

TABLE OF CONTENTS

SECTION 1 INTRODUCTION 1-3
SECTION 2 NUMERICAL INDEX OF DEVICES 2-3
SECTION 3 SELECTION GUIDES AND CROSS REFERENCE
Selector Guide by Function 3-3
SECTION 4 FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION 4-3
SECTION 5 DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS Introduction 5-3
Power Consumption 5-3
Supply Voltage Range 5-4
Propagation Delay 5-5
Noise Immunity 5-7
Interface to TTL 5-7
Input/Output Capacity 5-8
Output Impedance 5-8
Input Protection 5-8
Handling Precautions 5-8
A Word to the TTL Designer 5-8
SECTION 6 JEDEC INDUSTRY STANDARD "B" SERIES CMOS SPECIFICATIONS 6-3
SECTION 7 TECHNICAL DATA
Fairchild 4000B Series CMOS Family Characteristics 7-3
Definition of Symbols and Terms 7-9
Data Sheets 7-11
(See Numerical index of devices for page numbers)
SECTION 8 APPLICATIONS INFORMATION 8-3
SECTION 9 FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES
Ordering Information 9-3
Matrix VI Program 9-7
Unique 38510 Program 9-10
Package Physical Dimensions 9-14
SECTION 10 FAIRCHILD FIELD SALES OFFICES SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS 10-3

NUMERICAL INDEX OF DEVICES

SELECTION GUIDES AND CROSS REFERENCE

FAIRCHILD 4000B SERIES CMOS-
GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B"
SERIES CMOS SPECIFICATIONS

TECHNICAL DATA

APPLICATIONS INFORMATION
 AND PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS

INTRODUCTION

This data book provides complete technical information on Fairchild's 4000B Series Isoplanar CMOS family. The family encompasses a wide range of SSI, MSI and LSI devices offering the designer a complete spectrum of various circuit complexities all at highest performance. For easy reference to this broad range of devices, a number if indices, selection guides and cross references can be found in Sections 2 and 3.

Since the first introduction of CMOS in the early 1970s, and as each new generation of designs was developed, a large variety of functional and performance parameters were generated by the industry creating a great deal of customer confusion.

In late 1976, under the auspices of EIA/JEDEC, the CMOS vendor community accepted the formidable task of clearing this confusion via industry-wide standardization. The result, as found in Section 6 of this book, is the new "Jedec Industry Standard 'B' Series CMOS Specification." Fairchild lauds EIA/JEDEC and the industry in total for such a cooperative and valuable effort and encourages continuation of this trend.

It should be noted that all Fairchild CMOS products have always, since first introduction in early 1974, complied with today's JEDEC CMOS specifications. Furthermore, it should be noted that Fairchild offers the only CMOS family which meets or exceeds all functional and performance parameters of all CMOS devices and generations of devices introduced to date. Fairchild continues to provide leadership in technology.

NUMERICAL INDEX OF DEVICES

SELECTION GUIDES AND CROSS
REFERENCE

FAIRCHILD 4000B SERIES CMOSGENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH FAIRCHILD
$4000 B$ SERIES CMOS

JEDEC INDUSTRY STANDARD "B" SERIES CMOS SPECIFICATIONS

```
TECHNICAL DATA
```


APPLICATIONS INFORMATION

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES. SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS

NUMERICAL INDEX OF DEVICES

LOGIC DEVICES

DEVICE DESCRIPTION PAGE
NO.
4001B Quad 2-Input NOR Gate 7-11
4002B Dual 4-Input NOR Gate 7-11
4006B 18-Stage Static Shift Register 7-13
4007UB Dual Complementary Pair Plus Inverter 7-15
4008B 4-Bit Binary Full Adder 7-17
4011B Quad 2-Input NAND Gate 7-19
4012B Dual 4-Input NAND Gate 7-19
4013B Dual D Flip-Flop 7-21
4014B 8-Bit Shift Register 7-24
4015B Dual 4-Bit Static Shift Register 7-27
4016B Quad Bilateral Switches 7-30
4017B 5-Stage Johnson Counter 7-33
4018B Presettable Divide-by-N Counter (Obsolete - For Ref. Only) 7-36
4019B Quad 2-Input Multiplexer 7-40
4020B 14-Stage Binary Counter 7-42
4021B 8-Bit Shift Register 7-45
4022B 4-Stage Divide-by-8 Johnson Counter 7-47
4023B Triple 3-Input NAND Gate 7-49
4024B 7-State Binary Counter 7-50
4025B Triple 3-Input NOR Gate 7-53
4027B Dual JK Flip-Flop 7-54
4028B 1-of-10 Decoder 7-57
4029B Synchronous Up/Down Counter 7-59
4030B Quad Exclusive-OR Gate 7-64
4031B 64-Stage Static Shift Register 7-65
4034B 8-Bit Universal Bus Register 7-67
4035B 4-Bit Universal Shift Register 7-73
4040B 12-Stage Binary Counter 7-76
4041B Quad True/Complement Buffer (Obsolete - For Ref. Only) 7-79
4042B Quad D Latch 7-81
4043B Quad R/S Latch with 3-State Output (Obsolete - For Ref. Only) 7-84
4044B Quad R/S Latch with 3-State Output 7-88
4045B 21-Stage Binary Counter 7-92
4046B Micropower Phase-Locked Loop 7-93
4047B Monostable/Astable Multivibrator 7-98
4049B Hex Inverting Buffer 7-102
4050B Hex Non-Inverting Buffer 7-102
4051B 8-Channel Analog Multiplexer/Demultiplexer 7-105
4052B Dual 4-Channel Analog Multiplexer/Demultiplexer 7-108
4053B Triple 2-Channel Analog Multiplexer/Demultiplexer 7-111
4066B Quad Bilateral Switches 7-114
4067B 16-Channel Analog Multiplexer/Demultiplexer 7-117

NUMERICAL INDEX OF DEVICES

LOGIC DEVICES

DEVICE DESCRIPTION PAGE
NO.
4068B 8-Input NAND Gate (Obsolete - For Ref. Only) 7-121
4069UB Hex Inverter 7-122
4070B Quad Exclusive-OR Gate 7-124
4071B Quad 2-Input OR Gate 7-125
4073B Triple 3-Input AND Gate (Obsolete - For Ref. Only) 7-126
4075B Triple 3-Input OR Gate (Obsolete - For Ref. Only) 7-127
4076B Quad D Flip-Flop with 3-State Output 7-128
4077B Quad Exclusive-NOR Gate (Obsolete - For Ref. Only) 7-132
4078B 8-Input NOR Gate (Obsolete - For Ref. Only) 7-133
4081B Quad 2-Input AND Gate 7-135
4085B Dual 2-Wide, 2-Input AND-OR-Invert Gate (Obsolete - For Ref. Only) 7-136
4086B 4-Wide, 2-Input AND-OR-Invert Gate 7-138
4093B Quad 2-Input NAND Schmitt Trigger 7-140
40014B Hex Schmitt Trigger 7-263
40085B 4-Bit Magnitude Comparator 7-265
40097B 3-State Hex Non-Inverting Buffer 7-269
40098B 3-State Hex Inverting Buffer 7-269
40161B 4-Bit Synchronous Counter 7-273
40163B 4-Bit Synchronous Counter 7-273
40174B Hex D Flip-Flop 7-279
40175B Quad D Flip-Flop 7-282
40193B 4-Bit Up/Down Binary Counter 7-285
40194B 4-Bit Bi-directional Universal Shift Register (Obsolete - For Ref. Only) 7-289
40195B 4-Bit Universal Shift Register (Obsolete - For Ref. Only) 7-293
4104B Quad Low Voltage to High Voltage Translater with 3-State Outputs 7-142
4510B Up/Down Decade Counter 7-145
4511B BCD to 7-Segment Latch/Decoder/Driver 7-149
4512B $\quad 8$-Input Multiplexer with 3-State Output 7-156
4514B 1-of-16 Decoder/Demultiplexer with Input Latch 7-161
4515B 1-of-16 Decoder/Demultiplexer with Input Latch 7-164
4516B Up/Down Counter 7-167
4518B Dual 4-Bit Decade Counter 7-171
4520B Dual 4-Bit Binary Counter 7-174
4521B 24-Stage Binary Counter 7-177
4522B 4-Bit BCD Programmable Down Counter 7-178
4526B 4-Bit Binary Programmable Down Counter 7-178
4527B BCD Rate Multiplier 7-183
4528B Dual Retriggerable Resettable Monostable Multivibrator 7-185
4531B 13-Input Parity Checker/Generator (Obsolete - For Ref. Only) 7-190
4532B 8-Input Priority Encoder (Obsolete - For Ref. Only) 7-192
4539B Dual 4-Input Multiplexer 7-195
4543B BCD to 7-Segment Latch/Decoder/Driver for Liquid Crystals 7-197

LOGIC DEVICES

DEVICE DESCRIPTION PAGE
NO.
4555B Dual 1-of-4 Decoder Demultiplexer 7-198
4556B Dual 1-of-4 Decoder Demultiplexer 7-198
4557B 1-to-64-Bit Variable Length Shift Register 7-201
4582B Carry Lookahead Generator (Obsolete - For Ref. Only) 7-203
4702B Programmable Bit Rate Generator 7-206
4703B FIFO Buffer Memory 7-214
4710B Register Stack 16×4-Bit RAM with 3-State Output Register 7-229
4720B 256-Bit RAM with 3-State Output 7-234
4722B Programmable Timer/Counter 7-237
4723B Dual 4-Bit Addressable Latch 7-246
4724B 8-Bit Addressable Latch 7-250
4725B 64-Bit RAM with 3-State Output 7-254
4727B 7-Stage Counter 7-257
4731B Quad 64-Bit Static Shift Register 7-259
4741B 4×4 Cross Point Switch 7-261
6508B 1024-Bit (1024×1) CMOS RAM with 3-State Output 7-297

INTRODUCTION

NUMERICAL INDEX OF DEVICES

SELECTION GUIDES AND CROSS REFERENCE

FAIRCHILD 4000 B SERIES CMOS-
GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

TECHNICAL DATA

APPLICATIONS INFORMATION

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

[^0]
SELECTOR GUIDE BY FUNCTION

FUNCTION DESCRIPTION PAGE
Counters
4017B 5-Stage Johnson Counter 7-33
4020B 14-Stage Binary Counter 7-42
4022B 4-Stage Divide-by-8 Johnson Counter 7-47
4024B 7-Stage Binary Counter 7-50
4029B Synchronous Up/Down Counter 7-59
4040B 12-Stage Binary Counter 7-76
4045B 21-Stage Binary Counter 7-92
4510B Up/Down Decade Counter 7-145
4516B Up/Down Counter 7-167
4518B Dual 4-Bit Decade Counter 7-171
4520B Dual 4-Bit Binary Counter 7-174
4521B 24-Stage Binary Counter 7-177
4522B 4-Bit BCD Programmable Down Counter 7-178
4526B 4-Bit Binary Programmable Down Counter 7-178
4722B Programmable Timer/Counter 7-237
4727B 7-Stage Counter 7-257
40161B 4-Bit Synchronous Counter 7-273
40163B 4-Bit Synchronous Counter 7-273
40193B 4-Bit Up/Down Binary Counter 7-285
Registers
4006B 18-Stage Static Shift Register 7-13
4014B 8-Bit Shift Register 7-24
4015B Dual 4-Bit Static Shift Register 7-27
4021B 8-Bit Shift Register 7-45
4031B 64-Stage Static Shift Register 7-65
4034B 8-Bit Universal Bus Register 7-67
4035B 4-Bit Universal Shift Register 7-73
4557B 1-to-64 Variable Length Shift Register 7-201
4731B Quad 64-Bit Static Shift Register 7-259
Decoders and Demultiplexers
4028B 1-of-10 Decoder 7-57
4511B BCD to 7-Segment Latch/Decoder/Driver 7-149
4514B 1-of-16 Decoder/Demultiplexer with Input Latch 7-161
4515B 1-of-16 Decoder/Demultiplexer with Input Latch 7-164
4543B BCD to 7-Segment Latch/Decoder/Driver for Liquid Crystals 7-197
4555B Dual 1-of-4 Decoder Demultiplexers 7-198
4556B Dual 1-of-4 Decoder Demultiplexer 7-198
4723B Dual 4-Bit Addressable Latch 7-246
4724B 8-Bit Addressable Latch 7-250

SELECTOR GUIDE BY FUNCTION

FUNCTION DESCRIPTION PAGE
Digital Multiplexers
4019B Quad 2-Input Multiplexer 7-40
4512B 8-Input Multiplexer with 3-State Output 7-156
4539B Dual 4-Input Multiplexer 7-195
Analog Switches and Multiplexers/Demultiplexers 4016B Quad Bilateral Switch 7-30
4051B 8-Channel Analog Multiplexer/Demultiplexer 7-105
4052B Dual 4-Channel Analog Multiplexer/Demultiplexer 7-108
4053B Triple 2-Channel Analog Multiplexer/Demultiplexer 7-111
4066B Quad Bilateral Switch 7-114
4067B 16-Channel Analog Multiplexer/Demultiplexer 7-117
4741B 4×4 Cross Point Switch 7-261
Latches
4042B Quad D Latch 7-81
4044B Quad R/S Latch with 3-State Output 7-88
4511B BCD to 7-Segment Latch/Decoder/Driver 7-149
4543B BCD to 7-Segment Latch/Decoder/Driver for Liquid Crystals 7-197
4723B Dual 4-Bit Addressable Latch 7-246
4724B 8-Bit Addressable Latch 7-250
40174B Hex D Flip-Flop 7-279
40175B Quad D Flip-Flop 7-282
Translators
4104B Quad Low Voltage to High Voltage Translator with 3-State Output 7-142
Arithmetic Operators
4008B 4-Bit Binary Full Adder 7-17
4527B BCD Rate Multiplier 7-183
40085B 4-Bit Magnitude Comparator 7-265
NAND Gates
4011B Quad 2-Input NAND Gate 7-19
4012B Dual 4-Input NAND Gate 7-19
4023B Triple 3-Input NAND Gate 7-49
4093B Quad 2-Input NAND Schmitt Trigger 7-140
AND Gates
4081B Quad 2-Input AND Gate 7-135

SELECTOR GUIDE BY FUNCTION

FUNCTION DESCRIPTION PAGE
NOR Gates
4001B Quad 2-Input NOR Gate 7-11
4002B Dual 4-Input NOR Gate 7-11
4025B Triple 3-Input NOR Gate 7-53
OR Gates
4071B Quad 2-Input OR Gate 7-125
Inverters and Buffers
4049B Hex Inverting Buffer 7-102
4050B Hex Non-Inverting Buffer 7-102
4069UB Hex Inverter 7-122
40097B 3-State Hex Non-Inverting Buffer 7-269
40098B 3-State Hex Inverting Buffer 7-269
Complex Gates
4007UB Dual Complementary Pair Plus Inverter 7-15
4030B Quad Exclusive-OR Gate 7-64
4070B Quad Exclusive-OR Gate 7-124
4086B 4-Wide, 2-Input AND-OR-Invert Gate 7-138
4093B Quad 2-Input NAND Schmitt Trigger 7-140
40014B Hex Schmitt Trigger 7-263
Flip-Flops
4013B Dual D Flip-Flop 7-21
4027B Dual JK Flip-Flop 7-54
4076B Quad D Flip-Flop with 3-State Output 7-128
40174B Hex D Flip-Flop 7-279
40175B Quad D Flip-Flop 7-282
Memories
4703B FIFO Buffer Memory 7-214
4710B Register Stack 16×4-Bit RAM with 3-State Output Register 7-229
4720B 256-Bit RAM with 3-State Output 7-234
4725B 64-Bit RAM with 3-State Output 7-254
6508B 1024-Bit (1024 x 1) CMOS RAM with 3-State Output 7-297
Frequency Generator
4702B Programmabie Bit Rate Generator 7-206
Multivibrators, Phase-Locked Loops, Timers
4046B Micropower Phase-Locked Loop 7-93
4047B Low-Power Monostable/Astable Multivibrator 7-98
4528B Dual Retriggerable Resettable Monostable Multivibrator 7-185
4722B Programmable Timer/Counter 7-237

INTRODUCTION

NUMERICAL INDEX OF DEVICES

SELECTION GUIDES AND CROSS REFERENCE

FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B"
SERIES CMOS SPECIFICATIONS

TECHNICAL DATA

APPLICATIONS INFORMATION

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES. SALES REPRESENTATIVES AND
DISTRIBUTOR LOCATIONS

FAIRCHILD 4000 SERIES CMOS

GENERAL DESCRIPTION - Fairchild CMOS logic combines popular 4000 series functions with the advanced Isoplanar C process. The result is a logic family with a superior combination of noise immunity and standardized drive characteristics. Under static conditions, these devices dissipate very low power, typically 10 nW per gate. The low power combined with the wide (3 to 15 V) recommended operating supply voltage requirement greatly minimizes power supply costs. The CMOS family is designed with standardized output drive characteristics which, combined with relative insensitivity to output capacitance loading, simplify system design.

- LOW POWER - TYPICALLY 10 nW PER GATE STATIC
- WIDE OPERATING SUPPLY VOLTAGE RANGE 3 TO 15 V RECOMMENDED 18 V ABSOLUTE MAXIMUM
- HIGH NOISE IMMUNITY
- BUFFERED OUTPUTS STANDARDIZE OUTPUT DRIVE AND REDUCE VARIATION OF PROPAGATION DELAY WITH OUTPUT CAPACITANCE
- WIDE OPERATING TEMPERATURE RANGE

$$
\begin{array}{ll}
\text { COMMERCIAL } & -40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C} \\
\text { MILITARY } & -55^{\circ} \mathrm{C} \text { TO }+125^{\circ} \mathrm{C}
\end{array}
$$

- HIGH DC FAN OUT - GREATER THAN 50

ISOPLANAR C

The Fairchild CMOS logic family uses Isoplanar C for high performance. This technology combines local oxidation isolation techniques with silicon gate technology to achieve an approximate 35% to 100% savings in area as shown in Figure 4-1a. Operating speeds are increased due to the self-alignment of the silicon gate and reduced sidewall capacitance.

Conventional CMOS circuits are fabricated on an n-type substrate as shown in Figure 4-1b. The p-type substrate required for complementary n-channel MOS is obtained by diffusing a lightly doped p-region into the n-type substrate. Conventional CMOS fabrication requires more chip area and has slower circuit speeds than Isoplanar C CMOS. This is a result of the $n+$ or $p+$ channel stop which surrounds the p - or n -channels respectively in conventional metal gate CMOS. Silicon gate CMOS (Figure 4-1c) has a negligible reduction in area, though transient performance is improved.

Fig. 4-1a. ISOPLANAR C CMOS STRUCTURE REDUCES AREA 35%

Fig. 4-1c. CONVENTIONAL SILICON GATE CMOS STRUCTURE REDUCES AREA 8\%

FAIRCHILD 4000 SERIES CMOS

FULLY BUFFERED CONFIGURATION DESCRIPTION

Fairchild CMOS logic is designed with the system user in mind. Output buffering is used on all devices to achieve high performance, standardized output drive, highest noise immunity and decreased ac sensitivity to output loading. Figure.4-2 illustrates a conventional unbuffered 2-Input NOR Gate. Either n-channel transistor connected to V_{SS} (ground) conducts when either input is HIGH, causing the output to go LOW through the ON resistance of the device. If both inputs are HIGH, both n-channel devices are on; effectively halving the ON resistance, thereby making the output impedance (and hence fall time) a function of input variables. Similarly the p-channel devices are switched on by LOW signals; i.e., when both inputs are LOW, conduction from $V_{D D}$ to the output will occur.
Since the p-channel devices are in series, their ON resistance must be decreased (larger chip area) to hold output HIGH impedance within specification. As the number of gate inputs increases, even larger p-channel devices are required, and the output impedance to V_{SS} becomes even more pattern sensitive.
A conventional unbuffered CMOS 2-Input NAND Gate interchanges the parallel and serial transistor gating to achieve the NAND function (Figure 4-3). The changes in output resistance then move to the p-channel transistors connected to V_{DD}, while the n-channel devices must be increased in size due to their serial connection.

Fairchild CMOS uses small geometry logic transistors to generate the required function which drive standard low impedance output buffers (Figures $4-4$ and 5). This technique reduces chip size, since only two large output transistors are required and rise and fall times are independent of input pattern. Buffered outputs also increase system speeds and make propagation delay less sensitive to output capacitance. Figure 4-6 illustrates typical propagation delay vs. output capacitance for conventional and buffered CMOS Gates.

Another advantage of the Fairchild approach is improved noise immunity. Because of the increased voltage gain, nearly ideal transfer characteristics are realized as shown in Figure 4-7. The high gain (greater than 10,000) also provides significant pulse shaping; the waveforms of Figures 4-8 and 9 compare the output waveforms of conventional and buffered CMOS gates. For input transition times of 100 ns or less, the outputs of both gate types are similar. When the input transitions are stretched to one microsecond, the conventional gate exhibits increased transition times while the buffered gate has unchanged output transition times. This feature eliminates progressive deterioration of pulse characteristics in a system. The combination of Isoplanar C and buffered outputs results in new standards of CMOS logic performance.

Fig. 4-2. CONVENTIONAL NON-BUFFERED 2-INPUT NOR GATE

Fig. 4-3. CONVENTIONAL NON-BUFFERED 2-INPUT NAND GATE

Fig. 4-4. FAIRCHILD 4001B FULLY BUFFERED NOR GATE

Fig. 4-5. FAIRCHILD 4011B FULLY BUFFERED NAND GATE

Fig. 4-6
COMPARISON OF PROPAGATION DELAY VS LOAD CAPACITANCE FOR CONVENTIONAL AND FULLY

Fig. 4-8
POSITIVE-GOING INPUT RAMPS OF $0.1 \mu \mathrm{~s}$ AND $1.0 \mu \mathrm{~s}$ APPLIED TO CONVENTIONAL AND FULLY

BUFFERED GATES

Fig. 4-7
TYPICAL VOLTAGE TRANSFER CHARACTERISTICS FOR CONVENTIONAL AND FULLY BUFFERED DEVICES

Fig. 4-9
NEGATIVE-GOING INPUT RAMPS OF $0.1 \mu \mathrm{~s}$ AND $1.0 \mu \mathrm{~s}$ APPLIED TO CONVENTIONAL AND FULLY BUFFERED GATES

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B' SERIES CMOS SPECIFICATIONS

TECHNICAL DATA

```
APPLICATIONS INFORMATION
```

[^1]
DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

INTRODUCTION

Complementary MOS digital logic building blocks of SSI and MSI complexity have been hailed as the ideal logic family. They are rapidly gaining popularity as more and more manufacturers introduce increasing numbers of parts at reasonable prices.

Originally designed for aerospace applications, CMOS now finds its way into portable instruments, industrial and medical electronics, automotive applications and computer peripherals, besides dominating the electronic watch market.

In late 1973, Fairchild introduced the Fairchild 4000B CMOS family, using Isoplanar technology to achieve superior electrical performance. Most of these devices are functional equivalents and pin-for-pin replacements of the well-known 4000 series; some are equivalent to TTL circuits and some are proprietary logic designs.

A few CMOS devices, such as bidirectional analog switches, exploit the unique features of CMOS technology; some take advantage of the smaller device size and higher potential packing density to achieve true LSI complexity; but most of the available CMOS elements today are of SSI and MSI complexity and perform logic functions that have been available in DTL or TTL for many years. Therefore, it is both helpful and practical to compare the performance of CMOS with that of
the more familiar DTL/TTL (Figure 5-1). The TTL to CMOS Comparison Guide in Section 3 lists numerous CMOS circuits that are pinout identical to their TTL counterparts, others that are functionally identical only, still others that are similar and, in most cases, offer added features.

CMOS speed is comparable to 74L-TTL and DTL, and about three to six times slower than TTL or Low Power Schottky (LS-TTL). Voltage noise immunity and fan out are almost ideal, supply voltage is noncritical, and the quiescent power consumption is close to zero-several orders of magnitude lower than for any competing technology.

POWER CONSUMPTION

Under static conditions, the p-channel (top) and the n -channel (bottom) transistors are not conducting simultaneously, thus only leakage current flows from the positive (V_{DD}) to the negative (V_{SS}) supply connection. This leakage current is typically 0.5 nA per gate, resulting in very attractive low power consumption of 2.5 nW per gate (at 5 V).

Whenever a CMOS circuit is exercised, when data or clock inputs change, additional power is consumed to charge and discharge capacitances (on-chip parasitic capacitances as well as load capacitances). Moreover, there is a short time during the transition when both the top and the bottom transistors are partially conducting. This dynamic power consumption is

PARAMETER	STANDARD TTL	74L	DTL	LOW POWER SCHOTTKY	$\begin{aligned} & \text { FAIRCHILD } \\ & 4000 \mathrm{~B} \\ & \text { CMOS } \\ & 5 \mathrm{~V} \text { SUPPLY } \end{aligned}$	$\begin{aligned} & \text { FAIRCHILD } \\ & 4000 B \\ & \text { CMOS } \\ & 10 \mathrm{~V} \text { SUPPLY } \end{aligned}$
PROPAGATION DELAY (GATE) FLIP-FLOP TOGGLE FREQUENCY QUIESCENT POWER (GATE) NOISE IMMUNITY FAN OUT	10 ns 35 MHz 10 mW 1 V 10	$\begin{gathered} 33 \mathrm{~ns} \\ 3 \mathrm{MHz} \\ 1 \mathrm{~mW} \\ 1 \mathrm{~V} \\ 10 \end{gathered}$	$\begin{gathered} 30 \mathrm{~ns} \\ 5 \mathrm{MHz} \\ 8.5 \mathrm{~mW} \\ 1 \mathrm{~V} \\ 8 \end{gathered}$	5 ns 45 MHz 2 mW 0.8 V 20	40 ns 8 MHz 10 nW 2 V 50*	$\begin{gathered} 20 \mathrm{~ns} \\ 16 \mathrm{MHz} \\ 10 \mathrm{nW} \\ 4 \mathrm{~V} \\ 50^{*} \end{gathered}$

*OR AS DETERMINED BY ALLOWABLE PROPAGATION DELAY
Fig. 5-1 CMOS COMPARED TO OTHER LOGIC FAMILIES
obviously proportional to the frequency at which the circuit is exercised, to the load capacitance and to the square of the supply voltage. As shown in Figure 5-2, the power consumption of a CMOS gate exceeds that of a Low Power Schottky gate somewhere between 500 kHz and 2 MHz of actual output frequency.

At 100 transitions per second, the dynamic power consumption is far greater than the static dissipation; at one million transitions per second, it exceeds the power consumption of LS-TTL. Comparing the power consumption of more complex devices (MSI) in various technologies may show a different result. In any complex design, only a small fraction of the gates actually switch at the full clock frequency, most gates operate at a much lower average rate and consume, therefore, much less power.

A realistic comparison of power consumption between different technologies involves a thorough analysis of the average switching speed of each gate in the circuit. The small static supply current, $I_{D D}$ is specified on individual data sheets for 5,10 and 15 V . The dynamic power dissipation for 5,10 and $15 \mathrm{~V}, 15$ and 50 pF may be found in graph form for frequencies of 100 Hz to 10 MHz . The total power may be calculated, $\mathrm{P}_{\mathrm{T}}=\left(\mathrm{I}_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}\right)+$ dynamic power dissipation.

SUPPLY VOLTAGE RANGE

CMOS is guaranteed to function over the unprecedented range of 3 to 15 V supply voltage. Characteristics are guaranteed for 5,10 and 15 V operation and can be extrapolated for any voltage in between. Operation below 4.5 V is not very meaningful because of the increase in delay (loss of speed), the increase in output impedance and the loss of noise immunity. Operation above 15 V is not recommended because of high dynamic power consumption and risk of noise spikes on the power supply exceeding the breakdown voltage (typ $>20 \mathrm{~V}$), causing SCR-latch-up and destroying the device unless the current is externally limited.
The lower limit of power supply voltage, including ripple, is determined by the required noise immunity, propagation delay or interface to TTL. The upper limit of supply voltage, including ripple and transients, is determined by power dissipation or direct interface to TTL. The 4049B, 4050B, 4104B, 40097B and 40098B provide level translation between TTL and CMOS when CMOS supply voltages over 5 V are used. While devices are usable to 18 V , operation above 12 V is discouraged for reasons of power dissipation.

Low static power consumption combined with wide supply voltage range make CMOS the ideal logic family for battery operated equipment.

Fig. 5-2
TYPICAL POWER DISSIPATION VERSUS INPUT FREQUENCY FOR SEVERAL POPULAR LOGIC FAMILIES

PROPAGATION DELAY

Compared to TTL and LS-TTL, all CMOS devices are slow and very sensitive to capacitive loading. See Figure 5-3. The Fairchild 4000B family uses both advanced processing (Isoplanar) and improved circuit design (buffered gates) to achieve propagation delays and output rise times that are superior to any other junction-isolated CMOS design. (Silicon-on-sapphire, SOS, can achieve similar performance but at a substantial cost penalty).

Isoplanar processing achieves lower parasitic capacitances which reduce the on-chip delay and increase the maximum toggle frequency of flip-flops, registers and counters. Buffering all outputs, even on gates, results in lower output impedance and thus reduces the effect of capacitive loading.
Propagation delay is affected by three parameters: capacitive loading, supply voltage, and temperature.

Capacitive Loading Effect

Historically, semiconductor manufacturers have always specified the propagation delay at an output load of 15 pF , not because anybody considers this a representative systems environment, but rather because it was the lowest practical test-jig capacitance. It also generated the most impressive specifications. TTL with an output impedance less than 100Ω is little affected by an increase in capacitive loading; a 100 pF load increases the delay by only about 4 ns . CMOS, however, with an output impedance of $1 \mathrm{k} \Omega$ (worst case at 5 V) is 10 times more sensitive to capacitive loading. Figure $5-4$ shows the positive- and negative-going delays as a function of load capacitance. It should be noted that the older, unbuffered gates have an even higher output impedance, a larger dependence on output loading, and do not show the same symmetry.

Fig. 5-3
NORMALIZED PROPAGATION
DELAY VERSUS LOAD
CAPACITANCE FOR TTL AND CMOS

Fig. 5-4a
POSITIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 5-4b NEGATIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Supply Voltage Effect

Figure 5-5 shows propagation delay as a function of supply voltage and again indicates the symmetry of the positive- and negative-going delays. Increasing the supply voltage from 5 to 10 V more than doubles the speed of CMOS gates. Increasing the supply voltage to 15 V almost doubles the speed again, but, as mentioned before, results in a significant increase in dynamic power dissipation.
The best choice for slow applications is 5 V . For reasonably fast systems, choose 10 or 12 V . Any application requiring 15 V to achieve short delays and fast operation should be investigated for excessive power dissipation and should be weighed against an LS-TTL approach.

Fig. 5-5a
POSITIVE-GOING PROPAGATION

Fig. 5-5b
NEGATIVE-GOING PROPAGATION ELAY VERSUS POWER SUPPLY VOLTAGE

Temperature Effect

Figure 5-6 shows propagation delay as a function of ambient temperature. The temperature dependence of CMOS is much simpler than with TTL, where three factors contributeincrease of beta with temperature, increase of resistor value with temperature, and decrease of junction forward voltage drop with increasing temperature. In CMOS, essentially only the carrier mobility changes, thus increasing the impedance and hence the delay with temperature. For 4000B devices, this temperature dependence is less than 0.3% per ${ }^{\circ} \mathrm{C}$, practically linear over the full temperature range. Note that the commercial temperature range is -40 to $+85^{\circ} \mathrm{C}$ rather than the usual 0 to $+75^{\circ} \mathrm{C}$.

Fig. 5-6a
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE

Fig. 5-6b
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE WITH VDD $=10 \mathrm{~V}$

CMOS delays increase with temperature. They are very sensitive to capacitive loading but can be reduced by increasing the supply voltage to 10 or even 15 V .

To determine propagation delays, the effects of capacitive loading, supply voltage, manufacturing tolerances and ambient temperature must be considered. Start with the values of t PLH (propagation delay, a LOW-to-HIGH output transition) and tPHL (propagation delay, a HIGH-to-LOW output transition) given in the individual data sheets. Delay values for V_{DD} at 5 , 10 and 15 V and output capacity of 50 pF is provided. Manufacturing tolerances account for the differences between MIN, TYP and MAX. Starting with the nearest applicable delay value, correct for effects of capacitive loading, ambient temperature and supply voltage using the general family characteristics of Section 7.

Fig. 5-7
TYPICAL TRANSFER CHARACTERISTICS FOR TTL AND CMOS

NOISE IMMUNITY

One of the most advertised and also misunderstood CMOS features is noise immunity. The input threshold of a CMOS gate is approximately 50% of the supply voltage and the voltage transfer curve is almost ideal. As a result, CMOS can claim very good voltage noise immunity, typically 45% of the supply voltage, i.e., 2.25 V in a 5 V system, 4.5 V in a 10 V system. Compare this with the TTL transfer curve in Figure 5-5 and its resultant 1 V noise immunity in a lightly loaded system and only 0.4 V worst case.

Since CMOS output impedance, output voltage and input threshold are symmetrical with respect to the supply voltage, the LOW and HIGH level noise immunities are practically equal. Therefore, a CMOS system can tolerate ground or V_{DD} drops and noise on these supply lines of more than 1 V , even in a 5 V system. Moreover, the inherent CMOS delays act as a noise filter; 10 ns spikes tend to disappear in a chain of CMOS gates, but are amplified in a chain of TTL gates. Because of these features, CMOS is very popular with designers of industrial control equipment that must operate in an electrically and electromagnetically "polluted" environment.

Unfortunately these impressive noise margin specifications disregard one important fact: the output impedance of CMOS is 10 to 100 times higher than that of TTL. CMOS interconnections are therfore less "stiff" and much more susceptible to capacitively coupled noise. In terms of such current injected crosstalk from high noise voltages through small coupling capacitances, CMOS has about six times less noise margin than TTL. It takes more than 20 mA to pull a TTL output into the threshold region, but it takes only 3 mA to pull a CMOS output into the threshold of a 5 V system.

The nearly ideal transfer characteristic and the slow response of CMOS circuits make them insensitive to low voltage, magnetically coupled noise. The high output impedance, however, results in a poor rejection of capacitively coupled noise.

INTERFACE TO TTL

When CMOS is operated with a 5 V power supply, interface to TTL is straightforward. The input impedance of CMOS is very high, so that any form of TTL will drive CMOS without loss of fan out in the LOW state. Unfortunately, most TTL has insufficient HIGH state voltage (typically 3.5 V) to drive CMOS reliably. A pull up resistor ($1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) from the output of the TTL device to the 5 V power supply will effectively pull the HIGH state level to 4.5 V or above. Alternately, DTL Hex inverters may be used between the TTL and CMOS. 9LS Low Power Schottky and 93L00 Low Power TTL/MSI utilize the unique output configuration shown in Figure 5-8 to pull its output to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BC}}$ or approximately 4.3 V when lightly loaded.

All Fairchild 4000B logic elements will drive a single 9LS Low Power Schottky input fan in directly. A 9LS Hex inverter such as the 9LS04 makes an excellent low cost TTL buffer with a fan out of 20 into 9LS or 5 into standard TTL. Alternately, the 4049B and 4050B Hex buffers may be used to drive a fan out of 8 into 9 LS or 2 into standard TTL.

When operating CMOS at voltage higher than 5 V direct interface to TTL cannot be used. The 4104B Quad Level Translator converts TTL levels to high voltage CMOS up to 15 V . The 4049B and 4050B Hex Buffers will accept high voltage CMOS levels up to 15 V and drive 2 standard TTL loads.

Fig. 5-8
THE 93L00 AND 9LS00 TTL FAMILIES WILL DRIVE CMOS DIRECTLY WITH-

OUT RESISTORS AS LONG AS
THERE ARE ONLY CMOS DEVICES
BEING DRIVEN FROM THE OUTPUT.

INPUT/OUTPUT CAPACITY

CMOS devices exhibit input capacities in the 1.5 to 5 pF range and output capacity in the 3 to 7 pF range.

OUTPUT IMPEDANCE

All Fairchild 4000B logic devices employ standardized output buffers. Section 7 details output characteristics. It should be noted that these impedances do not change with input pattern as do conventional CMOS gates. Buffers, analog switches and analog multiplexers employ special output configurations which are detailed in individual data sheets.

INPUT PROTECTION

The gate input to any MOS transistor appears like a small $(<1 \mathrm{pF})$ very low leakage $\left(<10^{-12} \mathrm{~A}\right)$ capacitor. Without special precautions, these inputs could be electrostatically charged to a high voltage, causing a destructive breakdown of the dielectric and permanently damaging the device. Therefore, all CMOS inputs are protected by a combination of series resistor and shunt diodes. Various manufacturers have used different approaches; some use a single diode, others use two diodes, and some use a resistor with a parasitic substrate diode.

Each member of the Fairchild 4000B family utilizes a series resistor, nominally 200Ω, and two diodes, one to V_{DD}, and the other to V_{SS} (Figure 5-9). The resistor is a poly-silicon "true resistor" without a parasitic substrate diode. This ensures that the input impedance is always at least 200Ω under all biasing conditions, even when $V_{D D}$ is short circuited to V_{SS}. A parasitic substrate diode would represent a poorly defined shunt to V_{SS} in this particular case.

The diodes exhibit typical forward voltage drops of 0.9 V at 1 mA and reverse breakdowns of 20 V for D1 and 20 V for D2. For certain special applications such as oscillators, the diodes actually conduct during normal operation. However, currents must be limited to 10 mA .

HANDLING PRECAUTIONS

All MOS devices are subject to damage by large electrostatic charges. All Fairchild 4000B devices employ the input protection described in Figure 5-9, however, electrostatic damage can still occur. The following handling precautions should be observed.

1. All Fairchild 4000 B devices are shipped in conducting foam or antistatic tubes. They should be removed for inspection or assembly using proper precautions.
2. Ionized air blowers are recommended when automatic incoming inspection is performed.
3. Fairchild 4000 B devices, after removal from their shipping material, should be placed leads down on a grounded surface. Conventional cookie tins work well. Under no circumstances should they be placed in polystyrene foam or plastic trays used for shipment and handling of conventional ICs.
4. Individuals and tools should be grounded before coming in contact with 4000B devices.
5. Do not insert or remove devices in sockets with power applied. Ensure power supply transients, such as occur during power turn-on or off; do not exceed maximum ratings.
6. In the system, all unused inputs must be connected to either a logic HIGH or logic LOW level such as $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$ or the output of a logic element.
7. After assembly on PC boards, ensure that static discharge cannot occur during storage or maintenance. Boards may be stored with their connectors surrounded with conductive foam. Board input/output pins may be protected with large value resistors ($10 \mathrm{M} \Omega$) to ground.
8. In extremely hostile environments, an additional series input resistor (10 to $100 \mathrm{k} \Omega$) provides even better protection at a slight speed penalty.

A WORD TO THE TTL DESIGNER

Designing with CMOS is generally an easy transition and allows the designer to discard many of the old design inhibitions for new found freedoms. A few of these are:

Fan out-It is practically unlimited from a dc point of view and is restricted only by delay and rise time considerations.

Power Supply Regulation-Anything between 3 V and 15 V goes, as long as all communicating circuits are fed from the same voltage.

Ground and $\mathrm{V}_{\text {CC }}$ Line Drops-The currents are normally so small that there is no need for heavy supply line bussing.
$\mathrm{V}_{\mathbf{C C}}$ Decoupling-It can be reduced to a few capacitors per board.

Heat Problems-They do not exist, unless an attempt is made to run CMOS very fast and from more than 10 V .

It should also be noted that there are a few warnings called for when designing with CMOS and that many of the hard-earned good engineering basics cannot be forgotten. A few of the new design challenges include:

Unused Inputs-They must be connected to V_{SS} or V_{DD} (V_{CC} or ground) lest they generate a logical "maybe". The bad TTL habit of leaving unused inputs open is definitely out.

Oscillations-Slowly rising or falling input signals can lead to oscillations and multiple triggering. A poorly regulated and decoupled power supply magnifies this problem since the CMOS input threshold varies with the supply voltage.

Timing Details-Even slow systems require a careful analysis of worst case timing delays, derated for maximum temperature, minimum supply voltage and maximum capacitive loading. Many CMOS flip-flops, registers and latches have a real hold time requirement, i.e., inputs must remain stable even after the active clock edge; some require a minimum clock rise time. This hasn't been a problem with TTL. CMOS systems, even slow ones, are prone to unsuspected clock skew problems, especially since a heavily loaded clock generator can have a poor rise time.

Compatibility-The TTL designer knows that devices sold by different manufacturers under the same generic part number are electrically almost identical. Many semiconductor houses manufacture 4000-type devices with wide variations in output drive capability and speed. Sometimes even the functions are different and incompatible; two cases in point are the 1-of-10 decoder (CD4028A and MC14028) and the magnitude comparator (MC14585 and MM74C85).

Data Sheet Format-The original CMOS data sheets may appear confusing to the TTL user because a range of input voltage requirements is not specified. Rather, this information is contained in a "noise immunity" specification and is not immediately obvious.

Both TTL and CMOS tolerate deviations from the ideal LOW and HIGH input voltages. TTL is therefore specified as follows:

	MIN	MAX	
$\mathrm{V}_{\text {IH }}$	2.0		V
$\mathrm{~V}_{\text {IL }}$		0.8	V

Any voltage below 0.8 V is considered LOW; any voltage above +2.0 V is considered HIGH. The actual threshold is somewhere in between these values, depending on manufacturing tolerances, supply voltage, and temperature.
Fairchild's 4000B CMOS is specified in a similar way. For $V_{D D}=5 \mathrm{~V}$;

	MIN	MAX	
$\mathrm{V}_{\text {IH }}$	3.5		V
$\mathrm{~V}_{\text {IL }}$		1.5	V

The CD4000 data sheets, on the other hand, do not call out $V_{\text {IH }}$ and $V_{\text {IL }}$ but specify a "noise immunity" which is somewhat arbitrarily defined relative to the appropriate supply voltage.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{NH}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}
\end{aligned}
$$

For $V_{D D}=5 \mathrm{~V}$, therefore
$\mathrm{V}_{\mathrm{NL}}=1.5 \mathrm{~V}$ min is equivalent to $\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}$ max
$\mathrm{V}_{\mathrm{NH}}=1.4 \mathrm{~V}$ min is equivalent to $\mathrm{V}_{\text {IH }}=3.6 \mathrm{~V}$ min, etc.
Systems Oriented MSI-Available CMOS circuits, especially the original 4000 series, are not as well suited for synchronous systems as are the 9300/7400 TTL families. Control polarities are inconsistent; many circuits cannot be cascaded or extended synchronously without additional gates, etc. This will improve as more good synchronous building blocks, like the 40160B are introduced.

NUMERICAL INDEX OF DEVICES
2
SELECTION GUIDES AND CROSS
REFERENCE

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B"

TECHNICAL DATA

FAIRCHILD FIELD SALES OFFICES
SALES REPRESENTATIVES AND

JEDEC Industry Standard "B" Series
 CMOS

Throughout first half of 1976 the CMOS vendor industry, in total, was invited to participate in the generation of a new JEDEC Industry Standard CMOS "B" Series specification. Unanimous agreement was reached and confirmed by industrywide ballot in late 1976.

This section is meant to extend knowledge of the new Industry Standard "B" Series CMOS specification to the customer and ensure that all Fairchild CMOS products meet or exceed all specifications of the new JEDEC standard.

In fact, since first introduction of the Isoplanar CMOS Family in 1973, all Fairchild CMOS products have been designed and tested to meet or exceed the more recently announced JEDEC specifications. The following is a compilation of the definitions and parametric specifications as listed in the JEDEC "Standard Specifications for description of 'B' Series CMOS devices'.

1. PURPOSE AND SCOPE

1. Purpose

To develop a standard of " B " Series CMOS Specifications to provide for uniformity, multiplicity of sources, elimination of confusion, and ease of device specification and system design by users.

1.2 Scope

This Tentative Standard covers standard specifications for description of " B " Series CMOS devices.

2. DEFINITIONS

2.1 "B" Series
" B " Series CMOS includes both buffered and unbuffered devices.

2.2 "Buffered"

A buffered output is one that has the characteristic that the output "on" impedance is independent of any and all valid input logic conditions, both preceding and present.

3. STANDARD SPECIFICATIONS

3.1 Listing of Standard DC Specifications. Table 6-2 lists the standard dc specifications for "B" Series CMOS devices.
3.2 Absolute Maximum Ratings. In the maximum ratings listed below voltages are referenced to VSS.

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage	VDD	-0.5 to +18	Vdc
Input Voltage	VIN	-0.5 to VDD +0.5	Vdc
DC Input Current \quad (any one input)	IIN	± 10	mAdc
Storage Temperature Range			

3.3 Recommended Operating Conditions. Recommended operating conditions are listed below.

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage	VDD	+3 to +15	Vdc
Operating Temperature Range	TA		
\quad Military-Range Devices		-55 to +125	${ }^{\circ} \mathrm{C}$
Commercial-Range Devices		-40 to +85	${ }^{\circ} \mathrm{C}$

3.4 Designation of " B " Series CMOS Devices

Those parts which have analog inputs and/or outputs shall be included in the " B " Series providing those parts' maximum ratings and logical input and output parameters conform to the " B " Series, such as (including, but not limited to):

Schmitt Triggers
Analog Switches and Multiplexers
One Shot Multivibrators and Oscillators
4511B BCD to 7-Segment Latch/Decoder/Driver 4046B Micropower Phase Lock Loop

Products that meet " B " Series specifications except that the logical outputs are not buffered and the VIL and $V_{I H}$ specifications differ from " B " series as shown in Table $6-1$ shall be marked with the UB designation, such as (including, but not limited to):

> 4007UB
> 4069UB

Table 6-1. INPUT VOLTAGE LEVELS FOR "UB" PRODUCTS

PARAMETER		TEMP RANGE	VDD (Vdc)	CONDITIONS	LIMITS			UNITS	
		TLOW			$25^{\circ} \mathrm{C}$	THIGH			
$\begin{aligned} & V_{I L} \\ & (\max) \end{aligned}$	Input LOW Voltage		All	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}= \\ & 0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & 1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & 1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \left\|I_{\mathrm{O}}\right\| \leqslant 1 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2.5 \end{aligned}$	V
$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}} \\ & (\mathrm{~min}) \end{aligned}$	Input HIGH Voltage	All	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \\ & 0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & 1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & 1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \mid \mathrm{I}_{\mathrm{O}} \leqslant 1 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4 \\ 8 \\ 12.5 \end{gathered}$	$\begin{gathered} 4 \\ 8 \\ 12.5 \end{gathered}$	$\begin{gathered} 4 \\ 8 \\ 12.5 \end{gathered}$	V	

Table 6-2. STANDARDIZED "B" SERIES CMOS SPECIFICATIONS

[^2]3.5 Listing of Standard A C (Dynamic) Test Methods and Definitions.

Figure 6-1 shows the standard AC (Dynamic) test configuration and conditions. Dynamic electrical symbols and parametric definitions are listed in Table 6-3. Figures $6-2$ through $6-5$ show standard $A C$ characteristic test waveforms.

Fig. 6-1 TEST CONFIGURATION AND CONDITIONS

Table 6-3. DYNAMIC ELECTRICAL SYMBOLS AND DEFINITIONS

CHARACTERISTIC	SYMBOL	LIMITS		NOTES
		MAX.	MIN.	
PROPAGATION DELAY:		-		
Outputs going HIGH-to-LOW	${ }^{\text {tPHL }}$	x		
Outputs going LOW-to-HIGH	tplH	x		
OUTPUT TRANSITION TIME:				
Outputs going HIGH-to-LOW	${ }^{\text {t }}$ THL	x		
Outputs going LOW-to-HIGH	${ }^{\text {t }}$ TLH	X		
PULSE WIDTH - Set, Reset, Preset, Enable, Disable, Strobe, Clock	twL or twh		X	1
CLOCK INPUT FREQUENCY	FCL		x	1,2
CLOCK INPUT RISE \& FALL TIME	$\mathrm{tr}_{\mathrm{r}} \mathrm{CL}, \mathrm{t}_{\mathrm{f}} \mathrm{CL}$	x		
SET-UP TIME	${ }^{\text {tSu}}$		x	1
HOLD-TIME	${ }^{\text {th }}$		x	1
REMOVAL TIME - Set, Reset, Preset, Enable	${ }^{\text {trem }}$		x	1
three state delay times:				
HIGH level-to-righ impedance	tphz	x		
High impedance-to-LOW level	tPZL	x		
LOW level-to-high impedance	tplz	x		
High impedance-to-HIGH level	tPZH	x		

NOTES:

1) By placing a defining min or max in front of definition, the limits can change from min to max, or vice versa.
2) Clock input waveform should have a 50% duty cycle and be such as to cause the outputs to be switching from $10 \% \mathrm{~V}_{\mathrm{DD}}$ to $90 \% \mathrm{~V}_{\mathrm{DD}}$ in accordance with the device truth table.

Fig. 6-2 TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATIONAL LOGIC

Fig. 6-3 CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH*

*Outputs should be switching from $10 \% \mathrm{~V}_{\mathrm{DD}}$ to $90 \% \mathrm{~V}_{\mathrm{DD}}$ in accordance with device truth table.

Fig. 6-4 SETUP TIMES, HOLD-TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR POSITIVE EDGE-TRIGGERED SEQUENTIAL LOGIC CIRCUITS.

Fig. 6-5 3-STATE PROPAGATION DELAY WAVEFORMS

Fig. 6-6 THREE-STATE PROPAGATION DELAY TEST CIRCUIT

As defined by the above Industry Standard Specification, Fairchild offers the following devices:

4001B	4024B	4070B	4543B	40161B
4002B	4025B	4071B	4555B	40163B
4006B	4027B	4076B	4557B	40174B
4007UB	4028B	4081B	4702B	40175B
4008B	4029B	4086B	4703B	40193B
4011B	4030B	4093B	4710B	6508B
4012B	4031B	4104B	4720B	
4013B	4034B	4510B	4722B	
4014B	4035B	4511B	4723B	
4015B	4040B	4512B	4724B	
4016B	4042B	4514B	4725B	
4017B	4044B	4515B	4727B	
4019B	4045B	4516B	4731 B	
4020B	4046B	4518B	4734B	
4021B	4047B	4520B	4741 B	
4022B	4049B	4521B	40085B	
4023B	4050B	4522B	40097B	
	4051B	4526B	40098B	
	4052B	4527B		
	4053B	4528B		
	4066B	4539B		
	4067B			
	4069UB			

To order Fairchild Industry Standard "B" Series CMOS . . .

ORDER AND PACKAGE INFORMATION

Fairchild integrated circuits may be ordered using a simplified purchasing code where the package style and temperature range are defined as follows:

PACKAGE CODE

$D=$ Dual In-line - Ceramic (hermetic)
P = Dual In-line - Plastic
F = Flatpak

TEMPERATURE RANGE CODE

C = Commercial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NUMERICAL INDEX OF DEVICES

SELECTION GUIDES AND CROSS REFERENCE

FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B" SERIES CMOS SPECIFICATIONS

TECHNICAL DATA

APPLICATIONS INFORMATION

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES. SALES REPRESENTATIVES AND

FAIRCHILD 4000B SERIES CMOS FAMILY CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Non-operating) above which useful life may be impaired. All voltages are referenced to $V_{\text {SS }}$.

RECOMMENDED OPERATING CONDITIONS

Fairchild CMOS will operate over a recommended $V_{D D}$ power supply range of 3 to 15 V , as referenced to V_{SS} (usually ground). Parametric limits are guaranteed for $V_{D D}$ equal to 5,10 and 15 V . Where low power dissipation is required, the lowest power supply voltage, consistent with required speed, should be used. For larger noise immunity, higher power supply voltages should be specified. Because of its wide operating range, power supply regulation and filtering are less critical than with other types of logic. The lower limit of supply regulation is 3 V , or as determined by required system speed and/or noise immunity or interface to other logic. The recommended upper limit is 15 V or as determined by power dissipation constraints or interface to other logic.
Unused inputs must be connected to $V_{D D}, V_{S S}$ or another input.
Care should be used in handling CMOS devices; large static charges may damage the device.
Operating temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for Commercial and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for Military.

PARAMETER	$4000 B X C$			4000 BXM			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage, VDD	3		15	3		15	V
Operating Free Air Temperature Range	-40	+25	+85	-55	+25	+125	${ }^{\circ} \mathrm{C}$

$X=$ Package Type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Ordering Information section.

DC CHARACTERISTICS FOR THE 4000B SERIES CMOS FAMILY - Parametric Limits listed below are guaranteed for the entire Fairchild CMOS Family unless otherwise specified on the individual data sheets.

DC CHARACTERISTICS: $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER			LIMITS			UNITS	TEMP	TEST CONDITIONS		
				MIN	TYP	MAX					
$V_{1 H}$	Input HIGH Voltage			3.5			V	All	Guaranteed Input HIGH Voltage		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					1.5	V	All	Guaranteed Input Low Voltage		
V_{OH}	Output HIGH Voltage			$\begin{aligned} & 4.95 \\ & 4.95 \end{aligned}$			V	$\begin{gathered} \text { Min, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}<1 \mu \mathrm{~A}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
				4.5			V	All	$\mathrm{I}^{\mathrm{OH}}<1 \mu \mathrm{~A}$, Inputs at 1.5 or 3.5 V		
V OL	Output LOW Voltage					$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
						0.5	V	All	$1 \mathrm{OL}<1 \mu \mathrm{~A}$, Inputs at 1.5 or 3.5 V		
${ }^{1} \mathrm{OH}$	Output HIGH Current			$\begin{aligned} & -0.63 \\ & -0.36 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 4.6 \mathrm{~V} \end{aligned}$	Inputs at $\mathbf{0}$ or 5 V per the Logic Function or Truth Table	
${ }^{1} \mathrm{OL}$	Output LOW Current			1 0.8 0.4			mA	$\begin{aligned} & \text { MIN, } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 0.4 \mathrm{~V} \end{aligned}$		
$\mathrm{CIN}_{\text {I }}$	Input Capacitance Per Unit Load					7.5	pF	$25^{\circ} \mathrm{C}$	Any Input		
IDD	Quiescent Power Supply Current	Gates	XC			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						7.5		MAX			
			XM			0.25	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						7.5		MAX			
		Buffers and Flip-Flops	XC			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						30		MAX	All Inputs at 0 V or V_{DD} for all Valid Input Combinations		
			XM			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						30		MAX			
		MSI	XC			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						150		MAX			
			XM			5	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
						150		MAX			

DC CHARACTERISTICS: $V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER			LIMITS			UNITS	TEMP	TEST CONDITIONS	
				MIN	TYP	MAX				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			7			V	All	Guarante	nput HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage					3	V	All	Guarant	nput LOW Voltage
V_{OH}	Output HIGH Voltage			$\begin{aligned} & 9.95 \\ & 9.95 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}<1$ the Logic	Inputs at 0 V or 10 V per nction or Truth Table
				9			V	All	${ }^{1} \mathrm{OH}<1$	Inputs at 3 or 7 V
V_{OL}	Output LOW Voltage					$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}<1$ the Logic	Inputs at 0 or 10 V per nction or Truth Table
						1.	V	All	$\mathrm{I}_{\mathrm{OL}}<1$, Inputs at 3 or 7 V
${ }^{1} \mathrm{OH}$	Output HIGH Current			$\begin{gathered} \hline-1.4 \\ -0.8 \end{gathered}$			mA	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 9.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 10 V per
${ }^{1} \mathrm{OL}$	Output LOW Current			$\begin{aligned} & 2.6 \\ & 2 \\ & 1.2 \\ & \hline \end{aligned}$			mA	$\begin{aligned} & \text { MIN, } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 0.5 \mathrm{~V} \end{aligned}$	the Logic Function or Truth Table
$\mathrm{CIN}^{\text {IN }}$	Input Capacitance Per Unit Load					7.5	pF	$25^{\circ} \mathrm{C}$	Any Inp	
${ }^{\prime}$ DD	Quiescent Power Supply Current	Gates	XC			2	$\mu \mathrm{A}$	$\frac{\text { MIN, } 25^{\circ} \mathrm{C}}{\text { MAX }}$	All Inputs at 0 V or V_{DD} for All Valid Input Combinations	
			XM			0.5	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$		
						15		MAX		
		Buffers, Flip-Flops	XC			8	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$		
						60		MAX		
			XM			2		MIN, $25^{\circ} \mathrm{C}$		
			XM			60	$\mu \mathrm{A}$	MAX		
		MSI	Xc			40	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$		
						300		MAX		
			XM			10	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$		
						300		MAX		

FAIRCHILD 4000B SERIES CMOS FAMILY CHARACTERISTICS

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER				IMITS		UNITS	TEMP	TEST CONDITIONS
				MIN	TYP	MAX			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			11			V	All	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage					4	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage			$\begin{aligned} & 14.95 \\ & 14.95 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}<1 \mu \mathrm{~A}$, Inputs at 0 or 15 V per the Logic Function or Truth Table
				13.5			V	All	$\mathrm{I}_{\mathrm{OH}}<1 \mu \mathrm{~A}$, Inputs at 4 or 11 V
V_{OL}	Output LOW Voltage					$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A}$, Inputs at 0 or 15 V per the Logic Function or Truth Table
						1.5	V	All	${ }^{1} \mathrm{OL}<1 \mu \mathrm{~A}$, Inputs at 4 or 11 V
IIN	Input Current		XC			$\begin{aligned} & 0.3 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Lead under test at 0 or 15 V All other Inputs Simultaneously at 0 or 15 V
			XM			$\begin{aligned} & 0.1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{1} \mathrm{OH}$	Output HIGH Current			$\begin{aligned} & \hline-4.5 \\ & -2.7 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=$ 13.5 V \quad Inputs at 0 or 15 V per
${ }^{1} \mathrm{OL}$	Output LOW Current			$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$			mA	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	$\mathrm{V}_{\text {OUT }}=$ the Logic Function or 1.5 V Truth Table
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance Per Unit Load					7.5	pF	$25^{\circ} \mathrm{C}$	Any Input
${ }^{1}$ DD	Quiescent Power Supply Current	Gates	XC			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or $\mathrm{V}_{\text {DD }}$ for all Valid Input Conditions
						30		MAX	
			XM			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
						30		MAX	
		Buffers, Flip-Flops	XC			16	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
						120		MAX	
			XM			4		MIN, $25^{\circ} \mathrm{C}$	
						120	$\mu \mathrm{A}$	MAX	
		MSI	XC			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
						600		MAX	
			XM			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
						600		MAX	

TYPICAL FAIRCHILD 4000B SERIES CHARACTERISTICS

Fig. 7-1
POSITIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 7-2
NEGATIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 7-3
POSITIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 7-4 NEGATIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 7-7
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=5.0 \mathrm{~V}$

Fig. 7-10
p-CHANNEL DRAIN CHARACTERISTICS

VDS - DRAIN TO SOURCE VOLTAGE - V

Fig. 7-5
VOLTAGE TRANSFER CHARACTERISTICS OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ RANGE

Fig. 7-8
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=10 \mathrm{~V}$

Fig. 7-11
n-CHANNEL DRAIN CHARACTERISTICS

VDS - DRAIN TO SOURCE VOLTAGE - v

Fig. 7-6
GATE POWER DISSIPATION VERSUS FREQUENCY

Fig. 7-9
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=15 \mathrm{~V}$

Fig. 7-12
OUTPUT TRANSITION TIME $\stackrel{n}{\bullet}$ VERSUS LOAD CAPACITANCE

C_{L} - LOAD CAPACITANCE - pF

Fig. 7-13
INPUT PROTECTION CIRCUIT

INPUT CIRCUITRY
All inputs are protected by the network of Figure 7-13; a series input resistor plus diodes D1 and D2 clamp input voltages between $V_{S S}$ and $V_{D D}$. Forward conduction of these diodes is typically 0.9 V at 1 mA . When V_{SS} or V_{DD} is not connected, avalanche breakdown of the diodes limit input voltage; D1 typically breaks down at 20 V , D2 at 20 V . In normal logic operation the diodes never conduct, but for certain special applications such as oscillators, circuit operation may actually depend on diode conduction. Operation in this mode is permissible so long as input currents do not exceed 10 mA .

Input capacitance is typically 5 pF across temperature for any input.

DEFINITION OF SYMBOLS AND TERMS

CURRENTS - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device.
$I_{I N}$ - (Input Current) - The current flowing into a device at specified input voltage and $V_{D D}$.
${ }^{\prime} \mathrm{OH}$ - (Output HIGH Current) - The drive current flowing out of the device at specified HIGH output voltage and V_{DD}.
$I_{\text {OL }}$ (Output LOW Current) - The drive current flowing into the device at specified LOW output voltage and VD.
$I_{D D}$ - (Quiescent Power Supply Current) - The current flowing into the V_{DD} lead at specified input and V_{DD} conditions.
${ }^{\prime}$ OZH - (Output OFF Current HIGH) - The leakage current flowing into the output of a 3-state device in the "OFF" state at a specified HIGH output voltage and $V_{D D}$.

IOZL - (Output OFF Current LOW) - The leakage current flowing out of a 3-state device in the "OFF" state at a specified HIGH output voltage and V_{DD}.
$I_{I L}$ - (Input Current LOW) - The current flowing into a device at a specified LOW level input voltage and a specified $V_{D D}$.
I_{IH} - (Input Current HIGH) - The current flowing into a device at a specified HIGH level input voltage and a specified $V_{D D}$.
IDDL - (Quiescent Power Supply Current LOW) - The current flowing into the $V_{D D}$ lead with a specified LOW level input voltage on all inputs and specified $V_{D D}$ conditions.
$I_{D D H}$ - (Quiescent Power Supply Current HIGH) - The current flowing into the $\mathrm{V}_{\text {DD }}$ lead with a specified HIGH level input voltage on all inputs and specified $V_{D D}$ conditions.
I^{Z} - (OFF State Leakage Current) - The leakage current flowing into the output of a 3 -state device in the "OFF" state at a specified output voltage and $V_{D D}$.

VOLTAGES - All voltages are referenced to V_{SS} (or $\mathrm{V}_{E E}$) which is the most negative potential applied to the device.
V_{DD} - (Drain Voltage) - The most positive potential on the device.
V_{IH} - (Input HIGH Voltage) - The range of input voltages that represents a logic HIGH level in the system.
V_{IL} - (Input LOW Voltage) - The range of input voltages that represents a logic LOW level in the system.
$\mathrm{V}_{I H}$ (min) - (Minimum Input HIGH Voltage) - The minimum allowed input HIGH level in a logic system.
$\mathrm{V}_{\mathrm{IL}}(\max)$ - (Maximum Input LOW Voltage) - The maximum allowed input LOW level in a system.
V_{OH} - (Output HIGH Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a HIGH level at the output.
V_{OL} - (Output LOW Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a LOW level at the output.
V_{SS} - (Source Voltage) - For a device with a single negative power supply, the most negative power supply, used as the reference level for other voltages. Typically ground.
V_{EE} - (Source Voltage) - One of two $\left(\mathrm{V}_{\mathrm{SS}}\right.$ and $\left.\mathrm{V}_{\mathrm{EE}}\right)$ negative power supplies. For a device with dual negative power supplies, the most negative power supply used as a reference level for other voltages.

ANALOG TERMS

RON - (ON Resistance) - The effective "ON" state resistance of an analog transmission gate, at specified input voltage, output load and $V_{D D}$.
ΔR_{ON} - (" Δ " ON Resistance) - The difference in effective "ON" resistance between any two transmission gates of an analog device at specified input voltage, output load and $V_{D D}$.

AC SWITCHING PARAMETERS

${ }^{\text {f MAX }}$ - (Toggle Frequency/Operating Frequency) - The maximum rate at which clock pulses may be applied to a sequential circuit with the output of the circuit changing between 10% of $V_{D D}$ and 90% of $V_{D D}$. Above this frequency the device may cease to function. See Figure 7-15.
${ }^{\text {t }}$ PLH - (Propagation Delay Time) - The time between the specified reference points, normally 50% points on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level. See Figure 7-14.
${ }^{\text {t PHL }}$ - (Propagation Delay Time) - The time between the specified reference points, normally 50% points on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level. See Figure 7-14.
${ }^{\text {t }}$ TLH - (Transition Time, LOW to HIGH) - The time between two specified reference points on a waveform, normally 10% to 90% of $V_{D D}$, which is changing from LOW to HIGH. See Figure 7-14.
${ }^{\text {t }}$ THL $-($ Transition Time, HIGH to LOW) - The time between two specified reference points on a waveform, normally 90% to 10% of V_{DD}, which is changing from HIGH to LOW. See Figure 7-14.
t_{w} - (Pulse Width) - The time between 50\% amplitude points on the leading and trailing edges of pulse.
t_{h} - (Hold Time) - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
t_{s} - (Set-up Time) - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative set-up time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
${ }^{\text {t PHZ }}$ - (3-State Output Disable Time, HIGH to Z) - The time between the specified reference points, normally the 50% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ drop on the Output voltage waveform of a 3-state device, with the output changing from the defined HIGH level to a high impedance OFF state.
${ }^{\text {t PLZ }}$ - (3-State Output Disable Time, LOW to Z) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ rise on the Output voltage waveform of a 3 -state device, with the output changing from the defined LOW level to a high impedance OFF state.
${ }^{t_{P Z H}}$ - (3-State Output Enable Time, Z to HIGH) - The time between the specified reference points, normally the 50% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3 -state device, with the output changing from a high impedance OFF state to the defined HIGH level.
${ }^{\text {t }}$ PZL - (3-State Output Enable Time, Z to LOW) - The time between the specified reference points, normally the 50% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3-state device, with the output changing from a high impedance OFF state to the defined LOW level.
$t_{r e c}$ - (Recovery Time) - The time between the end of an overriding asynchronous input, typically a Clear or Reset input, and the earliest allowable beginning of a synchronous control input, typically a Clock input, normally measured at 50% points on both input voltage waveforms.
${ }^{\mathrm{t}} \mathrm{CW}$ (Clock Period) - The time between 50% amplitude points on the leading edges of a clock pulse.

Fig. 7-14. Propagation Delay, Transition Time

Fig. 7-15. Maximum Operating Frequency

4001B QUAD 2-INPUT NOR GATE • DUAL 4-INPUT NOR GATE
 4002B

DESCRIPTION - These CMOS logic elements provide the positive input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

The Flatpak versions have the same pinouts (Connection Diagram) as the Dual In-line

DIP (TOP VIEW)

NOTE: Package.
 \section*{4001B
 \section*{4001B
 LOGIC AND CONNECTION DIAGRAM}

4002B
 LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS See Note 1
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4001 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS See Note 2
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay		60	110		25	60		20	48	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
tPHL	Propagation Delay		60	110		25	60		20	48	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t TLH }}$	utput Transition Time		60	135		30	70		20	45	ns	Input Transition
${ }_{\text {t }}$	Uput Transition Time		60	135		30	70		20	45	ns	Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4002 \mathrm{~B}$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS See Note 2
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay		65	110		30	60		20	48	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	Propagation Delay		70	110		30	60		23	48	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition Time		75	135		40	70		30	45	ns	Input Transition
${ }^{\text {t }}$ THL	Output Transition Time		60	135		23	70		15	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4001B
PROPAGATION DELAY VERSUS TEMPERATURE

4001B
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4002B
PROPAGATION DELAY VERSUS TEMPERATURE

4002B
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4006B

18-STAGE STATIC SHIFT REGISTER

DESCRIPTION - The 4006 B is an 18 -stage Shift Register arranged as two 4 -stage and two 5 -stage shift regsiters with a common Clock Input (CP). The two 4 -stage shift registers, each have a Data Input ($\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$) and a Data Output ($\mathrm{O}_{3 \mathrm{a}}, \mathrm{O}_{3 \mathrm{~b}}$); the two 5 -stage shift registers each have a Data Input $\left(D_{c}, D_{d}\right)$ and Data Outputs from the fourth and fifth stages $\left(Q_{3 c}, Q_{4 c}, Q_{3 d}, Q_{4 d}\right)$.
The registers can be operated in parallel or interconnected to form a single shift register of up to 18 bits. Data is shifted into the first register position of each register from the Data Inputs ($D_{a}-D_{d}$) and all the data in each register is shifted one position to the right on the HIGH-to-LOW transition of the Clock Input (CP).

- CLOCK EDGE-TRIGGERED ON A HIGH-TO-LOW

TRANSITION

- CASCADABLE
- SERIAL-TO-SERIALDATA TRANSFER

PIN NAMES

$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
CP	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
$\mathrm{Q}_{3 a}-\mathrm{Q}_{3 \mathrm{~d}}, \mathrm{O}_{4 c}, \mathrm{O}_{4 \mathrm{~d}}$	Data Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
'DD	Supply Current	XM			5 150			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{C P}$ to any Q_{n}		90 90	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & 39 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	ns	
${ }^{\mathrm{t}}$ TLH tTHL	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF},$
${ }^{\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}}$	$\overline{\mathrm{CP}}$ Minimum Pulse Width	100	50		50	20		40	13		ns	
t_{s} t_{h}	Set-Up Time, D_{n} to $\overline{C P}$ Hold Time, D_{n} to $\overline{\mathrm{CP}}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 12 \\ 1 \end{gathered}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		ns	Times $\leqslant 20$ ns
${ }^{\text {f MAX }}$	Maximum Input Clock Frequency (Note 3)	8	19		15	30		18	36		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, D_{n} TO $\overline{\mathbf{C P}}$

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4007UB

DUAL COMPLEMENTARY PAIR PLUS INVERTER

DESCRIPTION - The 4007UB is a Dual Complementary Pair and an Inverter with access to each device. It has three n-channel and three p-channel enhancement mode MOS transistors. For proper operation $V_{S S} \leqslant V_{1} \leqslant V_{D D}$.

- INPUT DIODE PROTECTION ON ALL INPUTS
- DRAINS AND SOURCES TO N- AND P-CHANNEL TRANSISTORS AVAILABLE

PIN NAMES

SP2, SP3
DP1, DP2
DN1, DN2
SN2, $\mathrm{S}_{\mathrm{N} 3}$
DN/P3
Source Connection to Second and Third p-channel Transistors Drain Connection from the First and Second p-channel Transistors Drain Connection from the First and Second n -channel Transistors
$\mathrm{G}_{1}-\mathrm{G}_{3}$ Source Connection to the Second and Third n-channel Transistors Common Connection to the Third p -channel and n -channel Transistor Drains
$\mathrm{G}_{1}-\mathrm{G}_{3}$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTÉ:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package,

LOGIC SYMBOL

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			1 7.5			2 15			$\begin{array}{r} 4 \\ 30 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
DD	Supply Current	XM			7.25 7.5			0.5 15			1 30	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay		42	85		23	40		18	32	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	-pagation Delay		42	85		23	40		18	32	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ th ${ }^{\text {H }}$	Output Transition Time		65	135		30	70		25	45	ns	Input Transition
${ }^{\text {t THL }}$			65	135		30	70		25	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

4008B

4-BIT BINARY FULL ADDER

DESCRIPTION - The 4008B is a 4 -Bit Binary Full Adder with two 4 -bit Data Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$, $\mathrm{B}_{0}-\mathrm{B}_{3}$); a Carry Input (C_{0}), four Sum Outputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and a Carry Output (C_{4}).
The 4008B uses full lookahead across 4 -bits to generate the Carry Output (C_{4}). This minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

- CARRY LOOKAHEAD BUFFERED OUTPUT
- EASILY CASCADED

PIN NAMES	
$\mathrm{A}_{\mathrm{O}}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$	Data Inputs
C_{0}	Carry Input
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Sum Outputs
C_{4}	Carry Output

CONNECTION DIAGRAM
DIP(TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 100 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$			150	300		60	140		50	110	ns	
${ }^{\text {t PHL }}$	Propagation Delay, A_{n}, B_{n} to S_{n}		150	300		60	140		50	110	ns	
${ }^{\text {t PLH }}$	pagation Delay, A_{n}		138	275		63	130		50	100	ns	
${ }^{\text {t PHL }}$	pagation Delay, A_{n}		138	275		63	130		50	100	ns	
${ }^{\text {tPLH }}$			115	250		69	115		52	90	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$	Propagation Delay, C_{o} to S_{n}		123	250		69	115		52	90	ns	$R_{L}=200 \mathrm{k} \Omega$,
${ }^{\text {tPLH }}$			72	200		28	95		23	75	ns	Input Transition
${ }^{\text {t PHL }}$	Propagation Delay, C_{o} to C_{4}		95	200		28	95		23	75	ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ TLH	Output Transition Time		60	135		30	75		20	45	ns	
${ }^{\text {t }}$ THL			60	135		30	75		20	45	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

APPLICATION

A 2-DIGIT BCD TO 7-BIT BINARY DECODER USING THE 4008B

4011B • 4012B

4011B QUAD 2-INPUT NAND GATE

4012B DUAL 4-INPUT NAND GATE

DESCRIPTION - These CMOS logic elements provide the positive input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

4011B

 LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)4012B
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS See Note 1
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} D D$	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4011 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS See Note 2
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay		60	110		25	60		20	48	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
tPHL			60	110		25	60		20	48	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }_{\text {t }}$ tLH	Output Transition Time		60	135		30	70		20	45	ns	Input Transition
${ }^{\text {t }}$ THL	Output Transition Time		60	135		30	70		20	45	ns	Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4012 \mathrm{~B}$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS See Note 2
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH			73	110		33	60		24	48	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	agation		85	110		31	60		20	48	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition Time		76	135		37	70		27	45	ns	Input Transition
tTHL	Output Transition Time		67	135		25	70		17	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4011B
PROPAGATION DELAY VERSUS TEMPERATURE

4011B
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4012B
PROPAGATION DELAY VERSUS TEMPERATURE

4012B
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4013B DUAL D FLIP-FLOP

DESCRIPTION - The 4013B is a CMOS Dual D Flip-Flop which is edge-triggered and features independent Set Direct, Clear Direct, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (C_{D}) and Set Direct (S_{D}) are independent and override the D or Clock inputs. The outputs are buffered for best system performance.

