FAIRCHILD SEMICONDUCTOR

34000ISOPLANAR CMOS DATA BOQK

FAIRCHILD
SEMICONDUCTOR

TABLE OF CONTENTS

SECTION SUBJECT PAGE

1. 34000 Series CMOS General Description 1-3
2. Design Considerations With $\mathbf{3 4 0 0 0}$ Series CMOS
Introduction 2-3
Power Consumption 2-3
Supply Voltage Range 2-4
Propagation Delay 2-5
Noise Immunity 2-7
Interface to TTL 2-7
Input/Output Capacity 2-8
Output Impedance 2-8
Input Protection 2-8
Handling Precautions 2.8
A Word to the TTL Designer 2-8
3. Technical Data
Numerical Index of Devices 3-3
Selector Guide by Function 3-5
TTL to CMOS Comparison Guide 3-7
Cross Reference Guide 3-15
34000 Series CMOS Family Characteristics 3-17
Definition of Symbols and Terms 3-21
Data Sheets 3-23
(See numerical index of devices for page numbers)
4. Products Planned for 1975
Numerical Index of New Products 4-3
Preliminary Data Sheets $4-5$
(See numerical index of new products for page numbers)
5. Bipolar Interface Circuits for CMOS 5-3
6. Fairchild Ordering Information and Package Outlines
Packaging Information 6-3
Matrix VI Program 6-5
Unique 38510 Program 6-8
Package Physical Dimensions 6-13
7. Fairchild Field Sales Offices and Distributor Outlets 7-1

> BIPOLAR INTERFACE CIRCUITS FOR CMOS

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

34000
 SERIES CMOS

GENERAL DESCRIPTION - Fairchild CMOS logic combines the popular 4000 series functions with the advanced Isoplanar C process. The result is a logic family with a superior combination of noise immunity and standardized drive characteristics. At static conditions, these devices dissipate very low power, typically 10 nW per gate. The low power combined with the wide (3 to 15 V) recommended operating supply voltage requirement greatly minimizes power supply costs. The CMOS family is designed with standardized output drive characteristics which, combined with relative insensitivity to output capacitance loading, simplify system design.

- LOW POWER - TYPICALLY 10 nW PER GATE STATIC
- WIDE OPERATING SUPPLY VOLTAGE RANGE -

3 TO 15 V RECOMMENDED

18 V ABSOLUTE MAXIMUM

- HIGH NOISE IMMUNITY
- BUFFERED OUTPUTS STANDARDIZE OUTPUT DRIVE AND REDUCE VARIATION OF PROPAGATION DELAY WITH OUTPUT CAPACITANCE
- WIDE OPERATING TEMPERATURE RANGE COMMERCIAL $-40^{\circ} \mathrm{C}$ TO $\mathbf{+ 8 5} 5^{\circ} \mathrm{C}$ MILITARY $\quad-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$
- HIGH DC FAN OUT - GREATER THAN 50

ISOPLANAR C

The Fairchild CMOS logic family uses Isoplanar C for high performance. This technology combines local oxidation isolation techniques with silicon gate technology to achieve an approximate 35% savings in area as shown in Figure 1-1a. Operating speeds are increased due to the self-alignment of the silicon gate and reduced sidewall capacitance.

Conventional CMOS circuits are fabricated on an n-type substrate as shown in Figure 1-1b. The p-type substrate required for complementary n-channel MOS is obtained by diffusing a lightly doped p-region into the n-type substrate. Conventional CMOS fabrication requires more chip area and has slower circuit speeds than Isoplanar C CMOS. This is a result of the $n+$ or $p+$ channel stop which surrounds the p - or n-channels respectively in CMOS, Silicon gate CMOS (Figure 1-1c) has a negligible reduction in area, though transient performance is improved.

FULLY BUFFERED CONFIGURATION DESCRIPTION

Fairchild CMOS logic is designed with the system user in mind. Output buffering is used on all devices to achieve high performance, standardized output drive, highest noise immunity and decreased ac sensitivity to output loading. Figure 1-2 illustrates a conventional unbuffered 2-Input NOR Gate. Either n-channel transistor connected to $V_{S S}$ (ground) conducts when either input is HIGH, causing the output to go LOW through the ON resistance of the device. If both inputs are HIGH, both n-channel devices are on; effectively halving the ON resistance, thereby making the output impedance (and hence fall time) a function of input variables. Similarly the p-channel devices are switched on by LOW signals; i.e. when both inputs are LOW, conduction from $V_{D D}$ to the output will occur.

Since the p-channel devices are in series, their ON resistance must be decreased (larger chip area) to hold output HIGH impedance within specification. As the number of gate inputs increases, even larger p-channel devices are required, and the output impedance to $V_{S S}$ becomes even more pattern sensitive.

A conventional unbuffered CMOS 2-Input NAND Gate interchanges the parallel and serial transistor gating to achieve the NAND function (Figure 1-3). The changes in output resistance then move to the p-channel transistors connected to $V_{D D}$, while the n-channel devices must be increased in size due to their serial connection.

Fairchild CMOS uses small geometry logic transistors to generate the required function which drive standard low impedance output buffers (Figures 1-4 and 5). This technique reduces chip size, since only two large output transistors are required and rise and fall times are independent of input pattern. Buffered outputs also increase system speeds and make propagation delay less sensitive to output capacitance. Figure 1-6 illustrates typical propagation delay vs. output capacitance for conventional and buffered CMOS Gates.

Another advantage of the Fairchild approach is improved noise immunity. Because of the increased voltage gain, nearly ideal transfer characteristics are realized as shown in Figure 1-7. The high gain (greater than 10,000) also provides significant pulse shaping; the waveforms of Figures $1-8$ and 9 compare the output waveforms of conventional and buffered CMOS gates. For input transition times of 100 ns or less, the outputs of both gate types are similar. When the input transitions are stretched to one microsecond, the conventional gate exhibits increased transition times while the buffered gate has unchanged output transition times. This feature eliminates progressive deterioration of pulse characteristics in a system. The combination of Isoplanar C and buffered outputs results in new standards of CMOS logic performance.

Fig. 1-2. CONVENTIONAL NON-BUFFERED 2-INPUT NOR GATE

Fig. 1-3. CONVENTIONAL NON-BUFFERED 2-INPUT NAND GATE

Fig. 1-4. FAIRCHILD 34001 FULLY BUFFERED NOR GATE

Fig. 1-5. FAIRCHILD 34011 FULLY BUFFERED NAND GATE

Fig. 1-6 COMPARISON OF PROPAGATION DELAY VS LOAD CAPACITANCE FOR CONVENTIONAL AND FULLY BUFFERED NAND GATES

Fig. 1-8
POSITIVE-GOING INPUT RAMPS OF $0.1 \mu \mathrm{~s}$ AND $1.0 \mu \mathrm{~s}$ APPLIED TO CONVENTIONAL AND FULLY

BUFFERED GATES

Fig. 1-7
TYPICAL VOLTAGE TRANSFER CHARACTERISTICS FOR CONVENTIONAL AND FULLY BUFFERED DEVICES

Fig. 1-9
NEGATIVE-GOING INPUT RAMPS OF 0.1μ S AND $1.0 \mu \mathrm{~S}$ APPLIED TO CONVENTIONAL AND FULLY BUFFERED GATES

DESIGN CONSIDERATIONS WITH 34000 SERIES CMOS

INTRODUCTION

Complementary MOS digital logic building blocks of SSI and MSI complexity have been hailed as the ideal logic family. They are rapidly gaining popularity as more and more manufăcturers introduce increasing numbers of parts at reasonable prices.

Originally designed for aerospace applications, CMOS now finds its way into portable instruments, industrial and medical electronics, automotive applications and computer peripherals, besides dominating the electronic watch market.

In late 1973, Fairchild introduced the 34000 CMOS family, using Isoplanar technology to achieve superior electrical performance. Most of these devices are functional equivalents and pin-for-pin replacements of the well-known 4000 series; some are equivalent to TTL circuits and some are proprietary logic designs.

A few CMOS devices, such as bidirectional analog switches, exploit the unique features of CMOS technology; some take advantage of the smaller device size and higher potential packing density to achieve true LSI complexity; but most of the available CMOS elements today are of SSI and MSI complexity and perform logic functions that have been available in DTL or TTL for many years. Therefore, it is both helpful and practical to compare the performance of CMOS with that of
the more familiar DTL/TTL (Figure 2-1). The TTL to CMOS Comparison Guide in Section 3 lists numerous CMOS circuits that are pinout identical to their TTL counterparts, others that are functionally identical only, still others that are similar and, in most cases, offer added features.

CMOS speed is comparable to $74 \mathrm{~L}-\mathrm{TTL}$ and DTL, and about three to six times slower than TTL or Low Power Schottky (LS-TTL). Voltage noise immunity and fan out are almost ideal, supply voltage is noncritical, and the quiescent power consumption is close to zero-several orders of magnitude lower than for any competing technology.

POWER CONSUMPTION

Under static conditions, the p-channel (top) and the n -channel (bottom) transistors are not conducting simultaneously, thus only leakage current flows from the positive (V_{DD}) to the negative (V_{SS}) supply connection. This leakage current is typically 0.5 nA per gate, resulting in very attractive low power consumption of 2.5 nW per gate (at 5 V).

Whenever a CMOS circuit is exercised, when data or clock inputs change, additional power is consumed to charge and discharge capacitances (on-chip parasitic capacitances as well as load capacitances). Moreover, there is a short time during the transition when both the top and the bottom transistors are partially conducting. This dynamic power consumption is

	STANDARD TTL	74L	DTL	9LS LOW POWER SCHOTTKY	74LS LOW POWER SCHOTTKY	34000 CMOS 5 V SUPPLY	34000 CMOS 10 V SUPPLY
PROPAGATION DELAY	10 ns	33 ns	30 ns	5 ns	10 ns	35 ns	25 ns
FLIP-FLOP TOGGLE FREQUENCY	35 MHz	3 MHz	5 MHz	80 MHz	40 MHz	5 MHz	10 MHz
QUIESCENT POWER	10 mW	1 mW	8.5 mW	2 mW	2 mW	10 nW	10 nW
NOISE IMMUNITY	1 V	1 V	1 V	0.8 V	0.8 V	2 V	4 V
FAN OUT	10	10	8	20	20	50*	50*

[^0]Fig. 2-1 CMOS COMPARED TO OTHER LOGIC FAMILIES
obviously proportional to the frequency at which the circuit is exercised, to the load capacitance and to the square of the supply voltage. As shown in. Figure 2-2, the power consumption of a CMOS gate exceeds that of a Low Power Schottky gate somewhere between 500 kHz and 2 MHz of actual output frequency.

At 100 transitions per second, the dynamic power consumption is far greater than the static dissipation; at one million transitions per second, it exceeds the power consumption of LS-TTL. Comparing the power consumption of more complex devices (MSI) in various technologies may show a different result. In any complex design, only a small fraction of the gates actually switch at the full clock frequency, most gates operate at a much lower average rate and consume, therefore, much less power.

A realistic comparison of power consumption between different technologies involves a thorough analysis of the average switching speed of each gate in the circuit. The small static supply current, IDD is specified on individual data sheets for 5,10 and 15 V . The dynamic power dissipation for 5,10 and $15 \mathrm{~V}, 15$ and 50 pF may be found in graph form for frequencies of 100 Hz to 10 MHz . The total power may be calculated, $\mathrm{P}_{\mathrm{T}}=\left(I_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}\right)+$ dynamic power dissipation

SUPPLY VOLTAGE RANGE

CMOS is guaranteed to function over the unprecedented range of 3 to 18 V supply voltage. Characteristics are guaranteed for 5,10 and 15 V operation and can be extrapolated for any voltage in between. Operation below 4.5 V is not very meaningful because of the increase in delay (loss of speed), the increase in output impedance and the loss of noise immunity. Operation above 15 V is not recommended because of high dynamic power consumption and risk of noise spikes on the power supply exceeding the breakdown voltage (typ $>20 \mathrm{~V}$), causing SCR-latch-up and destroying the device unless the current is externally limited.

The lower limit of power supply voltage, including ripple, is determined by the required noise immunity, propagation delay or interface to TTL. The upper limit of supply voltage, including ripple and transients, is determined by power dissipation or direct interface to TTL. The 34049, 34050 and 34104 provide level translation between TTL and CMOS when CMOS supply voltages over 5 V are used. While devices are usable to 18 V , operation above 12 V is discouraged for reasons of power dissipation.

Low static power consumption combined with wide supply voltage range make CMOS the ideal logic family for battery operated equipment.

Fig. 2-2
TYPICAL POWER DISSIPATION VERSUS INPUT FREQUENCY FOR SEVERAL POPULAR LOGIC FAMILIES

PROPAGATION DELAY

Compared to TTL and LS-TTL, all CMOS devices are slow and very sensitive to capacitive loading. See Figure 2-3. The Fairchild 34000 family uses both advanced processing (Isoplanar) and improved circuit design (buffered gates) to achieve propagation delays and output rise times that are superior to any other junction-isolated CMOS design. (Silicon-on-sapphire, SOS, can achieve similar performance but at a substantial cost penalty).
Isoplanar processing achieves lower parasitic capacitances which reduce the on-chip delay and increase the maximum toggle frequency of flip-flops, registers and counters. Buffering all outputs, even on gates, results in lower output impedance and thus reduces the effect of capacitive loading.
Propagation delay is affected by three parameters: capacitive loading, supply voltage, and temperature.

Capacitive Loading Effect

Historically, semiconductor manufacturers have always specified the propagation delay at an output load of 15 pF , not because anybody considers this a representative systems environment, but rather because it was the lowest practical test-jig capacitance. It also generated the most impressive specifications. TTL with an output impedance less than 100Ω is little affected by an increase in capacitive loading; a 100 pF load increases the delay by only about 4 ns. CMOS, however, with an output impedance of $1 \mathrm{k} \Omega$ (worst case at 5 V) is 10 times more sensitive to capacitive loading. Figure $2-4$ shows the positive- and negative-going delays as a function of load capacitance. It should be noted that the older, unbuffered gates have an even higher output impedance, a larger dependence on output loading, and do not show the same symmetry.

Fig. 2-3

Fig. 2-4a
POSITIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 2.4b
NEGATIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Supply Voltage Effect

Figure 2-5 shows propagation delay as a function of supply voltage and again indicates the symmetry of the positive- and negative-going delays. Increasing the supply voltage from 5 to 10 V more than doubles the speed of CMOS gates. Increasing the supply voltage to 15 V almost doubles the speed again, but, as mentioned before, results in a significant increase in dynamic power dissipation.
The best choice for slow applications is 5 V . For reasonably fast systems, choose 10 or 12 V . Any application requiring 15 V to achieve short delays and fast operation should be investigated for excessive power dissipation and should be weighed against an LS-TTL approach.

Fig. 2-5a
POSITIVE-GOING PROPAGATION DELAY VERSUS POWER SUPPLY VOLTAGE

Fig. 2-5b
NEGATIVE-GOING PROPAGATION

Temperature Effect

Figure 2-6 shows propagation delay as a function of ambient temperature. The temperature dependence of CMOS is much simpler than with TTL, where three factors contributeincrease of beta with temperature, increase of resistor value with temperature, and decrease of junction forward voltage drop with increasing temperature. In CMOS, essentially only the carrier mobility changes, thus increasing the impedance and hence the delay with temperature. For 34000 devices, this temperature dependence is less than 0.3% per ${ }^{\circ} \mathrm{C}$, practically linear over the full temperature range. Note that the commercial temperature range is -40 to $+85^{\circ} \mathrm{C}$ rather than the usual 0 to $+75^{\circ} \mathrm{C}$.

Fig. 2-6a
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE WITH VDD $=5 \mathrm{~V}$

Fig. 2-6b PROPAGATION DELAY versus ambient temperature WITH $V_{D D}=10 \mathrm{~V}$

CMOS delays increase with temperature. They are very sensitive to capacitive loading but can be reduced by increasing the supply voltage to 10 or even 15 V .

To determine propagation delays, the effects of capacitive loading, supply voltage, manufacturing tolerances and ambient temperature must be considered. Start with the values of tPLH (propagation delay, a LOW-to-HIGH output transition) and tPHL (propagation delay, a HIGH-to-LOW output transition) given in the individual data sheets. Delay values for $V_{D D}$ at 5 , 10 and 15 V and output capacity of 15 and 50 pF are provided. Manufacturing tolerances account for the differences between MIN, TYP and MAX. Starting with the nearest applicable delay value, correct for effects of capacitive loading, ambient temperature and supply voltage using the general family characteristics of Section 3.

Fig. 2-7
TYPICAL TRANSFER CHARACTERISTICS FOR TTL AND CMOS

NOISE IMMUNITY

One of the most advertised and also misunderstood CMOS features is noise immunity. The input threshold of a CMOS gate is approximately 50% of the supply voltage and the voltage transfer curve is almost ideal. As a result, CMOS can claim very good voltage noise immunity, typically 40% of the supply voltage, i.e., 2 V in a 5 V system, 4 V in a 10 V system. Compare this with the TTL transfer curve in Figure $2-7$ and its resultant 1 V noise immunity in a lightly loaded system and only 0.4 V worst case.

Since CMOS output impedance, output voltage and input threshold are symmetrical with respect to the supply voltage, the LOW and HIGH level noise immunities are practically equal. Therefore, a CMOS system can tolerate ground or V_{DD} drops and noise on these supply lines of more than 1 V , even in a 5 V system. Moreover, the inherent CMOS delays act as a noise filter; 10 ns spikes tend to disappear in a chain of CMOS gates, but are amplified in a chain of TTL gates. Because of these features, CMOS is very popular with designers of industrial control equipment that must operate in an electrically and electromagnetically "polluted" environment.

Unfortunately these impressive noise margin specifications disregard one important fact: the output impedance of CMOS is 10 to 100 times higher than that of TTL. CMOS interconnections are therfore less "stiff" and much more susceptible to capacitively coupled noise. In terms of such current injected crosstalk from high noise voltages through small coupling capacitances, CMOS has about six times less noise margin than TTL. It takes more than 20 mA to pull a TTL output into the threshold region, but it takes only 3 mA to pull a CMOS output into the threshold of a 5 V system.

The nearly ideal transfer characteristic and the slow response of CMOS circuits make them insensitive to low voltage, magnetically coupled noise. The high output impedance, however, results in a poor rejection of capacitively coupled noise.

INTERFACE TO TTL

When CMOS is operated with a 5 V power supply, interface to TTL is straightforward. The input impedance of CMOS is very high, so that any form of TTL will drive CMOS without loss of fan out in the LOW state. Unfortunately, most TTL has insufficient HIGH state voltage (typically 3.5 V) to drive CMOS reliably. A pull up resistor ($1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) from the output of the TTL device to the 5 V power supply will effectively pull the HIGH state level to 4.5 V or above. Alternately, DTL Hex inverters may be used between the TTL and CMOS. 9LS Low Power Schottky and 93L00 Low Power TTL/MSI utilize the unique output configuration shown in Figure 2-8 to pull its output to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BC}}$ or approximately 4.3 V when lightly loaded.

All 34000 logic elements will drive a single 9LS Low Power Schottky input fan in directly. A 9LS Hex inverter such as the 9LS04 makes an excellent low cost TTL buffer with a fan out of $\mathbf{2 0}$ into 9LS or 5 into standard TTL. Alternately, the 34049 and 34050 Hex buffers may be used to drive a fan out of 8 into 9LS or 2 into standard TTL.

When operating CMOS at voltages higher than 5 V direct interface to TTL cannot be used. The 34104 Quad Level Translator converts TTL levels to high voltage CMOS up to 15 V. The 34049 and 34050 Hex Buffers will accept high voltage CMOS levels up to 15 V and drive 2 standard TTL loads.

INPUT/OUTPUT CAPACITY

CMOS devices exhibit input capacities in the 1.5 to 5 pF range and output capacity in the 3 to 7 pF range.

OUTPUT IMPEDANCE

All 34000 logic devices employ standardized output buffers. Section 3 details output characteristics. It should be noted that these impedances do not change with input pattern as do conventional CMOS gates. Buffers, analog switches and analog multiplexers employ special output configurations which are detailed in individual data sheets.

INPUT PROTECTION

The gate input to any MOS transistor appears like a small $(<1 \mathrm{pF})$ very low leakage $\left(<10^{-12} \mathrm{~A}\right)$ capacitor. Without special precautions, these inputs could be electrostatically charged to a high voltage, causing a destructive breakdown of the dielectric and permanently damaging the device. Therefore, all CMOS inputs are protected by a combination of series resistor and shunt diodes. Various manufacturers have used different approaches; some use a single diode, others use two diodes, and some use a resistor with a parasitic substrate diode.

Each member of the 34000 family utilizes a series resistor, nominally 200Ω, and two diodes, one to $V_{\text {DD }}$, and the other to $V_{\text {SS }}$ (Figure 2-9). The resistor is a poly-silicon "true resistor" without a parasitic substrate diode. This ensures that the input impedance is always at least 200Ω under all biasing conditions, even when VDD is short circuited to $V_{S S}$ (selective power-down). A parasitic substrate diode would represent a poorly defined shunt to V_{SS} in this particular case.

The diodes exhibit typical forward voltage drops of 0.9 V at 1 mA and reverse breakdowns of 20 V for D 1 and 26 V for D2. For certain special applications such as oscillators, the diodes actually conduct during normal operation. However, currents must be limited to 10 mA .

Fig. 2-9
34000 SERIES CMOS INPUT PROTECTION CIRCUIT

HANDLING PRECAUTIONS

All MOS devices are subject to damage by large electrostatic charges. All 34000 devices employ the input protection described in Figure 2.9, however, electrostatic damage can still occur. The following handling precautions should be observed.

1. All 34000 devices are shipped in conducting foam or tubes. They should be removed for inspection or assembly using proper precautions.
2. Ionized air blowers are recommended when automatic incoming inspection is performed.
3. 34000 devices, after removal from their shipping material, should be placed leads down on a grounded surface. Conventional cookie tins work well. Under no circumstances should they be placed in polystyrene foam or plastic trays used for shipment and handling of conventional ICs.
4. Individuals and tools should be grounded before coming in contact with 34000 devices.
5. Do not insert or remove devices in sockets with power applied. Ensure power supply transients, such as occur during power turn-on or off; do not exceed maximum ratings.
6. In the system, all unused inputs must be connected to either a logic HIGH or logic LOW level such as $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$ or the output of a logic element.
7. After assembly on PC boards, ensure that static discharge cannot occur during storage or maintenance. Boards may be stored with their connectors surrounded with conductive foam. Board input/output pins may be protected with large value resistors ($10 \mathrm{M} \Omega$) to ground.
8. In extremely hostile environments, an additional series input resistor (10 to $100 \mathrm{k} \Omega$) provides even better protection at a slight speed penalty.

A WORD TO THE TTL DESIGNER

Designing with CMOS is generally an easy transition and allows the designer to discard many of the old design inhibitions for new found freedoms. A few of these are:

Fan out-It is practically unlimited from a dc point of view and is restricted only by delay and rise time considerations.

Power Supply Regulation-Anything between 3 V and 15 V goes, as long as all communicating circuits are fed from the same voltage.

Ground and $\mathrm{V}_{\mathbf{C C}}$ Line Drops-The currents are normally so small that there is no need for heavy supply line bussing.
$\mathbf{V}_{\mathbf{C C}}$ Decoupling-It can be reduced to a few capacitors per board.

Heat Problems-They do not exist, unless an attempt is made to run CMOS very fast and from more than 10 V .

It should also be noted that there are a few warnings called for when designing with CMOS and that many of the hard-earned good engineering basics cannot be forgotten. A few of the new design challenges include:

Unused Inputs-They must be connected to V_{SS} or V_{DD} (V_{CC} or ground) lest they generate a logical "maybe". The bad TTL habit of leaving unused inputs open is definitely out.

Oscillations-Slowly rising or falling input signals can lead to oscillations and multiple triggering. A poorly regulated and decoupled power supply magnifies this problem since the CMOS input threshold varies with the supply voltage.

Timing Details-Even slow systems require a careful analysis of worst case timing delays, derated for maximum temperature, minimum supply voltage and maximum capacitive loading. Many CMOS flip-flops, registers and latches have a real hold time requirement, i.e., inputs must remain stable even after the active clock edge; some require a minimum clock rise time. This hasn't been a problem with TTL. CMOS systems, even slow ones, are prone to unsuspected clock skew problems, especially since a heavily loaded clock generator can have a poor rise time.

Compatibility-The TTL designer knows that devices sold by different manufacturers under the same generic part number are electrically almost identical. The same electrical compatibility is not yet achieved in CMOS. Many semiconductor houses manufacture 4000-type devices with wide variations in output drive capability and speed. Sometimes even the functions are different and incompatible; two cases in point are the 1-of-10 decoder (CD4028A and MC14028) and the magnitude comparator (MC14585 and MM74C85).

Data Sheet Format-The original CD4000 series data sheets may appear confusing to the TTL user because a range of input voltage requirements is not specified. Rather, this information is contained in a "noise immunity" specification and is not immediately obvious.

Both TTL and CMOS tolerate deviations from the ideal LOW and HIGH input voltages. TTL is therefore specified as follows:

	MIN	MAX	
$V_{I H}$	2.0		V
$V_{I L}$		0.8	V

Any voltage below 0.8 V is considered LOW; any voltage above +2.0 V is considered HIGH. The actual threshold is somewhere in between these values, depending on manufacturing tolerances, supply voltage, and temperature.
Fairchild's 34000 CMOS is specified in a similar way. For $V_{D D}=5 \mathrm{~V}$;

	MIN	MAX	
V_{IH}	3.5		V
$\mathrm{~V}_{\mathrm{IL}}$		1.5	V

The CD4000 data sheets, on the other hand, do not call out $V_{\text {IH }}$ and $V_{\text {IL }}$ but specify a "noise immunity" which is somewhat arbitrarily defined relative to the appropriate supply voltage.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{NH}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}
\end{aligned}
$$

For $V_{D D}=5 \mathrm{~V}$, therefore
$\mathrm{V}_{\mathrm{NL}}=1.5 \mathrm{~V}$ min is equivalent to $\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}$ max
$\mathrm{V}_{\mathrm{NH}}=1.4 \mathrm{~V} \min$ is equivalent to $\mathrm{V}_{\mathrm{IH}}=3.6 \mathrm{~V}$ min, etc.
Systems Oriented MSI-Available CMOS circuits, especially the original 4000 series, are not as well suited for synchronous systems as are the 9300/7400 TTL families. Control polarities are inconsistent; many circuits cannot be cascaded or extended synchronously without additional gates, etc. This will improve as more good synchronous building blocks, like the 340160 are introduced.

FAIRCHILD ORDERING INFORMATION AND PACKAGE OUTLINES

NUME RICAL INDEX OF DEVICES

DEVICE DESCRIPTION PAGE
34001 Quad 2-Input NOR Gate $3-23$
34002 Dual 4-Input NOR Gate 3-23
34011 Quad 2-Input NAND Gate 3-25
34012 Dual 4-Input NAND Gate 3-25
34013 Dual D Flip-Flop 3-27
34014 8-Bit Shift Register 3-30
34015 Dual 4-Bit Shift Register 3-32
34016 Quad Bilateral Switch 3-35
34017 5-Stage Johnson Decade Counter 3-38
34019 Quad 2-Input Multiplexer 3-41
34020 14-Stage Binary Counter 3-43
34021 8-Bit Shift Register 3-46
34023 Triple 3-Input NAND Gate 3-38
34024 7-Stage Binary Counter 3-49
34025 Triple 3-Input NOR Gate 3-52
34027 Dual JK Flip-Flop 3-53
34028 1-of-10 Decoder 3-56
34029 Synchronous Up/Down, Binary/Decade Counter 3-58
34030 Quad Exclusive-OR Gate 3-63
34035 4-Bit Universal Shift Register 3-64
34040 12-Stage Binary Counter 3-67
34042 Quad D Latch 3-70
34049 Hex Inverting Buffer 3-73
34050 Hex Non-Inverting Buffer 3-73
34051 8-Channel Analog Multiplexer/Demultiplexer 3-76
34052 Dual 4-Channel Analog Multiplexer/Demultiplexer 3-79
34066 Quad Bilateral Switch $3-82$
34068 8-Input NAND Gate $3-85$
34069 Hex Inverter $3-86$
34070 Quad Exclusive-OR Gate 3.88
34071 Quad 2-Input OR Gate 3.89
34077 Quad Exclusive-NOR Gate 3-90
34078 8-Input NOR Gate 3-91
34081 Quad 2-Input AND Gate 3-92
34085 Dual 2-Wide, 2-Input AND-OR-Invert Gate 3-93
34086 4-Wide, 2-Input AND-OR-Invert Gate $3-95$
34099 8-Bit Addressable Latch 3-97
34104 Quad Low Voltage to High Voltage Translator 3-100
With 3-State Outputs
34512 8-Input Multiplexer With 3-State Outputs 3-103

NUMERICAL INDEX OF DEVICES

DEVICE DESCRIPTION PAGE
34518 Dual 4-Bit Decade Counter 3-107
34520 Dual 4-Bit Binary Counter 3-107
34539 Dual 4-Input Multiplexer 3-110
34555 Dual 1-of-4 Decoder With Active High Outputs 3-112
34556 Dual 1-of-4 Decoder With Active Low Outputs 3-112
34702 Programmable Bit Rate Generator 3-114
34720 256-Bit RAM 3-124
34723 Dual 4-Bit Addressable Latch 3-127
34725 64-Bit RAM 3-130
340085 4-Bit Magnitude Comparator 3-133
340097 3-State Hex Non-Inverting Buffer 3-136
340098 3-State Hex Inverting Buffer 3-136
340160 4-Bit Synchronous Decade Counter With Asynchronous Reset 3-139
340161 4-Bit Synchronous Binary Counter With Asynchronous Reset 3-139
340162 4-Bit Synchronous Decade Counter With Synchronous Reset 3-139
340163 4-Bit Synchronous Binary Counter With Synchronous Reset 3-139
340174 Hex D Flip-Flop 3-145
340175 Quad D Flip-Flop 3-148
340192 4-Bit Up/Down Synchronous Decade Counter 3-150
340193 4-Bit Up/Down Synchronous Binary Counter 3-150
340194 4-Bit Bidirectional Universal Shift Register 3-154
340195 4-Bit Universal Shift Register 3-159

SELECTOR GUIDE BY FUNCTION

FUNCTION PAGE
NAND Gates
34011 Quad 2-Input NAND Gate 3-25
34012 Dual 4-Input NAND Gate 3-25
34023 Triple 3-Input NAND Gate 3-48
$34068 \quad 8$-Input NAND Gate 3-85
AND Gates
3408 Quad 2-Input AND Gate 3-92
NOR Gates
34001 Quad 2-Input NOR Gate 3-23
34002 Dual 4-Input NOR Gate 3-23
34025 Triple 3-Input NOR Gate 3-52
34078 8-Input NOR Gate 3-91
OR Gates
34071 Quad 2-Input OR Gate 3-89
Inverters and Buffers
$34049 \quad$ Hex Inverting Buffer 3-73
34050 Hex Non-Inverting Buffer 3-73
34069 Hex Inverter 3-86
340097 3-State Hex Non-Inverting Buffer 3-136
340098 3-State Hex Inverting Buffer 3-136
Complex Gates
34030 Quad Exclusive-OR Gate 3-63
34070 Quad Exclusive-OR Gate 3-88
34077 Quad Exclusive-NOR Gate 3-90
34085 Dual 2-Wide, 2-Input AND-OR-Invert Gate 3-93
34086 4-Wide, 2-Input AND-OR-Invert Gate 3-95
Flip-Flops
34013 Dual D Flip-Flop 3-27
34027 Dual JK Flip-Flop $3-53$
340174 Hex D Flip-Flop 3-145
340175 Quad D Flip-Flop 3-148
Counters
34017 5-Stage Johnson Decade Counter 3-38
34020 14-Stage Binary Counter 3-43
34024 7-Stage Binary Counter 3-49
34029 Synchronous Up/Down, Binary/Decade Counter 3-58
34040 12-Stage Binary Counter 3-67
34518 Dual 4-Bit Decade Counter 3-107
34520 Dual 4-Bit Binary Counter 3-107
340160 4-Bit Synchronous Decade Counter With Asynchronous Reset 3-139
340161 4-Bit Synchronous Binary Counter With Asynchronous Reset 3-139
340162 4-Bit Synchronous Decade Counter With Synchronous Reset 3-139
340163 4-Bit Synchronous Binary Counter With Synchronous Reset 3-139
340192 4-Bit Up/Down Synchronous Decade Counter 3-150
340193 4-Bit Up/Down Synchronous Binary Counter 3-150

SELECTOR GUIDE BY FUNCTION

FUNCTION PAGE
Registers
34014 8-Bit Shift Register 3-30
34015 Dual 4-Bit Shift Register 3-32
34021 8-Bit Shift Register 3-46
34035 4-Bit Universal Shift Register 3-64
340194 4-Bit Bidirectional Universal Shift Register 3-154
340195 4-Bit Universal Shift Register 3-159
Decoders
34028 1-of-10 Decoder 3-56
34555 Dual 1-of-4 Decoder With Active HIGH Outputs 3-112
34556 Dual 1-of-4 Decoder With Active LOW Outputs 3-112
Digital Multiplexers
$34019 \quad$ Quad 2-Input Multiplexer 3-41
34512 8-Input Multiplexer With 3-State Outputs 3-103
34539 Dual 4-Input Multiplexer 3-110
Analog Switches and Multiplexers/Demultiplexers
$34016 \quad$ Quad Bilateral Switch 3-35
34051 8-Channel Analog Multiplexer/Demultiplexer 3-76
34052 Dual 4-Channel Analog Multiplexer/Demultiplexer 3-79
34066 Quad Bilateral Switch 3-82
Latches
34042 Quad D Latch 3-70
34099 8-Bit Addressable Latch 3-97
34723 Dual 4-Bit Addressable Latch 3-127
Translators
34104 Quad Low Voltage to High Voltage Translator 3-100With 3-State Outputs
Comparators
340085 4-Bit Magnitude Comparator 3-133
Memories
34720 256-Bit RAM 3-124
34725 64-Bit RAM 3-130
Frequency Generator
34702 Programmable Bit Rate Generator 3-114

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	PAGE NO.
NAND GATES				
$\begin{aligned} & 7400 \\ & 9002 \end{aligned}$	Quad 2-Input NAND Gate	34011	Different Pinout, Functionally Identical	$3-25$
$\begin{aligned} & 7410 \\ & 9003 \end{aligned}$	Triple 3-Input NAND Gate	34023	Different Pinout, Functionally Identical	3-48
$\begin{aligned} & 7420 \\ & 9004 \end{aligned}$	Dual 4-Input NAND Gate	34012	Different Pinout, Functionally Identical	$3-25$
$\begin{aligned} & 7430 \\ & 9007 \end{aligned}$	8-Input NAND Gate	34068	Different Pinout, Functionally Identical	3-85

	AND GATES			
7408	Quad 2-Input AND Gate	34081	Different Pinout, Functionally Identical	

	NOR GATES			
7402	Quad 2-Input NOR Gate	34001	Different Pinout, Functionally Identical	3-23
7427	Triple 3-Input NOR Gate	34025	Different Pinout, Functionally Identical	$3-52$
7425	Dual 4-Input NOR Gate	34002	Different Pinout. The 7425 has a Strobe input on each gate; the 34002 does not.	3-23
	8-Input NOR Gate	34078	No TTL Equivalent	$3-91$

	OR GATES		
7432	Quad 2-Input OR Gate	34071	Different Pinout, Functionally Identical

INVERTERS AND BUFFERS				
$\begin{aligned} & 7404 \\ & 9016 \end{aligned}$	Hex Inverter	34069	Same Pinout, Functionally Identical	$3-86$
$\begin{aligned} & 7416 \\ & 7404 \\ & 9016 \end{aligned}$	Hex Buffer, Inverting	34049	Different Pinout. The 34049 has an active pull-up and pull-down output. The 7416 has an open collector output. The 7404 and 9016 have an active pull-up and pull-down output.	3-73
7417	Hex Buffer, Non-Inverting	34050	Different Pinout. The 34050 has an active pull-up and pull-down output. The 7417 has an open collector output.	3-73
$\begin{aligned} & 74367 \\ & 8097 \end{aligned}$	Hex Buffer, Non-Inverting, 3-State Outputs	340097	Same Pinout, Functionally Identical	3-136
$\begin{aligned} & 74368 \\ & 8098 \end{aligned}$	Hex Buffer, Inverting, 3-State Outputs	340098	Same Pinout, Functionally Identical	3-136

COMPLEX GATES				
74L86	Quad Exclusive-OR Gate	$\begin{aligned} & 34030 / \\ & 34070 \end{aligned}$	Same Pinout, Functionally Identical	3-63,3-88
74LS266	Quad Exclusive-NOR Gate	34077	Same Pinout, Functionally Identical	3-90
$\begin{aligned} & 7450 \\ & 9005 \end{aligned}$	Dual 2-Wide, 2-Input AND-OR-INVERT Gate	34085	Different Pinout. The 34085 has an extra input which can be used as either an expander input or an inhibit input by connecting it to any standard CMOS output. Only one-half of a 7450 and 9005 can be expanded by connecting it to a special expander circuit. The 7450 and 9005 do not have an inhibit capability.	3-93

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION		
FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	PAGE		
NO.			

\left.| | | COMPLEX GATES (Cont'd) |
| :--- | :--- | :--- | :--- | :--- |$\right]$

	FLIP-FLOPS			
7474	Dual D Flip-Flop	34013	Different Pinout. The 7474 has active LOW S_{D} and C_{D} inputs; the 34013 has active HIGH S_{D} and C_{D} inputs.	$3-27$
74109	Dual JK Flip-Flop, Edge-Triggered	34027	Different Pinout. The 7474 has active LOW S_{D} and C_{D} inputs; the 34013 has the 34027 has active HIGH S_{D}, C_{D} and K inputs.	$3-53$
9024	340175	Same Pinout, Functionally Identical	$3-148$	
74175	Quad D Flip-Flop	340174	Same Pinout, Functionally Identical	$3-145$
74174	Hex D Flip-Flop			

COUNTERS

93510 9310 74160	Synchronous, BCD Up Counter, Asynchronous Master Reset	340160	Same Pinout. The 340160 and $93 S 10$ are fully edge-triggered. The 74160 and 9310 are "opposite state catching" on the Count Enable and Parallel Enable inputs. The Terminal Count is fully decoded on the 340160, 9310 and 93S10 (TC $=\operatorname{CET} \bullet \mathrm{Q}_{0} \bullet \overline{\mathrm{O}_{1}} \bullet \overline{\mathrm{O}_{2}} \bullet \mathrm{O}_{3}$) but is not fully decoded on the 74160 $\left(T C=\operatorname{CET} \bullet Q_{0} \bullet Q_{3}\right)$. For the count sequence above 9, the 340160 is the same as the 74160, different than the 9310 and 93S10.	3-139
$\begin{aligned} & \hline 93 S 16 \\ & 9316 \\ & 74161 \end{aligned}$	Synchronous, Binary Up Counter, Asynchronous Master Reset	340161	Same Pinout. The 340161 is fully edge-triggered; the 74161 and 9316 are "opposite state catching" on the Count Enable and Parallel Enable inputs. The 340161 is functionally identical to the 93S 16.	3-139
74162	Synchronous, BCD Up Counter, Synchronous Reset	340162	Same Pinout. The 340162 is fully edge-triggered and the Terminal Count is fully decoded (TC = CET $\bullet \mathrm{O}_{0} \bullet \overline{\mathrm{O}_{1}} \bullet \overline{\mathrm{O}_{2}} \bullet \mathrm{O}_{3}$); the 74162 is "opposite state catching" on the Count Enable, Parallel Enable and Synchronous Reset inputs and the Terminal Count is not fully decoded (TC $=C E T \bullet Q_{0} \bullet Q_{3}$).	3-139
74163	Synchronous Binary Up Counter, Synchronous Reset	340163	Same Pinout. The 340163 is fully edge-triggered; the 74163 is "opposite state catching" on the Count Enable, Parallel Enable and Synchronous Reset inputs.	3-139
74490	Dual BCD Up Counter	34518	Different Pinout. The 34518 has two clock inputs per counter and is fully synchronous internally. The 74490 has a single clock input per counter, has a "set to nine" input and is a ripple counter internally.	3-107
74393	Dual Binary Up Counter	34520	Different Pinout. The 34520 has two clock inputs per counter and is fully synchronous internally. The 74393 has a single clock input per counter and is internally organized as a ripple counter.	3-107
	Synchronous, Binary/ Decade, Up/Down Counter	34029	No TTL Equivalent	3-58
74192	BCD, Up/Down Counter	340192	Same Pinout. The $\overline{T_{C}}$ is fully decoded on the $340192\left(\mathrm{TC}_{\mathrm{u}}=\mathrm{O}_{0} \bullet \overline{\mathrm{O}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \mathrm{O}_{3} \bullet\right.$ $\overline{\mathrm{CP}_{\mathrm{u}}}$); on the $74192 \overline{\mathrm{TC}}_{\mathrm{u}}$ is not fully decoded ($\left.\mathrm{TC}_{\mathrm{u}}=\mathrm{O}_{0} \bullet \mathrm{O}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{u}}\right)$.	3-150
74193	Binary, Up/Down Counter	340193	Same Pinout, Functionally Identical	3-150
74142	Divide-by-10 Counter with Decoded Outputs	34017	Different Pinout. The 74142 is a BCD Counter/Latch/Decoder. The decoded outputs are active LOW and can have decoding spikes. The 34017 is a 5 -stage Johnson decade counter with active HIGH, glitchless decoded outputs.	3-38
74393	7-Stage Binary Counter	34024	Different Pinout. The 74393, a dual 4-bit counter, can be connected as a 7 -stage counter.	3.49

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	PAGE NO.
COUNTERS (Cont'd)				
	12-Stage Binary Counter	34040	No TTL Equivalent	3-67
	14-Stage Binary Counter	34020	No TTL Equivalent	3-43
REGISTERS				
$\begin{aligned} & 74195 \\ & 9300 \end{aligned}$	4-Bit Shift Register,	340195	Same Pinout, Functionally Identical	3-159
74LS 194	4-Bit Shift Register; Shift Left, Shift Right, Parallel Load and Hold Modes	340194	Same Pinout, Functionally Identical	$3-154$
$\begin{aligned} & 74195 \\ & 9300 \end{aligned}$	4-Bit Shift Register, SI/PI/SO/PO, Output Polarity Control	34035	Different Pinout. The 34035 has an output polarity control and active HIGH Parallel Enable and Master Reset inputs. The 74195 and 9300 do not have output polarity control but they give both the true and complement of Q_{3}. They have active LOW Parallel Enable and Master Reset inputs.	3-64
	Dual 4-Bit Shift Register, SI/SO/PO	34015	No TTL Equivalent	3-32
74166	8-Bit Shift Register, SI/PI/SO	34014	Different Pinout. The 74166 has two Clock inputs and a Master Reset input. It does not have the Q_{5} and Q_{6} outputs available. The Parallel Enable input is active LOW. The 34014 has a single Clock input and does not have a Master Reset input. It has the Q_{5} and Q_{6} outputs available. The Parallel Enable input is active HIGH.	3-30
74165	8-Bit Shift Register, SI/PI/SO	34021	Different Pinout. The 74165 has two Clock inputs and a $\overline{\mathrm{Q}_{7}}$ output. It does not have the Q_{5} and Q_{6} outputs available. The Parallel Load input is active LOW. The 34021 has a single Clock input and does not have a $\overline{\mathrm{Q}_{7}}$ output. It has the Q_{5} and Q_{6} outputs available. The Parallel Load input is active HIGH.	$3-46$
DECODERS				
$\begin{aligned} & \text { 74LS139 } \\ & 9321 \end{aligned}$	Dual 1-of-4 Decoder, Active LOW Outputs	34556	Same Pinout, Functionally Identical	3-112
$\begin{aligned} & \hline \text { 74LS } 139 \\ & 9321 \end{aligned}$	Dual 1-of-4 Decoder, Active HIGH Outputs	34555	Same Pinout. The outputs of the 34555 are the complement of the outputs of the 74LS 139 and 9321.	3-112
$\begin{aligned} & 7442 A \\ & 9301 \end{aligned}$	1 -of-10 Decoder, Active HIGH Outputs	34028	Different Pinout. For input codes 0-9, the outputs of the 34028 are the complements of the outputs of the 7442A and 9301. For input codes 10-15, all outputs of the 7442A and the 9301 are HIGH. On the 34028, input codes 10, 12 and 14 generate a HIGH on O_{8}, a LOW on all other outputs, while input codes 11, 13 and 15 generate a HIGH on O_{9}, a LOW on all other outputs.	3-56
MULTIPLEXERS				
$\begin{aligned} & 74157 \\ & 9322 \end{aligned}$	Quad AND-OR Select Gate (Quad 2-Input Multiplexer)	34019	Different Pinout. The 34019 has two Select inputs which allow the choice of four possible outputs: O, A, B, A+B. The 74157 and 9322 have a single Select input which allows the selection of either A or B inputs, and an active LOW Enable input.	3-41
74153	Dual 4-Input Multiplexer	34539	Same Pinout, Functionally Identical	3-110
74251	8-Input Multiplexer 3-State Outputs	34512	Different Pinout. The 34512 has an Enable input which forces all outputs LOW, but it does not have a \bar{Z} output. The 74251 does not have an Enable input, but has both \mathbf{Z} and $\overline{\mathbf{Z}}$ outputs.	3-103
$\begin{aligned} & (74151 \\ & 9312) \end{aligned}$			The 74151 and 9312 do not have 3-state outputs; they provide the \bar{Z} output in lieu of the Output Enable input. The 34512 can perform the same function as the 74151 and 9312.	

