input (Active Falling Edge) | $1.0 / 1.5$ |
| $\overline{\mathrm{CP}}_{1}$ | $\div 5$ Section Clock Input (Active Falling Edge) | 2.0 .2 .0 |
| MR | Asynchronous Master Reset Input (Active HIGH) | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs ${ }^{*}$ | $10 / 5.0$ |
|  |  | (2.5) |

[^48]
## LOGIC DIAGRAM (one half shown)



BCD TRUTH TABLE
(Input on $\overline{\mathbf{C P}}_{0} ; \mathbf{Q}_{0}$ to $\overline{\mathbf{C P}}_{1}$ )

| count | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Q $_{3}$ | Q $_{2}$ | Q $_{1}$ | Q $_{0}$ |
| 0 | L | L | L | L |
| 1 | L | L | L | H |
| 2 | L | L | H | L |
| 3 | L | L | H | H |
| 4 | L | H | L | L |
| 5 | L | H | L | H |
| 6 | L | H | H | L |
| 7 | L | H | H | H |
| 8 | H | L | L | L |
| 9 | H | L | L | H |

5 TRUTH TABLE
(Input on $\overline{\mathbf{C P}}_{1}$ )

| COUNT | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: |
|  | Q3 $_{3}$ | Q2 $_{2}$ | Q $_{1}$ |
| 0 | L | L | L |
| 1 | L | L | $H$ |
| 2 | $L$ | $H$ | L |
| 3 | L | $H$ | $H$ |
| 4 | $H$ | L | L |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level

H $=$ HIGH Voltage Level L = LOW Voltage Level

STATE DIAGRAM


| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| ІІ | Input HIGH Current, $\overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1}$ |  |  | 0.1 | mA | $\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current | '390 |  | 30 | mA | $V_{C C}=\operatorname{Max}$ |

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Count Frequency $\overline{\mathrm{CP}}_{0}$ ('390) or $\overline{\mathrm{CP}}$ ('393) | 40 |  | MHz | Figs. 3-1, 3-9 |
| $f_{\text {max }}$ | $\overline{\mathrm{CP}}_{1}$ Maximum Count Frequency | 20 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay CP0 ('390) or CP ('393) to Qo |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tplH <br> tPHL | Propagation Delay $\overline{C P}_{1}$ ('390) to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}_{1}$ ('390) to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{C P}_{1}$ ('390) to $\mathrm{Q}_{3}$ |  | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ ('393) to $\mathrm{Q}_{1}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tpLH <br> tphL | Propagation Delay $\overline{\mathrm{CP}}$ ('393) to $\mathrm{Q}_{2}$ |  | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{C P}(\prime 393) \text { to } Q_{3}$ |  | $\begin{aligned} & 54 \\ & 54 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tPHL | Propagation Delay MR to $Q_{n}$ |  | 35 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | CP or CPo Pulse Width LOW | 12 |  | ns | Fig. 3-9 |
| $t_{w}(\mathrm{~L})$ | $\mathrm{CP}_{1}$ Pulse Width LOW | 25 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$ | MR Pulse Width HIGH | 20 |  | ns | Fig. 3-17 |
| trec | Recovery Time MR to CP | 15 |  | ns | Fig. 3-17 |

CONNECTION DIAGRAM PINOUT A

## 54LS/74LS393 <br> DUAL MODULO-16 COUNTER

DESCRIPTION - The '393 contains a pair of high speed 4-stage ripple counters. Each half of the '393 operates as a modulo-16 binary divider, with the last three stages triggered in a ripple fashion. The flip-flops are triggered by a HIGH-to-LOW transition of their $\overline{\mathrm{CP}}$ inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state. For detail specifications, please refer to the ' 390 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS393PC |  | 9A |
| Ceramic DIP (D) | A | 74LS393DC | 54LS393DM | 6A |
| Flatpak (F) | A | 74LS393FC | 54LS393FM | 31 |

LOGIC SYMBOL
(each half)

$V_{C C}=\operatorname{Pin} 14$

$$
\text { GND }=\operatorname{Pin} 7
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) <br> MR | $1.0 / 1.5$ <br> Qsynchronous Master Reset Input (Active HIGH) - Q $_{3}$ |

FUNCTIONAL DESCRIPTION - Each half of the '393 operates in the modulo-16 binary sequence, as indicated in the $\div 16$ Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the $\overline{\mathrm{CP}}$ input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the $Q$ outputs do not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.

STATE DIAGRAM


TRUTH TABLE

| COUNT | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Q3 | Q2 | Q1 | Q0 |
| 0 | L | L | L | L |
| 1 | L | L | L | H |
| 2 | L | L | H | L |
| 3 | L | L | H | H |
| 4 | L | H | L | L |
| 5 | L | H | L | H |
| 6 | L | H | H | L |
| 7 | L | H | H | H |
| 8 | H | L | L | L |
| 9 | H | L | L | H |
| 10 | H | L | H | L |
| 11 | H | L | H | H |
| 12 | H | H | L | L |
| 13 | $H$ | $H$ | L | H |
| 14 | $H$ | $H$ | $H$ | L |
| 15 | $H$ | $H$ | $H$ | $H$ |

$H=H I G H$ Voltage Level
L = LOW Voltage Level

LOGIC DIAGRAM (one half shown)


CONNECTION DIAGRAM PINOUT A

## 54LS/74LS395 <br> 4-BIT SHIFT REGISTER (With 3-State Outputs)

DESCRIPTION - The ' 395 is a 4-bit register with 3-state outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchronous active LOW Master Reset ( $\overline{\mathrm{MR}}$ ) input overrides the synchronous operations and clears the register. An active LOW Output Enable ( $\overline{\mathrm{OE}}$ ) input controls the 3-state output buffers, but does not interfere with the other operations. The fourth stage also has a conventional output for linking purposes in multi-stage serial operations.

- SHIFT RIGHT OR PARALLEL 4-BIT REGISTER
- 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY CMOS AND TTL COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{VCC}=+5.0 \pm 5 \%, \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS395PC |  | 9B |
| Ceramic DIP (D) | A | 74LS395DC | 54LS395DM | 6B |
| Flatpak (F) | A | 74LS395FC | 54LS395FM | 4L |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| P0- P3 | Parallel Data Inputs | $0.5 / 0.25$ |
| Ds | Serial Data Input | $0.5 / 0.25$ |
| S | Mode Select Input | $0.5 / 0.25$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | $0.5 / 0.25$ |
| $\overline{M R}$ | Master Reset Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{3}$ | 3-State Register Outputs | $65 / 5.0$ |
|  | Flip-flop Output | $(25) /(2.5)$ |
| Q $_{3}$ |  | $10 / 5.0$ |
|  |  | $(2.5)$ |

FUNCTIONAL DESCRIPTION - The ' 395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a $D$ input either from a Parallel $\left(P_{n}\right)$ input or from the preceding stage. When the Select input is HIGH, the $P_{n}$ inputs are enabled. A LOW signal on the $S$ input enables the serial inputs for shift-right operations, as indicated in the Truth Table.

State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse ( $\overline{\mathrm{CP}}$ ) input. Signals on the $\mathrm{P}_{\mathrm{n}}$, Ds and $S$ inputs can change when the Clock is in either state, provided that the recommended setup and hold times are ovserved. When the Sinput is LOW, $a \overline{C P}$ HIGH-LOW transition transfers data in $Q_{0}$ to $Q_{1}, Q_{1}$ to $Q_{2}$, and $Q_{2}$ to Q3. A left-shift is accomplished by connecting the outputs back to the $P_{n}$ inputs, but offset one place to the left, i.e., $O_{3}$ to $P_{2}, O_{2}$ to $P_{1}$, and $O_{1}$ to $P_{0}$, with $P_{3}$ acting as the linking input from another package.

When the $\overline{\mathrm{OE}}$ input is HIGH , the output buffers are disabled and the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

MODE SELECT TABLE

| OPERATING MODE | INPUTS @ $\mathrm{t}_{\mathrm{n}}$ |  |  |  |  | OUTPUTS @ $\mathrm{t}_{\mathrm{n}+1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{MR}}$ | $\overline{C P}$ | S | Ds | $\mathrm{P}_{\mathrm{n}}$ | O0 | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ |
| Asynchronous Reset Shift, SET First Stage | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & x \\ & 2 \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\mathrm{O}_{0}$ |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{O}_{2 \mathrm{n}} \end{aligned}$ |
| Shift, RESET First Stage Parallel Load | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\frac{7}{2}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & \hline x \\ & P_{n} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{P}_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{0 n} \\ & \mathrm{P}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{1 n} \\ & \mathrm{P}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{O}_{2 n} \\ & \mathrm{P}_{3} \end{aligned}$ |

$t_{n}, t_{n}+1=$ Time before and after CP HIGH-to-LOW transition
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| los | Output Short Circuit Current |  | -20 | -100 | mA | $V_{C C}=$ Max |
| Icc | Power Supply Current | Output OFF |  |  | mA | $\begin{aligned} & V_{C C}=M a x ; P_{n}=G n d \\ & \overline{C P}= \\ & \overline{O E}, D_{S}, S=4.5 \mathrm{~V} \end{aligned}$ |
|  |  | Outputs ON |  |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ; \mathrm{Ds}_{\mathrm{s}}, \mathrm{~S}=4.5 \mathrm{~V} \\ & \mathrm{OE}, \overline{\mathrm{CP}}, \mathrm{P}_{\mathrm{n}}=\mathrm{Gnd} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 30 |  | MHz | Figs. 3-1, 3-9 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tPHL | Propagation Delay $\overline{M R}$ to $\mathrm{O}_{\mathrm{n}}$ |  | 35 | ns | Figs. 3-1, 3-17 |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output Enable Time |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3-12 \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$ | Output Disable Time |  | $\begin{aligned} & 17 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega C_{L}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW <br> S , $\mathrm{D}_{\mathrm{s}}$ or $\mathrm{P}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $S$, $D_{s}$ or $P_{n}$ to $\overline{C P}$ | $\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$ |  | ns | Fig. 3-7 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\mathrm{CP}}$ Pulse Width LOW | 18 |  | ns | Fig. 3-9 |
| $\left.\mathrm{tw}^{\text {( }} \mathrm{L}\right)$ | $\overline{\text { MR Pulse Width LOW }}$ | 20 |  | ns | Fig. 3-17 |

## CONNECTION DIAGRAM

 PINOUT A
## 54LS/74LS447 BCD TO 7-SEGMENT DECODER/DRIVER

DESCRIPTION - The' 447 is the same as the'247 except that the Output OFF Voltage, $\mathrm{V}_{\mathrm{OH}}$, is specified as 7.0 V rather than 15 V , with the same loH limit of $250 \mu \mathrm{~A}$. For all other information please refer to the ' 247 data sheet.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |
| Plastic <br> DIP (P) | A | 74 LS 447 PC |  | 9 B |
| Ceramic <br> DIP (D) | A | 74 LS 447 DC | 54 LS 447 DM | 7 B |
| Flatpak <br> (F) | A | 74 LS 447 FC | 54 LS 447 FM | 4 L |

LOGIC SYMBOL


$$
V_{C C}=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | BCD Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{RBI}}$ | Ripple Blanking Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{LT}} / \overline{\mathrm{RBO}}$ | Lamp Test Input (Active LOW) | $0.5 / 0.25$ |
|  | Blanking Input (Active LOW) or | -10.75 |
|  | Ripple Blanking Output (Active LOW) | $1.25 / 2.0$ |
| $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | Segment Outputs (Active LOW) | $(1.0)$ |
|  |  | $\mathrm{OC}^{*} / 15$ |

[^49]

INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| MS | Master Set (Set to 9) Input (Active HIGH) | $0.5 / 0.25$ |
| MR | Master Reset Input (Active HIGH) | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Falling Edge) | $1.5 / 1.5$ |
| Q $_{0}-$ Q $_{3}$ | Counter Outputs | $10 / 5.0$ |

## STATE DIAGRAM



LOGIC DIAGRAM (one half shown)


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :--- | :--- | :--- |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Count Frequency | 40 |  | MHz | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\overline{C P}$ to $Q_{0}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tpht } \end{aligned}\right.$ | Propagation Delay $\overline{C P}$ to $Q_{1}$ or $Q_{3}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay $\overline{C P}$ to $Q_{2}$ |  | $\begin{aligned} & 45 \\ & 45 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { to } \end{aligned}\right.$ | Propagation Delay MS to $\mathrm{Qn}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-17 |
| tPHL | Propagation Delay MR to $Q_{n}$ |  | 39 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS | UNITS | CONDITIONS |
| :--- | :--- | :---: | :---: | :---: |
|  |  |  |  | ns |
| $t_{w}(H)$ | $\overline{C P}$ Pulse Width HIGH | 20 | ns | Fig. 3-17 |
| $t_{w}(H)$ | MR, MS Pulse Width HIGH | 20 | ns | Fig. 3-17 |
| trec $^{l \mid l}$ |  |  |  |  |

## 54LS/74LS502 <br> 8-BIT SUCCESSIVE APPROXIMATION REGISTER

DESCRIPTION - The 'LS502 is an 8-bit register with the interstage logic necessary to perform serial-to-parallel conversion and provide an active LOW Conversion Complete ( $\overline{\mathrm{CC}}$ ) signal coincident with storage of the eighth bit. An active LOW Start ( $\overline{\mathrm{S}}$ ) input performs synchronous initialization which forces Q $_{7}$ LOW and all other outputs HIGH. Subsequent clocks shift this Q7 LOW signal downstream which simultaneously backfills the register such that the first serial data ( $D$ input) bit is stored in $Q_{7}$, the second bit in $Q_{6}$, the third in $Q_{5}$, etc. The serial input data is also synchronized by an auxiliary flip-flop and brought out on QD.

Designed primarily for use in the successive approximation technique for analog-to-digital conversion, the 'LS502 can also be used as a serial-to-parallel converter ring counter and as the storage and control element in recursive digital routines.

- LOW POWER SCHOTTKY VERSION OF 2502
- STORAGE AND CONTROL FOR SUCCESSIVE APPROXIMATION A TO D CONVERSION
- PERFORMS SERIAL-TO-PARALLEL CONVERSION

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS502PC |  | 9B |
| Ceramic DIP (D) | A | 74LS502DC | 54LS502DM | 6B |
| Flatpak (F) | A | 74LS502FC | 54LS502FM | 4L |

LOGIC SYMBOL


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| D | Serial Data Input | 0.5/0.25 |
| $\overline{\mathrm{S}}$ | Start Input (Active LOW) | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 0.5/0.25 |
| Qd | Synchronized Serial Data Output | $\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$ |
| $\overline{\mathrm{CC}}$ | Conversion Complete Output (Active LOW) | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{7}$ | Parallel Register Outputs | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\bar{Q}_{7}$ | Complement of Q7 Output | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

## LOGIC DIAGRAM



Note: Cell logic is repeated for register stages $Q_{5}$ to $Q_{1}$.

FUNCTIONAL DESCRIPTION - The register stages are composed of transparent RS latches arranged in master/slave pairs. The master and slave latches are enabled separately by non-overlapping complementary signals $\phi_{1}$ and $\phi_{2}$ derived internally from the CP input. Master latches are enabled when CP is LOW and slave latches are enabled when CP is HIGH. Information is transferred from master to slave, and thus to the outputs, by the LOW-to-HIGH transition of CP.

Initializing the register requires a LOW signal on $\overline{\mathrm{S}}$ while exercising CP. With $\overline{\mathrm{S}}$ and CP LOW, all master latches are SET ( $Q$ side HIGH). A LOW-to-HIGH CP transition, with $\overline{\mathrm{S}}$ remaining LOW, then forces the slave latches to the condition wherein $\mathrm{Q}_{7}$ is LOW and all other register outputs, including $\overline{\mathrm{CC}}$, are HIGH. This condition will prevail as long as $\overline{\mathrm{S}}$ remains LOW, regardless of subsequent CP rising edge. To start the conversion process, $\overline{\mathrm{S}}$ must return to the HIGH state. On the next CP rising edge, the information stored in the serial data input latch is transferred to $Q_{D}$ and $Q_{7}$, while $Q_{6}$ is forced to the LOW state. On the rising edge of the next seven clocks, this LOW signal is shifted downstream, one bit at a time, while the serial data enters the register position one bit behind this LOW signal, as shown in the Truth Table. Note that after a serial data bit appears at a particular output, that register position undergoes no further changes. After the shifted LOW signal reaches $\overline{\mathrm{CC}}$, the register is locked up and no further changes can occur until the register is initialized for the next conversion process.

Figure a shows a simplified hook-up of a 'LS502, a D/A converter and a comparator arranged to convert an analog input voltage into an 8 -bit binary number by the successive approximation technique. Figure $b$ is an idealized graph showing the various values that the D/A converter output voltage can assume in the course of the conversion. The vertical axis is calibrated in fractions of the full-scale output capability of the D/A converter and the horizontal axis represents the successive states of the Truth Table. At time $t_{1}, Q_{7}$ is LOW and $Q_{6}-Q_{0}$ are HIGH, causing the D/A output to be one-half of full scale. If the analog input voltage is greater than this voltage the comparator output (hence the D input of the 'LS502) will be LOW, and at times $t_{2}$ the D/A output will rise to three-fourths of full scale because $Q_{7}$ will remain LOW and contribute $50 \%$ while $Q_{6}$ is forced LOW and contributes another $25 \%$. On the other hand, if the analog input voltage is less than one-half of full scale, the comparator output will be HIGH and Q7 will go HIGH at $\mathrm{t}_{2}$. Q6 will still be forced LOW at $\mathrm{t}_{2}$, and the D/A output will decrease to $25 \%$ of full scale. Thus with each successive clock, the D/A output will change by smaller increments. When the conversion is completed at tg, the binary number represented by the register outputs will be the numerator of the fraction $n / 256$, representing the analog input voltage as a fraction of the fullscale output D/A converter.


Fig. a


Fig. b

TRUTH TABLE

| Time |  | UTS | OUTPUTS |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{n}}$ | D | $\bar{s}$ | QD | Q7 | Q6 | Q5 | Q4 | Q3 | $Q_{2}$ | Q1 | Qo | $\overline{\mathrm{CC}}$ |  |
| 0 | X | L | X | x | X | X | x | X | X | X | X | X |  |
| 1 | D7 | H | X | L | H | H | H | H | H | H | H | H |  |
| 2 | D6 | H | D7 | $\mathrm{D}_{7}$ | L | H | H | H | H | H | H | H |  |
| 3 | D6 | H | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | D6 | L | H | H | H | H | H | H |  |
| 4 | $\mathrm{D}_{4}$ | H | D5 | $\mathrm{D}_{7}$ | D6 | $\mathrm{D}_{5}$ | L | H | H | H | H | H |  |
| 5 | D3 | H | D | D7 | D6 | D5 | D4 | L | H | H | H | H |  |
| 6 | $\mathrm{D}_{2}$ | H | $\mathrm{D}_{3}$ | $\mathrm{D}_{7}$ | D6 | D5 | D4 | $\mathrm{D}_{3}$ | L | H | H | H |  |
| 7 | $\mathrm{D}_{1}$ | H | $\mathrm{D}_{2}$ | D7 | D6 | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | D3 | $\mathrm{D}_{2}$ | L | H | H |  |
| 8 | Do | H | $\mathrm{D}_{1}$ | $\mathrm{D}_{7}$ | D6 | D5 | D4 | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | D1 | L | H |  |
| 9 | X | H | Do | D7 | D6 | D5 | D4 | D3 | $\mathrm{D}_{2}$ | D1 | Do | L | $\mathrm{H}=\mathrm{HIGH}$ Voltage Level |
| 10 | X | H | X | $\mathrm{D}_{7}$ | D6 | D5 | D4 | D3 | $\mathrm{D}_{2}$ | D1 | Do | L | $\begin{aligned} & \mathrm{L}=\text { LOW Voltage Level } \\ & \mathrm{X}=\text { Immaterial } \end{aligned}$ |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :--- | :--- | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for U.L. waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| ${ }^{\text {fax }}$ | Maximum Clock Frequency | 15 |  | M Hz | Figs. 3-1, 3-8 |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $C P$ to $Q_{n}$ or $\overline{C C}$ |  | $\begin{aligned} & 38 \\ & 28 \end{aligned}$ | ns |  |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\bar{S}$ to CP | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\bar{S}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{\text {s }}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW D to CP | $\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW D to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 46 \end{aligned}$ |  | ns | Fig. 3-8 |

## 54LS/74LS503 <br> 8-BIT SUCCESSIVE APPROXIMATION REGISTER (With Expansion Control)

DESCRIPTION - The 'LS503 register is basically the same as the 'LS502 except that it has an active LOW Enable ( $\bar{E}$ ) input that is used in cascading two or more packages for longer word lengths. A HIGH signal on $\bar{E}$, after a START operation, forces $Q_{7}$ HIGH and prevents the device from accepting serial data. With the $\overline{\mathrm{E}}$ input of an 'LS503 connected to the $\overline{\mathrm{CC}}$ output of a preceding (more significant) device, the 'LS503 will be inhibited until the preceding device is filled, causing its $\overline{\mathrm{CC}}$ output to go LOW. This LOW signal then enables the 'LS503 to accept the serial data on subsequent clocks. For a description of the starting, shifting and conversion operations, please see the 'LS502 data sheet.


ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS503PC |  | 9B |
| Ceramic DIP (D) | A | 74LS503DC | 54LS503DM | 6B |
| Flatpak (F) | A | 74LS503FC | 54LS503FM | 4L |

## LOGIC SYMBOL



## INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| D | Serial Data Input | $0.5 / 0.25$ |
| $\overline{\mathrm{~S}}$ | Start Input (Active LOW) | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}$ | Conversion Enable Input (Active LOW) | $10 / 5.0$ |
| $\overline{\mathrm{CC}}$ | Conversion Complete Output (Active LOW) | $10.5)$ |
| Q $_{0}-\mathrm{Q}_{7}$ | Parallel Register Outputs | 10.5 .0 |
|  |  | $10.5)$ |
| $\bar{Q}_{7}$ | Complement of $\mathrm{Q}_{7}$ Output | $(2.5)$ |
|  |  | $10 / 5.0$ |

## LOGIC DIAGRAM



Note: Cell logic is repeated for register stages $Q_{5}$ to $Q_{1}$.

## CONNECTION FOR LONGER WORD LENGTHS



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS | UNITS | CONDITIONS |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| IcC | Power Supply Current | 65 | mA | $\mathrm{~V}_{\mathrm{cc}}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 15 |  | MHz | Figs. 3-1, 3-8 |
| tpLH tphL | Propagation Delay $C P$ to $Q_{n}$ or $\overline{C C}$ |  | $\begin{aligned} & 38 \\ & 28 \end{aligned}$ | ns |  |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | Propagation Delay $\overline{\mathrm{E}}$ to $\mathrm{Q}_{7}$ |  | $\begin{aligned} & 19 \\ & 24 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & C P=4.5 \mathrm{~V}, \overline{\mathrm{~S}}=\text { Gnd } \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | $\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & \overline{\mathrm{S}} \text { to CP } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{\mathrm{S}}$ to CP | 0 0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW D to CP | $\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW <br> D to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 46 \end{aligned}$ |  | ns | Fig. 3-8 |


| 54LS/74LS504 <br> 12-BIT SUCCESSIVE APPROXIMATION REGISTER (With Expansion Control) | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: |
| DESCRIPTION - The 'LS504 performs serial-to-parallel conversion and provides a Conversion Complete ( $\overline{\mathrm{CC}})$ signal. The 'LS504 is a 12 -bit version of the 8 -bit 'LS502 and has an active LOW Enable ( $\overline{\mathrm{E}}$ ) input for expansion, similar to the 'LS503. For detailed discussion of the various operations, please see the 'LS502 and 'LS503 data sheets. <br> - PERFORMS SERIAL-TO-PARALLEL CONVERSION <br> - EXPANSION CONTROL FOR LONGER WORDS <br> - STORAGE AND CONTROL FOR SUCCESSIVE APPROXIMATION A TO D CONVERSION <br> - LOW POWER SCHOTTKY VERSION OF 2504 |  |

## ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS504PC |  | 9 N |
| Ceramic DIP (D) | A | 74LS504DC | 54LS504DM | 6 N |
| Flatpak (F) | A | 74LS504FC | 54LS504FM | 4M |

LOGIC SYMBOL


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| D | Serial Data Input | 0.5/0.25 |
| $\overline{\mathrm{S}}$ | Start Input (Active LOW) | 0.5/0.25 |
| CP | Clock Pulse Input (Active Rising Edge) | 0.5/0.25 |
| $\overline{\mathrm{E}}$ | Conversion Enable Input (Active LOW) | 0.5/0.25 |
| QD | Synchronized Serial Data Output | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\overline{C D}$ | Conversion Complete Output (Active LOW) | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{11}$ | Parallel Register Outputs | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |
| $\bar{Q}_{11}$ | Complement of Q11 Output | $\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$ |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 54/74LS |  | UNITS |
| :--- | :---: | :---: | :---: | :---: |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PAR AMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | 15 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $C P$ to $Q_{n}$ or $\overline{C C}$ |  | $\begin{aligned} & 38 \\ & 28 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphe } \end{aligned}$ | Propagation Delay $\overline{\mathrm{E}}$ to $\mathrm{Q}_{7}$ |  | $\begin{aligned} & 19 \\ & 24 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-1, } 3-5 \\ & C P=4.5, \bar{S}=\text { Gnd } \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{\mathrm{S}}$ to CP | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW $\bar{S}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW D to CP | $\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW D to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 20 \\ & 46 \end{aligned}$ |  | ns | Fig. 3-8 |

## 54LS/74LS533 OCTAL TRANSPARENT LATCH <br> (With 3-State Outputs)

DESCRIPTION - The '533 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{O E})$ is LOW. When $\overline{O E}$ is HIGH the bus output is in the high impedance state. The '533 is the same as the ' 373 , except that the outputs are inverted. For detailed specifications please see the ' 373 data sheet, but note that the propagation delays from data to output are 5.0 ns longer for the 'LS533 than for the 'LS373.

- EIGHT LATCHES IN A SINGLE PACKAGE
- 3-STATE OUTPUTS FOR BUS INTERFACING

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74LS533PC |  | 92 | $\begin{aligned} & \mathrm{VCC}=\operatorname{Pin} 20 \\ & \mathrm{GND}=\operatorname{Pin} 10 \end{aligned}$ |
| Ceramic DIP (D) | A | 74LS533DC | 54LS533DM | 4E |  |
| Flatpak (F) | A | 74LS533FC | 54LS533FM | 4F |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| LE | Latch Enable Input (Active HIGH) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$ | Complementary 3-State Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

## 54LS/74LS534 OCTAL D-TYPE FLIP-FLOP (With 3-State Outputs)

DESCRIPTION - The '534 is a high speed, low power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable ( $\overline{\mathrm{OE}}$ ) is common to all flip-flops. The '534 is manufactured using advanced low power Schottky technology and is compatible with all Fairchild TTL families. The '534 is the same as the ' 374 except that the outputs are inverted. For detailed specifications please see the ' 374 data sheet.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS534PC |  | 92 |
| Ceramic DIP (D) | A | 74LS534DC | 54LS534DM | 4E |
| Flatpak (F) | A | 74LS534FC | 54LS534FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$ | Complementary 3-State Outputs | $65 / 15$ |

## 54LS/74LS540 54LS/74LS541 OCTAL BUFFER/LINE DRIVER <br> (With 3-State Outputs)

DESCRIPTION - The 'LS540 and 'LS541 are similar in function to the 'LS240 and 'LS241, respectively, except that the inputs and outputs are on opposite sides of the package (see Connection Diagrams). This pinout arrangement makes these devices expecially useful as output ports for microprocessors, allowing ease of layout and greater PC board density.

- HYSTERESIS AT INPUTS TO IMPROVE NOISE MARGIN
- PNP INPUTS REDUCE LOADING
- 3-STATE OUTPUTS DRIVE BUS LINES
- INPUTS AND OUTPUTS OPPOSITE SIDE OF PACKAGE, ALLOWING EASIER INTERFACE TO MICROPROCESSORS
- FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS540PC |  | $9 Z$ |
|  | B | 74LS541PC |  |  |
| Ceramic <br> DIP (D) | A | 74LS540DC | 54LS540DM | 4E |
|  | B | 74LS541DC | 54LS541DM |  |
| Flatpak <br> (F) | A | 74LS540FC | 54LS540FM | 4F |
|  | B | 74LS541FC | 54LS541FM |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 54/74LS (U.L.) |
| :--- | :---: |
| HIGH/LOW |  |
| Inputs | $0.5 / 0.125$ |
| Outputs | $75 / 15$ |
|  | $(7.5)$ |

CONNECTION DIAGRAMS PINOUT A



TRUTH TABLE

| INPUTS |  |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: |
| $E_{1}$ | $E_{2}$ | $D$ | LS540 | LS541 |
| L | L | $H$ | L | $H$ |
| $H$ | $X$ | $X$ | $Z$ | $Z$ |
| X | $H$ | X | Z | $Z$ |
| L | L | L | $H$ | L |

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

DC AND AC CHARACTERISTICS: See Section 3*

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | 'LS540 |  | 50 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V} \end{aligned}$ |
|  |  | 'LS541 |  | 54 |  |  |
| tPLH | Propagation Delay <br> Data to Output ('LS540) |  |  | 14 | ns | Figs 3-1, 3-4, $\mathrm{C}_{L}=50 \mathrm{pF}$ |
| tPHL |  |  |  | 18 | ns | Figs. 3-1, 3-4, $C_{L}=50 \mathrm{pF}$ |
| tPLH | Propagation Delay <br> Data to Output ('LS541) |  |  | 18 | ns | Figs. 3-1, 3-5, $\mathrm{Cl}_{\mathrm{L}}=50 \mathrm{pF}$ |
| tPHL |  |  |  | 18 | ns | Figs. 3-1, 3-5, CL $=50 \mathrm{pF}$ |
| tPZH | Output Enable Time |  |  | 23 | ns | Figs. 3-3, 3-11, 3-12 |
| tPZL |  |  |  | 30 | ns | $R_{L}=667 \Omega, C_{L}=50 \mathrm{pF}$ |
| tplz | Output Disable Time |  |  | 25 |  | Figs. 3-3, 3-11, 3-12 |
| tphz |  |  |  | 18 | ns | $\mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |

*DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.

## 54LS/74LS563 <br> OCTAL D-TYPE LATCH <br> (With 3-State Outputs)

DESCRIPTION - The '563 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ( $\overline{\mathrm{OE}}$ ) inputs.

This device is functionally indentical to the 'LS573, but has inverted outputs. For truth tables, discussion of operations and ac and dc specifications, please refer to the 'LS373 data sheet, but note that the data to output delays are 5.0 ns longer for the 'LS563 than for the 'LS373.

- INPUTS AND OUTPUTS ON OPPOSITE SIDES OF PACKAGE ALLOWING EASY INTERFACE WITH MICROPROCESSORS
- USEFUL AS INPUT OR OUTPUT PORT FOR MICROPROCESSORS
- FUNCTIONALLY IDENTICAL TO 'LS573
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS563PC |  | 92 |
| Ceramic DIP (D) | A | 74LS563DC | 54LS563DM | 4E |
| Flatpak (F) | A | 74LS563FC | 54LS563FM | 4F |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| LE | Latch Enable Input (Active HIGH) | $0.5 / 0.25$ |
| OE | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\bar{O}_{0}-\bar{O}_{7}$ | 3-State Latch Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

## 54LS/74LS564 <br> OCTAL D-TYPE FLIP-FLOP (With 3-State Outputs)

DESCRIPTION - The ' 564 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ( $\overline{\mathrm{OE}}$ ). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

This device is functionally identical to the 'LS574, but has inverted outputs. For complete discussions of operations, truth tables, ac and dc electrical specifications, refer to the 'LS374 data sheet.

- INPUTS AND OUTPUTS ON OPPOSITE SIDES OF PACKAGE ALLOWING EASY INTERFACE WITH MICROPROCESSORS
- USEFUL AS INPUT OR OUTPUT PORT FOR MICROPROCESSORS
- FUNCTIONALLY IDENTICAL TO 'LS574
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS564PC |  | 92 |
| Ceramic DIP (D) | A | 74LS564DC | 54LS564DM | 4E |
| Flatpak <br> (F) | A | 74LS564FC | 54LS564FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| $\overline{C P}$ | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$ | 3-State Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |

## 54LS/74LS573 OCTAL D-TYPE LATCH <br> (With 3-State Outputs)

DESCRIPTION - The '573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ( $\overline{\mathrm{OE}})$ inputs.

This device is functionally identical to the 'LS373, but has different pinouts. For truth tables, discussion of operations and ac and dc specifications, please refer to the 'LS373 data sheet.

- INPUTS AND OUTPUTS ON OPPOSITE SIDES OF PACKAGE ALLOWING EASY INTERFACE WITH MICROPROCESSORS
- USEFUL AS INPUT OR OUTPUT PORT FOR MICROPROCESSORS
- FUNCTIONALLY IDENTICAL TO 'LS373
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS - FULLY TTL AND CMOS COMPATIBLE

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{gathered} \text { PKG } \\ \text { TYPE } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 74LS573PC |  | 92 |
| Ceramic DIP (D) | A | 74LS573DC | 54LS573DM | 4E |
| Flatpak (F) | A | 74LS573FC | 54LS573FM | 4F |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| LE | Latch Enable Input (Active HIGH) | $0.5 / 0.25$ |
| OE | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | 3-State Latch Outputs | $65 / 15$ |
|  |  | $(25) /(7.5)$ |


| 54LS/74LS574 <br> OCTAL D-TYPE FLIP-FLOP <br> (With 3-State Outputs) <br> DESCRIPTION - The '574 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ( $\overline{O E}$ ). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition. |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - INPUTS AND OUTPUTS ON OPPOSITE SIDES OF PACKAGE ALLOWING EASY INTERFACE WITH MICROPROCESSORS <br> - USEFUL AS INPUT OR OUTPUT PORT FOR MICROPROCESSORS <br> - FUNCTIONALLY IDENTICAL TO 'LS374 <br> - INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS <br> - fully ttl and cmos compatible <br> ORDERING CODE: See Section 9 |  |  |  |  | LOGIC SYMBOL |
|  |  | COMMERCIAL GRADE | MILITARY GRADE |  |  |
| PKGS | Out | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Plastic DIP (P) | A | 74LS574PC |  | 92 |  |
| Ceramic DIP (D) | A | 74LS574DC | 54LS574DM | 4E |  |
| Flatpak (F) | A | 74LS574FC | 54LS574FM | 4F | 1 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Inputs | $0.5 / 0.25$ |
| CP | Clock Pulse Input (Active Rising Edge) | $0.5 / 0.25$ |
| OE | 3-State Output Enable Input (Active LOW) | $0.5 / 0.25$ |
| $\mathrm{O}_{0}-\mathrm{O}_{7}$ | 3-State Outputs | $65 / 15$ |

## 54LS/74LS670

4 X 4 REGISTER FILE
(With 3-State Outputs)

DESCRIPTION - The '670 contains 16 high speed, low power, transparent D-type latches arranged as four words of four bits each, to function as a $4 \times 4$ register file. Separate read and write inputs, both address and enable, allow simultaneous read and write operation. The 3-state outputs make it possible to connect up to 128 outputs to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length. The'170 provides a similar function to this device but it features opencollector outputs.

- SIMULTANEOUS READ/WRITE OPERATION
- EXPANDABLE TO 512 WORDS BY n-BITS
- TYPICAL ACCESS TIME OF 20 ns
- 3-STATE OUTPUTS FOR EXPANSION

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { V } \mathrm{cc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 74LS670PC |  | 9B |
| Ceramic DIP (D) | A | 74LS670DC | 54LS670DM | 6B |
| Flatpak (F) | A | 74LS670FC | 54LS670FM | 4L |


$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 54/74LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{D}_{1}-\mathrm{D}_{4}$ | Data Inputs | $0.5 / 0.25$ |
| $\mathrm{WA}_{0}, W_{1}$ | Write Address Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) | $1.0 / 0.5$ |
| $\mathrm{RA}, \mathrm{RA}_{1}$ | Read Address Inputs | $0.5 / 0.25$ |
| $\overline{\mathrm{OE}}$ | 3-State Output Enable Input (Active LOW) | $1.5 / 0.75$ |
| $\mathrm{O}_{1}-\mathrm{O}_{4}$ | Data Outputs | $65 / 5.0$ |
|  |  | $(25) /(2.5)$ |

## LOGIC DIAGRAM



WRITE FUNCTION TABLE

| WRITE INPUTS |  | D INPUTS TO |  |
| :---: | :---: | :---: | :---: |
| $\overline{\text { WE }}$ | WA $_{1}$ |  |  |
| L | L | L | Word 0 |
| L | L | $H$ | Word 1 |
| L | $H$ | L | Word 2 |
| L | $H$ | $H$ | Word 3 |
| $H$ | $X$ | $X$ | None (hold) |

READ FUNCTION TABLE

| READ INPUTS |  | OUTPUTS FROM |  |
| :---: | :---: | :---: | :---: |
| $\overline{\text { OE }}$ | RA $_{1}$ |  |  |
| L | L | L | Word 0 |
| L | L | $H$ | Word 1 |
| L | $H$ | L | Word 2 |
| L | $H$ | $H$ | Word 3 |
| $H$ | $X$ | $X$ | None (HIGH Z) |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial


Fig. a

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| los | Output Short Circuit Current | -20 | -100 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| Icc | Power Supply Current |  | 50 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ <br> $W A_{n}, R A_{n}=G n d ;$ <br> $\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{WE}}=4.5 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $R A_{0}$ or RA $A_{1}$ to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tPLH tphL | Propagation Delay $\overline{W E}$ to $\mathrm{On}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| tplh tphL | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpzh } \\ & \text { tpze } \end{aligned}$ | Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{O}_{\mathrm{n}}$ |  | $\begin{aligned} & 30 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. } 3-3,3-11,3,12 \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$ |
| $\begin{aligned} & \text { tphz } \\ & \text { tpl } \end{aligned}$ | Output Disable Time $\overline{O E}$ to $O_{n}$ |  | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega C_{L}=5 \mathrm{pF} \end{aligned}$ |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 54/74LS |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| ts | Setup Time HIGH or LOW $D_{n}$ to Rising $\overline{\mathrm{WE}}$ | 10 |  | ns | Fig. a |
| th | Hold Time HIGH or LOW <br> $D_{n}$ to Rising $\overline{\text { WE }}$ | 10 |  | ns |  |
| $\mathrm{ts}_{s}$ | Setup Time HIGH or LOW $W_{n}$ to Falling $\overline{W E}$ | 10 |  | ns |  |
| th | Hold Time HIGH or LOW $W A_{n}$ to Rising $\overline{W E}$ | 5.0 |  | ns |  |
| $\mathrm{tw}^{\text {(L) }}$ | $\overline{\text { WE Pulse Width LOW }}$ | 25 |  | ns | Fig. a |


| PRODUCT INDEXES AND |
| :--- |
| SELECTION GUIDES |


TTL CHARACTERISTICS 2
LOADING. SPECIFICATIONS AND
WAVEFORMS
54/74 FAMILY DATA SHEETS
9000 FAMILY DATA SHEETS 5
9300 FAMILY DATA SHEETS $\quad[-$
$\square$
9600 FAMILY DATA SHEETS

| ORDERING INFORMATION AND |
| :--- |
| PACKAGE OUTLINES |



## 9XXX Series

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 9000 (U.L.) <br> HIGH/LOW | 9001 (U.L.) <br> HIGH/LOW | 9020 (U.L.) <br> HIGH/LOW | 9022 (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: | :---: |
| JK | JK Input | 3.0/2.0 | 3.0/2.0 | 6.0/4.0 | 6.0/4.0 |
| $J_{n}, K_{n}, J_{n}, K_{n}$ | Data Inputs | 1.5/1.0 | 1.5/1.0 | 1.5/1.0 | 1.5/1.0 |
| CP | Clock Pulse Input | 1.5/1.0 | 1.5/1.0 | 3.0/2.0 | 3.0/2.0 |
| $\overline{\mathrm{C}}_{\text {D }}$ | Direct Clear Input | 4.0/2.7 | 4.0/2.7 | 4.0/2.7 | 4.0/2.7 |
| $\bar{S}_{\text {D }}$ | Direct Set Input | 4.0/2.7 | 4.0/2.7 |  | 4.0/2.7 |
| Q, $\overline{\mathrm{Q}}$ | Outputs | $\begin{gathered} 30 / 8.8 \\ (7.8) \end{gathered}$ | $\begin{array}{r} 30 / 8.8 \\ (7.8) \end{array}$ | $\begin{array}{r} 30 / 8.8 \\ (7.8) \end{array}$ | $\begin{array}{r} 30 / 8.8 \\ \quad(7.8) \end{array}$ |



9000

$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

9001

$V_{c c}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

## ASYNCHRONOUS OPERATION

| INPUTS | OUTPUTS |  |  |
| :--- | :--- | :---: | :---: |
| $\bar{S}_{D}$ | $\bar{C}_{D}$ | $Q$ | $\bar{Q}$ |
| $L$ | $L$ | $H$ | $H$ |
| $L$ | $H$ | $H$ | $L$ |
| $H$ | $L$ | L | $H$ |
| $H$ | $H$ | SYNCHRONOUS |  |

[^50]
## LOGIC SYMBOLS

SYNCHRONOUS OPERATION

| BEFORE CLOCK |  |  | AFTER CLOCK |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUTS |  | INPUTS |  | OUTPUTS |  |
| Q | $\overline{\mathrm{Q}}$ | J | K | Q | $\overline{\mathrm{Q}}$ |
| L | H | $\mathrm{L}^{*}$ | X | L | H |
| L | H | $\mathrm{H}^{*}$ | X | H | L |
| H | L | X | $\mathrm{L}^{*}$ | H | L |
| H | L | X | $\mathrm{H}^{*}$ | L | H |

$L^{*}=$ Input does not go HIGH at any time while the clock is LOW.
$H^{*}=$ Input is HIGH at some time while the clock is LOW.
$X=$ Immaterial

FUNCTIONAL DESCRIPTION - The TTL 9000 series has four flip-flops to satisfy the storage requirements of a logic system. All are master/slave JK designs and have the same high speed and high noise immunity as the rest of the 9000 series. As with the gates, all inputs have diode clamps to reduce ringing caused by long lines and impedance mismatches.

The JK type flip-flop was chosen for all flip-flop elements in this family because of its inherent logic power. The input function required to produce a given sequence of states for a JK flip-flop will, in general, contain more "don't care" conditions than the corresponding function for an RS flip-flop. These additional "don't care" conditions will, in most cases, reduce the amount of gating elements required to implement the input function.

The master/slave design offers the advantage of a dc threshold on the clock input initiating the transition of the outputs, so that careful control of clock pulse rise and fall times is not required.

Data is accepted by the master while the clock is in the LOW state. Refer to the truth tables for definition of HIGH and LOW data. Transfer from the master to the slave occurs on the LOW-to-HIGH transition of the clock. When the clock is HIGH, the $J$ and $K$ inputs are inhibited.

A joint (JK) input is provided for all flip-flops in this family. The common input removes the necessity of gating the clock signal with an external gate in many applications. This not only reduces package count, but also reduces the possibility of clock skew problems, since with internal gating provided, all flip-flops may be driven from a common clock line. Several TTL drivers may be used in parallel to drive this common clock line if the load exceeds the fan-out capability of the 9009 buffer.

The asynchronous inputs provide ability to control the state of the flip-flop independent of static conditions of the clock and synchronous inputs. Both asynchronous set and clear are provided on all flip-flops except the 9020, which because of a logic trade-off has only clear inputs. The set or clear pin being LOW absolutely guarantees that one output will be HIGH, but if opposing data is present at the synchronous inputs and the flipflop is clocked, the LOW output may momentarily spike HIGH synchronous with a positive transition of the clock. If the LOW output of the flip-flop is connected to other flip-flop inputs clocked from the same line, the spike will be masked by the clock. If the clock is suspended during the time when the asynchronous inputs are activated, no spike will occur. When the spikes can cause problems, a simple solution is to common the joint JK inputs with the synchronous set or reset signal.

Synchronous Operation - The truth table defines the next state of the flip-flop after a LOW-to-HIGH transition of the clock pulse. The next state is a function of the present state and the $J$ and $K$ inputs as shown in the table. The J and K inputs in the table refer to the basic flip-flop J and K inputs as indicated on the logic symbols. These internal inputs are for every flip-flop the result of a logic operation on the external J and K inputs. This operation is represented symbolically by AND gates in the logic symbol for each flip-flop. Logic symbols are in accordance with MIL Standard 806B.

The $L^{*}$ symbol in the $J$ and $K$ input column is defined as meaning that input does not go HIGH at any time while the clock is LOW.

The $\mathrm{H}^{*}$ symbol in the J or K input column is defined as meaning that the input is HIGH at some time while the clock is LOW.

The X symbol indicates that the condition of that input has no effect on the next state of the flip-flop.
The H and L symbols refer to steady state HIGH and LOW voltage levels, respectively.
Unused Inputs - The 9001, 9020 and 9022 all have active level LOW synchronous inputs. When not in use they must be grounded. All other unused inputs, including asynchronous, should be tied HIGH for maximum operating speed.

## 9XXX Series

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vcc = +5.0 V $\pm 5 \%$

| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $75^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| VIH | Input HIGH Voltage | 1.9 |  | 1.8 |  | 1.6 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.85 |  | 0.85 |  | 0.85 | V | Guaranteed Input LOW Threshold |
| Vol | Output LOW Voltage |  | 0.45 |  | 0.45 |  | 0.45 | V | $\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V}, \\ & \mathrm{lOL}=14.1 \mathrm{~mA} \\ & \mathrm{VCC}=5.25 \mathrm{~V}, \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$ |
| ILL | Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK inputs 9020, 9022 $\bar{S}_{D}, \bar{C}_{D}$ (all Flip-flops) |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \end{aligned}$ |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \end{aligned}$ |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \end{aligned}$ | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & 5.25 \mathrm{~V} \text { on } \\ & \text { Other Inputs } \end{aligned}$ |
|  | Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK Inputs 9020, 9022 $\bar{S}_{D}, \bar{C}_{D}$ (all Flip-flops) |  | $\begin{aligned} & -1.41 \\ & -2.82 \\ & -5.64 \\ & -3.78 \end{aligned}$ |  | $\begin{aligned} & -1.41 \\ & -2.82 \\ & -5.64 \\ & -3.78 \end{aligned}$ |  | $\begin{aligned} & -1.41 \\ & -2.82 \\ & -5.64 \\ & -3.78 \end{aligned}$ | mA | $\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{\text {IN }}=0.45 \mathrm{~V} \\ & 5.25 \mathrm{~V} \text { on } \\ & \text { Other Inputs } \end{aligned}$ |
| Icc | ```Power Supply Current 9000 9001 9020,9022 each Flip-flop``` |  | $\begin{aligned} & 28 \\ & 33 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 28 \\ & 33 \\ & 30 \end{aligned}$ |  | 28 33 30 | mA | $\bar{S}_{D}$ at Gnd $\bar{S}_{D}$ at Gnd $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$ at Gnd |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| VIH | Input HIGH Voltage | 2.0 |  | 1.7 |  | 1.4 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.8 |  | 0.9 |  | 0.8 | V | Guaranteed Input LOW Threshold |
| Vol | Output LOW Voltage |  | 0.4 |  | 0.4 |  | 0.4 | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \mathrm{lOL}=12.4 \mathrm{~mA} \\ & \hline \mathrm{VCC}=5.5 \mathrm{~V}, \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$ |

## 9XXX Series

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: (Cont'd)

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ILL | Input LOW Current <br> All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK Inputs 9020, 9022 $\bar{S}_{\mathrm{D}}, \overline{\mathrm{C}}_{\mathrm{D}}$ (all Flip-flops) |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1.60 \\ & -3.20 \\ & -6.40 \\ & -4.32 \\ & \hline \end{aligned}$ | mA | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & 5.5 \mathrm{~V} \text { on } \\ & \text { Other Inputs } \end{aligned}$ |
|  | Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK Inputs 9020, 9022 $\bar{S}_{D}, \bar{C}_{D}$ (all Flip-flops) |  | $\begin{aligned} & -1.24 \\ & -2.48 \\ & -4.96 \\ & -3.35 \end{aligned}$ |  | $\begin{aligned} & -1.24 \\ & -2.48 \\ & -4.96 \\ & -3.75 \end{aligned}$ |  | $\begin{aligned} & -1.24 \\ & -2.48 \\ & -4.96 \\ & -3.35 \end{aligned}$ | mA | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & 5.5 \mathrm{~V} \text { on } \\ & \text { Other Inputs } \end{aligned}$ |
| Icc | ```Power Supply Current 9000 9001 9020,9022 each Flip-flop``` |  | 24 28 27 |  | 24 28 27 |  | 24 <br> 28 <br> 27 | mA | $\bar{S}_{D}$ at Gnd $\bar{S}_{D}$ at Gnd $\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$, at Gnd |

SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{1}=15 \mathrm{pF}\right.$ of all flip-flops unless otherwise noted)


[^51]
## 9XXX Series

## SWITCHING TEST NOTES

tpLH and tphL

1. VJk should be kept at the HIGH level when performing tpLH/tpHL test.
2. Drive the clock pulse input with a suitable pulse source. tPLH and tPHL delays are as defined in the waveforms.

## RECOMMENDED INPUT PULSE SOURCES



DTL9932 gates with adjustable capacitors connected from extender inputs to ground make suitable delay elements.
$t_{\text {setup }}$

1. $t_{\text {setup }}$ is defined as the minimum time required for a HIGH to be present at a synchronous logic input at any time during the LOW state of the clock in order for the flip-flop to respond to the data.
2. The test for $t_{\text {setup }}$ is performed by adjusting the timing relationship between the $V_{C P}$ and $V_{J K}$ inputs to the $t_{\text {setup }}$ minimum value. A device that passes the test will have the output waveform shown. The output of a device that does not pass the tsetup test will remain at a static logic level (no switching will occur).

## trelease

1. trelease is defined as the maximum time allowed for a HIGH to be present at a synchronous logic input at any time during the LOW state of the clock and not be recognized.
2. The test for trelease is performed by adjusting the timing relationship between $V_{C P}$ and $V_{J K}$ to the trelease maximum value. The outputs of devices that pass will remain at static logic levels. In order to check both J and $K$ sides of the flip-flop it is necessary to perform the test with the flip-flop in each of its two possible states, i.e., set and clear. This can be accomplished by making use of the appropriate direct inputs to establish the state before a test. The outputs of devices that do not pass the trelease test will exhibit pulses instead of static levels.