PIN NAMES

D	Data Input
CP	Clock Input (L \rightarrow H Edge-Triggered)
S_{D}	Asynchronous Set Direct Input (Active HIGH)
C_{D}	Asynchronous Clear Direct Input (Active HIGH)
Q	True Output
$\overline{\mathrm{Q}}$	Complement Output

4013B TRUTH TABLES

ASYNCHRONOUS INPUTS		OUTPUTS	
SD	CD_{D}	Q	$\overline{\mathrm{Q}}$
L	H	L	H
H	L	H	L
H	H	H	H

L = LOW Level

SYNCHRONOUS INPUTS		OUTPUTS	
$C P$	D	Q_{n+1}	$\overline{\mathrm{Q}}_{n+1}$
J	L	L	H
J	H	H	L

H = HIGH Level
$\Gamma=$ Positive-Going Transition
$\mathrm{Q}_{\mathrm{n}+1}=$ State After Clock Positive Transition

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			4			8			16	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					30			60			120		MAX	
		XM			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60			120		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{A} T_{A}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP TO Q, $\overline{\mathrm{Q}}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{array}{r} 38 \\ 38 \end{array}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 72 \\ & 72 \end{aligned}$	ns ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, S_{D} or C_{D} to $\overline{\mathrm{Q}}$		$\begin{array}{r} 130 \\ 75 \end{array}$	$\begin{aligned} & 225 \\ & 225 \end{aligned}$		$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 32 \\ & 20 \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Deiay, S_{D} or C_{D} to Q		$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
t TLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
t_{s} $t_{\text {h }}$	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 60 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ -25 \end{array}$		$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 15 \\ -12 \end{array}$		$\begin{array}{r} 24 \\ 0 \end{array}$	$\begin{array}{r} 8 \\ -6 \end{array}$		ns ns	
${ }^{w_{w} C P(L)}$	Minimum Clock Pulse Width	100	55		55	30		44	18		ns	
${ }^{t_{w} S^{\prime}}{ }^{(H)}$	Minimum S_{D} Pulse Width	60	30		30	15		24	10		ns	
${ }_{t_{w} C_{D}(H)}$	Minimum C_{D} Pulse Width	60	30		30	15		24	10		ns	
$\mathrm{trec} \mathrm{S}_{\mathrm{D}}$	Recovery Time for S_{D}	20	8		10	2		8	2		ns	
${ }_{\text {trec }} \mathrm{C}_{\mathrm{D}}$	Recovery Time for C_{D}	30	15		15	7		12	6		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 2)	5	8		8	16		9	19		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 40008 Series CMOS Family Characteristics.
2. For f MAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SET-UP TIMES, HOLD TIMES AND MINIMUM CLOCK PULSE WIDTH

WAVEFORMS

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}, MINIMUM S_{D} PULSE WIDTH, AND MINIMUM C_{D} PULSE WIDTH

4014B 8-BIT SHIFT REGISTER

DESCRIPTION - The 4014B is a fully synchronous edge-triggered 8-Bit Shift Register with eight synchronous Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$), a synchronous Serial Data Input (D_{S}), a synchronous Parallel Enable Input (PE), a LOW-to-HIGH edge-triggered Clock Input (CP) and Buffered Parallel Outputs from the last three stages ($\mathrm{Q}_{5}-\mathrm{Q}_{7}$).
Operation is synchronous and the device is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Input (D_{S}) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).

- TYPICAL SHIFT FREQUENCY OF 14.7 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- PARALLEL OR SERIAL TO SERIAL DATA TRANSFER
- AVAILABLE OUTPUTS FROM the last three stages
- FULLY SYNCHRONOUS

PIN NAMES

PE
$\mathrm{P}_{0}-\mathrm{P}_{7}$
Parallel Enable Input
Serial Data Input
$\mathrm{CP} \quad$ Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Q_{5}, a_{6}, Q_{7}

LOGIC DIAGRAM

$V_{\mathrm{SS}}=\operatorname{Pin} 8$
$\bigcirc=P$ in Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			20			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150								MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600	$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH tpHL	Propagation Delay, CP to any Q		$\begin{aligned} & 129 \\ & 165 \end{aligned}$	$\begin{aligned} & 275 \\ & 350 \end{aligned}$		$\begin{aligned} & 57 \\ & 68 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & 41 \\ & 47 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{{ }^{\text {TTLH }}}$ $\underline{\mathrm{t} T \mathrm{HL}}$	Output Transition Time		$\begin{aligned} & 70 \\ & 77 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 37 \\ & 34 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \hline 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{t_{w} C P}$	CP Minimum Pulse Width	200	93		100	33		80	22		ns	
ts $\mathrm{th}^{\text {a }}$	Set-Up Time PE to CP Hold Time PE to CP	$\begin{array}{r} 300 \\ 25 \end{array}$	$\begin{array}{r} 118 \\ 15 \\ \hline \end{array}$		$\begin{array}{r} 80 \\ 5 \end{array}$	$\begin{array}{r} 44 \\ 3 \end{array}$		$\begin{array}{r} \hline 64 \\ 4 \end{array}$	$\begin{array}{r} \hline 29 \\ 2 \\ \hline \end{array}$			
ts $t_{\text {n }}$	Set-Up Time DS to CP Hold Time D_{S} to CP	$\begin{array}{r} 200 \\ 10 \end{array}$	$\begin{array}{r} 80 \\ 5 \end{array}$		50 0	$\begin{aligned} & 28 \\ & -1 \end{aligned}$		40 0	$\begin{aligned} & \hline 17 \\ & -1 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
ts $\mathrm{th}^{\text {a }}$	Set-Up Time P_{n} to $C P$ Hold Time P_{n} to CP	$\begin{array}{r} 250 \\ 20 \end{array}$	$\begin{array}{r} 108 \\ 10 \end{array}$		$\begin{array}{r} 100 \\ 5 \end{array}$	$\begin{array}{r} 37 \\ 3 \end{array}$		$\begin{array}{r} 80 \\ 4 \end{array}$	$\begin{array}{r} 23 \\ 2 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {f MAX }}$	Max. Input Clock Frequency (Note 3)	2	5.8		5	14.7		6	17		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH
AND SET-UP AND HOLD TIMES, PE TO CP, DS TO CP, AND P $\mathbf{n}_{\mathbf{n}}$ TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

FAIRCHILD CMOS • 4014B

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY, CP TO \mathbf{Q}_{n} VERSUS TEMPERATURE

4015B
 DUAL 4-BIT STATIC SHIFT REGISTER

DESCRIPTION - The 4015B is a Dual Edge-Triggered 4-Bit Static Shift Register (Serial-to-Parallel Converter). Each Shift Register has a Serial Data Input (D), a Clock Input (CP), four fully buffered parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ and an overriding asynchronous Master Reset Input (MR).

Information present on the serial Data Input (D) is shifted into the first register position, and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).

A HIGH on the Master Reset Input (MR) clears the register and forces the Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ LOW, independent of the Clock and Data Inputs (CP and D).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT VDD $=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- SERIAL-TO-PARALLEL DATA TRANSFER
- FULLY BUFFERED OUTPUTS FROM EACH STAGE

PIN NAMES

D_{A}, D_{B}
$M R_{A}, M R_{B}$
${ }^{C P} A, C P_{B}$
$Q_{0 A}, Q_{1 A}, Q_{2 A}, Q_{3 A}$
$\mathrm{Q}_{0 B}, \mathrm{Q}_{1 B}, \mathrm{Q}_{2 B}, \mathrm{Q}_{3 B}$
Serial Data Input
Master Reset Input (Active HIGH)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Parallel Outputs
Parallel Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, CP to Q		$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tPHL	Propagation Delay, MR to Q		180	325		90	160		60	128	ns	
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	ns ns	
t_{s} $t_{\text {h }}$	Set-Up Time, D to CP Hold Time, D to CP	$\begin{array}{r} 150 \\ 0 \end{array}$	70 -5		50 0	$\begin{array}{r} 30 \\ -20 \\ \hline \end{array}$		40 0	$\begin{array}{r} 25 \\ -10 \end{array}$		ns	
${ }^{t_{W} C P(L)}$	Minimum Clock Pulse Width	120	60		70	35		56	25		ns	
$\mathrm{t}_{w} \mathrm{MR}(\mathrm{H})$	Minimum MR Pulse Width	75	40		45	25		36	20		ns	
trec	MR Recovery Time	300	160		120	60		96	45		ns	
${ }_{\text {f MAX }}$	Maximum CP Frequency (Note 3)	4	8		7	14		8	16		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

SET-UP TIMES, HOLD TIMES AND MINIMUM CLOCK PULSE WIDTH NOTE:
t_{s} and t_{h} are shown as positive values but may be specified as negative values.

RECOVERY TIME FOR MR AND MINIMUM MR PULSE WIDTH

4016B
 QUAD BILATERAL SWITCHES

DESCRIPTION - The 4016B has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals $\left(Y_{n}, Z_{n}\right)$ and an active HIGH Enable Input (E_{n}). A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch and establishes a high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING
- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$E_{0}-E_{3}$	Enable Inputs
$Y_{0}-Y_{3}$	Input/Output Terminals
$Z_{0}-Z_{3}$	Input/Output Terminals

LOGIC DIAGRAM (1/4 of a 4016B)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS		
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$							
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
R_{ON}	ON Resistance	XC						610 660 840			$\begin{aligned} & 370 \\ & 400 \\ & 520 \\ & \hline \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{\text {is }}=V_{D D} \\ & \text { or } V_{S S} \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{kS} 2 \\ & \text { to } V_{D D} / 2 \\ & E_{n}=V_{D D} \end{aligned}$	
								$\begin{aligned} & 1900 \\ & 2000 \\ & 2380 \end{aligned}$			$\begin{array}{r} 790 \\ 850 \\ 1080 \end{array}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{i s}=V_{D D} / 2 \\ & \pm 0.25 \mathrm{~V} \end{aligned}$		
		XM						600 660 960			$\begin{aligned} & 360 \\ & 400 \\ & 600 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \\ & \text { or } \mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega 2 \\ & \text { to } V_{D D} / 2 \\ & E_{n}=V_{D D} \end{aligned}$	
								$\begin{aligned} & 1870 \\ & 2000 \\ & 2600 \end{aligned}$			$\begin{array}{r} 775 \\ 850 \\ 1230 \end{array}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{i s}=V_{D D} / 2 \\ & =0.25 \mathrm{~V} \end{aligned}$		
$\Delta \mathrm{R}_{\mathrm{ON}}$	Δ ON Resist. ance Between Any Two Switches						15			10		Ω	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{i s}=V_{D D} \text { or } V_{S S} . \\ & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } V_{D D^{\prime 2}} \end{aligned}$		
${ }^{\prime} \mathrm{Z}$	OFF State Leakage Current, Any Y to Z	XC										$\mu \mathrm{A}$	MIN, 25 C MAX MIN, $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & v_{\text {is }}=v_{D D} \text { or } v_{S S} \\ & E_{n}=v_{S S} \\ & v_{\text {OS }}=v_{S S} \text { or } V_{D D} \end{aligned}$		
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			$\begin{aligned} & 1 \\ & 7.5 \end{aligned}$			$\begin{array}{r} 2 \\ 15 \end{array}$			$\begin{array}{r} 4 \\ 30 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN. } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at $V_{D D}$ or V_{SS}		
		XM			$\begin{aligned} & 0.25 \\ & 7.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 15 \end{gathered}$			$\begin{array}{r} 1 \\ 30 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN. } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$			

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 31 \end{aligned}$		14	$\begin{aligned} & 28 \\ & 20 \end{aligned}$		$\begin{array}{r} 13 \\ 4 \end{array}$	$\begin{array}{r} 27 \\ 9 \end{array}$	ns	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition Times $\leqslant 20 \mathrm{~ns}$ $\begin{aligned} & E_{n}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & \mathrm{tPZL} \\ & \text { tPZH } \end{aligned}$	Output Enable Time		$\begin{aligned} & 42 \\ & 45 \end{aligned}$	$\begin{aligned} & 84 \\ & 90 \end{aligned}$		20	$\begin{array}{r} 40 \\ 44 \end{array}$		$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \text { or } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPLZ } \\ & \text { tPhZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 80 \\ & 74 \end{aligned}$	$\begin{aligned} & 160 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 78 \\ & 70 \end{aligned}$	$\begin{aligned} & 157 \\ & 140 \\ & \hline \end{aligned}$		$\begin{aligned} & 76 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 155 \\ & 125 \\ & \hline \end{aligned}$	ns	$E_{n}=V_{D D}$ (square wave) Input Transition Times $\leqslant 20 \mathrm{~ns}$ $\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}
	Distortion, Sine Wave Response					0.4					\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input } \mathrm{Frequency}=1 \mathrm{kHz} \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=V_{D D^{\prime} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p}} \end{aligned}$
	Crosstalk Between Any Two Switches					0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{A}=V_{D D}, E_{B}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } p-p \\ & 20 \log _{10} \\ & {\left[V_{\text {OS }}(B) / V_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \\ & \hline \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	$\begin{aligned} & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & R_{L}(O U T)=1 \mathrm{k} \Omega \\ & R_{L}(I N)=50 \Omega \\ & E_{n}=V_{D D} \text { (square wave) } \\ & \hline \end{aligned}$
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) p-p } \\ & 20 \log _{10}\left(\mathrm{~V}_{\text {oS }} / \mathrm{V}_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					40					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & E_{\mathrm{n}}=V_{D D}, 20 \log _{10} \\ & \left(V_{\text {OS }} / V_{\text {OS }} @ 1 \mathrm{kHz}\right)=-3 \mathrm{~dB} \\ & \hline \end{aligned}$
${ }_{\text {f MAX }}$	Enable Input Frequency (Note 4)					10					MHz	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \\ & V_{\text {os }}=V_{\text {os }} / 2 \text { at } D C \\ & V_{\text {is }}=V_{D D} \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {is }}$	Input Switch Capacitance					4					pF	$V_{D D}=10 \mathrm{~V}$
$\mathrm{C}_{\text {os }}$	Output Switch Capacitance					4					pF	$\begin{aligned} & E_{n}=V_{S S} \\ & V_{\text {is }}=0 \text { Open } \\ & 100 \mathrm{kHz} \text { or } \end{aligned}$
$\mathrm{C}_{\text {ios }}$	Feedthrough Switch Capacitance					0.2					pF	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 Series CMOS Family Characteristics.
2. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(\mathrm{Y}_{\mathrm{n}} / \mathrm{Z}_{\mathrm{n}}\right)$.
3. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
4. For f$M A X$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals 1, 4, 8, or 11 the voltage drop across the bidirectional switch must not exceed 0.5 V at $\mathrm{T}_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $T_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 2,3 , 9 , or 10 .

4017B
 5-STAGE JOHNSON COUNTER

DESCRIPTION - The : 4017 B is a 5 -Stage Johnson Decade Counter with ten glitch free decoded active HIGH Outputs ($\mathrm{O}_{0}-\mathrm{O}_{9}$), an active LOW Output from the most significant flip-flop $\left(\overline{\mathrm{O}_{5}-9}\right)$, active HIGH and active LOW Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$) and an overriding asynchronous Master Reset Input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}_{1}}$ is LOW or a HIGH-to-LOW transition at CP_{1} while CP_{0} is HIGH (see Functional Truth Table). When cascading 4017B counters, the Q_{5-9} output, which is LOW while the counter is in states $5,6,7,8$ and 9 , can be used to drive the CP_{0} input of the next 4017B.
A HIGH on the Master Reset Input (MR) resets the counter to zero $\left(\mathrm{O}_{0}=\overline{\mathrm{O}_{5-9}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{9}=\right.$ LOW) independent of the Clock Inputs ($\left.\mathrm{CP}_{0}, \overline{\mathrm{CP}} \mathrm{P}_{1}\right)$.

- TYPICAL COUNT FREQUENCY OF $13.8 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- ACTIVE HIGH DECODED OUTPUTS
- TRIGGERS ON EITHER A HIGH-TO-LOW OR LOW-TO-HIGH TRANSITION
- CASCADABLE

PIN NAMES

CP_{0}	Clock Input $(L \rightarrow H$ Triggered)
$\overline{\mathrm{CP}} \mathbf{P}_{1}$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
MR	Master Reset Input
$\mathrm{O}_{0}-\mathrm{O}_{9}$	Decoded Outputs
$\overline{\mathrm{O}_{5-9}}$	Carry Output (Active LOW)

FUNCTIONAL TRUTH TABLE

$M R$	CP_{0}	$\overline{\mathrm{CP}_{1}}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{O}_{5-9}}=\mathrm{H} ; \mathrm{O}_{1}-\mathrm{O}_{9}=\mathrm{L}$
L	H	$\mathrm{H} \rightarrow \mathrm{L}$	Counter Advances
L	$\mathrm{~L} \rightarrow \mathrm{H}$	L	Counter Advances
L	L	X	No Change
L	X	H	No Change
L	H	$L \rightarrow H$	No Change
L	$H \rightarrow L$	L	No Change

$H=$ HIGH Level

L = LOW Level
$\mathrm{L} \rightarrow \mathrm{H}=$ LOW-to-HIGH Transition
$\mathrm{H} \rightarrow \mathrm{L}=$ HIGH-to-LOW Transition
$X=$ Don't Care

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=P$ in 8
$\bigcirc=\operatorname{Pin}$ Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to O_{n}		$\begin{array}{\|l\|} \hline 278 \\ 226 \\ \hline \end{array}$	$\begin{array}{r} 700 \\ 550 \\ \hline \end{array}$		$\begin{array}{r} 114 \\ 94 \end{array}$	$\begin{aligned} & 285 \\ & 240 \\ & \hline \end{aligned}$		$\begin{aligned} & 82 \\ & 67 \end{aligned}$	$\begin{aligned} & 228 \\ & 192 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{C}}_{1}$ to $\overline{\mathrm{Q}}_{5-9}$		$\begin{aligned} & 205 \\ & 261 \end{aligned}$	$\begin{aligned} & 525 \\ & 650 \end{aligned}$		$\begin{array}{r} 87 \\ 105 \end{array}$	$\begin{aligned} & 225 \\ & 250 \end{aligned}$		$\begin{aligned} & 63 \\ & 73 \end{aligned}$	$\begin{aligned} & 180 \\ & 200 \end{aligned}$	ns ns	
${ }_{\text {tPHL }}$	Propagation Delay, MR to O_{n}		170	430		80	175		52	140	ns	
tPLH	Propagation Delay, MR to $\overline{\mathrm{Q}}_{5-9}$		125	300		65	130		40	104	ns	
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }^{\mathrm{t}} \mathrm{THL}^{\mathrm{t}}$	Output Transition Time		$\begin{aligned} & 59 \\ & 63 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{W} \mathrm{CP}}$	Min. CP_{0} or $\overline{\mathrm{CP}}_{1}$ Pulse Width	200	85		70	37		56	28		ns	
${ }^{t}{ }_{W} \mathrm{MR}$	Minimum MR Pulse Width	130	52		55	22		44	18		ns	
trec	MR Recovery Time	50	16		25	6		20	3		ns	
th	Hold Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$	200	90		90	39		72	26		ns	
th	Hold Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}	200	89		90	39		72	22		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	2.5	5.8		7	13.8		8	16		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to either Clock Input ($C P_{0}$ or $\overline{C P}_{1}$) be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

HOLD TIMES, CP_{0} TO $\overline{\mathbf{C P}_{1}}$ AND $\overline{\mathrm{CP}_{1}}$ TO CP_{0}
Hold Times are shown as positive values, but may be specified as negative values.

MINIMUM PULSE WIDTHS FOR
CP AND MR AND RECOVERY TIME FOR MR
CONDITIONS: $\overline{\mathbf{C P}_{1}}=$ LOW while CP_{0} is triggered on a LOW-to-HIGH transition. $\mathrm{t}_{\mathrm{w}} \mathrm{CP}$ and $\mathrm{t}_{\mathrm{rec}}$ also apply when $\mathrm{CP}_{0}=\mathrm{HIGH}$ and $\overline{\mathrm{CP}} \mathrm{P}_{1}$ is triggered on a HIGH-to-LOW transition.

4018B

PRESETTABLE DIVIDE-BY-N COUNTERTE OBSOLE

DESCRIPTION - The 4018B is a 5 -Stage Johnson Counter with a Clock Input (CP), a Data Input (D), an asynchronous Parallel Load Input (PL), five Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{4}$), five active LOW buffered Outputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{4}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($P_{0}-P_{4}$) is asynchronously loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Data (D) Inputs. Data present in the counter is stored on the HIGH-to-LOW transition of the Parallel Load Input (PL). When the Parallel Load Input is LOW, the counter advances on the LOW-to-HIGH transition of the Clock Input (CP). By connecting the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{4}\right)$ to the Data Input (D), the counter operates as a divide-by-n counter ($2 \leqslant n \leqslant 10$); see below.
A HIGH on the Master Reset Input (MR) resets the counter ($\overline{\mathrm{Q}}_{0}-\overline{\mathrm{O}}_{4}=\mathrm{HIGH}$) independent of all other inputs.

- ASYNCHRONOUS MASTER RESET INPUT (ACTIVE HIGH)
- ACTIVE LOW FULLY bUFFERED DECODED OUTPUTS
- DIVIDE-BY-N WITH $2 \leqslant N \leqslant 10$
- CLOCK INPUT L \rightarrow H EDGE-TRIGGERED
- ASYNCHRONOUS PARALLEL LOAD INPUT (ACTIVE HIGH)

PIN NAMES

PL
$P_{0}-P_{4}$
D
CP
MR
$\bar{\alpha}_{0}-\bar{\alpha}_{4}$

Parallel Load Input
Parallel Inputs
Data Input
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Master Reset Input
Buffered Outputs (Active LOW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1$)$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	Xc			20			40			80	$\mu \mathrm{A}$	MIN. $25^{\circ} \mathrm{C}$	All inputs
	Power				150			300			600		MAX	at 0 V or V_{DD}
D	Supply				5			10			20		MIN. $25^{\circ} \mathrm{C}$	
	Current	X			150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \overline{P L H}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP to $\overline{Q_{n}}$		$\begin{aligned} & 280 \\ & 280 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \end{aligned}$		115	$\begin{aligned} & 200 \\ & 240 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 160 \\ & 170 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {tPLH }}$	Propagation Delay, MR to $\overline{Q_{n}}$		280	600		115	240		80	170	ns	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=$ $200 \mathrm{k} \Omega$, Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, PL to $\overline{\mathrm{Q}}$		$\begin{aligned} & 280 \\ & 280 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 740 \end{aligned}$		$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 240 \\ & 300 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{\mathrm{t}_{\mathrm{TLH}}}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Output Transition Time		$\begin{aligned} & 59 \\ & 63 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \hline 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {rec }}$	MR Recovery Time	250	150		110	50		90	40		ns	
$\mathrm{t}_{\mathrm{w}} \mathrm{MR}$	MR Minimum Pulse Width	130	65		60	30.		48	22		ns	
${ }_{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width	260	100		130	50		100	40		ns	
$\begin{aligned} & \frac{v}{t_{s}} \\ & t_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to CP Hold Time, D to CP	175	$\begin{array}{r} 85 \\ 0 \\ \hline \end{array}$		75	$\begin{array}{r} 25 \\ 0 \end{array}$		60	$\begin{array}{r} 35 \\ 0 \end{array}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Pn to PL Hold Time, Pn to PL	175	$\begin{array}{r} 85 \\ 0 \\ \hline \end{array}$		75	$\begin{array}{r} 25 \\ 0 \\ \hline \end{array}$		60	$\begin{array}{r} 35 \\ 0 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	1.5	3		3.5	8		4.5	10		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics. 3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \vee, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}$ $=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, D TO CP

SET-UP AND HOLD TIMES, P_{n} to PL

MR RECOVERY TIME AND MINIMUM MR PULSE WIDTH

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4019B
 QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The 4019B provides four multiplexing circuits with common selection inputs; each circuit contains two inputs and one output. It may be used to select four bits of information from one of two sources. The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} is HIGH. When S_{A} and S_{B} are HIGH, output $\left(Z_{n}\right)$ is the logical $O R$ of the A_{n} and B_{n} inputs $\left(Z_{n}=A_{n}+B_{n}\right)$. When S_{A} and S_{B} are LOW, output $\left(Z_{n}\right)$ is LOW independent of the multiplexer inputs (A_{n} and B_{n}). The $4019 B$ cannot be used to multiplex analog signals. The outputs utilize standard buffers for best performance.

PIN NAMES

$\begin{array}{ll}S_{A}, S_{B} & \text { Select Inputs (Active HIGH) } \\ A_{0}-A_{3}, B_{0}-B_{3} & \text { Multiplexer Inputs }\end{array}$
$Z_{0}-Z_{3} \quad$ Multiplexer Outputs
TRUTH TABLE

SELECT		INPUTS		OUTPUT
S_{A}	S_{B}	A_{n}	B_{n}	Z_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	H	H	X	H
H	H	X	L	L
H	H	L		H

$H=$ HIGH Level
$\mathrm{L}=$ LOW Level
$X=$ Don't Care

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs at
'DD	Supply Current	XM			5 150			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay,		75	150		35	70		24	56	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	S_{A}, S_{B}, A_{n} or B_{n} to Z_{n}		85	160		37	75		29	60	ns	$R_{L}=200 \mathrm{k} \Omega$
t ${ }^{\text {TLH }}$	Output Transition Time		80	135		42	70		32	45	ns	Input Transition
${ }_{\text {t THL }}$	Output Transition Time		90	135		40	70		30	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4020B 14-STAGE BINARY COUNTER

DESCRIPTION - The 4020B is a 14-Stage Binary Ripple Counter with a Clock Input (CP), an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs ($\mathrm{O}_{0}, \mathrm{Q}_{3}-\mathrm{Q}_{13}$). The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{C P}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{O}_{0}, \mathrm{O}_{3}-\mathrm{O}_{13}$) LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- 25 MHz TYPICAL COUNT FREQUENCY AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- COMMON ASYNCHRONOUS MASTER RESET
- FULLY bUFFERED OUTPUTS FROM THE FIRST STAGE and the last eleven stages

LOGIC DIAGRAM
$V_{D D}=P$ in 16
$V_{S S}=P$ in 8

$\bigcirc=\operatorname{Pin}$ Number

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs at
'DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t} \text { PLH } \\ & \mathrm{t}^{\mathrm{P} P \mathrm{HL}} \end{aligned}$	Propagation Delay, $\overline{C P}$ to Q_{0}		$\begin{array}{r} 130 \\ 110 \end{array}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$	$\begin{aligned} & 88 \\ & 72 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		180	360		75	150		50	120	ns	$C_{L}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$R_{L}=200 \mathrm{k} \Omega$ Input Transition
${ }^{\mathrm{w}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{H})}$	Minimum Clock Pulse Width	100	50		40	20		32	16		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {tw }}{ }^{\text {MR }}(\mathrm{H})$	Minimum MR Pulse Width	140	70		55	27		44.	20		ns	Times $\leqslant 20$ ns
trec	Recovery Time for MR	85	43		35	17		28	12		ns	
${ }_{\text {f MAX }}$	Input Clock Frequency (Note 2)	5	10		12	25		14	30		MHz	

NOTES

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Character istics.
2. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT 0_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

4021B 8 -BIT SHIFT REGISTER

DESCRIPTION - The 4021B is an Edge-Triggered 8-Bit Shift Register (Parallel-to-Serial Converter) with a synchronous Serial Data Input (DS), a Clock Input (CP), an asynchronous active HIGH Parallel Load Input (PL), eight asynchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) and Buffered Parallel Outputs from the last three stages $\left(\mathrm{O}_{5}-\mathrm{Q}_{7}\right)$.
Information on the Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) is asynchronously loaded into the register while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Serial Data (D_{S}) inputs. Data present in the register is stored on the HIGH-to-LOW transition of the Parallel Load Input (PL).
When the Parallel Load Input is LOW, data on the Serial Data Input (DS) is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW-toHIGH transition of the Clock Input (CP).

- TYPICAL SHIFT FREQUENCY OF $18.1 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- PARALLEL-TO-SERIAL DATA TRANSFER
- BUFFERED OUTPUTS AVAILABLE LAST THREE STAGES
- CLOCK INPUT IS L \rightarrow H EDGE-TRIGGERED

PIN NAMES

PL	Parallel Load Input
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel Data Inputs
D_{S}	Serial Data Input
CP	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\mathrm{Q}_{5}-\mathrm{Q}_{7}$	Buffered Parallel Outputs from the Last Three Stages

LOGIC SYMBOL
$\begin{aligned} & V_{D D}=P \text { in } 16 \\ & V_{S S}=P \text { in } 8 \end{aligned}$
CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=P \text { in } 8 \\
& O \quad=P \text { in Number }
\end{aligned}
$$

FAIRCHILD CMOS • 4021B

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 134 \\ & 184 \end{aligned}$			59 74			$\begin{aligned} & 40 \\ & 49 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 188 \\ & 274 \end{aligned}$			$\begin{array}{r} 78 \\ 105 \end{array}$			$\begin{aligned} & 54 \\ & 72 \end{aligned}$		ns ns	
${ }^{t}$ TLH THL	Output Transition Time		$\begin{aligned} & 58 \\ & 69 \end{aligned}$			$\begin{aligned} & 31 \\ & 27 \end{aligned}$			$\begin{aligned} & 22 \\ & 22 \end{aligned}$		ns ns	
tw CP	CP Minimum Pulse Width		61			21			14		ns	
${ }^{t_{w} P L}$	PL Minumum Pulse Width		67			24			16		ns	
$\mathrm{trec}^{\text {rem }}$	PL Recovery Time		71			28			21		ns	
t_{s}	Set-Up Time DS to CP		51			16			12		ns	
th	Hold Time DS to CP		49			15			11		ns	
t_{s}	Set-Up Time P_{n} to PL		78			28			18		ns	
t_{h}	Hold Time, P_{n} to PL		72			26			16		ns	
$\mathrm{fmAX}^{\text {m }}$	Shift Frequency (Note 3)		7.8			18.1			21		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH
AND SET-UP AND HOLD TIMES, D_{S} TO CP

MINIMUM PL PULSE WIDTH, RECOVERY TIME FOR PL, AND SET-UP AND HOLD TIMES, P_{n} TO PL

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4022B

4-STAGE DIVIDE-BY-8 JOHNSON COUNTER

DESCRIPTION - The 4022B is a 4 -Stage Divide-by-8 Johnson Counter with eight glitch free active HIGH Decoded Outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$), an active LOW Output from the most significant flip-flop ($\overline{\mathrm{O}_{4-7}}$), an active HIGH and an active LOW Clock Input ($\mathrm{CP}, \overline{\mathrm{CP}} 1$) and an overriding asynchronous Master Reset Input (MR).
The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}}{ }_{1}$ is LOW or a HIGH-toLOW transition at CP_{1} while CP_{0} is HIGH (see Functional Truth Table). When cascading the counters, the $\overline{0_{4-7}}$ Output (which is LOW while the counter is in states $4,5,6$ and 7) can be used to drive the CPO Input of the next 4022B. A HIGH on the Master Reset Input (MR) resets the counter to Zero $\left(\mathrm{O}_{0}=\overline{\mathrm{Q}_{4-7}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{7}=\right.$ LOW $)$ independent of the Clock Inputs $\left(\mathrm{CP}_{\mathrm{O}}, \overline{\mathrm{CP}}{ }_{1}\right)$.

- CLOCK EDGE-TRIGGERED ON EITHER A LOW-TO-HIGH TRANSITION OR A HIGH-TO-LOW TRANSITION
- BUFFERED CARRY OUTPUT $\left(\overline{\alpha_{4-7}}\right)$ AVAILABLE FOR CASCADING
- BUFFERED FULLY DECODED OUTPUTS

PIN NAMES

CP_{0}	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{CP}} 1$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
MR	Master Reset Input
$\frac{\mathrm{O}_{0}-\mathrm{O}_{7}}{\mathrm{Q}_{4-7}}$	Decoded Outputs
	Carry (Active LOW) Output

FUNCTIONAL TRUTH TABLE

$M R$	$C P_{0}$	$\overline{C P_{1}}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{Q}_{4-7}}=\mathrm{H} ; \mathrm{O}_{1}-\mathrm{O}_{7}=\mathrm{L}$
L	H	$\mathrm{H} \rightarrow \mathrm{L}$	Counter Advances
L	$\mathrm{L} \rightarrow \mathrm{H}$	L	Counter Advances
L	L	X	No Change
L	X	H	No Change
L	H	$L \rightarrow H$	No Change
L	$L \rightarrow L$	L	No Change

$\mathrm{H}=\mathrm{HIGH}$ Level
I = LOW Level
$\mathrm{L} \rightarrow \mathrm{H}=$ LOW-to-HIGH Transition
$H \rightarrow L=H I G H-$ to-LOW Transition
X $=$ Don't Care

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{C P}_{1}$ to O_{n}		$\begin{aligned} & 245 \\ & 195 \\ & \hline \end{aligned}$	$\begin{aligned} & 615 \\ & 490 \end{aligned}$		$\begin{aligned} & 95 \\ & 75 \end{aligned}$	$\begin{aligned} & 240 \\ & 190 \end{aligned}$		$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 125 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition $\text { Times } \leqslant 20 \text { ns }$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to $\overline{\mathrm{Q}}_{4-7}$		$\begin{aligned} & 190 \\ & 245 \end{aligned}$	$\begin{aligned} & 490 \\ & 615 \end{aligned}$		$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & 190 \\ & 240 \end{aligned}$		$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	ns	
tPHL	Propagation Delay, MR to O_{n}		130	325		55	135		40	100	ns	
tPLH	Propagation Delay, MR to $\overline{\mathrm{Q}}_{4-7}$		110	275		45	110		35	90	ns	
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & \mathrm{t}^{\mathrm{T} H \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	ns	
${ }^{t}{ }_{w} C P$	Min. CP_{0} or $\overline{\mathrm{CP}}_{1}$ Pulse Width	90	35		40	15		25	10		ns	
${ }^{\text {w }}$ MR	Minimum MR Pulse Width	90	35		40	15		25	10		ns	
${ }_{\text {trec }}$	MR Recovery Time	35	10		20	5		15	5		ns	
th	Hold Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$	190	70		85	25		70	15		ns	
th	Hold Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}	190	85		85	30		70	20		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	2.5	6		7	16		8	24		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

HOLD TIMES, $\mathbf{C P}_{0}$ TO $\overline{\mathbf{C P}_{1}}$ AND $\overline{\mathbf{C P}} 1$ TO CP_{0}
NOTE: Note: Hold Times are shown as positive values, but may be specified as negative values.

MR

MTNIMUM PULSE WIDTHS FOR CP AND MR AND RECOVERY TIME FOR MR
CONDITIONS: $\overline{C_{P}}=$ LOW while CP_{0} is triggered on a LOW-to-HIGH transition. $\mathrm{t}_{\mathrm{w}} \mathrm{CP}$ and $\mathrm{t}_{\text {rec }}$ also apply when $\mathrm{CP}_{0}=\mathrm{HIGH}$ and $\overline{\mathrm{CP}}_{1}$ is triggered on a HIGH-to-LOW transition.

4023B
 TRIPLE 3-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides a 3 -input positive NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			1			2			4		MIN, $25^{\circ} \mathrm{C}$	
	Power				7.5			15			30	$\mu \mathrm{A}$	MAX	All inputs at
D	Supply	XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	0 V or $\mathrm{V}_{\text {DD }}$
	Current	XM			7.5			15			30	$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$			45	110		25	60		19	48	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	Propagation Delay		51	110		25	60		12	48	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH			45	135		18	70		17	45	ns	Input Transition
${ }^{\text {t THL }}$	Output Transition Time		45	135		18	70		12	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

4024B
 7-STAGE BINARY COUNTER

DESCRIPTION - The 4024B is a 7-Stage Binary Ripple Counter with a Clock Input ($\overline{\mathrm{CP}}$), an overriding asynchronous Master Reset Input (MR) and seven fully Buffered Parallel Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{6}$). The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{\mathrm{CP}}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{6}$) LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- TYPICAL COUNT FREQUENCY OF $30 \mathrm{MHz} \mathrm{AT} \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- CLOCK TRIGGERED ON THE HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- OUTPUTS AVAILABLE FROM ALL SEVEN STAGES

PIN NAMES
$\overline{\mathrm{CP}}$
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
MR
Master Reset Input
$\mathrm{a}_{0}-\mathrm{O}_{6}$
Buffered Parallel Outputs

LOGIC DIAGRAM


```
VDD = Pin 14
VSS = Pin 7
NC = Pins 8,10 and 13
    O=Pin Number
```

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MiN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$ tPHL	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{0}		$\begin{array}{\|r} 100 \\ 97 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 195 \\ \hline \end{array}$		$\begin{aligned} & 45 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \\ & \hline \end{aligned}$		$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 72 \\ 64 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		130	260		50	100		35	80	ns	
$\overline{\mathrm{t} T L H}$ ITHL	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$R_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }_{\underline{t}} \overline{\text { w }} \overline{C P}$	$\overline{\overline{C P}}$ Minimum Pulse Width	90	45		35	17		28	13		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}{ }_{W}$ MR	MR Minimum Pulse Width	80	40		30	15		24	12		ns	
${ }_{\text {trec }}$	MR Recovery Time	60	30		25	12		20	9		ns	
fmAX	Input Count Frequency (Note 3)	6	12		15	30		18	36		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTH
FOR $\overline{C P}$ AND MR AND MR RECOVERY TIME

4025B TRIPLE 3-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides a 3-input positive NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM

 DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH}}$	Propagation Delay		45	110		20	60		15	48	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
tPHL	Propagation Delay		47	110		25	60		21	48	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
tTLH	Qutput Transistion Time		38	135		20	70		15	45	ns	Input Transition
${ }^{\text {t THL }}$	Output Transistion Time		38	135		15	70		11	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS TEMPERATURE

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4027B
 DUAL JK FLIP-FLOP

DESCRIPTION - The 4027B is a Dual JK Flip-Flop which is edge-triggered and features independent Direct Set, Direct Clear, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (CD) and Set Direct (S_{D}) are independent and override the J, K, or Clock inputs. The outputs are buffered for best system performance.

PIN NAMES

J, K	Synchronous Inputs
CP	Clock Input $(\mathrm{L} \rightarrow$ H Edge-Triggered)
S_{D}	Asynchronous Direct Set Input (Active HIGH)
C_{D}	Asynchronous Direct Clear Input (Active HIGH)
Q	True Output
$\overline{\mathrm{Q}}$	Complement Output

TRUTH TABLES

ASYNCHRONOUS INPUTS		OUTPUTS	
S_{D}	C_{D}	Q	$\overline{\mathrm{Q}}$
L	H	L	H
H	L	H	L
H	H	H	H

$\begin{array}{ll}\mathrm{L} & =\text { LOW Level } \\ \mathrm{H} & =\text { HIGH Level } \\ \boldsymbol{J} & =\text { Positive-Going Transition } \\ Q_{n+1} & =\text { State After Clock Positive }\end{array}$ Transition

SYNCHRONOUS INPUTS			OUTPUTS	
CP	J	K	Q_{n+1}	$\overline{\mathrm{Q}}_{\mathrm{n}+1}$
」	L	L	NO C	ANGE
5	H	L	H	L
5	L	H	L	H
5	H	H	$\overline{\mathrm{Q}}_{\mathrm{n}}$	Q_{n}

Conditions: $S_{D}=C_{D}=$ LOW

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			4			8			16	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					30			60			120		MAX	
		XM			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60			120		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tPLH	Propagation Delay, S_{D} to Q		180	350		90	175		75	140	ns	
tPHL	Propagation Delay, C_{D} to Q		180	350		90	175		75	140	ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	ns ns	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, J, K to CP Hold Time, J, K to CP	$\begin{array}{r} 100 \\ 0 \end{array}$	$\begin{array}{r} 45 \\ -25 \end{array}$		$\begin{array}{r} 40 \\ 0 \end{array}$	$\begin{array}{r} 20 \\ -10 \\ \hline \end{array}$		$\begin{array}{r} 32 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & -5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{t_{w} \mathrm{CP}(\mathrm{L})}$	Minimum Clock Pulse Width	150	75		70	35		56	25		ns	
${ }_{\mathrm{t}_{W} S_{D}(H)}$	Minimum S_{D} Pulse Width	150	75		60	30		48	25		ns	
${ }^{t_{w}{ }^{\text {CD }} \text { (H) }}$	Minimum C_{D} Pulse Width	150	75		60	30		48	25		ns	
$\mathrm{trec} \mathrm{S}_{\mathrm{D}}$	Recovery Time for S_{D}	0	-5		0	-4		0	-3		ns	
${ }_{\text {trec }} C_{D}$	Recovery Time for C_{D}	0	-5		0	-4		0	-3		ns	
${ }_{\text {f MAX }}$	Maximum CP Frequency (Note 2)	4	8		8	16		9	19		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

FAIRCHILD CMOS • 4027B

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

NOTE:
$\mathrm{t}_{\mathrm{s}} \& \mathrm{t}_{\mathrm{h}}$ are shown as positive values but may be specified as negative values.

SET-UP TIMES, HOLD TIMES,
AND MINIMUM CLOCK PULSE WIDTH

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}, MINIMUM S_{D} PULSE WIDTH, AND MINIMUM C_{D} PULSE WIDTH

4028B
 1-OF-10 DECODER

DESCRIPTION - The 4028B is a CMOS 4 Bit BCD to 1-of-10 active HIGH decoder. A 1-2-4-8 BCD code applied to inputs A_{0} through A_{3} causes the selected output to be HIGH, the other nine will be LOW. If desired, the 4028B may be used as a 1-of-8 decoder with enable; 3-bit octal inputs are applied to inputs A_{0}, A_{1}, and A_{2} selecting an output 0 through 7. Input A_{3} then becomes an active LOW enable, forcing the selected output LOW when A_{3} is HIGH. The 4028B may also be used as an 8-input demultiplexer with an active LOW data input. The outputs are fully buffered for best performance.

- BCD TO 1-0F-10 DECODER

- 1-OF-8 DECODER WITH ACTIVE LOW ENABLE
- 8-INPUT DEMULTIPLEXER WITH ACTIVE LOW DATA INPUT

PIN NAMES

$A_{0}-A_{3}$
Address Inputs, 1-2-4-8 BCD
Outputs (Active HIGH)
TRUTH TABLE

INPUTS				OUTPUTS								
A_{3}	A_{2}	A_{1}	A_{0}	O	O_{1}	$\mathrm{O}_{2} \mathrm{O}_{3}$	$\mathrm{O}_{4} \mathrm{O}$	5			O_{8}	O_{9}
L	L	L	L	H	L	L L	L	L	L	L	L	L
L	L	L	H	L	H	L L	L	L	L	L	L	L
L	L	H	L	L	L	H L	L	L	L	L	L	L
L	L	H	H	L	L	L H	L	L	L	L	L	L
L	H	L	L	L	L	L L	H	L	L	L	L	L
L	H	L	H	L	L	L L	L	H	L	L	L	L
L	H	H	L	L	L	L L	L	L	H	L	L	L
L	H	H	H	L	L.	L L	L	L	L	H	L	L
H	L	L	L	L	L	L L	L	L	L	L	H	L
H	L	L	H	L	L	L L	L		L	L	L	H
H	L	H	L	L	L	L L	L		L	L	H	L
H	L	H	H	L	L	L L	L	L	L	L	L	H
H	H	L	L	L	L	L L	L	L	L	L	H	L
H	H	L	H	L	L	L L	L	L	L	L	L	H
H	H	H	L	L	L	L L	L	L	L	L	H	L
H	H	H	H	L	L	L L	L	L	L	L	L	H

$$
\begin{aligned}
& H=\text { HIGH Level } \\
& L=\text { LOW Level }
\end{aligned}
$$

LOGIC DIAGRAM

$$
\begin{aligned}
V_{D D} & =P \text { in } 16 \\
V_{S S} & =P \text { in } 8 \\
O & =P \text { in Number }
\end{aligned}
$$

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
${ }^{1}$ DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH	Propagation Delay, A_{n} to O_{n}		167	325		66	145		45	53	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$	Propagation Delay, A_{n} to O_{n}		157	325		57	145		40	46	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }_{\text {t }}$ TLH			85	200		40	100		31	70	ns	Input Transition
${ }^{\text {t }}$ THL	Output Transistion Time		110	200		37	100		25	70	ns	Times $\leqslant 20$ ns

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 S Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4029B SYNCHRONOUS UP/DOWN COUNTER

DESCRIPTION - The 4029B is a Synchronous Edge-Triggered Up/Down 4-Bit Binary/BCD Decade Counter with a Clock Input (CP), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an Up/Down Control Input (UP/ $\overline{D N}$), a Binary/Decade Control Input (BIN/DEC), an overriding asynchronous active HIGH Parallel Load Input (PL), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Buffered Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$) and an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions. With the Parallel Load Input (PL) LOW, operation is synchronous and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). Operation is determined by the three synchronous Mode Control Inputs; UP/DN, BIN/DEC and $\overline{\mathrm{CE}}$ (see the Mode Selection Table). These inputs must be stable only during the set-up time prior to the LOW-to-HIGH transition of the Clock Input (CP) and the hold time after this clock transition. The Terminal Count Output ($\overline{\mathrm{TC}}$) is LOW when the counter is at its terminal count, as determined by the counting mode, and the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW (see Logic Equation for $\overline{\mathrm{TC}}$).

- BINARY OR DECADE UP/DOWN COUNTER
- ASYNCHRONOUS PARALLEL LOAD
- ACTIVE LOW COUNT ENABLE
- CLOCK EDGE-TRIGGERED ON THE LOW-TO-HIGH TRANSITION
- ACtive low terminal count for cascading
- TYPICAL COUNT FREQUENCY OF 12 MHz AT $\mathrm{V}_{\mathrm{DD}}=\mathbf{1 0} \mathrm{V}$

PIN NAMES

PL $\mathrm{P}_{0}-\mathrm{P}_{3}$
BIN/DEC
UP/DN
$\overline{C E}$
$C P$
$\frac{a_{0}}{T C}-Q_{3}$
Parallel Load Input
Parallel Data Inputs
Binary/Decade Control Input
Up/Down Control Input
Count Enable Input (Active LOW)
Clock Input ($L \rightarrow$ H Edge-Triggered)
Buffered Parallel Outputs
Terminal Count Output (Active LOW)

mode selection table

PL	BIN/ $\overline{D E C}$	UP/ $\overline{\mathrm{DN}}$	$\overline{C E}$	CP	MODE
H	X	x	X	X	Parallel Load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$)
L	X	X	H	X	No Change
L	L	L	L	Γ	Count Down, Decade
L	L	H	L	5	Count Up, Decade
L	H	L	L	5	Count Down, Binary
L	H	H	L	5	Count Up, Binary

$$
\mathrm{TC}=\mathrm{CE} \bullet\left[U P \bullet \mathrm{Q}_{0} \bullet \mathrm{Q}_{3} \bullet\left(\overline{\mathrm{BIN}}+\left(\mathrm{Q}_{1} \bullet \mathrm{Q}_{2}\right)\right)+\left(\overline{\mathrm{UP}} \bullet \mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3}\right)\right]
$$

$\overline{P L}$ (Parallel Load Input) - Asynchronously Loads Pinto Q, Overriding all Other Inputs
P (Parallel Input) - Data on this Pin is Asynchronously Loaded into Q, when $\overline{\mathrm{PL}}$ is LOW Overriding all Other Inputs
\bar{T} (Toggle Input) - Forces the Q Output to Synchronously Toggle when a LOW is Placed on this Input.
CP (Clock Pulse Input)
$\mathrm{Q}, \overline{\mathrm{Q}}$ (True and Complimentary Outputs)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{array}{\|l} 150 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 350 \\ & 350 \\ & \hline \end{aligned}$		62 59	$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$		$\begin{aligned} & 41 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{array}{\|l\|} \hline 167 \\ 252 \end{array}$	$\begin{aligned} & 450 \\ & 650 \end{aligned}$		$\begin{array}{\|r\|} \hline 71 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 245 \end{aligned}$		$\begin{aligned} & 48 \\ & 66 \end{aligned}$	$\begin{aligned} & 144 \\ & 196 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{array}{\|l\|} \hline 170 \\ 220 \\ \hline \end{array}$	$\begin{aligned} & 325 \\ & 450 \end{aligned}$		$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 150 \\ & 195 \end{aligned}$		$\begin{aligned} & 45 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 156 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t}{ }_{w} C P$	CP Minimum Pulse Width	125	50		60	21		48	14		ns	
${ }^{t_{w}{ }^{\text {PLL}}}$	PL Minumum Pulse Width	150	60		55	21		44	16		ns	
$\mathrm{t}_{\text {rec }}$	PL Recovery Time	150	62		60	24		48	17		ns	
$\mathrm{t}_{\text {s }}$ $\mathrm{th}^{\text {a }}$	Set-Up Time, BIN/ $\overline{\mathrm{DEC}}$ to CP Hold Time, BIN/ $\overline{\mathrm{DEC}}$ to CP	$\begin{array}{r} 250 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 106 \\ -90 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 100 \\ 0 \end{array}$	$\begin{array}{r} 41 \\ -35 \end{array}$		80 0	$\begin{array}{r\|} \hline 29 \\ -25 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
ts $t_{\text {h }}$	Set-Up Time, UP/ $\overline{D N}$ to CP Hold Time, UP/ $\overline{D N}$ to CP	$\begin{array}{r} 325 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 145 \\ -90 \end{array}$		$\begin{array}{r} 130 \\ 0 \end{array}$			$\begin{array}{\|r} 104 \\ 0 \end{array}$	$\begin{array}{r} 38 \\ -25 \end{array}$		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, CE to CP Hold Time, $\overline{\mathrm{CE}}$ to CP	$\begin{array}{r} 275 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 118 \\ -40 \\ \hline \end{array}$		$\begin{array}{r} 120 \\ 0 \end{array}$	$\begin{array}{r} 49 \\ -15 \end{array}$		96	$\begin{array}{r} 23 \\ -10 \end{array}$		ns	
$\stackrel{t_{h}}{t_{s}}$	Set-Up Time, P_{n} to PL				30							
th th	Hold Time, P_{n} to PL		-40					24 0			ns	
$\mathrm{f}_{\text {MAX }}$	Input Clock Frequency (Note 2)	2	5		5	12		6	14		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

MINIMUM CP WIDTH, SET-UP AND HOLD TIMES, $\overline{C E}$ TO CP, BIN/DEC TO CP AND UP/DN TO CP

MINIMUM PL PULSE WIDTH, RECOVERY TIME FOR PL, AND SET-UP AND HOLD TIMES, $\mathrm{P}_{\mathbf{n}}$ TO PL

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

TYPICAL ELECTRICAL CHARACTERISTICS

APPLICATIONS

Interconnection techniques for multistage counting are shown in Figures 1 through 4. When using the schemes shown in Figures 1, 3 and 4, the BIN/ $\overline{D E C}$ and UP/ $\overline{\mathrm{DN}}$ Inputs may be changed only when the Clock Input to the first stage is HIGH. However, when using the scheme shown in Figure 2, UP/DN, BIN/ $\overline{D E C}$ and $\overline{C E}$ may be changed independent of the state of the Clock Input. The methods illustrated in Figures 1 and 3 will operate with long transition times at the Clock Input to the first counter; whereas, the other schemes require a fast transition at the Clock Input.
Figure 1 is a ripple clock expansion scheme in which the maximum counting frequency is limited only by the frequency capability of the first counter. The disadvantage of this technique is that the Outputs of the most significant stage do not change until the clock has rippled through all the preceding stages.

A fully synchronous expansion method is shown in Figure 2. Since the Clock Input is applied simultaneously to all stages, the Outputs of all stages change simultaneously. The maximum counting frequency is limited by the time required for the Count Enable to ripple through all the stages before the next Clock Input is applied.

The semi-synchronous technique illustrated in Figure 3 allows a higher counting frequency than the method shown in Figure 2 by allowing $\overline{T C}$ to take either 10 or 16 clock periods to ripple from the second stage to the most significant stage (10 clock periods when $\mathrm{BIN} / \overline{\mathrm{DEC}}=\mathrm{L}, 16$ clock periods when BIN/ $\overline{D E C}=H$). The Outputs of all stages, except the first, change simultaneously. The Outputs of the first stage change before the other stages.
The speed advantage of this scheme is lost if the count direction or count modulus is rapidly changed.
The method shown in Figure 4 is the same as in Figure 3 except an external gate is added to reduce the delay between the Clock Input to the first stage and the Clock Input to the following stages.

FAIRCHILD CMOS • 4029B

APPLICATIONS (Cont'd)

Fig. 1 RIPPLE CLOCK EXPANSION

Fig. 2 PARALLEL CLOCK EXPANSION (FULLY SYNCHRONOUS)

Fig. 3 SEMI-SYNCHRONOUS EXPANSION

Fig. 4 HIGH SPEED SEMI-SYNCHRONOUS EXPANSION

4030B

QUAD EXCLUSIVE-OR GATE

DESCRIPTION - The $4030 B$ CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance. The 4030B is a direct replacement for the $74 \mathrm{C} 86 / 54 \mathrm{C} 86$ and the 14507.

F4030 QUAD EXCLUSIVE-OR GATE

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$			85	170		45	90		27	72	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {PPHL}}$	Propagation Delay, A or B to X		85	170		45	90		27	72	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH			50	100		23	50		17	35	ns	Input Transition
${ }^{\text {t }}$ THL	Output Transition Time		50	100		23	50		17	35	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY.

4031B
 64-STAGE STATIC SHIFT REGISTER

DESCRIPTION - The 4031B is an edge-triggered 64-Stage Static Shift Register with two Serial Data Inputs ($\mathrm{D}_{0}, \mathrm{D}_{1}$), a Data Select Input (S), a Clock Input (CP), a buffered Clock Output (CO) and buffered Outputs from the 64th bit position ($\left.\mathrm{Q}_{63}, \overline{\mathrm{Q}_{63}}\right)$.
Data from the selected Data Inputs (D_{0} or D_{1}), as determined by the state of the Select input (S), is shifted into the first shift register position and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D_{0} is selected by a LOW on the Select Input (S) and D_{1} is selected by a HIGH on the Select Input (S).
Registers can be cascaded by connecting all the Clock Inputs (CP) together or by driving the Clock Input (CP) of the right-most register with the system clock and connecting the Clock Output (CO) to the Clock Input (CP) of the preceding register. When the second technique is used in the recirculating mode, a flip-flop must be used to store the Qutput $\left(\mathrm{O}_{63}\right)$ of the right-most register until the left-most register is clocked.

- CLOCK INPUT IS L \rightarrow H EDGE-TRIGGERED
- DATA SELECT INPUT (S) ALLOWS DATA INPUT AT EITHER D_{0} OR D D_{1} INPUTS
- EASILY CASCADED
- TRUE AND COMPLEMENTARY BUFFERED OUTPUTS AVAILABLE FROM 64TH STAGE
PIN NAMES

D_{0}, D_{1}	Data Inputs
S	Data Select Input
$C P$	Clock Input (L $\rightarrow H$ Edge-Triggered)
$C O$	Buffered Clock Output
Q_{63}	Buffered Output from the 64th Stage
Q_{63}	Complementary Buffered Output from the 64th Stage

TRUTH TABLE

S	D_{0}	D_{1}	Data Into Flip-Flop 1
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

L = Low Level
H = High Level
X = Don't Care

LOGIC SYMBOL

$V_{D D}=\operatorname{Pin} 16$
$V_{\text {SS }}=\operatorname{Pin} 8$
$N C=$ Pins $3,4,5,11,12,13,14$

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpack version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH tPHL	Propagation Delay, CP to $\mathrm{Q}_{63}, \overline{\mathrm{Q}}_{63}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$			60 60			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
tPLH tPHL	Propagation Delay, CP to CO		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \mathrm{t} \text { THL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {w }} \mathrm{CP}(\mathrm{L})$	Minimum Clock Pulse Width		25			10			8		ns	Input Transition
t_{s} t_{h}	Set-Up Time, S to CP Hold Time, S to CP		$\begin{aligned} & 75 \\ & 40 \end{aligned}$			$\begin{aligned} & 40 \\ & 20 \end{aligned}$			$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
t_{s} t_{h}	Set-Up Time D_{n} to $C P$ Hold Time, D_{n} to CP		$\begin{aligned} & 75 \\ & 40 \\ & \hline \end{aligned}$			$\begin{aligned} & 40 \\ & 20 \end{aligned}$			$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {f MAX }}$	Max. Clock Frequency (Note 3)		4			8			9		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH, SET-UP AND HOLD TIMES, D_{n} TO CP AND S TO CP

NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

4034B

 8-BIT UNIVERSAL BUS REGISTERGENERAL DESCRIPTION - The 4034B is an 8 Bit Bi-directional Parallel/Serial Input/Output Bus Register with a Serial Data Input (D_{S}), a Clock Input (CP), an active HIGH asynchronous or synchronous Paralleled Load/Parallel Enable Input (PL/PE), two mode control inputs, Asynchronous/Synchronous ($\mathrm{A} / \overline{\mathrm{S}}$) and Data Transfer (P/Q), two sets of eight bi-directional Parallel Data Inputs/Outputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$ and $\mathrm{Q}_{0}-\mathrm{O}_{7}$), and an active HIGH Output Enable Input ($E O_{\mathrm{P}}$) controlling the $\mathrm{P}_{0}-\mathrm{P}_{7}$ Parallel Data Inputs/Outputs.

The Data Transfer Mode Control Input (P/Q) determines the direction of data flow. When P/Q is HIGH $P_{0}-P_{7}$ act as a parallel data inputs and $Q_{0}-Q_{7}$ act as parallel data outputs. When P / Q is LOW, $\mathrm{O}_{0}-\mathrm{O}_{7}$ act as parallel data inputs and $\mathrm{P}_{0}-\mathrm{P}_{7}$ act as parallel data outputs. A LOW on the Output Enable Input ($E O_{P}$) forces the $\mathrm{P}_{0}-\mathrm{P}_{7}$ Input/Outputs to assume a high impedance "OFF" state, regardless of other input conditions.

An Asynchronous/Synchronous (A/信) Mode Control Input allows either asynchronous or synchronous data transfer. With the A / \bar{S} input HIGH, parallel data may be transferred asynchronously, independent of the Clock Input (CP), at the $\mathrm{P}_{0}-\mathrm{P}_{7}$ or $\mathrm{O}_{0}-\mathrm{O}_{7}$ Parallel Data Inputs/Outputs with the direction of data transfer dependent upon the state of the P / Q input. Asynchronous parallel data transfer at either $\mathrm{P}_{0}-\mathrm{P}_{7}$ or $\mathrm{O}_{0}-\mathrm{O}_{7}$ occurs when both the Asynchronous/Synchronous ($\mathrm{A} / \overline{\mathrm{S}}$) and the Parallel Load/ Paraliel Enable (PL/PE) Inputs are HIGH. With the A/S input LOW parallel or serial data may be transferred synchronously. Synchronous serial data transfer on the Serial Data Inputs (D_{S}) occurs on the LOW-to-HIGH transition at the Clock Input (CP) when both PL/PE and A/S inputs are LOW. With A / \bar{S} LOW and $P L / \overline{P E}$ HIGH, synchronous parallel data transfer on either $\mathrm{P}_{0}-\mathrm{P}_{7}$ or $\mathrm{O}_{0}-\mathrm{O}_{7}$ occurs on the LOW-to-HIGH transition at the Clock Input (CP). The direction of data transfer is dependent upon the state of the P/Q input.

The 4034B is useful in applications requiring bi-directional transfer of parallel data between two data buses, conversion of serial data to parallel form and transfer of the parallel data to either of two data buses, recirculation of parallel data, or acceptance of parallel data from either of two buses for conversion to serial form.

- bi-DIRECTIONAL DATA TRANSFER
- ASYNCHRONOUS OR SYNCHRONOUS PARALLEL OPERATION
- SYNCHRONOUS SERIAL OPERATION
- 3-State output enable
- SERIAL-TO-PARALLEL OR PARALLEL-TO-SERIAL DATA TRANSFER
- PARALLEL LOAD OR PARALLEL ENABLE

PIN NAMES

DS_{S}
$\mathrm{P}_{0} \mathrm{P}_{7}$
$\mathrm{O}_{\mathrm{O}}-\mathrm{Q}_{7}$
$\mathrm{PL} / \overline{\mathrm{PE}}$
CP
$\mathrm{A} / \overline{\mathrm{S}}$
P / Q
EOP

Serial Data Input
${ }_{\mathrm{P}}^{\mathrm{D}} \mathrm{S}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$
PL/PE
CP
A/ $\overline{\mathbf{S}}$
P/Q
EOp
Parallel Data Inputs/Outputs
Parallel Data Inputs/Outputs
Parallel Load/Parallel Enable Input
Clock Input
Asynchronous/Synchronous Mode Control Input
Data Transfer Mode Control Input
Output Enable Input for Pn Parallel Data Inputs/Outputs
LOGIC SYMBOL

$$
\begin{aligned}
V_{D D} & =P \text { in } 24 \\
V_{S S} & =P \text { in } 12
\end{aligned}
$$

CONNECTION DIAGRAMS DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$V_{D D}=\operatorname{Pin} 24$
$V_{S S}=\operatorname{Pin} 12$
$O=P$ in Number

MODE SELECTION TABLE

EOP	PL/PE	P/Q	A/S	MODE	
L	L	L	X	Serial	Synchronous Serial data input, P and Q parallel data outputs disabled.
L	L	H	X	Serial	Synchronous Serial data input, Q Parallel data output.
L	H	L	L	Parallel	Q Synchronous Parallel data inputs, P Parallel data outputs disabled.
L	H	L	H	Parallel	Q Asynchronous Parallel data inputs, P Parallel data outputs disabled.
L	H	H	L	Parallel	P Parallel data inputs disabled, Q Parallel data outputs, synchronous data recirculation.
L	H	H	H	Parallel	P Parallel data inputs disabled, Q Parallel data outputs, asynchronous data recirculation.
H	L	L	X	Serial	Synchronous serial data input, P Parallel data output.
H	L	H	X	Serial	Synchronous serial data input, Q Parallel data output.
H	H	L	L	Parallel	Q Synchronous Parallel data input, P Parallel data output.
H	H	L	H	Parallel	Q Asynchronous Parallel data input, P Parallel data output.
H	H	H	L	Parallel	P Synchronous Parallel data input, Q Parallel data output.
H	H	H	H	Parallel	P Asynchronous Parallel data input, Q Parallel data output.

Don't Care, $\mathrm{H}=\mathrm{HIGH}$ Level, $\mathrm{L}=$ LOW Level

Outputs change at positive transition of clock in the serial mode and when the A / S input is LOW in the parallel mode. During transfer from parallel to serial operation, A / S should remain LOW in order to prevent D_{S} transfer into flip-flops.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I O }}$ OH	Output OFF Current HIGH	Xc									$\begin{gathered} 1.6 \\ 12 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, E_{P}=V_{S S}$
		XM									$\begin{gathered} 0.4 \\ 12 \\ \hline \end{gathered}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\text {I OZL }}$	Output OFF Current LOW	XC									$\begin{array}{\|c\|} \hline-1.6 \\ \hline-12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \mathrm{EO}_{\mathrm{P}}=\mathrm{V}_{\mathrm{SS}}$
		XM									$\begin{array}{\|c\|} \hline-0.4 \\ \hline-12 \\ \hline \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\text {I }}$ DD	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{\|r\|} \hline 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs at 0 V or V_{DD}
		XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{\|r\|} \hline 10 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} \hline 20 \\ 600 \\ \hline \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{, ~} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2) A SYNCHRONOUS MODE ONLY

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay, PL/PE to		300			160			120		ns	
${ }^{\text {tPHL }}$	Qn or Pn		300			160			120		ns	
${ }^{\text {tPLH}}$	Propagation Delay, $\mathrm{A} / \overline{\mathrm{S}}$ to		285			150			115		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }_{\text {t }}^{\text {PHL }}$	Pn or Qn		285			150			115		ns	$\mathrm{R}_{\mathrm{L}}=200 \Omega$
${ }^{\text {t }} \mathrm{F} \mathrm{A} / \overline{\mathrm{S}}(\mathrm{H})$	A/S Minimum Pulse Width (HIGH)		150			75			55		ns	Input Transition
$\left.{ }^{t}{ }^{\text {PL/PEL }} \mathrm{H}\right)$	PL/PE Minimum Pulse Width(HIGH)		150			75			55		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }_{t}{ }_{\text {w }}$ P/Q	P/Q Minimum Pulse Width		150			75			55		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, Pn or Qn to PL/PE		35			15					ns	
$t^{\text {h }}$	Hold-Time, $\mathrm{Pn}^{\text {n or }} \mathrm{Qn}$ to PL/PE		-10			-5			-2		ns	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2) SYNCHRONOUS MODE ONLY

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay, CP to Q_{n} or P_{n}		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & 155 \\ & 155 \end{aligned}$			$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
	CP Minimum Pulse Width		100			50			40		ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, PL//्PE to CP Hold Time, PL//PE to CP		$\begin{array}{r} 35 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$			$\begin{aligned} & 12 \\ & -2 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Ds to CP Hold Time, DS to CP		$\begin{array}{r} 35 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$			$\begin{aligned} & 12 \\ & -2 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & t_{\mathrm{t}} \\ & t_{h} \end{aligned}$	Set-Up Time, A/S to CP Hold Time, $\mathrm{A} / \overline{\mathrm{S}}$ to CP		$\begin{array}{r} 35 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$			$\begin{aligned} & 12 \\ & -2 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, P/Q to CP Hold Time, P/Q to CP		$\begin{array}{r} 35 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$			$\begin{aligned} & 12 \\ & -2 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)		4			8			9		MHz	

[^3]AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V, T_{A}=25^{\circ}$ (See Note 2) ALL MODES OF OPERATION

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{{ }^{\text {P PHL }}}$	Propagation Delay, P/Q to Qn or Pn		$\begin{aligned} & 300 \\ & 300 \end{aligned}$			$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 120 \\ & 120 \end{aligned}$		ns ns	
$\begin{aligned} & { }^{\mathrm{t} P Z H} \\ & { }^{\mathrm{t}} \mathrm{PZL} \end{aligned}$	Output Enable Time (Note 5)		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 37 \\ & 37 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$,
$\begin{aligned} & { }^{{ }^{\mathrm{t} H}} \end{aligned}$	Output Disable Time (Note 5)		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 37 \\ & 37 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns ns	$R_{L}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & { }^{\mathrm{t}}{ }^{\text {THL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \\ & \hline \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }} \mathrm{w}^{\mathrm{EO}} \mathrm{P}$ (H)	EOP Minimum Pulse Width (HIGH)		150			75			55		ns	

Notes:

1. Additional de characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.
5. For $t_{P Z H}$ and $t_{P H Z}, R_{L}=1 \mathrm{k} \Omega$ to $V_{S S}$. For $t_{P Z L}$ and $t_{P L Z}, R_{L}=1 \mathrm{k} \Omega$ to $V_{D D}$.

AC WAVEFORMS

 ASYNCHRONOUS MODE ONLY

Minimum Pulse Widths for A / \bar{S},
P / Q and $\mathrm{PL} / \overline{\mathrm{PE}}$ and Set-Up and
Hold Times Pn or Qn to PL/PE

AC WAVEFORMS (Cont'd)
SYNCHRONOUS MODE ONLY

SET-UP AND HOLD-TIMES A/̄̄TO CP, PL/PE TO CP AND D_{S} TO CP AND MINIMUM CLOCK PULSE WIDTH

ALL MODES OF OPERATION

OUTPUT ENABLE TIME ($\mathrm{t}_{\mathrm{PZH}}$) AND OUTPUT DISABLE TIME ($\mathrm{t}_{\mathrm{PHZ}}$)

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

TYPICAL APPLICATIONS

FIG. 2 SHIFT RIGHT/SHIFT LEFT WITH PARALLEL INPUTS

NOTE:

A "HIGH" ("LOW") on the Shift Left/Shift Right Input allows serial data on the Shift Left Input (Shift Right Input) to enter the register on the positive transition of the clock signal. A "HIGH" on the Output Enable Input disables the "P" Parallel Data lines on registers 1 and 2 and enables the " P " data lines on registers 3 and 4 and allows parallel data into registers 1 and 2 . Other logic schemes may be used in place of registers 3 and 4 for parallel loading.
When parallel inputs are not used registers 3 and 4 and associated logic are not required.
The shift left input must be disabled during parallel entry.

4035B
 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The 4035B is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Paraliel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$), a synchronous Parallel Enable Input (PE), Buffered Parallel Outputs from all 4-bit positions ($\mathrm{O}_{\mathrm{o}}-\mathrm{Q}_{3}$), a True/Complement Input (T/C) and an overriding asynchronous Master Reset Input (MR).
Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from Parallel Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D-type entry is obtained by tying the two Serial Data Inputs ($J, \overline{\mathrm{~K}}$) together.
The Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ are either inverting or non-inverting, depending on the True/Complement Input ($T / \overline{\bar{C}}$). With the $\mathrm{T} / \overline{\mathrm{C}}$ Input HIGH, the Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) are non-inverting (Active HIGH). With the $\mathrm{T} / \overline{\mathrm{C}}$ Input LOW, the Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) are inverting (Active LOW).
A HIGH on the Master Reset Input (MR) resets all four bit positions ($\mathrm{Q}_{0}-\mathrm{Q}_{3}=$ LOW if $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{HIGH}$, $\mathrm{O}_{0}-\mathrm{Q}_{3}=$ HIGH if T/ $\overline{\mathrm{C}}=$ LOW) independent of all other input conditions.

- TYPICAL SHIFT FREQUENCY OF 17 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- J, \bar{K} inputs to the first stage
- T/C̄ INPUT FOR TRUE OR COMPLEMENTARY OUTPUTS
- SYNCHRONOUS PARALLEL ENABLE
- CLOCK EDGE-TRIGGERED ON LOW-TO-HIGH TRANSITION
- ASYNCHRONOUS MASTER RESET

PIN NAMES

PE
$\mathrm{P}_{0}-\mathrm{P}_{3}$
$\stackrel{J}{\mathrm{~K}}$
CP
T/C
MR
$\mathrm{a}_{0}-\mathrm{Q}_{3}$

Parallel Enable Input
Parallel Data Inputs
First Stage J Input (Active HIGH)
First Stage K Input (Active LOW)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
True/Complement Input
Master Reset Input
Buffered Parallel Outputs

LOGIC DIAGRAM

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{array}{\|l} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 400 \\ & \hline \end{aligned}$		90 90	$\begin{aligned} & 180 \\ & 180 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
tpLH tpHL	Propagation Delay, MR to Q_{n}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	ns	
tpLH tPHL	Propagation Delay, $\mathrm{T} / \overline{\mathrm{C}}$ to Q_{n}		$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		55	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{tTLH} \\ & \mathrm{t} T \mathrm{HL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		45 45	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
${ }_{\text {tw }}{ }^{\text {CP }}$	CP Minimum Pulse Width	125	50		55	20		44	14		ns	
${ }^{\text {tw }}$ MR	MR Minimum Pulse Width	150	60		70	25		56	20		ns	
$t_{\text {rec }}$	MR Recovery Time	120	60		54	30		43	22		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, P_{n} to CP Hold Time, P_{n} to CP	$\begin{array}{\|r\|} \hline 250 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & -90 \end{aligned}$		$\begin{array}{r}110 \\ 5 \\ \hline\end{array}$	$\begin{array}{r} 46 \\ -32 \\ \hline \end{array}$		88 0	$\begin{array}{r} 32 \\ -22 \\ \hline \end{array}$		ns	
$\mathrm{t}_{\text {s }}$ $\mathrm{th}^{\text {a }}$	Set-Up Time, PE to CP Hold Time, PE to CP	$\begin{array}{r} 250 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & -90 \end{aligned}$		$\begin{array}{r} 110 \\ 5 \end{array}$	$\begin{array}{r} 46 \\ -32 \end{array}$		88 0	$\begin{array}{r} 32 \\ -22 \end{array}$		ns	
ts $\mathrm{th}^{\text {a }}$	Set-Up Time, J, \bar{K} to CP Hold Time, J, \bar{K} to CP	$\begin{array}{r} 275 \\ 25 \end{array}$	$\begin{array}{r\|r\|} \hline 130 \\ -100 \end{array}$		$\begin{array}{r} \hline 125 \\ 10 \end{array}$	$\begin{array}{r} 48 \\ -37 \end{array}$		100 5	$\begin{array}{r} 30 \\ -23 \end{array}$		ns	
${ }^{\text {f MAX }}$	Maximum Input Clock Frequency (Note 3)	4	8		8	17		10	20		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MR RECOVERY TIME AND MINIMUM MR PULSE WIDTH

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4040B
 12-STAGE BINARY COUNTER

DESCRIPTION - The 4040 B is a 12 -Stage Binary Ripple Counter with a Clock Input (CP), an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs ($Q_{0}-Q_{11}$). The counter advances on the HIGH-to-LOW transition of the Clock Input (CP). A HIGH on the Master. Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{11}$) LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- 25 MHz TYPICAL COUNT FREQUENCY AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- CLOCK IS H \rightarrow L TRIGGERED
- COMMON ASYNCHRONOUS MASTER RESET
- FULLY BUFFERED OUTPUTS FROM ALL 12 STAGES

PIN NAMES

$\overline{C P}$	Clock Input $(H \rightarrow L$ Triggered)
$M R$	Master Reset Input (Active HIGH)
$\mathrm{Q}_{0}-\mathrm{O}_{11}$	Parallel Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MEX } \end{gathered}$	0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay; $\overline{\mathbf{C P}}$ to Q_{0}		$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$	$\begin{aligned} & 88 \\ & 72 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tPHL	Propagation Delay, MR to Q_{n}		180	360		75	150		50	120	ns	
tTLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{H})$	Minimum Clock Pulse Width	100	50		40	20		32	16		ns	
${ }^{t_{w} \mathrm{MR}(\mathrm{H})}$	Minimum MR Pulse Width	140	70		55	27		44	20		ns	
$\mathrm{trec}^{\text {rem }}$	Recovery Time for MR	85	43		35	17		28	12		ns	
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 2)	5	10		12	25		14	30		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 S Series CMOS Family Characteristics.
2. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER
RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT Q_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

4041B
 QUAD TRUE/COMPLEMENT BUFFER

GENERAL DESCRIPTION - The 4041B is a Quad True/Complement Buffer which provides both an inverted active LOW Output (\bar{Z}) and a non-inverted active HIGH Output (Z) for each Input (I).

