

464 Ellis Street, Mountain View, California 94042

© 1978 Fairchild Camera and Instrument Corporation/464 Ellis Street, Mountain View, California 94042/(415) 962-5011/TWX 910-379-6435

INTRODUCTION

The increase in complexity and diversity of Linear Integrated Circuits over the last few years has necessitated a change in the format of the Fairchild Linear Data Books. In this data book, Fairchild is pleased to present important technical information on one of the industries broadest and most advanced family of Linear Interface, Comparator and Data Conversion circuits. Other Fairchild Linear data books will cover Operational Amplifiers, Consumer and Regulator devices.

Fairchild continues to be a pioneer in Linear Interface and Data Conversion products. Today Fairchild's state-of-the-art technology is bringing forth devices like the 9643; MOS/CCD driver, 75S20 series of Schottky core memory sense amplifiers, 9634/6/7/8 series of RS422/423 compatible line circuits, μ A9708; micro-processor based 8-bit A/D subsystem, and the CMOS processed μ A9706; micro-processor compatible 8 channel, 6-bit D/A converter.

You'll find complete specifications on Fairchild's MOS/CCD memory interface, data transmission, peripheral driver, memory sense amplifier, display interface, data conversion, comparator and special functions. Also included is advanced information on some of Fairchild's Interface circuits to be introduced shortly.

To expedite the designer's search for the right devices to meet various system requirements, several helpful aids are provided — selection guides by function, an LIC cross reference identifying competitive devices with their Fairchild direct replacements or nearest equivalents and the numerical indexes will let you locate specific type numbers quickly. For the Hi Rel customer, Fairchild's Hi Rel processing and Matrix VI are given in a separate section.

.

TABLE OF CONTENTS

Chapter	1.	Alpha Numerical Index of Interface Devices and Selection Guides1-3
Chapter	2.	Linear Industry Cross Reference
Chapter	3.	Quality, Reliability and Hi Rel Processing
Chapter	4.	Voltage Comparators4-3
Chapter	5.	Data Acquisition
Chapter	6.	Line Circuits — Drivers, Receivers and Transceivers
Chapter	7.	Peripheral and Display Drivers7-3
Chapter	8.	Memory Interface
Chapter	9.	Transistor Arrays and Special Functions9-3
Chapter	10.	Data Transmission Information 10-3
Chapter	11.	Order Information, Dice Policy and Package Outlines 11-3
Chapter	12.	Fairchild Field Sales Offices, Representatives and Distributors 12-3

ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES
LINEAR INDUSTRY CROSS REFERENCE 2
QUALITY, RELIABILITY AND HI REL PROCESSING
VOLTAGE COMPARATORS
DATA ACQUISITION 5
LINE CIRCUITS – DRIVERS. RECEIVERS AND TRANSCEIVERS 6
PERIPHERAL AND DISPLAY DRIVERS 7
MEMORY INTERFACE 8
TRANSISTOR ABRAYS AND SPECIAL FUNCTIONS
DATA TRANSMISSION INFORMATION 10
ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES
FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

.

ALPHA NUMERICAL INDEX OF INTERFACE DEVICES AND SELECTION GUIDES

Alpha Numerical Inde	ex of Interface Devices	1-3
Selection Guides		1-7

ALPHA-NUMERICAL INDEX

DEVICE

.

DESCRIPTION

μAF111	FET-Input Voltage Comparator	4-3
μAF311	FET-Input Voltage Comparator	
μAF198	Monolithic Sample and Hold	5-3
μAF298	Monolithic Sample and Hold	5-3
μAF398	Monolithic Sample and Hold	
$\mu A0801 (DAC-08)$	8-Bit High-Speed Multiplying D/A Converter	5-4
$\mu A0802 (MC1408)$	8-Bit Multiplying D/A Converter	5-10
μA111	Voltage Comparator	4-8
μA311	Voltage Comparator	4-8
μA139	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA139A	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA1488	Quad EIA RS-232C Line Driver	6-3
μA1489	Quad EIA RS-232C Line Receiver	6-43
μA1489A	Quad EIA RS-232C Line Receiver	6-43
μA2240	Programmable Timer/Counter	9-36
μA239	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA239A	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA2901	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA3018	Matched Monolithic Transistor Array	9-3
μA3018A	Matched Monolithic Transistor Array	9-3
μA3019	Diode Array	9-3
μA3026	Transistor Array	9-3
μA3036	Transistor Array	9-3
μA3039	Diode Array	9-3
μA3045	Transistor Array	9-3
μA3046	Transistor Array	9-3
μA3054	Transistor Array	9-3
μA3086	Transistor Array	9-3
μA3302	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA339	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μΑ339Α	Low-Power, Low-Offset Quad Voltage Comparator	4-13
μA4151	Voltage-to-Frequency Converter	5-15
μA555	Single Timing Circuit	
μA556	Dual Timing Circuit	9-31
μA710	High-Speed Differential Comparator	4-21
μA710C	High-Speed Differential Comparator	4-21
μA711	Dual High-Speed Differential Comparator	4-25
μA711C	Dual High-Speed Differential Comparator	4-25
μA7151	Voltage-to-Frequency Converter with Op Amp	5-15
μA726	Temperature-Controlled Differential Pair	
μA734	Precision Voltage Comparator	
μA7391	DC Motor-Speed Control	9-48

PAGE

ALPHA-NUMERICAL INDEX (Cont.)

DESCRIPTION

DEVICE

μA7392	DC Motor-Speed Control	0.50
μA760	High-Speed Differential Comparator	
μΑ700 μΑ8Τ13	Dual Single-Ended Line Driver	
μA8T14	Triple Line Receiver	
μΑ8Τ23	Dual IBM 360/370 I/O Single-Ended Line Driver	
μA8T24	Triple IBM 360/370 I/O Line Receiver	
μΑ8Τ26Α	Quad 3-State Inverting Bus Transceiver	
μA0120A μA8T28	Quad 3-State Non-Inverting Bus Transceiver	
μA9706	8-Channel, 12-Bit, μ P Compatible D/A Converter	
μA9706A μA9706A	7-Channel, 12-Bit, μ P Compatible D/A Converter	
μA9708	6-Channel, 8-Bit, μ P Compatible A/D Converter Subsystem	
55107A	Dual General-Purpose Line Receiver	
55107B	Dual General-Purpose Line Receiver	
55108A	Dual General-Purpose Line Receiver	
55108A	Dual General-Purpose Line Receiver	
55110A	Dual General-Purpose Line Driver	
55122		
55S20	Triple-Line Receiver Dual Schottky ±2.5 mV Sense Amp with Complementary Outputs	
55S24		
55S234	Dual Schottky ±2.5 mV Sense Amp	
55232	Dual Schottky ±2.5 mV Sense Amp	
55238	Dual Sense Amp with Open Collector Outputs	
	Dual Sense Amp with Preamplifier Test Points	
5528	Dual Sense Amp with Preamplifier Test Points	
55325	Dual Core Memory Drivers	
55326	Quad Positive OR Sink Core Memory Drivers	
55327	Quad Core Memory Switches	
55450A	Dual Positive AND Peripheral Driver	
55450B	Dual High-Speed Positive AND Peripheral Driver	
55451A	Dual Positive AND Peripheral Driver	
55451B	Dual High-Speed Positive AND Peripheral Driver	
55452A	Dual Positive NAND Peripheral Driver	
55452B	Dual High-Speed Positive NAND Peripheral Driver	
55453A	Dual OR Positive Peripheral Driver	
55453B	Dual High-Speed OR Positive Peripheral Driver	
55454A	Dual Positive NOR Peripheral Driver	
55454B	Dual High-Speed Positive NOR Peripheral Driver	
55460	Dual High-Voltage Positive AND Peripheral Driver	
55461	Dual High-Voltage Positive ANd Peripheral Driver	
55462	Dual High-Voltage Positive NAND Peripheral Driver	
55463	Dual High-Voltage Positive OR Peripheral Driver	7-31

ALPHA-NUMERICAL INDEX (Cont.)

DEVICE DESCRIPTION PAGE 55464 55471 55472 55473 55474 55491 55491A 55492 55492A 75107A 75107B 75108A 75108B 75110A 75112 75121 75122 75123 75124 75150 75154 Quad EIA RS-232C Line Receiver 6-60 75S20 Dual Schottky ± 2.5 mV Sense Amp with Complementary Outputs 8-20 75S24 Dual Schottky ±2.5 mV Sense Amp...... 8-20 Dual Schottky ±2.5 mV Sense Amp...... 8-20 75S234 75232 75238 7528 75325 75326 75327 75450A Dual Positive AND Peripheral Driver......7-3 75450B 75451A Dual Positive AND Peripheral Driver.....7-3 75451B 75452A Dual Positive NAND Peripheral Driver7-3 75452B 75453A Dual OR Positive Peripheral Driver7-3 75453B 75454A Dual Positive NOR Peripheral Driver......7-3 75454B 75460

ALPHA-NUMERICAL INDEX (Cont.)

DEVICE	DESCRIPTION	AGE
75461	Dual High-Voltage Positive AND Peripheral Driver	7-31
75462	Dual High-Voltage Positive NAND Peripheral Driver	7-31
75463	Dual High-Voltage Positive OR Peripheral Driver	7-31
75464	Dual High-Voltage Positive NOR Peripheral Driver	7-31
75471	Dual High-Voltage Positive AND Peripheral Driver	7-42
75472	Dual High-Voltage Positive NAND Peripheral Driver	7-42
75473	Dual High-Voltage Positive OR Peripheral Driver	7-43
75474	Dual High-Voltage Positive NOR Peripheral Driver	7-42
75491	Quad MOS-to-LED Segment Drivers	
75491A	Quad MOS-to-LED Segment Drivers	7-54
75492	HEX MOS-to-LED Digit Drivers	
75492A	HEX MOS-to-LED Digit Drivers	7-54
9612	Dual Differential Line Driver	6-22
9612A	Dual Differential Line Driver	6-22
9612E	Dual Differential Line Driver	6-22
9613	Dual Differential Line Receiver	6-65
9613C	Dual Differential Line Receiver	6-65
9614	Dual Differential Line Driver	6-26
9615	Dual Differential Line Receiver	6-69
9616	Triple EIA-RS-232C/MIL-STD-188C Line Driver	6-30
9617	Triple EIA RS-232C Line Receiver	6-74
9622	Dual Line Receiver	6-76
9624	Dual TTL-to-MOS Interface Element	.8-3
9625	Dual TTL-to-MOS Interface Element	.8-3
9627	Dual EIA RS-232C/MIL-STD-188C Line Receiver	6-80
9634	Dual 3-State EIA RS-422 Differential Line Driver	6-33
9636A	Dual Programmable Slew Rate EIA RS-423 Line Driver	6-36
9637A	Dual EIA RS-422/423 Differential Line Receiver	6-84
9638	Dual EIA RS-422 High-Speed Differential Line Driver	6-40
9640 (26S10)	Quad General-Purpose Bus Transceiver	6-94
9641 (26S11)	Quad General-Purpose Bus Transceiver	6-94
9642	Quad General-Purpose Bus Transceiver with Hysteresis	6-94
9643	Dual AND TTL-to-MOS/CCD Driver	8-10
9644	Dual NAND TTL-to-MOS/CCD Driver	8-10
9645 (3245)	Quad TTL-to-MOS/CCD Driver	8-13
9646 (DS0026)	Dual 5 MHz Two Phase MOS Clock Driver	8-16
9650	4-Bit Precision Current Source	5-35
9665 (ULN2001)	Seven High-Voltage, High-Current Darlington Drivers	7-49
9666 (ULN2002)	Seven High-Voltage, High-Current Darlington Drivers	
9667 (ULN2003)	Seven High-Voltage, High-Current Darlington Drivers	
9668 (ULN2004)	Seven High-Voltage, High-Current Darlington Drivers	7-49

	VOL	TAGE	СОМРАЯ	RATOR	SELE	CTION GUI	DE			
Device No.	Description	Input Bias Current μA (Max) 25°C	Input Offset Current (Max) 25° C	Input Offset Voltage mV - (Max) 25°C	Voltage Gain (Typ)	Supply Voltage V (Typ)	Response Time ns (Typ)	DTL/TTL Fanout	Temperature Range	Package(s)
μ AF111	Fet-Input Voltage Comparator	0 05	0 000025	4.0	200K	+36	200	2	м	5S, 6A
μ AF311	Fet-Input Voltage Comparator	0 15	0 000075	10	200K	+36	200	2	с	5S, 6A
μ A 111	Voltage Comparator Strobed Inputs, Single Supply, Low IB	01	0 04	0.7	200K	±15	200	5	м	5S
μ A 311	Voltage Comparator Strobed Inputs, Single Supply, Low IB	0.25	0 06	2.0	200K	±15	200	5	С	5S
μ A139	Quad Comparator Single Supply, CMRR incl. gnd	01	0 025	5.0	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	м	6A
μ Α139 Α	Quad Comparator Single Supply, CMRR incl. gnd	01	0 025	2.0	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	м	6A
μ Α239	Quad Comparator Single Supply, CMRR incl. gnd	0 25	0 05	50	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	A	6A, 9A
μ Α239Α	Quad Comparator Single Supply, CMRR incl. gnd	0 25	0 05	2 0	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	A	6A, 9A
μ Α339	Quad Comparator Single Supply, CMRR incl. gnd	0 25	0 05	5.0	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	с	6A, 9A
μ Α339Α	Quad Comparator Single Supply, CMRR incl. gnd	0 25	0 05	2.0	200K	± 1 to ± 18 or from 2 to 36 and gnd	1300	1	с	6A, 9A
4710/C	High Speed Differential Voltage Comparator	20/25	3 0/5 0	2 0/5.0	1 75K	+12, -6	40	1	M, C	5S. 3F. 6A. 9A
μ Α711/C	Dual High Speed Differential Comparator	75 100	10/15	3 5/5 0	1 5K	+12, -6	40	1	M, C	3F. 5F. 6A. 9A
μΑ734	Precision Comparator Low Drift −3.5 μV/°C	0 15	0 025/0 05	5 0/3 0	25K	±5 to ±15	200	2	M, C	5N. 6A
μ Α760	High Speed Differential Comparator	60	75	60	5K	±4.5 to ±6.5	25	2	M, C	5S. 6A
μ A2901	Quad Comparator Single Supply, CMRR incl. gnd	0 25	0 05	70	200K	±1 to μ18 or from 2 to 36 and gnd	1300	1	A	6A.9A
μ Α3302	Quad Comparator Single Supply, CMRR incl. gnd	05	01	20 0	200K	±1 to ±18 or from 2 to 36 and gnd	1300	1	С	6A. 9A

Device Number	Function	Operating Temp. Range (° C)	Maximum Non-Linearity (% FS)	Supply Voltage (V)	Package(s)
μ Α0801Α (DAC-08Α)		-55/+125	±0.1	±15	6B
μ A0801 (DAC-08)	8 bit high speed	-55/+125	<u>+</u> 0.19	±15	6B
μ Α0801Η (DAC-08Η)	multiplying D/A converter	0/+70	±0.1	±15	6B, 9B
μA0801E (DAC-08E)		0/+70	±0.19	±15	6B, 9B
μA0801C (DAC-08C)		0/+70	±0.39	±15	6B, 9B
μ Α0802 (MC1508-8)		-55/+125	±0.19		6B
μ Α0802Α (MC1408-8)	8 bit multiplying	0/+70	±0.19	+5	6B, 9B
μ Α0802B (MC1408-7)	D/A converter	0/+70	±0.39	and -5 to -15	6B, 9B
μA0802C (MC1408-6)		0/+70	±0.78	1	6B, 9B
μ Α9708	6 channel, 8 bit μP compatible A/D converter	-55/+125 0/+70	±0.2	+4.75 to +15	7B 7B, 9B
μ Α9706	8 channel, 12 bit μP compatible D/A converter	0/+70	±0.01	+5	6A, 9A
μ Α9706Α	7 channel, 12 bit μP compatible D/A converter	0/+70	±0.01	+5	7B, 9B
μ Α4151	Voltage to frequency converter	0⁄/+70	· · · ·	+8 to +15	5S, 6T, 9T
μ Α7151	Voltage to frequency converter with op amp	0/+70	±0.5	+8 to +15	6A, 9A
μ AF198	Sample and hold Amplifier	-55/+125		±5 to ±18	5S
μ AF398	Sample and hold Amplifier	0/+70		±5 to ±18	5S
9650	4-bit current source A/D or D/A	0/+70	±0.2 to ±0.01	+4.5 and -14 or +5.5 and -16	6B

	Output Current	Propagation				Power	Device ⁻ Temperat	Type For ure Range		Drivers		
Description	Capability (mA)	Delay Time Typical (ns)	S = Single Ended D = Differential	Party Line Operation	Strobe	Supplies (V)	55° C to 125° C	0° C to 70° C	Package Type	Per Package	Companion Receivers	Additional Features
	300	20	S, D	Yes	Yes	5	55450B	75450B	6A 6A, 9A	2	9615 75122/	And Logic
	300	20	S	Yes	Yes	5	55451B	75451B	6Т 6Т, 9Т	2	μA8T14	Function
General	100	22	S	Yes	Yes	5	55121/µA8T13	75121/µA8T13	6B 6B, 9B	2	75122/ μA8T14	
Purpose Drivers	40	12	S, D	No	No	5	9612A	9612E	6T, 5B 6T, 9T, 5B	2	9613	Complimentary Outputs
×	40	15	S, D	Yes	Yes	5	9614DM	9614	6B 6B, 9B	2	9615	3 Input AND/ NAND Function
360/370 I/O Interface	100	20	S	Yes	Yes	5		75123/ μA8T23	6B, 9B	2	75124/ μA8T24	
	50	10	D	Yes	Yes	5	9634RM	9634	6B 6B, 9B	2	9637A	3-State Output RS-422
	10	60	S	No	Yes	±12		75150	6A, 9A, 6T, 9T	2	75154 9627,9617	RS-232C/ MIL-STD-188C
Drivers Meeting	10	220	S	No	Yes	±12		μA1488	6A, 9A	4	μA1489 μA1489A	RS-232C
EIA Standards	30	320	S	No	No	±12	9616DM	9616C, E	6A 6A, 9A	3	μA1489/A 9617, 9627	RS-232C/ MIL-STD-188C
	40	10	D	No	No	5	9638RM	9638	6T 6T, 9T	2	9637A	RS-422, High Speed
	17	*	S	No	No	±12	9636ARM	9636A	6Т 6Т, 9Т	2	9637A	RS-423, Slew Rate* Programmable
	18	9	D	Yes	Yes	±5		75112	6A, 9A	2	75107A/B	
Current Mode Drivers	6.5	9	D ·	Yes	Yes	±5	55110A	75110A	6A 6A, 9A	2	75108A/B	Glitchless Current Outputs

LINE DRIVER SELECTION GUIDE

*9636A output slew rates are jointly controlled by a single external resistor.

	S = Single Ended	Type Of	Propagation Delay Time	Party Line		Power Supplies	Device Typ Temperature	Range	Package	Receivers Per	Companion	Additional
Description	D = Differential	Output*	Typical (ns)	Operation	Strobe	(V)	-55° C to 125° C	0° C to 70° C	Туре	Package	Drivers	Features
	D	Т	17	Yes	Yes			75207*	6A, 9A	2		
	D	0	19	Yes	Yes			75208*	6A, 9A	2	75110A,	
	D	т	17	Yes	Yes	±5	55107A	75107A	6A, 3I 6A, 9A	2	55110A	
	U		17	165	163	-0	55107B	75107B	6A, 3I 6A, 9A	2		B versions have input protection diodes for power off condition
							55108A	75108A	6A, 3I 6A, 9A	2	75110A, 75112	
General Purpose Receivers	D	0	19	Yes	Yes		55108B	75108B	6A, 3I 6A, 9A	·2		
	S	т	30	Yes	Yes	5	55122/µA8T14	75122/ μA8T14	6B 6B, 9B	3	75121/ μA8T13	Hysteresis for improved noise immunity
	D	O or T	20	Yes	Yes	× _5	9615DM, FM	9615	6B, 4L 6B, 9B	2	9614	±500 mV input sensitivity ±15 CMRR
	D	т	25	No	No	5	9613	9613C	6Т 6Т, 9Т	2	9612	±15V CMRR
	S	т	35	Yes	Yes	+5 and -10	9622	9622C	6A 6A, 9A	2	9621	Wire — or capability
Receivers For 360/370 /O Interface	S	· T	20	No	Yes	5		75124/ μA8T24	6B, 9B	3	75123/ μA8T13	Hysteresis
	S	Т	22	No	No	+5 or +12		75154	6B, 9B	4	75150	Hysteresis
Receivers Meeting EIA Standard	S	·R	25	No	No	5		μΑ1489 μΑ1489Α	6A, 9A 6A, 9A	4	μA1488	Response threshold control, 1489A has more Hysteresis than 1489
RS-232-C	S	R	50	No	No	±12		9617	6A, 9A	3	9616	
	D	т	60	No	Yes	±12	9627DM	9627	6B, 9B 6B, 9B	2	9616	Also meets MIL-STD-1880 Hysteresis
Receivers Meeting IA Standard RS-422/423	S, D	Ť	13	Yes	No	5	9637ARM	9637A	6Т 6Т, 9Т	2	9634 9638 9636A	±30mV built in Hysteresis Schottky circuitry also meets MIL-STD-188C

*T = Totem pole. O = Open collector. R = Resistor pull-up Not recommended for new designs, but Fairchild will continue to supply these devices for existing applications.

1-10

	Chi	Driver aracteristic	:5		eiver teristics		_			
Common Features	Output Current Capability (mA)	tp _D Typical (ns)	Strobe Or Enable	tp _D Typical (ns)	Strobe Or Enable	Device T Temperatu -55° C to 125° C	• •	Package Type	Additional Features	
Schottky Circuitry	100	10	Strobe	10	Strobe	9640DM/26S10	9640/26S10	6B 6B, 9B		
Single 5 V Supply	100	12	Strobe	10	Strobe	9641DM/26S11	9641/26S11	6B 6B, 9B	 Inverting Bus on 9640/26S10, 9642 Non-Inverting Bus on 9641/26S11 600 mV Receiver Hysteresis on 9642 	
 Party Line Operation TTL-Compatible Driver Inputs 	100	15	Strobe	8	Strobe	9642DM	9642	6B 6B, 9B	For Maximum System Noise Margin	
 Totem-Pole Receiver Outputs Four Transceivers Per Package 	48	12	Enable	8	Enable	μΑ8Τ26ADM	μA8T26A	6B 6B,9B	 3-State Driver and Receiver Outputs μA8T26A - Inverting Bus μA8T28 - Non-Inverting Bus μP Bus Extender 	
P-N-P Outputs To Reduce Input Loading	48	8 12 Enable		8 Enable		μA8T28DM	μA8T28	6B 6B, 9B	 μr bus extended Replaces NE8T26A and NE8T28 	

LED DISPLAY DRIVERS

Description	Input Compatibility	Power Supplies (V)	Drivers Per Package	Device Type	Package Typ e	Additional Features
Segment		10	4	75491	6A, 9A	•50mA source/sink capability
Drivers	NOS	20	4	75491A	6A, 9A	•SomA source/sink capability
Digit	MOS	10	6	75492	6A, 9A	
Drivers		20	6	75492A	6A, 9A	•250mA sink capability

Maximum	Minimum	Maximum	Typical	Output	Drivers		D	evice Typ	e And Packa	age⁵	
Off-State Voltage (V)	Latch-up Voltage (V)	Recommended Current (mA)	Delay Clamp Time Clamp (ns) Diodes		Per Package	Input Compatibility	-55°C to 125°C		0°C to 70°C		Logic Function
							55450A	6A	75450A	6A, 9A	And*
							55451A	6T	75451A	6T, 9T	And
30	20	300	25	No	2	TTL, DTL	55452A	6T	75452A	6T, 9T	Nand
							55453A	6T	75453A	6T, 9T	Or
							55454A	6T	75454A	6T, 9T	Nor
							55450B	6A	75450B	6A, 9A	And*
							55451B	6T	75451B	6T, 9T	And
30	20	300	21	No	2	TTL, DTL	55452B	6T	75452B	6T, 9T	Nand
						55453B	6T	75453B	6T, 9T	Or	
							55454B	6T	75454B	6T, 9T	Nor
							55460	6A	75460	6A, 9A	And*
						÷	55461	6T	75461	6T, 9T	And
35	30	300	33	No	2	TTL, DTL	55462	6T	75462	6T, 9T	Nand
							55463	6T	75463	6T, 9T	Or
							55464	6T	75464	6T, 9T	Nor
						TTL, DTL, CMOS, P-MOS			9665	6B, 9B	
				Yes		14-V to 25-V P-MOS	9666DM	6B	9666	6B, 9B	Inverting
50	50	350	200	(350 mA)	7	TTL and 5-V CMOS	9667DM	6B	9667	6B, 9B	Buffer
						6-V to 15-V P-MOS, CMOS	9668DM	6B	9668	6B, 9B	
							55471	6T	75471	6T, 9T	And
							55472	6T	75472	6T, 9T	Nand
⁻ 80	55	300	33	No	2	TTL, DTL	55473	6T	75473	6T, 9T	Or
							55474	6T	75474	6T, 9T	Nor

PERIPHERAL DRIVERS

* With output transistor base connected externally to output of gate

+ All plastic packages are on copper lead frames

Supply Voltage (V)	Propagation Delay Time (Typical) (ns)	V _{ОН} (Min) (V)	V _{OL} (Max) (V)	Device Type	Package Type	Drivers Per Package	Features
V _{CC} = +5 V _{DD} = 0 to -30	50	+3.5	0.2	9624	6A, 9A	2	 Dual MOS-to-TTL converter Non-inverting buffer
V _{CC} = +5 V _{DD} = 0 to -30	50	+2.6	0.2	9625	6A, 9A	2	 Dual MOS-to-TTL converter Inverting buffer
$V_{CC1} = +5$ $V_{CC2} = +5$ to +12	9	V _{CC2} - 0.5	0.3	9643	6T, 9T, 6A, 9A	2	 Positive AND TTL-to-MOS/CCD driver Replaces SN75322 and SN75363 9643/4 does not require two external PNP High voltage Schottky technology V_{CC3} supply is not needed Satisfies F464 CCD memory clock requirements
V _{CC1} = +5 V _{CC2} = +5 to +12	6	V _{CC} - 0.5	0.3	9644	6Т, 9Т	2	 Dual positive NAND TTL-to-MOS/CCD Same features as 9643
V _{CC} = +5 V _{DD} = +12	10	V _{DD} - 0.5	0.45	9645 (3245)	7B, 9B	4	Quad TTL-to-MOS/CCD driver Replaces Intel 3245 Satisfies F464 CCD memory requirements
±V = 0 to ±20	10	(+V) -1.0	(-V) +1.0	9646 (DS0026)	6A, 9A 6T, 9T	2	 Dual two phase MOS clock driver Replaces DS0026 ±1.5 Amp output current capability

SENSE AMPLIFIERS											
		Common-	Type†	Propagation	Device Ty Temperatu			Units			
Description	Threshold Sensitivity	Mode Range	Of Output	Delay Time	-55°C to 125°C	0° C to 70° C	Package Type	Per Package	Additional Features		
	±2.5mV		R	35ns	55S20	75S20	6B 6B, 9B	1	 Internally compensated ref. amp Provides memory data register Complementary outputs 		
	±2.5mV		R	25ns	55S24	75S24	6B 6B, 9B	2	 Internally compensated ref. amp Independent strobes 		
	±4.0mV		R	25ns	5528	7528	6B 6B, 9B	2	 Independent strobes Test points for strobe timing adjustment 		
Core Memory Sense Amplifiers	±4.0mV	±2.5V	0-C	25ns	55232	75232	6B 6B, 9B	2	 Independent strobes Internally compensated reference amplifier 		
	±2.5mV		R	25ns	55S234	75S234	6B 6B, 9B	2	 Independent strobes Internally compensated reference amplifier 		
	±4.0mV				R	25ns	55238	75238	6B 6B, 9B	2	 Independent strobes Internally compensated reference amplifier Test points for strobe timing adjustment
MOS-Memory	±25mV	±3V	Т-Р	17ns	55107*	75107A*	6A, 3I 6A, 9A	2	 Independent strobes 		
MOS-memory Sense Amplifiers	±25mV	±3V	O-C	19ns	55108A*	75108A*	6A, 3I 6A, 9A	2	 Independent strobes 		
	±10mV	±3V	T-P	17ns		75207*	6A, 9A	2	 Independent strobes 		
		<u>_'</u> 3v	0-C	19ns		75208*	6A, 9A				

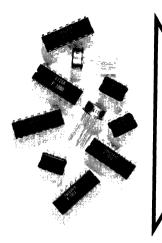
+ T-P = Totem Pole, O-C = Open Collector, R = Resistor Pull-Up

• See Line Circuit Section for details

Description	Maximum Output Current	Propagation Delay Time (ns)	Power Supplies	Device Type For Temperature Range -55°C to 125°C 0°C to 70°C		Package Type	Additional Features		
Dual Sink/Source Memory Drivers	·	35	V _{CC1} - 5 V V _{CC2} variable to 24 V	55325	75325	7B, 4L 7B, 9B	 Also used for high-voltage, high-current driver applications Output transient voltage protection Source output terminals swing between V_{CC2} and ground 		
Quadruple Sink Memory Drivers	600mA	35	V _{CC1} - 5 V V _{CC2} variable to 24 V	55327	75327	7B, 4L 7B, 9B	 Also used for high speed magnetic memory applications Output transient voltage protection Output capable of swinging between V_{CC2} and ground 		
Quadruple Memory Drivers		30	V _{CC} = 5 V	55326	75326	7B, 4L 7B, 9B	 Also used for high-voltage, high-current driver applications Output transient voltage protection 24V output capability 		

*Also see MOS/CCD driver section

SPECIAL FUNCTIONS-TIMERS AND COUNTERS


Device Number	Function	Time Delay Hours	Free Running Frequency (kHz)	Output Compatibility	Output Current (mA)	Supply Voltage V (Max)	Timing Error %	Package(s)
μ Α555	Single Timer	1.0	100	TTL	200	+18	1.0	5S, 6T, 9T, 6A
μ Α556	Dual Timer	1.0	100	TTL	200	+18	1.0	6A, 9A
μ Α2240	Programmable Timer-Counter	120		TTL	5.0	+18	0.5	7B, 9B

MEMODY DDIVEDC*

SPECIAL FUNCTIONS-TRANSISTOR AND DIODE ARRAYS

Device Number	Function	Balanced Input	Balanced Output	Low Noise	AGC Capability	Multiple Unit	Wideband	Switching Application	V сво- V	VCEO-V	VEBO-V	IC-MA	V _{BE} or V _O	Package(s)
μ Α726*	Temp Controlled Diff Pair	•	•	•	-	_	—	-	40	30	5.0	5.0	2.5	5U
μ Α3018 *	Matched Transistor Array	•	•		•	•	•	—	20	15	5.0	50	5.0	5D
μ Α3018Α*	Matched Transistor Array	•	•	_	•	•	•	_	30	15	5.0	50	2.0	5D
μ Α3019 *	Quad Plus Two Diode Array	1	_	-		_	_	•	-	1		-	5.0	5Q
μ Α3026 *	Dual Diff Amp Transistor Array	_	_	_	_		_	_	20	15	5.0	50	5.0	5D
µ A3036 *	Dual Darlington Transistor Array	•	•	•		•	-	_	30	15	5.0	50	-	5Q
μ Α3039 *	Hex Ultra Fast Diode Array		_	-	_	-	_	•	-	_	-		5.0	5D
µ A3045 *	Diff Pair Plus Three Transistors	•	•	-		•	•		20	15	5.0	50	5.0	6A
μ Α3046	Diff Pair Plus Three Transistors	•	•	—		•	•	_	20	15	5.0	50	5.0	6A, 9A
μ Α3054	Dual Diff Amp Transistor Array	—	—	_	-	•	—	_	20	15	5.0	50	5.0	6A, 9A
μ Α3086	Dual Diff Plus Three Transistors	•	•			•	•	_	20	15	5.0	50	-	6A, 9A

*Military grade available

ALPHA NUMERIC INDEX OF INTERFACE 1 DEVICES AND SELECTION GUIDES

LINEAR INDUSTRY CROSS REFERENCE	2
QUALITY, RELIABILITY AND HI REL PROCESSING	3
VOLTAGE COMPARATORS	4
DATA ACQUISITION	5
LINE CIRCUITS - DRIVERS, RECEIVERS AND TRANSCEIVERS	6
PERIPHERAL AND DISPLAY DRIVERS	7
MEMORY INTERFACE	8
TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
DATA TRANSMISSION INFORMATION	1
ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	1
FAIRCHILD FIELD SALES OFFICES. REPRESENTATIVES AND DISTRIBUTORS	1

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
1458CE	μA1458CHC		741CJ	μA741PC	
1458CP	μA1458CTC		741CP	μΑ741TC	
1458E	μA1458HC		747BE	μΑ747ΗΜ	
1458P	μA1458TC		747BL	μΑ747DM	
1558E	μA1558HM		747CE	μA747HC	
3207A		9645	747CJ	μA747PC	
3245	9645/3245		747CL	, μΑ747DC	
527		μA760HM	748BE	μA748HM	
532		, μΑ798TC	748BH	_ μA748FM	
536		μA740AHM	748BL	μA748DM	
556CJ	μA556PC		748CE	μA748HC	
709AE	μΑ709ΑΗΜ		748CL	μA748DC	
709AH	_ μA709AFM		748CP	_ μA748TC	
709AL	μA709ADM		75S107	1	75107APC
709BE	μA709HM		75S108		75108APC
709BH	μA709FM		75S207		75207PC
709BL	μA709DM		75S208		75208PC
709CE	μA709HC		75322	9643DC	
709CJ	μA709PC		75361	9644DC	
709CL	μA709DC		75361A		9643DC
710BE	μA710HM		75363	9643DC	
710BH	μA710FM		75450N	75450APC	
710BL	μA710DM		78M05BE	μA78M05HM	
710CE	μA710HC		78M05CE	, μΑ78Μ05HC	
710CL	μA710DC		78M06BE	μA78M06HM	
711BE	μA711HM		78M06CE	μΑ78M06HC	
711BH	μA711FM		78M08BE	μA78M08HM	
711BL	μA711DM		78M08CE	_ μA78M08HC	
711CE	μA711HC		78M12BE	μA78M12HM	
711CJ	μA711PC		78M12CE	μA78M12HC	
711CL	μA711DC		78M15BE	μA78M15HM	
723BE	μA723HM		78M15CE	μA78M15HC	
723BL	μA723DM		78M20BE	μA78M20HM	
723CE	μA723HC		78M20CE	, μΑ78Μ20HC	
723CJ	μA723PC		78M24BE	μA78M24HM	
723CL	μA723DC		78M24CE	μΑ78M24HC	
733DC	μA733DC		8216	μA8T26A	
733DM	μA733DM		8T26A	μA8T26APC	
733FM	μA733FM		8T26A	μA8T26ADC	
			8T28	μΑ8Τ28	
733HC	μA733HC		AN217		μA721PC
733HM	μA733HM		AM26LS29		9634
741BE	μ A741HM		AM26LS30		9636A
741BH	μ A741FM		AM26S10	9640	
741BL	μ A741DM		AM26S11	9641	
741CE	μ A741HC		AN559	μA0802	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
CA1190	TDA1190Z	······	CA3064E	μA3064PC	
CA1310	μA1310		CA3064T	μA3064HC	
CA3004T	,	μA703HC	CA3065E	μA3065PC	
CA3005T		μA703HC	CA3070E	μA780PC	
CA3006T		μA703HC	CA3071E	μA781PC	
CA3008		μA741FM	CA3072E	μA746PC	
CA3008A		μA741FM	CA3075E	μA3075PC	
CA3010		μA741HM	CA3078AS		μA776DM
CA3010A		μA741HM	CA3078AT		μA776HM
CA3011T		μA753TC	CA3078S		μA776TC
CA3012T		μA753TC	CA3078T		μΑ776HC
CA3013T		, μΑ753TC	CA3079		μA742DC
CA3014T		μA753TC	CA3085		μA723HC
CA3015		μA741HM	CA3085A		μA723HC
CA3015A		, μA741HM	CA3085AF		μA723DC
CA3016		μA741FM	CA3085AS		μA723DC
CA3016		, μA741FM	CA3085B		μA723HM
CA3018	μA3018HM	,	CA3085BF		μA723DM
CA3018A	μA3018HM		CA3085BS		μA723DC
CA3019	μA3019HM		CA3085F		μA723DC
CA3021T		μA757DC			
CA3022T		μA757DC	CA3085S		μA723DC
CA3023T		μA757DC	CA3086	μA3086DC	
CA3026	μA3026HM		CA3088E		μA720PC
CA3028AT		μA703HC	CA3089E CA3090E	μA3089PC	μA758PC
CA3028T		μA703HC	CASOSOL		μA736FC
CA3029		μA741TC	CA3123E	μA720PC	
CA3029A		, μA741TC	CA3126Q	μA787PC	
CA3030		, μA741TC	CA3134		TDA1190
CA3030A		μA741TC	CA3458S	1458TC	
CA3036	μA3036HM		CA3458T	1458HC	
CA3037		μA741DM	CA3558S		1558HM
CA3037A		, μA741DM	CA3558T	1558HM	
CA3038		μA741DM	CA3741CS	μ A741TC	
CA3038A		μA741DM	CA3741CT	μA741HC	
.			CA3741S		μ A741HM
CA3039	μA3039HM	1000550	0 4 07 4 1 T		
CA3041E		μA3065PC	CA3741T	μA741HM	
CA3024E		μA3065PC	CA3747CE	μΑ747PC	474700
CA3043 CA3044T		μΑ3065PC μΑ3064	CA3747CF CA3747CT	μΑ747HC	μA747DC
CA2045			C 4 37 4 7 E		
CA3045	μA3045DM		CA3747E CA3747F	μΑ747DM	
CA3046	μA3046DC			μA747DM	
CA3045	μ A3054DC	474000	CA3747T	μΑ747ΗΜ	
CA3058E		μA742DC	CA3748CS CA3748CT	μΑ748TC μΑ748HC	
CA3059		μA742DC	CA3/4001	μΑ140ΠC	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
CA3748S		μA748HM	LH0061K		μA791KM
CA3748T	μA748HC		LH101H		, μA741HM
CA758E	μA758PC		LH201H		μA741HM
DAC-08	μA0801		LH2101AD		μA747ADM
DAC-08A	μA0801A		LH740AH		μ A740AHM
DAC-08C	μA0801C		LM101AD	μ A101ADM	
DAC-08E	μA0801E		LM101AF	μ A101AFM	
DS0026	9646/0026		LM101AH	μ A101AHM	
DS3486		9637A	LM101D	μA101DM	
DS3487		9634	LM101H	μ A101HM	
DS3645	9645/3245		LM1011		μA7300
DS3691		9636A	LM102H	μ A102HM	
DS3692		9634	LM104H	μA104HM	
DS8834		μΑ8Τ26Α	LM105H	μA105HM	
DS8835		μΑ8Τ26Α	LM106F		μ A710FM
DS78LS120		9637A	LM106H		μA710HM
DS8T26A	μΑ8Τ26Α		LM107H	μ A107HM	,
HA1156	μA1310		LM108AD	μA108ADM	
HA11226	·	μA7300	LM108AF	μ A108AFM	
LA1201		μA721PC	LM108AH	μ A108AHM	
LAS1405	μA78H05KC		LM108D	μA108DM	
LAS1412	μA78H12KC		LM108F	μA108FM	
LAS1415	μA78H15KC		LM108H	μ A108HM	
LF111H	μ AF111HM		LM109K	μ A109KM	
LF155AH	μ AF155AHM		LM111H	μ A111HM	
LF155H	μ AF155HM		LM117		μA78GKM
LF156AH	μ AF156AHM		LM120H-05		μ A79M05HM
LF156H	μ AF156HM		LM120H-12		μ A79M12HM
LF157AH	μ AF157AHM		LM120H-15		μA79M15HM
LF157H	μ AF157HM		LM120K-05		μΑ7905KM
LF211H	μAF211HM		LM120K-12		μA7912KM
LF311H	μAF311HC		LM124D	μA124DM	μA3503DM
LF355AH	μAF355AHC		LM1303N		μ A749PC
LF355H	μAF355HC		LM1304N	μA732PC	
LF356A	μAF356AHC		LM1307N	μΑ767PC	
LF356H	μAF356HC		LM1310	μA1310	
LF357	μAF357HC		LM139	μA139DM	
LF357A	μAF357AHC		LM139A	μ A139ADM	
LH0002	SH0002	1704110	LM1414J	· · -	μ A711DC
LH0021CK		μΑ791KC	LM1458H	μA1458HC	
LH0021K		μA791KM	LM1458N	μA1458TC	
LH0021K/883		μ A791KMQB	LM1488J	μA1488	9616DC
LH0041		μA759HM	LM1489AJ	μA1489A	9617DC
LH0061C		μ A791KC	LM1489J	μA1489	9617DC
LH0061CK		μA791KM	LM1496H	μA796HC	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
LM1496N	μA796PC		LM3018H	μA3018HM	
LM1514J	μ	μA711DM	LM3019H	μA3019HM	
LM1558H	μA1558HM	<i>por co</i>	LM302H	μA302HC	
LM160H	μA760HM		LM3026H	μA3026HM	
LM1800N	μA758PC		LM3039H	μA3039HM	
LM1820N	μA720PC		LM304H	μA304HC	
LM1829N	μA787PC		LM3045D	μ A3045DM	
LM1841N	μ A2136PC		LM3046N	μA3046DC	
LM1850N		μ A7390PC	LM305AH	μA305AHC	
LM198	μAF198		LM305H	μA305HC	
LM210AF	μ A201AFM		LM3053N	μA753TC	
LM201AH	μ A201AHM		LM3054N	μA3054DC	
LM201D	μ A201DM		LM306H		μ A710HC
LM201H	μA201HM		LM3064H	μA3064HC	
LM202H	μA202HM		LM3065N	μA3065PC	
LM204H	μA204HM		LM307H	μA307HC	
LM205H	, μA205HM		LM307N	μA307TC	
LM206F	,	μA710FM	LM3070N	μA780PC	
LM206H		μA710HC	LM3075N	μA3075PC	
LM207H	μA207HM		LM308AD	μ308ADC	
LM208AD	μA208ADM		LM308AH	μA308AHC	
LM208AF	μA208AFM		LM308D	μ A308DC	
LM208AH	μA208AHM		LM308H	μA308HC	
LM208D	μ A208DM		LM308N	μ A308TC	
LM208F	μA208FM		LM3086N	μA3086DC	
LM208H	μA208HM		LM309K	μA309KC	
LM209K	μ A209KM		LM311H	μ A311HC	
LM220H-05		μ A79M05HM	LM311N	μ A311TC	
LM220H-12		μ A79M12HM	LM320H-05		μ A79M05HC
LM220H-15		μ A79M15HM	LM320H-12		μA79M12HC
LM220K-05		μA7905KM	LM320H-15		μA79M15HC
LM220K-12		μA7912KM	LM320K-05		μA7905KC
LM220K-15		μA7915KM	LM320K-12		μA7912KC
LM222N		μA555TC	LM320K-15		μA7915KC
LM224D	μA224DM		LM320MP-12		μA79M12AUC
LM2901N	μA2901PC	μA775PC	LM320MP-15		μ A79M15AUC
LM2902N	μA2902PC		LM320MP-5.0		μ A79M05AUC
LM2904N		$\mu A798TC$	LM320MP-6.0		μ A79M06AUC
LM2905N		μ A555TC	LM320MP-8.0		μ A79M08AUC
LM2907N		μA4151TC	LM320T-12		μΑ7912UC
LM2917N		μA7151PC	LM320T-15		μA7915UC
LM301AD	μ A301ADC		LM320T-18		μA7918UC
LM301AH	μA301AHC		LM320T-24		μA7924UC
LM301AN	μ A301ATC		LM320T-5		μ A7905UC
LM3018AH	μ A3018HM		LM320T-6		μA7906UC

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
LM320T-8		μA7908UC	LM4250H	F-11-18-	μA776HM
LM323K	SH323KC	μπισσσοο	LM5108AJ	75108ADC	μ
LM323K	μA78H05KC		LM55107AJ	55107ADM	
LM324D	μA324DC	μA3403DC	LM55108AJ	55108ADM	
LM324N	μA324PC	μA3403PC	LM55109J	55109DM	
LM339A	μA339ADC		LM55110J	55110A	
LM340K-05	μA7805KC		LM5524J	55S24	
LM340K-06	μA7806KC		LM5528J	5528DM	
LM340K-08	μA7808KC		LM5534J	55S234DM	
LM340K-12	μA7812KC		LM555CN	μ A555TC	
LM340K-15	μΑ7815KC		LM556CN	μA556PC	
LM340K-18	μA7818KC		LM703LH	μA703HC	
LM340K-24	μA7824KC		LM709CH	μA709HC	
LM340T-05	μA7805UC		LM709CN	μA709PC	
LM340T-06	μA7806UC		LM709H	μA709HM	
LM340T-08	μA7808UC		LM710CH	μΑ710HC	
LM340T-12	μA7812UC		LM710CN	$\mu A710PC$	
LM340T-15	μA7815UC		LM710H	μ A710HM	
LM340T-18	μ A7818UC		LM711CH	μ A711HC	
LM340T-24	μA7824UC		LM711CN	μΑ711PC	
LM342P-12		μA78C12U1C	LM711H	μA711HM	
LM342P-15		μA78C15U1C	LM723CD	μA723DC	
LM342P-18		μA78C18U1C	LM723CH	μA723HC	
LM342P-24		μA78C24U1C	LM723CN	μA723PC	
LM342P-5.0			LM723D	μA723DM	
LM342P-6.0			LM723H	μ A723HM	
LM432P-8.0		μA78C08U1C	LM725AH	μ A725AHM	
LM350N		75453BPC	LM725CH	μA725HC	
LM351N	75453BPC		LM725H	μ A725HM	
LM358H	μA798HM		LM733CD	μA733DC	
LM360H	μA760HC		LM733CH	μA733CH	
LM376N	μ A376TC		LM733CN	μA733PC	
LM380N		TBA820L	LM733D	μ A733DM	
LM381AN		μA739DC	LM733H	μA733HM	
LM381N		μΑ739PC	LM741CD	μA741DC	
LM382N		μA739PC	LM741CH	μA741HC	
LM383	TDA2002		LM741CN-08	μA741TC	
LM386		μA7307	LM741CN-14	μA741PC	
LM387N		μA739PC	LM741F	μA741FM	
LM388N		TBA820L	LM741H	μA741HM	
LM390	μAF398		LM746N	μA746PC	
LM3905N		μ A555TC	LM747CD	μ A747DC	
LM4250H		μ A776HM	LM747CH	μA747HC	
LM4250CH		μA776HC	LM747CN	μA747PC	
LM4250CN		μA776DC	LM747D	μA747DM	

2

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
_M747H	μA747HM		MC1326P		μA746PC
_M748CH	μA748HC		MC1327		TDA2522
_M748CN	μA748TC		MC1328P		μA746PC
_M748H	μA748HM		MC1339P		
_M75107AJ	75107ADC		MC1350P		μΑ749PC μΑ757DC
_M75107AN	75107APC		MC1351P		μA3065PC
_M75108AN	75108APC		MC1352P		μA757DC
_M75109J	75109DC		MC1353P		μA757DC
M75109N	75109PC		MC1355P		μA3065PC
M75110J	75110A		MC1357P	μA2136PC	<i>μ</i>
.M75110N	75110A		MC1358P		μA3065PC
.M75150J	75150DC		MC1364P	μA3064PC	
M75150N	75150PC	9616DC	MC1370P	μA780PC	
.M75154J	75154DC	9617DC	MC1371P	μA781PC	
M75154N	75154PC		MC1375P	μA3075PC	
_M75207J	75207DC		MC1391	μA1391TC	
M75207N	75207PC		MC1394P	μA1394TC	
.M75208J	75208DC		MC1398P		μA787PC
.M75208N	75208PC		MC1408L6	μA0802C	
M7524J	75S24		MC1408L7	μA0802B	
.M7524N	75S24		MC1408L8	μA0802A	
.M7528J	7528DC		MC1410G		μA733HC
.M7528N	7528PC		MC1411	9665	
M75325J	75325DC		MC1412	9666	
.M75325N	75325PC		MC1413	9667	
.M7534J	75S234DC		MC1414L		μA711DC
.M7534N	75S234PC		MC1414P		$\mu A711PC$
.M7535J	7535DC		MC1416	9668	
.M7535N	7535PC		MC1420G		μA733HC
M75450J	75450BDC		MC1435G		μ A749DHC
M75450N	75450BPC		MC1435L		μA749DC
.M75451N	75451BTC		MC1437L		μ A749DC
.M75452N	75452BTC		MC1437P		μ A749PC
M75453N	75453BTC		MC1438R		μA791KC
M75454N	75454BTC		MC14443		μA9708
A51728		μA7392	MC14447		μA9708
AC1303P	470050	μA749PC	MC1456CG		μA776HC
/IC1304P	μA732PC		MC1456CL		μ A776DC
AC1305P		μA732PC	MC1456G		μA776HC
1C1306		μA7307	MC1456L		μA776DC
MC1307P	μA767PC		MC1458CG	μ A1458CHC	
AC1310P	μ A1310PC		MC1458CP1	μ A1458CTC	
1C1311P	$\mu A758PC$		MC1458G	μA1458HC	
IC1312P	μA1312PC		MC1458P1	μA1458TC	
AC1324P		μA746PC	MC1496G	μA796HC	

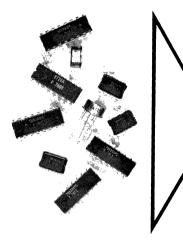
Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
MC1496P	μA796PC		MC1712F	μA702FM	<u></u>
MC1508L8	μA0802		MC1712L	μA702DM	
MC1510F	<i>µ</i> ,	μA733FM	MC1723CG	μA723HC	
MC1510G		μA733HM	MC1723CL	μA723DC	
MC1514F		μA711FM	MC1723G	μA723HM	
MC1514L		μA711DM	MC1723L	μA723DM	
MC1520G		μA733HM	MC1741CG	μ A741HC	
MC1535G		μA749HM	MC1741CG	μA747HC	
MC1535L		μA749DM	MC1741CL	μA741DC	
MC1537L		μ A749DM	MC1741CP1	μ A741TC	
MC1550G		μ A757DC	MC1741CP2	μ A741PC	
MC1556G		μA776HM	MC1741F	μ A741FM	
MC1556L		μA776DM	MC1741G	μA741HM	
MC1558G	μA1558HM		MC1741L	μA741DM	
MC1560G		μ A78M00HM	MC1747CL	μ A747DC	
MC1560R		μA7800KM	MC1747G	μ A747HM	
MC1561G		μA78MGHM	MC1747L	μ A747DM	
MC1561R		μA78MGHM	MC1748CG	μA748HC	
MC1563G		μA79MGHM	MC1748CP1	μA748TC	
MC1563R		μA79MGHM	MC1748G	μA748HM	
MC1569G		μA78MGHM	MC1776CG	μA776HC	
MC1569R		μA78GKM	MC1776G	μA776HM	
MC1590		μA757DC	MC3245	9645/3345	
MC1596G	μA796HM		MC3301P	μA3301PC	
MC1709CG	μA709HC		MC3302P	μA3302PC	
MC1709CL	μA709DC		MC3360		μA7307
MC1709CP1	μA709TC		MC3401P	μA3401PC	
MC1709CP2	μA709PC		MC3403L	μA3403DC	
MC1709F	μ A709FM		MC3403P	μA3403PC	
MC1709G	μA709HM		MC3425		μΑ7390TC
MC1709L	μA709DM		MC3430		75107APC
MC1710CG	μ A710HC		MC3433		75108APC
MC1710CL	μA710DC		MC3440		9642DC
MC1710CP	μA710PC		MC3441		9642DC
MC1710F	μA710FM		MC3443		9642DC
MC1710G	μA710HM		MC3448A	μA3448A	
MC1710L	μ A710DM		MC3456	μ A556PC	
MC1711CG	μA711HC		MC3476	μ A776PC	
MC1711CL	μA711DC		MC3486		9637A
MC1711CP	μΑ711PC		MC3487		9634
MC1711F	μA711FM		MC3503L	μA3503DM	
MC1711G	μA711HM		MC75107L	75107ADC	
MC1711L	μA711DM		MC75107P	75107APC	
MC1712CG	μA702HC		MC75108L	75108ADC	
MC1712CL	μA702DC		MC75108P	75108APC	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
MC75109L	75109DC		MC7824CK	μA7824KC	
MC75109P	75109PC		MC7824CP	, μA7824UC	
MC75110L	75110ADC		MC7905CK	μA7905KC	
MC75110PC	75110APC		MC7905CP	μA7905UC	
MC75207L	75207DC		MC7906CK	μA7906KC	
MC75207P	75207PC		MC7906CP	μA7906UC	
MC75208L	75208DC		MC7908CK	μA7908KC	
MC75208P	75208PC		MC7908CP	μA7908UC	
MC7524L	75S24		MC7912CK	μA7912KC	
MC7524P	75S24		MC7912CP	μA7912UC	
MC7528L	7528DC		MC7915CK	μA7915KC	
MC7528P	7528PC		MC7915CP	μA7915UC	
MC75325L	75325DC		MC7918CK	μA7918KC	
MC75325P MC7534L	75325PC 755234DC		MC7918CP MC7924CK	μΑ7918UC μΑ7924KC	
MC7534P	755234DC		MC7924CP	μA7924UC	
MC75365	75450000	9645PC	MC8T13L	μA8T13DM	
MC75450L MC75450P	75450BDC		MC8T13P MC8T14L	μΑ8Τ13PC μΑ8Τ14DM	
MC75450P MC75451P	75450BPC 75451BTC		MC8T23P	μΑ8Τ14DM μΑ8Τ23PC	
MOZEAEOD	75450070		MCOTOAD	A8T04DC	
MC75452P MC75453P	75452BTC 75453BTC		MC8T24P MC8T26A	μΑ8Τ24ΡC μΑ8Τ26Α	
MC75453P	75453BTC 75454BTC		MFC4060A	μΑστζοΑ	μA78MGT2C
MC75491P	75491PC		MFC4062A		μA78MGT2C
MC75492P	75492PC		MFC4063A		μA78MGT2C
MC7705CP		μA78M05UC	MFC4064A		μA78MGT2C
MC7706CP		μΑ78M06UC	MFC6030A		μA78MGT2C
MC7708CP		μA78M08UC	MFC6032A		μA78MGT2C
MC7712CP		μA78M12UC	MFC6033A		μ A78MGT2C
MC7715CP		μA78M15UC	MFC6034A		μA78MGT2C
MC7718CP		μA7818UC	MFC8000		μA739PC
MC7720CP		μA78M20UC	MFC8001		μA739PC
MC7724CP		μA78M24UC	MFC8002		μA739PC
MC7805CK	μA7805KC		MFC8030		μA703HC
MC7805CP	μA7805UC		MFC8070		μA742DC
MC7806CK	μΑ7806KC		MLM101AG	μ A101AHM	
MC7806CP	μA7806UC		MLM104G	μA104HM	
MC7808CK	μA7808KC		MLM105G	μA105HM	
MC7808CP MC7812CK	μΑ7808UC μΑ7812KC		MLM107G MLM109G	μA107HM	μA78M05HM
	μησιζίζου				,
MC7812CP	μA7812UC		MLM109K		μA109KM
MC7815CK	μA7815KC		MLM110G	μA110HM	
MC7815CP	μA7812UC		MLM201AG	μA201AHM	
MC7818CK	μA7812KC		MLM204G	μA204HM	
MC7818CP	μA7812UC		MLM205G	μA205HM	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
MLM207G MLM209G MLM209K MLM210G	μA207HM μA209KM μA210HM	μΑ78M05HM μΑ7805KM	N8T13B N8T13F N8T14B N8T14F N8T14F	μΑ8Τ13ΡC μΑ8Τ13DC μΑ8Τ14PC μΑ8Τ14PC	
MLM301AG MLM301AP1 MLM304G MLM305G MLM307G MLM309G	μΑ301ΑΗϹ μΑ301ΑΤϹ μΑ304ΗϹ μΑ305ΗϹ μΑ307ΗϹ	μA78M05HC	N8T15F N8T16F N8T23B N8T23F N8T24B N8T24F	μΑ8Τ23ΡC μΑ8Τ23DC μΑ8Τ24ΡC μΑ8Τ24ΡC μΑ8Τ24DC	9616DC 9627DC
MLM309K MLM310G MLM311G MLM311P1 ML1408-6L	μΑ309ΚC μΑ310HC μΑ311HC μΑ311TC μΑ0802CDC	,, , , , , , , , , , , , , , , , , , ,	N8T26A OP-02 OP-04 OP-05 OP-07	μA8T26A μA714HC	μΑ741ΑΗΜ μΑ741ΑΗΜ μΑ714ΗC
ML1408-7L ML1408-8L ML1508-8L MMH0026 NE515A	μΑ0802BDC μΑ0802ADC μΑ0802DM 9646/0026 μΑ733PC		PA239A RC1488D RC1489AD RC1489D RC4136D	μΑ1488 μΑ1489Α μΑ1489 μΑ4136DC/DM	μA739PC 9616DC 9617DC 9617DC
NE515K NE521A NE521F NE522A NE522F		μΑ733ΗC 75107ΑΡC 75107ΑDC 75108ΑΡC 75108ΑDC	RC4136DB RC4136DP RC4151 RC4152 RC4152	μΑ4136PC μΑ4136PC μΑ4151 μΑ4558TC	μΑ7151 μΑ7151
NE526A NE526K NE527K NE529K NE536T	μA740HC	μΑ760DC μΑ760HC μΑ760HC μΑ760HC μΑ760HC μΑ740HC	RC4558T RC55109D RC555DN RC556D RC556DP	μΑ4558ΗC 55109DM μΑ555TC μΑ556DC μΑ556PC	
NE545 NE550A NE550L NE555V NE556A	μΑ555TC μΑ556PC	μΑ7300 μΑ723ΡC μΑ723HC	RC733TF RC75107AD RC75107AP RC75108AD RC75108ADP	μΑ733ΗC 75107ADC 75107APC 75108ADC 75108APC	
NE556F NE592A NE645 N10145 N10149	μΑ556DC 10145Α 10146	μΑ733PC μΑ7300	RC75109D RC75109DP RC75110D RC75150D RC75154M	75109DC 75109PC 75110ADC 75150DC 75154DC	
N5071A N5072A N5558T N5558V N5570B	μΑ781PC μΑ746PC μΑ1458HC μΑ1458TC μΑ180PC		RC7524M RC7524MP RC7528M RC7528MP RC75325M	75S24DC 75S24PC 7528DC 7528PC 75325DC	

Fairchild Fairchild			Fairchild Fairchild			
Part Number	Direct Replacement	Functional Equivalent	Part Number	Direct Replacement	Functional Equivalent	
		Equitation			Equivalent	
RC75325MP	75325PC		SN52702L	μA702HM		
RC8T13M	μA8T13DC		SN52709J	μA709DM		
RC8T13MP	μA8T13PC		SN52709L	μA709HM		
RC8T14M	μ A8T14DC		SN52710J	μA710DM		
RC8T14MP	μ A8T14PC		SN52710L	μ A710HM		
RC8T23M	μ A8T23DC		SN52711J	μA711DM		
RC8T23MP	μ A8T23PC		SN52711L	μ A711HM		
RC8T24M	μA8T24DC		SN52723J	μA723DM		
RC8T24MP	μ A8T24PC		SN52723L	μA723HM		
RC9621D	9621DC		SN52741J	μA741DM		
RC9622D	9622DC		SN52741L	μA741HM		
RM4136D	μA4136DM		SN52747J	μA747DM		
RM55107AD	55107ADM		SN52747L	μA747HM		
RM55108AD	55108ADM		SN52748J	μA748DM		
RM55110D	55110DM		SN52748L	μA748HM		
RM5524M	5524DM		SN52771J		μA776DM	
RM5525M	5525DM		SN52771L		μA776HM	
RM55325M	55325DM		SN52777J	μA777DM	μΑΠΟΓΙΜ	
			SN52777L	μΑ777ΗΜ		
RM555T	μA555HM			μΑΤΤΠΝΙ	4710014	
RM556D	μA556DM		SN52810J		μA710DM	
RM733TF	μA733HM		SN52810L		μA710HM	
RM8T13M	μA8T13DM		SN52811J		μA711DM	
RM8T14M	μA8T14DM		SN52811L		μA711HM	
SE515K		μA733HM	SN52820J		μA711DM	
SE526A		μA760DM	SN529K		μA733HC	
SE526K		μA760HM	SN5510FA		μA833FM	
SE527K		μA760HM	SN5510L		μA733HM	
SE529A		, μA733DM	SN55107AL	55107ADM	,	
SE529K		μA760HM	SN55107BJ	55107BDM		
SE536T		μA740HM	SN55108AJ	55108ADM		
SE550L		μA723HM	SN551088J	55108BDM		
SE592K		μA733HM	SN55109J	55109DM		
SH76008		TDAA2002	SN5511FA	001002111	μA733FM	
SH76018		TDA2002	SN5511L		μA733HM	
SN2660JA		μA776DM	SN55110J	55110ADM	μητισσητική	
SN52L022L		μA798HM	SN551101	55112014		
		μΑ3503DM	SN55112J	55112DM		
SN52L044JA			SN55114J	9614DM		
SN52309LA		μA78M05HM	SN55114SB	9614FM		
SN52506J SN52510L		μΑ711DM μΑ710HM	SN55115J SN55115SB	9615DM 9615FM		
01505111		·			4700.01	
SN52514J		μA711DM	SN5512L		μA733HM	
SN52520J		μA710DM	ŠN55121J	55121DM		
SN52558L	μA1558HM	47701114	SN55122J	55122DM		
SN52660L	4700014	μA776HM	SN55123J	55123DM		
SN52702J	μA702DM		SN55124J	55124DM		

			Fairchild Fairchild			
Part	Fairchild Direct	Fairchild Functional	Part	Direct	Functional	
Number	Replacement	Equivalent	Number	Replacement	Equivalent	
SN5514L		μA733HM	SN72376P	μA376TC		
SN55207J	55207DM		SN72440J		μA742DC	
SN55208J	55208DM		SN72440N		μA742DC	
SN55234J	55S234DM		SN72506J		μA711DC	
SN5524J	55S24DM		SN72506N		μA711PC	
SN55325J	55325DM		SN72510J		μA710DC	
SN55325SB	55325FM		SN72510L		μA710HC	
SN55326SB	55326FM		SN72510N		μA710PC	
SN55327SB	55327FM*		SN72514J		μA711DC	
SN55450BJ	55450BDM		SN72514N		μA711PC	
SN55450J	55450DM		SN72555P	μA555TC		
SN55451BL	55451BHM		SN72556N	μA556PC		
SN55451L	55451HM		SN72558L	μA1458HC		
SN55452BL	55452BHM		SN72558P	_ μA1458TC		
SN55452L	55452HM		SN72660JA	,	μA776DC	
SN55453BL	55453BHM		SN72660L		μA776HC	
SN55453L	55453HM		SN72660N		μA776DC	
SN55454BL	55454BHM		SN72660P		μA776TC	
SN55454L	55454HM		SN72702J	μA702DC		
SN55460J	55460DM		SN72702L	μA702HC		
SN55461L	55461HM		SN72709J	μA709DC		
SN55462L	55462HM		SN72709L	μA709HC		
SN55463L	55463HM		SN72709P	μA709TC		
SN55464L	55464HM		SN72710L	μA710HC		
SN71710J	μA710DC		SN72710N	μA710PC		
SN72L022L		μA798HC	SN72711J	μA711DC		
SN72L022P		μA798TC	SN72711L	$\mu A711HC$		
SN72L044JA		μA3403DC	SN72711N	μA711PC		
SN72L044N		μA3403PC	SN72720J		μ A710DC	
SN72301AN	μ A301ADC		SN72720N		μA710PC	
SN72301L	μ A301AHC		SN72723J	μA723DC		
SN72301P	μ A301ATC		SN72723L	μ A723HC		
SN72304L	μ A104HM		SN72723N	μA723PC		
SN72305AL	μ A305AHC		SN72733J	μ A733DC		
SN72305L	μA305HC		SN72733L	μΑ733HC		
SN72307L	μA307HC		SN72733N	μA733PC		
SN72307P	μ A307TC		SN72741J	μ A741DC		
SN72308AL	μ A308AHC		SN72741L	μ A741HC		
SN72308AN	μ A308ADC		SN72741N	μA741PC		
SN72308L	μA308HC		SN72741P	μA741TC		
SN72308N	μA308DC		SN72747J	μA747DC		
SN72309LA		μ A78M05HC	SN72747L	μ A747HC		
SN72310L	μ A310HC		SN72748J	μ A748DC		
SN72311L	μA311HC		SN72748L	μ A748HC		
SN72311P	μ A311TC		SN72748N	μ A748DC		


Part Number			Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
SN72748P	μA748TC		SN75121N	75121PC	
SN72771J	μ/ 1010	μA776DC	SN75122J	75122DC	
SN72771L		μA776HC	SN75122N	75122PC	
SN72771N		μA776DC	SN75123J	75123DC	
SN72771P		μA776TC	SN75123N	75123PC	
SN72777J	μA777DC		SN75124J	75124DC	
SN72777L	μA777HC		SN75124N	75124PC	
SH72777N	μA777DC		SN75124L		μ A733HC
SN72777P	μ A777TC		SN7514P		μ A733PC
SN72810J		μA710DC	SN75150J	75150DC	9616DC
SN72810L		μA710HC	SN75150P	75150PC	9616DC
SN72810N		μA710PC	SN75152J	9627DC	
SN72811J		μ A711DC	SN75154J	75154DC	9617DC
SN72811L		μA711HC	SN75182N		9615DC
SN72811N		μΑ711PC	SN75183N		9614DC
SN72820J		μA711DC	SN75188J	1488DC	
SN72820N		μA711PC	SN75189AJ	1489ADC	
SN7496	7496	,	SN75189J	1489DC	
SN7497	7497		SN7520	75S20	
SN7510L		μΑ733HC	SN75207J	75207DC	
SN75107AJ	75107ADC		SN75207N	75207PC	
SN75107AN	75107APC		SN75208J	75208DC	
SN75107BJ	75107BDC		SN75208N	75208PC	
SN75107BN	75107BPC		SN75224J	75S24DC	
SN75108AJ	75108ADC		SN75224N	75S24PC	
SN75108AN	75108APC		SN75225J	75225DC	
SN75108BJ	75108BDC		SN75225N	75225PC	
SN75108BN	75108BPC		SN75232J	75232DC	
SN75109J	75109DC		SN75232N	75232PC	
SN75109N	75109PC		SN75234J	75S234DC	
SN7511L		μA733HC	SN75234N	75S234PC	
SN7511N		μ A733PC	SN75235J	75235DC	
SN75110AJ	75110ADC		SN75235N	75235PC	**
SN75110AJ	75110APC		SN75238J	75238DC	
SN75110J	75110ADC		SN75238N	75238PC	
SN75110N	75110APC		SN7524J	75S24DC	
SN75112J	75112DC		SN7524N	75S24PC	
SN75112N	75112PC		SN7528J	7528DC	
SN75114J	9614DC		SN7528N	7528PC	
SN75114N	9614PC		SN75325J	75325DC	
SN75115J	9615DC		SN75325N	75325PC	
SN75115N	9615PC		SN75326J	75326DC*	
SN7512L		μ A733HC	SN75236N	75326PC*	
SN7512N		μ A733PC	SN75327J	75327DC	
SN75121J	75121DC		SN75327N	75327PC	

	Fairchild	Fairchild		Fairchild	Fairchild
Part Number	Direct Replacement	Functional Equivalent	Part Number	Direct Replacement	Functional Equivalent
	75S234DC		SN76242N	μA780PC	
SN7534N	75S234PC		SN76243N	μA781PC	
SN75450BJ	75450BDC		SN76246N	μA746PC	
SN75450BN	75450BPC		SN76298N		μA787PC
SN75450N	75450BPC		SN76545		тва920
SN75451BL	75451BHC		SN76565N	μA3064PC	
SN75451BP	75451BTC		SN76591P	μA1391TC	
SN75451P	75451BTC		SN76594P	μA1394TC	
SN75452BL	75452BHC		SN76600P		μA757PC
SN75452BP	75452BTC		SN76635N	μA720PC	
SN75452P	75452BTC		SN76642N		μA2136PC
SN75453BL	75453BHC		SN76650N		μA757PC
SN75453BP	75453BTC		SN76666N	μA3065PC	
SN75453P	75453BTC		SN76669N	μA2136PC	
SN75454BL	75454BHC		SN76675N	μA3075PC	
SN75454P	75454BTC		SN76678P	μA753TC	
SN75460J	75460DC		SN76689N	μA3089PC	
SN75460N	75460PC		SSS725AJ		μ A725AHM
SN75461L	75461HM		SSS725BJ		μ A725EHM
SN75461L	75462HM		SSS725EJ		μA725EHC
SN75461P	75461TC		SSS741CJ		μ A741EHC
SN75463P	75463TC		SSS741J		μ A741AHM
SN75464L	75464HM		SSS747CK		μ A747EHC
SN75464P	75464TC		SSS747CP		μ A747EDC
SN75471L	75471HC		SSS747K		μ A747AHM
SN75471P	75471TC		SSS747P		μ A747ADM
SN75472L	75472HC		SSS1408A-6	μA0802C	
SN75472P	75472TC		SSS1408A-7	μA0802B	
SN75473L	75473HC		SSS1408A-8	μA0802A	
SN75473P	75473TC		SSS1508A-8	μA0802	
SN75474L	75474HC		S5558T	μA1558HM	
SN75474P	75474TC		S5596K	μ A796H	
SN75491N	75491PC		S8T13F	μ A8T13DM	
SN75492N	75492PC		S8T14F	μ A8T14DM	
SN76001N	TBA641A12		S8T15F		9616DM
SN76005ND		μA706BPC	S8T16F		9627DM
SN76024ND		μ A706BPC	TA7157	μA1310	
SN76104N	μA732PC		TAA630S	TAA630S	TDA2522
SN76105N		μA732PC	TBA396		TDA2560
SN76111N	μA767PC		TBA510	TBA510	
SN76115	μA1310		TBA520	TBA520	TDA2522
SN76116N	μA758PC		TBA530	TBA530	TDA2530
SN76131N	μA739PC		TBA540	TBA540	
SN76149N	μA749PC		TBA560C	TBA560C	TDA2560
SN76227		TDA2522	TBA570		μA721PC

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
TBA641A12	TBA641A12		ULN2121A		μA767PC
TBA641B11	TBA641B11		ULN2122A		μA732PC
TBA800	TBA800		ULN2124A	μA780PC	
TBA810AS	TBA810AS		ULN2126A	, μΑ739PC	
TBA810DS	TBA810DS		ULN2127A	μA781PC	
TBA810DAS	TBA810DAS		ULN2128A	μA767PC	
TBA810S	TBA810S		ULN2129A		μA3075PC
TBA920	TBA920		ULN2136A	μA2136PC	
TBA920S	TBA920S		ULN2137A	μA720PC	
TBA970	TBA970		ULN2165A	μA3065PC	
TBA990	ТВА990	TDA2522	ULN2209M	μA753TC	
TCA600		μA7392	ULN2210A		μA758PC
TCA610		μA7392	ULN2224A		μA788PC
TCA900		μA7392	ULN2228A		μA788PC
TCA910		μA7392	ULN2244A	μA758PC	
TCA940		μA783P4C	ULN2298A		μA787PC
TDA1170	TDA1170		ULX2262A	μA787PC	
TDA1270	TDA1270		ULX2264A	μA3064PC	
TDA1037		TDA2002	ULX2267A	μA3067PC	
TDA1190	TDA1190		ULX2289A	μA3089PC	
TDA1190Z	TDA1190Z		YKB2219	μA1310	
TDA1327		TDA2522	μ A709CA	μ A709PC	
TDA2002	TDA2002		μ A709CT	μ A709HC	1
TDA2002A	TDA2002A		μA709Q	μ A709FM	
TDA2150		TDA2560	μΑ709Τ	μΑ709ΗΜ	
TDA2160		TDA2522	μΑ710CA	μA710HC	
TDA2521	TDA2521		μΑ710CT	μA710HC	
TDA2522	TDA2522		μA710Q	μ A710FM	
TDA2530	TDA2530		μA710T	μA710HM	
TDA2560	TDA2560		μΑ711CA	μΑ711PC	
TDA2590	TDA2590		μΑ711CK	μA711HC	
TDA2610		TDA1190	μA711K	μA711HM	
TL081		μAF771C	μA723CA	μA723PC	
TL081A		μAF771	μA723CL	μA723HC	
TL810		μA710HM	μA723L	μA723HM	
TL811		μ A711HM	μA733A	μA733DM	
ULN2001A	9665		μΑ733CK	μA733HC	
ULN2002A	9666		μA733C1	μ A733DC	
ULN2003A	9667		μA733K	μA733HM	
ULN2004A	9668		μA7330A	μΑ733PC	
ULN2111A		μA2136PC	μA7331	μA733DM	
ULN2113A		μA3065PC	μΑ740CT	μA740HC	
ULN2114A	μ A746PC		μA741CA	μA741PC	
ULN2114K	μA746HC		μA741CT	μA741HC	
ULN2120A	μA732PC		μΑ741CV	μ A741TC	

μΑ741T μΑ7411M μΑ7812CKC μA7812CKC μA7812LCK μΑ747CA μA747FC μA7812CKC μA7812LCK μA7812KM μΑ747CK μA747FC μA7815CK μA7815CK μA7815CK μA747CK μA747FC μA7815CK μA7815CK μA7815CK μA748CC μA7481C μA7815CK μA78180KA μA78180K μA748CT μA7481C μA78180KA μA78180KA μA78180KA μA748CT μA7481C μA78180KA μA7824CKC μA7824KM μA78L02ACLP μA78L02AWC μA7885CKA μA7885KC μA78L02ACLP μA78L02AWC μA7885CKC μA7885WA μA78L02ACLP μA78108AWC μA789M05CKC μA79M05AHC μA78H05CKC μA78M05CKC μA79M05AHC μA79M05AHC μA78M05CLA μA78M05CHC μA79M06ALC μA79M06AHC μA78M05CKC μA78M05CHC μA79M06AHC μA79M06AHC μA78M05CHA μA78M06CHC μA79M06AHC μA79M06AHC μA78M06CHC μA79M06AHC μA79M06AHC </th <th>Part Number</th> <th>Fairchild Direct Replacement</th> <th>Fairchild Functional Equivalent</th> <th>Part Number</th> <th>Fairchild Direct Replacement</th> <th>Fairchild Functional Equivalent</th>	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent
μλ747CCA μλ747CC μλ741SCC μλ742CC μλ740DSCC μλ740DSCC μλ740DSCC μλ79MDSCC μλ79MDSCC μλ79MDSCC μλ79MDSCC μλ79MDSCCC μλ79MDSCC μλ79MDSC				"A7812CKC	"A7812UC	
μλ747CK μλ747HC μλ7815CKA μλ7815CKA μλ747K μλ747HM μλ7815CKC μλ7815UC μλ748CA μλ748DC μλ7815MKA μλ7815UC μλ748CA μλ748DC μλ7815MKA μλ7815UC μλ748CV μλ748TC μλ7815MKA μλ7815KM μλ748CV μλ748TC μλ7815CKC μλ7812CA μλ78L26AWC μλ7824CKC μλ7824CKC μλ7824CKC μλ78L05ACLP μλ78L26AWC μλ7885CKA μλ7885CKA μλ78L05ACLP μλ78L05AWC μλ7885CKA μλ7885KG μλ78L05ACLP μλ78L05AWC μλ7885CKA μλ7885CKA μλ78L05ACLP μλ78L05AWC μλ78805CKC μλ78805CKC μλ78L05AWC μλ78005CKC μλ78005AHC μλ78005AHC μλ78005CKC μλ78105AHC μλ79005CKC μλ78005AHC μλ78005CKC μλ78005HM μλ79005CKC μλ78005AHC μλ78005CKC μλ78005HM μλ79005CKC μλ78005AHC μλ78005CKC μλ78005HM μλ79005AHC μλ78005AHC		•		•		
μΑ747K μΑ741HM μΑ7815CKC μΑ7815UKC μΑ748CA μΑ748DC μΑ7815MKA μΑ7815MKA μΑ748CT μΑ748HC μΑ78180KK μΑ78180K μΑ748T μΑ748HC μΑ78180KK μΑ78180K μΑ748T μΑ748HC μΑ78180KK μΑ7824CKC μΑ78L02ACLP μΑ78L05AWC μΑ7824KK μΑ7824KK μΑ78L05ACLP μΑ78L05AWC μΑ7885KC μΑ7885KC μΑ78L05ACLP μΑ78L05AWC μΔ7805CKC μΔ7805CKC μΑ78L05ACLP μΑ78L05AWC μΔ79M05CKC μΔ79M05AHC μΔ78L05ACLP μΑ7815AWC μΔ79M05CKC μΔ79M05AHC μΔ78M05CKC μΔ78M05CHC μΔ79M06CLA μΔ79M06AHC μΔ78M05CKC μΔ78M05CHC μΔ79M06CLA μΔ79M06AHC μΔ78M05CKC μΔ78M05CHC μΔ79M06AHC μΔ79M06AHC μΔ78M05CKC μΔ78M06CHC μΔ79M08AHC μΔ79M08AHC μΔ78M05CKC μΔ78M06CHC μΔ79M08AHC μΔ79M08AHC μΔ78M08CKC μΔ78M08CHC μΔ79M08AHC μΔ79M08AHC μΔ78M08CKC μΔ78M08CHM μΔ79M12AHC μΔ79M12AHC	•					
μα748CA μα748DC μα7815MKA μα7815KM μα748CT μα748HC μα7818DKC μα7818UC μα748CV μα748HC μα7818DKC μα7818WA μα784BCV μα78126AWC μα7818KM μα7824UC μα78105ACLP μα78126AWC μα7824CK μα7824UC μα78105ACLP μα78105AWC μα785CKA μα7885KA μα78106ACLP μα78106AWC μα7885WA μα7885KA μα78106ACLP μα78115AWC μα7885KA μα7885KA μα78105ACLP μα78115AWC μα79M05CLA μα79M05AHC μα78005CKC μα78005CLA μα79M05AHC μα79M05AHC μα78005CKC μα78005CHC μα79M06AHC μα79M06AHC μα78005CLA μα78005CHC μα79M06AHC μα79M06AHC μα78005CHC μα79M06CLA μα79M06AHC μα79M06AHC μα78006CLA μα78006CH μα79M08AHC μα79M08AHC μα78006CLA μα78008CH μα79M08HM μα79M12AHC μα78006CHC μα79M12AWC μα79M12AHC μα79M12AHC		1		•	,	
А748СТ µА748НС µA781C µA781BCKC µA781BWKA µA781BWKA µA781BWKA µA748CV µA748TC µA781CC µA781BWKA µA7812WKA µA7824CKC µA78L02ACLP µA78L05AWC µA7824KMA µA7824KMA µA7824KMA µA78L05ACLP µA78162AWC µA7855CKA µA7885KC µA78L06ACLP µA78162AWC µA7885CKC µA7885KC µA7815ACLP µA78115AWC µA79M05CKC µA79M05AHC µA78M05CKC µA78M05CKC µA79M05AHC µA79M05AHC µA78M05CKC µA78M05CHC µA79M06ALA µA79M06AHC µA78M05CKC µA78M05HM µA79M06CLA µA79M06AHC µA78M05CKC µA78M05HM µA79M06CLA µA79M06AHC µA78M05CKC µA78M05HM µA79M06CLA µA79M06AHC µA78M05CKC µA78M05HM µA79M06ALA µA79M06AHC µA78M06CLA µA79M06AHC µA79M06AHC µA79M06AHC µA78M06CHC µA79M06AHC µA79M06AHC µA79M06AHC µA78M06BHM µA79M08AHC µ	•	•			•	
μA748CV μA748TC μA748TC μA748TKA μA7818MKA μA7812MKA μA748T μA748TC μA7824CKC μA7824UC μA7824KMA μA78L05ACLP μA78L05AWC μA7824MKA μA7824KMA μA78L05ACLP μA78L05AWC μA7885CKC μA7885KC μA78L05ACLP μA78L05AWC μA7885CKC μA7885KM μA78L05ACLP μA78L05AWC μA789M05CKA μA789M05AUC μA78L05AWC μA78M05CKC μA78M05AHC μA79M05AUC μA78M05CKC μA78M05CHC μA79M06CLA μA79M06AUC μA78M06CKC μA78M05HM μA79M06CHA μA79M06AHC μA78M06MLA μA78M06HM μA79M06AHC μA79M06AHC μA78M06MLA μA78M06HM μA79M08CKA μA79M08AHC μA78M06MLA μA78M08CHC μA78M08CHC μA79M08AHC μA78M08CKC μA78M08HM μA79M08CHA μA79M08AHC μA78M08CKC μA78M08CHC μA78M08CHC μA79M08HM μA78M08CKC μA78M08CHC μA78M08CHC μA79M08HM μA78M08CHC μA78M12LH μA78M12LHC μA79M12LL μA	<i>μ</i>	<i>µ</i>		<i>p</i>	<i>μ</i>	
μα748T μα748HC μα7824CKC μα7824CKC μα7824CKC μα78L02ACLP μα78L05AWC μα7825CKA μα7885CKA μα7885KK μα78L08ACLP μα78L08AWC μα7885CKA μα7885KK μα78L08ACLP μα78L08AWC μα7885CKC μα7885KK μα78L12ACLP μα78L15AWC μα7885KKA μα7885KK μα78L12ACLP μα78L15AWC μα78005CKC μα79M05AUC μα78L12ACLP μα78M05CKC μα78M05CKC μα79M05HM μα78M05CKC μα78M05CHC μα79M06CLA μα79M06AHC μα78M05CKC μα78M05HM μα79M06CLA μα79M06AHC μα78M06CLA μα78M06CHC μα79M06AHA μα79M06AHC μα78M06CLA μα78M06CHC μα79M08AHC μα79M08AHC μα78M08CKC μα78M08CHC μα78M08CHA μα78M08HM μα78M08CKC μα78M08CHC μα78M08HM μα79M12CK μα79M12HM μα78M08CKC μα78M08CH μα78M12HM μα79M12HM μα79M12HM μα79M12HM μα78M12CK μα78M181CHC μα79M17HH μα79M12HH μα79M12HH μα79M12HH μα78M12CK	μA748CT	•		,		
μA78L02ACLP μA78L26AWC μA7824MKA μA7824MKA μA7824MKA μA78L05ACLP μA78L05AWC μA78B5CKA μA7885KC μA78L0FACLP μA78L02AWC μA7885KKA μA7885KKA μA78L02ACLP μA78L12AWC μA7885KKA μA7885KKA μA78L12ACLP μA78L12AWC μA7885KKA μA7885KKA μA78L15ACLP μA78L12AWC μA78M05CLA μA78M05AUC μA78M05CLA μA78M05UC μA79M05ALA μA79M05AUC μA78M05CLA μA78M05CHC μA79M06CLA μA79M06AHC μA78M05CLA μA78M06CHC μA79M06CLA μA79M06AHC μA78M06CKC μA78M06CHC μA79M08CLA μA79M08AHC μA78M06CLA μA78M06CHC μA79M08CLA μA79M08AHC μA78M08CKC μA78M08HM μA79M12CLA μA79M08AHC μA78M08CHA μA78M08HM μA79M12CLA μA79M12AHC μA78M08CHC μA78M08HM μA79M12CLA μA79M12AHC μA78M12CK μA78M12HM μA79M12AHC μA79M12AHC μA78M12CK μA78M12HM μA79M12AHC μA79M12AHC μA78M12CK μA78M12HM	μA748CV	μ A748TC			μ A7818KM	
μ478L05ACLP μ478L05AWC μ47885CKA μ47885KC μ478L06ACLP μ478L06AWC μ47885KKA μ47885KM μ478L08ACLP μ478L12AWC μ47885KKA μ47885KM μ478L12AWC μ479M05CKC μ479M05AUC μ478L15ACLP μ478L15AWC μ479M05CKA μ479M05HM μ478M05CKA μ478M05HC μ479M06HA μ479M06HC μ478M05CKA μ478M06CKC μ479M06HA μ479M06HA μ478M06CLA μ478M06CHC μ479M06HA μ479M08AUC μ478M06CLA μ478M06CKC μ479M08HA μ479M08HA μ478M08CKC μ478M08CHC μ479M08HM μ479M08HM μ478M08CLA μ478M08CHC μ479M12KC μ479M12KC μ478M08CLA μ478M08HM μ479M12KC μ479M12KC μ478M12CC μ478M12KC μ479M12KC μ479M12KC	μΑ748Τ	μA748HC		μ A7824CKC	'	
μA78L06ACLP μA78B12ACLP μA78B12ACLP μA78L12AWC μA78B5KKA μA78B5KKA μA78L12ACLP μA78L12AWC μA78M05CKC μA79M05AUC μA79M05AUC μA78L15ACLP μA78M05UC μA79M05CKC μA79M05AUC μA78M05CKA μA78M05UC μA79M05CKC μA79M05AUC μA78M05CKA μA78M05CHC μA79M05CKC μA79M06AUC μA78M06CKA μA78M06CHC μA79M06CLA μA79M06AUC μA78M06CLA μA78M06CHC μA79M08CLA μA79M06HM μA78M08CCA μA78M08CHC μA79M08CLA μA79M08HM μA78M08CCA μA78M08CHC μA79M08HA μA79M08HM μA78M08CCA μA78M08HM μA79M12CLA μA79M12AUC μA78M08CLA μA78M08HM μA79M12CLA μA79M12AUC μA78M12CCA μA78M08HM μA79M12AUC μA79M12AUC μA78M12CLA μA78M08HM μA79M12AUC μA79M12AUC μA78M12CLA μA78M12CHC μA79M12AUC μA79M12AUC μA78M12CLA μA78M12CHC μA79M12AUC μA79M12AUC μA78M12CLA μA78M12CHC μA79M2AUC μA79M2AUC </td <td>μA78L02ACLP</td> <td>μA78L26AWC</td> <td></td> <td>μA7824MKA</td> <td>μA7824KM</td> <td></td>	μ A78L02ACLP	μA78L26AWC		μ A7824MKA	μA7824KM	
μA78L08ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L15AWC μA79M05CKC μA79M05AUC μA78L12ACLP μA78M05CKC μA78M05CKC μA79M05CKC μA79M05AUC μA78M05CKC μA78M05CKC μA78M05CKC μA79M05AUC μA78M05CKC μA78M05CHC μA79M06CLA μA79M06AUC μA78M06CLA μA78M06CHC μA79M08CKC μA79M06AUC μA78M06CLA μA78M06CHC μA79M08CKC μA79M08AUC μA78M08CKC μA78M08CHC μA79M08LA μA79M08HM μA78M08CKC μA78M08CHC μA79M08LA μA79M08HA μA78M08CKC μA78M08HM μA79M12CKC μA79M08HM μA78M08CKC μA78M08HM μA79M12CKC μA79M12AUC μA78M12CKC μA78M12CC μA79M12AUC μA79M12AUC μA78M12CKC μA78M12CKC μA78M12CHC μA79M12AUC μA78M12CKC μA78M15CHC μA79M12AUC μA79M12AUC μA78M12CKC μA78M15CHC μA79M20CKC μA79M20AUC μA78M12CLA μA78M12CHC μA79M20CKC μA79M20AUC μA78M12CHC <td>μA78L05ACLP</td> <td>μA78L05AWC</td> <td></td> <td>μA7885CKA</td> <td>μA7885KC</td> <td></td>	μ A78L05ACLP	μ A78L05AWC		μ A7885CKA	μA7885KC	
μA78L08ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L12ACLP μA78L15AWC μA79M05CKC μA79M05AUC μA78L12ACLP μA78M05CKC μA78M05CKC μA79M05CKC μA79M05AUC μA78M05CKC μA78M05CKC μA78M05CKC μA79M05AUC μA78M05CKC μA78M05CHC μA79M06CLA μA79M06AUC μA78M06CLA μA78M06CHC μA79M08CKC μA79M06AUC μA78M06CLA μA78M06CHC μA79M08CKC μA79M08AUC μA78M08CKC μA78M08CHC μA79M08LA μA79M08HM μA78M08CKC μA78M08CHC μA79M08LA μA79M08HA μA78M08CKC μA78M08HM μA79M12CKC μA79M08HM μA78M08CKC μA78M08HM μA79M12CKC μA79M12AUC μA78M12CKC μA78M12CC μA79M12AUC μA79M12AUC μA78M12CKC μA78M12CKC μA78M12CHC μA79M12AUC μA78M12CKC μA78M15CHC μA79M12AUC μA79M12AUC μA78M12CKC μA78M15CHC μA79M20CKC μA79M20AUC μA78M12CLA μA78M12CHC μA79M20CKC μA79M20AUC μA78M12CHC <td>4781 06ACL P</td> <td>"A78I 62AWC</td> <td></td> <td>"A7885CKC</td> <td>"A7885UC</td> <td></td>	4781 06ACL P	"A78I 62AWC		"A7885CKC	"A7885UC	
μA78L12ACLP μA78L12AWC μA79M05CKC μA79M05CKC μA79M05AUC μA78L15ACLP μA78M05UC μA79M05CKC μA79M05AHC μA79M05AHC μA78M05CKC μA78M05CKC μA79M05CKC μA79M06AUC μA78M05CKA μA78M05CKC μA79M06CKC μA79M06AUC μA78M06CKC μA78M06CKC μA79M06CKC μA79M06AUC μA78M06CKC μA78M06CHC μA79M08CKC μA79M08AHC μA78M08CKC μA78M08CC μA79M08AHC μA79M08AHC μA78M08CKC μA78M08CC μA79M08AHC μA79M08AHC μA78M08CLA μA78M08CC μA79M08AHC μA79M08AHC μA78M08CLA μA78M08CC μA79M12AUC μA79M12AUC μA78M08LA μA78M08CH μA79M12CLA μA79M12AUC μA78M12CLA μA78M12CLA μA79M12AUC μA79M12AUC μA78M12CLA μA78M12CLA μA79M15AHC μA79M12AUC μA78M15CL μA78M15CL μA79M12AUC μA79M12AUC μA78M15CLA μA78M13CHC μA79M12AUC μA79M12AUC μA78M12AULA μA78M12CH μA79M12AUC μA79M12AUC μ	•	•				
μA78L15ACLP μA78M05CKC μA78M05CKC μA78M05CKC μA78M05CKC μA78M05CKC μA78M05CKC μA78M05CKC μA78M05CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CKC μA78M06CHC μA79M06RLA μA79M06AHC μA79M06AHC μA79M06CKC μA79M06CHA μA79M06CHA μA79M06CHA μA79M08CHA μA79M12AHC μA79M12AHC μA79M12AHC μA79M12AHC μA79M12AHA μA79M12AHC μA79M15HA </td <td>•</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td>	•	•		•		
μA78M05CKC μA78M05UC μA79M05MLA μA79M05HM μA78M05CLA μA78M05CHC μA79M06CKC μA79M06AUC μA78M05KLA μA78M06CHC μA79M06CLA μA79M06AHC μA78M06CKC μA78M06CHC μA79M08CKC μA79M08AUC μA78M06CLA μA78M06CHC μA79M08CKC μA79M08AHC μA78M06CLA μA78M08CHC μA79M08CKC μA79M08HM μA78M08CLA μA78M08HM μA79M12CKC μA79M12AUC μA78M08CLA μA78M08HM μA79M12CLA μA79M12HM μA78M12CKC μA78M12UC μA79M12MLA μA79M12HM μA78M12CKA μA78M12CHC μA79M15MLA μA79M12HM μA78M12CKA μA78M12CHC μA79M15MLA μA79M12HM μA78M12CKA μA78M12CHC μA79M20AUC μA79M20AUC μA78M15CKA μA78M15CHC μA79M20AUC μA79M20AUC μA78M15CLA μA78M15CHC μA79M20AUC μA79M20AUC μA78M15UC μA79M20CLA μA79M20AUC μA79M20AUC μA78M20CLA μA78M20CHC μA79M20AUC μA79M20AUC μA78M20CLA μA78M20CHC μA79M	•	•				
ил78M05CLA µA78M05CHC µA79M06CKC µA79M06AUC µA78M06CLA µA78M06CHC µA79M06CLA µA79M06AHC µA78M06CLA µA78M06CHC µA79M06CLA µA79M06AHC µA78M06CLA µA78M06CHC µA79M08CKC µA79M08AHC µA78M08CKC µA78M08HM µA79M08CHA µA79M08HM µA78M08CKC µA78M08HM µA79M08HM µA79M08HM µA78M08CKC µA78M08HM µA79M12CKC µA79M08HM µA78M08CKC µA78M08HM µA79M12CKC µA79M12AHC µA78M08CKC µA78M08HM µA79M12CKA µA79M12AHC µA78M12CKC µA78M12CHC µA79M15CLA µA79M15AHC µA78M12CLA µA78M12CHC µA79M15CLA µA79M20AHC µA78M15CCL µA78M15CC µA79M20CKC µA79M20AHC µA78M15CLA µA78M15CC µA79M20CKC µA79M20AHC µA78M20CLA µA78M20CHC µA79M20CKC µA79M20AHC µA78M20CLA µA78M20CHC µA79M24AHC µA79M24AHC µA78M20CLA µA78M24CHC µA79M24AHC µA79M24AHC µA78M24CHC µA78M24HM µA7905CKC<				,	•	
шА78M05MLA µA78M05HM µA79M06CLA µA79M06AHC µA78M06CCC µA78M06CHC µA79M08CKC µA79M08AHC µA78M06CLA µA78M06HM µA79M08CKC µA79M08AHC µA78M06CKC µA78M06HM µA79M08CKC µA79M08AHC µA78M08CLA µA78M08HM µA79M08CKC µA79M12AHC µA78M08CLA µA78M08CHC µA79M12CKC µA79M12AHC µA78M08CLA µA78M08CHC µA79M12CKC µA79M12AHC µA78M08CLA µA78M08CHC µA79M12CKC µA79M12AHC µA78M12CKC µA78M12UC µA79M12CKA µA79M12AHC µA78M12CK µA78M12CHC µA79M15CKA µA79M15AHC µA78M15CKC µA78M15CHC µA79M12OCKA µA79M20AHC µA78M15CKC µA78M15HM µA79M20CKA µA79M20AHC µA78M20CKC µA78M20CUC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24AHC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24AHC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24AHC µA78M24CKC µA78M24CLA µA78M24CHC		μA781050C		μΑΤ9ΜΟ5ΝΙLΑ		
шА78M06CKC µA78M06CLC µA78M06CLA µA79M06HM µA79M06HA µA79M08CLA µA79M08CLA µA79M08AUC µA78M06CLA µA78M06HM µA79M08CLA µA79M08AUC µA79M08AUC µA78M08CLA µA78M08HM µA79M08CLA µA79M08HM µA78M08CLA µA78M08HM µA79M12CCC µA79M12AUC µA78M08ULA µA78M08HM µA79M12CLA µA79M12AHC µA78M12CKC µA78M12CHC µA79M15CLA µA79M15AHC µA78M12CLA µA78M12CHC µA79M15CLA µA79M15AHC µA78M12CLA µA78M12CHC µA79M15CLA µA79M12AHC µA78M12CLA µA78M12CHC µA79M15CLA µA79M12AHC µA78M15CLC µA78M15CHC µA79M20AUC µA79M20AHC µA78M15CLA µA78M20CHC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24CKC µA79M24HM µA78M24CKC µA78M24CHC µA7905CKA µA7905KC µA78M24CHC µA78M24CHC µA7905KA µA7905KM µA7805CKA µA7805KC µA7905KA µA7905KM µA7805CKA µA7805KC µA7906KKA <td>µA78M05CLA</td> <td>μA78M05CHC</td> <td></td> <td>μA79M06CKC</td> <td>μA79M06AUC</td> <td></td>	µA78M05CLA	μA78M05CHC		μA79M06CKC	μA79M06AUC	
шА78M06CLA µA78M06CHC µA78M06CHC µA79M08CLA µA79M08AUC µA78M06MLA µA78M06HM µA79M08CLA µA79M08AHC µA78M08CKC µA78M08UC µA79M08MLA µA79M08HM µA78M08CLA µA78M08HM µA79M12CLC µA79M12AUC µA78M08HA µA78M08HM µA79M12CLA µA79M12AUC µA78M12CK µA78M12UC µA79M12CLA µA79M12HM µA78M12CLA µA78M12CHC µA79M15CLA µA79M15HM µA78M12CLA µA78M12CHC µA79M15CLA µA79M15HM µA78M12CLA µA78M15CC µA78M15CC µA79M15HM µA78M15CC µA78M15CC µA79M20CLA µA79M20AUC µA78M15CLA µA78M15CC µA79M20CLA µA79M20AUC µA78M20CCC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M50KC µA7905CKC µA7905CKC µA78M24CK µA78M20HM µA7905CKC µA7905CKC µA7905CKC µA7905CKC µA78M24CLA µA78M24HM µA7905CKC µA7905CKC µA7905CKC µA7906CKC µA7805CKA µA7805CC	μA78M05MLA	μA78M05HM		μA79M06CLA	μA79M06AHC	
шА78M06MLA µA78M06HM µA79M08CLA µA79M08AHC шA78M08CKC µA78M08UC µA79M08MLA µA79M08HM шA78M08CLA µA78M08CHC µA79M12CKC µA79M12AUC шA78M08MLA µA78M08HM µA79M12CKC µA79M12AUC шA78M12CKC µA78M12UC µA79M12LA µA79M12HC µA78M12CLA µA78M12CHC µA79M15CLA µA79M15AHC µA78M12CLA µA78M12HM µA79M20CKC µA79M20AUC µA78M15CKC µA78M15UC µA79M20CLA µA79M20AUC µA78M15CLA µA78M15HM µA79M20CLA µA79M20AUC µA78M15CLA µA78M15HM µA79M20CLA µA79M20HM µA78M20CCC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24KLA µA79M24HM µA78M24CKC µA78M24CHC µA7905CKA µA7905KC µA78M24CKC µA78M24HM µA7905CKA µA7905CKA µA7805CKA µA7805CC µA7906CKC µA7906CKC µA7805CKA µA7805KM µA7906CKA µA7906KC µA7806CKA µA7806KC µA7906KKA µA	_ μA78M06CKC	μΑ78M06UC		_ μA79M06MLA	μA79M06HM	
шА78M06MLA µA78M06HM µA79M08CLA µA79M08AHC шA78M08CKC µA78M08UC µA79M08MLA µA79M08HM шA78M08CLA µA78M08CHC µA79M12CKC µA79M12AUC шA78M08MLA µA78M08HM µA79M12CKC µA79M12AUC шA78M12CKC µA78M12UC µA79M12LA µA79M12HC µA78M12CLA µA78M12CHC µA79M15CLA µA79M15AHC µA78M12CLA µA78M12HM µA79M20CKC µA79M20AUC µA78M15CKC µA78M15UC µA79M20CLA µA79M20AUC µA78M15CLA µA78M15HM µA79M20CLA µA79M20AUC µA78M15CLA µA78M15HM µA79M20CLA µA79M20HM µA78M20CCC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24KLA µA79M24HM µA78M24CKC µA78M24CHC µA7905CKA µA7905KC µA78M24CKC µA78M24HM µA7905CKA µA7905CKA µA7805CKA µA7805CC µA7906CKC µA7906CKC µA7805CKA µA7805KM µA7906CKA µA7906KC µA7806CKA µA7806KC µA7906KKA µA	μA78M06CLA	"А78М06СНС		_ μA79M08CKC	_ μA79M08AUC	
μA78M08CLA μA78M08CHC μA79M12CKC μA79M12AUC μA78M08MLA μA78M08HM μA79M12CLA μA79M12AHC μA78M12CKC μA78M12UC μA79M12AHC μA79M12AHC μA78M12CLA μA78M12CHC μA79M12AHC μA79M12HM μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15CLA μA79M15HM μA78M15CKC μA78M15CHC μA79M20CLA μA79M20AHC μA78M15CLA μA78M15CHC μA79M20CLA μA79M20HC μA78M20CKC μA78M20CHC μA79M24CKC μA79M24HU μA78M20CLA μA78M20CHC μA79M24CKC μA79M24HM μA78M24CLA μA78M24CHC μA7905CKA μA7905CKC μA78M24CLA μA78M24CHC μA7905CKC μA7905CKC μA78M24CLA μA7805CC μA7906CKC μA7906CKC μA7805CKA μA7805CKC μA7906CKA μA7906CKC μA7805CKA μA7805CK μA7906CKA μA7906CK μA7805CKC μA7806CC μA7908CKA μA7908CK μA7806CKC μA7806CKC μA7908CKA μA	μA78M06MLA					
μA78M08CLA μA78M08CHC μA79M12CKC μA79M12AUC μA78M08MLA μA78M08HM μA79M12CLA μA79M12AHC μA78M12CKC μA78M12UC μA79M12AHC μA79M12AHC μA78M12CLA μA78M12CHC μA79M12AHC μA79M12HM μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15CLA μA79M15HM μA78M15CKC μA78M15CHC μA79M20CLA μA79M20AHC μA78M15CLA μA78M15CHC μA79M20CLA μA79M20HC μA78M20CKC μA78M20CHC μA79M24CKC μA79M24HU μA78M20CLA μA78M20CHC μA79M24CKC μA79M24HM μA78M24CLA μA78M24CHC μA7905CKA μA7905CKC μA78M24CLA μA78M24CHC μA7905CKC μA7905CKC μA78M24CLA μA7805CC μA7906CKC μA7906CKC μA7805CKA μA7805CKC μA7906CKA μA7906CKC μA7805CKA μA7805CK μA7906CKA μA7906CK μA7805CKC μA7806CC μA7908CKA μA7908CK μA7806CKC μA7806CKC μA7908CKA μA				4701400141	A 701 4001 IN 4	
μA78M08MLA μA78M08HM μA79M12CLA μA79M12AHC μA78M12CKC μA78M12UC μA79M12MLA μA79M12HM μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15MLA μA79M15AHC μA78M15CKC μA78M15UC μA79M20CKC μA79M20AUC μA78M15CLA μA78M15CHC μA79M20AHC μA79M20AHC μA78M15MLA μA78M15HM μA79M20ALA μA79M20AHC μA78M20CKC μA78M20CUC μA79M24AUC μA79M24AUC μA78M20CLA μA78M20CHC μA79M24HM μA79M24HM μA78M20CLA μA78M24CUC μA79M24HM μA7905CKA μA78M24CLA μA78M24CUC μA7905CKA μA7905CKC μA78M24MLA μA78M24HM μA7905CKC μA7905CKC μA78M24MLA μA78M24HM μA7905CKC μA7906CKC μA7805CKA μA7805KM μA7906CKC μA7906CKC μA7805CKA μA7806KM μA7906CKC μA7908KM μA7806CKA μA7806KM μA7908KKA	•	•				
μA78M12CKC μA78M12UC μA79M12MLA μA79M12HM μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC μA78M12CLA μA78M12CHC μA79M15MLA μA79M15HM μA78M15CLA μA78M15UC μA79M20CCC μA79M20AUC μA78M15CLA μA78M15CHC μA79M20CLA μA79M20AHC μA78M20CKC μA78M20CUC μA79M24CKC μA79M24AUC μA78M20CLA μA78M20CHC μA79M24CKA μA79M24AHC μA78M20CLA μA78M20CHC μA79M24CKA μA79M24HM μA78M24CKC μA78M24CHC μA7905CKA μA7905CKC μA78M24CHA μA78M24CHC μA7905CKC μA7905CKC μA78M24CHA μA7805CKC μA7805CKC μA7906CKA μA7805CKA μA7805KC μA7906CKA μA7906KC μA7805CKA μA7805CK μA7906CKA μA7908KA μA7806CKA μA7806CK μA7908CKA μA7908KC μA7806CKA μA7806KC μA7908KC μA7908KM μA7806CKC μA7808KM μA7908KM μA7902KC </td <td>,</td> <td></td> <td></td> <td>'</td> <td></td> <td></td>	,			'		
uA78M12CLA μA78M12CHC μA79M15CLA μA79M15AHC uA78M12MLA μA78M12HM μA79M15MLA μA79M15HM uA78M15CKC μA78M15UC μA79M20CKC μA79M20AUC uA78M15CLA μA78M15CHC μA79M20CLA μA79M20AHC uA78M15CLA μA78M15HM μA79M20CLA μA79M20AHC uA78M120CKC μA78M20CUC μA79M24CKC μA79M24AUC uA78M20CLA μA78M20CHC μA79M24CKC μA79M24HM uA78M20LA μA78M20HM μA79M24CKC μA79M24HM uA78M24CLA μA78M20HM μA7905CKA μA7905KC uA78M24CLA μA78M24HM μA7905CKA μA7905KC uA78M24MLA μA7805CKA μA7805CKA μA7805CKA μA7805CKA μA7805CKA μA7805KM μA7906CKA μA7906KC μA7805CKA μA7805KM μA7906KKA μA7906KK μA7806CKA μA7806KC μA7908CKA μA7908KM μA7806CKA μA7806KM μA7908KKA μA7908KM μA7806KKA μA7806KM μA7908KKA μA7908KM μA7806KKA μA7808KM μA79012CKC	•	•		•	•	
иА78M12MLA µA78M12HM µA79M15MLA µA79M15HM µA78M15CKC µA78M15CHC µA79M20CKC µA79M20AUC µA78M15CLA µA78M15CHC µA79M20CLA µA79M20AHC µA78M15CLA µA78M15CHC µA79M20CLA µA79M20AHC µA78M15LA µA78M15HM µA79M20CLA µA79M20HM µA78M20CKC µA78M20CUC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24HA µA79M24HM µA78M20CLA µA78M20CHC µA79M24HA µA79M24HM µA78M24CKC µA78M24CHC µA7905CKA µA7905KC µA78M24CLA µA78M24CHC µA7905CKA µA7905CKA µA7805CKA µA7805CKC µA7805CKC µA7906CKC µA7805CKA µA7805CKC µA7906CKA µA7906CKC µA7805CKA µA7805CK µA7906CKA µA7906CKA µA7806CKA µA7806CK µA7908CKA µA7908CKA µA7806CKA µA7806KM µA7908CKA µA7908KM µA7806CKA µA7806KC µA7908CKA µA7908KM µA7808CKA µA7808KM µA7908KKA µA7908KM		•		,		
µA78M15CKC µA78M15UC µA78M15CLC µA79M20CKC µA79M20AUC µA78M15CLA µA78M15CHC µA79M20CLA µA79M20AHC µA78M15MLA µA78M15HM µA79M20CLA µA79M20HM µA78M20CKC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24CLA µA79M24AHC µA78M20KLA µA78M20CHC µA79M24CLA µA79M24AHC µA78M24CKC µA78M24CUC µA7905CKA µA7905KC µA78M24CLA µA78M24CHC µA7905CKC µA7905CKC µA78M24MLA µA78M24HM µA7905KKC µA7905KKC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7805CKA µA7805KM µA7906KKA µA7906KC µA7805CKA µA7805KM µA7908CKA µA7908KM µA7806CKA µA7806KC µA7908CKA µA7908KC µA7806CKA µA7808KC µA7908KKA µA7908KM µA7808CKA µA7808KC µA7902KC µA7908KM µA7808CKA µA7808KM µA7902KKA µA7908KM µA7808KKA µA7808KM µA7902KKA	μA78M12CLA	μA78M12CHC		μA79M15CLA	μΑ79Μ15AHC	
µA78M15CLA µA78M15CHC µA79M20CLA µA79M20AHC µA78M15MLA µA78M15HM µA79M20MLA µA79M20HM µA78M20CKC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24AHC µA79M24HM µA78M24CKC µA78M24CUC µA7905CKA µA7905KC µA78M24CHA µA78M24CHC µA7905CKC µA7905CKC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7806CKA µA7806KM µA7908CKA µA7908KM µA7806CKA µA7806KM µA7908CKC µA7908KM µA7806CKA µA7808KC µA7908CKC µA7908KM µA7808CKA µA7808KC µA7912KC µA7912KC µA7808KKA µA7808KM µA7912KK µA7912KM	μA78M12MLA	μA78M12HM		μA79M15MLA	μA79M15HM	
µA78M15CLA µA78M15CHC µA79M20CLA µA79M20AHC µA78M15MLA µA78M15HM µA79M20MLA µA79M20HM µA78M20CKC µA78M20CUC µA79M24CKC µA79M24AUC µA78M20CLA µA78M20CHC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24CKC µA79M24AHC µA78M20CLA µA78M20CHC µA79M24AHC µA79M24HM µA78M24CKC µA78M24CUC µA7905CKA µA7905KC µA78M24CHA µA78M24CHC µA7905CKC µA7905CKC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7805CKA µA7805KC µA7906CKA µA7906KC µA7806CKA µA7806KM µA7908CKA µA7908KM µA7806CKA µA7806KM µA7908CKC µA7908KM µA7806CKA µA7808KC µA7908CKC µA7908KM µA7808CKA µA7808KC µA7912KC µA7912KC µA7808KKA µA7808KM µA7912KK µA7912KM	_ μA78M15CKC	μA78M15UC		μA79M20CKC	_ μA79M20AUC	
μA78M15MLA μA78M15HM μA78M20CUC μA79M20MLA μA79M20HM μA78M20CKC μA78M20CUC μA79M24CKC μA79M24AUC μA78M20CLA μA78M20CHC μA79M24CKC μA79M24AUC μA78M20MLA μA78M20CHC μA79M24MLA μA79M24HMC μA78M24CKC μA78M24CUC μA7905CKA μA7905KC μA78M24CLA μA78M24CHC μA7905CKC μA7905KC μA7805CKA μA7805KC μA7805CKC μA7905KK μA7805CKA μA7805CKC μA7805CKC μA7805CKC μA7805CKA μA7805CKC μA7805CKC μA7906CKC μA7805CKA μA7805CKC μA7805CKC μA7906CKC μA7805CKC μA7805CKC μA7805CKC μA7906CKC μA7805CKC μA7805CKC μA7805CKC μA7906CKC μA7806CKA μA7806CK μA7908CKA μA7908CK μA7806CKA μA7806KM μA7908KKA μA7908KM μA7808CKA μA7808KC μA7902KK μA7912CKC μA7808CKC μA7808KM μA7912CKC μA7912CKC μA7808KM μA7912CKC μA7912KM μA79	μA78M15CLA	, µА78М15СНС		μA79M20CLA	_ μA79M20AHC	
μA78M20CKC μA78M20CUC μA79M24CKC μA79M24AUC μA78M20CLA μA78M20CHC μA79M24CLA μA79M24AHC μA78M20MLA μA78M20HM μA79M24MLA μA79M24HM μA78M24CKC μA78M24CUC μA7905CKA μA7905KC μA78M24CLA μA78M24CHC μA7905CKC μA7905UC μA78M24CLA μA78M24CHC μA7905CKC μA7905UC μA7805CKA μA7805CC μA7805CKC μA7906KC μA7805CKA μA7805UC μA7906KC μA7906KC μA7805CKA μA7805UC μA7906KC μA7906KC μA7805CKA μA7805KM μA7906KC μA7906KC μA7806CKA μA7806KC μA7908CKA μA7908KC μA7806CKA μA7806KC μA7908CKA μA7908KM μA7806CKA μA7808KC μA7908CKC μA7908LC μA7808CKA μA7808KM μA7808KM μA7912CKC μA7912KM	•	· ·		•	•	
μA78M20MLAμA78M20HMμA79M24MLAμA79M24HMμA78M24CKCμA78M24CUCμA7905CKAμA7905KCμA78M24CLAμA78M24CHCμA7905CKCμA7905UCμA78M24MLAμA78M24HMμA7905MKAμA7905KMμA7805CKAμA7805KCμA7906CKAμA7906KCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805UCμA7906CKCμA7906CKAμA7805CKAμA7805CKCμA7805CKCμA7906CKCμA7806CKAμA7806CCμA7906CKCμA7908CKAμA7806CKAμA7806CKCμA7908CKCμA7908CKCμA7806CKAμA7806CKAμA7806CKμA7908CKCμA7806CKAμA7806CKμA7908CKCμA7908CKCμA7808CKAμA7808CKμA7808CKμA7912CKAμA7808KAμA7808CKμA7912CKCμA7912CKCμA7808KAμA7808KMμA7912CKCμA7912CKA	μA78M20CKC	•				
μA78M20MLAμA78M20HMμA79M24MLAμA79M24HMμA78M24CKCμA78M24CUCμA7905CKAμA7905KCμA78M24CLAμA78M24CHCμA7905CKCμA7905UCμA78M24MLAμA78M24HMμA7905MKAμA7905KMμA7805CKAμA7805KCμA7906CKAμA7906KCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805UCμA7906CKCμA7906CKAμA7805CKAμA7805CKCμA7805CKCμA7906CKCμA7806CKAμA7806CCμA7906CKCμA7908CKAμA7806CKAμA7806CKCμA7908CKCμA7908CKCμA7806CKAμA7806CKAμA7806CKμA7908CKCμA7806CKAμA7806CKμA7908CKCμA7908CKCμA7808CKAμA7808CKμA7808CKμA7912CKAμA7808KAμA7808CKμA7912CKCμA7912CKCμA7808KAμA7808KMμA7912CKCμA7912CKA						
μA78M24CKCμA78M24CUCμA7905CKAμA7905KCμA78M24CLAμA78M24CHCμA7905CKCμA7905UCμA78M24MLAμA78M24HMμA7905MKAμA7905KMμA7805CKAμA7805KCμA7906KCμA7906KCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805UCμA7906CKCμA7906CKCμA7805CKAμA7805KMμA7906CKCμA7906CKAμA7805CKCμA7805KMμA7906CKCμA7906CKAμA7806CKAμA7806CCμA7908CKAμA7908CKAμA7806CKAμA7806CCμA7908CKCμA7908CKCμA7806CKAμA7806CCμA7808CCμA7908CKAμA7808CKAμA7808CCμA7808CCμA7912CKAμA7808CKAμA7808CCμA7902CCμA7912CKCμA7808KAμA7808CCμA7808CCμA7912CKCμA7808KAμA7808CCμA7912CKCμA7912CKAμA7808KAμA7808KMμA7912CKCμA7912CKA	•			,	•	
μA78M24CLAμA78M24CHCμA7905CKCμA7905UCμA78M24MLAμA78M24HMμA7905MKAμA7905KMμA7805CKAμA7805KCμA7906CKAμA7906KCμA7805CKCμA7805UCμA7906CKCμA7906UCμA7805KAμA7805KMμA7906KAμA7906KMμA7805KAμA7805KAμA7906KCμA7906KMμA7805MKAμA7806KCμA7906KAμA7906KMμA7806CKAμA7806KCμA7908CKAμA7908KCμA7806CKCμA7806UCμA7908CKCμA7908KMμA7806KAμA7806KAμA7908KCμA7908KMμA7808CKAμA7808KCμA7912CKAμA7912KCμA7808KAμA7808KMμA7912CKCμA7912CKAμA7808KAμA7808KMμA7912CKCμA7912KM					,	
μΑ78M24MLA μΑ78M24HM μΑ7905MKA μΑ7905KM μΑ7805CKA μΑ7805KC μΑ7805UC μΑ7906CKA μΑ7906KC μΑ7805CKC μΑ7805UC μΑ7906CKC μΑ7906UC μΑ7805MKA μΑ7805KM μΑ7906MKA μΑ7906KM μΑ7806CKA μΑ7806KC μΑ7908CKA μΑ7908KC μΑ7806CKC μΑ7806UC μΑ7908CKC μΑ7908UC μΑ7806CKA μΑ7806KM μΑ7908MKA μΑ7908KM μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808KA μΑ7808KM μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912KM						
μA7805CKA μA7805KC μA7906KC μA7805CKC μA7805UC μA7906CKC μA7906UC μA7805MKA μA7805KM μA7906MKA μA7906KM μA7806CKA μA7806KC μA7908CKA μA7908KC μA7806CKC μA7806UC μA7908CKC μA7908UC μA7806MKA μA7806KM μA7908MKA μA7908KM μA7808CKA μA7808KC μA7912CKA μA7912KC μA7808CKC μA7808UC μA7912CKC μA7912UC μA7808MKA μA7808KM μA7912KK	•	'		,	•	
μA7805CKCμA7805UCμA7906CKCμA7906UCμA7805MKAμA7805KMμA7906MKAμA7906KMμA7806CKAμA7806KCμA7908CKAμA7908KCμA7806CKCμA7806UCμA7908CKCμA7908UCμA7806MKAμA7806KMμA7908CKCμA7908KMμA7806MKAμA7806KMμA7908CKCμA7908KMμA7806MKAμA7806KMμA7908CKCμA7908KMμA7808CKAμA7808KCμA7912CKAμA7912KCμA7808CKCμA7808UCμA7912CKCμA7912UCμA7808MKAμA7808KMμA7912MKAμA7912KM	μ A78M24MLA	μ A78M24HM		μ A7905MKA	μ A7905KM	
μA7805CKCμA7805UCμA7906CKCμA7906UCμA7805MKAμA7805KMμA7906MKAμA7906KMμA7806CKAμA7806KCμA7908CKAμA7908KCμA7806CKCμA7806UCμA7908CKCμA7908UCμA7806MKAμA7806KMμA7908CKCμA7908KMμA7806MKAμA7806KMμA7908CKCμA7908KMμA7806MKAμA7806KMμA7908CKCμA7908KMμA7808CKAμA7808KCμA7912CKAμA7912KCμA7808CKCμA7808UCμA7912CKCμA7912UCμA7808MKAμA7808KMμA7912MKAμA7912KM	μA7805CKA	μA7805KC		μΑ7906CKA	μΑ7906KC	
μΑ7805MKA μΑ7805KM μΑ7906KKA μΑ7906KM μΑ7806CKA μΑ7806KC μΑ7908CKA μΑ7908KC μΑ7806CKC μΑ7806UC μΑ7908CKC μΑ7908UC μΑ7806MKA μΑ7806KM μΑ7908KM μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM		•		,		
μΑ7806CKA μΑ7806KC μΑ7806KC μΑ7908CKA μΑ7908KC μΑ7806CKC μΑ7806UC μΑ7908UC μΑ7806MKA μΑ7806KM μΑ7908MKA μΑ7908KM μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM		•				
μΑ7806CKC μΑ7806UC μΑ7908UC μΑ7806MKA μΑ7806KM μΑ7908MKA μΑ7908KM μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM				•	,	
μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM	μΑ7806CKC			,	•	
μΑ7808CKA μΑ7808KC μΑ7912CKA μΑ7912KC μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM	A 70000 414 A	A 7000// A		A 70001 414 A	470001/14	
μΑ7808CKC μΑ7808UC μΑ7912CKC μΑ7912UC μΑ7808MKA μΑ7808KM μΑ7912MKA μΑ7912KM		r		,	,	
μΑ7808ΜΚΑ μΑ7808ΚΜ μΑ7912ΜΚΑ μΑ7912ΚΜ		•				
	,			,	· ·	
μΑ/812CKA μΑ7812KC μΑ7915CKA μΑ7915KC	•			,		
	μΑ7812CKA	μΑ/812KC		μΑ/915CKA	μΑ/915KC	

Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent	Part Number	Fairchild Direct Replacement	Fairchild Functional Equivalent				
A7915CKC	μA7915UC		μA7918MKA	μA7918KM					
uA7915MKA	μA7915KM		μΑ7924CKA	μA7924KC					
, μΑ7918CKA	μA7918KC		μA7924CKC	μA7924UC					
μA7918CKC	μA7918UC		μA7924MKA	μ A7924KM					

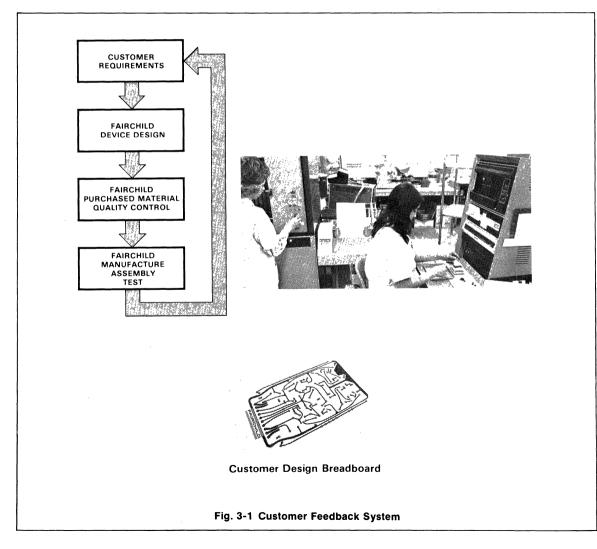
ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES

LINEAR INDUSTRY CROSS REFERENCE	2
QUALITY, RELIABILITY AND HI REL PROCESSING	3
VOLTAGE COMPARATORS	4
DATA ACQUISITION	5
LINE CIRCUITS – DRIVERS. RECEIVERS AND TRANSCEIVERS	6
PERIPHERAL AND DISPLAY DRIVERS	7
MEMORY INTERFACE	8
TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
DATA TRANSMISSION INFORMATION	10
ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12

QUALITY, RELIABILITY AND HI REL PROCESSING

Quality, Reliability and Hi Rel Processing	
--	--

QUALITY, RELIABILITY AND HI REL PROCESSING


Introduction

There are three basic ingredients in the manufacture of reliable Linear Circuits. First, the device must be designed with the user's applications and reliability requirements in mind. Secondly, the device must be manufactured with the optimum technology for the application. Thirdly, controls must be established to assure maintenance of the quality/reliability levels established in the design of the device. Consideration is given to the reliability influence of each part of the manufacturing and testing cycle with constant feedback from internal reliability monitoring; customer feedback on the results is a vital factor. The Fairchild reliability concept can be presented as constant feedback system which begins and ends with the customer (*Figure 3-1*).

Areas of Consideration

Device Applications and Reliability

The reliability cycle begins with the customer. His device application, environment for its usage and endproduct reliability requirements are major factors in establishing the quality/reliability levels. The customer is the final judge.

Device Design

Inherent component reliability is a function of the product/process design. New Fairchild designs as well as modifications or extensions of existing designs with known performance and reliability characteristics are rigorously evaluated. Three different factors in the manufacture of an IC significantly affect its reliability.

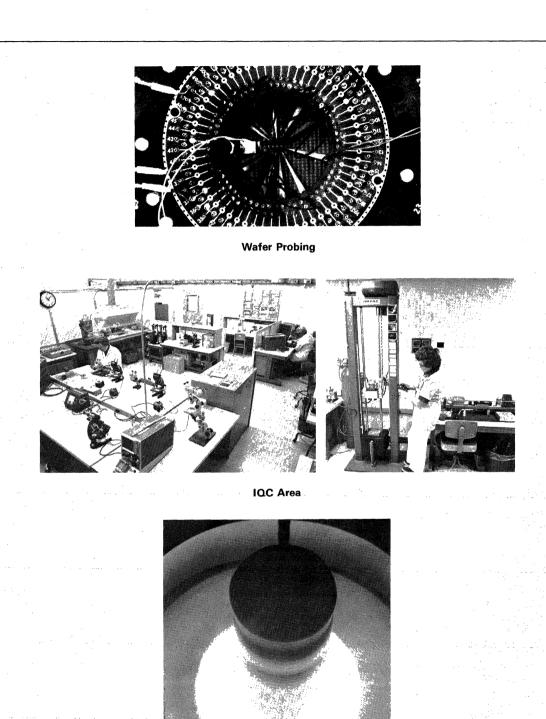
The Silicon Chip — Fairchild's design-technology capability utilizes epitaxial layer to achieve the desired electrical parameter characteristics. The surface influences long-term gain and voltage/leak-age stability. The metallization determines mechanical integrity and current distribution.

Chip Assembly — The process and materials used to assemble the chip and package must preserve the inherent reliability of the chip and be inherently reliable to withstand thermal, mechanical and electrical stresses.

The Package — The package must effectively transfer heat from the chip to the outside world and protect the chip during handling and use.

Incoming Quality Control (IQC)

All purchased materials for Fairchild Linear circuits are controlled through central specification control, product engineering, and reliability and quality assurance (R&QA) located in Mountain View. Materials are purchased and inspected per control documents using three IQC methods.


Direct visual and mechanical inspection Functional testing Composition analysis utilizing chemical and x-ray techniques from both internal and external sources.

In addition to centralized IQC, each manufacturing facility has a local, fully equipped IQC department. These facilities concentrate on cleanliness, plating quality and functionality. A computer file is made on each vendor's performance and quarterly reports are generated and analyzed.

Wafer Manufacture

Wafers used to fabricate Fairchild Linear Circuits are made at Fairchild. This includes crystal pulling, slicing, polishing and epitaxial layer growth. Fairchild designs rely on accurate control of thickness and resistivity. All operations have laminar-flow clean-air hoods directly over the work areas. Wafer fabrication is essentially a series of masking and furnace cycles in which geometries are defined and impurities (dopants) introduced to form emitter, base and resistor regions. Daily controls are maintained on furnace temperatures to within $\pm 1^{\circ}$ C. Resistivities (ρ_{s}) of diffused layers are recorded on every run. Each masking step defines a new portion of the device geometry. A post develop inspection is performed to assure that each wafer has been properly exposed and chemically developed before final etching. When the masking and etching procedures are completed, a final inspection assures that the geometry is properly aligned, etched and cleaned. Following each production masking step, a sample inspection is performed by quality control inspectors to verify correct process implementation.

After masking and diffusion, the metallization process completes wafer manufacture. Fairchild uses electron-beam evaporation techniques to deposit gold and aluminum. Deposits are controlled through utilization of automated process sequencing, which includes an automatic thickness controller. Every run is gated through a first optical (1st opt.) inspection before it leaves the wafer fabrication area. Cleanliness, mask alignment, metal adherence (front and back) and general workmanship are inspected.

3

Crystal Puller

Wafer Testing

Before the wafers are scribed and broken into dice for assembly onto headers or shipment to a customer as probed dice, they are electrically sorted. Each wafer is automatically probed with multiple tests to duplicate or correlate the dice to the final product test requirements. Rejected dice are ink marked and later scrapped. A final quality control gate is performed before the probed wafers can be forwarded to assembly.

Device Assembly

After the wafers are scribed and broken, a second optical (2nd opt.) QC inspection is performed. The dice are inspected for wafer fabrication (handling) damage, as well as for defects which may cause assembly problems or result in latent reliability problems.

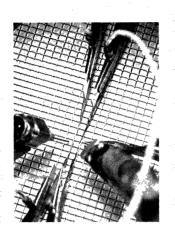
Monitors are performed on both assembly equipment and operators. Machines are shut down if defect control limits are exceeded and suspect material is rejected and 100% screened. Key items inspected are die orientation, voids under die, proper bond formation, wirepull strength and cleanliness.

A third optical (3rd opt.) gate is performed prior to final device sealing. If rejected, the lot is 100% screened by production and resubmitted to QC. Accepted lots are sent to the final seal operation, where the packages are monitored for weld strength and hermeticity (except plastic packages).

Device Testing

Before shipment, all devices are 100% production tested to the following minimum inspection levels.

Functional dc	0.25% AQL
25°C dc	0.65% AQL
25°C ac	1.5% AQL
Temperature dc	1.5% AQL
Mechanical/Visual	0.65% AQL
Marking Performance	15/0 LTPD
Fine Leak	1.0% AQL Hermetic Devices Only.
Gross Leak	0.4% AQL


Customers with special testing requirements are accommodated through an internal specification system. All internal test specifications formatted from customer documents are signed off by QA before they can be issued to the test area.

Device Application

The total reliability effort is completed full-cycle with the customer. Operation in the customer application is the final consideration in device reliability. How each device is handled during system assembly by the customer, heat-sunk (mounted) and cooled during operation, and the amount of overload stresses (due to the system malfunction or misuse) greatly impacts the device reliability. Thus, the customer's specification requirements, the manufacturer's device design, manufacture, test, the actual circuit into which the device is inserted and the equipment containing that circuit in the field all affect the device and reliability.

Failure Analysis

Failure analysis results performed by customers and by Fairchild on returned devices provide one of the most important inputs for consideration in Fairchild's total linear reliability concept. Failures generated by line monitors, life tests and field applications are analyzed to provide corrective action in terms of product design, assembly and testing methods. A scanning electron microscope (SEM) and an Auger electron microscope for chemical analysis are available for inspection of materials.

Device Testing

IQC Sign-off

Reliability Monitor and Control

Line Monitors

Line monitors are used to monitor the production line on a weekly basis. These monitors are designed to provide a constant feedback on product reliability. The following assembly/test monitors are conducted on a routine basis.

Test

Intermittent operating life (power cycling)

High-temperature reverse bias

High-temperature storage Temperature cycling Thermal shock Autoclave*

85% R.H./85°C biased*

Assembly
Package integrity
Lead integrity
Die integrity
Die-attach integrity
Bond integrity

*Applied to plastic devices only.

Extended Reliability Tests

In conjunction with the weekly line-monitor program, Fairchild employs an extended reliability test program which is designed to reflect the long-term stability of Fairchild's Linear products. A summary of these reliability tests is shown in *Table 3-1*.

Quality and Reliability Data

Supplemental brochures are published on an annual basis which provide detailed failure rate data. Please contact Fairchild Sales Offices for additional reliability and quality information.

EXTENDED RELIABILITY TESTS	METAL CAN	PLASTIC
High Temperature Operating Life T _A = 150°C Readouts at 0, 168, 500, 1000 Hours	x	x
Temperature Cycling -65° C to +150° C (MIL-STD-883, Method 1010.1, Cond. C) Readouts at 0, 10, 100 Cycles Hermeticity (1 x 10-7 - TO-5, 1 x 10-6 - TO-3)	x	
Constant Acceleration F = 20K g 1 Min. Ea. 6 Axis (MIL-STD-883, Method 2001)	x	
Impact Shock 1500 g x 5 Blows (MIL-STD-883, Method 2002)	x	
Vibration, Variable Frequency 10 g (MIL-STD-883, Method 2007)	x	
Biased Humidity T _A = 85° C, RH = 85% Readouts at 0, 168, 500, 1000 Hours		x
Thermal Shock -55° C to +125° C Readouts at 0, 10, 100 Cycles MIL-STD-883, Method 1011, Condition C	X	X
Autoclave T _A = 125° C ± 2° C 15 PSI, 24 Hours		x

Table 3-1 Reliability Test Summary

HI REL PROCESSING - MIL-M-38510/MIL STD-883

A unique "company", within Fairchild Linear, is totally dedicated to the processing of high reliability products and to serving the special needs of the HI REL community. It consists of marketing, engineering, production control, manufacturing and quality assurance. Fairchild's HI REL processing facilities are among the most modern and sophisticated in the semiconductor industry. Screening procedures are set up to conform to the most recent version of MIL-STD-883, in conjunction with MIL-M-38510, which establishes standardized requirements for design, material, performance, control and documentation needed to achieve prescribed levels of device quality and reliability.

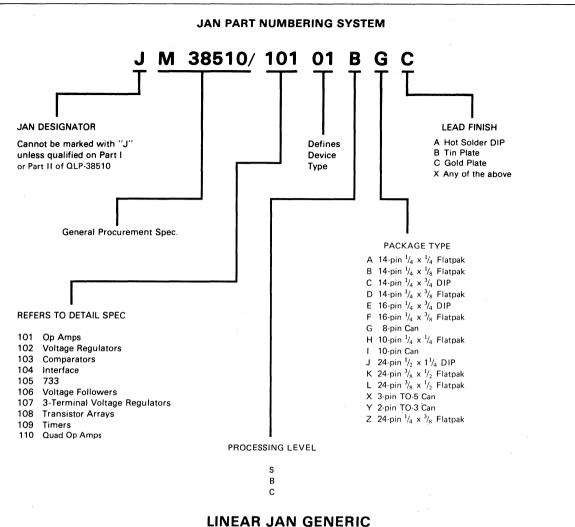
HI REL Unique II Program

Fairchild's Unique II program fills a longstanding need for a definite and comprehensive program covering HI REL semiconductor products...a program offering users a selection among multi-level screening flows and reliability requirements...a program providing clear and precise definitions on all areas of contractual performance...a program designed to reduce the high costs and delivery delays normally associated with HI REL. The objectives and benefits of the Unique II program for integrated circuits are these:

- Offers a full spectrum of processing options, including full compliance JAN and 883 Classes S, B, and C.
- Offers full compliance with JAN MIL-M-38510 and emphasizes the importance of this program.
- Accommodates the special needs of users' source control and specification control drawings.
- Offers models to aid users in development of source control drawings.
- Takes the mystery out of in-house processing to MIL-STD-883 and to MIL-M-38510 detail specifications. The Unique II program is definitive as to the similarities and differences in these requirements.
- Provides users with alternatives that may be used when JAN slash sheets or QPLs are unavailable, or for programs that demand the highest level of quality and reliability.

Fairchild offers a complete processing capability to fulfill requirements ranging from the least demanding to the most complex, including the following:

- Scanning Electron Microscope (SEM) Inspection
- Level A Visual
- Bond Pull and Die Shear Testing
- Read and Record and Δ Drift Parameters
- Particle Impact Noise Detection (Pin-D) Testing
- Group A, B, C and D Qualification Testing.

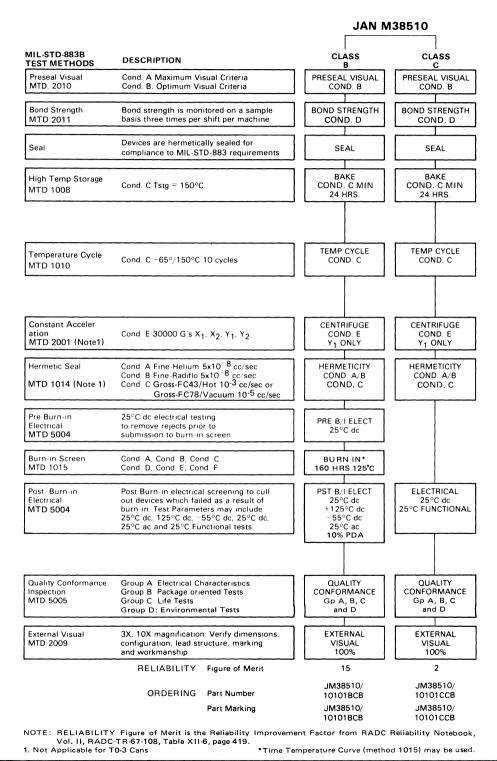

Standard Unique II processing flows are given on the following pages; special flows will be quoted on an individual basis.

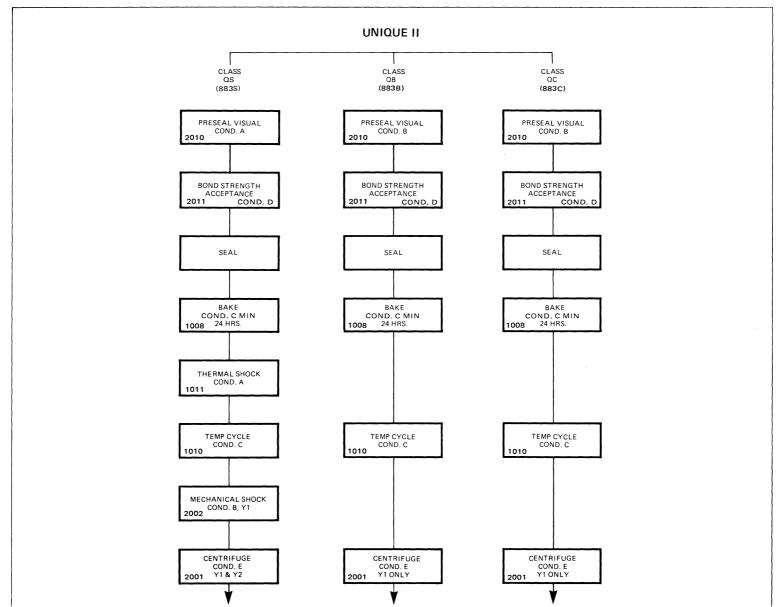
MATRIX VI - COMMERCIAL AND INDUSTRIAL RELIABILITY PROGRAM

Commercial and industrial users increasingly demand optimized quality and reliability for the semiconductor integrated circuits purchased for their systems. Specific factors — increased integrated circuit usage per board, high costs for receiving inspection, pc board and systems repair, and the frequently immeasurable cost associated with field failures — require the user to attain high quality and reliability coupled with total cost. Matrix VI is designed to meet these user requirements.

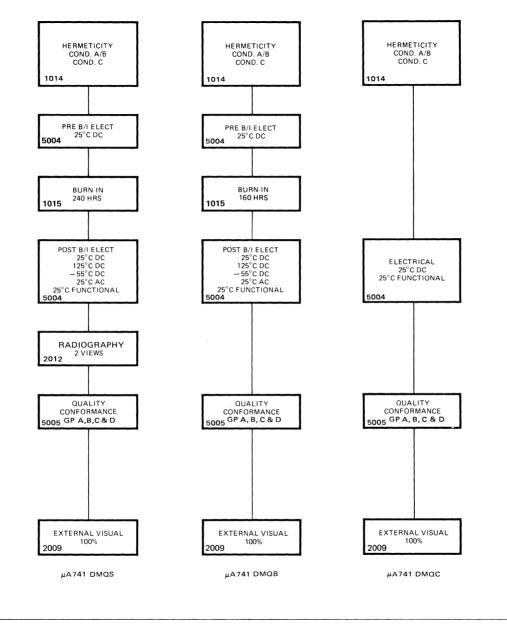
Fairchild's Matrix VI Program offers a broad spectrum of screens and high technology/high volume integrated circuit products to meet the user's quality and reliability requirements typically associated with the commercial and industrial marketplace. There are two screening options for each package type, each with a separate degree of reliability and cost level. To simplify a cost-effective analysis, reliability factors have been assigned to each screening level. (See following pages.)

It is the goal of Matrix VI to achieve the highest possible reliability consistent with the user's needs and to avoid "over-buying". Cost-effective reliability is the essence of Matrix VI, the most comprehensive program of its kind now offered to the industrial/commercial marketplace.

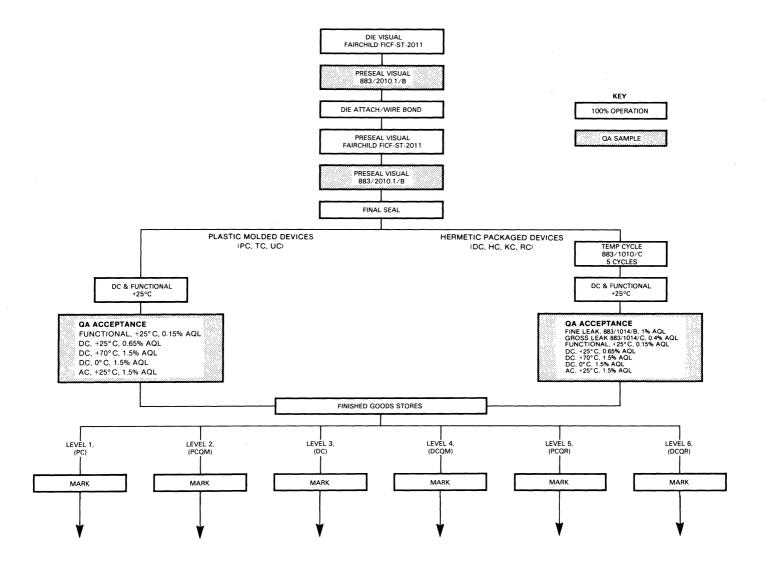


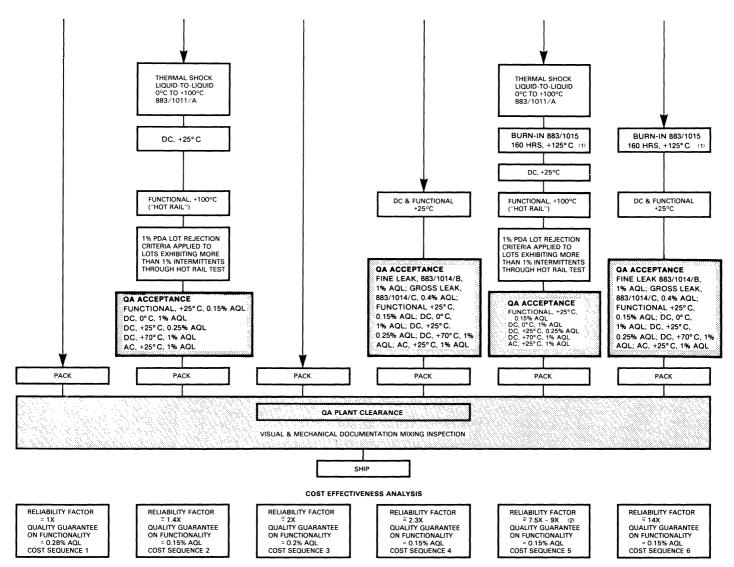

PART NUMBERS – EXAMPLES

JM38510/	01	02	03	04	05	06	07	08	09	10
101	741	747	101A	108A	2101	2108	118		· ·	
102	723									
103	710	711	106	111	2111					
104	55107	55108	9614	9615	55113	7831	7832	7820	7830	
105	733									
106	102	110	2110							
107	109	78M05	78M12	78M15	78M24	7805	7812	7815	7824	
108	3018	3045								
109	555	556								
110	148	149	4741	4136	124					


Note: Dated material. Please contact Fairchild for latest revisions.

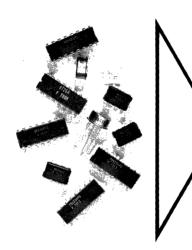
HI REL PROCESS SCREENING REQUIREMENTS


3-12



3-13

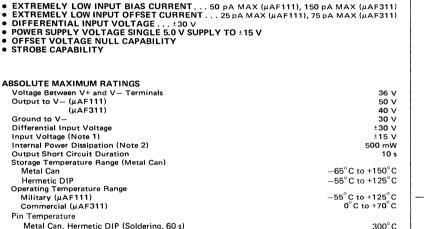
ω

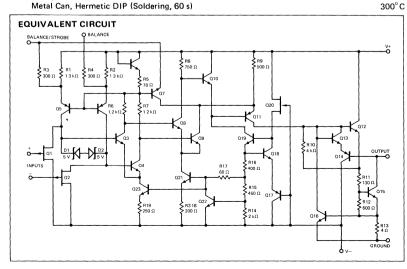

MATRIX VI PROCESS FLOW OPTIONS & COST EFFECTIVENESS

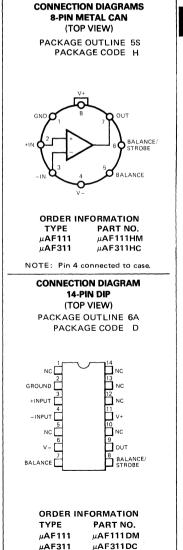
NOTE:

- (1) Temperature Accelerated Testing may be used for MIL-STD-883 method 1015 Test Condition F.
- (2) Burn-In has the same relative effectiveness for plastic molded devices as for ceramic/hermetic packaged devices. Assuming a controlled (air conditioned and constant power) field application/environment, the reliability factor would be approximately 9x. But should the field application be in a less controlled and power on/off application, the reliability would be approximately 7.5X.

ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
LINEAR INDUSTRY CROSS REFERENCE	2
QUALITY, RELIABILITY AND HI REL PROCESSING	3
VOLTAGE COMPARATORS	4
DATA ACQUISITION	5
LINE CIRCUITS – DRIVERS, RECEIVERS AND TRANSCEIVERS	e
PERIPHERAL AND DISPLAY DRIVERS	
MEMORY INTERFACE	
TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	ł
DATA TRANSMISSION INFORMATION	1
ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	1
FAIRCHILD FIELD SALES OFFICES. REPRESENTATIVES AND DISTRIBUTORS	


VOLTAGE COMPARATORS


μAF111/μAF311 μA111/μA5311 μA139/μA239/μA339 μA139A/μA239A/μA339A μA2901 μA3302 μA710/μA710C μA711/μA711C μA734 μA760


FET-Input Voltage Comparator	. 4-3
Voltage Comparator	. 4-8
Low-Power, Low-Offset Quad Voltage Comparator	4-13
Low-Power, Low-Offset Quad Voltage Comparator	4-13
Low-Power, Low-Offset Quad Voltage Comparator	4-13
Low-Power, Low-Offset Quad Voltage Comparator	
High-Speed Differential Comparator	
Dual High-Speed Differential Comparator	4-25
Precision Voltage Comparator	4-29
High-Speed Differential Comparator	4-36

μAF111 • μAF311 FET INPUT VOLTAGE COMPARATORS

GENERAL DESCRIPTION – The μ AF111 and μ AF311 are monolithic, FET input Voltage Comparetors, constructed using the Fairchild Planar* epitaxial process. The μ AF111 series operates from the single 5 V integraetd circuit logic supply to the standard ±15 V operational amplifier supplies. The μ AF111 series is intended for a wide range of applications including driving lamps or relays and switching voltages up to 50 V at currents as high as 50 mA. The output stage is compatible with RTL, DTL, TTL and MOS logic. The input stage current can be raised to increase input slew rate.

FAIRCHILD • μ **AF111** • μ **AF311**

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage (Note 4)	T _A = 25°C, R _S ≤ 50 kΩ		0.7	4.0	mV
Input Offset Current (Note 4)	T _A = 25°C, V _{CM} = 0 (Note 6)		5.0	25	pА
Input Bias Current	T _A = 25°C, V _{CM} = 0 (Note 6)		20	50	pA
Voltage Gain	$T_A = 25^{\circ}C$		200		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C$		200		ns
Saturation Voltage $V_{IN} \le -5 \text{ mV}, I_{OUT} = 50 \text{ mA}$ $T_{A} = 25^{\circ}\text{C}$			0.75	1.5	v
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA
Output Leakage Current $V_{IN} \ge 5 \text{ mV}$, $V_{OUT} = 35 \text{ V}$ $T_A = 25^{\circ}\text{C}$			0.2	10	nA
Input Offset Voltage (Note 4)	R _S ≤ 50 kΩ			6.0	mV
Input Offset Current (Note 4) $V_S = \pm 15 V$, $V_{CM} = 0$ (Note 6)			2.0	3.0	nA
Input Bias Current $V_S = \pm 15 V$, $V_{CM} = 0$ (Note 6)			5.0	7.0	nA
Input Voltage Range			+14 -13,5		v v
Saturation Voltage	$V^+ \ge 4.5 V, V^- = 0$ $V_{IN} \le -6 mV, I_{SINK} \le 8 mA$		0.23	0.4	v
Output Leakage Current	V _{IN} ≥ 5 mV, V _{OUT} = 35 V		0.1	0.5	μA
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	6.0	mA
Negative Supply Current	$T_A = 25^{\circ}C$		4.1	5.0	mA

μAF111

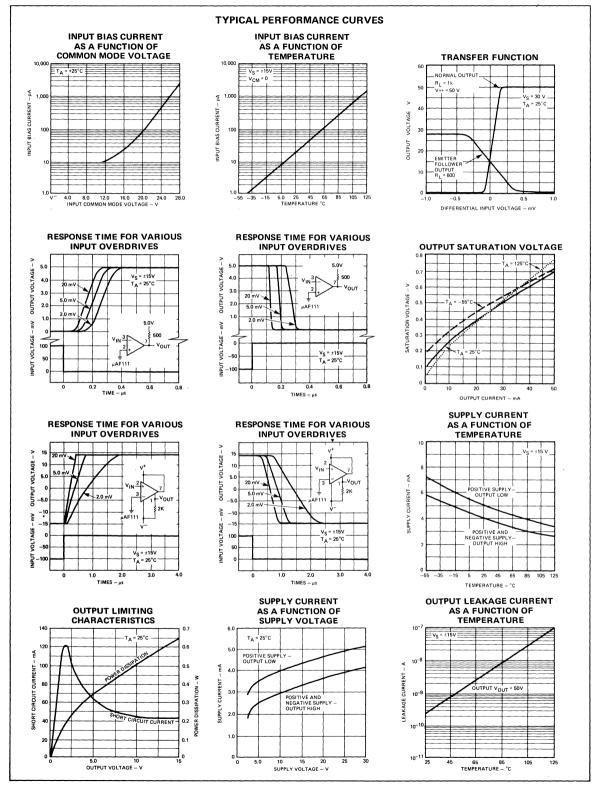
μ AF311

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise specified, Note 3.

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \le 50 k\Omega$		2.0	10	mV
Input Offset Current (Note 4)	$T_A = 25^{\circ}C$, $V_{CM} = 0$ (Note 6)		5.0	75	pA
Input Bias Current	$T_A = 25^{\circ}C$, $V_{CM} = 0$ (Note 6)		25	150	pА
Voltage Gain	T _A = 25°C		200		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C$		200		ns
Saturation Voltage $V_{IN} \le -10 \text{ mV}, I_{OUT} = 50 \text{ mA}$ $T_A = 25^{\circ} \text{C}$			0.75	1.5	v
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA
Output Leakage Current	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 35 \text{ V}$ $T_A = 25^{\circ} \text{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	R _S ≤ 50 kΩ			15	mV
Input Offset Current (Note 4)	V _S = ±15V, V _{CM} = 0 (Note 6)		1.0		nA
Input Bias Current	V _S = ±15 V, V _{CM} = 0 (Note 6)		3.0		nA
			+14		V
Input Voltage Range			-13.5		v
Saturation Voltage	$V^+ \ge 4.5 V$, $V^- = 0$ $V_{IN} \le -10 mV$, $I_{SINK} \le 8 mA$		0.23	0.4	v
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	7.5	mA
Negative Supply Current	T _A = 25°C	1	4.1	5.0	mA

NOTES:

1. This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

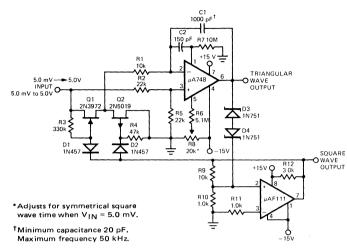

2. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for metal can; 8.3 mW/°C for mini DIP.

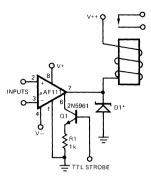
The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to ±15 V supplies.
 The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

5. The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

6. For input voltages greater than 15 V above the negative supply the bias and offset currents will increase - see typical performance curves.

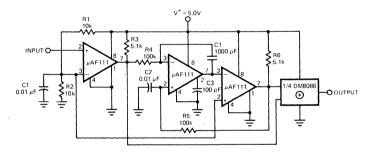
FAIRCHILD • μ AF111 • μ AF311



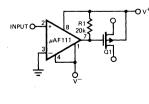

FAIRCHILD • μ **AF111** • μ **AF311**

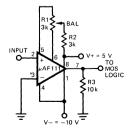
TYPICAL APPLICATIONS

10 Hz TO 10 kHz VOLTAGE CONTROLLED OSCILLATOR

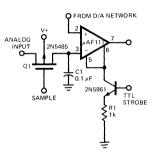

RELAY DRIVER WITH STROBE

* Absorbs inductive kickback of relay and protects IC from severe voltage transients on V⁺⁺ line.


