mach64 Register Reference Guide

ATI-264VT and 3D RAGE™

Technical Reference Manuals P/N: RRG-G02700 Rev. 0.10

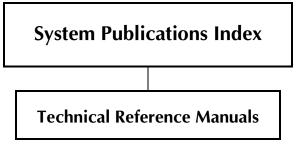
iminar

ATI Technologies Inc. 33 Commerce Valley Drive East Thornhill, Ontario Canada L3T 7N6

Developer Support:905-882-2600 ext.6000Offices:905-882-2600Fax:905-882-2620BBS:905-764-9404

P/N: RRG-G02700 **REVISION 0.10 Preliminary Draft**

© 1996 ATI Technologies Inc.


ment h r jr The information contained in this document has been carefully checked and is believed to be entirely reliable. No responsibility is assumed for inaccuracies. ATI reserves the right to make changes at any time to improve design and supply the best product possible.

All rights reserved. This document is subject to change without notice and is not to be reproduced or distributed in any form or by any means without prior permission in writing from ATI Technologies Inc.

ATI, VGAWonder, mach8, mach32, mach64, 3D RAGE, 8514ULTRA, GRAPHICS ULTRA, **GRAPHICS VANTAGE, GRAPHICS ULTRA+, GRAPHICS ULTRA PRO, GRAPHICS PRO** TURBO 1600, GRAPHICS PRO TURBO, GRAPHICS XPRESSION, WINTURBO, and WINBOOST are trademarks of ATI Technologies Inc. All other trademarks and product names are properties of their respective owners.

Record of Revisions

Release	Date	Description of Changes
0.10	July. 96	Preliminary Release of combined VT/3D RAGE Register guide.

- *mach64* BIOS Kit (BIO-G01000)
- *mach64* Programmer's Guide (PRG-G01000)
- *mach64* Register Reference Guide ATI-264VT and 3D RAGE (RRG-G02700)
- *mach64* Graphics Controller Specifications ATI-264VT (GCS-C02500)
- *mach64* Graphics Controller Specifications 3D RAGE (GCS-C02700)

Table of Contents

Chapter 1 Overview

Introduction	1-1
ATI-264VT	
3D RAGE	1-1
Register Classifications	1-2
Setup and Control Registers	1-2
Accelerator CRTC and DAC Registers	
Draw Engine Trajectory Registers	1-3
Draw Engine Control Registers	1-3
Multimedia Registers	1-4
Scaler and 3D Operations Registers (3D RAGE only)	
PCI Configuration Space Registers	1-4
VGA Registers	
How To Find the Registers	1-5
Notation Conventions	1-5

Chapter 2 VT/3D RAGE Register Mapping

Introduction	2-1
Aperture Modes	2-1
Memory Mapping	2-3
Determining the Memory Mapped Address	
I/O Mapping	2-3
Determining the I/O Base Address	2-4
Determining the Absolute I/O Address	2-4
VGA Registers	2-5
Non-Intel Based Memory Mapping	

Chapter 3 Cross Reference

Chapter 4 Accelerator Register Reference

Setup and Control Registers	
General I/O Control	
Scratch Pad	
Bus Control	
Memory Control	
General/Test	
Configuration	
Accelerator CRTC and DAC Registers	

Chapter 4 Accelerator Register Reference

Accelerator CRTC	
Overscan	
Hardware Cursor	
Clock Control	
DAC Control	
Draw Engine Trajectory Registers	

Chapter 4 Accelerator Register Reference

Destination (and Z) Trajectory	
Source Trajectory	
Draw Engine Control Registers	
Host Data	
Pattern	
Scissors	
Data Path	
Color Compare	
Command FIFO	
Context Control	
Draw Engine Composite Control	
Draw Engine Status	

Chapter 5 Multimedia Register Reference

Overlay Registers	
Overlay Window Control	
Overlay Scaler	
General Video Configuration/Control Registers	
General Video	
Video Capture	
Buffer Registers	
Buffer 0	
Buffer 1	
VMC Registers	
Configuration and Status	
VMC Command	
Stream Data	

Chapter 6 3D RAGE Scaler and 3D Operations Registers

Scaler Pipe Registers	6-1
3D Operations	6-8
Texture Mapping	6-8
Color, Z and Alpha Interpolation	

Chapter 7 PCI Configuration Registers

PCI Configuration Space

Chapter 8 VGA Programming Overview

Introduction	8-1
VGA Controller	8-2
Configurable Memory Aperture	8-2
VBE BIOS	8-2

Chapter 9 VGA Controller

Overview	
IBM Compatible Modes	
High Resolution and Wide Column Graphics/Text Modes	
VGA Memory Organization	
Memory Maps	
Functional Blocks	
Address Decoder	
Sequencer Controller	
CRT Controller	
Graphics Controller	
Attribute Controller	
VGA Display Modes	
VGA Alphanumeric Modes (A/N)	
VGA Graphics Modes (APA)	
Host Address Space/Host Window	
Packed vs. Planar Pixels	
Display Memory Plane Selection	
Display Memory Paging	
Emulations	
Extended Display Modes	
Mode Setting by BIOS Call	
Summary of Display Modes	
Display Memory Organization	
Extended Text Modes	<i>9-18</i>
Extended Graphics Modes	

Chapter 10 VGA-Compatible Registers

Overview	10-1
VGA Compatible Registers – By I/O Port	
Register Legend	
VGA CRT Controller Registers	
VGA Attribute Controller Registers	
General VGA Status and Configuration Registers	
VGA Sequencer Registers	
VGA DAC Registers	
VGA Graphics Controller Registers	10-30

Appendix A VGA BIOS Function Calls

VGA Controller	·	-1	1
----------------	---	----	---

Appendix B Programming PLL Registers in the ATI-264VT

Introduction	<i>B-1</i>
Clock Sources	B-1
PLL Registers	<i>B-2</i>
External Clock Support	
Frequency Limits	B-5
Frequency Synthesis Description	B-5
Duty Cycle Control	<i>B</i> -7
PLL Gain Settings	<i>B</i> -7

Index

Chapter 1 Overview

Introduction

This manual serves as a reference document, covering the accelerator registers for the *mach64* **ATI-264VT** and **VT2** (i.e., up to revision VT-A4), and the *mach64* **3D RAGE** (GT-A2). The VT and 3D RAGE accelerators are register-compatible with other controllers in the ATI*mach64* accelerator series; therefore, they provide the OEM with a low-cost path to additional multimedia and performance features.

ATI-264VT

In addition to backward-compatibility with ATI's proven family of 2D graphics accelerators, the VT incorporates a video coprocessor to provide superior hardware video acceleration. The VT chip includes many new registers which are used to control and configure multimedia operations such as video capture and playback. New multimedia functionalities include:

- Video scaler for full-screen video playback
- Integrated video line buffer
- Superb filtering for horizontal and vertical scaling
- True Color palette DAC, supporting pixel clock rates to 135 MHz
- Color interpolation during scaling
- Color space conversion to support different image formats
- Video and graphics keying for effective overlay of video and graphics
- Internal dual clock synthesizer

3D RAGE

The 3D RAGE offers all of the 2D and video functionalities of the VT, plus a rich suite of hardware-accelerated 3D rendering and scaling functionalities. The 3D RAGE has incorporated many new registers to support the core 3D features of the chip. New features include:

- Trapezoidal trajectory
- Six texture filtering modes
- Perspectively-correct texture mapping
- Video textures
- Gouraud shading

- Both horizontal and vertical scaling
- Alpha blending
- Fog effects
- Double buffering
- Dithering of limited colors (8 and 16 bpp)
- New pixel formats: RGB332, RGB444, YUV422, YUV444, and Y8

The remainder of this chapter provides a brief overview of the registers classifications and general layout of the manual, and explains the notation conventions used.

Register Classifications

The **VT** accelerator has six major accelerator register classes, in addition to the standard VGA registers, as follows:

- Setup and Control registers
- Accelerator CRTC and DAC registers
- Draw Engine Trajectory registers
- Draw Engine Control registers
- Multimedia registers
- PCI Configuration Space registers
- VGA registers

The **3D RAGE** includes all of the above register classes (with minor modifications as noted), and also includes:

• Scaling and 3D Operations registers

Note that these are general register classes only. Instances where specific bit fields of the same register may belong to different register classes is noted in the descriptions. The following discussion provides a brief overview of each register class.

Setup and Control Registers

Setup and control registers are memory mapped and aliased at an I/O address. Most of these registers are initialized only once at boot time. Setup and control registers are:

- General I/O Control Registers used to configure the General Purpose I/O pins on the accelerator chip.
- Scratch Pad Registers used for general purpose storage for the adapter ROM and for communicating the adapter ROM segment location to host applications. In test modes, these registers are used for chip diagnostics.
- Bus Control Registers used to configure the on-chip bus interface unit.

- Memory Control Registers used to configure the memory interface unit.
- General/Test Register used for chip diagnostics.
- **Configuration Registers** used for configuring the aperture and reading the current board configuration.
- Hardware Debug Register— reserved for debugging hardware on engineering samples.

Accelerator CRTC and DAC Registers

Accelerator CRTC and DAC Registers are memory mapped and aliased at an I/O address. Note that accelerator CRTC registers are not the same as the VGA CRTC registers.

- Accelerator CRTC Registers used to configure the video mode.
- Clock Control Registers used to configure the pixel clock.
- **DAC Control Registers** used to configure the DAC.
- **Overscan Registers** used to configure overscan borders.
- Hardware Cursor Registers used to define and move the hardware cursor.

Draw Engine Trajectory Registers

Draw Engine Trajectory Registers are memory mapped. They set up the source and destination trajectories and initiate draw operations.

In the 3D RAGE, a new trajectory is provided – the trapezoid. This new trajectory may be used for the destination, the texture map sources, the 2D source, and the Z source.

- **Destination (and Z) Trajectory Registers** define the region in which pixels are drawn, where the region may be a rectangular area, a line, or (in the case of the 3D RAGE) a trapezoid shape.
- **Source Trajectory Registers** define a rectangular region from which pixel data is taken; the pixel data may be used as a monochrome or color pixel source, or a polygon fill mask.

Draw Engine Control Registers

Draw Engine Control Registers are memory mapped. They set up the source pixel data, the draw engine data path, and the destination mixing logic.

- Host Data Registers used for transferring data from the host to the draw engine.
- **Pattern Registers** used to enable and define fixed patterns.
- Scissor Registers used to define a draw region.
- Data Path Registers used to configure the data path and ALU.
- Color Compare Registers used to configure the source or destination color compare.

- Command FIFO Status Registers used to report the status of the command FIFO.
- Context Control Registers used to load contexts or execute context chains.
- **Draw Engine Composite Control Registers** abbreviated composites of other draw engine control registers.
- Draw Engine Status Registers used to report the current state of the draw engine.

Multimedia Registers

The VT and 3D RAGE chips have incorporated many new registers which are used for multimedia operations such as video capture and playback. See *Chapter 5* for more detailed descriptions on the following groups of multimedia registers.

- **Overlay Window Registers** used to specify the overlayed scaling window dimensions and coordinates to be displayed
- Overlay Scaler Registers used to enable scaling and set up the scaling factors
- General Video Registers used to set the video configuration (e.g., video source, format)
- Capture Registers used to initialize the for video capture and to trigger capturing
- Buffer Registers used to define the scaling and video capture buffer requirements
- VMC Registers used to initialize the VMC port for sending and receiving data either during a video capture or as streamed host data.

Scaler and 3D Operations Registers (3D RAGE only)

Scaler Pipe and 3D Operations Registers are memory mapped. For more detailed descriptions on the following groups of registers, see *Chapter 6*:

- Scaler Pipe Registers used to configure the scaler source data, and control any subsequent blending, color conversion and dithering; most of the scaler registers are aliased with certain 3D and texture mapping registers.
- **Texture Mapping Registers** used to hold the 'S' and 'T' sample address offsets to the start of the available mipmaps, and configure the associated quadratic interpolators.
- Color, Z, and Alpha Interpolator Registers used to configure the Z buffering and interpolation, the RGB and alpha interpolation, alpha blending and fogging.

PCI Configuration Space Registers

Host Bus Dependent Registers are used in *mach64* accelerators to support bus-specific implementations. For the VT and 3D RAGE, the internal Host Bus interface has been optimized to support the PCI Version 2.1 bus configuration, providing full 32-bit memory and I/O operations. The PCI Configuration Space registers, which determine the host bus configuration during system reset, are summarized in *Chapter 7*.

VGA Registers

The VGA registers in all *mach64* accelerator chips are completely segregated from the accelerator registers and their functions are mutually exclusive. Instead, they provide register-level compatible with the IBM VGA display adapter. *Chapter 8* provides a programmer's overview of the VGA, its memory aperture, and VESA BIOS Extension support. *Chapter 9* describes the display modes and specifications. *Chapter 10* lists the VGA-compatible registers. VGA BIOS function calls are included in the appendix.

Note that the ATI VGA extended registers, which were available on the *mach64* GX family at 1CEh to 1CFh, are not included in the VT and 3D RAGE chips.

How To Find the Registers

Chapter 2 outlines the register memory and I/O mapping for the VT/3D RAGE accelerator chips. The tables in *Chapter 3, Cross Reference* summarize the accelerator registers by class, mnemonic (listed alphabetically by register name), and address. They also include the page number where each register is described.

A detailed listing of the accelerator registers can be found in *Chapter 4, Accelerator Register Reference*. This includes the following major accelerator register classes previously summarized:

- Setup and Control registers
- Accelerator CRTC and DAC registers
- Draw Engine Trajectory registers
- Draw Engine Control registers

In *Chapter 5*, the Multimedia registers are grouped into general register classes, and arranged alphabetically within each general class. In *Chapter 6*, the Scaler and 3D Operations registers are grouped into general register classes, and arranged alphabetically within each general class. The PCI Configuration Space registers are listed in *Chapter 7*.

For details on the standard VGA registers, refer to VGA Registers above.

Notation Conventions

Mnemonics are used throughout this manual in place of hardware register names. The naming convention for registers and/or bit fields is as follows:

- Register_Mnemonic
- Register_Mnemonic[Bit_Numbers]
- Field_Name@Register_Mnemonic

The following example is the mnemonic for the Configuration Chip ID register:

CONFIG_CHIP_ID

Continuing the above example, the Product Type Code field within the above register occupies bit positions 0 through 15. The examples below describe this field in two ways:

CONFIG_CHIP_ID[15:0]

CFG_CHIP_TYPE@CONFIG_CHIP_ID

The second convention is the preferred one. Note that in the first example, *square brackets* [] are used.

Hexadecimal numbers are appended with "h" (Intel assembly-style notation). All other numbers are in decimal. When several signals of identical function are described, the part of the signal name that differs may be shown in parentheses (). For example, the four Select signals — SEL0#, SEL1#, SEL2#, and SEL3# — may be represented as SEL(0:3)#

Introduction

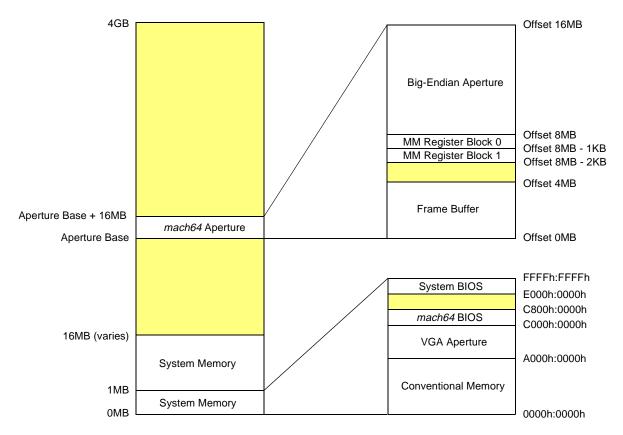
This chapter provides an overview of the register mapping used for the *mach64* ATI-264VT and 3D RAGE accelerators. The programming model for these accelerators is fully memory mapped. The registers are memory mapped, I/O mapped, or both. In general, the VGA registers are I/O mapped only, the *mach64* draw engine, 3D engine (3D RAGE only), and multimedia registers are memory mapped only, and the remaining registers are I/O mapped with memory mapped register aliases. All registers are 32 bits wide, except DAC_REGS, which are 4x8 bit registers.

I/O mapped registers are selected by their I/O or Memory Mapped (MM) Select, depending on their I/O type, i.e., standard I/O or block I/O (PCI only). For standard I/O type, the I/O base address will usually be 2ECh (1C8h or 1CCh are also supported). For block I/O, the I/O base address can be anywhere within the 64K I/O space.

Registers are numbered from 0xh to FFxh. Readable registers are indicated by an 'R', and writable registers are indicated by a 'W'. Registers not associated with the draw engine are directly readable and writeable, and are numbered from 0xh to 3Fxh. They may also be accessed at I/O addresses aliased to registers offset from the base I/O address. All draw engine registers are memory mapped with Dword offsets between 40xh and FFxh inclusive. These registers are written through a command FIFO and read directly.

Up to 32,768 draw engine contexts may be restored from 64 Dword segments. A 15-bit context load pointer allow contexts to be positioned anywhere in memory (refer to *page 4-102* for more information on context control).

Aperture Modes


The VT and 3D RAGE operate in one of two modes – VGA aperture or linear aperture mode – which may be selected based on the system configuration. The linear aperture mode requires that the linear aperture be enabled, while the VGA aperture mode requires that the VGA portion of the chip be enabled. All registers are mapped relative to the top of the defined memory aperture. The linear aperture mode is optimized for PCI configurations, while the VGA aperture mode is suitable for backwards compatibility to ISA-based systems.

In linear aperture mode, the aperture size is fixed at 8MB. The aperture position is set by the system BIOS at configuration time through the Base Address registers in the PCI configuration space (see *Chapter 7*). In PCI systems, the aperture size and position can also be read from the *CONFIG_CNTL* register (which is read-only).

In previous *mach64* accelerators (e.g. CT), the upper 1KB of the graphics aperture (VGA or linear) was reserved for the controller register space. In the VT and 3D RAGE, this upper 1KB block is known as block 0. The VT and 3D RAGE expand this register space by adding an

additional 1KB register block below the original block 0. This new block is referred to as block 1.

The following diagram shows register block 0 and 1 locations relative to a typical linear aperture configuration and system memory:

Aperture Base address can be located anywhere in the shaded region and is aligned to a multiple of 16 MB

Figure 2.1. Typical Organization of *mach64* Aperture Within Host Address Space (PC-compatible)

In VGA aperture mode, the upper 1KB (or 2KB) of the 64KB aperture at B0000h is reserved for the controller register space. The following table defines the register block offset within the graphics aperture for both VGA and linear apertures:

Mode	Aperture Size	Register Block 0 Offset	Register Block 1 Offset
VGA	64KB	BFC00	BF800
Linear	8MB	7FFC00	7FF800

If the VGA mode is disabled, a 4KB initialization ROM may be enabled. The ROM position and enable is strap or POS selectable from C0000h to FE000h, with the first 2KB fixed and the second 2KB paged. Up to 16 2KB ROM pages may be accessed.

Memory Mapping

All registers not associated with the draw engine, 3D engine (3D RAGE only), and multimedia are I/O mapped (see the next section), with memory mapped register aliases. All draw engine registers are memory mapped with Dword offsets greater than or equal to 40h.

For memory mapped configurations, the reference tables give a block/Dword offset to describe the register's address, using the following notation:

MM:block#_offset

where:

block# – identifies the block that the register belongs to (0 or 1)

offset - is the register Dword offset within the associated block.

An underscore (_) separates the block number from the register offset.

Determining the Memory Mapped Address

As an example, using the above notation the OVERLAY_SCALE_CNTL register address is defined as **MM:1_09** (detailed on *page 5-8*). This indicates that this register is located in register block 1 (2K below the top of the aperture) at Dword offset 9h (or byte address 24h). The aperture for the VT or 3D RAGE is 8MB in size. With the base of the aperture located at 8MB in memory, then the absolute physical register address is calculated as:

 $aperture_base_address + reg_block_offset + reg_byte_offset$

For this example (OVERLAY_SCALE_CNTL):

aperture base address = 800000h

register block 1 offset = 7ff800h

register byte offset = 24h

Absolute register address \rightarrow fff824h

The relative register address (to the base of the aperture) is calculated as follows:

register block offset + register byte offset

Thus, in the above example, the relative address of OVERLAY_SCALE_CNTL \rightarrow 7ff824h

Note that all register offsets that are **not** preceded by a block number are assumed to be in block 0.

I/O Mapping

All registers not associated with the draw engine, 3D engine and multimedia extensions are I/O mapped and have memory mapped register aliases (as outlined previously). In PCI systems,

there are two distinct ways to configure the I/O mapping of these registers – block I/O (also referred to as "relocatable" I/O) and sparse I/O. Both mapping methods are supported by the VT and 3D RAGE.

In block I/O mapping (only on PCI), registers not associated with the draw engine and multimedia map into a continuous block that starts at the I/O base address specified in the PCI configuration registers (which are summarized in *Chapter 6*).

In sparse I/O mapping, the I/O addresses are in the ISA I/O address style. The lower ten bits comprise the I/O base address, and the upper six bits are used for the register selects. In order for Plug and Play (PnP) to be able to configure the I/O space, it requires the ability to have three options for the I/O base addresses for configurable I/O spaces. For sparse I/O mapping, the I/O base address will usually be 2ECh, but I/O base addresses of 1CCh and 1C8h are also supported (as selected by an external strap resistor).

Determining the I/O Base Address

Since the I/O base address may be different depending on the card configuration, it cannot be assumed to be a specific value. The easiest way to obtain the I/O base address is to call the *mach64* BIOS function 12h (*see Appendix A, BIOS Services* of the *mach64 Programmer's Guide* for more information).

This function also returns the I/O base address type – standard or block (relocatable) I/O. If it is standard, the I/O base address will typically be 2ECh. If it is relocatable, the I/O base address can be any value within a 64KB I/O space. The value is decided by the system to insure that no conflicts exist and is in accord with the "plug and play" specification of a PCI system. Refer to Chapter 2 of the *mach64 Programmer's Guide* for more information on using this function call.

Determining the Absolute I/O Address

For registers not associated with the draw engine or multimedia, the offset is given for sparse I/O (where applicable) and block I/O selects. Not all of these registers are visible in sparse I/O; however, they are all visible in block I/O.

Note that only Block 0 of the VT or 3D RAGE contains I/O-mappable registers.

Where a **sparse I/O** select is used to describe the register's address, the physical address can be determined by the following equation:

Absolute I/O address = $(I/O \text{ select} \ll 10) + I/O \text{ base address}$

To use SCRATCH_REG1 as an example, if the I/O base address = 2ECh and the I/O Select = 11h, the absolute I/O address would be 46ECh.

If **block I/O** is enabled (PCI only), the offset is given as the Dword offset (**BLK**:) from the memory mapped register base address and the block I/O base address. For this case, the equation becomes:

Absolute I/O address = (BLK select << 2) + I/O base address

Using the example above, if the I/O base address = E000h and the Dword offset = 21h (SCRATCH_REG1), the physical I/O address would be E084h.

For some I/O registers, it is necessary to access individual bytes within the 32-bit register (such as DAC_REGS). The I/O select or BLK select must be converted to a byte offset before adding the individual byte offset (0, 1, 2, or 3). For example, to access the DAC_MASK byte of DAC_REGS, the equation is:

byte offset = I/O select << 10 = 17h << 10 = 5C00h (DAC_REGS) individual byte offset = 2 (DAC_MASK@DAC_REGS) I/O base address = 2ECh

Absolute I/O address = byte offset + individual byte offset + I/O base address = 5C00h + 2 + 2ECh = 5EEEh

For block I/O, the equation is:

byte offset = BLK select << 2 = 30h << 2 = C0h (DAC_REGS) individual byte offset = 2 (DAC_MASK byte) I/O base address = E000h

Absolute I/O address = byte offset + individual byte offset + I/O base address = C0h + 2 + E000h = E0C2h

VGA Registers

The VGA registers are completely segregated from the accelerator registers. They provide compatibility with the IBM VGA Display Adapter. Standard VGA apertures are 64K or 128K for standard VGA modes. VGA I/O and memory spaces are always fixed; they cannot be moved and are not configurable. The VGA aperture has several personalities, but is fixed between A0000h and BFFFFh. VGA I/O space is also fixed at the following locations – 102h, 46E8h (and some aliases), 3C0h through 3CFh (except 3CBh and 3CDh), 3B4h and 3B5h for monochrome display or 3D4h and 3D5h for color display.

An extended VGA aperture type (2x32K) is supported in accelerator mode to guarantee that the host CPU has some method of directly accessing graphics memory.

Chapters 8 to 10 provide reference and programming information for the VGA registers.

Non-Intel Based Memory Mapping

To incorporate the VT or 3D RAGE into a design, non-Intel platforms (such as the Apple Power Macintosh) must conform to the PCI specification. For information on configuring the VT or 3D RAGE in non-Intel environments, refer to Chapter 2 of the *mach64 Programmer's Guide*.

This page intentionally left blank.

Chapter 3 Cross Reference

This section contains tables that list the registers by address, by mnemonic (listed alphabetically) and page number. Use these tables to locate specific registers in the rest of the manual.

In the **3D RAGE**, all of the Scaler Pipe registers (except SCALE_3D_CNTL and SCALE_VACC) are aliased with certain new 3D and Texture Mapping registers, as noted by the duplicate **DWORD** Offsets. Registers which are specific to a certain accelerator or revision are also noted in the following tables.

	Registers by A	ddress											
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page								
	CRTC_H_TOTAL_DISP	R/W	0h,1Fh	0_00h	4-20								
	CRTC_H_SYNC_STRT_WID	R/W	1h	0_01h	4-21								
	CRTC_V_TOTAL_DISP	R/W	2h	0_02h	4-22								
A agalamaton CDTC	CRTC_V_SYNC_STRT_WID	R/W	3h	0_03h	4-23								
Register ClassMinemonicWriAccelerator CRTCCRTC_H_TOTAL_DISPR/A CRTC_V_SYNC_STRT_WIDR/A CRTC_V_TOTAL_DISPAccelerator CRTCCRTC_V_TOTAL_DISPR/A CRTC_V_SYNC_STRT_WIDCRTC_V_SYNC_STRT_WIDR/A CRTC_OFF_PITCHR/A CRTC_OFF_PITCHCRTC_OFF_PITCHR/A CRTC_OFF_PITCHR/A 	R/W	4h	0_04h	4-24									
	CRTC_OFF_PITCH	R/W	5h	0_05h	4-25								
	CRTC_INT_CNTL	R/W	6h	0_06h	4-26								
	R/W	7h	0_07h	4-27									
	OVR_CLR	R/W	8h	0_10h	0_10h <i>4-31</i>								
Overscan	OVR_WID_LEFT_RIGHT	R/W	9h	0_11h	4-32								
	OVR_WID_TOP_BOTTOM	R/W	Ah	0_12h	4-32								
	CUR_CLR0	R/W	Bh	0_18h	4-33								
	CUR_CLR1	R/W	Ch	0_19h	4-34								
Hardware Cursor	CUR_OFFSET	R/W	Dh	0_1Ah	4-35								
	CUR_HORZ_VERT_POSN	R/W	Eh	0_1Bh	4-36								
	CUR_HORZ_VERT_OFF	R/W	Fh	0_1Ch	4-37								
General I/O Control GP_IO	GP_IO	R/W	-	0_1Eh	4-4								
General I/O Control	GP_IO_CNTL	R/W	-	0_1Fh	4-3								
Scratch Pad	SCRATCH_REG0	R/W	10h	0_20h	4-6								
and Test	SCRATCH_REG1	R/W	11h	0_21h	4-7								
Clock Control	CLOCK_CNTL	R/W	12h	0_24h	4-38								
Bus Control	BUS_CNTL	R/W	13h	0_28h	4-8								
	MEM CNTL	R/W	14h	0_2Ch	4-10								
Memory Control		R/W	15h		4-12								
r -		R/W	16h	0_2Eh	4-13								
	DAC REGS	R/W	17h	0_30h	4-39								
DAC Control and Test		R/W	18h	0_31h	4-40								
General/Test	_	R/W	19h	0_34h	4-14								
	CONFIG_CNTL	R/W	1Ah	0_37h	4-16								
Configuration	CONFIG_CHIP_ID	R	1Bh	0_38h	4-17								
		R/W	1Ch	0_39h	4-18								
DAC Control and Test	CRC SIG	R	1Dh	0 3Ah	4-42								

9

	Registers by Addr	ess			
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page
	DST_OFF_PITCH	R/W	-	0_40h	4-53
	DST_X	R/W	-	0_41h	4-55
	DST_Y	R/W	-	0_42h	4-57
	DST_Y_X	Ŵ	-	0_43h	4-58
	DST_WIDTH	R/W	-	0_44h	4-54
	DST_HEIGHT	R/W	-	0_45h	4-51
	DST_HEIGHT_WIDTH	W	-	0_46h	4-52
	DST_X_WIDTH	W	-	0_47h	4-56
	DST_BRES_LNTH (in GT, aliased to 0_51h)	R/W	-	0_48h	4-46
Draw Engine	DST_BRES_ERR (LEAD_BRES_ERR, GT)	R/W	-	0_49h	4-44
Destination (and Z)	DST_BRES_INC (LEAD_BRES_INC, GT)	R/W	-	0_4Ah	4-45
Trajectory Control	DST_BRES_DEC (LEAD_BRES_DEC, GT)	R/W	-	0_4Bh	4-43
	DST_CNTL	R/W	-	0_4Ch	4-48
	DST_Y_X (alias, in GT only, for 0_43h)	W	-	0_4Dh	4-58
	TRAIL_BRES_ERR (GT only)	R/W	-	0_1Eh	4-59
	TRAIL_BRES_INC (GT only)	R/W	-	0_4Eh	4-59
	TRAIL_BRES_DEC (GT only)	R/W	-	0_4111 0_50h	4-59
	LEAD_BRES_LNTH (GT, aliased to 0_48h)	R/W	-	0_51h	4-46
	Z_OFF_PITCH (GT only)	R/W	-	0_52h	4-60
	Z_CNTL (GT only)	R/W	-	0_52h	4-61
	SRC_OFF_PITCH	R/W		0_00h	4-68
	SRC_X	R/W		0_00h 0_61h	4-71
	SRC_Y	R/W	-	0_01h 0_62h	4-71
	SRC_Y_X	W		0_0211 0_63h	4-75
	SRC_WIDTH1	R/W		0_03n 0_64h	4-75
	SRC_HEIGHT1	R/W	-	0_65h	4-09
Draw Engine	SRC_HEIGHT1_WIDTH1	W	-	0_66h	4-04
Source Trajectory		R/W		0_67h	
Control	SRC_X_START SRC_Y_START	R/W	-	0_67h 0_68h	<u>4-72</u> <u>4-74</u>
	SRC_Y_X_START	W	-	0_69h	4-74
	SRC_WIDTH2 SRC_HEIGHT2	R/W R/W	-	0_6Ah	4-70
		 W	-	0_6Bh	4-66
	SRC_HEIGHT2_WIDTH2		-	0_6Ch	4-67
	SRC_CNTL	R/W	-	0_6Dh	4-62
Scaler Pipe (GT only)	SCALE_Y_OFF	R/W	-	0_70h	6-1
	TEX_0_OFF	R/W	-	0_70h	6-8
	TEX_1_OFF	R/W	-	0_71h	6-8
	TEX_2_OFF	R/W	-	0_72h	6-8
Texture Mapping	TEX_3_OFF	R/W	-	0_73h	6-8
(GT only)	TEX_4_OFF	R/W	-	0_74h	6-8
	TEX_5_OFF	R/W	-	0_75h	6-8
	TEX_6_OFF	R/W	-	0_76h	6-8
	TEX_7_OFF	R/W	-	0_77h	6-8
Scaler Pipe (GT only)	SCALE_WIDTH	R/W	-	0_77h	6-2
Source a spe (Of only)	SCALE_HEIGHT	R/W	-	0_78h	6-2
	TEX_8_OFF	R/W	-	0_78h	6-8
Texture Mapping	TEX_9_OFF	R/W	-	0_79h	6-8
(GT only)	TEX_10_OFF	R/W	-	0_7Ah	6-8
(GI only)	S_Y_INC (aliased to 0_D4h)	R/W	-	0_7Bh	6-9
Scaler Pipe (GT only)	SCALE_Y_PITCH (aliased to 0_D4h)	R/W	-	0_7Bh	6-2
	SCALE_X_INC (aliased to 0_F0h)	R/W	-	0_7Ch	6-2
Color, Z & Alpha Inter.	RED_X_INC (aliased to 0_F0h)	R/W	-	0_7Ch	6-12
Color, Z & Alphu Inter.			-	0_7Dh	6-12
(GT only)	GREEN_X_INC (aliased to 0_F3h)	R/W		0_7011	0-12
	GREEN_X_INC (aliased to 0_F3h) SCALE_Y_INC (aliased to 0_F3h)	R/W R/W	-	0_7Dh	6-2

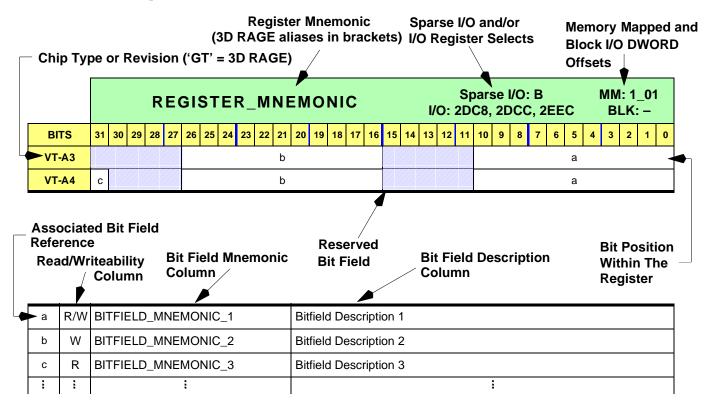
	Registers by Add	ess					
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page		
Host Data	HOST_DATA[15:0]	W	-	0_80-8Fh	4-77		
Host Duta	HOST_CNTL	R/W	-	0_90h	4-78		
	PAT_REG0	R/W	-	0_A0h	4-79		
Pattern	PAT_REG1	R/W	-	0_A1h	4-80		
	PAT_CNTL	R/W	-	0_A2h	4-81		
	SC_LEFT	R/W	-	0_A8h	4-82		
	SC_RIGHT	R/W	-	0_A9h	<i>4-83</i>		
Scissor	SC_LEFT_RIGHT	W	-	0_AAh	4-84		
5015501	SC_TOP	R/W	-	0_ABh	4-85		
	SC_BOTTOM	R/W	-	0_ACh	4-86		
	SC_TOP_BOTTOM	W	-				
	DP_BKGD_CLR	R/W	-				
	DP_FRGD_CLR (also DP_FOG_CLR, GT)	R/W	-				
	DP_WRITE_MSK	R/W	-				
Data Path	DP_CHAIN_MSK	R/W	-				
			-				
			-				
	DP_MIX R/W - 0_B5h DP_SRC R/W - 0_B6h DP_SRC R/W - 0_B6h Clr_CMP_CLR R/W - 0_C0h CLR_CMP_MSK R/W - 0_C1h CLR_CMP_CNTL R/W - 0_C2h FIFO Status FIFO_STAT R - 0_C3h Context Control CONTEXT_MSK R/W - 0_C3h CONTEXT_LOAD_CNTL R/W - 0_C3h Engine Control GUI_TRAJ_CNTL R/W - 0_CCh Engine Status GUI_STAT R - 0_CEh						
			-				
Color Compare							
			-				
FIFO Status			-				
Context Control			-				
			-		4-103		
Engine Control	GUI_TRAJ_CNTL	R/W	-	0_CCh	4-104		
Engine Status	GUI_STAT	R	-	0_CEh	4-106		
-	S_X_INC2	R/W	-	0_D0h	6-8		
Toutune Manning	S_Y_INC2	R/W	-	0_D1h	6-8		
	S_XY_INC2	R/W	-	0_D2h	6-9		
(GI only)	S_XINC_START	R/W	-	0_D3h	6-9		
	S_Y_INC	R/W	-	0_D4h	6-9		
Scaler Pipe (GT only)	SCALE_Y_PITCH (aliased to 0_7Bh)	R/W	-	0_D4h	6-2		
1		R/W	-	0_D5h	6-9		
		R/W	-	0_D6h	6-9		
		R/W	-	0_D7h	6-10		
Texture Mapping		R/W	-	0_D8h	6-10		
	T_XINC_START		-		6-10		
Texture Mapping (GT only) S_Y_INC2 R/W - S_XY_INC2 R/W - <td>-</td> <td>0_DAh</td> <td>6-10</td>	-	0_DAh	6-10				
	T_START	R/W	-	0_DBh	6-10		
	TEX_SIZE_PITCH	R/W	-	0_DCh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Scaler Pipe (GT only)	SCALE_X_INC (aliased to 0_7Ch)	R/W	-				
· · · · · · · · · · · · · · · · · · ·	RED_X_INC (aliased to 0_7Ch)	R/W	-				
Color, Z & Alpha Inter.	RED_Y_INC	R/W	-				
(GT only)	RED_START	R/W	-				
	SCALE_HACC	R/W	-				
Scaler Pipe (GT only)	SCALE_Y_INC (aliased to 0_7Dh)	R/W	-				
	GREEN_X_INC (aliased to 0_7Dh)	R/W	-	0 F3h			
Color, Z & Alpha Inter.	GREEN_Y_INC	R/W	-				
(GT only)	GREEN_START	R/W	-				
(Or only)	BLUE_X_INC	R/W	-				
Scaler Pipe (GT only)	SCALE_XUV_INC	R/W	-				
Color, Z & Alpha Inter.		R/W	-				
(GT only)	BLUE_START	R/W					
Scaler Pipe (GT only)	SCALE_UV_HACC	R/W	-	0_F8h	6-7		