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
MULTIPLEXERS				
$\begin{aligned} & 74157 \\ & 9322 \end{aligned}$	Quad AND-OR Select Gate (Quad 2-Input Multiplexer)	34019	Different Pinout. The 34019 has two Select inputs which allow the choice of four possible outputs: O, A, B, A+B. The 74157 and 9322 have a single Select input which allows the selection of either A or B inputs, and an active LOW Enable input.	3-41
74153	Dual 4-Input Multiplexer	34539	Same Pinout, Functionally Identical	3-110
74251	8 -Input Multiplexer 3-State Outputs	34512	Different Pinout. The 34512 has an Enable input which forces all outputs LOW, but it does not have a \mathbf{Z} output. The 74251 does not have an Enable input, but has both Z and Z outputs.	s^{3-103}
$\begin{aligned} & \text { (74151 } \\ & 9312) \end{aligned}$			The 74151 and 9312 do not have 3 -state outputs; they provide the \mathbf{Z} output in lieu of the Output Enable input. The 34512 can perform the same function as the 74151 and 9312.	
ANALOG SWITCHES AND MULTIPLEXERS/DEMULTIPLEXERS				
	Quad Bilateral Switch	$\begin{aligned} & 34016 / \\ & 34066 \end{aligned}$	No TTL Equivalent. The 34016 and 34066 are "analog" switches. 3-3	3-35,3-82
$\begin{aligned} & \text { (74151 } \\ & 9312) \end{aligned}$	8-Channel Analog Multiplexer/Demultiplexer	34051	No TTL Equivalent. The 34051 can be used as a digital circuit to perform the same function as the 74151 and 9312 . The 34051 in an "analog" multiplexer/ demultiplexer.	3-76
(9309)	Dual 4-Channel Analog Multiplexer/Demultiplexer	34052	No TTL Equivalent. The 34052 can be used as a digital circuit to perform the same function as the 9309. The 34052 is an "analog" multiplexer/demultiplexer.	3-79
LATCHES				
7475	4-Bit Latch	34042	Different Pinout. The 7475 has separate Enable inputs for bits, 01 and 2,3. The 34042 has a Common Enable input for all four bits; but with the Exclusive-NOR Enable inputs, it is possible to have either an active HIGH or an active LOW Enable input.	3-70
$\begin{aligned} & 9334 \\ & 74259 \end{aligned}$	8-Bit Addressable Latch	34099	Same Pinout. The 9334 and 74259 have active LOW Clear inputs, the 34099 has an active HIGH Clear input.	3-97
	Dual 4-Bit Addressable Latch	34723	No TTL Equivalent	3-127
TRANSLATORS				
75367	Quad TTL-to-CMOS Converter, 3-State Outputs	34104	Different Pinout. The 34104 has true and complement outputs and a common active HIGH Output Enable input. The 75367 has only the inverted outputs available and has individual active LOW Output Enable inputs.	3-100
ARITHMETIC OPERATORS, ADDERS, COMPARATORS				
74L85	4-Bit Magnitude Comparator	340085	Same Pinout, Functionally Identical	3-133
LSI - SPECIAL FUNCTION				
	Programmable Bit Rate Generator	34702	No TTL Equivalent	3-114
RAMs				
$\begin{aligned} & 74 \mathrm{~S} 189 \\ & 7489 \end{aligned}$	16×4-Bit RAM with 3-State Outputs	34725	Same Pinout, Functionally Identical. The 34725 is also similar to the 7489. The 7489 has open collector outputs which are HIGH impedance when Chip Select and Write Enable are HIGH. Outputs are the complement of data inputs when Write Enable is LOW irrespective of Chip Select. Outputs are the complement of the selected word when Write Enable is HIGH and Chip Select is LOW.	nd 3 -130
74200	256×1-Bit RAM with 3-State Outputs	34720	Different Pinout. The 74200 has three Chip Select inputs but does not have a Q output. Write Enable is active LOW. The 34720 has only one Chip Select input but has both Q and $\overline{\mathrm{Z}}$ outputs. Write Enable is active HIGH. The 37420 is transparent in the Write mode.	3-124

TTL TO CMOS FUNCTION SELECTOR GUIDE

CROSS REFERENCE GUIDE

Fairchild	RCA Series A	RCA* Series B	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments
340098				MM80C98				
340160			MC14160	MM74C160			HD74C160	TP4360
340161			MC14161	MM74C161			HD74C161	TP4361
340162			MC14162	MM74C162			HD74C162	TP4362
340163			MC14163	MM74C163			HD74C163	TP4363
340174			MC14174	MM74C174			HD74C174	
340175			MC14175	MM74C175				
340192		CD40192B		MM74C192			HD74C192	
340193		CD40193B		MM74C193			HD74C193	
340194		CD40194B	MC14194					
340195				MM74C195			HD74C195	

PACKAGE CODE CROSS REFERENCE

Package	Fairchild	RCA	Motorola	National	Solid State Scientific	Solitron	Harris
Instruments							
Plastic DIP	P	E	P	N	E	E	1
Ceramic DIP	D	D or F	L	D	D	N	D
Ceramic Flatpak	F	K	-	F	F	J	-

TEMPERATURE CODE CROSS REFERENCE

Temperature Range	Fairchild	RCA	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments
$\begin{gathered} \text { Military } \\ \left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \end{gathered}$	M	D, K, F Packages Only	A	$\begin{gathered} 54 C x x \\ 70 c x x \\ 46 x x \end{gathered}$	D, F Packages Only	D Package Only	2	TF
Commercial $\left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)$	C	E Package Only	C	56XX	E Package Only	E Package Only	4	TP
Commercial $\left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)$	-	-	-	$\begin{aligned} & 74 \mathrm{CXX} \\ & 80 \mathrm{CXX} \end{aligned}$	-	-	5	TL

[^1]
CROSS REFERENCE GUIDE

Fairchild	RCA Series A	RCA* Series B	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments
34001	CD4001A		MC14001A	MM4601A	SCL4001A	CM4001A	HD4001A	TP4001A
34002	CD4002A		MC14002A	MM4602A	SCL4002A	CM4002A	HD4002A	TP4002A
34011	CD4011A		MC14011A	MM4611A	SCL4011A	CM4011A	HD4011A	TP4011A
34012	CD4012A		MC14012A	MM4612A	SCL4012A	CM4012A	HD4012A	TP4012A
34013	CD4013A		MC14013A	MM4613A	SCL4013A	CM4013A	HD4013A	TP4013A
34014	CD4014A		MC14014A	MNI4614A	SCL4014A	CM4014A		TP4014A
34015	CD4015A		MC14015A	MM4615A	SCL4015A			TP4015A
34016	CD4016A		MC14016A	MM14616A	SCL4016A	CM4016A		TP4016A
34017	CD4017A		MC14017A	MM4617A	SCL4017A	CM4017A		TP4017A
34019	CD4019A			MM4619A	SCL4019A	CM4019A	HD4019A	TP4019A
34020	CD4020A		MC14020A	MM4620A	SCL4020A	CM4020A		TP4020A
34021	CD4021A		MC14021A	MM4621A	SCL4021A	CM4021A		TP4021A
34023	CD4023A		MC14023A	MM4623A	SCL4023A	CM4023A	HD4023A	TP4023A
34024	CD4024A		MC14024A	MM4624A	SCL4024A	CM4024A		TP4024A
34025	CD4025A		MC14025A	MM4625A	SCL4025A	CM4025A	HD4025A	TP4025A
34027	CD4027A		MC14027A	MM4627A	SCL4027A		HD4027A	TP4027A
34028	CD4028A		MC14028A	MM4628A	SCL4028A			TP4028A
34029	CD4029A			MM4629A	SCL4029A			TP4029A
34030	CD4030A			MM4630A	SCL4030A		HD4030A	TP4030A
34035	CD4035A		MC14035A	MM4635A	SCL4035A			TP4035A
34040	CD4040A		MC14040A	MM4640A	SCL4040A			TP4040A
34042	CD4042A		MC14042A	MM4642A	SCL4042A			TP4042A
34049	CD4049A		MC14049A	MM4649A	SCL4049A			TP4049A
34050	CD4050A		MC14050A	MM4650A	SCL4050A			TP4050A
34051	CD4051A			MM4651A				TP4051A
34052	CD4052A			MM4652A				TP4052A
34066	CD4066A			MM4666A				
34068		CD4068B						
34069		CD4069B	MM74C04					
34070		CD4070B						
34071		CD4071B						
34077		CD4077B					HD4811	
34078		CD4078B						
34081		CD4081B						
34085		CD4085B						
34086		CD4086B						
34099		CD4099B						
34104						CM4104		
34512			MC14512					TP4512A
34518		CD4518B	MC14518		SCL4518			TP4518A
34520		CD4520B	MC14520		SCL4520			TP4520A
34539			MC14539					TP4539A
34555		CD4555B	MC14555					
34556		CD4556B	MC14556					
34702								
34720	*** ${ }^{\text {c }}$ (4061 A							
34723								
34725								
340085			* * MC14585	MM74C85				
340097				MM80C97				

34000
 SERIES CMOS FAMILY CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Non-operating) above which useful life may be impaired. All voltages are referenced to $\mathrm{V}_{\text {SS }}$.

RECOMMENDED OPERATING CONDITIONS

Fairchild CMOS will operate over a recommended $V_{D D}$ power supply range of 3 to 15 V , as referenced to $V_{S S}$ (usually ground). Parametric limits are guaranteed for $V_{D D}$ equal to 5,10 and 15 V . Where low power dissipation is required, the lowest power supply voltage, consistent with required speed, should be used. For larger noise immunity, higher power supply voltages should be specified. Because of its wide operating range, power supply regulation and filtering are less critical than with other types of logic. The lower limit of supply regulation is 3 V , or as determined by required system speed and/or noise immunity or interface to other logic. The recommended upper limit is 15 V or as determined by power dissipation constraints or interface to other logic.
Unused inputs must be connected to $V_{D D}, V_{S S}$ or another input.
Care should be used in handling CMOS devices; large static charges may damage the device.
Operating temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for Commercial and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for Military.

PARAMETER	34000×C			$34000 \times \mathrm{M}$			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage, $\mathrm{V}_{\text {DD }}$	3		15	3		15	V
Operating Free Air Temperature Range	-40	+25	+85	-55	+25	+125	C

DC CHARACTERISTICS FOR THE 34000 SERIES CMOS FAMILY - Parametric Limits listed below are guaranteed for the entire Fairchild CMOS Family unless otherwise specified on the individual data sheets.

DC CHARACTERISTICS: $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX				
$V_{\text {IH }}$	Input HIGH Voitage		3.5			V	All	Guarant	put HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage				1.5	V	All	Guarant	nput LOW Voltage
VOH	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \end{aligned}$			V	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=0$ the Logi	Inputs at 0 or 5 V per nction or Truth Table
			4.0			V	All	$1 \mathrm{OH}=0$	Inputs at 1.5 or 3.5 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{IOL}=0$ the Logic	Inputs at 0 or 5 V per nction or Truth Table
					0.5	V	All	$1 \mathrm{OL}=0$	Inputs at 1.5 or 3.5 V
IIN	Input Current	XC			0.1	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead under test at 0 or 5 V All other Inputs simultaneously at 0 or 5 V	
		XM			0.01				
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & -1.5 \\ & -1.0 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & V_{\text {OUT }}= \\ & 2.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 5 V per the Logic Function or Truth Table
			$\begin{aligned} & -0.7 \\ & -0.4 \end{aligned}$			mA	$\begin{gathered} \mathrm{MiN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 4.5 \mathrm{~V} \end{aligned}$	
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.4 \end{aligned}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 0.4 \mathrm{~V} \end{aligned}$	

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX				
$\mathrm{V}_{1 H}$	Input HIGH Voltage		7.0			V	All	Guarante	nput HIGH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				3.0	V	All	Guarante	nput LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 9.99 \\ & 9.95 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{r}$ the Logic	Inputs at 0 or 10 V per nction or Truth Table
			9.0			v	All	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~m}$	Inputs at 3 or 7 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{IOL}=0$ the Logic	$\begin{aligned} & 0 \mathrm{~V} \text { per } \\ & \text { inction or Truth Table } \end{aligned}$
					1.0	v	All	$1 \mathrm{OL}=0 \mathrm{~m}$	Inputs at 3 or 7 V
IN	Input Current	XC			0.1	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead under test at 0 or 10 V	
		XM			0.01				
${ }^{\mathrm{IOH}}$	Output HIGH Current		$\begin{aligned} & \hline-1.4 \\ & -0.8 \\ & \hline \end{aligned}$			mA	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 9.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 10 V per
${ }^{\text {IOL }}$	Output LOW Current		$\begin{aligned} & 2.6 \\ & 2.0 \\ & 1.2 \end{aligned}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 0.5 \mathrm{~V} \end{aligned}$	the Logic Function or Truth Table

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		10.5			V	All	Guarante	nput HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage				4.5	V	All	Guarante	nput LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 14.99 \\ & 14.95 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{r}$ the Logic	Inputs at 0 or 15 V per nction or Truth Table
			13.0			v	All	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~m}$	Inputs at 4.5 or 10.5 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{IOL}=0 \mathrm{n}$ the Logic	Inputs at 0 or 15 V per nction or Truth Table
					2.0	V	All	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~m}$	Inputs at 4.5 or 10.5 V
IIN	Input Current	XC			1.0	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead under test at 0 or 15 V	
		XM			1.0			All other	uts Simultaneously at 0
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & -2.2 \\ & -1.4 \end{aligned}$			mA	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 14.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 15 V per
IOL	Output LOW Current		$\begin{aligned} & 3.6 \\ & 2.0 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 0.5 \mathrm{~V} \end{aligned}$	the Logic Function or Truth Table

TYPICAL 34000 SERIES CHARACTERISTICS

Fig. 3-1
POSITIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 3-2
NEGATIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 3-3
POSITIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 3-4
NEGATIVE-GOING PROPAGATION DELAY

Fig. 3-7
PROPAGATION DELAY VERSUS AMBIENT

Fig. 3-11
n-CHANNEL DRAIN CHARACTERISTICS

Fig. 3-5
VOLTAGE TRANSFER CHARACTERISTICS OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ RANGE

Fig. 3-8
PROPAGATION DELAY VERSUS AMBIENT
TEMPERATURE @ VDD $=10 \mathrm{~V}$

Fig. 3-12
p-CHANNEL DRAIN CHARACTERISTICS

Fig. 3-6
GATE POWER DISSIPATION VERSUS FREQUENCY

Fig. 3-9
PROPAGATION DELAY VERSUS AMBIENT
TEMPERATURE @ VDD = 15 V

Fig. 3-13
INPUT PROTECTION CIRCUIT

INPUT CIRCUITRY

All inputs are protected by the network of Figure 3-13; a series input resistor plus diodes D1 and D2 clamp input voltages between $V_{S S}$ and $V_{D D}$. Forward conduction of these diodes is typically 0.9 V at 1 mA . When V_{SS} or V_{DD} is not connected, avalanche breakdown of the diodes limit input voltage; D1 typically breaks down at 20 V , D2 at 26 V . In normal logic operation the diodes never conduct, but for certain special applications such as oscillators, circuit operation may actually depend on diode conduction. Operation in this mode is permissible so long as input currents do not exceed 10 mA .

Input capacitance is typically 5 pF across temperature for any input.

DEFINITION OF SYMBOLS AND TERMS USED IN DATA SHEETS

CURRENTS - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device.
$I_{I N}$ - (Input Current) - The current flowing into a device at specified input voltage and $V_{D D}$.
${ }^{\mathrm{I}} \mathrm{OH}$ - (Output HIGH Current) - The drive current flowing out of the device at specified HIGH output voltage and $V_{D D}$.
${ }^{\prime} \mathrm{OL}$ - (Output LOW Current) - The drive current flowing into the device at specified LOW output voltage and $V_{D D}$.
${ }^{\prime}$ DD - (Quiescent Power Supply Current) - The current flowing into the $V_{D D}$ lead at specified input and $V_{D D}$ conditions.
$I^{\prime} \mathrm{OZH}$ - (Output OFF Current HIGH) - The leakage current flowing into the output of a 3-state device in the "OFF" state at a specified HIGH output voltage and $V_{\text {DD }}$.
${ }^{\text {IOZL }}$ - (Output OFF Current LOW) - The leakage current flowing out of a 3-state device in the "OFF" state at a specified HIGH output voltage and $V_{\text {DD }}$.
$I_{I L}$ - (Input Current LOW) - The current flowing into a device at a specified LOW level input voltage and a specified $V_{D D}$.
$I_{I H}$ - (Input Current HIGH) - The current flowing into a device at a specified HIGH level input voltage and a specified VD.
${ }^{\prime}$ DDL - (Quiescent Power Supply Current LOW) - The current flowing into the $V_{D D}$ lead with a specified LOW level input voltage on all inputs and specified V_{DD} conditions.
${ }^{\text {IDDH }}$ - (Quiescent Power Supply Current HIGH) - The current flowing into the $V_{\text {DD }}$ lead with a specified HIGH level input voltage on all inputs and specified $V_{D D}$ conditions.
I_{Z} - (OFF State Leakage Current) - The leakage current flowing into the output of a 3-state device in the "OFF" state at a specified output voltage and $V_{D D}$.

VOLTAGES - All voltages are referenced to $\mathrm{V}_{\text {SS }}$ which is the most negative potential applied to the device.
V_{DD} - (Drain Voltage) - The most positive potential on the device.
V_{IH} - (Input HIGH Voltage) - The range of input voltages that represents a logic HIGH level in the system.
V_{IL} - (Input LOW Voltage) - The range of input voltages that represents a logic LOW level in the system.
V_{IH} (min) - (Minimum Input HIGH Voltage) - The minimum allowed input HIGH level in a logic system.
V_{IL} (max) - (Maximum Input LOW Voltage) - The maximum allowed input LOW level in a system.
V_{OH} - (Output HIGH Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a HIGH level at the output.
V_{OL} - (Output LOW Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a LOW level at the output.
V_{SS} - (Source Voltage) - For a device with a single negative power supply, the most negative power supply, used as the reference level for other voltages. Typically ground.
V_{EE} - (Source Voltage) - One of two (V_{SS} and V_{EE}) negative power supplies. For a device with dual negative power supplies, the most negative power supply used as a reference level for other voltages.

ANALOG TERMS

$R_{\text {ON }}$ - (ON Resistance) - The effective "ON" state resistance of an analog transmission gate, at specified input voltage, output load and $V_{D D}$.
$R_{\text {ON }}$ - (" Δ " ON Resistance) - The difference in effective "ON" resistance between any two transmission gates of an analog device at specified input voltage, output load and $V_{D D}$.

AC SWITCHING PARAMETERS

$f_{M A X}$ - (Toggle Frequency/Operating Frequency) - The maximum rate at which clock pulses may be applied to a sequential circuit with the output of the circuit changing between 30% of $V_{D D}$ and 70% of $V_{D D}$. Above this frequency the device may cease to function. See Figure 3-15.
tpLH - (Propagation Delay Time) - The time between the specified reference points, normally 50% points on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level. See Figure 3-14.
${ }^{\text {tPHL }}$ - (Propagation Delay Time) - The time between the specified reference points, normally 50% points on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level. See Figure 3-14.
${ }^{t_{T L H}}$ - (Transition Time, LOW to HIGH) - The time between two specified reference points on a waveform, normally 10\% and 90% points, which is changing from LOW to HIGH. See Figure 3-14.
${ }^{\text {THL }}$ - (Transition Time, HIGH to LOW) - The time between two specified reference points on a waveform, normally 90% to 10% points, which is changing from HIGH to LOW. See Figure 3-14.
t_{w} - (Pulse Width) - The time between 50\% amplitude points on the leading and trailing edges of pulse.
t_{h} - (Hold Time) - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
t_{s} - (Set-up Time) - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative set-up time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
${ }^{\text {t PHZ }}$ - (3-State Output Disable Time, HIGH to Z) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ drop on the Output voltage waveform of a 3 -state device, with the output changing from the defined HIGH level to a high impedance OFF state.
${ }^{\text {t PLZ }}$ - (3-State Output Disable Time, LOW to Z) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ rise on the Output voltage waveform of a 3 -state device, with the output changing from the defined LOW level to a high impedance OFF state.
${ }^{\text {t }}$ PZH - (3-State Output Enable Time, Z to HIGH) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3-state device, with the output changing from a high impedance OFF state to the defined HIGH level.
${ }^{\text {t P PL }}$ - (3-State Output Enable Time, Z to LOW) - The time between the specified reference points, normally the 50% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3 -state device, with the output changing from a high impedance OFF state to the defined LOW level.
$t_{\text {rec }}$ - (Recovery Time) - The time between the end of an overriding asynchronous input, typically a Clear or Reset input, and the earliest allowable beginning of a synchronous control input, typically a Clock input, normally measured at 50\% points on both input voltage waveforms.

Fig. 3-14. Propagation Delay, Transition Time

Fig. 3-15. Maximum Operating Frequency

34001 QUAD 2-INPUT NOR GATE • 34002 DUAL 4-INPUT NOR GATE

DESCRIPTION - These CMOS logic elements provide the positive input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

34001
LOGIC AND CONNECTION DIAGRAM DIP(TOP VIEW)

34002
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
	Power	X			15.0			30.0		6.0			MAX	
	Supply	XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
	Current				3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34001$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay		40 40	75 75		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	40 40		8 8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		60	$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$		30 30	70 70		20	45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34002 \mathrm{only}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	75 75		$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		11 7	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay		$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		40 23	70 70		30 15	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:
Propagation delays and output transition times are graphically described in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34001
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

34002
PROPAGATION DELAY VERSUS TEMPERATURE

34002
PROPAGATION DELAY

34011 QUAD 2-INPUT NAND GATE • 34012 DUAL 4-INPUT NAND GATE

DESCRIPTION - These CMOS logic elements provide the positive input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

34011
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

34012
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34011$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	75 75		20	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}$ TLH ${ }^{\text {t THL }}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		10 10	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		8 8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		60	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 30	70 70		20	45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34012$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {tpHL }}$	Propagation Delay		$\begin{aligned} & 54 \\ & 61 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 18 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{t_{T} L H}$ ${ }^{{ }^{\mathrm{T} T \mathrm{HL}}}$	Output Transition Time		$\begin{aligned} & 22 \\ & 31 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		11 8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH}}$ ${ }^{\text {t PHL }}$	Propagation Delay		$\begin{aligned} & 73 \\ & 85 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 33 \\ & 31 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 76 \\ & 67 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 37 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 27 \\ & 17 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE: Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34011
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

34012 PROPAGATION DELAY VERSUS TEMPERATURE

34012
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

34013
 DUAL D FLIP-FLOP

DESCRIPTION - The 34013 is a CMOS Dual D Flip-Flop which is edge-triggered and features independent Set Direct, Clear Direct, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (C_{D}) and Set Direct (S_{D}) are independent and override the D or Clock inputs. The outputs are buffered for best system performance.

PIN NAMES

D	Data Input
CP	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
S_{D}	Asynchronous Set Direct Input (Active HIGH)
C_{D}	Asynchronous Clear Direct Input (Active HIGH)
Q	True Output
$\overline{\mathrm{Q}}$	Complement Output

34013
TRUTH TABLE

INPUTS				OUTPUTS	
S_{D}	C_{D}	$C P$	D	Q_{n+1}	\bar{Q}_{n+1}
H	L	X	X	H	L
L	H	X	X	L	H
H	H	X	X	H	H
L	L	Γ	L	L	H
L	L	Γ	H	H	L

[^2]

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{O}}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{P L H}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 171 \\ & 110 \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 72 \\ & 55 \end{aligned}$		$\begin{aligned} & 30 \\ & 20 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\overline{t_{P L H}}$ ${ }^{t_{P H L}}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	80 80		30 30		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\overline{{ }^{\prime} T L H}$ ${ }^{\text {tTHL }}$	Output Transition Time		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	72 72		$\begin{aligned} & 29 \\ & 29 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{array}{\|r\|} \hline 130 \\ 75 \end{array}$	$\begin{aligned} & 220 \\ & 135 \end{aligned}$		$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 90 \\ & 65 \end{aligned}$		$\begin{aligned} & 32 \\ & 20 \end{aligned}$		ns ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\begin{aligned} & { }^{\text {t}}{ }^{\text {PLH }} \\ & { }^{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$		50 50	90 90		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} T \mathrm{LH}} \\ & { }^{\mathbf{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 80 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ -25 \end{array}$		$\begin{array}{r} 40 \\ 0 \end{array}$	$\begin{array}{r} 15 \\ -12 \end{array}$			$\begin{array}{r}8 \\ -6 \\ \hline\end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {CP(L) }}$	Minimum Clock Pulse Width	100	55		55	30			18		ns	
${ }^{t_{w} S^{\text {d }}}{ }^{(H)}$	Minimum S_{D} Pulse Width	60	30		30	15			10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{w} C_{D}(H)}$	Minimum C_{D} Pulse Width	60	30		30	15			10		ns	Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
${ }^{\text {trec }}{ }^{\text {S }}$ D	Recovery Time for S_{D}	-20	-9		-10	-4			-2		ns	
${ }_{\text {trec }} C_{D}$	Recovery Time for C_{D}	0	11		0	6			6		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 2)	5	8		8	16					MHz	

NOTES:

1. Propagation Delays (tpLH and $\mathrm{tPHL}^{\text {) }}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For ${ }_{\mathrm{f}}^{\mathrm{MAX}}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

WAVEFORMS

SET-UP TIMES, HOLD TIMES AND MINIMUM CLOCK PULSE WIDTH

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}. MINIMUM S_{D} PULSE WIDTH, AND MINIMUM CD PULSE WIDTH

34014

8 -BIT SHIFT REGISTER

DESCRIPTION - The 34014 is a fully synchronous edge-triggered 8-Bit Shift Register with eight synchronous Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$), a synchronous Serial Data Input (D_{S}), a synchronous Parallel Enable Input (PE), a LOW-to-HIGH edge-triggered Clock Input (CP) and Buffered Parallel Outputs from the last three stages $\left(\mathrm{O}_{5}-\mathrm{Q}_{7}\right)$.
Operation is synchronous and the device is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Input (DS) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package

- TYPICAL SHIFT FREQUENCY OF 14.7 MHz AT VDD $=10 \mathrm{~V}$
- PARALLEL OR SERIAL TO SERIAL DATA TRANSFER
- AVAILABLE OUTPUTS FROM THE LAST THREE STAGES
- FULLY SYNCHRONOUS

PIN NAMES

PE

$\mathrm{P}_{0}-\mathrm{P}_{7}$

D_{S}
CP
Q_{5}, Q_{6}, Q_{7}

Parallel Enable Input
Parallel Data Inputs
Serial Data Input
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Buffered Parallel Outputs from the Last Three Stages

LOGIC DIAGRAM

$V_{S S}=P$ in 8
O $=$ Pin Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			50			$\begin{array}{r} 100 \\ 1200 \\ \hline \end{array}$		$\begin{array}{r} 20 \\ 240 \\ \hline \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600								MAX	
		M			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120		$\mu \mathrm{A}$	MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} P H L}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, CP to any Q		$\begin{aligned} & 109 \\ & 139 \end{aligned}$			$\begin{aligned} & 47 \\ & 57 \end{aligned}$			$\begin{aligned} & 33 \\ & 38 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\overline{t_{T L H}}$ ${ }^{\mathrm{T} H \mathrm{~L}}$	Output Transition Time		33 37			$\begin{aligned} & 19 \\ & 19 \end{aligned}$			$\begin{aligned} & 13 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CP to any Q		$\begin{aligned} & 129 \\ & 165 \end{aligned}$			$\begin{aligned} & 57 \\ & 68 \end{aligned}$			$\begin{aligned} & \hline 41 \\ & 47 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 70 \\ & 77 \end{aligned}$			37 34			21 21		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width		93			33			22		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time PE to CP Hold Time PE to CP		$\begin{array}{\|l\|} \hline 118 \\ 117 \\ \hline \end{array}$			$\begin{aligned} & 44 \\ & 43 \end{aligned}$			$\begin{aligned} & 29 \\ & 27 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time D_{S} to CP Hold Time D_{S} to CP		$\begin{aligned} & 80 \\ & 77 \end{aligned}$			$\begin{aligned} & 28 \\ & 27 \\ & \hline \end{aligned}$			$\begin{aligned} & 17 \\ & 16 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time P_{n} to $C P$ Hold Time P_{n} to CP		$\begin{aligned} & 108 \\ & 107 \end{aligned}$			$\begin{aligned} & 37 \\ & 36 \end{aligned}$			$\begin{aligned} & 23 \\ & 22 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{f}_{\text {MAX }}$	Max. Input Clock Frequency (Note 3)		5.8			14.7					M Hz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}). Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH
AND SET-UP AND HOLD TIMES, PE TO CP, DS TO CP, AND P ${ }_{n}$ TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

34015 DUAL 4-BIT STATIC SHIFT REGISTER

DESCRIPTION - The 34015 is a Dual Edge-Triggered 4-Bit Static Shift Register (Serial-to-Parallel Converter). Each Shift Register has a Serial Data Input (D) a Clock Input (CP), four fully buffered parallel Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ and an overriding asynchronous Master Reset Input (MR).

Information present on the serial Data Input (D) is shifted into the first register position, and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).
A HIGH on the Master Reset Input (MR) clears the register and forces the Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ LOW, independent of the Clock and Data Inputs (CP and D).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT VDD $=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- SERIAL-TO-PARALLEL DATA TRANSFER
- FUllly buffered outputs from each stage

PIN NAMES

D_{A}, D_{B}
$M R_{A}, M_{B}$
$\mathrm{CP}_{A}, \mathrm{CP}_{B}$
$Q_{0 A}, Q_{1 A}, Q_{2 A}, Q_{3 A}$
$Q_{O B}, Q_{1 B}, Q_{2 B}, Q_{3 B}$
Serial Data Input
Master Reset Input (Active HIGH)
Clock Input ($L \rightarrow H$ Edge-Triggered)
Parallel Outputs
Parallel Outputs

LOGIC DIAGRAM

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8 \\
& O=\operatorname{Pin} \text { Number }
\end{aligned}
$$

LOGIC SYMBOL

34015

$$
V_{D D}=\operatorname{Pin} 16
$$

$V_{S S}=P$ in 8

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
'DD	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					100			200		40			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60		12			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t }}$ PHL	Propagation Delay, CP to Q		$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q		150	300		85	150		60		ns	ut Transi
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay, CP to Q		$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q		180	325		90	160		60		ns	Input Transition
$\overline{t_{T L H}}$ ${ }^{\mathrm{t}}{ }^{\mathrm{THL}}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to CP Hold Time, D to CP	$\begin{array}{\|r\|} \hline 150 \\ 0 \end{array}$	$\begin{aligned} & 70 \\ & -5 \end{aligned}$		50	$\begin{array}{\|r\|} \hline 30 \\ -20 \end{array}$			$\begin{array}{r} 25 \\ -10 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{w} \mathrm{CP}(\mathrm{L})}$	Minimum Clock Pulse Width	120	60		70	35			25		ns	$C_{L}=15 \mathrm{pF}$
${ }^{t_{w} \mathrm{MR}(\mathrm{H})}$	Minimum MR Pulse Width	75	40		45	25			20		ns	Input Transition
${ }^{\text {trec }}$	MR Recovery Time	300	160		120	60			45		ns	
${ }^{\text {m MAX }}$	Maximum CP Frequency (Note 3)	4	8		7	14					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{L L H}$ and $t_{P H L}$) and Output Transition Times ($t T_{L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu_{\mathrm{s}}$.

SWITCHING WAVEFORMS

SET-UP TIMES, HOLD TIMES AND MINIMUM CLOCK PULSE WIDTH NOTE:
t_{s} and t_{h} are shown as positive values but may be specified as negative values.

RECOVERY TIME FOR MR AND MINIMUM MR PULSE WIDTH

34016

QUAD BILATERAL SWITCHES

DESCRIPTION - The 34016 has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals (Y_{n}, Z_{n}) and an active HIGH Enable Input (E_{n}). A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch and establishes a high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING
- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$E_{0}-E_{3}$	Enable Inputs
$Y_{0}-Y_{3}$	Input/Output Terminals
$Z_{0}-Z_{3}$	Input/Output Terminals

LOGIC DIAGRAM (1/4 OF A 34016)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{DD}} & =\operatorname{Pin} 14 \\
\mathrm{~V}_{\mathrm{SS}} & =\operatorname{Pin} 7 \\
O & =\operatorname{Pin} \text { Numbers }
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

Note: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS		
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$							
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
R_{ON}	ON Resistance	XC						$\begin{aligned} & 610 \\ & 660 \\ & 840 \\ & \hline \end{aligned}$			$\begin{aligned} & 370 \\ & 400 \\ & 520 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	
								610 660 840			$\begin{aligned} & 370 \\ & 400 \\ & 520 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{\text {is }}=V_{S S} \\ & +0.25 \mathrm{~V} \end{aligned}$		
					$\begin{aligned} & 1900 \\ & 2000 \\ & 2380 \end{aligned}$							Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=2.5 \mathrm{~V}$		
								$\begin{array}{r} 1750 \\ 1800 \\ 2360 \\ \hline \end{array}$				Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=5.6 \mathrm{~V}$		
											$\begin{array}{r} 775 \\ 800 \\ 1020 \\ \hline \end{array}$	Ω		$\mathrm{V}_{\text {IN }}=9.3 \mathrm{~V}$		
		XM						$\begin{aligned} & 600 \\ & 660 \\ & 960 \end{aligned}$			$\begin{aligned} & 360 \\ & 400 \\ & 600 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {is }}=V_{D D}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & E_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	
								$\begin{aligned} & 600 \\ & 660 \\ & 960 \\ & \hline \end{aligned}$			$\begin{aligned} & 360 \\ & 400 \\ & 600 \\ & \hline \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & v_{\text {is }}=v_{S S} \\ & +0.25 \mathrm{~V} \end{aligned}$		
					$\begin{array}{\|l\|} 1870 \\ 2000 \\ 2600 \\ \hline \end{array}$							Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=2.5 \mathrm{~V}$		
								$\begin{aligned} & 1700 \\ & 1800 \\ & 2000 \end{aligned}$				Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=5.6 \mathrm{~V}$		
											$\begin{array}{r} 750 \\ 800 \\ 1200 \end{array}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\text {is }}=9.3 \mathrm{~V}$		
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Resistance Between Any Two Switches						15			10		Ω	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { or } V_{S S} \\ & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$		
${ }^{\prime} \mathrm{z}$	OFF State Leak. age Current, Any Y to Z							125			200	nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { or } V_{S S} \\ & E_{n}=V_{S S} \end{aligned}$		
IDD	Quiescent Power Supply Current	XC			$\begin{array}{r} 0.25 \\ 7 \end{array}$			$\begin{array}{r} 0.5 \\ 8 \end{array}$		$\begin{aligned} & 0.1 \\ & 1.6 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at V_{DD} or V_{SS}		
		XM			$\begin{array}{r} \hline 0.25 \\ 25 \end{array}$			$\begin{array}{r} 0.5 \\ 30 \end{array}$		1.6 0.1 6		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX			

NOTES:

1. Additional DC Characteristics for the Enable Inputs are listed in this section under 34000 Series CMOS Family Characteristics.
2. $V_{\text {is }}$ is the input voltage to Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t }}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		4 3			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, E_{n}=V_{D D} \\ & C_{L}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 26 \\ & 26 \end{aligned}$			$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & E_{n}=V_{D D} \text { (square wave) } \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 170 \\ & 170 \end{aligned}$			$\begin{aligned} & 182 \\ & 182 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { Input Trans } \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$			3 4			$\begin{array}{r} 2 \\ 2.5 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns}^{\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) }} \text { } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & { }_{\mathrm{t}}^{\mathrm{t} P Z \mathrm{H}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 32 \\ & 32 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Indut Transition Times } \leqslant 20 \mathrm{~ns} \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t} P L Z} \\ & { }_{\mathrm{t}} \mathrm{PHZZ} \end{aligned}$	Output Disable Time		$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & E_{n}=v_{D D} \\ & v_{i s}=v_{D D} \end{aligned}$
	Distortion, Sine Wave Response		0.31			0.31			0.31		\%	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \\ & \text { Input }{ }^{2 r e q u e n c y=1 \mathrm{kHz}} \\ & E_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \hline \end{aligned}$
	Crosstalk Between Any Two Switches					0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & E_{A}=V_{D D^{\prime}} E_{B}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { sine wave } \\ & \text { at }-50 \mathrm{~dB}, 20 \log _{10} \\ & {\left[V_{\text {os }}(B) / V_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	$R_{\text {LOUT) }}=10 \mathrm{k} \Omega, R_{\mathrm{L}(\mathrm{IN})}=1 \mathrm{k} \Omega$ Input Transition Times $\leqslant 20 \mathrm{~ns}$ $E_{n}=V_{D D}$ (square wave)
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}} \\ & V_{i s}=\mathrm{V}_{\mathrm{DD}} / 2 \text { sine wave } \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{os}} / V_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					90					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & V_{i s}=V_{D D} / 2 \text { sine wave } \\ & E_{\eta}=V_{D D}^{\prime} \\ & 20 \log _{10}\left(V_{o s} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$
${ }_{\text {f MAX }}$	Enable Input Frequency (Note 2)					10					MHz	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$ $E_{n}=V_{D D}$ (square wave) $v_{i s}=v_{D D}$

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. For ${ }^{\prime} M A X$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

34017
 5-STAGE JOHNSON COUNTER

DESCRIPTION - The 34017 is a 5-Stage Johnson Decade Counter with ten glitch free decoded active HIGH Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{9}\right)$, an active LOW Output from the most significant flip-flop $\left(\overline{\mathrm{O}_{5}-9}\right)$, active HIGH and active LOW Clock Inputs ($\left.\mathrm{CP}_{0}, \overline{\mathrm{CP}}\right)_{1}$) and an overriding asynchronous Master Reset Input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}}{ }_{1}$ is LOW or a HIGH-to-LOW transition at $\overline{\mathrm{CP}} 1$ while CP_{0} is HIGH (see Functional Truth Table). When cascading 34017 counters, the $\overline{\mathrm{O}_{5-9}}$ output, which is LOW while the counter is in states $5,6,7,8$ and 9 , can be used to drive the CP_{0} input of the next 34017.
A HIGH on the Master Reset Input (MR) resets the counter to zero $1 \mathrm{O}_{0}=\overline{\mathrm{O}_{5-9}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{9}=$ LOW) independent of the Clock Inputs ($\mathrm{CP}_{0}, \mathrm{CP}_{1}$).

- TYPICAL COUNT FREQUENCY OF $13.8 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- ACTIVE HIGH DECODED OUTPUTS
- TRIGGERS ON EITHER A HIGH-TO-LOW OR LOW-TO-HIGH TRANSITION
- CASCADABLE

PIN NAMES

CP_{0}	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Triggered)
$\overline{\mathrm{CP}} 1$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
MR	Master Reset Input
$\overline{\mathrm{O}_{0} \cdots \mathrm{O}_{9}}$	Decoded Outputs
$\overline{\mathrm{Q}_{5}-9}$	Carry Output (Active LOW)

FUNCTIONAL TRUTH TABLE

$M R$	CP_{0}	$\overline{\mathrm{CP}}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{Q}_{5}-9}=\mathrm{H} ; \mathrm{O}_{1}-\mathrm{O}_{9}=\mathrm{L}$
L	H	$H \rightarrow L$	Counter Advances
L	$L \rightarrow H$	L	Counter Advances
L	L	X	No Change
L	X	H	No Change
L	H	$L \rightarrow H$	No Change
L	$H \rightarrow L$	L	No Change

$\mathrm{H}=\mathrm{HIGH}$ Level
L = LOW Level
$\mathrm{L} \rightarrow \mathrm{H}=$ LOW-to-HIGH Transition
$\mathrm{H} \rightarrow \mathrm{L}=\mathrm{HIGH}$-to-LOW Transition
$\mathrm{X}=$ Don't Care

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at OV or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to O_{n}		$\begin{aligned} & 262 \\ & 197 \end{aligned}$			$\begin{array}{r} 104 \\ 86 \end{array}$			76		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\overline{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to $\overline{\mathrm{Q}_{5-9}}$		$\begin{aligned} & 189 \\ & 240 \end{aligned}$			$\begin{aligned} & \hline 80 \\ & 96 \end{aligned}$			$\begin{aligned} & 57 \\ & 67 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPHL }}$	Propagation Delay, MR to O_{n}		151			62			45		ns	
${ }^{\text {t PLH }}$	- Propagation Delay, MR to $\overline{\mathrm{O}_{5-9}}$		102			42			34		ns	
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{LLH}}} \\ & { }_{\mathrm{t} T \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 32 \\ & 27 \end{aligned}$			16 13			$\begin{aligned} & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CP_{0} or $\overline{C P}_{1}$ to O_{n}		$\begin{aligned} & 278 \\ & 226 \end{aligned}$			$\begin{array}{r} 114 \\ 94 \end{array}$			82 67		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to $\overline{\mathrm{O}_{5-9}}$		$\begin{aligned} & 205 \\ & 261 \end{aligned}$			$\begin{array}{r} 87 \\ 105 \end{array}$			$\begin{aligned} & 63 \\ & 73 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, MR to O_{n}		170			80			52		ns	
${ }^{\text {t PLH }}$	Propagation Delay, MR to $\overline{\mathrm{Q}_{5-9}}$		125			65			40		ns	
$\begin{aligned} & \mathbf{t}_{\text {TLH }} \\ & { }^{\text {tTHL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 59 \\ & 63 \end{aligned}$			$\begin{aligned} & 31 \\ & 26 \end{aligned}$			$\begin{aligned} & 23 \\ & 19 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {CP }}$	Min. CP_{0} or $\overline{\mathrm{CP}}_{1}$ Pulse Width		85			37			28		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{w} \mathrm{MR}}$	Minimum MR Pulse Width		52			22			18		ns	
${ }^{\text {trec }}$	MR Recovery Time		16			6			3		ns	
t_{h}	Hold Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$		90			39			26		ns	
t_{h}	Hold Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}		89			39			22		ns	
${ }_{\text {f MAX }}$	Input Count Frequency (Note 3)		5.8			13.8					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{tPLH}_{\mathrm{LH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Hold Times (t_{h}) Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to either Clock Input (CP_{O} or $\overline{\mathrm{CP}}_{1}$) be less than $15 \mu_{\mathrm{s}}$.

SWITCHING WAVEFORMS

HOLD TIMES, CP_{0} TO $\overline{\mathbf{C P}_{1}}$ AND $\overline{\mathrm{CP}_{1}}$ TO CP
Hold Times are shown as positive values, but may be specified as negative values.

MINIMUM PULSE WIDTHS FOR CP AND MR AND RECOVERY TIME FOR MR

CONDITIONS: $\overline{\mathrm{CP}_{1}}=$ LOW while CP_{0} is triggered on a LOW-to-HIGH transition. ${ }^{W}{ }_{W} C P$ and $t_{r e c}$ also apply when $C P_{0}=H I G H$ and $\overline{C P}{ }_{1}$ is triggered on a HIGH-to-LOW transition.

34019
 QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The 34019 provides four multiplexing circuits with common selection inputs; each circuit contains two inputs and one output. It may be used to select four bits of information from one of two sources. The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} is HIGH. When S_{A} and S_{B} are HIGH, output $\left(Z_{n}\right)$ is the logical $O R$ of the A_{n} and B_{n} inputs $\left(Z_{n}=A_{n}+B_{n}\right)$. When S_{A} and S_{B} are LOW, output $\left(Z_{n}\right)$ is LOW independent of the multiplexer inputs (A_{n} and B_{n}). The 34019 cannot be used to multiplex analog signals. The outputs utilize standard buffers for best performance.

PIN NAMES

$$
\begin{aligned}
& S_{A}, S_{B} \\
& A_{0}-A_{3}, B_{0}-B_{3} \\
& Z_{0}-Z_{3}
\end{aligned}
$$

Select Inputs (Active HIGH)
Multiplexer Inputs
Multiplexer Outputs

TRUTH TABLE

SELECT		INPUTS		OUTPUT
S_{A}	S_{B}	A_{n}	B_{n}	Z_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	H	H	X	H
H	H	X	H	L
H	H	L	L	

$H=$ HIGH Level
$L=$ LOW Leve!
$X=$ Don't Care

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=P$ in 8
$0=\operatorname{Pin}$ Number

$$
z_{n}=S_{A} A_{n}+S_{B} B_{n}
$$

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		24			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

NOTE: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{PLLH}}} \\ & { }^{\mathrm{t}_{\mathrm{HLL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{S}_{\mathrm{A}}, \mathrm{~S}_{\mathrm{B}}, \mathrm{~A}_{\mathrm{n}} \text { or } \mathrm{B}_{\mathrm{n}} \text { to } \mathrm{Z}_{\mathrm{n}}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t} T \mathrm{TLH}} \\ & { }^{\mathrm{t}}{ }^{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 45 \end{aligned}$	75 75		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\text {PLLH }}} \\ & { }^{\mathrm{t} P \mathrm{PL}} \\ & \hline \end{aligned}$	Propagation Delay, $S_{A}, S_{B}, A_{n} \text { or } B_{n} \text { to } Z_{n}$		$\begin{aligned} & 75 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \end{aligned}$		$\begin{aligned} & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \end{aligned}$		$\begin{aligned} & 24 \\ & 29 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} \text { LLH }}} \\ & { }^{\mathrm{t}} \mathrm{tHL} \end{aligned}$	Output Transition Time		80 90	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		42 40	70 70		32 30	45 45	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

34020
 14-STAGE BINARY COUNTER

DESCRIPTION - The 34020 is a 14 -Stage Binary Ripple Counter with a Clock Input (CP), an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs ($Q_{0}, Q_{3}-Q_{13}$). The counter advances on the HIGH-to-LOW transition of the Clock Input (CP). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs $\left(\mathrm{Q}_{0}, \mathrm{Q}_{3}-\mathrm{Q}_{13}\right)$ LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- 25 MHz TYPICAL COUNT FREQUENCY AT VDD $=10 \mathrm{~V}$
- COMMON ASYNCHRONOUS MASTER RESET
- FULLY BUFFERED OUTPUTS FROM THE FIRST STAGE AND THE LAST ELEVEN STAGES

PIN NAMES

$\overline{C P}$	Clock Input $(H \rightarrow L$ Triggered)
$M R$	Master Reset Input (Active HIGH)
$\mathrm{Q}_{0}, \mathrm{O}_{3}-\mathrm{Q}_{13}$	Parallel Outputs

Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)

Parallel Outputs

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			50			100		20		A	MIN, $25^{\circ} \mathrm{C}$	All inputs common
	Power	XC			700			1400		280		$\mu \mathrm{A}$	MAX	and at 0 V or V_{DD}
DD	Supply	XM			15			25		5		A	MIN, $25^{\circ} \mathrm{C}$	
	Current	XM			900			1500		300		μA	MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$V_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t} P \mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{C P}$ to Q_{0}		$\begin{array}{r} 110 \\ 85 \end{array}$	$\begin{aligned} & 220 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 37 \end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$		30 25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}$ PHL	Propagation Delay, MR to Q_{n}		150	300		65	130		43		ns	Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	75 75		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{0}		$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		180	360		75	150		50		ns	Input Transition
$\overline{{ }^{T_{T L H}}}$ ${ }^{t} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times \leq
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{H})$	Minimum Clock Pulse Width	100	50		40	20			16		ns	
${ }^{\text {w }}$ MR(H)	Minimum MR Pulse Width	140	70		55	27			20		ns	$C_{L}=15 \mathrm{pF}$
${ }^{\text {trec }}$	Recovery Time for MR	85	43		35	17			12		ns	Input Transition Times $<20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 2)	5	10		12	25					MHz	

NOTES:

1. Propagation Delays ($t P L H$ and $t P H L$) and Output Transition Times ($T L H$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{r e c}$) and Minimum Puise Widths (t_{w}) do not vary with load capacitance.
2. For f MAX, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than 15μ.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT 0_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

34021
 8-BIT SHIFT REGISTER

DESCRIPTION - The 34021 is an edge-triggered 8-Bit Shift Register (Parallel-to-Serial Converter) with a synchronous Serial Data Input (D_{S}), a Clock Input (CP), an asynchronous active HIGH Parallel Load Input (PL), eight asynchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) and Buffered Parallel Outputs from the last three stages $\left(\mathrm{O}_{5}-\mathrm{Q}_{7}\right)$.
Information on the Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) is asynchronously loaded into the register while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Serial Data (DS) inputs. Data present in the register is stored on the HIGH-to-LOW transition of the Parallel Load Input.(PL).
When the Parallel Load'Input is LOW, data on the Serial Data Input (D_{S}) is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW-toHIGH transition of the Clock Input (CP).

- TYPICAL SHIFT FREQUENCY OF 18.1 MHz AT VDD $=10 \mathrm{~V}$
- PARALLEL-TO-SERIAL DATA TRANSFER
- BUFFERED OUTPUTS AVAILABLE LAST THREE STAGES
- CLOCK INPUT IS L \rightarrow H EDGE-TRIGGERED

PIN NAMES

PL
$\mathrm{P}_{0}-\mathrm{P}_{7}$
D_{5}

Parallel Load Input

D
CP Parallel Data Inputs
Serial Data Input
$\mathrm{Q}_{5}-\mathrm{Q}_{7}$
Clock Input ($L \rightarrow H$ Edge-Triggered)
Buffered Parallel Outputs from the Last Three Stages

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$O=P$ in Number

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 119 \\ & 161 \end{aligned}$			51 64			$\begin{aligned} & 34 \\ & 43 \end{aligned}$		ns ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $P L$ to O_{n}		$\begin{aligned} & 172 \\ & 150 \end{aligned}$			70 96			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & { }^{\mathbf{t} T \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 28 \\ & 32 \end{aligned}$			15 14			$\begin{array}{r} 10 \\ 9 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {tPLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 134 \\ & 184 \end{aligned}$			59 74			$\begin{aligned} & \hline 40 \\ & 49 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 188 \\ & 274 \end{aligned}$			$\begin{array}{r} 78 \\ 105 \end{array}$			$\begin{aligned} & 54 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { t'LLH } \\ & { }^{\text {t}} \mathbf{T H L} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 58 \\ & 69 \end{aligned}$			$\begin{aligned} & 31 \\ & 27 \end{aligned}$			$\begin{aligned} & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width		61			21			14		ns	
${ }^{\text {t }}{ }^{\text {PL }}$	PL Minimum Pulse Width		67			24			16		ns	
${ }^{\text {rec }}$	PL Recovery Time		71			28			21		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time D_{S} to $C P$ Hold Time D_{S} to CP		$\begin{aligned} & 51 \\ & 49 \end{aligned}$			$\begin{aligned} & \hline 16 \\ & 15 \end{aligned}$			$\begin{aligned} & 12 \\ & 11 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 78 \\ & 72 \end{aligned}$			$\begin{aligned} & 28 \\ & 26 \end{aligned}$			$\begin{aligned} & 18 \\ & 16 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {f MAX }}$	Shift Frequency (Note 3)		7.8			18.1					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{tpLH}_{\mathrm{LH}}$ and $\mathrm{tpHL}^{\mathrm{L}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
3. For $\mathrm{f}_{\mathrm{MAX}}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, DS TO CP

MINIMUM PL PULSE WIDTH, RECOVERY TIME FOR PL, AND SET-UP AND HOLD TIMES, P_{n} TO PL

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

TRIPLE 3-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides a 3-input positive NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN.	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at OV or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		35 35	75 75		20 20	40 40		15 9		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{T} L H}$ ${ }^{\mathrm{T} T H L}$	Output Transition Time		$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		9 7	40 40		6 5	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\text {t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 45 \\ & 51 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		25	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 19 \\ & 12 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		45 45	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		18 18	70 70		17	45	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE: Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

34024

7-STAGE BINARY COUNTER

DESCRIPTION - The 34024 is a 7-Stage Binary Ripple Counter with a Clock Input ($\overline{\mathrm{CP}}$), an overriding asynchronous Master Reset Input (MR) and seven fully Buffered Parallel Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{6}$). The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{\mathrm{CP}}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{6}$) LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- TYPICAL COUNT FREQUENCY OF 30 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- CLOCK TRIGGERED ON THE HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- OUTPUTS AVAILABLE FROM ALL SEVEN STAGES

PIN NAMES

$\overline{C P}$
$M R$
$Q_{0}-Q_{6}$
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
Master Reset Input

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
O $=$ Pin Number
$N C=P$ ins 8, 10 and 13

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}
					700			1400		280				
		XM			5			10		2		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	
					300			600		120				

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} P H}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{0}		$\begin{aligned} & 82 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 165 \\ & 150 \end{aligned}$		$\begin{aligned} & 37 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & 23 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{l}=15 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		105	210		42	85		30		ns	Input Transition
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{t} H \mathrm{~L}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		10 10	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH}}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to O_{0}		$\begin{array}{\|r} 100 \\ 97 \end{array}$	$\begin{aligned} & 200 \\ & 195 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		130	260		50	100		35		ns	Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{t} T \mathrm{LH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {t }}{ }^{\text {c }} \overline{C P}$	$\overline{\mathrm{CP}}$ Minimum Pulse Width	90	45		35	17			13		ns	
${ }^{t_{w} \text { MR }}$	MR Minimum Pulse Width	80	40		30	15			12		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {trec }}$	MR Recovery Time	60	30		25	12			9		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	6	12		15	30					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{LH}} H_{\text {and }} \mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{T}_{\mathrm{T}} \mathrm{H}$) and t_{TH}) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{r e c}$) and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For ${ }^{f} M A X$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than 15μ s.

TYPICAL ELECTRICAL CHARACTERISTICS

CLOCK FREQUENCY VERSUS POWER SUPPLY VOLTAGE

PROPAGATION DELAY

$\overline{\mathrm{CP}}$

a_{n}

MINIMUM PULSE WIDTH
FOR $\overline{C P}$ AND MR AND MR RECOVERY TIME

TRIPLE 3-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides a 3-input positive NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts
(Connection Diagram) as the Dual In-Line
Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 12 \\ & 16 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 15 \\ & 16 \end{aligned}$	75 75		8	40 40		6 4	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{{ }^{\text {PPHL }}}$	Propagation Delay		$\begin{aligned} & 45 \\ & 47 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		20 25	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 15 \\ & 21 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Output Transition Time		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		20 15	70 70		15	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE: Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34027

DUAL JK FLIP-FLOP for best system performance.