## SWITCHING TEST CIRCUITS



Fig. a


Fig. $\mathbf{b}$
$V_{C C}=\operatorname{Pin} 5.0 \mathrm{~V}$
$R=2.0 \mathrm{k} \Omega$
$C_{I}=C_{L}=15 \mathrm{pF}$ including probe and jig capacitance

WAVEFORM


Fig. c


DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V} \pm 5 \%$


## 9XXX Series

DC AND AC CHARACTERISITICS OVER MILITARY TEMPERATURE RANGE: Vcc $=+5.0 \mathrm{~V} \pm 10 \%$


WORST CASE TURN OFF DELAY VERSUS AMBIENT TEMPERATURE


WORST CASE TURN ON DELAY VERSUS
AMBIENT TEMPERATURE



| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| VIH | Input HIGH Voltage | 1.9 | 1.8 | 1.6 | V | Guaranteed Input HIGH <br> Threshold Voltage |
| VIL | Input LOW Voltage | 0.85 | 0.85 | 0.85 | V | Guaranteed Input LOW Threshold Voltage |
| Vol | Output LOW Voltage | 0.45 | 0.45 | 0.45 | V | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V}, \\ & \mathrm{loL}=16 \mathrm{~mA}, \end{aligned}$ |
|  |  | 0.45 | 0.45 | 0.45 | V | $\begin{aligned} & \hline \mathrm{VCC}=4.75 \mathrm{~V}, \\ & \mathrm{loL}=14.1 \mathrm{~mA} \end{aligned}$ |
| IIL | Input LOW Current 9005 Non-Extendable Gate | $\begin{array}{r} \hline-1.6 \\ -1.41 \\ \hline \end{array}$ | $\begin{array}{r} \hline-1.6 \\ -1.41 \\ \hline \end{array}$ | $\begin{array}{r} -1.6 \\ -1.41 \\ \hline \end{array}$ | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ $\mathrm{V}_{\text {I }}=.45 \mathrm{~V}$ <br> $\mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$ 5.25 V on |
|  | Input LOW Current Extendable Gates and Extender | $\begin{array}{r} \hline-2.4 \\ -2.12 \\ \hline \end{array}$ | $\begin{array}{\|r\|} \hline-2.4 \\ -2.12 \end{array}$ | $\begin{array}{\|c\|} \hline-2.4 \\ -2.12 \end{array}$ | mA |  |
| Icc | Power Supply Current, ON 9005 Non-Extendable Gate 9005 Extendable Gate 9008 | $\begin{array}{r} 7.7 \\ 13.6 \\ 17.7 \\ \hline \end{array}$ | $\begin{array}{r} 7.7 \\ 13.6 \\ 17.7 \\ \hline \end{array}$ | $\begin{array}{r} 7.7 \\ 13.6 \\ 17.7 \\ \hline \end{array}$ | mA | All Inputs Open |
|  | Power Supply Current, OFF 9005 Non-Extendable Gate 9005 Extendable Gate 9008 | $\begin{array}{r} 3.4 \\ 5.1 \\ 10.2 \end{array}$ | $\begin{array}{r} 3.4 \\ 5.1 \\ 10.2 \end{array}$ | $\begin{array}{r} 3.4 \\ 5.1 \\ 10.2 \\ \hline \end{array}$ | mA | All Inputs Except Extender Inputs Gnd |
| $\Delta \mathrm{lcc}$ | Extra Current Drain when one 9006 Extender is attached to a 9005 Gate ON | 2.05 | 2.05 | 2.05 | mA | All Inputs HIGH |
|  | Extra Current Drain when one 9006 Extender is attached to a 9005 gate OFF | 2.54 | 2.54 | 2.54 | mA | All Inputs Gnd |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vcc = +5.0 V $\pm 10 \%$

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 2.0 | 1.7 | 1.4 | V | Guaranteed <br> Threshold | put HIGH tage |
| VIL | Input LOW Voltage | 0.8 | 0.9 | 0.8 | V | Guaranteed <br> Threshold | nput LOW tage |
| Vol | Output LOW Voltage | 0.4 | 0.4 | 0.4 | V | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{lOL}=17.6 \mathrm{r} \end{aligned}$ |  |
|  |  | 0.4 | 0.4 | 0.4 | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{lOL}=13.6 \mathrm{r} \end{aligned}$ |  |
| IIL | Input LOW Current 9005 Non-extendable Gate | $\begin{array}{r} \hline-1.6 \\ -1.24 \\ \hline \end{array}$ | $\begin{array}{r} \hline-1.6 \\ -1.24 \\ \hline \end{array}$ | $\begin{array}{r\|} \hline-1.6 \\ -1.24 \\ \hline \end{array}$ | mA | $\frac{V_{\text {cc }}=\text { Max }}{}$ | $\begin{array}{r} \hline \mathrm{V} \mathbb{N}=.4 \mathrm{~V} \\ 5.5 \mathrm{~V} \text { on } \end{array}$ |
|  | Input LOW Current | -2.4 | -2.4 | $\begin{array}{r} \hline-2.4 \\ -1.86 \end{array}$ | mA | V CC $=$ Max | 5.5 V on Inputs |
|  | Extendable Gate and Extender | -1.86 | -1.86 |  |  | Vcc $=$ Min |  |

NOTE:
Output characteristics above apply to a 9005 (both gates) or a 9008.
Input characteristics above apply to a 9005 (both gates) or a 9008 using either the internal gates or an external 9006 extender.

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$ (Cont'd)

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current, ON 9005 Non-extendable Gate 9005 Extendable Gate 9008 |  | 6.5 11.3 12.5 |  | 6.5 11.3 12.5 |  | $\begin{array}{r} 6.5 \\ 11.3 \\ 12.5 \\ \hline \end{array}$ | mA | All Inputs Open |
|  | Power Supply Current, OFF 9005 Non-extendable Gate 9005 Extendable Gate 9008 |  | 3.1 4.7 9.4 |  | 3.1 4.7 9.4 |  | 3.1 4.7 9.4 | mA | All Inputs Except Extender Inputs Gnd |
| $\Delta \mathrm{ICc}$ | Extra Current Drain from one 9006 Extender Gate ON |  | 1.61 |  | 1.61 |  | 1.61 | mA | All Inputs HIGH |
|  | Extra Current Drain from one 9006 Extender Gate OFF |  | 2.35 |  | 2.35 |  | 2.35 | mA | All Inputs Gnd 9006 Attached to a 9005 |

NOTE:
Output characteristics apply to a 9005 (both gates) or a 9008.
Input characteristics apply to a 9005 (both gates) or a 9008 using either the internal gates or an external 9006 extender.
SWITCHING CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| SYMBOL | LIMITS |  | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: |
|  | Min | Max |  |  |
| tpLH tPHL | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 12 \\ & 14 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{CL}=15 \mathrm{pF} \\ & 9005 \text { Non-extendable Gate Only, See Figure a } \end{aligned}$ |
| $\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 15 \\ & 12 \end{aligned}$ | ns | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{N}}=5.0 \mathrm{pF}$ <br> 9005 Extendable Gate and 9008 , See Figure b |
| $\Delta$ tPLH | -2.0 | 4.0 | ns | 9006 Only |
| $\Delta$ tPHL | -2.0 | 4.0 |  | The 9006 is tested by measuring its propagation time through the 9005 . The delay readings shall not exceed the 9005 readings by the specified amount. See Figure c |

## SWITCHING CHARACTERISTICS

 TEST CIRCUITS

Note: Capacitance includes probe and jig capacitance

Fig. a 9005 Non-Extendable Gate

## SWITCHING CHARACTERISTICS (Cont'd) <br> TEST CIRCUITS



Note: Capacitance includes probe and jig capacitance
Fig. b 9005 or 9008 Extendable Gate


Fig. C 9006 Extender


NOTES:
With switch in postion (1) measure delay of 9005 . With switch in position (2) measure delay (9005) + $\Delta$ delay (9006). Capacitances include probe and jig capacitances.

Fig. d Switching Waveform


## 9XXX Series

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vcc $=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min Max | Min Max |  |  |
| VIH | Input HIGH Voltage |  | 2.0 | 1.7 | 1.4 | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.8 | 0.9 | 0.8 | V | Guaranteed Input LOW Threshold |
| Vol | Output LOW Voltage |  | 0.4 | 0.4 | 0.4 | V | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \\ & \mathrm{loL}=52.8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \hline \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \text { loL }=40.8 \mathrm{~mA}, \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \end{aligned}$ |
| lim | Input HIGH Current |  |  | 120 | 120 | $\mu \mathrm{A}$ | $V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ <br> Gnd on Other Inputs |
| IIL | Input LOW Current |  | $\begin{gathered} -3.2 \\ -2.48 \end{gathered}$ | $\begin{gathered} -3.2 \\ -2.48 \end{gathered}$ | $\begin{gathered} -3.2 \\ -2.48 \end{gathered}$ | mA | $V_{C C}=5.5 \vee V_{I N}=0.4 \mathrm{~V}$ <br> 5.5 V on Other Inputs $V_{c c}=4.5 \mathrm{~V} V_{I N}=0.4 \mathrm{~V}$ <br> 5.5 V on Other Inputs |
| Icch IcCL | Power Supply Current (each gate) | $\frac{\mathrm{ON}}{\mathrm{OFF}}$ | $\begin{array}{r} 12.9 \\ 3.2 \end{array}$ | $\begin{array}{r} \hline 12.9 \\ 3.2 \end{array}$ | $\begin{array}{r} \hline 12.9 \\ 3.2 \end{array}$ | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\text { Open } \\ & \mathrm{V}_{\mathrm{IN}}=\text { Gnd } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay |  |  | 4.0 15 <br> 3.0 10 |  | ns | Figs. 3-1, 3-4 $C_{L}=15 \mathrm{pF}$ |

## 9014 <br> QUAD EXCLUSIVE-OR GATE

DESCRIPTION - The 9014 consists of four Exclusive-OR gates, useful in a large number of code conversion, parity generation/checking, and comparison applications. The Exclusive-OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: $Z=A \bar{B}+\bar{A} B ; \bar{Z}=A B+\overline{A B}$.

ORDERING CODE: See Section 9


CONNECTION DIAGRAM PINOUT A

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 5 \%$

| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $75^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 1.9 |  | 1.8 |  | 1.6 |  | V | Guaranteed Input <br> HIGH Threshold |
| VIL. | Input LOW Voltage |  | 0.85 |  | 0.85 |  | 0.85 | V | Guaranteed Input <br> LOW Threshold |
| Vol | Output LOW Voltage |  | 0.45 |  | 0.45 |  | 0.45 | V | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{lOL}=16 \mathrm{~mA} \\ & \mathrm{lOL}=14.4 \mathrm{~mA} \\ & \text { (Pins } 6 \& 10) \\ & \text { Inputs }=5.25 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \text { per Truth Table } \\ & \hline \end{aligned}$ |

## 9XXX Series

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 5 \%$

| SYMBOL | PARAMETER |  |  | C |  | ${ }^{\circ} \mathrm{C}$ |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| Vol | Output LOW Voltage |  | 0.45 |  | 0.45 |  | 0.45 |  | V | $\begin{aligned} & \hline \mathrm{VCC}=4.75 \mathrm{~V}, \\ & \mathrm{loL}=14.1 \mathrm{~mA} \\ & \mathrm{loL}=12.7 \mathrm{~mA} \\ & \text { (Pins } 6 \& 10 \text { ) } \\ & \text { Inputs }=5.25 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \text { per Truth Table } \\ & \hline \end{aligned}$ |
| IIL | Input LOW Current |  |  | $\begin{aligned} & -2.4 \\ & -2.1 \end{aligned}$ |  | $\begin{aligned} & -2.4 \\ & -2.1 \end{aligned}$ |  | $\begin{aligned} & -2.4 \\ & -2.1 \end{aligned}$ | mA | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=.45 \mathrm{~V} \\ & \text { Other Inputs }=5.25 \mathrm{~V} \\ & \mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=.45 \mathrm{~V} \\ & \text { Other Inputs }=5.25 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply <br> Current, each gate <br> Power Supply Current Per Inverter | ON |  | 4.5 |  | 4.5 |  | 4.5 | mA | $\begin{aligned} & \text { One Input }=5.5 \mathrm{~V}, \\ & \text { One Input }=\text { Gnd } \end{aligned}$ |
|  |  | OFF |  | $8.7$ |  | $\begin{aligned} & 8.7 \\ & 7.6 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 8.7 \\ & 7.6 \\ & \hline \end{aligned}$ | mA | $\begin{aligned} & \text { Inputs }=\text { Gnd } \\ & \text { Inputs }=5.5 \mathrm{~V} \end{aligned}$ |
|  |  | ON |  | 6.1 |  | 6.1 |  | 6.1 | mA | Input Node HIGH |
|  |  | OFF |  | 1.7 |  | 1.7 |  | 1.7 |  | Input Node LOW |
| $\begin{aligned} & \text { tPLH } 1 \\ & \text { tPHL } 1 \\ & \text { tPHH } 1 \\ & \text { tPLL } 1 \end{aligned}$ | Switching Tests |  |  |  | 3.0 3.0 6.0 6.0 | 13 15 28 28 |  |  | ns | $C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{IN} 1}=5.0 \mathrm{~V}$ <br> Fig. a, Fig. b |
| tPHH 2 <br> tpLL 2 <br> tple 2 <br> tPHL 2 | Switching Tests |  |  |  | 7.0 <br> 7.0 <br> 10 <br> 10 | 17 19 32 32 |  |  | ns | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V} \\ & \text { Fig. a, Fig. } \mathrm{c} \end{aligned}$ |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| V IH | Input HIGH Voltage | 2.0 |  | 1.7 |  | 1.4 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.8 |  | 0.9 |  | 0.8 | V | Guaranteed Input LOW Threshold |
| Vol | Output LOW Voltage |  | 0.4 0.4 |  | 0.4 0.4 |  | 0.4 0.4 | V | $\begin{aligned} & \hline \mathrm{VCC}=5.5 \mathrm{~V}, \\ & \mathrm{lCL}=17.6 \mathrm{~mA} \\ & \mathrm{loL}=16 \mathrm{~mA} \\ & \quad(\text { Pins } 6 \& 10) \\ & \text { Inputs }=5.5 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \text { per Truth Table } \\ & \hline \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=13.6 \mathrm{~mA} \\ & \mathrm{loL}=12.4 \mathrm{~mA} \\ & \text { (Pins } 6 \& 10) \\ & \text { Inputs }=5.5 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \text { per Truth Table } \end{aligned}$ |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: $V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min | Max | Min Max |  |  |
| IIL | Input LOW Current |  | $\begin{array}{r} -2.4 \\ -1.86 \end{array}$ |  | $\begin{array}{r} -2.4 \\ -1.86 \end{array}$ | $\begin{gathered} -2.4 \\ -1.86 \end{gathered}$ | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & \text { Other Inputs }=5.5 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & \text { Other Inputs }=5.5 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply Current, each gate <br> Power Supply Current Per Inverter | ON | 4.2 |  | 4.2 | 4.2 | mA | $\begin{aligned} & \text { One Input }=5.5 \mathrm{~V} \\ & \text { One Input }=\text { Gnd } \end{aligned}$ |
|  |  | OFF | $\begin{aligned} & 8.1 \\ & 7.2 \end{aligned}$ |  | $\begin{aligned} & 8.1 \\ & 7.2 \end{aligned}$ | 8.1 7.2 | mA | $\begin{aligned} & \hline \text { Inputs }=\text { Gnd } \\ & \text { Inputs }=5.5 \mathrm{~V} \end{aligned}$ |
|  |  | ON | 5.5 |  | 5.5 | 5.5 |  | Input Node HIGH |
|  |  | OFF | 1.6 |  | 1.6 | 1.6 | mA | Input Node LOW |
| tpLH 1 <br> tpHL 1 <br> tPHH 1 <br> tpLL 1 | Switching Tests |  |  | 3.0 <br> 3.0 <br> 6.0 <br> 6.0 <br> 7 | 10 <br> 12 <br> 22 <br> 22 |  | ns | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{IN} 1}=5.0 \mathrm{~V} \\ & \text { Fig. a, Fig. b } \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { tPHH } 2 \\ & \mathrm{tPLL} 2 \\ & \text { tPLH } 2 \\ & \mathrm{tPHL} 2 \end{aligned}\right.$ | Switching Tests |  |  | 7.0 <br> 7.0 <br> 10 <br> 10 | 14 16 26 26 |  | ns | $\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V} \\ & \text { Fig. a, Fig. } \mathrm{C} \end{aligned}$ |

SWITCHING TEST CIRCUIT


Fig. a


Fig. $\mathbf{b}$

## 9XXX Series

| 9015 <br> QUAD NOR GATE <br> DESCRIPTION - The 9015 consists of three 2-input and one 4-input NOR gates. The NOR gate produces a LOW output if any of the inputs are HIGH. |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |  |
| PKGS |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |  |
| Ceramic DIP (D) | A | 9015DC | 9015DM | 6B |  |
| Flatpak (F) | A | 9015FC | 9015FM | 4L |  |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |
| PINS |  | 9XXX (U.L.) <br> HIGH/LOW |  |  |  |
| Inputs Outputs |  | $\begin{array}{r} 1.5 / 1.0 \\ 30 / 8.8 \\ (33) /(8.5) \end{array}$ |  |  |  |

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: VCc $=+5.0 \mathrm{~V} \pm 5 \%$

| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| V IH | Input HIGH Voltage | 1.9 | 1.8 | 1.6 | V | Guaranteed Input <br> HIGH Threshold |
| VIL | Input LOW Voltage | 0.85 | 0.85 | 0.85 | V | Guaranteed Input <br> LOW Threshold |
| VOH | Output HIGH Voltage | 2.4 | 2.4 | 2.4 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-1.2 \mathrm{~mA}, \\ & \text { Inputs }=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| VoL | Output LOW Voltage | $\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$ | V | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{lOL}=16 \mathrm{~mA} \\ & \text { Inputs }=5.25 \mathrm{~V} \\ & \hline \mathrm{VCC}=4.75 \mathrm{~V} \\ & \text { lOL }=14.1 \mathrm{~mA} \\ & \text { Inputs }=\mathrm{V} \mathrm{H} \end{aligned}$ |

## 9XXX Series

| SYBMOL | PARAMETER |  | $0^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $75^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| IL | Input LOW Current |  |  |  |  |  |  | -1.6 | mA | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=.45 \mathrm{~V}$ $5.25 \mathrm{~V} \text { on Other Inputs }$ |
|  |  |  |  | -1.41 |  | -1.41 |  | -1.41 | mA | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=.45 \mathrm{~V}$ <br> 5.25 V on Other Inputs |
| Icc | Power Supply <br> Current, each gate |  |  | 6.55 |  | 6.55 |  | 6.55 |  | Inputs HIGH |
|  |  | ON |  | 8.75 |  | 8.75 |  | 8.75 | mA | Inputs HIGH (4-Input Gate Only) |
|  |  |  |  | 3.38 |  | 3.38 |  | 3.38 |  | Inputs LOW |
|  |  | OFF |  |  |  |  |  |  | mA | Inputs LOW (4-Input Gate Only) |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { tPH } \end{aligned}\right.$ | Propagation Delay |  |  |  | 3.0 3.0 |  |  |  | ns | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Fig. 3-4 } \end{aligned}$ |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vcc $=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER |  | -55 ${ }^{\circ}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min Max | Min Max |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.0 | 1.7 | 1.4 | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.8 | 0.9 | 0.8 | V | Guaranteed Input LOW Threshold |
| Vон | Output HIGH Voltage |  | 2.4 | 2.4 | 2.4 | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \mathrm{IOH}=-1.32 \mathrm{~mA}, \\ & \text { Inputs }=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| Vol | Output LOW Voltage |  | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | V | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \\ & \text { Inputs }=5.5 \mathrm{~V}, \\ & \mathrm{lOL}=17.6 \mathrm{~mA} \\ & \hline \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{lOL}=13.6 \mathrm{~mA} \end{aligned}$ |
| IIL | Input LOW Current |  | $\begin{array}{r} -1.6 \\ -1.24 \end{array}$ | $\begin{gathered} -1.6 \\ -1.24 \end{gathered}$ | -1.6 -1.24 | mA | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & 5.5 \mathrm{~V} \text { on Other Inputs } \\ & \hline \mathrm{VCC}=4.5 \mathrm{~V} \text { VIN }=0.4 \mathrm{~V} \\ & 5.5 \mathrm{~V} \text { on Other Inputs } \\ & \hline \end{aligned}$ |
| Icc | Power Supply Current, each gate | ON | 6.07 8.14 | $\begin{aligned} & \hline 6.07 \\ & 8.14 \end{aligned}$ | $\begin{aligned} & 6.07 \\ & 8.14 \end{aligned}$ | mA | Inputs HIGH <br> Inputs HIGH <br> (4-Input Gate Only) |
|  |  | OFF | 3.2 6.4 | 3.2 6.4 | $\begin{aligned} & 3.2 \\ & 6.4 \end{aligned}$ | mA | Inputs LOW Inputs LOW (4-Input Gate Only) |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay |  |  | $\begin{array}{\|ll\|}3.0 & 10 \\ 3.0 & 12\end{array}$ |  | ns | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ <br> Fig. 3-4 |

## 9XXX Series

| 9024 <br> DUAL J $\bar{K}$ (OR D) FLIP-FLOP <br> DESCRIPTION - The 9024 consists of two high speed, clocked J $\bar{K}$ flipflops. The Clocking operation is independent of rise and fall times of the clock waveform. The $\mathrm{J} \overline{\mathrm{K}}$ design allows operation as a D flip-flop by simply connecting the $J$ and $\bar{K}$ pins together. <br> ORDERING CODE: See Section 9 |  |  |  |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PKGS | PIN OUT | $\begin{array}{\|c\|} \hline \text { COMMERCIAL GRADE } \\ \hline \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{array}$ | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ | LOGIC SYMBOL <br> $\xrightarrow{0}$ |
|  |  |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| Ceramic DIP (D) | A | 9024DC | 9024DM | 6B |  |
| Flatpak (F) | A | 9024FC | 9024FM | 4L | $\frac{{ }^{3}-k_{1} c_{01} a_{1} 0-}{3}$ |
| INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions |  |  |  |  |  |
| PINS |  | 9xxx (U.L.) HIGH/LOW |  |  |  |
| J, $\bar{K}$ Inputs Clock, $\bar{S}_{D}$ Inputs $\bar{C}_{D}$ Input Outputs |  | $\begin{array}{r} \hline 1.5 / 1.0 \\ 3.0 / 2.0 \\ 6.0 / 3.0 \\ 30 / 8.8 \\ (7.8) \end{array}$ |  |  |  |

ASYNCHRONOUS ENTRY

SYNCHRONOUS ENTRY J-K̄ MODE OPERATION

| INPUTS @ tn |  | OUTPUTS <br> @ $\mathrm{t}_{\mathrm{n}+1}$ |
| :---: | :---: | :---: |
| J | $\overline{\mathrm{K}}$ | Q $\overline{\mathbf{Q}}$ |
| L | H | No Change |
| L | L | L H |
| H | H | H L |
| H | L | Toggles |

SYNCHRONOUS ENTRY D MODE OPERATION

| INPUTS <br> $@ \mathrm{t}_{\mathrm{n}}$ | OUTPUTS <br> $@$ <br> $\mathrm{t}_{\mathrm{n}}+1$ |  |
| :--- | :--- | :---: |
| D | Q | $\overline{\mathrm{Q}}$ |
| L | L | H |
| H | H | L |

H = HIGH Voltage Level L = LOW Voltage Level $t_{n}, t_{n+1}=$ time before and after rising edge of CP.
independent of clock \& SYNCHRONOUS INPUTS

| INPUTS |  | OUTPUTS |  |
| :--- | :--- | :--- | :--- |
| $\bar{S}_{D}$ | $\bar{C}_{D}$ | Q | $\overline{\text { Q }}$ |
| $5(11)$ | $1(15)$ | $6(10)$ | $7(9)$ |
| L | L | $H$ | $H$ |
| L | H | H | L |
| $H$ | L | L | H |
| H | H | No Change |  |


| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min Max |  |  |
| VIH | Input HIGH Voltage | 1.9 | 1.8 | 1.6 | V | Guaranteed Input <br> HIGH Threshold |
| VIL | Input LOW Voltage | 0.85 | 0.85 | 0.85 | V | Guaranteed Input LOW Threshold |
| VoL | Output LOW Voltage | 0.45 | 0.45 | 0.45 | V | $\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V}, \\ & \mathrm{lOL}=14.1 \mathrm{~mA} \\ & \hline \mathrm{VCC}=5.25 \mathrm{~V}, \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$ |
| liH | ```Input HIGH Current J, \overline{K}```  ```\mp@subsup{\overline{C}}{D}{}``` |  | $\begin{array}{r} 60 \\ 120 \\ 240 \end{array}$ | $\begin{array}{r} 60 \\ 120 \\ 240 \\ \hline \end{array}$ | $\mu \mathrm{A}$ | $V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ <br> Gnd on Other Inputs |
| IIL | ```Input LOW Current J,\overline{K} Clock Input, 列 \mp@subsup{\overline{C}}{D}{*}``` | $\begin{array}{r} -1.6 \\ -3.2 \\ -4.8 \\ \hline \end{array}$ | $\begin{array}{r} -1.6 \\ -3.2 \\ -4.8 \end{array}$ | $\begin{array}{r} -1.6 \\ -3.2 \\ -4.8 \\ \hline \end{array}$ | mA | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=.45 \mathrm{~V}$ <br> 4.5 V on Other Inputs |
|  | J, $\bar{K}$ <br> Clock Input, $\overline{\text { S }}$ $\bar{C}^{\circ}{ }^{*}$ | $\begin{aligned} & \hline-1.41 \\ & -2.82 \\ & -4.23 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-1.41 \\ & -2.82 \\ & -4.23 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-1.41 \\ & -2.82 \\ & -4.23 \\ & \hline \end{aligned}$ | mA | $V_{C C}=4.75 \mathrm{~V}, V_{I N}=.45 \mathrm{~V}$ <br> 4.5 V on Other Inputs |
| los | Output Short Circuit Current | -30 -100 | -30 -100 | -30 -100 | mA | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V}, \\ & \mathrm{~V} \text { OUT }=0 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply Current |  | 14 |  | mA | Per Flip-Flop in Worst Logic State |

*Denotes maximum current under normal operation. These currents may increase up to 4 IIL if $\mathrm{J}, \mathrm{K}=\mathrm{HIGH}$ and $\overline{\mathrm{S}}_{\mathrm{D}}=$ LOW.

DC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: $V_{C C}=+5.0 \pm 10 \%$

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 2.0 |  | 1.7 |  | 1.4 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.8 |  | 0.9 |  | 0.8 | V | Guaranteed Input LOW Threshold |
| Vol | Output LOW Voltage | 0.4 |  | 0.4 |  | 0.4 |  | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V}, \\ & \mathrm{IOL}=12.4 \mathrm{~mA} \\ & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$ |
| I'H | Input HIGH Current J, $\bar{K}$ Clock Input, $\overline{\mathrm{S}}$ $\bar{C}_{D}$ |  |  |  | $\begin{array}{r} 60 \\ 120 \\ 240 \\ \hline \end{array}$ |  | $\begin{array}{r} 60 \\ 120 \\ 240 \\ \hline \end{array}$ | $\mu \mathrm{A}$ | $V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ <br> Gnd on Other Inputs |
| IL | ```Input LOW Current J, \overline{K} Clock Input, STD \mp@subsup{\overline{C}}{D}{}}\mathrm{ (Note 4)``` |  | $\begin{aligned} & -1.6 \\ & -3.2 \\ & -4.8 \end{aligned}$ |  | $\begin{aligned} & -1.6 \\ & -3.2 \\ & -4.8 \end{aligned}$ |  | $\begin{array}{r} -1.6 \\ -3.2 \\ -4.8 \end{array}$ | mA | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ <br> 4.5 V on Other Inputs |
|  | J, $\bar{K}$ <br> Clock Input, $\bar{S}_{D}$ $\bar{C}_{D}{ }^{*}$ |  | $\begin{aligned} & -1.24 \\ & -2.48 \\ & -3.72 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline-1.24 \\ & -2.48 \\ & -3.72 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1.24 \\ & -2.48 \\ & -3.72 \end{aligned}$ | mA | $V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ <br> 4.5 V on Other Inputs |
| los | Output Short Circuit Current | -30 | -100 | -30 | -100 | -30 | -100 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply Current |  |  |  | 14 |  |  | mA | Per Flip-Flop in Worst Logic State |

*Denotes maximum current under normal operation. These currents may increase up to 4 IIL if $\mathrm{J}, \mathrm{K}=\mathrm{HIGH}$ and $\overline{\mathrm{S}}_{\mathrm{D}}=$ LOW.

SWITCHING CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

| SYMBOL | PARAMETER | 9xxx |  | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\overline{\mathrm{tpLL}}$ tPHL | Propagation Delay $C P$ to $Q$ or $\bar{Q}$ |  | $\begin{aligned} & 20 \\ & 33 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}_{n}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW $J, \bar{K}$ to $C P$ | 0 |  | ns | Figs. 3-1, 3-6 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW J, $\bar{K}$ to CP | 20 | 1.0 | ns |  |
| tPLH | Propagation Delay <br> $\bar{S}_{D}$ to $Q, \bar{C}_{D}$ to $\bar{Q}$ |  | 12 | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay $\bar{S}_{D}$ to $\bar{Q}, \bar{C}_{D}$ to $Q$ |  | 25 | ns |  |
| fmax | Maximum Toggle Frequency | 25 |  | MHz | Figs. 3-1, 3-8 |


| PRODUCT INDEXES AND |
| :--- |
| SELECTION GUIDES |

TTL CHARACTERISTICS

LOADING, SPECIFICATIONS AND WAVEFORMS

## 54/74 FAMILY DATA SHEETS



9300 FAMILY DATA SHEETS

FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

## 9300 93H00 93L00 93S00 <br> 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The '00 is a 4-bit universal shift register. As a high speed multifunctional sequential logic block, it is useful in a wide variety of register and counter applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers.

- ASYNCHRONOUS MASTER RESET
- J, $\bar{K}$ INPUTS TO FIRST STAGE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | $9300 \mathrm{PC}, 93 \mathrm{H} 00 \mathrm{PC}$ 93LOOPC, 93S00PC |  | 9 B |
| Ceramic DIP (D) | A | 9300DC, 93H00DC <br> 93LOODC, 93SOODC | 9300DM, 93H00DM <br> 93LOODM, 93S00DM | 6B |
| Flatpak (F) | A | 9300FC, 93H00FC 93LOOFC, 93S00FC | 9300FM, 93H00FM <br> 93LOOFM, 93S00FM | 4L |


$V_{C c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93H (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW | 93 S (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{PE}}$ | Parallel Enable Input (Active LOW) | 2.3/2.3 | 1.0/1.0 | 1.15/0.575 | 1.25/1.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Inputs | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 | 1.0/1.0 |
| $J$ | First Stage J Input (Active HIGH) | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 | 1.0/1.0 |
| $\overline{\mathrm{K}}$ | First Stage K Input (Active LOW) | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 | 1.0/1.0 |
| CP | Clock Pulse Input (Active Rising Edge) | 2.0/2.0 | 2.0/2.0 | 1.0/0.5 | 2.5/2.5 |
| $\overline{M R}$ | Master Reset Input | 1.0/1.0 | 1.0/1.0 | 0.5/0.25 | 1.25/1.25 |
| Q0- Q3 | Parallel Outputs | 12/6.0 | 16/8.0 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |
| $\overline{\mathrm{Q}}_{3}$ | Complementary Last Stage Output | 16/8.0 | 20/10 | $\begin{gathered} 10 / 5.0 \\ (3.0) \end{gathered}$ | 25/12.5 |

## LOGIC DIAGRAMS

'00, 'H00, 'LOO

'S00


FUNCTIONAL DESCRIPTION - The Logic Diagrams and Truth Table indicate the functional characteristics of the '00 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers.

The '00 has two primary modes of operation, shift right $\left(Q_{0} \rightarrow Q_{1}\right)$ and parallel load, which are controlled by the state of the Parallel Enable ( $\overline{\mathrm{PE}}$ ) input. When the $\overline{P E}$ input is HIGH, serial data enters the first flip-flop Qo via the $J$ and $\bar{K}$ inputs and is shifted one bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW-to-HIGH clock transition. The $J \bar{K}$ inputs provide the flexibility of the JK type input for special applications, and the simple $D$ type input for general applications by tying the two pins together. When the $\overline{\mathrm{PE}}$ input is LOW, the ' 00 appears as four common clocked $D$ flip-flops. The data on the parallel inputs $P_{0}-P_{3}$ is transferred to the respective $Q_{0}$ $Q_{3}$ outputs following the LOW-to-HIGH clock transition. Shift left operation $\left(Q_{3} \rightarrow Q_{2}\right)$ can be achieved by tying the $Q_{n}$ outputs to the $P_{n-1}$ inputs and holding the $\overline{P E}$ input LOW.

All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the ' 00 utilizes edge triggering, there is no restriction on the activity of the $J, \bar{K}, P_{n}$ and $\overline{P E}$ inputs for logic operation - except for the setup and release time requirements. A LOW on the asynchronous Master Reset $(\overline{M R})$ input sets all $Q$ outputs LOW, independent of any other input condition.

TRUTH TABLE

| OPERATING MODE | INPUTS $(\overline{M R}=\mathrm{H})$ |  |  |  |  |  |  | OUTPUTS @ $\mathrm{t}_{\mathrm{n}}+1$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\text { PE }}$ | J | $\overline{\mathrm{K}}$ | Po | $P_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{P}_{3}$ | Qo | Q1 | Q2 | Q3 | $\bar{Q}_{3}$ |
| SHIFT MODE | H | L | L | X | X | X | X | L | Q0 | $\mathrm{Q}_{1}$ | Q2 | $\overline{\mathrm{Q}}_{2}$ |
|  | H | L | H | X | $X$ | X | X | Q0 | Q0 | $Q_{1}$ | Q2 | $\mathrm{Q}_{2}$ |
|  | H | H | L | X | X | X | X | Q0 | Qo | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{2}$ |
|  | H | H | H | X | X | X | X | H | Q0 | Q1 | Q2 | $\bar{Q}_{2}$ |
| PARALLEL | L | X | X | L | L | L | L | L | L | L | L | H |
| ENTRY MODE | L | X | X | H | H | H | H | H | H | H | H | L |

* $t_{n}+1=$ Indicates state after next LOW-to-HIGH clock transition.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

| SYMBOL | PARAMETER |  | 93XX |  | 93H |  | 93L |  | 93 S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Curren |  | -20 | -80 |  | -100 |  |  |  |  | mA | $\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \\ & \text { Vout }=0 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply Current | $\begin{array}{\|l\|} \hline \mathrm{XC} \\ \hline \mathrm{XM} \\ \hline \end{array}$ |  | $\begin{aligned} & 92 \\ & 86 \end{aligned}$ |  | $\begin{aligned} & 112 \\ & 102 \end{aligned}$ |  | 23 |  | 120 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\left.\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$ See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX |  | 93H |  | 93L |  | 93S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 30 |  | 45 |  | 10 |  | 70 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphe } \end{aligned}$ | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 22 \\ & 26 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 51 \end{aligned}$ |  | $\begin{array}{r} 8.5 \\ 12 \end{array}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{M R} \text { to } Q_{n}$ |  | 40 |  | 28 |  | 60 |  | 23 | ns | Figs. 3-1, 3-17 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93H |  | 93L |  | 93S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW, J, K and $P_{0}-P_{3}$ to $C P$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW, J, $\bar{K}$ and $\mathrm{P}_{0}-\mathrm{P}_{3}$ to CP | 0 0 |  | 0 |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW, $\overline{\text { PE }}$ to CP | $\begin{aligned} & 39 \\ & 39 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 68 \\ & 68 \end{aligned}$ |  | $\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW, PE to CP | $\begin{aligned} & -10 \\ & -10 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & -20 \\ & -20 \end{aligned}$ |  | 0 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ |  | ns | Fig. 3-8 |
| tw (L) | $\overline{\mathrm{MR}}$ Pulse Width LOW | 25 |  | 19 |  | 53 |  | 12 |  | ns | Fig. 3-16 |
| trec | Recovery Time MR to CP | 25 |  | 7.0 |  | 70 |  | 5.0 |  | ns |  |

## 9301 <br> $93 \mathrm{LO1}$ <br> 1-OF-10 DECODER

DESCRIPTION - The '01 multipurpose decoders are designed to accept four inputs and provide ten mutually exclusive outputs.

- MULTIFUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- TYPICAL POWER DISSIPATION OF 145 mW for ' $\mathbf{0 1}$, 45mW for 'L01

ORDERING CODE: See section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9301PC, 93L01PC |  | 9B |
| Ceramic DIP (D) | A | 9301DC, 93L01DC | 9301DM, 93L01DM | 6B |
| Flatpak (F) | A | 9301FC, 93L01FC | 9301FM, 93L01FM | 4L |

## LOGIC SYMBOL

$$
\begin{aligned}
& \mathrm{VCC}=\operatorname{Pin} 16 \\
& \mathrm{GND}=\operatorname{Pin} 8
\end{aligned}
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | Decoder Outputs (Active LOW) | $20 / 10$ | $10 / 5.0$ |
|  |  |  | $(3.0)$ |

FUNCTIONAL DESCRIPTION - The '01 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input enables. The logic design of the ' 01 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs. The most significant input $A_{3}$ produces a useful inhibit function when the ' 01 is used as a $1-0 f-8$ decoder.

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\overline{\mathrm{O}}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H |
| H | L | L | L | H | L | H | H | H | H | H | H | H | H |
| L | H | L | L | H | H | L | H | H | H | H | H | H | H |
| H | H | L | L | H | H | H | L | H | H | H | H | H | H |
| L | L | H | L | H | H | H | H | L | H | H | H | H | H |
| H | L | H | L | H | H | H | H | H | L | H | H | H | H |
| L | H | H | L | H | H | H | H | H | H | L | H | H | H |
| H | H | H | L | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | L | H |
| H | L | L | H | H | H | H | H | H | H | H | H | H | L |
| L | H | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | L | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | H | H | H | H | H | H | H | H | H | H | H | H | H |

$H=$ HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 44 | 13 | mA | $\mathrm{Vcc}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ | $\begin{aligned} & 35 \\ & 30 \end{aligned}$ | $\begin{aligned} & 36 \\ & 36 \end{aligned}$ | ns | Figs. 3-1, 3-20 |

## CONNECTION DIAGRAM

 PINOUT A
## 9302

1-OF-10 DECODER
(With Open-Collector Outputs)

DESCRIPTION - The '02 is a multipurpose decoder designed to accept four inputs and provide ten mutually exclusive outputs. The open-collector outputs provide wired-OR capability which can be used for numerous summing, decoding and demultiplexing operations.

- OUTPUTS HAVE WIRED-OR CAPABILITY
- PROVIDES CAPABILITY TO GENERATE AND SUM MINTERMS OF 3 OR 4 VARIABLES
- ACTIVE LOW OUTPUTS ARE USEFUL FOR DRIVING LOW VOLTAGE LAMPS AND RELAYS
- MULTIFUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- TYPICAL POWER DISSIPATION OF 145 mW

ORDERING CODE: See Section 9

| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic <br> DIP (P) | A | 9302PC |  | 9B |
| Ceramic <br> DIP (D) | A | 9302DC | 9302DM | 6B |
| Flatpak (F) | A | 9302FC | 9302FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | :--- |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs |  |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | Decoder Outputs (Active LOW) | $1.0 / 1.0$ |

[^52]FUNCTIONAL DESCRIPTION - The '02 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by the logic symbol. The open-collector outputs provide easy summing of input terms. The ' 02 provides the capability in one package to generate and sum any or all of the minterms of three variables, or the first 10 -or-16 minterms of four variables. The logic design of the ' 02 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs. The most significant input ( $\mathrm{A}_{3}$ ) produces a useful inhibit function when the ' 02 is used as a 1 -of- 8 decoder.

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\bar{O}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\overline{\mathrm{O}}_{4}$ | $\bar{O}_{5}$ | $\overline{\mathrm{O}}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H |
| H | L | L | L | H | L | H | H | H | H | H | H | H | H |
| L | H | L | L | H | H | L | H | H | H | H | H | H | H |
| H | H | L | L | H | H | H | L | H | H | H | H | H | H |
| L | L | H | L | H | H | H | H | L | H | H | H | H | H |
| H | L | H | L | H | H | H | H | H | L | H | H | H | H |
| L | H | H | L | H | H | H | H | H | H | L | H | H | H |
| H | H | H | L | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | L | H |
| H | L | L | H | H | H | H | H | H | H | H | H | H | L |
| L | H | L | H | H | H | H | H | H | H | H | H | H | H |
| H | H | L | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | H | H | H | H | H | H | H | H | H | H | H | H | H |

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\
& \mathrm{L}=\text { LOW Voltage Level }
\end{aligned}
$$

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icex | Output HIGH Leakage Current |  | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=M i n, V_{C E X}=5.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per } \\ & \text { Truth Table } \end{aligned}$ |
| Icc | Power Supply Current |  | 44 | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{VcC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tpLH tPHL | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ |  | $\begin{aligned} & 35 \\ & 30 \end{aligned}$ | ns | Figs. 3-2, 3-20 |


| DESCRIP <br> adders are lel add/se and majo | TION useful ial car ity gat | 9304 <br> DUAL FULL <br> The '04 consists of two ind in a wide variety of applica y addition, parity generatio g. | ADDER <br> ependent, binary full adder ions including multiple bit n and checking, code conv |  | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - MULTI <br> - 8.0 ns <br> - COMPL <br> - TYPICAL <br> ORDERIN | UNCT ARRY EMEN L POW <br> GOD | ON CAPABILITY PROPAGATION DELAY TARY INPUTS AND OUTP ER DISSIPATION OF 150 <br> E: See Section 9 | UTS AVAILABLE mW |  | LOGIC SYMBOL |
|  |  | COMMERCIAL GRADE | MILITARY GRADE |  |  |
| PKGS |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | $\left.\begin{array}{ccc}\text { FULL ADDER } 1 \\ \mathrm{~s} & \mathrm{~s} & \mathrm{c}_{0}\end{array}\right]$FULL ADDER 2   <br> s s $\mathrm{c}_{0}$ |
| Plastic DIP (P) | A | 9304PC |  | 9B |  |
| Ceramic DIP (D) | A | 9304DC | 9404DM | 6B | $\begin{aligned} & \mathrm{VCC}=\operatorname{Pin} 16 \\ & \text { GND }=\operatorname{Pin} 8 \end{aligned}$ |
| Flatpak (F) | A | 9304FC | 9304FM | 4L |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| Full Adder 1 |  |  |
| A, B | Operand Inputs | 4.0/4.0 |
| $\mathrm{Cl}_{1}$ | Carry Input | 4.0/4.0 |
| S | Sum Output | 20/10 |
| s | Complementary Sum Output | 20/10 |
| Coo | Carry Output (Active LOW) | 14/7.0 |
| Full Adder 2 |  |  |
| $\mathrm{A}_{1}, \mathrm{~B}_{1}$ | OR Operand Inputs (Active HIGH) | 1.0/1.0 |
| $\bar{A}_{2}, \bar{B}_{2}$ | OR Operand Inputs (Active LOW) | 4.0/4.0 |
| $\bar{c}_{1}$ | Carry Input (Active LOW) | 4.0/4.0 |
| S | Sum Output | 20/10 |
| $\overline{\mathrm{s}}$ | Complementary Sum Output | 20/10 |
| Co | Carry Output (Active HIGH) | 14/7.0 |

FUNCTIONAL DESCRIPTION - The '04 logic block consists of two separate high speed carry dependent sum full adders. This design allows a minimum carry propagation time when the adders are used in ripple carry applications. The adders are identical except that adder 2 has provision for either active HIGH or active LOW inputs at the $A$ and $B$ terminals. The adders produce a LOW carry and both LOW and HIGH sum with active HIGH inputs, a HIGH carry and both HIGH and LOW sum when active LOW inputs are used. This principle of duality is shown in the diagram below, where the adders are drawn as functional blocks.

## TRUTH TABLES

ADDER 1

| INPUTS |  |  | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}_{1}$ | B | A | Co | $\bar{S}$ | S |
| L | L | L | H | H | L |
| L | L | H | H | L | H |
| L | H | L | H | L | H |
| L | H | H | L | H | L |
| H | L | L | H | L | H |
| H | L | H | L | H | L |
| H | H | L | L | H | L |
| H | H | H | L | L | H |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level

ACtive Low


ACTIVE HIGH


ADDER 2

| INPUTS |  |  |  |  | OUTPUTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\bar{C}_{1}}$ | B1 | $\mathrm{A}_{1}$ | $\bar{B}_{2}$ | $\bar{A}_{2}$ | Co | S | $\bar{s}$ |
| L | L | L | L | L | H | H | L |
| L | L | L | L | H | H | L | H |
| L | L | L | H | L | H | L | H |
| L | L | L | H | H | L | H | L |
| L | L | H | L | L | H | H | L |
| L | L | H | L | H | H | H | L |
| L | L | H | H | L | H | L | H |
| L | L | H | H | H | H | L | H |
| L | H | L | L | L | H | H | L |
| L | H | L | L | H | H | L | H |
| L | H | L | H | L | H | H | L |
| L | H | L | H | H | H | L | H |
| L | H | H | L | L | H | H | L |
| L | H | H | L | H | H | H | L |
| L | H | H | H | L | H | H | L |
| L | H | H | H | H | H | H | L |
| H | L | L | L | L | H | L | H |
| H | L | L | L | H | L | H | L |
| H | L | L | H | L | L | H | L |
| H | L | L | H | H | L | L | H |
| H | L | H | L | L | H | L | H |
| H | L | H | L | H | H | L | H |
| H | L | H | H | L | L | H | L |
| H | L | H | H | H | L | H | L |
| H | H | L | L | L | H | L | H |
| H | H | L | L | H | L | H | L |
| H | H | L | H | L | H | L | H |
| H | H | L | H | H | L | H | L |
| H | H | H | L | L | H | L | H |
| H | H | H | L | H | H | L | H |
| H | H | H | H | L | H | L | H |
| H | H | H | H | H | H | L | H |

## LOGIC DIAGRAM



ADDER 2


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Isc | Output Short Circuit Current | -20 | -70 | mA | Vcc $=$ Max, Vout $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 55 | mA | $\mathrm{Vcc}=$ Max, Pins 13 \& $14=0 \mathrm{~V}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{array}{\|l\|l\|} \text { tpLH } \\ \text { tphL } \end{array}$ | Propagation Delay $A_{n}$ to $\bar{S}$ |  | $\begin{aligned} & 36 \\ & 35 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH <br> tPHL | Propagation Delay Cl to Co |  | 13 13 | ns | Figs. 3-1, 3-4 |

## 9305 <br> VARIABLE MODULUS COUNTER

DESCRIPTION - The '05 is a monolithic, high speed, variable modulus counter circuit. It is a semisynchronous counter which can be programmed without extra logic to provide division or counting by either 2 and $4,5,6,7,8$ or $10,12,14,16$. A binary count sequence can be obtained for all of the preceding counter modulos as well as $50 \%$ duty cycle output for dividers of 8,10 , 12, 14, 16. The device also features asynchronous overriding Master Reset and Set inputs and the negation output of the final flip-flop output which allows the cascading of stages.

- VARIOUS BINARY COUNTING MODES MODULO 2 AND MODULO 5, 6, 7, 8 MODULO 10 (8421 BCD) 12, 14, 16
- VARIOUS DIVISION MODES WITH 50\% DUTY CYCLE OUTPUT MODULO 8, 10, 12, 14, 16
- LOGIC SELECTION OF COUNTING MODE
- ASYNCHRONOUS MASTER RESET ANS SET INPUTS
- MULTISTAGE COUNTING OPERATION

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $93 \times X$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{So}_{0}, \mathrm{~S}_{1}$ | Select Inputs | $1.0 / 1.0$ |
| $\mathrm{CP}_{0}$ | First Stage Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| $\mathrm{CP}_{1}$ | Three Stage Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ |
| $\overline{M S}$ | Master Set Input (Active LOW) | $1.0 / 1.0$ |
| $\overline{M R}$ | Master Reset Input (Active LOW) | $1.0 / 1.0$ |
| $\mathrm{Q}_{0}$ | First Stage Output | $16 / 8.0$ |
| $\mathrm{Q}_{0}$ | Complementary First Stage Output | $16 / 8.0$ |
| $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | Three Stage Counter Outputs | $16 / 8.0$ |
| $\mathrm{Q}_{3}$ | Complementary Last Stage Output | $20 / 10$ |

FUNCTIONAL DESCRIPTION - The '05 consists of four master/slave flip-flops which are separated into two functional units - a single toggle stage and a three stage synchronous counter. All four flip-flips change state on the LOW-to-HIGH transition of the clock. The three stage counter can be programmed with external connections to provide moduli of either $5,6,7$ or 8 . This basic configuration allows synchronous binary counting by the last three stages and independent modulo 2 operation with the first single stage.

A four stage binary counter with a modulo of $10,12,14$ or 16 is obtained by applying the incoming clock to the single toggle stage and feeding its negation output to the clock input of the three stage counter. A 4-stage divider with $50 \%$ duty cycle output is produced by feeding the incoming clock to the three stage counter and clocking the single stage with the $\bar{Q}_{3}$ output. In either the binary or $50 \%$ division mode the modulo $(10,12,14,16)$ is determined by the external programming connections for the three stage counter. These 4-stage counters or dividers are not fully synchronous (semisynchronous) but have only one flip-flop ripple delay in either configuration. Counter moduli other than 10,12,14, 16 can be formed with a few extra gates.

Several '05 variable modulus counters programmed in any modulo can be connected together without extra logic to form asynchronous (ripple) type multistage counters. This is done by connecting the $\bar{Q}_{3}$ output of the less significant counter to the clock input of the following counter.

The Master Set and Reset will asynchronously set or reset all four stages when activated. The active LOW Reset input when LOW will clear the counter, overriding the clock and forcing the outputs $Q_{0}-Q_{3} L O W$ and outputs $\bar{Q}_{0}, \bar{Q}_{3} H I G H$. The active LOW Set input when LOW will preset the counter, overriding the clock and forcing the outputs $Q_{0}-Q_{3} H I G H$ and outputs $\bar{Q}_{0}, \bar{Q}_{3}$ LOW. The master set provides a synchronous clear, since the first clock pulse following the asynchronous master set will reset all stages. This action is independent of the molulo programmed.


## COUNTING MODE

The following are rules specifying the external connections required for various counter and divider modulos.

ASYNCHRONOUS MODE

| INPUTS | OUTPUTS |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\overline{M S}$ | $\overline{M R}$ | $Q_{0}$ | $\bar{Q}_{0}$ | $Q_{1}$ | $\bar{Q}_{2}$ | $Q_{3}$ | $\bar{Q}_{3}$ |
| $L$ | $H$ | $H$ | $L$ | $H$ | $H$ | $H$ | $L$ |
| $H$ | $L$ | $L$ | $H$ | $L$ | $L$ | $L$ | $H$ |
| $H$ | $H$ | COUNT $^{*}$ |  |  |  |  |  |

[^53]PROGRAMMING CONNECTIONS FOR LAST THREE STAGES

CONNECTIONS FOR MODULO

| $S_{0}$ | $S_{1}$ | MODULO |
| :--- | :--- | :---: |
| $N C$ | $N C$ | 5 |
| $Q_{1}$ | $N C$ | 6 |
| $N C$ | $Q_{1}$ | 6 |
| $Q_{2}$ | $N C$ | 7 |
| $N C$ | $Q_{2}$ | 7 |
| $Q_{1}$ | $Q_{2}$ | 8 |
| $Q_{2}$ | $Q_{1}$ | 8 | 10, 12, 14, 16 BINARY COUNTERS AND 50\% DUTY CYCLE DIVIDERS

NC = Not Connected

## ALTERNATE PROGRAMMING CONNECTIONS

 FOR LAST THREE STAGES**| MODULO | INPUTS |  | OUTPUT | AVAILABLE <br> OUTPUT <br> FAN-OUT |
| :---: | :---: | :---: | :---: | :---: |
| 5 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ |  | $\mathrm{Q}_{3}$ |
| $\mathrm{Q}_{3}$ | $\mathrm{Q}_{3}$ | $14 / 8.0$ |  |  |
| 6 | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{1}$ | $14 / 7.0$ |
| 7 | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{2}$ | $14 / 7.0$ |
| 8 | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{2}$ | $15 / 7.0$ |
| 8 | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{1}$ | $15 / 7.0$ |

**The alternate programming connections program the counter and conveniently terminate unused select inputs (NC). Since these inputs form the inputs to a single NAND gate (See logic diagram), their connection to the counter outputs for the various count modulos provides the indicated output drive.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Isc | Output Short Circuit Current | -20 | -70 | mA | VCC $=$ Max, VOUT $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 66 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| AC CHAR | CTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+$ | C (S | ion 3 | aveforms | and load configurations) |
| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Count Frequency | 23 |  | MHz | Modulo 16 ( $S_{0}$ to $Q_{1}, S_{1}$ to |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay CPo to $\bar{Q}_{3}$ (Modulo 16 Connection) |  | $\begin{aligned} & 38 \\ & 48 \end{aligned}$ | ns | $\mathrm{Q}_{2}, \mathrm{Q}_{0}$ to $\mathrm{CP}_{1}$, Input to CP ) <br> Figs. 3-1, 3-8 |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\mathrm{CP}_{0}$ to $\mathrm{Q}_{0}$ |  | $\begin{aligned} & 21 \\ & 30 \end{aligned}$ | ns | Modulo-16 <br> Figs. 3-1, 3-8 |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\mathrm{CP}_{1}$ to $\overline{\mathrm{Q}}_{3}$ or $\bar{Q}_{3}$ |  | $\begin{aligned} & 23 \\ & 30 \end{aligned}$ | ns | Modulo-8 <br> Figs. 3-1, 3-8 |
| tpL | Propagation Delay $\overline{\mathrm{MS}}$ to $\mathrm{Q}_{1}$ |  | 26 | ns | Modulo-8 <br> Figs. 3-1, 3-16 |
| tPHL | Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{1}$ |  | 35 | ns | Modulo-8 <br> Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{t}_{w}$ | CP0 Pulse Width | 22 |  | ns | Fig. 3-8 |
| tw | $\overline{\mathrm{MR}}$ or $\overline{\mathrm{MS}}$ Puise Width | 24 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{\mathrm{MS}}$ to $\mathrm{CP}_{1}$ | 25 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{\mathrm{MR}}$ to $\mathrm{CP}_{1}$ | 30 |  | ns | Fig. 3-16 |

## 9307 7-SEGMENT DECODER

DESCRIPTION - The '07 7-segment decoder is designed to accept four inputs in 8421 BCD code and provide the appropriate outputs to drive a 7 -segment numerical display. The decoder can be used with 7 -segment incandescent lamp, neon, electro-luminescent, or CRT numeric displays.

- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION of Leading-EDGE ZEROES
- LAMP INTENSITY MODULATION CAPABILITY
- LAMP TEST FACILITY
- BLANKING INPUT
- ACTIVE HIGH OUTPUTS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9307PC |  | 9B |
| Ceramic DIP (D) | A | 9307DC | 9307DM | 6B |
| Flatpak (F) | A | 9307FC | 9307FM | 4L |

LOGIC SYMBOL


CONNECTION DIAGRAM PINOUT A

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $93 X X$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $A_{0}-A_{3}$ | BCD Inputs | $0.25 / 1.0$ |
| $\overline{R B I}$ | Ripple Blanking Input (Active LOW) | $0.25 / 0.5$ |
| $\overline{L T}$ | Lamp Test Input (Active LOW) | $1.25 / 4.0$ |
| $\overline{R B O}$ | Ripple Blanking Output (Active LOW) | $1.75 / 1.5$ |
| $\mathrm{a}-\mathrm{g}$ | Segment Outputs (Active HIGH) | $0 / 6.25$ |

FUNCTIONAL DESCRIPTION - The '07 7-segment decoder accepts a 4-bit BCD 8421 code input and produces the appropriate outputs for selection of segments in a 7-segment matrix display used for representing the decimal numbers 0-9. The seven outputs ( $a, b, c, d, e, f, g$ ) of the decoder select the corresponding segments in the matrix shown in Figure a. The numeric designations chosen to represent the decimal numbers are shown in Figure b, together with the resulting displays for input code configurations in excess of binary nine.

The decoder has active HIGH outputs so that a buffer transistor may be used directly to provide the high currents required for incandescent displays. If additional base drive current is required external resistors may be added from the supply voltage to the seven segment outputs of the decoders. If additional base drive current is required external resistors may be added from the supply voltage to the seven segment outputs of the decoders. The value of this resistor is constrained by the 10 mA current sinking capability of the output transistors of the circuit.

The device has provision for automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03 . Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output ( $\overline{\mathrm{RBO}}$ ) of a decoder to the Ripple Blanking Input ( $\overline{\mathrm{RBI})}$ ) of the next lower stage device. The most significant decoder stage should have the $\overline{\mathrm{RBI}}$ input grounded; and, since suppression of the least significant integer zero in a number is not usually desired, the $\overline{\mathrm{RBI}}$ input of this decoder stage should be left open. A similar procedure for the fractional part of a display will provide automatic suppression of trailing-edge zeroes.

The decoder has an active LOW input Lamp Test which overrides all other input combinations and enables a check to be made on'possible display malfunctions. The $\overline{\text { RBO }}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL gates.


TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { LT }}$ | $\overline{\text { RBI }}$ | A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | a | b | c | d | e | $f$ | g | $\overline{\text { RBO }}$ |  |
| L | x | X | X | X | x | H | H | H | H | H | H | H | H |  |
| H | L | L | L | L | L | L | L | L | L | L | L | L | L | 0 |
| H | H | L | L | L | L | H | H | H | H | H | H | L | H | 0 |
| H | X | H | L | L | L | L | H | H | L | L | L | L | H | 1 |
| H | x | L | H | L | L | H | H | L | H | H | L | H | H | 2 |
| H | X | H | H | L | L | H | H | H | H | L | L | H | H | 3 |
| H | X | L | L | H | L | L | H | H | L | L | L | H | H | 4 |
| H | x | H | L | H | L | H | L | H | H | L | H | H | H | 5 |
| H | x | L | H | H | L | H | L | H | H | H | H | H | H | 6 |
| H | x | H | H | H | L | H | H | H | L | L | L | L | H | 7 |
| H | X | L | L | L | H | H | H | H | H | H | H | H | H | 8 |
| H | $x$ | H | L | L | H | H | H | H | H | L | H | H | H | 9 |
| H | X | L | H | L | H | L | L | L | H | H | L | H | H | 10 |
| H | x | H | H | L | H | L | L | L | H | L | L | H | H | 11 |
| H | X | L | L | H | H | L | H | H | L | L | H | H | H | 12 |
| H | x | H | L | H | H | H | L | H | H | L | H | H | H | 13 |
| H | X | L | H | H | H | L | L | L | H | H | H | H | H | 14 |
| H | X | H | H | H | H | L | L | L | L | L | L | L | H | 15 |

$H=$ HIGH Voltage Level $\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial $X=$ Immaterial


Fig. a Segment Designation


Fig. b Numerical Designations

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  |  | 93XX |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |  |
| VOH | Output HIGH <br> Voltage | at $\mathrm{a}-\mathrm{g}$ |  | 4.3 |  | V | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Min} \\ & \mathrm{lOH}=0 \mathrm{~mA} \end{aligned}$ |  |
|  |  | at $\overline{\mathrm{RBO}}$ | $\frac{\mathrm{XM}}{\mathrm{XC}}$ | $\begin{aligned} & 3.0 \\ & 2.7 \end{aligned}$ |  | V |  |  |
| Vol | Output LOW Voltage | at $\mathrm{a}-\mathrm{g}$ | $\frac{\mathrm{XM}}{\mathrm{XC}}$ | $\begin{array}{r} 0.4 \\ 0.45 \end{array}$ |  | V | IOL $=12.5 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  |  | XC | $\begin{array}{r} 0.4 \\ 0.45 \end{array}$ |  |  | IOL $=11.5 \mathrm{~mA}$ |  |
|  |  | at $\overline{\text { RBO }}$ | XC |  |  | V | $\mathrm{IOL}=2.75 \mathrm{~mA}$ |  |
|  |  | at $\mathrm{a}-\mathrm{g}$ | XM |  | $\begin{array}{r} 0.4 \\ 0.45 \end{array}$ | V | $\mathrm{loL}=10 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Min}$ |
|  |  |  | XM |  | 0.4 |  |  |  |
|  |  | at RBO | XC |  | 0.45 | V | $\mathrm{loL}=2.4 \mathrm{~mA}$ |  |
| $\mathrm{I}_{\mathrm{A}}$ | Available Output Current at a-g |  | XM | $\begin{aligned} & -1.0 \\ & -1.1 \end{aligned}$ |  | mA | Vout $=0.85 \mathrm{~V}$ | $\begin{gathered} v V_{C C}=M i n \\ V T_{A}=M a x \\ \hline \end{gathered}$ |
|  |  |  | XC |  |  | Vout $=0.75 \mathrm{~V}$ |  |  |  |
| los | Output Short Circuit Current at a-g |  | XM |  | -3.7 |  | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { Vout }=0 \mathrm{~V} \end{aligned}$ |  |
|  |  |  | XC |  | -4.0 |  |  |  |  |
| Icc | Power Supply Current |  | XM |  | 73 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |  |
|  |  |  | XC |  | 82 |  |  |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=30 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphi } \end{aligned}$ | Propagation Delay <br> $\mathrm{A}_{0}-\mathrm{A}_{3}$ or $\overline{\mathrm{RBT}}$ to $\mathrm{a}-\mathrm{g}$ or $\overline{\mathrm{RBO}}$ |  | $\begin{aligned} & 750 \\ & 750 \end{aligned}$ | ns | Fig. 3-20 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\left.\begin{array}{l} D_{0 a}-D_{3 a} \\ D_{0 b}-D_{3 b} \end{array}\right\}$ | Parallel Latch Inputs | 1.5/1.5 | 0.75/0.375 |
| $\bar{E}_{0 a}, \bar{E}_{1 a}, \bar{E}_{0 b}, \bar{E}_{1 b}$ | AND Enable Inputs (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\overline{\mathrm{MR}} \mathrm{a}, \overline{\mathrm{MR}}_{\mathrm{b}}$ | Master Reset Inputs (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\left.\begin{array}{l} Q_{0 a}-Q_{3 a} \\ Q_{0 b}-Q_{3 b} \end{array}\right\}$ | Parallel Latch Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - Data can be entered into the latch when both of the enable inputs are LOW. As long as this logic condition exists, the output of the latch will follow the input. If either of the enable inputs goes HIGH, the data present in the latch at that time is held in the latch and is no longer affected by data input. The master reset overrides all other input conditions and forces the outputs of all the latches LOW when a LOW signal is applied to the Master Reset input.

TRUTH TABLE

| $\overline{M R}$ |  |  |  | $\bar{E}_{0}$ | $\bar{E}_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $D$ | $Q_{n}$ | OPERATION |  |  |  |
| $H$ | $L$ | $L$ | $L$ | $L$ | Data Entry |
| $H$ | $L$ | $L$ | $H$ | $H$ | Data Entry |
| $H$ | $L$ | $H$ | $X$ | $Q_{n-1}$ | Hold |
| $H$ | $H$ | $L$ | $X$ | $Q_{n-1}$ | Hold |
| $H$ | $H$ | $H$ | $X$ | $Q_{n-1}$ | Hold |
| $L$ | $X$ | $X$ | $X$ | $L$ | Reset |

$Q_{n-1}=$ Previous Output State
$Q_{n}=$ Present Output State
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 100 | 29 | mA | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{n}$ to $Q_{n}$ | $\begin{aligned} & 30 \\ & 22 \end{aligned}$ | $\begin{aligned} & 45 \\ & 38 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tpLH tPHL | Propagation Delay $D_{n}$ to $Q_{n}$ | $\begin{aligned} & 15 \\ & 18 \end{aligned}$ | $\begin{aligned} & 27 \\ & 29 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tPHL | Propagation Delay MR to $Q_{n}$ | 22 | 30 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{ts}_{5}(\mathrm{H})$ | Setup Time HIGH, $\mathrm{D}_{\mathrm{n}}$ to $\bar{E}_{\mathrm{n}}$ | 10 |  | 8.0 |  | ns | Fig. 3-13 |
| $\mathrm{th}^{\text {( }} \mathrm{H}$ ) | Hold Time HIGH, $\mathrm{D}_{\mathrm{n}}$ to $\bar{E}_{\mathrm{n}}$ | -2.0 |  | 0 |  | ns |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{L})$ | Setup Time LOW, $\mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{E}}_{\mathrm{n}}$ | 12 |  | 18 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW, $\mathrm{D}_{\mathrm{n}}$ to $\bar{E}_{\mathrm{n}}$ | 8.0 |  | 4.0 |  | ns |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\mathrm{E}_{\mathrm{n}}$ Pulse Width LOW | 18 |  | 30 |  | ns | Fig. 3-21 |
| tw (L) | $\overline{M R}$ Pulse Width LOW | 18 |  | 32 |  | ns | Fig. 3-16 |
| trec | Recovery Time, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}}_{\mathrm{n}}$ | 8.0 |  | 10 |  | ns | Fig. 3-16 |

# 9309 <br> 93L09 <br> <br> DUAL 4-INPUT MULTIPLEXER 

 <br> <br> DUAL 4-INPUT MULTIPLEXER}

DESCRIPTION — The '09 monolithic dual 4-input digital multiplexers consist of two multiplexing circuits with common input select logic. Each circuit contains four inputs and fully buffered complementary outputs. In addition to multiplexer operation, the '09 can generate any two function of three variables. Active pullups in the outputs ensure high drive and high speed performance. Because or its high speed performance and on-chip select decoding, the '09 may be cascaded to multiple levels so that any number of lines can be multiplexed onto a single output bus.

- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED COMPLEMENTARY OUTPUTS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \text { VCC }=+5.0 \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9309PC, 93L09PC |  | 9B |
| Ceramic DIP (D) | A | 9309DC, 93L09DC | 9309DM, 93L09DM | 6B |
| Flatpak <br> (F) | A | 9309FC, 93L09FC | 9309FM, 93L09FM | 4L |

CONNECTION DIAGRAM PINOUT A


$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\operatorname{Pin} 16 \\
& \mathrm{GND}=\operatorname{Pin} 8
\end{aligned}
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\begin{aligned} & \text { 93XX (U.L) } \\ & \text { HIGH/LOW } \end{aligned}$ | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}, \mathrm{~S}_{1}$ | Common Select Inputs | 1.0/1.0 | 0.5/0.25 |
| 10a-13a | Multiplexer A Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Za}^{1}$ | Multiplexer A Output | 20/10 | $\begin{gathered} 10 / 5.0 \\ (3.0) \end{gathered}$ |
| $\bar{Z}_{\mathrm{a}}$ | Complementary Multiplexer A Output | 18/9.0 | $\begin{array}{r} 10 / 5.0 \\ \text { (3.0) } \end{array}$ |
| lob-l3b | Multiplexer B Inputs | 1.0/1.0 | 0.5/0.25 |
| Z ${ }_{\text {b }}$ | Multiplexer B Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ \text { (3.0) } \end{array}$ |
| $\bar{Z}_{\text {b }}$ | Complementary Multiplexer B Output | 18/9.0 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |

FUNCTIONAL DESCRIPTION - The '09 dual 4-input multiplexers are able to select two bits of either HIGH or LOW data or control from up to four sources, in one package. The ' 09 is the logical implementation of two-pole, four-position switch, with the position of the switch being set by the logic levels supplied to the two select inputs. Both assertion and negation outputs are provided for both multiplexers. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& Z_{\mathrm{a}}=1_{0 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{l}_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{l}_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{l}_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0} \\
& Z_{b}=l_{\mathrm{l} b} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}
\end{aligned}
$$

The ' 09 is frequently used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the select inputs. A less obvious application is as a function generator. The '09 can generate two functions of three variables. This is useful for implementing random gating functions.

TRUTH TABLE

| SELECT <br> INPUTS |  | INPUTS (a or b) |  |  | OUTPUTS <br> (a or b) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| So | S $_{1}$ | I $_{0}$ | I $_{1}$ | I $_{2}$ | I $_{3}$ | Z | $\overline{\text { Z }}$ |
| L | L | L | X | X | X | L | H |
| L | L | H | X | X | X | H | L |
| H | L | X | L | X | X | L | H |
| H | L | X | H | X | X | H | L |
| L | H | X | X | L | X | L | H |
| L | H | X | X | H | X | H | L |
| H | H | X | X | X | L | L | H |
| H | H | X | X | X | H | H | L |

[^54]
## LOGIC DIAGRAM


$\mathbf{z a}_{\mathrm{a}} \overline{\mathbf{z}}_{\mathrm{a}}$

$$
\mathbf{z}_{\mathrm{b}} \overline{\mathbf{z}}_{\mathrm{b}}
$$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current |  |  | -10 | -40 | mA | VCC $=$ Max, Vout $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 44 |  | 11.5 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load definitions)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay So to $\mathrm{Za}_{\mathrm{a}}$ | $\begin{aligned} & 29 \\ & 27 \end{aligned}$ | $\begin{aligned} & 70 \\ & 60 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay So to $\bar{Z}_{a}$ | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | $\begin{aligned} & 55 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay loa to $\bar{Z}_{a}$ | $\begin{aligned} & 12 \\ & 13 \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay loa to $\mathrm{Z}_{\mathrm{a}}$ | $\begin{aligned} & 20 \\ & 21 \end{aligned}$ | $\begin{aligned} & 70 \\ & 65 \end{aligned}$ | ns | Figs. 3-1, 3-5 |

## 9310 • 9316 93L10 • 93L16 93S10 • 93S16 BCD DECADE COUNTER/ 4-BIT BINARY COUNTER

DESCRIPTION - The '10 is a high speed synchronous BCD decade counter and the ' 16 is a high speed synchronous 4 -bit binary counter. They are synchronously presetable, multifunctional MSI building blocks useful in a large number of counting, digital integration and conversion applications. Several states of synchronous operation are obtainable with no external gating packages required through an internal carry lookahead counting technique.

- SYNCHRONOUS COUNTING AND PARALLEL ENTRY
- DECODED TERMINAL COUNT
- BUILT-IN CARRY CIRCUITRY
- EASY INTERFACING WITH DTL, LPDTL, AND TTL FAMILIES

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW | 93S (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| CEP | Count Enable Parallel Input | 1.0/1.0 | 0.5/0.25 | 2.5/2.5 |
| CET | Count Enable Trickle Input | 2.0/2.0 | 1.0/0.5 | 3.1/3.1 |
| CP | Clock Pulse Input (Active Rising Edge) | 2.0/2.0 | 1.0/0.5 | 3.1/3.1 |
| $\overline{M R}$ | Asynchronous Master Reset Input (Active LOW) | 1.0/1.0 | 0.5/0.25 | 1.25/1.25 |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | 0.67/0.67 | 0.33/0.17 | 1.25/1.25 |
| $\overline{\text { PE }}$ | Parallel Enable Input (Active LOW) | 2.0/2.0 | 1.0/0.5 | 2.5/2.5 |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Flip-flop Outputs | 16/8.0 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 20/10 |
| TC | Terminal Count Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |


'16, 'L16



FUNCTIONAL DESCRIPTION - The'10 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it increments to state 0 (LLLL). The '16 counts modulo-16 in binary sequence. From state 15 (HHHH) it increments to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset, parallel load, count-up and hold. Four control inputs - Master Reset ( $\overline{\mathrm{MR}}$ ) Parallel Enable ( $\overline{\mathrm{PE}}$ ), Count Enable Parallel (CEP) and Count Enable Trickle (CET) - determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{\mathrm{MR}}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{P E}$ and $\overline{M R}$ HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The TTL and LP-TTL versions ('10, '16, 'L10 and 'L16 as opposed to the 'S10 and 'S16) contain masterslave flipflops which are "next-state catching" because of the JK feedback. This means that when CP is LOW, information that would change the state of a flip-flop, whether from the counting logic or the parallel entry logic if either mode is momentarily enabled, enters the master and is locked in. Thus to avoid inadvertently changing the state of a master latch, and the subsequent transfer of the erroneous information to the slave when the clock rises, it is necessary to insure that neither the counting mode, nor the parallel entry mode is momentarily enabled while CP is LOW. The S-TTL versions ('S10 and 'S16) use D-type edge-triggered flip-flops and changing the $\overline{P E}$, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of $C P$, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state ( 9 for the decade counters, 15 for the binary counters - fully decoded in both types). To implement synchronoús multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in Figures a and b. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the state diagrams.

Multistage Counting - The '10/'16 counters may be cascaded to provide multistage synchronous counting. Two methods commonly used to cascade these counters are shown in Figures a and b.

In multistage counting, all less significant stages must be at their terminal count before the next more significant counter is enabled. The ' $10 /$ ' 16 internally decodes the terminal count condition and "ANDs" it with the CET input to generate the terminal count (TC) output. This arrangement allows one to perform series enabling by connecting the TC output (enable signal) to the CET input of the following stage, Figure a. The setup requires very few interconnections, but has the following drawback: since it takes time for the enable to ripple through the counter stages, there is a reduction in maximum counting speed. To increase the counting rate, it is necessary to decrease the propagation delay of the TC signal, which is done in the second method.

The scheme illustrated in Figure b permits multistage counting, limited by the fan-out of the terminal count. The CEP input of the '10/'16 is internally "ANDed" with the CET input and as a result, both must be HIGH for the counter to be enabled. The CET inputs are connected as before except for the second stage. There the CET input is left floating and is therefore HIGH. Also, all CEP inputs are connected to the terminal output of the first stage. The advantage of this method is best seen by assuming all stages except the second and last are in their terminal condition. As the second stage advances to its terminal count, an enable is allowed to trickle down to the last counter stage, but has the full cycle time of the first counter to reach it. Then as the TC of the first stage goes active (HIGH), all CEP inputs are activated, allowing all stages to count on the next clock.

MODE SELECT TABLE

| INPUTS |  |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{P E}$ | CEP | CET | CP |  |
| L | X | X | X | X | Clear; All Outputs LOW |
| H | L | X | X | - | Parallel Load; $\mathrm{P}_{\mathrm{n}} \longrightarrow \mathrm{Q}_{\mathrm{n}}$ |
| H | H | L | X | X | Hold |
| H | H | X | L | X | Hold; TC = LOW |
| H | H | H | H | - | Count Up |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

LOGIC EQUATIONS
Count Enable $=$ MR $\bullet$ PE $\cdot$ CEP $\cdot$ CET
Terminal Count $=$ CET $\bullet Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3}$ ('16)
Terminal Count $=$ CET $\bullet \mathrm{Q}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \mathrm{Q}_{3}$ ('10)

## STATE DIAGRAMS

'S10

'10, 'L10

'16, 'S16, 'L16


NOTE: The ' 20 can be preset to any state, but will not count beyond 9 . If preset to state $10,11,12,13,14$ or 15 , it will return to its normal sequence within two clock pulses.


Fig. a Synchronous Multistage Counting Scheme (Slow)


Fig. b Synchronous Multistage Counting Scheme (Fast)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | 93L |  | 935 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | -20 | -80 | -2.5 | -25 | -40 | -100 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
| ICC | Power Supply Current |  | 92 |  | 27.5 |  | 127 | mA | $\begin{aligned} & V_{C C}=M a x \\ & \overline{M R}=\text { Gnd } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93 | XX | 93 | 3 L | 93 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Count Frequency | 30 |  | 13 |  | 70 |  | MHz |  |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay CP to Q |  | $\begin{aligned} & 20 \\ & 23 \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 39 \end{aligned}$ |  | $\begin{array}{r} 9.0 \\ 13 \end{array}$ | ns | Figs. 3-1, 3-8 |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay CP to TC |  | $\begin{aligned} & 35 \\ & 22 \end{aligned}$ |  | $\begin{aligned} & 66 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 18 \\ & 12 \end{aligned}$ | ns |  |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay CET to TC |  | $\begin{aligned} & 19 \\ & 19 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tphL | Propagation Delay $\overline{\mathrm{MR}}$ to Q |  | 45 |  | 62 |  | 20 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX | 93L | 935 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $P_{n}$ to CP | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 75 \\ & 75 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$ |  | ns | Fig. 3 |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold Time HIGH or LOW $P_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\overline{P E}$ to CP | Note 2 30 | Note 2 <br> 53 | $\begin{array}{r} 10 \\ 5.0 \end{array}$ |  | ns | Fig 3 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HiGH or LOW $\overline{\text { PE to CP }}$ | $\begin{aligned} & -7.0 \\ & \text { Note } 2 \end{aligned}$ | 7.0 <br> Note 2 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{ts}^{(H)} \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW CEP or CET to CP | $22$ <br> Note 1 | $26$ <br> Note 1 | $\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}_{\mathrm{t}} \text { (L) } \end{aligned}$ | Hold Time HIGH or LOW CEP or CET to CP | Note 1 0 | Note 1 <br> 10 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$ | CP Pulse Width | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$ |  | ns | Fig. 3-8 |
| $t_{w}(L)$ | $\overline{M R}$ Pulse Width LOW | 30 | 65 | 14 |  | ns | Fig. 3-16 |
| trec | Recovery Time $\overline{\mathrm{MR}}$ to CP | 15 | 55 | 5.5 |  | ns | Fig. 3-16 |
| NOTES: <br> (1) The Setup Time "ts (L)"and Hold Time "th (H)" between the Count Enable (CEP and CET) and the Clock (CP) indicate that the HIGH-to-LOW transition of the CEP and CET must occur only while the Clock is HIGH for conventional operation. <br> (2) The Setup Time "t $\mathrm{t}_{\mathrm{s}}(\mathrm{H}$ )" and Hold Time "th ( L " between the Parallel Enable ( $\overline{\mathrm{PE}}$ ) and Clock (CP) indicate that the LOW-to-HIGH transition of the PE must occur only while the Clock is HIGH for conventional operation. |  |  |  |  |  |  |  |

## 9311 <br> 93 L 11 <br> 1-OF-16 DECODER/DEMULTIPLEXER

DESCRIPTION - The ' 11 is a multipurpose decoder designed to accept four inputs and provide 16 mutually exclusive outputs. The 9311 is a faster replacement for the 74154.

MUTUALLY EXCLUSIVE OUTPUTS
HIGH CAPACITIVE DRIVE CAPABILITY

- DEMULTIPLEXING CAPABILITY
- TYPICAL POWER DISSIPATION OF 175 mW FOR '11, 58 mW FOR 'L11 - 2-Input enable gate

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
|  | A | $9311 \mathrm{PC}, 93 \mathrm{~L} 11 \mathrm{PC}$ |  | 9 N |
| Ceramic <br> DIP (D) | A | $9311 \mathrm{DC}, 93 \mathrm{~L} 11 \mathrm{DC}$ | $9311 \mathrm{DM}, 93 \mathrm{~L} 11 \mathrm{DM}$ | 6 N |
| Flatpak <br> (F) | A | $9311 \mathrm{FC}, 93 \mathrm{~L} 11 \mathrm{FC}$ | $9311 \mathrm{FM}, 93 \mathrm{~L} 11 \mathrm{FM}$ | 4 M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\overline{\mathrm{E}}_{0}, \overline{\mathrm{E}}_{1}$ | $1.0 / 1.0$ | $0.5 / 0.25$ |  |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{15}$ | AND Enable Inputs (Active LOW) | $20 / 10$ | $10 / 5.0$ |
|  | Decoder Outputs (Active LOW) |  | $(3.0)$ |

## LOGIC SYMBOL



FUNCTIONAL DESCRIPTION - The'11 decoder accepts four inputs and provides 16 mutually exclusive active LOW outputs, as shown by the logic symbol. The active LOW outputs facilitate addressing other MSI units with active LOW enable. The ' 11 can demultiplex data by routing it from one input to one of 16 possible decoder outputs. The desired output is addressed and the data is applied to one of the enable inputs. Providing that the other enable is LOW, the addressed output will follow the state of the applied data.

TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{0}$ | $\bar{E}_{1}$ | $A_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ | $\bar{O}_{10}$ |  |  |  |  | $\bar{O}_{15}$ |
| H | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | X | X | X | x | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | L | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | L | L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | H | L | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | H | L | L | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | L | H | L | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H |
| L | L | H | L | H | L | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H |
| L | L | L | H | H | L | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H |
| L | L | H | H | H | L | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H |
| L | L | L | L | L | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H |
| L | L | H | L | L | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H |
| L | L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H |
| L | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H |
| L | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H |
| L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H |
| L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H |
| L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current | XM | -20 | -55 | -2.5 | -25 | mA | $\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
|  |  | XC | -20 | -57 | -2.5 | -25 |  |  |
| Icc | Power Supply Current | XM |  | 49 |  | 16.5 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC |  | 56 |  | 16.5 |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ to $O_{n}$ | 31 28 | 75 85 | ns | Figs. 3-1, 3-20 |
| tpLH tpHL | Propagation Delay $\mathrm{E}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n}}$ | 23 | 60 | ns | Figs. 3-1, 3-5 |

DESCRIPTION - The '12 is a monolithic, high speed, 8-input digital multiplexer circuit. It provides, in one package, the ability to select one bit of data from up to eight sources. The '12 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED COMPLEMENTARY OUTPUTS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 9312PC, 93L12PC } \\ & \text { 93S12PC } \end{aligned}$ |  | 9B |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 9312DC, 93L12DC } \\ & \text { 93S12DC } \end{aligned}$ | $\begin{aligned} & \text { 9312DM, 93L12DM } \\ & \text { 93S12DM } \end{aligned}$ | 6B |
| Flatpak (F) | A | $\begin{aligned} & \text { 9312FC, 93L12FC } \\ & \text { 93S12FC } \end{aligned}$ | $\begin{aligned} & \text { 9312FM, 93L12FM } \\ & \text { 93S12FM } \end{aligned}$ | 4L | <br> \title{

## 9312 <br> \title{ \section*{9312 <br> <br> <br> 93 L 12 <br> <br> <br> 93 L 12 <br> <br> <br> 93 S 12 <br> <br> <br> 93 S 12 <br> <br> <br> 8-INPUT MULTIPLEXER} 

 <br> <br> <br> 8-INPUT MULTIPLEXER}}

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | $\begin{aligned} & \text { 93S (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}-\mathrm{S}_{2}$ | Select Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| 10-17 | Multiplexer Inputs | 1.0/1.0 | 1.25/1.25 | 0.5/0.25 |
| Z | Multiplexer Output | 20/10 | 25/12.5 | $\begin{gathered} 10 / 5.0 \\ (3.0) \end{gathered}$ |
| Z | Complementary Multiplexer Output | 20/10 | 25/12.5 | $\begin{gathered} 10 / 5.0 \\ (3.0) \end{gathered}$ |

FUNCTIONAL DESCRIPTION - The'12 is a logical implementation of a single pole, eight position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Enable input ( E ) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs. The logic function provided at the output is:

$$
\begin{gathered}
Z=E \bullet\left(I_{0} \bullet \bar{S}_{0} \bullet \bar{S}_{1} \bullet \bar{S}_{2}+I_{1} \bullet S_{0} \bullet \bar{S}_{1} \bullet \bar{S}_{2}+I_{2} \bullet \bar{S}_{0} \bullet S_{1} \bullet \bar{S}_{2}+I_{3} \bullet S_{0} \bullet S_{1} \bullet \bar{S}_{2}+I_{4} \bullet \bar{S}_{0} \bullet \bar{S}_{1} \bullet S_{2}+I_{5}\right. \\
\left.\bullet S_{0} \bullet \bar{S}_{1} \bullet S_{2}+I_{6} \bullet \bar{S}_{0} \bullet S_{1} \bullet S_{2}+I_{7} \bullet S_{0} \bullet S_{1} \bullet S_{2}\right) .
\end{gathered}
$$

The '12 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the ' 12 can provide any logic function of four variables and its negation. Thus any number of random logic elements used to generate unusual truth tables can be replaced by one '12.

TRUTH TABLE

| INPUTS |  |  |  |  |  |  |  |  |  |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{E}}$ | S2 | $S_{1}$ | So | 10 | 11 | $\mathrm{I}_{2}$ | 13 | 14 | 15 | 16 | 17 | $\bar{Z}$ | Z |
| H | X | X | X | X | X | X | X | X | X | X | X | H | L |
| L | L | L | L | $L$ | X | X | X | X | X | X | $X$ | H | L |
| L | L | L | L | H | X | X | X | X | X | X | X | L | H |
| L | L | L | H | X | L | X | $x$ | X | $X$ | X | $X$ | H | L |
| L | L | L | H | X | H | X | X | $X$ | $X$ | X | $X$ | L | H |
| L | L | H | L | X | X | L | X | X | X | X | X | H | L |
| L | L | H | L | X | X | H | X | X | X | X | $X$ | L | H |
| L | L | H | H | $x$ | X | X | L | X | $X$ | $x$ | X | H | L |
| L | L | H | H | X | $X$ | X | H | X | X | X | X | L | H |
| L | H | L | L | X | X | X | X | L | X | X | X | H | L |
| L | H | L | L | X | X | X | X | H | X | X | X | L | H |
| L | H | L | H | X | $X$ | X | X | X | L | X | X | H | L |
| L | H | L | H | X | $X$ | X | $X$ | $X$ | H | $X$ | X | L | H |
| L | H | H | L | X | X | X | X | X | X | L | X | H | L |
| L | H | H | L | X | $X$ | X | X | X | X | H | X | L | H |
| L | H | H | H | X | X | X | X | X | X | X | L | H | L |
| L | H | H | H | X | X | X | X | X | X | X | H | L | H |

[^55]
## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | 935 |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current |  | 44 |  | 62 |  | 13.3 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93 | XX | 93 |  | 93 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay So to Z |  | $\begin{aligned} & 34 \\ & 34 \end{aligned}$ |  | $\begin{aligned} & 17 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 60 \\ & 75 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH <br> tPHL | Propagation Delay So to $\bar{Z}$ |  | 24 26 |  | 16 15 |  | $\begin{aligned} & 45 \\ & 65 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}$ to $Z$ |  | 30 30 |  | 13 16 |  | 50 70 | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$ |  | $\begin{aligned} & 20 \\ & 23 \end{aligned}$ |  | $\begin{aligned} & 14 \\ & 11 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 60 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay In to Z |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | 12 12 |  | 60 | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay In to $\bar{Z}$ |  | $\begin{aligned} & 14 \\ & 16 \end{aligned}$ |  | $\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$ |  | $\begin{aligned} & 45 \\ & 45 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

## 9313 <br> 8-INPUT MULTIPLEXER <br> (With Open-Collector Output)

DESCRIPTION - The ' 13 is an 8 -input multiplexer with open-collector output. It has the same pinning and logic configuration as the '12, but with an open-collector $\overline{\mathbf{Z}}$ output which allows for easy expansion of input terms. The device can select one bit of data from up to eight sources. The '13 has an active LOW enable and internal select decoding.

- PIN FOR PIN REPLACEMENT FOR THE SIGNETICS 8231
- SAME PINNING AND LOGIC CONFIGURATION AS THE 9312 BUT WITH OPEN-COLLECTOR OUTPUT
- OPEN-COLLECTOR OUTPUT $\bar{Z}$ FOR EASY EXPANSION OF INPUT TERMS (WIRED-OR APPLICATIONS)
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED Z OUTPUT

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9313PC |  | 9B |
| Ceramic DIP (D) | A | 9313DC | 9313DM | 6B |
| Flatpak (F) | A | 9313FC | 9313FM | 4L |


$V_{c c}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{S}_{0}-\mathrm{S}_{2}$ | Select Inputs | $1.0 / 1.0$ |
| E | Enable Input (Active LOW) | $1.0 / 1.0$ |
| $10-17$ | Multiplexer Inputs | $1.0 / 1.0$ |
| $Z$ | Multiplexer Output | $20 / 10$ |
| $\bar{Z}^{*}$ | Complementary Multiplexer Output | OC $^{* * / 10}$ |

[^56]FUNCTIONAL DESCRIPTION - The'13 is a logical implementation of a single pole, eight-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. An open-collector output $\overline{\underline{Z}}$ is provided for easy expansion of input terms. Also a fully buffered $Z$ output is available. The Enable Input ( $\overline{\mathrm{E}}$ ) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$
\begin{array}{r}
Z=\overline{\mathrm{E}} \bullet\left(I_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+I_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+I_{2} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+I_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{4} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{5}\right. \\
\left.\bullet \mathrm{S}_{0} \bullet \bar{S}_{1} \bullet \mathrm{~S}_{2}+I_{6} \bullet \overline{\mathrm{~S}}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+I_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right)
\end{array}
$$

The '13 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '13 can provide any logic functions of four variables and its negation.

TRUTH TABLE

| INPUTS |  |  |  | OUTPUTS |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\bar{E}$ | S $_{2}$ | S $_{1}$ | S $_{0}$ | $\bar{Z}$ | Z |
| H | X | X | X | $H^{H}$ | L |
| L | L | L | L | $\bar{I}_{0}$ | $I_{0}$ |
| L | L | L | H | $\bar{I}_{1}$ | $I_{1}$ |
| L | L | H | L | $\bar{I}_{2}$ | $I_{2}$ |
| L | L | H | H | $\bar{I}_{3}$ | $I_{3}$ |
| L | H | L | L | $\bar{I}_{4}$ | $I_{4}$ |
| L | H | L | H | $\bar{T}_{5}$ | $I_{5}$ |
| L | H | H | L | $\bar{I}_{6}$ | $I_{6}$ |
| L | H | H | H | $\bar{I}_{7}$ | $I_{7}$ |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| IOH | Output HIGH Current, $\overline{\mathbf{Z}}$ | - | 150 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{~V} \\ & \text { on Data Input, } \mathrm{V}_{\mathrm{IN}}\left(\bar{E} \& \mathrm{~S}_{\mathrm{n}} \text { Inputs }\right)=\mathrm{V}_{\mathrm{IL}} \\ & \text { or } \mathrm{V}_{I H} \text { per Truth Table } \end{aligned}$ |
| los | Output Short Circuit Current, Z | -20 | -70 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}$ Out $=0 \mathrm{~V}$ |
| IcC | Power Supply Current |  | 47 | mA | $V_{C C}=$ Max, $I_{0}-l_{7}=$ Gnd |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PAR AMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphi } \end{aligned}$ | Propagation Delay So to $Z$ |  | $\begin{aligned} & 34 \\ & 34 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \\ & \hline \end{aligned}$ | Propagation Delay So to $\bar{Z}$ |  | $\begin{aligned} & 29 \\ & 28 \end{aligned}$ | ns | Figs. 3-2, 3-20 $R_{L}=400 \Omega$ |
| $\overline{\text { tpLL }}$ tPHL | Propagation Delay lo to Z |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\overline{\mathrm{tPLH}}$ tPHL | Propagation Delay lo to $\bar{Z}$ |  | $\begin{aligned} & 26 \\ & 24 \end{aligned}$ | ns | $\begin{aligned} & \text { Figs. 3-2, 3-4 } \\ & R_{L}=400 \Omega \end{aligned}$ |
| $\overline{\mathrm{tpLL}}$ tPHL | Propagation Delay $\bar{E} \text { to } Z$ |  | $\begin{aligned} & 34 \\ & 36 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\overline{\mathrm{tpLH}}$ tPHL | Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$ |  | $\begin{aligned} & 27 \\ & 29 \end{aligned}$ | ns | Figs. 3-2, 3-5 $\mathrm{R}_{\mathrm{L}}=400 \Omega$ |

## 9314 <br> 93L14 <br> QUAD LATCH

DESCRIPTION - The '14 is a multifunctional 4-bit latch designed for general purpose storage applications in high speed digital systems. All outputs have active pull-up circuitry to provide high capacitance drive and to provide low impedance in both logic states for good noise immunity.

- CAN BE USED AS SINGLE INPUT D LATCHES OR SET/RESET LATCHES
- ACTIVE LOW ENABLE GATE INPUT
- OVERRIDING MASTER RESET

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCc}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9314PC, 93L14PC |  | 9B |
| Ceramic DIP (D) | A | 9314DC, 93L14DC | 9314DM, 93L14DM | 6B |
| Flatpak <br> (F) | A | 9314FC, 93L14FC | 9314FM, 93L14FM | 4L |

CONNECTION DIAGRAM

$\mathrm{V} \mathrm{cc}=\mathrm{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | ---: |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs | $1.5 / 1.5$ | $0.75 / 0.375$ |
| $\mathrm{~S}_{0}-\mathrm{S}_{3}$ | Set Inputs (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| MR | Master Reset Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Latch Outputs | $20 / 10$ | $10 / 5.0$ |
|  |  | $(3.0)$ |  |

FUNCTIONAL DESCRIPTION - The ' 14 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the $\bar{S}_{n}$ and $D_{n}$ inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes:

D-TYPE LATCH - For D-type operation the $\overline{\mathrm{S}}$ input of a latch is held LOW. While the common Enable is active the latch output follows the $D$ input. Information present at the latch output is stored in the latch when the Enable goes HIGH.

SET/RESET LATCH - During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the $D$, input, and can be set by a LOW on the $\bar{S}$ input if the $D$ input is HIGH. It both $\bar{S}$ and $D$ inputs are LOW, the D input will dominate and the latch will be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table.

TRUTH TABLE

| $\overline{\mathrm{MR}}$ | $\bar{E}$ | D | $\overline{\mathrm{s}}$ | $Q_{n}$ | OPERATION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | L | L | L | L | D MODE |
| H | L | H | L | H |  |
| H | H | X | X | $Q_{n-1}$ |  |
| H | L | L | L | L | R/S MODE |
| H | L | H | L | H |  |
| H | L | L | H | L |  |
| H | L | H | H | $Q_{n-1}$ |  |
| H | H | x | $x$ | Q ${ }_{\text {n-1 }}$ |  |
| L | X | X | X | L | RESET |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial
$Q_{n-1}=$ Previous Output State
$Q_{n}=$ Present Output State

LOGIC DIAGRAM


| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 55 | 16.5 | mA | $\mathrm{V}_{\text {cc }}=$ Max |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $93 \times$ | XX |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tpH } \end{aligned}$ | Propagation Delay $\bar{E}$ to $Q_{n}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 45 \\ & 36 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{array}{\|l\|l\|} \text { tpLH } \\ \text { tpht } \end{array}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to $\mathrm{Qn}_{n}$ |  | $\begin{aligned} & 12 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpl ${ }^{\text {H }}$ | Propagation Delay $\overline{M R}$ to $Q_{n}$ |  | 18 |  | 30 | ns | Figs. 3-1, 3-16 |
| tPHL | Propagation Delay $\bar{S}_{n}$ to $Q_{n}$ |  | 24 |  | 33 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $D_{n}$ to $\bar{E}$ | $\begin{array}{r} 5.0 \\ 18 \\ \hline \end{array}$ |  | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to $\bar{E}$ | $\begin{array}{r} 0 \\ 5.0 \end{array}$ |  | $\begin{array}{r} 0 \\ 10 \end{array}$ |  | ns |  |
| ts (H) | Setup Time HIGH, $\mathrm{D}_{\mathrm{n}}$ to $\bar{S}_{\mathrm{n}}$ | 8.0 |  | 15 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW, $\mathrm{D}_{\mathrm{n}}$ to $\bar{S}_{\mathrm{n}}$ | 8.0 |  | 5.0 |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\bar{E}$ Pulse Width LOW | 18 |  | 30 |  | ns | Fig. 3-9 |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { MR Pulse Width LOW }}$ | 18 |  | 25 |  | ns | Fig. 3-16 |
| trec | Recovery Time, $\overline{\text { MR }}$ to $\overline{\mathrm{E}}$ | 0 |  | 5.0 |  | ns | Fig. 3-16 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address (Data) Inputs <br> $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | $0.13 / 0.94$ |
| Decoder Outputs (Active LOW) | $\mathrm{OC}^{*} / 7.0 \mathrm{~mA}$ |  |
| OC-Open Collector |  |  |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 5$ GND $=\operatorname{Pin} 12$

FUNCTIONAL DESCRIPTION - The 1-of-10 decoder/driver accepts BCD inputs from all TTL circuits and produces the correct output selection to directly drive gas filled cold cathode indicator tubes. The outputs are selected as shown in the Truth Table. It is capable of driving all known available cold cathode indicator tubes having 7.0 mA or less cathode current. Unused input codes 12 and 13 cause all the outputs to remain HIGH; no cathode will be selected. This results in the indicator tube being blanked. Using this feature for blanking may cause a slight glow to appear in the tube.

TRUTH TABLE

|  | INPUTS |  |  |  | OUTPUTS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\bar{O}_{0}$ | $\bar{O}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\bar{O}_{3}$ | $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{6}$ | $\bar{O}_{7}$ | $\bar{O}_{8}$ | $\bar{O}_{9}$ |
| 0 | L | L | L | L | L | H | H | H | H | H | H | H | H | H |
| 1 | H | L | L | L | H | L | H | H | H | H | H | H | H | H |
| 2 | L | H | L | L | H | H | L | H | H | H | H | H | H | H |
| 3 | H | H | L | L | H | H | H | L | H | H | H | H | H | H |
| 4 | L | L | H | L | H | H | H | H | L | H | H | H | H | H |
| 5 | H | L | H | L | H | H | H | H | H | L | H | H | H | H |
| 6 | L | H | H | L | H | H | H | H | H | H | L | H | H | H |
| 7 | H | H | H | L | H | H | H | H | H | H | H | L | H | H |
| 8 | L | L | L | H | H | H | H | H | H | H | H | H | L | H |
| 9 | H | L | L | H | H | H | H | H | H | H | H | H | H | L |
| 10 | L | H | L | H | H | H | L | H | H | H | H | H |  | H |
| 11 | H | H | L | H | H | H | H | L | H | H | H | H | H | L |
| 12 | L | L | H | H | H | H | H | H | H | H | H | H | H | H |
| 13 | H | L | H | H | H | H | H | H | H | H | H | H | H | H |
| 14 | L | H | H | H | H | H | H | H | H | H | L | H | H | H |
| 15 | H | H | H | H | H | H | H | H | H | H | H | L | H | H |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| VOH | Output HIGH Voltage |  | 70 |  | V | $\begin{aligned} & \text { Vcc = Max, Force } 2.0 \mathrm{~mA} \\ & \text { into HIGH Output } \end{aligned}$ |
| Vol | Output LOW Voltage | XM |  | $\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$ | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=7.0 \mathrm{~mA}$ Inputs at Threshold Voltages, ( $\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ ) as per Truth Table |
| VIH | Input HIGH Voltage |  | $\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$ |  | V | Guaranteed Input HIGH Threshold Voltage |
| VIL | Input LOW Voltage | $\frac{X M}{X C}$ |  | $\begin{array}{r} 1.1 \\ 0.85 \end{array}$ | V | Guaranteed Input LOW Threshold Voltage |
| Ion | Output HIGH Current | $\frac{\mathrm{XM}}{\mathrm{XC}}$ |  | $\begin{aligned} & 20 \\ & 40 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {Out }}=55 \mathrm{~V}$ <br> Inputs at Threshold <br> Voltages, (VIL $=$ Gnd, <br> $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V}$ ), as per <br> Truth Table |
| I'H | Input HIGH Current | $\frac{\mathrm{XM}}{\mathrm{XC}}$ |  | $\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ <br> Other Inputs Open |
| IIL | Input LOW Current |  |  | -1.5 | mA | $V_{C C}=M a x, V_{I N}=0.4 \mathrm{~V}$ <br> Other Inputs Open |
| Icc | Power Supply Current | $\frac{X M}{X C}$ |  | $\begin{aligned} & 29 \\ & 31 \end{aligned}$ | mA | Vcc $=5.0 \mathrm{~V}$, No Connection to Input or Output Pins |

## 9317B 9317C <br> 7-SEGMENT DECODER/DRIVER

DESCRIPTION - The '17 is a seven segment decoder/driver designed to accept four inputs in 8421 BCD code and provide the appropriate outputs to drive a 7-segment numerical display. The decoder can be used to directly drive 7-segment incandescent lamp displays and light emitting diode indicators (or indirectly drive neon, electro-luminescent, numeric displays). The '17 is available in two output current and latch voltage versions, the '17B and $C$.

- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING AND/OR TRAILING-EDGE ZEROES
- LAMP INTENSITY MODULATION CAPABILITY
- LAMP TEST FACILITY/BLANKING INPUT
- CODES IN EXCESS OF BINARY 9 DISABLE OUTPUTS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \vee \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9317PC |  | 9B |
| Ceramic DIP (D) | A | 9317DC | 9317DM | 7B |
| Flatpak (F) | A | 9317FC | 9317FM | 4L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ |
| $\overline{\text { LT }}$ | Lamp Test Input (Active LOW) | $5.0 / 4.0$ |
| $\overline{\text { RBI }}$ | Ripple Blanking Input (Active LOW) | $1.0 / 0.5$ |
| $\overline{\text { RBO }}$ | Ripple Blanking Output (Active LOW) | $1.5 / 1.5$ |
| $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | Outputs | See Options |

## OPTIONS

| PARAMETER | 9317B | 9317C |
| :--- | :---: | :---: |
| Latch Voltage | 20 V | 30 V |
| Output Current (Pins 9 through 15) | 40 mA | 20 mA |



TRUTH TABLE

| INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  | $\begin{gathered} \text { DECIMAL } \\ \text { OR } \\ \text { FUNCTION } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{LT}}$ | $\overline{\mathrm{RBI}}$ | A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $A_{3}$ | $\overline{\mathrm{a}}$ | $\overline{\mathrm{b}}$ | $\overline{\mathrm{c}}$ | $\bar{d}$ | $\overline{\mathrm{e}}$ | $\overline{\mathrm{f}}$ | $\overline{\mathrm{g}}$ | $\overline{\mathrm{RBO}}$ |  |
| L | X | X | X | X | X | L | L | L | L | L | L | L | H |  |
| H | L | L | L | L | L | H | H | H | H | H | H | H | L | 0 |
| H | H | L | L | L | L | L | L | L | L | L | L | H | H | 0 |
| H | X | H | L | L | L | H | H | H | H | L | L | H | H | 1 |
| H | $X$ | L | H | L | L | L | L | H | L | L | H | L | H | 2 |
| H | X | H | H | L | L | L | L | L | L | H | H | L | H | 3 |
| H | X | L | L | H | L | H | L | L | H | H | L | L | H | 4 |
| H | X | H | L | H | L | L | H | L | L | H | L | L | H | 5 |
| H | X | L | H | H | L | H | H | L | L | L | L | L | H | 6 |
| H | X | H | H | H | L | L | L | L | H | H | H | H | H | 7 |
| H | X | L | L | L | H | L | L | L | L | L | L | L | H | 8 |
| H | X | H | L | L | H | L | L | L | H | H | L | L | H | 9 |
| H | X | L | H | $L$ | H | H | H | H | H | H | H | H | L | 10 |
| H | X | H | H | L | H | H | H | H | H | H | H | H | L | 11 |
| H | X | L | L | H | H | H | H | H | H | H | H | H | L | 12 |
| H | X | H | L | H | H | H | H | H | H | H | H | H | L | 13 |
| H | X | L | H | H | H | H | H | H | H | H | H | H | L | 14 |
| H | X | H | H | H | H | H | H | H | H | H | H | H | L | 15 |

$H=$ HIGH Voltage Level $L=$ LOW Voltage Level $\quad X=$ Immaterial

FUNCTIONAL DESCRIPTION - The '17 7-segment decoder/driver accepts a 4-bit BCD 8421 code input and produces the appropriate outputs for selection of segments in a seven segment matrix display used for representing the decimal numbers $0-9$. The seven outputs ( $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ ) of the decoder select the corresponding segments in the matrix shown in Figure a. The numeric designations chosen to represent the decimal numbers are shown in Figure c. Code configurations in excess of binary nine disable the outputs.

The decoder has active LOW outputs so that it may be used directly to drive incandescent displays or light emitting diode indicators. The device has provision for automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03 . Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output ( $\overline{\mathrm{RBO}})$ of a decoder to the Ripple Blanking Input ( $\overline{\mathrm{RBI}})$ of the next lower stage device. The most significant decoder stage should have the $\overline{\mathrm{RBI}}$ input grounded; and, since suppression of the least significant integer zero in a number is not usually desired, the RBI input of this decoder stage should be left open. A similar precedure for the fractional part of a display will provide automatic suppression of trailing-edge zeroes.

The decoder has an active LOW input Lamp Test which overrides all other input combinations and allows checking on possible display malfunctions. The $\overline{\text { RBO }}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL gates. Forcing the $\overline{\mathrm{RBO}}$ LOW will blank the display, regardless of the $\overline{L T}$ or $A_{n}$ inputs.

Fig. a Segment Designation


Fig. b Seven segment Decoder Driving Incandescent Lamp Display


Fig. c Numerical Designations

| SYMBOL | PARAMETER |  | $0^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $75^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| Voh | Output HIGH Voltage on $\overline{\mathrm{RBO}}$ Only |  | 3.0 |  | 3.0 |  | 3.0 |  | V | $\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{loH}=-70 \mu \mathrm{~A} \\ & \text { Pin } 5=\mathrm{V}_{\mathrm{IH}} \\ & \text { Pins } 1,2,6,7=0 \mathrm{~V} \end{aligned}$ |
| Vol | Output LOW Voltage on $\overline{\mathrm{RBO}}$ Only |  | 0.45 |  | 0.45 |  | 0.45 |  | V | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{loL}=2.75 \mathrm{~mA} \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or Vol per } \\ & \text { Truth Table } \\ & \hline \end{aligned}$ |
|  |  |  | 0.45 |  | 0.45 |  | 0.45 |  |  | VCC $=4.75 \mathrm{~V}$ <br> $\mathrm{IOL}=2.4 \mathrm{~mA}$ <br> Inputs at $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL per <br> Truth Table |
| Vol | Output LOW Voltage | 9317B |  | 0.9 |  | 0.9 |  | 0.9 | v | $\begin{aligned} & \mathrm{VCC}=4.75 \\ & \mathrm{loL}=40 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \\ & \hline \end{aligned}$ |
|  |  | 9317C |  | 0.45 |  | 0.45 |  | 0.45 |  | $\begin{aligned} & \hline \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{Pin} 3=0 \mathrm{~V} \end{aligned}$ |
| Vlatch | Output Latch Voltage | 9317B | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | V | $\mathrm{loL}=10 \mathrm{~mA}$ |
|  |  | 9317C |  |  | Inputs = Open |  |  |  |  |
| V IH | Input HIGH Voltage |  | 2.0 |  |  |  | 2.0 |  | 2.0 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  |  | 0.85 |  | 0.85 |  | 0.85 | V | Guaranteed Input LOW Threshold |
| IOH | Output HIGH Current |  |  |  |  | 200 |  | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \mathrm{VCEX}=30 \mathrm{~V} \\ & \text { ('17C) } 20 \mathrm{~V} \text { ('17B) } \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or VIL per } \\ & \text { Truth Table } \end{aligned}$ |
|  | Propagation Delay |  |  |  |  | $\begin{aligned} & 500 \\ & 500 \end{aligned}$ |  |  | ns | Fig. 3-20 |

DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

| SYMBOL | PARAMETER |  | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  | $125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |  |
| VOH | Output HIGH Voltage on RBO Only |  | 3.0 |  | 3.0 |  | 3.0 |  | V | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{lOH}=-70 \mu \mathrm{~A} \\ & \text { Pin } 5=\mathrm{V}_{1 \mathrm{H}} \\ & \text { Pins } 1,2,6,7=0 \mathrm{~V} \end{aligned}$ |
| Vol | Output LOW Voltage on $\overline{\mathrm{RBO}}$ Only |  | 0.4 |  | 0.4 |  | 0.4 |  | V | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \text { loL }=3.1 \mathrm{~mA} \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\text {IL }} \text { per } \\ & \text { Truth Table } \\ & \hline \end{aligned}$ |
|  |  |  |  | 0.4 |  | 0.4 |  | 0.4 |  | $\mathrm{Vcc}=4.5 \mathrm{~V}$ <br> $\mathrm{IOL}=2.4 \mathrm{~mA}$ <br> Inputs at $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL per <br> Truth Table |
| Vol | Output LOW Voltage | 9317B |  | 0.8 |  | 0.8 |  | 0.8 | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{loL}=40 \mathrm{~mA} \\ & \text { Pin } 3=0 \mathrm{~V} \\ & \hline \end{aligned}$ |
|  |  | 9317C |  | 0.4 |  | 0.4 |  | 0.4 |  | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{lOL}=20 \mathrm{~mA} \\ & \text { Pin } 3=0 \mathrm{~V} \end{aligned}$ |
| VLAtch | Output Latch Voltage | 9317 B | 2030 |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 30 \end{aligned}$ |  | V | IOUT $=10 \mathrm{~mA}$ |
|  |  | 9317C |  |  | Inputs = Open |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.1 |  |  |  | 1.9 |  | 1.7 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  |  | 1.4 |  | 1.1 |  | 0.8 | V | Guaranteed Input LOW Threshold |
| IOH | Output HIGH Current |  |  |  |  | 200 |  | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & \hline \mathrm{VCC}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{VCEX}=30 \mathrm{~V} \\ & \text { ('17C) } 20 \mathrm{~V} \text { ('17B) } \\ & \text { Inputs at } \mathrm{V}_{\mathrm{IH}} \\ & \text { or VIL per } \\ & \text { Truth Table } \end{aligned}$ |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay |  |  |  |  | $\begin{aligned} & 500 \\ & 500 \end{aligned}$ |  |  | ns | Fig. 3-20 |



INPUT LOADING/FAN-OUT:See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{0}$ | Priority Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\bar{T}_{1}-T_{7}$ | Priority Inputs (Active LOW) | 2.0/2.0 | 1.0/0.5 |
| EI | Enable Input (Active LOW) | 2.0/2.0 | 1.0/0.5 |
| EO | Enable Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |
| $\overline{\mathrm{GS}}$ | Group Select Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |
| $\bar{A}_{0}-\bar{A}_{2}$ | Address Outputs (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ \text { (3.0) } \end{array}$ |

FUNCTIONAL DESCRIPTION - The '18 8-input priority encoder accepts data from eight active LOW inputs and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A HIGH on the Enable Input (EI) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs. A Group Signal output ( $\overline{\mathrm{GS}}$ ) and Enable Output ( $\overline{\mathrm{EO}}$ ) are provided with the three data outputs. The $\overline{\mathrm{GS}}$ is active LOW when any input is LOW; this indicates when any input is active. The $\overline{E O}$ is active LOW when all inputs are HIGH. Using the output enable along with the input enable allows priority encoding of Ninput signals. Both $\overline{\mathrm{EO}}$ and $\overline{\mathrm{GS}}$ are in the inactive HIGH state when the input enable is HIGH.