FREQUENCY DOUBLER


Frequency range: Input — 5.0 kHz to 50 kHz Output — 10 kHz to 100 kHz

ZERO CROSSING DETECTOR DRIVING MOS SWITCH

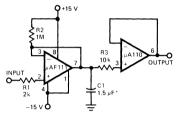

1

ZERO CROSSING DETECTOR DRIVING MOS LOGIC

STROBING OFF BOTH INPUT* AND OUTPUT STAGES

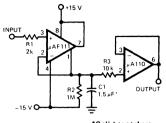
*Typical input current is 50 pA with inputs strobed off.


DRIVING GROUND-REFERRED LOAD

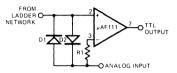

*Input polarity is reversed when using pin 1 as output.

TYPICAL APPLICATIONS (Cont'd)

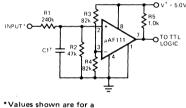
COMPARATOR AND SOLENOID DRIVER



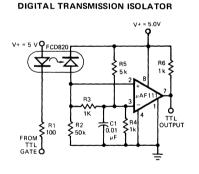
NEGATIVE PEAK DETECTOR


*Solid tantalum

POSITIVE PEAK DETECTOR


*Solid tantalum

USING CLAMP DIODES TO IMPROVE RESPONSE


PRECISION PHOTODIODE COMPARATOR

TTL INTERFACE WITH HIGH LEVEL LOGIC

0 to 30 V logic swing and a 15 V threshold. [†]May be added to control

speed and reduce susceptibility to noise spikes.

--0 +5 V 3.9 k R3 EPT 100 15 01 2N697 111 ттĩ OUTPUT 02 R2 2N2222 25

*R2 sets the comparison level. At comparison, the photodiode has less than 5.0 mV across it, decreasing leakages by an order of magnitude.

DEFINITIONS:

AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFFSET CURRENT - The change in input offset current over the operating temperature range divided by the operating temperature range.

AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFFSET VOLTAGE - The change in input offset voltage over the operating temperature range divided by the operating temperature range.

DIFFERENTIAL INPUT VOLTAGE RANGE - The range of voltage applied between the input terminals for which operation within specifications is assured.

INPUT BIAS CURRENT - The average of the two input currents with no signal applied.

INPUT COMMON MODE VOLTAGE RANGE - The range of common mode input voltage over the device will operate within specifications. INPUT OFFSET CURRENT - The difference between the two input currents with the output at the logic threshold voltage.

INPUT OFFSET VOLTAGE - The voltage which must be applied to the input terminals to give the logic threshold voltage at the output.

INPUT VOLTAGE RANGE - The range of voltage on either input terminal over which the device will operate as specified.

NEGATIVE OUTPUT VOLTAGE LEVEL - The dc output voltage in the negative direction with the input voltage equal to, or greater than, a minimum specified value.

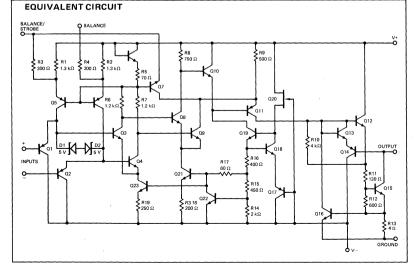
RESPONSE TIME - The interval between the application of an input step function and the time when the output voltage crosses the logic threshold level.

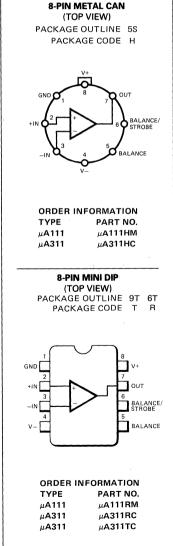
STROBE CURRENT - The maximum current taken by the strobe terminal during activation.

VOLTAGE GAIN - The ratio of the change in output voltage to the change in voltage between the input terminals producing it with the dc output in the vicinity of the logic threshold.

4-7

μΑ111 • μΑ311 VOLTAGE COMPARATORS FAIRCHILD LINEAR INTEGRATED CIRCUITS


GENERAL DESCRIPTION – the μ A111 and μ A311 are monolithic, low input current Voltage Comparators, each constructed using the Fairchild Planar* epitaxial process. The μ A111 series operates from the single 5 V integrated circuit logic supply to the standard \pm 15 V operational amplifier supplies. The μ A111 series is intended for a wide range of applicatons including driving lamps or relays and switching voltages up to 50 V at currents as high as 50 mA. The output stage is compatible with RTL, DTL, TTL and MOS logic. The input stage current can be raised to increase input slew rate.


- LOW INPUT BIAS CURRENT 150 nA MAX (111), 250 nA MAX (311)
- LOW INPUT OFFSET CURRENT 20 nA MAX (111), 50 nA MAX (311)
- DIFFERENTIAL INPUT VOLTAGE ±30 V
- POWER SUPPLY VOLTAGE SINGLE 5.0 V SUPPLY TO ±15 V
- OFFSET VOLTAGE NULL CAPABILITY
- STROBE CAPABILITY

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM	RATINGS	
Voltage Between V+ a	nd V— Terminals	36 V
Output to V- (µA111)	50 V
(μA311)	40 V
Ground to V-		30 V
Differential Input Vol	tage	±30 V
Input Voltage (Note 1)	±15 V
Internal Power Dissipa	tion (Note 2)	500 mW
Output Short Circuit I	Duration	10 s
Storage Temperature F	Range (Metal Can and Hermetic Mini DIP)	-65° C to $+150^{\circ}$ C
	(Molded Mini DIP)	-55°C to +125°C
Operating Temperatur	e Range	
Military (EE° 0 ++ 110E° 0

CONNECTION DIAGRAMS

*Planar is a patented Fairchild process

FAIRCHILD • μ A111 • μ A311

μA111

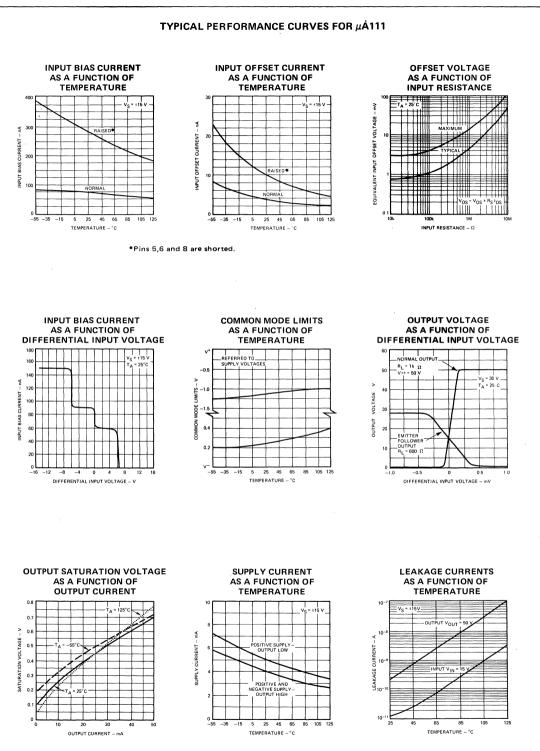
CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS		
Input Offset Voltage (Note 4)	T _A = 25°C, R _S ≤ 50 kΩ		0.7	3.0	mV		
Input Offset Current (Note 4)	$T_A = 25^{\circ}C$		4.0	10	nA		
Input Bias Current	$T_A = 25^{\circ}C$		60	100	nA		
Voltage Gain	$T_A = 25^{\circ}C$		200		V/mV		
Response Time (Note 5)	$T_A = 25^{\circ}C$		200		ns		
Saturation Voltage	V _{IN} ≤ −5 mV, I _{OUT} = 50 mA						
	$T_A = 25^{\circ}C$		0.75	1.5	v		
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA		
Output Leakage Current	V _{IN} ≥ 5 mV, V _{OUT} = 35 V						
	$T_A = 25^{\circ}C$		0.2	10	nA		
Input Offset Voltage (Note 4)	R _S ≤ 50 kΩ			4.0	mV		
Input Offset Current (Note 4)				20	nA		
Input Bias Current				150	nA		
Input Voltage Range			±14		V		
Saturation Voltage	V ⁺ ≥ 4.5 V, V ⁻ = 0						
	$V_{IN} \le -6 \text{ mV}, I_{SINK} \le 8 \text{ mA}$		0.23	0.4	V		
Output Leakage Current	V _{IN} ≥ 5 mV, V _{OUT} = 35 V		0.1	0.5	μΑ		
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	6.0	mA		
Negative Supply Current	$T_A = 25^{\circ}C$		4.1	5.0	mA		

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 V$, $T_A = -55^{\circ}C$ to $\pm 125^{\circ}C$ unless otherwise specified, Note 3.

μA311

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise specified, Note 3.

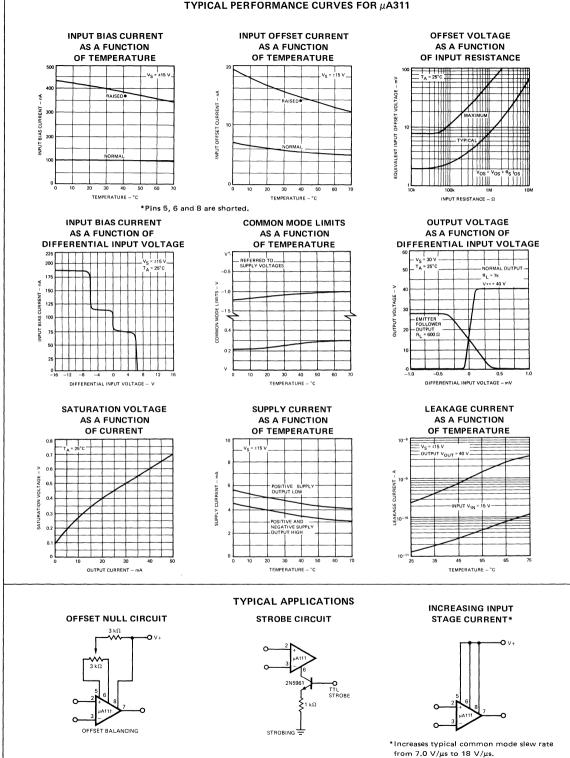
CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage (Note 4)	T _A = 25°C, R _S ≤ 50 kΩ		2.0	7.5	mV
Input Offset Current (Note 4)	$T_A = 25^{\circ}C$		6.0	50	nA
Input Bias Current	T _A = 25°C		100	250	nA
Voltage Gain	$T_A = 25^{\circ}C$		200		V/mV
Response Time (Note 5)	$T_A = 25^{\circ}C$		200		ns
Saturation Voltage	V _{IN} ≤ −10 mV, I _{OUT} = 50 mA				
	$T_A = 25^{\circ}C$		0.75	1.5	V
Strobe On Current	$T_A = 25^{\circ}C$		3.0		mA
Output Leakage Current	V _{IN} ≥ 10 mV, V _{OUT} = 35 V				
	$T_A = 25^{\circ}C$		0.2	50	nA
Input Offset Voltage (Note 4)	R _S ≤ 50 kΩ			10	mV
Input Offset Current (Note 4)				70	nA
Input Bias Current				300	nA
Input Voltage Range			±14		V
Saturation Voltage	$V^+ \ge 4.5 V, V^- = 0$				
	V _{IN} ≤ −10 mV, I _{SINK} ≤ 8 mA		0.23	0.4	V
Positive Supply Current	$T_A = 25^{\circ}C$		5.1	7.5	mA
Negative Supply Current	$T_A = 25^{\circ}C$		4.1	5.0	mA


NOTES:

This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
 Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for metal can; 8.3 mW/°C for

 Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for metal can; 8.3 mW/°C for mini DIP.

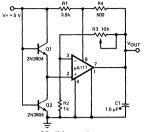
The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to ±15 V supplies.
 The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a

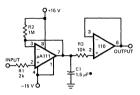

 The onset contages and onset currents given are the maximum values required to onve the output within a voit of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
 The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.



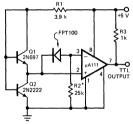
FAIRCHILD • μA111 • μA311

4-10

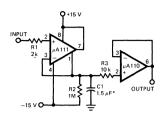



TYPICAL APPLICATIONS (Cont'd)

ADJUSTABLE LOW VOLTAGE REFERENCE SUPPLY

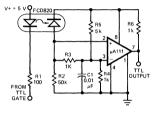

Solid tantalum

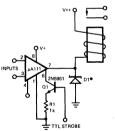
NEGATIVE PEAK DETECTOR



*Solid tantalum

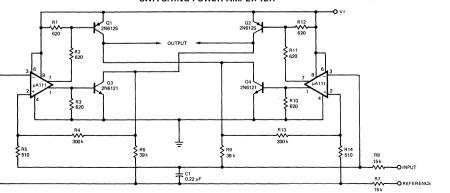
PRECISION PHOTODIODE COMPARATOR

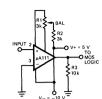

• R2 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing leakages by an order of magnitude.


POSITIVE PEAK DETECTOR

Solid tantalum

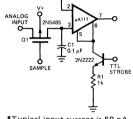
DIGITAL TRANSMISSION ISOLATOR




RELAY DRIVER WITH STROBE

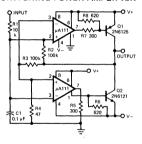
 Absorbs inductive kickback of relay and protects IC from severe voltage transients on V++ line.

SWITCHING POWER AMPLIFIER



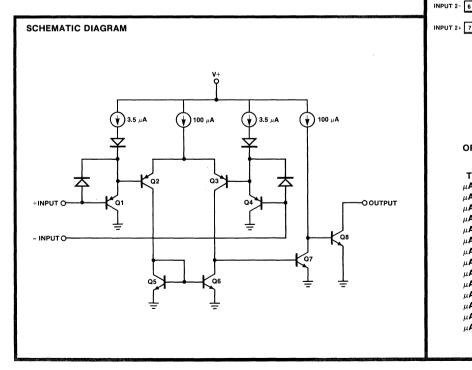
ZERO CROSSING DETECTOR

DRIVING MOS LOGIC


STROBING OF BOTH INPUT AND OUTPUT STAGES

 Typical input current is 50 pA with inputs strobed off.

SWITCHING POWER AMPLIFIER



μ A139/239/339 • μ A139A/239A/339A μ A2901 • μ A3302

LOW-POWER, LOW OFFSET VOLTAGE QUAD COMPARATORS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A139 series consists of four independent precision voltage comparators designed specifically to operate from a single power supply. Operation from split power supplies is also possible and the low power supply current drain is independent of the supply voltage range. Darlington connected PNP input stage allows the input common-mode voltage to include ground.

- SINGLE SUPPLY OPERATION +2.0 V TO +36 V
- DUAL SUPPLY OPERATION ±1.0 V TO ±18 V
- ALLOW COMPARISON OF VOLTAGES NEAR GROUND POTENTIAL
- LOW CURRENT DRAIN 800 μ A TYP
- COMPATIBLE WITH ALL FORMS OF LOGIC
- LOW INPUT BIAS CURRENT 25 nA TYP
- LOW INPUT OFFSET CURRENT ±5 nA TYP
- LOW OFFSET VOLTAGE ±2 mV

ORDER INFORMATION

CONNECTION DIAGRAM

14-PIN DIP

PACKAGE OUTLINES 6A 9A

OUTPUT 2 1

OUTPUT

INPUT 1

INPUT 14

PACKAGE CODES D P

TYPE	PART NO.
μ Α139Α	μ Α139ADM
μ A139	μ Α139DM
μ Α239Α	μ Α239ADC
μ Α239Α	μ Α239ΑΡC
μ Α239	μ Α239DC
μ Α239	μ Α239PC
μ Α339Α	μA339ADC
μ Α339Α	μΑ339ΑΡΟ
μ Α339	μ Α339DC
μΑ339	μ Α339PC
μ A2901	μ A2901DC
μ Α2901	μ Α2901PC
μ A3302	μA3302DC
μ A3302	μA3302PC

14 OUTPUT 3

13 OUTPUT 4

12 GND

10 INPUT 4

11 INPUT 4

9 INPUT 3+

INPUT 3.

			μA139A		μΑ239Α, μΑ339Α			μA139		μA239, μA339			μA2901			μA3302				
CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	MIN	TYP	МАХ	MIN	TYP	MAX	MIN	TYP	МАХ	MIN	TYP	мах	MIN	TYP	мах	UNIT
Input Offset Voltage	T _A = 25°C, (Note 9)		±1.0	±2.0		±1.0	±2.0		±2.0	±5.0	-	±2.0	±5.0		±2.0	±7.0		±3.0	±20	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$ with Output in Linear Range, $T_A=25^\circ C,\ (Note\ 5)$		25	100		25	250		25	100		25	250		25	250		25	500	nA
Input Offset Current	$I_{IN(+)}$ - $I_{IN(-)}$, $T_A = 25^{\circ}C$		±5.0	±25		±5.0	±50		±5.0	±25		±5.0	±50		±5.0	±50		±5.0	±100	nA
Input Common-Mode Voltage Range	$T_A = 25^{\circ}C$, (Note 6)	0		V+-1.5	0		V+-1.5	. 0		V+-1.5	0		V+-1.5	0		V⁺-1.5	0		V+-1.5	V
Supply Current	$ \begin{array}{l} R_L = \infty \mbox{ on all Comparators, } T_A = 25^\circ C \\ R_L = \infty, V^+ = 30 V, T_A = 25^\circ C \end{array} $		0.8	2.0		0.8	2.0		0.8	2.0		0.8	2.0		0.8 1.0	1.0 2.5		0.8	2.0	mA
Voltage Gain	$\label{eq:RL} \begin{split} R_L &\geq 15 \ k\Omega, \ V^* = 15 \ V \ (To \\ Support \ Large \ V_O \ Swing), \ T_A = 25^\circ C \end{split}$	50	200		50	200			200			200		25	100		2	30		V/mV
Large Signal Response Time	$ \begin{array}{l} V_{IN} = TTL \ Logic \ Swing, \ V_{ref} = \\ 1.4 \ V, \ V_{RL} = 5.0 \ V, \ R_L = 5.1 \ k\Omega, \\ T_A = 25^\circ C \end{array} $		300			300			300			300			300			300		ns
Response Time			1.3			1.3			1.3			1.3			1.3			1.3		μs
Output Sink Current	$ \begin{array}{l} V_{IN(-)} \geq 1.0 \ V, \ V_{IN(+)} = 0, \\ V_O \leq 1.5 \ V, \ T_A = 25^\circ C \end{array} $	6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		2.0	16		mA
Saturation Voltage	$ \begin{array}{l} V_{IN(-)} \geq 1.0 \ V, \ V_{IN(+)} = \! 0, \\ I_{sink} \leq 4.0 \ mA, \ T_A = 25^{\circ} C \end{array} $		250	400		250	400		250	400		250	400			400		250	500	mV
Output Leakage Current	$ \begin{array}{l} V_{IN(^+)} \geq \ 1.0 \ V, \ V_{IN(^-)} = \ 0, \\ V_O = \ 30 \ V, \ T_A = \ 25^\circ C \end{array} $			200			200			200			200			200			200	nA
Input Offset Voltage	Note 9			4.0			4.0			9.0			9.Ó		9.0	15			40	mV
Input Offset Current	lin(+) - lin(-)			±100			±150			±100			±150		50	200			300	nA
Input Bias Current	I _{IN(+)} or I _{IN(-)} with Output in Linear Range			300			400			300			400		200	500			1000	nA
Input Common-Mode Voltage Range		0		V+-2.0	0		V*-2.0	0		V+-2.0	0		V+-2.0	0		V+-2.0	0		V+-2.0	v
Saturation Voltage	$\label{eq:VIN(-)} \begin{split} V_{IN(-)} &\geq 1.0 \ V, \ V_{IN(+)} = 0, \\ I_{SINk} &\leq 4 \ mA \end{split}$			700			700			700			700		400	700			700	mV
Output Leakage Current	$\begin{array}{l} V_{IN(+)} \geq 1.0 \ V, \ V_{IN(-)} = 0, \\ V_O = 30 \ V \end{array}$			1.0			1.0			1.0			1.0			1.0			1.0	μA
Differential Input Voltage	Keep all V _{IN's} ≥ 0 V (or V-, if used), (Note 8)			V+			V+			36			36	0		V+			Vcc	V

FAIRCHILD • μ A139/239/339 • μ A139A/239A/339A • μ A2901 • μ A3302

ABSOLUTE MAXIMUM RATINGS

μΑ139/μΑ239/μΑ339 μΑ139Α/μΑ239Α/μΑ339Α μΑ2901

μ**Α3302**

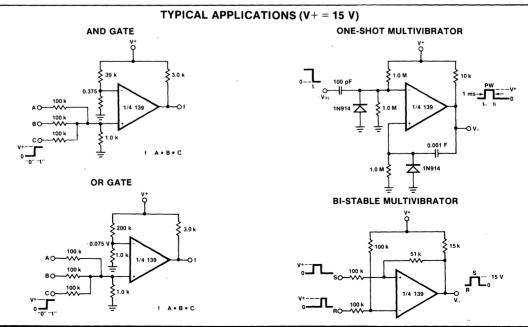
Supply Voltage, V+ 36 V or ±18 V 28 V or +14 V **Differential Input Voltage** 36 V 28 V Input Voltage Range -0.3 V to +36 V -0.3 V to +28 V Power Dissipation (Note 1) 9A. 6A 1 W 1 W Continuous Continuous Output Short-Circuit to Gnd, (Note 2) Input Current ($V_{IN} < -0.3 V$), (Note 3) 50 mA 50 m A **Operating Temperature Range** μΑ339, μΑ339Α 0° C to +70° C μA239, μA239A -25° C to +85° C μA139, μA139A -55° C to +125° C μA2901, μA3302 -40° C to +85° C Storage Temperature Range -65° C to +150° C -65° C to +150° C Pin Temperature (Soldering, 10 seconds) 300° C 300° C

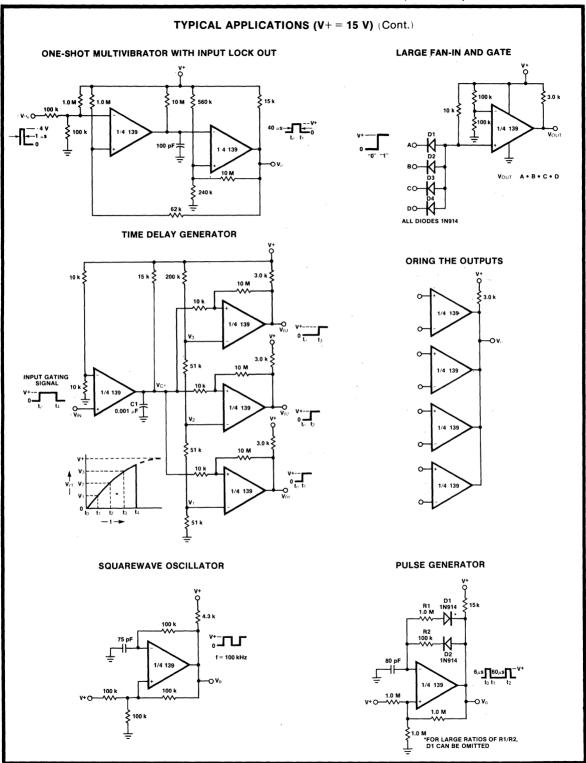
NOTES:

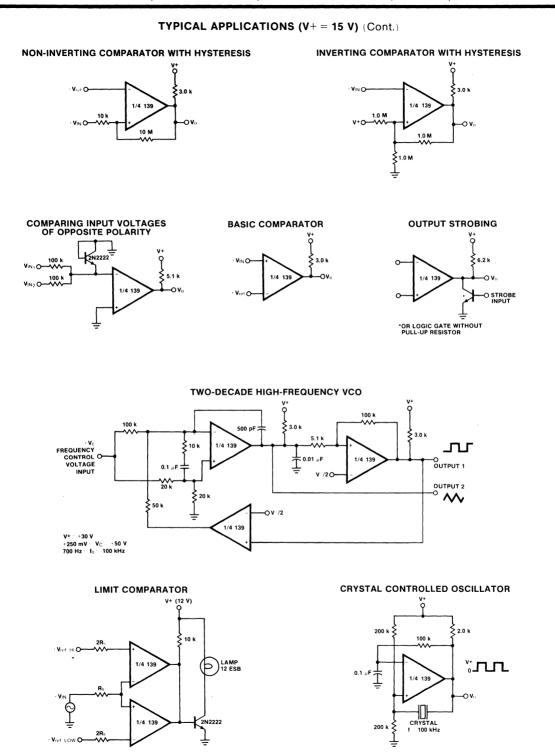
- For operating at high temperatures, the μA339/μA339A, μA2901 μA3302 must be derated based on a 125° C maximum junction temperature and a thermal resistance of 125° C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The μA139 and μA139A ∋ must be derated based on a 150° C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ιP_D ≤ 100 mWi, provided the output transistors are allowed to saturate.
- 2. Short circuits from the output to V* can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V*.
- 3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition tiode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will reestablish when the input voltage, which negative, again returns to a value greater than -0.3 V.
- 4. These specifications apply for V⁺ = 5.0 V and -55° C ≤ T_A ≤ +125° C, unless otherwise stated. With the μA239/μA239A, all temperature specifications are limited to -25° C ≤ T_A ≤ +85° C, the μA339/μA339A temperature specifications are limited to 0° C ≤ T_A ≤ +70° C, and the μA2901, μA3302 temperature range is -40° C ≤ T_A ≤ +85° C.
- 5. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
- 6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltalge range is V⁺ -1.5 V, but either or both inputs can go to +30 V without damage.
- 7. The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained; see typical performance characteristics section.
- 8. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V or 0.3 V below the magnitude of the negative power supply, if used.
- 9. At output switch point, $V_0 \cong 1.4$ V, $R_S = 0\Omega$ with V⁺ from 5 V; and over the full input common-mode range $(0 \text{ V to V}^+ 1.5 \text{ V})$.
- 10. For input signals that exceed V_{CC}, only the overdriven comparator is affected. With a 5 V supply, V_{IN} should be limited to 25 V max, and a limiting resistor should be used on all inputs that might exceed the positive supply.

APPLICATION HINTS

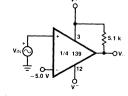
The μ A139 series are high-gain, wide-bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < 10 k Ω reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.


All pins of any unused comparators should be grounded.


The bias network of the μ A139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 V to 30 V.

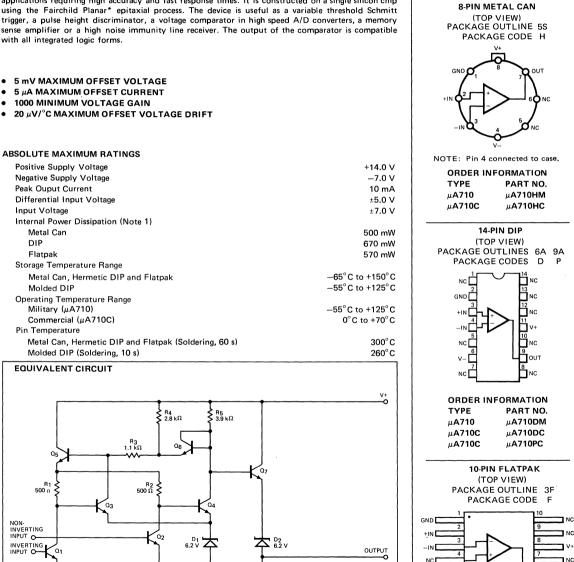

It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V (at 25°C). An input clamp diode can be used as shown in the applications section.


The output of the μ A139 series is the uncommitted collector of a grounded-emitter npn output transistor. Many collectors can be tied together to provide an output ORing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V⁺ terminal of the μ A139 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V⁺) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor voltage is limited by the approximately 60 Ω saturation resistance of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

TYPICAL APPLICATIONS (V+ = 15 V) (Cont.) $\begin{array}{l} \text{LOW FREQUENCY OP AMP} \\ (V_{O}=0 \text{ V FOR } V_{IN}=0 \text{ V}) \end{array}$ LOW FREQUENCY OP AMP TRANSDUCER AMPLIFIER ₹15 k 15 k 🗲 10 1 3.0 k VIN 🔿 1/4 139 -0 V 2N2222 139 0.5 PICKUP 100 k 1/4 139 100 k -ΟV .0 k 05 "F 20 M Av 100 .0 k 土 100 Aν <u></u>≦10 k ZERO CROSSING DETECTOR (SINGLE POWER SUPPLY) LOW FREQUENCY OP AMP WITH OFFSET ADJUST OFFSET ADJ 100 k 100 5.1 k 5 1 k 15 k 1N914 1/4 139 2N2222 1/4 139 -0 V c 0.5 ... 20 M R1 100 k -0 V -10 k 1.0 k SPLIT-SUPPLY APPLICATIONS V+ = +15V and V- = -15V ZERO CROSSING DETECTOR MOS CLOCK DRIVER ٧ł ò \$5.1 k ര 51 k 2.01 3.9 2.4 1 139 24 4 51 k 10 k -O ¢ Α 1/4 139 8.2 k 🕇 **\$**2.0 k 1/4 139 9646/002 COMPARATOR WITH A NEGATIVE REFERENCE 5.1 k 1/4 139

50 pF


≨ 6.8 k

Å-

μ**A710** HIGH SPEED DIFFERENTIAL COMPARATOR

FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION - The μ A710 is a Differential Voltage Comparator intended for applications requiring high accuracy and fast response times. It is constructed on a single silicon chip using the Fairchild Planar* epitaxial process. The device is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high speed A/D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible

1 OUT ORDER INFORMATION TYPE PART NO. μ**A710** μ**A710FM**

*Planar is a patented Fairchild process.

CONNECTION DIAGRAMS

Notes on following pages.

GROUND

õ

4-21

0.88

Q10

R6 1.7 kΩ

08

Q9

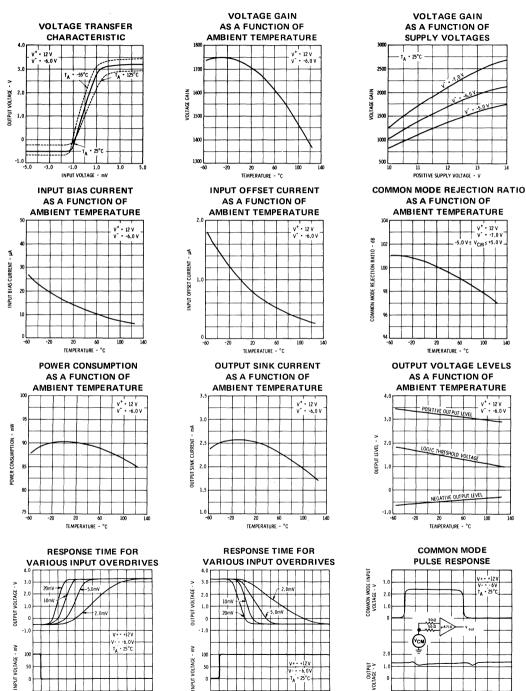
R8 100 Ω

FAIRCHILD • µA710

R _S < 200 Ω				
		0.6	2.0	mV
		0.75	3.0	μA
		13	20	μA
	1250	1700		
		200		Ω
$\Delta V_{IN} \ge 5 \text{ mV}, V_{OUT} = 0$	2.0	2.5		mA
		40		ns
-55° C ≤ T _A ≤ +125° C:				
$R_S \le 200 \Omega$			3.0	mV
$R_{S} = 50 \Omega, T_{A} = 25^{\circ}C \text{ to } T_{A} = +125^{\circ}C$		3.5	10	μV/°C
$R_{S} = 50 \Omega$, $T_{A} = 25^{\circ} C$ to $T_{A} = -55^{\circ} C$		2.7	10	μV/°C
$T_{A} = +125^{\circ} C$		0.25	3.0	μΑ
$T_A = -55^{\circ}C$		1.8	7.0	μΑ
$T_{A} = 25^{\circ} C$ to $T_{A} = +125^{\circ} C$		5.0	25	nA/°C
$T_A = 25^\circ C$ to $T_A = -55^\circ C$		15	75	nA/°C
T _A = −55 ^{°°} C		27	45	μA
V-=-7.0 V	±5.0			V
$R_{S} \leq 200 \Omega$	80	100		dB
	±5.0			V
	1000			
$\Delta V_{IN} \ge 5 \text{ mV}, 0 \le I_{OUT} \le 5.0 \text{ mA}$	2.5	3.2	4.0	V
$\Delta V_{IN} \ge 5 \text{ mV}$	-1.0	-0.5	0	V
	0.5	1.7		mA
$T_A = -55^\circ C, \Delta V_{IN} \ge 5 \text{ mV}, V_{OUT} = 0$	1.0	2.3		mA
V _{OUT} ≤ 0		5.2	9.0	mA
		4.6	7.0	mA
V _{OUT} = Gnd, Inverting Input = +10 mV		90	150	mW
	$\begin{array}{l} -55^{\circ}C \leqslant T_{A} \leqslant +125^{\circ}C: \\ R_{S} \leqslant 200 \ \Omega \\ R_{S} = 50 \ \Omega, \ T_{A} = 25^{\circ}C \ to \ T_{A} = +125^{\circ}C \\ R_{S} = 50 \ \Omega, \ T_{A} = 25^{\circ}C \ to \ T_{A} = -55^{\circ}C \\ T_{A} = +125^{\circ}C \\ T_{A} = -55^{\circ}C \\ T_{A} = 25^{\circ}C \ to \ T_{A} = +125^{\circ}C \\ T_{A} = 25^{\circ}C \ to \ T_{A} = -55^{\circ}C \\ T_{A} = -55^{\circ}C \\ V = -7.0 \ V \\ R_{S} \leqslant 200 \ \Omega \\ \end{array}$	$\begin{array}{c c} -55^{\circ}C \leqslant T_{A} \leqslant +125^{\circ}C: \\ R_{S} \leqslant 200 \ \Omega \\ R_{S} = 50 \ \Omega, \ T_{A} = 25^{\circ}C \ to \ T_{A} = +125^{\circ}C \\ R_{S} = 50 \ \Omega, \ T_{A} = 25^{\circ}C \ to \ T_{A} = -55^{\circ}C \\ T_{A} = +125^{\circ}C \\ T_{A} = +125^{\circ}C \\ T_{A} = 25^{\circ}C \ to \ T_{A} = +125^{\circ}C \\ T_{A} = -55^{\circ}C \\ T_{A} = -55^{\circ}C \\ V = -7.0 \ V \\ +5.0 \\ R_{S} \leqslant 200 \ \Omega \\ \hline \\ \Delta V_{IN} \geqslant 5 \ mV, \ 0 \leqslant I_{OUT} \leqslant 5.0 \ mA \\ 2.5 \\ \Delta V_{IN} \geqslant 5 \ mV, \ 0 \leqslant I_{OUT} \leqslant 5.0 \ mA \\ 2.5 \\ \Delta V_{IN} \geqslant 5 \ mV, \ 0 \leqslant I_{OUT} \leqslant 5.0 \ mA \\ 2.5 \\ \Delta V_{IN} \geqslant 5 \ mV, \ 0 \leqslant I_{OUT} \leqslant 0 \\ OUT \ \leqslant 0 \\ V_{OUT} = \ Gnd, \ Inverting \ Input \ = +5 \ mV \\ V_{OUT} = \ Gnd, \ Inverting \ Input \ = +10 \ mV \\ uA710C \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CHARACTERISTICS	CONDITIONS (Note 2)	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	R _S ≤ 200 Ω		1.6	5.0	mV
Input Offset Current			1.8	5.0	μA
Input Bias Current			16	25	μA
Voltage Gain		1000	1500		
Output Resistance			200		Ω
Output Sink Current	$\Delta V_{IN} \ge 5 \text{ mV}, V_{OUT} = 0$	1.6	2.5		mA
Response Time (Note 2)			40		ns

The following specifications apply	for $0^{\circ}C \leq T_A \leq +70^{\circ}C$:				
Input Offset Voltage	R _S ≤ 200 Ω			6.5	mV
Average Temperature Coefficient	$R_{S} = 50 \Omega$, $T_{A} = 0^{\circ}C$ to $T_{A} = +70^{\circ}C$		5.0	20	μV/°C
of Input Offset Voltage					
Input Offset Current				7.5	μA
Average Temperature Coefficient	$T_{A} = 25^{\circ} C \text{ to } T_{A} = +70^{\circ} C$		15	50	nA/°C
of Input Offset Current	$T_A = 25^{\circ}C$ to $T_A = 0^{\circ}C$		24	100	nA/°C
Input Bias Current	$T_A = 0^\circ C$		25	40	μΑ
Input Voltage Range	V = -7.0 V	±5.0			V
Common Mode Rejection Ratio	R _S ≤ 200 Ω	70	98		dB
Differential Input Voltage Range		±5.0			V
Voltage Gain		800			
Output HIGH Voltage	$\Delta V_{IN} \ge 5 \text{ mV}, 0 \le I_{OUT} \le 5.0 \text{ mA}$	2.5	3.2	4.0	V
Output LOW Voltage	$\Delta V_{IN} \ge 5 \text{ mV}$	-1.0	-0.5	0	V
Output Sink Current	$\Delta V_{IN} \ge 5 \text{ mV}, V_{OUT} = 0$	0.5			mA
Positive Supply Current	V _{OUT} ≤ 0		5.2	9.0	mA
Negative Supply Current	VOUT = Gnd, Inverting Input = +5 mV		4.6	7.0	mA
Power Consumption	V _{OUT} = Gnd, Inverting Input = +10 mV		90	150	mW


NOTES:

1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for Metal Can, 8.3 mW/°C for DIP, and 7.1 mW/°C for the Flatpak.

The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage as follows: For 710, 1.8 V at -55°C, 1.4 V at +25°C, 1.0 V at +125°C. For 710C, 1.5 V at 0°C, 1.4 V at +25°C, and 1.2 V at +70°C.

3. The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

TYPICAL PERFORMANCE CURVES FOR μ A710

60 TEMPERATURE - °C **OUTPUT VOLTAGE LEVELS** AS A FUNCTION OF AMBIENT TEMPERATURE OUTPUT IRESHOLD VOLT

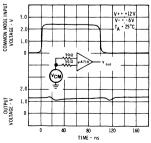
12

v⁺ • 12 v v • -7.0 v

140

100

v* 12 v


• -6.0 V

140

-5.0 V ≤ V_{CM} ≤ +5.0 V

COMMON MODE PULSE RESPONSE

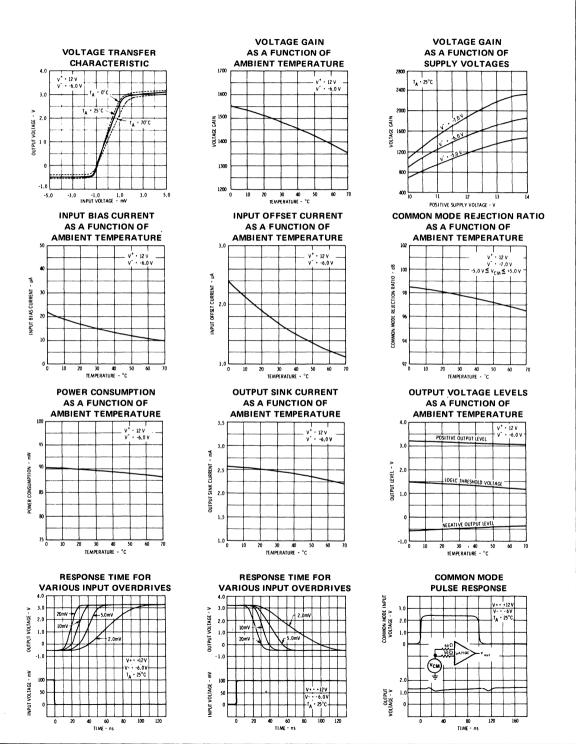
60

TIME - ns

80

20 40 100

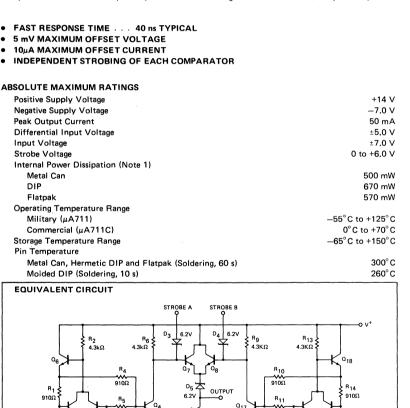
120

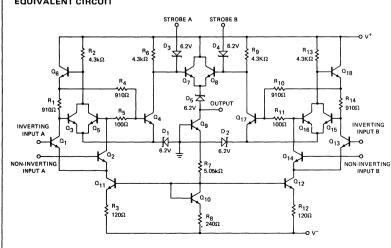

120

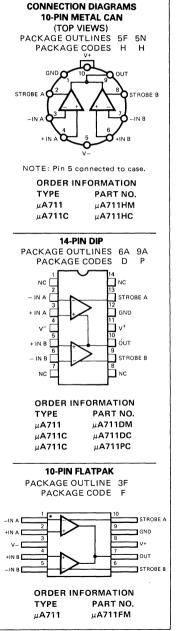
100

TIME - ns

0 20 40 60 80


TYPICAL PERFORMANCE CURVES FOR µA710C




μ**A711**

DUAL HIGH-SPEED DIFFERENTIAL COMPARATOR

GENERAL DESCRIPTION – The μ A711 is a Dual, Differential Voltage Comparator intended primarily for core-memory sense amplifier applications. The device features high accuracy, fast response times, large input voltage range, low power consumption and compatibility with practically all integrated logic forms. When used as a sense amplifier, the threshold voltage can be adjusted over a wide range, almost independent of the integrated circuit characteristics. Independent strobing of each comparator channel is provided, and pulse stretching on the output is easily accomplished. Other applications of the dual comparator include a window discriminator in pulse height detectors and a double-ended limit detector for automatic Go/No-Go test equipment. The μ A711, which is similar to the μ A710 differential comparator, is constructed using the Fairchild Planar* epitaxial process.

*Planar is a patented Fairchild process.

μA711

ELECTRICAL CHARACTERISTICS: T_A= 25°C, V⁺= 12 V, V⁻= -6.0 V unless otherwise specified

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	V_{OUT} = +1.4 V, $R_{S} \le 200 \Omega$, V_{CM} = 0		1.0	3.5	mV
input onset vortage	V _{OUT} = +1.4 V, R _S ≤200 Ω		1.0	5.0	mV
Input Offset Current	V _{OUT} = 1.4 V		0.5	10.0	μA
Input Bias Current			25	75	μA
Voltage Gain		750	1500		
Response Time (Note 2)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	V = -7.0 V	±5.0			v
Differential Input Voltage Range		±5.0			v
Output Resistance			200		Ω
Output HIGH Voltage	V _{IN} ≥10 mV		4.5	5.0	v
Loaded Output HIGH Voltage	V _{IN ≥} 10 mV, I _O = 5mA	2.5	3.5		v
Output LOW Voltage	V _{IN} ≥10 mV	-1.0	-0.5	0	v
Strobed Output Level	V _{STROBE} ≤0.3 V	-1.0		0	V
Output Sink Current	$V_{IN} \ge 10 \text{ mV}, V_{out} \ge 0$	0.5	0.8		mA
Strobe Current	VSTROBE = 100 mV		1.2	2.5	mA
Positive Supply Current	VOUT = Gnd, Inverting Input = +5mV		8.6		mA
Negative Supply Current	VOUT = Gnd, Inverting Input = +5mV		3.9		mA
Power Consumption			130	200	mW

The following specifications apply for -55° C \leq T_A \leq $+125^{\circ}$ C:

	R _S ≤200 Ω, V _{CM} = 0			4.5	mV
Input Offset Voltage (Note 3)	R _S ≤200 Ω			6.0	mV
Input Offset Current (Note 3)				20	μA
Input Bias Current				150	μA
Temperature Coefficient of					
Input Offset Voltage			5.0	· .	μV/°C
Voltage Gain		500			
		1			

NOTES:

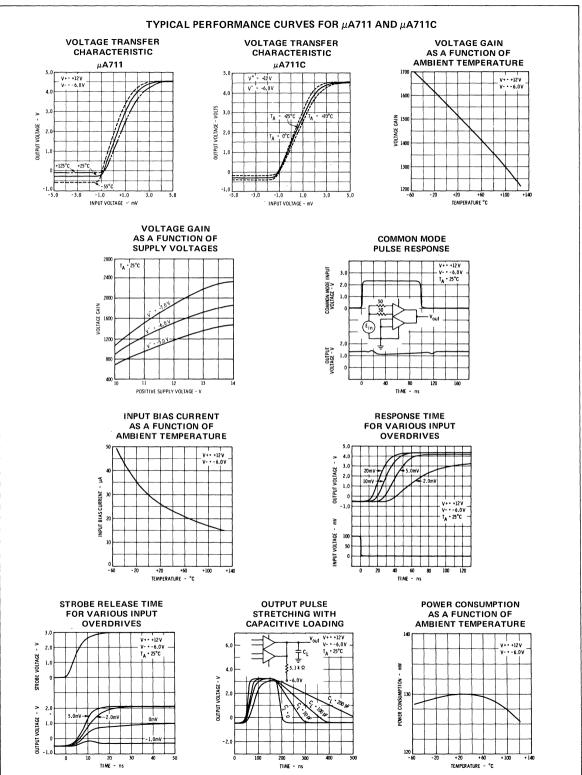
1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for the Metal Can, 8.3 mW/°C for the DIP, and 7.1 mW/°C for the Flatpak.

2. The response time specified (see definitions) is for a 100 mV step input with 5 mV overdrive.

3. The input offset voltage is specified for a logic threshold as follows:

711: 1.8 V at -55°C, 1.4 V at +25°C, 1.0 V at +125°C 711C: 1.5 V at 0°C, 1.4 V at +25°C, 1.2 V at +70°C

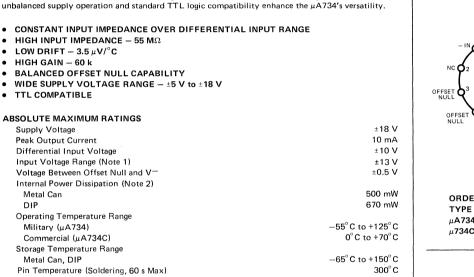
$\textbf{FAIRCHILD} \bullet \mu \textbf{A711}$

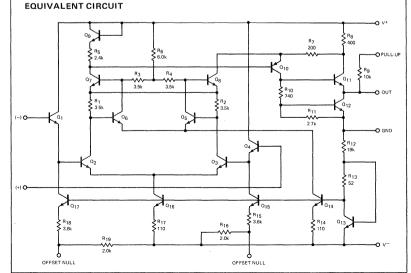

μA711C

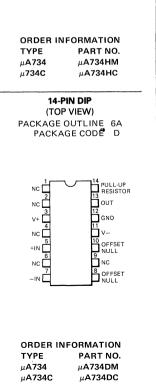
ELECTRICAL CHARACTERISTICS: $T_A = 25^{\circ}C$, $V^+ = 12 V$, $V^- = -6.0 V$ unless otherwise specified

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
	V _{OUT} = +1.4 V, R _S ≤200 Ω, V _{CM} = 0		1.0	5.0	mV
Input Offset Voltage	V _{OUT} = +1.4 V, R _S ≤200 Ω		1.0	7.5	mV
Input Offset Current	V _{OUT} = +1.4 V		0.5	15	μA
Input Bias Current			25	100	μA
Voltage Gain		700	1500		
Response Time (Note 2)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	V ⁻ = -7.0 V	±5.0			V
Differential Input Voltage Range		±5.0			V
Output Resistance			200		Ω
Output HIGH Voltage	V _{IN} ≥10 mV		4.5	5.0	V
Loaded Output HIGH Voltage	V _{IN} ≥10 mV, I _O = 5 mA	2.5	3.5	}	V
Output LOW Voltage	V _{IN} ≥10 mV	-1.0	-0.5	0	V
Strobed Output Level	V _{STROBE} ≤0.3 V	-1.0		0	V
Output Sink Current	V _{IN} ≥10 mV, V _{OUT} ≥0	0.5	0.8		mA
Strobe Current	V _{STROBE} = 100 mV		1.2	2.5	mA
Positive Supply Current	V _{OUT} Gnd, Inverting Input = +10mV		8.6		mA
Negative Supply Current	VOUTGnd, Inverting Input = +10mV		3.9		mA
Power Consumption			130	230	mW

The following specifications apply for 0° C \leq T_A \leq +70 $^\circ$ C:


Input Offert Veltere (Nets 2)	$R_{S} \leq 200 \Omega$, $V_{CM} = 0$			6.0	mV
Input Offset Voltage (Note 3)	R _S ≤ 200 Ω			10	mV
Input Offset Current (Note 3)				25	μA
Input Bias Current				150	μA
Temperature Coefficient of					
Input Offset Voltage			5.0		μV/°C
Voltage Gain		500			




1

µA734 PRECISION VOLTAGE COMPARATOR FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION — The μ A734 is a Precision Voltage Comparator constructed on a single silicon chip using the Fairchild Planar* epitaxial process. It is specifically designed for high accuracy level sensing and measuring applications. The μ A734 is extremely useful for analog-to-digital converters with twelve bit accuracies and one mega-bit conversion rates. Maximum resolution is obtained by high gain, low input offset current, and low input offset voltage. Its superior temperature stability can be improved by offset nulling which further reduces offset voltage drift. Balanced or unbalanced supply operation and standard TTL logic compatibility enhance the μ A734's versatility.

CONNECTION DIAGRAMS

10-PIN METAL CAN

(TOP VIEW)

PACKAGE OUTLINE 5N

PACKAGE CODE H

PULL-UP RESISTOR

GND

*Planar is a patented Fairchild process.

FAIRCHILD • µA734

±15 VOLT OPERATION FOR μ A734C

ELECTRICAL CHARACTERISTICS: $T_A = 25^{\circ}$ C, Pin 8 tied to +15 V, unless otherwise specified, Note 3.

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	$R_{S} \le 50 \text{ k}\Omega$		1.1	5.0	mV
Input Offset Current			3.5	25	nA
Input Bias Current			30	100	nA
Input Resistance		7.0	55		MΩ
Input Capacitance			3.0		pF
Offset Voltage Adjustment Range			8.5		mV
Large Signal Voltage Gain	R _L = 1.5 kΩ to +5.0 V	35 k	60 k		V/V
Positive Supply Current – Output LOW			4.0	5.0	mA
Negative Supply Current – Output LOW			1.5	2.0	mA
Power Consumption – Output LOW			82	105	mW
Transient Response	R _L = 1.5 kΩ to +5.0 V		200		ns
	5 mV Overdrive, 100 mV Pulse				

The following specifications apply for $0^\circ C \leqslant T_A \leqslant +70^\circ C$

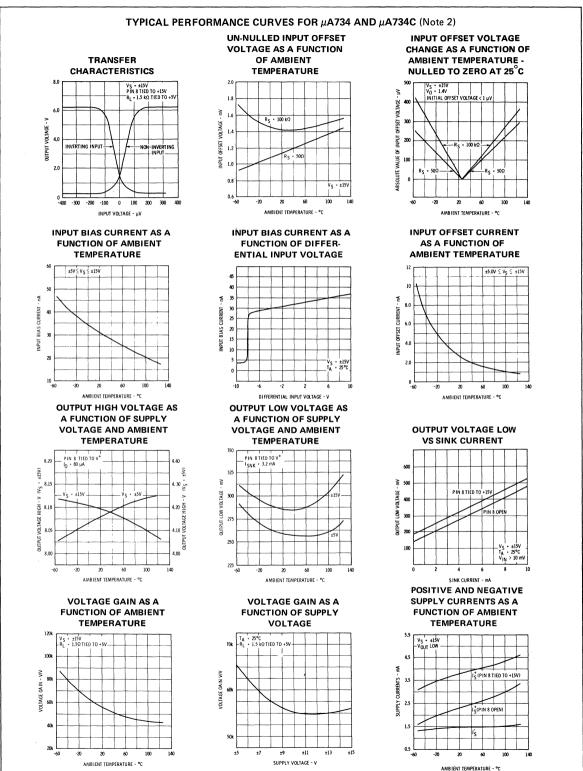
Input Offset Voltage	$R_{S} \leq 50 \text{ k}\Omega$		1.2	7.5	mV
Input Offset Current		······································	4.0	45	nA
Average Input Offset Voltage Drift	$R_{S} \leq 50 \ \Omega$				
Without External Trim			3.5	20	μV/°C
	$T_{A} = +25^{\circ} C \text{ to } +70^{\circ} C$		0.02	0.3	nA/°C
Average Input Offset Current Drift	$T_A = +25^\circ C \text{ to } 0^\circ C$		0.05	0.75	nA/°C
Input Bias Current				150	nA
Large Signal Voltage Gain	R _L = 1.5 kΩ to +5.0 V	25 k			V/V
Input Common Mode Voltage Range		±10			v
Differential Input Voltage Range		±10			v
Common Mode Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$	70	100		dB
Supply Voltage Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$		6.0	100	μV/V
$V_S = \pm 5 V$ to $\pm 18 V$					
	I _{OUT} = 0.080 mA	7.0			v
Output HIGH Voltage	I _{OUT} = 0.080 mA, V ₈ = +5.0 V	2.4		5.0	v
Output LOW Voltage	ISINK = 3.2 mA			0.4	v
Positive Supply Current – Output LOW				7.0	mA
Negative Supply Current – Output LOW				2.5	mA
Power Dissipation – Output LOW				145	mW

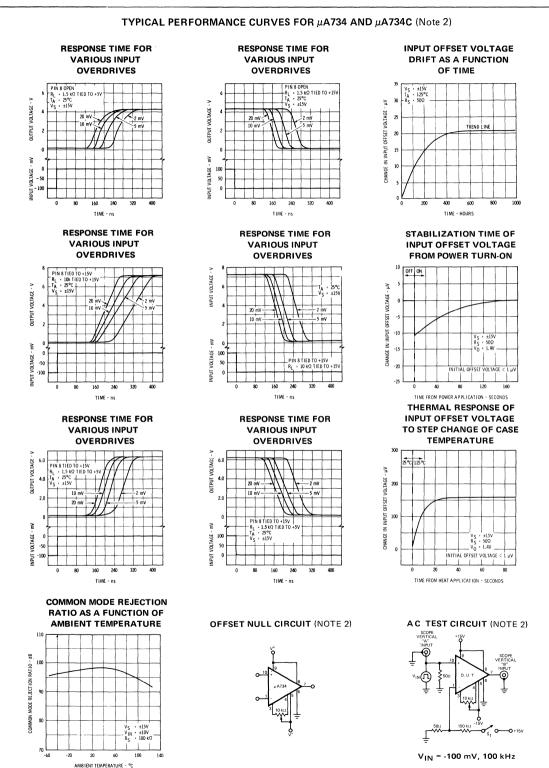
FAIRCHILD • μ **A734**

± 15 VOLT OPERATION FOR $\mu A734$

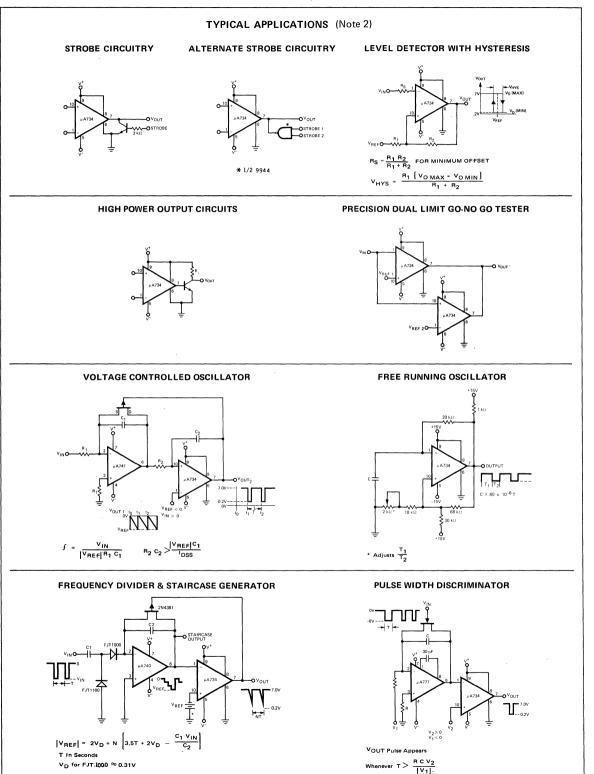
ELECTRICAL CHARACTERISTICS: $T_A = 25^{\circ}$ C, Pin 8 tied to +15 V, unless otherwise specified, Note 3.

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	R _S ≤ 50 kΩ		0.9	3.0	mV
Input Offset Current			1.5	10	nA
Input Bias Current			28	50	nA
Input Resistance		20	60		MΩ
Input Capacitance			3.0		pF
Offset Voltage Adjustment Range			8.5		mV
Large Signal Voltage Gain	R _L = 1.5 kΩ to +5.0 V	35 k	70 k		V/V
Positive Supply Current — Output LOW			4.0	5.0	mA
Negative Supply Current — Output LOW			1.5	2.0	mA
Power Consumption – Output LOW			82	105	mW
Transient Response	R _L = 1.5 kΩ to +5.0 V		200		ns
	5 mV Overdrive, 100 mV Pulse				

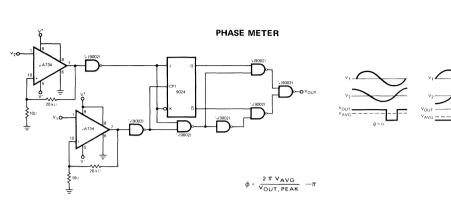

The following specifications apply for $-55^{\circ}\,C \leqslant T_{\mbox{\scriptsize A}} \leqslant +125^{\circ}\,C$

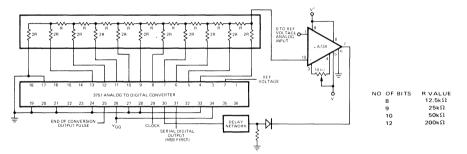

Input Offset Voltage	$R_S \le 50 \ k\Omega$		1.1	4.0	mV
Input Offset Current			3.0	20	nA
Average Input Offset Voltage Drift	$R_{S} \le 50 \text{ k}\Omega$				
Without External Trim			2.5	15	μV/°C
	$T_{A} = +25^{\circ}C \text{ to } +125^{\circ}C$		0.01	0.1	nA/°C
Average Input Offset Current Drift	$T_A = +25^{\circ}C \text{ to } -55^{\circ}C$		0.05	0.4	nA/°C
Input Bias Current				150	nA
Large Signal Voltage Gain	R _L = 1.5 kΩ to +5.0 V	25 k			V/V
Input Common Mode Voltage Range		±10			V
Differential Input Voltage Range		±10			v
Common Mode Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$	70	.100		dB
Supply Voltage Rejection Ratio	$R_{S} \le 50 \text{ k}\Omega$		5.0	100	μV/V
$V_{S} = \pm 5 V$ to $\pm 18 V$					
	I _{OUT} = 0.080 mA	7.0			v
Output HIGH Voltage	I _{OUT} = 0.080 mA, V ₈ = +5.0 V	2.4		5.0	v
Output LOW Voltage	I _{SINK} = 3.2 mA			0.4	V
Positive Supply Current – Output LOW				7.0	mA
Negative Supply Current – Output LOW				2.5	mA
Power Dissipation – Output LOW				145	mW

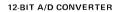
NOTES:

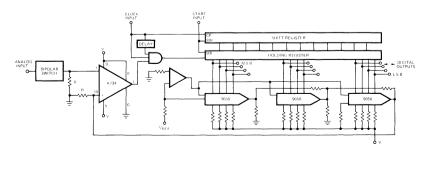

1. Rating applies for ± 15 V supplies. For other supply voltages the rating is within 2 V of either supply.

Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for metal can, 8.3 mW/°C for DIP.
 Pin numbers refer to metal can package.

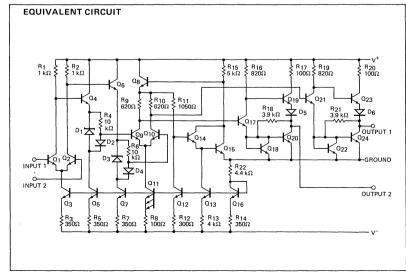


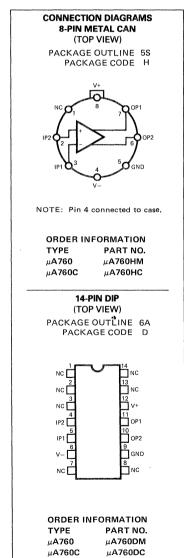

4




TYPICAL APPLICATIONS (Note 2)

12-BIT A/D CONVERTER


µA760 HIGH SPEED DIFFERENTIAL COMPARATOR


GENERAL DESCRIPTION – The μ A760 is a Differential Voltage Comparator offering considerable speed improvement over the μ A710 family and operation from symmetric supplies of from ±4.5 V to ±6.5 V. The μ A760 can be used in high speed analog to digital conversion systems and as a zero crossing detector in disc file and tape amplifiers. The μ A760 output features balanced rise and fall times for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads.

- GUARANTEED HIGH SPEED 25 ns MAX
- GUARANTEED DELAY MATCHING ON BOTH OUTPUTS
- COMPLEMENTARY TTL COMPATIBLE OUTPUTS
- HIGH SENSITIVITY
- USES STANDARD SUPPLY VOLTAGES

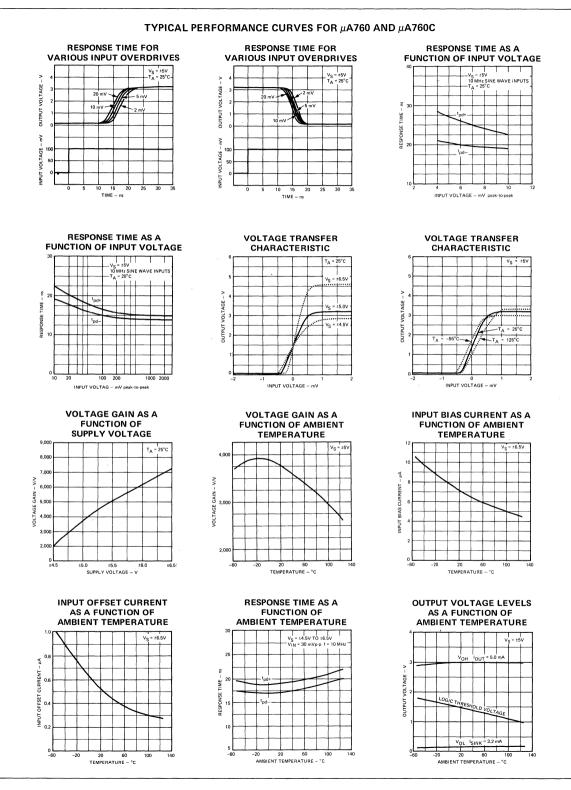
ABSOLUTE MAXIMUM RATINGS

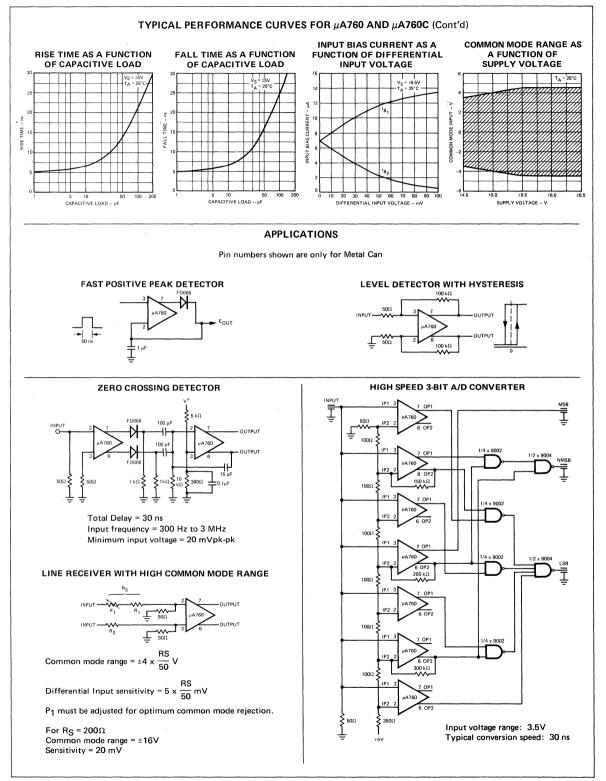
Positive Supply Voltage	+8 V
Negative Supply Voltage	-8 V
Peak Output Current	10 mA
Differential Input Voltage	±5 V
Input Voltage	$V + \ge V_{IN} \ge V -$
Internal Power Dissipation (Note 1)	
Metal Can	500 mW
DIP	670 mW
Operating Temperature Range	
Military (µA760)	–55° C to 125° C
Commercial (µA760C)	0°C to 70°C
Storage Temperature Range	
Metal Can and DIP	-65° C to 150° C

FAIRCHILD • μ A760

	μΑ760	- 05% C for t	ningt figurage		
	± 4.5 V to ± 6.5 V, T _A = -55° C to +125° C, T _A TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	R _S ≤ 200Ω		1.0	6.0	mV
Input Offset Current		+	0.5	7.5	μA
Input Bias Current			8.0	60	μA
Output Resistance (either output)	Vout = Voh		100		Ω
	Note 2, T _A = 25°C		18	30	ns
Response Time	Note 3, T _A = 25°C			25	ns
	Note 4		16		ns
Response Time Difference between Outputs					
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } - V_{IN2})$	Note 2, $T_A = 25^{\circ}C$			5.0	ns
$(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN1})$	Note 2, T _A = 25°C			5.0	ns
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } +V_{IN2})$	Note 2, T _A = 25°C			7.5	ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	Note 2, $T_A = 25^{\circ}C$			7.5	ns
Input Resistance	f = 1 MHz		12		kΩ
Input Capacitance	f = 1 MHz		8.0		pF
Average Temperature Coefficient of Input Offset Voltage	$R_{S} = 50\Omega$, $T_{A} = -55^{\circ}C$ to $T_{A} = +125^{\circ}C$		3.0		μV/°C
Average Temperature Coefficient	$T_{A} = 25^{\circ}C$ to $T_{A} = +125^{\circ}C$		2.0		nA/°C
of Input Offset Current	$T_A = 25^\circ C$ to $T_A = -55^\circ C$		7.0		nA/°C
Input Voltage Range	V _S = ±6.5V	±4.0	±4.5		V
Differential Input Voltage Range			±5.0		v
	$0 \le I_{OUT} \le 5.0 \text{ mA}$				
Output HIGH Voltage (either output)	V _S = ±5.0V	2.4	3.2		v
	I _{OUT} = 80 μA, V _S = ±4.5V	2.4	3.0		v
Output LOW Voltage (either output)	ISINK = 3.2 mA		0.25	0.4	V
Positive Supply Current	V _S = ±6.5V		18	32	mA
Negative Supply Current	V _S = ±6.5V		9.0	16	mA

FAIRCHILD • µA760


CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	$R_{S} \leq 200\Omega$		1.0	6.0	mV
Input Offset Current			0.5	7.5	μΑ
Input Bias Current			8.0	60	μΑ
Output Resistance (either output)	V _{OUT} = V _{OH}		100		Ω
	Note 2, $T_A = 25^{\circ}C$		18	30	ns
Response Time	Note 3, $T_A = 25^{\circ}C$			25	ns
	Note 4		16		ns
Response Time Difference between Outputs					
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } - V_{IN2})$	Note 2, $T_A = 25^{\circ}C$			5.0	ns
$(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN1})$	Note 2, $T_A = 25^{\circ}C$			5.0	ns
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } + V_{IN2})$	Note 2, $T_A = 25^{\circ}C$			10	ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	Note 2, $T_A = 25^{\circ}C$			10	ns
Input Resistance	f = 1 MHz		12		kΩ
Input Capacitance	f = 1 MHz		8.0		pF
Average Temperature Coefficient of Input Offset Voltage	$R_{S} = 50\Omega$, $T_{A} = 0^{\circ}C$ to $T_{A} = +70^{\circ}C$		3.0		μV/°C
Average Temperature Coefficient	$T_A = 25^{\circ}C$ to $T_A = +70^{\circ}C$		5.0		nA/°C
of Input Offset Current	$T_A = 25^{\circ}C$ to $T_A = 0^{\circ}C$		10		nA/°C
Input Voltage Range	V _S = ±6.5V	±4.0	±4.5		V
Differential Input Voltage Range			±5.0	i	
	$0 \le I_{OUT} \le 5.0 \text{ mA}$				
Output HIGH Voltage (either output)	V _S = ±5.0V	2.4	3.2		v
	I _{OUT} = 80 μA, V _S = ±4.5V	2.5	3.0		v
Output LOW Voltage (either output)	^I SINK = 3.2 mA	1	0.25	0.4	v
Positive Supply Current	V _S = ±6.5V		18	34	mA
Negative Supply Current	V _S = ±6.5V		9.0	16	mA


NOTES

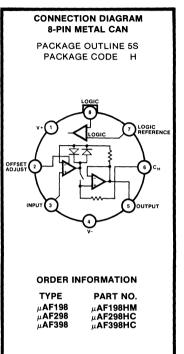
1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for metal can and 8.3 mW/°C for the DIP.

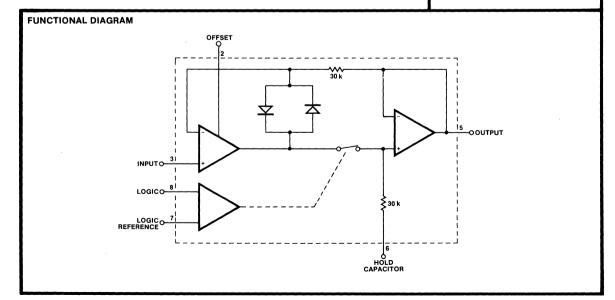
- 2.
- з.

Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output. Response time measured from the 50% point of a 2 Vp-p 10 MHz sinusoidal input to the 50% point of the output. Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic 4. threshold.

		ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
1		LINEAR INDUSTRY CROSS REFERENCE	2
	\mathbf{N}	QUALITY, RELIABILITY AND HI REL PROCESSING	3
		VOLTAGE COMPARATORS	4
A CONTRACTOR		DATA ACQUISITION	5
		LINE CIRCUITS DRIVERS, RECEIVERS AND TRANSCEIVERS	6
,.š	\mathbf{V}	PERIPHERAL AND DISPLAY DRIVERS	7
ļ		MEMORY INTERFACE	8
		TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
		DATA TRANSMISSION INFORMATION	1
		ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	1
		FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	1:

DATA ACQUISITION

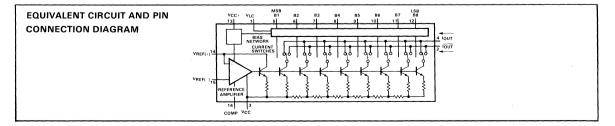

µAF198/µAF298/µAF398	Monolithic Sample and Hold5-3
µA0801 (DAC-08)	8-Bit High-Speed Multiplying D/A Converter
μA0802 (MC1408)	8-Bit Multiplying D/A Converter 5-10
μA4151	Voltage-to-Frequency Converter 5-15
μA7151	Voltage-to-Frequency Converter with Op Amp 5-15
μA9706	8-Channel, 12-Bit, μP Compatible D/A Converter 5-21
μA9706A	7-Channel, 12-Bit, µP Compatible D/A Converter 5-21
μA9708	6-Channel, 8-Bit, μP Compatible A/D Converter Subsystem 5-27
9650	4-Bit Precision Current Source 5-35


μ**AF198** • μ**AF298** • μ**AF398** MONOLITHIC SAMPLE AND HOLD AMPLIFIERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ AF198/298/398 are monolithic sample and hold circuits which utilize J-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 μ s to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin and does not degrade input offset drift. The wide bandwidth allows the μ AF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of 1010 Ω allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1μ F hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feedthrough from input to output in the hold mode even for input signals equal to the supply voltages.

- OPERATES FROM ±5 V TO ±18 V SUPPLIES
- LESS THAN 10 µs ACQUISITION TIME
- TTL, PMOS, CMOS COMPATIBLE LOGIC INPUT
- 1.4V DIFFERENTIAL THRESHOLD
- 0.5 mV TYPICAL HOLD STEP AT C_H = 0.01 μF
- LOW INPUT OFFSET
- 0.002% GAIN ACCURACY
- LOW OUTPUT NOISE IN HOLD MODE
- INPUT CHARACTERISTICS DO NOT CHANGE DURING HOLD MODE
- HIGH SUPPLY REJECTION RATIO IN SAMPLE OR HOLD
- WIDE BANDWIDTH



μ**A0801 (DAC-08) SERIES** 8-BIT HIGH SPEED MULTIPLYING DIGITAL-TO-ANALOG CONVERTER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A0801A, μ A0801H, μ A0801, μ A0801E and μ A0801C are 8-bit multiplying Digital-to-Analog Converters constructed using the Fairchild Planar* epitaxial process. Advanced circuit design achieves very high speed performance with outstanding applications capability and low cost. The μ A0801A and μ A0801 are specified for the military temperature range (-55° C to $+125^{\circ}$ C) and the μ A0801H, μ A0801E and μ A0801C are specified for 0°C to $+70^{\circ}$ C operation.

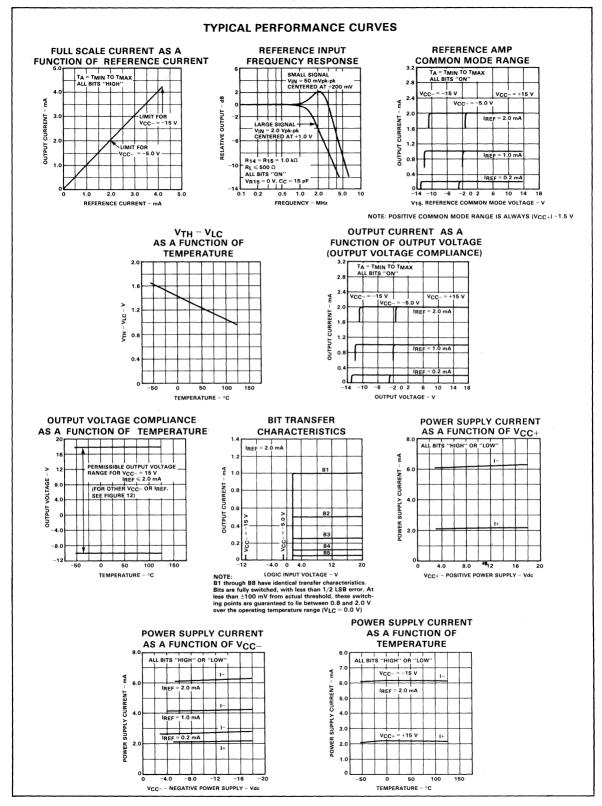
The μ A0801 series are pin-for-pin replacements of the DAC-08 series.

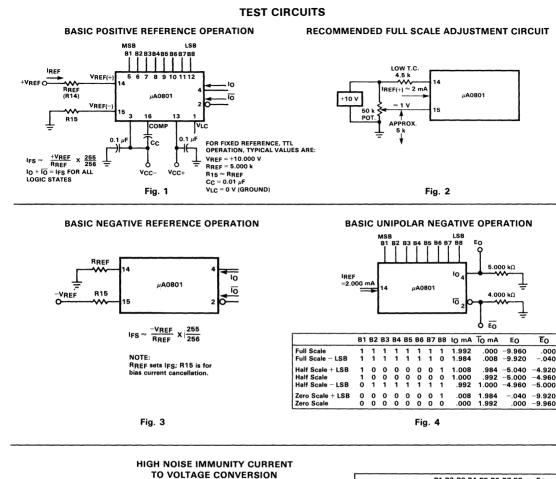
The μ A0801 series are pin-for-pin replacements of the DAC	C-08 series.		
 FAST SETTLING TIME TO 1/2 LSB - 85 ns FULL SCALE CURRENT PREMATCHED TO ± 1 LSB DIRECT INTERFACE TO TTL, CMOS, ECL, HTL, PMOS, DTI LINEARITY TO ± 0.1% MAX OVER TEMPERATURE RANGE HIGH OUTPUT COMPLIANCE: -10 V TO +18 V TRUE AND COMPLEMENTED OUTPUTS WIDE RANGE MULTIPLYING CAPABILITY LOW FS CURRENT DRIFT:I+10 ppm/°C TYPICALLY WIDE POWER SUPPLY RANGE: ±4.5 V TO ± 18 V LOW POWER CONSUMPTION: 33 mW @ ±5 V EXTERNAL COMPENSATION FOR MAX BANDWIDTH LOW COST 		VLC 1 IOUT 2 VCC-3 IOUT 4 (MSB) B1 5 B2 6 B3 7 B4 8	16 COMP 15 VREF(-) 14 VREF(+) 13 VCC+ 12 B8 (LSB) 11 B7 10 B6 9 B5
ABSOLUTE MAXIMUM RATINGS			
V _{CC} + to V _{CC} - Logic Inputs V _{LC} Reference Inputs (V14, V15) Reference Input Differential Voltage (V14 to V15) Reference Input Current (I14) Power Dissipation Derate above 90°C (Hermetic DIP) Derate above 80°C (Flatpak) Operating Temperature Range μ A0801, μ A0801A μ A0801H, μ A0801E, μ A0801C Storage Temperature Range Pin Temperature Hermetic DIP, Flatpak (Soldering, 60 s) Molded DIP (Soldering, 10 s)	36 V V _{CC} - to V _{CC} - plus 36 V V _{CC} - to V _{CC} + V _{CC} - to V _{CC} + ±18 V 5.0 mA 500 mW 8.3 mW/°C 7.1 mW/°C -55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C 260°C	ORDER IN ΤΥΡΕ μΑ0801Α μΑ0801 μΑ0801 μΑ0801 μΑ0801Η μΑ0801Η μΑ0801Ε μΑ0801C μΑ0801C	μA0801ADM μA0801FM μA0801DM

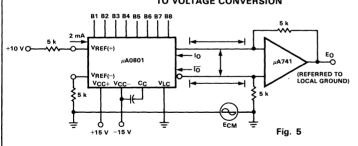
CONNECTION DIAGRAM

16-PIN DIP

(TOP VIEW)


PACKAGE OUTLINES 6B 9B 4L


PACKAGE CODE D P F

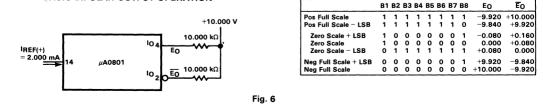

FAIRCHILD • μ A0801 SERIES

These spec	AL CHARACTERISTICS: $T_A =$ cifications apply for $V_{CC} = \pm 15$ (A0801C. Output characteristic	V, $I_{REF} = 2.0 \text{ mA}$, $T_A = -5$		IA, μA0801	, T _A = 0°C t	o 70°C for	µA0801⊦
SYMBOL	CHARACTERISTICS	CONDITIONS		MIN	ТҮР	MAX	UNITS
	Resolution			8	8	8	bits
	Monotonicity			8	8	8	bits
		μA0801A, μA0801H				±0.1	<u> </u>
Non-linearity		μA0801, μA0801E				±0.19	%FS
		μA0801C				±0.39	
	Sottling Time	To \pm 1/2 LSB, all bits switched ON or OFF	μΑ0801Α, μΑ0801, μΑ0801Α		85	135	ns
ts	Settling Time	$T_A = 25^{\circ}C$	μA0801E, μA0801C		85	150	
tPLH, tPHL	Propagation Delay	T _A = 25°C	Each bit		35	60	ns
			All bits switched		35	60	ns
TCI _{FS}	Full Scale Temperature Coefficient				±10	±50	ppm/°C
V _{oc}	Output Voltage Compliance	Full scale current change $<$ ½ LSB, R_{OUT} $>$ 20 m Ω		-10		+18	v
		$V_{REF} = 10.000 V,$	μA0801A, μA0801H,	1.984	1.992	2.000	mA
		$R_{14}, R_{15} = 5.000 kΩ$ $T_A = 25°C$	μA0801E, μA0801, μA0801C	1.940	1.990	2.040	
			μA0801A, μA0801H		±0.5	±4.0	
IFSS	FSS Full Scale Symmetry	IFS4 - IFS2	μA0801, μA0801E		±1.0	±8.0	μΑ
			μA0801C		±2.0	±16	1
		μΑ0801Α, μΑ0801Η 0.1	1.0				
Izs	Zero Scale Current		μA0801, μA0801E		0.2	2.0	μΑ
			μA0801C		0.2	4.0	1
IFSR	Output Current Range	V _{CC} - = -5.0 V		0	2.0	2.1	mA
		$V_{CC} = -7.0 \text{ V to } -18 \text{ V}$	v	0	2.0	4.2	mA
 Vi∟ Viн	Input LOW Voltage Input HIGH Voltage	$V_{LC} = 0 V$		2.0		0.8	V V
 հլ	Input LOW Current	$V_{LC} = 0 V V_{IN} = -10 V$	to +0.8 V	an i later faran flarr	-2.0	-10	μA
Ін	Input HIGH Current	V_{IN} = 2.0 V to 18 V			0.002	10	μA
Vis	Logic Input Swing	$V_{CC^{-}} = -15 V$		-10		+18	V
VTHR	Logic Threshold Range	$V_{CC} = \pm 15 V$		-10		+13.5	V
l ₁₅	Reference Bias Current				-1.0	-3.0	μA
dl/dt	Reference Input Slew Rate			4.0	8.0		mA/μs
PSSIFS+	Power Supply Sensitivity	$V_{CC^+} = 4.5 \text{ V to } 18 \text{ V}$			0.0003	0.01	%/%
PSSIFS-		V _{CC} - = -4.5 V to -18 V I _{REF} = 1.0 mA			0.002	0.01	%/%
+ -		$V_{CC} = \pm 5.0 \text{ V}, \text{ I}_{REF} = 1.0$			2.3 -4.3	3.8 -5.8	mA mA
+ -	Power Supply Current	$V_{CC+} = +5.0 \text{ V}, \text{ V}_{CC-} = -$			2.4 6.4	3.8 7.8	mA mA
+ -		$V_{CC} = \pm 15 \text{ V}, \text{ I}_{REF} = 2.0 \text{ m}$	۱A		2.5 6.5	3.8 -7.8	mA mA
De	Power Dissinction	$V_{CC} = \pm 5.0 \text{ V}, \text{ I}_{REF} = 1.0 \text{ m}$ $V_{CC+} = +5.0 \text{ V}, \text{ V}_{CC-} = -$			33	48	mW mW
PD	Power Dissipation	$V_{CC+} = +5.0V, V_{CC-} = -$ IREF = 2.0 mA	10 V,		108	136	mw

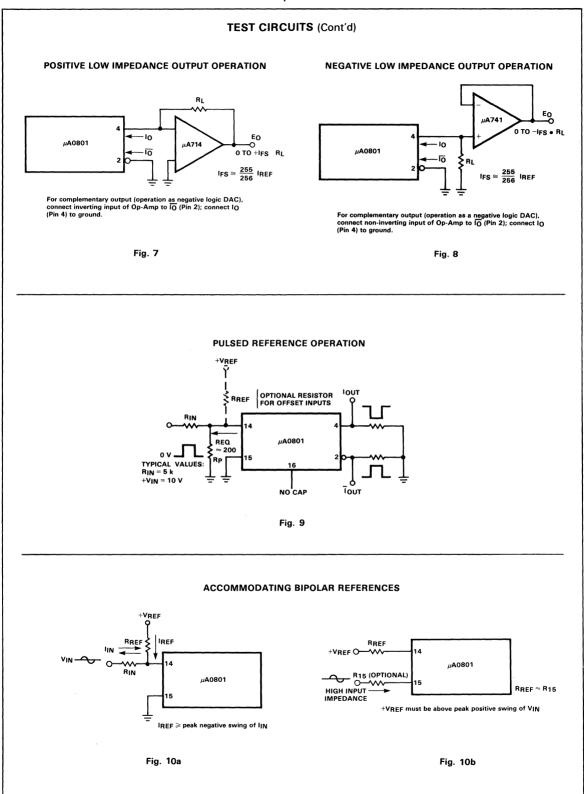
FAIRCHILD • µA0801 SERIES

	B1	B2	вз	В4	B5	B6	87	88	EO
Pos Full Scale	1	1	1	1	1	1	1	1	+9.920
Pos Full Scale – LSB	1	1	1	1	1	1	1	0	+9.840
(+) Zero Scale	1	0	0	0	0	0	0	0	+0.040
() Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg Full Scale + LSB	0	0	0	0	0	0	0	1	-9.840
Neg Full Scale	0	0	0	0	0	Ó	Ó	0	-9.920

5


Provides isolation from ground loops -

Symmetrical ±10 V output Useful within systems between boards


e True complementary/differential current transmission

High speed analog signal transmission

BASIC BIPOLAR OUTPUT OPERATION

FAIRCHILD • µA0801 SERIES

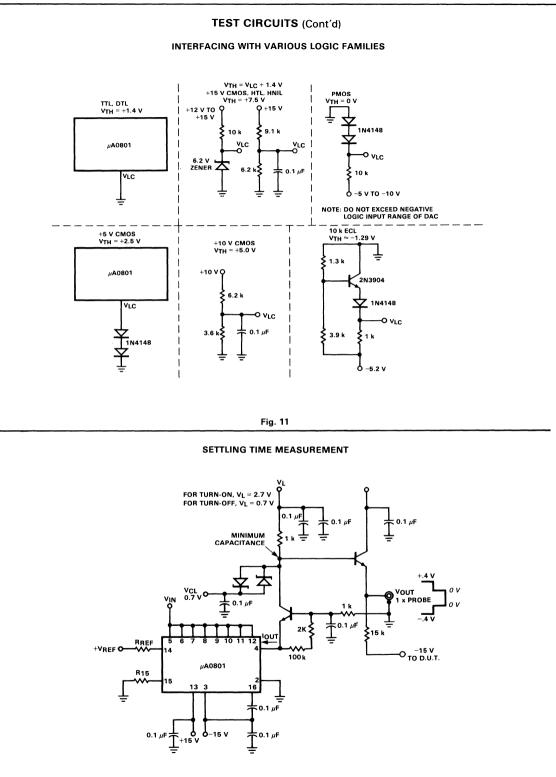


Fig. 12

μ A0802 (MC1508/1408) SERIES 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAM

16-PIN

(TOP VIEW)

PACKAGE OUTLINES 6B 9B 4L

PACKAGE CODES D P F

GENERAL DESCRIPTION - The µA0802, µA0802H, µA0802A, µA0802B, and µA0802C are monolithic 8-bit multiplying Digital-to-Analog Converters constructed using the Fairchild Planar* epitaxial process. It is designed for use where the output current is a linear product of an 8-bit digital word and an analog input voltage. The μ A0802 is specified for the military temperature range (-55°C to +125°C) and the μ A0802H, μ A0802A, μ A0802B and μ A0802C are specified for 0°C to 70°C operation.

The μ A0802 series are pin-for-pin replacements of the MC1508/1408 devices.

• RELATIVE ACCURACY: $\pm 0.1\%$ ERROR MAXIMUM μ A08 • RELATIVE ACCURACY: $\pm 0.1\%$ ERROR MAXIMUM μ A08 • 7 AND 6-BIT ACCURACY AVAILABLE μ A0802B, μ A0802C • FAST SETTLING TIME TO 1/2 LSB - 85 ns • NON-INVERTING DIGITAL INPUTS ARE TTL AND CMOS • OUTPUT VOLTAGE SWING: ± 0.5 V TO -5.0 V • HIGH-SPEED MULTIPLYING INPUT SLEW RATE 4.0 mA/ μ • STANDARD SUPPLY VOLTAGES: ± 5.0 V AND -5.0 V T • LOW FS CURRENT DRIFT: ± 10 PPM/°C TYPICALLY • LOW POWER CONSUMPTION: 33 mW @ ± 5 V • LOW COST	802, µA0802A COMPATIBLE us	$\begin{array}{c} \text{RANGE} \\ \text{CONTROL 2} \\ \text{GND} \\ \text{GND} \\ \text{GND} \\ \text{Vcc}^{-} \\ \text{Iout} \\ \text{Iout} \\ \text{Iout} \\ \text{Iout} \\ \text{Iout} \\ \text{A1}_{0}^{-} \\ \text{A2}_{0}^{-} \\ \text{A3} \\ \text{A4} \\ \text{A4} \\ \text{A5} \\ \text{A5} \\ \text{A5} \\ \text{A5} \\ \text{A5} \\ \text{A5} \\ \text{A6} \\ A$
ABSOLUTE MAXIMUM RATINGS: $T_A = +25^{\circ}C$ unless V _{CC} + V _{CC} - Digital Input Voltage (V5 to V12) Applied Output Voltage Reference Current (I14) Reference Amplifier Inputs (V14, V15) Operating Temperature Range μ A0802 μ A0802H, μ A0802A, μ A0802B, μ A0802C Storage Temperature Range Pin Temperatures Hermetic DIP, Flatpack (Soldering, 60 s) Molded DIP (Soldering, 10 s)	s otherwise noted 5.5 Vdc -16.5 Vdc +5.5 Vdc 0.5 Vdc to -5.2 Vdc 5.0 mA 5.5 Vdc, -16.5 Vdc -55°C to +125°C 0°C to +70°C 300°C 260°C	ORDER INFORMATION TYPE PART NO. μA0802 μA0802FM μA0802 μA0802DM μA0802H μA0802HDC μA0802H μA0802HDC μA0802H μA0802HDC μA0802A μA0802ADC μA0802A μA0802ADC μA0802B μA0802ADC μA0802B μA0802BDC μA0802B μA0802BDC μA0802C μA0802CDC μA0802C μA0802CDC
TYPICAL APPLICATIONS	ADDITIONA	AL ORDER INFORMATION

RANGE 0°C to +70°C 1508L-8) -55°C to +125°C C1408L-8) 0°C to +70°C C1408L-7) 0°C to +70°C C1408L-6) 0°C to +70°C	RELATIVE ACCURACY ±0.1 % ±0.19 % ±0.39 % ±0.39 %
	0°C to +70°C 1508L-8) -55°C to +125°C C1408L-8) 0°C to +70°C C1408L-7) 0°C to +70°C

* Planar is a patented Fairchild process.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA0802 SERIES

SYMBOL	CHARACTERISTICS	FIGURE	MIN	TYP	MAX	UNITS
Er	Relative Accuracy (Error Relative to Full Scale I _Ο μA0802H μA0802, μA0802A μA0802B, See Note 1 μA0802C, See Note 1	3			±0.1 ±0.19 ±0.39 ±0.78	%
ts	Setting Time to Within $1/2$ LSB (includes t _{PLH}) (T _A = +25 'C) See Note 2	4	-	85	135	ns
^t PLH, ^t PHL	Propagation Delay Time $T_A = +25^{\circ}C$	4	-	30	100	ns
TCIO	Output Full Scale Current Drift		-	±20	-	PPM°C
VIH VIL	Digital Input Logic Levels (MSB) High Level, Logic ''1'' Low Level, Logic ''0''	2	2.0 _	-	_ 0.8	V
IIH IIL	Digital Input Current (MSB) High Level, V _{IH} – 5.0 V Low Level, V _{IL} – 0.8 V	2		0 -0.4	0.04 0.8	mA
I ₁₅	Reference Input Bias Current (Pin 15)	2	-	-1.0	-5.0	μA
IOR	Output Current Range $V_{CC} = -5.0 V$ $V_{CC} = -6.0 to -15 V$	2	0	2.0 2.0	2.1 4.2	mA
10	Output Current $V_{REF} = 2,000 V, R14 = 1000 \Omega$	2	1.9	1.99	2.1	mA mA
lO(min)	Output Current (All bits low)	2	-	0	4.0	μA
vo	$ \begin{array}{l} \mbox{Output Voltage Compliance} \\ (E_{f} \leqslant 0.19; \mbox{ at } T_{A} = +25^{\circ}\mbox{C}) \\ V_{CC-} = -5 \ V \\ V_{CC-} \ \mbox{below} \ -10 \ V \end{array} $	2			-0.6,+0.5 -5.0,+0.5	v
SR IREF	Reference Current Slew Rate	5		4.0	-	mA/μs
PSRR(-)	Output Current Power Supply Sensitivity		-	0.5	2.7	μA/V
ICC+	Power Supply Current (All bits low)	2	-	+13.5 -7.5	+22 -13.0	mA
V _{CCR+} V _{CCR} -	Power Supply Voltage Range (T _A = +25°C)	2	+4.5 -4.5	+5.0 -15	+5.5 -16.5	V
PD	Power Dissipation All bits low $V_{CC} = -5.0 V$ $V_{CC} = -15 V$ All bits high $V_{CC} = -5.0 V$ $V_{CC} = -15 V$	2		105 190 90 160	170 305 	mW

ELECTRICAL CHARACTERISTICS: $V_{CC+} = +5.0 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $V_{REF}/R14 = 2.0 \text{ mA}$, $\mu A0802 \text{ T}_A = -55^{\circ}\text{C}$ to 125°C . $\mu A0802H/A/B/C$, $T_A = 0^{\circ}\text{C}$ to 70°C , unless otherwise noted. All digital inputs at high logic level.

NOTES:

1. All current switches are tested to guarantee at least 50% of rated output current.

2. All bits switched.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA0802 SERIES

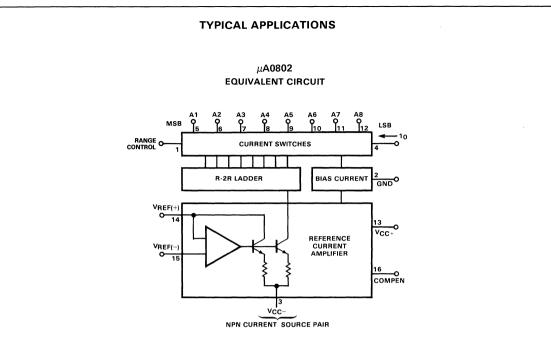
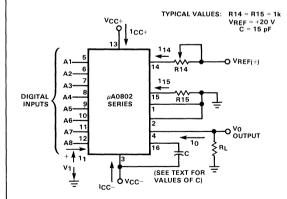



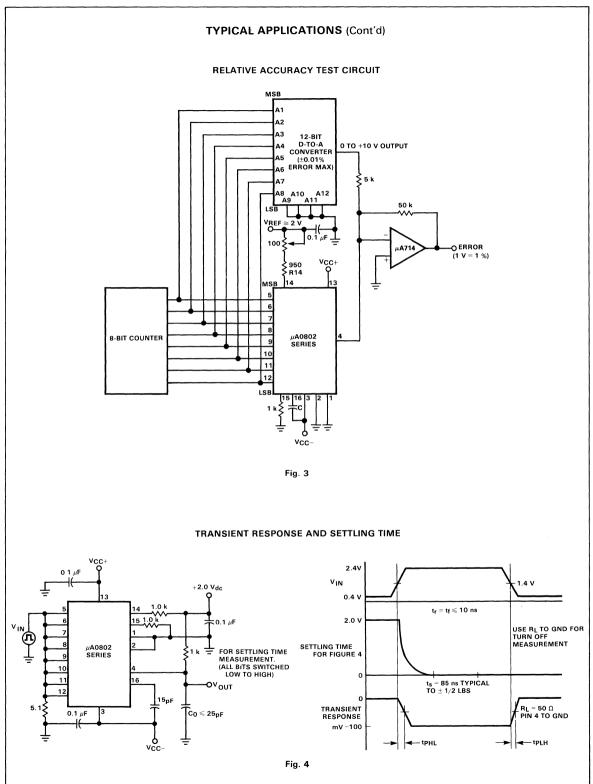
Fig. 1

NOTATION DEFINITIONS TEST CIRCUIT

Ł

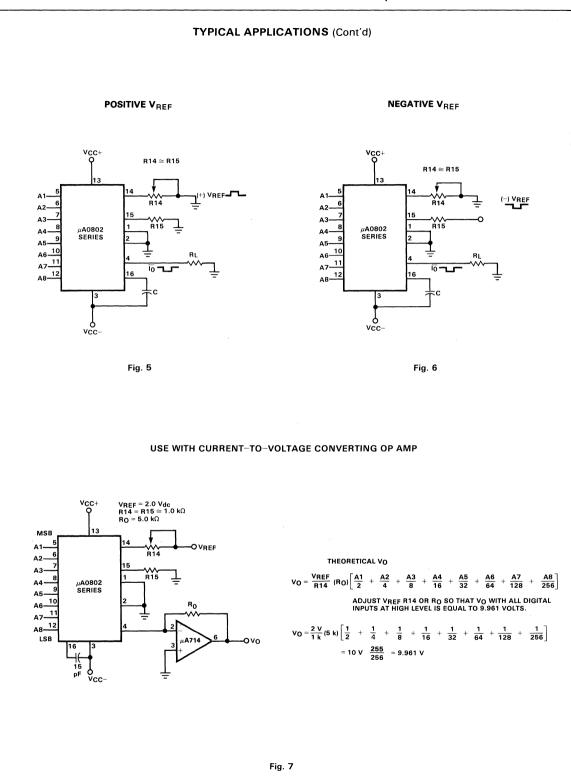
1

VI and II apply to inputs A1 thru A8


The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

$$\begin{split} I_0 = K \left\{ \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right. \\ \\ \text{where } K &\cong \frac{\text{VREF}}{\text{R14}} \end{split}$$

and A_N = ''1'' if A_N is at high level A_N = ''0'' if A_N is at low level



5

μ**A4151** • μ**A7151** VOLTAGE-TO-FREQUENCY CONVERTERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

DESCRIPTION – The μ A4151 is a monolithic building block used to convert dc voltage to digital pulses. The frequency of the output pulses is proportional to the dc input voltage.

The μ A4151 consists of a voltage comparator, a monostable multivibrator and a precision switched current source (see block diagram).

The μ A7151 is the same device as the μ A4151 with a high performance operational amplifier on the same chip. The single supply op amp conditions the input signal and provides a significant improvement in system performance.

- SINGLE SUPPLY (+8 V_{DC} TO +30 V_{DC})
- LINEARITY TO ±0.05%
- PROGRAMMABLE SCALE FACTOR
- PULSE OUTPUT COMPATIBLE WITH ANY LOGIC FORM
- TEMPERATURE STABILITY TYPICALLY ±100 ppm/°C
- HIGH NOISE REJECTION
- EASILY TRANSMITTABLE OUTPUT
- SIMPLE FULL-SCALE TRIM
- SINGLE-ENDED INPUT, REFERENCED TO GROUND
- ALSO PROVIDES FREQUENCY-TO-VOLTAGE CONVERSION
- HIGH PERFORMANCE OP AMP INCLUDED IN μA7151

ABSOLUTE MAXIMUM RATINGS

32 V 670 mW -0.2 V to $+V_{CC}$

continuous

continuous

260°C

+2 V to +13 V 0°C to +70°C -65°C to +150°C

ELECTRICAL CHARACTERISTICS: V_{CC} = +15 V, T_A = 25°C unless otherwise specified.

The following specs apply to the Converter Section only.

CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
	8.0 V ≤ V _{CC} ≤ 15 V	3.0	4.5	7.0	
Supply Current	15 V ≤ V _{CC} ≤ 22 V	3.0	5.5	8.5	mA
	$22 V \leq V_{CC} \leq 30 V$	3.0	6.5	10.5	
Conversion Accuracy					
Scale Factor	Figure 2, $V_1 = 10 V$, $R_S = 14 k\Omega$	0.90	1.0	1.10	kHz/V
Drift with Temperature	Figure 2, $V_1 = 10 V$		±100		ppm/°C
Drift with V _{CC}	Figure 2, 8.0 V \leq V _{CC} \leq 18 V, V ₁ = 1.0 V		0.2	1.0	%/ V
Input Comparator					
Offset Voltage			5.0	10	mV
Offset Current			±50	±100	nA
Input Bias Current			-100	-300	nA
Common Mode Range (Note 1)		0	0 to	V _{CC} -3.0	v
			V _{CC} -2		
One-Shot					
Threshold Voltage, Pin 5		0.63	0.667	0.70	×Vcc
Input Bias Current, Pin 5			-100	-500	nA
Reset V _{sat}	Pin 5, I = 2.2 mA		0.15	0.50	v
Current Source					
Output Current (V _S -14 kΩ)	Pin 1, Figure 1, V = 0		138.7		μA
Change with Voltage	Pin 1, $V = 0 V$ to $V = 10 V$		1.0	2.5	μA
Off Leakage	Pin 1, V = 0 V		1.0	50	nA
Reference Voltage	Pin 2, Figure 1	1.70	1.9	2.08	v
Logic Output					
V _{sat}	Pin 3, I = 3.0 mA		0.15	0.50	v
V _{sat}	Pin 3, I = 2.0 mA		0.10	0.35	v
Off Leakage			0.1	1.0	μA

NOTE 1: Input common mode range includes ground.

μA7151 Op-Amp

ELECTRICAL CHARACTERISTICS: V_S = +15 V and ground T_A = 25°C unless otherwise specified.

CHARACTERISTICS	MIN	TYP	MAX	UNITS
Input Offset Voltage		2.0	5.0	mV
Input Offset Current		10	50	nA
Input Bias Current		-50	-250	nA
Input Impedance		1.0		MΩ
Common Mode Rejection Ratio	70	90		dB
Large Signal Voltage Gain, R _L = 10 k	50	200		V/mV
Slew Rate		0.6		V/µs
Power Supply Rejection Ratio		15.	100	μV/V
Output Short Circuit Current	10		40	mA

CIRCUIT DESCRIPTION

The μ A7151 consists of five circuit blocks as shown in Figure 1. The blocks may be connected in a variety of ways to construct voltage-to-frequency converters (VFC), frequency-to-voltage converters (FVC), or other circuit functions. The circuit blocks are:

- 1. A differential input comparator featuring very high gain, low offsets, and a common mode range which includes ground.
- 2. A one-shot multivibrator with the time constant set by an external RC (T = 1.1RC) connected to the RC terminal, triggered by the output of the comparator being high.
- 3. A precision switched current source that is turned on to the value of I_{REF} when the one-shot is on and goes to zero when the one-shot is off. The current I_{REF} is set by an external R_S , connected from the scale factor terminal-to-ground and is equal to the reference voltage divided by R_S and is optimized when set to 138 μ A.
- 4. An open collector output that provides a buffered output from the one-shot.
- An operational amplifier whose common mode range includes ground and has offset null capability. The op amp has high gain, low offset voltage, low input currents, good PSRR and CMRR, and low drift.

PRINCIPLE OF OPERATION

Voltage to Frequency Conversion (VFC)

As a voltage to frequency converter the μ A7151/4151 can be connected in several configurations depending on the input voltage, required accuracy, and response time. In all the applications we will see that the input voltage is converted to a current and the circuit will turn the switched current source on at the rate necessary so that the average current from the current source is equal to the input current. As the input voltage (and current) increases, the current source must turn on more often, and the output frequency increases.

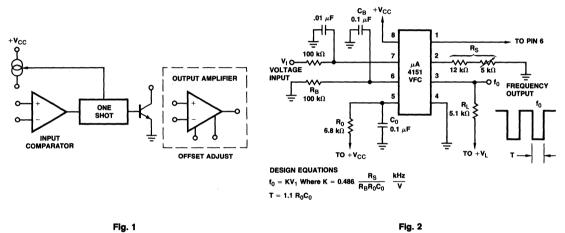
SELECTING COMPONENTS FOR THE VFC

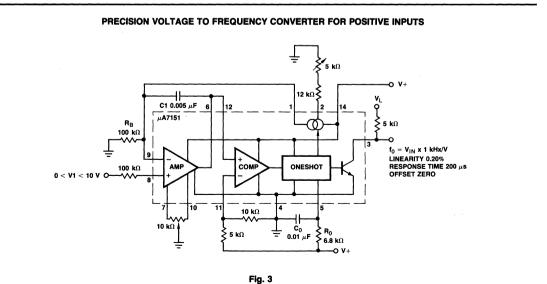
Voltage-to-frequency converters can be used for full scale voltages of 100 mV or greater and full scale frequencies of 1 Hz to 100 kHz. Input voltages in excess of V_{CC} + can be accommodated with appropriate resistor dividers to attenuate the voltages. The following components selection guidelines should be used.

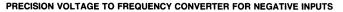
- 1. R_S should be approximately 14 k Ω to optimize the system performance versus temperature. R_S is normally a 12 k Ω fixed resistor and a 5 k Ω pot to be used to adjust the full scale output frequency. Small variations in R_S have minimal effect on system temperature performance. I_{REF} = V_{REF}/R_S = 1.95 V/R_S
- 2. R₀ C₀ séts the one-shot pulse width, T₀ = 1.1 R₀ C₀. This pulse width must be shorter than the minimum period of the maximum frequency ie, set it equal to .75 (1/f₀). Therefore, R₀ C₀ = .68 (1/f₀). Values of R₀ should be between 6.8 k Ω and 680 k Ω and C₀ should be from .001 μ F to 1 μ F.
- 3. R_B should be as low as possible for the highest accuracy, (this reduces the effect of current source R_{OUT}) but must be large enough to insure that the current source output is greater than $V_{\rm IN}$ max/R_B. Therefore, choose R_B such that R_B \sim 1.33 V_{IN} max/I₀.
- 4. C_B for Figure 2 must be chosen to trade-off between accuracy and response time. Larger values of C_B give greater system accuracy but response time is limited by the R_B D_B time constant. A good choice for D_B is $10^{-2}/f_0$.
- 5. C₁ for Figures 3 and 4 can be selected depending on the output frequency. The smaller C₁ is the faster the system response wil be. C₁ must be large enough to limit the amplifier swing. The op amp will swing a voltage set by I_0T_0/C_1 , so if the comparator is biased at 2/3 V_{CC}+ this constrains C₁ > 3 $I_0T_0/2$ V_{CC}+. A nominal value of C₁ = 5 x $10^{-5}/f_0$ meets this requirement.

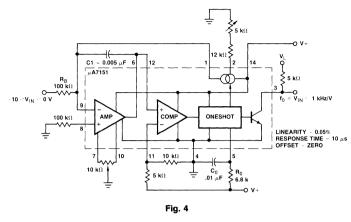
COMPARISON OF VOLTAGE TO FREQUENCY CIRCUITS

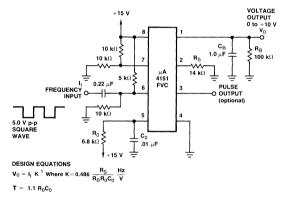
Table I shows a comparison of the three basic circuits set-up for a 0 to 10 V input range and a full scale output of 10 kHz.

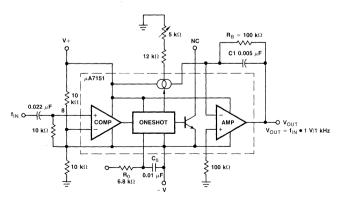

FREQUENCY TO VOLTAGE CONVERSION


The μ A7151/4151 can be connected as frequency-to-voltage converter (FVC). This circuit basically works by putting out a current pulse per cycle of input frequency and intergrating the current pulses across an output resistor to give an output voltage which is proportional to the average value of I₀ (I₀T₀f_{IN}).

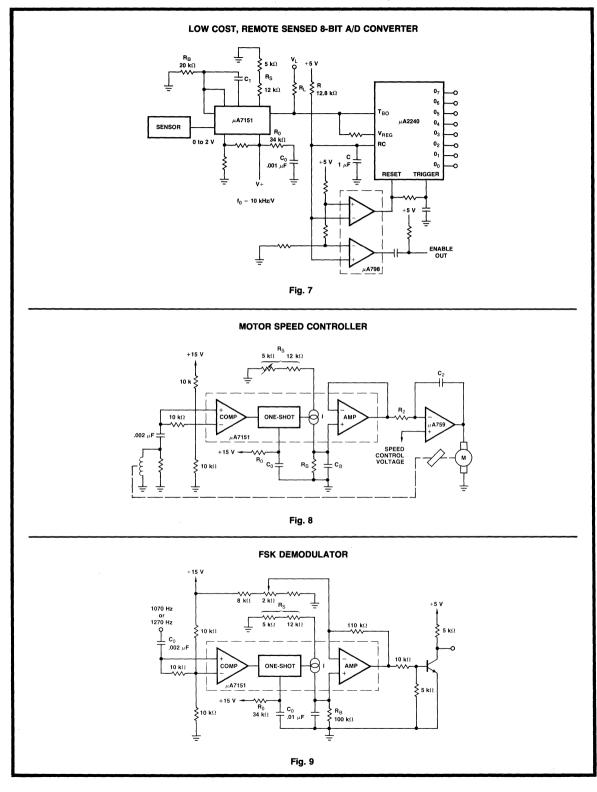

FAIRCHILD • μ **A**4151 • μ **A**7151


	Figure 2	Figure 3	Figure 4
Linearity	1.0%	0.2%	0.05%
Frequency Offset	+10 Hz	0	0
Response Time	135 μs	200 µs	10 μs
Input Voltage	+	+	-
Single Supply	yes	yes	yes
Split Supply	-	-	yes

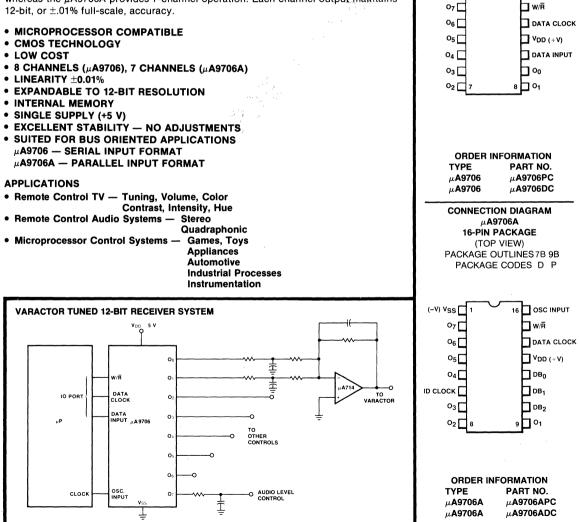




SINGLE SUPPLY FREQUENCY-TO-VOLTAGE CONVERTER



PRECISION FREQUENCY TO VOLTAGE CONVERTER



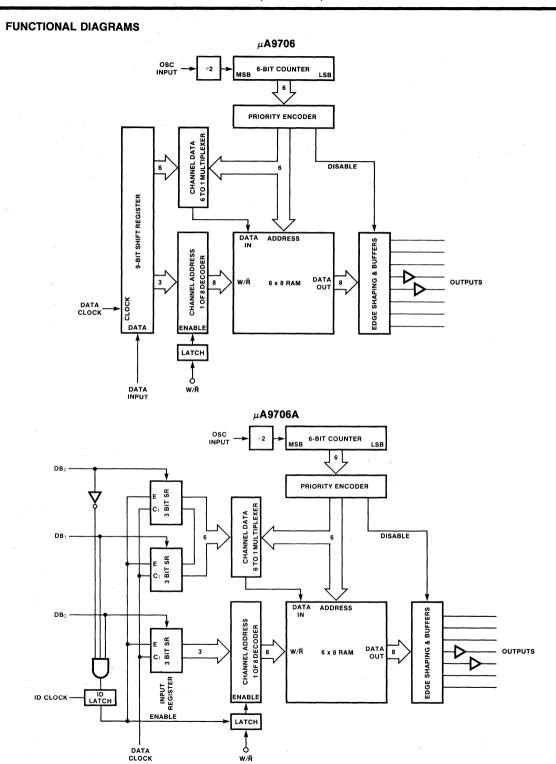
μ**A9706** • μ**A9706A** MULTI-CHANNEL, 12-BIT ACCURATE, μP COMPATIBLE, D/A CONVERTERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A9706 and μ A9706A are digital-to-analog-converters which allow a microprocessor system to interface and control analog systems. The μ A9706 is programmed by 9-bit words, accepted in a serial format, while the μ A9706A accepts 9-bit words in parallel 3-bit groups. Both the μ A9706 and μ A9706A provide conversions on all channels simultaneously and continuously as long as the oscillator signal is present. Digital-to-analog conversion is accomplished using a pulse-width ratio technique for directly controlling the duty cycle of the output pulse streams. Each channel, when appropriately filtered, supplies 6-bit resolution, or 64 discrete analog levels. By properly summing two outputs, the resolution may be controlled up to 12 bits, or 4096 discrete levels. The μ A9706 provides 8-channel operation, whereas the μ A9706A provides 7-channel operation. Each channel output maintains 12-bit, or \pm .01% full-scale, accuracy.

CONNECTION DIAGRAM

μ**Α9706**

14-PIN DIP PACKAGE


(TOP VIEW)

(-V) Vss

PACKAGE OUTLINES 7A 9A

PACKAGE CODES D P

14 OSC INPUT

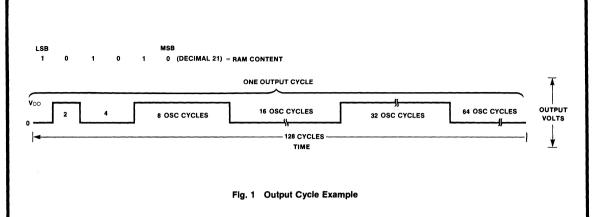
FAIRCHILD • μ**A9706** • μ**A9706A**

ABSOLUTE MAXIMUM RATINGS

V_{DD} Relative to V_{SS} Digital Input Range Output Sink or Source Current Operating Temperature Storage Temperature Pin Temperature (Soldering, 10 s) -0.3 V to 5.5 V -0.3 V to V_{DD} +0.3 V 25 mA 0°C to 85°C -65°C to +150°C 260°C

ELECTRICAL CHARACTERISTICS: $V_{DD} = +5 V$, $V_{SS} = 0 V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $f_{osc} = 100 \text{ kHz}$

SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNITS
Ro	Output Resistance (Channels 4 & 5)		30	50	Ω
Ro	Output Resistance (Channels 0, 1, 2, 3, 6, 7)		300	1000	Ω
fosc	Oscillator Frequency	50		2000	kHz
tн	Data Clock HIGH Time	4			μs
t∟	Data Clock LOW Time	4			μS
tw/R	W/R Pulse Width	4		128/fosc	μS
Error	Linearity			0.01	%
VIH	Voltage Input HIGH			2.7	V
VIL	Voltage Input LOW	0.8			V
IDD	Power Supply Current		40	200	μA
lin	Input Current			50	μA
CIN	Input Capacitance		8		pF
tr	Input Rise Time			1.0	μS
tr	Input Fall Time			1.0	μS
ts	Input Set-up Time		1	1.0	μS

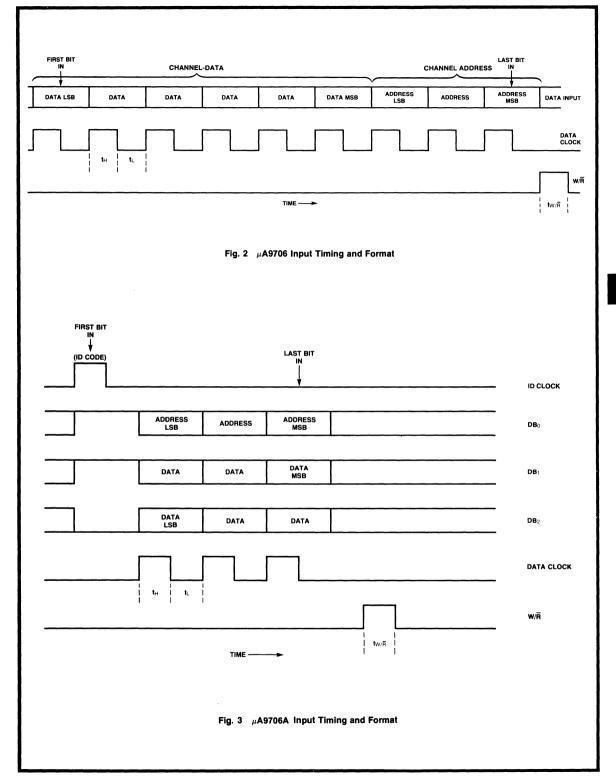

FUNCTIONAL DESCRIPTION

The functional blocks of the μ A9706 and μ A9706A are defined by the pulse-width ratio conversion scheme that they employ. In addition, other requirements which include microprocessor compatibility, multi-channel operation, and simultaneous conversion of all channels add to the basic structure. The μ A9706 consists of seven functional blocks: a 6-bit binary counter, a pulse distributor called a priority encoder, 6 x 8 RAM, 1-of-8 channel address decoder, 6-to-1 channel-data multiplexer, 9-bit input shift register, and a set of eight output buffers.

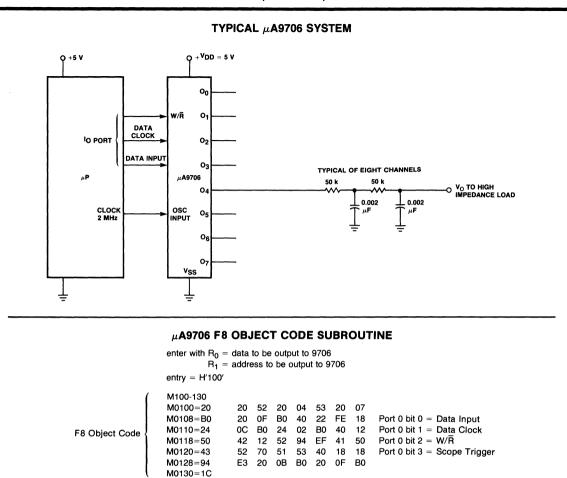
The pulse-width-ratio conversion scheme divides the conversion cycle into binary-weighted time intervals and associates each time interval with a bit position in the 6-bit control word. The control word residing in RAM is then addressed, bit by bit, each bit addressed for the associated time interval. The value of each bit, "1" or "0", controls the output, HIGH or LOW, during this time interval (see *Figure 1*). In this manner, an output pulse stream is generated with a duty cycle defined by the control word. When the pulse stream and, hence, proportional to the control word.

The 6-bit counter generates the fundamental time intervals for the system and may be driven by any open-collector TTL or CMOS logic that produces a square-wave signal with a frequency in the range of 50 kHz to 2 MHz. The time intervals (binary-weighted pulse widths) generated by the counter are decoded by the priority encoder which serves two functions. First, it ensures that each of the six time intervals (control pulses) is used once during the conversion cycle. Second, it distributes the control pulses to both the channel-data multiplexer and to the column-address inputs of the 6 x 8 RAM.

FAIRCHILD • μ**A9706** • μ**A9706A**


The channel-data multiplexer is enabled during the write mode so that the 6-bit control word may be written. The 6 x 8 RAM provides the storage capability required for the converter to operate independently of the microprocessor, once the control information has been transferred. Since the control information is stored in RAM, simultaneous conversions continue on all eight channels, unaided by the microprocessor unless changes are required. This is accomplished by addressing a single bit in each of the control words and reading the results out in parallel during each time interval in the conversion cycle. The total cycle time, which is the sum of the six binary-weighted time intervals plus a unit interval (64 clock periods), requires 128 oscillator periods, since the basic oscillator frequency is divided by a factor of two before driving the counter. Conversions may be completed in as little as $64 \ \mu s$ when operating at a 2 MHz clock rate. The control words read from the RAM are directed to the output buffers, six of which have 1 k Ω and two have 50 Ω output impedances. In general, these buffers should drive load impedances larger than the output impedance.

Each output is capable of providing 64 discrete output levels representing 6-bit resolution. Since each output pulse stream is accurate to 12 bits, it is possible to sum two outputs and expand the resolution to 12 bits, providing 4096 discrete output levels. This may be easily accomplished by weighting one of the outputs by a factor of 1/64 before summing.


Loading data is a simple procedure that does not affect the conversion cycle. For the μ A9706, the 6-bit control word (channel data) and the 3-bit channel address are serially transferred to the 9-bit shift register on the HIGH-to-LOW transitions of the data clock (*Figure 2*). The data clock has a maximum frequency of 125 kHz with a minimum HIGH and LOW time of 4 μ s. Once the nine bits of data have been transferred into the shift register, the data clock must remain static until the write operation is completed to prevent the data from being shifted out of the register. The write mode may be selected after a minimum setup time of 1 μ s and is enabled by a HIGH-going W/R control pulse. This sets an internal latch that enables the channel-address decoder, which decodes the 3-bit binary channel address, therefore effecting the transfer of the 6-bit control word from the input register to RAM via the channel-data multiplexer at the beginning of the next conversion cycle. The W/R pulse has two restrictions: first, it must be equal to or greater than 4 μ s in duration; second, it must be less than 128/fosc. This latter restriction is necessary to eliminate the possibility of multiple loads occurring from a single W/R pulse that could lead to incorrect control-word transfer of transfer control-word transfer of multiple.

The μ A9706A is basically the same as the μ A9706 except for two differences: input structure and pin limitation. The μ A9706A has three 3-bit shift registers, used for temporary storage of the 3-bit channel address and 6-bit control word. This structure is bus oriented and provides for parallel 3-bit transfers between the microprocessor and the converter (*Figure 3*). Also, before any transfers can take place, a 3-bit ID code must be accepted. The ID code is provided in parallel over the ID clock and DB₀, DB₁ and DB₂ inputs. After the nine bits of data are transferred to the shift registers, the operation of the μ A9706A is identical to the μ A9706. The μ A9706A provides 7-channel operation as opposed to the 8-channel operation of the μ A9706.

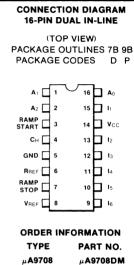
FAIRCHILD • μ**A9706** • μ**A9706A**

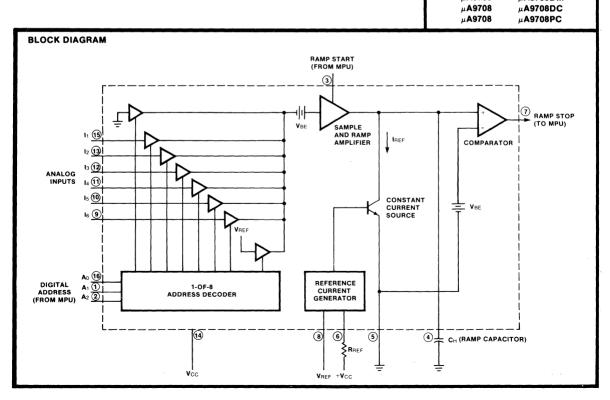
5

µA9706A F8 OBJECT CODE SUBROUTINE

Exit = return, destroyed R₀, R₁, R₂, R₃, Acc

	enter with $R_0 = R_1 =$	data addre							
	entry = H'100'				•				
F8 Object Code {	entry = H'100' M100-16D M0100=20 M0108=41 M0110=52 M0118=F1 M0120=13 M0128=13 M0128=13 M0130=54 M0138=10 M0140=F0 M0148=B0 M0150=79 M0158=43 M0160=20	61 18 20 12 13 C3 20 F0 12 20 B0 B0 10	52 51 02 C4 C2 53 08 12 7F 42 20 C4	53 20 F1 54 52 20 F0 12 12 B0 B0 10 B0	54 01 C3 20 04 12 C3 C4 20 20 C3 20	40 F1 53 01 02 F0 C2 53 54 78 10 B0 7F	18 13 20 F0 13 52 20 80 C2 44 B0	50 C2 04 13 13 C4 20 3F 20 B0 B0 20	Port 0 bit 0 = ID clock Port 0 bit 1 = DB_0 Port 0 bit 2 = DB_1 Port 0 bit 3 = DB_2 Port 0 bit 4 = data clock Port 0 bit 5 = W/\overline{R} Port 0 bit 6 = scope trigger
l	M0168=5F	BO	20	7F	BO	1C	20	20	
	Exit = return, de	estroy	ed R	₀ , R ₁	, R ₂ ,	R ₃ , I	74, A	сс	


μ**Α9708**


6-CHANNEL, 8-BIT, MICROPROCESSOR COMPATIBLE

ANALOG-TO-DIGITAL CONVERTER SUBSYSTEM* FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A9708 is a single slope 8-bit, 6-channel ADC subsystem that provides all of the necessary analog functions for a microprocessor-based data control system. The device uses a microprocessor system like the F3870 or F6800 to provide the necessary addressing, timing and counting functions and includes a 1 of 8 decoder, 8-channel analog multiplexer, sample and hold, ramp integrator, precision ramp reference, and a comparator on a single monolithic chip.

- MPU COMPATIBLE
- EXCELLENT LINEARITY OVER FULL TEMP RANGE ±0.2% MAX
- TYPICAL 300 µs CONVERSION TIME PER CHANNEL
- WIDE DYNAMIC RANGE INCLUDES GROUND
- AUTO-ZERO AND FULL-SCALE CORRECTION CAPABILITY
- RATIOMETRIC CONVERSION NO PRECISION REFERENCE REQUIRED
- SINGLE-SUPPLY OPERATION
- TTL COMPATIBLE
- DOES NOT REQUIRE ACCESS TO DATA BUS OR ADDRESS BUS

5

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	18 V
Comparator Output (Ramp Stop)	-0.3 V to +18 V
Analog Input Range	-0.3 V to 30 V
Digital Input Range	-0.3 V to 30 V
Output Sink Current	10 mA
Operating Temperature Range	
μA9708PC, μA9708DC	0° C to 70° C
μA9708DM	-55° C to 125° C
Storage Temperature Range	-65° C to +150° C
Continuous Total Dissipation	
Ceramic DIP Package	900 mW
Plastic DIP Package	1000 mW
Pin Temperature, Ceramic DIP (Soldering, 60 s)	300° C
Plastic DIP (Soldering, 10 s)	260° C

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	MIN	TYP	МАХ	UNITS
Supply Voltage (V _{CC}) Reference Voltage (V _{REF})* Ramp Capacitor (C _H) Reference Current (I _R) Analog Input Range Ramp Stop Output Current	4.75 2.8 300 12 0	5.0	15 5.25 50 VREF 1.6	ν ν μΑ ν mA

*2 V \leq V_{REF} \leq (V_{CC} -2 V)

CHANNEL SELECTION

INPUT /	ADDRES	S LINE	SELECTED
A2	A1	A ₀	ANALOG INPUT
0	0	0	Ground
0	0	1	l1
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	VREF

CHARACTERISTICS	SYMBOL	CONDITIONS	ļ	LIMITS		
	STMBOL CONDITIONS		MIN	TYP	MAX	UNITS
Conversion Accuracy	EA	Over entire temperature range (Note 1)		±0.2	±0.3	%
Linearity	ER	Applies to any one channel (Note 2)		±0.08	±0.2	%
Multiplexer Input Offset Voltage	Vosm	Channel ON		2.0	4.0	. mV
Conversion Time Per Channel	tc	Analog Input = 0v to V _{REF} C _H = 300 pF, I_{REF} = 50 μ A		296	350	μs
Acquisition Time	tA	Сн = 1000 рF		20	40	μS
Acquistion Current	IA		150			μA
Ramp Start Delay Time	to			100		ns
Multiplexer Address Time	tм			1.0		μS
Digital Input HIGH Voltage	ViH	A ₀ , A ₁ , A ₂ , ramp start	2.0			V
Digital Input/LOW Voltage	VIL	A ₀ , A ₁ , A ₂ , ramp start			0.8	V
Analog Input Current	IB	Channel ON or OFF	-3.0	-1.0		μA
Input LOW Current	lιL	A ₀ , A ₁ , A ₂ , ramp start = 0.4 V	-15	-5		μA
Input HIGH Current	Ιн	A ₀ , A ₁ , A ₂ , ramp start = 5.5 V			1.0	μA
Input Offset Current	los			1.0	3.0	μA
Comparator Logic "1" Output Leakage Current	Юн	V _{OH} = 15 V			10	μA
Comparator Logic "0" Output Voltage	Vol	I _{OL} = 1.6 mA			0.4	V
Power Supply Rejection Ratio	PSRR	(Note 3)	40			dB
Crosstalk Between Any Two Channels		(Note 4)	60			dB
Power Supply Current	Icc	$V_{CC} = 5 V$ to 15 V, $I_0 = 0$		7.5	15	mA
Input Capacitance	Cin			3.0		pF
Comparator Output Capacitance	Соит			5.0		pF

ELECTRICAL CHARACTERISTICS: Over recommended operating conditions, -55° C \leq T_A \leq +125° C, for μ A9708DM and 0° C \leq T_A \leq +70° C for μ A9708DC or μ A9708PC; unless otherwise specified.

NOTES:

1. Conversion accuracy is defined as the deviations from a straight line drawn between the points defined by channel address 000 (0 scale) and channel address 111 (full scale) for all channels.

2. Linearity is defined as the deviation from a straight line drawn between the 0 and full scale points for each channel.

3. Power supply rejection ratio is defined as the conversion error contributed by power supply voltage variations while resolving mid scale on any channel. 4. Crosstalk between channels = 20 log $\frac{\Delta V_{CH}}{\Delta V_i}$

FUNCTIONAL DESCRIPTION

This Analog to Digital Converter is a single-slope 8-bit, 6-channel A/D converter that provides all of the necessary analog functions for a microprocessor-based data/control system. The device uses the processor system to provide the necessary addressing, timing and counting functions and includes a 1 of 8 decoder, 8-channel analog multiplexer, sample and hold, precision current reference, ramp integrator and comparator on a single monolithic chip.

For applications that require auto-zero or auto-calibration, (See *Figures 2-5*) line select address 0, 0, 0 and 1, 1, 1 may be used in conjunction with the arithmetic capability of the microprocessor to provide ground and scaling factors. Address 0, 0, 0 internally connects the input of the ramp generator to ground and may be used for zero offset correction in subsequent conversions. Address 1, 1, 1 internally connects the input of the ramp generator, to the voltage reference, VREF, and may be used for scale factor correction in subsequent conversions. For the following, refer to the Functional Block Diagram.

Six separate external analog voltage inputs may come into terminals I_1-I_6 and the specific analog input to be converted is selected via address terminals A_0-A_2 . The analog input voltage level is transferred to the external ramp capacitor connected to pin 4 when the input to the ramp start terminal (pin 3) is at a logic 0 (See Figure 1). The time to charge the capacitor is the acquisition time

which is a function of the output impedance of an amplifier internal to the A/D and the value of the capacitor. After charging the external capacitor the ramp start terminal is switched to a logic 1 which introduces a high impedance between the analog input voltage and the external capacitor.

The capacitor begins to discharge at a controlled rate. The controlled rate of discharge (ramp) is established by the external reference voltage, the external reference resistor, the value of the external capacitor and the internal leakage of the A/D. Connected to the capacitor terminal is a comparator internal to the A/D with its output going to the ramp stop terminal (pin 7). The comparator output is a logical one when the capacitor is charged and switches to a logic 0 when the capacitor is in a discharged state. The ramp time is the time from when ramp start goes high (logic "1") to when ramp stop goes low(logic "0"). The microprocessor must be programmed to determine this conversion time. The ideal (no undesirable internal source impedances, leakage paths, errors on levels where comparator switches or delay time) conversion time is calculated as follows.

Ramp Time =
$$V_1 \mid \frac{C_H}{I_R}$$

Where

C_H = External Ramp Capacitor

V1 = Analog Input Voltage being measured

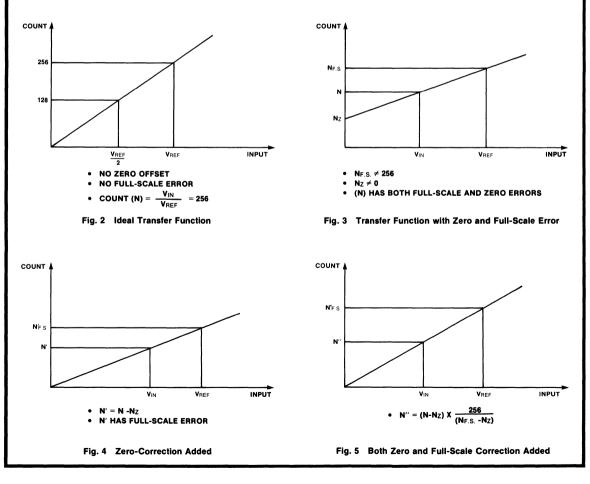

$$I_{R} = \frac{V_{CC} - V_{REF}}{R_{REF}}$$

Where

V_{CC} = Power Supply Voltage V_{REF} = Reference Voltage

R_{REF} = Reference Resistor

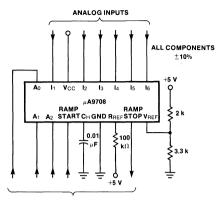
In actual use the errors due to a nonideal A/D can be minimized by using a microprocessor to make the calculations. (See *Figures 2 through 5*)


APPLICATION HINTS AND FORMULAS

- 1. The capacitor node impedance is approximately 30 $\mu\Omega$ and should have no parallel resistance for proper operation.
- 2. t_R when $V_{IN} = 0$ V will be finite (i.e., the comparator will always toggle for $V_{IN} \ge 0$ V.)
- 3. The ramp stop output is open collector, and an external pull up resistor is required.
- 4. All digital inputs and outputs are TTL compatible.
- 5. For proper operation timing commences on the 0 to 1 transition of ramp start and terminates on the 1 to 0 transition of ramp stop.

6.
$$t_A \ge \frac{C_H}{150 \ \mu A - I_R} X V_{REF}$$

7. $t_R (ramp time) = \frac{C_H}{I_R} X V_{IN}, t_R \Big|_{max} = \frac{C_H}{I_R} x V_{REF}$
8. $t_R = \frac{V_{CC} - V_{REF}}{V_R}$


8.
$$I_R = \frac{VCC - VRE}{RREF}$$

- 9. 2 V \leq V_{REF} \leq (V_{CC} 2 V)
- 10. Address lines A₀, A₁, A₂ must be stable throughout the sampling interval, t_A.
- 11. Pin 6 (R_{BEF}) should be bypassed to ground via a 0.02 μ F capacitor.

AUTO-ZERO AND FULL-SCALE FEATURES

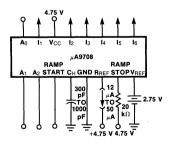
TEST CIRCUITS

CONTROL I/O FROM MPU (TIMING COMPATIBLE WITH FIGURE 1)

INPUT TIMING:

$$t_{A} > 400 \ \mu s$$

$$V_{\text{REF}} = \left(\frac{3.3 \text{ k}\Omega}{2 \text{ k}\Omega + 3.3 \text{ k}\Omega}\right) 5 \text{ V} = 3.1 \text{ V}$$


$$I_{\text{R}} = \frac{5 - 3.1}{100 \text{ k}\Omega} = 19 \text{ }\mu\text{A}$$

$$I_{\text{R}} \left| \begin{array}{c} \frac{5 - 3.1}{100 \text{ k}\Omega} = 19 \text{ }\mu\text{A} \\ \frac{1}{100 \text{ k}\Omega} = 100 \text{ }\mu\text{A} \\ \frac{1}{100 \text{ k}\Omega} = 100 \text{ }\mu\text{A} \\ \frac{1}{100 \text{ }\mu\text{A}} = 100 \text{ }\mu\text{A} \\ \frac{1}$$

NOTE:

For evaluation purposes, the ramp start timing generation can be implemented with a μ A555 timer (astable operation) or MPU evaluation kit, and a time internal meter for ramp time measurement. The TIM meter will measure the time between the 0 to 1 transition of the ramp start and the 1 to 0 transition of the ramp stop. The ramp stop is open collector, and must have an external pull up resistor to Vcc.

Fig. 6 Slow Speed Evaluation Circuit for Ratiometric Operation

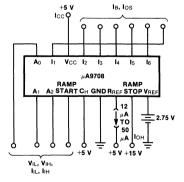
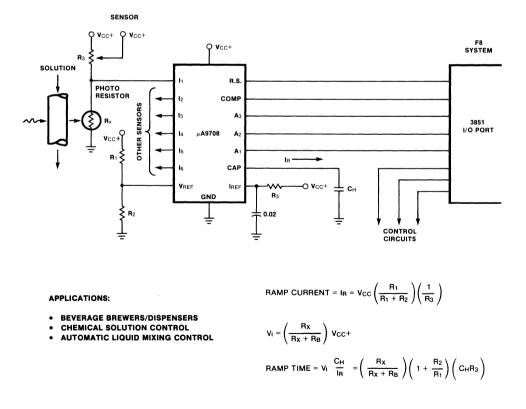


Fig. 7 Linearity/Acquisition Time/Conversion Time Test Circuit



TYPICAL APPLICATIONS

 $\Delta V_I =$ (Applied Force) and can be Linearized (if necessary) in F8 Software.

Opaque Solution Controller

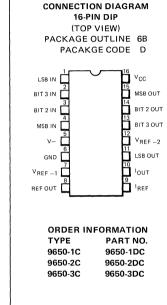
SYSTEM HINTS:

Several alternatives exist from a hardware/software standpoint in microprocessor based systems using the μ A9708.

- 1. The ramp time measurement may be implemented in software using a register increment, followed by a branch back depending on the status of the ramp stop.
- 2. Alternately, the ramp stop may be tied into the interrupt structure in systems containing a programmable binary timer. This scheme has the following advantages:
 - A. The CPU is not committed during the ramp time interval.
 - B. It requires only 4 bits of an I/O port for control signals.
- 3. The auto-zero/auto-full-scale (see *Figures 2-5*) should use double precision, rounded (as opposed to truncated) arithmatics. Several points are worth noting:
 - A. The subtractions are single op code instructions.
 - B. The full scale correction uses a multiply by 256 and can be accomplished by a shift left 8 bits (usually one instruction) or placing (N-Nz) in the MSB register and setting the LSB register to zero, for the double precision divide.
 - C. The divisor (NF.S. Nz) MSB's register will always be zero.

These schemes have the following advantages:

- A. No access to the data buss or address buss is required, by the A/D system.
- B. 4 I/O bits completely support the A/D system.
- C. Since auto full scale/auto zero are implemented in software and long term drift (aging) effects are eliminated.
- D. Software overhead is minimal (typically 30 bytes).
- E. Where ratiometric operation is permissible, the 4 external components may be \pm 5% tolerance, including the power supply.


9650 4-BIT CURRENT SOURCE FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 9650 is a high speed, 4-Bit Precision Current Source, intended for use in D/A and A/D converters with up to 12-bit accuracy. It is constructed on a single silicon chip, using the Fairchild Planar* epitaxial process and consists of a reference transistor and four logic operated precision current sources connected to a single output summing line. Logic inputs are fully TTL compatible under all temperature and supply conditions. A clamp circuit is provided to prevent turn on latchup on the reference input.

- 200 ns SETTLING TIME (12 ± 1/2 LSB)
- STANDARD SUPPLY LEVELS
- VARIABLE BIT CURRENTS
- REFERENCE COMPENSATION
- TTL COMPATIBLE

ABSOLUTE MAXIMUM RATINGS

 V_{CC}^+ V_{CC}^- MSB Current Logic Input Voltage Power Dissipation (Note 1) Storage Temperature Operating Temperature Pin Temperature (Soldering, 60 s) V_{REF} Inputs Output (V_{ref} voltage ≥ -7.0 V)

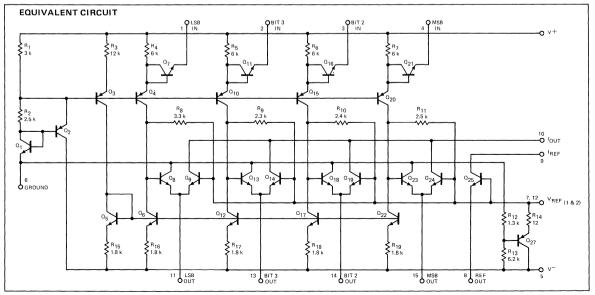
+7 V

-18 V

2.0 mA

+5.5 V

730 mW


 $+300^{\circ}$ C

 -65° C to $+150^{\circ}$ C

 0° C to 70° C

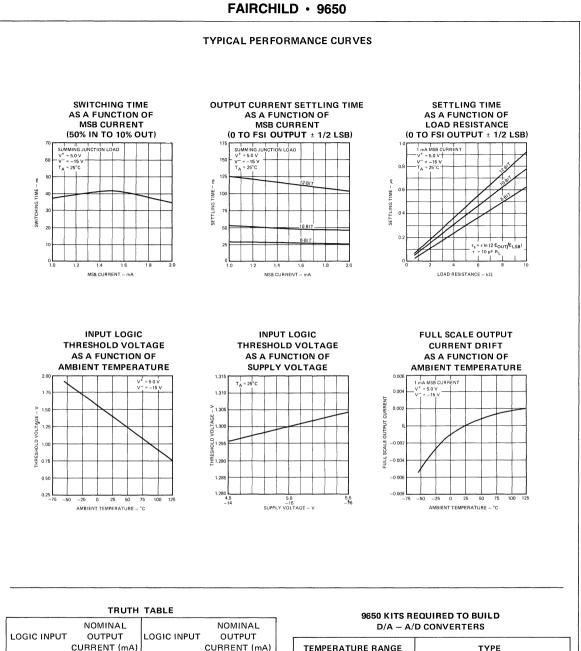
+7 V to V-

+18 V to VRFF

*Planar is a patented Fairchild process.

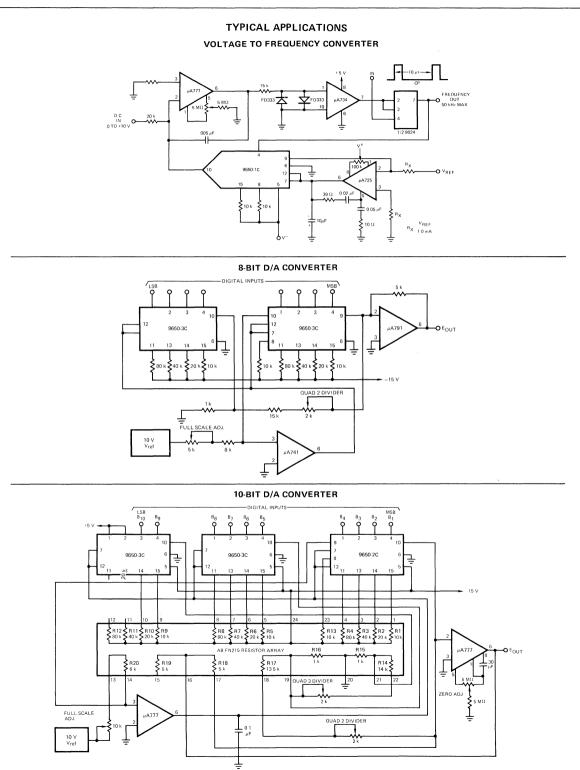
FAIRCHILD • 9650

9650-1C • 9650-2C • 9650-3C

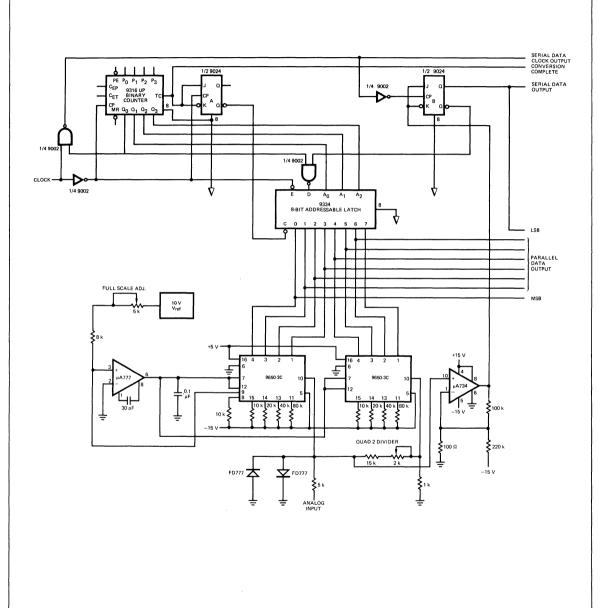

ELECTRICAL CHARACTERISTICS: $T_A = 25^{\circ}C$, Pov	wer Supply Range, 4.5V, -14 V to 5.5 V, -16 V, unless otherwise specified
---	---

CHARACTERISTICS (see definitions)	CONDITIONS (TYPE)	MIN.	TYP.	MAX.	UNITS
Linearity	(9650-1C) (9650-2C)			±0.01 ±0.05	% of FS % of FS
	(9650-3C)			±0.2	% of FS
Full Scale Output Current Error	(9650-1C) (9650-2C)			±0.1 ±0.2	%
	(9650-3C)			±0.4	%
Power Supply Coefficient of Full					1
Scale Output Current	(9650-1C) (9650-2C, 9650-3C)			±0.003 ±0.012	%/V %/V
V _{BE} Range		550		650	mV
hFE of Reference Transistor		300	1000		
Output Impedance	All Bits On		5.0		MΩ
The following specifications	apply for $0^{\circ}C \leq T_A \leq 70^{\circ}C$				
Accuracy	(9650-1C)			±0.025	% of FS
	(9650-2C)			±0.1	% of FS
	(9650-3C)			±0.3	% of FS
Full Scale Output Current Error	(9650-1C)			0.2	%
	(9650-2C) (9650-3C)			0.3 0.6	%
Power Supply Coefficient of Full					
Scale Output Current	(9650-1C)			±0.006	%/V
	(9650-2C, 9650-3C)			±0.024	%/V
Input LOW Voltage	Each Bit On			0.8	V
Input HIGH Voltage	Each Bit Off	2.0			V
Input LOW Current	V _{IL} = 0.4 V			-1.6	mA
Input HIGH Current	V _{IH} .= 2.4 V			40	μA
Output Current	Bit 1 (MSB)		1.0	2.0	mA
	Bit 2		0.5	1.0	mA
	Bit 3 Bit 4 (LSB)		0.25 0.125	0.5 0.25	mA mA
			0.125	0.25	IIIA
Output Current	All Bits Off (9650-1C)		5.0	250	nA
	(9650-2C, 9650-3C)		5.0	500	nA
Output Voltage	Feeding Op Amp Summing Junction		0		V
	Resistive Load	-4.0	Ū	V+	v
Reference Current	Using Compensation Transistor		1.0		mA
VREF Current			±1.0	±2.2	mA
Reference Limit Current	V _{REF} = 0 V	20		75	mA
Positive Supply Current	(9650-1C, 9650-2C)		· · · · · · · · · · · · · · · · · · ·	8.0	mA
	(9650-3C)			10	mA
Negative Supply Current	(9650-1C, 9650-2C)			-11	mA
	(9650-3C)			-15	mA

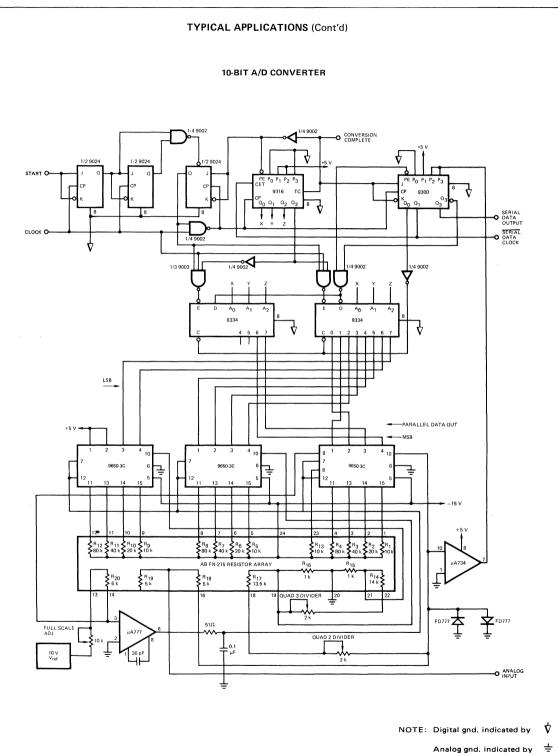
NOTES:


1. Rating applies for ambient temperature to 70° C. Derate linearly at 9.1 mW/ $^{\circ}$ C for ambient temperatures above 70° C.

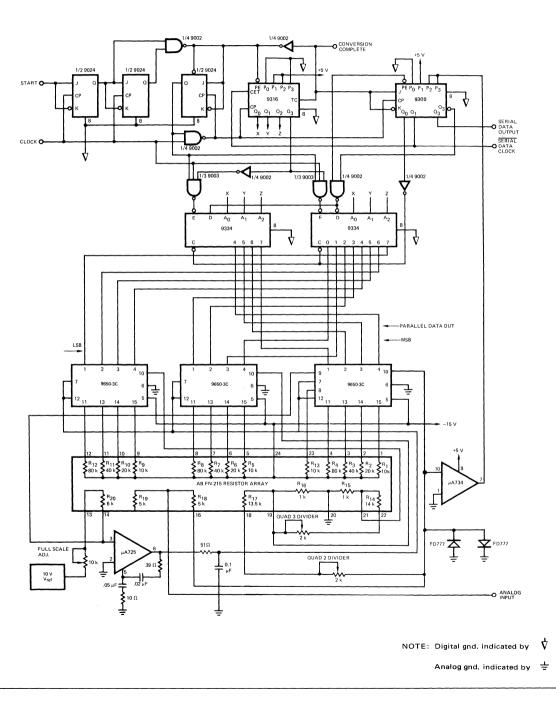
2. V_{REF} Voltage ≥ -7.0 V.