Registers by Address											
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page						
Color, Z & Alpha Inter.	Z_X_INC	R/W	-	0_F9h	6-13						
(GT only)	Z_Y_INC	R/W	-	0_FAh	6-14						
(OI only)	Z_START	R/W	-	0_FBh	6-14						
	ALPHA_X_INC	R/W	-	0_FCh	6-14						
	FOG_X_INC	R/W	-	0_FCh	6-14						
Color, Z & Alpha Inter.	ALPHA_Y_INC	R/W	-	0_FDh	6-14						
(GT only)	FOG_Y_INC	R/W	-	0_FDh	6-14						
	ALPHA_START	R/W R/W	-	0_FEh	6-14						
	FOG_START OVERLAY_Y_X_START	R/W	-	0_FEh 1_00h	<u>6-14</u> 5-6						
Overlay Window	OVERLAY_Y_X_END	R/W	-	1_00h	5-0						
	OVERLAY_VIDEO_KEY_CLR	R/W	-	1_01h	5-4						
Overlay Window	OVERLAY_VIDEO_KEY_MSK	R/W	-	1_02h	5-5						
Control	OVERLAY_GRAPHICS_KEY_CLR	R/W	-	1_04h	5-1						
	OVERLAY_GRAPHICS_KEY_MSK	R/W	-	1_05h	5-2						
	OVERLAY_KEY_CNTL	R/W	-	1_06h	5-3						
	OVERLAY_SCALE_INC	R/W	-		5-10						
Overlay Scaler Video Capture	OVERLAY_SCALE_CNTL	R/W	-	1_09h	5-8						
	SCALER_HEIGHT_WIDTH	R/W	-	1_0Ah	5-12						
	OVERLAY_TEST	R/W	-	1_0Bh	5-11						
	SCALER_THRESHOLD	R/W	-	<mark>1_0Ch</mark> 1_10h	5-13						
Video Canture		_X R/W -			5-21						
vinco Cupinie			-	1_11h	5-20						
General Video	pture CAPTURE_HEIGHT_WIDTH R/W Video VIDEO_FORMAT R/W	-	1_12h	5-16							
	VIDEO_CONFIG		-	1_13h	5-14						
	CAPTURE_CONFIG	R/W	-	1_14h	5-18						
Video Capture	TRIG_CNTL	R/W	-	1_15h	5-22						
CDTC	VIDEO_SYNC_TEST	R/W	-	1_16h	5-24						
CRTC	EXT_CRTC_GEN_CNTL (VT-A4 only)	R/W	-	1_17h	4-29						
VMC Configuration	VMC_CONFIG	R/W	-	1_18h	5-31						
and Status	VMC_STATUS	R	-	1_19h	5-32						
	VMC_CMD	R/W	-	1_1Ah	5-35						
VMC Communed	VMC_ARG0	R/W	-	1_1Bh	5-33						
VMC Command	VMC_ARG1	R/W R	-	1_1Ch 1_1Dh	<u>5-34</u> 5-37						
	VMC_SNOOP_ARG0 VMC_SNOOP_ARG1	R		1_1Eh	5-37						
	BUF0_OFFSET	R/W		1_1En	5-26						
	BUF0_PITCH	R/W	-	1_201 1_23h	5-20						
	BUF1_OFFSET	R/W	-	1_23h	5-29						
Video Buffer 0/1	BUF1_PITCH	R/W	-	1_29h	5-30						
	BUF0_CAP_ODD_OFFSET	R/W	-	1_2Bh	5-25						
	BUF1_CAP_ODD_OFFSET	R/W	-	1_2Ch	5-28						
VMC Stream Data	VMC_STRM_DATA[i]	R/W	-	1_30-3Fh	5-39						
Miscellaneous	HW_DEBUG	R/W	_	1_50h	4-19						

	Registers by Mnem	onic			
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page
	ALPHA_START	R/W	-	0_FEh	6-14
Color 7 & Alpha	ALPHA_X_INC	R/W	-	0_FCh	6-14
-	ALPHA_Y_INC	R/W	-	0_FDh	6-14
	BLUE_START	R/W	-	0_F8h	6-13
(GT only)	BLUE_X_INC	R/W	-	0_F6h	6-13
	BLUE_Y_INC	R/W	-	0_F7h	6-13
	BUF0_CAP_ODD_OFFSET	R/W	-	1_2Bh	6-14 6-14 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 6-13 5-25 5-26 5-27 5-28 5-29 5-30 4-8 5-18 5-20 5-21 4-38 4-98 4-100 4-99 4-17 4-16 4-103 4-102 4-27 4-23 4-26 4-25 4-26 4-22 4-23 4-24 4-33 4-34 4-33 4-34 4-35 4-40 4-39 4-88 4-91
	BUF0_OFFSET	R/W	-	1_20h	5-26
Video Buffer 0/1	BUF0_PITCH	R/W	-	1_23h	5-27
viaeo Bujjer 0/1	BUF1_CAP_ODD_OFFSET	R/W	-	1_2Ch	5-28
	BUF1_OFFSET	R/W	-	1_26h	5-29
	BUF1_PITCH	R/W	-	1_29h	5-30
Bus Control	BUS CNTL	R/W	13h	0 28h	4-8
			-		
Video Capture			-		
· · · · · · · · · · · · · · · · · · ·			-		
Clock Control			12h		
				_	
Color Compare					
Color Compare				O_COh 4-9 0_C2h 4-10 0_C1h 4-9 0_38h 4-1 0_37h 4-1 0_39h 4-1 0_CBh 4-10 0_C8h 4-10	
			1Bh		
Configuration					
Conjiguration					$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Context Control					
DAC Control					
DAC COMIO	—				
Context Control DAC Control					
Accelerator CRTC			Write Select Offset Page R/W - 0_FEh 6-14 R/W - 0_FCh 6-14 R/W - 0_FCh 6-14 R/W - 0_FCh 6-13 R/W - 0_F6h 6-13 R/W - 0_F7h 6-13 R/W - 1_2Bh 5-25 R/W - 1_20h 5-26 R/W - 1_2Ch 5-28 R/W - 1_2Ch 5-28 R/W - 1_2Gh 5-29 R/W - 1_2Gh 5-29 R/W - 1_2Gh 5-20 R/W - 1_14h 5-18 R/W - 1_11h 5-20 R/W - 0_CCh 4-98 R/W - 0_CCh 4-99 R 1Bh 0_33h 4-17 R/W - <td< td=""></td<>		
	Image: Select Class Mnemonic Write Select Offset ALPHA_START R/W - 0_FCh ior, Z & Alpha ALPHA_Y_INC R/W - 0_FCh ALPHA_Y_INC R/W - 0_FCh BUE_START R/W - 0_FCh BUE_Y_INC R/W - 0_FCh BUF0_OFFSET R/W - 0_FCh BUF0_OFFSET R/W - 1_28h BUF1_OFFSET R/W - 1_28h BUF1_OFFSET R/W - 1_29h Buscontrol BUS_CNTL R/W - 1_29h Buscontrol BUS_CNTL R/W - 1_29h Buscontrol CLCCK_CNTL R/W - 1_14h CAPTURE_HEIGHT_WIDTH R/W - 0_C2h Clar CMP_CNTL R/W - 0_C2h Clar CMP_CNTL R/W - 0_C2h Clar CMP_CNTL R/W - 0_C2h <				
Handmans Comes					
naraware Cursor					
DAC Control					
			1/h		
			-		
				—	
Data Path	_				
				—	
	DP_WRITE_MSK	R/W	-	0_B2h	4-90

Registers by Mnemonic												
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page							
	DST_BRES_DEC	R/W	-	0_4Bh	4-43							
	DST_BRES_ERR	R/W	-	0_49h	4-44							
	DST_BRES_INC	R/W	-	0_4Ah	4-45							
	DST_BRES_LNTH	R/W	-	0_48, 51h	4-46							
		R/W	-	0_4Ch	4-48							
Draw Engine	DST_HEIGHT	R/W	-	0_45h	4-51							
Destination (and Z)	DST_HEIGHT_WIDTH	W	-	0_46h	4-52							
Trajectory		R/W	-	0_40h	4-53							
		R/W	-	0_44h	4-54							
		R/W	-	0_41h	4-55							
		W	-	0_47h	4-56							
	DST_Y	R/W	-		4-57							
	_		-		4-58							
Accelerator CRTC			-		4-29							
FIFO Status			-		4-101							
Color, Z & Alpha				_	6-14							
					6-14							
Interpolation												
(GT only)					6-14							
General/Test			19h	_	4-14							
General I/O Control			-		4-4							
			-		4-3							
Color, Z & Alpha			-		6-13							
Interpolation	GREEN_X_INC	R/W	-	_ ,	6-12							
(GT only)	GREEN_Y_INC	R/W	-	0_F4h	6-12							
Engine Control	GUI TRAJ CNTL	R/W	-	0 CCh	4-104							
Engine Status			-		4-100							
0			-		4-78							
Host Data			-		4-77							
Miscellaneous			-	_	4-19							
			-		4-43							
Draw Engine			_		4-44							
Destination (and Z)												
Trajectory												
Memory Control												
Memory Control	DST_BRES_LNTH R/W - $0_48, 51h$ DST_CNTL R/W - 0_4Ch DST_HEIGHT R/W - 0_45h DST_HEIGHT_WIDTH W - 0_46h DST_OFF_PITCH R/W - 0_44h DST_X R/W - 0_44h DST_X R/W - 0_44h DST_X R/W - 0_44h DST_X R/W - 0_44h DST_X_WIDTH W - 0_47h DST_Y R/W - 0_42h DST_Y_X (aliased, in GT, to 0_4Dh) W - 0_43h EXT_CRTC_GEN_CNTL (VT-A4 only) R/W - 0_43h FV_C_GSTART R/W - 0_C4h FOG_START R/W - 0_FCh FOG_Y_INC R/W - 0_FCh GP_IO R/W - 0_1Fh GREEN_START R/W - 0_2F5h GREEN_START R/W - 0_2F5h GREEN_Y_INC R/W - 0_2F4h GUI_TRAJ_CNTL R/W - 0_2F4h											
Overlay Window												
Control												
Overlay Scaler			_									
Grenny Scaler			-	- 0_48, 51h 4-46 14h 0_2Ch 4-10 16h 0_2Eh 4-13 15h 0_2Dh 4-12 - 1_04h 5-1 - 1_05h 5-2 - 1_06h 5-3 - 1_09h 5-8 - 1_08h 5-10 - 1_08h 5-11								
			_		5-4							
Overlay Window					5-5							
Control					5-5							
Comroi					5-7							
					4-31							
Quana a m												
Overscan					4-32							
					4-32							
D = 44 c = 1					4-81							
Pattern					4-79							
			-		4-80							
Color, Z & Alpha			-		6-12							
Interpolation			-		6-12							
(GT only)	RED Y INC	R/W	-	0 F1h	6-12							

	Registers by N				
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page
	SCALE_3D_CNTL	R/W	-	0_7Fh	6-4
	SCALE_HACC	R/W	-	0_F2h	6-7
	SCALE_HEIGHT	R/W	-	0_78h	6-2
	SCALE_UV_HACC	R/W	-	0_F8h	6-7
	SCALE_VACC	R/W	-	0_7Eh	6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-7 6-2 5-12 5-13 4-6 4-70 4-83 4-84 4-85 4-64 4-65 4-66 4-67 4-68 4-69 4-70 4-71 4-72 4-73 4-74 4-75 4-76 6-9 6-9 6-9 6-9 6-9 6-8 6-10 6-9 6-10
Scaler Pipe (GT only)	SCALE_WIDTH	R/W	-	0_77h	
aler Pipe (GT only) aler Pipe (GT only) aler Pipe (GT only) SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI	SCALE_X_INC	R/W	-	0_7C,F0h	6-2
	SCALE_XUV_INC	R/W	-	0_F6h	6-7
	SCALE_Y_INC	R/W	-	0_7D,F3h	6-2
	SCALE_Y_OFF	R/W	-	0_70h	6-1
	SCALE_Y_PITCH	R/W	-	0_7B,D4h	6-2
Quarlau Saalar	SCALER_HEIGHT_WIDTH	R/W	-	1_0Ah	6-2 6-7 6-3 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-1 6-2 6-1 6-2 5-13 4-6 4-7 4-88 4-83 4-84 4-83 4-84 4-83 4-84 4-83 4-84 4-83 4-84 4-83 4-84 4-85 4-64 4-65 4-66 4-67 4-68 4-69 4-70 4-71 4-72 4-73 4-74 4-75 4-76 6-9 6-9 6-9 6-9 6-9 6-8
Overiay Scaler	SCALER_THRESHOLD	R/W	-	1_0Ch	5-13
Scratch Pad	SCRATCH_REG0	R/W	10h	0_20h	6-7 6-3 6-2 6-7 6-2 6-7 6-2 6-7 6-2 6-1 6-2 5-13 4-6 4-7 4-88 4-83 4-85 4-61 4-62 4-64 4-65 4-66 4-67 4-68 4-69 4-70 4-71 4-72 4-73 4-74 4-75 4-76 6-9 6-8 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-9 6-8 6-9 6-8 6-8 6-8 6-8 6-8 6-8<
and Test	SCRATCH_REG1	R/W	11h	0_21h	4-7
	SC_BOTTOM	R/W	-	0_ACh	4-86
	SC_LEFT	R/W	-	0000000	
Scissor	SC_LEFT_RIGHT	W	-	0_AAh	4-84
Scissor	SC_RIGHT	R/W	-	0_A9h	4-83
	SC_TOP	R/W	-	0_ABh	4-85
	SC_TOP_BOTTOM	W	-	0_ADh	4-87
	SRC_CNTL	R/W	-	0_6Dh	4-62
	SRC_HEIGHT1	R/W	-	0_65h	4-64
	SRC_HEIGHT1_WIDTH1	W	-	0_66h	4-65
	SRC_HEIGHT2	R/W	-	0_6Bh	4-66
	SRC_HEIGHT2_WIDTH2	W	-	0_6Ch	4-67
	SRC_OFF_PITCH	R/W	-	0_60h	4-68
Draw Engine	SRC_WIDTH1	R/W	-	0_64h	4-69
Source Trajectory	SRC_WIDTH2	R/W	-	0_6Ah	4-70
	SRC_X	R/W	-	0_61h	
	SRC_X_START	R/W	-	0_67h	4-72
	SRC_Y	R/W	-	0_62h	4-73
	SRC_Y_START	R/W	-	0_68h	
	SRC_Y_X	W	-	0_63h	
	SRC_Y_X_START	W	-	0_69h	4-76
	S_START	R/W	-	0_D5h	
	S_X_INC2	R/W	-	0_D0h	6-8
	S_XINC_START	R/W	-	0_D3h	6-9
	S_XY_INC2	R/W	-	0_D2h	
(GT only)	S_Y_INC	R/W	-	0_7B,D4h	
	S_Y_INC2	R/W	-	0_D1h	
	TEX_[0-10]_OFF	R/W	-	0_70-7Ah	
	TEX_SIZE_PITCH	R/W	-	0_DCh	
	TRAIL_BRES_ERR	R/W	-	0_4Eh	
Destination (and Z)	TRAIL_BRES_INC	R/W	-	0_4Fh	
Trajectory <mark>(GT only</mark>)	TRAIL_BRES_DEC	R/W	-	0_50h	4-59
Video Capture	TRIG_CNTL	R/W	-	1_15h	5-22
-	T_START	R/W	-	0_DBh	6-10
	T_X_INC2	R/W	-	0_D6h	6-9
Texture Mapping	T_XINC_START	R/W	-	0_D9h	6-10
(GT only)	T_XY_INC2	R/W	-	0_D8h	6-10
	T_Y_INC	R/W	-	0_DAh	6-10
	T_Y_INC2	R/W	-	0_D7h	6-10
General Video	VIDEO_FORMAT	R/W	-	1_12h	5-16
Seneral villeo	VIDEO_CONFIG	R/W	-	1_13h	5-14


Chapter 3 Cross Reference

	Registers by M	nemonic			
Register Class	Mnemonic	Read/ Write	I/O Select	DWORD Offset	Page
Video Capture	VIDEO_SYNC_TEST	R/W	-	1_16h	5-24
VMC Command	VMC_ARG0	R/W	-	1_1Bh	5-33
VMC Commana	VMC_ARG1	R/W	-	1_1Ch	5-34
VMC Config / Status	VMC_CONFIG	R/W	-	1_18h	5-31
	VMC_CMD	R/W	-	1_1Ah	5-35
VMC Command	VMC_SNOOP_ARG0	R	-	1_1Dh	5-37
	VMC_SNOOP_ARG1	R	-	1_1Eh	<i>5-3</i> 8
VMC Config / Status	VMC_STATUS	R	-	1_19h	5-32
Draw Engine Destin.	Z_CNTL (GT only)	R/W	-	0_53h	4-61
(and Z) Trajectory	Z_OFF_PITCH (GT only)	R/W	-	0_52h	4-60
Color, Z & Alpha	Z_START	R/W	-	0_FBh	6-14
Interpolation	Z_X_INC	R/W	-	0_F9h	6-13
(GT only)	Z_Y_INC	R/W	-	0_FAh	6-14

Chapter 4 Accelerator Register Reference

Chapter 4 serves as a reference for the ATI-264VT and 3D RAGE accelerator registers, including the following general register classes: Setup and Control, Accelerator CRTC and DAC, Draw Engine Trajectory and Draw Engine Control registers. Multimedia, 3D, PCI Configuration Space, and VGA registers are detailed in subsequent chapters. All of the register classes are summarized in *Chapter 1*.

The table below describes the layout of all Accelerator Register Reference Tables within Chapter 4.

All addresses are in hexadecimal, according to the following notation:

- **Sparse I/O:**If applicable, indicates the upper six bits of the standard 16-bit I/O address when using sparse I/O ('B' hex in the above example). The upper six bits are used for the register selects, while the lower 10 bits comprise the I/O base address.
- **I/O:** Indicates the absolute sparse I/O address (if applicable), dependent on the I/O base address used for sparse I/O mapping 1C8h, 1CCh or 2ECh (typically, the base address will be 2ECh). In the above example, the absolute sparse I/O address is 2DC8h, 2DCCh or 2EECh.

- **BLK:** Represents the block I/O DWORD offset, if supported.
- **MM:** Represents the block/DWORD offset for memory mapped configurations, using the following notation:

MM:block#_offset

where:

block# – identifies the block that the register belongs to (0 or 1)

offset – is the register DWORD offset within the associated block.

An underscore (_) separates the block number from the register offset.

In the above example, the memory mapped register address is defined as 1_01. Therefore, this register would be located in register block 1 (2K below the top of the aperture) at DWORD offset 9h (or byte address 24h).

See *Chapter 2, VT/3D RAGE Register Mapping* for further information on calculating memory mapped and I/O mapped addresses.

Note that the value of all reserved bits is not guaranteed on read-back. Host applications should mask out all reserved bits in these cases and not rely on their results.

Setup and Control Registers

General I/O Control

		GP_IO_CNTL Sparse												rse I I/O:-				l: 0_ .K: ′						
BI	TS	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7											6	5 4	3	2	1	0						
VT	/GT	b																				а		
а	R/W	GF	°_10_	MOE	DE				0 1 2 3 4	= VID = VM = VF(= EN(= GP	C G_DI/	O AG	GET	for t	he C	Genei	ral Pu	urpos	e IO					
b	R/W	GF	P_IO_	EN						= Disa = Ena	able (able	Defa	ult =	0)										

Description

This register is used to configure the General Purpose IO bus, which can be used as a video IO interface in the VT. This bus allows different modes to be supported – VFC, VMC, and DVS (Digital Video Stream) modes.

Usage

GP_IO_MODE specifies the general mode of operation of the General Purpose IO bus, while GP_IO_EN provides the bus enable/disable function.

See Also

GP_IO on *page 4-4*

									GF		10									ľ	؟ 0:7/				e I/0 790				EC			/1: (LK:			
BI	TS	31	30 29	28	3 27	26	25	2	4 23	22	21	20	19	18	3 17	16	15	14	13	1	2 11		10	9	8	7		6	5	4	3	2	1	0	
VT	/GT	ff	ee dd	l co	bb	aa	z	\$	/ x	w	v	u	t	s	r	q	р	0	n	n	n I		k	j	i	h	ę	g	f	е	d	с	b	a	
а	R/W	GF	P_IO_0									Wr	ite/	Re	ead (DIR	0 =	out	put	t/ir	nput)	Pi	n:	D	AT/	۹(0))								
b	R/W	GF	P_IO_1									Wr	ite/	Re	ad (DIR	1 =	out	put	t/ir	nput)	Pi	n:	D	AT/	\(1))								
с	R/W	GF	P_IO_2									Wr	ite/	Re	ad (DIR	2 =	out	put	t/ir	nput)	Pi	n:	D	AT/	A(2)								
d	R/W	GF	P_IO_3									Wr	ite/	Re	ad (DIR	3 =	out	put	t/ir	nput)	Pi	n:	D	AT/	A(3))								
е	R/W	GF	P_IO_4									Wr	ite/	Re	ead (DIR	4 =	out	put	t/ir	nput)	Pi	n:	D	AT/	4(4))								
f	R/W	GF	P_IO_5									Wr	ite/	Re	ead (DIR	5 =	out	put	t/ir	nput)	Pi	n:	D	AT/	۹(5)								
g	R/W	GF	P_IO_6									Wr	ite/	Re	ead (DIR	6 =	out	put	t/ir	nput)	Pi	n:	D	AT/	۹(6)								
h	R/W	GF	P_IO_7									Wr	ite/	Re	ead (DIR	7 =	out	put	t/ir	nput)	Pi	n:	D	AT/	٩(7)								
i	R/W	GF	P_IO_8									Wr	ite/	Re	ead (DIR	8 =	out	put	t/ir	nput)	Pi	n:	E	SYN	١C									
j	R/W	GF	P_IO_9									Wr	ite/	Re	ead (DIR	9 =	out	put	t/ir	nput)	Pi	n:	E١	/ID	EC)								
k	R/W	GF	P_IO_A	١.								Wr	ite/	Re	ead (DIR	A =	ou	tpu	t/ir	nput)	P	in:	В	LAN	NKE	3								
Ι	R/W	GF	P_IO_B	3								Wr	ite/	Re	ead (DIR	B =	ou	tpu	t/ir	nput)	P	in:	S	NR	DY	В								
m	R/W	GF	P_IO_C	;								Wr	ite/	Re	ead (DIR	C =	ou	tpu	t/ir	nput	P	in:	S	AB										
n	R/W	GF	P_IO_C)								Wr	ite/	Re	ead (DIR	D =	ou	tpu	t/ir	nput	P	in:	Е	DC	LK									
о	R/W	GF	P_IO_E									Wr	ite/	Re	ead (DIR	E =	ou	tpu	t/ir	nput)	Ρ	in:	V	МС	MA	Sł	<							
р	R/W	GF	P_IO_F									Wr	ite/	Re	ead (DIR	F =	ou	tpu	t/ir	nput)	Pi	n:	D	CLł	<									
q	R/W	GF	P_IO_C	DIR_	_0							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
r	R/W	GF	P_IO_C	DIR_	_1							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
s	R/W	GF	P_IO_C	DIR_	_2							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
t	R/W	GF	P_IO_C	DIR_	_3							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
u	R/W	GF	P_IO_C	DIR_	_4							GF	P IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
v	R/W	GF	P_IO_C	DIR_	_5							GF	9 IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
w	R/W	GF	P_IO_C	DIR_	_6							GF	9 IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
х	R/W	GF	P_IO_C	DIR_	_7							GF	9 IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
у	R/W	GF	P_IO_C	DIR_	_8							GF	9 IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
z	R/W	GF	P_IO_C	DIR_	_9							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												
aa	R/W	GF	P_IO_C	DIR_	_A							GF	9 IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
bb	R/W	GF	P_IO_C	DIR_	B							GF	9 IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
сс	R/W	GF	P_10_C	DIR_	C							GF	9 IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
dd	R/W	GF	P_10_C	DIR_	D							GF	9 IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
ee	R/W	GF	P_10_C	DIR_	E							GF	9 IO	D	irect	ion:	0 =	= In	put	:1	= Οι	ıtp	out												
ff	R/W	GF	P_10_C	DIR_	F							GF	P IO	D	irect	ion:	0 =	= In	put	1	= Οι	ıtp	out												

Description	
	This register specifies the data/direction for each pin (GPIO[F:0]) of the General Purpose IO bus.
Usage	
	Refer to the ATI-264VT Graphics Controller Specification for details on the typical pin configurations used to support the various operational modes (VFC, DVS, VMC, etc.).
See Also	
	GP_IO_CNTL on page 4-3

Scratch Pad

								S	C	R A	۲	Cŀ	ł_	RE	ĒG	0						I/C				• I/C 41C			EC			l: 0 .K:	_	
	Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VT/	GT	a																															
á	a	R/W	V SCRATCH_REG0 Scratch pad 0																															

Description

SCRATCH_REG0 is a general purpose storage register. The scratch pad registers (0 and 1) may be used to allow two decoupled programs to exchange information. Typically they are used by the BIOS to pass configuration information to drivers or for BIOS data storage.

Usage

Only the adapter BIOS should use this register.

See Also

SCRATCH_REG1 on page 4-7

mach64 Programmer's Guide:

• Advanced Topics: Boot-time Initialization

								S	C	R A	T	Cŀ	I _	RE	G	1						I/C				e I/C 45C			EC			l: 0 .K:	_	I
	BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VT/	GT	a																															
a	a	R/W	V SCRATCH_REG1 Scratch pad 1																															

Description

SCRATCH_REG1 is a general purpose storage register. The scratch pad registers (0 and 1) may be used to allow two decoupled programs to exchange information. Typically they are used by the BIOS to pass configuration information to drivers or for BIOS data storage.

Usage

Only the adapter BIOS should write to this register. Applications must read it to determine the adapter BIOS segment location.

See Also

SCRATCH_REG0 on page 4-6

mach64 Programmer's Guide:

Advanced Topics: Boot-time Initialization

Bus Control

								ΒL	JS	_C	N	ΤL										I/C						0: DC			C			/1: (LK		28 28
BI	TS	31 30) 29	28	27	26	25	24	23	22	21	20	19	1	8 17	7 1	16	15	14	1	3 1	12	11	10	ç	•	8	7	6	5	4	3	3	2	1	0
VT	/GT	о	n	m	I				k	j	i	h			g			f	е			d			с					b				а	l	
а	R/W	BUS	_WS									Bu	s w	vai	t sta	tes	s (E	Def	aul	lt =	= F))														
b	R/W	BUS_	RO	M_\	WS							RC	DM	ac	ces	s v	vait	t st	ate	s	(De	efa	ult	= F)											
с	R/W	BUS_	RO	M_F	PAC	GΕ						RC	DM	ра	ige :	sel	ect	: ([Def	au	ult =	= X)													
d	R/W	BUS_	RO	M_[DIS							RC	DM	di	sabl	e (De	fau	ılt =	= 0))															
е	R/W	BUS_	DA	C_S	SNC	DOF	P_E	N				En	abl	les	DA	С	sno	оор	ing)																
f	R/W	BUS_	_PCI	I_RI	ETF	۲Y_	EN					0 =	= N(orr	try f nal ole r	ор	era	tio	n			-)													
g	R/W	/W BUS_FIFO_WS Maximum number of wait states that the FIFO can generate the maximum is exceeded the BUS_FIFO_ERR_INT f set. Fh - If FIFO is full then write will complete once a FIFO entravailable /W BUS_FIFO_ERR_INT_EN Command FIFO error interrupt enable * (Default = 0)															lag	wi																		
h	R/W	BUS	FIF	O_E																																
	R	BUS_	FIF	O_E	ERF	۲_II	NΤ					Command FIFO error interrupt * (active high)																								
i	W	BUS	FIF	O_E	ERF	R_A	K					Command FIFO error acknowledge * (1 -> reset the interrup													pt)											
j	R/W	BUS_	_HO	ST_	_EF	R_	INT	_EN	١			Сс	mr	na	nd F	FIF	O ł	hos	st d	lat	a e	rro	r ir	ter	ru	pt e	ena	able	;* (De	fau	lt =	= 0))		
	R	BUS_	HO	ST_	ER	R_	INT					Сс	mr	na	nd F	FIF	Οł	าดร	st d	lata	a e	rro	r ir	ter	ru	ot	* (;	acti	ve	higl	า)					
k	W	BUS_	_HO	ST_	_EF	R_	AK					Co			nd F erru			าดร	st d	at	a e	rro	r a	ckr	NOV	vle	dg	e *	(1	->	es	et t	the			
I	R/W	BUS_	_EXT	T_R	EG	i_El	N					0 =	: Di	isa	nde Ible ble \	VT	ē ex	kter	nde	ed	reg	gist	er	blo	ck	1 (efai (m	ult = em	= 0) ory	pa	ge	ena	abl	ed))	
m	R/W	BUS_	_PCI	I_M	EM	W_	WS					0 =	= 0	Wa	ait st ait st	tate	е	ate	s fo	or	me	emo	ory	wr	ite	s *	(D	efa	ult	= 0)					
n	R/W	BUS_	_BUI	RST	Г							0 =	= WI	rite	burs e bu e bu	rst	tra	inst	fers	s c				ult	= (0)										
0	R/W	W BUS_RDY_READ_DLY Bus memory 0 = (reserve 1 = no RDY													DY delay ⁄ delayed 1 memory clock																					

Description

BUS_CNTL is used for configuring the on-chip bus interface, controlling error condition interrupts, and configuring portions of the DAC interface unit (when accessing DAC registers).

Usage

Error condition flags that generate hard interrupts should be used only for software debugging and not be included in the final retail software.

DAC snooping allows DAC shadowing devices to monitor accesses to DAC registers on the graphics controller card.

Other control bits in this register should be used only by the adapter ROM at boot-time.

See Also

- Advanced Topics: Interrupts
- Advanced Topics: Boot-time Initialization

Memory Control

				ME	ΞM	_C	NT	L								I/	S 0: 5			I/O 31C						_2C 2C
BI	TS	31 30 29	28	27 26	25	24 2	3 2	2 2	21 20	19	18	8 17	16	15 14	13	12 11	10	9	8	7	6	5	4	3	2	1 0
VT	/GT		n		m				k	j	i		h	g	f	е	C	k	c	;		b				а
а	R/W	MEM_SIZ	ZE						00 00 01 01	0 = 1 = 0 = 1 =	51 1 2 4	size 12 Kł MBy MBy MBy reser	byte te te te	Defaul	t = ())										
b	R/W	MEM_RE	FRE	SH					00	00 :	= 1	1 clo	ck, tł	ngth, nrough lisable	n to	AM an 1110	d SE	DRA	M							
С	R/W	MEM_CY	′C_LI	NTH_	_AU	X			00 01 10	= 4 = 3 = 2	4 c 3 c 2 c		s (De S	Cmd c efault)	ycle	e lengt	h:									
d	R/W	MEM_CY	ſĊ_ĹĬ	NTH					00 01 10 11 or. 00 01 10	= 3 = 2 = 2 = 2 = 2 = 2 = 2	3 cl 2 cl 2 cl 2 cl 3 Cl 4 cl 3 cl 2 cl	lock lock lock lock RAM	RÁS RAS RAS RAS Pre s (De	i, 3 clo i, 2 clo i, 3 clo i, 2 clo	ock ock ock ock	CAS	Defa	ult)								
e	R/W	MEM_RE	FRE	SH_F	RAT	E			00 01 10	= 1 = 1 = 1	1 re 1 re 1 re	efres efres	h pe h pe h pe	r 102₄ r 768 r 512	MC MC	CLK cy LK cyc LK cyc LK cyc	cles cles		efau	lt)						
f	R/W	DLL_RES	SET						-			ction ocks		when	this	bit tra	insiti	ons	s fro	m 0	to 1	1				
g	R/W	MEM_AC	TV_I	PRE				_	00 01 10	= 4 = 3 = 6	4 c 3 c 6 c		s, (C S S) Prec)efault		ge Min	imur	n La	ater	юу						
h	R/W	DLL_GAI	N_CI	NTL					00 01 10	= N = L = L	Ma _ev _ev	ximu /el 1	ım ga (*Re	ain ecomn	•	pump ded)	gair	CO	ntro	1:						
i	R/W	MEM_SD	RAN	1_RE	SET				0 = 1 =	= No = Re	orn ese	nal et				ransiti AM co					., 8	refr	esh	, MF	RS	
j	R/W	MEM_TIL	E_S	ELEC	т				* N	/lus	t b	e se	t to '	00'												

		MEM_CNTL Sparse I/O: 14 MM: 0_2C I/O: 51C8, 51CC, 52EC BLK: 2C
BI	TS	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VT	/GT	n m l k j i h g f e d c b a
k	R/W	LOW_LATENCY_MODE Accept requests as late as possible (i.e. low latency mode)
I	R/W	CDE_PULLBACK Pulls back the CDE to the memory controller up to the horizontal sync.
m	R/W	MEM_PIX_WIDTHBig endian memory aperture pixel width. $0 = 1$ bpp $1 = 4$ bpp $2 = 8$ bpp $3 = 15$ bpp (5,5,5) $4 = 16$ bpp (5,6,5) $5 = 24$ bpp $6 = 32$ bpp $7 = $ (reserved)
n	R/W	MEM_OE_SELECT Selects the function of the OEb(0) pin:* 00 = SDRAM clk (Default) 01 = DRAM 10 = MCLK (test mode) 11 = XCLK (test mode) 11 = XCLK (test mode) *Note: Any setting other than '00' will break the DLL loop lock and cause SDRAM to be nonfunctional when SDRAM

MEM_CNTL is for configuring the on-chip memory interface unit.

Usage

This register is normally configured only by the adapter ROM during the power-up initialization. Applications should touch only the MEM_BNDRY and MEM_BNDRY_EN fields for relocating the memory boundary between the accelerator and VGA.

See Also

- Linear Aperture: VGA Interaction
- Advanced Topics: Boot-time Initialization

							M	ΕN	۸_۱	/@	6A	_V	NF	ב_	SE	L						I/O			rse :8, {				EC		M: BLK	_	
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT												Ł	C															;	а			
а	R/W	M	EM_	_VG	iA_\	WPS	S0						Wr		pag nen	•		er fo	or lo	owe	r 32	2 KE	Byte	e ap	bert	ure	intc	88	ИΒу	/te v	/ide	0	
b	R/W	M	EM_	_VG	iA_'	WPS	S1						Wr		pag nen	•		er fo	or u	ippe	er 3:	2 KI	Byte	e ap	pert	ure	into	5 8 I	MB	yte	vide	0	

MEM_VGA_WP_SEL contains the two write page pointers used for the two small 32K apertures at 0xA000 and 0xA800. Pages are selectable only on 32K boundaries. These write pages are independent of the read pages.

Apertures exist only in accelerator modes, and only if CFG_MEM_VGA_AP_EN@CONFIG_CNTL is set. VGA apertures are not supported if CFG_BUS_TYPE = PCI. A 4M or 8M linear aperture must be used for PCI bus implementation.

Usage

This register is needed only when writing to the small apertures. Small apertures are required only if the big linear aperture is not available. The big linear aperture may not be available on ISA configurations.

See Also

CONFIG_CNTL on *page 4-16*

MEM_VGA_RP_SEL on page 4-13

mach64 Programmer's Guide:

• Getting Started: Linear Aperture vs. VGA Aperture

							M	E۸	И_	V	GΑ	_I	RF	<u>، (</u>	SE	L						I/C				9C			EC		M: (SLK:	_	
B	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT												ł	b															â	a			
а	R/W	ME	Ξ Μ_ \	/G/	A_F	RPS	0						Re		pag nerr			er f	or le	owe	er 32	2 KI	Byte	e ap	bert	ure	intc	88	ИВу	∕te ∖	/ideo	D	
b	R/W	ME	Ξ Μ_ \	/G/	A_F	RPS	1						Re		pag nem	-		er f	or u	ibbe	er 3	2 K	Byt	e a	pert	ure	into	5 8 I	MBy	/te ·	vide	D	

MEM_VGA_RP_SEL contains the two read page pointers used for the two small 32K apertures at 0xA000 and 0xA800. Pages are selectable only on 32K boundaries. These read pages are independent of the write pages.

Apertures exist only in accelerator modes, and only if CFG_MEM_VGA_AP_EN@CONFIG_CNTL is set. VGA apertures are not supported if CFG_BUS_TYPE = PCI. A 4M or 8M linear aperture must be used for PCI bus implementation.

Usage

This register is needed only when writing to the small apertures. Small apertures are required only if the big linear aperture is not available. The big linear aperture may not be available on ISA configurations.

See Also

CONFIG_CNTL on *page 4-16*

MEM_VGA_WP_SEL on page 4-12

mach64 Programmer's Guide:

• Getting Started: Linear Aperture vs. VGA Aperture

General/Test

					(GE	EN.	_те	ES	ST_	_C	CN1	٢L						I/C							9 661				0_3 (: 34	
BI	TS	31 30	29	28	27 26	25	24	23	22	21	20	19 ⁻	18 17	16	15	14	13	3 12	11	10	9	8		7	6	5	4	3	2	1	0
	3/A4N St				m					k	j		i					h			1	g		f		е	d	с	b		а
VT-	A4S				m			I		k	j		i					h				g		f		е	d	с	b		а
а	R/W	GEN_	GIC	D2_D	DATA_	OL	JT				GI	02 p	in dat	a o	utpı	ıt															
b	R/W	GEN_	GIC	D3_D	DATA_	OL	JT				GI	O3 p	in dat	a o	utpu	ıt															
с	R	GEN_	GIC	D2_D	DATA_	IN					GI	02 p	in dat	a in	put																
d	R/W	GEN_	GIC	02_E	ĪN								02 pin 02 pin)efa	ult)			
е	R/W	GEN_	GIC	D2_V	VRITE	Ξ					GI	02 p	in out	put	ena	able	e (E	Defa	ult =	= 0,	i.e	. re	ad	er	nab	le)					
f	R/W	GEN_	CU	R_E	NABL	E					En	able	s harc	lwa	re c	urs	or	* (D	efau	ult =	= 0))									
g	R/W	GEN_	GU	II_RE	SETE	3					Re	sets	GUI I	Eng	ine	on	hi	gh tơ	o lov	<i>n</i> tr	an	sitic	n	(De	əfa	ult =	= 0)				
h	R/W	GEN_	TE	ST_\	/ECT_	_M(ODE	1		:	0 = 1 = 2 =	= Nor = Out = Cor	ector I mal put C nnecti Q Te	urre vity	ent Te	_im st N	it))												
i	R/W	GEN_	TE	ST_N	MODE						00(00) 00) 00) 01(01) 01) 01) 01) 01) 01) 10(10) 10) 11(11) 11(11)	00 = 00 = 001 = 000 = 001 = 000 = 001 = 000 = 001 = 000 = 001 = 0000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 =	test n Test CRTC Graph Attrib Displa GUI e Com Rese Ring Delay Regis PLL t Palet DAC RAM CRC	mod C (V hics ay a enginar erve osc osc y pa ster est te te test DA	de c (GA s co cor add ine nd F ed tillat tblo est t C fu	CR ntro tro ess adc IFC or t est ck t	CTC blle ller s ge dre: D te cest tes	C) tes r (VC r (VC ener ss ge est (I t t	GAC GAA ator en. _ocl	GC <u>)</u> TT r (E tes k th) te R) DAE t	st e test DDF	t e RG	nal	ble		ena	ble	d		
j	R/W	GEN_	TE	ST_C	CNT_E	EN					En	able	s the	Sca	ın C	our	nte	er * (I	Defa	ault	to	0)									
k	R/W	GEN_	CR	C_E	N						En	able	s the	CR	C si	gna	atu	re bl	ock	* (De	aul	t to	o 0)						
I	R/W	GEN_	DE	LAY_	_MUX	(1	00 01 10	= de = de = de	t sign laypa laypa laypa laypa	th_ th_ th_	1 2 3	n 4	de	elay p	bath	IS											
m	W	GEN_	TE	ST_C	CNT_\	VAL	UE				Sc	an C	ounte	er va	alue	*															

Description	
	The GEN_TEST_CNTL register is used for general control and diagnostic control. Bits 0-5 control general purpose I/O pins (normally used for EEPROM). Bit 7 enables the hardware cursor. Bit 8 resets the GUI engine. Bits 16-19 enable various test modes of the ASIC. Bit 20 is used to enable the loading of a scan count value which is stored in bits 24-29. Bit 21 enables the cyclic redundancy checker (CRC).
Usage	
	EEPROM access, DAC configuration, and memory configuration should be touched only by the adapter BIOS. Similarly, diagnostic fields should be touched only by diagnostic programs.
	Application level programs should touch only GEN_CUR_EN and GEN_GUI_EN.
See Also	
	mach64 Programmer's Guide:

- Engine Initialization: FIFO Queue: Resetting the FIFO
- Engine Operations: Miscellaneous Operations: Hardware Cursor
- Advanced Topics: Boot-time Initialization
- Advanced Topics: Accessing the EEPROM
- Advanced Topics: DAC Programming

Configuration

								C	0	N	FI	G_	C	NT	L							I/C		Spa 690						A AE	С		M: SLK	_	
BI	TS	31	30	29	28	27	26	25	24	23	2	2 2	1 20	19	18	17	16	15	14	13	8 12	11	10	9 9		8	7	6		5	4	3	2	1	0
V	т					e	e							d											с								b	á	a
G	т																					с									b	â	a		
а	R	CF																																	
b	R/W	CF	G_	MEI	M_'	/G/	۹_A	NP_	EN				0	= M	emo	ory r	nap	pe	d re	egis	ape sters sters	no	t ir	i VC	GΑ	ар	ber	ture		rture	e				
с	R	CF	G_	MEI	M_/	۹P_	LO	C					Li		r me (for						ocat)	ion	on	16	ME	3 bo	ou	nda	ıry	/					
d	R/W	CF	G_'	VG	A_C	DIS							0	= er	disa nabl sabl	e V	ĠÀ	if C)) 'GA_	EN	@	со	NF	FIG	i_S	STA	T	0 =	1				
е	R/W	CD	E_	WIN	NDC	W							W		ow ti non-						to a S	llow	ur	nres	stri	cte	ed i	mer	m	ory	sei	vic	e to)	

Description

CONFIG_CNTL is used to configure the linear memory aperture and for soft configuration of multiple *mach64* systems. In PCI systems, the aperture size (CFG_MEM_AP_SIZE) is always set to 2x8 MB, and the location (CFG_MEM_AP_LOC) is fixed by the PCI configuration space (see *Chapter 7*). These two fields of the CONFIG_CNTL register are read-only for PCI systems.