PIN NAMES

J, K
CP
S_{D}
C_{D}
$\frac{\mathrm{Q}}{\mathrm{Q}}$
$\overline{\mathrm{Q}}$

DESCRIPTION - The 34027 is a Dual JK Flip-Flop which is edge-triggered and features independent Direct Set, Direct Clear, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (C_{D}) and Set Direct (S_{D}) are independent and override the J, K, or Clock inputs. The outputs are buffered

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=P \text { in } 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAMS DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TRUTH TABLE

INPUTS					OUTPUTS	
S_{D}	C_{D}	$C P$	J	K	Q_{n+1}	\bar{Q}_{n+1}
H	L	\times	\times	\times	H	L
L	H	X	\times	\times	L	H
H	H	X	\times	\times	H	H
L	L	Γ	L	L	$N O C H A N G E$	
L	L	Γ	H	L	H	L
L	L	J	L	H	L	H
L	L	J	H	H	Q_{n}	Q_{n}

[^3]DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {tPLH }}$	Propagation Delay, S_{D} to Q		160	300		80	150		60		ns	Input Transition
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, C_{D} to Q		160	300		80	150		60		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ tLH ${ }^{\mathrm{t}}{ }^{\mathrm{THL}}$	Output Transition Time		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t }}$ PLH	Propagation Delay, S_{D} to Q		180	350		90	175		75		ns	Input Transition
${ }^{\text {t }}{ }_{\text {PHL }}$	Propagation Delay, C_{D} to Q		180	350		90	175		75		ns	Times $\leqslant 20 \mathrm{~ns}$
$\overline{t_{\mathrm{TLH}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
	Set-Up Time, J, K to CP Hold Time, J, K to CP	$\begin{array}{r} 100 \\ 0 \end{array}$	$\begin{array}{r} 45 \\ -25 \end{array}$		40 0	$\begin{array}{r} 20 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {c }}$ CP(L)	Minimum Clock Pulse Width	150	75		70	35			25		ns	$C_{L}=15 \mathrm{pF}$
${ }^{t_{w} S_{D}(H)}$	Minimum S_{D} Pulse Width	150	75		60	30			25		ns	Input Transition
${ }^{t_{w} C_{D}(H)}$	Minimum C_{D} Pulse Width	150	75		60	30			25		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{r e c} S_{D}}$	Recovery Time for S_{D}	0	-5		0	-4			-3		ns	
$\mathrm{trec} \mathrm{C}_{\mathrm{D}}$	Recovery Time for C_{D}	0	-5		0	-4			-3		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 2)	4	8		8	16					MHz	

NOTES:

1. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TL}} \mathrm{H}$ and $\mathrm{t}_{\mathrm{T} H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

NOTE:
$t_{s} \& t_{h}$ are shown as positive values but may be specified as negative values.

SET-UP TIMES, HOLD TIMES, AND MINIMUM CLOCK PULSE WIDTH

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}, MINIMUM S_{D} PULSE WIDTH, AND MINIMUM C_{D} PULSE WIDTH

34028
 1-OF-10 DECODER

DESCRIPTION - The 34028 is a CMOS 4-bit BCD to 1 -of-10 active HIGH decoder. A 1-2-4-8 BCD code applied to inputs A_{0} through A_{3} causes the selected output to be HIGH, the other nine will be LOW. If desired, the 34028 may be used as a 1 -of 8 decoder with enable; 3 -bit octal inputs are applied to inputs A_{0}, A_{1}, and A_{2} selecting an output 0 through 7. Input A_{3} then becomes an active LOW enable, forcing the selected output LOW when A_{3} is HIGH. The 34028 may also be used as an 8 -input demultiplexer with an active LOW data input. The outputs are fully buffered for best performance.

- BCD TO 1-OF-10 DECODER
- 1-OF-8 DECODER WITH ACTIVE LOW ENABLE
- 8-INPUT DEMULTIPLEXER WITH ACTIVE LOW DATA INPUT

PIN NAMES
$\begin{array}{ll}\mathrm{A}_{0}-\mathrm{A}_{3} & \text { Address Inputs, 1-2-4-8 BCD } \\ \mathrm{O}_{0}-\mathrm{O}_{9} & \text { Outputs (Active HIGH) }\end{array}$
TRUTH TABLE

INPUTS				OUTPUTS									
A_{3}	A_{2}	A_{1}	A_{0}	O_{0}	O_{1}	$\mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$			O_{6}	6	7	O_{8}	O_{9}
L.	L	L.	1	H	L	L L	L	L		L	L	L	L.
L	L	L	H	L	H	L L	L.	L		L.	L	L	L
L	L	H	L	L	L	H L	L	L	L	L	L	L	L
L	L	H	H	L	L	L H	L	L	L	L	L	L	L
L	H	L	L	L	L	L L	H	L		L	L	L	L
L	H	L	H	L	L.	L L	L	H		L	L	L	L
L	H	H	L	L	L	L L	L	L		H	L	L	L
L	H	H	H	L	L	L L	L	L		L	H	L	L
H	L	L	L	L	L	L L	L	L		L	L	H	L
H	L	L	H	L	L	L. L	L	L		L	L	L	H
H	L	H	L	L	L	L L	L	L		L	L	H	L
H	L	H	H	L	L.	L L	L	L		L	L	L	H
H	H	L	L	L	L	L. L	L	L		L	L	H	L
H	H	L	H	L	L	L L	L	L		L	L	L	H
H	H	H	L		L	L L	L	L		L.	L.	H	L
H	H	H	H		L	L L	L	L		L	L	L	H

[^4]$\mathrm{L}=$ LOW Level

LOGIC DIAGRAM

FAIRCHILD CMOS • 34028

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, $A_{n} \text { to } O_{n}$		$\begin{array}{\|l} 145 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \\ & \hline \end{aligned}$		$\begin{aligned} & 37 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} \text { LLH }}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		40 40	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		20	60 60		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \text { PH }} \\ & { }^{\mathrm{t} \mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay, $A_{n} \text { to } O_{n}$		$\begin{aligned} & 167 \\ & 157 \end{aligned}$	$\begin{aligned} & 325 \\ & 325 \end{aligned}$		$\begin{aligned} & 66 \\ & 57 \end{aligned}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{array}{\|r\|} \hline 85 \\ 110 \end{array}$	$\begin{aligned} & 20 C \\ & 200 \end{aligned}$		40 37	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		31 25	70	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34029 SYNCHRONOUS UP/DOWN COUNTER

DESCRIPTION - The 34029 is a Synchronous Edge-Triggered Up/Down 4-Bit Binary/BCD Decade Counter with a Clock Input (CP), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an Up/Down Control Input (UP/DN), a Binary/Decade Control Input (BIN/DEC), an overriding asynchronous active HIGH Parallel Load Input (PL), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Buffered Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) and an active LOW Terminal Count Output (TC).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions. With the Parallel Load Input (PL) LOW, operation is synchronous and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). Operation is determined by the three synchronous Mode Control Inputs; UP/DN, BIN/DEC and $\overline{\mathrm{CE}}$ (see the Mode Selection Table). These inputs must be stable only during the set-up time prior to the LOW-to-HIGH transition of the Clock Input (CP) and the hold time after this clock transition. The Terminal Count Output (TC) is LOW when the counter is at its terminal count, as determined by the counting mode, and the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW (see Logic Equation for $\overline{\mathrm{TC}}$).

- bINARY OR DECADE UP/DOWN COUNTER
- ASYNCHRONOUS PARALLEL LOAD
- ACTIVE LOW COUNT ENABLE
- CLOCK EDGE-TRIGGERED ON THE LOW-TO-HIGH TRANSITION
- ACtive low terminal count for cascading
- TYPICAL COUNT FREQUENCY OF $12 \mathrm{MHz} A T \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$

PIN NAMES

PL	Parallel Load Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
$\mathrm{BIN} / \overline{\mathrm{DEC}}$	Binary/Decade Control Input
$\mathrm{UP} / \overline{\mathrm{DN}}$	Up/Down Control Input
$\overline{C E}$	Count Enable Input (Active LOW)
CP	Clock Input (L \rightarrow H Edge-Triggered)
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Buffered Parallel Outputs
$\overline{T C}$	Terminal Count Output (Active LoW)

MODE SELECTION TABLE

PL	BIN/ $\overline{\text { EC }}$	UP/ $\overline{\mathrm{DN}}$	$\overline{C E}$	CP	MODE
H	X	X	X	X	Parallel Load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$)
L	X	X	H	X	No Change
L	L	L	L	」	Count Down, Decade
L	L	H	L	」	Count Up, Decade
L	H	L	L	\checkmark	Count Down, Binary
L	H	H	L	5	Count Up, Binary

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Level } \\
& \mathrm{L}=\text { LOW Level } \\
& \mathrm{X}=\text { Don't Care }
\end{aligned}
$$

$\Sigma=$ Positive-Going Transition

COUNT UP-
OUNT DOWN- - -
LOGIC EQUATION FOR TERMINAL COUNT

$$
\overline{T C}=\overline{C E} \bullet\left[\left((U P / \overline{D N}) \bullet Q_{0} \bullet Q_{3} \bullet\left(\left(Q_{1} \bullet Q_{2}\right)+(\overline{B I N / \overline{D E C})})\right)+\left(\overline{(U P / \overline{D N})} \bullet \overline{\alpha_{0}} \cdot \overline{Q_{1}} \bullet \overline{Q_{2}} \bullet \overline{\alpha_{3}}\right)\right.\right.
$$

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {D }}$ D	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

FAIRCHILD CMOS • 34029

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {t }}$ PHL	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 54 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 33 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP to TC		$\begin{aligned} & 150 \\ & 228 \end{aligned}$			$\begin{aligned} & 62 \\ & 90 \end{aligned}$			$\begin{aligned} & 42 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\overline{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 152 \\ & 194 \end{aligned}$			$\begin{aligned} & 59 \\ & 80 \end{aligned}$			$\begin{aligned} & 38 \\ & 56 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{~T} L \mathrm{LH}} \\ & { }_{\mathrm{t} T \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }^{\mathrm{t} \mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 62 \\ & 59 \end{aligned}$			$\begin{aligned} & 41 \\ & 39 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP to TC		$\begin{aligned} & 167 \\ & 252 \end{aligned}$			$\begin{array}{r} 71 \\ 100 \end{array}$			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{t}_{\mathrm{PLH}}}} \\ & { }^{\mathrm{tPHL}} \\ & \hline \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 170 \\ & 220 \end{aligned}$			$\begin{aligned} & 70 \\ & 90 \end{aligned}$			$\begin{aligned} & 45 \\ & 62 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }^{\mathrm{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 65 \end{aligned}$			$\begin{aligned} & 31 \\ & 25 \end{aligned}$			$\begin{aligned} & 23 \\ & 18 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width		50			21			14		ns	
${ }^{\text {t }}{ }^{\text {PL }}$	PL Minimum Pulse Width		60			21			16		ns	
${ }_{\text {trec }}$	PL Recovery Time		62			24			17		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, BIN/ $\overline{\mathrm{DEC}}$ to CP Hold Time, BIN/ $\overline{D E C}$ to CP		$\begin{aligned} & 106 \\ & 104 \end{aligned}$			$\begin{aligned} & 41 \\ & 40 \end{aligned}$			$\begin{aligned} & 29 \\ & 28 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, UP/DN to CP Hold Time, UP/ $\overline{D N}$ to $C P$		$\begin{aligned} & 145 \\ & 101 \end{aligned}$			$\begin{aligned} & 55 \\ & 38 \end{aligned}$			$\begin{aligned} & 38 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{C E}$ to $C P$ Hold Time, $\overline{C E}$ to $C P$		$\begin{aligned} & \hline 118 \\ & 101 \end{aligned}$			$\begin{aligned} & 49 \\ & 38 \end{aligned}$			$\begin{aligned} & 33 \\ & 25 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 29 \\ & 26 \end{aligned}$			$\begin{array}{r}11 \\ 7 \\ \hline\end{array}$			$\begin{aligned} & 8 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {f MAX }}$	Input Clock Frequency		5			12			-		MHz	
NOTES: 1. Propag 2. Propag Set-up 3. For f_{N} 4. It is re	ion Delays and Output Transitio ion Delays ($\mathrm{tpLH}_{\mathrm{LH}}$ and $\mathrm{tpHL}^{\text {) }}$) and imes (t_{s}), Hold Times (t_{h}), Recov x, input rise and fall times are gre mmended that input rise and fall	mes ar tput T Times than es to t	graph ansitio ($\mathrm{t}_{\mathrm{rec}}$), or equ Clo	cally des Times and Min 1 to 5 ns k Input	scribed (t TLH imum be less	n this nd t_{T} ulse W than han 1	section HL) will dths (t_{w}) or equal $\mu \mathrm{s}$.	under change w) do n to 20	34000 with t vary ns.	utput with 10	OS Fam oad Cap d capaci	ly Characteristics. citance (C_{L}). ance.

MINIMUM CP WIDTH, SET-UP AND HOLD

MINIMUM PL PULSE WIDTH, RECOVERY TIME FOR PL, AND SET-UP AND HOLD TIMES, $\mathbf{P}_{\mathbf{n}}$ TO PL

TYPICAL ELECTRICAL CHARACTERISTICS

APPLICATIONS

Interconnection techniques for multistage counting are shown in Figures 1 through 4 . When using the schemes shown in Figures 1,3 and 4 , the BIN/ $\overline{\mathrm{DEC}}$ and UP/ $\overline{\mathrm{DN}}$ Inputs may be changed only when the Clock Input to the first stage is HIGH. However, when using the scheme shown in Figure 2, UP/ $\overline{\mathrm{DN}}, \mathrm{BIN} / \overline{\mathrm{DEC}}$ and $\overline{\mathrm{CE}}$ may be changed independent of the state of the Clock Input. The methods illustrated in Figures 1 and 3 will operate with long transition times at the Clock Input to the first counter; whereas, the other schemes require a fast transition at the Clock Input.
Figure 1 is a ripple clock expansion scheme in which the maximum counting frequency is limited only by the frequency capability of the first counter. The disadvantage of this technique is that the Outputs of the most significant stage do not change until the clock has rippled through all the preceding stages.
A fully synchronous expansion method is shown in Figure 2. Since the Clock Input is applied simultaneously to all stages, the Outputs of all stages change simultaneously. The maximum counting frequency is limited by the time required for the Count Enable to ripple through all the stages before the next Clock Input is applied.
The semi-synchronous technique illustrated in Figure 3 allows a higher counting frequency than the method shown in Figure 2 by allowing $\overline{T C}$ to take either 10 or 16 clock periods to ripple from the second stage to the most significant stage (10 clock periods when BIN/DEC $=\mathrm{L}, 16$ clock periods when BIN/ $\overline{D E C}=H$). The Outputs of all stages, except the first, change simultaneously. The Outputs of the first stage change before the other stages.

The speed advantage of this scheme is lost if the count direction or count modulus is rapidly changed.
The method shown in Figure 4 is the same as in Figure 3 except an external gate is added to reduce the delay between the Clock Input to the first stage and the Clock Input to the following stages.

Fig. 1 RIPPLE CLOCK EXPANSION

Fig. 2 PARALLEL CLOCK EXPANSION (FULLY SYNCHRONOUS)

Fig. 3 SEMI-SYNCHRONOUS EXPANSION

Fig. 4 HIGH SPEED SEMI-SYNCHRONOUS EXPANSION

FAIRCHILD CMOS • 34030

QUAD EXCLUSIVE-OR GATE

DESCRIPTION - The 34030 CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance.

34030 QUAD EXCLUSIVE-OR GATE

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line
Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			5.0			10.0		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70.0			140.0		28			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \end{aligned}$	Propagation Delay, A or B to X		65	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		33 33	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		23 23	45 45		10 10	25		8 8	20 20	ns ns	Input Transition Times $\leqslant 20$ ns
${ }^{t} \mathrm{PLH}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, A or B to X		85 85	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		45 45	90 90		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		ns ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }_{\mathrm{T} L H}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		50 50	100 100		23 23	50 50		17 17	35 35	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:• Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34035
 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The 34035 is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs (J, K), a synchronous Parallel Enable Input (PE), Buffered Parallel Outputs from all 4-bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), a True/Complement Input (T/C) and an overriding asynchronous Master Reset Input (MR).
Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from Parallel Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Inputs (J, \bar{K}) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D-type entry is obtained by tying the two Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$) together.
The Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) are either inverting or non-inverting, depending on the True/Complement Input ($T / \overline{\mathrm{C}}$). With the $T / \overline{\mathrm{C}}$ Input HIGH, the Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ are non-inverting (Active HIGH). With the T / \bar{C} Input LOW, the Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ are inverting (Active LOW).
A HIGH on the Master Reset Input (MR) resets all four bit positions $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}=\right.$ LOW if $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{HIGH}$, $\mathrm{O}_{0}-\mathrm{O}_{3}=$ HIGH if $\mathrm{T} / \overline{\mathrm{C}}=$ LOW) independent of all other input conditions.

- TYPICAL SHIFT FREQUENCY OF 12 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- J, \bar{K} inputs to the first stage
- T/C̄ INPUT FOR TRUE OR COMPLEMENTARY OUTPUTS
- SYNCHRONOUS PARALLEL ENABLE
- CLOCK EDGE-TRIGGERED ON LOW-TO-HIGH TRANSItion
- ASYNCHRONOUS MASTER RESET

PIN NAMES

PE
$\mathrm{P}_{0}-\mathrm{P}_{3}$
$\frac{J}{K}$
CP
T/C
MR
$\mathrm{a}_{0}-\mathrm{Q}_{3}$

Parallel Enable Input
Parallel Data Inputs
First Stage J Input (Active HIGH)
First Stage K Input (Active LOW)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
True/Complement Input
Master Reset Input
Buffered Parallel Outputs

$$
V_{D D}=\operatorname{Pin} 16
$$

$$
\mathrm{V}_{\mathrm{SS}}=\operatorname{Pin} 8
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					500			1000		200			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					40			80		16			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tplH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 180 \\ & 180 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t PLH }}$ ${ }^{4} \mathrm{PHL}$	Propagation Delay, $M R$ to Q_{n}		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{t_{P L H}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, T / C to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
${ }^{t} \mathrm{~T}$ LH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 50 \\ & 50 \end{aligned}$			25 25			20 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{t_{P L H}}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			90 90			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $M R$ to Q_{n}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$			$\begin{aligned} & 120 \\ & 120 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{{ }^{\text {P }} \text { PHL }}$	Propagation Delay, $T / C \text { to } Q_{n}$		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{\mathrm{TLH}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{w} \mathrm{CP}}$	CP Minimum Pulse Width		75			30			20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ w MR	MR Minimum Pulse Width		60			25			20		ns	
${ }^{\text {trec }}$	MR Recovery Time		160			60			45		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, P_{n} to CP Hold Time, P_{n} to CP		$\begin{aligned} & 100 \\ & -10 \end{aligned}$			$\begin{aligned} & 40 \\ & -5 \end{aligned}$			25 -5		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, PE to CP Hold Time, PE to CP		$\begin{aligned} & 100 \\ & -10 \end{aligned}$			40 -5			25 -5		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, J, K to CP Hold Time, J, K to CP		$\begin{aligned} & \hline 100 \\ & -10 \end{aligned}$			40 -5			25 -5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {f MAX }}$	Max. Input Clock Frequency (Note 3)		5			12					MHz	

[^5]1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PH}} \mathrm{H}_{\mathrm{L}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (${ }_{w}$) do not vary with load capacitance.
3. For f MAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock input be less than $15 \mu \mathrm{~s}$.

MR RECOVERY TIME AND MINIMUM MR PULSE WIDTH

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

34040

12-STAGE BINARY COUNTER

DESCRIPTION - The 34040 is a 12 -Stage Binary Ripple Counter with a Clock Input ($\overline{\mathrm{CP}}$), an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs ($Q_{0}-Q_{11}$). The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{\mathrm{CP}}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{11}$) LOW, independent of the Clock Input (CP).

- 25 MHz TYPICAL COUNT FREQUENCY AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- CLOCK IS H \rightarrow L TRIGGERED
- COMMON ASYNCHRONOUS MAStER RESET
- FULLY BUFFERED OUTPUTS FROM ALL 12 STAGES

PIN NAMES	
$\overline{C P}$	Clock Input $(H \rightarrow L$ Triggered)
$M R$	Master Reset Input (Active HIGH)
$\mathrm{Q}_{0}-\mathrm{Q}_{11}$	Parallel Outputs

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at $O V$ or $V_{D D}$
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to O_{0}		$\begin{array}{r} 110 \\ 85 \end{array}$	$\begin{aligned} & 220 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 37 \end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		150	300		65	130		43		ns	Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{T} H \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{C P}$ to O_{0}		$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {tpHL }}$	Propagation Delay, MR to O_{n}		180	360		75	150		50		ns	Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{{ }^{\mathrm{T}} \mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\mathrm{t}}{ }^{\text {c }}$ CP(H)	Minimum Clock Pulse Width	100	50		40	20			16		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{w} \mathrm{MR}(\mathrm{H})}$	Minimum MR Pulse Width	140	70		55	27			20		ns	Input Transition
${ }^{\text {trec }}$	Recovery Time for MR	85	43		35	17			12		ns	Times $\leqslant 20 \mathrm{~ns}$
$f_{\text {max }}$	Input Clock Frequency (Note 2)	5	10		12	25					MHz	

NOTES:

1. Propagation Delays ($t P L H$ and $t P H L$) and Output Transition Times (t TLH and $t H_{L}$) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock input be less than $15 \mu \mathrm{~s}$.

FAIRCHILD CMOS • 34040

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT Q_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

34042

QUAD D LATCH

DESCRIPTION - The 34042 is a 4-Bit Latch with four Data Inputs ($D_{0}-D_{3}$), four buffered Latch Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$, four buffered Complementary Latch Outputs ($\left.\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$ and two Common Enable Inputs (E_{0} and E_{1}). Information on the Data Inputs $\left(D_{0}-D_{3}\right)$ is transferred to the Outputs ($Q_{0}-Q_{3}$) while both Enable Inputs (E_{0}, E_{1}) are in the same state, either HIGH or LOW. The Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) follow the Data Inputs $\left(D_{0}-D_{3}\right)$ as long as both Enable Inputs $\left(E_{0}, E_{1}\right)$ remain in the same state. When the two Enable Inputs (E_{0}, E_{1}) are different, the Data Inputs ($D_{0}-D_{3}$) do not affect the Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ and the information in the latch is stored. The $\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$ Outputs are always the complement of the $\mathrm{Q}_{\mathrm{O}}-\mathrm{Q}_{3}$ Outputs. The Exclusive-OR input structure allows the choice of either polarity for the Enable Input. With one Enable Input HIGH, the other Enable Input is active HIGH; with one Enable Input LOW, the other Enable Input is active LOW.
The last moment prior to the trailing end of the enable condition that the Latch Outputs can still be affected by the inputs is specified as a set-up time. A negative set-up time, as typically exhibited by this device, means that the latches respond to input changes after the end of the enable condition. Following established industry practice, a hold time is specified, defining the time after the end of the enable condition, that the inputs must be held stable, so that they do not affect the state of the latches. It follows from this definition, that the hold time is identical with the negative set-up time. Set-up and hold times have a tolerance, due to manufacturing process variations, temperature and supply voltage changes. For predictable operation the data input levels must be held stable over the full spread of this timing window starting with the earliest set-up time (largest positive or smallest negative value) to the latest hold time.

- ACTIVE HIGH OR ACtive low enable
- TRUE AND COMPLEMENTARY OUTPUTS (0 \& $\overline{\mathrm{O}}$)

PIN NAMES
$\mathrm{D}_{0}-\mathrm{D}_{3}$
Data Inputs
Enable Inputs
Parallel Latch Outputs
Complementary Parallel Latch Outputs

TRUTH TABLE

E_{0}	E_{1}	LATCH CONDITION
L	L	Enabled
L	H	Not Enabled
H	L	Not Enabled
H	H	Enabled

$L=$ LOW Level $\mathrm{H}=\mathrm{HIGH}$ Level

LOGIC DIAGRAM

$$
\begin{aligned}
V_{D D} & =P \text { in } 16 \\
V_{S S} & =P \text { in } 8 \\
& =P \text { in Numbers }
\end{aligned}
$$

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{{ }^{\mathrm{P} P H L}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 170 \\ & 160 \end{aligned}$		$\begin{aligned} & 36 \\ & 35 \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \end{aligned}$		$\begin{aligned} & 27 \\ & 26 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay, Enable to Output		$\begin{aligned} & 135 \\ & 115 \end{aligned}$	$\begin{aligned} & 270 \\ & 230 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 41 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{4} \mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 29 \\ & 27 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{array}{\|r} \hline 101 \\ 99 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 44 \end{aligned}$	$\begin{aligned} & 90 \\ & 88 \end{aligned}$		$\begin{aligned} & 33 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{P} \text { LH }} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Enable to Output		$\begin{aligned} & 156 \\ & 137 \end{aligned}$	$\begin{aligned} & 310 \\ & 275 \end{aligned}$		$\begin{aligned} & 66 \\ & 58 \end{aligned}$	$\begin{aligned} & 132 \\ & 116 \end{aligned}$		$\begin{aligned} & 47 \\ & 41 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & { }^{\text {tTLH }} \\ & { }^{t_{T} \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to E_{0} or E_{1} Hold Time, D_{n} to E_{0} or E_{1}	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{array}{\|r\|} \hline-12 \\ 25 \\ \hline \end{array}$		$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & -6 \\ & 13 \end{aligned}$			-4 7		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
$\mathrm{t}_{\mathrm{w}} \mathrm{E}_{\mathrm{n}}$	Minimum Enable Pulse Width	80	40		32	16			12		ns	

 Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

TYPICAL ELECTRICAL CHARACTERISTICS

MINIMUM ENABLE PULSE WIDTH VERSUS
POWER SUPPLY VOLTAGE

PROPAGATION DELAY VERSUS TEMPERATURE

PROPAGATION DELAY

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

SWITCHING WAVEFORMS

PROPAGATION DELAY DATA TO OUTPUT AND TRANSITION TIMES, WITH LATCH ENABLED

PROPAGATION DELAY ENABLE TO OUTPUT
NOTE:
Either E_{0} or E_{1} is held HIGH or LOW while the other Enable Input is pulsed as ser the Truth Table.

FAIRCHILD CMOS • 34049 • 34050

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, 34049 \mathrm{XC}$ and 34050XC (Cont'd)

SYMBOL	$\begin{aligned} & \text { PARAM- } \\ & \text { ETER } \end{aligned}$	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OH}$		$\begin{array}{\|l\|} \hline-1.5 \\ -1.25 \\ -1.0 \end{array}$	-2.5								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {OUT }}=2.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Inputs at O or $V_{D D}$ per Function
		$\begin{aligned} & -0.6 \\ & -0.5 \\ & -0.4 \end{aligned}$	-1.0		$\left\lvert\, \begin{aligned} & -1.5 \\ & -1.25 \\ & -1.0 \end{aligned}\right.$	-2.5			$\begin{aligned} & -5.2 \\ & -4.7 \\ & -4.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$V_{\text {OUT }}=4.5 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{OUT}}=9.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $V_{O U T}=14.5 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
${ }^{1} \mathrm{OL}$	$\begin{aligned} & \text { Output } \\ & \text { LOW } \\ & \text { Current } \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	6.0		$\begin{aligned} & 9.6 \\ & 8.0 \\ & 6.6 \end{aligned}$	16.0			$\begin{aligned} & 24.5 \\ & 22.0 \\ & 19.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\begin{aligned} & 3.1 \\ & 2.6 \\ & 2.1 \end{aligned}$	5.2								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ Inputs at 0 V or V_{DD} per Function
${ }^{\text {I D }}$	Quiescent Power Supply Current			$\begin{array}{r} 3.0 \\ 42.0 \end{array}$			$\begin{array}{r} 5.0 \\ 70.0 \end{array}$		$\begin{array}{r} 1.0 \\ 14.0 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs common and at 0 V or V_{DD}

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34049 \mathrm{only}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$		17 7	$\begin{aligned} & 35 \\ & 20 \end{aligned}$		12 5	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 130 \\ & 105 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & 29 \\ & 17 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} T L H}} \\ & { }^{\mathrm{T} H \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 73 \\ & 33 \end{aligned}$	$\begin{array}{r} 145 \\ 65 \end{array}$		$\begin{aligned} & 40 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$		30 9	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 34050$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{t_{P H L}}$	Propagation Delay		$\begin{aligned} & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$		17 7	$\begin{aligned} & 35 \\ & 20 \end{aligned}$		$\begin{array}{r} 12 \\ 5 \end{array}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH}}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay		$\begin{aligned} & 65 \\ & 43 \end{aligned}$	$\begin{array}{r} 130 \\ 95 \end{array}$		$\begin{aligned} & 30 \\ & 23 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$		$\begin{aligned} & 24 \\ & 17 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 73 \\ & 33 \end{aligned}$	$\begin{array}{r} 145 \\ 65 \end{array}$		$\begin{aligned} & 90 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$		$\begin{array}{r} 30 \\ 9 \end{array}$	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

34049 HEX INVERTING BUFFER • 34050 HEX NON-INVERTING BUFFER

DESCRIPTION - These CMOS buffers provide high current output capability suitable for driving TTL or high capacitance loads. Since input voltages in excess of the buffers' supply voltage are permitted, these buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. The 34049 provides six inverting buffers, the 34050 six non-inverting buffers. Their guaranteed fan out into common bipolar logic elements is shown in Table 1.

TABLE 1
Guaranteed fan out of 34049, 34050 into common logic families

INPUT PROTECTION

NOTE: Typical Breakdown Voltage of Diode D1 is 20 V .

DRIVEN ELEMENT	GUARANTEED FAN OUT
Standard TTL, DTL	2
9LS, 93L, 74LS	9
74 L	16

Conditions: $V_{D D}=V_{C C}=5.0 \pm 0.25 \mathrm{~V}$
$V_{O L} \leqslant 0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $75^{\circ} \mathrm{C}$

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, 34049 \mathrm{XM}$ and 34050XM

SYMBOL	PARAMETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OH}$	Output HIGH Current	$\left\lvert\, \begin{aligned} & -1.85 \\ & -1.25 \\ & -0.9 \end{aligned}\right.$	-2.5								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\mathrm{OUT}}=2.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\left\lvert\, \begin{aligned} & -0.62 \\ & -0.5 \\ & -0.35 \end{aligned}\right.$	-1.0		$\begin{aligned} & -1.85 \\ & -1.25 \\ & -0.9 \end{aligned}$	-2.5			$\begin{aligned} & -5.2 \\ & -4.7 \\ & -3.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{O U T}=4.5 \mathrm{~V} \text { for } V_{D D}=5 \mathrm{~V} \\ & V_{O U T}=9.5 \mathrm{~V} \text { for } V_{D D}=10 \mathrm{~V} \\ & V_{\text {OUT }}=14.5 \mathrm{~V} \text { for } V_{D D}=15 \mathrm{~V} \\ & \text { Inputs at } O \text { or } V_{D D} \\ & \text { per Function } \end{aligned}$
${ }^{1} \mathrm{OL}$	Output LOW Current	$\begin{aligned} & 3.75 \\ & 3.0 \\ & 2.1 \end{aligned}$	6.0		$\begin{array}{r} 10.0 \\ 8.0 \\ 5.6 \end{array}$	16.0			$\begin{aligned} & 24.5 \\ & 22.0 \\ & 16.8 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V} \text { for } V_{D D}=5 \mathrm{~V} \\ & V_{\text {OUT }}=0.5 \mathrm{~V} \text { for } V_{D D}=10 \mathrm{~V} \\ & V_{\text {OUT }}=0.5 \mathrm{~V} \text { for } V_{D D}=15 \mathrm{~V} \\ & \text { Inputs at } 0 \text { or } V_{D D} \\ & \text { per Function } \end{aligned}$
		$\begin{aligned} & 3.3 \\ & 2.6 \\ & 1.8 \end{aligned}$	5.2								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \text { Inputs at } 0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { per Function } \end{aligned}$
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current			$\begin{array}{r} 0.3 \\ 20.0 \end{array}$			$\begin{array}{r} 0.5 \\ 30.0 \end{array}$		0.1 6.0		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs common and at 0 V or V_{DD}

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

34051
 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 34051 is an 8-Channel Analog Multiplexer/Demultiplexer with three Address Inputs ($A_{0}-A_{2}$), an active LOW Enable Input (\bar{E}), eight Independent Inputs/Outputs $\left(Y_{0}-Y_{7}\right)$ and a Common Input/Output (Z).
The 34051 contains eight bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0^{-}} \mathrm{Y}_{7}$) and the other side connected to a Common Input/Output (Z). With the Enable Input (\bar{E}) LOW, one of the eight switches is selected (low impedance, ON state) by the three Address Inputs ($A_{0}-A_{2}$). With the Enable Input (\bar{E}) HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs $\left(A_{0}-A_{2}, \bar{E}\right)$. Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{7}, \mathrm{Z}$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, $V_{E E}$ is connected to $V_{S S}$ (typically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES
$\mathrm{Y}_{0}-\mathrm{Y}_{7}$
FUNCTION
$A_{0}-A_{2}$
Independent Inputs/Outputs
Address Inputs
Enable Input (Active LOW)
Common Input/Output
TRUTH TABLE

INPUTS				CHANNELS							
E	A_{2}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$	$\mathrm{Y}_{4}-\mathrm{Z}$	$Y_{5}-Z$	$\mathrm{Y}_{6}-\mathrm{Z}$	$\mathrm{Y}_{7}-\mathrm{Z}$
L	L	L	L	ON	OFF						
L	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
L	L	H	L	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
L	L	H	H	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
L	H	H	H	OFF	ON						
H	X	X	X	OFF							

$L=$ LOW Level
$H=H I G H$ Level
$X=$ Don't Care

34051 FUNCTIONAL LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{E E}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		95 100 125			55 65 100			35 40 65		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{D D}$ Note 2
				95 100 125			55 65 100			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{E E}$ Note 2
				$\begin{array}{r} 1600 \\ 1000 \\ 850 \end{array}$			$\begin{aligned} & 110 \\ & 125 \\ & 200 \end{aligned}$			$\begin{aligned} & 55 \\ & 60 \\ & 95 \end{aligned}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	Note 3
		XM		90 100 150			50 65 110			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{D D}$ Note 2
				90 100 150			50 65 110			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{E E}$ Note 2
				$\begin{array}{r} 1750 \\ 1000 \\ 700 \end{array}$			$\begin{aligned} & 100 \\ & 125 \\ & 220 \\ & \hline \end{aligned}$			50 60 100		Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	Note 3
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Resistance Between Any Two Channels						10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
${ }^{\prime}$	OFF State Leakage $X C$ Current, All Channels OFF							800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \bar{E}=V_{D D} \\ & V_{S S}=V_{D D} / 2 \\ & V_{i S}=V_{D D} \text { or } V_{E E} \end{aligned}$
	Any Channel OFF	$\frac{\mathrm{XC}}{\mathrm{XM}}$						100 10						$\begin{aligned} & \bar{E}=V_{S S}=V_{D D^{\prime / 2}} \\ & V_{i s}=V_{D D} \text { or } V_{E E} \end{aligned}$
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Dissipation	XC			$\begin{array}{r} 20 \\ 700 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 1400 \\ \hline \end{array}$		$\begin{array}{r} 8 \\ 280 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$V_{S S}=V_{E E}$ All inputs common and
		XM			2 70			4 140		$\begin{array}{r} 0.8 \\ 28 \end{array}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

NOTES:

1. Additional DC Characteristics for the Address and Enable Inputs are listed in this section under 34000 Series CMOS Family Characteristics.
2. $\bar{E}=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D / 2}$.
3. $V_{\text {is }}=8.6 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$

$$
V_{\text {is }}=5.1 \mathrm{~V} \text { for } V_{D D}=10 \mathrm{~V}
$$

$V_{\text {is }}=1.9 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$
4. $V_{\text {is }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t }}$ PHL ${ }^{\text {tpLH}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Input to Output Propagation Delay, Address to Output		$\begin{array}{r} 20 \\ 8 \\ 160 \\ 200 \end{array}$			$\begin{array}{r} 7 \\ 4 \\ 90 \\ 120 \end{array}$			$\begin{array}{r} 4 \\ 3 \\ 75 \\ 90 \end{array}$		ns ns ns ns	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \overrightarrow{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=V_{\mathrm{EE}} \\ & A_{\mathrm{L}} \text { or } V_{\text {is }}=V_{\mathrm{DD}} \text { or } V_{\mathrm{EE}} \\ & \text { Note } 3 \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{t}}^{\mathrm{t}} \mathrm{PLL} \\ \mathrm{t}_{\mathrm{PZH}} \\ \mathrm{t}_{\mathrm{PLZ}} \\ \mathrm{t}_{\mathrm{PH}} \end{gathered}$	Output Enable Time Output Disable Time		$\begin{array}{\|r\|} \hline 180 \\ 200 \\ 1000 \\ 1000 \\ \hline \end{array}$			$\begin{array}{r} 90 \\ 100 \\ 900 \\ 900 \end{array}$			$\begin{array}{r} 70 \\ 80 \\ 860 \\ 850 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \bar{E} \text { or } A_{n}=V_{S S}=V_{E E} \\ & v_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 3 \end{aligned}$
${ }^{\text {tpLH }}$ ${ }^{\text {t PHL }}$ ${ }^{\text {tpLH}}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay, Input to Output Propagation Delay, Address to Output		$\begin{array}{r} 25 \\ 10 \\ 170 \\ 210 \end{array}$			$\begin{array}{r} 10 \\ 6 \\ 95 \\ 125 \end{array}$			6 4 80 95		ns ns ns ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E}=V_{S S}=V_{E E} \\ & A_{n} \text { or } V_{i S}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 3 \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{t} P \mathrm{LL}} \\ { }^{\mathrm{t}_{\mathrm{PZH}}} \\ { }^{\mathrm{t}_{\mathrm{t} L Z}} \\ \mathrm{t}_{\mathrm{PH}} \end{gathered}$	Output Enable Time Output Disable Time		$\begin{array}{r} 185 \\ 205 \\ 1250 \\ 1240 \end{array}$			$\begin{array}{r} 95 \\ 105 \\ 1130 \\ 1120 \end{array}$			$\begin{array}{r} 75 \\ 85 \\ 1080 \\ 1070 \end{array}$		ns ns ns ns	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{E}_{\mathrm{E}} \text { or } \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { Note } 3 \end{aligned}$
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \mathrm{f}_{\text {is }}=1 \mathrm{kHz} \end{aligned}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \tilde{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \text { at }-40 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2,20 \log _{10} \\ & \left(\mathrm{~V}_{\mathrm{oS}} / \mathrm{V}_{\mathrm{is}}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \overrightarrow{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2(\mathrm{p}-\mathrm{p}), \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{os}} / \mathrm{V}_{\text {is }}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
${ }^{\text {f MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \\ & V_{S S}=V_{D D} / 2 \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. $V_{\text {is }} / V_{\text {os }}$ is the voltage signal at an Input/Output terminal $\left(Y_{n} / Z_{n}\right)$.
3. $V_{\text {IN }}=V_{D D}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}, R_{L}=10 \mathrm{k} \Omega$.

34052
 DUAL 4-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 34052 is a Dual 4-Channel Analog Multiplexer/Demultiplexer with common channel select logic. Each Multiplexer/Demultiplexer has four Independent Inputs/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{3}$) and a Common Input/Output (Z). The common channel select logic includes two Address Inputs (A_{0}, A_{1}) and an active LOW Enable Input (\bar{E}).
Both multiplexer/demultiplexers contain four bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{3}$) and the other side connected to a Common Input/Output (Z). With the Enable Input LOW, one of the four switches is selected (low impedance, ON state) by the two Address Inputs. With the Enable Input HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs (A_{0}, A_{1}, \bar{E}). Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{3}, \mathrm{Z}$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

- DIGITAL OR ANALOG MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES
$\mathrm{Y}_{0} \mathrm{ar}_{3} \mathrm{Y}_{3}$
$\mathrm{Y}_{0 b^{-}} \mathrm{Y}_{3 b}$
$\mathrm{A}_{0}, \mathrm{~A}_{1}$
$\overline{\mathrm{E}}$
$\mathrm{z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$

FUNCTION

Independent Inputs/Outputs
Independent Inputs/Outputs
Address Inputs
Enable Input (Active LOW)
Common Input/Output
TRUTH TABLE

INPUTS			CHANNELS			
\bar{E}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$
L	L	L	ON	OFF	OFF	OFF
L	L	H	OFF	ON	OFF	OFF
L	H	L	OFF	OFF	ON	OFF
L	H	H	OFF	OFF	OFF	ON
H	\times	X	OFF	OFF	OFF	OFF

L = LOW Level, $\mathrm{H}=$ HIGH Leve!, $\mathrm{X}=$ Don't care.
34052 FUNCTIONAL LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		95 100 125			55 65 100			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{D D}$ Note 2
				95 100 125			$\begin{array}{r} 55 \\ 65 \\ 100 \end{array}$			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{E E}$ Note 2
				$\begin{array}{\|r\|} 1600 \\ 1000 \\ 850 \\ \hline \end{array}$			$\begin{aligned} & 110 \\ & 125 \\ & 200 \\ & \hline \end{aligned}$			55 60 95		Ω		Note 3
		XM		90 100 150			50 65 110			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{\mathrm{is}}=\mathrm{v}_{\mathrm{DD}}$ Note 2
				90 100 150			$\begin{array}{r} 50 \\ 65 \\ 110 \\ \hline \end{array}$			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{i s}=v_{E E}$ Note 2
				$\begin{array}{r\|} 1750 \\ 1000 \\ 700 \\ \hline \end{array}$			$\begin{aligned} & 100 \\ & 125 \\ & 220 \end{aligned}$			50 60 100		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	Note 3
$\Delta \mathrm{R}_{\mathrm{ON}}$	" " ON Resistance Between Any Two Channels						10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
${ }^{\prime}$	OFF State Leakage Current, All Channels OFF XC 							800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}} \\ & V_{\mathrm{SS}}=V_{\mathrm{DD}} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{\mathrm{EE}} \end{aligned}$
	Any Channel OFF	XC						100 10						$\begin{aligned} & \bar{E}=V_{S S}=V_{D D} / 2 \\ & V_{\text {is }}=V_{D D} \text { or } V_{E E} \end{aligned}$
${ }^{\text {I }}$ D	Quiescent Power Supply Dissipation	XC			$\begin{array}{r} 20 \\ 700 \\ \hline 2 \\ 70 \end{array}$			$\begin{array}{r} 40 \\ 1400 \\ \hline 4 \\ 140 \end{array}$		$\begin{array}{r} 8 \\ 280 \\ \hline 0.8 \\ 28 \end{array}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{array}{\|c\|} \hline \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	$v_{S S}=v_{E E}$ All Inputs Common and at OV or V_{DD}

NOTES:

1. Additional DC Characteristics for the Address and Enable Inputs are listed in this section under 34000 Series CMOS Family Characteristics. 2. $\bar{E}=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D} / 2$.
2. $V_{\text {is }}=8.6 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$
$V_{\text {is }}=5.1 \mathrm{~V}$ for $V_{D D}=10 \mathrm{~V}$
$V_{\text {is }}=1.9 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$
3. $V_{\text {is }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{E E}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, Input to Output		$\begin{array}{r} 20 \\ 8 \end{array}$			7 4			4 3		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=V_{\mathrm{EE}} \\ & A_{\mathrm{n}} \text { or } \mathrm{V}_{\text {is }}=V_{\mathrm{DD}} \text { or } V_{\mathrm{EE}} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 160 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 120 \end{array}$			$\begin{aligned} & 75 \\ & 90 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 180 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 100 \end{array}$			$\begin{aligned} & 70 \\ & 80 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{E} \text { or } A_{\mathrm{n}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLZ}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$			$\begin{aligned} & 900 \\ & 900 \end{aligned}$			$\begin{aligned} & 860 \\ & 850 \end{aligned}$		ns	$\begin{aligned} & v_{\text {is }}=v_{D D} \text { or } V_{E E} \\ & \text { Note } 3 \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \end{aligned}$			10 6			6 4		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & 80 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & A_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 3 \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & { }_{\mathrm{t}}^{\mathrm{PZH}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \end{aligned}$			$\begin{array}{r} 95 \\ 105 \end{array}$			$\begin{aligned} & 75 \\ & 85 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E} \text { or } A_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PLZ}}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \end{aligned}$			$\begin{aligned} & 1080 \\ & 1070 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 3 \end{aligned}$
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \mathrm{f}_{\text {is }}=1 \mathrm{kHz} \end{aligned}$
	Crosstalk Between Any Two Channels					1					M Hz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}^{\prime} / 2 \text { (sine wave) } \\ & \text { at }-40 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2,20 \log _{10} \\ & \left(\mathrm{~V}_{\mathrm{oS}} / \mathrm{V}_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=V_{\mathrm{DD}} / 2(\text { sine wave }) \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{os}} / \mathrm{V}_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
$\mathrm{f}_{\text {MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \quad \bar{E}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \\ & V_{S S}=V_{D D} / 2 \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.
3. $V_{I N}=V_{D D}$ (Square Wave), Input Transition Times $\leqslant 20 \mathrm{~ns}$ and $R_{L}=10 \mathrm{k} \Omega$.

34066

QUAD BILATERAL SWITCHES

DESCRIPTION - The 34066 has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals (Y_{n}, Z_{n}) and an active HIGH Enable Input $\left(E_{n}\right)$. A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch; high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING
- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$$
\begin{aligned}
& E_{0}-E_{3} \\
& Y_{0}-Y_{3} \\
& Z_{0}-Z_{3}
\end{aligned}
$$

Enable Inputs
Input/Output Terminals Input/Output Terminals

LOGIC DIAGRAM (1/4 OF A 34066)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		$\begin{aligned} & 190 \\ & 270 \\ & 330 \end{aligned}$	$\begin{array}{r} 900 \\ 1000 \\ 1090 \end{array}$		$\begin{aligned} & 100 \\ & 120 \\ & 170 \end{aligned}$	$\begin{aligned} & 450 \\ & 500 \\ & 520 \end{aligned}$		$\begin{array}{r} 80 \\ 80 \\ 130 \end{array}$	$\begin{aligned} & 250 \\ & 280 \\ & 300 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & E_{\mathrm{n}}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { to } V_{S S} \end{aligned}$
		XM		$\begin{aligned} & 160 \\ & 270 \\ & 360 \end{aligned}$	$\begin{array}{r} 850 \\ 1000 \\ 1150 \end{array}$		$\begin{array}{r} 85 \\ 120 \\ 190 \end{array}$	$\begin{aligned} & 400 \\ & 500 \\ & 550 \end{aligned}$		$\begin{array}{r} 60 \\ 80 \\ 145 \end{array}$	$\begin{aligned} & 220 \\ & 280 \\ & 320 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & E_{\mathrm{n}}=V_{D D} \\ & V_{i s}=V_{D D} \text { to } V_{S S} \end{aligned}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Resistance Between Any Two Switches						10			5		Ω	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { to } V_{S S} \\ & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$
Iz	OFF State Leakage Current, Any Y to Z							$\begin{aligned} & 100 \\ & 200 \end{aligned}$			$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA	MIN, $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{v}_{\mathrm{SS}} \\ & E_{\mathrm{n}}=\mathrm{v}_{\mathrm{SS}} \end{aligned}$
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 0.25 \\ 25 \end{array}$			$\begin{array}{r} 0.5 \\ 30 \end{array}$		$\begin{array}{r} 0.1 \\ 6 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common
		XM			$\begin{array}{r} 0.25 \\ 25 \end{array}$			$\begin{array}{r} 0.5 \\ 30 \end{array}$		0.1 6		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	and at V_{DD} or V_{SS}

NOTES: 1. Additional DC Characteristics for the Enable Inputs are listed in this section under 34000 Series CMOS Family Characteristics.
2. $V_{\text {is }}$ is the input voltage to Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		4 3			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1		ns	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & { }^{\mathrm{t}^{\mathrm{P} H Z}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 170 \\ & 170 \end{aligned}$			$\begin{array}{\|l\|} \hline 182 \\ 182 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$ $v_{i s}=v_{D D}$
${ }^{\text {t }}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		8			3 4			$\begin{array}{r} 2 \\ 2.5 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { (square wave) } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 32 \\ & 32 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{P} L Z} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$ $V_{i s}=V_{D D}$
	Distortion, Sine Wave Response		0.31			0.31			0.31		\%	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input Frequency }=1 \mathrm{kHz} \\ & E_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \end{aligned}$
	Crosstalk Between Any Two Switches					0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{A}=V_{D D} E_{B}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2(\text { sine wave }) \\ & \text { at }-50 \mathrm{~dB}, 20 \log _{10} \\ & {\left[V_{\text {os }}(B) / V_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	Input Transition Times $\leqslant 20 \mathrm{~ns}$ $\mathrm{R}_{\mathrm{L}(\mathrm{OUT})}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}(\mathrm{N})}=1 \mathrm{k} \Omega$ $E_{n}=V_{D D}$ (square wave)
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & E_{\mathrm{n}}=V_{S S} \\ & V_{i s}=V_{D D} / 2 \text { (sine wave) } \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					90					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \\ & E_{n}=V_{D D} \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$
${ }_{\text {max }}$	Enable Input Frequency (Note 2)					10					MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \\ & \mathrm{V}_{\text {is }}=V_{D D} \end{aligned}$

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.

