FAIRCHILD SEMICDNDUCTOR

LOW POWER SCHOTTKY AND MACROLOGICTM TTL

1975

LOW POWER SCHOTTKY AND MACROLOGICTM TTL

TABLE OF CONTENTS

Page
INTRODUCTION 1-1
General Description 1-3
Circuit Characteristics 1-4
Input Configuration 1-4
Output Configuration 1-4
Output Characteristics 1-5
AC Switching Characteristics 1-6
Definition of Terms and Symbols 1-7
DESIGN CONSIDERATIONS 2-1
Supply Voltage and Temperature Range 2-3
Noise Immunity 2-3
Fan-in and Fan-out 2-4
Wired-OR Applications 2-5
Unused Inputs 2-5
Interconnection Delays 2-6
DEVICE INDEX AND SELECTOR INFORMATION 3-1
Numerical Index of Devices 3-2
SSI Selector and Replacement Guide 3-6
MSI Selector Guide by Function 3-12
SSI DATA SHEETS 4-1
MSI DATA SHEETS 5-1
MACROLOGIC ${ }^{\text {TM }}$ TTL DATA SHEETS 6-1
ORDERING INFORMATION AND PACKAGE OUTLINES 7-1
FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS 8-1

LOW POWER SCHOTTKY AND MACROLOGIC ${ }^{\text {TM }}$ TTL

DESIGN CONSIDERATIONS

DEVICE INDEX AND
SELECTOR INFORMATION

SSI DATA SHEETS

General Description - For many years TTL has been the most popular digital integrated circuit technology, offering a good compromise between cost, speed, power consumption and ease of use. As the price of TTL circuits decreased and the average IC complexity increased to MSI (medium scale integration), the cost and size of the power supply and the difficulty of removing the heat dissipated in the TTL circuits became increasingly important factors. Recent improvements in semiconductor processing have made it possible to not only reduce TTL power consumption significantly, but also to improve the speed over that of standard TTL.

Fairchild's 9LS Low Power Schottky TTL family combines a current and power reduction by a factor 5 (compared to 7400 TTL) with anti-saturation Schottky diode clamping and advanced processing, using shallower diffusions and higher sheet resistivity to achieve circuit performance better than conventional TTL. With a full complement of popular TTL functions available in 9LS and the new, more complex and powerful LSI MACROLOGIC $^{\text {TM }}$ circuits introduced in 1975, Low Power Schottky is destined to become the dominating TTL logic family.

9LS represents more than just a conventional speed versus power trade-off. This is best illustrated by Figure 1 which compares 9LS to other TTL technologies. Note that 9LS dissipates eleven times less power than 9S or 74S, suffering a delay increase of only 1.7 times. 9L (Fairchild's Low Power non-Schottky family) by comparison also dissipates eleven times less power than 74 H , and 74 L dissipates ten times less power than 74 N , but both suffer a delay increase of 3.4 times.

The performance of 9LS is not just the result of Schottky clamping. 9LS is four times faster than 9L at the same power dissipation, while 9 S and 74 S are only two times faster than 74 H at the same power. The new and higher level of efficiency exhibited by 9LS is made pos-

sible by advanced processing, which provides better switching transistors without any sacrifice in manfacturability.

To the system designer the advantages of this new TTL family are many:

- Less supply current allows smaller, cheaper power supplies, reducing equipment cost, size and weight.
- Lower power consumption means less heat is generated, which simplifies thermal design. Packing density can be increased or cooling requirements reduced, or perhaps both. The number of cooling fans can be reduced, or slower, quieter ones substituted.
- Reliability is enhanced, since lower dissipation causes less chip temperature rise above ambient; lower junction temperature increases MTBF. Also, lower chip current densities minimizes metal related failure mechanisms.
- Less noise is generated, since the improved transistors and lower operating currents lead to much smaller current spikes than standard TTL, which means that fewer or smaller power supply decoupling capacitors are needed. In addition, load currents are only 25% of standard TTL and 20% of HTTL, which means that when a logic transition occurs the current changes along signal lines are proportionately smaller, as are the changes in ground current. Rise and fall times, and thus wiring rules, are the same as for standard TTL and more relaxed than for HTTL or STTL.
- Simplified MOS to TTL interfacing is provided, since the input load current of LSTTL is only 25% of a standard TTL load.
- Ideally suited for CMOS to TTL interfacing. All Fairchild CMOS and most other 4000 or 74C CMOS are designed to drive one 9 LS input load at 5.0 V . The 9LS can also interface directly with CMOS operating up to 15 V due to the high voltage Schottky input diodes.
- Best TTL to MOS or CMOS driver. With the modest input current of MOS or CMOS as a load, any 9LS output will rise up to within 1 V of V_{CC}, and can be pulled up to 10 V with an external resistor.
- Interfaces directly with other TTL types, as indicated in the input and output loading tables.
- The functions and pinouts are the same as the familiar 7400/9300 series, which means that no extensive learning period is required to become adept in their use.

Circuit Characteristics

The 9LS circuit features are easiest explained by using the 9LSOO 2 -input NAND gate as an example. The input/output circuits of all 9LS TTL, including, SSI, MSI and MACROLOGIC are almost identical. While the logic function and the basic structure of 9LS circuits are the same as conventional TTL, there are also significant differences, as explained below:

Fig. 2.

Input Configuration

LSTTL is considered part of the TTL family, but it does not use the multi-emitter input structure that originally gave TTL its name. All 9LS TTL, with the exception of some early designs (see Note 1), employ a DTL-type input circuit which uses Schottky diodes to perform the AND function. Compared to the classical multi-emitter structure, this circuit is faster and it increases the input breakdown voltage to 15 V . Each input has a Schottky clamping diode which conducts when an input signal goes negative, as indicated by the input characteristic of Figure 3. This helps to simplify interfacing with those MOS circuits whose output signal tends to go negative. For a long TTL interconnection, which acts like a transmission line, the clamp diode acts as a termination for a negative-going signal and thus minimizes ringing. Otherwise, ringing could become significant when the finite delay along an interconnection is greater than one-fourth the fall time of the driving signal.

The effective capacitance of an LSTTL input is approximately 3.3 pF . For an input which serves more than one internal function, each additional function adds 1.5 pF .

[^0]

Fig. 3.

Output Configuration

The output circuits of 9LS Low Power Schottky TTL have several features not found in conventional TTL. A few of these features are discussed below.

- The base of the pull-down output transistor is returned to ground through a resistor-transistor network instead of through a simple resistor. This squares up the transfer characteristics since it prevents conduction in the phase-splitter until base current is supplied to the pull-down output transistor. This also improves the propagation delay and transition time. (See Figure 4)
- The output pull-up circuit is a 2-transistor Darlington circuit with the base of the output transistor returned through a $5 \mathrm{k} \Omega$ resistor to the output terminal. (Unlike 74 H and 74 S where it is returned to ground, which is a more power consuming configuration). This configuration allows the output to pull-up to one V_{BE} below V_{CC} for low values of output current.
- As a unique feature, the 9LS outputs use a Schottky diode in series with the Darlington collector resistor. This diode allows the output to be pulled substantially higher than V_{CC} (e.g., to +10 V , convenient for interfacing with CMOS). For the same reason the parasistic diode of the base return resistor is connected to the Darlington common collector, not to V_{CC}. Some early 9LS designs - the 9LSOO, 02, 04, 10, $11,20,32,74,109,112,113$ and 114 - do not have the diode in series with the Darlington collector resistor. These outputs are, therefore, clamped one diode drop above the positive supply voltage (V_{CC}). These older circuits also contain a "speed-up" diode that supplies additional phase splitter current while the output goes from HIGH to LOW and also limits the maximum output voltage to one diode drop above $V_{C C}$. Since this is the fastest transition even without additional speed-up, this diode is omitted in all new designs.

Output Characteristics

Figure 5 shows the LOW state output characteristics. For low I_{OL} values, the pull-down transistor is clamped out of deep saturation which contributes to speed. The curves also show the clamping effect when I_{OL} tends to go negative, as it often does due to reflections on a long interconnection after a negative-going transition. This clamping effect helps to minimize ringing.

The waveform of a rising output signal resembles an exponential, except that the signal is slightly rounded at the beginning of the rise. Once past this initial rounded portion, the starting edge rate is approximately $0.5 \mathrm{~V} / \mathrm{ns}$ with a 15 pF load and $0.25 \mathrm{~V} / \mathrm{ns}$ with a 50 pF load. For analytical purposes, the rising waveform can be approximated by the following expression.

$$
v(t)=V_{O L}+3.7[1-\exp (-t / T)]
$$

where

$$
\begin{aligned}
T & =8 \mathrm{~ns} \text { for } C_{L}=15 \mathrm{pF} \\
& =16 \mathrm{~ns} \text { for } C_{L}=50 \mathrm{pF}
\end{aligned}
$$

The waveform of a falling output signal resembles that part of a cosine wave between angles of 0° and 180°. Fall times from 90% to 10% are approximately 4.5 ns with a 15 pF load and 8.5 ns with a 50 pF load. Equivalent edge rates are approximately $0.8 \mathrm{~V} / \mathrm{ns}$ and 0.4 V / ns, respectively. For analytical purposes, the falling waveform can be approximated by the following expression.

$$
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{OL}}+1.9 \mu(\mathrm{t})[1+\cos \omega \mathrm{t}]-1.9 \mu(\mathrm{t}-\mathrm{a})[1+\cos \omega(\mathrm{t}-\mathrm{a})]
$$

where

$$
\begin{aligned}
\mu(t) & =0 \text { for } t<0 \\
& =1 \text { for } t>0
\end{aligned}
$$

and

$$
\begin{aligned}
\mu(t-a) & =0 \text { for } t<a \\
& =1 \text { for } t>a
\end{aligned}
$$

For t in nanoseconds and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,

$$
\mathrm{a}=7.5 \mathrm{~ns}, \omega=0.42
$$

$$
\text { For } C_{L}=50 \mathrm{pF}
$$

$$
\mathrm{a}=14 \mathrm{~ns}, \omega=0.23
$$

AC Switching Characteristics

The average propagation delay of a Low Power Schottky gate is 5 ns at a load of 15 pF as shown in Figure 6. The delay times increase at an average of $0.08 \mathrm{~ns} / \mathrm{pF}$ for larger values of capacitance load. These delay times are relatively insensitive to variations in power supply and temperature. The average propagation delay time changes less than 1.0 ns over temperature and less than
0.5 ns with $V_{C C}$ for the military temperature and voltage ranges. (See Figures 8 and 9).

The power versus frequency characteristics of the 9LS family, as shown in Figure 7, indicate that at operating frequencies above 1 MHz the Low Power Schottky devices are more efficient than CMOS for most applications.

Fig. 6.

Fig. 8.

TYPICAL POWER DISSIPATION VERSUS INPUT FREQUENCY FOR SEVERAL POPULAR LOGIC FAMILIES

Fig. 7.

Fig. 9.

DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET

CURRENTS - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specified as absolute values.

ICC Supply current - The current flowing into the V_{CC} supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation.
$I_{I H} \quad$ Input HIGH current - The current flowing into an input when a specified HIGH voltage is applied.

IIL Input LOW current - The current flowing out of an input when a specified LOW voltage is applied.

Output HIGH current - The leakage current flowing into a turned off open collector output with a specified HIGH output voltage applied. For devices with a pull-up circuit, the ${ }^{\prime} \mathrm{OH}$ is the current flowing out of an output which is in the HIGH state.
${ }^{\mathrm{I}} \mathrm{OL} \quad$ Output LOW current - The current flowing into an output which is in the LOW state.
Output short circuit current - The current flowing out of an output which is in the HIGH state when that output is short circuited to ground (or other specified potential).

IOZH Output off current HIGH - The current flowing into a disabled 3-state output with a specified HIGH output voltage applied.

IOZL Output off current LOW - The current flowing out of a disabled 3-state output with a specified LOW output voltage applied.

VOLTAGES - All voltages are referenced to ground. Negative voltage limits are specified as absolute values (i.e., -10 V is greater than -1.0 V).

V_{CC}	Supply voltage - The range of power sup to operate within the specified limits.
$\mathrm{V}_{\text {CD(MAX }}$	Input clamp diode voltage - The most negative voltage at an input when 18 mA is forced out of that input terminal. This parameter guarantees the integrity of the input diode which is intended to clamp negative ringing at the input terminal.
V_{IH}	Input HIGH voltage - The range of input voltages that represents a logic HIGH in the system.
$\mathrm{V}_{\mathrm{IH}(\mathrm{MIN})}$	Minimum input HIGH voltage - The minimum allowed input HIGH in a logic system. This value represents the guaranteed input HIGH threshold for the device.
$V_{\text {IL }}$	Input LOW voltage - The range of input voltages that represents a logic LOW in the system.
VIL(MAX)	Maximum input LOW voltage - The maximum allowed input LOW in a system. This value represents the guaranteed input LOW threshold for the device.
$\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}$	Output HIGH voltage - The minimum voltage at an output terminal for the specified output current I_{OH} and at the minimum value of V_{CC}.
$\mathrm{V}_{\text {OL }}$ (MAX)	Output LOW voltage - The maximum voltage at an output terminal sinking the maximum specified load current I_{OL}.

DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET (Cont'd)

$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold voltage - The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a V_{IH} as the input transition rises from below $\mathrm{V}_{\mathrm{T} \text {-(MIN) }}$.
$\mathrm{V}_{\mathrm{T}}-$	Negative-going threshold voltage - The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a V_{IL} as the input transition falls from above $V_{T+(M A X)}$.
AC SWITCHING PARAMETERS	
$f_{\text {MAX }}$	Toggle frequency/operating frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function.
${ }^{\text {P PLH }}$	Propagation delay time - The time between the specified reference points, normally 1.3 V on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level.
${ }^{\text {tPHL }}$	Propagation delay time - The time between the specified reference points, normally 1.3 V on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level.
${ }^{t} W$	Pulse width - The time between 1.3 V amplitude points on the leading and trailing edges of a pulse.
t_{h}	Hold time - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
${ }_{\text {t }}$	Set-up time - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative set-up time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
${ }^{t} \mathrm{PHZ}$	Output disable time (of a 3-state output) from HIGH level - The time between the 1.3 V level on the input and a voltage 0.5 V below the steady state output HIGH level with the 3 -state output changing from the defined HIGH level to a high-impedance (off) state.
${ }^{\text {t P }}$ [Z	Output disable time (of a 3-state output) from LOW level - The time between the 1.3 V level on the input and a voltage 0.5 V above the steady state output LOW level with the 3 -state output changing from the defined LOW level to a high-impedance (off) state.
${ }^{t} \mathrm{PZH}$	Output enable time (of a 3-state output) to a HIGH level - The time between the 1.3 V levels of the input and output voltage waveforms with the 3-state output changing from a high-impedance (off) state to a HIGH level.
${ }^{\text {t P PL }}$	Output enable time (of a 3-state output) to a LOW level - The time between the 1.3 V levels of the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to a LOW level.
${ }_{\text {trec }}$	Recovery time - The time between the 1.3 V level on the trailing edge of an asynchronous input control pulse and the 1.3 V level on a synchronous input (clock) pulse such that the device will respond to the synchronous input.

LOW POWER SCHOTTKY

 AND MACROLOGIC ${ }^{\text {TM }}$ TTL

SSI DATA SHEETS

ORDERING INFORMATION AND PACKAGE OUTLINES

DESIGN CONSIDERATIONS

Supply Voltage and Temperature Range

The nominal supply voltage $\left(V_{C C}\right)$ for all TTL circuits is +5.0 V . Commercial grade parts are guaranteed to perform with a $\pm 5 \%$ supply tolerance ($\pm 250 \mathrm{mV}$) over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. MIL-grade parts are guaranteed to perform with a $\pm 10 \%$ supply
tolerance $(\pm 500 \mathrm{mV})$ over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

TTL families may be mixed for optimum system design. The following tables specify the worst case noise immunity in mixed systems.

Worst Case TTL DC Noise Immunity / Noise Margins

Electrical Characteristics

Item	Symbol	Fairchild TTL Families	Military (-55 to $+125^{\circ} \mathrm{C}$)				Commercial (0 to $75^{\circ} \mathrm{C}$)				Units
			$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	V_{OL}	$\mathrm{V}_{\mathbf{O H}}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	V_{OL}	V_{OH}	
6	TTL	Standard TTL 9000, 9N (54/74)	0.8	2.0	0.4	2.4	0.8	2.0	0.4	2.4	V
7	HTTL	High Speed TTL 9H (54H/74H)	0.8	2.0	0.4	2.4	0.8	2.0	0.4	2.4	V
8	LPTTL	Low Power TTL, 93LO0 (MSI)	0.7	2.0	0.3	2.4	0.8	2.0	0.3	2.4	V
9	STTL	Schottky TTL 9S (54S/74S), 93S00	0.8	2.0	0.5	2.5	0.8	2.0	0.5	2.7	V
10	LSTTL	Low Power Schottky TTL9LS (54LS/74LS)	0.7	2.0	0.4	2.5	0.8	2.0	0.5	2.7	V

V_{OL} and V_{OH} are the voltages generated at the output. V_{IL} and V_{IH} are the voltage required at the input to generate the appropriate output levels. The numbers given above are guaranteed worst-case values.

LOW Level Noise Margins (Military)

From	To	TTL	HTTL	LPTTL	STTL	LSTTL	Units
TTL	400	400	300	400	300	mV	
HTTL	400	400	300	400	300	mV	
LPTTL	500	500	400	500	400	mV	
STTL	300	300	200	300	200	mV	
LSTTL	400	400	300	400	300	mV	

From " V_{OL} " to " V_{IL} "

HIGH Level Noise Margins (Military)

From	To	TTL	HTTL	LPTTL	STTL	LSTTL	Units
TTL	400	400	400	400	400	mV	
HTTL	400	400	400	400	400	mV	
LPTTL	400	400	400	400	400	mV	
STTL	500	500	500	500	500	mV	
LSTTL	500	500	500	500	500	mV	

[^1]
Fan-in and Fan-out

In order to simplify designing with Fairchild TTL devices, the input and output loading parameters of all families are normalized to the following values:

1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ in the HIGH state (logic " 1 ")

1 TTL Unit Load (U.L.) $=1.6 \mathrm{~mA}$ in the LOW state (logic " $\mathrm{O}^{\prime \prime}$)

Input loading and output drive factors of all products described in this handbook are related to these definitions.

EXAMPLES - INPUT LOAD

1. A 9NOO/ 7400 gate, which has a maximum IIL of 1.6 mA and I_{IH} of $40 \mu \mathrm{~A}$ is specified as having an input load factor of $1 \mathrm{U} . \mathrm{L}$. (Also called a fan-in of 1 load.)
2. The 9LS95 which has a value of $I_{I L}=0.8 \mathrm{~mA}$ and I_{IH} of $40 \mu \mathrm{~A}$ on the CP terminal, is specified as having an input LOW load factor of

$$
\frac{0.8 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 0.5 \mathrm{U} . \mathrm{L} .
$$

and an input HIGH load factor of

$$
\frac{40 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 1 \mathrm{U} . \mathrm{L} .
$$

3. The 9 LSOO gate which has an $I_{I L}$ of 0.36 mA and an I_{IH} of $20 \mu \mathrm{~A}$, has an input LOW load factor of

$$
\frac{0.36 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 0.225 \mathrm{U} . \mathrm{L}
$$

(normally rounded to 0.25 U.L.) and an input HIGH load factor of

$$
\frac{20 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 0.5 \mathrm{U} . \mathrm{L}
$$

EXAMPLES - OUTPUT DRIVE

1. The output of the $9 \mathrm{NOO} / 7400$ will sink 16 mA in the LOW (logic " 0 ") state and source $800 \mu \mathrm{~A}$ in the HIGH (logic " 1 ") state. The normalized output LOW drive factor is therefore

$$
\frac{16 \mathrm{~mA}}{1.6 \mathrm{~mA}}=10 \mathrm{U} . \mathrm{L} .
$$

and the output HIGH drive factor is

$$
\frac{800 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 20 \text { U.L. }
$$

2. The output of the 9LSOOXC (Commercial Grade) will sink 8.0 mA in the LOW state and source $400 \mu \mathrm{~A}$ in the HIGH state. The normalized output LOW drive factor is

$$
\frac{8.0 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 5 \mathrm{U} . \mathrm{L} .
$$

and the output HIGH drive factor is

$$
\frac{400 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 10 \mathrm{U} . \mathrm{L} .
$$

Relative load and drive factors for the basic TTL families are given in Table $/$.

TABLE I

FAMILY	INPUT LOAD		OUTPUT DRIVE	
	HIGH	LOW	HIGH	LOW
9 LS00	0.5 U.L.	0.25 U.L.	10 U.L.	5 U.L.
9 NOO/ 7400	1 U.L.	1 U.L.	20 U.L.	10 U.L.
9000	1 U.L.	1 U.L.	20 U.L.	10 U.L.
$9 H 00 / 74$ H00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.
9 9SOO/74S00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.

Values for MSI devices vary significantly from one element to another. Consult the appropriate data sheet for actual characteristics.

Wired-OR Applications

Certain TTL devices are provided with an "open" collector output to permit the Wired-OR (actually WiredAND) function. This is achieved by connecting open collector outputs together and adding an external pullup resistor.

The value of the pull-up resistor is determined by considering the fan-out of the OR tie and the number of devices in the OR tie. The pull-up resistor value is chosen from a range between a maximum value (established to maintain the required V_{OH} with all the OR tied outputs HIGH) and a minimum value (established so that the OR tie fan-out is not exceeded when only one output is LOW).

MINIMUM AND MAXIMUM PULL-UP RESISTOR VALUES

$$
\begin{array}{r}
\mathrm{R}_{\mathrm{X}(\mathrm{MIN})}=\frac{\mathrm{V}_{\mathrm{CC}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OL}}-\mathrm{N}_{2}(\mathrm{LOW}) \cdot 1.6 \mathrm{~mA}} \\
\mathrm{R}_{\mathrm{X}(\mathrm{MAX})}=\frac{\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}-\mathrm{V}_{\mathrm{OH}}}{\mathrm{~N}_{1} \cdot \mathrm{I}_{\mathrm{OH}}+\mathrm{N}_{2}(\mathrm{HIGH}) \cdot 40 \mu \mathrm{~A}}
\end{array}
$$

where:

R_{X}	$=$ External Pull-up Resistor
N_{1}	$=$ Number of Wired-OR Outputs
N_{2}	$=$ Number of Input Unit Loads being Driven
${ }^{\mathrm{I} O H}={ }^{\mathrm{I}} \mathrm{CEX}$	$=$ Output HIGH Leakage Current
I_{OL}	$=$ LOW Level Fan-out Current of Driving Element
V_{OL}	$=$ Output LOW Voltage Level $(0.5 \mathrm{~V})$
V_{OH}	$=$ Output HIGH Voltage Level $(2.4 \mathrm{~V})$
V_{CC}	$=$ Power Supply Voltage

Example: Four 9LSO3 gate outputs driving four other 9LS gates or MSI inputs.

$$
R_{X(M I N)}=\frac{5.25 \mathrm{~V}-0.5 \mathrm{~V}}{8 \mathrm{~mA}-1.6 \mathrm{~mA}}=\frac{4.75 \mathrm{~V}}{6.4 \mathrm{~mA}}=742 \Omega
$$

$\mathrm{R}_{\mathrm{X}(\mathrm{MAX})}=\frac{4.75 \mathrm{~V}-2.4 \mathrm{~V}}{4 \cdot 100 \mu \mathrm{~A}+2 \cdot 40 \mu \mathrm{~A}}=\frac{2.35 \mathrm{~V}}{0.48 \mathrm{~mA}}=4.9 \mathrm{k} \Omega$
where:

N_{1}	$=4$
$\mathrm{~N}_{2}(\mathrm{HIGH})$	$=4 \cdot 0.5 \mathrm{U} . \mathrm{L} .=2 \mathrm{U} . \mathrm{L}$.
$\mathrm{N}_{2}(\mathrm{LOW})$	$=4 \cdot 0.25 \mathrm{U} . \mathrm{L} .=1 \mathrm{U} . \mathrm{L}$.
I^{OH}	$=100 \mu \mathrm{~A}$
$\mathrm{I}^{\prime} \mathrm{OL}$	$=8 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	$=0.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	$=2.4 \mathrm{~V}$

Any value of pull-up resistor between 742Ω and $4.9 \mathrm{k} \Omega$ can be used. The lower values yield the fastest speeds while the higher values yield the lowest power dissipation.

Unused Inputs

For best noise immunity and switching speed, unused TTL inputs should not be left floating, but should be held between 2.4 V and the absolute maximum input voltage.

Two possible ways of handling unused inputs are:

1. Connect unused input to $V_{C C}$. Most 9 LS inputs have a breakdown voltage $>15 \mathrm{~V}$ and require, therefore, no series resistor. For all multi-emitter conventional TTL inputs, a 1 to $10 \mathrm{k} \Omega$ current limiting series resistor is recommended, to protect against V_{CC} transients that exceed 5.5 V .
2. Connect the unused input to the output of un unused gate that is forced HIGH.

CAUTION: Do not connect an unused LSTTL input to another input of the same NAND or AND function. This method, recommended for normal TTL, increases the input coupling capacitance and thus reduces the ac noise immunity.

Interconnection Delays

For those parts of a system in which timing is critical, designers should take into account the finite delay along the interconnections. These range from about 0.12 to $0.15 \mathrm{~ns} /$ inch for the type of interconnections normally used in TTL systems. Exceptions occur in systems using ground planes with STTL to reduce ground noise during a logic transition; ground planes give higher distributed capacitance and delays of about 0.15 to $0.22 \mathrm{~ns} /$ inch.

Most interconnections on a logic board are short enough that the wiring and load capacitance can be treated as a lumped capacitance for purposes of estimating their effect on the propagation delay of the driving circuit. When an interconnection is long enough that its delay is one-fourth to one-half of the signal transition time, the driver output waveform exhibits noticeable slope changes during a transition. This is evidence that during the initial portion of the output voltage transition the driver sees the characteristic impedance of the interconnection (normally 150Ω to 200Ω), which for transient conditions appears as a resistor returned to the quiescent voltage existing just before the beginning of the transition. This characteristic impedance forms a voltage divider with the driver output impedance, tending to produce a signal transition having the same rise or fall time as in the no-load condition but with a reduced amplitude. This attenuated signal travels to the far end of the interconnection, which is essentially an unterminated transmission line, whereupon the signal starts doubling. Simultaneously, a reflection voltage is generated which has the same amplitude and polarity as the original signal, e.g., if the driver output signal is positive-going the reflection will be positive-going, and as it travels back toward the driver it adds to the line voltage. At the instant the reflection arrives at the driver it adds algebraically to the still-rising driver output, accelerating the transition rate and producing the noticeable change in slope.

If an interconnection is of such length that its delay is longer than half the signal transition time, the attenuated output of the driver has time to reach substantial completion before the reflection arrives. In the limit, the waveform observed at the driver output is a 2-step signal with a pedestal. In this circumstance the first load circuit to receive a full signal is the one at the far end, because of the doubling effect, while the last one to receive a full signal is the one nearest the driver since it must wait for the reflection to complete the transi-
tion. Thus, in a worst-cast situation, the net contribution to the overall delay is twice the delay of the interconnection because the initial part of the signal must travel to the far end of the line and the reflection must return.

When load circuits are distributed along an interconnection, the input capacitance of each will cause a small reflection having a polarity opposite that of the signal transition, and each capacitance also slows the transition rate of the signal as it passes by. The series of small reflections, arriving back at the driver, is subtractive and has the effect of reducing the apparent amplitude of the signal. The successive slowing of the transition rate of the transmitted signal means that it takes longer for the signal to rise or fall to the threshold level of any particular load circuit. A rough but workable approach is to treat the load capacitances as an increase in the intrinsic distributed capacitance of the interconnection. Increasing the distributed capacitance of a transmission line reduces its impedance and increases its delay. A good approximation for ordinary TTL interconnections is that distributed load capacitance decreases the characteristic impedance by about one-third and increases the delay by one-half.

Another advantage of LSTTL has to do with its output impedance during a positive-going transition. Whereas the low output impedance of STTL and HTTL allows these circuits to force a larger initial swing into a low impedance interconnection, the low output impedance also has a disadvantage. It makes the reflection coefficient negative at the driven end of the interconnection, a circumstance that exists any time a transmission line is terminated by an impedance lower than its characteristic impedance. This means that when the reflection from the (essentially) open end of the interconnection arrives back at the driver it will be re-reflected with the opposite polarity. The result is a sequence of reflected signals which alternate in sign and decrease in magnitude, commonly known as ringing. The lower the driver output impedance, the greater the amplitude of the ringing and the longer it takes to damp out.

The output impedance of LSTTL, on the other hand, is closer to the characteristic impedance of the interconnections commonly used with TTL, and ringing is practically non-existent. Thus no special packaging is required. This advantage, combined with excellent speed, modest edge rates and very low transient currents, are some of the reasons that designers have found LSTTL extremely easy to work with and very cost effective.

LOW POWER SCHOTTKY
AND MACROLOGICTMTTL

DEVICE INDEX AND
SELECTOR INFORMATION
3

SSI DATA SHEETS

NUMERICAL INDEX OF DEVICES

DEVICE DESCRIPTION PAGE
54LS/74LSOO Quad 2-Input NAND Gate 4-3
54LS/74LSO2 Quad 2-Input NOR Gate 4-4
54LS/74LSO3 Quad 2-Input NAND Gate (Open Collector) 4-5
54LS/74LSO4 Hex Inverter 4-6
54LS/74LS05 Hex Inverter (Open Collector) 4-7
54LS/74LS08 Quad 2-Input AND Gate 4-8
54LS/74LS09 Quad 2-Input AND Gate (Open Collector) 4-9
54LS/74LS10 Triple 3-Input NAND Gate 4-10
54LS/74LS11 Triple 3-Input AND Gate 4-11
54LS/74LS14 Hex Schmitt Trigger 4-12
54LS/74LS15 Triple 3-Input AND Gate (Open Collector) 4-14
54LS/74LS20 Dual 4-Input NAND Gate 4-15
54LS/74LS21 Dual 4-Input AND Gate 4-16
54LS/74LS22 Dual 4-Input NAND Gate (Open Collector) 4-17
54LS/74LS27 Triple 3-Input NOR Gate 4-18
54LS/74LS30 8-Input NAND Gate 4-19
54LS/74LS32 Quad 2-Input OR Gate 4-20
54LS/74LS37 Quad 2-Input NAND Buffer 4-21
54LS/74LS38 Quad 2-Input NAND Buffer (Open Collector) 4-22
54LS/74LS40 Dual 4-input NAND Buffer 4-23
54LS/74LS42 1-of-10 Decoder 5-3
54LS/74LS51 Dual AND-OR-Invert Gate 4-24
54LS/74LS54 2-3-3-2-Input 4-25
54LS/74LS55 2-Wide 4-Input 4-26
54LS/74LS73 Dual JK Flip-Flop 4-27
54LS/74LS74 Dual D Flip-Flop 4-29
54LS/74LS83 4-Bit Full Adder 5-6
54LS/74LS86 Quad Exclusive OR Gate 4-31
54LS/74LS90 Decade Counter 5-9
54LS/74LS92 Divide-by-12 Counter 5-9
54LS/74LS93 4-Bit Binary Counter 5-9
54LS/74LS95 4-Bit Shift Register 5-15
54LS/74LS109 Dual JK Edge-Triggered Flip-Flop 4-32
54LS/74LS112 Dual JK Edge-Triggered Flip-Flop 4-34
54LS/74LS113 Dual JK Edge-Triggered Flip-Flop 4-36
54LS/74LS114 Dual JK Edge-Triggered Flip-Flop 4-38
54LS/74LS125 Quad 3-State Buffer (LOW Enable) 4-40
54LS/74LS126 Quad 3-State Buffer (HIGH Enable) 4-40
54LS/74LS132 Quad 2-Input Schmitt Trigger 4-42
54LS/74LS133 13-Input NAND Gate $4-44$
54LS/74LS136 Quad Exclusive OR (Open Collector) 4-45
54LS/74LS138 1-of-8 Decoder/Demultiplexer 5-19
54LS/74LS139 Dual 1-of-4 Decoder/Demultiplexer 5-22
54LS/74LS151 8-Input Multiplexer 5-25
54LS/74LS152 8-Input Multiplexer 5-28
54LS/74LS153 Dual 4-Input Multiplexer 5-31
54LS/74LS155 Dual 1-of-4 Decoder 5-34
54LS/74LS156 Dual 1-of-4 Decoder (Open Collector) 5-34
54LS/74LS157 Quad 2-Input Multiplexer (Non-inverting) 5-38

NUMERICAL INDEX OF DEVICES (Cont'd)

DEVICE DESCRIPTION PAGE
54LS/74LS158 Quad 2-Input Multiplexer (Inverting) 5-41
54LS/74LS160 BCD Decade Counter, Asynchronous Reset (9310 Type) 5-44
54LS/74LS161 4-Bit Binary Counter, Asynchronous Reset (9316 Type) 5-44
54LS/74LS162 BCD Decade Counter, Synchronous Reset 5-44
54LS/74LS163 4-Bit Binary Counter, Synchronous Reset 5-44
54LS/74LS164 8-Bit Shift Register (Serial In-Parallel Out) 5-49
54LS/74LS170 4×4 Register File (Open Collector) 5-53
54LS/74LS174 Hex D Flip-Flop w/Clear 5-57
54LS/74LS175 Quad D Flip-Flop w/Clear 5-60
54LS/74LS181 4-Bit ALU 5-63
54LS/74LS190 Up/Down Decade Counter 5-68
54LS/74LS 191 Up/Down Binary Counter 5-68
54LS/74LS192 Up/Down Decade Counter 5-75
54LS/74LS193 Up/Down Binary Counter 5-75
54LS/74LS194 4-Bit Right/Left Shift Register 5-81
54LS/74LS195 4-Bit Shift Register (9300 Type) 5-85
54LS/74LS196 Decade Counter 5-89
54LS/74LS197 4-Bit Binary Counter 5-89
54LS/74LS251 8-Input Multiplexer (3-State) 5-95
54LS/74LS253 Dual 4-Input Multiplexer (3-State) 5-99
54LS/74LS257 Quad 2-Input Multiplexer (3-State) 5-102
54LS/74LS258 Quad 2-Input Multiplexer (3-State) 5-105
54LS/74LS259 8-Bit Addressable Latch (9334) 5-108
54LS/74LS266 Quad Exclusive NOR (Open Collector) 4-46
54LS/74LS279 Quad Set-Reset Latch 4-47
54LS/74LS283 4-Bit Full Adder (Rotated LS83) 5-109
54LS/74LS290 Decade Counter 5-112
54LS/74LS293 4-Bit Binary Counter 5-112
54LS/74LS295 4-Bit Shift Register (3-State) 5-117
54LS/74LS298 Quad 2-Input Multiplexer w/Output Latches 5-121
54LS/74LS365 Hex Buffer w/Common Enable (3-State) 4-48
54LS/74LS366 Hex Inverter w/Common Enable (3-State) 4-48
54LS/74LS367 Hex Buffer, 4-Bit \& 2-Bit (3-State) 4-48
54LS/74LS368 Hex Inverter, 4-Bit \& 2-Bit (3-State) 4-48
54LS/74LS670 4×4 Register File (3-State) 5-124

NUMERICAL INDEX OF DEVICES (Cont'd)

DEVICE DESCRIPTION PAGE
9LSOO Quad 2-Input NAND Gate 4-3
9LSO2 Quad 2-Input NOR Gate 4-4
9LS03 Quad 2-Input NAND Gate (Open Collector) 4-5
9LSO4 Hex Inverter 4-6
9LSO5 Hex Inverter (Open Collector) 4-7
9LS08 Quad 2-Input AND Gate 4-8
9LS09 Quad 2-Input AND Gate (Open Collector) 4-9
9LS10 Triple 3-Input NAND Gate 4-10
9LS11 Triple 3-Input AND Gate 4-11
9LS14 Hex Schmitt Trigger 4-12
9LS15 Triple 3-Input AND Gate (Open Collector) 4-14
9LS20 Dual 4-Input NAND Gate 4-15
9LS21 Dual 4-input AND Gate 4-16
9LS22 Dual 4-Input NAND Gate (Open Collector) 4-17
9LS27 Triple 3-Input NOR Gate 4-18
9LS30 8 -Input NAND Gate 4-19
9LS32 Quad 2-Input OR Gate 4-20
9LS37 Quad 2-Input NAND Buffer 4-21
9LS38 4-22
Quad 2-Input NAND Buffer (Open Collector)
9LS40 4-23
Dual 4-Input NAND Buffer
9LS42 5-3
9LS51 Dual AND-OR-Invert Gate 4-249LS54 2-3-3-2-input 4-25
硅
硅
9LS55 2-Wide 4-Input 4-26
9LS73 Dual JK Flip-Flop 4-27
9LS74 Dual D Flip-Flop 4-29
9LS83 4-Bit Full Adder 5-6
9LS86 Quad Exclusive OR Gate 4-31
9LS90 Decade Counter 5-9
9LS92 Divide-by- 12 Counter 5-9
9LS93 4-Bit Binary Counter 5-9
9LS95 4-Bit Shift Register 5-15
9LS109 Dual JK Edge-Triggered Flip-Flop 4-32
9LS112 Dual JK Edge-Triggered Flip-Flop 4-34
9LS113 Dual JK Edge-Triggered Flip-Flop 4-36
9 LS114 Dual JK Edge-Triggered Flip-Flop 4-38
9LS125 Quad 3-State Buffer (LOW Enable) 4-40
9LS126 Quad 3-State Buffer (HIGH Enable) $4-40$
9LS132 Quad 2-Input Schmitt Trigger 4-42
9LS133 13-Input NAND Gate 4-44
9LS136 Quad Exclusive OR (Open Collector) 4-45
9LS138 1-of-8 Decoder/Demultiplexer 5-19
9LS139 Dual 1-of-4 Decoder/Demultiplexer 5-22
9LS151 8-Input Multiplexer 5-25
9LS15 8-Input Multiplexer 5-28
9LS153 Dual 4-Input Multiplexer 5-31
9LS155 Dual 1-of-4 Decoder 5-34
9LS156 Dual 1-of-4 Decoder (Open Collector) 5-34
9LS157 Quad 2-Input Multiplexer (Non-inverting) 5-38

NUMERICAL INDEX OF DEVICES (Cont'd)

DEVICE

DESCRIPTION

PAGE

9LS158 Quad 2-Input Multiplexer (Inverting) 5-41
9LS160 BCD Decade Counter, Asynchronous Reset (9310 Type) 5-44
9LS161 4-Bit Binary Counter, Asynchronous Reset (9316 Type) 5-44
9LS162 BCD Decade Counter, Synchronous Reset 5.44
9LS163 4-Bit Binary Counter, Synchronous Reset 5-44
9LS164 8-Bit Shift Register (Serial In-Parallel Out) 5-49
9LS170 4×4 Register File (Open Collector) 5-53
9LS174 Hex D Flip-Flop w/Clear 5-57
9LS175 Quad D Flip-Flop w/Clear 5-60
9LS181 4-Bit ALU 5-63
9LS190 Up/Down Decade Counter 5-68
9LS191 Up/Down Binary Counter 5-68
9LS192
9LS1939LS194
Up/Down Decade Counter 5-75
Up/Down Binary Counter 5-75
9LS195 4-Bit Shift Register (9300 Type) 5-854-Bit Right/Left Shift Register5-81
9LS196 Decade Counter 5-89
9LS197 4-Bit Binary Counter 5-89
9LS251 8-Input Multiplexer (3-State) 5-95
9LS253 Dual 4-Input Multiplexer (3-State) 5-99
9LS257
9LS258 Quad 2 -input Multiplexer (3-State) -102
9LS259 8-Bit Addressable Latch (9334) 5-108
9LS266 Quad Exclusive NOR (Open Collector) 4-46
9LS279 Quad Set-Reset Latch 4-47
9LS283 4-Bit Full Adder (Rotated LS83) 5-109
9LS290 Decade Counter 5-112
9LS293 4-Bit Binary Counter 5-112
9LS295 4-Bit Shift Register (3-State) 5-117
9LS298 Quad 2-Input Multiplexer w/Output Latches 5-121
9LS365 Hex Buffer w/Common Enable (3-State) 4-48
9LS366 Hex Inverter w/Common Enable (3-State) $4-48$
9LS367 Hex Buffer, 4-Bit \& 2-Bit (3-State) $4-48$
9LS368 Hex Inverter, 4-Bit \& 2-Bit (3-State) 4-48
9LS670 4×4 Register File (3-State) 5-124
96L02 Dual Retriggerable Multivibrator 5-129
96SO2 Dual Retriggerable Multivibrator 5-135
9401 CRC Generator Checker 6-5
9403 FIFO Buffer Memory 6-9
Data Path Switch 6-22
Arithmetic Logic Register Stack 6-26
Program Stack 2-33
Data Access Register 6-44
9410

SSI SELECTOR AND REPLACEMENT GUIDE

Function	Low Power Schottky $5 \mathrm{~ns} / 2 \mathrm{~mW}$	Std. TTL 9N(54/74) $10 \mathrm{~ns} / 10 \mathrm{~mW}$	High Speed 9H(54/74H) $6 \mathrm{~ns} / 22 \mathrm{~mW}$	High Speed Schottky $3 \mathrm{~ns} / 19 \mathrm{~mW}$	Logic Symbol	LSTTL Data Sheet Page No.
NAND Gates						
Hex Inverters	$\begin{gathered} \text { 9LSO4 } \\ (54 / 74 \text { LSO4) } \end{gathered}$	$\begin{gathered} 9 \text { NO4 } \\ (54 / 7404) \end{gathered}$	$\begin{gathered} 9 \mathrm{HO4} \\ (54 / 74 \mathrm{HO} 04) \end{gathered}$	$\begin{gathered} 9 \mathrm{SO4} \\ \text { (54/74S04) } \\ 9 \mathrm{SO4A} \end{gathered}$	D-1	4-6
Hex Inverts (O.C.)	$\begin{gathered} \text { 9LSO5 } \\ (54 / 74 \text { LS05 }) \end{gathered}$	$\begin{gathered} 9 N 05 \\ (54 / 7405) \end{gathered}$	$\begin{gathered} 9 \mathrm{HO5} \\ (54 / 74 \mathrm{HO5}) \end{gathered}$	$\begin{gathered} 9 \mathrm{SO5} \\ \text { (54/74SO5) } \\ 9 \mathrm{SO5A} \end{gathered}$	D-1	4-7
Hex Schmitt Trigger	$\begin{gathered} 9 \text { LS14 } \\ (54 / 74 \text { L.S14) } \end{gathered}$	$\begin{gathered} 9 N 14 \\ (54 / 7414) \end{gathered}$			D-1	4-12
Quad 2-Input	$\begin{gathered} \text { 9LSOO } \\ \text { (54/74LSOO) } \end{gathered}$	$\begin{gathered} 9 N 00 \\ (54 / 7400) \end{gathered}$	$\begin{gathered} 9 \mathrm{HOO} \\ (54 / 74 \mathrm{HOO}) \end{gathered}$	$\begin{gathered} 9 \mathrm{SOO} \\ (54 / 74 \mathrm{SOO}) \end{gathered}$	D-2	4-3
Quad 2-Input (O.C.)	$\begin{gathered} \text { 9LSO3 } \\ \text { (54/74LSO3) } \end{gathered}$	$\begin{gathered} 9 N 03 \\ (54 / 7403) \end{gathered}$	$\begin{gathered} 9 \mathrm{HO1} \\ (54 / 74 \mathrm{HO1}) \end{gathered}$	$\begin{gathered} 9 \mathrm{SO3} \\ (54 / 74 \mathrm{SO}) \end{gathered}$	D-2	4-5
Quad 2-Input (48 mA)	$\begin{gathered} \text { 9LS37 } \\ \text { (54/74LS37) } \end{gathered}$	$\begin{gathered} 9 N 37 \\ (54 / 7437) \end{gathered}$			D-2	4-21
Quad 2-Input (O.C. $48 \mathrm{~mA})$	$\begin{gathered} 9 \text { LS38 } \\ (54 / 74 \text { LS138) } \end{gathered}$	$\begin{gathered} 9 N 38 \\ (54 / 7438) \end{gathered}$			D-2	4-22
Quad 2-Input Schmitt	$\begin{gathered} 9 \text { LS132 } \\ (54 / 74 \text { LS132 }) \end{gathered}$	$\begin{gathered} 9 N 132 \\ (54 / 74132) \end{gathered}$		$\begin{gathered} 9 \mathrm{~S} 132 \\ (54 / 74 \mathrm{~S} 132) \end{gathered}$	D-2	4-42
Triple 3-Input	$\begin{gathered} 9 \text { LS10 } \\ (54 / 74 \text { LS10 }) \end{gathered}$	$\begin{gathered} 9 N 10 \\ (54 / 7410) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 10 \\ (54 / 74 \mathrm{H} 10) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 10 \\ (54 / 74 \mathrm{~S} 10) \end{gathered}$	D-3	4-10
Dual 4-Input	$\begin{gathered} 9 \mathrm{LS} 20 \\ (54 / 74 \mathrm{LS} 20) \end{gathered}$	$\begin{gathered} 9 N 20 \\ (54 / 7420) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 2 \mathrm{O} \\ (54 / 74 \mathrm{H} 2 \mathrm{O}) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 20 \\ (54 / 74 \mathrm{~S} 20) \end{gathered}$	D-4	4-15
Dual 4-Input (O.C.)	$\begin{gathered} 9 \text { LS22 } \\ (54 / 74 \text { LS22 }) \end{gathered}$	$\begin{gathered} 9 N 22 \\ (54 / 7422) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 22 \\ (54 / 74 \mathrm{H} 22) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 22 \\ (54 / 74 \mathrm{~S} 22) \end{gathered}$	D-4	4-17
Dual 4-Input Buffer	$\begin{gathered} 9 \mathrm{LS} 40 \\ (54 / 74 \mathrm{LS} 40) \end{gathered}$	$\begin{gathered} 9 N 40 \\ (54 / 7440) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 40 \\ (54 / 74 \mathrm{H} 40) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 40 \\ (54 / 74 \mathrm{~S} 40) \end{gathered}$	D-4	4-23
8-Input	$\begin{gathered} 9 \mathrm{LS} 30 \\ (54 / 74 \mathrm{LS} 30) \end{gathered}$	$\begin{gathered} 9 N 30 \\ (54 / 7430) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 30 \\ (54 / 74 \mathrm{H} 30) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 30 \\ (54 / 74 \mathrm{~S} 30) \end{gathered}$	D-5	4-19
NOR Gates						
Quad 2-Input	$\begin{gathered} 9 \mathrm{LSO2} \\ (54 / 74 \mathrm{LSO}) \end{gathered}$	$\begin{gathered} 9 N 02 \\ (54 / 7402) \end{gathered}$		$\begin{gathered} 9 \mathrm{SO2} \\ (54 / 74 \mathrm{SO}) \end{gathered}$	D-6	4-4

SSI LOGIC SYMBOLS

9LS04，9LS05，9LS14

D2

9LS00，9LSO3，9LS37
9LS38，9LS132

D4

D5

D3

vce
 血回回用国回回

 9LS10

D6

SSI SELECTOR AND REPLACEMENT GUIDE

Function	Low Power Schottky $5 \mathrm{~ns} / 2 \mathrm{~mW}$	Std. TTL 9N(54/74) $10 \mathrm{~ns} / 10 \mathrm{~mW}$	High Speed 9H(54/74H) $6 \mathrm{~ns} / 22 \mathrm{~mW}$	High Speed Schottky $3 \mathrm{~ns} / 19 \mathrm{~mW}$	Logic Symbol	LSTTL Data Sheet Page No.
AND Gates						
Quad 2-Input	$\begin{gathered} \text { 9LSO8 } \\ \text { (54/74LSO8) } \end{gathered}$	$\begin{gathered} 9 N 08 \\ (54 / 7408) \end{gathered}$	$\begin{gathered} 9 \mathrm{HO8} \\ (54 / 74 \mathrm{HO8}) \end{gathered}$	$\begin{gathered} 9 \mathrm{SO8} \\ (54 / 74 \mathrm{SO8}) \end{gathered}$	D-7	4-8
Quad 2-Input (O.C.)	$\begin{gathered} \text { 9LSO9 } \\ \text { (54/74LSO9) } \end{gathered}$	$\begin{gathered} 9 N 09 \\ (54 / 7409) \end{gathered}$	$\begin{gathered} 9 \mathrm{HO9} \\ (54 / 74 \mathrm{HO9}) \end{gathered}$	$\begin{gathered} 9 \mathrm{SO9} \\ (54 / 74 \mathrm{SO9}) \end{gathered}$	D-7	4-9
Triple 3-Input	$\begin{gathered} 9 \text { LS 11 } \\ (54 / 74 L S 11) \end{gathered}$	$\begin{gathered} 9 N 11 \\ (54 / 7411) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 11 \\ (54 / 74 \mathrm{H} 11) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 11 \\ (54 / 74 \mathrm{~S} 11) \end{gathered}$	D-8	4-11
Triple 3-Input (O.C.)	$\begin{gathered} \text { 9LS15 } \\ \text { (54/74LS15) } \end{gathered}$		$\begin{gathered} 9 \mathrm{H} 15 \\ (54 / 74 \mathrm{H} 15) \end{gathered}$	$\begin{gathered} 9 \mathrm{~S} 15 \\ (54 / 74 \mathrm{~S} 15) \end{gathered}$	D-8	4-14
Dual 4-Input	$\begin{gathered} 9 \text { LS21 } \\ (54 / 74 L S 21) \end{gathered}$	$\begin{gathered} 9 N 21 \\ (54 / 7421) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 21 \\ (54 / 74 \mathrm{H} 21) \end{gathered}$		D-9	4-16
OR Gates						
Quad 2-Input	$\begin{gathered} \text { 9LS32 } \\ \text { (54/74LS32) } \end{gathered}$	$\begin{gathered} 9 N 32 \\ (54 / 7432) \end{gathered}$		$\begin{gathered} 9 \mathrm{~S} 32 \\ (54 / 74 \mathrm{~S} 32) \end{gathered}$	D-10	4-20

Exclusive OR Gate

Quad 2-Input	$9 L S 86$ $(54 / 74 L S 86)$	$9 N 86$ $(54 / 7486)$		$9 S 86$ $(54 / 74 S 86)$	D-11	$4-31$
Quad 2-Input (O.C)	$9 L S 136$ $(54 / 74 L S 136)$				D-11	$4-45$

Exclusive NOR Gate

| Quad 2-Input (O.C.) | $9 L S 266$
 $(54 / 74 L S 266)$ | 9386
 (8242) | | D-12 | $4-46$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

AND-OR-INVERT Gates

Dual 2-2 Input	$9 L S 51$ $(54 / 74 L S 51)$	$9 N 51$ $(54 / 7451)$	$9 H 51$ $(54 / 74 \mathrm{H} 51)$	$9 S 51$ $(54 / 74 S 51)$	D-13	$4-24$
$2-2-3-3$ Input	$9 L S 54$ $(54 / 74 L S 54)$				$D-14$	$4-25$
$4-4$ Input	$9 L S 55$ $(54 / 74 L S 55)$				$D-15$	$4-26$

SSI LOGIC SYMBOLS

9LS08, 9LS09

9LS11, 9LS15

D11

9LS86, 9LS136

9LS54

9LS21

9 LS32

9LS51

D12

9LS266

D15

9LS55

SSI SELECTOR AND REPLACEMENT GUIDE

Function	Low Power Schottky $5 \mathrm{~ns} / 2 \mathrm{~mW}$	$\begin{gathered} \text { Std. TTL } \\ 9 \mathrm{~N}(54 / 74) \\ 10 \mathrm{~ns} / 10 \mathrm{~mW} \end{gathered}$	High Speed 9H(54/74H) $6 \mathrm{~ns} / 22 \mathrm{~mW}$	High Speed Schottky $3 \mathrm{~ns} / 19 \mathrm{~mW}$	Logic Symbol	LSTTL Data Sheet Page No.
Dual Flip-Flops						
Duai JK	$\begin{gathered} 9 \text { LS73 } \\ (54 / 74 \text { LS73 }) \end{gathered}$	$\begin{gathered} 9 N 73 \\ (54 / 7473) \end{gathered}$	$\begin{aligned} & 9 \mathrm{H} 73,103 \\ & (55 / 74 \mathrm{H} 73, \\ & 54 / 74 \mathrm{H} 103) \end{aligned}$		D-16	4-27
Dual D	$\begin{gathered} 9 \text { LSS74 } \\ (54 / 74 \text { LS74 }) \end{gathered}$	$\begin{gathered} 9 N 74 \\ (54 / 7474) \end{gathered}$	$\begin{gathered} 9 \mathrm{H} 74 \\ (54 / 74 \mathrm{H} 74) \end{gathered}$	$\begin{gathered} 9 S 74 \\ (54 / 74 S 74) \end{gathered}$	D-17	4-29
Dual JK	$\begin{gathered} \text { 9LS109 } \\ (54 / 74 \text { LS109 } \end{gathered}$	$\begin{gathered} 9024 \\ (54 / 74109) \end{gathered}$		$\begin{gathered} 9 \mathrm{~S} 109 \\ (54 / 74 \mathrm{~S} 109) \end{gathered}$	D-18	4-32
Dual JK	$\begin{gathered} 9 \text { LS112 } \\ (54 / 74 \text { LS112 }) \end{gathered}$			$\begin{gathered} 9 \mathrm{~S} 112 \\ (54 / 74 \mathrm{~S} 112) \end{gathered}$	D-19	4-34
Dual JK	$\begin{gathered} \text { 9LS113 } \\ (54 / 74 \text { LS } 113) \end{gathered}$			$\begin{gathered} 9 \mathrm{~S} 113 \\ (54 / 74 \mathrm{~S} 113) \end{gathered}$	D-20	4-36
Dual JK	9LS114 $\text { (54/74LS } 114)$			$\begin{gathered} 9 \mathrm{~S} 114 \\ (54 / 74 \mathrm{~S} 114) \end{gathered}$	D-21	4-38

D16

$\begin{aligned} V_{C C} & =\operatorname{Pin} 4 \\ G N D & =\operatorname{Pin} 11\end{aligned}$

9LS73

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
9 LS113

$V_{C C}=\operatorname{Pin} 14$
$G N D=\operatorname{Pin} 7$

9LS74

MSI SELECTOR GUIDE BY FUNCTION

Arithmetic and Macrologic Operators

(CLA = Carry Lookahead)

MSI SELECTOR GUIDE BY FUNCTION

Counters								
A $=$ Asynchronous								
$\begin{aligned} & \text { 들 } \\ & 0.0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 2 \\ & u \\ & U \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \frac{0}{0} \\ & \sum \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underline{0} \\ & \overline{\bar{\omega}} \\ & 0 \\ & 0 \end{aligned}$					
Asynchronous	9LS90/74LS90	2×5		L	50	33	45	5-9
Asynchronous	9LS92 / 74LS92	2×6		L	50	33	45	5-9
Asynchronous	9LS93/74LS93	2×8		\checkmark	50	46	45	5-9
Asynchronous	9LS196/74LS196	2×5	A	7	60	48	60	5-89
Asynchronous	9LS197/74LS197	2×8	A	L	70	60	60	5-89
Synchronous	9LS160/74LS160	10 Presettable	S	5	45	15	95	5-44
Synchronous	9LS161/74LS161	$\begin{gathered} 16 \\ \text { Presettable } \end{gathered}$	S	5	45	15	95	5-44
Synchronous	9LS162/74LS162	10 Presettable	S	5	45	15	95	5-44
Synchronous	9LS163/74LS163	16 Presettable	S	Γ	45	15	95	5-44
Up / Down	9LS192/74LS192	10	A	\checkmark	40	30	85	5-75
Up / Down	9LS193/74LS193	16	A	\lrcorner	40	30	85	5-75
Up / Down	9LS190/74LS190	10	A	-	40	20	90	5-68
Up / Down	9LS191/74LS191	16	A	5	40	20	90	5-68