Usage

Aperture configuration should be done in the adapter BIOS only, during an aperture service function call. Configuration data is stored in non-volatile memory. Both CFG_CARD_ID and CFG_VGA_DIS are touched only in the adapter ROM on power-up to configure the board for multiple *mach64* usage.

For the **3D RAGE**, all offset registers are expanded to allow 8 Meg pointers, with 64-bit granularity. Texture map pointers must have byte granularity.

See Also

mach64 Programmer's Guide:

Advanced Topics: Boot-time Initialization

							C	01	١F	ΊG	i_(сн	IP	۱_	D						I	/0:					1B C, 6		С		M: BLK	_	
BI	TS	31	30 2	9 2	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT	e	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 e d c b b b b b b b c b c b c c b c c b c																							а							
а	R	CF	e d c b CFG_CHIP_TYPE Product type code (de (565	4h	=	'VT'	; 47	54h	=	'3D	RA	GE))				
b	R	CF	G_C	HIP	<u>_</u> ر	CLA	SS						Pro	odu	ct c	lass	s co	de	(00)h) ·	- (80h	whe	en \	/GA	۸ dis	sabl	ed)					
с	R	CF	G_C	HIP	<u>۱_</u> ۲	ЛАJ	IOF	ł					Ma	ijor .	AS	IC r	evis	sion	nu	mb	er	(A=())										
d	R	CF	G_C	HIP	P_F	INC)_1[)					AS	IC f	our	ndry	/ ID	(00	0=\$	SGS	S, () 01:	=NE	C,	010	=KS	SC)						
е	R	CF	G_C	HIP	<u>۱</u>	ЛIN	OR						Mir	nor	AS	IC r	evis	sion	nu	mb	er												

CONFIG_CHIP_ID is a read-only register. It returns the revision details of the queried chip. CFG_CHIP_TYPE is an alphanumeric code consisting of two ASCII codes; for example, "V" "T" would be "56" and "54" respectively; the remaining registers are numeric codes. VT and 3D RAGE chip IDs are listed in the table below:

	ASIC Ide	ntification	
ASIC Designation	CFG_CHIP_TYPE	CFG_CHIP_CLASS	ASIC ID
VT	5654h	00h	See Usage below
3D RAGE	4754h	00h	See Usage below

Usage

This register is used for chip revision identification. Bits 31:24 of CONFIG_CHIP_ID (CFG_CHIP_MAJOR, CFG_CHIP_FND_ID, and CFG_CHIP_MINOR) form the ASIC ID. The ASIC ID fields also appear in the PCI configuration space (see *Chapter 7*).

The assigned ASIC IDs for the VT and 3D RAGE to date are:

ASIC ID	ASIC description
08h	NEC VT-A3
00h	NEC VT-A4
40h	SGS VT-A4
40h	NEC GT-A2 (3D RAGE)

See Also

mach64 Programmer's Guide:

• Getting Started: mach64 Detection: Card Detection

					С	лс	F١	G_	ѕт	АТ	0					I/C	Sp): 71			I/O 1C					M: BLK		
BI	TS	31 30 29	28 2	27 26	25	24	23 2	22 21	20	19	18 1	7 16	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT															g				f	е	d	с	b		а	
a	R/W	CFG_ME	M_T`	YPE					00 00 01 10 10 11	$\begin{array}{c} 0 = \\ 1 = \\ 0 = \\ 1 = \\ 0 = \\ 0 = \\ 1 = \\ 0 = \\ 1 = \\ 1 = \\ 1 = \\ \end{array}$	DRAI EDO Pseu SDR/ Rese Rese Rese	ole m M DRA do E AM rved rved rved	DO (E				chin	g w	vith	DR	٩N	l pa	ge	beh	avio	our)	
b	R/W	CFG_DU	AL_C	CAS_I	EN				0 = 1 =	= dua = dua	al CA al CA	S su S su	ort ena ipport o ipport o etting*	disa	able												
С	R/W	CFG_VG	A_EN	١									disable etting	e VC	GA r	nod	е										
d	R/W	CFG_CL	OCK_	_EN					1 =		JI clo		ontrolle ways o		y G	UI a	ctivi	y									
е	R/W	VMC_SE	NSE						1 =		IC co		nnectio ction d		cted												
f	R/W	VFC_SE	NSE						1 =		C co		nection tion de		ted												
g	R/W	BOARD_	ID								for b t: Stra		ID etting														

*Support for dualwrite has been removed

Description

This register returns the configuration of the current board. For the VT and 3D RAGE, CONFIG_STAT0 is read-write.

Usage

This register is used by the adapter BIOS for query functions and determining appropriate action for other function calls. It is also used for determining the initialization parameters and boot-times.

See Also

Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching

									H١	W _	D	EI	BU	G									ę	Spa	ars	e I/	0:-	-		М	M:	1_5	50
в	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																								á	a							
а	R/W	Н٧	V_C	DEB	SUG	ì							De	buę	g re	gist	er																

This register is used for debugging hardware on chip samples only.

Accelerator CRTC and DAC Registers

Accelerator CRTC

					C	R	тс	;_H	٩_	тс	эт	AI	<u> </u>	DI	SI	Ρ											1F 02			M: (BLK:		
BI	TS	31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT											b)															а				
а	R/W	CRT	C_F	I_TC	DTA	L						Ho	rizo	ntal	tot	al (pixe	els*8	3)													
b	R/W	CRT	C_F	I_DI	SP							Ho	rizo	ntal	dis	spla	y ei	nd (pixe	els*8	3)											

Description

CRTC_H_TOTAL_DISP is used to specify horizontal total and horizontal displayed parameters for the accelerator CRTC. All horizontal parameters are specified in characters (pixels-times-8).

Usage

This register is used only for mode switching, and should be touched only by the adapter BIOS.

See Also

- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching
- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode
- Appendix C, CRTC Parameters

				C	CF	RTC	;_	н_	S١	ΥN	C_	S	T	۲۶	_\	NI	D				I/C	ع 0: 0				0: ′ ;C,		EC		M: (BLK	_	
BI	TS	31	30 29	28	1 2	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/ <mark>GT</mark>										е			d						с			b					á	a			
а	R/W	CF	RTC_F	I_S`	Y٨	VC_S	TRT	Г				Hc	orizo	onta	l sy	nc	sta	rt (p	ixel	s*8))											
b	R/W	CF																														
С	R/W	CF	RTC_F	I_S`	Y٨	VC_S	TRT	Γ_HI	I			Hi	gh k	oit fo	or H	loriz	zon	tal s	sync	sta	art											
d	R/W	CF	RTC_F	I_S`	Y٨	VC_W	/ID					Hc	orizo	onta	l sy	nc	wid	lth (oixe	els*8	3)											
е	R/W	CF	RTC_F	I_S	Y٨	NC_P	OL					Hc	orizo	onta	l sy	nc	pol	arity	′ (1	-> a	activ	ve lo	ow)									

CRTC_H_SYNC_STRT_WID specifies the horizontal sync attributes for the accelerator CRTC. All horizontal parameters are specified in characters (pixels-times-8).

Usage

This register is used only for mode switching and should be touched only by the adapter BIOS.

See Also

- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching
- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode
- Appendix C, CRTC Parameters

						C	R	тс	:_`	v _	T	тс	`A	L_	D	SI	Ρ					I/C				e I/)9C			EC		M: BLK	_	
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT											b																а					
а	R/W	CF	тс	_V	_TC	ТA	L						Ve	rtic	al to	otal																	
b	R/W	CF	тс	_V	DI	SP							Ve	rtic	al d	ispl	ay e	end															

CRTC_V_TOTAL_DISP is used to specify vertical total and vertical displayed parameters for the accelerator CRTC. All vertical parameters are specified in lines.

Usage

This register is used only for mode switching, and should be touched only by the adapter BIOS.

See Also

- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching
- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode
- Appendix C, CRTC Parameters

					CF	RTO	C_	<u>V</u> _	_S`	'N	C _	_S1	ΓR	т_	W	ID				I/C	D: (Sp 0D0			I/O)CC		EE	С		M: (BLK	_	
B	ITS	31	30	29	28	27	26	25	24 2	3 2	2 2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/ <mark>GT</mark>													b													а					
а	R/W	CF	RTC	:_V_	_SY	'NC_	_ST	RT				Ve	ertic	al s	ync	sta	rt															
b	R/W	CF	RTC	:_V_	_SY	'NC_	W	D				Ve	ertic	al sy	/nc	wic	lth															
с	R/W	CF	RTC	_V_	_SY	NC_	_PC	C				Ve	ertic	al sy	ync	pol	arity	y (1	-> 8	activ	ve l	ow)										

CRTC_V_SYNC_STRT_WID specifies the vertical sync attributes for the accelerator CRTC. All vertical parameters are specified in lines.

Usage

This register is used only for mode switching, and should be touched only by the adapter BIOS.

See Also

- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching
- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode
- Appendix C, CRTC Parameters

					С	R	гс	_/	/L	IN	Е_	_C	RI	١T	·_ \	/L	IN	Е				I/C	פ ר:1			e I/(1 C			EC		M: BLK		
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT											b																а					
а	R/W	CF	RTC	_VI	LIN	E							Ve	rtic	al lii	ne a	at w	hicl	ו ve	ertic	al li	ne i	nter	rrup	ot is	trig	Iger	ed.					
b	R	CF	RTC	_C	RN	Г_∨	'LIN	Е					Cu	Irre	nt v	ertio	cal I	ine.															

The CRTC_VLINE field determines the line at which a CRTC interrupt will be triggered if the interrupts are enabled. The CRTC_CRNT_VLINE field is read-only. It returns the current value of the accelerator CRTC vertical line counter.

Usage

This register is used only in applications that require synchronization to the CRTC, such as smooth animation.

See Also

CRTC_INT_CNTL on page 4-26

- Advanced Topics: Interrupts
- Advanced Topics: CRT Synchronization and Animation

							С	R	тс	;_(OF	F	_P	IT	CI	4						I/C				e I/ 15C			EC		M: (BLK	_	
B	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/ <mark>GT</mark>						b																a	а									
а	R/W	CF	RTC	_0	FFS	SET							Dis	spla	iy a	ddre	ess	offs	set i	n te	erms	s of	64	bit	wor	ds.							
b	R/W	CF	RTC	_P	ITC	Н							Dis	spla	ıy pi	itch	in p	oixe	ls*8	5													

CRTC_OFF_PITCH is used to specify the starting memory offset and pitch of the accelerator CRTC. The pitch value must correspond exactly to the destination draw engine pitch for visible screen memory. Remember that if the memory boundary is enabled, the offset must be set to a value above or equal to the boundary offset.

Usage

The offset register may be used for scrolling and panning on a large desktop if the pitch is set to a value larger than the display resolution. This register may also be used for double buffering applications.

See Also

MEM_CNTL on *page 4-10*

SRC_OFF_PITCH on page 4-68

DST_OFF_PITCH on page 4-53

- Linear Aperture: VGA Interaction
- Advanced Topics: Scrolling and Panning
- Advanced Topics: CRT Synchronization and Animation: Double Buffering (Memory)

						C	CRT	°C_	_IN	IT	_C	N.	TL	•							I/C	D:					0: C,	6 1A	EC		IM: 3LM	_	
BI	TS	31 30	29	28	27	26	25 24	23	22	21	20	19	18	17	16	15	i 14	4 ·	13	12	11	1	0 9)	8	7	6	5	4	3	2	1	0
VT	/GT							0	n	m	Ι	k	j	i	h												g	f	е	d	с	b	а
а	R	CRTC)_VE	BLA	NK						Ve	rtica	al b	lanł	<																		
b	R/W	CRTC	:_VE	BLA	NK_	_IN ⁻	Γ_EN	3			Ve	rtica	al b	lanł	< int	err	rupt	t e	nat	le	* (I	De	fau	lt =	0,	ac	tive	e hig	gh)				
с	R	CRTC	:_VI	BLA	NK_	_IN ⁻	Г				Ve	rtica	al b	lanł	< int	teri	rupt	t* ((act	ive	e hi	gh)										
C	W	CRTC)_VE	BLA	NK_	_IN ⁻	Γ_AK				Ve	rtica	al b	lanł	k ac	kn	owl	lec	lge	* ('	->	> C	leai	's ii	nte	rru	pt)						
d	R/W	CRTC	:_VI	line	E_IN	IT_	EN				Ve	rtica	al li	ne i	nter	rru	pt e	ena	able	• *	(De	əfa	ult	= 0), a	ctiv	/e h	nigh)				
е	R	CRTC	:_VI	INE	E_IN	IT					Ve	rtica	al lii	ne i	nter	ru	pt*	(a	ctiv	e h	igh	ו)											
C	W	CRTC	:_VI	INE	E_IN	IT_/	AK				Ve	rtica	al lii	ne i	nter	rru	pt a	ack	nov	vle	edg	e*	(1-	> C	lea	rs	inte	erru	ot)				
f	R	CRTC	:_VI	line	∃_S`	YN	C				0 =	= ev	en	ne s sca can	n lir	ne																	
g	R	CRTC	;_FF	RAN	1E						0 =	= ev	en	odd fran am	ne	en	frai	me	e:														
h	R/W	VIDE	<u>NIC</u>	_EV	'EN_	_IN	T_EN				Vic	deo	in e	end	-of-e	eve	en-f	fiel	ld ir	nte	rru	pt	ena	ble	;								
:	R	VIDE	<u>NIC</u>	_EV	'EN_	_IN	Т				Vic	deo	in e	end	-of-e	eve	en-f	fiel	ld ir	nte	rrup	pt'	(ad	tiv	e h	igh	I)						
i	W	VIDE	<u>NIC</u>	_EV	'EN_	_IN	T_AK				Vic	deo	in e	end	-of-e	eve	en-f	fiel	ld a	ckı	nov	vle	edge	e* (1 -	> C	lea	rs iı	nte	rrup	t)		
j	R/W	VIDE	JIN.	_0D	D_I	INT	_EN				Vic	leo	in e	end	-of-o	odo	d-fie	eld	l int	err	upt	t e	nab	le									
k	R	VIDE	<u>NIC</u>	_0D	D_I	INT					Vic	leo	in e	end-	of-o	bbc	d-fie	eld	l int	err	upt	t*	(act	ive	hi	gh)							
ĸ	W	VIDE	2IN	_0D	D_I	INT	_AK				Vic	leo	in e	end-	-of-o	bbc	d-fie	eld	l ac	kn	owl	leo	lge'	ʻ (1	->	cle	ear	s int	eri	rupt))		
I	R/W	OVER	۲LA	Y_E	OF_	_IN	T_EN				Ov	erla	ay e	end-	of-f	rar	nei	int	err	upt	en	nał	ole										
~	R	OVER	۲LA	Y_E	OF	IN	Г				Ov	erla	ay e	end-	of-f	rar	nei	int	erru	upt	* (8	ac	ive	hig	jh)								
m	W	OVER	۲LA	Y_E	OF	IN	T_AK				Ov	erla	ay e	nd-	of-f	ran	nea	ac	knc	wl	edą	ge	* (1	->	cle	ears	s in	terr	upt	t)			
n	R/W	VMC_	EC	IN	T_E	N					VN	1C	exc	ept	ion	со	dei	int	err	upt	en	nal	ole										
_	R	VMC_	EC	_IN	Г						٧N	1C	exc	ept	ion	со	de i	int	err	upt	* (a	ac	ive	hig	gh)								
0	W	VMC_	EC	IN	T_A	K					VN	1C	exc	ept	ion	со	dei	int	err	upt	ac	kr	NOW	ed	ge	* (1	->	clea	ars	inte	rrup	ot)	

CRTC_INT_CNTL is used for enabling and acknowledging interrupts generated by the accelerator CRTC, video capture, overlay display, and VMC port, and reading the status of the CRTC.

Usage

Applications may use this register to achieve smooth animation, or reduce flickering and tearing.

See Also

CRTC_VLINE_CRNT_VLINE on *page 4-24 mach64* **Programmer's Guide:**

- Advanced Topics: Interrupts
- Advanced Topics: CRT Synchronization and Animation

							С	R٦	ГС	C_C	θE	N_	_C	NT	٢L						I/	′O:						:7 C,1	EE	C		IM: BLF		
Bľ	TS	31	30	29	28	27	7 26	25	2	4 23	22	21	20	19	18	17	16	15	14	1	3 12	11	1	0	9	8	7	6	5	4	3	2	1	0
VT	/GT	w	v	u	t	s	r	q	k	o 0	n	m	Ι			k			j			i			h		g	f		е	d	с	b	а
а	R/W	CF	RTC_	_DE	3L_	S	CAN	_EI	N				Do	uble	e s	scan	ena	able	Э															
b	R/W	CF	RTC_	_IN	TE	RL	ACE	E_E	N				Int	erla	ice	enal	ble	•																
с	R/W	CF	RTC_	_HS	SYN	١C	_DIS	S					Dis	sabl	les	hori	zor	ntal	syr	nc	outp	ut												
d	R/W	CF	RTC_	VS	SYN	1C	_DIS	5					Dis	sabl	les	verti	ica	l sy	nc	out	tput													
е	R/W	CF	RTC_	CS	SYN	١C	EN	I					En	able	es	com	pos	site	syr	nc	on h	oriz	on	tal	sy	nc	out	put						
f	R/W	CF	RTC_	DI	SPI	LA	Y_D	IS					Dis	sabl	les	the	dis	pla	y, fo	orc	ing t	ne I	bla	Inki	ing	sig	jna	l to	be	acti	ve.			
g	R/W	CF	RTC_	_VG	GA_	_X(OVE	RS	C/	۹N											VGA VGA													
h	R/W	CF	RTC_	_PI	X_\	MI	DTH						0 = 1 = 2 = 3 = 4 = 5 = 6 =	= (re = 4 k = 8 k = 15 = 16 = 24 = 32	bpr bpr bpr bpr bpr bpr bpr bpr bpr bpr	o op (5 op (5 op (5 op) ,5, ,6,	5)																
i	R/W	CF	RTC_	_BY	ΥTE	E_F	PIX_	OR	D	ΞR			0 =	n pix =	no kel	de. orde	r fi	om	MS	SN	cel or libble bble	to	LS	SNi	bbl	e.	hm	nem	ory	byt	e in	14 k	pp	
j	R/W	CF	RTC_	FI	FO_	_0	OVEF	RFIL	LL				Nι	imbe	er	of do	oub	le c	qua	dw	ords	to	ov	erfi	ll F	IFC	D (()-3)						
k	R/W	CF	RTC_	_FII	FO_	_L'	WM						Dis		iy F dee		lo۱	v w	ate	r n	nark.	N	ote	e th	at f	the	dis	pla	y Fl	FO	is 1	16 e	ntri	es
I	R/W	VO	€A_1	28	KAI	P_	PAG	SIN	G				0 =	dis =	sab	ole (n	ori	nal)		e pag h 12		-				GA	ар	ertu	ire i	noc	le:		
m	R/W	CF	RTC_	DI:	SPI	RE	EQ_C	DNL	_Y					= No = On			lay	reo	que	sts	are	sei	rvio	ced										
n	R/W	CF	RTC_	LC	Ck	<_F	REG	iS					0 =	= un	loc	ende cked ed (re				reg	gister	s fr	on	n b	ein	g w	/ritt	en	to:					
0	R/W	CF	RTC_	_SY	YNC)	TRIS	STA	TE	Ξ				= No = Tri		nal tate H	Hsy	/nc	& \	/sy	/nc													
р	R/W	CF	RTC_	_EX	<Τ_	DI	ISP_	EN					0 =	= VG	GΑ	d disj disp nded	lay				enabl ay	e:	(D	efa	ult	= 0))							
q	R/W	CF	RTC_	_EN	NAE	BLE	E						0 =	= res	set	CRT s CR les C	RT()	olle	r:	(Def	ault	t =	0)										

(continued on next page)

					-		С	RT	C	_G	E	N_	C	NTL					I/C	D: 1	Sp 1DC			I/O: DCC			С		M: BLK	_	
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19 18	17 1	6 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT	w	v	u	t	s	r	q	р	0	n	m	Ι		k		i			i		h		g	f		е	d	с	b	а
r	R/W	CF	RTC	_D	ISP.	_RE	Q_	EN	В					= enabl = disab						efa	ult =	= 1))								
S	R/W	VG	A_	AT	I_LII	NE/	٩R						0 =	able lir = disab = enabl	le line	ar ac	ldre	essin	าg	gh	VG/	A ap	pert	ture)						
t	R/W	CF	RTC	_V	SYN	IC_	FAI	LL_	ED	GE			0 =	lect VS = rising = falling	edge	of V	SYN	NC	rt fra	ame	e se	que	ence	e							
u	R/W	VG	A_	TE	XT_	132	2						1 =	tendeo = Active = Inacti	е	mode	se	lect	(line	ear	add	lres	ss 1	32	colı	umr	n tex	xt m	ode	e)	
v	R/W	VG	A_	ХС	RT_	CN	T_	EN					Ex	tendeo	CRT	C dis	pla	y ad	dre	ss	cour	nter	r en	abl	e. /	Acti	ve l	Higł	٦		
w	R/W	VG	A_	CU	R_E	3_T	ES	Г					Те	st curs	or blir	nking	A	ctive	e Hiç	gh.											

All miscellaneous initialization bits for the accelerator CRTC are contained in CRTC_GEN_CNTL.

CRTC_HSYNC_DIS and CRTC_VSYNC_DIS are used specifically for the Display Power Management System (DPMS).

CRTC_PIX_WIDTH and CRTC_BYTE_PIX_ORDER are used to specify pixel arrangement in memory. These bits correspond exactly to their respective fields in DP_PIX_WIDTH.

CRTC_FIFO_LWM is used only in DRAM configurations. It specifies the emptiness of the display FIFO that must be reached before the CRTC should get more data from memory. There is a lower limit before the display becomes corrupted. The upper limit is 15 because the size of the display FIFO is 16 entries deep. The higher the number, the greater the number of memory page faults. This leads to a decrease in available memory bandwidth, which in turn leads to a slower draw engine.

Usage

This register is used only for mode switching and should be touched only by the adapter BIOS.

See Also

- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Manual Mode Switching
- Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode
- Appendix C, CRTC Parameters

			EX	(Т_	CR	тс	GE_GE	EN_	_C	Ν.	TL	ı				I	/0	:					7 (V 7 (W		
BI	TS	31 30 29 2	28 27 26	25	24 2:	3 22	21 20	19	18	17	16	15 14	13	12	11	10	9	8	7 (5 5	4	3	2	1	0
VT-	A4N				i					h	g		f			е	d	с		b			а		
а	W	CRTC_DIS	P_REQ_	_MA>	<		M	axim	um	buı	rst I	ength	of a	ı disp	olay	/ req	ues	st to	o mei	nory	/				
b	W	CRTC_DIS	P_REQ_	_WS			Di	to	o me	em.	N	es (in ote, a SP_RE	valu	le of	'ze	ero' w						ive	requ	est	ts
с	W	CRTC_FIFC	O_EXTS	ENS	E		E>	tern	al se	ele	ct s	ignal f	or c	usto	m I	FIFO									
d	W	CRTC_FOF	RCE_BS	2			Fc	orce	bloc	k s	ize	2 for a	all re	eque	sts										
e	W	CRTC_DIS	P_REQ_	_MOI	DE			() = On	Defa	ult elin) Iqui	quish r sh me		-								-			
f	W	CRTC_DIS	P_RST_	WS			Nu	umbe	er of	Wa	ait s	tates	inse	rted	int	o the	sta	art	of dis	play	/ FI	=0 r	eset		
g	W	CRTC_FIF	O_LWM_	BIT	5		Bi	t 5 o	f CR	тс	C_F	IFO_L	.WIV	I@C	RT	C_G	EN	I_C	NTL						
h	W	CRTC_FIF	O_OVEF	RFILL	_BI	Г2	Bi	t 2 o	f CR	тс	C_F	IFO_C	DVE	RFIL	LØ	0CR	TC	G	EN_0	CNT	L				
i	W	HALF_SIZE	E_DFIFC)			1 :	= Dis	splay	/ F	IFC	is ha	lf siz	ze											

		EXT_CRTC_0	GEN_CNTL I/O:- MM: 1_17 (R)
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VT-	A4N	h	f e d c b a
а	R	CRTC_DISP_REQ_MAX	Maximum burst length of a display request to memory
b	R	CRTC_DISP_REQ_WS	Display wait-states (in memory clocks) between consecutive requests to mem. Note, a value of 'zero' will disable both 'CRTC_DISP_REQ' options.
с	R	CRTC_FIFO_EXTSENSE	External select signal for custom FIFO
d	R	CRTC_FORCE_BS2	Force block size 2 for all requests
e	R	CRTC_DISP_REQ_MODE	 0 = Always relinquish memory controller after burst for WS period (Default) 1 = Only relinquish memory controller after burst if another request pending
f	R	CRTC_DISP_RST_WS	Number of wait states inserted into the start of display FIFO reset
g	R	CRTC_FIFO_LWM_BIT5	Bit 5 of CRTC_FIFO_LWM@CRTC_GEN_CNTL
h	R	CRTC_FIFO_OVERFILL_BIT2	Bit 2 of CRTC_FIFO_OVERFILL@CRTC_GEN_CNTL

						ЕX	(T_	_C	R	тс	;	GE	N	_0	CN	ΤL	-							I/	0:-	-			ſ			_		
B	TS	31 30	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	5 14	ŀ	13	12	11	1() 9	8		7	6	5	4	3	2		1 0
VT-	A4S							I			k		а																					
а	R/W	CRT	C_D	ISP.	_RI	EQ_	_MA	Х				Ma	axir	nur	n bu	ırst	ler	ngth	0	fa	dis	pla	y r	equ	est	to	me	m	ory					
b	R/W	CRT	C_D	ISP	_RI	EQ_	_WS	;				Di		to n	nem	. N	lote	e, a	Vä	alu	e o	f 'zo	erc	(s) o' wi	oetv II di	Ne Isa	en o able	bc	nse oth	cu	itive	rec	que	ests
с	R/W	CRT	C_F	IFO	_E>	хтs	ENS	SE				Ex	ter	nal	sele	ect s	sigi	nal f	foi	r cı	isto	om	FIF	0										
d	R/W	CRT	C_F	OR	CE_	BS	2					Fo	rce	blo	ock :	size	2	for a	all	l re	que	ests	6											
e	R/W	CRT	C_D	ISP.	_RI	EQ_	_MC	DE	-				= O	(De nly	faul reli	t) nqu	•																	st
f	R/W	CRT	C_D	ISP	_R	ST_	WS					Νι	ımt	ber	of w	aits	sta	tes	in	ser	teo	d int	to 1	he	star	t c	of di	sp	lay	F١	FO	res	et	
g	R/W	CRT	C_F	IFO	_LV	VM_	BIT	5				Bit	5 0	of C	RT	C_F	FIF	0_L	N	٧M	@(CRT	C_	GE	N_	C	NTL							
h	R/W	CRT	C_F	IFO	_0'	VER	RFIL	L_E	BIT2	2		Bit	2 (of C	RT	C_F	٦F	0_0	J١	/EF	RFI	LL(@C	RT	C_(GE	EN_	C١	ITL	-				
i	R/W	CRT	C_D	ISP	_RI	EQ_	MA	X_	BIT	5		Bit	5 0	of C	RT	C_C	DIS	SP_F	RE	EQ_	M	AX												
j	R/W	CRT	C_D	ISP	_RI	EQ_	WS	_В	IT5			Bit	5 0	of C	RT	C_C	DIS	SP_F	RE	EQ_	W	S												
k	R/W	CRT	C_D	ISP.	_RI	EQ_	CN	T_E	ΞN			1 =																						t = 0)
Ι	R/W	HALF	=_SI	ZE_	DF	IFO)					1 =	= D	ispl	ay F	FIFC) is	s ha	lf	siz	е													

This register extends the set of miscellaneous initialization bits for the accelerator CRTC in the VT-A4.

Usage

For **VT-A4N**, in order to write this register, the offset is mapped to MM: 0_17 or BLK: 17. For reading back this register, the offset is mapped to MM: 1_17 (no block I/O access). In other words, the write is in block '0' and the read is in block '1'.

For **VT-A4S**, the register has been moved such that to read or write this register, the offset is mapped to MM: 0_17 or BLK: 17.

See Also

CRTC_GEN_CNTL on page 4-27

Overscan

Display overscan is enabled if any of the overscan width values are non-zero. The left and right overscan widths are described in terms of pixels*8 and the top and bottom overscan widths are described in terms of vertical lines.

The overscan color is defined by an 8-bit index and a 24-bit color. In all display modes, the 24-bit color will be used by the internal RAMDAC and displayed on the monitor attached to the VT. Note this is always a true color that is not mapped through the palette. The 8-bit index color is used in 4 bpp and 8 bpp modes for data going out on the 8-bit feature connector. The receiving board is expected to index all 4 bpp and 8 bpp data through its own palette.

									0	VF	<u></u>	CL	.R								I/C				e I/(21 C		8 22	EC			1: 0 _K:	_	
BI	TS	31	30	29	28	27	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT					d							C	0							k)								а			
а	R/W	0\	/R_	_CL	R_8	3							Ov	erso n	can nod		or I	ND	EX,	ou	tput	on	fea	ture	e co	onne	ecto	or in	4 8	and	8 bj	ор	
b	R/W	0\	/R_	CL	R_E	3							Blu	ie o	ver	sca	n c	olor	, to	inte	erna	l D	AC										
с	R/W	0\	/R_	CL	R_0	3							Gr	een	ove	erso	can	colo	or, t	o ir	nterr	nal	DAG	С									
d	R/W	0\	/R_	CL	R_F	२							Re	d o،	/ers	scai	n co	olor,	to	inte	rna	I DA	٩C										

Description

This register specifies the overscan color.

Usage

This register should be touched only by the adapter BIOS when mode switching or by the adapter installation program for overscan configuration.

See Also

CUR_CLR0 on page 4-33

mach64 Programmer's Guide:

• Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode

					(זע	'R	_V		_כ	LE	ĒF	т_	R	IG	нт	Γ				I/C		Spa 5C					EC		MN Bl		_	
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT														I	C															ć	a	
а	R/W	O٧	/R_	WI	D_L	EF	Г						Le	ft o	vers	scar	n wi	dth	(in	8*p	ixel	s)											
b	R/W	O٧	/R_	WI	D_R	lGł	ΗT						Ri	ght	ove	rsca	an v	vidt	h (ir	n 8*	'pix	els)											

OVR_WID_LEFT_RIGHT specifies the left and right overscan widths in characters (i.e., pixels-by-8).

Usage

This register should be touched only by the adapter BIOS for mode switching or by the adapter installation program for overscan configuration. The left overscan width must not exceed the horizontal back porch timing; the right overscan width must not exceed the horizontal front porch timing.

See Also

mach64 Programmer's Guide:

• Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode

					0	V	R_	W	ID	_1	ГО	Ρ	_В	0.	гт	01	М				I/C					0: / :C,		EC		MN Bl			
BI	TS	31	30	29	28	27	26	25	24	23	22	21	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT												ł	C															i	а			
а	R/W	O١	/R_	WI	D_T	ΟP)						То	p o	vers	scar	n wi	dth	(in	sca	ın liı	nes)										
b	R/W	0\	/R_	WI	D_E	от	то	Μ					Во	ttor	n o\	/ers	scar	n wi	dth	(in	sca	n lir	nes)										

Description

OVR_WID_TOP_BOTTOM specifies the top and bottom overscan widths in lines.

Usage

This register should be touched only by the adapter BIOS for mode switching or by the adapter installation program for overscan configuration. The top overscan width must not exceed the vertical back porch timing; the bottom overscan width must not exceed the vertical front porch timing.

See Also

mach64 Programmer's Guide:

 Advanced Topics: Manual Mode Switching and Custom CRT Modes: Designing a Custom CRT Mode

Hardware Cursor

The hardware cursor may be any size up to 64x64 pixels. The cursor pitch is always 64 pixels meaning the cursor definition is always 64 pixels wide although pixels outside of the visible cursor area are ignored. The cursor definition is in reverse pixel order within each byte. Once the cursor is defined, it is moved around on the screen simply by updating the cursor position.

The cursor is stored as a linear block of off-screen video memory, starting at address CUR_OFFSET. The upper left corner of the cursor is specified by CUR_HORZ_POSN and CUR_VERT_POSN. The cursor size may be decreased from 64x64 by setting CUR_HORZ_OFF and CUR_VERT_OFF to non-zero.

								С	U	२_	СІ	LR	0							I/	0 : 2				/0:)C(EE	C		MN Bl	l: 0 .K:	_	3
BI	TS	31	30 2	29	28	27	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT				c	k							(С							k)								а			
а	R/W	Сι	JR_C	LR	R0_	8							Cu			olor des	0 IN	NDE	Х, (outp	outo	on f	eat	ure	cor	nne	ctor	in 4	4 bj	op a	ind 8	8 bp	р
b	R/W	Сι	UR_CLR0_B									Blu	le c	curs	or c	olo	r 0,	to ii	nter	mal	DA	С											
с	R/W	сι	JR_C	LR	R0_	G							Gr	een	n cu	rsor	со	lor (), to	o int	erna	al D	AC										
d	R/W	CL	JR_C	LR	R0_	R							Re	ed c	urs	or c	oloi	[.] 0, 1	to ir	nter	nal	DA	С										

Description

CUR_CLR0 contains color 0 for the hardware cursor. For non-integrated controllers (GX, CX), the color is specified in the lower 8 bits for pseudocolor modes or the upper 24 bits in direct color modes.

For controllers with integrated DACs (CT, ET), cursor color 0 going to the internal DAC is 24 bits (CUR_CLR0_R, CUR_CLR0_G, CUR_CLR0_B) in all display modes. In 4 bpp and 8 bpp modes when the VESA feature connector is on, then CUR_CLR0_8 is the pseudo color value for cursor color 0 on the pixel data lines.

Usage

This register is used when defining the hardware cursor attributes.

See Also

CUR_CLR1 on *page 4-34*

mach64 Programmer's Guide:

								С	UF	2_(CI	LR1	I							I/C		Spa 1C					EC			M: SLK	_	
BI	TS	31	30 29	9 2	8	27 2	6 2	5 2	4 23	22	2 2	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4 3	3 2	2 1	0
VT	/GT				d								с							Ł)								а			
а	R/W	CU	R_CI	_R1	1_8	}						Cu			olor des	1	NDE	X, (outp	out	on f	eat	ure	cor	nne	ctor	in -	4 k	bpp	and	8 8	bpp
b	R/W	CU	CUR_CLR1_B								Bl	ue o	cure	sor o	colo	r 1,	to i	ntei	rnal	DA	C											
с	R/W	CU	R_Cl	_R1	1_0	3						Gr	eer	n cu	irso	r co	lor 1	I, to	o int	erna	al C	AC										
d	R/W	CU	R_CI	_R1	1_F	र						Re	ed c	curs	or c	oloi	r 1, t	to ir	nter	nal	DA	С										

CUR_CLR1 contains color 1 for the hardware cursor. For non-integrated controllers (GX, CX), the color is specified in the lower 8 bits for pseudocolor modes or the upper 24 bits in direct color modes.

For controllers with integrated DACs (CT, ET), cursor color 0 going to the internal DAC is 24 bits (CUR_CLR1_R, CUR_CLR1_G, CUR_CLR1_B) in all display modes. In 4 bpp and 8 bpp modes when the VESA feature connector is on, then CUR_CLR1_8 is the pseudocolor value for cursor color 1 on the pixel data lines.

Usage

This register is used when defining the hardware cursor attributes.

See Also

CUR_CLR0 on page 4-33

mach64 Programmer's Guide:

								С	UF	۲_	OF	F	SE	ET							I/C		Spa 5C					EC			: 0_ .K:	_	N
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																						a	1									
а	R/W	Сι	JR_	OF	FSE	ΞT							Cu	irso	r ac	ldre	ess	offs	et ir	n te	rms	s of	64 k	oit v	voro	sc							

CUR_OFFSET points to the top left corner of the 64x64 cursor definition block.

Usage

This register is used to define the hardware cursor.

See Also

mach64 Programmer's Guide:

					С	U	R_	H	OF	RZ	_v	'E	RT	I	PC	S	N				I/C		Spa 9C8					EC		MM BL		_	3
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT											b																а					
а	R/W	CL	JR_	ΗО	RZ_	_PC	DSN	1					Cu	irso	r hc	orizo	onta	l po	ositio	on													
b	R/W	Сι	JR_	VE	RT_	PC	SN						Cu	irso	r ve	rtic	al p	osit	ion														

CUR_HORZ_VERT_POSN specifies the top left corner of the hardware cursor in the display area, referenced to the top left corner of the cursor definition area.

Usage

This register is used to move the hardware cursor on the screen.