LOGIC DIAGRAM

(3)

(1)
(10)

(8)
(13)

$V_{D D}=$ Pin 14
$\begin{aligned} & \\ & \mathrm{V}_{\mathrm{SS}}=\operatorname{Pin} 7\end{aligned}$
$\begin{aligned} V_{S S} & =\operatorname{Pin} 7 \\ O & =\text { Pin Number }\end{aligned}$

PIN NAMES

$I_{a}, I_{b}, I_{c}, I_{d}$
Buffer Input
$Z_{a}, Z_{b}, Z_{c}, Z_{d}$
Buffered True Output
$\bar{Z} a, \bar{Z}_{b}, \bar{Z}_{c}, \bar{Z}_{d}$
Buffered Complementary Output

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OH}$	Output HI Current		-2.7 -2.25 -1.6			$\begin{aligned} & -5.4 \\ & -4.5 \\ & -3.2 \end{aligned}$			$\begin{array}{r} -15.5 \\ -13 \\ -8.7 \end{array}$			mA	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=4.6 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$ $V_{\text {OUT }}=9.5 \mathrm{~V}$ for $V_{D D}=10 \mathrm{~V}$ $V_{\text {OUT }}=13.5 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$ Inputs at $V_{D D}$ or $V_{S S}$ per Logic Function
${ }^{\text {I OL }}$	Output LO Current		$\begin{array}{r} 2.7 \\ 2.25 \\ 1.6 \end{array}$			$\begin{array}{r} 6.25 \\ 5 \\ 3.5 \end{array}$			18 15 10			mA	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=0.4 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$ $V_{\text {OUT }}=0.5 \mathrm{~V}$ for $V_{D D}=10 \mathrm{~V}$ $V_{\text {OUT }}=1.5 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$ Inputs at $V_{D D}$ or $V_{S S}$ per Logic Function
	Quiescent Power	XC			$\begin{array}{r}4 \\ 30 \\ \hline\end{array}$			$\begin{array}{r}8 \\ 60 \\ \hline\end{array}$			$\begin{array}{r} 16 \\ 120 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs
IDD	Supply Current	XM			1 30			2 60			4 120	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	at 0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER				LIMITS						UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay		60	125		25	60		20	48	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {tPHL }}$			60	125		25	60		20	48	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition Time		30	75		15	40		12	30	ns	Input Transition
${ }^{\text {t }}$ THL			30	75		15	40		12	30	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional de characteristics are listed in this section under 40008 Series CMOS Family Characteristics
2. Propagation delays and output transition times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

PROPAGATION DELAY VERSUS TEMPERATURE

4042B QUAD D LATCH

DESCRIPTION - The 4042B is a 4-Bit Latch with four Data Inputs ($D_{0}-D_{3}$), four buffered Latch Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), four buffered Complementary Latch Outputs ($\overline{\mathrm{Q}_{0}}-\overline{\mathrm{O}}_{3}$) and two Common Enable Inputs (E_{0} and E_{1}). Information on the Data Inputs ($D_{0}-D_{3}$) is transferred to the Outputs ($Q_{0}-Q_{3}$) while both Enable Inputs (E_{0}, E_{1}) are in the same state, either HIGH or LOW. The Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) follow the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) as long as both Enable Inputs ($\mathrm{E}_{0}, \mathrm{E}_{1}$) remain in the same state. When the two Enable Inputs (E_{0}, E_{1}) are different, the Data Inputs ($D_{0}-D_{3}$) do not affect the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and the information in the latch is stored. The $\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}$ Outputs are always the complement of the $\mathrm{O}_{0}-\mathrm{O}_{3}$ Outputs. The Exclusive-OR input structure allows the choice of either polarity for the Enable Input. With one Enable Input HIGH, the other Enable Input is active HIGH; with one Enable Input LOW, the other Enable Input is active LOW.
The last moment prior to the trailing end of the enable condition that the Latch Outputs can still be affected by the inputs is specified as a set-up time. A negative set-up time, as typically exhibited by this device, means that the latches respond to input changes after the end of the enable condition. Following established industry practice, a hold time is specified, defining the time after the end of the enable condition, that the inputs must be held stable, so that they do not affect the state of the latches. It follows from this definition, that the hold time is identical with the negative set-up time. Set-up and hold times have a tolerance, due to manufacturing process variations, temperature and supply voltage changes. For predictable operation the data input levels must be held stable over the full spread of this timing window starting with the earliest set-up time (largest positive or smallest negative value) to the latest hold time.

- ACTIVE HIGH OR ACTIVE LOW ENABLE
- TRUE AND COMPLEMENTARY OUTPUTS (O \& $\overline{\mathbf{Q}}$)

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$
E_{0}, E_{1}
$\mathrm{Q}_{0}-\mathrm{O}_{3}$
$\overline{\mathrm{a}}_{0}-\overline{\mathrm{O}}_{3}$
Data Inputs
Enable Inputs
Parallel Latch Outputs
Complementary Parallel Latch Outputs
tRUTH TABLE

E_{0}	E_{1}	LATCH CONDITION
L	L	Enabled
L	H	Not Enabled
H	L	Not Enabled
H	H	Enabled

$$
\begin{aligned}
& L=\text { LOW Level } \\
& H=\text { HIGH Level }
\end{aligned}
$$

LOGIC DIAGRAM

DC CHARACTERISTIGS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER					LIMITS						UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs at
${ }^{1}$	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay,		101	200		45	90		33	72	ns	
${ }^{\text {tPHL }}$	Data to Output		99	200		44	88		33	70	ns	
${ }_{\text {tPLH }}$	Propagation Delay,		156	310		66	132		47	106	ns	
${ }^{\text {tPHL }}$	Enable to Output		137	275		58	116		41	93	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
			65	135		31	70		25	45	ns	$R_{L}=200 \mathrm{k} \Omega$
t THL	Output Transition Time											Input Transition
t_{s}	Set-Up Time, D_{n} to E_{0} or E_{1}	10	-12		10	-6		8	-4		ns	
th	Hold Time, D_{n} to E_{0} or E_{1}	50	25		25	13		20	7		ns	
${ }^{t}{ }_{w} E_{n}$	Minimum Enable Pulse Width	80	40		32	16		26	12		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

MINIMUM ENABLE PULSE WIDTH VERSUS POWER SUPPLY VOLTAGE

PROPAGATION DELAY PROPAGATION DELAY
$\stackrel{V}{2}$ VERSUS LOAD CAPACITANCE

PROPAGATION DELAY

SWITCHING WAVEFORMS

PROPAGATION DELAY DATA TO OUTPUT AND TRANSITION TIMES, WITH LATCH ENABLED

PROPAGATION DELAY ENABLE TO OUTPUT

NOTE:

Either E_{0} or E_{1} is held HIGH or LOW while the other Enable Input is pulsed as per the Truth Table.

4043B

QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The 4043 B is a Quad R/S Latch with 3-State Outputs with a common Output Enable (EO). Each latch has an active HIGH Set Input (S_{n}), an active HIGH Reset Input (R_{n}) and an active HIGH 3-State Output (O_{n}).
When the Output Enable Input (EO) is HIGH, the state of the Latch Outputs (O_{n}) can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE HIGH)
- RESET INPUTS TO EACH LATCH (ACTIVE HIGH)

PIN NAMES

EO
Common Output Enable Input
$\mathrm{S}_{0}-\mathrm{S}_{3} \quad$ Set Inputs
$\mathrm{R}_{0}-\mathrm{R}_{3} \quad$ Reset Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3} \quad$ 3-State Buffered Latch Outputs

TRUTH TABLE			
INPUTS			OUTPUT
EO	S_{n}	R_{n}	Q_{n}
L	X	X	High Impedance
H	H	L	H
H	L	H	L
H	H	H	H
H	L	L	No Change
$\begin{aligned} & H=\text { HIGH Level } \\ & L=\text { LOW Level } \\ & X=\text { Don't Care } \end{aligned}$			

LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I OZH }}$	Output OFF Current HIGH	xc									$\begin{array}{r} 1.6 \\ 12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{DD}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
		XM									$\begin{array}{r} \hline 0.4 \\ 12 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
Iozl	Output OFF Current LOW	XC									$\begin{array}{\|l\|} \hline-1.6 \\ -12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}} \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
		XM									$\begin{array}{\|c\|} \hline-0.4 \\ -12 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IDD	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs at 0 V or V_{DD}
		XM			$\begin{array}{r} 5 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 10 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$		$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH	Propagation Delay, S_{n} to Q_{n}		80	145		30	70		24	56	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tPHL	Propagation Delay, R_{n} to Q_{n}		75	135		25	60		20	48	ns	
tPZH tpZL	Output Enable Time		$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tLL}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{t w}{ }^{\text {S }}$	Minimum S_{n} Pulse Width	60	32		30	13		24	15		ns	
${ }^{t}{ }^{\text {d }} \mathrm{R}_{n}$	Minimum R_{n} Pulse Width	60	32		30	13		24	15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(tpZH) AND OUTPUT DISABLE TIME (tphZ)

OUTPUT ENABLE TIME
(tpZL) AND OUTPUT DISABLE TIME (tPLZ)

MINIMUM RN AND S_{N} PULSE WIDTHS AND RECOVERY TIMES FOR RN AND $\mathbf{S}_{\mathbf{N}}$

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY, R_{n} OR S_{n} TO Q_{n}, VERSUS TEMPERATURE

4044B

QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The 4044B is a Quad R/S Latch with 3 -state Outputs with a common Output Enable Input (EO). Each latch has an active LOW Set Input ($\left(\bar{S}_{n}\right)$, an active LOW Reset Input ($\overline{R_{n}}$) and an active HIGH 3 -State Output (Q_{n}).
When the Output Enable Input (EO), is HIGH, the state of the Latch Outputs (Q_{n}) can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE LOW)
- RESET INPUTS TO EACH LATCH (ACTIVE LOW)

PIN NAMES

EO	Output Enable Input
$\overline{\bar{S}_{0}}-\overline{S_{3}}$	Set Inputs (Active LOW)
$\overline{R_{0}}-\overline{R_{3}}$	Reset Inputs (Active LOW)
$\mathrm{O}_{0}-\mathrm{Q}_{3}$	3-State Buffered Latch Outputs

TRUTH TABLE

INPUTS		OUTPUT	
EO	\bar{S}_{n}	\bar{R}_{n}	O_{n}
L	X	X	High Impedance
H	L	H	H
H	H	L	L
H	L	L	L
H	H	H	No Change

$$
\begin{aligned}
& H=H I G H \text { Level } \\
& \mathrm{L}=\text { LOW Level } \\
& X=\text { Don't Care }
\end{aligned}
$$

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$N C=\operatorname{Pin} 2$
$\bigcirc=$ Pin Numbers

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
Iozh	Output OFF Current HIGH	XC									$\begin{array}{r} 1.6 \\ 12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{DD}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
		XM									$\begin{array}{r} 0.4 \\ 12 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IozL	Output OFF Current LOW	XC									$\begin{aligned} & -1.6 \\ & -12 \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
		XM									$\begin{aligned} & -0.4 \\ & -12 \end{aligned}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IDD	Quiescent Power Supply Current	XC			$\begin{array}{r} 4 \\ 30 \\ \hline \end{array}$			$\begin{array}{r} 8 \\ 60 \\ \hline \end{array}$			$\begin{array}{r} 16 \\ 120 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at 0 V or V_{DD}
		XM			$\begin{array}{r} 1 \\ 30 \\ \hline \end{array}$			$\begin{array}{r} 2 \\ 60 \end{array}$			$\begin{array}{r} 4 \\ 120 \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay, $\overline{\mathrm{S}}_{\mathrm{n}}$ to Q_{n}		70	135		30	65		24	52	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20$ ns
tPHL	Propagation Delay, \bar{R}_{n} to Q_{n}		70	135		30	65		20	52	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 30 \\ & 42 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
tPHZ tpLZ	Output Disable Time		$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
tTLH tTHL	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns ns	
${ }^{\mathrm{t}_{w} \bar{S}_{n}}$	Minimum $\overline{\mathrm{S}}_{\mathrm{n}}$ Pulse Width	55	27		25	14		20	10		ns	
${ }^{t_{w} \bar{R}_{n}}$	Minimum \bar{R}_{n} Pulse Width	55	27		25	14		20	10		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

MINIMUM $\overline{\mathbf{S}_{\mathbf{N}}}$ AND $\overline{\mathbf{R}_{\mathbf{N}}}$ PULSE WIDTHS

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY, $\overline{R_{n}}$ OR $\overline{S_{\mathbf{n}}}$ TO $Q_{\mathbf{n}}$ VERSUS LOAD CAPACITANCE

PROPAGATION DELAY $\overline{\mathbf{S}_{n}}$ OR $\overline{\mathbf{R}_{n}}$ TO $\mathbf{Q}_{\mathbf{n}}$ VERSUS TEMPERATURE

4045B

21-STAGE BINARY COUNTER

GENERAL DESCRIPTION - The 4045B is a timing circuit consisting of an on-chip crystal oscillator circuit, a 21 -stage binary ripple counter, two output pulse shaping circuits, two output buffers and one 20 V Zener diode for protection against power supply transients. The device has an External Crystal Input (I_{X}), an External Crystal Output ($0 \times$), source connections to the n-channel and p-channel transistors of the oscillator circuit (S_{N} and S_{P}), and a Data Output (Q_{20}) and Complimentary Data Output ($\overline{\mathrm{Q}_{20}}$) from the 21st stage of the binary ripple counter, both with 0.03125% duty cycles.

The 4045B may be used with an external crystal oscillator circuit as shown in the Block Diagram or an external clock pulse may be applied to the Crystal Output (O_{X}) with the Crystal Input (I_{X}) tied to the Crystal Output (O_{X}) and to the source connections (Sp_{p} and S_{N}). A Schmitt trigger is provided to allow slow rise and fall times on the External Clock Input signal.

The crystal oscillator circuit can be made less sensitive to variations in the power supply voltage by adding external resistors R_{1} and R_{2} (see block diagram). If these external resistors are not required, source connection S_{P} must be tied to V_{DD} and source connection S_{N} must be tied to V_{SS}.
The Buffered Output (Q_{20}) provides an Output signal with a frequency of $1 / 2^{21}$ times the input frequency and a duty cycle of 0.03125%. The Complimentary Buffered Output provides the same output signal with a 180° phase shift from Q_{20}. As shown in the Block Diagram, an input frequency of 2.097152 MHz will yield output signals with frequencies of 1 Hz duty cycles of $1 / 32$ seconds and a phase shift (between Q_{20} and $\overline{\mathrm{Q}}_{20}$) of a one-half second.

- ON-CHIP CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT
- HIGH OUTPUT DRIVE CAPABILITY
- EXTERNAL SOURCE CONNECTIONS FOR IMPROVED TIMING STABILITY
- ON-CHIP ZENER DIODES FOR SUPPLY REGULATION

PIN NAMES

I_{X}	External Crystal Input
S_{P}	Source Connection-to-p-channel transistor
S_{N}	Source Connection-to-n-channel transistor
O_{X}	External Crystal Output
Q_{20}	Data Output
Q_{20}	Complimentary Data Output

4046B
 MICROPOWER PHASE-LOCKED LOOP

DESCRIPTION - The 4046B is a Micropower Phase-Locked Loop consisting of a low power linear Voltage-Controlled Oscillator, a Source Follower Circuit, two different Phase Comparators, and a Zener diode. The Voltage-Controlled Oscillator has two External Capacitor connections ($\mathrm{C}_{\mathrm{exta}}, \mathrm{C}_{\mathrm{extb}}$), two External Resistor connections ($\mathrm{R}_{\mathrm{exta}}, \mathrm{R}_{\mathrm{extb}}$), a Voltage-Controlled Oscillator Input (IVCO) and a Voltage-Controlled Oscillator Output ($\mathrm{O} V \mathrm{CO}$) . The Source Follower Circuit provides a Demodulated Output (O_{D}) from the Voltage-Controlled Oscillator. An active LOW Enable Input (\bar{E}) common to both the Voltage-Controlled Oscillator and the Source Follower Circuit is also provided. Phase Comparator I and Phase Comparator II have common Signal (IS) and Comparator (IC) Inputs and separate outputs; Phase Comparator I Output (OPCI), Phase Comparator II Output (OPCII), and Phase Pulse Output ($O_{P I I}$). An input to the Zener diode (I_{Z}) is also provided.
The Voltage-Controlled Oscillator requires one external capacitor $\left(C_{1}\right)$ and one external resistor $\left(R_{1}\right)$ fo determine operational frequency range. A second external resistor (R_{2}) may be used to allow frequency offset. External resistor R_{3} and external capacitor C_{2} combined serve as a low pass filter to the Voltage-Controlled Oscillator Input (IVCO). Output O_{D} is provided to avoid loading the low pass filter. External resistor R_{4} is required if this output is utilized. O_{D} must be left open when not utilized. The output from the Voltage-Controlled Oscillator ($\mathrm{O} V C \mathrm{O}$) may be connected directly or indirectly through CMOS frequency dividers (i.e., the 4018B, 4020B, 4022B, 4024B, 4029B, 4040B, 4518B, 4520B, 40160B, 40161B, 40162B, 40163B, 40192B or 40193B) to the Comparator Input (I_{C}). With the Enable Input (E) HIGH both the Voltage-Controlled Oscillator and the Source Follower Circuit are OFF to minimize power consumption. With E LOW, both are enabled.

For direct-coupling between $\mathrm{O}_{\mathrm{VCO}}$ and I_{C}, the voltage swing at the Voltage-Controlled Oscillator Output ($\mathrm{O}_{\mathrm{VCO}}$) must be within standard CMOS logic levels $\left(\mathrm{V}_{\mathrm{OH}} \geqslant 0.7 \times \mathrm{V}_{\mathrm{DD}}\right.$ and $\mathrm{V}_{\mathrm{OL}} \leqslant 0.3$ $\times V_{D D}$); otherwise the signal from OVCO must be capacitively coupled to the Signal Input (IS).
Phase Comparator I is an Exclusive OR circuit ($I_{C}{ }^{\oplus} I_{S}$). I_{C} and I_{S} must have 50% duty cycles to maximize lock range. When the Output of Phase Comparator I ($\mathrm{OPCI}_{\mathrm{PC}}$) is connected back to the Voltage-Controlled Oscillator through the low pass filter network, an averaged voltage to IVCO forces oscillation at a center frequency.
Phase Comparator II is an edge-triggered digital memory network with four flip-flop stages, associated control circuitry and a 3 -state output. Phase Comparator II triggers on LOW-to-HIGH transitions at the Signal (IS) and Comparator (IC) Inputs and is independent of duty cycle at these inputs. The Output of Phase Comparator II ($\mathrm{OPCII}^{\mathrm{P}}$) provides voltage levels and duty cycles corresponding to frequency and phase differentials between IC and IS. When OPCII is connected to the VoltageControlled Oscillator Input ($\mathrm{V}_{\mathrm{VCO}}$) through the low pass filter network, a corresponding voltage across capacitor C_{2} is adjusted until the Signal (IS) and Comparator (I_{C}) Inputs are equal in both frequency and phase. At this point Phase Comparator II maintains a constant voltage across Capacitor C_{2}. When this stability has been established, the Phase Pulse Output (OPII) is HIGH indicating a locked condition. Power dissipation in the low pass filter is reduced when Phase Comparator II is used.
A zener diode is provided for regulating the power supply voltage, if necessary.

- VERY LOW POWER CONSUMTPION
- HIGH VCO LINEARITY, 1\% TYPICAL
- CHOICE OF 2-PHASE COMPARATORS
- ENABLE INPUT (ACTIVE LOW) FOR LOW POWER DISSIPATION IN STANDBY MODE
- ON-CHIP ZENER DIODE FOR SUPPLY REGULATION
- VCO FREQUENCY DRIFT WITH TEMPERATURE $=0.04 \% /{ }^{\circ} \mathrm{C}$ TYPICAL AT VDD $=10 \mathrm{~V}$

PIN NAMES

I_{Z}	Zener Diode Input
I_{S}	Signal Input
I_{C}	Comparator Input
$I_{V C O}$	Voltage-Controlled Oscillator Input
\bar{E}	Enable Input (Active LOW)
$\mathrm{C}_{\text {exta }}, \mathrm{C}_{\text {extb }}$	External Capacitor Connections
$\mathrm{R}_{\mathrm{exta}}, \mathrm{R}_{\mathrm{extb}}$	External Resistor Connections
OPCI	Phase Comparator I Output
OPCII	Phase Comparator II Output
OPII	Phase Pulse Output
OD_{D}	Demodulator Output
OVCO	Voltage-Controlled Oscillator Output

$$
\begin{aligned}
& 10 \mathrm{k} \Omega \leqslant R_{1} \leqslant 1 \mathrm{M} \Omega \\
& 10 \mathrm{k} \Omega \leqslant R_{2} \leqslant 1 \mathrm{M} \Omega \\
& 10 \mathrm{k} \Omega \leqslant R_{4} \leqslant 1 \mathrm{M} \Omega \\
& c_{1} \geqslant 100 \mathrm{pF} \text { at } V_{D D}=5 \mathrm{~V} \\
& c_{1} \geqslant 50 \mathrm{pF} \text { at } V_{D D}=10 \mathrm{~V}
\end{aligned}
$$

FUNCTIONAL DESCRIPTION - The 4046B, Micropower Phase-Locked Loop consists of a low power linear Voltage-Controlled Oscillator (VCO), a Source Follower circuit (SF), two Phase Comparators (PCI and PCII) and a Zener diode.

VOLTAGE-CONTROLLED OSCILLATOR

The VCO requires one external capacitor (C_{1}) and one external resistor (R_{1}) to determine operational frequency range. External resistor R_{2} is used to allow for frequency offset, if required. It is recommended that R_{1} and R_{2} have a value between $10 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$. At $V_{D D}=5 \mathrm{~V}, \mathrm{C}_{1}$ should be greater than or equal to 100 pF , and at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{C}_{1}$ should be greater than or equal to 50 pF .

External resistor R_{3} and external capacitor C_{2} combined serve as a low-pass filter to the Voltage-Controlled Oscillator Input (IVCO). The user is allowed a wide range of resistor-to-capacitor ratios for R_{3} and C_{2} because of the high imput impedance at IVCO (approximately $10^{12} \Omega$).

To avoid loading of the low-pass filter, the Demodulator Output (O_{D}) should be connected through external resistor R_{4} as shown in the Block Diagram. It is recommended that R_{4} have a value between $10 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$. If the O_{D} output is not utilized it must be left open.

The Voltage-Controlled Oscillator Output ($\mathrm{O}_{\mathrm{VCO}}$) provides a $0.3 \mathrm{~V}_{\mathrm{DD}}$ to $0.7 \mathrm{~V}_{\mathrm{DD}}$ output voltage swing and may be connected to the Comparator Input (IC). OVCO may, also be connected indirectly to I_{C} via CMOS frequency dividers (i.e., the 4018B, 4022B, 4029B, 4040B, 4518B, 4520B, 40160B, 40161B, 40162B, 40163B, 40192B, and 40193B.)

An Enable Input (\bar{E}) to the VCO and SF is provided for minimum stand-by power dissipation. With the \bar{E} Input HIGH both the VCO and the SF are OFF. With E LOW, both are enabled.

PHASE COMPARATORS

For direct-coupling between $\mathrm{O}_{\mathrm{VCO}}$ and I_{C}, the voltage swing at $\mathrm{O}_{\mathrm{VCO}}$ must be within standard CMOS logic levels $\left(\mathrm{V}_{\mathrm{OH}} \geqslant 0.7 \mathrm{~V}_{\mathrm{DD}}\right.$ and $\mathrm{V}_{\mathrm{OL}} \leqslant 0.3 \mathrm{~V}_{\mathrm{DD}}$); otherwise the signal from $\mathrm{O}_{\mathrm{VCO}}$ must be capacitively coupled to the self-biasing amplifier at the IS Input.

Phase Comparator I is an Exclusive OR circuit ($I_{C}{ }^{\oplus} I_{S}$). For maximum lock range, inputs to I_{C} and I_{S} must have 50% duty cycles. (Lock range, $\mathbf{2 f}_{\mathrm{L}}$, is defined as that frequency range of input signals upon which the 4046 B will stay locked from an initial locked condition). With no signal or noise input, Phase Comparator I provides an average output voltage equal to $V_{D D} / 2$ at the $O_{P C I}$ Output. This average output voltage is supplied to the IVCO Input through the low-pass filter, which in turn forces the VCO to oscillate at a center frequency ($f \mathrm{O}$).

Capture range ${ }^{2 f} C$, is defined as that frequency range of input signals upon which the 4046 B will lock from an initial unlocked condition. Capture range for PCI is directly dependent upon the characteristics of the low-pass filter network and may be as great as the lock range. Thus, PCl allows the user a phase-locked loop system which will remain in a locked condition despite high amounts of noise in the input signal.

It should be noted that with the use of PCI the system may lock onto input signals with frequencies that are near harmonics to the center frequency of the VCO. It should further be noted that the phase angle between the I C and IS Inputs will vary between 0° and 180°. At the center frequency the phase angle is 90°. Figure 2 illustrates a typical Phase Angle versus Average Output Voltage response characteristic for PCI . Figure 3 illustrates the typical waveforms for a phase-locked loop system employing PCl and locked at a center frequency.

Phase Comparator II is edge-triggered digital memory network with four flip-flop stages, associated control circuitry and a 3-state output, controlled internally. PCII triggers on LOW-to-HIGH transitions at the Signal (IS) and Comparator (IC) Inputs and is independent of duty cycle at these inputs. If the input frequency at IS is higher than the input frequency at I^{C}, the p-channel output transistor at OPCII is turned "ON" continuously, pulling the output ($\mathrm{OPCI}_{\mathrm{PC}}$) toward V_{DD}. If the input frequency at I_{C} is higher than the input frequency at I_{S}, the n-channel output transistor at OPCII is turned "ON" continuously, pulling the output toward $V_{S S}$. If the input frequencies at IS and IC are equal, but IS lags ${ }^{\prime} \mathrm{C}$ in phase, the n -channel output transistor is turned " ON " for a period of time corresponding to the phase difference. If the input frequencies at I_{S} and I_{C} are equal, but I_{C} lags I_{S} in phase, the p-channel output transistor is turned "ON" for a period of time corresponding to the phase difference. Thus, over a period of time the voltage at capacitor C_{2} is adjusted until the I_{C} and I_{S} input signals are of the same frequency and phase. Once this stability is reached, both p-and n-channel output transistors at OpClI are "OFF". OpCII becomes an open circuit holding the voltage across C_{2} constant.

Once this stability is attained, the Phase Pulse Output ($O_{P I I}$) is HIGH indicating a locked condition.
With PCII no phase difference is present between I_{C} and I_{S} over the entire VCO frequency range. Furthermore, since the 3 -state Phase Comparator II Output (OPCII^{\prime}) is mostly in the "OFF" condition, power dissipation through the low-pass filter is minimized. It should also be noted that ${ }^{2 f} \mathrm{C}=2 \mathrm{f}_{\mathrm{L}}$ independent of the filter network in a phase-locked loop utilizing PCII. Figure 4 shows typical waveforms for a phase-locked loop system employing Phase Comparator II and locked at a center frequency.

Fig. 2 CHARACTERISTICS OF PHASE COMPARATOR I AT THE LOW PASS FILTER OUTPUT

Fig. 4 A PLL SYSTEM USING PHASE COMPARATOR II

Fig. 3 A PLL SYSTEM USING PHASE COMPARATOR I.

Fig. 5 TYPICAL LOW-PASS FILTERS.

Fig. 6 DESIGN INFORMATION

Characteristic	Using Phase Comparator 1	Using Phase Comparator 2
No signal on input 's	VCO in PLL system adjusts to center frequency (fo).	VCO in P.LL system adjusts to minimum frequency ($f_{\text {min }}$).
Phase angle between I_{S} and I_{C}	90° at center frequency (f_{0}), approaching 0° and 180° at ends of lock range ($2 f_{L}$).	Always 0° in lock (positive rising edges).
Locks on harmonics of center frequency.	Yes	No
Signal input noise rejection.	HIGH	LOW
Lock frequency range (2 fL).	The frequency range of the input signal on which the loop will stay locked if it was initially in lock. $2 f_{L}=$ full VCO frequency range $=f_{\text {max }}-f_{\text {min }}$.	
Capture frequency range (2 f C)	The frequency range of the input signal on which the loop will lock if it was initially out of lock.	
	Depends on low-pass filter characteristics (Figure 5) $\mathrm{f}_{\mathrm{C}} \leqslant \mathrm{f}_{\mathrm{L}}$	${ }^{f} \mathrm{C}=\mathrm{f}_{\mathrm{L}}$
Center frequency (f_{0}).	The frequency of $\mathrm{O}_{\mathrm{VCO}}$ when $\mathrm{I}_{\mathrm{VCO}}=1 / 2 \mathrm{~V}_{\mathrm{DD}}$	
$\mathrm{O}_{\mathrm{VCO}}$ freqency (f).		
NOTE: The information presented here is meant only as a design guide.	$f \approx \frac{K\left[\frac{I_{V C O}-1.65}{R_{1}}+\frac{V_{D D}-1.35}{R_{2}}\right]}{\left(C_{1}+32\right)\left(V_{D D}+1.6\right)}$ MHz where: $\begin{aligned} & V_{D D} \text { in } V ; 5 \mathrm{~V} \leqslant V_{D D} \leqslant 15 \mathrm{~V} \\ & I_{V C O} \text { in } \mathrm{V} ; 1.65 \mathrm{~V} \leqslant I_{V C O} \leqslant\left(V_{D D}-1.35 \mathrm{~V}\right) \\ & R_{1} \text { and } R_{2} \text { in } M \Omega ; R_{1}, R_{2} \geqslant 0.005 \mathrm{M} \Omega \\ & C_{1} \text { in } p F ; C_{1} \geqslant 50 p F \\ & K=0.95 @ V_{D D}=5 \mathrm{~V} \\ & =0.95 @ V_{D D}=10 \mathrm{~V} \\ & =1.08 @ V_{D D}=15 \mathrm{~V} \end{aligned}$	$5^{\circ} \mathrm{C}$)

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25{ }^{\circ} \mathrm{C}$	
					150			300			600		MAX	

ELECTRICAL CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Propagation Delay, Output Transition Time		72 72			48 48			38 38		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
PHASE COMPARATORS												
$\mathrm{R}_{\text {IN }}$	Input		200			400			700		$\mathrm{M} \Omega$	
	Resistance		10^{6}			10^{6}			10^{6}			
$V_{\text {IN }}$	AC Coupled Input Sensitivity for IS		200			400			700		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{p}-\mathrm{p} \end{aligned}$	
	DC Coupled Input Sensitivity for IS, IC	See Note 1 for $V_{\text {IH }}$ and $V_{\text {IL }}$ Characteristics										,

VOLTAGE CONTROLLED OSCILLATER

	Temperature- Frequency Stability	$\begin{aligned} & 0.12 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.08 \end{aligned}$	$\begin{array}{\|} 0.015 \\ 0.03 \end{array}$	\%/ ${ }^{\circ} \mathrm{C}$	No Frequency Offset, $f_{\min }=0$ See Note 3
		$\begin{aligned} & 0.06 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.10 \end{aligned}$	0.03 0.06		Frequency Offset, $f_{\min } \neq 0$ See Note 4
	Linearity	1	1	1	\%	See Note 2
	Output Duty Cycle	50	50	50	\%	$\mathrm{O}_{\text {Vco }} \text { tied to }$ ${ }^{I_{C}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance to IVCO	10^{6}	10^{6}	10^{6}	$\mathrm{M} \Omega$	
$f_{\text {max }}$	Maximum Operating Frequency	0.9	1.7	2.3	Milz	See Note 6

SOURCE FOLLOWER

V_{D}	Offset Voltage at O_{D}		1.65			1.65		1.65		V	$R_{4}>10 \mathrm{k} \Omega$	
	Linearity		0.1			0.6			0.8		$\%$	See Note 5

ZENER DIODE

| V_{Z} | Zener Voltage | | 7 | | | 7 | | | 7 | | V | $I_{Z}=50 \mu A$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| R_{Z} | Zener Dynamic
 Resistance | | 100 | | | 100 | | | 100 | | Ω | $I_{Z}=1 \mathrm{~mA}$ |

Notes:

1. Additional dc characteristics are listed in this section under 4000B Series CMOS Famlly Characteristics.
 for $V_{D D}=15 \mathrm{~V}$.
2. $R_{2}=\infty, \% /{ }_{C} \propto 1 /\left(f-V_{D D}\right)$.
3. $\% /{ }^{\circ} \mathrm{c} \propto 1 /\left(f-V_{D D}\right)$.
4. $R_{4}>50 \mathrm{k} \Omega, I \mathrm{VCO}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ for $\mathrm{V}_{D D}=5 \mathrm{~V} . \mathrm{I}_{\mathrm{VCO}}=5 \mathrm{~V} \pm 2.5 \mathrm{~V}$ for $\mathrm{V}_{D D}=10 \mathrm{~V}, \mathrm{I} \mathrm{VCO}=7.5 \mathrm{~V} \pm 5 \mathrm{~V}$ for $\mathrm{VDD}=15 \mathrm{~V}$.
5. $R_{1}=5 \mathrm{k} \Omega, R_{2}=\infty, \mathrm{I}_{\mathrm{VCO}}=V_{D D}, C_{1}=50 \mathrm{pF}$.

4047B

MONOSTABLE/ASTABLE MULTIVIBRATOR

DESCRIPTION - The 4047B is a Monostable/Astable Multivibrator capable of operating in either the monostable or astable mode. Operation in either mode requires an external capacitor (C_{x}) between pins 1 and $3\left(C_{e x t}, R_{\text {ext }} / C_{e x t}\right)$ and an external resistor $\left(R_{x}\right)$ between pins 2 and $3\left(R_{\text {ext }}, R_{\text {ext }} / C_{e x t}\right)$. These external timing components (R_{x}, C_{x}) determine the output pulse width in the monostable mode and the output frequency in the astable mode. The 4047B also has active HIGH and active LOW astable mode Enable Inputs ($\mathrm{E}_{\mathrm{A} 0}, \bar{E}_{A 1}$), active HIGH and active LOW Trigger Inputs ($\mathrm{T}_{0}, \bar{T}_{1}$) for operation in the monostable mode, a Retrigger Input ($I_{R T}$), an Oscillator Output (O), active HIGH and active LOW flip-flop Outputs ($\mathrm{Q}, \overline{\mathrm{Q}}$) and an overriding asynchronous Master Reset Input (MR).

ASTABLE OPERATION. Astable operation is obtained by either a HIGH on the EAO input or a LOW on the $\bar{E}_{A 1}$ input. The frequency of the 50% duty cycle output at the Q and $\overline{\mathrm{Q}}$ outputs is determined by the external timing components $\left(R_{x}, C_{x}\right)$. A frequency twice that of the Q and \bar{Q} outputs is available at the Oscillator Output (O). However, a 50% duty cycle is not guaranteed. The 4047B can be used as a gated oscillator by controlling the $\mathrm{E}_{\mathrm{A} 0}$ and $\overline{\mathrm{E}}_{\mathrm{A} 1}$ inputs.

MONOSTABLE OPERATION. Monostable operation is obtained by connecting the E EAO input LOW and the $\bar{E}_{A 1}$ input HIGH. The device can be triggered by either a LOW-to-HIGH transition at the T_{0} input while the \bar{T}_{1} input is LOW or a HIGH-to-LOW transition at the \bar{T}_{1} input while the T_{0} is HIGH. The output pulse width at Q and $\overline{\mathrm{Q}}$ is determined by the external timing components $\left(\mathrm{R}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}\right)$. The device can be retriggered by applying a simultaneous LOW-to-HIGH transition to both the Retrigger Input ($I_{R T}$) and the T_{0} input while the \bar{T}_{1} input is LOW.
A HIGH on the Master Reset Input (MR) resets the output flip-flop ($\mathrm{Q}=\mathrm{LOW}, \overline{\mathrm{Q}}=\mathrm{HIGH}$ independent of all other input conditions.

- MONOSTABLE OR ASTABLE OPERATION
- TRUE AND COMPLEMENTARY BUFFERED OUTPUTS
- ENABLED WITH EITHER A LOW OR A HIGH LEVEL IN THE ASTABLE MODE
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION IN THE MONOSTABLE MODE
- ASYNCHRONOUS MASTER RESET
- IN THE MONOSTABLE MODE, OUTPUT PULSE WIDTH IS INDEPENDENT OF THE TRIGGER PULSE
- RETRIGGERABLE OPTION AVAILABLE FOR PULSE WIDTH EXPANSION
- IN THE ASTABLE MODE, MAY BE UTILIZED AS EITHER A FREE RUNNING OR GATED OSCILLATOR WITH A 50\% OUTPUT DUTY CYCLE

PIN NAMES

$C_{e x t}$	External Capacitor Connection
$R_{\text {ext }}$	External Resistor Connection
$R_{\text {ext }} / C_{\text {ext }}$	Common External Capacitor and Resistor Connection
$I_{R T}$	Retrigger Input
T_{0}	Trigger Input $(L \rightarrow H$ Triggered)
\bar{T}_{1}	Trigger Input (H \rightarrow L Triggered)
$E_{A O}$	Enable Input (Active HIGH)
$\bar{E}_{A 1}$	Enable Input (Active LOW)
$M R$	Master Reset
O	Oscillator Output
Q, \bar{Q}	True and Complementary Buffered Outputs

BLOCK DIAGRAM

$V_{\text {DD }}=$ PIN 14
$V_{\text {SS }}=$ PIN 7
O = PIN NUMBER

MODE SELECTION

InPUTS						FUNCTION
$E_{\text {AO }}$	$\overline{E_{A 1}}$	T_{0}	\bar{T}	$I_{\text {R }}$ T	MR	
H	X	L	H	L	L	Astable Multivibrator (Free Running)
X	L	L	H	L	L	Astable Multivibrator (Free Running)
Ω	H	L	H	L	L	Astable Multivibrator (True Gating)
L	Ψ	L	H	L	L	Astable Multivibrator (Complement Gating)
L	H	\checkmark	L	L	L	Monostable Multivibrator (Positive-Edge Triggering)
L	H	H	\underline{L}	L	L	Monostable Multivibrator (Negative-Edge Triggering)
L	H	г	L	5	L	Monostable Multivibrator (Retriggering)
X	X	X	X	X	H	Reset

H = HIGH LEVEL
L = LOW LEVEL
$\Omega=$ POSITIVE PULSE
$u=$ NEGATIVE PULSE
$\Sigma=$ POSITIVE-GOING TRANSITION
L = NEGATIVE-GOING TRANSITION
X = DON'T CARE

OPERATION RULES

1. Under normal operating conditions of the 4047 B , signals at the Common External Capacitor and Resistor Connection ($\mathrm{R}_{\mathrm{ext}} / \mathrm{C}_{\mathrm{ext}}$) may go above $V_{\text {DD }}$ or below $V_{\text {SS }}$. A different input protection circuit has been utilized that is not as effective as the standard input protection circuit on all other inputs. Additional care in handling is advised.
2. An external resistor $\left(R_{x}\right)$ and an external timing capacitor $\left(C_{x}\right)$ are required as shown in the Block Diagram. To simply maintain oscillation there are no limits on R_{x} or C_{x}. However, in the interests of accuracy and predictability it is recommended that C_{x} be much greater than stray capacitance in the system and R_{X} be much greater than the series "ON" resistance of the 4047 B . In addition, as R_{x} becomes very large, short-term instabilities may be introduced. Recommended component values are listed below:

$C_{X} \geqslant 100 p F$	for astable operation
$C_{X} \geqslant 1000 p F$	for monostable operation
$10 \mathrm{k} \Omega \leqslant R_{X} \leqslant 1 \mathrm{M} \Omega$	

3. In the astable mode of operation, the output period at the Q output (T_{Q}) is determined as follows:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{Q}}=4.40 \cdot & \mathrm{R}_{\mathrm{X}} \cdot \mathrm{C}_{\mathrm{X}}, \text { typically where: } \\
& \mathrm{C}_{\mathrm{X}} \text { is in farads } \\
& R_{X} \text { is in ohms } \\
& \mathrm{T}_{\mathrm{Q}} \text { is in seconds }
\end{aligned}
$$

Actual output period (T_{Q}) will vary with fluctuations in temperature, power supply voltage, and individual device-to-device threshold voltages.
4. In the monostable mode of operation the output pulse width at the Q output (tw_{Q}) is determined as follows:

$$
\begin{aligned}
\mathrm{tw}_{\mathrm{Q}}=2.48 \cdot & R_{x} \cdot C_{x}, \text { typically where: } \\
& C_{X} \text { is in farads } \\
& R_{x} \text { is in ohms } \\
& t w_{Q} \text { is in seconds }
\end{aligned}
$$

Actual output pulse width ($\mathrm{t} w_{\mathrm{Q}}$) will vary with fluctuations in temperature, power supply voltage, and individual device-to-device threshold voltages.
5. It should be noted that in the astable mode of operation, the first positive half cycle will have a duration maval to $t_{Q}=2.48 \cdot R_{x} \cdot C_{x}$. Succeeding positive half cycles will have a duration of $\mathrm{T}_{\mathrm{Q}}=4.40 \cdot \mathrm{R}_{\mathrm{X}} \cdot \mathrm{C}_{\mathrm{X}}$,
6. Under all operating conditions, C_{X} and R_{X} must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
7. $V_{D D}$ and ground wiring should conform to good high frequency standards so that switching transients on $V_{D D}$ and ground leads do not cause interaction between devices. Use of a 0.01 to $0.1 \mu \mathrm{~F}$ bypass capacitor between $V_{D D}$ and ground located near the 4047 B is recommended.
8. In the retriggering mode of operation extended output pulse width at the Q or $\overline{\mathrm{Q}}$ outputs may be obtained by applying more than one input pulse to the T_{0} and $I_{R T}$ inputs simultaneously.
9. An overriding active HIGH, Master Reset Input (MR) is provided on the 4047B device. By applying a HIGH to the Master Reset Input, any timing cycle can be terminated or any new cycle inhibited until the HIGH Master Reset signal is removed. Trigger inputs will not produce spikes in the output when Master Reset is HIGH.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay, } \mathrm{E}_{\mathrm{AO}} \text { OR } \\ & \mathrm{E}_{\mathrm{A} 1} \text { to } 0 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{P} P L H} \\ & { }^{\mathrm{t} P H L} \end{aligned}$	Propagation Delay, E_{AO} OR $\overline{\mathrm{E}_{\mathrm{A} 1}}$ to Q or $\overline{\mathrm{Q}}$		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 74 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$		$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	ns ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, T_{0} OR $\overline{T_{1}}$ to Q or $\overline{\mathrm{Q}}$		$\begin{aligned} & 210 \\ & 210 \end{aligned}$			$\begin{aligned} & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 235 \\ & 235 \end{aligned}$		$\begin{aligned} & 68 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 108 \\ & 108 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\mathrm{T}_{0}, \mathrm{I}_{\mathrm{RT}}$ to Q or $\overline{\mathrm{Q}}$		$\begin{aligned} & 116 \\ & 116 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	ns ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, MR to Q or $\overline{\mathrm{Q}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 44 \\ & 44 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$		$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ns ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {t }}$ w	Minimum Pulse Width (Any Input)	400	160		170	68		136	44		ns	
trec	MR Recovery Time	0	-30		0	-15		0	-10		ns	
t_{h}	Hold Time, T_{0} to $\overline{T_{1}}$	64	32		32	16		26	13		ns	
t_{h}	Hold Time, $\overline{T_{1}}$ to T_{0}	64	32		32	16		26	13		ns	

Notes:

1. Additional dc characteristics are listed in this section under 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. It is recommended that input rise and fall times to the T_{0}, T_{1}, or $I_{R T}$ Inputs be less than $15 \mu_{\mathrm{s}}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu_{\mathrm{s}}$ at $V_{D D}=10 \mathrm{~V}$ and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$. Also input rise and fall times to $E_{A O}$ and $E_{A 1}^{\prime}$ should be less than 500 ns at any $V_{D D}$ voltage.

SWITCHING WAVEFORMS

HOLD-TIMES, T_{0} TO $\overline{T_{1}}$ AND $\overline{T_{1}}$ TO T_{0}

Hold Times are shown as positive values, but may be specified as negative values.

MINIMUM PULSE WIDTHS AND RECOVERY TIME FOR MR

CONDITIONS: $\overline{T_{1}}=$ LOW while T_{0} is triggered on a LOW-to-HIGH transition. t_{w} and $t_{r e c}$ also apply when $\mathrm{T}_{0}=\mathrm{HIGH}$ and \bar{T}_{1} is triggered on a HIGH-to-LOW transition.

4049B • 4050B 4049B HEX INVERTING BUFFER • 4050B HEX NON-INVERTING BUFFER

DESCRIPTION - These CMOS buffers provide high current output capability suitable for driving TTL or high capacitance loads. Since input voltages in excess of the buffers' supply voltage are permitted, these buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. The 4049B provides six inverting buffers, the 4050 B six non-inverting buffers. Their guaranteed fan out into common bipolar logic elements is shown in Table 1.

INPUT PROTECTION

NOTE: Typical Breakdown Voltage
of Diode D1 is 20 V .

TABLE 1
Guaranteed fan out of 4049B, 4050B into common logic families

DRIVEN ELEMENT	GUARANTEED FAN OUT
Standard TTL, DTL	2
9LS, 93L, 74LS	9
74 L	16
Conditions: $V_{D D}=V_{C C}=5.0 \pm 0.25 \mathrm{~V}$	
$V_{O L} 0.5 \mathrm{~V}, T_{A}=0$ to $75{ }^{\circ} \mathrm{C}$	

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, 4049 B X M$ and 4050BXM (See Note 1)

SYMBOL	PARAMETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
		$\begin{array}{\|r\|} \hline-1.85 \\ -1.25 \\ -0.9 \\ \hline \end{array}$	-2.5								mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
${ }^{1} \mathrm{OH}$	HIGH Current	$\begin{array}{r} -0.62 \\ -0.5 \\ -0.35 \end{array}$	-1		$\begin{array}{r} -1.85 \\ -1.25 \\ -0.9 \end{array}$	-2.5		$\left.\begin{array}{r} -5.5 \\ -3.75 \\ -2.7 \end{array} \right\rvert\,$	-7.5		mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & V_{\text {OUT }}=4.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=9.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=13.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \text { Inputs at } 0 \text { or } \mathrm{V}_{\text {DD }} \\ & \text { per Function } \end{aligned}$
${ }^{\text {IOL }}$	Output LOW	$\begin{array}{r} 3.75 \\ 3 \\ 2.1 \end{array}$	6		10 8 5.6	16		$\begin{array}{\|r\|} 30 \\ 24 \\ 16.8 \end{array}$	48		mA	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=0.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \text { Inputs at } 0 \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { per Function } \end{aligned}$
		$\begin{aligned} & 3.3 \\ & 2.6 \\ & 1.8 \end{aligned}$	5.2								mA	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=4.5 \mathrm{~V}$ Inputs at 0 V or V_{DD} per Function
${ }^{\text {I D D }}$	Quiescent Power Supply Current			$\begin{array}{r} 1 \\ 30 \end{array}$			2 60			$\begin{gathered} 4 \\ 120 \end{gathered}$	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All Inputs at 0 V or $\mathrm{V}_{\text {DD }}$

Notes on the following page.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, 4049 \mathrm{BXC}$ and 4050BXC (Cont'd) (See Note 1)

SYMBOL	PARAM. ETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OH}$	Output HIGH Current	$\begin{aligned} & -1.5 \\ & -1.25 \\ & -1.0 \end{aligned}$	-2.5								mA mA mA	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{O U T}=2.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\begin{array}{r} -0.6 \\ -0.5 \\ -0.4 \end{array}$	-1		$\left\lvert\, \begin{aligned} & -1.5 \\ & -1.25 \\ & -1.0 \end{aligned}\right.$	-2.5		$\begin{array}{r} -4.5 \\ -3.75 \\ -3 \end{array}$	-7.5		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\text {OUT }}=9.5 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$ $V_{\text {OUT }}=13.5 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
${ }^{1} \mathrm{OL}$	Output LOW Current	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	6		$\begin{array}{r} 9.6 \\ 8 \\ 8.6 \end{array}$	16		$\begin{aligned} & 28 \\ & 24 \\ & 19 \end{aligned}$	48		mA mA mA	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$ $V_{\text {OUT }}=0.5 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$ $V_{\text {OUT }}=1.5 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\begin{aligned} & 3.1 \\ & 2.6 \\ & 2.1 \\ & \hline \end{aligned}$	5.2								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ Inputs at OV or V_{DD} per Function
${ }^{\text {I D }}$	Quiescent Power Supply Current			4 30			8 60			$\begin{array}{r} 16 \\ 120 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN }, 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs at 0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, 4049 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay		65	$\begin{aligned} & 130 \\ & 105 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & 29 \\ & 17 \end{aligned}$	$\begin{aligned} & 52 \\ & 40 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t} \mathrm{TLH} \\ & \mathrm{t} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		73 33	$\begin{array}{r} 145 \\ 65 \end{array}$		$\begin{aligned} & 40 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$		30 9	$\begin{aligned} & \hline 60 \\ & 20 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

notes:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4050 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH tPHL	Propagation Delay		$\begin{aligned} & 65 \\ & 43 \end{aligned}$	$\begin{array}{r} 130 \\ 95 \end{array}$		$\begin{aligned} & 30 \\ & 23 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$		$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 52 \\ & 36 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		73 33	$\begin{array}{r} 145 \\ 65 \end{array}$		90 13	$\begin{aligned} & 80 \\ & 25 \end{aligned}$		30 9	60 20	ns	Input Transition Times $\leqslant 20$ ns

Notes on preceeding page.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL POWER DISSIPATION VERSUS FREQUENCY

PROPAGATION DELAY VERSUS TEMPERATURE

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4051B
 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 4051 B is an 8-Channel Analog Multiplexer/Demultiplexer with three Address Inputs ($A_{0}-A_{2}$), an active LOW Enable Input (\bar{E}), eight Independent Inputs/Outputs ($Y_{0}-Y_{7}$) and a Common Input/Output (Z).

The 4051 B contains eight bidirectional analog switches, each with one side connected to an Independent Input/Output $\left(\mathrm{Y}_{0}-\mathrm{Y}_{7}\right)$ and the other side connected to a Common Input/Output (Z). With the Enable Input (\bar{E}) LOW, one of the eight switches is selected (low impedance, ON state) by the three Address Inputs $\left(A_{0}-A_{2}\right)$. With the Enable Input (\bar{E}) HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs ($A_{O}-A_{2}, \bar{E}$). Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{7}, \mathrm{Z}$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

$Y_{0}-Y_{7}$	Independent Inputs/Outputs
$A_{0}-A_{2}$	Address Inputs
\bar{E}	Enable Input (Active LOW)
Z	Common Input/Output

TRUTH TABLE

INPUTS				CHANNELS							
$\overline{\mathrm{E}}$	A_{2}	A_{1}	A_{0}	$\mathrm{Y}_{0}{ }^{-Z}$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$	$Y_{4}-Z$	$Y_{5}-Z$	$Y_{6}-Z$	$Y_{7}-Z$
L	L	L	L	ON	OFF						
L	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
L	L	H	L	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
L	L	H	H	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
L	H	H	H	OFF	ON						
H	X	X	X	OFF							

$L=$ LOW Level
$H=H I G H$ Level
$X=$ Don't Care

4051B FUNCTIONAL LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{E E}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON	XC		$\begin{array}{r} 95 \\ 100 \\ 125 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 900 \\ 1000 \\ 1100 \end{array}$		$\begin{array}{r} 55 \\ 65 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 380 \\ & 500 \\ & 600 \end{aligned}$		35 40 65	$\begin{aligned} & 210 \\ & 280 \\ & 340 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {is }}=V_{D D} \text { to } V_{E E}$ Note 2
	Resistance	XM		$\begin{array}{r} 90 \\ 100 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 850 \\ 1000 \\ 1150 \\ \hline \end{array}$		$\begin{array}{r} 50 \\ 65 \\ 110 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 340 \\ 500 \\ 660 \\ \hline \end{array}$		30 40 70	$\begin{array}{\|l\|} \hline 190 \\ 280 \\ 370 \\ \hline \end{array}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \\ & \hline \end{aligned}$	
$\triangle \mathrm{R}_{\text {ON }}$	" Δ " ON Resistance Between Any Two Channels			25			10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
Iz	OFF State Leakage Current, All Channels OFF	XC						800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \bar{E}=V_{D D} \\ & V_{S S}=V_{D D} / 2 \\ & V_{i s}=v_{D D} \text { or } V_{E E} \\ & V_{O S}=V_{E E} \text { or } V_{D D} \end{aligned}$
	Any Channel OFF	XC						100						$\begin{aligned} & E=V_{S S}=V_{D D} / 2 \\ & v_{\text {is }}=v_{D D} \text { or } V_{E E} \\ & v_{\text {OS }}=v_{E E} \text { or } v_{D D} \end{aligned}$
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}$ All inputs at $V_{D D}$ or $V_{E E}$
${ }^{\text {D }}$	Supply Dissipation	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{E E}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Input to Output		25 10			$\begin{array}{r}10 \\ 6 \\ \hline\end{array}$			6 4		nsns	$\begin{aligned} & C_{L}=50 p F, R_{L}=200 \mathrm{k} \Omega \\ & \bar{E}=V_{S S}=V_{E E} \\ & A_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{E E} \end{aligned}$ Note 5
$\begin{aligned} & \mathrm{t} P L H \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			80 95			
tPZL tPZH	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \end{aligned}$			$\begin{array}{r} 95 \\ 105 \\ \hline \end{array}$			75 85		nsns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \\ & E \text { or } A_{n}=V_{S S}=V_{E E} \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \end{aligned}$ Note 5
$\begin{aligned} & \mathrm{tPLZ} \\ & \mathrm{tPHZ} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \\ & \hline \end{aligned}$			$\begin{aligned} & 1080 \\ & 1070 \end{aligned}$			
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & R_{L}=10 \mathrm{kS} \\ & V_{S S}=V_{D D} / 2, \bar{E}=V_{E E} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) p-p } \\ & f_{\text {is }}=1 \mathrm{kHz} \end{aligned}$
-	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \text { at }-40 \mathrm{~dB} \\ & V_{S S}=V_{D D} / 2,20 \log 10 \\ & \left(V_{\text {OS }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{S S}=V_{D D} / 2 \\ & \bar{E}=V_{D D} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } p-p \\ & 20 \log _{10}\left(V_{\text {oS }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
${ }^{\prime}$ MAAX	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & V_{S S}=V_{D D} / 2 \\ & 20 \log _{10}\left(V_{\mathrm{OS}} / V_{\mathrm{OS}} @ 1 \mathrm{kHz}\right) \\ & =-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. $\bar{E}=V_{S S} R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D / 2}$
3. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.
4. $V_{\text {is }} / V_{\text {os }}$ is the voltage signal at an Input/Output terminal $\left(Y_{n} / Z_{n}\right)$.
5. $V_{I N}=V_{D D}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}, R_{L}=10 \mathrm{k} \Omega$.
6. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals $1,2,4,5,12,13,14$, or 15 the voltage drop across the bidirectional switch must not exceed 0.5 V at $\mathrm{T}_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $\mathrm{T}_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminal 3.

4052B

DUAL 4-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 4052B is a Dual 4-Channel Analog Multiplexer/Demultiplexer with common channel select logic. Each Multiplexer/Demultiplexer has four independent Inputs/Outputs ($Y_{0}-Y_{3}$) and a Common Input/Output (Z). The common channel select logic includes two Address Inputs (A_{0}, A_{1}) and an active LOW Enable Input (\bar{E}).
Both multiplexer/demultiplexers contain four bidirectional analog switches, each with one side connected to an Independent Input/Output $\left(Y_{0}-Y_{3}\right)$ and the other side connected to a Common Input/Output (Z). With the Enable Input LOW, one of the four switches is selected (low impedance, ON state) by the two Address Inputs. With the Enable Input HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs (A_{0}, A_{1}, \bar{E}). Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs $\left(Y_{0}-Y_{3}, Z\right)$ can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

- DIGITAL OR ANALOG MULTIPLEXER/DEMULTIPLEXER

- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES
$\mathrm{Y}_{\mathrm{Y}} \mathrm{a}^{-} \mathrm{Y}_{3 \mathrm{a}}$
${ }_{\frac{A_{0}}{E}}{ }^{Y_{0}} A_{1}-Y_{3 b}$
z_{a}, Z_{b}
Independent Inputs/Outputs
Independent Inputs/Outputs
Address Inputs
Enable Input (Active LOW)
Common Input/Output

TRUTH TABLE

INPUTS			CHANNELS			
\bar{E}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$
L	L	L	ON	OFF	OFF	OFF
L	L	H	OFF	ON	OFF	OFF
L	H	L	OFF	OFF	ON	OFF
L	H	H	OFF	OFF	OFF	ON
H	X	X	OFF	OFF	OFF	OFF

$L=$ LOW Level, $H=$ HIGH Level, $X=$ Don't care

4052B FUNCTIONAL LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	ON	XC		95 100 125	900 1000 1100		$\begin{array}{\|r\|} \hline 55 \\ 65 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 380 \\ & 500 \\ & 600 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 210 \\ & 280 \\ & 340 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {is }}=V_{\text {DD }}$ to $V_{\text {EE }}$
R_{ON}	Resistance	XM		$\begin{array}{\|r\|} \hline 90 \\ 100 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 850 \\ 1000 \\ 1150 \\ \hline \end{array}$		$\begin{array}{\|r} \hline 50 \\ 65 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 340 \\ & 500 \\ & 660 \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 280 \\ & 370 \\ & \hline \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \\ & \hline \end{aligned}$	Note 2
$\triangle \mathrm{R}_{\text {ON }}$	" Δ " ON Res ance Between Two Channe	Any		25			10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
${ }^{\prime}$	OFF State Leakage Current, All Channels OF	XC						800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \overline{\bar{E}}=V_{D D}, \\ & V_{S S}=V_{D D} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & V_{\text {OS }}=V_{E E} \text { or } V_{D D} \\ & \hline \end{aligned}$
	Any Channel OFF	$\frac{\mathrm{XC}}{\mathrm{XM}}$						100						$\begin{aligned} & \bar{E}=V_{S S}=V_{D D} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & V_{O S}=V_{E E} \text { or } V_{D D} \end{aligned}$
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Dissipation	XC xm			$\begin{array}{r} 20 \\ 150 \\ \hline 5 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline 10 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline 20 \\ 600 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$V_{S S}=V_{E E}$ All inputs at $V_{D D}$ or $V_{E E}$

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{E E}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \\ & \hline \end{aligned}$			$\begin{array}{r} 10 \\ 6 \\ \hline \end{array}$			6 4		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}} . \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & 80 \\ & 95 \end{aligned}$		ns	$A_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{E E}$ $\text { Note } 5$
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \\ & \hline \end{aligned}$			$\begin{array}{r} 95 \\ 105 \\ \hline \end{array}$			$\begin{aligned} & 75 \\ & 85 \end{aligned}$		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \overline{\mathrm{E}} \text { or } \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}}=V_{\mathrm{EE}} \end{aligned}$
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \end{aligned}$			$\begin{array}{\|l\|} 1080 \\ 1070 \end{array}$		ns	$v_{\text {is }}=V_{D D} \text { or } V_{E E}$ Note 5
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & V_{S S}=V_{D D} / 2, \bar{E}=V_{E E}, \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } p-p \\ & f_{\text {is }}=1 \mathrm{kHz} \\ & \hline \end{aligned}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \text { at }-40 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2,20 \log _{10} \\ & \left(\mathrm{~V}_{\mathrm{OS}} / V_{\text {is }}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \mathrm{E}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine wave }) \mathrm{p}-\mathrm{p} \\ & 20 \log _{10}\left(\mathrm{~V}_{\text {os }} / \mathrm{V}_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
${ }^{\text {f MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} \\ & \left.\mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) }\right) \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{os}} / \mathrm{V}_{\mathrm{oS}} @ 1 \mathrm{kHz}\right. \\ & =-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics are listed in th is section under 4000B Series CMOS Family Characteristics.
$E=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}$ or $\mathrm{V}_{\mathrm{DD}} / 2$.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. $V_{i s} / V_{o s}$ is the voltage signal at an Input/Output terminal $\left(Y_{n} / Z_{n}\right)$.
4. $V_{I N}=V_{D D}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}$
5. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals 1, 2, 4,5,11,12,14, or 15 the voltage drop across the bidirectional switch must not exceed 0.5 V at $T_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $T_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 3 or 13.

4053B
 TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 4053B is a Triple 2-Channel Analog Multiplexer/Demultiplexer with a common Enable Input (\bar{E}). Each Multiplexer/Demultiplexer has two Independent Inputs/Outputs (Y_{0}, Y_{1}) , a Common Input/Output (Z), and a Select Inpuț (S). Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}, \mathrm{Y}_{1}$) and the other side connected to a Common Input/Output (Z). With the Enable Input (\bar{E}) LOW, one of the two switches is selected (low impedance, ON state) by the Select Input (S). With the Enable Input (E) HIGH, all switches are in the high impedance OFF state, independent of the Select Inputs ($\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{c}}$).
V_{DD} and V_{SS} are the two supply voltage connections for the Digital Control Inputs ($\mathrm{S}_{\mathrm{a}} \mathrm{S}_{\mathrm{C}}, \overline{\mathrm{E}}$). Their voltage limits are the same as for all other digital CMOS. The analog Inputs/Outputs ($\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Z}$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, $\mathrm{V}_{E E}$ is connected to V_{SS} (typically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

$Y_{0 a}-Y_{0 c}, Y_{1 a}-Y_{1 c}$	Independent Input/Outputs
$S_{a}-S_{c}$	Select Inputs
\bar{E}	Enable Input (Active LOW)
$Z_{a}-Z_{c}$	Common Input/Outputs

TRUTH TABLE

INPUTS		CHANNELS	
\bar{E}	S	$\mathrm{Y}_{\mathrm{O}}-\mathrm{Z}$	$\mathrm{Y}_{1}-Z$
L	L	ON	OFF
L	H	OFF	ON
H	X	OFF	OFF

$\mathrm{H}=\mathrm{HIGH}$ Level
L $=$ Low Level
$x=$ Don't Care

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{E E}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
		XC		$\begin{array}{r} 95 \\ 100 \\ 125 \end{array}$	$\begin{array}{r} 900 \\ 1000 \\ 1100 \end{array}$		$\begin{array}{r} 55 \\ 65 \\ 100 \end{array}$	$\begin{aligned} & 380 \\ & 500 \\ & 600 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 210 \\ & 280 \\ & 340 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {is }}=V_{\text {DD }}$ to $V_{E E}$
R_{ON}	Resistance	XM		$\begin{array}{r} 90 \\ 100 \\ 150 \end{array}$	$\begin{array}{r} 850 \\ 1000 \\ 1150 \end{array}$		$\begin{array}{r} 50 \\ 65 \\ 110 \end{array}$	$\begin{aligned} & 340 \\ & 500 \\ & 660 \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 190 \\ & 280 \\ & 370 \\ & \hline \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	Note 2
$\triangle \mathrm{R}_{\text {ON }}$	" Δ " ON Resistance Between Two Channels			25			10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
Iz	OFF State Leakage Current, All Channels OFF	XC XM						8800				$n \mathrm{~A}$	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \bar{E}=V_{D D}, \\ & V_{S S}=V_{D D} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & V_{O S}=V_{E E} \text { or } V_{D D} \end{aligned}$
	Any Channel OFF	XC XM						$\frac{100}{10}$						$\begin{aligned} & \bar{E}=V_{S S}=V_{D D} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & V_{O S}=V_{E E} \text { or } V_{D D} \end{aligned}$
${ }^{\text {I }}$ DD	Quiescent Power Supply Dissipation	XC			$\begin{array}{r} 20 \\ 150 \\ \hline 5 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline 10 \\ 300 \end{array}$			80 600 20 600	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$V_{S S}=V_{E E}$ All inputs at $0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}}$

Notes are on the following page.

AC CHARACTERISTIES AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{E E}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \\ & \hline \end{aligned}$			$\begin{array}{r} 10 \\ -6 \end{array}$			6 4		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} R_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \bar{E}=V_{S S}=V_{E E} . \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & 80 \\ & 95 \end{aligned}$		ns	$\begin{aligned} & S_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 5 \end{aligned}$
$\begin{aligned} & \text { tPZL } \\ & \text { tPZ } \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \end{aligned}$			$\begin{array}{r} 95 \\ 105 \end{array}$			$\begin{aligned} & 75 \\ & 85 \end{aligned}$		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \\ & \bar{E} \text { or } S_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & \text { tPLZ } \\ & \text { tpHz } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \end{aligned}$			$\begin{aligned} & 1080 \\ & 1070 \end{aligned}$		ns	$v_{\text {is }}=v_{\mathrm{DD}} \text { or } v_{\mathrm{EE}}$ Note 5
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}}, \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\text {is }}=1 \mathrm{kHz} \\ & \hline \end{aligned}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \mathrm{p} \text {-p } \\ & \text { at }-40 \mathrm{~dB} \\ & \mathrm{~V}_{S S}=V_{D D} / 2,20 \log _{10} \\ & \left(V_{\text {OS }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, V_{S S}=V_{D D} / 2 \\ & \bar{E}=V_{D D} \\ & V_{\text {is }}=V_{D D} / 2(\text { sine wave }) \mathrm{p}-\mathrm{p} \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
${ }^{\text {f MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{OS}} @ 1 \mathrm{kHz}\right) \\ & =-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
$\bar{E}=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D} / 2$.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. $V_{i s} / V_{\text {os }}$ is the voltage signal at an Input/Output terminal $\left(Y_{n} / Z_{n}\right)$.
4. $V_{I N}=V_{D D}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}$,
5. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals $1,2,3,5,12$, or 13 the voltage drop across the bidirectional switch must not exceed 0.5 V . at $T_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $\mathrm{T}_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 4, 14, or 15.

4066B

QUAD BILATERAL SWITCHES

DESCRIPTION - The 4066B has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals $\left(Y_{n}, Z_{n}\right)$ and an active HIGH Enable Input (E_{n}). A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch; high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING
- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$E_{0}-E_{3}$	Enable Inputs
$Y_{0}-Y_{3}$	Input/Output Terminals
$Z_{0}-Z_{3}$	Input/Output Terminals

LOGIC DIAGRAM (1/4 OF A 4066B)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	ON	XC		$\begin{array}{\|l\|} \hline 190 \\ 270 \\ 330 \\ \hline \end{array}$	$\begin{array}{\|r} 900 \\ 1000 \\ 1090 \end{array}$		$\begin{aligned} & \hline 100 \\ & 120 \\ & 170 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 450 \\ & 500 \\ & 520 \\ & \hline \end{aligned}$		$\begin{array}{r} 80 \\ 80 \\ 130 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 280 \\ & 300 \\ & \hline \end{aligned}$	Ω	$\begin{array}{r} \text { MIN } \\ 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	$\begin{aligned} & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } \end{aligned}$
Ron	Resistance	XM		$\begin{aligned} & \hline 160 \\ & 270 \\ & 360 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 850 \\ 1000 \\ 1150 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 85 \\ 120 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 500 \\ & 550 \\ & \hline \end{aligned}$		$\begin{array}{r} 60 \\ 80 \\ 145 \\ \hline \end{array}$	$\begin{aligned} & 220 \\ & 280 \\ & 320 \\ & \hline \end{aligned}$	Ω	MIN. $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{D D} / 2 \\ & v_{\text {is }}=V_{D D} \text { to } v_{S S} \end{aligned}$
$\triangle \mathrm{R}_{\text {ON }}$	" Δ " ON Res ance Betwee Two Channe	Any		25			10			5		Ω	$25^{\circ} \mathrm{C}$	$\begin{aligned} & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } V_{D D} / 2 \\ & v_{\text {is }}=v_{D D} \text { or } V_{S S} \\ & \hline \end{aligned}$
Iz	OFF State Leakage Current	XC XM									± 300 ± 1000 100 ± 1000	nA	$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	$\begin{aligned} & E_{n}=v_{S S} \\ & v_{i s}=v_{D D} \text { or } V_{S S} \\ & v_{\text {OS }}=v_{S S} \text { or } V_{D D} \end{aligned}$
	Quiescent Power	XC			$\begin{aligned} & \hline 1 \\ & 7.5 \end{aligned}$			$\begin{array}{r} 2 \\ 15 \end{array}$			$\begin{array}{r} 4 \\ 30 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Dissipation	XM			$\begin{aligned} & 0.25 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 15 \end{aligned}$			$\begin{array}{r} 1 \\ 30 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$V_{\text {DD }}$ or $V_{S S}$

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		8	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		3 4	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		2	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}, R_{L}=200 \Omega \text { to } V_{S S}$ Input Transition Times $\leqslant 20$ ns $\begin{aligned} & E_{n}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & \mathrm{tPZL} \\ & \mathrm{tPZH} \end{aligned}$	Output Enable Time		32 32	$\begin{aligned} & 125 \\ & 125 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \text { or } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$		ns	Input Transition Times $\leqslant 20$ ns $V_{\text {is }}=V_{D D}$ or $V_{S S}$
	Distortion, Sine Wave Response		0.4			0.4			0.4		\%	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & \text { Input Frequency }=1 \mathrm{kHz} \\ & E_{n}=V_{D D} \\ & V_{\text {is }}=V_{D D^{\prime}} \text { (sine wave) } p-p \end{aligned}$
	Crosstalk Between Any Two Switches		\cdots			0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{A}=V_{D D}, E_{B}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } p-p \\ & 20 \log _{10} \\ & {\left[V_{\text {os }}(B) / V_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	Input Transition Times $\leqslant 20$ ns $\begin{aligned} & R_{L}(O U T)=1 \mathrm{k} \Omega \\ & R_{L}(I N)=50 \Omega \\ & E_{n}=V_{D D} \text { (square wave) } \end{aligned}$
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{n}}=V_{\mathrm{SS}} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{oS}} / V_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					40					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & V_{i s}=V_{D D} / 2 \text { (sine wave) p-p } \\ & E_{n}=V_{D D}, 20 \text { Log }_{10} \\ & \left(V_{O S} / V_{O S} @ 1 \mathrm{kHz}\right)=-3 \mathrm{~dB} \\ & \hline \end{aligned}$
${ }^{\text {f MAX }}$	Enable Input Frequency (Note 4)					10					MHz	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \\ & V_{\text {os }}=V_{\text {is }} / 2 \text { at } D C \\ & V_{\text {is }}=V_{D D} \\ & \hline \end{aligned}$
$\mathrm{Cis}_{\text {i }}$	Input Switch Capacitance					4					pF	$D D=10 \mathrm{~V}$
C_{OS}	Output Switch Capacitance					4					pF	$\begin{aligned} & E_{n}=V_{S S} \\ & V_{\text {is }}=O \text { Pen } \\ & 100 \mathrm{kHz} \text { or } \end{aligned}$
$\mathrm{C}_{\text {ios }}$	Feedthrough Switch Capacitance					0.2					pF	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. $V_{i s} / V_{o s}$ is the voltage signal at an Input/Output Terminal (Y_{n} / Z_{n}).
3. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics
4. For ${ }^{\text {m MAX }}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals $1,4,8$, or 11 the voltage drop across the bidirectional switch must not exceed 0.5 V at $T_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $\mathrm{T}_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 2,3 , 9 , or 10.

4067B 16-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 4067B is a 16-Channel Analog Multiplexer/Demultiplexer with four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), 16 Independent Inputs/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{15}$), an active LOW Output Enable input (EO), and a Common Input/Output (Z). The 4067B contains 16 bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{15}$) and the other side connected to a Common Input/Output (Z). One of the 16 switches is selected (low impedance, ON state) by the four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) when the Output Enable input (EO) is LOW. All unselected switches are in the high impedance OFF state. With the Output Enable input (EO) HIGH, all 16 switches are in the high impedance OFF state. The Analog Input/Outputs $\left(Y_{0}-Y_{15}, Z\right)$ can swing between $V_{D D}$ and $V_{S S}$. $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$ may not exceed 15 V .

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- 24-PIN PACKAGE
- SINGLE POWER SUPPLY

PIN NAMES

$Y_{0}-Y_{15}$
Independent Inputs/Outputs
$\mathrm{A}_{0}-\mathrm{A}_{3}$
Z
Address Inputs
Common Input/Output
EO Output Enable Input (Active LOW)

LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS				CHANNEL															
A_{3}	A_{2}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$\mathrm{Y}_{3}-\mathrm{Z}$	$Y_{4}-Z$	$Y_{5}-Z$	$Y_{6}-\mathrm{Z}$	$Y_{7}-Z$	$\mathrm{Y}_{8}-\mathrm{Z}$	$\mathrm{Y}_{9}-\mathrm{Z}$	$Y_{10}{ }^{-Z}$	$Y_{11}{ }^{-Z}$	$Y_{12}-Z$	$\mathrm{Y}_{13} 3^{-Z}$	$Y_{14}{ }^{-Z}$	$Y_{15}-Z$
L	L	L	L	ON	OFF														
L	L	L	H	OFF	ON	OFF													
L	L	H	L	OFF	OFF	ON	OFF												
L	L	H	H	OFF	OFF	OFF	ON	OFF											
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF										
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF									
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF								
L	H	H	H	OFF	ON	OFF													
H	L	L	L	OFF	ON	OFF													
H	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF								
H	L	H	L	OFF	ON	OFF	OFF	OFF	OFF	OFF									
H	L	H	H	OFF	ON	OFF	OFF	OFF	OFF										
H	H	L	L	OFF	ON	OFF	OFF	OFF											
H	H	L	H	OFF	ON	OFF	OFF												
H	H	H	L	OFF	ON	OFF													
H	H	H	H	OFF	ON														

L $=$ LOW Level
$H=H I G H$ Level
$\overline{E O}=$ LOW Level

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{R}_{\text {ON }}$	ON Resistance	XCXM		$\begin{array}{r} 95 \\ 100 \\ 125 \end{array}$	$\begin{array}{r} 900 \\ 1000 \\ 1100 \\ \hline \end{array}$		$\begin{array}{r} 55 \\ 65 \\ 100 \end{array}$	$\begin{aligned} & 380 \\ & 500 \\ & 600 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 210 \\ & 280 \\ & 340 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {is }}=V_{D D} \text { to } V_{S S}$ Note 2
				$\begin{array}{r} 90 \\ 100 \\ 150 \\ \hline \end{array}$	850 1000 1150		$\begin{array}{r} 50 \\ 65 \\ 110 \end{array}$	$\begin{aligned} & 340 \\ & 500 \\ & 660 \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & 190 \\ & 280 \\ & 370 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\text {R }}$ ON	" Δ " ON Resist- ance Between Any Two Channels			25			10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
IZ	OFF State Leakage Current, All Channels OFF	XC						800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \overline{\mathrm{EO}}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { or } V_{S S} \\ & V_{\text {OS }}=V_{S S} \text { or } V_{D D} \\ & \overline{\mathrm{EO}}=V_{S S} \\ & V_{\text {is }}=V_{D D} \text { or } V_{S S} \\ & V_{\text {OS }}=V_{S S} \text { or } V_{D D} \end{aligned}$
	Any Channel OFF	$\frac{\mathrm{XC}}{\mathrm{XM}}$						100 10						
${ }^{\text {I D }}$	Quiescent Power Supply Dissipation	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs at
		XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { TPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \\ & \hline \end{aligned}$			10 6			4		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & \hline 80 \\ & 95 \end{aligned}$		ns	$\begin{aligned} & A_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{S S} \\ & \text { Note } 5 \end{aligned}$
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \end{aligned}$			$\begin{array}{r} 95 \\ 105 \end{array}$			$\begin{aligned} & 75 \\ & 85 \end{aligned}$		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} @ 1 \mathrm{k} \Omega \\ & \overline{E O} \text { or } A_{n}=V_{S S} \end{aligned}$
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \end{aligned}$			$\begin{aligned} & 1080 \\ & 1070 \end{aligned}$		ns	$v_{i s}=v_{D D} \text { or } v_{S S}$ Note 5
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & E O=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\text {is }}=1 \mathrm{kHz} \end{aligned}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & \text { at }-40 \mathrm{~dB} \\ & 20 \log _{10} \\ & \left(\mathrm{~V}_{\text {os }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \mathrm{p}-\mathrm{p} \\ & 20 \log _{10}\left(\mathrm{~V}_{\text {os }} / V_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
${ }^{\text {f MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \overline{E O}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) p-p } \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {os }} @ 1 \mathrm{kHz}\right) \\ & =-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
$\overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, anyं channel selected.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output terminal $\left(\mathrm{Y}_{\mathrm{n}} / \mathrm{Z}_{\mathrm{n}}\right)$.
4. $V_{I N}=V_{D D}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}$.
5. In certain applications, the current through the external load resistor (R_{L}) may include both $V_{D D}$ and signal line components. To avoid drawing $V_{D D}$ current when switch current flows into terminals $2,3,4,5,6,7,8,9,16,17,18,19,20,21,22$, or 23 the voltage drop across the bidirectional switch must not exceed 0.5 V at $\mathrm{T}_{A} \leqslant 25^{\circ} \mathrm{C}$, or 0.3 V at $\mathrm{T}_{A}>25^{\circ} \mathrm{C}$. No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminal 1.