MSI SELECTOR GUIDE BY FUNCTION

Decoders/Demultiplexers Unit Load (UL) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW										
$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & \hline \end{aligned}$	0 2 U 0 \vdots 0		өןqeuヨ M07 əм!ıכヲ	słndłnO MO7 en!łov						
Dual 1-of-4	$\begin{aligned} & \text { 9LS139/ } \\ & \text { 74LS139 } \end{aligned}$	$2+2$	$1+1$	4+4		22	19	34	5	5-22
Dual 1-of-4	$\begin{aligned} & \text { 9LS155/ } \\ & \text { 74LS155 } \end{aligned}$	2	$2+2$	4+4		18	15	30	5	5-34
Dual 1-of-4	$\begin{aligned} & \text { 9LS156/ } \\ & \text { 74LS156 } \end{aligned}$	2	$2+2$	4+4	5.5 V	33	26	31	5	5-34
1-Of-8	$\begin{aligned} & \text { 9LS259/ } \\ & \text { 74LS259 } \end{aligned}$	3	1	8		30	19	60	5	5-108
1-of-8	$\begin{aligned} & \text { 9LS42/ } \\ & \text { 74LS42 } \end{aligned}$	3	1	8		17	17	35	5	5-3
1-of-8	$\begin{aligned} & \text { 9LS138/ } \\ & \text { 74LS138 } \end{aligned}$	3	3	8		22	21	34	5	5-19
1-of-10	$\begin{aligned} & \text { 9LS42/ } \\ & \text { 74LS42 } \end{aligned}$	4 (BCD)		10		17		35	5	5-3

MSI SELECTOR GUIDE BY FUNCTION

Latches/Flip-Flops

$\begin{aligned} & \text { 든 } \\ & \text { 을 } \\ & \text { 든 } \end{aligned}$	$\dot{0}$ 2 u 0		$\begin{aligned} & \text { © } \\ & \text { © } \\ & \text { E } \\ & 0 \\ & E \\ & 0 \\ & \hline 0 \end{aligned}$						
4-Bit R-S Latch	$\begin{aligned} & \text { 9LS279/ } \\ & \text { 74LS279 } \end{aligned}$	4x(RS)	-	-	-	-	14	19	4-47
4-Bit D Latch	$\begin{aligned} & \text { 9LS196/ } \\ & \text { 74LS197 } \end{aligned}$	$4 \times D$	L	1(L)	20	28	24	60	5-89
4-Bit D Latch	$\begin{aligned} & \text { 9LS197/ } \\ & \text { 74LS197 } \end{aligned}$	$4 \times D$	L	1(L)	20	28	24	60	5.89
4-Bit D Flip-Flop	$\begin{aligned} & \text { 9LS175/ } \\ & \text { 74LS175 } \end{aligned}$	$4 \times D$	L	1(」)	20	21	-	55	5-60
4-Bit D Flip-Flop	$\begin{aligned} & \text { 9LS298/ } \\ & \text { 74LS298 } \end{aligned}$	4×2	-	1(L)	20	20	-	65	5-121
6-Bit D Flip-Flop	$\begin{aligned} & \text { 9LS174/ } \\ & \text { 74LS1 } 74 \end{aligned}$	6	L	1(5)	20	21	-	80	5-57
8-Bit Add. Latch	$\begin{aligned} & \text { 9LS259/ } \\ & \text { 74LS259 } \end{aligned}$	$1 \times \mathrm{D}$	L	1(L) 3 add. bits	11	18	28	70	5-108
4×4 Register File	$\begin{aligned} & \text { 9LS170/ } \\ & \text { 74LS1 } 70 \end{aligned}$	$4 \times D$	-	2	25	-	26	125	5-53
4×4 Register File (3-state)	$\begin{aligned} & \text { 9LS670/ } \\ & \text { 74LS670 } \end{aligned}$	$4 \times D$	-	2	25	-	24	150	5-124

Monostables (One-Shots)

$\begin{aligned} & \text { 든 } \\ & \text { O} \\ & \text { 든 } \end{aligned}$	0 2 \mathbf{U} 0 	Pulse Width Variation (\%)		No. of Inputs					
		$\begin{aligned} & \text { U } \\ & > \\ & \text { in } \end{aligned}$	$\stackrel{0}{E}$ $\stackrel{y}{0}$ $\stackrel{y}{>}$	\#					
Dual Retriggerable	96 LO 2	$\pm 0.4 \%$	$\pm 1.5 \%$	1	1	X	110	50	5-129
Dual Retriggerable	96S02	$\pm 0.2 \%$	$\pm 0.2 \%$	1	1	X	27	250	5-135

MSI SELECTOR GUIDE BY FUNCTION

Multiplexers										
$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \mathbf{z} \\ & \underset{U}{u} \\ & \underset{\sim}{u} \end{aligned}$	Enable Inputs								
Quad 2-Input	$\begin{aligned} & \text { 9LS157/ } \\ & \text { 74LS157 } \end{aligned}$	1	X		18	14	9	49	5	5-38
Quad 2-Input	$\begin{aligned} & \text { 9LS158/ } \\ & \text { 74LS158 } \end{aligned}$	1		X	16	12	7	24	5	5-41
Quad 2-Input	$\begin{aligned} & \text { 9LS257/ } \\ & \text { 74LS257 } \end{aligned}$	1	3-State		14	16	12	50	5	5-102
Quad 2-Input	$\begin{aligned} & \text { 9LS258/ } \\ & \text { 74LS258 } \end{aligned}$	1		3-State	12	16	10	35	5	5-105
Quad 2-Input	$\begin{aligned} & \text { 9LS298/ } \\ & \text { 74LS298 } \end{aligned}$	Clocked (edge-trigger)	X Latched		-	20	-	65	5	5-121
Dual 4-Input	$\begin{aligned} & \text { 9LS153/ } \\ & \text { 74LS153 } \end{aligned}$	2	X		18	16	10	31	5	5-31
Dual 4-Input	$\begin{aligned} & \text { 9LS253/ } \\ & \text { 74LS253 } \end{aligned}$	2	3-State		18	16	10	43	5	5-99
8-Input	$\begin{aligned} & \text { 9LS151/ } \\ & \text { 74LS151 } \end{aligned}$	1	X	X	28	25	18	30	5	5-25
8-Input	$\begin{aligned} & \text { 9LS251/ } \\ & \text { 74LS251 } \end{aligned}$	1	3-State	3-State	29	21	18	33	5	5-95
8-Input	$\begin{aligned} & \text { 9LS152/ } \\ & \text { 74LS152 } \end{aligned}$			X	22	-	11	28	5	5-28

MSI SELECTOR GUIDE BY FUNCTION

Registers									
A $=$ Asynchronous									
$\begin{aligned} & \text { 든 } \\ & \text { O } \\ & \text { C } \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{n}{i} \\ & \vdots \\ & \vdots \\ & \dot{0} \\ & \dot{2} \end{aligned}$			$\begin{aligned} & \mathbb{O} \\ & \text { O} \\ & \text { U } \\ & \text { प } \\ & \frac{0}{U} \end{aligned}$				
Parallel-in / Parallel-out Shift Right	$\begin{aligned} & \text { 9LS95/ } \\ & \text { 74LS95 } \end{aligned}$	4	D	4S	L	36	20	65	5-15
Parallel-in / Parallel-out Shift Right	$\begin{aligned} & \text { 9LS195/ } \\ & \text { 74LS195 } \end{aligned}$	4	J, K	4S	Γ	39	17	70	5-85
Parallel-in / Parallel-out Shift Right	$\begin{aligned} & \text { 9LS295 / } \\ & \text { 74LS295 } \end{aligned}$	4	D	4S	5	28	40	75	5-117
Parallel-in / Parallel-out Bi-Directional	$\begin{aligned} & \text { 9LS194/ } \\ & \text { 74LS194 } \end{aligned}$	4	DR, DL	4S	5	36	16	75	5-81
Serial-in / Parallel-out	$\begin{aligned} & \text { 9LS164/ } \\ & \text { 74LS164 } \end{aligned}$	8	2D	-	5	18	50	95	5-49
Parallel-in / Parallel-out	$\begin{aligned} & \text { 9LS } 174 / \\ & 74 \text { LS } 174 \end{aligned}$	6	-	6S	5	40	21	65	5-57
Parallel-in / Parallel-out	$\begin{aligned} & \text { 9LS175/ } \\ & \text { 74LS175 } \end{aligned}$	4	-	4S	5	40	21	45	5-60
Parallel-in / Parallel-out	$\begin{aligned} & \text { 9LS298/ } \\ & \text { 74LS298 } \end{aligned}$	4	-	$\begin{gathered} \text { 2D } \\ \mathrm{MUX} \end{gathered}$	7	30	21	65	5-121
Multiport Registers	$\begin{aligned} & \text { 9LS170/ } \\ & 74 L S 170 \end{aligned}$	16	-	4A	L	-	25	125	5-53
Multiport Registers	$\begin{aligned} & \text { 9LS670/ } \\ & \text { 74LS670 } \end{aligned}$	16	-	4A	ㄴ	-	30	150	5-124

 AND MACROLOGIC ${ }^{\text {TM }}$ TTL

DESIGN CONSIDERATIONS

DEVICEINDEX AND SELECTOR INFORMATION

SSI DATA SHEETS
4

MSI DATA SHEETS

MACROLOGIC'M TIL DATA SHEETS
6
ORDERING INFORMATIONAND
PACKAGE OUTLINES

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS
|

QUAD 2-INPUT NAND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	TEMPERATURE	
9 SSOOXM /54LSOOXM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LSOOXC/74LSOOXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CCH }}$	Supply Current HIGH			0.8	1.6	mA	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I CCL }}$	Supply Current LOW			2.4	4.4	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {P PLH }}$	Turn Off Delay, Input to Output	3.0	5.0	10	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {P PHL }}$	Turn On Delay, Input to Output	3.0	5.0	10	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT NOR GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 SSO2XM /54LSO2XM	4.5 V	5.0 V	5.5	V
9 LSO2XC $/ 74$ LSO2XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}^{\prime}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
$I_{\text {IL }}$	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			1.6	3.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			2.4	5.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output	3.0	5.0	10	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t }}$ PHL	Turn On Delay, Input to Output	3.0	5.0	10	ns	$C_{L}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT NAND GATE

*OPEN COLLECTOR OUTPUTS

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LSO3XM / 54LSO3XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LSO3XC / 74LSO3XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{iH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
${ }^{\mathrm{O}} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}-2.0 \mathrm{~V}$
I_{IH}	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$
					0.1	mA	$V_{C C}=$ MAX, $V_{\text {IN }}=5.5 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCH}$	Supply Current HIGH			0.8	1.6	mA	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {' }} \mathrm{CCL}$	Supply Current LOW			2.4	4.4	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {P PLH }}$	Turn Off Delay, Input to Output		14	22	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF}, R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output		10	18	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

FAIRCHILD • 9LSO4 (54LS/74LS04)

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 LSO4XM/54LSO4XM	4.5 V	5.0 V	5.5	V
$9 L S O 4 X C / 74 L S 04 X C$	4.75 V	5.0 V	$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
$\mathrm{IIL}^{\text {L }}$	Input LOW Current				0.36	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\mathrm{C} C H}$	Supply Current HIGH			1.2	2.4	mA	$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			3.6	6.6	mA	$V_{C C}=$ MAX, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t_{\mathrm{PLH}}}$	Turn Off Delay, Input to Output	3.0	5.0	10	ns	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PHL}}$	Turn On Delay, Input to Output	3.0	5.0	10	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical timits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD•9LSO5 (54LS/74LS05)

HEX INVERTER

*OPEN COLLECTOR OUTPUTS

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9 LSO5XM/54LSO5XM	4.5 V	5.0 V	5.5	V
9 LSO5XC/74LSO5XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$V_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
VIL	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
${ }^{1} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }_{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			1.2	2.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			3.6	6.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PL.H }}$	Turn Off Delay, Input to Output		14	22	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {tPHL }}$	Turn On Delay, Input to Output		10	18	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

QUAD 2-INPUT AND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	TEMPERATURE	
9 LSO8XM/54LSO8XM	4.5 V	5.0 V	5.5	V
9 SSO8XC/74LSO8XC	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CCH }}$	Supply Current HIGH			2.4	4.8	mA	$V_{C C}=\mathrm{MAX}$, Inputs Open
${ }^{\text {I CCL }}$	Supply Current LOW			4.4	8.8	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		8.0	13	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t }} \mathrm{PHL}$	Turn On Delay, Input to Output		7.5	11	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \top_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT AND GATE (WITH OPEN-COLLECTOR OUTPUT)

*Open Collector Outputs

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9 LSO9XM /54LSO9XM	4.5 V	5.0 V	5.5	V
9 LSO9XC/74LSO9XC	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
${ }^{\mathrm{O}} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
${ }_{1 / \mathrm{H}}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCH}$	Supply Current HIGH			2.4	4.8	mA	$V_{C C}=M A X$, Inputs Open
${ }^{\mathrm{I}} \mathrm{CCL}$	Supply Current LOW			4.4	8.8	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		13	20	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output		10	15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TRIPLE 3-INPUT NAND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9 SS10XM/54LS10XM	4.5 V	5.0 V	5.5	V
$9 L S 10 \times C / 74 L S 10 \times C$	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC	2.7	3.4			
${ }^{\mathrm{O}} \mathrm{OL}$	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}-2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
los	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CCH }}$	Supply Current HIGH			0.6	1.2	mA	$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			1.8	3.3	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output	3.0	6.0	10	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {tPHL }}$	Turn On Delay, Input to Output	3.0	6.0	10	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

TRIPLE 3-INPUT AND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9 LS11XM /54LS11XM	4.5 V	5.0 V	5.5	V
9 LS11XC/74LS11XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
IIH	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 V$
${ }^{\text {I CCH }}$	Supply Current HIGH			1.8	3.6	mA	$V_{C C}=M A X$, Inputs Open
${ }^{\text {ICCL }}$	Supply Current LOW			3.3	6.6	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\mathrm{t}_{\text {PLH }}$	Turn Off Delay, Input to Output	4.0	8.5	13	ns	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PHL}}$	Turn On Delay, Input to Output	3.0	7.5	11	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS14 (54LS /74LS14)

HEX SCHMITT TRIGGER INVERTER

DESCRIPTION - The 9LS14 (54LS/74LS14) contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Fig. 2

Fig. 1

Fig. 3

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS14XM /54LS14XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS14XC/74LS14XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage			1.6		v	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage			0.8		v	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}+} \mathrm{V}_{\mathrm{T}-}$	Hysteresis		0.4	0.8		V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=M I N, I_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{\mathrm{T}+}$	Input Current at Positive-Going Threshold			-0.14		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {T+ }}$
${ }^{1}$ -	Input Current at Negative-Going Threshold			-0.18		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{T}-}$
${ }_{1 / H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\mathrm{ICCH}}$	Supply Current HIGH			8.6	16	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I CCL }}$	Supply Current LOW			12	21	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t }}$ PLH	Propagation Delay, Input to Output			20	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t PHL }}$	Propagation Delay, Input to Output			20	ns	$C_{L}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

TRIPLE 3-INPUT AND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9 LS $15 \times M / 54$ LS $15 \times M$	4.5 V	5.0 V	5.5	V
$9 L S 15 \times C / 74 L S 15 \times C$	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$V_{I H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed input LOW Voltage
		XC			0.8		
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
${ }^{1} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
${ }_{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			1.8	3.6	mA	$V_{C C}=$ MAX, Inputs Open
${ }^{1} \mathrm{CCL}$	Supply Current LOW			3.3	6.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output	7.0	13	20	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output	5.0	10	15	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DUAL 4-INPUT NAND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 9LS20XM/54LS20XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 GS20XC /74LS20XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\mathrm{CCH}}$	Supply Current HIGH			0.4	0.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCL}$	Supply Current LOW			1.2	2.2	mA	$\mathrm{V}_{\mathrm{CC}}=$ MAX, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output	3.0	7.0	10	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output	3.0	7.0	10	ns	$C_{L}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

DUAL 4-INPUT AND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS21XM/54LS21XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS21XC /74LS21XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{HH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input Low Voltage	XM			0.7	V	Guaranteed Input Low Voltage
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{IH}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
${ }_{1 / H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Inpút LOW Current				-0.36	mA	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			1.2	2.4	mA	$\mathrm{V}_{C C}=\mathrm{MAX}$, Inputs Open
${ }^{\text {I CCL }}$	Supply Current LOW			2.2	4.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\mathrm{t}_{\mathrm{PLH}}$	Turn Off Delay, Input to Output		10	15	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{t}_{\text {PHL }}$	Turn On Delay, Input to Output		8.0	12	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

DUAL 4-INPUT NAND GATE

*OPEN COLLECTOR OUTPUTS
GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9LS22XM/54LS22XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$9 L S 22 \times C / 74 L S 22 X C$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
${ }^{1} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			0.4	0.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			1.2	2.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		14	22	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }^{\text {t }}$ PHL	Turn On Delay, Input to Output		10	18	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

TRIPLE 3-INPUT NOR GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS27XM/54LS27XM	4.5 V	5.0 V	5.5 V	$5^{\circ} 5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS27XC/74LS27XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATHER RANGE (unless otherwise specified)

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {P PLH }}$	Turn Off Delay, Input to Output		8.0	13	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {tPHL }}$	Turn On Delay, Input to Output		8.0	13	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS30 (54LS/74LS30)

8-INPUT NAND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	
$9 L S 30 X M / 54 L S 30 X M ~$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS30XC /74LS30XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$
I_{IH}	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{iN}}=0.4 \mathrm{~V}$
${ }^{\text {O O }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CCH }}$	Supply Current HIGH			0.35	0.5	mA	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCL}$	Supply Current LOW			0.6	1.1	mA	$V_{\text {CC }}=$ MAX, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
t PLH	Turn Off Delay, Input to Output		7.0	12	ns	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {PHL }}$	Turn On Delay, Input to Output		9.0	15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT OR GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
$9 L S 32 X M / 54 L S 32 X M$	4.5 V	5.0 V	5.5 V	
9 LS32XC/74LS32XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voitage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
I_{H}	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			3.1	6.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open
${ }^{1} \mathrm{CCL}$	Supply Current LOW			4.9	9.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output	3.0	7.0	11	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t }}$ PHL	Turn On Delay, Input to Output	3.0	7.0	11	ns	$C_{L}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT NAND BUFFER

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS37XM / 54LS37XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS37XC / 74LS37XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-1.2 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{\prime} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 3)		-30		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\mathrm{I}} \mathrm{CCH}$	Supply Current HIGH			0.9	2.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCL}$	Supply Current LOW			6.0	12	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		10	15	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }^{\text {tPHL }}$	Turn On Delay, Input to Output		10	15	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT NAND BUFFER

*OPEN COLLECTOR OUTPUTS

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 LS38XM/54LS38XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS38XC $/ 74$ LS $38 \times \mathrm{C}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
VIL	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}^{\prime} \mathrm{N}=-18 \mathrm{~mA}$
${ }^{\prime} \mathrm{OH}$	Output HIGH Current				250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{\prime} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			0.9	2.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			6.0	12	mA	$V_{C C}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		14	22	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output		10	18	ns	$C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DUAL 4-INPUT NAND BUFFER

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
$9 L S 40 \times M / 54 L S 40 X M$	4.5 V	5.0 V	5.5	V
9 SS40XC/74LS40XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-1.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=$ MAX, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 3)		-30		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CCH }}$	Supply Current HIGH			0.45	1.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{{ }^{\text {CCLL }}}$	Supply Current LOW			3.0	6.0	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Turn Off Delay, Input to Output		10	15	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t }}$ PHL	Turn On Delay, Input to Output		10	15	ns	$C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

DUAL 2-WIDE 2-INPUT/3-INPUT AND-OR-INVERT GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	TEMPERATURE	
$9 L S 51 X M / 54 L S 51 X M$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS51XC/74LS51XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note i)
			MIN	TYP	MAX		
$V_{1 H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$V_{C C}=\mathrm{MIN},{ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
$I_{i H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
IOS	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\mathrm{CCH}}$	Supply Current HIGH			0.8	1.6	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCL}$	Supply Current LOW			1.4	2.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		8.0	13	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t PHL }}$	Turn On Delay, Input to Output		8.0	13	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

3-2-2-3-INPUT AND-OR-INVERT GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS54XM / 54LS54XM	4.5 V	5.0 V	5.5 V	- $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS54XC / 74LS54XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {tPLH }}$	Turn Off Delay, Input to Output		10	15	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {tPHL }}$	Turn On Delay, Input to Output		10	15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

2-WIDE 4-INPUT AND-OR-INVERT GATE

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS55XM / 54LS55XM	4.5 V	5.0 V	5.5 V ,	. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS55XC / 74LS55XC	4.75 V	5.0 V	(4) 5.25 y ,	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		x	Limits		UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage	+	2.0			V	Guaranteed Input HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=M I N, I_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
I_{IH}	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			0.4	0.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I CCL }}$	Supply Current LOW			0.7	1.3	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t PLH }}$	Turn Off Delay, Input to Output		10	15	ns	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
${ }^{\text {P PHL }}$	Turn On Delay, Input to Output		10	15	ns	$C_{L}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS73 (54LS /74LS73)

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9 LS73 (54 LS/74LS73) offers individual J, K, clear, and clock inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC SYMBOL

LOGIC DIAGRAM
(Each Flip-Fiop)

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V) ${ }_{\text {CC }}$			TEMPERATURE
	MIN	TYP	MAX	
9LS73XM / 54LS73XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS73XC/74LS73XC	44.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
${ }^{V_{C D}}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }_{1 H}$	Input HIGH Current J, K Clear Clock				20 60 80	$\mu \mathrm{A}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	J, K Clear Clock				0.1 0.3 0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
${ }^{\text {ILI }}$	Input LOW Current J, K Clear Clock				$\begin{array}{r} -0.36 \\ -0.8 \\ -0.72 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

FAIRCHILD • 9LS73 (54LS / 74LS73)

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	\bar{C}_{D}	J	K	Q	$\overline{\mathrm{O}}$
Reset (Clear)	L	x	x	L	H
Toggle	H	h	h	$\overline{\mathrm{q}}$	q
Load " 0 " (Reset)	H	1	h	L	H
Load "1" (Set)	H	h	1	H	L
Hold	H	1	1	q	$\overline{\mathrm{q}}$

H,h = HIGH Voltage Level
L,I = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{I}, \mathrm{h}(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Maximum Clock Frequency	30	45		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t}$ PHL	Propagation Delay, Clock to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 1	
${ }^{t}$ PLH ${ }^{t}$ PHL	Propagation Delay, Clear to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{1} W^{C P}(\mathrm{H})$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 3	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {t }}{ } \mathrm{CP}(\mathrm{L})$	Clock Pulse Width (LOW)	15	10		ns		
${ }^{t} \mathrm{~W}$	Clear Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{s}(\mathrm{H})$	Set-up Time HIGH, J or K to Clock	20	13		ns	Fig. 3	
${ }^{t}{ }^{(H)}$	Hold Time HIGH, J or K to Clock	0	-10		ns		
$\mathrm{t}_{s}(\mathrm{~L})$	Set-up Time LOW, J or K TO Clock	15	10		ns		
$\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold Time LOW, J or K to Clock	0	-13		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9LS74 (54LS/74LS74) dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and $\overline{\mathrm{Q}}$ outputs.
Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the D input signal has no effect.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 TS74XM/54LS74XM	4.5 V	5.0 V	5.5	V
9 LS74XC/74LS74XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voitage for All Inputs
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or V_{IL} per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }_{1} \mathrm{H}$	Input HIGH Current Data Clock, Set Clear				20 40 60	$\mu \mathrm{A}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	Data Clock, Set Clear				0.1 0.2 0.3	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
ILI	Input LOW Current Data Clock, Set Clear				$\begin{aligned} & -0.4 \\ & -0.8 \\ & -1.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

FAIRCHILD • 9LS74 (54LS /74LS74)

MODE SELECT - TRUTH TABLE

OPERATING MODE	InPUTS			OUTPUTS	
	$\overline{S_{D}}$	\bar{C}_{D}	D	0	$\overline{\mathrm{o}}$
Set	L	H	x	H	L
Reset (Clear)	H	L	x	L	H
* Undetermined	L	L	X	H	H
Load "1" (Set)	H	H	h	H	L
Load "0" (Reset)	H	H	1	L	H

*Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ are LOW, but the output states are unpredictable if $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ go HIGH simultaneously.

H,h $=$ HIGH Voltage Level
L,I = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{I}, \mathrm{h}(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS	
			MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Maximum Clock Frequency		30	45		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\overline{\mathrm{t}_{\mathrm{PLH}}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, Clock to Output			$\begin{aligned} & 15 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	ns	Fig. 1	
${ }^{\text {t PLH }}$	Propagation Delay, Set or Clear to Output			10	15	ns	Fig. 2	
${ }^{\text {t PHL }}$		$C P=L$		18	24			
${ }^{\text {tPHL }}$		$C P=H$		26	35			

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }_{\text {t }}{ }^{\text {CP(H) }}$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t} w$	Set or Clear Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{s}(\mathrm{H})$	Set-up Time HIGH, Data to Clock	10	6		ns	Fig. 1	
$t^{\text {n }}$ (H)	Hold Time HIGH, Data to Clock	0	-14		ns		
$\mathrm{t}_{5}(L)$	Set-up Time LOW, Data to Clock	20	14		ns		
$t^{\text {h }}$ (L)	Hold Time LOW, Data to Clock	0	-6		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

QUAD 2-INPUT EXCLUSIVE OR GATE

TRUTH TABLE

IN		OUT
A	B	Z
L	L	L
L	H	H
H	L	H
H	H	L

GUARANTEED OPERATING RANGES
PART NUMBERS

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, 1_{1 /}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC		0.35	0.5	V	${ }^{\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table
${ }_{1} \mathrm{H}$	Input HIGH Current				40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.2	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCH}$	Supply Current			6.1	10	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Other Input LOW			$\begin{aligned} & 12 \\ & 17 \end{aligned}$	ns	$V_{C C}=5.0 \mathrm{~V}$
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Other Input HIGH			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9LS109 (54LS/74LS109) consists of two high speed completely independent transition clocked JK flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D flip-flop by simply connecting the J and \bar{K} pins together. The 9LS109 is a pin-for-pin replacement of the 9024 and 9L24.

LOGIC SYMBOL

$$
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Pin} 16 \\
& \mathrm{GND}=\operatorname{Pin} 8
\end{aligned}
$$

LOGIC DIAGRAM

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
9LS109XM/54LS109XM	4.5 V	5.0 V	5.5	V
9 SS109XC/74LS109XC	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA} ~ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\text {IL }}$ per Truth Table
I_{IH}	```Input HIGH Current J, K Clock, Set Clear```				20 40 80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	J, K Clock, Set Clear				0.1 0.2 0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
ILL	Input LOW Current J, K Clock, Set Clear				$\begin{aligned} & -0.4 \\ & -0.8 \\ & -1.6 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

FAIRCHILD • 9LS109 (54LS / 74LS109)

	MODE SELECT - TRUTH TABLE						
	OPERATING MODE	INPUTS				OUTPUTS	
		\bar{S}_{D}	$\bar{C}_{\text {D }}$	J	$\overline{\mathrm{K}}$	Q	$\overline{\mathrm{Q}}$
	Set	L	H	x	x	H	L
	Reset (Clear)	H	L	x	X	L	H
	* Undetermined	L	L	x	x	H	H
	Load "1" (Set)	H	H	h	h	H	L
	Hold	H	H	1	h	a	$\overline{\mathrm{a}}$
	Toggle	H	H	h	1	\bar{q}	q
	Load "0" (Reset)	H	H	1	1	L	H

*Both outputs will be HIGH while both \bar{S}_{D} and \bar{C}_{D} are LOW, but the output states are unpredictable if \bar{S}_{D} and \bar{C}_{D} go HIGH simultaneousiy.
$\mathrm{H}, \mathrm{h}=\mathrm{HIGH}$ Voltage Level
L,I = LOW Voltage Level
X = Don't Care
$l, h(q)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS	
			MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Maximum Clock Frequency		30	45		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t}$ PHL	Propagation Delay, Clock to Output			$\begin{aligned} & 15 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	ns	Fig. 1	
${ }^{\text {P }}$ L ${ }^{\text {PH }}$	Propagation Delay,			10	15	ns	Fig. 2	
${ }^{\text {t PHL }}$	Set or Clear to Output	$C P=L$		18	24			
${ }^{\text {t PHL }}$		$C P=H$		26	35			

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} W^{C P}(H)$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t} W$	Set or Clear Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Set-up Time HIGH, Data to Clock	18	12		ns	Fig. 1	
$t_{h}(\mathrm{H})$	Hold Time HIGH, Data to Clock	0	-13		ns		
$\mathrm{t}_{s}(\mathrm{~L})$	Set-up Time LOW, Data to Clock	20	13		ns		
$t_{h}(L)$	Hold Time LOW, Data to Clock	0	-12		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

FAIRCHILD • 9LS112 (54LS /74LS112)

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9LS112 (54LS/74LS112) dual JK flip-flop features individual J, K, clock, and asynchronous set and clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up and hold time are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC SYMBOL

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9 SS112XM/54LS112XM	4.5 V	5.0 V	5.5	V
9 LS112XC/74LS112XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current J, K Set, Clear Clock				20 60 80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	J, K Set, Clear Clock				0.1 0.3 0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current J, K Set, Clear Clock				$\begin{array}{r} -0.36 \\ -0.8 \\ -0.72 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {OS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	\bar{S}_{D}	\bar{C}_{D}	J	K	Q	$\overline{\mathrm{Q}}$
Set	L	H	X	X	H	L
Reset (Clear)	H	L	X	x	L	H
* Undetermined	L	L	X	X	H	H
Toggle	H	H	h	h	\bar{q}	q
Load " 0 ' (Reset)	H	H	1	h	L	H
Load "1" (Set)	H	H	h	1	H	L
Hold	H	H	1	1	q	q

*Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ are LOW, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{C}}_{\mathrm{D}}$ go HIGH simultaneously.
$\mathrm{H}, \mathrm{h}=\mathrm{HIGH}$ Voltage Level
L,I = LOW Voltage Level
$X=$ Don't Care
$1, h(q)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f }}$ MAX	Maximum Clock Frequency	30	45		MHz	Fig. 3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, Clock to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 3	
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, Set or Clear to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} W^{C P}(H)$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 3	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{1} W^{C P}(L)$	Clock Pulse Width (LOW)	15	10		ns		
${ }^{t} W$	Set or Clear Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{\mathbf{s}}(\mathrm{H})$	Set-up Time HIGH, J or K to Clock	20	13		ns	Fig. 3	
$t_{h}(H)$	Hold Time HIGH, J or K to Clock	0	-10		ns		
$\mathrm{t}_{s}(\mathrm{~L})$	Set-up Time LOW, J or K to Clock	15	10		ns		
$t_{h}(L)$	Hold Time LOW, J or K to Clock	0	-13		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

FAIRCHILD • 9LS113 (54LS /74LS113)

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9LS113 (54LS/74LS113) offers individual J, K, set, and clock inputs. These monolithic dual fip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC DIAGRAM
(EACH FLIP-FLOP)

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			
	MIN	TYP	MAX	TEMPERATURE
$9 L S 113 X M / 54 L S 113 X M$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS113XC/74LS113XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }_{\text {IH }}$	Input HIGH Current J, K Set Clock						
					60 80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	J, K Set Clock				0.1		
					0.3 0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IIL	Input LOW Current J, K Set Clock						
					-0.36		
					-0.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\mathrm{O}} \mathrm{OS}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	\bar{S}_{D}	J	K	Q	$\overline{\mathrm{Q}}$
Set	L	X	X	H	L
Toggle	H	h	h	\bar{q}	q
Load "0" (Reset)	H	l	h	L	H
Load "1" (Set)	H	h	l	H	L
Hold	H	l	l	q	\bar{q}

$\mathrm{H}, \mathrm{h}=\mathrm{HIGH}$ Voltage Level
$L, I=$ LOW Voltage Level
X = Don't Care
$1, h(q)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page $4-51$ for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Maximum Clock Frequency	30	45		MHz	Fig. 3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {t }}$ PLH ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Clock to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \\ & \hline \end{aligned}$	ns	Fig. 3	
${ }^{t}$ PLH ${ }^{\mathrm{t} P \mathrm{PL}}$	Propagation Delay, Set to Output		$\begin{aligned} & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} W^{C P}(\mathrm{H})$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 3	$V_{C C}=5.0 \mathrm{~V}$
${ }^{4} W^{C P}(L)$	Clock Pulse Width (LOW)	15	10		ns		
${ }^{\text {t }}$ W	Set Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{5}(\mathrm{H})$	Set-up Time HIGH, J or K to Clock	20	13		ns	Fig. 3	
$t^{\prime}(\mathrm{H})$	Hold Time HIGH, J or K to Clock	0	-10		ns		
$\mathrm{t}_{s}(\mathrm{~L})$	Set-up Time LOW, J or K to Clock	15	10		ns		
$\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold Time LOW, J or K to Clock	0	-13		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME (t_{S}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION - The 9LS114 (54LS114/74LS114) offers common clock and common clear inputs and individual J, K, and set inputs. These monolithic dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC SYMBOL

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 14 \\
& \text { GND }=\operatorname{Pin} 7
\end{aligned}
$$

LOGIC DIAGRAM
(EACH FLIP-FLOP)

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS114XM/54LS114XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS114XC/ 74LS114XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	
		XC		0.35	0.5	V	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current J, K Set Clear Clock				$\begin{array}{r} 20 \\ 60 \\ 120 \\ 160 \end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	J, K Set Clear Clock				0.1 0.3 0.6 0.8	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
I_{IL}	Input LOW Current J, K Set Clear Clock				$\begin{array}{r} -0.36 \\ -0.8 \\ -1.6 \\ -1.44 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {IOS }}$	Output Short Circuit Current (Note 3)		-15		-100	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			4.0	8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}$

MODE SELECT - TRUTH TABLE

OPERATING MODE	inputs				OUTPUTS	
	\bar{S}_{D}	\bar{C}_{D}	J	K	Q	$\overline{\mathrm{o}}$
Set	L	H	x	x	H	L
Reset (Clear)	H	L	x	X	L	H
* Undetermined	L	L	x	\times	H	H
Toggle	H	H	h	h	$\overline{\text { q }}$	q
Load "0" (Reset)	H	H	1	h	L	H
Load "1" (Set)	H	H	h	1	H	L
Hold	H	H	1	1	q	$\overline{\mathrm{q}}$

*Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ are LOW, but the output states are unpredictable if $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ go HIGH simultaneously.

H,h = HIGH Voltage Level
L,I = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{I}, \mathrm{h}(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }_{\text {f MAX }}$	Maximum Clock Frequency	30	45		MHz	Fig. 3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {t PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay, Clock to Output		$\begin{aligned} & 11 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 3	
${ }^{\text {t PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, Set or Clear to Output		$\begin{aligned} & 11 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-51 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} W^{C P}(H)$	Clock Pulse Width (HIGH)	18	12		ns	Fig. 3	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{1} W^{C P}(L)$	Clock Pulse Width (LOW)	15	10		ns		
${ }^{\text {t } W}$	Set or Clear Pulse Width	15	10		ns	Fig. 2	
$\mathrm{t}_{s}(\mathrm{H})$	Set-up Time HIGH, J or K to Clock	20	13		ns	Fig. 3	
$t_{h}(H)$	Hold Time HIGH, J or K to Clock	0	-10		ns		
$\mathrm{t}_{s}(\mathrm{~L})$	Set-up Time LOW, J or K to Clock	15	10		ns		
$t_{h}(\mathrm{~L})$	Hold Time LOW, J or K to Clock	0	-13		ns		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. SET-UP TIME $\left(t_{s}\right)$ is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
5. HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

QUAD 3-STATE BUFFERS WITH ACTIVE HIGH ENABLES

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS125XM/54LS125XM 9LS126XM/54LS126XM	4.5 V	5.0 V	, 5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS125XC/74LS125XC 9LS126XC/74LS126XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip, See Packaging Information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{H}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \quad \mathrm{~V}_{C C}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or
		XC	2.4	3.1		V	$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA} V_{\text {IL }}$ per Truth Table
V_{OL}	Output LOW Voitage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $V_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
${ }^{\text {I OZH }}$	Output Off Current High				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\text {IL }}$
${ }^{\prime} \mathrm{OZL}$	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}$
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 3)		-30		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 V$
${ }^{1} \mathrm{CC}$	Power Supply Current, Outputs LOW	9LS125			16	mA	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\bar{E}}=0 \mathrm{~V}$
		9LS126			20	mA	$V_{C C}=M A X, V_{i N}=0 V, V_{E}=4.5 \mathrm{~V}$
	Power Supply Current, Outputs Off	9LS125			20	mA	$V_{C C}=M A X, V_{I N}=0 V, V_{E}=4.5 \mathrm{~V}$
		9LS126			24	mA	$V_{C C}=M A X, V_{I N}=0 V, V_{E}=0 V$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

TRUTH TABLES

9LS125			9LS126			L = LOW Voltage Level H = HIGH Voltage Level $\mathrm{X}=$ Don't Care $(Z)=$ High Impedance (off)
	UTS	OUTPUT	INP		OUTPUT	
\bar{E}	D		E	D		
L	L	L	H	L	L	
L	H	H	H	H	H	
H	X	(Z)	L	\times	(Z)	

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		Min	TYP	MAX			
${ }^{t_{P L H}}$ ${ }^{t} \mathrm{PHL}$	Propagation Delay, Data to Output			$\begin{aligned} & 10 \\ & 16 \end{aligned}$	ns	Fig. 2	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=45 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$
${ }^{\text {tPZH }}$	Output Enable Time to HIGH Level			16	ns	Figs. 4, 5	
${ }^{\text {t }}$ PZL	Output Enable Time to LOW Level			30	ns	Figs. 3, 5	
${ }^{\text {t PLZ }}$	Output Disable Time from LOW Level			15	ns	Figs. 3, 5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{1}=5 \mathrm{pF} \end{aligned}$
${ }^{\text {t }} \mathrm{PHZ}$	Output Disable Time from HIGH Level			23	ns	Figs. 4, 5	$\mathrm{R}_{\mathrm{L}}=667 \Omega$

Fig. 1

Fig. 2

Fig. 3

Fig. 4

SWITCH POSITIONS

SYMBOL	SW1	SW2
tPZH	Open	Closed
tPZL	Closed	Open
tPLZ	Closed	Closed
tPHZ	Closed	Closed

QUAD 2-INPUT SCHMITT TRIGGER NAND GATE

DESCRIPTION - The 9LS132 (54LS/74LS132) contains four 2-Input NAND Gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional NAND Gates.
Each circuit contains a 2 -input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as one input remains at a more positive voltage than $\mathrm{V}_{\mathrm{T}+}(\mathrm{MAX})$, the gate will respond to the transitions of the other input as shown in Figure 1.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

Fig. 2
$\mathrm{V}_{\text {IN }}$ VERSUS $\mathrm{V}_{\text {OUT }}$ TRANSFER FUNCTION

Fig. 1

Fig. 3

FAIRCHILD • 9LS132 (54LS /74LS132)
GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MiN	TYP	MAX	
9LS132XM / 54LS132XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS132XC / 74LS132XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{\text {T }+}$	Positive-Going Threshold Voltage			1.6		V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage			0.8		V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}+} \mathrm{V}_{\mathrm{T}-}$	Hysteresis		0.4	0.8		v	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1}+$	Input Current at Positive-Going Threshold			-0.14		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}+}$
${ }^{1}$ -	Input Current at Negative-Going Threshold			-0.18		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CCH}$	Supply Current HIGH			5.9	11	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {'CCL }}$	Supply Current LOW			8.2	14	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t_{\text {PLH }}}$	Turn Off Delay, Input to Output			20	ns	$V_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Turn On Delay, Input to Output			20	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

13-INPUT NAND GATE

GUARANTEED OPERATING RANGES

PART NUMBERS		SUPPLY VOLTAGE		TEMPERATURE
	MIN	TYP	MAX	
9 SS133XM/54LS133XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 SS133XC/74LS133XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section,for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed input LOW Voltage
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'OS	Output Short Circuit Current (Note 3)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCH}$	Supply Current HIGH			0.35	0.5	mA	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CCL}$	Supply Current LOW			0.6	1.1	mA	$V_{C C}=M A X$, Inputs Open

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$t^{\text {P PLH }}$	Turn Off Delay, Input to Output		10	15	ns	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PHL}}$	Turn On Delay, Input to Output		17	25	ns	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

QUAD 2-INPUT EXCLUSIVE OR GATE

TRUTH TABLE

IN		OUT
A	B	Z
L	L	L
L	H	H
H	L	H
H	H	L

*Open Collector Outputs

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS136XM /54LS136XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS136XC / 74LS136XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
${ }^{\prime} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$ or $\mathrm{V}_{1 \mathrm{LL}}$ per Truth Table
${ }^{\prime} \mathrm{H}$	Input HIGH Current				40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}-2.7 \mathrm{~V}$
					0.2	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\mathrm{I}} \mathrm{C}$	Power Supply Current			6.1	10	mA	$V_{C C}=$ MAX

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\mathbf{t}} \mathrm{PHL}$	Propagation Delay, Other Input LOW			$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay, Other Input HIGH			$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

NOTES:

1. For conditions shown as MFIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

QUAD 2-INPUT EXCLUSIVE NOR GATE

TRUTH TABLE		
IN OUT A B Z L L H L H L H L L H H H		

*Open Collector Outputs

GUARANTEED OPERATING RANGES

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			4 MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage	3	2.0			V	Guaranteed Input HIGH voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
${ }^{\mathrm{O}} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$ or $\mathrm{V}_{1 \mathrm{~L}}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current				40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			8.0	13	mA	$V_{C C}=$ MAX

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL.	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Other Input LOW			$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t}$ PLH ${ }^{\mathrm{t} P \mathrm{PHL}}$	Propagation Delay, Other Input HIGH			$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

QUAD SET-RESET LATCH

L = LOW Voltage Level
$H=H I G H$ Voltage Level
$\mathrm{X}=$ Don't Care
$h=$ The output is HIGH as long as S_{1} or S_{2} is LOW. If all inputs go HIGH simultaneously, the output state is indeterminate; otherwise, it follows the Truth Table.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE			TEMPERATURE
	MIN	TYP	MAX	
9LS279XM / 54LS279XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9LS279XC / 74LS279XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)	
			MIN	$\mathrm{Tr}^{\text {P }}$	MAX			
V_{IH}	Input HIGH Voltage		2.0	\cdots		V	Guaranteed In for All Inputs	ut HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\times \mathrm{XN}$			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		XC			0.8			
V_{CD}	Mput Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	$=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$	
		XC	2.7	3.4				
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}$	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ $V_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$	
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}^{\prime}$	$\mathrm{IN}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, V^{\prime}	IN $=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}$	$\mathrm{IN}^{\text {}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, V^{\prime}	OUT $=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			3.8	7.0	mA	$V_{C C}=$ MAX	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (See Page 4-50 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & { }^{\text {t} P L H} \\ & { }^{\text {t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, $\overline{\text { S }}$ to Output			$\begin{aligned} & 22 \\ & 15 \end{aligned}$	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {t }}$ PHL	Propagation Delay, $\overline{\mathrm{R}}$ to Output			27	ns	

9LS365 (54LS/74LS365)
HEX 3-STATE BUFFER WITH COMIMON 2-INPUT NOR ENABLE

TRUTH TABLE

INPUTS			OUTPUT
\bar{E}_{1}	\bar{E}_{2}	D	
L	L	L	L
L	L	H	H
H	X	X	(Z)
X	H	X	(Z)

9LS367 (54LS/74LS367)
HEX 3-STATE BUFFER
SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

INPUTS		OUTPUT
\bar{E}	D	
L	L	L
L	H	H
H	X	(Z)

9LS366 (54LS/74LS366)
HEX 3-STATE INVERTER BUFFER WITH COMMON 2-INPUT NOR ENABLE

TRUTH TABLE

INPUTS			OUTPUT
\bar{E}_{1}	\bar{E}_{2}	D	
L	L	L	H
L	L	H	L
H	X	X	(Z)
X	H	X	(Z)

9LS368 (54LS/74LS368) HEX 3-STATE INVERTER BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

INPUTS		
	OUTPUT	
L	D	
L	L	H
L	H	L
H	X	(Z)

DESCRIPTION - The 9LS365/366/367/368 are high speed hex buffers with 3 -state outputs. They are organized as single 6 -bit or 2 -bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable (\bar{E}) is LOW.
When the Output Enable Input (\bar{E}) is HIGH , the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

GUARANTEED OPERATING RANGES

PART NUMBERS		SUPPLY VOLTAGE			TEMPERATURE
		MIN	TYP	MAX	
9LS365XM/54LS365XM 9LS367XM/54LS367XM	9LS366XM/54LS366XM 9LS368XM/54LS368XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 9LS365XC/74LS365XC } \\ & \text { 9LS367XC/74LS367XC } \end{aligned}$	9LS366XC/74LS366XC 9LS368XC/74LS368XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER			LIMITS			UNITS	TEST CONDITIONS		
				MIN	TYP	MAX				
V_{IH}	Input HIGH Voltage			2.0			V	Guaranteed Inp for All Inputs	HIGH Voltage	
$V_{\text {IL }}$	Input LOW Voltage		XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
			XC			0.8				
v_{CD}	Input Clamp Diode Voltage				-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=$ MIN, I_{N}	$-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage		XM	2.4	3.4			${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{IH}}$ or	
			XC	2.4	3.1			$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	$V_{\text {IL }}$ per Truth Table	
V_{OL}	Output LOW Voltage		XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ V_{IL} per Truth Table	
			XC		0.35	0.5	V	$\mathrm{l}^{\mathrm{OL}}=24 \mathrm{~mA}$		
${ }^{\text {l }} \mathrm{OZH}$	Output Off Current HIGH					20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=2.0 \mathrm{~V}$		
${ }^{\text {IOZL }}$	Output Off Current LOW					-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=2.0 \mathrm{~V}$		
1 H	Input HIGH Current					20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
						0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current					-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$		
'os	Output Short Circuit Current (Note 3)			-30		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 V$		
${ }^{1} \mathrm{CC}$	Power Supply Current	9LS365/367			13.5	24	mA	$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}, \mathrm{~V}_{\bar{E}}=4.5 \mathrm{~V}$		
		9LS366/368			11.8	21				

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$ (See Page 4-41 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {tPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Data to Output (9LS365 - 9LS367)			$\begin{aligned} & 10 \\ & 16 \end{aligned}$	ns	Fig. 2	$C_{L}=45 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t_{P H L}}$	Propagation Delay, Data to Output (9LS366•9LS368)			$\begin{aligned} & \hline 10 \\ & 16 \end{aligned}$	ns	Fig. 1	$C_{L}=45 \mathrm{pF}$
${ }^{\text {t P Z H }}$	Output Enable Time to HIGH Level			16	ns	Figs. 4, 5	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$
${ }^{\text {t PZL }}$	Output Enable Time to LOW Level			30	ns	Figs. 3, 5	$\mathrm{R}_{\mathrm{L}}=667 \Omega$
${ }^{\text {t PLZ }}$	Output Disable Time from LOW Level			15	ns	Figs. 3, 5	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }} \mathrm{PHZ}$	Output Disable Time from HIGH Level			23	ns	Figs. 4, 5	

AC TEST CIRCUITS AND WAVEFORMS

The following test circuits and conditions represent Fairchild's typical AC test procedures. The output loading for standard Low Power Schottky devices is a 15 pF capacitor. Experimental evidence shows that test results using the additional diode-resistor load are within 0.2 ns of the capacitor only load. The capacitor only load also has the advantage of repeatable, easily correlated test results. The input pulse rise and fall times are specified at 6 ns to closely approximate the Low Power Schottky output transitions through the active threshold region. The specified propagation delay limits can be guaranteed with a 15 ns input rise time on all parameters except those requiring narrow pulse widths. Any frequency measurement over 15 MHz or pulse width less than 30 ns must be performed with a 6 ns input rise time.

Test Circuit for Standard Output Devices

Optional Load (Guaranted - Not Tested)

Test Circuit for Open Collector Output Devices

*Includes all probe and jig capacitance

Pulse Generator Settings

 (unless otherwise specified)$$
\begin{aligned}
& \text { Frequency }=1 \mathrm{mHz} \\
& \text { Duty Cycle }=50 \% \\
& \mathrm{t}_{\mathrm{TLH}}\left(\mathrm{t}_{\mathrm{r}}\right)=6 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{THL}}\left(\mathrm{t}_{\mathrm{f}}\right)=6 \mathrm{~ns} \\
& \text { Amplitude }=0 \text { to } 3 \mathrm{~V}
\end{aligned}
$$

Waveform for Inverting Outputs

Waveform for Non-inverting Outputs

Fig. 1 CLOCK TO OUTPUT DELAYS, DATA SET-UP AND HOLD TIMES, CLOCK PULSE WIDTH

Fig. 2 SET AND CLEAR TO OUTPUT DELAYS, SET AND CLEAR PULSE WIDTHS

Fig. 3 CLOCK TO OUTPUT DELAYS, DATA SET-UP AND HOLD TIMES, CLOCK PULSE WIDTH

*The shaded areas indicate when the input is permitted to change for predicatable output performance.
en電正

． \square
\qquad

9LS42 (54LS/74LS42) ONE-OF-TEN DECODER

DESCRIPTION - The LSTTL/MSI 9LS42 (54LS/74LS42) is a Multipurpose Decoder designed to accept four BCD inputs and provide ten mutually exclusive outputs. The 9 LS42 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- MULTI-FUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$A_{0}-A_{3}$
Address Inputs
$\overline{0}$ to $\overline{9}$
Outputs, Active LOW (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS42 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input enables.

The logic design of the 9LS42 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

The most significant input A_{3} produces a useful inhibit function when the 9 LS 42 is used as a one-of-eight decoder. The A_{3} input can also be used as the Data input in an 8-output demultiplexer application.

TRUTH TABLE

A_{0}	A_{1}		A_{3}	0	$\overline{1}$	$\overline{2}$	$\overline{3}$	4	5	56	6	$\overline{7}$	$\overline{8}$	$\overline{9}$
L	L	L	L	L	H	H	H	H	H	H	H	H	H	
H	L	L	L	H	L	H	H	H	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H		H	H	H	H
H	H	L	L	H	H	H	L	H	H		H	H	H	H
L	L	H	L	H	H	H	H	L	H		H	H	H	H
H	L	H	L	H	H	H	H	H	L		H	H	H	H
L	H	H	L	H	H	H	H	H	H	L	L	H	H	H
H	H	H	L	H	H	H	H	H	H		H	L	H	H
L	L	L	H	H	H	H	H	H	H		H	H	L	H
H	L	L	H	H	H	H	H	H	H		H	H	H	L
L	H	L	H	H	H	H	H	H	H		H	H	H	H
H	H	L	H	H	H	H	H	H	H		H	H	H	H
L	L	H	H	H	H	H	H	H					H	H
H	L	H	H	H	H	H	H	H			H	H	H	H
L	H	H	H	H	H	H	H	H	H		H	H	H	H
H	H	H	H	H	H	H	H	H	H		H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{CC} Pin Potential to Ground Pin $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

* Input Voltage (dc)
* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (${ }_{\text {CC }}$)			TEMPERATURE
	MIN	TYP	MAX	
9LS42XM/54LS42XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS42XC/74LS42XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^2]FAIRCHILD • 9LS42 (54LS /74LS42)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
I_{IH}	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			7.0	12	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t_{P L H}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay (2 Levels)		$\begin{aligned} & 11 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 25 \end{aligned}$	ns	Fig. 2	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay (3 Levels)		$\begin{aligned} & 12 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 27 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$

AC WAVEFORMS

Fig. 1

Fig. 2

9LS83 (54LS/74LS83A) 4-BIT BINARY FULL ADDER WITH FAST CARRY

DESCRIPTION - The 9LS83 (54LS/74LS83A) is a high-speed 4-Bit Binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words ($\mathrm{A}_{1}-\mathrm{A}_{4}, \mathrm{~B}_{1}-\mathrm{B}_{4}$) and a Carry Input ($C_{I N}$). It generates the binary Sum outputs ($\Sigma_{1}-\Sigma_{4}$) and the Carry Output (COUT) from the most significant bit. The 9LS83 operates with either active HIGH or active LOW operands (positive or negative logic). The 9LS283 (54LS/74LS283) is recommended for new designs since it is identical in function with this device and features standard corner power pins.

PIN NAMES

$A_{1}-A_{4}$	Operand A Inputs
$B_{1}-B_{4}$	Operand B Inputs
$C_{I N}$	Carry Input
$\Sigma_{1}-\Sigma_{4}$	Sum Outputs (Note b)
COUT	Carry Output (Note b)

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu A$ HGH/ 1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

$$
\begin{aligned}
V_{\mathrm{CC}} & =\operatorname{Pin} 5 \\
\mathrm{GND} & =\operatorname{Pin} 12 \\
O & =\operatorname{Pin} \text { Numbers }
\end{aligned}
$$

FUNCTIONAL DESCRIPTION - The 9LS83 adds two 4-bit binary words (A plus B) plus the incoming carry. The binary sum appears on the sum outputs ($\Sigma_{1}-\Sigma_{4}$) and outgoing carry (COUT) outputs.
$\mathrm{C}_{1 \mathrm{~N}}+\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right)+2\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+4\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)+8\left(\mathrm{~A}_{4}+\mathrm{B}_{4}\right)=\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 \mathrm{C}_{\text {OUT }}$
Where: $(+)=$ plus
Due to the symmetry of the binary add function the 9LS83 can be used with either all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that with active HIGH inputs, Carry In can not be left open, but must be held LOW when no carry in is intended.

Example:

	$\mathrm{C}_{\text {IN }}$	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	Σ_{1}	Σ_{2}	Σ_{3}	Σ_{4}	COUT
logic levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

$(10+9=19)$
(carry $+5+6=12$)

Interchanging inputs of equal weight does not affect the operation, thus $C_{I N}, A_{1}, B_{1}$, can be arbitrarily assigned to pins 10 , 11,13 , etc.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {CC Pin Potential to Ground Pin }}$ (Input Voltage (dc)	-0.5 V to +7.0 V
${ }^{*}$ Input Current (dc)	-0.5 V to +15 V
Voltage Applied to Outputs (Output HIGH)	-30 mA to +5.0 mA
Output Current (dc) (Output LOW)	-0.5 V to +10 V

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9 SS83XM/54LS83AXM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9 9LS83XC $/ 74 L$ S83AXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^3]FAIRCHILD•9LS83 (54LS /74LS83A)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {iL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All inputs
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Ciamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA} ~ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
I_{IH}	Input HIGH Current C_{IN} Any A or B				$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	$\begin{aligned} & \mathrm{C}_{\mathrm{iN}} \\ & \text { Any A or B } \end{aligned}$				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$V_{C C}=M A X, V_{I N}=10 \mathrm{~V}$
${ }^{1 / 2}$	Input LOW Current $\mathrm{C}_{\text {IN }}$ Any A or B				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$V_{C C}=M A X, V_{1 N}=0.4 \mathrm{~V}$
${ }^{\text {L O }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			22	39	mA	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \text { All Inputs } 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~A} \text { Inputs }=4.5 \mathrm{~V} \end{aligned}$
				19	34	mA	

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: TA $_{\text {A }}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {tPLH }}$ ${ }^{1} \mathrm{PH} \mathrm{H}$	Propagation Delay, C_{IN} Input to Any Σ Output			$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & c_{L}=15 \mathrm{pF} \end{aligned}$ Figures 1 and 2
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Any A or B Input to Σ Outputs			$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ns	
${ }^{\text {t PLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Df ay, $\mathrm{C}_{\mathbb{I N}}$ Input to $\mathrm{C}_{\text {OUT }}$ Output			$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns	
${ }^{\text {tPLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, Any A or B Input to COUT Output			$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS90 (54LS/74LS90) • 9LS92 (54LS/74LS92) DECADE COUNTER

9LS93 (54LS/74LS93) 4-BIT BINARY COUNTER

DESCRIPTION - The 9LS90 (54LS/74LS90), 9LS92 (54LS/74LS92) and 9LS93 (54LS/74LS93) are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (9LS90), divide-by-six (9LS92) or divide-by-eight (9LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied
 the counters have a 2 -input gated Master Reset (Clear), and the 9 LS90 also has a 2 -input gated Master Set (Preset 9).