See Also

mach64 Programmer's Guide:

					С	U	R_	н	OR	RZ.	_v	ΈI	RT	_(٦F	F				I/	0:		oars C8,				EE	C			: 0_ K:	_	;
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT													ł	C															á	a .		
а	R/W	CL	JR_	HO	RZ_	O	F						Cu	irso	r hc	orizo	onta	l of	fset														
b	R/W	CL	JR_	VE	RT_	OF	F						Cu	irso	r ve	rtic	al o	ffse	t														

CUR_HORZ_VERT_OFF specifies the offsets from the 64x64 cursor definition block where the cursor definition area is to begin. Each offset should be set such that offset = 64 - size.

Usage

This register is used when defining the hardware cursor attributes.

See Also

mach64 Programmer's Guide:

Clock Control

							С	LC	C	K_	_C	٦N	٢L							I/C		spa 9C8					EC		MM Bl	l: 0 .K:	_	
BI	TS	31	30 29	9 2	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT											(d							(;		b								а	ı
а	R/W	CL	OCK	SE	ΞL							No								k fre by G					xt. I	n V	'GA	mc	ode	cloc	:k	
b	R/W	PL	L_WF	R_E	ΞN							0 =	erna = PL = PL	.L_[DAT	Ā	s re	ad-	-only		_) re	egis	ter	writ	e ei	nab	le.					
С	R/W	PL	L_AD	DR	2							Se	lect	s re	gis	teri	in ir	ter	nal	cloc	:k s	yntł	nesi	zer	(PL	_L)	to r	ead	lor	writ	e.	
d	R/W	PL	L_DA	TA								Int	erna	al cl	ock	sy	nthe	siz	zer ((PLI	_) re	ead	/wri	te d	ata	. Se	ee F	PLL	W	R_E	N.	

Description

CLOCK_CNTL is used to select a pixel clock in non-VGA modes. It is also used for programming the internal clock synthesizer (PLL). The internal clock synthesizer in the VT and 3D RAGE has only 4 programmable pixel clock settings. Therefore, only bits 0 and 1 of CLOCK_SEL are used.

Usage

This register should be touched only by the adapter BIOS when switching video modes.

See Also

mach64 Programmer's Guide:

- Advanced Topics: Manual Mode Switching and Custom CRT Modes
- Appendix C: CRTC Parameters
- Appendix D: Clock Chip Reference

Note that the PLL register fields are detailed in *Appendix B*, *Programming PLL Registers*.

DAC Control

The DAC_REGS are also addressed at VGA I/O addresses 3C6h to 3C9h (not in the order below). The same palette data and DAC_MASK are used whether in VGA or extended modes.

								D	A	С	_R	EG	38	3							I/	0					/0:)CC						_	_30 30	
BI	TS	31	30 29	2	8 27	7 26	25	5 24	23	2	2 2	20	1	9 18	17	16	15	14	1	3 1	2 1	1	10	9	8	7	7 6		5	4	3	2	1	0	
VT	/GT				d								с							b										a	à				
а	R/W	DA	C_W_	IN	IDE:	Х								C wri xes							ette	ə R	RAN	1 fc	or w	/rit	te op	ber	rati	ons	6.				
b	R/W	DA	C_DA	TΡ	A							lf D/	DA AC	zer WF blu and RE DA res	in 6 d. If o or ITE e, re DA AD: C_C pect	5-bi DA re Sp C_ Aft Aft ive	t m AC i ad. irst ecti W_ er [A v Iy. <i>j</i>	ode s in 8 bit vely IND DAC vill g Afte	8- tw (. A ()E) ()E) ()E) ()E) ()E) ()E) ()E) ()E	bit r vrite After X au R_IN e re	is r blu ito- IDE d, g / th	ie, ied inc EX gre	the da wri rer is v en rea	ta, te t ner vrit and	ne he nts tten d bl	to 1, t 10	SB a two 1 bit nex	wi pa tir ere or	e ig rite alet nde eac co lex	nor s a te i ex. Is f mp in f	red reg sup rom one	on gree pda n ents pa	wr ateo s, lett	ite, anc d	
С	R/W	DA	C_MA	SI	K										t ma	sk ata.	valı Tł	ue is ne re									ning for lo								
d	W	DA	C_R_	IN	DEX	<								c rea xes							ette	e R	AN	1 fc	or re	ea	d op	er	atio	ons	5.				

Description

DAC_REGS is actually a group of four 8-bit registers (not a single 32-bit register) aliased to the VGA DAC registers DAC_MASK (3C6), DAC_R_INDEX (3C7), DAC_W_INDEX (3C8) and DAC_DATA (3C9). See the *mach64 VGA Register Guide* for more details.

These registers must be accessed in 8-bit chunks. These registers may also be accessed in accelerator mode through the VGA I/O addresses if DAC_VGA_ADR_EN@DAC_CNTL is set.

Usage

These registers are used by applications to reprogram the DAC look up table (LUT).

See Also

DAC_CNTL on *page 4-40*

Chapter 9, VGA-Compatible Registers

mach64 Programmer's Guide:

• Advanced Topics: CRT Synchronization and Animation: Double Buffering (Palette)

		DAC_CI	NTL Sparse I/O: 18 MM: 0_31 I/O: 61C8, 61CC, 62EC BLK: 31
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VT	/GT	o n m l k j i	h g f e d c b a
а	R/W	DAC_BLANKING	0 = 0 IRE blanking pedestal 1 = Enable 7.5 IRE blanking pedestal
b	R/W	DAC_CMP_DISABLE	Enable/Disable DAC comparators 0 = enable DAC comparators (Default) 1 = disable (powerdown) DAC comparators
С	R	DAC_CMP_OUTPUT	DAC comparator output 0 = At least 1 comparator > 0.42V 1 = All 3 comparators < 0.28V
d	R/W	DAC_8BIT_EN	Enables 8 bit DAC operation 1 = 8 bit operation 0 = 6 bit operation
е	R/W	DAC_VGA_ADR_EN	Enables addressing the DAC at the VGA IO DAC address when CRTC_EXT_DISP_EN is a '1'.
f	R/W	DAC_FEA_CON_EN	Enables feature connector signal outputs. Turns on output of 8 bit pixel data, clock and blank signals to feature connector. Feature connector should be disabled in 24 bpp and 32 bpp modes and high resolution modes when pixel clock rate is too high.
g	R/W	DAC_PDWN	Power down internal DAC (DAC macro only). Feature connector outputs can still run normally.
h	R	DAC_TYPE	DAC Type (Always 1 for VT) 0 = internal DAC, 18-bit palette, no gamma correction 1 = internal DAC, 24-bit palette, gamma correction 2-7 = (reserved)
i	R/W	DAC_GIO_STATE_1	GIO1 pin external state (R) GIO1 pin output value when DAC_GIO_DIR_1 = 1 (W)
j	R/W	DAC_GIO_STATE_0	GIO0 pin external state (R) GIO0 pin output value when DAC_GIO_DIR_0 = 1 (W)
k	R/W	DAC_GIO_STATE_4	GIO4 pin external state (R) GIO4 pin output value when DAC_GIO_DIR_4 = 1 (W)
I	R/W	DAC_GIO_DIR_1	0 = GIO1 pin input only (tri-state output) (Default) 1 = GIO1 pin output enabled. Output value = DAC_GIO_STATE_1
m	R/W	DAC_GIO_DIR_0	0 = GIO0 pin input only (tri-state output) (Default) 1 = GIO0 pin output enabled. Output value = DAC_GIO_STATE_0
n	R/W	DAC_GIO_DIR_4	0 = GIO4 pin input only (tri-state output) (Default) 1 = GIO4 pin output enabled. Output value = DAC_GIO_STATE_4
0	R/W	DAC_RW_WS	0 = Disable DAC Read/Write wait states 1 = Enable DAC Read/Write wait states

DAC_CNTL configures the on-chip DAC interface unit. If the DAC has extended address bits to access extended DAC registers, then those upper address bits will be specified in DAC_EXT_SEL. DAC_8BIT_EN selects between 8-bit or 6-bit modes, and is used only if both modes are supported.

The DAC_TYPE can be overwritten for non-integrated controllers (GX, CX) to
override the initial DAC type. Please consult the manufacturer's DAC specification.

Usage

This register is used only for mode switching and should be touched only by the adapter BIOS.

See Also

mach64 Programmer's Guide:

• Advanced Topics: DAC Programming

									(CR	C	_S	SIG	;								Sparse I/O: 1D MM: 0_ I/O: 75C8, 75CC, 75EC BLK: 3											
Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT/	GT		а																														
а	R	CF	C_	SIC	6								CF	RC s	sign	atu	re v	alu	Э														

On a VT and 3D RAGE, this register is used to accumulate the display CRC check.

Usage

CRC_SIG is used for diagnostics of the CRTC, DAC, hardware cursor, and overscan.

See Also

GEN_TEST_CNTL on page 4-14

Draw Engine Trajectory Registers

Draw Engine registers are only visible in the memory space, not in sparse or block I/O.

Destination (and Z) Trajectory

In the **3D RAGE**, a number of new 3D operations have been added. To support hardware Z buffering, a Z source FIFO has been added. New registers associated with this FIFO in the **3D RAGE** are: Z_OFF_PITCH and Z_CNTL.

A new trajectory, the trapezoid, has been added to the **3D RAGE**. In this mode, the standard line engine is used to walk the leading edge of the trapezoid, and a new line engine is used to walk the trailing edge. The pixels operated on are those lying on the scan lines between the two edges. This new trajectory may be used for the destination, the texture map sources, the 2D source, and the Z source. The new registers added to the **3D RAGE** are: TRAIL_BRES_ERR, TRAIL_BRES_INC, and TRAIL_BRES_DEC. DST_BRES_LENGTH is expanded in the **3D RAGE** to include the span length of the trapezoid and also to kick off trapezoidal operations. The DST_CNTL and SRC_CNTL registers are also affected in the **3D RAGE**.

			D	S	T _	В	RE	S	_D	E	C	(L	E/	۱D	_E	BR	E٤	8_	DE	EC)				I/C):				MN	/1: 0	_4	з
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	GT													a																			
а	R/W	/W DST_BRES_DEC									Br		nha edge		lecr	em	ent	for	line	an	d (ir	n the	ə <mark>3</mark> [D R	AG	E) t	rap	ezc	oid le	eadi	ing		

Description

DST_BRES_DEC is a signed 18 bit register that stores the Bresenham line decrement term. The number loaded into this register must be negative. This term is added to the DST_BRES_ERR term whenever the Bresenham error is positive.

For the **VT**, the value written to this register should be calculated:

 $DST_BRES_DEC = 2 * [min(|dx|,|dy|) - max(|dx|,|dy|)]$

Usage

In the **VT**, this register is used only for line draw operations. In the **3D RAGE**, this register is used for line draw or trapezoid draw operations, and is aliased as LEAD_BRES_DEC.

See Also

DST_BRES_ERR on page 4-44

DST_BRES_INC on page 4-45

DST_BRES_LNTH on page 4-46

- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Engine Operations: Draw Operations: Colour Source: Drawing Lines

			D	S	Τ_	В	RE	S	_E	R	DST_BRES_ERR (LEAD_BRES_ERR) I/O:- MM: 0_4																		MN	9	
BI	TS	31 30 29 28 27 26 25 24 23 22 21						21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
VT/	/GT													a																	
а	R/W	W DST_BRES_ERR									Br		nha edge		erro	r te	rm f	for I	ine	anc	d (in	the	9 3 C	R/	AGE) tr	rape	ezo	id le	eadi	ng

DST_BRES_ERR is a signed, 18-bit register that stores the Bresenham line error term. If the error term is negative, an axial step is taken and DST_BRES_INC is added to this register; otherwise, a diagonal step is taken in the direction of the major axis, and DST_BRES_DEC is added.

For the VT, the initial value of the register field DST_BRES_ERR should be:

 $DST_BRES_ERR = 2 * min(|dx|,|dy|) - max(|dx|,|dy|)$

Usage

In the **VT**, this register is used only for line draw operations. In the **3D RAGE**, this register is used for line draw or trapezoid draw operations, and is aliased as LEAD_BRES_ERR.

See Also

DST_BRES_DEC on page 4-43

DST_BRES_INC on page 4-45

DST_BRES_LNTH on page 4-46

- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Engine Operations: Draw Operations: Colour Source: Drawing Lines

			DST_BRES_INC (L	EAD_BRE	S_INC)	I/O:-	MM: 0_4A									
	BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6 5	4 3 2 1 0									
	VT/	GT	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1													
;	а	R/W	DST_BRES_INC	Bresenham incl edge	ement for line and	(in the 3D RAGE) tr	apezoid leading									

DST_BRES_INC is a signed 18 bit register which stores the Bresenham line increment term. The number loaded into this register must be positive. This term is added to the DST_BRES_ERR term whenever the Bresenham error is negative.

In the **VT**, the value written to the field DST_BRES_INC should be:

 $DST_BRES_INC = 2 * min(|dx|,|dy|)$

Usage

In the **VT**, this register is used only for line draw operations. In the **3D RAGE**, this register is used for line draw or trapezoid draw operations, and is aliased as LEAD_BRES_INC.

See Also

DST_BRES_DEC on page 4-43

DST_BRES_ERR on page 4-44

DST_BRES_LNTH on page 4-46

- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Engine Operations: Draw Operations: Colour Source: Drawing Lines

		DST_BRES_LNTH (L	EAD_BRES_LNTH) I/O:- MM: 0_48*
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V	т	b	a
G	т	g f e	d
а	R/W	DST_BRES_LNTH	Bresenham line length
b	W	DST_BRES_LNTH_LINE_DIS	 Disables initiation of bresenham line draw operations: 0 = Bresenham line draw operation initiated. 1 = No bresenham line draw operation initiated. NOTE: This function is performed when the register is written. The bit is not stored, or read.
с	R/W	DST_BRES_LNTH	Bresenham line length and trapezoid leading edge length. This field is aliased with DST_WIDTH[14:0].
d	R/W	DRAW_TRAP	To initiate a trapezoid, set to '1'. This field is aliased with DST_WIDTH[15].
e	R/W	TRAIL_X	Location of trapezoid trailing edge. Note: This field is not written if bit 15 is a '1' and bit 31 is a '0'. This field is aliased with DST_HEIGHT[12:0].
f	-	(Reserved)	Aliased to DST_HEIGHT[14:13]
g	W	DST_BRES_LNTH_LINE_DIS	 Disables initiation of bresenham line draw operations: Bit 31 Bit 15 0 0 Bresenham line draw operation initiated. TRAIL_X and DST_BRES_LNTH are loaded. 0 1 Trapezoid draw operation. TRAIL_X is not updated, but DST_BRES_LNTH is loaded. 1 0 TRAIL_X and DST_BRES_LNTH are loaded. No line or trapezoid operations are done. 1 1 Trapezoid draw operation. TRAIL_X and DST_BRES_LNTH are loaded.

Writing the value of line length to register DST_BRES_LNTH will initiate a line draw. The number written to this register is the number of pixels that will be drawn when DST_LAST_PEL@DST_CNTL is set.

Writing to this register also overwrites the contents of DST_WIDTH.

 $DST_BRES_LNTH = max(|dx|,|dy|) + 1$

Usage

In the VT, this register is used for line draw operations.

*In the **3D RAGE**, DST_BRES_LNTH is used for line draw or trapezoid draw operations, and is aliased by LEAD_BRES_LNTH at **MM:0_51**.

See Also

DST_BRES_DEC on *page 4-43* DST_BRES_ERR on *page 4-44*

DST_BRES_INC on *page 4-45*

- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Engine Operations: Draw Operations: Colour Source: Drawing Lines

					D	ST.	_C	N	TL	-										I/C	D:-				MM	l: 0	_40	;
BI	TS	31 30 29	28 27 2	6 25	24 23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	т															Т	j		i		h	g	f	е	d	с	b	а
G	T										р		0	n	m	Ι	k		i		h	g	f	е	d	с	b	а
а	R/W	DST_X_D	IR					0 =	estin = rig = lef	jht 1	to le	eft	rect	ion														
b	R/W	DST_Y_D	IR					0 =	estin = bo = top	otto	m to	o top	D C	ion														
с	R/W	DST_Y_M	AJOR					0 =	estin = X = Y	ma	jor l	ine	ajor	axi	s fla	ag f	or k	ores	enl	ham	ı lin	es						
d	R/W	DST_X_TI	LE					En	able	es i	rect	ang	ulaı	[.] tilii	ng i	n th	ie X	(dir	ect	ion								
е	R/W	DST_Y_TI	LE					En	able	es i	rect	ang	ulaı	[.] tilii	ng i	n th	ie Y	′ dir	ect	ion								
f	R/W	DST_LAS	T_PEL					De	estin	natio	on la	ast	pel	ena	able													
g	R/W	DST_POL	YGON_	EN				De	estin	natio	on p	oly	gon	ou	tline	e ar	nd p	oly	gor	n fill	ena	ble						
h	R/W	DST_24_F	ROT_EN	1				En	able	es 2	24 k	рр	rota	tior	ח. D	STI	PIX	WI	DTH	ΗM	US	Гbe	e se	t to	8 B	PP		
i	R/W	DST_24_F	ROT					Ini	r ii I' E	nor nitia	noch al D ST_ D D	nror ST_ X_I ST_	ne p _24_ DIR _24_	0att _R(= '(_R(ern DT v D'th DT =	rota valu nen = (T	atio ie is run	n w s de c(((l	her fine DS	or, w o dra ed a T_X X	awir Is fo (* 3	ng p ollov 5) +	oack vs: 2)/4	ked I)) N	24 I Nod		. TI	he
j	R/W	DST_BRE	S_ZER(0				0 =	= DE	EST	Г_В	RE	S_E	RR	= () is	pos	sitive	e n	RES umb	er	RR	= 0					
k	R/W	DST_BRE	S_SIGN	1				0 =	esei = ze = ze	ero (erro	r te	rm i															
I	R/W	DST_POL	YGON_	RTE	DGE_I	DIS		0 =	sabl = dra = dra	awi	ng (of ri	ght	edg	je p	ixel	is	ena	ble		і ро	lygo	on fi	ill oj	pera	atio	า.	
m	R/W	TRAIL_X_	DIR					0 =	ape: = rig = lef	jht 1	to le	eft	g eo	dge	dire	ecti	on:											
n	R/W	TRAP_FIL	L_DIR					0 =		jht 1	to le	eft (t	raili	ng						t of ht o								
0	R/W	TRAIL_BR	ES_SIC	θN				0 =	ese = ze = ze	ero (erro	r te	rm i	s p	osit	ive	ñur	nbe	r	ezoi	ds:							

(continued on next page)

									I	DS	ST.	_C	N.	ΤL											I/C):-			I	мм	: 0 <u></u>	_40	2
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
۱. ۱	/т																				I	j		i		h	g	f	е	d	с	b	а
G	T															р		0	n	m	Ι	k		i		h	g	f	е	d	с	b	а
р	R/W	BF	RES	SI	GN	_Al	JTC)					0 =	ze = ٦ ٩ O =	ro e FRA /err erro	erro (IL_ ide r tei	BR DS rm i	rm i ES <u>-</u> T_E s p	_SIC BRE osit	GN S_	bit SIG for :	N a X N	ind Iajo	TR	AIL_	S_S _BR who	ES	_SI	GN				r Y

Miscellaneous control bits for the destination area:

If the destination trajectory is rectangular, DST_X_DIR and DST_Y_DIR will determine the trajectory quadrant that the destination area and the source area will take. Rectangular areas are always X-major.

If the destination trajectory is a line, DST_X_DIR, DST_Y_DIR, and DST_Y_MAJOR will determine the trajectory octant that the destination line will take and the source area direction is specified in SRC_LINE_X_DIR@SRC_CNTL. Source areas are always rectangular. Source areas do not advance in the Y direction when destination trajectory is a line.

DST_X_TILE and DST_Y_TILE affect only rectangular destinations. These bits determine the side effect of the DST_X and DST_Y registers after the draw operation is completed. If DST_X_TILE is set, then DST_X will be assigned DST_X+DST_WIDTH upon draw completion for a left-to-right draw operation (DST_X_DST_WIDTH for right-to-left); otherwise DST_X is unchanged.

Similarly, if DST_Y_TILE is set, then DST_Y will be assigned DST_Y+DST_HEIGHT upon draw completion (for a top-to-bottom draw operation (DST_Y_DST_HEIGHT for bottom-to-top); otherwise DST_Y is unchanged.

DST_LAST_PEL affects only destination line trajectories. When set, the last pixel in the line is drawn, otherwise it is not. This register does *not* affect DST_X and DST_Y trajectories.

DST_POLYGON_EN affects line and rectangle destinations differently. (1) For lines, with this bit set, only one pixel will be drawn per scan line (with the exception of horizontal lines, where no pixels will be drawn). Lines exceeding the left scissor boundary will be saturated to the left scissor. (2) For rectangles, with this bit set, an implicit polygon source (specified by the source trajectory registers) is used to conduct an alternate-fill polygon fill on the destination. Blit sources cannot be used in conjunction with polygon fills. DST_X_DIR must be set to left-to-right operation for correct polygon fill behavior.

DST_24_ROT_EN and DST_24_ROT are used to set the initial rotation factor in packed 24 bpp mode.

DST_BRES_SIGN controls the behavior of the line draw engine when DST_BRES_ERR is zero. When set, a zero error term is considered negative, otherwise it is positive.

Usage

This register must be set for all draw operations. DST_Y_MAJOR and DST_LAST_PEL are applicable only for line draw operations. DST_X_TILE and DST_Y_TILE are applicable only

for rectangle fills.

See Also

GUI_TRAJ_CNTL on *page 4-104*

SRC_CNTL on page 4-62

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Engine Operations: Draw Operations: Colour Source: Drawing Lines
- Engine Operations: Background Information: Trajectories: Trajectory Modifier 2, DST_POLYGON_EN
- Engine Operations: Background Information: Side Effects of Trajectories
- Advanced Topics: Polygons
- Engine Operations: Miscellaneous Operations: Drawing in Packed 24 Bit Per Pixel Mode

									D	S٦	r_	HE		ЭH	т										I/C):-				MM	l: 0_	_45	5
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																									а							
а	R/W	DS	T_H	ΗEI	GH	Т							De				eigl RA		, Bi	ts12	2:0	are	alia	sec	l wi	th T	ΓRA	IL_	BRI	ES_	_X)		

This register specifies the height in pixels of a rectangular destination area.

Usage

In the **VT**, this register is used only when drawing a rectangular destination area. In the **3D RAGE**, this register is used when drawing a rectangular or trapezoidal destination area.

See Also

DST_WIDTH on *page 4-54*

DST_HEIGHT_WIDTH on *page 4-52*

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Draw Operations: Colour Source: Drawing Rectangles
- Engine Operations: Draw Operations: Standard Bitblit Source
- Engine Operations: Draw Operations: Specialized Bitblit Source: Transparent BitBlts
- Advanced Topics: Polygons

				D	S	г_н	EI	GH	Т_	w	IDI	н						I/C	D:-		ſ	/M:	0_	46	
В	ITS	IPPOINT IPPOINT IPPOINT <th colspan="6" i<="" th=""><th>4</th><th>3</th><th>2</th><th>1 0</th></th>														<th>4</th> <th>3</th> <th>2</th> <th>1 0</th>						4	3	2	1 0
١	/т						b												а						
C	эт	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12																	а						
а	W	DST_HEI	b																						
b	W	DST_WID	DTH						Des	stina	ation	widt	h												

DST_HEIGHT_WIDTH is a composite of registers DST_HEIGHT and DST_WIDTH. Writing to this register will initiate a rectangle fill operation.

Usage

These registers are used only for drawing rectangular destinations.

See Also

DST_HEIGHT on *page 4-51* DST_WIDTH on *page 4-54*

		DST_OFF	_PITCH	I/O:-	MM: 0_40
В	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4	4 3 2 1 0
VT	/GT	b	a		
а	R/W	DST_OFFSET	Destination offset address in terms of	64 bit words.	
b	R/W	DST_PITCH	Destination pitch in pixels*8. Note that destination pitch must be a multi modes the destination pitch must	ple of 64 pixels. Al	so in 4 bpp

DST_OFF_PITCH is used to specify the offset (in QWORDs) and pitch (in pixels) of the destination area. If the memory boundary is enabled, ensure that the offset points to an area above or equal to the boundary. If the destination is on-screen memory, any value of pitch smaller than the display area is not meaningful.

Usage

This register should be set for all draw operations.

See Also

SRC_OFF_PITCH on page 4-68

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line
- Advanced Topics: CRT Synchronization and Animation: Double Buffering (Memory)
- Linear Aperture: VGA Interaction

							DS	бт_∨	VID	тн								I/C):-			MN	1: 0_	_44
BI	TS	31	30 29	28	27 26	25	24 23	22 2	1 20	19 1	8 17	16	15 14	13	12 1	1 10	0 9	8	7	6 5	5 4	43	2	1 0
V	т	с																		а				
G	T	с																	b					
а	R/W	DS	ST_WI	DTH					tion v	vidth	(VT)													
b	R/W	DS	ST_WI	DTH					De	dra [15	aws. 5:13]	Bit 1 are a	<mark>(3D </mark> 15 is v aliase d drav	vrite d to	ONL DST	Y ar _BR	nd w	ill al	ways	s rea	d ba	ack a	ıs '0'.	Bits
С	W	DS	ST_WIE	DTH_	_FILL_	_DIS			0 = 1 =	= Rec = No r DTE: -	tangu rectar This f	ular f ngula funct	n of re fill ope ar fill o ion is or rea	eratio oper perf	on ini ation	tiate initia	d. ated	l.		ster is	s wr	itten	. The	bit is

DST_WIDTH specifies the width in pixels of a rectangular destination area and initiates a draw operation. DST_WIDTH can be set without initiating a draw operation by setting the DST_WID_FILL_DIS bit.

Writing to this register also overwrites the contents of DST_BRES_LNTH.

Usage

This register is used only when drawing a rectangular destination area.

See Also

DST_HEIGHT on *page 4-51* DST_HEIGHT_WIDTH on *page 4-52* DST_X_WIDTH on *page 4-56*

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Draw Operations: Colour Source: Drawing Rectangles
- Engine Operations: Draw Operations: Standard Bitblit Source
- Engine Operations: Draw Operations: Specialized Bitblit Source: Transparent BitBlts
- Advanced Topics: Polygons

											DS	ST.	_х												I/C):			I	MM	: 0_	_41	
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																										а						
а	R/W	DS	ST_	Х									De	estir	atio	on X	(со	ord	inat	е													

DST_X specifies the starting X coordinate of the destination trajectory. This is a signed 13 bit number.

Usage

This register is used for all draw operations.

See Also

DST_X_WIDTH on page 4-56

DST_Y on *page 4-57*

DST_Y_X on page 4-58

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line

									DS	ѕт	_X	(_)	wı	D	ГН										I/C	D:-				М	VI: 0	_4	7
В	TS	31	DST_X_WIDTH 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 b b ST_X Destination X coor														15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
١	/Т		30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 b																						а								
C	ЭT		b																								а						
а	W	DS	ST_>	<									De	estir	natio	on X	(со	ord	linat	е													
b	W	DS	ST_\	NIC	тн								De	estir	natio	on v	vidtl	n															

DST_X_WIDTH is a composite of registers DST_X and DST_WIDTH.

Usage

This register can alternatively be used to initiate rectangle fill operations when drawing a rectangular destination area.

See Also

DST_X on *page 4-55*

DST_WIDTH on page 4-54

											DS	ST.	_Y	,											I/C):-			I	MM	l : 0 _	_42	
В	ITS	31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13												12	11	10	9	8	7	6	5	4	3	2	1	0					
V	r/ <mark>GT</mark>																							а									
а	R/W	DS	ST_`	Y									De	estir	atio	on Y	′ co	ord	inat	е													

DST_Y specifies the starting Y coordinate of the destination trajectory. This is a signed 15 bit number.

Usage

This register is used for all draw operations.

See Also

DST_X on *page 4-55*

DST_Y_X on page 4-58

- Engine Operations: Background Information: Trajectories: Destination Trajectory 1, Rectangular
- Engine Operations: Background Information: Trajectories: Destination Trajectory 2, Line

											DS	sт	·_/	(Х											I/C):			Ν	ИΝ	: 0_	43'	٠
	BI	ſS	31	DST_Y_X 11 30 29 28 27 26 25 24 23 22 21 20 19 18 13 b DST_Y Destination														16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	VT/	GT										b															а						•	
а	l	W	DS	ст_`	Y									De	stin	atic	n Y	′ со	ordi	nat	е													
b)	W	DS	ST_2	Х									De	stin	atic	n X	Ссо	ordi	nate	е													

DST_Y_X is a composite of registers DST_X and DST_Y.

*In the **3D RAGE**, DST_Y_X is also aliased to **MM:0_4D**.

Usage

These registers are used for all draw operations.

See Also

DST_X on *page 4-55* DST_Y on *page 4-57*

									TF	RA	IL	_E	BR	ES	\$_	EF	RR									I/C	D:-				MM	: 0	_4E	:
	BII	rs	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	G	Т																							á	a								
а	I	R/W	TR	AIL	_В	RES	S_E	RR	1					Bre	ese	nha	im e	erro	r tei	rm f	or l	ine	and	l tra	pez	oid	l tra	iling	g ed	lge				

In the **3D RAGE**, TRAIL_BRES_ERR is a signed, 18-bit register that stores the Bresenham error term for line and trapezoid trailing edges.

									Т	RA		E	3 R	RE	S_	IN	IC									I/C):-				MM	l: 0	_4F	-
	Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	G	т																							a	a								
a	a	R/W	TR	AIL	_B	RES	11_C	١C						Br	ese	nha	am i	ncre	eme	ent f	or li	ine	anc	l tra	pez	oid	tra	iling	g ed	lge				

Description

In the **3D RAGE**, TRAIL_BRES_INC is a signed 18 bit register which stores the Bresenham increment for line and trapezoid trailing edges. The number loaded into this register must be positive. This term is added to the DST_BRES_ERR term whenever the Bresenham error is negative.

								TF	RA	IL	_E	BR	ES	S_	DE	EC									I/C):-				MN	1: 0	_50)
	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	GT																							a	a								
а	R/V	V TF	RAII	В	RE	S_C	DEC						Br	ese	nha	ım c	decr	em	ent	for	line	an	d tra	ape	zoio	d tra	ailin	g e	dge	•			

Description

In the **3D RAGE**, TRAIL_BRES_DEC is a signed 18 bit register which stores the Bresenham decrement for line and trapezoid trailing edges. The number loaded into this register must be negative. This term is added to the DST_BRES_ERR term whenever the Bresenham error is positive.

										Z _	0	FF	=_	PI.	тс	н										I/C):				MN	l: 0 _.	_52	:
	BI	rs	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	G	Т					k)																а	a									
а		R/W	Ζ_	OF	FSE	ΞT								Zo	offse	et a	ddre	ess	in te	erm	is of	f 64	bit	wo	rds.									
b		R/W	Ζ_	PIT	СН									Ζp	bitch	n in	pixe	els*8	8.															

Z_OFF_PITCH is used in the **3D RAGE** to specify the offset (in QWORDs) and pitch (in pixels) of the Z-buffer area. The Z-buffer destination will always track the normal destination in X and Y, but with its own pitch and offset.

Usage

This register should be set for all 3D draw operations.

See Also

Z_CNTL on page 4-61

										Z	<u>_</u> (CI	ΝΤΙ													I/C):-				MN	<i>I</i> I: 0	_5	3
BI	TS	31	30	29	28	27	7 26	25	24	23	22	21	1 20	19	18	17	16	15	14	13	3 1	2 1	11	10	9	8	7	6	5	4	4 3	2	1	0
G	т																									d			С				b	а
а	R/W	Z_	EN										0 =	= Z	es u testi testi	ing	is d	isa	blec	d. c	IS:													
b	R/W	Z_	SR	С									0 =	= Z	es u testi testi	ing	is d	isa	blec	d l	S:													
C	R/W	Z_	TES	ST									Ž	oas:	fic Z st co 000 001 010 011 100 101 110 111 sing /alu	Zt		Te Zt Z Z Z Z Z Z Z Z Z t	<u>st</u> est < cu <= c >= c > cu = cu = cu	ne irre cur cur irre urr alv	evel ent ren ren ent rent way	r pa Z at Z at Z Z /S [bas	se		g va	alue	e wi	ith t	he	e nev	/ 50	urce	Ð
d	R/W	Z_	MA	SK									0 =	wi	es v riting riting	g to	the	Z	plan	nes	s is	dis	ab											

In **3D RAGE**, Z_CNTL controls the new Z source FIFO which supports the hardware Z buffering.

Usage

Z_EN turns Z on/off. Z_TEST specifies which Z test is to be done. Z_MASK allows Z to apply to colors, even if Z itself is never written.

See Also

Z_OFF_PITCH on page 4-60

Source Trajectory

BIT	r	31 30 29	28					— —	NTL								0:-			MM	. 0_	_02	,
VT				27 26	25	24 23	22	21	20 19	18 17	16	15 14	13	12 11	10	9 8	7	65	4	3	2	1	0
	r																		е	d	с	b	а
GT													g				f		е	d	с	b	а
a F	R/W	SRC_PA	TT_E	EN					Enable	es pat	tern s	ource	e. SF	RC_Y_	END) is o	nly u	sed if t	his	bit i	s en	abl	ed.
b F	R/W	SRC_PA	TT_F	ROT_I	EN				Enable c					ation. S enable		_X_S	TAR	T, SR	C_\	′_S⁻	ΓAR	T is	\$
C F	R/W	SRC_LIN	IEAR	EN					Note:	tarts a DST_ roper	at SR X_DI Iy. No	C_OF R sho ote tha	FSE ould at all	ET and	l adv e set soui	vance t to th rce re	s in f e lef giste	he left t-to-rig ers and	-to- ht te l co	right o op	t dire erat	ectio	
d F	R/W	SRC_BY	TE_A	ALIGN	1				Note:	lestina SRC_	ation a	advan AR_E	ices EN M	in the	Y di be se	rectio	n.		-				
e F	R/W	SRC_LIN	IE_X	_DIR					Source	e X di	rectio	n whe	en di	rawing	ope	ratior	n is a	brese	nha	ım li	ne.		
fF	R/W	SRC_TR	ACK	_DST					C	ase, t	he X,	Y va	lues	tory wh used t X and \$	for th	ne so	urce	and de	estii	natic	n w	is ill b	e
g F	R/W	SRC_BL	JOCK	_FILL	FC	N			la c r t t t t r r f f the r	arge r lestina nultipl nis mo nat an o the a egiste egions <u>Bit 14</u> 0 0 1 1 1	egion ation i es of ode, t i SGR actua er sho s in th	s in m must l 64 by he so 2AM c l blocl uld be ne wid <u>Bit 13</u> 0 1 0 1 e use	hema be a rtes : urce olor k fill. e pro lth. So (a So (a So (a So (a So (a) s(a) so (a) so (a) so	I be do ory. W ligned are wri- e come registe . Whe ogramr ormal I GRAM NO-C lock W eserve	/hen on a itten s fro er wi n do ned Mod colo P fo P fo GRA	e perfo a 64 b v m the rite cy ing a with 1 e or reg or othe using M, th	prmir yte I sciss FG cle r bloc he n ister FGN FGN	ng this bounda soring ND CL nust b k fill,th umber write u emory ID_CL ck fill i	ope ary. Is p R r e D of usin type R	eration On erfol egiss erfor ST_ 64 b g F(es)	on, t ly rme ter. mec WIE yte	he d. I No I pri DTH	in ite ior I

Description

SRC_CNTL contains various enable bits for blit source trajectory control.

SRC_PATT_EN, SRC_PATT_ROT_EN, and SRC_LINEAR_EN are set as shown in the table below to select the source trajectories as follows:

SRC_LINEAR_EN	SRC_PATT_ROT_EN	SRC_PATT_EN	Source Trajectory
1	0	0	Strictly Linear
0	0	0	Unbounded Y
0	0	1	General Pattern
0	1	1	General Pattern with Rotation

SRC_BYTE_ALIGN is applicable only when the destination is rectangular. In 1 bpp and 4 bpp modes, if this field is set, the source pointer will advance to the nearest byte boundary when the destination advances in the Y direction.

SRC_LINE_X_DIR is applicable only when the destination is a line. It is used to specify the source direction.

Source and destination trajectory directions are de-coupled for line draws. The source is always rectangular, but never advances in the Y direction for lines.

Usage

Use this register only if a blit source is selected in the pixel data path.

See Also

DST_CNTL on *page 4-48*

GUI_TRAJ_CNTL on page 4-104

- Engine Operations: Background Information: Trajectories
- Engine Operations: Background Information: Source and Destination Alignment
- Engine Operations: Draw Operations: Standard Bitblit Source

										SF	RC	_H	١E	IG	H.	T1										I/C):-				MN	I: 0	_65	5
	Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VT/	GT																									а							
ć	a	R/W	SR	C_	HE	IGH	IT1							So	urc	e he	eigh	it 1																

This register is used to specify the height of the source area for general-pattern sources or the vertical distance (in lines) from DST_Y to the bottom of a pattern block for general-pattern-with-rotation sources.

Usage

Set this register only if a general-pattern blit source or general-pattern-with-rotation blit source is selected in the pixel data path.

See Also

SRC_HEIGHT1_WIDTH1 on page 4-65

SRC_WIDTH1 on page 4-69

- Engine Operations: Background Information: Trajectories: Source Trajectory 3, General Pattern
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

						ç	SR	C_	_H	EI	G	нт	1	_W	/10)T	H1	l							I/C):-			I	мм	: 0_	_66	
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT										b	_														а							
а	W	SF	RC_	HE	IGH	IT1							So	urce	e he	eigh	t 1																
b	W	SF	RC_	WIE	DT⊦	11							So	urce	e wi	idth	1																

This register is a composite of SRC_HEIGHT1 and SRC_WIDTH1.

Usage

Set this register only if a general-pattern blit source or general-pattern-with-rotation blit source is selected in the pixel data path.

See Also

SRC_HEIGHT1 on *page 4-64* SRC_WIDTH1 on *page 4-69*

									SF	RC	_H	١E	IG	H.	T2										I/C):-			I	MM	: 0_	_6B	}
I	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																									а							
а	R/W	SF	RC_	HE	IG⊦	IT2							So	urc	e he	eigh	t 2																

This register is used to specify the height of the general pattern for general-pattern-with-rotation sources.

Usage

Set this register only if a general-pattern-with-rotation blit source is selected.

See Also

SRC_HEIGHT2_WIDTH2 on page 4-67

SRC_WIDTH2 on *page 4-70*

- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

							ç	SR	C_	_H	EI	GI	нт	2_	_W	/10	т	H2	2							I/C):-			ľ	MM	: 0_	_6C	
E	зіт	ſS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	Т/(GT										b															а							
а		W	SF	RC_	HE	IG⊦	IT2							So	urce	e he	eigh	t 2																
b		W	SF	RC_	WI	DT⊦	12							So	urce	e w	dth	2																

This register is a composite of SRC_HEIGHT2 and SRC_WIDTH2.