8-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

34068 LOGIC SYMBOL

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
$\mathrm{NC}=$ Pins 1, 6, 8

PIN NAMES
$\frac{10}{2}^{-17}$
NAND Gate Inputs
Output (Active LOW)

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 65 \\ & 70 \end{aligned}$			30 32			$\begin{aligned} & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			13 10			$\begin{array}{r}10 \\ 8 \\ \hline\end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\text {tPLH }} \\ & { }^{\text {t}} \mathrm{PH} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 82 \\ & 88 \end{aligned}$			40 40			$\begin{aligned} & 29 \\ & 28 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 64 \\ & 55 \end{aligned}$			32 23			24		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:
Propagation delays and output transition times are graphically described in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

HEX INVERTER

DESCRIPTION - The 34069 is a general purpose Hex Inverter which has standard Fairchild input and output characteristics. A single-stage design has been used since the output impedance of a single-input gate is not pattern sensitive.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			3.0			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					42.0			70.0		14.0			MAX	
		XM			0.3			0.5		0.1		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					20.0			30.0		6.0			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t }}$ PLH ${ }^{\text {t }}$ PHL	Propagation Delay		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		7 7		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{\mathrm{TLH}}}$ ${ }^{{ }^{\mathrm{T} H \mathrm{HL}},}$	Output Transition Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	64		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		45	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		23	70 70		18	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leq 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

FAIRCHILD CMOS•34069

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL VOLTAGE TRANSFER CHARACTERISTICS FOR THE UNBUFFERED 34069 HEX INVERTER

VIN - INPUT VOLTAGE - V

QUAD EXCLUSIVE-OR GATE

DESCRIPTION - The 34070 CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinout
(Connection Diagram) as the Dual In-Line
Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			5.0			10.0		2.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70.0			140.0		18.0			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12.0			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V_{, ~} T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \mathrm{PLH}$ ${ }^{\text {tPHL }}$	Propagation Delay, A or B to X		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		ns ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T}} \mathrm{TLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		10 10	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		8	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, A or B to X		85 85	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		50 50	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		23 23	50		17 17	35 35	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE: Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.
TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

QUAD 2-INPUT OR GATE

DESCRIPTION - The 34071 is a positive logic Quad 2-Input OR Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.
AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{H}}} \\ & { }^{{ }_{\mathrm{t} H \mathrm{HL}}} \\ & \hline \end{aligned}$	Output Transition Time		19 24	75 75		10 10	40 40		8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay		$\begin{aligned} & 43 \\ & 52 \end{aligned}$	$\begin{array}{r} 85 \\ 100 \end{array}$		$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 17 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		45	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		24	70 70		18 15	45 45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

FAIRCHILD CMOS • 34077

QUAD EXCLUSIVE-NOR GATE

DESCRIPTION - The 34077 CMOS logic element provides the Exclusive-NOR function. The outputs are fully buffered for best performance. The 34077 may be used interchangeably for the 4811.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			5.0			10.0		2.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70.0			140.0		28.0			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12.0			MAX	

NOTE: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.
AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, A or B to X		$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{array}{r} 90 \\ 110 \end{array}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{H}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{array}{r} 45 \\ .45 \end{array}$		10 10	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		7 7	20 20	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {t PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, A or B to X		$\begin{aligned} & 55 \\ & 65 \end{aligned}$	$\begin{aligned} & 110 \\ & 130 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	55		$\begin{aligned} & 17 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{tHL} \end{aligned}$	Output Transition Time		53 53	100 100		20	50 50		15	35 35	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE: Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.
TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

8-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

34078 LOGIC SYMBOL

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 14 \\
V_{S S} & =P \text { in } 7 \\
N C & =P \text { ins } 1,6,8
\end{aligned}
$$

PIN NAMES
$\mathrm{I}_{\mathrm{Z}}{ }^{-17} \quad$ NOR Gate Inputs Output (Active LOW)

CONNECTION DIAGRAM

 DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \text { PLH }$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay		$\begin{array}{r} 87 \\ 102 \end{array}$			36 40			$\begin{aligned} & 27 \\ & 29 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		35 37			20 17			$\begin{aligned} & 16 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 108 \\ & 129 \end{aligned}$			$\begin{aligned} & 46 \\ & 50 \end{aligned}$			$\begin{aligned} & 34 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{T} \text { TLH }} \\ & { }^{\mathrm{t} T \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		76 80			39 32			30		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:
Propagation delays and output transition times are graphically described in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

QUAD 2-INPUT AND GATE

DESCRIPTION - The 34081 is a positive logic Quad 2-Input AND Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at OV or V_{DD}
					15.0			30.0		6.0			MAX	
	Supply	XM			0.05			0.1		0.02		$\mu \mathrm{A}$	Min, $25^{\circ} \mathrm{C}$	
	Current				3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {t }}$ PHL	Propagation Delay		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	60 60		16 18	33 33		$\begin{aligned} & 11 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{1} \mathrm{TLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 27 \\ & 25 \end{aligned}$	75 75		13 10	40 40		10 7	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 55 \\ & 60 \end{aligned}$	95 95		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	50 50		$\begin{aligned} & 17 \\ & 19 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{H}}} \\ & { }^{\mathrm{T} H \mathrm{HL}} \end{aligned}$	Output Transition Time		70 57	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 23	70 70		23 16	45 45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The 34085 is a Dual 2-Wide 2-Input AND-OR-Invert (AOI) Gate, each with an additional input ($\mathrm{I}_{4 \mathrm{~A}}$ or $\mathrm{I}_{4 \mathrm{~B}}$) which can be used as either an Expander Input or an Inhibit Input by connecting it to any standard CMOS output. A HIGH on this Input (I_{4}) forces the Output (\bar{F}) LOW independent of the other four inputs ($\mathrm{I}_{0^{-}} \mathrm{I}_{3}$). The Outputs ($\overline{F_{A}}$ and $\overline{F_{B}}$) are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMES

$\begin{array}{ll}\frac{I_{0 A}-I_{4 A}}{\bar{F}_{A}}, \bar{I}_{\mathrm{F}} \overline{\mathrm{F}}^{-1} 4 \mathrm{~B} & \text { Gate Inputs } \\ \text { Outputs (Active LOW) }\end{array}$

CONNECTION DIAGRAM
 DIP (TOP VIEW)

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this'section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\text {t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, Any I to \bar{F}		$\begin{aligned} & 40 \\ & 54 \end{aligned}$	$\begin{array}{r} 80 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 12 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{PPLH}^{2}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Any I to \bar{F}		$\begin{aligned} & 56 \\ & 74 \end{aligned}$	$\begin{aligned} & 115 \\ & 135 \end{aligned}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 17 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		22 22	50 50		15 15	35 35	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

4-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The 34086 is a 4-Wide 2-Input AND-OR-Invert (AOI) Gate with two additional inputs (18 and $\overline{I g}$) which can be used as either expander inputs or inhibit inputs by connecting them to any standard CMOS output. A HIGH on I_{8} or a LOW on $\overline{\mathrm{I}}_{9}$ forces the Output (\bar{F}) LOW independent of the other eight inputs ($I_{0-1}{ }^{-1}$). The Output (\bar{F}) is fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMES

NOTE:
A HIGH on I_{8} or a LOW on \bar{T}_{9} forces the output (\bar{F}) LOW.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, I_{0} through I_{8} to \bar{F}		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		20 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, \bar{T}_{9} to \bar{F}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		8	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, I_{0} through I_{8} to \bar{F}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, $\overline{1} 9$ to \bar{F}		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	50 50		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{\mathrm{t}_{\mathrm{TH}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	50 50		18	35 35	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

[^6]1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

FAIRCHILD CMOS • 34086

TYPICAL ELECTRICAL CHARACTERISTICS

TA $_{\mathbf{A}}-$ AMBIENT TEMPERATURE $-{ }^{\circ} \mathbf{C}$

34099
 8-BIT ADDRESSABLE LATCH

DESCRIPTION - The 34099 is an 8-Bit Addressable Latch with three Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{2}$), a Data Input (D), an active LOW Enable Input (\bar{E}), an active HIGH Clear Input (CL) and eight ParalleI Latch Outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$).
When the Enable (\bar{E}) and the Clear (CL) Inputs are HIGH, all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$) are LOW. Eightchannel demultiplexing or active HIGH 1 -of-8 decoding with output enable operation occurs when the Clear Input (CL) is HIGH and the Enable Input ($\overline{\mathrm{E}}$) is LOW.

When the Clear (CL) and Enable (\bar{E}) Inputs are LOW, the selected Output ($Q_{0}-Q_{7}$) (determined by the address Inputs $\mathrm{A}_{0}-\mathrm{A}_{2}$) follows the Data Input (D). When the Enable Input ($\overline{\mathrm{E}}$) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=C L=L O W$), changing more than one bit of the address ($\mathrm{A}_{0}-\mathrm{A}_{2}$) could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=$ HIGH,CL $=$ LOW).

- serial-to-parallel capability
- eight bits of storage with the output of each bit available
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEmultiplexing or decoding capability
- EASILY EXPANDABLE
- Common active high clear

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
D	Data Input
E	Enable Input (Active LOW)
CL	Clear Input (Active HIGH)
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Parallel Latch Outputs

LOGIC DIAGRAM

MODE SELECTION		
\bar{E}	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Active HIGH 8-Channel Demultiplexer
H	H	Clear

L = LOW Level
$\mathrm{H}=$ HIGH Level
$\mathrm{Q}_{\mathbf{N - 1}}=$ State Before the Positive Transition of the Enable Input

TRUTH TABLE

CL	$\overline{\mathrm{E}}$	D	A_{0}	A_{1}	A_{2}	PRESENT OUTPUT STATES								MODE
						O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	
H	H	X	\times	X	X	L	L	L	L	L	L	L	L	CLEAR
H	L	L	L	L	L	L	L	L	L	L	L	L	L	DEMULTIPLEX
H	L	H	L	L.	L	H	L	L	L	L	L	L	L	
H	L	L	H	L	L	L	L	L	L	L	L	L	L	
H	L	H	H	L	L	L	H	L	L	L	L	L	L	
\vdots	:	!	:	:	:	!	:	:	:	,	:	:	:	
H	L	H	H	H	H	L	L	L	L	L	L	L	H	
L	H	X	X	X	X	$\mathrm{Q}_{\mathrm{N}-1}$							\rightarrow	MEMORY
L	L	L	L	L	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	O_{N}				-	ADDRESSABLE
L	L	H	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{a}_{\mathrm{N}-1}$						LATCH
L	L	L	H	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$						
L.	L	H	H.	L	L	$\mathrm{Q}_{\mathrm{N}-1}$		$\mathrm{a}_{\mathrm{N}-1}$						
:	\vdots	:	:	.	:									
L	L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$						$\mathrm{O}_{\mathrm{N}-1}$	L	
L	L	H	H	H	H	$\mathrm{O}_{\mathrm{N}-1}$						$\mathrm{O}_{\mathrm{N}-1}$	H	

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					100			200		40			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					15			30		6			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

FAIRCHILD CMOS • 34099
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & { }^{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E} to Q_{n}		$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{tPLH}^{2}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, Address to O_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & \hline 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}{ }_{\text {PHL }}$	Propagation Delay, $C L$ to Q_{n}		75			35			25		ns	
$\begin{aligned} & { }^{{ }^{\mathrm{t} T \mathrm{LH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			15 15		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}$ PLH ${ }^{\text {t }}$ PHL	Propagation Delay, $\overline{\mathrm{E}}$ to Q_{n}		$\begin{aligned} & \hline 110 \\ & 110 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, Address to Q_{n}		$\begin{aligned} & 120 \\ & 120 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t PHL }}$	Propagation Delay, $C L$ to Q_{n}		95			45			30		ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\text {t THL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{s}} \\ & t_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to $\overline{\mathrm{E}}$ Hold Time, D to \bar{E}		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			5 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Address to \bar{E} Hold Time, Address to $\overline{\mathrm{E}}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{array}{r} 5 \\ 20 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t} w^{\bar{E}}$	Minimum \bar{E} Pulse Width		50			20			15		ns	
${ }_{\text {t }}{ }^{\text {CL }}$	Minimum CL Pulse Width		50			20			15		ns	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTH FOR E AND CL AND SET-UP AND HOLD TIMES, D TO \bar{E} AND A_{n} TO \bar{E}
NOTES:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.
2. The Address to Enable Set-up Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

34104
 QUAD LOW VOLTAGE TO HIGH VOLTAGE TRANSLATER WITH 3-STATE OUTPUTS

DESCRIPTION - The 34104 Quad Low Voltage to High Voltage Translator with 3-State Outputs provides the capability of interfacing low voltage circuits to high voltage circuits, such as low voltage CMOS and TTL to high voltage CMOS. It has four Data Inputs ($I_{0}-I_{3}$), an active HIGH Output Enable input (EO), four Data Outputs $\left(Z_{0}-Z_{3}\right)$ and their Complements $\left(\bar{Z}_{0}-\bar{Z}_{3}\right)$. With the Output Enable input HIGH, the Outputs $\left(\mathrm{Z}_{0}-\mathrm{Z}_{3}, \bar{Z}_{0}-\bar{Z}_{3}\right)$ are in the low impedance "ON" state, either HIGH or LOW as determined by the Data Inputs; with the Output Enable input LOW, the Outputs are in the high impedance "OFF" state.
The device uses a common negative supply (V_{SS}) and separate positive supplies for inputs ($\mathrm{V}_{\mathrm{DDI}}$) and outputs $\left(V_{D D O}\right) . V_{D D I}$ must always be less than or equal to $V_{D D O}$, even during power turn-on and turn-off. For the allowable operating range of $V_{D D I}$ and $V_{D D O}$ see Figure 1. Each input protection circuit is terminated between $V_{D D O}$ and $V_{S S}$. This allows the input signals to be driven from any potential between $V_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$, without regard to current limiting. When driving from potentials greater than $\mathrm{V}_{\text {DDO }}$ or less than V_{SS}, the current at each input must be limited to 10 mA .
When used in a bus organized system, all 34104 devices on the same bus line should be connected to the same $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$ supplies. Otherwise, parasitic diodes from the output to $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$ can become forward biased, even while the device is in the OFF state, causing catastrophic failure if the current is not limited to 10 mA .

- 3-STATE FULLY BUFFERED OUTPUTS
- OUTPUT ENABLE INPUT (ACTIVE HIGH)
- DUAL POWER SUPPLY

PIN NAMES

$\mathrm{I}_{0-1}{ }_{3}$
EO
$\frac{z_{0}-Z_{3}}{z_{0}-Z_{3}}$

FUNCTION

Data Inputs
Output Enable Input
Data Outputs
Complimentary Data Outputs

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOGIC SYMBOL

$V_{\text {DDO }}=\operatorname{Pin} 1$
$V_{\text {DDI }}=P$ in 16
$V_{S S}=P$ in 8
$O=$ Pin Number

DC CHARACTERISTICS: $\mathrm{V}_{\text {DDO }}=\mathrm{V}_{\text {DDI }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$														
SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DDO/I }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO } / 1}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO/I }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	Input HIGH Voltage		3.5		*	7.0		*	10.5		*	V	All	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage		**		1.5	**		3.0	**		4.5	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \end{aligned}$			$\begin{aligned} & 9.99 \\ & 9.95 \end{aligned}$			$\begin{aligned} & 14.99 \\ & 14.95 \end{aligned}$			v	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$ Note 1
			4.0			9.0			13.0				All	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$ Note 2
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	v	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$ Note 1
					0.5			1.0			2.0		All	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$ Note 2
1	Input Current				$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 0 V or $\mathrm{V}_{\text {DDO }}$. All Other Inputs Simultaneously at 0 V or $\mathrm{V}_{\text {DDO }}$
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{array}{\|l\|} \hline-1.5 \\ -1.0 \end{array}$									mA	MIN, $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & V_{\text {OUT }}=2.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=5 \mathrm{~V} \end{aligned}$ Note 1
			$\begin{array}{\|l\|} -0.7 \\ -0.4 \end{array}$			$\begin{array}{\|l\|} \hline-1.4 \\ -0.8 \end{array}$			$\begin{aligned} & -2.2 \\ & -1.4 \end{aligned}$				$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DDO}}-0.5 \mathrm{~V}$ Note 1
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{array}{\|l\|} \hline 1.0 \\ 0.8 \\ 0.4 \\ \hline \end{array}$			$\begin{aligned} & 2.6 \\ & 2.0 \\ & 1.2 \end{aligned}$			$\begin{aligned} & 3.6 \\ & 3.6 \\ & 2.0 \end{aligned}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V} \text { for } \\ & V_{\text {DDO }}=5 \mathrm{~V} \\ & V_{\text {OUT }}=0.5 \mathrm{~V} \text { for } \\ & V_{\text {DDO }}=10 \mathrm{~V} \\ & V_{\text {OUT }}=0.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=15 \mathrm{~V} \\ & \text { Note } 1 \end{aligned}$
${ }^{\mathrm{I} O Z H}$ Note 3	Output OFF Current HIGH,XM				$\begin{aligned} & 0.05 \\ & 3.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.1 \\ & 6.0 \end{aligned}$		$\begin{array}{r} \hline 0.02 \\ 1.2 \end{array}$		$\mu \mathrm{A}$	$\mathrm{MIN}, 25^{\circ} \mathrm{C}$ MAX	Output Returned to $\mathrm{V}_{\mathrm{DDO}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
'OZL Note 3	Output OFF Current LOW,XM				$\begin{aligned} & -0.05 \\ & -3.0 \\ & \hline \end{aligned}$			$\begin{aligned} & -0.1 \\ & -6.0 \\ & \hline \end{aligned}$		$\begin{array}{\|r\|} \hline-0.02 \\ -1.2 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
${ }^{\prime} D$	Quiescent Power Supply Current	XC			$\begin{array}{r} 50 \\ 700 \\ \hline \end{array}$			$\begin{array}{r} 100 \\ 1400 \\ \hline \end{array}$		$\begin{array}{r} 20 \\ 280 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All Inputs Common and at
		XM			r ${ }^{5}$			$\begin{aligned} & 300 \\ & 600 \end{aligned}$		$\begin{array}{r} 60 \\ 120 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	O V or $\mathrm{V}_{\text {DDI }}$

${ }^{*} V_{1 H}$ must be less than or equal to $V_{D D O}$. If $V_{1 H}$ is greater than $V_{D D O}$, current at each input must be limited to 10 mA .
${ }^{* *} V_{I L}$ must be greater than or equal to $V_{S S}$, If $V_{\text {IL }}$ is less than $V_{S S}$, current at each input must be limited to 10 mA .
Notes:

1. Inputs at $0 \vee$ or $V_{D D O}$ per function.
2. Inputs at $0.3 V_{D D O}$ or $0.7 \mathrm{~V}_{D D}$ per function.
3. For ${ }^{\mathrm{OZH}}$ and OZL^{2} commercial product limits, multiply the above military product limits by 10.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{D D I}=5 \mathrm{~V}, \mathrm{~V}_{D D O}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DDO }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $I_{n} \text { to } Z_{n} \text { or } \overline{Z_{n}}$		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} P \mathrm{H}} \\ & { }^{\mathrm{t}_{2}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 190 \\ & 185 \end{aligned}$			$\begin{aligned} & 95 \\ & 90 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DDO}} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLL}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 75 \\ & 70 \end{aligned}$			$\begin{aligned} & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D O} \end{aligned}$
$\begin{aligned} & { }^{t_{\text {TLH }}} \\ & { }^{t_{\text {THL }}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			18			$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, I_{n} to Z_{n} or $\overline{Z_{n}}$		$\begin{aligned} & \hline 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{P}} \mathrm{PH}} \\ & { }_{\mathrm{t} P \mathrm{~L}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D O} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} H Z}} \\ & { }^{\mathrm{t}_{\mathrm{PLZ}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 115 \\ & 110 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 75 \\ & 70 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DDO}} \end{aligned}$
$\overline{t_{\mathrm{TLH}}}$ ${ }^{\mathrm{T}_{\mathrm{THL}}}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

Fig. 1 TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

34512
 8 -INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The 34512 is an 8-Input Multiplexer with Active LOW logic and output enables (\bar{E}, $\overline{E O})$. One of eight binary inputs is selected by Select Inputs S_{0}, S_{1} and S_{2} and is routed to the output F.A HIGH on the Output Enable (EO) causes the F output to assume a high impedance or "OFF" state, regardless of other input conditions. This allows the output to interface directly with bus oriented systems (3-state). When the active LOW Enable (\bar{E}) is HIGH, it forces the output LOW provided the Output Enable ($\overline{\mathrm{EO}}$) is LOW. By proper manipulation of the inputs, the 34512 can provide any logic functions of four variables. The 34512 cannot be used to multiplex analog signals.

- SELECTS ONE-OF-EIGHT DATA SOURCES
- PERFORMS PARALLEL-TO-SERIAL CONVERSION
- 3-STATE OUTPUTS WITH ACTIVE LOW OUTPUT ENABLE
- active low logic enable

PIN NAMES

$\frac{S_{0}}{E O} S_{1}, S_{2}$
\bar{E}
I_{0} to I_{7}
F

Select Inputs
Output Enable (Active LOW)
Enable (Active LOW)
Multiplexer Inputs
Multiplexer Output

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{OZH}$ (Note 2)	Output OFF Current HIGH,XM				$\begin{aligned} & 0.05 \\ & 3.0 \\ & \hline \end{aligned}$			0.1 6.0		0.02 1.2		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	Output returned to $V_{D D}, \overline{E O}=V_{D D}$
${ }^{\prime} \mathrm{OZL}$ (Note 2)	Output OFF Current LOW,XM				$\begin{aligned} & -0.05 \\ & -3.0 \end{aligned}$			$\begin{aligned} & -0.1 \\ & -6.0 \end{aligned}$		-0.02 -1.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 30 \\ 600 \end{array}$			$\begin{array}{r} 60 \\ 1200 \end{array}$		$\begin{array}{r} 12 \\ 240 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common
		XM			5			$\begin{array}{r} 10 \\ 200 \end{array}$		2 40		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	and at 0 V or V_{DD}

NOTES:

1. Additional DC Characteristics are listed in this section under 34000 Series CMOS Family characteristics.
2. For ${ }^{1} \mathrm{OZH}$ and $\mathrm{I}^{\mathrm{OZL}}$ commercial product limits, multiply the above military product limits by 10.

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay, Data to Output		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, Select to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t} P \mathrm{H}} \\ & \hline \end{aligned}$	Propagation Delay, E to Output		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		25 25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{P} P Z H}} \\ & { }^{\mathrm{t}_{\mathrm{PZZL}}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 26 \\ & 28 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PHZ}}} \\ & t_{\mathrm{t} L Z} \end{aligned}$	Output Disable Time		$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, Data to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		75	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 52 \\ & 52 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
	Propagation Delay, Select to Output		$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 60 \\ & 65 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PPLH }}} \\ & { }^{t_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, E to Output		$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{P} P \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 18 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & { }^{t_{P H Z}} \\ & { }_{\mathrm{t} P \mathrm{P} Z} \end{aligned}$	Output Disable Time		$\begin{aligned} & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{array}{r} 90 \\ 100 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMIS

OUTPUT ENABLE TIME (tPZH) AND OUTPUT DISABLE TIME (tPHZ)

OUTPUT ENABLE TIME (tPZL) AND OUTPUT DISABLE TIME (tPLZ)

APPLICATIONS

MULTIPLEXER AS A FUNCTION GENERATOR - In most digital systems there are areas, usually in the control section, where a number of inputs generate an output in a highly irregular way. In other words, an unusual function must be generated which is apparently not available as an MSI building block. In such cases, many designers tend to return to classical methods of logic design with NAND and NOR gates using Boolean Algebra, Karnaugh maps and Veitch diagrams for logic minimization. Surprisingly enough, multiplexers can simplify these designs.
The 34512 8-Input multiplexer can generate any one of the 65,536 different functions of four variables. An example will illustrate the technique. Assume four binary inputs are A, B, C and D and F is the desired function (See Fig. 1). If C is connected to S_{0}, B to S_{1} and A to S_{2}, any combination of A, B and C will select an input (assuming the output is enabled). For each combination of A, B and C, the required output, as a function of the fourth variable D, is either H or \underline{L} the same as D or the opposite of D. Therefore, the truth table may be examined and each input of the 34512 is connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{D}$ or $\overline{\mathrm{D}}$ as required and in such fashion the function is generated.

In the example shown, (Fig. 1) the first two outputs are the opposite of D, so I_{0} is connected to D. The second two are HIGH , so I_{1} is connected to $V_{D D}$, etc.

32-INPUT MULTIPLEXER - The 3-State Output Enable can be used to expand the 34512. A 32-Input Multiplexer utilizing four 34512s and a 34011 is shown in Fig. 2.

INPUT VARIABLES				REQUIRED FUNCTION
A	B	C	D	F
L	L	L	L	H
L	L	L	H	L
L	L	H	L	H
L	L	H	H	H
L	H	L	L	L
L	H	L	H	H
L	H	H	L	L
L	H	H	H	L
H	L	L	L	L
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
		\cdot	\cdot	\cdot

$H=$ HIGH Level
L = LOW Level

Fig. 1

Fig. 2

34518 • 34520
 DUAL 4-BIT DECADE/BINARY COUNTERS

DESCRIPTION - The 34518 is a Dual 4-Bit Internally Synchronous BCD Counter and the 34520 is a Dual 4-Bit Internally Synchronous Binary Counter. Both have the same operation except for the count sequence. Each counter has both an active HIGH Clock Input (CP_{0}) and an active LOW Clock Input ($\overrightarrow{C P}_{1}$), buffered Outputs from all four bit positions $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ and an active HIGH overriding asynchronous Master Reset Input (MR).
The counter advances on either the LOW-to-HIGH transition of the CP_{0} Input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input if CP_{0} is LOW (see the Truth Table). Either Clock Input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$) may be used as the Clock Input to the counter and the other Clock Input may be used as a Clock Inhibit Input.
A HIGH on the Master Reset Input (MR) resets the counter ($Q_{0}-Q_{3}=$ LOW) independent of the Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$).

- TYPICAL COUNT FREQUENCY OF 10 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- BUFFERED OUTPUTS FROM ALL FOUR BIT POSITIONS
- FULLY SYNCHRONOUS COUNTING

PIN NAMES

$\begin{aligned} & \mathrm{CP}_{0 a}, \mathrm{CP}_{0 b} \\ & \overline{C P}_{1 a}, \overline{C P}_{1 b} \\ & \mathrm{MR}_{\mathrm{a}}, \mathrm{MR}_{\mathrm{b}} \\ & \mathrm{Q}_{0 a}-\mathrm{Q}_{3 a} \\ & \mathrm{Q}_{0 \mathrm{~b}}-\mathrm{Q}_{3 \mathrm{~b}} \end{aligned}$		Clock Clock Mast Outp Outp TRU	Input $(\mathrm{L} \rightarrow \mathrm{H}$ Triggered) Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered) Reset Inputs ts ts H TABLE
CP_{0}	$\overline{C P}_{1}$	MR	MODE
-	H	L	Counter Advances
L	X	L	Counter Advances
-	\times	L	No Change
X	Γ	L	No Change
5	L	L	No Change
H	-	L	No Change
X	X	H	Reset (Asynchronous)

$$
\begin{aligned}
X & =\text { Don't Care } \\
L & =\text { LOW Level } \\
H & =\text { HIGH Level } \\
- & =\text { Positive-Going Transition } \\
& =\text { Negative-Going Transition }
\end{aligned}
$$

1/2 OF A 34518 LOGIC DIAGRAM

1/2 OF A 34520 LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I }}$ D	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS										TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{CP}_{0} \text { or } \overline{\mathrm{CP}}_{1} \text { to } \mathrm{Q}_{\mathrm{n}}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay, $M R \text { to } Q_{n}$		200			80			55		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to a_{n}		$\begin{aligned} & \hline 220 \\ & 220 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {P PHL }}$	$\begin{aligned} & \text { Propagation Delay, } \\ & \text { MR to } Q_{n} \end{aligned}$		220			90			60		ns	
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t} \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			25 25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {M }}$ M	MR Minimum Pulse Width		70			30			20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ W ${ }^{\text {CP }}$	CP_{0} or $\overline{\mathrm{CP}_{1}}$ Minimum Pulse Width		120			50			35		ns	
$\mathrm{t}_{\text {rec }}$	MR Recovery Time		15			5			0		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$		130			57			40		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}		130			57			40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)		4			10					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{L}} \mathrm{H}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to either Clock Input (CP_{O} or $\overline{C P}_{1}$) be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

Conditions: $\overline{\mathrm{CP}_{1}}=$ HIGH and the device triggers on a LOW-to-HIGH transition at CP_{0}. The timing also applies when $\mathrm{CP}_{0}=\mathrm{LOW}$ and the device triggers on a HIGH-to-LOW transition at $\overline{\mathrm{CP}_{1}}$.

MINIMUM PULSE WIDTHS FOR
$\mathrm{CP}_{0}, \overline{\mathbf{C P}_{1}}$ AND MR AND MR RECOVERY TIME

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.
SET-UP AND HOLD TIMES, CP_{0} TO $\overline{\mathrm{CP}_{1}}$ AND $\overline{\mathrm{CP}} \mathrm{TO}_{1}$ TO CP

34539
 DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The 34539 is a Dual 4-Input Digital Multiplexer with common select logic. Each multiplexer has four Multiplexer Inputs ($\left.I_{0^{-1}}\right)_{3}$), an active LOW Enable Input (\bar{E}) and a Multiplexer Output (Z). When HIGH, the Enable Input (E) forces the Multiplexer Output (Z) of the respective multiplexer LOW, independent of the Select $\left(S_{0}, S_{1}\right)$ and Multiplexer $\left(I_{0} I_{3}\right)$ Inputs. With the Enable Input (\bar{E}) LOW, the common Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) determine which Multiplexer Input ($I_{0^{-1}}$) on each of the multiplexers is routed to the respective Multiplexer Output (Z).

- Common select logic
- ACTIVE LOW ENABLES

PIN NAMES

$I_{0 a}, I_{1 a}, I_{2 a}, I_{3 a}$	Multiplexer Inputs		
$1_{0 b}, 1_{1 b}, 1_{2 b}, 1_{3 b}$			
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs		
\bar{E}_{a}, \bar{E}_{b}	Enable Inputs (Active LOW)		
$\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	Multiplexer Outputs		
	TRUTH TABLE		
	INPUTS	OUTPUT	
	$\begin{array}{llll}S_{0} & S_{1} & \bar{E}\end{array}$	Z	
	$\times \quad \times \quad \mathrm{H}$	L	
	L L L	10	$H=$ HIGH Level
	L L L	\%	L = LOW Level
	H L L	I_{1}	X = Don't Care
	L H L	l_{2}	
	H H L	13	

LOGIC DIAGRAM

$$
V_{D D}=\operatorname{Pin} 16
$$

$V_{S S}=P$ in 8
$\bigcirc=\operatorname{Pin}$ Number

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, ${ }^{1} \mathrm{X}$ to Z		$\begin{aligned} & 145 \\ & 120 \end{aligned}$			$\begin{aligned} & 61 \\ & 50 \end{aligned}$			$\begin{aligned} & 43 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{{ }^{t} \mathrm{PLH}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Select to Z		$\begin{aligned} & 190 \\ & 192 \end{aligned}$			$\begin{aligned} & 78 \\ & 78 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\overline{t_{\mathrm{PLH}}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, \bar{E} to Z		$\begin{array}{r} 100 \\ 96 \end{array}$			42 42			29 32		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\overline{t_{T L H}}$ ${ }^{\mathrm{T} H \mathrm{~L}}$	Output Transition Time		$\begin{aligned} & 38 \\ & 31 \end{aligned}$			$\begin{aligned} & 19 \\ & 15 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, ${ }^{1} \mathrm{X}$ to Z		$\begin{aligned} & 166 \\ & 140 \end{aligned}$			71 58			$\begin{aligned} & 51 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{t_{P L H}}$ $\underline{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, Select to Z		$\begin{aligned} & 210 \\ & 210 \end{aligned}$			$\begin{aligned} & 88 \\ & 88 \end{aligned}$			$\begin{aligned} & 62 \\ & 62 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
${ }^{\text {t }}$ PLH ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, \bar{E} to Z		$\begin{aligned} & 120 \\ & 118 \end{aligned}$			$\begin{aligned} & 53 \\ & 51 \end{aligned}$			$\begin{aligned} & 37 \\ & 38 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 76 \\ & 66 \end{aligned}$			39 30			29		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTE:
Propagation Delays and Output Transition Times are graphically described in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

$34555 \cdot 34556$
 DUAL 1-OF-4 DECODERS/DEMULTIPLEXERS

DESCRIPTION - The 34555 and 34556 are Dual 1-of-4 Decoders/Demultiplexers. Each decoder/demultiplexer has two Address Inputs (A_{0}, A_{1}), an active LOW Enable Input (\bar{E}) and four mutually exclusive Outputs which are active HIGH for the $34555\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and active LOW for the $34556\left(\bar{O}_{0}-\overline{0}_{3}\right)$.
When the 34555 is used as a decoder, the Enable Input ($\overline{\mathrm{E}}$) when HIGH, forces all Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) LOW. When used as a demultiplexer, the appropriate Output is selected by the data on the Address Inputs (A_{0}, A_{1}) and follows as the inverse of the Enable Input (\bar{E}). All unselected Outputs are LOW.
When the 34556 is used as a decoder, the Enable Input ($\overline{\mathrm{E}}$) when HIGH forces all Outputs ($\overline{\mathrm{O}}_{0}-\bar{O}_{3}$) HIGH. When used as a demultiplexer, the appropriate Output is selected by the data on the Address Inputs (A_{0}, A_{1}) and follows the state of the Enable Input (\bar{E}). All unselected Outputs are HIGH.

- ACTIVE HIGH OUTPUTS FOR THE 34555 AND ACTIVE LOW OUTPUTS FOR THE 34556
- overriding active low enable

PIN NAMES

\bar{E}
Enable Input (Active Low)
A_{0}, A_{1}
Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Outputs (Active HIGH - 34555 Only)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$

$$
\text { Outputs (Active LOW - } 34556 \text { Only) }
$$

LOGIC DIAGRAMS

1/2 OF A 34555

1/2 OF A 34556

$$
\begin{aligned}
V_{D D} & =P \text { in } 16 \\
V_{S S} & =P \text { in } 8 \\
O & =P \text { in Number }
\end{aligned}
$$

CONNECTION DIAGRAMS DIP (TOP VIEW)

Note: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In -Line Package.

34702
 PROGRAMMABLE BIT RATE GENERATOR FAIRCHILD CMOS LSI

DESCRIPTION - The 34702 Bit Rate Generator provides the necessary clock signals for digital data transmission systems, such as Universal Asynchronous Receiver and Transmitter circuits (UARTs). It generates any of the 13 commonly used bit rates using an on-chip crystal oscillator, but it's design also provides for easy and economical multichannel operation, where any of the possible frequencies must be made available on any output channel.

One 34702 can control up to eight output channels. When more than one bit rate generator is required, they can still be operated from one crystal.

- PROVIDES ALL 13 COMMONLY USED BIT RATES

- ONE 34702 CONTROLS UP TO EIGHT TRANSMISSION CHANNELS
- USES 2.4576 MHz INPUT FOR STANDARD FREQUENCY OUTPUTS (16 TIMES BIT RATE)
- CONFORMS TO EIA RS-404
- ON-CHIP INPUT PULL UP CIRCUITS
- TTL COMPATIBLE-OUTPUTS WILL DRIVE 1.6 mA
- INITIALIZATION CIRCUIT FACILITATES DIAGNOSTIC FAULT ISOLATION
- LOW POWER DISSIPATION-1.35 mA POWER DISSIPATION AT 5 V AND 2.4576 MHz
- 16-PIN DUAL IN-LINE PACKAGE

PIN NAMES

$\frac{C P}{E_{C P}}$	External Clock Input
I_{X}	External Clock Enable Input (Active LOW)
I_{M}	Crystal Input
$S_{0}-S_{3}$	Multiplexed Input
CO_{O}	Rate Select Inputs
OX	Clock Output
$\mathrm{O}_{\mathrm{O}}-\mathrm{O}_{2}$	Crystal Drive Output
Z	Scan Counter Outputs
	Bit Rate Output

TABLE 1
CLOCK MODES AND INITIALIZATION

IX	$\overline{\mathbf{E C P}^{\text {CP }}}$	CP	OPERATION
凹ル	H	L	Clocked from IX
X	L	凹ூエ	Clocked from CP
x	H	H	Continuous Reset
x	L	\square	Reset During First CP $=$ HIGH Time

```
        H = HIGH Level
        L = LOW Level
        X = Don't Care
        \Omega}=1\mathrm{ st HIGH Level Clock Pulse
        After \overline{E}
```

 凹ூル = Clock Pulses
 TABLE 2
TRUTH TABLE FOR RATE SELECT INPUTS

S $_{\mathbf{3}}$	S $_{\mathbf{2}}$	S $_{\mathbf{1}}$	S $_{\mathbf{0}}$	Output Rate（Z） Note 1
L	L	L	L	Multiplexed Input（IM） L
L	L	H	Miplexed Input（IM）	
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134.5 Baud
L	H	L	H	200 Baud
L	H	H	H	600 Baud
H	L	L	L	2400 Baud
H	L	L	H	9600 Baud
H	L	H	L	4800 Baud
H	L	H	H	1800 Baud
H	H	L	L	1200 Baud
H	H	L	H	2400 Baud
H	H	H	L	300 Baud
H	H	H	H	150 Baud

Note 1.
Actual output frequency is 16 times the indicated Output Rate， assuming a clock frequency of 2.4576 MHz ．

FUNCTIONAL DESCRIPTION－Digital data transmission systems employ a wide range of standardized bit rates，ranging from 50 baud interfacing with electromechanical devices，to 9600 baud for high speed modems．Modern electronic systems commonly use Universal Asynchronous Receiver and Transmitter circuits（UARTs）to convert parallel data inputs into a serial bit stream（transmitter）and to reconvert the serial bit stream into paralle！outputs（receiver）．In order to resynchronize the incoming serial data，the receiver requires a clock rate that is a multiple of the incoming bit rate．Popular MOS－LSI UART circuits use a clock that is 16 times the transmitted bit rate．The 34702 can generate 13 standardized clock rates from one common high frequency input．

The 34702 contains the following five functional subsystems which are discussed in detail below：
1．An Oscillator Circuit with associated gating．
2．A Prescaler used as scan counter for multichannel operation（described in the applications section）．
3．A network of Counter Chains to generate the required standardized frequencies．
4．An Output Multiplexer（frequency selector）with resynchronizing output flip－flop．
5．An Initializing（reset）Circuit．

OSCILLATOR

For conventional operation generating 16 output clock pulses per bit period，the input clock frequency must be 2.4576 MHz （i．e． 9600 baud $\times 16 \times 16$ ，since the scan counter and the first flip－flop of the counter chain act as an internal $\div 16$ prescaler）．A lower input frequency will obviously result in a proportionally lower output frequency．
The 34702 can be driven from two alternate clock sources：（1）When the $\overline{E_{C P}}$（active LOW External Clock Enable）input is LOW，the CP input is the clock source．（2）When the $\overline{E_{C P}}$ input is HIGH，a crystal connected between I_{X} and O_{X} ，or a signal applied to the I_{X} input is the clock source．

PRESCALER（SCAN COUNTER）

The clock frequency is made available on the CO （Clock Output）pin and is applied to the $\div 8$ prescaler with buffered $\mathrm{Outputs} \mathrm{Q}_{0}, \mathrm{Q}_{1}$, and Q_{2} ． This prescaler is of no particular advantage in single frequency applications，but it is essential for the simple and economical multichannel scheme described in the Applications section of this data sheet．

COUNTER NETWORK

The prescaler Output Q_{2} is a square wave of $1 / 8$ the input frequency and is used to drive the frequency counter network generating the 13 standardized frequencies．Note that the frequencies are labeled in the Block Diagram and described here in terms of the transmission bit rate．In a conventional system using a 2.4576 MHz clock input，the actual output frequencies are 16 times higher．
The output from the first frequency divider flip－flop is thus labeled 9600，since it is used to transmit or receive 9600 baud（bits per second）． The actual frequency at this node is $16 \times 9.6 \mathrm{kHz}=153.6 \mathrm{kHz}$ ．Seven more cascaded binaries generate the appropriate frequencies for bit rates $4800,2400,1200,600,300,150$ ，and 75.

The other five bit rates are generated by individual counters：
bit rate 1200 is divided by 6 to generate bit rate 200 ，
bit rate 200 is divided by 4 to generate bit rate 50 ，
bit rate 2400 is divided by 18 to generate bit rate 134.5 with a frequency error of -0.87% ，
bit rate 2400 is also divided by 22 to generate bit rate 110 with a frequency error of -0.83% ，and
bit rate 9600 is divided by $16 / 3$ to generate bit rate 1800.
The $16 / 3$ division is accomplished by alternating the divide ratio between 5 （twice）and 6 （once）．The result is an exact average output frequency with some frequency modulation．Taking advantage of the $\div 16$ feature of the UART，the resulting distortion is less than 0.78% ， irrespective of the number of elements in a character，and therefore well within the timing accuracy specified for high speed communications equipment．All signals except 1800，have a 50% duty cycle．

OUTPUT MULTIPLEXER

The outputs of the counter network are fed to a 16 -input multiplexer, which is controlled by the Rate Select Inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$). The multiplexer output is then resynchronized with the incoming clock in order to cancel all cumulative delays and to present an output signal at the buffered Output (Z) that is synchronous with the prescaler Outputs $\left(\mathrm{O}_{0} \mathrm{O}_{2}\right)$. Table 2 lists the correspondence between select code and output bit rate. Two of the 16 codes do not select an internally generated frequency, but select an input into which the user can feed either a different, non-standardized frequency, or a static level (HIGH or LOW) to generate "zero baud".
The bit rates most commonly used in modern data terminals (110, 150, 300, 1200, 2400 baud) require that not more than one input be grounded, easily achieved with a single pole, 5 -position switch. 2400 baud is selected by two different codes, so that the whole spectrum of modern digital communication rates has a common HIGH on the S_{3} input.

INITIALIZATION (RESET)

The initialization circuit generates a common master reset signal for all flip-flops in the 34702. This signal is derived from a digital differentiator that senses the first HIGH level on the CP input after the $E_{C P}$ input goes LOW. When $E_{C P}$ is HIGH , selecting the Crystal Input, CP must be LOW. A HIGH level on CP would apply a continuous reset.
All inputs to the 34702 , except I_{X} have on-chip pull up circuits which improve TTL compatibility and eliminate the need to tie a permanently HIGH input to VDD.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS
			MIN	TYP	MAX			
V_{IH}	Input HIGH Voltage		3.5			V	All	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage				1.5	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \\ & 4.0 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \text { All } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 0 or 5 V per the Logic Function or Truth Table $\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 1.5 or 3.5 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & 0.5 \\ & \hline \end{aligned}$	V	MIN, $25^{\circ} \mathrm{C}$ MAX All	${ }^{\prime} \mathrm{OL}=0 \mathrm{~mA}$, Inputs at 0 or 5 V per the Logic Function or Truth Table $\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$, Inputs at 1.5 or 3.5 V
IIL*	Input LOW Current for Input lX Input LOW Current for all Other Inputs	$\begin{array}{\|l\|} \hline X C \\ X M \\ \hline X C \\ X M \end{array}$		$\begin{aligned} & -30 \\ & -30 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.01 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 0 V All Other Inputs Simultaneously at 5 V
${ }^{1} \mathrm{H}$	Input HIGH Current for Input IX Input HIGH Current for all Other Inputs	$\begin{array}{\|l\|} \hline X C \\ X M \\ \hline X C \\ X M \end{array}$			$\begin{aligned} & 0.1 \\ & 0.01 \\ & \hline 0.1 \\ & 0.01 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 5 V All Other Inputs Simultaneously at 0 V
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{array}{r} -1.5 \\ -1.0 \\ \hline-0.7 \\ -0.4 \end{array}$	$\begin{array}{r} -3.0 \\ -2.0 \\ \hline-1.4 \\ -0.8 \end{array}$		mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Inputs at 0 or 5 V per the Logic Function or Truth Table
${ }^{\text {I OL }}$	Output LOW Current		$\begin{aligned} & 3.5 \\ & 3.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 3.2 \end{aligned}$		mA	$\begin{aligned} & \mathrm{MIN} \\ & 25^{\circ} \mathrm{C} \\ & \mathrm{MAX} \end{aligned}$	
'DDL*	Quiescent Power Supply Current, LOW	XC		$\begin{aligned} & 200 \\ & 400 \\ & \hline 200 \\ & 400 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs at 0 V
'DDH	Quiescent Power Supply Current, HIGH	XC		$\begin{array}{r} 10 \\ 60 \\ \hline 5 \\ 30 \end{array}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs at 5 V

[^7]DC CHARACTERISTICS: $V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS
			MIN	TYP	MAX			
V_{IH}	Input HIGH Voltage		10.5			V	All	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage				4.5	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 14.99 \\ & 14.95 \\ & 13.0 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \text { All } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 0 or 15 V per the Logic Function or Truth Table ${ }^{\mathrm{I}} \mathrm{OH}=0 \mathrm{~mA}$, Inputs at 4.5 or 10.5 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & 2.0 \end{aligned}$	V	MIN, $25^{\circ} \mathrm{C}$ MAX All	${ }^{\prime} \mathrm{OL}=0 \mathrm{~mA}$, Inputs at 0 or 15 V per the Logic Function or Truth Table ${ }^{\prime} \mathrm{OL}=0 \mathrm{~mA}$, Inputs at 4.5 or 10.5 V
IIL*	Input LOW Current for Input ${ }^{1} \mathrm{X}$ Input LOW Current for all Other Inputs	$\begin{array}{\|l\|} \hline X C \\ X M \\ \hline X C \\ X M \end{array}$		$\begin{aligned} & \hline-100 \\ & -100 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.02 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 0 V All Other Inputs Simultaneously at 15 V
${ }^{1} \mathrm{H}$	Input HIGH Current for Input IX Input HIGH Current for all Other Inputs	$\begin{array}{\|l\|} \hline X C \\ X M \\ \hline X C \\ X M \end{array}$			$\begin{aligned} & 0.2 \\ & 0.02 \\ & \hline 0.2 \\ & 0.02 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 15 V All Other Inputs Simultaneously at 0 V
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & -2.2 \\ & -1.4 \end{aligned}$	$\begin{aligned} & -4.4 \\ & -2.8 \end{aligned}$		mA	MIN, $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=14.5 \mathrm{~V}$ Inputs at 0 or 15 V per $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ the Logic Function or Truth Table
${ }^{\mathrm{O}} \mathrm{OL}$	Output LOW Current			$\begin{aligned} & 18.0 \\ & 18.0 \\ & 10.0 \end{aligned}$		mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\text {I DDL* }}$	Quiescent Power Supply Current, LOW	XC		$\begin{array}{r} 500 \\ 1000 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All Inputs at O V
		XM		$\begin{array}{r} 500 \\ 1000 \end{array}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\prime} \mathrm{DDH}$	Quiescent Power Supply Current, HIGH	XC		$\begin{array}{r} 40 \\ 240 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All Inputs at 15 V
		XM		$\begin{array}{r} 40 \\ 120 \end{array}$		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

[^8]DC CHARACTERISTICS: $V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS
			MIN	TYP	MAX			
V_{IH}	Input HIGH Voltage		7.0			V	All	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage				3.0	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 9.99 \\ & 9.95 \\ & 9.0 \end{aligned}$			V	MIN, $25^{\circ} \mathrm{C}$ MAX All	$\mathrm{I}^{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 0 or 10 V per the Logic Function or Truth Table $\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 3 or 7 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & 1.0 \\ & \hline \end{aligned}$	V	MIN, $25^{\circ} \mathrm{C}$ MAX All	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$, Inputs at 0 or 10 V per the Logic Function or Truth Table $\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$, Inputs at 3 or 7 V
${ }^{\text {ILL* }}$	Input LOW Current for Input ${ }^{1} \times$ Input LOW Current for all Other Inputs	$\begin{aligned} & \mathrm{XC} \\ & \mathrm{XM} \\ & \hline \mathrm{XC} \\ & \mathrm{XM} \end{aligned}$		$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.01 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 0 V All Other Inputs Simultaneously at 10
I_{IH}	Input HIGH Current for Input IX Input HIGH Current for all Other Inputs	$\begin{aligned} & \mathrm{XC} \\ & \mathrm{XM} \\ & \hline \mathrm{XC} \\ & \mathrm{XM} \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.01 \\ & \hline 0.1 \\ & 0.01 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 10 V All Other Inputs Simultaneously at 0 V
${ }^{\mathrm{I}} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & -1.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -2.8 \\ & -1.6 \end{aligned}$		mA	MIN, $25^{\circ} \mathrm{C}$ MAX	$\mathrm{V}_{\mathrm{OUT}}=9.5 \mathrm{~V}$ Inputs at 0 or 10 V per $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ the Logic Function or Truth Table
${ }^{1} \mathrm{OL}$	Output LOW Current		10.0	$\begin{array}{r} 14.0 \\ 14.0 \\ 7.0 \end{array}$		mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\prime}$ DDL*	Quiescent Power Supply Current, LOW	XC		$\begin{aligned} & 400 \\ & 800 \end{aligned}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All Inputs at 0 V
		XM		$\begin{aligned} & 400 \\ & 800 \end{aligned}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	
IDDH	Quiescent Power Supply Current, HIGH	XC		$\begin{array}{r} 20 \\ 120 \end{array}$		$\mu \mathrm{A}$	$\text { MIN, } 25^{\circ} \mathrm{C}$ MAX	All Inputs at 10 V
		XM		$\begin{aligned} & 10 \\ & 60 \end{aligned}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

[^9]AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$t_{\text {PLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, ${ }^{\prime} \mathrm{X}$ to CO		$\begin{aligned} & 105 \\ & 105 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {PLH }}$ ${ }^{\text {t PHL }}$	Propagation Delay, CP to CO		$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CO to Q_{n}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t} P H L}$	Propagation Delay, CO TO Z		$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	
$\begin{aligned} & { }^{\text {t}} \text { TLH } \\ & { }^{\text {tTHL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 50 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{t_{P L H}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, ${ }^{\prime} \mathrm{X}$ to CO		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP to CO		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t PHL }}$	Propagation Delay, CO to Q_{n}		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{t_{\text {PLH }}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CO TO Z		$\begin{aligned} & 70 \\ & 70 \end{aligned}$			35 35			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\text {tTLH }} \\ & { }^{\text {t THL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 70 \\ & 40 \end{aligned}$			$\begin{aligned} & 35 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Select to CO Hold Time, Select to CO		$\begin{array}{r} 150 \\ -10 \end{array}$			$\begin{array}{r} 100 \\ -7 \end{array}$			$\begin{aligned} & 75 \\ & -5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, I_{M} to CO Hold Time, I_{M} to CO		$\begin{array}{r} 150 \\ -10 \end{array}$			70 -7			$\begin{aligned} & 50 \\ & -5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{w} w} \mathrm{CP(L)} \\ & { }^{t_{w}} \mathrm{CP}(\mathrm{H}) \end{aligned}$	Minimum Clock Pulse Width, LOW and HIGH		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{t_{w}{ }^{\prime} x^{(L)}} \\ & { }^{t_{w}{ }^{\prime} X^{(H)}} \end{aligned}$	Minimum IX Pulse Width, LOW and HIGH		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			75 75			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($T_{L L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. The first HIGH Level Clock Pulse after $\overline{E_{C P}}$ goes LOW must be at least 350 ns long to guarantee reset of all Counters.
4. It is recommended that input rise and fall times to the Clock Inputs ($C P, I \times$) be less than 15μ s.