- LOW POWER CONSUMPTION TYPICALLY 45 mW
- HIGH COUNT RATES TYPICALLY 50 MHz
- CHOICE OF COUNTING MODES . . . BCD, BI-QUINARY, DIVIDE-BY-TWELVE, BINARY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$\overline{C P}_{0}$	Clock (Active LOW going edge) Input to $\div 2$ Section
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW going edge) Input to $\div 5$ Section (9LS90), $\div 6$ Section (9LS92)
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW going edge) Input to $\div 8$ Section (9LS93)
$M R_{1}, M R_{2}$	Master Reset (Clear) Inputs
$\mathrm{MS}_{1}, \mathrm{MS}_{2}$	Master Set (Preset-9, 9LS90) Inputs
O_{0}	Output from $\div 2$ Section (Notes b \& c)
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	Outputs from $\div 5$ (9 LS90),$\div 6$ (9LS92), $\div 8$ (9LS93) Sections (Note b)

LOADING (Note a)	
HIGH	LOW
3.0 U.L.	1.5 U.L.
2.0 U.L.	2.0 U.L.
1.0 U.L.	1.0 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.
c. The O_{0} Outputs are guaranteed to drive the full fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device.

FUNCTIONAL DESCRIPTION - The 9LS90, 9LS92, and 9LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (9LS90), divide-by-six (9LS92), or divide-by-eight (9LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_{0} output of each device is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device.

A gated AND asynchronous Master Reset ($M R_{1} \cdot M R_{2}$) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set $\left(M S_{1} \cdot \mathrm{MS}_{2}\right)$ is provided on the 9 LS 90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.:

9LS90

A. BCD Decade (8421) Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The Q_{3} output must be externally connected to the $\overline{\mathrm{CP}}_{0}$ input. The input count is then applied to the $\overline{\mathrm{CP}}_{1}$ input and a divide-by-ten square wave is obtained at output Q_{0}.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ($\overline{\mathrm{CP}}_{0}$ as the input and Q_{0} as the output). The $\overline{\mathrm{CP}}_{1}$ input is used to obtain binary divide-by-five operation at the O_{3} output.

9LS92

A. Modulo 12, Divide-By-Twelve Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the O_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and O_{3} produces a symmetrical divide-by-twelve square wave output.
B. Divide-By-Two and Divide-By-Six Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The $\overline{C P}_{1}$ input is used to obtain divide-by-three operation at the Q_{1} and Q_{2} outputs and divide-by-six operation at the Q_{3} output.

9LS93

A. 4-Bit Ripple Counter - The output Q_{0} must be externally connected to input $\overline{C P}_{1}$. The input count pulses are applied to input $\overline{\mathrm{CP}}_{0}$. Simultaneous divisions of $2,4,8$, and 16 are performed at the $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{3} outputs as shown in the truth table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2, 4, and 8 are available at the $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3 -bit ripple-through counter.

9LS90					
BCD COUNT SEQUENCE					
COUNT					

NOTE: Output O_{0} is connected to Input CP_{1} for BCD count.

9LS92
TRUTH TABLE

cOUNT	OUTPUT			
	O_{0}	Q_{1}	Q_{2}	Q_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	L	L	H
7	H	L	L	H
8	L	H	L	H
9	H	H	L	H
10	L	L	H	H
11	H	L	H	H

Note: Output O_{0} connected to input CP_{1}.

Note: Output Q_{0} connected to input CP_{1}.

9LS93
TRUTH TABLE

COUNT	OUTPUT			
	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Note: Output O_{0} connected to input CP_{1}.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin
*input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
$\begin{aligned} & \text { 9LS90XM/54LS90XM } \\ & \text { 9LS92XM/54LS92XM } \\ & \text { 9LS93XM/54LS93XM } \end{aligned}$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 9LS90XC / 74LS90XC } \\ & \text { 9LS92XC/74LS92XC } \\ & \text { 9LS93XC/74LS93XC } \end{aligned}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \sim}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
I_{H}					$\begin{array}{r} 20 \\ 120 \\ 40 \\ 80 \end{array}$	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$
	$\begin{aligned} & \frac{\mathrm{MS}, \mathrm{MR}}{\mathrm{CP}_{0}} \overline{\mathrm{CP}}_{1} \text { (LS93) } \\ & \overline{\mathrm{CP}}_{1}(\mathrm{LS} 90, \mathrm{LS} 92) \end{aligned}$				$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.8 \end{aligned}$	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1 N}=10 \mathrm{~V}$
IIL	$\begin{aligned} & \text { Input LOW Current } \\ & \begin{array}{l} \mathrm{MS}, \mathrm{MR} \\ \overline{\mathrm{CP}}_{0} \\ \overline{\mathrm{CP}}_{1} \text { (LS93) } \\ \overline{\mathrm{CP}}_{1} \text { (LS90, LS92) } \\ \hline \end{array} \end{aligned}$				$\begin{aligned} & -0.4 \\ & -2.4 \\ & -1.6 \\ & -3.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			9	15	mA	$V_{C C}=M A X$

NOTES

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS90• 9LS92•9LS93
AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

SYMBOL	PARAMETER	LIMITS						UNITS	
		9LS90		9LS92		9LS93			
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{f_{\text {MAX }}}$	$\overline{\mathrm{CP}}_{\mathrm{O}}$ Input Count Frequency	32		32		32		MHz	Fig. 1
${ }^{\text {f MAX }}$	$\overline{\mathrm{CP}}_{1}$ Input Count Frequency	16		16		16		MHz	Fig. 1
$\begin{aligned} & { }^{{ }^{t_{P L H}}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{\mathrm{O}}$ Input to Q_{O} Output		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	ns	Fig. 1
$\begin{aligned} & \hline{ }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns	
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }_{\mathrm{t}} \mathrm{PHL} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to O_{2} Output		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns	
$\begin{aligned} & \hline{ }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 51 \\ & 51 \end{aligned}$	ns	
$\begin{aligned} & \hline{ }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	$\overline{C P}_{0}$ Input to O_{3} Output		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns	
${ }^{\text {t PLH }}$	MS Input to Q_{0} and Q_{3} Outputs		30					ns	Fig. 3
${ }^{\mathrm{t}_{\text {PHL }}}$	MS Input to Q_{1} and Q_{2} Outputs		40					ns	Fig. 2
${ }^{\text {t }}{ }^{\text {PHL }}$	MR Input to Any Output		40		40		40	ns	Fig. 2

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	LIMITS						UNITS	
		9LS90		9LS92		9LS93			
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ W	$\overline{\mathrm{CP}}_{0}$ Pulse Width	15		15		15		ns	Fig. 1
${ }^{\text {t }}$ W	$\overline{\mathrm{CP}}_{1}$ Pulse Width	30		30		30		ns	
${ }^{\text {t }}$ W	MS Pulse Width	15						ns	Fig. 2, 3
${ }^{\text {t }}$ W	MR Pulse Width	15		15		15		ns	Fig. 2
${ }^{\text {trec }}$	Recovery Time MS to $\overline{C P}$	25						ns	Fig. 2, 3
${ }_{\text {trec }}$	Recovery Time MR to $\overline{C P}$	25		25		25		ns	Fig. 2

RECOVERY TIME ($\mathrm{t}_{\mathrm{rec}}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-toLOW in order to recognize and transfer HiGH data to the Q outputs.

AC WAVEFORMS

* $\overline{C P}$

Fig. 1
*The number of Clock Pulses required between the $\mathrm{t}_{\mathrm{PHL}}$ and $\mathrm{t}_{\mathrm{PLH}}$ measurements can be determined from the appropriate Truth Tables.

Fig. 2

Fig. 3

9LS95 (54LS/74LS95B)
 4-BIT SHIFT REGISTER

DESCRIPTION - The 9LS95 (54LS/74LS95B) is a 4-Bit Shift Register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH to LOW transition of the appropriate clock input.
The 9LS95 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SYNCHRONOUS, EXPANDABLE SHIFT RIGHT
- SYNCHRONOUS SHIFT LEFT CAPABILITY
- SYNCHRONOUS PARALLEL LOAD
- SEPARATE SHIFT AND LOAD CLOCK INPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

S
D_{S}
$\frac{\mathrm{P}_{0}}{\mathrm{CP}_{1}}-\mathrm{P}_{3}$
$\overline{\mathrm{CP}}_{2}$
$\mathrm{a}_{0}-\mathrm{Q}_{3}$

> Mode Control Input
> Serial Data Input

Parallel Data lmputs
Serial Clack (Active LOW Going
Edge) Input
Parallel Clock (Active LOW Going
Edge) Input
Parallel Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
1.0 U.L.	0.5 U.L.
1.0 U.L.	0.5 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION－The 9LS95 is a 4－Bit Shift Register with serial and parallel synchronous operating modes． It has a Serial（ D_{S} ）and four Parallel（ $\mathrm{P}_{0}-\mathrm{P}_{3}$ ）Data inputs and four Parallel Data outputs（ $\mathrm{O}_{0}-\mathrm{O}_{3}$ ）．The serial or parallel mode of operation is controlled by a Mode Control input（ S ）and two Clock inputs（ $\overline{\mathrm{CP}}_{1}$ ）and（ $\overline{\mathrm{CP}}_{2}$ ）．The serial（right－shift）or parallel data transfers occur synchronous with the HIGH to LOW transition of the selected clock input．
When the Mode Control input（S）is $\mathrm{HIGH}, \overline{\mathrm{CP}}_{2}$ is enabled．A HIGH to LOW transition on enabled $\overline{\mathrm{CP}}_{2}$ transfers parallel data from the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs to the $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ outputs．
When the Mode Control input（ S ）is LOW，$\overline{\mathrm{CP}}_{1}$ is enabled．A HIGH to LOW transition on enabled $\overline{\mathrm{CP}}_{1}$ transfers the data from Serial input（ D_{S} ）to O_{0} and shifts the data in O_{0} to $\mathrm{O}_{1}, \mathrm{Q}_{1}$ to Q_{2} ，and O_{2} to O_{3} respectively（right－shift）．A left－shift is accomplished by externally connecting Q_{3} to P_{2}, Q_{2} to P_{1} ，and Q_{1} to P_{0} ，and operating the $9 L S 95$ in the parallel mode （ $\mathrm{S}=\mathrm{HIGH}$ ）．
For normal operation，S should only change states when both Clock inputs are LOW．However，changing S from LOW to HIGH while $\overline{C P}_{2}$ is HIGH，or changing S from HIGH to LOW while $\overline{C P}_{1}$ is HIGH and $\overline{\mathrm{CP}}_{2}$ is LOW will not cause any changes on the register outputs．

MODE SELECT－TRUTH TABLE

OPERATING MODE	INPUTS					OUTPUTS			
	S	$\overline{\mathrm{CP}}_{1}$	$\overline{C P}_{2}$	$\mathrm{D}_{\text {S }}$	P_{n}	O_{0}	Q_{1}	O_{2}	O_{3}
Shift	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{l} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & q_{0} \\ & q_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & q_{1} \\ & q_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \hline \end{aligned}$
Parallel Load	H	x	\underline{L}	x	p_{n}	p_{0}	p_{1}	p_{2}	p_{3}
Mode Change		$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \end{gathered}$		No No No Unde Unde No Unde No	nge nge nge mined ined nge nined nge	

[^4]ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin
*Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +15 V
-30 mA to +5.0 mA
-0.5 V to +10 V
$+50 \mathrm{~mA}$
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9 LS $95 X M / 54 L S 95 B X M$	4.5 V	5.0 V	5.5	V
9 LS95XC $/ 74$ LS95BXC	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

$X=$ package type; F for Flaţak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} ~ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OLL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }^{1} \mathrm{IH}$	Input HIGH Current$\begin{aligned} & \mathrm{S}, \mathrm{D}_{\mathrm{S}}, \mathrm{PO}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \\ & \mathrm{CP}_{1}, \mathrm{CP}_{2} \end{aligned}$				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
	$\frac{\mathrm{S}, \mathrm{D}_{\mathrm{S}}, \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}}{\mathrm{CP}_{1}, \overline{\mathrm{CP}}_{2}}$				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
ILL	$\begin{aligned} & \text { Input LOW Current } \\ & \qquad \begin{array}{l} \mathrm{S}, \mathrm{D}_{\mathrm{S}}, \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \\ \overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2} \end{array} \end{aligned}$				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
los	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, $V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			13	21	mA	$V_{C C}=$ MAX

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS95 (54LS /74LS95B)

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Shift Frequency	30	40		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{PPLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	ns	Fig. 1	

AC SET-UP REQUIREMENTS: ${ }^{T} A=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {t }}$ W(CP)	Clock Pulse Width	20			ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\mathrm{s} \text { (Data) }}$	Set-up Time, Data to Clock	20			ns	Fig. 1	
t_{h} (Data)	Hold Time, Data to Clock	10			ns		
${ }^{\text {t }}$ L	Set-up Time, LOW Mode Control to Clock	20			ns	Fig. 2	
${ }^{\text {h }} \mathrm{L}$	Hold Time, LOW Mode Control to Clock	0			ns		
$\mathrm{t}_{\mathrm{s}} \mathrm{H}$	Set-up Time, HIGH Mode Control to Clock	20			ns	Fig. 2	
t_{hH}	Hold Time, HIGH Mode Control to Clock	0			ns		

DEFINITIONS OF TERMS:

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 1

Fig. 2

9LS138 (54LS/74LS138)
 1-OF-8 DECODER/DEMULTIPLEXER

DESCRIPTION - The LSTTL/MSI 9LS138 (54LS/74LS138) is a high speed 1-of-8 Decoder/Demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1 -of-24 decoder using just three 9LS138 devices or to a 1 -of- 32 decoder using four 9LS138s and one inverter. The 9LS138 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- DEMULTIPLEXING CAPABILITY
- MULTIPLE INPUT ENABLE FOR EASY EXPANSION
- TYPICAL POWER DISSIPATION OF 32 mW
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES
$A_{0}-A_{2}$
\bar{E}_{1}, \bar{E}_{2}
E_{3}
$\overline{\mathrm{O}}_{0}-\bar{O}_{7}$

Address Inputs

Enable (Active LOW) Inputs
Enable (Active HIGH) Input
Active LOW Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION - The 9LS138 is a high speed 1 -of-8 Decoder/Demultiplexer fabricated with the low power Schottky barrier diode process. The decoder accepts three binary weighted inputs ($A_{0} \leqslant A_{1}, A_{2}$) and when enabled provides eight mutually exclusive active LOW outputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$). The 9 LS 138 features three Enable inputs, two active LOW ($\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$) and one active HIGH (E_{3}). All outputs will be HIGH unless \bar{E}_{1} and \bar{E}_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1 -of- 32 (5 lines to 32 lines) decoder with just four 9LS138s and one inverter. (See Figure a.)
The 9LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TRUTH TABLE

INPUTS						OUTPUTS							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	${ }^{\text {a }} 0$	A_{1}	A_{2}	$\overline{\mathbf{O}}_{0}$	$\overline{\mathrm{O}}_{1}$	$\overline{\mathrm{O}}_{2}$	$\overline{\mathrm{O}}_{3}$	$\overline{\mathrm{O}}_{4}$	$\overline{\mathrm{O}}_{5}$	$\overline{\mathrm{O}}_{6}$	\bar{O}_{7}
H	X	X	x	x	x	H	H	H	H	H	H	H	H
\times	H	X	X	X	x	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L.	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

```
\(H=H I G H\) Voltage Level
L \(=\) LOW Voltage Level
\(X=\) Don't Care
```


Fig. a.

[^5]
FAIRCHILD•9LS138 (54LS/74LS138)

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS138XM / 54LS138XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS138XC/74LS138XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$V_{1 H}$	Input HIGH Voltage		2.0			v	Guaranteed input HIGH Threshold Voltage for All inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
$\bar{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
I_{IH}	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			6.3	10	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay Address to Output		$\begin{aligned} & 11 \\ & 19 \end{aligned}$	$\begin{aligned} & 18 \\ & 27 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t} \mathrm{PLH}$ ${ }^{\text {t PHL }}$	Propagation Delay, \bar{E}_{1} or \bar{E}_{2} to Output		$\begin{aligned} & 9.0 \\ & 17 \end{aligned}$	$\begin{aligned} & 15 \\ & 24 \end{aligned}$	ns	Fig. 2	
${ }^{t}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay, E_{3} to Output		$\begin{aligned} & 11 \\ & 20 \end{aligned}$	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	ns	Fig. 1	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS139 (54LS/74LS139)
 DUAL 1-OF-4 DECODER

DESCRIPTION - The LSTTL/MSI 9LS139 (54LS/74LS139) is a high speed Dual 1-of-4 Decoder/Demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4 -output demultiplexer. Each half of the 9LS139 can be used as a function generator providing all four minterms of two variables. The 9LS139 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- TWO COMPLETELY INDEPENDENT 1-OF-4 DECODERS
- Active low mutually exclusive outputs
- input clamp diodes limit high speed termination effects
- fully ttl and cmos compatible

A_{0}, A_{1}
$\overline{\mathrm{o}}_{0}-\overline{\mathrm{O}}_{3}$

Address Inputs
Enable (Active LOW) Input
Active LOW Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC SYMBOL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16 \\
& \mathrm{GND}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FAIRCHILD • 9LS139 (54LS/74LS139)

FUNCTIONAL DESCRIPTION - The 9LS139 is a high speed dual 1-of-4 decoder/demultiplexer fabricated with the Schottky barrier diode process. The device has two independent decoders, each of which accept two binary weighted inputs $\left(A_{0}, A_{1}\right)$ and provide four mutually exclusive active LOW outputs $\left(\bar{O}_{0}-\bar{O}_{3}\right)$. Each decoder has an active LOW Enable ($\overline{\mathrm{E}}$). When E is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4 -output demultiplexer application.

Each half of the 9LS139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Fig. a, and thereby reducing the number of packages required in a logic network.

TRUTH TABLE

INPUTS			OUTPUTS			
\bar{E}	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathrm{O}}_{\mathbf{0}}$	$\overline{\mathrm{O}}_{\mathbf{1}}$	$\overline{\mathrm{O}}_{\mathbf{2}}$	$\overline{\mathrm{O}}_{\mathbf{3}}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care

$A_{A_{1}} \xrightarrow{\square} \square-O_{0}$

Fig. a

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin

* Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE ($\mathrm{V}_{\text {CC }}$)			TEMPERATURE
	MIN	TYP	MAX	
9LS139XM/54LS139XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS139XC / 74LS139XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD • 9LS 139 (54LS/74LS139)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshóld Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		xc	2.7	3.4			
v_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	${ }^{\mathrm{O}} \mathrm{OL}=8.0 \mathrm{~mA}$ V $\mathrm{V}_{1 \mathrm{~L}}$ per Truth Table
${ }^{\text {IH }}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
I/L	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {o }} \mathrm{OS}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CC }}$	Power Supply Current			6.8	11	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMMBOL	PARAMETER	LIMIITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PH} \mathrm{H}$	Propagation Delay, Address to Output		$\begin{aligned} & 11 \\ & 19 \end{aligned}$	$\begin{aligned} & 18 \\ & 27 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t} \mathrm{PLH}$ ${ }^{\text {tpHL }}$	Propagation Delay, Enable to Output		$\begin{gathered} 9.0 \\ 17 \end{gathered}$	$\begin{aligned} & 15 \\ & 24 \end{aligned}$	ns	Fig. 2	

Fig. 1

Fig. 2

9LS151 (54LS/74LS151)
 8 -INPUT MULTIPLEXER

DESCRIPTION - The TTL/MSI 9LS151 (54LS151/74LS151) is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The 9 LS 151 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED COMPLEMENTARY OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$S_{0}-S_{2}$
\bar{E}
$I_{0}-I_{7}$
$\begin{array}{ll}\mathrm{Z} & \text { Multiplexer Output (Note b) } \\ \overline{\mathrm{Z}} & \text { Complementary Multiplexer Output }\end{array}$ (Note b)
Select Inputs
Enable (Active LOW) Input
Multiplexer Inputs

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.
10 U.L.	5 (2.5) U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - The 9LS151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and megation outputs are provided. The Enable input (\bar{E}) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$
\begin{aligned}
Z= & \overline{\mathrm{E}} \cdot\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
& \left.I_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)
\end{aligned}
$$

The 9LS151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the 9LS151 can provide any logic function of four variables and its negation.

TRUTH TABLE

$\overline{\mathrm{E}}$	S_{2}	S_{1}	S_{0}	${ }_{1}$	11	12	13	14	15	${ }_{6} 6$	17	$\overline{\text { Z }}$	z
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	x	x	X	\times	\times	H	L
L	L	L	L	H	X	X	x	X	X	X	\times	L	H
L	L	L	H	x	L	X	x	x	x	x	X	H	L
L	L	L	H	x	H	X	\times	X	X	X	\times	L	H
L	L	H	L	X	X	L	x	X	X	X	X	H	L
L	L	H	L	x	X	H	x	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	x	X	x	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	x	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	\times	x	X	x	X	X	H	X	L	H
L	H	H	H	\times	X	x	x	x	x	X	L	H	L
L	H	H	H	X	x	X	X	X	X	X	H	L	H

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE ($\mathrm{V}_{\text {CC }}$)			TEMPERATURE
	MIN	TYP	MAX	
9LS151XM/54LS151XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS151XC/74LS151XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^6]
FAIRCHILD • 9LS151 (54LS/74LS151)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Threshold Voitage for All Inputs
$V_{\text {IL }}$	input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$ V $\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	v	${ }^{\mathrm{I}} \mathrm{OL}=8.0 \mathrm{~mA} \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }_{1 / \mathrm{H}}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}-10 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			6.0	10	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normaliy occur at the temperature and supply voitage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \vee, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 11 \\ & 23 \end{aligned}$	$\begin{aligned} & 20 \\ & 32 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {t PLH }}$ ${ }^{t} \mathrm{PHL}$	Propagation Delay, Select to Z Output		$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 30 \end{aligned}$	ns	Fig. 2	
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, Enable to \bar{Z} Output		$\begin{aligned} & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	ns	Fig. 2	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Enable to Z Output		$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 33 \\ & 27 \end{aligned}$	ns	Fig. 1	
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to $\overline{\mathbf{Z}}$ Output		$\begin{aligned} & 7.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	ns	Fig. 1	
${ }^{\text {t }}$ PLH ${ }^{t}$ PHL	Propagation Delay, Data to Z Output		$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 26 \\ & 23 \end{aligned}$	ns	Fig. 2	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS152 (54LS/74LS152)
 8 -INPUT MULTIPLEXER

DESCRIPTION - The TTL/MSI 9LS152 (54LS152/74LS152) is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The 9LS152 can be used as a universal function generator to generate any logic function of four variables. It is supplied in FLATPAK only; for Dual In-line Package application use the 9LS151.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES
$\mathrm{S}_{0}-\mathrm{S}_{2} \quad$ Select Inputs
$\mathrm{I}_{0}-\mathrm{I}_{7}$
Multiplexer Inputs
$\overline{\mathrm{Z}} \quad$ Complementary Multiplexer Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. The logic function provided at the output is:

$$
\begin{aligned}
\overline{\mathrm{Z}}= & \left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~s}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~s}}_{1} \cdot \overline{\mathrm{~s}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
& \left.\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)
\end{aligned}
$$

The 9LS152 provides the ability, in one package, to select from eight sources of data or control information.

TRUTH TABLE

S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	\bar{Z}
X	X	X	X	X	X	X	X	X	X	X	H
L	L	L	L	X	X	X	X	X	X	X	H
L	L	L	H	X	X	X	X	X	X	X	L
L	L	H	X	L	X	X	X	X	X	X	H
L	L	H	X	H	X	X	X	X	X	X	L
L	H	L	X	X	L	X	X	X	X	X	H
L	H	L	X	X	H	X	X	X	X	X	L
L	H	H	X	X	X	L	X	X	X	X	H
L	H	H	X	X	X	H	X	X	X	X	L
H	L	L	X	X	X	X	L	X	X	X	H
H	L	L	H	X	X	X	X	X	X	X	X
H	H	L	X	X	X	X	X	X	X	X	X
H	H	H	X	X	X	X	X	X	X	X	X
H	X	X			X	X	H				
H	H	X	X	X	X	X	X	X	X	H	L

$$
\begin{aligned}
H & =\text { HIGH Voltage Level } \\
\mathrm{L} & =\text { LOW Voltage Level } \\
X & =\text { Don't Care }
\end{aligned}
$$

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{\mathrm{V} C}$ Pin Potential to Ground Pin
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9 TS152XM/54LS152XM	4.5 V	5.0 V	5.5	V
9 LS152XC/74LS152XC	4.75 V	5.0 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

[^7]FAIRCHILD • 9LS152 (54LS/74LS152)
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed input LOW Threshold Voitage for All Inputs
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
		XC		0.35	0.5	v	${ }^{\prime} \mathrm{OL}=8.0 \mathrm{~mA}$ V V_{IL} per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CC }}$	Power Supply Current			5.6	9.0	mA	$V_{C C}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 12 \\ & 23 \end{aligned}$	$\begin{aligned} & 20 \\ & 32 \end{aligned}$	ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, Data to $\overline{\mathbf{Z}}$ Output		$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$

Fig. 1

9LS153 (54LS/74LS153) DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The LSTTL/MSI 9LS153 (54LS/74LS153) is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the 9LS153 can generate any two functions of three variables. The 9LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- MULTIFUNCTION CAPABILITY
- NON-INVERTING OUTPUTS
- SEPARATE ENABLE FOR EACH MULTIPLEXER
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$\frac{S_{0}}{E}$
$I_{0} \cdot I_{1}$
Z

Common Select Input Enable (Active LOW) Input
Multiplexer Inputs
Multiplexer Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

notes:

a. 1 TTL Unit Load $(\mathrm{U} . \mathrm{L})=.40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - The 9LS153 is a Dual 4-Input Multiplexer fabricated with Low Power, Schottky barrier diode process for high speed. It can select two bits of data from up to four sources under the control of the common Select Inputs $\left(S_{0}, S_{1}\right)$. The two 4-input multiplexer circuits have individual active LOW Enables $\left(\bar{E}_{a}, \bar{E}_{b}\right)$ which can be used to strobe the outputs independently. When the Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH, the corresponding outputs (Z_{a}, Z_{b}) are forced LOW.
The 9LS153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& Z_{a}=\bar{E}_{a} \cdot\left(I_{0 a} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right) \\
& Z_{b}=\bar{E}_{b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 b} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot S_{1} \cdot S_{0}\right)
\end{aligned}
$$

The 9LS153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less obvious application is a function generator. The 9 LS153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

SELECT INPUTS		INPUTS (a or b)					OUTPUT
s_{0}	S_{1}	\bar{E}	${ }_{0}$	11	1_{2}	13	Z
x	x	H	x	x	x	x	L
L	L	L	L	x	x	x	L
L	L	L	H	X	x	X	H
H	L	L	X	L	x	x	L
H	L	L	x	H	x	\times	H
L	H	L	x	\times	L	X	L
L	H	L	x	X	H	X	H
H	H	L	x	x	x	L	L
H	H	L	x	x	x	H	H

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
-0.5 V to +7.0 V
-0.5 V to +15 V
-30 mA to +5.0 mA
-0.5 V to +10 V
+50 mA
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS153XM / 54LS153XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS153XC/74LS153XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^8]FAIRCHILD • 9LS153 (54LS/74LS153)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$V_{I H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
$\xrightarrow{V_{C D}}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}^{\prime}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} / \mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$, $\mathrm{V}_{\text {IL }}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.36	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {I OS }}$	Output Short Circuit Current (Note 5)		- 15		- 100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			6.2	10	mA	$V_{C C}=\operatorname{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "vorst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
tpin ${ }^{\text {tPHL }}$	Propagation Delay Select to Output		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 29 \\ & 24 \end{aligned}$	ns	Fig. 2	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Enable to Output		$\begin{aligned} & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	ns	Fig. 1	
${ }^{t}$ PLH tpHL	Propagation Delay, Data to Output		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Fig. 2	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS155 (54LS/74LS155) 9LS156 (54LS/74LS156) DUAL 1-OF-4 DECODER/DEMULTIPLEXER (9LS156 HAS OPEN COLLECTOR OUTPUTS)

DESCRIPTION - The LSTTL/MSI 9LS155 (54LS/74LS155) and 9LS156 (54LS/ 74LS156) are high speed Dual 1-of-4 Decoder/Demultiplexers. These devices have two decoders with common 2-bit Address inputs and separate gated Enable inputs. Decoder "a" has an Enable gate with one active HIGH and one active LOW input. Decoder "b" has two active LOW Enable inputs. If the Enable functions are satisfied, one output of each decoder will be LOW as selected by the address inputs. The 9LS156 has open collector outputs for wired-OR (DOT-AND) decoding and function generator applications.

The 9LS155 and 9LS156 are fabricated with the Schottky barrier diode process for high speed and are completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- COMMON ADDRESS INPUTS
- TRUE OR COMPLEMENT DATA DEMULTIPLEXING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES
A_{0}, A_{1}
\bar{E}_{a}, \bar{E}_{b}
E_{a} $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$

Address Inputs

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The HIGH level drive for the 9LS156 must be established by an external resistor.

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
$\bigcirc=$ Pin Numbers

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

$\mathrm{VCC}=\operatorname{Pin} 16$
$\mathrm{GND}=\operatorname{Pin} 8$
$=\operatorname{Pin} \mathrm{Numbers}$
$=$

FUNCTIONAL DESCRIPTION - The 9LS155 and 9LS156 are Dual 1-of-4 Decoder/Demultiplexers with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs $\mid A_{0}$, $\left.\mathrm{A}_{1}\right)$ and provides four mutually exclusive active LOW outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$. If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH.
Each decoder section has a 2-input enable gate. The enable gate for Decoder " a " requires one active HIGH input and one active LOW input ($\mathrm{E}_{\mathrm{a}} \cdot \overline{\mathrm{E}}_{\mathrm{a}}$). In demultiplexing applications, Decoder "a" can accept either true or complemented data by using the \bar{E}_{a} or E_{a} inputs respectively. The enable gate for Decoder " b " requires two active LOW inputs ($\overline{\mathrm{E}}_{\mathrm{b}}$. $\overline{\mathrm{E}}_{\mathrm{b}}$). The 9 LS155 or 9 LS 156 can be used as a 1-of-8 Decoder/Demultiplexer by tying E_{a} to E_{b} and relabeling the common connection as $\left(A_{2}\right)$. The other \bar{E}_{b} and \bar{E}_{a} are connected together to form the common enable.

The 9LS155 and 9LS156 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Fig. a. The 9LS156 has the further advantage of being able to AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown below.

$$
\begin{aligned}
& f=\left(E+A_{0}+A_{1}\right) \cdot\left(E+\bar{A}_{0}+A_{1}\right) \cdot\left(E+A_{0}+\bar{A}_{1}\right) \cdot\left(E+\bar{A}_{0}+\bar{A}_{1}\right) \\
& \text { where } E=E_{a}+\bar{E}_{a} ; E=E_{b}+E_{b}
\end{aligned}
$$

Fig. a

TRUTH TABLE

ADDRESS		ENABLE "a'		OUTPUT 'a"				ENABLE "b"		OUTPUT "b"			
A_{0}	A_{1}	E_{a}	\bar{E}_{a}	$\overline{\mathrm{O}}_{0}$	\bar{O}_{1}	$\overline{\mathrm{O}}_{2}$	$\overline{\mathrm{O}}_{3}$	\bar{E}_{b}	\bar{E}_{b}	$\overline{\mathrm{O}}_{0}$	$\overline{\mathrm{O}}_{1}$	$\overline{\mathrm{O}}_{2}$	$\overline{\mathrm{O}}_{3}$
X	X	L	X	H	H	H	H	H	X	H	H	H	H
X	X	X	H	H	H	H	H	X	H	H	H	H	H
L	L	H	L	L	H	H	H	L	L	L	H	H	H
H	L	H	L	H	L	H	H	L	L	H	L	H	H
L	H	H	L	H	H	L	H	L	L	H	H	L	H
H	H	H	L	H	H	H	L	L	L	H	H	H	L

H $=$ HIGH Voltage Level
L $=$ LOW Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin

* Input Voltage (dc)
* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +15 V
-30 mA to +5.0 mA
-0.5 V to +10 V $+50 \mathrm{~mA}$
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS155XM/54LS155XM 9LS156XM/54LS156XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 9LS155XC/74LS155XC } \\ & \text { 9LS156XC /74LS156XC } \end{aligned}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{iH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage 9LS155 Only	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \mathrm{OH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
${ }^{1} \mathrm{OH}$	Output HIGH Current 9LS156 Only				100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \mid V_{\text {IL }}$ per Truth Table
${ }_{1}{ }_{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$V_{C C}=$ MAX, $V_{I N}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, $V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CCC }}$	Power Supply Current			6.1	10	mA	$\mathrm{V}_{C C}=$ MAX

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \vee, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS155 (54LS/74LS155) • 9LS156 (54LS/74LS156)

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS				UNITS	TEST CONDITIONS	
		9LS155		9LS156				
		TYP	MAX	TYP	MAX			
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Address to Output	$\begin{aligned} & 11 \\ & 19 \end{aligned}$	$\begin{aligned} & 18 \\ & 27 \end{aligned}$	$\begin{aligned} & 18 \\ & 23 \end{aligned}$	$\begin{aligned} & 28 \\ & 33 \end{aligned}$	ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, \bar{E}_{a} or \bar{E}_{b} to Output	$\begin{aligned} & 9.0 \\ & 17 \end{aligned}$	$\begin{aligned} & 15 \\ & 24 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	ns	Fig. 2	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay E_{a} to Output	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	ns	Fig. 1	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS157 (54LS/74LS157)

QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The LSTTL/MSI 9LS157 (54LS/74LS157) is a high speed Quad 2 -Input Multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected data in the true (non-inverted) form. The 9LS157 can also be used to generate any four of the 16 different functions of two variables. The 9LS157 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON-INVERTING OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$\frac{S}{E}$
$I_{0 a}-I_{0 d}$
$I_{1 a}-I_{1 d}$
$Z_{a}-Z_{d}$

Common Select Input

Enable (Active LOW) Input
Data Inputs from Source 0
Data Inputs from Source 1
Multiplexer Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
1.0 U.L.	0.5 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS157 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select Input (S). The Enable Input (\bar{E}) is active LOW. When $\overline{\mathrm{E}}$ is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs.
The 9LS157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{a}=\bar{E} \cdot\left(I_{1 a} \cdot S+I_{0 a} \cdot \bar{S}\right) & Z_{b}=\bar{E} \cdot\left(I_{1 b} \cdot S+I_{0 b} \cdot \bar{S}\right) \\
Z_{c}=\bar{E} \cdot\left(I_{1 c} \cdot S+I_{0 c} \cdot \bar{S}\right) & Z_{d}=\bar{E} \cdot\left(I_{1 d} \cdot S+I_{0 d} \cdot \bar{S}\right)
\end{array}
$$

A common use of the 9LS157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The 9LS157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

TRUTH TABLE

ENABLE	SELECT INPUT	INPUTS		OUTPUT
\bar{E}	S	I_{0}	I_{1}	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H $=$ HIGH Voltage Level
L $=$ LOW Voltage Level
$x=$ Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
*Input Voltage (dc)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
0.5 V to +7.0 V

Output Current (dc) (Output LOW)
-0.5 V to +10 V
$+50 \mathrm{~mA}$
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9 LS $157 \times M / 54$ LS $157 \times M$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9 LS 157 XC $/ 74$ LS $157 \times \mathrm{C}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD • 9LS157 (54LS/74LS157)
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{1 \mathrm{H}}$ or
		XC		0.35	0.5	V	${ }^{\prime} \mathrm{OL}=8.0 \mathrm{~mA} \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current$\begin{aligned} & l_{0}, I_{1} \\ & E,{ }^{2} \end{aligned}$				$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	Input HIGH Current at MAX Input Voltage$\frac{I_{0}, I_{1}}{E, S}$				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
ILL	Input LOW Current IO. I_{1} E, S				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			9.7	16	mA	$V_{C C}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {t }}{ }^{\text {PLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay Select to Output			$\begin{aligned} & 26 \\ & 24 \end{aligned}$	ns	Fig. 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, Enable to Output			$\begin{aligned} & 25 \\ & 18 \end{aligned}$	ns	Fig. 1	
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to Output			$\begin{aligned} & 14 \\ & 14 \end{aligned}$	ns	Fig. 2	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS158 (54LS/74LS158) QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The LSTTL/MSI 9LS158 (54LS/74LS158) is a high speed Quad 2-Input Multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The 9LS158 can also generate any four of the 16 different functions of two variables. The 9LS158 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- INVERTED OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$\frac{S}{E}$
$I_{0 a}-I_{0 d}$
$I_{1 a}-I_{1 d}$
$\bar{Z}_{a}-\bar{Z}_{d}$

Common Select Input

Enable (Active LOW) Input
Data Inputs from Source 0
Data Inputs from Source 1
Inverted Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
1.0 U.L.	0.5 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS158 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select Input (S) and presents the data in inverted form at the four outputs. The Enable Input (\bar{E}) is active LOW. When \bar{E} is HIGH, all of the outputs (\bar{Z}) are forced HIGH regardless of all other inputs.

The 9LS158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input.

A common use of the 9LS158 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The 9LS158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

TRUTH TABLE

ENABLE	SELECT INPUT	INPUTS		OUTPUT
$\overline{\mathrm{E}}$	S	${ }^{1} 0$	1_{1}	$\overline{\text { z }}$
H	X	X	\times	H
L	L	L	X	H
L	L	H	x	L
L	H	X	L	H
L	H	X	H	L

H $=$ HIGH Voltage Level
L $=$ LOW Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin

* Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(\vee_{C C}\right)$			
	MIN	TYP	MAX	TEMPERATURE
9LS158XM/54LS158XM	4.5 V	5.0 V	5.5 V	
9LS158XC/74LS158XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^9]FAIRCHILD • 9LS 158 (54LS/74LS158)
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current $\mathrm{l}_{\mathrm{o}}, \mathrm{I}_{1}$ E, S				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	Input HIGH Current at MAX input Voltage ${ }^{1}{ }^{\prime}, I_{1}$ E, S				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
${ }^{\text {ILL}}$	Input LOW Current $\begin{aligned} & l_{0}, I_{1} \\ & \mathrm{E}, \mathrm{~s} \end{aligned}$				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {ICC }}$	Power Supply Current			4.8	8.0	mA	$\mathrm{V}_{C C}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay Select to Output			$\begin{aligned} & 20 \\ & 24 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Enable to Output			$\begin{aligned} & 16 \\ & 16 \end{aligned}$	ns	Fig. 2	
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to Output			$\begin{aligned} & 13 \\ & 11 \end{aligned}$	ns	Fig. 1	

AC WAVEFORMS

Fig. 1

Fig. 2

9LS160(54LS/74LS160) • 9LS161(54LS/74LS161) 9LS162(54LS/74LS162) • 9LS163(54LS/74LS163) BCD DECADE COUNTERS

DESCRIPTION - The 9LS160/161/162/163 are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks for counting, memory addressing, frequency division and other applications. The 9LS160 and 9LS162 count modulo 10 (BCD). The 9LS161 and 9LS163 count modulo 16 (binary.)
The 9LS160 and 9LS161 have an asynchronous Master Reset (Clear) input that overrides, and is independent of, the clock and all other control inputs. The 9LS162 and 9LS163 have a Synchronous Reset (Clear) input that overrides all other control inputs, but is active only during the rising clock edge.

	BCD (Modulo 10)	Binary (Modulo 16)
Asynchronous Reset	9LS160	9LS161
Synchronous Reset	9LS162	9LS163

- SYNCHRONOUS COUNTING AND LOADING
- TWO COUNT ENABLE INPUTS FOR HIGH SPEED SYNCHRONOUS EXPANSION
- TERMINAL COUNT FULLY DECODED
- EDGE-TRIGGERED OPERATION
- TYPICAL COUNT RATE OF 35 MHz
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

$\overline{\mathrm{PE}}$	Parallel Enable (Active LOW) Input	0.6 U.L.	0.3 U.L.
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Inputs	0.5 U.L.	0.25 U.L.
CEP	Count Enable Parallel Input	0.6 U.L.	0.3 U.L.
CET	Count Enable Trickle Input	1.0 U.L.	0.5 U.L.
CP	Clock (Active HIGH Going Edge) Input	0.6 U.L.	0.3 U.L.
$\overline{\mathrm{MR}}$	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
$\overline{\mathrm{SR}}$	Synchronous Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
$\mathrm{O}_{0}-\mathrm{Q}_{3}$	Parallel Outputs (Note b)	10 U.L.	5 (2.5) U.L.
TC	Terminal Count Output (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commerical (XC) Temperature Ranges.

STATE DIAGRAM

9LS160•9LS162 9LS161•9LS163

LOGIC EQUATIONS

Count Enable $=$ CEP - CET $\cdot P E$
TC for 9 LS160 \& 9 LS $162=$ CET $\bullet \mathrm{Q}_{0} \cdot \overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \mathrm{O}_{3}$ TC for 9 LS $161 \& 9 \mathrm{LS} 163=\mathrm{CET} \cdot \mathrm{Q}_{\mathrm{O}} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2} \cdot \mathrm{Q}_{3}$
Preset $=\overline{\mathrm{PE}} \bullet C P+($ rising clock edge $)$
Reset $=\overline{\mathrm{MR}}$ (9LS160 \& 9LS161)
Reset $=\overline{S R} \bullet C P+($ rising clock edge $)$ (9LS162 \& 9LS163)

NOTE:
The 9LS160 and 9LS162 can be preset to any state, but will not count beyond 9. If preset to state $10,11,12,13,14$, or 15 , it will return to its normal sequence within two clock pulses.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$
*MR for 9LS160 and 9LS161
*SR for 9LS162 and 9LS163

CONNECTION DIAGRAMS DIP (TOP VIEW)

[^10]NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FAIRCHILD•9LS160•9LS161•9LS162•9LS163

FUNCTIONAL DESCRIPTION - The 9LS160/161/162/163 are 4 -bit synchronous counters with a synchronous Parallel Enable (Load) feature. These counters consist of four edge-triggerd D flip-flops with the appropriate data routing networks feeding the D inputs. All changes of the Q outputs (except due to the asynchronous Master Reset in the 9LS160 and 9LS161) occur as a result of, and synchronous with, the LOW to HIGH transition of the Clock input (CP). As long as the set-up time requirements are met, there are no special timing or activity constraints on any of the mode control or data inputs.
Three control inputs - Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET) - select the mode of operation as shown in the tables below. The Count Mode is enabled when the CEP, CET, and PE inputs are HIGH. When the $\overline{P E}$ is LOW, the counters will synchronously load the data from the parallel inputs into the flip-flops on the LOW to HIGH transition of the clock. Either the CEP or CET can be used to inhibit the count sequence. With the PE held HIGH, a LOW on either the CEP or CET inputs at least one set-up time prior to the LOW to HIGH clock transition will cause the existing output states to be retained. The AND feature of the two Count Enable inputs (CET•CEP) allows synchronous cascading without external gating and without delay accumulation over any practical number of bits or digits.

The Terminal Count (TC) output is HIGH when the Count Enable Trickle (CET) input is HIGH while the counter is in its maximum count state (HLLH for the BCD counters, HHHH for the Binary counters). Note that TC is fully decoded and will, therefore, be HIGH only for one count state.

The 9LS160 and 9LS162 count modulo 10 following a binary coded decimal (BCD) sequence. They generate a TC output when the CET input is HIGH while the counter is in state $9(\mathrm{HLLH})$. From this state they increment to state 0 (LLLL). If loaded with a code in excess of 9 they return to their legitimate sequence within two counts, as explained in the state diagram. States 10 through 15 do not generate a TC output.
The 9LS161 and 9LS163 count modulo 16 following a binary sequence. They generate a TC when the CET input is HIGH while the counter is in state $15(\mathrm{HHHH})$. From this state they increment to state 0 (LLLL).

The Master Reset ($\overline{M R}$) of the 9LS160 and 9LS161 is asynchronous. When the $\overline{M R}$ is LOW, it overrides all other input conditions and sets the outputs LOW. The $\overline{M R}$ pin should never be left open. If not used, the $\overline{M R}$ pin should be tied through a resistor to V_{CC}, or to a gate output which is permanently set to a HIGH logic level.
The active LOW Synchronous Reset ($\overline{\mathrm{SR} \text {) input of the 9LS162 and 9LS163 acts as an edge-triggered control input, overriding }}$ CET, CEP, and $\overline{\text { PE, and resetting the four counter flip-flops on the LOW to HIGH transition of the clock. This simplifies the }}$ design from race-free logic controlled reset circuits, e.g., to reset the counter synchronously after reaching a predetermined value.

MODE SELECT TABLE

$* \overline{S R}$	$\overline{P E}$	CET	CEP	Action on the Rising Clock Edge (J)
L	X	X	\times	RESET (Clear)
H	L	X	\times	LOAD ($P_{n} \rightarrow Q_{n}$)
H	H	H	H	COUNT (Increment)
H	H	L	X	NO CHANGE (Hold)
H	H	X	L	NO CHANGE (Hold)

*For the 9LS162 and 9LS163 only.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
X = Don't Care

```
ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
    Storage Temperature
    Temperature (Ambient) Under Bias
    VCC Pin Potential to Ground Pin
    *Input Voltage (dc)
    * Input Current (dc)
    Voltage Applied to Outputs (Output HIGH)
    Output Current (dc) (Output LOW)
    -65 ' C to + 150 % C
    -55 C to + 125 鱼
    -0.5\textrm{V}\mathrm{ to +7.0 V}
    -0.5\textrm{V}\mathrm{ to +15 V}
    30 mA to +5.0 mA
    Enter Input Voltage limit or Input Current limit is sufficient to protect the inputs.
```


GUARANTEED OPERATING RANGES

PART NUMBERS		SUPPLYVOLTAGE(V)			TEMPERATURE
		MIN	TYP	MAX	
9LS160XM/54LS160XM 9LS162XM/54LS162XM	9LS161XM/54LS161XM 9LS163XM/54LS163XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS160XC/74LS160XC 9LS162XC/74LS162XC	9LS161XC/74LS161XC 9LS163XC/74LS163XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{C C}=M 1 N, I_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OLL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current $P_{0}-P_{3}, \overline{M R}, \overline{S R}$ $\overline{P E}, C E P, C P$ CET				20 24 40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	$\begin{aligned} & P_{0}-P_{3}, M R, S R, \\ & C E T \end{aligned}$	EP CP			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=10 \mathrm{~V}$
I_{IL}	Input LOW Current $P_{0}-P_{3}, \overline{M R}, \overline{S R}$ $\overline{\text { PE, CEP, CP }}$ CET				$\begin{array}{r} -0.40 \\ -0.48 \\ -0.80 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\begin{aligned} & \mathrm{I}_{\mathrm{CCH}} \\ & { }^{\mathrm{I} \mathrm{CCL}} \\ & \hline \end{aligned}$	Power Supply Current			$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

FAIRCHILD • 9LS160 • 9LS161• 9LS162• 9LS163

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (These parameters apply to all four devices unless otherwise noted)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\mathrm{t}}{ }^{\mathrm{PLH}}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Turn Off Delay CP to Q Turn On Delay CP to Q		$\begin{aligned} & 13 \\ & 18 \end{aligned}$	$\begin{aligned} & 20 \\ & 27 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Turn Off Delay CP to TC Turn On Delay CP to TC		$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	ns	Fig. 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Turn Off Delay CET to TC Turn On Delay CET to TC		$\begin{aligned} & 9.0 \\ & 16 \end{aligned}$	$\begin{aligned} & 14 \\ & 23 \end{aligned}$	ns	Fig. 3	
${ }^{\text {t }}$ PHL	Turn On Delay $\overline{M R}$ to O (9LS160 and 9LS161 Only)		18	28	ns	Fig. 2	
${ }^{\text {count }}$	Input Count Frequency	25	35		MHz	Fig. 1	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {r rec }}$	Recovery Time for $\overline{\mathrm{MR}}$ (9LS160 and 9LS161 Only)	20			ns	Fig. 2	
${ }^{1} \times \overline{M R}(L)$	Master Reset Pulse Width (9LS160 and 9LS161 Only)	15	8.0		ns	Fig. 2	
${ }^{t}{ }_{W} \mathrm{CP}(\mathrm{H})$ ${ }^{t} W^{C P}(L)$	Clock Pulse Width (HIGH) Clock Pulse Width (LOW)	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \end{aligned}$		ns	Fig. 1	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-Up Time (HIGH), Data to Clock Set-Up Time (LOW), Data to Clock	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns	Fig. 5	$\mathrm{VCC}=5.0 \mathrm{~V}$
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time (HIGH), Data to Clock Hold Time (LOW), Data to Clock	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$,
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Set-Up Time (HIGH), $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to Clock Set-Up Time (LOW), $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to Clock	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns	Fig. 6	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time (HIGH), $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to Clock Hold Time (LOW), $\overline{\mathrm{PE}}$ OR $\overline{\mathrm{SR}}$ to Clock	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-Up Time (HIGH), CE to Clock Set-Up Time (LOW), CE to Clock	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns	ig.	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time (HIGH), CE to Clock Hold Time (LOW), CE to Clock	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					

DEFINITION OF TERMS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME ($\mathrm{t}_{\mathrm{rec}}$) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

Fig. 2

AC WAVEFORMS (Cont'd)

COUNT ENABLE TRICKLE INPUT TO TERMINAL COUNT OUTPUT DELAYS

The positive TC pulse occurs when the outputs are in the $\left\langle\mathrm{Q}_{0} \bullet{\overline{\mathrm{Q}_{1}}}^{\bullet}\right.$ $\left.\overline{Q_{2}} \bullet Q_{3}\right)$ state for the 9LS160 and $9 L S 162$ and the $\left(Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3}\right)$ state for the 9LS161 and 9LS163.

Fig. 3

CLOCK TO TERMINAL COUNT DELAYS.

The positive $T C$ pulse is coincident with the output state $\left(Q_{0} \cdot \overline{Q_{1}} \cdot\right.$ $\left.\overline{Q_{2}} \cdot Q_{3}\right)$ for the 9LS161 and 9LS163 and $\left(Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}\right)$ for the 9LS161 and 9LS163.

Fig. 4

Other Conditions: $C P=\overline{P E}=C E P=\overline{M R}=H$

Other Conditions: $\overline{\mathrm{PE}}=\mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{MR}}=\mathrm{H}$

SET-UP TIME (t_{s}) AND HOLD TIME (t_{h})

FOR PARALLEL DATA INPUTS.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 5

Other Conditions: $\overline{P E}=L, \overline{M R}=H$

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ AND HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$ FOR COUNT ENABLE (CEP) AND (CET) AND PARALLEL. ENABLE ($\overline{\mathrm{PE}})$ INPUTS.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 6

Fig. 7

9LS164 (54LS/74LS164) SERIAL-IN PARALLEL-OUT SHIFT REGISTER

DESCRIPTION - The 9LS164 (54LS/74LS164) is a high speed 8-Bit Serial-In Parallel-Out Shift Register. Serial data is entered through a 2 -Input AND gate synchronous with the LOW to HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register setting all outputs LOW independent of the clock. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Fairchild TTL products.

- TYPICAL SHIFT FREQUENCY OF 35 MHz
- ASYNCHRONOUS MASTER RESET
- GATED SERIAL DATA INPUT
- FULLY SYNCHRONOUS DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

A, B	Data Inputs
$C P$	Clock (Active HIGH Going
	Edge) Input
$\overline{M R}$	Master Reset (Active LOW) Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs (Note b)

Data Inputs Edge) Input

Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military ($X M$) and 5 U.L. for Commercial (XC) Temperature Ranges.

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
$O=$ Pin Numbers

FUNCTIONAL DESCRIPTION - The 9LS164 is an edge-triggered 8 -bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into O_{0} the logical AND of the two data inputs ($\mathrm{A} \cdot \mathrm{B}$) that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	$\overline{\mathrm{MR}}$	A	B	Q_{0}	$\mathrm{Q}_{1}-\mathrm{Q}_{7}$
Reset (Clear)	L	X	X	L	$\mathrm{L}-\mathrm{L}$
	H	l	l	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$
Shift	H	I	h	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$
	H	h	l	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$
	H	h	h	H	$\mathrm{q}_{0}-\mathrm{q}_{6}$

$L(1)=$ LOW Voltage Levels
$H(h)=$ HIGH Voltage Levels
$\mathrm{X}=$ Don't Care
$\mathrm{a}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input or output one set-up time prior to the LOW to HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin
*Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS164XM / 54LS164XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS164XC / 74LS164XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^11]
FAIRCHILD • 9LS164 (54LS/74LS164)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\begin{aligned} & V_{C C}=M I N, V_{I N}=V_{I H} \text { or } \\ & V_{I L} \text { per Truth Table } \end{aligned}$
		XC		0.35	0.5	V	
${ }^{1} \mathrm{IH}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{Cc}$	Power Supply Current (Note 6)			16	27	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.
6. ${ }^{\mathrm{I}} \mathrm{CC}$ is measured with outputs open, serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V applied to clear.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }_{\text {f MAX }}$	Maximum Clock Frequency	25	35		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, PositiveGoing Clock to Outputs		$\begin{aligned} & 17 \\ & 21 \end{aligned}$	$\begin{aligned} & 27 \\ & 32 \end{aligned}$	ns	Fig. 1	
${ }^{\text {tPHL }}$	Propagation Delay, NegativeGoing MR to Outputs		24	36	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
t_{s}	Set-Up Time, A or B Input to Positive-Going CP	15			ns	Fig. 3	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
t_{h}	Hold Time, A or B Input to Positive-Going CP	5			ns	Fig. 3	
${ }^{t} W^{C P}(H)$	CP Pulse Width (HIGH)	20			ns	Fig. 1	
${ }^{W_{W} \mathrm{CP}(\mathrm{L})}$	CP Pulse Width (LOW)	20			ns	Fig. 1	
${ }^{{ }_{W}{ }^{\text {MR }} \text { (L) }}$	$\overline{\mathrm{MR}}$ Pulse Width (LOW)	20			ns	Fig. 2	
$\mathrm{t}_{\text {rec }}$	Recovery Time, Positive-Going $\overline{\mathrm{MR}}$ to Positive-Going CP	20			ns	Fig. 2	

FAIRCHILD • 9LS164 (54LS/74LS164)

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH

CONDITIONS: $\overline{\mathrm{MR}}=\mathrm{H}$

Fig. 1

MASTER RESET PULSE WIDTH
MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

Fig. 2

DATA SET-UP AND HOLD TIMES

Fig. 3

9LS170 (54LS/74LS170) 4×4 REGISTER FILE (O/C)

DESCRIPTION - The TTL/MSI 9LS170 (54LS/74LS170) is a high-speed, low-power 4×4 Register File organized as four words by four bits. Separate read and write inputs, both address and enable, allow simultaneous read and write operation.
Open collector outputs make it possible to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length.
The 9LS670 (54LS/74LS670) provides a similar function to this device but it features 3 -state outputs.