Usage

Set these registers only if a general-pattern-with-rotation blit source is selected.

See Also

SRC_HEIGHT2 on *page 4-66* SRC_WIDTH2 on *page 4-70*

								S	R	C_	0	FF	:_F	۶l.	тс	СН										1/0	0:-	_				MN	/I: C)_6	0
BI	TS	31	30 2	9 2	28	27	26	25	24	23	22	21	20	19	9 18	8 17	1	16 1	5	14	13	12	11	10	9	8	7	7	6	5	4	3	2	1	0
VT	/GT					b																			а										
а	R/W	SF	RC_O	FF	SE	Т							Sc	our	ce	offse	et a	add	res	s ir	n te	rms	s of	64	bit	wo	rds	i.							
b	R/W	SF	RC_PI	тс	н								Sc	our	ce	pitch	n ir	n pix	els	s x	8.														
													No		pix	mo els. pixe	Al	SO,	om in	en 4 b	noc opp	le tl mc	ne s de	sou the	rce so	pito urce	ch r e pi	mu itcł	ist n m	be nus	a m t be	ulti a ı	iple mul	of tiple	64 ə of

This register is used to specify the offset (in QWORDs) and pitch (in pixels) of the blit source area.

Usage

This register should be set for any draw operations that select a blit source in the pixel data path.

See Also

DST_OFF_PITCH on *page 4-53*

- Engine Operations: Background Information: Trajectories: Source Trajectory 1, Strictly Linear
- Engine Operations: Background Information: Trajectories: Source Trajectory 2, Unbounded Y
- Engine Operations: Background Information: Trajectories: Source Trajectory 3, General Pattern
- Engine Operations: Background Information: Source Trajectory 4, General Pattern with Rotation

									S	RC)	W	ID.	T⊦	11										I/C):-			I	MN	l: 0 _.	_64	
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																										а						
а	R/W	SR	RC_	WI	DT⊦	11							So	urc	e w	idth	1																

This register is used to specify the width of the source area for general pattern sources or the horizontal distance (in pixels) from DST_X to the right edge of a pattern block for general pattern sources with rotation.

Usage

Set this register only if a general-pattern blit source, a general-pattern-with-rotation blit source, or an unbounded Y source is selected in the pixel data path.

See Also

SRC_HEIGHT1 on *page 4-64*

SRC_HEIGHT1_WIDTH1 on page 4-65

- Engine Operations: Background Information: Trajectories: Source Trajectory 2, Unbounded Y
- Engine Operations: Background Information: Trajectories: Source Trajectory 3, General Pattern
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

									S	RC)_	W	D.	тн	12										I/C):-			I	мм	: 0_	_6A	L.
I	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																										а						
а	R/W	SR	C_	WI	DT⊦	12							So	ourc	e w	idth	2																

This register is used to specify the width of the pattern for general-pattern-with-rotation sources.

Usage

Set this register only if a general-pattern-with-rotation blit source is selected.

See Also

SRC_HEIGHT2 on *page 4-66*

SRC_HEIGHT2_WIDTH2 on *page 4-67*

- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

										Ċ,	SR	C	_x	Κ											I/C):-			I	MN	l: 0_	_61	
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																										а						
а	R/W	SR	C_	Х									So	ourc	e X	coc	ordi	nate	;														

This register specifies the starting X coordinate of the blit source trajectory. This is a signed 13 bit number.

Usage

This register is used for any draw operation which selects a blit source in the pixel data path.

See Also

SRC_Y on *page 4-73*

SRC_Y_X on page 4-75

- Engine Operations: Background Information: Trajectories: Source Trajectory 1, Strictly Linear
- Engine Operations: Background Information: Trajectories: Source Trajectory 2, Unbounded Y
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation

									SR	C	_X	<u>[</u>]	ѕт	ΆΙ	RT	•									I/C):-				MM	l : 0 _	_67	,
В	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																										а						
а	R/W	SF	RC_	X_9	STA	RT							Pa	tter	n so	ouro	ce X	(sta	art f	or p	batte	ern	rota	tior	ı in	the	Хс	dire	ctio	n			

This register specifies the starting horizontal edge of a general-pattern-with-rotation blit source. This is a signed 13 bit number.

Usage

Set this register only if a draw operation selects a general-pattern-with-rotation in the pixel data path.

See Also

SRC_Y_START on page 4-74

SRC_Y_X_START on page 4-76

- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

										ļ	SR	C	_Y	,											I/C):-			I	MN	: 0	_62	2
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																									а							
а	R/W	SR	C_	Y									So	ourc	e Y	coc	ordi	nate	;														

This register specifies the starting Y coordinate of the blit source trajectory. This is a signed 15 bit number.

Usage

This register is used for any draw operation that selects a blit source in the pixel data path.

See Also

SRC_X on *page 4-71*

SRC_Y_X on page 4-75

- Engine Operations: Background Information: Trajectories: Source Trajectory 1, Strictly Linear
- Engine Operations: Background Information: Trajectories: Source Trajectory 2, Unbounded Y
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern
- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation

									SR	C	_Y	_	ѕт	A	RT	•									I/C	D:				MM	l: 0	_68	;
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																									а							
а	R/W	SF	RC_	Y_8	STA	RT							Pa	tter	n so	ouro	ce Y	′ sta	art f	or p	batte	ern	rota	tior	n in	the	Υœ	dire	ctio	n			

This register specifies the starting vertical edge of a general-pattern-with-rotation blit source. This is a signed 15 bit number.

Usage

Set this register only if a draw operation selects a general-pattern-with-rotation in the pixel data path.

See Also

SRC_X_START on page 4-72

SRC_Y_X_START on page 4-76

- Engine Operations: Background Information: Trajectories: Source Trajectory 4, General Pattern with Rotation
- Engine Operations: Draw Operations: Standard Bitblit Source: General Pattern with Rotation

										SI	RC	;_`	Y_	X											I/C):-			I	ММ	: 0_	_63	
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT										b												•			а							
а	W	SF	RC_	Y									So	urce	εY	coc	ordi	nate	9														
b	W	SF	RC_	Х									So	urce	эX	coc	ordi	nate	9														

This register is a composite of SRC_Y and SRC_X.

Usage

Set these registers only if a blit source is selected in the pixel data path.

See Also

SRC_Y on *page 4-73* SRC_X on *page 4-71*

								SF	RC	:_Y	(_	X _	S	TA	٩R	Т									I/C):			I	мм	: 0_	_69)
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	r/ <mark>gt</mark>										b															а							
а	W	S	RC	_Y_;	STA	RT							Pa	tteri	n so	ourc	ce Y	sta	art fo	or p	atte	rn	rota	tior	n in	the	Υc	lirea	ctior	٦			
b	W	S	RC_	_X_	STA	٨T							Pa	tteri	n so	ourc	ce X	sta	art fo	or p	atte	rn	rota	tior	n in	the	Хc	lirea	ctior	ו			

This register is a composite of SRC_X_START and SRC_Y_START.

Usage

Set these registers only if a general pattern with rotation blit source is selected in the pixel data path.

See Also

SRC_X_START on *page 4-72* SRC_Y_START on *page 4-74*

Draw Engine Control Registers

Host Data

								н	วร	;Т	_D	A.	ТΑ	[1	5:	0]									I/C):-			М	M:0)_80)-0_	_8F
Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT/	GT																a	I				•											
а	W	нс	DST	[_D,	ΑΤΑ	\[i]								r () () () () () () () () () () () () ()	nibb oper word drav nibb OP_	le, I atic d for ving le, I BY	oyte ons; r rig op oyte TE_	, or and ht-t erat , or PIX	d ta o-le tion wc (_C	ord i ker eft ru is ai ord. DRD	for fro ecta re a	left- m t ang lwa @E	to-r he r ular iys t DP_ des	ight nos dra ake PIX	t rec at sig awir en fr	ctan gnifi ng o rom	igula icar per the	ar d nt bi atio e lea	lraw t, ni ns. ast s	ving ibbl Da sign	e, b ata f ifica	yte, or li ant l	ine bit,

Description

HOST_DATA is actually a single register mapped to 16 consecutive addresses, thus HOST_DATA[15:0]. This scheme enables applications to conduct high speed host transfers using REP MOVSD. The register corresponds directly to the host data source in the pixel data path.

If a draw operation expects host data and any other draw engine register is written, the draw operation will *panic* and complete the draw operation with a garbage color. This condition is interruptible through BUS_CNTL.

If HOST_DATA is written and host data is not expected, the data is discarded.

Full FIFO discipline must be applied to this register; that is, check the FIFO before doing a REP MOVSD.

Usage

Data is fed to the draw engine through a host source by repeatedly writing pixel data to this register. Under certain conditions, it may be more desirable to write directly to the big linear aperture instead of using the host data port.

In the 3D RAGE, when using HOST_DATA for 3D operations (either shading or texture mapping), the data is not allowed to be packed. That is, only a single pixel at a time is sent to the host data register. The pixel will be assumed to be aligned to bit 0. The DP_SCALE_PIX_WIDTH rather than the DP_HOST_PIX_WIDTH field will determine the size of the data.

See Also

BUS_CNTL on page 4-8

HOST_CNTL on page 4-78

- Engine Operations: Background Information: Logical Pixel Data Path: Host Data Consumption
- Advanced Topics: Performance Issues

									Н	0	ST	۲_(CN	IT	L										I/C	D:			I	MN	I: 0	_90)
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																															b	а
а	R/W	но	DST	Г_В`	YTE	E_A	LIG	N					En	abl	es k	oyte	alię	gnir	g th	ne h	ost	da	ta.										
b	R/W	нс	DST	ſ_BI	IG_	EN	AIC	N_E	N				0 =	۹ ۷ ۷ big=	voro voro vith	l wid d ard in e india	dth. e sv ach n da	In vap dw ata	15 pec ord trar	bpp	o ar n 32 reve tior	nd 1 2 bp erse n dis	6 bj op n ed. sabl	pp i nod ed	mod	des	the	byt	es ۱	with	2 bj in e ir by	ach	

HOST_BYTE_ALIGN controls the host data consumption for 1 bpp and 4 bpp data. When host data byte align is enabled and the destination trajectory advances in the Y direction, pixels are consumed from the host data port until the nearest byte boundary is reached. When host data byte align is not enabled, pixel data is packed.

Usage

HOST_BIT_ENDIAN_EN controls the endians of the HOST_DATA register. This register is used only if a data path source is set to host data, and host data pixel width is 1 bpp or 4 bpp.

See Also

GUI_TRAJ_CNTL on *page 4-104*

HOST_DATA on *page 4-77*

- Engine Operations: Background Information: Logical Pixel Data Path: Host Data Consumption
- Engine Operations: Draw Operations: Colour Source: Drawing Rectangles

Pattern

									I	PA	Τ _	_R	RE(G0)										I/C):-			I	мм	: 0_	_A(D
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																á	a															
а	R/W	PAT	[_R	EG	60								Pa	tter	n re	gis	ter	0															

Description

PAT_REG0 defines one half of a fixed pattern. PAT_REG1 defines the other half.

Usage

Set this register only when a fixed monochrome or fixed color pattern is selected as a data path source.

See Also

PAT_CNTL on page 4-81

PAT_REG1 on page 4-80

- Engine Operations: Background Information: Logical Pixel Data Path
- Engine Operations: Background Information: Logical Pixel Data Path: Pattern Consumption
- Engine Operations: Draw Operations: Pattern Source: Fixed Patterns

		PAT_F	REG1	I/O:-	MM: 0_A1
	BITS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0
V	T/ <mark>GT</mark>		а		
а	R/W	PAT_REG1	Pattern register 1		

PAT_REG1 defines one half of a fixed pattern. PAT_REG0 defines the other half.

Usage

Set this register only when a fixed monochrome or fixed color pattern is selected as a data path source.

See Also

PAT_CNTL on page 4-81

PAT_REG0 on page 4-79

- Engine Operations: Background Information: Logical Pixel Data Path
- Engine Operations: Background Information: Logical Pixel Data Path: Pattern Consumption
- Engine Operations: Draw Operations: Pattern Source: Fixed Patterns

		PAT_C	NTL	I/O:-		М	M: 0	_A2	2
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7	65	4 3	2	1	0
VT	/GT						С	b	а
а	R/W	PAT_MONO_EN	Monochrome 8x8 pattern enable						
b	R/W	PAT_CLR_4x2_EN	Color 4x2 pattern enable						
С	R/W	PAT_CLR_8x1_EN	Color 8x1 pattern enable						

PAT_CNTL is used for fixed pattern control. All enable bits are mutually exclusive – do not set more than one for any draw operation.

Usage

This register need only be used when the monochrome source is set for fixed mono patterns or when either of the two color sources is set for fixed color patterns. When a fixed pattern is selected, one and only one pattern type can be selected (i.e., set one, and only one bit in this register).

Only 8 bpp color pattern source is supported. Use generalized source pattern for 16 bpp and 32 bpp color patterns.

See Also

GUI_TRAJ_CNTL on *page 4-104*

PAT_REG0 on *page 4-79*

PAT_REG1 on *page 4-80*

- Engine Operations: Background Information: Logical Pixel Data Path
- Engine Operations: Background Information: Logical Pixel Data Path: Pattern Consumption
- Engine Operations: Draw Operations: Pattern Source: Fixed Patterns

Scissors

										S	C _	L	EF	т											I/C):-			I	мм	: 0_	_A8	3
i	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																										а						
а	R/W	SC	LE:	EFT	-								Le	ft so	ciss	or																	

Description

SC_LEFT defines the left edge of a scissor rectangle. Drawing is inhibited for any pixel that is outside this scissor rectangle. Scissors are inclusive. This is a signed, 13-bit number.

Usage

This register must be set for all draw operations.

See Also

SC_TOP on *page 4-85* SC_BOTTOM on *page 4-86*

SC_RIGHT on *page 4-83*

SC_LEFT_RIGHT on page 4-84

mach64 Programmer's Guide:

• Engine Operations: Miscellaneous Operations: Scissoring and Masking

									ļ	sc	;_	RI	Gł	ΗT	ı										I/C):			I	MM	: 0 _	_ A 9	,
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT																										а						
а	R/W	SC	R_R	IGF	ΗT								Rię	ght	scis	sor																	

SC_RIGHT defines the right edge of a scissor rectangle. Drawing is inhibited for any pixel which is outside of this scissor rectangle. Scissors are inclusive. This is a signed 13-bit number.

Usage

This register must be set for all draw operations.

See Also

SC_TOP on *page 4-85*

SC_LEFT on page 4-82

SC_LEFT_RIGHT on page 4-84

SC_BOTTOM on page 4-86

mach64 Programmer's Guide:

• Engine Operations: Miscellaneous Operations: Scissoring and Masking

									S	C _	_L	EF	т.	_R	IG	θH	т									I/C):			ľ	ИМ	: 0_	_A/	1
	BI	rs	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т/	GT											-															а						
а		W	SC	_L	EF٦	Г								Let	ft so	ciss	or																	
b		W	SC	C_R	IGH	ΗT								Rig	ght s	scis	sor																	

SC_LEFT_RIGHT is a composite of registers SC_LEFT and SC_RIGHT.

Usage

This register must be set for all draw operations.

See Also

SC_LEFT on *page 4-82* SC_RIGHT on *page 4-83*

										S	C.	_т	0	Ρ											I/C):-			N	ИМ	: 0_	AB	}
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	/GT																									а							
а	R/W	SC	с_т	OP									То	p s	ciss	or																	

SC_TOP defines the top edge of a scissor rectangle. Drawing is inhibited for any pixel which is outside of this scissor rectangle. Scissors are inclusive. This is a signed 15-bit number.

Usage

This register must be set for all draw operations.

See Also

SC_BOTTOM on page 4-86

SC_LEFT on page 4-82

SC_RIGHT on *page 4-83*

SC_TOP_BOTTOM on page 4-87

mach64 Programmer's Guide:

• Engine Operations: Miscellaneous Operations: Scissoring and Masking

									S	C_	_B	0.	ТΤ	0	М										I/C):-			N	ИМ	: 0_	AC	÷
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	T/ <mark>GT</mark>																									а							
а	R/W	SC	:_В	ОΤ	TON	Л							Во	ttor	n so	ciss	or																

SC_BOTTOM defines the bottom edge of a scissor rectangle. Drawing is inhibited for any pixel which is outside of this scissor rectangle. Scissors are inclusive. This is a signed 15-bit number.

Usage

This register must be set for all draw operations.

See Also

SC_TOP on *page 4-85*

SC_TOP_BOTTOM on page 4-87

SC_LEFT on page 4-82

SC_RIGHT on page 4-83

mach64 Programmer's Guide:

• Engine Operations: Miscellaneous Operations: Scissoring and Masking

								sc	>_'	тс	P	_E	30	TI	0	Μ									I/C):-			N	MM	: 0_)
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT									b																а						•	
а	W	SC	с_тс	ΟP									То	p so	isso	or																	
b	W	SC	E_BC	отт	ON	Λ							Bo	ttom	n sc	isso	or																

SC_TOP_BOTTOM is a composite of registers SC_TOP and SC_BOTTOM.

Usage

This register must be set for all draw operations.

See Also

SC_TOP on *page 4-85* SC_BOTTOM on *page 4-86*

Data Path

In the **3D RAGE**, six new pixel formats are supported in the Scaler/3D pipeline. The others are packed. DP_SCALE_PIX_WIDTH@DP_PIX_WIDTH is a new field to support these pixel types. Three of these types (RGB332, YUV422, and Y8) are valid destination types and must be supported by the 2D pipeline. DP_DST_PIX_WIDTH@DP_PIX_WIDTH is modified to support these types.

The 3D/Scaler engine does not support packed 24 bpp mode.

									[ΟP	_E	ΒK	G	D_	C	LR	2									I/C):-			I	MM	: 0_	_B()
	BIT	rs	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	VT/	GT																â	à															
а	ı	R/W	DF	<u>_</u> В	KGI	D_0	CLR							Ba	ickg	rou	nd	colc	or															

Description

DP_BKGD_CLR is used to hold a solid color source. The number of bits used varies depending on graphics modes, as follows:

Video Mode	Bits Used
1 bpp	the least significant bit
4 bpp	the least significant 4 bits
8 bpp	the least significant 8 bits
15 bpp/16 bpp	the least significant 16 bits
packed 24 bpp	the least significant 24 bits
32 bpp	all 32 bits

Usage

Generally, this register is used for the background source in a color expansion of monochrome data.

See Also

mach64 Programmer's Guide:

• Engine Operations: Background Information: Logical Pixel Data Path

		DP_FRGD_CLR (DP_FOG_CLR)	I/O:-	MM: 0_B1
B	тѕ	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5	4 3 2 1 0
VT	/GT		a		
а	R/W	DP_FRGD_CLR	Foreground color		

DP_FRGD_CLR is used to hold a solid color source. The number of bits used varies depending on graphics modes, as follows:

Video Mode	Bits Used
1 bpp	the least significant bit
4 bpp	the least significant 4 bits
8 bpp	the least significant 8 bits
15 bpp/16 bpp	the least significant 16 bits
packed 24 bpp	the least significant 24 bits
32 bpp	all 32 bits

Usage

Generally this register is used for solid color fill or for the foreground source in a color expansion of monochrome data.

In the **3D RAGE**, this register (DP_FOG_CLR) is used to source the solid **Fog** color.

See Also

mach64 Programmer's Guide:

• Engine Operations: Background Information: Logical Pixel Data Path

		DP_WRI1	E_MSK	I/O:-	MM: 0_B2
B	ITS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0
V	T/ <mark>GT</mark>		а		
а	R/W	DP_WRITE_MSK	Write mask		

DP_WRITE_MSK is used to inhibit destination writing of selected bits within a pixel. Each occurrence of a zero in the mask will preserve the content of the destination pixel at that bit position in the pixel. The bits used vary depending on the video modes, as follows:

Video Mode	Bits Used
1 bpp	the least significant bit
4 bpp	the least significant 4 bits
8 bpp	the least significant 8 bits
15 bpp/16 bpp	the least significant 16 bits
packed 24 bpp	the least significant 24 bits
32 bpp	all 32 bits

Usage

All draw operations require this register to be set.

In the **3D RAGE**, when Alpha Blending is enabled, the Destination Read FIFO is unavailable to the 2D engine. This register **must** be set to 0xFFFFFFFh.

See Also

mach64 Programmer's Guide:

• Engine Operations: Miscellaneous Operations: Scissoring and Masking

								C	P.	_C	H	AI	N_	_M	S	K									I/C):-			ſ	MM	: 0_	_ B 3	}
	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	/T/ <mark>GT</mark>																								á	a							
а	R/V	V DF	°_C	HA	IN_	MS	K						Ch	nain	ma	sk																	

DP_CHAIN_MSK is the carry chain mask register. Each incidence of a '1' in the mask will inhibit the carry bit in that bit position from adding to the next bit in the pixel ALU. This register is 15 bits wide. There is an implicit carry break in the most significant bit position. This register only affects the (S+D)>>1 mix function.

The normal value for this register should be set according to the table below:

Pixel Depth	DP_CHAIN_MASK
1	N/A
4 bpp pseudocolor	0x8888
8 bpp pseudocolor	0x8080
8 bpp, RGB 332	0x9292
15 bpp, aRGB 1555	0x4210
16 bpp, RGB 565	0x8410
24 bpp, RGB 888	0x8080
32 bpp, RGBa 8888	0x8080

Usage

Set this register only when the foreground mix or background mix is set to function 0x17.

See Also

DP_MIX on page 4-95

mach64 Programmer's Guide:

• Engine Operations: Background Information: Source and Destination Mixing Logic

							[DP)_F	>])	X_	W	ID	тн									I/C	D:-			ſ	MM:	0_	_B4	Ļ
В	ITS	31	30 29	28	27	26	25	24	23	22	21	20	19	18 ⁻	17 16	; ·	15 14	4 13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
١	/т							f							d							с								а	
C	ST		j		i	h	g	f			е			d							C	2							b)	
а	R/W	DF	P_DST	PI)	X_\	WID ⁻	TH[2:0]			0 = 1 = 2 = 3 = 4 = 5 = 6 =	= ma = 4 = 8 = 15 = 16 = (re = 32		hrom (5,5, (5,6, ed)	,5))	pixe	l w	idth:											
b	R/W	6 = 32 bpp 7 = (reserv DP_DST_PIX_WIDTH[3:0] Destination 0 = monocl 1 = 4 bpp p 2 = 8 bpp p 3 = 16 bpp 4 = 16 bpp 5 = (reserv 6 = 32 bpp 7 = 8 bpp F 8 = Y8 grey 9-10 = (reserv 11 = YUV 12-13 = (reserv 14 = aYUV 15 = (reserv														B B B B C B C B C B C C B C C B C C C C	coloi coloi 155 565 888 32) cked d)	5 8	I w	idth:											
с	R/W	DF	P_SRC	C_PI	X_۱	WID [.]	ΤН					Sc		e dat DP_D																ove.	
d	R/W	DF	P_HOS	ST_F	PIX.	_WI	DTH	-1	-	_		Ho	ost o I	data DP_D	oath ST_	pi) Pl	xel w IX_W	idth /IDT	– k H[2	oit de 2:0] (escr [3:0	iptic 0] fc	on s or 3	sam D R	e a AG	s th SE),	ose shc	for wn a	abc	ove.	
е	R/W	DF	P_CI4_	_RG	B_I	INDE	ΞX					Th		e bits selec									ts o	of the	e C	14 (colo	r val	ue	to	
f	R/W	DF	P_BYT	E_P	אוי_	_OR	DEI	R				0 =	r si r	rses t mode kel or kel or	s: der f	ro	m M	SBit	(n	ibble) to	LSI	Bit	(nib	ble)).	me	and	41	opp	
g	R/W	DF	P_CON	IVE	RS	ION	_TE	MF	5			0 =	= re	o RG d@6 GB@	500 ł	۲,	gree) K								
h	R/W	DI	P_CI4_	RG	B_l	LOW	/_N	IBE	BLE			De		es th shoul																	te.
i	R/W	DF	P_CI4_	RG	B_ł	HIGH	H_N	IIBI	BLE			De		es th shoul																	te.
i	R/W	DF	P_CI4_	_RG	B_ł	HIGH	H_N	IIBI	BLE			De	enot	es th	at wł	ne	n in (C18	->	RGI	3 te	xtur	e lo	ooku	ıp n	nod	e, tł	ne te	xtu	ire	

(continued on next page)

								DF) _	ΡΙΧ	_ N	/ID	T	н								I/(0:-	-		ſ	мм	: 0_	_B4	
BITS	;	31	30	29 2	28	27 26	25	24	23	22	21 2) 19	18	8 17	16	15	14	13	12	11	10	8	7	6	5	4	3	2	1	0
VT								f						d							(\$							а	
GT			j			i h	g	f		е				d							С							b		
j R	2/~~	DP.	_SC	ALE	E_F	יוא_\	VID ⁻	ГН			0 2 3 4 5 6 7 8 9 1 1	-1 = 8 = 19 = 10 = (r = 32 = 8 = 7 -10 1 = 7 2-13 4 = 3	= (re bp 5 b 6 b 6 b 8 g 2 b 8 g = (YU 3 =	ourc eserv p ps pp a pp R pp a p RC rese V 42 (res UV 4 bpp	ved) eud RGI GB (GB (CB (CB) (CB) (CB) (CB) (CB) (CB) (CB)) 0000 B 1 56 B 8 33 9 d) ack ed) (8:8	olor 5555 8888 2 ed ((YUY 3)		and	d sha	ding) da	ata p	bath	pixe	əl w	idth	:	

DP_PIX_WIDTH specifies the pixel format of the destination area, blit source area, and host data register. Although each may be specified independently, the only pixel format conversions supported by *mach64* are 1 bpp to any pixel size when doing color expansion of monochrome data.

DP_BYTE_PIX_ORDER affects pixel ordering within a byte of data for 1 bpp and 4 bpp modes. This bit affects the pixel order when writing to destination memory or reading from blit source memory. It also affects the interpretation of the HOST_DATA register.

If the display mode is 4 bpp, this field should be set to the same value as CRTC_BYTE_PIX_ORDER@CRTC_GEN_CNTL. These bits should be set only once upon mode initialization.

Usage

This register is used for setting draw engine pixel width and pixel ordering within a byte. The source, host, and destination pixel widths may be specified separately, although only the following combinations are supported for simple colour sources:

Supported I	Pixel Widths
Host or Source Pixel Width	Destination Pixel Width
1	1, 4, 8, 15, 16, 32
4	4
8	8
15	15
16	16
32	32

In the **3D RAGE**, 8 bpp pseudocolor, Y8, and 8 bpp RGB332 are treated as raw 8 bpp data by the standard draw engine, and are differentiated from one another by the Scaler/3D block, which needs to pack expanded 24 bpp pixels into their respective destination pixel formats.

YUV422 is treated as raw 32 bpp data by the standard draw engine, and is differentiated by the Scaler/3D block

When using the Scaler/3D pipeline, the following combination of scaler source and destination pixel formats may be selected:

Scaler Pipe Pix	xel Conversions
Scaler Source Pixel Width	Destination Pixel Widths
Pseudo 8	Pseudo 8
Y8	RGB8, 15, 16, 32, Y8 YUV422, YUV444
Pseudo 8 or Y8	RGB 8, 15, 32*
RGB 8	RGB 8, 15, 16, 32
RGB 12	RGB 8, 15, 16, 32
RGB 15	RGB 8, 15, 16, 32
RGB 16	RGB 8, 15, 16, 32
RGB 32	RGB 8, 15, 16, 32
YUV422	RGB8, 15, 16, 32, Y8 YUV422, YUV444
YUV444	RGB8, 15, 16, 32, Y8 YUV422, YUV444

*This combination is only available during Texture Mapping or Scaling. The Pseudocolour-to-RGB conversion is done via a read of the RAMDAC palette.

See Also

mach64 Programmer's Guide:

• Engine Operations: Draw Operations: Specialized BitBlt Source: Monochrome Expansion

										C	P.	_N	/1)	κ											I/C):-			I	ММ	: 0_	_B5	5
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT														b																а		
а	R/W	DF	_В	KG	D_N	ЛIX							Ba	ckg	rou	nd l	Mix	. (S	ee t	abl	e be	elow	/)										
b	R/W	DF	P_F	RG	D_N	ЛIX							Fo	reg	roui	nd I	Иiх.	(S	ee 1	tabl	e be	elov	v)										

DP_MIX specifies the ALU mix function for both foreground and background expansions. If the result of the monochrome pixel consumption is zero, then the ALU uses DP_BKGD_MIX for that pixel; otherwise, DP_FRGD_MIX is used.

Mix Function	Description
Oh	(not DST)
1h	"0"
2h	"1"
3h	DST
4h	(not SRC)
5h	DST xor SRC
6h	(not DST) xor SRC
7h	SRC
8h	(not DST) or (not SRC)
9h	DST or (not SRC)
Ah	(not DST) or SRC
Bh	DST or SRC
Ch	DST and SRC
Dh	(not DST) and SRC
Eh	DST and (not SRC)
Fh	(not DST) and (not SRC)
10h-16h	Reserved
17h	(DST+SRC)/2 (Reserved in 3D RAGE)
18h-1Fh	Reserved

Usage

DP_FRGD_MIX must always be set. DP_BKGD_MIX is *don't_care* for non-trivial color expansion of monochrome data. A non-trivial monochrome source is anything but *Always_'1'*.

In the **3D RAGE**, when Alpha Blending is enabled, the Destination Read FIFO is unavailable to the 2D engine. In this case, DP_MIX **must not** use the Destination.

See Also

DP_MONO_SRC@DP_SRC on page 4-97

- Engine Operations: Background Information: Logical Pixel Data Path
- Engine Operations: Background Information: Source and Destination Mixing Logic

		DP_S	RC	I/O:-	MM: 0_B6
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11	10 9 8 7 6 5	4 3 2 1 0
VT	/GT		С	b	а
а	R/W	DP_BKGD_SRC	Background source: 0 = Background color 1 = Foreground color 2 = Host data 3 = Blit source 4 = Pattern registers 5 = Scaler/3D data (3D RAGE); (re 6-7 = (reserved)	eserved in VT)	
b	R/W	DP_FRGD_SRC	Foreground source – bit description DP_BKGD_SRC[2:0], shown		pr
С	R/W	DP_MONO_SRC	Monochrome source: 0 = '1' 1 = Pattern registers 2 = Host data 3 = Blit source		

DP_SRC controls the mono mux and the two color muxes in the pixel data path.

Usage

DP_FRGD_SRC and DP_MONO_SRC are required to be set for all draw operations. DP_BKGD_SRC is *don't_care* for non-trivial color expansion of monochrome data. A non-trivial monochrome source is anything but *Always_'1'*.

See Also

mach64 Programmer's Guide:

• Engine Operations: Background Information: Logical Pixel Data Path

Color Compare

The color compare function allows color keying on destination or source color values. Note that the color comparison function is not supported in 1 bpp mode.

In the **3D RAGE**, when color keying on the Texel source, the key is compared against the **expanded** (24 bit) source. When color keying 8 bit pseudo color sources, the source data is located on the low order 8 bits.

						CL	.R_	_C	MI	P_	CI	LR									I/C):-				MM	l: 0_	_C(D
В	TS	31 30 29	28	27	26 2	5 24	23	22	21	20	19	18	17 [·]	16 ⁻	15 1	4 1	3 12	2 11	10	9	8	7	6	5	4	3	2	1	0
VT	/GT													а															
а	R/W	CLR_CM	1P_0	CLR						Co	lor o	com	pari	son	col	or													

Description

CLR_CMP_CLR is compared against the source or destination data to determine whether source data will overwrite the destination data.

Usage

Use this register only when CLR_CMP_FN@CLR_CMP_CNTL is set to a non-trivial compare function.

See Also

CLR_CMP_CNTL on *page 4-100*

CLR_CMP_MSK on page 4-99

mach64 Programmer's Guide:

• Engine Operations: Draw Operations: Specialized BitBlt Source: Transparent BitBlts

							C	CL	R_	_C	M	P_	M	SK	ζ						I/C	D:-		I	MM	l: 0_	_C1	I
BI	тѕ	31 30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0										
VT	/GT											-				a	a											
а	R/W	CLR_	_CN	IP_I	NSK	<						Co	lor	con	npai	riso	n m	ask										

The CLR_CMP_MSK register is used in conjunction with CLR_CMP_FN. Both CLR_CMP_CLR and the source/destination data are masked by the color comparison mask.

Usage

Use this register only when CLR_CMP_FN@CLR_CMP_CNTL is set to a non-trivial compare function.

See Also

CLR_CMP_CLR on *page 4-98*

CLR_CMP_CNTL on page 4-100

mach64 Programmer's Guide:

• Engine Operations: Draw Operations: Specialized BitBlt Source: Transparent BitBlts

								С	;L	R_	CN	ΛP	-	CN	IT	L									I/	0:-	-		M	М:	0_	C2	2
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	2 11	10) 9	8	7	7 6	5	4 3	;	2	1	0
v	т								b																							а	
G	т								с																							а	
a	R/W	CL	.R_(CM	P_I	FCI	N						0 = 1 = 2-3 4 = 5 =	olor = Fa = Tr 3 = (= D\$ = D\$ 7 = (ilse ue (res ST_ ST_	erve CLF CLF	ed) R != R =) = Cl : CL	LR_	CM	IP_												
b	R/W	CL	.R_(CM	P_\$	SR	С						0 =	efine = De = Sc	estir	natio		for	colo	or ke	əyir	ng:											
С	R/W	CL	.R_(CM	P_:	SR	С						0 = 1 = 2 =	efine = De = 2D = Te = Re	estir) Sc exel	natio burc Sou	on ce urc																

CLR_CMP_CNTL is used to configure the source or destination compare logic.

CLR_CMP_SRC determines whether the CLR_CMP_CLR register is to be compared against the source or the destination data.

CLR_CMP_FN determines the compare function. If the result of the comparison is false, then color source data is written to the destination; otherwise destination data is written to the destination.

Setting CLR_CMP_FN to any function other than FALSE or TRUE when CLR_CMP_SRC is set for destination keying will automatically cause the destination operation to be read-modify-write.

Usage

This register is used to selectively inhibit the drawing of certain pixels which key on the source data or destination data.

See Also

CLR_CMP_CLR on page 4-98

CLR_CMP_MSK on page 4-99

- Engine Operations: Background Information: Logical Pixel Data Path
- Engine Operations: Draw Operations: Specialized BitBlt Source: Transparent BitBlts

Command FIFO EIEO STAT

									F	FIF	0	_S	ST	A٦	Г										I/C):-			I	MM	: 0	_C4	4
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VT/	GT	b																							i	а							
а	R	FIF	0_	ST	AT								Re) 	(For FIF(epr entr	3D Der ese ies,	RA htrie nte the	GE s ir d as n bi	i, re the s a s its 6	egist e to sing 5:0	ter i p h gle l will	ndio alf o bit p be	cate of th oer e set.	es th ie F entr Th	ne r IFC y. ne n	and hum) en Thu hum STA	ber trie s if ber	of f s. the of f	ull o The re a ree	nui nui ire 2 ent	nbe 23 fi	er is ull	
b	R	FIF	0	ER	R								FIF	-0	ove	run	erro	or															

Description

Reading FIFO_STAT returns the status of the command FIFO. Any occurrence of a '1' in the FIFO_STAT field indicates that the corresponding FIFO entry is filled. Writing to the command FIFO when insufficient entries are available will cause the FIFO_ERR bit to go high and lock the draw engine. This circumstance should never occur. An interrupt may be wired to the FIFO_ERR bit for debugging purposes through BUS_CNTL. The draw engine may reset the error condition through GEN_TEST_CNTL.

Only registers with DWORD indices greater than or equal to 0x40 go through the command FIFO. All other registers bypass the FIFO.

Usage

Each grouping of register writes through the command FIFO must be preceded by a FIFO check to ensure that sufficient entries are available.

See Also

BUS_CNTL on page 4-8

GEN_TEST_CNTL on page 4-14

- Engine Initialization: Background Information on the mach64 Engine: FIFO Queue
- Engine Operations: Draw Operations

Context Control

		CONTEX	Γ_MASK	I/O:-	MM: 0_C8
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	6 4 3 2 1 0
VT	/GT		а		
а	R/W	CONTEXT_MASK	Context mask. Each bit in the mask whi corresponding register to be loade The mapping of mask bits to regis <i>Programmer's Guide</i> , under <i>Engin</i> <i>Contexts</i> .	ed from the co ters is indicate	ntext buffer. ed the <i>mach64</i>

Description

CONTEXT_MASK masks the loading of registers for context load operations. Each bit in this register corresponds to a DWORD entry in the context load structure. For instance, bit 2 corresponds to DWORD entry 2, the DST_OFF_PITCH entry.

In context load operations, both the CONTEXT_MASK *entry* and CONTEXT_LOAD_CNTL *entry* are always loaded.

Usage

Applications do not need to touch this register. Context load operations use the CONTEXT_MASK entry in the context save structure.

See Also

CONTEXT_LOAD_CNTL on *page 4-103*

- Engine Operations: Draw Operations
- Engine Operations: Draw Engine Contexts
- Engine Operations: Draw Engine Contexts: Saving and Restoring a Context

		CONTEXT_L	OAD_CNTL	I/O:-	MM: 0_CB
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5	4 3 2 1 0
VT	/GT	С	b	а	
а	R/W	CONTEXT_LOAD_PNTR	Context load pointer		
b	R/W	CONTEXT_LOAD_CMD	Context load cmd 0 = no context load 1 = load context from CONTEXT_LOAD 2 = load context from CONTEXT_LOAD 3 = load context from CONTEXT_LOAD (For 3D RAGE, 3 = load context f and initiate bresenham line or tra DST_BRES_LNTH or DST_WID be done.)	D_PNTR and init PNTR and initia from CONTEXT pezoid draw. If	te bresenham line _LOAD_PNTR bit 15 of
с	R/W	CONTEXT_LOAD_DIS	Disables context command from execu when this register is loaded within command will always execute in 0 = execute context command 1 = don't execute context command	n a context. The	

Writing to register CONTEXT_LOAD_CNTL will initiate a context load and optionally perform a draw operation.

On a context load, the CONTEXT_MASK *entry* specified in the context load area determines which register will be loaded. The CONTEXT_MASK *register* is ignored for this operation.

The CONTEXT_LOAD_CNTL *entry* in the context save structure must specify a no-op to halt the chain; otherwise the context will load and execute the next context in the chain.

Context pointers are specified in 64 DWORD chunks in reverse order from top of memory.

CONTEXT_LOAD_DIS in the CONTEXT_LOAD_CNTL *entry* is ignored during a context load and cannot be used to prevent chaining of contexts.

Usage

This register is used to load a default context into the draw engine or to execute a context chain.