LOGIC INPUT	NOMINAL OUTPUT CURRENT (mA)	LOGIC INPUT	NOMINAL OUTPUT CURRENT (mA)
0000	1.875	1000	0.875
0001	1.750	1001	0.750
0010	1.625	1010	0.625
0011	1.500	1011	0.500
0100	1.375	1100	0.375
0101	1.250	1101	0.250
0110	1.125	1110	0.125
0111	1.000	1111	0.000

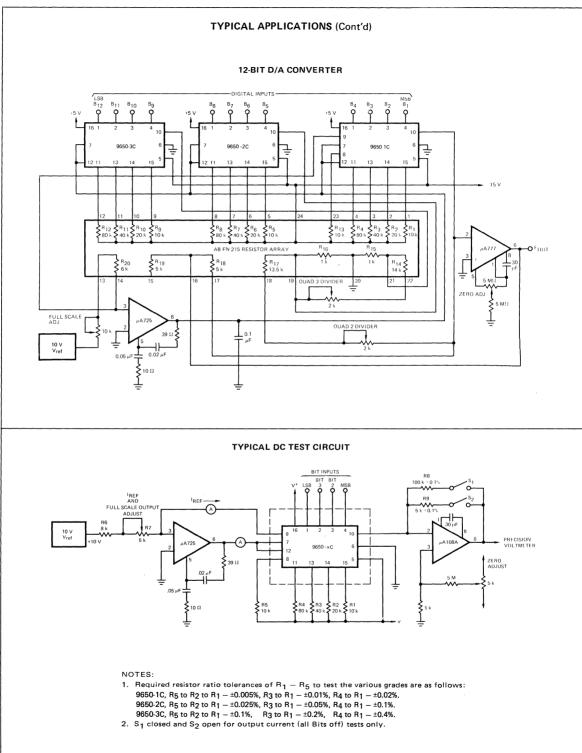
TEMPERATURE RANGE	ТҮРЕ				
0°C to +70°C	9650-1C	9650-2C	9650-3C		
	NO. OF UNITS				
Accuracy to:					
8 Bits	0	0	2		
10 Bits	0	1 1	2		
12 Bits	1	1	1		


TYPICAL APPLICATIONS (Cont'd)

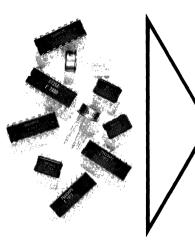
8-BIT A/D CONVERTER


NOTE: Digital gnd. indicated by V

Analog gnd. indicated by 🚽



TYPICAL APPLICATIONS (Cont'd)


12-BIT A/D CONVERTER

FAIRCHILD • 9650

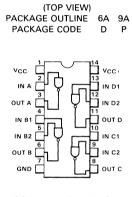
ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
LINEAR INDUSTRY CROSS REFERENCE	2
QUALITY, RELIABILITY AND HI REL PROCESSING	3
VOLTAGE COMPARATORS	4
DATA ACQUISITION	5
LINE CIRCUITS – DRIVERS, RECEIVERS AND TRANSCEIVERS	6
PERIPHERAL AND DISPLAY DRIVERS	7
MEMORY INTERFACE	8
TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
DATA TRANSMISSION INFORMATION	10
ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12

LINE CIRCUITS

Line Drivers		
μA1488	Quad EIA RS-232C Line Driver	
μA8T13	Dual Single-Ended Line Driver	
μΑ8Τ23	Dual IBM 360/370 I/O Single-Ended Line Driver	6-10
55/75110A	Dual General-Purpose Line Driver	
75112	Dual General-Purpose Line Driver	
75121	Dual Single-Ended Line Driver	.6-7
75123	Dual IBM 360/370 I/O Single-Ended Line Driver	6-10
75150	Dual EIA RS-232C/MIL-STD-188C Line Driver	6-18
9612	Dual Differential Line Driver	6-22
9612A	Dual Differential Line Driver	6-22
9612E	Dual Differential Line Driver	6-22
9614	Dual Differential Line Driver	
9616	Triple EIA RS-232C/MIL-STD-188C Line Driver	6-30
9634	Dual 3-State EIA RS-422 Differential Driver	6-33
9636A	Dual Programmable Slew Rate EIA RS-423 Line Driver	6-36
9638	Dual EIA RS-422 High-Speed Differential Line Driver	6-40
Line Receivers		
μA1489	Quad EIA RS-232C Line Driver	6-43
μA1489A	Quad EIA RS-232C Line Driver	6-43
μA8T14	Triple Line Receiver	6-47
μΑ8Τ24	Triple IBM 360/370 I/O Line Receiver	6-50
55/75107A	Dual General-Purpose Line Receiver	6-53
55/75107B	Dual General-Purpose Line Receiver	6-53
55/75108A	Dual General-Purpose Line Receiver	6-53
55/75108B	Dual General-Purpose Line Receiver	6-53
55/75122	Triple Line Receiver	6-47
75124	Triple IBM 360/370 I/O Line Receiver	6-50
75154	Quad EIA RS-232C Line Receiver	6-60
9613	Dual Differential Line Receiver	
9615	Dual Differential Line Receiver	6-69
9617	Triple EIA RS-232C Line Receiver	6-74
9622	Dual Line Receiver	
9627	Dual EIA RS-232C/MIL-STD-188C Line Receiver	6-80
9637A	Dual EIA RS-422/423 Differential Line Receiver	6-84
Transceivers		
μΑ8Τ26Α	Quad 3-State Inverting Bus Transceiver	
μΑ8Τ28	Quad 3-State Non-Inverting Bus Transceiver	6-87

μποιΖο		0-07
9640 (26S10)	Quad General-Purpose Bus Transceiver	6-94
9641 (26S11)	Quad General-Purpose Bus Transceiver	6-94
9642	Quad General-Purpose Bus Transceiver with Hysteresis	6-94

µA1488 QUAD LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS


GENERAL DESCRIPTION – The μ A1488 is an EIA RS-232C specified Quad Line Driver. This device is used to interface data terminals with data communications equipment. The μ A1488 is a pin-for-pin replacement of the MC1488.

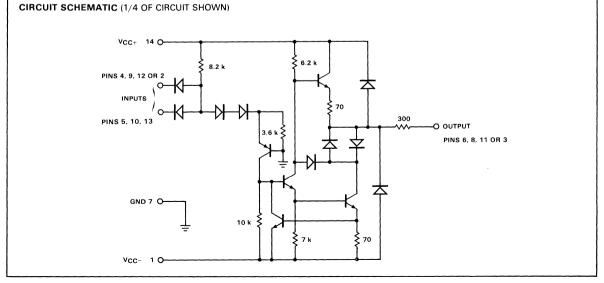
- CURRENT LIMITED OUTPUT ± 10 mA TYP
- POWER-OFF SOURCE IMPEDANCE 300 Ω MIN
- SIMPLE SLEW RATE CONTROL WITH EXTERNAL CAPACITOR
- FLEXIBLE OPERATING SUPPLY RANGE

ABSOLUTE MAXIMUM RATINGS (at 25°C unless otherwise noted)

Power Supply Voltages V_{CC}+ V_{CC}-Input Voltage Range (VIR) Output Signal Voltage Continuous Total Power Dissipation (Note 1) Operating Temperature Range Pin Temperature Hermetic DIP (Soldering, 60 s) Molded DIP (Soldering, 10 s) Note 1: Above 60°C ambient temperatures, derate linearly at 8.3 mW/°C.

+15 V -15 V -15 V DC to +7.0 V DC ±15 V DC 800 mW 0°C to 70°C -65°C to +150°C 300°C 260°C

CONNECTION DIAGRAM


14-PIN DIP

 ORDER INFORMATION

 TYPE
 PART NO.

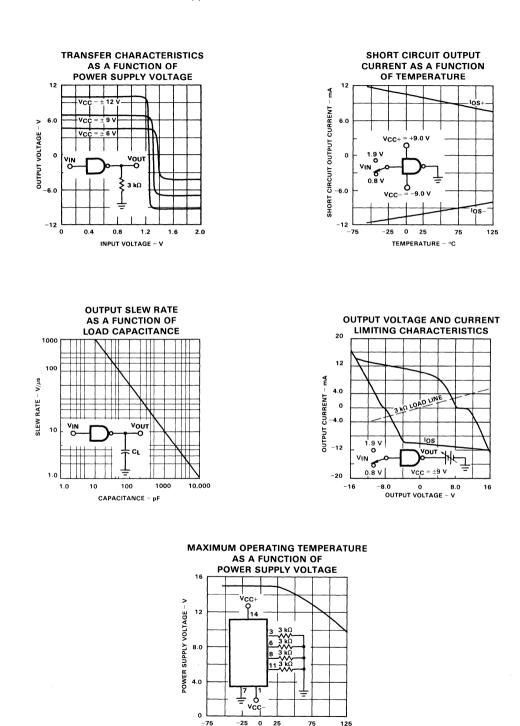
 μA1488
 μA1488DC

 μA1488
 μA1488PC

FAIRCHILD • µA1488

SYMBOL	CHARACTERISTICS	CONDITIONS	FIG.	MIN	TYP	МАХ	UNITS
۱	Input LOW Current	V _{IL} = 0	1		1.0	1.6	mA
Ιн	Input HIGH Current	V _{IH} = 5.0 V	1			10	μA
∨он	Output HIGH Voltage		2	+6.0	+7.0		- v
		$V_{IL} = 0.8 V, R_L = 3.0 k\Omega$ $V_{CC+} = +13.2 V, V_{CC-} = -13.2 V$	2	+9.0	+10.5		
Voi	Output LOW Voltage	$V_{IH} = 1.9 V, R_L = 3.0 k\Omega$ $V_{CC+} = +9.0 V, V_{CC-} = -9.0 V$	2	-6.0	-7.0		- v
VOL		$V_{IH} = 1.9 \text{ V}, \text{ R}_{L} = 3.0 \text{ k}\Omega$ $V_{CC+} = +13.2 \text{ V}, V_{CC-} = -13.2 \text{ V}$	2	-9.0	-10.5		
los+	Positive Output Short-Circuit Current	V _{IL} = 0.8 V (Note 1)	3	+6.0	+10	+12	mA
los-	Negative Output Short-Circuit Current	V _{IH} = 1.9 V (Note 1)	3	-6.0	-10	-12	mA
ROUT	Output Resistance	$V_{CC+} = V_{CC-} = 0 V, V_{O} = \pm 2.0 V$	4	300			Ω
ICC+	Positive Supply Current		5		+15 +4.5 +19 +5.5	+20 +6.0 +25 +7.0 +34 +12	mA
ICC	Negative Supply Current	$ \begin{array}{l} R_{L} = \infty \\ V_{IH} = 1.9 \; V, \; V_{CC-} = -9.0 \; V \\ V_{IL} = 0.8 \; V, \; V_{CC-} = -9.0 \; V \\ V_{IH} = 1.9 \; V, \; V_{CC-} = -12 \; V \\ V_{IL} = 0.8 \; V, \; V_{CC-} = -12 \; V \\ V_{IL} = 1.9 \; V, \; V_{CC-} = -15 \; V \\ V_{IL} = 0.8 \; V, \; V_{CC-} = -15 \; V \\ \end{array} $	5		-13 -18	-17 -15 -23 -15 -34 -2.5	mA μA mA μA mA
PC	Power Consumption	$V_{CC+} = 9.0 V, V_{CC-} = -9.0 V$ $V_{CC+} = 12 V, V_{CC-} = -12 V$				333 576	mW

AC CHARACTERISTICS: V_{CC+} = +9.0 V \pm 1%, V_{CC-} = -9.0 V \pm 1%, T_A = 25 $^{\circ}\text{C}$

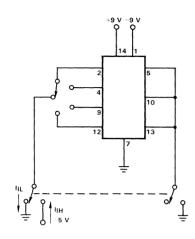

SYMBOL	CHARACTERISTICS	CONDITION	FIG.	MIN	TYP	МАХ	UNITS
^t PLH ^t PHL	Propagation Delay Time	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}$	6		220 70	350 175	ns
t f t _r	Fall Time Rise Time	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}$	6		70 55	75 100	ns

NOTE 1: Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously.

FAIRCHILD • µA1488

TYPICAL CHARACTERISTICS

 $T_A = +25^{\circ}C$ unless otherwise noted



6

TEMPERATURE - °C

DC TEST CIRCUITS

Fig. 1. Input Current

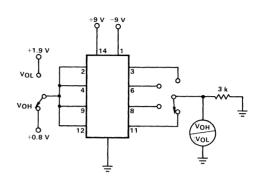


Fig. 3. Output Short-Circuit Current

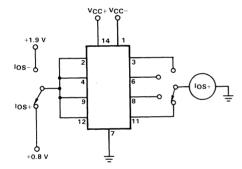


Fig. 5. Power-Supply Currents

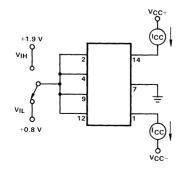


Fig. 4. Output Resistance (Power-off)

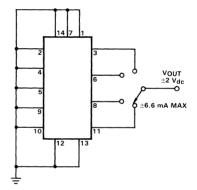
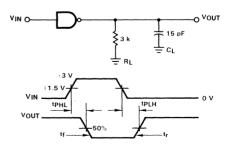



Fig. 6. AC Test Circuit and Voltage Waveform

t_r and t_f are measured 10% to 90%

6-6

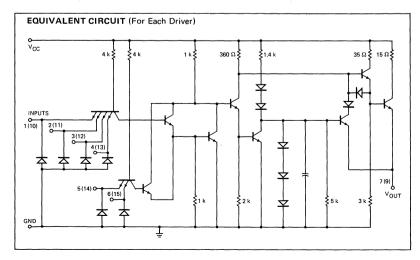
Fig. 2. Output Voltage

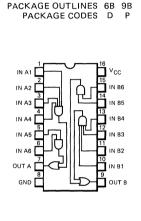
μ**A8T13** • 55121 • 75121 DUAL SINGLE-ENDED LINE DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A8T13/55121/75121 Dual Line Drivers are designed for driving 50 Ω to 500 Ω coaxial cable, strip line, or twisted pair transmission lines. All inputs are TTL or DTL compatible and the emitter-follower outputs enable two or more drivers to operate on the same line in parity line applications.

For a dual line driver to meet the IBM System/360 I/O Interface Specification, see 75123 or 8T23 data sheets.

- HIGH OUTPUT DRIVE CAPABILITY
- HIGH SPEED
- INPUT CLAMP DIODES
- SINGLE 5 V SUPPLY OPERATION
- SHORT CIRCUIT PROTECTED


ABSOLUTE MAXIMUM RATINGS


Input Voltage (Note 1)	+6.0 V
Output Voltage (Note 1)	+6.0 V
Supply Voltage (Note 1)	+6.0 V
Storage Temperature Range	−55°C to +125°C
Operating Temperature Range	
Military (55121, µA8T13DM)	-55°C to +125°C
Commercial (75121)	0° C to +70° C
Pin Temperatures	
Hermetic DIP (Soldering, 60 s)	300° C
Molded DIP (Soldering, 10 s)	260° C
Internal Power Dissipation (Note 2)	800 mW

NOTES:

1. Voltages are with respect to the ground pin (pin 8)

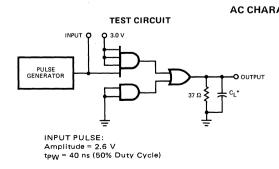
For Hermetic DIP and Molded DIP rating applies to ambient temperatures up to 60°C, above 60°C derate linearly at 8.3 mW/°C.

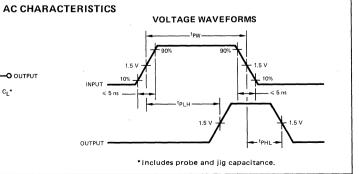
CONNECTION DIAGRAM

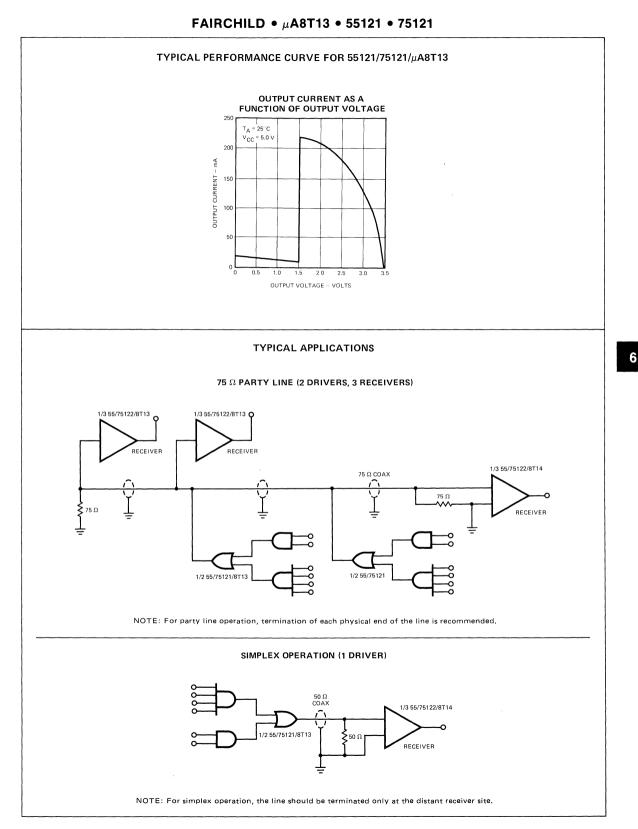
16-PIN

(TOP VIEW)

	ORDER INFORMATION													
	т	YPE			PART NO.									
	μA	18T	13 o	r 55	121	μ	A8T	13/55121DN	Л					
	μA8T13 or 75121							13/75121D0						
	μA	\8T	13 o	μ Α8 ΄	T13/75121P0	2								
		Ę	55/7	512	I FU	NCT		I TABLE						
ļ														
				INP	UTS	;		ουτρυτ						
1		1	2	3	6	001901								
1		н	н	н	н	х	х	н						
ļ		Х	Х	Х	Х	н	н	н						
			~ .											


All Other Inputs	L
Combinations	


FAIRCHILD • µA8T13 • 55121 • 75121

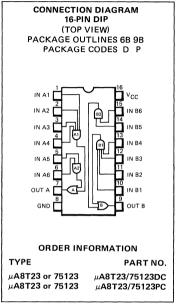

			M	IN	түр	MAX	UNIT	
Supply Vol	tage, V _{CC}		4.	75	5	5.25	V	
Output HI	GH Current, I _{OH}					-75	mA	
Operating /	Ambient Temperature, $T_A = \frac{55121/\mu A8}{55121}$			55		125	°C	
	75121/µA8			0		70	°C	
LECIRICAL	CHARACTERISTICS: V _{CC+} = 4.75	/ to 5.25 V, Ratings apply over recomm	ended temp	erature T	range u	niess noted.	•	
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ΤY	Р	MAX	UNITS	
VIH	Input HIGH Voltage		2.0				V	
VIL	Input LOW Voltage					0.8	V	
VIN	Input Clamp Voltage	$V_{CC} = 5.0 \text{ V}, I_{IN} = -12 \text{ mA}$				1.5	V	
V _(BR) I	Input Breakdown Voltage	V _{CC} = 5.0 V, I _{IN} = 10 mA	5.5				v	
∨он	Output HIGH Voltage	V _{IH} = 2.0 V, I _{OH} =75 mA (Note 3)	2.4				v	
юн	Output HIGH Current	V _{CC} = 5.0 V, V _{IH} = 4.5 V V _{OH} = 2.0 V, T _A = 25°C (Note 3)	-100			250	mA	
IOL	Output LOW Current	V _{IL} = 0.8 V, V _{OL} = 0.4 V (Note 3)				-800	μA	
OUT(off)	Off-State Output Current	V _{CC} = 0, V _{OUT} = 3.0 V				500	μA	
Чн	Input HIGH Current	V _{IN} = 4.5 V				40	μA	
μL	Input LOW Current	V _{IN} = 0.4 V	-0.1			-1.6	mA	
los	Short-Circuit Output Current	$V_{CC} = 5.0 V, T_{A} = 25^{\circ}C$				-30	mA	
іссн	Supply Current, Outputs HIGH	V _{CC} = 5.25 V, All inputs at 2.0 V Outputs open				28	mA	
ICCL	Supply Current, Outputs LOW	V _{CC} = 5.25 V, All inputs at 0.8 V Outputs open				60	mA	
C CHARAC	TERISTICS: V _{CC} = 5.0 V, T _A = 25°C.							
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮ	Р	MAX	UNITS	
^t PLH	Propagation Delay Time LOW-to-HIGH Output	RL = 37 Ω, CL = 15 pF		1	1	20		
tPHL	Propagation Delay Time HIGH-to-LOW Output	See Test Circuit		8.	5	20	ns	
^t PLH	Propagation Delay Time LOW-to-HIGH Output	R ₁ = 37 Ω, C _L = 1000 pF		2	2	50		
^t PHL	Propagation Delay Time HIGH-to-LOW Output	See Test Circuit		2	0	50	ns	

NOTE:

4. The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the function table for the desired output.

μ**A8T23** • **75123** DUAL SINGLE-ENDED LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

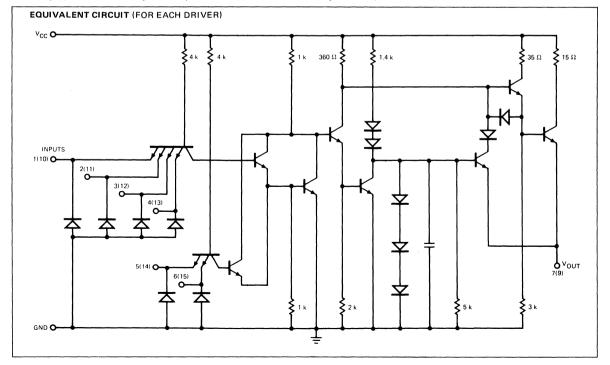
GENERAL DESCRIPTION – The μ A8T23/75123 Dual Line Driver meets the requirements of the IBM System/360 I/O Interface Specification for interface drivers. Inputs are TTL/DTL compatible. Logic has been incorporated to ensure that no spurious noise is generated on the transmission line during the power-up and power-down sequence. The outputs are protected from short circuits and have uncommitteed emitter outputs which allows DOT-OR logic to be performed in party line data bus applications.


- IOUT = 59.3 mA AT 3.11 V
- UNCOMMITTED EMITTER OUTPUTS FOR PARTY LINE/WIRED-OR APPLICATIONS
- SHORT CIRCUIT PROTECTION
- SINGLE 5.0 V SUPPLY OPERATION
- AND-OR LOGIC CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Note 1)	+5.5 V
Output Voltage (Note 1)	+7.0 V
Supply Voltage (Note 1)	+7.0 V
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Operating Temperature Range	0°C to 70°C
Pin Temperatures s	
Hermetic DIP (Soldering, 60 s)	300° C
Molded DIP (Soldering, 10 s)	260° C
Internal Power Dissipation (Note 2)	800 mW

		FUN	сті	ON	ТАВ	LE
			OUTPUT			
1	2	3	4	5	6	
н	н	н	н	х	х	н
X	х	х	х	н	н	н
1		DTH 1BIN				L
н =	HIG	н				
L =	LOV	v				



NOTES:

1. Voltages are with respect to the ground pin (pin 8).

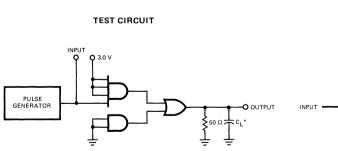
2. Rating applies to ambient temperatures up to 60°C. Above 60°C derate linearly at 8.3 mW/°C.

FAIRCHILD • µA8T23/75123

	MIN	ТҮР	MAX	UNITS
Supply Voltage, V _{CC}	4.75	5.0	5.25	v
Output HIGH Current, IOH			-75	mA
Operating Ambient Temperature, TA	0		70	°C

ELECTRICAL CHARACTERISTICS: V_{CC} = 4.75 V to 5.25 V (unless otherwise noted)

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
VIH	Input HIGH Voltage		2.0			v
VIL	Input LOW Voltage				0.8	V
VI	Input Clamp Voltage	V _{CC} = 5.0 V, I _{IN} = -12 mA			-1.5	V
V(BR)I	Input Breakdown Voltage	V _{CC} = 5.0 V, I _{IN} = 10 mA	5.5			V
	Output HICH Valtage	$V_{CC} = 5.0 \text{ V}, \text{ V}_{IH} = 2.0 \text{ V}, \text{ T}_{A} = 25^{\circ} \text{ C}$	3.11			v
VOH Output HIGH Voltage		$I_{OH} = -59.3 \text{ mA}$, See Note 3 $T_A = 0^{\circ} \text{C}$ to 70°C	2.9			v
		V _{CC} = 5.0 V, V _{IH} = 4.5 V, V _{OH} = 2.0 V,	-100		-250	mA
юн	Output HIGH Current	$T_A = 25^{\circ}C$, See Note 3	-100		-250	mA
VOL	Output LOW Voltage	V _{IL} = 0.8 V, I _{OL} = -240 µA, See Note 3			0.15	V
OUT(off)	Off-State Output Current	V _{CC} = 0, V _{OUT} = 3.0 V			40	μA
Чн	Input HIGH Current	V _{IN} = 4.5 V			40	μA
μL	Input LOW Current	V _{IN} = 0.4 V	-0.1		-1.6	mA
IOS	Short-Circuit Output Current	$V_{CC} = 5.0 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ} \text{ C}$			-30	mA
ССН	Supply Current, Outputs HIGH	V _{CC} = 5.25 V, All Inputs at 2.0 V, Outputs Open			28	mA
CCL	Supply Current, Outputs LOW	V _{CC} = 5.25 V, All Inputs at 0.8 V, Outputs Open			60	mA

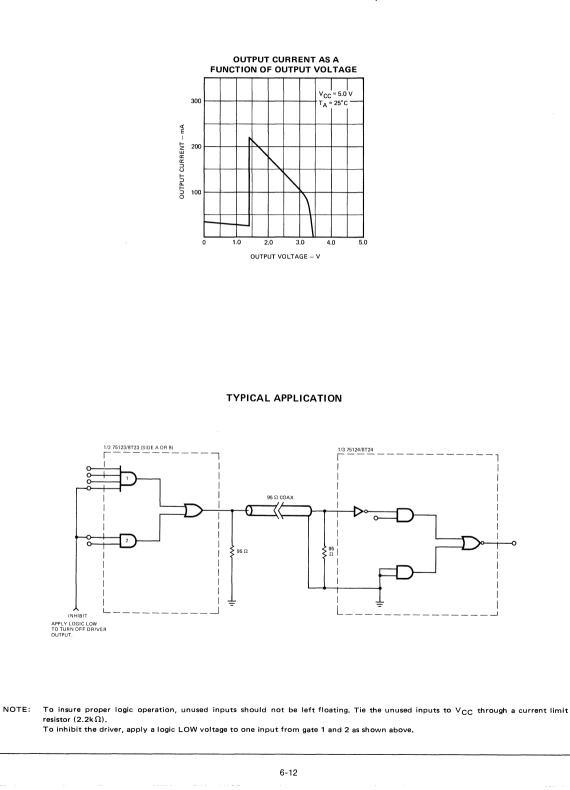

AC CHARACTERISTICS: $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	RL = 50 Ω,CL = 15 pF		12	20	
^t PHL	Propagation Delay Time, Output HIGH to LOW See Test Circuit			12	20	ns
^t PLH	Propagation Delay Time, Output LOW to HIGH	$R_{L} = 50 \Omega, C_{L} = 100 pF$		20	35	
^t PHL	Propagation Delay Time, Output HIGH to LOW	See Test Circuit		15	25	ns

3. The output voltage and current limits are guaranteed for any appropriate combination of HIGH and LOW inputs specified by the function table for the desired output.

AC CHARACTERISTICS


WAVEFORMS

INPUT PULSE: Amplitude = 2.6 V $t_{PW} = 50 \text{ ns} (50\% \text{ Duty Cycle})$ $t_r = t_f \leq 5 \text{ ns} (10\% \text{ and }90\% \text{ measurement points})$

*Includes probe and jig capacitance

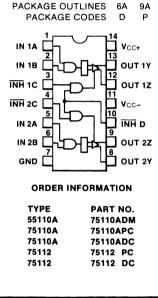
6

TYPICAL PERFORMANCE CURVE FOR 75123/µA8T23

55110A • 75110A • 75112 DUAL LINE DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The 55110A, 75110A and 75112 have improved output current regulation with supply voltage and temperature variations. In addition, the higher current of the 75112 (27 mA) allows data to be transmitted over longer lines. These drivers offer optimum performance when used with the 55107A, 75107A and 75108A line receivers.

These drivers feature independent channels with common voltage supply and ground terminals. The significant difference between the three drivers is in the output current specification. The driver circuits feature a constant output current that is switched to either of two output terminals by the appropriate logic levels at the input terminals. The output current can be switched off (inhibited) by low logic levels on the inhibit inputs. The output current is nominally 12 mA for the '110A and 27 mA for the 75112.

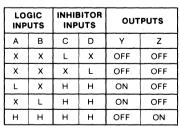

The inhibit feature is provided so the circuits can be used in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included for increased driver-logic versatility. The output current in the inhibited mode, IO(off), is specified so that minimum line loading is induced when the driver is used in a party-line system with other drivers. The output impedance of the driver in the inhibited mode is very high-the output impedance of output transistor is biased to cutoff.

GLITCHLESS OUTPUTS - NO OUTPUT TRANSIENTS ON POWER UP OR DOWN

- IMPROVED STABILITY OVER SUPPLY VOLTAGE AND TEMPERATURE RANGES
- CONSTANT-CURRENT, HIGH-IMPEDANCE OUTPUTS
- **HIGH SPEED-15 ns**
- STANDARD SUPPLY VOLTAGES
- INHIBITOR AVAILABLE FOR DRIVER SELECTION
- HIGH COMMON-MODE OUTPUT VOLTAGE RANGE (-3 V TO 10 V)
- TTL INPUT COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS OVER AMBIENT TEMPERATURE RANGE (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)	7 V
Supply voltage, Vcc-	-7 V
Input voltage (any input)	5.5 V
Output voltage (any output)	-5 V to 12 V
Continuous total dissipation at (or below) 25°C ambient	
temperature (see Note 2)	
Ceramic DIP package	900 mW
Plastic DIP package	1700 mW
Operating ambient temperature, 55110A	-55°C to 125°C
75110A, 75112	0°C to 70°C
Storage temperature range	-65° C to 150° C
Pin temperature, Hermetic DIP (soldering 60 s)	300° C
Plastic DIP (soldering 10 s)	260° C

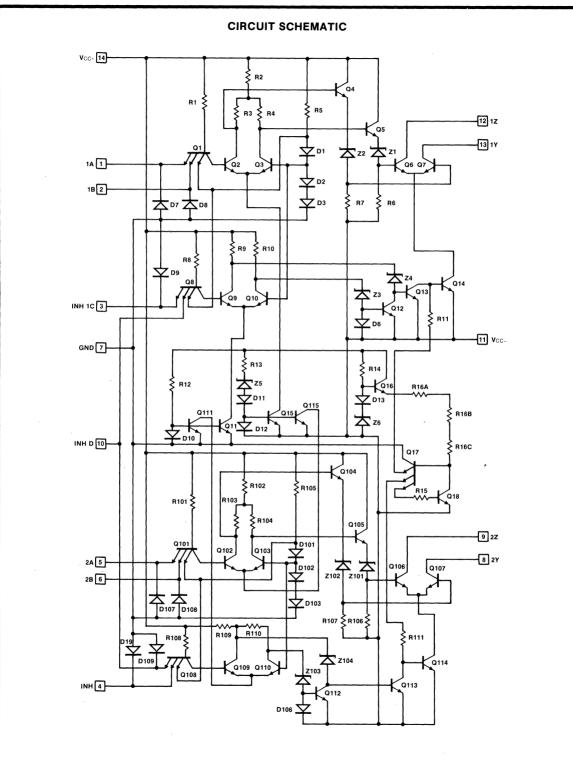


CONNECTION DIAGRAM

14-PIN DIP

(TOP VIEW)

64


FUNCTION TABLE

H = HIGH level, L = LOW level, X = irrelevant

NOTES

1. Voltage values are with respect to network ground terminal.

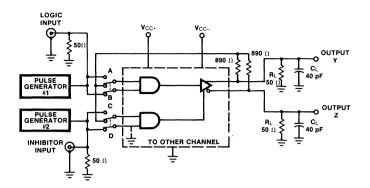
2. For operation above 25°C ambient temperature, derate hermetic DIP at 8 mW/°C and plastic DIP at 14 mW/°C

RECOMMENDED OPERATING CONDITIONS (SEE NOTE 3)

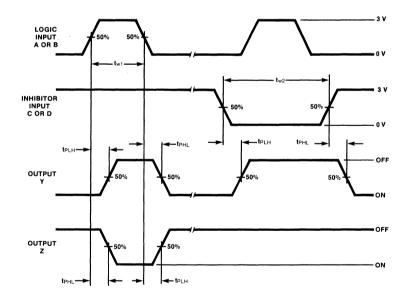
	55110A						
	MIN	NOM	MAX	MIN	NOM	МАХ	UNITS
Supply Voltage V _{CC+}	4.5	5	5.5	4.75	5	5.25	v
Supply Voltage Vcc-	-4.5	-5	-5.5	-4.75	-5	-5.25	v
Positive Common Mode Output Voltage	0		10	0		10	v
Negative Common Mode Output Voltage	0		-3	0		-3	v
Operating Free-Air Temperature Range	-55		125	0		70	°C

NOTE 3: When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

ELECTRICAL CHARACTERISTICS: OVER RECOMMENDED OPERATING AMBIENT TEMPERATURE RANGE (unless otherwise noted)


SYMBOL	CHARACTERISTICS		TEST CONDITIONS†	55110A 75110A			75112			UNITS
OTMEOL				MIN	TYP††	МАХ	MIN	TYP††	MAX	
Viн	Input HIGH voltage			2			2			V
VIL	Input LOW voltage					0.8			0.8	v
Vik	Input clamp voltage		$V_{CC\pm} = MIN$, $I_{IN} = -12 \text{ mA}$		-0.9	-1.5		-0.9	-1.5	V
lO(on)	On-state output current			6.5	12 12	15	18	27 27	36	mA
I _{O(off)}	Off-state output current	nt	$V_{CC\pm} = MIN, V_{OUT} = 10 V$			100			100	μA
h	Input current at maximum	A,B or C Inputs D Input	$V_{CC\pm} = MAX, V_{IN} = 5.5 V$			1			1	mA
	input voltage Input HIGH	A,B or C Inputs				40			40	μA
lн	Current	D Input	t V _{CC±} = MAX, V _{IN} = 2.4 V			80			80	
hL.	Input LOW	A,B or C Inputs	$V_{CC\pm} = MAX, V_{IN} = 0.4 V$			-3			-3	mA
	Current	D Input				-6			-6	
ICC+(on)	Supply current from V _{CC+} with driver enabled		V _{CC±} = MAX, A & B inputs at 0.4 V,		23	35		25	40	mA
ICC-(on)	Supply current from V _{CC-} with driver enabled		C & D inputs at 2 V		-34	-50		-65	-100	
ICC+(off)	Supply current from V _{CC+} with driver inhibited		$V_{CC\pm} = MAX,$ A,B,C and D inputs		21			30		mA
ICC-(off)	Supply current from V _{CC} with driver inhibited		at 0.4 V		-17			-32		

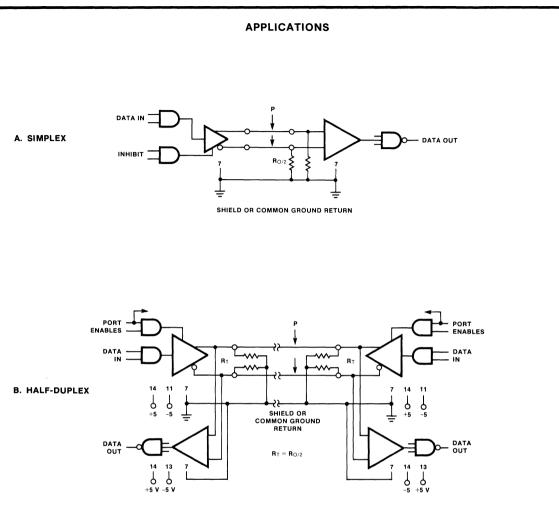
 \dagger For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions. \dagger \dagger All typical values are V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25° C


AC CHARACTERISTICS: $V_{CC^+}=5~V,~V_{CC^-}=-5~V,~T_A=25^{\circ}C$

SYMBOL	CHARACTERISTICS	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	мах	UNITS
tplH	Propagation Delay Time, LOW to HIGH	A at D	Y or Z	0 10 - 5		9	15	ns
tPHL .	Propagation Delay Time, HIGH to LOW	A or B	Y OF Z	$C_L = 40 \text{ pF},$		9	15	ns
tPLH	Propagation Delay Time, LOW to HIGH			$R_L = 50 \Omega$		16	25	ns
t _{PHL}	Propagation Delay Time, HIGH to LOW	CorD	Y or Z	See Figure 1		13	25	ns

CHARACTERISTICS MEASUREMENT INFORMATION

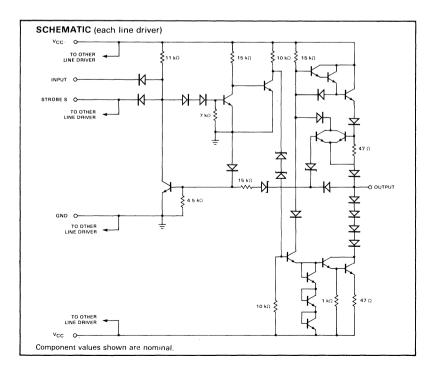
AC TEST CIRCUIT

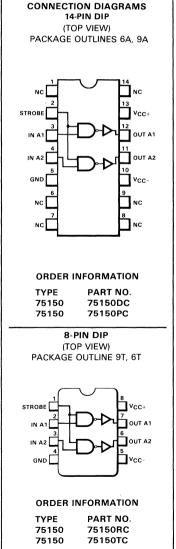


VOLTAGE WAVEFORMS

NOTES:

- 1. The pulse generators have the following characteristics: $Z_{out} = 50 \ \Omega$, $t_r = t_r = 10 \pm 5$ ns, $t_{w1} = 500$ ns, PRR = 1 MHz, $t_{w2} = 1$ ms, PRR = 500 kHz.
- 2. CL includes probe and jig capacitance.
- 3. For simplicity, only one channel and the inhibitor connections are shown.


All drivers are 75110A or 75112. Receivers are 75107 or 75108. Twisted pair or coaxial transmission line should be used for minimum noise and cross talk.


When only one driver in a package is being used, the outputs of the other driver should either be grounded or inhibited to reduce power dissipation.

75150 DUAL LINE DRIVER FAIRCHILD INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 75150 is a monolithic dual line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from +12 V and -12 V power supplies.

- WITHSTANDS SUSTAINED OUTPUT SHORT-CIRCUIT TO ANY LOW-IMPEDANCE VOLTAGE BETWEEN –25V AND 25 V
- 2.0 μs MAX TRANSITION TIME THROUGH THE +3.0 V TO -3.0 V TRANSITION REGION UNDER FULL 2500 pF LOAD
- INPUTS COMPATIBLE WITH MOST TTL AND DTL FAMILIES
- COMMON STROBE INPUT
- INVERTING OUTPUT
- SLEW RATE CAN BE CONTROLLED WITH AN EXTERNAL CAPACITOR AT THE OUTPUT
- STANDARD SUPPLY VOLTAGES ±12 V

ABSOLUTE MAXIMUM RATINGS (over operating free-air temperature range, unless otherwise noted	d).
Supply Voltage V _{CC+} (See Note 1)	15 V
Supply Voltage V _{CC} - (See Note 1)	-15 V
Input Voltage (See Note 1)	15 V
Applied Output Voltage (See Note 1)	±25 V
Operating Ampient Temperature Range	0°C to 70°C
Storage Temperature Range	−65°C to 150°C
Note 1: Voltage values are with respect to network ground terminal.	

RECOMMENDED OPERATING CONDITIONS

	MIN	TYP	МАХ	UNITS
Supply Voltage V _{CC+}	10.8	12	13.2	V
Supply Voltage V _{CC} -	-10.8	-12	-13.2	v
Input Voltage, V _I	0		5.5	v
Applied Output Voltage, V _O			±15	v
Operating Ambient Temperature, T _A	0		70	°C

ELECTRICAL CHARACTERISTICS: Over Recommended Operating Free-Air Temperature Range (unless otherwise noted),	
---	--

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDIT	IONS	MIN TYP* MAX (See Note 2)			UNITS
VIH	Input HIGH Voltage	1			2.0			V
VIL	Input LOW Voltage	2					0.8	V
v _{OH}	Output HIGH Voltage	2	$V_{CC+} = 10.8 V,$ $V_{IL} = 0.8 V,$	$V_{CC^-} = -13.2 \text{ V},$ $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$	5.0	8.0		v
V _{OL}	Output LOW Voltage	1	$V_{CC+} = 10.8 V,$ $V_{IH} = 2 V,$	$V_{CC^-} = -10.8 V$, $R_L = 3 k\Omega$ to 7 k Ω		-8.0	-5.0	v
чн	Input HIGH Current	3	$V_{CC^+} = 13.2 V,$ $V_{CC^-} = -13.2 V,$	Data Input		1.0	10	μA
			$V_{I} = 2.4 V$	Strobe Input		2.0	20	,
	Input LOW Current	3	$V_{CC^+} = 13.2 V,$ $V_{CC^-} = -13.2 V,$	Data Input		-1.0	-1.6	mA
ιL		5	$V_{\rm I} = 0.4 V$	Strobe Input		-2.0	-3.2	
				V _O = 25 V		2.0		
los	Short-Circuit Output Current	4	V _{CC+} = 13.2 V,	V _O = -25 V		-3.0		mA
•••			$V_{\rm CC^{-}} = -13.2 \text{ V}$	V _O = 0 V, V _I = 3 V		15		
-				v ₀ = 0 v, v ₁ = 0 v		-15		
ICCH+	Supply Current from V _{CC+} , Output HIGH	5	V _{CC+} = 13.2 V, V _I = 3 V,	$V_{CC^{-}} = -13.2 \text{ V},$ B ₁ = 3 kΩ.		10	22	mA
ICCH-	Supply Current from $V_{CC^{-}}$, Output HIGH		$T_A = 25^{\circ}C$	L		-1.0	-10	mA
ICCL+	Supply Current from V_{CC^+} , Output LOW	5	$V_{CC+} = 13.2 V,$ $V_{I} = 3 V,$	$V_{CC-} = -13.2 \text{ V},$ B _L = 3 kΩ.		8.0	17	mA
CCL-	Supply Current from $V_{CC^{-}}$, Output LOW		$T_A = 25^{\circ}C$	··· ····/		-9.0	-20	mA

NOTE 2: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5 V is the maximum, the typical value is a more negative voltage.
 *All typical values are at V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25°C.

AC CHAR	ACTERISTICS: V _{CC+} = 12 V, V _{CC-} = -12 V, T _A	= 25°C.	r				
SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
t _{TLH}	Transition Time, Output LOW to HIGH	6	C _L = 2500 pF,	0.2	1.4	2.0	μs
tTHL	Transition Time, Output HIGH to LOW		$R_L = 3 k\Omega \text{ to } 7 k\Omega$	0.2	1.5	2.0	μs
^t THL	Transition Time, Output LOW to HIGH	6	C _L = 15 pF,		40		ns
^t THL	Transition Time, Output HIGH to LOW		$R_L = 7 k\Omega$		20		ns
^t PLH	Propagation Delay Time, Output LOW to HIGH	6	C _L = 15 pF,		60		ns
^t PHL	Propagation Delay Time, Output HIGH to LOW		$R_L = 7 k\Omega$		45		ns
	VIH O I $R_L \leq V_{OL}$ Fig. 1. V_{IH} , V_{OL}		$V_{IL} \bigcirc \qquad $				
ا ۷۱۰۰		N	3V V	′cc+ v ⊥	cc- 0 ↓ +		

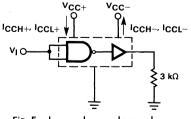
Fig. 3. IIH, IIL

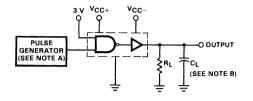
NOTE: When testing $I_{\mbox{IH}}$, the other input is at 3 V; when testing $I_{\mbox{L}}$, the other input is open.

 I_{OS} is tested for both input conditions at each of the specified output conditions.

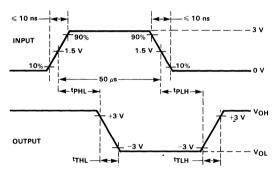
los

Fig. 4.



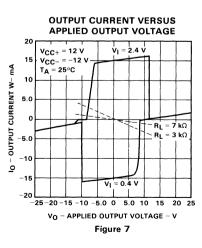

Fig. 5. ICCH+, ICCH-, ICCL+, ICCL-

*Arrows indicate actual direction of current flow. Current into a terminal is a positive value.


CHARACTERISTICS MEASUREMENT INFORMATION (Cont'd)

SWITCHING CHARACTERISTICS

TEST CIRCUIT



NOTES:

A. The pulse generator has the following characteristics: duty cycle \leqslant 50%, $Z_{OUT}\approx$ 50 $\Omega.$

B. C_L includes probe and jig capacitance.

TYPICAL ELECTRICAL CHARACTERISTICS

9612 • 9612A • 9612E DUAL DIFFERENTIAL LINE DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GUARANTEED MAXIMUM OUTPUT

HIGH OUTPUT DRIVE CAPABILITY

FOR 50 Ω TRANSMISSION LINES

CONNECTION DIAGRAM

8-PIN MINIDIP

(TOP VIEW)

GNE

PACKAGE OUTLINE 9T 6T

PACKAGE CODE T R

Vcc

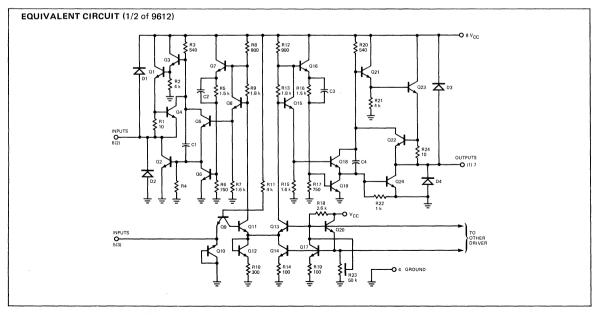
OUT B

GENERAL DESCRIPTION - The 9612 Dual Differential Line Driver is designed specifically to drive single ended or differential, back matched or terminated transmission lines. The outputs are similar to totem pole TTL outputs, with active pull-up and pull-down, for use in simplex or simplex distribution bus systems. The devices feature a short circuit protected active pull-up. The inputs and outputs have clamp diodes to minimize the effect of line transients. The active pull-up output offers low output impedance allowing back matching or parallel termination of the line. The 9612E and 9612A are specified to drive 50 Ω transmission line at high speed while guaranteeing a maximum skew between outputs of less than 3.5 ns for application requiring high performance line drivers. (9613 is the functional complement).

9612/9612A/9612E

- SINGLE 5 V SUPPLY •
- TTL COMPATIBLE INPUTS OUTPUT SHORT CIRCUIT PROTECTION •
- INPUT CLAMP DIODES
- OUTPUT CLAMP DIODES FOR TERMINATION OF LINE TRANSIENTS
- COMPLEMENTARY OUTPUTS

AB


BSOLUTE MAXIMUM RATINGS			
Storage Temperature	-65°C to +150°C		
Operating Temperature			FORMATION
9612A	-55°C to +125°C	UNDEN	FUNIATION
9612, 9612E	0°C to +70°C	TYPE	PART NO.
V _{CC}	+7.0 V	9612	9612TC
VIN	-0.5 V to +5.5 V	9612E	9612ETC
Internal Power Dissipation (Note 1)	800 mW	9612A	9612ARM
Pin Temperature (Soldering, 10 s)		9612	9612RC
Hermetic Mini DIP (Soldering, 60 s)	300°C	9612E	9612ERC
Molded Mini DIP (Soldering, 10 s)	260°C		

9612A/9612E

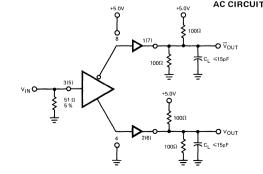
SKEW

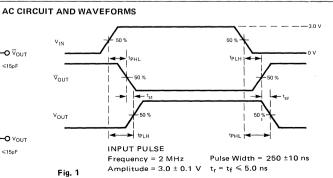
NOTE:

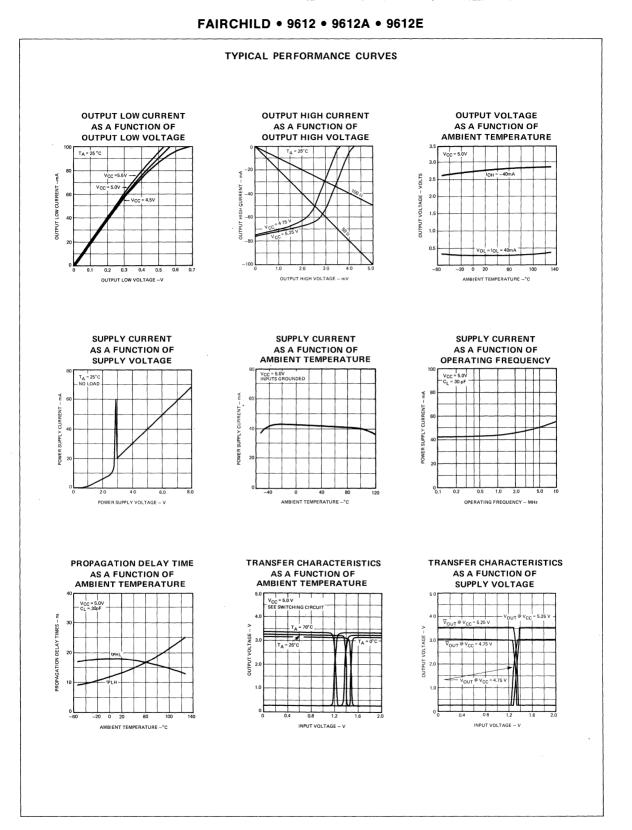
1. For the Hermetic Mini DIP and Molded Mini DIP derate above 30°C at 6.7 mW/°C.

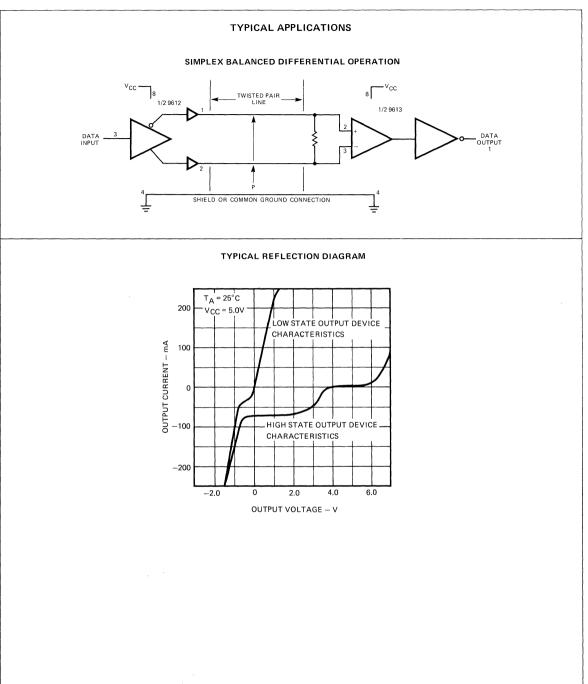
FAIRCHILD • 9612 • 9612A • 9612E

SYMBOL	CHARACTERISTICS	CONDITIONS			UNITS	
			MIN	ТҮР	MAX	1
VOL	Output LOW Voltage	IOL = 40 mA		200	400	mV
VOLC	Clamped Output LOW Voltage	I _{OLC} = -40 mA	-1.5	-0.8		V
Voн	Output HIGH Voltage	I _{OH} = -40 mA	2.0	2.75		V
ISC	Output Short Circuit Current	V _{OUT} = 0V	-140	-77	-42	mA
VIL	Input LOW Voltage				0.8	V
VIH	Input HIGH Voltage		2.0			V
կլ	Input LOW Current	V _{1L} = 0.4 V	-1.6			mA
Чн	Input HIGH Current	V _{IH} = 2.4 V			40	μA
R	Input Reverse Current	V _R = 4.5 V			1.0	mA
VCD	Input Clamp Diode Voltage	$V_{CC} = 4.75 \text{ V}, I_{IC} = -12 \text{ mA}, T = 25^{\circ} \text{ C}$	-1.5	-0.8		V
Icc	Supply Current	Inputs = 0 V , T = 25°C		42	50	mA
Imax	Max. Supply Current	Inputs = 0 V, V_{max} = 7.0 V, T = 25°C		59	70	mA


ELECTRICAL CHARACTERISTICS: V_{CC}= 5.0 V ± 5%, T_A= 0°C to 70°C, unless otherwise specified


					LIN	1ITS			
SYMBOL	CHARACTERISTICS	CONDITIONS		9612	ź		UNITS		
			MIN	TYP	MAX	MIN	TYP	MAX	
VOL	Output LOW Voltage	I _{OL} = 40 mA		200	400		200	400	mV
		IOL = 50 mA (9612E only)					250	400	mV
VOLC	Clamped Output LOW Voltage	I _{OLC} = -40 mA	-1.5	0.8		-1.5	-0.8		V
		I _{OLC} = -50 mA (9612E only)			Ì	-1.5	-0.9		v
VOH	Output HIGH Voltage	I _{OH} = -40 mA	2.4	2.75		2.4	2.75		V
		I _{OH} = -50 mA (9612E only)			1	2.4	2.60	1	v
ISC	Output Short Circuit Current	V _{OUT} = 0V	-140	-77	-42	-140	-77	-55	mA
VIL	Input LOW Voltage				0.8			0.8	V
VIH	Input HIGH Voltage		2.0			2.0			V
μ	Input LOW Current	V _{IL} = 0.4 V	-1.6			-1.6			mA
Чн	Input HIGH Current	V _{IH} = 2.4 V			40			40	μA
IR	Input Reverse Current	V _R = 4.5 V			1.0			1.0	mA
V _{CD}	Input Clamp Diode Voltage	V _{CC} = 4.75 V, I _{IC} = -12 mA	-1.5	-0.8		-1.5	-0.8		V
Icc	Supply Current	Inputs = 0 V		42	50		42	50	mA
I _{max}	Max. Supply Current	Inputs = 0 V, V _{max} = 7.0 V		59	70		59	70	mA


AC CHARACTERISTICS: $T_A = 25^{\circ}C$, $V_{CC} = 5.0 V$, $R_L = 100 \Omega$ (Note 1)


SYMBOL	CHARACTERISTICS	CONDITIONS	9612			9612A/9612E			UNITS
			MIN	ТҮР	MAX	MIN	TYP	MAX	1
^t PLH	Turn Off Time	R _L = 100 Ω (Note 1)			30			20	ns
tPHL	Turn On Time	C _L ≤ 15 pF			30			20	ns
ts	Output Skew	See Fig. 1				-3.5		+3.5	ns

NOTE: 1. RL must be noninductive.

9614 DUAL DIFFERENTIAL LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAM

16-PIN DIP

(TOP VIEW)

PACKAGE OUTLINES 6B 9B 4L

E

Vcc

ACTIVE

OUT B2

OUT B1

IN B3

IN R1

7

IN B2

PART NO. 9614DM

9614FM

9614DC 9614PC

ORDER INFORMATION

ACTIVE PULL UP B1

PULL UP B2

PACKAGE CODES D P

ACTIVE

ACTIVE

PULL UP A2

PULL UP A1

·· OUT A1

IN A1

IN A2

IN A3

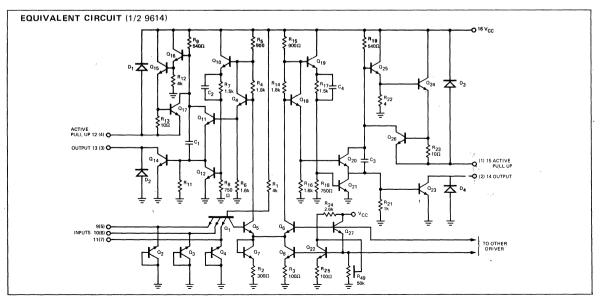
GND

TYPE

9614 9614

9614C

9614C


GENERAL DESCRIPTION – The 9614 is a TTL compatible Dual Differential Line Driver. It is designed to drive transmission lines either differentially or single-ended, back-matched or terminated. The outputs are similar to TTL, with the active pull up and the pull down split and brought out to adjacent pins. This allows multiplex operation (Wired-OR) at the driving site in either the single-ended mode via the uncommitted collector, or in the differential mode by use of the active pull up is short circuit protected and offers a low output impedance to allow back-matching. The two pairs of outputs are complementary providing NAND and AND functions of the inputs, adding greater flexibility. The input and output levels are TTL compatible with clamp diodes provided at both input and output to handle line transients.

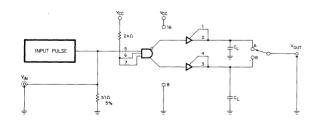
- SINGLE 5 VOLT SUPPLY
- TTL COMPATIBLE INPUTS
- OUTPUT SHORT CIRCUIT PROTECTION
- INPUT CLAMP DIODES
- OUTPUT CLAMP DIODES FOR TERMINATION OF LINE TRANSIENTS
- COMPLEMENTARY OUTPUTS FOR NAND, AND OPERATION
- UNCOMMITTED COLLECTOR OUTPUTS FOR WIRED OR APPLICATION
- MILITARY TEMPERATURE RANGE

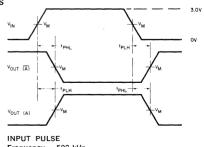
ABSOLUTE MAXIMUM RATINGS (above which the useful life may be imparied)

ABOOLOTE INAMINON NATINGO (above miner the useral me hay be imparted)	
Storage Temperature Range	-65°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.7 V to +7.0 V
Input Voltage	–0.5 V to +5.5 V
Voltage Supplied to Outputs (Open Collector)	0.5 V to +12 V
Pin Temperature	
Hermetic DIP, Flatpak (Soldering, 60 s)	300° C
Molded DIP (Soldering, 10 s)	260° C
Internal Power Dissipation (Note 1)	670 mW
Operating Temperature Range	
Military (9614)	55°C to +125°C
Commercial (9614C)	0°C to +70°C
NOTE:	

1. For Hermetic DIP rating applies to ambient temperatures up to 70°C, above 70°C derate linearly at 8.3 mW/°C. For the Flatpak, derate linearly at 7.1 mW/°C above 60°C.

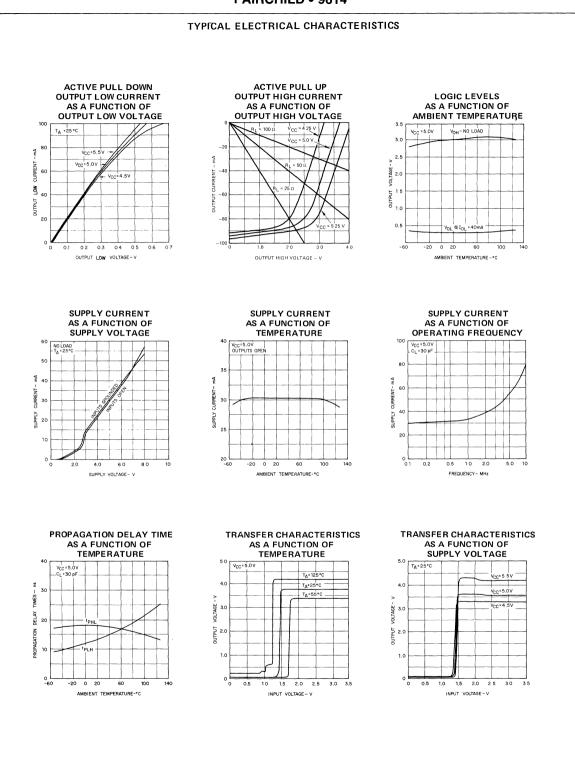
ELECTRICAL CHARACTERISTICS: $V_{CC} = 5.0 \text{ V} \pm 10\%$.


					LIMITS						
SYMBOL	CHARACTERISTICS	-5	5°C		+25° C		+12	25° C	UNITS	CONDI	TIONS
		MIN	MAX	MIN	ТҮР	MAX	MIN	MAX			
VOL	Output LOW Voltage		400		200	400		400	mV	1 _{OL} = 40 mA	V _{CC} = 4.5 V
VOH1	Output HIGH Voltage	2.4		2.4	3.2		2.4		V	1 _{0H} = -10 mA	V _{CC} = 4.5 V
VOH2		2.0		2.0	2.6		2.0		V	I _{OH} = -40 mA	VCC - 4.5 V
ISC	Output Short-Circuit Current			-40	-90	-120			mA	V _{OUT} = 0.0 V	V _{CC} = 5.5 V
ICEX	Output Leakage Current		1		10	100		200	μA	V _{CEX} = 12.0 V	V _{CC} = 5.5 V
١F	Input Forward Current		-1.60		-1.10	-1.60		-1.60	mA	V _F = 0.4 V	V _{CC} = 5.5 V
IR	Input Reverse Current				35	60		100	μA	V _R = 4.5 V	V _{CC} = 5.5 V
VIL	Input LOW Voltage		0.8		1.3	0.8		0.8	V	V _{CC} = 5.5 V	
VIH	Input HIGH Voltage	2.0		2.0	1.5		2.0		V	V _{CC} = 4.5 V	
VOLC	Clamped Output LOW Voltage				-0.8	-1.5			V	$l_{OLC} = -40 \text{ mA}$	V _{CC} = 5.5 V
ICC	Supply Current				34	50			mA	Inputs = 0 V	V _{CC} = 5.5 V
I _{max}	Supply Current				46	65			mA	Inputs = 0 V	V _{max} = 7.0
^t PLH	Turn-Off Time				14	20			ns	CL = 30 pF	V _{CC} = 5.0 V
^t PHL	Turn-On Time				18	20			ns	See Fig. 1	V _M = 1.5 V
VCD	Input Clamp Diode Voltage				-1.0	-1.5			V	V _{CC} = 4.5 V	IIC = -12 m/


9614C

ELECTRICAL CHARACTERISTICS: V $_{CC}$ = 5.0 V ± 5%.

					LIMITS					[
SYMBOL	CHARACTERISTICS	0	°C		+25°C		+7	0°C	UNITS	CONDI	TIONS
		MIN	MAX	MIN	ТҮР	MAX	MIN	MAX			
VOL	Output LOW Voltage		450		200	450		450	mV	I _{OL} = 40 mA	V _{CC} = 4.75 V
VOH1	Output HIGH Voltage	2.4		2.4	3.2		2.4		V	I _{OH} =10 mA	V _{CC} = 4.75 V
VOH2	Output HIGH Voltage	2.0		2.0	2.6		2.0		V	¹ OH =40 mA	VCC - 4.75 V
ISC	Output Short-Circuit Current			-40	-90	-120			mA	V _{OUT} = 0.0 V	V _{CC} = 5.25 V
ICEX	Output Leakage Current				10	100		200	μA	V _{CEX} = 5.25 V	V _{CC} = 5.25 V
١ _F	Input Forward Current		-1.60		-1.10	-1.60		-1.60	mA	V _F = 0.45 V	V _{CC} = 5.25 V
IR	Input Reverse Current				35	60		100	μA	V _R = 4.5 V	V _{CC} = 5.25 V
VIL	Input LOW Voltage		0.8		1.3	0.8		0.8	V	V _{CC} = 5.25 V	
VIH	Input HIGH Voltage	2.0		2.0	1.5		2.0		V	V _{CC} = 4.75 V	
VOLC	Clamped Output LOW Voltage				-0.8	-1.5			V	$I_{OLC} = -40 \text{ mA}$	$V_{CC} = 5.25 V$
lcc	Supply Current				33	50			mA	Inputs = 0 V	V _{CC} = 5.25
I _{max}	Supply Current				46	70			mA	Inputs = 0 V	V _{max} = 7.0 V
^t PLH	Turn-Off Time				14	30			ns	C _L = 30 pF	V _{CC} = 5.0 V
^t PHL	Turn-On Time				18	30			ns	See Fig. 1	V _M = 1.5 V
VCD	Input Clamp Diode Voltage				-1.0	-1.5			V	V _{CC} = 4.75 V	IIC = -12 mA


AC TEST CIRCUIT AND WAVEFORMS

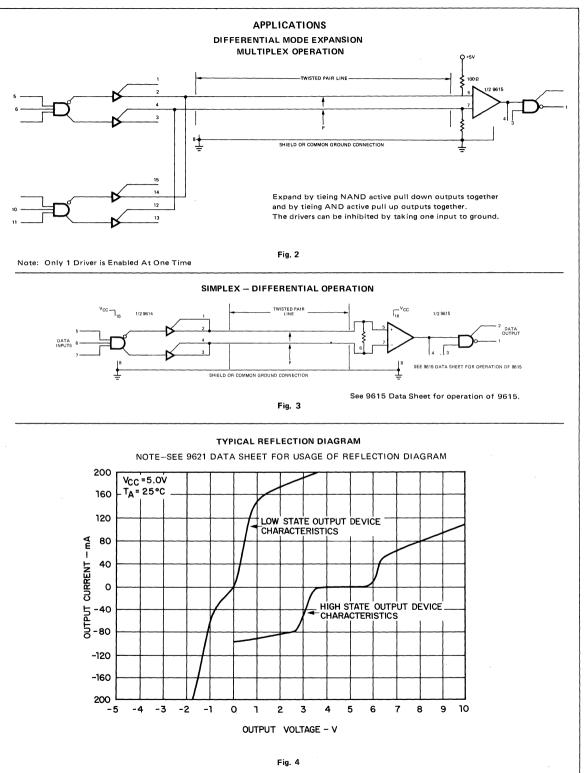

Frequency = 500 kHz Amplitude = 3.0 ± 0.1 V Pulse Width = 110 ± 10 ns $t_{_{f}}=t_{_{f}}\leq5.0~\text{ns}$

Fig. 1

FAIRCHILD • 9614

FAIRCHILD • 9614

9616

TRIPLE EIA RS-232-C/MIL-STD-188C LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAM

14-PIN

(TOP VIEW)

ORDER INFORMATION

TRUTH TABLE

(For Channel C, omit INPUT 2 Column)

D Ρ

> IN R2 ілнівіт в

OUT B

OUT C Vcc

PART NO.

9616DM

9616DC

9616PC 9616EPC

9616EDC

OUTPUT

н

L

L

L

н

н

L

L.

PACKAGE OUTLINES 6A 9A

PACKAGE CODES

INHIBI

OUT

IN INHIBIT

TYPE

9616

9616C

9616E

9616C

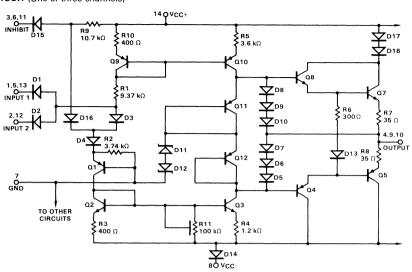
9616E

GENERAL DESCRIPTION - The 9616 is a Triple Line Driver which meets the electrical interface specifications of EIA RS-232-C and CCITT V.24 and/or MIL-STD-188C (by the appropriate device selection). Each driver converts TTL/DTL logic levels to EIA/ CCITT and/or MIL-STD-188C logic levels for transmission between data terminal equipment and data communications equipment. The output slew rate is internally limited and can be lowered by an external capacitor; all output currents are short-circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH on the inhibit terminal interrupts signal transfer and forces the output to a VOI (EIA/CCITT MARK) state.

For the complementary function, see the 9617 Triple EIA RS-232-C Line Receiver and the 9627 Dual EIA RS-232-C and MIL-STD-188C Line Receiver.

- MEETS EIA RS-232-C AND CCITT V.24 AND/OR MIL-STD-188C
- LOGIC TRUE INHIBIT FUNCTION
- . OUTPUT SHORT-CIRCUIT CURRENT LIMITING
- OUTPUT VOLTAGE LEVELS INDEPENDENT OF SUPPLY VOLTAGES

ABSOLUTE MAXIMUM RATINGS


Supply Voltage	±15 V	INPUT INHIBIT OU
Input or Inhibit Voltage Output Signal Voltage Internal Power Dissipation (Note 1)	−1.5 V to +6.0 V ±15 V 670 mW	1 2 All Sections:
Storage Temperature Range Operating Temperature Range RS-232 MIL-STD-188 (9616) RS-232 (9616C)	65°C to +150°C 55°C to +125°C 0°C to 70°C	L L L H H L L L H H H H
RS-232 MIL-STD-188 (9616E)	0°C to 70°C	For Channels A and B add:
Pin Temperatures Hermetic DIP, Flatpak (Soldering, 60 s) Molded DIP (Soldering, 10 s)	300°C 260°C	

NOTE

1 For Hermetic and Plastic DIP above 60°C derate linearly at 8.3 mW/°C.

FAIRCHILD LINEAR INTEGRATED CIRCUIT • 9616

EQUIVALENT CIRCUIT (One of three channels)

9616 AND 9616E RS-232-C and MIL-STD-188C

DC CHARACTERISTICS: V_{CC} = ± 12 V $\pm 10\%$; R_L ≥ 3 k Ω , See Test Circuit, unless otherwise specified, Note 2

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
V _{OH}	Output HIGH Voltage	V_{IN1} and/or $V_{IN2} = V_{INHIBIT} = 0.8 V$	5.0	6.0	7.0	v '
VOL	Output LOW Voltage	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	-7.0	-6.0	-5.0	V
	Ripple Rejection	Power Supply Ripple = 2.4 Vp-p, f = 400 Hz		0.25		% of VOU
V _{OH} to V _{OL}	Output HIGH Voltage to Output LOW Voltage Magnitude Matching Error				±10	%
ISC+	Positive Output Short Circuit Current	$R_L=0~\Omega,~V_{IN1}$ and/or $V_{IN2}=V_{INHIBIT}=0.8~V$	-45	-25	-12	mA
ISC-	Negative Output Short Circuit Current	$R_L = 0 \Omega$, $V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	+12	+25	+45	mA
VIH	Input HIGH Voltage		2.0			V
VIL	Input LOW Voltage				0.8	V
чн	Input HIGH Current	$V_{IN1} = V_{IN2} = 2.4 V$			40	μA
		$V_{IN1} = V_{IN2} = 5.5 V$			1.0	mA
μL	Input LOW Current	$V_{IN1} = V_{IN2} = 0.4 V$	-1.6	-1.2		mA
 l+	Positive Supply Current	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 0.8 V$		15	25	mA
•		$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	T	7.5	15	
	Negative Supply Current	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 0.8 V$	-1.0	0		mA
		$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	-25	-15]
ROUT	Output Resistance, Power On	$R_L = 6 k\Omega, \Delta I_L = 10 mA$		75		Ω
ROUT	Output Resistance, Power Off	-2.0 V \leqslant V_OUT \leqslant +2.0 V All Inputs and Supply Pins Grounded	300			Ω

NOTES:

2. The operating temperature range for the 9616 is -55° C to $+125^{\circ}$ C and 9616E is 0°C to $+70^{\circ}$ C.

An external capacitor may be needed to meet signal wave shaping requirements of MIL-STD-188C at the applicable modulation rate. No external capacitor is needed to meet RS-232-C over the operating temperature range of 0°C to +70°C.

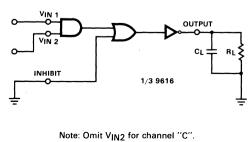
FAIRCHILD LINEAR INTEGRATED CIRCUIT • 9616

9616 AND 9616E RS232-C and MIL-STD-188C (cont'd)

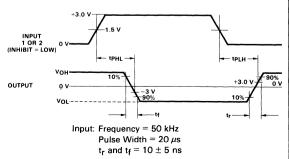
AC CHARACTERISTICS: $0 \le T_A \le 70^{\circ}$ C, Notes 2 and 3

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
	Positive Slew Rate	0 pF \leq CL \leq 2500 pF, RL \geq 3 k Ω	4.0	15	30	V/µs
	Negative Slew Rate	0 pF \leq CL \leq 2500 pF, RL \geq 3 k\Omega	-30	-15	-4.0	V/µs
^t PLH	Propagation Delay Time	No Load		320		ns
tPHL	Propagation Delay Time	No Load		320		ns

9616C EIA RS-232-C


DC CHARACTERISTICS: V_{CC} = ± 12 V $\pm 10\%$, over operating temperature range, See Test Circuit, R_L = 3 kΩ, unless otherwise specified

	uniess otherwise	e specified				
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	МАХ	UNITS
VOH	Output HIGH Voltage	V _{IN1} and/or V _{IN2} = V _{INHIBIT} = 0.8 V	5.0	6.0	7.5	v
VOL	Output LOW Voltage	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	-7.5	-6.0	-5.0	v
ISC+	Positive Output Short Circuit Current	$R_L = 0~\Omega,~V_{IN1}$ and/or $V_{IN2} = V_{INHIBIT} = 0.8~V$		-25		mA
Isc-	Negative Output Short Circuit Current	R _L = 0 Ω, V _{IN1} = V _{IN2} = V _{INHIBIT} = 2.0 V		25		mA
VIH	Input HIGH Voltage		2.0			v
VIL	Input LOW Voltage				0.8	v
Чн	Input HIGH Current	$V_{IN1} = V_{IN2} = 2.4 V$			40	μA
		V _{IN1} = V _{IN2} = 5.5 V			1.0	mA
μL	Input LOW Current	$V_{\rm IN1} = V_{\rm IN2} = 0.4 \text{ V}$	-1.6	-1.2		mA
I+	Positive Supply Current	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 0.8 V$		15	22	mA
•		$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$		7.5	13	1
I-	Negative Supply Current	$V_{IN1} = V_{IN2} = V_{INHIBIT} = 0.8 V$	-1.0	0		mA
		$V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0 V$	-22	-15		
ROUT	Output Resistance, Power Off	-2.0 V \leqslant V_OUT \leqslant +2.0 V All Inputs and Supply Pins Grounded	300			Ω

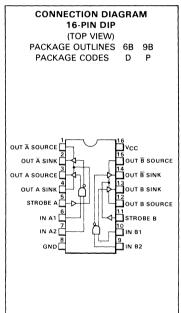

AC CHARACTERISTICS: $0 \leqslant T_{\mbox{A}} \leqslant 70^{\circ}\mbox{C},$ Note 3

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
	Positive Slew Rate	0 pF \leqslant CL \leqslant 2500 pF, RL \geqslant 3 k\Omega	4.0	15	30	V/µs
	Negative Slew Rate	0 pF \leqslant CL \leqslant 2500 pF, RL \geqslant 3 k\Omega	-30	-15	-4.0	V/µs
^t PLH	Propagation Delay Time	No Load		320		ns
^t PHL	Propagation Delay Time	No Load		320		ns

VOLTAGE WAVEFORMS

9634

DUAL 3-STATE DIFFERENTIAL LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT


GENERAL DESCRIPTION — The 9634 Dual 3 - state Line Driver is designed specifically to meet the EIA standard RS-422. It provides unipolar differential drive to twisted-pair or parallel-wire transmission lines. The outputs are similar to totem-pole TTL circuits but with the active pull-up and pull-down circuits split and brought out to adjacent pins. The active pull-up circuit is short circuit protected. In addition to the normal lowimpedance HIGH and LOW states, the 9634 outputs provide a high-impedance OFF state, which is controlled by the output STROBE function. When the output control (STROBE) is HIGH, the associated outputs are high-impedance states neither driving nor loading the line permitting flexibility in party-line or bus applications. The 9634 is specified to drive 50 Ω terminated transmission lines at high speeds. The inputs are TTL and CMOS compatible.

- OUTPUT SHORT CIRCUIT PROTECTION
- HIGH-OUTPUT DRIVE CAPABILITY FOR 50 Ω TRANSMISSION LINES
- . INDIVIDUAL OUTPUT CONTROLS
- INPUT CLAMP DIODES
- SCHOTTKY TECHNOLOGY
- . COMPLEMENTARY OUTPUTS
- MEETS THE EIA-RS-422 SPECIFICATION FOR A BALANCED DRIVER
- "GLITCHLESS" DIFFERENTIAL OUTPUT
- DELAY TIME INCENSITIVE TO BOTH VCC AND TEMPERATURE

ABSOLUTE MAXIMUM RATINGS

800 mW	TYPE	PART NO.
	9634	9634DM
-55°C to +125°C	9634	9634DC
0°C to 70°C	9634	9634PC
-65°C to +150°C		
260°C		
300°C L		
	-55°C to +125°C 0°C to 70°C -65°C to +150°C 260°C	-55°C to +125°C 9634 9634 9634 9634 9634 9634 9634 9634

FAIRCHILD • 9634

				9634DN	1		96341	DC, 96	34PC	:	
SYMBOL	CHARACTERISTICS		MIN	TYP	MAX	N	1IN	TYP	м	АХ	UNITS
Vcc	Supply Voltage		4.5	5.0	5.5	4.	75	5.0	5	.25	v
юн	Output HIGH Current				-50				-	-50	mA
IOL	Output LOW Current				50					50	mA
TA	Ambient Temperature		-55		125		0			70	°C
	AL CHARACTERISTICS: Over re	1			unless other	wise r					
SYMBOL	CHARACTERISTICS	CONDITIC	ONS (Notes 1	and 2)			MIN	TY	'P	MAX	UNITS
VIH	Input HIGH Voltage						2.0				V
VIL	Input LOW Voltage	9634DC, 9634DM,						_	_	0.8	v
VI	Clamped Input Voltage	V _{CC} = M	in, I _{IN} = 18 n	nA				-1	.0	-1.2	v
		V _{CC} = M	in, VIH = VIH		IOH = -10	mA	2.5	3	.5		1
VOH	Output HIGH Voltage	$V_{IL} = V_{IL}$	$V_{IL} = V_{IL} Max$ $I_{OH} = -40 m$			mA	2.0				V
VOL	Output LOW Voltage		$V_{CC} = Min, V_{IH} = V_{IH} Min,$ $V_{IL} = V_{IL} Max, I_{OL} = 50 mA$							0.5	v
IN	Input Current at Maximum Input Voltage	V _{CC} = M	ax, V _{IN} Max	= 5.5 V						50	μA
ίн	Input HIGH Current	$V_{CC} = M$	ax, V _{IH} = 2.7	' V	, <u>, , , , , , , , , , , , , , , , , , ,</u>					25	μA
١L	Input LOW Current	V _{CC} = M	ax, V _{IL} = 0.5	v						-200	μA
los	Short-Circuit Output Current	V _{CC} = M	ax, V _{OUT} = () V			-50			-150	mA
V_{T}/\overline{V}_{T}	Terminated Output Voltage	See Figur	re 1				2.0				V
$ v_T - \overline{v}_T $	Output Balance									0.4	V
vos ,∣⊽os	Output Offset Voltage	See Figur	re 1							3.0	V
lvos −lvos	Output Offset Balance									0.4	V
li×l	Output Leakage Current	-0.25 V <	< Vx < 6.0 V							100	μA
lcc	Supply Current (both drivers)	All input	at 0 V, V _{CC} =	= 5.5 V,	no load			4	18	69	mA
					Vout =			-			

NOTES:

1. Use Min/Max values specified in recommended operating conditions. 2. Typical limits are at V_{CC} = 5.0 V and T_A = 25°C.

TERMINATED OUTPUT VOLTAGE AND OUTPUT BALANCE

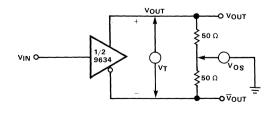
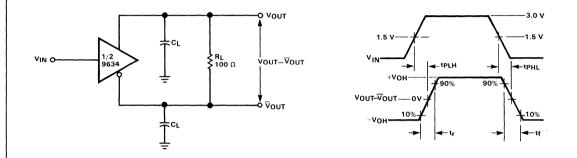
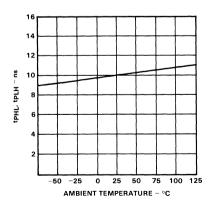



Fig. 1.

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
^t PHL ^t PLH	Propagation Delay	$T_A = 25^{\circ}C$, $C_L = 15 \text{ pF}$ (Note 2), See Fig. 2		10 10	15 15	ns ns
tf	Fall Time, 90% – 10%	$T_A = 25^{\circ}$ C, $C_L = 15 \text{ pF}$ (Note 2), $R_L = 100 \Omega$ See Fig. 2		10	15	ns
t _r	Rise Time, 10% - 90%			10	15	ns
tpa − tpā	Skew Between Two Outputs			1.0		ns

AC RISE AND FALL TIME TEST CIRCUIT AND WAVEFORMS



1. The pulse generator has the following characteristics: $Z_{OUT}=50~\Omega,~\text{PRR}=500~\text{kHz}$ $t_w=100~\text{ns}$

2. CL includes probe and jig capacitance.

TYPICAL DELAY CHARACTERISTICS

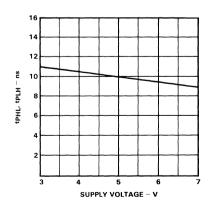


Fig. 3.

9636A

DUAL PROGRAMMABLE SLEW RATE LINE DRIVER (EIA RS-423 DRIVER)

FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAM

8-PIN DIP

(TOP VIEW)

ORDER INFORMATION

PART NO.

9636ARM

9636ARC

9636ATC

WAVESHAPE

CONTROL

GNE

TYP

9636A

9636A

9636A

PACKAGE OUTLINES 9T 6T PACKAGE CODES T R

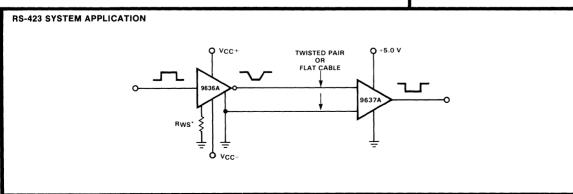
Vcc+

<u>о 1 и т</u>

cc

GENERAL DESCRIPTION — The 9636A is a TTL/CMOS compatible, dual, singleended, line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423.

The 9636A suitable for use in digital data transmission systems where signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control (WS) pin and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Current limiting is provided in both output states. The 9636A is designed for nominal power supplies of ± 12 V.


Inputs are TTL compatible with input current loading low enough (1/10 U.L.) to be also compatible with CMOS logic. Clamp diodes are provided on the inputs to limit transients below ground.

- PROGRAMMABLE SLEW RATE LIMITING
- MEETS EIA RS-423 REQUIREMENTS
- AVAILABLE IN COMMERCIAL OR MILITARY TEMPERATURE RANGE
- OUTPUT SHORT-CIRCUIT PROTECTION
- TTL AND CMOS COMPATIBLE INPUTS

ABSOLUTE MAXIMUM RATINGS

Vcc+ Pin Potential to Ground Pin	Vcc- to +15 V
V_{CC} - Pin Potential to Ground Pin	+0.5 to -15 V
V _{CC} + Pin Potential to V _{CC} - Pin	0 to +30 V
Output Potential to Ground Pin	±15 V
Output Source Current	-150 mA
Output Sink Current	150 mA
Internal Power Dissipation (Note) 9T	1.3 W
6T	1.15 W
Operating Temperature	
Military (9636ARM)	-55° C to 125° C
Commercial (9636ARC, 9636ATC)	0° C to 70° C
Storage Temperature	-65° C to 150° C
Pin Temperature	
Molded DIP (Soldering, 10 s)	260° C
Hermetic DIP (Soldering, 60 s)	300° C
NOTE:	

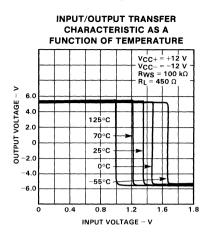
1. Derate at 7.7 mW/°C for ambient temperatures above 25°C for 6T package and derate 11.1 mW/°C for 9T package.

FAIRCHILD • 9636A

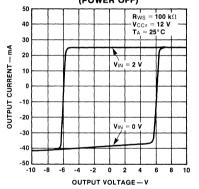
CHARACTERISTICS		96364	9636ARC, 9636ATC				
	MIN	TYP	MAX	MIN	ТҮР	МАХ	UNITS
Positive Supply Voltage (V _{CC} +)	10.8	12	13.2	10.8	12	13.2	v
Negative Supply Voltage (V _{CC} -)	-13.2	-12	-10.8	-13.2	-12	-10.8	v V
Operating Ambient Temperature (TA)	-55	25	125	0	25	70	°C
Wave Shaping Resistance (Rws)	10		500	10		1000	kΩ

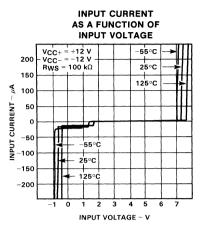
ELECTRICAL CHARACTERISTICS: Over recommended temperature supply voltage and wave shaping resistance ranges unless noted.

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	мах	UNITS
Vон1 Vон2 Vон3	Output High Voltage	$ \begin{array}{l} R_L \mbox{ to GND} (R_L = \ \infty \) \\ R_L \mbox{ to GND} (R_L = 3 \ k\Omega) \\ R_L \mbox{ to GND} (R_L = 450\Omega) \end{array} $	5.0 5.0 4.0	5.6 5.6 5.5	6.0 6.0 6.0	v v v
Vol1 Vol2 Vol3	Output Low Voltage	$ \begin{array}{l} R_L \text{ to } GND \ (R_L = \ \infty \) \\ R_L \text{ to } GND \ (R_L = 3 \ k\Omega) \\ R_L \text{ to } GND \ (R_L = 450\Omega) \end{array} $	-6.0 -6.0 -6.0	-5.7 -5.6 -5.4	-5.0 -5.0 -4.0	V V V
Ro	Output Resistance	450 $\Omega \leq R_L$		25	50	Ω
Isc+ Isc- Iox	Output Short Circuit Current Output Short Circuit Current Output Leakage Current	$V_{OUT} = 0 V, V_{IN} = 0 V$ $V_{OUT} = 0 V, V_{IN} = 2.0 V$ (see note) $V_{OUT} = \pm 6 V, Power-Off$	-150 15 -100	-60 60	-15 150 100	mA mA μA
VIH VIL	Input High Voltage Input Low Voltage		2.0		0.8	V V
VCD	Input Clamp Diode	l _{IN} = 15 mA	-1.5	-1.1		V
կլ	Input Low Current	V _{IN} = 0.4 V	-80	-16		μA
μн	Input High Current	$V_{IN} = 2.4 V$ $V_{IN} = 5.5 V$		1.0 10	10 100	μΑ μΑ
lcc+	Positive Supply Current	$V_{CC^+} = +12 V, V_{CC^-} = -12 V$ $R_L = \infty, R_{WS} = 100 k\Omega, V_{IN} = 0 V$		13	18	mA
lcc-	Negative Supply Current		-18	-13		mA

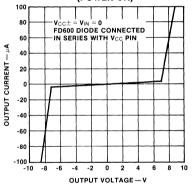

AC CHARACTERISTICS: T_A = 25°C, V_{CC} = ± 12 V \pm 10%, see AC Test Circuit

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	түр	МАХ	UNITS
tr	Output Rise Time	$\begin{aligned} R_{WS} &= 10 \ k\Omega \\ R_{WS} &= 100 \ k\Omega \\ R_{WS} &= 500 \ k\Omega \\ R_{WS} &= 1000 \ k\Omega \end{aligned}$	0.8 8.0 40 80	1.1 11 55 110	1.4 14 70 140	μs μs μs μs
tr	Output Fall Time	$R_{WS} = 10 kΩ$ $R_{WS} = 100 kΩ$ $R_{WS} = 500 kΩ$ $R_{WS} = 1000 kΩ$	0.8 8.0 40 80	1.1 11 55 110	1.4 14 70 140	μs μs μs μs

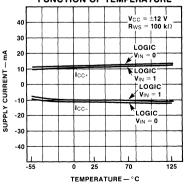

NOTE: Only one output should be shorted at a time.

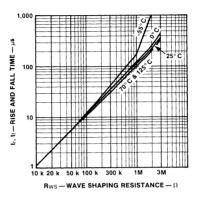

FAIRCHILD • 9636A

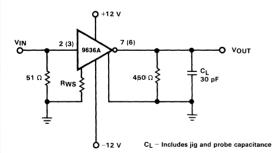
TYPICAL ELECTRICAL CHARACTERISTICS



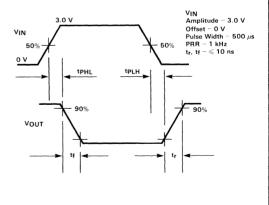
OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE (POWER OFF)



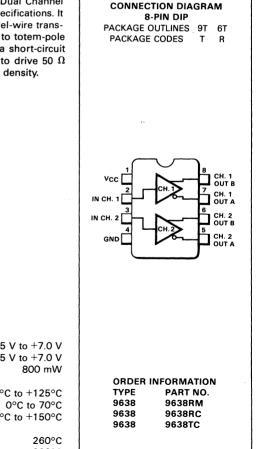

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE (POWER ON)



TRANSITION TIME AS A FUNCTION OF R_{WS}



SWITCHING TEST CIRCUIT AND AC WAVEFORMS


AC WAVEFORMS

9638

DUAL HIGH SPEED DIFFERENTIAL LINE DRIVER (EIA-RS-422) FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The 9638 is a Schottky, TTL-compatible Dual Channel Differential Line Driver, designed specifically to meet the EIA-RS-422 specifications. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines. The inputs are TTL compatible. The outputs are similar to totem-pole TTL outputs, with active pull-up and pull-down. The device features a short-circuit protected active pull-up with low output impedance and is specified to drive 50 Ω transmission lines at high speed. The mini DIP provides high package density.

SINGLE 5 V SUPPLY

- SCHOTTKY TECHNOLOGY
- TTL AND CMOS COMPATIBLE INPUTS
- OUTPUT SHORT-CIRCUIT PROTECTION
- INPUT CLAMP DIODES
- COMPLEMENTARY OUTPUTS
- MINIMUM OUTPUT SKEW (<1 ns TYPICAL)
- 50 mA OUTPUT DRIVE CAPABILITY FOR 50 Ω TRANSMISSION LINES
- MEETS EIA-RS-422 SPECIFICATIONS
- PROPAGATION DELAY OF LESS THAN 10 ns
- "GLITCHLESS" DIFFERENTIAL OUTPUT
- DELAY TIME STABLE WITH V_{CC} AND TEMPERATURE VARIATIONS (<2 ns TYPICAL) (FIG. 3)

ABSOLUTE MAXIMUM RATINGS

V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V	
Input Voltage	-0.5 V to +7.0 V	
Internal Power Dissipation	800 mW	
Operating Temperature		OR
9638RM	-55°C to +125°C	TYP
9638RC,9638TC	0°C to 70°C	963
Storage Temperature	-65°C to +150°C	963
Pin Temperature		963
Molded DIP (Soldering, 10 s)	260°C	
Hermetic DIP (Soldering, 30 s)	300°C	

FAIRCHILD • 9638

RECOMM	CHARACTERISTICS	9638RM			963	T		
SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{CC}	Supply Voltage	4.5	5.0	5.5	4.75	5.0	5.25	v
 Іон	Output HIGH Current			-50			-50	mA
IOL	Output LOW Current			50			50	mA
TA	Ambient Temperature	-55		125	0		70	°C

ELECTRICAL CHARACTERISTICS: Over recommended ambient temperature, unless otherwise noted.

SYMBOL	CHARACTERISTICS	CONDITIONS (Notes 1 and 2)		MIN	TYP	мах	UNITS
VIH	Input HIGH Voltage			2.0			v
		tage 9638RC, 9638TC 9638RM				0.8	v
VIL	Input LOW Voltage					0.7	v
VI	Clamped Input Voltage	$V_{CC} = Min$, $I_{IN} = -18 \text{ mA}$			-1.0	-1.2	v
Varia		$V_{\mu} = V_{\mu} Max$	$I_{OH} = -10 \text{ mA}$	2.5	3.5		v
VOH	Output HIGH Voltage		$I_{OH} = -40 \text{ mA}$	2.0			
VOL	Output LOW Voltage	$V_{CC} = Min, V_{IH} = V_{IH} Min,$ $V_{IL} = V_{IL} Max, I_{OL} = 40 mA$				0.5	v
IIN	Input Current at Maximum Input Voltage	V _{CC} = Max, V _{IN} Max = 5.5 V				50	μΑ
Чн	Input HIGH Current	V _{CC} = Max, V _{IH} = 2.7 V				25	μA
 IIL	Input LOW Current	V _{CC} = Max, V _{IL} = 0.5 V				-200	μA
los	Short-Circuit Output Current	V _{CC} = Max, V _{OUT} = 0 V		-50		-150	mA
$\overline{V_T}, \overline{V_T}$	Terminated Output Voltage			2.0			v
$\overline{V_T - \overline{V}_T}$	Output Balance	See Figure 1				0.4	v
VOS, VOS	Output Offset Voltage					3.0	v
$\overline{v_{OS} - \overline{v}_{OS}}$	Output Offset Balance					0.4	V
I _X	Output Leakage Current	-0.25 V < Vx < 6.0 V				100	μA
lcc	Supply Current (both drivers)	All input at 0 V, $V_{CC} = 5.5$ V, no load			45	65	mA

NOTES:

1. Use MIN/MAX values specified in recommended operating conditions. 2. Typical limits are at V_{CC} = 5.0 V and T_A = 25°C.

DC TEST CIRCUIT

TERMINATED OUTPUT VOLTAGE AND OUTPUT BALANCE

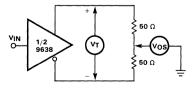
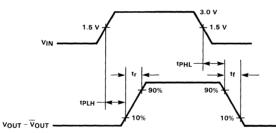
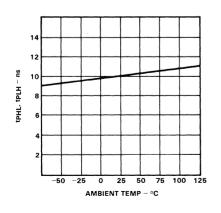



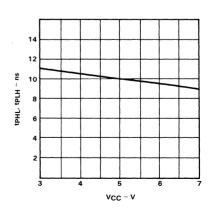
Fig. 1

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
tPHL tPLH	Propagation Delay	$T_A = 25^{\circ}C$, $C_L = 15$ pF (Note 2), $R_L = 100 \Omega$, See Fig. 2		10 10	15 15	ns ns
t f	Fall Time, 90% - 10%			10	15	ns
t _r	Rise Time, 10% - 90%			10	15	ns
tpa – tpb	Skew Between Outputs A and B	1		1		ns

AC TEST CIRCUIT VIN O VIN O 1/29638 1/21/2

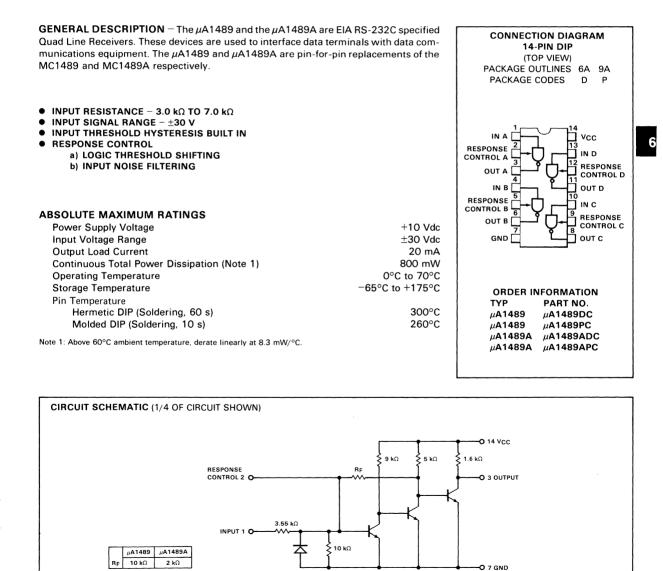
VOLTAGE WAVEFORM


NOTES:


1. The pulse generator has the following characteristics: $\label{eq:zour} Z_{OUT}=50~\Omega,~\text{PRR}=500~\text{kHz}$

- $t_{w} = 100 \text{ ns}, t_{r} = \le 5 \text{ ns}$
- 2. CL includes probe and jig capacitance.

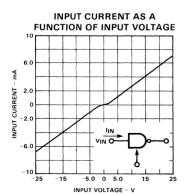
Fig.2

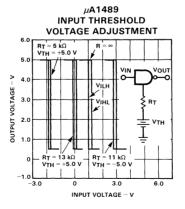


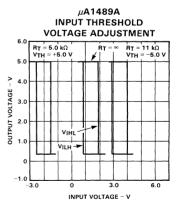
6-42

.

μA1489 • μA1489A QUAD LINE RECEIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

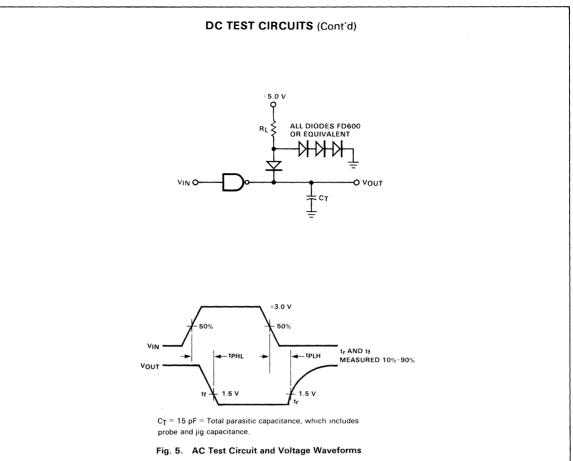

ELECTRI	CAL CHARACTERISTICS: $V_{CC} = 5.0$) V \pm 1%, Response o	control pin is open,	$T_A = 0^{\circ}C$	to 70°C un	less othe	rwise not	ed.
SYMBOL	CHARACTERISTICS	CONDITIONS		FIG	MIN	TYP	MAX	UNITS
Чн	Positive Input Current	V _{IH} = 25 V V _{IH} = 3.0 V		1	3.6 0.43		8.3	mA
ΊL	Negative Input Current	V _{IL} = -25 V V _{IL} = -3.0 V		1	-3.6 -0.43		-8.3	mA
	Input Turn-on Threshold Voltage	T _A = 25°C,	μA1489	2	1.0		1.5	v
VIHL	input rum-on inresnoid voitage	$V_{OL} \le 0.45 V$	μA1489A		1.75	1.95	2.25	v
		$T_A = 25^{\circ}C,$	μA1489	2	0.75		1.25	v
VILH	Input Turn-off Threshold Voltage	V _{OH} ≥ 2.5 V, I _L = −0.5 mA	μA1489A		0.75	0.8	1.25	
VOH	Output HIGH Voltage	V _{IH} = 0.75 V, I <u>L</u> Input open circu	= -0.5 mA it, I _L = -0.5 mA	2	2.6	4.0	5.0	v
VOL	Output LOW Voltage	V _{IL} = 3.0 V, I _L =	= 10 mA	2		0.2	0.45	V
los	Output Short-circuit Current			3		3.0		mA
lcc	Power Supply Current	V _{IH} = 5.0 V		4		20	26	mA
PC	Power Consumption	V _{IH} = 5.0 V		4		100	130	mW

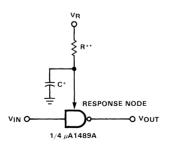

FAIRCHILD • *μ***A1489** • *μ***A1489A**


AC CHARACTERISTICS: V_{CC} = 5.0 V $\pm 1\%,\,T_{A}$ = 25°C

SYMBOL	CHARACTERISTICS	CONDITIONS	FIG.	MIN	TYP	MAX	UNITS
^t PLH	Propagation Delay Time	$R_L = 3.9 k\Omega$	5		25	85	
^t PHL	Propagation Delay Time	R = 390 Ω			25	50	ns
tr	Rise Time	RL = 3.9 kΩ	5		120	175	ns
tf	Fall Time	$R_L = 390 \Omega$			10	20	

TYPICAL PERFORMANCE CURVES




TEST CIRCUIT SAME AS µA1489

6-44

6

*Capacitor is for noise filtering **Resistor is for threshold shifting

......

μ**A8T14** • 55122 • 75122 **TRIPLE LINE RECEIVERS** FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 55122/75122/µA8T14 Triple Line Receiver is designed to receive digital information from coaxial cable, strip line, or twisted pair single ended transmission lines. High input impedance (\approx 30 k Ω) presents minimal loading to the transmission lines in multiple receiver applications. The $55122/75122/\mu A8T14$ has built-in hysteresis which makes it ideal for such applications as Schmitt triggers, one-shots, and oscillators. Use the 75124 or 8T24 triple line receiver where IBM System/360 I/O Interface Specification must be met.

- BUILT-IN INPUT THRESHOLD HYSTERESIS
- HIGH SPEED ٠
- INDEPENDENT CHANNEL STROBING
- FANOUT OF 10 TTL LOADS
- SINGLE +5.0 V SUPPLY OPERATION

			FU	NCTI	ON TA	ABLE
ABSOLUTE MAXIMUM RATINGS			INP	UTS		OUTPUT
Input Voltage (Note 1) R Input	+6.0 V	1	2*	R	S	OUTPUT
1, 2 or S Input	+5.5 V					
Output Voltage (Note 1)	+6.0 V	н	н	х	х) L
Supply Voltage (Note 1)	+6.0 V	X	х	· L	н	L
Output Current	±100 mA	L	х	н	х	н
Storage Temperature Range	-65° C to $+150^{\circ}$ C	L	х	х	L	н
Operating Temperature Range Military (55122, μA8T14DM)	–55°C to +125°C	x	L	н	х	н
Commercial (75122)	0° C to $+70^{\circ}$ C	X	L	х	L	н
Pin Temperatures Hermetic DIP (Soldering, 60 s) Molded DIP (Soldering, 10 s) Internal Power Dissipation (Note 2)	300° C 260° C 800 mW		OW on't C t 2 ar	nd las		lines of the
		Funct				pplicable to

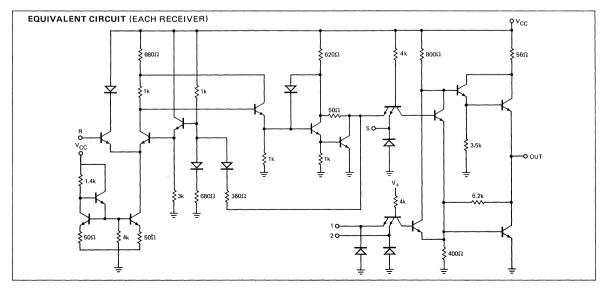
CONNECTION DIAGRAM

16-PIN

(TOP VIEW)

PACKAGE CODES D P

PACKAGE OUTLINES 68 98


ORDER INFORMATION

ТҮРЕ	PART NO.
μA8T14 or 55122 μA8T14 or 75122 μA8T14 or 75122	μΑ8Τ14/55122DM μΑ8Τ14/75122DC μΑ8Τ14/75122PC
,	μ. (01 14) / 01221 0

NOTES:

1. Voltages are with respect to the ground pin (pin 8).

2. Above 60°C ambient temperature, derate linearly at 8.3 mW/°C for Hermetic DIP and Molded DIP.

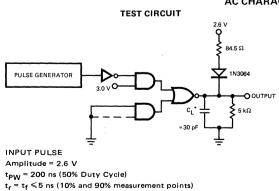
FAIRCHILD • µA8T14 • 55122 • 75122

RECOMMENDED OPERATING CON	DITIONS				
		MIN	ТҮР	MAX	UNITS
Supply Voltage, V _{CC}		4.75	5.0	5.25	v
Output HIGH Current, IOH				-500	μA
Output LOW Current, IOL				16	mA
Operating Ambient Temperature, TA	55122/8T14	-55		125	°C
	75122/8T14	0		70	°C

ELECTRICAL CHARACTERISTICS: V_{CC} = 4.75 V to 5.25 V, T_A = 25°C (unless otherwise noted)

SYMBOL	CHARACTERIST	FICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
VIH	Input HIGH Voltage	All Inputs		2.0			V
VIL	Input LOW Voltage	All Inputs				0.8	V
$V_{T+} - V_{T-}$	Hysteresis [†]	R	$V_{CC} = 5.0 V, T_{A} = 25^{\circ}C$	0.3	0.6		V
VIN	Input Clamp Voltage	In 1, 2 or S	$V_{CC} = 5.0 V, I_{IN} = -12 mA$			-1.5	V
V(BR)IN	Input Breakdown Voltage	In 1, 2 or S	V _{CC} = 5.0 V, I _{IN} = 10 mA	5.5			V
			V _{IH} = 0 V, V _{IL} = 0.8 V, I _{OH} = -500 μA, See Note 3	2.6			v
∨он	Output HIGH Voltage		V _{IN(A)} = 0 V, V _{IN(B)} = 0 V, V _{IN(S)} = 2.0 V, V _{IN(R)} = 1.45 V (See Note 4, I _{OH} = -500 μA	2.6			
Ma			V _{IH} = 2.0 V, V _{IL} = 0.8 V, I _{OL} = 16 mA, See Note 3			0.4	v
VOL	Output LOW Voltage		V _{IN(A)} = 0 V, V _{IN(B)} = 0 V, V _{IN(S)} = 2.0 V, V _{IN(R)} = 1.45 V (See Note 5), I _{OL} = 16 mA	0.3 0.6 5.5 2.6	0.4		
1		In 1, 2 or S	V _{IN} = 4.5 V			40	
ЧН	Input HIGH Current	R	V _{IN} = 3.8 V			170	μA
4L	Input LOW Current	In 1, 2 or S	V _{IN} = 0.4 V	-0.1	1	-1.6	mA
IOS	Short-Circuit Output Curre	ent‡	$V_{CC} = 5.0 V, T_{A} = 25^{\circ}C$	-50		-100	mA
ICC	Supply Current		V _{CC} = 5.25 V			72	mA

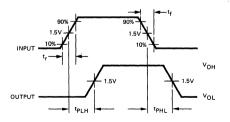
 † Hysteresis is the difference between the positive-going input threshold voltage, V $_{
m T+}$, and the negative-going input threshold voltage, V $_{
m T-}$. See Hysteresis Test Circuit.


 \ddagger Not more than one output should be shorted at a time.

NOTES:

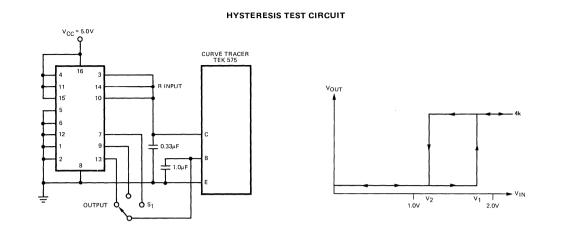
- 3. The output voltage limits are guaranteed for any appropriate combination of HIGH and LOW inputs specified by the function table for the desired output.
- 4. Receiver input was at a HIGH level immediately before being reduced to 1.45 V. 5. Receiver input was at a LOW level immediately before being raised to 1.45 V.

AC CHARACTERISTICS: $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

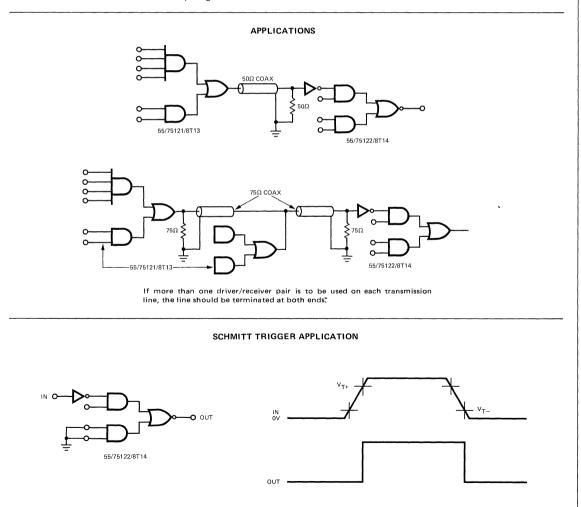

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	МАХ	UNITS
tPLH	Propagation Delay Time, Output LOW to HIGH	See Test Circuit		20	30	ns
tPHL	Propagation Delay Time, Output HIGH to LOW	See Test Circuit		20	30	115

*Includes probe and jig capacitance.

AC CHARACTERISTICS


VOLTAGE WAVEFORMS

6-48


FAIRCHILD • *µ*A8T14 • 55122 • 75122

Verify in each of three (3) positions of S₁ (Fig. 1) that the following occurs per Figure 2. 1. V₁ and V₂ must be between 0.8 V minimum and 2.0 V maximum.

6

2. Hysteresis = $V_1 - V_2 \ge 0.3 V$.

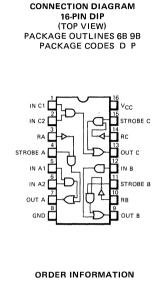
μ**A8T24** • 75124 **TRIPLE LINE RECEIVERS** FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION -- The µA8T24/75124 Triple Line Receiver meets IBM System/360 I/O Interface Specifications (File No. S360-19). Logic inputs are fully TTL or DTL compatible. The R (Receive) input is designed to withstand a positive dc input of +7.0 V with power on (V_{CC+} = 5.0 V) and +6.0 V with power off, (V_{CC+} = 0 V) and a negative dc input of 0.15 V with power on or off. This protection allows normal bus operation even if one or more receivers have been powered down.

- MEETS IBM SYSTEM/360 I/O INTERFACE SPECIFICATION •
- BUILT-IN INPUT THRESHOLD HYSTERESIS •
- HIGH SPEED •
- INDEPENDENT CHANNEL STROBING .
- FANOUT OF 10 TTL LOADS •
- SINGLE +5.0 V SUPPLY OPERATION

ABSOLUTE MAXIMUM RATINGS

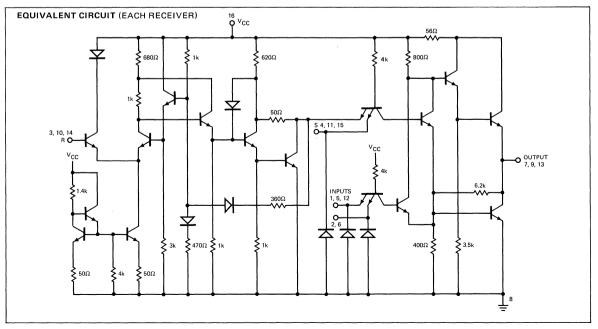
Input Voltag	e		
(Note 1)	R Input with V _{CC} A	pplied	7.0 V
	R Input with V _{CC} n	ot Applied	6.0 V
	Logic Inputs		5.5 V
Output Volta	age (Note 1)		+7.0 V
Output Curre	ent	±1	00 mA
Supply Volta	age (Note 1)		+7.0 V
Storage Tem	perature Range	65°C to -	+150° C
Operating Te	emperature Range	0°C to	+70° C
Pin Tempera	tures		
Hermetic D	DIP (Soldering, 60 s)		300° C
Molded DI	P (Soldering, 10 s)		260° C
Internal Pow	er Dissipation (Note 2)	8	800 mW


FUNCTION TABLE

	INP	UTS		OUTPUT
1	2*	R	S	Y
н	н	х	х	L
x	х	L	н	L
L	х	н	х	н
L	х	х	L	н
x	L	н	х	н
x	L	х	L	н
н = н	IGH			

L = LOW

X = Don't Care


*Input 2 and last two lines of the Function Table are applicable to receivers A and C only.

TYPE	PART NO.
μ A8T24 or 75124	μΑ8Τ24/75124DC
μ A8T24 or 75124	μΑ8Τ24/75124PC

NOTES:

- 1.
- Voltages are with respect to the ground pin (pin 8). Rating applies to ambient temperatures up to 60° C. Above 60° C derate linearly at 8.3 mW/ $^{\circ}$ C. 2.

. . . .

FAIRCHILD • *µ***A8T24/75124**

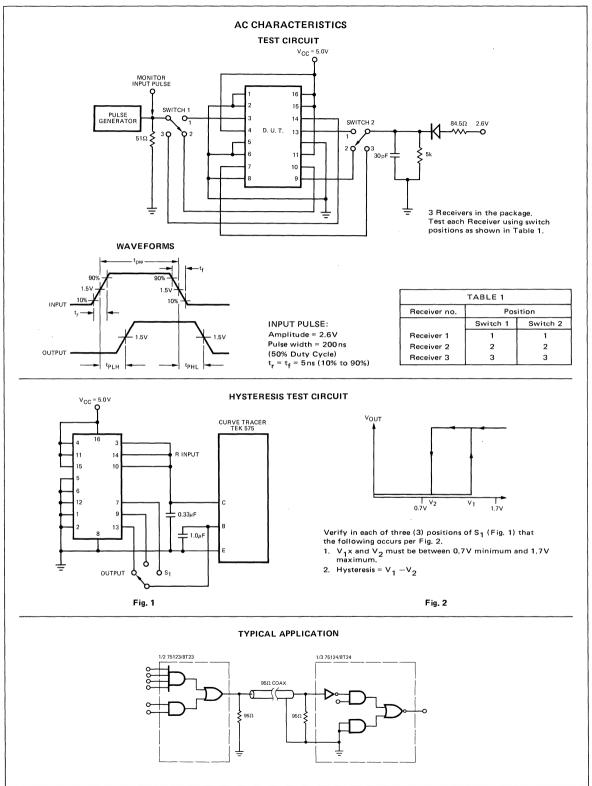
	MIN	ТҮР	MAX	UNITS
Supply Voltage, V _{CC}	4.75	5.0	5.25	v
Output HIGH Current, IOH			-75	mA
Operating Ambient Temperature, TA	0		70	°C

ELECTRICAL CHARACTERISTICS: V_{CC} = 4.75 to 5.25 V, T_A = 0°C to 70°C (unless otherwise noted)

SYMBOL	CHARACTERIST	TICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
.,		In 1, 2, or S		2.0			v
VIH	Input HIGH Voltage	R		1.7			v
VIL	Input LOW Voltage	In 1, 2, or S				0.8	v
×1∟	Input LOW Voltage	R				0.7	1
$V_{T+} - V_{T-}$	Hysteresis [†]	R	V _{CC} = 5.0 V, T _A = 25°C	0.2	0.4		V
VIN	Input Clamp Voltage	In 1, 2, or S	V _{CC} = 5.0 V, I _{IN} = -12 mA			-1.5	V
V(BR)IN	Input Breakdown Voltage	In 1, 2, or S	V _{CC} = 5.0 V, I _{IN} = 10 mA	5.5			V
			VIH = VIN Min, VIL = VIL Max,	2.6			v
∨он	Output HIGH Voltage		IOH =800 μA, See Note 3	2.0	[ľ
			$V_{IH} = V_{IH}$ Min, $V_{IL} = V_{IL}$ Max, $I_{OL} = 16$ mA,			0.4	v
VOL	Output LOW Voltage		See Note 3			0.4	v
•	Input Current at	R	V _{IN} = 7.0 V			5.0	
IN	Maximum Input Voltage	н	V _{IN} = 6.0 V, V _{CC} = 0			5.0	mA
		In 1, 2, or S	V _{IN} = 4.5 V			40	
Чн	Input HIGH Current	R	V _{IN} = 3.11 V			170	μΑ
ΙL	Input LOW Current	In 1, 2, or S	V _{IN} = 0.4 V	-0.1		-1.6	mA
IOS	Short-Circuit Output Curre	nt‡	V _{CC} = 5.0 V, T _A = 25° C	-50		-100	mA
ICC	Supply Current		V _{CC} = 5.25 V			72	mA

[†]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+} , and the negative-going input threshold voltage, V_{T-} . See Hysteresis Test Circuit.

 \ddagger Not more than one output should be shorted at a time.


AC CHARACTERISTICS: V_{CC} = 5.0 V, T_A = 25°C

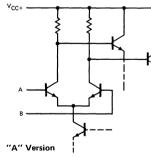
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
tPLH	Propagation Delay Time, Output LOW to HIGH from R Input	Con Torr Oliveria		20	30	
^t PHL	Propagation Delay Time, Output HIGH to LOW from R Input	See Test Circuit		20	30	ns

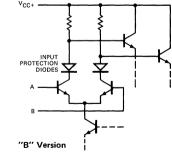
3. The output voltage and current limits are guaranteed for any appropriate combination of HIGH and LOW Inputs specified by the Function Table for the desired output.

.....

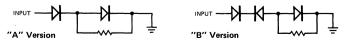
FAIRCHILD • *µ***A8T24**/75124

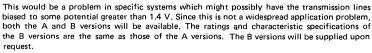
6-52


- -


55/75107A • 55/75108A 55/75107B · 55/75108B **DUAL LINE RECEIVERS** FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 55/75107A/B and 55/75108A/B are high speed, two-channel Line Receivers with common voltage supply and ground terminals. They are designed to detect input signals of 25mV (or greater) amplitude and convert the polarity of the signal into appropriate TTL compatible output logic levels. They feature high input impedance and low input currents which induce very little loading on the transmission line making these devices ideal for use in party line systems. The receiver input common mode voltage range is $\pm 3V$ but can be increased to $\pm 15V$ by the use of input attenuators. Separate or common strobes are available. The 55/75107A/B circuit features an active pull-up (totem pole output). The 55/75108A/B circuit features an open collector output configuration that permits wired-QR connections. The receivers are designed to be used with the 55109/75109 and 55110/75110 line drivers. The 55/75107A/B and 55/75108A/B line receivers are useful in high speed balanced, unbalanced and party line transmission systems and as data comparators. (See following description of A and B versions.)


- HIGH SPEED •
- STANDARD SUPPLY VOLTAGES
- DUAL CHANNELS
- HIGH COMMON-MODE REJECTION RATIO
- HIGH INPUT IMPEDANCE
- HIGH INPUT SENSITIVITY
- INPUT COMMON-MODE VOLTAGE RANGE OF ±3 V
- SEPARATE OR COMMON STROBES
- TTL OR DTL DRIVE CAPABILITY
- WIRED-OR OUTPUT CAPABILITY
- HIGH DC NOISE MARGINS
- STROBE INPUT CLAMP DIODES
- 55/75107B SERIES DEVICES ARE DIRECT REPLACEMENTS FOR 55/75107A SERIES DEVICES
- **B VERSION AVAILABLE UPON REQUEST**
- INPUT IS DIODE PROTECTED AGAINST POWER-OFF LOADING ON B VERSIONS DEVICES


The essential difference between the 55/75107A and 55/75107B versions is shown in the following schematics of the input stage:

The input protection diodes are useful in certain party-line systems which may have multiple V_{CC+} power supplies and, in which case, may be operated with some of the V_{CC+} supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

ORDER INFORMATION TYPE PART NO. 55107AFM 55107A 55107ADM 55107A 75107A 75107ADC 75107APC 75107A 55108A 551084 EM 55108A 55108ADM 75108A 75108ADC 75108APC 75108A 55107B 55107BFM 55107B 55107BDM 75107BDC 75107B 75107B 75107BPC 55108BFM 55108B 55108B 55108BDM 75108BDC

75108BPC

75108B

75108B

CONNECTION DIAGRAM

14-PIN DIP

(TOP VIEW)

PACKAGE OUTLINES 6A 9A 3I

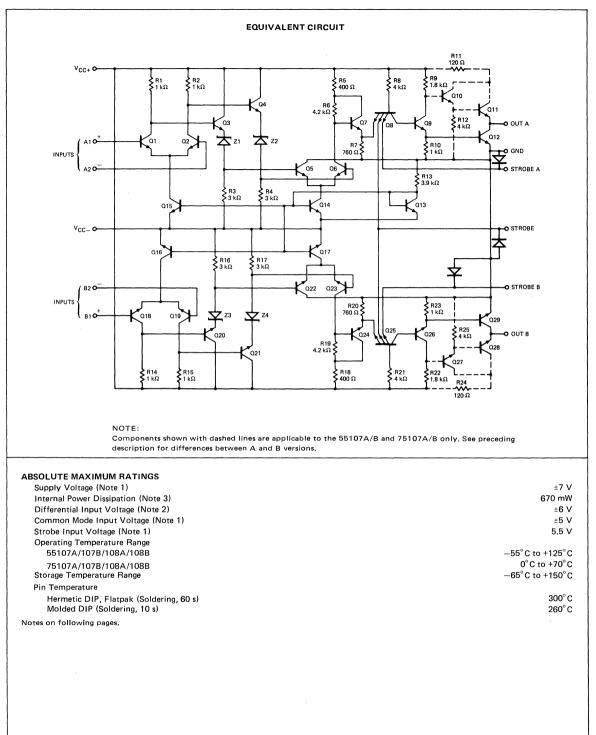
STROBE A

STROBE

GND

PACKAGE CODES D P F

IN B2


NIC

О ОТ В

STROBE B

FAIRCHILD • 55/75107A • 55/75107B • 55/75108A • 55/75108B

6-54

FAIRCHILD • 55/75107A • 55/75107B • 55/75108A • 55/75108B

ELECTRICAL CHARACTERISTICS

55/75107A, 55/75107B

(Ratings Apply Over Full Ambient Temperature Range With V $_{CC+}$ = Max and V $_{CC-}$ = Max, unless otherwise noted) (Notes 4 & 6)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Чн	Input HIGH Current	VDIFF = 0.5 V, V _{CM} = -3 V to +3 V			30	75	μA
μL	Input LOW Current	$V_{DIFF} = -2 V, V_{CM} = -3 V \text{ to } +3 V$				-10	μA
I _{IH(G)}	Gate Input HIGH Current	V _{GATE} = 2.4 V				40	μA
'In(G)	date input indiri current	V _{GATE} = V+			1.0	mA	
liL(G)	Gate Input LOW Current	V _{GATE} = 0.4 V				-1.6	mA
IIH(S)	Strobe Input HIGH Current	V _{STROBE} = 2.4 V				80	μA
11(5)	Strobe input man current	V _{STROBE} = V+				2.0	mA
IL(S)	Strobe Input LOW Current	V _{STROBE} = 0.4 V				3.2	mA
∨он	Output HIGH Voltage	$I_{i} = -400 \mu A$, $V_{CM} = -3 V$ to +3 V	V _{CC+} = MIN	2.4			v
· UH			V _{CC} = MIN	2.7			
VOL	Output LOW Voltage	ISINK = 16 mA, V _{CM} = -3 V to +3 V	V _{CC+} = MIN				v
, OL	eacpar con tonage	1SINK = 10 mA, VCM = -3 V 10 + 3 V	V _{CC} = MIN			0.4	v
ISC	Short-Circuit Output Current	VOUT = 0 (Note 5)		-18		-70	mA
ICC+	Positive Supply Current	V _{OUT} = V _{OH} , I _L = 0, T _A = 25°C			18	30	mA
ICC-	Negative Supply Current	Vout = Voh, IL = 0, TA = 25°C			-8.4	-15	mA

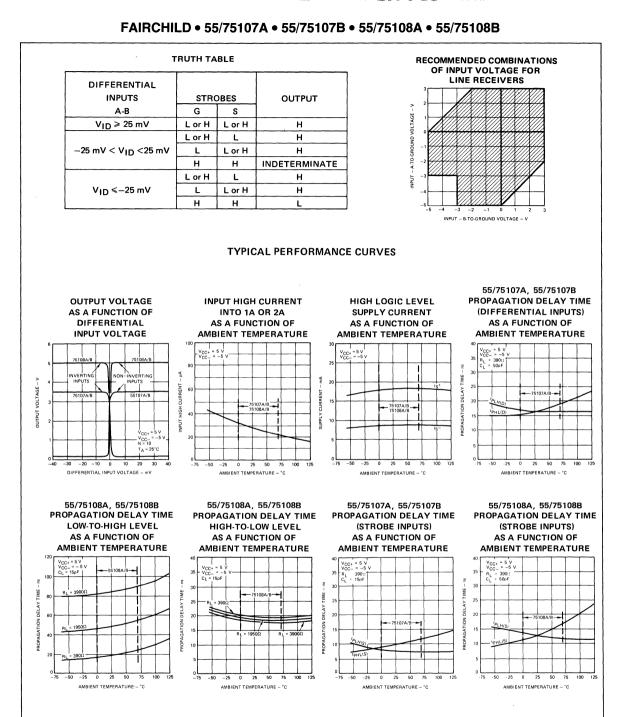
AC CHARACTERISTICS (V_{CC+} = +5 V, V_{CC-} = -5 V, R_L = 390 Ω , C_L = 50 pF, T_A = 25°C. See Test Circuit)

tPLH (D)			17	25	ns
tPHL (D) tPLH (S) tPHL (S)	Propagation Delay Time		17	25	ns
tPLH (S)	Tropagation Delay Time		10	15	ns
tPHL (S)			10	15	ns

ELECTRICAL CHARACTERISTICS

tPHL (S)

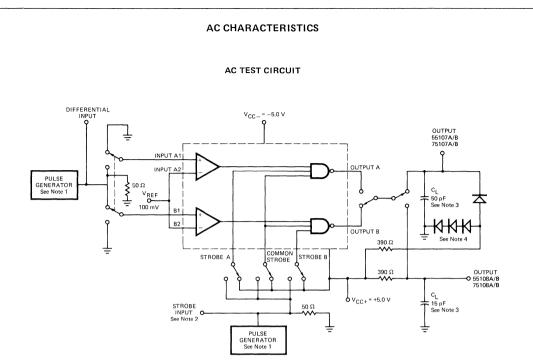
55/75108A, 55/75108B


(Ratings Apply Over Full Ambient Temperature Range With VCC	$_{\rm N}$ = Max and V $_{\rm OO}$ = Max unless otherwise noted) (Notes 4 & 6)

SYMBOL	CHARACTERISTICS	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Чн	Input HIGH Current	$V_{DIFF} = 0.5 V, V_{CM} = -3 V \text{ to } +3 V$			30	75	μA
ΊL	Input LOW Current	$V_{DIFF} = -2 V, V_{CM} = -3 V \text{ to } +3 V$				-10	μA
lih(G)	Gate Input HIGH Current	VGATE = 2.4 V				40	μA
IH(G)	Gate input mon current	VGATE = V+				1.0	mA
^I IL(G)	Gate Input LOW Current	VGATE = 0.4 V				-1.6	mA
IIH(S)	Strobe Input HIGH Current	V _{STROBE} = 2.4 V				80	μA
11(5)		VSTROBE = V+				2.0	mA
IL(S)	Strobe Input LOW Current	VSTROBE = 0.4 V				-3.2	mA
Vol	Output LOW Voltage	I _{SINK} = 16 mA, V _{CM} = -3 V to +3 V	$V_{CC+} = MIN$ $V_{CC-} = MIN$			0.4	v
VIH	Output HIGH Current	V _{OUT} = V+	$V_{CC+} = MIN$ $V_{CC-} = MIN$			250	μA
ICC+	Positive Supply Current	V _{OUT} = V _{OH} , I _L = 0, T _A = 25°C	<u></u>		18	30	mA
ICC-	Negative Supply Current	V _{OUT} = V _{OH} , I _L = 0, T _A = 25°C			-8.4	-15	mA
AC CHA	RACTERISTICS (V _{CC+} = +5 V, V	$V_{\rm CC-} = -5 \rm V, R_L = 390 \Omega, C_L = 15 \rm pF, T$	A = 25°C. See T	Fest Circui	t)		
tPLH (D)					19	25	ns
tPHL (D)					19	25	ns
tPLH (S)	Propagation Delay Time				13	20	ns

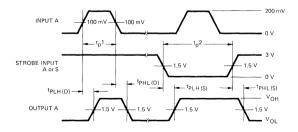
13

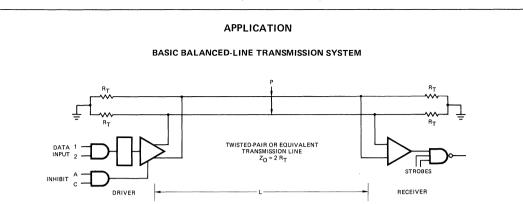
20


ns

NOTES:

- 1. These voltages are with respect to network ground terminal.
- 2. These voltage values are at the noninverting (+) terminal with respect to the inverting (-) terminal.
- 3. For Hermetic DIP rating applies to ambient temperatures up to 70°C, above 70°C derate linearly at 8.3 mW/°C. For Flatpak derate linearly at 7.1 mW/°C above 60°C.
- 4. For 55107A/B and 55108A/B guaranteed supply voltage range is ±4.5 V to ±5.5 V. Operating temperature range is $-55^{\circ}C \le T_{A} \le +125^{\circ}C$. For 75107A/B and 75108A/B guaranteed supply voltage range is ±4.75 V to ±5.25 V. Operating temperature range is $0^{\circ}C \le T_{A} \le 70^{\circ}C$. 5. Note more than one (1) output should be shorted at a time.
- 6. V_{CC-} Max implies $V_{CC-} = -5.5$ V or -5.25 V, depending on device type.


FAIRCHILD • 55/75107A • 55/75107B • 55/75108A • 55/75108B


NOTES:

- 1. The pulse generators have the following characteristics: Z_{out} = 50 Ω , t_r = t_f = 10 ± 5 ns, t_{p1} = 500 ns, PRR = 1 MHz, t_{p2} = 1 μ s, PRR = 500 kHz.
- 2. Strobe input pulse is applied to Strobe A when inputs A1-A2 are being tested: to common Strobe when inputs A1-A2 or B1-B2 are being tested, and to Strobe B when inputs B1-B2 are being tested.
- C_L includes probe and jig capacitance.
 All diodes are 1N916.

VOLTAGE WAVEFORMS

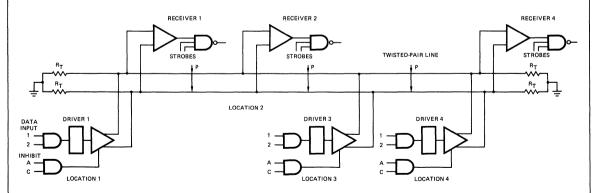
FAIRCHILD • 55/75107A • 55/75107B • 55/75108A • 55/75108B

The 55/75107A/B dual line circuits are designed specifically for use in high speed data transmission systems that utilize balanced, terminated transmission lines such as twisted-pair lines. The system operates in the balanced mode, so that noise induced on one line is also induced on the other. The noise appears common-mode at the receiver input terminals where it is rejected. The ground connection between the line driver and receiver is not part of the signal circuit so that system performance is not affected by circulating ground currents.

The unique driver output circuit allows terminated transmission lines to be driven at normal line impedances. High speed system operation is ensured since line reflections are virtually eliminated when terminated lines are used. Cross-talk is minimized by low signal amplitudes and low line impedances.

The typical data delay in a system is approximately (30+1.3L) ns, where L is the distance in feet separating the driver and receiver. This delay includes one gate delay in both the driver and receiver.

Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The driven line is selected by appropriate driver-input logic levels. The voltage difference is approximately:


$$V_{DIFF} \simeq 1/2 I_{OUT}(on) \cdot R_T$$

High series line resistance will cause degradation of the signal. The receivers, however, will detect signals as low as 25 mV (or less). For normal line resistances, data may be recovered from lines of several thousand feet in length.

Line-termination resistors (R_T) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal amplitude will then be approximately:

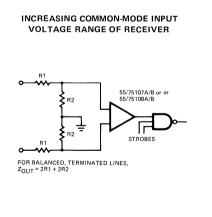
$$V$$
DIFF \simeq IOUT (on) \cdot RT

DATA-BUS OR PARTY-LINE SYSTEM

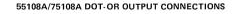
The strobe feature of the receivers and the inhibit feature of the drivers allow the 55/75107A/B dual line circuits to be used in data-bus or party-line systems. In these applications, several drivers and receivers may share a common transmission line. An enabled driver transmits data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time-multiplexed on the transmission line. The 55/75107A/B device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance at minimum cost.

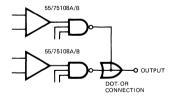
APPLICATION (Cont'd)

UNBALANCED OR SINGLE-LINE SYSTEMS


The 55/75107A/B dual line circuits may also be used in unbalanced or single-line systems. Although these systems do not offer the same performance as balanced systems for long lines, they are adequate for very short lines where environment noise is not severe.

The receiver threshold level is established by applying a dc reference voltage to one receiver input terminal. The signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so that signal swing is symmetrical about it for maximum noise margin. The reference voltage should be in the range of -3.0 V to +3.0 V. It can be provided by a voltage supply or by a voltage divider from an available supply voltage.


PRECAUTIONS IN THE USE OF 55/75107A/B AND 55/75108A/B DUAL LINE RECEIVERS

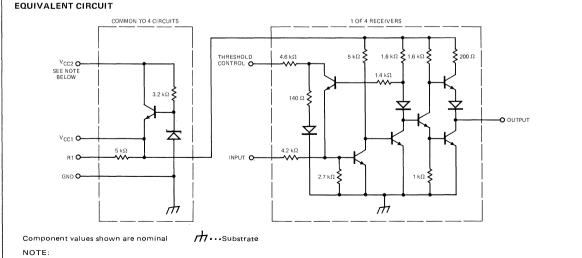

The following precaution should be observed when using or testing 55/75107A/B line circuits:

When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3.0 V and +3.0 V, preferably at ground. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers.

The 55/75107A/B and 55/75108A/B line receivers feature a common-mode input voltage range of ± 3.0 V. This satisfies the requirements for all but the noisiest system applications. For these severe noise environments, the common-mode range can be extended by the use of external input attenuators. Common-mode input voltages can in this way be reduced to ± 3.0 V at the receiver input terminals. Differential data signals will be reduced proportionately. Input sensitivity, input impedance and delay times will be adversely affected.

The 55/75108A/B line receivers feature an open-collector-output circuit that can be connected in the DOT-OR logic configuration with other 55/75108A/B outputs. This allows a level of logic to be implemented without additional logic delay.

75154 QUAD LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT


GENERAL DESCRIPTION — The 75154 is a monolithic quadruple line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are for relatively short, single-line, point-to-point data transmission and for level translators. Operation is normally from a single 5 V supply; however, a built-in option allows operation from a 12 V supply without the use of additional components. The output is compatible with most TTL and DTL circuits when either supply voltage is used.

In normal operation, the threshold control terminals are connected to the V_{CC1} terminal, pin 15, even if power is being supplied via the alternate V_{CC2} terminal, pin 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode of operation, if the input voltage goes to zero, the output voltage will remain LOW or HIGH as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go HIGH regardless of the previous input condition.

The 75154 is characterized for operation from 0°C to 70°C.

- INPUT RESISTANCE . . . 3 k Ω TO 7 k Ω OVER FULL RS-232C VOLTAGE RANGE
- INPUT THRESHOLD ADJUSTABLE TO MEET FAIL-SAFE REQUIREMENTS WITHOUT USING EXTERNAL COMPONENTS
- BUILT-IN HYSTERESIS FOR INCREASED NOISE IMMUNITY
- INVERTING OUTPUT COMPATIBLE WITH DTL OR TTL
- OUTPUT WITH ACTIVE PULL-UP FOR SYMMETRICAL SWITCHING SPEEDS
- STANDARD SUPPLY VOLTAGES ... 5 V OR 12 V

When using V_{CC1} (pin 15), V_{CC2} (pin 16) may be left open or shorted to V_{CC1} . When using V_{CC2} , V_{CC1} must be left open or connected to the threshold control pins.

IN A

IN B

CONNECTION DIAGRAM

16-PIN DIP

(TOP VIEW)

PACKAGE OUTLINES 6B 9B

PACKAGE CODES D P

V_{CC2}

V_{CC1}

OUT A

OUT B

OUTC

4т

75154 75154DC 75154 75154PC

ABSOLUTE MAXIMUM RATINGS

Normal Supply Voltage (Pin 15), V_{CC1} (Note 1) Alternate Supply Voltage (Pin 16), V_{CC2} (Note 1) Input Voltage (Note 1) Continous Total Power Dissipation (Note 2) Operating Temperature Range Storage Temperature Range Pin Temperatures Molded DIP (Soldering, 10 s) Hermetic DIP (Soldering, 60 s)

NOTES:

1. Voltage values are with respect to the network ground terminal.

2. Above 60°C ambient temperature, derate linearly at 8.3 mW/°C.

RECOMMENDED OPERATING CONDITIONS

	MIN	TYP	MAX	UNITS
Normal Supply Voltage (Pin 15), V _{CC1}	4.5	5	5.5	v
Alternate Supply Voltage (Pin 16), V _{CC2}	10.8	12	13.2	V
Input Voltage			±15	v
Normalized Fan Out from Each Output, N			10	
Operating Temperature, T _A	0		70	°C

ELECTRICAL CHARACTERISTICS OVER RECOMENDED OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	CHARACT	ERISTICS	TEST FIGURE	TEST CONDITIONS	MIN (Note 3)	TYP†† (Note 3)	MAX (Note 3)	UNITS
VIH	Input HIGH Voltage	·	1		3.0			v
VIL	Input LOW Voltage		1				-3.0	v
V _{T+}	Positive-Going	Normal Operation	1		0.8	2.2	3.0	v
. 14	Threshold Voltage	Fail-Safe Operation	1		0.8	2.2	3.0	v
V _{T-}	Negative-Going	Normal Operation			-3.0	-1.1	0	v
- 1-	Threshold Voltage	Fail-Safe Operation	1		0.8	1.4	3.0	v
V- V-	thursense:	Normal Operation			0.8	3.3	6.0	v
V _{T+} -V _{T-}	Hysteresis	Fail-Safe Operation	1		0	0.8	2.2	v
∨он	Output HIGH Volta	ge	1	^I OH = -400 μA	2.4	3.5		v
VOL	Output LOW Voltag	e	1	I _{OL} = 16 mA		0.23	0.4	v
				$\Delta V_{I} = -25 V \text{ to } -14 V$	3.0	5.0	7.0	
				$\Delta V_{ } = -14 \text{ V to } -3 \text{ V}$	3.0	5.0	7.0	
Rj	Input Resistance		2	$\Delta V_{I} = -3 V$ to 3 V	3.0	6.0		kΩ
				$\Delta V_{I} = 3 V$ to 14 V	3.0	5.0	7.0	
				$\Delta V_{I} = 14 \text{ V to } 25 \text{ V}$	3.0	5.0	7.0	
V _{I(open)}	Open-Circuit Input	/oltage	3	I _I = 0	0	0.2	2.0	v
los	Short-Circuit Output	t Current [†]	4	V _{CC1} = 5.5 V, V ₁ = -5 V	-10	-20	-40	mA
ICC1	Supply Current from	V _{CC1}	_	V _{CC1} = 5.5 V, T _A = 25°C		20	3 5	
ICC2	Supply Current from	V _{CC2}	5	V _{CC2} = 13.2 V, T _A = 25°C		23	40	mA

tNot more than one output should be shorted at a time.

 \ddagger All typical values are at V_{CC1} = 5 V, T_A = 25°C.

NOTE

3. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic and threshold levels only, e.g., when -3 V is the maximum, the minimum limit is a more-negative voltage.

٩.

AC CHARACTERISTICS: V_{CC1}= 5.0 V, T_A= 25°C, N = 10

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
^t PLH	Propagation Delay Time, Low-to-High Output				22		ns
^t PHL	Propagation Delay Time, High-to-Low Output				20		ns
^t TLH	Transition Time, Low-to-High Output	6	$C_{L} = 50 pF, R_{L} = 390 \Omega$		9.0		ns
^t THL	Transition Time, High-to-Low Output				6.0		ns

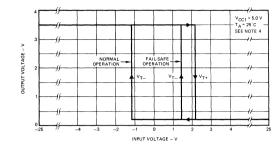
7 V

14 V

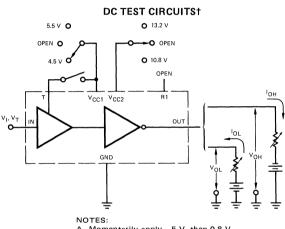
±25 V

260° C

300° C


800 mW 0°C to 70°C

-65°C to 150°C

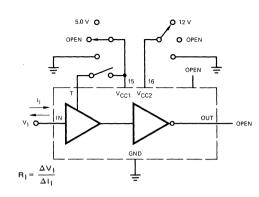

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE VERSUS INPUT VOLTAGE

4. For normal operation, the threshold controls are connected to V_{CC1}, pin 15. For fail-safe operation, the threshold controls are open.

A. Momentarily apply -5 V, then 0.8 V.

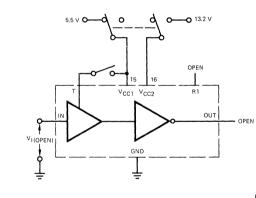
B. Momentarily apply 5 V, then ground.


†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

TEST TABLE

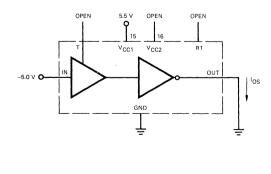
TEST	MEASURE	IN	т	оит	V _{CC1} (PIN 15)	V _{CC2} (PIN 16)
Open-circuit input	∨он	Open	Open	ЮН	4.5 V	Open
(fail safe)	∨он	Open	Open	Іон	Open	10.8 V
V _{T+} min,	VOH	0.8 V	Open	юн	5.5 V	Open
V _T min (fail safe)	VOH	0.8 V	Open	юн	Open	13.2 V
V _{T+} min (normal)	∨он	Note A	Pin 15	юн	5.5 V and T	Open
	∨он	Note A	Pin 15	Іон	т	13.2 V
V _{IL} max,	∨он	-3 V	Pin 15	ГОН	5.5 V and T	Open
V _T min (normal)	Vон	-3 V	Pin 15	Іон	т	13.2 V
V _{IH} min, V _{T+} max,	VOL	3 V	Open	10L	4.5 V	Open
V _T _ max (fail safe)	VOL	3 V	Open	10L	Open	10.8 V
VIH min, V _{T+} max	Vol	3 V	Pin 15	10L	4.5 V and T	Open
(normal)	VOL	3 V	Pin 15	10L	Т	10.8 V
V _T _max (normal)	VOL	Note B	Pin 15	10L	5.5 V and T	Open
	VOL	Note B	Pin 15	10L	Т	13.2 V

Fig. 1 VIH, VIL, VT+, VT-, VOH, VOL.


DC TEST CIRCUITS† (Cont[']d)

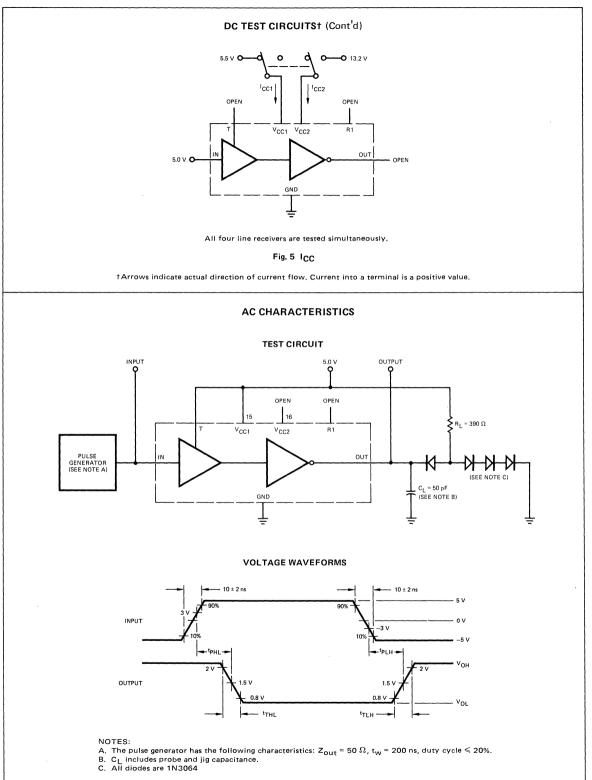
TEST TABLE

т	V _{CC1} (PIN 15)	V _{CC2} (PIN 16)
Open	5 V	Open
Open	GND	Open
Open	Open	Open
Pin 15	T and 5 V	Open
GND	GND	Open
Open	Open	12 V
Open	Open	GND
Pin 15	Т	12 V
Pin 15	Т	GND
Pin 15	т	Open



TEST TABLE

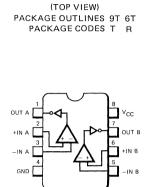
т	V _{CC1} (PIN 15)	V _{CC2} (PIN 16)
Open	5.5 V	Open
Pin 15	5.5 V	Open
Open	Open	13.2 V
Pin 15	Т	13.2 V



Each output is tested separately.

Fig. 4 IOS

6-63

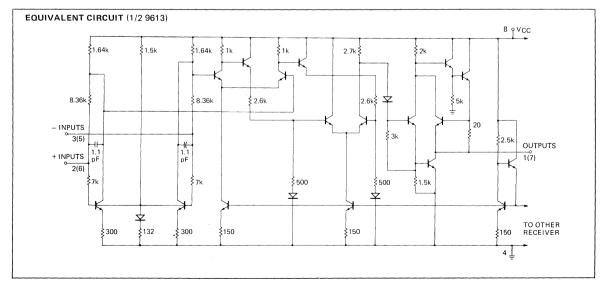

9613 DUAL DIFFERENTIAL LINE RECEIVER

FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The 9613 is a Dual Differential Line Receiver designed to receive differential digital data from transmission lines and operate over the military and industrial temperature range using a single 5.0 V supply. It can receive \pm 500 mV of differential data in the presence of high level (\pm 15 V) common mode voltag es and deliver undistrubed TTL logic to the output.

TTL COMPATIBLE OUTPUT
 HIGH COMMON MODE VOLTAGE RANGE
 SINGLE 5.0 V SUPPLY VOLTAGES
 MILITARY TEMPERATURE RANGE
 ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Supply Voltage (V _{CC} Potential to Ground)	-0.5 V to +7.0 V
Input Voltage Referred to Ground (Pins 2, 3, 5, 6)	±20 V
Differential Input Voltage (+ Input Referred to – Input)	±20 V
Internal Power Dissipation	
Molded DIP, Hermetic DIP (Note 1)	800 mW
Operating Temperature	
9613	—55°C to +125°C
9613C	0° C to $+70^{\circ}$ C
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Pin Temperature	
9613 Hermetic DIP (Soldering, 60 s)	300° C
9613C Molded DIP (Soldering, 10 s)	260°C


CONNECTION DIAGRAM

8-PIN DIP

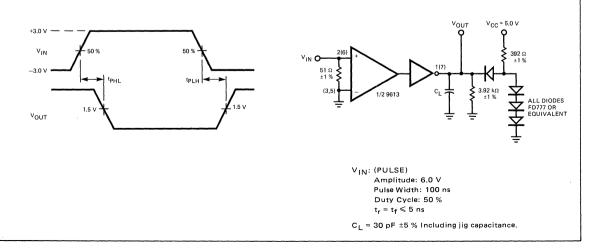
RT NO.
13RM
13RC
13TC

NOTES:

1. Rating applies to ambient temperatures up to 30° C. Above 30° C ambient derate linearly at 5.4 mW/ $^{\circ}$ C for Molded DIP and 6.7 mW/ $^{\circ}$ C for Hermetic DIP.

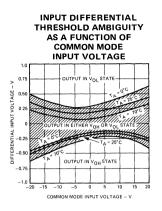
6-65

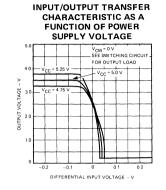
	9613
ELECTRICAL CHARACTERISTICS:	$V_{CC} = 5.0 \text{ V} \pm 10\%, -55^{\circ}\text{C} \leq T_{A} \leq 125^{\circ}\text{C}$ unless otherwise specified.

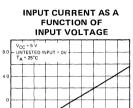

		A				
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
VOL	Output Low Voltage	I _{OL} = 16 mA		0.28	0.4	V
VOH	Output High Voltage	I _{OH} = -5 mA	2.4	3.0		V
Isc	Output Short-Circuit Current	V _{OUT} = 0 V	-60	-28	-12	mA
RIN	Input Resistance		3.0	4.2		kΩ
V _{CM}	Operating Common Mode Voltage Range	-1.0 V ≤ V _{DIFF} ≤ +1.0 V	-15		+15	V
VTH	Differential Input Threshold Voltage	–5.0 V ≤ V _{CM} ≤ +5.0 V	-0.5		+0.5	V
		_15 V ≤ V _{CM} ≤ +15 V	-1.0		+1.0	V
Icc	Power Supply Current	V _{CC} = 5.25 V		29	50	mA
IMAX	Maximum Supply Current	V _{CC} = 7.0 V		42	70	mA
^t PLH	Propagation Delay Time	$T_A = 25^{\circ}C$; $V_{CC} = 5.0 V$; See AC Test Circuit and Waveforms		25	40	ns
^t PHL	Propagation Delay Time	$T_A = 25^{\circ}C; V_{CC} = 5.0 V; See$ AC Test Circuit and Waveforms		23	40	ns

9613C

ELECTRICAL CHARACTERISTICS: V_{CC} = 5.0 V \pm 5%, 0°C \leq T_A \leq 70°C unless otherwise specified.

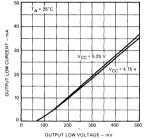

	66	~				
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
VOL	Output Low Voltage	IOL = 16 mA		0.28	0.4	V
Vон	Output High Voltage	IOH =5 mA	2.4	3.0		V
Isc	Output Short-Circuit Current	V _{OUT} = 0 V	-60	-28	-12	mA
RIN	Input Resistance		3.0	4.2		kΩ
VCM	Operating Common Mode Voltage Range	-1.0 V ≤ V _{DIFF} ≤ +1.0 V	-15		+15	V
VTH	Differential Input Threshold Voltage	-5.0 V ≤ V _{CM} ≤ +5.0 V	-0.5		+0.5	V
		-15 V ≤ V _{CM} ≤ +15 V	-1.0		+1.0	V
ICC	Power Supply Current	V _{CC} = 5.25 V		29	50	mA
MAX	Maximum Supply Current	V _{CC} = 7.0 V		42	70	mA
^t PLH	Propagation Delay Time	$T_A = 25^{\circ}C$; $V_{CC} = 5.0 V$; See AC Test Circuit and Waveforms		25	40	ns
^t PHL	Propagation Delay Time	$T_A = 25^{\circ}C$; $V_{CC} = 5.0 V$; See AC Test Circuit and Waveforms		23	40	ns


AC TEST CIRCUIT AND WAVEFORMS

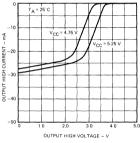


TYPICAL ELECTRICAL CHARACTERISTICS CURVES

9613

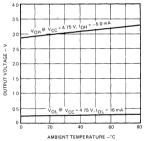


٩u


CURRENT

-81

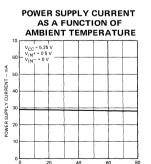
OUTPUT LOW CURRENT AS A FUNCTION OF OUTPUT LOW VOLTAGE


OUTPUT HIGH CURRENT AS A FUNCTION OF **OUTPUT HIGH VOLTAGE**

OUTPUT VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT VOLTAGE -- V

20

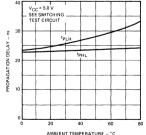


POWER SUPPLY CURRENT AS A FUNCTION OF POWER SUPPLY VOLTAGE 8 = 25 70 A a 60 CURRENT 50 = vcc VIN⁺ VIN SUPPLY x Vin+=0 V OWER

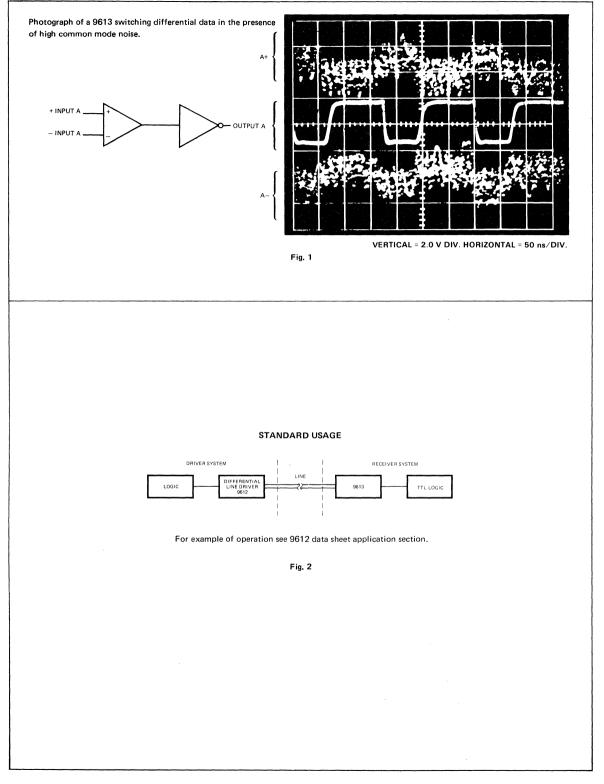
1

40 5.0 6.0 70 3.0 POWER SUPPLY VOLTAGE - V

8.0



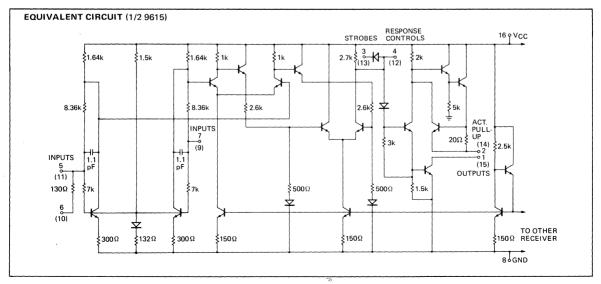
AMBIENT TEMPERATURE - °C


60

20

FAIRCHILD • 9613

6-68


9615 DUAL DIFFERENTIAL LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION - The 9615 is a Dual Differential Line Receiver designed to receive differential digital data from transmission lines and operate over the military and industrial temperature ranges using a single 5 V supply. It can receive ±500 mV of differential data in the presence of high level (±15 V) common mode voltages and deliver undisturbed TTL logic to the output.