4068B
 8-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NAND function- The outpats are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

	4068B	LOGIC SYMBO
$V_{D D}=\operatorname{Pin} 14$	(2) $\frac{1}{19} 1$	
$\begin{aligned} & V_{D D}=\operatorname{Pin} 14 \\ & V_{S S}=\operatorname{Pin} 7 \end{aligned}$	(3) $\frac{1}{1}$	
$N \mathrm{C}=$ Pins 1, 6, 8	(4) $\frac{1}{1}$	4068B
	(5) ${ }^{1} 4$	0 - $\mathrm{z}^{(13)}$
	(9) ${ }^{5}$	
	(10) 1_{6}	
	(11) ${ }^{17}$	

PIN NAMES	
$\mathbf{I O}^{-1 / 7}$	NAND Gate
$\overline{\mathrm{Z}}$	Inputs
	Output
	(Active LOW)

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.
dC Characteristics: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1.			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		max	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {P PLH }}$			82	200		40	85		29	68	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {t }}$ PHL			88	200		40	85		28	68	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {T TLH }}$	Output Transition Time										ns	Input Transition
${ }^{\text {t }}$ THL			55	135		23	70		16	45		Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4069UB/74C04/54C04

HEX INVERTER

DESCRIPTION - The 4069UB is a general purpose Hex Inverter which has standard Fairchild input and output characteristics. A single-stage design has been used since the output impedance of a single-input gate is not pattern sensitive. The 4096UB is a Direct Replacement for the 74C04/54C04.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

$V_{D D}$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
	Power	C			7.5			15			30		MAX	
	Supply Current	XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
tTLH tTHL	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		23 23	70 70		18 18	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL VOLTAGE TRANSFER CHARACTERISTICS

VIN - INPUT VOLTAGE - V

4070B/74C86/54C86
 QUAD EXCLUSIVE-OR GATE

DESCRIPTION - The 4070B CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance. The 4070 B is a direct replacement for the $74 \mathrm{C} 86 / 54 \mathrm{C} 86$.

LOGIC AND CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {P PLH }}$	Propagation Delay,		85	170		45	90		27	72	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$	A or B to X		85	170		45	90		27	72	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition		50	100		23	50		17	35	ns	Input Transition
${ }^{\text {t }}$ THL	Time		50	100		23	50		17	35	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY E VERSUS LOAD CAPACITANCE

4071B
 QUAD 2-INPUT OR GATE

DESCRIPTION - The 4071B is a positive logic Quad 2-Input OR Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM

 DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {D }}$ D	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Propagation Delay		43	85		22	40		17	32	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$			52	100		23	40		15	32	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition Time		45	135		24	70		18	45	ns	Input Transition
${ }^{\text {t }}$ THL			54	135		21	70		15	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 40008 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4073B
 TRIPLE 3-INPUT AND GATE

DESCRIPTION - This CMOS logic element provides the positive Triple 3-lhput AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM
 DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 40 \\ & 44 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 19 \\ & 26 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & 14 \\ & 21 \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Output Transition Time		70 70	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		35 35	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		25 25	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Input Transition Times $\leqslant 20$ ns

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

4075B
 TRIPLE 3-INPUT OR GATE

DESCRIPTION - This CMOS logic element provides the positive Triple 3-Input Of function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.,

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	Xc			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $\mathrm{V} D$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		59 62	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		34 30	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		28 24	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{T}} \mathrm{HL} \end{aligned}$	Output Transition Time		70 70	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		35 35	75 75		25 25	35 35	ns	Input Transition Times $\leqslant 20$ ns

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

4076B/74C173/54C173
 QUAD D FLIP-FLOP WITH 3-STATE OUTPUT

DESCRIPTION - The 4076B is a Quad Edge-Triggered D Flip-Flop with four Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$), two active LOW Data Enable Inputs ($\overline{\mathrm{ED}} \mathbf{0}-\overline{\mathrm{ED}})_{1}$), an edge-triggered Clock Input (CP), four 3-State Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$, two active LOW Output Enable inputs $\left(\mathrm{EO}_{0}, \mathrm{EO}_{1}\right)$, and an overriding asynchronous Master Reset Input (MR).

Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is stored in the four flip-flops on the LOW-to-HIGH transition of the Clock Input (CP) if both Data Enable Inputs ($\overline{\mathrm{ED}_{0}}-\overline{\mathrm{ED}_{1}}$) are LOW. A HIGH on either Data Enable Input ($\overline{E D_{0}}-E D_{1}$) prevents the flip-flops from changing on the LOW-to-HIGH transition of the Clock Input (CP), independent of the information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$).

When both Output Enable inputs ($\overline{\mathrm{EO}_{0}}-\overline{\mathrm{EO}_{1}}$) are LOW, the contents of the four flip-flops are available at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$. A HIGH on either Output Enable input ($\overline{\mathrm{EO}_{0}}, \overline{\mathrm{EO}_{1}}$) forces the outputs (O_{0} O_{3}) into the high impedance OFF state.
A HIGH on the overriding asynchronous Master Reset Input (MR) resets all four flip-flops, indepedent of all other input conditions.

The 4076B is a direct replacement for the 54C173/74C173.

- FULLY INDEPENDENT CLOCK
- 3-STATE OUTPUTS
- CLOCK IS L \rightarrow H EDGE-TRIGGERED
- ACTIVE LOW DATA ENABLE INPUTS
- Active low output enable inputs
- ASYNCHRONOUS MASTER RESET

PIN NAMES

$\frac{D_{0}-D_{3}}{}$	Data Inputs
$\overline{E D_{0}-}-\overline{E D_{1}}$	Data Enable Inputs (Active LOW)
$\overline{E O_{0}}, \overline{E O_{1}}$	Output Enable Inputs (Active LOW)
$C P$	Clock Input (L \rightarrow H Edge-Triggered)
$M R$	Master Reset Input
$\mathrm{C}_{0}-\mathrm{O}_{3}$	Data Outputs

TRUTH TABLE

INPUTS			OUTPUTS
$\overline{E D_{0}}$	$\overline{E D_{1}}$	D_{n}	Q_{n+1}
H	X	X	Q_{n}
X	H	X	Q_{n}
L	L	L	L
L	L	H	H

CONDITIONS:

$\mathrm{MR}=\overline{\mathrm{EO}}=\overline{\mathrm{EO}_{1}}=\mathrm{LOW}$
L = LoW Level
H = HIGH Level
$\mathrm{X}=$ Don't Care
$\mathrm{a}_{\mathrm{n}+1}=$ State After Positive Clock Transition

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OZH}$	Output OFF Current High	XC									$\begin{array}{r} 1.6 \\ 12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output returned to $v_{D D} \cdot \overline{E O}_{1}=\overline{E O}_{0}=$ $V_{D D}$
		XM									$\begin{array}{r} 0.4 \\ 12 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\prime} \mathrm{OZL}$	Output OFF Current LOW	XC									$\begin{array}{r} -1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output returned to $\mathrm{V}_{\mathrm{SS}} \cdot \overline{\mathrm{EO}}_{1}=\overline{\mathrm{EO}}_{\mathrm{O}}=$ $V_{D D}$
		XM									$\begin{aligned} & -0.4 \\ & -12 \end{aligned}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs at 0 V or $V_{D D}$
		XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 10 \\ 600 \\ \hline \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{A} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{P} \text { LH }} \end{aligned}$	Propagation Delay, CP to O_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	75 75	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {tPHL }}$	Propagation Delay $M R$ to O_{n}		80	240		40	120		25	75	ns	Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{P} P \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
${ }^{t^{T} L H}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{t_{w} C P(L)}$	Minimum Clock Pulse Width	80	25		45	10		36	8		ns	
${ }_{t w}{ }^{\text {mR(H) }}$	Minimum MR Pulse Width	60	35		30	20		24	15		ns	
$\mathrm{t}_{\text {rec }}$	MR Recovery Time		6			5			2		ns	
t $t_{\text {h }}$	Set-Up Time, D_{n} to CP Hold-Time, D_{n} to $C P$	15	$\begin{array}{r} 1 \\ 10 \end{array}$		$\begin{array}{r} 5 \\ 20 \end{array}$			$\begin{array}{r} 2 \\ 10 \end{array}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
t_{s} t_{h}	Set-Up Time, $\overline{E D}_{n}$ to CP Hold-Time, $\overline{E D}_{n}$ to CP	$\begin{array}{r} 100 \\ 20 \end{array}$	$\begin{array}{r} 50 \\ 2 \\ \hline \end{array}$		$\begin{aligned} & 40 \\ & 12 \end{aligned}$	$\begin{array}{r} 20 \\ 1 \end{array}$		$\begin{array}{r} 30 \\ 8 \\ \hline \end{array}$	15 1		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {f MAX }}$	Maximum Clock Frequency (Note 3)	4	9		10	16		12	19		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For ${ }^{\prime}$ MAX , input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(tpZH) AND OUTPUT DISABLE TIME (tPHZ)

OUTPUT ENABLE TIME (tpZL) AND OUTPUT DISABLE TIME (tplz)

Set-up and Hold Times are shown as positive values but may be specified as negative values.

4077B

QUAD EXCLUSIVE-NOR GATE

DESCRIPTION - The 4077B CMOS logic element provides the Exclusive-NOR function. The outputs are fully buffered for best performance. The 4077B may be used interchangeably for the 4811.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power	XC			5			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1.	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
	Current				7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Propagation Delay,		55	110		27	55		17	44	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$	A or B to X		65	130		27	55		20	44	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition		53	100		20	50		15	35	ns	Input Transition
${ }^{\text {t }}$ THL	Time		53	100		20	50		15	35	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY ® VERSUS LOAD CAPACITA

4078B

8-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

4078B LOGIC SYMBOL
(2)
(4)
(9)
(11) 1

$$
\begin{aligned}
& V_{D D}=P \text { in } 14 \\
& V_{S S}=P \text { in } 7 \\
& N C=P \text { ins } 1,6,8
\end{aligned}
$$

PIN NAMES
$\frac{1}{2}{ }^{-17} \quad$ NOR Gate Inputs
$\overline{\mathrm{Z}} \quad$ Output (Active LOW)

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Propagation Delay		108	200		46	85		34	68	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$			129	200		50	85		35	68	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition		76	135		39	70		30	45	ns	Input Transition
${ }^{\text {t }}$ THL	Time		80	135		32	70		24	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4081B
 QUAD 2-INPUT AND GATE

DESCRIPTION - The 4081B is a positive logic Quad 2-Input AND Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Propagation Delay		55	95		23	50		17	40	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$			60	95		25	50		19	40	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {T }}$ TLH	Output Transition		70	135		30	70		23	45	ns	Input Transiton
${ }^{\text {t }}$ THL	Time		57	135		23	70		16	45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 Beries CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4085B

DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The 4085B is a Dual 2-Wide 2-Input AND-OR-Invert (AOl) Gate, each with an additional input ($1_{4 A}$ or $I_{4 B}$) which can be used as either an Expander Input or an Inhibit Input by connecting it to any standard CMOS output. A HIGH on this Input (I) forces the Output (\bar{F}) LOW independent of the other four inputs $\left(I_{0} \|_{3}\right)$. The Outputs (\bar{F}_{A} and $\overline{F_{B}}$) are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMES
$I_{0 A}-I_{4 A}, I_{0 B}{ }^{-1} 4 B$
Gate Inputs
Outputs (Active LOW)

LOGIC DIAGRAM

$$
\bar{F}=\overline{I_{0} \bullet I_{1}+I_{2} \bullet I_{3}+I_{4}} \quad \begin{array}{ll}
V_{D D}=\operatorname{Pin} 14 \\
& V_{S S}=\operatorname{Pin} 7
\end{array}
$$

CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ -			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
'DD	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay,		56	115		25	55		17	44	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PHL }}$	Any I to \bar{F}		74	135		30	65		20	52	ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{\text {t }}$ TLH	Output Transition		45	100		22	50		15	35	ns	Input Transition
${ }^{\text {t }}$ THL	Time		45	100		22	50		15	35	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4086B

4-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The 4086B is a 4-Wide 2-Input AND-OR-Invert (AOI) Gate with two additional inputs (1_{8} and T_{g}) which can be used as either expander inputs or inhibit inputs by connecting them to any standard CMOS output. A HIGH on I_{8} or a LOW on I_{9} forces the Output (F) LOW independent of the other eight inputs ($\mathrm{I}^{-1} 7$). The Output (F) is fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMMES	
$\frac{\text { Gate Inputs }}{I_{0}-\mathrm{I}_{8}}$	Gate Input (Active LOW)
$\overline{\mathrm{F}}$	Output (Active LOW)

LOGIC DIAGRAM

$$
\bar{F}=I_{0} \bullet I_{1}+I_{2} \bullet I_{3}+I_{4} \bullet I_{5}+I_{6} \bullet I_{7}+I_{8}+I_{9}
$$

NOTE:
A HIGH on I_{8} or a LOW on \bar{T}_{9} forces the output (\bar{F}) LOW.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay,		100	180		40	80		25	64	ns	
${ }^{\text {tPHL }}$	I_{0} through I_{8} to $\overline{\mathrm{F}}$		100	180		40	80		25	64	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t PLH }}$	Propagation Delay,		65	100		35	50		20	40	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t PHL }}$	Tg to \bar{F}		65	100		35	50		20	40	ns	Input Transition
${ }^{\text {t TLH }}$	Output Transition		55	100		25	50		18	35	ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ THL	Time		55	100		25	50		18	35	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

PROPAGATION DELAY VERSUS TEMPERATURE

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

4093B QUAD 2-INPUT NAND SCHMITT TRIGGER

GENERAL DESCRIPTION - The 4093B is a Quad 2-Input NAND Schmitt Trigger offering positive and negative threshold voltages, $\mathrm{V}_{\mathrm{T}+}$ and V_{T} - which show very low variation with temperature (typically $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$) and typical hysteresis, $\mathrm{V}_{\mathrm{T}+}$ to $\mathrm{V}_{T-} \geq 0.33 \mathrm{VDD}$. Outputs are fully buffered for highest noise immunity.

LOGIC AND CONNECTIONं

DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage		2.9	3.6	4.3	6.0	6.8	8.6	9	10	12.9	v	AL.L.	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$
V_{T-}	Negative-Going Threshold Voltage		0.7	1.4	1.9	1.4	3.2	4.0	2.1	5	6	v	ALL	$V_{I N}=V_{D D}$ to $V_{S S}$
$\begin{aligned} & \mathrm{V}_{\mathrm{T}+} \mathrm{to} \\ & \mathrm{~V}_{\mathrm{T}-} \end{aligned}$	Hysteresis		1.0	2.2	3.6	2.0	3.6	7.2	3	5	8	v	ALL	Guaranteed Hysteresis = $\mathrm{V}_{\mathrm{T}+} \text { Minus } \mathrm{V}_{\mathrm{T}}$
	Quiescent	XC			1			2			4		MIN, $25{ }^{\circ} \mathrm{C}$	
	Power	XC			7.5			15			30	$\mu \mathrm{A}$	MAX	All Inputs
DD	Supply				0.25			0.5			1		MIN, $25^{\circ} \mathrm{C}$	at OV or
	Current	XM			7.5			15			30	$\mu \mathrm{A}$	MAX	

NOTES:

1. Additional dc characteristics are listed in this section under Fairchild $4000 B$ series $C M O S$ family characteristics.

$V_{D D}$-POWER SUPPLY VOLTAGE-V

$V_{D D}$-POWER SUPPLY VOLTAGE- v

INPUT AND OUTPUT CHARACTERISTICS

$V_{N M L}=V_{I H}(M I N)-V_{O L} \simeq V_{I H}(M I N)=V_{T}+(M I N)$
$V_{N M H}=V_{O H}-V_{I L}(M A X) \simeq V_{D D}-V_{I L}(M A X)=V_{D D}-V_{T}-(M A X)$
AC TEST CIRCUITS AND SWITCHING TIME WAVEFORMS

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS See Note 2
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	110 110		$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \mathrm{t} \text { THL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:
Propagation Delays and Output Transitions Times are Grahically Described in Section Under Series CMOS Family Characteristics.

4104B

QUAD LOW VOLTAGE TO HIGH VOLTAGE TRANSLATOR WITH 3-STATE OUTPUTS

DESCRIPTION - The 4104B Quad Low Voltage to High Voltage Translator with 3-State Outputs provides the capability of interfacing low voltage circuits to high voltage circuits, such as low voltage CMOS and TTL to high voltage CMOS. It has four Data Inputs ($\mathrm{I}_{0}-\mathrm{I}_{3}$), an active HIGH Output Enable input (EO), four Data Outputs $\left(Z_{0}-Z_{3}\right)$ and their Complements $\left(\bar{Z}_{0}-\bar{Z}_{3}\right)$. With the Output Enable input HIGH, the Outputs ($\left.Z_{0}-Z_{3}, \overline{Z_{0}}-Z_{3}\right)$ are in the low impedance "ON" state, either HIGH or LOW as determined by the Data Inputs; with the Output Enable input LOW, the Outputs are in the high impedance "OFF" state. The voltage level on the Output Enable input may swing between $V_{\text {DDI }}$ and V_{SS}.
The device uses a common negative supply (V_{SS}) and separate positive supplies for inputs ($\mathrm{V}_{\mathrm{DDI}}$) and outputs ($V_{D D O}$). $V_{D D I}$ must always be less than or equal to $V_{D D O}$, even during power turn-on and turn-off. For the allowable operating range of $V_{D D I}$ and $V_{D D O}$ see Figure 1. Each input protection circuit is terminated between $V_{D D O}$ and $V_{S S}$. This allows the input signals to be driven from any potential between $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$, without regard to current limiting. When driving from potentials greater than $\mathrm{V}_{\text {DDO }}$ or less than V_{SS}, the current at each input must be limited to 10 mA .
When used in a bus organized system, all 4104B devices on the same bus line should be connected to the same $V_{\text {DDO }}$ and $V_{\text {SS }}$ supplies. Otherwise, parasitic diodes from the output to $V_{\text {DDO }}$ and $V_{\text {SS }}$ can become forward biased, even while the device is in the OFF state, causing catastrophic failure if the current is not limited to 10 mA .

- 3-STATE FULLY BUFFERED OUTPUTS

- OUTPUT ENABLE INPUT (ACTIVE HIGH)
- DUAL POWER SUPPLY

PIN NAMES

I_{0-1}
EO
$\frac{z_{0}-z_{3}}{z_{0}-z_{3}}$

FUNCTION
Data Inputs
Output Enable Input
Data Outputs
Complimentary Data Outputs

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC SYMBOL

$V_{\text {DDO }}=\operatorname{Pin} 1$
$V_{\text {DDI }}=P$ in 16
$V_{S S}=\operatorname{Pin} 8$
O $=P$ in Number

DC CHARACTERISTICS: $\mathrm{V}_{\text {DDO }}=\mathrm{V}_{\mathrm{DDI}}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DDO/I }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO/I }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO/I }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		3.5		$\begin{gathered} \text { Note } \\ 1 \\ \hline \end{gathered}$	7		$\begin{gathered} \text { Note } \\ 1 \\ \hline \end{gathered}$	11		Note 1	V	All	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage		$\begin{gathered} \text { Note } \\ 2 \\ \hline \end{gathered}$		1.5	$\begin{array}{\|c\|} \hline \text { Note } \\ 2 \end{array}$		3	$\begin{gathered} \hline \text { Note } \\ 2 \end{gathered}$		4	v	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 9.95 \\ 9.95 \\ \hline \end{array}$			$\begin{array}{l\|} \hline 14.95 \\ 14.95 \\ \hline \end{array}$			V	$\begin{array}{\|c} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	$\mathrm{I}^{\text {OH }}<1 \mu \mathrm{~A}$ Note 3
			4.5			9.0			13.5				All	IOL < $1 \mu \mathrm{~A}$ Note 4
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 0.05 \\ 0.05 \\ \hline \end{array}$	V	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	IOL <1 μ A Note 3
					0.5			1.0			1.5		All	1 OH <1 $\mu \mathrm{A}$ Note 4
IN	Input Current	XC									0.3	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	Lead Under Test at 0 V or VDDO. All Other Inputs Simultaneously at 0 V or $\mathrm{V}_{\text {DDO }}$
											1.0		MAX	
		XM									0.1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
											1.0		MAX	
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & \hline-1.5 \\ & -1.0 \\ & \hline \end{aligned}$									mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=5 \mathrm{~V} \text { Note } 3 \end{aligned}$
			$\begin{aligned} & \hline-0.7 \\ & -0.4 \end{aligned}$			$\begin{aligned} & \hline-1.4 \\ & -0.8 \end{aligned}$			$\begin{aligned} & -2.2 \\ & -1.4 \end{aligned}$				$\begin{array}{\|c} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DDO }}$ -0.5 V Note 3
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.4 \end{aligned}$			$\begin{aligned} & 2.6 \\ & 2.0 \\ & 1.2 \end{aligned}$			3.6 3.6 2.0			mA	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ for $V_{\text {DDO }}=5 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ for $V_{\text {DDO }}=10 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ for $V_{\text {DDO }}=15 \mathrm{~V}$ Note 3
IOZH	Output OFF Current HIGH	XC									1.6	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	Output Returned to $V_{D D O}, E O=V_{S S}$
											12		MAX	
		XM									0.4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
											12		MAX	
Iozl	Output OFF Current LOW	XC									-1.6	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
											-12		MAX	
		XM									-0.4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
											-12		MAX	
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or $V_{D D I}=V_{D D O}$
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

NOTES:

1. $V_{I H}$ must be less than or equal to $V_{D D O}$. If $V_{I H}$ is greater than $V_{D D O}$, current at each input must be limited to 10 mA .
2. $V_{I L}$ must be greater than or equal to $V_{S S}$, if $V_{I L}$ is less than $V_{S S}$, current at each input must be limited to 10 mA .
3. Inputs at 0 V or $\mathrm{V}_{\text {DDO }}$ per function.
4. inputs at minimum $V_{I H}$ or maximum $V_{I L}$ per function.
5. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D I}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}$ as shown, $\mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$ (See Note 5)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DDO }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay,		160	375		85	180		75	144	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
tPHL	I_{n} to Z_{n} or \bar{Z}_{n}		160	375		85	180		75	144		$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
tPZ	Output Enable Time		200	450		80	110		70	88	ns	$\left(R_{L}=1 \mathrm{k} \Omega\right.$ to $\left.\mathrm{V}_{S S}\right)$
tPZL	Output Enable Time		200	450		100	170		80	136		($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DDO}}$)
tPHZ	Output Disable Time		75	165		90	170		75	136	ns	($R_{L}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {SS }}$)
tplz	Output Disable Time		50	115		80	110		70	88		($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {DDO }}$)
ttL	Output Transition Time		60	135		30	70		25	45	ns	Input Transition
${ }_{\text {t }}$			60	135		30	70		25	45	ns	Times $\leqslant 20 \mathrm{~ns}$

Notes on previous page.

Fig. 1 TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS C ${ }_{\text {L }}$

$\mathrm{V}_{\text {DDO }}$ VERSUS $\mathrm{V}_{\text {DDI }}$

PROPAGATION DELAY VERSUS VDO

POWER DISSAPATION VERSUS FREQUENCY

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME (tpZH) AND OUTPUT DISABLE TIME (tpHZ)

OUTPUT ENABLE TIME (tpzL) AND OUTPUT DISABLE TIME (tpLz)

4510B

UP/DOWN DECADE COUNTER

DESCRIPTION - The 4510B is an Edge-Triggered Synchronous Up/Down BCD Counter with a Clock Input (CP), an active HIGH Up/Down Count Control Input (Up/Dn), an active LOW Count Enable Input ($\overline{C E}$), an asynchronous active HIGH Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$, an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. With the Parallel Load Input (PL) LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP) if the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW. The Up/Down Count Control Input (Up/Dn) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output ($\overline{\mathrm{TC}}$) is LOW when the Parallel Outputs $\mathrm{O}_{0} \cdot \mathrm{O}_{3}$ are HIGH and the Count Enable ($\overline{\mathrm{CE}}$) is LOW. When counting down, the Terminal Count Output (TC) is LOW when all the Parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) and the Count Enable Input ($\overline{\mathrm{CE}}$) are LOW. A HIGH on the Master Reset Input resets the counter ($\mathrm{O}_{0}-\mathrm{Q}_{3}=$ LOW) independent of all other input conditions.

- UP/DOWN COUNT CONTROL

- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET
- EASILY CASCADABLE

MODE SELECTION TABLE

PL	UP/ $\overline{D N}$	$\overline{\mathrm{CE}}$	CP	MODE
H	X	X	X	Parallel Load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$)
L	X	H	X	No Change
L	L	L	5	Count Down, Decade
L	H	L	5	Count Up, Decade

$$
\begin{aligned}
& M R=\text { LOW } \\
& H=\text { HIGH Level } \\
& L=\text { LOW Level }
\end{aligned}
$$

$$
\begin{aligned}
x= & \text { Don't Care } \\
\Gamma= & \text { Positive-Going } \\
& \text { Transition }
\end{aligned}
$$

4510B STATE DIAGRAM

Count Up
Count Down -----

LOGIC EQUATION FOR TERMINAL COUNT
$\mathrm{TC}=\mathrm{CE} \bullet\left[\left(\mathrm{UP} \bullet \mathrm{Q}_{0} \bullet \mathrm{Q}_{3}\right)+\left(\overline{\mathrm{UP}} \bullet \overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3}\right)\right]$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES

PL Parallel Load Input (Active HIGH)
$\mathrm{P}_{0}-\mathrm{P}_{3} \quad$ Parallel Inputs
$\overline{\mathrm{CE}} \quad$ Count Enable Input (Active LOW)
CP Clock Pulse Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
Up/ $\overline{\mathrm{Dn}} \quad$ Up/Down Count Control Input
MR Master Reset Input
TC Terminal Count Output (Active LOW)
$\mathrm{O}_{0}-\mathrm{Q}_{3} \quad$ Parallel Outputs

LOGIC DIAGRAM

$$
\begin{aligned}
& V_{D D}=P \text { in } 16 \\
& V_{S S}=P \text { in } 8 \\
& O=P \text { in Number }
\end{aligned}
$$

PL (Parallel Load Input) - Asynchronously Loads Pinto Q , Overriding all Other Inputs
P (Parallel Input) - Data on this Pin is Asynchronously Loaded into Q, when PL is HIGH Overriding all Other Inputs CP (Clock Pulse Input)
Q, \bar{Q} (True and Complimentary Outputs)
T (Toggle Input) - Forces the Q output to synchronously toggle when a HIGH is placed on this input.

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs at
ID	Supply Current	XM			5 150			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

Notes on folowing page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t} P \mathrm{LH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\mathrm{Q}_{\mathbf{n}}$		$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$		$\begin{aligned} & 62 \\ & 59 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & 41 \\ & 39 \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 167 \\ & 252 \end{aligned}$	$\begin{aligned} & 450 \\ & 650 \end{aligned}$		$\begin{array}{r} 71 \\ 100 \end{array}$	$\begin{aligned} & 180 \\ & 245 \end{aligned}$		$\begin{aligned} & 48 \\ & 66 \end{aligned}$	$\begin{aligned} & 144 \\ & 196 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 170 \\ & 220 \end{aligned}$	$\begin{aligned} & 325 \\ & 425 \end{aligned}$		$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 150 \\ & 195 \end{aligned}$		$\begin{aligned} & 45 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 156 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, MR to $\mathrm{O}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 225 \\ & 205 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$		$\begin{aligned} & 170 \\ & 120 \end{aligned}$	$\begin{aligned} & 210 \\ & 190 \end{aligned}$		$\begin{array}{r} 105 \\ 80 \end{array}$	$\begin{aligned} & 168 \\ & 152 \end{aligned}$	ns	
tTLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{t}{ }_{W} C P$	CP Minimum Pulse Width	125	50		60	21		48	14		ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{t_{w} P L}$	PL Minimum Pulse Width	150	60		60	21		48	16		ns	Input Transitio
${ }^{t_{w} M R}$	MR Minimum Pulse Width	150	60		60	30		48	20		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {rec }}$	MR Recovery Time	175	75		70	30		56	20		ns	
trec	PL Recovery Time	150	62		60	24		48	17		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, UP/DN to CP Hold Time, UP/ $\overline{D N}$ to CP	$\begin{array}{r} 325 \\ 0 \end{array}$	$\begin{aligned} & 145 \\ & -90 \end{aligned}$		$\begin{array}{r} 140 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 55 \\ -35 \\ \hline \end{array}$		$\begin{array}{r} 110 \\ 0 \end{array}$	$\begin{array}{r} 38 \\ -25 \\ \hline \end{array}$		ns	
t_{s} t_{h}	Set-Up Time, $\overline{\mathrm{CE}}$ to CP Hold Time, $\overline{\mathrm{CE}}$ to CP	$\begin{array}{r} 275 \\ 0 \end{array}$	$\begin{aligned} & 118 \\ & -40 \end{aligned}$		$\begin{array}{r} 120 \\ 0 \end{array}$	$\begin{array}{r} 49 \\ -15 \end{array}$		96 0	$\begin{array}{r} 33 \\ -10 \end{array}$		ns	
t_{s} t_{h}	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL	$\begin{array}{r} 70 \\ 0 \end{array}$	$\begin{array}{r} 29 \\ -40 \\ \hline \end{array}$		$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 11 \\ -20 \end{array}$		24 0	$\begin{array}{r} 8 \\ -20 \\ \hline \end{array}$		ns	
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 3)	2	5		5	12		6	15		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics:
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

MINIMUM CP WIDTH, SET-UP AND HOLD TIMES, CE TO CP AND UP/DN TO CP

MINIMUM PL AND MR PULSE WIDTH, RECOVERY TIME FOR PL AND MR, AND SET-UP AND HOLD TIMES, P_{n} TO PL

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

4511B
 BCD TO 7-SEGMENT LATCH/DECODER/DRIVER

GENERAL DESCRIPTION - The 4511B is a BCD to 7-Segment Latch/Decoder/Driver with four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), an active LOW Latch Enable Input (EL), an active Low Blanking Input ($\overline{\mathrm{IB}}$), an active LOW Lamp Test Input ($I_{L T}$) and seven active HIGH npn bipolar segment outputs (a-g).

When the Latch Enable Input ($\overline{E L}$) is LOW, the state of the Segment Outputs ($a-g$) is determined by the data on the Address Inputs $\left(A_{0}-A_{3}\right)$. When the Latch Enable Input ($\overline{E L}$) goes HIGH, the last data present at the Address Inputs $\left(A_{0}-A_{3}\right)$ is stored in the latches and the Segment Outputs ($a-g$) remain stable.

When the Lamp Test Input ($\overline{\mathrm{LT}}$) is LOW, all the Segment Outputs (a-g) are HIGH independent of all other input conditions. With the Lamp Test Input ($\overline{I_{L T}}$) HIGH, a LOW on the Blanking Input ($\overline{I_{B}}$) forces all Outputs ($\mathrm{a}-\mathrm{g}$) LOW. The Lamp Test Input ($\overline{L T}_{\mathrm{LT}}$) and the Blanking Input ($\overline{\mathrm{I}}$) do not affect the latch circuit.

- HIGH CURRENT SOURCING OUTPUTS (UP TO 25 mA)
- BLANKING INPUT (ACTIVE LOW)
- LAMP TEST INPUT (ACTIVE LOW)
- LAMP INTENSITY MODULATION CAPABILITY
- MULTIPLEXING CAPABILITY
- LOW POWER DISSIPATION

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$ Address (Data) Inputs
$\overline{E L} \quad$ Latch Enable (Active LOW) Input
$\overline{I_{B}} \quad$ Blanking (Active LOW) Input
$\overline{I_{L T}} \quad$ Lamp Test (Active LOW) Input
$a-g \quad$ Segment Outputs

TRUTH TABLE

INPUTS									OUTPUTS					
EL	$\overline{\mathrm{I}}$	$\overline{I_{L T}}$	A_{3}	A_{2}	A_{1}	A_{0}	a	b	c	d	e	f	g	DISPLAY
X	X	L	X	X	X	X	H	H	H	H	H	H	H	8
X	L	H	X	X	X	X	L	L	L	L	L	L	L	BLANK
L	H	H	L	L	L	L	H	H	H	H	H	H	L	0
L	H	H	L	L	L	H	L	H	H	L	L	L	L	1
L	H	H	L	L	H	L	H	H	L	H	H	L	H	2
L	H	H	L	L	H	H	H	H	H	H	L	L	H	3
L	H	H	L	H	L	L	L	H	H	L	L	H	H	4
L	H	H	L	H	L	H	H	L.	H	H	L	H	H	5
L	H	H	L	H	H	L	L	L	H	H	H	H	H	6
L	H	H	L	H	H	H	H	H	H	L	L	L	L	7
L	H	H	H	L	L	L	H	H	H	H	H	H	H	8
L	H	H	H	L	L	H	H	H	H	L	L	H	H	9
L	H	H	H	L	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	L	H	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	H	L	L	L	L	L	L	L	BLANK
H	H	H	X	X	X	\times				\bullet				-

[^4]

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS		
			MIN	TYP	MAX					
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		3.5			V	All	Guaranteed Input HIGH Voltage		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				1.5	V	All	Guaranteed Input LOW Voltage		
V_{OH}	Output HIGH Voltage	$\begin{gathered} \mathrm{XC} \\ \text { or } \\ \mathrm{XM} \end{gathered}$	4.1	4.57		v	$25^{\circ} \mathrm{C}$	${ }^{\mathrm{OH}}<1 \mu \mathrm{~A}$	Inputs at 0 V or $V_{D D}$ per the Truth Table	
		XC		4.24		v	$25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OH}^{=5 \mathrm{~mA}}$		
			3.60	4.22				${ }^{1} \mathrm{OH}^{=10} \mathrm{~mA}$		
				4.16				${ }^{1} \mathrm{OH}=15 \mathrm{~mA}$		
			. 2.80	4.12				${ }^{1} \mathrm{OH}=20 \mathrm{~mA}$		
				4.05				${ }^{1} \mathrm{OH}=25 \mathrm{~mA}$		
				4.24		v		${ }^{1} \mathrm{OH}^{=5 \mathrm{~mA}}$		
			3.90	4.22				${ }^{1} \mathrm{OH}^{=10 \mathrm{~mA}}$		
		XM		4.16			$25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OH}^{\prime}=15 \mathrm{~mA}$		
			3.40	4.12				${ }^{1} \mathrm{OH}=20 \mathrm{~mA}$		
				4.05				$\mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA}$		
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A} \text {, Inputs at } 0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}}$ per the Truth Table		
					0.5	V	All	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A}$, Inputs at 1.5 or 3.5 V		
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{array}{r} 1 \\ 0.8 \\ 0.4 \end{array}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OUT}}= \\ 0.4 \mathrm{~V} \end{gathered}$	Inputs at 0 V or V_{DD} per the Truth Table	
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or V_{DD} and all Outputs Open		
					150		MAX			
		XM			5		MIN, $25^{\circ} \mathrm{C}$			
					150		MAX			

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS		
			MIN	TYP	MAX					
$V_{\text {IH }}$	Input HIGH Voltage		7			V	All	Guaranteed Input HIGH Voltage		
$V_{\text {IL }}$	Input LOW Voltage				3	V	All	Guaranteed Input LOW Voltage		
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{XC} \\ & \text { or } \\ & \mathrm{XM} \\ & \hline \end{aligned}$	9.1	9.58		v	$25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OH}^{<1 \mu \mathrm{~A}}$	Inputs at 0 V or V_{DD} per the Truth Table	
		XC	$\begin{aligned} & 8.75 \\ & 8.10 \end{aligned}$	$\begin{aligned} & 9.26 \\ & 9.21 \\ & 9.17 \\ & 9.14 \\ & 9.10 \\ & \hline \end{aligned}$		V	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA} \\ & \hline \end{aligned}$		
		XM	$\begin{aligned} & 9.00 \\ & 8.60 \end{aligned}$	$\begin{aligned} & \hline 9.26 \\ & 9.21 \\ & 9.17 \\ & 9.14 \\ & 9.10 \\ & \hline \end{aligned}$		V	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA} \\ & { }^{\prime} \mathrm{OH}^{2}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA} \end{aligned}$		
v_{OL}	Output LOW Voltage				$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A} \text {, Inputs at } 0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}}$ per the Truth Table		
					1	V	All	${ }^{1} \mathrm{OL}<1 \mu \mathrm{~A}$, Inputs at 3 or 7 V		
${ }^{\prime} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 2.6 \\ & 2 \\ & 1.2 \\ & \hline \end{aligned}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OUT}}= \\ 0.5 \mathrm{~V} \\ \hline \end{gathered}$	Inputs at 0 V or V_{DD} per the Truth Table	
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			40	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or V_{DD} and all Outputs Open		
					300		MAX			
		XM			10		MIN, $25^{\circ} \mathrm{C}$			
					300		MAX			

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS		
			MIN	TYP	MAX					
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		11			V	All	Guaranteed Input HIGH Voltage		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				4	V	All	Guaranteed Input LOW Voltage		
V_{OH}	Output HIGH Voltage	$\begin{gathered} \mathrm{XC} \\ \text { or } \\ \mathrm{XM} \end{gathered}$	14.10	14.59		V	$25^{\circ} \mathrm{C}$	$\mathrm{IOH}^{\text {< }} 1 \mu \mathrm{~A}$	Inputs at $0 \vee$ or $V_{D D}$ per the Truth Table	
		XC		14.27			$25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OH}^{=5 \mathrm{~mA}}$		
			13.75	14.23				${ }^{1} \mathrm{OH}^{\prime}=10 \mathrm{~mA}$		
				14.20				${ }^{1} \mathrm{OH}^{\prime}=15 \mathrm{~mA}$		
			13.10	14.17				${ }^{1} \mathrm{OH}^{\prime}=20 \mathrm{~mA}$		
				14.13				${ }^{1} \mathrm{OH}^{\prime}=25 \mathrm{~mA}$		
		XM		14.27			$25^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OH}^{\prime}=5 \mathrm{~mA}$		
			14.00	14.23				${ }^{1} \mathrm{OH}^{\prime}=10 \mathrm{~mA}$		
				14.20				${ }^{1} \mathrm{OH}^{\prime}=15 \mathrm{~mA}$		
			13.60	14.17				${ }^{1} \mathrm{OH}^{\prime}=20 \mathrm{~mA}$		
				14.13				${ }^{1} \mathrm{OH}^{\prime}=25 \mathrm{~mA}$		
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	${ }^{\prime} \mathrm{OL}<1 \mu \mathrm{~A}$, Inputs at 0 V or V_{DD} per the Logic Function or Truth Table		
					2	V	All	$\mathrm{I}_{\mathrm{OL}}<1 \mu \mathrm{~A}$, Inputs at 4 or 11 V		
IN	Input Current	XC			1	$\mu \mathrm{A}$	All	Lead under test at 0 V or V_{DD} All other Inputs simultaneously at 0 V or V_{DD}		
		XM			1					
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$			mA	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\text {OUT }}= \\ 1.5 \mathrm{~V} \end{gathered}$	Inputs at 0 V or $V_{D D}$ per the Truth Table	
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or V_{DD} and all Outputs Open		
					600		MAX			
		XM			20		MIN, $25^{\circ} \mathrm{C}$			
					600		MAX			

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay, A_{N} to a-g		$\begin{aligned} & 212 \\ & 238 \end{aligned}$	$\begin{aligned} & 480 \\ & 480 \end{aligned}$		$\begin{aligned} & 90 \\ & 88 \end{aligned}$	$\begin{array}{\|l\|} \hline 190 \\ 190 \\ \hline \end{array}$		$\begin{aligned} & 68 \\ & 60 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{LLT}}$ to a-g		$\begin{aligned} & 82 \\ & 85 \end{aligned}$	$\begin{array}{\|l\|} \hline 180 \\ 180 \\ \hline \end{array}$		$\begin{aligned} & 38 \\ & 34 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
${ }^{t} \mathrm{PLH}$ ${ }^{t_{P H L}}$	Propagation Delay, $\overline{\mathrm{B}}_{\mathrm{B}}$ to $\mathrm{a}-\mathrm{g}$		$\begin{aligned} & \hline 147 \\ & 164 \end{aligned}$	$\begin{aligned} & 330 \\ & 330 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 65 \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ 135 \end{array}$		$\begin{aligned} & 42 \\ & 46 \end{aligned}$	$\begin{aligned} & 108 \\ & 108 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}{ }^{\text {PLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, $\overline{\mathrm{E}_{\mathrm{L}}}$ to a-g		$\begin{array}{\|l\|} \hline 230 \\ 275 \end{array}$	$\begin{aligned} & 550 \\ & 550 \end{aligned}$		$\begin{aligned} & 90 \\ & 98 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$			$\begin{aligned} & 168 \\ & 168 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t} T \mathrm{LH}}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Output Transition Time		$\begin{aligned} & 25 \\ & 75 \end{aligned}$	$\begin{array}{r} 55 \\ 135 \end{array}$		$\begin{aligned} & 18 \\ & 26 \end{aligned}$			16 17		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{\text {t }}{ }_{\text {EL }}$	EL Minimum Pulse Width	85	34		35	14		28	10		ns	
ts t_{h}	Set-Up Time, A_{N} to EL Hold-Time, A_{N} to EL	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	7 6		20 20	4 4		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Additional dc characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

AC WAVEFORMS

SET-UP AND HOLD-TIMES, AN TO EL AND MINIMUM EL PULSE WIDTH

NOTE: Set-up and hold-times are shown as positive values but may be specified as negative values

TYPICAL APPLICATIONS

LIGHT EMITTING DIODE (LED) READOUT

INCANDESCENT READOUT

*A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

FLUORESCENT READOUT

LIQUID CRYSTAL (LCD) READOUT**

[^5]
4512B
 8 -INPUT MULTIPLEXER WITH 3-STATE OUTPUT

DESCRIPTION - The 4512B is an 8-Input Multiplexer with Active LOW logic and output enables ($\overline{\mathrm{E}}$, $\overline{\mathrm{EO}})$. One of eight binary inputs is selected by Select Inputs S_{0}, S_{1} and S_{2} and is routed to the output F. A HIGH on the Output Enable ($\overline{\mathrm{EO}}$) causes the F output to assume a high impedance or "OFF" state, regardless of other input conditions. This allows the output to interface directly with bus oriented systems (3 -state). When the active LOW Enable (\bar{E}) is HIGH, it forces the output LOW provided the Output Enable ($\overline{\mathrm{EO}}$) is LOW. By proper manipulation of the inputs, the 4512 B can provide any logic functions of four variables. The 4512B cannot be used to multiplex analog signals.

- SELECTS ONE-OF-EIGHT DATA SOURCES

- PERFORMS PARALLEL-TO-SERIAL CONVERSION
- 3-STATE OUTPUTS WITH ACTIVE LOW OUTPUT ENABLE
- ACTIVE LOW LOGIC ENABLE

PIN NAMES

$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$	Select Inputs
$\overline{\mathrm{EO}}$	Output Enable (Active LOW)
$\overline{\mathrm{E}}$	Enable (Active LOW)
I_{0} to I_{7}	Multiplexer Inputs
F	Multiplexer Output

TRUTH TABLE

INPUTS													OUTPUT
$\overline{\mathrm{EO}}$	$\overline{\mathrm{E}}$	S_{2}	S_{1}	S_{0}	10	l_{1}	I_{2}	13	14	15	16	17	F
L	H	X	X	X	X	x	X	x	x	X	X	x	L
L	L	L	L	L	L	X	X	X	X	X	X	X	L
L	L	L	L	L	H	X	X	X	X	X	X	X	H
L	L	L	L	H	X	L	x	x	X	X	X	X	L
L	L	L	L	H	X	H	X	x	x	x	X	x	H
L	L	L	H	L	x	X	L	x	X	x	x	x	L
L	L	L	H	L	X	X	H	X	X	X	X	X	H
L	L	L	H	H	x	X	X	L	x	X	x	x	L
L	L	L	H	H	X	X	X	H	X	X	X	x	H
L	L	H	L	L	x	X	X	X	L	x	x	X	L
L	L	H	L	L	x	x	x	x	H	X	x	x	H
L	L	H	L	H	X	X	X	X	X	L	X	X	L
L	L	H	L	H	x	x	x	x	x	H	X	X	H
L	L	H	H	L	x	x	x	x	x	X	L	x	L
L	L	H	H	L	x	x	x	x	x	X	H	X	H
L	L	H	H	H	x	x	x	x	x	X	X	L	L
L	L	H	H	H	x	x	X	x	x	x	x	H	H
H	X	\times	\times	x	X	X	X	X	X	X	X	X	Z
					=	LOW	Lev						
					$=$	HIG	H Le						
					$=$	Don	Ca						
						High	Imp	edan	S				

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDTIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\overline{\text { IOZH }}$	Output OFF Current HIGH	XC									$\begin{gathered} 1.6 \\ 12 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output returned to $V_{D D}, \overline{E O}=V_{D D}$
		XM									$\begin{gathered} 0.4 \\ 12 \end{gathered}$		$\mathrm{MIN}, 25^{\circ} \mathrm{C}$ MAX	
IOZL	Output OFF Current LOW	XC									$\begin{array}{\|l\|} \hline-1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
		XM									$\begin{array}{\|l\|} \hline-0.4 \\ -12 \\ \hline \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
IDD	Quiescent Power Supply Current	XC			20 150			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{\|r} \hline 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{array}{\|c} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	All inputs at 0 V or $V_{D D}$
		XM			150			10 300			$\begin{array}{\|r\|} \hline 20 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{array}{\|c} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH	Propagation Delay,		150	300		75	150		52	120	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t }}$ PHL	Data to Output		150	300		75	150		52	120	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{\text {t PLH }}$	Propagation Delay,		175	350		85	170		60	136	ns	Input Transition
${ }^{\text {t }}$ PHL	Select to Output		175	350		85	170		65	136	ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t PLH }}$	Propagation Delay,		90	175		45	90		30	72	ns	
${ }^{\text {t }}$ PHL	\bar{E} to Output		90	175		45	90		32	72	ns	
${ }^{\text {t PRH }}$	Output Enable		33	85		20	45		18	36	ns	($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {SS }}$)
${ }^{\text {t PRZ }}$	Time		30	85		22	45		20	36	ns	$\left(R_{L}=1 \mathrm{k} \Omega\right.$ to V_{DD})
${ }^{\text {t }} \mathrm{PHZ}$	Output Disable		39	100		20	50		15	40	ns	($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {SS }}$)
${ }^{\text {t PLZ }}$	Time		40	100		20	50		15	40	ns	$\left(R_{L}=1 \mathrm{k} \Omega\right.$ to V_{DD})
${ }^{\text {t }}$ tLH	Output Transition		90	200		40	100		33	65	ns	
${ }^{\text {t }}$ THL	Time		100	200		40	100		30	65	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characterisitcs.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

OUTPUT ENABLE TIME (tPZH^{\prime}) AND OUTPUT DISABLE TIME ($\mathrm{t}_{\mathrm{PHZ}}$)

OUTPUT ENABLE TIME (tPZL) AND OUTPUT DISABLE TIME (tpLZ)

APPLICATIONS

MULTIPLEXER AS A FUNCTION GENERATOR - In most digital systems there are areas, usually in the control section, where a number of inputs generate an output in a highly irregular way. In other words, an unusual function must be generated which is apparently not available as an MSI building block. In such cases, many designers tend to return to classical methods of logic design with NAND and NOR gates using Boolean Algebra, Karnaugh maps and Veitch diagrams for logic minimization. Surprisingly enough, multiplexers can simplify these designs.

The 4512 B 8 -Input multiplexer can generate any one of the 65,536 different functions of four variables. An example will illustrate the technique. Assume four binary inputs are A, B, C and D and F is the desired function (See Fig. 1). If C is connected to S_{0}, B to S_{1} and A to S_{2}, any combination of A, B and C will select an input (assuming the output is enabled). For each combination of A, B and C, the required output, as a function of the fourth variable D, is either H or L the same as D or the opposite of D. Therefore, the truth table may be examined and each input of the $4512 B$ is connected to $V_{D D} V_{S S}, D$ or \bar{D} as required and in such fashion the function is generated.
In the example shown, (Fig. 1) the first two outputs are the opposite of D, so I_{0} is connected to D. The second two are $H I G H$, so I_{1} is connected to V_{DD}, etc.

32-INPUT MULTIPLEXER - The 3-State Output Enable can be used to expand the 4512B. A 32-Input Multiplexer utilizing four 4512B's and a 4011B is shown in Fig. 2.

INPUT VARIABLES				
A	B	C	D	REQUIRED FUNCTION
L	L	L	L	F
L	L	L	H	H
L	L	H	L	L
L	L	H	H	H
L	H	L	L	H
L	H	L	H	L
L	H	H	L	H
L	H	H	H	L
H	L	L	L	L
\cdot	\cdot	\cdot	\cdot	L
\cdot	\cdot	\cdot	\cdot	\cdot

Fig. 1

Fig. 2

4514B
 1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The 4514B is a 1 -of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input (EL), an active LOW Enable Input ($\overline{\mathrm{E}}$) and sixteen mutually exclusive active HIGH Outputs ($\mathrm{O}_{0}-\mathrm{O}_{15}$).
When the Latch Enable Input (EL) is HIGH, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ is stored in the latches and the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ remain stable. When the Enable Input (\bar{E}) is LOW, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$, determined by the contents of the latch, is HIGH. When the Enable Input (\bar{E}) is HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ are LOW. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.
With the Latch Enable Input (EL) HIGH, 16 -channel demultiplexing results when data is applied to the Enable Input (\bar{E}) and the desired output is selected by $\mathrm{A}_{0}-\mathrm{A}_{3}$. The selected output ($\mathrm{O}_{0}-\mathrm{O}_{15}$) will follow as the inverse of the data. All unselected outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ are LOW.

- LATCH ENABLE INPUT (ACTIVE HIGH)
- ENABLE INPUT (ACTIVE LOW)
- SELECTED BUFFERED OUTPUTS
(ACTIVE HIGH) COMPLEMENT OF THE INPUT

PIN NAMES

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
\bar{E}	A_{0}	A_{1}	A_{2}	A_{3}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}	O_{11}	O_{12}	O_{13}	O_{14}	O_{15}
H	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L
L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L	L	L.	L	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L
L	H	H	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L
L	L	L	L	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L
L	H	L	L	H	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L
L	L	H	L	H	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L
L	H	H	L	H	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L
L	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L
L	H	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L
L	L	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L
L	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H

$$
\begin{aligned}
& V_{D D}=P \text { in } 24 \\
& V_{S S}=P \text { in } 12 \\
& O \quad=P \text { in Number }
\end{aligned}
$$

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
ID	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A_{n} to O_{n}		$\begin{aligned} & 260 \\ & 260 \end{aligned}$			95 95			65		ns	
tPLH tPHL	Propagation Delay, EL to O_{n}		$\begin{aligned} & 260 \\ & 260 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			65		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to O_{n}		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			70 70			50 50		ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
tTLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			75 75			45 45		ns	$\text { Times } \leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, A_{n} to EL Hold Time, A_{n} to EL		60 60			20 20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
${ }^{t}{ }^{\text {E }}$ EL	Minimum EL Pulse Width		60			20			15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

NOTE:
Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

4515B 1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The 4515B is a 1-of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input (EL), an active LOW Enable Input ($\overline{\mathrm{E}}$) and sixteen mutually exclusive active LOW Outputs ($\overline{\mathrm{O}_{0}}-\overline{O_{15}}$).
When the Latch Enable Input (EL) is HIGH, the selected Output $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$ is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address Inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ is stored in the latches and the Outputs $\left(\overline{\mathrm{O}_{0}}-\overline{O_{15}}\right)$ remain stable. When the Enable Input ($\overline{\mathrm{E}}$) is LOW, the selected Output $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$, determined by the contents of the latch, is LOW. When the Enable Input (E) is HIGH, all Outputs ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}$) are HIGH. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.
With the Latch Enable Input (EL) HIGH, 16 -channel demultiplexing results when data is applied to the Enable Input (\bar{E}) and the desired output is selected by $\mathrm{A}_{0}-\mathrm{A}_{3}$. The selected Output ($\overline{\mathrm{O}_{0}}-\overline{O_{15}}$) will follow the data at the Enable Input (\bar{E}). All unselected outputs $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$ are HIGH.

- LATCH ENABLE INPUT (ACTIVE HIGH)
- ENABLE INPUT (ACTIVE LOW)
- bUFFERED OUTPUTS (ACTIVE LOW)

PIN NAMES

$A_{0}-A_{3}$
\bar{E}
$\frac{E L}{O_{0}}-\bar{O}=15$
Address Inputs
Enable Input (Active LOW)
Latch Enable Input
Outputs (Active LOW)
LOGIC SYMBOL

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
\bar{E}	A_{0}	A_{1}	A_{2}	A_{3}	$\overline{O_{0}}$	$\overline{O_{1}}$	$\overline{\mathrm{O}_{2}}$	$\overline{\mathrm{O}_{3}}$	$\overline{\mathrm{O}} 4$	$\overline{O_{5}}$	$\overline{0_{6}}$	$\overline{O_{7}}$	$\overline{0_{8}}$	$\overline{O_{9}}$	$\overline{O_{10}}$	$\overline{0_{11}}$	$\overline{\mathrm{O}_{12}}$	$\overline{0_{13}}$	$\overline{0} 14$	$\overline{\mathrm{O}_{15}}$
H	X	X	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	L	L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	H	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	H	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

$$
\begin{aligned}
H & =\text { HIGH Level } \\
\mathrm{L} & =\text { LOW Level } \\
\mathrm{EL} & =\text { HIGH }
\end{aligned}
$$

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIVIITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A_{n} to \bar{O}_{n}		$\begin{aligned} & 260 \\ & 260 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			65		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, EL to $\overline{\mathrm{O}}_{\mathrm{n}}$		$\begin{aligned} & 260 \\ & 260 \end{aligned}$			95 95			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			70 70			50		ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
${ }^{t}$ TLH ${ }^{\text {t THL }}$	Output Transition Time		$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$			75 75			45 45		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, A_{n} to EL Hold Time, A_{n} to EL		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		*	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
${ }^{t_{w} \mathrm{EL}}$	Minimum EL Pulse Width		60			20			15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

MINIMUM EL PULSE WIDTH AND SET-UP AND HOLD TIMES, A_{n} TO EL

NOTE:
Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

4516B
 UP/DOWN COUNTER

DESCRIPTION - The 4516B is an edge-triggered synchronous Up/Down 4-Bit Binary Counter with a Clock Input (CP), an active HIGH Count Up/Down Control Input (Up/Dn), an active LOW count Enable Input (CE), an asynchronous active HIGH Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$), four parallel Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$) and an overriding asynchronous Master Reset Input (MR).

Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the Count Enable Input ($\overline{C E}$) are LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP). The Count Up/Down Control Input (Up/ $\overline{\mathrm{Dn}}$) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output (TC) is LOW when $\mathrm{O}_{0}=\mathrm{O}_{1}=\mathrm{Q}_{2}=\mathrm{O}_{3}=$ HIGH and $\overline{C E}=$ LOW. When counting down the Terminal Count Output ($\overline{\mathrm{TC}}$) is LOW when $\mathrm{O}_{0}=$ $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=$ LOW and the $\overline{\mathrm{CE}}=$ LOW. A HIGH on the Master Reset Input (MR) resets the counter ($\mathrm{O}_{0}=\mathrm{O}_{1}=\mathrm{O}_{2}=\mathrm{O}_{3}=$ LOW) independent of all other input conditions.

- UP/DOWN COUNT CONTROL
- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET

MODE SELECTION TABLE

$P L$	UP/DN	$\overline{C E}$	$C P$	MODE
H	X	X	X	Parallel Load $\left(P_{n} \rightarrow Q_{n}\right)$
L	X	H	X	No Change
L	L	L	Γ	Count Down, Binary
L	H	L	Γ	Count Up, Binary

$M R=$ LOW	$X=$ Don't Care
$H=$ HIGH Level	$\Gamma=$ Positive-Going
$L=$ LOW Level	

STATE DIAGRAM

COUNT UP COUNT DOWN

LOGIC EQUATION FOR TERMINAL COUNT
$\overline{\mathrm{TC}}=\overline{\mathrm{CE}} \bullet\left[(\mathrm{UP} / \overline{\mathrm{DN}}) \bullet \mathrm{a}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{a}_{3}\right]+\left[(\mathrm{UP} / \overline{\mathrm{DN}}) \bullet \overline{\mathrm{a}}_{0} \bullet \overline{\mathrm{O}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \overline{\mathrm{Q}}_{3}\right]$
NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package,

PIN NAMES

PL	Parallel Load Input (Active $\mathrm{HIGH})$
$\mathrm{PO}_{0}-\mathrm{P}_{3}$	Parallel Inputs
$\overline{\mathrm{CE}}$	Count Enable Input (Active LOW)
CP	Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Up/ $\overline{\mathrm{Dn}}$	Up/Down Count Control Input
MR	Master Reset Input
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)
$\mathrm{O}_{0}-\mathrm{Q}_{3}$	Parallel Outputs

LOGIC DIAGRAM

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 16 \\
V_{S S} & =\text { Pin } 8 \\
O & =\text { Pin Number }
\end{aligned}
$$

PL (Parallel Load Input) - Asynchronously Loads P into Q, Overriding all Other Inputs
$\overline{\bar{P}}$ (Parallel Input) - Data on this Pin is Asynchronously Loaded into Q, when PL is HIGH Overriding all Other Inputs $\overline{\mathrm{T}}$ (Toggle Input) - Forces the Q Output to Synchronously Toggle when a HIGH is placed on this Input CP (Clock Pulse Input)
$\mathrm{Q}, \overline{\mathrm{Q}}$ (True and Complementary Outputs)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
'DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

Notes on following page

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \\ & \hline \end{aligned}$.	$\begin{aligned} & 62 \\ & 59 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$		41 39	$\begin{aligned} & 128 \\ & 128 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 167 \\ & 252 \end{aligned}$	$\begin{aligned} & 450 \\ & 650 \end{aligned}$		$\begin{array}{r} 71 \\ 100 \end{array}$	$\begin{aligned} & 180 \\ & 245 \end{aligned}$		$\begin{aligned} & 48 \\ & 66 \end{aligned}$	$\begin{aligned} & 144 \\ & 196 \end{aligned}$	ns	
tpLH tPHL	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 170 \\ & 220 \end{aligned}$	$\begin{aligned} & 325 \\ & 425 \end{aligned}$		$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 150 \\ & 195 \end{aligned}$		$\begin{aligned} & 45 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 156 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, MR to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 225 \\ & 205 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$		$\begin{aligned} & 170 \\ & 120 \end{aligned}$	$\begin{aligned} & 210 \\ & 190 \end{aligned}$		$\begin{array}{r} 105 \\ 80 \end{array}$	$\begin{aligned} & 168 \\ & 152 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \mathrm{t} \text { THL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
$\mathrm{t}_{\mathrm{w}} \mathrm{CP}$	CP Minimum Pulse Width	125	50		60	21		48	14		ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{t_{w} P L}$	PL Minimum Pulse Width	150	60		60	21		48	16		ns	Input Transition
${ }^{t_{w} \text { MR }}$	MR Minimum Pulse Width	150	60		60	30		48	20		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {trec }}$	MR Recovery Time	175	75		70	30		56	20		ns	
$\mathrm{trec}^{\text {c }}$	PL Recovery Time	150	62		60	24		48	17		ns	
t_{s} t_{h}	Set-Up Time, UP/ $\overline{D N}$ to CP Hold Time, UP/ $\overline{D N}$ to CP	$\begin{array}{r} 325 \\ 0 \end{array}$	$\begin{aligned} & 145 \\ & -90 \end{aligned}$		$\begin{array}{r} 140 \\ 0 \end{array}$	$\begin{array}{r} 55 \\ -35 \end{array}$		$\begin{array}{r} 110 \\ 0 \end{array}$	$\begin{array}{r} 38 \\ -25 \end{array}$		ns	
t_{s} t_{h}	Set-Up Time, $\overline{\mathrm{CE}}$ to CP Hold Time, $\overline{\mathrm{CE}}$ to CP	$\begin{array}{r} 275 \\ 0 \end{array}$	$\begin{array}{r} 118 \\ -40 \end{array}$		$\begin{array}{r} 120 \\ 0 \end{array}$	$\begin{array}{r} 49 \\ -15 \\ \hline \end{array}$		$\begin{array}{r}96 \\ 0 \\ \hline\end{array}$	$\begin{array}{r} 33 \\ -10 \end{array}$		ns	
t_{s} t_{h}	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL	$\begin{array}{r} 70 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 29 \\ -40 \\ \hline \end{array}$		$\begin{array}{r}30 \\ 0 \\ \hline\end{array}$	$\begin{array}{r} 11 \\ -20 \end{array}$		24 0	$\begin{array}{r}8 \\ -20 \\ \hline\end{array}$		ns	
$f_{\text {MAX }}$	Input Clock Frequency (Note 3)	2	5		5	12		6	15		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For ${ }^{\mathrm{f}} \mathrm{MAX}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

MINIMUM CP WIDTH, SET-UP AND HOLD TIMES, $\overline{\text { CE TO CP AND UP/DN TO CP }}$

MINIMUM PL AND MR PULSE WIDTH, RECOVERY TIME FOR PL AND MR, AND SET-UP AND HOLD TIMES, P_{n} TO PL

4518B

DUAL 4-BIT DECADE COUNTER

DESCRIPTION - The 4518B is a Dual 4-Bit Internally Synchronous BCD Counter. Each counter has both an active HIGH Clock Input (CP_{0}) and an active LOW Clock Input ($\overline{\mathrm{CP}}_{1}$), buffered Outputs from all four bit positions $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ and an active HIGH overriding asynchronous Master Reset Input (MR).
The counter advances on either the LOW-to-HIGH transition of the CP_{0} Input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input if CP_{0} is LOW (see the Truth Table). Either Clock Input $\left(\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}\right)$ may be used as the Clock Input to the counter and the other Clock Input may be used as a Clock Inhibit Input.
A HIGH on the Master Reset Input (MR) resets the counter ($\mathrm{Q}_{0}-\mathrm{Q}_{3}=\mathrm{LOW}$) independent of the Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$).

- TYPICAL COUNT FREQUENCY OF 10 MHz AT VDD $=10 \mathrm{~V}$
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- BUFFERED OUTPUTS FROM ALL FOUR BIT POSITIONS
- FULLY SYNCHRONOUS COUNTING

TRUTH TABLE				
CP_{0}	$\overline{\mathrm{CP}}_{1}$	MR	MODE	
Γ	H	L	Counter Advances	
L		L	Counter Advances	
	X	L	No Change	
X	Γ	L	No Change	
Γ	L	L	No Change	
H	L	L	No Change	
X	X	H	Reset (Asynchronous)	

$$
\begin{aligned}
X & =\text { Don't Care } \\
L & =\text { LOW Level } \\
H & =\text { HIGH Level } \\
\Gamma & =\text { Positive-Going Transition } \\
& =\text { Negative-Going Transition }
\end{aligned}
$$

$1 / 2$ OF A 4518B LOGIC DIAGRAM

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 16 \\
V_{S S} & =\operatorname{Pin} 8 \\
& =\operatorname{Pin} \text { Number }
\end{aligned}
$$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) is the Dual In-line Package.

PIN NAMES

${ }^{\mathrm{CP}_{0 a}, \mathrm{CP}_{\mathrm{Ob}}}$	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ (Triggered)
$\overline{\mathrm{CP}}_{1 \mathrm{a}}, \overline{\mathrm{CP}}_{1 \mathrm{~b}}$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
$\mathrm{MR}_{\mathrm{a}}, \mathrm{MR}_{\mathrm{b}}$	Master Reset Inputs
$\mathrm{C}_{0 \mathrm{a}}-\mathrm{Q}_{3 \mathrm{a}}$	Outputs
$\mathrm{Q}_{0 \mathrm{bb}}-\mathrm{Q}_{3 \mathrm{~b}}$	Outputs

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{F}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}_{\mathrm{PLH}}} \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}} 1$ to O_{n}		$\begin{aligned} & 220 \\ & 220 \end{aligned}$	$\begin{aligned} & 480 \\ & 480 \end{aligned}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 168 \\ & 168 \end{aligned}$	ns	$\mathrm{CL}=50 \mathrm{pF}$,
tPHL	Propagation Delay, MR to O_{n}		220	480		90	210		60	168	ns	$R_{L}=200 \mathrm{k} \Omega$
$\begin{aligned} & { }^{{ }^{\mathrm{T}}} \mathrm{TLH} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}{ }^{\text {MR }}$	MR Minimum Pulse Width	180	70		70	30		56	20		ns	
${ }_{\text {w }}{ }^{\text {CP }}$	CP_{0} or CP_{1} Minimum Pulse Width	275	120		120	50		96	35		ns	
${ }^{\text {trec }}$	MR Recovery Time	40	15		25	5		20	0		ns	
t_{s}	Set-Up Time, CP_{0} to $\overline{\mathrm{CP}} 1$	275	130		125	57		100	40		ns	
t_{5}	Set-Up Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}	275	130		125	57		100	40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	2	4		4	10		5	12		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For ${ }^{f}$ MAX, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}$ $=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTHS FOR
$\mathbf{C P} \mathbf{0}_{\mathbf{0}}, \overline{\mathbf{C P}} \mathbf{1}$ AND MR AND MR RECOVERY TIME

SET-UP TIMES, CP_{0} TO $\overline{\mathrm{CP}_{1}}$ AND $\overline{\mathrm{CP}} \overline{1}_{1}$ TO CP $_{\mathbf{0}}$

CONDITIONS: $\overline{\mathrm{CP}_{1}}=\mathrm{HIGH}$ and the device triggers on a LOW-to-HIGH transition at CP_{0}. The timing also applies when $\mathrm{CP}_{0}=$ LOW and the device triggers on a HIGH-toLOW transition at $\overline{\mathrm{CP}}{ }_{1}$.

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY,
CPO OR CP1 TO Qn

ROPAGATION DELAY CPO OR $\overline{C P}_{1}$ TO a_{n},

4520B
 DUAL 4-BIT BINARY COUNTER

DESCRIPTION - The 4520B is a Dual 4-Bit Internally Synchronous Binary Counter. Each counter has both an active HIGH Clock Input (CP_{0}) and an active LOW Clock Input ($\overline{\mathrm{CP}}_{1}$), buffered Outputs from all four bit positions $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and an active HIGH overriding asynchronous Master Reset Input (MR).
The counter advances on either the LOW-to-HIGH transition of the CP_{0} Input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH-to-LOW transition of the CP_{1} Input if CP_{0} is LOW (see the Truth Table). Either Clock Input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$) may be used as the Clock Input to the counter and the other Clock Input may be used as a Clock Inhibit Input.

A HIGH on the Master Reset Input (MR) resets the counter ($\mathrm{O}_{\mathrm{O}}-\mathrm{Q}_{3}=\mathrm{LOW}$) independent of the Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$).

- TYPICAL COUNT FREQUENCY OF $10 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- BUFFERED OUTPUTS FROM ALL FOUR BIT POSITIONS
- FULLY SYNCHRONOUS COUNTING

TRUTH TABLE

CP_{0}	$\overline{\mathrm{CP}}_{1}$	MR	MODE
Γ	H	L	Counter Advances
L	L	L	Counter Advances
	X	L	No Change
X	Γ	L	No Change
Γ	L	L	No Change
H	L	L	No Change
X	X	H	Reset (Asynchronous)

X = Don't Care

L $=$ LOW Level
$H=H I G H$ Level

- $=$ Positive-Going Transition
$\downarrow=$ Negative-Going Transition

1/2 OF A 4520B LOGIC DIAGRAM

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 16 \\
V_{S S} & =\operatorname{Pin} 8 \\
O & =\text { Pin Number }
\end{aligned}
$$

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Pronagation Delay, CP_{0} or $\stackrel{\rightharpoonup}{\mathrm{C}}_{1}$ to Q_{n}		$\begin{aligned} & 220 \\ & 220 \end{aligned}$	$\begin{aligned} & 480 \\ & 480 \end{aligned}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 168 \\ & 168 \end{aligned}$	ns	
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		220	480		90	210		60	168	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{RLH}}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$,
${ }^{\text {t }}{ }^{\text {w MR }}$	MR Minimum Pulse Width	180	70		70	30		56	20		ns	$R_{L}=200 \mathrm{k} \Omega$
${ }^{t}{ }_{w} \mathrm{CP}$	CP_{0} or CP_{1} Minimum Pulse Width	275	120		120	50		96	35		ns	Input Transition
${ }_{\text {rec }}$	MIR Recovery Time	40	15		25	5		20	0		ns	Times $\leqslant 20 \mathrm{~ns}$
$\mathrm{t}_{\text {s }}$	Set-Up Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$	275	130		125	57		100	40		ns	
t_{5}	Set-Up Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}	275	130		125	57		100	40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	2	4		4	10		5	12		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For ${ }^{f} M A X$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \vee, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \vee$, and $3 \mu \mathrm{~s}$ at $V_{D D}$ $=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

CONDITIONS: $\overline{\mathrm{CP}_{1}}=\mathrm{HIGH}$ and the device triggers on a LOW-to-HIGH transition at CP_{0}. The timing also applies when $\mathrm{CP}_{0}=$ LOW and the device triggers on a HIGH-toLOW transition at $\overline{\mathrm{CP}}_{1}$.

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

TYPICAL ELECTRICAL CHARACTERISTICS

4521B

24-STAGE BINARY COUNTER

GENERAL DESCRIPTION - The 4521B is a timing circuit consisting of an on chip oscillator circuit and a 24 -stage binary ripple counter. The device has two Oscillator Inputs (I_{1} and I_{2}) and two Oscillator Outputs (O_{1} and O_{2}), Source Connections to the n -channel and p-channel transistors of the oscillator circuit (S_{N} and S_{P}), a Master Reset Input (MR) and Data Outputs from the last seven stages of the 24-stage Ripple Counter $\left(\mathrm{Q}_{17}-\mathrm{Q}_{23}\right)$.

The 4521 B , as shown in the Block Diagram, may be used with either an external crystal oscillator circuit, an external RC oscillator circuit, or external clock input. Oscillator Output, O_{2}, is available for driving additional external loads. The oscillator circuit may be made less sensitive to variations in the power supply voltage by adding external resistors R_{1} and R_{2} (See Block Diagram). If these external resistors are not required, Source Connection S_{P} must be tied to $V_{D D}$ and Source Connection S_{N} must be tied to V_{SS}.

The 24-Stage Ripple Counter advances on the HIGH-to-LOW transition of the clock input with parallel Data Outputs $\left(\mathrm{O}_{17}-\mathrm{O}_{23}\right)$ from the last seven stages available.

A HIGH on the Master Reset Input (MR) clears all counter stages, forcing all Parallel Data Outputs $\left(\mathrm{Q}_{17}-\mathrm{O}_{23}\right)$ LOW and disables the oscillator circuit, independent of all other inputs. This allows for very low standby power dissipation.

- ON-CHIP CRYSTAL OSCILLATOR CIRCUIT OR ON-CHIP RC OSCILLATOR CIRCUIT OR EXTERNAL CLOCK INPUT
- MASTER RESET INPUT CLEARS ALL COUNTER STAGES AND DISABLES OSCILLATOR CIRCUIT FOR LOW STANDBY POWER
- EXTERNAL SOURCE CONNECTIONS FOR IMPROVED TIMING STABILITY
- OSCILLATOR OUTPUT AVAILABLE FOR DRIVING EXTERNAL LOADS
- MASTER RESET INPUT FACILITATES DIAGNOSTICS

PIN NAMES

$\mathrm{I}_{1}, \mathrm{I}_{2}$	Oscillator Inputs
S_{P}	Source Connection-to-p-channel transistor
S_{N}	Source Connection-to-n-channel transistor
MR	Master Reset Input
$\mathrm{O}_{1}, \mathrm{O}_{2}$	Oscillator Outputs
$\mathrm{Q}_{17}-\mathrm{O}_{23}$	Data Outputs

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

4522B - 4526B
 PROGRAMMABLE 4-BIT BCD/BINARY DOWN COUNTER

GENERAL DESCRIPTION - The 4522B/4526B is a synchronous Programmable 4-Bit $\mathrm{BCD} /$ Binary Down Counter with an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{0}, \mathrm{CP}_{1}$), an asynchronous Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), a Carry Forward Input (CF), four buffered Parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$), a Terminal Count Output (TC) and an overriding asynchronous Master Reset Input (MR).

Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the active LOW Clock Input ($\overline{C P}_{1}$) are LOW, the counter advances on a LOW-to-HIGH transition of the active HIGH Clock Input (CP_{0}). When the Parallel Load Input (PL) is LOW and the active HIGH Clock Input (CP_{0}) is HIGH, the counter advances on a HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input. The Terminal Count Output (TC) is HIGH when the counter is in the zero state ($\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{O}_{2}=\mathrm{O}_{3}=$ LOW) and the Carry Forward Input (CF) is HIGH. A HIGH on the Master Reset Input (MR) resets the counter ($Q_{0}-Q_{3}=$ LOW) independent of other input conditions.

- FULLY SYNCHRONOUS PROGRAMMABLE BCD/BINARY DOWN

 COUNTER- CLOCK INPUT EITHER HIGH-TO-LOW OR LOW-TO-HIGH EDGE-TRIGGERED
- ASYNCHRONOUS MASTER RESET
- CASCADABLE
- ASYNCHRONOUS PARALLEL LOAD

PIN NAMES

PL Parallel Load Input

$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Inputs
CF	Carry Forward Input
CP	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
CP_{0}	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered $)$
MR	Asynchronous Master Reset Input
TC	Terminal Count Output
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Buffered Outputs

MODE SELECTION TABLE

MR	PL	CP_{0}	$\overline{C P}_{1}$	MODE
H	X	X	X	RESET (ASYNCHRONOUS)
L	H	\times	X	PRESET (ASYNCHRONOUS)
L	L	Γ	H	NO CHANGE
L	L	L	L	NO CHANGE
L	L	L	\times	NO CHANGE
L	L	\times	Γ	NO CHANGE
L	L	Γ	L	COUNTER ADVANCES
L.	L	H	L	COUNTER ADVANCES

X = DON'T CARE
$X=$ DONT CARE
$L=$ LOW LEVEL
$H=$ HIGH LEVEL
$r=$ POSITIVE GOING TRANSITION
$\mathcal{L}=$ NEGATIVE.GOING TRANSITION

STATE DIAGRAM

LOGIC EQUATION FOR TERMINAL COUNT
$\mathrm{TC}=\mathrm{CF} \cdot \overline{\mathrm{Q}}_{0} \cdot\left(\overline{\left.\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}\right)}\right.$

4522B LOGIC DIAGRAM

4526 LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at $0 \vee$ or $V_{D D}$
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{A} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{P} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to Q_{n}		$\begin{aligned} & 220 \\ & 220 \end{aligned}$			95 95			$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20$ ns
${ }^{t}$ PLH ${ }^{t}$ PHL	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to TC		$\begin{aligned} & 240 \\ & 240 \end{aligned}$			$\begin{aligned} & 105 \\ & 105 \end{aligned}$			$\begin{aligned} & 66 \\ & 66 \end{aligned}$		ns ns	
$\begin{aligned} & { } \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, CF to TC		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 53 \\ & 53 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t}$ PHL	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 220 \\ & 220 \end{aligned}$			$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $M R$ to Q_{n}		220			95			60		ns	
$\begin{aligned} & { }^{{ }^{\mathrm{TLH}}}{ }^{\mathrm{t}}{ }^{\mathrm{t} H \mathrm{~L}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{\text {rec }}$	MR Recovery Time		15			5			0		ns	
${ }_{\text {w }}{ }^{\text {MR }}$	MR Minimum Pulse Width		70			30			20		ns	
$\mathrm{t}_{\text {rec }}$	PL Recovery Time		15			5			0		ns	
${ }^{t} w^{\text {PL }}$	PL Minimum Pulse Width		70			30			20		ns	
${ }^{\text {tw }} \mathrm{CP}$	CP Minimum Pulse Width		120			50			35		ns	
t_{s} t_{h}	Set-Up Time, CF to CLOCK Hold Time, CF to CLOCK		$\begin{aligned} & 150 \\ & 100 \end{aligned}$			50 40			35 25		ns ns	
$\begin{aligned} & \hline t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 10 \end{aligned}$			10 5		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
t_{h}	Hold Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$		130			57			40		ns	
t_{h}	Hold Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}		130			57			40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)		4			10			12		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics. 3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MIMIMUM CP 0 , PL AND MR PULSE WIDTH, RECOVERY TIME FOR PL AND MR, AND SET-UP AND HOLD TIMES, $\mathbf{P}_{\mathbf{n}}$ TO PL

SET UP AND HOLD TIMES, CF TO CPO

CONDITIONS: $\overline{C P}_{1}=$ LOW and the device triggers on a LOW-to-HIGH transition at CP_{0}. The timing also applies when $\mathrm{CP}_{0}=\mathrm{HIGH}$ and the device triggers on a HIGH-toLOW transition at $\overline{\mathrm{CP}}_{1}$.