See Also

CONTEXT_MASK on page 4-102

- Engine Operations: Draw Operations
- Engine Operations: Draw Engine Contexts
- Engine Operations: Draw Engine Contexts: Saving and Restoring a Context

Draw Engine Composite Control

								G	U	I_'	TR	Α.	J_	CN	I I	·L									I/C):-			I	мм	: 0_	_C(;
BI	тѕ	31	30	29	28	2	7 26	25	24	23	22	21	20	19	18	17	16	1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	/Т			у	x		w	v	u				s	r	q	р	о				k	j		i		h	g	f	е	d	с	b	а
G	т			у	x		w	v	u	t			s	r	q	р	0	r	n m	I	k	j		i		h	g	f	е	d	с	b	а
а	R/W	D	ST_	X_[DIR				-				0 =	rig	ht	on > to le o rigi	ft	reo	ction		-		-										
b	R/W	D	ST_	Y_[DIR								0 =	: bo	tto	on \ m to b bo	top	р	ction														
с	R/W	D	ST_	Y_N	MA.	JOI	R						0 =	: X I	ma	on \ ijor I ijor I	ine	-	or ax	is fl	ag f	or b	ores	enh	am	line	es						
d	R/W	D	ST_	X_ ⁻	TIL	E							En	able	es	rect	ang	jula	ar tili	ng i	n th	ie X	dir	ecti	on								
е	R/W	DS	ST_	Y_	TIL	E							En	able	es	rect	ang	jula	ar tili	ng i	n th	ie Y	dir	ecti	on								
f	R/W	D	ST_	LAS	ST_	PE	EL						De	stin	ati	on la	ast	ре	el ena	able													
g	R/W	DS	ST_	PO	LY	GO	N_E	N					De	stin	ati	on p	oly	go	on ou	ıtline	e ar	nd p	olyg	jon	fill e	ena	ble						
h	R/W	D	ST_	24_	RC	DT_	_EN						En	able	es	24 k	рр	ro	otatio	n. D	ST	PIX	WIE	ΤН	m	ust	be	set	to 8	3 bp	p.		
i	R/W	D	ST_	_24_	_RC	т							Init	tial f r	for noi	egro nocł	nror	d c me	color e pat	ba tern	ckg rota	rour atio	nd c n wl	olo nen	r, w dra	rite awir	ma ng p	isk, back	anc ced	1 24	opp		
j	R/W	D	ST_	BR	ES_	_SI	IGN						0 =	DE	ES	T_B	RE	S_	ES_ ERF ERF	R = () is	def	inec	las	ар	osi	tive	nui	mbe				
k	R/W	D	ST_	PO	LY	GO	DN_F	RTE	DG	E_[DIS		0 =	dra	aw	ing (of ri	igh	of the nt ed nt ed	ge p	oixe	is	ena	bled	b	ро	lygo	on fi	ill oj	pera	atior	٦.	
I	R/W	TF	RAII	X	_D	IR							0 =	rig	ht	d tra to le o rigi	ft	g (edge	dir	ecti	on.											
m	R/W	TF	RAF	P_FI	ILL_	_DI	IR						0 =	: rig	ht	to le	eft (t	tra	tion iling iling	edg edg	je is je is	s to s to	the the	left righ	of t nt of	he the	lea e lea	ding adir	g ed ng e	lge) edge	e)		
n	R/W	TF	RAII	L_B	RE	S_	SIG	N					0 =	TF	RAI	L_B	RE	S_	ES_ ERI ERI	२ =	0 is	def	ined	d as	sap	oos	itive	e nu	mb	er			
0	R/W	SF	RC_	PA	TT_	_E1	N						En			patt bleo		so	urce	. SR	C_	Y_E	IND	wil	l on	ıly t	be u	isec	d if t	his	bit i	S	
р	R/W	SF	RC_	PA	TT_	_R	ОТ_	EN					En						ource if th						_ST	AR	:Т, З	SRC	C_Y	_S1	ΓAR	T w	vill
q	R/W	SF	RC_	LIN	IEA	.R_	_EN						En	s C p	stai DS ⁻ pro	rts a T_X perly	t SF _DI y. N	R R Iot	e to C_OF shou te tha n of S	FSI uld a at al	ET a also I otł	and be ner	adv set sou	rand to t rce	ces he l reg	in t eft- iste	he l to-r ers a	eft-f ight and	to-ri t to cor	ight ope	dire rate	ectio e	

(continued on next page)

								G	U	I_'	ΓR	Α.	J_	CI	ТИ	L									I/C):-			I	мм	: 0_	_C(0
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
٧	т			у	x		w	v	u				s	r	q	р	0				k	j		i		h	g	f	е	d	с	b	а
G	т			у	x		w	v	u	t			s	r	q	р	0	n	m	Ι	k	j		i		h	g	f	е	d	с	b	а
r	R/W	SF	۲C_	BY	TE_	_AL	IGN	1					All	C		inat										rte b . SF							st
s	R/W	SF	RC_	LIN	IE_	X_C	DIR						So	urc	еX	dire	ecti	on v	vhe	n d	raw	ing	оре	rati	ion	is a	bre	eser	nha	m li	ne.		
t	R/W	SF	RC_	TR	ACI	K_C	DST						So	urc	e w	ill tr	ack	the	e tra	jec	tory	wh	ich	the	DS	ST F	IFC) is	usir	ng			
u	R/W	PA	\T_I	МО	NO	_EI	N						Mo	ono	chro	ome	e 8x	8 pa	atte	rn e	enat	ole											
v	R/W	PÆ	\Τ_(CLF	R_4	x2_	EN						Сс	lor	4x2	pa	tter	n er	nab	le													
w	R/W	PÆ	\Τ_(CLF	R_8	x1_	EN						Сс	lor	8x1	ра	tter	n er	nab	le													
х	R/W	но	DST	_B	YTE	E_A	LIG	ΪN					En	abl	es b	oyte	ali	gnm	nent	of	the	hos	st da	ata									
у	R/W	н	OST	_В	IG_	EN	DIA	N_E	ΞN				0 =	۹ ۷ ۷ big=	oixe wore with g er	l wi d ar in e ndia	dth: e sv ach n d	s. I wap n DV ata	n 18 pec VOI trar	5 bp d. Ti RD nsla	op a n 32 is re tion	ind 2 bp eve i dis	16 k	opp Iode 1. ed	mo	pp, odes ne c	s, th	ie b	ytes	s wi	thin	ea	

GUI_TRAJ_CNTL is a composite of registers DST_CNTL, SRC_CNTL, PAT_CNTL, and HOST_CNTL.

Usage

This register is used for general draw operations.

See Also

DST_CNTL on *page 4-48* SRC_CNTL on *page 4-62* PAT_CNTL on *page 4-81* HOST_CNTL on *page 4-78*

Draw Engine Status

		GUI_S	ТАТ	I/O:	MM: 0_CE
Bľ	тѕ	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	98765	4 3 2 1 0
v	'n		e d	c b	a
G	т		f e d	c b	а
а	R	GUI_ACTIVE	Indicates that GUI engine is busy For 3D RAGE: Indicates that th engine is busy OR the commar loading is occurring		
b	R	DSTX_LT_SCISSOR_LEFT	Indicates DSTX is left of left scissor		
с	R	DSTX_GT_SICISSOR_RIGHT	Indicates DSTX is right of right sciss	or	
d	R	DSTY_LT_SCISSOR_TOP	Indicates DSTY is above top scissor		
е	R	DSTY_GT_SCISSOR_BOTTOM	Indicates DSTY is below bottom scis	sor	
f	R	FIFO_CNT	Indicates the number of available (er FIFO. In the current version of than or equal to 32.		

Description

GUI_STAT reports the status of the draw engine.

Usage

The GUI_ACTIVE bit is used to determine whether the draw engine is busy or idle. All status bits in this register should be read-only when the draw engine is idle.

For the **3D RAGE**, the parameter FIFO is expanded to 48 entries. A new field (FIFO_CNT) is added to GUI_STAT to contain the number of available (empty) FIFO entries.

See Also

FIFO_STAT on page 4-101

mach64 Programmer's Guide:

• Engine Initialization: Background Information on the mach64 Engine: FIFO Queue

Chapter 5 Multimedia Register Reference

Overlay Registers

The overlay registers define the window region in which the scaled data will be placed. Within the overlay area, data is not displayed until the overlay key colour is matched in the destination (as defined by the mask/key colour). Coordinates (0,0) are defined as the top-left corner start of the **active** display.

Overlay Window Control

The following registers define the overlay window size and coordinates relative to the start of the active display. In addition, the overlay colour keying registers are defined to provide control for selecting between video and graphics sources.

_					C	v	EF	RL	A١	(GF	RA	P	-110	CS	;_I	KE	Y	_C	LF	र				I/C):-		MM	l: 1	_04	ŧ
	BI	тѕ	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																											
	v	Τ																				a	1								
	а	R/W	GF	RAF	HIC	CS_	KE	Y_C	CLR					Ov	erla	ay G	Grap	hic	s Ke	ey C	Colo	our									

Description

This register is used as the key colour in the graphics keyer. This register is masked with OVERLAY_GRAPHICS_KEY_MSK and compared (equality) with the current graphics pixel masked with OVERLAY_GRAPHICS_KEY_MSK. The result of this comparison is used with the result of the video keyer according to the OVERLAY_KEY_CNTL to determine whether graphics or scaler video should be displayed on the screen.

Usage

The conventional 'RGB' order for fields within a pixel is followed, where 'R' is the highest byte (23:20) and 'B' is the lowest byte (7:0). For lower pixel depths, (e.g., 16 bit 565), the colour and mask registers represent the compact format of the colour. For example, in 565, the BLUE resides in the lower 5 bits (4:0) of the mask and colour, GREEN is in the subsequent 6 bits (10:5), and RED is in the upper 5 bits (15:11). Bits (24:16) must be masked in this mode.

The graphics colour and mask registers must take into account the current graphics pixel depth. In other words, the unused bits of the 24 bit fields should be masked.

See Also

OVERLAY_GRAPHICS_KEY_MSK on page 5-2

OVERLAY_KEY_CNTL on page 5-3

					С	V	ER	RL	ΑY	′_(GR	RA	Pł	110	CS	_1	٢E	Υ_	_M	SI	K				l	/0):—			I	MM	: 1_	_05	5
	Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	V	Т																				а	l											
ä	a	R/W	GF	RAP	ню	CS_	KE	Y_N	1SK	(Ov	erla	ıy G	irap	hice	s Ke	ey C	Colo	our N	Лаs	sk										

This register is used in the graphics keyer as a mask for the graphics pixel and the key colour (OVERLAY_GRAPHICS_KEY_CLR).

Usage

The conventional 'RGB' order for fields within a pixel is followed.

See Also

OVERLAY_ GRAPHICS_KEY_CLR on *page 5-4* OVERLAY_KEY_CNTL on *page 5-3*

		OVERLAY_M	(EY_CNTL I/O:- MM: 1_06
	ITS /T	31 30 29 28 27 26 25 24 23 22 21 d 21 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 C b b a
а	R/W	VIDEO_KEY_FN	Overlay Video Comparison Fn: (default = 0) 0 = False 1 = True 2-3 (reserved) 4 =(VID_CLR&VID_KEY_MSK)!=(VID_KEY_CLR&VID_KEY_MSK) 5 =(VID_CLR&VID_KEY_MSK) =(VID_KEY_CLR&VID_KEY_MSK)
b	R/W	GRAPHICS_KEY_FN	Overlay Graphics Comparison Fn: (default = 0) 0 = False 1 = True 2-3 (reserved) 4 =(GR_CLR & GR_KEY_MSK)!=(GR_KEY_CLR&GR_KEY_MSK) 5 =(GR_CLR& GR_KEY_MSK) =(GR_KEY_CLR&GR_KEY_MSK)
С	R/W	OVERLAY_CMP_MIX	0 = GR_CMP (default = 0) 1 = Always Graphics 2 = Always Video 3 = not GR_CMP 4 = not VID_CMP 5 = VID_CMP xor GR_CMP 6 = (not GR_CMP) xor VID_CMP 7 = VID_CMP 8 = (not GR_CMP) or (not VID_CMP) 9 = GR_CMP or (not VID_CMP) A = (not GR_CMP) or VID_CMP B = GR_CMP or VID_CMP C = GR_CMP and VID_CMP D = (not GR_CMP) and VID_CMP) F = (not GR_CMP) and (not VID_CMP)
d	R/W	OVERLAY_EXCLUSIVE_EN	Enable suppression of graphics stream reading during overlay window: 0 = Normal 1 = Video stream only (suppress graphics)

This register determines how the video and graphics keyer results are generated and then combined to select either video or graphics. A result of '1' means that video will be displayed within the region defined by the overlay coordinates. Otherwise, graphics is displayed.

Usage

VIDEO_KEY_FN and GRAPHICS_KEY_FN determine which video and graphics keyer function should be used in the respective keyers. The 'true' and 'false' settings force a constant result, regardless of video or graphics data. The OVERLAY_CMP_MIX determines how the results from the video and graphics keyers are combined.

See Also

OVERLAY_ GRAPHICS_KEY_CLR on page 5-1 OVERLAY_ GRAPHICS_KEY_MSK on page 5-2 OVERLAY_ VIDEO_KEY_CLR on page 5-4 OVERLAY_ VIDEO_KEY_MSK on page 5-5

						C)V	EF	۲L	A١	Y_	VI	DE	ΞO)_	٨E	Y_	_C	LF	र				/0	:		I	MM	l : 1 _	_02	2
	BIT	ſS	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3														3	2	1	0										
	V	Г																				а									
a	à	R/W	VI	DEC)_K	EY.	_CI	R						Ov	erla	ay V	/ide	o K	ey C	Colc	bur										

This register is used as the key colour in the video keyer. This register is masked with OVERLAY_VIDEO_KEY_MSK and compared (equality) with the current video pixel masked with OVERLAY_VIDEO_KEY_MSK. The result of this comparison is used with the result of the graphics keyer (according to OVERLAY_KEY_CNTL) to determine whether graphics or scaler video should be displayed on the screen.

Usage

The video from the scaler is always 24 bits in the ordered 'RGB', so the video colour and mask registers should be applied accordingly using all 24 bits.

See Also

OVERLAY_ VIDEO_KEY_MSK on *page 5-5* OVERLAY_KEY_CNTL on *page 5-3*

					C	v	EF	RL	A١	(_`	VI	DE	0	_¥	٢E	Υ_	M	Sł	<				I/C	D:-			I	MM	l: 1 _.	_03	5
В	BITS	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7														6	5	4	3	2	1	0								
	VT																				а										
а	R/W	VI	DEC)_k	ΈY	_M\$	SK						Ov	erla	ay V	'ideo	o Ke	ey C	Colo	bur	Mask										

This register is used in the video keyer as a mask for the video pixel key and the video key colour (OVERLAY_VIDEO_KEY_CLR).

Usage

The video from the scaler is always 24 bits in the ordered 'RGB', so the video colour and mask registers should be applied accordingly using all 24 bits.

See Also

OVERLAY_ VIDEO_KEY_CLR on *page 5-4* OVERLAY_KEY_CNTL on *page 5-3*

						(0١	/E	RL	_A	Υ_	_Y	_X		ST	A	۲۶	•							I/C):-				MN	l: 1	_00)		
BI	TS	31 30 29 28 27 26 25 24 23 22 21												19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
VT-A	3/ <mark>GT</mark>	b																						a											
VT	-A4	c b																							а										
а	R/W	0\	OVERLAY_Y												Overlay Y coordinate relative to ACTIVE screen (0,0)																				
b	R/W	0\	/EF	RLA	Y_>	<							Overlay X coordinate relative to ACTIVE scree												eer	n (0	,0)								
с	R/W	0\	OVERLAY_Y_X_LOCK												nloc	k bo	oth	٥V	ERL	_AY	<u>Y_</u>	_X_		AR ⁻	T ar	nd C	OVE	RL			X_E _EN)		

This register specifies the vertical (OVERLAY_Y) and horizontal (OVERLAY_X) start of the overlay window relative to the start of active display.

Usage

The start and end coordinates are inclusive. The values programmed must be in the active display. Refer to the Programmer's Guide for an explanation of some programming restrictions for interlaced modes.

For VT-A4, the OVERLAY_Y_X_LOCK bit is used to prevent changing the overlay coordinates until both the start and end registers are written. Writing either the start or end register with this bit set to 1 will lock both registers (i.e., prevent the overlay controller hardware from seeing the new values). When either register is written with this bit set to a zero, the pair are unlocked and the overlay controller hardware will see the new values on the next VSYNC.

See Also

OVERLAY_Y_X_END on page 5-7

							С	V	EF	RL	A١	(Y_	<u>X</u>	_E	N	D								I/C):-				MN	l: 1 _.	_01	I	
BI	тѕ	31 30 29 28 27 26 25 24 23 22 21											20	19	18	17	16	15	14	13	12	11	1 10 9 8 7 6 5 4 3								2	1	0	
VT-A	3/ <mark>GT</mark>	b																																
VT	-A4	A4 c b																						а										
а	R/W	O١	/EF	RLA	Y_۱	′_E	ND						Overlay Y ending coordinate relative to ACTIVE screen (0,0)																					
b	R/W	O١	/EF	RLA	Y_>	(_E	ND						Overlay X ending coordinate relative to ACTIVE screen (0,0)																					
с	R/W	OVERLAY_Y_X_LOCK												evei = Ur = Lo	loc	k bo	oth	٥v	ERL	_ÅY	_Y_	_X	and	O١	/ER	LA'	Y_Y	′_X						

This register specifies the vertical (OVERLAY_Y_END) and horizontal (OVERLAY_X_END) end coordinates of the overlay window relative to the start of active display.

Usage

The start and end coordinates are inclusive. The values programmed must be in the active display. Refer to the Programmer's Guide for an explanation of some programming restrictions for interlaced modes.

For VT-A4, the OVERLAY_Y_X_LOCK bit is used to prevent changing the overlay coordinates until both the start and end registers are written. Writing either the start or end register with this bit set to 1 will lock both registers (i.e., prevent the overlay controller hardware from seeing the new values). When either register is written with this bit set to a zero, the pair are unlocked and the overlay controller hardware will see the new values on the next VSYNC.

The overlay will not clip the end coordinates past the active display region. OVERLAY_Y_X_END must not be programmed beyond the end of the active display.

See Also

OVERLAY_Y_X_START on page 5-6

Overlay Scaler

The following registers define the overlay scaling control registers.

						С	V	ER	LA	\Y_	S	CA	LE	Ε	CN	ITI	L						I/C	D:-			I	MM	: 1	_09)
BI	TS	31	30	29	28	27	26	25	24	23 22	2 2	21 20) 19	18	17	16	15 1	14 1	3 1	2 11	10	9	8	7	6	5	4	3	2	1	0
VT-A	3/ <mark>GT</mark>	k	j	i			h																				е	d	с	b	а
VT-	A4N	k	j	i			h																				f	d	с	b	а
VT-	A4S	k	j	i			h																			g	f	d	с	b	а
а	R/W	SC	CAL	.E_f	PIX <u></u>	_EX	PΑ	ND				0	= ze	ero e	exte	end	algor ge co														
b	R/W	SC	CAL	.E_`	Y2F	R_TE	EMF	5									500ł 800ł														
С	R/W	SC	CAL	.E_ł	HOI	RZ_	MO	DE				0 = Horizontal blend (when available) 1 = Horizontal pixel replication: Fix H_ALPHA = 0																			
d	R/W	SC	CAL	.E_\	VEF	RT_I	MO	DE									d (wł eplic					_PH	IA =	= 0							
е	R/W	LA	ST	_DI	SP	REC	ס_2	RO	P_E	ARL'	Y	0 = Disable 1 = Enable (1Mb double scan fix)																			
f	R/W	SC	CAL	.E_\$	SIG	NE	D_L	JV				0 = Incoming UV is unsigned (default) 1 = Incoming UV is signed																			
g	R/W	SC	CAL	.E_(GAI	MMA	A_S	EL				0 1 2		amr amr amr	ma o ma 2 ma 7	off (d 2.2 1.8	orrec defau		fac	tor:											
h	R/W	SC	CAL	.E_F	BAN	NDV	VID ⁻	ТН				1 St 0	= Ro tatus = No	ese [.] s of orm	t Ba Sca nal	andw aler:	i Sta vidth (R)	to C)`´	(def	fault	: = (0)								
i	R/W	SC	CAL	.E_(CLK	(_F(OR	CE_	ON			0	= SC	cale	r clc	ock d	Clocl contr runs	olle	d by	sca	ler a										
j	R/W	0\	/EF	RLA	Y_E	EN										Disa Enat	ble (ble	defa	ault=	:0)											
k	R/W	SC	AL	E_E	EN												inter r ope			es (c	defa	ult=	=0)								

Description

This register contains miscellaneous control bits for the scaler.

Usage

When scaling an RGB source, pixel data is converted internally to 16-bit (565) prior to scaling and pixel replication being used. Thus, for an RGB source, SCALE_HORZ_MODE and SCALE_VERT_MODE are ignored and both horizontal and vertical alphas are fixed to zero.

For VT-A4N/S, SCALE_SIGNED_UV is added to enable the conversion of signed UV to unsigned UV for the scaler.

For VT-A4S, SCALE_GAMMA_SEL provides selection of the gamma correction factor (In VT-A4S, gamma correction was added in the scaler YUV to RGB converter).

See Also

SCALER_IN@VIDEO_FORMAT on page 5-16

								0١	/E	RL	_A	Υ_	_S	С	٩L	E _	_11	1C								I/C):			MM: 1_08					
	віт	S	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3															2	1	0															
	VT		b														а																		
а	F	R/W	VE	VERT_INC Vertical ad													ertical accumulator increment, 4.12 (integer.fraction) format.																		
b	F	R/W	HC	HORZ_INC Horizo												onta	l ac	cur	nula	ator	inc	rem	ent,	4.1	12 (inte	ger	.fra	ctio	n) f	orm	nat.			

This register specifies the vertical (VERT_INC) and horizontal (HORZ_INC) scale factors (or increments).

Usage

Typically, the scale factors are programmed according to the following equation.

VERT_INC = (src_height << 12)/dst_height

HORZ_INC = (src_width << 12)/dst_width

This takes into account the fact that the format of both increments is 4.12 (integer.fraction).

See Also

SCALER_HEIGHT_WIDTH on *page 5-12* OVERLAY_Y_X_START on *page 5-6* OVERLAY_Y_X_END on *page 5-7*

		OVERLA	Y_TEST	I/C	D:-		ſ	MM:	1_	0B	
Bľ	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 1	10 9 8	76	5	4	3	2	1	0
v	Т	С				b				a	
а	R/W	SCALE_Y2R_DIS	0 = Normal operation (default = 0) 1 = Disable YUV to RGB conversion	on on out	out						
b	R/W	SCALE_REG_READ_MODE	Set SCALE_REG_READ field for re 0 = Horz_Acc 1 = Vert_Acc 2 = Scale Read/Write address (con- 3-8 = reserved 9 = Scaler source width count 10-15 = reserved								
с	R	SCALE_REG_READ	Read back internal scaler value								

This register is used for test purposes only.

						S	CA	۱L	EF	र_	HE	EIC	GΗ	I T _	W		т	н						I/C):		ľ	MM	: 1_	_0A	
E	BITS	31														1	0														
	VT		30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 b a CALER_HEIGHT																												
а	R/W	SC	AL	ER_	_HE	IGI	ΗT						Sc	aler	SO	urce	e he	eigh	t												
b	R/W	SC	AL	ER	_WI	DT	Н						Sc	aler	so	urce	e wi	dth	in t	erm	ns of	f pix	cels								

This register is used to specify the height and width of the scaler source data in the frame buffer memory.

Usage

The SCALER_HEIGHT is the number of lines in the source. If the VERT_INC and the overlay coordinates are programmed such that dst_height * VERT_INC >> 12 is greater than SCALER_HEIGHT, then the last line in the source will be used until the end of the overlay.

The SCALER_WIDTH is the number of pixels for the width of the source. If the HORZ_INC and the overlay coordinates are programmed such that dst_width * HORZ_INC >> 12 is greater than SCALER_WIDTH, then the last pixel in the source will be used until the end of the overlay.

See Also

OVERLAY_SCALE_INC on *page 5-10* OVERLAY_Y_X_START on *page 5-6* OVERLAY_Y_X_END on *page 5-7*

							so	CA	LE	R	_т	'HI	RE	ES	нс	C	D								I/C):-			I	мм	: 1_	_0C	;
В	ITS	SCALER_TH 31 30 29 28 27 26 25 24 23 22 21 b												19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т					b																ć	а										
а	R	SC	CALER_SOURCE_LINE											rren	t sc	ale	r so	ourc	e lii	ne (cou	ints	do	wn	fror	n h	eigł	nt-1	to ())			
b	R/W	SC	AL;	ER_	_TH	IRE	SH	OLC)_LI	NE			Sca	aler	thre	esh	old	line	e (D	efa	ult =	= 0)											

This register specifies the scaler source threshold.

Usage

SCALER_SOURCE_LINE (read-only) is initially loaded with SCALER_HEIGHT – 1, and counts down to zero. SCALER_THRESHOLD_LINE holds off writing to the same buffer as the scaler is reading from until the threshold is crossed.

Depending on the scale ratio, the scaler may skip lines and, therefore, not count down by 1. Thus, the last line that can be reached in the scaler source is zero.

See Also

SCALER_HEIGHT@SCALER_HEIGHT_WIDTH on page 5-12

General Video Configuration/Control Registers

The following set of registers is used for general control and configuration of the VT or 3D RAGE video port used for video capture. It should be noted that for **video input**, the offset and pitch must be even-pixel aligned to **quadword** boundaries.

General Video

				VI	DE	0_0	CON	FI	G						I/C	D:-			N	١M	: 1_	_13	5
BI	ITS	31 30 29 28	27 26	25 24	23	22 2	1 20 1	9 18	8 17	16	15 14	13 12	11	10	9 8	7	6	5	4	3	2	1	0
V	/т										i	h		g			f		е	d	с	b	а
а	R/W	VIDEO_MO	DE				0 = \	/ide			E to vio	deo inp	ut/o	utput	mod	e:							
b	R/W	VIDEO_DE\	/ICE				0 = \	/MC)			ce will DEO_	•)							
с	R/W	VIDEO_HS\	NC_PC	CL			0 = -	ve p	comp polari polar	ty	le mo	de Hsy	nc F	Polari	ty:								
d	R/W	VIDEO_VSY	NC_PC	DL			0 = -	ve p	comp polari polar	ty	ole mo	de Vsy	nc l	Polari	ty:								
е	R/W	VIDEO_IO_	SIZE				0 = 8 1 = (serve	d)													
f	R/W	VIDEO_FIEI	LD_FLI	Ρ			Flips 0 = 1 =	Nori	mal	se c	of the \	/ideo F	ield	:									
g	R/W	VIDEO_INP	UT_TYI	PE			1 = (2 = (3 = E	rese rese Emb	erved erved	l) l) ed sy	ynchro	ol CCII		-					-	n ma	ode)	
h	R/W	VIDEO_HO	RZ_DO	WN			0 = 1 1 = 2 2 = 4	l:1 u 2:1 p 4:1 p		skip skip	ping	decima	atior	1)									
i	R/W	VIDEO_VEF	RT_DOV	WN			0 = 1 1 = 2 2 = 4	l:1 u 2:1 li 1:1 li		kipp kipp	oing	cimatio	on)										

Description

This register determines the capability and settings for the video input device attached to the VT, and the down-scaling factor on the input video stream.

The bit settings reflect the device configuration such as the horizontal/vertical polatrities, supported input/output format, and other device-specific capabilites.

Usage

To set the VT/3D RAGE for connection to a Brooktree-type video decoder, specify VIDEO_DEVICE = Video and VIDEO_INPUT_TYPE = Embedded synchronization.

If the video decoder has **no** down-scaling capability, VIDEO_HORZ_DOWN should be set to 1 (2:1 pixel skipping); otherwise, the down-scaling should be done in the video decoder, and VIDEO_HORZ_DOWN and VIDEO_VERT_DOWN should be set to zero (1:1).

						V		EO	_FC	OF	RMA	т							I/O	:			ſ	MM:	1_	12
Bľ	TS	31 30	29	28	27 26	25	24 2	23 22	21	20	19 18	17 16	15	4 1	3 12	2 11	10	9	8	7	6	5	4	3	2	1 0
VT-A	3/A4N	е	d									b													а	
VT-	A4S	е	d	с								b													а	
а	R/W	VIDEC	11_C	7					Video Input Formats: 0-1 = reserved 2 = 8 bpp 3 = (reserved) 4 = 16 bpp 5 = (reserved) 6 = 32 bpp 7-10 = (reserved) 11 = VYUY422 (16 Bpp) 12 = YVYU422 (16Bpp) 13-15 = (reserved)																	
b	R/W	SCAL	ER_	_IN						Sc	2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 12 =	urce piz = rese reserve 15 bpp 16 bpp (reserve 22 bpp (reserve YUV 9 = YUV = VYU = VYU 15 = (re	rved ed aRG RGE ved) aRG ved) ed 12 Y422 J422	B 15 565 B 88	555 5	m m	emo	ry:								
С	R/W	HOST	_В,	YTE	E_SHIF	FT_I	ΞN			0 = 1 =	= Norm = Byte s	er bit (al shift	the lo es to t	wer he c	bit o	of ea	ch t	oyte	is s	et t	o ze	ero))			
d	R/W	HOST	YI	UV_	APER	2				0 =	lect ap HOS Uppe Lowe	ST_BY r half c	TE_S	HIF	T_E I apo	EN (\ ertur	/T-A e			M_I	MOI	DE	and	k		
e	R/W	HOST	M	EM	_MOD	Ε				0 = 1 = 2 =	st aper norma Y mo U mo V mo	al de de	nemor	y mo	ode	:										

This register specifies the input video format and scaler video format. HOST_YUV_APER and HOST_MEM_MODE are used for planar-to-packed data writes from the host to the video buffer.

Usage

To set the scaler to scale the input video stream, VIDEO_IN and SCALER_IN should have the

same format. SCALER_IN can be specified independently of VIDEO_IN when the scaler is used to scale software MPEG or AVI video data written from the host.

The HOST_YUV_APER bit enables the upper or lower half of the aperture to be used for converting YUV planar data into YUV packed data, as the data is written from the host to frame buffer memory.

HOST_MEM_MODE is used to tell the hardware which type of data is being transferred from the host, and is programmed for every planar Y/U/V plane before the data transfer starts.

HOST_BYTE_SHIFT_EN (VT-A4S only) adds a mechanism to shift each Y/U/V byte up by one bit as the data is written to the frame buffer memory.

The scaler interprets its current input buffer format according to the SCALER_IN setting. For scaler output, when the scaler is configured to output directly to the DAC, it will **always** output 24 bpp.

SCALER_IN must be set to the appropriate **YUV** mode when scaling, even though the data is placed in packed mode through the aperture (using HOST_MEM_MODE@VIDEO_FORMAT).

VIDEO_IN must be set to the same format as the video data coming in. The VT/3D RAGE does not format or convert the data on video input. This field is only used to determine the size of the incoming pixel to associate with the current buffer used for capture (whose size is defined in terms of pixels).

YUV422 is interpreted as a pixel width of 16 bpp. As such, all associated buffer widths and pitches must be programmed to EVEN quantities. CAPTURE_X@ CAPTURE_Y_X must be even as well.

See Also

CAPTURE_Y_X on *page 5-21*

Video Capture

		CAPT	URI	E_C	0	NF	IG						I	/0:	_		I	MM: 1	I_14
BI	TS	31 30 29 28 27 26 25 24 23	22	21 20	19	18	17 16	5 1	5 14	13 1	2 11	10	9	8 7	7 6	5	4	3 2	1 0
V	'n			j	i	h	g							•	fe	d	с	b	а
а	R/W	VIDEO_IN_CAP_EVEN		0 = 1 = 2 =	= Di: = Au = Ho	sab uto - ost -	ut Eve le Cont Capt ved)	inu	ous c	aptu	re	d by	host	t					
b	R/W	VIDEO_IN_CAP_ODD		0 = 1 = 2 =	= Di: = Au = Ho	sab uto - ost -	ut Od le Cont Capt ved)	inu	ous c	aptu	re	d by	host	t					
с	R/W	VIDEO_IN_FRAME_MODE		0 =	= Fie	eld	me In erlace		Mod	e:									
d	R/W	VIDEO_IN_BUF_MODE		0 = 1 =	= Sii = Do	ngle oubl	e Buffe e Buff	erin ferii	g ng										
e	R/W	VIDEO_IN_BUF		0 = 1 = Cu 0 =	= Bu = Bu urrer = Bu	uffer uffer	[·] 1 uffer b [·] 0			-	to by	vide	eo_in	ı dev	/ice	(R):			
f	R/W	VIDEO_IN_SYNC_CNTL		0 =	= VN	MC	rolled alway wait fo	s se	end fi	eld	-		for V	/MC					
g	R/W	SCALER_FRAME_MODE		0 =	= Fu	III F	ame F rame erved		d Mo	de:									
h	R/W	SCALER_BUF_MODE		0 =	= Sii	ngle	ffer M Buffe e Buff	ərin	g	ent									
i	R/W	SCALER_BUF_NEXT		0 = 1 =	= Βι = Βι	uffer uffer	0					at e	nd of	f cur	ren	sca	ler o	operat	ion:
j	R	SCALER_BUF_STATUS		0 =	= Βι	nt b uffer uffer		pein	ig rea	id by	scal	er (F	R only	y):					

Description

This register is used to specify the video capture configuration, including capture fields or frames, video capture using a single or double buffer, and scaler using a single or double buffer. It is also used to specify whether the input video stream can be held off (VMC only).

Usage

To capture a single field of video, set VIDEO_IN_CAP_EVEN or VIDEO_IN_CAP_ODD = Auto, and VIDEO_IN_FRAME_MODE = Field. To capture both fields and show them as deinterlaced, set both VIDEO_IN_CAP_EVEN and VIDEO_IN_CAP_ODD = Auto, and VIDEO_IN_FRAME_MODE = Deinterlaced.

For video capture in a window type of application, set either VIDEO_IN_CAP_EVEN or VIDEO_IN_CAP_ODD = Auto (continuous capture). For video capture to a disk type of application, set either VIDEO_IN_CAP_EVEN or VIDEO_IN_CAP_ODD = Host (capture is triggered by the host).

VIDEO_IN_BUF_MODE and SCALER_BUF_MODE are used to define the video capture and scaler using a single or double buffer. The double buffer mode is used to reduce the tiering effect in video in a window type of application.

When SCALER_BUF_MODE is set to 'double buffering', SCALER_BUF_NEXT is **automatically** initially set to the opposite buffer as VIDEO_IN_BUF.

In order for the scaler to flip its buffer in double buffer mode, VIDEO_CAPTURE must also be enabled and be in double buffer mode. The scaler reader will then switch buffers when the writing to the opposite capture buffer is complete.

See Also

							С	٩P	τι	JR	E _	Н	EI	G	нт	/	NI	D	ГН							I/C):			I	MN	l: 1 _.	_11	
	BIT	S	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	V	Г																	á	a														
а	ı	R/V	V	CA	P_	HE	IGH	IT						Са	ptu	re h	eig	ht f	or ir	nput	t ca	ptur	e s	trea	m									
b)	R/V	V	CA	\P_	WI	DTH	ł						Са	ptu	re v	vidtl	h in	ter	ms	of p	ixel	s fo	or in	put	cap	otur	e st	rea	m				

This register specifies the video input capture size, where the capture height is the number of lines and capture width is the number of pixels.

Usage

To capture a single field NTSC signal, set CAP_HEIGHT = 240, and CAP_WIDTH = 320. To capture a full video frame (both even and odd fields in a deinterlaced mode), set CAP_HEIGHT = 480, and CAP_WIDTH = 320

For field mode, the capture height reflects the height of each field being captured. For deinterlaced mode, the capture height reflects the combined height of the interlace even and odd fields. The video input is not guaranteed to capture 'CAP_HEIGHT' lines of data, but cannot exceed the height specified.

See Also

CAPTURE_Y_X on page 5-21

									CA	P	τι	JR	E _	_ Y _	_X										I/C):			I	мм	: 1_	_10	
В	ITS	3	1 30) 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т																																
а	R	W	С	AP_	Y								Са	ptu	re Y	' lin	e si	art															
b	R	W	С	AP_	X								Са	ptu	re X	(pix	kel s	star	t														

This register determines which starting line and pixels in the input video stream to begin writing to the current video input buffer. The coordinates are specified relative to the **active video** received. The size of the video is determined by the CAPTURE_HEIGHT_WIDTH register.

Usage

To capture a full-size NTSC video image, specify $CAP_Y = 0$, and $CAP_X = 0$.

See Also

CAPTURE_HEIGHT_WIDTH on page 5-20

		TRIG_CNTL														I	1/0):				м	VI: 1	_1	5								
BI	TS	31 30	29 28	3 27	7 26	25	24	23	22	21	20	19	18	3 17	16	15	14	13	3 12	2 11	1	0	9	8	7	6	5	4	3	2	1		0
v	/T	g																							f	е	d	С		b		а	
а	R/W	CAPTU	IRE_	TR	IG_I	EVE	N				0 = 1 = 2-3 Ev 0 = 1 = 2 =	= n = ca 3 = ren = e' = e'	o a apti res Ca ven ven ven	ction ure serv ptun cap cap	next ed re S oture oture oture	tatu e co	en f s: (l omp endi	ran R) lete	ne e	e init	iat	e (e	eve	n h	1051	m	ode)	: ('	∧/)				
b	R/W	CAPTU	IRE_	TR	IG_(ODE)				0 = 1 = 2-3 0 = 1 = 2 =	= n = ca 3 = dd (= 0 = 0	o a apti res Cap dd dd dd	ction ure serv oture cap ¹ cap ¹	next ed e Sta ture ture ture	atus con	d fra s: (R nple ndin	am R) ete	e	initia	ate	e (oc	l bb	าดเ	st m	node	ə): (VV)					
С	R	TRIG_I	EVEN	N_B	BUF						Bu	ıffe	r w	ritte	n to	by	last	ev	'en	hos	t ti	rigg	er (R)									
d	R	TRIG_0	DDD	_Bl	JF						Bu	ıffe	r w	ritte	n to	by	last	od	ld h	ost	tri	gge	r (F	R)									
e	R	BUF_R	D_S	TA	TUS	;					0 =	= C	urr	ent	fer F scal scal	er b	ouffe	er r	not	bein				erl	ay								
f	R	BUF_V	/R_S	STA	TUS	3					0 =	= C	urr	ent	fer V capt capt	ure	buf	ffer	. no	t be	ing wr	g wi itter	itte	n									
g	R/W	CAPTU	IRE_	EN											Res Capt			ture	e (d	efa	ult	= 0)										_

This register specifies the **Host**-triggered video capture mode and corresponding capture status. This register also contains a CAPTURE_EN bit for enabling/resetting video capture.

Video input can occur simultaneously with the scaler scaling directly to the DAC.

Usage

When host-triggered capture is used to capture video to disk, set CAPTURE_TRIG_EVEN or CAPTURE_TRIG_ODD = 1 to initiate the capture of a single video field or frame. The software should wait for the interrupt to signal the end of capture, then poll the CRTC_INT_CNTL register to determine if the interrupt was generated by video capture. The TRIG_CNTL register is then used to determine which video field has been captured. CAPTURE_EN is a general set/reset bit for video capture, which should be set to 1 to perform any kind of video capture (in a window or host-triggered capture).