## LOGIC DIAGRAM




DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| liH | Input HIGH Current $\overline{I_{0}}-\overline{I_{7}}$, $\overline{\mathrm{El}}$ |  | 1.0 |  |  | mA | $\begin{aligned} & V_{c c}=\operatorname{Max}, \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$ |
| los | Output Short Circuit Current | -20 | -70 |  |  | mA | Vcc $=$ Max, Vout $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 77 |  | 22 | mA | $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)


## 9319 • 9320 <br> DECADE SEQUENCERS

DESCRIPTION - The '19 and '20 are high speed counters with ten decoded active LOW outputs. The '19 has standard TTL totem pole outputs, and the '20 has resistor pull-up outputs for wired-AND applications. The devices provide a 1 -of-10 sequential output pattern by the application of ten pulses to the Clock input. Shorter sequences can be obtained by using external feedback, either hard-wired or programmable via multiplexing.

- COMBINATION DECADE COUNTER AND 1-OF-10 DECODER
- GLITCHLESS, SEQUENTIAL 1-OF-10 OUTPUT PATTERN
- IDEAL FOR MULTIPHASE CLOCK GENERATION
- any sequence between two and ten obtainable
- HIGH SPEED CLOCK INPUTS - TYPICALLY 50 MHz
- WIRED-AND CAPABILITY (9320 ONLY)

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9319PC, 9320PC |  | 9B |
| Ceramic DIP (D) | A | 9319DC, 9320DC | 9319DM, 9320DM | 6B |
| Flatpak (F) | A | 9319FC, 9320FC | 9319FM, 9320FM | 4L |

CONNECTION DIAGRAM PINOUT A


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 9319 (U.L.) <br> HIGH/LOW | 9320 (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| CP | Clock Pulse Input (Active Rising Edge) | $1.0 / 1.0$ | $1.0 / 1.0$ |
| $\overline{\mathrm{CE}}$ | Clock Enable Input | $1.0 / 1.0$ | $1.0 / 1.0$ |
| $\overline{\mathrm{MR}}$ | Synchronous Reset Input (Active LOW) | $1.0 / 1.0$ | $1.0 / 1.0$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$ | Asynchronous Master Reset Input | $1.0 / 1.0$ | $1.0 / 1.0$ |
|  | (Active LOW) | Decoded Outputs (Active LOW) | $20 / 10$ |

LOGIC SYMBOL

$V_{C c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

## LOGIC DIAGRAM



TRUTH TABLE

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

FUNCTIONAL DESCRIPTION - The '19 and '20 are decade shift counters with active LOW 1-of-10 decoded outputs. The decoded shift counter technique provides ten mutually exclusive, glitchless outputs. The edgetriggered counter is advanced on each LOW-to-HIGH transition of the Clock input (CP). When the Clock Enable (CE), Synchronous Reset ( $\overline{\mathrm{SR}}$ ), Master Reset $(\overline{\mathrm{MR}})$ are HIGH, the device is sequenced via the Clock thru output states $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{9}$, successively.

The active HIGH Count Enable (CE) input is gated with the Clock and can be interchanged with Clock for layout convenience. A LOW on the CEinput inhibits the Clock and stops the counter. By returning one of the outputs to the CE input, the device will sequence up to that output state and stop until reset with the Master Reset. Because the CE input is gated with the CP input, it cannot be changed from LOW to HIGH while the CP is HIGH.

The active LOW Synchronous Reset $(\overline{\mathrm{SR}})$ is used to reset the counter to zero (returning the output to the $\overline{\mathrm{O}}_{0}$ state) in response to the LOW-to-HIGH transition of the Clock. Any sequence between "two" and "ten" can be obtained by connecting the last desired output to the $\overline{\mathrm{SR}}$ input. This method of truncating the sequence produces a series of pulses of equal duration as long as the clock frequency remains constant.

A LOW on the Master Reset ( $\overline{\mathrm{MR}}$ ) overrides all other input conditions and resets the counter to zero. As long as the $\overline{M R}$ is LOW, all of the outputs are HIGH. When the $\overline{M R}$ goes from LOW to HIGH, the zero output ( $\bar{O}_{0}$ ) goes LOW. This $\overline{M R}$ gating with the $\overline{\mathrm{O}}_{0}$ output insures complete system resetting or initialization before the first output in the sequencer is activated. For low frequency applications (below 1.0 MHz ) the $\overline{\mathrm{MR}}$ can be used in lieu of the $\overline{\mathrm{SR}}$ for truncating the count sequence. If the input CP rise time is very slow (over 100 ns ), the $\overline{\mathrm{MR}}$ input should be used to reset the counter to avoid mis-triggering. This is accomplished by returning the next higher output to the $\overline{M R}$ pin. After the desired sequence is completed, the next clock pulse will reset the counter and enable the first output within 50 ns.

The outputs of the '19 are standard TTL totem pole type which can drive up to ten standard TTL unit loads. The outputs of the '20 are DTL resistor pull-up type for applications requiring wired-AND connections. The on-chip pull-up resistors, (about $3 \mathrm{k} \Omega$ ) of the ' 20 eliminate the need for external resistors normally required by opencollector outputs. Up to eight ' 20 outputs can be tied together with enough sink current capability left to drive one standard TTL input or five 93L or 54LS/74LS inputs.

The ' 19 and ' 20 will normally require initialization after power is first applied. A LOW pulse on the Master Reset (or a LOW on the Synchronous Reset in conjunction with a clock pulse) will reset the 5 -bit register and activate output $\overline{\mathrm{O}}_{0}$. If initialization is not possible or not required, an error correction circuit is provided to detect some of the 22 unused states and return the counter to the proper sequence within ten clock cycles.


Fig. a Three-Phase Generator Operating at One-Third the Clock Frequency


Fig. b Three-Phase Generator Operating at One-Sixth the Clock Frequency


Fig. c Expansion for longer sequences. The first sequencer locks up after $\overline{\mathbf{O}}_{9}$ goes LOW because of the feedback to CE. Simultaneously, $\overline{\text { SR }}$ of the second sequencer is released and it starts counting on the next clock. When $\overline{\mathrm{O}}_{9}$ of the second sequencer goes LOW, the feedback to $\overline{\mathrm{MR}}$ causes $\overline{\mathrm{O}}_{9}$ of the first sequencer to go HIGH, which then makes $\overline{\mathrm{SR}}$ of the second sequencer go HIGH. On the next clock the second sequencer goes to the $\overline{\mathrm{O}}_{0}$ state, releasing $\overline{\mathrm{MR}}$ of the first sequencer, making its $\overline{\mathrm{O}}_{0}$ go LOW. On the next clock the first sequencer starts its counting sequence again.

| SYMBOL | PARAMETER | 9319 |  | 9320 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| Voh | Output HIGH Voltage |  |  | 2.4 |  | V | $\mathrm{IOH}^{\text {a }}=-120 \mu \mathrm{~A}$ |
| Ios | Output Short Circuit Current |  |  | -1.3 | -3.7 | mA | VCC $=$ Max, VOUT $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 60 |  | 60 | mA | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93 |  |  | 20 | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Count Frequency | 35 |  | 35 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay CP to $\bar{O}_{n}$ |  | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tple tpHL | Propagation Delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ |  | $\begin{aligned} & 50 \\ & 33 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 33 \end{aligned}$ | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 9319 |  | 9320 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $\overline{S R}$ to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $\overline{S R}$ to CP | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathbf{w}}$ | CP Pulse Width | 15 |  | 15 |  | ns | Fig. 3-16 |
| $\mathrm{tw}_{\mathrm{w}}$ (L) | $\overline{\mathrm{MR}}$ or $\overline{\mathrm{SR}}$ Pulse Width LOW | 9.0 |  | 9.0 |  | ns | Fig. 3-16 |
| trec | $\begin{aligned} & \text { Recovery Time } \\ & M R \text { to CP } \end{aligned}$ | 35 |  | 35 |  | ns | Fig. 3-16 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL
$V_{c c}=\operatorname{Pin} 16$

$$
\text { Gnd }=\operatorname{Pin} 8
$$



$$
\begin{gathered}
16 \\
8
\end{gathered}
$$

DESCRIPTION - The '21 consists of two independent multipurpose decoders, each designed to accept two inputs and provide four mutually exclusive outputs. In addition an active LOW enable input, which gives demultiplexing capability, is provided for each decoder.

- MULTIFUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- ACTIVE LOW ENABLE FOR EACH DECODER

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |
| :--- | :---: | :--- | :--- | :---: |
|  | OUT | VCC <br> V <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\mathrm{V} \mathrm{VC}=+5.0 \mathrm{~V} \pm 10 \%$, <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| Plastic <br> DIP (P) | A | $9321 \mathrm{PC}, 93 \mathrm{~L} 21 \mathrm{PC}$ |  | 9 B |
| Ceramic <br> DIP (D) | A | $9321 \mathrm{DC}, 93 \mathrm{~L} 21 \mathrm{DC}$ | $9321 \mathrm{DM}, 93 \mathrm{~L} 21 \mathrm{DM}$ | 6 B |
| Flatpak <br> (F) | A | $9321 \mathrm{FC}, 93 \mathrm{~L} 21 \mathrm{FC}$ | $9321 \mathrm{FM}, 93 \mathrm{~L} 21 \mathrm{FM}$ | 4 L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $\bar{E}_{\mathrm{E}}^{\mathrm{a}}$, $\overline{\mathrm{E}}_{\mathrm{b}}$ | Enable Inputs (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{A}_{0 \mathrm{a}}, \mathrm{A}_{1 \mathrm{a}}, \mathrm{A}_{0}, \mathrm{~A}_{1 \mathrm{~b}}$ | Address Inputs | 1.0/1.0 | 0.5/0.25 |
| $\left.\begin{array}{l} \overline{\mathrm{O}}_{0 \mathrm{a}}-\overline{\mathrm{O}}_{3 \mathrm{a}} \\ \overline{\mathrm{O}}_{\mathrm{ob}}-\overline{\mathrm{O}}_{3 \mathrm{l}} \end{array}\right\}$ | Decoder Outputs (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |

FUNCTIONAL DESCRIPTION - The'21 consists of two separate decoders each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs as shown in the logic symbol. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.

TRUTH TABLE
(EACH DECODER)

| INPUTS |  |  | OUTPUTS |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\overline{\mid y}$ E | $A_{0}$ | $A_{1}$ | $\overline{\mathrm{O}}_{0}$ | $\overline{\mathrm{O}}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ |
| L | L | L | L | H | H | H |
| L | H | L | H | L | H | H |
| L | L | H | H | H | L | H |
| L | H | H | H | H | H | L |
| H | X | X | H | H | H | H |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level $X=$ Immaterial


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $93 X X$ |  | 93 L |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | $\operatorname{Min} \operatorname{Max}$ | $\operatorname{Min} \operatorname{Max}$ |  |  |
| Icc | Power Supply Current | 50 | 13.2 | mA | $\mathrm{~V}_{\mathrm{cc}}=\operatorname{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH <br> tphL | Propagation Delay $A_{n}$ to $\bar{O}_{n}$ | 20 21 | 50 | ns | Figs. 3-1, 3-20 |
| tpLH <br> tphL | Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | 14 18 | 40 52 | ns | Figs. 3-1, 3-5 |

CONNECTION DIAGRAM PINOUT A

## 9322 <br> 93L22 <br> QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The '22 quad 2-input digital multiplexers consist of four multiplexing circuits with common select and enable logic; each circuit contains two inputs and one output.

- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED OUTPUTS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V}, \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9322PC, 93L22PC |  | 9B |
| Ceramic DIP (D) | A | 9322DC, 93L22DC | 9322DM, 93L22DM | 6B |
| Flatpak (F) | A | 9322FC, 93L22FC | 9322FM, 93L22FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| S | Common Select Input | 1.0/1.0 | 0.5/0.25 |
| E | Enable Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| $\left.\begin{array}{l} I_{0 a}-l_{0 d} \\ I_{1 a}-I_{1 d} \end{array}\right\}$ | Multiplexer Inputs | 1.0/1.0 | 0.5/0.25 |
| $\mathrm{Za}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$ | Multiplexer Outputs | 20/10 | $\begin{array}{r} 10 / 5.0 \\ \text { (3.0) } \end{array}$ |

LOGIC SYMBOL

$V C C=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - The '22 quad 2-input multiplexer provides the ability to select four bits of either data or control from two sources, in one package. The Enable input ( $\bar{E}$ ) is active LOW. When not activated all outputs $\left(Z_{n}\right)$ are LOW regardless of all other inputs.

The '22 quad 2-input multiplexer is the logical implementation of a four-pole, two position switch, with the position of the switch being set by the logic levels supplied to the one select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{a}=E \bullet\left(I_{1 a} \bullet S+l_{0 a} \bullet \bar{S}\right) & Z_{b}=E \bullet\left(I_{1 b} \bullet S+l_{0 b} \bullet \bar{S}\right) \\
Z_{c}=E \bullet\left(I_{1 c} \bullet S+l_{0 c} \bullet \bar{S}\right) & Z_{d}=E \bullet\left(I_{1 d} \bullet S+l_{0 d} \bullet \bar{S}\right)
\end{array}
$$

A common use of the ' 22 is the moving of data from a group of registers to four common output busses. The particular register from which the data comes is determined by the state of the select input. A less obvious use is as a function generator. The '22 can generate four functions of two variables with one variable common. This is useful for implementing random gating functions.

TRUTH TABLE

| INPUTS |  |  |  | OUTPUT |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{E}$ | S | IOn | In | $Z_{n}$ |
| H | X | X | X | L |
| L | H | X | L | L |
| L | H | X | H | H |
| L | L | L | X | L |
| L | L | H | X | H |

$H=$ HIGH Voltage Level $\mathrm{L}=$ LOW Voltage Level $\mathrm{X}=$ Immaterial

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| los | Output Short Circuit Current |  | -70 |  |  | mA | VCC $=$ Max, Vout $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 47 |  | 13.2 | mA | $\mathrm{V}_{\mathrm{Cc}}=$ Max |

AG CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay S to $\mathrm{Z}_{\mathrm{n}}$ | $\begin{aligned} & 23 \\ & 27 \end{aligned}$ | $\begin{aligned} & 36 \\ & 49 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH tPHL | Propagation Delay 10 or $\mathrm{I}_{1}$ to $\mathrm{Zn}_{n}$ | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | $\begin{aligned} & 22 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $\bar{E}$ to $Z_{n}$ | $\begin{aligned} & 20 \\ & 21 \end{aligned}$ | $\begin{aligned} & 27 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-4 |


| 9324 93L24 <br> 5-BIT COMPARATOR <br> DESCRIPTION - The '24 expandable comparators provide comparison between two 5-bit words and give three outputs - "less than", "greater than" and "equal to". A HIGH on the active LOW Enable Input forces all three outputs LOW. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| - THREE <br> - EASILY <br> - ACTIVE | SEPA | ATE OUTPUTS - A $<B, A$ dable ENABLE INPUT | $>B, A=B$ |  |  |  |
| ORDERIN | COD | : See Section 9 |  |  |  |  |
|  |  | COMMERCIAL GRADE | MILITARY GRADE |  |  |  |
| PKGS | OUT | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |
| Plastic DIP (P) | A | 9324PC, 93L24PC |  | 9B |  |  |
| Ceramic DIP (D) | A | 9324DC, 93L24DC | 9324DM, 93L24DM | 6B |  |  |
| Flatpak (F) | A | 9324FC, 93L24FC | 9324FM, 93L24FM | 4L |  |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\overline{\bar{E}}$ | Enable Input (Active LOW ) | $2.0 / 2.0$ | $1.0 / 0.5$ |
| $\mathrm{~A}_{0}-\mathrm{A}_{4}$ | Word A Parallel Inputs | $2.0 / 2.0$ | $1.0 / 0.5$ |
| $\mathrm{~B}_{0}-\mathrm{B}_{4}$ | Word B Parallel Inputs | $2.0 / 2.0$ | $1.0 / 0.5$ |
| A B | A Less than B Output (Active HIGH) | $20 / 10$ | $10 / 5.0$ |
| A > B |  |  | $(3.0)$ |
|  | A Greater than B Output (Active HIGH) | $20 / 10$ | $10 / 5.0$ |
| A B |  |  | $(3.0)$ |
|  | A Equal to B Output (Active HIGH) | $20 / 10$ | $10 / 5.0$ |
|  |  | $(3.0)$ |  |

FUNCTIONAL DESCRIPTION - The '245-bit comparators use combinational circuitry to directly generate "A greater than $B$ " and "A less than B" outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals B " output is generated in one additional gate delay by decoding the " A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable Input ( $\overline{\mathrm{E}}$ ).

Tying the $A>B$ output from one device into an $A$ input on another device and the $A<B$ output into the corresponding B input permits easy expansion.

The $A_{4}$ and $B_{4}$ inputs are the most significant inputs and $A_{0}, B_{0}$ the least significant. Thus if $A_{4}$ is HIGH and $B_{4}$ is LOW, the $A>B$ output will be HIGH regardless of all other inputs except $\bar{E}$.

## LOGIC SYMBOL



TRUTH TABLE

| INPUTS |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $\bar{E}$ | $A_{n} \quad B_{n}$ | $A<B$ | $A>B$ | $A=B$ |
| $H$ | $X \quad X$ | $L$ | $L$ | $L$ |
| $L$ | Word $A=$ Word B | $L$ | $L$ | $H$ |
| $L$ | Word $A>$ Word B | $L$ | $H$ | $L$ |
| $L$ | Word B > Word A | $H$ | $L$ | $L$ |

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | $93 X X$ |  | 93 L |  |
| :--- | :---: | ---: | ---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  | $\operatorname{Min} \operatorname{Max}$ | $\operatorname{Min} \operatorname{Max}$ |  |  |
| Icc | Power Supply Current | 81 | 21 | mA | $\mathrm{~V}_{\mathrm{cc}}=\operatorname{Max}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93 | XX | 93 | L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $\bar{E}$ to $A=B$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ |  | 32 35 | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{2}$ to $A>B$ |  | 25 |  | 54 75 | ns | Figs. 3-1, 3-5 |
| tpli <br> tpHL | Propagation Delay $A_{2}$ to $A<B$ |  | $\begin{aligned} & 26 \\ & 21 \end{aligned}$ |  | 70 77 | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $A_{2}$ to $A=B$ |  | $\begin{aligned} & 30 \\ & 32 \end{aligned}$ |  | $\begin{aligned} & 100 \\ & 102 \end{aligned}$ | ns | Figs. 3-1, 3-20 |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| S | Data Select Input | 2.0/2.0 | 1.0/0.5 |
| $\mathrm{D}_{0}, \mathrm{D}_{1}$ | Data Inputs | 1.0/1.0 | 0.5/0.25 |
| CP | Clock Pulse Input (Active HIGH) Common (Pin 9) | 3.0/3.0 | 1.5/0.75 |
|  | Separate (Pins 7 and 10) | 1.5/1.5 | 0.75/0.375 |
| $\overline{M R}$ | Master Reset Input (Active LOW) | 1.0/1.0 | 0.5/0.25 |
| Q7 | Last Stage Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |
| $\overline{\mathrm{Q}}_{7}$ | Complementary Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |

FUNCTIONAL DESCRIPTION - The two 8 -bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs ( $R$ and $S$ ) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs ( $R$ and $S$ ) are enabled so that new data can enter the, master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a 2-input multiplexer in front of the serial data input. The two data inputs $D_{0}$ and $D_{1}$ are controlled by the data select input ( S ) following the Boolean expression:

Serial data in: $S_{D}=S D_{0}+S D_{1}$
An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.

## LOGIC SYMBOL



SHIFT SELECT TABLE

| INPUTS |  |  | OUTPUT |
| :--- | :--- | :--- | :---: |
| S | $D_{0}$ | $D_{1}$ | $Q_{7}\left(t_{n}+8\right)$ |
| $L$ | $L$ | $X$ | $L$ |
| L | $H$ | $X$ | $H$ |
| $H$ | $X$ | $L$ | $L$ |
| $H$ | $X$ | $H$ | $H$ |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$\mathrm{n}+8=$ Indicates state after eight clock pulse

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max | Min Max |  |  |
| Icc | Power Supply Current | 77 | 25.3 | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93 |  | 93 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Shift Right Frequency | 20 |  | 5.0 |  | MHz | Figs. 3-1, 3-8 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | Propagation Delay CP to $\mathrm{Q}_{7}$ or $\overline{\mathrm{Q}}_{7}$ |  | $\begin{aligned} & 20 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 45 \\ & 80 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{Q}_{7}$ |  | 50 |  | 110 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIn | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{n}}$ to CP | $\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$ | Hold Time HIGH or LOW $D_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | Clock Pulse Width HIGH or LOW | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 55 \\ & 55 \end{aligned}$ |  | ns | Fig. 3-8 |
| $\mathrm{tw}_{\text {w }}(\mathrm{L})$ | $\overline{\mathrm{MR}}$ Pulse Width with CP HIGH | 30 |  | 60 |  | ns | Fig. 3-16 |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{M R}$ Pulse Width with CP LOW | 40 |  | 70 |  | ns |  |
| trec | Recovery Time $\overline{\mathrm{MR}}$ to CP | 33 |  |  |  | ns | Fig. 3-16 |

## 9334 <br> 93L34 <br> 8-BIT ADDRESSABLE LATCH

DESCRIPTION - The '34 is an 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level HIGH outputs. The device also incorporates an active LOW common clear for resetting all latches, as well as, an active LOW enable.

- SERIAL TO PARALLEL CAPABILITY
- EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON CONDITIONAL CLEAR

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} \mathrm{VCC} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9334PC, 93L34PC |  | 9B |
| Ceramic DIP (D) | A | 9334DC, 93L34DC | 9334DM, 93L34DM | 6B |
| Flatpak (F) | A | 9334FC, 93L34FC | 9334FM, 93L34FM | 4L |

CONNECTION DIAGRAMS PINOUT A


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | $1.0 / 1.0$ | $0.5 / 0.25$ |
| D | Data Input | $1.0 / 1.0$ | $0.5 / 0.25$ |
| E | Enable Input (Active LOW) | $1.5 / 1.5$ | $0.75 / 0.38$ |
| CL | Clear Input (Active LOW) | $1.0 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{7}$ | Parallel Latch Outputs | $18 / 6.0$ | 105.0 |
|  |  |  | $(3.0)$ |

FUNCTIONAL DESCRIPTION - The '34 has four modes of operation which are shown in the Mode Select Table. In the addressable latch mode, data on the data line ( $D$ ) is written into the addressed latch. The addressed latch will follow the Data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the Enable should be held HIGH while the Address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the ' 34 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

MODE SELECT TABLE

| $\bar{E}$ | $\overline{C L}$ | MODE |
| :--- | :--- | :--- |
| L | H | Addressable Latch |
| H | H | Memory |
| L | L | Active HIGH 8-Channel Demultiplexer |
| H | L | Clear |

TRUTH TABLE

| INPUTS |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  | MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{C L}$ | $\overline{\mathrm{E}}$ | A0 | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | Q0 | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 |  |
| L | H | X | X | X | L | L | L | L | L | L | L | L | Clear |
| L | L | L | L | L | D | L | L | L | L | L | L | L | Demultiplex |
| L | L | H | L | L | L | D | L | L | L | L | L | L |  |
| L | L | L | H | L | L | L | D | L | L | L | L | L |  |
| - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| L | L | H | H | H | L | L | L | L | L | L | L | D |  |
| H | H | X | X | X | $Q_{t-1}$ | Qt-1 | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $Q_{t-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $Q_{t-1}$ | Memory |
| H | L | L | L | L | D | Qt-1 | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $Q_{t-1}$ | Addressable |
| H | L | H | L | L | $\mathrm{Q}_{\mathrm{t}-1}$ | D | Qt-1 | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\text {t-1 }}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | Latch |
| H | L | L | H | L | $\mathrm{Q}_{\mathrm{t}-1}$ | Qt-1 | D | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ | $\mathrm{Q}_{\mathrm{t}-1}$ |  |
| $\bullet$ | - | - | - | - | - |  | - |  |  |  |  | - |  |
| $\stackrel{+}{H}$ | L | H | H | H | $\stackrel{Q}{\text { Q }}_{\text {t-1 }}$ | Qt-1 | $\dot{Q}_{t-1}$ | $\stackrel{Q}{Q}_{\text {t-1 }}$ | $\dot{Q}_{\text {t-1 }}$ | $\stackrel{\rightharpoonup}{Q}_{\text {t-1 }}$ | $\stackrel{Q}{\text { Q }}^{\text {-1 }}$ | D |  |

$H=$ HIGH Voltage Level $\quad L=$ LOW Voltage Level $\quad X=$ Immaterial $\quad Q_{t-1}=$ Previous Output State
LOGIC DIAGRAM


## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Max | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | 86 86 |  | 21 26 | mA | $\mathrm{V}_{\text {cc }}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMB OL | PARAMETER | 93XX | 93L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| tpLH tPHL | Propagation Delay $\overline{\mathrm{E}}$ to $\mathrm{Q}_{\mathrm{n}}$ | $\begin{aligned} & 23 \\ & 24 \end{aligned}$ | $\begin{aligned} & 45 \\ & 42 \end{aligned}$ | ns | Figs. 3-1, 3-9 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay D to $Q_{n}$ | $\begin{aligned} & 28 \\ & 24 \end{aligned}$ | $\begin{aligned} & 65 \\ & 45 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $A_{n}$ to $Q_{n}$ | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | $\begin{aligned} & 66 \\ & 66 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpHL | Propagation Delay $\overline{C L}$ to $Q_{n}$ | 40 | 55 | ns | Figs. 3-1, 3-10 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH, D to $\overline{\mathrm{E}}$ | 20 |  | 45 |  | ns | Fig. 3-13 |
| th (H) | Hold Time HIGH, D to $\overline{\mathrm{E}}$ | 0 |  | -5.0 |  | ns |  |
| $\mathrm{ts}_{\mathrm{s}}(\mathrm{L})$ | Setup Time LOW, D to $\overline{\mathrm{E}}$ | 17 |  | 45 |  | ns |  |
| th (L) | Hold Time LOW, D to $\overline{\mathrm{E}}$ | 0 |  | -7.0 |  | ns |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(H) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $A_{n}$ to $\bar{E}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | ns | Fig. 3-21 |
| tw (L) | $\overline{\text { E Pulse Width LOW }}$ | 17 |  | 26 |  | ns |  |
| tw (L) | $\overline{\mathrm{CL}}$ Pulse Width LOW |  |  | 35 |  | ns | Fig. 3-17 |

## 9338 <br> 93L38 <br> 8-BIT MULTIPLE PORT REGISTER

DESCRIPTION - The ' 38 is an 8 -bit multiple port register designed for high speed random access memory applications where the ability to simultaneously read and write is desirable. A common use would be as a register bank in a three address computer. Data can be written into any one of the eight bits and read from any two of the eight bits simultaneously. The circuit uses TTL technology and is compatible with all TTL families.

- MASTER/SLAVE OPERATION PERMITTING SIMULTANEOUS WRITE/READ WITHOUT RACE PROBLEMS
- SIMULTANEOUSLY READ TWO BITS AND WRITE ONE BIT IN ANY ONE OF EIGHT BIT POSITIONS
- READILY EXPANDABLE TO ALLOW FOR LARGER WORD SIZES

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9338PC, 93L38PC |  | 9B |
| Ceramic DIP (D) | A | 9338DC, 93L38DC | 9338DM, 93L38DM | 7B |
| Flatpak (F) | A | 9338FC, 93L38FC | 9338FM, 93L38FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: | :---: |
| $A_{0}-A_{2}$ | Write Address Inputs | 0.67/0.68 | 0.33/0.17 |
| $\mathrm{D}_{\mathrm{A}}$ | Data Input | 0.67/0.68 | 0.33/0.17 |
| $\mathrm{B}_{0}-\mathrm{B}_{2}$ | B Read Address Inputs | 0.67/0.68 | 0.33/0.17 |
| $\mathrm{C}_{0}-\mathrm{C}_{2}$ | C Read Address Inputs | 0.67/0.68 | 0.33/0.17 |
| CP | Clock Pulse Input (Active Rising Edge) | 0.67/0.68 | 0.33/0.17 |
| SLE | Slave Enable Input (Active LOW) | 0.67/0.68 | 0.33/0.17 |
| $\mathrm{Z}_{B}$ | B Output | 20/10 | $\begin{gathered} 10 / 5.0 \\ (3.0) \end{gathered}$ |
| Zc | C Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ |

## LOGIC SYMBOL



LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The '38 8-bit multiple port register can be considered a 1-bit slice of eight high speed working registers. Data can be written into any one and read from any two of the eight locations simultaneously. Master/slave operation eliminates all race problems associated with simultaneous read/write activity from the same location. When the clock input (CP) is LOW data applied to the data input line ( $\mathrm{D}_{\mathrm{A}}$ ) enters the selected master. This selection is accomplished by coding the three write input select lines ( $A_{0}-A_{2}$ ) appropriately. Data is stored synchronously with the rising edge of the clock pulse.

The information for each of the two slaved (output) latches is selected by two sets of read address inputs ( $B_{0}-B_{2}$ and $\mathrm{C}_{0}-\mathrm{C}_{2}$ ). The information enters the slave while the clock is HIGH and is stored while the clock is LOW. If Slave Enable is LOW ( $\overline{\mathrm{SLE}}$ ), the slave latches are continuously enabled. The signals are available on the output pins ( $Z_{B}$ and $Z_{C}$ ). The input bit selection and the two output bit selections can be accomplished independently or simultaneously. The data flows into the device, is demultiplexed according to the state of the write address lines and is clocked into the selected latch. The eight latches function as masters and store the input data. The two output latches are slaves and hold the data during the read operation. The state of each slave is determined by the state of the master selected by its associated set of read address inputs.

The method of parallel expansion is shown in Figure a. One ' 38 is needed for each bit of the required word length. The read and write input lines should be connected in common on all of the devices. This register configuration provides two words of $n$-bits each at one time, where $n$ devices are connected in parallel.


Fig. a Parallel Expansion

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |
| los | Output Short Circuit Current | -10 | -70 | -2.5 | -25 | mA | Vcc $=$ Max |
| Icc | Power Supply Current |  | 135 |  | 33 | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  | XX |  | L | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max | Min | Max |  |  |
|  | Propagation Delay $\mathrm{B}_{\mathrm{n}}$ or $\mathrm{C}_{\mathrm{n}}$ to $\mathrm{Zn}_{n}$ | $\begin{aligned} & 13 \\ & 18 \end{aligned}$ | $\begin{aligned} & 40 \\ & 35 \end{aligned}$ |  | $\begin{aligned} & 68 \\ & 95 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{array}{\|l\|l\|} \hline \text { tpLL } \\ \text { tpHL } \end{array}$ | Propagation Delay $D_{A}$ to $Z_{n}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 45 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 70 \\ & 92 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
|  | Propagation Delay CP to $\mathrm{Z}_{\mathrm{n}}$ |  | $\begin{aligned} & 35 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 65 \\ & 57 \end{aligned}$ | ns | Figs. 3-1, 3-8 |

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | 93L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \hline \mathrm{ts}_{s}(\mathrm{H}) \\ & \mathrm{ts}_{s}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $D_{A}$ to CP | $\begin{aligned} & 20 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 22 \end{aligned}$ |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $D_{A}$ to $C P$ | $\begin{array}{r} 0 \\ -8.0 \end{array}$ |  | $\begin{array}{r} 0 \\ -4.0 \end{array}$ |  | ns |  |
| $\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \\ & \left.\mathrm{ts}_{\mathrm{s}} \mathrm{~L}\right) \end{aligned}$ | Setup Time HIGH or LOW $A_{n}$ to CP | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns | Fig. 3-21 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $A_{n}$ to CP | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | CP Pulse Width HIGH or LOW | $\begin{aligned} & 23 \\ & 13 \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ |  | ns | Fig. 3-8 |

## 9340 <br> 4-BIT ARITHMETIC LOGIC UNIT <br> (With Carry Lookahead)

DESCRIPTION - The '40 is a high speed arithmetic logic unit with full onchip carry lookahead circuitry. It can perform the arithmetic operations add or subtract in parallel, or any of six logic functions on two 4-bit binary words. The internal carry lookahead provides either a ripple carry output or carry lookahead outputs. An internal carry input network accepts carry lookahead outputs from up to three other packages producing a 16-bit full carry lookahead ALU without additional gates. Ripple carries can be used between additional blocks of 12 bits to further expand the word length.

- MULTIFUNCTION CAPABILITY TWO ARITHMETIC OPERATIONS - ADD, SUBTRACT SIX LOGIC FUNCTIONS - A EX OR B, A AND B, PLUS FOUR OTHERS
- ADD TWO 4-BIT WORDS IN 23 ns TYPICAL

- LOOKAHEAD CARRY INPUT AND OUTPUT NETWORKS ON-CHIP
- EASILY EXPANDABLE TO LONGER WORD LENGTHS
- TYPICAL POWER DISSIPATION OF 425 mW


## ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9340PC |  | 9 N |
| Ceramic DIP (D) | A | 9340DC | 9340DM | 6 N |
| Flatpak (F) | A | 9340FC | 9340FM | 4M |

## LOGIC SYMBOL


$\mathrm{V}_{\mathrm{cc}}=\mathrm{Pin} 24$
GND $=\operatorname{Pin} 12$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) HIGH(LOW <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\left.\begin{array}{l} \overline{\bar{A}_{0}}-\overline{\bar{A}}_{3} \\ \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3} \end{array}\right\}$ | Operand Inputs (Active LOW) | 3.0/3.0 |
| $\mathrm{S}_{0}, \mathrm{~S}_{1}$ | Mode Select Inputs | 1.0/1.0 |
| $\mathrm{CG}_{1}$ | Carry Generate Input from immediately preceeding stage (Active LOW) | 3.0/3.0 |
| $\overline{\mathrm{CP}} 1$ | Carry Propagate Input from immediately preceeding stage (Active LOW) | 1.0/1.0 |
| $\overline{\mathrm{CG}}_{2}$ | Carry Generate Input from second preceeding stage (Active LOW) | 2.0/2.0 |
| $\overline{\mathrm{CP}} 2$ | Carry Propagate Input from second preceeding stage (Active LOW) | 1.0/1.0 |
| $\overline{\mathrm{CG}}_{3}$ | Carry Generate Input.from third preceeding stage (Active LOW) | 1.0/1.0 |
| COE | Carry Out Enable Input | 1.5/1.5 |
| $\bar{F}_{0}-\bar{F}_{3}$ | Function Outputs (Active LOW) | 20/10 |
| $\overline{\mathrm{CO}} / \overline{\mathrm{CG}}$ | Carry Out/Carry Generate Output (Active LOW) | 20/10 |
| $\overline{\mathrm{CP}}$ | Carry Propagate Output (Active LOW) | 20/10 |

## LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION - The '40 accepts two 4-bit words, $\overline{\mathrm{A}}_{0}, \overline{\mathrm{~A}}_{1}, \overline{\mathrm{~A}}_{2}, \overline{\mathrm{~A}}_{3}$ and $\overline{\mathrm{B}}_{0}, \overline{\mathrm{~B}}_{1}, \overline{\mathrm{~B}}_{2}, \overline{\mathrm{~B}}_{3}$, and produces a 4-bit output, $\bar{F}_{0}, \bar{F}_{1}, \bar{F}_{2}, \bar{F}_{3}$. The output function is determined by the states on the control lines $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$. The inputs and outputs of the ' 40 may be considered to be active LOW or active HIGH. Logic equivalents for four representations of the ' 40 are shown in Figure a, b, c, and d.

The add and subtract operations are performed on the entire word, with carries or borrows propagated between bits of different weight. The arithmetic may be performed in 1's complement, 2's complement, or signmagnitude notation. In the logic modes, carries are inhibited and the device acts like four gates as shown.

To achieve high speed operation, the ' 40 is designed to be used in a carry lookahead system. Full carry lookahead is used inside the device to propagate carries between bits. Carry lookahead functions over the 4-bit block are available as outputs. These outputs are labeled $\overline{\mathrm{CO} / \mathrm{CG}}$ (Carry Out/Carry Generate) and $\overline{\mathrm{CP}}$ (Carry Propagate) on the logic symbol. The carry in to the device is formed from a set of Carry Generate and Carry Propagate inputs (equation 1) so that three ' 40 's can be interconnected without any additional gates to form a 12-bit full carry lookahead ALU with a carry in. The pin labeled COE (Carry Out Enable) controls the CO/CG output according to equation 2 . When COE is HIGH, CO/CG becomes a Carry Out which can be used to ripple carries between blocks of 12 bits. The $\overline{\mathrm{CG}}_{1}$ input can be used for a ripple carry input, since this signal is sufficient to produce a carry in.

EQUATION:
(1) $\left(\overline{\mathrm{CG}}_{1}\right)+\left(\overline{\mathrm{CP}}_{1}\right)\left(\overline{\mathrm{CG}}_{2}\right)+\left(\overline{\mathrm{CP}}_{1}\right)\left(\overline{\mathrm{CP}}_{2}\right)\left(\overline{\mathrm{CG}}_{3}\right)=\mathrm{C}_{\text {in }}$ (internal)
(2) $\overline{\mathrm{CO} / \mathrm{CG}}=(\overline{\mathrm{CG}})+(\overline{\mathrm{CP}})\left(\mathrm{C}_{\text {in }}\right)(\mathrm{COE})$

## FUNCTION TABLES FOR LOGIC EQUIVALENTS OF THE '40

Note that when the input operands are defined as active HIGH, the carry lookahead inputs and outputs are not formally carry generate and carry propagate. Consequently, these pins have been relabled CX and CY in the active HIGH cases. However, the signals are connected in the same manner as $\overline{\mathrm{CG}}$ and $\overline{\mathrm{CP}}$.


Fig. a

## FUNCTION TABLES FOR LOGIC EQUIVALENTS OF THE '40 (Cont'd)



Fig. b


| CONTROL INPUTS |  | OPERATION | EQUIVALENT LOGIC |
| :---: | :---: | :---: | :---: |
| So | $\mathrm{S}_{1}$ |  |  |
| L | L | A ADD B |  |
| H | L | A SUBTRACT B |  |
| L | H | A EQUIV B | $\rightarrow-1$ ID: |
| H | H | A AND $\bar{B}$ | $\xrightarrow{-} \square D^{A}-$ |

Fig. c


| $\begin{aligned} & \mathrm{CON} \\ & \mathrm{INF} \end{aligned}$ | $\begin{aligned} & \mathrm{ROL} \\ & \mathrm{TS} \end{aligned}$ | OPERATION | EQUIVALENT LOGIC |
| :---: | :---: | :---: | :---: |
| So | $S_{1}$ |  |  |
| L | L | A ADD B |  |
| H | L | A SUBTRACT B | $\rightarrow \mathrm{Ba}_{\mathrm{BO}-3}^{\mathrm{A}_{0}-3} \mathrm{SUB}$ |
| L | H | A EX OR B |  |
| H | H | A OR $\bar{B}$ |  |

Fig. d

| SYMBOL | PARAMETER |  | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | 135 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |
|  |  | XC |  | 146 |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Add Mode, $\bar{B}_{0}$ to $\bar{F}_{3}$ |  | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{S}_{0}, \overline{\mathrm{CG}}_{1}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{~B}}_{1}, \overline{\mathrm{~B}}_{2}=4.5 \mathrm{~V} \\ & \mathrm{~S}_{1}, \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{3}=\mathrm{Gnn}^{2} \\ & \text { Figs. 3-1, 3-5 } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay for Subtract Mode, $\bar{B}_{0}$ to $\bar{F}_{3}$ |  | $\begin{aligned} & 37 \\ & 32 \end{aligned}$ | ns | $\begin{aligned} & \overline{\mathrm{CG}}_{1}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{~B}}_{3}=4.5 \mathrm{~V} ; \mathrm{S}_{0}, \\ & \mathrm{~S}_{1}, \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{1}, \overline{\mathrm{~B}}_{2}=\mathrm{Gnd} \\ & \text { Figs. 3-1, 3-4 } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay for <br> Add Mode, $\overline{\mathrm{B}}_{0}$ to $\overline{\mathrm{CO} / \mathrm{CG}}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{S}_{0}, \overline{\mathrm{CG}}_{1}, \overline{\mathrm{CP}}_{1}, \\ & \overline{\mathrm{~B}}_{1}-\overline{\mathrm{B}}_{3}=4.5 \mathrm{~V} ; \mathrm{S}_{1}, \mathrm{COE}, \\ & \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{1}=\mathrm{Gnd} \\ & \text { Figs. 3-1, 3-5 } \end{aligned}$ |
| tpLH tphL | Propagation Delay for $\qquad$ <br> Subtract Mode, $\mathrm{B}_{0}$ to $\overline{\mathrm{CO} / \mathrm{CG}}$ |  | $\begin{aligned} & 25 \\ & 22 \end{aligned}$ | ns | $\overline{\mathrm{CG}}_{1}, \overline{\mathrm{CP}}=4.5 \mathrm{~V} ; \mathrm{S}_{0}, \mathrm{~S}_{1}$, COE, $\bar{A}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{1}-\overline{\mathrm{B}}_{3}=$ Gnd Figs. 3-1, 3-4 |
| tpLH tphL | Propagation Delay for $\qquad$ <br> Either Mode, $\overline{\mathrm{CG}}_{3}$ to $\overline{\mathrm{CO} / \mathrm{CG}}$ |  | $\begin{aligned} & 19 \\ & 19 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{S}_{0}, \overline{\mathrm{CG}}_{1}, \overline{\mathrm{CG}}_{2}, \mathrm{COE}, \\ & \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}=4.5 \mathrm{~V} ; \mathrm{S}_{1}, \\ & \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}} 33^{\mathrm{CP}_{1}}, \overline{\mathrm{CP}}_{2}=\text { Gnd } \\ & \text { Figs. } 3-1,3-5 \end{aligned}$ |
| tpLH tphL | Propagation Delay for Either Mode, $\overline{C G}_{3}$ to $\bar{F}_{3}$ |  | $\begin{aligned} & 31 \\ & 29 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{S}_{0}, \overline{\mathrm{CG}}_{1}, \overline{\mathrm{CG}}_{2}, \overline{\mathrm{~B}}_{3}, \\ & \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}=4.5 \mathrm{~V} ; \mathrm{S}_{1}, \\ & \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{2}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2}=\text { Gnd } \\ & \text { Figs. } 3-1,3-5 \end{aligned}$ |

## 9341 <br> 93L41 93541 <br> 4-BIT ARITHMETIC LOGIC UNIT

DESCRIPTION—The '41 4-bit arithmetic logic units can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations; the Add and Subtract modes are the most important. The ' 41 is a pin replacement for the 54/74181.

- PROVIDE 16 OPERATIONS ADD, SUBTRACT, COMPARE, DOUBLE TWELVE OTHER ARITHMETIC OPERATIONS
- PROVIDE ALL 16 LOGIC OPERATIONS OF TWO VARIABLES EXCLUSIVE-OR, COMPARE, AND NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATIONS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | $\begin{aligned} & \text { 9341PC, 93L41PC } \\ & 93 S 41 \mathrm{PC} \end{aligned}$ |  | 9N |
| Ceramic DIP (D) | A | $\begin{aligned} & \text { 9341DC, 93L41DC } \\ & \text { 93S41DC } \end{aligned}$ | $\begin{aligned} & \text { 9341DM, 93L41DM } \\ & \text { 93S41DM } \end{aligned}$ | 6N |
| Flatpak (F) | A | $\begin{aligned} & \text { 9341FC, 93L41FC } \\ & 93 S 41 \text { FC } \end{aligned}$ | $\begin{aligned} & 9341 \mathrm{FM}, 93 \mathrm{~L} 41 \mathrm{FM} \\ & 93 \mathrm{~S} 41 \mathrm{FM} \end{aligned}$ | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | 93L (U.L.) <br> HIGH/LOW | $\begin{gathered} \text { 93S (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{A}_{0}-\bar{A}_{3}, \bar{B}_{0}-\bar{B}_{3}$ | Operand Inputs (Active LOW) | 3.0/3.0 | 1.5/0.75 | 3.75/3.75 |
| $\mathrm{S}_{0}-\mathrm{S}_{3}$ | Function Select Inputs | 4.0/4.0 | 2.0/1.0 | 5.0/5.0 |
| M | Mode Control Input | 1.0/1.0 | 0.5/0.25 | 1.25/1.25 |
| $\mathrm{C}_{\mathrm{n}}$ | Carry Input | 5.0/5.0 | 2.5/1.25 | 7.5/7.5 |
| $\bar{F}_{0}-\bar{F}_{3}$ | Function Outputs (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |
| $A=B$ | Comparator Output | OC*/10 | $\begin{array}{r} \mathrm{OC}^{*} / 5.0 \\ (3.0) \end{array}$ | OC*/12.5 |
| $\overline{\mathrm{G}}$ | Carry Generator Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |
| $\overline{\mathrm{P}}$ | Carry Propagate Output (Active LOW) | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |
| $C_{n+4}$ | Carry Output | 20/10 | $\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$ | 25/12.5 |

[^57]FUNCTIONAL DESCRIPTION - The '41 is a 4-bit high speed parallel arithmetic logic unit (ALU). Controlled by the four Function Select inputs ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ) and the Mode Control input ( M ), it can perform all the 16 possible operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table below lists these operations.

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{n}+4$ output, or for carry lookahead betweeen packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ are not affected by carry in. When speed requirements are not stringent, the ' 41 can be used in a simple ripple carry mode by connecting the Carry output ( $C_{n}+4$ ) signal to the Carry input $\left(C_{n}\right)$ of the next unit. For super high speed operation the Schottky '41 should be used in conjunction with the ' 42 carry lookahead circuit.

The A = B output from the ' 41 goes HIGH when all four $\bar{F}_{n}$ outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $A=B$ output is open-collector and can be wired-AND with the other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the $C_{n+4}$ signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated the ' 41 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labled inside the logic symbol.