SWITCHING WAVEFORMS

MINIMUM CP AND IX PULSE WIDTHS AND SET-UP AND HOLD TIMES, SELECT INPUT (S_{n}) TO CLOCK OUTPUT (CO) AND IM INPUT TO CLOCK OUTPUT (CO)

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

APPLICATION

SINGLE CHANNEL BIT RATE GENERATOR

Figure 1 shows the simplest application of the 34702. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5-position switch. The Bit Rate Output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to $110,150,300,1200$, and 2400 Baud. For many low cost terminals these five bit rates are adequate.

SIMULTANEOUS GENERATION OF SEVERAL BIT RATES

Fixed Programmed Multichannel Operation

Figure 2 shows a simple scheme that generates eight bit rates on eight output lines, using one 34702 and one 93L34 8-Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs $\left(Q_{0}\right.$ to $\left.Q_{2}\right)$ go through a complete sequence of eight states for every half-period of the highest output frequency (9600 Baud). Feeding these Scan Counter Outputs back to the Select Inputs of the multiplexer causes the 34702 to interrogate sequentially the state of eight different frequency signals. The 93L34 8-Bit Addressable Latch, addressed by the same Scan Counter Outputs, reconverts the multiplexed single Output (Z) of the 34702 into eight parallel output frequency signals. In the simple scheme of Figure 2 , input S_{3} is left open (HIGH) and the following bit rates are generated:

$\mathrm{Q}_{0}:$	110 Baud,	$\mathrm{Q}_{1}:$	9600 Baud,	$\mathrm{Q}_{2}:$	4800 Baud,
$\mathrm{Q}_{4}:$	1200 Baud,	$\mathrm{Q}_{5}:$	2400 Baud,	$\mathrm{Q}_{3}: 1800$ Baud,	
$\mathrm{Q}_{6}:$	300 Baud,	$\mathrm{Q}_{7}:$	150 Baud.		

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.

Fully Programmable Multichannel Operation

Figure 3 shows a fully programmable 8-channel bit rate generator system that, under computer control, generates arbitrarily assigned bit rates on all eight outputs simultaneously. The basic operation is similar to the previously described fixed programmed system, but two 9 LS170 4×4 Register File MSI packages are connected as programmable look-up tables between the Scan Counter Outputs (Q_{0} to Q_{2}) and the multiplexer Select Inputs (S_{O} to S_{3}). The content of this 8 -word by 4-bit memory determines which frequency appears at what output.

19200 Baud Operation

Though a 19200 Baud signal is not internally routed to the multiplexer, the 34702 can be used to generate this bit rate by connecting the Q_{2} output to the I_{M} input and applying select code 0 or 1 . An additional 2-input NAND gate can be used to retain the "Zero Baud" feature on select code 0. Any multichannel operation that involves 19200 Baud must be limited to four outputs as shown in Figure 4. Only the two least significant Scan Counter Outputs are used, so that the scan is completed within one half period of the 19200 output frequency.

CLOCK EXPANSION

One 34702 can control up to eight output channels. For more than eight channels, additional Bit Rate Generators are required. These Bit Rate Generators can all be run from the same crystal or clock input. Figure 5 shows one possible expansion scheme. One 34702 is provided with a crystal. All other devices derive their clock from this master. Figure 6 shows a different scheme where the master clock output feeds into the IX input of all slaves and all $E_{C P}$ inputs are normally held HIGH. This scheme retains the reset feature and the selection between two different clock sources of the basic 34702 circuit.
During normal operation, the common $\overline{E_{C P}}$ line is HIGH and the common clock line (CP) is LOW. For diagnostic purposes the common $\overline{\bar{E}_{C P}}$ is forced LOW. This deselects the crystal frequency and initiates the diagnostic mode. When CP goes HIGH for the first time, all 34702s are reset through their individual on-chip initialization circuitry. Subsequent LOW-to-HIGH clock transitions on the common CP line advance the scan counter, causing all 34702s to operate synchronously.

TYPICAL APPLICATIONS (Cont'd)

SWITCH POSITION	BIT RATE
1	110 Baud
2	150 Baud
3	300 Baud
4	1200 Baud
5	2400 Baud

Fig. 1 SWITCH SELECTABLE BIT RATE GENERATOR CONFIGURATION PROVIDING FIVE BIT RATES

Fig. 3 A FULLY PROGRAMMABLE 8-CHANNEL BIT RATE GENERATOR SYSTEM

Fig. 4 FULLY PROGRAMMABLE 4-CHANNEL BIT RATE GENERATOR SYSTEM WITH THE 19.2 k BAUD FEATURE.

Fig. 5 CASCADE CLOCK EXPANSION SCHEME

Fig. 6 TANDEM CLOCK EXPANSION SCHEME

CRYSTAL SPECIFICATION RECOMMENDATIONS - Table 3 is a convenient listing of recommended crystal specifications. Crystal manufacturers are also listed below.

TABLE 3 CRYSTAL SPECIFICATIONS

| PARAMETERS | COMMERCIAL CRYSTALSPEC |
| :--- | :---: | :---: |
| Frequency | 2.4576 MHz "AT' Cut |
| Series Resistance (Max) | 250Ω |
| Unwanted Modes | $-6.0 \mathrm{~dB}(\mathrm{Min})$ |
| Type of Operation | Parallel |
| Load Capacitance | $32 \mathrm{pF} \pm 0.5$ |

CRYSTAL MANUFACTURERS
CTS Knights, Inc.
Sandwich, III. 60548
(815) 786-8411
X - Tron Electronics
1869 National Ave.
Hayward, Calif.
(415) 783-2145

Erie Frequency Control
499 Lincoln St.
Carlisle, Pa. 17013
(717) 249-2232

International Crystal Mfg. Company
10 No. Lee
Oklahoma City, Okla. 73102
(405) 236-3741

34720
 256-BIT RANDOM ACCESS MEMORY WITH 3-STATE OUTPUTS
 FAIRCHILD CMOS •LSI

DESCRIPTION - The 34720 is a 256 -Bit Random Access Memory with 3-State Outputs. It has a Data Input (D), eight Address Inputs ($A_{0}-A_{7}$), an active HIGH Write Enable Input (WE), an active LOW Chip Select Input ($\overline{\mathrm{CS}}$), an active HIGH 3-State Output (Q) and an active LOW 3-State Output ($\overline{\mathrm{Q}}$). Information on the Data Input (D) is written into the memory location selected by the Address Inputs $\left(A_{0}-A_{7}\right)$ when the Chip Select Input $(\overline{C S})$ is LOW and the Write Enable Input (WE) is HIGH. Under these conditions, the device is transparent, i.e. the data input is reflected at the True and Complementary Outputs $(\mathrm{Q}, \overline{\mathrm{Q}})$. Information is read from the memory location selected by the Address Inputs ($A_{0}-A_{7}$) while the Chip Select $(\overline{C S})$ and the Write Enable (WE) Inputs are LOW. The Q Output is the information written into the memory, $\overline{\mathrm{Q}}$ is its complement. When the Chip Select Input $(\overline{\mathrm{CS}})$ is HIGH, both Outputs ($\mathrm{O}, \overline{\mathrm{Q}})$ are held in the high impedance OFF state. This allows other 3 -State outputs to be wired together in a bus arrangement. The 34720 offers fully static operation.

- 3-STATE OUTPUTS
- ORGANIZATION - 256 WORDS X 1-BIT
- ON-CHIP DECODING
- true and complement outputs avallable
- Fully static
- LOW POWER DISSIPATION
- HIGH SPEED

PIN NAMES

$\overline{C S}$	Chip Select Input (Active LOW)
$W E$	Write Enable Input
D	Data Input
$A_{0}-A_{7}$	Address Inputs
\bar{Q}	3-State Output (Active HIGH)
\bar{Q}	3-State Output (Active LOW)

MODE SELECTION

$\overline{\text { CS }}$	WE	Q	$\overline{\mathbf{Q}}$	MODE
L	H	Data Written Into Memory	Complement of Data Written Into Memory	Write
L	L	Data Written Into Memory	Complement of Data Written Into Memory	Read
H	X	High Impedance	High Impedance	Inhibit

BLOCK DIAGRAM

Note: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I OZH }}$	Output OFF Current, HI			$\begin{array}{r}0.05 \\ 3.0 \\ \hline\end{array}$			$\begin{aligned} & 0.1 \\ & 6.0 \end{aligned}$			$\begin{array}{r} 0.2 \\ 12 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, \overline{C S}=V_{D D}$
${ }^{\text {IOZL }}$	Output OFF Current,			$\begin{array}{r} -0.05 \\ -3.0 \end{array}$			$\begin{aligned} & -0.1 \\ & -6.0 \end{aligned}$			$\begin{array}{\|l\|} \hline-0.2 \\ -12 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{S S}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
	Quiescent Power	XC		$\begin{array}{r} 0.5 \\ 30 \\ \hline \end{array}$			$\begin{array}{r} 2 \\ 60 \end{array}$			$\begin{array}{r} 4 \\ 120 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at 0 V or V_{DD}
'DD	Supply Current	XM		0.5 30			2 60			$\begin{array}{r}4 \\ 120 \\ \hline\end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

Note: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\text {t} P L H} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{array}{l\|l} 200 \\ 200 \end{array}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{array}{\|l\|} \hline 125 \\ 125 \end{array}$			$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{t} \mathrm{PHZ}} \\ & { }^{\mathrm{t} P \mathrm{LLZ}} \\ & \hline \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\overline{t_{T L H}}$ ${ }^{\mathrm{T} H \mathrm{~L}}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	WRITE MODE Propagation Delay, WE to Output		$\begin{array}{\|l\|} \hline 125 \\ 125 \\ \hline \end{array}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{\text {PLH }}} \\ & { }_{\mathrm{t}}^{\text {PHL }} \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 250 \\ & 250 \end{aligned}$			$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }_{\mathrm{t}}^{\mathrm{PRLL}} \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} H Z}} \\ & { }_{\mathrm{t} P \mathrm{PLZ}} \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THHL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			35 35			25 25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	WRITE MODE Propagation Delay, WE to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			70 70			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t}{ }_{w}$ WE	WRITE MODE Minimum WE Pulse Width		100			80			60		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to WE Hold Time, D to WE		$\begin{aligned} & 50 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, Address to WE Hold Time, Address to WE		$\begin{aligned} & 50 \\ & 40 \end{aligned}$			20 20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{\mathrm{CS}}$ to WE Hold Time, $\overline{\mathrm{CS}}$ to WE		$\begin{aligned} & 50 \\ & 40 \end{aligned}$			20 20			15 15		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{T}_{\mathrm{PLH}}$ and tPHL^{\prime}) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and t_{TH}) will change with output load capacitance (C_{L}). Set-up Times $\left(t_{s}\right)$, Hold Times $\left(t_{h}\right)$, Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

CS TO OUTPUT ENABLE AND DISABLE TIMES

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values

34723
 DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION - The 34723 is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address Inputs (A_{0}, A_{1}), an active LOW Enable Input (\bar{E}) and an active HIGH Clear Input (CL). Each latch has a Data Input (D) and four Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$.

When the Enable (\bar{E}) and Clear (CL) Inputs are HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ are LOW. Dual 4-channel demultiplexing occurs when the Clear Input (CL) is HIGH and the Enable Input (\bar{E}) is LOW.
When the Clear ($C L$) and Enable (\bar{E}) inputs are LOW, the selected Output ($Q_{0}-Q_{3}$), determined by the Address Inputs (A_{0}, A_{1}), follows the Data Input (D). When the Enable Input (\bar{E}) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=C L=L O W$), changing more than one bit of the address $\left(A_{0}, A_{1}\right)$ could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=H I G H, C L=L O W$).

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT IS AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DECODING OR DEMULTIPLEXING CAPABILITY
- EASILY EXPANDABLE
- ACTIVE HIGH COMMON CLEAR

PIN NAMES

A_{0}, A_{1}	Address Inputs
$\frac{D_{a}}{\mathrm{E}}, \mathrm{D}_{\mathrm{b}}$	Data Inputs
CL	Enable Input (Active LOW)
$\mathrm{Q}_{0 \mathrm{a}}-\mathrm{O}_{3 a}, \mathrm{O}_{0 b}-\mathrm{Q}_{3 \mathrm{~b}}$	Clear Input (Active HIGH)

LOGIC DIAGRAM

$V_{D D}=P_{\text {in }} 16$
$V_{S S}=P$ in 8
$\bigcirc=$ Pin Numbers

FAIRCHILD CMOS • 34723

MODE SELECTION		
\bar{E}	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Dual 4-Channel Demultiplexer
H	H	Clear

$$
\begin{aligned}
& H=H I G H \text { Level } \\
& L=\text { LOW Level }
\end{aligned}
$$

CL	$\overline{\mathbf{E}}$	D	A_{0}	A_{1}	a_{0}	Q_{1}	Q_{2}	a_{3}	MODE
H	H	X	X	X	L	L	L	L	Clear
H	L	L	L	L	L	L	L	L	Demultiplex
H	L	H	L	L	H	L	L	L	
H	L	L	H	L	L	L	L	L	
H	L	H	H	L	L	H	L	L	
H	L	L	L	H	L	L	L	L	
H	L	H	L	H	L	L	H	L	
H	L	L	H	H	L	L	L	L	
H	L	H	H	H	L	L	L	H	
L	H	X	X	X	Q_{N-1}	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Memory
L	L	L	L	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Addressable
L	L	H	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Latch
L	L	L	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	H	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	H	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N-1}	$\mathrm{Q}_{\mathrm{N}-1}$	L	
L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	

$\mathrm{L}=$ LOW Level
$H=H I G H$ Level
$X=$ Don't Care
$Q_{N-1}=$ State before the positive transition of the Enable Input

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					100			200		40			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					15			30		6			MAX	

[^10]AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\text {PLLH }}} \\ & { }^{t_{\mathrm{PH}}} \end{aligned}$	Propagation Delay, \bar{E} to Q_{n}		$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t} \text { PLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			25 25		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, Address to O_{n}		$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20$ ns
${ }^{\text {tPHL }}$	Propagation Delay, CL to O_{n}		75			35			25		ns	
$\begin{aligned} & \overline{{ }^{{ }^{T} \mathrm{LLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THLL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			15 15		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $\overline{\mathrm{E}}$ to Q_{n}		$\begin{array}{\|l\|} \hline 110 \\ 100 \\ \hline \end{array}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			35 35		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $D \text { to } Q_{n}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			30 30		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$t_{\text {PLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, Address to Q_{n}		$\begin{array}{\|l\|l} \hline 120 \\ 120 \end{array}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPHL }}$	Propagation Delay, CL to Q_{n}		95			45			30		ns	
$\begin{aligned} & { }^{{ }_{\mathrm{t} T \mathrm{LH}}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to $\overline{\mathrm{E}}$ Hold Time, D to \bar{E}		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			5 20		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Address to $\overline{\mathrm{E}}$ Hold Time, Address to $\overline{\mathrm{E}}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{array}{r} 5 \\ 20 \end{array}$		ns ns	$C_{L}=15 \mathrm{pF}$ Input Transition
${ }^{t_{w} \bar{E}}$	Minimum $\overline{\mathrm{E}}$ Pulse Width		50			20			15		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tw }}{ }^{\text {CL }}$	Minimum CL Pulse Width		50			20			15		ns	

1. Propagation delays and output transition times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times (T LH and $\mathrm{t}_{\mathrm{THL}}$) will change with output load capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

NOTES:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.
2. The Address to Enable Set-up Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

MINIMUM PULSE WIDTH FOR \bar{E} AND CL AND SET-UP AND HOLD TIMES, D TO \bar{E} AND A_{n} TO \bar{E}

34725

64-BIT (16×4) RANDOM ACCESS MEMORY WITH 3-STATE OUTPUTS

DESCRIPTION - The 34725 is a 64 -Bit Random Access Memory with 3-State Outputs organized as 16 words by four bits with four Data Inputs ($D_{0}-D_{3}$), four Address Inputs ($A_{0}-A_{3}$), an active LOW Write Enable Input ($\overline{W E}$), an active LOW Chip Select Input ($\overline{\mathrm{CS}}$) and four active LOW 3-State Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$.

Information on the four Data Inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location selected by the Address Inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ when both the Chip Select Input ($\overline{\mathrm{CS}}$) and the Write Enable Input ($\overline{\mathrm{WE}}$) are LOW. Under these conditions, the Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are held in a high impedance OFF state. Information is read from the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) while the Chip Select Input ($\overline{\mathrm{CS}}$) is LOW and the Write Enable Input ($\overline{\mathrm{WE}}$) is HIGH. The Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are the complement of the information written into the memory. When the Chip Select Input (CS) is HIGH, all Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are held in the high impedance OFF state. This allows other 3-State outputs to be wired together in a bus arrangement. The 34725 offers fully static operation.

- 3-STATE OUTPUTS
- ORGANIZATION - 16 WORDS $\times 4$ BITS
- ON-CHIP DECODING
- INVERTED DATA OUTPUT
- FULLY STATIC OPERATION

PIN NAMES
$\overline{\overline{C S}}$
$D_{0}-D_{3}$
${ }^{\mathrm{A}_{0}}{ }^{-}{ }_{0}-\mathrm{A}_{3}-\mathrm{C}_{3}$

Chip Select Input (Active LOW)

CONNECTION DIAGRAM DIP (TOP VIEW)

Note: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I OZH }}$	Output OFF Current HIGH		$\begin{array}{r} 0.05 \\ 3.0 \end{array}$			$\begin{aligned} & 0.1 \\ & 6.0 \end{aligned}$			$\begin{array}{r} 0.2 \\ 12.0 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{D D}, \overline{C S}=V_{D D}$
'OZL	Output OFF Current LOW		$\begin{array}{\|c\|} \hline-0.05 \\ -3.0 \end{array}$			$\begin{array}{\|l\|} \hline-0.1 \\ -6.0 \end{array}$			$\begin{array}{r}\text {-0.2 } \\ -12.0 \\ \hline\end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{S S}, \overline{C S}=V_{D D}$
${ }^{\text {I D D }}$	Quiescent Power Supply Current XC XM		2.5 15 2.5 15			5 30 5 30			10 60 10 60		$\mu \mathrm{A}$ $\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at OV or V_{DD}

Note: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$t_{\text {PLH }}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	READ MODE Propagation Delay, Address to Output		$\begin{array}{\|l\|l} 180 \\ 180 \end{array}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{array}{\|l\|} \hline 135 \\ 135 \end{array}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
	WRITE MODE											
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Enable Time $\overline{\text { WE }}$ to Output		$\begin{array}{\|l\|} \hline 135 \\ 135 \end{array}$			$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time, WE to Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \\ & \hline \end{aligned}$
	READ MODE											$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{array}{\|l} \hline 200 \\ 200 \\ \hline \end{array}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }^{\mathrm{t}_{\mathrm{PZZL}}} \\ & \hline \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} P H Z}} \end{aligned}$	Disable Time, $\overline{\text { CS }}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \cdot \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
	WRITE MODE											
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Enable Time, $\overline{\text { WE }}$ to Output		$\begin{array}{\|l\|} \hline 150 \\ 150 \\ \hline \end{array}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & { }^{\mathrm{t}_{\mathrm{PL} L Z}} \\ & \hline \end{aligned}$	Disable Time, $\overline{\text { WE }}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
	WRITE MODE											
${ }^{1}{ }_{w} \bar{W}$ E	Minimum WE Pulse Width		180			100			80		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to $\overline{W E}$ Hold Time, D_{n} to $\overline{W E}$		$\begin{array}{r} 150 \\ 40 \end{array}$			$\begin{array}{\|r\|} \hline 120 \\ 20 \end{array}$			$\begin{array}{\|r\|} \hline 115 \\ 15 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Address to $\overline{W E}$ Hold Time, Address to $\overline{W E}$		$\begin{array}{r} 150 \\ 40 \\ \hline \end{array}$			$\begin{array}{\|r} 120 \\ 20 \\ \hline \end{array}$			$\begin{array}{\|r} 115 \\ 15 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ Hold Time, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$		$\begin{array}{r} 150 \\ 40 \end{array}$			120 20			115 15		ns	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics. 2. Propagation Delays (tPLH and tpHL) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

$\overline{\mathrm{CS}}$ TO OUTPUT ENABLE AND DISABLE TIMES

WRITE MODE

$\overline{\mathrm{WE}}$ TO OUTPUT ENABLE AND DISABLE TIMES

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

340085

4-BIT MAGNITUDE COMPARATOR

DESCRIPTION - The 340085 is a 4-Bit Magnitude Comparator which compares two 4-bit words (A, B), each word having four Parallel Inputs ($A_{0}-A_{3}, B_{0}-B_{3}$); A_{3}, B_{3} being the most significant inputs. Operation is not restricted to binary codes, the device will work with any monotonic code. Three Outputs are provided: "A greater than B " $\left(O_{A}>B\right)$, "A less than B " $\left(O_{A}<B\right)$, " A equal to B " $\left(O_{A=B}\right)$. Three Expander Inputs, $I_{A}>B, I_{A}<B, I_{A}=B$, allow cascading without external gates. For proper compare operation the Expander Inputs to the least significant position must be connected as follows: $I_{A<B}=I_{A>B}=L, I_{A=B}=H$. For serial (ripple) expansion, the $O_{A>B}, O_{A<B}$ and $O_{A=B}$ Outputs are connected respectively to the $I_{A}>B, I_{A}<B$, and $I_{A=B}$ inputs of the next most significant comparator, as shown in Figure 1. Refer to Applications section of data sheet for high speed method of comparing large words.

The Truth Table on the following page describes the operation of the 340085 under all possible logic conditions. The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a series expansion scheme. The lower five lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

- EASILY EXPANDABLE
- BINARY OR BCD COMPARISON
- $\mathbf{O}_{A>B}, \mathbf{O}_{A<B}$, AND $0_{A=B}$ OUTPUTS AVAILABLE

PIN NAMES

$A_{0}-A_{3}$
$\mathrm{B}_{0}-\mathrm{B}_{3}$
$I_{A}>B, I_{A}<B, I_{A=B}$
$\mathrm{O}_{A}>B$
$\mathrm{O}_{A}<B$
$\mathrm{O}_{\mathrm{A}=\mathrm{B}}$

Word A Parallel Inputs

Word B Parallel Inputs

Expander Inputs
A Greater than B Output
A Less than B Output
A Equal to B Output

LOGIC DIAGRAM

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

Note: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FAIRCHILD CMOS • 340085

FAIRCHILD CMOS • 340085

Fig. 1. COMPARING TWO n-BIT WORDS

APPLICATIONS

Figure 2 shows a high speed method of comparing two 24-bit words with only two levels of device delay. With the technique shown in Figure 1 , six levels of device delay result when comparing two 24 -bit words. The parallel technique can be expanded to any number of bits, see Table 1 .

TABLE I

WORD LENGTH	NUMBER OF PKGS.
$1-4$ Bits	1
$5-24$ Bits	$2-6$
$25-120$ Bits	$8-31$

> NOTE:
> The 340085 can be used as a 5 -bit comparator only when the outputs are used to drive the $\mathrm{AO}_{0}-\mathrm{A}_{3}$ and $\mathrm{B}_{0}-\mathrm{B}_{3}$ inputs of another 340085 as shown in Figure 2 in positions \#1,2,3, and 4 .

> MSB = Most Significant Bit
> LSB $=$ Least Significant Bit
> $L=$ LOW Level
> $H=$ HIGH Level
> NC = No Connection

Fig. 2. COMPARISON OF TWO 24-BIT WORDS

340097 • 340098
 3-STATE HEX NON-INVERTING AND INVERTING BUFFERS

DESCRIPTION - These two CMOS buffers provide high current output capability suitable for driving high capacitance loads. The 340097 is a Non-Inverting CMOS Buffer with 3 -state outputs and the 340098 is an Inverting CMOS Buffer with 3 -state outputs. The 3 -state outputs of each device are controlled by two Enable Inputs ($\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$). A HIGH on Enable Input $\overline{\mathrm{EO}}_{4}$ causes the Outputs of four of the six buffer elements to assume a high impedance or OFF state, regardless of other input conditions and a HIGH on Enable Input $\overline{\mathrm{EO}}_{2}$ causes the Outputs of the remaining two buffer elements to assume a high impedance or OFF state, regardless of other input conditions.

- 3-STATE OUTPUTS

- TTL COMPATIBLE - FAN OUT OF ONE TTL LOAD
- ACTIVE LOW ENABLE INPUTS

CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES
1A-6A
$\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$
$1 \times-6 x$

Buffer Inputs
Enable Inputs (Active LOW)
Buffer Outputs (Active HIGH for the 340097 and Active LOW for the 340098)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{SC}^{(H)}$	Output Short Circuit Current		-4.35			-20						mA	All	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} per Function, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
${ }^{\text {S }}{ }^{(L)}$	Output Short Circuit Current		4.35			20						mA	All	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} per Function, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$
${ }^{\mathrm{OH}}$	Output HIGH Current		$\begin{gathered} -1.6 \\ \text { Note } \\ 2 \\ \hline \end{gathered}$									mA	All	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V},$ Inputs at 0 V or V_{DD} per Function
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{gathered} 1.6 \\ \text { Note } \\ 2 \end{gathered}$									mA	All	$V_{\text {OUT }}=0.4 \mathrm{~V}$, Inputs at 0 V or V_{DD} per Function
${ }^{\text {I OZH }}$	Output OFF Current HIGH	XC			0.5 7			$\begin{array}{r} 0.5 \\ 7 \end{array}$			$\begin{array}{r} 0.5 \\ 7 \end{array}$		MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, \overline{E O}_{n}=V_{D D}$
		XM			$\begin{array}{r} 0.05 \\ 3 \end{array}$			$\begin{array}{r} 0.05 \\ 3 \end{array}$			$\begin{array}{r} 0.05 \\ 3 \end{array}$		$\mathrm{MIN}, 25^{\circ} \mathrm{C}$ MAX	
${ }^{\prime}$ OZL	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -7 \end{array}$			$\begin{array}{r} -0.5 \\ -7 \end{array}$			$\begin{array}{r} -0.5 \\ -7 \end{array}$		MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{E O}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{r\|} -0.05 \\ -3 \end{array}$			$\begin{array}{r} -0.05 \\ -3 \end{array}$			$\begin{array}{r} -0.05 \\ -3 \end{array}$		MIN, $25^{\circ} \mathrm{C}$ MAX	
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			3 42			5 70		$\begin{array}{r} 1 \\ 14 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at $\mathrm{O} V$ or $V_{D D}$
		XM			0.3 20			0.5 30		 0.1 6		$\mu \mathrm{A}$	$\begin{gathered} \mathrm{MIN}, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 340097$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, Data to Output		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 22 \\ & 22 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{t_{P Z H}}} \\ & { }^{t_{P R L}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 60 \\ & 85 \end{aligned}$			$\begin{aligned} & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 28 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} P H Z}} \\ & { }_{\mathrm{t}} \mathrm{PLZ} \end{aligned}$	Output Disable Time		$\begin{aligned} & 35 \\ & 55 \end{aligned}$			$\begin{aligned} & 28 \\ & 33 \end{aligned}$			$\begin{aligned} & 25 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {P PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 28 \\ & 28 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \end{aligned}$			$\begin{aligned} & 35 \\ & 40 \end{aligned}$			$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P H Z}} \\ & { }_{\mathrm{t}}^{\mathrm{t} \mathrm{LZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$			$\begin{aligned} & 31 \\ & 35 \end{aligned}$			$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t} \text { TLH }} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTE:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 340098$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\text {PPZ }}} \\ & { }^{\mathrm{t}_{\mathrm{PLL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 60 \\ & 85 \end{aligned}$			$\begin{aligned} & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 28 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} P H Z}} \\ & { }^{\mathrm{t} P L Z} \end{aligned}$	Output Disable Time		$\begin{aligned} & 35 \\ & 55 \end{aligned}$			$\begin{aligned} & 28 \\ & 33 \end{aligned}$			$\begin{aligned} & 25 \\ & 27 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t} T H L} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \end{aligned}$			$\begin{aligned} & 35 \\ & 40 \end{aligned}$			$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PHZ}} \\ & { }^{\mathrm{t}} \mathrm{PLL} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$			$\begin{aligned} & 31 \\ & 35 \end{aligned}$			$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }_{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

SWITCHING WAVEFORMS

$340160 \cdot 340161 \cdot 340162 \cdot 340163$ 4-BIT SYNCHRONOUS COUNTERS

DESCRIPTION - The 340160 and the 340162 are fully synchronous edge-triggered 4-Bit Decade Counters. The 340161 and the 340163 are fully synchronous edge-triggered 4 -Bit Binary Counters. Each device has a Clock Input (CP); four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$); three synchronous Mode Control Inputs, Parallel Enable ($\overline{P E}$), Count Enable Parallel (CEP) and Count Enable trickle (CET); Buffered Outputs from all four bit positions $\left(Q_{0}-Q_{3}\right)$; and a Terminal Count Output (TC). The 340162 and 340163 have an additional synchronous Mode Control Input, Synchronous Reset ($\overline{\mathrm{SR}}$). Alternately, the 340160 and 340161 have an overriding asynchronous Master Reset ($\overline{\mathrm{MR}}$).
Operation is fully synchronous (except for Master Reset on the 340160 and 340161) and occurs on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input ($\overline{\mathrm{PE}}$) is LOW, the next LOW-to-HIGH transition of the Clock Input (CP) loads data into the counter from Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$). When the Parallel Enable Input ($\overline{\mathrm{PE}}$) is HIGH, the next LOW-to-HIGH transition of the Clock Input (CP) advances the counter to its next state only if both Count Enable Inputs (CEP and CET) are HIGH; otherwise, no change occurs in the state of the counter. The Terminal Count Output (TC) is HIGH when the state of the counter is nine $\left(Q_{0}=Q_{3}=H I G H, Q_{1}=Q_{2}=\right.$ LOW) for the 340160 and $340162 /$ fifteen $\left(Q_{0}=Q_{1}=Q_{2}=Q_{3}=\right.$ HIGH) for the 340161 and 340163 and the Count Enable Trickle Input (CET) is HIGH. For the 340162 and 340163, a LOW on the Synchronous Reset Input ($\overline{\mathrm{SR}}$) sets all Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right.$ and TC) LOW on the next LOW-to-HIGH transition of the Clock Input (CP), independent of the state of all other synchronous Mode Control Inputs (CEP, CET, PE). For the 340160 and 340161 , a LOW on the overriding asynchronous Master Reset $(\overline{\mathrm{MR}})$ sets all outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right.$ and TC) LOW, independent of the state of all other inputs.

These devices perform multistage synchronous counting without additional components by using a carry look-ahead counting technique.
The 340160, 340161, 340162, and 340163 are edge-triggered; therefore, the synchronous Mode Control Input (CEP, CET, $\overline{\mathrm{PE}}$ for the $340160 / 340161$ and CEP, CET, $\overline{\mathrm{PE}}, \overline{\mathrm{SR}}$ for the $340162 / 340163$) must be stable only during the set-up time before the LOW-to-HIGH transition of the Clock Input (CP).

- 12 MHz TYPICAL COUNT FREQUENCY AT $V_{D D}=10 \mathrm{~V}$
- DECODED TERMINAL COUNT
- FULLY SYNCHRONOUS COUNTING AND PARALLEL ENTRY
- SYNCHRONOUS $(340162 / 340163)$ OR ASYNCHRONOUS $(340160 / 340161)$ RESET
- BUILT-IN CARRY CIRCUITRY
- FULLY EDGE-TRIGGERED

PIN NAMES

$$
\overline{\mathrm{PE}}
$$

$$
\mathrm{P}_{0}-\mathrm{P}_{3}
$$

Parallel Enable Input (Active LOW)
Parallel Inputs
CEP Count Enable Parallel Input
CET Count Enable Trickle Input
$C P \quad$ Clock Input ($L \rightarrow H$ Edge-Triggered)
$\overline{M R} \quad$ Master Reset Input (Active LOW) for the 340160/340161 Only
$\overline{S R}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$
Synchronous Reset Input (Active LOW) for the 340162/340163 Only
Parallel Outputs
Terminal Count Output

SYNCHRONOUS MODE SELECTION 340160/340161				SYNCHRONOUS MODE SELECTION 340162/340163				
$\overline{\mathrm{PE}}$	CEP	CET	MODE	$\overline{\mathrm{SR}}$	$\overline{\text { PE }}$	CEP	CET	MODE
L	X	x	Preset	H	L	x	x	Preset
H	L	X	No Change	H	H	L	X	No Change
H	X	L	No Change	H	H	X	L	No Change
H	H	H	Count	H	H	H	H	Count
$\overline{M R}=$ HIGH				L	X	X	X	Reset

TERMINAL COUNT GENERATION

CET	$340160 / 340162$ $\left(Q_{0} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3}\right)$	$340161 / 340163$ $\left(Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}\right)$	$T C$
L	L	L	L
L	H	H	L
H	L	L	L
H	H	H	H

$T C=C E T \cdot Q_{0} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3}(340160 / 340162)$
$T C=C E T \cdot Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}(340161 / 340163)$
$H=H I G H$ Level
L = LOW Level X = Don't Care

The 340160 or 340162 can be preset to any state, but will not count beyond 9 . If preset to state $10,11,12,13,14$ or 15 , they will return to their normal sequence within two clock pulses.

340161/340163 LOGIC DIAGRAM
The 340161 and 340163 binary synchronous counters are similar. However, the 340161 has an asynchronous master reset circuit as shown on the 340160/340162 Logic Diagram.

The 340160 and 340162 BCD synchronous counters are similar. However, the 340162 has a synchronous reset circuit as shown on the 340161 / 340163 Logic Diagram.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			100			200		40		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			20			40		8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

NOTE: Additional DC Characteristics are listed in this section under $\mathbf{3 4 0 0 0}$ Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP to Q		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	90 90		$\begin{aligned} & 33 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ PLH ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CP to TC		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$		37 37		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, CET to TC		$\begin{aligned} & 70 \\ & 75 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 32 \\ & 45 \end{aligned}$	65 80		20 30		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		128	250		55	110		37		ns	(340160/340161)
${ }^{\mathrm{t}_{\text {PHL }}}$	Propagation Delay, $\overline{M R}$ to TC		153	300		65	130		45		ns	(340160/340161)
${ }^{t_{\mathrm{TLH}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{t^{P L H}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, CP to Q		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 220 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$		$\begin{aligned} & 40 \\ & 38 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CP to TC		$\begin{aligned} & 155 \\ & 155 \end{aligned}$	$\begin{aligned} & 285 \\ & 285 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CET to TC		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$		$\begin{aligned} & 40 \\ & 55 \end{aligned}$	80 95		27 36		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		150	285		65	125		44		ns	(340160/340161)
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to TC		175	335		75	145		52		ns	(340160/340161)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {trec }}$	$\overline{\text { MR Recovery Time }}$	3	1		20	1			1		ns	(340160/340161)
${ }^{t_{w} \overline{M R}(L)}$	$\overline{\mathrm{MR}}$ Minimum Pulse Width	110	60		55	27			17		ns	(340160/340161)
${ }_{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width	90	50		40	20			15		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 70 \\ 0 \end{array}$	$\begin{array}{r} 35 \\ -30 \end{array}$		35 0	$\begin{array}{r} 18 \\ -15 \end{array}$			$\begin{array}{r} 13 \\ -10 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, $\overline{\text { PE }}$ to CP Hold Time, $\overline{\mathrm{PE}}$ to CP	$\begin{aligned} & 110 \\ & -10 \end{aligned}$	$\begin{array}{r} 60 \\ -57 \end{array}$		-60	$\begin{array}{r} 30 \\ -28 \end{array}$			20 -18		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, CEP, CET to CP Hold Time, CEP, CET to CP	$\begin{aligned} & 200 \\ & -20 \end{aligned}$	$\begin{array}{r} 115 \\ -110 \end{array}$		$\begin{array}{r} 95 \\ -10 \end{array}$	$\begin{array}{\|r\|} \hline 50 \\ -48 \\ \hline \end{array}$			$\begin{array}{r} 35 \\ -32 \\ \hline \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, $\overline{\text { SR }}$ to $C P$ Hold Time, $\overline{\mathrm{SR}}$ to CP	$\begin{array}{r} 40 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & -5 \end{aligned}$		$\begin{array}{r} 18 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & -2 \end{aligned}$			4 0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & (340162 / 340163) \\ & (340162 / 340163) \end{aligned}$
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)	3	6		7	12					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
3. For $f_{\text {MAX }}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

CLOCK (CP) TO OUTPUT (Q)
PROPAGATION DELAYS AND MINIMUM CLOCK PULSE WIDTH

CONDITIONS: $\overline{P E}=\overline{M R}=C E P=C E T=H$ for 340160/340161 and $\overline{P E}=\bar{S} \bar{R}=C E P=$ CET $=\mathrm{H}$ for $340162 / 340163$.

CLOCK (CP) TO TERMINAL COUNT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table. $\overline{\mathrm{PE}}=\mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{MR}}=$ H for $340160 / 340161$ and $\overline{P E}=C E P=C E T$ $=\overline{S R}=H$ for $340162 / 340163$.

COUNT ENABLE TRICKLE INPUT (CET) TO TERMINAL COUNT OUTPUT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table. $C P=\overline{P E}=C E P=\overline{M R}=H$ for $340160 / 340161$ and $C P=\overline{P E}=C E P=$ $\overline{S R}=H$ for $340162 / 340163$.

SWITCHING DIAGRAMS (Cont'd)

340162/340163
SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR SYNCHRONOUS RESET ($\overline{\mathbf{S R})}$

CONDITIONS: $\overline{\mathrm{PE}}=\mathrm{L}, \mathrm{P}_{\mathrm{O}^{-}} \mathrm{P}_{3}=\mathrm{H}$.

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR PARALLEL DATA INPUTS $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$.

CONDITIONS: $\overline{\mathrm{PE}}=\mathrm{L}, \overline{\mathrm{MR}}=\mathrm{H}$ for 340160/340161 and $\overline{P E}=L, \overline{S R}=H$ for 340162/340163.

SET-UP TIMES (t_{s}) AND HOLD TIMES $\left(t_{h}\right)$ FOR PARALLEL ENABLE INPUT $\overline{\text { PE }}$

CONDITIONS: $\overline{\mathrm{MR}}=\mathrm{H}$ for 340160/340161 and $\overline{\mathrm{SR}}=\mathrm{H}$ for $340162 / 340163$.

340160/340161

MASTER RESET (MR) TO OUTPUT (Q) DELAY, MASTER RESET PULSE WIDTH, MASTER RESET RECOVERY TIME, AND MASTER RESET TO TERMINAL COUNT (TC) DELAY

SET-UP TIMES (t_{s}) AND HOLD TIMES $\left(t_{h}\right)$ FOR COUNT ENABLE INPUTS (CEP AND CET)

NOTE:

1. Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values, but may be specified as negative values.

340174

HEX D FLIP-FLOP

DESCRIPTION - The 340174 is a Hex Edge-Triggered D Flip-Flop with six Data Inputs ($D_{0}-D_{5}$), a Clock Input (CP) an overriding asynchronous Master Reset (MR), and six Buffered Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{5}$).
Information on the Data Inputs $\left(D_{0}-D_{5}\right)$ is transferred to the Buffered Outputs $\left(Q_{0}-Q_{5}\right)$ on the LOW-to-HIGH transition of the Clock Input (CP) if the Master Reset Input (MR) is HIGH. When LOW, the Master Reset Input (MR) resets all flip-flops ($\mathrm{Q}_{0}-\mathrm{Q}_{5}=\mathrm{LOW}$) independent of the Clock $(C P)$ and Data Inputs ($\left.D_{0}-D_{5}\right)$.

- TYPICAL CLOCK FREQUENCY OF $16 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- COMMON ACTIVE LOW MASTER RESET
- FULLY EDGE-TRIGGERED CLOCK INPUT

PIN NAMES

$D_{0}-D_{5}$	Data Inputs
$C P$	Clock Input (L \rightarrow E Edge-Triggered)
$M R$	Master Reset Input (Active LOW)
$\mathrm{Q}_{0}-\mathrm{O}_{5}$	Buffered Outputs from the Flip-Flops

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			20			40		8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					200			400		80			MAX	
		XM			2			4		0.8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPHL }}$	Propagation Delay, $\overline{M R}$ to O_{n}		65	105		30	50		20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{T} H \mathrm{~L}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{{ }^{\mathrm{t} P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		80	125		40	65		25		ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tLLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{w} \mathrm{CP}(\mathrm{L})}$	Minimum Clock Pulse Width	45	25		20	10			8		ns	
${ }^{t_{w} \overline{M R}(L)}$	Minimum $\overline{M R}$ Pulse Width	55	35		35	20			15		ns	
${ }^{\text {trec }}$	$\overline{\mathrm{MR}}$ Recovery Time	25	6		13	5			2		ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, D_{n} to CP Hold Time, D_{n} to CP	$\begin{array}{r} 5 \\ 20 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Maximum Clock Frequency (Note 3)	5	9		8	16					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($\mathrm{T}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}).

Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS TEMPERATURE

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}, \overline{M R}$
RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values

340175

QUAD D FLIP-FLOP

DESCRIPTION - The 340175 is a Quad Edge-Triggered D Flip-Flop with four Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) , a Clock Input (CP) an overriding asynchronous Master Reset ($\overline{M R}$), four Buffered Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) and four Complementary Buffered Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$.
Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is transferred to Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ on the LOW-to-HIGH Transition of the Clock Input (CP) if the Master Reset Input (MR) is HIGH. When LOW, the Master Reset Input ($\overline{\mathrm{MR}}$) resets all flip-flops ($\mathrm{O}_{0}-\mathrm{Q}_{3}=$ LOW, $\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}=\mathrm{HIGH}$), independent of the Clock (CP) and Data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) Inputs.

- TYPICAL CLOCK FREQUENCY OF 16 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- COMMON ACTIVE LOW MASTER RESET
- TRUE AND COMPLEMENTARY OUTPUTS AVAILABLE
- FULLY EDGE-TRIGGERED CLOCK INPUT

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
CP	Clock Input ($L \rightarrow H$ Edge-Triggerea)
$\overline{M R}$	Master Reset Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Buffered Outputs from the Flip-Flops
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Complimentary Buffered Outputs from the Flip-Flops

LOGIC SYMBOL
CONNECTION DIAGRAM
DIP (TOP VIEW)

LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC		2			4			8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
				20			40			80			MAX	
		XM		0.2			0.4			0.8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
				10			20			40			MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{t_{P H L}}$	Propagation Delay, $C P$ to Q_{n} or $\overline{\mathrm{Q}_{\mathrm{n}}}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {PLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $\overline{M R}$ to Q_{n} or $\overline{\alpha_{n}}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & { }^{\mathrm{t} T \mathrm{LLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ PLH ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, $C P$ to Q_{n} or $\overline{Q_{n}}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{M R}$ to Q_{n} or $\overline{Q_{n}}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{t_{\mathrm{T} L \mathrm{LH}}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {t }}{ }^{\text {c }}$ CP(L)	Minimum Clock Pulse Width		25			10			8		ns	
${ }^{t_{w} \overline{M R}(L)}$	Minimum $\overline{\mathrm{MR}}$ Pulse Width		35			20			15		ns	
${ }^{\text {trec }}$	$\overline{\mathrm{MR}}$ Recovery Time		6			5			2		ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to CP Hold Time, D_{n} to CP		$\begin{array}{r} 1 \\ 10 \end{array}$			1 2			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {f MAX }}$	Maximum Clock Frequency (Note 3)		9			16					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays (tPLH_{L} and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{T}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
3. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}$,
$\overline{M R}$ RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

340192 • 340193
 4-BIT UP/DOWN DECADE AND BINARY COUNTER

DESCRIPTION - The 340192 is a 4-Bit Synchronous Up/Down BCD Decade Counter and the 340193 is a 4-Bit Synchronous Up/Down Binary Counter. Both operate the same except for the count sequence. Both counters have a Count Up Clock Input (CPU), a Count Down Clock Input (CPD $)$, an asynchronous Parallel Load Input ($\overline{\mathrm{PL}}$), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), an overriding asynchronous Master Reset (MR), four Counter Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$) , a Terminal Count Up (Carry) Output (TCU) and a Terminal Count Down (Borrow) Output (TCD).
When the Master Reset Input (MR) is LOW and the Parallel Load Input ($\overline{\mathrm{PL}}$) is HIGH, the Counter Outputs change state on the LOW-to-HIGH transition of either Clock Input. However, for correct counting, both Clock Inputs cannot be LOW simultaneously. With the Master Reset Input (MR) LOW, information on the Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter when the Parallel Load Input ($\overline{\mathrm{PL}}$) is LOW and stored in the counter when the Parallel Load Input ($\overline{\mathrm{PL}}$) goes HIGH, independent of Clock Inputs (CPU, CPD). When HIGH, the Master Reset (MR) resets the counter independent of all other input conditions. See equations below for Terminal Count Outputs ($\overline{T_{U}}, \overline{T C_{D}}$).

- TYPICAL COUNT FREQUENCY OF $8 \mathrm{MHz} A T \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$
- SYNCHRONOUS OPERATION
- INTERNAL CASCADING CIRCUITRY PROVIDED
- active low parallel load
- ACTIVE HIGH ASYNCHRONOUS MASTER RESET

PIN NAMES

$\overline{\mathrm{PL}}$	Parallel Load Input (Active LOW)
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
CP_{U}	Count Up Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
CP	Count Down Clock Pulse Input $\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
MR	Master Reset Input (Asynchronous)
$\frac{Q_{0}-\mathrm{Q}_{3}}{\overline{T C_{\mathrm{U}}}}$	Buffered Counter Outputs
$\overline{T C_{D}}$	Buffered Terminal Count Up (Carry) Output (Active LOW)
	Buffered Terminal Count Down (Borrow) Output (Active LOW)

MODE SELECTION
(Both Counters)

MR	$\overline{P L}$	CP	CPP	MODE
H	X	X	X	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	H	H	H	No Change
L	H	S	H	Count Up
L	H	H	S	Count Down

L = LOW Level
$\mathrm{H}=\mathrm{HIGH}$ Level
$X=$ Don't Care
$\Gamma=$ Positive-Going Clock Pulse Edge

Count Up Count Down \qquad

340192 LOGIC EQUATIONS FOR TERMINAL COUNT

$$
\begin{aligned}
& \mathrm{TC}_{U}=\frac{\mathrm{O}_{0}}{} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}_{U}} \\
& \mathrm{TC}_{\mathrm{D}}=\overline{\mathrm{O}_{0}} \bullet \overline{\mathrm{O}_{1}} \bullet \overline{\mathrm{Q}_{2}} \bullet \overline{\mathrm{O}_{3}} \bullet \overline{\mathrm{CP}_{\mathrm{D}}}
\end{aligned}
$$

340193 LOGIC EQUATIONS FOR TERMINAL COUNT

$$
\begin{aligned}
& \mathrm{TC}_{\mathrm{U}}=\mathrm{O}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}_{U}} \\
& \mathrm{~T} \mathrm{C}_{\mathrm{D}}=\overline{\mathrm{Q}_{0}} \bullet \overline{\mathrm{Q}_{1}} \bullet \overline{\mathrm{Q}_{2}} \bullet \overline{\mathrm{Q}_{3}} \cdot \overline{\mathrm{CP}_{\mathrm{D}}}
\end{aligned}
$$

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$\bigcirc=\operatorname{Pin}$ Number
340193

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			50			$\begin{array}{r} 100 \\ 1400 \\ \hline \end{array}$		$\begin{array}{r} 20 \\ 280 \\ \hline \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700								MAX	
		XM			15			25		5			MIN, $25^{\circ} \mathrm{C}$	
					900			1500		3000		$\mu \mathrm{A}$	MAX	

NOTE: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SWITCHING REQUIREMENTS:

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, CP_{U} to O_{n}		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $C P_{D}$ to a_{n}		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			95 95			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
tple ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP_{U} to $\overline{\mathrm{TC}_{U}}$		$\begin{array}{\|l\|} \hline 110 \\ 110 \\ \hline \end{array}$			50 50			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PH} \mathrm{LL} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation Delay, } \\ & \mathrm{CP}_{\mathrm{D}} \text { to } \overline{T C_{D}} \end{aligned}$		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		250			110			75		ns	
${ }^{\text {tPLH }}$	Propagation Delay, MR to $\overline{T C}_{U}$ or $\overline{T C_{D}}$		350			150			100		ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, $\overline{\mathrm{PL}}$ to O_{n}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLLH}}} \\ & { }^{\mathrm{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $C P_{U}$ to Q_{n}		$\begin{aligned} & 245 \\ & 245 \end{aligned}$			$\begin{aligned} & 105 \\ & 105 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t} P \mathrm{HL}}$	Propagation Delay, $C P_{D} \text { to } O_{n}$		$\begin{aligned} & 245 \\ & 245 \end{aligned}$			$\begin{aligned} & 105 \\ & 105 \end{aligned}$			70 70		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP_{U} to $\overline{\mathrm{TC}_{U}}$		$\begin{aligned} & 130 \\ & 130 \\ & \hline \end{aligned}$			60 60			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $C P_{D}$ to $\overline{T C_{D}}$		$\begin{aligned} & 145 \\ & 145 \end{aligned}$			60 60			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {tPHL }}$	Propagation Delay, MR to O_{n}		270			120			80		ns	
${ }^{\text {tPLH }}$	Propagation Delay, MR to TC_{U} or $\overline{\mathrm{TC}_{\mathrm{D}}}$		370			170			105		ns	
$\begin{aligned} & { }^{{ }^{1} \mathrm{PLH}} \\ & { }^{\mathrm{PPHL}^{2}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{P L}$ to Q_{n}		$\begin{aligned} & 270 \\ & 270 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 110 \\ 110 \\ \hline \end{array}$			70 70		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t} \text { TLLH }}$ ${ }^{\mathrm{t} \text { THI }}$ ${ }^{\text {th HL }}$	Output Transition Time		$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {CPP }}$	Min. CP_{U} or CP_{D} Pulse Width		85			30			20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tw }}$ WR	Minimum MR Pulse Width		60			30			20		ns	
${ }_{t_{w}{ }^{\text {P/ }}}$	Minimum PL Pulse Width		75			25			20		ns	
$\mathrm{t}_{\text {rec }}$	MR Recovery Time		75			30			20		ns	
$\mathrm{t}_{\text {ree }}$	$\overline{\text { PL }}$ Recovery Time		75			30			20		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, P_{n} to $\overline{\mathrm{PL}}$ Hold Time, P_{n} to PL		$\begin{array}{r} 85 \\ -83 \end{array}$			$\begin{array}{r} 30 \\ -28 \end{array}$			$\begin{array}{r} 20 \\ -19 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 3)		4			8					MHz	
See note on following page.												