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

4527B

BCD RATE MULTIPLIER

DESCRIPTION - The 4527B is a BCD Rate Multiplier with an active LOW Count Enable Input ($\overline{C E}$), and active LOW Q Output Enable Input ($\overline{\mathrm{E}_{\mathrm{Q}}}$), and active LOW Output Enable Input ($\overline{\mathrm{E}}$), a Clock Input (CP), four Mode Select Inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$), a Preset to Nine Input (P_{9}), an asynchronous Master Reset Input (MR), an active LOW Count Enable Output (\bar{O}_{CE}), a Carry Output (O_{g}) and True and Complementary Data Outputs ($\mathrm{O}, \overline{\mathrm{C}}$).
When the Master Reset (MR), the Preset to Nine (P_{g}) and the Count Enable ($\overline{\mathrm{CE}}$) Inputs are LOW, the internal Synchronous 4-Bit Decade Counter triggers on a LOW-to-HIGH transition at the Clock Input (CP). As shown in the Truth Table, information present on the Mode Select Inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) determines the output pulse rate at the Data Outputs (Q and $\overline{\mathrm{O}}$). For example, if $\mathrm{S}_{3}=\mathrm{S}_{0}=\mathrm{LOW}$ and $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{HIGH}$, there will be output pulses at the Data Outputs (Q and $\overline{\mathrm{O}}$) for every ten input pulses at the Clock Input (CP). Data outputs (Q and $\overline{\mathrm{Q}}$) are synchronized with the HIGH-to-LOW transition at the Clock Input (CP). When the Count Enable Input ($\overline{\mathrm{CE}}$) is HIGH the internal BCD Decade Counter is disabled and no change occurs in the state of the counter.
With the Q Output Enable Input ($\overline{E_{Q}}$) LOW, a HIGH on the Output Enable Input (\bar{E}) forces Data Output Q LOW and Complementary Data Output $\overline{\mathrm{Q}}$ HIGH, independent of all other input conditions. A HIGH on the Q Output Enable Input $\overline{E_{Q}}$ forces the Data Output Q HIGH, independent of all other input conditions.
The Carry Output (O_{9}) goes HIGH when the two most significant bits of the internal BCD Counter are HIGH and provides one output pulse for every ten input pulses at the Clock Input (CP). The Count Enable Output ($\overline{\mathrm{O}_{\mathrm{CE}}}$) goes LOW when either the Count Enable Input ($\overline{\mathrm{CE}}$) is HIGH or the Carry Output (Q_{g}) is LOW and provides one output pulse for every ten input pulses at the Clock Input (CP).
With Mode Select Input S_{3} LOW, a HIGH on the Master Reset Input (MR) resets the two least significant bits of the internal BCD Counter and forces Data Output Q LOW, Complementary Data Output $\overline{\mathrm{O}}$ HIGH, Carry Output Q_{9} HIGH and Count Enable Output $\overline{\mathrm{O} C E}$ LOW, independent of Clock Input, CP, Count Enable Input $\overline{9}$ and Mode Select Inputs $\mathrm{S}_{0} \mathrm{~S}_{2}$. With Mode Select Input S_{3} HIGH, a HIGH on the Master Reset Input (MR) resets the two least significant bits of the internal BCD Counter and forces Carry Output Q_{9} HIGH and Count Enable Output $\overline{O_{C E}}$ LOW and provides 10 output pulses at the Data Outputs (Q and $\overline{\mathrm{Z}}$) for every 10 input pulses at the Clock Input (CP) independent of Mode Select Inputs $\mathrm{S}_{0}-\mathrm{S}_{2}$.
A HIGH on the Preset to Nine Input (P_{g}) resets the two least significant bits and sets the two most significant bits of the internal BCD Counter and forces Data Output Q LOW, Complementary Data Output $\overline{\bar{O}}$ HIGH, Carry Output Q_{9} LOW and Count Enable Output $\overline{\mathrm{O}_{\mathrm{CE}}}$ HIGH independent of the Clock (CP), Count Enable ($\overline{\mathrm{CE}}$) and Master Reset (MR) inputs.
4527B applications include performance of arithmetic operations, solution of algebraic and differential equations, generation of logrithms and trigonometric functions A / D and D / A conversion, and frequency synthesis.

- INTERNAL SYNCHRONOUS COUNTERS

- COUNT ENABLE AND OUTPUT ENABLE INPUTS
- true and complementary outputs synchronized with the high-to-low TRANSITION AT THE CLOCK INPUT

- EASY CASCADING

- MASTER RESET AND PRESET TO NINE INPUTS

$\overline{P I N}$ NAMES	
$\overline{\mathrm{CE}}$	Count Enable Input (Active LOW)
$\overline{\mathrm{E}_{\mathrm{O}}}$	Q Output Enable Input (Active LOW)
$\overline{\mathrm{E}}$	Output Enable Input (Active LOW)
CP	Clock Input (L $\rightarrow \mathrm{H}$ Triggered)
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Mode Select Inputs
P_{9}	Preset to Nine Input
MR	Master Reset Input
$\overline{\mathrm{O}_{\mathrm{CE}}}$	Count Enable Output (Active LOW)
Q_{9}	Carry Output
Q	Data Output
$\overline{\mathrm{Q}}$	Complementary Data Output (Active LOW)

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS										OUTPUTS			
										OUTPUT LOGIC LEVEL OR NUMBER OF OUTPUT PULSES			
S_{3}	S_{2}	S_{1}	S_{0}	NUMBER OF CLOCK PULSES ON INPUT CP	$\overline{\mathrm{CE}}$	$\overline{\mathrm{E}}$	$\overline{E_{0}}$	MR	P_{9}	Q	Q	O_{9}	${ }^{\text {O CE }}$
L	L	L	L	10	L	L	L	L	L	L	H	1	1
L	L	L	H	10	L	L	L	L	L	1	1	1	1
L	L	H	L	10	L	L	L	L	L	2	2	1	1
L	L	H	H	10	L	L	L	L	L	3	3	1	1
L	H	L	L	10	L	L	L.	L	L	4	4	1	1
L	H	L	H	10	L	L	L	L	L	5	5	1	1
L	H	H	L	10	L	L	L	L	L	6	6	1	1
L	H	H	H	10	L	L	L	L	L	7	7	1	1
H	L	L	L	10	L	L	L	L	L	8	8	1	1
H	L	L	H	10	L	L	L	L	L	9	9	1	1
H	L	H	L	10	L	L	L	L	L	8	8	1	1
H	L	H	H	10	L	L	L	L	L	9	9	1	1
H	H	L	L	10	L	L	L	L	L	8	8	1	1
H	H	L	H	10	L	L	L	L	L	9	9	1	1
H	H	H	L	10	L	L	L	L	L	8	8	1	1
H	H	H	H	10	L	L	L	L	L	9	9	1	1
X	X	X	X	10	H	L	L	L	L	*	*	*	*
X	X	X	X	10	L	H	L	L	L	L	H	1	1
X	X	X	x	10	L	L	H	L	L	H	**	1	1
H	X	X	x	10	L	L	L	H	L	10	10	H	L
L	X	X	X	10	L	L	L	H	L	L	H	H	L
X	X	X	X	10	L	L	L	L	H	L	H	L	H

$L=$ LOW level
$\mathrm{H}=\mathrm{HIGH}$ level
X = Don't Care

* Output Logic Level Depends upon the Internal State of the Counter
** Output is the same as the first 16 lines of the Truth Table with the number of Output pulses depending upon the logic levels at inputs $\mathrm{S}_{0}-\mathrm{S}_{3}$

4528B
 DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 4528B is a Dual Retriggerable Resettable Monostable Multivibrator. Each Multivibrator has an active LOW Input (Γ_{0}), an active HIGH Input (I_{1}) an active LOW Clear Direct Input ($\overline{\mathrm{C}_{\mathrm{D}}}$), an Output (Q), its Complement ($\overline{\mathrm{Q}}$) and two pins for connecting the external timing components ($\mathrm{C}_{\text {ext }}, \mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$). An external timing capacitor must be connected between $\mathrm{C}_{\text {ext }}$ and $\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$ and an external resistor must be connected between $\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$ and $\mathrm{V}_{\text {DD }}$.

A HIGH-to-LOW transition on the T_{0} Input when the I_{1} Input is LOW or a LOW-to-HIGH transition on the I_{1} Input when the Γ_{0} Input is HIGH produces a positive pulse ($L \rightarrow H \rightarrow L$) on the Q Output and a negative pulse ($H \rightarrow L \rightarrow H$) on the $\overline{\mathrm{Q}}$ Output if the Clear Direct Input ($\overline{C_{D}}$) is HIGH. A LOW on the Clear Direct Input ($\overline{C_{D}}$) forces the Q Output LOW, the $\overline{\mathrm{O}}$ Output HIGH and inhibits any further pulses until the Clear Direct Input (C_{D}) is HIGH.

- RECOMMENDED OPERATING VOLTAGE, $\mathrm{V}_{\text {DD }}=4.5$ TO 15 V
- TYPICAL OUTPUT PULSE WIDTH VARIATION $\pm 3 \%$ AT VDD $=15$ V FROM DEVICE TO DEVICE
- TYPICAL OUTPUT PULSE WIDTH STABILITY $\pm 1 \%$ OVER $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$ TEMPERATURE RANGE AT $V_{D D}=10 \mathrm{~V}$
- TYPICAL OUTPUT PULSE WIDTH STABILITY $\pm 1 \%$ AT $V_{D D}=10 \mathrm{~V} \pm 0.25 \mathrm{~V}$ RESETTABLE
- trigger on either a high-to-low transition on I_{0} OR A LOW-to-high transSITION ON I_{1}
- COMPLEMENTARY OUTPUTS AVAILABLE
- BROAD TIMING RESISTOR RANGE, $5 \mathrm{k} \Omega$ TO $2 \mathrm{M} \Omega$
- OUTPUT PULSE WIDTH INDEPENDENT OF DUTY CYCLE WITH A WIDE 26 ns TO ∞ RANGE

PIN NAMES

$\overline{\mathrm{O}}_{\mathrm{a}}, \overline{\mathrm{O}}_{\mathrm{ob}}$ $\mathrm{I}_{1 \mathrm{a}} \mathrm{I}_{1 \mathrm{~b}}$ $\overline{C_{D a}}, \overline{C_{D b}}$ $\mathrm{Q}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}$ $\overline{\sigma_{a}}, \overline{\mathrm{a}_{b}}$ $\mathrm{C}_{\text {exta }}, \mathrm{C}_{\text {ext }}$ $\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {exta }}$

Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
Input ($\mathrm{L} \rightarrow \mathrm{H}$ Triggered)
Clear Direct (Active LOW) Input
Output
Complimentary (Active Low) Output
External Capacitor Connections
External Capacitor/Resistor Connections

TRUTH TABLE

\bar{I}_{0}	I_{1}	$\overline{C_{D}}$	OPERATION
$H \rightarrow L$	L	H	Trigger
H	$L \rightarrow H$	H	Trigger
X	X	L	Reset

$\mathrm{H}=\mathrm{HIGH}$ Level
L = LOW Level
$H \rightarrow L=H I G H-t o-L O W$ Transition $\mathrm{L} \rightarrow \mathrm{H}=$ LOW-to-HIGH Transition $X=$ Don't Care

OPERATING RULES

Timing

1. An external resistor $\left(R_{t}\right)$ and external capacitor $\left(C_{t}\right)$ are required as shown in the Logic Diagram. The value of R_{t} may vary from 5 k to $2 \mathrm{M} \Omega$.
2. The value of C_{t} may vary from 0 to any necessary value available. If, however, the capacitor has significant leakage relative to $V_{D D} / R_{t}$ the timing diagrams may not represent the pulse width obtained.
3. Polarized capacitors may be used directly. The (+) terminal of a polarized capacitor is connected to pin 2 (14) and the (-) terminal to pin 1 (15). Pin 2 (14) will remain positive with respect to pin 1 (15).
4. The output pulse width can be determined from the pulse width versus C_{t} or R_{t} graphs (Figures 1 and 2).
5. To obtain variable pulse width by remote trimming, the following circuit is recommended:

6. Under any operating condition, C_{t} and $R_{t}(\min)$ must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
7. $V_{D D}$ and ground wiring should conform to good high frequency standards so that switching transients on $V_{D D}$ and ground pins do not cause interaction between one shots. Use of a 0.01 to $0.1 \mu \mathrm{~F}$ bypass capacitor between $V_{D D}$ and ground located near the 4528 B is recommended.
8. To minimize noise problems, it is recommended that pin 1 and pin 15 be tied externally to $V_{\text {SS }}$.

Triggering

1. The minimum negative pulse width into Γ_{0} is 32 ns at $V_{D D}=10 \mathrm{~V}$ and the minimum positive pulse width into I_{1} is 32 ns at $V_{D D}=10 \mathrm{~V}$.
2. When non-retriggerable operation is required, i.e., when input triggers are to be ignored during a quasi-stable state, input latching is used to inhibit retriggering. The device does not retrigger if an additional trigger input occurs while the capacitor is discharging in response to the initial trigger input.

POSITIVE EDGE-TRIGGER
3. An overriding active LOW level Clear Direct $\left(\overline{C_{D}}\right)$ is provided on each multivibrator. By applying a LOW to the $\overline{C_{D}}$, any timing cycle can be terminated or any new cycle inhibited until the LOW Clear Input is removed. Trigger inputs will not produce spikes in the output when the Clear Direct Input is held LOW. A new cycle initiated less than 200 ns after removal of a Clear Direct Input ($\overline{C_{D}}$) will not have a standard output pulse width.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (see Note 4)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN. $25^{\circ} \mathrm{C}$	$\text { Cext } / \text { Rext }=V_{D D}$ All other inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN. $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

Notes:

1. The 4528 device does not retrigger if an additional trigger input occurs while the capacitor is discharging in response to the initial trigger input.
2. A new cycle initiated less than 200 ns after removal of a Clear Direct Input ($\overline{C_{D}}$) will not have a standard output pulse width.
3. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
4. Additional D. C. Characteristics are listed in this section under Fairchild 4000B Series CMOS Family Characteristics.
5. To minimize power dissipation unused multivibrators should have the Cextl Rext Connection tied to VDD, the Cext Connection tied to $V_{S S}$ and all other inputs tied to either $V_{D D}$ or $V_{S S}$.
6. It is recommended that Input Rise and Fall Times to inputs T_{0} and I_{1} be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$ and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL OUTPUT PULSE WIDTH
VERSUS R_{t} AND C_{t}

FIGURE 1.

TYPICAL OUTPUT PULSE WIDTH VERSUS R_{t} AND C_{t}

FIGURE 2.

AC WAVEFORMS

Set-up Time, $\overline{C_{D}}$ to T_{0} or I_{1}, Recovery Time for
$\overline{C_{D}}$ and Minimum $\overline{C_{D}}$ Pulse Width.

Minimum \bar{T}_{0} or I_{1} Pulse Width and Minimum Output Pulse Width.

NOTE: Set-up Time and Recovery Time are shown as Positive values, but may specified as Negative values.

APPLICATIONS

The 4528B Monostable Multivibrator has its pulse width determined by an externally supplied Resistor-Capacitor network. A two step procedure is suggested for determing the proper $R_{t} C_{t}$ combination (Equation 1) for a specific pulse width.
The first step is to choose a capacitor. Figure 1 shows pulse width versus resistor value with the capacitor value as the running parameter. A capacitor value is chosen so that the approximate resistor value is between $20 \mathrm{k} \Omega$ and $2 \mathrm{M} \Omega$. Once the capacitor is determined, the timing constant (K) is found from Figure 3 for a specific $V_{D D}$. The resistor value is then determined from Equation 2. If the resistor value is less than $20 \mathrm{k} \Omega$ the timing constant should be increased by 20% and the resistor value re-calculated. The resistor must be larger than $5 \mathrm{k} \Omega$.
No upper limit on the capacitor is required. If a large value of R_{t} and C_{t} are to be used the timing between pulses or duty cycle, must be sufficiently low that the capacitor fully charges to $V_{D D}$. Large capacitor values must be sufficiently low in leakage that the resistor value can supply the leakage of the capacitor and still charge the capacitor close to $V_{D D}$.

EXAMPLE:

Three pulse widths of $0.1,1$, and 10 ms are to be generated with the 4528 B using a single capacitor.
From Figure 1 a capacitor value between 0.01 and .1 uF would be reasonable. A $0.022 \mu \mathrm{~F}$ capacitor is the only capacitor that is available.
The timing constant for a $0.022 \mu \mathrm{~F}$ at $10 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ is found from Figure 3 to be approximately 0.3 .

The resistor values are then calculated:

Pulse Width	$\underline{R_{t}}$
0.1 ms	$15.1 \mathrm{k} \Omega$
1 ms	$151.1 \mathrm{k} \Omega$
10 ms	$1.51 \mathrm{M} \Omega$

The $15.1 \mathrm{k} \Omega$ is less than $20 \mathrm{k} \Omega$ so add 20% to the K value and recalculate

Pulse Width	$\quad \frac{R_{t}}{0.1 \mathrm{~ms}}$
$12.5 \mathrm{k} \Omega \quad \mathrm{K}=.36$	

Equation 1: P.W. $=K R_{t} C_{t}$
Equation 2: P.W. $=R_{t}$
$K C_{t}$
P.W. = Pulse Width (seconds)
$K=$ Timing Constant
$C_{t}=$ Capacitance (Farads)
$R_{\mathrm{t}}=$ Resistance (ohms)

TIMING CONSTANT VERSUS
TIMING CAPACITANCE

Fig. 3.

4531B 13-INPUT PARITY CHECKER GENERATOR

DESCRIPTION - The 4531B is a 13 -Input Parity Checker/Generator with 13 Parity Inputs ($\mathrm{I}_{0^{-1}}{ }_{12}$) and a Parity Output (Z). When the number of Parity Inputs that are HIGH is even, the Output (Z) is LOW. When the number of Parity Inputs that are HIGH is odd, the Output (Z) is HIGH. For words of 12 bits or less, the Output (Z) can be used to generate either odd or even parity by appropriate termination of the unused Parity Input (s). For words of 14 or more bits, the devices can be cascaded by connecting the output (Z) of one device to any Parity Input ($\left(_{0-1}{ }^{-1}\right.$) of another device. When cascading devices, it is recommended that the Output (Z) of one device be connected to the I_{12} input of the other device since there is less delay to the Output (Z) from the l_{12} input than from any other Input ($\mathrm{I}_{0}^{-1} \mathrm{I}_{11}$).

- VARIABLE WORD LENGTH

- FULLY buffered output (Active high)
- PARITY INPUTS (ACTIVE HIGH)

PIN NAMES

$\mathrm{IO}^{-1} 12$
z

FUNCTION
Parity Inputs
Buffered Output

TRUTH TABLE

INPUTS		OUTPUT
		Z
All Thirteen	Inputs LOW	L
Any One	Input HIGH	H
Any Two	Inputs HIGH	L
Any Three	Inputs HIGH	H
Any Four	Inputs HIGH	L
Any Five	Inputs HIGH	H
Any Six	Inputs HIGH	L
Any Seven	Inputs HIGH	H
Any Eight	Inputs HIGH	L
Any Nine	Inputs HIGH	H
Any Ten	Inputs HIGH	L
Any Eleven	Inputs HIGH	H
Any Twelve	Inputs HIGH	L
All Thirteen	Inputs HIGH	H

L = LOW Level
H = HIGH Leve

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Propagation Delay, I^{-111} to Z		195	500		80	225		55	180	ns	
${ }^{\text {t }}$ PHL			195	500		80	225		55	180	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
${ }^{\text {t }}$ PLH	Propagation Delay, I_{12} to Z		115	300		50	135		35	109	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
${ }^{{ }^{\text {P PHL }}}$			115	300		50	135		35	109	ns	Input Transition
${ }^{\text {t }}$ TLH	Output Transition Time		65	135		35	75		15	45	ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t THL }}$			65	135		35	75		15	45	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

4532B
 8-INPUT PRIORITY ENCODER

DESCRIPTION - The 4532B is an 8-Input Priority Encoder with eight active HGGH Priority Inputs $\left(I_{0}-1_{7}\right)$, three active HIGH Address Outputs ($A_{0}-A_{2}$), an active HIGH Enable Input ($E_{1 n}$), an active HIGH Enable Output (EOut) and an active HIGH Group Select Output (GS).

Data is accepted on the eight Priority Inputs ($1_{0-1} 17$). The binary code corresponding to the highest Priority Input $\left(I_{0} 0^{-1}\right)$ which is HIGH is generated on the Address Outputs ($A_{0}-A_{2}$) if the Enable Input ($E_{1 n}$) is HIGH. Priority Input I_{7} is assigned the highest priority. The Group Select output (GS) is HIGH when one or more Priority Inputs (1_{0-1}) and the Enable Input ($E_{1 n}$) are HIGH. The Enable Output ($E_{\text {Out }}$) is HIGH when all the Priority Inputs ($\mathrm{I}_{0}-\mathrm{I}_{7}$) are LOW and the Enable Input (E_{In}) is HIGH. The Enable Input ($E_{1 n}$) when LOW, forces all Outputs ($A_{0}-A_{2}, G S, E_{\text {Out }}$) LOW.

- ACTIVE HIGH PRIORITY INPUTS

- CASCADABLE

PIN NAMES

$\mathrm{I}_{0}-\mathrm{I}_{7}$	Priority Inputs
$\mathrm{E}_{\text {ln }}$	Enable Input
$\mathrm{E}_{\text {Out }}$	Enable Output
GS	Group Select Output
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Outputs

TRUTH TABLE

INPUTS									OUTPUTS				
E_{In}	17	${ }^{1} 6$	I_{5}	14	13	I_{2}	I_{1}	${ }^{1} 0$	GS	A_{2}	A_{1}	A_{0}	EOut
L	X	X	x	X	X	X	X	X	L	L	L	L	L
H	L	L	L	L	L	L	L	L	L	L	L	L	H
H	H	x	x	x	x	X	X	x	H	H	H	H	L
H	L	H	\times	X	x	X	X	X	H	H	H	L	L
H	L	L	H	X	x	x	x	x	H	H	L	H	L
H	L	L	L	H	X	X	X	x	H	H	L	L	L
H	L	L	L	L	H	X	X	x	H	L	H	H	L
H	L	L	L	L	L	H	X	x	H	L	H	L	L
H	L	L	L	L	L	L	H	x	H	L	L	H	L
H	L	L	L	L	L	L	L	H	H	L	L	L	L

[^6]LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC		.	20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at $0 V$ or $V_{D D}$
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMIT									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{P} \end{aligned}$	Propagation Delay, E_{In} to $\mathrm{E}_{\text {Out }}$		85 85	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns	
$\begin{aligned} & { }^{{ }^{P} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, $\mathrm{Eln}_{\text {n }}$ to GS		65	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$,
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\mathrm{E}_{\text {In }}$ to A_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 200 \end{array}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns	$R_{L}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & { }^{\mathrm{t} P L H} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, I_{n} to A_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 200 \end{array}$		35 35	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, I_{n} to GS		75 70	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		40 35	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 31 \\ & 28 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns	
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		65 65	135 135		35 35	75 75		15 15	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characterisitcs.

4539B
 DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The 4539B is a Dual 4-Input Digital Multiplexer with common select logic. Each multiplexer has four Multiplexer Inputs ($\mathrm{I}_{0} \mathrm{I}_{3}$), an active LOW Enable Input (\bar{E}) and a Multiplexer Output (Z). When HIGH, the Enable Input (\bar{E}) forces the Multiplexer Output (Z) of the respective multiplexer LOW, independent of the Select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ and Multiplexer ($\mathrm{I}_{0}-\mathrm{I}_{3}$) Inputs. With the Enable Input (\bar{E}) LOW, the common Select Inputs $\left(S_{0}, S_{1}\right)$ determine which Multiplexer Input (I_{0-1}) on each of the multiplexers is routed to the respective Multiplexer Output (Z).

- COMMON SELECT LOGIC
- ACTIVE LOW ENABLES

PIN NAMES

$I_{0 a}, I_{1 a}, I_{2 a}, I_{3 a}$ $I_{0 b}, I_{1 b}, I_{2 b}, I_{3 b}$ $\mathrm{S}_{0}, \mathrm{~S}_{1}$
\bar{E}_{a}, \bar{E}_{b}
Z_{a}, Z_{b}

Multiplexer Inputs
Select Inputs
Enable Inputs (Active LOW)
Multiplexer Outputs

INPUTS			$\begin{gathered} \text { OUTPUT } \\ Z \end{gathered}$
	S_{1}	\bar{E}	
X	X	H	L
	L	L	${ }^{1} 0$
H	L	L	l_{1}
L	H	L	12
H	H	L	13

LOGIC DIAGRAM
$V_{D D}=P$ in 16
$V_{S S}=P$ in 8

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
${ }^{1}$ DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 10 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\mathbf{I}^{\text {x }}$ to \mathbf{Z}		$\begin{aligned} & 166 \\ & 140 \end{aligned}$	$\begin{aligned} & 375 \\ & 350 \end{aligned}$		$\begin{aligned} & 71 \\ & 58 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \end{aligned}$		$\begin{aligned} & 51 \\ & 40 \end{aligned}$	$\begin{aligned} & 125 \\ & 110 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Select to Z		$\begin{aligned} & 210 \\ & 210 \end{aligned}$	$\begin{aligned} & 470 \\ & 470 \end{aligned}$		$\begin{aligned} & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$		$\begin{aligned} & 62 \\ & 62 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathbf{E}}$ to Z		$\begin{array}{\|l\|} \hline 120 \\ 118 \\ \hline \end{array}$	$\begin{array}{r} 275 \\ 275 \\ \hline \end{array}$		$\begin{aligned} & 53 \\ & 51 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & \hline \end{aligned}$		$\begin{aligned} & 37 \\ & 38 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \hline{ }^{\mathrm{T} T L H} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		76 66	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		39 30	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		29 22	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

4543B

BCD TO 7-SEGMENT LATCH/DECODER/DRIVER FOR LIQUID CRYSTALS

DESCRIPTION - The 4543B is a BCD to 7-Segment Latch/Decoder/Driver for Liquid Crystal Displays with four Address Inputs ($A_{0}-A_{3}$), a Latch Enable Input ($E L$), a Blanking Input (I_{B}), a Clock Control Input (CP), and seven Segment Outputs (a-g).
When the Latch Enable Input (EL) is HIGH, the state of the Segment Outputs ($\mathrm{a}-\mathrm{g}$) is determined by the data on the four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) and the Clock Control Input (CP). For driving Liquid Crystal Displays, a square wave must be applied to the CP input and to the electrically common backplane of the display. For common Cathode LED displays a LOW logic level must be applied to the CP input. For common anode LED displays a HIGH logic level must be applied to the CP input. When the Latch Enable Input (EL) goes LOW, the last data present at the address Inputs ($A_{0}-A_{3}$) is stored in the latches and the Segment Outputs (a-g) remain stable.
A HIGH on the Blanking Input (I_{B}) forces all Segment Outputs (a-g) LOW. The Blanking Input (I_{B}) does not affect the latch circuit.

- BLANKING INPUT
- MULTIPLEXING CAPABILITY
- LCD DISPLAY OR COMMON ANODE OR COMMON CATHODE LED DISPLAY CAPABILITY
- BLANKING ON ALL ILLEGAL INPUT COMBINATIONS

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address (Data) Inputs
EL	Latch Enable Input
I_{B}	Blanking Input
CP	Clock Control Input
$\mathrm{a}-\mathrm{g}$	Segment Outputs

TRUTH TABLE

INPUTS							OUTPUTS							
CP*	EL	${ }^{\prime} \mathrm{B}$	A_{3}	A_{2}	A_{1}	A_{0}	a	b	c	d	e	f	g	DISPLAY
L	X	H	X	x	X	X	L	L	L	L	L	L	L	BLANK
L	H	L	L	L	L	L	H	H	H	H	H	H	L	0
L	H	L	L	L	L	H	L	H	H	L	L	L	L	1
L	H	L	L	L	H	L	H	H	L	H	H	L	H	2
L	H	L	L	L	H	H	H	H	H	H	L	L	H	3
L	H	L	L	H	L	L	L	H	H	L	L	H	H	4
L	H	L	L	H	L	H	H	L	H	H	L	H	H	5
L	H	L	L	H	H	L	H	L	H	H	H	H	H	6
L	H	L	L	H	H	H	H	H	H	L	L	L	L	7
L	H	L	H	L	L	L	H	H	H	H	H	H	H	8
L	H	L	H	L	L	H	H	H	H	H	L	H	H	9
L	H	L	H	L	H	L	L	L	L	L	L	L	L	BLANK
L	H	L	H	L	H	H	L	L	L	L	L	L	L	BLANK
L	H	L	H	H	L	L	L	L	L	L	L	L	L	BLANK
L	H	L	H	H	L	H	L	L	L	L	L	L	L	BLANK
L	H	L	H	H	H	L	L	L	L	L	L	L	L	BLANK
L	H	L	H	H	H	H	L	L	L	L	L	L	L	BLANK
L	L	L	X	\times	X	\times			**					**
H	***	***	***			Inv	e	he	ove	utp	C	bin	tion	Display as Above

$H=$ HIGH Level
L = LOW Level
X = Don't Care

* = For Liquid Crystal displays a square wave is applied to CP. For common cathod Light Emitting Diode displays a LOW logic level is applied to CP. For common anode Light Emitting Diode displays a HIGH logic level is applied to CP.
** = Depends upon the BCD Code applied during the HIGH-to-LOW transition of EL.
*** = The above combinations of logic levels.

4555B • 4556B

DUAL 1-OF-4 DECODERS/DEMULTIPLEXERS

DESCRIPTION - The 4555B and 4556B are Dual 1-of-4 Decoders/Demultiplexers. Each decoder/ demultiplexer has two Address Inputs (A_{0}, A_{1}), an active Low Enable Input (\bar{E}) and four mutually exclusive Outputs which are active HIGH for the $4555 \mathrm{~B}\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and active LOW for the 4556B ($\overline{\mathrm{O}}_{\mathrm{O}}-\mathrm{O}_{3}$).
When the 4555B is used as a decoder, the Enable Input ($\overline{\mathrm{E}}$) when HIGH, forces all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ LOW. When used as a demultiplexer, the appropriate Output is selected by the Data on the Address Inputs (A_{0}, A_{1}) and follows as the inverse of the Enable Input (\bar{E}). All unselected Outputs are LOW.
When the 4556 B is used as a decoder, the Enable Input (\bar{E}) when HIGH forces all Outputs ($\overline{O_{0}}-\bar{O}_{3}$) HIGH. When used as a demultiplexer, the appropriate Output is selected by the data on the Address Inputs (A_{0}, A_{1}) and follows the state of the Enable Input (\bar{E}). All unselected Outputs are HIGH.

- ACTIVE HIGH OUTPUTS FOR THE 4555B AND ACTIVE LOW OUTPUTS FOR THE 4556B
- overriding active low enable

PIN NAMES

$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\mathrm{A}_{0}, \mathrm{~A}_{1}$	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Outputs (Active HIGH -4555 B Only)
$\overline{\mathrm{O}}_{\mathrm{O}}-\overline{\mathrm{O}}_{3}$	Outputs (Active LOW -4556 Only)

LOGIC DIAGRAMS
$1 / 2$ OF A 4555B

1/2 OF A 4556B

LOGIC SYMBOLS

CONNECTION DIAGRAMS DIP (TOP VIEW) 4555B

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$\overline{\mathrm{E}}$	A_{0}	A_{1}	O_{0}	O_{1}	O_{2}	O_{3}
L	L	L	H	L	L	L
L	H	L	L	H	L	L
L	L	H	L	L	H	L
L	H	H	L	L	L	H
H	X	X	L	L	L	L

$H=$ HIGH Level
$L=$ LOW Level
$X=$ Don't Care

4556B TRUTH TABLE						
\bar{E}	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{2}}$	$\overline{\mathbf{O}}_{\mathbf{3}}$
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L
H	X	X	H	H	H	H

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \vee, T_{A}=25^{\circ} \mathrm{C}, 4555 B$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$V_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 148 \\ & 127 \end{aligned}$	$\begin{aligned} & 285 \\ & 265 \end{aligned}$		$\begin{aligned} & 60 \\ & 54 \end{aligned}$	$\begin{aligned} & 145 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{array}{r} 116 \\ 96 \\ \hline \end{array}$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Output		$\begin{array}{\|l\|} \hline 148 \\ 127 \\ \hline \end{array}$	$\begin{aligned} & 315 \\ & 295 \end{aligned}$		$\begin{aligned} & 60 \\ & 53 \end{aligned}$	$\begin{aligned} & 150 \\ & 140 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 120 \\ & 112 \end{aligned}$	ns	$R_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & \mathrm{t} \mathrm{TLH} \\ & \mathrm{t} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4556 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 140 \\ & 185 \end{aligned}$	$\begin{aligned} & 225 \\ & 260 \end{aligned}$		$\begin{aligned} & 57 \\ & 68 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 96 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$,
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Output		$\begin{aligned} & 134 \\ & 145 \end{aligned}$	$\begin{aligned} & 225 \\ & 245 \end{aligned}$		$\begin{aligned} & 55 \\ & 58 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 110 \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \end{aligned}$	ns	$R_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		75 77	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		37 29	70 70		25 20	45 45	ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

FAIRCHILD CMOS • 4555B • 4556B

TYPICAL ELECTRICAL CHARACTERISTICS

4555B

4556B $\overline{E_{n}}$ TO $\overline{O_{n}}$,

4555B
PROPAGATION DELAY, E_{n} TO O_{n}, VERSUS TEMPERATURE

PROPAGATION DELAY, A_{n} TO $\overline{O_{n}}$
VERSUS LOAD CAPACITANCE

VERSUS LOAD CAPACITANCE

4556B PROPAGATION DELAY, $\mathrm{A}_{\mathrm{n}} \mathrm{TO} \mathrm{O}_{\mathrm{n}}$ VERSUS TEMPERATURE

PROPAGATION DELAY, A_{n} TO O_{n},

4556B

PROPAGATION DELAY, $\overline{E n}_{n}$ TO \bar{O}_{n}, VERSUS LOAD CAPACITANCE

4557B

1-TO-64 BIT VARIABLE LENGTH SHIFT REGISTER

DESCRIPTION - The 4557B is a 1 -to-64 Bit Variable Length Shift Register with two Serial Data Inputs ($\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$), a Data Select Input (S_{D}), six Register Length Select Inputs ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{8}, \mathrm{~S}_{16}$ and S_{32}), active LOW and active HIGH Clock Inputs ($\overline{\mathrm{CP}}_{0}$ and CP_{1}), True and Complementary Data Outputs (Q and $\overline{\mathrm{Q}}$) and an overriding asynchronous Master Reset Input (MR).
The 4557B register length is programmable. As shown in the Register Selection Table, any shift register length of between 1 and 64 bits can be selected by applying appropriate logic levels to the Register Length Select Inputs ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{8}, \mathrm{~S}_{16}$ and S_{32}). Shift register length equals the sum of the 6 -bit data word formed by the Register Length Select Inputs ($S_{32} S_{16} S_{8} S_{4} S_{2} S_{1}$) plus one.
With Data Select Input (S_{D}) LOW, information at the Serial Data Input, D_{B}, is shifted into the Variable Length Shift Register on either a HIGH-to-LOW transition at $\overline{\mathrm{CP}}_{0}$ while CP_{1} is HIGH or a LOW-toHIGH transition at CP_{1} while $\overline{\mathrm{CP}}_{\mathrm{O}}$ is LOW. With the Data Select Input (S_{D}) HIGH, information at Serial Data Input D_{A}, is shifted into the register on appropriate logic level transitions and logic levels at the Clock Inputs (CP_{0} and CP_{1}) as described above.
True and Complementary Data Outputs (Q and $\overline{\mathrm{Q}}$) from the last stage of the variable length shift register are made available.
A HIGH on the Master Reset Input (MR) clears all registers to zero ($\mathrm{Q}=\mathrm{LOW}, \overline{\mathrm{Q}}=\mathrm{HIGH}$) independent of all other inputs.

- 1-TO-64 BIT PROGRAMMABLE SHIFT REGISTER
- TRUE AND COMPLEMENTARY DATA OUTPUTS AVAILABLE
- ASYNCHRONOUS MASTER RESET
- tRIGGERS ON EITHER A HIGH-TO-LOW OR LOW-TO-HIGH TRANSITION
- SERIAL DATA INPUT FROM EITHER OF TWO SOURCES

PIN NAMES

D_{A}, D_{B}
S_{D}
$\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{4}, \mathrm{~S}_{8}, \mathrm{~S}_{16}, \mathrm{~S}_{32}$
${ }^{\mathrm{CP}}{ }_{0}$
CP_{1}
MR
-
$\overline{\mathrm{o}}$

Serial Data Inputs
Data Select Input
Register Length Select Inputs
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Triggered)
Master Reset Input
Data Output
Complementary Data (Active LOW) Output

LOGIC SYMBOL

$$
\begin{aligned}
V_{D D} & =P \text { in } 16 \\
V_{S S} & =P \text { in } 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The flatpak version has the same (Connection Diagram) as the Dual In-Line Package.

Register selection table

SELECT INPUTS						REGISTER LENGTH
S_{32}	S_{16}	S_{8}	S_{4}	S_{2}	s_{1}	
L	L	L	L	L	L	1-BITS
L	L	L	L	L	H	2-BITS
L	L	L	L	H	L	3-BITS
L	L	L	L	H	H	4-BITS
L	L	L	H	L	L	5-BITS
L	L	L	H	L	H	6-BITS
		:			:	:
H	L	L	L	L	L	33-bITS
H	L	L	L	L	H	34-BITS
H	L	L	L	H	L	35-BITS
:					:	:
.	-	.	.	:	:	:
H	H	H	H	L	L	61-BITS
H	H	H	H	L	H	62-BITS
H	H	H	H	H	L	63 BITS
H	H	H	H	H	H	64-BITS

L = LOW Level
$H=H I G H$ Level
Note: Shift Register Length equals the sum of the Register Length Select Input "Word" $\left(S_{1}, S_{2}, S_{4}, S_{8}, S_{16}\right.$ and $\left.S_{32}\right)$ plus one.

DATA INPUT SELECTION TABLE

INPUT		DATA INTO THE FIRST STAGE OF THE SELECTED SHIFT REGISTER	
S_{D}	D_{A}	D_{B}	
L	X	L	L
L	X	H	H
H	L	X	L
H	H	X	H

L = LOW Level
$H=$ HIGH Level
$X=$ Don't Care

TRUTH TABLE

INPUTS			OPERATION
MR	$\overline{C P}_{0}$	CP_{1}	
L	L	-	NO CHANGE
L	\sim	H	NO CHANGE
L	H	X	NO CHANGE
L	X	L	NO CHANGE
L	N	H	SELECTED REGISTER SHIFTS
L	L	\sim	SELECTED REGISTER SHIFTS
H	X	X	MASTER RESET

$L=$ LOW Level
$\mathrm{H}=\mathrm{HIGH}$ Level
$X=$ Don't Care
$=$ Positive-Going Transition
$=$ Negative-Going Transition

4582B
 CARRY LOOKAHEAD GENERATOR

DESCRIPTION - The 4582B is a Carry Lookahead Generator which provides Wigh speed lookahead over word lengths of more than four bits. The device has a Carry Input (C_{n}), four active LOW Carry Generate Inputs ($\overline{\mathrm{G}_{0}}-\overline{G_{3}}$), four active LOW Carry Propagate Inputs ($\overline{\mathrm{P}_{0}-\mathrm{P}_{3}}$), three Carry Outputs $\left(C_{n+x}, C_{n+y}, C_{n+z}\right)$, an active LOW Carry Propagate Output (\bar{P}) and an active LOW Carry Generate Output ($\overline{\mathrm{G}}$). The logic equations for all outputs are shown below.

- EXPANDABLE TO ANY NUMBER OF BITS
- HIGH SPEED LOOKAHEAD OVER WORD LENGTHS OF MORE THAN FOUR BITS

PIN NAMES

C_{n}	Carry Input
$\overline{\mathrm{G}}_{0}-\bar{G}_{3}$	Carry Generate Inputs (Active LOW)
$\bar{P}_{0}-\bar{P}_{3}$	Carry Propagate Inputs (Active LOW)
$\mathrm{C}_{\mathrm{n}}+\mathrm{x}, \mathrm{C}_{\mathrm{n}+\mathrm{y}}, \mathrm{C}_{\mathrm{n}+\mathrm{z}}$	Carry Outputs
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)
\bar{P}	Carry Propagate Output (Active LOW)

LOGIC EQUATIONS

$$
\begin{aligned}
C_{n+x} & =G_{0}+P_{0} \cdot C_{n} \\
C_{n+y} & =G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot C_{n} \\
C_{n+z} & =G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{n} \\
\bar{G} & =\overline{G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}} \\
\bar{P} & =\overline{P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0}}
\end{aligned}
$$

LOGIC DIAGRAM

[^7]

CONNECTION DIAGRAM DIP (TOP VIEW)

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS

TRUTH TABLE

INPUTS									OUTPUTS				
C_{n}	$\overline{\mathrm{G}}$	$\overline{P_{0}}$	$\overline{\mathrm{G}} 1$	$\overline{\mathrm{P}_{1}}$	$\overline{\mathrm{G}} 2$	$\overline{P_{2}}$	$\overline{\mathrm{G}} 3$	$\overline{P_{3}}$	$\mathrm{c}_{\mathrm{n}+\mathrm{x}}$	$\mathrm{C}_{\mathrm{n}+\mathrm{y}}$	$\mathrm{C}_{\mathrm{n}+2}$	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
$\bar{\chi}$	H	H							L				
L	H	X							L				
x	L	x							H				
H	X	L							H				
X	x	x	H	H						L			
X	H	H	H	X						L			
L	H	X	H	x						L			
X	x	x	L	X						H			
X	L	X	x	L						H			
H	x	L	x	L						H			
x	x	x	\times	\times	H	H					L		
x	x	X	H	H	H	x					L		
x	H	H	H	x	H	x					L		
L	H	x	H	x	H	x					L		
x	x	x	x	x	L	\dot{x}					H		
x	x	x	L	x	x	L					H		
X	L	X	X	L	X	L					H		
H	x	L	x	L	x	L					H		
	X		X	X	X	X	H	H				H	
	x		x	x	H	H	H	x				H	
	x		H	H	H	x	H	x				H	
	H		H	X	H	x	H	X				H	
	X		x	x	x	x	L	x				L	
	x		X	x	L	x	x	L				L	
	x		L	x	x	L	x	L				L	
	L		x	L	x	L	X	L				L	
		H		X		X		X					H
		x		H		x		x					H
		x		x		H		x					H
		x		x		X		H					H
		L		L		L		L					L

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or $V_{D D}$
					150			300			600		MAX	
		XM			5			10			20	μ A	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{t} L H}} \end{aligned}$	Propagation Delay, C_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, $c_{n+y} \text { or } c_{n+z}$		$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & { }^{\text {t PHL }} \end{aligned}$	Propagation Delay, \bar{P}_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$ C_{n+y} or C_{n+z}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{G}}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, $C_{n+y} \text { or } C_{n+z}$		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & \hline 55 \end{aligned}$		ns	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{1}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & { }^{\text {t}} \mathrm{PLH} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{P}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$ to \bar{G}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{G}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{P}}_{\mathrm{n}}$ to $\overline{\mathrm{P}}$		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$			30			20 20		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

4702B／4702BX
 PROGRAMMABLE BIT－RATE GENERATOR
 FAIRCHILD CMOS MACROLOGIC ${ }^{\text {TM }}$

DESCRIPTION－The 4702B／4702BX Bit－Rate Generator provides the necessary clock signals for digital data transmission systems，such as Universal Asynchronous Receiver and Transmitter circuits （UARTs）．It generates any of the 14 commonly used bit rates using an on－chip crystal oscillator，but its design also provides for easy and economical multi－channel operation，where any of the possible frequencies must be made available on any output channel．

One 4702B／4702BX can control up to eight output channels．When more than one bit－rate generator is required，they can still be operated from one crystal．The 4702B is specified to operate over a power supply voltage range of $5 \mathrm{~V} \pm 10 \%$ ．The 4702BX is a specially selected device specified to operate over a power supply voltage range of 4.5 V to 12.5 V ．
－PROVIDES 14 COMMONLY USED BIT－RATES
－ONE 4702B／4702BX CONTROLS UP TO EIGHT TRANSMISSION CHANNELS
－USES 2.4576 MHz INPUT FOR STANDARD FREQUENCY OUTPUTS （16 TIMES BIT RATE）
－CONFORMS TO EIA RS－404
－ON－CHIP INPUT PULL UP CIRCUITS
－TTL COMPATIBLE－OUTPUTS WILL SINK 1.6 mA
－INITIALIZATION CIRCUIT FACILITIES DIAGNOSTIC FAULT ISOLATION
－LOW POWER DISSIPATION－ 1.35 mA POWER DISSIPATION AT 5 V AND 2.4576 MHz
－16－PIN DUAL IN－LINE PACKAGE

TABLE 1
CLOCK MODES AND INITIALIZATION

${ }^{1} \times$	$\bar{E}_{\text {CP }}$	CP	OPERATION
凹ル	H	L	Clocked from IX
x	L	凸几ム	Clocked from CP
x	H	H	Continuous Reset
x	L	\square	Reset During First CP $=$ HIGH Time

Note 1：Actual output frequency is 16 times the indicated output rate，assuming a clock frequency of 2.4576 MHz ．

TABLE 2
TRUTH TABLE FOR RATE SELECT INPUTS

S_{3}	S_{2}	S_{1}	S_{0}	Output Rate（Z） Note 1
L	L	L	L	Multiplexed Input（ I_{M} ）
L̇	L	L	H	Multiplexed Input（ ${ }_{\mathrm{M}}$ ）
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134．5 Baud
L	H	L	H	200 Baud
L	H	H	L	600 Baud
L	H	H	H	2400 Baud
H	L	L	L	9600 Baud
H	L	L	H	4800 Baud
H	L	H	L	1800 Baud
H	L	H	H	1200 Baud
H	H	L	L	2400 Baud
H	H	L	H	300 Baud
H	H	H	L	150 Baud
H	H	H	H	110 Baud

[^8]$\mathrm{H}=\mathrm{HIGH}$ Level

BLOCK DIAGRAM

$V_{D D}=P$ in 16
$V_{S S}=P$ in 8
$\bigcirc=P$ in Number

FUNCTIONAL DESCRIPTION - Digital data transmission systems employ a wide range of standardized bit rates, ranging from 50 baud interfacing with electromechanical devices, to 9600 baud for high speed modems. Modern electronic systems commonly use Universal Asynchronous Receiver and Transmitter circuits (UARTs) to convert parallel data inputs into a serial bit stream (transmitter) and to reconvert the serial bit stream into parallel outputs (receiver). In order to resynchronize the incoming serial data, the receiver requires a clock rate that is a multiple of the incoming bit rate. Popular MOS-LSI UART circuits use a clock that is 16 times the transmitted bit rate. The $4702 \mathrm{~B} / 4702 \mathrm{BX}$ can generate 14 standardized clock rates from one commonly high frequency input.

The 4702B/4702BX contains the following five functional subsystems which are discussed in detail below:

1. An Oscillator Circuit with associated gating.
2. A prescaler used as Scan Counter for multichannel operation (described in the applications section).
3. A Counter Network to generate the required standardized frequencies.
4. An output Multiplexer (frequency selector) with resynchronizing output flip-flop.
5. An Initialization (reset) Circuit.

Oscillator - For conventional operation generating 16 output clock pulses per bit period, the input clock frequency must be 2.4576 MHz (i.e. 9600 baud $\times 16 \times 16$, since the scan counter and the first flip-flop of the counter chain act as an internal \div 16 prescaler). A lower input frequency will obviously result in a proportionally lower output frequency.

The $4702 \mathrm{~B} / 4702 \mathrm{BX}$ can be driven from two alternate clock sources: (1) When the E_{C} (active LOW External Clock Enable) input is LOW, the CP input is the clock source. (2) When the E_{CP} input is HIGH , a crystal connected between I_{X} and O_{X}, or a signal applied to the I X input, is the clock source.

Prescaler (Scan Counter) - The clock frequency is made available on the CO (Clock Output) pin and is applied to the $\div 8$ prescaler with buffered outputs $\mathrm{Q}_{0}, \mathrm{Q}_{1}$, and Q_{2}. This prescaler is of no particular advantage in single frequency applications, but it is essential for the simple economical multichannel scheme described in the Applications section of this data book.

Counter Network - The prescaler output Q_{2} is a square wave of $1 / 8$ the input frequency and is used to drive the frequency counter network generating 13 standardized frequencies. Note that the frequencies are labeled in the block diagram and described in terms of the transmission bit rate. In a conventional system using a 2.4576 MHz clock input, the actual output frequencies are 16 times higher.
The output from the first frequency divider flip-flop is thus labeled 9600, since it is used to transmit or receive 9600 baud (bits per second). The actual frequency at this node is $16 \times 9.6 \mathrm{kHz}=153.6 \mathrm{kHz}$. Seven more cascaded binaries generate the appropriate frequencies for bit rates 4800, 2400, 1200, 600, 300, 150, and 75.
The other five bit rates are generated by individual counters:
bit rate 1200 is divided by 6 to generate bit rate 200,
bit rate 200 is divided by 4 to generate bit rate 50,
bit rate 2400 is divided by 18 to generate bit rate 134.5 with a frequency error of -0.87%,
bit rate 2400 is also divided by 22 to generate bit rate 110 with a frequency error of -0.83%, and
bit rate 9600 is divided by $16 / 3$ to generate bit rate 1800 .
The $16 / 3$ division is accomplished by alternating the divide ratio between 5 (twice) and 6 (once). The result is an exact average output frequency with some frequency modulation. Taking advantage of the $\div 16$ feature of the UART, the resulting distortion is less than 0.78%, irrespective of the number of elements in a character, and therefore well within the timing accuracy specified for high speed communications equipment. All signals except 1800, have a 50% duty cycle.

Output Multiplexer - The outputs of the counter network are fed to a 16 -input multiplexer, which is controlled by the Rate Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$). The multiplexer output is then resynchronized with the incoming clock in order to cancel all cumulative delays and to present an output signal at the buffered output (Z) that is synchronous with the prescaler outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{2}\right)$. Table 2 lists the correspondence between select code and output bit rate. Two of the 16 codes do not select an internally generated frequency, but select an input into which the user can feed either a different, nonstandardized frequency, or a static level (HIGH or LOW) to generate "zero baud".
The bit rates most commonly used in modern data terminals (110, 150, 300, 1200, 2400 baud) require that no more than one input be grounded, easily achieved with a single pole, 5 -position switch. 2400 baud is selected by two different codes, so that the whole spectrum of modern digital communication rates has a common HIGH on the S_{3} input.

Initialization (Reset) - The initialization circuit generates a common master reset signal for all flip-flops in the 4702B/4702BX. This signal is derived from a digital differentiator that senses the first HIGH level on the CP input after the $\bar{E}_{C P}$ input goes LOW. When $\bar{E}_{C P}$ is HIGH, selecting the Crystal input, CP must be LOW. A HIGH level on CP would apply a continuous reset.
All inputs to the $4702 \mathrm{~B} / 4702 \mathrm{BX}$, except IX have on-chip pull-up circuits which improve TTL compatibility and eliminate the need to tie a permanently HIGH input to $V_{D D}$.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS		
			MIN	TYP	MAX					
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		3.5			V	All	Guaranteed Input High Voltage		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				1.5	V	All	Guaranteed Input LOW Voltage		
VOH	Output HIGH Voltage		4.95			V	MIN, $25^{\circ} \mathrm{C}$	$\mathrm{I}^{\mathrm{OH}}<1 \mu \mathrm{~A}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
			4.95				MAX			
			4.5			V	All	$\mathrm{I}_{\mathrm{OH}}<1 \mu \mathrm{~A} \text {, Inputs at } 1.5 \text { or } 3.5 \mathrm{~V}$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage				0.05	V	MIN, $25^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{OL}<1 \mu \mathrm{~A}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
					0.05		MAX			
					0.5	V	All	$\mathrm{IOL}^{\text {< }} 1 \mu \mathrm{~A}$, In	uts at 1.5 or 3.5 V	
I_{L} (See Note 1)	Input LOW Current for Input IX	XC			0.3	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	Pin under Test at 0 V All other Inputs Simultaneously at 5 V		
					1		MAX			
		XM			0.1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
					1		MAX			
	Input LOW Current for all Other Inputs	XC	-15	-30	-100	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$			
		XM	-15	-30	-100					
${ }_{\text {IH }}$	Input HIGH Current for all Inputs	XC			0.3	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	Pin Under Test at 5 V All other Inputs Simultaneously at 0 V		
					1		MAX			
		XM			0.1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
					1		MAX			
${ }^{1} \mathrm{OH}$	Output HIGH Current for Output O_{X}		-0.3			mA	MIN, $25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	Inputs at 0 or 5 V per Logic	
			-0.1				MAX			
	Output HIGH Current for all other Outputs		-1.5			mA	MIN, $25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		
			-1.				MAX			
			-0.5			mA	MIN, $25^{\circ} \mathrm{C}$			
			-0.3				MAX	$V_{\text {OUT }}=4.5 \mathrm{~V}$		
${ }^{\text {IOL }}$	Output LOW Current for Output OX		0.2			mA	MIN, $25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	Function or Truth Table	
			0.1				MAX			
	Output LOW Current for all Other Outputs		3.2			mA	MIN, $25^{\circ} \mathrm{C}$			
			1.6				MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			100	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	$\bar{E}_{C P}=V_{D D}, C P=0 V$, All other Inputs at 0 V or $V_{\text {DD }}$ (Note 6)		
					1000		MAX			
		XM			10	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$			
					150		MAX			

See Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay IX to CO		$\begin{aligned} & 175 \\ & 135 \end{aligned}$	$\begin{aligned} & 350 \\ & 275 \end{aligned}$	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}} \leqslant 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to CO		$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \text { tPHL } \end{aligned}$	Propagation Delay CO to $\mathrm{Q}_{\mathrm{n}}^{-}$		$\begin{aligned} & 53 \\ & 45 \end{aligned}$	$\begin{gathered} \text { Note } \\ 5 \end{gathered}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CO to Z		$\begin{aligned} & 37 \\ & 32 \end{aligned}$	$\begin{aligned} & 85 \\ & 75 \end{aligned}$	ns	
${ }^{\mathrm{t}}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time (Except OX)		$\begin{aligned} & 80 \\ & 35 \end{aligned}$	$\begin{array}{r} 160 \\ 75 \end{array}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Select to CO Hold Time, Select to CO	350	$\begin{array}{r} 185 \\ -182 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, I_{M} to CO Hold Time, I_{M} to CO	$\begin{array}{r} 350 \\ 0 \end{array}$	$\begin{array}{r} 190 \\ -182 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{H}) \end{aligned}$	Minimum Clock Pulse Width LOW and HIGH	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		ns	
$\begin{aligned} & t_{w} X^{\prime}(L) \\ & t_{w}{ }^{\prime} X(H) \end{aligned}$	Minimum IX Pulse Width LOW and HIGH	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		ns	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described under 4000B Series CMOS Family Characteristics.
2. The first HIGH level Clock Pulse after $\bar{E}_{C P}$ goes LOW must be at least 350 ns long to guarantee reset of all Counters.
3. It is recommended that input rise and fall times to the Clock Inputs (CP, IX) be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$, and the V_{DD} pin should be decoupled.
4. Input current and quiescent power supply current are relatively higher for this device because of active pull-up circuits on all inputs except 1 X . This is done for TTL compatibility.
5. For multichannel operation, propagation delay, $C O$ to Q_{n}, plus set-up time, select to $C O$, is guaranteed to $\leqslant 367 \mathrm{~ns}$.
6. IDD is measured on Pin 8 and does not include Input Leakage Currents.

SWITCHING WAVEFORMS

MINIMUM CP AND Ix PULSE WIDTHS AND SET-UP AND HOLD TIMES, SELECT INPUT $\left(S_{n}\right)$ TO CLOCK OUTPUT (CO) AND IM INPUT TO CLOCK OUTPUT (CO)

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

APPLICATIONS

Single Channel Bit Rate Generator - Figure 1 shows the simplest application of the 4702B/4702BX. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5 -position switch. The bit rate output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to $110,150,300,1200$, and 2400 Baud. For many low cost terminals these five bit rates are adequate.

Simultaneous Generation of Several Bit Rates:

Fixed Programmed Multichannel Operation - Figure 2 shows a simple scheme that generates eight bit rates on eight output lines, using one 4702B/4702BX and one 93L34 8-Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs (O_{0} to Q_{2}) go through a complete sequence of eight states for every half-period of the highest output frequency (9600 Baud). Feeding these Scan Counter outputs back to the Select inputs of the multiplexer causes the $4702 \mathrm{~B} / 4702 \mathrm{BX}$ to interrogate sequentially the state of eight different frequency signals. The 93L34 8-Bit Addressable Latch, addressed by the same Scan Counter outputs, reconverts the multiplexed single output (Z) of the $4702 \mathrm{~B} / 4702 \mathrm{BX}$ into eight parallel output frequency signals. In the simple scheme of Figure 2, input S_{3} is left open (HIGH) and the following bit rates are generated:

$$
\begin{array}{lllllll}
\mathrm{Q}_{0}: & 110 \text { Baud, } & \mathrm{Q}_{1}: & 9600 \text { Baud, } & \mathrm{Q}_{2}: & 4800 \text { Baud, } & \mathrm{Q}_{3}: \\
\mathrm{Q}_{4}: & 1200 \text { Baud, } & \mathrm{O}_{5}: & 2400 \text { Baud, } & \mathrm{Q}_{6}: & 300 \text { Baud, } & \mathrm{O}_{7}: \\
150 \text { Baud, }
\end{array}
$$

Other bit rate combinations can be generated by changing the Scan Counter to selector interconnection or by inserting logic gates into this path.

Fully Programmable Multichannel Operation - Figüre 3 shows a fully programmable 8-channel bit rate generator system that, under computer control, generates arbitrarily assigned bit rates on all eight outputs simultaneously. The basic operation is similar to the previously described fixed programmed system, but two 9 LS170 4×4 Register File MSI packages are connected as programmable look-up tables between the Scan Counter outputs (O_{0} to O_{2}) and the multiplexer Select inputs (S_{0} to S_{3}). The content of this 8 -word by 4 -bit memory determines which frequency appears at what output.
19200 Baud Operation - Though a 19200 Baud signal is not internally routed to the multiplexer, the 4702B/4702BX can be used to generate this bit rate by connecting the Q_{2} output to the I_{M} input and applying select code 0 or 1 . An additional 2 -input NAND gate can be used to retain the "Zero Baud" feature on select code 0 . Any multichannel operation that involves 19200 Baud must be limited to four outputs as shown in Figure 4. Only the two least significant Scan Counter outputs are used, so that the scan is completed within one half period of the 19200 output frequency.
Clock Expansion - One 4702B/4702BX can control up to eight output channels. For more than eight channels, additional bit rate generators are required. These bit rate generators can all be run from the same crystal or clock input. Figure 5 shows one possible expansion scheme. One 4702B/4702BX is provided with a crystal. All other devices derive their clock from this master. Figure 6 shows a different scheme where the master clock output feeds into the 1 X input of all slaves and all E_{CP} inputs are normally held HIGH. This scheme retains the reset feature and the selection between two different clock sources of the basic 4702B/4702BX circuit.

During normal operation, the common $E_{C P}$ line is HIGH and the common clock line (CP) is LOW. For diagnostic purposes the common ECP is forced LOW. This deselects the crystal frequency and initiates the diagnostic mode. When CP goes HIGH for the first time, all $4702 \mathrm{~B} / 4702 \mathrm{BXs}$ are reset through their individual on-chip initialization circuitry. Subsequent LOW-toHIGH clock transitions on the common CP line advance the scan counter, causing all 4702B/4702BXs to operate synchronously.

SWITCH POSITION BIT RATE
1110 Baud
2150 Baud
$3 \quad 300$ Baud
41200 Baud
$5 \quad 2400$ Baud

Fig. 1
SWITCH SELECTABLE BIT RATE GENERATOR CONFIGURATION PROVIDING FIVE BIT RATES

Fig. 2 BIT RATE GENERATOR CONFIGURATION WITH EIGHT SIMULTANEOUS FREQUENCIES

TYPICAL APPLICATIONS (Cont'd)

Fig. 3
FULLY PROGRAMMABLE 8-CHANNEL BIT RATE GENERATOR SYSTEM

Fig. 4
FULLY PROGRAMMABLE 4-CHANNEL BIT RATE GENERATOR SYSTEM WITH THE 19.2k BAUD FEATURE

TYPICAL APPLICATIONS (Cont'd)

Fig. 5
CASCADE CLOCK EXPANSION SCHEME

Fig. 6
TANDEM CLOCK EXPANSION SCHEME

CRYSTAL SPECIFICATION RECOMMENDATIONS - Table 3 is a convenient listing of recommended crystal specifications.
Crystal manufacturers are also listed below.

TABLE 3 CRYSTAL SPECIFICATIONS

PARAMETERS	TYPICAL CRYSTAL SPEC
Frequency	2.4576 MHz " $\mathrm{AT}^{\prime \prime}$ ' Cut
Series Resistance (Max)	250Ω
Unwanted Modes	-6 dB (Min)
Type of Operation	Parallel
Load Capacitance	$32 \mathrm{pF} \pm 0.5$

CRYSTAL MANUFACTURERS

CTS Knights, Inc
Sandwich, III. 60548
(815) 786-8411

Crystal \#F1004

X - Tron Electronics
1869 National Ave.
Hayward, Calif.
(415) 783-2145

Erie Frequency Control
499 Lincoln St.
Carlisle, Pa. 17013
(717) 249-2232

International Crystal Mfg. Company 10 No. Lee
Oklahoma City, Okla. 73102
405) 236-3741

Sentry Manufacturing Co
Crystal Park
Chickasha, Oklahoma 73018
(405) 224-6780

Crystal \# SGP 6-2.4576 or
Crystal \#SGP-7-2.4576

4703B/4703BX

FIRST-IN FIRST-OUT (FIFO) BUFFER MEMORY
 FAIRCHILD CMOS MACROLOGIC ${ }^{\text {TM }}$

DESCRIPTION - The 4703B/4703BX is an expandable fall-through type high-speed First-In First-Out (FIFO) Buffer Memory optimized for high speed disc or tape controllers and communication buffer applications. It is organized as 16 words by four bits and may be expanded to any number of words or any number of bits (in multiples of four). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.

The 4703B/4703BX has 3 -state outputs which provide added versatility and is fully compatible with all CMOS families.

The 4703B is specified to operate over a power supply voltage range of 4.5 V to 12.5 V and the 4703 BX is specified to operate over a power supply voltage range of 3 V to 15 V .

- 5.3 MHz SERIAL OR PARALLEL DATA RATE, TYPICALLY AT VDD $=10 \mathrm{~V}$
 - SERIAL OR PARALLEL INPUT
 - SERIAL OR PARALLEL OUTPUT
 - EXPANDABLE WITHOUT EXTERNAL LOGIC
 - 3-STATE OUTPUTS
 - FULLY COMPATIBLE WITH ALL CMOS FAMILIES
 - SLIM 24-PIN PACKAGE

PIN NAMES	
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel Data Inputs
D_{S}	Serial Data Input
$\overline{\text { PL }}$	Parallel Load Input
$\overline{\overline{C P S I}}$	Serial Input Clock Input (HIGH-to-LOW Triggered)
$\overline{\overline{C P S O}}$	Serial Output Clock Input (HIGH-to-LOW Triggered)
$\overline{\overline{I E S}}$	Serial Input Enable (Active LOW)
$\overline{T T S}$	Transfer to Stack Input (Active LOW)
$\overline{T O S}$	Transfer Out Serial Input (Active LOW)
$\overline{T O P}$	Transfer Out Parallel Input
$\overline{\text { OES }}$	Serial Output Enable Input (Active LOW)
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{\text { MR }}$	Master Reset Input (Active LOW)
$\overline{\text { IRF }}$	Input Register Full Output (Active LOW)
$\overline{O R E}$	Output Register Empty Output (Active LOW)
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Data Outputs
Q_{S}	Serial Data Output

$V_{D D}=\operatorname{Pin} 24$
$V_{S S}=\operatorname{Pin} 12$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION - As shown in the block diagram the 4703B/4703BX consists of three sections:

1. An Input Register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
2. A 4-bit wide, 14 -word deep fall-through stack with self-contained control logic.
3. An Output Register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion.
Since these three sections operate asynchronously and almost independently, they will be described separately below:

Input Register (Data Entry):

The Input Register can receive data in either bit-serial or in 4-bit parallel form. It stores this data until it is sent to the fallthrough stack and generates the necessary status and control signals.
Figure 1 is a conceptual logic diagram of the input section, as described later, this 5 -bit register is initialized by setting the F3 flip-flop and resetting the other flip-flops. The Q-output of the last flip-flop (FC) is brought out as the "Input Register Full" output (IRF). After initialization this output is HIGH.

Parallel Entry - A HIGH on the PL input loads the $D_{0}-D_{3}$ inputs into the $F_{0}-F_{3}$ flip-flops and sets the FC flip-flop. This forces the IRF output LOW indicating that the input register is full. During parallel entry, the $\overline{\text { CPSI }}$ input must be LOW. If parallel expansion is not being implemented, IES must be LOW to establish row mastership (see Expansion section). The $D_{0}-D_{3}$ inputs are "ones catching" and must remain stable while PL is HIGH.

Fig. 1
CONCEPTUAL INPUT SECTION

Serial Entry - Data on the D_{S} input is serially entered into the $F_{3}, F_{2}, F_{1}, F_{0}$, FC shift register on each HIGH-to-LOW transition of the CPSI clock input, provided IES and PL are LOW.
After the fourth clock transition, the four data bits located in the four flip-flops $F_{0}-F_{3}$. The FC flip-flop is set, forcing the $\overline{\text { IRF }}$ output LOW and internally inhibiting $\overline{\text { CPSI }}$ clock pulses from effecting the register. Figure 2 illustrates the final positions in a 4703B/4703BX resulting from a 64 -bit serial bit train. B_{0} is the first bit, B_{63} the last bit.

Transfer to the Stack - The outputs of Flip-Flops $\mathrm{F}_{0}-\mathrm{F}_{3}$ feed the stack. A LOW level on the TTS input initiates a "fallthrough" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus, automatic FIFO action is achieved by connecting the $\overline{\mathrm{IRF}}$ output to the $\overline{\mathrm{TTS}}$ input.
An RS Flip-Flop (the Request Initialization Flip-Flop shown in Figure 10) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack despite the fact the IRF and $\overline{T T S}$ may still be LOW. The Request Initialization Flip-Flop is not cleared until PL goes LOW. Once in the stack, data falls through the stack automatically, pausing only when it is necessary to wait for an empty next location. In the 4703B/4703BX, as in most modern FIFO designs, the $\overline{M R}$ input only initializes the stack control section and does not clear the data.

Fig. 2
FINAL POSITIONS IN A 4703B/4703BX RESULTING FROM A 64-BIT SERIAL TRAIN

Output Register (Data Extraction) - The Output Register receives 4-bit data words from the bottom stack location, stores it and outputs data on a 3 -state 4 -bit parallel data bus or on a 3 -state serial data bus. The output section generates and receives the necessary status and control signals. Figure 3 is a conceptual logic diagram of the output section.

Fig. 3
CONCEPTUAL OUTPUT SECTION

Parallel Data Extraction - When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ($\overline{\mathrm{ORE}}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided the "Transfer Out Parallel" (TOP) input is HIGH. As a result of the data transfer $\overline{\text { ORE }}$ goes HIGH, indicating valid data on the data outputs (provided the 3 -state buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, $\overline{O R E}$ will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next HIGH level at TOP permits the transfer of the next word (if available) into the Output Register. During parallel data extraction $\overline{\mathrm{CPSO}}$ should be LOW. TOS should be grounded for single slice operation or connected to the appropriate $\overline{\mathrm{ORE}}$ for expanded operation (see Expansion section).
TOP is not edge triggered. Therefore, if TOP goes HIGH before data is available from the stack, but data does become available before TOP goes LOW again, that data will be transferred into the Output Register. However, internal control circuitry prevents the same data from being transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, $\overline{\mathrm{ORE}}$ remains LOW indicating that there is no valid data at the outputs.

Serial Data Extraction - When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ($\overline{\mathrm{ORE}}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided $\overline{\text { TOS }}$ is LOW and TOP is HIGH. As a result of the data transfer $\overline{\text { ORE }}$ goes HIGH indicating valid data in the register. The 3 -state-Serial Data Output, Q_{S}, is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. To prevent false shifting, $\overline{\mathrm{CPSO}}$ should be LOW when the new word is being loaded into the Output Register. The fourth transition empties the shift register, forces ORE output LOW and disables the serial output, Q_{S} (refer to Figure 3). For serial operation the $\overline{\mathrm{ORE}}$ output may be tied to the TOS input, requesting a new word from the stack as soon as the previous one has been shifted out.

EXPANSION

Vertical Expansion - The 4703B/4703BX may be vertically expanded to store more words without external parts. The interconnections necessary to form a 46 -word by 4 -bit FIFO are shown in Figure 4 . Using the same technique, any FIFO of $(15 n+1)$ words by four bits can be constructed, where n is the number of devices. Note that expansion does not sacrifice any of the $4703 \mathrm{~B} / 4703 \mathrm{BX}$'s flexibility for serial/parallel input and output. For other expansion schemes, refer to the Applications section of this book.

Fig. 4
A VERTICAL EXPANSION SCHEME

Horizontal Expansion - The 4703B/4703BX can also be horizontally expanded to store long words (in multiples of four bits) without external logic. The interconnections necessary to form a 16 -word by 12 -bit FIFO are shown in Figure 5. Using the same technique, any FIFO of 16 words by 4 n bits can be constructed, where n is the number of devices. The IRF output of the right most device (most significant device) is connected to the TTS inputs of all devices. Similarly, the ORE output of the most significant device is connected to the $\overline{T O S}$ inputs of all devices. As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the 4703B/4703BX's flexibility for serial/parallel input and output.
It should be noted that this form of horizontal expansion extracts a penalty in speed. A single FIFO is guaranteed to operate at 3.4 MHz ; an array of four FIFOs connected in the above manner is guaranteed at 1.5 MHz . An expansion scheme that provides higher speed but requires additional components is shown in the Applications section of this book.

Horizontal and Vertical Expansion - The 4703B/4703BX can be expanded in both the horizontal and vertical directions without any external parts and without sacrificing any of its FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6. Using the same technique, any FIFO of $(15 m+1)$ words by $(4 n)$ bits can be constructed, where m is the number of devices in a column and n is the number of devices in a row.
Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6. The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.

Fig. 5
A HORIZONTAL EXPANSION SCHEME

Fig. 7
SERIAL DATA ENTRY FOR ARRAY OF FIG. 6

Fig. 8
SERIAL DATA EXTRACTION FOR ARRAY OF FIG. 6

Fig. 9
FINAL POSITION OF A 496-BIT SERIAL INPUT

Interlocking Circuitry - Most conventional FIFO designs provide status signals analogous to $\overline{\operatorname{RFF}}$ and $\overline{\text { ORE }}$. However, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 4703B/4703BX incorporates simple but effective "master/slave" interlocking circuitry to eliminate the need for external gating.
In the 4703B/4703BX array of Figure 6 devices 1 and 5 are defined as "row masters" and the other devices are slaves to the master in their row. No slave in a given row will initialize its Input Register until it has received LOW on its IES input from a row, master or a slave of higher priority.
In a similar fashion, the $\overline{\text { ORE }}$ outputs of slaves will not go HIGH until their $\overline{\mathrm{OES}}$ inputs have gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the $\overline{\text { IRF }}$ output of the final slave in that row goes LOW and that output data for the array may be extracted when the $\overline{\text { ORE }}$ of the final slave in the output row goes HIGH.
The row master is established by connecting its $\overline{\mathrm{IES}}$ input to ground while a slave receives its $\overline{\mathrm{IES}}$ input from the $\overline{\mathrm{IRF}}$ output of the next higher priority device. When an array of 4703B/4703BX FIFOs is initialized with a LOW on the MR inputs of all devices, the $\overline{\mathrm{IRF}}$ outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the $\overline{\mathrm{IES}}$ input during initialization. Figure 10 is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever $\overline{M R}$ and $\overline{\text { IES }}$ are LOW, the Master Latch is set. Whenever TTS goes LOW the Request Initialization Flip-Flop will be set. If the Master Latch is HIGH, the Input Register will be immediately initialized and the Request Initialization Flip-Flop will be set. If the Master Latch is HIGH, the Input Register will be immediately initialized and the Request Initialization Flip-Flop reset. If the Master Latch is reset, the Input Register is not initialized until IES goes LOW. In array operation, activating the TTS initiates a ripple input register initialization from the row master to the last slave.
A similar operation takes place for the output register. Either a $\overline{T O S}$ or TOP input initiates a load-from-stack operation and sets the ORE Request Flip-Flop. If the Master Latch is set, the last Output Register Flip-Flop is set and ORE goes HIGH. If the Master Latch is reset, the $\overline{\mathrm{ORE}}$ output will be LOW until an $\overline{\mathrm{OES}}$ input is received.