- SIMULTANEOUS READ/WRITE OPERATION
- EXPANDABLE TO 512 WORDS OF n-BITS
- TYPICAL ACCESS TIME OF 20 ns
- LOW LEAKAGE OPEN-COLLECTOR OUTPUTS FOR EXPANSION
- TYPICAL POWER DISSIPATION OF 125 mW

PIN NAMES

$\mathrm{D}_{1}-\mathrm{D}_{4}$
W_{A}, W_{B}
\bar{E}_{W}
R_{A}, R_{B}
\bar{E}_{R}
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$

Data Inputs

Write Address Inputs
Write Enable (Active LOW) Input
Read Address Inputs
Read Enable (Active LOW) Input Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
1.0 U.L.	0.5 U.L.
Open Collector	5(2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L. $)=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5.0 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive must be supplied by an external resistor to V_{CC}.

FAIRCHILD • 9LS170 (54LS/74LS170)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin
${ }^{*}$ Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +15 V
-30 mA to +5.0 mA
-0.5 V to +10 V $+50 \mathrm{~mA}$

* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9LS170XM/54LS170XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS170XC/74LS170XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
${ }^{\mathrm{I} O H}$	Output HIGH Current				20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{1 \mathrm{H}}$ or
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }_{1} \mathrm{H}$	Input HIGH Current Any D, R, or W \bar{E}_{R} or \bar{E}_{W}				$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	Any D, R, or W \bar{E}_{R} or \bar{E}_{W}				$\begin{aligned} & \hline 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
ILL	Input LOW Current Any D, R or W \bar{E}_{R} or \bar{E}_{W}				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 5)			25	40	mA	$V_{C C}=$ MAX

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, and maximum loading.
5. ICC is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

FAIRCHILD • 9LS170 (54LS/74LS170)

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, NegativeGoing \bar{E}_{R} to Q Outputs			$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, R_{A} or R_{B} to Q Outputs			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns	Fig. 2	
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, NegativeGoing \bar{E}_{W} to Q Outputs			$\begin{aligned} & 45 \\ & 40 \end{aligned}$	ns	Fig. 1	
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data Inputs to Q Outputs			$\begin{aligned} & 45 \\ & 35 \end{aligned}$	ns	Fig. 1	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t} W$	Pulse Width (LOW) for \bar{E}_{W}	25			ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \mathrm{D} \\ & \text { (Note 6) } \end{aligned}$	Set-Up Time, Data Inputs with Respect to Positive-Going \bar{E}_{W}	10			ns	
$t_{h} \mathrm{D}$	Hold Time, Data Inputs with Respect to Positive-Going \bar{E}_{W}	15			ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}} \mathrm{~W} \\ & \text { (Note 8) } \end{aligned}$	Set-Up Time, Write Select Inputs W_{A} and W_{B} with Respect to NegativeGoing \bar{E}_{W}	15			ns	
$t_{h} W$	Hold Time, Write Select Inputs W_{A} and W_{B} with Respect to PositiveGoing \bar{E}_{W}	5			ns	Fig. 3

NOTES:
6. The Data to Enable Set-up Time is defined as the time required for the logic level to be present at the Data input prior to the enable transition from LOW to HIGH in order for the latch to recognize and store the new data.
7. The Hold Time (t_{h}) is defined as the minimum time following the enable transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.
8. The Address to Enable Set-up Time is the time before the HIGH to LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
9. The shaded areas indicate when the inputs are permitted to change for predictable output performance.

AC WAVEFORMS

Fig. 1

Fig. 2

Fig. 3

9LS174 (54LS/74LS174) HEX D FLIP-FLOP

DESCRIPTION - The LSTTL/MSI 9LS174 (54LS/74LS174) is a high speed Hex D Flip-Flop. The device is used primarily as a 6 -bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW to HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops. The 9 SS174 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED-POSITIVE EDGE-TRIGGERED CLOCK
- CLOCK TO OUTPUT DELAYS OF 14 ns
- ASYNCHRONOUS COMMON RESET
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERNATION EFFECTS
- fully ttl and cmos compatible

PIN NAMES
$D_{0}-D_{5}$
$\frac{\mathrm{CP}}{\mathrm{MR}}$
$\mathrm{O}_{0}-\mathrm{O}_{5}$

Data Inputs

Clock (Active HIGH Going Edge) Input Master Reset (Active LOW) Input Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military ($X M$) and 5 U.L. for Commercial (XC) Temperature Ranges.

[^12]

FUNCTIONAL DESCRIPTION - The 9LS174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset ($\overline{\mathrm{MR}}$) are common to all flip-flops.
Each D input's state is transferred to the corresponding flip-flop's output following the LOW to HIGH Clock (CP) transition. A LOW input to the Master Reset ($\overline{M R}$) will force all outputs LOW independent of Clock or Data inputs. The 9 LS174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

TRUTH TABLE

Inputs $(\mathbf{t}=\boldsymbol{n}, \overline{\mathrm{MR}}=\mathrm{H})$	Outputs $(\mathrm{t}=\mathrm{n}+\mathbf{1})$ Note $\mathbf{1}$
D	Q
H	H
L	L

Note 1: $\mathrm{t}=\mathrm{n}+1$ indicates conditions after next clock.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin -0.5 V to +7.0 V
-0.5 V to +15 V
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
-30 mA to +5.0 mA
-0.5 V to +10 V
Output Current (dc) (Output LOW)
$+50 \mathrm{~mA}$

* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS $174 \mathrm{XM} / 54 \mathrm{LS174XM}$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS $174 \mathrm{XC} / 74 \mathrm{LS} 174 \mathrm{XC}$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL			LIMITS			UNITS	TEST CONDITIONS
	PARAMETER		MIN	TYP	MAX		
$V_{I H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
ISC	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			16	26	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	ns	Fig. 1
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Output		20	28	ns	Fig. 2
${ }^{\text {f MAX }}$	Maximum Input Clock Frequency	40	55		MHz	Fig. 1

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }_{\text {t }}{ }^{\text {CéP }}$	Minimum Clock Pulse Width	15	10		ns	Fig. 1
${ }^{\text {t }}$	Set-up Time, Data to Clock (HIGH or LOW)	10			ns	Fig. 1
t_{h}	Hold Time, Data to Clock (HIGH or LOW)	0			ns	Fig. 1
$\mathrm{t}_{\text {rec }}$	Recovery Time for $\overline{\mathrm{MR}}$	12	8.0		ns	Fig. 2
${ }^{\mathrm{t}} \mathrm{W}^{\overline{M R}}$	Minimum $\overline{M R}$ Pulse Width	12	8.0		ns	Fig. 2

AC WAVEFORMS

CLOCK TO OUTPUT DELAYS, CLOCK PULSE WIDTH, FREQUENCY, SET-UP AND HOLD TIMES DATA TO CLOCK

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 1

MASTER RESET TO OUTPUT DELAY, MASTER RESET PULSE WIDTH, AND MASTER RESET RECOVERY TIME

Fig. 2

DEFINITIONS OF TERMS:

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME ($t_{\text {rec }}$) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

9LS175 (54LS/74LS175) QUAD D FLIP-FLOP

DESCRIPTION - The LSTTL/MSI 9LS175 (54LS/74LS175) is a high speed Quad D Flip-Flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW to HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, when LOW.

The 9LS175 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED-POSITIVE EDGE-TRIGGERED CLOCK
- CLOCK TO OUTPUT DELAYS OF 14 ns
- ASYNCHRONOUS COMMON RESET
- TRUE AND COMPLEMENT OUTPUT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERIMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
O $=$ Pin Numbers

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FAIRCHILD • 9LS175 (54LS/74LS175)

FUNCTIONAL DESCRIPTION - The 9LS175 consists of four edge-triggered D flip-flops with individual D inputs and Q and $\overline{\mathrm{Q}}$ outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW to HIGH Clock (CP) transition, causing individual Q and $\overline{\mathrm{Q}}$ outputs to follow. A LOW input on the Master Reset $(\overline{\mathrm{MR}})$ will force all Q outputs LOW and $\overline{\mathrm{Q}}$ outputs HIGH independent of Clock or Data inputs.

The 9LS175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

TRUTH TABLE

Inputs $(t=n, \overline{M R}=H)$	Outputs $(t=n+1)$ Note 1	
D	Q	\bar{Q}
L	L	H
H	H	L

Note 1: $t=n+1$ indicates conditions after next clock.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin
*Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS175XM / 54LS175XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS175XC / 74LS175XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Threshold Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} ~ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }_{1 / \mathrm{H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {ISC }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CCC }}$	Power Supply Current			11	18	mA	$V_{C C}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Clock to Output		$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	ns	Fig. 1
${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q Output		20	28	ns	Fig. 2
${ }^{\text {t PLH }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}$ Output		16	24	ns	Fig. 2
${ }^{\text {f MAX }}$	Maximum Input Clock Frequency	40	55		MHz	Fig. 1

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{t} W^{C P}$	Minimum Clock Puise Width	15	10		ns	Fig. 1
t_{s}	Set-up Time, Data to Clock (HIGH or LOW)	10			ns	Fig. 1
$t_{\text {h }}$	Hold Time, Data to Clock (HIGH or LOW)	0			ns	Fig. 1
${ }^{\text {t }}$ rec	Recovery Time for $\overline{\mathrm{MR}}$	12	8.0		ns	Fig. 2
${ }^{t} W^{\overline{M R}}$	Minimum $\overline{\mathrm{MR}}$ Pulse Width	12	8.0		ns	Fig. 2

AC WAVEFORMS

CLOCK TO OUTPUT DELAYS, CLOCK PULSE WIDTH, FREQUENCY, SET-UP AND HOLD TIMES DATA TO CLOCK

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 1

MASTER RESET TO OUTPUT DELAY, MASTER RESET PULSE WIDTH, AND MASTER RESET RECOVERY TIME

Fig. 2

DEFINITIONS OF TERMS:

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME ($t_{r e c}$) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

9LS181(54LS/74LS181) 4-BIT ARITHMETIC LOGIC UNIT

DESCRIPTION - The 9LS181 (54LS/74LS181) is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic,operations on two variables and a variety of arithmetic operations.

- PROVIDES 16 ARITHMETIC OPERATIONS ADD, SUBTRACT, COMPARE, DOUBLE, PLUS TWELVE OTHER ARITHMETIC OPERATIONS
- PROVIDES ALL 16 LOGIC OPERATIONS OF TWO VARIABLES

EXCLUSIVE-OR, COMPARE, AND, NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATIONS

- FULL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION ON LONG WORDS
- INPUT CLAMP DIODES

PIN NAMES

$\overline{\mathrm{A}}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3}$ Operand (Active LOW) Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$
M
C_{n}
$\bar{F}_{0}-\bar{F}_{3}$
$A=B$
$\stackrel{\rightharpoonup}{\mathrm{G}}$
\bar{p}
C_{n+4} NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS181 (54LS/74LS181) is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select Inputs ($S_{0} \ldots S_{3}$) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control Input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ are not affected by carry in. When speed requirements are not stringent, the 9LS181 can be used in a simple ripple carry mode by connecting the Carry Output (C_{n+4}) signal to the Carry Input (C_{n}) of the next unit. For high speed operation the 9LS181 is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of four 9LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.
The $A=B$ output from the 9LS181 goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $A=B$ output is open collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2 s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow.
As indicated, the 9LS181 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE

MODE SELECT INPUTS	ACTIVE LOW INPUTS \& OUTPUTS		ACTIVE HIGH INPUTS \& OUTPUTS	
$S_{3} S_{2} S_{1} S_{0}$	$\begin{gathered} \text { LOGIC } \\ (M=H) \end{gathered}$	ARITHMETIC** $(M=L)\left(C_{n}=L\right)$	$\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$	ARITHMETIC** $(M=L)\left(C_{n}=H\right)$
L L L L	$\stackrel{\rightharpoonup}{\text { A }}$	A minus 1	\bar{A}	A
L L L H	$\overline{\mathrm{AB}}$	$A B$ minus 1	$\overline{A+B}$	$A+B$
L L H L	$\overline{A+B}$	$A \bar{B}$ minus 1	$\bar{A} B$	$A+\bar{B}$
L L H H	Logical 1	minus 1	Logical 0	minus 1
L H L L	$\overline{A+B}$	A plus ($A+\bar{B}$)	$\overline{A B}$	A plus $\bar{A} \bar{B}$
L H L H		$A B$ plus ($A+\bar{B}$)	\bar{B}	$(A+B)$ plus $\bar{A} \bar{B}$
L H H L	$\overline{A \oplus}+{ }^{+}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L H H H	$A+\bar{B}$	$A+\bar{B}$	$\bar{A} \bar{B}$	$A B$ minus 1
H L L L		A plus ($A+B$)	$\bar{A}+B$	A plus $A B$
H L L H	$A \oplus B$	A plus B	$\bar{A} \oplus(1$	A plus B
H L H L		$A \bar{B}$ plus $(A+B)$		$(A+\bar{B})$ plus $A B$
H L H H	$A+B$	$A+B$	$A B$	$A B$ minus 1
H H L L	Logical 0	A plus A^{*}	Logical 1	A plus A^{*}
H H L H	$\bar{A} \bar{B}$	$A B$ plus A	$A+\bar{B}$	$(A+B)$ plus A
H H H L	$A B$	$A \bar{B}$ plus A	$A+B$	$(A+\bar{B})$ plus A
H H H H	A	A	A	A minus 1

[^13]
LOGIC SYMBOLS

ACTIVE LOW OPERANDS

ACTIVE HIGH OPERANDS

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9 LS181XM/54LS181XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9 LS181XC $/ 74$ LS181XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS		
			MIN	TYP	MAX				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In for All Inputs	put HIGH Voltage	
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		XC			0.8				
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	$=-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage Any Output except A=B	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		
		XC	2.7	3.4					
${ }^{\mathrm{I} O H}$	Output HIGH Current A=B Output Only				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$		
V_{OL}	Output LOW Voltage Except $\overline{\mathrm{G}}$ and $\overline{\mathrm{P}}$	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	V_{IL} per Truth Table	
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$		
	Output LOW Voltage Output $\overline{\mathrm{G}}$			0.47	0.7	V	${ }^{\prime} \mathrm{OL}=16 \mathrm{~mA}$		
	Output LOW Voltage Output $\overline{\mathrm{P}}$	XM		0.35	0.6	v	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$		
		XC		0.35	0.7				
I_{IH}	Input HIGH Current Mode Input \bar{A} and \bar{B} Inputs S Inputs Carry Inputs				$\begin{array}{r}20 \\ 60 \\ 80 \\ 100 \\ \hline\end{array}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		
	Mode Input \bar{A} and \bar{B} inputs S Inputs Carry Inputs				0.1 0.3 0.4 0.5	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	$\mathrm{N}=10 \mathrm{~V}$	
ILL	Input LOW Current Mode Input \bar{A} and \bar{B} Inputs S Inputs Carry Inputs				$\left\lvert\, \begin{aligned} & -0.36 \\ & -1.08 \\ & -1.44 \\ & -2.0 \end{aligned}\right.$	mA	$V_{C C}=$ MAX, V^{\prime}	$\mathrm{N}=0.4 \mathrm{~V}$	
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, V^{\prime}	OUT $=0 \mathrm{~V}$	
${ }^{1} \mathrm{CC}$	Power Supply Current Condition A (Note 6)	XM		20	32	mA	$V_{C C}=M A X$		
		XC		20	34				
	Power Supply Current Condition B (Note 6)	XM		21	35				
		XC		21	37				

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.
6. With outputs open, I CC is measured for the following conditions:
A. SO through $S 3, M$, and A inputs are at 4.5 V , all other inputs are grounded.
B. S0 through S 3 and M are at 4.5 V , all other inputs are grounded.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Pin $12=\mathrm{GND}$

SYMBOL	PARAMETER	LIMITS		UNITS	CONDITIONS
		TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, (C_{n} to C_{n+4})		27	ns	$\mathrm{M}=0 \mathrm{~V}$, (Sum or Diff Mode) See Fig. 4 and Tables I and II
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	(C_{n} to $\overline{\mathrm{F}}$ Outputs)		$\begin{aligned} & 26 \\ & 20 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}$, (Sum Mode) See Fig. 4 and Table I
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\overline{\mathrm{G}}$ Output)		$\begin{aligned} & 29 \\ & 23 \end{aligned}$	ns	$M=S_{1}=S_{2}=0 \mathrm{~V}, S_{0}=S_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\overline{\mathrm{G}}$ Output)		$\begin{aligned} & 32 \\ & 26 \end{aligned}$	ns	$M=S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
$t_{\text {PLH }}$ ${ }^{t} \mathrm{PHL}$	(\bar{A} or \bar{B} Inputs to \bar{P} Output)		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$M=S_{1}=S_{2}=0 \mathrm{~V}, S_{0}=S_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	(\bar{A} or \bar{B} Inputs to \bar{P} Output)		$\begin{aligned} & 30 \\ & 33 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	(\bar{A} or \bar{B} Inputs to any $\overline{\mathrm{F}}$ Output)		$\begin{aligned} & 32 \\ & 20 \end{aligned}$	ns	$M=S_{1}=S_{2}=0 \mathrm{~V}, S_{0}=S_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	(\bar{A} or \bar{B} Inputs to any $\overline{\mathrm{F}}$ Output)		$\begin{aligned} & 32 \\ & 23 \end{aligned}$	ns	$M=S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	(\bar{A} or \bar{B} Inputs to \bar{F} Outputs)		$\begin{aligned} & 33 \\ & 29 \end{aligned}$	ns	$\mathrm{M}=4.5 \mathrm{~V}$ (Logic Mode) See Fig. 4 and Table III
${ }^{t}$ PLH ${ }^{t}$ PHL	(\bar{A} or \bar{B} Inputs to C_{n+4} Output)		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{\mathrm{O}}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}$ (Sum Mode) See Fig. 6 and Table I
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\mathrm{C}_{\mathrm{n}+4}$ Output)		$\begin{aligned} & 41 \\ & 41 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode)
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	(\bar{A} or \bar{B} Inputs to $\mathrm{A}=\mathrm{B}$ Output)		$\begin{aligned} & 50 \\ & 62 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Diff Mode) See Fig. } 5 \text { and Table II } \end{aligned}$

AC WAVEFORMS

Fig. 4

Fig. 5

Fig. 6

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	APPLY GND	$\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$	APPLY GND	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{A}_{i}	\bar{B}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B} \end{aligned}$	C_{n}	\bar{F}_{i}
$\begin{aligned} & \text { t}{ }^{\mathrm{t} L L H} \\ & { }^{\mathrm{t}} \mathrm{PH} \end{aligned}$	Bi_{i}	\bar{A}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B} \end{aligned}$	C_{n}	\bar{F}_{i}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	$\overline{A_{i}}$	\bar{B}_{i}	None	C_{n}	$\bar{A} \bar{A} \text { and } \bar{B}$	$\overline{F_{i}}+1$
$\begin{aligned} & \text { tpL } \\ & \text { tPHL } \end{aligned}$	\bar{B}_{i}	\bar{A}_{i}	None	C_{n}	$\frac{\text { Remaining }}{\bar{A} \text { and }}$	$\overline{F_{i}}+1$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	\bar{A}	\bar{B}	None	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A} \text { and } \bar{B}, \mathrm{C}_{n}} \end{aligned}$	P
${ }^{\text {tpLH }}$ ${ }^{\text {tPHL }}$	\bar{B}	$\overline{\text { A }}$	None	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	P
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{A}	None	\bar{B}	$\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { B }}$	None	\bar{A}	$\frac{\text { Remaining }}{\bar{B}}$	$\begin{gathered} \text { Remaining } \\ \bar{A}, C_{n} \\ \hline \end{gathered}$	$\overline{\mathrm{G}}$
tPLH ${ }^{\mathrm{t} P \mathrm{HL}}$	$\overline{\mathrm{A}}$	None	\bar{B}	$\frac{\text { Remaining }}{\bar{B}}$	$\begin{gathered} \text { Remaining } \\ \bar{A}, C_{n} \end{gathered}$	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	\bar{B}	None	$\overline{\text { A }}$	$\frac{\text { Remaining }}{\bar{B}}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \\ & \hline \end{aligned}$	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	C_{n}	None	None	$\frac{\mathrm{All}}{\mathrm{~A}}$	$\frac{\mathrm{A} l}{\bar{B}}$	$\begin{gathered} \text { Any } \bar{F} \\ \text { or } C_{n}+4 \end{gathered}$

DIFF MODE TEST TABLE II

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		APPLY $4.5 \mathrm{~V}$	APPLY GND	APPLY $4.5 \mathrm{~V}$	APPLY GND	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\mathrm{A}}$	None	B	$\frac{R}{\mathrm{~A}}$	Remaining \bar{B}, C_{n}	\bar{F}_{i}
$\begin{aligned} & { }^{\text {tPLH }} \\ & \text { tPH } \end{aligned}$	B	$\overline{\mathrm{A}}$	None	${ }_{\bar{A}}^{\text {Remaining }}$	$\begin{aligned} & \text { Remaining } \\ & \bar{B}, C_{n} \end{aligned}$	\bar{F}_{i}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{A}_{i}	None	B_{i}	$\begin{aligned} & \text { Remaining } \\ & \bar{B}, C_{n} \end{aligned}$	$\begin{gathered} \text { Remaining } \\ \bar{A} \\ \hline \end{gathered}$	$\bar{F}_{i}+1$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}_{i}	\bar{A}_{i}	None	$\begin{gathered} \text { Remaining } \\ \bar{B}, C_{n} \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \bar{A} \\ \hline \end{gathered}$	$\bar{F}_{i}+1$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\mathrm{A}}$	None	\bar{B}	None	Remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{P}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}	A	None	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	$\overline{\mathrm{P}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	\bar{B}	None	None	Remaining	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}	None	$\overline{\mathrm{A}}$	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{n}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	None	B	$\mathrm{Remaining}_{\overline{\mathrm{A}}}$	Remaining \bar{B}, C_{n}	$A=B$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	A	None	$\operatorname{Remaining~}_{\bar{A}}$	$\begin{aligned} & \text { Remaining } \\ & \bar{B}, C_{n} \end{aligned}$	$A=B$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	\bar{B}	None	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	$C_{n}+4$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	None	\bar{A}	None	Remaining $\overline{\mathrm{A}}$ and \bar{B}, C_{n}	$C_{n}+4$
$\begin{aligned} & \mathrm{t} \mathrm{PLH} \\ & \text { t PHL } \end{aligned}$	C_{n}	None	None	$\overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}$	None	$C_{n}+4$

LOGIC MODE TEST TABLE III

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	FUNCTION INPUTS
		APPLY $4.5 \mathrm{~V}$	APPLY GND	APPLY $4.5 \mathrm{~V}$	APPLY GND		
$\begin{aligned} & { }^{\mathrm{t} P L H} \\ & \\ & { }^{\mathrm{t} P H L} \end{aligned}$	$\overline{\mathrm{A}}$	None	\bar{B}	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{n}$	Any \bar{F}	$\begin{gathered} \mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}	None	A	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	Any \bar{F}	$\begin{gathered} \mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\ \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} \end{gathered}$

9LS190(54LS/74LS190)• 9LS191(54LS/74LS191) PRESETTABLE BCD/DECADE UP/DOWN COUNTERS

 PRESETTABLE 4-BIT BINARY

 PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS

 UP/DOWN COUNTERS}

Abstract

DESCRIPTION - The 9LS190 (54LS/74LS190) is a synchronous UP/DOWN BCD Decade (8421) Counter and the 9LS191 (54LS/74LS191) is a synchronous UP/DOWN Modulo-16 Binary Counter. State changes of the counters are synchronous with the LOW-to-HIGH transition of the Clock Pulse input.

An asynchronous Parallel Load ($\overline{\mathrm{PL}}$) input overrides counting and loads the data present on the P_{n} inputs into the flip-flops, which makes it possible to use the circuits as programmable counters. A Count Enable ($\overline{\mathrm{CE}})$ input serves as the carry/borrow input in multi-stage counters. An Up/Down Count Control (\bar{U} / D) input determines whether a circuit counts up or down. A Terminal Count (TC) output and a Ripple Clock ($\overline{\mathrm{RC}}$) output provide overflow/underflow indication and make possible a variety of methods for generating carry/borrow signals in multi-stage counter applications.

- LOW POWER . . . 90 mW TYPICAL DISSIPATION
- HIGH SPEED . . . 35 MHz TYPICAL COUNT FREQUENCY
- SYNCHRONOUS COUNTING
- ASYNCHRONOUS PARALLEL LOAD
- INDIVIDUAL PRESET INPUTS
- COUNT ENABLE AND UP/DOWN CONTROL INPUTS
- CASCADABLE
- INPUT CLAMP DIODES LIMHT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS cOMPATIBLE

PIN NAMES

$\overline{C E}$	Count Enable (Active LOW) Input
CP	Clock Pulse (Active HIGH going edge) Input
$\overline{\mathrm{U}} / \mathrm{D}$	Up/Down Count Control Input
$\overline{\mathrm{PL}}$	Parallel Load Control (Active LOW) Input
P_{n}	Parallel Data Inputs
Q_{n}	Flip-Flop Outputs (Note b)
$\overline{\mathrm{RC}}$	Ripple Clock Output (Note b)
TC	Terminal Count Output (Note b)

LOADING (Note a)	
HIGH	LOW
1.5 U.L.	0.7 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

STATE DIAGRAMS

9LS190
UP: $\quad T C=a_{0} \cdot Q_{3} \cdot(\overline{U / D})$
DOWN: TC $=\overline{\mathrm{Q}_{0}} \cdot \overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \overline{\mathrm{Q}_{3}} \cdot \overline{(\mathrm{U} / \mathrm{D})}$
9LS191
UP: $\quad T C=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot(\overline{U / D})$ DOWN: TC $=\overline{\mathrm{Q}_{0}} \cdot \overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \overline{\mathrm{Q}_{3}} \cdot(\overline{\mathrm{U} / \mathrm{D})}$

Count Up -
Count Down ------

191

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
$=$ Pin Numbers

FUNCTIONAL DESCRIPTION - The 9LS190 is a synchronous Up/Down BCD Decade Counter and the 9LS191 is a synchronous Up/Down 4-Bit Binary Counter. The operating modes of the 9LS190 decade counter and the 9LS191 binary counter are identical, with the only difference being the count sequences as noted in the state diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.
Each circuit has an asynchronous paraliel load capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, information present on the Paraliel Data inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.
A HIGH signal on the $\overline{C E}$ input inhibits counting. When $\overline{C E}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \bar{U} / D input signal, as indicated in the Mode Select Table. When counting is to be enabled, the $\overline{\mathrm{CE}}$ signal can be made LOW when the clock is in either state. However, when counting is to be inhibited, the LOW-to-HIGH $\overline{\mathrm{CE}}$ transition must occur only while the clock is HIGH. Similarly, the \bar{U} / D signal should only be changed when either $\overline{C E}$ or the clock is HIGH.
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches maximum (9 for the 9LS190, 15 for the 9LS191) in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \bar{U} / D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.
The TC signal is also used internally to enable the Ripple Clock ($\overline{\mathrm{RC}}$) output. The $\overline{\mathrm{RC}}$ output is normally HIGH. When $\overline{\mathrm{CE}}$ is LOW and TC is HIGH, the $\overline{\mathrm{RC}}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multi-stage counters, as indicated in Figures a and b. In Figure a, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on $\overline{C E}$ inhibits the $\overline{R C}$ output pulse, as indicated in the $\overline{R C}$ Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in Figure b. All clock inputs are driven in parallel and the $\overline{\mathrm{RC}}$ outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\mathrm{RC}}$ output of any package goes HIGH shortly after its CP input goes HIGH.
The configuration shown in Figure cavoids ripple delays and their associated restrictions. The $\overline{\mathrm{CE}}$ input signal for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figures a and b doesn't apply, because the TC output of a given stage is not affected by its own $\overline{\mathrm{CE}}$.

MODE SELECT TABLE

INPUTS				MODE	
$\overline{P L}$	$\overline{C E}$	\bar{U} / D	CP		
H	L	L	J	Count Up	
H	L	H	ऽ	Count Down	
L	X	X	X	Preset (Asyn.)	
H	H	X	X	No Change (Hold)	

RC TRUTH TABLE

INPUTS			$\overline{\text { RC }}$
$\overline{\mathrm{CE}}$	TC *	CP	
L	H	U-	U
H	X	X	H
X	L	X	H

*TC is generated internally
$\mathrm{L}=$ LOW Voltage Level
$H=H I G H$ Voltage Level
$X=$ Don't Care
$J=$ LOW-to-HIGH Clock Transition
〕= LOW Pulse

Fig. a) n-stage counter using ripple clock.

Fig. b) Synchronous n-stage counter using ripple carry/borrow.

Fig. c) Synchronous n -stage counter with parallel gated carry/borrow.

FAIRCHILD • 9LS190 (54LS / 74LS 190) • 9LS191 (54LS / 74LS191)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +15 V
*Input Voltage (dc)

* Input Current (dc)
-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)
-0.5 V to +10 V
Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9LS190XM/54LS190XM 9LS191XM/54LS191XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS190XC/74LS190XC 9LS191XC/74LS191XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Cermaic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$V_{I N}=V_{I H}$ or $V_{1 L}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$V_{C C}=M I N, V_{I N}=V_{I H}$ or $V_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
${ }_{1 / H}$	$\begin{aligned} & \text { Input HIGH Current } \\ & P_{\mathrm{n}^{\prime}} \overline{\mathrm{PL}}, \mathrm{CP}, \overline{\mathrm{U}} / \mathrm{D} \\ & \mathrm{CE} \end{aligned}$				$\begin{aligned} & 20 \\ & 60 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
	$\frac{P_{n}}{\overline{C E}}, \overline{P L}, C P, \bar{U} / D$				$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=10 \mathrm{~V}$
${ }^{\text {I IL }}$	Input LOW Current $\frac{P_{n}}{C E}, \overline{P L}, C P, \bar{U} / D$				$\begin{array}{r} -0.4 \\ -1.08 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			20	35	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normaily occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.
6. The Set-Up Time " $\mathrm{t}_{\mathrm{s}}(H)$ " and Hold Time " $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$ " between the Count Enable ($\overline{\mathrm{CE}}$) and the Clock (CP) indicate that the LOW-to-HIGH transition of the $\overline{\mathrm{CE}}$ must occur only while the Clock is HIGH for conventional operation.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Max. Input Count Frequency	25	35		MHz	Fig. 1	$\begin{aligned} & v_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP Input to Q Outputs			$\begin{aligned} & 24 \\ & 36 \end{aligned}$	ns	Fig. 1	
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	CP Input to $\overline{\mathrm{RC}}$ Output			$\begin{aligned} & 20 \\ & 24 \end{aligned}$	ns	Fig. 2	
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	CP Input to TC Output			$\begin{aligned} & 42 \\ & 52 \end{aligned}$	ns	Fig. 1	
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L L}}{ }^{*}{ }^{*} \end{aligned}$	\bar{U} / D Input to $\overline{\mathrm{RC}}$ Output			$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Fig. 7	
$\overline{t_{P L H}}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	$\overline{\text { U }}$ D Input to TC Output			$\begin{aligned} & 33 \\ & 33 \end{aligned}$	ns		
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	$P_{0}-P_{3}$ Inputs to $Q_{0}-O_{3}$ Outputs			$\begin{aligned} & 22 \\ & 50 \end{aligned}$	ns	Fig. 3	
${ }^{\mathrm{t} P L H}$ ${ }^{t_{\mathrm{PHL}}}$	$\overline{\text { PL }}$ Input to Any Output			$\begin{aligned} & 33 \\ & 50 \end{aligned}$	ns	Fig. 4	
$\begin{aligned} & { }_{{ }_{\mathrm{t}}^{\mathrm{LLH}}}{ }^{*} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{\mathrm{CE}}$ Input to $\overline{\mathrm{RC}}$ Output			$\begin{aligned} & 33 \\ & 23 \end{aligned}$	ns	Fig. 2	

*It is possible to get these timing relationships, but they should not occur during normal operation since the CP would be HIGH.

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
tw	CP Pulse Width	20			ns	Fig. 1	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
${ }^{\text {t }}$ W	$\overline{\text { PL Pulse Width }}$	35			ns	Fig. 4	
${ }^{\mathrm{t}_{5} \mathrm{~L}}$	Set-Up Time LOW, Data to $\overline{\text { PL }}$	20			ns	Fig. 6	
$t^{\text {L }}$	Hold Time LOW, Data to $\overline{P L}$	0			ns		
${ }_{4}{ }_{\text {s }} \mathrm{H}$	Set-Up Time HIGH, Data to $\overline{\mathrm{PL}}$	20			ns		
th^{H}	Hold Time HIGH, Data to PL	0			ns		
${ }^{\text {rec }}$	Recovery Time, $\overline{\text { PL }}$ to CP	20			ns	Fig. 5	
${ }^{\text {ts }}$ L	Set-Up Time LOW, $\overline{\text { CE }}$ to Clock	20			ns	Fig. 8	
$t_{h} \mathrm{~L}$	Hold Time LOW, $\overline{\mathrm{CE}}$ to Clock	0			ns		

DEFINITIONS OF TERMS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME ($\mathrm{t}_{\text {rec }}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

Fig. 1

NOTE: $\overline{\mathrm{PL}}=$ LOW

Fig. 3

Fig. 5

Fig. 7

Fig. 2

Fig. 4

o_{n}

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 6

Fig. 8

9LS192(54LS/74LS192) •9LS193(54LS/74LS193) PRESETTABLE BCD/DECADE UP/DOWN COUNTER

DESCRIPTION - The 9LS192 (54LS/74LS192) is an UP/DOWN BCD Decade (8421) Counter and the 9LS193 (54LS/74LS193) is an UP/DOWN MODULO-16 Binary Counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs.
Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs asynchronously override the clocks.

- LOW POWER 95 mW TYPICAL DISSIPATION
- HIGH SPEED . . 40 MHz TYPICAL COUNT FREQUENCY
- SYNCHRONOUS COUNTING
- ASYNCHRONOUS MASTER RESET AND PARALLEL LOAD
- INDIVIDUAL PRESET INPUTS
- CASCADING CIRCUITRY INTERNALLY PROVIDED
- InPUT CLAMP dIodes limit high speed terimination effects
- FULLY TTL AND Civios compatible

PIN NAMES

$\mathrm{CP} \cup \quad$ Count Up Clock Pulse input
CPD Count Down Clock Pulse Input
MR Asynchronous Master Reset (Clear) Input
$\overline{P L} \quad$ Asynchronous Parallel Load (Active LOW) Input
$P_{n} \quad$ Parallel Data Inputs
$\mathrm{O}_{n} \quad$ Flip-Flop Outputs (Note b)
$T_{D} \quad$ Terminal Count Down (Borrow) Output (Note b)
$\overline{\mathrm{TC}}_{\cup} \quad$ Terminal Count Up (Carry) Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW
b. The Output LOW drive factor is 2.5 U.L. for MILITARY (XM) and 5 U.L. for COMMERCIAL (XC) Temperature Ranges.

STATE DIAGRAMS

9LS192 LOGIC EQUATIONS FOR TERMINAL COUNT
$\overline{T C}_{U}=\mathrm{a}_{0} \cdot \mathrm{Q}_{3} \cdot \overline{\mathrm{CP}}_{\mathrm{U}}$
$\overline{T_{D}}=\overline{\mathrm{O}_{0}} \cdot \overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \overline{\mathrm{Q}_{3}} \cdot \overline{\mathrm{CP}_{\mathrm{D}}}$
9LS193 LOGIC EQUATIONS FOR TERMINAL COUNT

$\overline{T C}_{D}=\overline{\alpha_{0}} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{\mathrm{CP}_{\mathrm{D}}}$
COUNT UP
COUNT DOWN ---.-.

LOGIC DIAGRAMS

9LS193
$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
$\bigcirc=P$ in Number

FAIRCHILD • 9LS192 (54LS /74LS192) • 9LS193 (54LS /74LS193)

FUNCTIONAL DESCRIPTION - The 9LS192 and 9LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous UP/DOWN (Reversable) Counters. The operating modes of the 9LS192 decade counter and the 9LS193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

The Terminal Count Up ($\overline{T C}_{U}$) and Terminal Count Down ($\overline{T C}_{D}$) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the 9LS192, 15 for the 9LS193), the next HIGH-to-LOW transition of the Count Up Clock will cause $\overline{T C}_{U}$ to go LOW. $\overline{T C}_{U}$ will stay LOW until CP_{\cup} goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{T C}_{D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}, \mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V

* Input Voltage (dc)
* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
-0.5 V to 15 V
L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care
$\Gamma=$ LOW-to-HIGH Clock Transition

Output Current (dc) (Output LOW)

* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

FAIRCHILD • 9LS192 (54LS /74LS192) • 9LS 193 (54LS /74LS193)

GUARANTEED OPERATING RANGES				
PART NUMBERS	SUPPLY VOLTAGE (VCC)			TEMPERATURE
	MIN	TYP	MAX	
$\begin{aligned} & \text { 9LS 192XM/54LS192XM } \\ & \text { 9LS193XM/54LS193XM } \end{aligned}$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS192XC / 74LS192XC 9LS193XC / 74LS193XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \cdot \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	v	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }_{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			19	34	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, now shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS						UNITS	TEST CONDITIONS	
		9LS192			9LS193					
		MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{f}_{\mathrm{MAX}}$	Max Input Count Frequency	30	40		30	40		MHz	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{1} \mathrm{PHL}$	CP_{U} Input to $\overline{T C}_{U}$ Output		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns	Fig. 2	
${ }^{t} \mathrm{PLH}$ ${ }^{t}$ PHL	$C P_{D}$ input to $\overline{T C}_{D}$ Output		$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 22 \end{aligned}$		$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 22 \end{aligned}$	ns		
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	CP_{U} or CP_{D} to a_{n} Outputs		$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 31 \\ & 28 \end{aligned}$		$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 31 \\ & 28 \end{aligned}$	ns		
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3} \text { Inputs } \\ & \mathrm{O}_{0}-\mathrm{O}_{3} \text { Outputs } \end{aligned}$							ns	Fig. 3	
${ }^{\mathrm{t}}$ PLH ${ }^{t} \mathrm{PHL}$	$\overline{\text { PL }}$ Input to Any Output		$\begin{aligned} & 23 \\ & 17 \end{aligned}$	$\begin{aligned} & 32 \\ & 25 \end{aligned}$		$\begin{aligned} & 23 \\ & 17 \end{aligned}$	$\begin{aligned} & 32 \\ & 25 \end{aligned}$	ns	Fig. 4	
${ }^{\text {tPHL }}$	MR Input to Any Output		17	25		17	25	ns	Fig. 7	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS						UNITS	TEST CONDITIONS	
		9LS192			9LS193					
		MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{t} \mathrm{~W}$	CP_{U} Pulse Width	17			17			ns	Fig. 1	
${ }^{t} \mathrm{~W}$	${ }^{C} P_{D}$ Pulse Width	17			17			ns		
${ }^{t} W$	$\overline{\text { PL Pulse Width }}$	15			15			ns	Fig. 4	
${ }^{\text {t }} \mathrm{W}$	MR Pulse Width	15			15			ns	Fig. 7	
$\mathrm{t}_{\mathrm{s}} \mathrm{t}^{\text {L }}$	Set-up Time LOW, Data to $\overline{\text { ¢ }}$	10			10			ns		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{\text {th }}$ L	Hold Time LOW, Data to $\overline{\mathrm{PL}}$	0			0			ns	Fig. 6	
${ }_{\text {t }} \mathrm{H}^{\mathrm{H}}$	Set-up Time HIGH, Data to $\overline{\mathrm{PL}}$	10			10			ns		
${ }_{4}{ }^{H}$	Hold Time HIGH, Data to $\overline{\text { PL }}$	0			0			ns		
${ }^{\text {rec }}$	Recovery Time, $\overline{\mathrm{PL}}$ to CP							ns	Fig. 5	
${ }^{\text {trec }}$	Recovery Time, MR to CP							ns		

DEFINITIONS OF TERMS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ is defined as the minimum time required for the correct logic level to be present at the logic input prior to the $\overline{P L}$ transistion from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME $\left(t_{h}\right)$ is defined as the minimum time following the $\overline{P L}$ transistion from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the $\overline{P L}$ transistion from LOW-to-HIGH and still be recognized.

RECOVERY TIME ($\mathrm{t}_{\mathrm{rec}}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

FAIRCHILD • 9LS 192 (54LS /74LS192) • 9LS193 (54LS /74LS193)

Fig. 1

Fig. 2

Fig. 4

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 6

NOTE: $\overline{P L}=$ LOW

Fig. 3

Fig. 5

Fig. 7

9LS194(54LS/74LS194A) 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

DESCRIPTION - The 9LS194 (54LS/74LS194A) is a High Speed 4-Bit Bidirectional Universal Shift Register. As a high speed multifunctional sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. The 9LS194 is similar in operation to the 9LS195 Universal Shift Register, with added features of shift left without external connections and hold (do nothing) modes of operation. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Fairchild TTL families.

- TYPICAL SHIFT FREQUENCY OF 40 MHz
- ASYNCHRONOUS MASTER RESET
- hold (DO NOTHing) mode
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

S_{0}, S_{1}
$P_{0}-P_{3}$
$D_{S R}$
$D_{S L}$
$C P$
$M R$
$C_{0}-O_{3}$

Mode Control Inputs
Parallel Data Inputs
Serial (Shift Right) Data Input
Serial (Shift Left) Data Input
Clock (Active HIGH Going Edge) Input
Master Reset (Active LOW) Input
Parallel Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

FAIRCHILD • 9LS194 (54LS /74LS194A)

FUNCTIONAL DESCRIPTION - The Logic Diagram and Truth Table indicate the functional characteristics of the 9LS194 4-Bit Bidirectional Shift Register. The 9LS194 is similar in operation to the Fairchild 9LS195 Universal Shift Register when used in serial or parallel data register transfers. Some of the common features of the two devices are described below:

1. All data and mode control inputs are edge-triggered, responding only to the LOW to HIGH transition of the Clock (CP). The only timing restriction, therefore, is that the mode control and selected data inputs must be stable one set-up time prior to the positive transition of the clock pulse.
2. The register is fully synchronous, with all operations taking place in less than 15 ns (typical) making the device especially useful for implementing very high speed CPUs, or the memory buffer registers.
3. The four parallel data inputs ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$) are D-type inputs. When both S_{0} and S_{1} are HIGH, the data appearing on P_{0}, P_{1}, P_{2}, and P_{3} inputs is transferred to the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outputs respectively following the next LOW to HIGH transition of the clock.
4. The asynchronous Master Reset $(\overline{\mathrm{MR}})$, when LOW, overrides all other input conditions and forces the Q outputs LOW.

Special logic features of the 9LS194 design which increase the range of application are described below:

1. Two mode control inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ determine the synchronous operation of the device. As shown in the Mode Selection Table, data can be entered and shifted from left to right (shift right, $\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.) or right to left (shift left, $\mathrm{Q}_{3} \rightarrow \mathrm{Q}_{2}$, etc.), or parallel data can be entered loading all four bits of the register simultaneously. When both S_{0} and S_{1} are LOW, the existing data is retained in a "do nothing" mode without restricting the HIGH to LOW clock transition.
2. D-type serial data inputs ($\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$) are provided on both the first and last stages to allow multistage shift right or shift left data transfers without interfering with parallel load operation.

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS						OUTPUTS			
	$\overline{\mathrm{MR}}$	S_{1}	S_{0}	DSR	$\mathrm{D}_{\text {SL }}$	P_{n}	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Reset	L	\times	X	x	x	x	L	L	L	L
Hold	H	1	1	x	x	x	9_{0}	q_{1}	q_{2}	q_{3}
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	1 1	$\begin{aligned} & x \\ & x \end{aligned}$	1 h	$\begin{gathered} x \\ x \end{gathered}$	$\begin{aligned} & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & q_{2} \\ & q_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right	$\begin{aligned} & H \\ & H \end{aligned}$	1 1	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} L \\ H \end{gathered}$	$\begin{aligned} & \mathrm{a}_{0} \\ & \mathrm{a}_{0} \end{aligned}$	$\begin{aligned} & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & q_{2} \\ & q_{2} \end{aligned}$
Parallel Load	H	h	h	X	x	p_{n}	${ }^{\circ} 0$	p_{1}	p_{2}	p_{3}

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level
$X=$ Don't Care
I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition
$h=$ HIGH voltage level one set-up time prior to the LOW to HIGH clock transition
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

```
ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
```

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin

* Input Voltage (dc)
*input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

[^14]GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE ($\mathrm{V}_{\text {CC }}$)			TEMPERATURE
	MIN	TYP	MAX	
9LS194XM / 54LS194AXM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS194XC/74LS194AXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$V_{1 H}$	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\bar{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.7	3.4			$V_{I N}=V_{I H}$ or $V_{I L}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{C C}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} V_{\text {IL }}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			15	23	mA	$V_{C C}=M A X$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \vee, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIIN	TYP	MAX			
${ }^{\text {m MAX }}$	Shift Frequency	30	40		MHz	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, Clock to Output			$\begin{aligned} & 22 \\ & 15 \end{aligned}$	ns	Fig. 1	
${ }^{t} \mathrm{PHL}$	Propagation Delay, MR to Output			18	ns	Fig. 2	

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {t }}$ (${ }^{(C P)}$	Clock Pulse Width	18	12		ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }_{t}$ (Data)	Set-up Time, Data to Clock	16			ns	Fig. 3	
t_{h} (Data)	Hold Tirne, Data to Clock	0			ns		
$\mathrm{t}_{s}(\mathrm{~S})$	Set-up Time, Mode Control to Clock	20			ns	Fig. 4	
$\mathrm{th}_{\text {h }}(\mathrm{S})$	Hold Time, Mode Control to Clock	0			ns		
${ }^{\text {t }} \mathrm{W}$ (MR)	Master Reset Pulse Width	12			ns	Fig. 2	
${ }^{\text {trec }}$ (MR)	Recovery Time Master Reset to Clock	18	12		ns		

DEFINITIONS OF TERIMS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME ($t_{r e c}$) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS CLOCK PULSE WIDTH AND $f_{\max }$

OTHER CONDITIONS: $\quad S_{1}=L, \overline{M R}=H, S_{0}=H$
Fig. 1

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

OTHER CONDITIONS: $\quad \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{H}$

$$
P_{0}=P_{1}=P_{2}=P_{3}=H
$$

Fig. 2

SET-UP (t_{s}) AND HOLD (t_{h}) TIME FOR SERIAL

OTHER CONDITIONS: $\quad \overline{\mathrm{MR}}=H$
${ }^{*} D_{S R}$ set-up time affects Q_{0} only
$D_{S L}$ set-up time affects Q_{3} only
Fig. 3

SET-UP (t_{s}) AND HOLD $\left(t_{h}\right)$ TIME FOR S INPUT

OTHER CONDITIONS: $\quad \overline{\mathrm{MR}}=\mathrm{H}$
Fig. 4

9LS195 (54LS/74LS195A) UNIVERSAL 4-BIT SHIFT REGISTER

DESCRIPTION - The 9LS195 (54LS/74LS195A) is a high speed 4-Bit Shift Register offering typical shift frequencies of 50 MHz . It is useful for a wide variety of register and counting applications. The 9LS195 is pin and functionally identical to the 9300, 93L00, 93 H 00 and $54 / 74195$. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Fairchild TTL products.

- TYPICAL SHIFT RIGHT FREQUENCY OF 50 MHz
- ASYNCHRONOUS MASTER RESET
- J, \bar{K} INPUTS TO FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- fully ttl and cmos compatible

PIN NAMES

$\overline{P E}$
$P_{0}-P_{3}$
$\frac{J}{K}$
$\frac{C P}{M R}$
$Q_{0}-Q_{3}$
\bar{Q}_{3}

Parallel Enable (Active LOW) Input Parallel Data Inputs
First Stage J (Active HIGH) Input
First Stage K (Active LOW) Input
Clock (Active HIGH Going Edge) Input
Master Reset (Active LOW) Input
Parallel Outputs (Note b)
Complementary Last Stage Output
(Note b)

CONNECTION DIAGRAM DIP (TOP VIEW)

HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The Logic Diagram and Truth Table indicate the functional characteristics of the 9LS195 4-Bit Shift Register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The 9 LS195 has two primary modes of operation, shift right $\left(\mathrm{O}_{0} \rightarrow \mathrm{Q}_{1}\right)$ and parallel load which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. When the PE input is HIGH, serial data enters the first flip-flop Q_{0} via the J and \bar{K} inputs and is shifted one bit in the direction $\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1} \rightarrow \mathrm{Q}_{2} \rightarrow \mathrm{Q}_{3}$ following each LOW to HIGH clock transition. The \sqrt{K} inputs provide the flexibility of the JK type input for special applications, and the simple D type input for general applications by tying the two pins togethers. When the $\overline{\mathrm{PE}}$ input is LOW, the 9LS195 appears as four common clocked D flip-flops. The data on the paralle inputs $P_{0}, P_{1}, P_{2}, P_{3}$ is transferred to the respective $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ outputs following the LOW to HIGH clock transition. Shift left operation $\left(\mathrm{O}_{3} \rightarrow \mathrm{Q}_{2}\right)$ can be achieved by tying the Q_{n} outputs to the $\mathrm{P}_{\mathrm{n}-1}$ inputs and holding the PE input LOW.

All serial and parallel data transfers are synchronous, occuring after each LOW to HIGH clock transition. Since the 9LS195 utilizes edge-triggering, there is no restriction on the activity of the J, \bar{K}, P_{n} and $\overline{\mathrm{PE}}$ inputs for logic operation - except for the set-up and release time requirements.
A LOW on the asynchronous Master Reset ($\overline{\mathrm{MR}}$) input sets all Q outputs LOW, independent of any other input condition.

MODE SELECT - TRUTH TABLE

OPERATING MODES	INPUTS					OUTPUTS				
	$\overline{\mathrm{MR}}$	$\overline{\mathrm{PE}}$	J	\bar{K}	P_{n}	o_{0}	Q_{1}	Q_{2}	O_{3}	$\overline{\mathrm{Q}}_{3}$
Asynchronous Reset	L	x	x	x	x	L	L	L	L	H
Shift, Set First Stage	H	h	h	h	x	H	q_{0}	q_{1}	q_{2}	\bar{q}_{2}
Shift, Reset First Stage	H	h	1	1	x	L	q_{0}	q_{1}	a_{2}	$\overline{\mathrm{a}}_{2}$
Shift, Toggle First Stage	H	h	h	1	x	\bar{q}_{0}	q_{0}	a_{1}	a_{2}	$\overline{\mathrm{a}}_{2}$
Shift, Retain First Stage	H	h	1	h	x	q_{0}	q_{0}	q_{1}	a_{2}	\bar{q}_{2}
Parallel Load	H	1	x	X	p_{n}	p_{0}	p_{1}	p_{2}	p_{3}	p_{3}

$\mathrm{L}=\mathrm{LOW}$ voltage levels
$H=$ HIGH voltage levels
X = Don't Care
I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition.
$h=$ HIGH voltage level one set-up time prior to the LOW to HIGH clock transition.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
V_{CC} Pin Potential to Ground Pin
*Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS195XM / 54LS195AXM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS195XC / 74LS195AXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD • 9LS195 (54LS/74LS195A)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)							
SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed input HIGH Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$, $\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	${ }^{\mathrm{I}} \mathrm{OL}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {IL }}$ per Truth Table
${ }_{1 H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{\text {CC }}=$ MAX, $V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current			14	21	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Shift Frequency	30	40		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }_{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	ns	Fig. 1	
${ }^{\text {tPHL }}$	Propagation Delay, MR to Output		13	20	ns	Fig. 3	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }_{\text {t }}$ ($(C P)$	Clock Pulse Width	16			ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {(}}$ (Data)	Set-up Time, Data to Clock	15	8		ns	Fig. 2	
t_{h} (Data)	Hold Time, Data to Clock	0	-7		ns		
$\mathrm{t}_{s}(\overline{\mathrm{PE}})$	Set-up Time, $\overline{\text { PE }}$ Control to Clock	25	18		ns	Fig. 4	
$\mathrm{t}_{\mathrm{h}}(\overline{\mathrm{PE}})$	Hold Time, $\overline{\text { PE }}$ Control to Clock	-10	-17		ns		
${ }^{\text {t }} \mathrm{W}$ (MR)	Master Reset Pulse Width	12			ns	Fig. 3	
$\mathrm{t}_{\mathrm{rec}}(\overline{\mathrm{MR}})$	Recovery Time Master Reset to Clock	25			ns		

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME ($\mathrm{t}_{\mathrm{rec}}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH

$$
\text { CONDITIONS: } \begin{aligned}
& \mathrm{J}=\overline{\mathrm{PE}}=\overline{\mathrm{MR}}=\mathrm{H} \\
& \overline{\mathrm{~K}}=\mathrm{L}
\end{aligned}
$$

Fig. 1

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

CONDITIONS: $\overline{\mathrm{PE}}=\mathrm{L}$
$P_{0}=P_{1}=P_{2}=P_{3}=H$

SET-UP (t_{s}) AND HOLD (t_{h}) TIME FOR SERIAL DATA ($\mathrm{J} \& \overline{\mathrm{~K}}$) AND PARALLEL DATA ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

ourpur.

CONDITIONS: $\quad \overline{\mathrm{MR}}=\mathrm{H}$
${ }^{*} J$ and \bar{K} set-up time affects Q_{0} only
Fig. 2

SET-UP (t_{s}) AND HOLD $\left(t_{h}\right)$ TIME FOR $\overline{\text { PE INPUT }}$

CONDITIONS: $\overline{\mathrm{MR}}=\mathrm{H}$
${ }^{*} \mathrm{Q}_{0}$ state will be determined by J and $\overline{\mathrm{K}}$ inputs

Fig. 4

9LS196 (54LS/74LS196) 9LS197 (54LS/74LS197) 4-STAGE PRESETTABLE RIPPLE COUNTERS

DESCRIPTION - The 9LS196 (54LS/74LS196) decade counter is partitioned into divide-by-two and divide-by-five sections which can be combined to count either in $B C D$ $(8,4,2,1)$ sequence or in a bi-quinary mode producing a 50% duty cycle output. The 9LS197 (54LS/74LS197) contains divide-by-two and divide-by-eight sections which can be combined to form a modulo-16 binary counter. Low Power Schottky technology is used to achieve typical count rates of 70 MHz and power dissipation of only 80 mW .

Both circuit types have a Master Reset ($\overline{\mathrm{MR} \text {) input which overrides all other inputs and }}$ asynchronously forces all outputs LOW. A Parallel Load input ($\overline{\mathrm{PL}}$) overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (P_{n}) into the flip-flops. This preset feature makes the circuits usable as programmable counters. The circuits can also be used as 4-bit latches, loading data from the Parallel Data inputs when $\overline{P L}$ is LOW and storing the data when $\overline{P L}$ is HIGH.

- LOW POWER CONSUMPTION - TYPICALLY 80 mW
- HIGH COUNTING RATES - TYPICALLY 70 MHz
- CHOICE OF COUNTING MODES - BCD, BI-QUINARY, BINARY
- ASYNCHRONOUS PRESETTABLE
- ASYNCHRONOUS MASTER RESET
- EASY MULTISTAGE CASCADING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

		HIGH	LOW
$\overline{\mathrm{CP}} 0$	Clock (Active LOW Going Edge)	1.0 U.L.	1.5 U.L.
	Input to Divide-by-Two Section		
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Going Edge)	2.0 U.L.	1.75 U.L.
	Input to Divide-by-Five Section		
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Going Edge)	1.0 U.L.	1.0 U.L.
	Input to Divide-by-Eight Section		
$\overline{\mathrm{MR}}$	Master Reset (Active LOW) Input	1.0 U.L.	0.5 U.L.
$\overline{\mathrm{PL}}$	Parallel Load (Active LOW) Input	0.5 U.L.	0.25 U.L.
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Data Inputs	0.5 U.L.	0.25 U.L.
$\mathrm{O}_{0}-\mathrm{Q}_{3}$	Outputs (Notes b, c)	10 U.L.	5(2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.
c. In addition to loading shown, Q_{O} can also drive $\overline{\mathrm{CP}}_{1}$.