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
 Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
2. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Inputs ($C P_{U}$ or $C P_{0}$) be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

RECOVERY TIMES FOR $\overline{\text { PL }}$ AND MR,
MINIMUM PULSE WIDTHS FOR CPU, CPD,
$\overline{\text { PL }}$ AND MR AND SET-UP AND HOLD TIMES P_{n} TO $\overline{\mathrm{PL}}$

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

340194
 4-BIT BIDIRECTIONAL UNNERSAL SHIFT REGISTER

DESCRIPTION - The 340194 is a 4 -Bit Bidirectional Shift Register with two Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$), a Clock Input (CP), a Serial Data Shift Left Input (D_{SL}), a Serial Data Shift Right Input ($\mathrm{D}_{\text {SR }}$), four Parallel Data Inputs ($\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$), an overriding asynchronous Master Reset Input ($\overline{\mathrm{MR}}$) and four Buffered Parallel Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$).
When LOW, the Master Reset Input ($\overline{M R}$) resets all stages and forces all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ LOW, overriding all other input conditions. When the Master Reset Input (MR) is HIGH, the operating mode is controlled by the two Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) as shown in the Truth Table. Serial and parallel operation is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). The inputs at which the data is to be entered and the Mode Control Inputs ($\mathrm{S}_{\mathrm{O}}, \mathrm{S}_{1}$) must be stable for a set-up time before the LOW-to-HIGH transition of the Clock Input CP).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- hold (DO NOTHING) MODE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- positive edge-triggered clock

PIN NAMES
$\mathrm{S}_{0}, \mathrm{~s}_{1}$
Mode Control Inputs
$\mathrm{P}_{0}-\mathrm{P}_{3} \quad$ Parallel Data Inputs
DSR Serial (Shift Right) Data Input
DSL Serial (Shift Left) Data Input
$\mathrm{CP} \quad$ Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{M R} \quad$ Master Reset Input (Active LOW)
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$

LOGIC DIAGRAM

FAIRCHILD CMOS • 340194

TRUTH TABLE															
			OPERATING MODE		INPUTS ($\overline{\mathrm{MR}}=\mathrm{H}$)						OUTPUTS AT t_{n+1}				
					s_{1}	S_{0}	DSR	$\mathrm{D}_{\text {SL }}$	$\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$		O_{0}	O_{1}	o_{2}	o_{3}	
			Hold		L	L	x	X	x		Q_{0}	a_{1}	Q_{2}	O_{3}	
			Shift Left		$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	X \times \times		$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	
			Shift Right		L	H H	L	X \times	X \times \times		L	$\begin{aligned} & \mathrm{o}_{0} \\ & \mathrm{o}_{0} \end{aligned}$	a_{1} o_{1}	O_{2} O_{2}	
			Parallel Load		H H	H H	X x	x x	L		L	L	L	L	
$H=H I G H$ Voltage Level $\mathrm{X}=$ Don't Care $L=$ LOW Voltage Level $\quad\left(t_{n+1}\right)=$ Indicates state after next LOW-to-HIGH clock															
DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$															
SYMBOL	PARAMETER		LIMITS									UNITS		TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$						
			MIN	TYP	MAX	MIN	TYP	MAX	NilN	TYP	MAX				
IDD	Quiescent Power Supply Current	XC			50			100		20			A	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					500			1000		200				MAX	
		XM			5			10		2				MIN, $25^{\circ} \mathrm{C}$	
					40			80		16				MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\text {tpLH }} \\ & { }^{t^{2} \mathrm{PHL}} \end{aligned}$	Propagation Delay, CP to 0		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		35 35	65 65		25		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to O		80	150		35	65		25		ns	Input Transition
$\overline{t_{T H L}}$ ${ }^{\text {tTLH }}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, CP to Q		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t }}$ PHL	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		100	180		45	80		35		ns	Input Transition
$\begin{aligned} & { }^{t_{\mathrm{THL}}} \\ & { }_{\mathrm{t} \boldsymbol{7 L L H}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
ts $t_{\text {h }}$	Set-Up Time, $\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}, \mathrm{D}_{\mathrm{SL}}, \mathrm{D}_{\mathrm{SR}}$ to CP Hold Time, $P_{0}-P_{3}, D_{S L}, D_{S R} \text { to } C P$	$\begin{array}{r} 80 \\ 0 \end{array}$	$\begin{array}{r} 40 \\ -10 \end{array}$		$\begin{gathered} 40 \\ 0 \end{gathered}$	$\begin{aligned} & 20 \\ & -5 \end{aligned}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$		ns ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, S to CP Hold Time, S to CP	$\begin{array}{r} 100 \\ 0 \end{array}$	$\begin{array}{r} 60 \\ -10 \end{array}$		50 0	$\begin{aligned} & 30 \\ & -5 \end{aligned}$			$\begin{aligned} & 20 \\ & -5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{t}{ }_{w} C P(L)$	Minimum Clock Pulse Width	100	60		60	35			25		ns	Input Transition
${ }^{\mathrm{t}_{\mathrm{w}} \overline{\mathrm{MR}}(\mathrm{L})}$	Minimum $\bar{M} \bar{R}$ Pulse Width	75	40		45	25			15		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {reec }}$	Recovery Time for $\overline{\mathrm{MR}}$	180	100		90	50			35		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 3)	4.5	9		9	14					MHz	

NOTES:

1. Propagation Delays and Output Transition Times are graphically described in this section under 34000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{tPLH}_{L H}$ and $\mathrm{tPHL}_{\mathrm{L}}$) and Output Transition Times ($\mathrm{T}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output L.oad Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For f MAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

FAIRCHILD CMOS • 340194

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS POWER SUPPLY VOLTAGE

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

SWITCHING TIME WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS CLOCK PULSE WIDTH

OTHER CONDITIONS: $\quad S_{1}=L, \overline{M R}=H, S_{0}=H$

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

OTHER CONDITIONS: $\quad s_{0}, s_{1}=H$

$$
P_{0}=P_{1}=P_{2}=P_{3}=H
$$

SET-UP $\left(t_{s}\right)$ AND HOLD (t_{h}) TIME FOR S INPUT

340195

4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The 340195 is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$), a synchronous Mode Control Input (PE), Buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), a Buffered Inverted Output from the last bit position ($\overline{\mathrm{O}}_{3}$) and an overriding asynchronous Master Reset Input (MR).

Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Mode Control Input ($\overline{\mathrm{PE}}$) is LOW, a LOW-to-HIGH clock transition loads data into the register from Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$). When the Mode Control Input (PE) is HIGH, a LOW-to-HIGH clock transition shifts data into the first register position from the Serial Data Inputs (J, \bar{K}), and shifts all the data in the register one position to the right. D-type entry is obtained by tying the two Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$) together. A LOW on the Master Reset Input (MR) resets all four bit positions $\left(\mathrm{O}_{0}-\mathrm{O}_{3}=\mathrm{LOW}, \overline{\mathrm{Q}}_{3}=\mathrm{HIGH}\right)$ independent of all other input conditions.

- TYPICAL SHIFT FREQUENCY OF 12 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS IMASTER RESET
- J, \bar{K} inputs to the first stage
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- COMPLEMENTARY OUTPUT FROM the Last stage
- POSitive edge-triggered clock

PIN NAMES
 $\overline{P E}$

Parallel Enable Input (Active LOW)
$\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$
Parallel Data Inputs
$\begin{array}{ll}\overline{\mathrm{J}} & \text { First Stage J Input (Active HIGH) } \\ \overline{\mathrm{K}} & \text { First Stage K Input (Active LOW) }\end{array}$
$\mathrm{CP} \quad$ Clock Input ($L \rightarrow$ H Edge-Triggered)
MR
$\mathrm{Q}_{\mathrm{O}}^{-\mathrm{O}_{3}}$
Master Reset Input (Active LOW)
Paralle! Outputs
Complementary Last Stage Output

FAIRCHILD CMOS • 340195

SWITCHING TIME WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH

OTHER CONDITIONS: $\begin{aligned} J & =\overline{P E}=\overline{M R}=H \\ \bar{K} & =L\end{aligned}$

MASTER RESET PULSE WIDTH,
MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

OTHER CONDITIONS: $\overline{P E}=L$

$$
P_{0}=P_{1}=P_{2}=P_{3}=H
$$

SET-UP (t_{s}) AND HOLD (t_{h}) TIME FOR SERIAL DATA ($\mathrm{J} \& \bar{K}$) AND PARALLEL DATA ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

SET-UP (t_{s}) AND HOLD (t_{h}) TIME FOR $\overline{\text { PE INPUT }}$

OTHER CONDITIONS: $\quad \overline{M R}=H$

* Q_{0} State will be Determined by J \& \bar{K} Inputs

NUMERICAL INDEX OF PLANNED PRODUCTS

DEVICE DESCRIPTION PAGE
34006 18-State Static Shift Register 4-5
34007 Dual Complementary Pair Plus Inverter 4-5
34008 4-Bit Binary Full Adder 4-6
34018
Presettable Divide-by-N Counter 4-6
34022 4-Stage Divide-by-8 Johnson Counter 4-7
34031
64-Stage Static Shift Register 4-8
34041 Quad True/Complement Buffer 4-8
34043 Quad R/S Latch with 3-State Outputs 4-9
34044 Quad R/S Latch with 3-State Outputs 4-9
34046 Micropower Phase-Locked Loop 4-10
34047 Low Power Monostable/Astable Multivibrator 4-12
34053 Triple 2-Channel Analog Multiplexer/Demultiplexer 4-13
34067 16-Channel Analog Multiplexer/Demultiplexer 4-14
34072 Dual 4-Input OR Gate 4-15
34073 Triple 3-Input AND Gate 4-15
34075 Triple 3-Input OR Gate 4-15
34082 Dual 4-Input AND Gate 4-15
34510
BCD Up/Down Counter 4-16
34511 BCD-to-7-Segment Latch/Decoder/Driver 4-17
34514 One-of-Sixteen Decoder/Demultiplexer with Input Latch 4-18
34515 One-of-Sixteen Decoder/Demultiplexer with Input Latch 4-19
34516 Binary Up/Down Counter 4-20
34519 Quad 2-Input Multiplexer 4-20
34522 4-Bit BCD Programmable Down Counter 4-21
34526 4-Bit Binary Programmable Down Counter 4-21
34528 Dual Retriggerable Resettable Monostable Multivibrator 4-22
34531
12-Bit Parity Checker/Generator 4-23
34532 8-Input Priority Encoder 4-24
34582 Carry Lookahead Generator 4-25
34703 16×4 Parallel/Serial FIFO 4-27
34704 Data Path Switch 4-35
34705 Arithmetic Logic Register Stack 4-36
34706 Program Stack 4-40
34707 Data Access Register 4-43
34710 16×4-Bit Clocked RAM with 3-State Output Register 4-45
34731 Quad 64-Bit Static Shift Register 4-46
340283 4-Bit Binary Full Adder 4-26

34006

18- STAGE STATIC SHIFT REGISTER

DESCRIPTION - The 34006 is an 18-Stage Shift Register arranged as two 4 -stage and two 5 -stage shift registers with a common Clock Input $(\overline{C P})$. The two 4 -stage shift registers, each have a Data Input (D_{a}, D_{b}) and a Data Output ($\mathrm{O}_{3 \mathrm{a}}, \mathrm{O}_{3 \mathrm{~b}}$); the two 5-stage shift registers each have a Data Input (D_{c}, D_{d}) and Data Outputs from the fourth and fifth stages $\left(\mathrm{O}_{3 \mathrm{c}}, \mathrm{Q}_{4 \mathrm{c}}, \mathrm{Q}_{3 \mathrm{~d}}, \mathrm{Q}_{4 \mathrm{~d}}\right)$.

The registers can be operated in parallel or interconnected to form a single shift register of up to 18 bits. Data is shifted into the first register position of each register from the Data Inputs ($\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$) and all the data in each register is shifted one position to the right on the HIGH-to-LOW transition of the Clock Input ($\overline{\mathrm{CP}}$).

- CLOCK EDGE-TRIGGERED ON A HIGH-TO-LOW TRANSITION
- CASCADABLE
- SERIAL-TO-SERIAL DATA TRANSFER

PIN NAMES

$\frac{D_{a}-D_{d}}{C P}$
$Q_{3 a}-Q_{3 d}, Q_{4 c}, Q_{4 d}$

Data Inputs
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
Data Outputs

34007

DUAL COMPLEMENTARY PAIR PLUS INVERTER

DESCRIPTION - The 34007 is a Dual Complementary Pair and an Inverter with access to each device. It has three n-channel and three p-channel enhancement mode MOS transistors. For proper operation $V_{S S} \leqslant V_{1} \leqslant V_{D D}$.

- INPUT DIODE PROTECTION ON ALL INPUTS - DRAINS AND SOURCES TO N- AND P-CHANNEL TRANSISTORS AVAILABLE

PIN NAMES
$\mathrm{SP}_{\mathrm{P}}, \mathrm{SP}_{3}$
$D_{P 1}, D_{P 2}$
$\mathrm{D}_{\mathrm{N} 1}, \mathrm{D}_{\mathrm{N} 2}$
$S_{N 2}, S_{N 3}$
DN/P3
$\mathrm{G}_{1}-\mathrm{G}_{3}$

Source Connection to Second and Third p-channel Transistors Drain Connection from the First and Second p-channel Transistors
Drain Connection from the First and Second n-channel Transistors
Source Connection to the Second and Third n-channel Transistors
Common Connection to the Third p-channel and n-channel Transitor Drains Gate Connection to n - and p -channel Transistors 1, 2 and 3

34008

4-BIT BINARY FULL ADDER

DESCRIPTION - The 34008 is a 4-Bit Binary Full Adder with two 4-bit Data Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$); a Carry Input (C_{0}), four Sum Outputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and a Carry Output (C_{4}).

The 34008 uses full lookahead across 4 -bits to generate the Carry Output (C_{4}). This minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

- CARRY LOOKAHEAD BUFFERED OUTPUT
- EASILY CASCADED

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}, B_{0}-\mathrm{B}_{3}$	Data Inputs
C_{0}	Carry Input
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Sum Outputs
C_{4}	Carry Output

CONNECTION DIAGRAM DIP(TOP VIEW)

NOTE: The Flatpak version has the same pinouts(Connection Diagram) as the Dual In-Line Package.

34018

PRESETTABLE DIVIDE-BY-N COUNTER

DESCRIPTION - The 34018 is a 5 -Stage Johnson Counter with a Clock Input (CP), a Data Input (D), an asynchronous Parallel Load Input ($P L$), five Parallel Inputs ($P_{0}-P_{4}$), five active LOW buffered Outputs $\left(\mathrm{Q}_{0}-\overline{\mathrm{Q}}_{4}\right)$ and an overriding asynchronous Master Reset Input (MR).
Information $\mathrm{m}_{\text {an }}$ the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{4}$) is asynchronously loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Data (D) Inputs. Data present in the counter is stored on the HIGH-to-LOW transition of the Parallel Load Thput (PL). When the Parallel Load Input is LOW, the counter advances on the LOW-to-HIGH transition of the Clock Input (CP). By connecting the Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{4}\right)$ to the Data Input (D), the counter operates as a divide-by-n counter ($2 \leqslant n \leqslant 10$); see below.
A HIGH on the Master Reset Input (MR) resets the counter ($\bar{Q}_{0}-\overline{\mathrm{Q}}_{4}=$ HIGH) independent of all other inputs.

- ASYNCHRONOUS MASTER RESET INPUT (ACTIVE HIGH)
- ACTIVE LOW FULLY BUFFERED DECODED OUTPUTS
- DIVIDE-BY-N WITH $2 \leqslant N \leqslant 10$
- CLOCK INPUT L \rightarrow H EDGE-TRIGGERED
- ASYNCHRONOUS PARALLEL LOAD INPUT (ACTIVE HIGH)

PIN NAMES

PL	Parallel Load Input
$\mathrm{PO}_{\mathrm{O}}-\mathrm{P}_{4}$	Parallel Inputs
D	Data Input
CP	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
MR	Master Reset Input

NOTE: The Flatpak version has the same pinouts (Connction Diagram) as the Dual In-Line Package.

34022

4-STAGE DIVIDE-BY-8 JOHNSON COUNTER

DESCRIPTION - The 34022 is a 4-Stage Divide-by- 8 Johnson Counter with eight glitch free active HIGH Decoded Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$, an active LOW Output from the most significant flip-flop $\left(\overline{\mathrm{O}_{4}-7}\right)$, an active HIGH and an active LOW Clock Input ($\left.\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}\right)$ and lan overriding asynchronous Master Reset Input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}}_{1}$ is LOW or a HIGH-toLOW transition at $\overline{\mathrm{CP}}_{1}$ while CP_{0} is HIGH (see FunctionalTruth Table). When cascading the counters, the $\overline{Q_{4-7}}$ Output (which is LOW while the counter insinstates 4,5,6 and 7) can be used to drive the CP_{0} Input of the next 34022. A HIGH on the Master Reset Input (MR) resets the counter to Zero $\left(\mathrm{O}_{0}=\overline{\mathrm{O}_{4-7}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{7}=\right.$ LOW $)$ independent of the Clock Inputs $\left(\mathrm{CP}_{0}, \overline{\mathrm{CP}} 1\right)$.

- CLOCK EDGE-TRIGGERED ONEITHER A LOW-TO-HIGH TRANSITION OR A HIGH-TO-LOW TRANSITION
- BUFFERED CARBY OUTPUT ($\overline{\mathrm{Q}_{4-7}}$) AVAILABLE FOR CASCADING
- BUFFERED FULLY DECODED OUTPUTS

PIN NAMES

CP_{0}	Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{CP}} 1$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
MR	Master Reset Input
$\frac{\mathrm{O}_{0}-\mathrm{O}_{7}}{\overline{\mathrm{Q}_{4-7}}}$	Decoded Outputs
	Carry Output (Active LOW)

FUNCTIONAL TRUTH TABLE

$M R$	CP_{0}	$\overline{\mathrm{CP}_{1}}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{Q}_{4-7}}=\mathrm{H}_{;} \mathrm{O}_{1}-\mathrm{O}_{7}=\mathrm{L}$
L	H	$\mathrm{H} \rightarrow \mathrm{L}$	Counter Advances
L	$L \rightarrow H$	L	Counter Advances
L	L	X	No Change
L	X	H	No Change
L	H	$L \rightarrow H$	No Change
L	$H \rightarrow L$	L	No Change

$$
\begin{aligned}
\mathrm{H} & =\mathrm{HIGH} \text { Level } \\
\mathrm{L} & =\text { LOW Level } \\
\mathrm{L} \rightarrow \mathrm{H} & =\text { LOW-to-HIGH Transition } \\
\mathrm{H} \rightarrow \mathrm{~L} & =\text { HIGH-to-LOW Transition } \\
\mathrm{X} & =\text { Don't Care }
\end{aligned}
$$

34031

64-STAGE STATIC SHIFT REGISTER

DESCRIPTION - The 34031 is an edge-triggered 64-Stage Static Shift Register with two Serial Data Inputs ($\mathrm{D}_{0}, \mathrm{D}_{1}$) a Data Select Input (S) , a Clock Input (CP), a buffered Clock Output (CO) and buffered Outputs from the 64 th bit position ($\mathrm{O}_{63}, \overline{\mathrm{a}}_{63}$).
Data from the selected Data Inputs (D_{0} or D_{1}), as determined by the state of the Select Input (S), is shifted into the first shift register position and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D_{0} is selected by a LOW on the Select Input (S) and D_{1} is selected by a HIGH on the Select Input (S).

Registers can be cascaded either by connecting all the Clock Inputs (CP) together or by driving the Clock Input (CP) of the right-most register with the system clock and connecting the Clock Output (CO) to the Clock Input (CP) of the preceding register. When the second technique is used in the recirculating mode, a flip-flop must be wsed to store the Output (Q_{63}) of the right-most register until the left-most register is clocked.

- CLOCK input is L \rightarrow H EDGE-TRIGGERED
- data select input (S) Allows data input at either D_{0} OR D_{1} INPUTS
- EASILY CASCADED
- true and complementary buffered outputs AVAILABLE FROM 64TH STAGE

PIN NAMES

$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data Inputs
S	Data Select Input
CP	Clock Input (L \rightarrow H Edge-Triggered)
CO	Buffered Clock Output
Q_{63}	Buffered Output from the 64th Stage
Q_{63}	Complementary Buffered Output from the 64th Stage

34041

QUAD TRUE/COMPLEMENT BUFFER

DESCRIPTION - The 34041 is a Quad True/Complement Buffer which provides both an inverted active LOW Output ($\overline{\mathrm{Z}}$) and a non-inverted active HIGH Output (Z) for each Input (I).

PIN NAMES

$I_{a}, I_{b}, I_{c}, I_{d}$	Buffer Input
$Z_{a}, Z_{b}, z_{c}, z_{d}$	Buffered True Output
$\bar{Z}_{a}, \bar{Z}_{b}, \bar{z}_{c}, \bar{Z}_{d}$	Buffered Complementary Output

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34043

QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The 34043 is a Quad R/S Latch with 3-State Outputs with a common Output Enable Input (EO). Each latch has an active HIGH Set Input (S_{n}), an active HIGH Reset Input (R_{n}) and an active HIGH 3-State Output $\left(\mathrm{Q}_{\mathrm{n}}\right)$.

When the Output Enable Input (EO) is HIGH, the state of the Latch Outputs $\left(\mathrm{O}_{\mathrm{n}}\right)$ can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE HIGH)
- RESET INPUTS TO EACH LATCH (ACTIVE HIGH)

PIN NAMES

EO	Common Output Enable Input
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Set Inputs
$\mathrm{R}_{0}-\mathrm{R}_{3}$	Reset Inputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	3-State Buffered Latch Outputs

TRUTH TABLE

	INPUTS		OUTPUT $\left(Q_{n}\right)$
EO	S_{n}	R_{n}	
L	X	X	High Impedance
H	H	L	H
H	L	H	L
H	H	H	H
H	L	L	No Change

$H=$ HIGH Level, L $=$ LOW Level, $X=$ Don't Care

34044

QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The 34044 is a Quad R/S Latch with 3-State Outputs with a common Output Enable Input (EO). Each latch has an active LOW Set Input $\left(\mathrm{S}_{n}\right)$, an active LOW Reset Input $\left(\overline{R_{n}}\right)$ and an active HIGH 3-State Output (Q_{n}).
When the Output Enable Input (EO) is HIGH, the state of the Latch Outputs \mathbb{Q}_{n})can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE LOW)
- RESET INPUTS TO EACH LATCH (ACTIVE LOW)

PIN NAMES

EO Output Enable Input
$\overline{\mathrm{S}_{0}}-\overline{\mathrm{S}_{3}} \quad$ Set Inputs (Active LOW)
$\overline{R_{0}}-\overline{R_{3}} \quad$ Reset Inputs (Active LOW)
$\mathrm{Q}_{0}-\mathrm{Q}_{3} \quad$ 3-State Buffered Latch Outputs
TRUTH TABLE

INPUTS			OUTPUT (Q_{n})
EO	\bar{S}_{n}	\bar{R}_{n}	
L	X	\times	High Impedance
H	L	H	H
H	H	L	L
H	L	L	L
H	H	H	No Change

$H=$ HIGH Level, L = LOW Level, $X=$ Don't Care

34046
 MICROPOWER PHASE-LOCKED LOOP

DESCRIPTION - The 34046 is a Micropower Phase-Locked Loop consisting of a low power linear Voltage-Controlled Oscillator, a Source Follower Circuit, two different Phase Comparators, and a Zener diode. The Voltage-Controlled Oscillator has two External Capacitor connections ($\mathrm{C}_{\mathrm{exta}}, \mathrm{C}_{\mathrm{extb}}$), two External Resistor connections ($R_{\text {exta }}, R_{\text {extb }}$), a Voltage-Controlled Oscillator Input (IVCO) and a Voltage-Controlled Oscillator Output ($\mathrm{O} V \mathrm{CO}$). The Source Follower Circuit provides a Demodulated Output (O_{D}) from the Voltage-Controlled Oscillator. An active LOW Enable Input (\bar{E}) common to both the Voltage-Controlled Oscillator and the Source Follower Circuit is also provided. Phase Comparator I and Phase Comparator II have common Signal (IS) and Comparator (IC) Inputs and separate outputs; Phase Comparator I Output ($\mathrm{OPCI}^{\mathrm{PCI}}$), Phase Comparator II Output (OpCII), and Phase Pulse Output ($\mathrm{OPII}_{\mathrm{I}}$). An input to the Zener diode (I_{Z}) is also provided.
The Voltage-Controlled Oscillator requires one external capacitor $\left(\mathrm{C}_{1}\right)$ and one external resistor (R_{1}) to determine operational frequency range. A second externalesistor (R_{2}) may be used to allow frequency offset. External resistor R_{3} and external capacitor C_{2} combined serve as a low pass filter to the Voltage-Controlled Oscillator Input ($1 \vee \mathrm{CO}$). Output O_{D}. $\$$ provided to avoid loading the low pass filter. External resistor R_{4} is required if this outputis utilized. O_{D} must be left open when not utilized. The output from the Voltage-Controlled Oscillator (O VCO) may be connected directiy or indirectly through CMOS frequency dividers (i.e.t.the $34018,34020,34022,34024,34029,34040$, $34518,34520,340160,340161,340162,340163,340192$, or 340193) to the Comparator Input (IC). With the Enable Input (E) HIGH both the Voltage-Controlled Oscillator and the Source Follower Circuit are OFF to minimize power consumption, With \bar{E} L.OW, both are enabled.
For direct-coupling between $\mathrm{O}_{\mathrm{VCO}}$ and 1 C , the voltage swing at the Voltage-Controlled Oscillator Output ($\mathrm{O}_{\mathrm{VCO}}$) must be within standard CMOS logic levels $\left(\mathrm{V}_{\mathrm{OH}} \geqslant 0.7 \times \mathrm{V}_{\mathrm{DD}}\right.$ and $\mathrm{V}_{\mathrm{OL}} \leqslant 0.3$ $\times V_{D D}$); otherwise the signal from $O V C O$ must be capacitively coupled to the Signal Input (IS).
Phase Comparator I is an Exclusive $O R$ circuit ($\left.I_{D} \oplus I_{S}\right)$. I^{C} and I_{S} must have 50% duty cycles to maximize lock range. Whenthe Output of Phase Comparator I ($\mathrm{OPCI}_{\mathrm{PCI}}$) is connected back to the Voltage-Controlled Oseillator,through the low pass filter network, an averaged voltage to IVCO forces oscillation at a center frequency.
Phase Comparator 11 is an edge-triggered digital memory network with four flip-flop stages, associated control circuitry and a 3 -state output. Phase Comparator II triggers on LOW-to-HIGH transitions at the Signal (I_{S}) and Comparator (I_{C}) Inputs and is independent of duty cycle at these inputs. The Output of Phase Comparator 11 (OPCII) provides voltage levels and duty cycles corresponding to frequency and phase differentials between I_{C} and I_{S}. When OPCII is connected to the VoltageControlled Oscillator Input (IVCO) through the low pass filter network, a corresponding voltage across capacitor C_{2} is adjusted until the Signal (I_{S}) and Comparator (I_{C}) Inputs are equal in both frequency and phase. At this point Phase Comparator 11 maintains a constant voltage across Capacitor C_{2}. When this stability has been established, the Phase Pulse Output (OPII) is HIGH indicating a locked condition. Power dissipation in the low pass filter is reduced when Phase Comparator II is used.
A 5.2 V , on chip zener diode is provided for regulating the power supply voltage, if necessary.

- CHOICE OF 2-PHASE COMPARATORS
- ENABLE INPUT (ACTIVE LOW) FOR LOW POWER DISSIPATION IN STANDBY MODE
- ON-CHIP ZENER DIODE FOR SUPPLY REGULATION

PIN NAMES	FUNCTION
Iz	Zener Diode Input
Is	Signal Input
${ }^{1} \mathrm{C}$	Comparator Input
IVCo	Voltage-Controlled Oscillator Input
\bar{E}	Enable Input (Active LOW)
$\mathrm{C}_{\text {exta }}, \mathrm{C}_{\text {extb }}$	External Capacitor Connections
$R_{\text {exta }}, R_{\text {extb }}$	External Resistor Connections
OpCl	Phase Comparator I Output
OpCII	Phase Comparator II Output
Opll	Phase Pulse Output
O_{D}	Demodulator Output
OVco	Voltage-Controlled Oscillator Output

FAIRCHILD CMOS • 34046

BLOCK DIAGRAM

34047

MONOSTABLE/ASTABLE MULTIVIBRATOR

DESCRIPTION - The 34047 is a Monostable/Astable Multivibrator capable of operating in either the monostable or astable mode. Operation in either mode requires ar external capacitor (C_{x}) between pins 1 and $3\left(C_{e x t}, R_{e x t} / C_{e x t}\right)$ and an external resistor $\left(R_{x}\right)$ between pins 2 and $3\left(R_{e x t}, R_{e x t} / C_{e x t}\right)$. These external timing components (R_{x}, C_{x}) determine the output pulse width in the monostable mode and the output frequency in the astable mode. The 34047 glso has active HIGH and active LOW astable mode Enable Inputs ($\mathrm{E}_{\mathrm{A} 0}, \overline{\mathrm{E}}_{\mathrm{A}} 1$), active HIGH and active LOW Trigger Inputs ($\mathrm{T}_{0}, \overline{\mathrm{~T}}_{1}$) for operation in the monostable mode, a Retrigger Input (IRT), an Osciliator Output (O), active HIGH and active LOW flip-flop Outputs (Q, \bar{Q}) and an overriding asynchronous Master Reset Input (MR).

ASTABLE OPERATION. Astable operation sis obtained by either a HIGH on the EAO input or a LOW on the $\bar{E}_{A 1}$ input. The frequency of the 50% duty cycle output at the Q and \bar{Q} outputs is determined by the external timing components $\left(R_{x} \mathcal{E}_{x}\right)$. A frequency twice that of the Q and Q outputs is available at the Oscillator Output (O). However, a 50% duty cycle is not guaranteed. The 34047 can be used as a gated oscillator by controlling the $\mathrm{E}_{\mathrm{A} 0}$ and $\overline{\mathrm{E}}_{\mathrm{A} 1}$ inputs.

MONOSTABLE OPERATION. Monostable operation is obtained by connecting the EAO input LOW and the $\bar{E}_{A 1}$ input HIGH. The device can be triggered by either a LOW-to-HIGH transition at the T_{0} input while the \bar{T}_{1} input is LOW or a HIGH-to-LOW transition at the \bar{T}_{1} input while the T_{0} is HIGH. The output pulse width at Q and $\overline{\mathrm{Q}}$ is determined by the external timing components ($\mathrm{R}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}$). The device can be retriggered by applying a simultaneous LOW-to-HIGH transition to both the Retrigger Input ($I_{R T}$) and the T_{0} input while the \bar{T}_{1} input is LOW.

A HIGH on the Master Reset Input (MR) resets the output flip-flop ($\mathrm{Q}=$ LOW, $\overline{\mathrm{Q}}=\mathrm{HIGH}$) independent of all other input conditions.

- MONOSTABLE OR ASTABLE OPERATION
- TRUE AND COMPLEMENTARY BUFFERED OUTPUTS
- ENABLED WITH EITHER A LOW OR A HIGH LEVEL IN THE ASTABLE MODE
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION IN THE MONOSTABLE MODE
- ASYNCHRONOUS MASTER RESET

PIN NAMES

$C_{\text {ext }}$	External Capacitor Connection
$R_{\text {ext }}$	External Resistor Connection
$R_{\text {ext }} / C_{\text {ext }}$	Common External Capacitor and Resistor Connection
$I_{R T}$	Retrigger Input
T_{0}	Trigger Input (L \rightarrow H Triggered)
\bar{T}_{1}	Trigger Input (H \rightarrow L. Triggered)
$E_{A 0}$	Enable Input (Active HIGH)
$\bar{E}_{A 1}$	Enable Input (Active LOW)
$M R$	Master Reset
O	Oscillator Output
Q, \bar{Q}	True and Complementary Buffered Outputs

34053

TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 34053 is a Triple 2-Channel Analog Multiplexer/Demultiplexer with a common Enable Input (\bar{E}). Each Multiplexer/Demultiplexer has two Independent Inputs/Outputs ($\mathrm{Y}_{0}, \mathrm{Y}_{1}$), a Common Input/Output (Z), and a Select Input (S). Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}, \mathrm{Y}_{1}$) and the other side connected to a Common Input/Output (Z). With the Enable Input (\bar{E}) LOW, one of the two switches is selected (low impedance, ON state) by the Select Input (S). With the Enable Input (\bar{E}) HIGH, all switches are in the high impedance OFF state, independent of the Select Inputs ($\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{c}}$).
V_{DD} and $\mathrm{V}_{\text {SS }}$ are the two supply voltage connections for the Digital Control Inputs ($\left.\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{c}}, \overline{\mathrm{E}}\right)$. Their voltage limits are the same as for all other digital $G M O S$. The analog Inputs/Outputs ($\left.Y_{0}, Y_{1}, Z\right)$ can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, $\mathrm{V}_{E E}$ is connected to V_{SS} (typically ground).

- ANALOG OR DIGITALMULTIPLEXER/DEMULTIPLEXER

- COMMON ENABLE INPUTI(ACTIVE LOW)

PIN NAMES

$Y_{0 a-}-Y_{0 c}, Y_{1 a}-Y_{1 c}$	Independent Input/Outputs
$S_{a}-S_{c}$	Select Inputs
\bar{E}	Enable Input (Active LOW)
$Z_{a}-Z_{c}$	Common Input/Outputs

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

INPUTS		CHANNELS	
\bar{E}	S	$Y_{0}-Z$	$Y_{1}-Z$
L	L	ON	OFF
L	H	OFF	ON
H	X	OFF	OFF

$$
\begin{aligned}
& H=\text { HIGH Level } \\
& L=\text { LOW Level } \\
& X=\text { Don't Care }
\end{aligned}
$$

34067
 16-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The 34067 is a 16 -Channel Analog Multiplexer/Demultiplexer with four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), 16 Independent Inputs/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{15}$), an active LOW Output Enable input ($\overline{\mathrm{EO}}$), and a Common Input/Output (Z). The 34067 contains 16 bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{15}$) and the other side connected to a Common Input/Output (Z). One of the 16 switches is selected (low impedance, ON state) by the four Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) when the Output Enable input ($\overline{E O}$) is LOW. All unselected switches are in the high impedance OFF state. With the Output Enable input (EO) HIGH, all 16 switches are in the high impedance OFF state. The Analog Input/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{15}, \mathrm{Z}$) can swing between V_{DD} and V_{SS}. $V_{D D}-V_{\text {SS }}$ may not exceed 15 V .

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- 24-PIN PACKAGE
- SINGLE POWER SUPPLY

PIN NAMES

$Y_{0}-Y_{15}$
Independent Inputs/Outputs
$\mathrm{A}_{0}-\mathrm{A}_{3}$
Z
$\overline{E O} \quad$ Output Enable Input (Active LOW)
LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TRUTH TABLE

INPUTS				CHANNEL															
A_{3}	A_{2}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$\mathrm{r}_{2}-\mathrm{z}$	$Y_{3}-Z$	$\mathrm{Y}_{4}-\mathrm{z}$	$Y_{5}-Z$	$Y_{6}-2$	$\mathrm{Y}_{7}-\mathrm{Z}$	$\mathrm{Y}_{8}-\mathrm{Z}$	Y9-Z	Y_{10-Z}	$Y_{11}-Z$	Y 12 -Z	$Y_{13}-Z$	Y_{14}-Z	Y_{15}-Z
L	L	L	L	ON	OFF														
L	L	L	H	OFF	ON	OFF													
L	L	H	L	OFF	OFF	ON	OFF												
L	L	H	H	OFF	OFF	OFF	ON	OFF											
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF										
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF									
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF								
L	H	H	H	OFF	ON	OFF													
H	L	L	L	OFF	ON	OFF													
H	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF								
H	L	H	L	OFF	ON	OFF	OFF	OFF	OFF	OFF									
H	L	H	H	OFF	ON	OFF	OFF	OFF	OFF										
H	H	L	L	OFF	ON	OFF	OFF	OFF											
H	H	L	H	OFF	ON	OFF	OFF												
H	H	H	L	OFF	ON	OFF													
H	H	H	H	OFF	ON														

$L=$ LOW Level $H=H I G H$ Level $\overline{E O}=$ LOW Level

34072

DUAL 4-INPUT OR GATE

DESCRIPTION - This CMOS logic element provides the positive Dual 4-Input OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34075

TRIPLE 3-INPUT OR GATE

DESCRIPTION - This CMOS logic element provides the positive Triple 3-Input OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34082

DUAL 4-INPUT AND GATE

DESCRIPTION - This CMOS logic element provides the positive Dual 4-Input AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34510 UP/DOWN DECADE COUNTER

DESCRIPTION - The 34510 is an Edge-Triggered Synchronous Up/Down BCD Counter with a Clock Iriput (CP), an active HIGH Up/Down Count Control Input (Up/Dn), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an asynchronous active HIGH Parallel Load Input (P) $)_{7}$, four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$, an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded inte the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. With the Parallel Load Input (PL)LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP) if the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW. The Up/Down Count Control Input (Up/ $\overline{\mathrm{Dn}}$) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output ($\overline{T C}$) is LOW when the Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ are HIGH and the Count Enable $(\overline{\mathrm{CE}})$ is LOW. When counting down, the Terminal Count Output (TC) is LOW when allithe Parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) and the Count Enable Input ($\left.\overline{\mathrm{CE}}\right)$ are LOW. A HIGH on the Master Reset Input resets the counter $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}=\right.$ LOW $)$ independent of all other input conditions.

- UP/DOWN COUNT CONTROL
- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET
- EASILY CASCADAELE

PIN NAMES

PL	Parallel Load Input (Active HIGH)
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Inputs
$\overline{\mathrm{CE}}$	Count Enable Input (Active LOW)
CP	Clock Pulse Input (L \rightarrow H Edge-Triggered)
$\mathrm{Up} / \overline{\mathrm{Dn}}$	Up/Down Count Control Input
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Outputs
MR	Master Reset Input

34511
 BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER

DESCRIPTION - The 34511 is a BCD-to-7-Segment Latch/Decoder/Driver with four Address Inputs ($A_{0}-A_{3}$), an active LOW Latch Enable Input ($\overline{E L}$), an active LOW Ripple Blanking Input ($\overline{\bar{B}_{\mathrm{B}}}$), an active LOW Lamp Test Input (I_{LT}) and seven active HIGH NPN bipolar segment outputs (a-g).
When the Latch Enable Input ($\overline{E L}$) is LOW, the state of the Segment Outputs (a-g) is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input ($\overline{\mathrm{EL}}$) goes HIGH, the last data present at the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) is stored in the latches and the Segment Outputs (a-g) remain stable.
When the Lamp Test Input ($\overline{L_{L T}}$) is LOW, all the Segment Outputs (a-g) are HIGH independent of all other input conditions. With the Lamp Test Input (ILT) HIGH, a LOW on the Ripple Blanking Input $\left(\overline{I_{B}}\right)$ forces all Outputs (a-g) LOW. The Lamp Test Input ($\overline{I_{L T}}$) and the Ripple Blanking Input ($\overline{\bar{I}_{\mathrm{B}}}$) do not affect the latch circuit.

- HIGH CURRENT SOURCING OUTPUTS (UPTO 25 mA)

- blanking input (active low)
- LAMP TEST INPUT (ACTIVE LOW)
- LAMP INTENSITY MODULATION CAPABILITY
- MULTIPLEXING CAPABILITY

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$

$\frac{\frac{\overline{E L}}{\frac{I_{B}}{I}}}{\frac{I_{L T}}{a-g}}$

Address (Data) Inputs

Latch Enable Input (Active LOW)
Ripple Blanking Input (Active LOW)
Lamp Test Input (Active LOW)
Segment Outputs

TRUTH TABLE

INPUTS							OUTPUTS							
EL	$\overline{T_{B}}$	$\overline{\text { ITT }}$	A_{3}	A_{2}	A_{1}	A_{0}	a	b	c	d	e	f	g	DISPLAY
X	X	L	X	X	X	X	H	H	H	H	H	H	H	8
x	L	H	x	x	x	X	L	L	L	L	L	L	L	BLANK
L	H	H	L	L	L	L	H	H	H	H	H	H	L	0
L	H	H	L	L	L	H	L	H	H	L	L	L	L	1
L	H	H	L	L	H	L	H	H	L	H	H	L	H	2
L	H	H	L	L	H	H	H	H	H	H	L	L	H	3
L	H	H	L	H	L	L	L	H	H	L	L	H	H	4
L	H	H	L	H	L	H	H	L	H	H	L	H	H	5
L	H	H	L	H	H	L	L	L	H	H	H	H	H	6
L	H	H	L	H	H	H	H	H	H	L	L	L	L	7
L	H	H	H	L	L	L	H	H	H	H	H	H	H	8
L	H	H	H	L	L	H	H	H	H	L	L	H	H	9
L	H	H	H	L	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	L	H	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	H	L	L	L	L	L	L	L	BLANK
H	H	H	X	X	X	X				*				*

$H=$ HIGH Level
L = LOW Level
X = Don't Care

* = Depends upon the BCD code applied during the LOW-to-HIGH transition of $\overline{E L}$.

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM

 DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NUMERICAL DESIGNATIONS

34514
 1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The 34514 is a 1 -of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input (EL), an active L.OW Enable Input (E) and sixteen mutually exclusive active HIGH Outputs ($\mathrm{O}_{0}-\mathrm{O}_{15}$).
When the Latch Enable Input (EL) is HIGH, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ is stored in the latches and the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right.$) remain stable. When the Enable Input (\bar{E}) is LOW, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$, determined by the contents of the latch, is HIGH. When the Enable Input (\bar{E}) is HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ are LOW. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.
With the Latch Enable Input (EL) HIGH, 16 -channel demultiplexing results when data is applied to the Enable Input (\bar{E}) and the desired output is selected by $\mathrm{A}_{0}-A 3$. The selected output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ will follow as the inverse of the data. All unselected outputs ($\mathrm{O}_{0} \mathrm{O}_{1}$)) Hare LOW.

- LATCH ENABLE INPUT (ACTIVE HIGH)
- ENABLE input (ACtive low)
- SELECTED BUFFERED OUTPUTS
(ACTIVE HIGH) COMPLEMENT OF THE INPUT

PIN NAMES

$\mathrm{A}_{\mathrm{E}} \mathrm{A}^{-\mathrm{A}_{3}}$
E
$\mathrm{O}_{0}-\mathrm{O}_{15}$
Address Inputs
Enable Input (Active Low)
Latch Enable Input
Outputs
LOGIC SYMBOL.

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
\bar{E}	A_{0}	A_{1}	A_{2}	A_{3}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}	O_{11}	O_{12}	O_{13}	O_{14}	O_{15}
H	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L.	L
L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L
L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L
L	H	H	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L
L	L	L	L	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L
L	H	L	L	H	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L
L	L	H	L	H	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L
L	H	H	L	H	L	L	L	L	L	L	L	L	L	L	L.	H	L	L	L	L
L	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L
L	H	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L
L	L	H	H	H	L	L	L	L	L	L	L	L	L	L.	L	L	L	L	H	L
L	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H

[^11]
34515

1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The 34515 is a 1-of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input (EL), an active LOW Enable Input (\bar{E}) and sixteen mutually exclusive active LOW Outputs ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}$).
When the Latch Enable Input (EL) is HIGH, the selected Output $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$ is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) is stored in the latches and the Outputs $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$ remain stable. When the Enable Input (\bar{E}) is LOW, the selected Output $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$, determined by the contents of the latch, is LOW. When the Enable Input ($\overline{\mathrm{E}}$) is HIGH, all Outputs $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right.$) are HIGH. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.

With the Latch Enable Input (EL) HIGH, 16 -channel demultiplexing results when data is applied to the Enable Input (\bar{E}) and the desired output is selected by $\mathrm{A}_{0}-\mathrm{A}_{3}$ Theiselected Output $\left(\overline{\mathrm{O}_{0}}-\overline{O_{15}}\right)$ will follow the data at the Enable Input (\bar{E}). All unselected outputs ($\overline{\mathrm{O}_{0}}=\overline{D_{15}}$) are HIGH.

- LATCH ENABLE INPUT (ACTIVE HIGH)
- ENABLE INPUT (ACTIVE LOW)
- buFFERED OUTPUTS (ACTIVE LOW)

PIN NAMES
$A_{0}-A_{3}$
\bar{E}
$\frac{E L}{O_{0}}-\bar{O}=15$
Address Inputs
Enable Input (Active LOW)
Latch Enable Input,
Outputs (Agtive LUW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
\bar{E}	A_{0}	A_{1}	A_{2}	A_{3}	$\overline{0}$	$\overline{O_{1}}$	$\overline{O_{2}}$	$\overline{O_{3}}$	\bar{O}_{4}	$\overline{\mathrm{O}}$	$\overline{O_{6}}$	$\overline{\mathrm{O}}$	$\overline{O_{8}}$	$\overline{\mathrm{O}} 9$	$\overline{0} 10$	$\overline{0_{11}}$	$\overline{0_{12}}$	$\overline{0} 13$	$\overline{O_{14}}$	$\overline{0_{15}}$
H	x	x	\times	\times	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	L	L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	H	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	H	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

[^12]
34516

UP/DOWN COUNTER

DESCRIPTION - The 34516 is an edge-triggered synchronous Up/ Down 4-Bit Binary Counter with a Clock Input (CP), an active HIGH Count Up/Down Control Input (Up/ $\overline{\mathrm{Dn}}$), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an asynchronous active HIGH Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$, an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the Count Enable Input $(\overline{\mathrm{CE}})$ are LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP). The Count Up/Down Control Input (Up/Dn) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output $(\overline{\mathrm{TC}})$ is LOW when $\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=\mathrm{HIGH}$ and $\overline{\mathrm{CF}}=40 \mathrm{~W}$. When counting down the Terminal Count Output (TC) is LOW when $\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=$ LOW and the $\overline{\mathrm{CE}}$ =LOW. A HIGH an the Master Reset Input (MR) resets the counter ($Q_{0}=Q_{1}-Q_{2}=O_{3}=$ LOW) independent of all other input conditions.

- UP/DOWN COUNT CONTROL
- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET

PIN NAMES

PL
$\frac{\mathrm{P}_{0}-\mathrm{P}_{3}}{\mathrm{CE}}$

CP
Up/ $\overline{D n}$
TC
$\mathrm{O}_{0}-\mathrm{Q}_{3}$
MR

FUNCTION

Parallel Load Input (Active HIGH)
Parallel Inputs
Count Enable Input (Active LOW)
Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Up/Down Count Control Input
Terminal Count Output (Active LOW)
Parallel Outputs
Master Reset Input

LOGIC SYMBOL

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34519

QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The 34519 provides four multiplexing circuits with common selection inputs; each circuit contains two inputs and one output. It may be used to select four bits of information from one of two sources. The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} S $H+H G$. When S_{A} and S_{B} are HIGH, the output $\left(Z_{a}\right)$ is the logical Exelusive-NOR of the A_{n} and B_{n} inputs $\left(Z_{n}=A_{n} \odot B_{n}\right)$. When S_{A} and S_{B} are LOW, the output $\left(Z_{n}\right)$ is LOW, independent of the multiplexer inputs (A_{n} and B_{n}). The 34519 cannot be used to multiplex analog signals. The outputs utilize standard buffers for best performance.

COMMON SELECT INPUTS

- FULLY BUFFERED OUTPUTS

PIN NAMES	FUNCTION
S_{A}, S_{B}	Select Inputs (Active HIGH)
$A_{0}-A_{3}, B_{0}-B_{3}$	Multiplexer Inputs
$Z_{0}-Z_{3}$	Multiplexer Outputs

LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TRUTH TABLE

SELECT		INPUTS		OUTPUT
S_{A}	S_{B}	A_{n}	B_{n}	Z_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	H	L	L	H
H	H	L	H	L
H	H	H	L	L
H	H	H	H	H

[^13]
34522

PROGRAMMABLE 4-BIT BINARY DOWN COUNTER

DESCRIPTION - The 34522 is a synchronous Programmable 4-Bit BCD Down Counter with an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$), an asynchronous Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), a Carry Forward Input (CF), four buffered Parallel Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$, a Terminal Count Output (TC) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{PO}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the active LOW Clock Input $\left(\mathrm{CP}_{1}\right)$ are LOW, the counter advances on a LOW-to-HIGH transition of the active HIGH Clock Input ($C P_{0}$). When the Parallel Load Input (PL) is LOW and the active HIGH Clock Input (CP_{0}) is HIGH, the counter advances on a HIGH-to-LOW transition of the CP1 Input. The Terminal Count Output (TC) is HIGH when the counter is in the zero state (O_{0} $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{O}_{3}=$ LOW) and the Carry Forward Input (CFI is HIGH. A HIGH on the Master Reset Input (MR) resets the counter $\left(\sigma_{0}-\mathrm{O}_{3}=\right.$ LOW) independent of other input conditions.