Fig. 10
CONCEPTUAL DIAGRAM, INTERLOCKING CIRCUITRY

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
Iozh	Output OFF HIGH Current	xc									1.6 12 0	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, \overline{\mathrm{EO}}=V_{D D}$
		XM									$\begin{array}{r} \hline 0.4 \\ 12 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
Iozl	Output OFF LOW Current	XC									$\begin{array}{r} -1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
		XM									$\begin{array}{r} -0.4 \\ -12 \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 32.5 \\ 250 \end{array}$			$\begin{array}{r} 65 \\ 500 \end{array}$			$\begin{array}{\|r\|} \hline 130 \\ 1000 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All Inputs at 0 V or V_{DD}
		XM			8.75 250			$\begin{array}{r} 17.5 \\ 500 \end{array}$			$\begin{array}{\|r\|} \hline 35 \\ 1000 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPHL	Propagation Delay, $\overline{\mathrm{CPSI}}$ to $\overline{\text { IRF }}$		215	430		81	162		57	114	ns	
tPLH	Propagation Delay, TTS to IRF		439	878		131	262		92	184	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
tPLH tPHL	Propagation Delay, $\overline{\mathrm{CPSO}}$ to $\mathrm{Q}_{\mathbf{S}}$		$\begin{aligned} & 306 \\ & 299 \end{aligned}$	$\begin{aligned} & 612 \\ & 598 \end{aligned}$		$\begin{aligned} & 68 \\ & 79 \end{aligned}$	$\begin{aligned} & 136 \\ & 158 \end{aligned}$		$\begin{aligned} & 48 \\ & 56 \end{aligned}$	$\begin{array}{r} 96 \\ 112 \end{array}$	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, TOP to Q_{n}		$\begin{aligned} & 325 \\ & 293 \end{aligned}$	$\begin{aligned} & 650 \\ & 586 \end{aligned}$		$\begin{aligned} & 128 \\ & 114 \end{aligned}$	$\begin{aligned} & 256 \\ & 228 \end{aligned}$		90 80	$\begin{aligned} & 180 \\ & 160 \end{aligned}$	ns	Times $\leqslant 20 \mathrm{~ns}$

Notes on following page.

FAIRCHILD CMOS • 4703B/4703BX

AC CHARACTERISTICS AND SET-UP REQUIREMENTS (Cont'd): V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPHL	Propagation Delay, $\overline{\text { CPSO }}$ to $\overline{\text { ORE }}$		159	318		74	148		52	104	ns	
tPLH	Propagation Delay, TOS to $\overline{\text { ORE }}$		320	640		114	228		80	160	ns	
tPLH	Propagation Delay,		401	802		134	268		94	188	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{I}=200 \mathrm{k} \Omega \end{aligned}$
tPHL	TOP to $\overline{\text { ORE }}$		256	512		109	218		77	154	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
tPHL	Propagation Delay, PL to TRF		119	238		44	88		31	62	ns	Input Transition
${ }^{\text {t F T }}$	Fall Through Time		2020	4040		820	1640		574	1148	ns	Times $\leqslant 20$ ns
tpZH	Output Enable Time		51 85	102		24 33	48		17	34	ns	$\left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right)$
tPZL	Output Enable Time		85	170		33				48		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {DD }}$)
tPHZ	Output Disable Time		64	128		34	68		24	48	ns	$\left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right)$
tplZ	Output Disable Time		80	160		39	78		28	56		$\left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right)$
$\mathrm{t}_{\mathrm{TLH}}$			46	92		25	50		18	36		
${ }^{\mathrm{t} T \mathrm{HL}}$	Output Transition Time		34	68		18	36		13	26	ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{H})$	Min CPSI Pulse Width (HIGH)	118	59		44	22		31	16		ns	
${ }_{\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{L})}$	Min CPSI Pulse Width (LOW)	220	110		108	54		76	38		ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{L})$	Min CPSO Pulse Width (LOW)	120	60		60	30		42	21		ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{H})$	Min CPSO Pulse Width (HIGH)	110	55		72	36		51	26		ns	
${ }^{t_{w} P L(H)}$	Min PL Pulse Width (HIGH)	122	61		44	22		31	16		ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{TTS}}(\mathrm{L})$	Min TTS Pulse Width (LOW)	160	80		124	62		87	44		ns	
${ }^{t_{W} \overline{T O S}(L)}$	Min TOS Pulse Width (LOW)	182	91		60	30		42	21		ns	
t_{w} TOP(L)	Min TOP Pulse Width (LOW)	142	71		52	26		37	19		ns	
${ }^{t_{W} \overline{M R}(L)}$	Min MR Pulse Width (LOW)	192	96		108	54		76	38		ns	
$\mathrm{t}_{\text {rec }}$	$\overline{\mathrm{MR}}$ Recovery Time	44	22		36	18		26	13		ns	
t_{s}	Set-Up and Hold Times,	104	52		40	20		28	14		ns	
${ }^{\text {th }}$	D_{s} to $\overline{C P S I}$	-8	-15								ns	
$\mathrm{t}_{\text {s }}$	Set-Up and Hold Times, TTS to	186	93		98	49		70	35			
$t^{\text {h }}$	IRF, Serial or Parallel Mode	76	38		52	26		38	19		ns	
t_{5}	Set-Up Time, $\overline{\text { ORE }}$ to $\overline{\text { TOS }}$	-151	-302		-21	-42		-15	-30		ns	
${ }^{\text {f MAX }}$	Input CLOCK Frequency (Note 2)	1.1	2.3		2.6	5.3		3.4	6.9		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. For fMAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(${ }^{(P Z H}$) AND OUTPUT DISABLE TIME (tphz)

OUTPUT ENABLE TIME
(tpZL) AND OUTPUT DISABLE TIME (tplz)

SWITCHING WAVEFORMS (Cont'd)

SERIAL INPUT UNEXPANDED OR MASTER OPERATION

MINIMUM $\overline{C P S I}$ PULSE WIDTH, PROPAGATION DELAY, $\overline{\mathrm{CPSI}}$ TO $\overline{\mathrm{IRF}}$ AND $\overline{\text { TTS }}$ TO $\overline{\mathrm{IRF}}$, RECOVERY TIME, $\overline{\mathrm{IRF}}$ TO $\overline{\mathrm{CPS}}$, AND SET-UP AND HOLD TIMES, DS TO CPSI, AND TTS TO IRF.

CONDITIONS: STACK NOT FULL, $\overline{I E S},=$ PL $=$ LOW

SERIAL INPUT EXPANDED SLAVE OPERATION

PROPAGATION DELAY, $\overline{\mathrm{CPSI}}$ TO $\overline{\mathrm{IRF}}$ AND $\overline{\text { TTS }}$ TO $\overline{\mathrm{IRF}}$, RECOVERY TIME, $\overline{I R F}$ TO CPSI AND SET-UP AND HOLD TIMES, $\overline{I E S}$ TO $\overline{\text { CPSI, }} \mathrm{D}_{S}$ TO $\overline{\mathrm{CPSI}}$ AND TTS TO $\overline{\mathrm{RFF}}$.

CONDITIONS: STACK NOT FULL $\overline{I E S}=\mathrm{HIGH}$ WHEN INITIALIZED, PL = LOW

NOTE:
Set-up and hold times are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS (Cont'd)

SERIAL OUTPUT, UNEXPANDED OR MASTER OPERATION

TOS TO ORE, MINIMUM CPSO PULSE WIDTH, MINIMUM
TOS PULSE WIDTH AND SET-UP TIME ORE TO TOS.
CONDITIONS: DATA IN STACK, TOP = HIGH, $\overline{\text { IES }}=$ LOW WHEN INITIALIZED, OES = LOW

$\overline{\text { ORE RECOVERY TIME, PROPAGATION DELAY } \overline{C P S O} \text { TO } \mathbf{Q S}_{\mathbf{S}}, \overline{\mathrm{CPSO}} \text { TO } \overline{O R E}, ~}$ TOS TO ORE, AND SET-UP AND HOLD TIMES, $\overline{O E S}$ TO $\overline{\text { PPSO }}, \overline{\text { ORE TO TOS }} \overline{\text { TOS }}$ TO OES

CONDITIONS: DATA IN STACK, TOP $=\mathrm{HIGH}, \overline{\overline{E S}}=\mathrm{HIGH}$ WHEN INITIALIZED

NOTE:
Set-up (t_{s}) and hold times (t_{h}) are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS (Cont'd)
FALL THROUGH TIME

MINIMUM $\overline{M R}$ AND PL PULSE WIDTHS, RECOVERY TIME FOR $\overline{M R}$ AND FALL THROUGH TIME

CONDITIONS: $\overline{T T S}$ CONNECTED TO $\overline{\mathrm{IRF}}, \overline{T O S}$ CONNECTED TO $\overline{O R E}, \overline{I E S}, \overline{O E S}, \overline{E O}, \overline{C P S O}=L O W . T O P=H I G H$

PARALLEL OUTPUT, FOUR BIT WORD OR MASTER IN PARALLEL EXPANSION

PROPAGATION DELAY, TOP TO ORE, TOP TO Q_{n}, AND MINIMUM TOP PULSE WIDTH

CONDITIONS: $\overline{\mathrm{IES}}=$ LOW WHEN INITIALIZED, $\overline{\mathrm{EO}}=\overline{\mathrm{CPSO}}=$ LOW. DATA AVAILABLE IN STACK

SWITCHING WAVEFORMS (Cont'd)

PROPAGATION DELAY PL TO $\overline{\mathrm{IRF}}, \overline{\mathrm{TTS}}$ TO $\overline{\mathrm{IRF}}$, MINIMUM PL AND TTS PULSE WIDTHS, AND SET-UP AND HOLD TIMES D_{n} TO PL, $\overline{\mathrm{RFF}}$ TO PL, $\overline{T T S}$ TO $\overline{\mathrm{R} F}$. CONDITIONS: STACK NOT FULL, $\overline{I E S}=$ LOW WHEN INITIALIZED
NOTES:

> has been applied.

1. Initialization requires a master rese
2. $\overline{\text { TTS }}$ normally connected to $\overline{\mathrm{IRF}}$.
3. If stack is full, $\overline{\mathrm{IRF}}$ will stay LOW.

PROPAGATION DELAY, $\overline{T T S}$ TO $\overline{\text { IES, }} \overline{\text { IES }}$ TO $\overline{I R F}$, PL TO IRF, MINIMUM PL AND TTS PULSE WIDTHS, AND SET-UP AND HOLD TIMES, D_{n} TO PL, $\overline{\mathrm{IRF}}$ TO $\overline{\text { TTS }}, \overline{\mathrm{IRF}}$ TO PL CONDITIONS: STACK NOT FULL, DEVICE INITIALIZED WITH IES HIGH
NOTE:
Set-up (t_{s}) and hold times (t_{h}) are shown as positive values but may be specified as negative values.

4710B/4710BX
 REGISTER STACK•16×4 RAM WITH 3-STATE OUTPUT REGISTER FAIRCHILD CMOS MACROLOGIC ${ }^{\text {™ }}$

DESCRIPTION - The 4710B/4710BX is a register oriented high speed 64-bit Read/Write Memory organized as 16 -words by 4 -bits. An edge triggered 4 -bit output register allows new input data to be written while previous data is held. 3-state outputs are provided for maximum versatility. The $4710 \mathrm{~B} / 4710 \mathrm{BX}$ is fully compatible with all CMOS families. The 4710 B is specified to operate over a power supply voltage range of 4.5 V to 12.5 V . The 4710 BX is specified to operate over a power supply voltage range of 3 V to 15 V .

- EDGE-TRIGGERED OUTPUT REGISTER
- 3-STATE OUTPUTS
- OPTIMIZED FOR REGISTER STACK OPERATION
- 18-PIN PACKAGE

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW) $\overline{W E}$
$\overline{\mathrm{CP}}$	Write Enable Input (Active LOW) Clock Input (Outputs Change on LOW to HIGH Transition) Outputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	

FUNCTIONAL DESCRIPTION - The 4710B/4710BX consists of a 16×4-bit RAM selected by four address inputs ($A_{0}-A_{3}$) and an edge-triggered 4-bit Output Register with 3 -state Output Buffers.
Write Operation - When the three control inputs: Write Enable ($\overline{W E}$), Chip Select ($\overline{\mathrm{CS}}$), and Clock (CP), are LOW the information on the data inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location selected by the address inputs ($A_{0}-A_{3}$). If the input data changes while $\overline{W E}, \overline{\mathrm{CS}}$, and CP are LOW, the contents of the selected memory location follows these changes provided set-up time criteria are met.
Read Operation - Whenever $\overline{C S}$ is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the address inputs $\left(A_{0}-A_{3}\right)$ is edge triggered into the Output Register.
A 3-State Output Enable ($\overline{\mathrm{EO}})$ controls the output buffers. When $\overline{\mathrm{EO}}$ is HIGH the four outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ are in a high impedance or OFF state; when $\overline{\mathrm{EO}}$ is LOW, the outputs are determined by the state of the Output Register.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I OZH }}$	Output OFF Current HIGH	xc									$\begin{array}{r} 1.6 \\ 12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, \overline{E O}=V_{D D}$
		XM									$\begin{gathered} 0.4 \\ 12 \end{gathered}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
Iozl	Output OFF Current LOW	XC									$\begin{array}{r} \hline-1.6 \\ -12 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}} \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
		XM									$\begin{aligned} & -0.4 \\ & -12 \end{aligned}$		$\begin{gathered} \hline \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \mathrm{MAX} \\ \hline \end{gathered}$	
IDD	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs at 0 V or V_{DD}
		XM			5			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
	READ MODE											$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$ $\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tpLH tph	Propagation Delay, CP to Output		$\begin{aligned} & 146 \\ & 125 \end{aligned}$	$\begin{aligned} & 292 \\ & 250 \end{aligned}$		$\begin{aligned} & 56 \\ & 49 \end{aligned}$	$\begin{array}{\|r\|} \hline 112 \\ 98 \end{array}$		$\begin{aligned} & 40 \\ & 34 \end{aligned}$	$\begin{aligned} & 80 \\ & 68 \end{aligned}$	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, $\overline{\text { EO }}$ to Output		$\begin{aligned} & 57 \\ & 81 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 162 \\ \hline \end{array}$		$\begin{aligned} & 20 \\ & 31 \end{aligned}$	$\begin{aligned} & 40 \\ & 62 \end{aligned}$		$\begin{aligned} & 16 \\ & 23 \end{aligned}$	32 46	ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{EO}}$ to Output		$\begin{aligned} & 57 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 144 \\ \hline \end{array}$		29 31	$\begin{aligned} & 58 \\ & 62 \end{aligned}$		23 25	46 50	ns	
${ }^{t}$ TLH tTHL	Output Transition Time		$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 160 \end{array}$		45	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		35 35	70	ns	
	WRITE MODE											
${ }_{\text {tw }} \overline{W E}$	Minimum $\overline{W E}$ Pulse Width (Note 3)	218	109		104	52		62	31		ns	
${ }^{t}{ }_{w} \overline{C S}$	Minimum $\overline{\text { CS }}$ Pulse Width (Note 3)	226	113		124	62		74	37		ns	
${ }_{t_{w}{ }^{\text {CP }}}$	Minimum CP Pulse Width (Note 3)	240	120		124	62		74	37		ns	
${ }_{\text {t }}^{\text {s }}$	Set-Up Time $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ (Note 4) Hold Time $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ (Note 4)	$\begin{array}{r} 326 \\ 0 \end{array}$	163		$\begin{array}{\|r\|} \hline 198 \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline 99 \\ -10 \end{array}$		134 0	67 -5		ns	
th												
t_{s} $t_{\text {h }}$	Set-Up Time, CS to CP Hold Time, $\overline{\mathrm{CS}}$ to CP	$\begin{array}{r} 186 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 93 \\ -15 \end{array}$		104 0	$\begin{array}{r} 52 \\ -10 \\ \hline \end{array}$					$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
t_{5}	Set-Up Time, $\overline{\mathrm{D}}_{\mathrm{n}}$ to $\overline{\mathrm{WE}}$ (Note 4)	176	68		70	35		48	24		ns	
th	Hold Time, $\overline{\mathrm{D}}_{\mathrm{n}}$ to $\overline{\mathrm{WE}}$ (Note 4)	0	-15		0	-10		0	-5		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, Address to $\overline{\mathrm{WE}}$ (Note 4)	206	103		100	50		58	29		ns	
th	Hold Time, Address to $\overline{\mathrm{WE}}$ (Note 4)	0	-15		0	-10		0	-5		ns	
	READ MODE											
t_{s}	Set-Up Time Address to CP	706	353		372	186		208	104		ns	
th	Hold Time Address to CP	0	-15		0	-10		0	-5		ns	

NOTES

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics. 3. Writing occurs when WE, CE, and CP are LOW.
3. Assuming $\bar{W} E$ is utilized as a Writing STROBE.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

FAIRCHILD CMOS • 4710B/4710BX

SWITCHING WAVEFORMS

READ MODE

$\overline{E O}$ TO OUTPUT ENABLE AND DISABLE TIMES

MINIMUM CP PULSE WIDTH, PROPAGATION DELAY CLOCK TO OUTPUT, AND SET-UP AND HOLD TIMES ADDRESS TO CLOCK

CONDITIONS: $\overline{\mathrm{CS}}=\overline{\mathrm{EO}}=$ LOW, $\overline{\mathrm{WE}}=\mathrm{HIGH}$

MINIMUM $\overline{C S}$ PULSE WIDTH, MINIMUM WRITE ENABLE PULSE WIDTH, SET-UP AND HOLD TIMES ADDRESS TO $\overline{W E}, ~ D A T A ~ T O ~ \overline{W E, ~ A N D ~} \overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ CONDITIONS: CP = LOW

NOTE: Set-Up (t_{s}) and Hold Times (t_{h}) are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS (CONT'D)

WRITE MODE

SET-UP AND HOLD TIMES, $\overline{\mathbf{C S}}$ TO CP

NOTE: Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values, but may be specified as negative values.

4720B/4720BX
 256-BIT RANDOM ACCESS MEMORY WITH 3-STATE OUTPUT

DESCRIPTION - The 4720B/4720BX is a 256 -Bit Random Access Memory with 3-State Outputs. It has a Data Input (D), eight Address inputs ($A_{0}-A_{7}$), an active HIGH Write Enable Input (WE), an active LOW Chip Select Input ($\overline{\mathrm{CS}}$), an active HIGH 3-State Output (Q) and an active LOW 3-State Output ($\overline{\mathrm{Q}}$). Information on the Data Input (D) is written into the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{7}$) when the Chip Select Input ($\overline{\mathrm{CS}}$) is LOW and the Write Enable Input (WE) is HIGH. Under these conditions, the device is transparent, i.e., the data input is reflected at the True and Complementary Outputs ($\mathrm{Q}, \overline{\mathrm{Q}}$). Information is read from the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{7}$) while the Chip Select ($\overline{\mathrm{CS}}$) and the Write Enable (WE) Inputs are LOW. The Q Output is the information written into the memory, $\overline{\mathrm{Q}}$ is its complement. When the Chip Select Input ($\overline{\mathrm{CS}}$) is HIGH, both outputs ($\mathrm{Q}, \overline{\mathrm{C}}$) are held in the high impedance OFF state. This allows other 3 -State outputs to be wired together in a bus arrangement. The $4720 \mathrm{~B} / 4720 \mathrm{BX}$ offers fully static operation.
The 4720 B is specified to operate over a power supply voltage range of 4.5 to 12.5 V . The 4720 BX is specified to operate over a power supply voltage range of 3 to 15 V .

- 3-STATE OUTPUTS

- ORGANIZATION - 256 WORDS $\times 1$-bIT
- ON-CHIP DECODING
- true and complement outputs available
- FULLY STATIC
- Low POWER DISSIPATION
- HIGH SPEED
- TYPICAL HOLDING VOLTAGE OF 1.5 V

MODE SELECTION

$\overline{\mathbf{C S}}$	WE	Q	$\overline{\mathbf{Q}}$	MODE
L	H	Data Written Into Memory	Complement of Data Written Into Memory	Write
L	L	Data Written Into Memory	Complement of Data Written Into Memory	Read
\mathbf{H}	\mathbf{X}	High Impedance	High Impedance	Inhibit

PIN NAMES

$\overline{\mathrm{CS}}$	Chip Select Input (Active
	LOW)
WE	Write Enable Input
D	Data Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
Q	3-State Output (Active
	HIGH)
$\overline{\mathbf{Q}}$	3-State.Output (Active
	LOW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{I}^{\text {OZH }}$	Output OFF Current, HIGH	XC									$\begin{array}{r}1.6 \\ 12 \\ \hline\end{array}$	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, \overline{\mathrm{CS}}=V_{D D}$
		XM									0.4 12		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IOZL	Output OFF Current, LOW	XC									$\begin{array}{r} \hline-1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
		XM									$\begin{gathered} \hline-0.4 \\ -12 \end{gathered}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IDD	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at 0 V or $\mathrm{V}_{D D}$
	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$		$\begin{aligned} & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 136 \\ & 136 \end{aligned}$	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 30 \\ & 34 \end{aligned}$		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 25 \\ & 27 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$		$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 22 \\ & 24 \end{aligned}$	ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \text { t T } \mathrm{HL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	WRITE MODE Propagation Delay, WE to Output		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF},$
${ }^{t}{ }_{W} W \cdot E$	WRITE MODE Minimum WE Pulse Width	240	120		110	55		80	40		ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
ts th	Set-Up Time, D to WE Hold Time, D to WE	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$		38 22	$\begin{aligned} & 19 \\ & 11 \end{aligned}$		$\begin{aligned} & 28 \\ & 18 \end{aligned}$	$\begin{array}{r} 14 \\ 9 \end{array}$		ns	Times $\leqslant 20 \mathrm{~ns}$
ts th	Set-Up Time, Address to WE Hold Time, Address to WE	$\begin{aligned} & 260 \\ & 160 \end{aligned}$	$\begin{array}{r} 130 \\ 80 \\ \hline \end{array}$		$\begin{array}{r} 130 \\ 80 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 40 \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \end{aligned}$		ns	
t_{s} t_{h}	Set-Up Time, $\overline{\mathrm{CS}}$ to WE Hold Time, $\overline{\mathrm{CS}}$ to WE	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		30 30	15 15		20 20	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. All set-up $\left(t_{s}\right)$ and hold $\left(t_{h}\right)$ times are measured with minimum write enable pulse width ($t_{w} W E$).

SWITCHING WAVEFORMS

$\overline{\mathbf{C S}}$ TO OUTPUT ENABLE AND DISABLE TIMES

MINIMUM PULSE WIDTH FOR WE AND SET-UP AND HOLD TIMES, D TO WE, A_{n} TO WE, AND CS TO WE

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4722B

PROGRAMMABLE TIMER/COUNTER

GENERAL DESCRIPTION -The 4722B Programmable Timer/Counter is a monolithic controller capable of producing accurate microsecond to five day time delays. Long delays, up to three years, can easily be generated by cascading two timers. The timer consists of a time base oscillator programmable 8 -bit counter and control flip-flop. An external resistor capacitor ($\mathrm{R}_{x} \mathrm{C}_{\mathrm{x}}$) network sets the oscillator frequency and allows delay times from $1 R_{x} C_{x}$ to $255 R_{x} C_{x}$ to be selected. In the astable mode of operation, 255 frequencies or pulse patterns can be generated from a single $R_{x} C_{x}$ network. These frequencies or pulse patterns can also easily be synchronized to an external signal. The Trigger Input (T), Master Reset Input (MR) and Data Outputs ($\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{4}, \overline{\mathrm{O}}_{8}, \overline{\mathrm{O}}_{16}, \overline{\mathrm{O}}_{32}, \overline{\mathrm{O}}_{64}$, $\overline{\mathrm{O}}_{128}$) are all TTL and DTL compatible for easy interface with digital system. The timer's high accuracy and versatility in producing a wide range of time delays makes it ideal as a direct replacement for mechanical or electromechanical devices.

- ACCURATE TIMING FROM MICROSECONDS TO DAYS
- PROGRAMMABLE DELAYS FROM 1 R $_{x} C_{x}$ TO 255 R $_{x} C_{x}$
- TTL, DTL AND CMOS COMPATIBLE OUTPUTS
- TIMING DIRECTLY PROPORTIONAL TO $R_{x} C_{x}$ TIME CONSTANT
- HIGH ACCURACY
- EXTERNAL SYNC AND MODULATION CAPABILITY
- WIDE SUPPLY VOLTAGE RANGE
- EXCELLENT SUPPLY VOLTAGE REJECTION
- LOW POWER DISSIPATION

PIN NAMES

$\mathrm{R}_{\mathrm{x}} / \mathrm{C}_{\mathrm{X}}$	External Resistor/Capacitor Connection
T	Trigger Input
MOD	Modulation Input
MR	Master Reset Input
$\mathrm{V}_{\mathrm{REG}}$	Regulator Output
$\overline{\mathrm{TBO}}$	Time Base Output (Open Drain)
$\overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{4}, \overline{\mathrm{O}}_{8}$,	Data Outputs (Active Low-Open Drain)
$\overline{\mathrm{O}}_{16}, \overline{\mathrm{O}}_{32}, \overline{\mathrm{O}}_{64}, \overline{\mathrm{O}}_{128}$	

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FUNCTIONAL DESCRIPTION

When power is applied to the 4722B with no Trigger (T) or Master Reset (MR) Inputs, the circuit starts with all outputs in a high impedance OFF state. Application of a positive-going trigger pulse to T initiates the timing cycle. The Trigger Input (T) activates the Time-Base Generator, enables the counter and sets the counter outputs LOW. The time-base generator generates timing pulses with a period $T=1 R_{x} C_{x}$. These clock pulses are counted by the 8 -stage Binary Counter. The timing sequence is completed when a positive-going pulse is applied to MR.

Once triggered, the circuit is immune from additional trigger inputs until the timing cycle is completed or a Master Reset is applied. If both the Master Reset and Trigger Inputs are activated simultaneously, the Trigger Input takes precedence.

Figure 1 gives the timing sequence of output waveforms at various circuit terminals, subsequent to a Trigger Input. When the circuit is in a Master Reset state, both the time-base and the counter sections are disabled and all the counter outputs are in a high impedance OFF state.

In most timing applications, one or more of the counter outputs are connected to the Master Reset terminal with S1 closed (Figure 2). The circuit starts timing when a Trigger Input is applied and automatically resets itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the Master Reset terminal (switch S1 open), the circuit operates in an astable or free-running mode, following a Trigger input.

Important Operating Information

- Ground connection is pin 9.
- Master Reset sets all outputs to a high impedance OFF state.
- Trigger sets all outputs LOW.
- Time-base $\overline{\text { TBO }}$ can be disabled by bringing the R_{x} / C_{x} Input LOW via a pull-down resistor.
- Normal Time-base Output ($\overline{\mathrm{TBO}}$) is a negative-going pulse greater than 500 ns .
- Master Reset stops the time-base generator.
- Data outputs $\overline{\mathrm{O}}_{1} \ldots \overline{\mathrm{O}}_{128} \operatorname{sink} 1.6 \mathrm{~mA}$ current with $\mathrm{V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}$;
- For use with external clock, minimum clock pulse amplitude should be $0.7 V_{D D}$, with greater than $1 \mu s$ pulse duration.

Fig. 1 Timing Diagram of Output Waveforms

Fig. 2 Basic Circuit Connection for Timing Applications Monostable: S1 Closed
Astable: S1 Open

CIRCUIT CONTROLS
Data Outputs ($\overline{\mathrm{O}}_{\mathbf{1}} \ldots \overline{\mathrm{O}}_{\mathbf{1 2 8}}$)
The Data Outputs are buffered open-drain type stages, as shown in the block diagram. Each output is capable of sinking 1.6 mA at $0.4 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}$. In the Master Reset condition, all the Data Outputs are in a high impedance OFF state. Following a Trigger Input, the Outputs change state in accordance with the timing diagram of Figure 1. The Data Outputs can be used individually, or can be connected together in a wired-OR configuration, as described in the Programming section.

Master Reset and Trigger Inputs (MR and T)

The circuit is reset or triggered with positive-going control pulses applied to MR and T, respectively. Once triggered, the circuit is immune to additional trigger inputs until the end of the timing cycle.

Modulation Input (MOD)

The oscillator time-base period T can be modulated by applying a dc voltage to MOD. The time-base generator can be synchronized to an external clock by applying a sync pulse to MOD, as shown in Figure 3.

The time base can be synchronized by setting the time-base period T to be an integer multiple of the sync pulse period, T_{s}. This can be done by choosing the timing components R_{x} and C_{x} such that:

$$
T=R_{x} C_{x}=\left(T_{s} / m\right)
$$

where

$$
m \text { is an integer, } 1 \leqslant m \leqslant 10
$$

Figure 4 gives the typical pull-in range for harmonic synchronization for various values of harmonic modulus, m. For $m<10$, typical pull-in range is greater than $\pm 4 \%$ of time-base frequency.
$\mathbf{R}_{\mathbf{x}} / \mathbf{C}_{\mathbf{x}}$ Connection
The time-base period T is determined by the external $R_{x} C_{x}$ network connected to R_{x} / C_{x}. When the time base is triggered, the waveform at R_{x} / C_{x} is an exponential ramp with a period $T=1.0 R_{x} C_{x}$.

Time-Base Output ($\overline{\mathrm{TBO}}$)
The Time-Base Output is an open-drain type stage as shown in the block diagram and requires a pull-up resistor to $\mathrm{V}_{\text {REG }}$ for proper circuit operation. In the Master Reset state, the time-base output is in a high impedance OFF state. After triggering, it produces a negative-going pulse train with a period $T=R_{x} C_{x}$ as shown in the diagram of Figure 1. The Time-Base Output is internally connected to the binary-counter section and can also serve as the input for the external clock signal when the circuit is operated with an external time base. The counter section triggers on the negative-going edge of the timing or clock pulses generated at $\overline{T B O}$. The counter section can be disabled by clamping the voltage level at $\overline{\mathrm{TBO}}$ to ground.

Fig. 3 Operation with External Sync. Signal

Fig. 4 Typical Pull-in Range for Harmonic Synchronization

Fig. 5 Cascaded Operation for Long Delays

Fig. 6 Low Power Operation of Cascaded Timers

Regulator Output ($\mathbf{V}_{\text {REG }}$)

The Regulator Output $V_{\text {REG }}$ is used internally to drive the counter and the control logic. This terminal can also be used as a supply to additional 4722B circuits when several timer circuits are cascaded (see Figure 6) to minimize power dissipation. For circuit operation with an external clock, $V_{\text {REG }}$ can be used as the $V_{D D}$ input terminal to power down the internal time base and reduce power dissipation. When supply voltages less than 4.5 V are used with the internal time-base, $\mathrm{V}_{\text {REG }}$ shouid be shorted to V_{DD}.

MONOSTABLE OPERATION

Precision Timing

In precision timing applications, the 4722B is used in its monostable or self-resetting mode. The generalized circuit connection for this application is shown in Figure 2. The output is normally OFF and goes LOW following a Trigger Input. It remains LOW for the time duration, T_{O}, and then returns to the OFF state. The duration of the timing cycle T_{O} is given as:

$$
T_{O}=N T=N R_{x} C_{x}
$$

where $T=R_{x} C_{x}$ is the time-base period as set by the choice of timing components at R_{x} / C_{x} and N is an integer in the range of $1 \leqslant N \leqslant 255$ as determined by the combination of counter outputs $\overline{\mathrm{O}}_{1} \ldots \overline{\mathrm{O}}_{128}$, connected to the output bus.

Counter-Output Programming

The Data Outputs, $\overline{\mathrm{O}}_{1} \ldots \overline{\mathrm{O}}_{128}$, are open-drain type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as any one of the outputs is LOW. The time delays associated with each Data Output can be added together. This is done by simply shorting the outputs together to form a common output bus as shown in Figure 2. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle, T_{O}, is 32 T . Similarly, if pins 1,5 , and 6 are shorted to the output bus, the total time delay is $T_{O}=(1+16+32) T=49 \mathrm{~T}$. In this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be $1 \mathrm{~T} \leqslant \mathrm{~T}_{\mathrm{O}} \leqslant 255 \mathrm{~T}$.

Ultra-Long Time-Delay Application

Two 4722 Bs can be cascaded as shown in Figure 5 to generate extremely long time delays. Total timing cycle of two cascaded units can be programmed from $T_{O}=256 R_{x} C_{x}$ to $T_{O}=65.536 R_{x} C_{x}$ in 256 discrete steps by selectively shorting one or more of the Data Outputs from Unit 2 to the output bus. In this application, the Master Reset and the Trigger Inputs of both units are tied together and the Unit 2 time base generator is disabled. Normally, the output is OFF when the system is reset. On triggering, the output goes LOW where it remains for a total of $(256)^{2}$ or 65.536 cycles of the time-base oscillator.

In cascaded operation, the time-base generator of Unit 2 can be powered down to reduce power consumption by using the circuit connection of Figure 6. In this case, the $V_{D D}$ terminal of Unit 2 is left open, and the second unit is powered from the $V_{\text {REG }}$ Output of Unit 1 by connecting the $V_{\text {REG }}$ (pins 15) of both units together.

ASTABLE OPERATION

The 4722B can be operated in its astable or free-running mode by disonnecting the Master Reset Input from the Data Outputs. Two typical circuits are shown in Figure 7 and 8. The circuit in Figure 7 operates in its free-running mode with external trigger and reset signals. It starts counting and timing following a Trigger Input until an external Master Reset pulse is applied. Upon application of a positive-going reset signal to MR, the circuit reverts back to its Master Reset state. This circuit is essentially the same as that of Figure 2 with the feedback switch S1 open.

The circuit of Figure 8 is designed for continuous operation. It self-triggers automatically when the power supply is turned on, and continues to operate in its free-running mode indefinitely, in astable or free-running operation; each of the counter outputs can be used individually as synchronized oscillators, or they can be interconnected to generate complex pulse patterns.

Binary Pattern Generation

In astable operation, as shown in Figure 7, the output of the 4722B appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 1, which shows the phase relations between the counter outputs. Figures 9 and 10 show some of the complex pulse patterns that can be generated. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

Fig. 7 Operation with External Trigger and Master Reset Inputs

Fig. 8 Free-Running or Continuous Operation A. 2 PIN PATTERNS

B. 3 PIN PATTERN

C. 4 PIN PATTERN

Fig. 9 Binary Pulse Patterns Obtained by Shorting Various Counter Outputs

Fig. 10 Continuous Free-run Operation Examples of Output

OPERATION WITH EXTERNAL CLOCK
The 4722B can be operated with an external clock or time base by disabling the internal time-base generator and applying the external clock input to $\overline{\mathrm{TBO}}$. The recommended circuit connection for this application is shown in Figure 11. The internal time base is de-activated by connecting a resistor from $R_{x} C_{x}$ to ground. The counters are triggered on the negative-going edges of the external clock pulse.

FREQUENCY SYNTHESIZER

The programmable counter section of the 4722B can be used to generate 255 discrete frequencies from a given Time-Base Output setting using the circuit connection of Figure 12. The circuit output is a positive pulse train with a pulse width equal to T , and a period equal to ($\mathrm{N}+1$) T where N is the programmed count in the counter. The modulus N is the total count corresponding to the Data Outputs connected to the output bus. For example, if pins 1,3 , and 4 are connected together to the output bus, the total count is $N=1+4+8=13$, and the period of the output waveform is equal to $(\mathrm{N}+1) \mathrm{T}$ or 14 T . In this manner, 255 different frequencies can be synthesized from a given time-base setting.

Fig. 11 Operation with External Clock

Fig. 13 Frequency Synthesis by Harmonic Locking to an External Reference

SYNTHESIS WITH HARMONIC LOCKING

The harmonic synchronizing feature of the time base can be used to generate a wide number of discrete frequencies from a given input reference frequency. The circuit connection for this application is shown in Figure 13 (see Figures 3 and 4 for external sync waveform and harmonic capture range). If the time base is synchronized to (m) th harmonic of input frequency where $1 \leqslant \mathrm{~m} \leqslant 10$, the frequency f_{O} of the output waveform in Figure 13 is related to the input reference frequency f_{R} as

$$
{ }^{f_{O}}=f_{R} \frac{m}{(N+1)}
$$

where m is the harmonic number, and N is the programmed counter modulus. For a range of $1 \leqslant N \leqslant 255$, the circuit of Figure 13 can produce 2550 different frequencies from a single fixed reference.

The circuit of Figure 13 can be used to generate frequencies which are not harmonically related to a reference input. For example, by selecting the external $R_{x} C_{x}$ to set $m=10$ and setting $N=5$, a 100 Hz output frequency synchronized to 60 Hz power line frequency can be obtained.

STAIRCASE GENERATOR

The 4722B Programmable Timer/Counter can be interconnected with an external operational amplifier and a precision resistor ladder to form a staircase generator as shown in Figure 14. Under Master Reset condition, the output is LOW. When a Trigger is applied, the op amp output goes HIGH and generates a negative-going staircase of 256 equal steps. The time duration of each step is equal to the time-base period T. The staircase can be stopped at any level by applying a disable signal to TBO, through a steering diode, as shown in Figure 14. The count is stopped when TBO is clamped.

Fig. 14 Staircase Generator

Fig. 15 Digital Sample and Hold Circuit

DIGITAL SAMPLE AND HOLD
Figure 15 shows a digital sample and hold circuit using the 4722B. Circuit operation is similar to the staircase generator described in the previous section. When a strobe input is applied, the $\mathrm{R}_{\mathrm{x}} \mathrm{C}_{\mathrm{x}}$ low-pass network between the Master Reset and the Trigger Inputs resets the timer, then triggers it . This strobe input also sets the output of the bistable latch to a HIGH stage and activates the counter.

The circuit generates a staircase voltage at the op amp output. When the level of the staircase reaches that of the analog input to be sampled, the comparator changes state, activates the bistable latch and stops the count. At this point, the voltage level at the op amp output corresponds to the sampled analog input. Once the input is sampled, it is held until the next strobe signal.

ANALOG-TO-DIGITAL CONVERTER

Figure 16 shows a simple 8 -bit A/D converter system using the 4722B. Circuit operation is very similar to that of the digital sample and hold system of Figure 15. In the case of A/D conversion, the digital output is obtained in parallel format from the binary-counter outputs with the output at pin 8 corresponding to the most significant bit (MSB).

DIGITAL TACHOMETER TIME BASE

A digital tachometer requires a time-base generator to supply two pulse outputs at specific intervals, e.g., every second. The first pulse is a command (load) to transfer the accumulated counts in the counter section into latches (memory); the second resets the counter to zero. A simple adjustable time base, accurate to approximately $\pm 0.5 \%$, can be implemented using the circuit in Figure 17.

DIGITAL OUTPUTS

Fig. 16. Analog-to-Digital Converter

Fig. 17 Simple Time Generator for a Digital Tachometer

4723B
 DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION - The 4723B is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address Inputs (A_{0}, A_{1}), an active LOW Enable Input (\bar{E}) and an active HIGH Clear Input (CL). Each latch has a Data Input (D) and four Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

When the Enable (\bar{E}) and Clear (CL) Inputs are HIGH, al! Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ are LOW. Dual 4-channel demultiplexing occurs when the Clear Input (CL) is HIGH and the Enable Input (\bar{E}) is LOW.
When the Clear (CL) and Enable (\bar{E}) inputs are LOW, the selected Output ($Q_{0}-Q_{3}$), determined by the Address Inputs $\left(A_{0}, A_{1}\right)$, follows the Data Input (D). When the Enable Input (E) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=C L=L O W$), changing more than one bit of the address $\left(A_{0}, A_{1}\right)$ could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=H I G H, C L=L O W$).

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT IS AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DECODING OR DEMULTIPLEXING CAPABILITY
- EASILY EXPANDABLE
- ACTIVE HIGH COMMON CLEAR

PIN NAMES

A_{0}, A_{1}	Address Inputs
D_{a}, D_{b}	Data Inputs
\bar{E}	Enable Input (Active LOW)
$C L$	Clear Input (Active HIGH)
$\mathrm{Q}_{0 \mathrm{a}}-\mathrm{Q}_{3 \mathrm{a}}, \mathrm{Q}_{0 \mathrm{O}}-\mathrm{Q}_{3 \mathrm{~b}}$	Parallel Latch Outputs

LOGIC DIAGRAM

MODE SELECTION

\bar{E}	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Dual 4-Channel Demultiplexer
H	H	Clear

$$
\begin{aligned}
\mathrm{H} & =\mathrm{HIGH} \text { Level } \\
\mathrm{L} & =\text { LOW Level }
\end{aligned}
$$

TRUTH TABLE

CL	\bar{E}	D	A_{0}	A_{1}	O_{0}	O_{1}	O_{2}	O_{3}	MODE
H	H	X	x	X	L	L	L	L	Clear
H	L	L	L	L	L	L	L	L	Demultiplex
H	L	H	L	L	H	L	L	L	
H	L	L	H	L	L	L	L	L	
H	L	H	H	L	L	H	L	L	
H	L	L	L	H	L	L	L	L	
H	L	H	L	H	L	L	H	L	
H	L	L	H	H	L	L	L	L	
H	L	H	H	H	L	L	L	H	
L	H	X	X	X	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Memory
L	L	L	L	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Addressable
L	L	H	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Latch
L	L	L	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	H	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	H	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	
L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	

```
L = LOW Level
H = HIGH Level
X = Don't Care
QN-1 = State before the positive
    transition of the Enable Input
```

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
'DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{C} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Q_{n}		$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		35 35	80 80	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \end{aligned}$	ns	
$\begin{aligned} & { }^{t} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Address to Q_{n}		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	ns	
${ }_{\text {tPHL }}$	Propagation Delay, CL to Q_{n}		95	190		45	85		30	68	ns	
$\begin{aligned} & { }^{\mathrm{T} L H} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
ts t_{h}	Set-Up Time, D to E Hold Time, D to \bar{E}	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$		24 24	5 10		ns	
t_{s} t_{h}	Set-Up Time, Address to $\overline{\mathrm{E}}$ Hold Time, Address to \bar{E}	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 30 \\ & -5 \end{aligned}$		35 5	$\begin{array}{r} 10 \\ 0 \end{array}$		28 4	5 0		ns	
$t_{w} \bar{E}$	Minimum \bar{E} Pulse Width	70	50		35	20		28	15		ns	
${ }^{\mathrm{w}_{\mathrm{w}} \mathrm{CL}}$	Minimum CL Pulse Width	70	50		35	20		28	15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

NOTES:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.
2. The Address to Enable Set-up Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

MINIMUM PULSE WIDTH FOR E AND CL AND SET-UP AND HOLD TIMES, D TO \bar{E} AND A_{n} TO \bar{E}

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY, E TO
0_{n}, VERSUS
LOAD CAPACITANCE

PROPAGATION DELAY, D TO $\mathbf{a}_{\mathbf{n}}$, VERSUS TEMPERATURE

4724B
 8-BIT ADDRESSABLE LATCH

DESCRIPTION - The 4724B is an 8-Bit Addressable Latch with three Address Inputs ($A_{0}-A_{2}$), a Data Input (D), an active LOW Enable Input (E), an active HIGH Clear Input (CL) and eight Parallel Latch Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{7}$).
When the Enable (\bar{E}) and the Clear (CL) Inputs are HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{7}\right)$ are LOW. Eightchannel demultiplexing or active HIGH 1-of-8 decoding with output enable operation occurs when the Clear Input (CL) is HIGH and the Enable Input ($\overline{\mathrm{E}}$) is LOW.
When the Clear (CL) and Enable (\bar{E}) Inputs are LOW, the selected Output $\left(\mathrm{Q}_{0}-\mathrm{Q}_{7}\right)$ (determined by the address Inputs $A_{0}-A_{2}$) follows the Data Input (D). When the Enable Input (\bar{E}) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=C L=L O W$), changing more than one bit of the address ($\mathrm{A}_{0}-\mathrm{A}_{2}$) could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=\mathrm{HIGH}, \mathrm{CL}=\mathrm{LOW}$).

- SERIAL-to-parallel capability
- eight bits of storage with the output of each bit available
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEẊING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- Common active high clear

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
\bar{D}	Data Input
\bar{E}	Enable Input (Active LOW)
CL	Clear Input (Active HIGH)
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Parallel Latch Outputs

LOGIC SYMBOL
CONNECTION DIAGRAM DIP (TOP VIEW) NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

MODE SELECTION

\bar{E}	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Active HIGH 8-Channel Demultiplexer
H	H	Clear

$\mathrm{L}=$ LOW Level
$\mathrm{H}=$ HIGH Level

TRUTH TABLE

L = LOW Level
H = HIGH Level
X = Don't Care
$\mathrm{Q}_{\mathrm{N}-1}=$ State Before the Positive Transition of the Enable Input

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
'DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Q_{n}		$\begin{array}{\|l\|} 110 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 225 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address to Q_{n}		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	ns	
${ }^{\text {tPHL }}$	Propagation Delay, CL to Q_{n}		95	190		45	85		30	68	ns	
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
ts th	Set-Up Time, D to \bar{E} Hold Time, D to \bar{E}	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, Address to $\overline{\mathrm{E}}$ Hold Time, Address to \bar{E}	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 30 \\ & -5 \end{aligned}$		$\begin{array}{r}35 \\ 5 \\ \hline\end{array}$	10 0		28 4	5 0		ns	
$t_{w} \bar{E}$	Minimum \bar{E} Pulse Width	70	50		35	20		28	15		ns	
${ }_{\text {w }}{ }^{\text {Cl }}$	Minimum CL Pulse Width	70	50		35	20		28	15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTH FOR E AND CL AND'SET-UP AND HOLD TIMES, D TO \bar{E} AND A_{n} TO \bar{E}

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY, E TO Q_{n}, VERSUS LOAD CAPACITANCE

PROPAGATION DELAY, D TO
0_{n}, VERSUS
LOAD CAPACITANCE

4725B/4725BX 64-BIT (16×4) RANDOM ACCESS MEMORY WITH 3-STATE OUTPUTS

DESCRIPTION - The $4725 B / 4725 B X$ is a 64 -Bit Random Access Memory with 3-State Outputs organized as 16 words by four bits with four Data Inputs ($D_{0}-D_{3}$), four Address Inputs ($A_{0}-A_{3}$), an active LOW Write Enable Input ($\overline{W E}$), an active LOW Chip Select Input ($\overline{\mathrm{CS}}$) and four active LOW 3-State Outputs ($\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$).

Information on the four Data Inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) when both the Chip Select Input ($\overline{\mathrm{CS}}$) and the Write Enable Input ($\overline{\mathrm{WE}}$) are LOW. Under these conditions, the Outputs $\left(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{3}\right)$ are held in a high impedance OFF. state. Information is read from the memory location selected by the Address Inputs ($A_{0}-A_{3}$) while the Chip Select Input ($\overline{\mathrm{CS}}$) is LOW and the Write Enable Input ($\overline{W E}$) is HIGH. The Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are the complement of the information written into the memory. When the Chip Select Input ($\overline{\mathrm{CS}}$) is HIGH, all Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are held in the high impedance OFF state. This allows other 3-State outputs to be wired together in a bus arrangement. The 4725B/A725BX offers fully static operation. The 4725B is specified to operate over a power supply voltage range of 4.5 to 12.5 V . The 4725 BX is specified to operate over a power supply voltage range of 3 to 15 V .

- 3-STATE OUTPUTS
- ORGANIZATION - 16 WORDS X 4 BITS
- ON-CHIP DECODING
- INVERTED DATA OUTPUT
- FULLY STATIC OPERATION
- TYPICAL HOLDING VOLTAGE OF 1.5V

$\overline{\mathrm{CS}}$	$\overline{W E}$	OUTPUTS	MODE
L	L	High Impedance	Write
L	H	Outputs are Complement of Data Written into Location	Read
H	X	High Impedance	Inhibit

CONNECTION DIAGRAM DIP (TOP VIEW)

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S C}=\operatorname{Pin} 8
\end{aligned}
$$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES

$\overline{\mathrm{CS}}$	Chip Select Input (Active
$\overline{\mathrm{WE}}$	LOW)
	Write Enable Input (Active
$\mathrm{D}_{0}-\mathrm{D}_{3}$	LOW)
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Data Inputs
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}$	Address Inputs
	LOW)

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OZH}$	Output OFF Current HIGH	XC									$\begin{array}{r} 1.6 \\ 12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned
		XM									$\begin{array}{r} 0.4 \\ 12 \end{array}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	to $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
${ }^{\text {I ORL }}$	Output OFF Current LOW	XC									$\begin{array}{r} -1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
		XM									$\begin{aligned} & -0.4 \\ & -12 \end{aligned}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{1}$ DD	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
		XM			5 150			10 300			20 600		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & 196 \\ & 196 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 55 \\ & 66 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 135 \\ & \hline \end{aligned}$		$\begin{aligned} & 24 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$		$\begin{aligned} & 18 \\ & 22 \end{aligned}$	$\begin{aligned} & 36 \\ & 44 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 53 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		33 30	$\begin{array}{r} 66 \\ 60 \\ \hline \end{array}$		$\begin{aligned} & 28 \\ & 23 \end{aligned}$	$\begin{aligned} & 56 \\ & 46 \end{aligned}$	ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t} \mathrm{TLH} \\ & \mathrm{t} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 75 \end{aligned}$	$\begin{aligned} & 130 \\ & 150 \end{aligned}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	WRITE MODE Enable Time, $\overline{W E}$ to Output		$\begin{aligned} & 69 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 138 \\ & 166 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & 56 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 48 \end{aligned}$	ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{W E}$ to Output		$\begin{aligned} & 60 \\ & 72 \end{aligned}$	$\begin{aligned} & 120 \\ & 144 \end{aligned}$		$\begin{aligned} & 26 \\ & 32 \end{aligned}$	$\begin{aligned} & 52 \\ & 64 \end{aligned}$		$\begin{aligned} & 18 \\ & 24 \end{aligned}$	$\begin{aligned} & 36 \\ & 48 \end{aligned}$	ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
${ }^{4}$ W $\overline{W E}$	Minimum $\overline{W E}$ Pulse Width	160	79		72	36		52	26		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to WE Hold Time, D_{n} to $\overline{W E}$	$\begin{array}{r} 170 \\ 24 \end{array}$	$\begin{aligned} & 85 \\ & 12 \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 39 \\ 6 \end{array}$		$\begin{array}{r}60 \\ 7 \\ \hline\end{array}$	$\begin{array}{r} 30 \\ 3 \\ \hline \end{array}$		ns	
ts th	Set-Up Time, Address to $\overline{W E}$ Hold Time, Address to $\overline{W E}$	$\begin{gathered} 300 \\ 0 \\ \hline \end{gathered}$	$\begin{array}{r} 150 \\ -40 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 160 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ -20 \\ \hline \end{array}$		$\begin{array}{r} 120 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ -15 \\ \hline \end{array}$		ns	
th t_{h}	Set-Up Time, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ Hold Time, $\overline{C S}$ to $\overline{W E}$	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{array}{r} 150 \\ 40 \end{array}$		$\begin{array}{r} 160 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 20 \end{aligned}$. \cdot	$\begin{array}{r} 120 \\ 30 \end{array}$	$\begin{aligned} & 60 \\ & 15 \end{aligned}$		ns	

[^9]
NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. All Set-Up (t_{s}) and Hold (t_{h}) times are measured with minimum Write Enable Pulse Width ($t_{w} \overline{W E}$).

SWITCHING WAVEFORMS

$\overline{\mathrm{CS}}$ TO OUTPUT ENABLE AND DISABLE TIMES

WRITE MODE

$\bar{W} \mathrm{E}$ TO OUTPUT ENABLE AND DISABLE TIMES

MINIMUM $\overline{W E}$ PULSE WIDTH AND SET-UP AND HOLD TIMES, D_{n} TO WE, A_{n} TO $\overline{W E}$, AND $\overline{C S}$ TO $\overline{W E}$

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

4727B
 7-STAGE COUNTER

DESCRIPTION - The 4727B is a 7-Stage Frequency Counter especially useful for frequency synthesis in musical applications. The device is designed to generate, from a primary chromatic scale, each of the twelve flats, sharps, and naturals comprising each chromatic scale of the seven additional octaves in the musical spectrum. Twelve 4727B devices are required to generate the entire musical spectrum from a primary scale.

The 4727B consists of a pair of 2-Bit Counters, with Clock Inputs (CP_{0} and CP_{2}) and Parallel Outputs $\left(Q_{0}\right.$ and Q_{1}, Q_{2} and $\left.Q_{3}\right)$, available, and three 1-bit counters, also with Clock Inputs $\left(\mathrm{CP}_{4}, C P_{5}\right.$, and $\left.\mathrm{CP}_{6}\right)$ and Parallel Outputs $\left(\mathrm{Q}_{4}, \mathrm{Q}_{5}\right.$, and $\left.\mathrm{Q}_{6}\right)$ available. Each counter advances on a LOW-to-HIGH transition at the appropriate Clock Input.

- REPEATS A PRIMARY MUSICAL NOTE OR HALF NOTE IN SEVEN OCTAVES
- CLOCK INPUT EDGE - TRIGGERED ON THE LOW-TO-HIGH TRANSITION
- BUFFERED OUTPUTS AVAILABLE FROM ALL SEVEN STAGES

PIN NAMES

$\mathrm{CP}_{0}-\mathrm{CP}_{6}$	CLOCK INPUTS $(L \rightarrow H$ TRIGGERED)
$\mathrm{Q}_{0}-\mathrm{Q}_{6}$	PARALLEL OUTPUTS

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P_{n} \text { to } Q_{0}, Q_{2}, Q_{4}, Q_{5} \text { or } Q_{6}$		$\begin{aligned} & 225 \\ & 225 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		90 90	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		75 75	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P_{n}$ to Q_{1} or Q_{3}		$\begin{aligned} & 365 \\ & 365 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Times		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	ns	Input Transition Times $\leqslant 20$ ns
$\mathrm{T}_{\mathrm{wCP}}$	Min Clock Pulse Width	250	125		125	65		100	50		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	2	4		4	8		5	10		MHz	

NOTES:

1. Additional DC characteristics are listed in this section under " 4000 B Serles CMOS Famlly Characteristics."
2. Propagation Delays and Output Transition Times are graphically described in this section under " 40008 Series CMOS Famlly Characteristics."
3. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .

SWITCHING WAVEFORMS

PROPAGATION DELAY, CP to Qn, MINIMUM CLOCK PULSE WIDTH AND MAXIMUM FREQUENCY

4731B/4731BX QUAD 64-BIT STATIC SHIFT REGISTER

DESCRIPTION - The $4731 \mathrm{~B} / 4731 \mathrm{BX}$ is a Quad 64-Bit Shift Register each with separate Serial Data Inputs ($D_{A}-D_{D}$), Clock Inputs ($\overline{C P}_{A}-\overline{C P}_{D}$) and Data Outputs ($\mathrm{Q}_{63} \mathrm{~A}^{-\mathrm{Q}_{63}}$) from the 64th register position.

Information present on the Serial Data Inputs is shifted into the first register position and all the data in the register is shifted one position to the right on a HIGH-to-LOW transition of the Clock Inputs $\left(\overline{\mathrm{CP}}_{\mathrm{A}}-\overline{\mathrm{CP}}_{\mathrm{D}}\right)$.

Low impedance outputs are provided for direct interface to TTL. The 4731 B is specified to operate over a power supply voltage range of 4.5 V to 12.5 V , the 4731 BX is specified to operate over a power supply voltage range of 3 V to 15 V .

- FREQUENCIES UP TO 8 MHz AT VDD $=10 \mathrm{~V}$
- SERIAL-TO-SERIAL DATA TRANSFER
- SEPARATE CLOCK INPUTS, DATA INPUTS AND FULLY BUFFERED OUTPUTS FOR EACH REGISTER
- DIRECT INTERFACE TO TTL
- 14-PIN PACKAGE

PIN NAMES

$D_{A}-D_{D}$
$\overline{C P}_{A}-\overline{C P}_{D}$
$Q_{63 A}-Q_{63 D}$

Serial Data Inputs
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
Buffered Outputs from the 64th Register Position

LOGIC DIAGRAM
 1/4 OF A 4731B/4731BX

(9) or (12) or (6) or (4)

[^10]

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			100			200			400	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					750			1500			3000		MAX	
		XM			25			50			100	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					75			1500			3000		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{C P}$ to Q_{63}		$\begin{aligned} & 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \\ & \hline \end{aligned}$		$\begin{aligned} & 95 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	ns	
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 45 \\ & 30 \end{aligned}$	$\begin{array}{r} 135 \\ 90 \end{array}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF},$
$\mathrm{tw}^{\text {w }} \overline{\overline{C P}}$	CP Minimum Pulse Width	300	100		150	50		120	40		ns	$R_{L}=200 \mathrm{k} \Omega$
t_{s} t_{h}	Set-Up Time D to $\overline{\mathbf{C P}}$ Hold Time D to $\overline{\mathrm{CP}}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} -20 \\ 35 \end{array}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} -12 \\ 12 \end{array}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & -7 \\ & 11 \end{aligned}$		ns	$\text { Times } \leqslant 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Max. Input Clock Frequency (Note 3)	1.5	4		3	8		4	14		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section unc $O^{\circ} \cdot 4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{\mathrm{DD}}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, D TO $\overline{\mathbf{C P}}$

NOTE:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.

4741B

4×4 CROSS POINT SWITCH

DESCRIPTION - The 4741B is a 4×4 Crosspoint Switch consisting of a 16 -Bit Addressabte Latch and 16 independent bi-directionat analog switches arranged in a four by four matrix such that any analog switch or any combination of anatog switches may be ON or OFF at any one time providing a multitude of analog input/output switching combinations.
The device has four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Data Input (D), an Enable Input (E) and eight independent analog Input/Outputs ($Y_{0}-Y_{3}$ and $Z_{0}-Z_{3}$). When the Enable Input (E) is HIGH, the setected Output ($\mathrm{O}_{0}-\mathrm{O}_{15}$) of the 16-Bit Addressable Latch (determined by the Address Inputs, $\mathrm{A}_{0}-\mathrm{A}_{3}$) fotlows the Data Input (D) thus turning the selected analog switch ON or OFF. With the Data Input (D) HIGH, any one of the 16 anatog switches may be individually turned ON by first applying the appropriate Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) and then taking the Enable Input (E) HIGH. With the Data Input (D) LOW, any one of the 16 switches may be individually turned OFF by first apptying the appropriate Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) and then taking the Enable Input (E) HIGH. The Enable Input (E) may remain HIGH as long as the Address Inputs ($A_{0}-A_{3}$) are stable. However, to prevent erroneous switch selection the Enable Input (E) must be LOW whenever the Address Inputs ($A_{0}-A_{3}$) are changed.
Atthough only one switch at a time may be turned ON or OFF, any number or combination of switches may be ON or OFF at any one time.

- LOW ON RESISTANCE-TYPICALLY 85Ω at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ON-CHIP ADDRESS DECODER AND CONTROL LATCHES
- INPUT SIGNAL FREQUENCIES UP TO $10 \mathbf{~ M H z}$
- ANALOG OR DIGITAL CROSSPOINT SWITCH

PIN NAMES	
$Y_{0}-Y_{3}$	Analog Input/Outputs
$Z_{0^{-}-Z_{3}}$	Analog Input/Outputs
$A_{0}-A_{3}$	Address Inputs
D	Data Input
E	Enable Input

TRUTH TABLE

INPUTS						CHANNELS															
E	A_{3}	A_{2}	A_{1}	A_{0}	D	$\mathrm{Y}_{0}-\mathrm{Z}_{0}$	$Y_{1}-Z_{0}$	$\mathrm{Y}_{2}-\mathrm{Z}_{0}$	$Y_{3}-Z_{1}$	$Y_{0}-Z_{1}$	$Y_{1}-Z_{1}$	$\mathrm{Y}_{2}-\mathrm{Z}_{1}$	$Y_{3}-Z_{1}$	$Y_{0}-Z_{2}$	$Y_{1}-Z_{2}$	$\mathrm{Y}_{2}-\mathrm{Z}_{2}$	$Y_{3}-Z_{2}$	$Y_{0}-Z_{3}$	$Y_{1}-Z_{3}$	$\mathrm{Y}_{2}-\mathrm{Z}_{3}$	$Y_{3}-Z_{3}$
L	\times	\times	\times	\times	\times	NC															
H	L	L	L	L	L	OFF	NC														
H	L	L	L	L	H	ON	NC														
H	L	L	L	H	L	NC	OFF	NC													
H	L	L	L	H	H	NC	ON	NC													
H	L	L	H	L	L	NC		OFF	NC												
H	L	L	H	L	H	NC		ON	NC												
H	L	L	H	H	L	NC			OFF	NC											
H	L	L	H	H	H	NC			ON	NC											
H	L	H	L	L	L	NC				OFF	NC										
H	L	H	L	L	H	NC				ON	NC										
H	L	H	L	H	L	NC					OFF	NC									
H	L	H	L	H	H	NC					ON	NC									
H	L	H	H	L	L	NC						OFF	NC								
H	L	H	H	L	H	NC						ON	NC								
H	L	H	H	H	L	NC							OFF	NC							
H	L	H	H	H	H	NC							ON	NC							
H	H	L	L	L	L	NC								OFF	NC						
H	H	L	L	L	H	NC								ON	NC						
-	$\stackrel{-}{\bullet}$							$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$	$\bullet \cdot$	$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$	$\stackrel{\bullet}{\bullet}$					$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$
H	H	H	H	H	L	NC															OFF
H	H	H	H	H	H	NC															ON

[^11]
40014B/74C14/54C14 HEX SCHMITT TRIGGER

DESCRIPTION - The 40014B is a general purpose Hex Schmitt Trigger offering positive and negative threshold voltages, $\mathrm{V}_{\mathrm{T}+}$ and $\mathrm{V}_{\mathrm{T}_{-}}$, which show very tow variation with temperature (typicatly $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$) and guaranteed hysteresis, $\mathrm{V}_{\mathrm{T}+}$ to $\mathrm{V}_{\mathrm{T}} \geqslant 0.2 \mathrm{~V}_{\mathrm{DD}}$. Outputs are fully buffered for highest noise immunity. The 40014 B is a direct replacement for the $74 \mathrm{C} 14 / 54 \mathrm{C} 14$.

NOTE:
The flatpak version has the same pinouts (Connection Diagram) as the dual in-line package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{\text {SS }}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V^{\text {T }}+$	Positive-Going Threshold Voltage		2.9	3.6	4.3	6	6.8	8.6	9	10	12.9	V	All	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$
$\mathrm{V}_{\text {T- }}$	Negative-Going Threshold Voltage		0.7	1.4	1.9	1.4	3.2	4	2.1	5	6	V	All	$V_{\text {IN }}=V_{\text {DD }}$ to $V_{S S}$
$\begin{aligned} & \mathrm{V}_{\mathrm{T}+} \text { to } \\ & \mathrm{V}_{\mathrm{T}_{-}} \end{aligned}$	Hysteresis		1	2.2	3.6	2	3.6	7.2	3	5	10.8	V	All	Guaranteed Hysteresis = $\mathrm{V}_{\mathrm{T}+}$ Minus $\mathrm{V}_{\mathrm{T}-}$
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			1			2			4	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All Inputs at 0 V or V_{DD}
		XC			7.5			15			30		MAX	
		XM			0.25			0.5			1	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					7.5			15			30		MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS (See Note 2)
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		90 90	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		35 35	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
tTLH tTHL	Output Transition Time		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 30	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		22	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in th is section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

LOW POWER OSCILLATOR

TYPICAL APPLICATION

$t_{1}=\operatorname{RCLn}\left(\frac{V_{T+}}{V_{T-}}\right)$
$\mathrm{t}_{\mathbf{2}}=\operatorname{RCLn}\left(\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}-}}{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}+}}\right)$
$f \approx \frac{1}{R C L_{n}} \frac{V_{T_{+}\left(V_{D D}-V_{T_{-}}\right)}^{V_{T_{-}\left(V_{D D}-V_{T_{+}}\right)}}}{}$

NOTE:
The equations assume that $t_{1}+t_{2} \gg t_{P L H}+t_{P H L}$.

40085B/74C85/54C85 4-BIT MAGNITUDE COMPARATOR

DESCRIPTION - The 40085B is a 4-Bit Magnitude Comparator which compares two 4-bit words (A, B), each word having four Parallel Inputs ($\left.A_{0}-A_{3}, B_{0}-B_{3}\right) ; A_{3}, B_{3}$ being the most significant inputs. Operation is not restricted to binary codes, the device will work with any monotonic code. Three Outputs are provided: "A greater than B " $\left(O_{A}>B\right)$, "A less than B " ($\left.O_{A}<B\right)$, " A equal to B " $\left(O_{A=B}\right)$. Three Expander Inputs, $I_{A}>B, I_{A}<B, I_{A=B}$, allow cascading without external gates. For proper compare operation the Expander Inputs to the least significant position must be connected as follows: $I_{A<B}=I_{A>B}=L, I_{A=B}=H$. For serial (ripple) expansion, the $O_{A}>B, O_{A<B}$ and $O_{A}=B$ Outputs are connected respectively to the $I_{A}>B, I_{A}<B$, and $I_{A=B}$ inputs of the next most significant comparator, as shown in Figure 1. Refer to Applications section of data sheet for high speed method of comparing large words.

The Truth Table on the following page describes the operation of the 40085B under all possible logic conditions. The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a series expansion scheme. The lower five lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

The 40085B is a direct replacement for the 74C85/54C85.

- EASILY EXPANDABLE
- BINARY OR BCD COMPARISON
- $\mathrm{O}_{A>B}, \mathrm{O}_{A<B}$, AND $O_{A=B}$ OUTPUTS AVAILABLE

PIN NAMES

$A_{0}-A_{3}$
$B_{0}-B_{3}$
$I_{A>B}, I_{A<B}, I_{A=B}$
$O_{A}>B$
$O_{A<B}$
$O_{A=B}$

Word A Parallel Inputs
Word B Parallel Inputs
Expander Inputs
A Greater than B Output
A Less than B Output
A Equal to B Output

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS • 40085B/74C85/54C85

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS				
A_{3}, B_{3}	A_{2}, B_{2}	A_{1}, B_{1}	A_{0}, B_{0}	$I^{\prime} \times$ B	$\mathbf{I}_{\mathbf{A}} \times \mathbf{B}$	$I_{A=B}$	$\mathrm{O}_{\mathbf{A}>\mathrm{B}}$	$\mathbf{O A}_{\mathbf{A}} \mathbf{B}$	$\mathrm{O}_{\mathbf{A}=\mathrm{B}}$		
$A_{3}>B_{3}$	x	x	x	x	x	x	H	L	L		
$A_{3}<B_{3}$	X	x	x	X	X	x	L	H	L		
$A_{3}=B_{3}$	$A_{2}>B_{2}$	x	X	x	X	X	H	L	L		
$A_{3}=B_{3}$	$A_{2}<B_{2}$	x	x	x	X	x	L	H	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}>B_{1}$	X	X	X	X	H	L	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}<B_{1}$	x	x	x	x	L	H	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}>B_{0}$	x	X	x	H	L	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}<B_{0}$	x	x	x	L	H	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	L	H	L	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	H	L	L	H	L		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	L	H	L	L	H		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	H	H	L	H	H		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	H	H	L	H		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	H	H	H	H	H		
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	H	L	H	H	L	H L	HIGH Level LOW Level
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	L	L	L	L	L	\times	Don't Care

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
		XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A_{n} or B_{n} to any Output		$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & 335 \\ & 335 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
$\begin{aligned} & \text { tPLH } \\ & \text { t } \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, Any I to any Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & 275 \\ & 275 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \end{aligned}$	ns	$R_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		60 60	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 30	70 70		20 20	45 45	ns	Times $\leqslant 20 \mathrm{~ns}$

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY A_{n} OR B_{n} TO O_{n} VERSUS LOAD CAPACITANCE

PROPAGATION DELAY $\mathrm{In}_{\mathrm{n}} \mathrm{TO} \mathrm{O}_{\mathrm{n}}$
VERSUS TEMPERATURE

PROPAGATION DELAY In TO On VERSUS LOAD CAPACITANCE

APPLICATIONS

Fig. 1. COMPARING TWO n-BIT WORDS

Figure 2 shows a high speed method of comparing two 24 -bit words with only two levels of device delay. With the technique shown in Figure 1 , six levels of device delay result when comparing two 24 -bit words. The parallel technique can be expanded to any number of bits, see Table I.

TABLE I

WORD LENGTH	NUMBER OF PKGS.
$1-4$ Bits	1
$5-24$ Bits	$2-6$
$25-120$ Bits	$8-31$

NOTE:
The F40085 can be used as a 5-bit comparator only when the outputs are used to drive the $\mathrm{A}_{0}-\mathrm{A}_{3}$ and $\mathrm{B}_{0}-\mathrm{B}_{3}$ inputs of another 40085B as shown in Figure 2 in positions \#1, 2, 3, and 4.

> MSB $=$ Most Significant Bit
> LSB $=$ Least Significant Bit
> $L \quad=$ LOW Level
> $H=$ HIGH Level
> NC $=$ NO Connection

Fig. 2. COMPARISON OF TWO 24-BIT WORDS

40097 B-40098B 3-STATE HEX NON-INVERTING AND INVERTING BUFFERS

DESCRIPTION - These two CMOS buffers provide high current output capability suitable for driving high capacitance loads. The 40097B is a Non-Inverting CMOS Buffer with 3 -state outputs and the 40098 is an Inverting CMOS Buffer with 3 -state outputs. The 3 -state outputs of each device are controlled by two Enable Inputs ($\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$). A HIGH on Enable Input $\overline{\mathrm{EO}}_{4}$ causes the Outputs of four of the six buffer elements to assume a high impedance or OFF state, regardless of other input conditions and a HIGH on Enable Input $\overline{\mathrm{EO}}_{2}$ causes the Outputs of the remaining two buffer elements to assume a high impedance or OFF state, regardless of other input conditions.

- 3-STATE OUTPUTS

- TTL COMPATIBLE - FAN OUT OF ONE TTL LOAD
- ACTIVE LOW ENABLE INPUTS

PIN NAMES

$\frac{1 \mathrm{~A}}{1}-6 \mathrm{~A}$	Buffer Inputs
$\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$	Enable Inputs (Active LOW)
$1 \mathrm{X}-6 \mathrm{X}$	Buffer Outputs (Active HIGH for the 40097B and Active LOW for the 40098B)

Enable Inputs (Active LOW)
Buffer Outputs (Active HIGH for the 40097B and Active LOW for the 40098B)

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1$)$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\mathrm{I}} \mathrm{OH}$	Output HIGH Current		-1.0			-2.0			-3.2			mA	MIN, $25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {OUT }}=4.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=9.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=14.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \text { Inputs at } \mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Per Logic Function } \\ & \hline \end{aligned}$
			-0.7			-1.4			-2.2				MAX	
IOL	Output LOW Current		2.5			6.25			11.25			mA	MIN, $25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{O U T}=0.4 \mathrm{~V} \text { for } V_{D D}=5 \mathrm{~V} \\ & V_{O U T}=0.5 \mathrm{~V} \text { for } V_{D D}=10 \mathrm{~V} \\ & V_{O U T}=0.5 \mathrm{~V} \text { for } V_{D D}=15 \mathrm{~V} \\ & \text { Inputs at } V_{S S} \text { or } V_{D D} \\ & \text { Per Logic Function } \\ & \hline \end{aligned}$
			1.8			4.5			8.25				MAX	
${ }^{1} \mathrm{OZH}$	Output OFF Current HIGH	XC									1.6 12	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{D D}$.$\overline{E O}_{n}=V_{D D}$
		XM									0.4 12		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
'OZL	Output OFF Current LOW	XC									$\begin{array}{r} -1.6 \\ -12 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to V_{SS},$\overline{E O}_{n}=V_{D D}$
		XM									$\begin{array}{r} -0.4 \\ -12 \end{array}$		$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IDD	Quiescent Power	XC			4 30			8 60			$\begin{array}{r} 16 \\ 120 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs at 0 V or $\mathrm{V}_{\text {DD }}$
	Supply Current	XM			1 30			2 60			4 120		$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, 40097 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 28 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 44 \\ & 52 \end{aligned}$	ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t} P \mathrm{HZ} \\ & \mathrm{tPLZ} \end{aligned}$	Output Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 95 \end{aligned}$		$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
tTLH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$		25 15	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		15 15	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	Input Transition Times $\leqslant 20$ ns

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 40098 \mathrm{~B}$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 65 \\ & 85 \end{aligned}$	$\begin{aligned} & 120 \\ & 155 \end{aligned}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 44 \\ & 52 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{tPZH} \\ & \text { tpZ } \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \end{aligned}$	$\begin{aligned} & 110 \\ & 170 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 44 \\ & 48 \end{aligned}$	ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Outside Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{array}{r} 70 \\ 105 \end{array}$		$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	ns	$\begin{aligned} & \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		40 30	$\begin{aligned} & 65 \\ & 60 \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under $4000 B$ Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

40097B/40098B P-CHANNEL DRAIN CHARACTERISTICS

VDS - DRAIN TO SOURCE VOLTAGE - V

40098B

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(t PZH) AND OUTPUT DISABLE TIME (t PHZ)

OUTPUT ENABLE TIME
($\mathrm{t} P \mathrm{ZL}$) AND OUTPUT DISABLE TIME (tpLZ)

40161B/74C161/54C161 40163B/74C163/54C163 4-BIT SYNCHRONOUS COUNTERS

DESCRIPTION - The 40161B and the 40163B are fully synchronous edge-triggered 4-Bit Binary Counters. Each device has a Clock Input (CP); four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$); three synchronous Mode Control Inputs, Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable trickle (CET); Buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{O}_{3}$); and a Terminal Count Output (TC). The 40163B has an additional synchronous Mode Control Input, Synchronous Reset $(\overline{\mathrm{SR}})$. Alternately, the 40161B has an overriding asynchronous Master Reset ($\overline{\mathrm{MR}}$).

Operation is fully synchronous except for Master Reset on the 40161B and occurs on the LOW-toHIGH transition of the Clock Input (CP). When the Parallel Enable Input ($\overline{\mathrm{PE}}$) is LOW, the next LOW-to-HIGH transition of the Clock Input (CP) loads data into the counter from Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$). When the Parallel Enable Input ($\overline{\mathrm{PE}}$) is HIGH, the next LOW-to-HIGH transition of the Clock Input (CP) advances the counter to its next state only if both Count Enable Inputs (CEP and CET) are HIGH when the state of the counter is fifteen ($Q_{0}=\mathrm{O}_{1}=\mathrm{O}_{2}=\mathrm{O}_{3}=$ HIGH) for the 40161B and 40163B and the Count Enable Trickle Input (CET) is HIGH. For the 40163B a LOW on the Synchronous Reset Input (SR) sets all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$ and TC) LOW on the next LOW-to-HIGH transition of the Clock Input (CP) independent of the state of all other synchronous Mode Control Inputs (CEP, CET, PE). For the 40161 B , a LOW on the overriding asynchronous Master Reset (MR) sets all outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$ and TC) LOW, independent of the state of all other inputs.

These devices perform multistage synchronous counting without additional components by using a carry look-ahead counting technique.

The 40161B, and 40163B are edge-triggered; therefore, the synchronous Mode Control Input (CEP, CET, $\overline{\text { PE }}$ for the 40161B and CEP, CET, $\overline{\mathrm{PE}}, \overline{\mathrm{SR}}$ for the 40163B) must be stable only during the set-up time before the LOW-to-HIGH transition of the Clock Input (CP).