FUNCTION TABLE

| MODE SELECT INPUTS |  |  |  | ACTIVE LOW INPUTS \& OUTPUTS |  | ACTIVE HIGH INPUTS \& OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 | S2 | S1 | So | LOGIC $(\mathrm{M}=\mathrm{H})$ | ARITHMETIC** $(M=L)\left(C_{n}=L\right)$ | LOGIC $(\mathrm{M}=\mathrm{H})$ | ARITHMETIC** $(M=L)\left(C_{n}=H\right)$ |
| L | L | L | L | $\bar{A}$ | A minus 1 | $\overline{\text { A }}$ | A |
| L | L | L | H | $\overline{A B}$ | AB minus 1 | $\overline{\mathrm{A}}+\overline{\mathrm{B}}$ | $A+B$ |
| L | L | H | L | $\bar{A}+\bar{B}$ | $A \bar{B}$ minus 1 | $\overline{\text { A }}$ B | $A+\bar{B}$ |
| L | L | H | H | Logic 1 | minus 1 | Logic 0 | minus 1 |
| L | H | L | L | $\overline{\mathrm{A}}+\overline{\mathrm{B}}$ | A plus ( $\mathrm{A}+\overline{\mathrm{B}}$ ) | $\overline{\mathrm{AB}}$ | A plus $\bar{A} \bar{B}$ |
| L | H | L | H |  | $A B$ plus $(A+\bar{B})$ | $\overline{\text { B }}$ | ( $A+B$ ) plus $A \bar{B}$ |
| L | H | H | L | $\bar{A} \oplus \bar{B}$ | A minus B minus 1 | $A \oplus B$ | A minus $B$ minus 1 |
| L | H | H | H | $\mathrm{A}+\overline{\mathrm{B}}$ | $A+\bar{B}$ | $A \bar{B}$ | $A \bar{B}$ minus 1 |
| H | L | L | L | $\bar{A} B$ | A plus ( $A+B$ ) | $\bar{A}+B$ | $A$ plus $A B$ |
| H | L | L | H | $A \oplus B$ | A plus B | $A \oplus B$ | A plus B |
| H | L | H | L | B | $A \bar{B}$ plus $(A+B)$ | B | ( $\mathrm{A}+\overline{\mathrm{B}}$ ) plus AB |
| H | L | H | H | A + B | $A+B$ | $A B$ | $A B$ minus 1 |
| H | H | L | L | Logic 0 | A plus $\mathrm{A}^{*}$ | Logic 1 | A plus $\mathrm{A}^{*}$ |
| H | H | L | H | $A \bar{B}$ | $A B$ plus $A$ | A $+\bar{B}$ | $(A+B)$ plus $A$ |
| H | H | H | L | $A B$ | $A \bar{B}$ minus $A$ | $A+B$ | $(\mathrm{A}+\overline{\mathrm{B}})$ plus A |
| H | H | H | H | A | A | A | A minus 1 |

[^58]
## LOGIC SYMBOLS



LOGIC DIAGRAM


| SYMBOL | PARAMETER |  | 93XX |  | 93L |  | 935 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Max | Min | Max | Min | Max |  |  |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & 127 \\ & 140 \end{aligned}$ |  |  |  | $\begin{aligned} & 125 \\ & 140 \end{aligned}$ | mA | $V_{C C}=M a x$ <br> $\mathrm{C}_{\mathrm{n}}, \overline{\mathrm{B}}_{0}-\overline{\mathrm{B}}_{3}=$ Gnd <br> All Other <br> Inputs $=4.5 \mathrm{~V}$ |
| Icc | Power Supply Current | XM |  | $\begin{aligned} & 135 \\ & 150 \end{aligned}$ |  |  |  | $\begin{aligned} & 135 \\ & 150 \end{aligned}$ | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \mathrm{M}, \mathrm{~S}_{0}-\mathrm{S}_{3}=4.5 \mathrm{~V} \\ & \text { All Other } \\ & \text { Inputs = Gnd } \end{aligned}$ |
| Icc | Power Supply Current |  |  |  |  | 36 |  |  | mA | Vcc $=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | $\begin{array}{\|c\|} 93 X X \\ \hline C_{L}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=400 \Omega \\ \hline \end{array}$ |  | $\frac{93 \mathrm{~L}}{} \mathrm{CL}=15 \mathrm{pF}$ |  | $\begin{array}{\|c\|} 93 \mathrm{~S} \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=280 \Omega \end{array}$ |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tpLH tphL | Propagation Delay $\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}}+4$ |  | $\begin{aligned} & 16 \\ & 17 \end{aligned}$ |  | 51 22 |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | $\begin{aligned} & M=\text { Gnd } \\ & \text { Figs. 3-1, } 3-4 \end{aligned}$ Tables I \& II |
| tpLH tphL | Propagation Delay $\mathrm{C}_{\mathrm{n}}$ to $\overline{\mathrm{F}}$ |  | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ |  | 37 42 |  | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}=\text { Gnd } \\ & \text { Figs. 3-1, 3-4 } \\ & \text { Table I } \end{aligned}$ |
| tpLH tphL | Propagation Delay <br> $\bar{A}_{n}$ or $\bar{B}_{n}$ to $\bar{G}$ |  | $\begin{aligned} & 19 \\ & 12 \end{aligned}$ |  | $\begin{aligned} & 51 \\ & 26 \end{aligned}$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | ns | $\mathrm{M}, \mathrm{S}_{1}, \mathrm{~S}_{2}=$ Gnd <br> $\mathrm{S}_{0}, \mathrm{~S}_{3}=4.5 \mathrm{~V}$ <br> Figs. 3-1, 3-5 <br> Table 1 |
| tpli tphL | Propagation Delay $\bar{A}_{n}$ or $\bar{B}_{n}$ to $\bar{G}$ |  | $\begin{aligned} & 22 \\ & 17 \end{aligned}$ |  | 50 43 |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | $\mathrm{M}, \mathrm{S}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd}$ <br> $\mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V}$ <br> Figs. 3-1, 3-4, 3-5 <br> Table II |
| tplh tphL | Propagation Delay $\overline{\mathrm{A}}_{n}$ or $\overline{\mathrm{B}}_{n}$ to $\overline{\mathrm{P}}$ |  | $\begin{aligned} & 19 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 46 \end{aligned}$ |  | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2},=\mathrm{Gnd} \\ & \mathrm{So}_{0}, \mathrm{~S}_{3},=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-5 } \\ & \text { Table I } \end{aligned}$ |
| tpLH tphL | Propagation Delay $\bar{A}_{n}$ or $\bar{B}_{n}$ to $\bar{P}$ |  | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & 38 \\ & 63 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} \\ & \mathrm{~S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-4, 3-5 } \\ & \text { Table II } \end{aligned}$ |
| tpLH tphL | Propagation Delay $\bar{A}_{i}$ or $\bar{B}_{i}$ to $\bar{F}_{i}$ |  | $\begin{aligned} & 26 \\ & 26 \end{aligned}$ |  | $\begin{aligned} & 36 \\ & 65 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | $\mathrm{M}, \mathrm{S}_{1}, \mathrm{~S}_{3}=\mathrm{Gnd}$ <br> $\mathrm{So}_{\mathrm{o}}, \mathrm{S}_{3}=4.5 \mathrm{~V}$ <br> Figs. 3-1, 3-5 <br> Table I |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Cont'd)

| SYMBOL | PARAMETER | 93XX |  | 93L |  | 93 S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  | $C_{L}=15 \mathrm{pF}$ |  | $\begin{array}{\|l\|} \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=280 \Omega \\ \hline \end{array}$ |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $\bar{A}_{i}$ or $\bar{B}_{i}$ to $\bar{F}_{i}$ |  | $\begin{aligned} & 26 \\ & 32 \end{aligned}$ |  | $\begin{aligned} & 39 \\ & 49 \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 21 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} \\ & \mathrm{~S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-4, 3-5 } \\ & \text { Table II } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> $\overline{\mathrm{A}}_{\mathrm{i}}$ or $\overline{\mathrm{B}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}+1$ |  | $\begin{aligned} & 29 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 56 \\ & 62 \end{aligned}$ |  | 24 24 | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{Gnd} \\ & \mathrm{So}_{0}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-5 } \\ & \text { Table I } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay <br> $\overline{\mathrm{A}}_{i}$ or $\overline{\mathrm{B}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}+1$ |  | $\begin{aligned} & 29 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 68 \\ & 71 \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{So}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} \\ & \mathrm{~S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1,3-4, 3-5 } \\ & \text { Table II } \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\mathrm{A}}_{n}$ or $\overline{\mathrm{B}}_{\mathrm{n}}$ to $\overline{\mathrm{F}}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | $\begin{aligned} & 51 \\ & 49 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns | $\begin{aligned} & \hline \mathrm{M}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-5 } \\ & \text { Table III } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> $\bar{A}_{n}$ or $\bar{B}_{n}$ to $\mathrm{C}_{\mathrm{n}}+1$ |  | $\begin{aligned} & 21 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 46 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{Gnd} \\ & \mathrm{So}_{3}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1, 3-4 } \\ & \text { Table I } \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay <br> $\bar{A}_{n}$ or $\bar{B}_{n}$ to $\mathrm{C}_{\mathrm{n}}+1$ |  | $\begin{aligned} & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 60 \\ & 58 \end{aligned}$ |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{So}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} \\ & \mathrm{~S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \text { Figs. 3-1,3-4, 3-5 } \\ & \text { Table II } \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay <br> $\bar{A}_{n}$ or $\bar{B}_{n}$ to $A=B$ |  | $\begin{aligned} & 40 \\ & 42 \end{aligned}$ |  | $\begin{aligned} & 68 \\ & 72 \end{aligned}$ |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{M}, \mathrm{So}_{0}, \mathrm{~S}_{3}=\mathrm{Gnd} \\ & \mathrm{~S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \\ & 5.0 \mathrm{~V} \text {; Figs. 3-1, } \\ & 3-4,3-5 ; \text { Table II } \end{aligned}$ |

SUM MODE TEST TABLE I
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { APPLY } \\ & \text { 4.5 V } \end{aligned}$ | APPLY GND | $\begin{gathered} \text { APPLY } \\ \text { 4.5 V } \end{gathered}$ | APPLY GND |  |
| tplH tpHL | $\bar{A}_{i}$ | $\bar{B}_{i}$ | None | Remaining $\bar{A}$ and $\bar{B}$ | $\mathrm{C}_{n}$ | $\overline{\mathrm{F}} \mathrm{i}$ |
| tpLH <br> tpHL | $\bar{B}_{i}$ | $\bar{A}_{i}$ | None | Remaining $\bar{A}$ and $\bar{B}$ | $\mathrm{C}_{n}$ | $\overline{F_{i}}$ |
| tple <br> tpHL | $\bar{A}_{i}$ | $\bar{B}_{i}$ | None | $\mathrm{C}_{n}$ | Remaining $\bar{A}$ and $\bar{B}$ | $\overline{\mathrm{F}} \mathrm{i}^{+1}$ |
| tplH tpHL | $\bar{B}_{i}$ | $\bar{A}_{i}$ | None | $\mathrm{C}_{n}$ | Remaining $\bar{A}$ and $\bar{B}$ | $\overline{F_{i}}+1$ |
| tpLH <br> tpHL | $\bar{A}$ | $\bar{B}$ | None | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $\overline{\mathrm{P}}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | $\bar{B}$ | $\bar{A}$ | None | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $\bar{P}$ |
| tple <br> tphL | $\bar{A}$ | None | $\bar{B}$ | Remaining $\bar{B}$ | Remaining $\bar{A}, C_{n}$ | $\overline{\mathrm{G}}$ |
| tpLH <br> tpHL | $\bar{B}$ | None | $\bar{A}$ | Remaining $\bar{B}$ | Remaining $\bar{A}, C_{n}$ | $\overline{\mathbf{G}}$ |
| tplH tpHL | $\bar{A}$ | None | $\bar{B}$ | Remaining $\bar{B}$ | Remaining $\bar{A}, C_{n}$ | $C_{n+4}$ |
| tple tpHL | $\bar{B}$ | None | $\bar{A}$ | Remaining $\bar{B}$ | Remaining $\bar{A}, C_{n}$ | $C_{n+4}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\mathrm{C}_{\mathrm{n}}$ | None | None | $\frac{\mathrm{All}}{\overline{\mathrm{~A}}}$ | $\frac{A l l}{\bar{B}}$ | $\begin{gathered} \text { Any } \overline{\mathrm{F}} \\ \text { or } \mathrm{C}_{n}+4 \end{gathered}$ |

DIFF MODE TEST TABLE II
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | APPLY <br> 4.5 V | APPLY GND | APPLY 4.5 V | APPLY GND |  |
| tpLH tpHL | $\bar{A}$ | None | $\bar{B}$ | $\operatorname{Remaining~}_{\bar{A}}$ | Remaining $\bar{B}, C_{n}$ | $\overline{F_{i}}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | $\bar{B}$ | $\bar{A}$ | None | Remaining $\bar{A}$ | Remaining $\bar{B}, C_{n}$ | $\overline{F_{i}}$ |
| tple tpHL | $\bar{A}_{i}$ | None | $\overline{\mathrm{B}} \mathrm{i}$ | Remaining $\bar{B}, C_{n}$ | $\operatorname{Remaining~}_{\bar{A}}$ | $\overline{F_{i}}+1$ |
| tpLH tphL | $\bar{B}_{i}$ | $\bar{A}_{i}$ | None | Remaining $\bar{B}, C_{n}$ | $\operatorname{Remaining~}_{\bar{A}}$ | $\overline{F_{i}}+1$ |
| tplH <br> tpHL | $\bar{A}$ | None | $\bar{B}$ | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $\overline{\mathbf{P}}$ |
| tplH tphL | $\bar{B}$ | $\bar{A}$ | None | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $\overline{\mathrm{P}}$ |
| tpLH tphL | $\bar{A}$ | $\bar{B}$ | None | None | Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\overline{\mathrm{G}}$ |
| tplH tphL | $\bar{B}$ | None | $\bar{A}$ | None | Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | $\overline{\mathrm{G}}$ |
| tple <br> tpHL | $\bar{A}$ | None | $\bar{B}$ | $\underset{\bar{A}}{R_{i}}$ | Remaining $\bar{B}, C_{n}$ | $A=B$ |
| tpLH <br> tPHL | $\bar{B}$ | $\bar{A}$ | None | Remaining $\bar{A}$ | Remaining $\bar{B}, C_{n}$ | $A=B$ |
| tplh <br> tpHL | $\bar{A}$ | $\bar{B}$ | None | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $C_{n}+4$ |
| tplH <br> tpHL | $\bar{B}$ | None | $\bar{A}$ | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | $C_{n}+4$ |
| tplH <br> tpHL | Cn | None | None | All $\bar{A}$ and $\bar{B}$ | None | $C_{n+4}$ |

LOGIC MODE TEST TABLE III
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

| SYMBOL | INPUT UNDER TEST | OTHER INPUT SAME BIT |  | OTHER DATA INPUTS |  | OUTPUT UNDER TEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | APPLY $4.5 \mathrm{~V}$ | APPLY GND | APPLY 4.5 V | APPLY GND |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | $\bar{A}$ | $\bar{B}$ | None | None | Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$ | Any $\overline{\mathrm{F}}$ |
| tple tphL | $\bar{B}$ | $\bar{A}$ | None | None | Remaining $\bar{A}$ and $\bar{B}, C_{n}$ | Any $\bar{F}$ |

CONNECTION DIAGRAM PINOUT A

## 9342 <br> $93 S 42$ <br> CARRY LOOKAHEAD GENERATOR

DESCRIPTION - The '42 is a high speed lookahead carry generator. It is generally used with the 9341 (54/74181) 4-bit arithmetic logic unit to provide high speed lookahead over word lengths of more than four bits. The lookahead carry generator is fully compatible with all members of the TTL family.

- PROVIDES LOOKAHEAD CARRIES ACROSS A GROUP OF FOUR ALU'S
- MULTI-LEVEL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION OVER LONG WORD LENGTHS

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | PKG <br> TYPE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9342PC, 93S42PC |  | 9B |
| Ceramic DIP (D) | A | 9342DC, 93S42DC | 9342DM, 93S42DM | 7B |
| Flatpak (F) | A | 9342FC, 93S42FC | 9342FM, 93S42FM | 4L |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW | $\begin{aligned} & \text { 93S (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{n}}$ | Carry Input | 1.0/1.0 | 1.25/1.25 |
| $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}$ | Carry Generate Inputs (Active LOW) | 7.0/7.0 | 8.75/8.75 |
| $\overline{\mathrm{G}}_{1}$ | Carry Generate Input (Active LOW) | 8.0/8.0 | 10/10 |
| $\overline{\mathrm{G}}_{3}$ | Carry Generate Input (Active LOW) | 4.0/4.0 | 5.0/5.0 |
| $\overline{\mathrm{P}} \overline{\mathrm{P}}, \overline{\mathrm{P}}_{1}$ | Carry Propagate Inputs (Active LOW) | 4.0/4.0 | 5.0/5.0 |
| $\overline{\bar{P}}_{2}$ | Carry Propagate Input (Active LOW) | 3.0/3.0 | 3.75/3.75 |
| $\bar{P}_{3}$ | Carry Propagate Input (Active LOW) | 2.0/2.0 | 2.5/2.5 |
| $\mathrm{C}_{n}+x-\mathrm{C}_{n}+z$ | Carry Outputs | 20/10 | 25/12.5 |
| $\overline{\mathrm{G}}$ | Carry Generate Output (Active LOW) | 20/10 | 25/12.5 |
| $\overline{\mathrm{P}}$ | Carry Propagate Output (Active LOW) | 20/10 | 25/12.5 |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '42 lookahead carry generator accepts up to four pairs of active LOW Carry Propagate ( $\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{3}$ ) and Carry Generate ( $\overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{3}$ ) signals and an active HIGH Carry input ( $\mathrm{C}_{n}$ ) and provides anticipated active HIGH carries ( $C_{n}+x, C_{n+y}, C_{n+z}$ ) across four groups of binary adders. The ' 42 also has active LOW Carry Propagate ( $\overline{\mathrm{P}}$ ) and Carry Generate $(\overline{\mathrm{G}})$ outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are:

$$
\begin{aligned}
C_{n+x} & =G_{0}+P_{0} C_{n} \\
C_{n}+y & =G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n} \\
C_{n}+z & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n} \\
\bar{G} & =\bar{G}_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
\bar{P} & =P_{3} P_{2} P_{1} P_{0}
\end{aligned}
$$

Also, the '42 can be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections (Figure a) to and from the ALU to the lookahead carry generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28 -bit ALU is formed by dropping the last $93 S 41$.

TRUTH TABLE

| INPUTS |  |  |  |  |  |  |  |  | OUTPUTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{n}$ | $\overline{\mathrm{G}}_{0}$ | $\bar{P}_{0}$ | $\overline{\mathrm{G}}_{1}$ | $\bar{P}_{1}$ | $\overline{\mathrm{G}}_{2}$ | $\bar{P}_{2}$ | $\bar{G}_{3}$ | $\bar{P}_{3}$ | $\mathrm{C}_{n+x}$ | $\mathrm{C}_{\mathrm{n}+\mathrm{y}}$ | $\mathrm{C}_{n+z}$ | $\overline{\mathrm{G}}$ | $\overline{\mathrm{P}}$ |
| X | H | H |  |  |  |  |  |  | L |  |  |  |  |
| L | H | x |  |  |  |  |  |  | L |  |  |  |  |
| X | L | X |  |  |  |  |  |  | H |  |  |  |  |
| H | X | L |  |  |  |  |  |  | H |  |  |  |  |
| X | X | X | H | H |  |  |  |  |  | L |  |  |  |
| X | H | H | H | X |  |  |  |  |  | L |  |  |  |
| L | H | X | H | X |  |  |  |  |  | L |  |  |  |
| $x$ | X | X | L | X |  |  |  |  |  | H |  |  |  |
| X | L | X | X | L |  |  |  |  |  | H |  |  |  |
| H | X | L | x | L |  |  |  |  |  | H |  |  |  |
| X | X | X | X | X | H | H |  |  |  |  | L |  |  |
| x | X | X | H | H | H | X |  |  |  |  | L |  |  |
| x | H | H | H | X | H | X |  |  |  |  | L |  |  |
| L | H | X | H | X | H | X |  |  |  |  | L |  |  |
| x | X | X | X | X | L | X |  |  |  |  | H |  |  |
| X | X | X | L | X | X | L |  |  |  |  | H |  |  |
| X | L | X | X | L | X | L |  |  |  |  | H |  |  |
| H | x | L | x | L | X | L |  |  |  |  | H |  |  |
|  | X |  | X | X | X | X | H | H |  |  |  | H |  |
|  | X |  | X | X | H | H | H | X |  |  |  | H |  |
|  | X |  | H | H | H | X | H | X |  |  |  | H |  |
|  | H |  | H | X | H | X | H | X |  |  |  | H |  |
|  | X |  | X | X | X | X | L | X |  |  |  | L |  |
|  | X |  | X | X | L | X | X | L |  |  |  | L |  |
|  | X |  | L | X | X | L | X | L |  |  |  | L |  |
|  | L |  | X | L | X | L | X | L |  |  |  | L |  |
|  |  | H |  | X |  | x |  | x |  |  |  |  | H |
|  |  | X |  | H |  | X |  | X |  |  |  |  | H |
|  |  | X |  | X |  | H |  | X |  |  |  |  | H |
|  |  | X |  | X |  | X |  | H |  |  |  |  | H |
|  |  | L |  | L |  | L |  | L |  |  |  |  | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial


Fig. a 32-Bit ALU with Ripple Carry Between 16-Bit Lookahead ALUs


## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93XX |  | 935 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |  |
| los | Output Short Circuit Current |  | -40 | -100 | -40 | -100 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| ICCH | Power Supply Current (All Outputs HIGH) | $\frac{X M}{X C}$ |  | $\begin{aligned} & 35 \\ & 39 \end{aligned}$ |  | 45 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max; } \overline{\mathrm{P}}_{3}, \overline{\mathrm{G}}_{3}=4.5 \mathrm{~V} \\ & \text { All Other Inputs }=\text { Gnd } \end{aligned}$ |
| ICCL | Power Supply Current (All Outputs LOW) | XM |  | $\begin{aligned} & 65 \\ & 72 \end{aligned}$ |  | 80 | mA | $\begin{aligned} & \mathrm{VCc}=\mathrm{Max} \\ & \overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}=4.5 \mathrm{~V} \\ & \text { All Other Inputs }=\text { Gnd } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 93XX | 935 | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ | $C_{L}=15 \mathrm{pF}$ |  |  |
|  |  | Min Max | Min Max |  |  |
| $\left\lvert\, \begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay <br> $C_{n}$ to $C_{n+x}, C_{n+y}, C_{n+z}$ | $\begin{aligned} & 16 \\ & 19 \end{aligned}$ | $\begin{array}{r} 10 \\ 11.5 \end{array}$ | ns | Figs. 3-1, 3-5 <br> $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}=$ Gnd <br> $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}=4.5 \mathrm{~V}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay <br> $\bar{P}_{0}, \bar{P}_{1}$, or $\bar{P}_{2}$ to <br> $C_{n+x}, C_{n+y}, C_{n+z}$ | $\begin{aligned} & 13 \\ & 14 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ | ns | Figs. 3-1, 3-4 $\bar{P}_{\mathrm{x}}=$ Gnd (if not under test) $\mathrm{C}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}=4.5 \mathrm{~V}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}$, or $\overline{\mathrm{G}}_{2}$ to $C_{n+x}, C_{n+y}, C_{n+z}$ | $\begin{aligned} & 13 \\ & 14 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ | ns | Figs. 3-1, 3-4 <br> $\overline{\mathrm{G}}_{\mathrm{x}}=4.5 \mathrm{~V}$ (if not under test) <br> $\mathrm{C}_{\mathrm{n}}, \overline{\mathrm{P}}_{0}, \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}=\mathrm{Gnd}$ |
| $\left.\right\|_{\mathrm{tPLH}} ^{\mathrm{tPL}}$ | Propagation Delay $\bar{P}_{1}, \bar{P}_{2}$ or $\bar{P}_{3}$ to $\bar{G}$ | $\begin{aligned} & 16 \\ & 19 \end{aligned}$ | $\begin{array}{r} 7.5 \\ 10.5 \end{array}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \bar{P}_{x}=\mathrm{Gnd}_{n} \text { (if not under test) } \\ & \bar{G}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}=4.5 \mathrm{~V} \\ & \hline \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}\right.$ | Propagation Delay $\bar{G}_{n}$ to $\bar{G}$ | $\begin{aligned} & 16 \\ & 19 \end{aligned}$ | $\begin{array}{r} 7.5 \\ 10.5 \end{array}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \overline{\mathrm{G}}_{x}=4.5 \mathrm{~V} \text { (if not under test) } \\ & \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}, \overline{\mathrm{P}}_{3}=\mathrm{Gnd} \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{tPLH} \\ & \mathrm{TPHL} \\ & \hline \end{aligned}\right.$ | Propagation Delay $\bar{P}_{n}$ to $\bar{P}$ | $\begin{aligned} & 16 \\ & 19 \end{aligned}$ | $\begin{gathered} 6.5 \\ 10 \end{gathered}$ | ns | $\begin{aligned} & \text { Figs. 3-1, 3-5 } \\ & \mathrm{P}_{\mathrm{x}}=\text { Gnd (if not under test) } \end{aligned}$ |

## $93 S 43$ <br> 4-BIT BY 2-BIT TWOS COMPLEMENT MULTIPLIER

DESCRIPTION - The ' 43 is a high speed twos complement multiplier. The device is a 4-bit by 2-bit building block that can be connected in an iterative array to perform multiplication of two binary numbers of variable lengths. The device can generate the twos complement product, without correction, of two binary numbers presented in twos complement notation.

- VERY HIGH SPEED MULTIPLICATION - TWO 12-BIT NUMBERS IN 125 ns (TYP)
- PROVIDES TWOS COMPLEMENT PRODUCT WITHOUT CORRECTION
- EXPANDS TO ANY SIZE ARRAY WITHOUT ADDITIONAL COMPONENTS
- ACCEPTS ACTIVE HIGH OR ACTIVE LOW OPERANDS
- EASILY CORRECTABLE FOR UNSIGNED, SIGN-MAGNITUDE OR ONES COMPLEMENT MULTIPLICATION

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 93S43PC |  | 9 N |
| Ceramic DIP (D) | A | 93S43DC | 93S43DM | 6 N |
| Flatpak (F) | A | 93S43FC | 93S43FM | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93S (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $x_{-1}, x_{3}, x_{4}$ | Multiplicand Inputs | $1.0 / 1.0$ |
| $x_{0}, x_{1}, x_{2}$ | Multiplicand Inputs | $2.0 / 2.0$ |
| $Y_{0}$ | Multiplier Input | $2.0 / 2.0$ |
| $y_{-1}, y_{1}$ | Multiplier Inputs | $1.0 / 1.0$ |
| $\mathrm{k}_{0}-\mathrm{k}_{3}$ | Constant Inputs | $2.0 / 2.0$ |
| $\mathrm{C}_{\mathrm{n}}$ | Carry Input | $1.0 / 1.0$ |
| $\overline{\mathrm{P}}$ | Polarity Control Input (Active LOW for HIGH Operands) | $3.0 / 3.0$ |
| $\mathrm{~S}_{0}-\mathrm{S}_{5}$ | Product Outputs | $25 / 12.5$ |
| $\mathrm{C}_{\mathrm{n}}+4$ | Carry Output | $25 / 12.5$ |

FUNCTIONAL DESCRIPTION - The '43 is a super fast hardware multiplier employing Schottky technology and twos complement arithmetic. It multiplies a multiplicand of four bits by a multiplier of two bits and forms a basic iterative logic cell. It can also multiply in active HIGH (positive logic) or active LOW (negative logic) representations by reinterpreting the active levels of the inputs, outputs and the Polarity Control ( $\overline{\mathrm{P}}$ ). The binary number with 1 as the most significant bit is treated as a negative number represented in twos complement form. These ' 43 iterative logic cells can be connected to implement multiplication of an $X$-bit number by a $Y$-bit number. This application requires $X \bullet Y \div 4 \bullet 2$ packages and the resulting product has $X+Y$ bits. At the beginning of the array, a constant can be presented at the K inputs that will be added to the least significant part of the product. The packages can be connected in parallel, triangular or split-array scheme depending on the speed requirement. The ' 41 ALU can be used with these multipliers in the split-array scheme to obtain high speed multiplication.

TABLE I SWITCHING TEST CONDITIONS

| INPUT | OUTPUTS | INPUTS AT 0 V (Remaining Inputs at 4.5 V ) |
| :---: | :---: | :---: |
| $\mathrm{C}_{n}$ | $\mathrm{C}_{\mathrm{n}}+4, \mathrm{~S}_{0}-\mathrm{S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}$ | $\bar{P}, y_{-1}, y_{1}$, All $x$ |
| $\begin{aligned} & k_{0} \\ & k_{1} \\ & k_{2} \\ & k_{3} \\ & k_{3} \end{aligned}$ | $\begin{aligned} & C_{n}+4, S_{0}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{1}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{2}, S_{3}, S_{4}, S_{5} \\ & S_{3} \\ & S_{4}, S_{5} \end{aligned}$ | $\bar{P}, y-1, y_{1}$, All $x$ <br> $\bar{P}, y_{-1}, y_{1}$, All $x$ <br> $\bar{P}, y_{-1}, y_{1}$, All $x$ <br> $\overline{\mathrm{P}}, \mathrm{y}-1, \mathrm{y}_{1}$, All x <br> $\bar{P}, y_{-1}, y_{1}, A l l x, C_{n}$ |
| $\begin{array}{\|l} x_{x_{-1}} \\ x_{0} \\ x_{1} \\ x_{2} \\ x_{3}, x_{4} \\ x_{3}, x_{4} \\ x_{3}, x_{4} \end{array}$ | $\begin{aligned} & C_{n}+4, S_{0}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{0}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{1}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{2}, S_{3}, S_{4}, S_{5} \\ & S_{3} \\ & S_{4}, S_{5} \\ & S_{4}, S_{5} \end{aligned}$ | $\bar{P}, y_{1}$, All $k$ <br> $\bar{P}, y_{-1}, y_{1}$, All $k, C_{n}$ <br> $\overline{\mathrm{P}}, \mathrm{y}_{-1}$, All k, $\mathrm{C}_{\mathrm{n}}$ |
| $\begin{aligned} & \mathrm{y}-1 \\ & \mathrm{y}_{0} \\ & \mathrm{y}^{2} \end{aligned}$ | $\begin{aligned} & C_{n+4}, S_{0}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{0}-S_{3}, S_{4}, S_{5} \\ & C_{n}+4, S_{0}-S_{3}, S_{4}, S_{5} \end{aligned}$ | $\bar{P}, x_{1}, x_{2}, x_{3}, x_{4}$, All $k$ $\bar{P}, x_{1}, x_{2}, x_{3}, x_{4}$, All $k$ $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$, All $k$ |

## LOGIC DIAGRAM



| SYMBOL | PARAMETER | 93 S |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Icc | Power Supply Current |  | 149 | mA | $\mathrm{Vcc}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tph } \end{aligned}$ | Propagation Delay $\mathrm{C}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}}+4$ |  | $\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tplH tPHL | Propagation Delay <br> $\mathrm{C}_{\mathrm{n}}$ to $\mathrm{S}_{0}-\mathrm{S}_{3}$ |  | $\begin{aligned} & 13 \\ & 11 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| tPLH tPHL | Propagation Delay $\mathrm{C}_{\mathrm{n}}$ to $\mathrm{S}_{4}, \mathrm{~S}_{5}$ |  | $\begin{aligned} & 16 \\ & 15 \end{aligned}$ | ns | Figs. 3-1, 3'4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $k_{n}$ to $C_{n}+4$ |  | $\begin{aligned} & 12 \\ & 13 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\mathrm{k}_{\mathrm{n}}$ to $\mathrm{S}_{0}-\mathrm{S}_{3}$ |  | $\begin{aligned} & 14 \\ & 12 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{k}_{\mathrm{n}}$ to $\mathrm{S}_{4}, \mathrm{~S}_{5}$ |  | $\begin{aligned} & 19 \\ & 17 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $x_{n}$ to $C_{n}+4$ |  | $\begin{aligned} & 15 \\ & 24 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $x_{n}$ to $\mathrm{S}_{0}-\mathrm{S}_{3}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $x_{n}$ to $\mathrm{S}_{4}, \mathrm{~S}_{5}$ |  | $\begin{aligned} & 30 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $y_{n}$ to $C_{n}+4$ |  | $\begin{aligned} & 25 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-5 |
| tpLH tPHL | Propagation Delay $y_{n}$ to $S_{0}-S_{3}$ |  | $\begin{aligned} & 28 \\ & 27 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $y_{n}$ to $\mathrm{S}_{4}, \mathrm{~S}_{5}$ |  | $\begin{aligned} & 32 \\ & 30 \end{aligned}$ | ns | Figs. 3-1, 3-4 |


| DESCRIP <br> It multipli numbers speed m compatib | ION <br> stwo <br> the <br> tiplier <br> input | BINARY (4-BIT B FULL MULTIP <br> The ' 44 is a 4-bit by 2-bit inary numbers and simulta roduct. '44 devices can be array of any size. The de and outputs. Inputs are bu | 3Y 2-BIT) PLIER <br> full multiplier building aneously adds two other b interconnected to form a evice is constructed with uffered to reduce loading | ock. <br> nary high TTL | CONNECTION DIAGRAM PINOUT A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - PERFORMS DIRECT MULTIPLICATION <br> - EXPANDS TO ANY SIZE ARRAY WITHOUT ADDITIONAL COMPONENTS <br> - MULTIPLIES AND ADDS SIMULTANEOUSLY <br> ORDERING CODE: See Section 9 |  |  |  |  |  |
|  | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG |  |
| PKGS |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | $\begin{array}{rlllll} 17-0 & \mathbf{k}_{3} & \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{4} \\ \mathbf{s}_{0} & \mathbf{s}_{5} \\ Q_{0} & Q & Q & Q & Q & Q \end{array}$ |
| Plastic <br> DIP (P) | A | 9344PC |  | 9 N |  |
| Ceramic DIP (D) | A | 9344DC | 9344DM | 6 N |  |
| Flatpak (F) | A | 9344FC | 9344FM | 4M | GND $=\operatorname{Pin} 12$ |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\bar{X}_{0}-\bar{X}_{3}$ | Multiplicand Inputs (Active LOW) | 0.66/0.66 |
| $\bar{Y}_{0}, \bar{Y}_{1}$ | Multiplier Inputs (Active LOW) | 0.66/0.66 |
| $\overline{\mathrm{M}}_{1} \overline{\mathrm{Y}}^{1}$ |  | 1.0/1.0 |
| $\overline{\mathrm{K}}$ 0, $\overline{\mathrm{M}}_{0}$ | Additive Carry Inputs (Active LOW) | 4.0/4.0 |
| $\bar{K}_{1}-\bar{K}_{3}$ |  | 2.0/2.0 |
| $\overline{\mathrm{S}}_{0}-\overline{\mathrm{S}}_{5}$ | Outputs | 20/10 |

FUNCTIONAL DESCRIPTION - The'44 is a binary full multiplier for 4-bit by 2-bit words. It is easily expandable in an array to form a high speed parallel multiplier of any length. The functional equation is illustrated below:

$$
\text { S (6-bits) }=\bar{X}(4 \text {-bits }) \text { times } \overline{\mathrm{Y}}(2 \text {-bits) plus } \overline{\mathrm{M}}(2 \text {-bits) plus } \overline{\mathrm{K}} \text { (4-bits) }
$$

Functionally the '44 multiplies a 4-bit word $\left(\bar{X}_{0}-\bar{X}_{3}\right)$ by a two bit word ( $\left.\bar{Y}_{0}-\bar{Y}_{1}\right)$, generating eight partial products. Two other words, $\bar{K}_{0}-\bar{K}_{3}$ and $\bar{M}-\bar{M}_{1}$, are added to these partial products through a lookahead carry adder, generating a 6-bit product/sum. The function can be described by the following equation (note that " + " means arithmetic addition):
$S=20\left(\bar{X}_{0} \bar{Y}_{0}+\bar{M}_{0}+\bar{K}_{0}\right)+21\left(\bar{X}_{1} \bar{Y}_{0}+\bar{X}_{0} \bar{Y}_{1}+\bar{M}_{1}+\bar{K}_{1}\right)+22\left(\bar{X}_{2} \bar{Y}_{0}+\bar{X}_{1} \bar{Y}_{1}+\bar{K}_{2}\right)+23\left(\bar{X}_{3} \bar{Y}_{0}+\bar{X}_{2} \bar{Y}_{1}+\bar{K}_{3}\right)+24\left(\bar{X}_{3} \bar{Y}_{1}\right)$
All inputs and outputs are active LOW; $\bar{X}$ and $\bar{Y}$ inputs are buffered to present only one TTL unit load. The device operates only on positive numbers. If two's complement multiplication is required, then the numbers must be changed to sign magnitude before multiplication, or else the product must be corrected following multiplication of the two's complement numbers. The correction algorithm depends on whether $\bar{X}$ or $\bar{Y}$ or both are negative.

If $\bar{X}$ is negative:
Subtract $\bar{Y}$ from most significant half of product.
If $\bar{Y}$ is negative:
Subtract $\overline{\mathrm{X}}$ from most significant half of product.
If both $\bar{X}$ and $\bar{Y}$ are negative:
Add $\bar{X}$ plus $\bar{Y}$ to most significant half of product.
The result will be the correct two's complement product.

MULTIPLICATION TIME

| NUMBER <br> OF <br> BITS | PACKAGES | TIME (ns) |
| :---: | :---: | :---: |
| $8 \times 8$ | 8 | 150 |
| $12 \times 12$ | 18 | 260 |
| $16 \times 16$ | 32 | 350 |
| $24 \times 24$ | 72 | 550 |

WEIGHTING FACTORS OF THE BASIC MULTIPLIER


This block represents the basic 4-bit by 2-bit multiplier, and indicates the weighting factors (power of two) attached to each of the inputs and outputs.

## TYPICAL MULTIPLICATION ARRAYS

The '44 can be assembled in an iterative structure to perform multi-bit multiplication. The blocks are interconnected so that partial product sums generated in a particular ' 44 are applied, if necessary, to equal weight carry inputs ( $\bar{K}_{0}-\bar{K}_{3}$ or $\bar{M}_{0}, \overline{\mathrm{M}}_{1}$ ) of succeeding stages.

In the active iteritive multiplication arrays shown, weighting factors of the carry and sums between '44's are indicated (i.e., $0=20,1=21,2=22$, etc.). Labels inside the blocks identify bits multipled in that block. For instance $0-0$ refers to multiplicand bits $\mathrm{B}_{0,1,2,3}$ and multiplier bits $\mathrm{A}_{0,1}$, while $4-2$ would represent multiplicant bits $\mathrm{B}_{4,5,6,7}$ and multiplier bits $\mathrm{A}_{2,3}$.

8-BIT BY 5-BIT MULTIPLICATION ARRAY




NOTE:
Each block represents one 9344. Labels inside the blocks identify bits multiplied in that block. The first number is the 4-bit B input, and the second number is the 2-bit A input. For instance, 12-0 refers to multiplicand bits $\mathrm{B}_{12,13,14,15}$ and multiplier bits $\mathrm{A}_{0}, 1$.


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS |
| :--- | :--- | :--- | :---: | :---: | CONDITIONS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tplH tphL | Propagation Delay $\bar{M}_{1}$ to $\bar{S}_{3}$ |  | $\begin{aligned} & 51 \\ & 52 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| tpLH <br> tPHL | Propagation Delay $\overline{\mathrm{K}}_{0}$ to $\overline{\mathrm{S}}_{5}$ |  | $\begin{aligned} & 22 \\ & 39 \end{aligned}$ | ns | Figs. 3-1, 3-5 |

## $93 S 46$

## HIGH SPEED 6-BIT IDENTITY COMPARATOR

DESCRIPTION - The '46 is a very high speed 6-bit identity comparator. The device compares two words of up to six bits and indicates identity in less than 12 ns . It is easily expandable to any word length by using either serial or parallel expansion techniques. When the Enable input (E) is LOW, it forces the output LOW.

- COMPARES TWO 6-BIT WORDS IN 12 ns
- EASILY EXPANDABLE TO ANY WORD SIZE
- ACTIVE HIGH ENABLE FOR FAST RIPPLE EXPANSION

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG TYPE | GND 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |  |  |
| Plastic DIP (P) | A | 93S46PC |  | 9B |  |  |
| Ceramic DIP (D) | A | 93S46DC | 93S46DM | 6B |  |  |
| Flatpak (F) | A | 93S46FC | 93S46FM | 4L |  |  |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93S (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{0}-\mathrm{A}_{5}$ | Word A Inputs | $1.25 / 1.25$ |
| $\mathrm{~B}_{0}-\mathrm{B}_{5}$ | Word B Inputs | $1.25 / 1.25$ |
| $\mathrm{~A}=\mathrm{B}$ | Enable Input (Active HIGH) | $1.25 / 1.25$ |
| A Equal to B Output | $25 / 12.5$ |  |

## LOGIC SYMBOL



$$
\begin{aligned}
& \mathrm{VCC}=\operatorname{Pin} 16 \\
& \text { GND }=\operatorname{Pin} 8
\end{aligned}
$$

FUNCTIONAL DESCRIPTION - The '46 is a very high speed 6-bit identity comparator. The A = B output is HIGH when the Enable (E) is HIGH and the two 6 -bit words are equal. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. When any two of the equivalent bits from each word have different logic levels, the $A=B$ output is LOW.

$$
(A=B)=\left(\overline{A_{0} \oplus B_{0}}\right) \bullet\left(\overline{A_{1} \oplus B_{1}}\right) \bullet\left(\overline{A_{2} \oplus B_{2}}\right) \bullet\left(\overline{A_{3} \oplus B_{3}}\right) \bullet\left(\overline{A_{4} \oplus B_{4}}\right) \cdot\left(\overline{A_{5} \oplus B_{5}}\right) \bullet E
$$

An active HIGH Enable (E) provides a means of fast ripple expansion. By connecting the $A=B$ output of the first stage of the comparator to the enable of the next stage, the comparator can be expanded in 6-bit increments at an additional 4.5 ns per stage. An even faster expansion technique is achieved by connecting the $A=B$ outputs to a Schottky NAND gate. This method compares two words of up to 78 bits each in 15 ns (typical) using the'133 13-input Schottky NAND gate.

TRUTH TABLE

| INPUTS |  | OUTPUT |
| :--- | :---: | :---: |
| $E$ | $A_{n}, B_{n}$ | $A=B$ |
| $L$ | $A_{n}=B_{n}$ | $L$ |
| $L$ | $A_{n} \neq B_{n}$ | $L$ |
| $H$ | $A_{n} \neq B_{n}$ | $L$ |
| $H$ | $A_{n}=B_{n}$ | $H$ |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level

RIPPLE EXPANSION


NOTE: This simple method of expansion adds 4.5 ns for each additional ' 46 used.

## PARALLEL EXPANSION



NOTE: This method of expansion adds one gate delay ( $\simeq 3 \mathrm{~ns}$ ) to the ' 46 , independent of the word length that is compared.


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93S | UNITS | CONDITIONS |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Icc | Power Supply Current | 70 | mA | $\mathrm{~V}_{\mathrm{cc}}=\mathrm{Max}$ |

AC CHARACTERISTICS: $V_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMB OL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CLL}^{\text {= }} 15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay <br> $A_{n}$ or $B_{n}$ to $A=B$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\mathrm{E}=4.5 \mathrm{~V}$, Other Inputs $=4.5 \mathrm{~V}$, Test each input individually, Figs. 3-1, 3-5 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay $A_{n}$ or $B_{n}$ to $A=B$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 14 \\ & 15 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{E}=4.5 \mathrm{~V} \text {, Other Inputs } \\ & =\text { Gnd, Test each input } \\ & \text { individually, Figs. 3-1, 3-4 } \end{aligned}$ |
| tpLH <br> tPHL | Propagation Delay $E$ to $A=B$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | ns | $\begin{aligned} & A_{n}=B_{n} \\ & \text { Figs. 3-1, 3-5 } \end{aligned}$ |

## $93 S 47$ <br> HIGH SPEED 6-BIT IDENTITY COMPARATOR

DESCRIPTION - The ' 47 is a very high speed 6-bit identity comparator. The device features an open-collector output for wired-OR expansion and active LOW Enable. The '47 is fabricated with the Schottky barrier diode process for high speed, and is completely compatible with all TTL families. This device is recommended for applications where wired-OR expansion is desired and the speed of an active pull-up is not required. The '47 is a pin-for-pin replacement for the DM7160/8160.

- SCHOTTKY PROCESS FOR HIGH SPEED
- COMPARE TWO 6-BIT WORDS IN 15 ns
- OPEN-COLLECTOR OUTPUT FOR WIRED-OR EXPANSION

ORDERING CODE: See Section 9

| PKGS | PIN <br> OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 93S47PC |  | 9B |
| Ceramic DIP (D) | A | 93S47DC | 93S47DM | 6B |
| Flatpak (F) | A | 93S47FC | 93S47FM | 4L |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $\begin{aligned} & \text { 93S (U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & A_{0}-A_{5} \\ & B_{0}-B_{5} \\ & \bar{E} \\ & A=B \end{aligned}$ | Word A Inputs <br> Word B Inputs <br> Enable Input (Active LOW) <br> A Equal to B Output | $\begin{aligned} & 1.25 / 1.25 \\ & 1.25 / 1.25 \\ & 1.25 / 1.25 \\ & \text { OC }^{*} / 12.5 \end{aligned}$ |
| *OC-Open Coll | LOGIC SYMBOL | $\begin{aligned} & \mathrm{VCC}=\operatorname{Pin} 16 \\ & \text { GND }=\operatorname{Pin} 8 \end{aligned}$ |

FUNCTIONAL DESCRIPTION - The '47 is a very high speed 6-bit identity comparator. When enabled ( $\bar{E}$ input LOW), the A = B output is HIGH if the two 6 -bit words are equal. When disabled ( $\bar{E}$ input HIGH), the $A=B$ output is forced HIGH. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. Since the $A=B$ output state is determined by the equality of each pair of inputs, the equivalent $A_{n}$ and $B_{n}$ pins can be interchanged to facilitate board layout or wiring. The active LOW Enable ( $\left.\overline{\mathrm{E}}\right)$ can be used as a high speed strobe. When the Enable is HIGH, the $A=B$ output is forced HIGH. This allows devices tied to a common wired-OR (actually wired-AND) node to be strobed individually or in groups. Only the enabled devices will determine the state of the output node.

$$
\left.(A=B)=\bar{E}+\left(\overline{A_{0} \oplus B_{0}}\right) \bullet\left(\overline{A_{1} \oplus B_{1}}\right) \bullet \overline{\left(A_{2} \oplus B_{2}\right.}\right) \bullet\left(\overline{A_{3} \oplus B_{3}}\right) \bullet\left(\overline{A_{4} \oplus B_{4}}\right) \bullet\left(\overline{A_{5} \oplus B_{5}}\right)
$$

LOGIC DIAGRAM


TRUTH TABLE

| INPUTS |  | OUTPUT |
| :--- | :---: | :---: |
| $\bar{E}$ | $A_{n}, B_{n}$ | $A=B$ |
| $L$ | $A_{n}=B_{n}$ | $H$ |
| $L$ | $A_{n} \neq B_{n}$ | $L$ |
| $H$ | $A_{n} \neq B_{n}$ | $H$ |
| $H$ | $A_{n}=B_{n}$ | $H$ |

H = HIGH Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93S |  | UNITS |
| :--- | :--- | :--- | :---: | :---: |
|  |  | CONDITIONS |  |  |
| Icc | Power Supply Current |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay <br> $A_{n}$ or $B_{n}$ to $A=B$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \end{aligned}$ | ns | $\overline{\mathrm{E}}=$ Gnd, Other Inputs $=4.5 \mathrm{~V}$, Test each input individually, Figs. 3-2, 3-5 |
| tpLH tpHL | Propagation Delay <br> $A_{n}$ or $B_{n}$ to $A=B$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 14 \\ & 15 \end{aligned}$ | ns | $\overline{\mathrm{E}}=$ Gnd, Other Inputs = Gnd, Test each input individually, Figs. 3-2, 3-4 |
| tpLH tPHL | Propagation Delay $\bar{E}$ to $A=B$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | ns | $\begin{aligned} & A_{n} \neq B_{n} \\ & \text { Figs. 3-2, 3-5 } \end{aligned}$ |

## 9348 <br> 12-INPUT PARITY CHECKER/GENERATOR

DESCRIPTION - The ' 48 is a 12 -input parity checker/generator generating odd and even parity outputs. It can be used in high speed error detection applications.

- BOTH ODD AND EVEN PARITY OUTPUTS PROVIDED
- GENERATES A PARITY BIT FOR UP TO 12 BITS
- CHECKS FOR PARITY ON UP TO 12 BITS
- EASILY EXPANDABLE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9348PC |  | 9B |
| Ceramic DIP (D) | A | 9348DC | 9348DM | 6B |
| Flatpak <br> (F) | A | 9348FC | 9348FM | 4L |



INPUT LOADING/FAN-OUT

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :---: | :---: |
| IO- li1 | Parity Inputs | $2.0 / 2.0$ |
| PO | Odd Parity Output | $20 / 10$ |
| PE | Even Parity Output | $20 / 10$ |

LOGIC SYMBOL


FUNCTIONAL DESCRIPTION - The '48 is a 12-input parity generator. It provides odd and even parity for up to 12 data bits. The Even Parity output (PE) will be HIGH if an even number of logic ones are present on the inputs. The Odd Parity output (PO) will be HIGH if an odd number of logic ones are present on the inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& P O=I_{0} \oplus \mathrm{I}_{1} \oplus \mathrm{I}_{2} \oplus \mathrm{I}_{3} \oplus \mathrm{I}_{4} \oplus \mathrm{I}_{5} \oplus \mathrm{I}_{6} \oplus \mathrm{I}_{7} \oplus \mathrm{I}_{8} \oplus \mathrm{I}_{9} \oplus \mathrm{I}_{10} \oplus \mathrm{I}_{11} \\
& \mathrm{PE}=\mathrm{I}_{0} \oplus \mathrm{I}_{1} \oplus \mathrm{I}_{2} \oplus \mathrm{I}_{3} \oplus \mathrm{I}_{4} \oplus \mathrm{I}_{5} \oplus \mathrm{I}_{6} \oplus \mathrm{I}_{7} \oplus \mathrm{I}_{8} \oplus \mathrm{I}_{9} \oplus \mathrm{I}_{10} \oplus \mathrm{I}_{11}
\end{aligned}
$$

NOTE: Less through delay is encounted from the $l_{0}, l_{1}, l_{2}$, and $l_{3}$ inputs than $l_{4}$ thru $l_{11}$ inputs. Therefore, if some signals are slower than others, the slower signals should be applied to these four inputs for maximum speed.

TRUTH TABLE

| INPUTS | OUTPUTS |  |  |
| :--- | :--- | :--- | :--- |
| I - $-\mathrm{l}_{11}$ |  | PO | PE |
| All Twelve | Inputs LOW | L | H |
| Any One | Input HIGH | H | L |
| Any Two | Inputs HIGH | L | H |
| Any Three | Inputs HIGH | H | L |
| Any Four | Inputs HIGH | L | H |
| Any Five | Inputs HIGH | H | L |
| Any Six | Inputs HIGH | L | H |
| Any Seven | Inputs HIGH | H | L |
| Any Eight | Inputs HIGH | L | H |
| Any Nine | Inputs HIGH | H | L |
| Any Ten | Inputs HIGH | L | H |
| Any Eleven | Inputs HIGH | H | L |
| Any Twelve | Inputs HIGH | L | H |

H = HIGH Voltage Level
L = LOW Voltage Level

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX | UNITS | CONDITIONS |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Icc | Power Supply Current | 82 | mA | $\mathrm{Vcc}=$ Max |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configuration)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\left.\right\|_{\mathrm{tPLH}} ^{\mathrm{tPLH}}$ | Propagation Delay $\mathrm{I}_{4}$ to PO |  | $\begin{aligned} & 46 \\ & 42 \end{aligned}$ | ns | $\mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{7}, \mathrm{I}_{8}=$ Gnd; Other Inputs (exc. 14) HIGH Figs. 3-1, 3-4 |
| $\left\lvert\, \begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}\right.$ | Propagation Delay $\mathrm{I}_{4}$ to PE |  | $\begin{aligned} & 51 \\ & 48 \end{aligned}$ | ns | $\mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{7}, \mathrm{I}_{8}=$ Gnd; Other Inputs (exc. 14) HIGH Figs. 3-1, 3-5 |
| tpl | Propagation Delay $\mathrm{I}_{3}$ to PO |  | 27 | ns | $\mathrm{I}_{7}=$ HIGH; Other Inputs (exc. $\mathrm{I}_{3}$ ) $=$ Gnd <br> Figs. 3-1, 3-4 |
| tphL | Propagation Delay 14 to PO |  | 25 | ns | All Inputs (exc. 14) = Gnd Figs. 3-1, 3-5 |

## $93 S 62$ <br> 9-INPUT PARITY CHECKER/GENERATOR

DESCRIPTION - The '62 is a very high speed 9-input parity checker/generator for use in error detection and error correction applications. The '62 provides odd and even parity for up to nine data bits. The even parity output (PE) is HIGH if an even number of inputs are HIGH and $\bar{E}$ is LOW. The odd parity output ( PO ) will be HIGH if an odd number of inputs are HIGH and $\bar{E}$ is LOW. A HIGH level on the Enable ( $\bar{E}$ ) input forces both outputs LOW.


LOGIC SYMBOL

- INPUT-TO-OUTPUT DELAY 16 ns
- OUTPUT ENABLE TERMINAL
- BOTH ODD AND EVEN PARITY OUTPUTS PROVIDED
- GENERATES A PARITY BIT FOR UP TO NINE BITS
- CHECKS FOR PARITY ON UP TO NINE BITS
- EASILY EXPANDABLE


## ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 93S62PC |  | 9A |
| Ceramic DIP (D) | A | 93S62DC | 93S62DM | 6A |
| Flatpak (F) | A | 93S62FC | 93S62FM | 31 |


$V_{C C}=\operatorname{Pin} 14$ GND $=\operatorname{Pin} 7$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93S (U.L.) |
| :--- | :--- | :---: |
| HIGH/LOW |  |  |

FUNCTIONAL DESCRIPTION - The ' 62 is a very high speed 9 -input parity checker or generator. It is intended primarily for error detection in systems which transmit data in 8 -bit bytes, but it can be expanded to any number of data inputs. Both even and odd parity outputs are available to allow maximum flexibility for both parity generation and parity checking. When the device is enabled ( $\bar{E}=$ LOW), the Even Parity output (PE) is HIGH when an even number of inputs is HIGH, and the Odd Parity output (PO) is HIGH when an odd number of inputs is HIGH. The active LOW Enable ( $\overline{\mathrm{E}}$ ) controls the state of both outputs; when the Enable ( $\overline{\mathrm{E}}$ ) is HIGH, both outputs will be LOW. The Enable may be used to strobe the outputs at very high speeds to synchronize or inhibit the parity data.

The '62 has been designed with two sections using Exclusive-NOR comparison techniques. Eight data inputs lo thru 17 represent one section which will generate a parity bit in 16 to 20 ns . The ninth input (18) bypasses three levels of logic and switches the outputs in 6.0 ns to 9.0 ns . This feature may be used to compensate for delayed arrival of the parity bit, allowing faster system cycle times (Figure a). The fast $l_{8}$ input is also useful when more than nine bits are to be checked. The output of one' 62 drives the $l_{8}$ input of a second ' 62 providing a 17 -bit parity check in 29 ns (typ).

When some inputs of the ' 62 are not used, such as for words of less than nine bits or when using parallel expansion techniques, there is an optimum delay scheme for termination of the unused inputs (see Table III). In essence, if one of the inputs of any Exclusive-NOR stays HIGH, the delay from the other input to the output is minimized.
TRUTH TABLE
( $\overline{\mathrm{E}}=$ LOW $)$

| Number of <br> $\mathrm{I}_{0}-\mathrm{I}_{8}$ that are HIGH | OUTPUTS |  |
| :--- | :--- | :--- |
|  | PO | PE |
| $1,3,5,7,9$ | H | L |
| $0,2,4,6,8$ | L | H |
| H $=$ HIGH Voltage Level |  |  |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
TABLE II - Termination Recommendations for Less Than Nine Bits

| Number of <br> Data Inputs | $\mathrm{I}_{0}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{4}$ | $\mathrm{I}_{5}$ | $\mathrm{I}_{6}$ | $\mathrm{I}_{7}$ | $\mathrm{I}_{8}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | $\mathrm{D}_{0}$ | L | $\mathrm{D}_{1}$ | L | $\mathrm{D}_{2}$ | L | L | L | L |
| 4 | $\mathrm{D}_{0}$ | L | $\mathrm{D}_{1}$ | L | $\mathrm{D}_{2}$ | L | $\mathrm{D}_{3}$ | L | L |
| 5 | $\mathrm{D}_{0}$ | L | $\mathrm{D}_{1}$ | L | $\mathrm{D}_{2}$ | L | $\mathrm{D}_{3}$ | L | $\mathrm{D}_{4}$ |
| 6 | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | L | $\mathrm{D}_{5}$ | L | L |
| 7 | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | L | $\mathrm{D}_{5}$ | L | $\mathrm{D}_{6}$ |
| 8 | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L |



Fig. a Fast Input $I_{8}$ Allows Higher System Speed


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 935 |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| IIL | Input LOW Current | $\frac{I_{0}-I_{8}}{\bar{E}}$ |  | $\begin{aligned} & -1.6 \\ & -3.2 \end{aligned}$ | mA | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{V} \mathrm{IN}=0.5 \mathrm{~V}$ |
| Icc | Power Supply Current |  |  | 65 | mA | $\mathrm{Vcc}=\mathrm{Max}$ |

AC CHARACTERISTICS: $\mathrm{VcC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay $1_{0}-17$ to PE |  | $\begin{aligned} & 26 \\ & 22 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $l_{8}$ to PE |  | $\begin{aligned} & 12 \\ & 9.0 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| tpLH tphL | Propagation Delay $\mathrm{I}_{0}$ - $\mathrm{I}_{7}$ to PO |  | $\begin{aligned} & 26 \\ & 26 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \mathrm{tPLH} \\ & \text { tpHL } \end{aligned}$ | Propagation Delay I8 to PO |  | $\begin{aligned} & 13 \\ & 13 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to PE |  | $\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$ | ns | Figs. 3-1, 3-4 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay <br> $\bar{E}$ to PO |  | $\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$ | ns | Figs. 3-1, 3-4 |

## 9368 <br> 7-SEGMENT DECODER/DRIVER/LATCH <br> (Constant Current Source Outputs)

DESCRIPTION - The '68 is a 7-segment decoder driver incorporating input latches and constant current output circuits to drive common cathode type LED displays directly.