- FULLY SYNCHRONOUS PROGRAMMABLE BCD DOWN COUNTER
- CLOCK INPUT EITHER HIGH-TO-LOW OR LOW-TO-HIGH EDGE-TRIGGERED
- ASYNCHRONOUS MASTER RESET
- CASCADABLE
- ASYNCHRONOUS PARALLEL LOAD

PIN NAMES

FUNCTION
PL
$\mathrm{P}_{0}-\mathrm{P}_{3}$
CF
$\mathrm{CP}_{0}{ }_{1}$
CP 1
MR
TC
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$

Parallel Load Input
Parallel Inputs
Carry Forward Input
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
Asynchronous Master Reset Input TC Terminal Count Output Buffered Outputs

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34526

PROGRAMMABLE 4-BIT BCD DOWN COUNTER

DESCRIPTION - The 34526 is a synchronous Programmable 4-Bit Binary Down Counter with an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{\mathrm{O}}, \overline{\mathrm{CP}}_{1}$), an asynchronous Parallel Load Input (PL), four Parallel Inputs $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$, a Carry Forward Input (CF), four buffered Parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$), a Terminal Count Output (TC) and an overriding asynctionous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the active LOW Clock Input (CP_{1}) are LOW, the counter advances on a LOW-to-HIGH transition of the active HIGH Clock Input (CP_{0}). When the Parallel Load Input (PL) is LOW and the active HIGH Clock Input (CP_{0}) is HIGH, the counter advances on a HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input. The Terminal Count Output (TC) is HIGH when the counter is in the zero state ($\mathrm{Q}_{0}=\mathrm{O}_{1}=\mathrm{O}_{2}=\mathrm{Q}_{3}=$ LOW) and the Carry Forward Input (CF) is HIGH. A HIGH on the Master Reset Input (MR) resets the counter ($\mathrm{O}_{0}-\mathrm{Q}_{3}=$ LOW) independent of other input conditions.

- fully synchronous programmable bcd down COUNTER
- CLOCK INPUT EITHER HIGH-TO-LOW OR LOW-TO-HIGH EDGE-TRIGGERED
- asynchronous master reset
- CASCADABLE
- ASynchronous parallel load

PIN NAMES FUNCTION
PL
$\mathrm{P}_{0}-\mathrm{P}_{3}$
CF
Parallel Load Input
Parallel Inputs
Carry Forward Input
$\mathrm{CP}_{0} \quad$ Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{CP}}_{1} \quad$ Clock Input ($\mathrm{H} \rightarrow$ L Edge-Triggered)
MR Asynchronous Master Reset Input
TC Terminal Count Output
$\mathrm{O}_{0}-\mathrm{Q}_{3} \quad$ Buffered Outputs

34528
 DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 34528 is a Dual Retriggerable Resettable Monostable Multivibrator. Each Multivibrator has an active LOW Input ($\overline{\bar{D}_{0}}$), an active HIGH Input $\left(I_{1}\right)$, an active LOW Clear Direct Input ($\overline{C_{D}}$), an Output (Q), its Complement ($\overline{\mathrm{Q}}$) and two pins for connecting the external timing components ($\mathrm{C}_{\text {ext }}, \mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$). An external timing capacitor must be connected between $\mathrm{C}_{\text {ext }}$ and $\mathrm{C}_{\text {ext }} / R_{\text {ext }}$ and an external resistor must be connected between $C_{\text {ext }} / R_{\text {ext }}$ and $V_{D D}$.
A HIGH-to-LOW transition on the \bar{T}_{0} Input when the i 1 Input is LOW or a LOW-to-HIGH transition on the I_{1} Input when the \bar{I}_{0} Input is HIGH produces a positive pulse ($\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$) on the Q Output and a negative pulse $(H \rightarrow L \rightarrow H)$ on the $\overline{\mathrm{Q}}$ Output if the Cleap Direct Input $\left(\overline{C_{D}}\right)$ is HIGH. A LOW on the Clear Direct Input (C_{D}) forces the O Output LOW $_{W} \mathbb{Q}$ Output HIGH and inhibits any further pulses until the Clear Direct Input ($\overline{C_{D}}$) is HIGHfel

- Resettable
- trigger on either A mgh-to-low transition on T_{0} or a low-to-high TRANSITION ON ${ }^{1}{ }^{2}$
- COMPLEMENTARY OUTPUTS AVAILABLE

PIN NAMES

$\bar{\Gamma}_{\mathrm{O}}, \overline{\mathrm{T}}_{\mathrm{D}}$
$1_{1 a}, 1_{1 b}$
$\overline{C D}_{a}, \overline{C D}_{b}$
Q_{a}, Q_{b}
$\overline{Q_{a}}, \overline{Q_{b}}$
$C_{\text {exta }}, C_{\text {extb }}$
$\mathrm{C}_{\text {ext }} / R_{\text {exta }}, C_{\text {ext }} / R_{\text {extb }}$

FUNCTION

Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
Input ($\mathrm{L} \rightarrow \mathrm{H}$ Triggered)
Clear Direct Input (Active LOW)
Output
Complimentary Output (Active LOW)
External Capacitor Connections
External Capacitor/Resistor Connections

TRUTH TABLE

\bar{T}_{0}	l_{1}	$\overline{C_{D}}$	OPERATION
$H \rightarrow L$	L	H	Trigger
H	$L \rightarrow H$	H	Trigger
X	X	L	Reset

$H=H I G H$ Level
$L=$ LOW Level
$H \rightarrow L=$ HIGH-to-LOW Transition
$L \rightarrow H=$ LOW-to-HIGH Transition
$X=$ Don't Care

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34531

13-INPUT PARITY CHECKER GENERATOR

DESCRIPTION - The 34531 is a 13 -Input Parity Checker/Generator with 13 Parity Inputs ($I_{0^{-1}} 12$) and a Parity Output (Z). When the number of Parity Inputs that are HIGH is even, the Output (Z) is LOW. When the number of Parity Inputs that are HIGH is odd the output (Z) is HIGH. For words of 12 bits or less, the Output (Z) can be used to generate either odd or even parity by appropriate termination of the unused Parity Input (s). For words of 14 or more bits, the devices can be cascaded by connecting the output (Z) of one device to any Pelarity Input ($I_{0-1} 1_{12}$) of another device. When cascading devices, it is recommended that the Output (Z) of one device be connected to the I_{12} input of the other device since there is less delay to the Output (Z) from the I_{12} input than from any other Input ($\mathrm{I}_{0}^{-1} 11$).

- VARIABLE WORD LENGTH
- FULLY BUFFERED OUTPUTH(ACTIVE HIGH)
- PARITY INPUTS (ACTWH HIgH)

PIN NAMES

${ }^{1} 0^{-1} 12$
Z

FUNCTION
Parity Inputs
Buffered Output

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

34532
 8-INPUT PRIORITY ENCODER

DESCRIPTION - The 34532 is an 8 -Input Priority Encoder with eight active HIGH Priority Inputs $\left(I_{0} 0^{-17}\right)$, three active HIGH Address Outputs ($A_{0}-A_{2}$), an active HIGH Enable Input ($E_{1 n}$), an active HIGH Enable Output ($\mathrm{E}_{\mathrm{Out}}$) and an active HIGH Group Select output (GS).

Data is accepted on the eight Priority Inputs ($\mathrm{I}_{0} \mathrm{I}_{7}$). The binhery bode corresponding to the highest Priority Input ($I_{0}-17$) which is HIGH is generated on the Adress)Outputs ($A_{0}-A_{2}$) if the Enable Input (E_{In}) is HIGH. Priority Input I_{7} is assigned the highest pritority. The Group Select output (GS) is HIGH when one or more Priority Inputs ($I_{0}-17$) and the Enable Input ($E_{1 n}$) are HIGH. The Enable Output ($E_{\text {Out }}$) is HIGH when all the Priority $\operatorname{mputs}\left(I_{0-17}\right)$ are LOW and the Enable Input (E_{In}) is HIGH. The Enable Input ($E_{I n}$) when LOW, forces allpoutputs ($A_{0}-A_{2}, G S, E_{O u t}$) LOW.

- ACTIVE HIGH PRIORITY INPUTS

- CASCADABLE

PIN NAMES
$\mathrm{IO}_{0}^{-\mathrm{I}_{7}}$
$E_{1 n}$
EOut
GS
$\mathrm{A}_{0}-\mathrm{A}_{2}$

FUNCTION

Priority Inputs
Enable Input
Enable Output
Group Select Output
Address Outputs

TRUTH TABLE

INPUTS									OUTPUTS				
$E_{1 n}$	17	16	I_{5}	14	13	12	11	I_{0}	GS	A_{2}	A_{1}	A_{0}	EOut
L	X	X	X	X	X	X	X	X	L	L	L.	L	L
H	L	L	L	L	L	L	L	L	L	L	L	L	H
H	H	X	X	X	X	X	X	X	H	H	H	H	L
H	L	H	X	x	X	X	X	X	H	H	H	L	L
H	L	L	H	X	x	X	X	X	H	H	L	H	L
H	L	L	L	H	X	X	X	X	H	H	L	L	L
H	L	L	L	L	H	X	X	X	H	L	H	H	L
H	L	L	L	L	L	H	X	X	H	L	H	L	L
H	L	L	L	L	L	L	H	X	H	L	L	H	L
H	L	L	L	L	L	L	L	H	H	L	L	L	L

$$
\begin{aligned}
& X=\text { Don't Care } \\
& L=\text { LOW Level } \\
& H=\text { HIGH Level }
\end{aligned}
$$

34582
 CARRY LOOKAHEAD GENERATOR

DESCRIPTION - The 34582 is a Carry Lookahead Generator which provides high speed lookahead over word lengths of more than four bits. The device has a Carry nput (C_{n}), four active LOW Carry Generate Inputs ($\bar{G}_{0}-\bar{G}_{3}$), four active LOW Carry Propagate $\operatorname{lnputs}\left(\bar{P}_{0}-\bar{P}_{3}\right)$, three Carry Outputs ($C_{n+x}, C_{n+y}, C_{n+z}$), an active LOW Carry Propagate Output (D) and an active LOW Carry Generate Output (\bar{G}). The logic equations for all outputs are shown below. -

- EXPANDABLE TO ANY NUMBER OF BITS
- HIGH SPEED LOOKAHEAD OVER WORD LENGTHS OF MORE THAN FOUR BITS

PIN NAMES

C_{n}
$\overline{\mathrm{G}}_{0}-\bar{G}_{3}$
$\bar{P}_{0} \bar{P}_{3}$
$\frac{\mathrm{C}_{n+x}, C_{n+y}, C_{n+z}}{\bar{G}} \overline{\bar{P}}$

> Carry Dout
> Carry Geneiate Inputs (Active LOW)
> Carry Propagate Inputs (Active LOW)
> Carry Outputs
> Carry Generate Output (Active LOW)
> Carry Propagate Output (Active LOW)

LOGIC EQUATIONS

$$
\begin{aligned}
C_{n+x} & =G_{0}+P_{0} \cdot C_{n} \\
C_{n+y} & =G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot C_{n} \\
C_{n+z} & =G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{n} \\
\bar{G} & =\overline{G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}} \\
\bar{P} & =\overline{P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0}}
\end{aligned}
$$

340283 4-BIT BINARY FULL ADDER

DESCRIPTION - The 340283 is a 4-Bit Binary Full Adder with two 4 -bit Data Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$, $\mathrm{B}_{0}-\mathrm{B}_{3}$), a Carry Input (C_{0}), four Sum Outputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and a Carry Output (C_{4}).
The 340283 uses full lookahead across 4 -bits to generate the Carry Dutput (C_{4}). This minimizes the necessity for extensive "lookahead" and carry-cascading circults.

- FUll carry lookahead across four bits

- EASILY CASCADED

PIN NAMES

$A_{0}, B_{0}, A_{1}, B_{1}$
$A_{2}, B_{2}, A_{3}, B_{3}$
C_{0}
$\mathrm{S}_{0}-\mathrm{S}_{3}$
C_{4}

FUNCTION

Data Inputs
Data Inputs
Carry Input
Sum Qutputs
Carry Output

34703

16×4 PARALLEL/SERIAL FIFO FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The 34703 is an expandable high speed First-In First Out (FIFO) buffer memory with totally asynchronous and independent data inputs and outputs, in either serial or 4-bit parallel form. It can be extended to any number of words and to any humber of parallel bits without additional circuitry and without compromising any features. It has 3-state output buffers which provide added versatility and make the 34703 compatible with the rother circuits of the bus-oriented CMOS Macrologic family.

- SERIAL OR PARALLEL INPUT
- SERIAL OR PARALLEL OUTPUT
- EXPANDABLE WITHOUT EXTERNAL LOGIC
- 3-STATE FULLY BUFFERED OUTPUTS
- 24-PIN PACKAGE

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$
D_{S}
PL
$\overline{\mathrm{CPSI}}$
$\overline{\text { CPSO }}$
IES
TTS
TOS
TOP
$\overline{\text { OES }}$
$\overline{O E}$
$\overline{\mathrm{MR}}$
IRF
ORE
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$
Q_{S}

Parallel Data Inputs
Serial Data Input
Parallel Load Input
Serial Input Clock Input (HIGH-to-LOW Triggered)
Serial Output Clock Input (HIGH-to-LOW Triggered)
Serial Input Enable (Active LOW)
Transfer to Stack Input (Active LOW)
Transfer Out Serial Input (Active LOW)
Transfer Out Parallel Input
Serial Output Enable Input (Active LOW)
Output Enable Input (Active LOW)
Master Reset Input (Active LOW)
Input Register Full Output (Active LOW)
Output Register Empty Output (Active LOW)
Parallel Data Outputs
Serial Data Output

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 24 \\
& V_{S S}=\operatorname{Pin} 12
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION - As shown in the block diagram, the 34703 consists of three parts: 1) an input register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion. 2) a 4 -bit wide, 14 -word deep fall-through stack with self-contained control logic. 3) an output register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion. Since these three sections operate asynchronously and almost independently, they will be described separately below:

INPUT REGISTER (DATA ENTRY):
The input register can receive data in either bit-serial or in 4-bit parallel form, store it until it is sent to the fall-through stack, and generate and accept the necessary status and control signals.
Figure 1 is a conceptual logic diagram of the input section. As described later, this 5 -bit register is initialized by setting the F3 flip-flop and resetting the other flip-flops. The $\overline{\mathrm{Q}}$ output of the last flip-flop (FC) is brought out as the "Input Register Full" output (IRF). After initialization this output is HIGH.

PARALLEL ENTRY:

A HIGH level on the PL input loads the $D_{0} D_{3}$ data inputs into the $F_{0}-F_{3}$ flip-flops and sets the FC flip-flop, which forces IRF LOW, indicating "input register full". The D inputs must be stable while PL is HIGH. During parallel entry the IES input should be LOW; the CPSI input may be either HIGH or LOW.

SERIAL ENTRY:

Data on the DS input is serially entered into the $F_{3}, F_{2}, F_{1}, F_{0}, F C$ shift register on each HIGH-to-LOW transition of the CPSI clock input, provided $\overline{\mathrm{ESS}}$ and PL are LOW.
After the fourth clock transition the four serial data bits are aligned in the four data flip-flops and the FC flip-flop is set, forcing $\overline{1 R F}$ LOW (input register full) and internally inhibiting further CPSI clock pulses.
Figure 3 illustrates the final positions in a 34703 resulting from a 64 -bit serial bit train. B_{0} is the first bit, B_{63} the last bit.
TRANSFER TO THE FALL-THROUGH STACK:
The outputs of the flip-flops $F_{0}-F_{3}$ feed the stack. A LOW level on the TTS input attempts to initiate a "fall-through" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus automatic FIFO action is achieved by connecting the IRF output to the TTS input.
Data falls through the stack automatically, pausing only when it is necessary for an empty next location. In the 34703, like in most modern FIFO designs, the MR input initializes the stack control section only and does not clear the data.

Fig. 3
FINAL POSITIONS IN A 34703 RESULTING FROM A 64-BIT SERIAL TRAIN

OUTPUT REGISTER (DATA EXTRACTION):

The output register receives a 4 -bit data word from the bottom stack location, stores it and puts it on a 3-state 4-bit parallel data bus or on a 3 -state serial data bus. The output section generates and receives the necessary status and control signals. Figure 2 is a conceptual logic diagram of the output section.

PARALLEL DATA EXTRACTION:
When the FIFO is empty (after a LOW pulse is applied to $\overline{M R}$), the Output Register Empty ($\overline{\mathrm{ORE}}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output register, provided the "Transfer Out Parallel" (TOP) input is HIGH, and the $\overline{\mathrm{OES}}$ input is LOW. As a result of the data transfer $\overline{\mathrm{ORE}}$ goes HIGH, indicating valid data on the data outputs (provided the 3 -state buffer is enabled).
TOP can now be used to clock out the next word. When TOP goes LOW, $\overline{O R E}$ will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next LOW-to-HIGH transition of TOP transfers the next word (if available) into the output register as explained above. During parallel data extraction TOS, CPSO and $\overline{\mathrm{OES}}$ should be LOW.

SERIAL DATA EXTRACTION:
When the FIFO is empty (after a LOW pulse is applied to $\overline{M R}$), the Output Register Empty ($\overline{O R E}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output shift register provided the "Transfer Out Serial" (TOS) input is LOW. TOP must be HIGH, and OES and CPSO must be LOW.
As a result of the data transfer $\overline{\text { ORE }}$ goes HIGH indicating valid data in the shift register. The 3 -state serial data output QS is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. The fourth transition empties the shift register, forces $\overline{O R E}$ LOW and disables the serial output Q_{S}. For serial operation the $\overline{\mathrm{ORE}}$ output is tied to the $\overline{\text { TOS }}$ input, requesting a new word from the stack as soon as the previgus one has been shifted out.

Fig. 1
CONCEPTUAL INPUT SECTION

EXPANSION

VERTICAL EXPANSION - The 34703 can be vertically expanded to store more words without any external parts. The interconnections necessary to form a 46 -word by 4 -bit FIFO are shown in Figure 4 . Using the same technique, any FIFO of $15 n+1$ words by four bits can be constructed. Note that expansion does not sacrifice any of the FIFO's flexibility for Serial/Parallel input and output.

HORIZONTAL EXPANSION - The 34703 can also be horizontally expanded to store long words (in multiples of four bits) without any external logic. The inter-connections necessary to form a 16 -word by 12 -bit FIFO are shown in Figure 5 . Using the same technique, any FIFO of 16 words by $4 \times n$ bits can be constructed. When expanding in the horizontal direction, it is necessary to connect the IRF and ORE outputs of the right most device (most significant device) to the TTS and $\overline{T O S}$ inputs respectively of all devices to the left (less significant devices).
As in the vertical expansion scheme, horizontal expansion does not require sacrificing any of the FIFO's flexibility for Serial/Parallel input and output.

HORIZONTAL AND VERTICAL EXPANSION - The 34703 can be expanded in both the horizontal and vertical direction without any external parts and without sacrificing any of the FIFO's flexibility for Serial/Parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6.
Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6 . The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.

Fig. 4

FAIRCHILD CMOS • MACROLOGIC • 34703

Fig. 7
SERIAL DATA ENTRY FOR ARRAY OF FIG. 6

$\overline{\mathrm{ORE}}$
Fig. 8

Fig. 9
FINAL POSITION OF A 496-BIT SERIAL INPUT

34704
 DATA PATH SWITCH
 FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The 34704 Data Path Switch (DPS) is a combinatorial array for closing data path loops around arithmetic/logic networks such as the 34705 (Arithmetic Logic Register Stack). A total of 32 instructions (see Table 1) facilitate logic shifting, byte swapping, masking, sign extension, introduction of common constants and other operations.
The 5-bit Instruction word ($\mathrm{I}_{0-1} 4$) selects one of the 32 instructions operating on two sets of 4-bit Data Inputs $\left(\bar{D}_{0}-\bar{D}_{3}, \bar{K}_{0}-\bar{K}_{3}\right)$. Shift Left Input ($\left.\overline{\mathrm{LI}}\right)$ and Output ($\overline{\mathrm{LO}}$) and Shift Right Input $(\overline{\mathrm{RI}})$ and Output ($\overline{\mathrm{RO}}$) are available for expansion in 4-bit increments. An active LOW Output Enable Input ($\overline{\mathrm{EO}})$ provides for 3 -state control of the Data Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$ for bus oriented applications.
The 34704 is packaged in the new slim 24-pin Dual In-Line package.

- EXPANDABLE IN MULTIPLES OF FOUR BITS
- TWO 4-BIT DATA INPUT BUSES
- 4-BIT DATA OUTPUT BUS WITH 3-STATE OUTPUT BUFFERS
- USEFUL FOR BYTE MASKING AND SWAPPING
- PROVIDES ARITHMETIC OR LOGIC SHIFT
- PROVIDES FOR SIGN EXTENSION
- GENERATES COMMONLY USED CONSTANTS
- NEW SLIM 24-PIN DIP

PIN NAMES

$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{~K}}_{0}-\overline{\mathrm{K}}_{3}$	Data Inputs (Active LOW) Instruction Word Input $\overline{I O}-14$
$\overline{\mathrm{LI}}$	Shift Left Input (Active LOW)
$\overline{\overline{L O}}$	Shift Left Output (Active LOW)
$\overline{\mathrm{RI}}$	Shift Right Input (Active LOW)
$\overline{\mathrm{RO}}$	Shift Right Output (Active LOW)
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{\bar{O}_{0}-\bar{O}_{3}}$	Data Output (Active LOW)

LOGIC SYMBOL
CONNECTION DIAGRAM DIP (TOP VIEW)
NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

TABLE 1
INSTRUCTION SET FOR THE 34704

[^14]* A Trademark of Fairchild Camera and Instrument Corporation.

34705
 ARITHMETIC LOGIC REGISTER STACK FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The Arithmetic Logic Register Stack (ALRS) is designed to implement general registers in programmable digital systems. The device contains a 4-bit arithmetic logic unit (ALU), an 8 -word by 4 -bit RAM and associated control logic. The ALU implements eight arithmetic and logic functions where one 4-bit operand is supplied from an external source (input data bus) and the second 4-bit operand is supplied internally from one of the eight RAM words selected by the Address Inputs ($A_{0}-A_{2}$). The result of the operation performed on the operands is loaded into the same RAM location and simultaneously loaded into the output register, making it available at the 3 -state output data bus.

The 34705 operates on four bits of data but features are provided for expansion to longer word lengths. Carry Propagate and Carry Generate outputs are provided for an external carry lookahead where maximum operating speed is required. In applications where high speed arithmetic is not needed, ripple expansion may also be implemented. The 34705 provides three status signals - Zero, Negative and Overfiow - to qualify the result of an operation.
The 34705 is a member of Fairchild's 34000 CMOS Macrologie family and is available in the new slim 24-pin Dual In-Line package.

- EIGHT GENERAL REGISTERS/ACCUMULATORSIN A SINGLE PACKAGE
- 2 MHz MICROINSTUCTION RATE
- VERY LOW POWER - IDEAL FOR EATTERY OPERATION
- EXPANDABLE IN MULTIPLES OF FOUR BITTS
- PROVIDES FOR RIPPLE OR CARRY LOOKAHEAD
- IMPLEMENTS 64 MICROINSTRUCTIONS
- PROVIDES THREE STATUSISIGNALS - ZERO, NEGATIVE AND OVERFLOW
- 3-STATE OUTPUTS
- NEW SLIM 24-PIN DIP

PIN NAMES

$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Instruction Inputs
$\mathrm{I}_{0}^{-1} 2$	ALU Instruction Inputs
MSS	Most Significant Slice Input
$\overline{\mathrm{CP}}$	Clock Input
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{EX}}$	Execute Input (Active LOW)
$\overline{\bar{O}_{0}} \bar{O}_{3}-\mathrm{O}_{3}$	Data Outputs (Active LOW)
\bar{W}	Ripple Carry Output (Active LOW, Note a)
\bar{X}	Carry Propagate Output (Active LOW, Note b)
\bar{Y}	Carry Generate Output (Active LOW, Note c)
\bar{Z}	Zero Status Output (Active HIGH, Open Drain)

NOTES:

a. \bar{W} output also carries instruction information.
b. \bar{X} output provides negative status on most significant slice.
c. \bar{Y} output provides overflow status on most significant slice.

TABLE 1
INSTRUCTION FIELD ASSIGNMENT

$l_{2} l_{1} l_{0}$	INTERNAL OPERATION
L L L	$R \times$ plus D-Bus plus $1 \rightarrow R \times$
L L H	$R x$ plus D-Bus \rightarrow Rx
L H H	$R x \cdot D-$ Bus \rightarrow Rx (Logic AND)
L H H	$D-B u s \rightarrow R x$
H L L	$R x \rightarrow R x$
H L H	$R x+D-B u s \rightarrow R x$ (Logic OR)
H H L	$R \mathrm{x} \oplus \mathrm{m}^{\text {D - Bus } \rightarrow R x}$
H H H	$\overline{\text { D-Bus }} \rightarrow$ Rx

$H=$ Logic HIGH Level L = Logic LOW Level

NOTES:

1. $R x$ is the RAM location addressed by $A_{0}-A_{2}$.
2. The result of any operation is always loaded into the Output Register.

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram, the 34705 Arithmetic Logic Register Stack (ALRS) consists of a 4-bit ALU, an 8-word by 4-bit RAM with output latches, an instruction decode network, control logic, and a 4-bit output register.

The ALU receives the active LOW input data ($\bar{D}_{0}-\bar{D}_{3}$) as one operand while the RAM provides the second operand through latches. The ALU output is stored in both the RAM and output register. The active LOW output data bus $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ is obtained from the output register through 3-state buffers. An active LOW Output Enable ($\overline{E O}$) input controls these buffers; a HIGH level on $\overline{\mathrm{EO}}$ disables them (high impedance state).

The instruction bus for the 34705 consists of two fields, A and $I_{;} A_{0}, A_{1}, A_{2}$ specify the desired location on the RAM and I_{0}, I_{1}, I_{2} specify the desired function to be performed. Table 1 lists Instruction Field Code assignments. Thus, the 34705 provides eight registers ($R_{0}-R_{7}$) and eight different operations may be performed on any of these registers. The I_{0}, I_{1}, I_{2} inputs are decoded by the instruction decode network to generate necessary control signals for the ALU. The ALU also generates and transmits to the control logic the following signals: carry out, carry propagate, carry generate, negative status and overflow status. The control logic manipulates the status signals as a function of I_{0}, I_{1}, I_{2} and a control input MSS. A HIGH level on the MSS (Most Significant Slice Input) declares the most significant slice in a 34705 array. All devices, except the most significant 34705, should have a LOW level (ground) on the MSS input. The control logic generates three device outputs, \bar{W}, \bar{X} and \bar{Y} for arrayed operation of 34705 arrays. An all zero result from the ALU is decoded and presented at the open drain Zero Status (Z) Output.
The I_{0} input serves a dual purpose: for arithmetic instructions, it is used as the carry input and for non-arithmetic instructions it serves as an instruction input. This is possible because only two arithmetic instructions require carry. The dual purpose use of io plays an important role in 34705 expansion schemes.

OPERATION - The 34705 operates on a single clock. CP and EX are inputs to a 2 -input active LOW AND gate. A microcycle starts as the clock goes HIGH. For normal operation the Execute ($\overline{E X}$) ${ }^{\text {is }}$ LOW. Data is read from the RAM through enabled latches and applied as one operand to the ALU. Data inputs ($\bar{D}_{0}-\bar{D}_{3}$) are applied to the $A L U$ as the other operand and the operation as determined by instruction lines I_{0}, I_{1}, I_{2} is executed. When CP is LOW, the latches are disabled and the result of the operation is written back into the RAM provided that EX is LOW. Then A lines must obviously be held stableduring this time. On the LOW-to-HIGH CP transition, the result of the operation is loaded into the output register and a new microcycle can stat If EX is held HIGH, the operation selected by the I and A inputs is performed, but the result is not written back into the RAM and is tot clocked into the output register.

34705 ARRAYS

The 34705 is organized to operate on a 4-bit wide data bus but can easily be expanded for longer words. Expansion requires that carries from lesser significant slices be propagated towards the most significant slice. The 34705 provides full lookahead capability for high speed arithmetic. Appropriate Carry Geherate (\bar{Y}) and Carry Propagate (\bar{X}) outputs are provided so that only one external carry lookahead generator is needed for every four 34705 s . When speed is not a prime consideration, it is possible to implement ripple carry expansion.

In arrayed operation,-it is common to bus $\overline{E X}, C P$ and $\overline{E O}$ inputs of all devices. The Z output is open drain and is normally OR-tied with the other devices and to an external load resistor so that a HIGH level indicates a zero result from an operation in the array.
Figure 2 shows a ripple carry 16 -bit wide array using four 34705 s. The MSS input is tied to $V_{D D}$ on the most significant slice (ALRS 4). The MSS input of the other devices are tied to ground ($V_{S S}$). The instruction bus of this array consists of A-Field and I-Field. A-Field is obtained by connecting corresponding A inputs of all 4 devices. The I_{0} input of device 1 (i.e., least significant slice) in conjunction with the bussed I_{1}, I_{2} inputs forms the 1 -Field for the array. The I_{0} inputs of devices 2,3 and 4 are connected to the \bar{W} outputs of devices 1,2 and 3 respectively. The ALU network generates the carry propagate output. The control logic operates on this signal as a function of I_{1} and I_{2} to generate the \bar{W} output. If both I_{1} and I_{2} are LOW (i.e., an arithmetic instruction), the \bar{W} output is the carry output of that slice. In case of non-arithmetic instructions, it will assume the state of the I_{0} input. Thus, in Figure 1, if an arithmetic instruction is specified, carry will propagate through the \bar{W} output to I_{0} input of the next higher significant slice. On the other hand, non-arithmetic instructions will effectively connect all I_{0} inputs together to form the I-Field for the array. The \bar{W} output of device 4 is the carry output from the array. The control logic also generates \bar{X} and \bar{Y} outputs which participate in expansion when full carry lookahead is required. These outputs are normally ignored in ripple expansion except for the most significant slice. If a device is the most significant slice, \bar{X} and \bar{Y} correspond to negative and overflow status signals. Thus \bar{X} output of Device 4 will be LOW, if the result of an operation has its most significant bit as " 1 " (i.e., negative result). Similarly a LOW level on \bar{Y} output of device 4 indicates that arithmetic overflow has occurred. If the two operands have the same sign and the result has opposite sign, then it is assumed that an overflow has occurred. It should be noted that \bar{W}, \bar{X} and \bar{Y} are not controlled by $\overline{E X}$ or CP. Figure 2 shows a 16 -bit array with full carry lookahead expansion. Implementation of the lookahead scheme requires the use of an external 34582 in addition to the four 34705s in the array. Since device 1 is the least significant and device 4 is the most significant slice, the MSS inputs of the first three devices are connected to ground while device 4 has a HIGH level at this input. The A-Field for the array instruction bus is obtained by connecting corresponding A inputs of all four devices. Bussed I_{1} and I_{2} inputs together with the I_{0} input of device 1 form the I-Field for the array. The I_{0} inputs for devices 2,3 and 4 are obtained from the 34582 carry outputs ($\mathrm{Cn}+\mathrm{x}, \mathrm{C}+\mathrm{y}+\mathrm{y}$ and $\mathrm{Cn}+\mathrm{z}$ respectively). Also the P and G inputs of 34582 are connected to \bar{X} and \bar{Y} outputs of the 34705 s as shown. The control logic in the 34705 (see Block Diagram) generates \bar{X} and \bar{Y} outputs as a function of I_{1}, I_{2} and MSS inputs as well as the carry generate and carry propagate outputs of the ALU. If the MSS input of a slice is LOW and an arithmetic instruction is specified, its \bar{X} output will reflect carry propagate and \bar{Y} will reflect carry generate outputs from that slice. For an arithmetic instruction the I_{0} input will be treated as carry-in into a slice irrespective of MSS. Thus, whenever I_{1} and I_{2} are LOW, the array behaves as an adder with full carry lookahead. The \bar{W} outputs still reflect carry output, which is ignored for devices 1,2 and 3 . The \bar{W} carry input to the array so the I_{0} input of device 1 must be connected to the appropriate 34582 input as shown.
When a non-arithmetic instruction is specified to the array, the control logic of the 34705 forces a LOW level on \bar{X} and a HIGH level on \bar{Y} outputs on all except the most significant slice. An examination of the 34582 logic reveals that whenever P is LOW and G is HIGH, the associated carry output is the same as the carry input. Thus, in Figure 2, devices 23 and 4 will assume the logic level as that presented to the I_{0} input of device 1 during non-arithmetic instructions effectively bussing I_{0} through all four depvices. As in the case of ripple expansion, X and \bar{Y} outputs of device 4 represent negative and overflow from the array.

FIG. 1

FIG. 2

34706
 PROGRAM STACK
 FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The 34706 is a 16 -word by 4 -bit "Push-Down Pop-Up" Program Stack. It is designed to implement Program Counter (PC) and return address storage for nested subroutines in programmable digital systems. The 34706 executes four instructions: Return, Branch, Call and Fetch as specified by a 2-bit instruction. When the device is initialized, the program counter (PC) is in the top location of the stack. As a new PC value is "pushed"tinto the stack (Call Operation), all previous PC values effectively move down one level. The toplocation of the stack is the current PC. Up to 16 PC values can be stored, which gives the 34706 a 15 level nesting capability. "Popping" the stack (Return Operation) brings the most recent $P C$ to the top of the stack and makes it available at the two output buses. The remaining two instructions affect only the top location of the stack. In the Branch Operation a new PC value is loaded into the top location of the stack from the $\bar{D}_{0}-\bar{D}_{3}$ inputs. In the Fetch Operation, the contents of the top stack location (current PC value) are put on the $X_{0}-X_{3}$ bus and the current $R C$ value is incremented.

The 34706 may be expanded to any word length without additional logic. Three-state output drivers are provided on the 4 bit Address $\left(X_{0}-X_{3}\right)$ and Data Outputs, $\left(\bar{O}_{0}-\bar{O}_{3}\right)$; the X-bus outputs are enabled internally and gnly during the Fetch Instruction whereas the O-bus outputs are controlled by an Output Enable ($\overline{E O}_{0}$). Two status outputs, Stack Full ($\overline{\mathrm{SF}}$) and Stack Empty ($\overline{\mathrm{SE}}$) are provided. The 34706 is a member of Fairchild's 34000 CMOS Macrologic family, and is available in the new slim 24-pint package.

- 16-WORD BY 4-BIT LIFO
- 15-LEVEL NESTING CAPABILITY
- VERY LOW POWER - IDEAL FOR BATTERY OPERATION
- RELATIVE ADDRESSING CAPABILITY
- 2 MHz MICROINSTRUCTION RATE
- PROGRAM COUNTER LOADABLE FROM DATA BUS
- OPTIONAL AUTOMATIC INCREMENT OF PROGRAM COUNTER
- STACK LIMIT STATUS INDICATORS
- NEW SLIM 24-PIN DIP

PIN NAMES

$\overline{\mathrm{D}}_{\mathrm{O}}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)
$\mathrm{I}_{0}, \mathrm{I}_{1}$	Instruction Inputs
$\overline{\mathrm{EX}}$	Execute Input (Active LOW)
CP	Clock Input
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)
$\overline{\mathrm{Cl}}$	Carry Input (Active LOW)
$\overline{\mathrm{EO}} \mathrm{O}_{0}$	Output Enable Input (Active LOW)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Output Data Outputs (Active LOW)
$\overline{\mathrm{X}}_{0}-\overline{\mathrm{X}}_{3}$	Address Outputs
$\overline{\mathrm{CO}}$	Carry Output (Active LOW)
$\overline{\mathrm{SF}}$	Stack Full Output (Active LOW)
$\overline{\mathrm{SE}}$	Stack Empty Output (Active LOW)

[^15]

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram, the 34706 consists of an input multiplexer, a 16×4 RAM with output latches addressed by the Stack Pointer (SP), an incrementor, control logic, and output buffers. The 34706 is organized around three 4 -bit buses; the Input Data (D) Bus ($\overline{\mathrm{D}}_{0}, \overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \overline{\mathrm{D}}_{3}$), Output Data (O) Bus ($\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$) and the Address (X) Bus ($\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$). The 34706 implements four instructions as determined by inputs I_{0} and I_{1}. (See Table 1). The O -bus is derived from the RAM output latches and enabled by the active LOW Output Enable ($\overline{\mathrm{EO}}_{0}$) input. The X-bus is also derived from the output latches; it is enabled internally during the Fetch Instruction. Execution of instructions is controlled by the Execute ($\overline{E X}$) and Clock (CP) inputs.

FETCH OPERATION - The Fetch Operation places the content of the current Program Counter (PC) on the X-bus. If the Carry In ($\overline{\mathrm{CI}) ~ i s ~ L O W, ~}$ the current PC is incremented in preparation for the next Fetch. If $\overline{\mathrm{CI}}$ is HIGH, the value of the current program is unchanged, (Iterative Fetch).

The instruction code is set up on the I lines when CP is HIGH. The active level LOW Execute ($\overline{E X}$) is normally set up at this time as well. The control logic interprets I_{0} and I_{1} and selects the incrementor output as the data source to the RAM via the input multiplexer. The current PC value is loaded into the latches and is available on the O-bus if $\overline{\mathrm{EO}}_{0}$ is LOW. When CP is LOW (assuming $\overline{\mathrm{EX}}$ is also LOW) the output latches are disabled from following the RAM output and the X -bus Output buffers are enabled, applying the current PC to the X -bus. The output of the incrementor is written into the RAM during the period when CP and $\overline{E X}$ are LOW. If $\overline{C l}$ is LOW, the value stored in the current PC, plus one, is written into the RAM. If $\overline{\mathrm{Cl}}$ is HIGH , the current PC is not incremented. Carry Out ($\overline{\mathrm{CO}}$) is LOW when the contents of the current PC is at its maximum, i.e., all ones. When $C P$ or $\overline{E X}$ goes $H I G H$, writing into the RAM is inhibited and the Address buffers $\left(X_{0}-X_{3}\right)$ are disabled.

BRANCH OPERATION - During a Branch Operation, the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) are loaded into the current program counter.
The instruction code and the $\overline{E X}$ input are set up when CP is HIGH. The stack pointer remains unchanged. When CP goes LOW (assuming $\overline{E X}$ is LOW), the D-bus inputs are written into the current PC. The X-bus drivers are not enabled during a Branch Operation.
CALL OPERATION - During a Call Operation the content of the data bus is loaded into the top location of the stack and all previous PC values are effectively moved down one level.
The instruction code and the $\overline{E X}$ input are set up when CP . s HIGH. When $\overline{E X}$ is LOW, a "one" is added to the stack pointer value thus incrementing the RAM address. When CP is LOW (assuming $\overline{E X}$ is LOW), the D-bus inputs are written into this new RAM location. On the LOW-to-HIGH CP transition, the incremented stack pointer value is loaded-into the stack pointer register. When the RAM address is " 1111 " the Stack Full output ($\overline{\mathrm{SF}}$) is LOW, indicating that no further Call Operations should be initiated. If an additional Call Operation is performed $\overline{\mathrm{SP}}$ is incremented to " 0000 ", the contents of that location will be written over, $\overline{\mathrm{SF}}$ will go HIGH and the Stack Empty ($\overline{\mathrm{SE}}$) will go LOW.

The X-bus drivers are not enabled during a Call Operation.
RETURN OPERATION - Durihg the Beturn Operation the previous PC is "popped" to become the current PC.
The instruction is set up when CP is HIGH. When $\overline{E X}$ is LOW, a "one" is subtracted from the stack pointer value, thus decrementing the RAM address, presenting the popped PC value through the enabled latches to the three-state O-bus drivers. When CP is LOW, the latches are disabled, thereby holding the new current value of the PC. On the LOW-to-HIGH CP transition the decremented stack pointer value is loaded into the stack pointef register.

The X -bus drivers are not enabled during a return operation.
When the RAM address is " 0000 ", the Stack Empty output ($\overline{S E}$) is LOW, indicating that no further return operations should be initiated. If an additional Return Operation is performed, $\overline{\mathrm{SP}}$ is decremented to "1111", the $\overline{\mathrm{SE}}$ will go HIGH and the Stack Full output ($\overline{\mathrm{SF}}$) will go LOW. Operation of the active LOW Master Reset ($\overline{\mathrm{MR}}$) causes the $\overline{\mathrm{SP}}$ to be reset and the contents of that RAM location (0000) to be cleared. The Stack Empty ($\overline{\mathrm{SE}}$) output goes LOW. This operation overrides all other inputs.
MULTIPLE 34706 OPERATION - The 34706 may be expanded to any word length in multiples of four without external logic. The connection for expanded operation is shown in Figure 1. Carry In ($\overline{\mathrm{Cl}}$) and Carry Out ($\overline{\mathrm{CO}}$) are connected to provide automatic increment of the current program counter during the Fetch Operation. The $\overline{\mathrm{Cl}}$ input of the least significant 34706 is tied LOW to ground; the $\overline{\mathrm{CO}}$ input of the least significant 34706 is connected to the $\overline{\mathrm{Cl}}$ input of the next significant 34706 .

FIGURE 1. 34706 EXPANSION A 16 BY 12 PROGRAM STACK
*Tie to $V_{D D}$ to disable automatic increment.

34707
 DATA ACCESS REGISTER
 FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The 34707 Data Access Register (DAR) performs memory address arithmetic for RAM resident stack applications. It contains three 4-bit registers intended for program counter (R_{0}), stack pointer $\left(R_{1}\right)$ and operand address $\left(R_{2}\right)$. The 34707 implements 16 instructions (see Table 1) which allow either pre or post decrement/increment and register-to-register transfer in a single clock cycle. It is expandable in 4-bit increments and can operate at a 2 MHz microinstruction rate on a 16 -bit word. The 3 -state outputs are provided for bus oriented applications. The 34707 is packaged in the new slim 24-pin Dual In-Line package.

- 16 INSTRUCTIONS FOR ADDRESS MANIPULATION
- EXPANDABLE IN 4-BIT INCREMENTS
- OPTIONAL PRE OR POST INCREMENTIDECREMENT
- 3-STATE OUTPUTS
- 2 MHz MICROINSTRUCTIONRATE ON A 16-BIT WORD
- NEW SLIM 24-PIN DIP

PIN NAMES

${ }^{1} 0^{-1} 3$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\overline{C P}$
$\overline{C I}$
$\overline{C O}$
$\overline{E X}$
$\overline{E O_{X}}$
E_{0}
$X_{0}-X_{3}$
$\mathrm{X}_{0} \mathrm{O}^{-X} \mathrm{X}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Instruction Word Inputs
Data Inputs (Active LOW)
Clock-Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Carry Input (Active LOW)
Carry Output (Active LOW)
Execute Input (Active LOW)
Address Output Enable Input (Active LOW)
Data Output Enable Input (Active LOW)
Address Outputs
Data Outputs (Active LOW)

TABLE 1
INSTRUCTION SET FOR THE 34707

INSTRUCTION				COMBINATORIAL FUNCTION AVAILABLE ON THE X-BUS	SEQUENTIAL FUNCTION OCCURRING ON THE NEXT RISING CP EDGE
I_{3}	I_{2}	11	10		
L	L	L	L	R_{0}	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0 -register
L	L	L	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
L	L	H	L	R_{0}	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
L	L	H	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and O-register
L	H	L	L	R_{0}	
L	H	L	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
L	H	H	L	R_{1}	
L	H	H	H	R_{1} plus D plus Cl	R_{1} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register
H	L	L	L	R_{2}	
H	L	L	H	D plus Cl	D plus. $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	L	H	L	R_{0}	
H	L	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
H	H	L	L	R_{2}	
H	H	L	H	R_{2} plus D plus Cl	R_{2} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and O-register
H	H	H	L	R_{1}	
H	H	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register

[^16]*A Trademark of Fairchild Camera and Instrument Corporation.

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION - The 34707 contains a 4 -bit slice of three registers ($\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}$) , a 4 -bit adder, a 3 -state address output buffer ($X_{0}-X_{3}$), and a separate output register with 3 -state buffers $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$, that can put the register contents on the data bus (refer to the Block Diagram). The DAR can perform 16 instructions, selected by $0^{-1} 3$, as listed in Table 1.
OPERATION - The 34707 operates on a single clock. CP and $\overline{E X}$ are inputs to a two input, active LOW AND gate. For normal operation $\overline{E X}$ is LOW. A microcyle starts as the clock goes HIGH. Data inputs $\bar{D}_{0}-\bar{D}_{3}$ are applied to the Adder as one of the operands. Three $\left(I_{1}, I_{2}, I_{3}\right)$ of the four instruction lines select which of the three registers, if any, is to be used as the other operand. The next LOW-to-HIGH CP transition writes the result from the Adder into one register $\left(\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}\right)$ and into the output register provided $\overline{\mathrm{EX}}$ is LOW. If the I_{0} instruction input is HIGH, the multiplexer routes the result from the Adder to the 3 -state buffer controlling the address bus ($\mathrm{X}_{0}-\mathrm{X}_{3}$) independent of EX and CP . If I_{0} is LOW, the multiplexer routes the output of the selected register directly into the 3 -state buffer controlling the address bus ($\mathrm{X}_{0}-\mathrm{X}_{3}$), independent of $\overline{E X}$ and $C P$.
34707 ARRAYS - The 34707 is organized as a 4 -bit register slice. The active LOW $\overline{\mathrm{Cl}}$ and $\overline{\mathrm{CO}}$ lines allow ripple-carry expansion over longer word lengths.
APPLICATIONS - In a typical application, the register utilization in the DAR may be as follows: R_{0} is the program counter (PC), R_{1} is the stack pointer (SP) for memory resident stacks and R_{2} contains the operand address. For an instruction fetch, PC can be gated on the X-bus while it is being incremented (i.e., D-bus $=1$). If the instruction fetched calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC and loaded into R_{2} during the next microcycle.

34710
 16×4 BIT CLOCKED RAM WITH 3-STATE OUTPUT REGISTER FAIRCHILD CMOS MACROLOGIC*

DESCRIPTION - The 34710 is a register-oriented 64-Bit Read/Write Memory organized as 16 words by four bits. An edge-triggered 4-bit output register allows new data to be written while the previous data is held. The 3 -state data outputs provide flexibility and make the 34710 compatible with the other bus oriented circuits in the CMOS Macrologic family.
The 34710 consists of a 16×4-bit RAM selected by the four Address Inputs ($A_{0}-A_{3}$) and an edge-triggered 4-bit output register with 3 -state output buffers.
WRITE OPERATION - When the three control inputs; Write Enable ($\overline{W E}$), Chip Select ($\overline{C S}$), and Clock (CP), are LOW the information on the Data Inputs ($\bar{D}_{0}-\bar{D}_{3}$) is written into the memory location selected by the Address Inputs ($A_{0}-A_{3}$). If the input data changes while $\overline{W E}, \mathrm{CS}$, and CP are LOW, the contents of the selected memory location follows these changes, provided set-up time criteria are met.
READ OPERATION - Whenever $\overline{C S}$ is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the Address Inputs $\left(A_{0}-A_{3}\right)$ is edge triggened into the Output Register.
A 3-State Output Enable ($\overline{\mathrm{EO}}$) controls the output buffers. When $\overline{\mathrm{EO}}$ is HIGH the four Outputs $\left(\bar{Q}_{0}-\bar{Q}_{3}\right)$ are in a high impedance or OFF state; when $\overline{\mathrm{EO}}$ is low, the Outputs are determined by the state of the output register.

- EDGE-TRIGGERED OUTPUT REGISTER
- 3-STATE OUTPUTS
- OPTIMIZED FOR REGISTER STACK OPERATION
- 18-PIN PACKAGE

PIN NAMES

$A_{0}^{-} A_{3}$
$\overline{D_{0}}-D_{3}$
$\overline{C S}$
$\overline{E O}$
$\overline{W E}$
$C P$
$\bar{Q}_{0}-\bar{Q}_{3}$

Address mputs

Data linputs (Active LOW)
Chip Select (Active LOW) Input
Output Enable (Active LOW) Input
Write Enable (Active LOW) Input
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Buffered Outputs (Active LOW)

* A Trademark of Fairchild Camera and Instrument Corporation.

34731
 QUAD 64-BIT STATIC SHIFT REGISTER
 FAIRCHILD CMOS LSI

DESCRIPTION - The 34731 is a Quad 64-Bit Shift Register each with separate Serial Data Inputs ($\mathrm{D}_{\mathrm{A}}-\mathrm{D}_{\mathrm{D}}$), Clock Inputs ($\overline{\mathrm{CP}}_{\mathrm{A}} \cdot \overline{C P}_{\mathrm{D}}$) and Data Outputs ($\mathrm{O}_{63 \mathrm{~A}}-\mathrm{O}_{63 \mathrm{D}}$) from the 64th register position. Information present on the Serial Data Inputs is shifted inta the first tegister position and all the data in the register is shifted one position to the right on a HIGH-to-LOW transition of the Clock Inputs $\left.\overline{C P}_{A} \cdot \overline{C P}_{D}\right)$.
Low impedance outputs are provided for direct interface to TTL.