9LS196

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
$O=\operatorname{Pin}$ Numbers

FUNCTIONAL DESCRIPTION - The 9LS196 and 9LS197 are asynchronously presettable decade and binary ripple counters. The 9LS196 Decade Counter is partitioned into divide-by-two and divide-by-five sections while the 9LS197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH to LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\mathrm{CP}}_{0}$ input serves the O_{0} flip-flop in both circuit types while the $\overline{\mathrm{CP}}_{1}$ input serves the divide-by-five or divide-by-eight section. The Q_{0} output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and with Q_{0} driving $\overline{\mathrm{CP}}_{1}$, the 9 LS 197 forms a straightforward module-16 counter, with Q_{0} the least significant output and Q_{3} the most significant output.

The 9LS196 Decade Counter can be connected up to operate in two different count sequences, as indicated in the tables of Figure 2. With the input frequency connected to $\overline{\overline{C P}_{0}}$ and with Q_{0} driving $\overline{\mathrm{CP}}_{1}$, the circuit counts in the $\mathrm{BCD}(8,4,2,1)$ sequence. With the input frequency connected to $\overline{\mathrm{CP}}_{1}$ and Q_{3} driving $\overline{\mathrm{CP}}_{0}, \mathrm{O}_{0}$ becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.
The 9LS196 and 9LS197 have an asynchronous active LOW Master Reset input ($\overline{\mathrm{MR}}$) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input ($\overline{\mathrm{PL}}$) overrides the clock inputs and loads the data from Parallel Data ($\mathrm{P}_{0}-\mathrm{P}_{3}$) inputs into the flip-flops. While $\overline{\mathrm{PL}}$ is LOW, the counters act as transparent latches and any change in the P_{n} inputs will be reflected in the outputs.

Figure 2: 9LS196 COUNT SEQUENCES

DECADE (NOTE 1)					BI-QUINARY (NOTE 2)				
COUNT	Q_{3}	O_{2}	Q_{1}	O_{0}	COUNT	Q_{0}	Q_{3}	O_{2}	Q_{1}
0	L	L	L	L	0	L	L	L	L
1	L	L	L	H	1	L	L	L	H
2	L	L	H	L	2	L	L	H	L
3	L	L	H	H	3	L	L	H	H
4	L	H	L	L	4	L	H	L	L
5	L	H	L	H	5	H	L	L	L
6	L	H	H	L	6	H	L	L	H
7	L	H	H	H	7	H	L	H	L
8	H	L	L	L	8	H	L	H	H
9	H	L	L	H	9	H	H	L	L

NOTES:

1. Signal applied to $C P_{0}, Q_{0}$ connected to $C P_{1}$.
2. Signal applied to $\mathrm{CP}_{1}, \mathrm{Q}_{3}$ connected to CP 0 .

MODE SELECT TABLE

INPUTS			RESPONSE
$\overline{M R}$	$\overline{P L}$	$\overline{\mathrm{CP}}$	
L	X	X	Reset (Clear)
H	L	X	Parallel Load
H	H	L	Count

$H=H I G H$ Voltage Levei
L $=$ LOW Voltage Level
$X=$ Don't Care
$L=$ HIGH to Low Clock Transition

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V CC $^{\text {Pin Potential to Ground Pin }}$	-0.5 V to +7.0 V
${ }^{*}$ Input Voltage (dc)	-0.5 V to +15 V
${ }^{*}$ Input Current (dc)	-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +10 V
Output Current (dc) (Output LOW)	+50 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS196XM/54LS196XM 9LS197XM/54LS197XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS196XC / 74LS196XC 9LS197XC / 74LS197XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage for All Inputs
V_{IL}	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	v	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $V_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
I_{i}	Input HIGH Current $\overline{\mathrm{PL}}, \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ $\overline{\mathrm{MR}}, \overline{\mathrm{CP}}_{\mathrm{O}}, \overline{\mathrm{CP}}_{1}$ (LS197) $\overline{\mathrm{CP}}_{1}$ (LS196)				$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=$ MAX, $V_{I N}=2.7 \mathrm{~V}$
	$\begin{aligned} & \overline{\mathrm{PL}}, \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \\ & \overline{\mathrm{MR}},{ }^{\mathrm{CP}}{ }_{\mathrm{O}}, \overline{\mathrm{CP}}{ }_{1}(\mathrm{LS} \\ & \overline{\mathrm{CP}}_{1}(\mathrm{LS} 196) \end{aligned}$				$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	$\begin{aligned} & \text { Input LOW Current } \\ & \qquad \begin{array}{l} \overline{\mathrm{PL}}, \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \\ \overline{\mathrm{MR}} \\ \overline{\mathrm{CP}}_{\mathrm{O}} \\ \overline{\mathrm{CP}}_{1}(\mathrm{LS} 196) \\ \overline{\mathrm{CP}}_{1}(\mathrm{LS} 197) \end{array} \end{aligned}$				$\begin{array}{r} -0.36 \\ -0.72 \\ -2.4 \\ -2.8 \\ -1.3 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {c } C}$	Power Supply Current			12	20	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \vee, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS						UNITS	TEST CONDITIONS	
		9LS196			$9 \mathrm{LS197}$					
		MIN	TYP	MAX	MIN	TYP	MAX			
$f_{\text {max }}$	Input Count Frequency	45	60		50	75		ṂHz	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	$\overline{\mathrm{CP}}_{\mathrm{O}}$ Input to O_{0} Output		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	ns	Fig. 1	
$\begin{aligned} & { }^{\mathrm{t} \text { PLH }} \\ & { }^{\mathrm{t}^{\mathrm{PHHL}}} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	ns		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t} P H L}$	$\overline{\mathrm{CP}}_{1}$ Input to O_{2} Output		$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & 34 \\ & 32 \end{aligned}$		$\begin{aligned} & 26 \\ & 23 \end{aligned}$	$\begin{aligned} & 36 \\ & 34 \end{aligned}$	ns		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}} \mathrm{PHL} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to O_{3} Output		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	ns		
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	$\mathrm{P}_{\mathrm{O}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ Inputs $\mathrm{O}_{0}, \mathrm{Q}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ Outputs		$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$		$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	ns	Fig. 2	
${ }^{{ }^{\mathrm{t}} \mathrm{P} \mathrm{PH}}$	$\overline{\mathrm{PL}}$ Input to Any Output		$\begin{aligned} & 15 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 35 \end{aligned}$		$\begin{aligned} & 15 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 35 \end{aligned}$	ns	Fig. 3	
${ }^{\text {t }}$ PHL	$\overline{\mathrm{MR}}$ Input to Any Output		26	37		26	37	ns	Fig. 4	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS						UNITS	TEST CONDITIONS	
		9 LS 196			9LS197					
		MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {t }}$ W	$\overline{\mathrm{CP}}_{\mathrm{O}}$ Pulse Width	12			10			ns	Fig. 1	
${ }^{\text {t }}$ W	$\overline{\mathrm{CP}}_{1}$ Pulse Width	24			20			ns		
${ }^{\text {t }}$ W	$\overline{\text { PL Puise Width }}$	18			18			ns	Fig. 3	
${ }^{\text {t }}$ W	$\overline{\mathrm{MR}}$ Pulse Width	12			12			ns	Fig. 4	
${ }^{\mathrm{t}_{s} \mathrm{~L}}$	Set-up Time LOW Data to $\overline{P L}$	12			12			ns		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{t}{ }^{\text {L }}$	Hold Time LOW Data to $\overline{\mathrm{PL}}$	6.0			6.0			ns	Fig. 5	
${ }^{\mathrm{t}_{5} \mathrm{H}}$	Set-up Time HIGH Data to $\overline{\text { PL }}$	8.0			8.0			ns		
$t_{n} H$	Hold Time HIGH Data to $\overline{\mathrm{PL}}$	0			0			ns		
${ }^{\text {reec }}$	Recovery Time $\overline{\mathrm{PL}}$ to $\overline{\mathrm{CP}}$	16			16			ns	Fig. 4	
${ }^{\text {trec }}$	Recovery Time $\overline{\mathrm{MR}}$ to $\overline{\mathrm{CP}}$	18			18			ns		

DEFINITIONS OF TERMS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME $\left(t_{h}\right)$ - is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

RECOVERY TIME ($t_{r e c}$) - is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH to LOW in order to recognize and transfer LOW Data to the Q outputs.

Fig. 1

NOTE: $\overline{P L}=$ LOW

Fig. 2

Fig. 4

Fig. 3

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 5

9LS251 (54LS/74LS251) 8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The TTL/MSI 9LS251 (54LS251/74LS251) is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The 9LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- SCHOTTKY PROCESS FOR HIGH SPEED
- multifunction capability
- ON-CHIP SELECT LOGIC DECODING
- inverting and non-inverting 3-State outputs
- input clamp diodes limit high speed termination effects
- fully ttl and cmos compatible

PIN NAMES

$\frac{S_{0}}{E_{0}}-S_{2}$
$\mathrm{I}_{0}-I_{7}$
$\frac{Z}{Z}$

Select Inputs
Output Enable (Active LOW) Input Multiplexer Inputs Multiplexer Output (Note b) Complementary Multiplexer Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
65 (25) U.L.	5 (2.5) U.L.
65 (25) U.L.	$5(2.5)$ U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (XM) and 65 U.L. for Commercial (XC) Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS251 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input (\bar{E}_{O}) is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{array}{r}
Z=\bar{E}_{O} \cdot\left(I_{0} \cdot \bar{S}_{0} \cdot \bar{S}_{1} \cdot \bar{S}_{2}+I_{1} \cdot S_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
\left.\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)
\end{array}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

TRUTH TABLE

\bar{E}_{0}	S_{2}	S_{1}	S_{0}	${ }^{1} 0$	11	I_{2}	13	1_{4}	15	16	17	\bar{Z}	Z
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	\times	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	x	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	\times	X	H	L	H

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$(Z)=$ High Impedance (Off)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
${ }^{\text {VCC }}$ Pin Potential to Ground Pin
*Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS251XM / 54LS251XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS251XC/74LS251XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^15]FAIRCHILD • 9LS251 (54LS/74LS251)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS	
			MIN	TYP	MAX			
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Inp for All Inputs	t HIGH Voltage
V_{iL}	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs	
		XC			0.8			
V_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	$-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC	2.4	3.1		V	${ }^{\prime} \mathrm{OH}=-2.6 \mathrm{~mA}$	$V_{\text {IL }}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}$	$V_{C C}=M I N, V_{I N}=V_{1 H}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$	$\mathrm{V}_{\text {IL }}$ per Truth Table
${ }^{\text {'OZH }}$	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$	
${ }^{\text {OZZL }}$	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$	
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	20	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$	
					0.1	mA	$V_{C C}=$ MAX, $V_{\text {IN }}$	$\mathrm{N}=10 \mathrm{~V}$
IL	Input LOW Current				-0.4	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
${ }^{\text {I SC }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, V_{O}	UT $=0 \mathrm{~V}$
${ }^{\prime} \mathrm{CC}$	Power Supply Current, Outputs LOW			6.1	10	mA	$V_{C C}=M A X, V_{\mathbb{N}}=4.5 \mathrm{~V}, V_{E}=0 \mathrm{~V}$	
	Power Supply Current, Outputs Off			7.1	12	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=4.5 \mathrm{~V}$	

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical iimits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t}$ PLH ${ }^{t}$ PHL	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 11 \\ & 23 \end{aligned}$	$\begin{aligned} & 20 \\ & 33 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, Select to Z Output		$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \end{aligned}$	ns	Fig. 2	
${ }^{\text {t }}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to \bar{Z} Output		$\begin{aligned} & 7.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	ns	Fig. 1	
${ }^{\text {t }}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay, Data to Z Output		$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 27 \\ & 23 \end{aligned}$	ns	Fig. 2	
${ }^{\text {tPZH }}$	Output Enable Time to HIGH Level		12	20	ns	Figs. 4, 5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t}$ PZL	Output Enable Time to LOW Level		17	25	ns	Figs. 3, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
${ }^{\text {tPL }}$	Output Disable Time from LOW Level		12	20	ns	Figs. 3, 5	$C_{L}=5 \mathrm{pF}$
${ }^{\text {t }}$ PHZ	Output Disable Time from HIGH Leve!		17	25	ns	Figs. 4, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

3-STATE AC WAVEFORMS

Fig. 1

Fig. 3

Fig. 2

Fig. 4

AC LOAD CIRCUIT

*Includes Jig and Probe Capacitance.

SWITCH POSITIONS		
SYMBOL	SW1	SW2
tPZH	Open	Closed
tPZL	Closed	Open
tPLZ	Closed	Closed
tPHZ	Closed	Closed

Fig. 5

9LS253 (54LS/74LS253) DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The LSTTL/MSI 9LS253 (54LS/74LS253) is a Dual 4-Input Multiplexer with 3 -state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON-INVERTING 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FUlly ttl and cmos compatible

PIN NAMES

S_{0}, S_{1}
Multiplexer A
$\bar{E}_{0 a}$
$1_{0 a}-I_{3 a}$ Z_{a}

Multiplexer B $\bar{E}_{0 b}$
$I_{0 b}-I_{3 b}$ Z_{b}

Common Select Inputs
Output Enable (Active LOW) Input
Multiplexer Inputs
Multiplexer Output (Note b)

> Output Enable (Active LOW) Input Multiplexer Inputs Multiplexer Output (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
$65(25)$ U.L.	$5(2.5)$ U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
$65(25)$ U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military and 65 U.L. for Commercial Temperature Ranges.

FUNCTIONAL DESCRIPTION - The 9LS253 contains two identical 4-Input Multiplexers with 3-state outputs. They select two bits from four sources selected by common select inputs (S_{0}, S_{1}). The 4 -input multiplexers have individual Output Enable ($\bar{E}_{0 a}, \bar{E}_{0 b}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state.
The 9LS253 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& Z_{a}=\bar{E}_{0 a} \cdot\left(I_{0 a} \cdot \bar{S}_{1} \cdot \bar{s}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 a} \cdot s_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right) \\
& Z_{b}=\bar{E}_{0 b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 b} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot S_{1} \cdot S_{0}\right)
\end{aligned}
$$

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECT INPUTS			DATA	INPUTS		OUTPUT ENABLE	OUTPUT
S_{0}	$\mathrm{~S}_{1}$	I_{0}	I_{1}	I_{2}	I_{3}	E_{0}	Z
X	X	X	X	X	X	H	$\mathrm{Z})$
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

$H=$ HIGH Level
L $=$ LOW Level
$X=$ Irrelevant
$(Z)=$ High Impedance (off)
Address inputs S_{0} and S_{1} are common to both sections.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
*Input Voltage (dc)

* Input Current (dc)
-0.5 V to +15 V
Voltage Applied to Outputs (Output HIGH) -30 mA to +5.0 mA

Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS253XM / 54LS253XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS253XC / 74LS253XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

[^16]
FAIRCHILD • 9LS253 (54LS/74LS253)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All inputs
		XC			0.8		
v_{CD}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.4	3.4		V	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ $V_{\text {IL }}$ per Truth Table
		XC	2.4	3.1			
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ $V_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
${ }^{\text {I OZH }}$	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
' OZL	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {S }} \mathrm{C}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{Cc}$	Power Supply Current, Outputs LOW			7.0	12	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\bar{E}}=0 \mathrm{~V}$
	Power Supply Current, Outputs Off			8.5	14		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Page 5-98 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\mathrm{t} P L H}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Data to Output		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PH} \mathrm{~L} \\ & \hline \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 29 \\ & 24 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
${ }^{\text {tPZH }}$	Output Enable Time to HIGH Level		12	18	ns	Figs. 4, 5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t PZL }}$	Output Enable Time to LOW Level		11	18	ns	Figs. 3, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
${ }^{\text {tPLZ }}$	Output Disable Time from LOW Level		22	32	ns	Figs. 3, 5	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
${ }^{\text {t PHZ }}$	Output Disable Time from HIGH Level		11	18	ns	Figs. 4, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

9LS257 (54LS/74LS257) QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The LSTTL/MSI 9LS257 (54LS/75LS257) is a Quad 2-Input Multiplexer with 3 -state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\bar{E}_{O}) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MÜLTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER
- NON-INVERTING 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

\bar{S}_{O}
$I_{0 a}-I_{0 d}$
$1_{1 a}-I_{1 d}$
$z_{a}-Z_{d}$

Common Data Select Input
Output Enable (Active LOW) Input
Data Inputs from Source 0
Data Inputs from Source 1
Multiplexer Outputs (Note b)

LOADING (Note a)

HIGH	LOW
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
65(25) U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (XM) and 65 U.L. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

FAIRCHILD•9LS257 (54LS/74LS257)

FUNCTIONAL DESCRIPTION - The 9LS257 is a Quad 2-Input Multiplexer with 3 -state outputs. It selects four bits of data from two sources under control of a Common Data Select Input. When the Select Input is LOW, the I ${ }_{0}$ inputs are selected and when Select is HIGH, the I_{1} inputs are selected. The data on the selected inputs appears at the outputs in true (noninverted) form.

The 9LS257 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{a}=\bar{E}_{O} \cdot\left(I_{1 a} \cdot S+I_{0 a} \cdot \bar{S}\right) & Z_{b}=\bar{E}_{O} \cdot\left(I_{1 b} \cdot S+I_{O b} \cdot \bar{S}\right) \\
Z_{c}=\bar{E}_{O} \cdot\left(I_{1 c} \cdot S+I_{0 c} \cdot \bar{S}\right) & Z_{d}=\bar{E}_{O} \cdot\left(I_{1 d} \cdot S+I_{O d} \cdot \bar{S}\right)
\end{array}
$$

When the Output Enable Input (\bar{E}_{O}) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
$\bar{E}_{\mathbf{O}}$	S	$\mathrm{I}_{\mathbf{0}}$	I_{1}	Z
H	X	X	X	(Z)
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Don't Care
$(Z)=$ High impedance (off)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin

* Input Voltage (dc)
* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (V_{CC})			TEMPERATURE
	MIN	TYP	MAX	
9LS257XM / 54LS257XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS257XC / 74LS257XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage for All Inputs
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC	2.4	3.1		V	$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$ V V_{IL} per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or }$ $\mathrm{V}_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
${ }^{\text {I OZH }}$	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
! OZL	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=2.0 \mathrm{~V}$
${ }_{1}{ }_{H}$	Input HIGH Current $\bar{E}_{\mathrm{O}},{ }^{\prime} \mathrm{Ox}^{\prime}{ }^{\prime} \mathrm{I}_{\mathrm{x}}$ S				$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$v_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$
	Input HIGH Current at MAX Input Voltage$\bar{E}_{0,} I_{0 x}, I_{1 x}$ S				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$V_{C C}=M A X, V_{I N}=10 \mathrm{~V}$
IIL	Input LOW Current$\begin{aligned} & \bar{E}_{O}, 1_{0 x}, I_{1 x} \\ & s \end{aligned}$				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
${ }^{\text {O OS }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$
${ }^{1} \mathrm{Cc}$	Power Supply Current, Outputs HIGH				10	mA	$V_{C C}=M A X, V_{I N}=4.5 \mathrm{~V}, \mathrm{~V}_{E}=0 \mathrm{~V}$
	Power Supply Current, Outputs LOW				16		$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}, \mathrm{~V}_{\bar{E}}=0 \mathrm{~V}$
	Power Supply Current, Outputs OFF				17		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LiMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (See Page 5-98 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PLH}} \\ & { }^{{ }^{\mathrm{t}} \mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Output			$\begin{aligned} & 18 \\ & 14 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t }}$ PHL	Propagation Delay, Select to Output			$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}{ }_{\text {PZH }}$	Output Enable Time to HIGH Level			28	ns	Figs. 4, 5	$\mathrm{L}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{\text {PZL }}}$	Output Enable Time to LOW Level			24	ns	Figs. 3, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
${ }^{t_{P L Z}}$	Output Disable Time from LOW Level			22	ns	Figs. 3, 5	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }}$ PHZ	Output Disabie Time from HIGH Level			14	ns	Figs. 4, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

9LS258 (54LS/74LS258) QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The LSTTL/MSI 9LS258 (54LS/75LS258) is a Quad 2-Input Multiplexer with 3 -state outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\bar{E}_{O}) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER
- inverting 3-State outputs
- input clamp diodes limit high speed termination effects
- fully ttl and cmos compatible

PIN NAMES

$$
\begin{aligned}
& \frac{S}{\bar{E}_{O}} \\
& I_{0 a}-I_{0 d} \\
& I_{1 a}-I_{1 d} \\
& \bar{Z}_{a}-\bar{Z}_{d}
\end{aligned}
$$

Common Select Input
Output Enable (Active LOW) Input
Data Inputs from Source 0
Data Inputs from Source 1
Multiplexer Outputs (Note b)

LOADING (Note a	
HIGH	LOW
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
65(25) U.L.	$5(2.5)$ U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (XM) and 65 U.L.. for Commercial (XC) Temperature Ranges.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION - The 9LS258 is a Quad 2-Input Multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select Input (S). When the Select Input is LOW, the I_{0} inputs are selected and when Select is HIGH, the I_{1} inputs are selected. The data on the selected inputs appears at the outputs in inverted form.
The 9LS258 Quad 2-Input Multiplexer is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
\bar{Z}_{a}=\bar{E}_{O} \cdot\left(I_{1 a} \cdot S+I_{0 a} \cdot \bar{S}\right) & \bar{Z}_{b}=\bar{E}_{O} \cdot\left(I_{1 b} \cdot S+I_{0 b} \cdot \bar{S}\right) \\
\bar{Z}_{c}=\bar{E}_{O} \cdot\left(I_{1 c} \cdot S+I_{0 c} \cdot \bar{S}\right) & \bar{Z}_{d}=\bar{E}_{O} \cdot\left(I_{1 d} \cdot S+I_{0 d} \cdot \bar{S}\right)
\end{array}
$$

When the Output Enable Input ($\overline{\mathrm{E}}_{\mathrm{O}}$) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
$\bar{\varepsilon}_{\text {O }}$	S	I_{0}	I_{1}	\bar{Z}
H	X	X	X	(Z)
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

$H=H I G H$ Voltage Level
L $=$ LOW Voltage Level
$X=$ Don't Care
$(Z)=$ High Impedance (Off)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
$V_{C C}$ Pin Potential to Ground Pin
${ }^{*}$ Input Voltage (dc)

* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
+50 \mathrm{~mA}
\end{array}
$$

* Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE (${ }_{\text {CC }}$)			TEMPERATURE
	MIN	TYP	MAX	
9LS258XM /54LS258XM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS258XC/74LS258XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD • 9LS 258 (54LS/74LS258)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or
		XC	2.4	3.1		v	${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
V_{OL}	Output LOW Voltage	XM, XC		0.25	0.4	$\begin{aligned} & v \\ & v \end{aligned}$	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$ V_{IL} per Truth Table
		XC		0.35	0.5		
${ }^{\text {I OZH }}$	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
${ }^{\text {I OZL }}$	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=2.0 \mathrm{~V}$
${ }^{1} \mathrm{H}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \bar{E}_{0,{ }^{\prime} 0 x^{\prime}}{ }^{1 \times x} \\ & \mathrm{~S} \end{aligned}$				20 40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
	```Input HIGH Current at MAX Input Voltage E S```				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
ILL	$\begin{aligned} & \text { Input LOW Current } \\ & \overline{\mathrm{E}}_{0,} \mathrm{I}_{\mathrm{x},} \mathrm{I}_{1 \mathrm{x}} \\ & \mathrm{~S} \end{aligned}$				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current, Outputs HIGH				9.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=0 \mathrm{~V}$
	Power Supply Current, Outputs LOW				11	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$
	Power Supply Current, Outputs OFF				12	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{E}}}=4.5 \mathrm{~V}$

## NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (See Page 5-98 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} \mathrm{PLH}$   ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to Output			$\begin{aligned} & 14 \\ & 14 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
${ }^{t}$ PLH   ${ }^{t}$ PHL	Propagation Delay, Select to Output			$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	Fig. 1	$C_{L}=15 \mathrm{pF}$
${ }^{\text {tPZH }}$	Output Enable Time to HIGH Level			30	ns	Figs. 4, 5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t PZL }}$	Output Enable Time to LOW Level			30	ns	Figs. 3, 5	$R_{L}=2 \mathrm{k} \Omega$
${ }^{t^{P} L Z}$	Output Disable Time from LOW Level			16	ns	Figs. 3, 5	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t PHZ }}$	Output Disable Time from HIGH Level			16	ns	Figs. 4, 5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

# 9LS259 (54LS/74LS259) 8-BIT ADDRESSABLE LATCH 

DESCRIPTION - The 9LS259 (54LS/74LS259) is a high-speed 8-Bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1 -of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common clear for resetting all latches, as well as, an active LOW enable. It is functionally identical to the 9334 and 93L34 8-bit addressable latches.

- SERIAL-TO-PARALLEL CONVERSION
- 8-BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON CLEAR
- FULLY TTL COMPATIBLE

PIN NAMES


# 9LS283 (54LS/74LS283) 4-BIT BINARY FULL ADDER WITH FAST CARRY 

DESCRIPTION - The 9LS283 (54LS/74LS283) is a high-speed 4-Bit Binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words ( $\mathrm{A}_{1}-\mathrm{A}_{4}, \mathrm{~B}_{1}-\mathrm{B}_{4}$ ) and a Carry Input (CIN). It generates the binary Sum outputs $\left(\Sigma_{1}-\Sigma_{4}\right)$ and the Carry Output (COUT) from the most significant bit. The 9LS283 operates with either active HIGH or active LOW operands (positive or negative logic). The 9LS283 (54LS/74LS283) is identical in function with 7483A and features corner power pins.

## PIN NAMES

$A_{1}-A_{4}$	Operand A Inputs
$B_{1}-B_{4}$	Operand B Inputs
$C_{I N}$	Carry Input
$\Sigma_{1}-\Sigma_{4}$	Sum Outputs (Note b)
COUT	Carry Output (Note b)


LOADING (Note a)	
HIGH	LOW
1.0 U.L.	0.5 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	$5(2.5)$ U.L.
10 U.L.	$5(2.5)$ U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.



The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - The 9LS283 adds two 4-bit binary words (A plus B) plus the incoming carry. The binary sum appears on the sum outputs $\left(\Sigma_{1}-\Sigma_{4}\right)$ and outgoing carry (COUT) outputs.
$\mathrm{CIN}_{1}+\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right)+2\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+4\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)+8\left(\mathrm{~A}_{4}+\mathrm{B}_{4}\right)=\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 \mathrm{C}_{\text {OUT }}$
Where: $(+)=$ plus
Due to the symmetry of the binary add function the 9LS283 can be used with either all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that with active HIGH inputs, Carry In can not be left open, but must be held LOW when no carry in is intended.

Example:

	$\mathrm{C}_{\text {IN }}$	$\mathrm{A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\Sigma_{1}$	$\Sigma_{2}$	$\Sigma_{3}$	$\Sigma_{4}$	COUT
logic levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

$(10+9=19)$
(carry $+5+6=12$ )

Interchanging inputs of equal weight does not affect the operation, thus $\mathrm{C}_{I N}, \mathrm{~A}_{1}, \mathrm{~B}_{1}$, can be arbitrarity assigned to pins 7 , 5 or 3.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
${ }^{*}$ Input Voltage (dc)	-0.5 V to +15 V
${ }^{*}$ Input Current (dc)	-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +10 V
Output Current (dc) (Output LOW)	+50 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

## GUARANTEED OPERATING RANGES

| PART NUMBERS | SUPPLY VOLTAGE $\left(V_{C C}\right)$ |  |  | TEMPERATURE |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | TYP | MAX |  |  |
| 9 9LS283XM/54LS283XM | 4.5 V | 5.0 V | 5.5 | V | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| 9 LS283XC/74LS283XC | 4.75 V | 5.0 V | 5.25 V | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ |  |

[^17]FAIRCHILD • 9LS283 (54LS /74LS283)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed input LOW Voltage for All inputs
		XC			0.8		
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.65	$-1.5$	V	$V_{C C}=M 1 N!_{1 N}=-18 \mathrm{~mA}$
VOH	Output HiGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$
		$X C$	2.7	3.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	XM, XC		0.25	0.4	$V$	$1 \mathrm{OL}=4.0 \mathrm{~mA} \quad V_{C C}=\mathrm{MIN}, \mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{1 \mathrm{H}}$ or
		XC		0.35	0.5	V	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA} V_{\text {IL }}$ per Truth Table
${ }^{1} \mathrm{H}$	Input HIGH Current   $\mathrm{C}_{\mathrm{IN}}$   Any A or B				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V}$
	$\begin{aligned} & \mathrm{CIN} \\ & \text { Any } A \text { or } B \end{aligned}$				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$V_{C C}=M A X, V_{I N}=10 \mathrm{~V}$
IIL	Input LOW Current $\mathrm{Cin}_{\mathrm{IN}}$   Any A or B				$\begin{array}{r} -0.4 \\ -0.8 \end{array}$	mA	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$
'os	Output Short Circuit Current (Note 5)		-15		$-100$	mA	$V_{C C}=M A X, V_{O U T}=0 V$
${ }^{1} \mathrm{CC}$	Power Supply Current			22	39	mA	$V_{C C}-M A X$, all inputs $=0 V$
				19	34	$m A$	$V_{C C}=$ MAX $A$ Inputs $=4.5 \mathrm{~V}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detalled Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & { }^{t_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, $\mathrm{C}_{\mathrm{IN}}$ Input to Any $\Sigma$ Output			$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$   Figures 1 and 2
$\begin{aligned} & { }^{{ }^{P} \mathrm{PLH}} \\ & { }^{\mathrm{t}^{\mathrm{HHH}}} \end{aligned}$	Propagation Delay, Any A or B Input to $\Sigma$ Outputs			$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ns	
${ }^{\mathrm{t} P L H}$   ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $\mathrm{C}_{\mathrm{IN}}$ Input to C OUT Output			$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns	
${ }^{t}$ PLH   ${ }^{\mathrm{t}} \mathrm{PH} \mathrm{L}$	Propagation Delay, Any A or B Input to $\mathrm{C}_{\text {OUT }}$ Output			$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns	

AC WAVEFORMS


Fig. 1


Fig. 2

# 9LS290 (54LS/74LS290) DECADE COUNTER 9LS293 (54LS/74LS293) 4-BIT BINARY COUNTER 

DESCRIPTION - The 9LS290 (54LS/74LS290) and 9LS293 (54LS/74LS293) are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (9LS290) or divide-by-eight (9LS293) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together ( Q to $\overline{\mathrm{CP}}$ ) to form BCD, Bi-quinary, or Modulo-16 counters. Both of the counters have a 2 -input gated Master Reset (Clear), and the 9LS290 also has a 2 -input gated Master Set (Preset 9).

- CORNER POWER PIN VERSIONS OF THE 9LS90 and 9LS93.
- LOW POWER CONSUMPTION . . . TYPICALLY 45 mW
- HIGH COUNT RATES . . . . TYPICALLY 50 MHz
- CHOICE OF COUNTING MODES . . . . BCD, BI-QUINARY, BINARY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES



## LOGIC DIAGRAMS

9LS290

$O=\operatorname{Pin}$ Numbers
$V_{C C}=\operatorname{Pin} 14$
$G N D=7$

FUNCTIONAL DESCRIPTION - The 9LS290 and 9LS293 are 4-bit ripple type Decade, and 4-Bit Binary counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (9LS290) or divide-by-eight (9LS293) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The $\mathrm{O}_{0}$ output of each device is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device.
A gated AND asynchronous Master Reset $\left(M R_{1} \cdot M R_{2}\right)$ is provided on both counters which overrides the clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set $\left(M S_{1} \cdot M S_{2}\right)$ is provided on the $9 L S 290$ which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

## 9LS290

A. BCD Decade (8421) Counter - the $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the $\mathrm{Q}_{0}$ output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The $\mathrm{Q}_{3}$ output must be externally connected to the $\overline{\mathrm{CP}}_{0}$ input. The input count is then applied to the $\overline{\mathrm{CP}}_{1}$ input and a divide-by-ten square wave is obtained at output $\mathrm{Q}_{0}$.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ( $\overline{\mathrm{CP}}_{0}$ as the input and $\mathrm{Q}_{0}$ as the output). The $\overline{\mathrm{CP}}_{1}$ input is used to obtain binary divide-by-five operation at the $\mathrm{Q}_{3}$ output.

## 9LS293

A. 4-Bit Ripple Counter - The output $\mathrm{Q}_{0}$ must be externally connected to input $\overline{\mathrm{CP}}_{1}$. The input count pulses are applied to input $\overline{C P}_{0}$. Simultaneous division of $2,4,8$, and 16 are performed at the $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and $\mathrm{Q}_{3}$ outputs as shown in the truth table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2, 4, and 8 are available at the $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, and $\mathrm{Q}_{3}$ outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3 -bit ripple-through counter.

9LS290 MODE SELECTION

RESET/SET INPUTS				OUTPUTS		
$M R_{1}$	$\mathrm{MR}_{2}$	$\mathrm{MS}_{1}$	$\mathrm{MS}_{2}$	$\mathrm{Q}_{0}$	$\mathrm{Q}_{1} \quad \mathrm{Q}_{2}$	$\mathrm{O}_{3}$
H	H	L	X	L	L L	L
H	H	X	L	L	L. L	L.
X	X	H	H	H	$L \quad L$	H
L	X	L	X		Count	
X	L	X	L		Count	
L	X	X	L		Count	
X	1	L	$x$		Count	

9LS290
BCD COUNT SEQUENCE

COUNT	OUTPUT			
	$\mathrm{Q}_{0}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

NOTE: Output $Q_{0}$ is connected to Input $\mathrm{CP}_{1}$ for BCD count.
$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care

9LS293
TRUTH TABLE.

COUNT	OUTPUT			
	$\mathrm{O}_{0}$	$\mathrm{O}_{1}$	$\mathrm{O}_{2}$	$\mathrm{Q}_{3}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	$L$	H	L
6	L	H	H	$L$
7	H	H	H	$L$
8	L	L	L	H
9	H	$L$	L.	H
10	L	H	L	H
11	H	H	L.	H
12	L	L.	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Note: Output $\mathrm{Q}_{0}$ connected to input $\mathrm{CP}_{1}$.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
Temperature (Ambient) Under Bias
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin

* Input Voltage (dc)
* Input Current (dc)

Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)
*Either Input Voltage limit or input Current limit is sufficient to protect the inputs.

## GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE
	MIN	TYP	MAX	
9LS290XM/54LS290XM   9 LS293XM $/ 54 L S 293 X M ~$	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS290XC $/ 74 L S 290 X C ~$   $9 L S 293 X C / 74 L S 293 X C ~$	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.5	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \mathrm{OH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	XM, XC		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or
		XC		0.35	0.5	V	$\mathrm{l}^{\mathrm{OL}}=8.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{IL}}$ per Truth Table
${ }_{\mathrm{IH}}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \qquad \begin{array}{l} \mathrm{MS}, \mathrm{MR} \\ \overline{\mathrm{CP}}_{0} \\ \mathrm{CP}_{1} \\ \overline{\mathrm{CP}}_{1} \text { (LS290) } \\ \text { (LS293) } \end{array} \end{aligned}$				$\begin{array}{r} 20 \\ 120 \\ 80 \\ 40 \end{array}$	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$
	MS, MR   $\overline{\mathrm{CP}}_{\mathrm{O}}, \overline{\mathrm{CP}}_{1}$ (LS293) $\overline{\mathrm{CP}}_{1}$ (LS290)				$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
$I_{\text {IL }}$	Input LOW Current MS, MR $\overline{\mathrm{CP}}_{\mathrm{O}}$   $\overline{\mathrm{CP}}_{1}$ (LS290)   $\overline{\mathrm{CP}}_{1}$ (LS293)				$\begin{aligned} & -0.4 \\ & -2.4 \\ & -3.2 \\ & -1.6 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\prime} \mathrm{OS}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current			9	15	mA	$V_{C C}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS				UNITS	TEST CONDITIONS	
		9LS290		9LS283				
		MiN	MAX	MIN	MAX			
${ }^{\text {f MAX }}$	$\overline{\mathrm{CP}}_{\mathrm{O}}$ Input Count Frequency	32		32		MHz	Fig. 1	
${ }^{\text {f MAX }}$	$\overline{\mathrm{CP}}_{1}$ Input Count Frequency	16		16		MHz	Fig. 1	
${ }^{t}$ PLH   ${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}_{\mathrm{O}}$ Input to $\mathrm{O}_{\mathrm{O}}$ Output		$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	ns		
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay. $\overline{\mathrm{CP}}_{1}$ Input to $\mathrm{Q}_{1}$ Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns		
${ }^{\text {t PLH }}$ ${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to $\mathrm{O}_{2}$ Output		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns	Fig. 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{v}$
${ }^{\text {tpLH. }}$ ${ }^{t} \mathrm{PHL}$	Propagation Delay. $\overline{\mathrm{CP}}_{1}$ Input to $\mathrm{O}_{3}$ Output		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & \hline 51 \\ & 51 \end{aligned}$	ns		$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{\mathrm{O}}$ Input to $\mathrm{Q}_{3}$ Output		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns		
${ }^{\text {t PLH }}$	MS Input to $\mathrm{Q}_{0}$ and $\mathrm{Q}_{3}$ Outputs		30			ns	Fig. 3	
${ }^{t_{\text {PHL }}}$	MS Input to $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ Outputs		40			ns	Fig. 2	
${ }^{\text {t PHL }}$	MR Input to Any Output		40		40	ns	Fig. 2	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS				UNITS	TEST CONDITIONS	
		9LS290		9LS293				
		MIN	MAX	MIN	MAX			
${ }^{t} \mathrm{~W}$	$\overline{\mathrm{CP}}_{\mathrm{O}}$ Pulse Width	15		15		ns	Fig. 1	
${ }^{t} W$	$\overline{\mathrm{CP}}_{1}$ Pulse Width	30		30		ns		
${ }^{\text {t }}$ W	MS Pulse Width	15				ns	Fig. 2, 3	
${ }^{\text {t }} \mathrm{W}$	MR Pulse Width	15		15		ns	Fig. 2	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {rec }}$	Recovery Time MS to $\overline{C P}$	25				ns	Fig. 2, 3	
$\mathrm{t}_{\text {rec }}$	Recovery Time MR to $\overline{\mathrm{CP}}$	25		25		ns	Fig. 2	

RECOVERY TIME ( $\mathrm{t}_{\mathrm{rec}}$ ) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-toLOW in order to recognize and transfer HIGH data to the Q outputs.

## AC WAVEFORMS



Fig. 1
*The number of Clock Pulses required between the $\mathrm{t}_{\mathrm{PHL}}$ and $\mathrm{t}_{\mathrm{PLH}}$ measurements can be determined from the appropriate Truth Tables.


Fig. 2


Fig. 3

## 9LS295 (54LS/74LS295A)

## 4-BIT SHIFT REGISTERS WITH 3-STATE OUTPUTS

DESCRIPTION - The 9LS295 (54LS/74LS295A) is a 4-Bit Shift Register with serial and parallel synchronous operating modes, and independent 3 -state output buffers. The Parallel Enable input (PE) controls the shift-right or parallel load operation. All data transfers and shifting occur synchronous with the HIGH to LOW clock transition.

The 3-State output buffers are controlled by an active HIGH Output Enable input (EO). Disabling the output buffers does not affect the shifting or loading of input data, but it does inhibit serial expansion.

The 9LS295 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- NEGATIVE EDGE-TRIGGERED CLOCK INPUT
- PARALLEL ENABLE MODE CONTROL INPUT
- 3-STATE BUSSABLE OUTPUT BUFFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE


## PIN NAMES

PE	Parallel Enable Input
$\mathrm{D}_{\mathrm{S}}$	Serial Data Input
$\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$	Parallel Data Input
$\mathrm{E}_{\mathrm{O}}$	Output Enable Input
$\overline{\mathrm{CP}}$	Clock Pulse (Active LOW Going
	Edge) Input
$\mathrm{O}_{0}-\mathrm{O}_{3}$	3-State Outputs (Note b)


LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
65(25) U.L.	$5(2.5)$ U.L.

## NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (XM) and 65 U.L. for Commercial (XC) Temperature Ranges.

LOGIC SYMBOL


$$
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =\operatorname{Pin} 14 \\
\mathrm{GND} & =\operatorname{Pin} 7
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)


NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOGIC DIAGRAM


## FAIRCHILD • 9LS295 (54LS /74LS295A)

FUNCTIONAL DESCRIPTION - The 9LS295 is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has a Serial Data ( $D_{S}$ ) and four Parallel Data ( $P_{0}-P_{3}$ ) inputs and four parallel 3-State output buffers $\left(Q_{0}-Q_{3}\right)$. When the Parallel Enable (PE) input is HIGH, data is transferred from the Parallel Data Inputs ( $\mathrm{P}_{\mathbf{0}}-\mathrm{P}_{3}$ ) into the register synchronous with the HIGH to LOW transition of the Clock ( $\overline{\mathrm{CP}}$ ). When the PE is LOW, a HIGH to LOW transition on the clock transfers the serial data on the $D_{S}$ input to register $Q_{0}$, and shifts data from $Q_{0}$ to $Q_{1}, Q_{1}$ to $Q_{2}$ and $Q_{2}$ to $Q_{3}$. The input data and parallel enable are fully edge-triggered and must be stable only one set-up time before the HIGH to LOW clock transition.

The 3-State output buffers are controlled by an active HIGH Output Enable input ( $E_{\mathrm{O}}$ ). When the $\mathrm{E}_{\mathrm{O}}$ is HIGH, the four register outputs appear at the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs. When $\mathrm{E}_{\mathrm{O}}$ is LOW, the outputs are forced to a high impedance "off" state. The 3-State output buffers are completely independent of the register operation, i.e., the input transitions on the $\mathrm{E}_{\mathrm{O}}$ input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-State devices whose outputs are tied together are designed so there is no overlap.

## MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS					OUTPUTS*				
	PE	$\overline{\mathrm{CP}}$	$\mathrm{D}_{\mathrm{S}}$	$\mathrm{p}_{\mathrm{n}}$	$\mathrm{o}_{0}$	$\mathrm{o}_{1}$	$\mathrm{o}_{2}$	$\mathrm{o}_{3}$		
Shift Right	I	L	l	x	L	$\mathrm{q}_{0}$	$\mathrm{q}_{1}$	$\mathrm{q}_{2}$		
	I	L	h	x	H	$\mathrm{q}_{0}$	$\mathrm{q}_{1}$	$\mathrm{a}_{2}$		
	h	L	x	$\mathrm{p}_{\mathrm{n}}$	$\mathrm{p}_{0}$	$\mathrm{p}_{1}$	$\mathrm{p}_{2}$	$\mathrm{p}_{3}$		

*The indicated data appears at the Q outputs when $\mathrm{E}_{\mathrm{O}}$ is HIGH. When $E_{O}$ is LOW, the indicated data is loaded into the register, but the outputs are all forced to the high impedance "off" state.
$\mathrm{L}=$ LOW Voltage Levels
$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels
$X=$ Don't Care
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.
I = LOW Voltage Level one set-up time prior to the HIGH to LOW clock transition.
$h=$ HIGH Voltage Level one set-up time prior to the HIGH to LOW clock transition.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
${ }^{*}$ Input Voltage (dc)	-0.5 V to +15 V
* Input Current (dc)	-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +10 V
Output Current (dc) (Output LOW)	+50 mA

[^18]FAIRCHILD • 9LS295 (54LS /74LS295A)

## GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE ( $\mathrm{V}_{\mathrm{CC}}$ )			TEMPERATURE
	MIN	TYP	MAX	
9LS295XM / 54LS295AXM	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS295XC / 74LS295AXC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}^{\prime}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.4	3.4		V	$V_{C C}=\text { MIN, } V_{I N}=V_{I H} \text { or }$   $V_{\text {IL }}$ per Truth Table
		XC	2.4	3.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	XM, XC		0.25	0.4	V	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$   $\mathrm{V}_{\text {IL }}$ per Truth Table
		XC		0.35	0.5	V	
${ }^{\text {IOZH }}$	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
${ }^{\text {I OZL }}$	Output Off Current LOW				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IH}}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
ILL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CC }}$	Power Supply Current, Outputs HIGH			14	23	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=\Omega, \mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}$
	Power Supply Current, Outputs Off			15	25	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{CP}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {f MAX }}$	Shift Frequency	30	45		MHz	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
${ }^{t}$ PLH   ${ }^{\text {t PHL }}$	Propagation Delay, Clock to Output		$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	ns	Fig. 1	

## AC CHARACTERISTICS: for 3-State Output Buffers (See Page 5-98 for Waveforms)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {tPRH }}$	Output Enable Time to HIGH Level		12	18	ns	Figs. 4, 5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t PZL }}$	Output Enable Time to LOW Level		12	18	ns	Figs. 3,5	$R_{L}=2 \mathrm{k} \Omega$
${ }^{\text {t PLZ }}$	Output Disable Time from LOW Level		12	18	ns	Figs. 3,5	$C_{L}=5 \mathrm{pF}$
${ }^{\text {t PHZ }}$	Output Disable Time from HIGH Level		12	18	ns	Figs. 4, 5	$R_{L}=2 \mathrm{k} \Omega$

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{\text {t }}$ ( $(C P)$	Clock Pulse Width	20			ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{s}$ (Data)	Set-up Time, Data to Clock	20			ns	Fig. 1	
$t_{h}$ (Data)	Hold Time, Data to Clock	0			ns		
$\mathrm{t}_{\mathrm{s}}(\mathrm{PE})$	Set-up Time, PE to Clock	20			ns	Fig. 2	
$t_{h}$ (PE)	Hold Time, PE to Clock	0			ns		

## DEFINITION OF TERMS

SET-UP TIME ( $\mathrm{t}_{\mathrm{s}}$ ) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
HOLD TIME ( $\mathrm{t}_{\mathrm{h}}$ ) - is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

## AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

*The Data Input is $D_{S}$ for $P E=L O W$ and $P_{n}$ for $P E=H I G H$.
Fig. 1


Fig. 2

# 9LS298 (54LS/74LS298) QUAD 2-PORT REGISTER (QUAD 2-INPUT MULTIPLEXER WITH STORAGE) 

DESCRIPTION - The 9LS298 (54LS/74LS298) is a Quad 2-Port Register. It is the logical equivalent of a quad 2 -input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH to LOW transition of the Clock input.

The 9LS298 is fabricated with the Schottky barrier process for high speed and is completely compatible with all Fairchild TTL families.

- SELECT FROM TWO DATA SOURCES
- FULLY EDGE-TRIGGERED OPERATION
- TYPICAL POWER DISSIPATION OF 65 mW
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE


## PIN NAMES

S $\overline{C P}$
$1_{0 a}-1_{0 d}$
$1_{1 a}-1_{1 d}$
$\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{d}}$

Common Select Input
Clock (Active LOW Going Edge) Input
Data Inputs From Source 0
Data Inputs From Source 1
Register Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	5(2.5) U.L.

## NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.

## LOGIC OR BLOCK DIAGRAM



LOGIC SYMBOL


$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16 \\
& \mathrm{GND}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)


NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - The 9LS298 is a high speed Quad 2-Port Register. It selects four bits of data from two sources (ports) under the control of a Common Select Input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH to LOW transition of the Clock input ( $\overline{\mathrm{CP}}$ ). The 4-bit output register is fully edge-triggered. The Data inputs (I) and Select input (S) must be stable only one set-up time prior to the HIGH to LOW transition of the clock for predictable operation.

## TRUTH TABLE

INPUTS			OUTPUT
$s$	IO $_{0}$	I $_{1}$	Q
l	l	$x$	L
l	$h$	$x$	$H$
$h$	$x$	$l^{\prime}$	$L$
$h$	$x$	$h$	$H$


$\mathrm{L}=$	LOW Voltage Level
H	$=$ HIGH Voltage Level
$X=$	Don't Care
$1=$	LOW Voltage Level one set-up time prior to the
	HIGH to LOW clock transition.
$h=$	HIGH Voltage Level one set-up time prior to the
	HIGH to LOW clock transition.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
${ }^{*}$ Input Voltage (dc)	-0.5 V to +15 V
*Input Current (dc)	-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +10 V
Output Current (dc) (Output LOW)	+50 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

## GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE $\left(V_{C C}\right)$			TEMPERATURE	
	MIN	TYP	MAX		
9 LS $298 \times M / 54 L S 298 \times M$	4.5 V	5.0 V	5.5	V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9 LS298XC/74LS298XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS
			MIN	TYP	MAX		
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Threshold Voltage for All Inputs
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	XM			0.7	v	Guaranteed Input LOW Threshold Voltage for All Inputs
		XC			0.8		
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.5	3.4		v	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$
		XC	2.7	3.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	XM, XC		0.25	0.4	V	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{array}\right.$
		XC		0.35	0.5	V	
${ }^{1} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$
$1 / 12$	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 5)		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current			13	21	mA	$\mathrm{v}_{\mathrm{CC}}=\mathrm{MAX}$

## NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t_{P L H}}$ ${ }^{\text {tPHL }}$	Propagation Delay, Clock to Output		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$

AC SET-UP REOUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMEOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t} \mathrm{~W}(\mathrm{H})$	Clock Puise Width (HIGH)	20			ns	Fig. 1	$V_{C C}-5.0 \mathrm{~V}$
${ }^{\text {W }}$ W(L)	Clock Pulse Width (LOW)	20			ns		
$\mathrm{t}_{\text {s(Data) }}$	Set-up Time, Data to Clock	15			ns	Fig. 1	
th(Data)	Hoid Time, Data to Clock	5.0			ns		
${ }^{t} \mathrm{~S}(\mathrm{~S})$	Set-up Time, Select to Clock	20			ns	Fig. 2	
${ }^{t} h(S)$	Hold Time, Select to Clock	0			ns		

## DEFINITIONS OF TERMIS:

SET-UP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME $\left(t_{h}\right)$ - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

## AC WAVEFORMS



> *The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 1
Fig. 2

## 9LS670 (54LS/74LS670)

## $4 \times 4$ REGISTER FILE WITH $3-$ STATE OUTPUTS

DESCRIPTION - The TTL/MSI 9LS670 (54LS/74LS670) is a high-speed, low-power $4 \times 4$ Register File organized as four words by four bits. Separate read and write inputs, both address and enable, allow simultaneous read and write operation.
The 3 -state outputs make it possible to connect up to 128 outputs to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length.
The 9LS170 (54LS/74LS170) provides a similar function to this device but it features open-collector outputs.

- SIMULTANEOUS READ/WRITE OPERATION
- EXPANDABLE TO 512 WORDS BY n-BITS
- TYPICAL ACCESS TIME OF 20 ns
- 3-STATE OUTPUTS FOR EXPANSION
- TYPICAL POWER DISSIPATION OF 125 mW

PIN NAMES

$\mathrm{D}_{1}-\mathrm{D}_{4}$	Data Inputs
$\mathrm{W}_{\mathrm{A}}, W_{B}$	Write Address Inputs
$\overline{\mathrm{E}}_{\mathrm{W}}$	Write Enable (Active LOW) Input
$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$	Read Address Inputs
$\overline{\mathrm{E}}_{\mathrm{R}}$	Read Enable (Active LOW) Input
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$	Outputs (Note b)

## NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW
b. The Output LOW drive factor is 2.5 U.L. for Military ( $X M$ ) and 5.0 U.L. for Commercial (XC) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military and 65 U.L. for Commercial Temperature Ranges.


FAIRCHILD • 9LS670 (54LS / 74LS670)


ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
*Input Voltage (dc)
-0.5 V to +15 V
*Input Current (dc)
-30 mA to +5.0 mA
-0.5 V to +10 V
Voltage Applied to Outputs (Output HIGH)
$+50 \mathrm{~mA}$
Output Current (dc) (Output LOW)
*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

## GUARANTEED OPERATING RANGES

PART NUMBERS	SUPPLY VOLTAGE ( ${ }_{\text {CC }}$ )			TEMPERATURE
	MIN	TYP	MAX	
9LS670XM/54LS670×M	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
9LS670XC/74LS670XC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging information Secion for packages avallabie on this product.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (UNlesS othervise specified)

SYMBOL	Paramieter		Limits			UNITS	TEST CONDITIONS	
			MIN	TYP	MAX			
$V_{i H}$	Input HIGH Voltage		2.0			v	Guaranteed inp for All inputs	HiGH Voltage
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Xiv			0.7	v	Guaranteed input LOW Voltage for All inputs	
		XC			0.8			
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Volage			-0.65	-1.5	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \mathrm{I}_{1}=-18 \mathrm{~mA}$	
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	XM	2.4	3.4		v	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$V_{C C}=M i N, V_{I N}=V_{I H} \text { or }$   $V_{\text {IL }}$ per Truth Table
		XC	2.4	3.1		V	$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	
$\mathrm{V}_{\mathrm{OL}}$	Output Low voitage	XM, XC		0.25	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}$	$V_{C C}=M I N, V_{I N}=V_{I H} \text { or }$   $V_{\text {iL }}$ per Truit Table
		XC		0.35	0.5	V	$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$	
${ }^{\text {O }} \mathrm{O}$	Output Off Curment high				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}$	
${ }^{\text {I OZL }}$	Output Off Cursent LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}$	
${ }_{1} \mathrm{H}$	Input HiGH Current Any D, R or W $\bar{E}_{W}$ $E_{R}$				20 40 60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }} 2.7 \mathrm{~V}$	
	Any D, R or W   $E_{W}$   $\bar{E}_{R}$				0.1 0.2 0.3	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$	
I/L.	Input LOW Cumrent Any D, R or W $\bar{E}_{W}$ $\bar{E}_{R}$				$\begin{aligned} & -0.4 \\ & -0.8 \\ & -1.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I N}}=0.4 \mathrm{~V}$	
${ }^{\text {I O }}$	Output Short Circuit Current (Note 5)		-15		-100	mA	$V_{C C}=$ MAX, $V_{\text {OUT }}=0 \mathrm{~V}$	
${ }^{1} \mathrm{CC}$	Power Supply Current			30	50	mA	$V_{C C}=$ MAX (Note 6)	

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detaited Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the tabie, are chosen to guarantee operation under "worst case" conditions.
3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voitage extremes, additionai noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, and maximum loading.
5. Not more than one output should be shorted at a time.
6. Maximum ICC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enabie inputs, all address inputs are grounded and all oulputs are open.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS	
		MIN	TYP	MAX			
${ }^{t_{P L H}}$ $t_{\mathrm{PHL}}$	Propagation Delay $\mathrm{R}_{\mathrm{A}}$ or $\mathrm{R}_{\mathrm{B}}$ to Q Outputs			$\begin{aligned} & 40 \\ & 45 \end{aligned}$	ns	Fig. 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$
$\overline{\mathrm{t}_{\mathrm{PLH}}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay. Negative Going $\bar{E}_{W}$ to Q Outputs			$\begin{aligned} & 45 \\ & 50 \end{aligned}$	ns	Fig. 1	
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, Data Inputs to Q Outputs			$\begin{aligned} & 45 \\ & 40 \end{aligned}$	ns	Fig. 1	
${ }^{\text {tPRH }}$	Enable Time, Negative Going $\mathrm{E}_{\mathrm{R}}$ to O Outputs Going HIGH			35	ns	Fig. 4,5	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
${ }^{\text {t PZL }}$	Enable Time, Negative Going $\bar{E}_{\mathrm{R}}$ to Q Outputs Going LOW			40	ns	Fig. 3,5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$   See Page 5-98 f
${ }^{\text {t PHZ }}$	Disable Time, Positive Going $\bar{E}_{\mathrm{R}}$ to Q Outputs Off from HIGH			50	ns	Fig. 4,5	3-state Waveforms (Figs.
${ }^{\text {t }}$ PLZ	Disable Time, Positive Going $\bar{E}_{\mathrm{R}}$ to Q Outputs Off from LOW			35	ns	Fig. 3,5	

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\dagger} W$	Pulse Width (LOW) for $\bar{E}_{W}$	25			ns	$V_{C C}=5 \mathrm{~V}$   Fig. 6 (Note 10)
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \mathrm{D} \\ & \text { (Note 7) } \end{aligned}$	Set-Up Time, Data Inputs with Respect to Positive-Going $\bar{E}_{W}$	10			ns	
$\overline{t_{h} \mathrm{D}}$	Hold Time, Data Inputs with Respect to Positive-Going $\bar{E}_{W}$	15			ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{S}} \mathrm{~W} \\ & \text { (Note 9) } \end{aligned}$	Set-Up Time, Write Select Inputs $\mathrm{W}_{\mathrm{A}}$ and $\mathrm{W}_{\mathrm{B}}$ with Respect to NegativeGoing $\bar{E}_{W}$	15			ns	
$t_{h} W$	Hold Time, Write Select Inputs $\mathrm{W}_{\mathrm{A}}$ and $\mathrm{W}_{\mathrm{B}}$ with Respect to PositiveGoing $\bar{E}_{W}$	5			ns	

## NOTES:

7. The Data to Enable Set-up Time is defined as the time required for the logic level to be present at the Data input prior to the enable transition from LOW to HIGH in order for the latch to recognize and store the new data.
8. The Hold Time ( $t_{h}$ ) is defined as the minimum time following the enable transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.
9. The Address to Enable Set-up Time is the time before the HIGH to LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
10. The shaded areas indicate when the input are permitted to change for predictable output performance.

FAIRCHILD • 9LS670 (54LS /74LS670)


Fig. 1


Fig. 2


Fig. 6

# LPTTL/MONOSTABLE 96L02 LOW POWER DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR 

DESCRIPTION - The TTL/Monostable 96 L02 is a low power Dual Retriggerable, Resettable Monostable Multivibrator which provides andoutput pulse whose duration and accuracy is a function of external timing components. The 96LO2 has excellent immunity to noise on the $V_{C C}$ and ground lines. The 96L02 uses TTL inputs and outputs for high speed and high fan out capability and is compatible with all members of the Fairchild TTL family.

- TYPICAL POWER DISSIPATION OF $25 \mathrm{~mW} / O N E$ SHOT
- 50 ns TYPICAL PROPAGATION DELAY
- RETRIGGERABLE 0 TO 100 \% DUTY CYCLE
- TTL INPUT GATING - LEADING OR TRAILING EDGE-TRIGGERING
- COMPLEMENTARY TTL OUTPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR Vcc AND TEMPERATURE VARIATIONS
- RESETTABLE


## PIN NAMES

B	Trigger (Active LOW) Input
A	Trigger (Active HIGH) Input
$C_{D}$	Clear (Active LOW) Input
Q	Output (Active HIGH)
Q	Output (Active LOW)

1 Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW

## LOGIC DIAGRAM



CONNECTION DIAGRAM DIP (TOP VIEW)

*Pins for external timing.

FLATPAK (TOP VIEW)

*Pins for ecternal timing.

FUNCTIONAL DESCRIPTION - The 96L02 dual resettable, retriggerable monostable multivibrator has two inputs per function, one active LOW and one active HIGH. This allows leading edge of trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 96 L 02 and result in a continuous true output. (See Rule 9 ) The output pulse may be terminated at any time by connecting the reset lead to a logic LOW. Active pull ups are provided on the outputs for good drive capability into capacitive loads. Retriggering may be inhibited by tying the $\overline{\mathrm{Q}}$ output to the active LOW input or the Q output to the active HIGH input.

## OPERATION RULES

1. An external resistor ( $R_{X}$ ) and external capacitor ( $C_{X}$ ) are required as shown in the Logic Symbol.
2. The value of $R_{X}$ may vary from $16 \mathrm{k} \Omega$ to $220 \mathrm{k} \Omega$ for 0 to $75^{\circ} \mathrm{C}$ operation. The value of $R_{X}$ may vary from $20 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ for -55 to $125^{\circ} \mathrm{C}$ operation.
3. The value of $\mathrm{C}_{X}$ may vary from 0 to any necessary value available. If, however, the capacitor has leakages approaching $1.0 \mu \mathrm{~A}$ or if stray capacitance from either terminal to ground is more than 50 pF , the timing equations may not represent the pulse width obtained.
4. The output pulse with ( $t$ ) is defined as follows:

$$
t=0.33 R_{X} C_{X}\left[1+\frac{3.0}{R_{X}}\right]\left(\text { for } C_{X}>10^{3} p F\right)
$$

Where
$\mathrm{R}_{\mathrm{X}}$ is in $\mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}$ is in pF
t is in ns for $\mathrm{C}_{\mathrm{X}}<10^{3} \mathrm{pF}$, see Fig. 1
5. If electrolytic type capacitors are to be used, the following three configurations are recommended:
A. Use with low leakage capacitors:

The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0 V is less than $1.0 \mu \mathrm{~A}$, and the inverse capacitor leakage at 1.0 V is less than $1.6 \mu \mathrm{~A}$ over the operational temperature range and Rule 3 above is satisfied.

B. Use with high inverse leakage current electrolytic capacitors:

The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. The use of this configuration is not recommended with retriggerable operation.

$$
t \approx 0.3 R C_{X}
$$

C. Use to obtain extended pulse widths:

This configuration can be used to obtain extended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used.

$$
\begin{aligned}
& R<R_{X}(0.7)\left(h_{F E} Q_{1}\right) \text { or }<2.5 \mathrm{M} \Omega \text { whichever is the lesser } \\
& R_{X}(\min )<R_{Y}<R_{X}(\max )
\end{aligned}
$$


$\mathrm{Q}_{1}$ : NPN silicon transistor with $\mathrm{h}_{\mathrm{FE}}$ requirements of above equations, such as 2 N 5961 or 2 N 5962

$$
t \approx 0.3 R C X
$$

This configuration is not recommended with retriggerable operation.
6. To obtain variable pulse width by remote trimming, the following circuit is recommended

7. Under any operating condition, $C_{X}$ and $R_{X}(\min )$ must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pick up.
8. Input Trigger Pulse Rules. See Triggering Truth Table, following pages.

9. The retriggerable pulse width is calculated as shown below:

$$
t w=t+t P L H=0.33 R_{X} C_{X}\left(1+\frac{3.0}{R_{X}}\right)+t_{P L H}
$$

The retrigger pulse width is equal to the pulse width ( $t$ ) plus a delay time.
For pulse widths greater than 500 ns , tw can be approximated as t .
Retriggering will not occur if the retrigger pulse comes within $\approx 0.9 \mathrm{C}_{X} \mathrm{~ns}$ after the initial trigger pulse. (i.e., during the discharge cycle)
10. Reset Operation - An overriding active LOW level is provided on each oneshot. By applying a LOW to the reset, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW.

11. $\mathrm{V}_{\mathrm{CC}}$ and Ground wiring should conform to good high frequency standards so that switching transients on $\mathrm{V}_{\mathrm{CC}}$ and Ground leads do not cause interaction between one shots. Use of a 0.01 to $0.1 \mu \mathrm{~F}$ bypass capacitor between $\mathrm{V}_{\mathrm{CC}}$ and Ground located near the 96 LO is recommended

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC Lead Potential to Ground Lead * Input Voltage (dc)	-0.5 V to +7.0 V
*Input Current (dc)	-0.5 V to +5.5 V
Voltage Applied to Outputs (Output HIGH)	-30 mA to +5.0 mA
Output Current (dc) (Output LOW)	$-0.5 \mathrm{~V} \mathrm{to}+\mathrm{V}_{\mathrm{CC}}$
Either Input Voltage Limit or Input Current is sufficient to protect the inputs.	+30 mA

GUARANTEED OPERATING RANGES

PART NUMBER	SUPPLY VOLTAGE $\left(V_{C C}\right)$			
	MIN	TYP	MEMPERATURE	
$96 L 02 \times M$	4.5 V	5.0 V	5.5 V	
$96 L 02 \times C$	4.75 V	5.0 V	5.25 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

$X=$ package type; $F$ for Flatpak, $D$ for Ceramic Dip.

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise noted)

SYMBOL	CHARACTERISTIC	LIMITS			UNITS	CONDITIONS
		MIN	TYP   (Note 4)	MAX		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Threshold Voltage For all Inputs
$V_{\text {IL }}$	Input LOW Voltage			0.7	V	Guaranteed Input LOW Threshold Voltage For all Inputs
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-0.36 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage		0.14	0.3	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.80 \mathrm{~mA}$
${ }_{1} \mathrm{H}$	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$
				1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current		-0.25	-0.4	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.3 \mathrm{~V}$
$\begin{aligned} & \text { ISC } \\ & \text { IOS } \end{aligned}$	Output Short Circuit Current (Note 5)	-2.0		-13	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Supply Current		10	16	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.
2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
3. The specified Limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltages extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
5. Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
96L 02XM						
${ }^{\text {tPLH }}$	Turn Off Delay, Negative Trigger Input to True Output		55	75	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
${ }^{\text {tPHL }}$	Turn On Delay, Negative Trigger Input to Complement Output		45	62	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
$t(\min )$	Minimum True Output Pulse Width		110		ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
t	Pulse Width	12.4	13.8	15.2	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{X}}=39 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}$
$\mathrm{R}_{\mathrm{X}}$	Timing Resistor Range	20		100	k $\Omega$	
$\Delta \mathrm{t}$	Maximum Change in True Output Pulse Width over Temperature Range		1.3		\%	$R_{X}=39 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}$

## 96L02XC

${ }^{\text {tPLH }}$	Turn Off Delay, Negative Trigger Input to True Output		55	80	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
tPHL	Turn On Delay, Negative Trigger Input to Complement Output		45	65	ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
$t(\min )$	Minimum True Output Pulse Width		110		ns	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{X}=20 \mathrm{k} \Omega \\ & C_{X}=0, C_{L}=15 \mathrm{pF} \end{aligned}$
t	Pulse Width	12.4	13.8	15.2	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{X}}=39 \mathrm{k} \Omega_{,} \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}$
$\mathrm{R}_{\mathrm{X}}$	Timing Resistor Range	16		220	$k \Omega$	
$\Delta t$	Maximum Change in True Output Pulse Width over Temperature Range		0.3	1.6	\%	$R_{X}=39 \mathrm{k} \Omega, C_{X}=1000 \mathrm{pF}$

OUTPUT PULSE WIDTH $(\mathrm{t})$ USING LOW VALUES OF $\mathrm{C}_{X}\left(\mathrm{C}_{X} \leqslant 1000 \mathrm{pF}\right)$
(FOR $C_{X}>1000 \mathrm{pF}$ SEE OPERATION RULES 4 AND 5.)


Fig. 1

## TYPICAL PULSE CHARACTERISTICS



MIN. OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE


NORMALIZED OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE


TRIGGERING TRUTH TABLE

LEAD NO'S.			
$5(11)$	$4(12)$	$3(13)$	Operation
$H \rightarrow L$	$L$	$H$	Trigger
$H$	$L \rightarrow H$	$H$	Trigger
$X$	$X$	$L$	Reset

L = LOW Voltage Levei
$H=H I G H$ Voltage Level
L $\rightarrow H=$ LOW to HIGH Voltage Level Transition
$H \rightarrow L=H I G H$ to LOW Voltage Level Transition
X = Don't Care

$V_{C C}=16$ GND $=8$


INPUT PULSE $\mathrm{f} \simeq 25 \mathrm{kHz}$
$A m p \simeq 3.0 \mathrm{~V}$ Width $\simeq 100 \mathrm{~ns}$ $t_{r}=t_{f} \leqslant 10 \mathrm{~ns}$

## SWITCHING CIRCUITS AND WAVEFORMS

# 96S02 <br> DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR 

DESCRIPTION - The 96 S02 is a Dual Retriggerable and Resettable Monostable which uses Schottky technology to provide wide delay range, stability, prediction accuracy and immunity to noise. The pulse width is set by an external resistor and capacitor. The 96502 may utilize timing resistors to $2 \mathrm{M} \Omega$ thus reducing required capacitor values. Hysteresis is provided on the positive-going inputs for increased noise immunity. The $96 S 02$ is fully compatible with all TTL families.

- REQUIRED TIMING CAPACITANCE REDUCED BY FACTORS OF 10 TO 100 OVER CONVENTIONAL DESIGNS
- BROAD TIMING RESISTOR RANGE - $1.5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$
- OUTPUT PULSE WIDTH IS VARIABLE OVER A 1300: 1 RANGE BY RESISTOR CONTROL
- PROPAGATION DELAY OF 12 ns
- OUTPUT PULSE WIDTH STABILITY OF $\pm 0.2 \%$ OVER $0^{\circ} \mathrm{C}$ TO $75^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- OUTPUT PULSE WIDTH STABILITY OF $\pm 0.3 \%$ OVER 4.75 V TO 5.25 V POWER SUPPLY RANGE
- PULSE WIDTH VARIATION OF $\pm 5 \%$ FROM UNIT TO UNIT
- 0.3 V HYSTERESIS ON POSITIVE TRIGGER INPUT
- OUTPUT PULSE WIDTH INDEPENDENT OF DUTY CYCLE
- 27 ns TO $\infty$ OUTPUT PULSE WIDTH RANGE
- RESETTABLE IN 9 ns
- SAME PINOUT AS 9602, 96LO2


## PIN NAMES

	Trigger (Active LOW) Input	0.5 U.L.	0.625 U.L
$\frac{\mathrm{I}_{1}}{}$	Schmitt Trigger (Active HIGH) Input	0.5 U.L.	0.625 U.L.
$\overline{C_{D}}$	Clear (Active LOW) Input	0.5 U.L.	0.625 U.L.
Q	Pulse (Active HIGH) Output	25 U.L.	12.5 U.L.
$\overline{\mathrm{Q}}$	Pulse (Active LOW) Output	25 U.L.	12.5 U.L.

LOGIC SYMBOL


CONNECTION DIAGRAM DIP (TOP VIEW)

*Pins for external timing.

NOTE:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{AHIGH}, 1.6 \mathrm{~mA}$ LOW.

FUNCTIONAL DESCRIPTION - The 96S02 Schottky Dual Retriggerable Resettable Monostable Multivibrator has two dc coupled trigger inputs per function, one active LOW ( $\bar{I}_{0}$ ) and one active $\mathrm{HIGH}\left(I_{1}\right)$. The $I_{1}$ input utilizes an internal Schmitt trigger with hysteresis of 0.3 V to provide increased noise immunity. The use of active HIGH and LOW inputs allows either leading or trailing edge-triggering and optional non-retriggerable operation. The inputs are dc coupled making triggering independent of input transition times. When input conditions for triggering are met, the Q output goes HIGH and the external capacitor is rapidly discharged and then allowed to recharge. An input trigger which occurs during the timing cycle will retrigger the 96 SO 2 and result in O remaining HIGH . The output pulse may be terminated ( Q to the LOW state) at any time by setting the Direct Clear input LOW. Retriggering may be inhibited by tying the $\overline{\mathrm{Q}}$ output to $\bar{I}_{0}$ or the Q output to $\mathrm{I}_{1}$. Differential sensing techniques are used to obtain excellent stability over temperature and power supply variations and a feedback Darlington capacitor discharge circuit minimizes pulse width variation from init to unit. Schottky TTL output stages provide high switching speeds and output compatibility with all TTL logic families. High impedance inputs minimize loading and provide compatibility with low power families such as 9LS/74LS.

## OPERATION RULES

## TIMING

1. An external resistor ( $R_{X}$ ) and external capacitor ( $C_{X}$ ) are required as shown in the Logic Diagram. The value of $R_{X}$ may vary from $1.5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$.
2. The value of $C_{X}$ may vary from 0 to any necessary value available. If, however, the capacitor has significant leakage relative to $V_{C C} / R_{X}$ the timing equations may not represent the pulse width obtained.
3. Polarized capacitors may be used directly. The ( + ) terminal of a polarized capacitor is connected to pin 1 (15), the ( - ) terminal to pin 2 (14) and $R_{X}$. Pin 1 (15) will remain positive with respect to pin 2 (14) during the timing cycle; however, during quiescent (non-triggered) conditions, pin $1(15)$ may go negative with respect to 2 (14) depending on values of $R_{X}$ and $V_{C C}$. For values of $R_{X} \geqslant 10 \mathrm{k} \Omega$ the maximum amount of capacitor reverse polarity, pin 1 (15) negative with respect to pin $2(14)$ is 500 mV . Most tantalum electrolytic capacitors are rated for safe reverse bias operation up to $5 \%$ of their working forward voltage rating; therefore, capacitors having a rating of 10 WVDC or higher should be used when $\mathrm{R}_{\mathrm{X}} \geqslant 10 \mathrm{k} \Omega$.
4. The output pulse width ${ }^{t} W$ for $R_{X} \geqslant 10 \mathrm{k} \Omega$ and $C_{X} \geqslant 100 \mathrm{pF}$ is determined as follows:

5. The output puise width for $\mathrm{R}_{\mathrm{X}}<10 \mathrm{k} \Omega$ or $\mathrm{C}_{\mathrm{X}}<1000 \mathrm{pF}$ should be determined from pulse width versus $\mathrm{C}_{\mathrm{X}}$ or $\mathrm{R}_{\mathrm{X}}$ graphs.
6. To obtain variable pulse width by remote trimming, the following circuit is recommended:

7. Under any operating condition, $C_{X}$ and $R_{X}(\min )$ must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
8. $\mathrm{V}_{\mathrm{CC}}$ and ground wiring should conform to good high frequency standards so that switching transients on $\mathrm{V}_{\mathrm{CC}}$ and ground leads do not cause interaction between one shots. Use of a 0.01 to $0.1 \mu \mathrm{~F}$ bypass capacitor between $\mathrm{V}_{\mathrm{CC}}$ and ground located near the 96 SO 2 is recommended.

## TRIGGERING

1. The minimum negative pulse width into $T_{0}$ is 8 ns ; the minimum positive pulse width into $\mathrm{I}_{1}$ is 12 ns .
2. Input signals exhibiting slow or noisy transitions should use the positive trigger input $l_{1}$ which contains a Schmitt trigger.
3. When non-retriggerable operation is required, i.e., when input triggers are to be ignored during quasi-stable state, input latching is used to inhibit retriggering.

4. An overriding active LOW level direct clear is provided on each multivibrator. By applying a LOW to the clear, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW. A LOW to HIGH transition on $C_{D}$ will not trigger the $96 \mathrm{SO2}$.

## TRIGGERING TRUTH TABLE

	PIN NO'S.		
$5(11)$	$4(12)$	$3(13)$	OPERATION
$H \rightarrow L$	$L$	$H$	Trigger
$H$	$L \rightarrow H$	$H$	Trigger
$X$	$X$	$L$	Reset

$H=H I G H$ Voltage Level $\geqslant V_{I H}$
$\mathrm{L}=$ LOW Voltage Level $\leqslant \mathrm{V}_{\text {IL }}$
$X=$ Don't Care (either H or L )
$H \rightarrow L=H I G H$ to LOW Voltage Level transition
$\mathrm{L} \rightarrow \mathrm{H}=$ LOW to HIGH Voltage Level transition

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin

* Input Voltage (dc)
*Input Current (dc)
Voltage Applied to Outputs (Output HIGH) Output Current (dc) (Output LOW)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+\mathrm{V}_{\mathrm{CC}} \text { value } \\
+50 \mathrm{~mA}
\end{array}
$$

*Either Input Voltage Limit or Input Current is sufficient to protect the inputs.

## RECOMMENDED OPERATING CONDITIONS

PARAMETER	96S02XC			UNITS
	MIN	TYP	MAX	
Supply Voltage $\mathrm{V}_{\text {CC }}$	4.75	5.0	5.25	V
Operating Free-Air Temperature Range	0	25	75	C
Input Loading for Each Input			0.625	U.L.
Fan-out	12.5			U.L.

[^19]
## FAIRCHILD TTL/MONOSTABLE • 96S02

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS   (Note 1)	
		MIN	TYP	MAX			
$V_{\text {IH }}$	Input HIGH Voltage Except Pins 4 \& 12	2.0			v	Guaranteed Input HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LoW Voitage Except Pins 4 \& 12			0.8	V	Guaranteed Input LOW Voltage	
$\overline{\mathrm{V}_{C D}}$	Input Clamp Diode Voltage		-0.65	-1.2	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$	
$V_{\text {T }+}$	Positive-Going Threshold Voltage, Pins 4 \& 12		1.7	2.0	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
$V_{T-}$	Negative-Going Threshold Voltage, Pins 4 \& 12	0.8	1.4		V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
VOH	Output HIGH Voltage	2.7	3.2		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$	
VOL	Output LOW Voltage		0.35	0.5	V	$\begin{aligned} & V_{C C}=\text { MIN, } I_{O L}=20 \mathrm{~mA}, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	
${ }^{1 / H}$	Input HIGH Current		0.2	20	$\mu \mathrm{A}$	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
				0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	
${ }_{1 / \mathrm{L}}$	Input Low Current		-0.6	-1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	
$\mathrm{V}_{\mathrm{CX}}$	Capacitor Voltage, Pin 1 (15)   Referenced to Pin 2 (14)	-0.85		3.0	V	$\mathrm{R}_{\mathrm{X}}=1.5 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { to } 5.25 \mathrm{~V} \end{aligned}$
		-0.5		3.0	V	$\mathrm{R}_{\mathrm{X}} \geqslant 10 \mathrm{k} \Omega$	
		-0.4		3.0	V	$R x \geqslant 1 \mathrm{M} \Omega$	
Ios	Output Short Circuit Current (Note 3)	-40	-65	-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
ICC	Quiescent Power Supply Drain		48	70	mA	Inputs Open	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (unless otherwise noted)

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
tPLH	Negative Trigger Input to True Output		10	15	ns	
tPHL	Negative Trigger Input to Complement Output		12	19	ns	
tPLH	Positive Trigger Input to True Output		12	19	ns	
tPHL	Positive Trigger Input to Complement Output		15	20	ns	
${ }^{\text {t }} \mathrm{PHL}$	Clear Input to True Output		6.5	10	ns	
tPLH	Clear Input to Complement Output		9.0	14	ns	
${ }^{\text {tW }}$ (MIN)	Min. Negative Trigger Pulse Width on $I_{0}$		3.0	8.0	ns	
${ }^{\text {t W ( }}$ (MIN)	Min. Positive Trigger Pulse Width on $I_{1}$		7.0	12	ns	
tW(MIN)	Min. Clear Pulse Width		3.0	7.0	ns	
tW(MIN)	Min. True Output Pulse Width	22	27	35	ns	$R_{X}=1.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=$ stray capacity only
tW(MIN)	Min. True Output Pulse Width	30	38	45	ns	$R_{X}=1.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=10 \mathrm{pF}$ including stray and jig capacitance
${ }^{\text {t }}$ W	True Output Pulse Width	4.9	5.2	5.5	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{X}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}$
$\mathrm{R}_{\mathrm{X}}$	Timing Resistor Range	1.5		2000	$k \Omega$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V
$\Delta \mathrm{t}$	Max. Change in True Output Puise Width over Temperature Range		0.38	1.0	\%	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}, \\ & R_{X}=10 \mathrm{k} \Omega, C_{X}=1000 \mathrm{pF} \end{aligned}$
$\Delta t$	Max. Change in True Output Pulse Width over $V_{\text {CC }}$ Range		0.38	1.0	\%	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}, \\ & R_{X}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF} \end{aligned}$

## TYPICAL CHARACTERISTICS

OUTPUT PULSE WIDTH VERSUS TIMING RESISTOR ( $\mathrm{R}_{\mathrm{X}}$ ) AND TIMING CAPACITOR ( $\mathrm{C}_{\mathbf{X}}$ )

*Guaranteed Limits are $4.9 \mu \mathrm{~s}$ to $5.5 \mu \mathrm{~s}$.

## OUTPUT PULSE WIDTH VERSUS TIMING CAPACITANCE FOR LOW VALUES OF CX $(\leqq 1000 \mathrm{pF})$


*Guaranteed Limits are $4.9 \mu \mathrm{~s}$ to $5.5 \mu \mathrm{~s}$.


$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

AC CIRCUITS AND WAVEFORMS
INPUT PULSE
$\mathrm{f} \simeq 100 \mathrm{kHz}$
$\mathrm{Amp} \simeq 3.0 \mathrm{~V}$
Width $\simeq 100 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$


LOW POWER SCHOTTKY AND MACROLOGIC ${ }^{\text {TM }}$ TTL


SSI DATA SHEETS

MSI DATA SHEETS
 $\rightarrow$

MACROLOGICTM TTL DATA SHEETS
6

ORDERING INFORMATION AND
PACKAGE OUTLINES

> FAIRCHILD FIELD SALES OFFICES. SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS

## 9400 MACROLOGIC ${ }^{\text {" }}$ TTL SERIES

GENERAL DESCRIPTION - Fairchild 9400 MACROLOGIC TTL Series utilizes advanced Schottky technology to provide high performance peripheral and processor oriented LSI. The design of 9400 ensures maximum design flexibility with no performance loss. The MACROLOGIC TTL elements may be used with any bit length, instruction set or organization. Devices may be expanded with little or no extra components. Where applicable, bus oriented, 3-state outputs are provided. A new slim 24-pin package reduces PC board real estate by a third.

- 150-250 GATE COMPLEXITY
- COMPATIBLE WITH ALL TTL FAMILIES
- PERFORMANCE EQUIVALENT TO SCHOTTKY IMPLEMENTATION
- 14, 18 AND SLIM 24-PIN PACKAGES
- INPUTS ABOUT 1/4 NORMAL TTL LOAD, i.e., 360-400 $\mu \mathrm{A}$
- OUTPUTS DRIVE 16 mA (10U.L.) OR 8 mA (5U.L.) DEPENDING ON APPLICATION
- DESIGNED FOR*MAXIMUM FLEXIBILITY
- OPERATES OVER COMMERCIAL OR MILITARY TEMPERATURE RANGE


## ADVANCED SCHOTTKY PROCESS

The 9400 family uses an advanced Schottky TTL process to obtain the best speed/power product of any commercially available digital bipolar circuitry. Key characteristics are as follows:

- SHALLOW, LOW CAPACITANCE DIFFUSION TO PROVIDE TRANSISTOR fT OF 2 GHz
- SCHOTTKY DIODES TO ELIMINATE STORAGE TIME
- INTERNAL GATES
-30 mils 2 ( 50 GATES PER $\mathrm{mm}^{2}$ )
-5 ns DELAY
-6.0 pJ DELAY POWER PRODUCT
- OUTPUT BUFFERS
-70 mils 2
-6 ns DELAY
- $\mathbf{1 0} \mathrm{pJ}$ DELAY POWER PRODUCT



# 9401 <br> CRC GENERATOR/CHECKER <br> FAIRCHILD MACROLOGICTM TTL 

DESCRIPTION - The 9401 Cyclic Redundancy Check (CRC) Generator/Checker provides an advanced tool for the implementation of the most widely used error detection scheme in serial digital data handling systems. A 3-bit control input selects one-of-eight generator polynomials. The list of polynomials includes CRC-16 and CRC-CCITT as well as their reciprocals (reverse polynomials). Automatic right justification is incorporated for polynomials of degree less than 16. Individual clear and preset inpuits are provided for floppy disc and other applications. The Error Output indicates whether or not a transmission error has occurred. Another control input inhibits feedback during check word transmission. The 9401 is a member of Fairchild's MACROLOGIC TTL family and is fully compatible with all TTL families.

- GUARANTEED 12 MHz DATA RATE
- EIGHT SELECTABLE POLYNOMIALS
- ERROR INDICATOR
- SEPARATE PRESET AND CLEAR CONTROLS
- AUTOMATIC RIGHT JUSTIFICATION
- FULLY COMPATIBLE WITH ALL TTL LOGIC FAMILIES
- 14-PIN PACKAGE
- TYPICAL APPLICATIONS:

FLOPPY AND OTHER DISC STORAGE SYSTEMS
DIGITAL CASSETTE AND CARTRIDGE SYSTEMS
DATA COMMUNICATION SYSTEMS

## PIN NAMES

$\mathrm{S}_{0}-\mathrm{S}_{2}$	Polynomial Select Inputs	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{D}}$	Data Input	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{CP}}$	Clock (Operates on HIGH to	0.5 U.L.	0.23 U.L.
	LOW Transition) Input		
CWE	Check Word Enable Input	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{P}}$	Preset (Active LOW) Input	0.5 U.L.	0.23 U.L.
MR	Master Reset (Active HIGH) Input	0.5 U.L.	0.23 U.L.
Q	Data Output (Note b)	10 U.L.	5 U.L.
ER	Error Output (Note b)	10 U.L.	5 U.L.

## NOTES:

a. 1 TTL Unit Load (U.L. $)=40 \mu \mathrm{~A}$ HIGH $/ 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (XM) and 5 U.L. for Commercial (XC) Temperature Ranges.


FUNCTIONAL DESCRIPTION - The 9401 Cyclic Redundancy Check (CRC) Generator/Checker is a 16-bit programmable device which operates on serial data streams and provides a means of detecting transmission errors. Cyclic encoding and decoding schemes for error detection are based on polynomial manipulation in modulo arithmetic. For encoding, the data stream (message polynomial) is divided by a selected polynomial. This division results in a remainder which is appended to the message as check bits. For error checking, the bit stream containing both data and check bits is divided by the same selected polynomial. If there are no detectable errors, this division results in a zero remainder. Although it is possible to choose many generating polynomials of a given degree, standards exist that specify a small number of useful polynomials. The 9401 implements the polynomials listed in Table 1 by applying the appropriate logic levels to the select pins $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and $\mathrm{S}_{2}$.
The 9401 consists of a 16 -bit register, a Read Only Memory (ROM) and associated control circuitry as shown in the Block Diagram. The polynomial control code presented at inputs $S_{0}, S_{1}$ and $S_{2}$ is decoded by the ROM, selecting the desired polynomial by establishing shift mode operation on the register with Exclusive OR gates at appropriate inputs. To generate the check bits, the data stream is entered via the Data Inputs (D), using the HIGH to LOW transition of the Clock Input ( $\overline{\mathrm{CP}}$ ). This data is gated with the most significant Output ( Q ) of the register, and controls the Exclusive OR gates (Figure 1). The Check Word Enable (CWE) must be held HIGH while the data is being entered. After the last data bit is entered, the CWE is brought LOW and the check bits are shifted out of the register and appended to the data bits using external gating (Figure 2).
To check an incoming message for errors, both the data and check bits are entered through the D Input with the CWE Input held HIGH. The 9401 is not in the data path, but only monitors the message. The Error Output becomes valid after the last check bit has been entered into the 9401 by a HIGH to LOW transition of $\overline{\mathrm{CP}}$. If no detectable errors have occurred during the data transmission, the resultant internal register bits are all LOW and the Error Output (ER) is LOW. If a detectable error has occurred, ER is HIGH. ER remains valid until the next HIGH to LOW transition of $\overline{C P}$ or until the device has been preset or reset.

A HIGH on the Master Reset Input (MR) asynchronously clears the register. A LOW on the Preset Input ( $\overline{\mathrm{P}}$ ) asynchronously sets the entire register if the control code inputs specify a 16 -bit polynomial; in the case of 12 or 8 -bit check polynomials only the most significant 12 or 8 register bits are set and the remaining bits are cleared.

TABLE 1

SELECT CODE			POLYNOMIAL	REMARKS
$\mathrm{S}_{2}$	$\mathrm{S}_{1}$	$\mathrm{S}_{0}$		
L	L	L	$x^{16}+x^{15}+x^{2}+1$	CRC-16
L	L	H	$x^{16}+x^{14}+x+1$	CRC-16 REVERSE
L	H	L	$x^{16}+x^{15}+x^{13}+x^{7}+x^{4}+x^{2}+x^{1}+1$	
L	H	H	$x^{12}+x^{11}+x^{3}+x^{2}+x+1$	CRC-12
H	L	L	$x^{8}+x^{7}+x^{5}+x^{4}+x+1$	
H	L	H	$\mathrm{x}^{8+1}$	LRC-8
H	H	L	$x^{16}+x^{12}+x^{5}+1$	CRC-CCITT
H	H	H	$x^{16}+x^{11}+x^{4}+1$	CRC-CCITT REVERSE

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
VIL	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$V_{C D}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
		XC	2.4	3.4			
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	XM \& XC		0.35	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
		XC		0.45	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
IOS	Output Short Circuit Current		-15		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \vee($ Note 3)
${ }^{1} \mathrm{CC}$	Supply Current			70	110	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

AC CHARACTERISTICS: $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS	
		MIN	TYP   (Note 2)	MAX			
$f_{\text {max }}$	Maximum Clock Frequency	12	20		MHz	Fig. 3, 4, 5	$\mathrm{Cl}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \text { tPHL } \\ & \text { tPLH } \end{aligned}$	Propagation Delay, Clock, MR to Data Output		30	55	ns		
tPHL   tPLH	Propagation Delay, Preset to Data Output		40	60	ns		
tPHL   tPLH	Propagation Delay, Clock, MR or Preset to Error Output		40	60	ns		

AC SET-UP REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS	
		MIN	TYP	MAX			
${ }_{t_{W}} \overline{C P}(L)$	Clock Pulse Width (LOW)	35			ns	Fig. 2	$C_{L}=15 \mathrm{pF}$
${ }_{4} \mathrm{D}$	Set-up Time, Data to Clock		35	55	ns	Fig. 6	
$\mathrm{t}_{\mathrm{s}} \mathrm{CWE}$	Set-up Time, CWE to Clock		35	55	ns		
$t_{h}$	Hold Time, Data and CWE to Clock		0		ns		
${ }_{t_{w} P}(\mathrm{~L})$	Preset Pulse Width (LOW)	35	25		ns	Fig. 4	
$\mathrm{t}_{\mathrm{w}} \mathrm{MR}(\mathrm{H})$	Master Reset Pulse Width (HIGH)	35	25		ns	Fig. 6	
${ }^{\text {trec }}$	Recovery Time, MR and Preset to Clock		25	35	ns	Fig. 4,5	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
```
 EQUIVALENT CIRCUIT FOR X }\mp@subsup{}{}{16}+\mp@subsup{X}{}{15}+\mp@subsup{X}{}{2}+
```



Fig. 1


NOTES:

1. Check word Enable is HIGH while data is being clocked, LOW during transmission of check bits.
2. 9401 must be reset or preset before each computation.
3. CRC check bits are generated and appended to data bits.

Fig. 2
CHECK WORD GENERATION


Fig. 3
PROPAGATION DELAYS, $\overline{\mathrm{CP}}$ TO Q AND $\overline{\mathrm{CP}}$ TO ER


Fig. 4
PROPAGATION DELAYS, $\bar{P}$ TO Q AND ER PLUS RECOVERY TIME P TO $\overline{\mathrm{CP}}$


Fig. 6
SET-UP AND HOLD TIMES, D TO $\overline{\mathrm{CP}}$ AND CWE TO $\overline{\mathrm{CP}}$

## 9403

# FIRST-IN FIRST-OUT (FIFO) BUFFER MEMORY <br> FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL 

DESCRIPTION - The 9403 is an expandable fall-through type high-speed First-In First-Out (FIFO) Buffer Memory optimized for high speed disc or tape controllers and communication buffer applications. It is organized as 16 words by four bits and may be expanded to any number of words or any number of bits (in multiples of 4). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.
The 9403 has 3 -state outputs which provide added versatility. It is a member of Fairchild's TTL MACROLOGIC family and is fully compatible with all TTL families.

- 12 MHz SERIAL OR PARALLEL DATA RATE
- SERIAL OR PARALLEL INPUT
- SERIAL OR PARALLEL OUTPUT
- EXPANDABLE WITHOUT EXTERNAL LOGIC
- 3-STATE OUTPUTS
- FULLY COMPATIBLE WITH ALL TTL FAMILIES
- 24-PIN PACKAGE


## PIN NAMES

$D_{0}-D_{3}$	Parallel Data Inputs	0.5 U.L.	0.23 U.L.
${ }^{\text {D }}$	Serial Data Input	0.5 U.L.	0.23 U.L.
PL	Parallel Load Input	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{CPSI}}$	Serial Input Clock (Operates on Negative-Going Transition)	0.5 U.L.	0.23 U.L.
$\overline{\text { IES }}$	Serial Input Enable (Active LOW)	0.5 U.L.	0.23 U.L.
TTS	Transfer to Stack Input (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{\text { OES }}$	Serial Output Enable Input (Active LOW)	0.5 U.L.	0.25 U.L.
$\overline{\text { TOS }}$	Transfer Out Serial Input (Active LOW)	0.5 U.L.	0.23 U.L.
TOP	Transfer Out Parallel Input	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{MR}}$	Master Reset (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{E O}$	Output Enable (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{\text { CPSO }}$	Serial Output Clock Input   (Operates on Negative-Going Transition)	0.5 U.L.	0.23 U.L.
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Parallel Data Outputs (Note b)	130 U.L.	10 U.L.
$\mathrm{O}_{\mathrm{S}}$	Serial Data Output (Note b)	10 U.L.	10 U.L.
IRF	Input Register Full Output (Active LOW) (Note b)	10 U.L.	5 U.L.
$\overline{\text { ORE }}$	Output Register Empty Output	10 U.L.	5 U.L.



NOTES:
a. 1 unit load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH}, 1.6 \mathrm{~mA}$ LOW.
b. Output fan-out with $\mathrm{V}_{\mathrm{OL}} \leqslant 0.5 \mathrm{~V}$


Fig. 1
CONCEPTUAL INPUT SECTION


Fig. 2

## BLOCK DIAGRAM


$\bigcirc=\operatorname{Pin}$ Numbers

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram the 9403 consists of three parts:

1. An Input Register with Parallel and Serial Data Inputs as well as control inputs and outputs for input handshaking and expansion.
2. A 4-bit wide, 14 -word deep Fall-Through Stack with self-contained control logic.
3. An Output Register with Parallel and Serial Data Outputs as well as control inputs and outputs for output handshaking and expansion.

Since these three sections operate asynchronously and almost independently, they will be described separately below:

## INPUT REGISTER (DATA ENTRY):

The Input Register can receive data in either bit-serial or in 4 -bit parallel form, store it until it is sent to the Fall-Through Stack and generate and accept the necessary status and control signals.

Figure 1 is a conceptual logic diagram of the input section. As described later, this 5 -bit register is initialized by setting the F3 Flip-Flop and resetting the other flip-flops. The $\overline{\mathrm{Q}}$ Output of the last Flip-Flop (FC) is brought out as the "Input Register Full' output ( $\overline{\mathrm{RF}}$ ). After initialization this output is HIGH.

## PARALLEL ENTRY:

A HIGH level on the PL Input loads the $D_{0}-D_{3}$ Data Inputs into the F0 - F3 Flip-Flops and sets the FC Flip-Flop, which forces $\overline{\mathrm{RF}}$ LOW, indicating "Input Register Full". The D Inputs must be stable while PL is HIGH. During parallel entry, the $\overline{\text { IES }}$ Input should be LOW; the $\overline{\text { CPSI Input may be either HIGH or LOW. }}$

## SERIAL ENTRY:

Data on the DS Input is serially entered into the F3, F2, F1, F0, FC Shift Register on each HIGH-to-LOW transition of the CPSI Clock Input, provided IES and PL are LOW.
After the fourth clock transition the four serial data bits are aligned in the four data flip-flops and the FC Flip-Flop is set, forcing $\overline{\text { IRF }}$ LOW (Input Register full) and internally inhibiting further $\overline{\text { CPSI }}$ clock pulses. Figure 3 illustrates the final positions in a 9403 resulting from a 64 -bit serial bit train. BO is the first bit, B 63 the last bit.

TRANSFER TO THE FALL-THROUGH STACK:
The outputs of Flip-Flops F0 - F3 feed the Stack. A LOW level on the TTS Input attempts to initiate a "fall-through" action. If the top location of the Stack is empty, data is loaded into the Stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus, automatic FIFO action is achieved by connecting the $\overline{\mathrm{IRF}}$ output to the TTS input.

Data falls through the Stack automatically, pausing only when it is necessary to wait for an empty next location. In the 9403, as in most modern FIFO designs, the $\overline{M R}$ input only initializes the Stack control section and does not clear the data.