- HIGH SPEED INPUT LATCHES FOR DATA STORAGE
- DRIVES COMMON CATHODE LED DISPLAYS

SUCH AS FND357 OR FND500 DIRECTLY

- ACTIVE LOW LATCH ENABLE FOR EASY INTERFACE WITH MSI CIRCUITS
- HEXADECIMAL DECODE FORMAT
- LATCH SPEED COMPARABLE TO STANDARD MSI LATCHES
- DATA INPUT FAN-IN ZERO WHEN LATCH NOT ENABLED
- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING EDGE ZEROS AND/OR TRAILING EDGE ZEROS
- PINOUTS COMPARABLE WITH OTHER STANDARD MSI DECODERS SUCH AS 9307, 9317, 7446, 7447, 7448

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 9368PC | 9B |
| Ceramic DIP (D) | A | 9368DC | 6B |

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $A_{0}-A_{3}$ | Address (Data) Inputs | 2.0/1.0* |
| LE | Latch Enable Input (Active LOW) | 1.0/1.0 |
| $\overline{\text { RBI }}$ | Ripple Blanking Input (Active LOW) | 1.0/1.0 |
| $\overline{\mathrm{RBO}}$ | Ripple Blanking as Output (Active LOW) | -/2.0 |
|  | as Input (Active LOW) | -/2.0 |
| $\mathrm{a}-\mathrm{g}$ | Segment Outputs (Active HIGH) | 20 mA /"OFF" |

[^59]FUNCTIONAL DESCRIPTION - The '68 is a 7 -segment decoder driver designed to drive 7 -segment common cathode LED displays such as the Fairchild FND357 or FND500 directly. The '68 drives any common cathode LED display rated at a nominal 20 mA at 1.7 V per segment without need for current limiting resistors.

This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7 segment display. It has a hexadecimal decode format which produces numeric codes " 0 " thru " 9 " and alpha codes "A" thru "F" using upper and lower case fonts.

Latches on the four data inputs are controlled by an active LOW latch enable $\overline{L E}$. When the $\overline{L E}$ is LOW, the state of the outputs is determined by the input data. When the $\overline{\text { LE }}$ goes HIGH, the last data present at the inputs is stored in the latches and the outputs remain stable. The $\overline{\text { EE }}$ pulse width necessary to accept and store data is typically 30 ns which allows data to be strobed into the ' 68 at normal TTL speeds. This feature means that data can be routed directly from high speed counters and frequency dividers into the display without slowing down the system clock or providing intermediate data storage.

Another feature of the '68 is that the unit loading on the data inputs is very low ( $-100 \mu \mathrm{~A}$ Max) when the latch enable is HIGH. This allows ' 68 s to be driven from an MOS device in multiplex mode without the need for drivers on the data lines.

The '68 also has provision for automatic blanking of the leading and/or trailing edge zeros in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03 . Leading edge zero suppression is obtained by connecting the Ripple Blanking Output ( $\overline{\mathrm{RBO}}$ ) of a decoder to the Ripple Blanking Input ( $\overline{\mathrm{RBI}}$ ) of the next lower stage device. The most significant decoder stage should have the $\overline{\mathrm{RBI}}$ input grounded; and since suppression of the least significant integer zero in a number is not usually desired, the $\overline{\text { RBl input of this decoder stage should be left open. A similar }}$ procedure for the fractional part of a display will provide automatic suppression of trailing edge zeros. The $\overline{\mathrm{RBO}}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL or DTL gates.

LOGIC DIAGRAM


TRUTH TABLE

| BINARY STATE | INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{L E}$ | $\overline{\mathrm{RBI}}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ | a | b | C | d | e | f | g | $\overline{\mathrm{RBO}}$ |  |
| - | H | * | X | X | X | X | 4 |  |  | TAB | E |  | $\rightarrow$ | H | STABLE |
| 0 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | BLANK |
| 0 | L | H | L | L | L | L | H | H | H | H | H | H | L | H | $\square$ |
| 1 | L | X | L | L | L | H | L | H | H | L | L | L | L | H | I |
| 2 | L | X | L | L | H | L | H | H | L | H | H | L | H | H | こ |
| 3 | L | X | L | L | H | H | H | H | H | H | L | L | H | H | 3 |
| 4 | L | X | L | H | L | L | L | H | H | L | L | H | H | H | 4 |
| 5 | L | X | L | H | $L$ | H | H | L | H | H | L | H | H | H | 5 |
| 6 | L | $x$ | L | H | H | L | H | L | H | H | H | H | H | H | 5 |
| 7 | L | X | L | H | H | H | H | H | H | L | L | L | L | H | T |
| 8 | L | X | H | L | L | L | H | H | H | H | H | H | H | H | 8 |
| 9 | L | X | H | L | L | H | H | H | H | L | L | H | H | H | $\bigcirc$ |
| 10 | L | X | H | L | H | L | H | H | H | L | H | H | H | H | 只 |
| 11 | L | X | H | L | H | H | L | L | H | H | H | H | H | H | L |
| 12 | L | X | H | H | L | L | H | L | L | H | H | H | L | H | [ |
| 13 | L | X | H | H | L | H | L | H | H | H | H | L | H | H | $d$ |
| 14 | L | X | H | H | H | L | H | L | L | H | H | H | H | H | E |
| 15 | L | X | H | H | H | H | H | L | L | L | H | H | H | H | F |
| X | X | X | X | X | X | X | L | L | L | L | L | L | L | L** | BLANK |


*The $\overline{\text { RBI }}$ will blank the display only if a binary zero is stored in the latches.
**The RBO used as an input overrides all other input conditions.
H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## NUMERICAL DESIGNATIONS




## DISPLAY DEMULTIPLEXING SYSTEM WITH RIPPLE BLANKING



NOTE:
Digit address data must be non-overlapping. Standard TTL decoders like the 9301, 9311, 7442 or 74155 must be strobed, since the address decoding glitches could cause erroneous data to be strobed into the latches.

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Іон | Segment Output HIGH Current | -16 | -22 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.7 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ |
| loL | Segment Output LOW Current | -250 | 250 | $\mu \mathrm{A}$ | $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~V}$ OUT $=1.7 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 67 | mA | Vcc $=$ Max, Outputs Open, Data \& Latch Inputs $=$ Gnd |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| tpLH <br> tphl | Propagation Delay <br> $A_{n}$ to $a-g$ |  | $\begin{aligned} & 50 \\ & 75 \end{aligned}$ | ns | Fig. 3-21 |
| $\begin{aligned} & \overline{\mathrm{tPLH}} \\ & \text { tPHL } \end{aligned}$ | Propagation Delay <br> $\overline{L E}$ to $\mathrm{a}-\mathrm{g}$ |  | $\begin{aligned} & 70 \\ & 90 \end{aligned}$ | ns | Fig. 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\mathrm{ts}_{\text {s }}(\mathrm{H})$ | Setup Time HIGH $A_{n}$ to $\overline{L E}$ | 30 |  | ns | Fig. 3-13 |
| th (H) | Hold Time HIGH $A_{n}$ to $\overline{L E}$ | 0 |  | ns | Fig. 3-13 |
| $\mathrm{ts}_{\text {s }}(\mathrm{L})$ | Setup Time LOW <br> $A_{n}$ to $\overline{L E}$ | 20 |  | ns | Fig. 3-13 |
| th (L) | Hold Time LOW <br> $A_{n}$ to $\overline{L E}$ | 0 |  | ns | Fig. 3-13 |
| $\mathrm{tw}^{\text {( }}$ ) | $\overline{\text { LE Pulse Width LOW }}$ | 45 |  | ns | Fig. 3-8 |

## 9370 <br> 7-SEGMENT DECODER/DRIVER/LATCH <br> (With Open-Collector Outputs)

DESCRIPTION - The '70 is a 7 -segment decoder driver incorporating input latches and output circuits to directly drive incandescent displays. It can also be used to drive common anode LED displays in either a multiplexed mode or directly with the aid of external current limiting resistors.

- high speed input latches for data storage
- 25 mA SINK CAPABILITY TO DRIVE EITHER INCANDESCENT OR COMMON ANODE LED DISPLAYS
- HEXADECIMAL DECODE FORMAT
- ACTIVE LOW LATCH ENABLE FOR EASY INTERFACE WITH MSI CIRCUITS
- DATA INPUT LOADING ESSENTIALLY ZERO WHEN LATCH IS DISABLED
- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING AND/OR TRAILING-EDGE ZEROES

ORDERING CODE: See Section 9

| PKGS | PIN |  |  |
| :--- | :---: | :---: | :---: |
|  | OUT | COMMERCIAL GRADE | $\mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%$, <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
|  | A | 9370 PC |  |
| Ceramic <br> DIP (D) | A | 9370 DC | 6 C |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address Inputs | 2.0/1.0** |
| LE | Latch Enable Input (Active LOW) | 1.0/1.0 |
| RBI | Ripple Blanking Input (Active LOW) | 1.0/1.0 |
| $\overline{\mathrm{RBO}}$ | Ripple Blanking as Output (Active LOW) | 2.0/2.0 |
|  | as Input (Active LOW) | -/2.0 |
| $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ | Segment Outputs (Active LOW) | OC*/25 mA |
| *OC-Open Collector <br> **Except Loading is $100 \mu \mathrm{~A} @ 0.4 \mathrm{~V}$ when $\overline{L E}$ is HIGH. |  |  |

FUNCTIONAL DESCRIPTION - The ' 70 has active LOW outputs capable of sinking in excess of 25 mA which allows it to drive a wide variety of 7 -segment incandescent displays directly. It may also be used to drive common anode LED displays, multiplexed or directly with the aid of suitable current limiting resistors. This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7 -segment display. It has a hexadecimal decode format which produces numeric codes " 0 " through " 9 " and alpha codes " $A$ " through " $F$ " using upper and lower case fonts.

Latches on the four data inputs are controlled by an active LOW latch enable $\overline{L E}$. When the $\overline{L E}$ is LOW, the state of the outputs is determined by the input data. When the $\overline{\text { LE }}$ goes HIGH, the last data present at the inputs is stored in the latches and the outputs remain stable. The LE pulse width necessary to accept and store data is typically 30 ns which allows data to be strobed into the ' 70 at normal TTL speeds. This feature means that data can be routed directly from high speed counters and frequency dividers into the display without slowing down the system clock or providing intermediate data storage.

The latch/decoder combination is a simple system which drives incandescent displays with multiplexed data inputs from MOS time clocks, DVMs, calculator chips, etc. Data inputs are multiplexed while the displays are in static mode. This lowers component and insertion costs since several circuits - seven diodes per display, strobe drivers, a separate display voltage source, and clock failure detect circuits - traditionally found in incandescent multiplexed display systems are eliminated. It also allows low strobing rates to be used without display flicker.

Another '70 feature is the reduced loading on the data inputs when the Latch Enable is HIGH (only $10 \mu \mathrm{~A}$ typ). This allows many ' 70 s to be driven from a MOS device in multiplex mode without the need for drivers on the data lines. The ' 70 also provides automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an 8digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03 . Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output ( $\overline{\mathrm{RBO}}$ ) of a decoder to the Ripple Blanking Input ( $\overline{\mathrm{BBI}}$ ) of the next lower stage device. The most significant decoder stage should have the $\overline{\text { RBI }}$ input grounded; and since suppression of the least significant integer zero in a number is not usually desired, the $\overline{\mathrm{RBI}}$ input of this decoder stage should be left open. A similar procedure for the fractional part of a display will provide automatic suppression of trailing-edge zeroes. The $\overline{\text { RBO }}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL or DTL gates.

LOGIC DIAGRAM


TRUTH TABLE

| BINARY STATE | INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LE | $\overline{\text { RBI }}$ | $A_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | Ao | $\overline{\mathrm{a}}$ | $\overline{\mathrm{b}}$ | $\overline{\mathrm{c}}$ | $\bar{d}$ | $\overline{\mathrm{e}}$ | f | $\overline{\mathrm{g}}$ | $\overline{\mathrm{RBO}}$ |  |
| - | H | * | X | X | X | X |  |  |  | TAB | LE |  | - | H | STABLE |
| 0 | L | L | L | L | L | L | H | H | H | H | H | H | H | L | BLANK |
| 0 | L | H | L | L | L | L | L | L | L | L | L | L | H | H | 0 |
| 1 | L | x | L | L | L | H | H | L | L | H | H | H | H | H | 1 |
| 2 | L | X | L | L | H | L | L | L | H | L | L | H | L | H | 2 |
| 3 | L | X | L | L | H | H | L | L | L | L | H | H | L | H | 3 |
| 4 | L | X | L | H | L | L | H | L | L | H | H | L | L | H | 4 |
| 5 | L | X | L | H | L | H | L | H | L | L | H | L | L | H | 5 |
| 6 |  | X | L | H | H | L | L | H | L | L | L | L | L | H | 5 |
| 7 | L | X | L | H | H | H | L | L | L | H | H | H | H | H | , |
| 8 | L | X | H | L | L | L | L | L | L | L | L | L | L | H | 8 |
| 9 | L | x | H | L | L | H | L | L | L | H | H | L | L | H | 9 |
| 10 | L | X | H | L | H | L | L | L | L | H | L | L | L | H | 只 |
| 11 |  | X | H | L | H | H | H | H | L | L | L | L | L | H | $\square$ |
| 12 | L | x | H | H | L | L | L | H | H | L | L | L | H | H | [ |
| 13 | L | X | H | H | L | H | H | L | L | L | L | H | L | H | む |
| 14 | L | X | H | H | H | L | L | H | H | L | L | L | L | H | ᄃ |
| 15 | L | X | H | H | H | H | L | H | H | H | L | L | L | H | F |
| X | X | X | X | X | X | X | H | H | H | H | H | H | H | L** | BLANK |


*The $\overline{R B I}$ will blank the display only if binary zero is stored in the latches.
** $\overline{\mathrm{RBO}}$ used as an input overrides all other input conditions.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

NUMERICAL DESIGNATION


| SYBMOL | PARAMETER |  | 93XX |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Voh | Output HIGH Voltage | $\overline{\mathrm{RBO}}$ | 2.4 |  | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, IOH | $-80 \mu \mathrm{~A}$ |
| Vol | Output LOW Voltage | $\stackrel{\text { RBO }}{\underline{\text { R }}}$ | $\begin{aligned} & \hline 0.4 \\ & 0.4 \end{aligned}$ |  | V | $\mathrm{IOL}=3.2 \mathrm{~mA}$ | $\mathrm{Vcc}=\mathrm{Min}$ |
|  |  | $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ |  |  | $\mathrm{IOL}=25 \mathrm{~mA}$ |  |  |  |
| Іон | Output HIGH Current, $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ |  |  | 250 |  | $\mu \mathrm{A}$ | $\mathrm{VCC}=\mathrm{Max}, \mathrm{V}_{\text {OUt }}=5.5 \mathrm{~V}$ |  |
| Icc | Power Supply Current |  |  | 105 | mA | $A_{1}, A_{2}, A_{3}, \overline{L E}=G n d$ $V_{C C}=$ Max, Outputs Open |  |
|  |  |  |  | 94 |  | $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \overline{\mathrm{LE}}$ $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{Ou}$ | $\begin{aligned} & =\text { Gnd } \\ & \text { tputs Open } \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\overline{\text { tpLH }}$ tPhL | Propagation Delay $A_{n}$ to $\bar{a}-\bar{g}$ |  | $\begin{aligned} & 75 \\ & 50 \end{aligned}$ | ns | Figs. 3-1, 3-20 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay $\overline{\text { LE }}$ to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ |  | $\begin{aligned} & 90 \\ & 70 \end{aligned}$ | ns | Figs. 3-1, 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup Time HIGH or LOW $A_{n}$ to $\overline{\text { LE }}$ |  | $\begin{aligned} & 30 \\ & 20 \end{aligned}$ | ns | Fig. 3-13 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$ | Hold Time HIGH or LOW $A_{n}$ to $\overline{L E}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | ns |  |
| $\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { LE }}$ Pulse Width LOW |  | 45 | ns | Fig. 3-9 |

## 93 H 72 <br> HIGH SPEED 4-BIT SHIFT REGISTER <br> (With Enable)

DESCRIPTION - The '72 high speed 4-bit shift register is a multifunctional sequential logic block which is useful in a wide variety of register applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial and parallel-parallel data transfers. The '72 has three synchronous modes of operation: shift, parallel load and hold (do nothing). The hold capability permits information storage in the register independent of the clock.

- 60 MHz TYPICAL SHIFT FREQUENCY
- SYNCHRONOUS PARALLEL DATA ENTRY
- dATA HOLD (DO NOTHING) INDEPENDENT OF CLOCK
- FULLY SYNCHRONOUS, EDGE-TRIGGERED
- ASYNCHRONOUS MASTER RESET

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Vcc }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 93H72PC |  | 9 B |
| Ceramic <br> DIP (D) | A | 93H72DC | 93H72DM | 6B |
| Flatpak (F) | A | 93H72FC | 93H72FM | 4L |



VCC $=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93H (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\bar{E}$ | Enable Input (Active LOW) | $2.0 / 2.0$ |
| $\overline{P E}$ | Parallel Enable Input (Active LOW) | $1.0 / 1.0$ |
| $\mathrm{P}_{0}-\mathrm{P}_{3}$ | Parallel Data Inputs | $1.0 / 1.0$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input | $2.0 / 2.0$ |
| MR | Master Reset Input (Active LOW) | $1.0 / 1.0$ |
| D | Serial Data Input | $1.0 / 1.0$ |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Parallel Outputs | $20 / 10$ |
|  | Last Stage Complementary Output | $20 / 10$ |

FUNCTIONAL DESCRIPTION - The '72 is a 4-bit shift register with three modes of operation: shift, parallel load and hold (do nothing). The register is fully synchronous with any output change occuring after the rising clock edge. The ' 72 features edge-triggered type characteristics on all inputs (except $\overline{M R}$ ) which means there are no restrictions on the activity of these inputs ( $\overline{P E}, \bar{E}, P_{0}-P_{3}, D$ ) for logic operation except for the setup requirements prior to the LOW-to-HIGH clock transition.

The mode of operation of the' 72 is determined by the two inputs, Parallel Enable $(\overline{\mathrm{PE}})$ and Enable $(\overline{\mathrm{E}})$ as shown in Table 1. The active LOW Enable when HIGH, places the register in the hold mode with the register flip-flops retaining their information. When the Enable is activated (LOW) the Parallel Enable ( $\overline{\text { PE }})$ determines whether the register operates in a shift or parallel data entry mode.

When the Enable is LOW and the Parallel Enable input is LOW the parallel inputs are selected and will determine the next condition of the register synchronously with the clock as shown in Table II. In this mode the element appears as four common clocked D flip-flops. With $\bar{E}$ LOW and the $\overline{\text { PE input HIGH the device acts as a } 4 \text {-bit shift }}$ register with serial data entry through the D input shown in Table III. In both cases the next state of the flip-flops occurs after the LOW-to-HIGH transition of the clock input.

The asynchronous active LOW Master Reset overrides all inputs and clears the register forcing outputs $Q_{0}-Q_{3}$ LOW and $\bar{Q}_{3}$ HIGH. To provide for left shift operation, $P_{3}$ is used as the serial data input and $Q_{0}$ is the serial data output. The other outputs are tied back to the previous parallel inputs, with $Q_{3}$ tied to $P_{2}, Q_{2}$ tied to $P_{1}$ and $Q_{1}$ tied to Po .

## LOGIC DIAGRAM



TABLE I. MODE SELECT TABLE

| MODE |  | $\overline{\mathrm{MR}}$ | E | $\overline{\text { PE }}$ | , P0 | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | P3 | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Synchronous | Parallel Load | H | L | L | Parallel Data Entry |  |  |  | X |
|  | Serial Shift | H | L | H | X | X | X | X | Serial Data Entry |
|  | Hold | H | H | L | X | X | X | x | X |
|  | Hold | H | H | H | X | X | X | X | X |
| Asynchronous | Reset | L | X | X | All Outputs Set LOW ( $\left.\overline{\mathrm{Q}}_{3}=\mathrm{HIGH}\right)$ |  |  |  |  |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

TABLE II. PARALLEL DATA ENTRY

| $P_{0}-P_{3}$ | $Q$ |
| :---: | :---: |
| INPUT @ $t_{n}$ | $@ t_{n}+1$ |
| $L$ | $L$ |
| $H$ | $H$ |

TABLE III.
SERIAL DATA ENTRY

| D INPUT <br> $@ t_{n}$ | $Q_{0}$ <br> $@ t_{n}+1$ |
| :---: | :---: |
| $L$ | $L$ |
| $H$ | $H$ |

$\mathrm{t}_{\mathrm{n}}=$ Present State
$\mathrm{t}_{\mathrm{n}}+1=$ State after next clock
H = HIGH Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Ios | Output Short Circuit Current |  | -30 | -100 | mA | VCC $=$ Max, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| ICC | Power Supply Current | XM |  | 120 | mA | $\mathrm{V} C \mathrm{C}=\mathrm{Max}$ |
|  |  | XC |  | 135 | mA | Vce Max |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $f_{\text {max }}$ | Maximum Shift Frequency | 45 |  | MHz | Figs. 3-1, 3-8 |
| tpLH <br> tpHL | Propagation Delay CP to $Q_{n}$ |  | $\begin{aligned} & 16 \\ & 21 \end{aligned}$ | ns | Figs. 3-1, 3-8 |
| tPHL | Propagation Delay MR to $Q_{n}$ |  | 26 | ns | Figs. 3-1, 3-16 |

AC OPERATING REQUIREMENTS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93H |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW D or $P_{n}$ to CP | 7.0 |  | ns | Fig. 3-6 |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $\bar{E}$ to CP | 17 |  |  |  |
| $\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$ | Setup Time HIGH or LOW $\overline{P E}$ to $C P$ | 19 |  | ns | Fig. 3-6 |
| $\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$ | Hold Time HIGH or LOW D, $\mathrm{P}_{\mathrm{n}}, \overline{\mathrm{E}}$ or $\overline{\mathrm{PE}}$ to CP | 0 |  |  |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\mathrm{MR}}$ Pulse Width LOW | 19 |  | ns | Fig. 3-16 |
| trec | $\overline{\mathrm{MR}}$ Recovery Time | 7.0 |  |  |  |



INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) HIGH/LOW |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{3}$ | Address (Data) Inputs | 1.0/0.25** |
| LE | Latch Enable Input (Active LOW) | 0.5/0.25 |
| RBI | Ripple Blanking Input (Active LOW) | 0.5/0.25 |
| $\overline{\mathrm{RBO}}$ | Ripple Blanking as Output (Active LOW) | 1.0/0.5 |
|  | as Input (Active LOW) | -/0.75 |
| $\overline{\mathrm{a}}$ - $\overline{\mathrm{g}}$ | Constant Current Outputs (Active LOW) | OC*/15 mA |

FUNCTIONAL DESCRIPTION-The '74 is a 7-segment deconder/driver with latches on the address inputs and active LOW constant current outputs to drive LEDs directly. This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7 -segment display. It has a decode format which produces numeric codes " 0 " through " 9 " and other codes.

Latches on the four data inputs are controlled by an active LOW Latch Enable, $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is LOW, the state of the outputs is determined by the input data. When $\overline{L E}$ goes HIGH , the last data present at the inputs is stored in the latches and the outputs remain stable. The $\overline{L E}$ pulse width necessary to accept and store data is typically 50 ns, which allows data to be strobed into the' 74 at normal TTL speeds. This feature means that data can be routed directly from high speed counters and frequency dividers into the display without slowing down the system clock or providing intermediate data storage.

The latch/decoder combination is a simple system which drives LED displays with multiplexed data inputs from MOS time clocks, DVMs, calculator chips, etc. Data inputs are multiplexed while the displays are in static mode. This lowers component and insertion costs, since several circuits - seven resistors per display, strobe drivers, a separate display voltage source, and clock failure detect circuits - traditionally found in multiplexed display systems are eliminated. It also allows low strobing rates to be used without display flicker.

Another ' 74 feature is the reduced loading on the data inputs when the Latch Enable is HIGH (only $10 \mu \mathrm{~A}$ typ). This allows many '74s to be driven from a MOS device in multiplex mode without the need for drivers on the data lines. The ' 74 also provides automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an 8-digit mixed integer fraction decimal representation, using the automatic blanking capability 0060.0300 would be displayed as 60.03. Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output $(\overline{\mathrm{RBO}})$ of a decoder to the Ripple Blanking Input ( $\overline{\mathrm{RBI}})$ of the next lower stage device. The most significant decoder stage should have the $\overline{\text { RBI }}$ input grounded; and since suppression of the least significant integer zero in a number is not usually desired, the $\overline{\text { RBI }}$ input of this decoder stage should be left open. A similar precedure for the fractional part of a display will provide automatic suppression of trailing-edge zeros. The $\overline{\mathrm{RBO}}$ terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL or DTL gates.

LOGIC DIAGRAM


## TRUTH TABLE

| BINARY STATE | INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |  |  |  | DISPLAY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LE | RBI | A3 | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $A_{0}$ | a | $\overline{\mathrm{b}}$ | $\overline{\mathrm{c}}$ | व | $\overline{\mathrm{e}}$ | $\bar{f}$ | $\overline{\mathrm{g}}$ | $\overline{\mathrm{RBO}}$ |  |
| - | H | * | x | X | X | x | - |  |  | STAB | LE |  | - | H | STABLE |
| 0 | L | L | L | L | L | L | H | H | H | H | H | H | H | L | BLANK |
| 0 | L | H | L | L | L | L | L | L | L | L | L | L | H | H | 0 |
| 1 | L | X | L | L | L | H | H | L | L | H | H | H | H | H | 1 |
| 2 | L | X | L | L | H | L | L | L | H | L | L | H | L | H | 2 |
| 3 | L | X | L | L | H | H | L | L | L | L | H | H | L | H | 3 |
| 4 | L | X | L | H | L | L | H | L | L | H | H | L | L | H | 4 |
| 5 | L | X | L | H | L | H | L | H | L | L | H | L | L | H | 5 |
| 6 | L | X | L | H | H | L | L | H | L | L | L | L | L | H | 5 |
| 7 | L | X | L | H | H | H | L | L | L | H | H | H | H | H | 7 |
| 8 | L | X | H | L | L | L | L | L | L | L | L | L | L | H | 8 |
| 9 | L | X | H | L | L | H | L | L | L | L | H | L | L | H | Q |
| 10 | L | X | H | L | H | L | H | H | H | H | H | H | L | H | - |
| 11 | L | X | H | L | H | H | L | H | H | L | L | L | L | H | $E$ |
| 12 | L | X | H | H | L | L | H | L | L | H | L | L | L | H | H |
| 13 | L | X | H | H | L | H | H | H | H | L | L | L | H | H | L |
| 14 | L | X | H | H | H | L | L | L | H | H | L | L | L | H | P |
| 15 | L | X | H | H | H | H | H | H | H | H | H | H | H | H | BLANK |
| X | x | X | X | X | X | X | H | H | H | H | H | H | H | L** | BLANK |


*The $\overline{\mathrm{RBI}}$ will blank the display only if a binary zero is stored in the latches.
** $\overline{\mathrm{RBO}}$ used as an input overrrides all other input conditions.
H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

## NUMERICAL DESIGNATIONS



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Vout | Output Voltage, Applied | $\begin{gathered} 10 \\ \text { (Fig. a) } \end{gathered}$ |  | V | Separate LED Supply |
|  |  |  |  |  |  |
| lol | Output LOW Current, $\overline{\mathbf{a}}-\overline{\mathrm{g}}$ | 12 | 18 | mA | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VOL}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| IOH | Output HIGH Current $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ |  | 250 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 50 | mA | $\begin{aligned} & V_{C C}=M a x, V_{I N}=G n d \\ & V_{O U T}=3.0 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{gathered}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$ | Propagation Delay $A_{n}$ to $\bar{a}-\bar{g}$ |  | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | ns | Figs. 3-2, 3-20 |
| tplH <br> tPHL | Propagation Delay <br> $\overline{\mathrm{LE}}$ to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ |  | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | ns | Figs. 3-2, 3-9 |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | $\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & A_{n} \text { to } \overline{L E} \end{aligned}$ | $\begin{aligned} & 75 \\ & 30 \end{aligned}$ |  | ns | Fig. 3-13 |
| $\begin{aligned} & \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}(\mathrm{~L}) \end{aligned}$ | Hold Time HIGH or LOW $A_{n}$ to $\overline{L E}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | $\overline{\text { LE }}$ Pulse Width LOW | 85 |  | ns | Fig. 3-9 |



Fig. a Output Voltage Safe Operating Area


Fig. b Typical Constant Segment Current Versus Output Voltage

APPLICATIONS - It is possible with common anode 7-segment LED displays and constant current sink decoder drivers to save substantial amounts of power by carefully choosing operating points on display supply voltage. First, examine the power used in the normal display driving method where the display and decoder driver are both operated from $\mathrm{a}+5.0 \mathrm{~V}$ regulated supply $\left(\mathrm{V}_{c c}=\mathrm{V}_{\mathrm{s}}\right)$.


Fig. c Separate Supply for LED Displays

The power dissipated by the LED and the driver outputs is ( $V_{C C} \times I_{\operatorname{seg}} \times n$ Segments). The total power dissipated with a 15 mA LED displaying an eight (8) would be:

$$
\begin{aligned}
\text { РТОт } & =5.0 \mathrm{~V} \times 15 \mathrm{~mA} \times 7 \\
& =525 \mathrm{~mW}
\end{aligned}
$$

Of this 525 mW , the power actually required to drive the LED is dependent on the VF drop of each segment. Most GaAsP LEDs exhibit either a 1.7 V or a 3.4 V forward voltage drop. Therefore, the required total power for seven segments would be:

$$
\begin{aligned}
\mathrm{P}_{(1.7)} & =1.7 \mathrm{~V} \times 15 \mathrm{~mA} \times 7 \\
& =178.5 \mathrm{~mW} \\
\mathrm{P}_{(3.4)} & =3.4 \mathrm{~V} \times 15 \mathrm{~mA} \times 7 \\
& =357 \mathrm{~mW}
\end{aligned}
$$

The remaining power is dissipated by the driver outputs which are maintaining the 15 mA constant current required by the LEDs. Most of this power is wasted, since the driver can maintain approximately 15 mA with as little as 0.5 V across the output device. By using a separate power source ( $\mathrm{V}_{\mathrm{S}}$, Figure c) for the LEDs, which is set to the LED VF plus the offset voltage of the driver, as much as 280 mW can be saved per digit. i.e.,

$$
\begin{aligned}
V_{S} & =V_{F}(\operatorname{Max})+V_{\text {offset }} \\
& =2.0 \mathrm{~V}+0.5 \mathrm{~V} \\
& =2.5 \mathrm{~V} \\
\mathrm{P}_{\mathrm{T}} & =2.5 \mathrm{~V} \times 14 \mathrm{~mA} \text { (from Figure b) } \times 7 \\
& =245 \mathrm{~mW}
\end{aligned}
$$

These figures show that using a separate supply to drive the LEDs can offer significant display power savings. In battery powered equipment, two rechargeable nickle-cadmium cells in series would be sufficient to drive the display, while four such cells would be needed to operate the logic units.

APPLICATIONS (Cont'd) - Another method to save power is to apply intensity modulation to the displays (Figure d). It is well known that LED displays are more efficient when operated in pulse mode. There are two reasons: one, the quantum efficiency of the LED material is better; secondly the eye tends to peak detect. Typically a $20 \%$ off duty cycle to displays (GaAsP) will produce the same brightness as operating under dc conditions.

ALL INVERTERS ARE DTL 9936 OR OPEN COLLECTOR TTL 7405


Fig. d Intensity Control by $\overline{\text { RBO }}$ Pulse Duty Cycle

Low Power, Low cost Display Power Sources - In small line operated systems using TTL/MSI and LED or incandescent displays, a significant portion of the total dc power is consumed to drive the displays. Since it is irrelevant whether displays are driven from unfiltered dc or pulsed dc (at fast rates), a dual power system can be used that makes better utilization of transformer rms ratings. The system utilizes a full wave rectified but unsmoothed dc voltage to provide the displays with 120 Hz pulsed power while the rest of the system is driven by a conventional dc power circuit. The frequency of 120 Hz is high enough to avoid display flicker problems. The main advantages of this system are:

- Reduced transformer rating
- Much smaller smoothing capacitor
- Increased LED light output due to pulsed operation

With the standard capacitor filter circuit, the rms current (full wave) loading of the tranformer is approximately twice the dc output. Most commercial transformer manufacturers rate tranformers with capacitive input filters as follows:

## Full Wave Bridge Rectifier Circuit <br> Transformer rms current $=1.8 \times$ dc current required

Full Wave Center Tapped Rectifier Circuit
Transformer rms current $=1.2 \times$ dc current required
Therefore, the removal of a large portion of the filtered dc current requirement (display power) substantially reduces the transformer loading.

APPLICATIONS (Cont'd) - There are two basic approaches. First (Figure e) is the direct full wave rectified unregulated supply to power the displays. The ' 74 decoder driver constant current feature maintains the specified segment current after the LED diode drop and 0.5 V saturation voltage has been reached ( $\cong 2.2 \mathrm{~V}$ ). Care must be exercised not to exceed the '74 power ratings and the maximum voltage that the decoder driver sees in both the "on" and "off" modes.

The second approach (Figure f) uses a 3-terminal voltage regulator such as the 7805 to provide dc pulsed power to the display with the peak dc voltage limited to +5.0 V . This approach allows easier system thermal management by heat sinking the regulator rather than the display or display drivers. When this power source is used with an intensity modulation scheme or with a multiplexed display system, the frequencies must be chosen such that they do not beat with the 120 Hz full wave rectified power frequency.


Fig. e Direct Unregulated Display Supply


Fig. f Pulsed Regulated Display Supply

PARALLEL DATA SUPPLY SYSTEM WITH RIPPLE BLANKING


## 9386 <br> 4-BIT QUAD EXCLUSIVE-NOR (With Open-Collector Outputs)

DESCRIPTION - The '86 consists of four independent Exclusive-NOR gates with open-collector outputs. Single 1-bit comparisons may be made with each gate, or multiple bit comparisons may be made by connecting the outputs of the four gates together. Typical power dissipation is 170 mW . The 9386 is equivalent to the 8242.

TRUTH TABLE

| INPUTS |  | OUTPUT |
| :--- | :--- | :---: |
| $A_{n}$ | $B_{n}$ | $O_{n}$ |
| $L$ | $L$ | $H$ |
| $H$ | $L$ | $L$ |
| $L$ | $H$ | $L$ |
| $H$ | $H$ | $H$ |

$H=H$ IGH Voltage Level
$\mathrm{L}=$ LÓW Voltage Level

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9386PC |  | 9A |
| Ceramic DIP (D) | A | 9386DC | 9386DM | 6A |
| Flatpak (F) | B | 9386FC | 9386FM | 31 |

## CONNECTION DIAGRAMS PINOUT A



PINOUT B


## LOGIC SYMBOL

(DIP only)


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 93XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | ---: |
| $\mathrm{A}_{0}, \mathrm{~B}_{0}$ | Gate 0 Inputs | $2.0 / 2.0$ |
| $\mathrm{~A}_{1}, \mathrm{~B}_{1}$ | Gate 1 Inputs | $2.0 / 2.0$ |
| $\mathrm{~A}_{2}, \mathrm{~B}_{2}$ | Gate 2 Inputs | $2.0 / 2.0$ |
| $\mathrm{~A}_{3}, \mathrm{~B}_{3}$ | Gate 3 Inputs | $2.0 / 2.0$ |
| $\mathrm{O}_{0}-\mathrm{O}_{3}$ | Gate Outputs | $\mathrm{OC}^{*} / 15$ |
| $\mathrm{OC}-$ Open Collector |  |  |



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 93XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| $B V_{i}$ | Input Latch Voltage | A Input | $\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$ |  | V | $\operatorname{liN}(\mathrm{A})=10 \mathrm{~mA}, \operatorname{ViN}(\mathrm{~B})=0 \mathrm{~V}$ |
|  |  | B Input |  |  |  | $\operatorname{lin}(\mathrm{B})=10 \mathrm{~mA}, \mathrm{~V} \mathrm{~V}^{\mathrm{N}}(\mathrm{A})=0 \mathrm{~V}$ |
| Іон | Output HIGH Current |  |  | 150 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { VOUT }=4.5 \mathrm{~V} \end{aligned}$ |
| Icc | Power Supply Current |  |  | 47.5 | mA | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{I N}(A), V_{I N}(B)=0.4 \mathrm{~V} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=530 \Omega \end{aligned}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$ | Propagation Delay <br> $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to $\mathrm{O}_{0}-\mathrm{O}_{3}$ |  | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns | Figs. 3-2, 3-20 |


| PRODUCT INDEXES AND |
| :--- |
| SELECTION GUIDES |

TTL CHARACTERISTICS 2
LOADING, SPECIFICATIONS AND
WAVEFORMS

$\square$
54/74 FAMILY DATA SHEETS
9000 FAMILY DATA SHEETS5
9300 FAMILY DATA SHEETS6
ORDERING INFORMATION AND PACKAGE OUTLINES9
FAIRCHILD FIELD SALES OFFICES,REPRESENTATIVES AND DISTRIBUTORS10


## 9600

## RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 9600 monostable, retriggerable, resettable multivibrator provides an output pulse whose duration and accuracy is a function of external timing components. The 9600 has excellentimmunity to noise on the VCC and ground lines. It uses TTL technology for high speed and high fan-out capability and is compatible with all members of the Fairchild TTL family.

- 74 ns TO $\infty$ OUTPUT PULSE WIDTH RANGE
- RETRIGGERABLE 0\% to 100\% DUTY CYCLE
- RESETTABLE
- LEADING OR TRAILING-EDGE TRIGGERING

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9600PC |  | 9A |
| Ceramic DIP (D) | A | 9600DC | 9600DM | 6A |
| Flatpak <br> (F) | A | 9600FC | 9600FM | 31 |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 96XX (U.L.) |
| :--- | :--- | :---: |
| HIGH/LOW |  |  |
| $\overline{I_{0}, \bar{I}_{1}}$ | Trigger Inputs (Active Falling Edge) | $1.5 / 1.0$ |
| $\bar{I}_{2}-I_{4}$ |  |  |
| $\mathrm{C}_{\mathrm{D} 1}-\bar{C}_{D 2}$ | Trigger Inputs (Active Rising Edge) | 1.51 .0 |
| Q | Clear Inputs (Active LOW) | $1.5 / 1.0$ |
| $\overline{\mathrm{Q}}$ | Pulse Output | $24 / 7.06$ |
|  | Complementary Pulse Output | $(6.2)$ |
|  |  | $24 / 7.06$ |

LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The 9600 monostable multivibrator has five inputs, three active HIGH and two active LOW. This allows leading-edge or trailing-edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 9600 and result in a continuous true output (see Rule 8). Retriggering may be inhibited by tying the negation ( $\overline{\mathrm{Q}}$ ) output to an active LOW input. The output pulse may be terminated at any time by connecting either or both reset pins to a LOW logic level pin. Active pullups are provided on the outputs for good drive capability into capacitive loads.

## Operating Notes

1. An external resistor ( $\mathrm{Rx}_{\mathrm{x}}$ ) and an external capacitor ( $\mathrm{C}_{\mathrm{x}}$ ) are required as shown in the logic diagram. The value of Rx may vary from $5.0 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operation and from $5.0 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation. Cx may vary from 0 to any necessary value available.
2. The following are recommended fixed values of $R x: R x=30 \mathrm{k} \Omega$ for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operation, $\mathrm{Rx}=10 \mathrm{k} \Omega$ for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.
3. The output pulse width ( $t$ ) is defined as follows:
$t=0.32 R_{x} C_{x}, 1+0.7 / R_{x}$, Where $R_{x}$ is in $k \Omega, C_{x}$ is in pF , $t$ is in ns; for $\mathrm{Cx}_{\mathrm{x}}<103 \mathrm{pF}$. (see Figure a) The value of $\mathrm{C}_{x}$ may vary from 0 to any value necessary and obtainable. If however, $\mathrm{C}_{\mathrm{x}}$ has leakage currents approaching $3.0 \mu \mathrm{~A}$ or if stray capacitance from either pin 11 or pin 13 to ground exceeds 50 pF , the timing equation may not represent the pulse width obtained.
4. If electrolytic type capacitors are to be used, the following three configurations are recommended.
A. Use with low leakage electrolytic capacitors (see Figure b).

The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0 V is less than $3.0 \mu \mathrm{~A}$, and the inverse capacitor leakage at 1.0 V is less than $5.0 \mu \mathrm{~A}$ over the operational temperature range and Rule 3 above is satisfied.
B. Use with high inverse leakage current electrolytic capacitors. (Figure $c$; this configuration is not recommended with retriggerable operation.)
The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor.
$t \approx 0.3 R C x$
C. Use to obtain extended pulse widths. (Figure $d$; this configuration is not recommended with retriggerable operation.)
This configuration obtains extended pulse widths because of the larger timing resistor allowed by Beta multiplication. Electrolytics with high inverse leakage currents can be used. $Q_{1}$ is an npn silicon transistor such as 2N5961 or 2N5962, with hFE, R and Rx related as in the inequality below.
$R<R_{X}(0.7)\left(h_{F E} Q_{1}\right)$ or $<2.5 \mathrm{M} \Omega$, whichever is less
$\mathrm{RXX}_{\mathrm{X}}(\mathrm{Min})<\mathrm{R}_{\mathrm{Y}}<\mathrm{RX}_{\mathrm{X}}(\operatorname{Max}) \mathrm{R}_{\mathrm{Y}}$ of $5.0 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ is recommended $\mathrm{t} \approx 0.3 \mathrm{RCx}$
5. This circuit is recommended to obtain variable pulse width by remote trimming (Figure e).
6. Under any operating condition, $\mathrm{C}_{x}$ and $\mathrm{R}_{\mathrm{X}}(\mathrm{min})$ must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
7. Input Trigger Pulse Rules (see Triggering Truth Table Figures $f$ and $g$ ).
$\mathrm{t}_{1}, \mathrm{t}_{3}=$ Min. positive input pulse width $>40 \mathrm{~ns}$.
$\mathrm{t}_{2}, \mathrm{t}_{4}=\mathrm{Min}$. negative input pulse width $>40 \mathrm{~ns}$.
8. The retrigger pulse width is equal to the pulse width t plus a delay time (see Figure $h$ ). For pulse widths greater than $500 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}$ can be approximated as t .

$$
t_{w}=t+t_{\text {PLH }}=0.32 R_{x} C_{x}(1+0.7 / R x)+t \text { tPLH }
$$

9. Two overriding active LOW resets are provided (see Figure i). A LOW to either or both resets can terminate any timing cycle and/or inhibit any new cycle until both reset inputs are restored to a HIGH. Trigger inputs will not produce spikes in the output when either or both resets are held LOW.
10. Use of a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ bypass capacitor located close to the 9600 is recommended.

TRIGGERING TRUTH TABLE*

| INPUT PINS |  |  |  |  |  |  | RESPONSE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 9 | 10 |  |
| X | X | X | X | X | L | X | No Trigger |
| L | L | X | X | X | X | X | No Trigger |
| 2 | X | L | X | X | X | X | No Trigger |
| 乙 | H | H | H | H | H | H | Trigger |
| H | H | - | X | X | X | X | No Trigger |
| X | X | - | L | X | X | X | No Trigger |
| L | X | - | H | H | H | H | Trigger |

*Pins 1 \&2 are logically interchangeable, as are pins 3,4,5, and also 9 \& 10.
$H=H I G H$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

## OUTPUT PULSE WIDTH VERSUS TIMING RESISTANCE

AND CAPACITANCE FOR $\mathrm{C}_{\mathrm{x}}<10^{3} \mathrm{pF}$
For $C_{x} \geq 103 \mathrm{pF}, \mathrm{t}=\mathbf{0 . 3 2} \mathrm{Rx}_{\mathrm{X}} \mathrm{C}_{\mathrm{x}}\left(1+0.7 / \mathrm{R}_{\mathrm{x}}\right)$


Fig. a


Fig. b


Fig. $\mathbf{c}$


Fig. d


Fig. e Remote Trimming


Fig. f Input on Pin 1 or 2


Fig. $\mathbf{g}$ Input on Pin 3, 4 or 5


NOTE:
Retriggering will not occur if the retrigger pulse comes within $\approx 0.3 \mathrm{Cx}$ ns after the initial trigger pulse (i.e., during the discharge cycle time).

Fig. $h$


Fig. 1


Fig. $\mathbf{j}$

NORMALIZED OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE


Fig. $k$

NORMALIZED OUTPUT PULSE WIDTH VERSUS SUPPLY VOLTAGE


Fig. I

MINIMUM OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE


Fig. $m$

| SYMBOL | PARAMETER |  | 96XX |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| Vol | Output LOW Voltage | XM | $\begin{array}{r} 0.4 \\ 0.45 \end{array}$ |  | V | IOL $=9.92 \mathrm{~mA}{ }^{*}$ | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ |
|  |  | XC |  |  | $\mathrm{IOL}=11.3 \mathrm{~mA}$ |  |  |  |
| Vol | Output LOW Voltage | XM | $\begin{array}{r} 0.4 \\ 0.45 \end{array}$ |  |  | V | $\mathrm{loL}=12.8 \mathrm{~mA}, \mathrm{VCC}=\mathrm{Max}$ |  |
|  |  | XC |  |  |  |  |  |  |
| $\mathrm{V}_{1 \mathrm{H}}$ | Input HIGH Voltage | XM | $\begin{array}{r} 1.5 \\ 1.65 \end{array}$ |  | V | $\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$ |  |
|  |  | XC |  |  |  |  |  |  |  |
| VIL | Input LOW Voltage | XM | $\begin{array}{r} 0.9 \\ 0.85 \end{array}$ |  | V | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |
|  |  | XC |  |  |  |  |  |  |  |
| IIL | Input LOW Current | XM | $\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$ |  | mA | $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ | $\mathrm{VCC}=\mathrm{Max}$ |
|  |  | XC |  |  | $\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$ |  |  |  |
| los | Output Short Circuit Current | XM |  | -25 |  | mA | $\begin{aligned} & V_{C C}=M a x, V_{\text {OUT }}=1.0 \mathrm{~V}^{*} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  |
|  |  | XC |  | -35 |  |  |  |  |
| IPD | Quiescent Power Supply Drain | XM |  | 24 | mA | $\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \text { Pins } 1,2=\text { Gnd } \end{aligned}$ |  |
|  |  | XC |  | 26 |  |  |  |  |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  |  | Min | Max |  |  |
| tPLH | Propagation Delay $\bar{T}_{n}$ to Q | XM | $\begin{aligned} & 45 \\ & 56 \end{aligned}$ |  | ns | $\mathrm{RX}_{\mathrm{x}}=5.0 \Omega, \mathrm{C}_{\mathrm{x}}=0 \mathrm{pF}$ <br> Figs. 3-1, Fig. j |
|  |  | XC |  |  |  |  |
| tphL | Propagation Delay $T_{n}$ to $\bar{Q}$ | XM |  | 40 | ns |  |
|  |  | XC |  | 47 |  |  |
| $\mathrm{tw}_{\text {w }}(\mathrm{Min})$ | Minimum Q Pulse Width | XM |  | 100 | ns | $\mathrm{Rx}=5.0 \Omega, \mathrm{C}_{\mathrm{x}}=0 \mathrm{pF}$ |
|  |  | XC |  | 120 |  |  |
| tw (Min) | Minimum $\overline{\mathbf{Q}}$ Pulse Width | XM |  | 112 | ns | Fig. 3-1, Fig. j |
| tw | Pulse Width |  |  |  | $\mu \mathrm{S}$ | $\begin{aligned} & \text { Rx }=10 \text { k } \Omega, C x=1000 \mathrm{pF} \\ & \text { Fig. 3-1, Fig. } \mathrm{j} \end{aligned}$ |
|  |  | XM | 3.2 3.08 | 3.76 3.76 |  |  |

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER |  | 96XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Cstray | Maximum Allowable Wiring Capacitance (Pin 13) |  |  | 50 | pF | Pin 13 to Gnd |
| Rx (Max) | Maximum Timing Resistor | $\begin{array}{\|l\|} \hline X M \\ \hline X C \\ \hline \end{array}$ | $\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | k $\Omega$ | Over Operating Temperature Range |

[^60]
## 9601 <br> RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 9601 is a retriggerable one-shot with versatile trigger gating, rapid recovery, internally compensated reference levels, and high speed capability. It is well suited for a broad variety of applications, including pulse delay generators, square wave generators, long delay timers, pulse absence detectors, and clock pulse generators.

- RETRIGGERABLE, 0\% TO 100\% DUTY CYCLE
- DC LEVEL TRIGGERING, INSENSITIVE TO TRANSITION TIMES
- COMPLEMENTARY INPUTS, FOR LEADING OR TRAILING-EDGE TRIGGERING
- COMPLEMENTARY OUTPUTS, WITH ACTIVE PULL-UPS FOR DRIVING LOAD CAPACITANCE.
- PULSE WIDTH COMPENSATION FOR VCC AND TEMPERATURE VARIATIONS
- 50 ns TO $\propto$ OUTPUT PULSE WIDTH RANGE
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY

ORDERING CODE: See Section 9


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 96XX (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\overline{T_{0}}, \bar{I}_{1}$ | $1.5 / 1.0$ |  |
| $\mathrm{I}_{2}, \mathrm{I}_{3}$ | Trigger Input (Active Falling Edge) | $1.5 / 1.0$ |
| Q | Trigger Input (Active Rising Edge) | $24 / 8.0$ |
| $\bar{Q}$ | Positive Pulse Output | $(18) /(6.25)$ |
|  | Complementary Pulse Output | $24 / 8.0$ |

FUNCTIONAL BLOCK DIAGRAM


TRIGGERING TRUTH TABLE

| Pin 1 | Pin 2 | Pin 3 | Pin 4 | RESPONSE |
| :---: | :---: | :---: | :---: | :--- |
| $H$ | $H$ | $\Gamma$ | X | No Trigger |
| L | $X$ | $\Gamma$ | $H$ | Triggers |
| L | $X$ | $\Gamma$ | L | No Trigger |
| L | $H$ | $H$ | $H$ | Triggers |
| $L$ | $H$ | L | X | No Trigger |
| L | L | $X$ | $X$ | No Trigger |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial


Fig. a


NOTE:
Capacitance includes Jig and Probe

Fig. b

FUNCTIONAL DESCRIPTION - The 9601 monostable multivibrator has four inputs, two active HIGH and two active LOW. This allows a choice of leading-edge or trailing-edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 9601 and result in a continuous true output. Retriggering may be inhibited by tying the negation ( $\overline{\mathrm{Q}}$ ) output to an active LOW input. Active pullups are provided on the outputs for good drive capability into capacitive loads.

## Operation Notes

1. TRIGGERING - The 9601 has four dc coupled triggering inputs; pins 1 and 2 respond to falling edge signals, while pins 3 and 4 respond to rising edge signals. Triggering occurs as the input signal passes through the threshold region. Triggering logic is outlined in the Table. Input signals can be interchanged between pins 1 and 2 , since they are logically identical; the same relationship holds for pins 3 and 4.
2. RETRIGGERING - In a normal cycle, triggering initiates a rapid discharge of the external timing capacitor, followed by a ramp voltage run-up at pin 13. The delay will time out when the ramp voltage reaches the upper trigger point of the Schmitt circuit, causing the outputs to revert to the quiescent state. If another trigger occurs before the ramp voltage reaches the Schmitt threshold, the capacitor will be discharged and the ramp will start again without having disturbed the outputs. The delay period can therefore be extended for an arbitrary length of time by insuring that the interval between triggers is less than the delay time, as determined by the external capacitor and resistor.
3. NON-RETRIGGERABLE OPERATION - Retriggering can be inhibited logically, by connecting pin 6 back to pin 3 or 4 , or by connecting pin 8 back to both pins 1 and 2.
4. OUTPUT PULSE WIDTH - An external resistor $R_{x}$ and an external capacitor $C_{x}$ are required, as shown in the functional block diagram; to minimize stray capacitance and noise pickup, $\mathrm{R}_{\mathrm{x}}$ and $\mathrm{C}_{\mathrm{x}}$ should be located as close as possible to the circuit. In applications which require remote trimming of the pulse width, as with a variable resistor, Rx should consist of a fixed resistor in series with the variable resistor; the fixed resistor should be located as close as possible to the circuit. The output pulse width $t_{w}$ is defined as follows, where $\mathrm{Rx}_{\mathrm{x}}$ is in $\mathrm{k} \Omega, \mathrm{Cx}_{\mathrm{x}}$ is in pF and $\mathrm{t}_{\mathrm{w}}$ is in $n$.

$$
t_{w}=0.32 R_{x} C_{x}(1+0.7 / R x) \quad \text { (for } C_{x}>103 \mathrm{pF} \text {; see also Figure a.) }
$$

The values of Rx may vary from $5.0 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ for $0^{\circ}$ to $+75^{\circ} \mathrm{C}$ operation, and $5.0 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ for $-55^{\circ}$ to $+125^{\circ} \mathrm{C}$ operation. Cx may vary from 0 to any value.