- FREQUENCIES UP TO $4 \mathrm{MHzat} \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- SERIAL-TO-SERIAL DATA PRANSFEER
- SEPARATE Clock inputs bada inputs and FULLY BUFFERED OUTRUTS FOR EACH REGISTER
- DIRECT INTERFACE TOITTL
- 14-PIN PACKAGE

PIN NAMES

$\frac{D_{A}-D_{D}}{C P_{A}-C P_{D}}$	Serial Data Inputs
$Q_{63 A}-Q_{63 D}$	Clock Input (H H Edge-Triggered)

Serial Data Inputs

Buffered Outputs from the 64th Register Position

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOGIC SYMBOL

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$

DESIGN CONSIDERATIONS WITH 34000
 SERIES CMOS
 2

\square
FAIRCHILD FIELD SALES OFFICES
AND DISTRIBUTOR OUTLETS

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CMOS TO TTL DRIVER

9LS04 Hex Inverter

(Reference: Fairchild Low Power TTL Data Book)

CMOS TO 7-SEGMENT LED DISPLAY
9374 7-Segment Decoder/Driver/Latch
(Reference: Fairchild 9374 Data Sheet)

When multi-TTL drive capability is required, the CMOS 34049 and 34050 Hex Buffers can be used to drive two standard TTL loads with typical delays of $45 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$. However, the 9LS04 drives five standard TTL loads with typical delays of 5 ns . The 9LS04 must be operated from a 5 V TTL supply, but it can accept input voltage to 11 V , allowing its use with CMOS operated up to 10 V .

- 34000 COMPATIBLE INPUTS
- DRIVES FIVE TTL LOADS
- 5 ns DELAY
- ACCEPTS 11 V INPUTS
- 2 mW PER INVERTER

MOS TO LED DIGIT DRIVER
9664 MOS to LED Digit Driver
(Reference: Fairchild 9664 Data Sheet)

This driver is ideal for driving high current devices such as LEDs, relays and lamps. High input impedance allows direct drive from 34000 CMOS devices; however, there is some degradation in logic level at the CMOS output. The 9664 is specified to 10 V operation, the 9664 A to 20 V .

- 150 mA SINK CAPABILITY
- CMOS COMPATIBLE INPUTS
- VERY LOW STANDBY POWER
- SIX HIGH GAIN DARLINGTON CIRCUITS
- 10 AND 20 V OPERATION

9664/9664A LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

This bipolar device contains latches for storage, a 7 -segment decoder and 15 mA constant current drivers. The 9374 must operate at 5 V ; its inputs are also limited to 5 V .

- HIGH SPEED INPUT LATCHES FOR DATA STORAGE
- 15 mA CONSTANT CURRENT SINK CAPABILITY TO DIRECTLY DRIVE COMMON ANODE LED DISPLAYS
- INCREASES INCANDESCENT DISPLAY LIFE
- DATA INPUT LOADING ESSENTIALLY ZERO WHEN LATCH DISABLED
- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING EDGE ZEROS AND/OR TRAILING EDGE ZEROS

BIPOLAR INTERFACE CIRCUITS FOR CMOS (Cont'd)

ONE-SHOT MULTIVIBRATOR

96L02 Low Power Dual
Retriggerable Resettable Monostable Multivibrator
(Reference: Fairchild Low Power TTL Book)
The 96L02 is pin and function compatible with the 34528 Dual Monostable and exhibits improved stability and speed. It is usable in 5 V CMOS systems.

- TYPICAL POWER DISSIPATION OF $25 \mathrm{~mW} / O N E$ SHOT
- 50 ns TYPICAL PROPAGATION DELAY
- RETRIGGERABLE 0 TO 100\% DUTY CYCLE
- 34000 COMPATIBLE INPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR VCC AND TEMPERATURE VARIATIONS
- RESETTABLE

96L02 LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

[^17]VOLTAGE COMPARATOR
μ A775-Quad Comparator
(Reference: Fairchild μ A775 Data Sheet)

In a CMOS system it may be necessary to detect differences between two voltage levels and convert to logic levels. The $\mu \mathrm{A} 775$ Quad Comparator is capable of operating over the CMOS power supply range. These comparators have a unique characteristic in that the input common mode voltage range includes ground, even though operated from a single power supply voltage. Applications include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators and wide range V_{CO}.

- SINGLE SUPPLY OPERATION-+2.0 V TO +36 V
- COMPARES VOLTAGES NEAR GROUND POTENTIAL
- LOW CURRENT DRAIN-700 μ A TYPICAL
- COMPATIBLE WITH ALL FORMS OF CMOS
- LOW INPUT BIAS CURRENT-25 nA TYPICAL
- LOW INPUT OFFSET CURRENT-25 nA
- LOW OFFSET VOLTAGE-5 mV MAX

POWER SUPPLY REGULATOR
μ A78MG 4-Terminal Regulator
(Reference: Fairchild $\mu \mathrm{A} 78 \mathrm{MG} \bullet \mu \mathrm{A} 79$ MG Data Sheet)

This single compact regulator with its 500 mA capability is sufficient for all but the very largest CMOS systems. The adjustable output voltage feature allows fine tuning of system speed product.

- OUTPUT CURRENT IN EXCESS OF 0.5 A
- POSITIVE OUTPUT VOLTAGE 5 TO 30 V
- INTERNAL THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT CURRENT PROTECTION
- OUTPUT SAFE AREA PROTECTION
- POWER MINI DUAL IN-LINE PACKAGE

DESIGN CONSIDERATIONS WITH 34000 : O O
SERIES CMOS

TECHNICAL DATA
3

ORDER AND PACKAGE INFORMATION

Fairchild CMOS circuits may be ordered using a simplified purchasing code where the package style and temperature range are defined as follows:
PACKAGE STYLE
$D=$ Dual In-Line - Ceramic (hermetic)
$P=$ Dual In-Line - Plastic
F = Flatpak

In order to accommodate varying die sizes and numbers of leads (14, 16, 24, etc.), a number of different package forms are required. The Package Information list on the following pages indicates the specific package codes currently used for each device type. The detailed package outline corresponding to each package code is shown at the end of this section.

Temperature Range

Two Basic temperature grades are in common use: $\mathrm{C}=$ Commercial-Industrial, $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{M}=$ Military, $-55^{\circ} \mathrm{C}$ to +125 'C. Exact values and conditions are indicated on the data sheets.

Examples

(a) 34014 FM

This number code indicates a 34014 Register in a Flatpak with military temperature rating.
(b) 34720 DC

This number code indicates a 34720256×1 RAM in a ceramic Dual In-Line package with commercial temperature rating.

Device Identification/Marking
All Fairchild standard catalog CMOS circuits will be marked as follows:
F Device Type XX Date Code

DEVICE	$\begin{gathered} \text { MILITARY (M) } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		COMMERCIAL (C)/INDUSTRIAL $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
34001	6A	31	6A	9A	31
34002	6A	31	6A	9A	31
34011	6A	31	6A	9A	31
34012	6A	31	6A	9A	31
34013	6A	31	6A	9A	31
34014	6B	4 L	6B	9 B	4L
34015	6B	4L	6B	9 B	4L
34016	6A	31	6A	9A	31
34017	6B	4 L	6B	9 B	4L
34019	6B	4L	6B	9 B	4L
34020	6B	4L	6B	9 B	4 L
34021	6B	4L	6B	9 B	4L
34023	6 A	31	6A	9A	31

DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
34024	6A	31	6 A	9A	31
34025	6A	31	6 A	9A	31
34027	6B	4L	6B	9B	4L
34028	6B	4L	6B	9 B	4L
34029	6B	4L	6B	9 B	4L
34030	6A	31	6A	9A	31
34035	6 B	4L	6B	9 B	4L
34040	6B	4L	6 B	9 B	4L
34042	6B	4L	6B	9 B	4L
34049	6 B	4L	6B	98	4L.
34050	6B	4 L	6B	9 B	4L
34051	6B	4L	6B	9 B	4L
34052	6B	4 L	6 B	9 B	4 L
34066	6A	31	6 A	9A	31
34068	6A	31	6 A	9A	31
34069	6A	31	6A	9A	31
34070	6A	31	6A	9A	31
34071	6A	31	6A	9A	31
34077	6A	31	6A	9A	31
34078	6A	31	6A	9A	31
34081	6A	31	6A	9A	31
34085	6A	31	6A	9A	31
34086	6A	31	6A	9A	31
34099	6B	4L	6B	9 B	4L
34104	6B	4L	6B	9 B	4L
34512	6B	4L	6B	9 B	4L
34518	6 B	4L	6B	98	4L
34520	6B	4L	6B	9 B	4L
34539	6 B	4L	6 B	9 B	4L
34555	6B	4L	6B	9 B	4L
34556	6B	4L	6B	9 B	4L
34702	6 B	4L	6 B	9 B	4L.
34720	6 B	4L	6B	9 B	4L
34723	6B	4L	6B	9 B	4 L
34725	6B	4L	6B	9 B	4L
340085	6 B	4L	6B	9 B	4L
340097	6B	4L	6B	9 B	4L
340098	6 B	4L	6B	9 B	4L
340160	6 B	4L	6B	9 B	4 L
340161	6B	4L	6B	9 B	4L
340162	6 B	4L	6 B	9 B	4L
340163	6 B	4L	6B	9 B	4L
340174	6B	4L	6B	98	4L
340175	6 B	4L	6B	9 B	4L
340192	6B	4L	6B	9 B	4L
340193	6B	4L	6B	9 B	4L
340194	6B	4L	6B	98	4L
340195	6B	4L	6 B	9 B	4 L

MATRIX VI PROGRAM ORDERING INFORMATION

Matrix VI is a full spectrum/cost effective reliability and quality program for commercial/industrial ICs only. It features six levels of screening/package flows, each tailored to a user's field application/environment and his incoming quality/ equipment reliability requirements.

A Matrix VI part number consists of the device type followed by the package code letter, the temperature range code letter, and the Matrix VI code letter (as applicable, see flow chart).

EXAMPLES

(f) 34001DCQR Device type 34001, packated in ceramic Dual In-Line, in commercial temperature range with
(a) 34001 PC
(b) 34001PCQM
(c) 34001 DC
(d) 34001 DCQM
(e) 34001 PCQR

Device type 34001, packaged in plastic Dual In-Line (P), in commercial temperature range (C) and processed to Matrix VI Level 1.

Device type 34001, packaged in plastic Dual In-Line (P), in commercial temperature range (C) with supplemental Matrix VI Level 2 testing including 100\% thermal shock, "hot rail" test and $0.15 \% \mathrm{AQL}$ functional testing.

Device type 34001, packaged in ceramic Dual In-Line (D), in commercial temperature range and processed to Matrix VI Level 3.

Device type 34001, packaged in ceramic Dual In-Line, in commercial temperature range (C) with supplemental Matrix VI Level 4 screening including second 100% DC/functional testing and 0.15% AQL functional testing.

Device type 34001, packaged in Dual In-Line, in commercial temperature range (C) with supplemental Matrix VI Level 5 screening including 100\% thermal shock, "hot rail" test, 168 hours $125^{\circ} \mathrm{C}$ burn-in and 0.15% AQL functional testing. supplemental Matrix VI Level 6 screening including burn-in, three 100% DC/functional tests and 0.15% AQL functional testing.

6 MATRIX VI PROCESS FLOW OPTIONS \& COST EFFECTIVENESS

NOTE:

1. Burn-in has the same relative effectiveness for plastic molded devices as for ceramic/hermetic packaged devices. Assuming a controlled (air conditioned and constant pawer) field application/environment, the reliability factor would be approximately $9 \times$. But should the field application be in a less controlled and power on/off application, the reliability factor would be approximately 7.5 X .

UNIQUE 38510

[^18]
PROCESS SCREENING REQUIREMENTS

MIL-STD-883 TEST METHODS
Preseal Visual MTD. 2010.1:

Bond Strength:

Seal:

High Temperature Storage:

Thermal Shock MTD 1011:

Temperature Cycle MTD 1010:

Mechanical Shock MTD 2002:

Constant Acceleration MTD 2001:

Hermetic Seal MTD 1014:

Pre Burn-in Electrical (5004.1):

Burn-in Screen MTD 1015:

Post Burn-in Electrical (5004.1):

Radiography MTD 2012:

Quality Conformance Inspection MTD 5005:1:

External Visual MTD 2009:

DESCRIPTION

Cond. A Maximum Visual Criteria
Cond. B Optimum Visual Criteria
FICF-ST-02011 Fairchild Standard
Bond strength is monitored on a sample basis three times per shift per mach.
Devices are hermetically sealed for compliance to MIL-STD-883 requirements

Cond. B Tstg $=125^{\circ} \mathrm{C}$ Specify Time
Cond. C Tstg $=150^{\circ} \mathrm{C}$
Cond. D Tstg $=200^{\circ} \mathrm{C}$
Cond. A $0^{\circ} / 100^{\circ} \mathrm{C} 15$ cycles
Cond. B $-55^{\circ} / 125^{\circ} \mathrm{C}$
Cond. B $-55^{\circ} / 125^{\circ} \mathrm{C}$
Cond. C $-65^{\circ} / 150^{\circ} \mathrm{C} 10$ cycles
Cond. D $-65^{\circ} / 200^{\circ} \mathrm{C}$
Cond. A 500 Gs 5 Shocks in X_{1}, X_{2}
Cond. B 1500 Gs $Y_{1}, Y_{2}, Z_{1} \& Z_{2}$
Cond. D 20000 Gs 2 minute in each
Cond. E $30000 \mathrm{Gs} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}$
Cond. F 50000 Gs $Z_{1} Z_{2}$
Cond. A Fine-Helium $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$
Cond. B Fine-Radiflo $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$
Cond. C1 Gross-FC43/Hot $10^{-3} \mathrm{cc} / \mathrm{sec}$
Cond. C2 Gross-FC78/Vacuum $10^{-5} \mathrm{cc} / \mathrm{sec}$
$25^{\circ} \mathrm{C}$ DC electrical testing to remove rejects prior to submission to burn-in screen

Cond. A, Cond. B, Cond. C
Cond. D and Cond. E
Post Burn-in electrical screening to cull out devices which failed as a result of burn-in. Test Parameters may include: $25^{\circ} \mathrm{C} D C, 125^{\circ} \mathrm{C}$ DC, $-55^{\circ} \mathrm{CDC}, 25^{\circ} \mathrm{CAC}$ and $25^{\circ} \mathrm{C}$ Functional tests.
$6 \mathrm{X}, 8 \mathrm{X}$ magnification and criteria specify number of views

Group A: Electrical Characteristics
Group B: Package oriented Tests
Group C: Environmental and Life Tests
3X, 20X magnification: Verify dimensions, configuration, lead structure, marking and workmanship

UNIQUE 38510 PROGRAM ORDERING INFORMATION

The Fairchild Unique 38510 Program is written in accordance with MIL-M-38510 and MIL-STD-883
To meet the need of improved reliability in the military market, CMOS Integrated Circuits are available with special processing. Devices ordered to this program are subjected to the 100% screening as outlined in the Process. Devices will be marked in accordance with MIL-M-38510 unless otherwise specified under number Option 6.

UNIQUE 38510 devices are not normally stocked by distributors.
Customer procurement documents should specify the following:
(a) Fairchild Product Code indicating the basic device type and package combination.
(b) The Unique 38510 Device Class. (A, B, C, S, P)
(c) Number and/or Letter Options required.
(d) Special Marking requirements.

The order code number consists of (a) and (b) as shown above. The order code detailed format is shown below.

Order code examples are:

34029FMOB
Class QB Unique 38510

34001DMQC
Class OC Unique 38510

Number Options: These options apply to operations performed on each unit delivered:
OPTION 1 Lead form to dimensions in detail specifications, followed by hermetic seal tests.
OPTION 2 Hot solder dip finish.
OPTION 3 Read and record critical parameters before and after burn-in.
OPTION 4 Initial qualification, Group B \& C quality conformance not required.
OPTION 5 Radiographic inspection shall be performed on all devices.
OPTION 6 Special marking required.
OPTION 7 Non-conforming variation - refer to procurement documents for details (must be negotiated with factory).
Letter Options: These options apply once per Purchase Order or line item and are considered Test Charges:
OPTION A Group B testing shall be performed on customer's parts.
OPTION B Group C testing shall be performed on customer's parts.
OPTION C Generic data to be supplied from the latest completed lot.
OPTION D Unique 38510 program plan, pertinent to the device family being purchased, shall be supplied.

PACKAGE OUTLINES

CERAMIC FLATPAKS - USED ON ALL FM DEVICES

In Accordance with JEDEC TO-86 Outline 14-Lead Cerpak

NOTES: All dimensions in inches Leads are gold-plated kovar Package weight is 0.26 gram Hermetically sealed alumina package Lead 1 orientation may be either tab or dot

16-Lead Cerpak

NOTES: All dimensions in inches
Leads are gold-plated kovar
Package weight is 0.4 gram Hermetically sealed bery!lia package

24-Lead BeO Cerpak

NOTES: All dimensions in inches
Leads are gold-plated kovar
Package weight is 0.8 gram
Hermetically sealed beryllia package

PACKAGE OUTLINES

CERAMIC PACKAGES - USED ON ALL DC AND DM DEVICES

6A
6B

14-Lead Ceramic Dual In-Line

NOTES: All dimensions in inches

Leads are intended for insertion in hole rows on .300' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead
Leads are tin-plated kovar
Package weight is 2.0 grams

16-Lead Ceramic Dual In-Line

NOTES: All dimensions in inches

Leads are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead
Leads are tin-plated kovar
Package weight is 2.0 grams

* The .037/.027 dimension does not apply to the corner leads

24-Lead Ceramic MSI Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .700' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Leads are tin-plated kovar
Package weight is 6.5 grams
Package material is alumina

PACKAGE OUTLINES

CERAMIC PACKAGES - USED ON ALL DC AND DM DEVICES

24-Lead Ceramic Dual In-Line

18-Lead Ceramic Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .300' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead Leads are tin-plated kovar

PLASTIC PACKAGES - USED ON ALL PC DEVICES

14-Lead Plastic Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .300' centers.
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead
Leads are tin-plated kovar
Package weight is 0.9 gram
Package material is silicone

16-Lead Plastic Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .300" centers.
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead
Leads are tin-plated kovar
Package weight is 0.9 gram

* The .037/.027 dimension does not apply to the corner leads

24-Lead Plastic MSI Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .700' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead Leads are tin-plated kovar

24-Lead Plastic Dual In-Line

NOTES: All dimensions in inches
Leads are intended for insertion in hole rows on .500" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter lead
Leads are tin-plated kovar

DESIGN CONSIDERATIONS WITH 34000 SERIES CMOS

TECHNICAL DATA

PRODUCTS PLANNED FOR 1975

ALABAMA

hallmark electronics
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-8700 TWX: 810-726-2187
HAMILTON/AVNET ELECTRONICS
805 Oster Drive, N.W.
Huntsville, Alabama 35805
Tel: 205-533-1170
Telex: None - use HAMAVLECB DAL 73-0511
(Regional Hq. in Dallas, Texas)

ARIZONA

HAMILTON/AVNET ELECTRONICS
2615 S. 21 st Street
Phoenix, Arizona 85034
Tel: 602-275-7851 TWX: 910-951-1535
LIBERTY ELECTRONICS/ARIZONA
3130 N. 27th Avenue
Phoenix, Arizona 85016
Tel: 602-257-1272 TWX: 910-951-4282

CALIFORNIA

AVNET ELECTRONICS
10916 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2345 TWX: 910-340-6364
ELMAR ELECTRONICS
2288 Charleston Rd.
Mountain View, California 94042
Tel: 415-961-3611 TWX: 910-379-6437
HAMILTON ELECTRO SALES
10912 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
HAMILTON/AVNET ELECTRONICS
575 E. Middlefield Road
Mountain View, California 94040
Tel: 415-961-8600 TWX: 910-379-6486
HAMILTON/AVNET ELECTRONICS
8917 Complex Drive
San Diego, California 92123
Tel: 714-279-2421
Telex: HAMAVELEC SDG 69-5415
G.S. MARSHALL COMPANY

9674 Telstar Avenue
EI Monte, California 91731
Tel: 213-686-0141 TWX: 910-587-1565
G.S. MARSHALL COMPANY

17975 Skypark Blvd.
Irvine, California 92707
Tel: 714-556-6400
G.S. MARSHALL COMPANY

8057 Raytheon Rd., Suite 1
San Diego, California 92111
Tel: 714-278-6350 TWX: 910-335-1191
G.S. MARSHALL COMPANY

788 Palomar Avenue
Sunnyvale, California 94086
Tel: 408-732-1100 TWX: 910-339-9263
LIBERTY ELECTRONICS
124 Maryland Street
EI Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
LIBERTY ELECTRONICS/SAN DIEGO
8248 Mercury Court
San Diego, California 92111
Tel: 714-565-9171 TWX: 910-335-1590
COLORADO
ELMAR ELECTRONICS
6777 E. 50th Avenue
Commerce City, Colorado 80022
Tel: 303-287-9611 TWX: 910-936-0770
G. S. MARSHALL COMPANY

5633 Kendall Court
Arvada, Colorado 80002
Tel: 303-423-9670 TWX: 910-938-2902
HAMILTON/AVNET ELECTRONICS
5921 N. Broadway
Denver, Colorado 80216
Tel: 303-534-1212 TWX: 910-931-0510
CONNECTICUT
HAMILTON/AVNET ELECTRONICS
643 Danbury Road
Georgetown, Connecticut 06829
Tel: 203-762-0361
TWX: None - use 710-897-1405
(Regional Hq. in Mt. Laurel, N.J.)
SCHWEBER ELECTRONICS
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500
FLORIDA
HALLMARK ELECTRONICS
1302 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
HALLMARK ELECTRONICS
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
HAMILTON/AVNET ELECTRONICS
4020 North 29th Avenue
Hollywood, Fiorida 33021
Tel: 305-925-5401 TWX: 510-954-9808
SCHWEBER ELECTRONICS
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

GEORGIA

HAMILTON/AVNET ELECTRONICS
6700 Interstate 85 Access Road, Suite 1E
Norcross, Ga. 30071
Tel: 404-448-0800
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

SCHWEBER ELECTRONICS
4126 Pleasantdale Rd., Suite 14
Atlanta, Ga. 30340
Tel: 404-449-9170

ILLINOIS

ALLIED ELECTRONICS
1355 Sleepy Hollow Road
Elgin, Illinois 60120
Tel: 312-697-8200
Telex: 72-2465 or 72-2466
KIERULFF ELECTRONICS
9340 Williams Street
Rosemont, tllinois 60018
Tel: 312-678-8560 TWX: 910-227-3166
HAMILTON/AVNET ELECTRONICS
3901 N. 25th Avenue
Schiller Park, Illinois 60176
Tel: 312-678-6310 TWX: 910-227-0060
SCHWEBER ELECTRONICS, INC
1380 Jarvis Ave
Elk Grove Village, III. 60007
Tel: 312-593-2740 TWX: 910-222-3453
SEMICONDUCTOR SPECIALISTS, INC
(mailing address)
O'Hare International Airport
P.O. Box 66125

Chicago, Illinois 60666
(shipping address)
195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, Illinois 60126
Tel: 312-279-1000 TWX: 910-254-0169

NDIANA

PIONEER INDIANA ELECTRONICS, INC 6408 Castleplace Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794
SEMICONDUCTOR SPECIALISTS, INC.
(mailing address)
Weir Cook Airport
P.O. Box 41630

Indianapolis, Indiana 46241
(shipping address)
1885 Banner Ave.
Indianapolis, Indiana 46241
Tel: 317-243-8271 TWX: 810-341-3126

IOWA

SCHWEBER ELECTRONICS
Suite 302, Executive Plaza
4403 First Avenue S E
Cedar Rapids, lowa 52402
Tel: 319-393-9125

KANSAS

HAMILTON/AVNET ELECTRONICS
37 Lenexa Industrial Center
9900 Pflumm Road
Lenexa, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

LOUISIANA

STERLING ELECTRONICS CORP.
5029 Veterans Memorial Highway
Metairie, Louisiana 70002
Tel: 504-887-7610
Telex: STERLE LEC MRIE 58-328

MARYLAND

HAMILTON/AVNET ELECTRONICS
(mailing address)
Friendship International Airport
P.O. Box 8647

Baltimore, Maryland 21240
(shipping address)
7255 Standard Drive
Hanover, Maryland 21076
Tel: 301-796-5000 TWX: 710-862-1861
Telex: HAMAVLECA HNVE 87-968
SCHWEBER ELECTRONICS
5640 Fisher Lane
Rockville, Maryland 20852
Tel: 301-881-2970 TWX: 710-828-0536
PIONEER WASHINGTON ELECTRONICS, INC.
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784

MASSACHUSETTS

HAMILTON/AVNET ELECTRONICS
185 Cambridge Street
Burlington, Massachusetts 01803
Tel: 617-273-2120 TWX: 710-332-1201
KIERULFF ELECTRONICS
13 Fortune Drive
Billerica, Massachusetts 01865
Tel: 617-667-8331 (Local)
617-935-5134 (from Boston Area)
TWX: 710-390-1449
SCHWEBER ELECTRONICS
213 Third Avenue
Waltham, Massachusetts 02154
Tel: 617-890-8484

MICHIGAN
HAMILTON/AVNET ELECTRONICS
12870 Farmington Rd.
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
PIONEER/DETROIT
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
SCHWEBER ELECTRONICS
86 Executive Drive
Troy, Michigan 48084
Tel: 313-583-9242
SHERIDAN SALES CO
24543 Indoplex Drive (P.O. Box 529)
Farmington, Mich 48024
Tel: 313-477-3800

MINNESOTA

HAMILTON/AVNET ELECTRONICS
7683 Washington Ave. South Edina, Minnesota 55435
Tel: 612-941-3801
TWX: None - use 910-227-0060 (Regronal Hiq. in Chicago, III.)

SCHWEBER ELECTRONICS
7015 Washington Ave. South
Edina, Minnesota 55435
Tel: 612-941-5280
SEMICONDUCTOR SPECIALISTS, INC.
8030 Cedar Avenue South
Minneapolis, Minnesota 55420
Tel: 612-854-8841 TWX: 910-576-2812

MISSOURI
HAMILTON/AVNET ELECTRONICS
364 Brookes Lane
Hazelwood, Missouri 63042
Tel: 314-731-1144
Telex: HAMAVLECA HAZW $44-2348$
SEMICONDUCTOR SPECIALISTS, INC.
3805 N. Oak Trafficway
Kansas City, Mo. 64116
Tel: 816-452-3900 TWX 910-771-2114
SEMICONDUCTOR SPECIALISTS, INC.
Lakeview Square
1020 Anglum Road
Hazelwood, Missouri 63042
Tel: 314-731-2400 TWX: 910-762-0645

NEW JERSEY

HAMILTON/AVNET ELECTRONICS
113 Gaither Drive
East Gate Industrial Park
Mt. Laurel, N.J. 08057
Tel: 609-234-2133 TWX: 710-897-1405
HAMILTON/AVNET ELECTRONICS
218 Little Falls Road
Cedar Grove, New Jersey 07009
Te!: 201-239-0800 TWX: 710-994-5787

K̄IERULFF ELECTRONIČS

\#5 Industrial Drive
Rutherford, New Jersey 07070
Tel: 201-935-2120 TWX: 710-989-0225
STERLING ELECTRONICS
774 Pfeiffer Blvd.
Perth Amboy, N.J. 08861
Tel: 201-442-8000 Telex: 138-679
SCHWEBER ELECTRONICS
43 Belmont Drive
Somerset, N.J. 08873
Tel: 201-469-6008 TWX: 710-480-4733

NEW MEXICO

CENTURY ELECTRONICS
121 Elizabeth, N.E.
Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625

HAMILTON/AVENT ELECTRONICS
2450 Baylor Dr. S.E.
Albuquerque, New Mexico 87119
Tel: 505-765-1500
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

NEW YORK

HAMILTON/AVNET ELECTRONICS
167 Clay Road
Rochester, New York 14623
Tel: 716-442-7820
TWX: None - use 710-332-1201 (Regional Hq. in Burlington, Mass.)

HAMILTON/AVNET ELECTRONICS
6500 Joy Road
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-0959
HAMILTON/AVNET ELECTPIONICS
70 State Street
Westbury, L.I., New York 11590
Tel: 516-333-5800 TWX: 510-222-8237
SCHWEBER ELECTRONICS
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
SCHWEBER ELECTRONICS, INC
2 Town Line Circle
Rochester, New York 14623
Tel: 716-461-4000
SEMICONDUCTOR CONCEPTS
195 Engineers Rd.
Hauppauge, New York 11787
Tel: 516-273-1234 TWX: 510-227-6232
SUMMIT DISTRIBUTORS, INC.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692

NORTH CAROLINA

HALLMARK ELECTRONICS
3000 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-832-4465 TWX: 510-928-1831
PIONEER/CAROLINA ELECTRONICS
2906 Baltic Avenue
Greensboro, North Carolina 27406
Tel: 919-273-4441

OHIO

ARROW ELECTRONICS, INC
3100 Plainfield Road
Kettering, Ohio 45429
Tel: 513-253-9176 TWX: 810-459-1611
HAMILTON/AVNET ELECTRONICS
761 Beta Drive, Suite " E "
Cleveland, Ohio 44143
Tel: 216-461-1400
TWX: None - use 910-227-0060 (Regional Hq. in Chicago, III.)

HAMILTON/AVNET ELECTRONICS
118 Westpark Road
Dayton. Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
PIONEER/CLEVELAND
4800 East 131 st Street
Cleveland, Ohio 44105
Tel: 216-587-3600

SCHWEBER ELECTRONICS
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
SHERIDAN SALES COMPANY
23224 Commerce Park Road
Beachwood Ohio 44122
Tel: 216-831-0130 TWX: 810-427-2957
SHERIDAN SALES CO.
(mailing address)
P.O. Box 37826

Cincinnati, Ohio 45222
(shipping address)
10 Knollcrest Drive
Reading, Ohio 45237
Tel: 513-761-5432 TWX: 810-461-2670

OKLAHOMA

HALLMARK ELECTRONICS
4846 South 83rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-835-8458 TWX: 910-845-2290

PENNSYLVANIA

PIONEER/DELWARE VALLEY, INC.
203 Witmer Rd.
Horsham, Pennsylvania 19044
Tel: 215-674-5710 (from Pennsylvania phones)
Tel: 609-541-1120 (from New Jersey phones)
HALLMARK ELECTRONICS, INC.
458 Pike Road
Huntington Valley, Pennsylvania 19006
Tel: 215-355-7300 TWX: 510-667-1727

PIONEER ELECTRONICS, INC.
560 Alpha Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
SHERIDAN SALES COMPANY
1717 Penn Ave.
Suite 5009
Pittsburgh, Pennsylvania 15221
Tel: 412-244-1640

TEXAS

HAMILTON/AVNET ELECTRONICS
4445 Sigma Road
Dallas, Texas 75240
Tel: 214-661-8661
Telex: HAMAVLECB DAL 73-0511
HAMILTON/AVNET ELECTRONICS
1216 West Clay
Houston, Texas 77019
Tel: 713-526-4661
Telex: HAMAVLECB HOU 76-2589
NORVELL ELECTRONICS, INC.
10210 Monroe Drive
(P.O. Box 20279)

Dallas, Texas 75220
Tel: 214-350-6771 TWX: 910-861-4512
NORVELL ELECTRONICS, INC.
6440 Hillcroft Avenue
Houston, Texas 77036
Tel: 713-774-2568 TWX: 910-881-2560
SCHWEBER ELECTRONICS, INC.
2628 Longhorn Blvd.
Austin, Texas 78758
Tel: 512-837-2890 TWX: 910-874-1359
SCHWEBER ELECTRONICS, INC.
14177 Proton Road
Dallas, Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493

SCHWEBER ELECTRONICS, INC
7420 Harwin Drive
Houston, Texas 77036
Tel: 713-784-3600 TWX: 910-881-1109
STERLING ELECTRONICS
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

UTAH

HAMILTON/AVNET ELECTRONICS
647 W. Billinis Rd
Salt Lake City, Utah 84119
Tel: 801-262-8451
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View, Ca.)

WASHINGTON

HAMILTON/AVNET ELECTRONICS
13407 Northrup Way
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449

LIBERTY ELECTRONICS

5305 2nd Ave. South
Seattle, Washington 98108
Tel: 206-763-8200 TWX: 910-444-1379

WISCONSIN

HAMILTON/AVNET ELECTRONICS
6055 N. Santa Monica Blvd.
Whitefish Bay, Wisconsin 53717
Tel: 414-964-3482
MARSH ELECTRONICS, INC.
6047 Beloit Road
Milwaukee, Wisconsin 53219
Tel: 414-545-6500 TWX: 910-262-3321
SEMICONDUCTOR SPECIALISTS, INC.
10855 W. Potter Road
Wauwatosa, Wisconsin 53226
Tel: 414-257-1330 TWX: 910-262-3022

CANADA
CAM GARD SUPPLY LTD.
640 42nd Avenue S.E.
Calgary, Alberta, T2G 1Y6, Canada
Tel: 403-287-0520 Telex: 03-822811
CAM GARD SUPPLY LTD.
10505111 th Street
Edmonton, Alberta, T5H 3E8, Canada
Tel: 403-426-1805 Telex: 03-72960
CAM GARD SUPPLY LTD
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada
Tel: 403-346-2088
CAM GARD SUPPLY LTD
825 Notre Dame Drive
Kamloops, British Columbia, V2C 5N8, Canada Tel: 604-372-3338

CAM GARD SUPPLY LTD
1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada Tel: 204-786-8401 Telex: 07-57622

CAM GARD SUPPLY LTD
Rookwood Avenue
Fredericton, New Brunswick, E3B 4Y9, Canada Tel: 506-45'5-8891

CAM GARD SUPPLY LTD
15 Mount Royal Blud.
Moncton, New Brunswick, E1C 8N6, Canada Tel: 506-855-2200

CAM GARD SUPPLY LTD.
Courtenay Center
Saint John, New Brunswick, E2L 2X6, Canada
Tel: 506-657-4666 Telex: 01-447489

[^19]CAM GARD SUPPLY LTD
1303 Scarth Street
Regina, Saskatchewan, S4R 27, Canada
Tel: 306-525-1317 Telex: 07-12667
CAM GARD SUPPLY LTD
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 17, Canada
Tel: 306-652-6424 Telex: 07-42825
ELECTRO SONIC INDUSTRIAL SALES (TORONTO) LTD.
1100 Gordon Baker Rd
Willowdale, Ontario, M2H 3B3, Canada
Tel: 416-494-1666
Telex: ESSCO TOR 06-22030
HAMILTON/AVNET INTERNATIONAL (CANADA) LTD.
6291 Dorman Rd., Unit \#16
Mississauga, Ontario, L4V 1H2, Canada
Tel: 416-677-7432 TWX: 610-492-8867

HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD
1735 Courtwood Crescent
Ottawa, Ontario, K1Z 5L9, Canada
Tel: 613-226-1700
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD
2570 Päulus Street
St. Laurent, Quebec, H4S 1G2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
R.A.E. INDUSTRIAL ELECTRONICS, LTD.

1629 Main Street
Vancouver, British Columbia, V6A 2W5, Canada
Tel: 604-687-2621 TWX: 610-929-3065
Telex: RAE-VCR 04-54550
SCHWEBER ELECTRONICS
2724 Rena Road
Mississauga, Ontario, L4T 3J9, Canada
Tel: 416-678-9050

CALIFORNIA

CELTEC COMPANY
7380 Clairemont Mesa Blvd., Suite 109 San Diego, California 92111
Tel: 714-279-7961 TWX: 910-335-1512

CELTEC COMPANY

2041 Business Center Drive, Suite 211
Irvine, California 92664
Tel: 714-752-6111

COLORADO

SIMPSON ASSOCIATES, INC.
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719

CONNECTICUT

LORAC SALES, INC
2777 Summer Street
Stamford, Connecticut 06905
Tel: 203-348-7701 TWX: 710-474-1763

FLORIDA

WMM ASSOCIATES, INC
101 Wymore Road, Suite 300
Altamonte Springs, Florida 32701
Tel: 305-862-4700
WMM ASSOCIATES, INC.
1822 Drew Street
Clearwater, Florida 33519
Tel: 813-447-2533 TWX: 810-866-4108
WMM ASSOCIATES, INC.
1628 E. Atlantic Blvd.
Pompano Beach, Florida 33060
Tel: 305-943-3091
GEORGIA
CARTWRIGHT \& BEAN, INC.
P.O. Box 52846

90 W. Wieuca Square, Suite 155
Atlanta, Georgia 30342
Tel: 404-255-5262

INDIANA

LESLIE M. DEVOE COMPANY
7172 North Keystone Ave., Suite C
Indianapolis, Indiana 46240
Tel: 317-257-1227 TWX: 810-341-3284

KANSAS

B.C. ELECTRONICS

1015 West Santa Fe
Olathe, Kansas 66061
Tel: 913-782-6696 TWX: 910-749-6414
B.C. ELECTRONICS

1229 South Paige
Wichita, Kansas 67207
Tel: 316-686-3394

MASSACHUSETTS

SPECTRUM ASSOCIATES, INC
888 Worcester Street
Wellesley, Massachusetts 02181
Tel: 617-237-2796 TWX: 710-348-0424

MICHIGAN

RATHSBURG ASSOCIATES
16621 E. Warren Ave.
Detroit, Michigan 48224
Tel: 313-882-1717 Telex: 23-5229

MISSISSIPPI

CARTWRIGHT \& BEAN, INC.
P.O. Box 3730

5250 Galaxy Drive, Suite J
Jackson, Mississippi 39207
Tel: 601-981-1368

MISSOURI

B.C. ELECTRONICS

348 Brookes Drive
Hazelwood, Missouri 63042
Tel: 314-731-1255 TWX: 910-762-0651
NEW JERSEY
LORAC SALES, INC.
580 Valley Road
Wayne, New Jersey 07470
Tel: 201-696-7070 TWX: 710-988-5846

NORTH CAROLINA

CARTWRIGHT \& BEAN, INC.
625 Harwyn Drive.
Charlotte, North Carolina 28215
Tel: 704-333-6457
CARTWRIGHT \& BEAN, INC.
P.O. Box 11209

2415-G Crabtree Blvd.
Raleigh, North Carolina 27604
Tel: 919-832-7128

NEW YORK

LORAC SALES, INC.
275 Broadhollow Road
Melville, New York 11746
Tel: 516-293-2970 TWX: 510-224-6480
OHIO
COMPONENTS, INC.
7461 N. Linden Lane
Cleveland, Ohio
Tel: 216-842-2737

TENNESSEE

CARTWRIGHT \& BEAN, INC
P.O. Box 4760

560 S. Cooper Street
Memphis, Tennessee 38104
Tel: 901-276-4442
CARTWRIGHT \& BEAN, INC.
8501 Kingston Pike
Knoxville, Tennessee 37919
Tel: 615-693-7450

TEXAS

TECHNICAL MARKETING
4445 Alpha Road
Dalias, Texas 75240
Tel: 214-387-3601

UTAH

SIMPSON ASSOCIATES, INC.
2480 So. Main Street, Suite 105
Salt Lake City, Utah 84115
Tel: 801-486-3731 TWX: 910-925-5253

WASHINGTON

QUADRA
1621 - 114th Avenue S.E.
Suite 212
Bellevue, Washington 98004
Tel: 206-264-4948 TWX: 910-951-1544

CANADA

AVOTRONICS LIMITED
200 Consumers Road, Suite 200
Willowdale, Ontario, M2J 1P8, Canada
Tel: 416-493-9711
AVOTRONICS LIMITED
6600 Trans Canada Highway, Suite 750
Pointe Claire, Quebec, H9R 4S2, Canada
Tel: 514-697-2135 TWX: 610-422-3908
Telex: 05-821-762

*HUNTSVILLE, ALABAMA

3322 So. Memorial Parkway 35801
Suite 92
Tel: 205-883-7020 TWX: 810-726-2214

PHOENIX, ARIZONA

4414 N. 19th Avenue 85015
Suite G
Tel: 602-264-4948 TWX: 910-951-1544
*LOS ANGELES, CALIFORNIA
6922 Hollywood Blvd. 90028
Suite 818
Tel: 213-466-8393 TWX: 910-321-3009
SAN DIEGO, CALIFORNIA
8333 Clairemont Mesa Blvd. 92111
Suite 109
Tel: 714-279-6021
*SANTA ANA, CALIFORNIA
2101 East Fourth St. 92705
Bldg. B, Suite 185
Tel: 714-558-1881 TWX: 910-595-1109
*SANTA CLARA, CALIFORNIA
3080 Olcott Street 95050
Suite 210A
Tel: 408-244-1400 TWX: 910-338-0241
*DENVER, COLORADO
7475 W. 5th Ave., Suite 100
Lakewood, Colo. 80226
Tel: 303-234-9292
*STAMFORD, CONNECTICUT

2nd Floor

2777 Summers Street 06905
Tel: 203-348-7701 TWX: 710-474-1763

ORLANDO, FLORIDA

Crane's Roost Office Park
303 Whooping Loop
Altamonte Springs, Fla. 32701
Tel: 305-834-7000 TWX: 810-850-0152
TAMPA, FLORIDA
12945 Seminole Blvd.
Florida Twin Towers Bldg. 2, Room 6
Largo. Fla. 33540
Tel: 813-585-3892
*CHICAGO, ILLINOIS
9950 W. Lawrence Avenue
Room 311
Schiller Park, III. 60176
Tel: 312-671-4660 TWX: 910-227-0051

FORT WAYNE, INDIANA
2118 Inwood Drive 46805
Suite 111
Tel: 219-483-6453 TWX: 810-332-1507
*INDIANAPOLIS, INDIANA
7202 N. Shadeland 46250
Tel 317-849-5412 TWX: 810-260-1793
BLADENSBURG, MARYLAND
5801 Annapolis Road 20710
Suite 500
Tel: 301-779-0954 TWX: 710-826-9654
*BOSTON, MASSACHUSETTS
888 Worcester Street
Wellestey Hills, Mass 02181
Tel: 617-237-3400 TWX: 710-348-0424
DETROIT, MICHIGAN
Westland Office Plaza
33300 Warren Avenue Suite 101
Westland, Mich. 48185
Tel: 313-425-3250 TWX: 810-242-2973
MINNEAPOLIS, MINNESOTA
7600 Parklawn Avenue
Room 251
Edina, Minn. 55435
Tel: 612-835-3322 TWX:910-576-2944
WAYNE, NEW JERSEY
580 Valley Road 07490
Suite 1
Tel: 201-696-7070
ALBUQUERQUE, NEW MEXICO
2403 San Mateo N.E. 87110
Plaza \#2
Tel: 505-265-5601 TWX: 910-989-1186

BINGHAMTON, NEW YORK

3215 E. Main St. Suite 7
Endwell, NY 13760
Tel: 607-754-1094
*MELVILLE, NEW YORK
275 Broadhollow Road 11746
Tel: 516-293-2900 TWX: 510-224-6480

POUGHKEEPSIE, NEW YORK
15 College View Ave. 12603
Tel: 914-452-4200 TWX: 510-248-0030
*ROCHESTER, NEW YORK
600 Kreag Rd.
Pittsford, NY 14534
Tel: 716-385-1130

SYRACUSE, NEW YORK

333 E. Onondaga Street 13202
Tel: 315-471-3391 TWX: 710-541-0499
CLEVELAND, OHIO
6151 Wilson Mills Rd.
Suite 101
Highland Heights, Ohio 44143
Tel: 216-461-8288 TWX: 810-427-9271
DAYTON, OHIO
4812 Frederick Road 45414
Suite 101
Tel: 513-278-8278 TWX: 810-459-1803
TULSA, OKLAHOMA
5321 S. Sheridan Road 74145
Suite 15
Tel: 918-663-7131

* PHILADEPHIA, PENNSYLVANIA

Fort Washington Industrial Park
500 Office Center
Fort Washington, Pa. 19034
Tel: 215-886-6623 TWX: 510-665-1654
*DALLAS, TEXAS
13771 N. Central Expressway 75231
Suite 809
Tel: 214-234-3391 TWX: 910-867-4757
*HOUSTON, TEXAS
6430 Hillcroft 77036
Suite 102
Tel: 713-771-3547 TWX: 910-881-6278
MILWAUKEE, WISCONSIN
4642 76th Street
Suite 101
Greenfield, Wisconsin 53220
Tel: 414-282-5260
*Field Applications Engineer available.

AUSTRALIA

Fairchild Australia Pty. Ltd.
420 Mount Dandenong Road
Croydon, Victoria, 3136
Australia
Tel: 723-4131 TWX: 30846

AUSTRIA

Fairchild Electronics
Schwedenplatz 2
1010 Vienna
Tel: 0043222635821
Telex: 004775096

BRAZIL

Fairchild Electronica Ltd.
Caixa Postal 30407
Rua de Consola Cao, 3542
Sao Paulo, S.P. Brazil
Tel: 81-6168 Telex: 021-261
Cable: FAIRLEC

CANADA

Toronto Regional Office
FSC
1590 Matheson Blvd. Unit 26
Mississauga, Ontario L4W 1 J1, Canada
Tel: 416-625-7070 TWX: 610-492-4311
Fairchild Semiconductor
1385 Mazurette Suite 3
Montreal, Quebec, H4N 1G8, Canada
Tel: 514-382-2552 TWX: 610-421-3178

FRANCE

Fairchild Semiconducteurs, S.A.
121 Avenue d'Italien
750310, Paris, France
Tel: 003315805566
Telex: 004220614

GERMANY

Fairchild Halbleiter G mbH
European Headquarters
6202 Wiesbaden-Biebrich
Postfach 4559
Hagenauer Strasse 38
Tel: 06121 2051 Telex: 841-4186588

Fairchild Halbleiter GmbH
8 Munchen 80
Truderinger Str. 13
Tel: 089 4701091-3 Telex: 0524831
Fairchild Halbleiter G mbH
8500 Nurnberg
Waldluststr. 1
Tel: 0911407005 Telex: 06-23665
Fairchild Halbleiter GmbH
725 Leonberg-Eltingen
Poststr. 37
Tel: 07152-41026 Telex: 07-22644

HONG KONG

Fairchild Semiconductor (HK) Ltd
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: K-890271 Telex: HKG-531
ITALY
Fairchild Semiconduttori, S.p.A.
Viale Cortina d'Ampezzo, 152
00135 Rome, Italy
Tel: 003963274006

Fairchild Semiconduttori S.p.
Via Rosselini, 12
20124 Milano, Italy
Tel: 00392 6887451-5

JAPAN

TDK Fairchild
Sanyo Kokusaku Pulp BIdg. 2nd FI.
7.8 Shibuya 1-Chome

Shibuya-ku
Tokyo 150, Japan
Tel: 03-400-8351 Telex: 2424173

MEXICO

Fairchild Mexicana S.A.
Blvd. Adolfo Lopez Mateos No. 163
Mexico 19, D.F.
Tel: 905-563-5411 Telex: 017-71-038

SCOTLAND

Fairchild Semiconductor Ltd
Shiel House
Craigshill
Livingston
West Lothian, Scotland
Tel: 004458932891
Telex: 005172629

SWEDEN

Fairchild Semiconductor AB
Svartensgatan 6,
S-11620 Stockholm
Tel: 00468-449255 Telex: 0054-17759

TAIWAN

Fairchild Semiconductor (Taiwan) Ltd
Hsietsu Building, Room 502
47 Chung Shan North Road
Sec. 3, Taipei, Taiwan
Tel: 573205 thru 573207

THE NETHERLANDS

Fairchild Semiconductor
Paradijslaan 39
Eindhoven, Holland
Tel: 003140-446909 Telex: 0044-51024

UNITED KINGDOM

Fairchild Semiconductor Ltd
Kingmaker House
Station Road
New Barnet/Hertfordshire
Tel: 004414407311 Telex: 0051262835

[^0]: *OR AS DETERMINED BY ALLOWABLE PROPAGATION DELAY

[^1]: *These devices are members of the new RCA Series B CMOS. Specifications include: Maximum operating voltage range of 3 to 18 volts; recommended operating voltage range of 4 to 15 volts; symmetrical rise and fall times of 50 ns ; output source and sink capability of 1.8 mA typical at $V_{D D}=10$ volts and $T_{A}=25^{\circ} \mathrm{C}$; and worst case noise immunity of 1.4 volts. All Fairchild 34000 Series CMOS devices are direct pin-for-pin replacements for RCA's Series A and Series B CMOS.
 ** This device is a functional equivalent only.
 ***This device is pin-for-pin compatible if leads 4 and 8 are tied together.

[^2]: L = LOW Level
 $\mathrm{H}=\mathrm{HIGH}$ Level
 $\int=$ Positive-Going Transition
 $x=$ Don't Care
 $Q_{\mathrm{n}+1}=$ State After Clock Positive Transition

[^3]: L = LOW Level
 $\mathrm{H}=\mathrm{HIGH}$ Level
 $J=$ Positive Going Transition
 = Don't Care
 $Q_{n+1}=$ State After Clock Positive Transition

[^4]: $H=H I G H$ Level

[^5]: NOTES:

[^6]: NOTE:

[^7]: * Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull up circuits on all inputs except ${ }^{1} \mathrm{X}$. This is done for TTL compatibility.

[^8]: * Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pulf up circuits on all inputs except $I \times$. This is done for TTL compatibility.

[^9]: * Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull up circuits on all inputs except ${ }^{1} \times$. This is done for TTL compatibility.

[^10]: Note: Additional DC Characteristics are listed in this section under 34000 Series CMOS Family Characteristics.

[^11]: $H=$ HIGH Level
 L = LOW Level
 $E L=H I G H$

[^12]: $H=$ HIGH Level
 L = LOW Level
 $E L=H I G H$

[^13]: $H=H I G H$ Level
 L = LOW Level
 X = Don't Care

[^14]: $H=$ HIGH Level
 L = LOW Level
 (1) Comp = Complement
 (2) Arith = Arithmetic

[^15]: *A Trademark of Fairchild Camera and Instrument Corporation

[^16]: L LOW Level $H=$ HIGH Leve

[^17]: *Leads for external timing

[^18]: * Upon customer request only. Class B processing in this case includes adding post burn-in testing; de testing at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ and ac testing. at $25^{\circ} \mathrm{C}$.

[^19]: CAM GARD SUPPLY LTD.
 3065 Robie Street
 Halifax, Nova Scotia, B3K 4P6, Canada
 Tel: 902-454-8581 Telex: 01-921528