## OUTPUT REGISTER (DATA EXTRACTION):

The Output Register receives 4-bit data words from the bottom Stack location, stores it and outputs data on a 3-state 4 -bit parallel data bus or on a 3 -state serial data bus. The output section generates and receives the necessary status and control signals. Figure 2 is a conceptual logic diagram of the output section.


Fig. 3
FINAL POSITIONS IN A 9403 RESULTING FROM A 64-BIT SERIAL TRAIN

## PARALLEL DATA EXTRACTION:

When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ( $\overline{\mathrm{ORE}}$ ) Output is LOW. After data has been entered into the FIFO and has fallen through to the bottom Stack location, it is transferred into the output register, provided the "Transfer Out Parallel" (TOP) Input is HIGH, and the OES Input is LOW. As a result of the data transfer ORE goes HIGH, indicating valid data on the data outputs (provided the 3-state buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, ORE will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next LOW-to-HIGH transition of TOP transfers the next word (if available) into the output register as explained above. During parallel data extraction, $\overline{T O S}, \overline{\mathrm{CPSO}}$, and $\overline{\mathrm{OES}}$ should be LOW.

## SERIAL DATA EXTRACTION:

When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ( $\overline{O R E}$ ) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom Stack location, it is transferred into the output shift register provided the "Transfer Out Serial" (TOS) is LOW. TOP must be HIGH, and $\overline{O E S}$ and $\overline{\text { CPSO must be LOW. As a result }}$ of the data transfer $\overline{\mathrm{ORE}}$ goes HIGH indicating valid data in the shift register. The 3 -state serial Data Output $\mathrm{O}_{\mathrm{S}}$ is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. The fourth transition empties the shift register, forces $\overline{\text { ORE }}$ LOW and disables the serial output $\mathrm{O}_{\mathrm{S}}$. For serial operation the $\overline{\text { ORE }}$ output may be tied to the $\overline{T O S}$ input, requesting a new word from the Stack as soon as the previous one has been shifted out.

## EXPANSION:

Vertical Expansion - The 9403 may be vertically expanded to store more words without external parts. The interconnections necessary to form a 46 -word by 4 -bit FIFO are shown in Figure 4. Using the same technique, any FIFO of $15 n+1$ words by four bits can be constructed. Note that expansion does ot sacrifice any of the FIFO's flexibility for serial/paraliel input and output.


Fig. 4
A VERTICAL EXPANSION SCHEME

Horizontal Expansion - The 9403 may also be horizontally expanded to store long words (in multiples of four bits) without external logic. The interconnections necessary to form a 16 -word by 12 -bit FIFO are shown in Figure 5 . Using the same technique, any FIFO of 16 words by $4 \times n$ bits can be constructed. When expanding in the horizontal direction, it is usual to connect the $\overline{\mathrm{IRF}}$ and $\overline{\mathrm{ORE}}$ outputs of the right most device (most significant device) to the TTS and TOS inputs respectively of all devices to the left (less significant devices) to guarantee that no operation is initiated before all devices are ready.

As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the FIFO's flexibility for serial/parallel input and output.

FAIRCHILD • 9403


Fig. 5
A HORIZONTAL EXPANSION SCHEME


Fig. 6
A 31 X 16 FIFO ARRAY

Horizontal and Vertical Expansion - The 9403 can be expanded in both the horizontal and vertical direction without any external parts and without sacrificing any of the FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6 . Using the same technique, any FIFO of $15 \mathrm{n} 1+1$ words by $4 \times n_{2}$ bits can be constructed.

Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6. The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.


Fig. 7
SERIAL DATA ENTRY FOR ARRAY OF FIG. 6


Fig. 8


Fig. 9
FINAL POSITION OF A 496-BIT SERIAL INPUT

## INTERLOCKING CIRCUITRY:

Most conventional FIFO designs provide status signals analogous to $\overline{\operatorname{RF}}$ and $\overline{\text { ORE. However, when these devices are operated }}$ in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 9403 incorporates simple but effective "master/slave" interlocking circuitry to eliminate the need for external gating.
In the 9403 array of Figure 6 devices 1 and 5 are defined as "row masters" and the other devices are slaves to the master in their row. No slave in a given row will initialize its Input Register until it has received LOW on its IES input from a row master or a slave of higher priority.
In a similar fashion, the $\overline{\mathrm{ORE}}$ outputs of slaves will not go HIGH until their $\overline{\mathrm{OES}}$ input has gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the $\overline{\mathrm{RF}}$ output of the final slave in that row goes LOW and that output data for the array may be extracted when the $\overline{\text { ORE }}$ of the final slave in the output row goes HIGH.
The row master is established by connecting its $\overline{\mathrm{IES}}$ input to ground while a slave receives its $\overline{\mathrm{IES}}$ input from the $\overline{\mathrm{IRF}}$ output of the next higher priority device. When an array of 9403 FIFOs is initialized with a LOW on the $\overline{M R}$ inputs of all devices, the $\overline{I R F}$ outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the $\overline{I E S}$ input during initialization. Figure 10 is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever $\overline{\mathrm{MR}}$ and $\overline{\text { IES }}$ are LOW, the master latch is set. Whenever TTS goes LOW the request initialization flip-flop will be set. If the master latch is HIGH , the input register will be immediately initialized and the request initialization flip-flop reset. If the master latch is reset, the input register is not initialized until $\overline{I E S}$ goes LOW. In array operation, activating the $\overline{\text { TTS }}$ initiates a ripple input register initialization from the row master to the last slave.
A similar operation takes place for the output register. Either a $\overline{T O S}$ or TOP input initiates a load-from-stack operation and sets the ORE request flip-flop. If the master latch is set, the last Output Register flip-flop is set and $\overline{\text { ORE }}$ goes HIGH. If the master latch is reset, the $\overline{\mathrm{ORE}}$ output will be LOW until an $\overline{\mathrm{OES}}$ input is received.

TABLE 1

OUTPUT CONDITION	INTERNAL STATE	
	Master Operation -   IES LOW when Initialized	Slave Operation -   IES HIGH when Initialized
$\overline{\text { IRF LOW }}$	Input Register Full	Input Register Full and IES LOW
$\overline{\text { ORE HIGH }}$	Output Register not Full	Output Register not Full and OES LOW

Table 1 summarizes master/slave status outputs.

FAIRCHILD • 9403


Fig. 10
CONCEPTUAL DIAGRAM, INTERLOCKING CIRCUITRY

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)		
			MIN	TYP	MAX				
$\mathrm{V}_{1}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage		
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage		
		XC			0.8				
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$V_{C C}=\mathrm{MIN}, I_{\text {IN }}=-18 \mathrm{~mA}$		
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage QS, ORE, OES	XM	2.4	3.4		V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		
		XC	2.4	3.4					
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage, $\mathrm{Q}_{0}-\mathrm{Q}_{3}$	XM	2.4	3.4		V	$\mathrm{I}^{\mathrm{OH}}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	
		XC	2.4	3.1			${ }^{1} \mathrm{OH}=-5.7 \mathrm{~mA}$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage, $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{Q}_{S}$			0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		
				0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage, ORE, OES			0.25	0.4	V	$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}$	$V_{C C}=\mathrm{MIN}$	
				0.35	0.5		$1 \mathrm{OL}=8.0 \mathrm{~mA}$		
IOZH	Output Off Current $\mathrm{HIGH}, \mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{Q}_{S}$				100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$		
IOZL	Output Off Current LOW, $\mathrm{Q}_{0}-\mathrm{O}_{3}, \mathrm{Q}_{\mathrm{S}}$				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$		
IIH	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					1.0	mA	$V_{C C}=M A X, V_{1}$	5.5 V	
	Input LOW Current, all except OES OES				-0.36	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
IIL					-0.86				
IOS	Output Short Circuit Current, ORE, OES		-10		-42	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		
IOS	Output Short Circuit Current, $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{Q}_{S}$		-30		-100	mA	$V_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {OUT }}=0,($ Note 3)		
ICC	Supply Current			105	160	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
tPHL	Propagation Delay, Negative-Going CP to $\overline{\text { IRF Output }}$		18		ns	Stack not full, PL LOW, Figures 11 \& 12
tPLH	Propagation Delay, Negative-Going $\overline{\text { TTS }}$ to IRF		50		ns	
tPLH	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$		30		ns	Serial Output $\overline{\text { OES }}$ LOW, TOP HIGH,   Figures 13 \& 14
tPHL	to $\mathrm{Q}_{S}$ Output		20			
tPLH	Propagation Delay, Positive-Going TOP		42		ns	$\overline{\mathrm{EO}}, \overline{\mathrm{CPSO}}$ LOW, Figure 15
tPHL	to Outputs $\mathrm{Q}_{0}-\mathrm{Q}_{3}$		32			
tPHL	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$ to $\overline{\text { ORE }}$		35		ns	Serial Output OES LOW, TOP HIGH, Figures 13 \& 14
tPLH	Propagation Delay, Positive-Going TOS to $\overline{\text { ORE }}$					
tPHL	Propagation Delay, Negative-Going TOP to $\overline{\text { ORE }}$				ns	Parallel Output, $\overline{\mathrm{EO}}, \overline{\mathrm{CPSO}}$ LOW, Figure 15
tPLH	Propagation Delay, Positive-Going TOP to ORE		45			
$\mathrm{t}_{\mathrm{ft}}$	Fall Through Time		450		ns	TTS connected to IRF TOS connected to ORE $\overline{\text { IES }}, \overline{\mathrm{OES}}, \overline{\mathrm{EO}}, \overline{\mathrm{CPSO}}$ LOW, TOP HIGH, Figure 16
tPLH	Propagation Delay, Negative-Going TOS to Positive-Going $\overline{\text { ORE }}$		48		ns	Data in stack, TOP HIGH, Figures 13 \& 14
tPHL	Propagation Delay, Positive-Going PL to Negative-Going IRF		35		ns	Stack not full, Figures 17 \& 18

AC SET-UP REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
tPWH	$\overline{\text { CPSI }}$ Pulse Width (HIGH)		25		ns	Stack not full, PL LOW, Figures 11 \& 12
tPWL	CPSI Pulse Width (LOW)		12		ns	
tPWH	PL Pulse Width (HIGH)		30		ns	Stack not full, Figures 17 \& 18
tPWL	TTS Pulse Width (LOW) Serial or Parallel Mode		6.0		ns	Stack not full, Figures 11, 12, 17, 18
tPWL	$\overline{M R}$ Pulse Width (LOW)		15		ns	Figure 16
tPWH	TOP Pulse Width (HIGH)		17		ns	CPSO LOW, Data available in stack, Figure 15
TPWL	TOP Pulse Width (LOW)		25		ns	
tPWH	CPSO Pulse Width (HIGH)		16		ns	TOP HIGH, Data in stack, Figures 13 \& 14
tPWL	$\overline{\text { CPSO Pulse Width (LOW) }}$		20		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time DS to Negative $\overline{\text { CPSI }}$		20		ns	PL LOW, Figures 11 \& 12
${ }_{\text {t }}^{\text {s }}$	Set-Up Time, $\overline{\text { TTS }}$ to $\overline{\text { IRF }}$ Serial or Parallel Mode		0		ns	Figures 11, 12, 17, 18
$\mathrm{t}_{\mathrm{s}}$	Set-Up Time Negative-Going $\overline{\text { ORE }}$ to Negative-Going $\overline{\text { TOS }}$		0		ns	TOP HIGH, Figures 13 \& 14
trec	Recovery Time $\overline{M R}$ to any Input		5.0		ns	Figure 16



Fig. 11
SERIAL INPUT, UNEXPANDED OR MASTER OPERATION
Conditions: Stack not full, $\overline{\mathrm{IES}}, \mathrm{PL}$ LOW


Fig. 12
SERIAL INPUT, EXPANDED SLAVE OPERATION
Conditions: Stack not full, $\overline{\mathrm{IES}}$ HIGH when initialized, PL LOW


Fig. 13
SERIAL OUTPUT, UNEXPANDED OR MASTER OPERATION
Conditions: Data in stack, TOP HIGH, $\overline{\text { IES }}$ LOW when initialized, $\overline{O E S}$ LOW


Fig. 14
SERIAL OUTPUT, SLAVE OPERATION
Conditions: Data in stack, TOP HIGH, IES HIGH when initialized


Fig. 15
PARALLEL OUTPUT, 4-BIT WORD OR MASTER IN PARALLEL EXPANSION
Conditions: $\overline{\text { IES }}$ LOW when initialized, $\overline{\mathrm{EO}}, \overline{\mathrm{CPSO}}$ LOW. Data available in stack


Fig. 16
FALL THROUGH TIME
Conditions: $\overline{\mathrm{TTS}}$ connected to $\overline{\mathrm{RF}}, \overline{\mathrm{TOS}}$ connected to $\overline{\mathrm{ORE}}, \overline{\mathrm{IES}}, \overline{\mathrm{OES}}, \overline{\mathrm{EO}}, \overline{\mathrm{CPSO}}$ LOW, TOP HIGH


NOTES:

1. Initialization requires a master reset to occur after power has been applied.
2. $\overline{\mathrm{TTS}}$ normally connected to $\overline{\mathrm{IRF}}$.
3. If stack is full, IRE will stay LOW.

Fig. 17
PARALLEL LOAD MODE, 4-BIT WORD (UNEXPANDED) OR MASTER IN PARALLEL EXPANSION
Conditions: Stack not full, $\overline{\text { IES }}$ LOW when initialized


Fig. 18
PARALLEL LOAD, SLAVE MODE
Conditions: Stack not full, device initialized (Note 1) with IES HIGH

## 9404

DATA PATH SWITCH<br>FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL

DESCRIPTION - The 9404 Data Path Switch (DPS) is a combinatorial array for closing data path loops around arithmetic/logic networks such as the 9405 (Arithmetic Logic Register Stack). A total of 30 instructions (see Table 1) facilitate logic shifting, masking, sign extension, introduction of common constants and other operations.
The 5-bit Instruction Word Inputs ( $I_{0}-1_{4}$ ) selects one of the thirty instructions operating on two sets of 4-bit Data Inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{~K}}_{0}-\overline{\mathrm{K}}_{3}$ ). Left Input ( $\overline{\mathrm{LI}}$ ) and Left Output ( $\overline{\mathrm{LO}}$ )
 increments. An active LOW Output Enable Input ( $\overline{\mathrm{EO}}$ ) provides 3 -state control of the Data Outputs ( $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ ) for bus oriented applications.
The 9404 is a member of Fairchild's MACROLOGIC TTL family and is fully compatible with all TTL families.

## - EXPANDABLE IN MULTIPLES OF FOUR BITS <br> - 20 ns DELAY OVER 16-BIT WORD (EXCEPT SIGN EXTEND FUNCTION) <br> - TWO 4-BIT DATA INPUT BUSSES <br> - 4-BIT DATA OUTPUT BUS WITH 3-STATE OUTPUT BUFFERS <br> - USEFUL FOR BYTE MASKING AND SWAPPING <br> - PROVIDES ARITHMETIC OR LOGIC SHIFT <br> - PROVIDES FOR SIGN EXTENSION <br> - GENERATES COMMONLY USED CONSTANTS <br> - PURELY COMBINATORIAL - NO CLOCKS REQUIRED <br> - PACKAGED IN SLIM 24-PIN PACKAGE

## PIN NAMES

$\bar{D}_{0}-\bar{D}_{3}$
$\bar{K}_{0}-\bar{K}_{3}$
$\mathrm{I}_{0^{-1}}{ }^{-1}$
$\overline{\mathrm{LI}}$
$\overline{\mathrm{LO}}$
$\overline{\mathrm{RI}}$
$\overline{\mathrm{RO}}$
$\overline{\mathrm{EO}}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$

LOADING (Note a)

HIGH	LOW
0.5 U.L.	0.23 U.L.
10 U.L.	5.0 U.L.
0.5 U.L.	0.23 U.L.
10 U.L.	5.0 U.L.
0.5 U.L.	0.23 U.L.
130 U.L.	10 U.L.

## NOTES:

a) 1 Unit Load (U.L.) $=40 \mu \mathrm{AHIGH}, 1.6 \mathrm{~mA}$ LOW
b) Output current measured at $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$



TABLE 1
INSTRUCTION SET FOR THE 9404

INPUTS	OUTPUTS		INPUTS	OUTPUTS	
	$\overline{\mathrm{O}}_{3} \overline{\mathrm{O}}_{2} \overline{\mathrm{O}}_{1} \overline{\mathrm{O}}_{0}$		$l_{4} l_{3} \mathrm{l}_{2} \mathrm{I}_{1} \mathrm{l}_{0}$	$\overline{\mathrm{LO}} \overline{\mathrm{O}}_{3} \overline{\mathrm{O}}_{2} \overline{\mathrm{O}}_{1} \overline{\mathrm{O}}_{0} \overline{\mathrm{RO}}$	N
L L L L L	L L L L	Byte Mask	H L L L L	$\overline{\mathrm{Rl}} \overline{\mathrm{Rl}}$ रो $\overline{\mathrm{Rl}} \overline{\mathrm{Rl}}$	K-Bus Sign Extend
L L L L H	H $\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	Byte Mask	$H L L L$	$\overline{\mathrm{K}}_{3} \quad \overline{\mathrm{~K}}_{3} \overline{\mathrm{~K}}_{2} \overline{\mathrm{~K}}_{1} \overline{\mathrm{~K}}_{0}$	K-Bus Sign Extend
L L L H L	L L L H	Minus " 2 " in 2s Comp(1)	$H \quad L \quad L \quad H \quad L$	$\overline{\mathrm{Rl}}$ रो $\overline{\mathrm{Rl}}$ Rl $\overline{\mathrm{Rl}}$	D-Bus Sign Extend
L L L H H	L L L L	Minus "1" in 2s Comp(1)	H L L H H	$\overline{\mathrm{D}}_{3} \overline{\mathrm{D}}_{3} \overline{\mathrm{D}}_{2} \overline{\mathrm{D}}_{1} \overline{\mathrm{D}}_{0}$	D-Bus Sign Extend
L L H L	$\bar{D}_{3} \bar{D}_{2} \bar{D}_{1} \bar{D}_{0}$	Byte Mask D-Bus	H L H L L	$\begin{array}{cccc}\bar{D}_{3} & \bar{D}_{2} & \bar{D}_{1} & \bar{D}_{0} \\ \bar{R} \boldsymbol{L}\end{array}$	D-Bus Shift Left
L L H L H	H H H H	Byte Mask D-Bus	$H L H L H$	$\bar{K}_{3} \overline{\mathrm{~K}}_{2} \overline{\mathrm{~K}}_{1} \overline{\mathrm{~K}}_{0} \overline{\mathrm{R}} \mathrm{I}$	K-Bus Shift Left
L L $\quad \mathrm{H}$ H H L	$\bar{D}_{3} \bar{D}_{2} \bar{D}_{1} \bar{D}_{0}$	Byte Mask D-Bus	H L H H L	$\overline{\mathrm{LI}} \overline{\mathrm{D}}_{3} \overline{\mathrm{D}}_{2} \overline{\mathrm{D}}_{1} \overline{\mathrm{D}}_{0}$	D-Bus Shift Right
L L H H H	L L L L	Byte Mask D-Bus	H L H H H	$\bar{D}_{3} \bar{D}_{3} \overline{\mathrm{D}}_{2} \overline{\mathrm{D}}_{1} \overline{\mathrm{D}}_{0}$	D-Bus Shift Right Arith ${ }^{(2)}$
L H L L	L H H H	Negative Byte Sign Mask	H H L L L	$\begin{array}{lllll}\text { LI } & \bar{K}_{3} & \bar{K}_{2} & \bar{K}_{1} & \bar{K}_{0}\end{array}$	K-Bus Shift Right
L H L L	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	Positive Byte Sign Mask	$\mathrm{H} \mathrm{H} L \mathrm{~L}$	$\overline{\mathrm{K}}_{3} \overline{\mathrm{~K}}_{3} \overline{\mathrm{~K}}_{2} \overline{\mathrm{~K}}_{1} \overline{\mathrm{~K}}_{0}$	K-Bus Shift Right Arith ${ }^{(2)}$
L H L L $\quad \mathrm{H}$ L	$\bar{K}_{3} \bar{K}_{2} \overline{\mathrm{~K}}_{1} \overline{\mathrm{~K}}_{0}$	Byte Mask K-Bus	H H L H L	$\bar{K}_{3} \bar{K}_{2} \bar{K}_{1} \overline{\mathrm{~K}}_{0}$	Byte Mask K-Bus
L H L H H	L L L L	Byte Mask K-Bus	H H L H H	$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	Byte Mask K-Bus
L H H L L	$\bar{D}_{3} \bar{D}_{2} \bar{D}_{1} \bar{D}_{0}$	Load Byte	H H H L L	$\mathrm{D}_{3} \quad \mathrm{D}_{2} \quad \mathrm{D}_{1} \mathrm{D}_{0}$	Complement D-Bus
L H H L H	$\overline{\mathrm{K}}_{3} \overline{\mathrm{~K}}_{2} \overline{\mathrm{~K}}_{1} \overline{\mathrm{~K}}_{0}$	Load Byte	H H H L H		Complement K-Bus
L H H H L	$\begin{array}{llll}H & H & H & L\end{array}$	Plus "1"	H H H H H L		Undefined (Reserved)
$L \quad H \quad H \quad H \quad H$	$\begin{array}{lllll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$	Zero	$\mathrm{H} \mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$		Undefined (Reserved)

H = HIGH Level
(1) Comp = Complement
L = LOW Level
(2) Arith = Arithmetic

FUNCTIONAL DESCRIPTION - The 9404 Data Path Switch combines the functions of a dual 4 -input multiplexer, a true/ complement one/zero generator, and a shift left/shift right array.
As shown in Table 1, there are two shift right modes. The arithmetic right shift preserves the sign bit in the most significant position while the logic shift moves all positions. Right shift is defined as a 1 -bit shift toward the least significant position.

For half-word arithmetic the 9404 provides instructions which extend the sign bit left through the more significant slices. Shift linkages are available as individual inputs and outputs for complete flexibility.

The 9404 may be used to generate constants $+1,0,-1$ and -2 in $2 s$ complement notation.

## FAIRCHILD • 9404

9404 ARRAYS - Arrays of larger than 4-bit word lengths are easily obtained. Figure 1 illustrates a 16-bit array constructed using four devices; device 1 is the least significant and device 4 is the most significant slice. Within each slice, inputs and outputs with ' 0 ' subscript are the least significant bits.
The $I_{1}$ through $I_{4}$ inputs of all devices are bussed. These four bus lines together with the $I_{0}$ inputs of the devices form an 8 -bit instruction bus to control the array. In some applications, it may be possible to connect the $l_{0}$ inputs of devices $1 \& 2$ together and the $I_{0}$ Inputs of devices $3 \& 4$ together, so that only six bits are needed to control the arrays. Connecting the $\overline{\mathrm{LO}}$ of device 1 to $\overline{\mathrm{RI}}$ of device $2, \overline{\mathrm{LO}}$ of device 2 to RI of device 3, etc. provides left shift (i.e., shift towards most significant bit) and sign extension. From Table 1 it can be seen that "sign extend" consists of two adjacent instructions differing only in $\mathrm{I}_{0}$; one of these instructions connects the most significant bit of the selected input bus (i.e., $\overline{\mathrm{D}}_{3}$ or $\overline{\mathrm{K}}_{3}$ ) to the $\overline{\mathrm{LO}}$ output while the other instruction forces the output bus and $\overline{\mathrm{LO}}$ to the $\overline{\mathrm{RI}}$ input. In a similar fashion right shift operation is accomplished by connecting the $\overline{\mathrm{LI}}$ input of a device to the $\overline{\mathrm{RO}}$ of the next more significant device.


Fig. 1 16-BIT 9404 ARRAY

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)		
			MIN	TYP	MAX				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage		
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage		
		XC			0.8				
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$		
	$\overline{\mathrm{LO}}, \overline{\mathrm{RO}}$	XC	2.4	3.4					
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	XM	2.4	3.4		$\checkmark$	${ }^{1} \mathrm{OH}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	
		XC	2.4	3.1			$\mathrm{I}^{\mathrm{OH}}=-5.7 \mathrm{~mA}$		
${ }^{1} \mathrm{OH}$	Output HIGH Current				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$		
VOL	$\begin{aligned} & \text { Output LOW Voltage } \\ & \overline{\mathrm{LO}}, \overline{\mathrm{RO}} \end{aligned}$			0.3	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=4.0 \mathrm{~mA}$		
				0.4	0.5	V	$\mathrm{V}_{\mathrm{CC}}=$ MIN, IOL	0 mA	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$			0.3	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		
				0.4	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=16 \mathrm{~mA}$		
IOZH	Output Off Current HIGH				100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}$	$=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$	
IOZL	Output Off Current LOW				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$		
$\mathrm{I}_{1}$	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$		
${ }_{1}$					1.0	mA			
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
Ios	Output Short Circuit Current		-30		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)		
ICC	Supply Current			76		mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open		

## NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD • 9404

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
tPLH tPHL	Propagation Delay,   Data Inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{~K}}_{0}-\overline{\mathrm{K}}_{3}$ ) to Output ( $\mathrm{O}_{0}-\mathrm{O}_{3}$ )		20		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay,   Data Inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{~K}}_{0}-\overline{\mathrm{K}}_{3}$ ) to Shift Outputs ( $\overline{\mathrm{LO}}, \overline{\mathrm{RO}}$ )		18		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{RI}}$ to $\overline{\mathrm{LO}}$		25		ns	EOLOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Instruction Word $\left(I_{0}-I_{5}\right)$ to Data Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$		22		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay,   Instruction Word $\left(\mathrm{I}_{0}-\mathrm{I}_{5}\right)$ to Shift Outputs ( $\overline{\mathrm{RO}}, \overline{\mathrm{LO}}$ )		22		ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Enable Delay, $\overline{\mathrm{EO}}$ to Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$		12		ns	
$\begin{aligned} & \text { tPLZ } \\ & \text { tphz } \end{aligned}$	Disable Delay, EO to Outputs ( $\overline{\mathrm{O}}_{\mathrm{O}}-\overline{\mathrm{O}}_{3}$ )		8		ns	

# 9405 <br> ARITHMETIC LOGIC REGISTER STACK <br> FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL 

DESCRIPTION - The Arithmetic Logic Register Stack (ALRS) is designed to implement general registers in high performance programmable digital systems. The device contains a 4-bit arithmetic logic unit (ALU), an 8-word by 4-bit RAM, and associated control logic. The ALU implements eight arithmetic and logic functions where one 4-bit operand is supplied from an external source (input data bus) and the second 4-bit operand is supplied internally from one of the eight RAM words selected by the Address Inputs ( $\mathrm{A}_{0}-\mathrm{A}_{2}$ ). The result of the operation is loaded into the same RAM location and simultaneously, is loaded into the output register making it available at the 3 -state output data bus.

The 9405 operates on four bits of data but features are provided for expansion to longer word lengths. Carry Propagate and Carry Generate Outputs are provided for an external carry lookahead where maximum operating speed is required. In applications where high speed arithmetic is not needed, ripple expansion may also be implemented. The 9405 provides three status signals: Zero, Negative and Overflow. These qualify the result of an operation. The 9405 is a member of Fairchild's MACROLOGIC TTL family and is fully compatible with all TTL families.

- EIGHT GENERAL REGISTERS/ACCUMULATORS IN A SINGLE PACKAGE
- HIGH SPEED - 10 MHz MICROINSTRUCTION RATE
- EXPANDABLE IN MULTIPLES OF FOUR BITS
- PROVIDES FOR RIPPLE OR LOOKAHEAD CARRY
- IMPLEMENTS 64 MICROINSTRUCTIONS
- PROVIDES STATUS - ZERO, NEGATIVE, AND OVERFLOW
- 3-STATE OUTPUTS
- 24-PIN PACKAGE


## PIN NAMES

$\bar{D}_{0}-\bar{D}_{3}$	Data Inputs (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Instruction Inputs
$\mathrm{I}_{0}-\mathrm{I}_{2}$	ALU Instruction Inputs (Note b)
MSS	Most Significant Slice Input (Active HIGH)
$\overline{\mathrm{CP}}$	Clock Input
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{EX}}$	Execute Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs (Active LOW)
$\bar{W}$	Ripple Carry Output (Active LOW) (Note c)
$\bar{X}$	Carry Propagate Output (Note d)
$\overline{\mathrm{Y}}$	Carry Generate Output (Note e)
Z	Zero Status Output (Active HIGH, Open
	Collector) (Note f)


LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.23 U.L.
130 U.L.	10 U.L.
10 U.L.	5 U.L.
10 U.L.	5 U.L.
10 U.L.	10 U.L.
	5 U.L.

## NOTES:

a) 1 Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH, 1.6 mA LOW ( 0.5 V ).
b) $I_{0}$ used also for Carry Input on lesser significant slices.
c) W Output also carries instruction information.
d) $\bar{X}$ Output provides Negative Status (active LOW) on most significant slice.
e) $\overline{\mathrm{Y}}$ Output provides Overflow Status (active LOW) on most significant slice.
f) An external pull-up resistor is required to supply HIGH level drive capability.


CONNECTION DIAGRAM DIP (TOP VIEW)


## BLOCK DIAGRAM



TABLE 1
INSTRUCTION FIELD ASSIGNMENT

$\mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	INTERNAL OPERATION	
L L L	Rx plus D-Bus plus $1 \rightarrow R x$	Accumulate
L L H	$R x$ plus D-Bus $\rightarrow$ Rx	Accumulate
L H L	$\mathrm{Rx} \cdot \mathrm{D}$-Bus $\rightarrow \mathrm{Rx}$	Logic AND
L H H	D-Bus $\rightarrow$ Rx	Load
H L L	Rx $\rightarrow$ Output Register	Output
H L H	$\mathrm{Rx}+\mathrm{D}-\mathrm{Bus} \rightarrow$	Logic OR
H H L	$R x \oplus$ D-Bus $\rightarrow$ Rx	Exclusive OR
HHH	D-Bus $\rightarrow \mathrm{Rx}$	Load Complement

NOTES:

1. Rx is the RAM location addressed by $A_{0}-A_{2}$.
2. The result of any operation is always loaded into the Output Register.

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram the 9405 Arithmetic Logic Register Stack (ALRS) consists of a 4-bit ALU, an 8-word by 4-bit RAM with output latches, an instruction decode network, control logic and a 4-bit Output Register.
The ALU receives the active LOW input data $\left(\bar{D}_{0}-\bar{D}_{3}\right)$ as one operand while the RAM provides the second operand through latches. The ALU output is stored in both the RAM and output register. The active LOW Output Data Bus $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$ is obtained from the output register through 3 -state buffers. An active LOW Output Enable ( $\overline{E O}$ ) input controls these buffers; a HIGH level $\overline{\mathrm{EO}}$ disables the buffers (high impedance state).

The instruction bus for the 9405 consists of two fields, $A$ and $I ; A_{0}-A_{2}$ specify the desired location of the RAM and $\mathrm{I}_{0}-\mathrm{I}_{2}$ specify the desired function to be performed. Table 1 lists Instruction Field Code assignments. Thus, the 9405 provides eight registers $\left(R_{0}-R_{7}\right)$ and eight different operations may be performed on any of these registers. The $I_{0}-I_{2}$ Inputs are decoded by the instruction decode network to generate necessary control signals for the ALU. The ALU also generates and transmits to the control logic the following signals: Carry Out, Carry Propagate, Carry Generate, Negative Status and Overflow Status. The control logic manipulates the status signals as a function of $\mathrm{I}_{0}-\mathrm{I}_{2}$ and a control input MSS. A HIGH on the MSS Input declares the most significant slice in a 9405 array (the diode-input on MSS allows it to be tied directly to $\mathrm{V}_{\mathrm{CC}}$ ). All devices, except the most significant 9405 should have a LOW level (ground) on the MSS Input. The control logic generates three device outputs, $\bar{W}, \bar{X}$ and $\bar{Y}$ for arrayed operation. An all zero result from the ALU is decoded and presented at the open collector Zero Status (Z) Output.

The $I_{0}$ input serves a dual purpose. For arithmetic instructions, it is used as the carry input and for non-arithmetic instructions it serves as an instruction input. This is possible because only two arithmetic instructions require carry. The dual purpose use of $\mathrm{I}_{0}$ plays an important role in 9405 expansion schemes.

OPERATION - The 9405 operates on a single clock. CP and $\overline{E X}$ are inputs to a 2 -input active LOW AND gate. A microcycle starts as the clock goes HIGH. For normal operation the Execute ( $\overline{E X}$ ) is LOW. Data is read from the RAM through enabled latches and applied as one operand to the ALU. Data inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ ) are applied to the ALU as the other operand and the operation as determined by instruction lines $\mathrm{I}_{0}-\mathrm{I}_{2}$ is executed. When CP is LOW, the latches are disabled and the result of the operation is written back into the RAM provided that EX is LOW. The A lines must obviously be held stable during this time. On the LOW-to-HIGH CP transition, the result of the operation is loaded into the output register and a new microcycle can start. If $\overline{E X}$ is held HIGH, the operation selected by the I and A Inputs is performed, but the result is not written back into the RAM and is not clocked into the output register.

9405 ARRAYS - The 9405 is organized to operate on a 4-bit wide data bus but can easily be expanded for longer words. Expansion requires that carries from lesser significant slices be propagated towards the most significant slice. The 9405 provides full lookahead capability for high speed arithmetic. Appropriate Carry Generate $(\bar{Y})$ and Carry Propagate ( $\bar{X}$ ) outputs are provided so that only one external carry lookahead generator is needed for every four 9405 s . When speed is not a prime consideration, it is possible to implement ripple carry expansion.
In arrayed operation, it is common to bus the $\overline{\mathrm{EX}}, \overline{\mathrm{CP}}$ and $\overline{\mathrm{EO}}$ Inputs of all devices. The $Z$ Output is open collector and is normally OR-tied with the other devices and to an external load resistor so that a HIGH level indicates a zero result from an operation in the array.
Figure 1 shows a ripple carry 16 -bit wide array using four 9405 s. The MSS input is tied to $\mathrm{V}_{\mathrm{Cc}}$ on the most significant slice (ALRS 4); the MSS inputs of the other devices are tied to ground. The instruction bus of this array consists of A-Field and $I$-Field. A-Field is obtained by connecting corresponding $A$ inputs of all four devices. The $I_{0}$ input of device 1 (i.e., least significant slice) in conjunction with the bussed $I_{1}, I_{2}$ Inputs forms the I-Field for the array. The $I_{0}$ Inputs of devices 2,3 and 4 are connected to the $\bar{W}$ Outputs of devices 1,2 and 3 respectively. The ALU network generates the carry propagate output. The control logic operates on this signal as a function of $I_{1}$ and $I_{2}$ to generate the $\bar{W}$ Output. If both $I_{1}$ and $I_{2}$ are LOW (i.e., an arithmetic instruction), the $\bar{W}$ Output is the carry output of that slice. In case of non-arithmetic instructions, it assumes the state of the $I_{0}$ input. Thus, in Figure 1, if an arithmetic instruction is specified, carry propagates through the $\bar{W}$ Output to $I_{0}$ Input of the next higher significant slice. On the other hand, non-arithmetic instructions effectively connect all $\mathrm{I}_{0}$ Inputs together to form the I-Field for the array. The $\bar{W}$ Output of device 4 is the carry output from the array. The control logic also generates $\bar{X}$ and $\bar{Y}$ Outputs which participate in expansion when full carry lookahead is required. These outputs are normally ignored in ripple expansion except for the most significant slice. In the most significant slice, $\bar{X}$ and $\bar{Y}$ correspond to Negative and Overflow status signals.
Thus, $\bar{X}$ Output of device 4 is LOW, if the result of an operation has its most significant bit as " 1 " (i.e., negative result). Similarly a LOW level on $\bar{Y}$ output of device 4 indicates that arithmetic overflow has occured. If the two operands have the same sign and the result has opposite sign, then it is assumed that an overflow has occurred. It should be noted that $\bar{W}, \bar{X}$ and $\bar{Y}$ are not controlled by EX or CP. Figure 2 shows a 16 -bit array with full carry lookahead expansion. Implementation of the lookahead scheme requires the use of an external $93 S 42 / 74 \mathrm{~S} 182$ in addition to the four 9405 s in the array. Since device 1 is the least significant and device 4 is the most significant slice, the MSS Inputs of the first three devices are connected to ground while device 4 has a HIGH at this input. The A-Field for the array instruction bus is obtained by connecting corresponding $A$ Inputs of all four devices. Bussed $I_{1}$ and $I_{2}$ Inputs together with the $I_{0}$ Input of device 1 form the $I$-Field for the array. The $I_{0}$ Inputs for devices 2,3 and 4 are obtained from the $93 S 42 / 74 \mathrm{~S} 182$ Carry Outputs (Cn+x, $\mathrm{Cn}+\mathrm{y}$, and $\mathrm{Cn}+\mathrm{z}$

FAIRCHILD • 9405
respectively). Also the $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ Inputs of $93 \mathrm{~S} 42 / 74 \mathrm{~S} 182$ are connected to $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$ Outputs of the 9405 s as shown. The control logic in the 9405 (see Block Diagram) generates $\bar{X}$ and $Y$ Outputs as a function of $I_{1}, I_{2}$ and MSS Inputs as well as the Carry Generate and Carry Propagate Outputs of the ALU. If the MSS Input of a slice is LOW and an arithmetic instruction is specified, its $\bar{X}$ Output reflects Carry Propagate and $\bar{Y}$ reflects Carry Generate Outputs from that slice. For an arithmetic instruction the $I_{0}$ Input is treated as carry-in into a slice irrespective of MSS. Thus, whenever $I_{1}$ and $I_{2}$ are LOW, the array behaves as an adder with full carry lookahead. The $\bar{W}$ Outputs still reflect carry output, which is ignored for devices 1,2 and 3. The $\bar{W}$ Output of device 4 is the carry output from the array. Also, note that the $I_{0}$ Input of device 1 is not only an instruction input but also provides the carry input to the array so the $\mathrm{I}_{0}$ Input of device 1 must be connected to the appropriate $93542 / 74 \mathrm{~S} 182$ input as shown.
When a non-arithmetic instruction is specified to the array, the control logic of the 9405 forces a LOW on $\overline{\mathrm{X}}$ and a HIGH on $\bar{Y}$ Outputs on all except the most significant slice. An examination of the $93 S 42 / 74 \mathrm{~S} 182$ logic reveals that whenever $\overline{\mathrm{P}}$ is LOW and $\overline{\mathrm{G}}$ is HIGH the associated carry output is the same as the carry input. Thus, in Figure 2 devices 2, 3, and 4 will assume the logic level as that presented to the $\mathrm{I}_{0}$ Input of device 1 during non-arithmetic instructions effectively bussing $\mathrm{I}_{0}$ through all four devices. As in the case of ripple expansion $\bar{X}$ and $\bar{Y}$ Outputs of device 4 represent Negative and Overflow from the array.



Fig 2. CARRY LOOKAHEAD EXPANSION

FAIRCHILD • 9405

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)	
			MIN	TYP	MAX			
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Voltage		2.0			V	Guaranteed Inpu	HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage	
		XC			0.8			
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIIN}, \mathrm{I}_{\text {IN }}$	-18 mA
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage $\bar{W}, \bar{X}$ Outputs	XM	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$	
		XC	2.4	3.4				
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$	XM	2.4	3.4		V	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
		XC	2.4	3.1			$\mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}$	
${ }^{1} \mathrm{OH}$	Output HIGH Current Z Output				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage$\bar{w}, \bar{x}, z$			0.3	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}$	4.0 mA
				0.4	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}^{\text {l }}$	8.0 mA
VOL	Output LOW Voltage $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}, \overline{\mathrm{Y}}$			0.3	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}$	$=8.0 \mathrm{~mA}$
OL				0.4	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}$	$=16 \mathrm{~mA}$
${ }^{1} \mathrm{OZH}$	Output Off Current HIGH				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ MAX, $\mathrm{V}_{\mathrm{O}}$	T $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$
IOZL	Output Off Current LOW				-100	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=$ MAX, $\mathrm{V}_{\mathrm{O}}$	T $=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$
${ }^{1} \mathrm{IH}$	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$V_{C C}=$ MAX, $V_{\text {I }}$	$=2.7 \mathrm{~V}$
					1.0	mA	$V_{C C}=$ MAX, $V_{\text {I }}$	$=5.5 \mathrm{~V}$
1 IL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}$	$=0.4 \mathrm{~V}$
los	Output Short Circuit Current		-30		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}$	T $=0 \mathrm{~V}$ (Note 3)
${ }^{1} \mathrm{CC}$	Supply Current			100	160	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inp	ts Open

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC SET-UP REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, See Fig. 3

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t }} \mathrm{CW}$	Clock Period		75		ns	
tPWH	Clock Pulse Width (HIGH)		30			
tPWL	Clock Pulse Width (LOW)		20			
$\mathrm{t}_{\mathrm{s}} \overline{\mathrm{EX}}$	Set-Up Time, EX to CP		0			
$t_{h} \mathrm{EX}$	Hold Time, $\overline{E X}$ to CP		0			
$\mathrm{t}_{\mathrm{s}} \mathrm{A} 1$	Set-Up Time, $A_{0}, A_{1}, A_{2}$ to Negative Going CP (Note 1)		25		ns	
$\mathrm{t}_{\mathrm{s}} \mathrm{A} 2$	Set-Up Time, $A_{0}, A_{1}, A_{2}$ to Positive Going CP (Note 1)		70		ns	
$t_{h} \mathrm{~A}$	Hold Time, $A_{0}, A_{1}, A_{2}$ to Positive Going CP		5		ns	
$\mathrm{t}_{s} \overline{\mathrm{D}}$	Set-Up Time, $\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}$ to Positive Going CP		45		ns	EX LOW
$t_{h} \bar{\square}$	Hold Time, $\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}$ to Positive Going Clock		-20		ns	
$\mathrm{t}_{\mathrm{s}}$ !	Set-Up Time, $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ to Positive Going Clock		50		ns	
$t_{\text {l }} 1$	Hol dTime, $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ to Positive Going Clock		0		ns	

## NOTE:

1. Both set-up times must be met simultaneously.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, See Fig. 3

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {tPLH }}$ tPHL	Propagation Delay, Positive Going CP to $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$		25		ns	EO, $\overline{E X}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{I}_{0}$ to $\bar{W}$		15		ns	$\mathrm{I}_{1}$ or $\mathrm{I}_{2} \mathrm{HIGH}$
tPLH   tpHL	Propagation Delay, Data ( $\left.\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}\right)$ to $\bar{W}$		35		ns	$\mathrm{I}_{1}, \mathrm{I}_{2}$ LOW
tPLH	Propagation Delay, Data ( $\left.\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}\right)$ to $\bar{X}, \bar{Y}$		50		ns	MSS HIGH ${ }^{\text {l }} \mathrm{I}_{1}, \mathrm{I}_{2}$
tPHL			25		ns	MSS LOW LOW
tPLH   tPHL	Propagation Delay, $I_{1} I_{2}$ to $\bar{X}, \bar{Y}$		22		ns	MSS LOW
${ }^{\text {tPLH }}$   tPHL	Propagation Delay, Data ( $\left.\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}\right)$ to Z		55		ns	$1 \mathrm{k} \Omega$ External Load Resistor to $\mathrm{V}_{\mathrm{CC}}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, ${ }^{10}$ to $\bar{W}$		40		ns	$1_{1}, 1_{2}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{I}_{1}, \mathrm{I}_{2}$ to $\bar{W}$		15		ns	$1_{1}, 1_{2}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D} 3}$ to $\overline{\mathrm{X}}$		50		ns	$\begin{aligned} & \mathrm{I}_{1}, \mathrm{I}_{2} \mathrm{HIGH} \\ & \text { MSS HIGH } \end{aligned}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address ( $A_{0}, A_{1}, A_{2}$ ) to $\bar{X}, \bar{Y}$		55		ns	$\mathrm{I}_{1}, \mathrm{I}_{2} \text { LOW }$   MSS LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Address ( $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ ) to $\bar{X}, \bar{Y}$		70		ns	$\mathrm{I}_{1}$, $\mathrm{I}_{2}$ LOW MSS HIGH
$\begin{aligned} & \text { tPLH } \\ & { }^{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation Delay, Address ( $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ ) to $\bar{X}$		70		ns	$\mathrm{I}_{1}, \mathrm{I}_{2} \mathrm{HIGH}$ MSS HIGH
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Address ( $A_{0}, A_{1}, A_{2}$ ) to $\bar{W}$		55		ns	$\mathrm{I}_{1}, \mathrm{I}_{2}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Address ( $A_{0}, A_{1}, A_{2}$ ) to $Z$		70		ns	$1_{1}, I_{2}$ LOW
${ }^{\text {tPLH }}$	Propagation Delay, $1_{1}, l_{2}$ to $\bar{X}, \bar{Y}$		20		ns	$\mathrm{I}_{1}, \mathrm{I}_{2} \text { LOW }$
tPHL			45		ns	MSS HIGH
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Io to $\bar{X}, \bar{Y}$		50		ns	$\begin{aligned} & \mathrm{I}_{1}, \mathrm{I}_{2} \text { LOW } \\ & \text { MSS HIGH } \end{aligned}$
${ }^{\text {tpLH }}$   tPHL	Propagation Delay, $I_{1}, I_{2}$ to $Z$		42		ns	$\mathrm{I}_{1}, \mathrm{I}_{2}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{I}_{0}$ to Z		25		ns	$\mathrm{I}_{1}, \mathrm{I}_{2}$ LOW
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Enable Delay, $\overline{\mathrm{EO}}$ to Outputs $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$		12		ns	
$\begin{aligned} & \hline \mathrm{tPLZ} \\ & \text { tPHZ } \end{aligned}$	Disable Delay, $\overline{\mathrm{EO}}$ to $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$		10		ns	



NOTES:
a) Delay for logical operation ( $I_{1}$ or $I_{2} \mathrm{HIGH}$ )
b) Delay for arithmetic operation ( $I_{1}=I_{2}=$ LOW $)$

Fig. 3 ALRS TIMING DIAGRAM

# 9406 <br> PROGRAM STACK <br> FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL 

DESCRIPTION - The 9406 is a 16 -word by 4 -bit "Push-Down Pop-Up" Program Stack. It is designed to implement Program Counter (PC) and return address storage for nested subroutines in programmable digital systems. The 9406 executes 4 instructions: Return, Branch, Call and Fetch as specified by a 2-bit instruction. When the device is initialized, the Program Counter ( PC ) is in the top location of the Stack. As a new PC value is "pushed" into the Stack (Call Operation), all previous PC values effectively move down one level. The top location of the Stack is the current PC. Up to 16 PC values can be stored, which gives the 9406 a 15 level nesting capability. "Popping" the Stack (Return Operation) brings the most recent PC to the top of the Stack. The remaining two instructions affect only the top location of the Stack. In the Branch operation a new PC value is loaded into the top location of the Stack from the $\bar{D}_{0}-\bar{D}_{3}$ Inputs. In the Fetch operation, the contents of the top Stack location (current PC value) are put on the $X_{0}-X_{3}$ bus and the current PC value is incremented.
The 9406 may be expanded to any word length without additional logic. 3-State output drivers are provided on the 4 -bit Address Outputs $\left(X_{0}-X_{3}\right)$ and Data Outputs, $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$; the X -Bus Outputs are enabled internally during the Fetch instruction while the O-bus Outputs are controlled by an Output Enable ( $\overline{\mathrm{EO}}_{0}$ ). Two status outputs, Stack Full ( $\overline{\mathrm{SF}}$ ) and Stack Empty ( $\overline{\mathrm{SE}}$ ) are provided. The 9406 is a member of Fairchild's 9400 MACROLOGIC TTL family, and is fully compatible with all TTL families.

## - 16-WORD BY 4-BIT LIFO

- 15-LEVEL NESTING CAPABILITY
- 10 MHz MICROINSTRUCTION RATE
- PROGRAM COUNTER LOADS FROM DATA BUS
- OPTIONAL AUTOMATIC INCREMENT OF PROGRAM COUNTER
- STACK LIMIT STATUS INDICATORS
- 24-PIN PACKAGE
- 3-STATE OUTPUTS


## PIN NAMES

$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)	0.5 U.L.	0.23 U.L.
$\mathrm{I}_{0}, \mathrm{I}_{1}$	Instruction Inputs	0.5 U.L.	0.23 U.L.
$\overline{E X}$	Execute Input (Active LOW)	0.5 U.L.	0.23 U.L.
CP	Clock Input	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{Cl}}$	Carry Input (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{EO}}_{0}$	Output Enable Input (Active LOW)	0.5 U.L.	0.23 U.L.
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Output Data Outputs (Active LOW) (Note b)	130 U.L.	10 U.L.
$\mathrm{x}_{0}-\mathrm{x}_{3}$	Address Outputs (Note b)	130 U.L.	10 U.L.
CO	Carry Output (Active LOW) (Note b)	10 U.L.	5 U.L.
$\overline{\text { SF }}$	Stack Full Output (Active LOW) (Note b)	10 U.L.	5 U.L.
$\overline{\text { SE }}$	Stack Empty Output (Active LOW) (Note b)	10 U.L.	5 U.L.

NOTES:
a. 1 unit load (U.L.) $=40 \mu \mathrm{~A}$ HIGH, 1.6 mA LOW.
b. Output fan-out with $\mathrm{V}_{\mathrm{OL}} \leqslant 0.5 \mathrm{~V}$.


## NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram, the 9406 consists of an input multiplexer, a $16 \times 4$ RAM with output latches addressed by the Stack Pointer (SP), an incrementor, control logic, and output buffers. The 9406 is organized around three 4 -bit busses; the Input Data Bus ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ ), Output Data Bus ( $\left.\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$ and the Address Bus $\left(X_{0}-X_{3}\right)$. The 9406 implements four instructions as determined by Inputs $I_{0}$ and $I_{1}$. (See Table 1). The O-Bus is derived from the RAM output latches and enabled by the active LOW Output Enable ( $\overline{E O}_{0}$ ) Input. The $X$-Bus is also derived from the output latches; it is enabled internally during the Fetch instruction. Execution of instructions is controlled by the Execute (EX) and Clock (CP) Inputs.

FETCH OPERATION - The Fetch Operation places the content of the current Program Counter (PC) on the X-Bus. If the Carry $\ln (\overline{\mathrm{CI}})$ is LOW, the current PC is incremented in preparation for the next Fetch. If $\overline{\mathrm{CI}}$ is HIGH , the value of the current program is unchanged, (Iterative Fetch).

The instruction code is set up on the I lines when CP is HIGH. The active level LOW Execute ( $\overline{E X}$ ) is normally set up at this time as well. The control logic interprets $I_{0}$ and $I_{1}$ and selects the incrementor output as the data source to the RAM via the input multiplexer. The current PC value is loaded into the latches and is available on the O-Bus if $\overline{\mathrm{EO}}_{0}$ is LOW. When CP is LOW the output latches are disabled from following the RAM output, when both $C P$ and $\overline{E X}$ are LOW, buffers are enabled, applying the current PC to the X-Bus. The output of the incrementor is written into the RAM during the period when CP and $\overline{\mathrm{EX}}$ are LOW. If $\overline{\mathrm{Cl}}$ is LOW, the value stored in the current PC, plus one, is written into the RAM. If $\overline{\mathrm{CI}}$ is HIGH , the current PC is not incremented. Carry Out (CO) is LOW when the contents of the current PC is at its maximum, e.e., all ones and the Carry In $(\overline{\mathrm{CI}})$ is LOW. When CP or EX goes HIGH, writing into the RAM is inhibited and the Address Buffers $\left(\mathrm{X}_{0}-\mathrm{X}_{3}\right)$ are disabled.

BRANCH OPERATION - During a Branch Operation, the Data Inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ ) are loaded into the current program counter.
The instruction code and the $\overline{E X}$ Input are set up when CP is HIGH. The Stack Pointer remains unchanged. When CP goes LOW (assuming $\overline{E X}$ is LOW) the D-Bus Inputs are written into the current PC. The X-Bus drivers are not enabled during a Branch Operation.

CALL OPERATION - During a Call Operation the content of the Data Bus is loaded into the top location of the stack and all previous PC values are effectively moved down one level.
The Instruction code and the $\overline{E X}$ Input are set up when CP is HIGH. When $\overline{E X}$ is LOW, a "one" is added to the Stack Pointer value thus incrementing the RAM address. Since the output latches go to the nontransparent or store mode when CP is LOW, the O-Bus outputs will reflect the RAM output at the CP negative-going transition. If EX goes LOW considerably before CP goes LOW, the O-Bus will correspond to the previous contents of the incremented RAM address after CP goes LOW. If CP goes LOW a very short time after EX, the O-Bus will remain unchanged until the LOW to HIGH transition of CP.
When CP is LOW (assuming $\overline{E X}$ is LOW) the D-Bus Inputs are written into this new RAM location. On the LOW-to-HIGH CP transition, the incremented Stack Pointer value is loaded into the Stack Pointer Register and the O-Bus Outputs reflect the newly entered data. When the RAM address is " 1111 " the Stack Full Output ( $\overline{\mathrm{SF}}$ ) is LOW, indicating that no further Call operations should be initiated. If an additional Call Operation is performed SP is incremented to (0000), the contents of that location will be written over, $\overline{\mathrm{SF}}$ will go HIGH and the Stack Empty ( $\overline{\mathrm{SE}})$ will go LOW.
The X-Bus drivers are not enabled during a Call operation.
RETURN OPERATION - During the Return operation the previous PC is "popped" to become the current PC.
The instruction is set up when CP is HIGH. When $\overline{E X}$ is LOW, a "one" is subtracted from the Stack Pointer value, thus decrementing the RAM address. If $\overline{E X}$ goes LOW considerably before $C P$ goes LOW, the O-Bus will correspond to the new value after $\overline{E X}$ goes LOW. If CP goes LOW a short time after $\overline{E X}$, the O-Bus will remain unchanged until the LOW to HIGH transition of CP.

On the LOW-to-HIGH CP transition the decremented Stack Pointer value is loaded into the Stack Pointer Register and the O-Bus Outputs correspond to the new "popped" value.
The X-Bus drivers are not enabled during a return operation. When the RAM address is " 0000 ", the Stack Empty Output $(\overline{\mathrm{SE}})$ is LOW, indicating that no further return operations should be initiated. If an additional Return operation is performed, SP is decremented to " 1111 ", the $\overline{\mathrm{SE}}$ will go HIGH and the Stack Full Output ( $\overline{\mathrm{SF}}$ ) will go LOW. Operation of the active LOW Master Reset ( $\overline{\mathrm{MR} \text { ) causes the SP to be reset and the contents of that RAM location (0000) to be cleared. The Stack }}$ Empty ( $\overline{\mathrm{SE}}$ ) output goes LOW. This operation overrides all other inputs.

MULTIPLE 9406 OPERATION - The 9406 may be expanded to any word length in multiples of four without external logic. The connection for expanded operation is shown in Figure 1. Carry $\ln (\mathrm{Cl})$ and Carry Out (CO) are connected to provide automatic increment of the current program counter during Fetch. The $\overline{\mathrm{Cl}}$ Input of the least significant 9406 is tied LOW to ground.
If automatic increment during Fetch is not desired, the $\overline{\mathrm{Cl}}$ Input of the least significant 9406 is held HIGH.

## BLOCK DIAGRAM



*Tie to $V_{\mathrm{CC}}$ to disable automatic increment.
Fig. 1
9406 EXPANSION A 16 BY 12 PROGRAM STACK

FAIRCHILD • 9406

TABLE 1
INSTRUCTION SET FOR THE 9406

$I_{1} I_{0}$	INSTRUCTION	INTERNAL OPERATION		X-BUS
L L	Return (Pop)	Decrement Stack Pointer	Disabled	$\begin{array}{l}\text { O-BUS (WITH EOO LOW) }\end{array}$
L H	Branch (Load PC)	$\begin{array}{l}\text { Lepending on the relative timing of EX and } \\ \text { CP, the outputs will reflect the current pro- } \\ \text { gram counter or the new value while CP is } \\ \text { LOW. When CP goes HIGH again, the }\end{array}$		
Proutput will reflect the new value.				

H = HIGH Level
L $=$ LOW Level

DC CHARACTERISTICS OVER OPERATION TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)	
			MIN	TYP	MAX			
$V_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed input	HIGH Voltage
$V_{\text {IL }}$.	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage	
		XC			0.8			
$\mathrm{v}_{\text {CD }}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\text {CC }}=$ MIN, IIN	$-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage $\overline{\mathrm{CO}}, \overline{\mathrm{SE}}, \overline{\mathrm{SF}}$	XM	2.4	3.4		V	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	
		XC	2.4	3.4				
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage$x_{0}-x_{3}, \bar{o}_{0}-\bar{o}_{3}$	XM	2.4	3.4		V	${ }^{1} \mathrm{OH}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
		XC	2.4	3.1			$\mathrm{I}^{\mathrm{OH}}=-5.7 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL }}$	$\frac{\text { Output }}{\mathrm{CO}}, \overline{\mathrm{SE}}, \overline{\mathrm{SF}}$			0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	
				0.35	0.5		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}$	8.0 mA
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage$x_{0}-x_{3}, \bar{o}_{0}-\bar{o}_{3}$			0.25	0.4	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=8.0 \mathrm{~mA}$	
				0.35	0.5		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}$	16 mA
IozH	Output Off Current HIGH				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OUT}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$	
IozL	Output Off Current LOW				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{H}}$	Input HIGH Current			1,0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
IH					1.0	mA	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}$	5.5 V
IIL	Input LOW Current				-0.36	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
los	Output Short Circuit Current		-30		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)	
${ }^{1} \mathrm{CCH}$	Supply Current			100	160	mA	$V_{C C}=$ MAX	

## NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

FAIRCHILD • 9406

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
${ }^{\text {t }}$ CW	Clock Period		80		ns	
tPWH	Clock Pulse Width (HIGH)		40		ns	
tPWL	Clock Pulse Width (LOW)		30		ns	
$\mathrm{t}_{\mathrm{s}} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{E X}$ to CP		0		ns	
$t_{\text {the }} \overline{\mathrm{Ex}}$	Hold Time, $\overline{E X}$ to CP		0		ns	
$\mathrm{t}_{\mathrm{s}}$ !	Set-Up Time, $1_{0}, I_{1}$ to Negative-Going Clock		20		ns	Figure 2
thl	Hold Time, $\mathrm{I}_{0}, \mathrm{I}_{1}$ to Positive-Going Clock		0		ns	
${ }_{\mathrm{t}_{\mathrm{s}} \mathrm{Cl}}$	Set-Up Time, $\overline{\mathrm{Cl}}$ to Negative-Going Clock		5		ns	
${ }_{\text {th }} \mathrm{Cl}$	Hold Time, $\overline{\mathrm{Cl}}$ to Positive-Going Clock		0		ns	
$\mathrm{ts}_{5} \mathrm{D}$	Set-Up Time, $\mathrm{D}_{0}-\mathrm{D}_{3}$ to Positive-Going Clock		20		ns	
$t_{\text {t }} \mathrm{D}$	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{3}$ to Positive-Going Clock		0		ns	
${ }_{\text {tPWL }} \overline{M R}$	$\overline{M R}$ Pulse Width (LOW)		40		ns	Figure 3
trec	$\overline{\mathrm{MR}}$ to Negative-Going Clock		30		ns	

REFER TO INDIVIDUAL TIMING DIAGRAMS FOR EACH OPERATION TO DETERMINE OUTPUT RESPONSE


Fig. 2
WAVEFORMS FOR ALL OPERATIONS


Fig. 3
RESET OPERATION


Fig. 4
CARRY-IN TO CARRY-OUT

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Carry $\ln (\overline{\mathrm{Cl}})$ to Carry Out ( $\overline{\mathrm{CO}}$ )		$\begin{aligned} & 14 \\ & 10 \end{aligned}$		ns	Figure 4
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-Going CP to Carry Out ( $\overline{\mathrm{CO}}$ )		34		ns	Figure 5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Negative-Going $\overline{\mathrm{EX}}$ to Carry Out ( $\overline{\mathrm{CO}}$ )		$\begin{aligned} & 34 \\ & 38 \end{aligned}$		ns	Figure 6



Fig. 5
CLOCK TO CARRY-OUT


Fig. 6
EXECUTE TO CARRY-OUT

AC CHARACTERISTICS AND SET-UP REQUIREMENTS FOR THE BRANCH (LOAD PC) OPERATION:
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-Going CP to Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$		$\begin{aligned} & 28 \\ & 36 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{0} \text { LOW }$   Figures 7 and 8
$\mathrm{t}_{\text {S }}$	Set-Up Time, $\mathrm{I}_{0}, \mathrm{I}_{1}$ to Negative-Going $\bar{E} \bar{X}$		20		ns	
$t_{h}$	Hold Time $\mathrm{I}_{0}, I_{1}$ to Positive-Going $\overline{E X}$		0		ns	$\overline{\mathrm{EX}}$ goes HIGH before CP, Figure 8
${ }_{\text {th }}$	Hold Time, $\mathrm{I}_{0}, \mathrm{I}_{1}$ to Positive-Going CP		0		ns	CP goes HIGH before $\overline{E X}$, Figure 7
$\mathrm{t}_{\mathrm{s}}$	Set-Up Time, $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ to Positive-Going CP		16		ns	
$t_{\text {h }}$	Hold Time, $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ to Positive-Going CP		0		ns	Figures 7 and 8
tPWL	$\overline{\text { EX Pulse Width }}$		30		ns	$\overline{\mathrm{EX}}$ Goes HIGH Before CP, Figure 8

FAIRCHILD• 9406


Fig. 7
BRANCH OPERATION, CP GOES HIGH BEFORE EX

CONDITIONS: $\overline{E O}_{0}$ LOW


Fig. 8
BRANCH OPERATION, EX GOES HIGH BEFORE CP

AC CHARACTERISTICS AND SET-UP REQUIREMENTS FOR THE CALL (PUSH) OPERATION:
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 9)

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-Going CP to New Value of $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 35 \\ & 55 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{0}$ LOW
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Negative-Going $\overline{E X}$ to Intermediate Value of $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 30 \\ & 45 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{0}$ LOW, Set-Up Requirements $\mathrm{t}_{\mathrm{s} 1} \overline{\mathrm{EX}}$ must be met
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Negative-Going $\overline{E X}$ to $\overline{\mathrm{SE}}, \overline{\mathrm{SF}}$		$\begin{aligned} & 20 \\ & 40 \end{aligned}$		ns	
${ }_{\text {ts }}$	Set-Up Time, Negative-Going $\overline{\mathrm{EX}}$ to $\mathrm{I}_{0}, \mathrm{I}_{1}$		20		ns	
th	Hold Time, Positive-Going CP to $\mathrm{I}_{0}, \mathrm{I}_{1}$		0		ns	
$\mathrm{t}_{\mathrm{s} 1} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{\mathrm{EX}}$ to Negative-Going CP which Guarantees Intermediate Data on $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ while CP is LOW		45		ns	
$\mathrm{t}_{\mathrm{s} 2} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{E X}$ to Negative-Going CP which Guarantees no Change in $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ While CP is LOW		0		ns	
$t_{h} \overline{E X}$	Hold Time, Positive-Going CP to Positive-Going EX		0		ns	
$\mathrm{t}_{5}$	Set-Up Time, $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ to Positive-Going CP		20		ns	
${ }^{\text {th }}$	Hold Time, Positive-Going CP to $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$		0		ns	



Fig. 9
CALL (PUSH) OPERATION
NOTES:

1. Condition which occurs when $\overline{E X}$ goes LOW considerably before $C P$ goes $L O W$ ( $t_{s} \overline{E X}$ is met).
2. Condition which occurs when $\overline{E X}$ goes LOW slightly before CP goes LOW ( $\mathrm{t}_{\mathrm{S} 2} \overline{\mathrm{EX}}$ is met).

AC CHARACTERISTICS AND SET-UP REQUIREMENTS FOR THE RETURN (POP) OPERATION:
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figure 10)

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
tPLH   tPHL	Propagation Delay, Positive-Going CP to New Value of $\overline{\mathrm{O}}_{\mathrm{O}}-\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 28 \\ & 55 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{\mathrm{O}}$ LOW
tPLH   tPHL	Propagation Delay, Negative-Going $\overline{\mathrm{EX}}$ to New Value of $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 30 \\ & 45 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{\mathrm{O}}$ LOW, Set-Up Requirements $\mathrm{t}_{\mathrm{s} 1} \overline{\mathrm{EX}}$ must be met
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Negative-Going $\overline{\mathrm{EX}}$ to $\overline{\mathrm{SE}}, \overline{\mathrm{SF}}$		$\begin{aligned} & 20 \\ & 40 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{s}}$	Set-Up Time, Negative-Going $\overline{E X}$ to $I_{0}, I_{1}$		20		ns	
th	Hold Time, Positive-Going CP to $\mathrm{I}_{0}, \mathrm{I}_{1}$		0		ns	
$\mathrm{t}_{\mathbf{1} 1} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{E X}$ to Negative-Going CP which Guarantees the New Value on $\overline{\mathrm{O}}_{\mathrm{O}}-\overline{\mathrm{O}}_{3}$ While CP is LOW		45		ns	
$\mathrm{t}_{5} 2 \overline{\mathrm{EX}}$	Set-Up Time, $\overline{\mathrm{EX}}$ to Negative-Going CP. Either $t_{s} 2 \overline{E X}$ or $t_{s} 3 \overline{E X}$ must be met for Proper Operation		0		ns	
$t_{s} 3 \overline{E X}$	Set-Up Time, EX to Positive-Going CP.   Either $t_{s} 3 \overline{E X}$ or $\tau_{s} 2 \overline{E X}$ (Above) must be met for Proper Operation.		30		ns	

FAIRCHILD • 9406


Fig. 10
RETURN (POP) OPERATION

NOTES:

1. Condition which occurs when $\overline{E X}$ goes LOW considerably before $C P$ goes LOW ( $t_{s} \overline{E X}$ is met).
2. Condition which occurs when $\overline{E X}$ goes LOW slightly before or after CP goes LOW ${ }^{s}$ leither $t_{s} 2 E X$ or $t_{s} 3 \overline{E X}$ are met).

## AC CHARACTERISTICS AND SET-UP REQUIREMENTS FOR THE FETCH OPERATION:

$$
V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}
$$

SYMBOL	PARAMETERS	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL. } \end{aligned}$	Propagation Delay Positive-Going CP to Incremented Value of $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$		$\begin{aligned} & 29 \\ & 38 \end{aligned}$		ns	$\overline{\mathrm{EO}}_{0}, \overline{\mathrm{Cl}}$ LOW, Figures 13 and 14
$\begin{aligned} & \mathrm{tPZL} \\ & \mathrm{tPZH} \end{aligned}$	Turn-On Delay, from CP or $\overline{E X}$   Whichever goes LOW last to $X_{0}-X_{3}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$		ns	$\overline{\text { EO }} \times$ LOW, Figures $11,12,13$ and 14
$\mathrm{t}_{5}$	Set-Up Time, $I_{0}, I_{1}$ to Negative-Going $\overline{E X}$		20		ns	
th	Hold Time, $\mathrm{I}_{0}, \mathrm{I}_{1}$ to CP or $\overline{\mathrm{EX}}$ whichever goes HIGH first		0		ns	Figures 11, 12, 13 and 14
$\mathrm{t}_{\text {s }}$	Set-Up Time, Negative Going $\overline{E X}$ to Positive-Going CP		25		ns	
$\mathrm{t}_{5}$	Negative-Going $\overline{\mathrm{Cl}}$ to Positive-Going CP		20		ns	Fetch with Increment, Figures 13 and 14
th	Positive-Going $\overline{\mathrm{Cl}}$ to Negative-Going $\overline{\mathrm{EX}}$		0			Iterative Fetch, Figures 11 and 12

FAIRCHILD • 9406


Fig. 11
ITERATIVE FETCH


Fig. 12
ITERATIVE FETCH
NOTES:

1. $X_{0}-X_{3}$ Turn-On Delay measured from the time both $\overline{E X}$ and CP go LOW.
2. $X_{0}-X_{3}$ Turn-Off Delay measured from the time either $\overline{E X}$ or CP goes HIGH .

FAIRCHILD • 9406


Fig. 13
FETCH WITH INCREMENT PC
CONDITIONS $\overline{E O}_{0}$ LOW, $\overline{\mathrm{EX}}$ goes HIGH before CP
${ }^{1} 0.19$

Fig. 14
FETCH OPERATION WITH INCREMENT PC
NOTES:

1. $X_{0}-X_{3}$ Turn-On Delay measured from the time both $\overline{E X}$ and $C P$ go LOW.
2. $X_{0}-X_{3}$ Turn-Off Delay measured from the time either EX or CP goes HIGH.

# DATA ACCESS REGISTER <br> FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL 

DESCRIPTION - The 9407 Data Access Register (DAR) performs memory address arithmetic for RAM resident stack applications. It contains three 4-bit registers intended for Program Counter ( $\mathrm{R}_{0}$ ), Stack Pointer $\left(\mathrm{R}_{1}\right)$, and Operand Address ( $\mathrm{R}_{2}$ ). The 9407 implements 16 instructions (see Table 1) which allow either pre or post decrement/increment and register-to-register transfer in a single clock cycle. It is expandable in 4 -bit increments and can operate at a 10 MHz microinstruction rate on a 16 -bit word. The 3 -state outputs are provided for bus oriented applications. The 9407 is a member of Fairchild's MACROLOGIC TTL family and is fully compatible with all TTL families.

- HIGH SPEED - 10 MHz MICROINSTRUCTION RATE
- THREE 4-BIT REGISTERS
- 16 INSTRUCTIONS FOR REGISTER MANIPULATION
- two SEPARATE OUTPUT PORTS, ONE TRANSPARENT
- RELATIVE ADDRESSING CAPÁBILITY
- 3-STATE OUTPUTS
- OPTIONAL PRE OR POST ARITHMETIC
- EXPANDABLE IN MULTIPLES OF FOUR BITS
- SLIM 24-PIN PACKAGE


## PIN NAMES

$\bar{D}_{0}-\bar{D}_{3}$
$\frac{1}{C}^{C l}-I_{3}$
$\overline{\mathrm{CO}}$
CP
$\overline{E X}$
$\overline{E O}_{X}$
$\overline{\mathrm{EO}}_{0}$
$\mathrm{X}_{0}-\mathrm{X}_{3} \quad$ Address Outputs (Note b)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$
Data Inputs (Active LOW)
Instruction Word Inputs
Carry Input (Active LOW) (Note b)
Carry Output (Active LOW)
Clock Input ( $\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Execute Input (Active LOW)
Address Output Enable Input
(Active LOW)
Data Output Enable Input
(Active LOW)

0
Data Outputs (Active LOW)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.23 U.L.
0.5 U.L.	0.23 U.L.
0.5 U.L.	0.23 U.L.
10 U.L.	5 U.L.
0.5 U.L.	0.23 U.L.
0.5 U.L.	0.23 U.L.
0.5 U.L.	0.23 U.L.
0.5 U.L.	0.23 U.L.
130 U.L.	10 U.L.
130 U.L.	10 U.L.

(Note b)

## NOTES:

a. 1 Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH, 1.6 mA LOW.
b. Output Current measured at $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$.


FAIRCHILD • 9407


6

FUNCTIONAL DESCRIPTION - The 9407 contains a 4-bit slice of three Registers ( $\mathrm{R}_{0}-\mathrm{R}_{2}$ ), a 4-Bit Adder, a 3-state Address Output Buffer $\left(\mathrm{X}_{0}-\mathrm{X}_{3}\right)$, and a separate Output Register with 3 -state buffers $\left(\mathrm{O}_{0}-\overline{\mathrm{O}}_{3}\right)$, allowing output of the register contents on the data bus (refer to the Block Diagram). The DAR performs 16 instructions, selected by $\mathrm{I}_{0} \mathrm{I}_{3}$, as listed in Table 1.

OPERATION - The 9407 operates on a single clock. CP and EX are inputs to a 2 -input, active LOW AND gate. For normal operation $\overline{E X}$ is brought LOW while CP is HIGH. A microcycle starts as the clock goes HIGH. Data Inputs $\bar{D}_{0}-\bar{D}_{3}$ are applied to the Adder as one of the operands. Three of the four instruction lines ( $I_{1}, I_{2}, I_{3}$ ) select which of the three registers, if any, is to be used as the other operand. The LOW-to-HIGH CP transition writes the result from the Adder into a register $\left(R_{0}-R_{2}\right)$ and into the output register provided EX is LOW. If the $I_{0}$ instruction input is HIGH , the multiplexer routes the result from the Adder to the 3 -state Buffer controlling the address bus ( $X_{0}-X_{3}$ ) independent of $E X$ and $C P$. If $I_{0}$ is LOW, the multiplexer routes the output of the selected register directly into the 3 -State Buffer controlling the Address Bus $\left(X_{0}-X_{3}\right)$, independent of $\overline{E X}$ and $C P$.

9407 ARRAYS - The 9407 is organized as a 4-bit register slice. The active LOW $\overline{\mathrm{Cl}}$ and $\overline{\mathrm{CO}}$ lines allow ripple-carry expansion over longer word lengths.

APPLICATIONS - In a typical application, the register utilization in the DAR may be as follows: $R_{0}$ is the program counter (PC), $\mathrm{R}_{1}$ is the stack pointer (SP) for memory resident stacks and $\mathrm{R}_{2}$ contains the operand address. For an instruction Fetch, PC can be gated on the X-Bus while it is being incremented (i.e., D -Bus $=1$ ). If the fetched instruction calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC, and loaded into $R_{2}$ during the next microcycle.

TABLE 1
INSTRUCTION SET FOR THE 9407

INSTRUCTION				COMBINATORIAL FUNCTION AVAILABLE ON THE X-BUS	SEQUENTIAL FUNCTION OCCURRING ON THE NEXT RISING CP EDGE
$\mathrm{I}_{3}$	$\mathrm{I}_{2}$	$\mathrm{I}_{1}$	${ }^{1} 0$		
L	L	L	L	$\mathrm{R}_{0}$	
L	L	L	H	$\mathrm{R}_{0}$ plus D plus Cl	$\mathrm{R}_{0}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
$L$	L	H	L	$\mathrm{R}_{0}$	$\mathrm{R}_{0}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
$L$	L	H	H	$\mathrm{R}_{0}$ plus D plus Cl	$\mathrm{R}_{\text {O }}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and O-register
L	H	L	L	$\mathrm{R}_{0}$	
L	H	L	H	$\mathrm{R}_{0}$ plus D plus Cl	$\mathrm{R}_{0}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
$L$	H	H	L	$\mathrm{R}_{1}$	$\mathrm{R}_{1}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
L	H	H	H	$\mathrm{R}_{1}$ plus D plus Cl	$\mathrm{R}_{1}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
H	$L$	L	L	$\mathrm{R}_{2}$	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	L	L	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	L	H	L	$\mathrm{R}_{0}$	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
H	L	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
H	H	L	L	$\mathrm{R}_{2}$	$\mathrm{R}_{2}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	H	L	H	$\mathrm{R}_{2}$ plus D plus Cl	$\mathrm{R}_{2}$ plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	H	H	L	$\mathrm{R}_{1}$	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
$\mathrm{H}^{\circ}$	H	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and O-register

