June 1997-3

FEATURES

- Pin-to-Pin Compatible with National DS26C31C
- Low Power CMOS Design
- Three-State Outputs with Enable Pin

- Meets the EIA RS-422 Requirements
- Low Propagation Delays
- High Speed

GENERAL DESCRIPTION

The ST26C31 is a CMOS quad differential line driver designed to meet the standard RS-422 requirements and digital data transmission over balanced lines. To improve noise margin and output stability for slow changing input signals, special hysteresis is built in the ST26C31 circuit.

The ST26C31 is a high speed CMOS line driver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 digital data transmission applications. ST26C31 is suitable for low power 5V operation with high input voltage protection devices.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
ST26C31CP16	16 Lead 300 Mil PDIP	0°C to +70°C
ST26C31CF16	16 Lead 150 Mil JEDEC SOIC	0°C to +70°C
ST26C31IP16	16 Lead 300 Mil PDIP	-40°C to +85°C
ST26C31IF16	16 Lead 150 Mil JEDEC SOIC	-40°C to +85°C

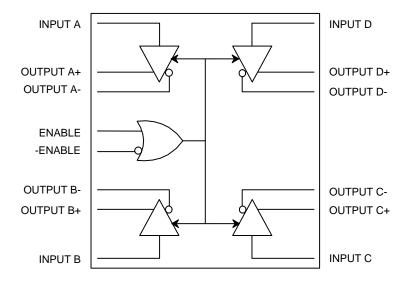
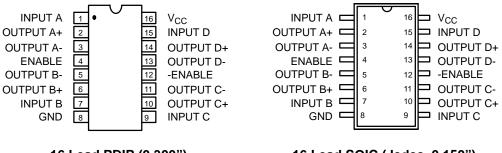



Figure 1. Block Diagram

PIN CONFIGURATION

16 Lead PDIP (0.300")

16 Lead SOIC (Jedec, 0.150")

PIN DESCRIPTION

Pin #	Symbol	Type	Description			
1	INPUT A	I	Driver A input pin.			
2	OUTPUT A+	0	Oriver A differential non-inverting output pin.			
3	OUTPUT A-	0	Driver A differential inverting output pin.			
4	ENABLE	I	Gate control (active high). This pin is one of the two control pins which enables or disables all four drivers. All four drivers are gated with two input or gate.			
5	OUTPUT B-	0	Driver B differential inverting output pin.			
6	OUTPUT B+	0	Driver B differential non-inverting output pin.			
7	INPUT B	ı	Oriver B input pin.			
8	GND	0	Signal and power ground.			
9	INPUT C	I	Priver C input pin.			
10	OUTPUT C+	0	Driver C differential non-inverting output pin.			
11	OUTPUT C-	0	Driver C differential inverting output pin.			
12	-ENABLE	I	Gate control (active low). See ENABLE pin description.			
13	OUTPUT D-	0	Driver D differential inverting output pin.			
14	OUTPUT D+	0	Driver D differential non-inverting output pin.			
15	INPUT D	I	Driver D input pin.			
16	V _{CC}	ı	Power supply pin.			

AC ELECTRICAL CHARACTERISTICS

Test Conditions: $T_A = -40^{\circ}\text{C} - +85^{\circ}\text{C}$, $V_{CC} = 5.0\text{V} \pm 10\%$ unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
T ₁	Propagation Delay, Input to Output		8	10	ns	S1 open
T ₂	Differential Output Rise and Fall Time		8	10	ns	S1 open
T ₃	Output Enable Time		18	20	ns	S1 close
T ₄	Output Disable Time		18	20	ns	S1 close
T ₅ ¹	Skew			2	ns	S1 open

Note

DC ELECTRICAL CHARACTERISTICS

Test Conditions: $T_A = -40^{\circ}\text{C} - +85^{\circ}\text{C}$, $V_{CC} = 5.0\text{V} + 10\%$ unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
I _{IN}	Input Current			+1.0	μΑ	
I _{CC}	Operating Current		600		μΑ	
I _{OZ}	Three-State Output Leakage		+2.0		μΑ	
V_{IH}	Input High Level	2.0			V	
V_{IL}	Input Low Level			0.8	V	
V _{OH}	Output High Level	2.5			V	
V_{OL}	Output Low Level			0.5	V	
Vos	Differential Output Level	2.0			V	R_L =100 Ω
V _{OC}	Common Mode Output Voltage			3.0	V	R_L =100 Ω
V _{OD}	Difference in Common Mode Output			0.4		$R_L=100\Omega$
C _{IN}	Input Capacitance	7	10	15	pF	
C _{PD}	Power Dissipation Capacitance		100		pF	
Ios	Output Short Current	-200		-30	mA	V _{IN} =V _{CC} or GND
I _{OFF}	Output Leakage Current Power Off			100	μΑ	V _{OUT} =6V
				-100	μΑ	V _{OUT} =0.25V
I _{DC}	Output Current			<u>+</u> 150	mA	

Specifications are subject to change without notice

¹ Skew is defined as the difference in propagation delays between complementary outputs at the 50% point.