The response time can be controlled by use of an external capacitor. A strobe and a 130 Ω terminating resistor are provided at the inputs. The output has an uncommitted collector with an active pull up

available on an adjacent pin to allow either wire-OR or active pull up TTL output configuration. TTL COMPATIBLE OUTPUT . HIGH COMMON MODE VOLTAGE RANGE CHOICE OF AN UNCOMMITTED COLLECTOR OR ACTIVE PULL UP OUT [™]vcc 15 STROBE ACTIVE OUTB FULL MILITARY TEMPERATURE RANGE ACTIVE PULL UP B SINGLE 5 V SUPPLY VOLTAGES STRORE FREQUENCY RESPONSE CONTROL STROBE B RESP **130** Ω TERMINATING RESISTOR 1 RESP B ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired) 1 130Ω +IN B Storage Temperature -65°C to +150°C -130Ω V_{CC} Pin Potential to Ground Pin -1N A -0.5 V to +7.0 V Input Voltage Referred to Ground (Pins 5, 6, 7, 9, 10, 11) ±20 V GND Voltage Applied to Outputs for HIGH output State without Active Pull Up -0.5 V to +13.2 V Voltage Applied to Strobe -0.5 V to +5.5 V Pin Temperature Range Hermetic DIP, Flatpak (Soldering, 60 s) 300° C Molded DIP (Soldering, 10 s) 260° C ORDER INFORMATION Internal Power Dissipation (Note 1) PARTNO TYPE **Operating Temperature Range** 670 mW 9615 9615DM Military (9615) -55°C to +125°C 9615FM 9615 Commercial (9615C) 0° C to $+70^{\circ}$ C 9615C 9615DC NOTE 9615PC 9615C 1. For Hermetic DIP rating applies to ambient temperatures up to 70° C, above 70° C derate linearly

at 8.3 mW/°C. For the Flatpak, derate linearly at 7.1 mW/°C above 60°C.

CONNECTION DIAGRAM

16-PIN

(TOP VIEW)

PACKAGE OUTLINES 6B 9B 4L PACKAGE CODES D P

E

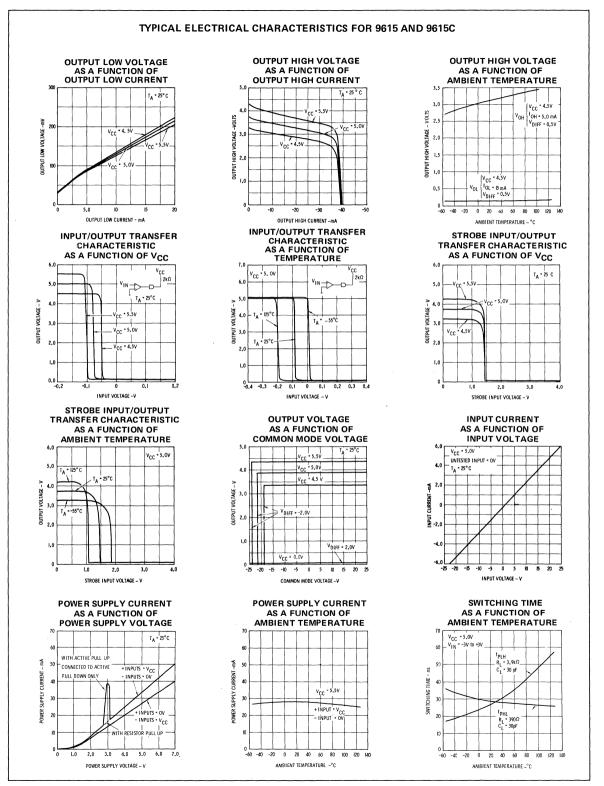
					LIMITS					e de la construcción de la constru
SYMBOL	CHARACTERISTICS	-5	–55° C		+25° C		+1	25° C	UNITS	CONDITIONS
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
Ma	Output LOW Voltage		0.40		0.18	0.40		0.40	v	V _{CC} = 4.5 V, V _{OUT} = **
VOL	Output LOW Voltage		0.40		0.16	0.40		0.40	v	I _{OL} = 15.0 mA, *V _{DIFF} = 0.5 V
Voн	Output HIGH Voltage	2.2		2.4	3.2		2.4		v	V _{CC} = 4.5 V, V _{OUT} = **
v0н	Output man voltage	2.2		2.7	0.2		2.4		v	I _{OH} = -5.0 mA, *V _{DIFF} = -0.5 V
ICEX	Output Leakage Current					100		200	μA	V _{CEX} = 12 V, *V _{DIFF} = V _{CC} = 4.5 V
ISC .	Output Shorted Current			-15	-39	80			mA	V _{CC} = 5.5 V, **V _{SC} = 0 V, *V _{DIFF} = -0.5 V
	Input Current		-0.9		-0.49	0.7		-0.7	mA	V _{CC} = 5.5 V, V _{IN} = 0.4 V
ίn			-0.9		-0.49	0.7		-0.7		Other Input = 5.5 V
1	Strobe Input Current	1			-1.15	-2.4			mA	V _{CC} = 5.5 V, V _{IN} = 0.4 V
IN(ST)	Strope input Current				-1.15	-2.4				*VDIFF = 0.5 V
	Response Control			-1.2	-3.4				mA	V _{CC} = 5.5 V, *V _{DIFF} = 0.5 V
IN(R-C)	Input Current			-1.2	-3.4					VCC - 5.5 V, VDIFF - 0.5 V
VCM	Common Mode Voltage	-15	+15	-15	±17.5	+15	-15	+15	V	V _{CC} = 5.0 V, *V _{DIFF} = +1.0V
In (am)	Strobe Input					2.0		5.0	μΑ	V _{CC} = 4.5 V, *V _{DIFF} = -0.5 V
IR(ST)	Leakage Current					2.0		5.0	<u> </u>	V _R = 4.5 V
RIN	Input Resistor			77	130	167			Ω	V _{CC} = 5.0 V, V _{IN(R)} = 1.0 V, +Input = GND
V***	Differential Input	-500	500	-500	80	500	-500	500	mV	$V_{CM} = 0$ $V_{CO} = 5.0V + 10\%$
VTH***	Threshold Voltage	-1.0	1.0	-1.0			-1.0	1.0	V	$\frac{V_{CM} = 0}{-15 \le V_{CM} \le +15V} V_{CC} = 5.0V \pm 10\%$
lcc	Power Supply Current				28.7	50			mA	V _{CC} = 5.5 V, -Inputs = 0 V, +Inputs = 0.5 V
^t PLH	Turn-Off Time				30	50			ns	$R_L = 3.9 \text{ k}\Omega$, $V_{CC} = 5.0 \text{ V}$, $C_L = 30 \text{ pF}$, Fig. 1
^t PHL	Turn-On Time				30	50			ns	$R_L = 390 \Omega$, $V_{CC} = 5.0 V$, $C_L = 30 pF$, Fig. 1

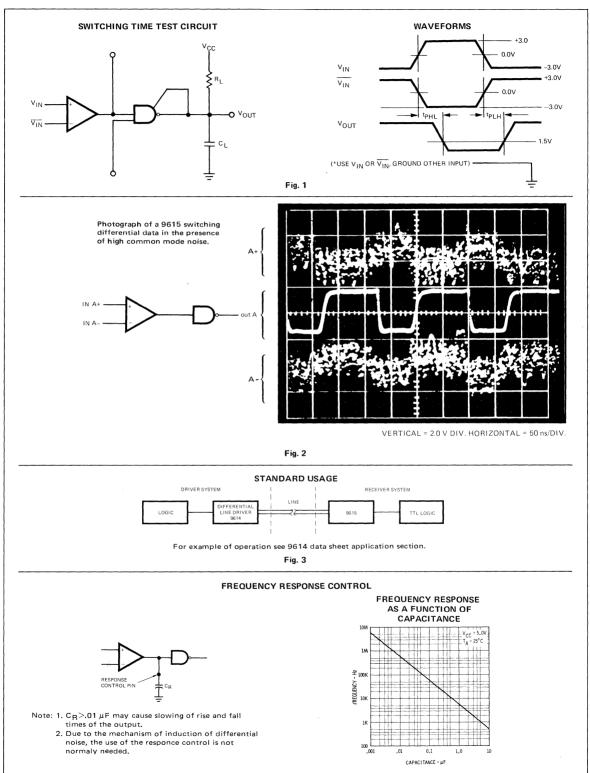
ELECTRICAL CHARACTERISTICS: V_{CC}= 5.0V ± 10%

6-70 Ł

*V_{DIFF} is a differential input voltage referred from "+IN A" to "-IN A" and from "+IN B" to "-IN B". **Connect Output "A" to Active Pull up "A" and Output "B" to Active Pull up "B". ***See input-output transfer characteristic graphs on following pages.

9615


9615C


ELECTRICAL CHARACTERISTICS: V_{CC}= 5.0V ± 5%

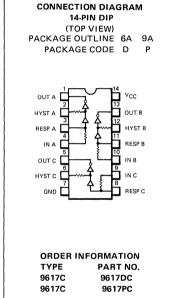
6-71

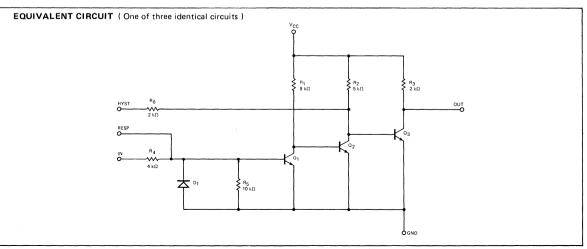
					LIMITS																
SYMBOL	CHARACTERISTICS	0	°C		+25°C		+7	+70° C		CON	DITIONS										
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.													
VOL	Output LOW Voltage		0.45		0.25	0.45		0.45	v	V _{CC} = 4.75 V, V _{OL}	IT = **										
VOL	Output LOW Voltage		0.45		0.25	0.45		0.45	v	l _{OL} = 15.0 mA, *V _l	DIFF = 0.5 V										
VOH	Output HIGH Voltage	2.4		2.4	3.3		2.4		v	V _{CC} = 4.75 V, V _{OL}	JT = **										
∙он		2.4		2.4	3.5		2.4		v	I _{OH} = –5.0 mA, *V	DIFF = -0.5 V										
ICEX	Output Leakage Current					100		200	μA	V _{CEX} = 5.25 V, *V _{DIFF} = V _{CC} = 4.75 V											
ISC	Qutput Shorted Current			-14		-100			mA	V _{CC} = 5.25 V, **V;	SC = 0 V, *VDIFF = -0.5 V										
IIN	Input Current		-0.9		-0.49	-0.7		-0.7	mA	V _{CC} = 5.25 V, V _{IN}	= 0.45 V										
'IN	input current		-0.5		-0.49	-0.7		-0.7	mA	Other Input = 5.25	V										
lun (or)	Strobe Input Current				-1.15	-2.4			mA	V _{CC} = 5.25 V, V _{IN}	= 0.45 V										
IN(ST)	Strobe input current				-1.15	-2.4			IIIA	*VDIFF = 0.5 V											
	Response Control			-1.2	-3.4				mA	V _{CC} = 5.25 V, *V _D											
IN(R-C)	Input Current			-1.2	-3.4				mA	VCC - 5.25 V, VD	166 - 0.5 4										
VCM	Common Mode Voltage	-15	+15	-15	±17.5	+15	-15	+15	V	V _{CC} = 5.0 V, *V _{DI}	FF = 1.0V										
	Strobe Input					5.0		10	.μΑ	V _{CC} = 4.75 V, *V _D	IFF = -0.5 V										
IR(ST)	Leakage Current					5.0	10		10	10	10	10	10	10	10	10	10	.0	.0	. #A	V _R = 4.5 V
RIN	Input Resistor			74	130	179			Ω	V _{CC} = 5.0 V, V _{IN} (F	r) = 1.0 V, +Input = GND										
V _{TH} ***	Differential Input	-500	500	-500	-80	500	-500	500	mV	V _{CM} = 0V	$V_{00} = 5.0V + 5\%$										
• I H	Threshold Voltage	-1.0	1.0	-1.0		1.0	-1.0	1.0	V	-15 ≤ V _{CM} ≤ +15V	V _{CC} = 5.0V ± 5%										
ICC	Power Supply Current				28.7	50			mA		uts = 0.5 V, -Inputs = 0 V										
^t PLH	Turn-Off Time				30	75			ns	R _L = 3.9 kΩ, V _{CC} =	= 5.0 V, CL = 30 pF, Fig. 1										
^t PHL	Turn-On Time				30	75			ns	R _L = 390 Ω, V _{CC} =	5.0 V, CL = 30 pF, Fig. 1										

*V_{DIFF} is a differential input voltage referred from "+IN A" to "-IN A" and from "+IN B" to "-IN B". **Connect Output "A" to Active Pull up "A" and Output "B" to Active Pull up "B". *** See input-output transfer characteristic graphs on following pages.

9617 TRIPLE EIA RS-232-C LINE RECEIVER

• FOR NEW DESIGNS, THE #A1489/1489A, 75154 OR THE 9637A ARE RECOMMENDED.


GENERAL DESCRIPTION — The 9617 is a monolithic Triple Line Receiver constructed using the Fairchild Planar* process. It is designed to meet the terminator electrical requirements of EIA RS-232-C and CCITT V.24. It receives line signals produced by the 9616, an EIA/CCITT driver, and converts them to TTL compatible logic levels. The inputs have a resistance between 3 k Ω and 7 k Ω and can withstand ± 25 V. Each receiver can operate in either hysteresis or non-hysteresis (slicing) modes, and each receiver provides fail-safe operation as defined by Section 2.5 of RS-232-C. Noise immunity may be increased by connecting a capacitor between the response control pin and ground.


For the hysteresis mode connect the RESP pin to the HYST pin, for the slicing mode leave these pins open.

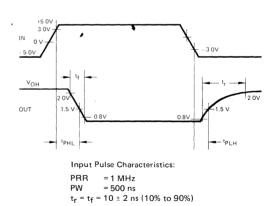
- MEETS ALL EIA RS-232-C AND CCITT V.24 SPECIFICATIONS
- FAIL-SAFE OPERATION
- HYSTERESIS OR NON-HYSTERESIS MODE
- INDIVIDUAL RESPONSE CONTROLS
- TTL COMPATIBLE OUTPUT
- SINGLE +5 V SUPPLY

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	7 V	
Input Voltage	±25 V	
Output Current	25 mA	
Internal Power Dissipation	630 mW	
Storage Temperature Range	-65°C to +150°C	
Operating Temperature Range	0° C to +70° C	
Pin Temperature		
Hermetic DIP (Soldering, 60 s)	300°C	
Molded DIP (Soldering, 10 s)	260° C	



*Planar is a patented Fairchild process.


SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
R _{IN}	Input Resistance	V _I = ±25V	3.0	4.0	7.0	kΩ
EL	Input Voltage	Open Circuit		0.2	2.0	V
VTH+	Upper Input Threshold Voltage	RESP – HYST Connected	1.75	2.0	2.25	v
V _{TH} -	Lower Input Threshold Voltage	RESP – HYST Connected	0.75	0.85	1.25	V
Vтнх	Open Loop Threshold Voltage		0.4	1.0	1.2	V
V _{OH}	Output HIGH Voltage	$V_{IN} = -3.0V$, 0V or open circuit $V_{CC} = 4.5V$, IL = $-200\mu A$	2.4	3.0		v
VOL	Output LOW Voltage	V _{IN} = +3.0V V _{CC} = 4.5V, I _L = 8.0mA		0.3	0.4	v
I _{SC}	Output Short Circuit Current	V _O = 0V		2.5		mA
ICC	Supply Current	V _{CC} = +5.5V, V _{IN} = 5.0V		12		mA
^t PLH	Propagation Delay Time	R _L = 3.9kΩ , Note 1		60		ns
t _r	Rise Time	R _L = 3.9kΩ , Note 1		150		ns
^t PHL	Propagation Delay Time	R _L = 390 Ω , Note 1		40		ns
t _f	Fall Time	$R_{L} = 390 \Omega$, Note 1		50		ns

06170

Note 1. V_{CC} = 5.0 V, See AC Test Circuit and waveforms

VOLTAGE WAVEFORMS

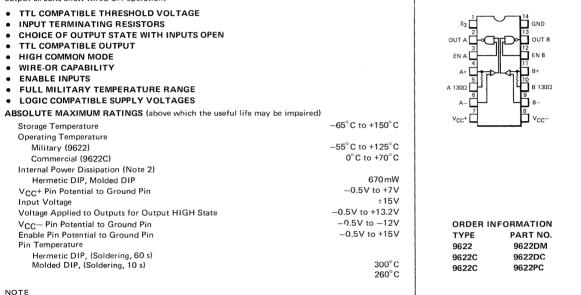
NOTE: Wiring capacitance should be minimized between outputs, hysteresis and response pins.

9622 DUAL LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAMS

14-PIN DIP

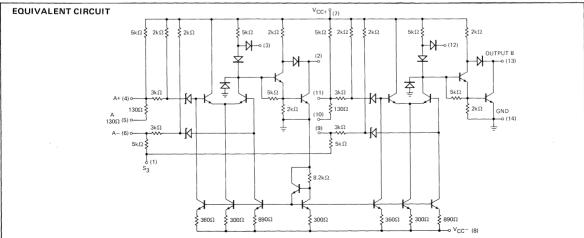
(TOP VIEW)


PACKAGE OUTLINES 6A 9A

PACKAGE CODES D

Р

GENERAL DESCRIPTION – The 9622 is a Dual Line Receiver designed to discriminate a worst case logic swing of 2.0V from a $\pm 10V$ common mode noise signal or ground shift. A 1.5V threshold is built into the differential amplifier to offer a TTL compatible threshold voltage and maximum noise immunity. The offset is obtained by use of current sources and matched resistors and varies only $\pm 5\%$ (75 mV) over the military and industrial temperature ranges.


The 9622 allows the choice of output states with the inputs open without affecting circuit performance by use of S₃ (Note 1). A 130 Ω terminating resistor is provided at the input of each line receiver. An enable is also provided for each line receiver. The output is TTL compatible. The output HIGH level can be increased to +12V by tying it to a positive supply through a resistor. The output circuits allow wired-OR operation.

1. S₃ connected to V_{CC} -open inputs causes output to be HIGH.

S₃ connected to Ground-open inputs causes output to be LOW.

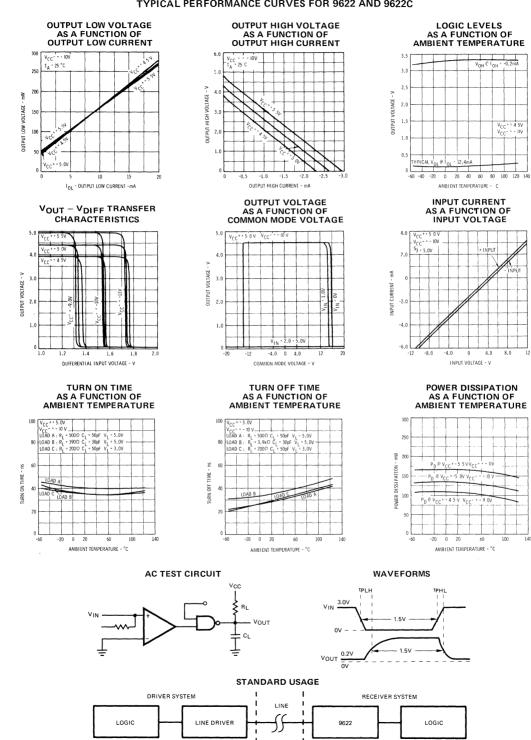
2. Rating applies to ambient temperature up to 70°C. Above 70°C derate linearly at 8.3 mW/°C for the Hermetic DIP.

6-76

		LIMITS								
SYMBOL	CHARACTERISTICS	-55	°C		+25° C		+125°C		UNITS	CONDITIONS
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
V _{OL}	Output LOW Voltage		0.40		0.17	0.40		0.40	Volts	$V_{CC+} = 4.5 V$ $V_{CC-} = -11 V$ * $V_{DIFF} = 2.0 V$ $I_{OL} = 12.4 mA$
V _{OH}	Output HIGH Voltage	2.8		3.0	3.3		2.9		Volts	V _{CC+} = 4.5 V V _{CC} = -9.0 V *V _{DIFF} = 1.0 V I _{OH} = -0.2 mA
ICEX	Output Leakage Current		50			100		200	μA	V _{CC+} = 4.5 V V _{CC} = -11 V *V _{DIFF} = 1.0 V V _{CEX} = 12 V
I _{SC}	Output Shorted Current	-1.3	-3.1	-1.4	-2.15	-3.1	-1.3	-3.1	mA	V _{CC+} = 5.0 V V _{CC-} = -10 V *V _{DIFF} = 1.0 V V _{SC} = 0 V
R (ENABLE)	Enable Input Leakage Current					2.0		5.0	μA	$V_{CC+} = 4.5 V$ $V_{CC-} = -11 V$ S ₃ = 4.5 V $V_R = 4.0 V$
F (ENABLE)	Enable Input Forward Current		-1.5		-0.96	-1.5		-1.5	mA	$V_{CC+} = 5.5 V$ $V_{CC-} = -9.0 V$ $S_3 = 0 V$ $V_F = 0 V$
IF (+Input)	+Input Forward Current		-2.3		-1.67	-2.1		-2.0	mA	$V_{CC+} = 5.0 V$ $V_{CC-} = -10 V$ -Input = GND $V_F = 0 V$
IF (–Input)	– Input Forward Current		-2.6		-1.87	-2.4		-2.3	mA	V_{CC+} , $S_3 = 5.0 V V_{CC-} = -10 V$ + Input = GND $V_F = 0 V$
VIL (ENABLE)	Input LOW Voltage		1.3		1.4	1.0		0.7	Volts	$V_{CC+} = 5.0 V \pm 10 \%$ $V_{CC-} = -10 V \pm 10 \%$
V _{TH}	Differential Input Threshold Voltage	1.0	2.0	1.0	1.5	2.0	1.0	2.0	Volts	$V_{CC+} = 5.0 V \pm 10 \%$ $V_{CC-} = -10 V \pm 10 \%$
Vсм	Common Mode Voltage			-10	±12	+10			Volts	$V_{CC+} = 5.0 V V_{CC-} = -10 V$ *VDIFF = 1.0 V or 2.0 V
R _{130Ω}	Terminating Resistance			100	130	175			Ω	
'cc	5 V Supply Current				13.7	22.9			mA	V _{CC+} = 5.5 V V _{CC-} = -11 V S ₃ , + Inputs = 5.5 V, - Inputs = 0 V
IEE	-10 V Supply Current				-6.5	-11.1			mA	$V_{CC+} = 5.5 V$ $V_{CC-} = -11 V$ S ₃ , + Inputs = 5.5 V, - Inputs = 0 V
^t PLH	Turn-Off Time				38	50			ns	$ \begin{array}{l} V_{CC+} = 5.0 \ V & V_{CC-} = -10 \ V \\ V_{1N} \ 0 {\rightarrow} 3 \ V, \ R_L = 3.9 \ k\Omega, \ C_L = 30 \ pF \ \ See \ AC \ \ Test \ \ Circu \\ \end{array} $
^t PHL	Turn-On Time				35	50			ns	V_{CC+} = 5.0 V V_{CC-} = −10 V V _{IN} 0→3.0 V, R _I = 0.39 kΩ, C _L = 30 pF See AC Test Cirr

 $^{\ast}V_{\mathsf{DIFF}}$ is a differential input voltage referred from A+ to A- and from B+ to B-.

6-77


9622C

		LIMITS								
SYMBOL	CHARACTERISTICS	0° MIN.	C MAX.	MIN.	+25°C TYP.	MAX.	70 MIN.	°C MAX.	UNITS	CONDITIONS & COMMENTS
VOL	Output LOW Voltage		0.45		0.17	0.45		0.45	Volts	V _{CC+} = 4.75 V V _{CC-} = -10.5 V *V _{DIFF} = 2.0 V I _{OL} = 14.1 mA
V _{OH}	Output HIGH Voltage	2.9		3.0	3.3		2.9		Volts	$V_{CC+} = 4.75 V V_{CC-} = -9.5 V$ * $V_{DIFF} = 1.0 V I_{OH} = -0.2 mA$
CEX	Output Leakage Current		80			100		200	μΑ	V _{CC+} = 4.75 V V _{CC} = -10.5 V *V _{DIFF} = 1.0 V V _{CEX} = 5.25 V
I _{SC}	Output Shorted Current	-1.3	-3.1	-1.4	-2.15	-3.2	-1.3	-3.1	mA	V _{CC+} = 5.0 V V _{CC-} = -10 V *V _{DIFF} = 1.0 V V _{SC} = 0 V
R (ENABLE)	Enable Input Leakage Current					5		10	μΑ	$V_{CC+} = 4.75 V V_{CC-} = -10.5 V$ S ₃ = 4.75 V V _R = 4.0 V
^I F (ENABLE)	Enable Input Forward Current		-1.5		96	-1.5		-1.5	mA	$V_{CC+} = 5.25 V V_{CC-} = -9.5 V$ $S_3 = 0 V V_F = 0 V$
lF (+Input)	+ Input Forward Current		-2.6		-1.67	-2.4		-2.3	mA	V _{CC+} = 5.0 V V _{CC} = -10 V -Input = GND V _F = 0 V
^I F (–Input)	– Input Forward Current		-2.9		-1.87	-2.7		-2.6	mA	V_{CC+} , $S_3 = 5.0 V V_{CC-} = -10 V$ + Input = GND V _F = 0 V
VIL (ENABLE)	Input LOW Voltage		1.2		1.4	1.0		0.85	Volts	$V_{CC+} = 5.0 V \pm 5 \%$ $V_{CC-} = -10 V \pm 5 \%$
V _{TH}	Differential Input Threshold Voltage	1.0	2.0	1.0	1.5	2.0	1.0	2.0	Volts	$V_{CC+} = 5.0 V \pm 5 \%$ $V_{CC-} = -10 V \pm 5 \%$
V _{СМ}	Common Mode Voltage			-7.5	±12	+7.5			Volts	V _{CC+} = 5.0 V V _{CC-} = -10 V *V _{DIFF} = 1.0 V or 2.0 V
R _{130Ω}	Terminating Resistance			91	130	185			Ω	
Icc	5 V Supply Current				13.7	22.9			mA	V _{CC+} = 5.25 V V _{CC-} = -10.5 V S ₃ , + Inputs = 5.25 V, - Inputs = 0 V
IEE	-10 V Supply Current				-6.5	-11.1			mA	V _{CC+} = 5.25 V V _{CC-} = -10.5 V S ₃ , + Inputs = 5.25 V, - Inputs = 0 V
^t PLH	Turn-Off Time				38	100			ns	$V_{CC+} = 5.0 \text{ V}$ $V_{CC-} = -10 \text{ V}$ $V_{IN} 0 \rightarrow 3.9 \text{ V}, \text{R}_{L} = 3.9 \text{ k}\Omega, \text{C}_{L} = 30 \text{ pF}$ See AC Test Circuit
^t PHL	Turn-On Time				35	100			ns	V_{CC+} = 5.0 V V_{CC-} = −10 V V _{1N} 0→3.0 V, R ₁ = 0.39 kΩ, C ₁ = 30 pF See AC Test Circu

ELECTRICAL CHARACTERISTICS: $V_{CC+} = 5.0 \text{ V} \pm 5\%$, $V_{CC-} = -10 \text{ V} \pm 5\%$.

 $^{*}V_{\mbox{DIFF}}$ is a differential input voltage referred from A+ to A- and from B+ to B-.

TYPICAL PERFORMANCE CURVES FOR 9622 AND 9622C

ŧ

1

9627

DUAL EIA RS-232-C/MIL-STD-188C LINE RECEIVER

GENERAL DESCRIPTION – The 9627 is a Dual Line Receiver which meets the electrical interface specifications of EIA RS-232-C and MIL-STD-188C. The input circuitry accomodates ±25V input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The 9627 provides both a selectable hysteresis range and selectable receiver input resistance. When pin 1 is tied to V_{EE}, the switching points are at +2.6V and -2.6V, thus meeting RS-232-C requirements. When pin 1 is open, the switching points are at +0.45V and -0.45V, thus satisfying the requirements fo MIL-STD-188C LOW level interface. Connecting the R_{IN} pin to the (–) input yields an input impedance in the range of 3k Ω to 7k Ω and satisfies RS-232-C requirements; leaving R_{IN} unconnected, the input resistance will be greater than 6k Ω to satisfy MIL-STD-188C.

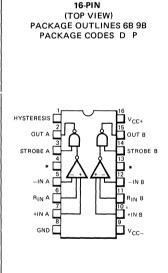
The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wire-AND function. A TTL/DTL strobe is also provided for each receiver. The EIA failsafe mode of operation is shown in the application section of this data sheet.

For the complementary function, see the 9616 triple EIA RS-232C/MIL-STD-188 line driver.

٠	EIA	RS-232-C	INPUT	STANDARDS	

- MIL-STD-188C INPUT STANDARDS
- VARIABLE HYSTERESIS CONTROL
- HIGH COMMON MODE REJECTION
- RIN CONTROL (5kΩ OR 10kΩ)
- WIRED-OR CAPABILITY
- CHOICE OF INVERTING AND NON-INVERTING INPUTS

¥.

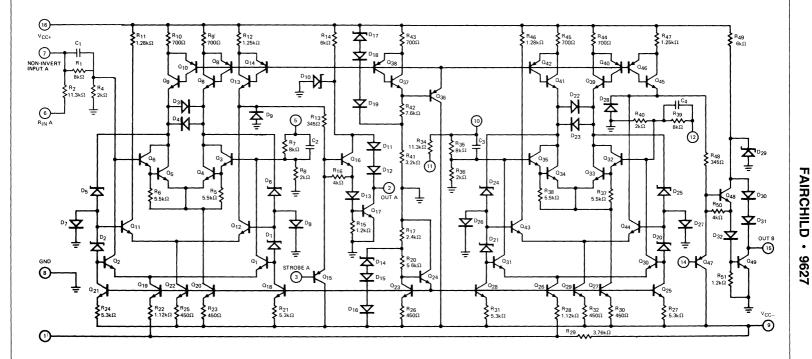

OUTPUTS AND STROBE TTL COMPATIBLE

ABSOLUTE MAXIMUM RATINGS

V _{CC+} to Ground	0V to +15V
V _{CC} to Ground	0V to -15V
Input Voltage Referred to Ground Pin	±25V
Strobe to Ground Voltage	0.5V to +5.5V
Maximum Applied Output Voltage	-0.5V to +15V
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	
Military (9627)	55°C to +125°C
Commercial (9627C)	0° C to +70° C
Internal Power Dissipation (Note 1)	730 mW
Pin Temperature	
Hermetic DIP, (Soldering, 60 s)	300° C
Molded DIP (Soldering, 10 s)	260° C

NOTE:

1. For Hermetic DIP and Molded DIP rating applies to ambient temperatures up to 65° C, above 65° C derate linearly at 8.3 mW/ $^{\circ}$ C.



CONNECTION DIAGRAM

*Internal Connection -make no connection to this pin.

ORDER INFORMATION							
TYPE	PART NO.						
9627	9627DM						
9627C	9627DC						
9627C	9627PC						

EQUIVALENT CIRCUIT

C₁ = C₂ = C₃ = C₄ = 1.1 pF

Pin 4 and 13 = Internal Connection.

FAIRCHILD • 9627

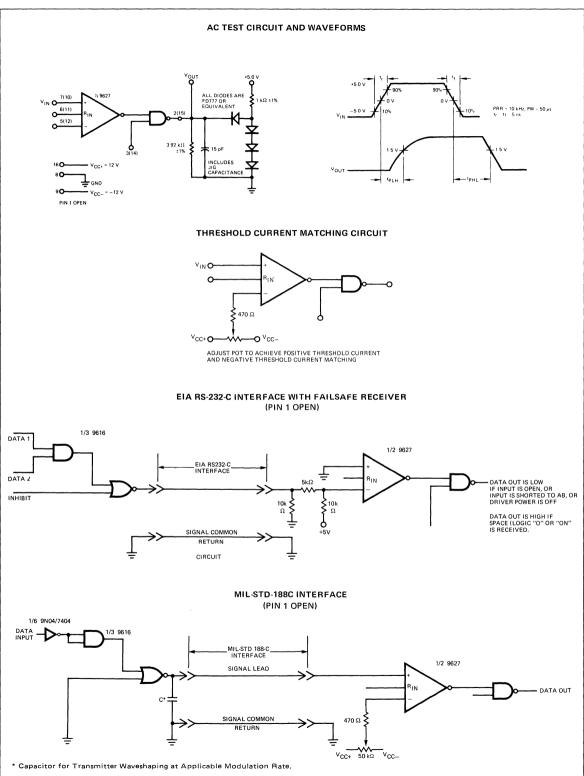
9627 • 9627C

ELECTRICAL CHARACTERISTICS: V_{CC+} = 12 V ± 10%, V_{CC-} = -12 V ± 10% over Operating Temperature Range, unless otherwise specified MIL-STD-188C

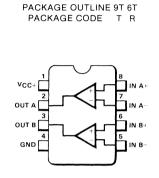
SYMBOL	CHARACTERISTICS	CONDITIONS (Pins 6 and 11 Open. Inverting Inputs Open. Pin 1 Open).			ТҮР	MAX	UNITS
V _{OL}	Output LOW Voltage	V _{CC+} = +10.8 V, V _{CC} _ = -13.2 V Non-Inverting Input = -0.6 V, I _{O1} = 6.4 mA				0.4	v
v _{он}	Output HIGH Voltage	$V_{CC+} = +10.8 V, V_{CC-} = -13.2$ Non-Inverting Input = +0.6 V, I(2.4			v
ISC	Output Shorted Current	V _{CC+} = +13.2 V, V _{CC} = -10.8 Non-Inverting Input = +0.6 V Outputs Grounded			3.0	mA	
I (Strobe)	Input HIGH Current (Strobe)	V _{CC+} = +10.8 V, V _{CC} _ = -13.2 Non-Inverting Input = +0.6 V	V V _S = 2.4 V V _S = 5.5 V			40 1.0	μA mA
R _{IN}	Input Resistance	$V_{CC+} = +13.2 \text{ V}, V_{CC-} = -13.2 \text{ Non-Inverting Input} = +3.0 \text{ V or}$	6.0			kΩ	
ITH+	Positive Threshold Current	V _{OUT} = 2.4 V				100	μA
ITH	Negative Threshold Current	V _{OUT} = 0.4 V		-100			μA
V _{IL} (Strobe)	Input LOW Voltage (Strobe)	VNon-Inverting Input = -0.6 V			0.8	v	
V _{IH} (Strobe)	Input HIGH Voltage (Strobe)	$V_{Non-Inverting Input} = +0.6 V$ $V_{CC+} = +13.2 V, V_{CC-} = -10.8 V$		2.0			v
1+	Positive Supply Current	VNon-Inverting Input = -0.6 V	= +125°C (9627)			18 12.4	mA
I_	Negative Supply Current	VNon-Inverting Input = +0.6 V	= +125°C (9627)	-16 -11.4			mA

RS-232C

SYMBOL	CHARACTERISTICS	CONDITIONS (Non-Inverting Inputs Connected to Ground, R _{IN} Inputs Connected to Inverting Inputs)	MIN	ТҮР	МАХ	UNITS
		V _{IN} = +3.0 V to +25 V	3.0		7.0	kΩ
RIN	Input Resistance	V _{IN} = -3.0 V to -25 V	3.0		7.0	kΩ
VIN	Input Voltage	Open Circuit	-2.0		2.0	V
V _{TH+}	Positive Threshold Voltage				0.6	V
V _{TH}	Negative Threshold Voltage		-0.6			V


AC CHARACTERISTICS: $T_A = +25^{\circ}C$, $V_{CC+} = +12 V$, $V_{CC-} = -12 V$ MIL-STD-188C • RS-232-C

SYMBOL	CHARACTERISTICS	CONDITIONS		ТҮР	MAX	UNITS
tPLH	Propagation Delay Time	See AC Test Circuit		60	250	ns
^t PHL	Propagation Delay Time	See AC Test Circuit		84	250	ns

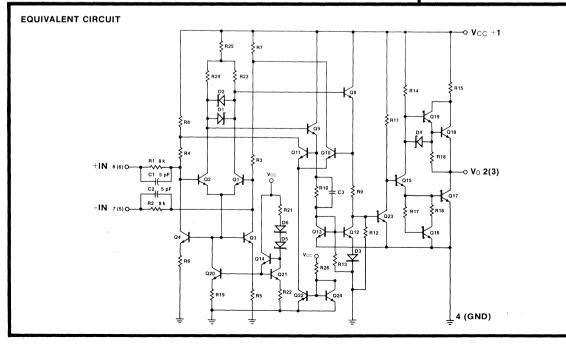

FAIRCHILD • 9627

6

9637A DUAL DIFFERENTIAL LINE RECEIVER (EIA RS-422 AND RS-423 RECEIVER) FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION — The 9637A is a Schottky Dual Differential Line Receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the 9637A satisfies the requirements of MIL-STD 188-114 and is inter-operable with the International Standard CCITT recommendations. The 9637A is suitable for use as a line receiver in digital data systems, using either singleended or differential, unipolar or polar transmission. It requires a single 5 V power supply and has Schottky TTL compatible outputs. The 9637A has an operational input common mode range \pm 7 V either differentially or to ground.

CONNECTION DIAGRAM


8-PIN DIP

(TOP VIEW)

- DUAL CHANNELS
- SINGLE 5 V SUPPLY
- SATISFIES EIA STANDARDS RS-422 AND RS-423
- BUILT IN ±35 mV HYSTERESIS
- HIGH COMMON MODE RANGE
- HIGH INPUT IMPEDANCE
- TTL COMPATIBLE OUTPUT
- SCHOTTKY TECHNOLOGY

TYPE	PART NO.
9637A	9637ARM
9637A	9637ARC
9637A	9637ATC

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC Potential to Ground)	-0.5 V to 7.0 V
Input Potential to Ground Pin	±15 V
Differential Input Voltage	±15 V
Output Potential to Ground Pin	-0.5 V to 5.5 V
Output Sink Current	50 mA
Internal Power Dissipation (Note 1) 9T	1.3 W
6T	1.15 W
Operating Temperature; 9637ARM	-55° C to 125° C
9637ARC, 9637ATC	0°C to 70°C
Storage Temperature	-65° C to 150° C
Pin Temperature	
Molded DIP (Soldering, 10 s)	260° C
Hermetic DIP (Soldering, 30 s)	300° C
NOTE:	

1. For ambient temperatures above 25°C, derate at 7.7 mW/°C for 6T, and 11.1 mW/°C for 9T package.

RECOMMENDED OPERATING CONDITIONS

		9637ARM		963			
CHARACTERISTICS	MIN TY	TYP	MAX	MIN	TYP	MAX	UNITS
Supply Voltage (V _{CC})	4.5	5.0	5.5	4.75	5.0	5.25	v
Operating Ambient Temperature (T _A)	-55	25	125	0	25	70	°C

ELECTRICAL CHARACTERISTICS: Over recommended temperature and supply voltage ranges, unless otherwise noted.

SYMBOL	CHARACTERISTICS	CONDITIONS (Note 1)	LI	LIMITS (Note 2)			
STMBOL	CHARACTERISTICS	CONDITIONS (Note 1)	MIN	TYP	MAX	UNITS	
Vтн	Differential Input Threshold Voltage	-7.0 V \leq V _{CM} \leq 7.0 V (Note 3)	-0.2		0.2	v	
VTH(R)	Differential Input Threshold Voltage	-7.0 V \leq V _{CM} \leq 7.0 V (Note 4)	-0.4		0.4	v	
lin	Input Current		-3.25	1.1 -1.6	3.25	mA mA	
Vol	Output LOW Voltage	$I_{OL} = 20 \text{ mA}, V_{CC} = MIN$		0.35	0.5	V	
Vон	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}, V_{CC} = MIN$	2.5	3.5		v	
lsc	Output Short Circuit Current	V _{OUT} = 0 V, V _{CC} = MAX (Note 6)	-40	-75	-100	mA	
lcc	Supply Current	$\label{eq:Vcc} \begin{array}{l} V_{CC} = MAX, \ V_{IN(+)} = 0.5 \ V, \\ V_{IN(-)} = GND, \ (Both \ outputs \ Iow) \end{array}$		35	50	mA	
VHYST	Input Hysterisis	$V_{CM} = \pm 7 V (Figure 1)$		70		mV	

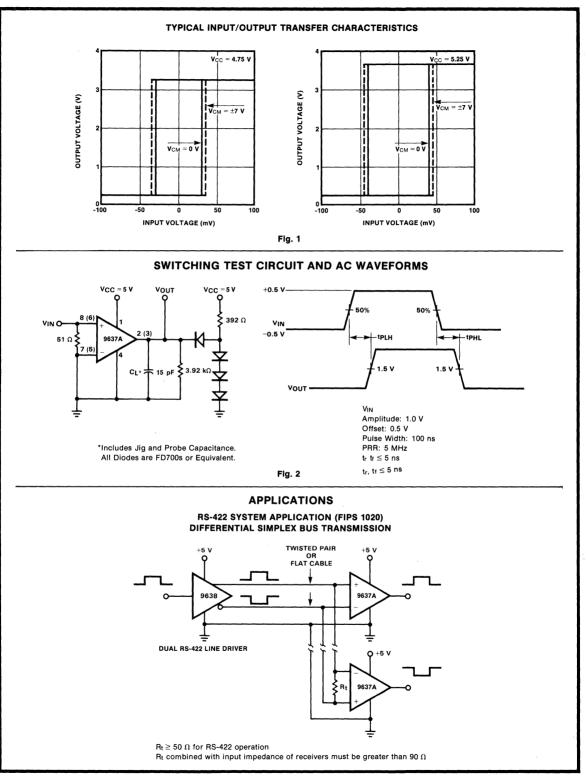
AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

SYMBOL	CHARACTERISTICS	CONDITIONS		UNITS		
STMBUL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
tPLH	Propagation Delay Time LOW to HIGH	Figure 2		15	25	ns
tPHL.	Propagation Delay Time HIGH to LOW	Figure 2		13	25	ns

NOTES:

1. Use MIN/MAX values specified in recommended operating conditions.

2. Typical limits are at $V_{CC} = 5.0$ V and 25° C.


3. VDIFF (Differential Input Voltage) = [(V_{IN+}) - (V_{IN-})]

 V_{CM} (Common Mode Input Voltage) = [(V_{IN+}) - (V_{IN-})] 4. 500 Ω ±1% in series with inputs.

5. The input not under test is tied to ground.

6. Only one output should be shorted at a time.

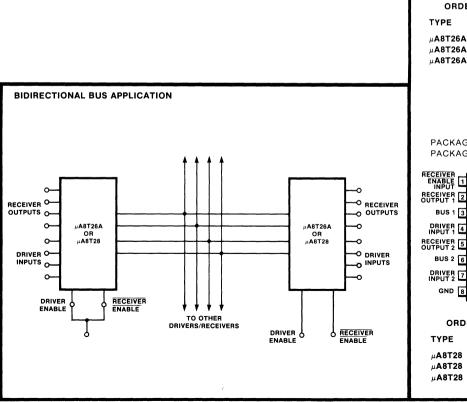
FAIRCHILD • 9637A

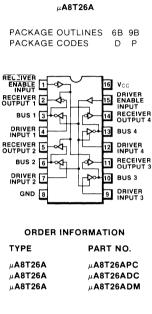
μ**A8T26A** • μ**A8T28** QUAD 3-STATE BUS TRANSCEIVERS FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION — μ A8T26A and μ A8T28 are quad 3-state bus transceivers featuring MPU or MOS compatibility. Both parts feature high-impedance PNP inputs and high-speed operation made possible by the use of Schottky transistor technology.

These devices are useful as bus extenders in systems employing the F6800, F3870 or other comparable MPU families. Maximum input current of 200 μ A at the device input pins assures proper operation despite limited drive capability of the MPU chip.

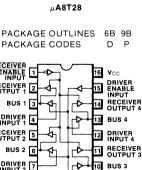
The μ A8T26A/28 are identical to the NE8T26A/28 or the MC8T26A/28.


μA8T26A — INVERTING BUS
 μA8T28 — NON-INVERTING


HIGH-IMPEDANCE PNP INPUTS

• +5 V SINGLE SUPPLY OPERATION • 3-STATE DRIVERS AND RECEIVERS

• HIGH-SPEED SCHOTTKY TECHNOLOGY


MPU COMPATIBLE

CONNECTION DIAGRAMS

16-PIN DIP TOP VIEW

ORDER INFORMATION

DRIVER

9

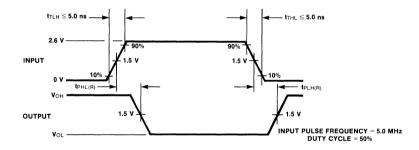
ТҮРЕ	PART NO.
μ Α8T28	μΑ8Τ28ΡC
μ Α8T28	μΑ8Τ28DC
μ Α8T28	μΑ8Τ28DM

-- were with a set of the set of

FAIRCHILD • *µ***A8T26A** • *µ***A8T28**

ABSOLUTE MAXIMUM RATINGS: TA = 25°C unless otherwise noted

Power Supply Voltage (Vcc)	8.0 V
Input Voltage (VI)	5.5 V
Junction Temperature (T _J)	
Ceramic Package	175°C
Plastic Package	150°C
Operating Ambient Temperature Range (TA)	-55°C to +125°C
Storage Temperature Range (Tstg)	-65°C to +150°C


ELECTRICAL CHARACTERISTICS: 4.75 V \leq V_{CC} \leq 5.25 V for 0°C \leq T_A \leq 70°C, and 4.5 V \leq V_{CC} \leq 5.5 V₁for -55°C \leq T_A \leq +125°C, unless otherwise noted

	unless otherwise noted				
SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNITS
IL(RE) IL(DE) IL(D) IL(B)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 	 	-200 -200 -200 -200	μA
IL(D) DIS	Input Disabled Current - LOW Logic State Driver Input, V _{IL(D)} = 0.4 V	_	_	-25	μA
IH(RE) IH(DE) IH(D) IH(B)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 	_ _ _ _	25 25 25 100	μA
VIL(RE) VIL(DE) VIL(D) VIL(B)	Input Voltage - LOW Logic State Receiver Enable Input Driver Enable Input Driver Input Receiver Input			0.85 0.85 0.85 0.85	V
Vih(RE) Vih(DE) Vih(D) Vih(B)	Input Voltage - HIGH Logic State Receiver Enable Input Driver Enable Input Driver Input Receiver Input	2.0 2.0 2.0 2.0			v
Vol(b) Vol(r)	Output Voltage - LOW Logic State Bus Driver Output, I _{OL(B)} = 48 mA Receiver Output, I _{OL(R)} = 20 mA			0.5 0.5	v
Voн(в) Voн(r)	Output Voltage - HIGH Logic State Bus Driver Output, I _{OH(B)} = -10 mA Receiver Output, I _{OH(R)} = -2.0 mA Receiver Output, I _{OH(R)} = -100 μ A, V _{CC} = 5.0 V	2.4 2.4 3.5	3.1 3.1 —		v
IOHL(B) IOHL(R)	Output Disabled Leakage Current - HIGH Logic State Bus Driver Output, V _{OH(B)} = 2.4 V Receiver Output, V _{OH(R)} = 2.4 V		_	100 100	μA
OLL(B) OLL(R)	Output Disabled Leakage Current - LOW Logic State Bus Output, $V_{OL(B)} = 0.5 V$ Receiver Output, $V_{OL(R)} = 0.5 V$	_	— —	-100 -100	μA
VIC(DE) VIC(RE) VIC(D)	Input Clamp Voltage <u>Driver Enable Input I_{ID(DE)} = -12 mA</u> Receiver Enable Input I _{IC(RE)} = -12 mA Driver Input I _{IC(D)} = -12 mA			-1.0 -1.0 -1.0	v
los(b) los(r)	Output Short-Circuit Current, V _{CC} = 5.25 V ⁽¹⁾ Bus Driver Output Receiver Output	-50 -30	80 50	-150 -75	mA
lcc	Power Supply Current V _{CC} = 5.25 V	_	50	87	mA

FAIRCHILD • µA8T26A • µA8T28

SYMBOL	CHARACTERISTICS	FIGURE	TYP	MAX	UNITS
tPLH(R)	Propagation Delay Time from Receiver (Bus) Input to HIGH Logic State Receiver Output	1	9	14	ns
tPHL(R)	PHL(R) Propagation Delay Time from Receiver (Bus) Input to LOW Logic State Receiver Output		6	14	ns
tPLH(D)	Propagation Delay Time from Driver Input to HIGH Logic State Driver (Bus) Output	2	10	14	ns
tPHL(D)	L(D) Propagation Delay Time from Driver Input to LOW Logic State Driver (Bus) Output		10	14	ns
tPLZ(RE)	z(RE) Propagation Delay Time from Receiver Enable Input to HIGH Impedance (Open) Logic State Receiver Output		10	15	ns
tPZL(RE)	PZL(RE) Propagation Delay Time from Receiver Enable Input to LOW Logic Level Receiver Output		15	20	ns
tPLZ(DE)	Propagation Delay Time from Driver Enable Input to HIGH Impedance Logic State Driver (Bus) Output	4	15	20	ns
PZL(DE)	Propagation Delay Time from Driver Enable Input to LOW Logic State Driver (Bus) Output	4	19	25	ns

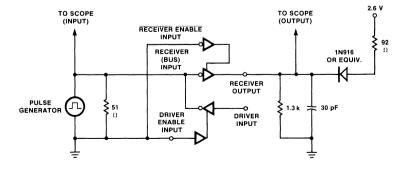
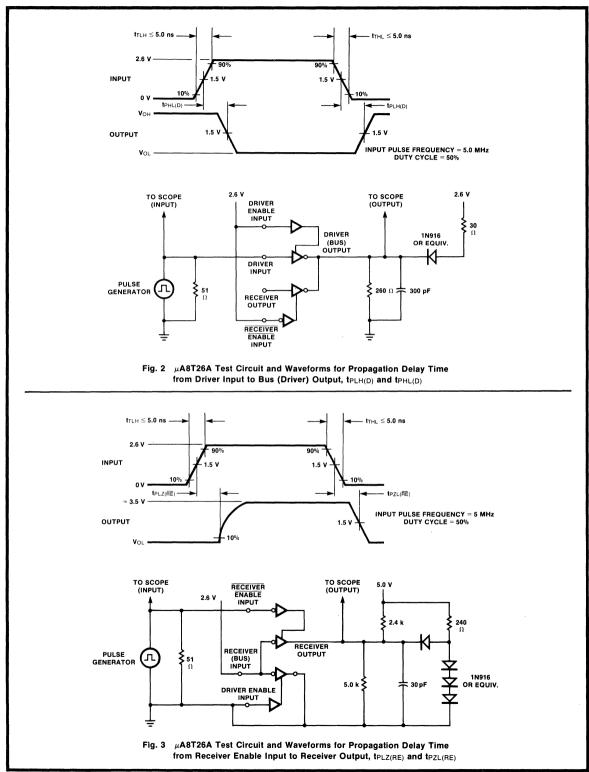
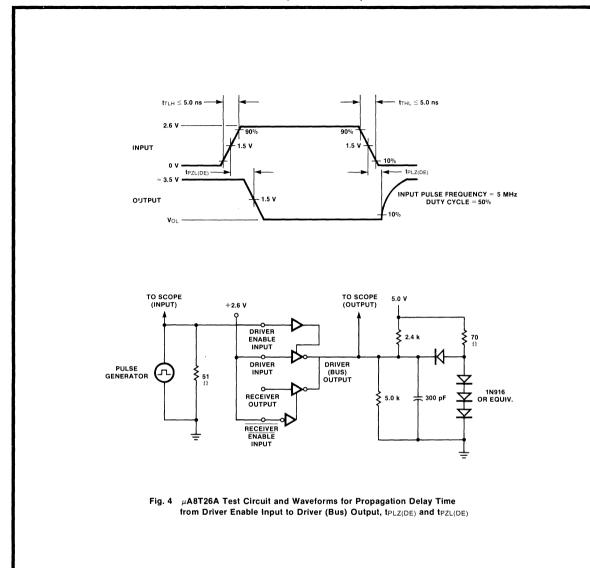
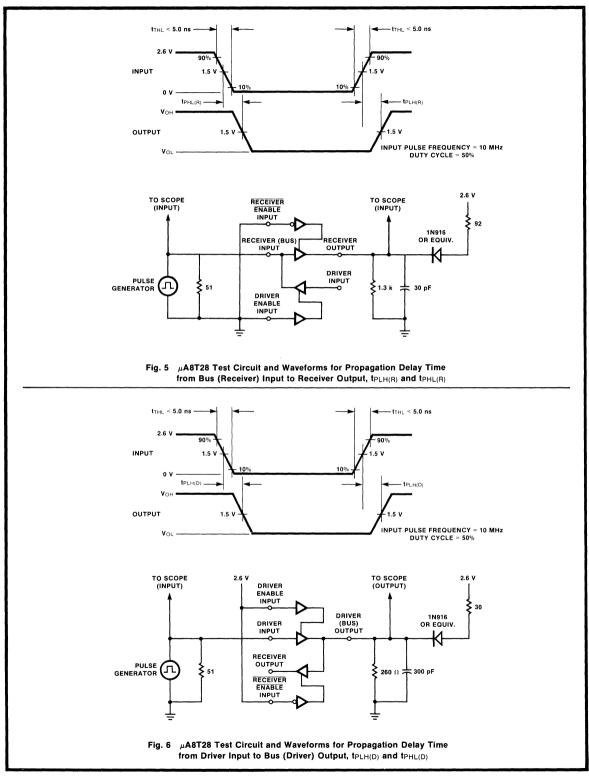
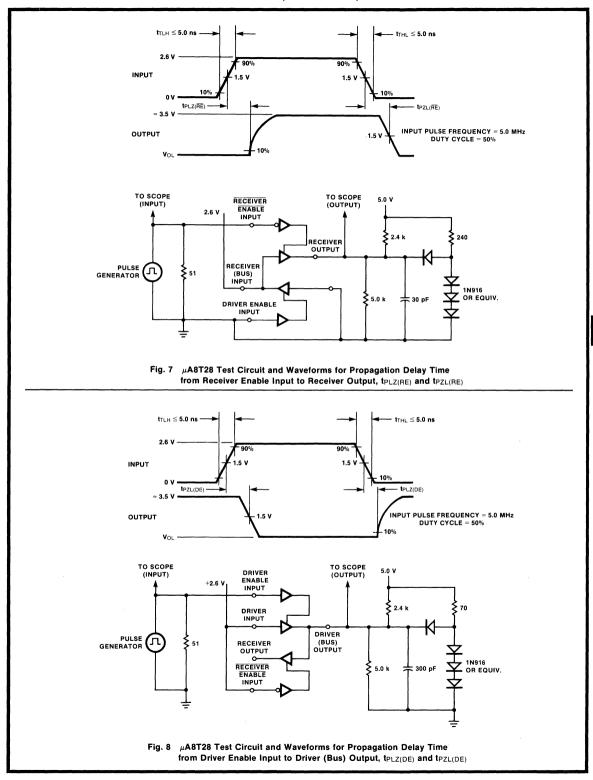




Fig. 1 μA8T26A Test Circuit and Waveforms or Propagation Delay Time from Bus (Receiver) Input to Receiver Output, tPLH(R) and tPHL(R)



μ A8T28 SWTICHING CHARACTERISTICS: Unless otherwise noted, V_{CC} = 5.0 V and T_A°C

SYMBOL	CHARACTERISTIC	FIGURE	ТҮР	MAX	UNITS
tPLH(R) tPHL(R)	Propagation Delay Time — Receiver ($C_L = 30 \text{ pF}$)	5	-12 -9	17 17	ns
tPLH(D) tPHL(D)	Propagation Delay Time — Driver (C _L = 300 pF)	6	-13 -13	17 17	ns
tPZL(RE) tPLZ(RE)	Propagation Delay Time — Receiver Enable ($C_L = 30 \text{ pF}$)	7	-18 -13	23 18	ns
tPZL(DE) tPLZ(DE)	Propagation Delay Time — Driver Enable ($C_L = 300 \text{ pF}$)	8	-21 -18	28 23	ns


FAIRCHILD • *µ***A8T26A** • *µ***A8T28**

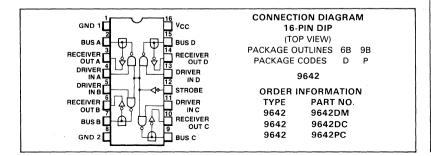
- --

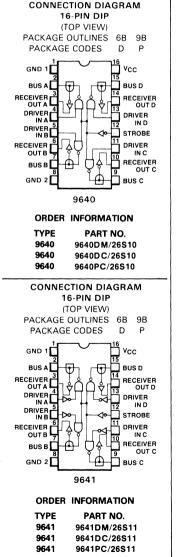
FAIRCHILD • µA8T26A • µA8T28

6

9640/26S10 • 9641/26S11 • 9642 QUAD GENERAL PURPOSE BUS TRANSCEIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 9640, 9641 and 9642 are High-Speed Quad Bus Transceivers. Each driver output, which is capable of sinking 100 mA at 0.8 V, is connected internally to the high-speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving ten Schottky TTL unit loads. The bus output is capable of driving lines having 100 Ω impedance.


The line can be terminated at both ends and still give considerable noise margin at the receiver. The receiver typical switching point is 2.0 V.


The 9640, 9641, and 9642 feature advanced Schottky processing to minimize propagation delay. The device package also has two ground pins to improve ground current handling and allow close decoupling between V_{CC} and ground at the package. Both GND₁ and GND₂ should be tied to the ground bus external to the device package.

The 9640 and 9641 are pin for pin replacements of the AM26S10 and AM26S11 respectively.

The 9642 is the same device as the 9640 with hysteresis. The hysteresis characteristic of the 9642 receiver is chosen so that the receiver switches to a HIGH logic level when the receiver input is at a HIGH logic level and moves to 1.4 V typically, and switches to a LOW logic level when the receiver input is at a LOW logic level and moves to 2.0 V typically. This hysteresis characteristic allows for increased noise immunity in low speed applications.

- INPUT TO BUS IS INVERTING ON 9640 AND 9642
- INPUT TO BUS IS NON-INVERTING ON 9641
- QUAD HIGH-SPEED OPEN COLLECTOR BUS TRANSCEIVERS
- DRIVER OUTPUTS CAN SINK 100 mA AT 0.8 V MAXIMUM
- ADVANCED SCHOTTKY PROCESSING
- PNP INPUTS TO REDUCE INPUT LOADING
- 600 mV RECEIVER HYSTERESIS (9642 ONLY)

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Supply Voltage to Ground Potential DC Voltage Applied to Outputs for High Output State DC Input Voltage Output Current, into Bus Output Current, into Outputs (Except Bus) DC Input Current

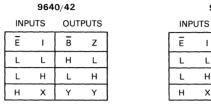
-65°C to +150°C -0.5 V to +7 V -0.5 V to +V_{CC} Max -0.5 V to +5.5 V 200 mA 30 mA -30 mA to +5.0 mA

TRUTH TABLES

9641

I

L L н


н н L

х Y Y

OUTPUTS

z

Ē

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

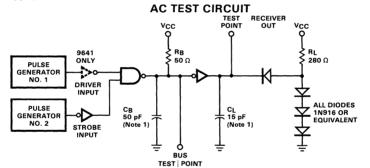
Y = Voltage Level of Bus (Assumes Control by another Bus Transceiver)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	DM				UNITS		
	MIN	TYP	MAX	MIN	TYP	МАХ	UNITS
Positive Supply Voltage	4.50	5.0	5.5	4.75	5.0	5.25	v
Operating Ambient Temperature – TA	-55	+25	+125	0	+25	+70	°C

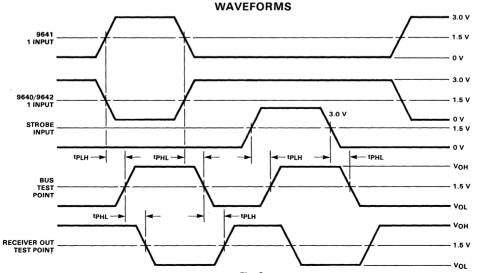
ELECTRICAL CHARACTERISTICS: Over Operating Range, unless otherwise specified

SYMBOL	CHARACTERISTICS	CONDITIONS (Note	1)	MIN	TYP (Note 2)	MAX	UNITS
VOH	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -1.0 mA$	DM	2.5	3.4		v
- On	(Receiver Outputs)	$V_{IN} = V_{IL} \text{ or } V_{IH}$	DC, PC	2.7	3.4		
V _{OL}	Output LOW Voltage (Receiver Outputs)	$V_{CC} = MIN, I_{OL} = 20 mA$ $V_{IN} = V_{IL} \text{ or } V_{IH}$				0.5	v
VIH	Input HIGH Level (Except Bus)	Guaranteed Input Logical HIGF for all Inputs	Guaranteed Input Logical HIGH for all Inputs				v
VIL	Input LOW Level (Except Bus)	Guaranteed Input Logical LOW for all Inputs				0.8	v
VI	Input Clamp Voltage (Except Bus)	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$				-1.2	v
	Input LOW Current	V _{CC} = MAX, V _{IN} = 0.4 V	ENABLE			-0.36	mA
μL		$v_{\rm CC} = w_{\rm AX}, v_{\rm IN} = 0.4$ v	DATA			-0.54	
	Input HIGH Current	V _{CC} = MAX, V _{IN} = 2.7 V	ENABLE			20	
Чн		$v_{\rm CC} = w_{\rm AX}, v_{\rm IN} = 2.7 v$	DATA			30	μΑ
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 5.5 V$				100	μA
ISC	Output Short Circuit	V _{CC} = MAX, (Note 3)	DM	-20		-55	mA
.30	Current (Except Bus)		DC, PC	-18		-60	
	Power Supply Current	V _{CC} = MAX	9640		45	70	
ICCL	(All Bus Outputs LOW)	Enable = GND	9641/42			80	'mA



FAIRCHILD • 9640/26S10 • 9641/26S11 • 9642

SYMBOL	CHARACTERISTICS		CONDITIONS	MIN	TYP	MAX	UNITS
^t PLH		9640			10	15	
^t PHL	Data Input to Bus	9642			10	15	ne
^t PLH	Data input to Bus	9641			12	19	ns
^t PHL		5041			12	19	
^t PLH		9640	$R_B = 50 \Omega$, $C_B = 50 pF$ (Note 1)		14	18	
^t PLH	Enable Input to Bus	9642			13	18	ns
^t PLH		9641			15	20	
^t PHL		5041			14	20	
^t PLH		9640/41			10	15	
^t PHL	Bus to Receiver Out	9642	$R_B = 50 $ Ω, $R_I = 280 $ Ω, $C_B = 50 $ pF,		10		ns
tPLH	bus to neceiver Out	9640/41	$C_L = 15 \text{ pF}$ (Note 1)		10	15	115
^t PHL		9642			10		
t _r	Bus		R _B = 50 Ω, C _B = 50 pF (Note 1)	4.0	10		ns
tf	Bus		HB 50 12, 5B 55 bi (Note 1)	2.0	4.0		ns


Note 1 Includes probe and jig capacitance.

.

- ----

SYMBOL	CHARACTERISTICS	CON	DITIONS (N	lote 1)	MIN	TYP (Note 2)	МАХ	UNITS
				I _{OL} = 40 mA		0.33	0.5	
			DM	I _{OL} = 70 mA		0.42	0.7	7
VOL	Output LOW Voltage	V _{CC} = Min		I _{OL} = 100 mA		0.51	0.8	l v
UL				I _{OL} = 40 mA		0.33	0.5	
			DC,PC	I _{OL} = 70 mA		0.42	0.7]
				I _{OL} = 100 mA		0.51	0.8	
			•=	V _O = 0.8 V			-50	
ю	Bus Leakage Current	V _{CC} = Max	DM	$V_{0} = 4.5 V$			200	μΑ
			DC,PC	V _O = 4.5 V			100	
IOFF	Bus Leakage Current (Power Off)	V _O = 4.5 V	$V_0 = 4.5 V$				100	μΑ
V _{TH}	Receiver Input HIGH Threshold	Bus Enable = 2.4 V		9640/9641 DM		2.0	2.4	
чн		V _{CC} = Max		9640/9641 DC, PC		2.0	2.25	
				9642	1.8	2.0	2.2	7
VTL	Receiver Input LOW Threshold	Bus Enable = 2.4 V		9640/9641 DM	1.6	2.0		
• I L	V _{CC} = Min			9640/9641 DC,PC	1.75	2.0		V
				9642	1.2	1.4	1.6	7

FAIRCHILD • 9640/26S10 • 9641/26S11 • 9642

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

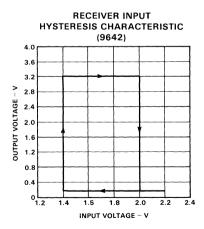


Fig. 3

	ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
	LINEAR INDUSTRY CROSS REFERENCE	2
	QUALITY, RELIABILITY AND HI REL PROCESSING	3
	VOLTAGE COMPARATORS	4
	DATA ACQUISITION	5
	LINE CIRCUITS – DRIVERS, RECEIVERS AND TRANSCEIVERS	6
	PERIPHERAL AND DISPLAY DRIVERS	7
	MEMORY INTERFACE	8
	TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
Ad equal to	DATA TRANSMISSION INFORMATION	1
	ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	1
	FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	1

PERIPHERAL AND DISPLAY DRIVERS

Peripheral Drivers 55/75450A 55/75450B 55/75451A 55/75451B Dual Positive NAND Peripheral Driver7-3 55/75452A 55/75452B 55/75453A 55/75453B Dual Positive NOR Peripheral Driver7-3 55/75454A 55/75454B 55/75460 55/75461 55/75462 55/75463 55/75464 55/75471 55/75472 55/75473 55/75474

Display Drivers

55/75491	Quad MOS-to-LED Segment Drivers	7-54
55/75491A	Quad MOS-to-LED Segment Drivers	7-54
55/75492	HEX MOS-to-LED Digit Drivers	7-54
55/75492A	HEX MOS-to-LED Digit Drivers	7-54

55/75450A · 55/75451A · 55/75452A 55/75453A • 55/75454A DUAL PERIPHERAL DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 55/75450A, 55/75451A, 55/75452A, 55/75453A and 55/75454A are Dual High Speed General Purpose Interface Drivers that convert TTL and DTL logic levels to high current drive capability. The 55450A and 75450A feature two TTL NAND gates and two uncommitted transistors. The 55/75451A, 55/75452A, 55/75453A and 55/75454A feature two standard series 74 TTL gates in AND, NAND, OR and NOR configurations respectively, driving the base of two high voltage, high current, uncommitted collector output transistors.

The 55/75450A series offers flexibility in designing high speed logic buffers, power drivers, lamp drivers, line drivers, MOS drivers, clock drivers and memory drivers.

- NO LATCH-UP AT 20 V
- HIGH OUTPUT CURRENT CAPABILITY
- TTL OR DTL INPUT COMPATIBILITY
- INPUT CLAMP DIODES
- +5 V SUPPLY VOLTAGE

TEST TABLE 1 - Operating Temperature Range and Supply Voltage Range

	55450A Series	75450A Series
Temperature, T _A	–55°C to +125°C	0°C to 70°C
Supply Voltage, V _{CC}	+4.5 V to +5.5 V	+4.75 V to +5.25 V

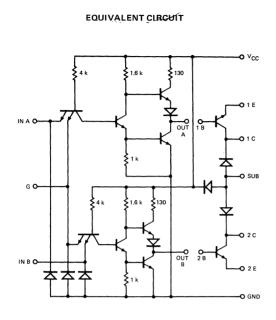
ABSOLUTE MAXIMUM RATINGS

	55450A	75450A	55451A 55452A 55453A 55454A	75451A 75452A 75453A 75454A
Supply Voltage, V _{CC} (See Note 1)	7 V	7 V	7 V	7 V
Input Voltage (See Note 1)	5.5 V	5.5 V	5.5 V	5.5 V
Interemitter Voltage(See Note 2)	5.5 V	5.5 V	5.5 V	5.5 V
V _{CC} to Substrate Voltage (See Note 6)	35 V	35 V		
Collector to Substrate Voltage (See Note 6)	35 V	35 V		
Collector to Base Voltage	35 V	35 V		
Collector to Emitter Voltage (See Note 3)	30 V	30 V		
Emitter to Base Voltage	5 V	5 V		
Output Voltage (See Notes 1 and 4)			30 V	30 V
Continuous Collector Current (See Note 5)	300 mA	300 mA		
Continuous Output Current (See Note 5)			300 mA	300 m A
Continuous Total Power Dissipation (See Note 7)	800 mW	800 mW	800 mW	800 mW
Operating Ambient Temperature Range	55°C to +125°C	0°C to 70°C	-55°C to +125°C	0°C to 70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Pin Temperature				
Molded DIP (Soldering, 10 s)		260° C	260° C	260° C
Hermetic DIP (Soldering, 60 s)	300° C	300° C	300° C	300° C
	1	1	1	1

NOTES:

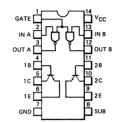
1. Voltage values are with respect to network ground terminal unless otherwise specified.

This is the voltage between two emitters of a multiple-emitter input transistor.


This value applies when the base emitter resistance (R_{BE}) is equal to or less than 500 Ω . 3.

This is the maximum voltage which should be applied to any output when it is in the off state. 4.

5. Both halves of these dual circuits may conduct rated current simultaneously.


For the 55450A and 75450A only, the substrate (Pin 8), must always be at the most negative device voltage for proper operation. Above 60°C ambient temperature, derate linearly at 8.3 mW/°C for Hermetic DIP and Molded DIP. For the Molded Mini DIP and Ceramic Mini DIP, derate at 6.7 mW/°C above 30°C.

55450A/75450A **DUAL POSITIVE AND PERIPHERAL DRIVER**

CONNECTION DIAGRAM 14-PIN (TOP VIEW) PACKAGE OUTLINE 6A 9A

PACKAGE CODE D P

LOGIC FUNCTION

Positive Logic: $Z = \overline{XY}$ (gate only) Z = XY (gate and transistor)

ORDER	INFORMATION
ТҮРЕ	PART NO.
55450A	55450ADM
75450A	75450ADC
75450A	75450APC

All resistor values in ohms.

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

SYMBOL	CHARACTERISTICS		TEST FIGURE	CONDITIONS		MIN	TYP (Note 8)	мах	UNIT
VIH	Input HIGH Voltage		1			2			V
VIL	Input LOW Voltage		2					0.8	V
VCD	Input Clamp Diode Voltage		3	V _{CC} = MIN, I _I = -12 mA				-1.5	V
v _{он}	Output HIGH Voltage		2	V _{CC} = MIN, V _{IL} = 0.8 V I _{OH} = -400 μA		2.4	3.3		v
~	Output LOW Voltage		1	V _{CC} = MIN, V _{IH} = 2 V	55450A		0.22	0.5	v
VOL	Sulput LOW Voltage			I _{OL} = 16 mA	75450A		0.22	0.4	ľ
1.	Input Current at Maximum	Input A	4					1	mA
'I	Input Voltage	Input G	-	V _{CC} = MAX, V _I = 5.5 V				2	
l	Input HIGH Current	Input A	4	V _{CC} = MAX, V _I = 2.4 V				40	μΑ
ІН		Input G	-					80	, mr.
Ι _{ΙL}	Input LOW Current	Input A	3	V _{CC} = MAX, V _I = 0.4 V				-1.6	mA
1L		Input G						-3.2	
os	Short Circuit Output Current	(Note 9)	5	V _{CC} = MAX		-18		-55	mA
ссн	Supply Current, Output HIG	4	6	V _{CC} = MAX, V _I = 0 V			2	4	mA
ICCL	Supply Current, Output LOW	/	1	V _{CC} = MAX, V _I = 5 V			6	11	

8. All typical values at V_{CC} = 5 V, T_A = 25°C. 9. Not more than one output should be shorted at a time.

55450A/75450A

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

Output Transistors

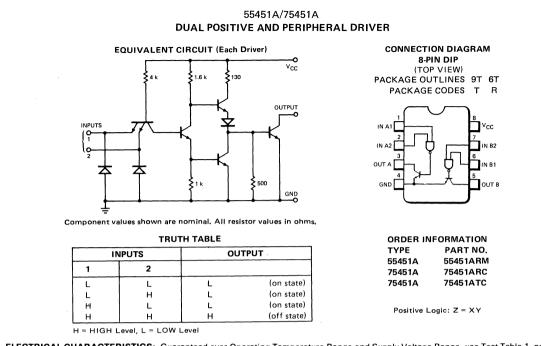
SYMBOL	CHARACTERISTICS	CON	DITIONS	MIN	TYP (Note 10)	мах	UNITS
V _{(BR)CBO}	Collector to Base Breakdown Voltage	I _C = 100 μA, I _E	= 0	35			V
V(BR)CER	Collector to Emitter Breakdown Voltage	l _C = 100 μA, R _E	_{3E} = 500 Ω	30			v
V _{(BR)EBO}	Emitter to Base Breakdown Voltage	I _E = 100 μA, I _C	= 0	5			V
		V _{CE} = 3 V, I _C =	100 mA, T _A = 25°C	25			
		V _{CE} = 3 V, I _C =	300 mA, T _A = 25°C	30			ļ
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 3 V,	55450A	10			
	(Note 11)	l _C = 100 mA	75450A	20			1
		V _{CE} = 3 V,	55450A	15			
		I _C = 300 mA	75450A	25			1
		I _B = 10 mA,	55450A		0.85	1.2	V
V _{BE(sat)}	Base to Emitter Voltage (Note 11)	I _C = 100 mA	75450A		0.85	1.0	V
		I _B = 30 mA,	55450A		1.05	1.4	V
		I _C = 300 mA	75450A		1.05	1.2	V
		I _B = 10 mA,	55450A		0.25	0.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 100 mA	75450A		0.25	0.4	V
	(Note 11)	I _B = 30 mA,	55450A		0.5	0.8	V
		I _C = 300 mA	75450A		0.5	0.7	V

NOTES:

10. All typical values are at V_{CC} = 5 V, T_A = 25°C. 11. These parameters must be measured using the pulse techniques. t_w = 300 μ s, duty cycle \leq 2%.

AC CHARACTERISTICS: $V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}.$

TTL Gates


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	TYP	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	12	C ₁ = 15 pF, R ₁ = 400 Ω		12		ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	12			8		ns

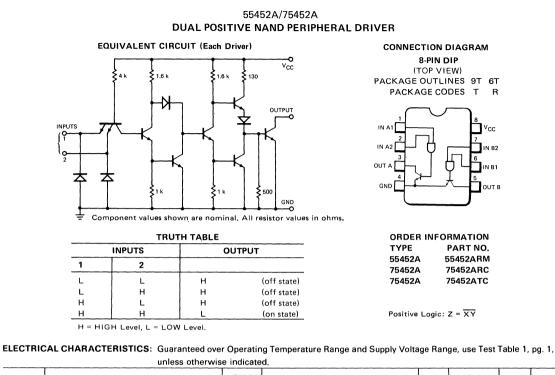
Output Transistors

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS (Note 12)	MIN	ТҮР	мах	UNITS
^t d	Delay Time		I _C = 200 mA, V _{BE(off)} = -1 V		10		ns
t _r	Rise Time	13	I _{B(1)} = 20 mA, I _{B(2)} = -40 mA		14		ns
t _s	Storage Time		C _L = 15 pF, R _L = 50 Ω		10		ns
^t f	Fall Time				11		ns

Gates and Transistors Combined

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				22	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW		I _C = 200 mA, C _L = 15 pF,		22	50	ns
ţтгн	Transition Time, Output LOW to HIGH	14	R _L = 50 Ω		10	20	ns
^t тнL	Transition Time, Output HIGH to LOW				14	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _C \approx 300 mA R _{BE} = 500 Ω	V _S -6.5			mV

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated.

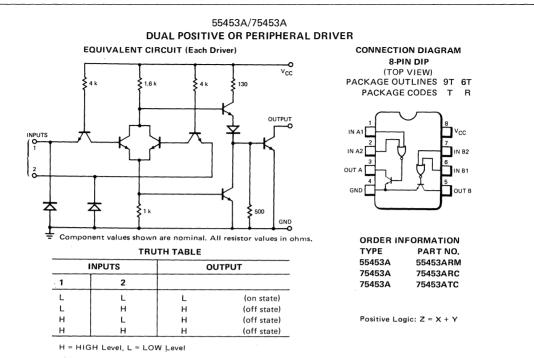

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 13)	мах	UNITS
VIH	Input HIGH Voltage	7			2			V
VIL	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
	Output HIGH Current	7	V _{CC} = MIN, V _{OH} = 30 V	55451A			300	μA
юн		V _{IH} = 2 V 75	75451A			100	μ	
		7	V _{CC} = MIN, V _{IL} = 0.8 V	55451A		0.25	0.5	
V-	Output LOW Voltage		I _{OL} = 100 mA	75451A		0.25	0.4	l v
VOL	Culput LOW Voltage		V _{CC} = MIN, V _{IL} = 0.8 V	55451A		0.5	0.8] `
			I _{OL} = 300 mA	75451A		0.5	0.7]
1	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Чн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
1 _{IL}	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
I _{ССН}	Supply Current, Output HIGH	10	V _{CC} = MAX, V _I = 5 V			7.0	11	mA
CCL	Supply Current Output LOW] '`	V _{CC} = MAX, V _I = 0 V			52	65	mA

NOTE 13. All typical values are at V_{CC} = 5 V, T_A = 25°C.

AC CHARACTERISICS: V_{CC} = 5 V, T_A = 25°C.

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				20	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	$I_{O} \approx 200$ mA, C _L = 15 pF,		20	40	ns
^t TLH	Transition Time, Output LOW to HIGH	14	R _L = 50 Ω		8	20	ns
^t THL	Transition Time, Output HIGH to LOW	1.			12	20	ns
V _{OH}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

_ _ _ _ _ _ _ _ .

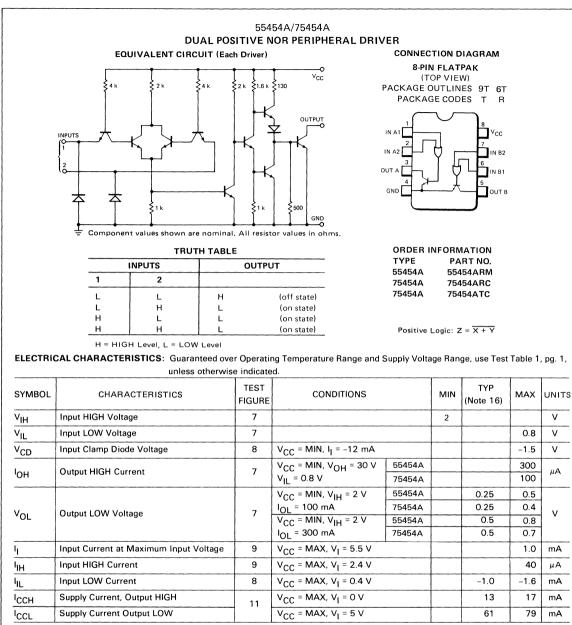


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 14)	MAX	UNITS
VIH	Input HIGH Voltage	7			2			V
∨ _{IL}	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
1		7	V _{CC} = MIN, V _{OH} = 30 V	55452A			300	
юн	Output HIGH Current		V _{IL} = 0.8 V	75452A			100	μA
		7	V _{CC} = MIN, V _{IH} = 2 V	55452A		0.25	0.5	
Va.	Output LOW Voltage		I _{OL} = 100 mA	75452A		0.25	0.4	v
VOL	Culput LOW Voltage		V _{CC} = MIN, V _{IH} = 2 V	55452A		0.5	0.8]
			I _{OL} = 300 mA	75452A		0.5	0.7	
lį	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Iн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
ιL	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
Iссн	Supply Current, Output HIGH	10	V _{CC} = MAX, V _I = 0 V	······		11	14	mA
ICCL	Supply Current Output LOW	1 10	V _{CC} = MAX, V _I = 5 V			56	71	mA

NOTE 14. All typical values are at V_{CC} = 5 V, T_A = 25°C.

AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C

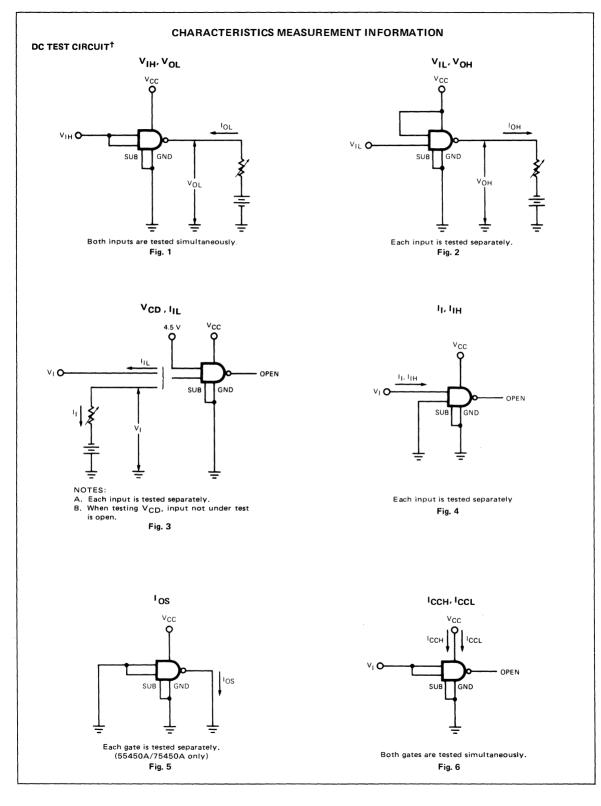
SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	TYP	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				25	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$		25	50	ns
^t TLH	Transition Time, Output LOW to HIGH	1 14	R _L = 50 Ω		8	25	ns
^t THL	Transition Time, Output HIGH to LOW				12	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

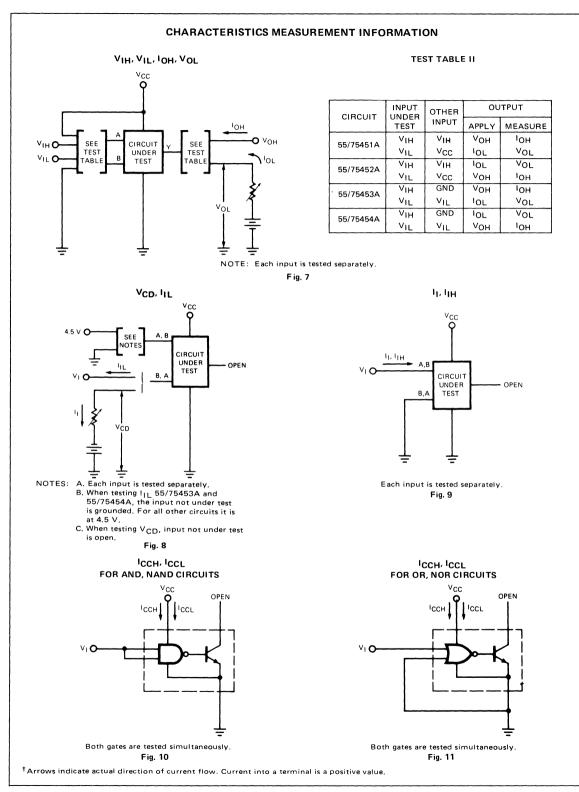


ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1,

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 15)	мах	UNITS
v _{IH}	Input HIGH Voltage	7.			2			V
V _{IL}	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
1	Output HIGH Current	7	V _{CC} = MIN, V _{OH} = 30 V	55453A			300	μΑ
юн			V _{IH} = 2 V	75453A			100	,
			V _{CC} = MIN, V _{IL} = 0.8 V	55453A		0.25	0.5	
V-	Output LOW Voltage	7	I _{OL} = 100 mA	75453A		0.25	0.4	l v
VOL		1 '	V _{CC} = MIN, V _{IL} = 0.8 V	55453A		0.5	0.8] `
			I _{OL} = 300 mA	75453A		0.5	0.7	
lj –	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Iн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
۱	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
ССН	Supply Current, Output HIGH	11	V _{CC} = MAX, V _I = 5 V			8.0	11	mA
ICCL	Supply Current Output LOW	1 ''	V _{CC} = MAX, V _I = 0 V			54	68	mA

NOTE 15. All typical values are at V_{CC} = 5 V, T_A = 25°C. AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25 'C.

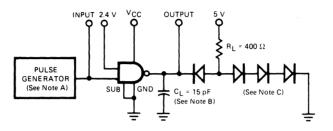

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	-	$I_{O} \approx 200$ mA, C_{L} = 15 pF, R_{L} = 50 Ω		20	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				20	40	ns
^t TLH	Transition Time, Output LOW to HIGH				8	25	ns
^t THL	Transition Time, Output HIGH to LOW				12	25	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

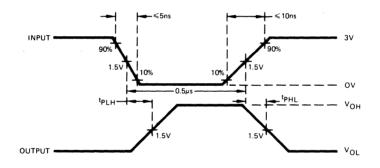


NOTE 16. All typical values are at V_CC = 5 V, T_A = 25 °C.

AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C.

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	TYP	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	- - 14 -	$I_{O} \approx 200$ mA, C_{L} = 15 pF, R _L = 50 Ω		25	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				25	50	ns
^t TLH	Transition Time, Output LOW to HIGH				8	20	ns
^t THL	Transition Time, Output HIGH to LOW				12	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV




CHARACTERISTICS MEASUREMENT INFORMATION SWITCHING CHARACTERISTICS

PROPAGATION DELAY TIMES, EACH GATE (55450A, 75450A ONLY)

TEST CIRCUIT

VOLTAGE WAVEFORMS

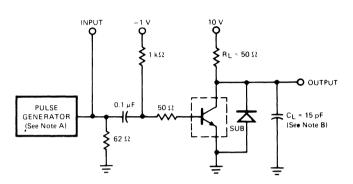
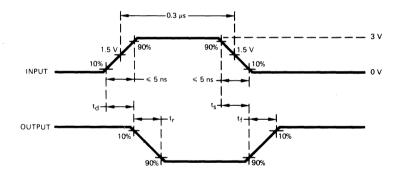
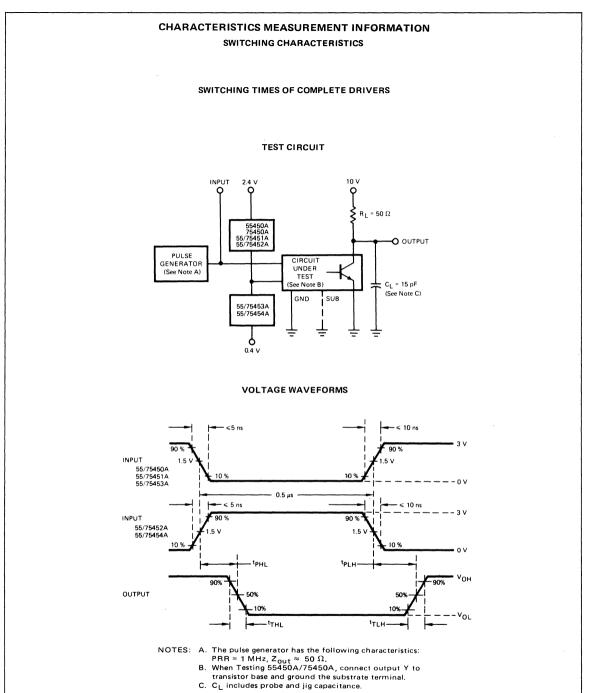

NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{out} \approx 50 \Omega$. B. C_L include probe and jig capacitance. C. All diodes are FD777.

Fig. 12


CHARACTERISTICS MEASUREMENT INFORMATION SWITCHING CHARACTERISTICS

SWITCHING TIMES, EACH TRANSISTOR (55450A, 75450A ONLY)

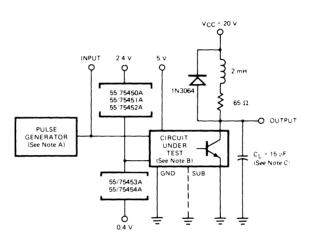
TEST CIRCUIT



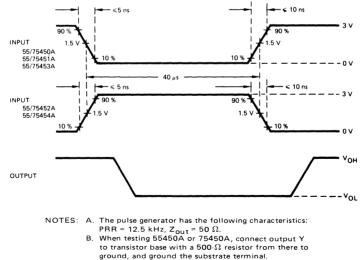
VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: duty cycle \leqslant 1%, Z_{OUT} \approx 50 $\Omega.$ B. C_L includes probe and jig capacitance.

Fig. 13

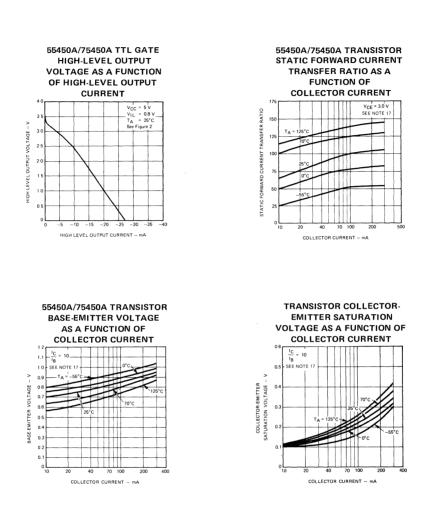


CHARACTERISTICS MEASUREMENT INFORMATION


SWITCHING CHARACTERISTICS

LATCH-UP TEST OF COMPLETE DRIVERS

TEST CIRCUIT


VOLTAGE WAVEFORMS

C. CL includes probe and jig capacitance.

Fig. 15

TYPICAL PERFORMANCE CURVES FOR 75450A SERIES

- - -

.

55/75450B · 55/75451B · 55/75452B 55/75453B • 55/75454B DUAL HIGH SPEED PERIPHERAL DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 55/75450B, 55/75451B, 55/75452B, 55/75453B and 55/75454B are Dual High Speed General Purpose Interface Drivers that convert TTL and DTL logic levels to high current drive capability. The 55450B and 75450B feature two TTL NAND gates and two uncommitted transistors. The 55/75451B, 55/75452B, 55/75453B and 55/75454B feature two standard series 74 TTL gates in AND, NAND, OR and NOR configurations respectively, driving the base of two high voltage, high current, uncommitted collector output transistors.

The 55/75450B series offers flexibility in designing high speed logic buffers, power drivers, lamp drivers, line drivers, MOS drivers, clock drivers and memory drivers.

- NO LATCH-UP AT 20 V .
- HIGH SPEED SWITCHING
- HIGH OUTPUT CURRENT CAPABILITY
- TTL OR DTL INPUT COMPATIBILITY
- INPUT CLAMP DIODES
- +5 V SUPPLY VOLTAGE

TEST TABLE 1 - Operating Temperature Range and Supply Voltage Range

	55450B Series	75450B Series
Temperature, T _A	–55°C to +125°C	0°C to 70°C
Supply Voltage, V _{CC}	+4.5 V to +5.5 V	+4.75 V to +5.25 V

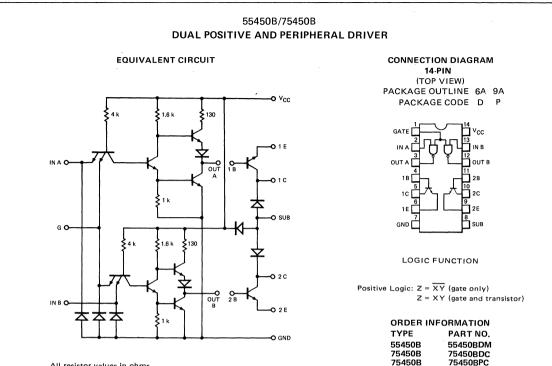
ABSOLUTE MAXIMUM RATINGS

	55450B	75450B	55451B 55452B 55453B 55454B	75451B 75452B 75453B 75454B
Supply Voltage, V _{CC} (See Note 1)	7 V	7 V	7 V	7 V
Input Voltage (See Note 1)	5.5 V	5.5 V	5.5 V	5.5 V
Interemitter Voltage(See Note 2)	5.5 V	5.5 V	5.5 V	5.5 V
V _{CC} to Substrate Voltage (See Note 6)	35 V	35 V		
Collector to Substrate Voltage (See Note 6)	35 V	35 V		
Collector to Base Voltage	35 V	35 V		ł
Collector to Emitter Voltage (See Note 3)	30 V	30 V		1
Emitter to Base Voltage	5 V	5 V		
Output Voltage (See Notes 1 and 4)			30 V	30 V
Continuous Collector Current (See Note 5)	300 mA	300 m A		
Continuous Output Current (See Note 5)			300 mA	300 mA
Continuous Total Power Dissipation (See Note 7)	800 mW	800 mW	800 mW	800 mW
Operating Free-Air Temperature Range	–55°C to +125°C	0°C to 70°C	-55°C to +125°C	0°C to 70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Pin Temperature:		1		
Molded DIP (Soldering, 10 s)		260° C	260° C	260° C
Hermetic DIP	300° C	300° C	300° C	300° C
(Soldering, 60 s)				

NOTES:

1. Voltage values are with respect to network ground terminal unless otherwise specified.

This is the voltage between two emitters of a multiple-emitter input transistor. 2


This value applies when the base-emitter resistance (R_BE) is equal to or less than 500 $\Omega.$ З.

This is the maximum voltage which should be applied to any output when it is in the off state. 4

5 Both halves of these dual circuits may conduct rated current simultaneously.

For the 55450B and 75450B only, the substrate (Pin 8), must always be at the most negative device voltage for proper operation. 6.

Above 60°C ambient temperature, derate linearly at 8.3 mW/°C for Hermetic DIP and Molded DIP. For the Molded Mini DIP and Hermetic Mini 7. DIP, derate at 6.7 mW/°C above 30°C.

All resistor values in ohms.

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

SYMBOL	CHARACTERISTICS		TEST FIGURE	CONDITIONS		MIN	TYP (Note 8)	мах	UNITS
VIH	Input HIGH Voltage		1			2			V
VIL	Input LOW Voltage		2					0.8	V
V _{CD}	Input Clamp Diode Voltage		3	$V_{CC} = MIN, I_I = -12 mA$		1		-1.5	V
v _{он}	Output HIGH Voltage		2	V _{CC} = MIN, V _{IL} = 0.8 V I _{OH} = -400 μA		2.4	3.3		v
v	Output LOW Voltage		1	V _{CC} = MIN, V _{IH} = 2 V	55450B		0.22	0.5	v
VOL	Output LOVV Voltage		1	I _{OL} = 16 mA	75450B		0.22	0.4	v
	Input Current at Maximum	Input A	- 4					1	mA
կ	Input Voltage	Input G	4	$V_{CC} = MAX, V_{I} = 5.5 V$				2	
	Input HIGH Current	Input A	4	V _{CC} = MAX, V _I = 2.4 V				40	μA
ЧН		Input G						80	, <i>"</i> , ,
IIL	Input LOW Current	Input A	3	V _{CC} = MAX, V _I = 0.4 V				-1.6	mA
'IL		Input G						-3.2	
los	Short Circuit Output Current	t (Note 9)	5	V _{CC} = MAX		-18		-55	mA
ICCH	Supply Current, Output HIG	4	6	V _{CC} = MAX, V _I = 0 V			2	4	mA
ICCL	Supply Current, Output LOW	/	7 0	V _{CC} = MAX, V _I = 5 V			6	11	

8. All typical values at V_{CC} = 5 V, T_A = 25°C. 9. Not more than one output should be shorted at a time.

55450B/75450B

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

Output Transistors

SYMBOL	CHARACTERISTICS	CON	DITIONS	MIN	TYP (Note 10)	мах	UNITS
V _{(BR)CBO}	Collector to Base Breakdown Voltage	I _C = 100 μA, I _E	= 0	35			V
V _{(BR)CER}	Collector to Emitter Breakdown Voltage	I _C = 100, μΑ, R _E	I _C = 100, μA, R _{BE} = 500 Ω				v
V _{(BR)EBO}	Emitter to Base Breakdown Voltage	$I_{\rm E} = 100^{\prime} \mu A, I_{\rm C} = 0$		5			V
		V _{CE} = 3 V, I _C =	100 mA, T _A = 25°C	25			
		V _{CE} = 3 V, I _C =	300 mA, T _A = 25°C	30			
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 3 V,	55450B	10			
	(Note 11)	I _C = 100 mA	75450B	20			
		V _{CE} = 3 V,	55450B	15			
		I _C = 300 mA	75450B	25			
		I _B = 10 mA,	55450B		0.85	1.2	V
V _{BE(sat)}	Base to Emitter Voltage (Note 11)	I _C = 100 mA	75450B		0.85	1.0	V
		I _B = 30 mA,	55450B		1.05	1.4	V
		I _C = 300 mA	75450B		1.05	1.2	V
		I _B = 10 mA,	55450B		0.25	0.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 100 mA	75450B		0.25	0.4	V
	(Note 11)	I _B = 30 mA,	55450B		0.5	0.8	V
		I _C = 300 mA	75450B		0.5	0.7	V

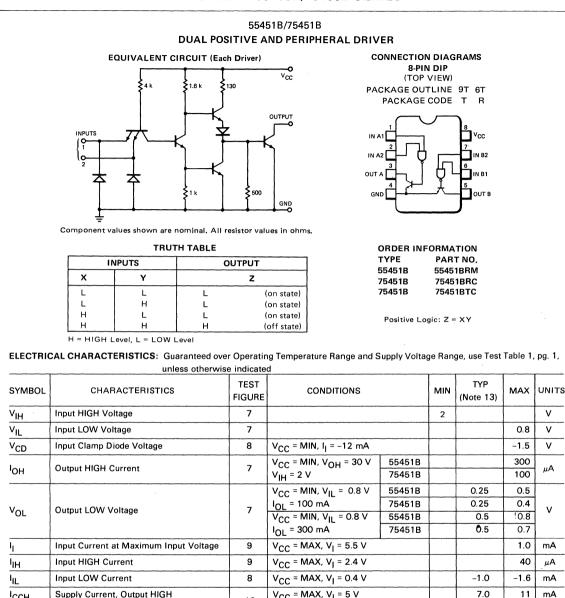
NOTES:

10. All typical values are at V_{CC} = 5 V, T_A = 25°C. 11. These parameters must be measured using the pulse techniques. t_w = 300 μ s, duty cycle \leq 2%.

AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C

TTL Gates

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	12	C. = 15 pE B. = 400 0		12	22	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	12	C _L = 15 pF, R _L = 400 Ω		8	15	ns


Output Transistors

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS (Note 12)	MIN	ТҮР	мах	UNITS
^t d	Delay Time		I _C = 200 mA, V _{BE(off)} = -1 V		8	15	ns
t _r	Rise Time	13	I _{B(1)} = 20 mA, I _{B(2)} = -40 mA		12	20	ns
ts	Storage Time]	C_L = 15 pF, R_L = 50 Ω		7	15	ns
t _f	Fall Time	1			6	15	ns

Gates and Transistors Combined

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				20	30	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	I _C = 200 mA, C _L = 15 pF,		20	30	ns
^t TLH	Transition Time, Output LOW to HIGH	1 14	R _L = 50 Ω		7	12	ns
^t THL	Transition Time, Output HIGH to LOW				9	15	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_S = 20 V, I _C ≈ 300 mA R _{BE} = 500 Ω	V _S -6.5			mV

NOTE 12. Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

Supply Current Output LOW NOTE 13. All typical values are at V_{CC} = 5 V, T_A = 25°C.

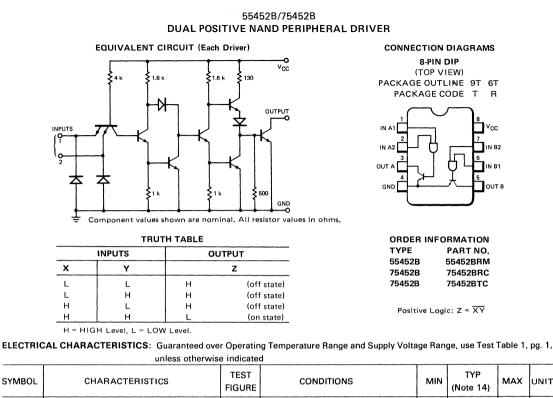
ICCH

10CL

AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	МАХ	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				18	25	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$		18	25	ns
^t TLH	Transition Time, Output LOW to HIGH	14	R _L = 50 Ω		5	8	ns
^t THL	Transition Time, Output HIGH to LOW				7	12	ns
V _{OH}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

10

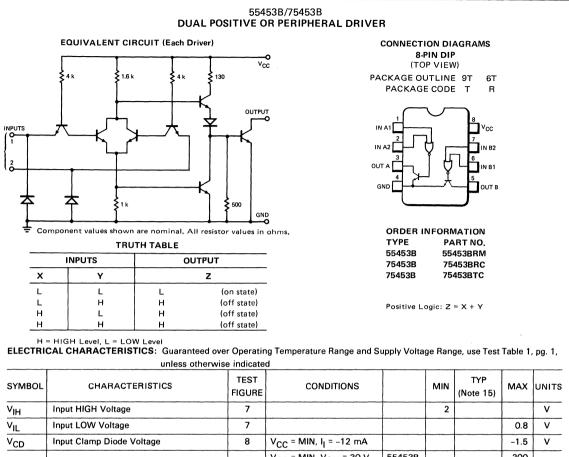

V_{CC} = MAX, V_I = 5 V

V_{CC} = MAX, V_I = 0 V

11 mΑ

65 mΑ

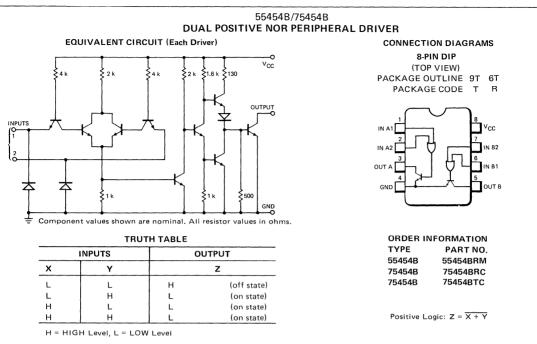
52



SYMBOL	CHARACTERISTICS	FIGURE	CONDITIONS		MIN	(Note 14)	ΜΑΧ	UNITS
VIH	Input HIGH Voltage	7			2			V
VIL	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
		7	V _{CC} = MIN, V _{OH} = 30 V	55452B			300	μA
юн	Output HIGH Current		V _{IL} = 0.8 V	75452B			100	
			V _{CC} = MIN, V _{IH} = 2 V	55452B		0.25	0.5	
	Output LOW Voltage	7	I _{OL} = 100 mA	75452B		0.25	0.4	
VOL	Output LOW Voltage		V _{CC} = MIN, V _{IH} = 2 V	55452B		0.5	0.8] `
			I _{OL} = 300 mA	75452B		0.5	0.7	
4	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Чн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
IL.	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
^I ссн	Supply Current, Output HIGH	10	V _{CC} = MAX, V _I = 0 V			11	14	mA
CCL	Supply Current Output LOW		V _{CC} = MAX, V _I = 5 V			56	71	mA

NOTE 14. All typical values are at V_{CC} = 5 V, T_A = 25°C.

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	TYP	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				25	35	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$		22	35	ns
^t TLH	Transition Time, Output LOW to HIGH	1 14	R _L = 50 Ω		5	8	ns
t _{THL}	Transition Time, Output HIGH to LOW	1			7	12	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

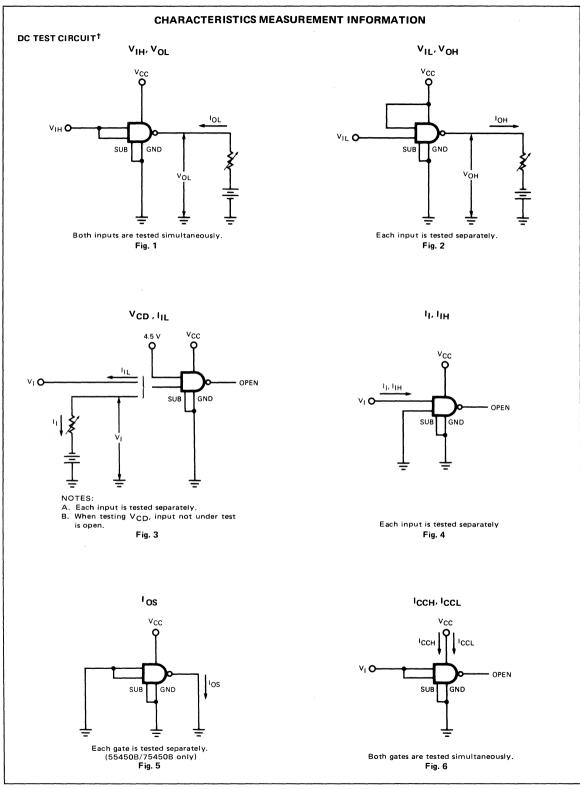
V_{CC} = MIN, V_{OH} = 30 V 55453B 300 **Output HIGH Current** 7 μA юн V_{IH} = 2 V 75453B 100 V_{CC} = MIN, V_{IL} = 0.8 V 55453B 0.25 0.5 I_{OL} = 100 mA 75453B 0.25 0.4 7 VOL **Output LOW Voltage** v V_{CC} = MIN, V_{IL} = 0.8 V 55453B 0.5 0.8 75453B I_{OL} = 300 mA 0.5 0.7 Input Current at Maximum Input Voltage 9 V_{CC} = MAX, V_I = 5.5 V h 1.0 mΑ Input HIGH Current 9 $V_{CC} = MAX, V_{I} = 2.4 V$ 40 μA ЧH Input LOW Current 8 V_{CC} = MAX, V_I = 0.4 V -1.0 -1.6 mΑ μL Supply Current, Output HIGH V_{CC} = MAX, V_I = 5 V 8.0 11 mΑ ¹ссн 11 $V_{CC} = MAX, V_{I} = 0 V$ Supply Current Output LOW 54 68 ICCL mΑ

NOTE 15. All typical values are at V_{CC} = 5 V, T_A = 25°C. AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	МАХ	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				18	25	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW		$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$		16	25	ns
^t TLH	Transition Time, Output LOW to HIGH	14	R _L = 50 Ω		5	8	ns
^t THL	Transition Time, Output HIGH to LOW				7	12	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV

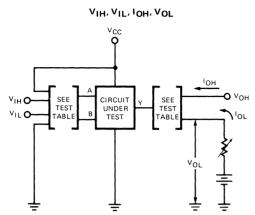
ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 16)	мах	UNITS
VIH	Input HIGH Voltage	7		4	2			V
VIL	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
1	Output HIGH Current	7	V _{CC} = MIN, V _{OH} = 30 V	55454B			300	μΑ
юн		1	V _{IL} = 0.8 V	75454B			100	μ
			V _{CC} = MIN, V _{IH} = 2 V	55454B		0.25	0.5	
V.	Output LOW Voltage	7	l _{OL} = 100 mA	75454B		0.25	0.4	l v
V _{OL}	Output LOW Voltage		$V_{CC} = MIN, V_{IH} = 2 V$	55454B		0.5	0.8] `
			I _{OL} = 300 mA	75454B		0.5	0.7]
l _i	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Чн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
կլ	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
Iссн	Supply Current, Output HIGH	11	V _{CC} = MAX, V _I = 0 V			13	17	mA
ICCL	Supply Current Output LOW	1 .	V _{CC} = MAX, V _I = 5 V			61	79	mA

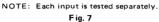

NOTE 16. All typical values are at V_{CC} = 5 V, T_A = 25°C.

AC CHARACTERISTICS: V_{CC} = 5 V, T_A = 25°C

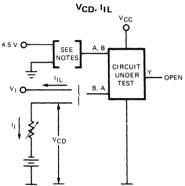
SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	МАХ	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH		$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$		27	35	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14			24	35	ns
^t TLH	Transition Time, Output LOW to HIGH	1 14	R _L = 50 Ω		5	8	ns
^t THL	Transition Time, Output HIGH to LOW				7	12	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 20 V, I _O \approx 300 mA	V _S -6.5			mV


FAIRCHILD • 55450B/75450B SERIES

7-24

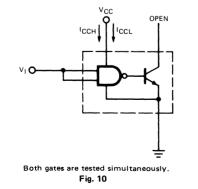

.

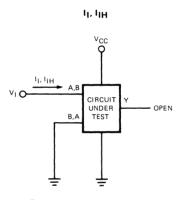
CHARACTERISTICS MEASUREMENT INFORMATION

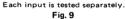


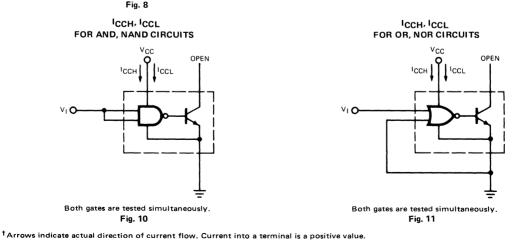
	CIRCUIT	INPUT UNDER	OTHER	OUTPUT			
	CIRCOII	TEST	INPUT	APPLY	MEASURE		
5	55/75451B VIH		∨ін	∨он	юн		
Ľ		VIL	Vcc	IOL	VOL		
F	55/75452B	VIH	VIH	^I OL	VOL		
		VIL	Vcc	∨он	юн		
	55/75453B	VIH	GND	v _{он}	юн		
	55/754555	VIL	VIL	IOL	VOL		
	55/75454B	VIH	GND	IOL	VOL		
Ľ	55/75454B	VIL	VIL	Vон	юн		

TEST TABLE II

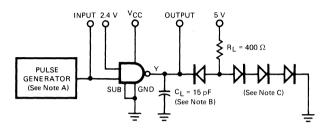


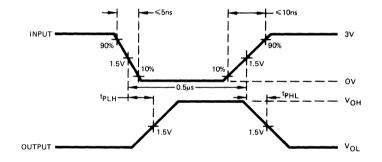





- NOTES: A. Each input is tested separately. B. When testing I_{IL} 55/75453B and 55/75454B, the input not under test is grounded. For all other circuits it is at 4.5V.
 - C. When testing V_{CD} , input not under test is open.

ICCH, ICCL FOR AND, NAND CIRCUITS

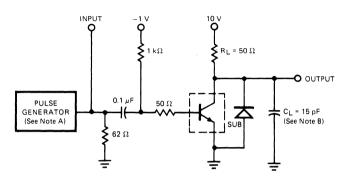



CHARACTERISTICS MEASUREMENT INFORMATION AC CHARACTERISTICS

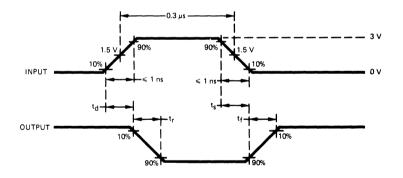
PROPAGATION DELAY TIMES, EACH GATE (55450B, 75450B ONLY)

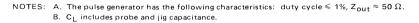
TEST CIRCUIT

VOLTAGE WAVEFORMS



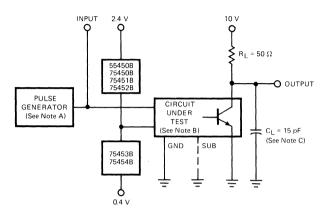
NOTES: A The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{out} \approx 50 \Omega$ B C_L include probe and jig capacitance. C All diodes are FD777.

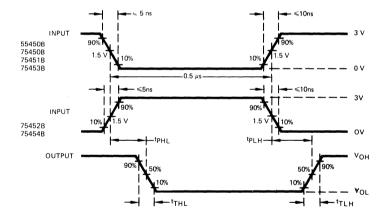

CHARACTERISTICS MEASUREMENT INFORMATION AC CHARACTERISTICS


SWITCHING TIMES, EACH TRANSISTOR (55450B, 75450B ONLY)

TEST CIRCUIT

VOLTAGE WAVEFORMS




CHARACTERISTICS MEASUREMENT INFORMATION AC CHARACTERISTICS

SWITCHING TIMES OF COMPLETE DRIVERS

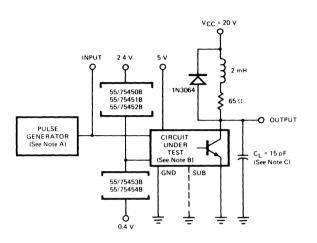
TEST CIRCUIT

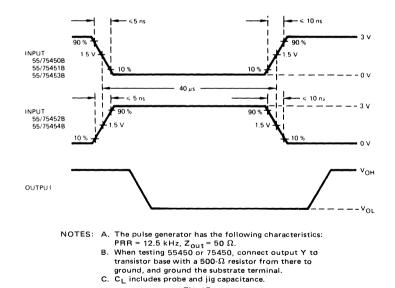
VOLTAGE WAVEFORMS

NOTES:

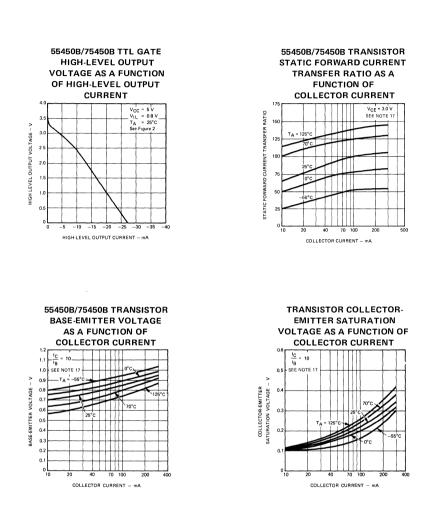
- A. The pulse generator has the following characters : PRR = 1 MHz, $Z_{out}\approx 500~\Omega.$
- B. When testing 55450B/75450B, connect output Y to transistor base and ground the substrate terminal.

C. CL includes probe and jig capacitance.


Fig. 14


CHARACTERISTICS MEASUREMENT INFORMATION AC CHARACTERISTICS

LATCH-UP TEST OF COMPLETE DRIVERS


TEST CIRCUIT

VOLTAGE WAVEFORMS

TYPICAL PERFORMANCE CURVES FOR 75450B SERIES

NOTE 17: These parameters must be measured using pulse techniques. t_w = 300 μ s, duty cycle \leq 2%.

- -

55/75460 • 55/75461 • 55/75462 55/75463 • 55/75464 DUAL HIGH VOLTAGE HIGH CURRENT PERIPHERAL DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The 55/75460 Peripheral Driver Series converts TTL and DTL logic levels to HIGH voltage, HIGH current levels. The 55/75460 Series is directly interchangeable with the 55/75450 Series and affords higher breakdown at the expense of speed. The 55/75460 Series features two 54/74 TTL input gates and two HIGH voltage HIGH current npn uncommitted transistors.

The 55/75461, 55/75462, 55/75463 and 55/75464 feature two standard 54/74 TTL input gates in AND, NAND, OR and NOR configurations, respectively. The logic gates are internally connected to the bases of the npn transistors.

- NO OUTPUT LATCH-UP AT 30 V
- MEDIUM SWITCHING SPEED
- 300 mA OUTPUT CURRENT CAPABILITY
- TTL OR DTL INPUT COMPATIBILITY
- INPUT CLAMP DIODES
- +5 V SUPPLY VOLTAGE

TEST TABLE 1 - Operating Temperature Range and Supply Voltage Range

	55460 Series	75460 Series
Temperature, T _A	-55°C to +125°C	0° C to 70° C
Supply Voltage, V _{CC}	+4.5 V to +5.5 V	+4.75 V to +5.25 V

ABSOLUTE MAXIMUM RATINGS

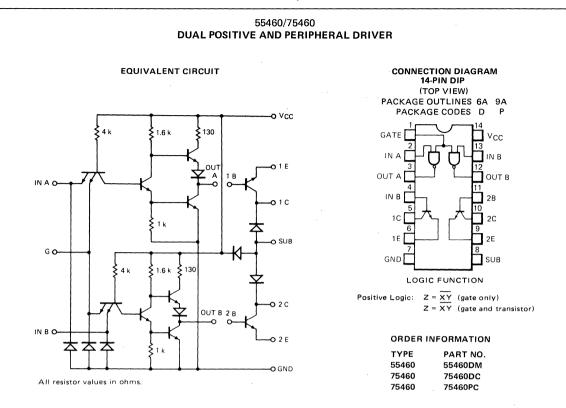
	55460	75460	55461 55462 55463 55464	75461 75462 75463 75464
Supply Voltage, V _{CC} (Note 1)	7 V	7 V	7 V	7 V
Input Voltage (Note 1)	5.5 V	5.5 V	5.5 V	5.5 V
Interemitter Voltage (Note 2)	5.5 V	5.5 V	5.5 V	5.5 V
V _{CC} to Substrate Voltage (Note 6)	40 V	40 V		
Collector to Substrate Voltage (Note 6)	40 V	40 V		
Collector to Base Voltage	40 V	40 V		
Collector to Emitter Voltage (Note 3)	40 V	40 V		
Emitter to Base Voltage	5 V	5 V		
Output Voltage (Notes 1 and 4)			35 V	35 V
Continuous Collector Current (Note 5)	300 m A	300 mA		
Continuous Output Current (Note 5)			300 mA	300 mA
Continuous Total Power Dissipation (Note 7)	800 mW	800 mW	800 mW	800 mW
Operating Ambient Temperature Range Storage Temperature Range	−55°C to +125°C −65°C to +150°C	0°C to 70°C -65°C to +150°C	-55°C to +125°C -65°C to +150°C	0°C to 70°C –65°C to +150°C
Pin Temperature				
Molded DIP (Soldering, 10 s)		260° C	260° C	260°C
Hermetic DIP (Soldering, 30 s)	300° C	300° C	300° C	300° C

NOTES:

1. Voltage values are with respect to network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter input transistor.

3. This value applies when the base-emitter resistance (R_BE) is equal to or less than 500 $\Omega.$


4. This is the maximum voltage which should be applied to any output when it is in the off state.

5. Both halves of these dual curcuits may conduct rated current simultaneously.

6. For the 55460 and 75460 only, the substrate (Pin 8), must always be at the most negative device voltage for proper operation.

7. Above 70°C ambient temperature, derate linearly at 8.3 mW/°C for hermetic DIP,

For plastic Mini DIP and hermetic Mini DIP derate above 30°C at 6.7 mW/°C.

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

SYMBOL	CHARACTERISTICS		TEST FIGURE	CONDITIONS		MIN	TYP (Note 8)	мах	UNITS
VIH	Input HIGH Voltage		1			2			V
VIL	Input LOW Voltage		2					0.8	V
V _{CD}	Input Clamp Diode Voltage		3	$V_{CC} = MIN, I_{I} = -12 mA$			-1.2	-1.5	V
v _{он}	Output HIGH Voltage	, k. a. , and a star of the constraint of the star of	2	V _{CC} = MIN, V _{IL} = 0.8 V I _{OH} = -400 μA		2.4	3.3		v
	Output LOW Voltage	•	1	V _{CC} = MIN, V _{IH} = 2 V	55460	1	0.25	0.5	v
V _{OL}				I _{OL} = 16 mA	75460		0.25	0.4	ľ
1.	Input Current at Maximum	Input A, B	4	V _{CC} = MAX, V _I = 5.5 V				1	mA
'I	Input Voltage	Gate	-	VCC - MAX, VI - 5.5 V				2	
	Input HIGH Current	Input A, B	4	V _{CC} = MAX, V _I = 2.4 V				40	μA
ЧН		Gate						80	<i>µ</i> , , ,
۱ _{IL}	Input LOW Current	Input A, B	3	V _{CC} = MAX, V _I = 0.4 V				-1.6	mA
· IL		Gate						-3.2	
los	Short Circuit Output Current	t (Note 9)	5	V _{CC} = MAX		-18	-35	-55	mA
^I ссн	Supply Current, Output HIGH Supply Current, Output LOW		6	V _{CC} = MAX, V _I = 0 V			2.8	4	mA
ICCL				V _{CC} = MAX, V _I = 5 V			7	11	

8. All typical values at V_{CC} = 5 V, T_A = 25°C. 9. Not more than one output should be shorted at a time.

7-32

55460/75460

ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range, use Test Table 1, pg. 1, unless otherwise indicated

Output	Transistors

SYMBOL	CHARACTERISTICS	CON	CONDITIONS			мах	UNITS
V _{(BR)CBO}	Collector to Base Breakdown Voltage	I _C = 100 μA, I _E	I _C = 100 μA, I _E = 0				V
V _{(BR)CER}	Collector to Emitter Breakdown Voltage	I _C = 100 μA, R _E	I _C = 100 μA, R _{BE} = 500 Ω				v
V _{(BR)EBO}	Emitter to Base Breakdown Voltage	I _E = 100 μA, I _C	I _E = 100 μA, I _C = 0				V
		V _{CF} = 3 V, I _C =	100 mA, T _A = 25°C	25			
h _{FE}		V _{CE} = 3 V, I _C =	300 mA, T _A = 25°C	30			
	Static Forward Current Transfer Ratio	V _{CE} = 3 V,	55460 T _A =-55°C	10			
	(Note 11)	I _C = 100 mA	75460 T _A =0°C	20			
		V _{CE} = 3 V,	55460 T _A =-55°C	15			
		I _C = 300 mA	75460 T _A =0°C	25			
		I _B = 10 mA,	55460		0.85	1.2	V
V _{BE(sat)}	Base to Emitter Voltage (Note 11)	I _C = 100 mA	75460		0.85	1.0	V
(I _B = 30 mA,	55460		1.0	1.4	V
		I _C = 300 mA	75460		1.0	1.2	V
		I _B = 10 mA,	55460		0.25	0.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 100 mA	75460		0.25	0.4	V
	(Note 11)	I _B = 30 mA,	55460		0.45	0.8	V
		I _C = 300 mA	75460		0.45	0.7	V

NOTES:

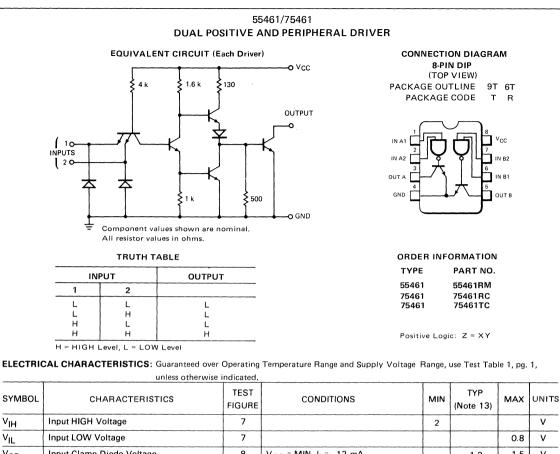
10. All typical values are at V_{CC} = 5 V, T_A = 25°C. 11. These parameters must be measured using the pulse techniques. t_w = 300 μ s, duty cycle \leq 2%.

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

TTL Gates

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	12	C ₁ = 15 pF, R ₁ = 400 Ω		22		ns
^t PHL	Propagation Delay Time, Output HIGH to LOW		CL = 15 pr, NL = 400 32		8		ns

Output Transistors


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS (Note 12)	MIN	ТҮР	мах	UNITS
^t d	Delay Time		I _C = 200 mA, V _{BE(off)} = -1 V		10		ns
t _r	Rise Time	13	I _{B(1)} = 20 mA, I _{B(2)} = -40 mA		16		ns
t _s	Storage Time	1	C _L = 15 pF, R _L = 50 Ω	1	23		ns
t _f	Fall Time				14		ns

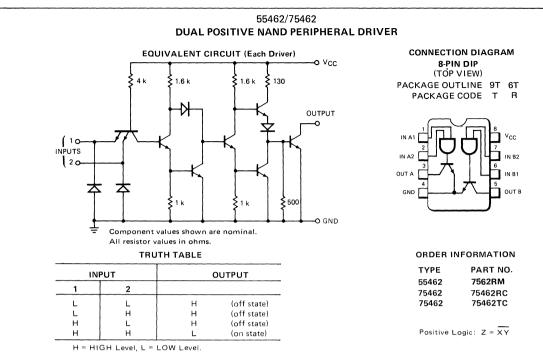
Gates and Transistors Combined

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH				45	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	14	I _C = 200 mA, C _L = 15 pF,		35	50	ns
^t TLH	Transition Time, Output LOW to HIGH	14	R _L = 50 Ω		10	20	ns
ţнг	Transition Time, Output HIGH to LOW				10	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V _S = 30 V, I _C ≈ 300 mA R _{BE} = 500 Ω	V _S -10			mV

NOTE 12. Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

7-33

IL.								
V _{CD}	Input Clamp Diode Voltage	8	$V_{CC} = MIN$, $I_I = -12 \text{ mA}$			-1.2	-1.5	V
	Output HIGH Current	7	V _{CC} = MIN, V _{OH} = 35 V	55461			300	
ЮН	Output high Current		V _{IH} = 2 V	75461			100	μA
		7	V _{CC} = MIN, V _{IL} = 0.8 V	55461		.16	0.5	
VOL	Output LOW Voltage		I _{OL} = 100 mA	75461		.16	0.4	v
*OL	Output LOW Voltage		V_{CC} = MIN, V_{IL} = 0.8 V	55461		.35	0.8	
			I _{OL} = 300 mA	75461		.35	0.7	
4	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
ін	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V	V _{CC} = MAX, V _I = 2.4 V			40	μA
۱ _{IL}	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
^I ссн	Supply Current, Output HIGH	10	V _{CC} = MAX, V _I = 5 V			8.0	11	mA
ICCL	Supply Current Output LOW		V _{CC} = MAX, V _I = 0 V			61	76	mA

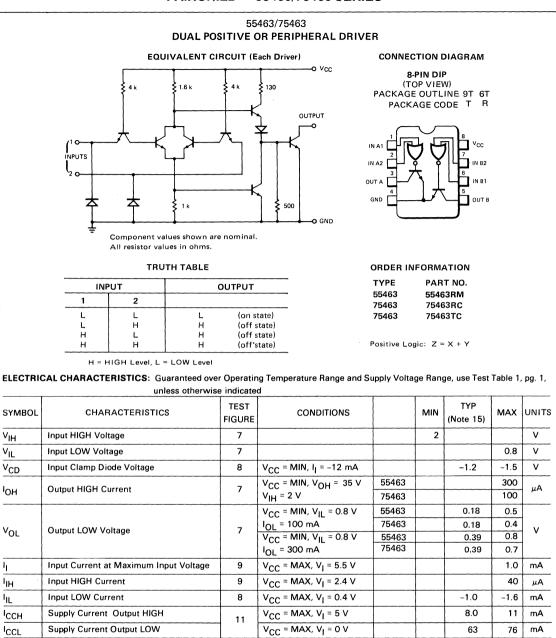

NOTE 13. All typical values are at V_{CC} = 5 V, T_A = 25°C.

VIH

VII

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

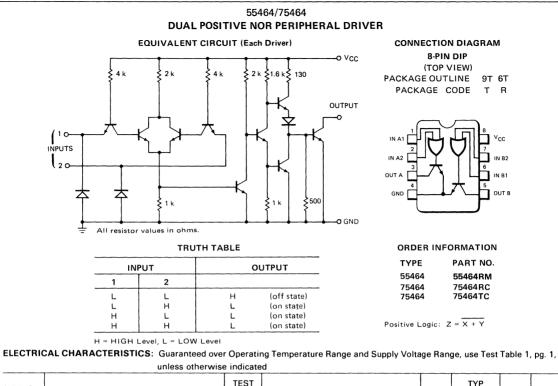
SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	TYP	МАХ	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH		$I_{O} \approx 200$ mA, C_{L} = 15 pF, R _L = 50 Ω		45	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				30	40	ns
^t TLH	Transition Time, Output LOW to HIGH	14			8	20	ns
^t THL	Transition Time, Output HIGH to LOW				10	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 30 V, I _O \approx 300 mA	V _S -10			mV


ELECTRICAL CHARACTERISTICS: Guaranteed over Operating Temperature Range and Supply Voltage Range use Test Table 1, pg. 1,

	unless otherwise	indicated						.	
SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 14)	мах	UNITS	
VIH	Input HIGH Voltage	7			2			V	
VIL	Input LOW Voltage	7					0.8	V	
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA			-1.2	-1.5	V	
1		7	V _{CC} = MIN, V _{OH} = 35 V	55462			300		
юн	OH Output HIGH Current		V _{IL} = 0.8 V	75462			100	μA	
			V _{CC} = MIN, V _{IH} = 2 V	55462		.16	0.5		
M.	Output LOW Voltage	7	I _{OL} = 100 mA	75462		.16	0.4		
VOL	Culput LOW Voltage		V _{CC} = MIN, V _{IH} = 2 V	55462		.35	0.8] *	
			I _{OL} = 300 mA	75462		.35	0.7		
4	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA	
Чн	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA	
IIL III	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA	
ссн	Supply Current, Output HIGH	10	V _{CC} = MAX, V _I = 0 V			13	17	mA	
ICCL	Supply Current Output LOW		V _{CC} = MAX, V _I = 5 V			65	76	mA	

NOTE 14. All typical values are at V_{CC} = 5 V, T_A = 25°C.

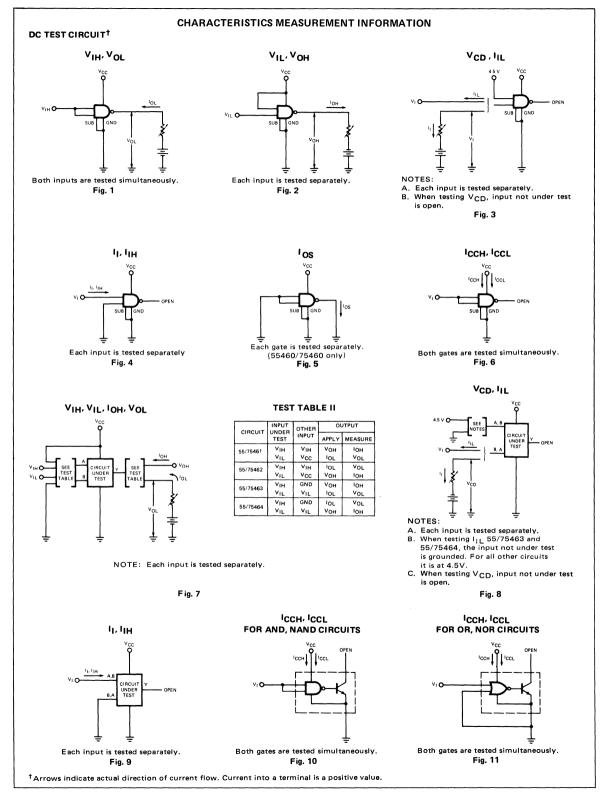
AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_{A} = 25^{\circ}C$


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	14	$I_{O} \approx 200 \text{ mA}, \text{C}_{L} = 15 \text{ pF},$ R _L = 50 Ω		50	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				40	50	ns
t _{TLH}	Transition Time, Output LOW to HIGH				12	25	ns
^t THL	Transition Time, Output HIGH to LOW				15	20	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 30 V, I_{O} \approx 300 mA	V _S -10			mV

NOTE 15. All typical values are at V_CC = 5 V, T_A = 25°C.

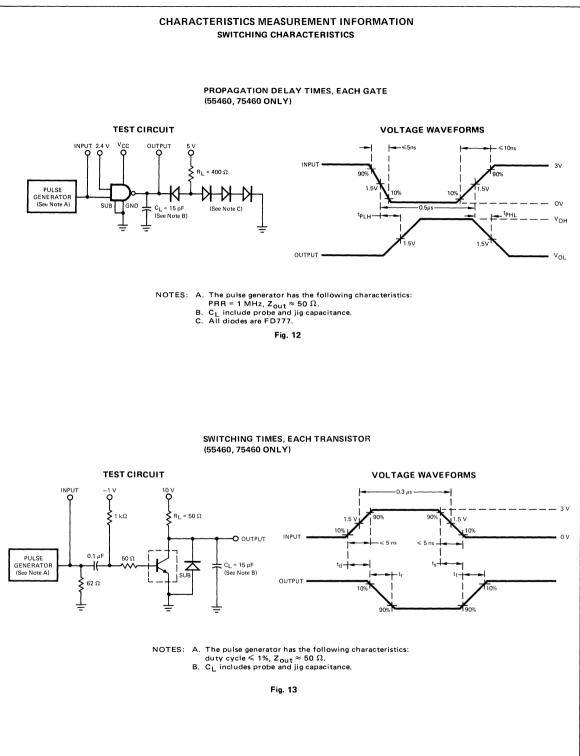
AC CHARACTERISTICS: $V_{CC} = 5 V, T_A = 25^{\circ}C$

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH		$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$ R _L = 50 Ω		45	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				30	40	ns
^t TLH	Transition Time, Output LOW to HIGH	14			8	25	ns
^t THL	Transition Time, Output HIGH to LOW	1			10	25	ns
v _{он}	HIGH Level Output Voltage After Switching	15	V_{S} = 30 V, I _O \approx 300 mA	V _S -10			mV

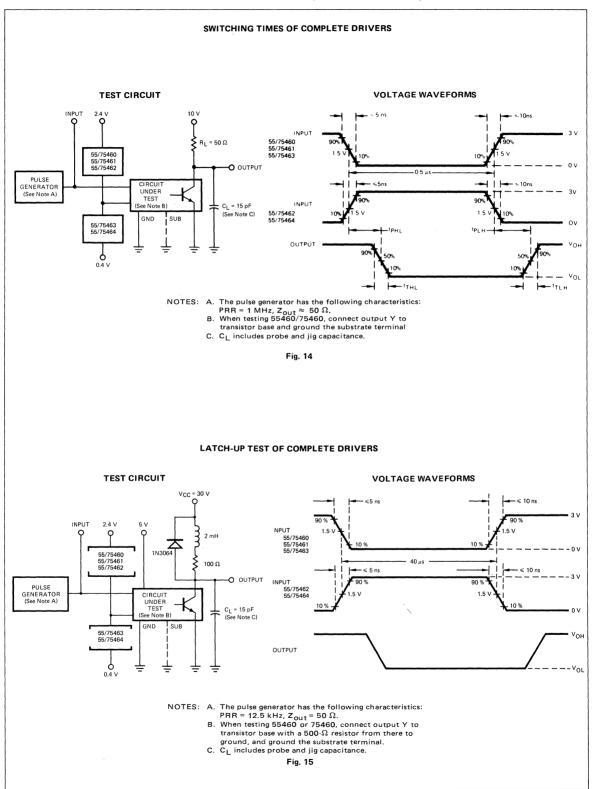


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 16)	мах	UNITS
VIH	Input HIGH Voltage	7			2			V
VIL	Input LOW Voltage	7					0.8	V
V _{CD}	Input Clamp Diode Voltage	8	V _{CC} = MIN, I _I = -12 mA				-1.5	V
	Output HIGH Current	7	V _{CC} = MIN, V _{OH} = 35 V	55464			300	μA
юн			V _{IL} = 0.8 V	75464			100	μ <u>π</u>
			V _{CC} = MIN, V _{IH} = 2 V	55464		0,17	0.5	
V _{OL}	Output LOW Voltage	7	I _{OL} = 100 mA V _{CC} = MIN, V _{IH} = 2 V	75464		0.17	0.4	v
*OL	output Low vonage	1	V _{CC} = MIN, V _{IH} = 2 V	55464		0.38	0.8	
			I _{OL} = 300 mA	75464		0.38	0.7	
I _I	Input Current at Maximum Input Voltage	9	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
н	Input HIGH Current	9	V _{CC} = MAX, V _I = 2.4 V				40	μA
IL.	Input LOW Current	8	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
^I ссн	Supply Current, Output HIGH	11	V _{CC} = MAX, V _I = 0 V			14	19	mA
CCL	Supply Current Output LOW	1	V _{CC} = MAX, V _I = 5 V	a filmen i san filmen and senten a		72	85	mA

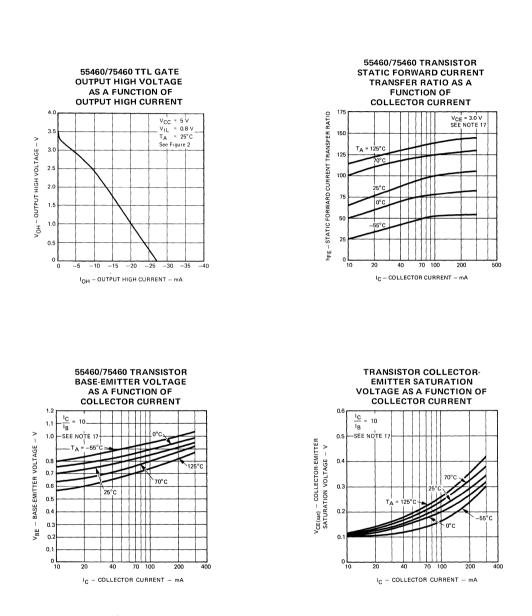
NOTE 16. All typical values are at V_{CC} = 5 V, T_A = 25°C.


AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	14	$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$ R _L = 50 Ω		50	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				40	50	ns
^t TLH	Transition Time, Output LOW to HIGH				12	20	ns
^t THL	Transition Time, Output HIGH to LOW				15	20	ns
V _{OH}	HIGH Level Output Voltage After Switching	15	V_{S} = 30 V, I _O \approx 300 mA	V _S -10			mV



7-38


.

7-39

TYPICAL PERFORMANCE CURVES FOR 55460/75460 SERIES

NOTE 17. These parameters must be measured using pulse techniques. t_W = 300 µs, duty cycle \leq 2%.

55/75471 • 55/75472 • 55/75473 • 55/75474 DUAL HIGH VOLTAGE HIGH CURRENT PERIPHERAL DRIVERS

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 55/75471 series are dual very high voltage interface peripheral drivers with medium switching speeds. These devices are pin-for-pin replacements of the (55/75451A-55/75454A), (55/75461-55/75464) and the (DS3611-DS3614) peripheral drivers.

The 55/75471 peripheral driver series converts TTL and DTL logic levels to high voltage, high current levels.

The 55/75471, 55/75472, 55/75473 and 55/75474 feature two standard TTL input gates in AND, NAND, OR and NOR configurations respectively. The logic gates are internally connected to the bases of the npn transistors.

The 55/75471 series offers flexibility in designing very high voltage logic buffers, power drivers, lamp drivers, line drivers and relay drivers.

- HIGH VOLTAGE OUTPUT (80 V)
- NO LATCH-UP AT 55 V
- HIGH SPEED SWITCHING
- HIGH OUTPUT CURRENT CAPABILITY
- TTL OR DTL INPUT COMPATIBILITY
- INPUT CLAMP DIODES
- +5 V SUPPLY VOLTAGE

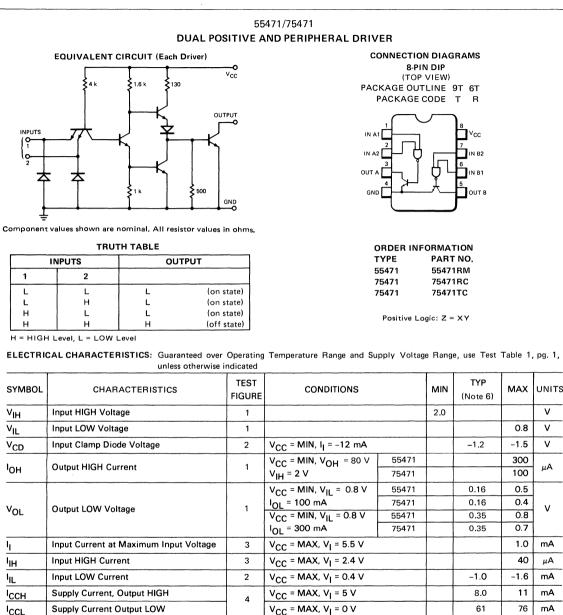
TEST TABLE 1 - Operating Temperature Range and Supply Voltage Range

	55471 Series	75471 Series
Temperature, T _A	–55°C to +125°C	0° C to 70° C
Supply Voltage, V _{CC}	+4.5 V to +5.5 V	+4.75 V to +5.25 V

ABSOLUTE MAXIMUM RATINGS

	55471 55472 55473 55474	75471 74572 75473 75474
Supply Voltage, V _{CC} (See Note 1)	7.0 V	7.0 V
Input Voltage (See Note 1)	5.5 V	5.5 V
Interemitter Voltage (See Note 2)	5.5 V	5.5 V
Output Voltage (See Notes 1 and 3)	80 V	80 V
Continuous Collector Current (See Note 4)		
Continuous Output Current (See Note 4)	300 mA	300 mA
Continuous Total Power Dissipation (See Note 5)	800 mW	800 mW
Operating Free-Air Temperature Range	-55°C to +125°C	0°C to 70°C
Storage Temperature Range	-65° C to +150° C	–65° C to +150° C
Pin Temperature		
Molded DIP (Soldering, 10 s)	260° C	260° C
Hermetic DIP (Soldering, 60 s)	300° C	300° C

NOTES:

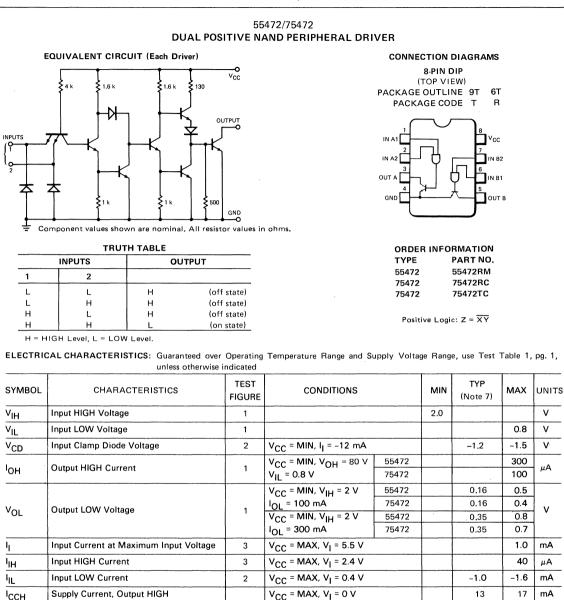

1. Voltage values are with respect to network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter input transistor.

3. This is the maximum voltage which should be applied to any output when it is in the off state.

4. Both halves of these dual circuits may conduct rated current simultaneously.

Above 60°C ambient temperature, derate linearly at 8.3 mW/°C for Hermetic DIP and Molded DIP. For the Molded Mini DIP and Hermetic Mini DIP, derate at 6.7 mW/°C above 30°C.


NOTE 6. All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	6	$I_{O} \approx 200$ mA, C_{L} = 15 pF, R _L = 50 Ω		30	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				25	40	ns
^t TLH	Transition Time, Output LOW to HIGH				8.0	20	ns
^t THL	Transition Time, Output HIGH to LOW				10	20	ns
V _{OH}	HIGH Level Output Voltage After Switching	7	V_{S} = 55 V, I_{O} \approx 300 mA	V _S -18			mV

FAIRCHILD • 55471/75471 SERIES

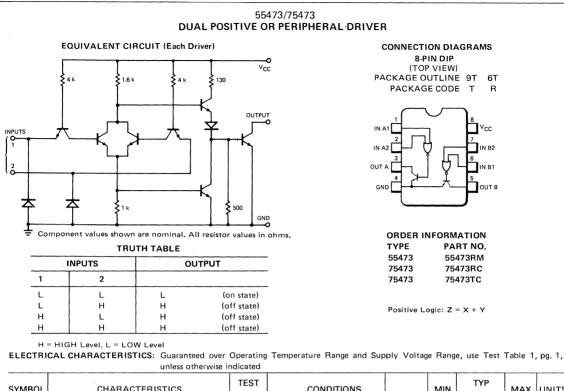
a later of the second s

Supply Current Output LOW NOTE 7. All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

¹ссн

ICCL


SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH		$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$ $\text{R}_{L} = 50 \Omega$		45	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				30	50	ns
^t TLH	Transition Time, Output LOW to HIGH	6			13	25	ns
^t THL	Transition Time, Output HIGH to LOW				10	20	ns
VOH	HIGH Level Output Voltage After Switching	7	$V_{SS} = 55 \text{ V}, I_{O} \approx 300 \text{ mA}$	Vs -18			mV

V_{CC} = MAX, V_I = 5 V

65

76 mΑ

4

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS		MIN	TYP (Note 8)	мах	UNITS
∨ _{IH}	Input HIGH Voltage *	1			2.0			V
V _{IL}	Input LOW Voltage	1					0.8	V
V _{CD}	Input Clamp Diode Voltage	2	V _{CC} = MIN, I _I = -12 mA			-1.2	-1.5	V
1	Output HIGH Current	1	V _{CC} = MIN, V _{OH} = 80 V	55473			300	μA
юн			V _{IH} = 2 V	75473			100	1 #^
	Output LOW Voltage	1	V _{CC} = MIN, V _{IL} = 0.8 V	55473		0.18	0.5	
V.			I _{OL} = 100 mA	75473		0.18	0.4	V
VOL			V _{CC} = MIN, V _{IL} = 0.8 V	55473		0.39	0.8	•
			I _{OL} = 300 mA	75473		0.39	0.7	
lj –	Input Current at Maximum Input Voltage	3	V _{CC} = MAX, V _I = 5.5 V				1.0	mA
Чн	Input HIGH Current	3	V _{CC} = MAX, V _I = 2.4 V				40	μA
l _{IL}	Input LOW Current	2	V _{CC} = MAX, V _I = 0.4 V			-1.0	-1.6	mA
Iссн	Supply Current, Output HIGH	5	V _{CC} = MAX, V _I = 5 V			8.0	11	mA
I _{CCL}	Supply Current Output LOW		V _{CC} = MAX, V _I = 0 V			63	76	mA

NOTE 8. All typical values are at V_{CC} = 5 V, T_A = 25°V

AC CHARACTERISTICS: $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH		$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$ R _L = 50 Ω		30	55	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW	6			25	40	ns
^t TLH	Transition Time, Output LOW to HIGH				8	25	ns
^t THL	Transition Time, Output HIGH to LOW	1			10	25	ns
v _{он}	HIGH Level Output Voltage After Switching	7	V_{S} = 55 V, I _O \approx 300 mA	V _S –18			mV

FAIRCHILD • 55471/75471 SERIES

1	Output HIGH Current		I CL MIN OF		 	Ĺ
юн	output man current		V _{IL} = 0.8 V	75474		ſ
		1	V _{CC} = MIN, V _{IH} = 2 V	55474	0.17	ſ
V _{OL} Output L	Output LOW Voltage		I _{OL} = 100 mA	75474	0.17	ſ
	Culput LOW Voltage		V _{CC} = MIN, V _{IH} = 2 V	55474	0.38	Ī
			I _{OL} = 300 mA	75474	0.38	ſ
4	Input Current at Maximum Input Voltage	3	V _{CC} = MAX, V _I = 5.5 V			ſ
Чн	Input HIGH Current	3	V _{CC} = MAX, V _I = 2.4 V			
IIL	Input LOW Current	2	V _{CC} = MAX, V _I = 0.4 V		-1.0	
Іссн	Supply Current, Output HIGH	5	V _{CC} = MAX, V _I = 0 V		14	Γ

0.5 0.4 v 0.8 0.7 1.0 mΑ

40 μA

-1.6

19 mA

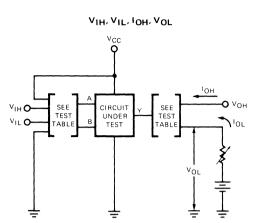
85 mΑ

72

mΑ

Supply Current Output LOW NOTE 9. All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

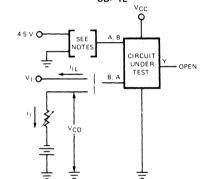
AC CHARACTERISTICS: $V_{CC} = 5 V, T_A = 25^{\circ}C$


ICCL

SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	мах	UNITS
^t PLH	Propagation Delay Time, Output LOW to HIGH	- 6	$I_{O} \approx 200 \text{ mA}, \text{ C}_{L} = 15 \text{ pF},$ R _L = 50 Ω		40	65	ns
^t PHL	Propagation Delay Time, Output HIGH to LOW				30	50	ns
^t TLH	Transition Time, Output LOW to HIGH				8	20	ns
^t THL	Transition Time, Output HIGH to LOW]			10	20	ns
v _{он}	HIGH Level Output Voltage After Switching	7	V_{S} = 55 V, I _O \approx 300 mA	V _S –18			mV

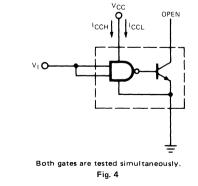
V_{CC} = MAX, V_I = 5 V

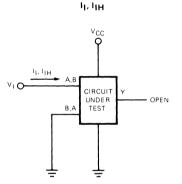
FAIRCHILD · 55471/75471 SERIES


CHARACTERISTICS MEASUREMENT INFORMATION

CIRCUIT	INPUT	OTHER	Ουτρυτ			
CINCOT	TEST	INPUT	APPLY	MEASURE		
55/75471	VIН	VIН	∨он	юн		
00,70471	VIL	Vcc	IOL	VOL		
55/75472	VIH	∨ін	IOL	VOL		
55/75472	VIL	Vcc	∨он	юн		
55/75473	VIН	GND	∨он	юн		
55/75473	VIL	VIL	IOL	VOL		
55/75474	VIН	GND	IOL	VOL		
55/75474	VIL	VIL	∨он	юн		

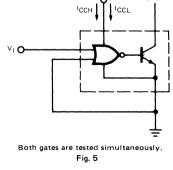
NOTE: Each input is tested separately. Fig. 1



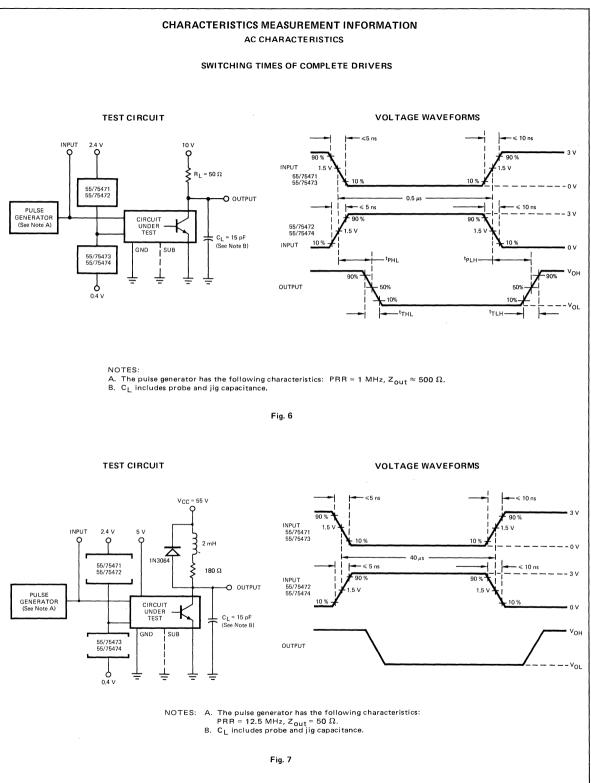


- NOTES: A. Each input is tested separately. B. When testing I_{1L} 55/75473 and 55/75474, the input not under test is grounded. For all other circuits it is at 4.5 V.
 - C. When testing V_{CD}, input not under test is open.