```
L = LOW Level
H}=HIGH Level
```


## FAIRCHILD • 9407

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			$\checkmark$	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{\mathrm{CD}}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage, $\overline{\mathrm{CO}}$   Output HIGH Voltage $x_{0}-x_{3}, \bar{o}_{0}-\bar{o}_{1}$	$\begin{aligned} & X M \\ & X C \\ & X M \\ & X C \end{aligned}$	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$
			2.4	3.4			
VOH			2.4	3.4		V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
			2.4	3.1			$\mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MI}$
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage, $\overline{\mathrm{CO}}$			0.3	0.4	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=4.0 \mathrm{~mA}$
				0.4	0.5		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=8.0 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voitage$x_{0}-x_{3}, \bar{o}_{0}-\bar{o}_{3}$			$\begin{aligned} & \hline 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}_{\mathrm{OL}}=8.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
IOZH	Output Off Current HIGH				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$
IOZL	Output Off Current LOW				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$
${ }^{1} \mathrm{H}$	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current		-30		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)
Icc	Supply Current			90	145	mA	$V_{C C}=$ MAX, Inputs Open

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC SET-UP REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
${ }^{\text {t }}$ W	Clock Period (Note)		80		ns	
tPWH	Clock Puise Width (HIGH) (Note)		50			
tPWL	Clock Pulse Width (LOW) (Note)	20				
${ }_{\text {ts }}$	Set-Up Time, $I_{0}-I_{3}$ to Negative-Going Clock	20			ns	
th	Hold Time, $\mathrm{I}_{0}-\mathrm{I}_{3}$ to Positive-Going Clock	0			ns	
$t_{s} \bar{\square}$	Set-Up Time, $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{Cl}}$ to Negative-Going Clock	20			ns	
$t_{h} \overline{\mathrm{D}}$	Hold Time, $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{Cl}}$ to Negative-Going Clock	0			ns	
$t_{s} 1$	Set-Up Time, $\overline{\mathrm{Cl}}$ to Positive-Going Clock	5			ns	
$t_{\text {b }} 1$	Hold Time, $\overline{\mathrm{Cl}}$ to Positive-Going Clock		0		ns	

FAIRCHILD • 9407

SYMBOL	PARAMETER	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-Going CP to $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ (Note)		$\begin{aligned} & 32 \\ & 22 \end{aligned}$		ns	$\overline{E O}_{0}$ LOW, Figure 3
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Instruction Inputs - $1_{1}-1_{3}$ to $X_{0}-X_{3}$		$\begin{aligned} & 26 \\ & 22 \end{aligned}$		ns	$\overline{\text { EO }} \times$ LOW, $1_{0}$ LOW, Figure 1
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Instruction Inputs - $1_{1}-I_{3}$ to $X_{0}-X_{3}$		$\begin{aligned} & 50 \\ & 45 \end{aligned}$		ns	$\overline{\text { EO }} \times$ LOW, $\mathrm{I}_{0} \mathrm{HIGH}$, Figure 1
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Positive-Going Clock to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 40 \\ & 35 \end{aligned}$		ns	EOX ${ }^{10}$ LOW
tPLH   tPHL	Positive-Going Clock to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 65 \\ & 55 \end{aligned}$		ns	EOx LOW, ${ }_{\text {O }} \mathrm{HIGH}$, Figure 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data Inputs to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		ns	$\begin{aligned} & I_{0} \text { HIGH, } I_{1}-I_{3} \text { Stable, } \\ & \text { EO LOW, Figure } 4 \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{Cl}}$ to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 24 \\ & 20 \end{aligned}$		ns	$I_{0}$ HIGH, $I_{1}-I_{3}$ Stable, EOX LOW, Figure 5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{I}_{0}$ to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 24 \\ & 32 \end{aligned}$		ns	$\overline{\text { EO }} \times$ LOW, Figure 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-Going   Clock to $\overline{\mathrm{CO}}$		$\begin{aligned} & 45 \\ & 58 \\ & \hline \end{aligned}$		ns	Figure 1
tpLH   tphL	Propagation Delay, $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$		$\begin{aligned} & 13 \\ & 22 \end{aligned}$		ns	Figure 5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data Inputs $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ to $\overline{\mathrm{CO}}$		$\begin{aligned} & 13 \\ & 24 \end{aligned}$		ns	Figure 4
$\begin{aligned} & \text { TPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Instruction Inputs $\mathrm{I}_{1}-\mathrm{I}_{3} \text { to } \overline{\mathrm{CO}}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$		ns	Figure 1
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Delay, $\overline{\mathrm{EO}}_{0}$ to Outputs $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$, $\overline{\mathrm{EO}} \mathrm{X}$ to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 13 \\ & 18 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Disable Delay, $\overline{\mathrm{EO}}_{0}$ to $\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}$ $\overline{\mathrm{EO}} \mathrm{X}$ to $\mathrm{X}_{0}-\mathrm{X}_{3}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$		ns	

TIMING DIAGRAM


Fig. 1


NOTE:
The internal clock is generated from CP and $\overline{\mathrm{EX}}$. The internal Clock is HIGH if $\overline{E X}$ or CP is HIGH, LOW if $\overline{E X}$ and CP are LOW.

FAIRCHILD • 9407

TIMING DIAGRAM


Fig. 3


Fig. 4
Fig. 5

# 9410 <br> REGISTER STACK•16×4 RAM WITH 3-STATE OUTPUT REGISTER <br> FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ TTL 

DESCRIPTION - The 9410 is a register oriented high speed 64-bit Read/Write Memory organized as 16 -words by 4 -bits. An edge triggered 4 -bit output register allows new input data to be written while previous data is held. 3-state outputs are provided for maximum versatility. The 9410 is a member of Fairchild's 9400 MACROLOGIC TTL family and is fully compatible with all TTL families.

## - EDGE TRIGGERED OUTPUT REGISTER

- TYPICAL ACCESS TIME OF 35 ns
- 3-STATE OUTPUTS
- OPTIMIZED FOR REGISTER STACK OPERATION
- TYPICAL POWER OF 375 mW
- 18-PIN PACKAGE


## PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address Inputs
$\overline{\mathrm{D}}_{\mathbf{0}}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
CP	Clock Input (Outputs Change on LOW
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	to HIGH Transition)
	Outputs (Active LOW)


LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.23 U.L.
130 U.L.	10 U.L.
	(Note b)

## NOTES:

a) 1 Unit Load (U.L.) $=40 \mu \mathrm{AHIGH}, 1.6 \mathrm{~mA}$ LOW.
b) 10 LOW Unit Loads measured at 0.5 V .


## FUNCTIONAL DESCRIPTION

Write Operation - When the three Control Inputs: Write Enable ( $\overline{W E}$ ), Chip Select ( $\overline{\mathrm{CS}}$ ), and Clock (CP), are LOW the information on the Data Inputs ( $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ ) is written into the memory location selected by the Address Inputs ( $\mathrm{A}_{0}-\mathrm{A}_{3}$ ). If the input data changes while $\overline{W E}, \overline{C S}$, and $C P$ are LOW, the contents of the selected memory location follows these changes, provided set-up time criteria are met.
Read Operation - Whenever $\overline{C S}$ is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the Address Inputs ( $\mathrm{A}_{0}-\mathrm{A}_{3}$ ) is edge-triggered into the Output Register.
A 3-State Output Enable ( $\overline{\mathrm{EO}}$ ) controls the Output Buffers. When $\overline{\mathrm{EO}}$ is HIGH the four Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are in a high impedance or OFF state; when EO is LOW, the Outputs are determined by the state of the output register.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

SYMBOL	PARAMETER		LIMITS			UNITS	TEST CONDITIONS (Note 1)
			MIN	TYP	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage	XM			0.7	V	Guaranteed Input LOW Voltage
		XC			0.8		
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	XM	2.4	3.4			$V_{C C}=\mathrm{MIN}$
		XC	2.4	3.1			
VOL	Output LOW Voltage	XM \& XC		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
		XC		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
$\mathrm{I}^{\mathrm{OZH}}$	Output Off Current HIGH				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=3 \mathrm{~V}$
IOZL	Output Off Current LOW				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=3 \mathrm{~V}$
$\mathrm{I}_{1} \mathrm{H}$	Input HIGH Current			1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.36	mA	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$
IOS	Output Short Circuit Current		$-30$		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ ( Note 3)
${ }^{1} \mathrm{CCH}$	Supply Current			75	110	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs Open

## NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
READ MODE						
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Delay, Output Enable to Output		9 9	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figure 2
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, Output Enable to Output		5 5	8 8	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figure 2
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figure 3
$\mathrm{t}_{\mathrm{s}} \mathrm{AR}$	Set-up Time to Read from Address to Clock	45	35		ns	Figure 3
$t_{h}$ AR	Hold Time to Read from Address to Clock	0		0	ns	Figure 3
WRITE MODE						
tw	Write Enable, Chip Select, or Clock Pulse Width Required to Write (Note a)	35	20		ns	Figure 4
$\mathrm{t}_{\mathrm{s}} \mathrm{AW}$	Set-up Time Address to Write Enable (Note b)	5			ns	Figure 4
${ }_{4}$ AW	Hold Time Address to Write Enable (Note b)	0			ns	Figure 4
$\mathrm{t}_{s} \mathrm{DW}$	Set-up Time Data to Write Enable (Note b)	35	25		ns	Figure 4
$t_{\text {h DW }}$	Hold Time Data to Write Enable	0			ns	Figure 4

NOTES:
a) Writing occurs when $\overline{W E}, \overline{\mathrm{CE}}$ and CP are LOW.
b) Assuming $\overline{W E}$ is utilized as Writing Strobe.

READ MODE AC PARAMETERS


Fig. 2

PROPAGATION DELAY OUTPUT ENABLE TO DATA OUTPUTS


Other Conditions: $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=$ LOW
Fig. 3
PROPAGATION DELAY CLOCK TO DATA OUTPUTS, AND SET-UP AND HOLD TIMES ADDRESS TO CLOCK TO READ

WRITE MODE AC PARAMETERS


Other Conditions: $\overline{\mathrm{CS}}=\mathrm{CP}=$ LOW
Fig. 4
WRITE ENABLE PULSE
WIDTH, SET-UP AND HOLD TIMES ADDRESS AND DATA TO WRITE ENABLE


DEVICE INDEX AND	
SELECTOR INFORMATION	3

SSI DATA SHEETS

LOW POWER SCHOTTKY AND MACROLOGICTM TTL


MSI DATA SHEETS
5

MACROLOGICTM TTL DATA SHEETS

ORDERING INFORMATION AND
PACKAGE OUTLINES
FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND DISTRIBUTOR LOCATIONS

## LOW POWER SCHOTTKY ORDERING INFORMATION

Fairchild digital integrated circuits may be ordered using a simplified purchasing code in which the package style and temperature range are defined below. Either the 74LS series number or the 9LS series number may be used when ordering.

## TEMPERATURE RANGE

$\mathrm{M}=$ Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{C}=$ Commercial $\mathrm{O}^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
PACKAGE STYLE
$D=$ Dual In-Line - Ceramic (Hermetic)
$P=$ Dual In-Line - Plastic
$F=$ Flat Package


In order to accommodate varying die sizes (SSI, MSI, etc.), numbers of pins (14, 16, 24, etc.), and package outlines, a number of different package forms are required in each of the three package style categories.

The following lists indicate the specific package dimensions currently used for each device type. The detailed outline corresponding to each package code is shown at the end of this section.

LOW POWER SCHOTTKY DEVICE MARKING EXAMPLE


## MACROLOGIC TTL DEVICE MARKING EXAMPLE



DEVICE	$\begin{gathered} \text { MILITARY (M) } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		DEVICE	COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)		$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
54LSOO	6A	31	74LSOO	6A	9A	31
54LSO2	6A	31	74LSO2	6 A	9A	31
54LSO3	6A	31	74LSO3	6A	9A	31
54LSO4	6A	31	74LSO4	6A	9A	31
54LSO5	6A	31	74LSO5	6 A	9A	31
54LS08	6A	31	74LS08	6A	9A	31
54LSO9	6 A	31	74LS09	6A	9A	31
54LS10	6A	31	74LS10	6A	9A	31
54LS11	6A	31	74LS11	6 A	9A	31
54LS14	6 A	31	74LS14	6 A	9A	31
54LS15	6A	31	74LS15	6A	9A	31
54LS20	6A	31	74LS20	6A	9A	31
54LS21	6A	31	74LS21	6 A	9A	31
54LS22	6 A	31	74LS22	6A	9A	31
54LS27	6A	31	74LS27	6A	9A	31


DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		DEVICE	COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)		CERAMIC DIP (D)	PLASTIC DIP (P)	FLATPAK (F)
54LS30	6 A	31	74LS30	6A	9A	31
54LS32	6 A	31	74LS32	6A	9A	31
54LS37	6A	31	74LS37	6 A	9 A	31
54LS38	6 A	31	74LS38	6A	9A	31
54LS40	6A	31	74LS40	6A	9A	31
54LS42	6 B	4 L	74LS42	6 B	9 B	4L
54LS51	6 A	31	74LS51	6A	9A	31
54LS54	6A	31	74LS54	6A	9 A	31
54LS55	6A	31	74LS55	6A	9A	31
54LS73	6A	31	74LS73	6 A	9 A	31
54LS74	6 A	31	74LS74	6A	9 A	31
54LS83	6 B	4L	74LS83	6 B	9 B	4L
54LS86	6A	31	74LS86	6A	9A	31
54LS90	6A	31	74LS90	6A	9 A	31
54LS92	6A	31	74LS92	6A	9A	31
54LS93	6 A	31	74LS93	6A	9 A	31
54LS95	6A	31	74LS95	6A	9A	31
54LS109	6 B	4L	74LS109	6 B	98	4L
54LS112	6 B	4 L	74LS112	6 B	9 B	4L
54LS113	6A	31	74LS113	6A	9 A	31
54LS114	6A	31	74LS114	6A	9A	31
54LS125	6A	31	74LS125	6A	9A	31
54LS126	6A	31	74LS126	6A	9 A	31
54LS132	6A	31	74LS132	6A	9 A	31
54LS133	6 B	4L	74LS133	6 B	98	4L
54LS136	6 A	31	74LS136	6A	9 A	31
54LS138	6B	4L	74LS138	6 B	9 B	4L
54LS139	6 B	4L	74LS139	6 B	9 B	4L
54LS151	6 B	4L	74LS151	6 B	98	4L
54LS152		31	74LS152			31
54LS153	6 B	4L	74LS153	6 B	98	4 L
54LS155	6B	4L	74LS155	6B	98	4L
54LS156	6 B	4L	74LS156	6 B	9 B	4L
54LS157	6 B	4L	74LS157	6 B	98	4L
54LS158	6B	4L	74LS158	6 B	9 B	4L
54LS160	6 B	4L	74LS160	6 B	98	4 L
54LS161	6 B	4L	74LS161	6 B	98	4L
54LS162	6 B	4L	74LS162	6 B	98	4L
54LS163	6 B	4 L	74LS163	6 B	98	4 L
54LS164	6A	31	74LS164	6A	9A	31
54LS170	6 B	4L	74LS170	6 B	98	4 L
54LS174	6 B	4L	74LS174	6 B	98	4L
54LS175	6 B	4L	74LS175	6B	98	4L
54LS181	6 N	4 M	74LS181	6 N	9 N	4 M
54LS190	6 B	4L	74LS190	6 B	98	4L


DEVICE	MILITARY (M)$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$		DEVICE	COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)		CERAMIC DIP (D)	$\begin{aligned} & \text { PLASTIC } \\ & \text { DIP (P) } \end{aligned}$	FLATPAK (F)
54LS191	6B	4L	74LS191	6 B	9 B	4 L
54LS192	6B	4L	74LS192	6B	9 B	4L
54LS193	6B	4L	74LS193	6B	9 B	4L
54LS194	6B	4L	74LS194	6B	9 B	4L
54LS195	6 B	4L	74LS195	6B	9 B	4L
54LS196	6 A	31	74LS196	6 A	9A	31
54LS197	6A	31	74LS197	6 A	9A	31
54LS251	6B	4 L	74LS251	6B	9 B	4 L
54LS253	6B	4L	74LS253	6 B	98	4 L
54LS257	6B	4 L	74LS257	6 B	98	4L
54LS258	6B	4L	74LS258	6 B	9 B	4L
54LS259	6B	4L	74LS259	6B	9 B	4L
54LS266	6A	31	74LS266	6 A	9A	31
54LS279	6B	4 L	74LS279	6B	9 B	4 L
54LS283	6B	4L	74LS283	6B	9 B	4L
54LS290	6 A	31	74LS290	6 A	9 A	31
54LS293	6 A	31	74LS293	6 A	9A	31
54LS295	6 A	31	74LS295	6 A	9A	31
54LS298	6B	4 L	74LS298	6B	9 B	4 L
54LS365	6B	4 L	74LS365	6B	9 B	4L
54LS366	6 B	4 L	74LS366	6B	9 B	4L
54LS367	6B	4L	74LS367	6 B	9 B	4L
54LS368	6 B	4L	74LS368	6B	9 B	4L
54LS670	6 B	4L	74LS670	6 B	9 B	4L
DEVICE	MILITARY (M)$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$			COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATP		$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
9LSOO	6A	3		6A	9A	31
9LSO2	6 A	3		6 A	9A	31
9LSO3	6A	3		6A	9A	31
9LS04	6 A	3		6A	9A	31
9LS05	6 A	3		6 A	9A	31
9LS08	6 A	3		6A	9A	31
9LS09	6 A	3		6A	9A	31
9LS10	6 A	3		6 A	9A	31
9LS11	6 A	3		6A	9A	31
9LS14	6 A	3		6A	9A	31
9LS15	6 A	3		6 A	9A	31
9LS20	6 A	3		6A	9A	31
9LS21	6 A	3		6 A	9A	31
9LS22	6A	3		6A	9A	31
9LS27	6 A	3		6 A	9A	31


DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
9LS30	6A	31	6 A	9A	31
9LS32	6 A	31	6 A	9A	31
9LS37	6A	31	6 A	9A	31
9LS38	6A	31	6 A	9A	31
9LS40	6A	31	6 A	9 A	31
9LS42	6B	4L	6 B	9 B	4L
9LS51	6 A	31	6 A	9A	31
9LS54	6 A	31	6 A	9A	31
9LS55	6 A	31	6 A	9A	31
9LS73	6 A	31	6 A	9 A	31
9 LS 74	6 A	31	6 A	9 A	31
9LS83	6 B	4 L	6 B	9 B	4L
9LS86	6 A	31	6 A	9A	31
9LS90	6 A	31	6 A	9A	31
9LS92	6 A	31	6 A	9A	31
9LS93	6A	31	6 A	9A	31
9LS95	6 A	31	6A	9A	31
9LS109	6B	4 L	6B	9B	4L
9 LS112	6B	4L	6B	9B	4L
$9 \mathrm{LS113}$	6A	31	6 A	9A	31
9 LS 114	6A	31	6 A	9A	31
9 LS 125	6 A	31	6 A	9A	31
9LS126	6A	31	6A	9A	31
9 LS132	6A	31	6 A	9A	31
9LS133	6 B	4 L	6 B	9B	4L
9LS136	6 A	31	6 A	9A	31
9LS138	6B	4L	6B	9B	4L
9LS139	6B	4L	6B	9B	4L
9LS151	6B	4L	6 B	9B	4L
9 LS 152		31			31
9LS153	6B	4L	6B	9B	4L
9LS155	6 B	4L	6B	9B	4L
9LS156	6B	4L	6B	9 B	4L
9LS157	6B	4 L	6B	9 B	4L
9LS158	6B	4L	6B	9B	4L
9LS160	6B	4L	6B	9 B	4L
9LS161	6B	4 L	6B	9 B	4L
9LS162	6B	4L	6B	9 B	4L
9LS163	6B	4L	6B	9 B	4L
9 LS 164	6A	31	6A	9A	31
9LS170	6B	4L	6B	9 B	4L
9 SS174	6B	4L	6B	9B	4L
9LS175	6B	4L	6B	9B	4L
9LS181	6 N	4M	6 N	9 N	4M
9LS190	6B	4L	6 B	9 B	4L


DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
9LS191	6B	4L	6B	9 B	4L
9LS192	6 B	4L	6B	9 B	4L
9LS193	6 B	4 L	6B	9 B	4L
9LS194	6B	4L	6B	9 B	4L
9LS195	6 B	4L	6 B	98	4 L
9LS196	6 A	31	6 A	9A	31
9 LS197	6A	31	6A	9A	31
9LS251	6B	4 L	6B	9 B	4 L
9LS253	6 B	4L	6B	9 B	4L
9 S 257	6B	4L	6B	9 B	4 L
9LS258	6 B	4 L	6B	9 B	4L
9LS259	6B	4L	6B	9 B	4L
9LS266	6 A	31	6 A	9A	31
9LS279	6B	4L	6B	9 B	4 L
9LS283	6 B	4 L	6B	9 B	4L
9LS290	6 A	31	6 A	9A	31
9LS293	6 A	31	6 A	9A	31
9LS295	6 A	31	6A	9A	31
9LS298	6 B	4 L	6B	9 B	4L
9LS365	6B	4L	6B	9 B	4 L
9LS366	6B	4L	6B	9B	4L
9 LS367	6 B	4L	6B	9 B	4L
9LS368	6 B	4L	6B	9 B	4L
$9 \mathrm{LS670}$	6 B	4L	6B	9 B	4L
9401	7 A	31	7 A	9A	31
9403	60	4 M	60	94	4M
9404	60	4 M	60	9 U	4M
9405	60	4 M	60	9 U	4M
9406	60	4 M	60	94	4 M
9407	60	4 M	60	9 U	4 M
9410	7D		7 D	9M	
96 LO 2	6B	4 L	6B	9 B	4L
96 SO 2	6B	4 L	6B	9 B	4L

## PACKAGE OUTLINES FLATPAK

## in accordance with JEDEC (TO-86) outline <br> 14-Pin Cerpak



## NOTES:

All dimensions in inches
Leads are gold-plated kovar
Package weight is 0.26 gram
Lead 1 orientation may be either tab or dot

16-Pin Cerpak

All dimensions in inches Leads are gold-plated kovar
Package weight is 0.4 gram

## 24-Pin BeO Cerpak



NOTES:
All dimensions in inches Leads are gold-plated kovar Package weight is 0.8 gram

## PACKAGE OUTLINES

## in accordance with JEDEC (TO-116) outline 14-Pin Ceramic Dual In-Line



## 24-Pin Ceramic Dual In-Line



16-Pin Ceramic Dual In-Line


## NOTES:

All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead
Leads are tin-plated kovar
Package weight is 2.0 grams
*The . 037 / . 027 dimension does not apply to the corner leads

NOTES:
All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to faciliate insertion
Board-drilling dimensions should equal your practice for $.020^{\prime \prime}$ diameter lead
Leads are tin-plated kovar
Package weight is 2.0 grams



60

## NOTES:

All dimensions in inches
Leads are intended for insertion in hole rows on .400" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead Leads are tin-plated kovar

## PACKAGE OUTLINES

14-Pin Ceramic Dual In-Line

$7 A$



NOTES:
All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead
Leads are tin-plated kovar
Package weight is 2.0 grams


7D
18-Pin Ceramic Dual In-Line


NOTES
All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020' diameter lead
Leads are tin-plated kovar
*The .037 / .027 dimension does not apply to the corner leads

16-Pin Ceramic Dual In-Line


7B


NOTES
All dimensions in inches
Leads are intended for insertion in hole rows on .300' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead
Leads are tin-plated kovar
Package weight is 2.2 grams
*The .037 / .027 dimension does not apply to the corner leads

## PACKAGE OUTLINES

## 14-Pin Plastic Dual In-Line



NOTES:
All dimensions in inches Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead
Leads are tin-plated kovar
Package weight is 0.9 gram

16-Pin Plastic Dual In-Line



NOTES:
All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead Leads are tin-plated kovar
Package weight is 0.9 gram
*The .037/. 027 dimensions does not apply to the corner leads

## PACKAGE OUTLINES

## 18-Pin Plastic Dual In-Line

9M

NOTES:
All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead Leads are tin-plated kovar

## 24-Pin Plastic Dual In-Line

## 24-Pin Plastic Dual In-Line



## NOTES:

All dimensions in inches
Leads are intended for insertion in hole rows on .600" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Leads are tin-plated kovar
Package weight is 2.7 grams


NOTES:
All dimensions in inches
Leads are intended for insertion in hole rows on .400" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" diameter lead
Leads are tin-plated kovar

DEVICE INDEX AND	
SELECTOR INFORMATION	3

SSI DATA SHEETS

LOW POWER SCHOTTKY AND MACROLOGICTM TTL


MACROLOGIC ${ }^{\text {TM }}$ TTL DATA SHEETS


FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES AND

## FAIRCHILD FRANCHISED DISTRIBUTORS

## ALABAMA

hallmark electronics
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-8700 TWX: 810-726-2187

## HAMILTON/AVNET ELECTRONICS

805 Oster Drive, N.W
Huntsville, Alabama 35805
Tel: 205-533-1170
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

## ARIZONA

HAMILTON/AVNET ELECTRONICS
2615 S. 21st Street
Phoenix, Arizona 85034
Tel: 602-275-7851 TWX: 910-951-1535
LIBERTY ELECTRONICS/ARIZONA
3130 N. 27th Avenue
Phoenix, Arizona 85016
Tel: 602-257-1272 TWX: 910-951-4282

## CALIFORNIA

AVNET ELECTRONICS
10916 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2345 TWX: 910-340-6364
BELL INDUSTRIES
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378
ELMAR ELECTRONICS
2288 Charleston Rd
Mountain View, California 94042
Tel: 415-961-3611 TWX: 910-379-6437
HAMILTON ELECTRO SALES
10912 W. Washington Bivd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
HAMILTON/AVNET ELECTRONICS
575 E. Middlefield Road
Mountain View. California 94040
Tel: 415-961-7000 TWX: 910-379-6486
HAMILTON/AVNET ELECTRONICS
8917 Complex Drive
San Diego, California 92123
Tel: 714-279-2421
Telex: HAMAVELEC SDG 69-5415
G.S. MARSHALL COMPANY

9674 Telstar Avenue
El Monte, California 91731
Tel: 213-686-0141 TWX: 910-587-1565
G.S. MARSHALL COMPANY

17975 Skypark Blvd
Irvine, California 92707
Tel: 714-556-6400
G.S. MARSHALL COMPANY

8057 Raytheon Rd., Suite 1
San Diego, California 92111
Tel: 714-278-6350 TWX: 910-335-1191

## LIBERTY ELECTRONICS <br> 124 Maryland Street <br> El Segundo, California 90245 <br> Tel: 213-322-8100 TWX: 910-348-7111 <br> LIBERTY ELECTRONICS/SAN DIEGO <br> 8248 Mercury Court <br> San Diego, California 92111

Tel: 714-565-9171 TWX: 910-335-1590

COLORADO
ELMAR ELECTRONICS
6777 E. 50th Avenue
Commerce City, Colorado 80022
Tel: 303-287-9611 TWX: 910-936-0770
G.S. MARSHALL COMPANY

5633 Kendall Court
Arvada, Colorado 80002
Tel: 303-423-9670 TWX: 910-938-2902
HAMILTON/AVNET ELECTRONICS
5921 N. Broadway
Denver, Colorado 80216
Tel: 303-534-1212 TWX: 910-931-0510
CONNECTICUT
HAMILTON/AVNET ELECTRONICS
643 Danbury Road
Georgetown, Connecticut 06829
Tel: 203-762-0361
TWX: None - use 710-897-1405 (Regional Hq. in Mt. Laurel, N.J.)

HARVEY ELECTRONICS
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
SCHWEBER ELECTRONICS
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

## FLORIDA

HALLMARK ELECTRONICS
1302 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092

## HALLMARK ELECTRONICS

7233 Lake Ellenor Drive
Orlando. Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
HAMILTON/AVNET ELECTRONICS
4020 North 29th Avenue
Hollywood, Florida 33021
Tel: 305-925-5401 TWX: 510-954-9808
SCHWEBER ELECTRONICS
2830 North 28th Terrace
Hollywood. Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

## GEORGIA

HAMILTON/AVNET ELECTRONICS
6700 Interstate 85 Access Road, Suite 1E
Norcross, Ga. 30071
Tel: 404-448-0800
Telex: None - use HAMAVLECB DAL 73.0511
(Regional Hq. in Dallas, Texas)

## SCHWEBER ELECTRONICS

4126 Pleasantdale Rd., Suite 14
Atlanta, Ga. 30340
Tel: 404-449-9170
ILLINOIS
ALLIED ELECTRONICS
1355 Sleepy Hollow Road
Elgin, Illinois 60120
Tel: 312-697-8200
Telex: 72-2465 or 72-2466
KIERULFF ELECTRONICS
9340 Williams Street
Rosemont, Illinois 60018
Tel: 312-678-8560 TWX: 910-227-3166

HAMILTON/AVNET ELECTRONICS
3901 N. 25th Avenue
Schiller Park, Illinois 60176
Tel: 312-678-6310 TWX: 910-227-0060
SCHWEBER ELECTRONICS, INC
1380 Jarvis Ave.
Elk Grove Village, III. 60007
Tel: 312-593-2740 TWX: 910-222-3453
SEMICONDUCTOR SPECIALISTS, INC
(mailing address)
O'Hare International Airport
P.O. Box 66125

Chicago, Illinois 60666
(shipping address)
195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, llinois 60126
Tel: 312-279-1000 TWX: 910-254-0169

## INDIANA

PIONEER INDIANA ELECTRONICS, INC.
6408 Castleplace Drive
Indianapolis. Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794
SEMICONDUCTOR SPECIALISTS, INC
(mailing address)
Weir Cook Airport
P.O. Box 41630

Indianapolis, Indiana 46241
(shipping address)
1885 Banner Ave
Indianapolis, Indiana 46241
Tel: 317-243-8271 TWX: 810-341-3126

## IOWA

SCHWEBER ELECTRONICS
Suite 302, Executive Plaza
4403 First Avenue S.E.
Cedar Rapids, Iowa 52402
Tel: 319-393-9125

## KANSAS

HAMILTON/AVNET ELECTRONICS
37 Lenexa industrial Center
9900 Pflumm Road
Lenexa, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73.0511
(Regional Hq in Dallas, Texas)

## LOUISIANA

STERLING ELECTRONICS CORP.
4613 Fairfield
Metairie, Louisiana 70002
Tel: 504-887-7610
Telex: STERLE LEC MRIE 58-328

## MARYLAND

HAMILTON/AVNET ELECTRONICS
(mailing address)
Friendship International Airport
P.O. Box 8647

Baltimore, Maryland 21240
(shipping address)
7255 Standard Drive
Hanover, Maryland 21076
Tel: 301-796-5000 TWX: 710-862-1861
Telex: HAMAVLECA HNVE 87-968
SCHWEBER ELECTRONICS
5640 Fisher Lane
Rockville, Maryland 20852
Tel: 301-881-2970 TWX: 710-828-0536
PIONEER WASHINGTON ELECTRONICS, INC.
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784

## FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd)

## MASSACHUSETTS

GERBER ELECTRONICS
852 Providence Highway U.S. Route 1

Dedham, Massachusetts 02026
Tel: 617-329-2400
HAMILTON/AVNET ELECTRONICS
185 Cambridge Street
Burlington, Massachusetts 01803
Tel: 617-273-2120 TWX: 710-332-1201

## HARVEY ELECTRONICS

44 Hartwell Ave.
Lexington, Massachusetts 02173
Tel: 617-861-9200
KIERULFF ELECTRONICS
13 Fortune Drive
Billerica, Massachusetts 01865
Tel: 617-667-8331 (Local)
617-935-5134 (from Boston Area)
TWX: 710-390-1449
SCHWEBER ELECTRONICS
213 Third Avenue
Waltham, Massachusetts 02154
Tel: 617-890-8484

## MICHIGAN

HAMILTON/AVNET ELECTRONICS
12870 Farmington Rd.
Livonia, Michıgan 48150
Tel: 313-522-4700 TWX: 810-242-8775
PIONEER/DETROIT
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
SCHWEBER ELECTRONICS
86 Executive Drive
Troy, Michigan 48084
$\mathrm{T} \in 1$ 313-583-9242
SHERIDAN SALES CO
24543 Indoplex Drive (P O Box 529
Farmington, Mich 48024
Tel: 313-477.3800

## MINNESOTA

HAMILTON/AVNET ELECTRONICS
/683 Washington Ave. South
Edina, Minnesota 55435
Tel: 612.941-3801
TWX: None - use 910-227-0060 (Regional Hq in Chicago, III.)

SCHWEBER ELECTRONICS
7015 Washington Ave. South
Edina. Minnesota 55435
Tel: 612-941-5280
SEMICONDUCTOR SPECIALISTS, INC
8030 Cedar Avenue South
Nimneapolis, Minnesota 55420
Tel: 612-854-8841 TWX 910-576-2812

## MISSOURI

HAMILTON/AVNET ELECTRONICS
364 Brookes Lane
Hazelwood, Missouri 63042
Tel: 314-731-1144.
Telex: HAMAVLECA HAZW 44-2348
SEMICONDUCTOR SPECIALISTS, INC
3805 N. Oak Trafficway
Kansas City, Mo. 64116
Tel: 816-452-3900 TWX: 910-771-2114
SEMICONDUCTOR SPECIALISTS, INC
Lakeview Square
1020 Anglum Road
Hazelwood. Missouri 63042
Tel: 314-731-2400 TWX: 910.762-0645

NEW JERSEY
HAMILTON/AVNET ELECTRONICS
113 Gaither Drive
East Gate Industrial Park
Mt. Laurel, N.J. 08057
Tel: 609-234-2133 TWX: 710-897-1405
HAMILTON/AVNET ELECTRONICS
218 Little Falls Road
Cedar Grove, New Jersey 07009
Tel: 201-239-0800 TWX 710 9945787
KIERULFF ELECTRONICS
\#5 Industrial Drive
Rutherford, New Jersey 07070
Tel: 201-935-2120 TWX. 710-989-0225
STERLING ELECTRONICS
774 Pfeiffer Blvd
Perth Amboy, N J 08861
Tel: 201-442-8000 Telex. 138-679
SCHWEBER ELECTRONICS
43 Belmont Drive
Somerset, N J 08873
Tel: 201-469-6008 TWX 710-480-4733

## NEW MEXICO

CENTURY ELECTRONICS
121 Elizabeth. N E
Albuquerque. New Mexico 87123
Tel 505-292-2700 TWX 910-989-0625
HAMILTON/AVNET ELECTRONICS
2450 Baylor Dr. S E
Albuquerque. New Mexico 87119
Tel: 505-765-1500
TWX None --. use 910-379-6486 (Regional Ha in Mt View, Ca)

## NEW YORK

HAMILTON/AVNET ELECTRONICS
167 Clay Road
Rochester, New York 14623
Tel: 716-442-7820
TWX: None - use 710-332-1201

$$
\text { (Regional } \mathrm{Hq} \text { in Burlington, Mass) }
$$

HAMILTON/AVNET ELECTRONICS
6500 Joy Road
E Syracuse, New York 13057
Tel 315-437-2642 TWX 710-541-0959
HAMILTON/AVNET ELECTRONICS
70 State Street
Westbury, L.1. New York 11590
Tel 516-333-5800 TWX 510.222.8237
SCHWEBER ELECTRONICS
Jericho Turnpike
Westbury, L.I. New York 11590
Tel 516-334-7474 TWX 510-222-3660
SCHWEBER ELECTRONICS, INC
2 Town Line Circle
Rochester, New York 14623
Tel: 716-461-4000
SEMICONDUCTOR CONCEPTS
195 Engineers Rd.
Hauppauge, New York 11787
Tel: 516-273-1234 TWX 510-227.6232
SUMMIT DISTRIBUTORS, INC
916 Main Street
Buffalo. New York 14202
Tel: 716-884-3450 TWX: 710-522-1692

## NORTH CAROLINA

HALLMARK ELECTRONICS
3000 Industrial Drive
Raleigh, North Carolina 27609 Tel: 919-832-4465 TWX 5109281831

PIONEER/CAROLINA ELECTRONICS
2906 Baltic Avenue
Greensboro, North Carolina 27406
Tel 919-273-4441

## OHIO

ARROW ELECTRONICS, INC
3100 Plainfield Road
Kettering. Ohio 45429
Tel. 513-253-9176 TWX 810-459-1611
HAMILTON/AVNET ELECTRONICS
761 Beta Drive, Suite " $E$ '
Cleveland, Ohıo 44143
Tel. 216-461-1400
TWX None - use 910-227.0060
(Regional Hq in Chicago. III)
HAMILTON/AVNET ELECTRONICS
118 Westpark Road
Dayton. Oho 45459
Tel: 513-433-0610 TWX 810-450-2531

ROCHESTER RADIO SUPPLY CO.. INC
140 W Main Street
(P.O. Box 1971)

Rochester, New York 14603
Tel 716-454-7800
PIONEER CLEVELAND
4800 East 131 st Street
Cleveland. Ohio 44105
Tel 216.587.3600

SCHWEBER ELECTRONICS
23880 Commerce Park Road
Beachwood, Ohıo 44122
Tel 216-464-2970 TWX 810-427-9441

SHERIDAN SALES COMPANY
23224 Commerce Park Road
Beachwood Ohio 44122
Tel 216-831-0130 TWX 810-427.2957

SHERIDAN SALES CO
mailing address)
PO Box 37826
Cincinnatı, Oho 45222
(shipping address)
10 Knollcrest Drive
Reading. Ohio 45237
Tel 513.761.5432 TWX 810-461-2670

## OKLAHOMA

HALLMARK ELECTRONICS
4846 South 83rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-835-8458 TWX 910-845-2290

## PENNSYIVANIA

HALLMARK ELECTRONICS, INC
458 Pike Road
Huntingdon Valley, Pennsylvanta 19006
Tel: 215-355-7300 TWX: 510-667-1727
PIONEER/DELWARE VALLEY, INC
203 Witmer Rd.
Horsham, Pennsylvania 19044
Tel: 215-674-5710 (from Pennsylvania phones)
Tel: 609-541-1120 (from New Jersey phones)
PIONEER ELECTRONICS, INC
560 Alpha Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
SHERIDAN SALES COMPANY
1717 Penn A.ve.
Suite 5009
Pittsburgh, Pennsylvanıa 15221
Tel: 412-244-1640

TEXAS
HAMILTON/AVNET ELECTRONICS
4445 Sigma Road
Dallas, Texas 75240
Iel: 214-661-8661
Telex. HAMAVLECB DAL 73.0511

# FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd) 

## TEXAS

HAMILTON/AVNET ELECTRONICS
1216 West Clay
Houston. Texas 77019
Tel: 713-526-4661
Telex: HAMAVLECB HOU 76-2589
NORVELL ELECTRONICS, INC
10210 Monroe Drive
(P.O. Box 20279)

Dallas. Texas 75220
Tel: 214-350-6771 TWX: 910-861-4512
NORVELL ELECTRONICS, INC.
6440 Hillcroft Avenue
Houston, Texas 77036
Tel: 713-774-2568 TWX: 910-881-2560
SCHWEBER ELECTRONICS, INC.
2628 Longhorn Blvd.
Austin. Texas 78758
Tel: 512-837-2890 TWX: 910-874-1359
SCHWEBER ELECTRONICS, INC.
14177 Proton Road
Dallas, Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493
SCHWEBER ELECTRONICS, INC.
7420 Harwin Drive
Houston, Texas 77036
Tel: 713-784-3600 TWX: 910-881-1109
STERLING ELECTRONICS
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

## UTAH

CENTURY ELECTRONICS
2150 South 300 West
Salt Lake City, Utah 84115
Tel: 801-487-8551
HAMILTON/AVNET ELECTRONICS
647 W. Billinis Rd
Salt Lake City, Utah 84119
Tel: 801-262-8451
TWX: None - use 910-379-6486 (Regional Hq. in Mt. View, Ca.)

## WASHINGTON

HAMILTON/AVNET ELECTRONICS
13407 Northrup Way
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449

WASHINGTON
LIBERTY ELECTRONICS
5305 2nd Ave. South
Seattle. Washington 98108
Tel: 206-763-8200 TWX: 910-444-1379
WISCONSIN
HAMILTON AVNET ELECTRONICS
6055 N. Santa Monica Blvd.
Whitefish Bay. Wisconsin 53717
Tel. 414-964-3482
MARSH ELECTRONICS. INC
6047 Beloit Road
Milwaukee, Wisconsın 53219
Tel 414-545-6500 TWX 910 2623321
SEMICONDUCTOR SPECIALISTS, INC
10855 W Potter Road
Wauwatosa, Wisconsin 53226
Tel 414-257-1330 TWX 910-262-3022

## CANADA

CAM GARD SUPPLY LTD
640 42nd Avenue S.E
Calgary, Alberta, T2G 1Y6, Canada
Tel: 403-287-0520 Telex: 03-822811
CAM GARD SUPPLY LTD
10505111 th Street
Edmonton, Alberta, T5H 3E8, Canada
Tel: $403-426-1805$ Telex: 03.72960
CAM GARD SUPPLY LTD
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada
Tel: 403-346-2088

CAM GARD SUPPLY LTD
825 Notre Dame Drive
Kamloops. British Columbia, V2C 5N8, Canada
Tel: 604-372-3338
CAM GARD SUPPLY LTD
1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada
Tel: 204-786-8401 Telex: 07-57622
CAM GARD SUPPLY LTD.
Rookwood Avenue
Fredericton, New Brunswick, E3B 4Y9. Canada Tel: 506-455-8891

CAM GARD SUPPLY LTD.
15 Mount Royal Blvd.
Moncton, New Brunswick, E1C 8N6, Canada
Tel: 506-855-2200

## CANADA

CAM GARD SUPPLY LTD
Courtenay Center
Saint John, New Brunswick, E2L 2X6. Canada
Tel: 506-657-4666 Telex: 01-447489
CAM GARD SUPPLY LTD
3065 Robie Street
Halifax, Nova Scotia, B3K 4P6, Canada
Tel: 902-454-8581 Telex: 01-921528
CAM GARD SUPPLY LTD
1303 Scarth Street
Regina, Saskatchewan, S4R 27, Canada
Tel: 306-525-1317 Telex: 07 1266 ?
CAM GARD SUPPLY LTD
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 17. Canada
Tel: 306 -652-6424 Telex: 07-42825
ELECTRO SONIC INDUSTRIAL SALES
(TORONTO) LTD.
1100 Gordon Baker Rd
Willowdale. Ontario, M2H 3B3, Canada
Tel 416-494-1666
Telex: ESSCO TOR O6-22030
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD
6291 Dorman Rd. Unit \#16
Mississauga, Ontarıo, L4V 1H2, Canada
Tel: 416.67 V $^{-7432 ~ T W X: ~ 610-492.8867 ~}$
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD
1735 Courtwood Crescent
Ottawa. Ontarıo. K12. 5L9. Canada
Tel: 613-226-1700
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD.
2670 Paulus Street
St Laurent, Quebec, H4S 1G2, Canada
Tel 514-331-6443 TWX 610.421-3731
R.A.E. INDUSTRIAL ELECTRONICS, LTD.

1629 Main Street
Vancouver, British Columbia, V6A 2W5, Canada
Tel: 604-687-2621 TWX: 610-929-3065
Telex: RAE-VCR 04-54550
SCHWEBER ELECTRONICS
2724 Rena Road
Mississauga, Ontario, L4T 3J9. Canada Tel: 416-678-9050

ALABAMA
CARTWRIGHT \& BEAN, INC.
901 Magnolia Drive, N.W.
Huntsville, Alabama 35805
Tel: 205-533-3509

## CALIFORNIA

CELTEC COMPANY
7380 Clairemont Mesa Blvd., Suite 109
San Diego, California 92111
Tel: 714-279-7961 TWX: 910-335-1512

## CELTEC COMPANY

2041 Business Center Drive, Suite 211
Irvine, California 92664
Tel: 714-752-6111 TWX: 910-595-2512
CELTEC COMPANY
6767 Forest Lawn Drive
Los Angeles, California 90068
Tel: 213-874-6002 TWX: 910-321-2884
MAGNA SALES, INC.
3080 Olcott Street, Suite 210A
Santa Clara, California 95050
Tel: 408-985-1750 TWX: 910-338-0241
COLORADO
SIMPSON ASSOCIATES, INC.
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719
CONNECTICUT
LORAC SALES, INC.
2777 Summer Street
Stamford, Connecticut 06905
Tel: 203-348-7701 TWX: 710-474-1763

FLORIDA
WMM ASSOCIATES, INC
101 Wymore Road, Suite 300
Altamonte Springs, Florida 32701
Tel: 305-862-4700 TWX: 810-853-0263
WMM ASSOCIATES, INC.
1822 Drew Street
Clearwater, Florida 33519
Tel: 813-447-2533 TWX: 810-866-4108
WMM ASSOCIATES, INC.
1628 E. Atlantic Blvd.
Pompano Beach, Florida 33060
Tel: 305-943-3091 TWX: 510-956-9891

GEORGIA
CARTWRIGHT \& BEAN, INC.
P.O. Box 52846

90 W. Wieuca Square, Suite 155
Atlanta, Georgia 30342
Tel: 404-255-5262 TWX: 810-751-3220

## INDIANA

LESLIE M. DEVOE COMPANY
7172 North Keystone Ave., Suite C
Indianapolis, Indiana 46240
Tel: 317-257-1227 TWX: 810-341-3284

## KANSAS

B.C. ELECTRONIC SALES, INC

1015 West Santa Fe
Olathe, Kansas 66061
Tel: 913-782-6696 TWX: 910-749-6414
B.C. ELECTRONIC SALES, INC

1229 South Paige
Wichita, Kansas 67207
Tel: 316-686-3394

## MARYLAND

L.D. LOWERY

5801 Annapolis Road, Suite 500
Bladensburg, Maryland 20710
Tel: 301-277-6565 TWX: 710-826-9654

## MASSACHUSETTS

SPECTRUM ASSOCIATES, INC
888 Worcester Street
Wellesley, Massachusetts 02181
Tel: 617-237-2796 TWX: 710-348-0424
MICHIGAN
RATHSBURG ASSOCIATES
16621 E. Warren Ave.
Detroit, Michigan 48224
Tel: 313-882-1717 Telex: 23-5229
MINNESOTA
PSI COMPANY
7710 Computer Avenue
Minneapolis, Minnesota 55435
Tel: 612-835-1777 TWX: 910-576-2740
MISSISSIPPI
CARTWRIGHT \& BEAN, INC
P.O. Box 3730

5250 Galaxy Drive, Suite J
Jackson, Mississippi 39207
Tel: 601-981-1368

## MISSOURI

B.C. ELECTRONIC SALES, INC.

320 Brookes Drive, Suite 204
Hazelwood, Missouri 63042
Tel: 314-731-1255 TWX: 910-762-0651
NEW JERSEY
LORAC SALES, INC
580 Valley Road
Wayne, New Jersey 07470
Tel: 201-696-7070 TWX: 710-988-5846
NEW YORK
ADVANCED COMPONENTS, INC.
South Bay Road
P.O. Box 276

North Syracuse, New York 13212
Tel: 315-699-2671 TWX: 710-541-0439
LORAC SALES, INC
275 Broadhollow Road
Melville, L.I. New York 11746
Tel: 516-293-2970 TWX: 510-224-6480
SPECTRUM SALES, INC
65 Circuit Avenue
Tuckahoe, New York 10707
Tel: 914-793-1660
(Microwave Product Only)
NORTH CAROLINA
CARTWRIGHT \& BEAN, INC.
625 Harwyn Drive
Chariotte, North Carolina 28215
Tel: 704-333-6457
CARTWRIGHT \& BEAN, INC.
P.O. Box 11209

2415-G Crabtree Blvd.
Raleigh, North Carolina 27604
Tel: 919-832-7128

## OHIO

COMPONENTS, INC.
16600 Sprague Rd.
Cleveland. Ohio 44130
Tel: 216-243-9200 TWX: 810-423-9435
COMPONENTS, INC.
9 Pierce Street
West Carrollton, Ohio 45449
Tel: 513-866-0661
PENNSYLVANIA
BGR ASSOCIATES
500 Office Center
Fort Washington Industrial Park
Fort Washington, Pennsylvania 19034
Tel: 215-643-4111 TWX: 510-665-1654
L.D. LOWERY

2801 West Chester Pike
Broomall, Pennsylvania 19008
Tel: 215-356-5300 or 215-528-5170
TENNESSEE
CARTWRIGHT \& BEAN, INC.
P.O. Box 4760

560 S. Cooper Street
Memphis, Tennessee 38104
Tel: 901-276-4442

## CARTWRIGHT \& BEAN, INC.

8501 Kingston Pike
Knoxville, Tennessee 37919
Tel: 615-693-7450

## TEXAS

TECHNICAL MARKETING
4445 Alpha Road
Dallas, Texas 75240
Tel: 214-387-3601 TWX: 910-860-5158
TECHNICAL MARKETING
6430 Hillcroft, Suite 102
Houston, Texas 77036
Tel: 713-771-8466

## UTAH

SIMPSON ASSOCIATES, INC
2480 So. Main Street, Suite 105
Salt Lake City. Utah 84115
Tel: 801-486-3731 TWX: 910-925-5253

## WASHINGTON

QUADRA CORPORATION
1621 - 114th Avenue S.E
Suite 212
Bellevue, Washington 98004
Tel: 206-454-4946 TWX: 910-443-2318

## WISCONSIN

LARSEN ASSOCIATES
10855 West Potter Road
Wauwatosa, Wisconsin 53226
Tel: 414-258-0529

## CANADA

AVOTRONICS LIMITED
200 Consumers Road, Suite 200
Willowdale, Ontario, M2J 1P8, Canada
Tel: 416-493-9711
AVOTRONICS LIMITED
6600 Trans Canada Highway, Suite 750
Pointe Claire, Quebec, H9R 4S2, Canada Tel: 514-697-2135 TWX: 610-422-3908 Telex: 05-821-762

SEMICONDUCTOP


[^0]:    Note 1. The 9LSO3, 05, 22, 74, 109, 112, 113 and 114 use transistor inputs at present, but will be redesigned by the first part of 1976 to incorporate diode inputs.

[^1]:    From " $\mathrm{V}_{\mathrm{OH}}$ " to " $\mathrm{V}_{\mathrm{IH}}$ "

[^2]:    X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^3]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^4]:    L $=$ LOW Voltage Level
    $H=$ HIGH Voltage Level
    $X=$ Don＇t Care
    I＝LOW Voltage Level one set－up time prior to the HIGH to LOW clock transition．
    $h=$ HIGH Voltage Level one set－up time prior to the HIGH to LOW clock transition．
    $p_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input（or output）one set－up time prior to the HIGH to LOW clock transition．

[^5]:    ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
    Storage Temperature
    Temperature (Ambient) Under Bias
    $V_{\text {CC }}$ Pin Potential to Ground Pin
    ${ }^{*}$ Input Voltage (dc)
    *input Current (dc)
    Voltage Applied to Outputs (Output HIGH)
    Output Current (dc) (Output LOW)

    $$
    \begin{array}{r}
    -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
    -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
    -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
    -0.5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
    -30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
    -0.5 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
    +50 \mathrm{~mA}
    \end{array}
    $$

    *Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

[^6]:    $X=$ package type; $F$ for Flatpak, $D$ for Ceramic Dip, $P$ for Plastic Dip. See Packaging Information Section for packages available on this product

[^7]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^8]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^9]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^10]:    * $\overline{M R}$ for 9LS160 and 9LS161
    * $\overline{S R}$ for 9LS162 and 9LS163

[^11]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^12]:    $V_{C C}=\operatorname{Pin} 16$
    GND $=\operatorname{Pin} 8$
    $O=$ Pin Numbers

[^13]:    L = LOW Voltage Level
    H = HIGH Voltage Level
    *Each bit is shifted to the next more significant position
    ** Arithmetic operations expressed in 2s complement notation

[^14]:    * Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

[^15]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^16]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^17]:    $X=$ package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

[^18]:    *Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

[^19]:    $X=$ package type; D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