The 40161B and 40163B are direct replacements for the 74C161/54C161 and 74C163/54C163 respectively.

- 12 MHz TYPICAL COUNT FREQUENCY AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- DECODED TERMINAL COUNT
- FULLY SYNCHRONOUS COUNTING AND PARALLEL ENTRY
- SYNCHRONOUS (40163B) OR ASYNCHRONOUS (40161B) RESET
- BUILT-IN CARRY CIRCUITRY
- FULLY EDGE-TRIGGERED

PIN NAMES

$\overline{P E}$	Parallel Enable Input (Active LOW)
$P_{0}-P_{3}$	Parallel Inputs
$C E P$	Count Enable Parallel Input
$C E T$	Count Enable Trickle Input
$C P$	Clock Input (L \rightarrow H Edge-Triggered)
$\overline{M R}$	Master Reset Input (Active LOW) for the 40160B/40161B Only
$\overline{S R}$	Synchronous Reset Input (Active LOW) for the 40162B/40163B Only
$Q_{0}-\mathrm{O}_{3}$	Parallel Outputs
$T C$	Terminal Count Output

SELECTOR GUIDE

RESET	MODULUS
	BINARY
Asynchronous	40161 B
Synchronous	40163 B

SYNCHRONOUS MODE SELECTION 40161B

$\overline{P E}$	CEP	CET	MODE
L	X	X	Preset
H	L	X	No Change
H	X	L	No Change
H	H	H	Count

$\overline{M R}=\mathrm{HIGH}$

SYNCHRONOUS MODE SELECTION
40163B

$\overline{\text { SR }}$	$\overline{\text { PE }}$	CEP	CET	MODE
H	L	X	X	Preset
H	H	L	X	No Change
H	H	X	L	No Change
H	H	H	H	Count
L	X	X	X	Reset

TERMINAL COUNT GENERATION

	$40161 \mathrm{~B} / 40163 B$	
CET	$\left(Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}\right)$	TC
L	L	L
L	H	L
H	L	L
H	H	H

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Level } \\
& \mathrm{L}=\text { LOW Level } \\
& \mathrm{X}=\text { Don't Care }
\end{aligned}
$$

$T C=C E T \cdot Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}(40161 B / 40163 B)$

FAIRCHILD CMOS • 40161B/74C161/54C161 • 40163B/74C163/54C163

40161B/40163B LOGIC DIAGRAM
The 40161B and 40163B binary synchronous counters are similar.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at
					150			300			600		MAX	
	Supply	XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	0 V or V_{DD}
	Current				150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q		$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	ns	$C_{L}=50 \mathrm{pF}$,
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to TC		$\begin{aligned} & 155 \\ & 155 \end{aligned}$	$\begin{aligned} & 285 \\ & 285 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	ns	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$ Input Transition
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CET to TC		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$		$\begin{aligned} & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & 80 \\ & 95 \end{aligned}$		$\begin{aligned} & 27 \\ & 36 \end{aligned}$	$\begin{aligned} & 64 \\ & 76 \end{aligned}$	ns	Times $\leqslant 20 \mathrm{~ns}$
tTLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
$\mathrm{tw}_{\mathrm{w}} \mathrm{CP}$	CP Minimum Pulse Width	90	50		40	20		32	15		ns	
ts t_{h}	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 70 \\ 0 \end{array}$	$\begin{array}{r} 35 \\ -30 \end{array}$		$\begin{array}{r} 35 \\ 0 \end{array}$	$\begin{array}{r} 18 \\ -15 \end{array}$		28 0	$\begin{array}{r}13 \\ -10 \\ \hline\end{array}$		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, $\overline{\mathrm{PE}}$ to CP Hold Time, $\overline{\mathrm{PE}}$ to CP	$\begin{array}{r} 110 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ -57 \\ \hline \end{array}$		$\begin{array}{r} 60 \\ -5 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ -28 \\ \hline \end{array}$		$\begin{aligned} & 48 \\ & -4 \end{aligned}$	$\begin{array}{r} \hline 20 \\ -18 \\ \hline \end{array}$		ns	
t_{s} t_{h}	Set-Up Time, CEP, CET to CP Hold Time, CEP, CET to CP	$\begin{aligned} & 200 \\ & -20 \end{aligned}$	$\begin{array}{\|r\|} \hline 115 \\ -110 \\ \hline \end{array}$		$\begin{array}{r} 95 \\ -10 \end{array}$	$\begin{array}{r} 50 \\ -48 \\ \hline \end{array}$		$\begin{aligned} & 76 \\ & -8 \\ & \hline \end{aligned}$	$\begin{array}{r} 35 \\ -32 \end{array}$		ns	
fmax $^{\text {M }}$	Input Count Frequency (Note 3)	3	6		7	12		8	14		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING DIAGRAMS

CLOCK (CP) TO OUTPUT (Q) PROPAGATION DELAYS AND MINIMUM CLOCK PULSE WIDTH

CONDITIONS: $\overline{P E}=\bar{M} \bar{R}=C E P=C E T=H$ for 40161 B and $\overline{P E}=\overline{S R}=C E P=C E T=H$ for 40163B.

CLOCK (CP) TO TERMINAL COUNT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table $\overline{P E}=C E P=C E T=\overline{M R}=$ H for $40161 B$ and $\overline{P E}=C E P=C E T=S R=H$ for 40163B.

COUNT ENABLE TRICKLE INPUT (CET) TO TERMINAL COUNT OUTPUT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table. $C P=\overline{P E}=C E P=\overline{M R}=H$ for 40161 B and $\mathrm{CP}=\overline{\mathrm{PE}}=\mathrm{CEP}=\overline{\mathrm{SR}}=\mathrm{H}$ for 40163B.

40163B

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR SYNCHRONOUS RESET ($\overline{\mathbf{S R}})$.

0

CONDITIONS: $\overline{\mathrm{PE}}=\mathrm{L}, \mathrm{P}_{\mathrm{O}^{-}} \mathrm{P}_{3}=\mathrm{H}$.

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR PARALLEL DATA INPUTS ($P_{0}-P_{3}$).

CONDITIONS: $\overline{\mathrm{PE}}=\mathrm{L}, \overline{\mathrm{MR}}=\mathrm{H}$ for 40161 B and $\overline{\mathrm{PE}}=\mathrm{L}, \overline{\mathrm{SR}}=\mathrm{H}$ for 40163B.

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR PARALLEL ENABLE INPUT PE.

CONDITIONS: $\overline{\mathrm{MR}}=\mathrm{H}$ for 40161 B and $\overline{S R}=\mathrm{H}$ for 40163B.

SET-UP TIMES ($\mathrm{t}_{\mathbf{s}}$) AND HOLD TIMES (t_{h}) FOR COUNT ENABLE INPUTS (CEP AND CET).

40161B
MASTER RESET ($\overline{M R}$) TO OUTPUT (Q) DELAY, MASTER RESET PULSE WIDTH, MASTER RESET RECOVERY TIME, AND MASTER RESET TO TERMINAL COUNT (TC) DELAY.

$$
\begin{aligned}
& \text { CONDITIONS: } \overline{P E}=L \text { and } P_{0}=P_{1}=P_{2}= \\
& P_{3}=H \text {. }
\end{aligned}
$$

NOTE:

1. Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values, but may be specified as negative values.

40174B/74C174/54C174
 HEX D FLIP-FLOP

DESCRIPTION - The $40174 B$ is a Hex Edge-Triggered D Flip-Flop with six Data Inputs (D_{0} - D_{5}), a Clock Input (CP) an overriding asynchronous Master Reset ($\overline{M R}$), and six Buffered Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{5}$).
Information on the Data Inputs ($D_{0}-D_{5}$) is transferred to the Buffered Outputs $\left(Q_{0}-Q_{5}\right)$ on the LOW-to-HIGH transition of the Clock Input (CP) if the Master Reset Input (MR) is HIGH. When LOW, the Master Reset Input ($\overline{M R}$) resets all flip-flops $\left(\mathrm{O}_{0}-\mathrm{O}_{5}=\mathrm{LOW}\right)$ independent of the Clock (CP) and Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{5}$). The 40174B is a direct replacement for the 74C174/54C174.

- TYPICAL CLOCK FREQUENCY OF 16 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- COMMON ACTIVE LOW MASTER RESET
- FULLY EDGE-TRIGGERED CLOCK INPUT

PIN NAMES

$D_{0}-D_{5}$	Data Inputs
$C P$	Clock Input (L $\rightarrow H$ Edge-Triggered)
$\overline{M R}$	Master Reset Input (Active LOW)
$\mathrm{Q}_{0}-\mathrm{O}_{5}$	Buffered Outputs from the Flip-Flops

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \\ \hline \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to O_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
${ }^{\text {tPHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q_{n}		80	125		40	65		25	52	ns	
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
$t_{w} \mathrm{CP}(\mathrm{L})$	Minimum Clock Pulse Width	45	25		20	10		16	8		ns	
$\mathrm{t}_{W} \overline{\mathrm{MR}}(\mathrm{L})$	Minimum $\overline{M R}$ Pulse Width	55	35		35	20		28	15		ns	
trec	$\overline{\mathrm{MR}}$ Recovery Time	25	6		13	5		11	2		ns	
t_{s}	Set-Up Time, D_{n} to CP	5	1		5	1		4	0		ns	
t_{h}	Hold Time, D_{n} to CP	20	10		10	2		8	1			
${ }^{\text {f MAX }}$	Max. Clock Frequency (Note 3)	5	9		8	16		9	19		MHz	

NOTES:

1. Additional DC Characteristics are listed in th is section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORM

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}, \overline{M R}$
RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values

40175B/74C175/54C175
 QUAD D FLIP-FLOP

DESCRIPTION - The 40175B is a Quad Edge-Triggered D Flip-Flop with four Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) , a Clock Input (CP) an overriding asynchronous Master Reset ($\overline{M R}$), four Buffered Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ and four Complementary Buffered Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is transferred to Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ on the LOW-to-HIGH Transition of the Clock Input (CP) if the Master Reset Input ($\overline{\mathrm{MR}}$) is HIGH. When LOW, the Master Reset Input (MR) resets all flip-flops ($\mathrm{O}_{0}-\mathrm{O}_{3}=$ LOW, $\mathrm{O}_{0}-\mathrm{O}_{3}=\mathrm{HIGH}$), independent of the Clock (CP) and Data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) Inputs.

- TYPICAL CLOCK FREQUENCY OF 16 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- COMMON ACTIVE LOW MASTER RESET
- TRUE AND COMPLEMENTARY OUTPUTS AVAILABLE
- fully edge-triggered clock input

PIN NAMES

$D_{0}-D_{3}$
$C P$
$\overline{M R}$
$Q_{0}-Q_{3}$
$\bar{Q}_{0} \bar{Q}_{3}$

Data Inputs
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Master Reset Input (Active LOW)
Buffered Outputs from the Flip-Flops
Complimentary Buffered Outputs from the Flip-Flops

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
${ }^{\text {DD }}$	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$		35 35	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
tpLH tPHL	Propagation Delay, $\overline{M R}$ to Q_{n} or $\overline{\mathrm{O}}_{\mathrm{n}}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 200 \\ \hline \end{array}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	ns	
$\mathrm{t} \mathrm{TLH}$ $\mathrm{t} \mathrm{HL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
${ }^{t_{w} \mathrm{CP}(\mathrm{L})}$	Minimum Clock Pulse Width	80	25		45	10		36	8		ns	
${ }^{\text {w }}{ }^{\text {MR }}(\mathrm{L})$	Minimum $\overline{M R}$ Pulse Width	60	35		30	20		24	15		ns	
$\mathrm{trec}^{\text {c }}$	$\overline{\mathrm{MR}}$ Recovery Time	0	-50		0	-25		0	-15		ns	
	Set-Up Time, D_{n} to CP	45	20		$\begin{array}{r} 20 \\ 5 \end{array}$	7 -5		16 4	3 -3		ns	
${ }^{\frac{t^{\prime}}{\text { f }} \text { MAX }}$	Max. Clock Frequency (Note 3)	4	-10		10	-5		12	19		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For ${ }^{\prime} \mathrm{MAX}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \vee, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \vee$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}$,
$\overline{M R}$ RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

PROPAGATION DELAY,
Q_{n} OR $\overline{\mathrm{Q}_{n}}$, VERSUS

CP TO $\overline{\mathrm{a}}_{\mathrm{n}}$ OR O_{n}
VERSUS TEMPERATURE

40193B/54/74C193 4-BIT UP/DOWN BINARY COUNTER

DESCRIPTION - The 40193B is a 4-Bit Synchronous Up/Down Binary Counter. Both operate the same except for the count sequence. Both counters have a Count Up Clock Input (CP U), a Count Down Clock Input (CPD), an asynchronous Parallel Load Input ($\overline{\mathrm{PL}}$), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), an overriding asynchronous Master Reset (MR), four Counter Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$), a Terminal Count Up (Carry) Output ($\overline{T C_{U}}$) and a Terminal Count Down (Borrow) Output (${ }^{T C_{D}}$).

When the Master Reset Input (MR) is LOW and the Parallel Load Input ($\overline{\mathrm{PL}}$) is HIGH, the Counter Outputs change state on the LOW-to-HIGH transition of either Clock Input. However, for correct counting, both Clock Inputs cannot be LOW simultaneously. With the Master Reset Input (MR) LOW, information on the Parallel Data Inputs $\left(P_{0}-P_{3}\right)$ is loaded into the counter when the Parallel Load Input ($\overline{\mathrm{PL}}$) is LOW and stored in the counter when the Parallel Load Input ($\overline{\mathrm{PL}}$) goes HIGH, independent of Clock Inputs (CPU, CPD). When HIGH, the Master Reset (MR) resets the counter independent of all other input conditions. See equations below for Terminal Count Outputs ($\overline{T_{U}}, \widehat{T C_{D}}$).

- TYPICAL COUNT FREQUENCY OF $8 \mathrm{MHz} A T \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$
- SYNCHRONOUS OPERATION
- INTERNAL CASCADING CIRCUITRY PROVIDED
- ACTIVE LOW PARALLEL LOAD
- Active high asynchronous master reset

PIN NAMES

$\overline{P L}$
$P_{0}-P_{3}$
$C P_{U}$
$C P_{D}$
$M R$
$Q_{0}-Q_{3}$
$T C_{U}$
$T C_{D}$

Parallel Load Input (Active LOW)
$\mathrm{P}_{0}-\mathrm{P}_{3}$
Parallel Data Inputs
Count Up Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
CPD Count Down Clock Pulse Input ($L \rightarrow H$ Edge-Triggered)
MR Master Reset Input (Asynchronous)
$\mathrm{O}_{0}-\mathrm{Q}_{3} \quad$ Buffered Counter Outputs
$\stackrel{T C_{D}}{T C_{D}}$
Buffered Terminal Count Up (Carry) Output (Active LOW)
Buffered Terminal Count Down (Borrow) Output (Active LOW)
MODE SELECTION

MR	$\overline{P L}$	$C P_{U}$	$C P_{D}$	MODE
H	X	X	X	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	H	H	H	No Change
L	H	S	H	Count Up
L	H	H	r	Count Down

[^12]Count Up
Count Down
\qquad
\qquad

40193B STATE DIAGRAM

40193B LOGIC EQUATIONS FOR TERMINAL COUNT
$T C_{U}=O_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot \overline{C P}$
$T C_{D}=\overline{\mathrm{Q}_{0}} \cdot \overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \overline{\mathrm{Q}_{3}} \cdot \overline{\mathrm{CP}}$

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40			80	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs at 0 V or V_{DD}
					150			300			600		MAX	
		XM			5			10			20	$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					150			300			600		MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP^{u} to Q_{n}		$\begin{aligned} & 245 \\ & 245 \end{aligned}$	$\begin{aligned} & 490 \\ & 490 \end{aligned}$		$\begin{array}{\|l\|} 105 \\ 105 \\ \hline \end{array}$	$\begin{aligned} & 210 \\ & 210 \\ & \hline \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P_{D}$ to O_{n}		$\begin{aligned} & 245 \\ & 245 \end{aligned}$	$\begin{aligned} & 490 \\ & 490 \end{aligned}$		$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \end{aligned}$	ns	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CPU to $\overline{T_{U}}$		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P D^{\text {D }}$ to $\overline{T C_{D}}$		$\begin{aligned} & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \end{aligned}$	ns	
tPHL	Propagation Delay, MR to Q_{n}		270	540		120	240		80	192	ns	
tPLH	$\begin{aligned} & \text { Propagation Delay, MR to } \\ & \overline{T C_{U}} \text { or } \overline{T C_{D}} \end{aligned}$		370	740		170	340		105	270	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{PL}}$ to Q_{n}		$\begin{aligned} & 270 \\ & 270 \end{aligned}$	$\begin{aligned} & 540 \\ & 540 \end{aligned}$		$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 220 \\ & 220 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \end{aligned}$	ns	Input Transition
$\begin{aligned} & \mathrm{t} \mathrm{~T} \mathrm{H} \\ & \mathrm{t}_{\mathrm{T}} \mathrm{HL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	ns	Times $\leqslant 20 \mathrm{~ns}$
$t_{w} C P$	Min. CP_{U} or $\mathrm{CP} \mathrm{P}_{\mathrm{D}}$ Pulse Width	170	85		75	30		60	20		ns	
${ }_{t_{w}} \mathrm{MR}$	Minimum MR Pulse Width	180	60		80	30		64	20		ns	
$t_{w} \overline{\text { PL }}$	Minimum $\overline{\text { PL }}$ Pulse Width	150	75		85	25		52	20		ns	
trec	MR Recovery Time	150	75		65	30		52	20		ns	
trec	$\overline{\text { PL }}$ Recovery Time	150	75		65	30		52	20		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, P_{n} to $\overline{\mathrm{PL}}$ Hold Time, P_{n} to $\overline{P L}$	$\begin{array}{r} 170 \\ 0 \end{array}$	$\begin{array}{r} 85 \\ -83 \end{array}$		75 0	$\begin{array}{r} 30 \\ -28 \\ \hline \end{array}$		60 0	20 -19		ns	
$\mathrm{f}_{\text {MAX }}$	Input Count Frequency (Note 3)	2	4		4	8		5	12		MHz	

Notes on following page.

NOTES:

1. Additional DC Characteristics are listed in this section under 4000 B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

SWITCHING WAVEFORMS

RECOVERY TIMES FOR $\overline{\text { PL }}$ AND MR,
MINIMUM PULSE WIDTHS FOR CPU, CPD,

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

40194B
 4-BIT BIDIRECTIONAL UNNERSAL SHITT REGISTER

DESCRIPTION - The 40194B is a 4-Bit Bidirectional Shift Register with two Mode Control Inputs (S_{0}, S_{1}), a Clock Input (CP), a Serial Data Shift Left Input ($D_{S L}$), a Serial Data Shift Right Input (D_{SR}), four Parallel Data Inputs ($\mathrm{PO}_{\mathrm{O}} \mathrm{P}_{3}$), an overriding asynchronous Master Reset Input ($\overline{\mathrm{MR}}$) and four Buffered Parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).
When LOW, the Master Reset Input ($\overline{M R}$) resets all stages and forces all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) LOW, overriding all other input conditions. When the Master Reset Input (MR) is HIGH, the operating mode is controlled by the two Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) as shown in the Truth Table. Serial and parallel operation is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). The inputs at which the data is to be entered and the Mode Control Inputs ($\mathrm{S}_{\mathrm{0}}, \mathrm{S}_{1}$) must be stable for a set-up time before the LOW-to-HIGH transition of the Clock Input CP).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- hOLD (DO NOTHING) MODE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- Positive edge-triggered clock

PIN NAMES

$\mathrm{S}_{0}, \mathrm{~S}_{1}$
Mode Control Inputs
$\mathrm{P}_{0} \mathrm{P}_{3}$
DSR Serial (Shift Right) Data Input
DSL Serial (Shift Left) Data Input
$\frac{C P}{M R} \quad$ Clock Input ($L \rightarrow H$ Edge-Triggered)
$\overline{M R} \quad$ Master Reset Input (Active LOW)
$\mathrm{a}_{0}-\mathrm{Q}_{3}$

TRUTH TABLE

OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathrm{H}$)					OUTPUTS AT $\mathbf{t}_{\mathbf{n}+1}$			
	S_{1}	S_{0}	DSR	$\mathrm{D}_{\text {SL }}$	$\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$	O_{0}	Q_{1}	Q_{2}	O_{3}
Hold	L	L	X	X	x	Q_{0}	Q_{1}	Q_{2}	O_{3}
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{3} \\ & \mathrm{Q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{0} \\ & \mathrm{Q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{a}_{2} \\ & \mathrm{a}_{2} \end{aligned}$
Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	L H

$H=H I G H$ Voltage Level
$x=$ Don't Care
L $=$ LOW Voltage Level
$\left(\mathrm{t}_{\mathrm{n}+1}\right)=$ Indicates state after next LOW-to-HIGH clock transition.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	-TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
'DD	Supply Current	XM			$\begin{array}{r} 5 \\ 150 \end{array}$			$\begin{array}{r} 10 \\ 300 \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{SYMBOL} \& \multirow{3}{*}{PARAMETER} \& \multicolumn{9}{|c|}{LIMITS} \& \multirow{3}{*}{UNITS} \& \multirow{3}{*}{TEST CONDITIONS} \\
\hline \& \& \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\)} \& \multicolumn{3}{|r|}{\(\mathrm{V}_{\text {DD }}=10 \mathrm{~V}\)} \& \multicolumn{3}{|c|}{\(V_{D D}=15 \mathrm{~V}\)} \& \& \\
\hline \& \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, CP to Q \& \& \[
\begin{array}{|l|}
100 \\
100 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 180 \\
\& 180 \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 45 \\
\& 45
\end{aligned}
\] \& \[
\begin{aligned}
\& 80 \\
\& 80
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 35 \\
\& 35
\end{aligned}
\] \& \begin{tabular}{l}
64 \\
64
\end{tabular} \& ns \& \\
\hline tPHL \& Propagation Delay, \(\overline{\mathrm{MR}}\) to Q \& \& 100 \& 180 \& \& 45 \& 80 \& \& 35 \& 64 \& ns \& \\
\hline \begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}\) \\
\({ }^{\mathrm{t}} \mathrm{TLH}\)
\end{tabular} \& Output Transition Time \& \& \[
\begin{aligned}
\& 75 \\
\& 75
\end{aligned}
\] \& \[
\begin{aligned}
\& 135 \\
\& 135
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 40 \\
\& 40
\end{aligned}
\] \& \[
\begin{aligned}
\& 70 \\
\& 70
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 25 \\
\& 25
\end{aligned}
\] \& \[
\begin{aligned}
\& 45 \\
\& 45
\end{aligned}
\] \& ns \& \\
\hline ts

t_{h} \& Set-Up Time, $\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{D}_{\mathrm{SL}}, \mathrm{D}_{\mathrm{SR}}$ to CP Hold Time, $\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{D}_{\mathrm{SL}}, \mathrm{D}_{\mathrm{SR}}$ to CP \& $$
80
$$

$$
0
$$ \& \[

$$
\begin{array}{r}
40 \\
-10
\end{array}
$$

\] \& \& \[

$$
\begin{gathered}
40 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 20 \\
& -5
\end{aligned}
$$

\] \& \& \[

$$
\begin{gathered}
32 \\
0
\end{gathered}
$$

\] \& \[

15
\]

\[
-5

\] \& \& ns \& | $\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ |
| :--- |
| Input Transition |
| Times $\leqslant 20$ ns |

\hline t_{s}

t_{h} \& Set-Up Time, S to CP Hold Time, S to CP \& \[
$$
\begin{array}{|r|}
100 \\
0
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
60 \\
-10 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{r}
50 \\
0
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 30 \\
& -5
\end{aligned}
$$
\] \& \& 40

0 \& $$
\begin{aligned}
& 20 \\
& -5
\end{aligned}
$$ \& \& ns \&

\hline ${ }_{\text {tw }} \mathrm{CP}(\mathrm{L})$ \& Minimum Clock Pulse Width \& 100 \& 60 \& \& 60 \& 35 \& \& 48 \& 25 \& \& ns \&

\hline $\mathrm{t}_{\mathrm{w}} \overline{\mathrm{MR}}(\mathrm{L})$ \& Minimum $\overline{\mathrm{MR}}$ Pulse Width \& 75 \& 40 \& \& 45 \& 25 \& \& 36 \& 15 \& \& ns \&

\hline trec \& Recovery Time for $\overline{M R}$ \& 180 \& 100 \& \& 90 \& 50 \& \because \& 72 \& 35 \& \& ns \&

\hline $\mathrm{f}_{\text {MAX }}$ \& Maximum CP Frequency (Note 3) \& 4.5 \& 9 \& \& 9 \& 14 \& \& 10 \& 16 \& \& MHz \&

\hline
\end{tabular}

NOTES:

1. Additional DC Characteristics are listed in this section under $4000 B$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
3. For f MAX, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

FAIRCHILD CMOS • 40194B

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

FAIRCHILD CMOS • 40194B

SWITCHING TIME WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS CLOCK PULSE WIDTH

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

OTHER CONDITIONS: $\quad S_{1}=L, \overline{M R}=H, S_{0}=H$

OTHER CONDITIONS: $S_{0}, S_{1}=H$

$$
P_{0}=P_{1}=P_{2}=P_{3}=H
$$

SET-UP $\left(t_{s}\right)$ AND HOLD $\left(t_{h}\right)$ TIME FOR S INPUT OTHER CONDITIONS: $\overline{M R}=H$

40195B/74C195/54C195 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The 40195B is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Parallel Data Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$), a synchronous Mode Control Input ($\overline{\mathrm{PE}}$), Buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), a Buffered Inverted Output from the last bit position ($\overline{\mathrm{O}}_{3}$) and an overriding asynchronous Master Reset Input (MR).

Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Mode Control Input (PE) is LOW, a LOW-to-HIGH clock transition loads data into the register from Parallel Data Inputs ($\mathrm{PO}_{0}-\mathrm{P}_{3}$). When the Mode Control Input ($\overline{\mathrm{PE}}$) is HIGH, a LOW-to-HIGH clock transition shifts data into the first register position from the Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$), and shifts all the data in the register one position to the right. D-type entry is obtained by tying the two Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$) together. A LOW on the Master Reset Input (MR) resets all four bit positions ($Q_{0}-Q_{3}=$ LOW, $\bar{Q}_{3}=$ HIGH $)$ independent of all other input conditions. The 40195B is a direct replacement for the 74C195/54C195.

- TYPICAL SHIFT FREQUENCY OF $14 \mathrm{MHz} A T \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- J, \bar{K} INPUTS TO THE FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- COMPLEMENTARY OUTPUT FROM THE LAST STAGE
- POSitive edge-triggered clock

PIN NAMES	
PE	Parallel Enable Input (Active LOW)
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
J	First Stage J Input (Active HIGH)
\bar{K}	First Stage K Input (Active LOW)
CP	Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)
$\mathrm{Q}_{0}-\mathrm{O}_{3}$	Parallel Outputs
$\overline{\mathrm{a}}_{3}$	Complementary Last Stage Output

LOGIC DIAGRAM

[^13]
NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE												
OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathrm{H}$)							OUTPUTS AT $\mathrm{t}_{\mathrm{n}+1}$				
	$\overline{\mathrm{PE}}$	J	\bar{K}	P_{0}	P_{1}	P_{2}	P_{3}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	$\overline{\mathrm{Q}}_{3}$
Shift Mode	H	L	L	X	x	x	X	L	O_{0}	Q_{1}	Q_{2}	$\overline{\mathrm{Q}}_{2}$
	H	L	H	x	X	X	X	Q_{0}	O_{0}	Q_{1}	Q_{2}	$\overline{\mathrm{Q}}_{2}$
	H	H	L	x	X	X	X	$\overline{\mathrm{Q}}_{0}$	Q_{0}	Q_{1}	O_{2}	$\overline{\mathrm{Q}}_{2}$
	H	H	H	X	X	X	X	H	Q_{0}	Q_{1}	Q_{2}	$\overline{\mathrm{Q}}_{2}$
Parallel Entry Mode	L	X	X	L	L	L	L	L	L	L	L	H
	L	X	X	H	H	H	H	H	H	H	H	L

$H=H I G H$ Voltage Level
L $=$ LOW Voltage Level
$x=$ Don't Care
$\left(t_{n+1}\right)=$ Indicates state after next LOW to HIGH clock transition.

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 20 \\ 150 \end{array}$			$\begin{array}{r} 40 \\ 300 \end{array}$			$\begin{array}{r} 80 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs at
IDD	Supply Current	XM			$\begin{gathered} \hline 5 \\ 150 \end{gathered}$			$\begin{array}{r} 10 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 600 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	0 V or $\mathrm{V}_{\text {DD }}$

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{n} or $\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$	ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=200 \mathrm{k} \Omega \end{aligned}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tPHL	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{3}$		100	180		45	80		35	64	ns	
tPHL	Propagation Delay, $\overline{\mathrm{MR}}$ to Q_{n}		100	180		45	80		35	64	ns	
tTHL ${ }^{\mathbf{t}}$ TLH	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	
ts t_{h}	Set-Up Time, $\mathrm{J}, \overline{\mathrm{K}}, \mathrm{P}_{0}-\mathrm{P}_{3}$ to CP Hold Time, $\mathrm{J}, \overline{\mathrm{K}}, \mathrm{P}_{0}-\mathrm{P}_{3}$ to CP	$\begin{array}{r} 80 \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline 40 \\ -10 \\ \hline \end{array}$		$\begin{array}{r} 40 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & -5 \end{aligned}$		32 0	$\begin{array}{r} 15 \\ -5 \\ \hline \end{array}$		ns	
t_{s} $t_{\text {h }}$	Set-Up Time, $\overline{\mathrm{PE}}$ to CP Hold Time, $\overline{\mathrm{PE}}$ to CP	$\begin{array}{r} 100 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ -10 \\ \hline \end{array}$		$\begin{array}{r}50 \\ 0 \\ \hline\end{array}$	$\begin{aligned} & 30 \\ & -5 \end{aligned}$		40 0	$\begin{aligned} & 20 \\ & -5 \end{aligned}$		ns	
${ }^{t_{w} C P(L)}$	Minimum Clock Pulse Width	100	60		60	35		48	25		ns	
${ }^{t_{w} M R(L)}$	Minimum $\overline{\mathrm{MR}}$ Pulse Width	75	40		45	25		23	15		ns	
$\mathrm{trec}^{\text {rem }}$	Recovery Time for $\overline{\mathrm{MR}}$	180	100		90	50		72	35		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 3)	4.5	9		9	14		10	16		MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under 4000B Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under 4000 B Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}, 4 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$, and $3 \mu \mathrm{~s}$ at $V_{D D}=15 \mathrm{~V}$.

PROPAGATION DELAY
 C_{L} - LOAD CAPACITANCE - pF

PROPAGATION DELAY VERSUS POWER SUPPLY VOLTAGE

VDD - POWER SUPPLY VOLTAGE - V

6508B/6518B
 1024-BIT (1024 $\times 1$) CMOS RANDOM ACCESS MEMORY WITH 3-STATE OUTPUT

DESCRIPTION - The 6508B/6518B are high-speed, low-power silicon-gate CMOS static RAMs organized as 1024 words by 1 bit. These RAMs are designed with all inputs and outputs TTL compatible. These devices operate off a single 5 V power supply with a worst case access time of 250 ns . Data retention is guaranteed at $2.0 \vee V_{C C}$ minimum. Output data has the same polarity as the input data. The addresses are latched by on-chip address registers. These registers are controlled by the high-to-low transition of chip select input $\overline{\mathrm{CS}}\left(\overline{\mathrm{CS} 1}\right.$ on F6518). Chip select input $\overline{\mathrm{CS}}\left(\overline{\mathrm{CS}} \mathrm{C}_{1}\right)$ and $\overline{\mathrm{WE}}$ are designed such that common I/O operation can be implemented easily for maximum design flexibility. The 6518B has three chip select inputs for better access control. The 6508 B has all the three chip select inputs tied together as a single CS .

The device is ideally suited for memory systems requiring low-power, high-performance, and nonvolatile (backup) operation.

- FAST ACCESS - $\mathbf{2 5 0}$ ns MAX
- LOW STANDBY POWER - $20 \mu \mathrm{~A}$ MAX
- DATA RETENTION TO $V_{C C}=2.0 \mathrm{~V}$
- TTL COMPATIBLE I/O
- 3-STATE OUTPUT
- SINGLE 5 V SUPPLY
- ON-CHIP ADDRESS REGISTERS
- THREE CHIP-SELECT (6518B)

MODE OF OPERATION

MODE	INPUTS				OUTPUTS
	$\overline{\mathrm{WE}}$	$\overline{\mathrm{CS}} 1$	$\overline{\mathrm{CS}_{2}}$	$\overline{\mathrm{CS}_{3}}$	DOUT
Standby	X	1	1	1	HIGH Z
Unselected	X	0	0	1	HIGH Z
	X	0	1	0	HIGH Z
	X	1	0	0	HIGH Z
Write	0	0	0	0	HIGH Z
Read	1	0	0	0	Data

ABSOLUTE MAXIMUM RATING

Supply Voltage $V_{C C}$
Input/Output Voltage Applied
$\mathrm{V}_{\mathrm{SS}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
T_{C}	Cycle Time	350		ns	$C_{L}=50 \mathrm{pF}$ (One TTL Load)
$\mathrm{T}_{\text {ACC }}$	Access Time From CS		250	ns	
$\mathrm{T}_{\text {AS }}$	Address Set-up Time	15		ns	
$\mathrm{T}_{\text {AH }}$	Address Hold Time	50		ns	
TEO	Output Enable Time		150	ns	
TDO	Output Disable Time		150	ns	
$\mathrm{T}_{\text {CSL }}$	$\overline{\mathrm{CS}}$ LOW	200		ns	
TCSH	$\overline{\overline{C S}} \mathrm{HIGH}$	150		ns	
TWP	Write Pulse Width	150		ns	
TDS	Data Set-up Time	150		ns	
TDH	Data Hold Time	10		ns	

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
$V_{\text {IH }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$	V_{Cc}	v	
$V_{\text {IL }}$	Logical "0' Input Voltage	0	0.8	\checkmark	
IIL	Input Leakage	-1.0	+1.0	$\mu \mathrm{A}$	$0 \mathrm{~V} \geqslant \mathrm{~V}_{\text {IN }} \geqslant \mathrm{V}_{\text {CC }}$
VOH^{1}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{Cc}}-0.01$		V	IOUT $=0$
$\mathrm{V}_{\mathrm{OH} 2}$	Logical "1" Output Voltage	$\mathrm{V}_{\text {CC }}-2.0$		V	$\mathrm{I}_{\text {OUT }}=-0.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OL1 }}$	Logical " 0 " Output Voltage		$\mathrm{V}_{\text {SS }}+0.01$	V	IOUT $=0$
$\mathrm{V}_{\mathrm{OL} 2}$	Logical " 0 " Output Voltage		$\mathrm{V}_{\text {SS }}+0.4$	V	IOUT $=2.0 \mathrm{~mA}$
10	Output Leakage	-1.0	+1.0	$\mu \mathrm{A}$	$0 \mathrm{~V} \geqslant \mathrm{~V}_{\text {OUT }} \geqslant \mathrm{V}_{\text {CC }} \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}$
${ }^{\text {ICC STD }}$	Supply Current (Standby)		20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\text {SS }}$
ICC	Supply Current (Operating)		2.0	mA	$\mathrm{f}=1 \mathrm{MHz}$
VDR	VCC for Data Retention	2.0		\checkmark	
$\mathrm{CIN}^{\text {N }}$	Input Capacitance		7	pF	
Cout	Output Capacitance		10	pF	

FAIRCHILD CMOS • 6508B/6518B

AC WAVEFORMS

```
Conditions: }\quad\mp@subsup{V}{CC}{}=5\textrm{V}\pm10
                            CL}=50\textrm{pF}\mathrm{ (One TTL Load)
                            TA}=-2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to +85 }\mp@subsup{}{}{\circ}\textrm{C
Input Level: }\quad\mathrm{ LOW = V IL
    HIGH}=\mp@subsup{V}{IH}{
    tr, tf = 20 ns
Measurement Reference to 1/2 V CC
```


A. READ CYCLE

B. Write cycle

* $\mathrm{D}_{\text {IN }}$ input is reference to HIGH-to-LOW edge of $\overline{\mathrm{WE}}, \overline{\mathrm{CS}}$ ($\left.\overline{\mathrm{CS}}\right)_{1}$), $\overline{\mathrm{CS}_{2}}, \overline{\mathrm{CS}_{3}}$, which ever switches first.
\qquad

FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION

> DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS
JEDEC INDUSTRY STANDARD "B"
SERIES CMOS SPECIFICATIONS

```
TECHNICAL DATA
```


FAIRCHILD FIELD SALES OFFICES,

SALES REPRESENTATIVES AND

APPLICATIONS INFORMATION CONTENTS

CMOS INTERFACE CIRCUITS 8-5
MOS to LED Segments \& Digit Drivers 8-7
High Voltage, High Current Darlington Drivers 8-7
One-shot Multivibrator 8-8
Voltage Comparator 8-8
Power Supply Regulator 8-8
MOS to LED Digit Driver 8-9
CMOS to 7-Segment LED Display 8-9
CMOS OSCILLATORS CIRCUITS 8-10
APPLICATION OF THE 4702B 8-20
USING THE 4703B FIFO 8-28
MICROPROGRAMMING WITH PROCESSOR ORIENTED MACROLOGIC 8-39

INTERFACE CIRCUITS FOR CMOS

Fairchild manufactures one of the broadest varieties of Integrated Circuits in the world. In an effort to aid the designer in his search for compatible interface alternatives, listed below are a number of circuits manufactured by different divisions of Fairchild Semiconductor and easily compatible with the Fairchild line of Isoplanar CMOS.

Fairchild F54LSXX/74LSXX LOW POWER SCHOTTKY TTL

(Reference: Fairchild Low Power Schottky Data Book and Fairchild Low Power Schottky Designer's Guide)
When Multi-TTL drive capability is required, the CMOS 4049B and 4050B Hex Buffers can be used to drive two standard TTL Loads with typical delay of $45 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$). These devices, because of the deletion of the V_{DD} input diode, allow High Voltage CMOS to 5 Volt TTL translation. For higher performance and additional drive capability each of the following Fairchild Low Power Schottky devices may be used as interface/logic translating elements with capability of driving up to five standard TTL Loads. Although the Low Power Schottky devices must be operated from a 5 V TTL supply, they can accept input voltages up to 15 V , allowing direct interface with CMOS operated up to 15 V .

F54LS00/74LS00
F54LS02/74LS02
F54LS04/74LS04
F54LS08/74LS08
F54LS09/74LS09
F54LS10/74LS10
F54LS11/74LS11

F54LS13/74LS13
F54LS14/74LS14
F54LS15/74LS15
F54LS20/74LS20
F54LS21/74LS21
F54LS27/74LS27
F54LS28/74LS28
F54LS30/74LS30
F54LS32/74LS32
F54LS33/74LS33
F54LS37/74LS37
F54LS38/74LS38
F54LS40/74LS40
F54LS42/74LS42
F54LS47/74LS47
F54LS48/74LS48
F54LS49/74LS49
F54LS51/74LS51
F54LS54/74LS54
F54LS55/74LS55
F54LS73/74LS73
F54LS75/74LS75
F54LS76/74LS76
F54LS77/74LS77
F54LS78/74LS78
F54LS83/74LS83A

F54LS85/74LS85
F54LS86/74LS86
F54LS89/74LS89
F54LS95/74LS95B
F54LS107/74LS107
F54LS125/74LS125
F54LS126/74LS126

F54LS132/74LS132
F54LS133/74LS133
F54LS136/74LS136
F54LS138/74LS138
F54LS139/74LS139
F54LS145/74LS145
F54LS151/74LS151
F54LS152/74LS152
F54LS153/74LS153
F54LS155/74LS155
F54LS157/74LS157
F54LS158/74LS158
F54LS160/74LS160
F54LS161/74LS161
F54LS162/74LS162
F54LS163/74LS163
F54LS164/74LS164
F54LS165/74LS165
F54LS168/74LS168
F54LS169/74LS169
F54LS170/74LS170
F54LS173/74LS173
F54LS174/74LS174
F54LS175/74LS175
F54LS181/74LS181
F54LS182/74LS182

F54LS189/74LS189 F54LS190/74LS190 F54LS191/74LS191 F54LS192/74LS192 F54LS193/74LS193 F54LS194/74LS194 F54LS195/74LS195 F54LS196/74LS196* F54LS197/74LS197* F54LS240/74LS240 F54LS241/74LS241 F54LS242/74LS242 F54LS243/74LS243 F54LS244/74LS244 F54LS245/74LS245 F54LS247/74LS247 F54LS248/74LS248
F54LS249/74LS249
F54LS251/74LS251
F54LS253/74LS253
F54LS256/74LS256
F54LS257/74LS257
F54LS258/74LS258
F54LS259/74LS259
F54LS260/74LS260
F54LS266/74LS266
F54LS273/74LS273
F54LS279/74LS279
F54LS283/74LS283
F54LS289/74LS289
F54LS295/74LS295A
F54LS298/74LS298
F54LS299/74LS299
F54LS323/74LS323

F54LS352/74LS352
F54LS353/74LS353
F54LS365/74LS365
F54LS366/74LS366
F54LS367/74LS367
F54LS368/74LS368
F54LS373/74LS373

F54LS374/74LS374
F54LS375/74LS375
F54LS377/74LS377
F54LS378/74LS378
F54LS379/74LS379
F54LS386/74LS386
F54LS395/74LS395
F54LS398/74LS398
F54LS399/74LS399
F54LS502/74LS502
F54LS540/74LS540
F54LS541/74LS541
F54LS568/74LS568
F54LS569/74LS569
F54LS573/74LS573
F54LS574/74LS574
F54LS670/74LS670

[^14]Fairchild Low Power Schottky devices also incorporate a unique Schottky Diode in series with the collector of the output transistor. This diode allows the output to be pulled substantially higher than V_{CC}. Although the Low Power Schottky devices must be operated from a 5 V TTL supply, a simple external pullup resistor between the LS output and the CMOS $\mathrm{V}_{\text {DD }}$ power supply will allow direct interface between Low Power Schottky Logic ($V_{C C}=5 \mathrm{~V}$) and high voltage CMOS logic, up to $V_{D D}=10 \mathrm{~V}$. With the exception of the F74LS00, F74LS02, F74LS04, F74LS10, F74LS11, F74LS20, and the F74LS32, each of the devices listed above will perform the low voltage to high voltage translation.

FAIRCHILD LOW POWER SCHOTTKY
2-Input NAND Gate

75491 • 75492
 MOS TO LED SEGMENT AND DIGIT DRIVERS

(Reference: Fairchild Linear Integrated Circuits Data Book)
The 75491 and 75491A, LED Quad Segment Digit Drivers interface MOS signals to common cathode LED displays. High output current capability makes the devices ideal in time multiplex systems using segment address or digit scan method of driving LEDs to minimize the number of drivers required.

The 75492 and 75492A Hex LED/Lamp Drivers convert MOS signals to high output currents for LED display digit select or lamp select. The high output current capability makes the devies ideal in time multiplex systems using segment address or digit scan method of driving LEDs to minimize the number of drivers required.

75491 - 75491A

- 50 mA SOURCE OR SINK CAPABILITY
- LOW INPUT CURRENTS FOR CMOS COMPATIBILITY
- LOW STANDBY POWER
- FOUR HIGH GAIN DARLINGTON CIRCUITS
- 10 V and 20 V OPERATION

75492 - 75492A

- 250 mA SINK CAPABILITY
- CMOS COMPATIBLE INPUTS
- LOW STANDBY POWER
- SIX HIGH GAIN DARLINGTON CIRCUITS
- 10 V AND 20 V OPERATION

75491 - 75491A CONNECTION DIAGRAM (TOP VIEW)
75492 - 75492A CONNECTION DIAGRAM (TOP VIEW)

9665 • 9667 • 9668 HIGH VOLTAGE HIGH CURRENT DARLINGTON DRIVERS

(Reference: Fairchild 9665 • 9666 • 9667 • 9668 Data Sheet)

The 9665, 9667 and 9668 are comprised of seven high voltage, high current npn Darlington Transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emmiter-base resistors for leakage.

The 9665 is a general purpose array which may be used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor to each input.

The 9667 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V .

The 9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating from supply voltages of 6 to 15 V.

- SEVEN HIGH GAIN DARLINGTON TRANSISTOR PAIRS
- HIGH OUTPUT VOLTAGE (VCE $=\mathbf{5 0} \mathrm{V}$)
- HIGH OUTPUT CURRENT (IC $=350 \mathrm{~mA}$)
- CMOS COMPATIBLE INPUTS
- SUPPRESSION DIODES FOR INDUCTIVE LOADS
- 2 WATT PLASTIC DIP PACKAGE ON COPPER PIN FRAME

```
9665 - 9667 - 9668
CONNECTION DIAGRAM
    (TOP VIEW)
```


96L02 LOW POWER DUAL ONE-SHOT MULTIVIBRATOR

Retriggerable Resettable Monostable Multivibrator

(Reference: Fairchild Low Power TTL Book)

The 96LO2 is pin and function compatible with the F4528 Dual Monostable and exhibits improved stability and speed. It is usable in 5 V CMOS systems.

- TYPICAL POWER DISSIPATION OF $25 \mathrm{~mW} / \mathrm{ONE}$ SHOT
- 50 ns TYPICAL PROPAGATION DELAY
- RETRIGGERABLE 0 TO 100\% DUTY CYCLE
- FAIRCHILD 4000B COMPATIBLE INPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR VCC AND TEMPERATURE VARIATIONS
- RESETTABLE

96L02 LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

[^15]
$\mu \mathrm{A} 775$
 QUAD COMPARATOR
 VOLTAGE COMPARATOR

In a CMOS system it may be necessary to detect differences between two voltage levels and convert to logic levels. The $\mu \mathrm{A} 775$ Quad Comparator is capable of operating over the CMOS power supply range. These comparators have a unique characteristic in that the input common mode voltage range includes ground, even though operated from a single power supply voltage. Applications include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators and wide range V_{CO}.

- SINGLE SUPPLY OPERATION-+2.0 V TO +36 V
- Compares voltages near ground potential
- LOW CURRENT DRAIN-700 μ A TYPICAL
- COMPATIBLE WITH ALL FORMS OF CMOS
- LOW INPUT BIAS CURRENT-25 nA TYPICAL
- LOW INPUT OFFSET CURRENT-25 nA
- LOW OFFSET VOLTAGE-5 mV MAX

POWER SUPPLY REGULATOR

μ A78MG 4-Terminal Regulator
(Reference: Fairchild $\mu \mathrm{A} 78 \mathrm{MG} \bullet \mu \mathrm{A} 79$ MG Data Sheet)

This single compact regulator with its 500 mA capability is sufficient for all but the very largest CMOS systems. The adjustable output voltage feature allows fine tuning of system speed power product.

- OUTPUT CURRENT IN EXCESS OF 0.5 A
- POSITIVE OUTPUT VOLTAGE 5 TO 30 V
- INTERNAL THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT CURRENT PROTECTION
- OUTPUT SAFE AREA PROTECTION
- POWER MINI DUAL IN-LINE PACKAGE
$\mu \mathrm{A} 78$ MGCONNECTION DIAGRAM

NOTE: Heat sink tabs connected to common

9664
 MOS TO LED DIGIT DRIVER

(Reference: Fairchild 9664 Data Sheet)

This driver is ideal for driving high current devices such as LEDs, relays and lamps. High input impedance allows direct drive from Fairchild 4000B CMOS devices; however, there is some degradation in logic level at the CMOS output. The 9664 is specified to 10 V operation, the 9664A to 20 V .

- 150 mA SINK CAPABILITY
- CMOS COMPATIBLE INPUTS
- VERY LOW STANDBY POWER
- SIX HIGH GAIN DARLINGTON CIRCUITS
- 10 AND 20 V OPERATION

9664/9664A LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

(Reference: Fairchild 9374 Data Sheet)

9374
 DECODER/DRIVER/LATCH CMOS TO 7-SEGMENT LED DISPLAY

This bipolar device contains latches for storage, a 7 -segment decoder and 15 mA constant current drivers. The 9374 must operate at 5 V ; its inputs are also limited to 5 V .

- FAIRCHILD 4000B SERIES COMPATIBLE INPUTS
- HIGH SPEED INPUT LATCHES FOR DATA STORAGE
- 15 mA CONSTANT CURRENT SINK CAPABILITY TO directiy drive common anode led displays
- INCREASES INCANDESCENT DISPLAY LIFE
- dATA INPUT LOADING ESSENTIALLY ZERO WHEN LATCH DISABLED
- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING EDGE ZEROS AND/OR TRAILING EDGE ZEROS

CMOS OSCILLATORS

This application note describes several square-wave oscillator circuits implemented with standard CMOS gates. In each case, appropriate timing equations, simplifying assumptions, and advantages and disadvantages are listed.

In general, because of the characteristically high input impedance of CMOS logic elements, more cost effective oscillators can be constructed offering relatively large timing constants without large capacitors. In addition, the CMOS oscillator offers:

- Very low power dissipation
- Operation over a wide power supply voltage range of 3 to 15 volts
- Operation over a frequency range of less than 1 Hz to over 23 MHz
- Easy interface to other logic families
- Relatively good stability with respect to variations in power supply voltage and operating temperature range

Generally, the use of buffered CMOS gates in oscillator applications is not recommended. Problems occur because of excessive gain through the buffered element (in excessive of 10^{6}) compounded by the slow edge rates, characteristic of the oscillator circuit. Ringing at the thresholds is very likely, creating false clocks in the system. This problem is, of course, overcome with the Schmitt Trigger and its associated hysteresis. Fairchild recommends the 4007UB, 4069UB, 40014B, 4093B and 4583B for all oscillator applications. For simplication, all applications in this note will be implemented using the 4069UB and 40014B.

Before describing any specific oscillator circuits and in an effort to clear some confusion and a few misconceptions, Figure 1 illustrates the basic logical oscillator. Any odd number of inverting logic elements will oscillate naturally when connected in a ring as shown in Figure 1. This is easily seen by treating the inverters as ideal switches or inverters exhibiting finite propagation delays and ideal switching characteristics. The basic result is that a HIGH logic level chases itself around the ring. In this case the frequency of oscillation is dependent upon the total propagation delay through the ring and is given by:
$f=\frac{1}{2 n T_{p}}$
where:
$f=$ frequency of oscillation (Hz)
$\mathrm{n}=$ number of inverting gates in the ring
$T_{p}=$ propagation delay per gate (seconds)

FIGURE 1. ANY ODD NUMBER OF INVERTING GATES WILL ALWAYS OSCILLATE

The practicality of such a circuit is limited by the fact that the frequency of oscillation is dependent upon T_{p} and therefore limited to a few specific values determined by T_{p}. Furthermore, stability of such a circuit is heavily dependent upon T_{p} 's variation with temperature, power supply voltage and output loading. Figure 2 illustrates expected variations in propagation delay for the 4069UB.

FIGURE 2. PROPAGATION DELAY VERSUS TEMPERATURE, LOAD CAPACITANCE AND POWER SUPPLY VOLTAGE FOR THE 4069UB

The Logical RC Oscillator

To overcome the disadvantages of the logical oscillator it is necessary to add other circuit elements that increase loop delay and thus reduce the effect of T_{p} variation on frequency. This increase in loop delay necessarily reduces the upper frequency limit for a given configuration, but lends the more important advantages of frequency predictability and stability.

Figure 3 illustrates a useful three gate oscillator incorporating a resistor capacitor network which does, in effect, slow the natural frequency of the ring oscillator and, assuming that the RC time constant is large enough, minimizes any effects of propagation delay and thus any dependence upon temperature, load capacitance, or operating voltage. With this in mind, it is assumed, hereafter in the analysis, that the logic elements are ideal, exhibiting negligible propagation delay. IIf very high oscillation frequencies are required, this assumption may not be valid.

FIGURE 3. A THREE GATE RC OSCILLATOR

FIGURE 4. VOLTAGE WAVEFORMS FOR THE RC OSCILLATOR

As a means of determining a timing equation, Figure 4 illustrates the voltage waveforms at specific points in the oscillator circuit. As shown, the voltage waveform at V_{1} does, for short intervals of time, extend outside the power supply rails. These excursions are clipped at V_{2} by the standard input protection diodes found on all Fairchild CMOS logic inputs (Figure 5). At this point another simplifying assumption is made; input protection diodes D_{1} and D_{2} exhibit ideal characteristics. Since this assumption tends to have little overall effect on the voltage waveforms, the error is acceptably small.

FIGURE 5. INPUT PROTECTION CIRCUIT

From Figure 4, the time period T for one cycle is:
$T=t_{1}+t_{2}+t_{3}+t_{4}$
Once again, input protection diodes conduct only during t_{1} and t_{3}. Similarly, except for input leakage current, Resistor R_{2} conducts only during t_{1} and t_{3}. Since input impedance is generally very large ($>10^{6} \Omega$) compared to typical values for R_{1} and R_{2}, input leakage currents are negligible and it is assumed they can be ignored. For resistor values greater than a few megohms, this may not be valid (note 1).

From basic electronics, the timing equation for exponential decay of an RC network (Figure 6) is.
$t=-R C \ln \left(v / V_{O}\right)$
Thus: $\mathrm{t}_{1} \approx-\mathrm{R}_{1} \mathrm{C}\left[\frac{R_{2}}{R_{1}+R_{2}}\right]\left[\ln \left(\frac{V_{D D}}{V_{D D}+V_{T P}}\right)\right]$
$\mathrm{t}_{2} \approx-\mathrm{R}_{1} \mathrm{C} \ln \left(\frac{\mathrm{V}_{\mathrm{TN}}}{\mathrm{V}_{\mathrm{DD}}}\right)$
$\mathrm{t}_{3} \approx-\mathrm{R}_{1} \mathrm{C}\left[\frac{R_{2}}{R_{1}+R_{2}}\right]\left[\ln \left(\frac{V_{D D}}{2 V_{D D}-V_{T N}}\right)\right]$
$\mathrm{t}_{4} \approx-\mathrm{R}_{1} \mathrm{C} \ln \left(\frac{\mathrm{V}_{\mathrm{TP}}}{\mathrm{V}_{\mathrm{DD}}}\right)$
and: $T \approx-R_{1} C\left\{\left[\frac{R_{2}}{R_{1}+R_{2}}\right]\left[\ln \left(\frac{V_{D D}}{V_{D D}+V_{T P}}\right)+\ln \left(\frac{V_{D D}}{2 V_{D D}-V_{T N}}\right)\right]+\ln \left(\frac{V_{T N}}{V_{D D}}\right)+\ln \left(\frac{V_{T P}}{V_{D D}}\right)\right\}$

FIGURE 6. TIMING FOR THE EXPONENTIAL DECAY OF AN RC NETWORK

For those who prefer their timing equations not to be cluttered with details, several simplifying assumptions can be made. First, it is assumed that negative and positive threshold voltages are equal ($V_{T N}=V_{T p}$). This is a fairly safe assumption since standard gates will generally exhibit very little hysteresis $(<200 \mathrm{mV})$. Of course, this assumption is not valid for Schmitt Triggers.

The timing equation simplifies to:
$T \approx-R_{1} C\left\{\left[\frac{R_{2}}{R_{1}+R_{2}}\right]\left[\ln \left(\frac{V_{D D}}{V_{D D}+V_{T}}\right)+\ln \left(\frac{V_{D D}}{2 V_{D D}-V_{T}}\right)\right]+2 \ln \left(\frac{V_{T}}{V_{D D}}\right)\right\}$

Next, it is assumed that CMOS is the ideal logic family with ideal transfer characteristics and thus, $\mathrm{V}_{\mathrm{T}}=$ $\mathrm{V}_{\mathrm{DD}} / 2$. As will be shown later, this can be a very misleading assumption. Nevertheless:
$T \approx 2 R_{1} C\left[\frac{0.405 R_{2}}{R_{1}+R_{2}}+0.693\right]$
and:
$\left.f \approx \frac{1}{2 R_{1} C\left[\frac{0.405 R_{2}}{R_{1}+R_{2}}+0.693\right.}\right]$
Furthermore:
If $R_{1}=R_{2}, f \approx 0.559 / R_{1} C$
If $R_{1} \gg R_{2}, f \approx 0.722 / R_{1} C$
If $R_{1} \ll R_{2}, f \approx 0.455 / R_{1} C$
The last assumption is a very attractive one, greatly simplifying the timing equations, but can create correlation problems between paper calculations and actual results. CMOS is not, generally, an ideal logic family exhibiting ideal transfer characteristics and, in fact, guaranteed threshold limits allow variations in the timing equation constants which are much greater than those created by variations in R_{2} / R_{1} as implied above.

Standard guarantees for CMOS circuits allow the actual switching threshold to lie in range from roughly 30% of $V_{D D}$ to 70% of $V_{D D}\left(V_{I H}=0.7 V_{D D}\right.$ and $\left.V_{I L}=0.3 V_{D D}\right)$. If, in fact, actual thresholds are not near $0.5 \mathrm{~V}_{\mathrm{DD}}$ the above simplifications can be grossly invalid. As a means of illustration, simplified timing equations have been generated assuming that $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{T}}=0.3 \mathrm{~V}_{\mathrm{DD}}$. The results are shown in Figure 7. Also shown are the results of actual tests performed on the 4069UB with manufacturing date codes from over three years of production. Actual data implies that more accurate timing equations for the 4069UB would be:

For $R_{1}=R_{2}, \quad f \approx 0.482 / R_{1} C$
For $\left.R_{1}=10 R_{2}, f \approx 0.580 / R_{1} C\right\}$ With expected error $= \pm 5 \%$
For $10 R_{1}=R_{2}, f \approx 0.368 / R_{1} C$

FIGURE 7. TIMING CONSTANT VERSUS RESISTOR RATIO FOR THE RC OSCILLATOR ASSUMING VARIOUS THRESHOLD VOLTAGES

Furthermore, it should be noted that the duty cycle of $\mathrm{V}_{\text {OUT }}$ will depend directly upon the actual threshold voltage. When $\mathrm{V}_{\mathrm{T}}=0.5 \mathrm{~V}_{\mathrm{DD}}$, a 50% duty cycle results.

In summary, for better comparison between software and hardware, it may be necessary for the designer to more accurately determine actual threshold voltages.

The Two Gate Oscillator

A popular two gate RC Oscillator circuit is shown in Figure 8. Coincidentally, all of the RC oscillator timing equations, RC waveforms, assumptions and arguments thus far also apply to the circuit in Figure 8. The only real problem with this circuit is that it may not oscillate for certain values of capacitance. Unlike the logical oscillator circuit of Figure 1 which oscillates naturally and the frequency of oscillation is only slowed and stabilized by an RC network, the two gate circuit is forced to oscillate by the RC network. To illustrate this point, allow C to go to zero. The result is a circuit as shown in Figure 9 which obviously will not oscillate in an acceptible manner. However, gate count may be a critical factor in a design and the two gate oscillator circuit is often employed.

FIGURE 8. A TWO GATE RC OSCILLATOR

The Schmitt Trigger Oscillator

Where gate count is a critical factor, Figure 10 shows an Oscillator constructed from a single Inverting Schmitt Trigger. This circuit consumes only $1 / 6$ of a package allowing the other five inverters to be utilized elsewhere in the system. It should be noted that the single stage oscillator is only practical where substantial hysteresis is provided by the logic element (i.e., Schmitt Triggers). It should, also, be noted that switching thresholds of the Schmitt Trigger are not as insensitive to variations in the power supply voltage. This circuit is best in those applications with relaxed requirements on frequency stability or where power supply voltages are well regulated.

FIGURE 10. A SIMPLE SCHMITT TRIGGER OSCILLATOR

FIGURE 11. VOLTAGE WAVEFORMS FOR THE SINGLE SCHMITT TRIGGER OSCILLATOR

Figure 11 illustrates the voltage waveforms on the input and output pins of the Schmitt Trigger. Assuming that $\mathrm{t}_{1}+\mathrm{t}_{2} \gg \mathrm{tPLH}+\mathrm{tPHL}$ the time period T for one cycle is:
$T \approx t_{1}+t_{2}$
Where: $\mathrm{t}_{1} \approx-\mathrm{RC} \ln \left(\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TP}}}{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TN}}}\right)$

$$
\mathrm{t}_{2} \approx-\mathrm{RC} \ln \left(\frac{\mathrm{~V}_{\mathrm{TN}}}{\mathrm{~V}_{\mathrm{TP}}}\right)
$$

or: $\quad \mathrm{T} \approx-\mathrm{RC}\left[\ln \left(\frac{\mathrm{V}_{T N}}{\mathrm{~V}_{T P}}\right)+\ln \left(\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TP}}}{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{T N}}\right)\right]$
or: $\quad \mathrm{T} \approx \mathrm{RC}\left[\ln \left(\frac{\mathrm{V}_{\mathrm{TP}}}{\mathrm{V}_{\mathrm{TN}}}\right)+\ln \left(\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TN}}}{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TP}}}\right)\right]$

To simplify the equation, we can assume from the 40014 B data sheet that at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{TN}}=6.8 \mathrm{~V}$ and $V_{T P}=3.2 \mathrm{~V}$, typically.

Thus: $\mathrm{T} \approx 1.5 \mathrm{RC}$
or: $\quad f \approx 0.667 / R C$
Once again, from Figure 12, it can be determined that the simplification above may not be valid because of possible variations in actual thresholds within the guaranteed worst case limits versus the typical thresholds assumed above.

FIGURE 12. TIMING CONSTANT VERSUS POWER SUPPLY VOLTAGE ASSUMING VARIOUS HYSTERESIS LEVELS FOR THE 40014B

Based on actual test data performed on 40014B devices with a variety of manufacturing date codes, the following equation was determined:

```
f \approx 0.631/RC For R=1 K\Omega to 1 M\Omega
and:
    C= 10 \muF to 100 pF
```

with expected error $\approx \pm 10 \%$

The Gated Oscillator

Often the designer will have a need to enable or disable the free running oscillator at will. This is easily accomplished by adding a diode to the RC Oscillator circuit as shown in Figure 13. In one direction the diode provides an active HIGH Enable input and in the other an active LOW Enable input. With proper selection of the RC components, power dissipation in the disabled state can be minimized.

FIGURE 13. GATED OSCILLATORS

A CMOS Crystal Oscillator

For those applications requiring extreme stability of the oscillation frequency, a CMOS Crystal Oscillator circuit is shown in Figure 14. Actual resistor and capacitor component values are determined by the desired output frequency and characteristics of the crystal employed. Any odd number of inverting gates may be used in the circuit. However, maximum operating frequency will be limited by total propagation delay through the oscillator ring.

FIGURE 14. A CMOS CRYSTAL OSCILLATOR

Finally, in applications demanding such stringent stability, it is not uncommon for the designer, for reasons of both accuracy and cost, to select highest possible operating frequency. The result is an often critical tradeoff between tolerable power dissipation and acceptable accuracy. For the circuit of Figure 14, as operating frequency is increased by a factor of ten, power dissipation will also approximately increase by a factor of ten. Only the designer can acceptably resolve this tradeoff.

Summary

Simple CMOS inverting gates provide an attractive solution to oscillator applications providing better stability (especially at low frequency), very low power dissipation, wide operating power supply voltage range and relatively easy interface to other logic families.

This note has offered several alternative designs for CMOS oscillators each with its own advantages, disadvantages and simplifying assumptions. From the information presented herein, the designer has the capability of selecting the circuit and the characteristic tradeoffs best suited to his specific application.

Note 1. As a general rule, assuming worst case data sheet limits, input leakage current will have approximately a 10% affect upon the timing equation when $R_{1}=1.5 \mathrm{M} \Omega$ at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, 10 \mathrm{M} \Omega$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ and $5 \mathrm{M} \Omega$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

APPLICATION OF THE 4702B, PROGRAMMABLE BIT-RATE GENERATOR

The industry standard Universal Asynchronous Receiver/Transmitter (UART), an MOS/LSI subsystem, has had a considerable impact on data-communication system design. Not only has the UART dramatically reduced chip counts and increased reliability, etc., but it has also provided an incentive to integrate the remaining support functions.

One such subsystem is the 4702B programmable bit-rate generator, designed to provide the necessary clocking signals to operate asynchronous transmitter and receiver circuits. Several standardized signaling rates are used for start-stop communication depending on the transmission medium and other system requirements. The equipment must be capable of generating all the necessary frequencies and provide a way to select the desired one. In the past, this required several SSI/MSI circuits. Now, the 4702B can perform the task more easily and economically.

The 4702B provides any one of the 13 common bit rates on a selectable basis using an on-board oscillator and an external crystal; it also is expandable for multichannel applications. In its most general form, multichannel clocking requires that any of the possible frequencies must be available on any channel. Expansion up to eight channels is accomplished without device duplication. In multiple-device systems, there is no need to use a crystal with every device. Figure 1 shows the block diagram of the 4702B which consists of the following major parts:

- Oscillator and associated gating
- Scan counter
- Count chains
- Initialization circuit
- Multiplexer and output storage

Oscillator and Associated Gating

The oscillator circuit together with an external crystal generates the master timing. A 2.4576 MHz crystal provides 16 times the frequency of the baud values marked; for example, 9600 baud corresponds to 153.6 kHz . If the External Clock Enable ($\overline{\mathrm{E}_{\mathrm{CP}}}$) is HIGH, the oscillator output signal drives the count chain. On the other hand, if it is LOW, the External Clock (CP) signal is enabled and is then the timing source. The External Clock input also participates in the device initialization scheme. The master timing signal, either from the external source or the local oscillator, is available on the Clock Output pin (CO). This signal can be used to drive other 4702B's in a multiple device system, thus eliminating the need to provide more than one crystal.

Scan Counter

The master timing drives a 3-bit binary scan counter which, in turn, drives the remaining counter chains on the chip. The scan counter allows expansion to eight channels as described later. The prescaling feature of this counter provides another benefit, i.e., it moves the input frequency to 2.4576 MHz which is ideal for low-cost crystals. If it were not for the scan counter, the 4702B would require a more expensive crystal of about 300 kHz .

Count Chains

The scan counter output drives an 8 -bit binary counter which provides the frequencies corresponding to $9600,4800,2400,1200,600,300,150$ and 75 baud. The 1800 -baud signal is generated by dividing 9600 by $16 / 3$. The 110 and 134.5 baud signals are approximated by dividing 2400 by 22 and 18 respectively. Dividing 1200 by 6 gives the 200 baud signal, while 50 baud is generated by dividing 200 baud by 4 . All division factors except 16/3 are even; thus, all outputs except 1800 baud have a 50% duty cycle.
The actual division by $16 / 3$ is achieved by using a sequence of integers 5 and 6 such that cumulative error after every three cycles is zero. This scheme, in conjunction with the divide by 16 performed in the UART, achieves good timing accuracy demanded by high speed communication equipment. Calculations indicate that the maximum distortion introduced does not exceed 0.78% regardless of the number of elements in a character.

Initialization Circuit

This circuit generates a Master Reset signal to initialize the flip-flops on the 4702B to a known state. If the External Clock Enable ($\overline{E_{C P}}$) is LOW, the local oscillator output is inhibited and timing is derived from the External Clock (CP). The first positive half cycle of the External Clock is used to generate the Master Reset and all succeeding clock signals are used for timing. This initialization scheme allows software-controlled diagnosis for fault isolation.

Fig. 1. 4702B Block Diagram

Multiplexer and Output Storage

All the desired outputs from the count chains are fed as data inputs to a multiplexer. The select inputs for this multiplexer are brought out as Rate Select input ($\mathrm{S}_{0}-\mathrm{S}_{3}$). Table 1 shows the correspondence between this code and the resulting frequency. The multiplexer output is fed as data input to a resynchronizing flip-flop that is clocked by the leading edge of the master timing.

If only single-channel applications of the 4702B were considered, the output flip-flop would be unnecessary. In multichannel applications, however, the Rate Select inputs change as a function of the Scan Counter output ($\mathrm{O}_{0}-\mathrm{O}_{2}$). The resynchronizing flip-flop assures a fixed timing relationship between $\mathrm{O}_{0}-\mathrm{O}_{2}$ and the Bit Rate output (Z).

Three important features should be noted from Table 1. First, two of the select codes specify Multiplexed Input (IM) signal as the data source to the multiplexer. The user can feed a signal into this input, however, the primary intent was to feed a static logic level to achieve a "zero baud" situation. Secondly, the codes corresponding to $110,150,300,1200$ and 2400 baud each have a maximum of only one LOW level. These are the most commonly used rates in contemporary data terminals. Thus the rate select mechanism on these terminals need only be a single-pole 5 -position switch with the common terminal grounded. Thirdly, 2400 baud is select by two different codes so that the whole spectrum of modern communication rates will have a HIGH code in the most significant bit position.

Typical Applications

In those applications where the Rate Select inputs are static levels, operation of the 4702B is rather straightforward. The multiplexer connects the specified counter output to the data input of the output flip-flop. Because the flip-flop is clocked by the master timing, its output reflects the selected frequency.

Single-Channel Bit-Rate Generator

Figure 2 shows the simplest of all 4702B applications. This circuit provides one of five possible bit rates as determined by the setting of the 5 -position switch. The generated frequencies correspond to $110,150,300$, 1200 , and 2400 baud depending on the switch setting. For many low cost terminal applications, these five selectable bit rates are adequate. The 4702B is not only intended for single-channel but also for multichannel operation, as illustrated in the following applications.

S_{3}	S_{2}	S_{1}	S_{0}	OUTPUT RATE (Z)
L	L	L	L	MULTIPLEXED INPUT (IM)
L	L	L	H	MULTPLEXED INPUT (I ${ }_{\text {M }}$)
L	L	H	L	50 BAUD
L	L	H	H	75 BAUD
L	H	L	L	134.5 BAUD
L	H	L	H	200 BAUD
L	H	H	L	600 BAUD
L	H	H	H	2400 BAUD
H	L	L	L	9600 BAUD
H	L	L	H	4800 BAUD
H	L	H	L	1800 BAUD
H	L	H	H	1200 BAUD
H	H	L	L	2400 BAUD
H	H	L	H	300 BAUD
H	H	H	L	150 BAUD
H	H	H	H	110 BAUD

Table 1. Truth Table for Rate Select Inputs

Fig. 2. Switch Selectable Bit-Rate Generator Configuration Providing 5 Bit Rates

Multichannel Bit-Rate Generation

Figure 3 illustrates a fully programmable 8 -channel bit-rate generator system. Two 4×4 register file devices (9LS170) can be loaded with information (rate select codes from Table 1) relating to the desired frequency on a per-channel basis. For clarity, circuits for writing into the files are not shown.

The least significant Scan Counter outputs ($\mathrm{O}_{0}, \mathrm{O}_{1}$) control the Read Address of the 9LS170s while the most significant output (O_{2}) controls the Read Enable (RE) inputs. Thus, as the counter advances, file locations are read out sequentially. The Scan Counter outputs are also the Address inputs for the 93L34 addressable latch. The Bit Rate output (Z) of the 4702B is the Data input to the 93L34 while the Clock Output is the Enable input.

To understand the operation, consider the instant when the Scan Counter outputs become Zero ($\mathrm{O}_{0}-\mathrm{O}_{2}$ = LOW). The same clock that incremented this counter to Zero also clocked the counter output, corresponding to the selected frequency for channel 7 into the output flip-flop, and disabled the 93 L 34 latch via the Clock Output (CO), thus preventing any change in the latch outputs while the Scan Counter outputs and the Bit Rate output (Z) are changing.

During the second half of the clock cycle, when the Clock Output (CO) is LOW, the counter output representing the selected frequency for channel 7 is loaded into the 93 L 34 latch and is locked up on the Q_{0} output.

Fig. 3. A Fully Programmable 8-Channel Bit-Rate Generator System

The Scan Counter outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{2}\right)$, which represent the selected channel, are used to interrogate the register file to determine the assigned bit rate for channel 0 . The stored code for channel 0 is routed to the Rate Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) to select the appropriate internal frequency, so that during the next LOW-toHIGH clock transition, the state of this internal signal is clocked into the output flip-flop. Thus, each channel is sequentially interrogated and the 93L34 latch is updated at least once during each half cycle of the highest output frequency (9600 baud).

By connecting the Scan Counter output Q_{2} to the Multiplexed input (I_{M}) a similar technique can be used to implement a system with a maximum output frequency of 19,200 baud, however, the number of channels must be limited to four. This ensures that the output will be interrogated and updated at least once during each half cycle of the highest output frequency (19,200 baud).

Jumper Programmable 8-Channel Bit-Rate Generator

In systems where channel-speed assignments remain relatively fixed, software-controlled channel assignment is not necessary or practical. It may be simpler to program with "jumpers" at appropriate places in the system. See Figure 4.

Fig. 4. Jumper Programmable 8-Channel Bit-Rate Generator

In the jumper programmable 8 -channel bit-rate generator, the scan counter outputs ($\mathrm{O}_{0}-\mathrm{O}_{2}$) are fed as Address inputs to a 93L01 decoder and a 93L34 addressable latch. The decoder outputs drive the diode clusters which contain four diodes for each channel. All four diode cathodes in a cluster are connected together to a decoder output; the anodes of corresponding diodes in every cluster are connected together to the appropriate Rate Select inputs of the 4702B. Presence of a diode results in a LOW on the particular 4702B input; when a diode is absent, a HIGH results. As the scan counter advances, the decoder outputs activate the desired bit-rate code for that channel. The 93L34 synchronously demultiplexes the 4702B output (Z) and reconstructs the specified bit rates at its output.

32 Times Frequency Bit Rates

The 4702B is designed to generate all the common communication bit rates at actual frequencies of 16 times the selected bit rate. The 16 times frequency is sufficient to operate UARTs. However, some recent LSI devices intended as UART replacements require 32 times frequency on their clock inputs. This note describes an elegant scheme to achieve this without a corresponding increase of the crystal frequency.

Figure 5 illustrates a fully programmable 8-channel system. Two 9LS170 devices are used to store the channel frequency selection information. These devices can be loaded with information on a per channel basis. For clarity, circuitry for writing into these devices is not drawn. The least significant SCAN counter outputs (O_{0} and Q_{1}) of the 4702B are used as the read address inputs of the 9 LS 170 s . The most significant bit $\left(\mathrm{O}_{2}\right)$ is used to control the read enable (RE) inputs of the 9LS170s. The $\mathrm{O}_{0}-\mathrm{O}_{2}$ outputs of the 4702B are also the inputs to a 9LS138 decoder. The clock output (CO) of the 4702B is used to control one enable input ($\overline{E_{1}}$) of the 9LS138. The CO output is also the clock input (CP) for the 9LS164 shift register. The Z output of the 4702B is the data input (A) to the 9 LS164. The Z output of the $4702 B$ is also tied into an exclusive NOR gate (4077B) as one input. The second input to the exclusive-NOR gate is the Q_{7} output of the 9LS164. The output of the exclusive NOR gate controls the second enable input ($\overline{E_{2}}$) of the 9LS138. The outputs ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{7}}$) of the 9LS138 are the desired output clock signals.