Fig. 2


ICCH, ICCL FOR AND, NAND CIRCUITS

Each input is tested separately. Fig. 3



[†]Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

FAIRCHILD • 55471/75471 SERIES

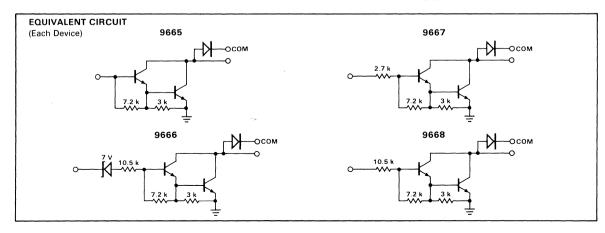
9665 • 9666 • 9667 • 9668

HIGH VOLTAGE, HIGH CURRENT DARLINGTON DRIVERS

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 9665, 9666, 9667 and 9668 are comprised of seven high voltage, high current npn Darlington transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emitter-base resistors for leakage.

The 9665 is a general purpose array which may be used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor to each input.


The 9666 version does away with the need for any external discrete resistors, since each unit has a resistor and a Zener diode in series with the input. The 9666 was specifically designed for direct interface from PMOS logic (operating at supply voltages from 14 to 25 V) to solenoids or relays.

The 9667 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V.

The 9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating from supply voltages of 6 to 15 V.

9665, 9666, 9667 and 9668 offer solutions to a great many interface needs, including solenoids, relays, lamps, small motors and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

- SEVEN HIGH GAIN DARLINGTON TRANSISTOR PAIRS
- HIGH OUTPUT VOLTAGE (V_{CE} = 50 V)
- HIGH OUTPUT CURRENT (IC = 350 mA)
- DTL, TTL, PMOS, CMOS COMPATIBLE
- SUPPRESSION DIODES FOR INDUCTIVE LOADS
- 2 WATT PLASTIC DIP PACKAGE ON COPPER PIN FRAME

CONNECTION DIAGRAM

16-PIN DIP

(TOP VIEW)

PACKAGE OUTLINE 6B, 9B

ORDER INFORMATION

PART NO.

9665DC

9665PC

9666DC

9666PC

9667DC

9667PC

9668DC

9668PC

IN A

IN C

IN D

IN

IN I

GND

TYPE

9665

9665

9666

9666

9667

9667

9668

9668

PACKAGE CODE D. P

OUT A

OUT E

OUT P

OUT G

COMMON

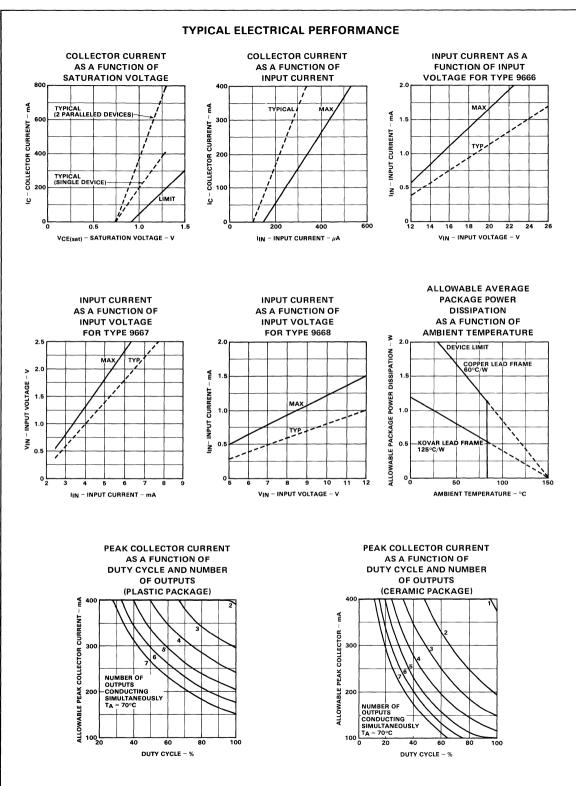
OUT C

FAIRCHILD • 9665 • 9666 • 9667 • 9668

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)	
Output Voltage, V _{CF}	55 V
Input Voltage, VIN	30 V
Emitter-Base Voltage, VEBO	6 V
Continuous Collector Current, IC	500 mA
Continuous Base Current, IB	25 mA
Power Dissipation (6B, Kovar lead frame)	1.0 W
Power Dissipation (9B, Copper lead frame)*	2.0 W
Pin Temperature (Molded DIP, Soldering, 10 s)	260°C
(Hermetic DIP, Soldering, 60 s)	300°C
Ambient Temperature Range (operating), TA	0°C to +85°C
Storage Temperature Range, TS	−65°C to +150°C

*Under normal operating conditions, these units will sustain 350 mA per output with V_{CE(sat)} = 1.6 V at 70°C with a pulse width of 20 ms and a duty cycle of 30%.

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS (Note 1)		ТҮР	МАХ	UNITS
ICEX	Output Leakage Current	1a	$V_{CE} = 50 \text{ V}, \text{ T}_{A} = 70^{\circ}\text{C}$			100	μA
		1b	$V_{CE} = 50 \text{ V}, \text{ T}_{A} = 70^{\circ}\text{C}, \text{ V}_{IN} = 6 \text{ V} (9666)$			500	μA
		1b	$V_{CE} = 50 \text{ V}, \text{ T}_{A} = 70^{\circ}\text{C}, \text{ V}_{IN} = 1 \text{ V} (9668)$			500	μA
V _{CE(sat)}	Collector-Emitter Saturation	2	$I_{\rm C} = 350 \text{ mA}, I_{\rm B} = 500 \mu \text{A}$		1.25	1.6	V
	Voltage	2	$I_{C} = 200 \text{ mA}, I_{B} = 350 \mu\text{A}$		1.1	1.3	V
		2	$I_{C} = 100 \text{ mA}, I_{B} = 250 \mu\text{A}$		0.9	1.1	v
IN(ON)	Input Current	3	V _{IN} = 17 V (9666)		0.85	1.3	mA
		3	V _{IN} = 3.85 V (9667)		0.93	1.35	mA
		3	V _{IN} = 5 V (9668)		0.35	0.5	mA
		3	V _{IN} = 12 V (9668)		1.0	1.45	mA
IN(OFF)	Input Current (Note 2)	4	$I_{C} = 500 \mu A, T_{A} = 70^{\circ} C$	50	65		μΑ
VIN(ON)	Input Voltage (Note 3)	5	$V_{CE} = 2 \text{ V}, \text{ I}_{C} = 300 \text{ mA} (9666)$			13	v
		5	V _{CE} = 2 V, I _C = 200 mA (9667)			2.4	v
		5	V _{CE} = 2 V, I _C = 250 mA (9667)			2.7	v
		5	V _{CE} = 2 V, I _C = 300 mA (9667)			3.0	v
		5	V _{CE} = 2 V, I _C = 125 mA (9668)			5.0	v
		5	$V_{CE} = 2 \text{ V}, \text{ I}_{C} = 200 \text{ mA} (9668)$			6.0	v
		5	V _{CE} = 2 V, I _C = 275 mA (9668)			7.0	v
		5	V _{CE} = 2 V, I _C = 350 mA (9668)			8.0	v
hFE	DC Forward Current Transfer Ratio	2	V _{CE} = 2 V, I _C = 350 mA (9665)	1000			
CIN	Input Capacitance				15	30	pF
^t PLH	Turn-On Delay		0.5 VIN to 0.5 VOUT			1	μs
^t PHL	Turn-Off Delay		0.5 VIN to 0.5 VOUT			1	μs
IR	Clamp Diode L akage Current	6	V _R = 50 V			50	μA
VF	Clamp Diode For ward Voltage	7	I _F = 350 mA		1.7	2.0	V


ELECTRICAL CHARACTERISTICS: $T_{A} = 25^{\circ}C$ (unless otherwise noted)

NOTES:

1. All limits stated apply to the complete Darlington series except as specified for a single device type.

The I_{IN(OFF)} current limit guaranteed against partial turn-on of the output.
 The V_{IN(ON)} voltage limit guarantees a minimum output sink current per the specified test conditions.

.

FAIRCHILD • 9665 • 9666 • 9667 • 9668

TEST CIRCUITS

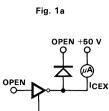
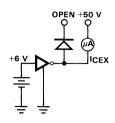
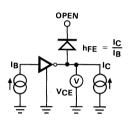




Fig. 1b

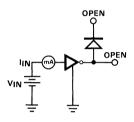


Fig. 5

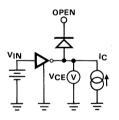


Fig. 7

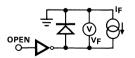


Fig. 4

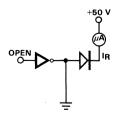
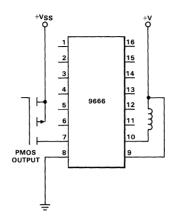
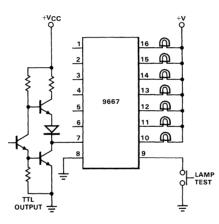



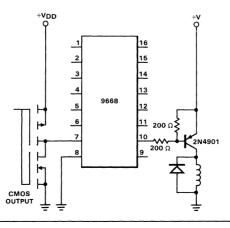
Fig. 6



- -


.

TYPICAL APPLICATIONS



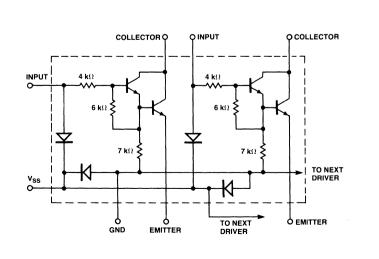
TTL TO LOAD

BUFFER FOR HIGHER CURRENT LOADS

55/75491 • 55/75491A 55/75492 • 55/75492A MOS TO LED SEGMENT AND DIGIT DRIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION—The 55/75491 and 55/75491A, LED Quad Segment Digit Drivers interface MOS signals to common cathode LED displays. High output current capability makes the devices ideal in time multiplex systems using segment address or digit scan method of driving LEDs to minimize the number of drivers required.

The 55/75492 and 55/75492A, Hex LED/Lamp Drivers convert MOS signals to high output currents for LED display digit select or lamp select. The high output current capability makes the devices ideal in time multiplex systems using segment address or digit scan method of driving LEDs to minimize the number of drivers required.


55/75491 • 55/75491A

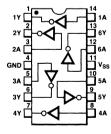
- 50 mA SOURCE OR SINK CAPABILITY
- LOW INPUT CURRENTS FOR MOS COMPATIBILITY
- LOW STANDBY POWER
- FOUR HIGH GAIN DARLINGTON CIRCUITS
- 10 V and 20 V OPERATION

55/75492 • 55/75492A

- 250 mA SINK CAPABILITY
- MOS COMPATIBLE INPUTS
- LOW STANDBY POWER
- SIX HIGH GAIN DARLINGTON CIRCUITS
- 10 V and 20 V

EQUIVALENT CIRCUITS

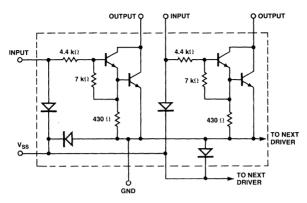
1/2 OF 75491/75491A


14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A 9A PACKAGE CODE D P 55/75491 • 55/75491A

CONNECTION DIAGRAMS

ORDER IN	IFORMATION
TYPE	PART NO.
55491	55491 DM
75491	75491DC
75491	75491PC
55491A	55491ADM
75491A	75491ADC
75491A	75491APC

55/75492 • 55/75492A



ORDER IN	FORMATION
TYPE	PART NO.
55492	55492DM
75492	75492DC
75492	75492PC
55492A	55492ADM
75492	75492ADC
75492A	75492APC

7-54

EQUIVALENT CIRCUIT

1/3 OF 75492/75492A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 55/75491, 55/75492	10 V
55/75491A, 55/75492A	20 V
Input Voltage (Note 1)	−5.0 to V _{SS}
Collector (Output) Voltage (Note 2) 55/75491, 55/75492	10 V
55/75491A, 55/75492A	20 V
Collector (Output) to Input Voltage 55/75491, 55/75492	10 V
55/75491A, 55/75492A	20 V
Emitter to Ground Voltage (V _{IN} ≥ 5.0 V) 55/75491	10 V
55/75491A	20 V
Emitter to Input Voltage 55/75491, 55/75491A	5.0 V
Continuous Collector Current 55/75491, 55/75491A	50 mA
55/75492, 55/75492A	250 mA
Collector Output Current (75492 and 75492A only)	
all collectors	600 mA
Continuous Total Power Dissipation (Note 3)	800 mW
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	-55°C to +125°C
Pin Temperature	
Hermetic DIP (Soldering, 60 s)	300°C
Molded DIP (Soldering, 10 s)	260°C

NOTES:

1. The input is the only device terminal which may be negative with respect to ground.

2. Voltage values are with respect to network ground terminal unless otherwise noted.
 3. Above 60°C ambient temperature, derate linearly at 8.3 mW/°C.

55/75491 • 55/75491A

TRUTH TABLE

INPUT	OUTPUT E	OUTPUT C
L	L	Н
Н	Н	L

55/75492 • 55/75492A TRUTH TABLE

INPUT	OUTPUT
L	Н
Н	L

UNITS v

v

μA

μA

mΑ

μA

mΑ

4.0

8.0

100

1.0

2.0

4.0

FAIRCHILD • 55/75491/A • 55/75492/A

ELECTRI	CAL CHARACTERISTICS: $V_{SS} = 10 \text{ V}$ for 55 $T_A = -55^{\circ}$	55491 • 55491A 491, $V_{SS} = 20$ V for 55491A, C to +125°C unless otherwise specified.				
SYMBOL	CHARACTERISTICS	CONDITION	MIN	TYP	MAX	ſ
		$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 8.5 \text{ V through } 1.0 \text{ k}\Omega \\ I_{\text{OL}} = 50 \text{ mA}, \text{ V}_{\text{E}} = 5.0 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ}\text{C} \end{array}$		0.9	1.2	
V _{CEL}	LOW Level Collector to Emitter Voltage	$\label{eq:VIN} \begin{array}{l} V_{IN} = 8.5 \text{ V through } 1.0 \text{ k}\Omega \\ I_{OL} = 50 \text{ mA}, \text{ V_E} = 5.0 \text{ V} \end{array}$		0.9	2.0	
	Collector HIGH Current	$\label{eq:Vch} \begin{array}{ c c c } \hline V_{CH} = 10 \ V, \ 55491 \\ \hline V_{CH} = 20 \ V, \ 55491A \\ \hline V_{IN} = 0.7 \ V \\ \hline \end{array}$			250	
Існ		$\begin{array}{c} V_{CH} = 10 \text{ V}, 55491 \\ V_{CH} = 20 \text{ V}, 55491 \text{ A} \\ I_{W} = 40 \mu \text{ A} \end{array}$			250	I

V_{IN} = 10 V, 55491

V_{IN} = 20 V, 55491A

 $I_{\rm C} = 0, V_{\rm IN} = 0, V_{\rm E} = 5.0 \, {\rm V}$

75491 • 75491A **ELECTRICAL CHARACTERISTICS:** $V_{SS} = 10$ V for 75491, $V_{SS} = 20$ V for 75491A,

Input Current at Maximum Input Voltage

Reverse Biased Emitter Current

Supply Current

I,

IER

 I_{SS}

$T_A = 0^{\circ}C$ to 70°C unless otherwise	specified.
---	------------

 $I_{IN} = 40 \ \mu A$

 $I_{OL} = 20 \text{ mA}$

SYMBOL	CHARACTERISTICS	CONDITION		MIN	TYP	MAX	UNITS
		$V_{IN} = 8.5 \text{ V}$ through 1.0 k Ω			0.9	1.2	v
V _{CEL}	LOW Level Collector to Emitter Voltage	$I_{OL} = 50 \text{ mA}, V_E = 5.0 \text{ V}, T_A$	= 25°C		0.0	1.2	v
* CEL	Low Level Collector to Emilier Voltage	$V_{IN} = 8.5 \text{ V}$ through 1.0 k Ω			0.9	1.5	v
		$I_{OL} = 50 \text{ mA}, V_E = 5.0 \text{ V}$			0.3		ľ
		V _{CH} = 10 V, 75491	= = 0,				
	$1V_{211} = 20V_{254910}$	_N = 0.7 V			100	μA	
СН	CH Collector HIGH Current	V _{CH} = 10 V, 75491	- 0				
		$V_{OU} = 20 V_{.} / 5491 A$	$V_{\rm E} = 0,$ $I_{\rm IN} = 40 \ \mu {\rm A}$			100	μΑ
I.	Input Current at Maximum Input Voltage	V _{IN} = 10 V, 75491	- 20 mA		2.0	3.3	mA
"	input Current at Maximum input Voltage	V _{IN} = 20 V, 75491A	–––– I _{OL} = 20 mA		4.0	6.6	
I _{ER}	Reverse Biased Emitter Current	$I_{\rm C} = 0, V_{\rm IN} = 0, V_{\rm E} = 5.0 {\rm V}$				100	μA
Iss	Supply Current					1.0	mA

AC CHARACTERISTIC: $V_{SS} = 7.5 \text{ V}, T_A = 25^{\circ}\text{C}.$

SYMBOL	CHARACTERISTICS	CONDITION	MIN	TYP	MAX	UNITS
^t PHL	Propagation Delay Time	$R_{L} = 200 \ \Omega, \ V_{INH} = 4.5 \ V$		20		ns
^t PLH	riopagation beidy rinte	$C_{L} = 15 pF, V_{E} = 0$		100		ns

55492	•	55	49	2A
-------	---	----	----	----

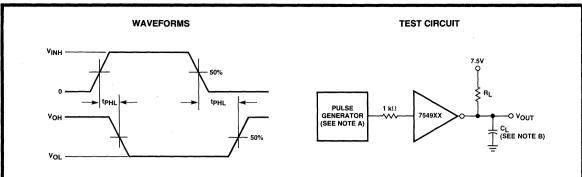
ELECTRICAL CHARACTERISTICS: $V_{SS} = 10$ V for 55492, $V_{SS} = 20$ V for 55492A,

$T_{A} = -$	-55°C to +125°C	unless otherwise spec	ified.
-------------	-----------------	-----------------------	--------

SYMBOL	CHARACTERISTICS	CONDITIC	ONS	MIN	TYP	MAX	UNITS
V	Output I OW/ Voltage	$\label{eq:VIN} \begin{array}{l} V_{IN} = 6.5 \text{ V through } 0.1 \text{ k}\Omega \\ I_{OL} = 250 \text{ mA}, \ T_{A} = 25^{\circ} \text{C} \end{array}$			0.9	1.2	v
V _{OL} Output LOW Voltage		$V_{IN} = 6.5 \text{ V}$ through 1.0 k Ω $I_{OL} = 250 \text{ mA}$			0.9	2.0	v
	V _{OH} = 10 V, 55492	I _{IN} = 40 μA			500	μA	
1	Output HIGH Current	V _{OH} = 20 V, 55492A				500	μη
юн	Calpar Hair Callenc	V _{OH} = 10 V, 55492	$-V_{IN} = 0.5 V$			500	μΑ
		V _{OH} = 20 V, 55492A	$v_{\rm IN} = 0.5 v$			500	μη
1	Input Current at Maximum Input Voltage	V _{IN} = 10 V, 55492	1 _ 00 mA	2.0	2.0	4.0	mA
I Input Current at Maximum Input Voltage	V _{IN} = 20 V, 55492A	l _{OL} = 20 mA		4.0	8.0	1	
I _{SS}	Supply Current					1.0	mA

75492 ● 75492A
LECTRICAL CHARACTERISTICS: $V_{SS} = 10 \text{ V}$ for 75492, $V_{SS} = 20 \text{ V}$ for 75492A,
$T_{\rm e} = 0^{\circ} C$ to $70^{\circ} C$ unless otherwise specified

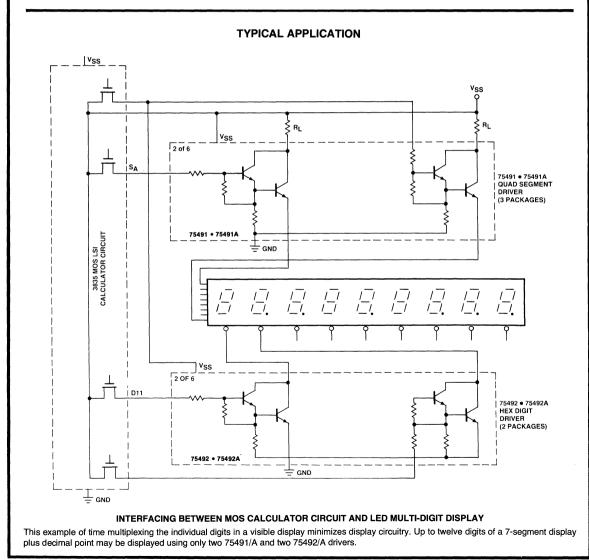
SYMBOL	CHARACTERISTICS	CONDITIO	NS	MIN	TYP	MAX	UNITS
		$V_{IN} = 6.5 \text{ V}$ through 1.0 k $I_{OI} = 250 \text{ mA}, T_A = 25^{\circ}\text{C}$			0.9	1.2	v
V _{OL}	Output LOW Voltage	$V_{IN} = 6.5 \text{ V}$ through 1.0 k $I_{OL} = 250 \text{ mA}$		0.9	1.5	v	
I _{ОН}	Output HIGH Current	V _{OH} = 10 V, 75492 V _{OH} = 20 V, 75492A	-I _{IN} = 40 μA			200	μA
		V _{OH} = 10 V, 75492 V _{OH} = 20 V, 75492A	- V _{IN} = 0.5 V			200	μA
1	Input Current at Maximum Input Voltage	V _{IN} = 10 V, 75492	I _{OL} = 20 mA		2.0	3.3	mA
կ	Input Current at Maximum input voltage	V _{IN} = 20 V, 75492A	10L = 20 mA		4.0	6.6	
I _{SS}	Supply Current			1		1.0	mA


AC CHARACTERISTICS: $V_{SS} = 7.5 \text{ V}, T_A = 25^{\circ}\text{C}.$

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
^t PHL	Propagation Delay Time	$R_{L} = 39 \Omega, V_{IN} = 7.5 V$		30		ns
^t PLH	riopagation Delay Time	$C_L = 15 pF$		300		ns

NOTE: All typical values are at $T_A = 25^{\circ}C$

.


FAIRCHILD • 55/75491/A • 55/75492/A

NOTES:

A. The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$, PRR = 100 kHz, $t_w = 1 \mu s$.

B. CL includes probe and jig capacitance.

.

		ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES		1
		LINEAR INDUSTRY CROSS REFERENCE		2
		QUALITY, RELIABILITY AND HI REL PROCESSING		3
		VOLTAGE COMPARATORS		4
		DATA ACQUISITION		5
		LINE CIRCUITS - DRIVERS, RECEIVERS AND TRANSCEIVERS		6
		PERIPHERAL AND DISPLAY DRIVERS		7
		MEMORY INTERFACE		8
		TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS		9
	/	DATA TRANSMISSION INFORMATION	ľ	10
ν μπογ. 	7	ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	ľ	Ĕ
		FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	K	Ł

MEMORY INTERFACE

MOS/CCD Drivers

9624	Dual TTL-to-MOS Interface Element	. 8-3
9625	Dual TTL-to-MOS Interface Element	. 8-3
9643	Dual AND TTL-to-MOS/CCD Driver	8-10
9644	Dual NAND TTL-to-MOS/CCD Driver	8-10
9645 (3245)	Quad TTL-to-MOS/CCD Driver	8-13
9646 (DS0026)	Dual 5 MHz Two-Phase MOS Clock Driver	8-16

Core-Memory Sense Amplifiers

55/75S20	Dual Schottky ±2.5 mV Sense Amp with Complementary Outputs	8-22
55/75S24	Dual Schottky ±2.5 mV Sense Amp	8-22
55/75S234	Dual Schottky ±2.5 mV Sense Amp	8-22
55/7528	Dual Sense Amp with Preamplifier Test Points	8-41
55/75232	Dual Sense Amp with Open Collector Outputs	8-41
55/75238	Dual Sense Amp with Preamplifier Test Points	8-41

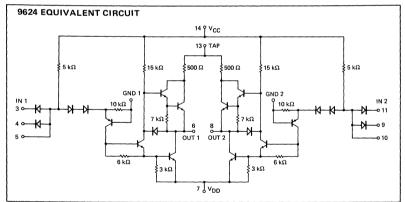
Sink/Source Memory Drivers

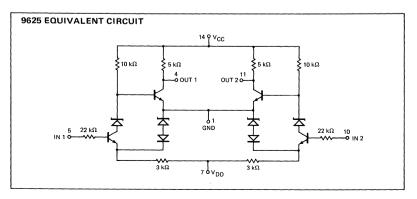
55/75325	Dual Core Memory Drivers	8-59
55/75326	Quad Positive OR Sink Core Memory Drivers	8-71
55/75327	Quad Core Memory Switches	8-71

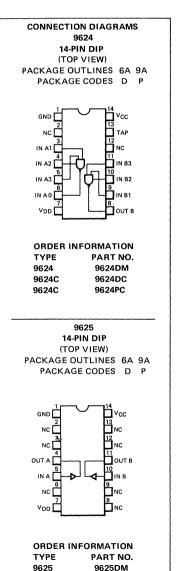
.

9624.9625 DUAL TTL, MOS INTERFACE ELEMENT

FAIRCHILD LINEAR INTEGRATED CIRCUIT


GENERAL DESCRIPTION – The 9624 is a Dual 2-Input TTL Compatible Interface Gate specifically designed to drive MOS. The output swing is adjustable and will allow it to be used as a data driver, clock driver or discrete MOS driver. It has an active output for driving medium capacitive loads.


The 9625 is a dual MOS to TTL level converter. It is designed to convert standard negative MOS logic levels to TTL levels. The 9625 features a high input impedance which allows preservation of the driving MOS logic level.


NOTE: The TTL and MOS devices manufactured by Fairchild Semiconductor are considered as positive TRUE logic (the more positive voltage level is assigned the binary state of "1" or TRUE). Following MIL-STD-806B logic symbol specifications, the 9624 is represented as a NAND gate and the 9625 as a non-inverting buffer. This convention (of assuming MOS as a positive TRUE logic) has not been uniformly accepted by the industry; therefore, it is necessary to note that with negative TRUE MOS logic (the more negative voltage level is assigned the binary state "1" or TRUE), the 9624 acts as an AND gate and the 9625 as an inverter.

- TTL COMPATIBLE INPUTS/OUTPUT
- MOS COMPATIBLE OUTPUT/INPUTS

9625C

9625C

9625DC

9625PC

..........

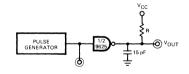
FAIRCHILD • 9624 • 9625

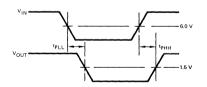
ABSOLUTE MAXIMUM RATINGS	
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{CC} Pin Potential to Ground Pin	to +10 V مر to +10 V
Voltage Applied to Outputs for HIGH Output State (9624)	V _{DD} to +V _{CC} value
Voltage Applied to Outputs for HIGH Output State (9625)	-0.5 V to V _{CC} value
Input Voltage (dc) (9624)	–0.5 V to +5.5 V
Input Voltage (dc) (9625)	V _{CC} to V _{DD}
V D Pin Potential to Ground Pin	-30 V to +0.5 V
V _{DD} Pin Potential to Tap Pin (9624)	–30 V to +0.5 V
V _{TAP}	V _{CC} +0.5 V
Internal Power Dissipation (Note 3)	670 mW
Pin Temperature	
Hermetic DIP (Soldering, 60 s)	300°C
Molded DIP (Soldering, 10 s)	260° C
Operating Temperature Range	
Military (9624 and 9625)	-55°C to +125°C
Commercial (9624C and 9625C)	0°C to +70°C

9624

ELECTRICAL CHARACTERISTICS: V_{CC} = 5.0 V \pm 10%.

					LIMITS	6]		
SYMBOL	MBOL CHARACTERISTICS		-55°C +25°C				+125°C		UNITS	CONDITIONS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX]		
V _{OH1}	Output HIGH Voltage	-1.0		-1.0	-0.5		-1.0		v	$V_{CC} = 4.5 V, V_{DD} = -28 V$ $V_{TAP} = 0 V, I_{OH} = -10 \mu A$	
V _{OH2}	Output HIGH Voltage	+3.5		+3.5	+4.0		+3.5		v	$V_{CC} = 5.5 V, V_{DD} = -20 V$ $V_{TAP} = 5.5 V, Inputs at V_{IL}$ $I_{OH} = -10 \mu A$	
V _{OL}	Output LOW Voltage (Note 1)								v	$V_{CC} = 4.5 \text{ V}, I_{OL} = 10 \text{ mA}, V_{DD} = -15 \text{ to } 28 \text{ V} @ \text{ V}_{IH}, 0 \le \text{ V}_{TAP} \le \text{ V}_{CC} \text{ (Note 2)}$	
v _{iH}	Input HIGH Voltage	2.1		1.9			1.7		v	Guaranteed Input HIGH Threshold for all Inputs	
v _{IL}	Input LOW Voltage		1.4			1.1		0.8	v	Guaranteed Input LOW Threshold for all Inputs	
۱ _F	Input Load Current		-1.40			-1.25		-1.13	mA	$V_{CC} = 5.5 V, V_F = 0.4 V, V_{DD} = -11 \text{ to } -28 V$	
I _R	Input Leakage Current		2.0			2.0		5.0	μA	$V_{CC} = 5.5 V, V_{R} = 4.0 V,$ $V_{DD} = -11 \text{ to } -28 V$	
ICEX	Output Leakage Current					50			μA	$V_{CC} = 5.5 V, V_{TAP} = 0 V, V_{DD} = -28 V, V_{OUT} = 0 V$	
lsc	Output Short Circut Current	-12	-31	-14		-32	-11	-28	mA	$V_{CC} = 4.5 V, V_{TAP} = 0 V, V_{IN} = 0 V, V_{DD} = -11 V, V_{OUT} = -11 V$	
lvcc	V _{CC} Supply Current					6.1			mA	$V_{CC} = 5.5 V, V_{DD} = -15 V$ $V_{TAP} = 0 V$, Inputs Open	
IMAX	Max, Current					10			mA	$V_{CC} = 10 \text{ V}, V_{DD} = -30 \text{ V},$ $V_{TAP} = 0 \text{ V},$ Inputs Open	
t _{PĽH}	Propagation Delay				190	250			ns	V _{CC} = 5.0 V, See Figure 1	
t _{PHL}	Propagation Delay	1			50	100			ns	$V_{DD} = -13 V, V_{TAP} = 0 V$	


8-4


_ _

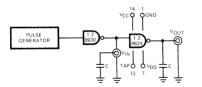
9625

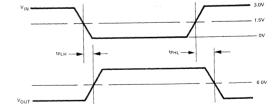
		LIMITS									
SYMBOL	CHARACTERISTICS	-55	5°C		+25°C		+12	5°C	UNITS	CONDITIONS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
v _{он}	Output HIGH Voltage	2.5		2.6			2.5		v	$V_{CC} = 4.5 \text{ V}, \text{ I}_{OH} = -60 \ \mu\text{A}, V_{DD} = -11 \text{ V}, \text{ Inputs at V}_{IH}$	
V _{OL}	Output LOW Voltage		0.5			0.5		0.5	v	$V_{CC} = 5.5 \text{ V}, I_{OL} = 1.5 \text{ mA}$ $V_{CC} = 4.5 \text{ V}, I_{OL} = 1.2 \text{ mA}$ $V_{DD} = -11 \text{ V}, Inputs at V_{IL}$	
v _{IH}	Input HIGH Voltage		-3.0			-3.0		-3.0	v	Guaranteed Input HIGH Threshold for all Inputs	
v _{IL}	Input LOW Voltage	-9.0		-9.0			-9.0		v	Guaranteed Input LOW Threshold for all Inputs	
ŀF	Input Load Current		210			210		210	μA	$V_{CC} = 5.0 V, V_F = -3.0 V, V_{DD} = -13 V$	
I _{CEX}	Output Leakage Current					50			μA	$V_{CC} = V_{CEX} = 4.5 V,$ $V_{DD} = -13 V$	
	Supply Current					4.8			mA	$V_{CC} = 5.5 V, V_{DD} = -15 V, V_{IN} = -10 V$	
Ivccн	Supply Current					2.1			mA	$V_{CC} = 5.5 V, V_{DD} = -15 V, V_{IN} = 0 V$	
	V _{DD} Supply Current					-9.0			mA	$V_{CC} = 5.5 V, V_{DD} = -15 V,$ Input Open or GND	
МАХ	Max, V _{DD} Supply Current					-25			mA	$V_{CC} = 8.0 V, V_{DD} = -20 V, V_{IN} = 0 V$	
^t PLH	Propagation Delay				55	100			ns	$V_{CC} = 5.0 \text{ V}, \text{ V}_{DD} = -13 \text{ V}$	
PHL	Propagation Delay				90	150	1		ns	See Figure 2	

9625 AC TEST CIRCUIT AND WAVEFORMS

Rep Rate = 500 kHz Amplitude = -10 VPulse Width = $1.0 \mu \text{s}$ t_r, t_f = 20 ns

TESTS	CONDITIONS									
^Ն ԲԼԼ, ՆԲНН	Т _А (°С)	V _{CC} (Volts)	V _{DD} (Volts)	R (kΩ)						
	25	5.0	-13	3.75						


Fig. 2


FAIRCHILD • 9624 • 9625

.

		LIMITS									
SYMBOL	CHARACTERISTICS	0	°C		+25°C		+70)°C	UNITS	CONDITIONS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
V _{ОН1}	Output HIGH Voltage	-1.0		-1.0	-0.5		-1.0		v	$V_{CC} = 4.75 V, V_{DD} = -28 V, V_{TAP} = 0 V, I_{OH} = -10 \mu A$	
V _{OH2}	Output HIGH Voltage	+3.25		+3.25	+3.75	i	+3.25		v	$V_{CC} = 5.25 \text{ V}, \text{ V}_{DD} = -20 \text{ V}, V_{TAP} = 5.25 \text{ V}, \text{ Inputs at } V_{IL}, V_{OH} = -10 \ \mu\text{A}$	
V _{OL}	Output LOW Voltage (Note 1)								v		
V _{IH}	Input HIGH Voltage	2.0		1.9			1.8	`\	v	Guaranteed Input HIGH Threshold for all Inputs	
v _{IL}	Input LOW Voltage		1.2			1.1		0.95	v	Guaranteed Input LOW Threshold for all Inputs	
I _F	Input Load Current		-1.32			-1.25		-1.20	mA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{\text{F}} = 0.45 \text{ V}$	
^I R	Input Leakage Current		5.0			5.0		10	μA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{R} = 4.5 \text{ V}$	
CEX	Output Leakage Current					100			μΑ	$V_{CC} = 5.25 V, V_{TAP} = 0 V, V_{DD} = -28 V, V_{OUT} = 0 V$	
lsc	Output Short- Circut Current	-12	-31	-14		-32	-12	-31	mA	$V_{CC} = 4.75 V, V_{TAP} = 0 V,$ $V_{IN} = 0 V, V_{DD} = -11 V,$ $V_{OUT} = -11 V$	
^I vcc	V _{CC} Supply Current					6.1			mA	$V_{CC} = 5.25 V, V_{DD} = -15 V$ $V_{TAP} = 0 V$, inputs Open	
I _{MAX}	Max, Current					10			mA	$V_{CC} = 8.0 \text{ V}, V_{DD} = -30 \text{ V},$ $V_{TAP} = 0 \text{ V},$ Inputs Open	
^t PLH	Propagation Delay		*****		190	250			ns	$V_{CC} = 5.0 V$, See Figure 1	
^t PHL	Propagation Delay				50	100	1		ns	$V_{DD} = -13 V, V_{TAP} = 0 V$	

9624 AC TEST CIRCUIT AND WAVEFORMS

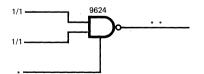
Rep Rate = 500 kHz Amplitude = 3 V Pulse Width = 1 μ s t_r, t_f \leq 10 ns C = 15 pF

TESTS		CONDIT	CONDITIONS				
tPLH, ^t PHL	Т _А (°С)	V _{CC} (Volts)	V _{DD} (Volts)	Tap Voltage			
tPLH,tPHL	25	5.0	-13	0			

8-6

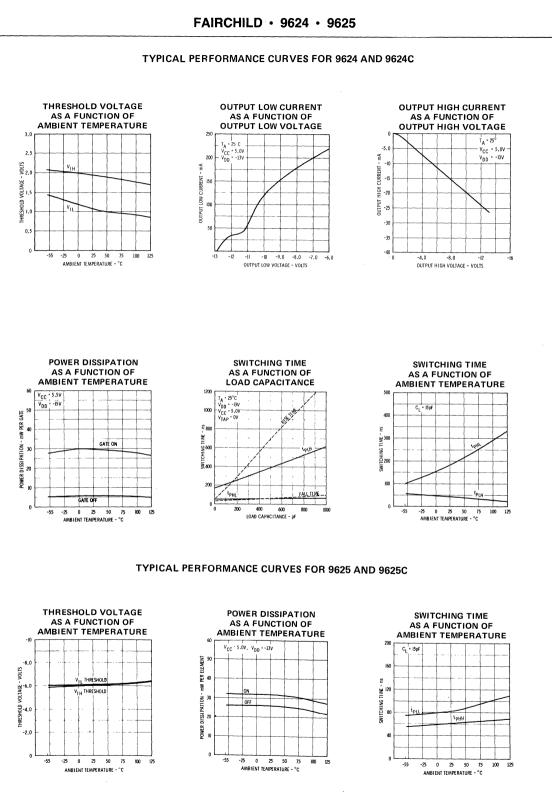
____ -

9625C


					LIMITS	;					
SYMBOL	CHARACTERISTICS	0°C +25°C			+25°C		+70	D°C	UNITS	CONDITIONS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX	1		
v _{он}	Output HIGH Voltage	2.5		2.6			2.5		v	$V_{CC} = 4.75 \text{ V}, \text{ I}_{OH} = -60 \mu\text{A}$ $V_{DD} = -11 \text{ V}, \text{ Inputs at } V_{IH}$	
V _{OL}	Output LOW Voltage		0.5			0.5		0.5	v	$V_{CC} = 5.25 \text{ V}, I_{OL} = 1.52 \text{ mA}$ $V_{CC} = 4.75 \text{ V}, I_{OL} = 1.33 \text{ mA}$ Inputs at V _{IL}	
∨ _{IH}	Input HIGH Voltage		-3.0			-3.0		-3.0	v	Guaranteed Input HIGH Threshold for all Inputs	
∨ _{IL}	Input LOW Voltage	-9.0		-9.0			-9.0		v	Guaranteed Input LOW Threshold for all Inputs	
ŀF	Input Load Current		210			210		210	μA	$V_{CC} = 5.0 \text{ V}, \text{ V}_{F} = -3.0 \text{ V}, \text{ V}_{DD} = -13 \text{ V}$	
ICEX	Output Leakage Current					100			μA	$V_{CC} = V_{CEX} = 4.75 V,$ $V_{DD} = -13 V$	
	Supply Current					4.8			mA	$V_{CC} = 5.25 V, V_{DD} = -15 V$ $V_{IN} = -10 V$	
Ivccн	Supply Current					2.1			mA	$V_{CC} = 5.25 V, V_{DD} = -15 V$ $V_{IN} = 0 V$	
	V _{DD} Supply Current					-9.0			mA	$V_{CC} = 5.5 V$, $V_{DD} = -15 V$, Input Open or GND	
IMAX	Max, V _{DD} Supply Current					-25			mA	$V_{CC} = 8.0 V, V_{DD} = -20 V, V_{IN} = 0 V$	
^t PLH	Propagation Delay				55	100			ns	$V_{CC} = 5.0 \text{ V}, V_{DD} = -13 \text{ V}$	
t _{PHL}	Propagation Delay				90	150	1		ns	See Figure 2	

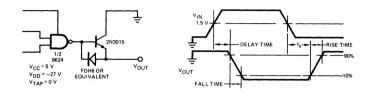
NOTES

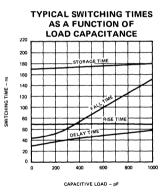
1. Max = V_{DD} +1.0 V over Temperature Range. Typ = V_{DD} +0.2 V over Temperature Range.


2. At no time shall the voltage from V_DD to V_TAP exceed 30 V. See Absolute Maximum Ratings.

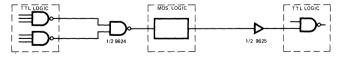
3. For Hermetic DIP rating applies to ambient temperatures up to 70°C, above 70°C derate linearly at 8.3 mW/°C. For Flatpak derate linearly at 7.1 mW/ $^{\circ}$ C above 60 $^{\circ}$ C.

*The extender pin allows the number of inputs to be extended by adding diodes or the DT μ L 933 extender. **Fan out into MOS is limited only by MOS leakage currents.




8-8 ;

.


APPLICATIONS

9624 Clock Driving (using a high capacitance drive scheme)

TYPICAL SYSTEM APPLICATION

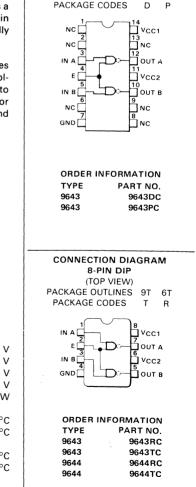
:

9643 • 9644

DUAL TTL TO MOS/CCD DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The 9643 and 9644 are Dual Positive-Logic "AND" and "NAND" TTL-to-MOS Drivers respectively. The 9643 DC/PC is a functional replacement of the SN75322 with one important exception: the two external PNP transistors are no longer needed for operation. The 9643 DC/PC is also a functional replacement for the 75363 with the important exception that the V _{CC3} supply is not needed. The 9644 is a logical inversion of the 9643 and is a functional replacement for the 75361. The pin connections normally used for the external PNP transistors are purposely not internally connected to the 9643 DC/PC.

Both devices have separate driver address inputs with common strobe. Both devices accept standard TTL and DTL input signals and provide high-current and high-voltage output levels suitable for driving MOS/CCD memories. The 9643 may be used to drive the chip-enable clock of the TMS4030 MOS RAM. The 9644 is suitable for driving both clock and address inputs for the TMS4062 and 1103 RAM. The 9643 and 9644 operate from the TTL 5 V supply and the MOS supply.


The 9643 and 9644 are available in 8-pin DIPs for increased board efficiency.

• SATISFIES CCD MEMORY AND DELAY LINE REQUIREMENTS • DUAL POSITIVE-LOGIC TTL-TO-MOS DRIVERS • OPERATES FROM STANDARD BIPOLAR AND MOS SUPPLY VOL • HIGH SPEED SWITCHING • TTL AND DTL COMPATIBLE INPUTS • SEPARATE DRIVER ADDRESS INPUTS WITH COMMON STROBE • V _{OH} AND V _{OL} COMPATIBLE WITH POPULAR MOS RAMS • DOES NOT REQUIRE EXTERNAL PNP TRANSISTORS OR V _{CC3} • V _{OH} MINIMUM IS V _{CC2} – 0.5 V		
ABSOLUTE MAXIMUM RATINGS: Over operating ambien (unless otherwise note	. –	
Supply voltage range of V _{CC1} (see Note 1)	-0.5 V to 7 V	
Supply voltage range of V _{CC2}	-0.5 V to 15 V	1
Input voltage	5.5 V	
Inter-input voltage (see Note 2)	5.5 V	
Continuous total dissipation at (or below) 25°C ambient temperature	1000 mW	
Operating free-air temperature range	-55°C to 125°C	
Storage temperature range Pin Temperature	-65°C to 150°C	
Molded dip (Soldering, 10 s)	260°C	
Hermetic dip (Soldering, 30 s)	300°C	

NOTES:

1. Voltage values are with respect to network ground terminal unless otherwise noted.

2. This rating applies between any two inputs of any one of the gates.

CONNECTION DIAGRAM

14-PIN DIP

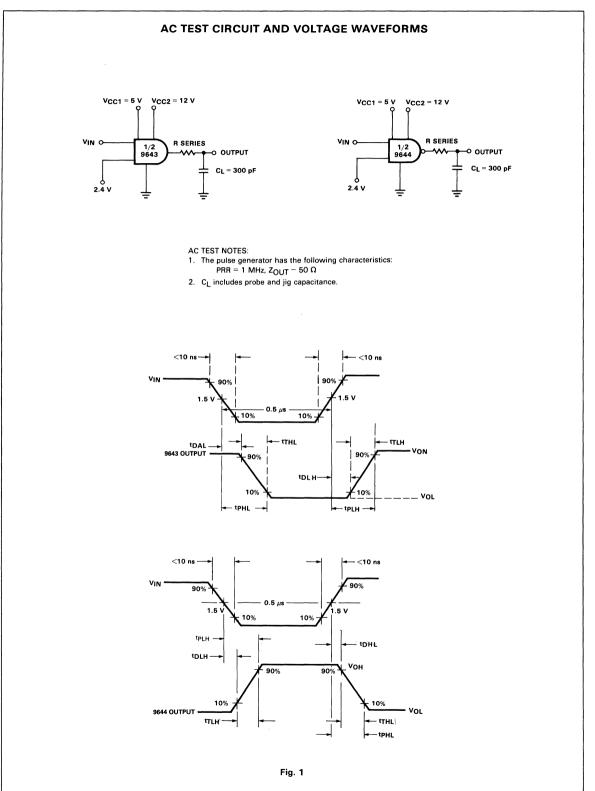
(TOP VIEW)

PACKAGE OUTLINES 6A 9A

FAIRCHILD • 9643 • 9644

	MIN	TYP	MAX	UNITS
Supply Voltage, V _{CC1}	4.75	5.0	5.25	v
Supply Voltage, V _{CC2}	4.75	12	15	v
Operating Temperature, T _A	0		70	°C

ELECTRICAL CHARACTERISTICS: Over recommended ranges of V_{CC1} , V_{CC2} and operating ambient temperature unless otherwise noted.


	411033	s other wise noted.						
SYMBOL	CHARACTERISTICS	CONDITIONS			MIN	TYP (Note 1)	мах	UNITS
VIH	Input HIGH Voltage	1			2.0			V
VIL	Input LOW Voltage				1		0.8	V
V _{OH}	Output HIGH Voltage	I _{OH} = -400 μA			V _{CC2} -0.5	V _{CC2} -0.2		V
VOL	Output LOW Voltage	I _{OL} = 10 mA				0.4	0.5	V
*OL		I _{OL} = 1.0 mA				0.2	0.3	V
IIN	Input Current at Maximum Input Voltage	V _{CC1} = 5.25 V, V _{IN} = 5.25 V	V _{CC2} = 11.4	V			0.1	mA
чн	Input HIGH Current	V _{IN} = 2.4 V	A Inputs				40	
		VIN - 2.4 V	E Inputs				80	μΑ
				9643			0.5	
	Input LOW Current		A Inputs	9644			0.8	
ΊL	input LOW Current	V _{IN} = 0.4 V		9643			-1.0	mA
			E Inputs	9644			-1.6	
	Supply Current from V _{CC1}	V _{CC1} = 5.25 V		9643		15	19	
ICC1(L)	All Outputs LOW	V _{CC2} = 12.6 V	No Load	9644		14	17	mA
	Supply Current from V _{CC2}		V =					
CC2(L)	All Outputs LOW	V _{CC2} = 12.6 V	V _{CC1} = 5.25 V	9643 9644		5.5	9.5	mA
	Supply Current from V _{CC1}	V _{CC1} = 5.5 V	<u> </u>	9643		9.0	13	
ICC1(H)	All Outputs HIGH	V _{CC2} = 13.2 V	No Load	9644		4.0	6.0	mA
	Supply Current from V _{CC2}			0000			<u></u>	
CC2(H)	All Outputs HIGH	V _{CC2} = 12.6 V	V _{CC1} = 5.25 V	9643 9644		5.5	9.5	mA

NOTE 1: All typical values are at V_{CC1} = 5.0 V, V_{CC2} = 12 V, and T_A = 25°C unless otherwise noted.

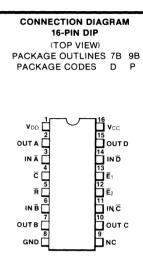
AC CHARACTERISTICS: V_{CC1} = 5.0 V, V_{CC2} = 12 V, T_A = 25°C

SYMBOL	CHARACTERISTICS	CONDITIONS (See	ONDITIONS (See Figure 1)		TYP	MAX	UNITS	
^t DLH	Delay Time	9643 9644	0 - 200 - 5		5.0 3.0	9.0 6.0	17 15	ns ns
^t DHL	Delay Time	9643 9644	C _L = 300 pF		5.0 3.0	9.0 6.0	17 15	ns ns
^t TLH	Rise Time		Berning		6.0	11	17	ns
^t THL	Fall Time		RSERIES = 0		6.0	11	17	ns
^t TLH	Rise Time		Barran	C _L = 300 pF	9.0	14	20	ns
^t THL	Fall Time		R SERIES = 10 Ω		9.0	14	20	ns
^t PLH _A - ^t PLH _B ^t PHL _A - ^t PHL _B	Skew between outputs A and B					0.5		ns

FAIRCHILD • 9643 • 9644

8-12

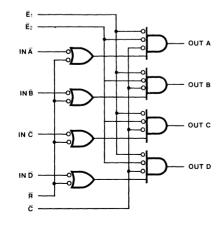
9645/3245 QUAD TTL-TO-MOS/CCD DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT


GENERAL DESCRIPTION — The 9645/3245 is a high-speed driver intended to be used as a clock (high-level) driver for 18 or 22 pin dynamic NMOS RAMs. It also satisfies the non-overlapping 2-phase clock drive requirements for CCD memories like the F464 (64K) RAM.

The circuit is designed to operate on nominal +5 V and +12 V power supplies and contains input and output clamp diodes to minimize line reflections.

The device features two common enable inputs, a refresh select input and a clock control input. Internal gating structure is organized so that all four drivers may be deactivated for standby operation, or single driver may be activated for read/write operation or all four drivers may be activated for refresh operation.

The 9645/3245 is a pin for pin replacement of the Intel 3245 Quad TTL-to-MOS Driver, with substantially reduced DC power dissipation.


- INTERCHANGEABLE WITH INTEL 3245
- FOUR HIGH-SPEED, HIGH-CURRENT DRIVERS
- CONTROL LOGIC OPTIMIZED FOR MOS RAMS
- SATISFIES CCD MEMORY AND DELAY LINE DRIVE REQUIREMENTS
- TTL AND DTL COMPATIBLE INPUTS
- HIGH VOLTAGE SCHOTTKY TECHNOLOGY

ORDER INFORMATION

TYPE 9645/3245 9645/3245 PART NO. 9645PC/3245 9645DC/3245

LOGIC DIAGRAM

	INPUTS								
С	OUTPUT								
Ē	Ē2	Ē1	INPUT	REFRESH]				
н	I	1	1	1	L				
1	н	1	1	1	L				
1		н		1	L				
1	1		н	н	L				
L	L	L	L	I I	н				
L	L	L	1	L	н				

I = IRRELEVANT

FAIRCHILD • 9645/3245

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias	-10°C to +70°C
Storage Temperature	-65°C to +150°C
Supply Voltage, Vcc	-0.5 V to +7.0 V
Supply Voltage, VDD	-0.5 V to +14.0 V
All Input Voltages	-1.0 V to VDD
Outputs For Clock Driver	-1.0 V to V _{DD} +1 V
Operating Temperature Range	0°C to +70°C
Junction Temperature (TJ) Ceramic Package	175° C
Plastic Package	150° C

DC CHARACTERISTICS: $T_A = 0^{\circ}$ C to 70°C, $V_{CC} = 5.0$ V ±5%, $V_{DD} = 12$ V ±5%, unless otherwise specified.

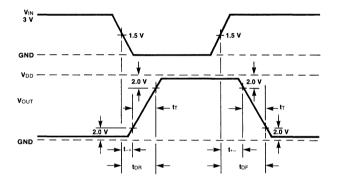
SYMBOL	CHARACTERISTICS	MIN	TYP	МАХ	UNITS	TEST CONDITIONS
IFD	Input Load Current, IN(Ã,B,Ĉ,D)			-0.25	mA	V _F = 0.45 V
IFE	Input Load Current, (R, C, E1, E2)			-1.0	mA	V _F = 0.45 V
IRD	Data Input Leakage Current			10	μA	V _R = 5.0 V
IRE	Enable Input Leakage Current			40	μA	V _R = 5.0 V
Vol	Output LOW Voltage			0.45	v	$I_{OL} = 5 \text{ mA}, V_{IH} = 2 \text{ V}$
VOL		-1.0			v	I _{OL} = -5 mA
Voн	Output HIGH Voltage	V _{DD} -0.50			v	I _{OH} = -1 mA, V _{IL} = 0.8 V
VON				V _{DD} + 1.0	v	I _{OH} = 5 mA
VIL	Input LOW Voltage, All Inputs				v	
Viн	Input HIGH Voltage, All Inputs	2			v	
ICC(H)	Current From Vcc		13	20	mA	V _{CC} = 5.25 V
IDD(H)	Current From VDD		14	20	mA	$V_{DD} = 12.6 V$
PDI(H)	Power Dissipation		248	357	mW	All Outputs HIGH
	Power Per Channel		62	90	mW	
ICC(L)	Current From Vcc		27	35	mA	Vcc = 5.25 V
IDD(L)	Current From VDD		12	15	mA	$V_{DD} = 12.6 V$
PD2(L)	Power Dissipation		296	373	mW	All Outputs LOW
	Power Per Channel		74	94	mW	

FAIRCHILD • 9645/3245

AC CHARACTERISTICS: $T_A = 0^{\circ}$ C to 70°C, $V_{CC} = 5.0 V \pm 5\%$, $V_{DD} = 12 V \pm 5\%$, unless otherwise specified.

SYMBOL	CHARACTERISTICS	MIN (1)	TYP (2,4)	MAX (3)	UNITS	TEST CONDITIONS
t_+	Input to Output Delay	5	11		ns	RSERIES = 0
tDR	Delay Plus Rise Time		18	32	ns	R _{SERIES} = 0
t+	Input to Output Delay	3	7		ns	RSERIES = 0
tDF1	Delay Plus Fall Time		18	32	ns	R _{SERIES} = 0
tт	Output Transition Time	10	13	20	ns	$R_{SERIES} = 20\Omega$
tDR	Delay Plus Rise Time		27	38	ns	$R_{SERIES} = 20\Omega$
tDF2	Delay Plus Fall Time		24	38	ns	$R_{SERIES} = 20\Omega$

NOTES:


(1.) $C_L = 150 \text{ pF}$ (2.) $C_L = 200 \text{ pF}$ (3.) $C_L = 250 \text{ pF}$

VIN O

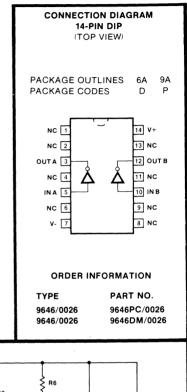
(4.) Typical values are measured at 25°C

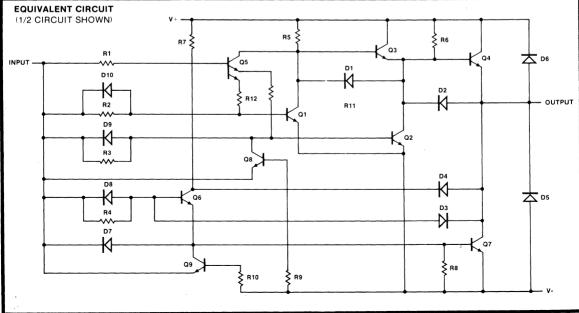
9645/3245

AC TEST CIRCUIT AND WAVEFORMS

C

AC Test Conditions:


Input Pulse Amplitude = 3.0 V Input PUIse Rise and Fall Times = 5 ns Between 1 volt and 2 volts


-0 VOUT

9646/0026 DUAL MOS CLOCK DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION — The 9646/0026 is a low-cost monolithic dual MOS clock driver, designed for high speed driving of highly capacitive loads in a MOS system. The 9646/0026 is intended for applications in which the output pulse width is logically controlled, i.e., the output pulse width is equal to the input pulse width. 9646/0026 is identical to the DS0026.

- FAST TRANSITION TIMES 20 ns WITH 1000 pF LOAD
- HIGH OUTPUT SWING 20 V
- HIGH OUTPUT CURRENT DRIVE ±1.5 A
- HIGH REPETITION RATE 5 TO 10 MHz DEPENDING ON LOAD
- TTL OR DTL COMPATIBLE INPUTS
- LOW POWER CONSUMPTION 2 mW WHEN IN MOS "0" STATE
- +5 V OPERATION FOR N-CHANNEL MOS CAPABILITY

ABSOLUTE MAXIMUM RATINGS

V+ - V- Differential Voltage	22 V
Input Current	100 mA
Input Voltage (V _{IN} -V-)	5.5 V
Peak Output Current	1.5 A
Operating Temperature Range	
9646DM/0026	-55°C to +125°C
9646PC/0026	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Pin Temperature (Soldering, 10 s)	300° C

ELECTRICAL CHARACTERISTICS: (Notes 2 and 3)

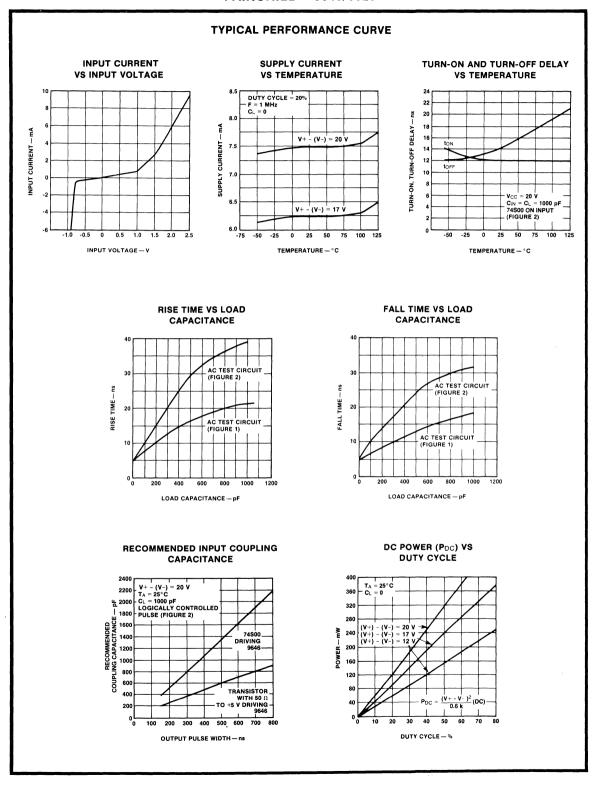
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Viн	Logic "1" Input Voltage	V- = 0 V	2	1.5		v
ίн	Logic "1" Input Current	$V_{IN} - (V-) = 2.4 V$		10	15	mA
VIL	Logic "0" Input Voltage	V- = 0 V		0.6	0.4	v
հե	Logic "0" Input Current	$V_{IN} - (V-) = 0 V$		-3	-10	μA
Vol	Logic "1" Output Voltage	$V_{IN} - (V-) = 2.4 V$		(V-)+0.7	(V-)+1.0	v
Vон	Logic "0" Output Voltage	$V_{IN} - (V-) = 0.4 V, V_{BB} \ge V+ +1.0 V$	V+ -1.0	V+ -0.7		v
	"ON" Supply Current	$(V+) - (V-) = 20 V$, $V_{IN} - (V-) = 2.4 V$ one side on		30	40	mA
ICC(OFF)	"OFF" Supply Current	(V+) - (V-) = 20 V V _{IN} - (V-) = 0 V		10 50	100 500	μΑ μΑ

SWITCHING CHARACTERISTICS: $T_A = 25^{\circ}C$ (Notes 5 and 7)

SYMBOL	CHARACTERISTICS	co	CONDITIONS		TYP	MAX	UNITS
ton	Turn-on Delay	Figure 1 Figure 2		5	7.5 11	12	ns ns
toff	Turn-off Delay	Figure 1 Figure 2			12 13	15	ns ns
	Rise Time	Figure 1 Note 5	C _L = 500 pF C _L = 1000 pF		15 20	18 35	ns ns
tr		Figure 2 Note 5	C _L = 500 pF C _L = 1000 pF		30 36	40 50	ns ns
tr	Fall Time	Figure 1 Note 5	C _L = 500 pF C _L = 1000 pF		12 17	16 25	ns ns
		Figure 2 Note 5	$\begin{array}{c} C_L = 500 \text{ pF} \\ C_L = 1000 \text{ pF} \end{array}$		28 31	35 40	ns ns

NOTES:

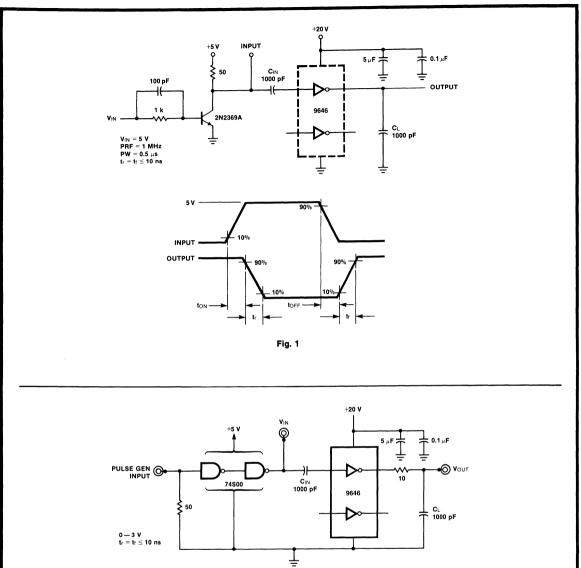
1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


2. These specifications apply for(V+) - (V-) = 10 V to 20 V, C_L = 1000 pF, over the temperature range of -55° C to +125° C for the 9646DM and 0° C to +70° C for the 9646PC.

3. All currents into device pins shown as positive, out of device pins are negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

4. All typical values for the $T_A = 25^{\circ}$ C.

5. Rise and fall time are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic "1" which is voltage fall.


FAIRCHILD • 9646/0026

8-18

FAIRCHILD • 9646/0026

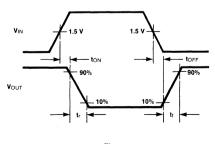


Fig. 2

8-19

8

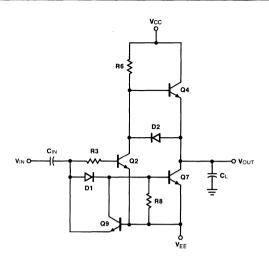


Fig. 3 SIMPLIFIED SCHEMATIC DIAGRAM

APPLICATIONS INFORMATION

OPERATION OF THE 9646/0026

The simplified schematic diagram of 9646/0026, shown in *Figure 3* is useful in explaining the operation of the device. *Figure 3* illustrates that as the input voltage level goes high, diode D1 provides an 0.7 V "dead zone" thus ensuring that Q2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of Q2.

As the input voltage level goes low, the stored charge in Q2 is used advantageously to keep Q2 "on" and Q4 "off" until Q7 is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of C_{in} goes negative with respect to V_{EE} causing Q9 to conduct momentarily thus assuring rapid turn "off" of Q7.

The complete circuit (equivalent circuit on front page) basically creates Darlington devices of transistors Q7, Q4 and Q2 as shown in the simplified circuit of *Figure 3*. Note that when the input goes negative with respect to V_{EE} , diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one V_{BE} voltage drop of the Vcc supply.

SYSTEM CONSIDERATIONS

Overshoot

In most system applications the output waveform of the 9646/0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_S = 2\sqrt{L/C_L}$ where L is the inductance of the line and C_L is the load capacitance. In most cases a series of damping resistor in the range of 10-to-50 Ω will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:

 $t_{THL} \approx t_{TLH} = 2.2 \text{ Rs CL}$ (Rs is the damping resistor).

Crosstalk

The 9646/0026 is sensitive to crosstalk when the output voltage level is high ($V_0 \approx V_{CC}$). With the output in the high voltage level state, Q3 and Q4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q4 turns "on" sufficiently to pull the output back

towards V_{CC}. This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q4 conducts only a few milliamperes. Thus, when noise is coupled, Q4 is already "on" and the line is quickly clamped by Q4. Also note that in the equivalent circuit D6 clamps the output one diode-voltage drop above V_{CC} for positive-going crosstalk.

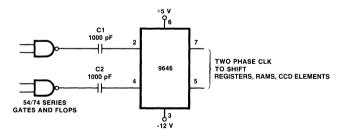
Power Supply Decoupling

The decoupling of V_{CC} and V_{EE} is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a $0.1 \,\mu$ F to $1.0 \,\mu$ F low inductive capacitor should be placed as close to each driver package as the layout will permit.

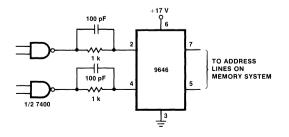
Input Driving

For those applications requiring split power supplies (V_{EE} < GND) ac coupling should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at the input of the 9646/0026 discharges to just above the device's threshold voltage (about 1.5 V). Performance curve shows optimum values for C_{in} versus the desired output pulse width. The value for C_{in} may be roughly predicted by:

$$C_{in} = (2 \times 10^{-3}) (PW_0).$$


For an output pulse width of 500 ns, the optimum value for Cin is:

$$C_{in} = (2 \times 10^{-3}) (500 \times 10^{-9}) = 1000 \text{ pF}.$$


If single supply operation is required ($V_{EE} = GND$), then dc coupling as illustrated in *Figure 4* can be employed. For maximum switching performance, a speed-up capacitor should be employed with dc coupling. Performance curves show typical switching characteristics for various values of input resistance and capacitance.

TYPICAL APPLICATIONS

AC COUPLED MOS CLOCK DRIVER

DC COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE SUPPLY ONLY)

55/75S20 • 55/75S24 • 55/75S234

DUAL SCHOTTKY CORE MEMORY SENSE AMPLIFIERS

GENERAL DESCRIPTION — The 55/75S20 series of Schottky sense amplifiers are designed for use with high-speed core memory systems, where a guaranteed narrow threshold uncertainty of ±2.5 mV is guaranteed.

A unique Schottky circuit design provides inherent stability of the very accurate input threshold levels over a wide range of power supply voltage levels and temperature ranges.

These sense amplifiers detect bipolar millivolt-level differential input signals from the memory and provide the interface circuitry between the memory and the logic section.

The Fairchild 75S20 and 75S24 do not require an external capacitor (C_{ext}) to stabilize the pre-amplifier section of the sense amplifier. No degradation of performance will result if a 100 pF capacitor is connected from pin 1 to ground.

The 55/75S20 circuit may be used to perform the functions of a flip-flop or register which responds to the sense and strobe input conditions.

The 55/75S24 is intended to be used in systems where independent dual channel sensing with separate outputs are required. 55/75S234 is similar to the 55/75S24, but have inverted outputs.

• MAX ±2.5 mV OF THRESHOLD VOLTAGE UNCERTAINTY

- INTERNAL COMPENSATION
- SCHOTTKY TECHNOLOGY
- HIGH SPEED AND FAST RECOVERY TIME
- ADJUSTABLE THRESHOLD VOLTAGE LEVELS
- CHOICE OF OUTPUT CIRCUIT FUNCTION
- TTL OR DTL DRIVE CAPABILITY
- TIME AND AMPLITUDE SIGNAL DISCRIMINATION

ABSOLUTE MAXIMUM RATINGS Over Operating Ambient Temperature Range (unless otherwise noted).

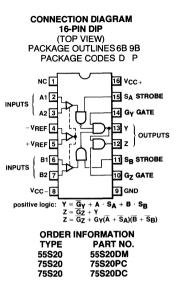
Supply Voltages (see Note 1)				
V _{CC+}				7 V
V _{cc} _				-7 V
Differential Input Voltage, VID or VREF				$\pm 5 V$
Voltage From Any Input to Ground (see Note 2)				5.5 V
Off-State Voltage Applied to Open-Collector Outputs				5.5 V
Storage Temperature Range			−65 °C	to 150 °C
RECOMMENDED OPERATING CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC+} (see Note 1) 75 series	±4.75	±5	±5.25	v
V _{CC+} (see Note 1) 55 series	±4.50	±5	±5.5	v
V _{REF}	15		40	mV
Operating Ambient Temperature Range, 55S20 Series			−55 °C	to 125 °C
75S20 Series			0 °C	C to 70 °C

NOTES:

1. These voltage values are with respect to network ground terminal.

2. Strobe and gate input voltages must be zero or positive with respect to network ground terminal.

55/75S20 DUAL-CHANNEL SENSE AMPLIFIER WITH COMPLEMENTARY OUTPUTS


FUNCTION TABLE

		INF	PUTS			Ουτ	PUTS
Α	в	Gy	Gz	SA	SB	Y	Z
Х	Х	L	Х	Х	Х	н	Gz
н	х	х	х	н	Х	н	Gz
х	н	х	х	х	н	н	Gz
L	L	н	х	х	х	L	н
L	х	н	х	х	L	L	н
х	L	н	х	L	х	L	н
х	х	н	х	L	L	L	н
х	х	х	L	х	х	x	н

DEFINITION OF LOGIC LEVELS

INPUT	н	L	x
A or B†	V _{ID} ≥ V _T max	$V_{ID} \leq V_T^{\cdot} min$	Irrelevant
Any G or S	V _I ≥ V _{IH} min	V _I ≤ V _{IL} max	Irrelevant

†A and B are differential voltages (V_{ID}) between A1 and A2 or B1 and B2, respectively. For these circuits, V_{ID} is considered positive regardless of which terminal of each pair is positive with respect to the other.

ELECTRICAL CHARACTERISTICS: V_{CC+} = 5 V, V_{CC-} = -5V, over recommended operating temperature range, unless otherwise noted.

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	TYP‡	MAX	UNITS
V _T	Differential input threshold voltage (see Note 3)	1	V _{REF} = 15 mV V _{REF} = 40 mV	12.5 37.5	15 40	17.5 42.5	mV
V _{ICF}	Common-mode input firing voltage (see Note 4)	None	$\begin{split} & V_{REF} = 40 \text{ mV}, \ V_{I(S)} = V_{IH} \\ & \textit{Common-mode input pulse:} \\ & t_{r} \leqslant 15 \text{ ns}, \ & t_{f} \leqslant 15 \text{ ns}, \ & t_{w} = 50 \text{ ns} \end{split}$	07.0	±2.5	42.0	v
IIB	Differential-input bias current	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{ID} = 0$		30	75	μΑ
I _{IO}	Differential-input offset current	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{ID} = 0$		0.5		μΑ
V _{IH}	High-level input voltage (strobe and gate inputs)	3		2			v
VIL	Low-level input voltage (strobe and gate inputs)	3				0.8	v
V _{OH}	High-level output voltage	3	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OH} = -400 \ \mu\text{A}$	2.4	4		V
VOL	Low-level output voltage	3	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OL} = 16 \text{ mA}$		0.25	0.4	V
Iн	High-level input current (strobe and gate inputs)	4	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IH} = 2.4 \text{ V}$			40	μΑ
l _{IL}	Low-level input current (strobe and gate inputs)	4	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IL} = 0.4 \text{ V}$		-1	-1.6	mA
I _{OS(Y)}	Short-circuit output current into Y	5	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}$	-3		-5	mA
I _{OS(Z)}	Short-circuit output current into Z	5	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}$	-2.1		-3.5	mA
I _{CC+}	Supply current from V _{CC+}	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25^{\circ}\text{C}$		28	40	mA
I _{CC} _	Supply current from V _{CC} -	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25^{\circ}\text{C}$		-14	-20	mA

‡All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25° C.

NOTES: 3. The differential-input threshold voltage (V_T) is defined as the d-c differential-input voltage (V_{ID}) required to force the output of the sense amplifer to the logic gate threshold voltage level.

4. Common-mode input firing voltage is the minimum common-mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the logic output to switch. The specified common-mode input signal is applied with a strobe-enable pulse present.

55/75S20 DUAL-CHANNEL SENSE AMPLIFIER WITH COMPLEMENTARY OUTPUTS

SWITCHING CHARACTERISTICS: V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25^{\circ}C

	PROPAGATION DELAY	TIMES	TEST		MIN	TYP	MAX	UNITS
SYMBOL	FROM INPUT	TO OUTPUT	FIGURE	TEST CONDITIONS	IVIIIN	ITP	MAX	UNITS
t _{PLH(DY)}						25	40	
	A1-A2 OR B1-B2	Y	15	$C_L =$ 15 pF, $R_L =$ 288 Ω				ns
t _{PHL(DY)}						20		
t _{PLH(DZ)}	A1-A2 OR B1-B2	z	15	$C_1 = 15 pF, R_1 = 288 \Omega$		30		ns
t _{PHL(DZ)}		2	15	$C_{L} = 15 \text{pr}, n_{L} = 200 \Omega$		35	55	
t _{PLH(SY)}						15	30	
	STROBE A OR B	Y	15	$C_L = 15 \text{ pF}, \text{ R}_L = 288 \Omega$				ns
t _{PHL(SY)}						20		
t _{PLH(SZ)}	STROBE A OR B	z	15	$C_1 = 15 pF, R_1 = 288 \Omega$		30		
t _{PHL(SZ)}	SINUDEAOND	2	15	$C_{L} = 15 \text{pr}, \text{n}_{L} = 268 \Omega$		35	55	ns ns
t _{PLH(GY, Y)}	CATE C	Y	16	$C_{l} = 15 pF, R_{l} = 288 \Omega$		15	25	
t _{PHL(GY, Y)}	GATE G _Y	, T	10	$C_{L} = 15 \text{pr}, \text{H}_{L} = 268 \Omega$		10		- ns
t _{PLH(GY, Z)}		16	0 45 -F F 000 0		15		1	
t _{PHL(GY, Z)}	GATE G _Y	Z	10	${\sf C}_{\sf L}$ = 15 pF, ${\sf F}_{\sf L}$ = 288 Ω		20	30	- ns
tPLH(GZ, Z)	CATE C	z	• 17	C = 15 pc = 0.09 O		15		
t _{PHL(GZ, Z)}	GATE G _Z	2	• 17	$C_L = 15 \text{ pF}, R_L = 288 \Omega$		10	20	- ns

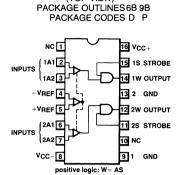
TYPICAL RECOVERY AND CYCLE TIMES: V_{CC+} = 5 V, V_{CC-} = -5 V, T_{\text{A}} = 25 \ ^{\circ}\text{C}

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
	Differential-input overload recovery time	ifferential-input overload recovery time Differential Input Pulse:				
lorD	(see Note 5)	$V_{ID} = 2 V, t_r = t_f = 20 ns$		20		ns
	Common-mode-input overload recovery time	Common-Mode Input Pulse:		20		
lorC	(see Note 6)	$V_{IC} = \pm 2 V$, $t_r = t_f = 20 \text{ ns}$		20		ns
t _{cyc(min)}	Minimum cycle time			200		ns

NOTES: 5. Differential input overload recovery time is the time necessary for the device to recover from the specified differential-input-overload signal prior to the strobe-enable signal.

 Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal.

55/75S24 DUAL SENSE AMPLIFIER


FUNCTION TABLE

INP	JTS	OUTPUT
Α	S	w
н	н	н
L	х	L
х	L	L

DEFINITION OF LOGIC LEVELS

INPUT	Н	L	Х
A†	V _{ID} ≥ V _T max	V _{ID} ≤ V _T min	Irrelevant
S	V _I ≥ V _{IH} min	V _I ≤ V _{IL} max	Irrelevant

 $\uparrow A$ is a differential voltage (V_{ID}) between A1 and A2. For these circuits, V_{ID} is considered positive regardless of which terminal is positive with respect to the other.

CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW)

NC-No internal connection

ORDER	INFORMATION
TYPE	PART NO.
55S24	55S24DM
75S24	75S24DC
75S24	75S24PC

ELECTRICAL CHARACTERISTICS: V_{CC+} = 5 V, V_{CC-} = -5V, over recommended operating temperature range, unless otherwise noted.

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	TYP‡	MAX	UNITS
V _T	Differential-input threshold	8	V _{REF} = 15 mV	12.5	15	17.5	mV
	voltage (see Note 3)	_	$V_{REF} = 40 \text{ mV}$	37.5	40	42.5	
V _{ICF}	Common-mode input firing voltage (see Note 4)		$\begin{split} V_{\text{REF}} &= 40 \text{ mV}, V_{\text{I}(\text{S})} = V_{\text{IH}} \\ \hline \textit{Common-Mode Input Pulse:} \\ t_r &\leq 15 \text{ ns}, t_r &\leq 15 \text{ ns}, t_w = 50 \text{ ns} \end{split}$		±2.5		v
i _{IB}	Differential-input bias current	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{\text{ID}} = 0$		30	75	μA
I _{IO}	Differential-input offset current	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{ID} = 0$		0.5		μA
VIH	High-level input voltage (strobe inputs)	7		2			v
V _{IL}	Low-level input voltage (strobe inputs)	7				0.8	v
V _{OH}	High-level output voltage	7	$V_{CC+} = 4.75$ V, $V_{CC-} = -4.75$ V, $I_{OH} = -400 \mu A$	2.4	4		v
V _{OL}	Low-level output voltage	7	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OL} = 16 \text{ mA}$		0.25	0.4	v
I _{IH}	High-level input current (strobe inputs)	9				40 1	μA mA
I _{IL}	Low-level input current (strobe inputs)	9	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IL} = 0.4 \text{ V}$		-1	-1.6	mA
los	Short-circuit output current	10	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}$	-2.1		-3.5	mA
I _{CC+}	Supply current from V _{CC+}	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25 \text{ °C}$		25	40	mA
I _{CC} _	Supply current from V _{CC} _	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25 ^{\circ}\text{C}$		-15	-20	mA

‡All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25 °C.

NOTES: 3. The differential-input threshold voltage (V_T) is defined as the d-c differential-input voltage (V_{ID}) required to force the output of the sense amplifier to the logic gate threshold voltage level.

4. Common-mode input firing voltage is the minimum common-mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the logic output to switch. The specified common-mode input signal is applied with a strobe-enable pulse present.

FAIRCHILD • 55/75S20 • 55/75S24 • 55/75S234

			55/75	5824				
SWITCHIN	IG CHARACTERISTICS: V	$V_{\rm CC+} = 5 \text{ V}, \text{ V}_{\rm CC-} =$	$-5 V, T_A = 2$	5 °C				
	PROPAGATION DELA	Y TIMES	TEST	TERT CONDITIONS	MAN	TVD		
SYMBOL	FROM INPUT	TO OUTPUT	FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH(D)}	A1-A2	w	18	$C_{I} = 15 p F, R_{I} = 288 \Omega$		25	40	
t _{PHL(D)}	A1-A2	vv	10	UL - 15pr, nL - 20012		20		ns
t _{PLH(S)}	STROBE	w	18	$C_1 = 15 \text{pF}, R_1 = 288 \Omega$		15	30	
t _{PHL(S)}		~~~~	10	0[- 13 pr , 11] - 200 12		20		ns
TYPICAL	RECOVERY AND CYCLE	TIMES: V _{CC+} = 5 \	$V, V_{\rm CC-} = -5$	V, T _A = 25 °C				
SYMBOL	CHARAC	TERISTICS		TEST CONDITIONS	MIN	TYP	MAX	UNITS

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{orD}	Differential-input overload recovery time	Differential Input Pulse:		20		ns
	(see Note 5)	$V_{ID} = 2V, t_r = t_f = 20 \text{ ns}$		20		
t _{orC}	Common-mode-input overload recovery time	Common-Mode Input Pulse:	20		ns	
	(see Note 6)	$V_{IC} = \pm 2 V, t_r = t_f = 20 \text{ ns}$				
t _{cyc(min)}	Minimum cycle time			200		ns

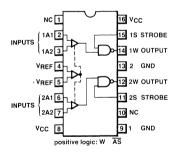
NOTES: 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified differential-input-overload signal prior to the strobe-enable signal.

6. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal.

55S234/75S234

DUAL SENSE AMPLIFIERS

FUNCTION TABLE


Γ	INP	UTS	OUTPUT		
Γ	A S		W		
Γ	н н		L		
	L	х	н		
L	х	L	н		

DEFINITION OF LOGIC LEVELS

INPUT	Н	L	X
A†	V _{ID} ≥ V _T max	V _{ID} ≤ V _T min	Irrelevant
S	V _I ≥ V _{IH} min	V _I ≤ V _{IL} max	Irrelevant

 $\uparrow A$ is a differential voltage (V_{ID}) between A1 and A2. For these circuits, V_{ID} is considered positive regardless of which terminal is positive with respect to the other.

CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6B 9B PACKAGE CODES D P

NC-No internal connection

ORDER INFORMATION						
TYPE	PART NO.					
55S234	55S234DM					
75\$234	75S234PC					
75S234	75S234DC					

55S234/75S234

SYMBOL	CHARACTERISTICS	TEST CIRCUIT	TEST CONDITIONS	MIN	TYP‡	MAX	UNITS
V _T	Differential-input threshold	11	V _{REF} = 15 mV	12.5	15	17.5	mV
	voltage (see Note 3)		V _{REF} = 40 mV	37.5	40	42.5	1
	Common-mode input firing		$V_{REF} = 40 \text{ mV}, V_{I(S)} = V_{IH}$				
V _{ICF}	voltage (see Note 4)		Common-Mode Input Pulse:		±2.5		v
			$t_r \le 15 \text{ ns}, t_f \le 15 \text{ ns}, t_w = 50 \text{ ns}$				
I _{IB}	Differential-input bias current	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{ID} = 0$		30	75	μΑ
l _{io}	Differential-input offset	2	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{ID} = 0$		0.5		μΑ
-10	current	2	$v_{\rm CC+} = 5.25 v, v_{\rm CC-} = -5.25 v, v_{\rm ID} = 0$		0.0		
V _{IH}	High-level input voltage	12		2			v l
	(strobe inputs)			-			'
V _{IL}	Low-level input voltage	12				0.8	v
	(strobe inputs)	12				0.0	· ·
∨ _{он}	High-level output voltage	12	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OH} = -400 \mu\text{A}$	2.4	4		V
V _{OL}	Low-level output voltage	12	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OL} = 16 \text{ mA}$		0.25	0.4	V
н	High-level input current	13	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IH} = 2.4 \text{ V}$	· · · · · ·		40	μA
н	(strobe inputs)	13	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IH} = 5.25 \text{ V}$			1	mA
հո ք	Low-level input current	10				1.0	
	(strobe inputs)	13	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IL} = 0.4 \text{ V}$		-1	- 1.6	mA
os	Short-circuit output current	14	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V$	-2.1		-3.5	mA
CC+	Supply current from V _{CC+}	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25 ^{\circ}\text{C}$		25	40	mA
cc-	Supply current from V _{CC} -	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25 \text{ °C}$		-15	-20	mA

ELECTRICAL CHARACTERISTICS: V_{CC+} = 5 V, V_{CC} = -5V, over recommended operating temperature range, unless otherwise noted.

‡All typical values are at $V_{CC+} = 5 V$, $V_{CC-} = -5 V$, $T_A = 25 °C$.

NOTES: 3. The differential-input threshold voltage (V_T) is defined as the d-c differential-input voltage (V_{ID}) required to force the output of the sense amplifier to the logic gate threshold voltage level.

4. Common-mode input firing voltage is the minimum common-mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the logic output to switch. The specified common-mode input signal is applied with a strobe-enable pulse present.

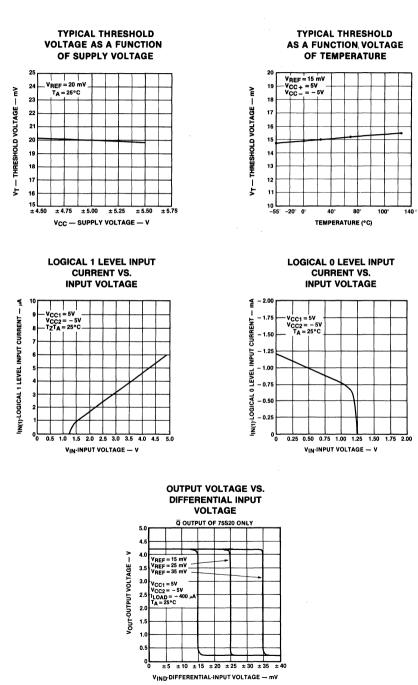
SWITCHING CHARACTERISTICS: V_{CC+} = 5 V, V_{CC-} = -5 V, T_{\text{A}} = 25 \ ^{\circ}\text{C}

PROPAGATION DELAY TIMES			TEST	TEST CONDITIONS		T) (D		
SYMBOL	FROM INPUT	TO OUTPUT	FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH(D)}	A1-A2	w	19	$C_L = 15 pF, R_L = 288 \Omega$		25		
t _{PHL(D)}	71-72	vv	19			25	40	ns
t _{PLH(S)}	STROBE	w	19	$C_L = 15pF, R_L = 288\Omega$	19 $C = 15 pE P = 299 O$	25		
t _{PHL(S)}	STIODE		19			15	30	ns

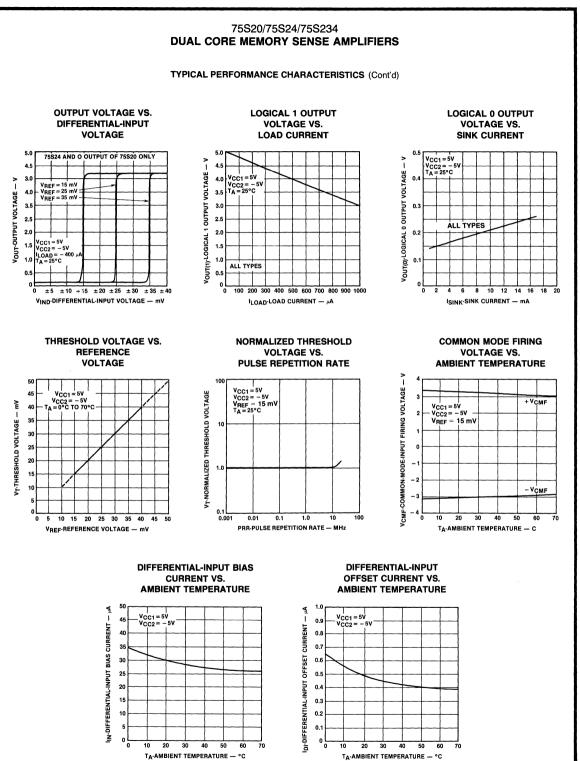
TYPICAL RECOVERY AND CYCLE TIMES: V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25 \ ^{\circ}C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{orD}	Differential-input overload recovery time Differential Input Pulse:					
	(see Note 5)	$V_{ID} = 2 V, t_r = t_f = 20 ns$	20			ns
t _{orC}	Common-mode-input overload recovery time	Common-Mode Input Pulse:	20			
	(see Note 6)	$V_{IC} = \pm 2 V$, $t_r = t_f = 20 ns$				ns
t _{cyc(min)}	Minimum cycle time			200		ns

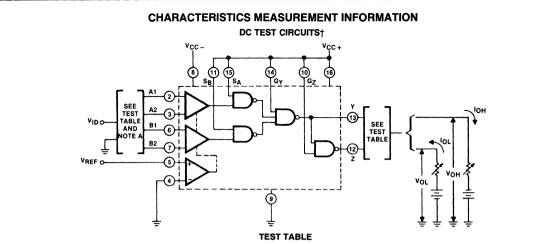
NOTES: 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified differential-input-overload signal prior to the strobe-enable signal.

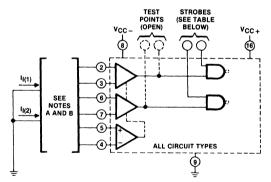

6. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode input overload signal prior to the strobe-enable signal.

take a second of these these as a


FAIRCHILD • 55/75S20 • 55/75S24 • 55/75S234

75S20/75S24/75S234 DUAL CORE MEMORY SENSE AMPLIFIERS


TYPICAL PERFORMANCE CHARACTERISTICS


FAIRCHILD • 55/75S20 • 55/75S24 • 55/75S234

CIRCUIT	INPUTS	V	V	OUTPUT Y			OUTPUT Z		
TYPE	INFUTS	V _{REF}	V _{ID}	Vo	I _{ОН}	I _{OL}	Vo	I _{ОН}	lol
	A1-A2 or B1-B2	15 mV	≤12.5 mV	≤0.4 V		16 mA	≥2.4 V	–400 μA	
55/75S20	A1-A2 or B1-B2	15 mV	≥17.5 mV	≥2.4 V	-400 μA		≪0.4 V		16 mA
55/75320	A1-A2 or B1-B2	40 mV	≤37.5 mV	≤0.4V		16 mA	≥2.4 V	-400 μA	
	A1-A2 or B1-B2	40 mV	≥42.5 mV	≥2.4 V	-400 μA		≤0.4 V		16 mA

NOTE A: Each pair of differential inputs is tested separately with the other pair grounded.

Fig. 1 75S20 VT

NOTES: A. Each preamplifier is tested separately. Inputs not under test are grounded.

B. $I_{|B} = I_{|(1)}$ or $I_{|(2)}$ (limit applies to each); $I_{|O} = I_{1(1)} - I_{|(2)}$, $I_{|(1)}$ and $I_{|(2)}$ are the currents into the two inputs of the pair under test.

PIN CONNECTIONS (OTHER THAN THOSE SHOWN ABOVE)

CIRCUIT TYPES APPLY V _{CC+}		APPLY GND	LEAVE OPEN		
55/75S20 G _Y , G _Z		S _A , S _B 15 11	Y, Z (3) (2)		
55/75S24		1S, 2S, GND 2 15 11 13	1W, 2W (4) (2)		
55/75S234		1S, 2S, GND 2 (5) 1) 13	1W, 2W 1 12		

Fig. 2 I_{IB}, I_{IO}

†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

.....

CHARACTERISTICS MEASUREMENT INFORMATION

DC TEST CIRCUITS† (Cont'd)

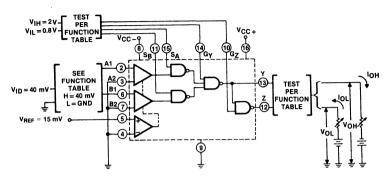
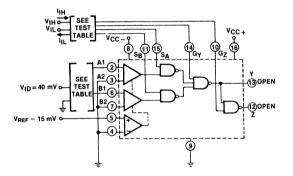
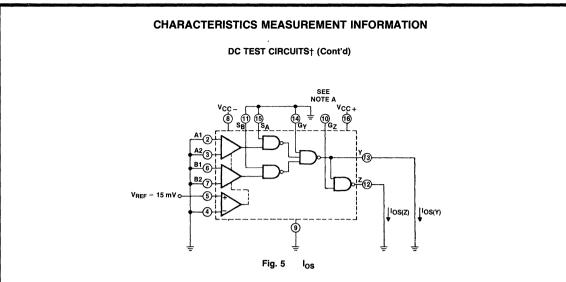



Fig. 3 $V_{IH}, V_{IL}, V_{OH}, V_{OL}$



TEST TABLE

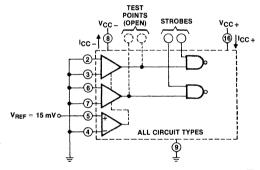
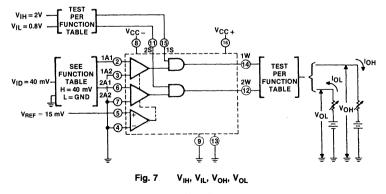

TEST	INPUT	INPUT	STROBE	STROBE	GATE	GATE
IESI	A1	B1	S₄	S _B	G _Y	Gz
I _{IH} at STROBE S _A	GND	GND	VIH	VIL	V _{IL}	V _{IL}
IIH at STROBE SB	GND	GND	V _{IL}	VIH	V _{IL}	V _{IL}
IIH at GATE GY	V _{ID}	V _{ID}	VIH	V _{IH}	V _{IH}	V _{IL}
I _{IH} at GATE G _G	GND	GND	VIL	V _{IL}	VIH	V _{IH}
IIL at STROBE SA	V _{iD}	GND	VIL	V _{IL}	VIL	V _{IL}
IIL at STROBE SB	GND	V _{ID}	VIL	VIL	V _{IL}	VIL
I _{IL} at GATE G _Y	GND	GND	VIL	VIL	VIL	V _{IL}
I _{IL} at GATE G _Z	GND	GND	V _{IL}	V _{IL}	VIL	V _{IL}

Fig. 4 IIH, IIL

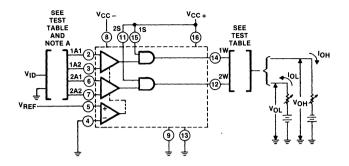
†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.



PIN CONNECTIONS (OTHER THAN THOSE SHOWN ABOVE)

CIRCUIT TYPES	APPLY GND	LEAVE OPEN
55/75S20	G _Y , G _Z , S _A , S _B (14) (10) (15) (11)	Y, Z (3) (2)
55/75S24	1S, 2S, GND 2 15 11 13	1W, 2W (4) (2)
55/75S234	1S, 2S, GND 2 (5) (1) (3)	1W, 2W (4) (2)

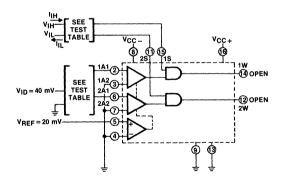
- ---



†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

CHARACTERISTICS MEASUREMENT INFORMATION

DC TEST CIRCUITS† (Cont'd)


TEST TABLE

CIRCUIT	INPUTS			OUTPUT					
TYPE	INPUTS	V _{REF}	V _{ID}	Vo	I _{ОН}	lol			
	A1-A2	15 mV	≤12.5 mV	≪0.4 V		16 mA			
75S24	A1-A2	15 mV	≥17.5 mV	≥2.4 V	-400 μA				
10024	A1-A2	40 mV	≪37.5 mV	≤0.4 V		16 mA			
	A1-A2	40 mV	≥42.5 mV	≥2.4 V	-400 μA				

NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

Fig. 8 75S24, V_T

8

TEST TABLE

TEST	INPUT 1A1	INPUT 2A1	STROBE 1S	STROBE 2S
IIH at STROBE 1S	GND	GND	V _{IH}	VIL
IIH at STROBE 2S	GND	GND	VIL	V _{IH}
IIL at STROBE 1S	V _{ID}	GND	V _{IL}	V _{IL}
IIL at STROBE 2S	GND	V _{ID}	V _{IL}	V _{IL}

Fig. 9 I_{IH}, I_{IL}

†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

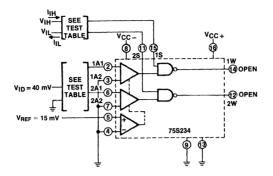
CHARACTERISTICS MEASUREMENT INFORMATION DC TEST CIRCUITS† (Cont'd) V_{C,C}+ Vcc-(16) 8 1<u>i₩</u>@ $V_{ID} = 40 \text{ mV}$ IA1(2) 1A23 ź₩₁2 6 24 A (5) $V_{REF} = 15 \text{ mV}$ a losĮ ٩ **J**os (13) 7 Fig. 10 75S24, Ios V_{CC}+ Vcc-25 15 (11)(15) (16) (8) Ъюн Τ 1W SEE TEST TABLE AND -14) SEE TEST TABLE 1<u>A2</u>3 VOL VID 2W 2A1 6 (12) NOTE A Ţ VREF

CIRCUIT	INPUTS	V _{REF}	V _{ID}	OUTPUTS 55/7S234			
				V _o	I _{ОН}	IOL	
	A1-A2	15 mV	≤12.5 mV	≥2.4 V	-400 μA		
55/20004	A1-A2	15 mV	≥17.5 mV	≤0.4 V		16 m-A	
55/7S234	A1-A2	40 mV	≪37.5 mV	≥2.4 V	4 V -400 μA		
	A1-A2	40 mV	≥42.5 mV	≪0.4 V		16 mA	


9 13 _____ VoH

Ē

Vol 1



NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

CHARACTERISTICS MEASUREMENT INFORMATION

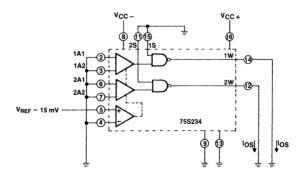
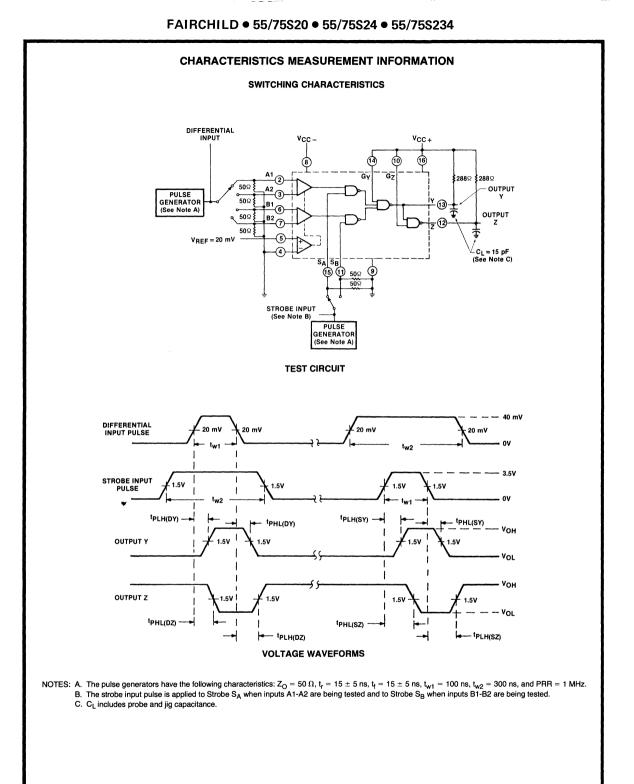
DC TEST CIRCUITS† (Cont'd)

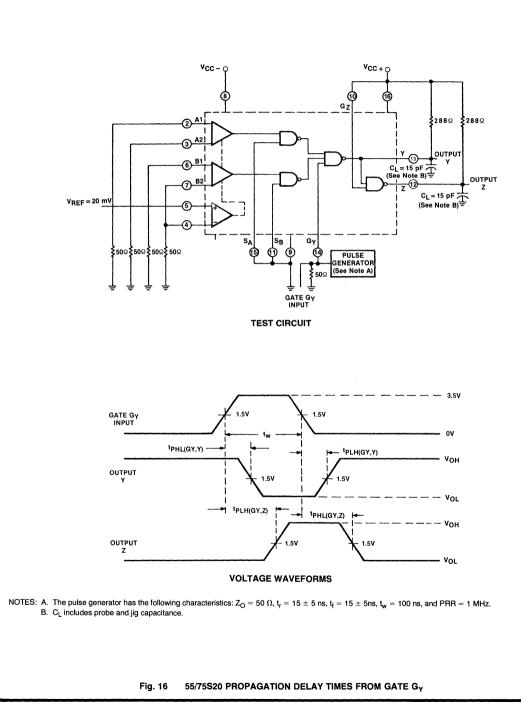
TEST TABLE

TEST	INPUT 1A1	INPUT 2A1	STROBE 1S	STROBE 2S
I _{IH} at STROBE 1S	GND	GND	VIH	V _{IL}
I _{IH} at STROBE 2S	GND	GND	VIL	V _{IH}
IIL at STROBE 1S	V _{ID}	GND	VIL	V _{IL}
IIL at STROBE 2S	GND	V _{ID}	VIL	V _{IL}

Fig. 13 75S234, I_{IH}, I_{IL}

+Arrows indicate actual direction of current flow. Current into a terminal is a positive value.


Fig. 14 75S234, I_{OS}

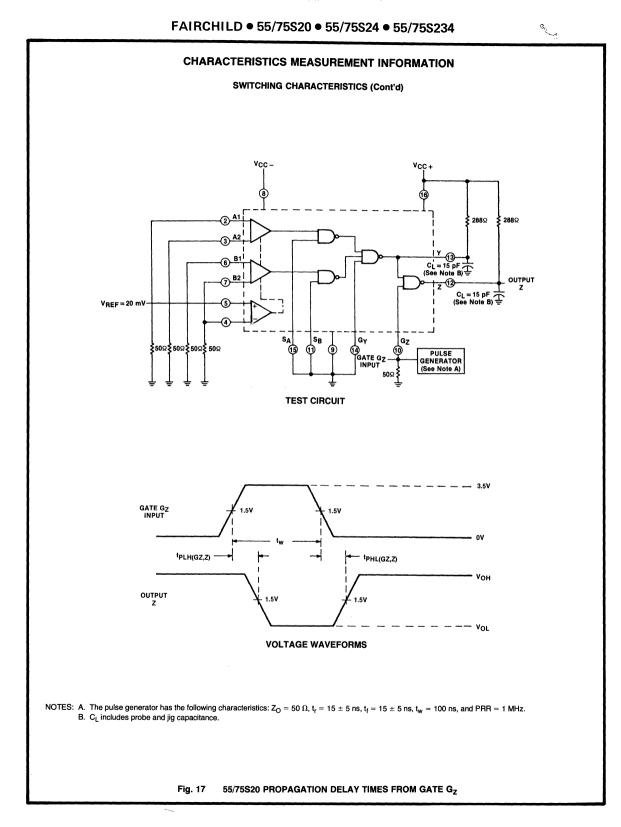
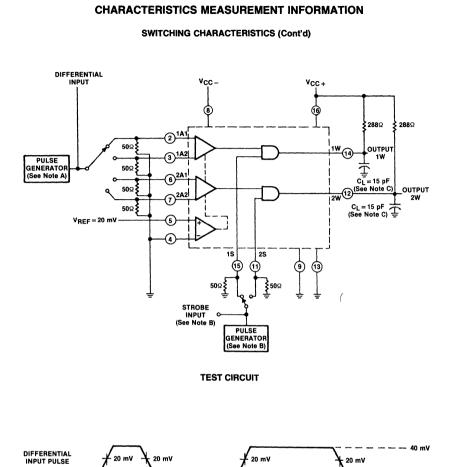
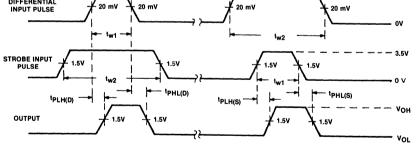
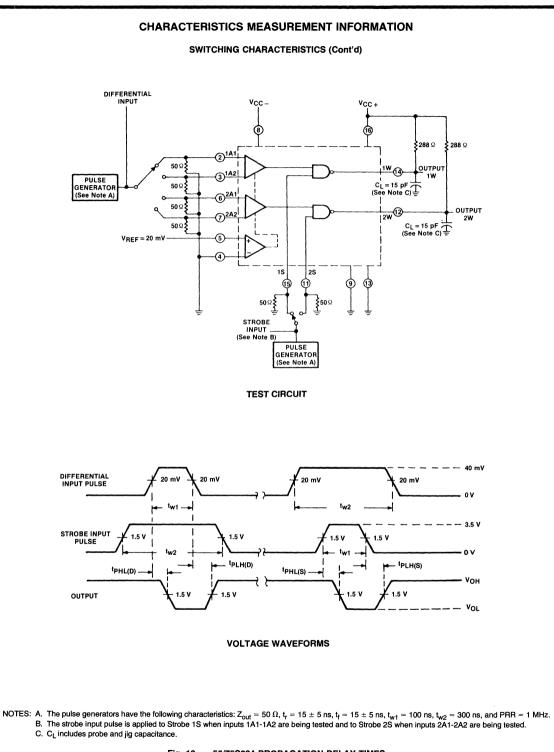


Fig. 15 55/75S20 PROPAGATION DELAY TIMES FROM DIFFERENTIAL AND STROBE INPUTS


CHARACTERISTICS MEASUREMENT INFORMATION


SWITCHING CHARACTERISTICS (Cont'd)

8-38



VOLTAGE WAVEFORMS

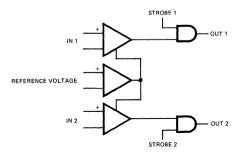
NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \Omega$, $t_r = 15 \pm 5 ns$, $t_{g} = 15 \pm 5 ns$, $t_{w1} = 100 ns$, $t_{w2} = 300 ns$, and PRR = 1 MHz. B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when inputs 2A1-2A2 are being tested.

C. CL includes probe and jig capacitance.

Fig. 18 55/75S24 PROPAGATION DELAY TIMES

5520/7520 SERIES CORE MEMORY SENSE AMPLIFIERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 5520/7520 Series Dual Memory Sense Amplifiers are designed for use in high speed core memory systems. These sense amplifiers detect the mV memory signals and transform them into logic levels compatible with TTL and DTL circuits. Independent strobes for each channel provide the capability for performing time discrimination, resulting in the detection of the input signal when the signal to noise ratio is at maximum. A common reference amplifier simultaneously sets the threshold of each sense amplifier, and the reference amplifier and sense amplifier are compensated to reduce the effect of power supply voltage or temperature variation. All gate inputs are compatible with TTL and DTL circuits.


- HIGH SPEED AND FAST RECOVERY TIME
- NARROW THRESHOLD UNCERTAINTY REGION
- ADJUSTABLE INPUT THRESHOLD VOLTAGE
- TTL COMPATIBLE
- VARIOUS LOGIC CONFIGURATIONS

COMPARISON CHART

The 7520 series of sense amplifiers provides a wide number of options which allow this device to be adapted to a variety of special applications. Differences between the various sense amplifier devices are summarized in the table below. 55XX numbers refer to military grade devices, while the corresponding 75XX number refers to the identical circuit specified for commercial grade. Even numbered devices refer to sense amplifiers specified for a tight threshold voltage distribution.

DEVICE	DECOUPLING CAPACITOR	OUTPUT STAGE	AMPLIFIER TEST POINTS
5528/7528	External		Yes
55232/75232	Internal	Inverted with Open Collector	
55238/75238	Internal	Inverted	Yes

Supply Voltages	±7.0 V
Differential Input Voltage	±5.0 V
_ogic Input Voltage	±5.5 V
trobe and Gate Input Voltage	+5.0 V
Off State Output Voltage	+5.5 V
Operating Ambient Temperature Range	
5520 Series	–55°C to +125°C
7520 Series	0°C to +70°C
torage Temperature Range	-65°C to +150°C
Pin Temperature	
Hermetic DIP, (Soldering, 60 s)	+300° C
Molded DIP (Soldering, 10 s)	+260° C
nternal Power Dissipation (Note 1)	730 mW

5520/7520 SERIES RECOMMENDED OPERATING CONDITIONS

	MIN	ТҮР	MAX	UNITS
V _{CC+}	4.75	5.0	5.25	v
V _{CC} _	-4.75	-5.0	-5.25	V
V _{REF}	15		40	mV

ELECTRICAL CHARACTERISTICS

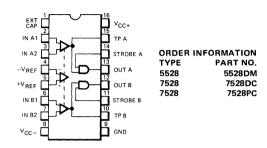
All electrical characteristics and test conditions for the 5520 devices are identical to those of the corresponding 7520 device, with the exception of the Differential Input Threshold Voltage and Differential Input Bias Circuit. Limits for these parameters are detailed in the table below. All limits which apply to the 7520 circuits for temperatures of 0° C to 70° C apply to the 5520 circuits for the range of -55° C to $+125^{\circ}$ C.

All ac switching characteristics are guaranteed at V_{CC+} = 5.0 V, V_{CC-} = -5.0 V and T_A = 25° C.

For details of the full electrical characteristics and test circuitry please refer to the corresponding 7520 data.

5520 SERIES VTH AND IIB LIMITS

and the second second second				EVEN NUMBERED 5520 SERIES DEVICES			ODD NUMBERED 5520 SERIES DEVICES			
SYMBOL CHARACTERISTICS	TEST CONDITIO	NC								
	TEST CONDITIO	IND .								
	:			MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
		I BEE F	$T_A = -55^\circ C$ to $0^\circ C$ and $70^\circ C$ to $125^\circ C$	10	15	20	8.0	15	22	
	Differential Input		$T_A = 0^\circ C$ to $70^\circ C$	11	15	19	8.0	15	22	1
ν _T	Threshold Voltage	Voltage V _{REF} = 40 mV	$T_{A} = -55^{\circ}C \text{ to } 0^{\circ}C$ and 70°C to 125°C	35	40	45	33	40	47	mV
			$T_A = 0^\circ C$ to $70^\circ C$	36	40	44	33	40	47	1
	Differential Input	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V,$	$T_A = -55^\circ C$ to $0^\circ C$			100			100	
IВ	Bias Current	$V_{ID} = 0$	$T_A = 0^\circ C$ to $125^\circ C$		30	75		30	75	μA


NOTES:

1. Derate Hermetic DIP and Molded DIP above $60^{\circ}C$ at 8.3 mW/ $^{\circ}C$.

 The differential input threshold voltage (V_T) is defined as the dc differential input voltage (V_{ID}) required to force the output of the sense amplifier to the logic-gate threshold voltage level.

CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6B 9B PACKAGE CODES D P

FUNCTION TABLE

INP	UTS	OUTPUT
A	s	A
н	н	н
L	х	L
×	L	L

DEFINITION OF LOGIC LEVELS

INPUT	н	L	x
A [†]	V _{ID} ≥ V _{T(MAX)}	V _{ID} ≤ V _{T(MIN)}	Irrelevant
S	$V_{I} \ge V_{IH}(MIN)$	VI ≤ VIL(MAX)	Irrelevant

 $^\dagger A$ is a differential voltage (V_{1D}) between A1 and A2. For these circuits, V_{1D} is considered positive regardless of which terminal is positive with respect to the other.

ELECTRICAL CHARACTERISTICS: $V_{CC+} = 5.0 \text{ V}$, $V_{CC-} = -5.0 \text{ V}$, $T_A = 0^{\circ} \text{C}$ to 70°C (unless otherwise specified)

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	түр‡	мах	UNITS
VT	Differential Input Threshold Voltage	1	V _{REF} = 15 mV	11	15	19	mV
•1	(See Note 3)	I	V _{REF} = 40 mV	36	40	44	
VICF	Common Mode Input Firing Voltage (See Note 4)		$\label{eq:v_REF} \begin{split} & V_{REF} = 40 \text{ mV}, V_{I(S)} = V_{IH} \\ & \text{Common-Mode Input Pulse:} \\ & t_r \leq 15 \text{ ns}, t_f \leq 15 \text{ ns}, t_W = 50 \text{ ns} \end{split}$		±2.5		v
IIB	Differential Input Bias Current	2	V _{CC+} = 5.25 V, V _{CC-} = -5.25 V, V _{ID} = 0	1	30	75	μA
10	Differential Input Offset Current	2	V _{CC+} = 5.25 V, V _{CC} = -5.25 V, V _{ID} = 0		0.5		μA
VIH	Input HIGH Voltage (Strobe Inputs)	3		2.0			v
VIL	Input LOW Voltage (Strobe Inputs)	3				0.8	v
Vон	Output HIGH Voltage	3	V _{CC+} = 4.75 V, V _{CC} = -4.75 V, I _{OH} = -400 µA	2.4	4.0		V
VOL	Output LOW Voltage	3	$V_{CC+} = 4.75 V, V_{CC-} = -4.75 V, I_{OL} = 16 mA$		0.25	0.4	V
1	Input HIGH Current		V _{CC+} = 5.25 V, V _{CC} = -5.25 V, V _{IH} = 2.4 V			40	μA
чн	(Strobe Inputs)	4	V _{CC+} = 5.25 V, V _{CC} = -5.25 V, V _{IH} = 5.25 V			1.0	mA
կլ	Input LOW Current (Strobe Inputs)	4	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{IL} = 0.4 V		-1.0	-1.6	mA
los	Short-Circuit Output Current	5	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V	-2.1		-3.5	mA
ICC+	Supply Current from V _{CC+}	6	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V, T_A = 25^{\circ}C$		25	40	mA
ICC-	Supply Current from V _{CC} _	6	V _{CC+} = 5.25 V, V _{CC} = -5.25 V, T _A = 25°C		-15	-20	mA

[‡]All typical values are at V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25° C.

NOTES:

The differential input threshold voltage (V_T) is defined as the dc differential input voltage (V_{ID}) required to force the output of the sense amplifier to the logic gate threshold voltage level.
 Common mode input fitting voltage is the minimum common mode voltage that will exceed the dynamic range of the input at the specified.

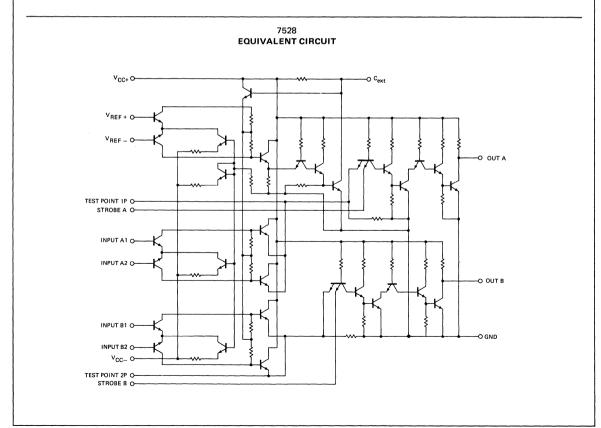
4. Common mode input firing voltage is the minimum common mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the logic output to switch. The specified common mode input signal is applied with a strobe enable pulse present.

FAIRCHILD • 5520/7520 SERIES

7528 SENSE AMPLIFIERS

AC CHARACTERISTICS: $V_{CC+} = 5.0 \text{ V}$, $V_{CC-} = -5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$

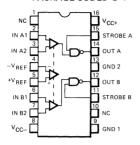
PROPAGATION DELAY TIMES			TEST	TEAT CONDITIONS		ТҮР		
SYMBOL	FROM INPUT	TO OUTPUT	FIGURE	TEST CONDITIONS	MIN	ITP	MAX	UNITS
^t PLH(D)	41.40		7	0 15 - E P 299 0		25	40	
tPHL(D)	A1-A2	A	,	$C_L = 15 pF, R_L = 288 \Omega$		20		ns
tPHL(D)	STROBE	А	7	C: = 15 = E B: = 288 0		15	30	
tPHL(S)	STRUBE	4	,	CL = 15 pF, RL = 288 Ω	20		ns	


TYPICAL RECOVERY AND CYCLE TIMES: V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25° C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
torD (See Note 5)		t Overload Recovery Time Differential Input Pulse: V _{ID} = 2.0 V, t _f = 20 ns		20		ns
torC	Common Mode Input Overload Recovery Time (See Note 6)	Common Mode Input Pulse: $V_{IC} = \pm 2.0 \text{ V}, t_r = t_f = 20 \text{ ns}$		20		ns
^t cyc(MIN)	Minimum Cycle Time			200		ns

NOTES:

5. Differential input overload recovery time is the time necessary for the device to recover from the specified differential input overload signal prior to the strobe enable signal.


 Common mode input overload recovery time is the time necessary for the device to recover from the specified common mode input overload signal prior to the strobe enable signal.

FAIRCHILD • 5520/7520 SERIES

75232 SENSE AMPLIFIERS

CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6B 9B PACKAGE CODES D P

ORDER	INFORMATION
ТҮРЕ	PART NO.
55232	55232DM
75232	75232DC
75232	75232PC

FUNCTION TABLE

INP	JTS	OUTPUT
A	S	A
н	н	L
L	х	н
×	L	н

DEFINITION OF LOGIC LEVELS

INPUT	н	L	х
A†	$V_{ID} \ge V_{T(MAX)}$	V _{ID} ≤ V _{T(MIN)}	Irrelevant
S	$V_{I} \ge V_{IH(MIN)}$	VI ≤ VIL(MAX)	Irrelevant

 $^\dagger A$ is a differential voltage (V_{1D}) between A1 and A2. For these circuits, V_{1D} is considered positive regardless of which terminal is positive with respect to the other.

ELECTRICAL CHARACTERISTICS: V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 0°C to 70°C (unless otherwise specified)

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	түр‡	мах	UNITS
\/_	Differential Input Threshold Voltage	1	V _{REF} = 15 mV	11	15	19	mV
VΤ	(See Note 3)	1	V _{REF} = 40 mV	36	40	44	mv
VICF	Common Mode Input Firing Voltage (See Note 4)	None	$V_{REF} = 40 \text{ mV}, V_{I}(S) = V_{IH}$ Common-Mode Input Pulse: $t_r \le 15 \text{ ns}, t_f \le 15 \text{ ns}, t_{W} = 50 \text{ ns}$		±2.5		v
IB	Differential Input Bias Current	2	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V, V_{ID} = 0$		30	75	μA
10	Differential Input Offset Current	2	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{ID} = 0		0.5		μA
VIH	Input HIGH Voltage (Strobe Inputs)	3		2.0			v
VIL	Input LOW Voltage (Strobe Inputs)	3				0.8	v
юн	Output HIGH Current	3	V _{CC+} = 4.75 V, V _{CC} _ = -4.75 V, V _{OH} = 5.25 V			250	μA
VOL	Output LOW Voltage	3	V _{CC+} = 4.75 V, V _{CC} _ = -4.75 V, I _{OL} = 16 mA		0.25	0.4	V
1	Input HIGH Current	4	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, V_{IH} = 2.4 \text{ V}$			40	μA
ЧН	(Strobe Inputs)	4	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{IH} = 5.25 V			1.0	mA
μL	Input LOW Current (Strobe Inputs)	4	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{IL} = 0.4 V		-1.0	-1.6	mA
ICC+	Supply Current from V _{CC+}	6	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V, T_A = 25^{\circ}C$		25	40	mA
ICC-	Supply Current from V _{CC}	6	V _{CC+} = 5.25 V, V _{CC} = -5.25 V, T _A = 25°C		-15	-20	mA

[‡]All typical values are at V_{CC+} = 5.0 V, V_{CC} = -5.0 V, T_A = 25° C. NOTES:

The differential input threshold voltage (V_T) is defined as the dc differential input voltage (V_{1D}) required to force the output of the sense amplifier to the logic gate threshold voltage level. Common mode input firing voltage is the minimum common mode voltage that will exceed the dynamic range of the input at the specified З.

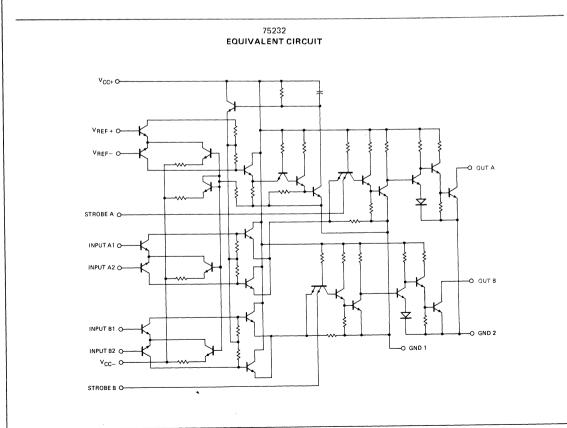
4. conditions and cause the logic output to switch. The specified common mode input signal is applied with a strobe enable pulse present.

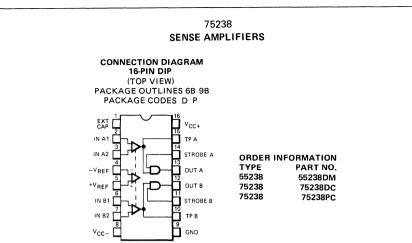
FAIRCHILD · 5520/7520 SERIES

75232 SENSE AMPLIFIERS

AC CHARACTERISTICS: $V_{CC+} = 5.0 \text{ V}$, $V_{CC-} = -5.0 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PROPAGA	TION DELAY TIMES	3	TEST	TEST CONDITIONS	MIN	ТҮР	мах	UNITS
SYMBOL	FROM INPUT	ΤΟ ΟυΤΡυΤ	FIGURE	TEST CONDITIONS				
^t PLH(D)			_			25		ns
tPHL(D)	A1-A2	A	. /	$C_L = 15 pF, R_L = 230 \Omega$		25	40	113
tPHL(D)	CTROPE		7	0 - 15 - 5 B - 220 C		25		ns
tPHL(S)	STROBE	A	/	$C_{L} = 15 \text{ pF}, R_{L} = 230 \Omega$		15	30	


TYPICAL RECOVERY AND CYCLE TIMES: V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25° C


SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	МАХ	UNITS
torD	Differential Input Overload Recovery Time (See Note 5)	Differential Input Pulse: $V_{ID} = 2.0 V$, $t_r = t_f = 20 ns$		20		ns
t _{orC}	Common Mode Input Overload Recovery Time (See Note 6)	Common Mode Input Pulse: VIC = +2.0 V, tr = tf = 20 ns		20		ns
t _{cyc} (MIN)	Minimum Cycle Time			200		ns

NOTES:

5. Differential input overload recovery time is the time necessary for the device to recover from the specified differential input overload signal prior to the strobe enable signal.

Common mode input overload recovery time is the time necessary for the device to recover from the specified common mode input 6. overload signal prior to the strobe enable signal.

FUNCTION TABLE

	INP	UTS	OUTPUT
	А	s	А
	н	н	L
ļ	L	х	н
	x	L	н

DEFINITION OF LOGIC LEVELS

INPUT	н	L	x
A [†]	V _{ID} ≥V _{T(MAX)}	V _{ID} ≤ V _{T(MIN)}	Irrelevant
S	VI ≥ VIH(MIN)	VI ≤ VIL(MAX)	Irrelevant

 $^\dagger A$ is a differential voltage (V_{1D}) between A1 and A2. For these circuits, V_{1D} is considered positive regardless of which terminal is positive with respect to the other.

SYMBOL	CHARACTERISTICS	TEST FIGURE	TEST CONDITIONS	MIN	түр‡	мах	UNITS
VT	Differential Input Threshold Voltage	1	V _{REF} = 15 mV	11	15	19	mV
•1	(See Note 3)	1	V _{REF} = 40 mV	36	40	44	
VICF	Common Mode Input Firing Voltage (See Note 4)	None	$V_{REF} = 40 \text{ mV}, V_{I}(S) = V_{IH}$ Common-Mode Input Pulse: $t_{r} \le 15 \text{ ns}, t_{f} \le 15 \text{ ns}, t_{W} = 50 \text{ ns}$		±2.5		v
IB	Differential Input Bias Current	2	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{ID} = 0		30	75	μA
10	Differential Input Offset Current	2	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V, V _{ID} = 0		0.5		μA
VIH	Input HIGH Voltage (Strobe Inputs)	3		2.0			v
Vщ	Input LOW Voltage (Strobe Inputs)	3				0.8	v
VOH	Output HIGH Voltage	3	V _{CC+} = 4.75 V, V _{CC} _ = -4.75 V, I _{OH} = -400 μA	2.4	4.0		V
VOL	Output LOW Voltage	3	$V_{CC+} = 4.75 \text{ V}, V_{CC-} = -4.75 \text{ V}, I_{OL} = 16 \text{ mA}$		0.25	0.4	V
Чн	Input HIGH Current (Strobe Inputs)	4	V _{CC+} = 5.25 V, V _{CC} = -5.25 V, V _{IH} = 2.4 V V _{CC+} = 5.25 V, V _{CC} = -5.25 V, V _{IH} = 5.25 V			40 1.0	μA mA
μL	Input LOW Current (Strobe Inputs)	4	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V, V_{1L} = 0.4 V$		-1.0	-1.6	mA
IOS	Short-Circuit Output Current	5	V _{CC+} = 5.25 V, V _{CC} _ = -5.25 V	-2.1		-3.5	mA
ICC+	Supply Current from V _{CC+}	6	$V_{CC+} = 5.25 V, V_{CC-} = -5.25 V, T_A = 25^{\circ}C$		25	40	mA
ICC-	Supply Current from V _{CC} _	6	$V_{CC+} = 5.25 \text{ V}, V_{CC-} = -5.25 \text{ V}, T_A = 25^{\circ} \text{ C}$		-15	-20	mA

[‡]All typical values are at V_{CC+} = 5.0 V, V_{CC}₋ = -5.0 V, T_A = 25 $^{\circ}$ C. NOTES:

3. The differential input threshold voltage (V_T) is defined as the dc differential input voltage (V_{1D}) required to force the output of the sense amplifier to the logic gate threshold voltage level.

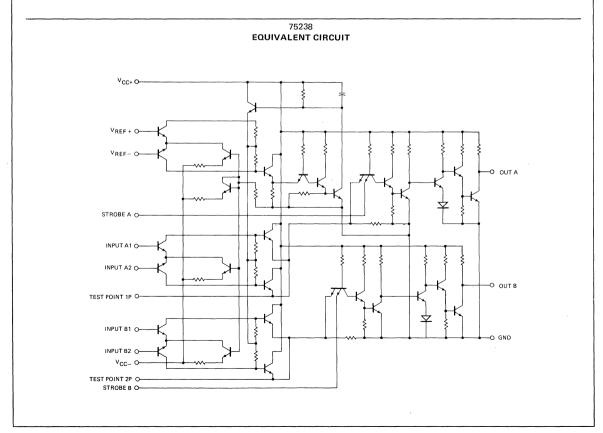
4. Common mode input firing voltage is the minimum common mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the logic output to switch. The specified common mode input signal is applied with a strobe enable pulse present.

FAIRCHILD • 5520/7520 SERIES

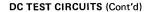
75238 SENSE AMPLIFIERS

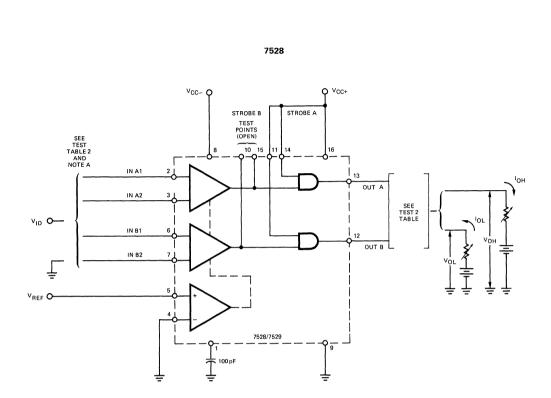
AC CHARACTERISTICS: V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25° C

PROPAGATION DELAY TIMES		TEST	TEAT CONDITIONS		-			
SYMBOL	FROM INPUT	TO OUTPUT	FIGURE TEST CONDITIONS		MIN	TYP	MAX	UNITS
^t PLH(D)	A1-A2	۸	7			25		
tPHL(D)	AI-AZ	A	,	CL = 15 pF, RL = 288 Ω		25	40	ns
^t PHL(D)	CTDODE	٨	7	0 15 - F D 200 0		25		
^t PHL(S)	SINUBE A		· · ·	C _L = 15 pF, R _L = 288 Ω		15	30	ns


TYPICAL RECOVERY AND CYCLE TIMES: V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25 $^{\circ}$ C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
^t orD	Differential Input Overload Recovery Time (See Note 5)	Differential Input Pulse: V _{ID} = 2.0 V, t _f = 20 ns		20		ns
torC	Common Mode Input Overload Recovery Time (See Note 6)	Common Mode Input Pulse: $V_{IC} = \pm 2.0 V$, $t_r = t_f = 20 ns$		20		ns
^t cyc(MIN)	Minimum Cycle Time			200		ns


NOTES:

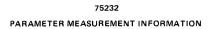

5. Differential input overload recovery time is the time necessary for the device to recover from the specified differential input overload signal prior to the strobe enable signal.

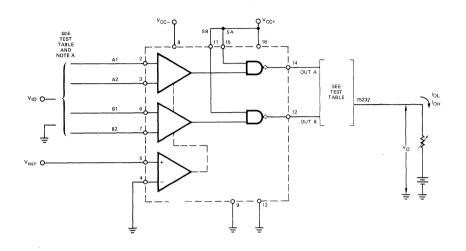
6. Common mode input overload recovery time is the time necessary for the device to recover from the specified common mode input overload signal prior to the strobe enable signal.

FAIRCHILD • 5520/7520 SERIES

CIRCUIT		N	OUTPUTS			
TYPE	INPUTS	V _{ref}	V _{ref} VID	٧o	юн	10L
	A1-A2	15 mV	≤11 mV	≤0.4 V		16 mA
	AI-AZ AND	15 mV	≥19 mV	≥2.4 V	-400 μA	
7528	B1-B2	40 mV	≤36 mV	≤0.4 V		16 mA
	DI-DZ	40 mV	≥44 mV	≥2.4 V	-400 μA	

r	E	s	т	т	A	в	L	E

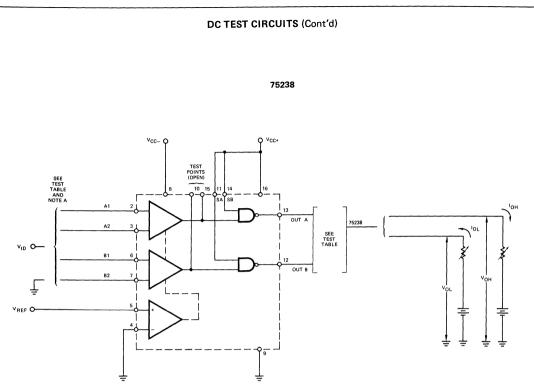

NOTE A: Each pair of inputs is tested separately with its corresponding output. Each pair of differential inputs is tested separately with the other pair grounded.


Fig. 1a — 7528 V_T

8-49

FAIRCHILD · 5520/7520 SERIES

DC TEST CIRCUITS (Cont'd)

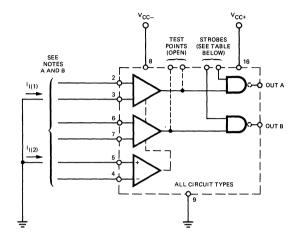

TEST TABLE

				OUTPUTS			
CIRCUIT	I INPUTS		VID	75232			
ТҮРЕ		JTS V _{ref}		v _o	юн	IOL	
	A1-A2	15 mV	⇒11 mV	5.25 V	≈250 μA		
	A1-A2	15 mV	>19 mV	≈0.4 V		16 mA	
75232	A1-A2	40 mV	≈36 mV	5.25 V	⇒250 μA		
	A1-A2	40 mV	>44 mV	≈0.4 V		16 mA	

NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

Fig. 1b - 75232 V_T

FAIRCHILD • 5520/7520 SERIES



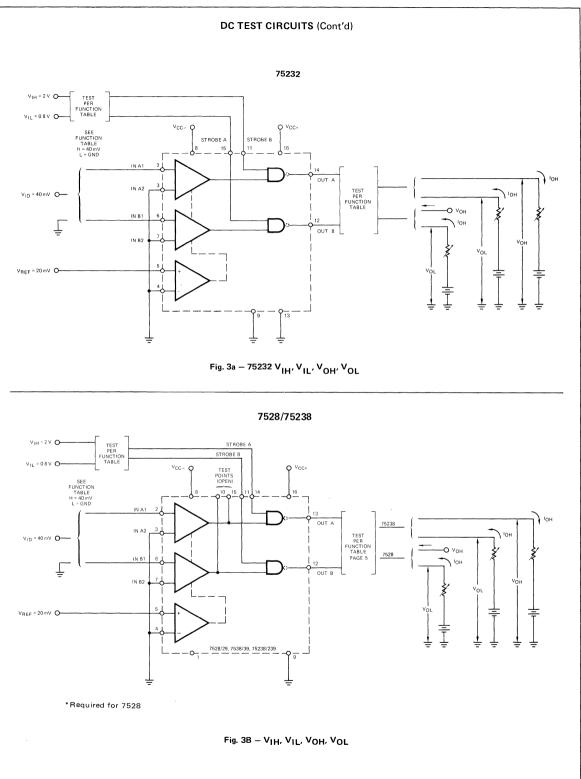
TEST TABLE							
******					OUTPUTS		
CIRCUIT TYPES	INPUTS	V _{ref}	v _{iD}		75238		
				v _o	юн	^I OL	
	A1-A2	15 m V	≪11 mV	≥2.4 V	-400 μA		
75238	A1-A2	15 mV	≥19 mV	≪0.4 V		16 mA	
10200	A1-A2	40 mV	≪36 mV	≥2.4 V	400 μA		
	A1-A2	40 mV	≥44 mV	≪0.4 V		16 mA	

NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

DC TEST CIRCUITS (Cont'd)

ALL CIRCUIT TYPES

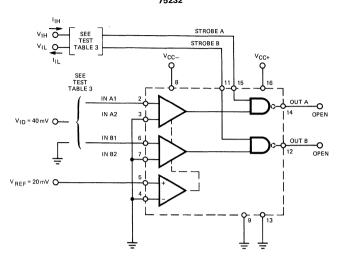
PIN CONNECTIONS (Other than those shown above)

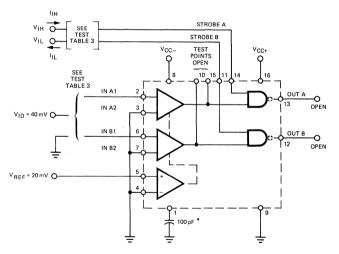

CIRCUIT TYPES	100 pF TO GROUND	APPLY GROUND	LEAVE OPEN	
7528	External Capacitor (Pin 1)	Strobes A and B (Pins 14, 11)	Test Points 1 and 2 Outputs A and B (Pins 15, 10, 13, 12	
75232	Not Required	Strobes A and B Ground 2 (Pins 15, 11, 13)	Outputs A and B (Pins 14, 12)	
75238	Not Required	Strobes A and B (Pins 14, 11)	Test Points 1 and 2 Outputs A and B (Pins 15, 10, 13, 12)	

NOTES:

A. Each preamplifier is tested separately. Inputs not under test are grounded. B. $I_{IB} = I_{1(1)}$ or $I_{1(2)}$ (limit applies to each): $I_{IO} = I_{1(1)} - I_{1(2)}$; $I_{1(1)}$ and $I_{1(2)}$ are the currents into the two inputs of the pair under test.

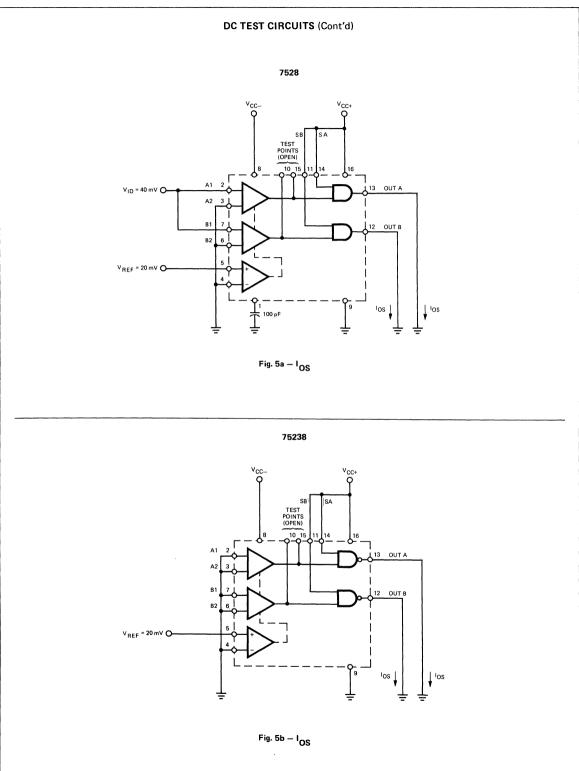
Fig. 2 - I1B, I1O


FAIRCHILD • 5520/7520 SERIES


8

DC TEST CIRCUITS (Cont'd)

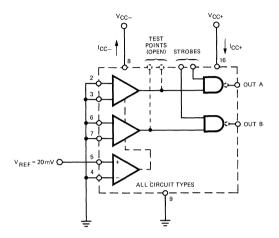
7528/75238



*Required for 7528

TEST TABLE 3									
TEST	INPUT A1	INPUT B1	STROBE A	STROBE B					
I _{IH} at Strobe A	GND	GND	VIH	VIL					
IIH at Strobe B	GND	GND	VIL	VIН					
IIL at Strobe A	VID	GND	VIL	VIL					
IIL at Strobe B	GND	VID	VIL	VIL					

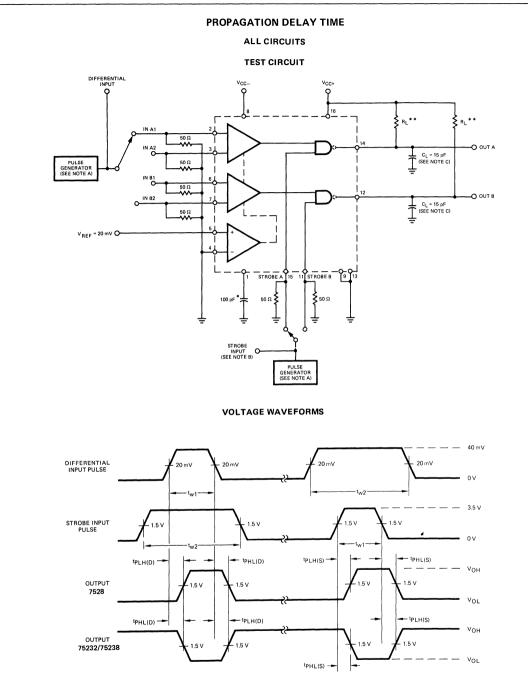
Fig. 4 - IIH, IIL



8

DC TEST CIRCUITS (Cont'd)

ALL CIRCUIT TYPES

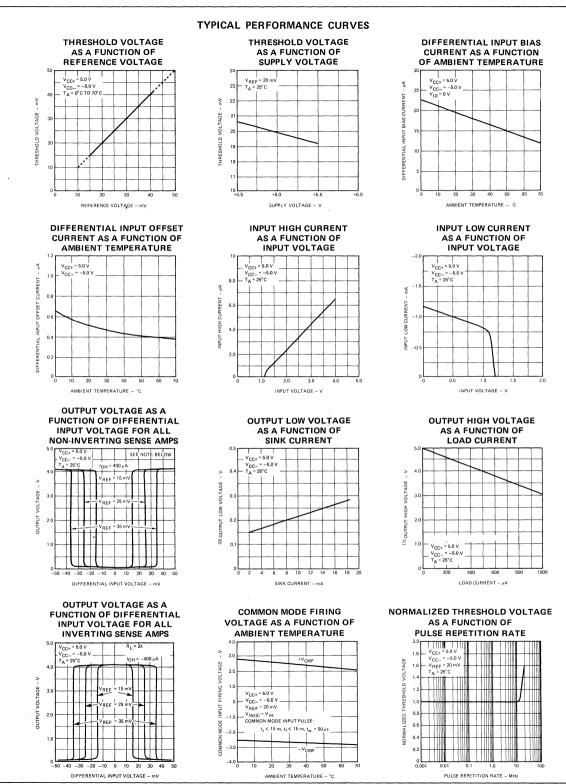


*Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

CIRCUIT TYPES	APPLY GROUND	LEAVE OPEN		
75232	Strobes A and B Ground 2 (Pins 15, 11, 13)	Outputs A and B (Pins 14, 12)		
75238	Strobes A and B (Pins 14, 11)	Test Points 1 and 2 Outputs A and B (Pins 15, 10, 13, 12)		
7528	Strobes A and B (Pins 14, 11) 100 pF to GND	Test Points 1 and 2 (Pins 15, 10, 13, 12		

PIN CONNECTIONS (Other than those shown above)

Fig. 6 - I_{CC+}, I_{CC-}


A. The pulse generators have the following characteristics: $Z_0 = 50 \ \Omega$, $t_r = 15 \pm 5 \text{ ns}$, $t_f = 15 \pm 5 \text{ ns}$, $t_{w1} = 100 \text{ ns}$, $t_{w2} = 300 \text{ ns}$, and PRR = 1 MHz.

B. The strobe input pulse is applied to strobe A when inputs A1-A2 are being tested and to strobe B when inputs B1-B2 are being tested. C. CL includes probe and jig capacitance.

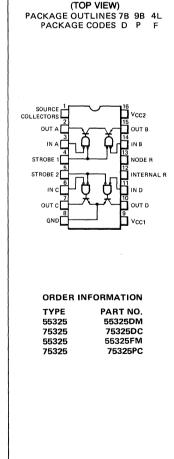
*Required for 7528.

Fig. 7

8-57

55325 • 75325 MEMORY DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION—The 55325 and 75325 are Memory Drivers for use in magnetic memories constructed on a silicon chip using the Fairchild Planar* process. The device contains four 600 mA switches, two source switches and two sink switches that can be selected by the appropriate logic input and appropriate strobe. The device has adequate base drive to source currents up to 375 mA with V_{CC2} of 15 V or 600 mA with V_{CC2} voltage of 24 V. In applications requiring drive to source currents greater than 375 mA, an external resistor may be used to regulate the source base current to within $\pm 5\%$ and reduce the power dissipation to allow higher source currents at higher ambient temperatures.

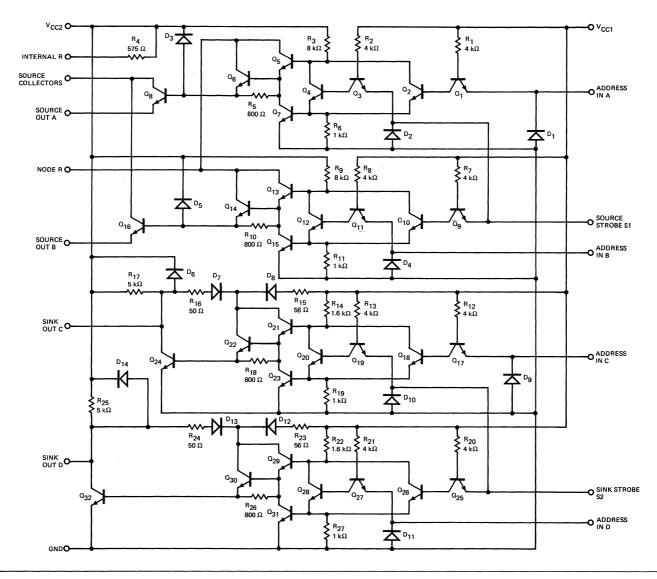

Internal voltage surge protection of each of the output sink transistors is provided for switching inductive loads.

- 600 mA OUTPUT CAPABILITY
- FAST SWITCH TIMES
- OUTPUT SHORT- CIRCUIT CURRENT
- DUAL SINK AND DUAL SOURCE OUTPUTS
- MINIMUM TIME SKEW BETWEEN ADDRESS AND OUTPUT CURRENT RISE
- 24 V CAPABILITY
- TTL OR DTL COMPATIBLE
- SOURCE BASE DRIVE EXTERNALLY ADJUSTABLE
- INPUT CLAMP DIODES

POSITIVE LOGIC TRUTH TABLE

ADDRESS INPUTS				STROBE INPUTS		OUTPUTS (Note 3)			
SOURCE S		SIL	١ĸ	SOURCE SINK		SOURCE		SINK	
IN A	IN B	IN C	: IN 0	D S1	S2	А	В	С	D
L	Н	х	х	L	н	ON	OFF	OFF	OFF
н	L	х	х	L	н	OFF	ON	OFF	OFF
х	х	L	н	н	L	OFF	OFF	ON	OFF
х	х	н	L	н	L	OFF	OFF	OFF	ON
х	х	х	х	н	н	OFF	OFF	OFF	OFF
н	н	н	н	х	х	OFF	OFF	OFF	OFF

H = HIGH Level, L = LOW Level, X = Don't Care


CONNECTION DIAGRAMS

16-PIN

[

*Planar is a patented Fairchild process.

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS Supply Voltage V_{CC1} (Note 1) +7.0 V Supply Voltage VCC2 (Note 1) +25 V Input Voltage (Any Address or Strobe Input) +5.5 V Storage Temperature Range -65° C to $+150^{\circ}$ C **Operating Temperature Range** 55325 -55° C to $+125^{\circ}$ C 0° C to $+70^{\circ}$ C 75325 1 W Internal Power Dissipation (Note 2) Pin Temperature 300° C Hermetic DIP (Soldering, 60 s) Molded DIP (Soldering, 10 s) $260^{\circ} C$

55325

ELECTRICAL CHARACTERISTICS: Ratings apply for $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified.

SYMBOL	CHARACTERI	STICS	CONDITIONS			TYP	MAX	UNITS
VIH	Input HIGH Voltage		Fig. 1 & 2					V
VIL	Input LOW Voltage		Fig. 3 & 4			-	0.8	V
VCD	Input Clamp Diode Voltage		$V_{CC1} = 4.5 V, V_{CC2} = 24 V$ $I_{1N} = -10 mA, T_A = 25°C$ Fig. 5			-1.3	-1.7	v
OFF	Source-collectors Terminal C	ff-State Current	V _{CC1} = 4.5 V, V _{CC2} = 24 V	Full Range			500	μΑ
			Fig. 1	$T_A = 25^{\circ}C$		3.0	150	· · · · · ·
∨он	Sink Output HIGH Voltage	V _{CC1} = 4.5 V, V _{CC2} = 24 V I _{OUT} = 0, Fig. 2	$V_{CC1} = 4.5 V, V_{CC2} = 24 V$				v	
			$V_{CC1} = 4.5 V, V_{CC2} = 15 V$	Euli Danca			0.9	
V _{SAT}	Saturation Voltage	Source Outputs	$R_{L} = 24 \Omega$, $I_{source} \approx -600 \text{ mA}$	Full Range		-		l v
			See Notes 3 & 4, and Fig. 3	T _A = 25°C		0.43	0.7	
		Sink Outputs	V _{CC1} = 4.5 V, V _{CC2} = 15 V	Full Range			0.9	v
			R _L = 24 Ω, $I_{sink} \approx 600 \text{ mA}$ See Notes 3 & 4 and Fig. 4	T _A = 25°C		0.43	0.7	
	Input Current at Maximum	Address Inputs	V _{CC1} = 5.5 V, V _{CC2} = 24 V				1.0	mA
IIN	Input Voltage	Strobe Inputs	V _{IN} = 5.5 V, Fig. 5				2.0	
цн	Input HIGH Current	Address Inputs	V _{CC1} = 5.5 V, V _{CC2} = 24 V			3.0	40	μA
чн		Strobe Inputs	V _{IN} = 2.4 V, Fig. 5			6.0	80	μA
μL	Input LOW Current	Address Inputs	V _{CC1} = 5.5 V, V _{CC2} = 24 V			-1.0	-1.6	mA
4L		Strobe Inputs	V _{IN} = 0.4 V, Fig. 5			-2.0	-3.2	
ICC(off)	Supply Current, All Sources	From VCC1	V _{CC1} = 5.5 V, V _{CC2} = 24 V			14	22	mA
	and Sinks Off	From V _{CC2}	$T_A = 25^\circ C$, Fig. 6			7.5	20	
ICC1	Supply Current from V _{CC1} ,	Either Sink On	$V_{CC1} = 5.5 V, V_{CC2} = 24 V$ I _{sink} = 50 mA, T _A = 25° C Fig. 7			55	70	mA
ICC2	Supply Current from V _{CC2} ,	Either Source On	$V_{CC1} = 5.5 V, V_{CC2} = 24 V$ $I_{source} = -50 mA, T_A = 25^{\circ}C$ Fig. 8			32	50	mA

NOTES:

1. Voltage values are with respect to network ground terminal.

2. Refer to Dissipation Derating Curve, Figure 13.

3. Not more than one output is to be on at any one time.

4. Parameters measured using the following pulse techniques; t_W = 200 μ s, duty cycle \leq 2%.

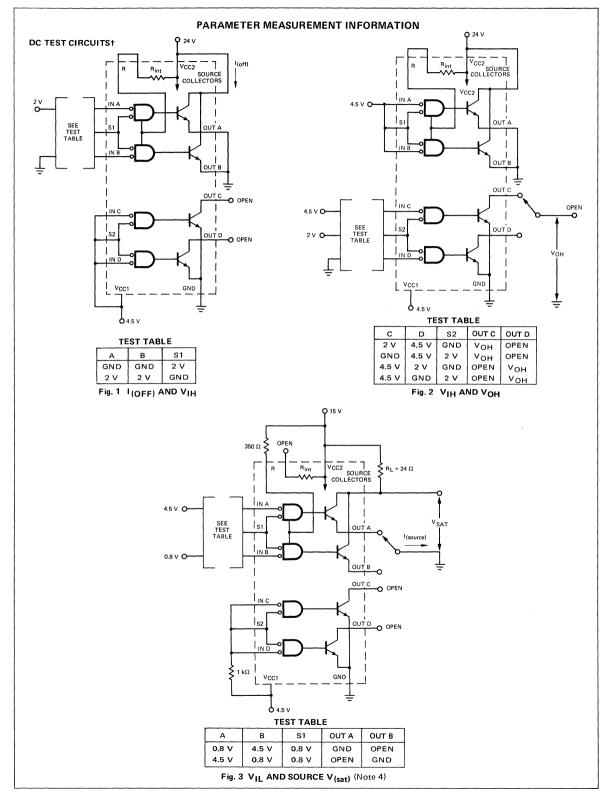
FAIRCHILD • 55325 • 75325

FIECTON	CAL CHARACTERISTICS. P	ating apply for 0° C	75325 ≤ T _A ≤ 70°C unless otherwise specif	ind				
SYMBOL	CHARACTERI					ТҮР	МАХ	UNITS
VIH	Input HIGH Voltage		Fig. 1 & 2		2.0			v
VIL	Input LOW Voltage		Fig. 3 & 4				0.8	V
V _{CD}	Input Clamp Diode Voltage		$V_{CC1} = 4.5 V, V_{CC2} = 24 V$ $I_{IN} = -10 mA, T_A = 25° C$ Fig. 5			-1.3	-1.7	v
	0		V _{CC1} = 4.5 V, V _{CC2} = 24 V	Full Range			200	μΑ
OFF	Source-collectors Terminal C	off-State Current	Fig. 1	T _A = 25° C		3.0	200	
v _{он}	Sink Output HIGH Voltage	-	V _{CC1} = 4.5 V, V _{CC2} = 24 V I _{OUT} = 0, Fig. 2			23		v
VSAT	Saturation Voltage	Source Outputs	$V_{CC1} = 4.5 \text{ V}, V_{CC2} = 15 \text{ V}$ $R_L = 24 \Omega, I_{source} \approx -600 \text{ mA}$ See Notes 3 & 4, and Fig. 3	Full Range T _A = 25°C		0.43	0.9 0.75	v
		Sink Outputs	V_{CC1} = 4.5 V, V_{CC2} = 15 V R _L = 24 Ω, I _{sink} ≈ 600 mA	Full Range T _A = 25°C			0.9 0.75	v
			See Notes 3 & 4, and Fig. 4					ļ
UN	Input Current at Maximum	Address Inputs	V _{CC1} = 5.5 V, V _{CC2} = 24 V V _{IN} = 5.5 V, Fig. 5				1.0	mA
	Input Voltage	Strobe Inputs					2.0	
ЧΗ	Input HIGH Current	Address Inputs	V _{CC1} = 5.5 V, V _{CC2} = 24 V			3.0	40	μΑ
		Strobe Inputs	V _{IN} = 2.4 V, Fig. 5			6.0	80	ļ
hι	Input LOW Current	Address Inputs	$V_{CC1} = 5.5 V, V_{CC2} = 24 V$			-1.0 -2.0	-1.6	mA
		Strobe Inputs	$V_{IN} = 0.4 V, Fig. 5$			-2.0	-3.2	
ICC(off)	Supply Current, All Sources From V _{CC1} and Sinks Off From V _{CC2}		$V_{CC1} = 5.5 V, V_{CC2} = 24 V$ $T_A = 25^{\circ}C, Fig. 6$			7.5	22 20	mA
		From VCC2	$V_{CC1} = 5.5 V, V_{CC2} = 24 V$			7.5 20		
ICC1	Supply Current from V _{CC1} ,	Either Sink On	$I_{sink} = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$ Fig. 7			55	70	mA
I _{CC2}	Supply Current from V _{CC2} ,	Either Source On	$V_{CC1} = 5.5 V, V_{CC2} = 24 V$ $I_{source} = -50 mA, T_A = 25^{\circ}C$ Fig. 8			32	50	mA

55325 • 75325

SWITCHING CHARACTERISTICS: V_{CC1} = 5.0 V, T_A = 25 $^{\circ}$ C (See Test Circuit Figures 9 and 10)

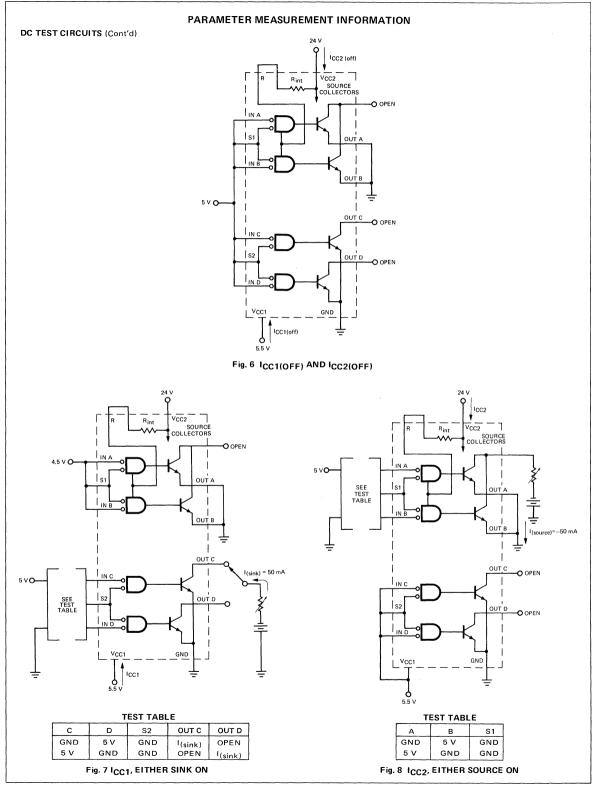
SYMBOL	CHARACTERISTICS	TEST FIGURE	CONDITIONS	MIN	ТҮР	МАХ	UNITS
^t PLH		9	V _{CC2} = 15 V, R _L = 24 Ω		25	50	
tPHL	Propagation Delay Time to Source Collectors		CL = 25 pF		25	50	ns
^t TLH		10	V _{CC2} = 20 V, R _L = 1 kΩ		55		ns
^t THL	Transition Time to Source Outputs		CL = 25 pF		7.0		
^t PLH	Propagation Delay Time to Sink Outputs	9	V _{CC2} = 15 V, R _L = 24 Ω		20	45	
tPHL	Fropagation Delay Time to Sink Outputs		CL = 25 pF		20	45	– ns
^t TLH	Transition Time to Sink Outputs	9	$V_{CC2} = 15 V, R_{L} = 24 \Omega$		7.0	15	
^t THL			CL = 25 pF		9.0	20	ns
t _s	Storage Time to Sink Outputs	9	V _{CC2} = 15 V, R _L = 24 Ω C _L = 25 pF		15	30	ns



8

TA-AMBIENT TEMPERATURE-°C

4 2 0 -75 -50 -25 0 25 50 75 100 125


FAIRCHILD • 55325 • 75325

PARAMETER MEASUREMENT INFORMATION DC TEST CIRCUITS (Cont'd) O 15 V - ٦ Vcc2 Rint VCC2 I SOURCE COLLECTORS *** ł O OPEN | \$1 out a IN OUTB 1 **\$**1 kΩ $R_L = 24 \Omega$ OUTC (sink) 0 IINC 1 0.8 V O I SEE TEST TABLE | S2 OUTD 0 IND 4.5 V O V(sat) Vcc1 GND ሪ 4.5 V TEST TABLE OUT D OUT C с D S2 OPEN 0.8 V 4.5 V 0.8 V RL 4.5 V 0.8 V 0.8 V OPEN RL Fig. 4 VIL AND SINK V(sat) (Note 4) 24 V TEST TABLES **4,**4н VCC2 SOURCE COLLECTORS Rint APPLY V_{1N} =.5.5 V, MEASURE IIN OPEN GROUND APPLY 5.5 V APPLY VIN = 2.4 V, INA MEASURE IIH 151 OUTA А S1 B, C, S2, D 5.5 V **O**-**S**1 А, В C, S2, D в **S**1 A, C, S2, D UN UH с A, S1, B, D S2 OUTB VINO **S**2 C, D A, S1, B -11L SEE TEST TABLE D S2 A, S1, B, C OUTC IIN OOPEN VI, HL INC APPLY VIN = 0.4 V, MEASURE IIL VCD | S2 OUTD APPLY 5.5 V OPEN APPLY $I_{IN} = -10 \text{ mA}$ MEASURE VCD IN S1, B, C, S2, D Α **S**1 A, B, C, S2, D VCC1 GND 1 в A, S1, C, S2, D с A, S1, B, S2, D **S**2 A, S1, B, C, D 5.5 D A, S1, B, C, S2 (4.5 V FOR TESTING V_{CD})

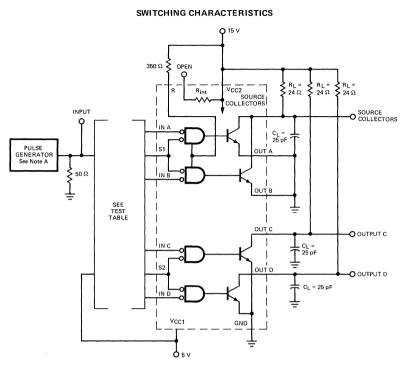
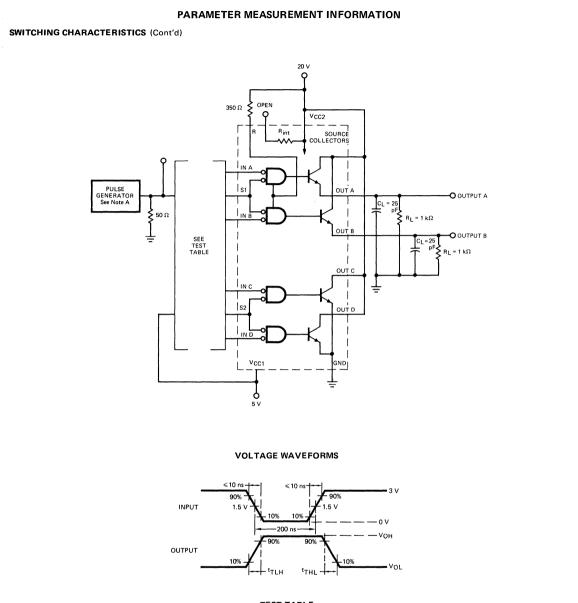

†Arrows indicate actual direction of current flow.