When both even and odd fields are being captured, situations may arise where only odd frames or only even frames arrive (e.g., during fast forwards or stills). To compensate for these situations, the Video Frame Synchronizer will "fake" the field information. The following tables indicate the sequence of actions taken.:

Input field:EvenOddEvenEvenEvenEvenEvenEvenEvenEvenEvenEvenEvenEvenEvenOddEvenOddEvenOddEvenOddEvenOddEvenOddEvenOddEvenOddEvenOddEvenOdd</t

See Also

CRTC_INT_CNTL on page 4-26

		VIDEO_SYI	I/	0:-			MN	l : 1 _	_16		
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8	3 7	6	5 4	4 3	2	1	0
٧	'T	h	g f e	d c	;					b	а
а	R/W	CRTC_OVLSOF	CRTC Overlay Start-of-Field								
b	R/W	CRTC_VOVLEN	CRTC Vertical Overlay Enable								
с	R/W	VID_SOF	Video Port Start-of-Field								
d	R/W	VID_EOF	Video Port End-of-Field								
е	R/W	VID_EOL	Video Port End-of-Line								
f	R/W	VID_FIELD	Video Port Odd Field Indicator 0 = Even Field 1 = Odd Field								
g	R/W	WRRDY	Write Buffer Ready Indicator 0 = FIFO Full 1 = Empty (able to receive data)								
h	R/W	SYNC_TEST_EN	0 = Disable Test Mode (default = 0) 1 = Enable Test Mode								

This register holds debugging information for the video synchronization control block.

Usage

This register is used for debugging purposes.

Buffer Registers

Buffer registers specify the video data buffer parameters used by video capture and scaling. In the VT, two sets of video buffers can be specified. In single buffer mode, video capture writes to the same video buffer that the scaler reads from. In double buffer mode, it is possible for video capture to write to one buffer while the scaler reads from the alternate buffer.

The video data buffer should be defined outside the display area (off-screen area).

Buffer 0

						В	UF	0_	_C	AI	P_	0	DD)_(OF	F	SE	ΞT							I/C):-			l	MN	l: 1	_2E	3
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
,	νт		30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1																														
а	-	(R	ese	erve	d)								fixe	ed t	o '0	,																	
b	R/W	ΒL	JF0	_C/	\ P_	OD	D_0	DFF	SE	Т			Bu	ffer	0 0	QWQ	ORI) ca	aptu	re d	offse	et fo	or O	DD	fie	lds	(FIE	ELD	м	DD	ΞO	NLY	')

Description

This register specifies the memory address offset of an odd video field in capture buffer 0.

Usage

This register is used for **field capture mode** only, in which the user wants to capture both EVEN and ODD fields into a single capture buffer 0.

Although the buffer registers are byte-defined, the video capture buffers must be **quadword** aligned.

See Also

CAPTURE_CONFIG on *page 5-18*

									вι	JF	0_	0	FF	S	ЕΤ										I/C):			I	MM	l: 1	_20)
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т		b														а																
а	-	(Re	b																														
b	R/W	ΒU	F0_	OF	FS	ET							Bu	ıffer	0 G	W	ORE) off	fset	t to	plar	nar	Y d	ata	anc	l RC	GΒ	moo	des				

This register specifies the memory address offset of video capture buffer 0.

Usage

The buffer 0 offset should specify an area of memory outside of the display memory area.

Although the buffer registers are byte-defined, the base BUF0_OFFSET must be **quadword** aligned.

See Also

BUF0_PITCH on page 5-27

									В	UI	F0	_F	דוי	С	Н										I/C):-			I	MN	l: 1_	_23	
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VT																										á	a					
а	a R/W BUF0_PITCH												Bu	iffer	0 p	oitch	i in	pixe	els c	of p	lana	ar Y	dat	a a	nd	RG	Βm	node	es				

This register specifies the pitch (the memory address increment between two video lines) of capture buffer 0.

Usage

For packed mode (RGB or YUV422), the buffer pitch is in units of pixels, and in the planar mode, the buffer pitch is in units of planar Y data. The buffer pitch should be equal to or greater than the capture width. For example, if the capture width is set to 320, BUF0_PITCH should be set to 320 or greater.

BUF0_PITCH must cause the next line to begin on a **quadword** boundary (taking into account the pixel depth).

For RGB8888, set the lowest bit to '0' to ensure a quadword-aligned pitch. For all other modes, set the lowest two bits to '0' to ensure a quadword-aligned pitch

See Also

BUF0_OFFSET on *page 5-26* CAPTURE_HEIGHT_WIDTH on *page 5-20*

Buffer 1

						B	UF	1_	_C	AF	۔	0	DD)_(OF	F	SE	T							I/C):-			I	MM	l: 1 _.	_20	;
E	BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2													2	1	0																	
	VT																			b												а	
а	-	(R	ese	erve	d)								fixe	ed t	o '0	,																	
b	R/W	BL	JF1	_CA	\P_	OD	D_C	DFF	SE	Г			Bu	ffer	1 G	QWO	ORI) ca	aptu	ire o	offse	et fo	or O	DD	fie	lds	(FIE	ELD	M	DDE	E OI	٩L)

Description

This register specifies the memory address offset of an odd video field in capture buffer 1.

Usage

This register is used for **field capture mode** only, in which the user wants to capture both EVEN and ODD fields into a single capture buffer 1.

Although the buffer registers are byte-defined, the video capture buffers must be **quadword** aligned.

See Also

CAPTURE_CONFIG on page 5-18

								I	BU	JF	1_	0	FF	SE	ΞT										I/C):			I	MM	l: 1	_26	6
В	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\ \	/Т																			b												а	
а	-	(R	ese	rve	d)								fixe	ed to	o '0'	,																	
b	R/W	ΒL	JF1_	_OF	FS	ET							Bu	ffer	1 Q	WC	ORD	off	set	to	plar	nar	Y aı	nd I	RGI	3 m	ode	es					

This register specifies the memory address offset of video capture buffer 1.

Usage

The buffer 1 offset should specify an area of memory outside of the display memory area.

Although the buffer registers are byte-defined, the base BUF1_OFFSET must be **quadword** aligned.

See Also

BUF1_PITCH on page 5-30

										В	UI	F1	_F	דוי	С	Н										I/C):-			I	MM	l: 1	_29)
	BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5									4	3	2	1	0																				
	ντ											i	а																					
é	a R/W BUF1_PITCH Buffer 1 pitch in pixels of planar Y data and RGB mode												es																					

This register specifies the pitch (the memory address increment between two video lines) of capture buffer 1.

Usage

For packed mode (RGB or YUV422), the buffer pitch is in units of pixels, and in the planar mode, the buffer pitch is in units of planar Y data. The buffer pitch should be equal to or greater than the capture width. For example, if the capture width is set to 320, BUF0_PITCH should be set to 320 or greater.

BUF1_PITCH must cause the next line to begin on a **quadword** boundary (taking into account the pixel depth).

For RGB8888, set the lowest bit to '0' to ensure a quadword-aligned pitch. For all other modes, set the lowest two bits to '0' to ensure a quadword-aligned pitch

See Also

BUF1_OFFSET on *page 5-29* CAPTURE_HEIGHT_WIDTH on *page 5-20*

VMC Registers

The VMC registers are used to configure the VMC controller in the VT, and to hold the sending/receiving of VMC commands and data on the VMC bus.

Configuration and Status

	VM BITS 31 30 29 28 27 26 25 24 23									MC)_	СС)N	FI	G											I/	0:-	_			I	MN	/1: 1	_1	8	
BI	TS	31	30	29	28	2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	1	3 1	2 1	11	10	9	8	7	7	6	5	4	3	2	1		0
V	/Т	i							h			g	f		е	d								с					b					а		
а	R/W	ST	R№	1_IN	IPU	JT_	_ID						Inp	out \$	Stre	eam	ID																			
b	R/W	ST	R№	1_0	UT	ΡL	JT_II	D					Ou	ıtpu	it St	rea	m IE	D																		
С	R/W	Н١	NC	UR_	LE	FΤ	-									le F le H	Fix IW C	Cur	sor	Le	eft F	-ix														
d	R/W	VN	/IC_	CLł	≺_E	ΞN											nter nterr							def	ίaι	ılt =	0)									
е	R/W	VN	/IC_	CLł	۲_5	SR	С									nal Ial	Clk Clk	(de	fau	ılt =	= 0))														
f	R/W	VN	/IC_	BYI	PA	SS	S_CC	NF	IG								atior confi						1													
g	R/W	VN	/IC_	CL	<_C	DU	IT_E	N									/MC MC								(d	əfau	ult=	0)								
h	R/W	VN	/IC_	_ST/	ΑΤι	JS	S_MC	DE					0 = 1 = 2 =	= No = So = De	orm cheo ebu	al dule g m	regi e iode iode	1	r rea	ad	lbad	ck r	no	de:												
i	R/W	VN	/IC_	EN													/С (′МС		faul	lt =	= 0)															

Description

This is a general configuration register for the VMC port.

Usage

The VMC_EN bit in this register is the general set/reset control for the VMC port. To enable the VMC function, set VMC_EN = 1. To use the VMC port for video capture, also set CAPTURE_EN@TRIG_CNTL = 1.

See Also

TRIG_CNTL on *page 5-22*

VIDEO_DEVICE@VIDEO_CONFIG on page 5-14

							(D			_			ті 10		ΞS)								I/C):			I	ИΜ	: 1_	_19	
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т		a																														
а	R/W	VMC_DEBUG_STATUS Internal status of VMC for debugging																															

		VMC_S1 (DEFAUL1		I/O:	MM: 1_19
BI	TS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0
V	/т	C		b	а
а	R	EX_DID	Exception code Device ID (ID of device	that generated	exception)
b	R	EX_EC	Exception code of last exception		
С	R/W	HOST_TIMEOUT	Host write status indicator: 0 = Normal (write accepted) 1 = Timeout (write not sent over VMC bu	ıs)	

							(S				_		ТА .Е				E)	1								I/C):				MN	l: 1 <u>.</u>	_19	
BI	BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10													9	8	7	6	5	4	3	2	1	0											
V	VT c																b			а	l													
а	R VMC_DID Assigned device ID of VT/3D RA											RA	GE ۱	VM	С																			
b	b R VMC_NDID Next DID scheduled (internal - defaul											t =	0)																					
с	R VMC_GTR Grant time register (internal - default = 16)																																	

This register holds debugging information for the VMC controller and the video port.

Usage

This register is used to read back debugging information from the VMC controller and the video port, in one of four modes. Which information is read back is specified in VMC_STATUS_MODE@VMC_CONFIG.

See Also

VMC_CMD on *page 5-35* VMC_CONFIG on *page 5-31*

VMC Command

								٧	/ M	C	_A	R	G)										I/C):			I	мм	: 1_	_1B	}
E	BITS	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	νт		a																													
а	R/W	N ARG0_DATA VMC command argument 0																														

Description

This register specifies VMC command argument 0.

Usage

Most VMC commands can have one or more arguments associated with the command. Write the argument to this register if the VMC command needs one argument. The VMC command is written to register VMC_CMD. If a VMC 'snoop' command is specified in the VMC_CMD register, argument 0 of the snoop command is written to this register. The user software can read this register to get the value of the argument.

See Also

VMC_CMD on *page 5-35* VMC_ARG1 on *page 5-34*

		VMC_/	ARG1	I/O:	MM: 1_1C					
E	BITS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0					
	vr a									
а	R/W ARG1_DATA VMC command argument 1									

This register specifies VMC command argument 1.

Usage

Most VMC commands can have one or more arguments associated with the command. If the VMC command has two arguments, the second argument is written to this register.

See Also

VMC_CMD on *page 5-35* VMC_ARG0 on *page 5-33*

									VN	۱C	;_(CN	١D										I/C	D:-				MN	<i>I</i> I: 1	_1/	4
BI	TS	31	30 29	28	27	26	25	24	23	22	21	20	19	18 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	Τ'	g			f	:	e	ə				(b			с							b					а			
а	R/W	٧N	1C_CN	/ID								٧N	/IC c	omm	and																
b	R/W	VN	1C_CN	∕ID_	NAF	RGS	6					0 = 1 = 2 =	= 0 a = 1 a = 2 a	er of c irgum irgum irgum reser	ent ent ent	s s	d ai	rgur	mer	nts:											
С	R/W	VN	1C_CN	/ID_	TRIC	G						0 = 1 = Co 0 =	= res = trig omm = rea	iger c and S	urre Stati	ent c us: (omr	-			-	bu	IS								
d	R/W	٧N	IC_SN	100	P_C	MC)					٧N	/IC s	noop	cor	nma	nd														
e	R	VN	IC_SN	100	P_N	IAR	RGS	3				0 = 1 = 2 =	= 0 a = 1 a = 2 a	er of s irgum irgum irgum reser	ent ent ent	S	gur	men	ts r	etri	eve	d:	(Rea	ad (Dnly	')					
f	R/W	VN	IC_SN	100	P_N	IAS	SK					'00 '01 '10)' = (' = ()' = (comi captui captui captui captui	re o re o re o	nly \ nly \ nly \	/MC /MC /MC	C bu C bu C bu	IS C IS C IS C	md: md: md:	s tha s tha	at i at i	mate mate	ch u ch l	ippe owe	er 4	sn	loop	o cm	d bi	
g	R/W	VN	IC_SN	100	P_T	RIC	3					0 = 1 = Sn 0 =	= res = trig loop = sno	Trigg set sn iger fo Statu pop c pop p	oop or si is: (omr	stat noop R) nano	ùs co	mm	and		n ∨N	ЛС	bus	5							

This register specifies the VMC command that will be sent on the VMC bus, or the 'snoop' command that will be placed on the VMC bus.

Usage

Use this register to write out the command to be sent on the VMC bus and to specify the number of arguments associated with the command. If the number of arguments is greater than zero, write the specific arguments to VMC_ARG0 (first argument) and, if required, VMC_ARG1 (second argument). To actually send the command out on the VMC bus, set VMC_CMD_TRIG = 1. To verify that the command was sent, poll VMC_CMD_TRIG.

The VMC_SNOOP_CMD is used primarily for debugging purposes. To snoop a command on the VMC bus, write the command to VMC_SNOOP_CMD, and write the number of arguments to VMC_SNOOP_NARGS. To trigger the snooping of a command, set VMC_SNOOP_TRIG = 1.

See Also

VMC_ARG0 on *page 5-33* VMC_ARG1 on *page 5-34* VMC_SNOOP_ARG0 on *page 5-37* VMC_SNOOP_ARG1 on *page 5-38*

			VMC_SNOC	DP_ARG0	I/O:-	MM: 1_1D				
	BII	ſS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0				
	VT a									
á	a R SNOOP_ARG0_DATA VMC snoop command argument 0 read									

This read-only register is used to hold argument 0 of the snoop command.

Usage

If a snoop command is specified in the VMC_CMD register, argument 0 of the snoop command is written to this register by the VMC controller. Poll this register to get the value of the argument.

See Also

VMC_CMD on *page 5-35*

		VMC_SNOO	P_ARG1	I/O:-	MM: 1_1E
	BITS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0
	VT		a		
а	R	SNOOP_ARG1_DATA	VMC snoop command argument 1 read		

This read-only register is used to hold argument 1 of the snoop command.

Usage

If a snoop command is specified in the VMC_CMD register, argument 1 of the snoop command is written to this register by the VMC controller. Poll this register to get the value of the argument.

See Also

VMC_CMD on page 5-35

Stream Data

						V	M	С_	S	TR	M	_C)A	T/	۱]۸]						I	/0:·	_	ſ	ИМ	: 1_	_30	- 1	_3	F
Bľ	TS	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12 [·]	11	10	9 8	7	6	5	4	3	2	1	0
۷	T															a	a														
а	R/W	VMC_	DA	TA[i]							٧N	1C s	stre	am	mo	de v	vrite	e da	ata											

Description

When the VMC port is configured as a video output device, VMC_STRM_DATA0 to VMC_STRM_DATAF are the VMC write data registers used to send data through the VMC port to other chips.

Usage

This register set can be used to send unformatted stream data out of the VMC port, in streams of up to 16 DWORDs. The data registers are in 16 consecutively mapped addresses to allow for block data moves, 16 DWORDs deep. The data will typically be MPEG compressed data.

See Also

VIDEO_CONFIG on page 5-14

Chapter 6

3D RAGE Scaler and 3D Operations Registers

This chapter contains descriptions of registers that are used to configure scaler and 3D pipeline functions in the 3D RAGE.

Scaler Pipe Registers

Both horizontal and vertical scaling are supported in the **3D RAGE**. All of the Scaler registers, except SCALE_3D_CNTL and SCALE_VACC, are **aliased** with certain 3D and Texture Mapping registers (aliases are shown in brackets in the table headers). The data to be scaled is deposited into two new FIFOs: the Line0 and Line1 FIFOs. For Texture Mapping, these FIFOs are reused to hold texel data.

For both horizontal and vertical scaling, the color interpolator DDAs are reused to function as a counter/accumulator for the scaler source memory address generator. Scaled pixel data is processed through a 2-tap 5-bit coefficient fixed linear filter blender.

Horizontal and vertical scaling are done in a single pass. For each destination line, two lines of source data are read, and then color expanded to 24 bpp for vertical blending. The resultant data is then blended horizontally, converted to RGB if necessary, and then packed to the destination pixel type and dithered. Additionally a second pass through the blender is possible if Alpha blending is desired.

The DDA X and Y accumulators have a precision of 8.12 unsigned. The blend coefficients are determined by the high 5 fractional bits of the DDA coordinate registers.

Separate scaling parameters for the U,V parameters of Y,U,V subsampled data are available to allow freedom in selecting the sampling alignment.

				S	SC.	AL	.E_	_Y	_0	DF	F	(Т	E)	۲_	0_	OF	F)						I/C):				MN	1: 0	_70)
B	TS	31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12 ·	11	10	9	8	7	6	5	4	3	2	1	0
3D F	AGE																				а											
а	R/W	SCA	LE_	Y_C)FF	SET	-					Of	fset P	in ipe	byt . B	its 2	to F -0 a	RGE are	3, oi reqi	r pao uireo	cke d to	d Y be	UV pro	′ so ogra	urc ami	e d nec	ata d as	for '0'	the	scal	er	

					S	C	AL	.E	_N		эт	Ή	(Т	E	x_	7_	0	FF	;)						I/C):			I	мм	: 0	_77	,
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																										6	a					
а	R/W	SC	ALE	E_V	VID	ΤH							Wi	١	/alu	e sł	nou		е рі	rogi				ata. The									

					S	CA	۱L	E _	H	EI	Gł	11	. (.	ΤE	X _	_8	_C)F	F)						I/C):-			I	MM	l : 0	_78	В
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	RAGE																										á	а					
а	R/W	SC	ALI	E_⊦	IEIO	GΗ	Г						He	٦	/alu	e sl	hou	of th Id b xel	е рі	rogi	er s ram	ouro meo	ce c d. T	data The	a.F Ua	or Nand	YU∖ V va	/ pix alue	kel t es w	ype ill b	es, t e de	he ` eriv	Y ′ed

					ç	SC	A	LE	[_]	1_	P١	тс	СН	(\$	S_	Υ_	<u>_</u> IN	IC)		_				I/C):-			I	мм	: 0_	_7E	3
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	RAGE																										а						
а	R/W	SC	CAL	.Ε_Υ	(_P	PITC	Н						Pit	-	Гhе	pito	ch is	s re	quir	ed	' so to b bou	ер	rog	ram									

				S	SC	AL	-E	_х	ا	N	С	(R	E	_כ	X _	_1N	IC)						I/C):-				MN	l: 0 <u></u>	_70	;
E	BITS	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																			а	I											
а	R/W	SCAL	.E_)	K_IN	1C							Ха	acci F	umu For	ulato pac	or ir ked	or or	mei plar	nt, ² nar	12 b YU\	its / pi	frac xels	tior s, th	nal, nis a	4 b appl	its ι lies	unsi onl	igne y to	ed ir the	nteg e Y v	er. ⁄alu	es.

					sc	A:	LE	Ξ`	Y_	IN	C	(0	GR	EI	ΕN	L_)	x _	IN	C))					I/C):-				MM	l: 0	_70	C
B	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																				ć	a											
а	R/W	SC	AL	E_۱	/_IN	١C							Ya	acc	umı	ulato	or ir	ncre	me	nt,	12 k	oits	frac	tior	nal,	4 b	its ι	unsi	gne	ed ir	nteg	er.	

									S	CA	L	E.	_v	AC	c										I/	0:-	_			М	M: C	_7	Ξ
Bľ	TS	31	30	29	28	27	26	25	24	23	22	21	1 20	19	18	17	16	15	14	13	12	2 11	10) 9	8	7	6	5	4	1 3	2	1	0
3D R	AGE																				а	l											
а	R/W	SC	ALE	_V.	AC	С							St	(con hav pixe	trol. e th	Sig e ef Note	n, 1 fect tha	2 b of at th	oits shi nis r	fra iftin reg	ictio ng th	nal, e ir r is	, 4 k npu inc	oits t pix rem	inte kel i nent	eger rela ted	: No tive duri	on-: to ing	zero the the	fine val outp sca	ues out	

									S	С	AI	LE.		3 D_	_C	N-	ΓL									I/C):-			I	MN	1: 0 <u>.</u>	_7F	=
Bľ	TS	31	3	0 2	9	28	27	26	25	24	4 2	3 22	2 2	21 20) 19	18	17	16	15	14	13	1	2 11	10	9	8	7	6	5	4	3	2	1	0
3D R	AGE	x	v	v	<i>,</i>	u		t	s	r		q		p			0		n	m	I		k	j	i	h	9	g	f	е	d	с	b	а
а	R/W	SC	CA	LE.	_P	'IX_	_E>	XPA	ND					0	= ze	ero	oans exte mic	end																
b	R/W	SC	CA	LE.	_D	ITI	ΗE	R						0	= X	(er	gorit ror c dim	diffu			lithe	er v	with	tabl	e lo	oku	ıp.							
с	R/W	DI	Tŀ	HEF	₹_E	EN								0	= di	sat	lithe ble d le d	lithe	rin	g	led	/:	3D ir	nag	е									
d	R/W	DI	Tŀ	HEF	R_I	INI	Т							0	= us	bac se c	ck to	0 a ent c	t th	ne st tent	art s of	of f e	regi eacl rror he lir	n lin regi	e.								lithe	ər)
е	R/W	R	ΟL	JNE)_E	EN								0	= R	bot our		ther g dis	ing sab	and and			Dithe ndin											
f	R/W	TE	EX.	_C/	٩C	HE	E_C	DIS						lf	i	tho bar	se n ndwi	node dth.	es f T	that hese	are e sit	e li tua	abled imite ation ens.	d b	y m	emo	ory I	late	ncy,	, rat	the	tha	เทื	
g	R/W	SC	CA	LE <u>.</u>	_3	D_	FC	N						0 1 2	= N = S = T	3D lo c Scal ext	/ Soper	calir atio Map	ng I n	oipe		od	es th	ne o	per	atio	n(s)	to l	be p	perf	orm	ied	by t	he
h	R/W	SC	CA	LE	_P	'IX_	R	EP						0	= B	len	d pix	kels	du	ring	sca	ale	inea cale			nblt)								
i	R/W	NE	ΞA	RE	ST	г_Т	Έ>	K_V	IS					0 1	= Te = Te urin	Vis est est g s	ibilit all t nea	y Te exel rest ng, tl	est. s ir tex his	Otl nvol kel c bit s	her\ ved only	wis Lin ,	use se us the if Te s wh	se te ble xel '	est a nd, Visi	all te if Te bilit <u>y</u>	exe exe y is	ls in I Vis ena	ivolv sibili able	ved ity i d.	in 1 s er	the l nabl	bler ed.	
j	R/W	AF	P	LE.	_Y	UV	′_N	100	DE					D									e Sca n offs								rete	d a	S	
k	R/W	AL	P	HA	_F	00	 ЭЕ	ΞN						0 1 2	= A = A = F	lpha lpha og (FIF	a ble enat	end endi oled Alpł	ing ng (u:	anc ena se D	d Fo bleo PP_	og d; FF	disa Fog RGD disat	disa _CL	able .R r		ster	in p	blace	e of	De	estin	atic	on

(continued on next page)

									S	С	AL	.E	_3	BD_	С	N	ΤL									I,	′O:-	_			MN	/1: 0	_71	F
Bľ	TS	31	3	30 2	9	28	27	7 26	25	24	4 23	3 22	2	1 20	19	1	8 17	/ 16	15	14	13	1	2 11	10) !	9 8	3 7	7 e	5 5	4	3	2	1	0
3D R	AGE	x	,	w v	v	u		t	s	r		q		р			0		n	m	I		k	j		i ł	۱	g	f	е	d	с	b	а
Ι	R/W	C	ЭL	_OR	2_C	DVI	ER	RRIE	DE					0 :	ו י t = U	the op the se	e col	or ir ion i el w exel	nter s us ill s Col	pola sefu till k or f	ator: Il in De u or o	s f m use	to be nultip ed fo eratio	use ass r Al	ed op ph	in p bera a in	lac	e of ns.	s set, the Ever on.	tex	el c	olor	Th	nis
m	R/W	RI	EC)_D	ITH	ΗE	R_	_MA	Х					0 :	ו i Al = U:	res im Ilo se	serv plen w Rl	ed a nent ED t r R(rea ed \ o oo 3B8	s of whe ccu 3 ma	f the en d py i ode	e D lith ts . S	DAC nerin full i Scale	Loc g is ang s R	oku oc je a	ip T curi and	able ng. use	ə. T ə all	o avc This I of th	ranç ne L	ge i: _UT	s on	ly	
n	R/W	SI	G	NE)_I	DS	т_	_CL/	AMF	D				W	ä	an		amp	the	res	sults	s a							n is a de is					
0	R/W	AL	_P	'HA_	B	LN	ID_	_SR	С					0 : 1 : 2 : 3 : 4 :	= BI = BI = BI = BI	ler ler ler ler	lend nd fa nd fa nd fa nd fa nd fa nd fa	ctor ctor ctor ctor ctor ctor	is (is (is (is (is (0, (1, 1 RD 1-R As,	0, 0) , 1) , GI 2D, As,) D, 1- , A	BD) GD, (s).	1-B										
p	R/W	AL	_P	'HA_	B	LN	ID_	_DS	Т					0 : 1 : 2 : 3 : 4 :	= BI = BI = BI = BI	ler ler ler ler	lend nd fa nd fa nd fa nd fa nd fa	ctor ctor ctor ctor ctor ctor	is (is (is (is (is (0, (1, 1 Rs, 1-R As,	0, 0) , 1) Gs Rs, 1 As,) 5, E 1-C , A	Bs Gs, 1 Ns).											
q	R/W	TE	Ξ×	(LI	GF	HT_	_F(CN						0 : 1 : 2 :	= N(= M = AI	o I loc lph (TI + (ref (w tha thi de	na D EX_ (inte flect rith th an th	ting. ecal MAF rpola the ne d ne te ode	Outp Dutp - Th P_A ator resu resu resu resu resu resu may	utpu nis r EN col ult c nati alp	ut co colo noc = 1 or * of tl ion) ha) e us	olo bri le). (1 he is weed	or is is: te is or Out I – te TE ena ill be d eve	tex xel hly v put xel (_A ble use	co /ali co alı M/ d,	cold lor ' id fo lor i pha ASK the as f	inte s : ()). _Al alp he	xtui (tex The EN ha i alpł	olato re ma el co e texe bit. inter na so endir	aps olor el a If al pola ourc	wit * te lpha pha ator ce.	h al xel a us a ble (rat Not	alph ed v ndii her e th	na) will ng
r	R/W	M	IP.	_MA	۹P	_D	IS	ABL	.E					0 :	= M = M	ip ip	map	ping ping	g is g is	ena	able	b							ng te pres				-	

(continued on next page)

							S	CA	۱L	E _	_3	D_	C	Ν.	TL									1/0	D:-	1		I	MM	: 0	_7F	-
Bľ	TS	31	30 2	9 28	27	26	25	24	23	22	21	20	19	18	3 17	16	15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
3D R	AGE	x	w	/ u	1	t	s	r	,	q		р			0		n	m	I	l	k	j	i	h		g	f	е	d	с	b	а
s	R/W	BII	LINE	AR_1	ΓEX_	_EN	1					0 =) t 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	(ma tex or r 2x2 a la line NE mo dra be line	agnif ture not M 2 blei arger ear i ARE de is wn c usec ear i	icat maj IIP nd v ma ntei ST s eit durin d for ntei	ion) p to MA will l ap is rpol with her ng r r this), ei PP be o atic hin of t nag s ca	hab eate ING don esire the the gnifi ase on is	le a a is ie u ed. a di lai 2x icat s e	nan th a 2x2 sour s ena using isabl rgest 2 ble tion. nable map	2 ble ce j blec the ed; ma ndi Th	eno pixo d. e si du ap. ng is a	d of el. If M ngle ring No mod allov	a th This IIP I e ma te ma te t des ws a	ne la s mo MAF ap t agni hat , the a mo	arge PPII hat fica if th en N ultip	est a is N IG i is p tion e m IO p ass	avai valio is d res use inifi pixe alg	labl isat ent e PI cati ls w	neth oled whe CK on vill b hm	a en e
t	R/W	TE	X_BL	END	D_F(CN						0 = 1= 2 =	= No t Ble I = 2x I I I = 2x	o b the enc MIF c2 I reg MA ma c2 I the ma	e sing between sing blence blence ardle APPII blence blence alph up. U	ing le r VPP d wi ess NG at is at is na v lsec	(sel map INC thin of v is d pre thin alue	lect wo is the vhe lisal sei e us r mi	ne at is clos ena e ne the blec nt. xt to sed ulti-	are s pi ses abl ear r M d, a d, a o n wi pa	betw est m reser d ed rest n AIP M a 2x2 neare ill be ss tri VPIN	iap) nt w ps. nap IAP ble st n bas line	. I vill a TI PPI enc nap sed	f MI alwa his r his NG I wil b. If l on bler	P M ays moc is d I be f alp dist ndin	IAP be o le o isat do bha tano	PIN chose nly may bled ne u bler ce to	IG is sen mai be be l. If usin ndin	s dis kes use f MI g th g is e ne	sabi sen ed P e si ena	ngle able	if e
u	R/W	TE	EX_AN	MAS	K_A	EN						0 =) ו = U:	Otł use se	ner b ed wl com	its o hen plet	of te TE e al	extu X_I Ipha	re r MAI a va	ma P_/ alue	bit o p alp AEN e fror alpha	ha is s n te	wil set. exti	l be ure	ign map	ore	d. 1	Γhis	bit	is c		
V	R/W	TE	X_A	MAS	K_M	IOD	Ε					0 =	ة t i BI t	alp onv tha ind val en tex ma	ha m vention it the icate ue. ded l iel wi	nask ona tex es th Edg II be alue	k to il 3E cel v ne te ge M e dra e of	tak D-D vill i exe 1od awr	e or DI r not I wil e. <i>J</i> n us	n c mo be II b An	nd TE differe de drav be drav be drav a alph g the es the	ent An a vn. awn a m alp	me alp Ar us nas	eani ha r n alp sing sk va inte	ngs mas bha the alue erpc	ma alp of olate	alue sk v ha i 0 in or va	e of value inte dica	0 in e of rpol ates	dica 1 ato tha n al	ates r It th pha	e
w	R/W	TE	X_M	AP_/	AEN							0 =	i t a a = No	inci onl the alp alp o a	lude y in o n uso ha + ha a llpha	alp conj ed a 24 nd in t	ha v junc as th bit I 12 b	valu ctior ne s RGI oit F text	ies. n wi sour B) te RGE cure	For For For For For For For For For For	at the or sc TEX alph els, 1 texels ap map	ale _Al nas. 6 b	so MA T	urce SK_ his r	es, t _AE moc	his N. le is	moo The val	de is ese id fo	s su valu or 3	ippo Jes 2 bi	orteo are t (8	bit
x	R/W	SF	RC_31	D_SE	ΞL							0 =	i t = In	inte tha ter	erpol t are	ator so tors	rs oi urce	r th ed f	e ho rom	ost n th	ipelir FIFC ne Ho ine F	D. I ost.	No								texe	els

					S	C/	٩L	.E	_H	łA	С	С	(R	EC)_	ST	A	RT)						I/C	D:-				MN	1: 0	_F2	2
BI	TS	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 a SCALE_HACC Starting value for horizontal accumulator. May be non-zero to control. Sign,12 bits fractional, 4 bits integer. Non-zero														3	2	1	0													
3D R	AGE		30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 a																														
а	R/W	SC	ALE	_HA	AC(C							St	(cor hav pix	ntrol.	Si e el	gn, ffec	12 b t of	its i shif	frac fting	tior the	nal, e in	4 b put	its i pix	nte el r	ger. elat	No ive	on-z to tl	zero ne c	val utp	ues ut	;

		SCALE_XUV_INC	(BLUE_X_INC)	I/O:-	MM: 0_F6
В	ITS	31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0
3D	RAGE		а		
а	R/W	SCALE_XUV_INC	X accumulator increment, 12 bits fraction This only applies to UV values in s		

				S	CA	۱L	E _	<u></u> U	V _	_ H .	AC	CC) (I	BL	U	Ξ	S	ΓА	R	T)					I/C):-			I	MN	l: 0	_F8	
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																				а												
а	R/W	SC	CALE	:_L	JV_	HA	CC						Sta	ŕ	ng v YUV fract	' pix iona	kels al, ∠	. M I bit	lay s in	be iteg	non jer.	-ze No	ro f n-z	or fi ero	ne (vali	con ues	trol.	. Si ve ti	gn,'	121	oits		

Note that the Accumulator registers should only be written to when the SCALE_3D_FCN@ SCALE_3D_CNTL bits are set to a non-zero value.

3D Operations

Texture Mapping

	TEX_[0-10]_C	FFSET	I/O:-	MM: 0_70 – 7A
BITS	31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15 14 13 12 11 10	9 8 7 6	5 4 3 2 1 0
3D RAGE		a		
a R/W	TEX_1_OFFSETByTEX_2_OFFSETByTEX_3_OFFSETByTEX_4_OFFSETByTEX_5_OFFSETByTEX_6_OFFSETByTEX_7_OFFSETByTEX_8_OFFSETByTEX_9_OFFSETBy	te pointer to 1x1 texture map te pointer to 2x2 texture map te pointer to 4x4 texture map te pointer to 8x8 texture map te pointer to 16x16 texture map te pointer to 32x32 texture map te pointer to 64x64 texture map te pointer to 128x128 texture map te pointer to 256x256 texture map te pointer to 512x512 texture map te pointer to 1024x1024 texture map	p	

										S_	_ X	_1	NC	2											I/C):			I	мм	l: 0	_D()
	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	RAGE																			а													
а	R/W	S_	X_I	NC	2								Se	١		n st	tepp	bing	in 2		for t long												

										S_	_Y	_1	NC	22											I/C):-			I	мм	: 0 _	_D1	1
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	Image: Second S																		а														
а	R/W	S_	Y_I	NC	2								Se	١	nd d whe S.1(n st	tepp	bing	in '														

									S	S_ :	XΥ	_	IN	C2	2										I/C):			I	MM	: 0_	_D2	2
		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	<mark>13</mark> а	12	11	10	9	8	7	6	5	4	3	2	1	0
а	S_XY BITS 31 30 29 28 27 26 25 24 23 22 2 BITS 31 30 29 28 27 26 25 24 23 22 2 BITS 31 30 29 28 27 26 25 24 23 22 2 BITS R/W S_XY_INC2 INC2 INC2 <thinc2< th=""> INC2 <thinc2< th=""></thinc2<></thinc2<>												Se	V		n st	epp	ing	in ۱	ter											_X_ oid.		

									S	S_ 2	XI	NC)_	SI	Α	R٦	Г									I/C):-			I	мм	: 0_	_D3	3
	Bľ	ГS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	D R	AGE																		á	a													
á	a	R/W	S_	XIN	IC_	ST	٩RT	-						Va	lue	of S	S_X	(_IN	IC a	at be	egin	nin	g of	^t tra	pez	oid	spa	an.	In S	5.11	.16	forr	mat	

			S_Y_		; (S	CA	۱LE	_Y	_P	ΙТС) H)					I/O:	:-			MM	l : 0 _	_D4	•
В	TS	31 30 29 2	28 27 26	25 24	23	22 2	21 20	19	18 1	7 16	15	14 1	13 12	2 11	10	9	8	7 6	5 5	4	3	2	1	0
3D F	I/O:- MM: 0_D BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 5 4 3 2 3D RAGE a R/W S_Y_INC Change of S address when stepping in Y along the leading edge of S a R/W S_Y_INC Change of S address when stepping in Y along the leading edge of S																							
а	R/W	S_Y_INC					Cł									n Y	alor	ng th	ie lei	adin	g eo	dge	of tł	ne

										S	_S	Т	٩R	۲											I/C	D:			I	MN	l: 0	_D:	5
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	AGE																	а															
а	R/W	S_S	ΤA	RT	-								Ini	tial	valu	ie o	fS	coo	rdin	ate	ado	dre	SS.	ln 1	0.1	1 fc	orm	at.					

										Τ_	_X	I	INC	22											I/C	D:-			I	MM	l: 0	_D(6
BI															18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R																				а													
а	R/W	T_	X_I	NC	2								Se	١	nd d whe S.1(n st	tepp	bing	in :														

									Т_	Y.	_11	NC	2											I/C):			I	мм	: 0_	_D7	7
BI	TS	31	30 2	9 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	RAGE	T_Y_INC2 I/O:- 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 T_Y_INC2 Second derivative register for texture mapping when stepping in Y along the leading edge																														
а	R/W	۲_۱	/_IN(C2								Se	۷		n st	epp	oing	in `														

									-	r _	X١	1_	IN	C2	2										I/C):-			I	MM	: 0 _	_D8	B
B	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																			а													
а	R/W	T_	<u>XY</u>	_IN	C2								Se	١	nd d whe S.10	n si	tepp	bing	in	ster Y a	for long	text g the	ture e le	ma adii	appi ng é	ng. edge	Cha e of	ang the	e o tra	f T <u></u> pez	_X_ oid.	INC Ir) n

								٦	۲_۲	XII	NC	;_;	ST	A	RT	-									I/C):-			I	MM	: 0 <u></u>	_D9	9
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																		a	1													
а	R/W	Τ_	XIN	IC_	STA	٩RT	-						Va	lue	of T	_X	_IN	Сa	t be	gin	ning	g of	tra	bez	oid	spa	an. I	In S	5.11	.16	forr	nat	

			T_Y_	INC	I/O:-	MM: 0_DA
В	TS	31 30 29 28	27 26 25 24 23 22 24	1 20 19 18 17 16 15 14 13 12	11 10 9 8 7 6 5	4 3 2 1 0
3D F	AGE			а		
а	R/W	T_Y_INC		Change of T address when ste trapezoid. In S.11.16 form		ading edge of the

										Τ_	_S	Т	٩R	Т											I/C):-			ſ	мм	: 0_	DE	3
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																	а															
а	R/W	Т_	ST	٩R	Г								Init	tial	valu	ie o	fΤ	coo	rdin	ate	ado	dre	SS.	In 1	0.1	1 fc	orm	at.					