To understand the operation of this circuit, consider the LOW-to-HIGH transition of the CO output of the 4702B when the SCAN counter outputs change from " 7 " (HHH) to " 0 " (LLL). From this transition to the next LOW-to-HIGH transition of the CO, the Z output of the 4702B reflects the state of the channel 7 counter output. The $\mathrm{O}_{0}-\mathrm{O}_{2}$ outputs of the 4702 B are LOW and hence information for channel 0 will be available on the 9 LS 170 outputs. The $\mathrm{S}_{0}-\mathrm{S}_{3}$ inputs of the 4702 B are connected to the 9 LS 170 outputs. On the LOW-to-HIGH transition of the CO output channel 0 counter will be clocked to the Z output. This transition also clocks the 9LS164. The SCAN counter also increments on this transition and will point to channel 1. As the clocking continues, 9LS170 locations will be read out sequentially and information will be shifted into the 9LS164. After eight clock transitions the previous channel 7 output will be at the Q_{7} output of the 9LS164, and the current channel 7 output will be on the Z output of the 4702 B . The output of the exclusive NOR gate will be LOW if the inputs differ; i.e. whenever the channel 7 output is to make a transition the output of the exclusive NOR gate will be LOW. The CO output is connected to the $\overline{\bar{E}_{2}}$ input of the 93LS138 and during the negative half cycle of the clock the $\overline{\bar{O}_{0}}$ output of the 9LS138 will be LOW. The 4702B internal counters generate 16 times the selected bit rate. The exclusive NOR gate is generating a signal whenever the selected counter is making a transition. This scheme will result in 32 times the selected bit rate. As the clocking continues each channel is serially appearing on the Q_{7} output of the 9LS164 and will be compared with the corresponding current channel output. The 9LS138 will then represent the appropriate frequency at its output as shown in Figure 5.

Clock Expansion

The basic 4702B can be expanded to a maximum of eight channels. In applications where more than eight channels are needed, the 4702B must be duplicated. The device is designed with a clock-expansion feature; therefore only one crystal is required to operate all the channels.

The most economical expansion scheme provides one 4702B with a crystal and all other devices derive their timing from this master. The device wiring is such that the External Clock Enable input and I_{x} input of all but the master device feeds into the External Clock input of all the other devices. The Clock output of each device is connected to its associated 93L34 Enable input as before. An alternative scheme is shown in Figure 6.

The advantage of this scheme is that it can be conveniently used to implement the software external clock feature mentioned previously. Imagine that the External Clock Enable ($\overline{E_{C P}}$) inputs of all the 4702B's in the system are controlled by the output of a flip-flop (mode) and the External Clock inputs (CP) of all the devices are tied together and software driven, possibly by operating another flip-flop. During normal operation, the mode control is HIGH, thus selecting the crystal oscillator for timing. Also, the external Clock input of each device is held LOW. When the External Clock Enable goes LOW, in preparation for the diagnostic mode, all devices receive their timing from the External Clock input. When this input goes HIGH for the first time, all devices generate an internal Master Reset signal clearing their counter chains. The next HIGH-to-LOW transition sets the internal control flip-flop and thus terminates the Reset; all counters are free to start counting in response to the External Clock signal.

Fig. 6. Tandem Clock Expansion Scheme

USING THE 4703B FIFO

The First-In First-Out (FIFO) memory is read/write memory which automatically stacks the words in the same order as they were entered and makes them available at the output in the same sequence, thus its name first-in first-out.

Description

The 4703B FIFO is a 16×4 parallel/serial memory consisting of the following (Figure 1).

- An input register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
- A 4-bit wide, 14 -word deep fall-through stack with self-contained control logic.
- An output register with parallel and serial data outputs, control inputs and outputs for output handshaking and expansion.

Parallel data is entered into the input register by using D_{0} through D_{3} as data inputs and Parallel Load (PL) as the strobe. A HIGH at the PL input operates the direct set and clear inputs of the input-register flip-flops. The quiescent state of the PL input is LOW.

To enter data serially, D_{S} is used as the data input and $\overline{\mathrm{CPSI}}$ as the clock. The input register responds to the HIGH-to-LOW clock transition and the quiescent state of the CPSI input is LOW. For the CPSI to effect shifting, the Input Expand Serial (IES) input must be LOW.

Whenever the input register receives four data bits whether by serial or parallel entry, the status output signal, Input Register Full ($\overline{\mathrm{IRF}}$), goes LOW. If the Transfer to Stack ($\overline{\mathrm{TTS}}$) input is activated with a LOW pulse, data from the input register is transferred into the first stack location (provided it is empty). As soon as data is transferred, the control logic attempts to initialize the input register so that it can accept another word; however, the initialization is postponed until the PL input is LOW. The device is designed so that the $\overline{\text { IRF }}$ output can be connected to the TTS input. Thus, when a data word is received by the input register, it automatically enters the stack and falls through toward the output, pausing only as needed for an "empty" location.

Normally, the Output Register Empty ($\overline{\mathrm{ORE}})$ is LOW, indicating that the output register does not contain valid data. As soon as a data word arrives in the register, the $\overline{\text { ORE }}$ output goes HIGH, indicating the presence of valid data. If the Output Enable ($\overline{E O}$) input is LOW, the 3 -state buffers are enabled and data is available on the O_{0} through O_{3} outputs.
Data can be extracted either serially or in parallel. The QS is used for serial data output and CPSO for the clock input. The QS output is also available through a 3 -state buffer; however its enabling is controlled internally. Output register shifting occurs on the HIGH-to-LOW transition of the $\overline{\text { CPSO }}$ whose quiescent state is LOW. As soon as the last data bit is shifted out, the $\overline{\text { ORE }}$ output goes LOW, indicating that the output register is empty.

The quiescent state of the $\overline{\text { TOS }}$ input is LOW. A HIGH-to-LOW transition on this input causes new data to be loaded from the stack into the output register (provided data is available). The $\overline{\mathrm{ORE}}$ output can be connected to the TOS input so that as soon as the last bit is shifted out, new data is automatically demanded.
The quiescent state of the TOP input is HIGH and a LOW-to-HIGH transition causes new data to be loaded into the output register. Moreover, a HIGH level on the TOP input causes the $\overline{\text { ORE }}$ to go LOW. The TOP input can be connected to the $\overline{\mathrm{EO}}$ input so that the output data can be enabled when $\overline{\mathrm{EO}}$ is LOW. When the output is disabled, new data is automatically demanded. It should be noted that the TOS input does not affect the $\overline{\text { ORE output. }}$

The FIFO is initialized by a LOW signal on the Master Reset ($\overline{M R}$). This causes the status outputs, $\overline{\mathrm{IRF}}$ and $\overline{\mathrm{ORE}}$, to assume an empty state; i.e., $\overline{\mathrm{IRF}}$ is then HIGH and $\overline{\mathrm{ORE}}$ LOW. It is important to remember that the $\overline{\mathrm{MR}}$ does not clear all the data flip-flops; it only initializes the control. Specifically, the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs are not affected by the Master Reset.

$D_{0}-D_{3}$	Parallel Data Inputs
D_{S}	Serial Data Input
$P \mathrm{PL}$	Parallel Load Input
$\overline{\overline{C P S I}}$	Serial Input Clock Input (HIGH-toLOW Triggered)
$\overline{\overline{C P S O}}$	Serial Output Clock Input (HIGH-to-LOW Triggered)
$\overline{\overline{I E S}}$	Serial Input Enable (Active LOW)
$\overline{\text { TTS }}$	Transfer to Stack Input (Active LOW)
$\overline{T O S}$	Transfer Out Serial Input (Active LOW)
$\overline{T O P}$	Transfer Out Parallel Input
$\overline{O E S}$	Serial Output Enable Input (Active LOW)
$\overline{\overline{E O}}$	Output Enable Input (Active LOW)
$\overline{M R}$	Master Reset Input (Active LOW)
$\overline{I R F}$	Input Register Full Output (Active LOW)
$\overline{O R E}$	Output Register Empty Output (Active LOW)
$Q_{0}-Q_{3}$	Parallel Data Outputs
Q_{S}	Serial Data Output

Fig. 1. 4703B Block Diagram

Expansion

The 4703B can be vertically expanded to store more words or horizontally expanded to store longer words (in multiples of four bits) without external logic. Also, the expansion scheme fully preserves the parallel/serial data features. To illustrate the expansion connections, a FIFO array consisting of eight devices is shown in Figure 2. If there are m devices in a row and n rows, the array provides ($15 n+1$) words of storage with 4 m bits in each word. The reduction in storage to $(15 n+1)$ words instead of 16 n is quite common in such expansion (see explanation at end of this section). Data is entered into devices 1 through 4 and extracted from devices 5 through 8.

The DS inputs of the first four devices are bussed together and serial data is entered on this line. The CPSI inputs are also connected together for clocking the serial data. The IES input of device 1 is connected to ground, while the $\overline{\mathrm{IES}}$ inputs of devices 2,3 and 4 are each connected to the $\overline{\mathrm{IRF}}$ output of the preceding device. The $\overline{\mathrm{IRF}}$ output of device 4 feeds into the $\overline{\mathrm{TTS}}$ inputs of all four devices.

After initialization by a LOW level on the $\overline{M R}$ input, the $\overline{\mathrm{IRF}}$ outputs of all four devices are HIGH. Under these conditions, only device 1 responds to the $\overline{\text { CPSI }}$ because its $\overline{\text { IES }}$ input is LOW. The first four clock pulses shift four data bits into the device 1 input register; its $\overline{\text { IRF }}$ output then becomes LOW. The first data bit is located in a flip-flip corresponding to the D_{0} input of device 1 . Control logic inhibits the $\overline{\mathrm{CPS}}$ from further affecting this device.

Fig. 2. 31×16 FIFO Array

Because the $\overline{I E S}$ input of device 2 is now LOW, the clock starts shifting data into the input register of device 2. On the eighth clock pulse, the $\overline{\text { IRF }}$ output of device 2 goes LOW and disables shifting of device 2. This process continues on devices 3 and 4 . Therefore, on the 16 th clock pulse, the IRF output of device 4 becomes LOW and activates the TTS inputs of all devices. The stack control logic in each device responds by transferring data into each stack from the respective input register, and the input registers are initialized. Thus the $\overline{\mathrm{IRF}}$ outputs of all devices become HIGH once again. An automatic priority scheme assures that if the $\overline{\text { RF }}$ output of device 4 is HIGH, the input registers of all four devices have been initialized. The timing diagram for 16 bits of serial entry into the array is shown in Figure 3.

Parallel entry into the array is made with a HIGH level on the PL inputs. The same conditions prevail in the input section that exist after the 16th clock pulse in the serial entry mode. The stack controls do not initialize the input registers until the PL inputs are LOW to assure proper device operation.

Data loaded into the stacks eventually arrives at the output registers of the first four devices. Normally, the $\overline{\text { ORE outputs are LOW due to initialization; however, as soon as data is loaded into each output register, the }}$ $\overline{\text { ORE }}$ goes HIGH. An automatic priority scheme, similar to the one for data entry, also exists at the output. Thus a HIGH level on the $\overline{\text { ORE }}$ output of device 4 guarantees that valid data is present in all the output registers.

The $\overline{\text { ORE }}$ output of device 4 is connected to the PL inputs of devices 5 through 8 , as well as to the $\overline{\text { TOS }}$ inputs of the first four devices. It should be noted that if serial extraction from the output is not desired, the $\overline{\mathrm{TOS}}$ inputs can be connected to ground instead. The $\overline{\mathrm{EO}}$ inputs of the first four devices are connected to ground; thus the contents of an output register are available on the appropriate outputs.

The HIGH level on the $\overline{\text { ORE }}$ outputs of device 4 activates the PL inputs of devices $5-8$, thus forcing the data outputs from each device in the first row into the input register of the corresponding device in the second row. The $\overline{\mathrm{IRF}}$ output of device 8 is connected to the TOP inputs of devices $1-4$ and to the TTS inputs of devices $5-8$. Because the PL inputs are HIGH, the $\overline{\mathrm{IRF}}$ outputs of devices $5-8$ are LOW, therefore establishing a LOW on the TOP inputs of devices $1-4$. This causes the $\overline{\mathrm{ORE}}$ of devices $1-4$ to

Fig. 3. Serial Data Entry for FIFO Array
go LOW and hence the PL inputs to devices $5-8$. Furthermore, the LOW on the $\overline{\mathrm{RF}}$ output of device 8 also activates the TTS inputs of devices $5-8$, thus initiating a fall-through action. The stack controls in devices $5-8$ initialize their respective registers and the $\overline{\text { IRF }}$ outputs go HIGH. An automatic priority scheme is aiso present at the inputs of devices $5-8$. The HIGH on the IRF output of device 8 restores the TOP inputs of devices $1-4$ to the quiescent state.
If the stacks of devices $5-8$ are full, activating the $\overline{T T S}$ inputs by the LOW $\overline{\operatorname{RF}}$ output of device 8 would not initiate a data transfer from the input registers. The $\overline{\mathrm{RFF}}$ output of device 8 would remain LOW until the data can be successfully transferred into the stacks. Thus, as long as devices 5-8 are holding 16 words, the $\overline{\mathrm{RF}}$ output of device 8 remains LOW. This also holds the TOP inputs of devices $1-4$ LOW. As long as they remain LOW, data cannot be loaded into the output registers from the stacks because a LOW-to-HIGH transition at the TOP inputs is needed to demand new data. Under these circumstances, devices $1-4$ temporarily lose the ability to use their output registers and hence can hold only 15 words. As a result, the two rows have a storage capacity of 31 words instead of 32 ; and, for the general case, the storage capacity of an n-row array is $(15 n+1)$ instead of $16 n$.

The data loaded into the stacks eventually arrives at the output registers of devices $5-8$, at which time the $\overline{\text { ORE }}$ outputs go HIGH from the LOW state originally initialized by the $\overline{M R}$ input. The automatic priority scheme is still in effect, and the data from the output can be extracted either in serial or parallel format.

The QS outputs of devices $5-8$, each available through a 3 -state buffer, are connected together and the serial data output from the array appears on this line. The $\overline{\mathrm{CPSO}}$ inputs are also connected together and the line driven by the output clock. When there is no valid data in the output register, OS_{S} is disabled and is therefore in a high impedance state.
The $\overline{\text { OES }}$ input of device 5 is connected to ground and device 6, 7 and 8 each receive its $\overline{\text { OES }}$ input from the preceding device. As soon as data arrives in the output registers of devices 5-8, the ORE outputs go HIGH and the 3 -state buffer of device 5 is enabled so that its QS output becomes identical to its Q_{0} output. The QS outputs of devices $5-8$ are in a high impedance state. The clock on the $\overline{\mathrm{CPSO}}$ input shifts the device 5 output register and data is shifted out in the same bit order as entered at the array input. After the fourth clcok pulse, the $\overline{O R E}$ output of device 5 goes LOW and its OS output is disabled into the high impedance state.

The $\overline{\mathrm{ORE}}$ output of device 5 establishes a LOW on the $\overline{\mathrm{OES}}$ input of device 6 . This enables its QS output buffer and a signal, corresponding to that of the Q_{0} output, appears on the serial output line. Device 6 now responds to the clock inputs and, after shifting the data out, its QS output goes into a high impedance mode. The LOW on the $\overline{\text { ORE }}$ output of device 6 enables device 7. This process continues until the last data bit has been shifted out of device 8, at which time its $\overline{\text { ORE }}$ output goes LOW. This activates the $\overline{\text { TOS }}$ inputs of devices 5-8 and new data can then be loaded from the stack when available. The timing diagram for 16 bits of serial data extraction is shown in Figure 4.

Data can be extracted from the array in parallel by activating the TOP inputs of devices $5-8$ LOW. New data is loaded into the output registers on the LOW-to-HIGH transition of this input. The TOP and EO inputs can be connected together so that data can be automatically extracted.

Automatic Priority Scheme

Most conventional FIFO designs provide status signals analogous to the $\overline{\text { IRF }}$ and $\overline{\text { ORE }}$ outputs. However, when these devices are operated in arrays, unit-to-unit delay variations require external gating to avoid transient false-status indications. This is commonly referred to as composite-status signal generation. The design of the 4703B FIFO eliminates this problem. An automatic priority feature is built in to assure that a slow device will automatically predominate, irrespective of location in the array.

In Figure 3, devices 1 and 5 are defined as "row masters". Devices 2, 3 and 4 are "slaves" to device 1 while devices 6,7 and 8 are slaves to device 5 . The row master is established by sensing the $\overline{I E S}$ input during the period when the $\overline{M R}$ input is LOW. Because of the initialization, the $\overline{\operatorname{RFF}}$ outputs of all devices are HIGH for a short time after the HIGH-to-LOW transition of the $\overline{M R}$ input. Thus $\overline{\mathrm{IES}}$ inputs of all devices except 1 and 5 are HIGH. This condition is sensed by the device logic to establish the row mastership.

Fig. 4. Serial Data Extraction for FIFO Array

All devices in any given row transfer data from their input registers into the corresponding stacks simultaneously. However, no slave can initialize its input register until its IES input goes HIGH. Thus initialization starts with the row master and eventually ends at the last slave in the row.

A similar situation occurs at the output registers of all devices in a row. They are loaded simultaneously from corresponding stacks; however, the $\overline{\mathrm{ORE}}$ ouput of a slave cannot go HIGH until its $\overline{\mathrm{OES}}$ input is HIGH. Thus the row master is the first to indicate a HIGH on its $\overline{\text { ORE }}$ and eventually the slaves will follow. It should be pointed out that this automatic priority scheme reduces the maximum operation speed of the array. If speed is essential, the master-slave hierarchy can be replaced by the traditional composite-status signal-generation scheme, which requires external gating.

Other Expansion Schemes

The expansion scheme illustrated in Figure 3 is quite simple and straightforward. It does not require any external support logic to achieve the desired expansion and retains all the serial/parallel features. However, these advantages are not without sacrifice-one storage location is eliminated at the interface between rows-and the n-row array has a storage capacity of $15 n+1$ instead of $16 n$ words. Moreover, the automatic priority scheme results in a ripple action from row master to the last slave in that row for the status signaling. This reduces the maximum operation frequency of an array and the inherent speed of the individual devices is not fully utilized.

The 4703B FIFO, because of its versatility, can be used to overcome both above disadvantages with minimum external logic. A vertically expended array, consisting of three FIFOs, yields 16 n words of storage for an n-row array (Figure 5). After initialization by a LOW level on the $\overline{M R}$ inputs, the $\overline{\mathrm{IRF}}$ outputs of all three devices are HIGH and the ORE outputs LOW. The AND gates (4081B) at the row interface are thus disabled. The PL inputs of devices 2 and 3 are LOW. Now, if the input register of device 1 receives four bits of data, then $\overline{\text { IRF output goes LOW. This activates the TTS input and the data falls through into the }}$ output register of device 1 and the $\overline{\text { ORE }}$ output becomes HIGH. Since the $\overline{\mathrm{IRF}}$ output of device 2 is HIGH from initialization, the AND gate between devices 1 and 2 is enabled and the PL input of device 2 becomes HIGH. Data from device 1 is loaded into the input register of device 2 causing the $\overline{\text { IRF }}$ output of device 2

Fig. 5. Expansion without Sacrificing a Storage Location at the Interface
to go LOW. Moreover, a HIGH level on the PL input of device 2 results in a LOW level on the TOP input of device 1. As a result, the $\overline{\text { ORE }}$ output of device 1 also becomes LOW. Either way, the AND gate is disabled and the PL input of device 2 goes LOW and the TOP input of device 1 becomes HIGH.
The LOW level on the $\overline{\mathrm{IRF}}$ output of device 2 activates its $\overline{\mathrm{TTS}}$ input and initiates a fall-through action; the data appears at the output register. Because the TOP input of device 1 is HIGH, new data arrives at the device 2 output register. When data appears at the output of device 2, the AND gate at the interface of devices 2 and 3 is enabled. By a similar action described above, device 3 takes the data word into its input register and passes it on to the output. Thus, if 16 words are loaded at the input to the array, the 1 st word is located in the output and the 16 th word is in the input register of device 3 . Device 3 is full now and its $\overline{\text { IRF }}$ output remains LOW until data is extracted. This LOW level disables the AND gate between devices 2 and 3 and hence any arrival of new data into the output register of device 2 does not activate the PL input of device 3. As new data is received, it is arranged in devices 1 and 2 so that the 17 th data word falls into the device 2 output register and the 48th word remains in the input register of device 1 . Forty-eight data words fill all devices in the array. Under these conditions, the status output is as follows: the $\overline{\mathrm{IRF}}$ outputs

The data extraction takes place when the TOP input of device 3 is activated; normally it is HIGH. To extract data, TOP is made LOW and then HIGH. When the TOP input is LOW, the $\overline{\text { ORE }}$ of device 3 goes LOW. When TOP is returned HIGH, data is demanded from the stack.

The internal control in device 3 loads the second data word into the output register and the $\overline{\mathrm{ORE}}$ goes HIGH. The internal control also initiates a fall-through action in device 3. Thus, the 16th data word that was located in the input register is transferred into the device 3 stack and the input register is initialized. Thus, the $\overline{\mathrm{RFF}}$ output of device 3 becomes HIGH.
The 17th data word is located in the output register of device 2, hence the $\overline{\text { ORE output is HIGH. When the }}$ $\overline{\text { IRF }}$ output of device 3 becomes HIGH, the AND gate at the interface causes the PL input of device 3 to go HIGH and the TOP input of device 2 LOW. The 17th data word then goes into the input register of device 3. The internal control of device 2 initiates fall-through action so that the 18 th word falls into the output and the 32 nd word is transferred into the stack. This results in a HIGH at the $\overline{\text { IRF }}$ output of device 2. Similar action takes place between devices 1 and 2 with the net result that all data has fallen one location creating a vacancy in the input register of device 1. It is now clear that this FIFO array has a 48 -word capacity without affecting the serial/parallel data feature at the input or the output. It can then be concluded that if an array of n rows is constructed using the proposed scheme, the effective storage capacity of the FIFO is 16 n words.

The array of Figure 6 has all the features and yet operates at a higher speed than the array shown in Figure 2. Whenever the $\overline{\mathrm{IRF}}$ output of device 1 is HIGH, the $\overline{\mathrm{ES}}$ inputs of devices 2,3 and 4 are also HIGH. Therefore, when the array is initialized by a LOW level on the $\overline{M R}$ inputs, device 1 is the row master and devices 2,3 and 4 are the slaves. In the second row of devices, the $\overline{\mathrm{RFF}}$ and $\overline{\mathrm{IESs}}$ are interconnected so that device 5 is also a row master and devices 6,7 and 8 are slaves.

When serial data is entered into the array, device 1 receives the first four bits of data. Devices 2, 3 and 4 do not respond to the clock since all three $\overline{\mathrm{IES}}$ inputs are HIGH. After the 4 th bit, the $\overline{\mathrm{IRF}}$ output of device 1 is LOW. This disables device 1 from responding to the clock and enables device 1 so that the next four bits are entered into device 2 . Devices 3 and 4 remain disabled by a HIGH level on the $\overline{\operatorname{IES}}$ inputs. After the 8 th bit, the $\overline{\mathrm{IRF}}$ of device 2 becomes LOW, thus disabling device 2 and enabling device 3 . After the 12 th bit, the $\overline{\mathrm{IRF}}$ output of device 3 is LOW and thus device 4 is enabled. After the 16 th bit, the $\overline{\mathrm{IRF}}$ output of device 4 is LOW. So far, the serial data entry into this array is identical to that for the array in Figure 2.

The LOW level on the $\overline{\mathrm{IRF}}$ output of device 4 activates the $\overline{\mathrm{TTS}}$ inputs of all 4 devices, causing the transfer of data into the stacks. Although all devices transfer data into the stack simultaneously, device 1 (row master) is the first to initialize its input register. Since devices 2,3 and 4 are slaves, they need a HIGH on their $\overline{\text { IES }}$ inputs for input-register initialization. As soon as the $\overline{\mathrm{IRF}}$ output of device 1 goes HIGH due to initialization, the $\overline{\mathrm{ES}}$ inputs of devices 2,3 and 4 become HIGH and their input registers are initialized simultaneously. This is in contrast to Figure 2 where device 3 has to wait for device 2 to initialize, etc. The ripple action of input initialization has been overcome by simple gating. The $\overline{\mathrm{RFF}}$ outputs of devices 1 ,

Fig. 6. Expansion with Priority Defeated for Faster Operation

2,3 and 4 are fed into 4 -input AND gates (4082B) to generate the composite input status. To obtain an indication that the input register of the array is empty, the input register of each device in the first row should be empty.

The $\overline{\mathrm{ORE}}$ and $\overline{\mathrm{OES}}$ interconnections for the second row are essentially similar to the input section. This gating at the output section eliminates the rippling effect of the output status indication. If the gating arrangement used in Figure 5 is incorporated into the array of Figure 6, the result is a 32 word $\times 16$-bit FIFO network.

As shown in Figure 8, higher FIFO speeds may also be attained by adding one 4518B and implementing a multiplexed expansion scheme. Figure 7 shows the conventional horizontally expanded 8 -bit array with 16 words of storage.

Serial data is entered using the DS as the data input and CPSI as the clock input. Shifting takes place on the HIGH-to-LOW transition of the CPSI input. When the first four bits of data are entered into device 1, its $\overline{\text { IRF }}$ output goes LOW indicating that its input register is full. The LOW on the $\overline{\text { IRF output of device } 1}$ enables device 2 and disables device 1. Device 2 will shift the next four data bits into its input register. When the input register of device 2 is full, its $\overline{\operatorname{IRF}}$ output goes LOW. The LOW on the $\overline{\text { IRF }}$ output of device 2 activates the $\overline{T T S}$ inputs of both devices. Thus, data from the input registers of both devices is loaded into their respective stacks simultaneously. The control logic in each device then initializes its input register in preparation to accept more incoming data.

In Figure 7, device 1 is called the row master and is privileged to initialize its input register first. This results in a HIGH on its $\overline{\mathrm{RF}}$ output. Device 2 (slave) senses this and allows its $\overline{\mathrm{RF}}$ to go HIGH. This master/slave scheme is built into the 4703B so that device to device speed variations do not cause transient false status indications. However, this is effectively a ripple action and limits the ultimate operating speed of the array. A multiplexing scheme is proposed that achieves much higher operating speeds.

Fig. 7. Conventional 8 Bit Array

Figure 8 shows another 8 -bit network incorporating one 4518 B counter. The Q_{3} output of the input counter controls the $\overline{I E S}$ inputs of the FIFO's. When the array is reset by a LOW pulse on the Master Reset input ($\overline{\mathrm{MR}}$), the $\overline{\mathrm{ESS}}$ input of device 1 is LOW and that of device 2 is HIGH. This establishes device 1 as the master and device 2 as the slave. The first four bits of data are entered into device 1. On the fourth HIGH-to-LOW transition of the clock, the Q_{3} output of the counter changes. The $\overline{\mathrm{IES}}$ input of device 1 goes HIGH and disables its input register from shifting. The $\overline{\mathrm{IES}}$ input of device 2 goes LOW and enables its input register to shift allowing the next four data bits to be shifted into device 2. While shifting into device 2 is occuring, the $\overline{\mathrm{IRF}}$ output of device 1 will become LOW some propagation delay after the fourth clock transition. The $\overline{\mathrm{TTS}}$ input of device 1 is activated. This causes the data to fall through into the stack. Device 1, being the row master, will initialize its input register. On the eighth clock transition the O_{3} output of the counter changes again. The $\overline{\text { IES }}$ input of device 1 will be LOW and the $\overline{\text { IES }}$ input of device 2 will be HIGH. While device 1 is receiving data, device 2 can transfer its data into the stack and intialize its input register.

A similar scheme is used at the output. The other half of a 4518 B counter is used to control the $\overline{\mathrm{OES}}$ inputs. A HIGH-to-LOW transition of the $\overline{\text { CPSO }}$ input shifts data out on the QS output. A connection between the $\overline{O R E}$ output and the $\overline{T O S}$ input provides automatic data extraction after shifting out four bits of data from a device.

Figure 9 illustrates another multiplexed expansion scheme using a 4027B Dual JK Flip-Flop. Referring back to Figure 7, the propagation delays are as follows:
(a) T_{1} is the delay from the HIGH-to-LOW transition of $\overline{\mathrm{CPSI}}$ to $\overline{\mathrm{RF}}$ going LOW at device 2 . Typical value is 81 nsec at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.
(b) T_{2} is the delay from $\overline{\mathrm{TTS}}$ going LOW to $\overline{\mathrm{IRF}}$ going HIGH at device 1. Typical value is 131 nsec at $V_{D D}=10 \mathrm{~V}$.
(c) T_{3} is the delay from $\overline{\mathrm{IES}}$ going HIGH to $\overline{\mathrm{IRF}}$ going HIGH at device 2. Typical value is 112 nsec at $V_{D D}=10 \mathrm{~V}$.

Fig. 8. A Multiplexed Expansion Scheme

A new data word cannot begin shifting into device 1 until the $\overline{\operatorname{IRF}}$ output of device 2 is HIGH. Thus, the $\overline{\mathrm{CPSI}}$ clock period is $\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$ or 324 nsec typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.
Figure 9 shows another 8 -bit network using multiplexed IES inputs. When the array is reset by a LOW pulse on the Master Reset input ($\overline{\mathrm{MR}}$), the $\overline{\mathrm{IES}}$ input of device 1 is LOW and the $\overline{\mathrm{IES}}$ input of device 2 is HIGH. This establishes device 1 as the row master and device 2 as the slave. The first HIGH-to-LOW CPSI transition shifts the first data bit into device 1 . This transition complements the flip-flop also. The IES of device 1 goes HIGH and the $\overline{\text { IES }}$ of device 2 goes LOW. The second data bit will shift into device 2 and the flip-flop toggles again. The third data bit will shift into device 1 and so on. When the seventh data bit is shifted into device 1, its input register becomes full. The $\overline{\mathrm{IRF}}$ output becomes LOW; thus, the TTS input of device 1 is activated. This causes the device 1 to transfer its data into its stack and initialize its input register. In the meantime device 2 can receive the eighth data bit. In Figure 9 the propagation delays are as follows:
(a) T_{1} is the delay from the HIGH-tu-LOW $\overline{\mathrm{CPSI}}$ transition to $\overline{\mathrm{IRF}}$ going LOW at both devices 1 and 2 . Typical value is 81 nsec at $V_{D D}=10 \mathrm{~V}$.
(b) T_{2} is the delay from $\overline{\mathrm{TTS}}$ going LOW to $\overline{\mathrm{RF}}$ going HIGH for both devices 1 and 2. Typical value is 131 nsec at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$.

The $\overline{\text { CPSI }}$ clock period in Figure 9 is then $T_{1}+T_{2}$ or 212 nsec typical at $V_{D D}=10 \mathrm{~V}$. This is a significant improvement over that calculated for Figure 7.

A similar flip-flop scheme is used at the output to control the $\overline{\mathrm{OES}}$ inputs. The HIGH-to-LOW transition of the $\overline{\text { CPSO }}$ shifts out the data on the O_{S} output. Note that serial data bits come out in the same order as they are entered at the input. The connection between the $\overline{\mathrm{ORE}}$ and $\overline{\mathrm{TOS}}$ of the devices is to accomplish automatic data extraction after shifting their four bits of data.
It should be noted that if any attempt is made to clock data at the input when both $\overline{\mathrm{RF}}$ outputs are LOW, a data overrun conditon exists. A LOW on the TRF input indicates that the input register is full. Similarly, if the $\overline{\text { ORE outputs are LOW and an attempt is made to shift out data, then an overrun condition exists, }}$ also. A LOW on the ORE indicates that no valid information is present in the output register.

Fig. 9. A Multiplexed Expansion Scheme

SELECTION GUIDES AND CROSS REFERENCE

FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS
JEDEC INDUSTRY STANDARD "B"
SERIES CMOS SPECIFICATIONS

TECHNICAL DATA

APPLICATIONS INFORMATION

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES.

 SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS
ORDER AND PACKAGE INFORMATION

Fairchild integrated circuits may be ordered using a simplified purchasing code where the package style and temperature range are defined as follows:

PACKAGE STYLE

$D=$ Dual In-line - Ceramic (hermetic)
P = Dual In-line - Plastic
$\mathrm{F}=$ Flatpak

In order to accommodate varying die sizes and numbers of pins (14, 16, 24, etc.), a number of different package forms are required. The Package Information list on the following pages indicates the specific package codes currently used for each device type. The detailed package outline corresponding to each package code is shown at the end of this section.

Temperature Range

Two basic temperature grades are in common use: $\mathrm{C}=$ Commercial-Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{M}=$ Military, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Exact values and conditions are indicated on the data sheets.

Examples

(a) 4014 BFM

This number code indicates a 4014B Register in a Flatpak with military temperature rating.
(b) $4720 B D C$

This number code indicates a $4720 \mathrm{~B} 256 \times 1$ RAM in a ceramic Dual In-line Package with commercial temperature rating.
(d) 40014 BPC

This number code indicates a 40014B Hex Schmitt Trigger in a plastic package with a commercial temperature rating. Device Identification/Marking

All Fairchild standard catalog integrated circuits will be marked as follows:

ORDER AND PACKAGE INFORMATION

ORDER AND PACKAGE INFORMATION

CMOS PACKAGE INFORMATION (Cont'd)

DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
	$\begin{gathered} \text { CERAMIC } \\ \text { DIP (D) } \end{gathered}$	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	$\begin{gathered} \text { PLASTIC } \\ \text { DIP (P) } \end{gathered}$
4104B	6B	4L	6B	9 B
4510B	6B	4L	6B	9 B
4511B	6B	4L	6B	9 B
4512B	6B	4L	6B	9B
4514B	6 N	4M	6 N	9 N
4515B	6 N	4M	6 N	9 N
4516B	6B	4L	6B	9B
4518B	6B	4L	6B	9 B
4520B	6B	4L	6B	9 B
4521B	6B	4L	6B	9 B
4522B	6B	4L	6B	9 B
4526B	6B	4L	6B	9 B
4527B	6B	4L	6 B	9 B
4528B	6B	4L	6B	98
4539B	6B	4L	6B	9 B
4543B	6B	4L	6B	9B
4555B	6B	4L	6B	9 B
4556B	6B	4L	6B	9 B
4557B	6B	4L	6B	9 B
4702B	6B	4L	6 B	9 B
4703B	60	4M	60	9 U
4710B	7D		7 D	9 M
4720B	7B	4L	7B	9B
4722B	6B	4L	6B	9B
4723B	6B	4L	6B	9 B
4724B	6B	4L	6B	9 B
4725B	6B	4L	6B	9 B
4727B	6A	31	6 A	9A
4731B	6A	4L	6A	9A
4741B	6B	4L	6B	9B
40014B	6A	31	6A	9 A
40085B	6B	4L	6B	9B
40097B	6B	4L	6B	9 B
40098B	6B	4L	6B	9 B
40161B	6B	4L	6B	9 B
40163B	6B	4L	6B	9 B
40174B	6B	4L	6B	9B
40175B	6B	4L	6B	9 B
40193B	6B	4L	6B	9B
6508B	6B	4L	6B	9 B
6518B	7D	TBA	7D	9 M

MATRIX VI PROGRAM ORDERING INFORMATION

Matrix VI is a full spectrum/cost effective reliability and quality program for commercial/industrial ICs only. It features six levels of screening/package flows, each tailored to a user's field application/environment and his incoming quality/ equipment reliability requirements.

A Matrix VI part number consists of the device type followed by the package code letter, the temperature range code letter, and the Matrix VI code letter (as applicable, see flow chart).

EXAMPLES

(a) 4001BPC Device type 4001B, packaged in plastic Dual In-line (P), in commercial temperature range (C) and processed to Matrix VI Level 1.
(b) 4001 BDC Device type 4001B, packaged in ceramic Dual In-line (D), in commercial temperature range and processed to Matrix VI Level 3.
(c) 4001 BPCQR Device type 4001B, packaged in Dual In-line, in commercial temperature range (C) with supplemental Matrix VI Level 5 screening including 100\% thermal shock, "hot rail" test, 168 hours $125^{\circ} \mathrm{C}$ burn-in and 0.15% AQL functional testing.
(d) 4001 BDCQR Device type 4001B, packaged in ceramic Dual In-line, in commercial temperature range with supplemental Matrix VI Level 6 screening including burn-in, three 100% DC/functional tests and 0.15% AQL functional testing.

MATRIX VI PROCESS FLOW OPTIONS \& COST EFFECTIVENESS

UUALITY GUARANTEE ON FUNCTIONALITY $=0.15 \% \mathrm{AQL}$ COST SEQUENCE 4 RELIABILITY FACTOR 14X

[^16] and power ON/OFF application, the reliability factor would be approximately 7.5 X .

UNIQUE 38510 PROGRAM ORDERING INFORMATION

The Fairchild Unique 38510 Program is written in accordance with MIL-M-38510 and MIL-STD-883
To meet the need of improved reliability in the military market, CMOS Integrated Circuits are available with special processing. Devices ordered to this program are subjected to the 100% screening as outlined in the Process. Devices will be marked in accordance with unique 38510 unless otherwise specified under number Option 6.

UNIQUE 38510 devices are not normally stocked by distributors.
Customer procurement documents should specify the following:
(a) Fairchild Product Code indicating the basic device type and package combination.
(b) The Unique 38510 Device Class. (A, B*, B, C)
(c) Number and/or Letter Options required.
(d) Special Marking requirements.

The order code number consists of (a) and (b) as shown above. The order code detailed format is shown below.

4001B			
DEVICE	PACKAGE TYPE	TEMPERATURE RANGE	DESIGNATES UNIQUE 38510 PROCESSING IF
TYPE	$D=$ CERAMIC DIP	$C=-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}(59 X)$	REQUIRED. SEE DESCRIPTION OF SCREENING
	$P=$ PLASTIC DIP	$M=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}(51 \mathrm{X})$	REQUIREMENTS
	$F=$ CERAMIC FLAT		

Order code examples are:

4029BFMOB
Class QB Unique 38510

4007UBDMQS
Class QS Unique 38510

Number Options: These options apply to operations performed on each unit delivered:
OPTION 1 Lead form to dimensions in detail specifications, followed by hermetic seal tests.
OPTION 2 Hot solder dip finish.
OPTION 3 Read and record critical parameters before and after burn-in.
OPTION 4 Initial qualification, Group B, C \& D quality conformance not required.
OPTION 5 Radiographic inspection shall be performed on all devices.
OPTION 6 Special marking required.
OPTION $7 \quad$ Non-conforming variation - refer to procurement documents for details (must be negotiated with factory).
Letter Options: These options apply once per Purchase Order or line item and are considered Test Charges:
OPTION A Group C testing shall be performed on customer's parts.
OPTION B Group D testing shall be performed on customer's parts.
OPTION C Generic data to be supplied from the latest completed lot.
OPTION D Unique 38510 program plan, pertinent to the device family being purchased, shall be supplied.

PROCESS SCREENING REQUIREMENTS

MIL-STD-883 TEST METHODS
Preseal Visual MTD. 2010.2
Bond Strength:
Seal:
High Temperature Storage:
Temperature Cycle MTD 1010:
Constant Acceleration MTD 2001:
Hermetic Seal MTD 1014:
Pre Burn-In Electrical
Burn-in Screen MTD 1015:
Post Burn-in Electrical (5004.1):
Radiography MTD 2012:
Quality Conformance Inspection MTD 5005

External Visual MTD 2009:

DESCRIPTION

Cond. A - Class QA
Cond. B - Other Classes

Bond strength is monitored on a sample basis three times per shift per mach.
Devices are hermetically sealed for compliance to MIL-STD-883 requirements

Cond. C Tstg $=150^{\circ} \mathrm{C} / 24 \mathrm{hrs}$
Cond. $\mathrm{C}-65^{\circ} / 150^{\circ} \mathrm{C} 10$ cycles

Cond. E 30000 Gs Y_{1} only
Cond. B Fine-Radiflo $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$
Cond. C2 Gross-FC78 with pressure $10^{-5} \mathrm{cc} / \mathrm{sec}$
Per detailed drawing to remove rejects prior to submission to burn-in screen

Cond. A - Static burn-in inputs alternately HIGH and LOW.

Per detailed drawing to cull out devices which failed as a result of burn-in.
Two views
Group A: Electrical Characteristics
Group B: Physical Dimensions, marking permanence, bond strength, solderability
Group C: Die Related Tests
Group D: Packaged Related Tests
3X; 20X magnification: Verify dimensions, configuration, lead structure, marking and workmanship

1. Unique 38510 is written around the MIL-M- 38510 requirements with a few modifications to Method 5005 in that 100% dc testing at the temperature extremes and 100% ac testing at $25^{\circ} \mathrm{C}$ is not done and Unique 38510 QS has some burn-in logistics differences.
2. Qualification testing per groups B, C and D on a customer's parts require additional lot charges and an added minimum of two months to the schedules deliveries
3. Any burn-in condition other than MTD 1015 Condition A is at customer request only.

PACKAGE OUTLINES

In Accordance with JEDEC TO-86 Outline 14-Pin Cerpak

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are alloy 42
Package weight is 0.26 gram
Pin 1 orientation may be either tab or dot

16-Pin Cerpak

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are alloy 42
Package weight is 0.4 gram
Hermetically sealed beryllia package

22-Pin MSI Plastic Dual In-Line

NOTES:
Pins are tin-plated 42 alloy
Package material is plastic
Pins are intended for insertion in hole rows on 400 (10.16) centers.
They are purposely shipped with "positive" misalignment to facilitate insertion.

24-Pin BeO Cerpak

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are alloy 42
Package weight is 0.8 gram
Hermetically sealed beryllia package

in accordance with JEDEC (TO-116) outline 14-Pin Ceramic Dual In-Line

16-Pin Ceramic Dual In-Line

6B

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on .300' (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for . 020 inch (0.508) diameter pin
Pins are alloy 42
Package weight is 2.0 grams
The .037/.027 (.940/.686) dimension does not apply to the corner pins

40-Pin Dual In-Line Side Brazed, Large Cavity

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pin material nickel gold-plated kovar
Cap is kovar
Base is ceramic
Package weight is 6.5 grams

PACKAGE OUTLINES

24-Pin Ceramic
 Dual In-Line

24-Pin Ceramic Dual In-Line

 6Q

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on .400 " (10.16) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (0.508) diameter pin
Pins are alloy 42

22-Pin Ceramic Dual In-Line

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are tin-plated 42 alloy
Package material is alumina
Pins are intended for insertion in hole rows on .400 (10.160) centers
They are purposely shipped with "positive misalignment to facilitate insertion.
Package weight is 6.0 grams

16-Pin Dual In-Line

7B
18-Pin Ceramic Dual In-Line

NOTES:

All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on .300 " (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (0.508) diameter pin
Pins are alloy 42

22-Pin Dual In-Line (Metal Cap)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insersion in hole rows on .400 " (10.16) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" (0.51) diameter pin
Pins are gold-plated Kovar
Cap is Kovar
Base is ceramic
Package weight is 4 grams

40-Pin Plastic Dip (Production Mold)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are alloy 42
Package material is plastic
Pins are intended for insertion in hole rows on .600 " (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion

14-Pin Plastic Dual In-Line

NOTES:

All dimensions in inches (bold) and millimeters (parantheses)
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (0.508) diameter pin
Pins are alloy 42
Package weight is 0.9 gram
Package material is silicone

16-Pin Plastic Dual In-Line

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are alloy 42
Pins are intended for insertion in hole rows on $.300^{\prime \prime}$ (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (0.508) diameter pin
***The .037/.027 (.940/.686) dimension does not apply to the corner pins
Package weight is 0.9 gram

18-Pin Plastic Dual In-Line

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equa your practice for .020 inch (0.508) diameter pin
Pins are alloy 42

24-Pin Plastic Dual In-Line

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on .600" (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (0.508) diameter pin
Pins are alloy 42

24-Pin Plastic Dual In-Line

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Pins are intended for insertion in hole rows on $.400^{\prime \prime}$ (10.16) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for . 020 inch (0.508) diameter pin
Pins are alloy 42
INTRODUCTION $\quad 1$

NUMERICAL INDEX OF DEVICES

```
SELECTION GUIDES AND CROSS REFERENCE
```

> FAIRCHILD 4000B SERIES CMOS GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH FAIRCHILD 4000B SERIES CMOS

JEDEC INDUSTRY STANDARD "B SERIES CMOS SPECIFICATIONS

Fairchild Semiconductor

Franchised
Distributors

United States and Canada

Alabama

Hallmark Electronics

4900 Bradford Drive
Huntsville. Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187
Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Hy. in Dallas, Texas)

Arizona

Hamilton/Avnet Electronics
505 S. Madison Drive
Tempe. Arizona 85281
Tel: 602-275-7851 TWX: 910-951-1535
Kierulff Electronics
4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-243-4101
Wyle Distribution Group
8155 North 24th Ave.
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Avnet Electronics
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX: 910-595-1928
Bell Industries
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara, California 95051
Tel: 408-727-2500 TWX: 910-338-0541
Hamilton Electro Sales
3170 Pullman Avenue
Costa Mesa, California 92636
Tel: 714-979-6864
Hamilton Electro Sales
10912 W. Washington Blvd.
Culver City, California 90230
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-379-6486
Hamilton/Avnet Electronics
4545. Viewridge Avenue

San Diego, California 92123
Tel: 714-571-7527
Telex: HAMAVELEC SDG 69-5415
Anthem Electronics
1020 Stewart Drive
P.O. Box 9085

Sunnyvale, California 94086
Tel: 408-738-1111
Anthem Electronics, Inc.
4040 Sorrento Valley Blvd.
San Diego, California 92121
Tel: 71,4-279-5200
Anthem Electronics, Inc.
2661 Dow Avenue
Tustin, California 92680
Tel: 714-730-8000
Wyle Electronics
124 Maryland Street
EI Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
Wyle Distributor Group
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-641-1600
Telex: 610-595-1572
**Sertech Laboratories
2120 Main Street, Suite 190
Huntington Beach, California 92647 Tel: 714-960-1403

Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590

Colorado

Bell Industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Arrow Electronics
2121 South Hudson
Denver, Colorado 80222
Tel: 303-758-2100
Wyle Distribution Group
6777 E. 50th Avenue
Commerce City, Colorado 80022
Tel: 303-287-9611 TWX: 910-936-0770
Hamilton/Avnet Electronics
8765 E. Orchard Rd.. Suite 708
Englewood. Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787

Connecticut

Arrow Electronics, Inc.
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 203-265-7741
Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury. Connecticut 06810
Tel: 203-797-2800
TWX: None - use 710-897-1405
TWX: None - use 710-897-1405
(Regional Ha. in Mt. Laurel. N.J.)
Harvey Electronics
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 402
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790
Arrow Electronics
115 Palm Bay Road N.W
Suite 10 Bidg. \#200
Palm Bay, Florida 32905
Tel: 305-725-1408
Hallmark Electronics
1671 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
Hallmark Electronics
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
Hamilton/Avnet Electronics
6800 N.W. 20th Avenue
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-954-9808
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Florida 33702
Tel: 813-576-3930
Schweber Electronics
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252
Telex: 810-766-0439
**This distributor carries Fairchild die products only.

Hamilton/Avnet Electronics
6700 Interstate 85 Access Road, Suite 1E
Norcross, Georgia 30071
Tel: 404-448-0800
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Ha. in Dallas, Texas)
Illinois
Hallmark Electronics, Inc.
1177 Industrial Drive
Bensenville, lllinois 60106
Tel: 312-860-3800
Hamilton/Avnet Electronics
3901 N. 25th Avenue
Schiller Park, llinois 60176
Tel: 312-678-6310 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166
Schweber Electronics, Inc.
1275 Brummel Avenue
Elk Grove Village, Illinois 60007
Tel: 312-593-2740 TWX: 910-222-3453
Semiconductor Specialists, Inc.
(mailing address)
O'Hare International Airport
P.O. Box 66125

Chicago, Illinois 60666
(shipping address)
195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, Illinois 60126
Tel: 312-279-1000 TWX: 910-254-0169

Indiana

Graham Electronics Supply, Inc.
133 S. Pennsylvania St.
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX: 810-341-3481
Pioneer Indiana Electronics, Inc.
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

Kansas

Halimark Electronics, Inc.
11870 W. 91st Street
Shawnee Mission, Kansas 66214
Tel: 913-888-4746
Hamilton/Avnet Electronics
9219 Guivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

Louisiana

Sterling Electronics Corp
4613 Fairfield
Metairie, Louisiana 70002
Metairie, Louisiana
Tel: 504-887-7610
Tel: 504-887-7610
Telex: STERLE LEC MRIE 58-328

Maryland

Hallmark Electronics, Inc.
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300
Hamilton/Avnet Electronics
(mailing address)
Friendship International Airport
P.O. Box 8647

Baltimore, Maryland 21240
(shipping address)
7235 Standard Drive
Hanover, Maryland 21076
Tel: 301-796-5000 TWX: 710-862-1861
Telex: HAMAVLECA HNVE 87-968
Pioneer Washington Electronics, Inc. 9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784

Schweber Electronics

9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-0536

Massachusetts
Arrow Electronics. Inc.
96 D Commerce Way
Woburn. Massachusetts 01801
Tel: 617-933-8130 TWX: 710-393-6770
Arrow Electronics
85 Wells Avenue
Newton Centre, Massachusetts 02159
Tel: 617-964-4000
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02026
Tel: 617-329-2400
Hamilton/Avnet Electronics 50 Tower. Office Park
Woburn, Massachusetts 01801 Tel: 617-273-7500 TWX: 710-393-0382

Harvey Electronics
44 Hartwell Avenue
Lexington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100
**Sertech Laboratories
1 Peabody Street
Salem, Massachusetts 01970
Tei: 617-745-2450

Michigan

Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
Pioneer/Detroit
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
R-M Electronics
4310 Roger B. Chaffee
Wyoming, Michigan 49508
Tel: 616-531-9300
Schweber Electronics
33540-Schoolcraft
Livonia, Michigan 48150
Tel: 313-525-8100
Arrow Electronics
3921 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220
Minnesota
Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800
Hamilton/Avnet Electronics
7449 Cahill Road
Edina, Minnesota 55435
Tel: 612-941-3801
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)
Schweber Electronics
7402 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280

Missouri

Hallmark Electronics, Inc.
13789 Rider Trail
Earth City, Missouri 63045
Tel: 314-291-5350
Hamilton/Avnet Electronics
13743 Shoreline Ct., East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0684
*Minority Distributor

New Jersey

Hallmark Electronics. Inc
Springdale Business Center
2091 Springdale Road
Cherry Hill. New Jersey 08003
Tel 609-424-0880
Hamilton/Avnet Electronics
10 Industrial Road
Fairfield. New Jersey 07006 Tel: 201-575-3390 TWX: 710-994-5787

Hamilton/Avnet Electronics
\#1 Keystone Avenue
Cherry Hill, New Jersey 08003 Tel: 609-424-0100 TWX: 710-940-0262

Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-480-4733
Sterling Electronics
774 Pfeiffer Blvd
Perth Amboy, N.J. 08861
Tel: 201-442-8000 Telex: 138-679
Wilshire Electronics
102 Gaither Drive
Mt. Laurel, N.J. 08057
Tel: 215-627-1920
Wilshire Electronics
1111 Paulison Avenue
Clifton, N.J. 07015
Tel: 201-365-2600 TWX: 710-989-7052

New Mexico

Bell Industries
11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625
Hamilton/Avnet Electronics
2450 Byalor Drive S.E.
Albuquerque, New Mexico 87119
Tel: 505-765-1500
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

New York

Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
Arrow Electronics
20 Oser Avenue
Haunpauge, New York 11787
Tel: 516-231-1000
Cadence Electronics
40-17 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-6722
Arrow Electronics
P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000
TWX: 710-545-0230
Components Plus, Inc
40 Oser Avenue
Hauppauge, L.I., New York 11787
Tel: 516-231-9200 TWX: 510-227-9869
Hamilton/Avnet Electronics
167 Clay Road
Rochester, New York 14623
Tel: 716-442-7820
TWX: None - use 710-332-1201
(Regional Hq. in Burlington, Ma.)
Hamilton/Avnet Electronics
16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-0959
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166

Harvey Electronics
'maling address'
P.O Box 1208

Binghampton. New York 13902
rshipping address
1911 Vestal Parkway East
Vestal. New York 13850
Tel: 607-748-8211
Rochester Radio Supply Co.. Inc
140 W. Main Street
P.O. Box 1971 Rochester. New York 14603

Tel: 716-454-7800
Schweber Electronics
Jericho Turnpike
Westbury. L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
Jaco Electronics, Inc.
145 Oser Avenue
Hauppauge. L.I.. New York 11787
Tel: 516-273-1234 TWX: 510-227-6232
Summit Distributors, Inc
916 Main Street
Buffalo. New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
North Carolina
Arrow Electronics
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-922-4765
Hamilton/Avnet
2803 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-829-8030
Hallmark Electronics
1208 Front Street, Bldg. K
Raleigh, North Carolina 27609
Tel: 919-823-4465 TWX: 510-928-1831

Resco

Highway 70 West
Rural Route 8, P.O. Box 116-B
Raleigh, North Carolina 27612
Tel: 919-781-5700
Pioneer/Carolina Electronics
103 Industrial Drive
Greensboro. North Carolina 27406
Tel: 919-273-4441

Ohio

Arrow Electronics
7620 McEwen Road
Centerville. Ohio 45459
Tel: 513-435-5563
Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Cleveland, Ohio 44128
Tel: 216-831-3500
TWX: Nóne - use 910-227-0060
(Regional Hq. in Chicago, III.)
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
Pioneer/Cleveland
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600
Pioneer/Dayton
1900 Troy Street
1900 Troy Street
Dayton. Ohio 45404
Tel 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409

Ohio

Arrow Electronics
(mailing address
P.O. Box 37826

Cincinnati, Ohio 45222
(shipping address)
10 Knollcrest Drive
Reading. Ohio 45237
Tel: 513-761-5432 TWX: 810-461-2670
Hallmark Electronics
6969 Worthington-Galena Road
Worthington. Ohio 43085

Oklahoma

Hallmark Electronics
5460 S. 103rd East Avenue
Tuisa, Oklahoma 74145
Tel: 918-835-8458 TWX: 910-845-2290
Radio Inc. Industrial Electronics
1000 S. Main
Tulsa, Oklahoma 74119
Tel: 918-587-9123

Pennsylvania

Pioneer/Delaware Valley Electronics 261 Gibraltar Road
Horsham, Pennsylvania 19044
Tel: 215-674-4000 TWX: 510-665-6778
Pioneer Electronics, Inc.
560 Alpha Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
Schweber Electronics
101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600
Arrow Electronics
4297 Greensburgh Pike
Suite 3114
Pittsburgh, Pennsylvania 15221
Tel: 412-351-4000
South Carolina
Dixie Electronics, Inc.
P.O. Box 408 (Zip Code 29202)

1900 Barnwell Street
Columbia, South Carolina 29201
Tel: 803-779-5332

Texas

Allied Electronics
401 E. 8th Street
Fort Worth, Texas 76102
Tel: 817-336-5401
Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377
Hallmark Electronics Corp.
10109 McKalla Place Suite F
Austin, Texas 78758
Tel: 512-837-2814
Hallmark Electronics
11333 Pagemill Drive
Dallas, Texas 75243
Tel: 214-234-7300 TWX: 910-867-4721
Halimark Electronics, Inc.
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100
Hamilton/Avnet Electronics
10508A Boyer Boulevard
Austin, Texas 78758
Tel: 512-837-8911
Hamilton/Avnet Electronics
4445 Sigma Road
Dallas, Texas 75240
Tel: 214-661-8661
Telex: HAMAVLECB DAL 73-0511

Hamilton/Avnet Electronics
3939 Ann Arbor
Houston, Texas 77042
Tel: 713-780-1771
Telex: HAMAVLECB HOU 76-2589
Schweber Electronics. Inc.
14177 Proton Road
Dallas. Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493
Schweber Electronics, Inc.
7420 Harwin Drive
Houston, Texas 77036
Tel: 713-784-3600 TWX: 910-881-1109
Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 901-881-5042
Telex: STELECO HOUA 77-5299
Utah
Century Electronics
3639 W. 2150 South
Salt Lake City. Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686
Hamilton/Avnet Electronics
1585 W. 2100 South
Salt Lake City. Utah 84119
Tel: 801-972-2800
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

Washington

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-444-1379
Radar Electronic Co., Inc
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052

Wisconsin

Hamilton/Avnet Electronics
2975 Moorland Road
New Berlin, Wisconsin 53151
Tel: 414-784-4510 TWX: 910-262-1182
Marsh Electronics, Inc.
1563 South 100th Street
Milwaukee, Wisconsin 53214
Tel: 414-475-6000 TWX: 910-262-3321

Canada

Cam Gard Supply Ltd.
640 42nd Avenue S.E.
Calgary, Alberta, T2G 1Y6, Canada
Tel: 403-287-0520 Telex: 03-822811
Cam Gard Supply Ltd.
16236 116th Avenue
Edmonton, Alberta T5M 3V4, Canada
Tel: 403-453-6691 Telex: 03-72960
Cam Gard Supply Ltd.
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada
Tel: 403-346-2088
Cam Gard Supply Ltd.
825 Notre Dame Drive
Kamloops, British Columbia, V2C 5N8, Canada Tel: 604-372-3338

Cam Gard Supply Ltd.
1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada
Tel: 204-786-8401 Telex: 07-57622
Cam Gard Supply Ltd.
Rookwood Avenue
Fredericton, New Brunswick, E3B 4Y9, Canada
Tel: 506-455-8891

Cam Gard Supply Ltd
15 Mount Royal Blvd.
Moncton, New Brunswick, E1C 8N6, Canada Tel: 506-855-2200

Cam Gard Supply Lid.
3065 Robie Street
Halifax, Nova Scotia, B3K 4P6. Canada
Tel: 902-454-8581 Telex: 01-921528
Cam Gard Supply Ltd.
1303 Scarth Street
Regina, Saskatchewan, S4R 2E7, Canada
Tel: 306-525-1317 Telex: 07-12667
Cam Gard Supply Ltd.
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 1S7, Canada
Tel: 306-652-6424 Telex: 07-42825
Electro Sonic Industrial Sales

(Toronto) Ltd.

1100 Gordon Baker Rd.
Willowdale, Ontario, M2H 3B3, Canada
Tel: 416-494-1666
Telex: ESSCO TOR 06-22030
Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-9471
Future Electronics Inc.
4800 Dufferin Street
Downsview, Ontario, M3H 5S8, Canada
Tel: 416-663-5563
Future Electronics Corporation
5647 Ferrier Street
Montreal, Quebec, H4P 2K5, Canada
Tel: 514-731-7441
Hamilton/Avnet International
(Canada) Ltd.
3688 Nashua Drive, Units 6 \& H
Mississauga, Ontario, L4V 1M5, Canada
Tel: 416-677-7432 TWX: 610-492-8867
Hamilton/Avnet International
(Canada) Ltd.
1735 Courtwood Crescent
Ottawa, Ontario, K1Z 5L9, Canada
Tel: 613-226-1700
Hamilton/Avnet International
(Canada) Ltd.
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
R.A.E. Industrial Electronics, Ltd.

3455 Gardner Court
Burnaby, British Columbia Z5G 4J7
Tel: 604-291-8866 TWX: 610-929-3065
Telex: RAE-VCR 04-54550
Semad Electronics Ltd.
620 Meloche Avenue
Dorval, Quebec, H9P 2P4, Canada
Tel: 604-2998-866 TWX: 610-422-3048
Semad Electronics Ltd.
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5670 TWX: 610-492-2510
Semad Electronics Ltd.
1485 Laperriere Avenue
Ottawa, Ontario, K1Z 7S8, Canada
Tel: 613-722-6571 TWX: 610-562-8966

Fairchild
Semiconductor
Representatives

United States and Canada

Alabama
Cartwright \& Bean, Inc.
2400 Bob Wallace Ave., Suite 201
Huntsville, Alabama 35805
Tel: 205-533-3509

Callfornia

Celtec Company
18009 Sky Park Circle Suite B
Irvine, California 92705
Tel: 714-557-5021 TWX: 910-595-2512
Celtec Company
7867 Convoy Court, Suite 312
San Diego, California 92111
Tel: 714-279-7961 TWX: 910-335-1512
Magna Sales, Inc.
3333 Bowers Avenue
Suite 295
Santa Clara, California 95051
Tel: 408-727-8753 TWX: 910-338-0241
Colorado
Simpson Associates, Inc.
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719

Connecticut

Phoenix Sales Company
389 Main Street
Ridgefield, Connecticut 06877
Tel: 203-438-9644 TWX: 710-467-0662

Florida

Lectromech, Inc
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-831-1577 TWX: 510-959-6063
Lectromech, Inc.
2280 U.S. Highway 19 North
Suite 155, Building K
Clearwater, Florida 33515
Tel: 813-797-1212
TWX: 510-959-6030
Lectromech, Inc.
17 East Hibiscus Blva.
Suite A-2
Melbourne, Florida 32901
Tel: 305-725-1950
TWX: 510-959-6063
Lectromech, Inc.
1350 S. Powerline Road, Suite 104
Pompano Beach, Florida 33060
Tel: 305-974-6780 TWX: 510-954-9793

Georgia

Cartwright \& Bean, Inc.
P.O. Box 52846 (Zip Code 30355)

3198 Cain's Hill Place, N.W.
Atlanta, Georgia 30305
Tel: 404-233-2939 TWX: 810-751-3220

Illinois

Micro Sales, Inc
2258-B Landmeir Road
Elk Grove Village, Illinois 60007
Tel: 312-956-1000 TWX: 910-222-1833

Maryland

Delta III Associates
1000 Century Plaza Suite 224
Columbia, Maryland 21044
Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts

Spectrum Associates, Inc.
109 Highland Avenue
Needham, Massachusetts 02192
Tel: 617-444-8600 TWX: 710-325-6665

Minnesota

PSI Company
5315 W. 74th Street
Edina, Minnesota 55435
Tel: 612-835-1777 TWX: 910-576-3483

Mississippi

Cartwright \& Bean, Inc.
P.O. Box 16728

5150 Keele Street
Jackson, Mississippi 39206
Tel: 601-981-1368
TWX: 810-751-3220

Nevada

Magna Sales
4560 Wagon Wheel Road
Carson City, Nevada 89701
Tel: 702-883-1471
New Jersey
BGR Associates
3001 Greentree Executive Campus
Marlton, New Jersey 08053
Tel: 609-428-2440
Lorac Sales, Inc.
1200 Route 23 North
Butler, New Jersey 07405
Tel: 201-492-1050 TWX: 710-988-5846

New York

Lorac Sales, Inc.
550 Old Country Road, Room 410
Hicksville, New York 11801
Tel: 516-681-8746 TWX: 510-224-6480
Tri-Tech Electronics, Inc.
3215 E. Main Street
Endwell, New York 13760
Endwell, New York 13760
Tri-Tech Electronics, Inc.
590 Perinton Hills Office Park
Fairport, New York 14450
Tel: 716-223-5720
TWX: 510-253-6356
Tri-Tech Electronics, Inc.
6836 E. Genesee Street
Fayetteville, New York 13066
Tel: 315-446-2881 TWX: 710-541-0604
Tri-Tech Electronics, Inc.
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-3880
TWX: 510-253-6356
North Carolina
Cartwright \& Bean, Inc.
1165 Commercial Ave.
Charlotte, North Carolina 28205
Tel: 704-377-5673
Cartwright \& Bean, Inc.
P.O. Box 18465

3948 Browning Place
Raleigh, North Carolina 27619
Tel: 919-781-6560
Ohio
The Lyons Corporation
4812 Frederick Road, Suite 101
Dayton, Ohio 45414
Tel: 513-278-0714
TWX: 810-459-1803
The Lyons Corporation
6151 Wilson Mills Road, Suite 101
Highland Heights, Ohio 44143
Tel: 216-461-8288
TWX: 810-459-1803

Oklahoma

Technical Marketing
9717 E. 42nd Street, Suite 221
Tulsa, Oklahoma 74145
Tel: 918-622-5984

Oregon

Magna Sales, Inc.
8285 S.W. Nimbus Ave., Suite 138
Beaverton, Oregon 97005
Tel: 503-641-7045
TWX: 910-467-8742

Tennessee

Cartwright \& Bean, Inc.
P.O. Box 4760

560 S. Cooper Street
Memphis, Tennessee 38104
Tel: 901-276-4442
TWX: 810-751-3220
Cartwright \& Bean, Inc.
8705 Unicorn Drive
Suite B120
Knoxville, Tennessee 37923
Tel: 615-693-7450
Tel: 615-693-7450
TWX: 810-751-3220

Texas
Technical Marketing
3320 Wiley Post Road
Carrollton, Texas 75006
Tel: 214-387-3601 TWX: 910-860-5158
Technical Marketing, Inc
9027 North Gate Blvd.
Suite 140
Austin, Texas 78758
Tel: 512-835-0064
Technical Marketing
6430 Hillcroft, Suite 104
Houston, Texas 77036
Tel: 713-777-9228

Utah

Simpson Associates, Inc
7324 South 1300 East, Suite 350
Midvale, Utah 84047
Tel: 801-566-3691
TWX: 910-925-4031

Washington

Magna Sales, Inc.
Benaroya Business Park
Building 3, Suite 115
300-120th Avenue, N.E.
Bellevue, Washington 98004
Tel: 206-455-3190

Wisconsin

Larsen Associates
10855 West Potter Road
Wauwatosa, Wisconsin 53226
Tel: 414-258-0529 TWX: 910-262-3160

Canada

R.N. Longman Sales, Inc. (L.S.I.)

1715 Meyerside Drive
Suite 1
Mississauga, Ontario, L5T 1C5 Canada
Tel: 416-677-8100 TWX: 610-492-8976
R.N. Longman Sales, Inc. (L.S.I.)

16891 Hymus Bivd.
Kirkland, Quebec
H9H 3L4 Canada
Tel: 514-694-3911
TWX: 610-422-3028

Alabama

Huntsville Office
500 Wynn Drive
Suite 511
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
4414 N. 19th Avenue, Suite G
Phoenix 85015
Tel: 602-264-4948 TWX: 910-951-1544

Callfornia

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd., Suite 1027
Encino 91436
Tel: 213-990-9800 TWX: 910-495-1776
Santa Ana Office*
1570 Brookhollow Drive
Suite 206
Santa Ana 92705
Tel: 714-557-7350 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara 95051
Tel: 408-987-9530 TWX: 910-338-0241

Florida

Ft. Lauderdale Office
Executive Plaza, Suite 300-B
1001 Northwest 62nd Street
Ft. Lauderdale 33309
Tel: 305-771-0320 TWX: 510-955-4098
Orlando Office
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs 32701
Tel: 305-834-7000 TWX: 810-850-0152

Illinois

Chicago Office
60 Gould Center
The East Tower, Suite 710
Rolling Meadows 60008
Tel: 312-640-1000

Indiana

Ft. Wayne Office
2118 Inwood Drive, Suite 111
Ft. Wayne 46815
Tel: 219-483-6453 TWX: 810-332-1507
Indianapolis Office
7202 N. Shadeland Castle Point
Room 205
Indianapolis 46250
Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park 66210
Tel: 913-649-3974

Maryland

Columbia Office*
1000 Century Plaza, Suite 225
Columbia 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Boston Office*
88 Worcester Stree
Wellesley Hills 0218
Tel: 617-237-3400 TWX: 710-348-0424

Michigan

Detroit Office*
21999 Farmington Road
Farmington Hills 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota
Minneapolis Office
4570 West 77th Street. Room 356
Minneapolis 55435
Tel 612-835-3322 TWX 910-576-2944

New Jersey

Wayne Office
580 Valley Road. Suite 1
Wayne 07490
Tel: 201-696-7070 TWX: 710-988-5846

New Mexico

Alburquerque Office
North Building
2900 Louisiana N.E. South G2
Alburquerque 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Melville Office
275 Broadhollow Road, Suite 219
Melville 11747
Tel: 516-293-2900 TWX: 510-224-6480
Poughkeepsie Office
19 Davis Avenue
Poughkeepsie 12603
Tel: 914-473-5730 TWX: 510-248-0030
Fairport Office
260 Perinton Hills Office Park
Fairport 14450
Tel: 716-223-7700
North Carolina
Raleigh Office
3301 Executive Drive. Suite 204
Raleigh 27609
Tel: 919-876-0096

Ohio

Dayton Office
4812 Frederick Road, Suite 105
Dayton 45414
Tel: 513-278-8278 TWX: 810-459-1803

Oregon

Fairchild Semiconductor
8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842
Pennsylvania
Philadelphia Office*
2500 Office Center
2500 Maryland Road
Willow Grove 19090
Tel: 215-657-2711

Texas

Austin Office
9027 North Gate Blvd.. Suite 124
Austin 78758
Tel: 512-837-8931
Dallas Office
13771 N. Central Expressway, Suite 809
Dallas 75243,
Tel: 214-234-3391 TWX: 910-867-4757

Houston Office

6430 Hilicroft, Suite 102
Houston 77081
Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office
Fairchild Semiconductor
1590 Matheson Blvd., Unit 26
Mississauga, Ontario L4W 1J1, Canada
Tel: 416-625-7070 TWX: 610-492-4311

Australia

Fairchild Australia Pty Ltd.
Branch Office Third Floor
F.A.I. Insurance Building

619 Pacific Highway
St. Leonards 2065
New South Wales, Australia
Tel: (02)-439-5911
Telex: AA20053
Austria and Eastern Europe
Fairchild Electronics
A-1010 Wien
Schwedenplatz 2
Tel: 0222635821 Telex: 75096

Benelux

Fairchild Semiconductor
Paradijslaan 39
Eindhoven, Holland
Tel: 00-31-40-446909 Telex: 00-1451024

Brazll

Fairchild Semicondutores Ltda
Caixa Postal 30407
Rua Alagoas, 663
01242 Sao Paulo, Brazil
Tel: 66-9092 Telex: 011-23831
Cable: FAIRLEC

France

Fairchild Camera \& Instrument S.A.
121. Avenue d'Italie

75013 Paris, France
Tel: 331-584-55 66
Telex: 0042200614 or 260937

Germany

Fairchild Camera and Instrument (Deutschland)
Fairchild Cam
8046 Garching Hochbruck
Munich, Germany
Tel: (089) 320031 Telex: 524831 fair d
Fairchild Camera and Instrument
(Deutschland) GmBH
Oeltzenstrasse 15
3000 Hannover
W. Germany

Tel: 051117844 Telex: 0922922
Fairchild Camera and Instrument (Deutschland)
Postrstrasse 37
7251 Leonberg
W. Germany

Tel: 0715241026 Telex: 07245711

Hong Kong

Fairchild Semiconductor (HK) Ltd
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: K-890271 Telex: HKG-531
Italy
Fairchild Semiconduttori, S.P.A.
Via Flamenia Vecchia 653
00191 Roma, Italy
Tel: 063274006 Telex: 63046 (FAIR ROM)
Fairchild Semiconduttori S.P.A.
Via Rosellini, 12
20124 Milano, Italy
Tel: 026887451 Telex: 36522

Japan

Fairchild Japan Corporation
Pola Bldg.
1-15-21, Shibuya
Shibuya-Ku, Tokyo 150
Japan
Tel: 034008351 Telex: 242173
Fairchild Japan Corporation
Yotsubashi Chuo Bldg.
1-4-26, Shinmachi,
Nishi-Ku, Osaka 550, Japan
Tel: 06-541-6138/9
Korea
Fairchild Semikor Ltd.
K2 219-6 Gari Bong Dong
Young Dung Po-Ku
Seoul 150-06, Korea
Tel: 85-0067 Telex: FAIRKOR 22705
(mailing address)
Central P.O. Box 2806

Mexico
Fairchild Mexicana S.A
Blva. Adolofo Lopez Mateos No. 163
Mexico 19, D.F.
Tel: 905-563-5411 Telex: 017-71-038

Scandinavia

Fairchild Semiconductor $A B$
Svartengsgatan 6
S-11620 Stockholm
Sweden
Tel: 8-449255 Telex: 17759

Singapore

Fairchild Semiconductor Pty Ltd
No. 11, Lorong 3
Toa Payoh
Singapore 12
Tel: 531-066 Telex: FAIRSIN-RS 21376

Taiwan

Fairchild Semiconductor (Taiwan) Ltd.
Hsietsu BIdg., Room 502
47 Chung Shan North Road
Sec. 3 Taipei, Taiwan
Tel: 573205 thru 573207

United Kingdom

Fairchild Camera and Instrument (UK) Ltd
Semiconductor Division
230 High Street
Potters Bar
Hertfordshire EN6 5BU
England
Tel: 070751111 Telex: 262835
Fairchild Semiconductor Ltd.
17 Victoria Street
Craigshill
Livingston
West Lothian, Scotland - EH54 5BG
Tel: Livingston 050632891 Telex: 72629
GEC-Fairchild Ltd.
Chester High Road
Neston.
South Wirral L64 3UE
Cheshire. England
Tel: 051-336-3975 Telex: 629701

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260; other patents pending. Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product. No other circuit patent licenses are implied

[^0]: FAIRCHILD FIELD SALES OFFICES SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS

[^1]: FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND
 DISTRIBUTOR LOCATIONS

[^2]: ${ }^{*}$ T$_{\text {LOW }}=-55^{\circ} \mathrm{C}$ for Military Temp. Range device, $-40^{\circ} \mathrm{C}$ for Commercial Temp. Range device
 ${ }^{*}{ }^{*}$ THIGH $=+125^{\circ} \mathrm{C}$ for Military Temp. Range device, $+85^{\circ} \mathrm{C}$ for Commercial Temp. Range device
 *** $V_{I L}$ and $V_{\text {IH }}$ specifications apply to worst case input combinations.

[^3]: Notes are on the following page.

[^4]: $\mathrm{H}=\mathrm{HIGH}$ Level
 L = LOW Level
 X = Don't Care
 \bullet = Depends upon the BCD code applied during the LOW-to-HIGH transition of $\overline{E L}$

[^5]: **Direct dc drive of LCD not recommended for life of LCD readouts.

[^6]: X = Don't Care (Either HIGH or LOW)
 L = LOW Level
 H = HIGH Level

[^7]: $V_{D D}=\operatorname{Pin} 16$
 $V_{S S}=\operatorname{Pin} 8$
 $\bigcirc=\operatorname{Pin}$ Numbers

[^8]: $L=$ LOW Level

[^9]: Notes on following page

[^10]: $V_{D D}=\operatorname{Pin} 14$
 $V_{S S}=\operatorname{Pin} 7$
 O=Pin Number

[^11]: L = LOW level
 $H=H I G H$ level
 $\begin{aligned} X & =\text { Don't Care } \\ N C & =\text { No Change }\end{aligned}$

[^12]: L = LOW Level
 $H=H I G H$ Level
 $X=$ Don't Care
 $\Gamma^{-}=$Positive-Going Clock Pulse Edge

[^13]: $V_{D D}=\operatorname{Pin} 16$
 $V_{S S}=P$ in 8
 $\bigcirc=$ Pin Numbers

[^14]: *Except For Clock Inputs.

[^15]: * Leads for external timing

[^16]: Note: Burn-In has the same relative effectiveness for plastic molded devices as for ceramic/hermetic packaged devices. Assuming a controlled (air conditioned and constant power) field application/environment, the reliability factor would be approximately 9 X . But should the field application be in a less controlled