ABSOLUTE MAXIMUM RATINGS

Supply Range7V	Storage Temperature	60°C to +160°C
Voltage at Any Pin GND-0.3V to V _{CC} + 0.3V	Package Dissipation	500mW
Operating Temperature –40°C to +85°C		

Enable	-Enable	Input	Differential Non-Inverting Output	Differential Inverting Output
L	Н	X	Z	Z
L	L	L	L	Н
L	L	Н	Н	L
Н	L	L	L	Н
Н	L	Н	Н	L
Н	Н	L	L	Н
Н	Н	Н	Н	L

Notes

X = Don't care Z = Three-State (high impedance)

Table 1. Functional Table

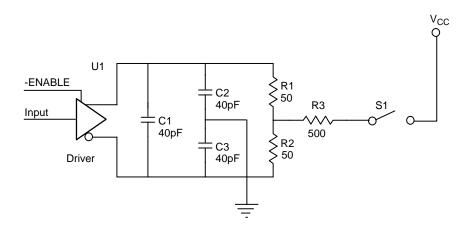
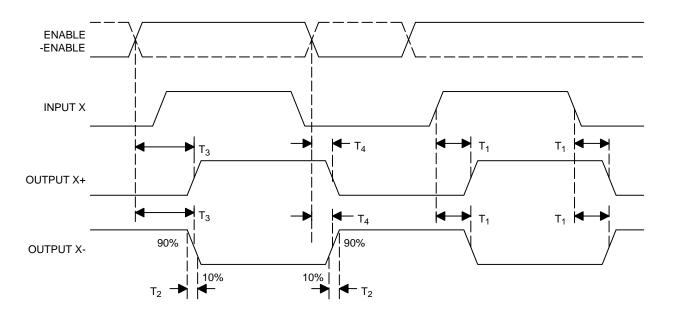



Figure 2. Test Condition

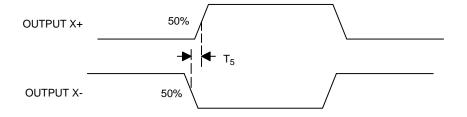
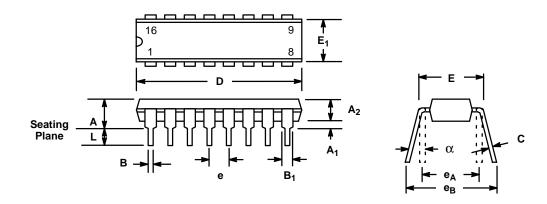
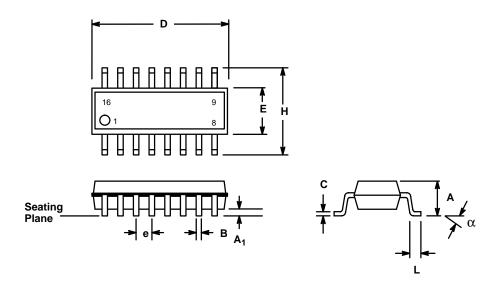



Figure 3. Differential Line Driver Timing

16 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP)

Rev. 1.00

	INC	HES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.145	0.210	3.68	5.33
A ₁	0.015	0.070	0.38	1.78
A ₂	0.115	0.195	2.92	4.95
В	0.014	0.024	0.36	0.56
B ₁	0.030	0.070	0.76	1.78
С	0.008	0.014	0.20	0.38
D	0.745	0.840	18.92	21.34
Е	0.300	0.325	7.62	8.26
E ₁	0.240	0.280	6.10	7.11
е	0.1	00 BSC	2.5	4 BSC
e _A	0.3	00 BSC	7.6	2 BSC
e _B	0.310	0.430	7.87	10.92
L	0.115	0.160	2.92	4.06
α	0°	15°	0°	15°


Note: The control dimension is the inch column

16 LEAD SMALL OUTLINE (150 MIL JEDEC SOIC)

Rev. 1.00

	INC	HES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
A ₁	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
С	0.007	0.010	0.19	0.25
D	0.386	0.394	9.80	10.00
Е	0.150	0.157	3.80	4.00
е	0.0	50 BSC	1.2	7 BSC
Н	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°

Note: The control dimension is the millimeter column

NOTICE

/ / / / / / /

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1997 EXAR Corporation Datasheet June 1997

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

T©M[™]