## 5. SETUP AND RELEASE TIMES


$\mathrm{t}_{1}, \mathrm{t}_{4}=$ Setup time $>40 \mathrm{~ns}$
$\mathbf{t}_{2}, \mathbf{t}_{3}=$ Release time $>40 \mathrm{~ns}$
Input to Pin 3 (4)
Input to Pin 1 (2)
Pins 2 (1), 3 and $4=1$

Pin $4(3)=1$
Pins 1 or $2=0$
6. CAPACITOR LEAKAGE - Recommendations on electrolytic capacitors and larger values of Rx are discussed in the 9600 data sheet.

TYPICAL CHARACTERISTICS

Tin delay time vs $\mathrm{T}_{\mathrm{A}}$


OUTPUT $\mathrm{t}_{\mathrm{w}}$ vs $\mathrm{V}_{\mathrm{cc}}$


OUTPUT $\mathbf{t}_{\mathbf{w}}$ vs $\mathbf{R}_{\mathbf{x}}$


OUTPUT $\mathbf{t}_{\mathbf{w}}$ vs $\mathrm{T}_{\mathbf{A}}$


OUTPUT $t_{w}$ vs DUTY CYCLE


OUTPUT $t_{w}$ vs $T_{A}$


TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathbf{C}$

DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V}$ except as noted.

| SYMBOL | PARAMETER | $0^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| VOH | Output HIGH Voltage ${ }^{2}$ | 2.4 |  | 2.4 |  | 2.4 |  | V | $\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-0.96 \mathrm{~mA} \end{aligned}$ |
| Vol | Output LOW Voltage ${ }^{2}$ |  | 0.45 |  | 0.45 |  | 0.45 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{lOL}=12.8 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage ${ }^{3}$ | 1.9 |  | 1.8 |  | 1.6 |  | V |  |
| VIL | Input LOW Voltage3 |  | 0.85 |  | 0.85 |  | 0.85 | V |  |
| IIL | Input LOW Current |  | -1.6 |  | -1.6 |  | -1.6 | mA | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \end{aligned}$ |
| liH | Input HIGH Current |  |  |  | 60 |  | 60 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \end{aligned}$ |
| Ios | Output Short Circuit Current2 |  |  | -10 | -40 |  |  | mA | Vout $=0 \mathrm{~V}$ |
| ICC | Power Supply Current |  | 25 |  | 25 |  | 25 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V} \\ & \text { Gnd Pins 1, } 2 \end{aligned}$ |
| tPLH | Propagation Delay $T_{n}$ to Q |  |  |  | 40 |  |  | ns | $\begin{aligned} & \mathrm{Rx}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}=15 \mathrm{pF} \\ & \mathrm{Cx}=0, \text { Fig. } \mathrm{b} \end{aligned}$ |
| tPHL | Propagation Delay $\bar{I}_{n}$ to $\bar{Q}$ |  |  |  | 40 |  |  | ns | $\begin{aligned} & \mathrm{RX}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}=15 \mathrm{pF} \\ & \mathrm{CX}=0, \mathrm{Fig} . \mathrm{b} \end{aligned}$ |
| $t_{w}(\mathrm{~min})$ | Minimum True Output Pulse Width |  |  |  | 65 |  |  | ns | $\begin{aligned} & \mathrm{RX}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}=15 \mathrm{pF} \\ & \mathrm{Cx}=0, \text { Fig. } \end{aligned}$ |
| tw | Pulse Width |  |  | 3.08 | 3.76 |  |  | $\mu \mathrm{S}$ | $\begin{aligned} & R \mathrm{XX}=10 \mathrm{k} \Omega \\ & \mathrm{Cx}=1000 \mathrm{pF} \end{aligned}$ <br> Fig. b |
| Cstray | Maximum Allowable Wiring Cap. (Pin 13) |  | 50 |  | 50 |  | 50 | pF | Pin 13 to Gnd |
| Rx | Timing Resistor | 5.0 | 50 | 5.0 | 50 | 5.0 | 50 | k $\Omega$ |  |

[^61]DC AND AC CHARACTERISITCS OVER MILITARY TEMPERATURE RANGE: VCC $=+5.0 \mathrm{~V}$ except as noted

| SYMBOL | PARAMETER | $-55^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  | $+125^{\circ} \mathrm{C}$ |  | UNITS | CONDITIONS ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| VOH | Output HIGH Voltage ${ }^{2}$ | 2.4 |  | 2.4 |  | 2.4 |  | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IOH}=-0.72 \mathrm{~mA} \end{aligned}$ |
| Vol | Output LOW Voltage ${ }^{2}$ |  | 0.4 |  | 0.4 |  | 0.4 | V | $\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{lOL}=10 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage ${ }^{3}$ | 2.0 |  | 1.7 |  | 1.5 |  | V |  |
| VIL | Input LOW Voltage ${ }^{3}$ |  | 0.85 |  | 0.9 |  | 0.85 | V |  |
| IIL | Input LOW Current |  | -1.6 |  | -1.6 |  | -1.6 | mA | $\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{~V} \text { IN }=0.4 \mathrm{~V} \end{aligned}$ |
| liH | Input HIGH Current |  |  |  | 60 |  | 60 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I N}=4.5 \mathrm{~V} \end{aligned}$ |
| Ios | Output Short Circuit Current |  |  | -10 | -40 |  |  | mA | $\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 25 |  | 25 |  | 25 | mA | $\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Gnd Pins 1,2 } \end{aligned}$ |
| tpLH | Propagation Delay $T_{n}$ to $Q$ |  |  |  | 40 |  |  | ns | $\begin{aligned} & \mathrm{RX}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}=15 \mathrm{pF} \\ & \mathrm{CX}_{\mathrm{X}}=0, \mathrm{Fig} \cdot \mathrm{~b} \end{aligned}$ |
| tPHL | Propagation Delay $\bar{T}_{n}$ to $\bar{Q}$ |  |  |  | 40 |  |  | ns | $\begin{aligned} & \mathrm{RX}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}=15 \mathrm{pF} \\ & \mathrm{CX}_{\mathrm{X}}=0, \mathrm{Fig} \cdot \mathrm{~b} . \end{aligned}$ |
| $t_{w}(\mathrm{~min})$ | Minimum True Output Pulse Width |  |  |  | 65 |  |  | ns | $\begin{aligned} & \mathrm{RX}=5.0 \mathrm{k} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{CX}_{\mathrm{X}}=0, \mathrm{Fig} . \mathrm{b} \end{aligned}$ |
| tw | Pulse Width |  |  | 3.08 | 3.76 |  |  | $\mu \mathrm{S}$ | $\begin{aligned} & R x=10 \mathrm{k} \Omega \\ & C_{x}=1000 \mathrm{pF} \end{aligned}$ Fig. b |
| Cstray | Maximum Allowable Wiring Cap. (Pin 13) |  | 50 |  | 50 |  | 50 | pF | Pin 13 to Gnd |
| Rx | Timing Resistor | 5.0 | 25 | 5.0 | 25 | 5.0 | 25 | $\mathrm{k} \Omega$ |  |

(1) Unless otherwise noted, $10 \mathrm{k} \Omega$ resistor placed between Pin 13 and $V_{c c}$, for all tests. ( Rx )
(2) Ground Pin 11 for VOL Pin 6 or VOH Pin 8 or Ios Pin 8 . Open Pin 11 for Vol Pin 8 or VOH Pin 6 or los Pin 6.
(3) Pulse Test to determine $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ (Min $\mathrm{t}_{\mathrm{w}} 40 \mathrm{~ns}$ ).

## 9602 96L02 <br> DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 9602 is a dual TTL monostable multivibrator with trigger mode selection, reset capability, rapid recovery, internally compensated reference levels and high speed capability. Output pulse duration and accuracy depend on external timing components, and are therefore under user control for each application. It is well suited for a broad variety of applications, including pulse delay generators, square wave generators, long delay timers, pulse absence detectors, frequency detectors, clock pulse generators and fixed-frequency dividers. Each input is provided with a clamp diode to limit undershoot and minimize ringing induced by fast fall times acting on system wiring impedances.

- RETRIGGERABLE, 0\% TO 100\% DUTY CYCLE
- DC LEVEL TRIGGERING, INSENSITIVE TO TRANSITION TIMES
- LEADING OR TRAILING-EDGE TRIGGERING
- COMPLEMENTARY OUTPUTS WITH ACTIVE PULL-UPS
- PULSE WIDTH COMPENSATION FOR $\Delta V_{c c}$ AND $\Delta T_{A}$
- 50 ns TO $\infty$ OUTPUT PULSE WIDTH RANGE
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- RESETTABLE, FOR INTERRUPT OPERATIONS

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 9602PC, 96L02PC |  | 9B |
| Ceramic DIP (D) | A | 9602DC, 96L02DC | 9602DM, 96L02DM | 6B |
| Flatpak (F) | A | 9602FC, 96L02FC | 9602FM, 96L02FM | 4L |

CONNECTION DIAGRAM PINOUT A


LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 96XX (U.L.) <br> HIGH/LOW | 96L (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\overline{\bar{T}_{0}}$ | Trigger Input (Active Falling Edge) | $1.5 / 1.0$ | $0.5 / 0.25$ |
| $\mathrm{I}_{1}$ | Trigger Input (Active Rising Edge) | $1.5 / 1.0$ | $0.5 / 0.25$ |
| $\bar{C}_{D}$ | Direct Clear Input (Active LOW) | $1.5 / 1.0$ | $0.5 / 0.25$ |
| Q | Positive Pulse Output | $24 / 7.0$ | $9.0 / 3.0$ |
| $\bar{Q}$ | Complementary Pulse Output | $24 / 7.0$ | $9.0 / 3.0$ |
|  |  | $(6.2)$ |  |



## OPERATION NOTES

1. TRIGGERING - can be accomplished by a positive-going transition on pin 4 (12) or a negative-going transition on pin 5 (11). Triggering begins as a signal crosses the input $\mathrm{V}_{I L}: \mathrm{V}_{I H}$ threshold region; this activates an internal latch whose unbalanced cross-coupling causes it to assume a preferred state. As the latch output goes LOW it disables the gates leading to the Q output and, through an inverter, turns on the capacitor discharge transistor. The inverted signal is also fed back to the latch input to change its state and effectively end the triggering action; thus the latch and its associated feed-back perform the function of a differentiator.

The emitters of the latch transistors return to ground through an enabling transistor which must be turned off between successive triggers in order for the latch to proceed through the proper sequence when triggering is desired. Pin 5 (11) must be HIGH in order to trigger at pin 4 (12); conversely, pin $4(12)$ must be LOW in order to trigger at pin 5 (11).
2. RETRIGGERING - In a normal cycle, triggering initiates a rapid discharge of the external timing capacitor, followed by a ramp voltage run-up at pin 2 (14). The delay will time out when the ramp voltage reaches the upper trigger point of a Schmitt circuit, causing the outputs to revert to the quiescent state. If another trigger occurs before the ramp voltage reaches the Schmitt threshold, the capacitor will be discharged and the ramp will start again without having disturbed the output. The delay period can therefore be extended for an arbitrary length of time by insuring that the interval between triggers is less than the delay time, as determined by the external capacitor and resistor.
3. NON-RETRIGGERABLE OPERATION - Retriggering can be inhibited logically, by connecting pin 6 (10) back to pin 4 (12) or byconnecting pin 7 (9) back to pin 5 (11). Either hook-up has the effect of keeping the latch-enabling transistor turned on during the delay period, which prevents the input latch from cycling as discussed above in the section on triggering.
4. OUTPUT PULSE WIDTH - An external resistor $R x$ and an external capacitor $C x$ are required, as shown in the functional block diagram. To minimize stray capacitance and noise pickup, Rx and $\mathrm{Cx}_{x}$ should be located as close as possible to the circuit. In applications which require remote trimming of the pulse width, as with a variable resistor, Rx should consist of a fixed resistor in series with the variable resistor; the fixed resistor should be located as close as possible to the circuit. The output pulse width $\mathrm{t}_{\mathrm{w}}$ is defined as follows, where $\mathrm{Rx}_{\mathrm{x}}$ is in $k \Omega, C_{x}$ is in $p F$ and $t_{w}$ is in $n s$.
(9602) $\mathrm{t}_{\mathrm{w}}=0.31 \mathrm{Rx}_{\mathrm{xx}}\left(1+1 / \mathrm{Rx}_{\mathrm{x}}\right)$ for $\mathrm{Cx}_{\mathrm{x}} \geq 103 \mathrm{pF}$
$5 \mathrm{k} \Omega \leq \mathrm{Rx} \leq 50 \mathrm{k} \Omega$ for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$5 \mathrm{k} \Omega \leq \mathrm{Rx} \leq 25 \mathrm{k} \Omega$ for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(96L02) $t_{w}=0.33 R_{x} C_{x}\left(1+3 / R_{x}\right)$ for $C_{x} \geq 103 \mathrm{pF}$
$16 \mathrm{k} \Omega \leq \mathrm{Rx} \leq 220 \mathrm{k} \Omega$ for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$20 \mathrm{k} \Omega \leq \mathrm{Rx} \leq 100 \mathrm{k} \Omega$ for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Cx may vary from 0 to any value. For pulse widths with Cx less than 103 pF see Figures $a$ and $b$.

## OPERATION NOTES (Cont'd)

5. SETUP AND RELEASE TIMES - The setup times listed below are necessary to allow the latch-enabling transistor to turn off and the node voltages within the input latch to stabilize, thus insuring proper cycling of the latch when the next trigger occurs. The indicated release times (equivalent to trigger duration) allow time for the input latch to cycle and its signal to propagate.

Input to Pin 5 (11)
Pin $4(12)=L$
Pin 3 (13) $=\mathrm{H}$

$\begin{aligned} \mathrm{t}_{1}, \mathrm{t}_{4}=\text { SETUP TIME } & >40 \mathrm{~ns} \text { ('02) } \\ & >60 \mathrm{~ns}(\text { 'LO2 })\end{aligned}$
$\begin{aligned} \mathrm{t}_{1}, \mathrm{t}_{4}=\text { SETUP TIME } & >40 \mathrm{~ns}\left(\begin{array}{rl} \\ & >60 \mathrm{~ns}(\text { 'LO2 })\end{array}\right)\end{aligned}$


Input to Pin 4 (12)
Pins 5 (11) and $3(13)=\mathrm{H}$

$\mathbf{t}_{2}, \mathbf{t}_{3}=$ RELEASE TIME $>40 \mathrm{~ns}$ ('02)

$>60 \mathrm{~ns}$ ('L02)
6. RESET OPERATION - A LOW signal on $\bar{C}_{D}$, pin 3 (13), will terminate an output pulse, causing $Q$ to go LOW and $\bar{Q}$ to go HIGH. As long as $\bar{C}_{D}$ is held LOW, a delay period cannot be initiated nor will attempted triggering cause spikes at the outputs. A reset pulse duration, in the LOW state, of 25 ns is sufficient to insure resetting. If the reset input goes LOW at the same time that a trigger transition occurs, the reset will dominate and the outputs will not respond to the trigger. If the reset input goes HIGH coincident with a trigger transition, the circuit will respond to the trigger.
7. CAPACITOR LEAKAGE - For recommendations on electrolytic capacitors and larger values of Rx, please see the 9600 data sheet.

96L02 PULSE WIDTH vs Rx AND Cx


Fig. a

9602 PULSE WIDTH vs Rx AND Cx


Fig. b

## TYPICAL CHARACTERISTICS


$9602 \mathbf{t}_{\mathbf{w}(\mathrm{min})}$ vs $\mathrm{T}_{\mathrm{A}}$

$9602 \mathrm{t}_{\mathrm{w}}$ vs $\mathrm{T}_{\mathrm{A}}$


TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathbf{C}$

96L02 $\mathbf{t w}_{\mathbf{w}}$ vs Vcc


VCC - SUPPLY VOLTAGE - V

9602•L02

| SYMBOL | PARAMETER |  | 96XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Vor | Output HIGH Voltage |  | 12.4 |  | V | $\mathrm{VCC}=\mathrm{Min}, \mathrm{IOH}=-9.6 \mathrm{~mA}$ |
| Vol | Output LOW Voltage | XM | 0.4 |  | V | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{loL}=9.92 \mathrm{~mA}$ |
|  |  | XC | 0.45 |  | V | VCC $=5.5 \mathrm{~V}, \mathrm{IOL}=12.8 \mathrm{~mA}$ |
|  |  |  |  |  | $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{loL}=12.8 \mathrm{~mA}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | XM | 2.0 |  |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  | 0.85 |  | V | Guaranteed Input LOW Threshold |
| IIL | Input LOW Current |  | -1.6 |  | mA | $\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OL }}$ |
| ILL | Input LOW Current | XM | $\begin{aligned} & -1.24 \\ & -1.14 \end{aligned}$ |  | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OL }}$ |
| $\mathrm{IH}^{\text {r }}$ | Input HIGH Current |  | 60 |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ |
| los | Output Short Circuit Current | XM | $\begin{aligned} & -25 \\ & -35 \end{aligned}$ |  | mA | $\mathrm{VCC}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}$ |
|  |  | XC |  |  |  |  |
| Icc | Power Supply Current | XM |  | 45 | mA | $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ |
| tplH | Propagation Delay $T_{0}$ to Q | XM |  | 35 | ns | $\begin{aligned} & \mathrm{Rx}=5 \mathrm{k} \Omega, \mathrm{Cx}_{\mathrm{x}}=0 \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Fig. } \mathrm{c} \end{aligned}$ |
|  |  | XC |  | 40 |  |  |
| tPHL | Propagation Delay $\bar{T}_{0}$ to $\bar{Q}$ | XM |  | 43 | ns | $\begin{aligned} & \mathrm{Rx}=5 \mathrm{k} \Omega, \mathrm{Cx}=0 \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \text { Fig. } \mathrm{c} \end{aligned}$ |
|  |  | XC |  | 48 |  |  |
| $t_{w}(\mathrm{~min})$ | Minimum Output at $Q$ <br> Pulse Width at $\bar{Q}$ | XM | $\begin{array}{r} 90 \\ 100 \\ \hline \end{array}$ |  | ns | $\begin{aligned} & \mathrm{RX}=5 \mathrm{k} \Omega, \mathrm{CX}=0 \\ & \mathrm{CL}=15 \mathrm{pF}, \mathrm{Fig} . \mathrm{c} \end{aligned}$ |
|  |  | XC |  |  |  |  |
|  |  | XC | $\begin{aligned} & 100 \\ & 110 \end{aligned}$ |  |  |  |
| tw | Output Pulse Width |  | 3.08 | 3.76 | $\mu \mathrm{S}$ | $\begin{aligned} & \mathrm{RX}=10 \mathrm{k} \Omega \\ & \mathrm{CX}_{\mathrm{X}}=1000 \mathrm{pF}, \text { Fig. } \mathrm{c} \end{aligned}$ |
| Cstray | Maximum Stray Capacitance from Pin 2 (14) to Gnd |  | 50 |  | pF |  |
| Rx | Timing Resistor Range | XM | 5.0 | 25 | k $\Omega$ |  |
|  |  | XC | 5.0 | 50 |  |  |

DC AND AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 96L |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| VOH | Output HIGH Voltage |  | 2.4 |  | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-0.36 \mathrm{~mA}$ |
| VoL | Output LOW Voltage |  |  | 0.3 | V | $\mathrm{VCC}=\mathrm{Min}, \mathrm{loL}=4.8 \mathrm{~mA}$ |
| $\mathrm{V}_{1}$ | Input HIGH Voltage |  | 2.0 |  | V | Guaranteed Input HIGH Threshold |
| VIL | Input LOW Voltage |  |  | 0.7 | V | Guaranteed Input LOW Threshold |
| ${ }_{\mathrm{ILH}}$ | Input HIGH Current |  |  | $\begin{array}{r} 20 \\ 1.0 \end{array}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned} \quad \mathrm{~V} \mathrm{CC}=\mathrm{Max}$ |
| ILL | Input LOW Current |  |  | -0.4 | mA | $\mathrm{VCC}_{\text {c }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}$ |
| los | Output Short Circuit Current |  | -2.0 | -13 | mA | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{V}_{\text {Out }}=1.0 \mathrm{~V}$ |
| Icc | Power Supply Current |  |  | 16 | mA | $\mathrm{V}_{\text {cc }}=$ Max |
| tpl | Propagation Delay $\bar{T}_{0}$ to $Q$ | $\frac{X M}{X C}$ |  | $\begin{aligned} & 75 \\ & 80 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{RX}=20 \mathrm{k} \Omega \\ & \mathrm{CX}_{\mathrm{X}}=0, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| tPHL | Propagation Delay $\bar{T} 0$ to $\bar{Q}$ | $\frac{X M}{X C}$ |  | $\begin{aligned} & 62 \\ & 65 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{RX}=20 \mathrm{k} \Omega \\ & \mathrm{CX}_{\mathrm{X}}=0, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| $t_{w}(\min )$ | Minimum Output Pulse Width at Q |  |  |  | ns | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Rx}=20 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=0, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| tw | Output Pulse Width |  | 12.4 | 15.2 | $\mu \mathrm{S}$ | $\begin{aligned} & V C C=5.0 \mathrm{~V}, \mathrm{RX}_{\mathrm{X}}=39 \mathrm{k} \Omega \\ & C x=1000 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| $\Delta t$ | Change in Q Pulse Width Over Temperature | XC |  | 1.6 | \% | $\mathrm{Rx}=39 \mathrm{k} \Omega, \mathrm{Cx}^{2}=1000 \mathrm{pF}$ |
| Rx | Timing Resistor Range | XM |  | $\begin{aligned} & 100 \\ & 220 \end{aligned}$ | k $\Omega$ |  |

*Typical Value


Fig. $\mathbf{c}$

## $96 S 02$

96LS02

## DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 96S02 and 96LSO2 are dual retriggerable and resettable monostable multivibrators. These one-shots provide exceptionally wide delay range, pulse width stability, predictable accuracy and immunity to noise. The pulse width is set by an external resistor and capacitor. Resistor values up to $1.0 \mathrm{M} \Omega$ for the 96 LS 02 and $2.0 \mathrm{M} \Omega$ for the 96 S 02 reduce required capacitor values. Hysteresis is provided on both trigger inputs of the 96LS02 and on the positive trigger input of the 96 S 02 for increased noise immunity.

- REQUIRED TIMING CAPACITANCE REDUCED BY FACTORS OF 10 TO 100 OVER CONVENTIONAL DESIGNS
- BROAD TIMING RESISTOR RANGE-1.0 k $\Omega$ to $\mathbf{2 . 0} \mathbf{~ M} \Omega$
- OUTPUT PULSE WIDTH IS VARIABLE OVER A 2000:1 RANGE BY RESISTOR CONTROL
- PROPAGATION DELAY OF $35 \mathrm{~ns} 96 \mathrm{LS} 02,12 \mathrm{~ns} 96 \mathrm{SO2}$
- 0.3 V HYSTERESIS ON TRIGGER INPUTS
- OUTPUT PULSE WIDTH INDEPENDENT OF DUTY CYCLE
- 35 ns TO $\infty$ OUTPUT PULSE WIDTH RANGE

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { VCC }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 96S02PC, 96LS02PC |  | 9 B |
| Ceramic DIP (D) | A | 96S02DC, 96LS02DC | 96S02DM, 96LS02DM | 6B |
| Flatpak (F) | A | 96S02FC, 96LS02FC | 96S02FM, 96LS02FM | 4L |



LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 96S (U.L.) <br> HIGH/LOW | 96LS (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: | :---: |
| $\bar{I}_{0}$ | Trigger Input (Active Falling Edge) | $0.5 / 0.625$ |  |
| $\bar{I}_{0}$ | Schmitt Trigger Input (Active Falling Edge) |  | $0.5 / 0.25$ |
| $\bar{I}_{1}$ | Schmitt Trigger Input (Active Rising Edge) | $0.5 / 0.625$ | $0.5 / 0.25$ |
| $\bar{C}_{D}$ | Direct Clear Input (Active LOW) | $0.5 / 0.625$ | $0.5 / 0.25$ |
| Q | $25 / 12.5$ | $10 / 5.0$ |  |
| $\bar{Q}$ | True Pulse Output |  | $(25)$ |
|  | Complementary Pulse Output | $25 / 12.5$ | $10 / 5.0$ |
|  |  |  | $(2.5)$ |



FUNCTIONAL DESCRIPTION - The 96S02 and 96LSO2 dual retriggerable resettable monostable multivibrators have two dc coupled trigger inputs per function, one active LOW $\left(\bar{T}_{0}\right)$ and one active $\mathrm{HIGH}\left(\mathrm{l}_{1}\right)$. The $\mathrm{I}_{1}$ input of both circuit types and the $T_{0}$ input of the 96LS02 utilize an internal Schmitt trigger with hysteresis of 0.3 V to provide increased noise immunity. The use of active HIGH and LOW inputs allows either rising or falling edge triggering and optional non-retriggerable operation. The inputs are dc coupled making triggering independent of input transition times. When input conditions for triggering are met the Q output goes HIGH and the external capacitor is rapidly discharged and then allowed to recharge. An input trigger which occurs during the timing cycle will retrigger the circuit and result in $Q$ remaining HIGH. The output pulse may be terminated ( $Q$ to the LOW state) at any time by setting the Direct Clear input LOW. Retriggering may be inhibited by tying the $\overline{\mathrm{Q}}$ output to $T_{0}$ or the $Q$ output to $l_{1}$. Differential sensing techniques are used to obtain excellent stability over temperature and power supply variations and a feedback Darlington capacitor discharge circuit minimizes pulse width variation from unit to unit. Schottky TTL output stages provide high switching speeds and output compatibility with all TTL logic families.

## Operation Notes

TIMING

1. An external resistor ( Rx ) and an external capacitor ( $C x$ ) are required as shown in the Logic Diagram. The value of Rx may vary from $1.0 \mathrm{k} \Omega$ to $1.0 \mathrm{M} \Omega$ (96LS02) or $2.0 \mathrm{M} \Omega(96 \mathrm{~S} 02)$.
2. The value of $C_{x}$ may vary from 0 to any necessary value available. If, however, the capacitor has significant leakage relative to $\mathrm{Vcc} / \mathrm{Rx}_{x}$ the timing equations may not represent the pulse width obtained.
3. Polarized capacitors may be used directly. The ( + ) terminal of a polarized capacitor is connected to pin 1 (15), the (-) terminal to pin $2(14)$ and Rx . Pin $1(15)$ will remain positive with respect to pin $2(14)$ during the timing cycle. In the 96S02, however, during quiescent (non-triggered) conditions, pin 1 (15) may go negative with respect to pin 2 (14) depending on values of $R x$ and $V c c$. For values of $R x \geq 10 \mathrm{k} \Omega$ the maximum amount of capacitor reverse polarity, pin 1 (15) negative with respect to pin 2 (14) is 500 mV . Most tantalum electrolytic capacitors are rated for safe reverse bias operation up to $5 \%$ of their working forward voltage rating; therefore, capacitors having a rating of 10 WVdc or higher should be used with the 96 S 02 when $\mathrm{Rx} \geq 10 \mathrm{k} \Omega$.
4. The output pulse width $\mathrm{t}_{\mathrm{w}}$ for $\mathrm{Rx}_{\mathrm{x}} \geq 10 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{x}} \geq 1000 \mathrm{pF}$ is determined as follows:
(96S02) $\mathrm{t}_{\mathrm{w}}=0.55 \mathrm{RxCx}$
(96LS02) $\mathrm{t}_{\mathrm{w}}=0.43 \mathrm{RxCx}$
Where $\mathrm{R}_{\mathrm{x}}$ is in $\mathrm{k} \Omega, \mathrm{C}_{\mathrm{x}}$ is in pF, t is in ns or $\mathrm{Rx}_{\mathrm{x}}$ is in $\mathrm{k} \Omega, \mathrm{C}_{\mathrm{x}}$ is in $\mu \mathrm{F}, \mathrm{t}$ is in ms .
5. The output pulse width for $\mathrm{Rx}_{\mathrm{x}}<10 \mathrm{k} \Omega$ or $\mathrm{Cx}_{\mathrm{x}}<1000 \mathrm{pF}$ should be determined from pulse width versus $\mathrm{Cx}_{\mathrm{x}}$ or Rx graphs.
6. To obtain variable pulse width by remote trimming, the following circuit is recommended:


## 96S02•96LS02

Operation Notes (Cont'd)
7. Under any operating condition, $\mathrm{C}_{x}$ and $\mathrm{Rx}_{\mathrm{x}}(\mathrm{Min})$ must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
8. $\mathrm{V}_{\mathrm{CC}}$ and ground wiring should conform to good high frequency standards so that switching transients on V cc and ground leads do not cause interaction between one shots. Use of a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ bypass capacitor between Vcc and ground located near the circuit is recommended.

## TRIGGERING

1. The minimum negative pulse width into $\bar{I}_{0}$ is 8.0 ns ; the minimum positive pulse width into $l_{1}$ is 12 ns .
2. Input signals to the 96S02 exhibiting slow or noisy transitions should use the positive trigger input $l_{1}$ which contains a Schmitt trigger. Input signals to the 96LS02 exhibiting slow or noisy transitions can use either trigger as both are Schmitt triggers.
3. When non-retriggerable operation is required, i.e., when input triggers are to be ignored during quasi-stable state, input latching is used to inhibit retriggering.

4. An overriding active LOW level direct clear is provided on each multivibrator. By applying a LOW to the clear, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW. A LOW-to-HIGH transition on $\bar{C}_{D}$ will not trigger the $96 S 02$ or 96 LSO2. If the $\bar{C}_{D}$ input goes HIGH coincident with a trigger transition, the circuit will respond to the trigger.

## tRIGGERING TRUTH TABLE

| PIN NO'S. |  |  | OPERATION |
| :--- | :--- | :--- | :--- |
| 5 5(11) | $4(12)$ | $3(13)$ |  |
| $H \rightarrow L$ | L | $H$ | Trigger |
| $H$ | $L \rightarrow H$ | $H$ | Trigger |
| $X$ | $X$ | L | Reset |

$H=$ HIGH Voltage Level $\geq V_{I H}$
$\mathrm{L}=$ LOW Voltage Level $\leq \mathrm{V}_{I L}$
$\mathrm{X}=$ Immaterial (either H or L)
$H-L=H I G H$ to LOW Voltage Level transition
L-H = LOW to HIGH Voltage Level transition

## TYPICAL CHARACTERISTICS <br> 96S02

OUTPUT $\mathbf{t}_{w}$ vs $\mathbf{R x}_{\mathrm{x}}$ and $\mathbf{C x}_{\mathrm{x}}$

$t_{w}$ - OUTPUT PULSE WIDTH $-\mu \mathrm{s}$

To DELAY TIME vs $\mathrm{T}_{\mathrm{A}}$


TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

NORMALIZED $\Delta t_{w}$ vs $T_{A}$


TA $_{A}$ - AMBIENT TEMPERATURE $-{ }^{\circ} \mathbf{C}$
$I_{1}$ DELAY TIME vs TA


TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

OUTPUT $\mathbf{t}_{w}$ vs $\mathrm{T}_{\mathrm{A}}$


PULSE WIDTH vs $\mathrm{R}_{\mathrm{x}} \mathrm{C}_{\mathrm{x}}$


## TYPICAL CHARACTERISTICS

96LSO2

$\mathrm{t}_{\mathrm{w}}$ - OUTPUT PULSE WIDTH ( $\mu \mathrm{s}$ )
$\bar{T}_{0}$ DELAY TIME vs TA


NORMALIZED $\Delta t_{w}$ vs $T_{A}$

$I_{1}$ DELAY TIME vs TA


TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$


PULSE WIDTH vs $R_{x} C_{x}$


TIMING CAPACITOR CX—pF

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | $96 S$ | 96LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min Max | Min Max |  |  |
| $\mathrm{V}_{\text {+ }}$ | Positive-going Threshold Voltage, $\mathrm{T}_{0}, \mathrm{I}_{1}$ (96LSO2) $\mathrm{I}_{1}$ (96SO2) |  | 2.0 | 2.0 | V | $\mathrm{Vcc}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {T- }}$ | Negative-going Threshold Voltage $\bar{T}_{0}, I_{1}$ (96LSO2) $I_{1}(96 S 02)$ |  | $\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$ | V | $\mathrm{Vcc}=5.0 \mathrm{~V}$ |
| Vor | Output HIGH Voltage | $\frac{X M}{\text { XC }}$ | $\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$ | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}=-400 \mu \mathrm{~A} \text { ('LSO2) } \\ & \mathrm{IOH}=-1.0 \mathrm{~mA} \text { ('SO2) } \end{aligned}$ |
| Vol | Output LOW Voltage | $\frac{X M}{X C}$ | $\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$ | V | $\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |
| Vcx | Capacitor Voltage Pin 1 (15) Referenced to Pin 2 (14) |  | $\begin{array}{\|rl\|} \hline-0.85 & 3.0 \\ -0.5 & 3.0 \\ -0.4 & 3.0 \\ \hline \end{array}$ | $\begin{array}{ll} \hline 0 & 3.0 \\ 0 & 3.0 \\ 0 & 3.0 \end{array}$ | V | $\begin{aligned} & \mathrm{Rx}=1.0 \mathrm{k} \Omega \\ & \mathrm{Rx}=>10 \mathrm{k} \Omega \mathrm{Vcc}=4.75 \mathrm{~V} \\ & \mathrm{Rx}>1.0 \mathrm{M} \Omega \\ & \text { to } 5.25 \mathrm{~V} \end{aligned}$ |
| IIH | Input HIGH Current |  | $\begin{aligned} & 20 \\ & 0.1 \end{aligned}$ | 20 0.1 | $\mu \mathrm{A}$ mA | $\begin{array}{lr} \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \text { ('SO2) } & \mathrm{VCC}= \\ \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \text { ('LSO2) } & \mathrm{Max} \\ \hline \end{array}$ |
| IIL | Input LOW Current |  | -1.0 | -0.4 | mA | $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$ |
| los | Output Short Circuit Current |  | -40-100 | -20-100 | mA | V cc $=\mathrm{Max}, \mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  | 75 | 36 | mA | $\mathrm{V}_{\mathrm{IN}}=$ Open, $\mathrm{V}_{\text {cc }}=\mathrm{Max}$ |



Fig. a

## 96S02•96LS02

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  | 96 | 6 S | 96 | LS | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  |  | Min | Max | Min | Max |  |  |
| tPLH | Propagation Delay To to Q |  |  | 15 |  | 55 | ns | Fig. a |
| tPHL | Propagation Delay $\bar{T}_{0}$ to $\bar{Q}$ |  |  | 19 |  | 50 | ns |  |
| tPLH | Propagation Delay $I_{1}$ to Q |  |  | 19 |  | 60 | ns |  |
| tPHL | Propagation Delay $I_{1}$ to $\bar{Q}$ |  |  | 20 |  | 55 | ns |  |
| tPHL | Propagation Delay $\bar{C}_{D}$ to $Q$ |  |  | 20 |  | 30 | ns |  |
| tPLH | Propagation Delay $\bar{C}_{D}$ to $\bar{Q}$ |  |  | 14 |  | 35 | ns |  |
| $t_{w}(L)$ | İo Pulse Width LOW |  | 8.0 |  | 15 |  | ns |  |
| $t_{w}(H)$ | $I_{1}$ Pulse Width HIGH |  | 12 |  | 30 |  | ns |  |
| $\mathrm{tw}_{\mathbf{w}}(\mathrm{L})$ | $\overline{\mathrm{C}}_{\text {D }}$ Pulse Width LOW |  | 7.0 |  | 22 |  | ns |  |
| $t_{w}(H)$ | Minimum Q Pulse Width HIGH |  | 30 | 45 | 25 | 55 | ns | $\mathrm{Rx}_{\mathrm{x}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{x}}=10 \mathrm{pF}$ including jig and stray |
| $t_{w}$ | Q Pulse Width |  | 5.2 | 5.8 | 4.1 | 4.5 | $\mu \mathrm{S}$ | $\mathrm{RXX}^{\prime}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{x}}=1000 \mathrm{pF}$ |
| Rx | Timing Resistor Range* |  |  | 2000 | 1.0 | 1000 | $k \Omega$ | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$ |
| t | Change in Q Pulse Width over Temperature | $\frac{X M}{X C}$ |  | 1.0 |  | $\begin{aligned} & \hline 3.0 \\ & 1.0 \\ & \hline \end{aligned}$ | \% | $\mathrm{Rx}=10 \mathrm{k} \Omega, \mathrm{Cx}^{\prime}=1000 \mathrm{pF}$ |
| t | Change in Q Pulse Width over Vcc Range |  |  | 1.0 |  | $\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$ | \% | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{CC}=4.75 \mathrm{~V} \text { to } \\ & 5.25 \mathrm{~V}, \mathrm{RX}=10 \mathrm{k} \Omega, \\ & \mathrm{CX}=1000 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{CC}=4.5 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V}, \mathrm{RX}_{\mathrm{x}}=10 \mathrm{k} \Omega, \\ & \mathrm{CX}=1000 \mathrm{pF} \end{aligned}$ |

*Applies only over commercial $V_{C C}$ and $T_{A}$ range for $96 S 02$.

## 96LS32 <br> ADDRESS MULTIPLEXER/REFRESH COUNTER <br> (For 4K Dynamic RAMs)

DESCRIPTION - The 96LS32 is an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of up to six input addresses (or 4 K bits for $64 \times 64$ organization). It multiplexes 12 bits of system applied address to six output address pins. The device also contains a 6 -bit refresh counter which is externally clocked so that either distributed or burst refresh may be used. The high performance of the 96LS32 makes it especially suitable for use with high speed n-channel RAMs like the M4027. The 96LS32 operates from a single +5.0 V power supply and is specified for operation over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ambient temperature range.

- SIMPLIFIES SYSTEM DESIGN
- REDUCES PACKAGE COUNT
- DRIVES HIGH CAPACITANCE LOADS
- USE FOR DISTRIBUTED OR BURST REFRESH
- STANDARD 24-PIN DUAL IN-LINE PACKAGE
- LOW POWER SCHOTTKY DESIGN MINIMIZES POWER CONSUMPTION

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Vcc }=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 96LS32PC |  | 9 N |
| Ceramic DIP (D) | A | 96LS32DC | 96LS32DM | 6 N |
| Flatpak (F) | A | 96LS32FC | 96LS32FM | 4M |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $96 X X$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{5}$ | Row Address Inputs | $0.5 / 0.13$ |
| $\mathrm{~A}_{6}-\mathrm{A}_{11}$ | Column Address Inputs | $0.5 / 0.13$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | $0.5 / 0.13$ |
| RE | Refresh Enable Input (Active HIGH) | $0.5 / 0.13$ |
| RS | Row Select Input (Active HIGH) | $0.5 / 0.13$ |
| $\overline{\mathrm{ZD}}$ | Refresh Counter Zero Detect Output (Active LOW) | $25 / 3.1$ |
| $\overline{\mathrm{O}}_{0}-\bar{O}_{5}$ | Address Outputs | $25 / 3.1$ |

## LOGIC DIAGRAM



LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

FUNCTIONAL DESCRIPTION - The 96LS32 address multiplexer/refresh counter performs the following functions:

1. Row, Column and Refresh Address multiplexing
2. Address counting for burst or distributed refresh

These functions are controlled by two signals, Refresh Enable and Row Select, both of which are active HIGH TTL inputs. the Function Table shows the levels required to multiplex to the output:

1. Refresh address (from internal counter)
2. Row addresses ( $A_{0}$ through $A_{5}$ )
3. Column addresses ( $A_{6}$ through $A_{11}$ )

BURST REFRESH MODE - When refresh is requested the Refresh Enable input is HIGH. This input is ANDed with the six outputs of the internal 6-bit counter. At each $\overline{C P}$ pulse the counter increments by one, sequencing the outputs ( $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$ ) through all 64 row addresses. When the counter sequences to all zeroes, the Zero Detect output goes LOW signaling the end of the refresh sequence. Due to counter decoding spikes, the Zero Detect output is valid only after $t_{c z}$ following the LOW going edge of $\overline{C P}$.

DISTRIBUTED REFRESH MODE - In the distributed refresh mode, one row is selected for refresh each (trefresh/n) time where $n=$ number of rows in the device and refresh is the specified refresh rate for the device. For the $M 4027$, trefresh $=2.0 \mathrm{~ms}$ and $\mathrm{n}=64$, therefore one row is refreshed each $31 \mu \mathrm{~s}$. Following the refresh cycle at row $n$, the $\overline{\mathrm{CP}}$ input is pulsed, advancing the refresh address by one row so that the next refresh cycle will be performed on row $n+1$. The $\overline{C P}$ input may be pulsed following each refresh cycle or within the refresh cycle after the specified memory device address hold time.

ROW AND COLUMN ADDRESS - All twelve system address lines are applied to the inputs of the 96LS32. When Refresh Enable is LOW and Row Select is HIGH, the input addresses $A_{0}$ - A5 are gated to the outputs and applied to the driven memories. Conversely, when Row Select is LOW (with Refresh Enable still LOW), input addresses $A_{6}-A_{11}$ are gated to the outputs and applied to the driven memories. When memory devices are driven directly by the 96LS32, the address applied to the memory devices is the inverse of the address at the inputs due to the inverted outputs of the 96LS32. This should be remembered when checking out the memory system.

# 96LS42 <br> ADDRESS MULTIPLEXER/REFRESH COUNTER <br> (For 16K Dynamic RAMs) 

DESCRIPTION - The 96LS42 is an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of 64 or 128 cycles. It multiplexes 14 bits of system supplied address to seven output address pins. The device also contains a 7-bit refresh counter which is externally controlled so that either distributed or burst refresh may be used. The high performance of the 96LS42 makes it especially suitable for use with high speed $n$-channel RAMs like the F16K. The 96LS42 is manufactured using Fairchild's advanced low power Schottky process.

- SIMPLIFIES SYSTEM DESIGN
- REDUCES PACKAGE COUNT
- DRIVES HIGH CAPACITIVE LOADS
- EITHER BURST OR DISTRIBUTED REFRESH
- LOW POWER SCHOTTKY DESIGN
- STANDARD 28-PIN PACKAGE

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | - MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 96LS42PC |  | 9 Y |
| Ceramic DIP (D) | A | 96LS42DC | 96LS42DM | 8E |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | $96 X X$ (U.L.) <br> HIGH/LOW |
| :--- | :--- | :---: |
| $\mathrm{A}_{0}-\mathrm{A}_{6}$ | Row Address Inputs | $0.5 / 0.13$ |
| $\mathrm{~A}_{7}-\mathrm{A}_{13}$ | Column Address Inputs | $0.5 / 0.13$ |
| $\overline{\mathrm{CP}}$ | Clock Pulse Input (Active Falling Edge) | $0.5 / 0.13$ |
| RE | Reiresh Enable Input | $0.5 / 0.13$ |
| RS | Row Select Input | $0.5 / 0.13$ |
| $\overline{\mathrm{ZD}}$ | Refresh Counter Zero Detect Output (Active LOW) | $25 / 3.1$ |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{6}$ | Multiplexer Outputs (Active LOW) | $25 / 3.1$ |

## LOGIC SYMBOL



LOGIC DIAGRAM


FUNCTIONAL DESCRIPTION - The 96LS42 address multiplexer/refresh counter performs the following functions:

1. Row, Column and Refresh Address multiplexing
2. Address counting for burst or distributed refresh

These functions are controlled by two signals, Refresh Enable and Row Select, both of which are active HIGH TTL inputs. The Function Table shows the levels required to multiplex to the output:

1. Refresh addresses (from internal counter)
2. Row addresses ( $A_{0}$ through $A_{6}$ )
3. Column addresses ( $A_{7}$ through $A_{13}$ )

Burst Refresh Mode - When refresh is requested the Refresh Enable input is HIGH. This input is AND-ed with the seven outputs of the internal 7-bit counter. At each $\overline{\mathrm{CP}}$ pulse the counter increments by one, sequencing the outputs $\left(\bar{O}_{0}-\overline{\mathrm{O}}_{6}\right)$ through all 128 row addresses. When the counter sequences to all zeroes, the Zero Detect output goes LOW signaling the end of the refresh sequence. Due to counter decoding spikes, the Zero Detect output is valid only after $t_{c z}$ following the LOW going edge of $\overline{C P}$.

Distributed Refresh Mode - In the distributed refresh mode, one row is selected for refresh each ( trefresh $/ \mathrm{n}$ ) time where $n=$ number of rows in the device and refresh is the specified refresh rate for the device. For the F16 $k$, Refresh $=2.0 \mathrm{~ms}$ and $\mathrm{n}=128$, therefore one row is refreshed each $62 \mu \mathrm{~S}$. Following the refresh cycle at row n , the $\overline{\mathrm{CP}}$ input is pulsed, advancing the refresh address by one row so that the next refresh cycle will be performed on row $n+1$. The $\overline{C P}$ input may be pulsed following each refresh cycle or within the refresh cycle after the specified memory device address hold time.

Row and Column Address - All 14 system address lines are applied to the inputs of the 96LS42. When Refresh Enable is LOW and Row Select is HIGH, the input Addresses $A_{0}$ - $A_{6}$ are gated to the outputs and applied to the driven memories. Conversely, when Row Select is LOW (with Refresh Enable still LOW). Input addresses A7 $A_{13}$ are gated to the outputs and applied to the driven memories. When memory devices are driven directly by the 96LS42, the address applied to the memory devices is the inverse of the address at the inputs due to the inverted outputs of the 96LS42. This should be remembered when checking out the memory system.

## FUNCTION TABLE

| Refresh <br> Enable | Row <br> Select | Outputs |
| :---: | :---: | :--- |
| H | X | Refresh Address (from internal counter) |
| L | H | Row Address (complement of $\mathrm{A}_{0}-\mathrm{A}_{6}$ ) |
| L | L | Column Address (complement of $\mathrm{A}_{7}-\mathrm{A}_{13}$ ) |

[^62]
## 96101 <br> QUAD 2-INPUT POSITIVE NAND BUFFER (With Open-Collector Output)

DESCRIPTION - The 96101 is similar to the 54/7439, except that the outputs are specified at three levels of lol; in the HIGH state the loh current is specified at two levels of $\mathrm{VOH}_{\mathrm{O}}$. During switching transitions, output current change rate is typically $4.0 \mathrm{~mA} / \mathrm{ns}$.

ORDERING CODE: See Section 9

| PKGS | PIN | COMMERCIAL GRADE |  |  |
| :--- | :---: | :--- | :--- | :---: |
|  | MILITARY GRADE <br> VCC $=+5.0 \mathrm{~V} \pm 5 \%$, <br> $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ | VCC <br> $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TYPE |  |
|  | A | 96101 PC |  | 9 A |
| Ceramic <br> DIP (D) | A | 96101 DC | 96101 DM | 6 A |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 96XX (U.L.) <br> HIGH/LOW |  |
| :--- | :---: | :--- |
| Inputs <br> Outputs | $1.0 / 1.0$ |  |

DC AND AC CHARACTERISTICS: See Section $3^{*}$

| SYMBOL | PARAMETER | 96XX | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min Max |  |  |  |
| $\mathrm{V}_{1}$ | Input HIGH Voltage | 2.0 | V |  |  |
| VIL | Input LOW Voltage | 0.8 | V |  |  |
| Vol | Output LOW Voltage | $\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.6 \end{aligned}$ | V | $\begin{aligned} & \mathrm{IOL}=48 \mathrm{~mA} \\ & \hline \mathrm{IOL}=60 \mathrm{~mA} \\ & \hline \mathrm{IOL}=80 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} V_{C C} & =M i n \\ V_{I N} & =V_{I H} \end{aligned}$ |
| Іон | Output HIGH Current | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{VOH}=3.5 \mathrm{~V} \\ & \mathrm{VOH}=5.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \end{gathered}$ |
| lin | Input HIGH Current | $\begin{aligned} & 40 \\ & 1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=$ Max |
| ILL | Input LOW Current | -1.6 | mA | $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$, V | Max |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \end{aligned}$ | Power Supply Current | $\begin{array}{r} 8.5 \\ 54 \\ \hline \end{array}$ | mA | $\frac{V_{\text {IN }}=G n d}{V_{\text {IN }}=\text { Open }}$ | $\mathrm{Vcc}=\mathrm{Max}$ |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay Input to Output | $\begin{aligned} & 22 \\ & 25 \end{aligned}$ | ns | $\begin{aligned} & C \mathrm{C}=45 \mathrm{pF}, \mathrm{~F} \\ & \text { Figs. 3-2, 3-4 } \end{aligned}$ | $20 \Omega$ |

## 96103 <br> QUAD BUS TRANSCEIVER (With Common Enable)

DESCRIPTION - Each transceiver contains an open-collector buffer whose output is common to an inverting gate input. When both Enable inputs ( $\bar{E}_{1}$ and $E_{2}$ ) are LOW, the buffer is enabled, with its output state determined by its Data (D) input. When either Enable input is HIGH, the buffer is disabled (output OFF) and the bus signal is determined by other circuits connected to the bus. The receiver gate has greater input noise immunity than standard TTL, while its output signal levels are standard TTL. In the power-down condition, the B terminal leakage is limited to $100 \mu \mathrm{~A}$.

ORDERING CODE: See Section 9

| PKGS | PIN OUT | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  |
| Plastic DIP (P) | A | 96103PC |  | 9B |
| Ceramic DIP (D) | A | 96103DC | 96103DM | 6B |
| Flatpak (F) | A | 96103FC | 96103FM | 4L |



Vcc $=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES | DESCRIPTION | 96XX (U.L.) <br> HIGH/LOW |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E}_{1}, \mathrm{E}_{2} \\ & \mathrm{~B} \\ & \mathrm{O} \end{aligned}$ | Data Input <br> Enable Inputs (Active LOW) <br> Bus Terminal, as Input as Output <br> Receiver Output | $\begin{array}{r} 1.0 / 1.0 \\ 1.0 / 1.0 \\ 2.5 / 0.05 \\ \mathrm{OC}^{*} / 70 \mathrm{~mA} \\ 50 / 12.5 \end{array}$ |

*OC - Open Collector

| SYMBOL | PARAMETER |  |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| Vol | Output LOW Voltage at B |  |  | 0.7 | V | $\begin{aligned} & \mathrm{loL}=70 \mathrm{~mA}, \mathrm{~V}_{\mathrm{H}}=2.0 \mathrm{~V} \\ & \mathrm{Vcc}=\mathrm{Min} \end{aligned}$ |
| VIL | Input LOW Voltage at $D$ or $\bar{E}$ | $\frac{X C}{X M}$ |  | $\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$ | V |  |
| VIHR | Receiver HIGH Threshold Voltage | $\frac{\mathrm{XC}}{\mathrm{XM}}$ | $\begin{aligned} & 1.53 \\ & 1.49 \\ & \hline \end{aligned}$ |  | V | $\mathrm{Vcc}=\mathrm{Min}$ |
|  |  | XC | $\begin{array}{r} 1.7 \\ 1.84 \end{array}$ |  | V | $\mathrm{Vcc}=\mathrm{Max}$ |
| VILR | Receiver LOW Threshold Voltage | XC |  | $\begin{array}{r} 1.3 \\ 1.21 \\ \hline \end{array}$ | V | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ |
|  |  | XC |  | $\begin{aligned} & 1.47 \\ & 1.56 \end{aligned}$ | V | $\mathrm{Vcc}=$ Max |
| IOH | Bus Output HIGH Current |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } \mathrm{Max} \\ & \mathrm{VOH}_{\mathrm{OH}}=4.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| IIL | Input LOW Current at B |  |  | -85 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| los | Output Short Circuit Current at 0 |  | -18 | -55 | mA | $\mathrm{Vcc}=\mathrm{Max}, \mathrm{V}$ Out $=0 \mathrm{~V}$ |
| Icc | Power Supply Current |  |  | 90 | mA | $\begin{aligned} & \text { D input }=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$ |

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER |  |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{1}$ or $\bar{E}_{2}$ to B |  | $\begin{aligned} & 30 \\ & 23 \end{aligned}$ | ns | $\mathrm{R}_{\mathrm{L}}=91 \Omega$ to $\mathrm{V}_{\mathrm{cc}}$, $200 \Omega$ to Gnd Figs. 3-4, 3-5 |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay D to B |  | $\begin{aligned} & 25 \\ & 15 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay B to 0 | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & 1.6 \mathrm{k} \Omega \text { to Gnd, Fig. 3-4 } \end{aligned}$ |
| tpLH tPHL | Propagation Delay B to 0 | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & 1.6 \mathrm{k} \Omega \text { to } \mathrm{Gnd} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, Fig. 3-4 } \end{aligned}$ |

# 96106 <br> QUAD 2-INPUT NOR RECEIVER 

DESCRIPTION - The 96106 inputs are designed to provide higher noise immunity than standard TTL inputs and also present less loading to the signal source. Also, in the power down condition, input leakage is $80 \mu \mathrm{~A}$ or less, making the 96106 well suited for data bus applications. Output signal levels are standard TTL.