Fig. 5 VCD, IIN, IIH, AND IIL

†Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

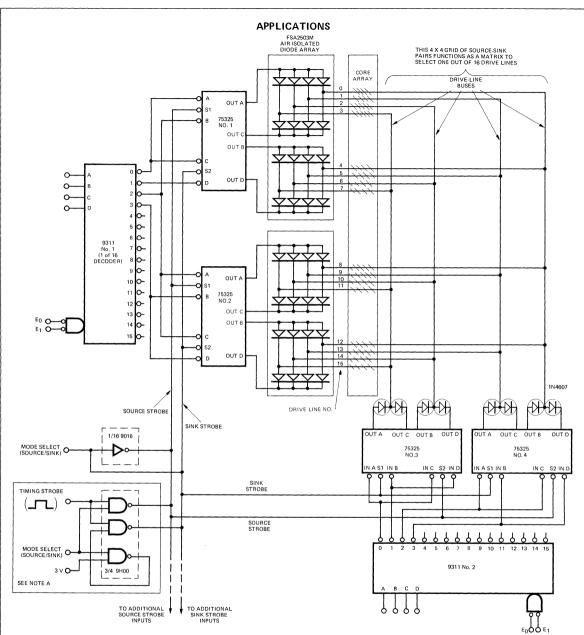


TEST	TABLE	
------	-------	--

OUTPUT UNDER TEST	INPUT	CONNECT TO 5 V
Courses and line to us	A and S1	B, C, D and S2
Source collectors	B and S1	A, C, D and S2
Sink Output C	C and S2	A, B, D and S1
Sink Output D	D and S2	A, B, C and S1
	Source collectors Sink Output C	Source collectors A and S1 B and S1 Sink Output C C and S2

NOTES: A. The pulse generator has the following characteristics: $Z_{out} = 50 \ \Omega$, duty cycle $\leq 1\%$. (f $\leq 50 \ kHz$). B. C_L includes probe and jig capacitance.

Fig. 9 SWITCHING TIMES



TEST TABLE							
PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5 V				
	Source Output A	A and S1	B, C, D, and S2				
^t TLH ^{and t} THL	Source Output B	B and S1	A, C, D, and S2				

NOTES: A. The pulse generator has the following characteristics: $Z_{out} = 50 \Omega$, duty cycle $\leq 1\%$. (f $\leq 50 \text{ kHz}$) B. CL includes probe and jig capacitance.

Fig. 10 TRANSITION TIMES OF SOURCE OUTPUTS

FAIRCHILD • 55325 • 75325

In memory-drive applications the 75325 (or for full-temperature operation, the 55325) can be connected in any of several ways. Typically, however, sources and sinks are arranged in pairs from which many drive-lines branch off as shown in Figure 11. Here each drive-line is served by a unique combination of two source/sink pairs so that a selection matrix is formed. To select drive-line 13, 9311 No. 1 must be set to 3 (with mode select HIGH), enabling source B of 75325 No. 2 to drive lines 12 through 15, and 9311 No. 2 must be set to 2, providing a sink at C of 75325 No. 4 for drive-line 13 only. Alternatively, to drive current in drive-line 13 in the opposite direction, only the mode-select voltage would be changed from HIGH to LOW. The size of such a matrix is limited only by the number of drive-lines that a source sink pair can serve. This number in turn depends on the capacitive and inductive load that each drive-line of the particular system imposes on the driver.

NOTE A: This optional mode-select and timing-strobe technique can be used in place of the 9N40 mode-select and 9311 timing-strobe when minimum time skew is desired.

Fig. 11 75325 USED AS A MEMORY DRIVER TO SELECT ONE OF SIXTEEN DRIVE LINES

8

FAIRCHILD • 55325 • 75325

APPLICATIONS (Cont'd)

EXTERNAL RESISTOR CALCULATION – A typical magnetic-memory word drive requirement is shown in Figure 12. A source-output transistor of one 75325 delivers load current (I_L). The sink-output transistor of another 75325 sinks this current.

The value of the external pull-up resistor (R_{ext}) for a particular memory application may be determined using the following equation: 16 [V_{CC2}(min) - V_S - 2.2]

$$R_{ext} = \frac{1}{I_L - 1.6 \left[V_{CC2(min)} - V_S - 2.9\right]}$$

where: R_{ext} is in $k\Omega$, (Equation 1) $V_{CC2}(min)$ is the lowest expected value of V_{CC2} in volts, V_S is the source output voltage in volts with respect to ground, I_1 is in mA.

The power dissipated in resistor Rext during the load current pulse duration is calculated using Equation 2.

$$P_{\text{Rext}} \approx \frac{I_{\text{L}}}{16} \left[V_{\text{CC2}(\text{min})} - V_{\text{S}} - 2 \right] \text{ where: } P_{\text{Rext}} \text{ is in mW.}$$
 (Equation 2)

After solving for Rext, the magnitude of the source collector current (ICS) is determined from Equation 3.

$$l_{CS} \approx 0.94 l_1$$
 where: l_{CS} is in mA.

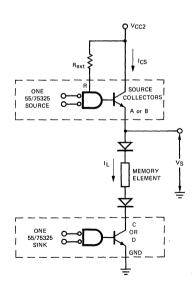
As an example, let $V_{CC2}(min) = 20$ V and $V_L = 3$ V while I_L of 500 mA flows. Using Equation 1, $\frac{16 (20 - 3 - 2.2)}{16 (20 - 3 - 2.2)}$

Ρ

 $R_{ext} = \frac{10(20 - 3 - 2.2)}{500 - 1.6(20 - 3 - 2.9)} = 0.5 \text{ k}\Omega$

and from Equation 2,

$$Rext \approx \frac{500}{16} [20 - 3 - 2] \approx 470 \text{ mW}$$


The amount of the memory system current source (ICS) from Equation 3 is:

 $I_{CS} \approx 0.94 (500) \approx 470 \text{ mA}$

In this example the regulated source-output transistor base current through the external pull-up resistor (R_{ext}) and the source gate is approximately 30 mA. This current and I_{CS} comprise I_L.

TYPICAL APPLICATION DATA

EXTERNAL RESISTOR CALCULATION (Cont'd)

NOTES: A. For clarity, partial logic diagrams of two 75325's are shown. B. Source and sink shown are in different packages.

Fig. 12

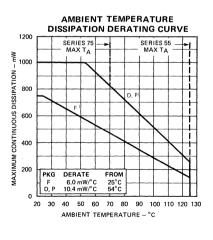


Fig. 13

(Equation 3)

55326 • 75326 • 55327 • 75327

MEMORY DRIVERS

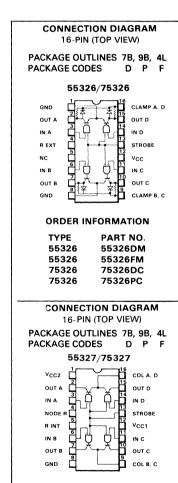
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The 55326, 55327, 75326 and 75327 are monolithic integrated circuit quad memory drivers. These devices accept standard TTL decoder input signals and provide high-current and high-voltage output levels suitable for driving magnetic memory elements. Output transistor selection is determined by using one of the four address inputs and the common timing strobe.

The 55326 and 75326 memory drivers can sink up to 600 mA and operate from a single 5 V supply.

The 55327 and 75327 memory switches can source or sink up to 600 mA and operate from two supplies; one of 5.0 V and the other from 4.5 V to 24 V. The 55327 and 75327 can function as either sink drivers or source drivers since the voltages at the output transistor terminals are capable of swinging between V_{CC2} and ground.

55326, 75326 PERFORMANCE


- QUAD POSITIVE OR SINK MEMORY DRIVERS
- 600 mA OUTPUT CURRENT SINK CAPABILITY
- 24 V OUTPUT CAPABILITY
- CLAMP VOLTAGE VARIABLE TO 24 V

55327, 75327 PERFORMANCE

- QUAD MEMORY SWITCHES
- 600 mA OUTPUT CURRENT CAPABILITY
- V_{CC2} DRIVE VOLTAGE VARIABLE TO 24 V
- OUTPUT CAPABLE OF SWINGING BETWEEN V_{CC2} AND GROUND

EASE OF DESIGN

- HIGH-REPETITION-RATE DRIVER COMPATIBLE WITH HIGH-SPEED MAGNETIC MEMORIES
- INPUTS COMPATIBLE WITH TTL DECODERS
- MINIMUM TIME SKEW BETWEEN STROBE AND OUTPUT-CURRENT RISE
- PULSE-TRANSFORMER COUPLING ELIMINATED
- DRIVE-LINE LENGTHS REDUCED

ORDER INFORMATION

TYPE	PART NO.
55327	55327DM
55327	55327FM
75327	75327DC
75327	75327PC

FAIRCHILD • 55326 • 75326 • 55327 • 75327

			55326					
ELECTRIC	AL CHARACTERISTICS: Rati	ngs apply over rec	ommended temperature	e range unless othe	erwise s	pecified.		,
SYMBOL	CHARACTERISTICS		CONDITIONS†		MIN	TYP††	MAX	UNITS
VIH	Input HIGH Voltage				2.0			V
V _{IL}	Input LOW Voltage						0.8	V
V _{CD}	Input Clamp Diode Voltage		$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} = -1$	0 mA, $T_A = 25^{\circ}C$		-1.0	-1.7	v
V _{OH}	Output HIGH Voltage		V _{CC1} = 4.5 V, I _{OUT} =	0	19	23		V
V _{SAT}	Saturation Voltage Sink Outputs		$V_{CC} = 4.5 V$ $I_{sink} \approx 600 mA$	Full Range			0.9	v
0/11		See Note 3	$T_A = 25^{\circ}C$		0.43	0.7		
V _{F(clamp)}	Output Clamp Diode, Forward Voltage		V _(clamp) ^{= 0, I} (clamp) T _A ⁼ 25°C	= −10 mA,			1.5	v
l _(clamp)	Output Clamp Diode Current,	One Output On	$I_{sink} = 50 \text{ mA}, T_A = 2$	25°C		5.0	7.0	mA
1	Input Current at Maximum	Address Inputs					1.0	mA
IN	Input Voltage	Strobe Inputs	V _{IN} = 5.5 V				4.0	
L	Input HIGH Current	Address Inputs					40	μA
ін	input high current	Strobe Inputs	$V_{\rm IN} = 2.4 V$				160	
1	Input LOW Current	Address Inputs				-1.0	-1.6	mA
'IL		Strobe Inputs	V _{IN} = 0.4 V			-4.0	-6.4	
ICC(off)	Supply Current, All Outputs	Off	All Inputs at 5.0 V, T _A	_ = 25°C		18	25	mA
I _{CC(on)}	Supply Current		$I_{sink} = 50 \text{ mA}, T_A = 2$	25°C		58	75	mA

75326

ELECTRICAL CHARACTERISTICS	atings apply over recommended temperature range unless otherw	ise specified.

SYMBOL	CHARACTERISTICS		CONDITIONS†		MIN	TYP††	MAX	UNITS
VIH	Input HIGH Voltage				2.0			V
VIL	Input LOW Voltage						0.8	V
V _{CD}	Input Clamp Diode Voltage		$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} = -1$	0 mA, T _A = 25°C		-1.0	-1.7	V
V _{OH}	Output HIGH Voltage		V _{CC1} = 4.5 V, I _{OUT} =	0	19	23		V
V _{SAT}	Saturation Voltage Sink (Dutputo	$V_{CC} = 4.5 V$	Full Range			0.9	v
	Saturation Voltage Sink Outputs		l _{sink} ≈ 600 mA See Note 3	$T_A = 25^{\circ}C$		0.43	0.75	Ĩ
V _{F(clamp)}	Output Clamp Diode, Forwar	d Voltage	$V_{(clamp)} = 0, I_{(clamp)} = -10 \text{ mA}, T_A = 25^{\circ}\text{C}$				1.5	v
l _(clamp)	Output Clamp Diode Current	, One Output On	$I_{sink} = 50 \text{ mA}, T_A = 25^{\circ}C$			5.0	7.0	mA
1	Input Current at Maximum Address Inputs						1.0	mA
IN	Input Voltage	Strobe Inputs	V _{IN} = 5.5 V				4.0	
	Input HIGH Current	Address Inputs					40	μA
ін	input mon current	Strobe Inputs	V _{IN} = 2.4 V				160	μΑ
1	Input LOW Current	Address Inputs				-1.0	-1.6	mA
4L	input LOW Current	Strobe Inputs	V _{IN} = 0.4 V			-4.0	-6.4	mA
ICC(off)	Supply Current, All Outputs	Off	All Inputs at 5.0 V, T _A	λ = 25°C		18	25	mA
ICC(on)	Supply Current		I _{sink} = 50 mA, T _A = 2	25°C		58	75	mA

 \dagger Unless otherwise noted, V_{CC} = 5.5 V, V_(clamp) = 24 V. See Figure 3. $\dagger\dagger$ All typical values are at T_A = 25°C.

NOTE 3: These characteristics must be measured using pulse techniques; t_W = 200 μ s, duty cycle \leq 2 %. NOTE 4: For these tests only one output is to be on at any one time.

SYMBOL	CHARACTERISTICS		CONDITIONS†		MIN	TYP††	МАХ	UNITS
V _{IH}	Input HIGH Voltage				2.0			v
VIL	Input LOW Voltage						0.8	v
V _{CD}	Input Clamp Diode Voltage		$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} = -10 \text{ m},$	А, Т _А = 25°С		-1.0	-1.7	v
l _(off)	Collectors Terminal Off-state Current		V _{CC1} = 4.5 V, V _(col) = 24 V	Full Range T _A = 25°C			500 150	μA
V _{SAT}	Saturation Voltage		$V_{CC1} = 4.5 V, V_0 = 0$ I _{source} $\approx -600 mA$	Full Range			0.9	v
			See Notes 3 and 4	T _A = 25°C		0.43	0.7	L
IN		Address Inputs Strobe Inputs	V _{IN} = 5.5 V				1.0 4.0	mA
Iн	Input HIGH Current	Address Inputs Strobe Inputs	V _{IN} = 2.4 V				40 160	μA
ΊL	Input LOW Current	Address Inputs Strobe Inputs	$V_{IN} = 0.4 V$			-1.0 -4.0	-1.6 -6.4	mA
I _{CC(off)}	Supply Current, All Outputs Off	From V _{CC1} From V _{CC2}	All Inputs at 5.0 V, T _A = 25°C			7.0 13	10 20	mA
CC(on)	Supply Current	From V _{CC1} From V _{CC2}	$I_{source} = -50 \text{ mA}, V_{(col)} = T_A = 25^{\circ}\text{C}, \text{ See Note } 3$	= 6.0 V		8.0 36	12 55	mA

75327

ELECTRICAL CHARACTERISTICS: Ratings apply over recommended temperature range unless otherwise specified.

SYMBOL	CHARACTERISTICS		CONDITIONS†	CONDITIONS†		TYP††	MAX	UNITS
VIH	Input HIGH Voltage				2.0			V
VIL	Input LOW Voltage						0.8	V
V _{CD}	Input Clamp Diode Voltage		$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} = -10 \text{ mA}$, T _A = 25°C		-1.0	-1.7	v
l _(off)	Collectors Terminal Off-state Current		$V_{CC1} = 4.5 V,$ $V_{(col)} = 24 V$	Full Range T _A = 25°C			200 200	μA
V _{SAT}	Saturation Voltage		$V_{CC1} = 4.5 \text{ V}, V_0 = 0$ I _{source} $\approx -600 \text{ mA}$	Full Range			0.9	v
			See Notes 3 and 4	T _A = 25°C		0.43	0.75	
I	Input Current at Maximum	Address Inputs					1.0	mA
IN	Input Voltage Strobe Input	Strobe Inputs	V _{IN} = 5.5 V				4.0	
1		Address Inputs					40	
Чн	Input HIGH Current	Strobe Inputs	V _{IN} = 2.4 V				160	μΑ
	Innut I OW/ Current	Address Inputs				-1.0	-1.6	mA
4L	Input LOW Current	Strobe Inputs	V _{IN} = 0.4 V			-4.0	-6.4	mA
	Supply Current, All Outputs Off From VCC1					7.0	10	mA
CC(off)	Supply Current, All Outputs Of	From V _{CC2}	All Inputs at 5.0 V, $T_A = 25^{\circ}C$			13	20	
	Supply Current	Current From V _{CC1}		= -50 mA, V _(col) = 6.0 V 5°C, See Note 3		8.0	12	mA
CC(on)		From V _{CC2}	$T_A = 25^{\circ}C$, See Note 3			36	55	

 \dagger Unless otherwise noted, V_CC = 5.5 V, V(clamp) = 24 V. See Figure 3. $\dagger\dagger$ All typical values are at T_A = 25°C.

NOTE 3: These characteristics must be measured using pulse techniques; tw = 200 μ s, duty cycle \leq 2 %. NOTE 4: For these tests only one output is to be on at any one time.

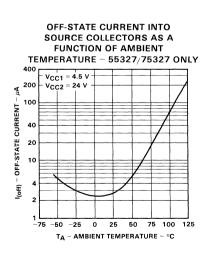
55326 • 75326

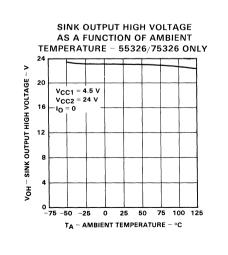
SWITCHING CHARACTERISTICS: $V_{CC1} = 5.0 \text{ V}$, $T_A = 25^{\circ}C$ (See Test Circuit Figure 5)

		1	T	· · · · · · · · · · · · · · · · · · ·	1	
SYMBOL	CHARACTERISTICS	CONDITIONS (See Note 4)	MIN	TYP	MAX	UNITS
^t PLH	Propagation Delay Time to A, B, C or D				50	ns
^t PHL				25	50	
^t TLH	Transition Time to A. B. C or D	$V_{S} = V_{(clamp)} = 15 V, R_{L} = 24 \Omega,$		7.0	15	ns
^t THL		C _L = 25 pF		10	20	
t _s	Storage Time to A, B, C or D			24	35	ns
v _{он}	Output HIGH Voltage	$V_{S} = V_{(clamp)} = 24 V, R_{L} = 47 \Omega,$ $C_{L} = 25 \text{ pF}, I_{sink} \approx 500 \text{ mA}$	V _S -25			mV

55327 • 75327

SWITCHING CHARACTERISTICS: $V_{CC1} = 5.0 \text{ V}$, $T_A = 25^{\circ}C$ (See Test Circuit Figure 5)


and the second se						
SYMBOL	CHARACTERISTICS	CONDITIONS (See Note 4)	MIN	TYP	MAX	UNITS
^t PLH	Propagation Delay Time to	$V_{\rm S} = V_{\rm CC2} = 15 \text{ V}, \text{ R}_{\rm L} = 24 \Omega,$		35	55	ns
^t PHL	Collectors A,D or B,C	$C_L = 25 \text{ pF}$, See Figure 5 and Note 5		30	55	
^t TLH	Transition Time to A.B.C or D	$V_{(col)} = V_{CC2} = 20 V, R_{L} = 100 \Omega,$		30		ns
^t THL		$C_L = 25 \text{ pF}$, See Figure 6 and Note 5		10		
v _{он}	Output HIGH Voltage to Collectors A,D or B,C	$ \begin{array}{l} V_S = V_{CC2} = 24 \; V, \; R_L = 47 \; \Omega, \\ C_L = 24 \; pF, \; I_{Sink} \approx 500 \; \text{mA}, \\ \text{See Figure 5 and Note 5} \end{array} $	V _S -25			mV


 \dagger Unless otherwise noted, V_CC = 5.5 V, V(clamp) = 24 V. See Figure 3. $\dagger\dagger$ All typical values are at T_A = 25°C.

NOTE 3: These characteristics must be measured using pulse techniques; tw = 200 μ s, duty cycle \leq 2 %. NOTE 4: For these tests only one output is to be on at any one time.

NOTE 5: A 350 Ω resistor is connected between node R (pin 4) and V_{CC2} (pin 1) with R_{int} (pin 5) open.

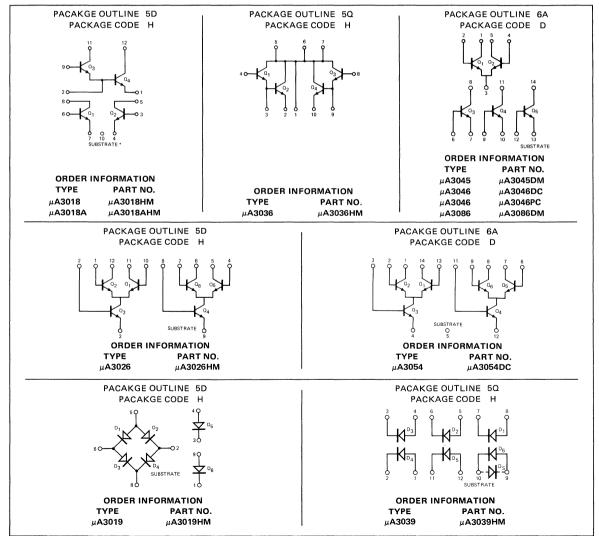
TYPICAL PERFORMANCE CURVES

		ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
		LINEAR INDUSTRY CROSS REFERENCE	2
		QUALITY, RELIABILITY AND HI REL PROCESSING	3
		VOLTAGE COMPARATORS	4
		DATA ACQUISITION	5
	•	LINE CIRCUITS – DRIVERS, RECEIVERS AND TRANSCEIVERS	6
	\square	PERIPHERAL AND DISPLAY DRIVERS	7
		MEMORY INTERFACE	8
6	$ \rangle$	TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
		DATA TRANSMISSION INFORMATION	10
		ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
	Y	FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12

TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS

Transistor and Diode Arrays

μA3018	Matched Monolithic Transistor Array9-	-3
μA3018A	Matched Monolithic Transistor Array	
μA3019	Diode Array9-	
μA3026	Transistor Array9-	-3
μA3036	Transistor Array9-	-3
μA3039	Diode Array9-	-3
μA3045	Transistor Array9-	-3
μA3046	Transistor Array9-	-3
μA3054	Transistor Array9-	-3
μA3086	Transistor Array9-	-3
μA726	Temperature-Controlled Differential Pair	23


Special Functions

μΑ555	Single Timing Circuit) -26
μΑ556	Dual Timing Circuit	}-31
μA2240	Programmable Timer/Counter 9	9-36
μA7391	DC Motor Speed Control)-47
μA7392	DC Motor Speed Control 9)- 57

μA3018 • μA3018A • μA3019 • μA3026 • μA3036 μA3039 • μA3045 • μA3046 • μA3054 • μA3086 TRANSISTOR AND DIODE ARRAYS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – Fairchild Transistor and Diode Arrays consist of general purpose integrated circuit devices constructed on a single substrate, using the Fairchild Planar^{*} epitaxial process. These arrays are arranged to offer maximum flexibility in circuit design for applications from dc to 120 MHz. Excellent transistor and diode matching and temperature tracking allow circuit techniques unavailable when using discrete devices. Multiple devices in one package permit a greater packing density and cost saving than with individually packaged transistors.

- PRECISION MONOLITHIC MATCHING
- DESIGN FLEXIBILITY
- CUSTOM APPLICATIONS

*Planar is a patented Fairchild process.

FAIRCHILD • µA30XX SERIES

µA3018/3018A

- MATCHED MONOLITHIC GENERAL PURPOSE TRANSISTORS
- hFE MATCHED ± 10%
- V_{BE} MATCHED ±2 mV 3018A (±5 mV 3018)
- OPERATION FROM DC TO 120 MHz
- WIDE OPERATING CURRENT RANGE
- 3018A PERFORMANCE CHARACTERISTICS CONTROLLED FROM 10 µA TO 10 mA
- LOW NOISE FIGURE 3.2 dB TYPICAL AT 1 kHz
- FULL MILITARY TEMPERATURE RANGE CAPABILITY (-55 TO +125°C)

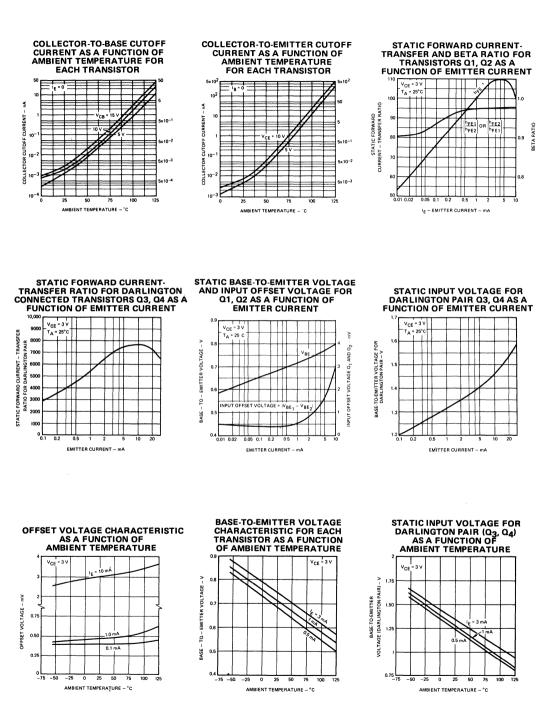
APPLICATIONS

- General Use in Signal Processing Systems in dc Through VHF Range
- Custom Design Differential Amplifiers
- Temperature Compensated Amplifiers

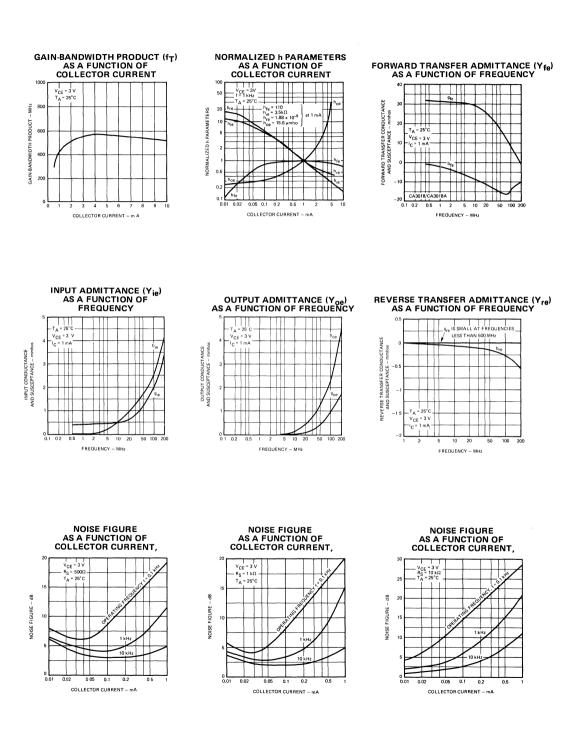
Power Dissipation (Note 1)	μ A3018	μ Α3018Α
Any One Transistor	300 mW	300 m
Total Package	450 mW	450 m
Temperature Range		
Operating Temperature	-55°C to +125°C	–55°C to +125°
Storage Temperature	65°C to +200°C	-65°C to +200°
The following ratings apply for each transistor in the device:		
Collector-to-Emitter Voltage, VCEO	15 V	15
Collector-to-Base Voltage, VCBO	20 V	30
Collector-to-Substrate Voltage, VCIO (Note 2)	20 V	40
Emitter-to-Base Voltage, VEBO	5 V	5
Collector Current, IC	50 mA	50 n

$\textbf{FAIRCHILD} \bullet \mu \textbf{A30XX} \textbf{ SERIES}$

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
СВО	Collector Cutoff Current	V _{CB} = 10 V, I _E = 0		0.002	100	nA
ICEO	Collector Cutoff Current	V _{CE} = 10 V, I _B = 0		See Curve	5.0	μA
CEOD	Collector Cutoff Current Darlington Pair	V _{CE} = 10 V, I _B = 0				μA
V(BR)CEO	Collector-to-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	15	24		V
V(BR)CBO	Collector-to-Base Breakdown Voltage	I _C = 10 μA, I _E = 0	20	60		V
V(BR)EBO	Emitter-to-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	5.0	7.0		V
V(BR)CIO	Collector-to-Substrate Breakdown Voltage	$I_{C} = 10 \mu A, I_{CI} = 0$	20	60		V
V _{CES}	Collector-to-Emitter Saturation Voltage	I _B = 1 mA, I _C = 10 mA		0.23		v
hfe	Static Forward Current Transfer Ratio	$V_{CE} = 3 V \begin{cases} I_C = 10 \text{ mA} \\ I_C = 1 \text{ mA} \\ I_C = 10 \mu \text{ A} \end{cases}$	30	100 100 54		
	Magnitude of Static-Beta Ratio (Isolated Transistors \mathbf{Q}_1 and \mathbf{Q}_2)	V _{CE} = 3 V, I _{C1} = I _{C2} = 1 mA	0.9	0.97		
hfed	Static Forward Current Transfer Ratio Darlington Pair ($O_3 \& O_4$)	$V_{CE} = 3 V \begin{cases} I_C = 1 \text{ mA} \\ I_C = 100 \mu \text{ A} \end{cases}$	1500	5400		
V _{BE}	Base-to-Emitter Voltage	$V_{CE} = 3 V \begin{cases} I_E = 1 \text{ mA} \\ I_E = 10 \text{ mA} \end{cases}$		0.715 0.800		v
V _{BE1} V _{BE2}	Input Offset Voltage	V _{CE} = 3 V, I _E = 1 mA		0.48	5.0	mV
$\frac{\Delta V_{BE}}{\Delta T}$	Temperature Coefficient: Base-to-Emitter Voltage Ω_1, Ω_2	V _{CE} = 3 V, I _E = 1 mA		-1.9		mV/°C
V _{BED} (V ₉₋₁)	Base (Q ₃)-to-Emitter (Q ₄) Voltage-Darlington Pair	$V_{CE} = 3 V \begin{cases} I_E = 10 \text{ mA} \\ I_E = 1 \text{ mA} \end{cases}$		1.46 1.32		v
$\frac{\Delta V_{BED}}{\Delta T}$	Temperature Coefficient: Base-to-Emitter Voltage Darlington Pair-Q ₃ ,Q ₄	V _{CE} = 3 V, I _E = 1 mA		4.4		['] mV/°C
ν _{ΒΕ1} -ν _{ΒΕ2} ΔΤ	Temperature Coefficient: Magnitude of Input-Offset Voltage	V _{CC} = +6 V, V _{EE} = -6 V		10		μV/°C
NF	Low Frequency Noise Figure	f = 1 kHz, V_{CE} = 3 V, I_C = 100 μ A Source resistance = 1 k Ω		3.25		dB
h _{fe} h _{ie} h _{oe} h _{re}	Low Frequency, Small-Signal Equivalent Circuit Forward Current-Transfer Ratio Short Circuit Input Resistance Open Circuit Output Conductance Open Circuit Reverse Voltage-Transfer Ratio	Characteristics: f = 1 kHz, V _{CE} = 3 V, I _C = 1 mA		110 3.5 15.6 1.8×10 ⁻⁴		kΩ µmho
Y _{fe} Y _{ie} Y _{oe} Y _{re}	Admittance Characteristics: Forward Transfer Admittance Input Admittance Output Admittance Reverse Transfer Admittance	f = 1 MHz, V _{CE} = 3 V, I _C = 1 mA		31—j 1.5 0.3+j 0.04 0.001+j 0.03 See Curve		mmho mmho mmho mmho
fT	Gain-Bandwidth Product	V _{CE} = 3 V, I _C = 3 mA		500		MHz
C _{eb}	Emitter-to-Base Capacitance	V _{EB} = 3 V, I _E = 0		0.6		pF
C _{cb}	Collector-to-Base Capacitance	V _{CB} = 3 V, I _C = 0		0.58		pF
CCI	Collector-to-Substrate Capacitance	V _{Cl} = 3 V, I _C = 0		2.8		pF


NOTES:

1. Derate at 5 mW/°C for $T_A>85^\circ C.$ 2. Substrate must be connected to the most negative voltage to maintain normal operation.


FAIRCHILD • μ A30XX SERIES

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
СВО	Collector Cutoff Current	V _{CB} = 10 V, I _E = 0		0.002	40	nA
CEO	Collector Cutoff Current	V _{CE} = 10 V, I _B = 0		See Curve	0.5	μA
CEOD	Collector Cutoff Current Darlington Pair	V _{CE} = 10 V, I _B = 0			5.0	μA
V(BR)CEO	Collector-to-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	15	24		v
V(BR)CBO	Collector-to-Base Breakdown Voltage	$I_{C} = 10 \mu A, I_{E} = 0$	30	60		v
V _{(BR)EBO}	Emitter-to-Base Breakdown Voltage	$I_{E} = 10 \mu A, I_{C} = 0$	5.0	7.0		v
V(BR)CIO	Collector-to-Substrate Breakdown Voltage	$I_{C} = 10 \ \mu A, I_{CI} = 0$	40	60		V
V _{CES}	Collector-to-Emitter Saturation Voltage	$I_{B} = 1 \text{ mA}, I_{C} = 10 \text{ mA}$		0.23	0.5	v
		$I_{\rm C} = 10 \rm mA$	50	100		
hfe	Static Forward Current Transfer Ratio	$V_{CE} = 3 V \begin{cases} I_C = 10 \text{ mA} \\ I_C = 1 \text{ mA} \\ I_C = 10 \mu \text{A} \end{cases}$	60	100		
		(I _C = 10 μA	30	54		
	Magnitude of Static-Beta Ratio (Isolated Transistors Q_1 and Q_2)	$V_{CE} = 3 V, I_{C1} = I_{C2} = 1 mA$	0.9	0.97		
h	Static Forward Current Transfer Ratio	$V_{\rm LC} = 1 \rm{mA}$	2000	5400		
^h FED	Darlington Pair (Q ₃ & Q ₄)	$V_{CE} = 3 V \begin{cases} I_C = 1 \text{ mA} \\ I_C = 100 \mu\text{A} \end{cases}$	1000	2800		
		$V_{CE} = 3 V \begin{cases} I_E = 1 mA \\ I_E = 10 mA \end{cases}$	0.600	0.715	0.800	v
V _{BE}	Base-to-Emitter Voltage	VCE - 3 V IE = 10 mA		0.800	0.900	v
V _{BE1} V _{BE2}	Input Offset Voltage	V _{CE} = 3 V, I _E = 1 mA		0.48	2.0	m∨
$\frac{\Delta V_{BE}}{\Delta T}$	Temperature Coefficient: Base-to-Emitter Voltage Q_1, Q_2	V _{CE} = 3 V, I _E = 1 mA		-1.9		mV/°C
VBED	Base (Q ₃)-to-Emitter (Q ₄)	(I⊏ = 10 mA		1.46	1.60	
(V ₉₋₁)	Voltage-Darlington Pair	$V_{CE} = 3 V \begin{cases} I_E = 10 \text{ mA} \\ I_E = 1 \text{ mA} \end{cases}$	1.10	1.32	1.50	V
$\frac{\Delta V_{BED}}{\Delta T}$	Temperature Coefficient: Base-to-Emitter Voltage Darlington Pair-Q ₃ ,Q ₄	V _{CE} = 3 V, I _E = 1 mA		4.4		mV/°C
V _{BE1} -V _{BE2} ΔT	Temperature Coefficient: Magnitude of Input-Offset Voltage	V _{CC} = +6 V, V _{EE} = -6.V		10		µV/°C
NF	Low Frequency Noise Figure	$f = 1 \text{ kHz}, V_{CE} = 3 \text{ V}, I_{C} = 100 \mu$ Source resistance = 1 k Ω	A	3.25		dB
	Low Frequency, Small-Signal Equivalent Circuit	Characteristics:				
h _{fe}	Forward Current-Transfer Ratio			110		
h _{ie}	Short Circuit Input Resistance	f = 1 kHz, V _{CE} = 3 V, I _C = 1 mA		3.5		kΩ
h _{oe} h _{re}	Open Circuit Output Conductance Open Circuit Reverse Voltage-Transfer Ratio			15.6 1.8×10 ⁴		μmho
		· · · · · · · · · · · · · · · · · · ·		1.0×10		+
Y _{fe}	Admittance Characteristics: Forward Transfer Admittance			31 <i>—</i> j 1.5		mmho
Yie .	Input Admittance	f = 1 MHz, V _{CE} = 3 V, I _C = 1 mA		0.3+j 0.04		mmho
Y _{oe}	Output Admittance		`	0.001+j 0.03		mmho
Yre	Reverse Transfer Admittance			See Curve		mmho
fT	Gain-Bandwidth Product	V _{CE} = 3 V, I _C = 3 mA		500		MHz
C _{eb}	Emitter-to-Base Capacitance	V _{EB} = 3 V, I _E = 0		0.6		pF
C _{cb}	Collector-to-Base Capacitance	V _{CB} = 3 V, I _C = 0		0.58		pF
CCI	Collector-to-Substrate Capacitance	$V_{CI} = 3 V, I_{C} = 0$		2.8		pF

TYPICAL PERFORMANCE CURVES FOR µA3018/3018A

TYPICAL AC CHARACTERISTICS FOR EACH TRANSISTOR

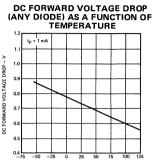
μA3019

- EXCELLENT DIODE MATCHING 1 mV TYP.
- LOW REVERSE LEAKAGE CURRENT 5 mA TYP.

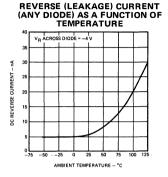
APPLICATIONS

- Modulator
- Mixer
- Balanced Modulator
- Analog Switch
- Diode Gate for Chopper-Modulator Applications

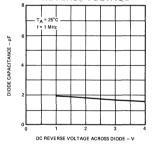
ABSOLUTE MAXIMUM RATINGS

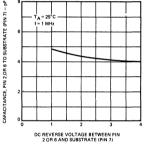

Power Dissipation	
For each Diode	20 mW
Total For Device	120 mW
Temperature Range	
Storage Temperature	-65° C to $+200^{\circ}$ C
Operating Temperature	-55°C to +125°C
Voltage Between Any Pin and Pin 7 (Note 1)	18 V

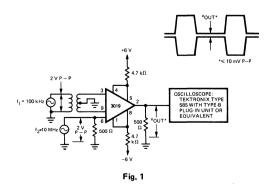
ELECTRICAL CHARACTERISTICS FOR μ A3019: For each diode, T_A = 25°C unless otherwise specified

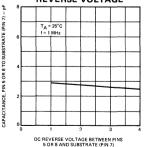

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
VF	DC Forward Voltage Drop	DC Forward Current, I _F = 1 mA	-	0.73	0.78	v
BV	DC Reverse Breakdown Voltage (Any Diode)	DC Reverse Current, $I_R = -10 \ \mu A$	4.0	6.0	-	v
₿,V _S	DC Reverse Breakdown Voltage Between any Diode Unit and Substrate	DC Reverse Current, $I_R = -10 \mu A$	25	80	_	v
IR	DC Reverse (Leakage) Current	DC Reverse Voltage, V _R =4 V	-	0.0055	10	μA
IR	DC Reverse (Leakage) Current Between any Diode Unit and Substrate	DC Reverse Voltage, V _R =4 V	-	0.010	10	μΑ
V _{F1} - V _{F2}	Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of any Two Diode Units)	DC Forward Current, I _F = 1 mA	_	1.0	5.0	mV
CD	Single Diode Capacitance	Frequency, f = 1 MHz DC Reverse Voltage, V _R = -2 V Frequency, f = 1 MHz	-	1.8	-	pF
C _{DQ-I}	Diode Quad-to-Substrate Capacitance	DC Reverse Voltage, V _R between Pins 2,5,6, or 8 of Diode Quad and Pin 7 (Substrate) = -2 V Pin 2 or 6 to Pin 7	_	4.4	_	pF
		Pin 5 or 8 to Pin 7	_	2.7	-	pF
VS	Series Gate Switching Pedestal Voltage	See Figure 1	-	10	-	mV

NOTE 1. Substrate (Pin 7) must be connected to the most negative potential.


TYPICAL PERFORMANCE CURVES FOR μ A3019




DIODE CAPACITANCE (ANY DIODE) AS A FUNCTION OF REVERSE VOLTAGE


DIODE QUAD-TO-SUBSTRATE CAPACITANCE AS A FUNCTION OF REVERSE VOLTAGE

SERIES GATE SWITCHING TEST SETUP

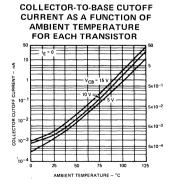
DIODE QUAD-TO-SUBSTRATE CAPACITANCE AS A FUNCTION OF REVERSE VOLTAGE

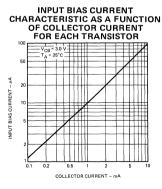
FAIRCHILD • µA30XX SERIES

μΑ3026	/3054	
 LOW INPUT OFFSET VOLTAGE - ±5 mV WIDEBAND OPERATION INDEPENDENTLY ACCESSIBLE INPUTS AND OUTPUTS TWO MATCHED DIFFERENTIAL AMPLIFIERS 		
 APPLICATIONS Dual Sense Amplifiers Dual Schmitt Triggers Multifunction Combinations – RF/Mixer/Oscillator; Converter/IF IF Amplifiers (Differential and/or Cascode) Product Detectors Doubly Balanced Modulators and Demodulators 	 Balanced Quadrature Detectors Cascade Limiters Synchronous Detectors Pairs of Balanced Mixers Synthexizer Mixers Balanced (Push-Pull) Cascode Amplifie 	ers
ABSOLUTE MAXIMUM RATINGS (For Each Transistor)		
Power Dissipation (Note 1)	μ A3054	μ A3026
Any One Transistor	300 mW 600 mW	300 mW
Total Package Temperature Range	600 mw	750 mW
Operating Temperature	55° C to +125° C	0°C to +85°C
Storage Temperature	-65°C to +200°C	-25°C to +85°C
The following ratings apply for each transistor in the device		
Collector-to-Emitter Voltage, VCEO		15 V
Collector-to-Base Voltage, VCBO		20 V
Collector-to-Substrate Voltage, VCIO (Note 2)		20 V
Emitter-to-Base Voltage, VEBO		5 V 50 mA
Collector Current, IC		50 MA

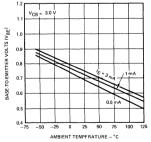
ELECTRICAL CHARACTERISTICS FOR μ A3026/3054: T_A = 25°C unless otherwise specified

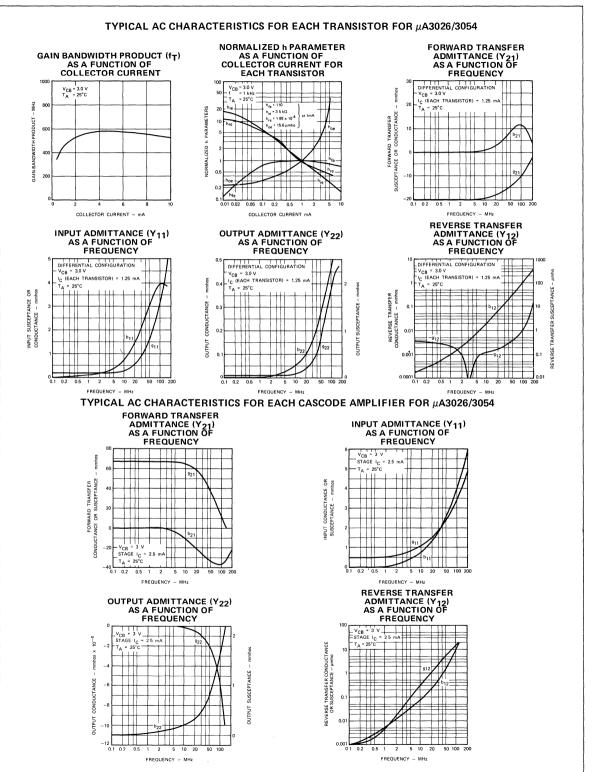
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	түр	МАХ	UNITS
	For Each Differential Amplifier					
VIO	Input Offset Voltage		-	0.45	5	mV
10	Input Offset Current Input Bias Current	V _{CB} = 3 V	_	0.3 10	2 24	μA μA
¹ C(Q ₁) or ¹ C(Q ₅)	Quiescent Operating		_	0.98 to	24	<i>™</i> ~
$^{1}C(Q_{2})$ $^{1}C(Q_{6})$	Current Ratio	$IE(Q_3) = IE(Q_4) = 2 mA$	}	1.02	-	-
ΔΙνιοΙ	Temperature Coefficient		-	1,1	_	μV/°C
ΔΤ	Magnitude of Input-Offset Voltage		-	1.1		μν/ C
	For Each Transistor					
VBE	DC Forward Base-to-	$V_{CB} = 3 V I_{C} = 50 \mu A$	-	0.630	0.700	
	Emitter Voltage	1 mA	-	0.715	0.800	V -
		3 mA 10 mA	-	0.750 0.800	0.850 0.900	
ΔV _{BE}	Temperature Coefficient of Base	$V_{CB} = 3 V, I_{C} = 1 mA$	_	-1.9	0.900	mV/°C
ΔΤ	to-Emitter Voltage			1.5		
ГСВО	Collector-Cutoff Current	V _{CB} = 10 V, I _E = 0	-	0.002	100	nA
V(BR)CEO	Collector-to-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	15	24	-	v
V _(BR) CBO	Collector-to-Base Breakdown Voltage	ι _C = 10 μA, Ι _E = 0	20	60	-	v
V(BR)CIO	Collector-to-Substrate Breakdown Voltage	I _C = 10 μA, I _{CI} = 0	20	60	-	v
V(BR)EBO	Emitter-to-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, I_{C} = 0$	5	7	_	V

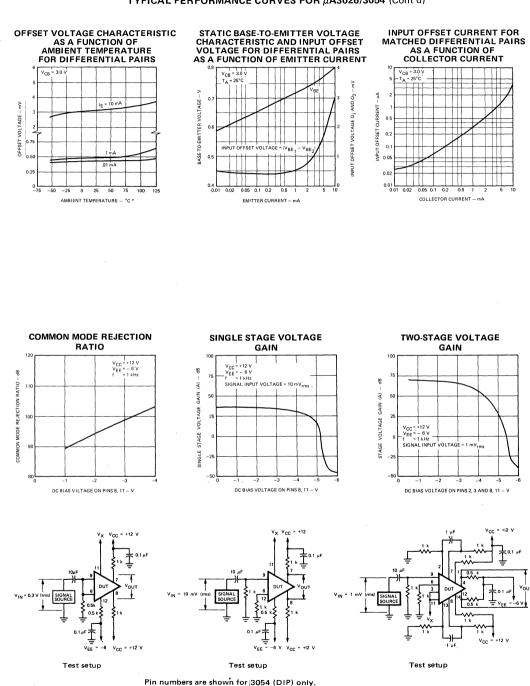

NOTES


I E3
 For T_A > 55°C; 3026 derates at 5 mW/°C and 3054 at 6.67 mW/°C
 The collector of each transistor of the 3026 and 3054 is isolated from the substrate by an integral diode. Substrate must be connected to the most negative voltage to maintain normal operation.

FAIRCHILD • µA30XX SERIES


SYMBOL	CHARACTERISTICS (See Test Circuits)	CONDITIONS	MIN	ТҮР	МАХ	UNITS
CMRR	Common-Mode Rejection Ratio for Each Amplifier	V _{CC} = 12 V		100	-	dB
AGC	AGC Range, One Stage	V _{EE} = -6 V	-	75	-	dB
AV	Voltage Gain, Single Stage Double-Ended Output	V _x = -3.3 V	-	32		dB
AGC	AGC Range, Two Stage	f = 1 kHz	-	105	-	dB
AV	Voltage Gain, Two Stage Double-Ended Output			60		dB
	Low-Frequency. Small-Signal Equivalent-Circuit Characteristics (for Single Transistor):					
h _{fe}	Forward Current-Transfer Ratio		-	110	-	- 1
h _{ie}	Short Circuit Input Resistance	$f = 1 \text{ kHz}, V_{CE} = 3 \text{ V},$	-	3.5	-	kΩ
h _{oe}	Open Circuit Output Conductance	$I_C = 1 \text{ mA}$	-	15.6	-	µmho
h _{re}	Open Circuit Reverse Voltage-Transfer Ratio	_	-	1.8×10 ⁻⁴	_	- 1
NF	1 Noise Figure (for Single Transistor)	f = 1 kHz, V _{CE} = 3 V	_	3.25	_	dB
fT	Gain-Bandwidth Product (for Single Transistor)	$V_{CE} = 3 V, I_{C} = 3 mA$	_	550	-	MHz
	Admittance Characteristics; Differential Circuit Configuration (for Each Amplifier):					
^y 21	Forward Transfer Admittance	V _{CB} = 3 V	-	—20+j 0	-	mmho
Y11	Input Admittance	Each Collector	-	0.22+j 0.1	-	mmho
¥22	Output Admittance	I _C ≈ 1.25 mA	- 1	0.01+j 0	— .	mmho
^y 12	Reverse Transfer Admittance	f = 1 MHz	-	—0.003+j 0		mmho
	Admittance Characteristics; Cascode Circuit Configuration (for Each Amplifier):					
Y21	Forward Transfer Admittance	V _{CB} = 3 V	-	68-j 0	-	mmho
Y11	Input Admittance	Total Stage	-	0.55+j 0	-	mmho
¥22	Output Admittance	IC ≈ 2.5 mA	-	0+j 0.02	-	mmho
^y 12	Reverse Transfer Admittance	f = 1 MHz	-	0.004-j 0.005		μmho
NF	Noise Figure	f = 100 MHz	-	8	-	dB

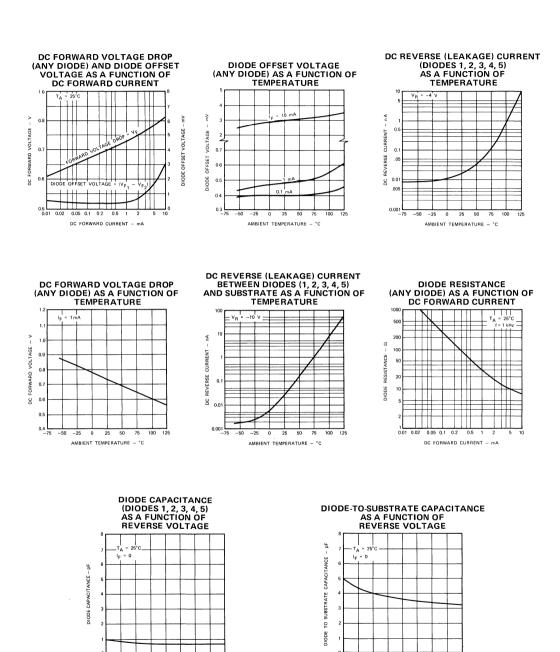

TYPICAL PERFORMANCE CURVES FOR µA3026/3054



TYPICAL PERFORMANCE CURVES FOR µA3026/3054 (Cont'd)

μΑ3036	
MATCHED TRANSISTOR PERFORMANCE LOW NOISE PERFORMANCE 200 MHz GAIN BANDWIDTH PRODUCT	
APPLICATIONS Stereo Phonograph Preamplifiers Low level Stereo and Single Channel Amplifier Stages Low noise, Emitter-follower Differential Amplifiers Operational Amplifier Drivers 	
ABSOLUTE MAXIMUM RATINGS (For Each Transistor)	
Power Dissipation	
Any One Transistor	300 mW
Total For Array	300 mW
Temperature Range	
Operating Temperature	–55°C to +125°C
Storage Temperature	-65°C to +200°C
The following ratings apply for each transistor in the array	
Collector-to-Emitter Voltage, V _{CEO}	15 V
Collector-to-Base Voltage, VCBO	30 V
Emitter-to-Base Voltage, VEBO	5 V
Collector Current, IC	50 mA

ELECTRICAL CHARACTERISTICS FOR μ A3036: T_A = 25°C unless otherwise specified


SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	МАХ	UNITS
ICBO ICEO V(BR)CEO V(BR)CBO V(BR)EBO	For Each Transistor (Q ₁ , Q ₂ , Q ₃ , Q ₄) Collector Cutoff Current Collector Cutoff Current. Collector-to-Emitter Breakdown Voltage Collector-to-Base Breakdown Voltage Emitter-to-Base Breakdown Voltage	$V_{CB} = 5 V, I_{E} = 0$ $V_{CE} = 15 V, I_{B} = 0$ $I_{C} = 1 mA, I_{B} = 0$ $I_{C} = 10 \mu A, I_{E} = 0$ $I_{E} = 10 \mu A, I_{C} = 0$	 15 30 5.0	 20 44 6.0	0.5 5.0 	μΑ μΑ V V V
hFE	For Either Input Transistor (Q ₁ or Q ₃) Static Forward Current-Transfer Ratio	IC1 or IC3 = 1 mA	30	82	-	_
V(BR)EBO(D) ^h FE(D)	For Either Darlington Pair (Q ₁ , Q ₂ or Q ₃ , Q ₄) Emitter-to-Base Breakdown Voltage Static Forward Current-Transfer Ratio	$\begin{vmatrix} I_{E2} \text{ or } I_{E4} = 10 \ \mu\text{A} \\ I_{C1} + I_{C2} \\ \text{or} \\ I_{C3} + I_{C4} \end{vmatrix} = 1 \ \text{mA}$	10 1000	12.6 4540	-	v -
h _{fe} h _{ie} h _{oe} h _{re}	For Each Input Transistor (Q ₁ or Q ₃) Short Circuit Forward Current-Transfer Ratio Short Circuit Input Resistance Open Circuit Output Conductance Open Circuit Reverse Voltage-Transfer Ratio	f = 1 kHz I _{C1} or I _{C3} = 1 mA		82 2.6 7.0 9.8 × 10 ⁻⁵	 	_ kΩ µmho _
h _{fe} (D) h _{ie} (D) h _{oe} (D) h _{re} (D)	For Either Darlington Pair (Q ₁ , Q ₂ or Q ₃ , Q ₄) Short Circuit Forward Current-Transfer Ratio Short Circuit Input Resistance Open Circuit Output Conductance Open Circuit Reverse Voltage-Transfer Ratio	$\begin{cases} f = 1 \text{ kHz} \\ IC1 + IC2 \\ or \\ IC3 + IC4 \end{cases} = 1 \text{ mA}$		1300 82 108 2.7 × 10 ⁻³		 kΩ μmho
E _N	Noise Voltage	f = 100 Hz f = 1 kHz f = 10 kHz		0.2 0.05 0.012	3.0 0.3 0.1	<u>μ</u> ν (rı √f(H
Yfe Yie Yoe Yre	For Either Input Transistor (Q ₁ or Q ₃) Forward Transfer Admittance Input Admittance (Output Short Circuited) Output Admittance (Input Short Circuited) Reverse Transfer Admittance (Input Short-Circuited)	f = 50 MHz I _{C1} or I _{C3} = 2 mA		0.68 + j 7.9 4.4 + j 5.95 1.94 + j 2.64 Negligible		mmha mmha mmha mmha
^Y ie(D) Yoe(D) f _T (D)	For Either Darlington Pair (Q ₁ , Q ₂ , or Q ₃ , Q ₄) Input Admittance (Output Short Circuited) Output Admittance (Input Short Circuited) Gain-Bandwidth Product	$\begin{cases} f = 50 \text{ MHz} \\ IC1 + IC2 \\ or \\ IC3 + IC4 \\ \end{cases} = 2 \text{ mA}$	- - 150	1.71 + j 2.8 3.96 + j 2.6 200	_ _ _	mmho mmho MHz

		•				
	μ	A3039				
REVERSE RE	DIODE MATCHING – 1 mV TYP. COVERY TIME – 1 ns TYP. CAPACITANCE – 0.65 pF @ V _R = –2 V					
APPLICATIONS Balanced Modi Ring Modulate High Speed Di Analog Switch	ode Gates					
ABSOLUTE MAX Power Dissipat Any One D Total for D Temperature F Operating ⁻ Storage Tet	ion (See note) iode Unit evice Range Femperature					100 mW 600 mW o +125°C o +200°C
Peak Diode (term. 1 DC Forwar Peak Recur	Currents e Voltage, PIV for: D ₁ - D ₅ D ₆ -to-Substrate Voltage, V _{DI} for D ₁ - D ₅ ,4,5,8 or 12 to term. 10) d Current, IF rent Forward Current, I _f ard Surge Current, I _f (surge)					5 V 0.5 V +20,-1 V 25 mA 100 mA 100 mA
ELECTRICAL CH	ARACTERISTICS FOR µA3039: For each diode	unit, $T_A = 25^{\circ}C$ unless otherwise	se specified	I		
SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	түр	МАХ	UNITS

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
VF	DC Forward Voltage Drop	I _F = 50 μA 1 mA 3 mA 10 mA		0.65 0.73 0.76 0.81	0.69 0.78 0.80 0.90	V V V V
BV	DC Reverse Breakdown Voltage	I _R = -10 μA	5.0	7.0	-	V
вv _s	DC Reverse Breakdown Voltage Between any Diode Unit and Substrate	I _R = -10 μA	20	-	-	v
I _R	DC Reverse (Leakage) Current	V _R = -4 V	-	0.016	100	nA
IR	DC Reverse (Leakage) Current Between any Diode Unit and Substrate	V _R = -10 V	-	0.022	100	nA
V _{F1} - V _{F2}	Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of any Two Diode Units)	IF = 1 mA	-	0.5	5.0	mV
$\frac{\Delta V_{F_1} - V_{F_2} }{\Delta T}$	Temperature Coefficient of VF ₁ - VF ₂	I _F = 1 mA	-	1.0	_	μV/°C
ΔV _F ΔT	Temperature Coefficient of Forward Drop	I _F = 1 mA	-	-1.9	-	mV/°C
VF	DC Forward Voltage Drop for Anode-to-Substrate Diode (D _S)	I _F = 1 mA		0.65	-	v
t _{rr}	Reverse Recovery Time	I _F = 10 mA, I _R = 10 mA	-	1.0	-	ns
R _D	Diode Resistance	f = 1 kHz, I _F = 1 mA	25	30	45	Ω
CD	Diode Capacitance	V _R = -2 V, I _F = 0	-	0.65	-	pF
CDI	Diode-to-Substrate Capacitance	V _{DI} = +4 V, I _F = 0	-	3.2	-	pF

NOTE: Derate at 5.7 mW/ $^{\circ}C$ for T $_{A}$ > 55 $^{\circ}C.$

TYPICAL PERFORMANCE CURVES FOR µA3039

9

2

DC REVERSE VOLTAGE BETWEEN PINS 1, 4, 5, 8, OR 12 AND SUBSTRATE (PIN 10)

3

2

DC REVERSE VOLTAGE ACROSS DIODE - V

µA3045/3046/3086

- LOW INPUT OFFSET VOLTAGE
- WIDEBAND OPERATION
- LOW NOISE

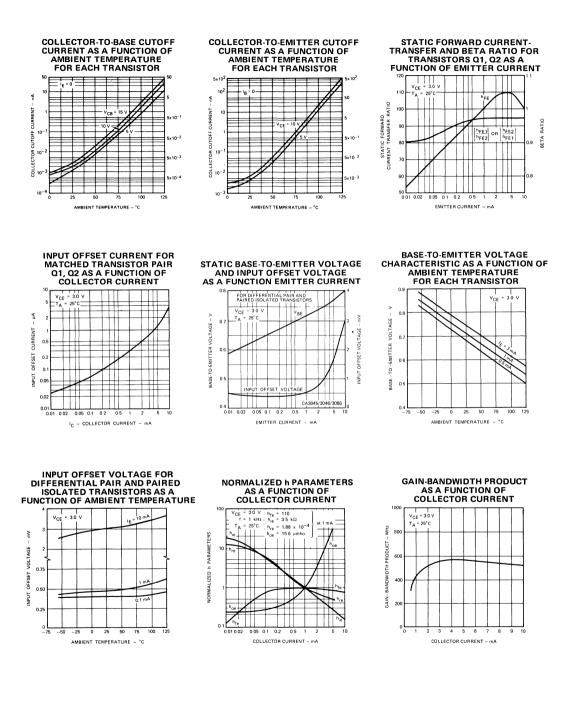
APPLICATIONS

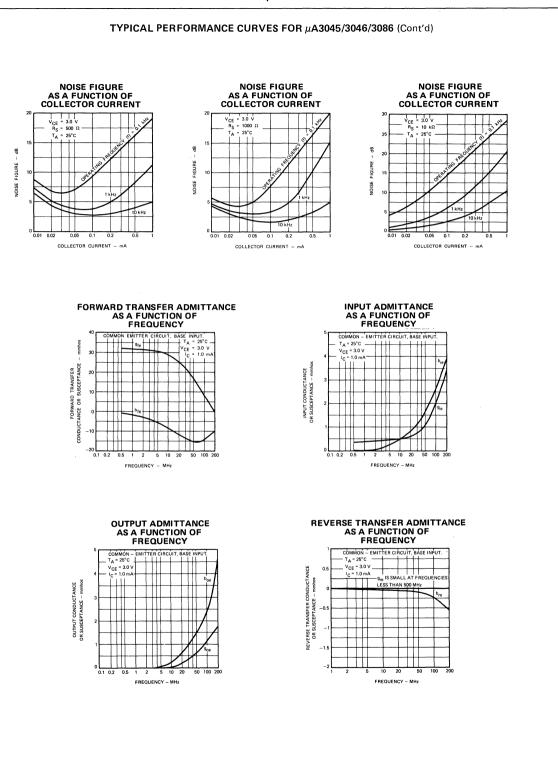
- General Use in all Types of Signal Processing Systems Operating Anywhere in the Frequency Range From DC to VHF
- Custom Designed Differential Amplifiers
- Temperature Compensated Amplifiers

	μ A3045	μ A3046/30 8	6
Each Transistor	Total Package	Each Transistor T	otal Package
300 mW	750 mW	300 mW	750 mW
		300 mW	750 mW
300 mŴ	750 mW		
15 V	_	15 V	_
20 V	_	20 V	
20 V	_	20 V	_
5 V	_	5 V	
50 mA	_	50 mA	-
55°C to +125°C		(3046) 0°C to +85°C	
		(3086) -40°C to +85°C	
65° C to +200° C		-55°C to +125°C	
	300 mW 300 mŴ 15 V 20 V 20 V 5 V 50 mA 55° C to +125° C	Each Transistor 300 mW Total Package 750 mW 300 mW 750 mW 50 V - 50 mA - 55° C to +125° C -	Each Transistor 300 mW Total Package 750 mW Each Transistor 300 mW T 300 mW 750 mW 300 mW 15 V - 15 V 20 V - 20 V 20 V - 20 V 20 V - 20 V 5 V - 5 V 50 mA - 50 mA 55° C to +125° C (3046) 0° C to +85° C (3086) -40° C to +85° C (3086) -40° C to +85° C

FAIRCHILD • µA30XX SERIES

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
V(BR)CBO	Collector-to-Base Breakdown Voltage	I _C = 10 μA, I _E = 0	20	60		v
V(BR)CEO	Collector-to-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	15	24		V
V(BR)CIO	Collector-to-Substrate Breakdown Voltage	$I_{\rm C} = 10 \mu {\rm A}, I_{\rm C} = 0$	20	60		v
V(BR)EBO	Emitter-to-Base Breakdown Voltage	$I_{E} = 10 \mu A, I_{C} = 0$	5.0	7.0		v
СВО	Collector Cutoff Current	V _{CB} = 10 V, I _E = 0		0.002	40	nA
CEO	Collector Cutoff Current	V _{CE} = 10 V, I _B = 0		See Curve	0.5	μA
hfe	Static Forward Current-Transfer Ratio (Static Beta)	$V_{CE} = 3 V \begin{cases} I_C = 10 \text{ mA} \\ I_C = 1 \text{ mA} \\ I_C = 10 \mu \text{A} \end{cases}$	40	100 100 54		
	Input Offset Current for Matched Pair Q_1 and $Q_2 I O1 - I O2 $	V _{CE} = 3 V, I _C = 1 mA		0.3	2.0	μΑ
V _{BE}	Base-to-Emitter Voltage	$V_{CE} = 3 V \begin{cases} I_E = 1 \text{ mA} \\ I_E = 10 \text{ mA} \end{cases}$		0.715 0.800		v
	Magnitude of Input Offset Voltage for Differential Pair VBE ₁ - VBE ₂	V _{CE} = 3 V, I _C = 1 mA		0.45	5.0	mV
	Magnitude of Input Offset Voltage for Isolated Transistors V _{BE3} - V _{BE4} , V _{BE4} - V _{BE5} , V _{BE5} - V _{BE3}	V _{CE} = 3 V, I _C = 1 mA		0.45	5.0	mV
$\frac{\Delta V_{BE}}{\Delta T}$	Temperature Coefficient of Base-to-Emitter Voltage	V _{CE} = 3 V, I _C = 1 mA		1.9		mV/°
VCE(sat)	Collector-to-Emitter Saturation Voltage	I _B = 1 mA, I _C = 10 mA		0.23		V
ΔV ₁₀ ΔT	Temperature Coefficient: Magnitude of Input-Offset Voltage	V _{CE} = 3 V, I _C = 1 mA		1.1		μV/°
NF	Low Frequency Noise Figure	f = 1 kHz, V _{CE} = 3 V, I _C = 100 μA R _S = 1 kΩ		3.25		dB
h _{fe} h _{ie} h _{oe} h _{re}	Low Frequency, Small-Signal Equivalent-Circuit Forward Current-Transfer Ratio Short-Circuit Input Resistance Open-Circuit Output Conductance Open-Circuit Reverse Voltage-Transfer Ratio	Characteristics: f = 1 kHz, V _{CE} = 3 V, I _C = 1 mA		110 3.5 15.6 1.8×10 ⁻⁴		kΩ µmbo
Y _{fe} Y _{ie} Y _{oe} Y _{re}	Admittance Characteristics: Forward Transfer Admittance Input Admittance Output Admittance Reverse Transfer Admittance	f = 1 MHz, V _{CE} = 3 V, I _C = 1 mA		31-j 1.5 0.3+j 0.04 0.001+j 0.03 See Curve		
fT	Gain-Bandwidth Product	V _{CE} = 3 V, I _C = 3 mA	300	550		MHz
CEB	Emitter-to-Base Capacitance	V _{EB} = 3 V, I _E = 0		0.6		pF
ССВ	Collector-to-Base Capacitance	V _{CB} = 3 V, I _C = 0		0.58		pF
CCI	Collector-to-Substrate Capacitance	V _{CS} = 3 V, I _C = 0		2.8		pF


NOTES:


1. μ A3046 and μ A3086 derate at 6.67 mW/^oC for T_A > 55^oC, μ A3045 at 8 mW/^oC for T_A > 75^oC. 2. Substrate (Pin 13) must be connected to the most negative voltage to maintain normal operation.

FAIRCHILD • µA30XX SERIES

SYMBOL	CHARACTERISTICS	CONDITIONS	MIN	ТҮР	MAX	UNITS
V(BR)CBO	Collector-to-Base Breakdown Voltage	$I_{C} = 10 \mu A, I_{E} = 0$	20	60		v
V(BR)CEO	Collector-to-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	15	24		v
V(BR)CIO	Collector-to-Substrate Breakdown Voltage	$I_{\rm C} = 10 \mu {\rm A}, I_{\rm C} = 0$	20	60		v
V(BR)EBO	Emitter-to-Base Breakdown Voltage	$I_{E} = 10 \mu A, I_{C} = 0$	5.0	7.0		v
СВО	Collector Cutoff Current	V _{CB} = 10 V, I _E = 0		0.002	100	nA
ICEO	Collector Cutoff Current	V _{CE} = 10 V, I _B = 0		See Curve	5.0	μA
hfe	Static Forward Current-Transfer Ratio (Static Beta)	$I_{C} = 10 \text{ mA}$ $V_{CE} = 3 \text{ V}$ $I_{C} = 1 \text{ mA}$ $I_{C} = 10 \mu \text{ A}$	40	100 100 54		
	Input Offset Current for Matched Pair Q1 and Q2 101 - 1102	V _{CE} = 3 V, I _C = 1 mA				μA
V _{BE}	Base-to-Emitter Voltage	V _{CE} = 3 V I _E = 1 mA I _E = 10 mA		0.715 0.800		v
	Magnitude of Input Offset Voltage for Differential Pair VBE ₁ - VBE ₂	V _{CE} = 3 V, I _C = 1 mA				mV
	Magnitude of Input Offset Voltage for Isolated Transistors V _{BE3} - V _{BE4} , V _{BE4} - V _{BE5} , V _{BE5} - V _{BE3}	V _{CE} = 3 V, I _C = 1 mA				mV
$\frac{\Delta V_{BE}}{\Delta T}$	Temperature Coefficient of Base-to-Emitter Voltage	V _{CE} = 3 V, I _C = 1 mA		-1.9		mV/°C
VCE(sat)	Collector-to-Emitter Saturation Voltage	I _B = 1 mA, I _C = 10 mA		0.23		v
ΔV ₁₀ ΔT	Temperature Coefficient: Magnitude of Input-Offset Voltage	V _{CE} = 3 V, I _C = 1 mA				μV/°C
NF	Low Frequency Noise Figure	f = 1 kHz, V _{CE} = 3 V, I _C = 100 μA R _S = 1 kΩ		3.25		dB
h _{fe} h _{ie} h _{oe} h _{re}	Low Frequency, Small-Signal Equivalent-Circuit Forward Current-Transfer Ratio Short-Circuit Input Resistance Open-Circuit Output Conductance Open-Circuit Reverse Voltage-Transfer Ratio	Characteristics: f = 1 kHz, V _{CE} = 3 V, I _C = 1 mA		110 3.5 15.6 1.8 x 10 ⁻⁴		kΩ µmbo
Y _{fe} Y _{ie} Y _{oe} Y _{re}	Admittance Characteristics: Forward Transfer Admittance Input Admittance Output Admittance Reverse Transfer Admittance	f = 1 MHz, V _{CE} = 3 V, I _C = 1 mA		31-j 1.5 0.3+j 0.04 0.001+j 0.03 See Curve		
fT	Gain-Bandwidth Product	V _{CE} = 3 V, I _C = 3 mA	300	550		MHz
CEB	Emitter-to-Base Capacitance	V _{EB} = 3 V, I _E = 0		0.6		pF
с _{св}	Collector-to-Base Capacitance	V _{CB} = 3 V, I _C = 0		0.58		pF
CCI	Collector-to-Substrate Capacitance	$V_{CS} = 3 V, I_{C} = 0$		2.8		pF

TYPICAL PERFORMANCE CURVES FOR µA3045/3046/3086

FAIRCHILD • µA30XX SERIES

µA726 TEMPERATURE-CONTROLLED DIFFERENTIAL PAIR FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The μ A726 is a Monolithic Transistor Pair in a high thermal-resistance package, held at a constant temperature by active temperature regulator circuitry. The transistor pair displays the excellent matching, close thermal coupling and fast thermal response inherent in monolithic construction. The high gain and low standby dissipation of the regulator circuit permits tight temperature control over a wide range of ambient temperatures. It is intended for use as an input stage in very-low-drift dc amplifiers, replacing complex chopper-stabilized amplifiers. It is also useful as the nonlinear element in logarithmic amplifiers and multipliers where the highly predictable exponential relation between emitter-base voltage and collector current is employed. The device is constructed on a single silicon chip using the Fairchild Planar* process.

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	
Military (μΑ726)	-55°C to +125°C
Commercial (µA726C)	0°C to +85°C
Storage Temperature Range	-65°C to +150°C
Pin Temperature (Soldering, 60 seconds)	300° C
Supply Voltage	±18V
Internal Power Dissipation	500 mW

MAXIMUM RATINGS FOR EACH TRANSISTOR

Collector-to-Emitter Voltage, VCEO
Collector-to-Base Voltage, VCBO
Collector-to-Substrate Voltage, VCIO
Emitter-to-Base Voltage, VEBO
Collector Current, IC

EQUIVALENT CIRCUIT TEMP AD. R_1 R 2 21k0 c1 0 Q1 Q7 大 12 R3 4.8kΩ 2 10 Q2 Q8 10 0 E2 0 ٥٧ 10

30V

40V

40V

5V 5mA

*Planar is a patented Fairchild process.

CONNECTION DIAGRAM

10-PIN METAL CAN

(TOP VIEW) PACKAGE OUTLINE 5U

PACKAGE CODE H

ORDER INFORMATION

TYPE

μ**A726**

μ**A726C**

темя

AD.I

PART NO.

μ**A726HM**

μ**Α726HC**

9

μA726


$\textbf{ELECTRICAL CHARACTERISTICS:} -55^{\circ}C \leqslant T_{A} \leqslant +125^{\circ}C, \ V_{S} = \pm 15V, \ R_{adj} = 62k\Omega \ unless \ otherwise \ specified.$

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$10\mu A \leq I_C \leq 100\mu A$, $V_{CE} = 5V$, $R_S \leq 50\Omega$		1.0	2.5	mV
	$I_{C} = 10 \mu A, V_{CE} = 5V$		10	50	nA
Input Offset Current	I _C = 100μA, V _{CE} = 5V		50	200	nA
Average Input Bigs Current	$I_{C} = 10 \mu A, V_{CE} = 5 V$		50	150	nA
Average Input Bias Current	I _C = 100μA, V _{CE} = 5V		250	500	nA
Offset Voltage Change	$I_{C} = 10 \mu A, 5V \le V_{CE} \le 25V, R_{S} \le 100 k\Omega$		0.3	6.0	mV
Offset Voltage Change	$I_{C} = 100 \mu A, 5V \le V_{CE} \le 25V, R_{S} \le 10 k\Omega$		0.3	6.0	mV
Input Offset Voltage Drift	$10\mu A \leq I_{C} \leq 100\mu A, V_{CE} = 5V,$ $R_{S} \leq 50\Omega, +25^{\circ}C \leq T_{A} \leq +125^{\circ}C$		0.2	1.0	μV/°C
Input Offset Voltage Drift	$10\mu A \le I_C \le 100\mu A, V_{CE} = 5V, R_S \le 50\Omega, -55^{\circ}C \le T_A \le +25^{\circ}C$		0.2	1.0	μV/°C
	$I_{C} = 10 \mu A, V_{CE} = 5 V$		10		pA/°C
Input Offset Current Drift	$I_{C} = 100 \mu A, V_{CE} = 5V$		30		pA/°C
Supply Voltage Rejection Ratio	$10\mu A \leq I_C \leq 100\mu A$, $R_S \leq 50\Omega$,		25		μV/V
Low Frequency Noise	$I_C = 10 \mu A, V_{CE} = 5V, R_S \le 50\Omega$ BW = .001 Hz to 0.1 Hz		4.0		μV p-p
Broadband Noise	$I_{C} = 10 \mu A, V_{CE} = 5V, R_{S} \leq 50 \Omega$ BW = 0.1 Hz to 10kHz		10		μV p-p
Long-term Drift	$10\mu A \le I_C \le 100\mu A$, $V_{CE} = 5V$, $R_S \le 50\Omega$, $T_A = 25^{\circ}C$		5.0		μV/week
High Frequency Current Gain	f = 20MHz, I _C = 100μA, V _{CE} = 5V	1.5	3.5		
Output Capacitance	I _E = 0, V _{CB} = 5V		1.0		pF
Emitter Transition Capacitance	I _E = 100μA		1.0		pF
Collector Saturation Voltage	$I_{B} = 100 \mu A, I_{C} = 1 m A$		0.5	1.0	V

μA726C

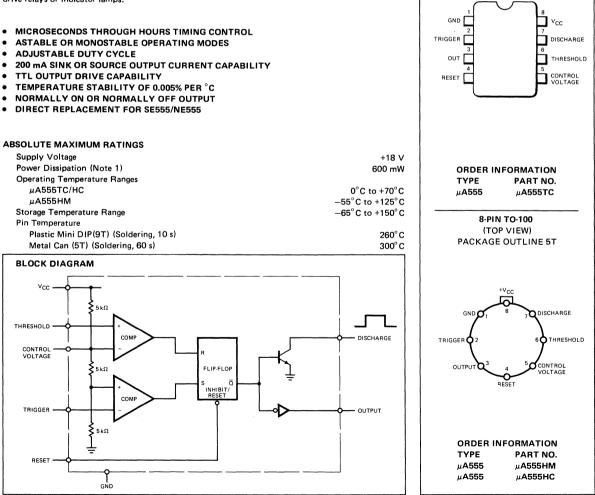
$\textbf{ELECTRICAL CHARACTERISTICS: } 0^{\circ}C \leqslant \textbf{T}_{A} \leqslant +85^{\circ}C, \ \textbf{V}_{S} \texttt{=} \pm15 \textbf{V}, \ \textbf{R}_{adj} \texttt{=} 75 k\Omega \text{ unless otherwise specified}.$

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$10\mu A \le I_C \le 100\mu A$, $V_{CE} = 5V$, $R_S \le 50\Omega$		1.0	3.0	mV
	$I_{C} = 10 \mu A, V_{CE} = 5V$		10	100	nA
Input Offset Current	$I_{C} = 100 \mu A, V_{CE} = 5V$		50	400	nA
A	$I_{C} = 10 \mu A, V_{CE} = 5V$		50	300	nÀ
Average Input Bias Current	$I_{C} = 100 \mu A, V_{CE} = 5V$		250	1000	nA
	$I_{C} = 10 \mu\text{A}, 5V \leq V_{CE} \leq 25V, R_{S} \leq 100 \text{k}\Omega$		0.3	6.0	mV
Offset Voltage Change	$I_{C} = 100 \mu A, 5V \le V_{CE} \le 25V, R_{S} \le 10 k\Omega$		0.3	6.0	mV
Input Offset Voltage Drift	$I_{C} = 100 \mu A, V_{CE} = 5V, R_{S} \le 50 \Omega$		0.2	2.0	μV/°C
Input Offset Current Drift	I _C = 10μA, V _{CE} = 5V		10	1	pA/°C
	I _C = 100μA, V _{CE} = 5V		30		pA/°C
Supply Voltage Rejection Ratio	$I_{C} = 100 \mu A, R_{S} = 50 \Omega$		25		μV/V
Low Frequency Noise	$I_{C} = 10 \mu A$, $V_{CE} = 5V$, $R_{S} \le 50 \Omega$, BW = 0.001 Hz to 0.1 Hz		4.0		μV p-p
Broadband Noise	$I_{C} = 10 \mu A$, $V_{CE} = 5V$, $R_{S} \le 50\Omega$, BW = 0.1 Hz to 10 kHz		10		µVp-p
Long-Term Drift	$I_{C} = 100\mu A, V_{CE} = 5V, R_{S} \le 50\Omega, T_{A} = 25^{\circ}C$		5.0		μV/week
High Frequency Current Gain	$f = 20 MHz, I_C = 100 \mu A, V_{CE} = 5V$	1.5	3.5	+	
Output Capacitance	I _E = 0, V _{CB} = 5V		1.0		pF
Emitter Transition Capacitance	$I_E = 100 \mu A$		1.0		pF
Collector Saturation Voltage	$I_{B} = 100 \mu A, I_{C} = 1 m A$		0.5	1.0	V

9

µA555 SINGLE TIMING CIRCUIT FAIRCHILD LINEAR INTEGRATED CIRCUIT

CONNECTION DIAGRAMS

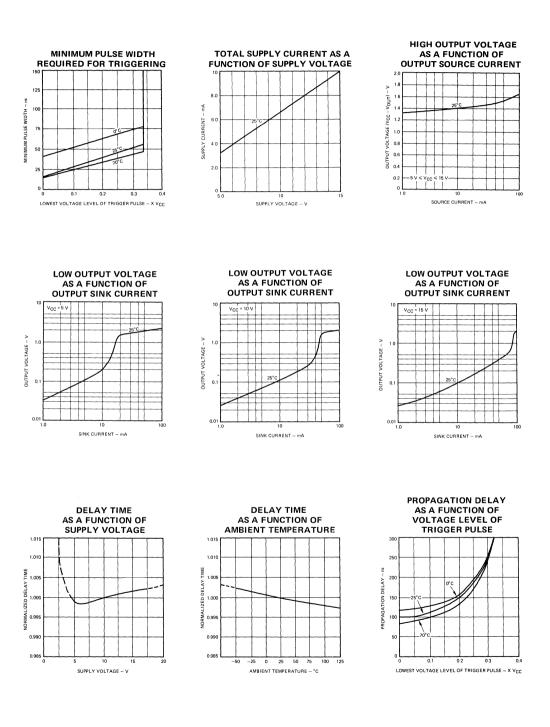

8-PIN MINI DIP

(TOP VIEW)

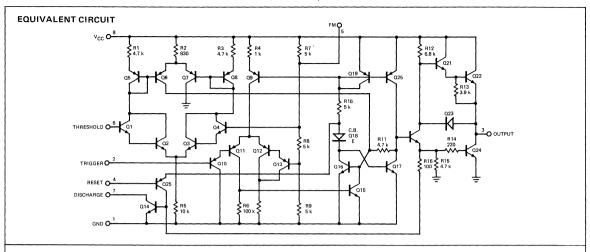
PACKAGE OUTLINE 9T

GENERAL DESCRIPTION – The μ A555 Timing Circuit is a very stable controller for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger signals. To interrupt the timing cycle a reset signal is applied ending the time-out.

The output, which is capable of sinking or sourcing 200 mA, is compatible with TTL circuits and can drive relays or indicator lamps.


FAIRCHILD • µA555

OLLADACTEDISTICS	TEST CONDITIONS		μA555HM	l	μ	A555TC/H	łC	
CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
	V _{CC} = 5.0 V, R _L = ∞		3.0	5.0		3.0	6.0	mA
Supply Current	V _{CC} = 15 V, R _L = ∞ LOW State (Note 1)		10	12		10	15	mA
Timing Error								
Initial Accuracy	$R_A, R_B = 1 k\Omega$ to 100 k Ω		0.5	2.0		1.0	1	%
Drift with Temperature	C = 0.1 µF (Note 2)		30	100		50		ppm,
Drift with Supply Voltage			0.05	0.2		0.1		%\
Threshold Voltage			2/3			2/3		X V
T-1	V _{CC} = 15 V	4.8	5.0	5.2		5.0		V
Trigger Voltage	V _{CC} = 5.0 V	1.45	1.67	1.9		1.67		V
Trigger Current			0.5			0.5		μΑ
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		m
Threshold Current	Note 3		0.1	0.25		0.1	0.25	μA
	V _{CC} = 15 V	9.6	10	10.4	9.0	10	11	V
Control Voltage Level	V _{CC} = 5.0 V	2.9	3.33	3.8	2.6	3.33	4.0	V
	V _{CC} = 15 V							
	ISINK = 10 mA		0.1	0.15	1	0.1	0.25	V
	ISINK = 50 mA		0.4	0.5		0.4	0.75	V
	ISINK = 100 mA		2.0	2.2		2.0	2.5	V
Output Voltage Drop (LOW)	I _{SINK} = 200 mA		2.5			2.5		V
	V _{CC} = 5.0 V							
	ISINK = 8.0 mA		0.1	0.25			1	
	ISINK = 5.0 mA		-			0.25	0.35	v
	ISOURCE = 200 mA							
	V _{CC} = 15 V		12.5	1		12.5	1	v
Output Voltage Drop (HIGH)	ISOURCE = 100 mA				1			
	V _{CC} = 15 V	13	13.3		12.75	13.3		v
	V _{CC} = 5.0 V	3.0	3.3		2.75	3.3		V
Rise Time of Output			100			100		n
Fall Time of Output		1	100			100		n

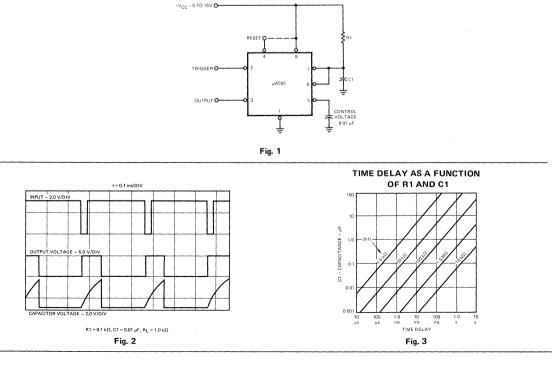

NOTES:

NOTES: 1. Supply Current is typically 1.0 mA less when output is HIGH. 2. Tested at V_{CC} = 5.0 V and V_{CC} = 15 V. 3. This will determine the maximum value of R_A + R_B. For 15 V operation, the max total R = 20 MΩ. 4. For operating at elevated temperatures the device must be derated based on a +125°C maximum junction temperature and a thermal resistance of +45°C/W junction to case for TO-5 and +150°C/W junction to ambient for both packages.

9-28

TYPICAL APPLICATIONS

MONOSTABLE OPERATION


In the monostable mode, the timer functions as a one-shot. Referring to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer.

When a negative trigger pulse is applied to lead 2, the flip-flop is set, releasing the short circuit across the external capacitor and drives the output HIGH. The voltage across the capacitor, increases exponentially with the time constant τ = R1C1. When the voltage across the capacitor equals 2/3 V_{CC} , the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation.

The circuit triggers on a negative-going input signal when the level reaches $1/3 V_{CC}$. Once triggered, the circuit remains in this state

until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the Trigger terminal (lead 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state.

When Reset is not used, it should be tied high to avoid any possibility of false triggering.

TYPICAL APPLICATIONS (Cont'd)

ASTABLE OPERATION

When the circuit is connected as shown in Figure 4 (leads 2 and 6 connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R1 and R2 and discharges through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In the astable mode of operation, C1 charges and discharges between 1/3 V_{CC} and 2/3 V_{CC}. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the supply voltage.

Figure 5 shows actual waveforms generated in this mode of operation.

The charge time (output HIGH) is given by:

t₁ = 0.693 (R1 + R2) C1

and the discharge time (output LOW) by:

t₂ = 0.693 (R2) C1

Thus the total period T is given by:

$$T = t_1 + t_2 = 0.693 (R1 + 2R2) C1$$

The frequency of oscillation is then:

$$f = \frac{1}{T} = \frac{1.44}{(R1 + 2R2) C1}$$

and may be easily found by Figure 6.

The duty cycle is given by:

$$D = \frac{R2}{R1 + 2R2}$$

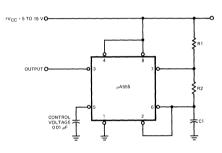


Fig. 4

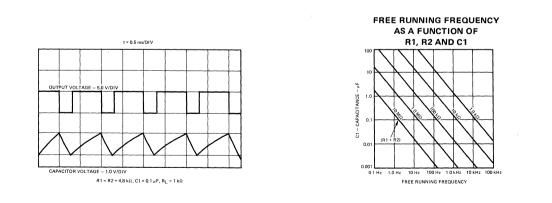
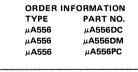


Fig. 5

Fig. 6

µA556 DUAL TIMING CIRCUIT FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The μ A556 Timing Circuits are very stable controllers for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger signals. To interrupt the timing cycle a reset signal is applied, ending the time-out.


The output, which is capable of sinking or sourcing 200 mA, is compatible with TTL circuits and can drive relays or indicator lamps.

The μ A556 Dual Timing Circuit is a pair of 555s for use in sequential timing or applications requiring multiple timers.

- ASTABLE OR MONOSTABLE OPERATING MODES
- ADJUSTABLE DUTY CYCLE
- 200 mA SINK OR SOURCE OUTPUT CURRENT CAPABILITY
- TTL OUTPUT DRIVE CAPABILITY
- TEMPERATURE STABILITY OF 0.005% PER °C
- NORMALLY ON OR NORMALLY OFF OUTPUT

Supply Voltage	+18 V	
Power Dissipation	600 mW	
Operating Temperature Ranges		
μA556 DC/PC	0° C to +70° C	
μA556DM	-55°C to +125°C	
Storage Temperature Range	-65°C to +150°C	ŀ
Pin Temperature (Soldering)		ļ
(10 s) Plastic DIP (9A)	260° C	1
(60 s) Ceramic DIP (6A)	300°C	

CONNECTION DIAGRAM

14-PIN DIP

(TOP VIEW) PACKAGE OUTLINES 6A 9A

PACKAGE CODES D

THRESHOLD

CONTROL

RESET

OUTPUT

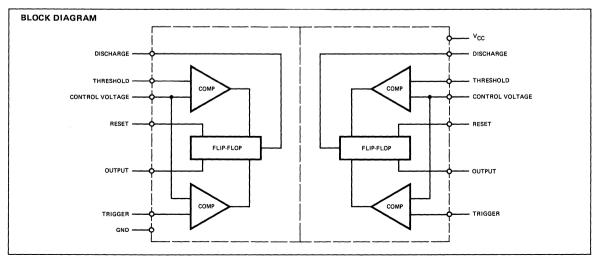
TRIGGER

GND

D

٦vcc

DISCHARGE

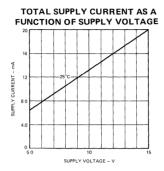

THRESHOLD

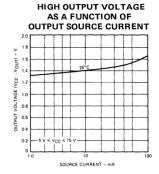
CONTROL VOLTAGE

10 RESET

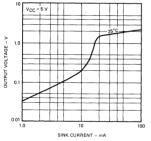
OUTPUT

TRIGGER

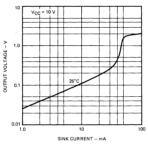

		μΑ556DM		µA556DC/PC			UNITS	
CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Supply Voltage		4.5		18	4.5		16	V
Supply Current (Total)	V _{CC} = 5.0 V, R _L = ∞ V _{CC} = 15 V, R _L = ∞		6.0	10		6.0	12	mA
	LOW State (Note 1)		20	22		20	28	mA
Timing Error (Monostable)								
Initial Accuracy	$R_A = 2 k\Omega$ to 100 k Ω		0.5	1.5		0.75		%
Drift with Temperature	C = 0.1 μF (Note 2)		30	100		50		ppm/°
Drift with Supply Voltage			0.05	0.2		0.1		%V
Timing Error (Astable)								
Initial Accuracy	$R_A, R_B = 2 k\Omega$ to 100 k Ω		1.5			2.25		%
Drift with Temperature	C = 0.1 µF (Note 2)		90			150		ppm/°
Drift with Supply Voltage			0.15			0.3		%V
Threshold Voltage			2/3			2/3		x v _c
Threshold Current	Note 3		30	100		30	100	nA
T :	V _{CC} = 15 V	4.8	5.0	5.2		5.0		V
Trigger Voltage	V _{CC} = 5.0 V	1.45	1.67	1.9		1.67		V
Trigger Current			0.5			0.5		μA
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		mA
Control Voltage Level	V _{CC} = 15 V	9.6	10	10.4	9.0	10	11	V
$V_{CC} = 5.0 V$	V _{CC} = 5.0 V	2.9	3.33	3.8	2.6	3.33	4.0	V
	V _{CC} = 15 V							
	ISINK = 10 mA		0.1	0.15		0.1	0.25	v
	ISINK = 50 mA		0.4	0.5		0.4	0.75	V
	ISINK = 100 mA		2.0	2.25		2.0	2.75	V
Output Voltage (LOW)	^I SINK = 200 mA		2.5			2.5		V
	V _{CC} = 5.0 V		<u> </u>					
	ISINK = 8.0 mA		0.1	0.25				V
	ISINK = 5.0 mA					0.25	0.35	V
	ISOURCE = 200 mA		1					
	V _{CC} = 15 V		12.5			12.5		V
Output Voltage (HIGH)	ISOURCE = 100 mA							
	V _{CC} = 15 V	13.0	13.3		12.75	13.3		v
	V _{CC} = 5.0V	3.0	3.3		2.75	3.3		V
Rise Time of Output			100			100		ns
Fall Time of Output			100			100		ns
Discharge Leakage Current			20	100		20	100	nA
Matching Characteristics (Note 4)								
Initial Timing Accuracy			0.05	0.1		0.1	0.2	%
Timing Drift with Temperature			±10			±10		ppm/°
Drift with Supply Voltage			0.1	0.2		0.2	0.5	%V

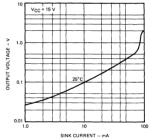

NOTES:

1. Supply current when output is HIGH is typically 1.0 mA less. 2. Tested at $V_{CC} = 5 V$ and $V_{CC} = 15 V$. 3. This will determine the maximum value of $R_A + R_B$ for 15 V operation. The maximum total $R = 20 M\Omega$. 4. Matching characteristics refer to the difference between performance characteristics of each timer section.

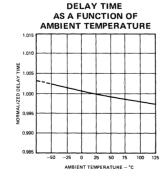

TYPICAL PERFORMANCE CURVES

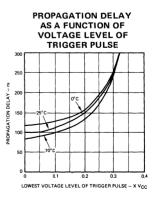
HINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING

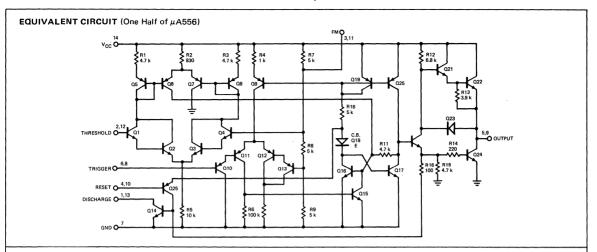



LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT

LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT




LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT



DELAY TIME AS A FUNCTION OF SUPPLY VOLTAGE 1.015 1.010 1445 1.00 DELA 1.00 IZED (0.995 0.99 0.985 5 10 15 20

SUPPLY VOLTAGE - V

TYPICAL APPLICATIONS

MONOSTABLE OPERATION

In the monostable mode, the timer functions as a one-shot. Referring to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer.

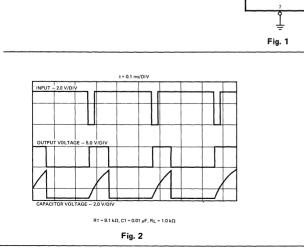
When a negative trigger pulse is applied to lead 6, the flip-flop is set, releasing the short circuit across the external capacitor and drives the output HIGH. The voltage across the capacitor, increases exponentially with the time constant $\tau = R1C1$. When the voltage across the capacitor equals 2/3 V_{CC}, the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation.

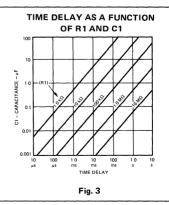
The circuit triggers on a negative-going input signal when the level reaches $1/3 V_{CC}$. Once triggered, the circuit remains in this state

+V_{CC} = 5 TO 15V O-

TRIGGER O

OUTPUT C


RESET


1/2 556

CONTROL VOLTAGE

until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state.

When Reset is not used, it should be tied high to avoid any possibility of false triggering.

9-34

TYPICAL APPLICATIONS (Cont'd)

ASTABLE OPERATION

When the circuit is connected as shown in Figure 4 (leads 2 and 6 connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R1 and R2 and discharges through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In the astable mode of operation, C1 charges and discharges between 1/3 V_{CC} and 2/3 V_{CC}. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the supply voltage.

Figure 5 shows actual waveforms generated in this mode of operation.

The charge time (output HIGH) is given by:

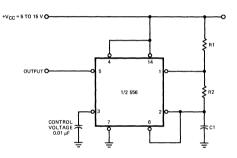
t₁ = 0.693 (R1 + R2) C1

and the discharge time (output LOW) by:

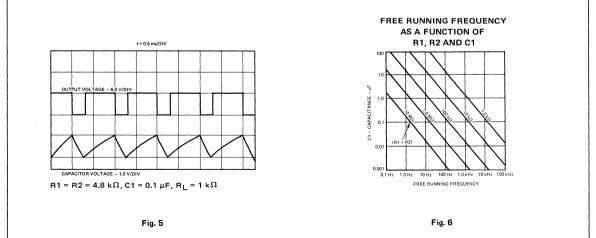
t₂ = 0.693 (R2) C1

Thus the total period T is given by:

$$T = t_1 + t_2 = 0.693 (R1 + 2R2) C'$$


The frequency of oscillation is then:

$$f = \frac{1}{T} = \frac{1.44}{(R1 + 2R2)C^2}$$


and may be easily found by Figure 6.

The duty cycle

is given by:
$$D = \frac{R2}{R1 + 2R2}$$

µA2240

PROGRAMMABLE TIMER/COUNTER

CONNECTION DIAGRAM

16-PIN DIP (TOP VIEW)

PACKAGE OUTLINES 7B. 9B

PACKAGE CODE D P

TIME

CONTROL

BINARY COUNTER

032

٦ vcc

REGULATOR

TIME-BASE

MODULATION

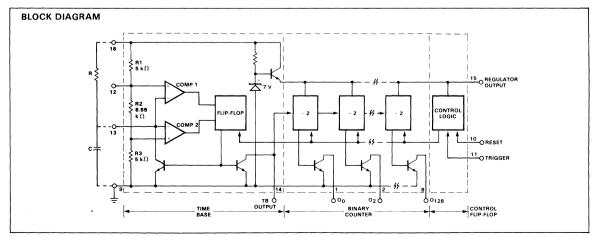
TRIGGER

RESET

15

13 RESISTOR CAPACITOR INPUT

FAIRCHILD LINEAR INTEGRATED CIRCUITS


GENERAL DESCRIPTION - The µA2240 Programmable Timer/Counter is a monolithic controller capable of producing accurate microsecond to five day time delays. Long delays, up to three years, can easily be generated by cascading two timers. The timer consists of a time-base oscillator, programmable 8-bit counter and control flip-flop. An external resistor capacitor (RC) network sets the oscillator frequency and allows delay times from 1 RC to 255 RC to be selected. In the astable mode of operation, 255 frequencies or pulse patterns can be generated from a single RC network. These frequencies or pulse patterns can also easily be synchronized to an external signal. The trigger, reset and outputs are all TTL and DTL compatible for easy interface with digital system. The timer's high accuracy and versatility in producing a wide range of time delays makes it ideal as a direct replacement for mechanical or electromechanical devices.

- PROGRAMMABLE DELAYS FROM 1 RC TO 255 RC .
- TTL. DTL AND CMOS COMPATIBLE OUTPUTS
- TIMING DIRECTLY PROPORTIONAL TO RC TIME CONSTANT •
- HIGH ACCURACY - 0.5%
- EXTERNAL SYNC AND MODULATION CAPABILITY •
- WIDE SUPPLY VOLTAGE RANGE .
- . EXCELLENT SUPPLY VOLTAGE REJECTION

ARCOLUTE MAYIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS			<u>9</u>
Supply Voltage	18 V	0128	GND
Output Current	10 mA	L	
Output Voltage	18 V		
Regulator Output Current	5 mA		
Maximum Power Dissipation, Note 1			FORMATION
Package Code D (Ceramic)	750 mW	TYPE	PART NO.
Code P (Plastic)	650 mW	μ A224 0	μA2240DM
Operating Temperature Range Package		μΑ2240	μA2240DM
Military (µA2240)	-55°C to +125°C	μΑ2240C	μΑ2240DC
Commercial (µA2240C)	0°C to 70°C	μΑΖΖ400	#A2240FC
		N	

NOTE 1: Above 25°C ambient derate linearly at 6.2 mW/°C for Package Code D and at 5.3 mW/°C for Package Code P.

	CONDITIONS			μA2240		μΑ	2240C		
	CONDITIONS)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
GENERAL CHARACTERIS	rics					- 			
Supply Voltage	For V _{CC} ≤ 4.5 V, to Pin 16	Short Pin 15	4.0		15	4.0		15	v
Supply Current									
Total Circuit	$V_{CC} = 5 V, V_{TR} =$			3.5	6.0		4.0	7.0	mA
	$V_{CC} = 15 V, V_{TR}$	$V_{CC} = 15 V, V_{TR} = 0, V_{RS} = 5 V$		12	16		13	18	mA
Counter Only	See Test Circuit,	Figure 29		1			1.5		mA
	Measured at Pin	15, V _{CC} = 5 V	4.1	4.4		3.9	4.4		V
Regulator Output, V _{Reg}	V _{CC} = 15 V, See Test Circuit, Figure 30		6.0	6.3	6.6	5.8	6.3	6.8	V
TIME BASE SECTION	1								r
Timing Accuracy (Note 2)	$V_{RS} = 0, V_{TR} = 1$	5 V		0.5	2.0		0.5	5.0	%
Tomporaturo Drift	$V_{CC} = 5 V,$	°C ≤ T , ≤ 75°C		150	300		200		ppm/°C
Temperature Drift	ure Drift $\frac{V_{CC} = 5 V}{V_{CC} = 15 V} 0^{\circ}C \leq T_{J} \leq 75^{\circ}C$			80			80		ppm/°C
Supply Drift	V _{CC} ≥ 8 V, See I	Figure 23		0.05	0.2		0.08	0.3	%/V
Max Frequency	$R = 1 k\Omega, C = 0.0$	007 μF	100	130			130		kHz
Modulation Voltage Level	Measured at Pin V _{CC} = 5 V	12	3.00	3.50	4.0	2.80	3.50	4.20	v
	V _{CC} = 15 V			10.5			10.5		v
Recommended Range of Timing Components	See Figure 20								
Timing Resistor, R			0.001		10	0.001		10	MΩ
Timing Capacitor, C		ar na fa anna a' fhan a' fha air fhanair 1940	0.007		1000	0.01		1000	μF
TRIGGER/RESET CONTRO	IS								
Trigger	Measured at Pin	11, V _{RS} = 0							
Trigger Threshold				1.4	2.0		1.4	2.0	V
Trigger Current	V _{RS} = 0, V _{TR} = 2	2 V		8.0			10		μA
Impedance				25			25		kΩ
Response Time (Note 3)				1.0			1.0		μs
Reset	Measured at Pin	10, V _{TR} = 0							
Reset Threshold		and an addition from the set for		1.4	2.0		1.4	2.0	v
Reset Current	V _{TR} = 0, V _{RS} = 2	2 V		8.0			10		μA
Impedance				25			25		kΩ
Response Time (Note 3)				0.8			0.8		μs
COUNTER SECTION	See Test Circuit,	Figure 30					1	4	
Max Toggle Rate	V _{RS} = 0, V _{TR} = 9 Measured at Pin	5 V 14	0.8	1.5			1.5		MHz
Input Impedance				20			20		kΩ
Input Threshold			1.0	1.4	1	1.0	1.4		v
Output:	Measured at Pins	s 1 through 8							
Rise Time	- R _L = 3 kΩ, C _L =	10 pF		180			180		ns
Fall Time		· - F.		180			180		ns
Sink Current	V _{OL} ≤ 0.4 V		3.0	5.0		2.0	4.0		mA
Leakage Current	V _{OH} = 15 V			0.01	8.0		0.01	15	μA

NOTES: 2. Timing error solely introduced by μ A2240, measured as % of ideal time base period of T = 1.00 RC.

3. Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at Pin 1.

FUNCTIONAL DESCRIPTION

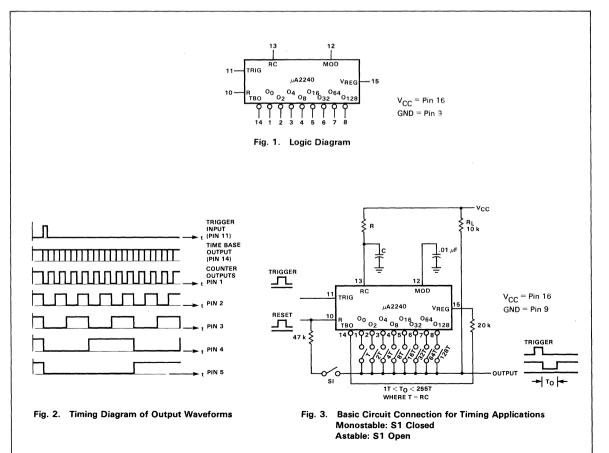
(Figure 1 and Block Diagram, page 1)

When power is applied to the μ A2240 with no trigger or reset inputs, the circuit starts with all outputs HIGH. Application of a positive-going trigger pulse to TRIG, pin 11, initiates the timing cycle. The Trigger input activates the time-base oscillator, enables the counter section and sets the counter outputs LOW. The time-base oscillator generates timing pulses with a period T = 1 RC. These clock pulses are counted by the binary counter section. The timing sequence is completed when a positive-going reset pulse is applied to R, pin 10.

Once triggered, the circuit is immune from additional trigger inputs until the timing cycle is completed or a reset input is applied. If both the reset and trigger are activated simultaneously, the trigger takes precedence.

Figure 2 gives the timing sequence of output waveforms at various circuit terminals, subsequent to a trigger input. When the circuit is in a Reset state, both the time-base and the counter sections are disabled and all the counter outputs are HIGH.

In most timing applications, one or more of the counter outputs are connected to the Reset terminal with S1 closed (*Fig-ure 3*). The circuit starts timing when a trigger is applied and automatically resets itself to complete the timing cycle when a programmed count is completed. If none of the counter


outputs are connected back to the Reset terminal (switch S1 open), the circuit operates in an astable or free-running mode, following to a trigger input.

Important Operating Information

- Ground connection is pin 9.
- Reset R (pin 10) sets all outputs HIGH.
- Trigger TRIG (pin 11) sets all outputs LOW.
- Time-base TBO (pin 14) can be disabled by bringing the RC input (pin 13) LOW via a 1 k resistor.
- Normal Time-base Output TBO (pin 14) is a negativegoing pulse greater than 500 ns.

Note: Under the conditions of high supply voltages (V_{CC} > 7 V) and low values of timing capacitor (C < 0.1 μ F, the pulse width of TBO may be too narrow to trigger the counter section. This can be corrected by connecting a 300 pF capacitor from TBO (pin 14) to ground (pin 9).

- Reset (pin 10) stops the time-base oscillator.
- Outputs $O_0\ldots O_{128}$ (pins 1-8) sink 2 mA current with $V_{OL}\leqslant 0.4$ V.
- For use with external clock, minimum clock pulse amplitude should be 3 V, with greater than 1 µs pulse duration.

CIRCUIT CONTROLS

Counter Outputs $(O_0 \dots O_{128}, pins 1 thru 8)$

The binary counter outputs are buffered open-collector type stages, as shown in the block diagram on page 1. Each output is capable of sinking 2 mA at 0.4 V VOL. In the Reset condition, all the counter outputs are HIGH or in the nonconducting state. Following a trigger input, the outputs change state in accordance with the timing diagram of Figure 2. The counter outputs can be used individually, or can be connected together in a wired-OR configuration, as described in the Programming section.

Reset and Trigger Inputs (R and TRIG, pins 10 and 11)

The circuit is reset or triggered with positive-going control pulses applied to pins 10 and 11 respectively. The threshold level for these controls is approximately two diode drops (~ 1.4 V) above ground. Minimum pulse widths for reset and trigger inputs are shown in Figure 22. Once triggered, the circuit is immune to additional trigger inputs until the end of the timing cycle.

Modulation and Sync Input (MOD, pin 12)

The oscillator time-base period, T, can be modulated by applying a dc voltage to MOD, pin 12 (see Figure 25). The timebase oscillator can be synchronized to an external clock by applying a sync pulse to MOD, pin 12, as shown in Figure 4. Recommended sync pulse widths and amplitudes are also given.

The time base can be synchronized by setting the time-base period T to be an integer multiple of the sync pulse period, T_s. This can be done by choosing the timing components R and C at pin 13 such that:

 $T = RC = (T_s/m)$

$$t_{p} \neq (t_{p} = 0.3T < T_{p} < 0.8T \\ f_{p} \neq (t_{p} = 0.1)\mu^{p} \qquad sync \xrightarrow{0.1}\mu^{p} \qquad$$

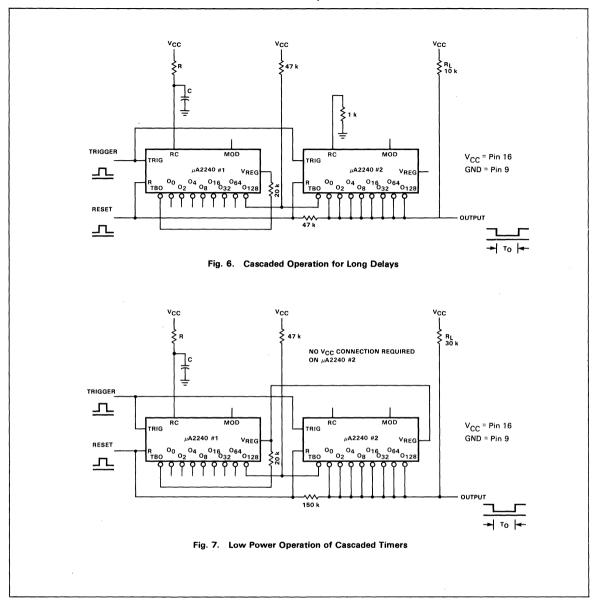
where

m is an integer, $1 \le m \le 10$

Figure 5 gives the typical pull-in range for harmonic synchronization for various values of harmonic modulus, m. For m < 10, typical pull-in range is greater than $\pm 4\%$ of timebase frequency.

RC Terminal (pin 13)

The time-base period T is determined by the external RC network connected to RC, pin 13. When the time base is triggered, the waveform at pin 13 is an exponential ramp with a period T = 1.0 RC.


Time-Base Output (TBO, pin 14)

The time-base output is an open-collector type stage as shown in the block diagram, page, 1, and requires a 20 kΩ pull-up resistor to pin 15 for proper circuit operation. In the Reset state, the time-base output is HIGH. After triggering, it produces a negative-going pulse train with a period T = RC, as shown in the diagram of Figure 2. The time-base output is internally connected to the binary-counter section and can also serve as the input for the external clock signal when the circuit is operated with an external time base. The counter section triggers on the negative-going edge of the timing or clock pulses generated at TBO, pin 14. The trigger threshold for the counter section is $\approx +1.4$ V. The counter section can be disabled by clamping the voltage level at pin 14 to ground.

When using high supply voltages ($V_{CC} > 7$ V) and a smallvalue timing capacitor (C < 0.1 μ F), the pulse width of the time-base output at pin 14 may be too narrow to trigger the counter section. This can be corrected by connecting a 300 pF capacitor from pin 14 to ground.

10

- (T/T_s)

Regulator Output (V_{REG}, pin 15)

The regulator output V_{REG} is used internally to drive the binary counter and the control logic. This terminal can also be used as a supply to additional μ A2240 circuits when several timer circuits are cascaded (see *Figure 7*) to minimize power dissipation. For circuit operation with an external clock, V_{REG} can be used as the V_{CC} input terminal to power down the internal time base and reduce power dissipation. When supply voltages less than 4.5 V are used with the internal time-base, pin 15 should be shorted to pin 16.

MONOSTABLE OPERATION

Precision Timing

In precision timing applications, the $\mu A2240$ is used in its monostable or self-resetting mode. The generalized circuit

connection for this application is shown in *Figure 3*. The output is normally HIGH and goes LOW following a trigger input. It remains LOW for the time duration, T_O , and then returns to the HIGH state. The duration of the timing cycle T_O is given as:

$$T_0 = NT = NRC$$

where T = RC is the time-base period as set by the choice of timing components at RC pin 13 (see *Figure 21*) and N is an integer in the range of $1 \le N \le 255$ as determined by the combination of counter outputs $O_0 \dots O_{128}$, pins 1 through 8, connected to the output bus.

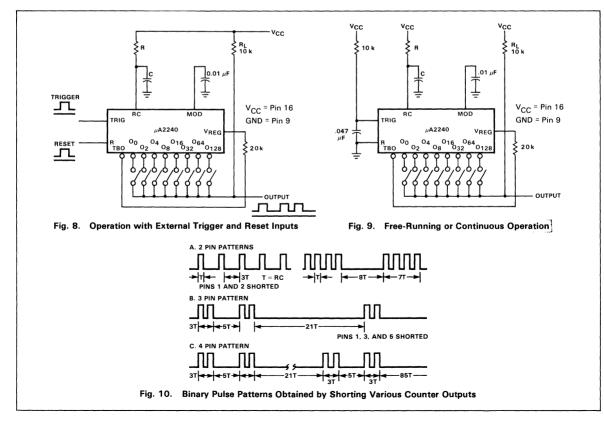
Counter-Output Programming

The binary-counter outputs, $O_0 \ldots O_{128}$, pins 1 through 8 are open-collector type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as any one of the outputs is LOW. The time delays associated with each counter output can be added together. This is done by simply shorting the outputs together to form a common output bus as shown in *Figure 3*. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the shorted to the output bus, the total time delay is $T_O = (1 + 16 + 32) T = 49 T$. In this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be 1 $T \le T_O \le 255 T$.

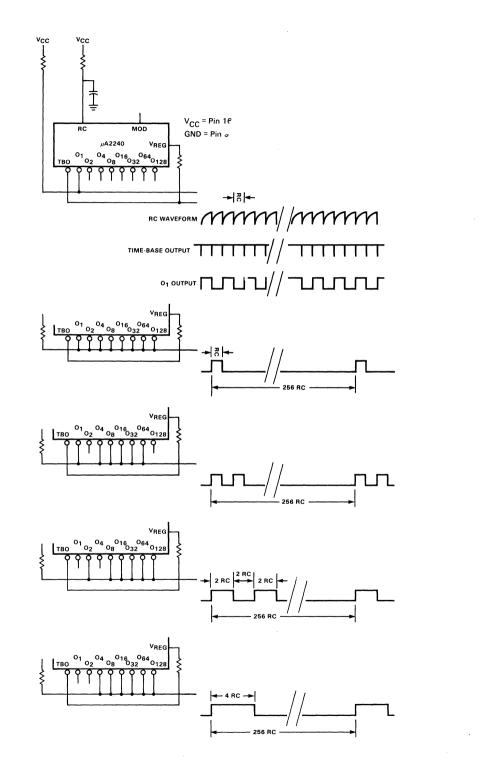
Ultra Long Time-Delay Application

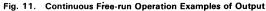
Two μ A2240 units can be cascaded as shown in *Figure 6* to generate extremely long time delays. Total timing cycle of two cascaded units can be programmed from $T_0 = 256$ RC to $T_0 = 65,536$ RC in 256 discrete steps by selectively shorting one or more of the counter outputs from Unit 2 to the output bus. In this application, the Reset and the Trigger terminals of both units are tied together and the Unit 2 time base is disabled. Normally, the output is HIGH when the system is reset. On triggering, the output goes LOW where it remains for a total of (256)² or 65,536 cycles of the time-base oscillator.

In cascaded operation, the time-base section of Unit 2 can be powered down to reduce power consumption by using the circuit connection of *Figure* 7. In this case, the V_{CC} terminal (pin 16) of Unit 2 is left open, and the second unit is powered from the regulator output of Unit 1 by connecting the V_{REG} (pins 15) of both units together.


ASTABLE OPERATION

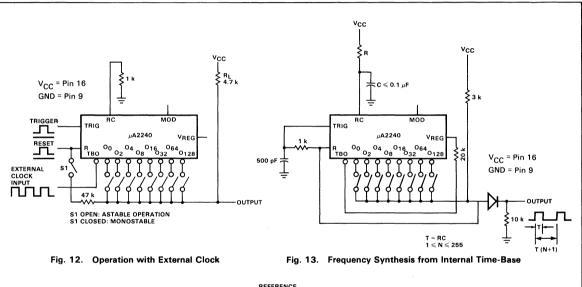
The μ A2240 can be operated in its astable or free-running mode by disconnecting the Reset terminal (pin 10) from the counter outputs. Two typical circuits are shown in *Figures 8* and 9. The circuit in *Figure 8* operates in its free-running mode with external trigger and reset signals. It starts counting and timing following a trigger input until an external reset pulse is applied. Upon application of a positive-going reset signal to pin 10, the circuit reverts back to its Reset state. This circuit is essentially the same as that of *Figure 3* with the feedback switch S1 open.

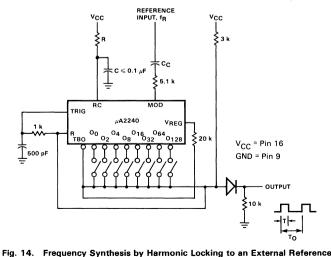

The circuit of *Figure 9* is designed for continuous operation. It self-triggers automatically when the power supply is turned on, and continues to operate in its free-running mode indefinitely. in astable or free-running operation, each of the counter outputs can be used individually as synchronized oscillators, or they can be interconnected to generate complex pulse patterns.


Binary Pattern Generation

In astable operation, as shown in *Figure 8*, the output of the μ A2240 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of *Figure 2* which shows the phase relations between the counter outputs. *Figures 10* and *11* show some

9


of the complex pulse patterns that can be generated. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.


OPERATION WITH EXTERNAL CLOCK

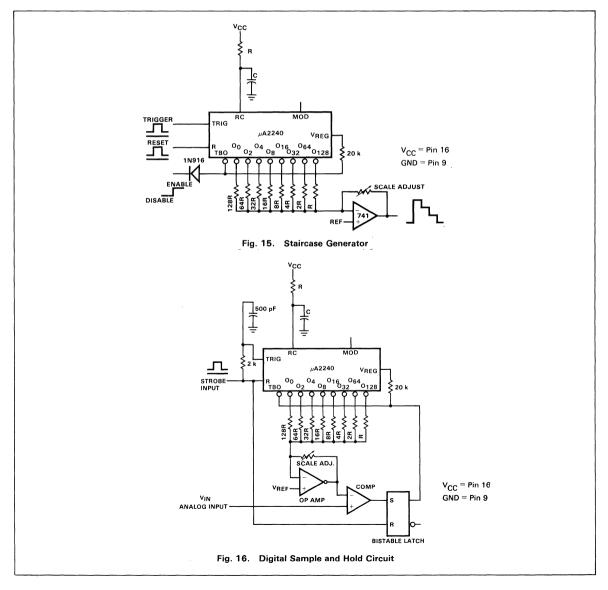
The μ A2240 can be operated with an external clock or time base by disabling the internal time-base oscillator and applying the external clock input to TBO, pin 14. The recommended circuit connection for this application is shown in *Figure 12*. The internal time base is de-activated by connecting a 1 kΩ resistor from RC, pin 13, to ground. The counters are triggered on the negative-going edges of the external clock pulse. For proper operation, a minimum clock pulse amplitude of 3 V is required. Minimum external clock pulse width must be $\geq 1 \ \mu$ s. For low power operation with supply voltages of 6 V or less, the internal time base section can be powered down by connecting V_{CC} to pin 15 and leaving pin 16 open. In this configuration, the internal time base does not draw any current and the overall current drain is reduced by \approx 3 mA.

FREQUENCY SYNTHESIZER

The programmable counter section of the μ A2240 can be used to generate 255 discrete frequencies from a given timebase output setting using the circuit connection of *Figure 13*. The circuit output is a positive pulse train with a pulse width equal to T, and a period equal to (N + 1) T where N is the programmed count in the counter. The modulus N is the total count corresponding to the counter outputs connected to the output bus. For example, if pins 1, 3 and 4 are connected together to the output bus, the total count is N = 1 + 4 + 8 = 13; and the period of the output waveform is equal to (N + 1) T or 14 T. In this manner, 255 different frequencies can be synthesized from a given time-base setting.

SYNTHESIS WITH HARMONIC LOCKING

The harmonic synchronization feature of the μ A2240 time base can be used to generate a wide number of discrete frequencies from a given input reference frequency. The circuit connection for this application is shown in *Figure 14* (see *Figures 4* and 5 for external sync waveform and harmonic capture range). If the time base is synchronized to (m)th harmonic of input frequency where $1 \le m \le 10$, the frequency to of the output waveform in *Figure 14* is related to the input reference frequency f_R as


$$f_0 = f_R - \frac{m}{(N+1)}$$

where m is the harmonic number, and N is the programmed counter modulus. For a range of $1 \le N \le 255$, the circuit of *Figure 14* can produce 2550 different frequencies from a single fixed reference.

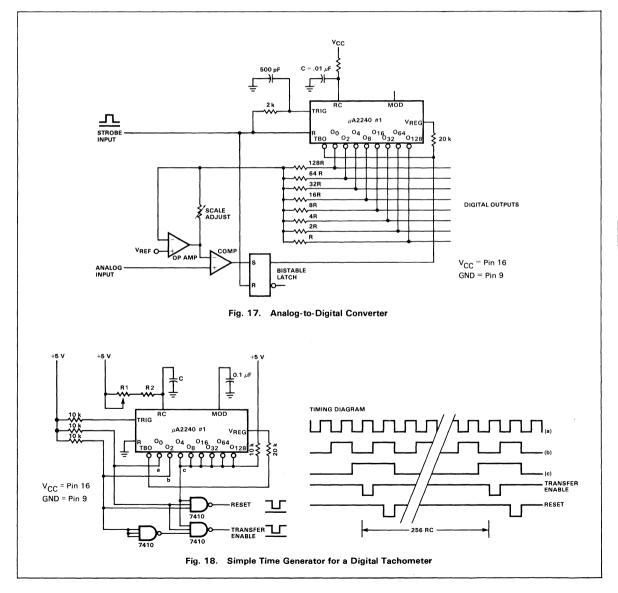
The circuit of *Figure 14* can be used to generate frequencies which are not harmonically related to a reference input. For example, by selecting the external RC to set m = 10 and setting N = 5, a 100 Hz output frequency synchronized to 60 Hz power line frequency can be obtained.

STAIRCASE GENERATOR

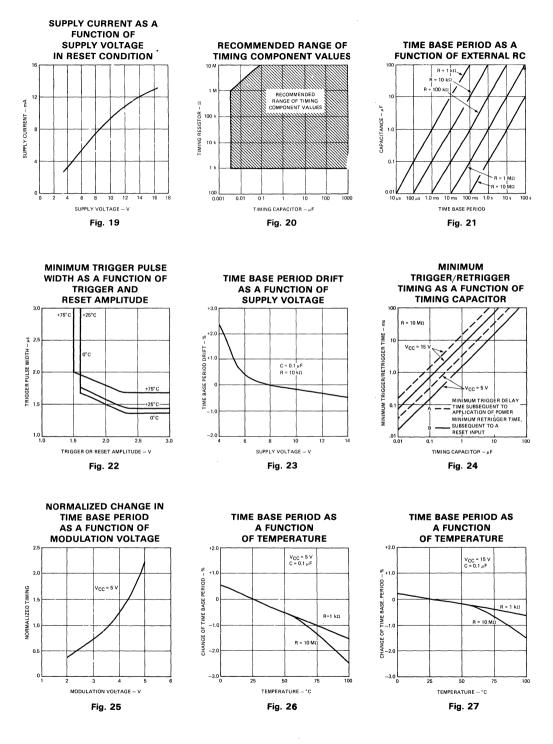
The μ A2240 timer/counter can be interconnected with an external operational amplifier and a precision resistor ladder to form a staircase generator as shown in *Figure 15*. Under Reset condition, the output is LOW. When a trigger is applied, the op amp output goes HIGH and generates a negative-going staircase of 256 equal steps. The time duration of each step is equal to the time-base period T. The staircase can be stopped at any level by applying a disable signal to pin 14, through a steering diode, as shown in *Figure 15*. The count is stopped when pin 14 is clamped at a voltage level $\leq 1.0 \text{ V}$.

DIGITAL SAMPLE AND HOLD

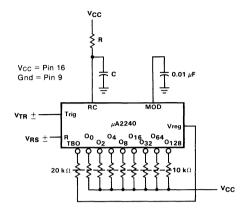
Figure 16 shows a digital sample and hold circuit using the μ A2240. Circuit operation is similar to the staircase generator described in the previous section. When a strobe input is applied, the RC low-pass network between the Reset and the Trigger inputs resets the timer, then triggers it. This strobe input also sets the output of the bistable latch to a HIGH state and activates the counter.


The circuit generates a staircase voltage at the op amp output. When the level of the staircase reaches that of the analog input to be sampled, the comparator changes state, activates the bistable latch and stops the count. At this point, the voltage level at the op amp output corresponds to the sampled analog input. Once the input is sampled, it is held until the next strobe signal. Minimum recycle time of the system is ≈ 6 ms.

ANALOG-TO-DIGITAL CONVERTER


Figure 17 shows a simple 8-bit A/D converter system using the μ A2240. Circuit operation is very similar to that of the digital sample and hold system of Figure 16. In the case of A/D conversion, the digital output is obtained in parallel format from the binary-counter outputs with the output at pin 8 corresponding to the most significant bit (MSB). Recycle time is \approx 6 ms.

DIGITAL TACHOMETER TIME BASE


A digital tachometer requires a time-base generator to supply two pulse outputs at specific intervals, *e.g.*, every second. The first pulse is a command (load) to transfer the accumulated counts in the counter section into latches (memory); the second resets the counter to zero. A simple adjustable time base, accurate to approximately $\pm 0.5\%$, can be implemented using the circuit in *Figure 18*.

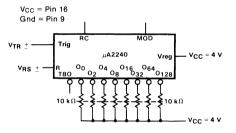


Fig. 29. Test Circuit for Low Power Operation (Time Base Powered Down)

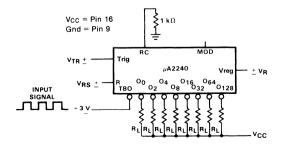
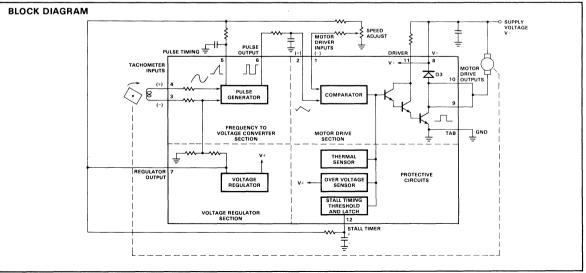


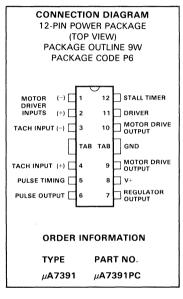
Fig. 30. Test Circuit for Counter Section

µA7391

DC MOTOR SPEED CONTROL CIRCUIT


FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The μ A7391 is designed for precision, closed-loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial control applications, *e.g.*, floppy disc drive systems, data cartridge drive systems. The device is constructed using the Fairchild Planar* epitaxial process.


The μ A7391 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the system's negative feedback loop.

Thermal and over-voltage shutdown are included for self-protection, and a "stall-timer" feature allows the motor to be protected from burn-out during extended mechanical jams.

- PRECISION PERFORMANCE FREQUENCY-TO-VOLTAGE CONVERSION STABILITY TYPICALLY 0.1% FOR V+ FROM 10 V TO 16 V; 0.3% FOR CASE TEMPERATURE FROM -40°C TO +85°C
- HIGH CURRENT PERFORMANCE 3.5 A STARTING SURGE CURRENT AND 2 A RUNNING CURRENT TO A DC MOTOR
- WIDE RANGE TACHOMETER INPUT 100 mVp-p TO 1.0 Vp-p
- LOW EXTERNAL PARTS COUNT
- THERMAL SHUTDOWN, OVER-VOLTAGE AND STALL PROTECTION
- INTERNAL REGULATOR
- WIDE SUPPLY VOLTAGE RANGE 6.3 V TO 16 V

*Planar is a patented Fairchild process.

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage (V+), V8	24 V
Regulator Output Current, I7	15 mA
Voltage Applied to Pin 5 (Tachometer Pulse Timing)	7 V
Voltage Applied Between Pins 3 and 4 (Tachometer Inputs)	±6 V
DC Voltage Applied to Pin 11 (Driver)	24 V
DC Voltage Applied to Pins 9 or 10 (Motor Drive Output)	V+
Continuous Current through pins 9 and 10:	
Motor Drive Output ON	2.0 A
Repetitive Surge Current through Pins 9 and 10:	
Motor Drive Output ON	3.5 A
Motor Drive Output OFF	2.0 A
Repetitive Surge Current through Pin 11	300 mA
Power Dissipation	Internally Limited
Storage Temperature Range	−55°C to +150°C
Operating Temperature Range	−40°C to +85°C
Lead Temperature (Soldering, 10 s)	260°C
THERMAL DATA	
$\theta_{\rm JC}$ Thermal Resistance Junction to Case (tab) (max)	12°C/W
θ_{JA} Thermal Resistance Junction to Ambient (max)	**70°C/W

**Obtained with tabs soldered to a printed circuit board having a minimum area of copper surrounding the tabs.

ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, unless otherwise noted

VOLTAGE REGULATOR SECTION: (TEST CIR	CUIT 1)				
CHARACTERISTICS	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Power Supply Current	Excluding Current into Pins 9, 10 and 11		7.5	10	mA
Regulator Output Voltage		4.5	5.0	5.5	V
Regulator Output Line Regulation (ΔV_7)	V+ from 10 V to 16 V V+ from 6.3 V to 16 V		6.0 12	20 50	mV mV
Regulator Output Load Regulation (ΔV7)	I7 from 10 mA to 0		40		mV

ELECTRICAL CHARACTERISTICS: V + = 14.5 V, TA = 25°C, unless otherwise noted

FREQUENCY TO VOLTAGE CONVERTER SECTION: (TEST CIRCUIT 2)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Tachometer () Input Bias Voltage			2.4]	V
Tachometer (+) Input Bias Current	$v_4 = v_3$		1.0	10	μΑ
Tachometer Input Positive Threshold	(V ₄ - V ₃)	10	25	50	mV _{pk}
Tachometer Input Hysteresis		20	50	100	mV _{p-p}
Pulse Timing ON Resistance	V ₅ = 1 V		300	500	Ω
Pulse Timing Switch Threshold		45	50	55	%V7
Output Pulse Rise Time			0.3		μs
Output Pulse Fall Time			0.1		μs
Pulse Output LOW Saturation (V ₆)			0.13	0.25	V
Pulse Output HIGH Saturation (V7 - V6)			0.12	0.2	V
Pulse Output HIGH Source Current	V ₆ = 1 V	-340	-260	-180	μΑ
Frequency-to-Voltage Conversion Supply Voltage Stability (Note 1).	V _{FV} = 0.25 V ₇ (Note 2) V+ from 10 V to 16 V		0.1		%
Frequency-to-Voltage Conversion Temperature Stability (Note 3)	V _{FV} = 0.25 V ₇ (Note 2) T _A from -40°C to +85°C		0.3		%

ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, unless otherwise noted

MOTOR DRIVE SECTION: (TEST CIRCUI	IT 3)				
CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS
Input Offset Voltage				±20	mV
Input Bias Current			0.1	10	μA
Common Mode Range		0.8		2.5	v
Driver Saturation	$I_9 + I_{10} = 2 A, I_{11} = 175 mA$		1.9	2.5	v
Driver Leakage Current	V ₁₁ = 16 V			5.0	μA
Motor Drive Output Saturation	$I_9 + I_{10} = 2 A, I_{11} = 55 mA$		0.6	1.1	v
Motor Drive Output Leakage	V ₈ = V ₉ = V ₁₀ = 16 V			100	μA
Flyback Diode Leakage	V ₉ = V ₁₀ = 1 V			30	μA
Flyback Diode Clamp	$I_9 + I_{10} = 2 A$ Motor Drive Output Off		1.6	2.5	v

ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, unless otherwise noted

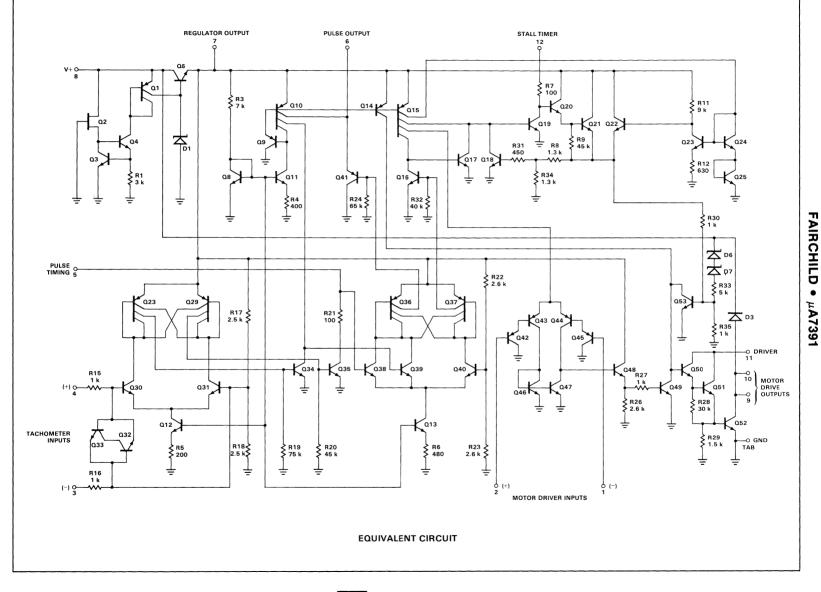
PROTECTIVE CIRCUITS: (TEST CIRCUIT 4)

CHARACTERISTICS	CONDITIONS	MIN	TYP	мах	UNITS
Thermal Shutdown Junction Temperature	Note 4		160		°C
Overvoltage Shutdown	Note 4	18	21	24	v
Stall Timer Threshold Voltage	Note 5	2.5	2.9	3.5	v
Stall Timer Threshold Current	Note 5		0.3	3.0	μA

NOTES:

1. Frequency-to-Voltage Conversion, Supply Voltage Stability is defined as:

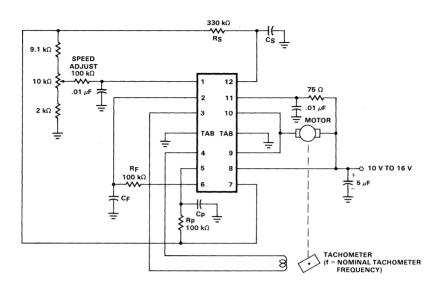
$$\begin{bmatrix} V_{FV(16 \ V)} \\ \hline V_{7(16 \ V)} \end{bmatrix} = \begin{bmatrix} V_{FV(10 \ V)} \\ \hline V_{7(10 \ V)} \end{bmatrix} \div \begin{bmatrix} V_{FV(14.5 \ V)} \\ \hline V_{7(14.5 \ V)} \end{bmatrix} x \quad 100\%$$


2. V_{FV} is the integrated dc output voltage from the pulse generator (Pin 6)

3. Frequency-to-Voltage Conversion Temperature Stability is defined as:

$$\begin{bmatrix} V_{FV(85^{\circ}C)} \\ \hline V_{7(85^{\circ}C)} \end{bmatrix} = \begin{bmatrix} V_{FV}(-40^{\circ}C) \\ \hline V_{7(-40^{\circ}C)} \end{bmatrix} \div \begin{bmatrix} V_{FV(25^{\circ}C)} \\ \hline V_{7(25^{\circ}C)} \end{bmatrix} \times 100\%$$

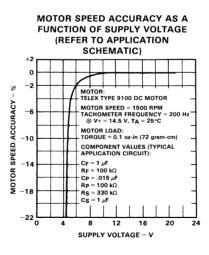
4. "Driver" and "Motor Drive" circuitry is disabled when these limits are exceeded. If the condition continues for the duration set by the external stall timer components, the circuit is latched off until reset by temporarily opening the power supply input line.

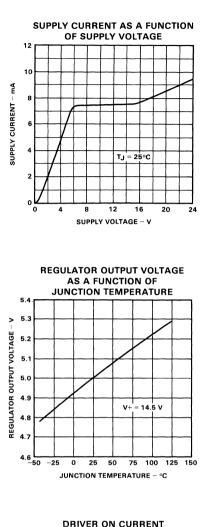

5. If stall timer protection is not required, Pin 12 should be grounded.

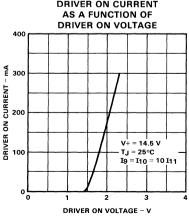
A REAL PROPERTY AND A REAL

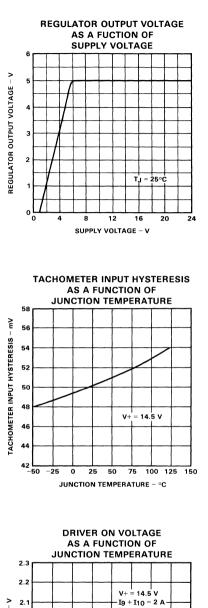
9

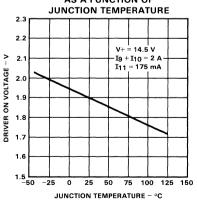
TYPICAL APPLICATION USING MAGNETIC TACHOMETER

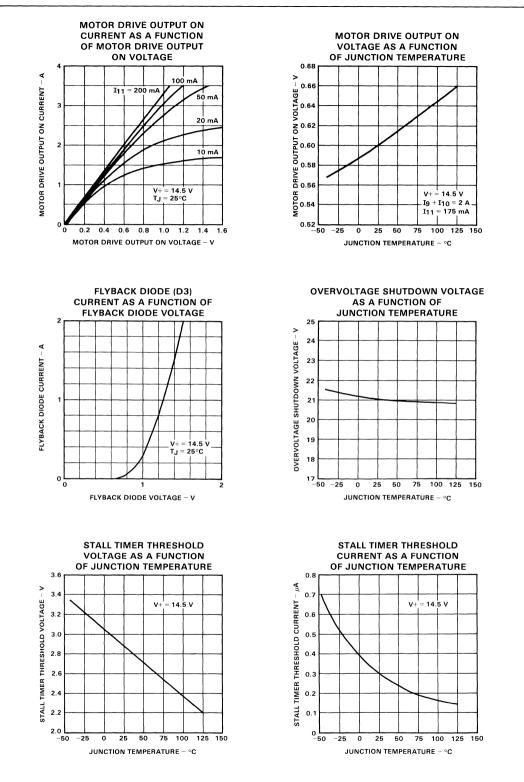

TYPICAL COMPONENT VALUES:

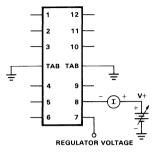

$$Cp = \frac{1}{4 Rpf}$$

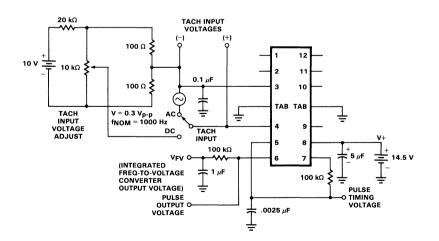

 $C_F = 10$ Cp to 1000 Cp depending on system requirements

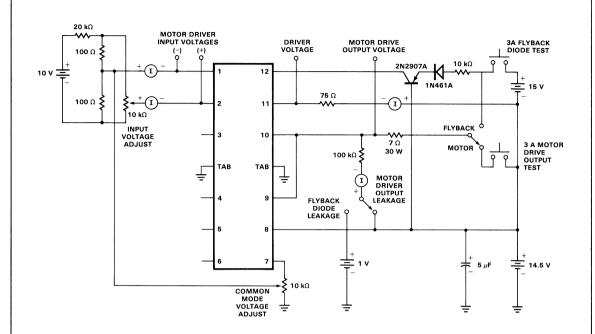

$$CS = \frac{2 \text{ x stall time-out}}{RS}$$

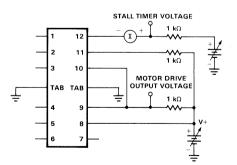

 $R_{Motor} \geqslant 5 \; \Omega$

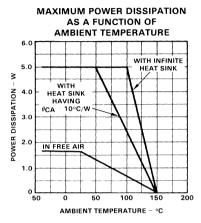


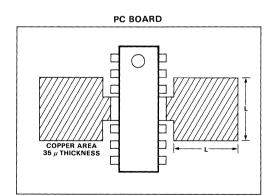






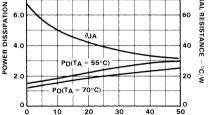

TEST CIRCUIT 2


TEST CIRCUIT 4



9-56

MOUNTING INSTRUCTIONS


The thermal power dissipated in the circuit may be removed by soldering the tabs to an area of copper on the printed circuit board. During soldering the tabs temperature must not exceed 260°C and the soldering temperature time must not be longer than 10 seconds.

MAXIMUM POWER DISSIPATION AND TOTAL THERMAL RESISTANCE AS A FUNCTION OF COPPER AREA OF PC BOARD 10 100 80 **THERMAL RESISTANCE** 8.0 6.0 60

≥

COPPER DIMENSION - mm(L)

μ**A7392**

DC MOTOR SPEED CONTROL CIRCUIT

FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION—The μ A7392 is designed for precision, closed-loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial and military control applications, e.g., floppy disc drive systems and data cartridge drive systems. The device is constructed using the Fairchild Planar* epitaxial process.

The μ A7392 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by the tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the system's negative feedback loop.

Thermal and over-voltage shutdown are included for self-protection, and a "stalltimer" feature allows the motor to be protected from burn-out during extended mechanical jams.

The μ A7392 is a low current compliment to the μ A7391 for those applications requiring less current and also to drive high current output stages for very high current applications.