ORDERING CODE: See Section 9

| PKGS | $\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$ | COMMERCIAL GRADE | MILITARY GRADE | $\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  |
| Plastic DIP (P) | A | 96106PC |  | 9A |
| Ceramic DIP (D) | A | 96106DC | 96106DM | 6A |
| Flatpak (F) | A | 96106FC | 96106FM | 31 |

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PINS | 96XX (U.L.) |
| :--- | :---: |
|  | HIGH/LOW |
| Inputs | $2.0 / 0.006$ |
| Outputs | $50 / 12.5$ |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL | PARAMETER |  | 96XX |  | UNITS | CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | XC | $\begin{array}{r} 1.53 \\ 1.49 \\ \hline \end{array}$ |  | V | $\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ |  |
|  |  | XM |  |  |  |  |  |
|  |  | XC | $\begin{aligned} & 1.70 \\ & 1.84 \end{aligned}$ |  | V | $\mathrm{Vcc}=\mathrm{Max}$ |  |
|  |  | XM |  |  |  |  |  |
| VIL | Input LOW Voltage | XC |  | 1.30 | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$ |  |
|  |  | XM |  | 1.21 |  |  |  |
|  |  | XC |  | 1.47 | V | $\mathrm{Vcc}=$ Max |  |
|  |  | XM |  | 1.56 |  |  |  |
| IH | Input HIGH Current |  |  | 80 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ to Max, $\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}$ |  |
| ILL | Input LOW Current |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |  |
| Ios | Output Short Circuit Current |  | -18 | -55 | mA | $\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$ |  |
| $\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \end{aligned}$ | Power Supply Current |  |  | 40 | mA | $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ | $\mathrm{Vcc}=$ Max |
|  |  |  |  | 20 |  | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ |  |

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

| SYMBOL | PARAMETER | 96XX |  | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |
|  |  | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation Delay | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | ns | $\mathrm{R}_{\mathrm{L}}=390 \Omega$ to VCc , <br> $1.6 \mathrm{k} \Omega$ to Gnd, Fig. 3-4 |
| tPLH <br> tPHL | Propagation Delay | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & 1.6 \mathrm{k} \Omega \text { to } \mathrm{Gnd} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, Fig. 3-4 } \end{aligned}$ |


| PRODUCT INDEXES AND |
| :--- |
| SELECTION GUIDES |

TTL CHARACTERISTICS $\quad 2$

| LOADING, SPECIFICATIONS AND |
| :--- |
| WAVEFORMS |

54/74 FAMILY DATA SHEETS


## Section 8 OTHER DIGITAL PRODUCTS

## RTL MICROLOGIC AND CTL COUNTING MICROLOGIC ELEMENTS

| $\begin{gathered} \text { DEVICE } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { LOGIC/ } \\ \text { CONN. } \\ \text { DIAGRAM } \end{gathered}$ | PKG <br> TYPE | $\begin{gathered} \text { DEVICE } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { LOGIC/ } \\ \text { CONN. } \\ \text { DIAGRAM } \end{gathered}$ | PKG TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 900 | Buffer | F8 | 3F, 5B | 913 | D Flip-Flip | F6 | 3F, 5B |
| 901 | Counter Adapter | F18 | 3F, 5B | 914 | Dual 2-NOR | F13 | 3F, 5B |
| 902 | Flip-Flop | F19 | 3F, 5B | 915 | Dual 3-NOR | F14 | 3F, 5F |
| 903 | 3-Input NOR | F9 | 3F, 5B | 921 | Dual 2-Expander | F7 | 3F, 5B |
| 904 | Half Adder | F10 | 3F, 5B | 923 | JK Flip-Flop | F15 | 5B |
| 905 | Half Shift | F11 | 3F, 5B | 926 | JK Flip-Flop | F16 | 3F, 5F |
| 906 | Half Shift | F20 | 3F, 5B | 927 | Quad Inverter | F17 | 3F, 5F |
| 907 | 4-Input NOR | F12 | 3F, 5B | 958 | Decade Counter | F21 | 5B, 6A |
| 908 | Adder | F1 | 3F, 5B | 959 | 4-Bit Latch | F22 | 6B |
| 909 | Buffer | F2 | 3F, 5B | 960 | BCD Decoder/Dvr | F23 | 6B |
| 910 | Dual 2-NOR | F3 | 3F, 5B | 974 | JK Flip-Flop | F15 | 5B |
| 911 | 4-Input NOR | F4 | 3F, 5B | 989 | Binary Counter | F21 | 5B, 6A |
| 912 | Half Adder | F5 | 3F, 5B |  |  |  |  |

DTL MICROLOGIC

| DEVICE NO. | DESCRIPTION | LOGIC/CONN. DIAGRAM | PKG TYPE |
| :---: | :---: | :---: | :---: |
| 930 | Dual 4-Input Extendable NAND Gate | G1 | 3I, 5F, 6A, 9A |
| 932 | Dual 4-Input Extendable NAND Buffer Gate | G1 | 31, 5F, 6A, 9A |
| 933 | Extender | G9 | 5F, 9A |
| 935 | Extendable Hex Inverter | G12 | 31, 6A, 9A |
| 936 | Hex Inverter | G12 | 31, 6A, 9A |
| 937 | Hex Inverter | G12 | 31, 6A, 9A |
| 941 | Monostable Multivibrator | G17 | 31, 6A |
| 944 | Dual 4-Input Extendable NAND Buffer Gate (Open-Collector) | G1 | 3I, 5F, 6A, 9A |
| 945 | RS Flip-Flop | G18 | 3I, 5F, 6A, 9A |
| 946 | Quad 2-Input NAND Gate | G10 | 3I, 5F, 6A, 9A |
| 948 | RS Flip-Flop | G18 | 3I, 5F, 6A, 9A |

OTHER DIGITAL PRODUCTS

## DTL MICROLOGIC (Cont'd)

| DEVICE NO. | DESCRIPTION | LOGIC/CONN. DIAGRAM | PKG TYPE |
| :---: | :---: | :---: | :---: |
| 949 | Quad 2-Input NAND Gate | G10 | 31, 5F, 6A, 9A |
| 950 | A-C Coupled RS Flip-Flop | G19 | 31, 5F, 6A, 9A |
| 951 | Monostable Multivibrator | G17 | 31, 5F, 6A, 9A |
| 961 | Dual 4-Input Extendable NAND Gate | G1 | 31, 5F, 6A, 9A |
| 962 | Triple 3-Input NAND Gate | G11 | 31, 5F, 6A, 9A |
| 963 | Triple 3-Input NAND Gate | G11 | 31, 5F, 6A, 9A |
| 1800 | Dual 5-Input NAND Gate | G1 | 9A |
| 1801 | Dual 5-Input NAND Gate | G1 | 9A |
| 1802 | Single 8-Input NAND Gate | G2 | 9A |
| 1803 | Single 8-Input NAND Gate | G2 | 9A |
| 1804 | Single 10-Input NAND Gate | G3 | 9A |
| 1805 | Single 10-Input NAND Gate | G3 | 9A |
| 1806 | Quad 2-Input AND Gate | G4 | 9A |
| 1807 | Quad 2-Input AND Gate | G4 | 9A |
| 1808 | Quad 2-Input OR Gate | G5 | 9A |
| 1809 | Quad 2-Input OR Gate | G5 | 9A |
| 1810 | Quad 2-Input NOR Gate | G6 | 9A |
| 1811 | Quad 2-Input NOR Gate | G6 | 9 A |
| 1812 | Quad 2-Input Exclusive-OR Gate | G7 | 9A |
| 1813 | Quad Latch | G13 | 9 B |
| 1814 | Quad Latch | G14 | 9A |
| 9093 | Dual JK Flip-Flop | G15 | 31, 6A, 9A |
| 9094 | Dual JK Flip-Flop | G15 | 31, 6A, 9A |
| 9097 | Dual JK Flip-Flop | G16 | 31, 6A, 9A |
| 9099 | Dual JK Flip-Flop | G16 | 31, 6A, 9A |
| 9109 | High Voltage Hex Inverter | G12 | 6A |
| 9110 | High Voltage Hex Inverter | G12 | 6A |
| 9111 | RS Flip-Flop | G20 | 31, 6A |
| 9112 | High Voltage Hex Inverter | G12 | 6A |
| 9135 | Hex Inverter (Open-Collector) | G12 | 31, 6A, 9A |
| 9157 | Quad 2-Input Buffered NAND Gate | G8 | 31, 6A, 9A |
| 9158 | Quad 2-Input Power NAND Gate | G8 | 6A, 9A |



F6
913


F16
926


F17
927


F21
958, 989


F3
910


F8
900


F13
914


F18
901


F22
959


F4
911


F9
903


F14
915


F19
902


F23 960



.


## Section 9 ORDERING INFORMATION AND PACKAGE OUTLINES

Specific ordering codes, as well as the temperature ranges and package types available, are listed on the first page of each data sheet in Section 4 through Section 7. The product indices and selection guides given in Section 1 list only the "basic" device numbers. This basic number is used to form part of a simplified purchasing code where the package style and temperature range are defined as follows:


TEMPERATURE RANGE - Two basic temperature grades are in common use:

```
C= Commercial
    0' C to +70 C/75 % C
M=Military
    -55 C to +125* C
```

PACKAGE CODE - One letter represents the basic package style. Different package outlines exist within each package style to accommodate varying die sizes and number of pins, as indicated below:

D - Ceramic/Hermetic Dual In-line
4E, 6A, 6B, 6N, 7B, 8E
F-Flatpak
3F, 3I, 4F, 4L, 4M
H-Metal Can
5B, 5F
$P$ - Plastic Dual In-line
9A, 9B, 9N, 9Y, $9 Z$

PACKAGE OUTLINES - The package outlines indicated by the codes above are shown in the detailed outline drawings in this section.

JEDEC TO-91 OUTLINE


## 3F

NOTES:
Leads are tin plated 42 alloy Hermetically sealed alumina package Cavity size is .130 ( 3.30 ) diameter Package weight is 0.26 grams

## 31

NOTES:
Leads are tin-plated 42 alloy
Hermetically sealed alumina package Lead 1 orientation may be either tab or dot Cavity size is .130 ( 3.30 )
Package weight is 0.26 gram

## 4E

## NOTES:

Pins are tin-plated kovar or nickel alloy 42 Pins are intended for insertion in hole rows on .300" (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter pins
Hermetically sealed alumina package (black)
Cavity size is $.140 \times .250(3.56 \times 6.35)$
*The .037-. 027 dimension does not apply to the corner pins
Package weight is 2.4 grams

FAIRCHILD PACKAGE OUTLINES



## FAIRCHILD PACKAGE OUTLINES

## 16-PIN DUAL IN-LINE



## 6B

NOTES:
Pins are tin-plated 42 alloy
Pins are intended for insertion in hole rows on .300" (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 (0.51) inch diameter pin
Hermetically sealed alumina package
Cavity size is $.110 \times .140(2.79 \times 3.56)$
Package weight is 2.0 grams
*The .037-. 027 dimension does not apply to the corner pins

## 24-PIN DUAL IN-LINE



## 6N

NOTES:
Pins are tin-plated 42 alloy
Package material is alumina
Pins are intended for insertion in hole rows on 600 (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Cavity size is $.230 \times .230(5.84 \times 5.84)$
Package weight is 6.5 grams

FAIRCHILD PACKAGE OUTLINES


FAIRCHILD PACKAGE OUTLINES


All dimensions in inches (bold) and millimeters (parentheses)

## 24-PIN PLASTIC DUAL IN-LINE



28-PIN PLASTIC DUAL IN-LINE


NOTES:
Pins are tin-plated kovar, alloy 42 or copper Package material is plastic
Pins are intended for insertion in hole rows on . 600 (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Assembled package weight is 4.8 grams


All dimensions in inches (bold) and millimeters (parentheses)

## 20-PIN PLASTIC DUAL IN-LINE


$9 Z$

NOTES:
Pins are tin plated alloy 42 or copper (olin 195)
Package material varies depending on the product line
Pins are intended for insertion in hole rows on .300" (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board drilling dimensions should equal your practice for .020' (0.51) diameter pin
Package weight is a little over 1.0 gram
$\square$ SELECTION GUIDES

TTL CHARACTERISTICS

LOADING, SPECIFICATIONS AND WAVEFORMS
ORDERING INFORMATION AND PACKAGE OUTLINES9

# FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS <br> UNITED STATES AND CANADA 

ALABAMA
HALLMARK ELECTRONICS
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-8700 TWX: 810-726-2187
HAMILTON/AVNET ELECTRONICS
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Hq. in Dallas, Texas)

## ARIZONA

HAMILTON/AVNET ELECTRONICS
2615 S. 21st Street
Phoenix, Arizona 85034
Tel: 602-275-7851 TWX: 910-951-1535
KIERULFF ELECTRONICS
4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-243-4101
LIBERTY ELECTRONICS
8155 North 24th Ave.
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

## CALIFORNIA

AVNET ELECTRONICS
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles)
TWX: 910-595-1928
BELL INDUSTRIES
Electronic Distributor Division
1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734-8570 TWX: 910-339-9378

ELMAR ELECTRONICS
2288 Charleston Rd
Mountain View, California 94042 Tel: 415-961-3611 TWX: 910-379-6437

HAMILTON ELECTRO SALES
10912 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
HAMILTON/AVNET ELECTRONICS
575 E. Middlefield Road
Mountain View, California 94040 Tel: 415-961-7000 TWX: 910-379-6486

HAMILTON/AVNET ELECTRONICS
8917 Complex Drive
San Diego, California 92123
Tel: 714-279-2421
Telex: HAMAVELEC SDG 69-5415
INTERMARK ELECTRONICS INC.
4040 Sorrento Valley Blvd.
San Diego, California 92121
Tel: 714-279-5200
INTERMARK ELECTRONIC INC
1802 East Carnegie Avenue
Santa Ana, California 92705
Tel: 714-540-1322
LIBERTY ELECTRONICS
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
LIBERTY ELECTRONICS/SAN DIEGO
8248 Mercury Court
San Diego, California 92111
Tel: 714-565-9171 TWX: 910-335-1590
COLORADO
CENTURY ELECTRONICS
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
CRAMER ELECTRONICS
5465 East Evanss Place at Hudson
Denver, Colorado 80222
Tel: 303-758-2100
ELMAR ELECTRONICS
6777. E. 50th Avenue

Commerce City, Colorado 80022 Tel: 303-287-9611 TWX: 910-936-0770

HAMILTON/AVNET ELECTRONICS
5921 N. Broadway
Denver, Colorado 80216
Tel: 303-534-1212 TWX: 910-931-0510

## CONNECTICUT

CRAMER ELECTRONICS
35 Dodge Avenue
Wharton Brook Industrial Center
North Haven, Connecticut 06473
Tel: 203-239-5641
HAMILTON/AVNET ELECTRONICS
643 Danbury Road
Georgetown. Connecticut 06829
Tel: 203-762-0361
TWX: None - use 710-897-1405
(Regional Hq. in Mt. Laurel, N.J.)
HARVEY ELECTRONICS
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
SCHWEBER ELECTRONICS
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

## FLORIDA

ARROW ELECTRONICS
1001 Northwest 62nd Street Suite 402
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790
ARROW ELECTRONICS
115 Palm Bay Road N.W
Suite 10 Bldg. \#200
Palm Bay, Florida 32905
Tel: 305-725-1408
CRAMER ELECTRONICS
345 North Graham Avenue
Orlando, Florida 32814
Tel: 305-894-1511
HALLMARK ELECTRONICS
1302 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
HALLMARK ELECTRONICS
7233 Lake Ellenor Drive
Orlando. Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
HAMILTON/AVNET ELECTRONICS
6800 N.W. 20th Avenue
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-954-9808
HAMILTON/AVNET ELECTRONICS
3197 Tech Drive, North
St. Petersburg, Florida 33702
SCHWEBER ELECTRONICS
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

## GEORGIA

ARROW ELECTRONICS
3406 Oak Cliff Road
Doraville, Georgia 30340
Tel: 404-455-4054
HAMILTON/AVNET ELECTRONICS
6700 Interstate 85 Access Road, Suite 1E
Norcross, Georgia 30071
Tel: 404-448-0800
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Hq. in Dalias, Texas)
LYKES ELECTRONICS CORP.
6447 Atlantic Blvd.
Norcross, Georgia 30071
Tel: 404-449-9400

## ILLINOIS

HALLMARK ELECTRONICS INC
180 Crossen Avenue
Elk Grove Village, Illinois 60007
Tel: 312-437-8800

HAMILTON/AVNET ELECTRONICS
3901 N. 25th Avenue
Schiller Park, lllinois 60176
Tel: 312-678-6310 TWX: 910-227-0060
KIERULFF ELECTRONICS
85 Gordon Street
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166
SCHWEBER ELECTRONICS, INC
1275 Bummel Avenue
Elk Grove Village, Illinois 60007
Tel: 312-593-2740 TWX: 910-222-3453
SEMICONDUCTOR SPECIALISTS, INC.
(mailing address)
O'Hare International Airport
P.O. Box 66125

Chicago, Illinois 60666
(shipping address)
195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, Illinois 60126
Tel: 312-279-1000 TWX: 910-254-0169

## INDIANA

GRAHAM ELECTRONICS SUPPLY, INC
133 S. Pennsylvania St
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX: 810-341-3481

KANSAS
HALLMARK ELECTRONICS, INC
11870 W. 91st Stree
Shawnee Mission, Kansas 66214
Tel: 913-888-4746
HAMILTON/AVNET ELECTRONICS
9219 Guivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Ha. in Dallas, Texas)

## LOUISIANA

STERLING ELECTRONICS CORP
4613 Fairfield
Metairie, Louisiana 70002
Tel: 504-887-7610
Telex: STERLE LEC MRIE 58-328

## MARYLAND

HALLMARK ELECTRONICS, INC
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300
HAMILTON/AVNET ELECTRONICS
mailing address)
Friendship International Airport
P.O. Box 8647

Baltimore, Maryland 21240
(shipping address)
7235 Standard Drive
Hanover, Maryland 21076
Tel: 301-796-5000 TWX. 710-862-1861
Telex: HAMAVLECA HNVE 87-968
PIONEER WASHINGTON ELECTRONICS, INC.
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784
SCHWEBER ELECTRONICS
9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-0536

## MASSACHUSETTS

CRAMER ELECTRONICS
85 Wells Avenue
Newton Centre, Massachusetts 02159
Tel: 617-964-4000
GERBER ELECTRONICS
852 Providence Highway
U.S. Route 1

Dedham, Massachusetts 02026
Tel: 617-329-2400
HAMILTON/AVNET ELECTRONICS
100 E. Commerce Way
Woburn, Massachusetts 01801
Tel: 617-933-8000 TWX: 710-332-1201

HARVEY ELECTRONICS
44 Hartwell Avenue
Lexington, Massachusetts 02173 Tel: 617-861-9200 TWX: 710-326-6617

SCHWEBER ELECTRONICS
213 Third Avenue
Waltham, Massachusetts 02154
Tel: 617-890-8484
MICHIGAN
HAMILTON/AVNET ELECTRONICS 32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
PIONEER/DETROIT
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
R-M ELECTRONICS
4310 Roger B. Chaffee
Wyoming, Michigan 49508
Tel: 616-531-9300
SCHWEBER ELECTRONICS
33540 Schoolcraft
Livonia, Michigan 48150
Tel: 313-525-8100
SHERIDAN SALES CO
24543 Indoplex Drive
Farmington, Michigan 48024
Tel: 313-477-3800

## minnesota

HAMILTON/AVNET ELECTRONICS
7449 Cahill Road
Edina, Minnesota 55435
Tel: 612-941-3801
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)
SCHWEBER ELECTRONICS
7402 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280
SEMICONDUCTOR SPECIALISTS, INC.
8030 Cedar Avenue S.
Minneapolis, Minnesota 55420
Tel: 612-854-8841 TWX: 910-576-2812

## MISSOURI

HALLMARK ELECTRONICS, INC.
13789 Rider Trail
Earth City, Missouri 63045 Tel: 314-291-5350

HAMILTON/AVNET ELECTRONICS
396 Brookes Lane
Hazelwood, Missouri 63042 Tel: 314-731-1144 TWX: 910-762-0606

## NEW JERSEY

HAMILTON/AVNET ELECTRONICS
218 Little Falls Road
Cedar Grove, New Jersey 07009 Tel: 201-239-0800 TWX: 710-994-5787

HAMILTON/AVNET ELECTRONICS
113 Gaither Drive
East Gate Industrial Parik
Mt. Laurel, N.J. 08057
Tel: 609-234-2133 TWX: 710-897-1405
SCHWEBER ELECTRONICS
43 Belmont Drive
Somerset, N.J. 08873
Tel: 201-469-6008 TWX: 710-480-4733
STERLING ELECTRONICS
774 Pfeiffer Blvd.
Perth Amboy, N.J. 08861
Tel: 201-442-8000 Telex: 138-679
WILSHIRE ELECTRONICS
102 Gaither Drive
Mt. Laurel, N.J. 08057
Tel: 215-627-1920
WILSHIRE ELECTRONICS
1111 Paulison Avenue
Clifton, N.J. 07011
Tel: 201-365-2600 TWX: 710-989-7052

## NEW MEXICO

CENTURY ELECTRONICS
11728 Linn Avenue
Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625

HAMILTON/AVNET ELECTRONICS
2450 Byalor Drive S.E.
Albuquerque, New Mexico 87119
Tel: 505-765-1500
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

## NEW YORK

ARROW ELECTRONICS
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
CRAMER ELECTRONICS
129 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-5682
CRAMER ELECTRONICS
6716 Joy Road
E. Syracuse, New York 13057 E. Syracuse, New
Tel: 315-437-6671

COMPONENTS PLUS, INC.
40 Oser Avenue
Hauppauge, L.I., New York 11787
Tel: 516-231-9200 TWX: 510-227-9869
HAMILTON/AVNET ELECTRONICS
167 Clay Road
Rochester, New York 14623
Tel: 716-442-7820
TWX: None - use 710-332-1201
(Regional Hq. in Burlington, Ma.)
HAMILTON/AVNET ELECTRONICS 6500 Joy Road
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-0959
HAMILTON/AVNET ELECTRONICS
70 State Street
Westbury, L.I., New York 11590
Tel: 516-333-5800 TWX: 510-222-8237
ROCHESTER RADIO SUPPLY CO., INC.
140 W. Main Street
(P.O. Box 1971) Rochester, New York 14603

Tel: 716-454-7800
SCHWEBER ELECTRONICS
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
JACO ELECTRONICS, INC.
145 Oser Avenue
Hauppauge, L.I., New York 11787
Tel: 516-273-1234 TWX: 510-227-6232
SUMMIT DISTRIBUTORS, INC.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
NORTH CAROLINA
CRAMER ELECTRONICS
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711
HAMILTON/AVNET
2803 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-829-8030
HALLMARK ELECTRONICS
1208 Front Street, Bldg. K
Raleigh, North Carolina 27609
Tel: 919-823-4465 TWX: 510-928-1831

## RESCO

Highway 70 West
Rural Route 8, P.O. Box 116-B
Raleigh, North Carolina 27612
Tel: 919-781-5700
PIONEER/CAROLINA ELECTRONICS
103 Industrial Drive
Greensboro, North Carolina 27406
Tel: 919-273-4441

## OHIO.

HAMILTON/AVNET ELECTRONICS
761 Beta Drive, Suite E
Cleveland, Ohio 44143
Tel: 216-461-1400
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)

HAMILTON/AVNET ELECTRONICS
118 Westpark Road
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
PIONEER/CLEVELAND
4800 E. 131st Street
Cleveland. Ohio 44105
Tel: 216-587-3600
PIONEER/DAYTON
1900 Troy Street
Dayton, Ohio 45404
Tel: 513-236-9900 TWX: 810-459-1622
SCHWEBER ELECTRONICS
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
SHERIDAN/CLEVELAND
Unit 28
Versaplex Bidg.
701 Beta Drive
Cleveland, Ohio 44143
Tel: 216-461-3300 TWX: 810-427-2957
SHERIDAN SALES CO.
(mailing address)
P.O. Box 37826

Cincinnati. Ohio 45222
(shipping address)
10 Knollcrest Drive
Reading, Ohio 45237
Tel: 513-761-5432 TWX: 810-461-2670
SHERIDAN SALES COMPANY
2501 Neff Road
Dayton, Ohio 45414
Tel: 513-223-3332 TWX: 810-459-1732

## OKLAHOMA

HALLMARK ELECTRONICS
4846 S. 83rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-835-8458 TWX: 910-845-2290
RADIO INC. INDUSTRIAL ELECTRONICS
1000 S. Main
Tulsa, Okiahoma 74119
Tel: 918-587-9123

## PENNSYLVANIA

HALLMARK ELECTRONICS, INC.
458 Pike Road
Huntingdon Valley, Pennsylvania 19006
Tel: 215-355-7300 TWX: 510-667-1727
PIONEER/DELEWARE VALLEY ELECTRONICS
141 Gibraltar Road
Horsham, Pennsylvania 19044
Tel: 215-674-4000 TWX: 510-665-6778
PIONEER ELECTRONICS, INC.
560 Alpha Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122

## SCHWEBER ELECTRONICS

101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600
SHERIDAN SALES COMPANY
4297 Greensburgh Pike
Suite 3114
Pittsburgh, Pennsylvania 15221
Tel: 412-351-4000
SOUTH CAROLINA
DIXIE ELECTRONICS, INC
P.O. Box 408 (Zip Code 29202)

1900 Barnwell Street
Columbia, South Carolina 29201
Tel: 803-779-5332

## TEXAS

ALLIED ELECTRONICS
401 E. 8th Street
Fort Worth, Texas 76102
Tel: 817-336-5401
CRAMER ELECTRONICS
13740 Midway Road, Suite 700
Dallas, Texas 75240
Tel: 214-661-9300
HALLMARK ELECTRONICS CORP.
10109 McKalla Place Suite F
Austin, Texas 78758
Tel: 512-837-2814

HALLMARK ELECTRONICS, INC
Houston. Texas 77063
Tel: 713-781-6100
HAMILTON/AVNET ELECTRONICS
4445 Sigma Road
Dallas, Texas 75240
Tel: 214-661-8661
Telex: HAMAVLECB DAL 73-0511
HAMILTON/AVNET ELECTRONICS
3939 Ann Arbor
Houston. Texas 77042
Tel: 713-780-1771
Telex: HAMAVLECB HOU 76-2589
SCHWEBER ELECTRONICS, INC
14177 Proton Road
Dallas, Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493
SCHWEBER ELECTRONICS, INC
7420 Harwin Drive
Houston, Texas 77036
Tel: 713-784-3600 TWX: 910-881-1109
STERLING ELECTRONICS
4201 Southwest Freeway
Houston. Texas 77027
Tel: 713-627-9800 TWX: 901-881-5042
Telex: STELECO HOUA 77-5299

## UTAH

CENTURY ELECTRONICS
2258 S. 2700 West
Salt Lake City, Utah 84119
Tel: 801-972-6969 TWX: 910-925-5686
HAMILTON/AVNET ELECTRONICS
1585 W. 2100 South
Salt Lake City, Utah 84119
Tel: 801-972-2800
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

## WASHINGTON

HAMILTON/AVNET ELECTRONICS
13407 Northrup Way
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449
IBERTY ELECTRONICS
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-444-1379
RADAR ELECTRONIC CO., INC
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052

## WISCONSIN

HAMILTON/AVNET ELECTRONICS
2975 Moorland Road
New Berlin, Wisconsin 53154
Tel: 414-784-4510
MARSH ELECTRONICS, INC
1563 S. 100 Street
Milwaukee, Wisconsin 53214
Tel: 414-475-6000

## CANADA

CAM GARD SUPPLY LTD
640 42nd Avenue S.E.
Calgary, Alberta, T2G 1Y6, Canada
Tel: 403-287-0520 Telex: 03-822811
CAM GARD SUPPLY LTD
10505 111th Street
Edmonton, Alberta T5H 3E8, Canada
Tel: 403-426-1805 Telex: 03-72960
CAM GARD SUPPLY LTD.
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada Tel: 403-346-2088

CAM GARD SUPPLY LTD
825 Notre Dame Drive
Kamloops, British Columbia, V2C 5N8, Canada Tel: 604-372-3338

CAM GARD SUPPLY LTD.
1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada Tel: 204-786-8401 Telex: 07-57622

CAM GARD SUPPLY LTD.
Rookwood Avenue
Fredericton, New Brunswick, E3B 4Y9, Canada
Tel: 506-455-8891
CAM GARD SUPPLY LTD
15 Mount Royal Blvd
Moncton, New Brunswick, E1C 8N6. Canada
Tel: 506-855-2200
CAM GARD SUPPLY LTD
3065 Robie Street
Halifax, Nova Scotia, B3K 4P6, Canada
Tel: 902-454-8581 Telex: 01-921528
CAM GARD SUPPLY LTD.
1303 Scarth Street
Regina, Saskatchewan, S4R 2E7, Canada Tel: 306-525-1317 Telex: 07-12667

CAM GARD SUPPLY LTD.
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 1S7, Canada
Tel: 306-652-6424 Telex: 07-42825
ELECTRO SONIC INDUSTRIAL SALE
(TORONTO) LTD.
1100 Gordon Baker Rd
Willowdale, Ontario, M2H 3B3, Canada
Tel: 416-494-1666
Telex: ESSCO TOR 06-22030
FUTURE ELECTRONICS CORPORATION
130 Albert Street
Ottawa, Ontario, K1P 5G4, Canada
Tel: 613-232-7757
FUTURE ELECTRONICS CORPORATION
44 Fasket Drive, Unit 24
Rexdale, Ontario, M9W 1K5, Canada
Tel: 416-677-7820
FUTURE ELECTRONICS CORPORATION 5647 Ferrier Street
Montreal, Quebec, H4P 2K5, Canada Tel: 514-735-5775

HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD.
6291 Dorman Rd., Unit 16
Mississauga, Ontario, L4V 1H2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
HAMILTON/AVNET INTERNATIONAL (CANADA) LTD.
1735 Courtwood Crescent
Ottawa, Ontario, K1Z 5L9, Canada
Tel: 613-226-1700
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD.
2670 Paulus Street
St. Laurent, Quebec, H4S 1G2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
R.A.E. INDUSTRIAL ELECTRONICS, LTD.

1629 Main Street
Vancouver, British Columbia, V6A 2W5, Canada
Tel: 604-687-2621 TWX: 610-929-3065
Telex: RAE-VCR 04-54550
SEMAD ELECTRONICS LTD
625 Marshall Ave., Suite 2
Dorval, Quebec, H9P 1E1, Canada
Tel: 514-636-4614 TWX: 610-422-3048
SEMAD ELECTRONICS LTD
105 Brisbane Road
Downsview, Ontario M3J 2K6, Canada
Tel: 416-635-9880 TWX: 610-492-2510
SEMAD ELECTRONICS LTD.
1485 Laperriere Avenue
Ottawa, Ontario, K1Z 7S8, Canada Tel: 613-722-6571 TWX: 610-562-8966

# FAIRCHILD SEMICONDUCTOR SALES REPRESENTATIVES <br> UNITED STATES AND CANADA 

| ALABAMA <br> CARTWRIGHT \& BEAN, INC. <br> 2400 Bob Wallace Ave., Suite 201 <br> Huntsville, Alabama 35805 <br> Tel: 205-533-3509 | MINNESOTA <br> PSI COMPANY <br> 720 W. 94th. Street <br> Minneapolis, Minnesota 55420 <br> Tel: 612-884-1777 TWX: 910-576-3483 | CARTWRIGHT \& BEAN. INC 8705 Unicorn Drive Suite B120 Knoxville, Tennessee 37919 Tel: 615-693-7450 |
| :---: | :---: | :---: |
| CALIFORNIA | MISSISSIPPI | TEXAS |
| CELTEC COMPANY | CARTWRIGHT \& BEAN, INC. | TECHNICAL MARKETING |
| 18009 Sky Park Circle Suite B | P.O. Box 16728 | 3320 Wiley Post Road |
| Irvine, California 92715 | 5150 Keele Street | Charroltton, Texas 75220 |
| Tel: 714-55i-5021 TWX: 910-595-2512 | Jackson, Mississippi 39206 <br> Tel: 601-981-1368 | Tel: 214-387-3601 TWX: 910-860-5158 |
| CELTC COMPANY |  | TECHNICAL MARKETING |
| 7867 Convoy Court, Suite 312 | MISSOURI | 6430 Hillcroft. Suite 104 |
| San Diego, California 92111 | B.C. ELECTRONIC SALES, INC. | Houston, Texas 77036 |
| Tel: 714-279-7961 TWX: 910-335-1512 | 300 Brookes Drive, Suite 206 Hazelwood, Missouri 63042 | Tel: 713-777-9228 |
| MAGNA SALES, INC. | Tel: 314-731-1255 TWX: 910-762-0600 | UTAH |
| 3333 Bowers Avenue |  | SIMPSON ASSOCIATES, INC. |
| Suite 295 | NEW JERSEY | P.O. Box 151430 |
| Santa Clara, California 95051 | LORAC SALES, INC. | Salt Lake City, Utah 84115 |
| Tel: 408-985-1750 TWX: 910-338-0241 | 580 Valley Road Wayne, New Jersey 07470 | Tel: 801-571-7877 |
| COLORADO | Tel: 201-696-8875 TWX: 710-988-5846 | WASHINGTON |
| SIMPSON ASSOCIATES, INC. |  | QUADRA CORPORATION |
| 2552 Ridge Road | NEW YORK | 14825 N.E. 40th Street |
| Litleton, Colorado 80120 | LORAC SALES, INC. | Suite 340 |
| Tel: 303-794-8381 TWX: 910-935-0719 | 550 Old Country Road, Room 410 Hicksville, New York 11801 | Redmond, Washington 98052 <br> Tel: 206-883-3550 TWX: 910-449-2592 |
| CONNECTICUT | Tel: 516-681-8746 TWX: 510-224-6480 |  |
| PHOENIX SALES COMPANY |  | WISCONSIN |
| 389 Main Street | TRI-TECH ELECTRONICS, INC. | LARSEN ASSOCIATES |
| Ridgefield, Connecticut 06877 | 3215 E. Main Street | 10855 West Potter Road |
| Tel: 203-438-9644 TWX: 710-467-0662 | Endwell, New York 13760 <br> Tel: 607-754-1094 TWX: 510-252-0891 | Wauwatosa, Wisconsin 53226 <br> Tel: 414-258-0529 TWX: 910-262-3160 |
| FLORIDA |  |  |
| LECTROMECH, INC. | TRI-TECH ELECTRONICS, INC. | CANADA |
| 303 Whooping Loop | 590 Perinton Hills Office Park | R.N. LONGMAN SALES. INC. (L.S.I.) |
| Altamonte Springs, Florida 32701 | Fairport, New York 14450 | 1715 Neyerside Drive |
| Tel: 305-831-1577 TWX: 810-853-0262 | Tel: 716-223-5720 | Suite 1 |
| LECTROMECH, INC. | TRI-TECH ELECTRONICS, INC. | Mississauga, Ontario, L5T 1C5 Canada Tel: 416-625-6770 TWX: 610-492-8976 |
| 1350 S. Powerline Road, Suite 104 | 6836 E . Genesee Street |  |
| Pompano Beach. Florida 33060 | Fayetteville, New York 13066 | R.N. LONGMAN SALES, INC. (L.S.I.) |
| Tel: 305-974-6780 TWX: 510-954-9793 | Tel: 315-446-2881 TWX: 710-541-0604 | 16891 Hymus Bivd. Kirkland, Quebec |
| LECTROMECH, INC. | TRI-TECH ELECTRONICS, INC. | H9H 3L4 Canada |
| 2280 U.S. Highway 19 North | 19 Davis Avenue | Tel: 514-694-3911 |
| Suite 119 Bldg. L | Poughkeepsie, New York 12603 | TWX: 610-422-3028 |
| Clearwater, Florida 33515 | Tel: 914-473-3880 |  |
| Tel: 813-726-0541 |  |  |
|  | NORTH CAROLINA |  |
| GEORGIA ${ }_{\text {CARTWRIGHT \& BEAN INC }}$ | CARTWRIGHT \& BEAN, INC. |  |
| CARTWRIGHT \& BEAN, INC. | 1165 Commercial Ave. 28205 |  |
| P.O. Box 52846 (Zip Code 30355) | Charlotte, North Carolina 28205 |  |
| 90 W. Wieuca Square, Suite 155 Atlanta, Georgia 30342 | Tel: 704-377-5673 |  |
| Tel: 404-255-5262 TWX: 810-751-3220 | CARTWRIGHT \& BEAN, INC. P.O. Box 18465 |  |
| ILLINOIS | 3948 Browning Place |  |
| MICRO SALES, INC. | Raleigh, North Carolina 27609 |  |
| 2258-B Landmeir Road | Tel: 919-781-6560 |  |
| Elk Grove Village, Illinois 60007 |  |  |
| Tel: 312-956-1000 TWX: 910-222-1833 | OHIO <br> THE LYONS CORPORATION |  |
| INDIANA | 4812 Frederick Road, Suite 101 |  |
| LESLIE M. DEVOE COMPANY | Dayton, Ohio 45414 |  |
| 4215 E. 82nd Street Suite D | Tel: 513-278-0714 |  |
| Indianapolis, Indiana 46250 |  |  |
| Tel: 317-842-3245 TWX: 810-260-1435 | THE LYONS CORPORATION 6151 Wilson Mills Road, Suite 101 |  |
| Kansas | Highland Heights, Ohio 44143 |  |
| B.C. ELECTRONIC SALES, INC. | Tel: 216-461-8288 |  |
| P.O. Box 12485, Zip 66212 |  |  |
| 8190 Nieman Road | OKLAHOMA MARKETING |  |
| Shawnee Mission, Kansas 66214 | TECHNICAL MARKETING |  |
| Tel: 913-888-6680 TWX: 910-749-6414 | 9717 E. 42nd Street, Suite 221 Tulsa, Oklahoma 74101 |  |
| b.C. ELECTRONIC SALES | Tel: 918-622-5984 |  |
| 6405 E. Kellogg |  |  |
| Suite 14 | OREGON |  |
| Wichita, Kansas 67207 | QUADRA CORPORATION |  |
| Tel: 316-684-0051 | 19145 S.W. Murphy Ct. Aloha, Oregon 97005 |  |
| Maryland | Tel: 503-225-0350 TWX: 910-449-2592 |  |
| DELTA III ASSOCIATES |  |  |
| 1000 Century Plaza Suite 225 | PENNSYLVANIA |  |
| Columbia, Maryland 21044 | BGR ASSOCIATES |  |
| Tel: 301-730-1510 TWX: 710-826-9654 | 2500 Office Center 2500 Maryland Road |  |
| MASSACHUSETTS | Willow Grove, Pennsylvania 19090 |  |
| SPECTRUM ASSOCIATES, INC. | Tel: 215-657-3301 |  |
| 888 Worcester Street |  |  |
| Wellesiey, Massachusetts 02181 | TENNESSEE |  |
| Tel: 617-237-2796 TWX: 710-348-0424 | CARTWRIGHT \& BEAN, INC. $\text { P.O. Box } 4760$ |  |
| michigan | 560 S. Cooper Street |  |
| RATHSBURG ASSOCIATES | Memphis, Tennessee 38104 |  |
| 16621 E. Warren Avenue Detroit, Michigan 48224 | Tel: 901-276-4442 |  |

## ALABAMA

Huntsville Office
Executive Plaza
Suite 107
4717 University Drive, N.W.
Huntsville. Alabama 35805
Tel: 205-837-8906

## ARIZONA

Phoenix Office
4414 N. 19th Avenue 85015
Suite G
Tel: 602-264-4948 TWX: 910-951-1544

## CALIFORNIA

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd. Suite 1027
Encino 91436
Tel: 213-990-9800 TWX: 910-495-1776
Santa Ana Office*
2101 E. 4th Street 92705
BIdg. B. Suite 185
Tel: 714-558-1881 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue
Suite 299
Santa Clara, 95051
Tel: 408-987-9530 TWX: 910-338-0241

## FLORIDA

Ft. Lauderdale Office
Executive Plaza
Suite 300-B
1001 Northwest 62nd Street
Ft. Lauderdale, Florida 33309
Tel: 305-771-0320 TWX: 510-955-4098
Orlando Office*
Crane's Roost Office Park
303 Whooping Loop
Altamonte Springs 32701
Tel: 305-834-7000 TWX: 810-850-0152

## ILLINOIS

Chicago Office
The Tower - Suite 610
Rolling Meadows 60008
Tel: 312-640-1000

## INDIANA

Ft. Wayne Office
2118 Inwood Drive 46805
Suite 111
Tel: 219-483-6453 TWX: 810-332-1507
Indianapolis Office
Room 205
7202 N. Shadeland 46250
Tel: 317-849-5412 TWX: 810-260-1793

## KANSAS

Kansas City Office
Corporate Woods
10875 Grandview, Suite 2255
Overland Park 66210
Tel: 913-649-3974

## MARYLAND

Columbia Office*
1000 Century Plaza
Suite 225
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654
MASSACHUSETTS
Boston Office*
888 Worcester Street
Tel: 617-237-3400 TWX: 710-348-0424

## MICHIGAN

Detroit Office*
Johnston Building, Suite 24
20793 Farmington Road
Farmington Hills 48024
Tel: 313-478-7400 TWX: 810-242-2973

## MINNESOTA

Minneapolis Office*
7600 Parklawn Avenue
Room 251
Edina 55435
Tel: 612-835-3322 TWX: 910-576-2944

## NEW JERSEY

Wayne Office*
580 Valley Road 07490
Suite 1
Tel: 201-696-7070 TWX: 710-988-5846

## NEW MEXICO

Alburquerque Office
2403 San Mateo N.E. 87110

## Plaza 13

Tei: 505-265-5601 TWX: 910-379-6435

## NEW YORK

Melville Office
275 Broadhollow Road 11746
Tel: 516-293-2900 TWX: 510-224-6480
Poughkeepsie Office
19 Davis Avenue 12603
Tel: 914-473-5730 TWX: 510-248-0030
Fairport Office
260 Perinton Hills Office Park
Fairport 14450
Tel: 716-223-7700

## OHIO

Dayton Office
4812 Frederick Road 45414
Suite 105
Tel: 513-278-8278 TWX: 810-459-1803

## PENNSYLVANIA

Philadelphia Office
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090 Tel: 215-657-2711

## TEXAS

Dallas Office
13771 N. Central Expressway 75231

## Suite 809

Tel: 214-234-3391 TWX: 910-867-4757
Houston Office
6430 Hillcroft 77081
Suite 102
Tel: 713-771-3547 TWX: 910-881-8278

## CANADA

Toronto Regional Office
Fairchild Semiconductor
1590 Matheson Blvd., Unit 26
Mississauga, Ontario L4W 1J1, Canada
Tel: 416-625-7070 TWX: 610-492-4311

FAIRCHILD SEMICONDUCTOR
INTERNATIONAL SALES OFFICES

## AUSTRALIA

Fairchild Australia Pty Ltd
72 Whiting Street
Artarmon 2064
New South Wales
Australia
Tel: Sydney (02)-438-2733
(mailing address)
P.O. Box 450

North Sydney 2060
New South Wales
Australia
AUSTRIA AND EASTERN EUROPE
Fairchild Electronics
A-1010 Wien
Schwedenplatz 2
Tel: 0222635821 Telex: 75096
bRAZIL
Fairchild Semicondutores Ltda
Caixa Postal 30407
Rua Alagoas, 663
1242 Sao Paulo, Brazil
Tel: 66-9092 Telex: 011-23831
Cable: FAIRLEC

## FRANCE

Fairchild Camera \& Instrument S.A.
121, Avenue d'Italie
75013 Paris, France
Tel: 331-584-55 66
Telex: 0042200614 or 260937

## GERMANY

Fairchild Camera and Instrument (Deutschland)
Daimlerstr 15
8046 Garching Hochbruck
Munich, Germany
Tel: (089) 320031 Telex: 524831 fair d
Fairchild Camera and Instrument (Deutschland)
Koenigsworther Strasse 23
3000 Hannover
W-Germany
Tel: 051117844 Telex: 0922922

Fairchild Camera and Instrument (Deutschland)
Postrstrasse 37
7251 Leonberg
W-Germany
Tel: 0715241026 Telex: 07245711
Fairchild Camera and Instrument (Deutschland) Waldiuststrasse 1
8500 Nuernberg
W-Germany
Tel: 0911407005 Telex: 0623665

## HoNG KONG

Fairchild Semiconductor (HK) Ltd.
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: K-890271 Telex:HKG-531

## italy

Fairchild Semiconduttori, S.P.A.
Via Flamenia Vecchia 653
00191 Roma, Italy
Tel: 063274006 Telex: 63046 (FAIR ROM)
Fairchild Semiconduttori S.P.A.
Via Rosellini, 12
20124 Milano, Italy
Tel: 026887451 Telex: 36522

## JAPAN

Fairchild Japan Corporation
Pola Bldg.
1-15-21, Shibuya
Shibuya-Ku, Tokyo 150
Japan
Tel: 034008351 Telex: 242173

## KOREA

Fairchild Semikor Ltd
K2 219-6 Gari Bong Dong
Young Dung Po-Ku
Young Dung Po-Ku
Seoul 150-06, Korea
Seoul 150-06, Korea
Tel: 85-0067 Telex: FAIRKOR 22705
(mailing address)
Central P.O. Box 2806

## MEXICO

Fairchild Mexicana S.A.
Blvd. Adolofo Lopez Mateos No. 163
Mexico 19, D.F.
Tel: 905-563-5411 Telex: 017-71-038

## SCANDINAVIA

Fairchild Semiconductor AB
Svartengsgatan 6
S-11620 Stockholm
Sweden
Tel: 8-449255 Telex: 17759

## SINGAPORE

Fairchild Semiconductor Pty Ltd.
No. 11, Lorong 3
Toa Payoh
Singapore 12
Tel: 531-066 Telex: FAIRSIN-RS 21376

## TAIWAN

Fairchild Semiconductor (Taiwan) Ltd.
Hsietsu Bldg., Room 502
47 Chung Shan North Road
Sec. 3 Taipei, Taiwan
Tel: 573205 thru 573207

## BENELUX

Fairchild Semiconductor
Paradijslaan 39
Eindhoven, Holland
Tel: 00-31-40-446909 Telex: 00-1451024

## UNITED KINGDOM

Fairchild Camera and Instrument (UK) Ltd.
Semiconductor Division
230 High Street
Potters Bar
Hertfordshire EN6 5BU
England
Tel: 070751111 Telex: 262835
Fairchild Semiconductor Ltd.
17 Victoria Street
Craigshill
Livingston
West Lothian, Scotland - EH54 5BG
Tel: Livingston 050632891 Telex: 72629

## FAIRCHILD

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice Manufactured under one of the following U S Patents: 2981877, 3015048, 3064167, 3108359, 3117260; other patents pending Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product.


[^0]:    Section 10 - Fairchild Field Sales Offices, Representatives and Distributors

[^1]:    *S = Synchronous; $A=$ Asynchronous

[^2]:    *S = Synchronous; A = Asynchronous

[^3]:    Notes on following pages.

[^4]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

[^5]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V}$.
    **OC-Open Collector

[^6]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=+5.0 \mathrm{~V}$.
    *"OC - Open Collector

[^7]:    . DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V} C \mathrm{CC}=+5.0 \mathrm{v}$.

[^8]:    - DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$. ${ }^{\text {- Typical }}$ Value

[^9]:    ${ }^{\circ} \mathrm{DC}$ limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$.
    $\because O C-O p e n$ Collector

[^10]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{C C}=+5.0 \mathrm{~V}$.

[^11]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.
    **OC - Open Collector

[^12]:    ${ }^{*}$ DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.

[^13]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.

[^14]:    1. DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.
    2. $V_{1}$ is applied to $\times$ output terminal during test.
    3. Typical Value
[^15]:    *Expander Outputs
    **Typical Value

[^16]:    *OC - Open Collector

[^17]:    *The $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^18]:    *The $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^19]:    *The $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^20]:    ${ }^{*} \overline{\mathrm{CP}}$ Sourcing Current, see DC Characteristics Table

[^21]:    ${ }^{*} \overline{\mathrm{CP}}$ Sourcing Current, see DC Characteristics Table

[^22]:    ${ }^{*} \overline{\mathrm{P}}$ Sourcing Current, see DC Characteristics Table

[^23]:    * $\overline{C P}$ Sourcing Current, see DC Characteristics Table

[^24]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

[^25]:    DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V} \mathrm{Cc}=+5.0 \mathrm{~V}$. *Typical Value

[^26]:    *DC limits apply over operating temperature range; AC limits apply at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$

[^27]:    *DC limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.
    **OC-Open Collector

[^28]:    *OC-Open Collector

[^29]:    *OC-Open Collector

[^30]:    H = HIGH Voltage Leve L = LOW Voltage Level $X=$ Immaterial

[^31]:    *OC-Open Collector

[^32]:    $\cdot{ }^{Q}{ }_{0}$ is guaranteed to drive $\overline{\mathrm{CP}}_{1}$ in addition to the full rated load.

[^33]:    ${ }^{*} \mathrm{Q}_{0}$ is guaranteed to drive $\overline{\mathrm{CP}}_{1}$ in addition to the full rated load.

[^34]:    *OC- Open Collector

[^35]:    *each bit is shifted to the next more significant position
    **arithmetic operations expressed in 2 s complement notation

[^36]:    *Typical Value

[^37]:    -Typical Value

[^38]:    ${ }^{*} Q_{0}$ is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^39]:    * $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^40]:    *OC-Open Collector

[^41]:    * $D C$ limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=+5.0 \mathrm{~V}$.

[^42]:    *OC — Open Collector

[^43]:    *The $Q_{0}$ output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^44]:    *OC - Open Collector

[^45]:    H = HIGH Voltage Level
    $\mathrm{L}=$ LOW Voltage Level
    $\mathrm{X}=$ Immaterial

[^46]:    * $D C$ limits apply over operating temperature range; $A C$ limits apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=+5.0 \mathrm{~V}$.

[^47]:    $\Gamma=$ LOW-to-HIGH transition
    CS = Connected to $S$ output of high order device
    $O P=X_{i}$ latches open for new data $(i=0,7$ )
    $A R=$ Output as required per Booth's algorithm

[^48]:    *The $Q_{0}$ Output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

[^49]:    *OC-Open Collector

[^50]:    H = HIGH Voltage Level L = LOW Voltage Level

[^51]:    *Typical Value

[^52]:    *OC - Open Collector

[^53]:    *As determined by programming connections.
    H = HIGH Voltage Level
    L = LOW Voltage Level

[^54]:    $H=$ HIGH Voltage Level
    $\mathrm{L}=$ LOW Voltage Level
    $\mathrm{X}=$ Immaterial

[^55]:    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
    L = LOW Voltage Level
    $X=$ Immaterial

[^56]:    *An external pull-up resistor is needed to provide HIGH level drive capability. This output will sink a maximum of 16 mA at Vout $=0.4 \mathrm{~V}$. **OC-Open Collector

[^57]:    *OC-Open Collector

[^58]:    *Each bit is shifted to the next more significant position
    **Arithmetic operations expressed in 2 s complement notation
    H = HIGH Voltage Level
    L = LOW Voltage Level

[^59]:    *Except Loadings is $100 \mu \mathrm{~A}$ at 0.4 V when $\overline{\mathrm{LE}}$ is HIGH.

[^60]:    *Ground Pin 11 for $V_{\text {OL }}$ Pin 6 or $V_{O H} P$ in 8 or $\operatorname{los}$ Pin 8 , open Pin 11 for Vol Pin 8 or $V_{O H} P$ in 6 or los Pin 6.

[^61]:    (1) Unless otherwise noted, $10 \mathrm{k} \Omega$ resistor placed between Pin 13 and $V_{c c}$, for all tests. ( $\mathrm{Rx}_{\mathrm{x}}$ )
    (2) Ground Pin 11 for Vol Pin 6 or $V_{O H}$ Pin 8 or Ios Pin 8 . Open Pin 11 for Vol Pin 8 or VoH Pin 6 or los Pin 6.
    (3) Pulse Test to determine $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ ( $M i n \mathrm{t}_{\mathrm{w}} 40 \mathrm{~ns}$ ).

[^62]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    X = Immaterial