- PRECISION PERFORMANCE—FREQUENCY-TO-VOLTAGE CONVERSION STABILITY TYPICALLY 0.1% FOR V+ FROM 10 V TO 16 V; 0.3% FOR CASE TEMPERATURE FROM -40°C TO +85°C
- HIGH CURRENT PERFORMANCE-1.0 A STARTING SURGE CURRENT AND 300 mA RUN-NING CURRENT TO A DC MOTOR
- WIDE RANGE TACHOMETER INPUT-100 mVp-p TO 1.0 Vp-p
- LOW EXTERNAL PARTS COUNT
- THERMAL SHUTDOWN, OVER-VOLTAGE AND STALL PROTECTION
- INTERNAL REGULATOR
- WIDE SUPPLY VOLTAGE RANGE-6.3 V TO 16 V
- EMITTER OF OUTPUT STAGE AVAILABLE FOR EASE IN DRIVING POWER TRANSISTOR OUTPUT STAGES
- CLAMPING DIODE AVAILABLE ON SEPARATE PIN

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+), V9, V10, V11	24 V
Regulator Output Current, I8	15 mA
Voltage Applied to Pin 6 (Tachometer Pulse Timing)	7 V
Voltage Applied Between Pins 3 and 5 (Tachometer Inputs)	±6 V
Continuous Current through Pins 11 and 12 Motor Drive Output ON	0.3 A
Repetitive Surge Current through Pins 11 and 12 (Motor Drive ON)	1.0 A
Repetitive Surge Current through Pins 10 and 11 (Motor Drive OFF)	0.3 A
Power Dissipation	Internally Limited
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range (µA7392)	-55°C to +125°C
Operating Temperature Range (µA7392C)	-40° C to +85° C
Pin Temperature (Soldering 10 s)	260° C

*Planar is a patented Fairchild process

CONNECTION DIAGRAM 14-PIN DIP (TOP VIEW)
PACKAGE OUTLINE 6A, 9A PACKAGE CODES D P
MOTOR (-) 1 14 STALL TIMER DRIVER INPUTS (-) 2 13 N/C TACH INPUT (-) 3 12 OUTPUT EMITTER GND 4 11 OUTPUT TACH INPUT (-) 5 10 CLAMPING DIODE PULSE TIMING 6 9 V- PULSE OUTPUT 7 8 REGULATOR
ORDER INFORMATION
TYPE PART NO.
μА7392 μА7392DM μΑ7392C μΑ7392DC μΑ7392C μΑ7392PC

VOLTAGE REGULATOR SECTION: (TEST CIRCUIT 1)					
CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Current	Excluding Current into Pin 11		7.5	10	mA
Regulator Output Voltage		4.5	5.0	5.5	V
Regulator Output Line Regulation (ΔV_8)	V+ from 10 V to 16 V V+ from 6.3 V to 16 V		6.0 12	20 50	mV mV
Regulator Output Load Regulation (ΔV8)	I ₈ from 10 mA to 0		40		mV

μ A7392 and μ A7392C

ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, $T_A = 25^{\circ}C$, unless otherwise noted

FREQUENCY TO VOLTAGE CONVERTER SECTION	N: (TEST CIRCUIT 2)				
CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Tachometer (-) Input Bias Voltage			2.4		v
Tachometer (+) Input Bias Current	$V_5 = V_3$		1.0	10	μA
Tachometer input Positive Threshold	(V5 - V3)	10	25	50	mV _{pk}
Tachometer Input Hysteresis		20	50	100	mV _{pk-pk}
Pulse Timing ON Resistance	$V_6 = 1 V$		300	500	Ω
Pulse Timing Switch Threshold		45	50	55	%V8
Output Pulse Rise Time			0.3		μs
Output Pulse Fall Time			0.1		μs
Pulse Output LOW Saturation (V7)			0.13	0.25	V
Pulse Output HIGH Saturation (V8 - V7)			0.12	0.2	v
Pulse Output HIGH Source Current	$V_7 = 1 V$	-340	-260	-180	μA
Frequency-to-Voltage Conversion Supply Voltage Stability (Note 1)	$V_{FV} = 0.25 V_8 \text{ (Note 2)}$ V+ from 10 V to 16 V		0.1		%
Frequency-to-Voltage Conversion Temperature Stability (Note 3)	$V_{FV} = 0.25 V_8 (Note 2)$ T _A from -40°C to +85°C		0.3		%

ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, $T_A = 25^{\circ}C$, unless otherwise noted

MOTOR DRIVE SECTION: (TEST CIRCUIT 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage				±20	mV
Input Bias Current			0.1	10	μΑ
Common Mode Range		0.8		2.5	V
Motor Drive Output Saturation	I ₁₁ = 300mA		1.3	1.6	V
Motor Drive Output Leakage	$V_{11} = V_{10} = 16 V$			5	μΑ
Flyback Diode Leakage	$V_{10} = 16 V, V_{11} = 0 V$			30	μΑ
Flyback Diode Clamp Voltage	I ₁₁ = 300mA Motor Drive Output Off		1.1	1.3	v

	μΑ7392, μΑ7392C				
ELECTRICAL CHARACTERISTICS: $V + = 14.5 V$,	$T_A = 25^{\circ}C$ unless otherwise noted				
PROTECTIVE CIRCUITS: (TEST CIRCUIT 4)	-	-			
CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNIT
Thermal Shutdown Junction Temperature	Note 4		160		°C
Overvoltage Shutdown	Note 4	18	21	24	V
Stall Timer Threshold Voltage	Note 5	2.5	2.9	3.5	v
Stall Timer Threshold Current	Note 5		0.3	3.0	μA
	μ Α7392 ΟΝLY				
ELECTRICAL CHARACTERISTICS: $V + = 14.5 V$, -	$55^{\circ}C \leq T_{A} \leq +125^{\circ}C$, unless otherwise	noted			
VOLTAGE REGULATOR SECTION: (TEST CIRCU	iT 1)				
CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Current	Excluding Current into Pin 11		7.5	12	mA
Regulator Output Voltage		4.5	5.0	6.0	V
Regulator Output Line Regulation (ΔV_8)	V+ from 10 V to 16 V V+ from 6.3 V to 16 V		6.0 12	20 50	mV mV
Regulator Output Load Regulation (ΔV_8)	I ₈ from 10 mA to 0		40	100	mV
FREQUENCY TO VOLTAGE CONVERTER SECTIO	DN: (TEST CIRCUIT 2)				
CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNIT
Tachometer (-) Input Bias Voltage			2.4		V
Tachometer (+) Input Bias Current	$V_5 = V_3$		1.0	15	μA
Tachometer Input Positive Threshold	(V5 - V3)	10	25	50	mVpl
Tachometer Input Hysteresis		20	50	100	mV _{p-}
Pulse Timing ON Resistance	V ₆ = 1 V		300	670	Ω
Pulse Timing Switch Threshold		45	50	55	%Va
Output Pulse Rise Time			0.3		μs
Pulse Fall Time			0.1		μS
Pulse Output LOW Saturation (V7)			0.13	0.25	V
Pulse Output HIGH Saturation (V8 - V7)	•		0.12	0.2	V
Pulse Output HIGH Source Current	V ₇ = 1 V	-370	-260	-150	μΑ
Frequency-to-Voltage Conversion Supply Voltage Stability (Note 1)	$F_{FV} = 0.25 \ V_8 \ (Note \ 2) \\ V+ \ from \ 10 \ V \ to \ 16 \ V$		0.1		%
Frequency-to-Voltage Conversion Temperature Stability (Note 3)	V _{FV} = 0.25 V ₈ (Note 2) T _A from -40°C to +85°C		0.3		%

	μ A7392 ONLY					
ELECTRICAL CHARACTERISTICS Cont. : $V + = 14.5 V$, $-55^{\circ}C \ge TA \le +125^{\circ}C$, unless otherwise noted.						
MOTOR DRIVE SECTION: (TEST CIRCUIT 3)						
CHARACTERISTICS	CONDITIONS	MIN	TYP	МАХ	UNITS	
Input Offset Voltage				±30	mV	
Input Bias Current			0.1	10	μA	
Common Mode Range		0.8		2.5	V	
Motor Drive Output Saturation	I ₁₁ = 300mA		1.3	1.6	V	
Motor Drive Output Leakage	$V_{11} = V_{10} = 16 V$			10	μA	
Flyback Diode Leakage	$V_{10} = 16 V, V_{11} = 0 V$			30	μA	
Flyback Diode Clamp Voltage	I ₁₁ = 300mA Motor Drive Output Off		1.1	1.3	v	

PROTECTIVE CIRCUITS: (TEST CIRCUIT 4)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Thermal Shutdown Junction Temperature	Note 4		160		°C
Overvoltage Shutdown	Note 4	18	21	24	v
Stall Timer Threshold Voltage	Note 5	1.8	2.9	4.0	V
Stall Timer Threshold Current	Note 5		0.3	4.0	μA

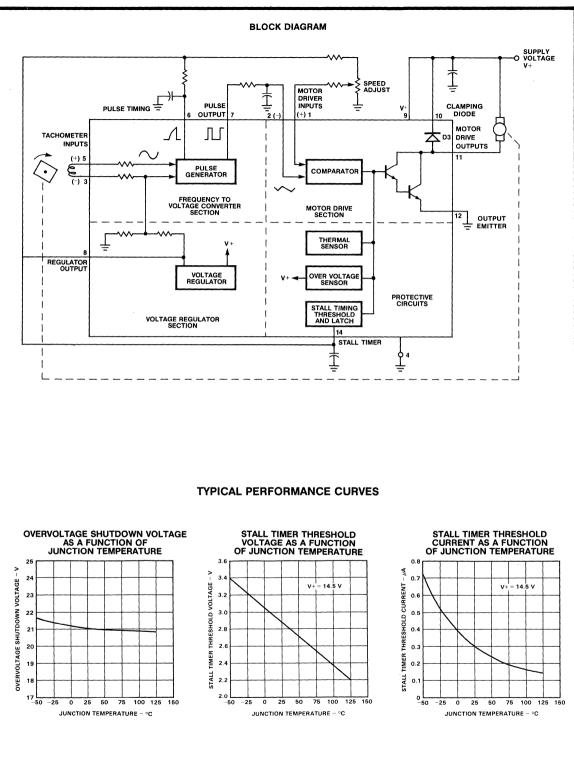
NOTES:

1. Frequency-to-Voltage Conversion, Supply Voltage Stability is defined as:

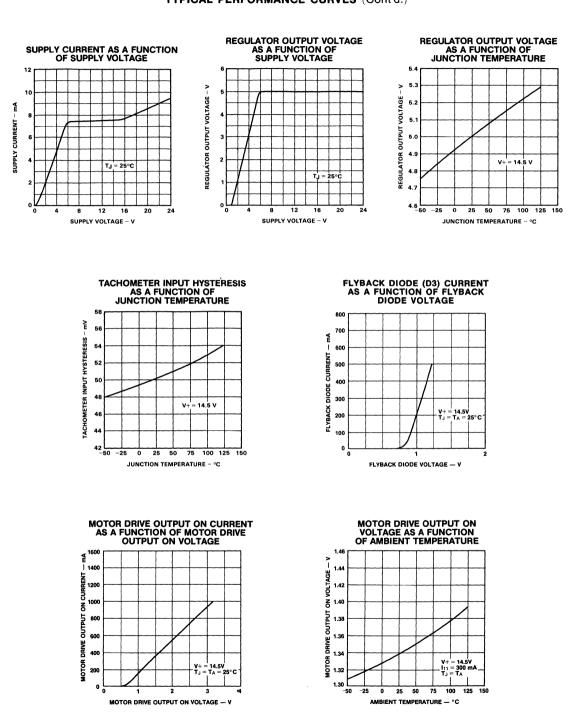
VFV(16 V)	VFV(10 V)	$\frac{ V_{FV}(14.5 V) }{ V_{8}(14.5 V) } \times$	4000/
V8(16 V)	V8(10 V)	V8(14.5 V)	100%

2. VFV is the integrated dc output voltage from the pulse generator (Pin 7)

3. Frequency-to-Voltage Conversion Temperature Stability is defined as:


 $\left[\frac{V_{FV}(85^{\circ}C)}{V_{8}(85^{\circ}C)} \right] - \left[\frac{V_{FV}(-40^{\circ}C)}{V_{8}(-40^{\circ}C)} \right] \div \left[\frac{V_{FV}(25^{\circ}C)}{V_{8}(25^{\circ}C)} \right] \times \quad 100\%$

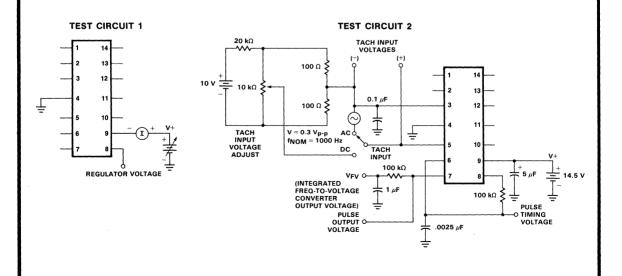
4. "Motor Drive" circuitry is disabled when these limits are exceeded. If the condition continues for the duration set by the external stall timer components, the circuit is latched off until reset by temporarily opening the power supply input line.


5. If stall timer protection is not required, Pin 14 should be grounded.

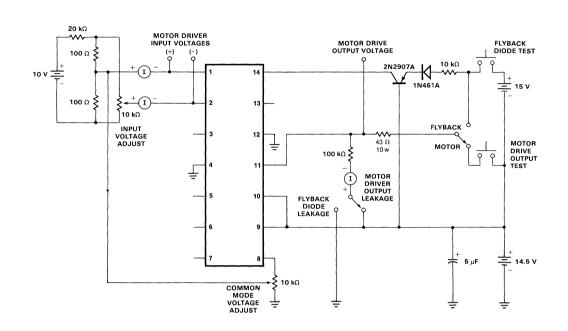
THERMAL DATA

	ТҮР	MAX	
θ_{JA} THERMAL RESISTANCE, JUNCTION TO AMBIENT			
PLASTIC (9A)	70	80	°C/W
CERAMIC (6A)	100	120	°C/W

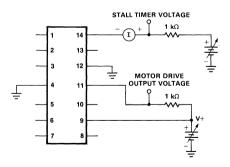
TYPICAL PERFORMANCE CURVES (Cont'd.)


TYPICAL COMPONENT VALUES:

 $Cp = \frac{1}{4 Rpf}$


Cf = 10 Cp to 1000 Cp depending on system requirements

 $C_S = \frac{2 \times \text{stall time-out}}{RS}$


 $R_{Motor} \ge 5 \ \Omega$

TEST CIRCUIT 4

9

		ALPHA NUMERIC INDEX OF INTERFACE	1
		DEVICES AND SELECTION GUIDES	
		LINEAR INDUSTRY CROSS REFERENCE	2
		QUALITY, RELIABILITY AND HI RÊL PROCESSING	3
		VOLTAGE COMPARATORS	4
		DATA ACQUISITION	5
		LINE CIRCUITS - DRIVERS, RECEIVERS AND TRANSCEIVERS	6
		PERIPHERAL AND DISPLAY DRIVERS	7
	\mathbf{N}	MEMORY INTERFACE	8
		TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
6		DATA TRANSMISSION INFORMATION	10
		ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
·····		FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12
	y		

DATA TRANSMISSION INFORMATION

SECTION 1 — INTRODUCTION	10-3
SECTION 2 — DATA TRANSMISSION LINES AND THEIR CHARACTERISTICS Transmission Line Model Input Impedance of a Transmission Line Phase Shift and Propagation Velocity for the Transmission Line Summary — Characteristic Impedance and Propagation Delay	10-5 10-7
SECTION 3 — REFLECTIONS: COMPUTATIONS AND WAVEFORMS The Initial Wave	0-10
Cut Lines and a Matched Load 1 Kirchoff's Laws and Line-Load Boundary Conditions 1 Fundamental Principles 1 Tabular Method for Reflections — The Lattice Diagram 1 Limitations of the Lattice Diagram Method 1 Reflection Effects for Voltage-Source Drivers 1 Reflection Effects for Matched-Source Drivers 1 Reflection Effects for Current-Source Drivers 1 Reflection Effects for Current-Source Drivers 1 Reflection Effects for Current-Source Drivers 1 Summary — Which are the Advantageous Combinations? 1	0-11 0-12 0-13 0-14 0-16 0-17 0-17 0-19 0-22
Effect of Source Rise Time on Waveforms 1	0-23
SECTION 4 — LONG TRANSMISSION LINES AND DATA SIGNAL QUALITY Factors Causing Signal Wave-shape Changes 1 Influence of Loss Effects on Primary Line Parameters 1 Variations in Z ₀ , α (ω) and Propagation Velocity 1 Signal Quality — Terms 1 Signal Quality Measurement — The Eye Pattern 1 Estimation of Signal Quality — In Lieu of Eye Pattern Measurements 1 Other Pulse Codes and Signal Quality 1	0-29 0-30 0-31 0-33 0-34
SECTION 5 — FORMS OF OPERATION 1 Single-Ended vs Differential 1 Modes of Operation 1 Standardized Interfaces 1 Selecting Line Drivers and Receivers 1 System Considerations 1	10-49 10-53 10-55
SECTION 6 — SATISFYING EIA STANDARDS RS-422 AND RS-423 1	10-58

INTRODUCTION

Digital signals transmitted any distance, only a few inches in some cases or up to several miles, must enter the analog world of transmission lines before arriving at their digital destinations. Therefore, special attention should be given to the interface between the digital and analog areas — often one of the least understood considerations in a system design. Interface problems occur every time a digital signal is sent from a printed circuit board and, indeed, transmission line theory must often be considered when connecting devices on the same board when using very high - speed logic such as ECL or Schottky TTL. This section is intended to shed some light on this important design procedure — interfacing of systems (or subsystems) for the transmission of information from one location to another via line drivers, transmission lines and line receivers.

To design a data transmission interface, the systems designer must be familiar with several subjects. He needs a good understanding of the effects of pulse excitation on transmission lines, knowledge about the various fundamental forms and modes of data -transmission-line circuit operation, and familiarity with the problems encountered when operating with long transmission lines. He must also have a good working knowledge of line drivers and line receivers, their electrical characteristics, and how and where these devices should be used.

This section is not intended to be a textbook in the formal sense, nor is it a 'cookbook' of applications since each system must be designed based on its unique requirements. It is presented as a refresher on the basics of pulse transmission line theory combined with methods for determining signal quality and feasibility of the particular data transmission system. Only those areas that directly affect the transmission of digital signals are covered. This section contains the essential elements to aid the system designer in making an informed decision regarding the quality of data received at the end of a transmission line.

Section two discusses the general characteristics of transmission lines and their derivations. Here, using a transmission line model, the important parameters of characteristic impedance and propagation delay are developed in terms of their physical and electrical parameters.

The third section explores another important characteristic reflection coefficient. This concept is combined with the material in section two to present graphical and analytical methods for determining the voltages and currents at any point on a line with respect to distance and time after signal application. The effects of various source resistances and line termination methods on the transmitted signal are discussed.

In section four, the logical progression from the ideal transmission line to the real world of the long transmission line with its attendant losses and problems is made; specifically, the methods to determine the practicality of a certain length of line at a given data rate is discussed. Transmission line effects on various data formats are examined as well as the effects of several types of sources (drivers) on signal quality. A practical means is given to measure signal quality for a given transmission line using readily available test equipment. This, in turn, leads to a chart that provides the designer a way to predict the feasibility of a proposed data - transmission circuit when twisted - pair cable is used. A method to estimate signal quality on coaxial - cable interconnections is also discussed.

Section five describes the various combinations of forms and modes of operation in data-transmission systems. Also described are the circuits that conform to industry standards— EIA RS232C, MIL STD 188C and IBM 360/370 I/O interfaces. A selection guide for available line drivers and receivers integrated circuits and some helpful suggestions for incorporating them into a system complete the section.

In section six, new EIA standards of RS-422 and RS-423 specifications are discussed.

Section 2 DATA TRANSMISSION LINES AND THEIR CHARACTERISTICS

INTRODUCTION

A data transmission line is composed of two or more conductors transmitting electrical signals from one location to another. A parallel transmission line is shown in *Figure 2-1*. To show how the signals (voltages and currents) on the line relate to as yet undefined parameters, a transmission line model is needed.

TRANSMISSION LINE MODEL

Because the wires A and B could not be ideal conductors, they therefore must have some finite resistance. This resistance/ conductivity is determined by length and cross-sectional area. Any line model, then, should possess some series resistance representing the finite conductivity of the wires. It is convenient to establish this resistance as a per-unit-length parameter.

Similarly, the insulating medium separating the two conductors could not be a perfect insulator because some small leakage current is always present. These currents and dielectric losses can be represented as a shunt conductance per unit length of line. To facilitate development of later equations, conductance is the chosen term instead of resistance.

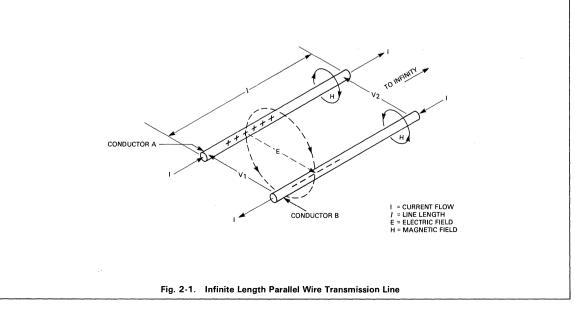
If the voltage between conductors A and B *is not variable* with time, any voltage present indicates a static electric field between the conductors. From electrostatic theory it is known that the voltage V produced by a static electric field E is given by

$$V = \int E \cdot dl \tag{2.1}$$

This static electric field between the wires can only exist if there are free charges of equal and opposite polarity on both wires as described by Coulomb's law.

$$E = \frac{q}{4\pi\epsilon r^2} \tag{2.2}$$

where E is the electric field in volts per meter, q is the charge in Coulombs, ϵ is the dielectric constant, and r is the distance in meters. These free charges, accompanied by a voltage, represent a capacitance (C = q/V); so the line model must include a shunt capacitive component. Since total capacitance is dependent upon line length, it should be expressed in a capacitance per-unit-length value.


It is known that a current flow in the conductors induces a magnetic field or flux. This is determined by either Ampere's law

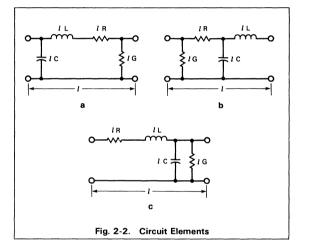
$$\oint H \cdot dl = I \tag{2.3}$$

or the Biot-Savart law

$$dB = \frac{\mu I dl \times r}{4\pi r^3} \tag{2.4}$$

where r = radius vector (meters)
 l = length vector (meters)
 I = current (amps)
 B = magnetic flux density (Webers per meter)
 H = magnetic field (amps per meter)
 u = permeability

If the magnetic flux (ϕ) linking the two wires *is variable* with time, then according to Faraday's law


$$V = \frac{d\phi}{dt}$$
(2.5)

A small line section can exhibit a voltage drop — in addition to a resistive drop—due to the changing magnetic flux (ϕ) within the section loop. This voltage drop is the result of an inductance given as

$$V = L \frac{di}{dt}$$
(2.6)

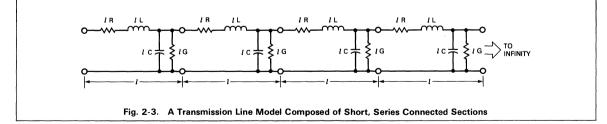
Therefore, the line model should include a series inductance per-unit-length term. In summary, it is determined that the model of a transmission line section can be represented by two series terms of resistance and inductance and two shunt terms of capacitance and conductance.

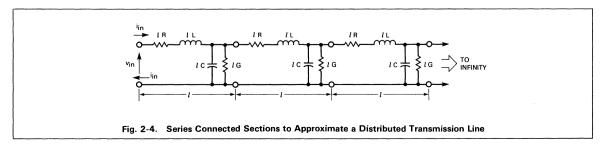
From a circuit analysis point of view, the terms can be considered in any order, since an *equivalent* circuit is being generated. *Figure 2-2* shows three possible arrangements of circuit elements.

For consistency, the circuit shown in *Figure 2-2c* will be used throughout the remainder of this chapter. *Figure 2-3* shows how a transmission line model is constructed by series connecting the short sections into a ladder network.

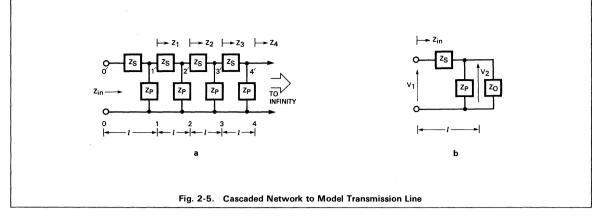
Before examining the pertinent properties of the model, some comments are necessary on applicability and limitations. A real transmission line does not consist of an infinite number of small lumped sections - rather, it is a distributed network. For the lumped model to accurately represent the transmission line. (see Figure 2-3) the section length must be quite small in comparison with the shortest wavelengths (highest frequencies) to be used in analysis of the model. Within these limits, as differentials are taken, the section length will approach zero and the model should exhibit the same (or at least very similar) characteristics as the actual distributed parameter transmission line. The model in Figure 2-3 does not include second order terms such as the increase in resistance due to skin effect or loss terms resulting from non-linear dielectrics. These terms and effects are discussed in the references rather than in this chapter, since they tend to obscure the basic principles under consideration. For the present, assume that the signals applied to the line have their minimum wavelengths a great deal longer than the section length of the model and ignore the second order terms.

INPUT IMPEDANCE OF A TRANSMISSION LINE


The purpose of this section is to determine the input impedance of a transmission line; *i.e.*, what amount of input current i_{in} is needed to produce a given voltage v_{in} across the line as a function of the LRCG parameters in the transmission line, (see *Figure 2-4*).


Combining the series terms IR and IL together simplifies calculation of the series impedance (Z_s) as follows

$$Z_{s} = l(R + j\omega L) \tag{2.7}$$


Likewise, combining $\ \mbox{IC}$ and $\ \mbox{IG}$ produces a parallel impedance Z_D represented by

$$Z_p = \frac{1}{Y_p} = \frac{1}{l(G + j\omega C)}$$
 (2.8)

10-5

Since it is assumed that the line model in *Figure 2-5a* is infinite in length, the impedance looking into any cross section should be equal, that is, $Z_1 = Z_2 = Z_3$, etc. So *Figure 2-5a* can be simplified to the network in *Figure 2-5b* where Z_0 is the characteristic impedance of the line and Z_{in} must equal this impedance ($Z_{in} = Z_0$). From *Figure 2-5b*,

$$Z_{in} = Z_s + \frac{Z_0 Z_p}{Z_0 + Z_p} = Z_0$$
 (2.9)

Multiplying through both sides by $(Z_0 + Z_p)$ and collecting terms yields

$$Z_0^2 - Z_s Z_0 - Z_s Z_p = 0 (2.10)$$

which may be solved by using the quadratic formula to give

$$Z_0 = \frac{Z_s \pm \sqrt{Z_s^2 + 4Z_s Z_p}}{2}$$
(2.11)

Substituting in the definition of Z_s and Z_p from *Equations 2.7* and *2.8, Equation 2.11* now appears as

$$Z_{0} = \frac{l(R+j\omega L)}{2} \pm \frac{1}{2} \sqrt{l^{2}(R+j\omega L)^{2} + 4\frac{R+j\omega L}{G+j\omega C}}$$
(2.12)

Now, as the section length is reduced, all the parameters (lR, lL, lG, and lC) decrease in the same proportion. This is because the per-unit-length line parameters R, L, G, and C are constants for a given line. By sufficiently reducing l, the terms in *Equation 2.12* which contain l as multipliers will become negligible when compared to the last term

$$\frac{R+j\omega L}{G+j\omega C}$$

which remains constant during the reduction process. Thus *Equation 2.12* can be rewritten as

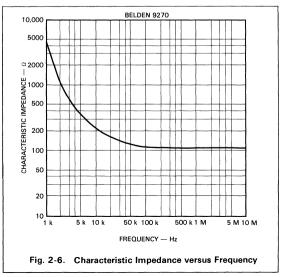
$$Z_0 = \sqrt{\frac{R+j\omega L}{G+j\omega C}} = \sqrt{Z_s Z_p}$$
(2.13)

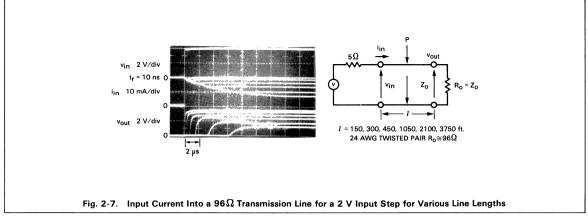
particularly when the section length l is taken to be very small. Similarly, if a high enough frequency is assumed,

$$\frac{\omega}{2\pi}$$
 > 100 kHz

such that the ωL and ωC terms are much larger respectively than the R and G terms, Z_s = j ω I L and Z_p = 1/j ω I C can be used to arrive at a lossless line value of

$$Z_0 = \sqrt{\frac{L}{C}}$$
(2.14)


In the lower frequency range


 $\frac{\omega}{2\pi} \cong 1 \ kHz$

the R and G terms dominate the impedance giving

$$Z_0 = \sqrt{\frac{R}{G}}$$
(2.15)

A typical twisted pair would show an impedance versus applied frequency curve similar to that shown in *Figure 2-6*. The Z₀ becomes constant above 100 kHz, since this is the region where the ω L and ω C terms dominate and *Equation 2.13* reduces to *Equation 2.14*. This region above 100 kHz is of primary interest, since the frequency spectrum of the fast rise/fall time pulses sent over the transmission line have a fundamental frequency in the 1-to-50 MHz area with harmonics extending upward in frequency.

 Z_0 in *Equations 2.13, 2.14* and 2.15 do not contain any reference to line length, so using *Equation 2.14* as the normal characteristic impedance expression, allows the line to be replaced with a resistor of $R_0 = Z_0 \Omega$ neglecting any small reactance. This is true when calculating the initial voltage step produced on the line in response to an input current step, or an initial current step in response to an input voltage step.

Figure 2-7 shows a 2 V input step into a 96 Ω transmission line (top trace) and the input current required for line lengths of 150, 300, 450, 1050, 2100, and 3750 feet, respectively (second set of traces). The lower traces show the output voltage waveform for the various line lengths. As can be seen, maximum input current is the same for all the different line lengths, and depends only upon the input voltage and the characteristic resistance of the line. Since R₀ = 96 Ω and v_{in} = 2 V, then i_{in} = v_{in}/R₀ \simeq 20 mA as shown by *Figure 2-7*.

A popular method for estimating the input current into a line in response to an input voltage is the formula

C(dv/dt) = i

where C is the total capacitance of the line (C = C per foot x length of line) and dv/dt is the slew rate of the input signal. If the 3750-foot line, with a characteristic capacitance per unit length of 16 pF/ft is used the formula $C_{total} = (C \times I)$ would yield a total lumped capacitance of .06 μ F. Using this C(dv/dt) = i formula with (dv/dt = 2 V/10 ns) as in the scope

photo would yield

$$I = \frac{2 V}{10 ns} \times .06 \,\mu F = 12 A$$

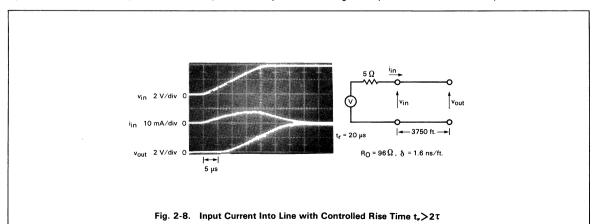

This is clearly not the case! Actually, since the line impedance is approximately 100 Ω , 20 mA are required to produce 2 V across the line. If a signal with a rise time long enough to encompass the time delay of the line is used, $(t_r >> \tau)$ then the C(dv/dt) = i formula will yield a reasonable estimate of the peak input current required. In the example, if the dv/dt is 2 V/20 μ s, $(t_r = 20 \, \mu$ s $> \tau = 6 \, \mu$ s) then i = 2 V/20 μ s $\sim 0.06 \, \mu$ F = 6 mA, which is verified by *Figure 2-8.*

Figure 2-8 shows that C(dv/dt) = i only when the rise time encompasses the capacitance to be lumped. The maximum input current requirement will be with a fast rise time step, but the line is essentially resistive, so $v_{in}/i_{in} = R_0 = Z_0$ will give the actual drive current needed. These effects will be discussed later in Chapter 3.

PHASE SHIFT AND PROPAGATION VELOCITY FOR THE TRANSMISSION LINE

There will probably be some phase shift and loss of signal v_2 with respect to v_1 because of the reactive and resistive parts of Z_s and Z_p in the model *(Figure 2-5b)*. Each small section of the line (l) will contribute to the total phase shift and amplitude reduction if a number of sections are cascaded as in *Figure 2-5a*. So, it is important to determine the phase shift and signal amplitude loss contributed by each section.

10

Using Figure 2-5b, v2 can be expressed as

$$v_2 = v_1 \frac{Z_p Z_0}{Z_p + Z_0} \frac{1}{Z_s + Z_p Z_0 / (Z_p + Z_0)}$$
 (2.16)

or

$$\frac{v_1}{v_2} = \frac{Z_s(Z_p + Z_0) + Z_p Z_0}{Z_p Z_0}$$
(2.17)

and further simplification yields

$$\frac{v_1}{v_2} = 1 + Z_s \left[\frac{1}{Z_0} + \frac{1}{Z_p} \right]$$
(2.18)

Remember that a per-unit-length constant, normally called γ is needed. This shows the reduction in amplitude and the change in the phase per unit length of the sections.

$$\gamma_l = \alpha_l + j\beta_l \tag{2.19}$$

Since

$$v_2 = v_1 \exp(-\gamma_l) = v_1 \exp(-\alpha_l) + v_1 \exp(-j\beta_l)$$

(2.20)

where $v_1 \exp(-\alpha_l)$ is the signal attenuation and $v_1 \exp(-j\beta_l)$ is the change in phase from v_1 to v_2 ,

$$ln\left[\frac{v_{1}}{v_{2}}\right] = ln \exp(\alpha_{l} + j\beta_{l}) = \alpha_{l} + j\beta_{l} = \gamma_{l}$$
(2.21)

Thus, taking the natural log of both sides of Equation 2.18

$$ln\left[\left[\frac{v_1}{v_2}\right] = ln\left[1 + Z_s\left|\left(\frac{1}{Z_0} + \frac{1}{Z_p}\right)\right] \quad (2.22)$$

Substituting Equation 2.13 for Z_0 and Y_p for $1/Z_p$

$$\gamma_{l} = ln \left[1 + Z_{s} \left(\sqrt{\frac{Y_{p}}{Z_{s}}} + Y_{p} \right) \right]$$
 (2.23)

Now when allowing the section length *l* to become small,

$$Y_p = l(G + j\omega C)$$

will be very small compared to the constant $\sqrt{Y_p/Z_s} = 1/Z_0$, since the expression for Z_0 does not contain a reference to the section length l. So *Equation 2.23* can be rewritten as

$$\gamma_{l} = ln \left(1 + Z_{s} \sqrt{\frac{Y_{p}}{Z_{s}}} \right) = ln \left(1 + \sqrt{Y_{p}Z_{s}} \right)$$
(2.24)

By using the series expansion for the natural log:

$$\ln (1 + \zeta) = \zeta - \frac{\zeta^2}{2} + \frac{\zeta^3}{3} - etc.$$
 (2.25)
$$\simeq \zeta \text{ for small } \zeta$$

and keeping in mind the $\sqrt{Z_s Y_p}$ value will be much less than one because the section length is allowed to become very small, the higher order expansion terms can be neglected, thereby reducing *Equation 2.24* to

$$\gamma_l = \sqrt{Z_s Y_p} = l \sqrt{(R + j\omega L) (G + j\omega C)}$$
(2.26)

If Equation 2.26 is divided by the section length,

$$\gamma = \frac{\gamma_l}{l} = \sqrt{(R+j\omega L) (G+j\omega C)}$$
(2.27)

the propagation constant per unit length is obtained. If the resistive components R and G are further neglected by assuming the line is reasonably short, *Equation 2.26* can be reduced to read

$$\gamma_l = j\beta_l = j\omega l \sqrt{LC}$$
 (2.28)

Equation 2.28 shows that the lossless transmission line has one very important property: signals introduced on the line have a constant phase shift per unit length with no change in amplitude. This progressive phase shift along the line actually represents a wave traveling down the line with a velocity equal to the inverse of the phase shift per section. This velocity is

$$\nu = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
(2.29)

for lossless lines. Because the LRCG parameters of the line are independent of frequency except for those upper frequency constraints previously discussed, the signal velocity given by *Equation 2.29* is also independent of signal frequency. In the practical world with long lines, there is in fact a frequency dependence of the signal velocity. This causes sharp edged pulses to become rounded and distorted. More on these long line effects will be discussed in Chapter 3.

SUMMARY — Characteristic Impedance and Propagation Delay

Every transmission line has a characteristic impedance $Z_{\rm Q},$ and both voltage and current at any point on the line are related by the formula

$$Z_0 = \frac{v}{i}$$

In terms of the per-unit-length parameters LRCG,

$$Z_0 = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$$

Since $R \ll j \omega L$ and $G \ll j \omega C$ for most lines at frequencies above 100 kHz, the characteristic impedance is best approximated by the lossless line expression

$$Z_0 \simeq \sqrt{\frac{L}{c}}$$

The propagation constant, γ , shows that signals exhibit an amplitude loss and phase shift with the latter actually a velocity of propagation of the signal down the line. For lossless lines, where the attenuation is zero, the phase shift per unit length is

$$\beta = \frac{\beta_l}{l} = \omega \sqrt{LC}$$

10-8

This really represents a signal traveling down the line with a velocity

$$\nu = \frac{\omega}{\beta} = \frac{1}{V_{LC}}$$

This velocity is independent of the applied frequency.

The larger the LC product of the line, the slower the signal will propagate down the line. A time delay per unit length can also be defined as the inverse of v

$$\delta = \frac{1}{\nu} = \sqrt{LC}$$
 (2.30)

and a total propagation delay for a line of length l as

$$r = l\delta = l VLC \tag{2.31}$$

For a more detailed discussion of characteristic impedances and propagation constants, the reader is referred to the references below.

Hamsher, D.H. (editor); Communications System Engineering Handbook; Chapter 11, McGraw-Hill, New York, 1967.

Reference Data for Radio Engineers, fifth edition; Chapter 22; Howard T. Sams Co., New York, 1970.

Matick, R.F.; Transmission Lines for Digital and Communications Networks; McGraw-Hill, New York, 1969.

Metzger, G. and Vabre, J.P.; <u>Transmission Lines with Pulse</u> <u>Excitation</u>; Academic Press, New York, 1969.

Section 3

REFLECTIONS: COMPUTATIONS AND WAVEFORMS

INTRODUCTION

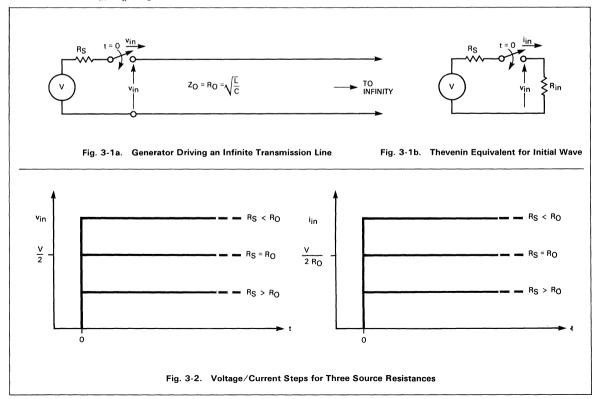
In Section 2 it was determined that transmission lines have two important properties: one, a characteristic impedance relating instantaneous voltages and currents of waves traveling along the line and, two, a wave propagation velocity or time delay per unit length. In this chapter, both Z_0 and δ are used to compute the line voltages and currents at any point along the line and at any time after the line signal is applied. Also, concepts of reflections and reflection coefficients are explored along with calculating methods for voltages and currents.

THE INITIAL WAVE

Section 2 also showed that for most practical purposes, where fast rise and fall time signals are concerned, the characteristic impedance of the line actually behaves as a pure resistance ($R_{\Omega} = \sqrt{L/C}$).

Figure 3-1a shows a generator comprised of a voltage source (magnitude V), a source resistance of R_S ohms, and a switch closing at time t = 0 connected to a lossless, infinite length transmission line having a characteristic resistance, R₀. Because the relationship of v_{in} to i_{in} is known as v_{in} = R₀ i_{in}, the lossless transmission line can be replaced with a resistor as shown in *Figure 3-1b*. The loop equation is

$$i_{in} (R_s + R_0) = V$$
 (3.1)


Substituting vin/R0 for iin and collecting terms shows

$$v_{in} = V \left(\frac{R_0}{R_0 + R_S} \right) \tag{3.2}$$

This shows that both source and characteristic resistances act as voltage dividers for the source voltage V. *Figure 3-2* shows voltage and current steps for the various source resistances. Source resistances of less than R_O produce initial voltage steps on the line which are greater than half the compliance of the source voltage, V. A matched source ($R_S = R_O$) produces voltage steps exactly half of V and source resistances greater than R_O produce an initial voltage step less than one half V in magnitude. Generators can be classified into three categories:

- Voltage source types where R_S < R₀
- Matched source types R_S = R₀
- Current source types R_S > R_O

Waveforms of these types will be discussed more fully in section 4 on long line effects. Suffice to say that initial voltage wave amplitude depends greatly on source resistance. Voltage source type drivers produce higher amplitude initial voltage waves in the line than either matched source or current source type drivers.

CUT LINES AND A MATCHED LOAD

In examining an infinite, lossless line (*Figure 3-3*), it is already known that the ratio of line voltage to current is equal to the characteristic resistance of that line. The line is lossless, and the same voltages and currents should appear at point x down the line after a time delay of $x\delta$. If the line at point x is cut, and a resistor of value R_0 is inserted, there would not be a difference between the cut, terminated finite line and the infinite line. The v_x and i_x waves see the same impedance (R_0) they were launched into at time t = 0, and indeed, the waves are absorbed into R_L (= R_0) after experiencing a time delay of $\tau = x\delta$. So, from an external viewpoint, an infinite-length lossless line behaves as a finite-length lossless line terminated in its characteristic resistance.

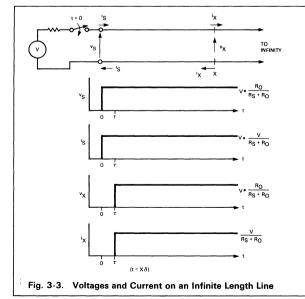
KIRCHOFF'S LAWS AND LINE-LOAD BOUNDARY CONDITIONS

The principle of energy conservation, widely known and accepted in the sciences, applies as well to transmission line theory; therefore, energy (as power) must be conserved at boundaries between line and load. This is expressed in an English language equation as follows.

$$\begin{bmatrix} \mathsf{Power available at} \\ \mathsf{the line end} \end{bmatrix} = \begin{bmatrix} \mathsf{Power absorbed} \\ \mathsf{by the load} \end{bmatrix} + \begin{bmatrix} \mathsf{Power not absorbed} \\ \mathsf{by the load} \end{bmatrix}$$

Figure 3-4 shows power available at the line end is derived by the following formula. (This is assuming in-phase current and voltage).

$$P_x = i_x \cdot v_x = \frac{v_x^2}{R_0}$$
 (3.3)


The power absorbed by the load will be

$$P_L = v_L \cdot i_L = \frac{v_L^2}{R_L}$$
(3.4)

while power not absorbed by the load is represented by

$$P_{r} = v_{r} \cdot i_{r} = \frac{v_{r}^{2}}{R_{0}}$$
(3.5)

Here, the r subscript stands for reflected (not absorbed) power, voltage or current, respectively.

Applying Kirchoff's laws to point x in *Figure 3-4*, the current to the load is

$$i_L = i_x - i_r \tag{3.6}$$

and voltage across the load is

$$v_L = i_L R_L = v_x + v_r$$
 (3.7)

To find the ratio of v_r to v_x so that it can be ascertained how much power is absorbed by the load, and how much is not absorbed (therefore, reflected), substitute v_x/R₀ for i_x and v_r/R₀ for i_r into *Equation 3.6*.

$$i_L = \frac{v_x}{R_0} - \frac{v_r}{R_0}$$
(3.8)

Rearranging *Equation 3.7* and substituting for i_L in *Equation 3.8* yields

$$\frac{v_x + v_r}{R_L} = \frac{v_x}{R_0} - \frac{v_r}{R_0}$$
(3.9)

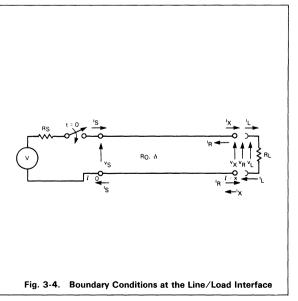
The minus sign associated with v_r/R_0 means, in this case, that the reflected voltage wave v_r travels in the -x direction toward the generator.

Collecting like terms of Equation 3.9 yields

$$v_x \left(\frac{1}{R_0} - \frac{1}{R_L}\right) = v_r \left(\frac{1}{R_0} - \frac{1}{R_L}\right)$$
(3.10)

$$v_r = v_x \left(\frac{\frac{R_L - R_0}{R_0 R_L}}{\left(\frac{R_L + R_0}{R_0 R_L}\right)} = v_x \left(\frac{R_L - R_0}{R_0 + R_L}\right)$$
(3.11)

and the desired relation for v_r/v_x is


$$\frac{v_r}{v_x} = \frac{R_L - R_0}{R_0 + R_L}$$
(3.12)

This ratio is defined as the voltage reflection coefficient of the load ρ_{VI}

$$\rho_{VL} \equiv \frac{v_r}{v_x} = \frac{R_L - R_0}{R_0 + R_L}$$

(3.13)

A similar derivation for currents shows

$$\rho_{IL} = -\frac{R_L - R_0}{R_L + R_0} = -\rho_{VL}$$
(3.14)

For the remainder of the chapters, the v or i subscript on the reflection coefficient is dropped, and $\rho_{\rm L}$ is assumed to be the *voltage* reflection coefficient of the load. Similarly, applying Kirchoff's laws to the source-line interface, the voltage reflection coefficient of the source is

$$\rho_{S} = \frac{R_{S} - R_{0}}{R_{S} + R_{0}}$$
(3.15)

The current reflection coefficient of the source has the same magnitude as ρ_{S} , but is opposite in algebraic sign.

When a traveling wave v_x , i_x meets a boundary such as the line load interface, a reflected wave is instantaneously generated so that Kirchoff's laws are satisfied at the boundary conditions. This is the direct result of the conservation of energy principle. Referring again to *Figure 3-4*, the effects of three different termination resistance R_I values are shown.

Case 1, $R_L = R_O$

In this case, R_L is equal to the characteristic resistance of the line. Using *Equation 3.13*, the voltage reflection coefficient of the load $\rho_{\rm L}$ is

$$\rho_L = \frac{R_0 - R_0}{R_0 + R_0} = \frac{0}{2R_0} = 0$$
(3.16)

Since $v_r/v_x = \rho_L$, then $v_r = \rho_L v_x = 0$ and no reflection is generated. This agrees with the discussion of cut lines and matched load where a line terminated in its characteristic impedance behaves the same as an infinite line. All power delivered by the line is absorbed into the load. The waveforms appear as shown in *Figure 3-5*. The wave starting at the source at time t = 0 is reproduced at point x down the line after a time delay of t = x \delta = \tau.

Case 2, $R_1 > R_0$

To simplify this case, assume that $R_S = R_0$. This means that

the initial voltage is

$$V\frac{R_0}{R_0 + R_0} = \frac{V}{2}$$
(3.17)

Also assume $R_L = 3 R_0$, then the load voltage reflection coefficient is

$$\rho_L = \frac{3R_0 - R_0}{3R_0 + R_0} = +\frac{1}{2}$$
(3.18)

The voltage wave arriving at point x at time $t = x\delta$ generates a reflected voltage wave of magnitude

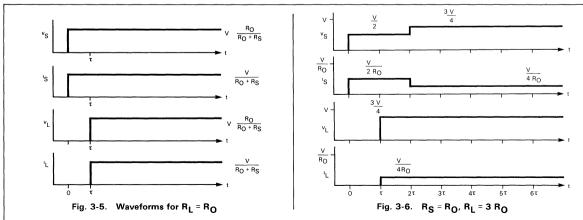
$$v_r = \rho_L v_x = (+\frac{1}{2})(\frac{V}{2}) = \frac{V}{4}$$
 (3.19)

and the load voltage is

$$v_L = v_x + v_r = \frac{V}{2} + \frac{V}{4} = \frac{3V}{4}$$
 (3.20)

The reflected voltage wave v_r generated at $t = x \delta = \tau$ travels back down the line toward the source arriving at the source at time $t = 2x\delta = 2\tau$. This wave will be absorbed without generating another reflection because R_S was picked to equal R_O, making ρ_S equal to zero. The source voltage is now

$$v_s + v_r = \frac{V}{2} + \frac{V}{4} = \frac{3V}{4}$$
 (3.21)


and equilibrium is achieved.

If the circuit in *Figure 3-4* is analyzed using simple circuit theory and neglecting the transmission line effects, it is easily seen that

$$v_S = v_L = V \frac{R_L}{R_0 + R_L} = \frac{3V}{4}$$
 (3.22)

This agrees exactly with *Equation 3.21* and will always be the case. After all reflections cease and the circuit reaches equilibrium, the steady state voltages and currents on the line are the same as those produced using simple dc circuit analysis. Waveforms for $R_L > R_0$ (specifically R_L = 3 R_0) appear in *Figure 3-6*.

In general, the case where $R_L > R_0$ is viewed in the following manner. Because the line is capable of delivering more pow-

10-12

er than can be instantaneously absorbed by the load, the excess power is returned to the source and absorbed in the source resistor (assuming $R_S = R_O$).

An upper limit on the voltage reflection coefficient is found by allowing R_L to go to infinity. In this case, *Equation 3.13* goes to +1.

Case 3, $R_L < R_O$

In this case, again set R_S = R_O and allow R_L to equal $R_O^{/3.}$ The initial wave, as before, is

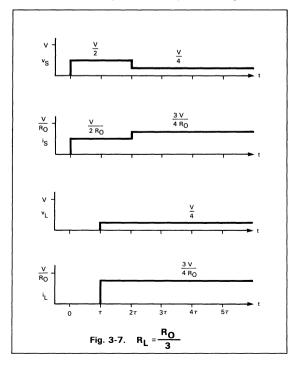
$$v_S = V \frac{R_0}{R_0 + R_S} = \frac{V}{2}$$
 (3.23)

and the load voltage reflection coefficient is

$$\rho_L = \frac{R_L - R_0}{R_L + R_0} = \frac{\frac{R_0}{3} - R_0}{\frac{R_0}{3} + R_0} = -\frac{1}{2}$$
(3.24)

Therefore, the reflected voltage wave vr is

$$v_r = \rho_L \frac{V}{2} = -\frac{V}{4}$$
 (3.25)


which starts propagating back toward the source at time t = τ . The load voltage at time t = τ is

$$v_x + v_r = \frac{V}{2} + -\frac{V}{4} = +\frac{V}{4}$$
 (3.26)

The (-V/4) reflected wave arrives back at the source at time t = 2τ . Because R_S is set equal to R_O, ρ_S is, then, equal to zero and no reflected wave will be generated. The voltage at the source is now

$$v_S + v_r + \rho_S v_r = \frac{V}{2} + -\frac{V}{4} + 0 = \frac{V}{4}$$
 (3.27)

From a dc circuit analysis, the steady state voltage is

$$V_{\rm SS} = V \frac{R_L}{R_L + R_0} = \frac{V}{4}$$
 (3.28)

This agrees with the result of *Equation 3.27*. The waveforms for Case 3 ($R_L < R_S$) appear in *Figure 3-7*.

An interpretation of the actions occurring when load resistance is less than the characteristic line resistance is as follows: when power available at the line end is less than the power the load can absorb, a signal is sent back to the source saying, in essence, "send more power".

It has been shown that a ratio of line and load resistance (ρ) can be used to calculate the voltages and currents in terms of a wave arriving at the boundary, possibly generating a reflected, reverse-traveling wave to satisfy the conservation of energy principle at the line-to-load boundary. This ratio is

$$\rho_B = \frac{R_B - R_0}{R_B + R_0}$$
(3.29)

where R_B represents the resistance into the boundary, R_B is R_S when considering the source-to-line interface and R_B would be R_L when considering the line-to-load interface. It is obvious that if discussing impedances, then Z_S would be substituted for R_S in *Equation 3.29*, and there may be some phase angle between the voltage and current waves.

The forward traveling wave, v_x, plus the reflected wave, v_r, is equal to the load voltage (V_L). Since v_r is $\rho_L v_x$, this can be expressed as

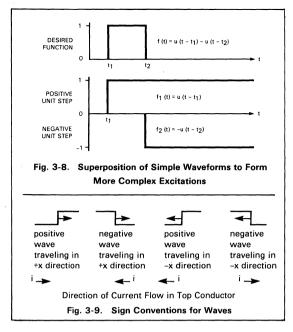
$$v_x(1+\rho_L) = v_L \tag{3.30}$$

This quantity $(1 + \rho)$ can be defined as the voltage *transmission* coefficient of the load and it is known that

$$\frac{v_L}{v_x} = (1 + \rho_L)$$
(3.31)

The cases with various load resistances can be summarized.

Condition Circuit at time t =
$$\tau$$
 (one line delay time)


 $\rho_L = 0$ 1. $R_{I} = R_{O}$ No reflection is produced-circuit reaches steady state immediately. 2. $R_1 > R_0$ $\rho_1 > 0$ Positive voltage reflection-wave is sent back toward source. Voltage at load is higher than steady stage voltage (overshoot). 3. R_L < R_O $\rho_{\rm L} < 0$ Negative voltage reflection-wave is sent back toward source. Voltage at load is lower than steady state voltage (undershoot).

FUNDAMENTAL PRINCIPLES

Before examining the algorithm for keeping track of reflections, there are two principles to keep in mind.

- Energy (as power) is conserved at boundary conditions (as explored previously)
- The principle of linear superposition applies. This means any arbitrary excitation function can be broken down into step functions, or ramps. The reaction of the circuit to each part can be analyzed, and the results can be added together when finished. This means that a positive pulse of duration t is examined by superimposing two step functions,

10

one positive and one negative, starting after a delay of t (Figure 3-8). It also means the voltage at any point on the line is the sum of initial voltage plus the sum of all voltage waves that have arrived at or passed through the point up to and including the time of examination. Also, the current on the line is, at any point, the sum of initial current plus any forward or reverse traveling currents passing the point up to and including the time the current is examined.

It has also been established that the steady state solution for voltages and currents on the line can be found by simple dc circuit analysis.

In examining reflection effects for the remainder of this book, the following conventions are used.

A voltage or current wave traveling *toward* the point of interest will have the subscript "i" for *incident* wave.

A voltage or current wave traveling *away* from the point of interest will have the subscript "r" for *reflected* wave,

The subscript "S" means the parameter applied to the source (v_S for the voltage at the source, etc.), and

The subscript "L" means the parameter applied to the *load* (v_L for the voltage at the load, etc.)

Sign conventions for voltage waves and their associated currents are shown in *Figure 3-9*.

TABULAR METHOD FOR REFLECTIONS — THE LATTICE DIAGRAM

The waves going up and down the line can be monitored by drawing a time scale, as a vertical line with time increasing in the down direction, to represent the location on the line under examination. Because voltages at the source and load ends of the transmission line are normally of primary interest, two time scales are necessary. Drawing arrows from one time scale to the other as in Figure 3-10 shows the direction of travel of the waves during a specific time interval. Since the main concern is only with the waveforms at the line ends, time scales are ruled off in multiples of the time delay of the line τ . If a unit-step type wave is launched from the source at time t = 0+, it is known that the magnitude of the wave will persist unchanged until a wave arrives back from the load after a round trip delay time of two line delays. The source time scale then is incremented in multiples of $2m\tau$ where m = 0, 1, 2, 3, . . . Likewise, the first wave arrives at the load after a single time delay, so the first increment ruling on the load time scale is τ , or one time delay of the line. Because the subsequent waves arrive back at the load in increments of 2τ , the load time scale is ruled off in multiples of $(2m + 1)\tau$ where m = 0,1,2,3, . . . The operation of the lattice diagram is discussed using the example in Figure 3-10b which is the lattice diagram for the associated circuit.

time t = 0- (just before the switch closes)

The voltages at the source and load are equal with a magnitude of $v_{initial}$. Assume that no initial voltage is present. So, in this case, the voltage at the source and load equals zero.

$$V_{initial} = v_S(0^-) = v_L(0^-) = 0$$

time t = 0+ (just after the switch has closed)

The first wave $v_i(1)$ is launched at the source and begins to travel toward the load end of the line. As previously mentioned, a voltage divider action between R_S and R_O is used to derive the magnitude of the initial voltage wave.

$$v_i(1) = V \frac{R_0}{R_0 + R_s}$$

At this time, the voltage at the source is the sum of the initial voltage plus the voltage wave $v_i(1)$ just generated.

$$v_{S}(0+) = v_{S}(0-) + v_{i}(1) = 0 + V \frac{R_{0}}{R_{0} + R_{S}}$$

Because the switch closure represents a step function, the source voltage remains at this level until a wave returns after reflecting from the load at time t = 2τ

time t = τ

The incident voltage wave $v_{i}(1)$ now arrives at the load and generates a reflected voltage wave

$$v_r(1) = \rho_L v_i(i); \quad \rho_L = \frac{R_L - R_0}{R_L + R_0}$$

where ρ_L is the voltage reflection coefficient of the load. The reflected voltage wave $v_r(1)$ immediately starts traveling back toward the source becoming the incident voltage wave $v_i(2)$ which arrives back at the source at $t=2\,\tau$. The voltage at the load is now the sum of the initial voltage plus the incident voltage wave $v_i(1)$ that just arrived plus the reflected voltage wave that is just departing.

$$v_L(1) = v_L(0^-) + v_i(1) + v_r(1)$$
$$= 0 + v_i(1) + \rho_L v_i(1)$$
$$= v_i(1) (1 + \rho_L)$$

Again, because of the step function excitation, the load voltage remains unchanged until the new wave arrives at time t = 3 τ .

time t = 2τ

 $v_{\rm i}(2)$ now arrives at the source and generates a reflected voltage wave $v_r(2)$ of magnitude

$$v_r(2) = \rho_S v_i(2); \ \rho_S = \frac{R_S - R_0}{R_S + R_0}$$

where ρ_{S} is the source voltage reflection coefficient.

The reflected voltage wave $v_r(2)$ starts back toward the load end of the line and becomes the incident voltage wave $v_i(3)$ arriving at the load at time t = 3 τ . The voltage at the source is now the sum of the voltage that was there plus the incident voltage wave just arrived plus the reflected voltage wave just departed for the load.

$$v_{s}(2) = v_{s}(0+) + v_{i}(2) + v_{r}(2)$$

$$\begin{split} &= V \frac{R_0}{R_0 + R_s} + v_i(2) + \rho_s v_i(2) \\ &= V \frac{R_0}{R_0 + R_s} + v_i(2) \ (1 + \rho_s) \end{split}$$

time t = 3τ

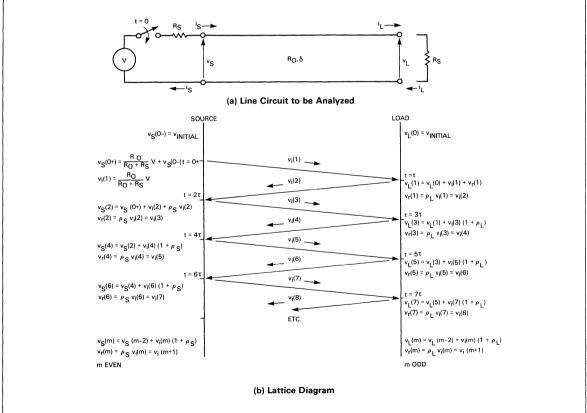
vi(3) arrives at the load generating vr(3)

$$v_r(3) = \rho_L v_i(3)$$

 $v_{f}(3)$ departs back toward the source becoming $v_{i}(4)$ to the source. The load voltage is now

$$v_L(3) = v_L(1) + v_i(3) (1 + \rho_L)$$

time t = 4τ


When $v_i(4)$ arrives at the source and generates $v_r(4)$, then

$$v_r(4) = \rho_S v_i(4)$$

starts back toward the load to become $v_i\!\left(5\right)$ to the load. The load voltage is now

$$v_L(4) = v_L(2) + v_i(4) (1 + \rho_L)$$

This process can continue ad infinitum or until no measurable changes are detected. The reflection process at that time is considered complete and the line assumes a steady state condition. Steady state conditions can be found by applying simple dc circuit theory to source load circuits.

Summarizing this lattice diagram method, any time t = m τ and m > 1, the following relationships exist:

If m is odd, the $v_i(m)$ wave is arriving at the load and generates a reflected wave

$$v_r(m) = \rho_T v_i(m)$$

This becomes $v_i(m+1)$ as it starts toward the source. The voltage at the load at time t = $m \tau$ will be

$$v_L(m) = v_L(m-2) + v_i(m) (1 + \rho_L)$$

This is the sum of the voltage that was there before the wave arrived, *i.e.*, $v_{L}(m-2)$, plus the wave arriving $v_{i}(m)$ and the reflected wave $v_{r}(m)$ departing.

If m is even, the $v_i(m)$ wave is arriving at the source and generates a reflected wave

$$v_r(m) = \rho_S v_i(m)$$

This becomes $v_i(m+1)$ as it starts toward the load. The voltage at the source is now

$$v_{s}(m) = v_{s}(m-2) + v_{i}(m) (1 + \rho_{s})$$

This is the sum of the voltage that was present $v_s(m-2)$ plus the incident wave arriving $v_i(m)$ plus the reflected wave departing $v_r(m)$.

The voltage and current at the source end of the line for a lossless line can be expressed as a summation.

$$v_{S}(t) = \frac{R_{0}}{R_{S} + R_{0}} \bullet$$

$$\left[e(t)u(t) + (1 + \frac{1}{\rho_{S}}) \sum_{n=1}^{\infty} \rho_{S}^{n} \rho_{L}^{n} e(t - 2n\tau)u(t - 2n\tau) \right]$$

$$i_{S}(t) = \frac{1}{R_{S} + R_{0}} \bullet$$
(3.32)
(3.33)

$$\left[e(t)u(t)+(1-\frac{1}{\rho_S})\sum_{n=1}^{\infty}\rho_S^n\rho_L^n e(t-2n\tau)u(t-2n\tau)\right]$$

where e(t) is the generator voltage as a function of time, and u(t) is the unit step function.

Likewise, the load voltage and load current for the lossless line can be expressed as a summation.

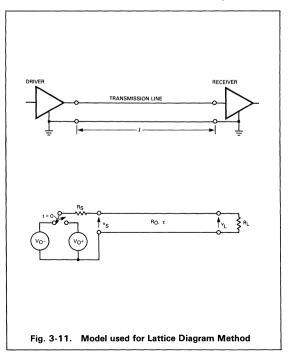
$$v_L(t) = \frac{R_0}{R_{\rm S} + R_0} \bullet \tag{3.34}$$

$$(1+\rho_L) \left[\sum_{n=0}^{\infty} \rho_S^n \rho_L^n e(t-(2n+1)\tau)u(t-(2n+1)\tau) \right]$$
$$i_L(t) = \frac{1}{R_S + R_0} \bullet$$
(3.35)

$$(1 - \rho_L) \left[\sum_{n=0}^{\infty} \rho_S^n \rho_L^n e(t - (2n+1)\tau) u(t - (2n+1)\tau) \right]$$

A similar expression of summation can be developed for the voltage (or current) at any point along the line at any time.

Because the lattice diagram is tabular in method, a computer program can be written relieving the designer of bookkeeping and repetitive calculations. A BASIC computer program for lattice diagrams appears in *Figure 3-13*.


LIMITATIONS OF THE LATTICE DIAGRAM METHOD

Before using the lattice diagram to explore reflection effects with various source and load characteristics, it is necessary to pause at this point and examine the models used by the lattice diagram.

First, both the line driver and receiver are simulated either by a constant input or output resistance. The source has two voltage sources and a switch representing the internal source voltage at a time less than zero and equal to (or greater than) zero. The receiver is represented by a single resistor shunting the line end opposite the driver site. The line itself is represented by its characteristic resistance R₀ and its total one-way time delay (τ). This is equal to length times propagation delay per unit length. This model is shown in *Figure 3-11*.

Because most data communication circuits are voltage types, that is, the receiver senses the line voltage to decide if a logic One or logic Zero is present, the primary interest is in voltages at the source and load as a function of time. Major exceptions include the current loops used in teletypewriters, telegraphs, and burglar alarm systems. The majority of data communications circuits used in computers, peripherals, and general controllers are voltage types.

The lattice diagram method cannot easily use source or receiver current/voltage relationships that are non-linear; *i.e.*, not purely resistive. For non-linear current/voltage character-

istics such as found in diodes, a graphic method can be used called the reflection diagram or the Bergeron* method.

Signals exchanged using lattice diagrams are of the unit step variety. When ramps or more complex waves are exchanged, the complexity of the bookkeeping increases dramatically. Additionally, the lines are presumed to be lossless, although a constant line attenuation factor could be accommodated without excessive bookkeeping. These limitations should be kept in mind when examining various source and load resistance combinations and their reflection characteristics.

There are three classes of source resistance, $R_S < R_0$, $R_S = R_0$ and $R_S > R_0$. There are also three classes of load resistance, $R_L < R_0$, $R_L = R_0$ and $R_L > R_0$. This gives nine types of single driver, single receiver line circuits. Each circuit will be examined in turn to determine reflection effects for these combinations with evaluations of each combination for voltage type communications.

REFLECTION EFFECTS FOR VOLTAGE SOURCE DRIVERS

Initial waves launched by a voltage source type driver ($R_S < R_0$) are greater than one-half the magnitude of the internal voltage source. Referring to *Figure 3-11*, the initial voltage wave is derived as follows.

$$v_i(1) = (V_{0+} - V_{0-}) \cdot \frac{R_0}{R_0 + R_S}$$
 (3.36)

while the voltage at the source at t = 0+ is

$$v_{S}(0+) = v_{S}(0-) + v_{i}(1) = V_{0-} \cdot \frac{R_{L}}{R_{L} + R_{S}} + v_{i}(1)$$
 (3.37)

If the receiver switching point is at the mean of the driver voltage swing, the initial wave always has sufficient magnitude to indicate the correct logic state as it passes the receiver site. This maximizes the noise margins of the receiver.

Since $R_S < R_0$, the source voltage reflection coefficient ρ_S is less than zero. Any voltage waves, then, arriving back at the source are changed in sign, reduced in amplitude (assuming $R_S > 0 \Omega$), and sent back toward the load. If the load resistance equals the characteristic line resistance (R_L = R_0), the voltage reflection coefficient of the load is

$$\rho_L = \frac{R_L - R_0}{R_L + R_0} = \frac{0}{2R_0} = 0$$

No reflections, therefore, are generated at the load. The voltage wave produced at the source is reproduced at the load after a time delay of $\tau = \& \delta$, and the line assumes a steady state condition. *Figure 3-12b* illustrates the source and load voltage waveforms for this case.

If R_L is greater than R_O, ρ_L is positive. Waves arriving at the load generate the same polarity reflections as the arriving waves. ρ_S and ρ_L are of opposite signs, so a dampened oscillatory behavior of the load voltage is expected. The oscillation period or *ringing* is 4 τ . The overshoot of v_L from t = τ

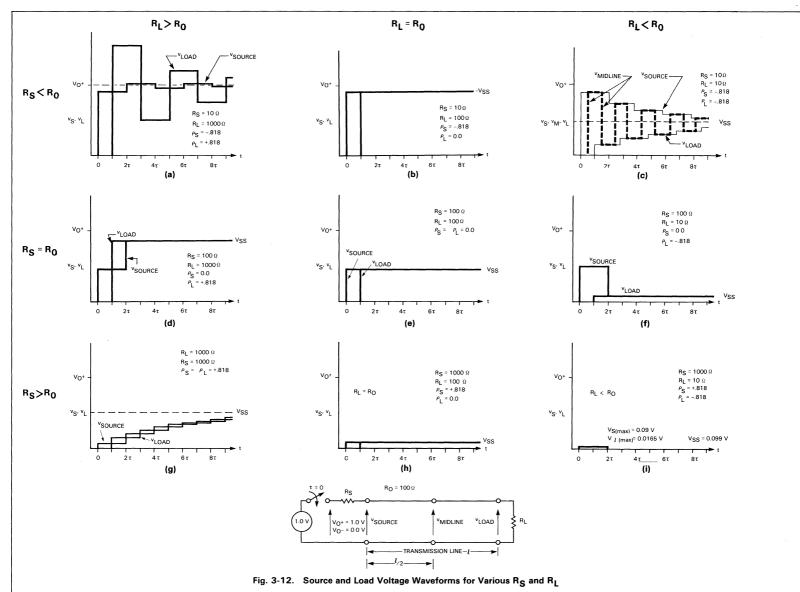
to 3τ may cause breakdown of the input circuitry of a receiver, depending on the receiver voltage rating. The undershoot at t = 3τ to 5τ can reduce the noise immunity of a receiver or even cause a logic level misinterpretation — an error in the data. These waveforms are shown in *Figure 3-12a*.

If R_I is less than R_O, then $\rho_{\rm L}$ is negative and a wave arriving at the load generates a reflection opposite in polarity to the incident wave. This causes the voltage at the source to overshoot steady state voltage at t = 0. Each reflection returning from the load causes the source voltage to continually step down toward the steady state voltage $V_{\ensuremath{\text{SS}}\xspace}$. These steps last for 2 au , or one round trip delay. Load voltage starts an increasing step-up waveform towards V_{SS} at time t = $\tau\,$, with steps again taking one round trip delay, 2τ . A line receiver placed in the middle of the line sees an entirely different waveform - dampened oscillations much like the load voltage in Figure 3-12a. This is caused by the negative signs of both source and load voltage reflection coefficients. Each time an incident wave arrives at either source or load, the reflected wave generated at that time has a sign opposite to the sign of the incident voltage wave. The voltage at a distance half way down the line is composed of these forward and reverse traveling waves arriving at that point commencing at time t = 0.5 τ , and with each new wave passing that point after one line delay (τ). These waveforms are shown in Figure 3-12c.

The optimum load resistance for voltage signal communications on transmission lines driven by a low impedance source ($R_S < R_O$) is equal to the characteristic line resistance. Large signal line voltages are produced and there are no reflection effects complicating the waveforms (*Figure 3-12b*).

However, a matched load ($R_L = R_0$) is a dc load on the driver, thus it increases system power dissipation. But, it does preserve signal fidelity and amplitude allowing use of multiple bridging receivers ($R_{in} \gg R_0$) along the line.

The unterminated case ($R_L > R_O$) reduces dc driver loading and also reduces system power dissipation over the matched load case. The unterminated case does, however, allow the load signal to exhibit pronounced overshoot and undershoot around the steady state voltage. If the load signal undershoot places the receiver in its threshold uncertainty region, data errors result. There is a way to "civilize" the voltage waveform of the unterminated line load by trading off signal rise time versus line time delay. This is discussed later.


The final case of $R_S < R_0$ and $R_L < R_0$ is not generally useful in terms of voltage signals produced *(Figure 3-12c.)* Systems using this case consume more power than the previous two cases and have no particular advantage for voltage mode communications.

REFLECTION EFFECTS FOR MATCHED-SOURCE DRIVERS

In all three cases under discussion here, the initial voltage produced by the driver onto the line is

$$v_i(1) = (V_{0+} - V_{0-}) \frac{R_0}{R_0 + R_S} = \frac{1}{2} (V_{0+} + V_{0-})$$
 (3.38)

^{*}A French hydraulic engineer, L.J.B. Bergeron developed the method to study the propagation of water hammer effects in hydraulics. See references, Chapter 2.

10-18

8

since $R_S = R_0$. The voltage at the source at time t = 0+ is

$$v_{S}(0+) = v_{S}(0-) + v_{i}(1) = V_{0-} \cdot \frac{R_{L}}{R_{L} + R_{S}} + v_{i}(1)$$
 (3.39)

Assume, for clarity, that initial voltage (V_O_) is zero, thus Equation 3.39 simplifies to

$$v_S(0+) = \frac{V_{0+}}{2}$$
(3.40)

Since R_S = R_O, ρ_S is equal to zero. This means that load-generated reflections due to load mismatch are absorbed at the source when, at time t = 2 τ , the reflected wave arrives back at the source. The line then assumes a steady state throughout. This back match or series termination effect of a matched source allows a wide latitude in choice of load resistance without sacrificing the signal fidelity of the load voltage waveform.

If the load resistance equals the characteristic line resistance $R_{I} = R_{O}$, then ρ_{I} equals zero and no load site reflections are generated. The initial voltage wave arrives at the load at time t = τ (one line delay) and voltages (and currents) on the line immediately assume steady state conditions (see Figure 3-12e). The optimum receiver threshold here is one-half the steady state voltage or VO+/4. The main advantage over the voltage source type driver with matched load case ($R_S < R_0$, $R_L = R_0$ is that R_S and R_L resistance tolerances may be relaxed without incurring much signal ringing. This effect is due primarily to the termination provided by both line ends, rather than just one line end. Any reflected voltage wave on either system is attenuated by the product of ρ_{S} and ρ_{I} for each round trip line delay time. Since the $\rho_{S}\rho_{L}$ product for the fully matched case is smaller than the $\rho_{S} \rho_{I}$ product for the single matched case, the reflections are attenuated and die out in fewer round trips. For example, if 20% tolerance resistors are used in both cases, ρ_{S} and ρ_{L} values for the fully matched case become 0.0 \pm 0.0909, which is a $\rho_{\rm S} \rho_{\rm I}$ product of ± 0.0033. This means that after one round trip $(\bar{2} \tau)$, the reflection amplitude starting back toward the load would be less than 0.33% of the initial wave.

Using R_S = 10 Ω , R_L = 100 Ω , and R_O = 100 Ω as for *Figure 3-12a*, shows the same 20% tolerances applied to the single matched case

and

$$-0.0909 \leq \rho_L \leq +0.0909$$

$$|\rho_S \rho_L| \leq 0.0774$$

 $-0.8519 \leq \rho_{S} \leq -0.7857$

The voltage reflection amplitude after one round trip is a maximum of 7.7% of the initial wave.

The choice between using the single and fully matched system should be carefully considered because the fully matched system does sacrifice signal voltage magnitude to get a decreased dependence on absolute resistor values.

If the load resistance for a matched driver circuit is made much greater than the line resistance, the initial wave arriving at the load at time t = τ will be almost doubled since ρ_L

will be close to +1.0. Because source resistance is set equal to line resistance, $\rho_{\rm S}$ becomes zero, the reflected voltage wave from the load is absorbed by the source at time t = 2 τ , and steady state conditions prevail. Waveforms for this case are shown in *Figure 3-12d*. This is called *back matching* or *series termination*.

The main advantage of series termination is a great reduction in steady state power consumption when compared with the parallel terminated case ($R_S \ll R_O$, $R_L = R_O$). At the same time, series termination provides the same signal fidelity to a receiver placed at the line end. Compare the load voltage waveforms for the two cases in Figure 3-12b and 3-12d. The main disadvantage to series termination is that receivers placed along the line see a waveform similar to that shown for the source in Figure 3-12d. That is, receivers along the line see the $V_{\Omega+}/2$ initial wave as it passes that point on the line, and do not see a full signal swing until the load end reflection passes that point. Consequently, receivers along the line do not see a signal sufficient to produce the valid logic state output until the load reflection returns. Depending on actual line length and receiver characteristics, the receiver may even oscillate, having been placed in its linear operation region. With the benefit, then, of reducing system power, the series termination method has a constraint of allowing only one line receiver located at the line load end. The parallel termination method should be used if other receivers along the line are required.

The final case of matched source drivers is with the use of a load resistance less than the characteristic line resistance. The waveforms for this case are shown in *Figure 3-12f*. A line receiver with a threshold of V $_{\rm O}$ /4 placed at the source responds like a positive, edge triggered one-shot and produce a pulse in response to a +V/2 initial wave of 2 τ duration. Aside from its use as a one-shot, this circuit doesn't seem to offer any advantages for voltage mode communications.

REFLECTION EFFECTS FOR CURRENT-SOURCE DRIVERS

The name *current source drivers* is somewhat of a misnomer, and might be more properly called *current-limited voltage source drivers*. True *current source* drivers such as the 75110 are normally used in conjunction with parallel termination resistors to create a matched source.

The current source drivers ($R_S > R_0$) discussed resemble true current sources in the respect that their output resistance is usually much greater than the characteristic line resistance. The initial voltage step produced on the line is thus usually small $v_i(1) = (i_s(1)R_0)$. This is due to the voltage divider action of the driver source resistance and the characteristic line resistance.

Voltage waveforms for a current source type driver either step up to V_{SS}, reach steady state after 2 τ , or execute a dampened oscillation around V_{SS}, depending on whether the load resistance R_L is greater, equal, or less than R₀, respectively. The second case R_L = R₀ provides signals much the same as the other two cases where R_L = R₀, that is, the source voltage steps immediately to V_{SS}, with the load voltage following after one line time delay. Here the amplitude of

the signal is much smaller than previous matched load cases. Since the current source type drivers (75109/110) have high off-state impedances, they allow multiple drivers on the line to produce a data bus or party line. This aspect will be discussed in more detail in Chapter 5. Waveforms for the matched load case are shown in *Figure 3-12h*.

The case $R_L < R_O$ really provides no useful advantage for voltage mode communications. The negative sign for ρ_L and the positive sign for ρ_S lead to dampened oscillatory behavior, or ringing. The maximum perturbation takes place at the source end of the line. Waveforms for this case are similar to those shown in *Figure 3-12a*, and are shown to scale in *Figure 3-12i*. With the given values used to produce the figure, the maximum amplitude ringing appears at the source line end.

The R_L > R₀ case is of interest because it is representative of DTL driving a transmission line with the output going from LOW to HIGH. DTL has a high value R_S, (2 k Ω or 6 k Ω) in the HIGH logic state. Since both R_S and R_L are greater than R₀*, both ρ_S and ρ_L are positive. A small voltage step starts from the source at t = 0+; its magnitude is

$$v_i(1) = V \frac{R_0}{R_0 + R_s}$$

Upon arrival at the load at time t = τ , this initial wave generates a positive voltage reflection since $\rho_L > 0$. The voltage reflection arrives back at the source site at time t = 2τ . Since ρ_S is also positive, another positive voltage reflection is launched back toward the load. The process repeats, and the source and load voltages both execute a step-up approach toward steady state voltage V_{SS}. These waveforms are shown in *Figure 3-12g*.

In examining voltage at the line midpoint ($x = \ell/2$), a step-up type waveform is seen which is the sum of all the incident voltage waves passing the line midpoint up to the time of examination. The midpoint voltage is expressed as follows.

$$v_m(t) = V_{SS} \left(1 - exp \left[-(t + 0.5 \tau)/T \right] \right) (3.41)^{**}$$

for t = n + 0.5 τ with n = 0,1,2,3,etc. V_{SS} in *Equation 3.41* is the steady state line voltage

$$V_{ss} = V_{0+} \cdot \frac{R_L}{R_s + R_L}$$

and T is a time constant given by

$$T = -\frac{2\tau}{\ln (\rho_S \rho_L)} \tag{3.42}^*$$

with τ being one line delay ($\tau = l \delta$).

Equation 3.41 provides an exact solution for odd multiples of n (n = 1,3,5 . . . , so t = 1.5τ , 3.5τ , 5.5τ . . .), while it approximates $v_m(t)$ for even multiples of n (n = 0,2,4 . . . , so t = 0.5τ , 2.5τ , 4.5τ . . .). The closer the $\rho_S \rho_L$ product is to 1, the better *Equation 3.41* predicts $v_m(t)$, particularly for even multiples of n. To illustrate the fitting, the two tables in *Figure 3-13* are generated by the BASIC language computer program (*Table C*) and their data is plotted in *Figure 3.14*.

*Since the input diode is not represented, the representation of DTL input as a single resistor to ground is not strictly correct. For purposes of approximation, this simple representation is used. Treatment of non-linear current/voltage sources and loads is covered by Metzger & Vabre. (op. cit.)

Table (a). ($R_c = 2000 \text{ ohms}$, $R_o = 100 \text{ ohms}$, $R_1 = 4000 \text{ ohms}$)

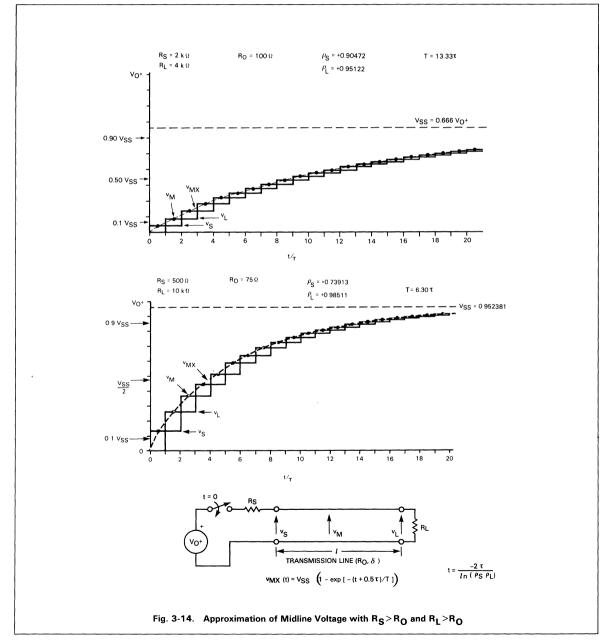
			0 · L	-
RHOS=			.951220 TAU=	
<u>-x1(1)=</u>	4.76190	-02_v.SS	=60660.7	
	VM(I)			
0.5	0.04/62	0.04820	+1.220%	
	0.09292	0.09292	+0.000%	
2.5	0.13390	0.13440	+0.373%	
3.5	0.17288	0.17288	+0.000%	
4.5	_0.20815	0.20858	+0.207%	
5.5	0.24170	0.24170	+0.000%	
0.5	0.27206	0.27243	+0.136%	
-7.5_	0.30093	0.30093	+0.000%	
8.5	0.32705	0.32/37	+0.097%	
9.5	0.35190	0.35190	+0.000%	
10.5	0.37139	0.31466	+0.0/3%	
11.5	0.39577	0.39577	+0.000%	
12.5	0.41:12	0.41536	+0.057%	
13.5	0.43353	0.43353	+0.000%	
14.5	0.40018	0.45038		
15.5	0.46602	0.46002	+0.000%	
_د.هـ	0.48035	0.48053	+0.030%	
17.5	0.49399	0.49399	+0.000%	
18.5	0.50632	0.50047	+0.030%	
12.5	0.51805	0.51805	+0.000%	
20.5	0.52807	0.52380	+0.024%	
21.5	0.53877	0.53877	+0.000%	

Table (b). ($R_c = 500 \text{ ohms}$, $R_0 = 75 \text{ ohms}$, $R_1 = 10 \text{ kilohms}$)

	5		0	L.	
RH0S=		KHOL=		TA:J=	-0.30356
v1(1)=	.130435				
TIME	(T)	VAPPX	%D1 FF		
0.5		0.13971			
1.5	0.25893	0.25893	+0.000%		
2.5	0.35390	0.36066	+1.909%		
3.5		0.44/46			
4.5	0.51661	0.52153	+0.952%		
_5.5	0.58473	0.58473	+0.000%		
6.5	0.03509	0.63807	+0.564%		
7.5	0.68469	0.68469	+0.000%		
8.5	0.72135	0.72396	+0.361%		
9.5	0.15147	0.75147			
		0.78606	+0.242%		
	0.81040	0.81046	+0.000%		
12.5		0.83128			
13.5	0.84904	0.84904	+0.000%		
14.5	0.86320	0.86420	+0.117%		
		0.87714	+0.000%		
16.5	0.88744	0.88818	+0.083%		
17.5	0.89/59	0.89159	+0.000%		
18.5	0.90510	0.90563			
19.5	0.91249	0.91249	+0.000%		
20.5	0.91/95	0.91834	+0.042%		
21.5	0.92334	0.92334	+0.000%		

Table (c). BASIC Program Listing

```
TOO PRINT'ENTER RS, RO, RL':
110 INPUT R1, R0, R2
120 P1=(R1-R0)/(R1+R0)
130 P2=(H2-H0)/(H2+H0)
140 v1=H0/(R1+R0)
150 K1=2./LOG(P1*P2)
100 VY=22/(R1+2)
1/0 PHINT HOS= '; P1; RHOL= '; P2; TAU= ';KI
180 FRIMT //(1)=/: V1: /VSS=/: V9
190 V=VI
200 PRINT'TIME
                   VM(T)
                                       %DIFF/
                             VAPPX
210_FOR_T=0.5_T0_20.5_STEP_2
220 v2=v9*(1.-EXP((T+.5)/K1))
230 H=100.*(V2-V)/V
240 FRINTUSING 250, T, V, V2, P
250 :##.# -#.#####
260 VI=VI*P2
                     -#.##### +4##.#4#%
270 v=V+v1
          SOURCE END
280 REM
290 v2=v9*(1.-EXP( (T+1.5)/K1 ) )
300 H=100.*(V2-V)/V
310 PRINTUSING 200, T+1., V, V2, P
320 V1=P1*V1
330 v=v+v1
340 NEXE T
350 PRINT
300 FR1M
370 FRIMI
380 6010 100
390 END
```


Fig. 3-13. Comparison of v_m Formula to Computed Midline Voltage

^{**}This equation is presented without derivation, but a procedure similar to that used by Matick (Ref.², Chapter 2) can be used.

Designers familiar with DTL circuits should quickly recognize that the waveforms shown in *Figure 3-14* are very similar to the rising edge waveforms found when a DTL gate output goes from the LOW to HIGH state. This characteristic waveform has usually been attributed to the series RC circuit (a gate output resistance driving a lumped transmission line capacitance.) The time constant for this approach, based on the C(dv/dt) = i rule from simple circuit theory, provides only an approximation. The actual cause of the waveform shape, however, is due to reflection effects. Unfortunately, the only way to speed up the rising edge is to reduce source resistance, (providing an initial step greater than the receiving threshold) and terminate the line to eliminate the load reflections.

DTL inability to drive transmission lines at high repetition rates is the direct result of the signal rise time limitation caused by positive reflection coefficients for both the source and load. A transmitted positive pulse may be missed if its duration is less than the time required for the load signal to reach the receiver threshold.

The R_S >R_O and R_L >R_O case provides no definite advantages as voltage mode communication is concerned. This case, in fact, poses a definite hazard to high speed data communications because the reflections cause, in effect, a slow, exponential signal transition. Because line delay is a factor, longer lines will only increase the effect.

SUMMARY — Which are the Advantageous Combinations?

In examining the basic combinations of source, line and load resistances, and typical waveforms characteristic of each case, advantageous combinations can be determined. The primary results are tabulated in *Figure 3-15*. Those combinations generally used in voltage mode communications circuits are as follows.

- Unterminated case (R_S ≪ R₀, R_L ≫ R₀). This situation provides low steady state power dissipation and large signal levels, but also shows pronounced "ringing" effects. The "ringing" can be reduced by controlling signal rise/fall time versus τ, or by clamping diodes to limit load signal excursions. This case is representative of TTL circuits and is thus widely employed.
- The parallel terminated case (R_S << R_O, R_L = R_O) provides large signal levels, and excellent signal fidelity. However, it is power consuming with most of that power dissipated in the load resistor. This case is useful for cleaning up the

reflection effects of Case 1 but, at the same time, does require a driver circuit to have its internal current limits set at greater values than those required to produce the desired signal level into the minimum line resistance used. Thus, this case requires power buffer gates such as the 9N40 or 9S140 or specific line driver devices such as the 9612, 9614 9621 or 8T13/23. Ordinary TTL, except for the above mentioned circuits, has too low a current limit point to adequately drive 50 Ω lines.

3. The series terminated or backmatched driver case $R_S = R_0$ $R_L \gg R_0$ provides a low steady state power dissipation system for use with one receiver located at the load end of the line. The positive reflection coefficient of the load is used to approximately double the initial wave arriving at the load. Setting $R_S = R_0$ terminates the reflected wave when it arrives back at the source site after two line delays, and the line then assumes steady state conditions. The use of other receivers located along the line is not recommended, because they will not see the full driver signal swing until the reflection from the load passes their particular

Configuration Name (if any)	(Driver) Source Resistance	(Receiver) Load Resistance	Signal Characteristics	Optimum Receiver Threshold	Line Receivers Allowed at Other Than Load End of Line?	Comments
Unterminated	. << r ₀	>> R ₀	Ringing pronounced	0.5 V _{SS}	Yes	Undershoot may cause data errors
Parallel terminated	<< R ₀	= R ₀	Excellent fidelity	0.5 V _{SS}	Yes	Load resistor consumes power $P_L = \frac{(V_{SS})^2}{R_L}$
	<< R ₀	<< R ₀	Awful — different signals at each point on the line	NA	No	Not generally useful
Series terminated or backmatched driver	= R ₀	>> R ₀	Load signal excellent	0.5 V _{SS}	No	Reduced power consumption over parallel termination
Fully matched	= R ₀	= R ₀	Excellent fidelity	0.25 V _{SS}	Yes	Greater tolerances on resistors allowed for same fidelity as parallel termination
	= R ₀	< R ₀	Load signal like a one-shot	NA	NA	Not generally useful for data, is useful as pulse generator
	>> R ₀	>> R ₀	Exponential like signal waveforms	0.5 V _{SS}	Yes	Low power comsump- tion. Increased delay due to signal 'rise' times
	>> R ₀	= R ₀	Small signal amplitude. Excellent fidelity	0.5 V _{SS}	Yes	Produces only small signal voltages com- pared with other methods. Uses current sinking drivers such as the 75110A, 75112
<u> 1 1 1 1 1 1 1 </u>	>> R ₀	< R ₀	Very small signal amplitudes, also ringing	NA	NA	Not generally useful

Fig. 3-15. Summary of Effects

bridging points. Such receivers could malfunction, as they would see a voltage very close to their threshold, and perhaps even place the line receiver in its linear operating region. This could make the line receiver sensitive to oscillatory, parasitic feedback. If these contraints are acceptable, the series termination method can be used to good advantage in providing the same signal fidelity and signal amplitude as with the parallel termination method, while at the same time, contributing a significant savings in steady state power consumption.

4. The fully matched case R_S = R_O, R_L = R_O not only provides excellent signal fidelity all along the line, but also has reduced signal amplitude over that of the parallel terminated case. Additionally, the power consumption is somewhat less than the parallel termination case and the power is divided equally by the source and load. The primary advantage of the fully matched system is that termination resistor tolerances can be relaxed somewhat without incurring large amounts of ringing. This is because both the source and load act as line terminations.

EFFECT OF SOURCE RISE TIME ON WAVEFORMS

Previously, it was assumed that the source-produced signal rise time was always much less than the line time delay (τ). Because the waveforms for the source and load voltage were the superposition of incident and reflected waves occurring at their proper times, and because the shape of each wave was a square edged step function, the resultant source and load waveforms were thus also square edged, or *ideal* in nature. In many practical cases, particularly when line length is short, the source excitation possesses a finite, and non-negligible, rise time. Therefore, depending on the ratio of rise time to line delay, it is possible to have a new wave start arriving at the point of interest before the previous wave can reach its final value. The net waveform for voltage or current at that point, then, would consist of the superposition of two or more waves during their time of overlap. To study the superposition effect on signal waveforms, the source excitation is represented as a simple linear ramp rise to its final value of V_{O+} , so

and

$$e(t) = 0 \text{ for } t < 0$$

$$e(t) = V_{0+} \cdot t/t_r \text{ for } 0 \le t \le t_r$$

$$e(t) = V_{0+} \text{ for } t > t_r$$

where t_r represents the 0-to-100% source rise time. The circuit model and its lattice diagram are shown in *Figure 3-16*. The values of R_S, R_O and R_L were chosen to equal those of an actual circuit on hand, allowing the theoretical waveforms, obtained by graphical superposition, to be compared with the measured response of an actual circuit.

Figure 3-17 shows the load voltage v_L, source voltage v_S and source current i_S waveforms versus time for a circuit with a source rise time very much less than τ . The actual waveforms for v_L, v_S and i_S are composed of the superposition of both incident and reflected waves in their proper time sequence. In the figures, these waves are shown as dotted lines. Each wave represents the sum of the incident wave plus its reflection. The resultant v_L, v_S and i_S waveforms

(shown as solid lines) are the superposition of the waves represented by the dotted lines. With the exception of a slight rounding of the edges, the actual waveforms for the circuit, shown in the oscilloscope photograph in *Figure 3-17*, closely approximate the waveforms predicted by theory.

If the source excitation is adjusted so that its 0-to-100% rise time t_r is equal to 2τ , each of the v_i + v_r and i_i + i_r waveforms must be modified to include this rise time. The waves will have the same final value as predicted by the lattice diagram, but they now require two line time delays to reach this final value. The vL, vS and iS waveforms consist of the superposition of these linear ramps. Because each wave reaches its final value just as a new wave arrives, their superposition converts the square edged vi , vs and is waveforms into triangular waveforms. This is shown in Figure 3-18. The accompanying oscilloscope photograph shows the close correspondence between the actual and theoretical waveforms whereas an additional oscilloscope photograph in Figure 3-18 shows the actual waveforms for the case where $t_r = \tau$. Not surprisingly, the t_r = τ case changes the v_L, v_S and i_S waveforms of the t_r $\ll \tau$ case into trapezoidal forms because each arriving wave reaches its final value well before a new wave arrives.

If the source excitation is adjusted such that its rise time equals three line delays $t_r = 3 \tau$, the $v_i + v_r$ and $i_i + i_r$ waves overlap for a period of time equal to τ . That is, each wave reaches only 2/3 of its final value when a new wave starts arriving. Considering the waveform, the load voltage from time τ to 3 τ is

$$v_i(1) (1 + \rho_L) e (t - \tau)$$

Starting at t = 3 τ , the wave

$$v_i(3) = v_i(1)\rho_S \rho_L e(t-3\tau).$$

begins arriving from the source, and the load voltage then is the superposition of these two waves. Because $v_i(3)$ is a negative wave ($\rho_S < 0$), the algebraic sum of the last third of the first wave and the first third of the second wave $v_i(3)$ arriving at the load causes the load voltage to reduce in amplitude from the ($t_r \ll \tau$) case. Likewise, the source voltage and source current show reduced amplitudes over the ideal case, due to the overlap period of the waves arriving at the source.

Theoretical and actual waveforms for the $t_r = 3\tau$ case are shown in *Figure 3-19*. Notice that load voltage perturbations and source current is requirements are reduced from those of the $t_r \ll \tau$ case. Similarly, the ratio of t_r to τ , can be successively increased. This results in reduced ringing on the load voltage and reduced source current due to the overlapping of more and more $v_i + v_r$ (or $i_i + i_r$) waves. Actual and theoretical waveforms for t_r equal to 4τ , 6τ and 8τ are shown in *Figures 3-20, 3-21* and *3-22,* respectively. In each case, as the t_r to τ ratio is increased, the instantaneous source and load voltages become more equal. The source tion effects and the transmission line itself can be considered as a simple interconnection from dc circuit theory.

Using the t_r : τ ratio to reduce reflection effects has many practical advantages in digital design. The low source and high input resistance of TTL or ECL circuits allows one gate to drive many receiving gates. The reflection effects of this unterminated combination, however, can cause data errors or at least lead to reduced noise immunity due to the pronounced load voltage undershoot. Since the rise and fall times of these devices are easily measured, a maximum line length can be set such that the resulting t_r to τ ratio provides the desired reduction in ringing. This is the primary basis for the wiring rules of each logic family and, usually, the tr to auratio is chosen somewhere between 3:1 and 4:1. As an example, the rise and fall time for normal TTL (9N/74N series) is $t_{10\%-90\%} = 6$ ns. When this is converted to an equivalent linear 0 to 100% time, $t_r = 8$ ns. A common propagation delay of 1.7 ns/ft, in combination with the requirement that $t_r = 3 \tau$, gives the maximum line length of approximately 18 inches. This corresponds with the published recommendation of the various manufacturers for the 9N/74N series TTL circuits. A similar computation of the rise and fall times for other logic families yields their respective line length recommendations. The faster families require shorter line lengths for the same t_r to τ ratio, and slower logic families allow relatively longer line length. This ratio can also be used to make stubs or taps on lines "disappear". In other

words, if the stub's time delay is made very short when compared to the t_r of the signal at the stub line location, the stub reflections will have a minimal effect on the line signals. A stub length to generate a t_r : τ ratio of greater than 8:1 is usually considered adequate to negate the stub reflections.

The third primary application of the t_r to τ ratio for controlling reflection effects is that used in some standard data communications interfaces such as EIA-RS232-C. Here, driver slew rate is explicitly controlled. This, along with the implied maximum interconnect cable length serves to produce a t_r: τ ratio of 3:1 or greater. This, in turn, reduces the reflection effects inherent in a voltage source driver, unterminated line system. The main disadvantage of using the tr: auratio to control reflection effects is in the overall time for the signal representing the data to rise above the receiver threshold level. With the parallel terminated method, the minimum time delay was τ or one line delay. When the t_r: τ ratio is used, an additional delay time of approximately 0.5 t, is added to the line delay yielding, therefore, a greater effective signal propagation delay. This increased delay may or may not be acceptable in the desired system so the trade-off between ease of usage of the unterminated case must be weighed against the increased effective signal delay over that delay obtainable with the terminated case.

Source					Load				
t in (<i>τ</i>)	v _i + v _r (V)	i _i + ig (mA)	vs (V)	ⁱ S (mA)	t in (<i>τ</i>)	v _i + v _r (V)	i _i + i _r (mA)	∨∟ (V)	iL (mA)
0	0.9400	12.53	0.9400	12.53	1	1.8500	0.40	1.8500	0.40
2	0.1224	-22.64	1.0624	-10.10	3	-1.5500	-0.34	0.3000	0.06
4	-0.1026	18.97	0.9599	8.87	5	1.2986	0.28	1.5986	0.35
6	0.0859	-15.90	1.0458	- 7.03	7	-1.0881	-0.24	0.5106	0.11
8	-0.0720	13.32	0.9738	6.29	9	0.9116	0.20	1.4222	0.31
10	0.0603	-11.17	1.0341	- 4.87	11	-0.7638	-0.17	0.6584	0.14
12	-0.0505	9.36	0.9836	4.48	13	0.6399	0.14	1.2983	0.28
14	0.0424	- 7.84	1.0259	- 3.36	15	-0.5362	-0.12	0.7622	0.16
16	0.0355	6.57	0.9904	3.21	17	0.4492	0.10	1.2114	0.26

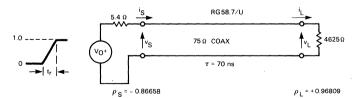
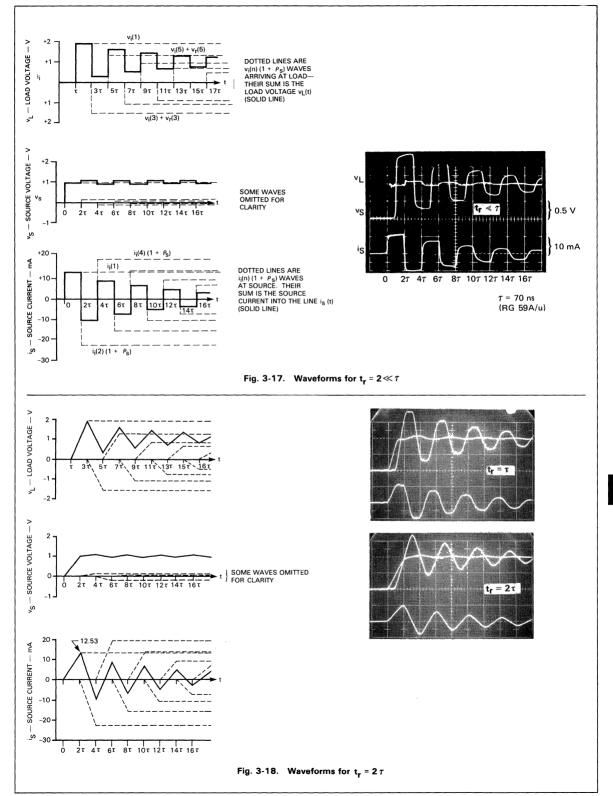
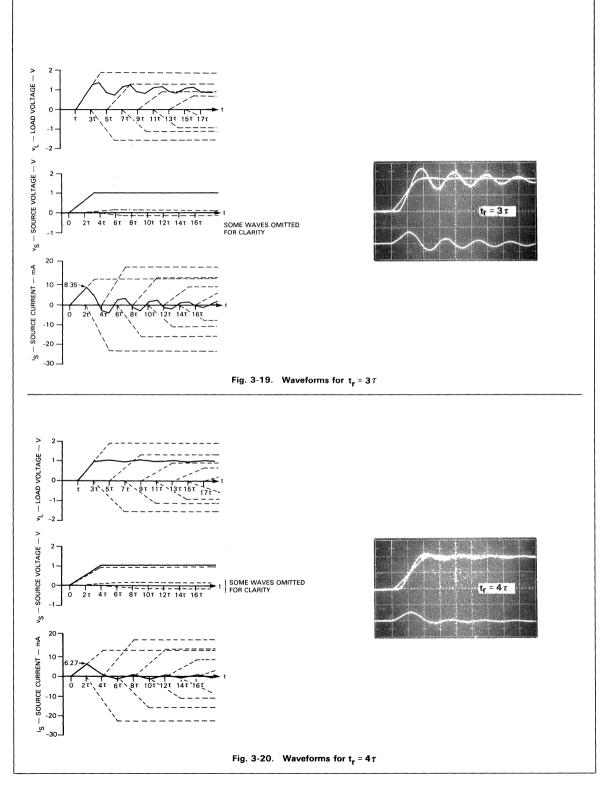
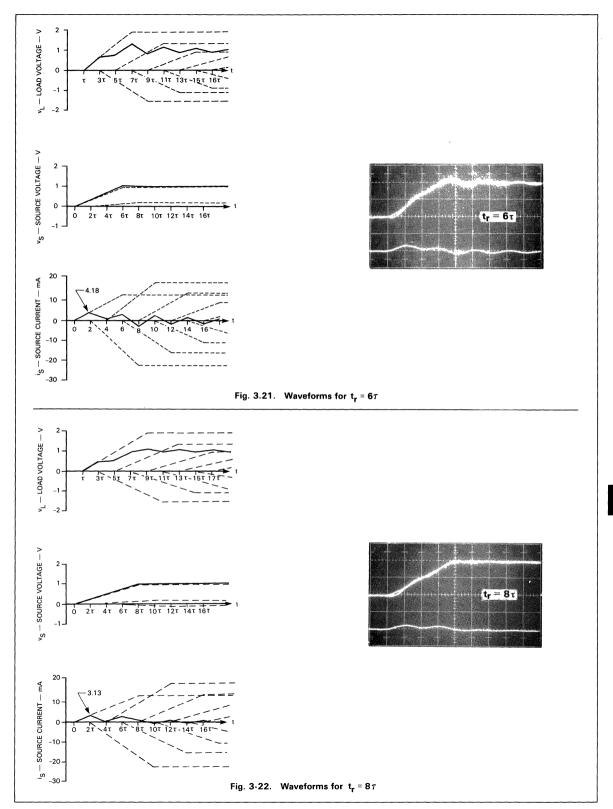





Fig. 3-16. Transmission Line Model and Its Lattice Diagram

10

10-27

10

LONG TRANSMISSION LINES AND DATA SIGNAL QUALITY

INTRODUCTION

Transmission lines throughout previous chapters have always been treated as ideal lossless lines. As a consequence of this simplified model, the signals passing along the lines did not change in shape, but were only delayed in time. This time delay is given as the product of per-unit-length delay and line length ($\tau = l\delta$). Unfortunately, real transmission lines always possess some finite resistance per unit length due to the resistance of the conductors composing the line. So, the lossless model only represents short lines where this resistance term can be neglected. In section 2, the per-unit-length line parameters, L, R, C, G, were assumed to be both constant and independent of frequency (up to the limits mentioned, of course). But with real lines, this is not strictly correct as four effects alter the per-unit-length parameters, making some of them frequency dependent. These four effects are skin effect, proximity effect, radiation loss effect, and dielectric loss effect. These effects and how they influence the intrinsic line parameters are discussed later in this section. Since these effects make simple ac analysis virtually impossible, operational (Laplace) calculus is usually applied to various simplified line models to provide somewhat constrained analytical solutions to line voltages and currents. These analytical solutions are difficult to derive, perhaps even more difficult to evaluate, and their accuracy of prediction depends greatly on line model accuracy. Analytical solutions for various lines (primarily coaxial cables) appear in the references, so only the salient results are examined here.

Engineers designing data transmission circuits are not usually interested in the esoterica of lossy transmission line theory. Instead, they are concerned with the following question: given a line length of x feet and a data rate of n bps, does the system work—and if so—what amount of transition jitter is expected? To answer this question using analytical methods is quite difficult because evaluation of the expressions representing the line voltage or current as a function of position and time is an involved process. The references at the end of this section provide a starting point to generate and evaluate analytical expressions for a given cable.

The effects on the LRCG line parameters, the variations in Z_{Ω} , α (ω), and propagation velocity as a function of applied frequency are discussed later in this section. Using an empirical approach to answer the "how far - how fast" question involves only easily made laboratory measurements on that selected cable. This empirical approach, using the binary eye pattern as the primary measurement tool, enables the construction of a graph showing the line length/data rate/signal quality trade - offs for a particular cable. The terms describing signal quality are discussed later in this section. The technique of using actual measurements from cables rather than theoretical predictions is not as subject to error as the analytical approach. The only difficulties in the empirical method are the requirements for a high quality, real time (or random sampling) oscilloscope and, of course, the requisite amount of transmission line to be tested.

Also discussed in this chapter are commonly used pulse codes and ways to estimate coaxial cable signal quality in lieu of eye pattern measurements.

FACTORS CAUSING SIGNAL WAVE SHAPE CHANGES

In the previous sections it was assumed that the transmission lines were ideal so the step functions propagated along the lines without any change in wave shape. Because a single pulse is actually composed of a continuous (Fourier) spectrum. the phase velocity independence on an applied frequency, and the absence of attenuation (R = 0, G = 0) of the ideal line always allows the linear addition of these frequency components to reconstruct the original signal without alteration. For real lines, unfortunately, the series resistance is not quite zero, and the phase velocity is slightly dependent on the applied frequency. The latter results in dispersion; i.e., the propagation velocity will differ for the various frequencies, while the former results in signal attenuation (reduction in amplitude). This attenuation may also be a function of frequency. Attenuation and dispersion cause the frequency components of a signal, at some point down the line, to be guite different from the frequency components of the signal applied to the input of the line. Thus, at some point down the line, the frequency components add together to produce a wave shape that may differ significantly from the input signal wave shape. In many ways, then, a real transmission line may be thought of as a distributed lowpass filter with loss. The fast rise and fall times of the signals become progressively "rounded" due to attenuation and dispersion of the high frequency signal components.

It should be noted that there is a theoretical condition where attenuation is independent of frequency and dispersion is zero. This results in a line causing signal amplitude reduction, but no change in signal wave shape. This condition was first discussed by Heavyside and is called the distortionless line. To make a line distortionless, the primary line parameters must satisfy the relation (R/L)=(G/C). Because for real lines $(R/L) \ge (G/C)$, the distortionless line is only of historical interest, and it is not possible to satisfy the (R/L)=(G/C)condition over a sufficiently wide bandwidth to allow a proper transmission of short duration pulses. Over a limited frequency range such as that encountered in telephony (0-4 kHz), the L term can be increased by either adding lumped inductances at fixed intervals along the line or by winding a magnetic material (as a thin tape) around the conductors of the line throughout its length. Lumped loading is commonly applied to long telephone circuits to reduce the signal attenuation over a narrow frequency range; however this linearity is at the expense of in-band attenuation and non-linear delay distortion. The distributed loading method has been tried, but the mechanical characteristics of the magnetic materials have made the winding process very difficult. In any event, neither method allows short pulses to retain their wave shapes. The interest in line loading to produce the Heavyside condition for pulse transmission is therefore largely academic.

The following sections discuss the origins of the second-order effects—skin effect, proximity effect, radiation loss effect, and dielectric loss effect—and their influence on the LRCG transmission line parameters.

 Skin Effect: This phenomenon is based on two facts: a current flow in any real conductor produces an electric field given by Ohm's Law; the current distribution and/ or magnetic field distribution in a conductor is frequency dependent. For dc current in a single isolated conductor, the current density is uniform across the conductor. When alternating current is used, the current density is not uniform across the conductor. Instead, the current tends to concentrate on the conductor surface. Current density continuously increases from the conductor center to its surface, but for practical purposes, the current *penetration depth*, d, is assumed as a dividing line for current density. The current is assumed to flow in a imaginary cylinder of thickness d with a constant current density throughout the cylinder thickness. Distribution of current densities for both actual and assumed models is shown in *Figure 4-1*.

It can be seen that for *classical* skin effects, the penetration depth is given by

$$d = K \frac{1}{\sqrt{f}} \tag{4.1}$$

where K=1/ $\sqrt{\pi\mu\sigma}$, μ = magnetic permeability of the conducting material expressed in henries per unit length, and σ = conductivity of the conducting material. For MKS(SI) units and for a copper conductor

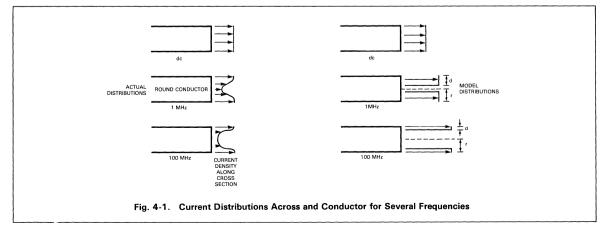
$$\sigma = 5.85 \times 10^7 \ (\Omega \text{ meter})^{-1}$$

$$\mu = 4\pi \times 10^{-7} \ (H/\text{meter})$$

in which case, d would be the penetration depth expressed in meters.

Because the skin effect reduces the equivalent conductor cross-sectional area, increasing frequencies cause an increase in the effective resistance per unit length of the line. This in turn leads to signal attenuation increasing with frequency. If the frequency response of a cable is plotted on log-log graph paper, log dB, or Nepers vs log frequency, the curve slope will be 0.5 if the cable losses are primarily governed by *classical* skin effects. The slope of the attenuation curve, along with the attenuation at a particular frequency, can be used to estimate coaxial cable transient response as a function of length.^{2,4}

Proximity Effect: This is a current density redistribution in a conductor due to the mutual repulsion (or attraction) generated by currents flowing in nearby conductors. The current density at those points on the conductor close to neighboring conductors varies from the current density when the conductor is isolated from other conductors. This current density redistribution reduces the effective crosssectional area of the conductor, thereby increasing the perunit-length line resistance. This effect is a function of the conductor diameters, the separation of the conductors from each other, and frequency. The analytical evaluation of the proximity effect is quite complicated and except for certain limited cases (see Arnold¹¹ and Dwight¹²), no general rule of thumb expressions have been proposed. The proximity effect is not present in coaxial cables because of their circular symmetry. The proximity effect is a significant contributor to signal losses particularly in cases of a twisted pair or parallel wire lines.


Radiation Loss: Radiation losses cause an apparent rise in resistance per unit length increasing with frequency. The mechanism of radiation loss is energy dissipation either as heat or magnetization via eddy currents in nearby metallic or magnetic masses, with the eddy currents induced by line currents. Coaxial cables do not exhibit this effect because the signal magnetic field is confined between the shield and the outside of the center conductor. Ideally, the magnetic field produced by shield current cancels the field produced by current in the center conductor (for points outside the shield).

Both twisted pair and parallel wire lines exhibit radiation losses and these losses contribute to the effective per-unitlength line resistance. Radiation loss is dependent to a large extent on the characteristics of the materials close to the line; so radiation loss is quite difficult to calculate, but can be measured if necessary.

Dielectric Loss Effect: Dielectric losses result from leakage currents through the dielectric material. This causes an increase in the shunt conductance per unit length and produces signal attenuation. Fortunately, for most dielectric materials in common use, this loss is very small particularly for frequencies below 250 MHz. For most practical purposes, then, dielectric losses may be neglected as they are usually overshadowed by skin effect losses.

INFLUENCE OF LOSS EFFECTS ON PRIMARY LINE PARAMETERS

Resistance Per Unit Length, R. It is composed of a basic dc resistance term R_{dc} plus the contributions of skin effect, proximity effect and radiation loss effect. For coaxial lines, the proximity and radiation loss effects are negligible in most

cases, so the primary contribution is made by the skin effect. Thus the resistance per unit length becomes

$$R = R_{dc} + Ks^m \tag{4.2}$$

where 0 < m < 1.

For 2-wire lines (twisted pair, parallel wire), the resistance per unit length is increased by the skin effect. For closely spaced wires, however, the proximity effect also contributes significantly to a resistance increase. Radiation loss should also be included, but is very difficult to calculate because it depends on the surroundings of the line.

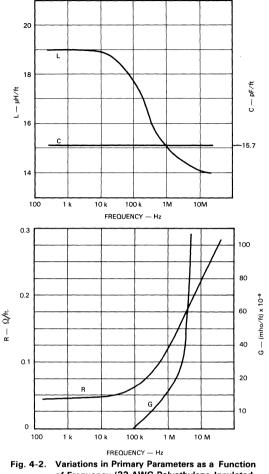
Inductance Per Unit Length, L. It can be shown^{5,6} that, as the frequency is increased, the skin effect, proximity effect, and radiation loss effect cause a reduction in the effective perunit-length self-inductance of the line.

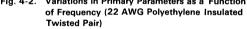
Capacitance Per Unit Length, C. This depends primarily on the dielectric constant of the insulating medium and conductor geometry. This term is constant over a wide range of frequencies for most dielectrics (Teflon®, Polyethylene). For Polyvinylchloride (PVC) insulation, the relative dielectric constant shows a decrease as frequency increases ($\epsilon_{\rm r} \approx 4.7$ @ 1 kHz, $\epsilon_{\rm r} \approx 2.9$ @ 100 MHz). The capacitance per unit length, therefore, will show a decrease corresponding with increasing frequency for PVC insulation and little change for most other dielectrics.

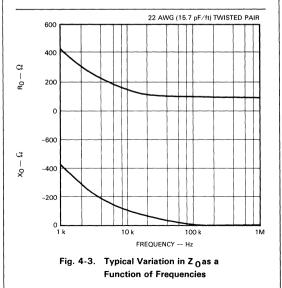
Conductance Per Unit Length, G. Because resistance per unit length usually has a much greater magnitude, this value is negligible. When this term cannot be neglected, it is represented as

$$G = \omega C tan\phi \tag{4.3}$$

where C is capacitance per unit length, ϕ is the angular frequency (=2 πf) and tan ϕ is a dielectric material coefficient. The angle ϕ is called the dielectric loss angle. This angle is usually quite small (< .005 radians) for the majority of dielectrics up to several hundred megahertz.


VARIATIONS IN Z₀, α (ω), AND PROPAGATION VELOCITY


The variations in the primary line parameters as a function of frequency shown by *Figure 4-2* have a profound influence on the three secondary line parameters of characteristic impedance, attenuation, and velocity of propagation.


In the expression for the characteristic impedance of a line,

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

at low frequencies, $j\omega L$ is small compared to R, and G is small compared to $j\omega C$. So the characteristic impedance is $\sqrt{R/j}\omega C$. At high frequencies, the increase in R is overshadowed by $j\omega L$ even though L is being reduced. With G still much smaller than $j\omega C$, the characteristic impedance is almost a pure resistance $R_0 = \sqrt{L/C}$. The behavior of the characteristic impedance as a function of frequency ($Z_0 = R_0 - jX_0$) is shown in *Figure 4-3*.

®Teflon is a registered trademark of E.I. du Pont de Nemours Company.

Typical behavior of the line attenuation as a function of frequency is shown in Figure 4-4. This line attenuation is the real part of the equation

$$\gamma(\omega) = \sqrt{(R + j\omega L) (G + j\omega C)}$$

The change in resistance is the primary contributor to the attenuation increase as a function of frequency. For coaxial cables, this resistance increase is due primarily to the skin effect (R_{SK} = Kf^m). The slope of the attenuation curve on a log-log graph (log dB vs log frequency), therefore, is essentially linear and, at the same time, equal to m. For twisted pair and parallel wire lines, proximity effects and radiation losses make the curves less linear, but for high frequencies (over 100 kHz), the attenuation expressed in nepers per unit length is approximated by

$$\alpha \simeq \frac{R}{2} \sqrt{\frac{C}{L}} \tag{4.4}$$

The R term is, of course, the sum of the dc resistance, plus the incremental resistance due to skin, proximity and radiation loss effects. This R term usually varies as follows.

$$R_{SK} = K f^m$$

where $0.6 \le m < 1.0$

ATTENUATION - dB/100 ft

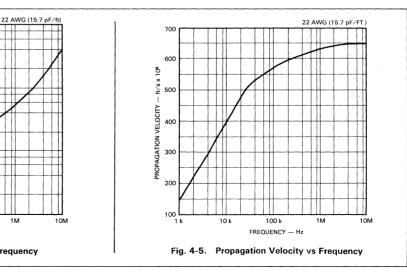
.01

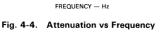
.001

. 1 k

104

The signal velocity propagation $(v = \omega/\beta)$ is given by the imaginary part of the propagation constant γ . As shown in Section 3, ν is a constant given by $\nu = \sqrt{LC}$ for lossless lines. For real lines, this value is approached at high frequencies. At low frequencies, however, (when ω is small compared to R/L or G/C), then $v_{1F} \simeq (C/2)\sqrt{R/G}$ and the velocity is reduced. The propagation velocity as a function of frequency is shown in Figure 4-5. This variation in signal velocity as a function of signal frequency is *dispersion* which was previously discussed.


The signal at a point down the line represents the sum of that original signal's Fourier spectrum. Because both the attenuation and propagation velocity of these Fourier components increase with frequency, the resultant signal shape at that point down the line depends greatly on the winners of the race to get to that point. The high frequency components, with their faster propagation velocities, arrive first, but the increased attenuation minimizes their effect. The low frequency signals arrive later, but the reduced attenuation allows them a greater influence on the resultant signal. In general, the output signal from the line should show a relatively fast rise up to some signal value (20 to 50% of the final value). This is due to arrival of the high frequency components, followed by a more leisurely rise to the final value as the slower, low frequency components arrive.


SIGNAL QUALITY - TERMS

Before the concepts presented in the previous sections can be used to answer the "how far-how fast" question, some familiarity with the terms describing data and signal quality is necessary.

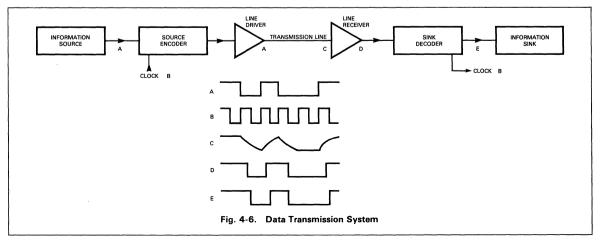
The primary objective of data transmission is the transfer of information from one location to another. The information here is digital in nature; i.e., a finite number of separate states or choices. This is in contrast to analog which has an infinite number of separate states or a continuous range of choices. The digital information is binary or two-valued; thus two different, recognizable electrical states/levels are used to symbolize the digital information. A binary symbol is commonly called a binary-digit or bit. A single binary sumbol or bit, by itself, can represent only one of two possible things. To represent alphabetic or numeric characters, a group of bits is arranged to provide the necessary number of unique combinations. This arrangement of bits which is then considered an information unit is called a byte. In the same manner that a group of bits can be called a byte, a collection of bytes, considered as a unit, is called a word. Selective arrangement of seven bits will provide 27 (or 128) distinct character combinations (unique bytes). The American Standard Code for Information Interchange (ASCII) is an excellent example of just such an arrangement-upper and lower case alphabetic, zero to nine numeric, punctuation marks, and miscellaneous information-code control functions.

Now with the means for representing information as bits or bytes, and the means for transmission of the bits (symbols) from one location to another (transmission line), the remain-

100 6

1M

ing task is to ensure that a particular bit arriving at its destination is interpreted in the proper context. To achieve this, both the sender and receiver of the data must accomplish the five following requirements.


- 1. Agree upon the nominal rate of transmission; or how many bits are to be emitted per second by the sender.
- Agree upon a specified information code providing a oneto-one mapping ratio of information-to-bit pattern and vice versa.
- Establish a particular scheme whereby each bit can be properly positioned within a byte by the receiver of the data (assuming that bit-serial transmission is used).
- 4. Define the protocol (handshaking) sequences necessary to ensure an orderly flow of information.
- 5. Agree to the electrical states representing the logic values of each bit and the particular pulse code to be used.

These are by no means all of the points that must be agreed upon by sender and receiver—but these are probably the most important. Items 2, 3 and 4 are more or less "software" type decisions, because the actual signal flow along the transmission line is usually independent of these decisions. Because items 1 and 5 are much more dependent on the characteristics of line drivers, line receivers, and transmission lines, they are the primary concern here.

Figure 4-6 represents the components of a typical data transmission system. The information source can be a computer terminal or a digitized transducer outout, or any device emitting a stream of bits at the rate of one bit every t_B seconds. This establishes the information rate of the system at 1/t_R bits per second. The information source in the figure feeds a source encoder which performs logic operations not only on the data, but also on the associated clock and, perhaps, the past data bits. Thus, the source encoder produces a binary data stream controlling the line driver. The line driver interfaces the source internal logic levels (TTL, MOS, etc.) with transmission line current/voltage requirements. The transmission line conveys signals produced by the line driver to the line receiver. The line receiver makes a decision on the signal logic state by comparing the received signal to a decision threshold level, and the sink decoder performs logic operations on the binary bit stream recovered by the line receiver. For example, the sink decoder may extract the clock rate from the data or perhaps detect and correct errors in the data. From the optional sink decoder, the recovered binary data passes to the *information sink*—the destination for the information source data.

Assume for the moment that the source encoder and sink decoder are "transparent"; that is, they will not modify the binary data presented to them in any way. Line driver signals, then, have the same timing as the original bit stream. The data source emits a new bit every tB seconds. The pulse code produced by the source encoder and line driver is called Non-Return to Zero (NRZ), a very common signal in TTL logic systems. A sample bit pattern with its NRZ representation is shown in Figure 4-7a. The arrows at the top represent the ideal instants, or the times the signal can change state. The term unit interval is used to express the time duration of the shortest signaling element. The shortest signaling element for NRZ data is one bit time t_R, so the unit interval for NRZ data is also t_B. The rate at which the signal changes is the modulation rate (or signaling speed), and baud is the unit of modulation rate. A modulation rate of one baud corresponds to the transmission of one unit interval per second. Thus the modulation rate, in baud, is just the reciprocal of the time for one unit interval. A unit interval of 20 ms, therefore, means the signaling speed is 50 baud. The reason for differentiating between the information rate in bits per second (bps) and the modulation rate in baud will be clarified after examining some of the other pulse codes later in this chapter.

NRZ data should always be accompanied by a clock signal, *Figure 4-7b*, which tells the receiver when to sample the data signal and thus determine the current logic state. For the example in *Figure 4-7b*, the falling edge of the clock corresponds to the middle of the data bits, so it could be used to transfer the line receiver data output into a binary latch. The falling edge of the clock is thus the *sampling instant* for the data. The line receiver does have a *decision threshold* or slicing point so that voltages above that threshold level produce one logic state output, while voltages below the threshold produce the other logic state at the receiver output. The receiver may incorporate positive feedback to produce *hysteresis* in its transfer function. This reduces the possibility of oscillation in response to slow rise or fall time signals applied to the receiver inputs.

Previously in this chapter, it was stated that the fast rise and fall times of signals, corresponding to the transitions between data bits, are rounded out and slowed down by a real transmission line. Each transition of the signal applied to the line by the line driver is transformed to a rounded out transition by the dispersion and attenuation of the transmission line. The resultant signal at the load end of the line consists of the superposition of these transformed transitions. The waves arriving at the load end of the line are shown in Figure 4-7c and their superposition is shown in Figure 4-7d. It is assumed that the line is terminated in its characteristic resistance so that reflections are not present. The receiver threshold level is shown here, superimposed on the resultant load signal, and the re-converted data output of the line receiver is shown in Figure 4-7e along with the ideal instants for the data transitions (tick marks).

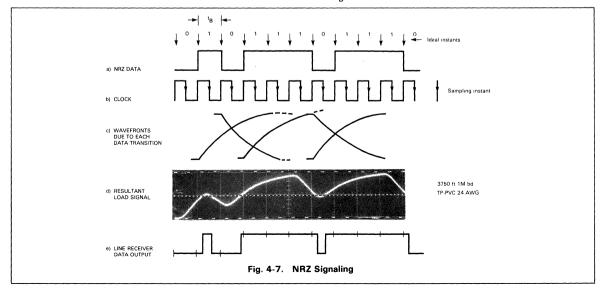
Comparing the original data (*Figure 4-7a*) to the recovered data (*Figure 4-7e*) shows that the actual recovered data transitions may be displaced from their ideal instants (tic marks on *Figure 4-7e*). This time displacement of the transitions is due to a new wave arriving at the receiver site before the previous wave has reached its final value. Since the wave representing a previous data bit is *interfering* with the wave representing the present data bit, this phenomenon is called *intersymbol interference* (in telegraphy it is called *characteristic distortion*). The intersymbol interference can be reduced to zero by making the unit interval of the data signal quite long in comparison to the rise/fall time of the signal at the receiver site. This can be accomplished by either reducing the line length for a given modulation rate.

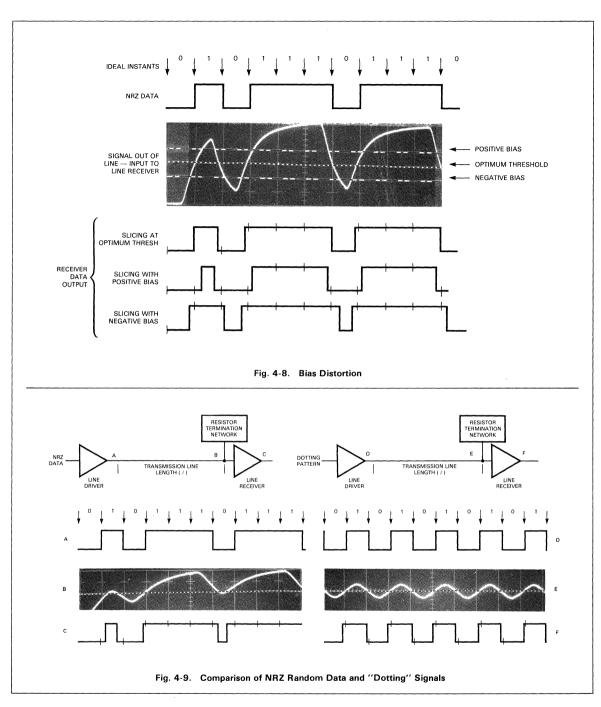
Signal quality is concerned with the variance between the ideal instants of the original data signal and the actual transition times for the recovered data signal.

For synchronous signaling, such as NRZ data, the *isochronous distortion* of the recovered data is the ratio of the unit interval to the maximum measured difference irrespective of sign between the actual and theoretical significant instants. The isochronous distortion is, then, the peak-to-peak time jitter of the data signal expressed as a percentage of the unit inter-

val. A 25% isochronous distortion means that the peak-to-peak time jitter of the transition is .25 unit interval (max).

Another type of received-signal time distortion can occur if the decision threshold point is misplaced from its optimum value. If the receiver threshold is shifted up toward the *One signal level*, then the time duration of the One bits shortens with respect to the duration of the *Zero bits*, and vice versa. This is called *bias distortion* in telegraphy and can be due to receiver threshold offset (bias) and/or asymmetrical output levels of the driver. This effects is shown in *Figure 4-8*.

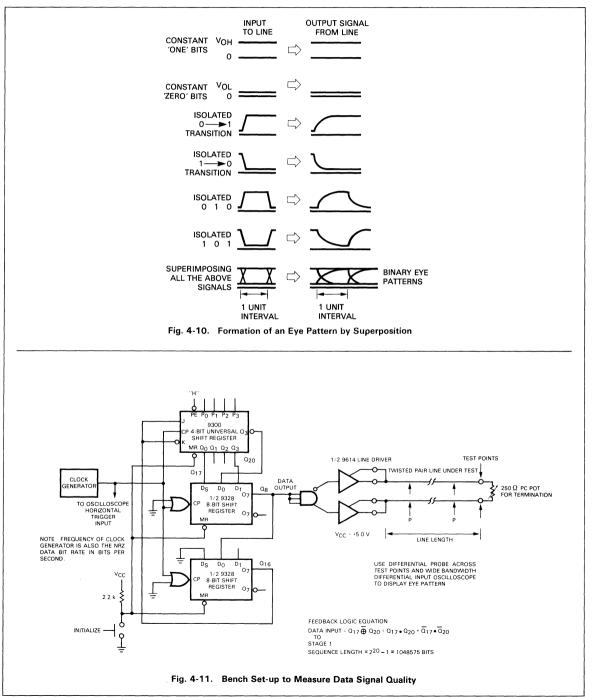

Bias distortion and characteristic distortion (intersymbol interference) together are called *systemic distortion*, because their magnitudes are determined by characteristics within the data transmission system. Another variety of time distortion is called *fortuitous distortion* and is due to factors outside the data transmission system such as noise and crosstalk, which may occur randomly with respect to the signal timing.


SIGNAL QUALITY MEASUREMENT-THE EYE PATTERN

To examine the relative effects of intersymbol interference on random NRZ data and a "dotting"* pattern, see *Figure 4-9*. The top two waveforms represent the NRZ data and dotting pattern as outputs into two identical long transmission lines. The middle two traces illustrate the resultant signals at the line outputs and the bottom two traces show the data output of the line receivers. The respective thresholds are shown as dotted lines on the middle two traces. The arrows indicate the ideal instants for both data and dotting signals.

Notice that the dotting signal (D) is symmetrical, *i.e.*, every One is preceded by a Zero and vice versa, while the NRZ data is random. The resultant dotting signal out of the line is also symmetrical. Because, in this case, the dotting half-cycle time is less than the rise/fall time of the line, the resultant signal out of the line (E) is a *partial response*—it never reach-

*The term dotting pattern is from telegraphy and means an alternating sequence of 1-bits and 0-bits (the "dot dot dot" etc.). Note that an NRZ dotting pattern generates a signal which has a 50% duty cycle and a frequency of $1/2 l_{\rm R}$ (Hz).

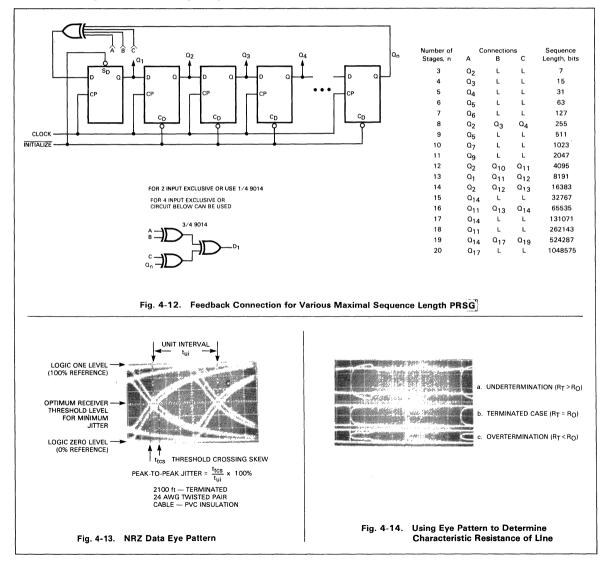

es its final level before changing. The dotting signal, due to its symmetry, does not show intersymbol interference in the same way that a random NRZ signal does. The intersymbol interference in the dotting signal shows up as a uniform displacement of the transitions as shown in *Figure 4-9f*. The NRZ data shows intersymbol interference, in its worst light, due to its unpredictable bit sequence. Thus, whenever feasibility of a data transmission system is to be tested, a random data sequence should be used. This is because a symmetri-

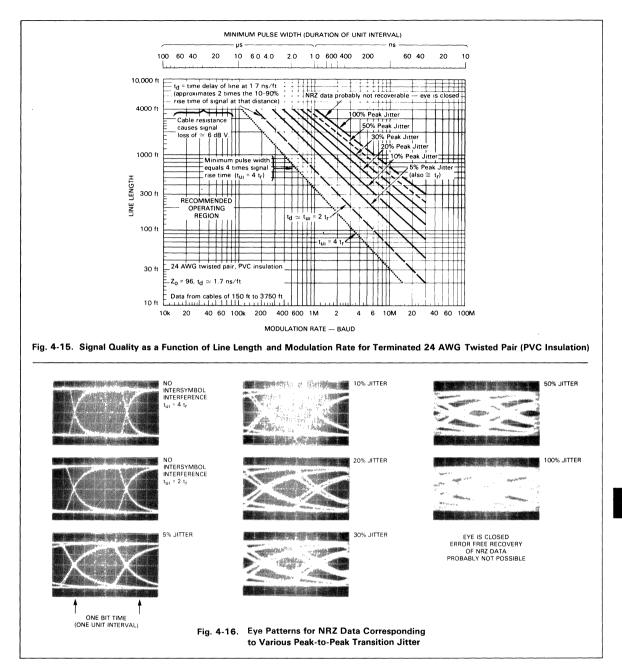
cal dotting pattern or clock signal cannot always show the effects of possible intersymbol interference.

A very effective method of measuring time distortion through a data transmission system is based on the eye pattern. The eye pattern, displayed on an oscilloscope, is simply the superposition—over one unit interval—of all the Zero to-One and One-to-Zero transitions, each preceded and followed by various combinations of One and Zero, and also constant One and Zero levels. The name *eye pattern* comes from the resemblance of the open pattern center to an eye. The diagramatic construction of an eye pattern is shown in *Figure 4-10*. The data sequence can be generated by a pseudo-random sequence generator (PRSG), which is a digital shift register with feedback connected to produce a maximum length sequence. The PRSG, requiring only two devices (*Figure 4-11*), generates a sequence that repeats after 2^{20} -1 bits. Feedback

connections for PRSG shift registers from 4 to 20 bits in length are shown in *Figure 4-12*.

Several features of the eye pattern make it a useful tool for measuring data signal quality. *Figure 4-13* shows a typical binary eye pattern for NRZ data. The spread of traces crossing the receiver threshold level (dotted line) is a direct measure of the peak-to-peak transition jitter—isochronous distor-




tion in a synchronous system—of the data signal. The rise and fall time of the signal can be conveniently measured by using the built-in 0% and 100% references produced by long strings of Zeros and Ones. The height of the trace above or below the receiver threshold level at the sampling instant is the noise margin of the system. If no clear transition-free space in the eye pattern exists, the eye is closed. This indicates that errorfree data transmission is not possible at that data rate and line length with that particular transmission line without resorting to equalizing techniques. In some extreme cases, error-free data recovery may not be possible even when using equalizing techniques.

The eye pattern can also be used to find the characteristic resistance of a transmission line. The 250 $\Omega|$ printed circuit-type potentiometer termination resistor (*Figure 4-11*) can be adjusted to yield the minimum overshoot and undershoot of the data signal. *Figure 4-14* shows the NRZ data eye patterns for R_T>R_O, R_T = R_O and R_T<R_O. The 100% and 0% reference levels are again provided by long strings of Ones and

Zeros, and any overshoot or undershoot is easily discernible. The termination resistor is adjusted so that the eye pattern transitions exhibit the minimum perturbations (*Figure 4-14b*). The resistor is then removed from the transmission line, and its measured value is the characteristic resistance of the line.

By using the eye pattern to measure signal quality at the load end of a given line, a graph can be constructed showing the tradeoffs in signal quality—peak-to-peak jitter—as a function of line length and modulation rate for a specific pulse code. An example graph for NRZ data is shown in *Figure 4-15*. The graph was constructed using eye pattern measurements on a 24 AWG twisted pair line (PVC insulation) driven by a differential voltage source driver (9614) with the line parallelterminated in its characteristic resistance (96 Ω). The oscilloscope photographs in *Figure 4-16* show the typical eye patterns for NRZ data with various amounts of isochronous distortion. The straight lines represent a "best fit" to the actual measurement points. Since the twisted pair line used was not specifically constructed for pulse service, the graph

probably represents a reasonably good worst-case condition insofar as signal quality vs line length is concerned. Twisted pair lines with polyethylene or Teflon® insulation have shown better performance at a given length than the polyvinyl chloride insulation. Likewise, larger conductors (20 AWG, 22 AWG) also provide better performance at a given length. Thus, the graph in *Figure 4-15* can be used to estimate feasibility of a data transmission system when the actual cable to be used is unavailable for measurement purposes. The arbitrary cutoff of 4000 feet on the graph was due to an observed signal amplitude loss of 6 dBV (1/2 voltage) of the 24 AWG line at that distance. The cutoff of 10 Mbaud is based on the propagation delays of the typical TTL line drivers and receivers. Field experience has shown that twisted pair transmission systems using TTL drivers and receivers have operated essentially error-free when the line length and modulation rate are kept to within the shaded recommended operating region shown in *Figure 4-15*. This has not precluded operation outisde this region for some systems, but these systems must be carefully designed with particular attention paid to defining the required characteristics of the line, the driver, and the receiver devices. The use of coaxial cable instead of twisted pair lines almost always yields better performance, *i.e.*, greater modulation rate at a given line length and signal quality. This is because most coaxial cable has a wider bandwidth and reduced attenuation at a given length than twisted pair line (one notable exception is RG 174/U cable). In the next section, a method is discussed that allows a rough estimation of the maximum "safe" modulation rate for a given length of a particular coaxial cable when actual eye pattern measurements cannot be made on that cable.

It should be remembered that, in some ways, the eye pattern gives the *minimum* peak-to-peak transition jitter for a given line length, type, pulse code, and modulation rate. This is because the eye pattern transition spread is the result of intersymbol interference and reflection effects (if present) and this minimum jitter is only obtainable if the following conditions are met.

- The One and Zero signal levels produced by the line driver are symmetrical, and the line receiver's decision threshold (for NRZ signaling) is set to coincide with the mean of those two levels.
- The line is perfectly terminated in its characteristic resistance to prevent reflections from altering the signal threshold crossings.
- The time delays through driver and receiver devices for both logic states is symmetrical and there is no relative skew in the delays (difference between L → H and H → L propagation delays = 0). This is especially important when the device propagation delays become significant fractions of the unit interval for the applicable modulation rate.

If any one of these conditions is not satisfied, the signal quality is reduced (more distortion). The effects of receiver bias or threshold ambiguity and driver offset can be determined by location of the decision threshold(s) on the oscillograph of the eye pattern for that driver/cable modulation rate combination. For eye patterns displaying more than 20% isochronous distortion, the slope of the signal in the transition region is relatively small. Therefore, a small amount of bias results in a large increase in net isochronous distortion. See *Figure 4-17* for a graphic illustration of this effect. In the interest of conservative design practices, systems should always be designed with less than 5% transition spread in the eye pattern. This allows the detrimental effects due to bias to be minimized, thus simplifying construction of line drivers and receivers.

ESTIMATION OF SIGNAL QUALITY IN LIEU OF EYE PATTERN MEASUREMENTS

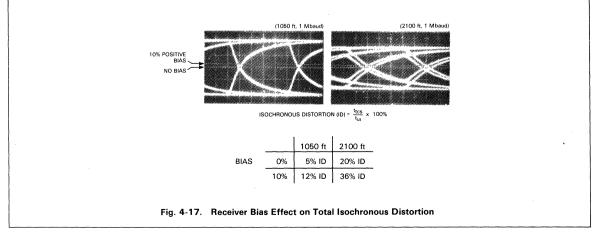
In many design situations it is not always convenient to measure signal quality using the eye pattern. This can be caused by lack of equipment, time, or unavailability of the transmission line to perform the necessary measurements. In such cases, the following rule of thumb applies: the unit interval should be greater than twice the 10 to 90% rise or fall time of the line, *i.e.*,

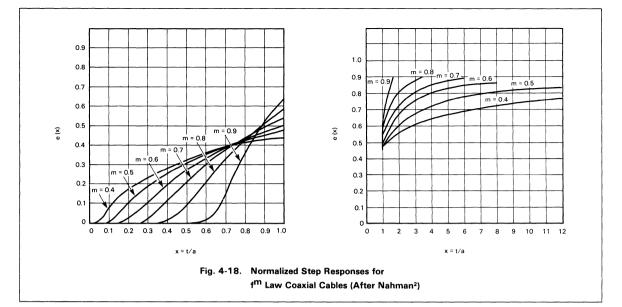
$$t_{ui} \geq 2t_{10-90\%}$$

Eve patterns that meet this criterion show that adherence to this rule will keep the peak-to-peak jitter to less than 5% of the unit interval. If the 10% to 90% rise time cannot be easily measured-as is the case with coaxial cables whose dominant loss mechanism is simple skin effect-then the 10 to 80% rise time may be used instead of the 10 to 90% rise time. The corresponding peak-to-peak jitter, due to intersymbol interference with the $t_{ui} \ge 2 t_{10-80\%}$ rule, is usually less than 10%. In any event, if the unit interval is less than the O to 50% rise time of the signal at the line end ($t_{ui} < t_{0-50\%}$), then the error-free recovery of NRZ data is not possible without using equalizing techniques. Sometimes, changing to a pulse code which allows partial response recovery will enable data transmission at an otherwise unusable line length-speed combination. When actual eye pattern measurements cannot be made, an estimate of feasibility can still be obtained by calculating the signal transition time.

N.S. Nahman^{2,4} presented a simple method to predict the transient response of a coaxial cable from the cable attenuation. The procedure was based on a graphical analysis technique allowing prediction of the step response of a network from a graph of the imaginary part of the transfer function, in this case the imaginary part of γ (s). The normalized step responses (*Figure 4-18*) are plotted with the abscissa in normalized time (x)

 $a = \frac{1}{2\pi f_0} \left[\frac{\alpha(f_0)}{\cos(m\pi/2)} \right]^{\frac{1}{m}}$


$$x = t/a \tag{4.5}$$


where

(4.6)

and

t = real time,

 α (f₀) = attenuation of the coaxial cable in nepers at frequency (f₀) for length l. If α (f₀) is known in dB, then division by 8.686 will convert the dB/length into nepers/length (1 neper = 8.686 dB).

m = slope of the attenuation vs frequency curve for the particular coaxial cable when plotted on log-log graph paper (log dB vs log frequency).

$$m = \frac{\log \alpha(f_2) - \log \alpha(f_1)}{\log (f_2) - \log (f_1)}$$

where $f_2 > f_1$ and $\alpha(f_2)$ is the attenuation at frequency (f_2), and log is the common (base 10) logarithm.

Slope m will have a range of 0 < m < 1.

Nahman pointed out that this method applies to cables where either the attenuation *or* the phase characteristic can specify the transfer function. This implies that knowledge of either characteristic alone provides sufficient information for the other characteristic; in particular, the Bode condition must be met.

$$\lim_{s \to \infty} \frac{\gamma(s)}{s} = 0$$

For details, see Nahman's paper². In general, a reasonably accurate modified transfer function may be specified satisfying Bode's condition for coaxial cables. Twisted pair and parallel wire lines cannot usually be fully characterized by either attenuation or phase characteristics alone. This is because each has a significant contribution to the overall transfer function. Thus Bode's condition cannot usually be met, so Nahman's method will not yield accurate results.

In a more recent paper⁴, he asserted that the primary contributors to the shape of the step response waveform are those frequency components transmitted with less than 20 dB of attenuation. Thus, the predominant slope of the attenuation curve up to 20 dB at that cable length should be used. For short cables (1000 ft) the 20 dB attenuation may occur in the 10 to 100 MHz region. *Equation 4.6* may be modified by factoring out the cable length to produce

$$a = \frac{1}{2\pi f_0} \left[\frac{\alpha_1(f_0)}{\cos(m\pi/2)} \right]^{\frac{1}{m}} \cdot \left[l \right]^{\frac{1}{m}} \quad (4.7)$$

where $\alpha_1(f_0)$ is now the attenuation (in nepers per unit length and is the line length. The time for the line signal to rise to 50% is obtained by combining *Equations 4.5* and *4.7* (*Equations 5* and 7 in Reference 4).

$$t_{50\%} = \frac{x_{50\%}}{2\pi f_0} \left[\frac{\alpha_1(f_0)}{\cos(m\pi/2)} \right]^{\frac{1}{m}} \cdot \left[l \right]^{\frac{1}{m}} (4.8)$$

where $x_{50\%}$ is obtained from *Figure 4-18* or the table in *Figure 4-19*. Likewise, combining the expressions for $x_{10\%}$ and $x_{80\%}$ and subtracting gives

$$t_{10-80\%} = \frac{x_{80\%} - x_{10\%}}{2\pi f_0} \left[\frac{\alpha_1(f_0)}{\cos(m\pi/2)} \right]^{\frac{1}{m}} \cdot \begin{bmatrix} l \\ l \end{bmatrix}^{\frac{1}{m}} (4.9)$$

The 10 to 90% rise time can be found similarly by substituting $x_{90\%}$ for $x_{80\%}$ in *Equation 4.9*.

As an example of the use of these equations to predict step response of a coaxial cable, consider RG59A/U cable. The listed attenuation for RG59A/U is¹³

$$f_0$$
 α (f_0)/100 ft (dB)10 MHz1.07100 MHz3.4400 MHz7.0

The slope of the attenuation curve is

$$m = \frac{\log 7.0 - \log 1.07}{\log (400 \times 10^6) = \log (10 \times 10^6)} = \frac{.82}{1.60} = 0.51$$

The attenuation per unit length (in nepers) at 400 MHz is

$$\alpha_1 (400 \text{ MHz}) = \frac{7.0}{8.686} \cdot \frac{1}{100 \text{ ft.}} = 0.008059 \text{ nepers/ft}$$

Thus, the normalization constant, a, is

m	×50%	×10-90%	×10-80%
0.4	1.30	*	14.5
0.5	1.15	*	7.1
0.6	1.00	*	3.5
0.7	0.92	6.6	2.4
0.8	0.89	3.0	1.4
0.9	0.89	1.0	0.7

*90% points not given on graph for these values (Figure 4²)

Fig. 4-19. Normalized Time to Reach Various Percentages of Signal Final Value for Various Values of m

$$a = \frac{1}{2\pi (400 \ X \ 10^6)} \left[\frac{.008059}{\cos[(.51)\pi/2]} \right]^{\frac{1}{.51}} = 6.355 \ X \ 10^{-14}$$

A 140-foot length of line, therefore, should have a $t_{50\%}$ time

$$t_{50\%} = (1.15) (6.355 \times 10^{-14}) (140)^{\frac{1}{.51}} = 1.18 \text{ ns}$$

and the 10% to 80% rise time is

$$t_{10-80\%} = (7.1) (6.355 \times 10^{-14}) (140)^{-1} = 7.29 \text{ ns}$$

For 1000 ft of RG59A/U, the previous results for 140 ft can be scaled.

$$t_{50\%} = 1.18 \cdot \left[\frac{1000}{140}\right]^{\frac{1}{.51}} = 55.7 \text{ ns}$$

and

$$t_{10-80\%} = 7.29 \cdot \left[\frac{1000}{140}\right]^{\frac{1}{.51}} = 344.2 \text{ ns}$$

If the desired modulation rate is 1 Mbaud ($t_{ui} = 1.0 \mu$ s) and the line length is 1000 feet, then the system using RG59/U cable would probably operate satisfactorily. Be aware, however, that if the single slope (m) does not accurately approximate the actual attenuation characteristic of the coaxial cable, then Nahman's method will show considerable error in predicting the signal transition time. RG174/U is a coaxial cable with an attenuation characteristic that has a slope in the 0.3 to 0.65 range depending on the frequency. Thus the method cannot be accurately applied to RG174/U cable.

Also, Nahman's method cannot be applied to commonly available twisted pair or parallel wire lines. This is because knowledge of either the line attenuation or its phase characteristics is not normally sufficient to completely specify the transfer function. Thus, the previously mentioned Bode condition is not satisified, and the analysis previously used cannot be applied satisfactorily. Experimental tests on various twisted pair cables from 10 to 4000 feet in length have revealed that these cables show a law of $m \simeq 0.6$ for attenuation, but follow an almost linear increase in rise time as cable length is increased. The 10 to 90% rise time usually falls in the following range.

$$\tau \le t_{10-90\%} \le 2\tau$$

where τ is the time delay of the cable per unit length times the cable length. Combining this with the suggestion that the unit interval should be at least twice the 10–90% rise time of the line, then the minimum unit interval should be

$$t_{ui} \ge 4\tau$$

This corresponds with a boundary for recommended operating regions shown in *Figure 4-15*. Experience has shown that adherence to the above relationship with twisted pair cables results in less than 10% peak-to-peak jitter due to intersymbol interference.

OTHER PULSE CODES AND SIGNAL QUALITY

In the preceding sections, the discussion of signal quality has been centered around the use of NRZ signaling, because it represents the simplest and most commonly used pulse code. Other pulse codes have been developed which provide one or more of the following desirable features:

- Compress the overall bandwidth normally required to adequately transmit the signal yet still ensure recovery of the binary data.
- Eliminate the need for a dc response in the transmission medium so that transformer coupling can be used for phantom power distribution on repeated lines. (The elimination of a dc characteristic of the pulse code also allows ac coupling of amplifier circuits).
- Provide a clocking scheme within the signal so that no separate clock channel is required for synchronization.
- Provide built-in error detection.

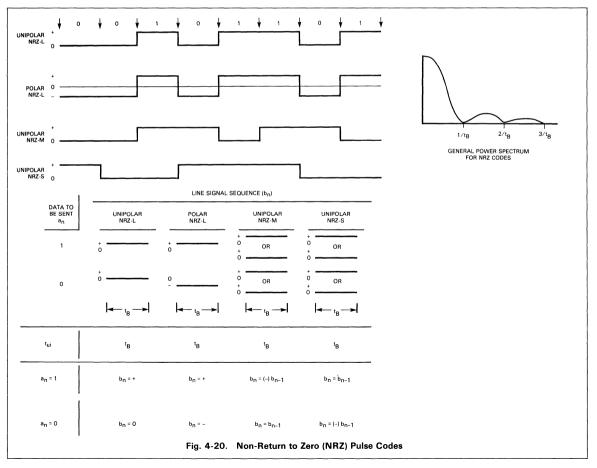
The following discussion is restricted to the binary class of baseband signals. This simply means that each decision by the line receiver yields one bit of information. The *M*-ary schemes ($M \ge 3$) can encode more than one bit of information per receiver decision*, but these schemes are seldom applied to baseband signaling due to the complexities of the driver and receiver circuits (especially for M > 3). M-ary schemes, however, are applied to high speed non-baseband data transmission systems using modems. The price to be paid for the increased bit-packing with multi-level signaling is decreased immunity to noise relative to a binary system. This is because a smaller relative threshold displacement (or amount of noise) is required to produce a signal representing another logic state in the *M*-ary schemes.

In general, the binary class of pulse codes can be grouped into four categories;

- Non-Return to Zero (NRZ)
- Return to Zero (RZ)

^{*}It can be shown that, for M levels, the information per receiver decision will be S = log₂ M bits/decision. Thus, three levels theroetically yield 1.58 bits; four levels yield 2 bits of information, eight levels yield 3 bits. etc.

- Phase Encoded (PE) (sometimes called Split Phase)
- Multi-Level Binary (MLB). (The MLB scheme uses three levels to convey the binary data, but each decision by the line receiver yields only one bit of information.)


A secondary differentiation among the pulse codes is concerned with the algebraic signs of the signal levels. If the signal levels have the same algebraic sign for their voltages (or currents) and differ only in their magnitudes, the signaling is called *unipolar*. A very common example of unipolar signaling is TL or ECL logic. TTL uses two positive voltages to represent its logic states, while ECL uses two negative voltages for its logic states. The complement of unipolar signaling is *polar* signaling. Here, one logic state is represented by a signal voltage or current having a positive sign and the other logic state is represented by a signal with a negative sign. For binary signals, the magnitude of both signals should be equal, ideally. Their only difference should be in the algebraic signs. This allows the receiver to use ground as its decision threshold reference.

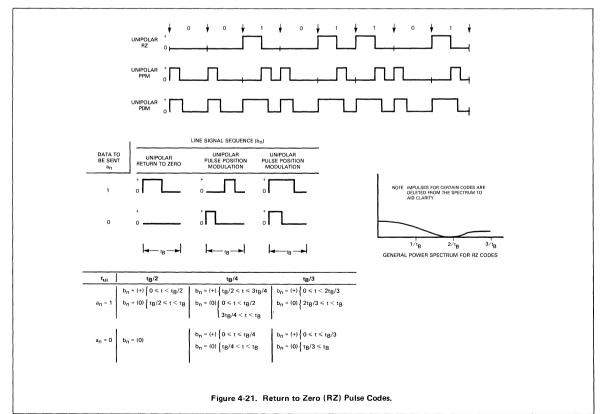
Non-Return to Zero (NRZ) Pulse Codes

There are three NRZ pulse codes: NRZ – Level (NRZ-L), NRZ – Mark (NRZ-M), and NRZ – Space (NRZ-S). NRZ-L is the same pulse code as previously discussed. In NRZ-L signaling, data is represented by a constant signal level during the bit time interval, with one signal level corresponding to one logic state, and the other signal level corresponding to the opposite logic state. In NRZ-M or NRZ-S signaling, however, a change in signal level at the start of a bit interval corresponds to one logic state and no change in signal level at the start of a bit interval corresponds to the opposite logic state. For NRZ-M pulse codes, a change in signal level at the start of the bit interval indicates a logic One (Mark), while no change in signal level indicates a logic Zero (Space). NRZ-S is a logical complement to NRZ-M. A change in signal level means a logic Zero and no change means logic One. With NRZ-M and NRZ-S pulse codes, therefore, there is no direct correspondence between signal levels and logic states as there is with NRZ-L signaling. Any of the NRZ pulse codes may, of course, be used in unipolar or polar form. The NRZ codes are shown in Figure 4-20, along with their generation algorithms*, signal levels vs time, and their general power density spectrum.

The degradation in signal quality caused by intersymbol interference for NRZ-L signaling was discussed earlier. Since the minimum signaling element (unit interval) for all three NRZ pulse codes is equal to t_B , the previous signal quality discussion for NRZ-L also applies equally to NRZ-M and NRZ-S pulse codes. The following is a capsule summary of the previous discussion on NRZ signal quality.

*The generation algorithm showing the sequence of signal levels on the line, represented by the set $\{b_n\}$ is determined by the sequence of input logic states, represented by the set $\{a_n\}$. See Bennet¹⁴ for detailed usage of this notation.

- When t_B is less than the 0–50% rise or fall time of the signal at the line end, the open space in the eye pattern closes, thereby indicating error-free data transmission is unlikely.
- When t_B is less than the 10–90% rise or fall time of the line end signal, some intersymbol interference is present and thus, some time jitter in the transitions of the recovered data will be present.


NRZ codes are simple to generate and decode because no precoding or special treatment is required. This simplicity makes them probably the most widely used pulse codes, with NRZ-L the leader by far. NRZ-M has been widely used in digital magnetic recording where it is usually called NRZI for Non-Return to Zero, Invert-on-Ones. In terms of the four desirable features for a pulse code listed at the start of this section, however, none of the NRZ codes are all that great—NRZ codes do possess a strong dc component, and have neither intrinsic clocking, nor error detection features. Even so, their power frequency spectra are used as references for comparison with other pulse codes.

Return to Zero (RZ) Pulse Codes

The RZ group of pulse codes are usually simple combinations of NRZL data and its associated single or double frequency clock. By combining the clock with data, all RZ codes possess some intrinsic synchronization feature. Three representative RZ pulse codes are shown in *Figure 4-21*. Unipolar RZ is formed by performing a logic AND between the NRZ-L data and its clock. Thus a logic Zero is represented by the absence of a pulse during the bit time interval, and a logic One is represented by a pulse as shown. Pulse Position Modulation (PPM) uses a pulse of t_B/4 duration beginning at the start of the bit interval to indicate a logic Zero, and a t_B/4 pulse beginning at the middle of the bit interval to indicate a logic One. Pulse Duration Modulation (PDM) uses a t_B/3 duration pulse for a logic Zero and a (2/3) t_B pulse for a logic One, with the rising edge of both pulses coinciding with the start of the bit interval. PDM with t_B/4 pulse widths is also used but better results are usually obtained with the t_B/3, 2 t_B/3 scheme.

The reason for differentiating between information rate and modulation rate can now be further clarified. Each of the RZ pulse codes in *Figure 4-21* has the same information rate; *i.e.*, $1/t_B$ bits per second. Their respective minimum signaling elements (unit intervals) however, are all less than t_B so the *modulation rate* for the RZ pulse code is greater than the *information rate*. Remember that with NRZ signaling, the unit interval and the bit time interval are equal in duration, so the information rate in bps is equal to the modulation rate in bauds. For isochronous NRZ signaling, the measures bps and baud are both synonymous and interchangeable.

Inspection of unipolar RZ signaling reveals that the unit interval is 1/2 bit interval ($t_{ui} = t_B/2$). When this unit interval is less than the 0–50% rise or fall time of the line, the data is likely to be unrecoverable. With a fixed modulation rate, the price paid to include clocking information into unipolar RZ is reduced information rate over that for NRZ signaling. Likewise, for PPM with its unit interval of $t_B/4$, the information rate reduces to 1/4 that of NRZ data under the same conditions. This is because the maximum modulation rate is determined by the 50% rise time of the line which is constant

for a given length and type of line. PDM has a unit interval of $t_B/3$ so, for a given maximum modulation rate, the resulting information rate is 1/3 that of NRZ data.

The preceding argument should not be taken as strictly correct-since the actual intersymbol interference patterns for the three RZ codes discussed differ somewhat from the pattern with NRZ codes. A random sequence of NRZ data can easily consist of a long sequence of Zeros followed by a single One and then a long sequence of Zeros, so the $t_{50\%}$ limit can be accurately applied. Unipolar RZ, in response to the same long data sequence, produces a $t_{\rm B}/2$ pulse, so the $t_{50\%}$ argument can be applied here too. With PPM and PDM, the maximum time that the line signal can be in one state is quite reduced from the NRZ case. For PPM, this time is 1.25 t_R (010 data sequence) while for PDM, it is .67 tp (see Figure 4-21). With PPM and PDM, then, the line signal may never reach the final signal levels that it does with NRZ data. So, the PPM and PDM signals have a head start, so to speak, in reaching the threshold crossing of the receiver. Because of the reduced time that PDM and PPM signal levels are allowed to remain at one signal level, their signaling may still operate at a modulation rate slightly above that where the NRZ data shows 100% transition jitter. Even with this slight correction to the previous discussion, the RZ group of pulse codes still sacrifice information rate in return for synchronization. The PPM scheme appears to be a poor trade in this respect, since PDM allows a greater information rate while retaining the self-clocking feature. Unipolar RZ, because it provides no clocking for a logic Zero signal, is not generally as useful as PDM for baseband data transmission. However, unipolar RZ is used in older digital magnetic tape recorders.

Examination of RZ codes shows only one more desirable feature than NRZ codes: clocking. RZ codes still have a dc component in their power density spectrum (*Figure 4-21*) and their bandwidth is extended (first null at $2/t_B$) over that of NRZ (first null $1/t_B$). RZ codes do not have any intrinsic error detection features.

Phase Encoded (PE) Pulse Codes

The PE group of pulse codes uses signal level transitions to carry both binary data and synchronization information. Each of the codes provides at least one signal level transition per bit interval aiding synchronous recovery of the binary data. Simply stated, Biphase-Level (Bi ϕ -L) code is binary phase shift keying (PSK) and is the result of an Exclusive-OR logic function performed on the NRZ-L data and its clock; it is further required that the resultant signal be phase coherent (*i.e.*, no glitches). Biphase-Mark (Bi ϕ -M) and Biphase-Space (Bi ϕ -S) codes are essentially phase coherent, binary frequency shift keying (FSK). In Bi ϕ -M, a logic One is represented by a constant level during the bit interval (one-half cycle of the lower frequency 1/(2 t_B), while a logic Zero is represented by one-half cycle of the higher frequency $1/t_B$. In Bi ϕ -S, the logic states are reversed from those in Bi ϕ -M. Another way of thinking of Bi ϕ -M or Bi ϕ -S is as follows.

- Change signal level at the end of each bit interval regardless of the logic state of the data.
- Change signal level at the middle of each bit interval to mean a particular logic state.

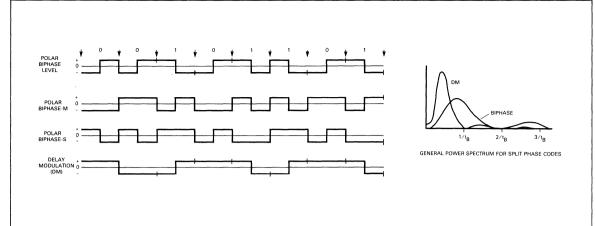
In Bi ϕ -M (sometimes called diphase), a mid-bit interval change in signal level indicates a logic One (Mark), while no *Delay Modulation^{15,16} has a maximum of 2 t_B without a signal level transition.

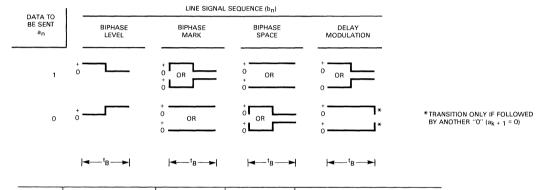
change indicates a logic Zero. For Bi ϕ -S, no signal level change in the middle of the bit interval means a logic One, while a change means a logic Zero.

In Bi ϕ -L (also called Manchester Code), a positive-going transition at the middle of the bit interval means a logic Zero, while a negative-going transition there indicates a logic One.

The fourth member of the PE family is Delay Modulation $(DM)^{15,16}$ sometimes referred to as Miller code. Here logic One is represented by a mid-bit interval signal level change, and a logic Zero is represented by a signal level change at the end of the bit interval if the logic Zero is followed by another logic Zero. If the logic Zero is immediately followed by a logic One, no signal level transition at the end of the first bit interval is used. The waveforms encoding algorithms, and general power density spectra for the PE pulse code family are shown in *Figure 4-22*.

A brief inspection of the signal waveforms for the three Biphase pulse codes reveals that their minimum signaling element has a duration of one-half bit interval ($t_{ui} = t_B/2$); the longest duration of either signal level is one bit interval. Similarly, DM is seen to have a minimum signaling element of one bit interval ($t_{ui} = t_B$) and the maximum duration of either signal level is two bit intervals (produced by a 101 pattern). Biphase codes should exhibit eye closure (they would not be recoverable without equalization) when $t_{ui} \leq t_{0-50\%}$. So, a 50% jitter on NRZ signaling approximately corresponds to the Biphase codes non-operation point. Biphase codes, therefore, provide one-half the information rate of NRZ signals at a given maximum modulation rate. This is in exchange for synchronization information and a dc-free spectrum when used in polar form.


DM should have essentially the same intersymbol interference characteristics as NRZ, since the unit interval is the same for both codes. DM may perform slightly better than NRZ, because the maximum duration of either signal level is two bit intervals. Overall, DM is better coding scheme than the Bi ϕ . It does not require as much bandwidth as Bi ϕ and still possesses the desirable dc response and synchronization qualities.


Both Bi ϕ and DM are good choices for digital magnetic recording¹⁶; Bi ϕ is widely used in disc memory equipment, and DM is rapidly gaining acceptance where high bit packing densities are desired. Overall scoring, in terms of the four desirable characteristics, shows the PE pulse codes with three primary features; bandwidth compression, no dc, and intrinsic synchronization.

The Bi ϕ family does not possess any intrinsic error detection scheme. DM does possess the capability of detecting some but not all—single bit errors. This detection process is accomplished by checking to see if a single level persists longer than two bit intervals, in which case, an error is indicated. DM detection requires two samples per bit interval.

Multi-Level Binary (MLB) Pulse Codes

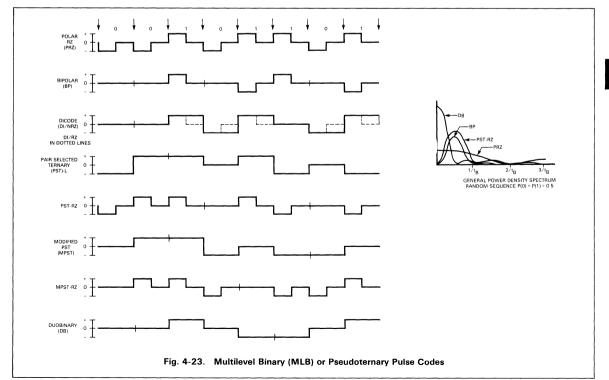
The pulse codes in the MLB group discussed have a common characteristic of using three signal levels (expressed in shorthand notation as +, 0, –) to represent the binary information, but each receiver decision yields only one bit of information. These are sometimes called *pseudoternary* codes to distinguish them from true ternary codes wherein each receiver decision can yield 1.58 information bits.

^t ui	t _B /2	t _B /2	t _B /2	^t B
a _n = 1	$ \begin{split} \mathbf{b}_n &= (+) \Big\{ \begin{array}{l} 0 < t < t_B/2 \\ \mathbf{b}_n &= (-) \end{array} \Big\} t_B/2 \leqslant t \leqslant t_B \end{split} $	ŧ	b _n = () b _{n1} * *complement of final level of last b _n	if final value of $b_{n-1} = (+)$ then $b_n = (+) \left\{ 0 < t < t_B/2 \\ and b_n = (-) \right\} \left\{ t_B/2 \le t \le t_B \\ else, compliment above b_nvalues for times shown$
a _n = 0		b _n = (-) b _{n-1} * *complement of final level of last b _n	ŧ	$ \begin{array}{ll} \text{if final value of } b_n-1=(+) \\ \text{then} b_n=(+) \left\{ 0 \leqslant t < t_B \\ \text{if} a_{n+1}=(0) \text{ then } b_n=(-) \right\} \\ \text{else} b_n=(+) \left\{ t=t_B \\ \text{if final value of } b_{n-1}=(-) \\ \text{then complement } b_n \text{ values above} \end{array} $

$$\begin{array}{l} \ddagger \ \text{If} \ b_{n-1} \ \text{final level} = (+), \ \text{then} \\ \begin{bmatrix} b_n = (-) \\ b_n = (+) \\ t_B/2 \leq t < T_B \\ \end{bmatrix} \\ \text{If} \ b_{n-1} \ \text{final level} = (-), \ \text{then} \\ \begin{bmatrix} b_n = (+) \\ b_n = (+) \\ t_B/2 \leq t < t_B \\ \end{bmatrix} \\ \begin{array}{l} t_B/2 \leq t < t_B \\ t_B/2 \leq t < t_B \\ \end{bmatrix}$$

٦

Fig. 4-22. Phase Encoded (PE) Pulse Codes


The most straightforward pulse code in the MLB group is polar RZ (*Figure 4-23*). Some authors place PRZ in the RZ group, but since PRZ uses three signal levels, it is placed in the MLB group here. A logic One is represented by a positive polarity pulse, and a logic Zero is represented by a negative polarity pulse. Each pulse lasts for one-half bit interval. PRZ has excellent synchronization properties since there is a pulse present during every bit interval.

Bipolar (BP)^{17,18} uses a t_B/2 duration pulse to signify a logic One, and no pulse during the bit interval to signify a logic Zero. The polarity of the pulses for a logic One is alternated as shown in Figure 4-23. Bipolar coding is also known as Alternate Mark Inversion. BP is widely used in Bell Systems T1-PCM carrier systems as a pulse code transmitted along a regenerative repeated transmission line. Since BP has no dc component, the regenerative repeaters along the span line may be transformer coupled and powered by a phantom constant current power loop from the central office. The synchronization properties of BP are excellent if the number of Zero bits transmitted in series is constrained. This constraint on the number of sequential Zeros allows clock circuits in each repeater to remain in synchronization. A scheme called Binary with 6 Zeros Substitution (B6ZS) was developed to replace 6 Zeros with a given signal sequence to offset this loss of synchronization¹⁸. Bipolar coding has a limited capability to detect single errors, all odd errors, and certain even error combinations which violate the mark alternation rule. Another scheme called High Density Bipolar with 3 Zeros substitution (HDB-3) replaces four successive Zeros (no pulses) with three Zeros followed by a pulse whose polarity violates the Mark alternation rule¹⁹. Subsequent detection of this pattern (three Zeros and pulse violating the polarity coding rule) causes the receiver to substitute four Zeros for the received 0001 pattern.

In Dicode (DI)^{20, 21}, a polar pulse (either t_B for DI-NRZ or t_B/2 for DI-RZ) is sent for every input data transition. The limiting constraint is that the successive pulses must alternate in sign (*Figure 4-22*). As in NRZ-M and NRZ-S, the actual polarity of the pulses does not necessarily correspond to the logic state of the data (a positive pulse may represent either a Zero-to-One or a One-to-Zero transition of the input data). The power spectrum for DI is the same as for BP (no dc component). Bit synchronization for DI can be obtained in the same manner as for BP, but with DI, the number of bits of the same logic state must be controlled in order for the receiver to maintain bit synchronization. DI also has the intrinsic capability of detecting single bit errors (via two successive positive or negative signal levels), all odd, and some even numbers of errors.

Pair Selected Ternary (PST)¹⁸ ²² and Modified PST (MPST)²² were proposed to minimize the disadvantages of BP coding: loss of synchronization with long strings of Zeros and timing jitter. PST/MPST maintains the strong features of BP: dc free spectrum, single error detection. To produce PST or MPST, the incoming bits are grouped into pairs, and the signal produced on the line is governed by a coding table (see *Figure 4-24*). Two modes are also used in the coding table with a change in mode occurring after a certain bit pair is transmitted. The features of PST/MPST thus include:

- No dc spectral component,
- No loss of synchronization with long strings of Zeros,
- Intrinsic error detection,
- Simplification of requirements for timing extraction circuits with respect to BP.

MPST coding was developed primarily to speed up the framing process, *i.e.*, selecting which two successive pulses constitute a valid pair, when the probability for a Zero and a One are not equal.

Duobinary^{23, 24} is an example of a correlative level coding technique, wherein a correlation exists between successive signal levels. Duobinary uses three signal levels with the middle level corresponding to a logic Zero, and the other two levels corresponding to a logic One. The pseudoternary signal is generated by precoding the input data, which results in constraining the line signal to change only to the neighbor-

ing level, *i.e.*, the (+) to (-) and (-) to (+) level changes are not allowed. This precoding process uses controlled intersymbol interference as part of the coding scheme. The benefit is an effective doubling of the bit rate for a given bandwidth and concentration of the power spectrum toward dc (*Figure 4-23*). Duobinary has the capability to detect single errors which violate the encoding rules. In terms of bandwidth utilization, Duobinary ranks first among all the binary and MLB codes²⁰, but its strong dc component prohibits the use of ac-coupled transmission media. Synchronization properties are similar to NRZ, thus external clocking must be used to recover the data.

Name	Sent (a _n)	Line Signal	tui	Line Signal Sequence (b _n) Generation
Polar Return to Zero (PRZ)	a _n = 1 a _n = 0		^t B/2	$\begin{array}{l} b_n = (+) \left\{ \begin{array}{l} 0 \leq t \\ d_{B/2} \leq t \leq t_{B/2} \end{array} \right. \\ \hline \\ b_n = (0) \end{array} \\ \hline \\ b_n = (-) \left\{ \begin{array}{l} 0 \leq t \leq t_{B/2} \\ 0 \leq t \leq t_{B/2} \end{array} \right. \\ \hline \\ b_n = (0) \end{array} \right\} \end{array}$
Bipolar (BP)	a _n = 1 a _n = 0		^t B/2	The polarity of b_n depends on the polarity of b_{n-k} corresponding t the last $a_{n-k} = (1)$. If the last b_{n-k} was a positive pulse (1), then b will be a negative pulse (2). If the last b_{n-k} was a negative pulse (2) then b_n will be a positive pulse (1). 1) $b_n = (+) \begin{cases} 0 \le t < t_{B/2} \\ b_n = (0) \end{cases} \begin{cases} t_{B/2} \le t < t_B \\ b_n = (0) \end{cases} \begin{cases} t_{B/2} \le t < t_B \end{cases}$
Dicode DI	NA	NA	tВ	$\label{eq:barrier} \begin{array}{ll} b_n=0 & 0 \leq t < t_B \\ \mbox{If } a_n=a_{n-1}, \ b_n=0 \ \ \ or \ else \ \ b_n=-b_{n-k} \\ \ \ with \ \ b_{n-k} \ \ \ corresponding \ to \ \ last \ \ a_{n-k} \neq a_{n-k-1} \end{array}$
Pair Selected Ternary (PST-L)	NA	NA	tΒ	$ \begin{array}{c cccc} Pair & Polarities \mbox{ for } C_n C_n + 1 \\ \hline a_n & a_{n+1} & + MODE & - MODE \\ \hline 1 & 1 & + - & + - \\ \hline 1 & 0 & + & 0 & - & 0 \\ \hline 0 & 1 & 0 & + & 0 & - \\ 0 & 0 & - & + & - & + \\ \hline \end{array} \begin{array}{c} b_n = C_n & \left\{ 0 \leq t < t_B \\ Change \mbox{ mode after transmission} \\ of \ a \ 10 \ or \ 01 \ a_n a_{n+1} \ pair. \end{array} \right. $
PST-RZ	NA	NA	^t B/2	Same pairing and C_nC_{n+1} $b_n = C_n \begin{cases} 0 \le t < t_{B/2} \\ b_n = (0) \end{cases}$ as above for PST-L. $b_n = (0) \end{cases}$
Modified PST-L (MPST-L)	NA	NA	^t в	$ \begin{array}{c cccc} Pair & Polarities for C_n C_{n+1} \\ \hline a_n & a_{n+1} & + MODE \\ \hline 1 & 1 & + & 0 & - \\ 1 & 0 & + & - & + & - \\ 0 & 1 & - & + & - & + \\ 0 & 0 & 0 & + & - & 0 \end{array} \end{array} \begin{array}{c} b_n = C_n & \left\{ 0 \leq t < t_B \\ \hline Change \ mode \ after \ transmission \\ of \ 00 \ or \ 11 \ a_n a_{n+1} \ pair. \end{array} \right. $
Modified PST-RZ (MPST-RZ)	NA	NA	^t B/2	Same pairing and C_nC_{n+1} table $b_n = C_n \begin{cases} 0 \le t \le t_{B/2} \\ t_{B/2} \le t \le t_B \end{cases}$ as above for MPST-L. $b_n = (0) \end{cases}$
Duobinary	a _n ≈ 0 a _n = 1	0 OA	tB	If $a_n = 0$ then $b_n = 0$. If $a_n = 1$, then the polarity of b_n depends on the polarity of b_{n-k} for last $a_{n-k} = 1$. If a_n and a_{n-k} are separated by an even number of zeros, then b_n b_{n-k} , if not, then $b_n = (-)b_{n-k}$.

Fig. 4-24. Multilevel Binary Pulse Coding Table

REFERENCES

- N.S. Nahman and R.L. Wigington; "Transient Analysis of Coaxial Cables Considering Skin Effect", <u>IRE Proceedings</u>, VOL 45, Feb. 1957, pp. 166-174.
- N.S. Nahman; "A Discussion on the Transient Analysis of Coaxial Cables Considering High Frequency Losses", I<u>RE</u> <u>Transactions on Circuit Theory</u>, VOL CT-9, No. 2, June 1962, pp. 144-152.
- N.S. Nahman and D.R. Holt; "Transient Analysis of Coaxial Cables Using the Skin Effect Approximation A + B√s", IEEE Transactions on Circuit Theory, VOL 19, No. 5, Sept. 1972, pp. 443-451.
- N.S. Nahman; "A Note on the Transition (Rise) Time Versus Line Length in Coaxial Cables", <u>IEEE Transactions on Circuit Theory</u> (correspondence), VOL CT-20, No. 2, Mar. 1973, pp. 165-167.
- R.E. Matick; <u>Transmission Lines for Digital and Com-</u> <u>munications Networks</u>, McGraw Hill, New York, 1969.
- G. Metzger and J.P. Vabre; <u>Transmission Lines with</u> Pulse Excitation, Academic Press, New York, 1969.
- J.T. Kolias; "Interconnection Delays", <u>Digital Design</u>, June 1973, pp. 40-45.
- F. Kirsten; "Pulse Response of Coaxial Cables", <u>Counting</u> <u>Handbook</u> (UCRL 3307 rev.), CC2-1, Lawrence Radiation Laboratory, Jan. 1959.
- P.C. Magnusson; "Transient Wavefronts on Lossy Transmission Lines—Effect of Source Resistance", <u>IEEE Transactions on Circuit Theory</u> (correspondence), VOL CT-15, Sept. 1968, pp. 290-292.
- G.L. Turin; "Steady-State and Transient Analysis of Lossy Coaxial Cables", <u>IRE Proceedings</u> (correspondence), VOL 45, June 1957, pp. 878-879.
- A.H.M. Arnold; "Proximity Effect in Solid and Hollow Round Conductors", <u>Journal IEE</u> (London), VOL 88, pt. II, August 1941, pp. 349-359.
- H.B Dwight; "Proximity Effect in Wires and Thin Tubes", <u>AIEE Transactions</u>, VOL 42, Sept. 1923, pp. 961-970.
- 13. <u>Standard Wire and Cable Co., Catalog</u>, Third Edition, Mar. 1971, pp. 62-74.

- W.R. Bennet; <u>Introduction to Signal Transmission</u>, McGraw Hill, New York, 1970.
- M. Hecht and A. Guida; "Delay Modulation", Proceedings of IEEE (letters), VOL 57, No. 1, July 1969; pp. 1314-1316.
- A.E. Whitehouse and L.E.M. Warburton; "Information Coding on Magnetic Drums and Discs", IEE (London), <u>Conference on Computer Science and Technology</u>, 1969, Pub. No. 55, pp. 237-245.
- J.S. Mayo; "Pulse Code Modulation", <u>Electro-Tech-</u> nology; Nov. 1962, pp. 88-98.
- <u>Transmission Systems for Communications</u>, Bell Telephone Labs., 4th ed., Feb. 1970, Chapter 27, pp 626-638.
- J.V. Martens and E. Brading; "30-Channel Pulse Code Modulation System", <u>ITT Electrical Communication</u>, VOL 48, No. 1 and 2, 1973, 11.69-78.
- R.C. Houts, T.A. Green; "A Comparative Analysis of Digital Baseband Signals", <u>Technical Report 146-102</u>, Communications Systems Group, Bureau of Engineering Research, University of Alabama, June 1972.
- R.C. Houts and T.A. Green; "Comparing Bandwidth Requirements for Binary Baseband Signals", <u>IEEE Trans-</u> actions on Communication Technology, (correspondence) VOL COM-21, No. 6, June 1973, pp. 776-781.
- 22. J.M. Sipress; "A New Class of Selected Ternary Pulse Transmission Plans for Digital Transmission Lines", IEEE Transactions on Communication Technology, VOL 13, No. 3, Sept. 1965, pp. 366-372.
- A. Lender; "The Duobinary Technique for High Speed Data Transmission", IEEE Transactions on Communication Electronics, No. 66, May 1963, pp 214-218.
- 24. A. Sekey; "An Analysis of the Duobinary Technique", <u>IEEE Transactions on Communication Technology</u>, VOL COM-14, No. 2, Apr. 1966, pp. 126-130.
- 25. G.S. Eager (et al); "Transmission Properties of Polyethylene Insulated Cables at Voice and Carrier Frequencies," <u>AIEE Transactions on Communications Electronics</u>, Nov. 1959, pp. 618-640.

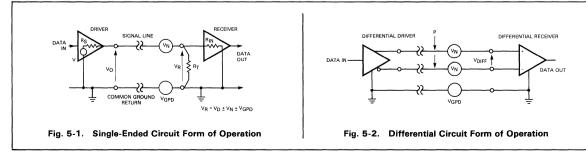
Section 5 FORMS OF OPERATION

This section discusses the basic forms and modes of operation of data transmission circuits.

- There are two primary forms of signal propagation on transmission lines: single-ended and differential. An examination is made in this chapter of the consequences of each form with respect to system complexity and noise immunity.
- The three primary modes of operation are discussed. The modes refer to the direction of data flow along the line and to whether or not the direction is reversible. For each combination of form and mode of operation, a particular line driver and line receiver is recommended and that specific applications figure is shown.
- An analysis is made of the three most often requested standardized interfaces: EIA RS-232-C, MIL-STD-188C (low level), and the IBM 360/370 Channel I/O interfaces.
- A brief guide is provided for selecting line drivers and line receivers, based on the information presented in the previous chapters. Also, some useful miscellaneous system guidelines are mentioned.

SINGLE-ENDED VS DIFFERENTIAL

There are two basic forms of operation for baseband data transmission circuits: single-ended and differential. The single-ended form uses a single conductor to carry the signal (signal line) with the signal voltage (or current) referenced to a signal return conductor which also may be the common return for other signal conductors. A representation of a single-ended circuit is shown in *Figure 5-1*.


The single-ended form is the simplest way to send data as it requires only one signal line per circuit. This simplicity, however, is often offset by the inability of this form to allow discrimination between a valid signal produced by the driver, and the sum of the driver signal plus externally induced noise signals.

External noise sources can be separated into two primary components: induced noise v_N , and ground potential difference v_{GPD} . Induced noise is usually caused by electrostatic (capacitive) and/or electromagnetic (mutually inductive) coupling between adjacent signal lines, power conductors, etc. The induced noise is referred to as *crosstalk*. A ground potential difference is caused by current flow through the finite resistance and inductance associated with the signal common return. The predominant component of v_{GPD} is usually 60 Hz (the ac mains frequency). Because the receiver

sees the sum of the driver output voltage v_O , the induced noise voltage v_N and the ground potential difference v_{GPD} at its input, there is no way the receiver can differentiate between the desired driver signal v_O and a possibly erroneous signal ($v_O + v_N + v_{GPD}$). The ratio of the signal voltage to the signal + noise voltage must be made sufficiently large to aid data recovery by the line receiver. This can be accomplished by several methods:

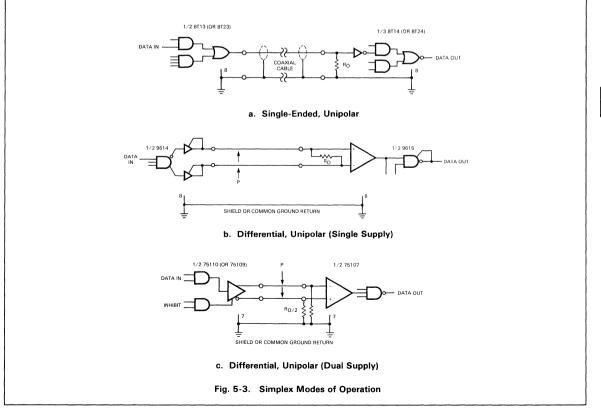
- Use shielded cable to reduce crosstalk between signal lines.
- Increase driver output signal levels to swamp out the noise signals.
- Reduce the ground circuit impedance to reduce the ground potential difference.
- Isolate the signal leads from power carrying conductors.
- Control slew rate of the driver to reduce capacitively coupled crosstalk between signal leads.
- Incorporate hysteresis in the line receiver to increase relative noise immunity.
- Limit line length to reduce circuit exposure to noise sources.
- Apply a combination of the above.

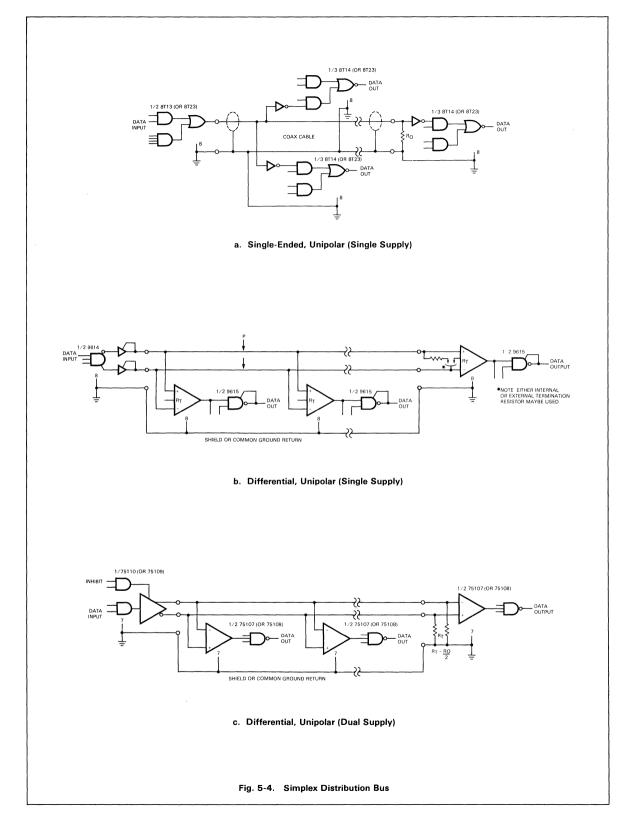
Each of the above "remedies" has its own disadvantages too. Using shielded cable (coax) is generally expensive; increasing driver signal levels may be costly in terms of system power particularly when the circuit is parallel terminated. Also- reducing ground circuit impedance may not be possible due to the magnitude and characteristics of the external noise sources, and at the very least, adds expense in wire costs. Isolating signal leads from each other and from power conductors may be possible in some systems, but does make interconnecting cables unwieldy. Driver slew rate control and/or hysteresis in the receiver can decrease crosstalk and increase relative dc noise immunity, respectively. They can, however, lead to severe signal quality degradation from bias effects. Both methods increase system delay, thus reducing system operating speed. Line length limiting may not be possible, as the system components may be quite separated from each other. In any event, applying one or more of the above remedies must be carefully considered in light of the individual system requirements. A solution to some of the problems inherent in the single-ended form of operation is offered by the differential form of operation (Figure 5-2).

As illustrated, the differential form of operation uses a differential driver (essentially two single-ended drivers with one driver always producing the complementary output signal level to the other driver), a twisted pair transmission line and a differential line receiver. The twisted pair line itself offers several features.

- Transverse magnetic fields, produced by external noise sources, induce currents in the line, which are essentially cancelled out by the alternating polarity of the magnetic circuits provided by adjacent twists of the line.
- In a line with perfect longitudinal balance, both wires in the pair are equally affected by electrostatically coupled noise. This results in a net common mode signal with respect to the ground return.
- Ground potential difference also appears as a net common mode signal to the line receiver.

The driver signal appears as a differential voltage to the line receiver, while the noise signals appear as a common mode signal. The two signals, therefore, can be discriminated by a line receiver with a sufficient common mode voltage operating range.

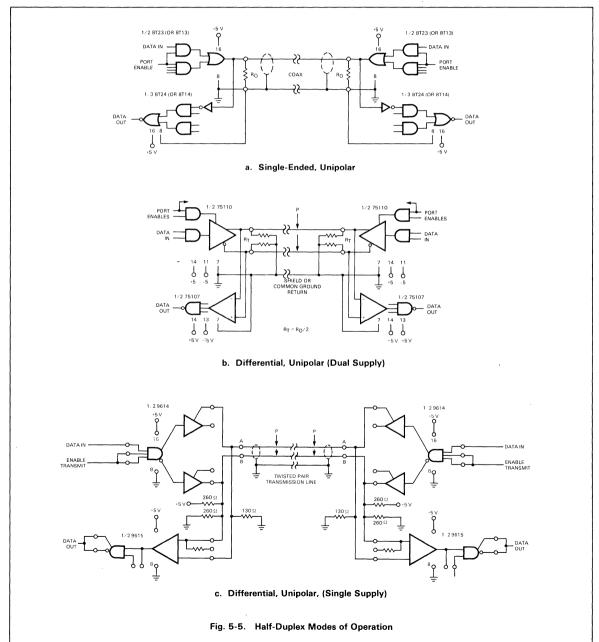

The use of parallel wire cable, *e.g.*, flat or ribbon cable, with differential operation provides approximately the same benefits as provided by a *twisted pair*, with the exception that induced currents caused by transverse magnetic fields do not cancel out. The flat cable presents a single magnetic circuit to the external noise source, instead of the many magnetic circuits of alternating polarity presented by a twisted pair. Thus, with flat cable, this single magnetic circuit allows a transverse magnetic field to induce currents producing a net common mode signal.

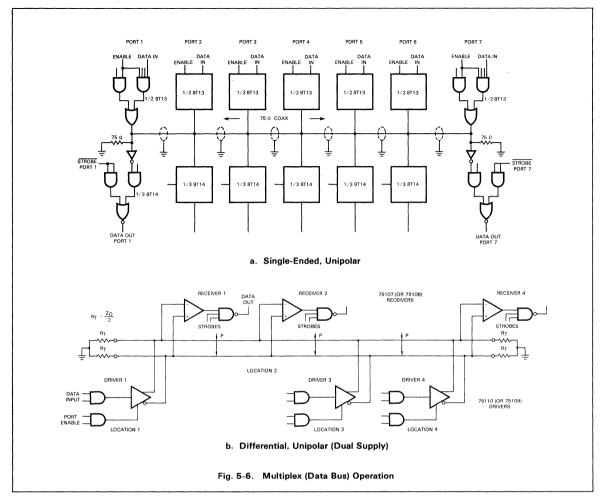

The choice of single-ended or differential operation depends to a large degree on the line length (exposure to external noise sources) and on the characteristics of the external noise sources. In high EMI environments, differential operation may provide the extra noise immunity necessary to make system operation feasible, thus offsetting added cost of implementing the differential data transmission circuit.

MODES OF OPERATION

The term modes of operation refers to the direction of data flow on the transmission circuit. The fundamental mode of operation is *simplex (Figure 5-3)*, which means unidirectional, non-reversible data flow from the line driver to the line receiver(s). If more than one receiver is used, then the mode can be called a *simplex distribution bus (Figure 5-4)*. The simplex mode of operation can be used with single-ended or differential forms, and with polar or unipolar drivers.

The *half-duplex* mode is a non-simultaneous, reversible data flow between two line driver/receiver pairs called *ports*. These ports are located at opposite ends of a transmission line (*Figure 5-5*). It is important to provide parallel line terminations at each end of the line to suppress reflections, otherwise system noise immunity and even system speed may suffer. The type of parallel terminations to use is determined by the


line driver's characteristics. *Figure 5-5* shows three sets of IC drivers and receivers connected with their respective, proper temination networks. Half-duplex operation may also use either single-ended or differential form with polar or unipolar drivers.


Full-Duplex operation is simultaneous, two-way data flow between two ports. It is not usually feasible in baseband signalling, although some bridge-type circuitry has been used¹ The difficulty in baseband full-duplex operation is the separation of the signal levels produced by the two drivers operating on the loop simultaneously. However, non-baseband,

full-duplex operation using frequency division multiplexing (FDM) techniques is widely used. The most common example of the FDM full-duplex operation, the 103 type modem, uses frequency shift keying (FSK) and two frequency bands to keep the data paths separate.

The logical extension to half-duplex operation is *multiplex* sometimes called a *data bus* or *party line (Figure 5-6)*. Multiplex operation is non-simultaneous data flow among three or more ports connected to the same physical transmission line. Like simplex and half-duplex modes, multiplex operation may be used in single-ended or differential form with polar or unipolar drivers.

10

The primary advantage of multiplex operation over simplex operation is reduction of wire costs—one physical transmission line can serve where several were once required. The disadvantages of multiplex mode include increased complexity of driver circuits to include an "off" state, and the added logic required to implement bus protocol or "handshaking".

Particularly, when multiplex operation is desired, consideration must be given to the following areas:

- The protocol or *handshaking* required for a particular port on the bus to send data must be designed. The protocol sequence usually involves the following operations.
 - 1) The port must signal a desire to use the bus (interrupt).
 - Bus controller must acknowledge interrupt and send go ahead command.
 - Port assumes control of bus and sends data, perhaps preceded by the code to indicate the recipients(s) of the following data.
 - 4) Receiving port(s) must acknowledge receipt of data.

 Transmitting port receives the acknowledgement, and releases control of the bus so that other ports may pass their data.

The overall bus operation is either polled or asynchronous. In polled operation, a central bus controller addresses each port in turn to ask if any data is waiting to be sent. If the addressed port has no traffic, it signals *no data* and the controller inquires at the next port. If the port has some data, then the controller gives a *go ahead* to the port; data is sent, and the controller then inquires at the next port.

In asynchronous operation, any port having data essentially "holds up its hand" and waits for a go-ahead signal to ripple down the series enabling logic. The priority for a particular port is determined by the ports proximity to the master control port which sends a go-ahead down the enable logic chain at regular time intervals. This scheme is well suited to busorganized minicomputers. The Digital Equipment Corporation's Unibus® and Omnibus® architectures are excellent examples.

 The effect of powered-down drivers and receivers on normal bus operation must also be considered. Integrated circuit drivers and receivers contain parasitic diodes that are normally reverse biased when the power supply is on. Unless special design techniques are used, these diodes can become forward-biased when the unit is powereddown causing the bus to malfunction.

- The protocol timing must include sufficient time delays to allow for the different port-to-port signal propagation delays.
- Both physical ends of the transmission line comprising a channel for the bus must be terminated to prevent spurious signal levels due to reflections.
- Stubs or taps from the main transmission line should be kept to a minimum length. A *daisy chain* wiring method is preferable to a *tap-off* method. If stubs must be used, then to cause the least perturbations on the line, the stub length should be controlled such that the propagation delay of the stub is less than 1/8 of the signal rise or fall time at the stub-to-line connection point.
- If a 3-state driver system is used (logic Zero, logic One and off or driver in high impedance state), some means must be provided to detect the difference between a driver sending data and the all-drivers-off condition. In the 2state bus system, this problem does not occur because a logic Zero (usually a HIGH) indicates either a logic Zero or that no port is currently sending. A logic One (usually a LOW) on a 2-state system then indicates a port is transmitting a logic One and the receiver should interpret it as such.
- The data format must also be considered:

Parallel operation is fast but expensive, since it requires one transmission line and the associated interface for every bit of the word (or byte) transmitted in parallel.

Serial operation is slower, but requires only one transmission line and interface per port. This saving may, however, be partially offset by the need for a parallel-to-serial converter at the transmitting site, and a serial-to-parallel converter at the receiving site.

The parallel structure is commonly used for rapid exchange of data over short distances; *e.g.*, within a computer or between a computer and peripherals. The serial structure is used for communications over long distances, as between a terminal and its controller.

 A final consideration concerns polled operation of a multiplex system. The amount of time necessary to address and receive acknowledgement from a port must be weighed against the volume of data the ports normally send, and the total number of ports on the bus. If there is a large number of ports on the bus, most of the time might be used by the polling operation with very little time devoted to actual exchange of information. A large number of ports combined with a high relative volume of traffic expected per port can lead to data backing up at each port waiting to be sent, and an overall reduction in information throughout. In a real time system where fast response is essential, serious consideration should be given to splitting up a single large bus into several satellite busses, each with its own polling controller and protocol with respect to the central bus. Queuing theory can be used to estimate the throughput on a bus structure when many variables, including the number of ports, the mean

transaction length, and the number of transactions per port per unit time, are known⁷.

STANDARDIZED INTERFACES

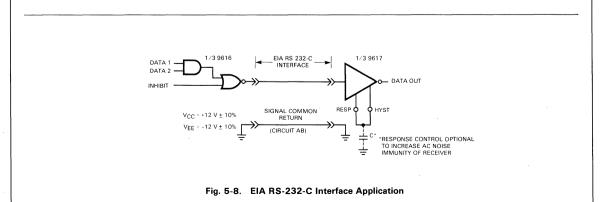
There are two main ways the interface electrical characteristics become standardized. The first, and probably most common, is informal adoption via proliferation of devices having the specified electrical characteristics. Excellent examples of this informal method are provided by TTL and ECL logic levels, and loading rules. The input/output electrical characteristics of these two logic families have become "standards" because many different manufacturers make devices which can be easily interconnected.

Informal standards may also be born when an equipment manufacturer announces a product that other competing manufacturers wish to directly connect to their respective products. If the original manufacturer of the product has a large share of the market place (and a large number of competitors) an "instant standard" can easily arise. A good example of this is the IBM 360/370 I/O interface (channel to control unit)², which is standardized primarily because. first. IBM has a large share of the computer market place; and second, a large number of manufacturers are interested in selling "plug compatible" peripheral devices. Thus, one company's electrical interface may become an informal standard in a very short time. Likewise, minicomputer manufacturers, such as DEC, may have their in-house interface characteristics for their Unibus® and Omnibus® "standardized" via the wide application of their products, and the proliferation of competitive add-on manufacturers.

Formal interface standards are usually issued either by collective associations of manufacturers (EIA), U.S. Government and military (FIPS, DCA), international organizations (CCITT, ISO), or other interested organizations (IEEE, ANSI). These standards usually arise when two different pieces of equipment that may be built by two or more different manufacturers must interface, as in data terminals and data modems, or when a government organization is setting up a system which requires interface uniformity. Adherence to the standards is usually voluntary. However, if a manufacturer wishes to sell products in the application area encompassed by the standard, it behooves him to comply if at all feasible. In the past, formal standards have usually adopted the electrical characteristics of a pre-existing interface, especially if the usage of such electrical characteristics was widespread at the time the standard was drafted. The resultant standard is then mostly a blessing given to one set of interface specifications, rather than an optimal, more general solution to data communications interface problems. Lately, both the national and international standards organizations have been seeking greater intercourse with one another, with an effort to produce fewer different electrical interface standards, and ascertain the optimum technical solution to satisfy the greatest number of application requirements. Interoperability and compatibility with pre-existing equipment is a primary requirement in any new standard, consequently much work is devoted to this task.

The majority of requests for standardized interface devices are currently for EIA RS232-C (and CCITT V.24), MIL-STD-188C (low level), and IBM 360/370 I/O. The EIA interface³ and CCITT V.24⁴ are intended for use between data terminal equipment (DTE) and data communications equipment (DCE). The two standards have essentially the same electrical specifications, but differ in signal lead nomenclature. Both standards also specify the protocol to be used between the DTE and DCE. The interface is a simplex, single-ended, polar, unterminated type with line length and slew rate limiting used for control of reflection effects. The implied maximum cable length is 50 feet, and all signals are referenced to a common signal return lead. The maximum modulation rate on the interface is 20 kbaud. The primary electrical characteristics of the interfaces are listed in *Figure 5-7*.

Fairchild manufactures one triple driver (9616) and two receivers (9617 and 9627) to meet the requirements for this application. The 9616 triple EIA/MIL line driver has two particularly valuable features making it easier to use than other currently available EIA interface drivers. First, the 9616 has internal slew rate limiting which eliminates the need for an external capacitor for each driver. Second, the logic function performed by the 9616 is AND-OR-INVERT (AOI), instead of the usual NAND structure. The AOI still allows the "SPACE-ORing" of two data signals as provided by the NAND type drivers, while activation of the NOR (Inhibit) input to the 9616 forces the driver to a MARK state (called MARK Hold) regardless of the logic states of the data inputs. The latter feature of the 9616 enables the protocol sequence to easily be initiated or terminated without requiring the same function. More discussion on EIA RS232-C and the 9616/9617 devices is presented in Fairchild Application Note 320. The usage of the 9616/9617 devices as an RS232-C interface is shown in *Figure 5-8*.


Characteristic		EIA RS-232-C Limits		Units	Section in	Notes	MIL-STE (low leve		Units	Section in	Notes
	MIN MAX Standa		Standard		MIN	MAX		Standard			
Driver output voltage Open circuit	V _{OH} V _{OL}	-25	25	> >	2.6		5 -7	7 -5	v v	7.2.2.1	1
Driver output voltage Loaded output	V _{OH} V _{OL}	5 -15	15 _5	v v	2.6	3 kΩ≤R _L ≤7 kΩ					
Driver output resistance Power on Power off	R _O R _O		300		2.5	-2 V≤V ₀ ≤2 V		100		1.2.1.2	I _{OUT} ≤10mA
Driver output short circuit current		-500	+500	mA	2.6		-100	+100	mA	7.2.1.2	
Driver output slew rate All interchange circu Control circuits Rate and timing circu	its	6 6 4	30	V∕us V∕ms V∕ms %UI	2.7(5) 2.7(3) 2.7(4) 2.7(4)		5	15	%UI	7.2.1.3	2
Receiver input resistan	ce R _{IN}	3	7		2.4	3 V≤V _{IN} ≤25 V	6			7.2.1.4	mod rate ≤200 kbaud
Receiver open circuit input bias voltage		-2	+2	v	2.4						
Receiver input thresho Output = MARK Output = SPACE	d	-3	3	v	2.3		-100	+100	μΑ	7.2.1.6	3

NOTES:

1. Ripple \leq 0.5%, V_{OH}^{}, V_{OL}^{} matched to within 10% of each other.

Waveshaping required on driver output such that the signal rise or fall time is 5 to 15% of the unit interval at the applicable modulation rate (7.2.1.3).
 Balance between marking and spacing (threshold) currents actually required shall be within 10% of each other (7.2.1.6).

Fig. 5-7. Electrical Characteristics of EIA RS-232-C and MIL-STD-188C (Low Level)

MIL-STD-188C low level interface⁵ devices are often requested in conjunction with RS232-C capability. Fortunately, the two standards have overlapping specifications (See *Figure 5-*7) so that one driver designed to satisfy the electrical requirements in MIL-STD-188C also satisfies the electrical requirements in RS232-C. The notable exception is the 5 to 15% driver signal waveshaping requirement in 188C. The 9616 was designed with both specifications in mind, so only an external capacitor on the 9616 output (as shown in *Figure 5-9*) is needed to perform the required waveshaping for MIL-STD-188C at the desired modulation rate.

The electrical characteristics for the receiver in both standards are somewhat different (see *Figure 5-7*) in input resistance and threshold levels, but both standards are satisfied by the 9627 dual EIA/MIL interface receiver. Option strapping on the 9627 allows the user to choose the receiver input resistance (either 3 to 7 k Ω or >6 k Ω) and threshold levels. The 10% threshold matching requirement MIL-STD-188C can be met with the 9627 by a trimming network as shown in *Figure 5-9*.

Where EIA RS232C and MIL-STD-188C (low level) are primarily intended for use on DTE-DCE interfaces, and are formal standards, the IBM 360/370 I/O interface is probably the best known example of an informal standard interface. The I/O interface² is the communications link between a channel in the System 360 or System 370 computer and the various I/O control units. The interface specification delineates electrical characteristics, information formats, and control sequences to pass information between the channel and the peripheral control unit. The primary electrical characteristics are shown in Figure 5-10. The interface is a multiplex, single-ended, unipolar variety designed to operate with up to 10 ports on a double terminated 95 transmission line of either coax or tri-lead⁶ cable. The 8T23 and 8T24 devices satisfy the requirements in the IBM document² for bus drivers and bus receivers respectively. Their use is shown in Figure 5-11.

SELECTING LINE DRIVERS AND LINE RECEIVERS

Selecting a line driver-transmission line-line receiver to meet a particular system criterion is a much easier task

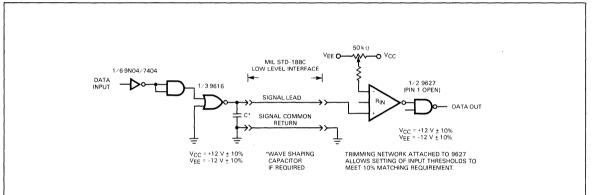
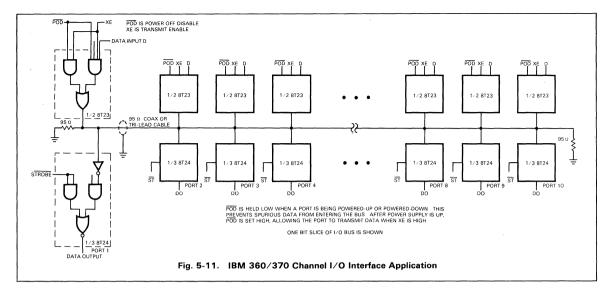


Fig. 5-9. MIL-STD-188C Low Level Interface Application

Characteristic		MIN	MAX	Units	Conditions	Notes
Driver output voltage	Zero state		0.15	v	l _{OUT} = 240 μA	
	One state	3.11	5.85 7.0	V V V	I _{OUT} = -59.3 mA I _{OUT} = -30 μA I _{OUT} = -123 mA	1 2 3
Receiver input thresholds	V _{IH} V _{IL}	0.7	1.7	v v		
Receiver input current	I _{IH} I _{IL}	-0.24	0.42	mA mA	V _{IN} = 3.11 V V _{IN} = 0.15 V	
Receiver input resistance	R _{IN}	4	20	kΩ		
Receiver input operating Voltage range		-0.15 -0.15	76	v v	power on in receiver power off in receiver	

Neither drivers nor receivers will cause spurious noise on the line during a power-up or power-down sequence.


NOTES:

1. Current flow out of driver (2 terminators, 10 receivers).

2. Current flow out of driver (one receiver, no terminator).

3. Current flow out of driver during over-voltage interval to driver.

Fig. 5-10. Electrical Characteristics for IBM System 360/370 Channel I/O Interface²

than initially choosing the target system characteristics. The former is a relatively simple process of comparing the device characteristics to the design goals. The latter is a difficult matter because of the large number of variables involved. Designing from scratch, however, is not an impossible task. The primary choices to be made are as follows:

- Simplex or multiplex operation of the lines.
- Single-ended or differential operation.
- Pulse code.
- Signal quality vs line length trade-off for particular pulse codes selected.
- Line termination method.

With these choices in mind, *Figure 5-12* was constructed to recommend the optimum Fairchild devices for the particular applications constraints.

SYSTEMS CONSIDERATIONS

The following points should be considered when using transmission line interface circuitry.

- The most limiting factor to data rate with long lines (> 50 feet) is usually the rise and fall time of the cable. The use of the eye pattern allows easy measurement of signal quality (amount of time jitter).
- The total number of ports on a multiplex system should be restricted so that the parallel combination of the input impedance of receivers and the output impedances of disabled drivers is greater than the characteristic resistance of the transmission line.
- Ground returns are necessary for proper operation of integrated circuit line drivers and receivers. This may be ac-

complished by connecting the shield of the line to the ground pins of ICs connected to the line.

- Data rates above 10 Mbaud will usually require ECL to be used instead of TTL types for the drivers and receivers, because of the 20 to 50 ns propagation delays in the TTL compatible devices.
- Liberal use of .01 to .1 µF capacitors to decouple the power supplies feeding line drivers and receivers is recommended. One capacitor per power supply for every two to four devices is usually sufficient.

REFERENCES

- R. Gaiser; "Two-Wire DC Baseband System for Two-Way Simultaneous Data Transmission at High Speeds", <u>Con-</u><u>ference Record of 1970 International Conference on</u> <u>Communications</u>; paper 70-CP-283-COM, pp. 16-33 to 16-41.
- 2. IBM System 360 and System 370 I/O Interface Channel to Control Unit Original Equipment Manufacturers Information; IBM document GA22-6974-1, July 1972.
- 3. EIA RS-232-C; Interface Between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange; Electronic Industries Association, August 1969.
- <u>CCITT, White Book</u>, Volume VIII; International Telecommunication Union, 1969, recommendation V.24 (revised and reissued as V.28).
- 5. <u>MIL-STD-188C</u>, Department of Defense; Low Level Interface, section 7.2, November 1969.
- J.T. Kolias; "TRI-LEAD: A New Interconnection Scheme for Computers", <u>Electronic Packaging and Production</u>, February 1972, pp. 80-90.
- J. Martin; <u>Systems Analysis for Data Transmission</u>, Prentice-Hall, New York, 1972.

Standard

Interface	Recomr Driver/1		Comments	
EIA RS 232-C	9616, 1488, 75150	9617, 1489, 75154	0 to 20,000 bps. maximum cable length implied in standard is 50'.	5.8
MIL STD 188C	9616	9627	Use capacitor from 9616 output to ground to provide wave-shaping at applicable modulation rate.	5-9
IBM 360 I/O	8T23, 75123	8T24, 75124	Recommended maximum of 10 ports on bus.	5-11

Single-Ended Simplex

Line Length (feet)	Maximum Data Rate (NRZ Data)	Line* Type and Z _O		commended ver/Receiver	Comments	Fig.
0 - 2'	20M bps	$ \begin{bmatrix} SW \\ TP \\ COAX \end{bmatrix} > 90 \Omega $	TTL Gate	TTL Gate	Unterminated line. Obey loading rules.	
2 - 20'	10M bps	$\begin{bmatrix} TP \\ TPS \\ COAX \end{bmatrix} > 90 \Omega$	9009 or 7440	TTL Gate	Use parallel terminated line with more than one receiver. Use series terminated line with only one receiver.	5-1
		COAX ≥50 Ω	95140	TTL Gate	Use parallel terminated line with more than one receiver. Use series terminated line with only one receiver.	5-1
20 - 500'	10M bps@ 20' 0.5M bps@ 500'	$\begin{bmatrix} TPS \\ COAX \end{bmatrix} \ge 50 \ \Omega$	8T13,75121	8T14,75122	Use parallel terminated line.	5-3
> 500'		_			Not recommended. Use balanced differen- tial form to gain system noise immunity.	

Single-Ended Multiplex

0 - 2'	10M bps	SW	Open Collec- tor TTL	TTL Gate	Use wired-AND with low value ($<1k\Omega$) collector pull up resistor. Obey loading rules.	
2 - 20'	10M bps	TP COAX]>75 Ω	8T13,75121 or 8T23,75123	8T14,75122 or 8T24,75124	Single +5 V supply. Use parallel termina- tion at both ends of bus.	5-6d
20 - 500'	10M bps@20' 0.5M bps@500'	COAX >95 Ω	8T23,75123	8T24,75124	Use parallel termination at both ends of bus. Single +5 V supply required.	5-11 5-11
> 500'					Not recommended. Use balanced differen- tial form to gain system noise immunity.	• • •

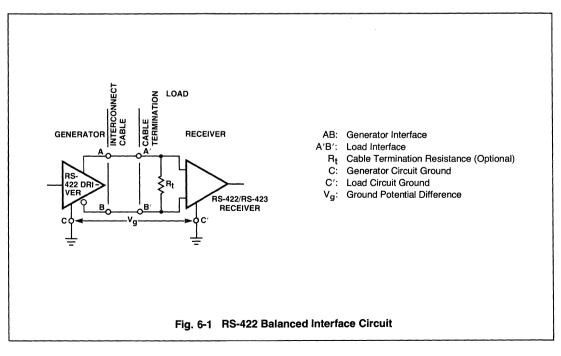
Differential Simplex

0 - 50'	10M bps	TP TPS]	> 50 Ω > 80 Ω	9612 9614	9613/15 9613/15		5-3b 5-4b
				75110A/ 112	75107/ 108	Split parallel termination. +5 and -5 V supplies required.	5-3c
50 - 4,000'	Use signal quality graph.	TPS	> 50 Ω > 80 Ω	9612 9614	9613/15 9613/15		5-3b 5-4b
				75110A/ 112	75107⁄ 108	Use split parallel termination. +5 V and -5 V supplies required.	5-3c
> 4,000'						Cable loss exceeds 6 dBV. Perhaps non- baseband techniques should be used, (i.e., MODEMS).	

Differential Multiplex

and some some in some since the second se	_						
0 - 50′	15M bps	TP TPS	> 90 Ω	75110A/ 112		Use split parallel termination at each end of line. Requires +5 V and -5 V supplies.	5-6b
		TP TPS	>90 Ω	9614	9615	Connect as shown in half duplex differential circuit. Requires single +5 V supply.	5-5c
50 - 4,000'	Use signal quality graph.	TPS	>90 Ω	75110A⁄ 112	75107/ 108	Use split parallel termination at each end of line. Requires +5 and –5 V supplies.	5-6b
> 4,000'						Cable loss exceeds 6 db V. Perhaps non- baseband techniques should be used, (i.e., MODEMS).	

*SW — Single Wire over Ground Connection TP — Twisted Pair TPS — Shielded Twisted Pair COAX — Coaxial Cable


Section 6

SATISFYING EIA STANDARDS RS-422 AND RS-423

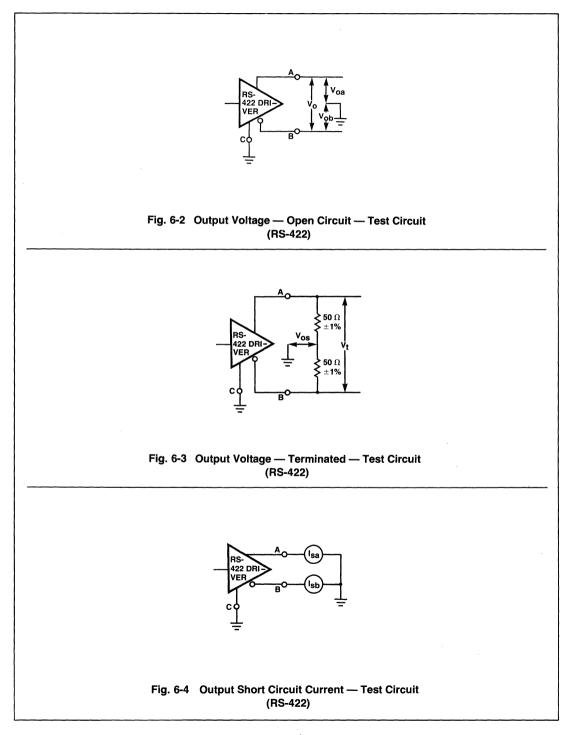
The Electronic Industries Association, EIA, has this year released new standards for binary digital interfaces between Data Communication Equipment (modems), and Data Terminal Equipment (CRT Terminals, teletypewriters, etc.). These standards are RS-422, Electrical Characteristics of Balanced Voltage Digital Interface Circuits, and RS-423, Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits. RS-423 replaces the electrical section of RS-232-C, the existing EIA standard, and expands its capabilities to include operations at higher data rates and over greater distances. RS-422 incorporates a technology not covered by RS-232-C, defining a balanced, differential, high speed interface. The following table provides a brief comparison of the recommended maximums for these standards.

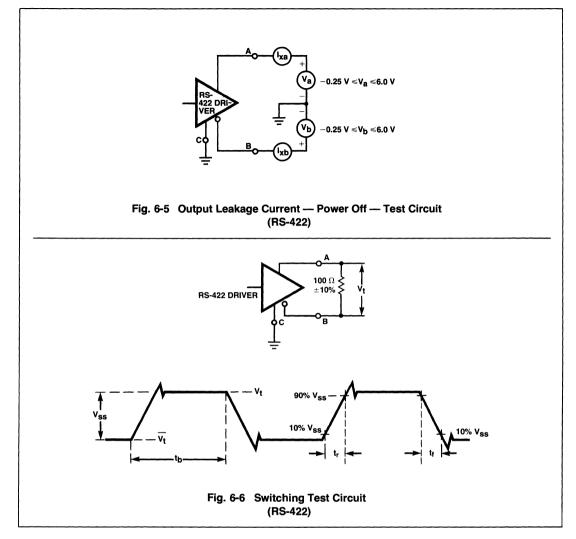
EIA Standard	Cable Length (Recommended Maximum)	Data Rate (Recommended Maximum)
RS-232-C	50 ft.	20 Kbps
RS-423	4000 ft. @ 1 Kbps	100 Kbps @ 40 ft.
RS-422	4000 ft. @ 100 Kbps	10 Mbps @ 40 ft.

Development of RS-422 and RS-423 was initiated during 1973 when the existing standard, RS-232-C was due for review. (EIA reviews its standards on a five year cycle). At this time it was décided to bring out a new standard that would eliminate the deficiencies of RS-232-C and to reconcile it with the standards CCITT V. 24 (now revised to V. 28) and MIL-STD-188C with the hope that one standard or very similar standards would cover the military, international and commercial areas. In addition, it was intended that the resulting standard should be readily implemented with integrated circuitry and should facilitate an orderly transition from existing RS-232-C equipment without forcing obsolescence or expensive retrofits. At this time the structure of standards at EIA was evolving such that three separate standards, electrical, functional and mechanical, together would replace RS-232-C.

There are several areas for improvement in the electrical section of RS-232-C. It has been felt that the driver and receiver circuits as well as the interchange circuit, in general, were underspecified. More specifically, the voltage levels of the interchange signals are larger than necessary or desirable at \pm 15 V. The maximum cable length was too short at 50 feet, the data rate was too low at 20 kilobits-persecond, and no provision for multiple receivers was provided. Additionally, the low common mode operating range and susceptibility to crosstalk made some applications risky. The interconnecting cable, itself, was only addressed in terms of length and capacitance.

The influence of RS-422 and RS-423 has been pervasive. The proposed Federal Standards 1020 and 1030 accept RS-422 and RS-423, respectively, without change. The proposed MIL-STD-188-114 incorporates RS-422 and RS-423 with only a minor addition. These standards are also being utilized by ANSI, the Public Data Networks Interface, and at the international level they are included in CCITT provisional recommendations X.26 (unbalanced) and X.27 (balanced).


RS-422 Driver (Balanced)


RS-422 allows either a unipolar or a polar driver. The unipolar approach offers a potentially cheaper system as its operation requires only a single power supply but at the expense of introducing a common mode component to the signal. The polar approach offers the potential of minimizing any common mode signal, but requires two power supplies for operation.

The generator or driver specified in RS-422 is a circuit with low impedance, balanced, voltage source outputs that provide a differential signal voltage in the range of 2 to 6 volts. (Refer to *Figure 6-1*). The two

RS-422 DRIVER CHARACTERISTICS			LIMITS	
		MIN	MAX	UNITS
Output Voltage - Open Circuit: Vo, Voa, Vob				
(See Figure 6-2)	Vo	-6.0	6.0	v
	Voa	-6.0	6.0	V
	Vob	-6.0	6.0	V
Output Voltage — Terminated: Vt	1.41			
(See Figure 6-3)	Vt	2.0		V
		0.5 Vo		V
Output Voltage Matching Error: (See Figure 6-3)		0.4	0.4	v
(Vt is the output voltage of the	$(Vt - \overline{Vt})$	-0.4	0.4	v
opposite binary state.)				
Output Offset Voltage: Vos				
(See Figure 6-3)	Vos	-3.0	3.0	V
Output Offset Voltage Matching Error:				
(See Figure 6-3)	(Vos - Vos)	-0.4	0.4	V
(Vos is the output offset voltage of the opposite binary state.)				
Output Short Circuit Current: Isa, Isb				
(See Figure 6-4)	Isa	-150	150	mA
	lsb	-150	150	mA
Output Leakage Current - Power Off: Ixa, Ixb				
(See Figure 6-5)	Ixa	-100	100	μA
(−0.25 V ≤ Vx ≤ 6.0 V)	Ixb	-100	100	μΑ
Transition Time — Differential: tr, tf				
(See Figure 6-6)	t _b < 200 ns t _r		20	ns
	t _f		20	ns
	t _b ≥ 200 ns t _r		0.1 t _b	ns ns
	tf	L	0.1 t _b	

signal states are defined as the MARK or OFF state, where terminal A is negative with respect to terminal B, and the SPACE or ON state, where terminal A is positive with respect to terminal B. A summary of the specifications is contained in the preceeding table.

In addition, the standard requires that the differential signal change monotonically in the transition region, defined as between the 10% and 90% points of the signal change, that any overshoot or undershoot be less than 10% of V_{SS} , and at no time outside of the transition region shall the instantaneous magnitude of V_t be greater than 6 volts or be less than 2 volts.

10

The fault conditions that a driver must withstand without damage, under either a power-on or power-off condition are:

- a. Driver output open circuit
- b. Differential output short circuit
- c. Output short circuit to ground
- d. Output short circuit to any other lead included in RS-422 and RS-423.

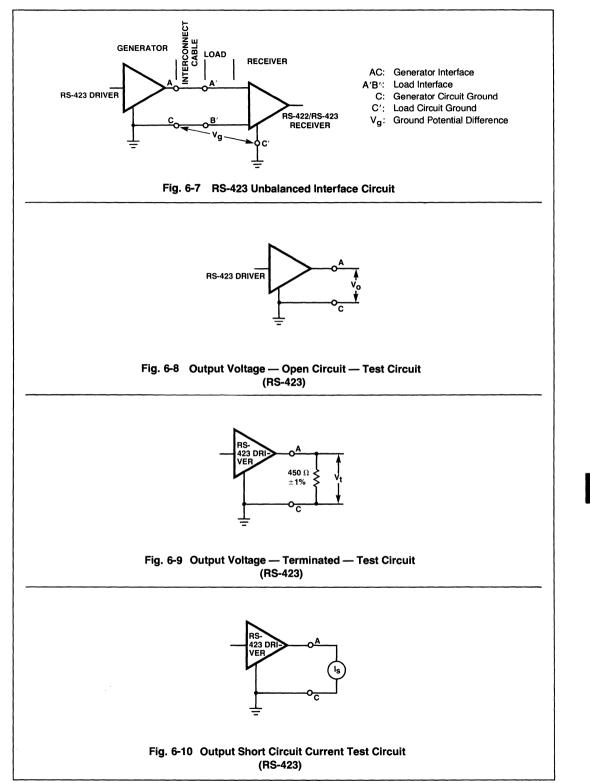
These fault conditions imply that the driver must withstand a 150 milliampere source with a voltage range of ± 10 volts (signal plus common mode) being connected to its outputs.

The terminated output requirement ($|V_t| \ge 0.5 |V_0|$) limits the combined output impedance of the differential outputs to less than 100 ohms. Variations in the total output impedance between output states are also limited. The output voltage matching specification ($|V_t| - |V_t| \le 0.4$ V) restricts the change to

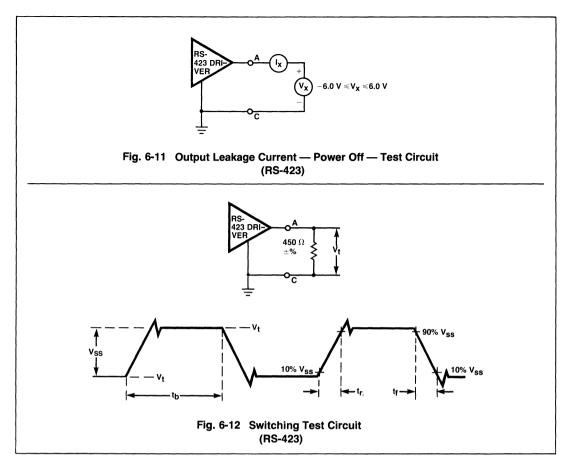
less than 20 ohms in the case of the open circuit output voltage magnitudes being equal. An output offset requirement ($|V_{OS}| \le 3.0$ V) limits the amount of common mode signal the driver can generate. This requirement in conjunction with the offset matching specification further limits any mismatch between the voltage levels or impedances of the two outputs. The output current range has a specified maximum ($|I_S| \le 150$ mA) and an implied minimum of 20 milliamperes required by the combination of the minimum signal (2.0 V) into a 100 ohm load.

The monotonicity requirement places a unique restriction on differential output circuits. It should be noted that unless the transitions of the individual outputs overlap, a flat or zero-slope region develops in the differential transition. While a zero-slope region, in itself, may not violate the monotonicity requirement, any ringing or system noise occurring at this point in time could. This requirement can be satisfied if the individual transition times are kept longer than the device propagation delays; but, this eventually compromises the system's maximum data rate. Closely matched propagation delays would permit high speed operation while insuring a monotonic differential signal.

RS-423 Driver (Unbalanced)


The generator or driver specified in RS-423 is a circuit with a low impedance, unbalanced, voltage source output that provides a signal of 4 to 6 V in magnitude. (Refer to *Figure 6-7*). The two signal states are defined as the MARK or OFF state when the A terminal of the driver is negative with respect to terminal C and the SPACE or ON state when the A terminal is positive with respect to terminal C. A summary of specifications is contained in the following table.

			LIMITS		
RS-423 DRIVER CHARACTERISTICS			MIN	MAX	UNITS
Output Voltage — Open Circuit: Vo					
(See Figure 6-8)	Vo(spa	ace)	4.0	6.0	V
	Vo(m	ark)	-6.0	-4.0	V
Output Voltage — Terminated: Vt					
(See Figure 6-9)		Vt	4.0		V
			0.9 Vo		V
Output Short Circuit Current: Is					
(See Figure 6-10)		ls	- 150	150	mA
Output Leakage Current — Power Off: Ix					
(See Figure 6-11)		lx	-100	100	μA
$(-6.0 \text{ V} \leq \text{Vx} \leq 6.0 \text{ V})$					
Transition Times: tr, tf					
(See Figure 6-12)	t _b > 1.0 ms	tr	100	300	μs
		tf	100	300	μs
	t _b ≤ 1.0 ms	tr	0.1 t _b	0.3 t _b	μs
		tf	0.1 t _b	0.3 t _b	μs

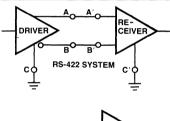

In addition, the standard requires that the signal change monotonically in the transition region, defined as the 10% to 90% portion of the signal change, that any overshoot or undershoot be less than 10% of the signal amplitude, and that at no time, after the transition region is traversed, shall the instantaneous magnitude of V_{SS} be greater than 6 V or less than 4 V.

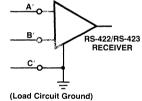
The fault conditions this driver must withstand in either a power-on or power-off condition are:

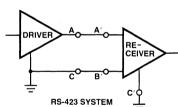
- a. Driver output open circuit
- b. Output short circuit to ground
- c. Output short circuit to signal return
- d. Output short circuit to any other lead included in RS-422 or RS-423

10

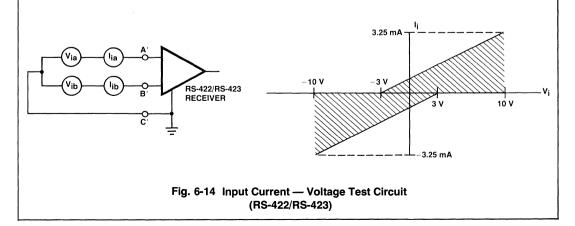
As with the balanced driver, this implies that the unbalanced driver must withstand a 150 mA source with a voltage range of \pm 10 V being connected to its output.


The unbalanced driver output impedance is established by the terminated output specification ($|V_t| > 0.9 V_0$). Since there are no output matching or offset requirements, there are no restrictions on output impedance or voltage levels matching between output states. If, however, the driver requires an external waveshaping method which incorporates an external resistor, then a mismatch between states in the output impedance could be of consequence. The output current range has a specified maximum ($|I_s| \leq 150 \text{ mA}$) and an implied minimum of 7.8 milliamperes required by the combination of a minimum signal (4.0 V) into a 450 Ω load.


Since this is not a differential output device, the monotonicity requirements are not as complex as in the case of the balanced driver. However, concern must be given to the amount of crossover distortion permitted during transitions.


RS-422/RS-423 Receiver

The standards RS-422 and RS-423 are written to have identical receiver specifications such that a single device design could satisfy both standards. Such a receiver would operate in the balanced system (RS-422) between the differential outputs of the driver and in the unbalanced system (RS-423) between the driver output and the signal common return. The receiver specified in RS-422 and RS-423 is a differential circuit with balanced input impedance larger than 4 kilohms and a differential input threshold magnitude less than 200 mV over a \pm 7 V common mode range. A summary of the specifications is contained in the following table.


			LIMITS	
RS-422/RS-423 RECEIVER CHARACTERISTICS		MIN	MAX	UNITS
Input Current: lia, lib (See Figure 6-14) (−10 V ≤Via ≤10 V; Vib=0) (−10 V ≤Vib ≤10 V; Via=0) (lia and lib must be in the shaded portion of the gr	lia lib aph.)	(See Fig	ure 6-14)	mA mA
Differential Input Voltage — Threshold: Vth (See Figure 6-15) (−7.0 V ≤ Vcm ≤7.0 V)	Vth	-200	200	mV
Differential Input Voltage — Threshold Balance: (See Figure 6-16) (−7.0 V ≤Vcm ≤7.0 V)	Vth Bal Vth Bal	-400	400	mV
Differential Input Voltage — Operating Range: (See Figure 6-17)	Vdiff Vdiff	-6.0	6.0	v
Differential Input Voltage — Maximum: (See Figure 6-17)	Vdiff max Vdiff max	-12.0	12.0	v
Input Voltage — Maximum: (See Figure 6-17)	Via Vib	-10 -10	10 10	v v

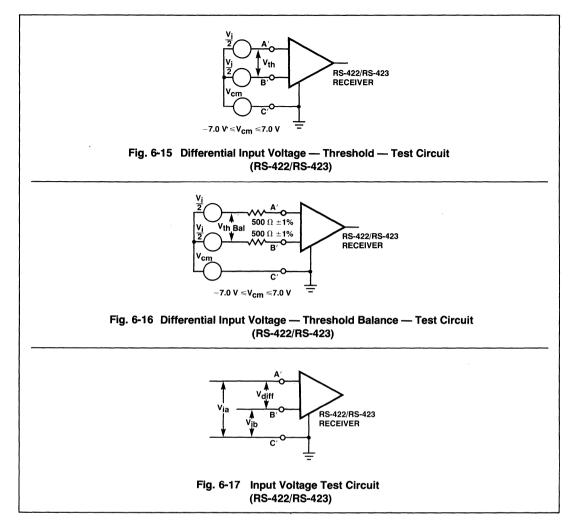
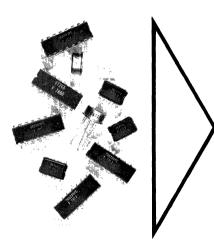


Fig. 6-13 RS-422/RS-423 Receiver


The graph used to specify the input current voltage characteristic of the receiver limits the input resistance to be greater than 4 kilohms when there exists a \pm 3 V bias in the driver. Permitting an internal bias allows receivers to be designed that require only a single power supply for operation. The input balance requirement restricts not only the input threshold accuracy of the receiver, but also any mismatch of its input resistance.

New Products

Efforts are ongoing at Fairchild to develop a family of products satisfying these standards. The first of these announced products are:

9634 Dual 3-State Differential Line Driver (RS-422 Driver)
9638 Dual Differential Line Driver (RS-422 Driver)
9636A Dual Single-Ended Line Driver (RS-423 Driver)
9637A Dual Differential Line Receiver (RS-422/RS-423 Receiver)

	ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
	LINEAR INDUSTRY CROSS REFERENCE	2
	QUALITY, RELIABILITY AND HI REL PROCESSING	3
	VOLTAGE COMPARATORS	4
	DATA ACQUISITION	5
	LINE CIRCUITS – DRIVERS, RECEIVERS AND TRANSCEIVERS	6
	PERIPHERAL AND DISPLAY DRIVERS	7
	MEMORY INTERFACE	8
	TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
	DATA TRANSMISSION INFORMATION	10
>	ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
	FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12

ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES

Order Information	11-3
Dice Policy	11-4
Package Outlines	11-6

ORDER INFORMATION

	s of information are contair		ĉ
	<u>9636A</u>	<u> </u>	C Temperature Range
DEVICE TYPE	Device Type	Package Type	Temperature Range
	oha numeric characters defir	hes the data sheet which	specifies the device functional and electrical characteristic
ring group of up			
PACKAGE TYP	E		
	sents the basic package style		Metal Power Package (TO-3 Outline)
	I In-line Package (Hermetic		Dual In-line Package (Molded)
	pak (Hermetic)		Mini DIP (Hermetic, Ceramic)*
	al Can Package al Power Package (TO-66 C		Mini DIP (Molded) Power Package (Molded, TO-220 Outline)
\mathbf{J} – weta	al FOWER Fackage (TO-00 C		I data sheets for details. For special requirements, contact factory
	es exist within each packag e can be found in the PACK		e various die sizes and number of leads. Specific dimensio on of this catalog.
TEMPERATUR	E RANGE		
Two basic temp	erature grades are in commo	on use:	
	= Commercial/Industrial/		- Military
	0°C to +70/75°C		-55°C to +125°C
	-20° C to $+85^{\circ}$ C		-55° C to + 85° C
	-40°C to +60°C		
	-40°C to +85°C		
Exact values and	l conditions are indicated o	n the individual data sh	eets.
EXAMPLES			
EXAMPLES 1. μΑ710FM This numb		0 Voltage Comparator	in a flatpak with military temperature rating capabilit
1. μA710FM This numb	ber code indicates a μ A71	0 Voltage Comparator	in a flatpak with military temperature rating capabilit
1. μΑ710FM This numb 2. μΑ725EH	ber code indicates a μ A71 C		in a flatpak with military temperature rating capabilit ational Amplifier, electrical option E, in a metal can with
1. μA710FM This numb 2. μA725EH This numb	ber code indicates a μ A71 C	Instrumentation Operation	
 μA710FM This numb μA725EH This numb commercia 	ber code indicates a μ A71 C per code indicates a μ A725 al temperature rating capabi	Instrumentation Operation	
 μA710FM This numb μA725EH This numb commercia μA725EH 	ber code indicates a μ A71 C per code indicates a μ A725 al temperature rating capab CG per code indicates the idem	Instrumentation Operative	
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti 	ber code indicates a μ A71 C per code indicates a μ A725 al temperature rating capab CG per code indicates the idem	Instrumentation Operative	ntional Amplifier, electrical option E, in a metal can with
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti 	ber code indicates a μ A71 C per code indicates a μ A725 al temperature rating capab CG per code indicates the ident in dipped.	Instrumentation Opera Ility. tical device as in examp	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti 	ber code indicates a μ A71 C ber code indicates a μ A725 al temperature rating capab CG ber code indicates the ident in dipped. FIFICATION/MARKING	Instrumentation Opera ility. tical device as in examp	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti 	ber code indicates a μ A71 C ber code indicates a μ A725 al temperature rating capab CG ber code indicates the ident in dipped. FIFICATION/MARKING	tical device as in examp s will be marked as the	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti 	ber code indicates a μ A71 C ber code indicates a μ A725 al temperature rating capab CG ber code indicates the ident in dipped. FIFICATION/MARKING	Instrumentation Opera ility. tical device as in examp	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb μA725EH0 μA725EH0 This numb header is ti DEVICE IDENT 	ber code indicates a μ A71 C per code indicates a μ A725 al temperature rating capabi CG per code indicates the ident in dipped. FIFICATION/MARKING ndard catalog linear circuit	tical device as in examp s will be marked as the	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb commercia μA725EH0 This numb header is ti DEVICE IDENT All Fairchild sta UNIQUE 38510 Additional procession 	ber code indicates a μA71 C Der code indicates a μA725 al temperature rating capab CG Der code indicates the ident in dipped. ΓΙFICATION/MARKING ndard catalog linear circuit	Instrumentation Operative lity. tical device as in examp as will be marked as the $\mu A710DOF Date Con$	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb header is ti DEVICE IDENT All Fairchild sta JNIQUE 38510 Additional proce DC) after the state 	ber code indicates a μA71 C per code indicates a μA725 al temperature rating capab CG per code indicates the ident in dipped. ΓΙFICATION/MARKING ndard catalog linear circuit PROCESSING essing to Fairchild Unique	Instrumentation Operative ility. tical device as in examp as will be marked as the μ A710DC F Date Cor 38510 specifications is	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb μA725EH0 μA725EH0	ber code indicates a μA71 C per code indicates a μA725 al temperature rating capab CG per code indicates the ident in dipped. ΓΙFICATION/MARKING ndard catalog linear circuit PROCESSING essing to Fairchild Unique andard order code. g procedures are provided in	Instrumentation Operative ility. tical device as in examp as will be marked as the μ A710DC F Date Cor 38510 specifications is	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
1. μ A710FM This numb 2. μ A725EH This numb commercia 3. μ A725EH This numb header is ti DEVICE IDENT All Fairchild sta UNIQUE 38510 Additional proce DC) after the sta	ber code indicates a μA71 C Der code indicates a μA725 al temperature rating capab CG Der code indicates the ident in dipped. FIFICATION/MARKING ndard catalog linear circuit PROCESSING essing to Fairchild Unique andard order code. g procedures are provided in OGRAM	Instrumentation Operative lity. tical device as in examp s will be marked as the $\mu A710DOF Date Cor38510 specifications isn the OEM price list.$	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb μA725EH0 This numb μeader is ti DEVICE IDENT All Fairchild sta UNIQUE 38510 Additional proce QC) after the sta Detailed ordering MATRIX VI PRO 	ber code indicates a μA71 C per code indicates a μA725 al temperature rating capabi CG per code indicates the ident in dipped. ΓΙFICATION/MARKING ndard catalog linear circuit PROCESSING essing to Fairchild Unique andard order code. g procedures are provided in OGRAM ning to the Fairchild Matrix	Instrumentation Operative lity. tical device as in examp s will be marked as the $\mu A710DOF Date Cor38510 specifications isn the OEM price list.$	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:
 μA710FM This numb μA725EH0 This numb μA725EH0 μA725EH0	ber code indicates a μA71 C Der code indicates a μA725 al temperature rating capab CG Der code indicates the ident in dipped. FIFICATION/MARKING Indard catalog linear circuit PROCESSING essing to Fairchild Unique andard order code. g procedures are provided in OGRAM ning to the Fairchild Matri> ODES	Instrumentation Operative lity. tical device as in example s will be marked as the $\mu A710DOF Date Correct38510 specifications isthe OEM price list.$	ational Amplifier, electrical option E, in a metal can with le 2. Except it has a gold plated kovar header; the standar e following example:

GENERAL INFORMATION

Fairchild linear integrated circuits, constructed using the Fairchild Planar* epitaxial process, are available in dice form incorporating these features:

- Commercial or Military Selection (Military Limits Probed at 25°C)
- MIL-STD-883, Method 2010.2, Condition B Visual
- Gold Backing
- Glass Passivation
- Protective Packaging

ELECTRICAL CHARACTERISTICS

Each die electrically tested at 25°C to guarantee commercial dc parameters.

Military grade dice are guardband tested at 25°C dc to guarantee military temperature range operation.

QUALITY ASSURANCE

All Fairchild linear dice are 100% visually inspected and conform to MIL-STD-883, Method 2010.2, Condition B. In addition, quality control visually inspects the dice to a given sampling plan.

Each die is gold backed to aid die attach. Most diec are available with glass passivation coating with only the bonding pads exposed.

SHIPPING PACKAGES

Linear dice are packaged in containers with an anti-static sheet inserted between the lid and the dice. This sheet guards against electrostatic damage during shipment and storage.

The clear plastic carrier allows visual inspection of all the packaged dice. Each carrier is heat sealed within a transparent bag. A small piece of dehydrator paper with humidity indicating color is inserted in each bag prior to sealing.

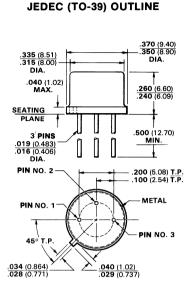
ORDER INFORMATION

Each linear integrated circuit die has a unique order code which describes the device type, the dice designation and type of electrical tests performed. The dice designation is denoted by a "C" and wafer designation is denoted by a "W." Examples follow:

	Dice	Wafer
Generic Type	Order Code	Order Code
μA741C**	μA741CC	μA741WC
μA3045	μA3045CC	μA3045WC
75450B	75450BCC	75450BWC
μA101A	μ A101ACC	μA101AWC
μA796C	μA796CC	μA796WC

**Some device types imply a military or commercial range by the generic type. Where this does not occur the suffix should be:

XM Military Grade Die or XC Commercial Grade Die


SPECIAL CHIP PROCESSING

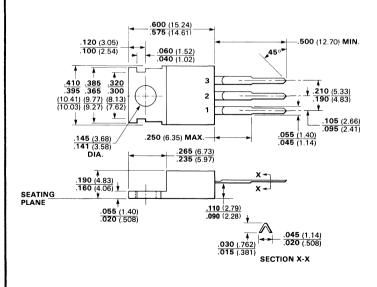
If there is a need for additional testing or processing, Fairchild will negotiate with the customer to meet his requirements.

PRODUCT AVAILABLE IN DICE FORM

Please refer to FSC OEM Price List for product available in die form.

*Planar is a patented Fairchild process.

In Accordance with


BF

NOTES: Pins are gold-plated kovar Pin 3 connected to case 50 mil kovar header Package weight is 1.23 grams

5K

NOTES: Pins are gold-plated kovar Pin 3 connected to case 50 mil kovar header Package weight is 1.23 grams

In Accordance with JEDEC (TO-220) OUTLINE

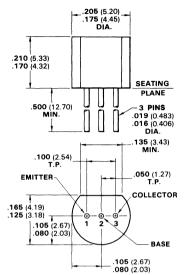
EC

NOTES:

Package is silicone plastic with boron nickel-plated copper tab and pins Mechanically interchangable with TO-66 Center pin is electrical contact with the mounting tab Package weight is 2.1 grams

GH

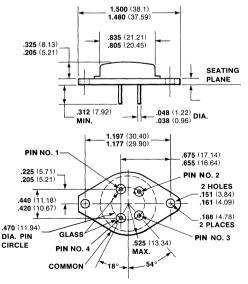
NOTES:

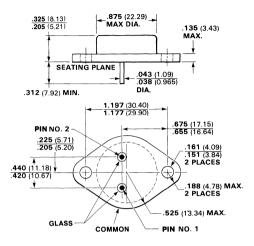

Package is silicone plastic with nickel-

- plated copper tab and pins
- Center pin is electrical contact with the mounting tab

Package weight is 2.1 grams

*Mechanically interchangable with TO-66


In Accordance with JEDEC TO-92 OUTLINE


ΕI

NOTES: Pins are tin-plated copper Package material is transfer molded thermosetting plastic ECB configuration Package weight is 0.25 gram

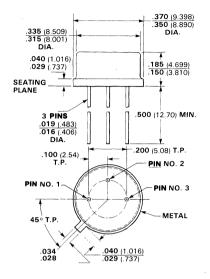
In Accordance with JEDEC (TO-3) OUTLINE-4-PIN

JEDEC TO-3 OUTLINE*

GJ

NOTES:

Pins are gold-plated or solder dipped alloy 52 Pins 1 and 2 electrically isolated from case Case is third electrical connection Aluminum package with copper slug, pins are soldered in Package weight is 7.4 grams Aluminum cap (may be dome-type, depending prod. line) *Except pin diamater


GK

NOTES:

- Pins are gold-plated or solder dipped alloy 52
- All pins electrically isolated from case Package weight is 7.4 grams

*Except number of pins and pin diameter

JEDEC TO-39 OUTLINE*

JEDEC (TO-91) OUTLINE 10-PIN CERPAK

In Accordance with

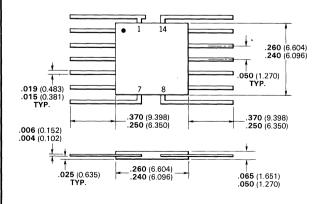
3F

006 (.152)

035 (889)

TYP.

NOTES: Pins are tin plated 42 alloy Hermetically sealed alumina package Cavity size is .130 diamater Package weight is 0.26 grams

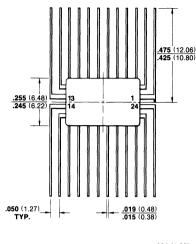

.260 (6.60)

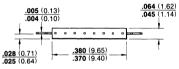
.085 (0.216) .075 (0.191)

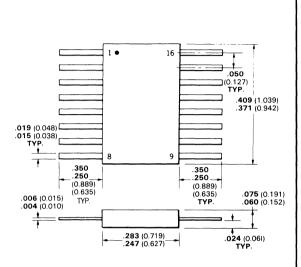
HC

NOTES: Pins are gold-plated kovar Pin 3 connected to case Package weight is 1.23 grams 50 mil kovar header *Dimensions same as JEDEC TO-39 except for can height

In Accordance with JEDEC (TO-86) OUTLINE 14-PIN CERPAK

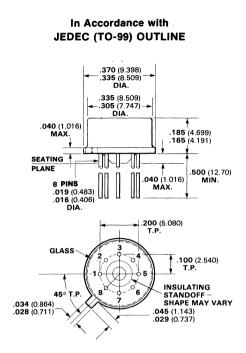



31


NOTES: Pins are tin-plated 42 alloy Hermetically sealed alumina package Pin 1 orientation may be either tab or dot Cavity size is .130 Package weight is 0.26 gram

24-PIN FLATPAK

16-PIN CERPAK

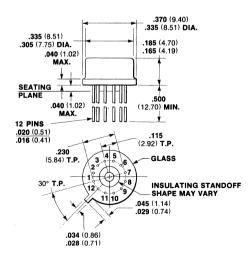

4L

NOTES: Pins are alloy 42 Package weight is 0.4 gram Hermetically sealed beryllia package

3M

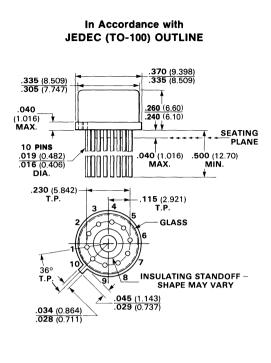
NOTES: Pins are gold-plated kovar Package material is kovar Cavity size is .120 x .235 (3.05 x 5.97) Package weight is 0.8 gram

11


5B

NOTES: Pins are gold-plated kovar Seven pins thru leads No. 4 connected to case 15 mil kovar header Package weight is 1.22 grams

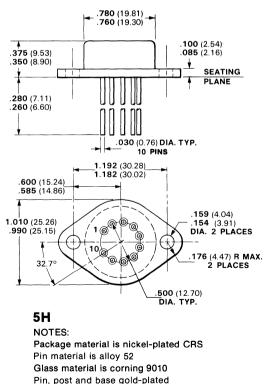
5L


NOTES: Pins are gold-plated kovar Eight pins thru 15 mil kovar header Package weight is 1.22 grams

JEDEC TO-101 OUTLINE

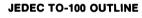
5D

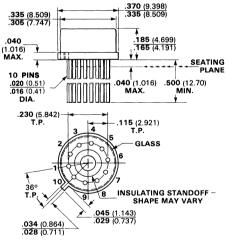
NOTES: Pins are solder dipped to the seating plane. Twelve pins thru *Similar to JEDEC TO-101 Package weight is 1.4 grams



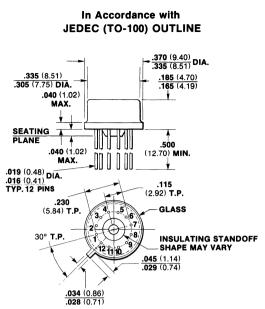
5E

NOTES: Pins are gold-plated kovar Ten pins thru 15 mil kovar header Package weight is 1.32 grams


5F


NOTES: Pins are gold-plated kovar Nine pins through, pin 5 connected to case 15 mil kovar header Package weight is 1.32

*Except height and number of pins


JEDEC TO-3 OUTLINE*

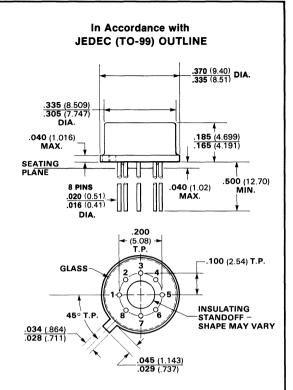
5G

NOTES: Pins are gold-plated kovar Twelve pins thru *Similar to JEDEC TO-101 Package weight is 1.08 grams

51

NOTES: Pins are solder dipped to the seating plane Ten pins thru High RTH package 15 mil kovar header Package weight is 1.32 grams

5N

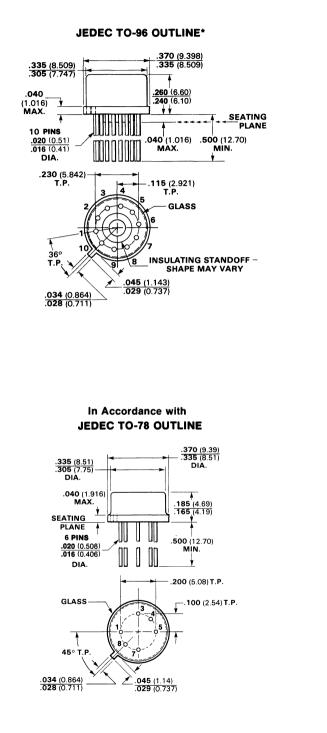

NOTES: Pins are solder-dipped to the seating plane Nine pins through, pin 5 connected to case 15 mil kovar header Package weight is 1.32 grams

5Q

NOTES: Pins are solder dipped to the seating plane Ten pins thru 15 mil kovar header Package weight is 1.32 grams

5U

NOTES: Pins are gold-plated kovar Ten pins through High RTH package 15 mil kovar header Package weight is 1.32 grams

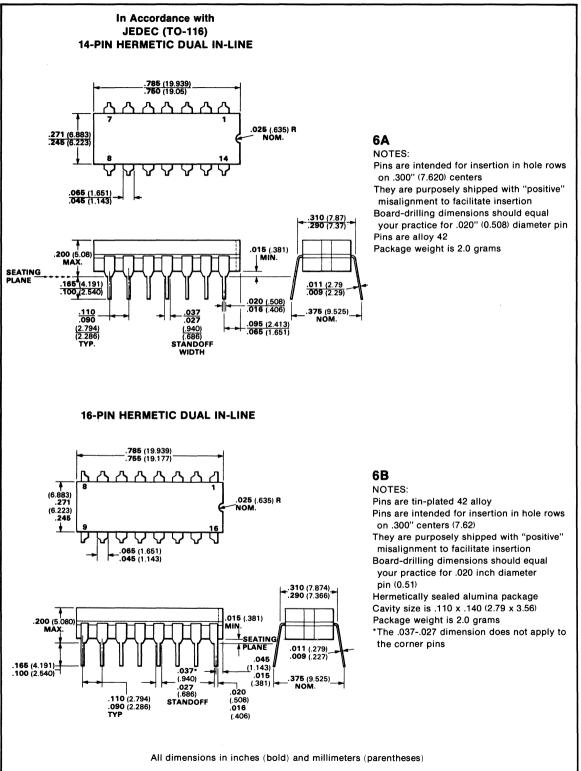


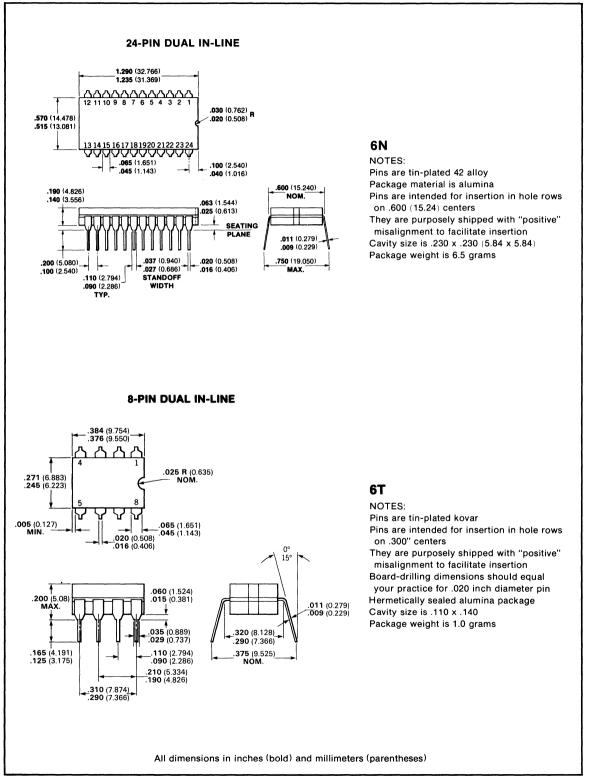
5M

NOTES: Pins are solder dipped to seating plane Eight pins thru 15 mil kovar header Package weight is 1.22 grams

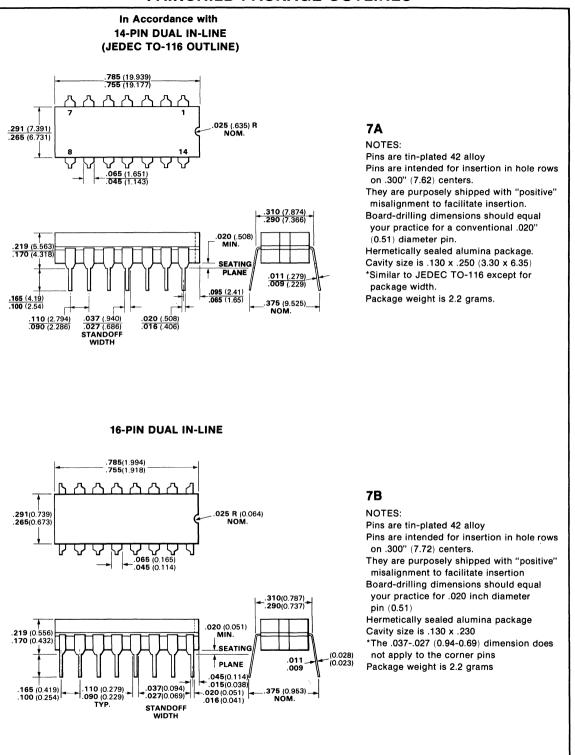
5T

NOTES: Pins are gold-plated kovar Eight pins thru *Dimensions similar to JEDEC TO-100 except for 8 pins spaced 45° apart. Package weight is 1.22 grams.

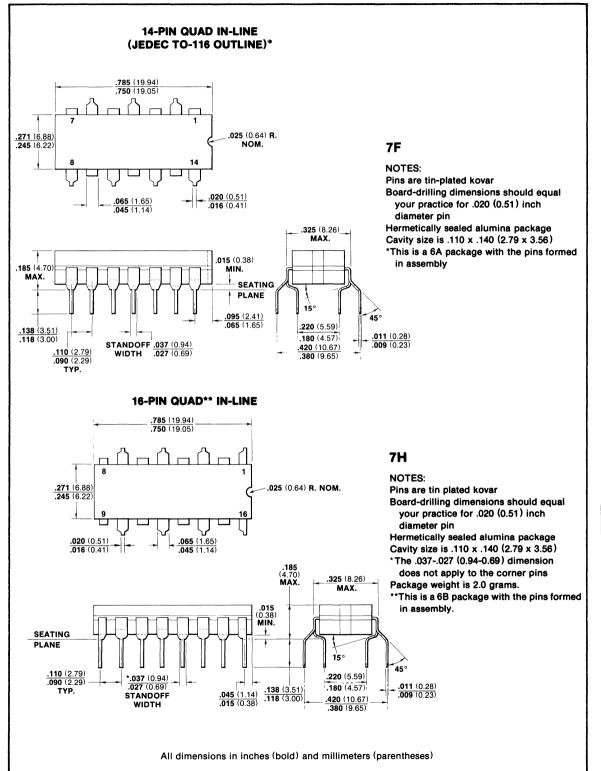

5R

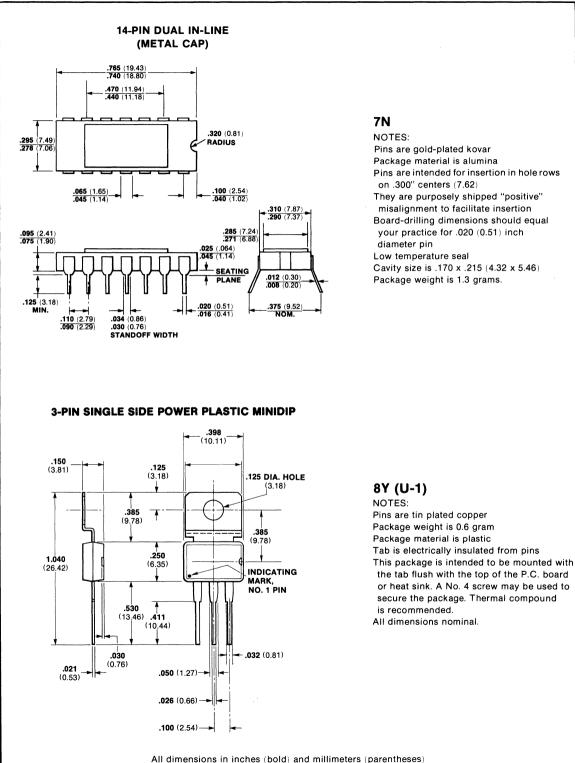

NOTES: Pins are gold-plated kovar. Nine pins thru, Pin No. 5 is connected to case 15 mil kovar header Package weight is 1.32 grams. *Dimensions similar to JEDEC TO-96 except for standoff.

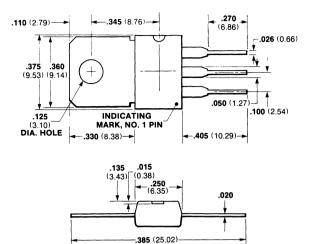
5Z


NOTES: Pins are gold plated kovar. Six pins thru. Pins 2 and 6 are omitted. Package weight is 0.95 gram.

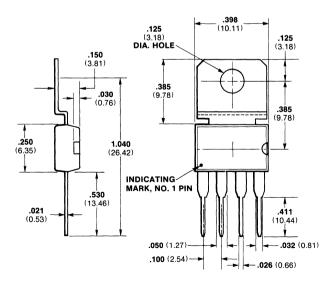
PACKAGE OUTLINES




11


11-16

11

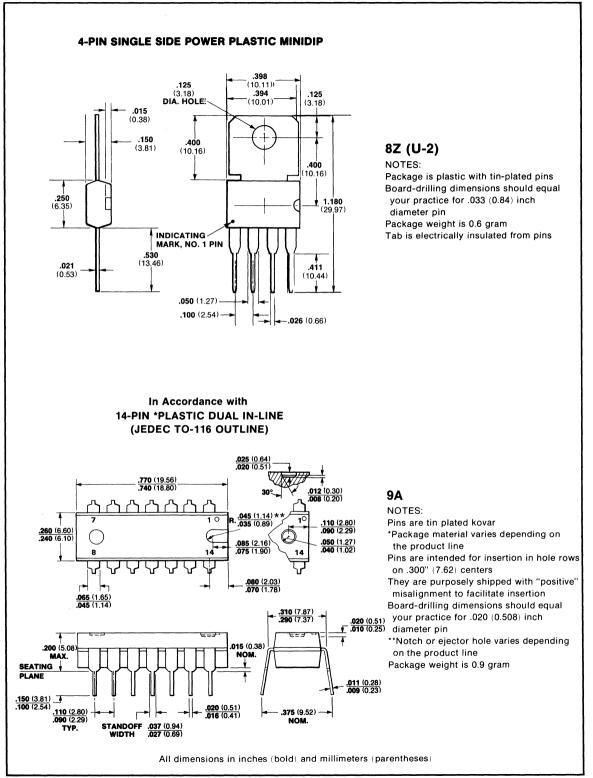

3-PIN SINGLE SIDE POWER PLASTIC MINIDIP

8Y (U-2)

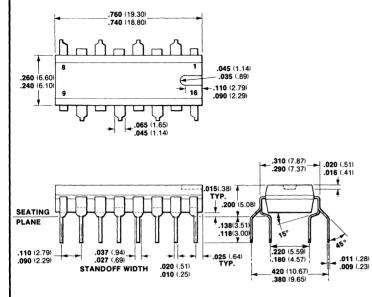
NOTES: Pins are tin plated copper Package weight is 0.6 grams Package material is plastic Center pin is electrical contact with mounting tab For detailed package configuration, refer to FSB-90717 All dimensions nominal

4-PIN SINGLE SIDE POWER PLASTIC MINIDIP

8Z (U-1)


NOTES:

Package is plastic with tin-plated copper pins


Board-drilling dimensions should equal your practice for .033 (0.84) inch diameter pins

Package weight is 0.6 gram

Tab is electrically insulated from pins This package is intended to be mounted with the tab flush with the top of the PC board or heat sink. A No. 4 screw may be used to secure the package. Thermal compound is recommended.

16-PIN PLASTIC* DUAL IN-LINE

9B

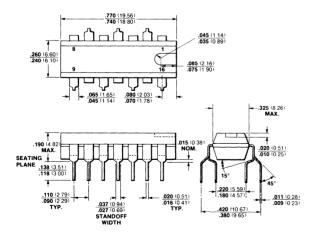
NOTES:

Pins are tin-plated kovar or alloy 42 nickel. Pins are intended for insertion in hole rows on .300" (7.62) centers

Pins purposely have a "positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for .020 inch (0.51)

diameter pin

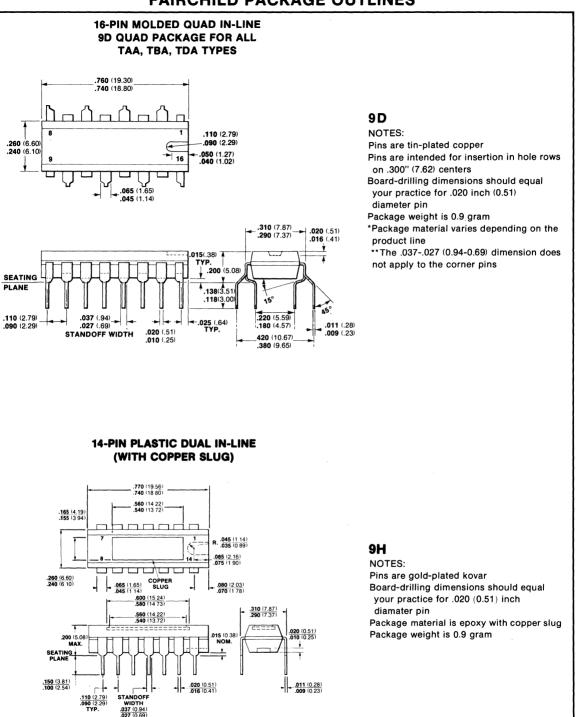

Package weight is 0.9 gram

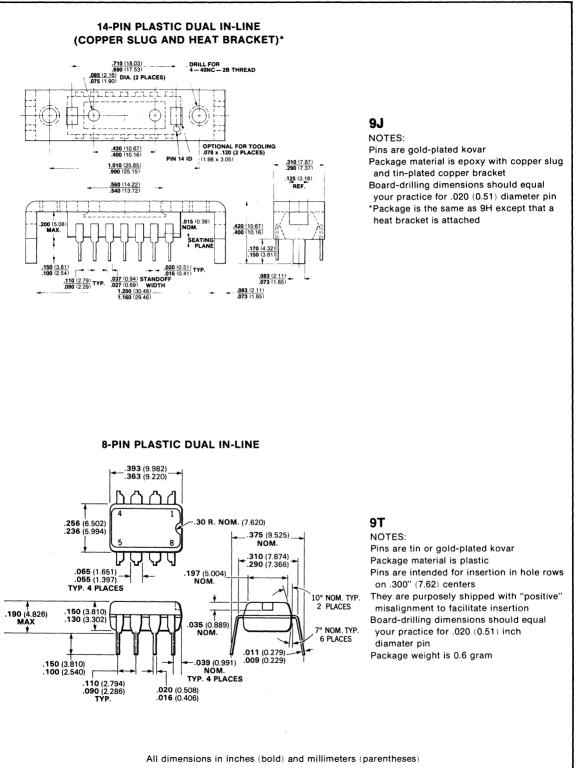
*Package material varies depending on the product line

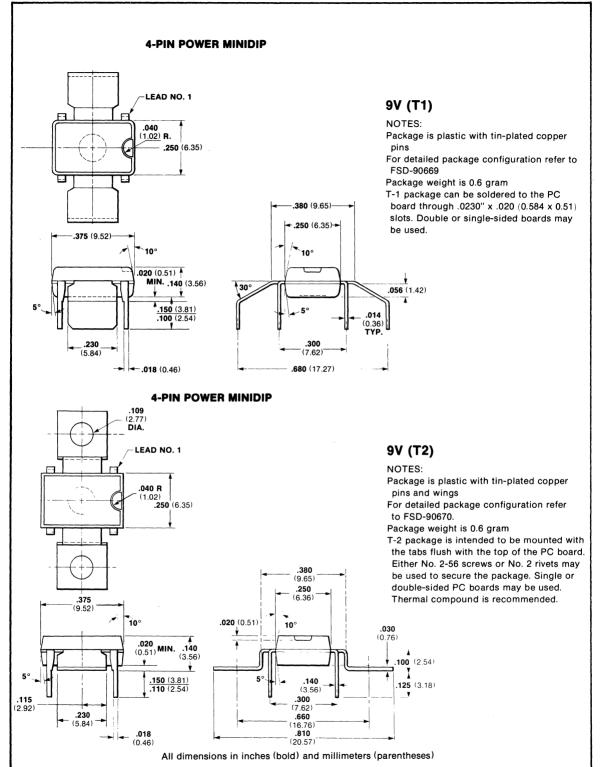
***The .037-.027 (0.94-0.69) dimension does not apply to the corner pins

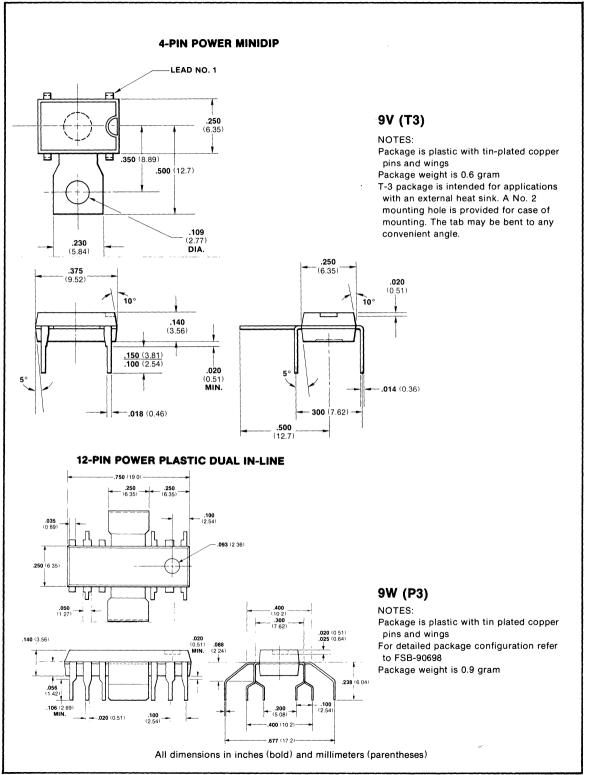
**Notch or ejector hole varies depending on the product line

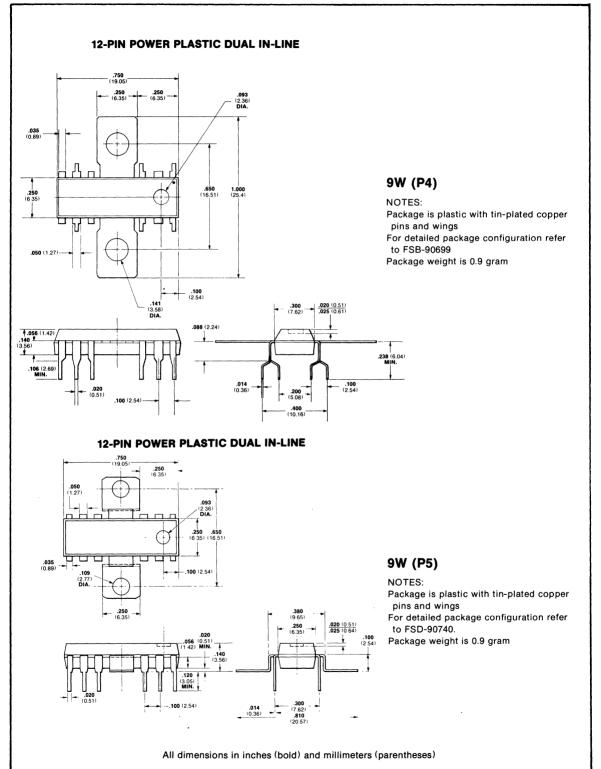
14-PIN PLASTIC QUAD IN-LINE (JEDEC TO-116 OUTLINE*)

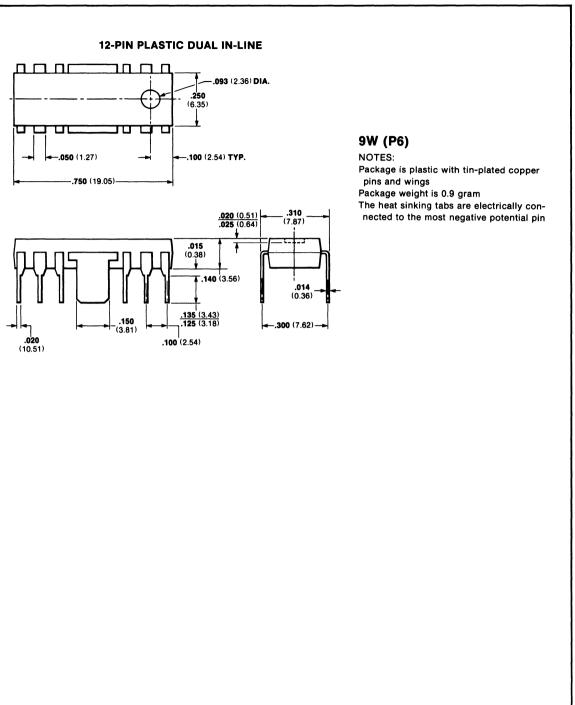

9C

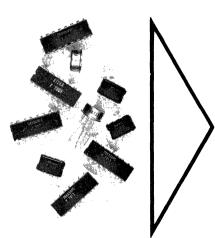

NOTES:


Package is epoxy with tin-plated kovar pins Board-drilling dimensions should equal your practice for .020 (0.51) inch diameter pin


Package weight is 0.9 gram


*This is a 9A package with the pins formed in assembly. Only the notched and epoxy version is used





	ALPHA NUMERIC INDEX OF INTERFACE DEVICES AND SELECTION GUIDES	1
	LINEAR INDUSTRY CROSS REFERENCE	2
	QUALITY, RELIABILITY AND HI REL PROCESSING	3
	VOLTAGE COMPARATORS	4
	DATA ACQUISITION	5
	LINE CIRCUITS - DRIVERS, RECEIVERS AND TRANSCEIVERS	6
	PERIPHERAL AND DISPLAY DRIVERS	7
	MEMORY INTERFACE	8
	TRANSISTOR ARRAYS AND SPECIAL FUNCTIONS	9
	DATA TRANSMISSION INFORMATION	10
	ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES	11
>	FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS	12

FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

Field Sales Offices	12-3
Representatives	12-5
Distributors	12-6

FAIRCHILD SEMICONDUCTOR SALES OFFICES UNITED STATES AND CANADA

ALABAMA Huntsville Office Executive Plaza Suite 107 4717 University Drive, N.W Huntsville, Alabama 35805 Tel: 205-837-8906

ARIZONA Phoenix Office 4414 N. 19th Avenue 85015 Suite G Tel: 602-264-4948 TWX: 910-951-1544

CALIFORNIA

CALIFORNIA Los Angeles Office* Crocker Bank Bldg. 15760 Ventura Blvd. Suite 1027 Encino 91436 Tel: 213-990-9800 TWX: 910-495-1776

Santa Ana Office* 2101 E. 4th Street 92705 Bidg. B, Suite 185 Tel: 714-558-1881 TWX: 910-595-1109

Santa Clara Office* 3333 Bowers Avenue Suite 299 Santa Clara, 95051 Tel: 408-987-9530 TWX: 910-338-0241

FLORIDA Ft. Lauderdale Office Executive Plaza Suite 300-B 1001 Northwest 62nd Street Ft. Lauderdale, Florida 33309 Tei: 305-771-0320 TWX: 510-955-4098

Orlando Office* Crane's Roost Office Park 303 Whooping Loop Altamonte Springs 32701 Tel: 305-834-7000 TWX: 810-850-0152

ILLINOIS Chicago Office The Tower - Suite 610 Rolling Meadows 60008 Tel: 312-640-1000 INDIANA Ft. Wayne Office

2118 Inwood Drive 46805 Suite 111 Tel: 219-483-6453 TWX: 810-332-1507

Indianapolis Office Room 205 7202 N. Shadeland 46250 Tel: 317-849-5412 TWX: 810-260-1793

KANSAS Kansas City Office Corporate Woods 10875 Grandview, Suite 2255 Overland Park 66210 Tel: 913-649-3974

MARYLAND Columbia Office* 1000 Century Plaza Suite 225 Columbia, Maryland 21044 Tei: 301-730-1510 TWX: 710-826-9654

MASSACHUSETTS Boston Office* 888 Worcester Street Wellesley Hills 02181 Tel: 617-237-3400 TWX: 710-348-0424

MICHIGAN Detroit Office* Johnston Building, Suite 24 20793 Farmington Road Farmington Hills 48024 Tei: 313-478-7400 TWX: 810-242-2973

MINNESOTA Minneapolis Office* 7600 Parklawn Avenue Room 251 Edina 55435 Tel: 612-835-3322 TWX: 910-576-2944

NEW JERSEY Wayne Office* 580 Valley Road 07490 Suite 1 Tel: 201-696-7070 TWX: 710-988-5846 NEW MEXICO Alburquerque Office 2403 San Mateo N.E. 87110 Plaza 13 Tel: 505-265-5601 TWX: 910-379-6435

NEW YORK Melville Office 275 Broadhollow Road 11746 Tel: 516-293-2900 TWX: 510-224-6480

Poughkeepsie Office 19 Davis Avenue 12603 Tel: 914-473-5730 TWX: 510-248-0030

Fairport Office 260 Perinton Hills Office Park Fairport 14450 Tel: 716-223-7700

OHIO Dayton Office 4812 Frederick Road 45414 Suite 105 Tel: 513-278-8278 TWX: 810-459-1803

PENNSYLVANIA Philadelphia Office 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tei: 215-657-2711

TEXAS Dallas Office 13771 N. Central Expressway 75231 Suite 809 Tel: 214-234-3391 TWX: 910-867-4757

Houston Office 6430 Hillcroft 77081 Suite 102 Tel: 713-771-3547 TWX: 910-881-8278

CANDA Toronto Regional Office Fairchild Semiconductor 1590 Matheson Blvd., Unit 26 Mississauga, Ontario L4W 1JJ1, Canada El: 416-625-7070 TWX: 610-492-4311

*Field Application Engineer

AUSTRALIA Fairchild Australia Pty Ltd. 72 Whiting Street Artarmon 2064 New South Wales Australia Tel: Sydney (02)-438-2733

(mailing address) P.O. Box 450 North Sydney 2060 New South Wales Australia

AUSTRIA AND EASTERN EUROPE

Fairchild Electronics A-1010 Wien Schwedenplatz 2 Tel: 0222 635821 Telex: 75096

BRAZIL

Fairchild Semicondutores Ltda Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC

FRANCE

Fairchild Camera & Instrument S.A. 121, Avenue d'Italie 75013 Paris, France Tel: 331-584-55 66 Telex: 0042 200614 or 260937

GERMANY

Fairchild Camera and Instrument (Deutschland) Daimlerstr 15 8046 Garching Hochbruck Munich, Germany Tel: (089) 320031 Telex: 52 4831 fair d

Fairchild Camera and Instrument (Deutschland) Koenigsworther Strasse 23 3000 Hannover W-Germany Tel: 0511 17844 Telex: 09 22922

FAIRCHILD SEMICONDUCTOR INTERNATIONAL SALES OFFICES

Fairchild Camera and Instrument (Deutschland) Postrstrasse 37 7251 Leonberg W-Germany Tel: 07152 41026 Telex: 07 245711

Fairchild Camera and Instrument (Deutschland) Waldluststrasse 1 8500 Nuernberg W-Germany Tel: 0911 407005 Telex: 06 23665

HONG KONG Fairchild Semiconductor (HK) Ltd. 135 Hoi Bun Road Kwun Tong Kowloon, Hong Kong Tel: K-890271 Telex: HKG-531

ITALY Fairchild Semiconduttori, S.P.A. Via Flamenia Vecchia 653 00191 Roma, Italy Tel: 06 327 4006 Telex: 63046 (FAIR ROM)

Fairchild Semiconduttori S.P.A. Via Rosellini, 12 20124 Milano, Italy Tel: 02 6 88 74 51 Telex: 36522

JAPAN Fairchild Japan Corporation

Pola Bldg. 1-15-21, Shibuya Shibuya-Ku, Tokyo 150 Japan Tel: 03 400 8351 Telex: 242173

KOREA

Fairchild Semikor I td K2 219-6 Gari Bong Dong Young Dung Po-Ku Seoul 150-06, Korea Tel: 85-0067 Telex: FAIRKOR 22705

(mailing address) Central P.O. Box 2806

MEXICO Fairchild Mexicana S.A. Blvd, Adolofo Lopez Mateos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038

SCANDINAVIA Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759

SINGAPORE Fairchild Semiconductor Pty Ltd. No. 11, Lorong 3 Toa Payoh Singapore 12 Tel: 531-066 Telex: FAIRSIN-RS 21376

TAIWAN Fairchild Semiconductor (Taiwan) Ltd. Hsietsu Bidg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

BENELUX Fairchild Semiconductor Paradijslaan 39 Eindhoven, Holland Tel: 00-31-40-446909 Telex: 00-1451024

UNITED KINGDOM Fairchild Camera and Instrument (UK) Ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835

Fairchild Semiconductor Ltd. 17 Victoria Street Craigshill Livingston West Lothian, Scotland - EH54 5BG Tel: Livingston 0506 32891 Telex: 72629

FAIRCHILD SEMICONDUCTOR SALES REPRESENTATIVES UNITED STATES AND CANADA

ALABAMA CARTWRIGHT & BEAN, INC. 2400 Bob Wallace Ave., Suite 201 Huntsville, Alabama 35805 Tel: 205-533-3509

CALIFORNIA CELTEC COMPANY 18009 Sky Park Circle Suite B Irvine, California 92715 Tel: 714-557-5021 TWX: 910-595-2512

CELTC COMPANY 7867 Convoy Court, Suite 312 San Diego, California 92111 Tel: 714-279-7961 TWX: 910-335-1512

MAGNA SALES, INC. 3333 Bowers Avenue Suite 295 Santa Clara, California 95051 Tel: 408-985-1750 TWX: 910-338-0241

COLORADO SIMPSON ASSOCIATES, INC. 2552 Ridge Road Littleton, Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719

CONNECTICUT PHOENIX SALES COMPANY 389 Main Street Ridgefield, Connecticut 06877 Tel: 203-438-9644 TWX: 710-467-0662

FLORIDA LECTROMECH INC. 303 Whooping Loop Altamonte Springs, Florida 32701 Tel: 305-831-1577 TWX: 810-853-0262

LECTROMECH, INC 1350 S. Powerline Road, Suite 104 Pompano Beach, Florida 33060 Tel: 305-974-6780 TWX: 510-954-9793

LECTROMECH, INC. 2280 U.S. Highway 19 North Suite 119 Bldg. L Clearwater, Florida 33515 Tel: 813-726-0541

GEORGIA CARTWRIGHT & BEAN, INC. P.O. Box 52846 (Zip Code 30355) 90 W. Wieuca Square, Suite 155 Atlanta, Georgia 30342 Tel: 404-255-5262 TWX: 810-751-3220

ILLINOIS MICRO SALES, INC. 2258-B Landmeir Road Elk Grove Village, Illinois 60007 Tel: 312-956-1000 TWX: 910-222-1833

INDIANA LESLIE M. DEVOE COMPANY 4215 E. 82nd Street Suite D Indianapolis, Indiana 46250 Tel: 317-842-3245 TWX: 810-260-1435

KANSAS B.C. ELECTRONIC SALES, INC. P.O. Box 12485, Zip 66212 8190 Nieman Road Shawnee Mission, Kansas 66214 Tel: 913-888-6680 TWX: 910-749-6414

B.C. ELECTRONIC SALES 6405 E. Kellogg Suite 14 Wichita, Kansas 67207 Tel: 316-684-0051

MARYLAND DELTA III ASSOCIATES 1000 Century Plaza Suite 225 Columbia, Maryland 21044 Tel: 301-730-1510 TWX: 710-826-9654

MASSACHUSETTS SPECTRUM ASSOCIATES, INC. 888 Worcester Street Wellesley, Massachusetts 02181 Tel: 617-237-2796 TWX: 710-348-0424

MICHIGAN RATHSBURG ASSOCIATES 16621 E. Warren Avenue Detroit, Michigan 48224 Tel: 313-882-1717 Telex: 23-5229

MINNESOTA PSI COMPANY 720 W. 94th. Street Minneapolis, Minnesota 55420 Tel: 612-884-1777 TWX: 910-576-3483

MISSISSIPPI CARTWRIGHT & BEAN INC P.O. Box 16728 5150 Keele Street Jackson, Mississippi 39206 Tel: 601-981-1368

MISSOURI B.C. ELECTRONIC SALES, INC. 300 Brookes Drive, Suite 206 Hazelwood, Missouri 63042 Tel: 314-731-1255 TWX: 910-762-0600

NEW JERSEY LORAC SALES, INC. 580 Valley Road Wayne, New Jersey 07470 Tel: 201-696-8875 TWX: 710-988-5846

NEW YORK LORAC SALES, INC. 550 Old Country Road, Room 410 Hicksville, New York 11801 Tel: 516-681-8746 TWX: 510-224-6480

TRI-TECH ELÉCTRONICS, INC. 3215 E. Main Street Endwell, New York 13760 Tel: 607-754-1094 TWX: 510-252-0891

TRI-TECH ELECTRONICS, INC. 590 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-5720

TRI-TECH ELECTRONICS, INC. 6836 E. Genesee Street Fayetteville, New York 13066 Tel: 315-446-2881 TWX: 710-541-0604

TRI-TECH ELECTRONICS, INC. 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-3880

NORTH CAROLINA CARTWRIGHT & BEAN, INC. 1165 Commercial Ave.

Charlotte, North Carolina 28205 Tel: 704-377-5673 CARTWRIGHT & BEAN, INC.

P.O. Box 18465 3948 Browning Place Raleigh, North Carolina 27609 Tel: 919-781-6560

оню

THE LYONS CORPORATION 4812 Frederick Road, Suite 101 Dayton, Ohio 45414 Tel: 513-278-0714

THE LYONS CORPORATION 6151 Wilson Mills Road, Suite 101 Highland Heights, Ohio 44143 Tel: 216-461-8288

OKLAHOMA TECHNICAL MARKETING 9717 E. 42nd Street, Suite 221 Tulsa, Oklahoma 74101 Tel: 918-622-5984

OREGON

QUADRA CORPORATION 19145 S.W. Murphy Ct. Aloha, Oregon 97005 Tel: 503-225-0350 TWX: 910-449-2592

PENNSYLVANIA BGR ASSOCIATES 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-3301

TENNESSEE

CARTWRIGHT & BEAN, INC. P.O. Box 4760 560 S. Cooper Street Memphis, Tennessee 38104 Tel: 901-276-4442

CARTWRIGHT & BEAN, INC 8705 Unicorn Drive Suite B120 Knoxville, Tennessee 37919 Tel: 615-693-7450

TEXAS TECHNICAL MARKETING 3320 Wiley Post Road Charrollton, Texas 75220 Tel: 214-387-3601 TWX: 910-860-5158

TECHNICAL MARKETING 6430 Hillcroft, Suite 104 Houston, Texas 77036 Tel: 713-777-9228

UTAH SIMPSON ASSOCIATES, INC. P.O. Box 151430 Salt Lake City, Utah 84115 Tel: 801-571-7877

WASHINGTON QUADRA CORPORATION 14825 N.E. 40th Street

Suite 340 Redmond, Washington 98052 Tel: 206-883-3550 TWX: 910-449-2592

WISCONSIN LARSEN ASSOCIATES 10855 West Potter Road Wauwatosa, Wisconsin 53226 Tel: 414-258-0529 TWX: 910-262-3160

CANADA R.N. LONGMAN SALES, INC. (L.S.I.) 1715 Neverside Drive Suite 1 Mississauga, Ontario, L5T 1C5 Canada Tel: 416-625-6770 TWX: 610-492-8976

R.N. LONGMAN SALES, INC. (L.S.I.) 16891 Hymus Blvd. Kirkland, Quebec H9H 3L4 Canada Tel: 514-694-3911 TWX: 610-422-3028

FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA

ALABAMA

HALLMARK ELECTRONICS 4739 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-8700 TWX: 810-726-2187

HAMILTON/AVNET ELECTRONICS 4692 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-7210 Telex: None – use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

ARIZONA HAMILTON/AVNET ELECTRONICS 2615 S. 21st Street Phoenix, Arizona 85034 Tel: 602-275-7851 TWX: 910-951-1535

KIERULFF ELECTRONICS 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101

LIBERTY ELECTRONICS 8155 North 24th Ave. Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282

CALIFORNIA

AVNET ELECTRONICS 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TW: 910-955-1928

BELL INDUSTRIES Electronic Distributor Division 1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734-8570 TWX: 910-339-9378

ELMAR ELECTRONICS 2288 Charleston Rd. Mountain View, California 94042 Tel: 415-961-3611 TWX: 910-379-6437

HAMILTON ELECTRO SALES 10912 W. Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364

HAMILTON/AVNET ELECTRONICS 575 E. Middlefield Road Mountain View, California 94040 Tel: 415-961-7000 TWX: 910-379-6486

HAMILTON/AVNET ELECTRONICS 8917 Complex Drive San Diego, California 92123 Tel: 714-279-2421 Telex: HAMAVELEC SDG 69-5415

INTERMARK ELECTRONICS INC. 4040 Sorrento Valley Blvd. San Diego, California 92121 Tel: 714-279-5200

INTERMARK ELECTRONIC INC. 1802 East Carnegie Avenue Santa Ana, California 92705 Tel: 714-540-1322

LIBERTY ELECTRONICS 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7111

LIBERTY ELECTRONICS/SAN DIEGO 8248 Mercury Court San Diego, California 92111 Tel: 714-565-9171 TWX: 910-335-1590

COLORADO CENTURY ELECTRONICS 8155 West 48th Avenue Wheatridge, Colorado 80033 Tel: 303-424-1985 TWX: 910-938-0393

CRAMER ELECTRONICS 5465 East Evans Place at Hudson Denver, Colorado 80222 Tel: 303-758-2100

ELMAR ELECTRONICS 6777 E. 50th Avenue Commerce City, Colorado 80022 Tel: 303-287-9611 TWX: 910-936-0770 HAMILTON/AVNET ELECTRONICS 5921 N. Broadway Denver, Colorado 80216 Tel: 303-534-1212 TWX: 910-931-0510

CONNECTICUT CRAMER ELECTRONICS 35 Dodge Avenue Wharton Brook Industrial Center North Haven, Connecticut 06473 Tel: 203-239-5641

HAMILTON/AVNET ELECTRONICS 643 Danbury Road Georgetown, Connecticut 06829 Tel: 203-762-0361 TWX: None — use 710-897-1405 (Regional Hq. in Mt. Laurel, N.J.)

HARVEY ELECTRONICS 112 Main Street Norwalk, Connecticut 06851 Tel: 203-853-1515

SCHWEBER ELECTRONICS Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500

FLORIDA ARROW ELECTRONICS 1001 Northwest 62nd Street Suite 402 Ft. Lauderdale, Florida 33309 Tel: 305-776-7790

ARROW ELECTRONICS 115 Palm Bay Road N.W Suite 10 Bldg. #200 Palm Bay, Florida 32905 Tel: 305-725-1408

CRAMER ELECTRONICS 345 North Graham Avenue Orlando, Florida 32814 Tel: 305-894-1511

HALLMARK ELECTRONICS 1302 W. McNab Road Ft. Lauderdale, Florida 33309 Tel: 305-971-9280 TWX: 510-956-3092

HALLMARK ELECTRONICS 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: 305-855-4020 TWX: 810-850-0183

HAMILTON/AVNET ELECTRONICS 6800 N.W. 20th Avenue Ft. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-954-9808

HAMILTON/AVNET ELECTRONICS 3197 Tech Drive, North St. Petersburg, Florida 33702

SCHWEBER ELECTRONICS 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304

GEORGIA ARROW ELECTRONICS 3406 Oak Cliff Road Doraville, Georgia 30340 Tel: 404-455-4054

HAMILTON/AVNET ELECTRONICS 6700 Interstate 85 Access Road, Suite 1E Norcross, Georgia 3001 Tei: 404-48-0800 Teiex: None – use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

LYKES ELECTRONICS CORP. 6447 Atlantic Blvd. Norcross, Georgia 30071 Tel: 404-449-9400

ILLINOIS HALLMARK ELECTRONICS INC. 180 Crossen Avenue Elk Grove Village, Illinois 60007 Tel: 312-437-8800 HAMILTON/AVNET ELECTRONICS 3901 N. 25th Avenue Schiller Park, Illinois 60176 Tel: 312-678-6310 TWX: 910-227-0060

KIERULFF ELECTRONICS 85 Gordon Street Elk Grove Village, Illinois 60007 Tel: 312-640-0200 TWX: 910-227-3166

SCHWEBER ELECTRONICS, INC. 1275 Bummel Avenue Elk Grove Village, Illinois 60007 Tel: 312-593-2740 TWX: 910-222-3453

SEMICONDUCTOR SPECIALISTS, INC. (mailing address) O'Hare International Airport P.O. B&x 66125 Chicago, Illinois 60666

(shipping address) 195 Spangler Avenue Elmhurst Industrial Park Elmhurst, Illinois 60126 Tel: 312-279-1000 TWX: 910-254-0169

INDIANA GRAHAM ELECTRONICS SUPPLY, INC 133 S. Pennsylvania St. Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481

KANSAS HALLMARK ELECTRONICS, INC. 11870 W. 91st Street Shawnee Mission, Kansas 66214 Tel: 913-888-4746

HAMILTON/AVNET ELECTRONICS 9219 Guivira Road Overland Park, Kansas 66215 Tei: 913-888-8900 Telex: None – use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

LOUISIANA STERLING ELECTRONICS CORP 4613 Fairfield Metairie, Louisiana 70002 Tel: 504-887-7610 Telex: STERLE LEC MRIE 58-328

MARYLAND HALLMARK ELECTRONICS, INC. 6655 Amberton Drive Baltimore, Maryland 21227 Tel: 301-796-9300

HAMILTON/AVNET ELECTRONICS (mailing address) Friendship International Airport P.O. Box 8647 Baltimore, Maryland 21240

(shipping address) 7235 Standard Drive Hanover, Maryland 21076 Tel: 301-796-5000 TWX: 710-862-1861 Telex: HAMAVLECA HNVE 87-968

PIONEER WASHINGTON ELECTRONICS, INC. 9100 Gaither Road Gaithersburg, Maryland 20760 Tei: 301-948-0710 TWX: 710-828-9784

SCHWEBER ELECTRONICS 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: 710-828-0536

MASSACHUSETTS CRAMER ELECTRONICS 85 Wells Avenue Newton Centre, Massachusetts 02159 Tel: 617-964-4000

GERBER ELECTRONICS 852 Providence Highway U.S. Route 1 Dedham, Massachusetts 02026 Tel: 617-329-2400

HAMILTON/AVNET ELECTRONICS 100 E. Commerce Way Woburn, Massachusetts 01801 Tel: 617-933-8000 TWX: 710-332-1201

FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA

HARVEY ELECTRONICS 44 Hartwell Avenue Lexington, Massachusetts 02173 Tel: \$17-861-9200 TWX: 710-326-6617

SCHWEBER ELECTRONICS 213 Third Avenue Waltham, Massachusetts 02154 Tel: 617-890-8484

MICHIGAN HAMILTON/AVNET ELECTRONICS 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775

PIONEER/DETROIT 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800

R-M ELECTRONICS 4310 Roger B. Chaffee Wyoming, Michigan 49508 Tel: 616-531-9300

SCHWEBER ELECTRONICS 33540 Schoolcraft Livonia, Michigan 48150 Tel: 313-525-8100

SHERIDAN SALES CO. 24543 Indoplex Drive Farmington, Michigan 48024 Tel: 313-477-3800

MINNESOTA HAMILTON/AVNET ELECTRONICS 7449 Cahill Road Edina, Minnesota 55435 Tei: 612-941-3801 TWX: None — use 910-227-0060 (Regional Hq. in Chicago, III.)

SCHWEBER ELECTRONICS 7402 Washington Avenue S. Eden Prairie, Minnesota 55344 Tel: 612-941-5280

SEMICONDUCTOR SPECIALISTS, INC. 8030 Cedar Avenue S. Minneapolis, Minnesota 55420 Tel: 612-854-8841 TWX: 910-576-2812

MISSOURI

HALLMARK ELECTRONICS, INC. 13789 Rider Trail Earth City, Missouri 63045 Tel: 314-291-5350

HAMILTON/AVNET ELECTRONICS 396 Brookes Lane Hazelwood, Missouri 63042 Tel: 314-731-1144 TWX: 910-762-0606

NEW JERSEY HAMILTON/AVNET ELECTRONICS 218 Little Falls Road Cedar Grove, New Jersey 07009 Tel: 201-239-0800 TWX: 710-994-5787

HAMILTON/AVNET ELECTRONICS 113 Gaither Drive East Gate Industrial Park Mt. Laurel, N.J. 08057 Tel: 609-234-2133 TWX: 710-897-1405

SCHWEBER ELECTRONICS 43 Belmont Drive Somerset, N.J. 08873 Tel: 201-469-6008 TWX: 710-480-4733

STERLING ELECTRONICS 774 Pfeiffer Blvd. Perth Amboy, N.J. 08861 Tel: 201-442-8000 Telex: 138-679

WILSHIRE ELECTRONICS 102 Gaither Drive Mt. Laurel, N.J. 08057 Tel: 215-627-1920

WILSHIRE ELECTRONICS 1111 Paulison Avenue Clifton, N.J. 07011 Tel: 201-365-2600 TWX: 710-989-7052

NEW MEXICO CENTURY ELECTRONICS 11728 Linn Avenue Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625 HAMILTON/AVNET ELECTRONICS 2450 Byalor Drive S.E. Albuquerque, New Mexico 87119 Tel: 505-765-1500 TWX: None — use 910-379-6486 (Regional Hq. in Mt. View, Ca.)

NEW YORK ARROW ELECTRONICS 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800

CRAMER ELECTRONICS 129 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-5682

CRAMER ELECTRONICS 6716 Joy Road E. Syracuse, New York 13057 Tel: 315-437-6671

COMPONENTS PLUS, INC. 40 Oser Avenue Hauppauge, L.I., New York 11787 Tel: 516-231-9200 TWX: 510-227-9869

HAMILTON/AVNET ELECTRONICS 167 Clay Road Rochester, New York 14623 Tel: 716-442-7820 TWX: None — use 710-332-1201 (Regional Hq. in Burlington, Ma.)

HAMILTON/AVNET ELECTRONICS 6500 Joy Road E. Syracuse, New York 13057 Tel: 315-437-2642 TWX: 710-541-0959

HAMILTON/AVNET ELECTRONICS 70 State Street Westbury, L.I., New York 11590 Tel: 516-333-5800 TWX: 510-222-8237

ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main Street (P.O. Box 1971) Rochester, New York 14603 Tel: 716-454-7800

SCHWEBER ELECTRONICS Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX: 510-222-3660

JACO ELECTRONICS, INC. 145 Oser Avenue Hauppauge, L.I., New York 11787 Tel: 516-273-1234 TWX: 510-227-6232

SUMMIT DISTRIBUTORS, INC. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692

NORTH CAROLINA CRAMER ELECTRONICS 938 Burke Street Winston Salem, North Carolina 27102 Tel: 919-725-8711

HAMILTON/AVNET 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: 919-829-8030

HALLMARK ELECTRONICS 1208 Front Street, Bldg. K Raleigh, North Carolina 27609 Tel: 919-823-4465 TWX: 510-928-1831

RESCO Highway 70 West Rural Route 8, P.O. Box 116-B Raleigh, North Carolina 27612 Tel: 919-781-5700

PIONEER/CAROLINA ELECTRONICS 103 Industrial Drive Greensboro, North Carolina 27406 Tel: 919-273-4441

OHIO HAMILTON/AVNET ELECTRONICS 761 Beta Drive, Suite E Cleveland, Ohio 44143 Tel: 216-461-1400 TWX: None — use 910-227-0060 (Regional Hq. in Chicago, III.) HAMILTON/AVNET ELECTRONICS 118 Westpark Road Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531

PIONEER/CLEVELAND 4800 E. 131st Street Cleveland, Ohio 44105 Tel: 216-587-3600

PIONEER/DAYTON 1900 Troy Street Dayton, Ohio 45404 Tel: 513-236-9900 TWX: 810-459-1622

SCHWEBER ELECTRONICS 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441

SHERIDAN/CLEVELAND Unit 28 Versaplex Bldg. 701 Beta Drive Cleveland, Ohio 44143 Tel: 216-461-3300 TWX: 810-427-2957

SHERIDAN SALES CO. (mailing address) P.O. Box 37826 Cincinnati, Ohio 45222 (shipping address) 10 Knollcrest Drive Reading, Ohio 45237 Tei: 513-761-5432 TWX: 810-461-2670

SHERIDAN SALES COMPANY 2501 Neff Road Dayton, Ohio 45414 Tel: 513-223-3332 TWX: 810-459-1732

OKLAHOMA HALLMARK ELECTRONICS 4846 S. 83rd East Avenue Tulsa, Oklahoma 74145 Tel: 918-835-8458 TWX: 910-845-2290

RADIO INC. INDUSTRIAL ELECTRONICS 1000 S. Main Tulsa, Oklahoma 74119 Tel: 918-587-9123

PENNSYLVANIA HALLMARK ELECTRONICS, INC. 458 Pike Road Huntingdon Valley, Pennsylvania 19006 Tel: 215-355-7300 TWX: 510-667-1727

PIONEER/DELEWARE VALLEY ELECTRONICS 141 Gibraltar Road Horsham, Pennsylvania 19044 Tel: 215-674-4000 TWX: 510-665-6778

PIONEER ELECTRONICS, INC. 560 Alpha Drive Pittsburgh, Pennsylvania 15238 Tel: 412-782-2300 TWX: 710-795-3122

SCHWEBER ELECTRONICS 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600

SHERIDAN SALES COMPANY 4297 Greensburgh Pike Suite 3114 Pittsburgh, Pennsylvania 15221 Tel: 412-351-4000

SOUTH CAROLINA DIXLE ELECTRONICS, INC. P.O. Box 408 (Zip Code 29202) 1900 Barnwell Street Columbia, South Carolina 29201 Tel: 803-779-5332

TEXAS ALLIED ELECTRONICS 401 E. 8th Street Fort Worth, Texas 76102 Tel: 817-336-5401

CRAMER ELECTRONICS 13740 Midway Road, Suite 700 Dallas, Texas 75240 Tel: 214-661-9300

HALLMARK ELECTRONICS CORP. 10109 McKalla Place Suite F Austin, Texas 78758 Tel: 512-837-2814

HALLMARK ELECTRONICS 9333 Forest Lane Dallas, Texas 75231 Tel: 214-234-7300

FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA

HALLMARK ELECTRONICS, INC. 8000 Westglen Houston, Texas 77063 Tel: 713-781-6100

HAMILTON/AVNET ELECTRONICS 4445 Sigma Road Dallas, Texas 75240 Tel: 214-661-8661 Telex: HAMAVLECB DAL 73-0511

HAMILTON/AVNET ELECTRONICS 3939 Ann Arbor Houston, Texas 77042 Tel: 713-780-1771 Telex: HAMAVLECB HOU 76-2589

SCHWEBER ELECTRONICS, INC. 14177 Proton Road Dallas, Texas 75240 Tel: 214-661-5010 TWX: 910-860-5493

SCHWEBER ELECTRONICS, INC. 7420 Harwin Drive Houston, Texas 77036 Tel: 713-784-3600 TWX: 910-881-1109

STERLING ELECTRONICS 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 901-881-5042 Telex: STELECO HOUA 77-5299

UTAH CENTURY ELECTRONICS 2258 S. 2700 West Salt Lake City, Utah 84119 Tel: 801-972-6969 TWX: 910-925-5686

HAMILTON/AVNET ELECTRONICS 1585 W. 2100 South Salt Lake City, Utah 84119 Tel: 801-972-2800 TWX: None — use 910-379-6486 (Regional Hq. in Mt. View, Ca.)

WASHINGTON HAMILTON/AVNET ELECTRONICS 13407 Northrup Way Bellevue, Washington 98005 Tel: 206-746-8750 TWX: 910-443-2449

LIBERTY ELECTRONICS 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379

RADAR ELECTRONIC CO., INC. 168 Western Avenue W. Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052

WISCONSIN HAMILTON/AVNET ELECTRONICS 2975 Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510

MARSH ELECTRONICS, INC. 1563 S. 100 Street Milwaukee, Wisconsin 53214 Tel: 414-475-6000

CANADA CAM GARD SUPPLY LTD. 640 42nd Avenue S.E. Calgary, Alberta, T2G 1Y6, Canada Tel: 403-287-0520 Telex: 03-822811

CAM GARD SUPPLY LTD. 10505 111th Street Edmonton, Alberta T5H 3E8, Canada Tel: 403-426-1805 Telex: 03-72960

CAM GARD SUPPLY LTD. 4910 52nd Street Red Deer, Alberta, T4N 2C8, Canada Tel: 403-346-2088

CAM GARD SUPPLY LTD. 825 Notre Dame Drive Kamloops, British Columbia, V2C 5N8, Canada Tel: 604-372-3338

CAM GARD SUPPLY LTD. 1777 Ellice Avenue Winnepeg, Manitoba, R3H 0W5, Canada Tel: 204-786-8401 Telex: 07-57622 CAM GARD SUPPLY LTD. Rookwood Avenue Fredericton, New Brunswick, E3B 4Y9, Canada Tel: 506-455-8891

CAM GARD SUPPLY LTD. 15 Mount Royal Blvd. Moncton, New Brunswick, E1C 8N6, Canada Tel: 506-855-2200

CAM GARD SUPPLY LTD. 3065 Robie Street Halifax, Nova Scotia, B3K 4P6, Canada Tel: 902-454-8581 Telex: 01-921528

CAM GARD SUPPLY LTD. 1303 Scarth Street Regina, Saskatchewan, S4R 2E7, Canada Tel: 306-525-1317 Telex: 07-12667

CAM GARD SUPPLY LTD. 1501 Ontario Avenue Saskatoon, Saskatchewan, S7K 1S7, Canada Tel: 306-652-6424 Telex: 07-42825

ELECTRO SONIC INDUSTRIAL SALES (TORONTO) LTD. 1100 Gordon Baker Rd. Willowdale, Ontario, M2H 3B3, Canada Tei: 416-494-1666 Telex: ESSCO TOR 06-22030

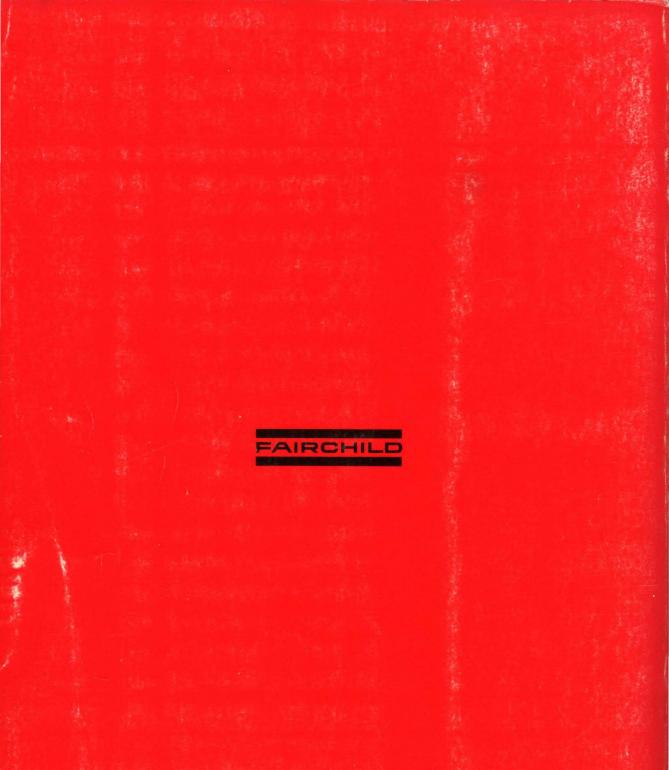
FUTURE ELECTRONICS CORPORATION 130 Albert Street Ottawa, Ontario, K1P 5G4, Canada Tel: 613-232-7757

FUTURE ELECTRONICS CORPORATION 44 Fasket Drive, Unit 24 Rexdale, Ontario, M9W 1K5, Canada Tel: 416-677-7820

FUTURE ELECTRONICS CORPORATION 5647 Ferrier Street Montreal, Quebec, H4P 2K5, Canada Tel: 514-735-5775

HAMILTON/AVNET INTERNATIONAL (CANADA) LTD. 6291 Dorman Rd., Unit 16 Mississauga, Ontario, L4V 1H2, Canada Tel: 416-677-7432 TWX: 610-492-8867

HAMILTON/AVNET INTERNATIONAL (CANADA) LTD. 1735 Courtwood Crescent Ottawa, Ontario, K12 5L9, Canada Tel: 613-226-1700


HAMILTON/AVNET INTERNATIONAL (CANADA) LTD. 2670 Paulus Street St. Laurent, Quebec, H4S 1G2, Canada Tel: 514-331-6443 TWX: 610-421-3731

R.A.E. INDUSTRIAL ELECTRONICS, LTD. 1629 Main Street Vancouver, British Columbia, V6A 2W5, Canada Tel: 604-887-2621 TWX: 610-929-3065 Telex: RAE-VCR 04-54550

SEMAD ELECTRONICS LTD. 625 Marshall Ave., Suite 2 Dorval, Quebec, H9P 1E1, Canada Tel: 514-636-4614 TWX: 610-422-3048

SEMAD ELECTRONICS LTD. 105 Brisbane Road Downsview, Ontario M3J 2K6, Canada Tel: 416-635-9880 TWX: 610-492-2510

SEMAD ELECTRONICS LTD. 1485 Laperriere Avenue Ottawa, Ontario, K1Z 7S8, Canada Tel: 613-722-6571 TWX: 610-562-8966

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice. Manufactured under one of the following U.S. Patents: 2981877, 3014058, 3064167, 3108359, 3117260; other patents pending. Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product. No other circuit patent licenses are implied.

Printed in U.S.A./233-12-0004-078 35M December 1978