								Т	E)	۲_	SI	ZE	:_I	Ы.	гс	н									I/C	D:-				MM	l: 0	_D(С
BI	тѕ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	AGE	с b															;	a															
а	R/W	TE	X_	PIT	СН								Th		1Ř,	0 fo	or 1)	. If	a r	non-	squ	lare	m	he la ap i nap	s pr	ese	ent,	this	fie				for
b	R/W	TE	X_	SIZ	E								Si		1x1.	lf	a n	on-s	squ	are	ma	, p is	pre	ixel: esei he s	nt, t	his	field	d sh	ou	d b	e		for
с	R/W	TE	X_	HEI	GH	Т							Th	1	for 1	Κ,	0 fo	r 1)	. If	onl	уa	nor	า-รด	the qua e ac	re n	hap	is p	ores	ent	, thi	s fie	0x/ eld	Ą

Color, Z and Alpha Interpolation

					F	RE	D_	_X	_11	NC	; (s	CA	LE	Ξ_	X _	_1N)						I/C):-				ΜN	l: 0	_FC)
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																		а														
а	R/W	RE	D_	X_I	NC								Int	erpo lo	olat ead	ion ing	valı edg	ue fo ge o	ors fth	tep: e tr	s in ape	X ir zoi	n the d. Ir	e D n S.	ST_ 8.1	_X 2 fc	_DII orma	R di at	rec	tion	alo	ng t	he

									F	RE	D_	_Y	_I	NC)										I/C	D:-				MN	1: 0	_F1	1
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																		а														
а	R/W	RE	D_	Y_I	NC								Int	erp I	olat eac	ion ling	valı edg	ue fo ge o	or s f th	tep: e tra	s in ape	Y i zoi	n th d. Ir	e D n S.	ST 8.1	_Y_ 2 fc	_DIF orma	R di at	irec	tion	alo	ng t	he

					R	E	D_	S	ТΑ	R	Т	(S	CA	۱L	E _	H	A	cc)						I/C):-				MN	l: 0	_F2	2
E	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																		а														
а	R/W	RE	D_	ST/	٩RT	-							Init	tial	valu	ie o	f re	d, a	it th	e b	egin	nin	g oʻ	f tra	ipez	zoic	I. In	n S.8	3.12	for	mat	Ċ	

				(GF	RE	E١	۷_	X _	11	IC	(\$	SC	A	LE	<u>_</u> ן	٢_	IN	C))					I/C):-				MN	1: 0	_F3	3
BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	RAGE																		а														
а	R/W	GF	REE	N_:	X_I	NC							Int	erp I	olat ead	ion ing	valı edg	ue fo ge o	or s f th	tep e tr	s in ape	X i zoi	n th d. Ir	e D n S.	ST_ 8.1:	_X_ 2 fo	DIF	R di at	rect	ion	aloı	ng t	he

								GF	RE	E١	۷_	Υ_	_1N	1C										I/C	D:-				MN	1: 0	_F4	L
В	ITS	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																	а														
а	R/W	GRE	EN_	Y_I	NC							Int	erpo le	olati ead	on ing	valı edg	ie fo je o	or s f the	teps e tra	s in ape	Y ii zoio	n th d. Ir	e D n S.	ST 8.1	_Y_ 2 fc	DIF orma	R di at	rect	tion	aloı	ng ti	he

			(GRI	EEI	N_	ѕт	'AF	۲۲									I/C):			I	MM	: 0_	_F5	
В	ITS	31 30 29 28 27 26	5 25	24 2	3 22	21	20	19	18 ⁻	17	16 1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D I	RAGE											а														
а	R/W	GREEN_START					Init	tial v	alue	e of	gre	en, a	at th	e be	gin	ning	g of	tra	pez	oid.	. In	S.8	.12	forr	nat	

			E	ΒL	UE	E_X	x _	IN	С	(S	SC	AI	LE	_X	U	V _	_1N	1C)					I/C):-				MN	1: 0	_F(ô
B	TS	31 3) 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																	а														
а	R/W	BLU	Ξ_X	_INC	С							Int	erpo Io	olati ead	ion ing	valı edg	ue f ge c	or s of th	tep: ie tr	s in ape	X ii zoi	n the d. Ir	e Di n S.	ST_ 8.1	_X_ 2 fo	DIR	t dir at	ect	ion	alo	ng t	he

									В	Ll	JE	۱_	[_	IN	С										I/C):-				MN	l: 0	_F7	7
BI 3D R		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	<mark>14</mark> а	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	R/W	BL	UE_	_Y_	INC	2							Int	erpo le	olat ead	ion ing	valu edg	ie fo je o	or s	teps e tra	s in ape	Y i zoi	n the	e D I S.	ST_ 8.12	_Y_ 2 fo	DIF	R di at	rect	tion	alo	ng t	he

				В	LU	JE	_S	т	AR	R L	(S	SC	AL	_Е	_u	JV	_H	A	СС	2)					I/C):-				MN	1: 0	_F8	3
В	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D F	RAGE																		а														
а	R/W	BL	UE.	_S1	ΓAR	Т							Ini	tial	valu	ie o	f bl	ue,	at tl	he k	begi	nni	ng c	of tr	ape	ezoi	d. I	n S	.8.1	2 fc	orma	at	

										Ζ	_Х	ا_)	N	С											I/C):-			I	MN	l: 0 _.	_F9	•
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D I	RAGE																		а														
а	R/W	Z_	X_II	NC									Int	erpo lo	olat eac	ion ling	valı edg	ue fo ge o	or s of th	tep: e tra	s in ape	X i zoi	n th d. Ir	e D n S.	OST_ .16.	_X_ 12 f	DIF	R dii nat	rect	ion	alor	ng t	he

									Z _	_ Y	_11	١C	;											I/C):-			I	мм	: 0_	_F/	4
В	ITS	31 3	30 29	28	27	26	25	24 2	23 2	22	21 2	2 0 1	19	18 ⁻	17 [·]	16 ⁻	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D I	RAGE																	а														
а	R/W	Z_Y	_INC)							I	nte										n the d. In						rect	ion	alor	ng t	the

										Ζ_	_S	T/	٩R	Т											I/C):-			I	MM	l: 0 ₋	FE	3
I	BITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																		а														
а	R/W	Z_	STA	٩R٦	-								Init	tial	valu	ie o	fz,	at t	he b	beg	inni	ng	of tr	ape	ezoi	id. I	n S	.16.	.12	forr	nat		

				A	۱L	P۲	IA	_x	(_I	N	С	(F	00	G_	X _	_1N	IC)						I/C	D:-				MN	l: 0	_FC	;
BI	TS	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D R	AGE																	а														
а	R/W	ALPH	IA_	X_II	١C							Int	erp I	olat ead	ion ing	valı edg	ie f je o	or s f th	tep: e tra	s in apez	X ii zoio	n th d. Ir	e D n S.	ST 8.1	_X_ 12 f	_DII orm	R di nat	rec	tion	alo	ng t	he

						A	۱L	P۲	łΑ	_Y	′_I	N	С	(F	00	G_	Υ_	_1N	1C)						I/C):-			I	MM	l : 0 _	_FC)
	BI	TS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
:	3D R	AGE																		а														
	а	R/W	ALI	PH∕	۹_۱	/_IN	١C							Int	erp I	olat ead	ion ing	valı edç	ue fo ge o	ors fth	tep: e tra	s in ape	Y i zoi	n th d. Ir	e D 1 S.	ST_ 8.1	_Y_ 2 fo	_DIF orma	R di at	rect	tion	aloi	ng ti	he

					Α	LF	РΗ	A _	S	ΤA	R	Т	(F	00	3_	S٦	ΓА	R	Г)						I/C):-				MN	l: 0	_FE	E
В	ITS	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D	RAGE																		а														
а	R/W	AL	PH	A_8	STA	RT							Init	tial	valu	ie o	of al	pha	, at	the	beg	ginr	ning	of	trap	bez	oid.	In S	S.8	.12	forn	nat	

This chapter contains descriptions of registers that are used for the PCI host bus implementation. For *mach64s* which support multiple host bus types, the host bus definition during system reset will cause only those registers for the current bus type to appear and be used.

PCI Configuration Space

The *mach64*VT/3D RAGE have been optimized to support the Intel Peripheral Component Interconnect (PCI) local bus, and implement the PCI Configuration Space registers. Please refer to the *PCI Local Bus Specification* for detailed descriptions of these registers. Brief descriptions of the *mach64*VT/3D RAGE implementations follow.

						V	END	ORI	D					F	PCI Co	n: 1:0	h
BI	тѕ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	т								;	а							
а	R	Power	-up de	fault=1	002h. T	This is A	ATI's as	ssigned	d PCI v	endor I	D.						

						D	EVI	CEI	D					F	PCI Co	n: 3:2	h
В	ITS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
,	νт									а							
а	R	Power	-up de	fault=5	654h (A	ASCII c	haracte	ers 'VT'), or 47	′54h (A	SCII ch	aracte	rs 'GT')			

						С	OM	AN	D					F	PCI Co	n: 5:4	h
B	ITS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
١	/т			е	d										С	b	а
а	R/W	I/O Ac	cess E	nable.	Defaul	t to 0, c	lisabled	ł.									
b	R/W	Memo	ry Acc	ess En	able. D	efault t	o 0, dis	abled.									
с	R	Bus M	aster E	Enable.	Alway	s 0, dis	abled.										
d	R	Receiv	ved Ta	rget Ab	ort. Alv	ways 0,	inactiv	e.									
е	R	Receiv	ved Ma	ister Ab	oort. Al	ways 0	inactiv	′e.									

				ASI	CID			PCI Co	on: 08h								
BI	тѕ	7	6	5	4	3	2	1	0								
v	Τ	(C		b			а									
а	R	Major ASIC v	c b a ASIC version number (A=0)														
b	R	ASIC foundry	/ ID (000=SGS	6, 001=NEC, (010=KSC)												
с	R	Minor ASIC r	evision numbe	er													

The ASIC ID also appears in the CONFIG_CHIP_ID register (see *page 4-17*). The following are the ASIC IDs used to date:

ASIC ID	ASIC description
08h	NEC VT-A3
48h	NEC VT-A4
40h	SGS VT-A4

			C	ACHE L	INE SIZI	E		PCI Co	on: 0Ch
BI	тѕ	7	6	5	4	3	2	1	0
V	Τ				â	a			
а	R	Power-up def	ault=00h.						

				LATENC	Y TIMER	1		PCI Co	on: 0Dh
BI	TS	7	6	5	4	3	2	1	0
v	т				i	a			
а	R	Power-up def	ault=00h.						

				HEADE	R TYPE			PCI Co	on: 0Eh
В	ITS	7	6	5	4	3	2	1	0
١	/т				i	а			
а	R	Power-up def	ault=00h.						

				BI	ST			PCI Co	on: 0Fh
В	ITS	7	6	5	4	3	2	1	0
١	/т				â	a			
а	R	Power-up de	fault=00h, not	used.					

		Ν	ΛEI	MC	DR	Y	AF	ΡE	R٦	۲U	RE	E B	ΒA	S	Е	AC	DD	RI	ES	S				F	PCI	Сс	on:	13:	:10	h		
В	BITS	31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	νт				b															a	a											
а	R	Defa	ult to	o 00	000	00h.																										
b	R/W	Defa	ult to	o 00	h.																											

		BLOCK DECODED I/O BASE ADDRESS PCI Con: 17:14h
В	ITS	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
١	/т	b a
а	R	Always 01h.
b	R/W	Default to 000000h.

										Α	D	AP	T	ER	R I	D										P	CI	Со	n: :	2F:	2C	h		
	BITS		31 3	10	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VT																	á	a															
а	R	/W	Defa	ault	to	00	000	000)h.																									

										BI	08	5 F	२०	M											F	PCI	Сс	on:	33:	301	h		
BI	TS	31	30 29	9 2	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
V	т									d												с							b				а
а	R/W	BIC	DS RO	ЭM	1 E	na	ble.	De	fau	lt to	0h.																						
b	R	Re	serve	d.	Al	way	ys O	0h.																									
с	R	Re	serve	d.	Al	way	ys O	0h.																									
d	R/W	BIC	DS RO	ЭM	1 B	ase	e Ao	ddre	ess	. De	faul	t to	000	00h																			

			I	NTERRU	JPT LINE	E		PCI Co	n: 3Ch
В	ITS	7	6	5	4	3	2	1	0
	٧Т				ä	a			
а	R/W	Power-up de	fault=00h.						

				INTERR	UPT PIN			PCI Co	on: 3Dh
BI	TS	7	6	5	4	3	2	1	0
V	Τ				á	a			
а	R	Power-up def	fault=01h (00h	n - no default -	if interrupt is	disabled by st	rap).		

		l	USER-DE	EFINED	CONFIG	JRATION	1	PCI Co	on: 40h
BI	тѕ	7	6	5	4	3	2	1	0
V	т					с	b	á	a
а	R/W	Sparsely dec 00 - I/O base 01 - I/O base 10 - I/O base	= 1CCh	e address.					
b	R/W							s bit has no ef ged to 0 (spars	
С		0 = decode 4	ding of GENE 6E8h ecode of 46E8	-	ster at I/O add	ress 46E8h.			

Chapter 8 VGA Programming Overview

Introduction

The VGA portion of the *mach64* controller accelerator provides the following features. Programmers who wish to program directly to the hardware registers can optimize VGA graphics performance.

- Low cost, high performance, single chip graphics solution
- Suitable for board- or system-level implementations
- 100% register level hardware compatible with the IBM VGA display adapter
- I/O Bus Type: ISA (8- and 16-bit)
- Local Buses: 486, 386DX, 386SX, and PCI
- Memory Types: VRAM 256Kx4, 256Kx16; DRAM 256Kx4, 256Kx16
- Memory Sizes: 1M, 2M, 4M, and 8M
- Colors/Resolutions:
 4 and 8 bpp (Bits Per Pixel) to 1280x1024
 16 bpp to 1280x1024
 24 bpp to 1280x1024
 16 bpp to 1600x1200
- High speed, point-to-point line draw; coprocessor supports up to 32 bpp modes
- Supports memory-mapped registers
- Supports overscan
- Hardware cursor: 64x64x2
- High speed polygon fill
- Hardware assisted line and polygon pre-clipping
- Support for packed bitmap data transfers
- 32, 8-bit pixel color pattern registers
- 32, 1-bit monochrome pattern registers
- Enhanced bit block transfer (blit) operation to allow for better off-screen memory management
- Extended 16-entry data FIFO
- Improved FIFO status registers providing dramatic improvements in data throughput
- 0.7 micron CMOS VLSI technology

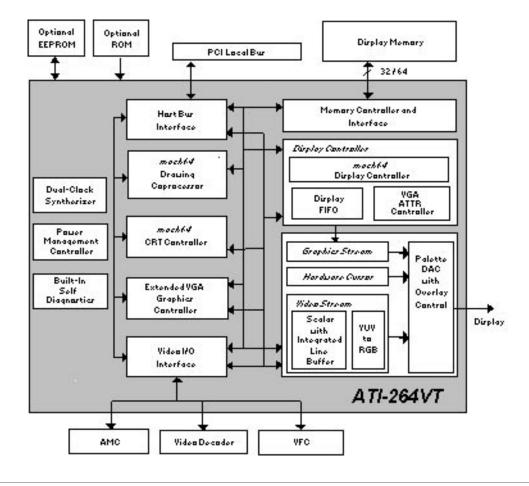
The *mach64* is a VLSI graphics controller chip consisting of a 64-bit GUI accelerator and a VGA-compatible graphics controller. The accelerator is also known as the **coprocessor** or the **draw engine**. This chip may be used to implement board- or system-level solutions supporting

a range of I/O bus types, memory types, memory sizes, screen resolutions, and color depths. In addition, the chip supports a number of extended registers and enhancements.

VGA Controller

The built-in VGA controller can be disabled to allow the accelerator to co-exist with an alternate external VGA.

Configurable Memory Aperture


A configurable linear memory aperture is available for all modes, including VGA. In real mode, it may be configured as either a 64K aperture at A000h or two 32K apertures at A000h and A800h, depending on the graphics mode (as will be described later). In protected mode, it may be configured to 1M-paged or 8M-linear on any 8M boundry. The aperture is primarily used for increasing throughput on host-to-screen and screen-to-host data transfers.

In *mach64GX* and *mach64CX* chips, screen memory can be shared between the VGA and the GUI engine. *mach64*-aware applications may reconfigure the memory boundary (register) dynamically to give more or less memory to the VGA or the accelerator. In *mach64CT* and *mach64ET* chips, there is no memory boundary.

VBE BIOS

The VESA BIOS Extension (VBE) specification is intended to standardize the software access to graphics display controllers that support resolutions, color depths and frame buffer organizations beyond the VGA hardware standard. For detail VBE specification, please contact VESA office.

In *mach64* product, the VBE services are implemented in video BIOS. It works on all 80x86 platforms, in real and protected modes. Application programmers and system developers are encouraged to use VBE services to set up and configure the hardware. To further improve performance of an extended mode, one can use GUI functions to perform drawing. For detail programming technique in *mach64*, please refer to the *mach64 Programmer's Guide*.

mach64VT Drawing Coprocessor

This page intentionally left blank.

Chapter 9 VGA Controller

Overview

The VGA Controller registers are completely hardware compatible with the registers of the IBM Video Graphics Array (VGA) adapter. In addition, the VGA Controller provides a set of extended registers for enhanced features and performance.

The ATI controller is not only fast, it is also capable of displaying colors and resolutions beyond VGA in interlaced and non-interlaced modes. It supports 8-/16-bit ROM and I/O operations, 8-/16-bit video RAM data transfers, and zero-wait-state BIOS and video memory operations.

This chapter provides specific details on each mode — resolution and color support, horizontal/vertical sync and polarities, pixel clock rates, and interlacing (all modes are non-interlaced unless otherwise indicated).

The following VGA functional blocks are integrated within the VGA portion of the mach64:

- Address Decoder
- Sequencer Controller
- CRT Controller
- Graphics Controller
- Attribute Controller

IBM Compatible Modes

VGA 40x25 (16/256K color text) 80x25 (2/ or 16/256K color text) 320x200 (4/,16/, or 256/256K color graphics) 640x200 (2/, 4/, or 16/256K color graphics) 640x350 (2/ or 16/256K color graphics) 640x480 (2/ or 16/256K color graphics)

High Resolution and Wide Column Graphics/Text Modes

- Super VGA Graphics Modes 640x480 (16 or 256/256K) 800x600 (16 or 256/256K) 1024x768 (16 or 256/256K color)
- Text Modes 132x25 (2 or 16/64 color) 132x44 (2 or 16 color)

VGA Memory Organization

The segment base address of video display buffers in the *mach64* graphics controller is configurable as required by the emulated video standard. The size of this buffer depends on the selected display mode — higher resolution requires a larger memory buffer.

Standard	Size	Memory Segment Base Address
VGA/EGA	128K	B8000 (Color Text) B0000 (Mono Text) A0000 (Graphics)
CGA	32K	B8000 (Color Text & Graphics)
MDA	32K	B0000 (Mono Text)

Memory organization affects how the video data of each supported display mode is written or read:

- A/N mode is alphanumeric (text).
- APA mode is All-Planes-Addressable (graphics).
- Modes 0 to 13 are 100% compatible with the modes available in the various IBM display adapters.

The display buffer can be stored as **page** or **map** memory.

- Page memory access is reading and writing the video data one map (byte) at a time.
- **Map memory access** is applying the same CPU address to multiple maps (parallel locations) of video memory for data on one pixel each map contributes its portion of color/attribute specifications. The processing of map data uses a set of four, 8-bit latches that correspond to the maps. Mode 13 uses a type of page memory access called **packed pixel format**.

Memory Maps

In display mode 0, the buffer size is 2K and the actual amount required for a full screen is 2000 bytes. The base address of the video buffer can start at either B8000, B8800, or B9000, etc. Mode 0 uses two bytes to describe each pixel. The first byte of the buffer is for character code, the second byte is for attribute, the third byte is for character code, and the fourth byte is for attribute, and so on.

When a display mode requires more than 64K of data to paint a full screen, as in display mode 62, the display buffer will map to multiple pages.

Functional Blocks

The VGA Controller has five major functional blocks:

- Address Decoder
- Sequencer Controller
- CRT Controller
- Graphics Controller
- Attribute Controller

These blocks are illustrated in the diagram below, including the control and data paths. Also shown are the connections to the video memory and video DAC. Data and addresses enter via the CPU bus on the left side.

Video output in the form of RGB analog signals is available at the video DAC on the right side. The five functional blocks of this chip are described in detail in the following sections.

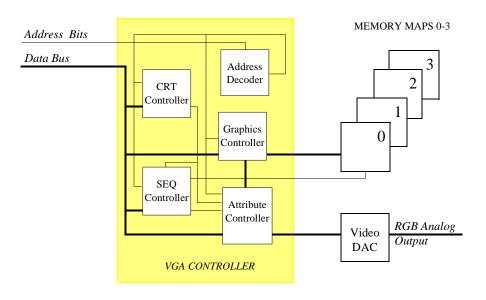


Figure 9-1. VGA Functional Block Diagram

Address Decoder

The address decoder is the top-level interface between the CPU and the Controller. Addresses and data from the input bus are decoded for each module. The starting address of video memory is programmable as VGA or CGA for 100% adapter compatibility.

Sequencer Controller

The sequencer controller generates all timing signals for the video RAMs and all control signals for the other modules within the Controller. It prioritizes CRT and CPU accesses to the video memory.

Video memory is protected from alteration by selectively masking out CPU writes to memory planes through the **map mask register** (also called the **plane mask register**).

CRT Controller

The CRT controller (CRTC) generates horizontal and vertical sync signals for the monitor interface, timings for cursor and underline attributes, timings for addressing the regenerative display buffer, and timings for refreshing the video RAM. CRT controller registers are user programmable for controlling the display screen size, cursor type and position, character size, split screen, byte panning, and smooth scrolling.

Graphics Controller

The graphics controller handles data transfer between the CPU and video memory, with different types of pixel/data mappings for read and write operations. It is also the interface for latching display data from video memory to the attribute controller during the display cycles. Video memory data is sent to the attribute controller as 8-bit parallel data on alphanumeric modes, but as converted serial bit-plane data in graphics modes.

The graphics controller supports 8-bit and 16-bit bus operations. It also provides color comparators for applications such as color filling and boundary detection.

Attribute Controller

The attribute controller receives data from the graphics controller.

- In **text modes**, it generates video signals using the character generator and the attribute code.
- In **graphics modes**, it formats the video data into 1-, 2-, 4-, or 8-pixel streams as required by the selected mode.

In either case, the video data is then passed through the internal 16/64 color palette registers and further processed to select a color value from the color palette register.

The output of the color register is then converted by a Digital to Analog Converter (DAC) to signals of the three primary colors to drive a display device. The attribute controller also supports logic for blinking, underline, and horizontal pixel panning.

VGA Display Modes

The mach64 chip supports alphanumeric or graphics display modes.

- Modes 0 to 6 are emulations of VGA modes. (Modes 0, 2, and 4 are identical to modes 1, 3, and 5, except that on the CGA adapter, modes 0, 2, and 4 have color burst turned off—color burst is not supported in the ATI 68800 controller.)
- Modes with an asterisk (*) following their mode numbers are enhanced EGA modes, namely 0* to 3*.
- Modes with a plus symbol (⁺) are enhanced VGA modes. They are 0⁺, 1⁺, 2⁺, 3⁺, and 7⁺.

The standard and extended modes are fully described in the next section. Descriptions include character box size, screen resolution, and color/palettes.

VGA Alphanumeric Modes (A/N)

This section describes the supported A/N modes — IBM compatible modes 0, 1, 2, 3, 7 and ATI extended modes 23, 27, 33, and 37. Mode numbers are expressed as hexadecimal numbers.

- In A/N mode, the CPU transfers the character code for that mode into map 0 and attribute data into map 1. The CPU also transfers from ROM, the character patterns for that mode into map 2.
- Data from maps 0 and 1 are combined one byte at a time and read by the CRT controller.
- The CRTC then addresses the character generators in map 2. Dot patterns generated there are sent to the palette register, where a color value is assigned.
- According to this value, the DAC then produces the three RGB analog signals to drive the display.

The **character byte** describes the displayed character. The **attribute byte** describes the color, intensity, etc. The four most significant bits (MSB) of the attribute byte define the background and the other four bits describe the foreground (character).

Bit 3 of the attribute byte may also be used together with two 3-bit pointers in the Character Map Select register to produce a total of 512 characters and two separate character sets. If the video palette is changed, different colors will be generated. The attribute byte description is as follows:

Bit	"1"	"0"
7	Foreground Blinking	Background Highlighted
6	Background Red on	Background Red off
5	Background Green on	Background Green off
4	Background Blue on	Background Blue off
3	Foreground Highlighted [*] Enable SEQ03[5,3,2]	Foreground Normal Enable SEQ03[4,1,0]
2	Foreground Red on	Foreground Red off
1	Foreground Green on	Foreground Green off
0	Foreground Blue on	Foreground Blue off

^{*}Note: The mode's default value is set by the BIOS. SEQ03[x,x] refers to bits xx of the SEQ03 register in the VGA graphics controller.

Bi	t 7						Bit 0	
В	R	G	В	I.	R	G	В	

Each character on the screen is defined using two bytes of read/write memory. For example, on a 40x25 character page, a buffer memory of 2000 bytes is required. If each of the 40x25 characters has a resolution (box size) of 9x16 pixels, the page has a resolution of 360x400.

Video data in A/N modes is addressed one character at a time. See the following tables for description of each supported mode.

Modes 0 ⁺ and 1 ⁺			
Standard	Box Size	Char x Row	Colors
VGA	9x16	40x25	16/256K

Modes 0 and 1				
Standard	Box Size	Char x Row	Colors	
CGA	8x8	40x25	16	

Modes 2 ⁺ and 3 ⁺			
Standard	Box Size	Char x Row	Colors
VGA	9x16	80x25	16/256K

Modes 2 ⁺ and 3 ⁺			
Standard	Box Size	Char x Row	Colors
CGA	8x8	80x25	16

Mode 7 ⁺			
Standard	Box Size	Char x Row	Colors
VGA	9x16	80x25	2/256K

Mode 7			
Standard	Box Size	Char x Row	Colors
MDA	9x14	80x25	Mono

Modes 23, 27, 33 & 37				
Standard	Box Size	Char x Row	Colors	
23	8x16	132x25	16/64	
27	8x16	132x25	Mono	
33	8x8	132x44	16	
37	8x8	132x44	Mono	

VGA Graphics Modes (APA)

This section describes the supported APA modes — IBM-compatible modes 4, 5, 6, D, E, F, 10, 11, 12, 13 and ATI extended modes 54, 55, 62, 63, 64. Mode numbers are expressed in hexadecimal numbers.

	Modes 4 and 5	5
Standard	Pels	Colors
VGA	320x200	4/256K
CGA	320x200	4 (two sets)

	Mode 6	
Standard	Pels	Colors
VGA	640x200	2/256K
CGA	640x200	2

Mode D		
Standard	Pels	Colors
VGA	320x200	16/256K

Mode E		
Standard	Pels	Colors
VGA	640x200	16/256K

Mode F		
Standard	Pels	Colors
VGA	640x350	2/256K

	Mode 10	
Standard	Pels	Colors
VGA	640x350	16/256K

Mode 11		
Standard	Pels	Colors
VGA	640x480	2/256K

Mode 12		
Standard	Pels	Colors
VGA	640x480	16/256K

Mode 13		
Standard	Pels	Colors
VGA	320x200	256/256K (mono - 64 shades of gray)

Mode 54		
Standard	Pels	Colors
54	800x600	16/256K

	Mode 55	
Standard	Pels	Colors
55	1024x768	16/256K

Mode 62		
Standard	Pels	Colors
62	640x480	256/256K

Mode 63		
Standard	Pels	Colors
63	800x600	256/256K

	Mode 64	
Standard	Pels	Colors
64	1024x768	256/256K

Host Address Space/Host Window

VGA drawing operations are performed by the system processor, which reads data from and writes data to the on-screen display memory. To accomplish this, the display memory is mapped to a specific segment (or segments) of the host processor memory address space. This is sometimes referred to as the **host window** to display memory.

Standard memory organization of the 80x86 processor with 1MB of addressable memory is illustrated in table 9-1.

Address	Content
F000:FFFF	
F000:0000	BIOS ROM
E000:0000	
	LAN, Tape Backup, EMS,
CC00:0000	
C800:0000	XT Disk BIOS
C000:0000	VGA/EGA BIOS ROM
B800:0000	CGA Display Memory
B000:0000	MDA Display Memory
A000:0000	VGA/EGA Display Memory
9000:0000	Transient Program Area (User memory)
	Resident part of COMMAND.COM
	Disk buffers, Installable Drivers,
	DOS Kernel
0000:0400	BIOS Data Area
0000:0000	Interrupt Vectors

Table 9-1.PC Memory Map

The host window used by the VGA varies depending on the mode of operation. Table 9-2 contains the standard host windows and sample modes using each window.

Content	Host Address Window
BIOS ROM	C000:0000h - C000:7FFFh
Display RAM Color Text (Mode 3)	B800:0000h - B800:7FFFh
Display RAM Monochrome Text (Mode 7)	B000:0000h - B000:7FFFh
Display RAM VGA Graphics (Modes F, 10,)	A000:0000h - A000:FFFFh
Display RAM Extended Graphics	A000:0000h - A000:FFFFh
Display RAM Extended Graphics (128K addressable)	A000:0000h - B000:FFFFh

Table 9-2.	VGA Host	Windows

In text modes, which require relatively little data to be moved, a 32K space is used. In graphics modes, which require much more data, a 64K space is used. When all four VGA color planes are used, the processor can access 256K of display memory $(4 \times 64K)$.

As the screen resolution and number of colors increase, the amount of display memory that must be accessed by the processor also increases. In some high resolution modes, more than 256K of display memory must be accessed.

A simple way to gain access to more display memory is to increase the size of the host memory space used by the VGA from 64K to 128K, using the memory address space from A000:0 to B000:FFFF. This standard VGA option, which is selected via the Miscellaneous Register of the Graphics Controller is both convenient and efficient. However, it has its limitation in that it interferes with other co-resident display adapters such as MDA, CGA, or Hercules.

None of the standard modes on the *mach64* uses a 128K host window; 64K windows are used instead. An alternative way to access more than 64K is to use a display **memory mapping** mechanism, as discussed later in this chapter.

Packed vs. Planar Pixels

The color of each picture element (PEL or pixel) is determined by several bits in the display memory (2, 4, or 8 bits, depending on the display mode). Two basic types of display memory organization are used to define pixels:

- **Planar organization (color planes)**. Most VGA graphics modes (Dh, Eh, Fh, 10h, 11h and 12h) use color planes.
- Packed pixel organization. CGA modes 4,5,6 and VGA mode 13 use packed pixels.

Planar Modes

In planar modes, each pixel on the screen corresponds to a set of four bits (one bit in each plane), as shown in figure 9-2.

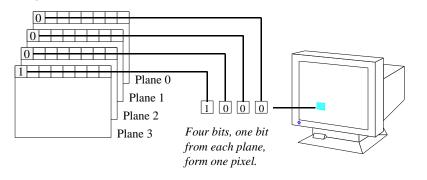
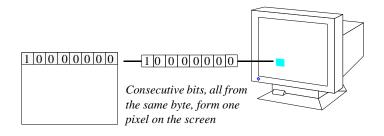
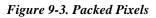




Figure 9-2. Planar Pixels

Packed Pixel Modes

For packed pixel modes, all bits of a pixel are packed into one or more bytes of display memory. In some modes, a byte holds more than one pixel. In 32K color modes, two bytes contain one pixel. In 256 color modes, a byte contains only one pixel, as shown in figure 9-3.

Display Memory Plane Selection

This display adapter can be configured with 256K, 512K, or 1M of display memory. Application programs access display memory via a 64K host window. To permit host access to all of the available display memories, the *mach64* contains two different memory mapping mechanisms that map the 64K host window to a selected 64K portion of display memory. One memory mapping mechanism, which is standard on all VGA products, utilizes the planar organization of VGA memory. Planar memory mapping, illustrated in figure 9-4, allows access to 256K of display memory (four planes of 64K).

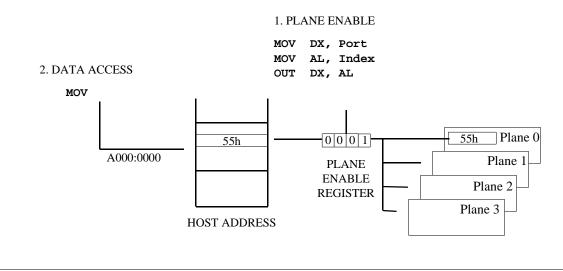


Figure 9-4.Plane Selection

Display Memory Paging

To give the processor access to a greater amount of display memory, the *mach64* also contains a number of display memory paging mechanisms that map selected portions of the display memory to the host window. **Page** is defined as a section of display memory which is addressed by the CPU through A000:0000. Typically, the page size is 64K, but in certain cases it may be 32K. It is similar in operation to EMS/LIM memory expansion boards.

The method for changing the page mapped to the host window is different for packed pixel and planar modes on the *mach64*. In packed pixel modes, data is read from and written to the screen at a selected page through small dual paged apertures. These apertures are 32K in size and are located at segment base addresses A000h and A800h. The read and write page of each aperture may be set independently. For a more detailed description of the small dual paged apertures and how to set their read and write pages, refer to the *mach64 Programmer's Guide*.

The method for changing the read or write page in planar modes varies depending on the type of *mach64* controller. For the *mach64GX* and *mach64CX*, an application must first select the desired page by loading a page select register. Data within that memory page may then be accessed in the host window. See figure 9-5 for an illustration of this process. Each mode computes the page number and screen offset differently. Currently, the *mach64* supports up to 16 pages.

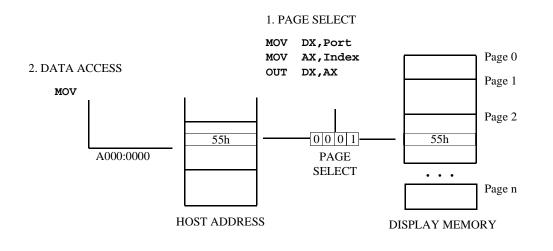


Figure 9-5. Page Selection

The page select register is part of the VGA extended register set contained within the *mach64GX* and *mach64CX*. These registers are fully described in Chapter 5. To select a display memory page, set the appropriate bit in the extended register ATI32.

Since the *mach64CT* and *mach64ET* do not contain the set of VGA extended registers contained in the other series of *mach64* controllers, extended register ATI32 cannot be used to select the read or write page. For the *mach64CT* and *mach64ET*, the small dual paged apertures described earlier must be used to access the display memory in planar modes. See the *mach64 Programmer's Guide* for an explanation of how to modify the read or write page while using the small apertures in a planar mode.

Emulations

The *mach64GX* and *mach64CX* are compatible with software written for the Color Graphics Adapter (CGA). This compatibility is achieved by special registers that allow the *mach64* to emulate the CGA.

Extended Display Modes

In addition to total VGA compatibility, the *mach64* also provides new enhanced display modes with higher resolutions and more colors than standard VGA display modes. The number of extended modes supported by the BIOS depends on the amount of memory available and the hardware revision.

- Modes that display 132 columns of text are useful for spreadsheets and similar applications.
- High resolution graphics modes with 256 simultaneous color capability can be used to present full color photographic images with impressive fidelity.

• Modes that offer 16 colors at higher resolutions than the IBM VGA are popular for applications that involve fine visual details, such as CAD/CAM and desktop publishing.

Since the new modes were developed as extensions to the basic VGA, the programming models for these modes resemble the supported VESA SVGA modes. This means any application that supports VESA SVGA modes will work with the *mach64* without code changes. Table 9-3 lists the extended display modes supported by the *mach64*.

Mode	Туре	Resolution	Colors	Memory Required
23h	Text	132 cols x 25 rows, 8x14 cell	16	256K
27h	Text	132 cols x 25 rows, 8x14 cell	mono	256K
33h	Text	132 cols x 44 rows, 8x8 cell	16	256K
37h	Text	132 cols x 44 rows, 8x8 cell	mono	256K
54h	Graphics	800 horizontal x 600 vertical	16	256K
55h	Graphics	1024 horizontal x 768 vertical	16 (planar)	512K
101h (VESA)/ 62h (ATI)	Graphics	640 horizontal x 480 vertical	256	512K
103h (VESA)/ 63h (ATI)	Graphics	800 horizontal x 600 vertical	256	512K
105h (VESA)/ 64h (ATI)	Graphics	1024 horizontal x 768 vertical	256	1M
107h	Graphics	1280x1024	256	2M

Table 9-3.Extended Display Modes

Mode Setting by BIOS Call

Setting Standard Modes and ATI Extended Modes

BIOS Function 0, mode select, can be used to initialize VGA and ATI extended mode of the *mach64*. For example, to invoke mode 54h, the following code can be used:

mov al,54h mov ah,0 int 10h

Setting VESA Modes

VESA VBE Function 2, sets super VGA video mode. This function is used to initialize a video mode in super VGA mode. For example, to invoke mode 107h, the following code can be used:

mov	ax,4f02h
mov	bx,107
int	10h
cmp	ah,1
je	modefail

Mode Query Function

It is important to verify that the display being used is capable of supporting the colors and resolution of the selected display mode, and that the *mach64* has been properly configured. The mode table of your product can be found at the Appendix of the User's Guide.

To determine what modes are available, VBE function 00 can be used. This function provides information to the calling program about the general capabilities of the hardware. For example:

mov	ax,4f00h
mov	di,data_seg0
mov	es,di
xor	di,di
int	10h

where es:di points to information block structure define in the VESA super specification.

Summary of Display Modes

Extended text and graphics display modes of the mach64 are summarized below.

Mode 23h - 132 x 25 Color Text

132-column text modes are useful for wide text displays such as spreadsheets. This mode uses the standard VGA 8x14 character set, and drives the display at a resolution of 1056×350 pixels. To support this mode, the display must be capable of displaying a horizontal resolution of 1056 pixels. While this exceeds the published specifications for most popular displays, acceptable results can still be achieved with many displays.

Mode 27h - 132 x 25 Monochrome Text

Mode 27h is the monochrome equivalent to mode 23h. It uses the same character set and operates at the same resolution.

Mode 33h - 132 x 44 Color Text

A smaller character set is used in this text mode in order to display more information on the screen; the 8x8 character set used is not as readable as the 8x14 character set used in modes 23h and 27h. As with other 132-column modes, the screen operates at a resolution of 1056 x 350 pixels. Most displays will show acceptable results at this resolution.

Mode 37h - 132 x 44 Monochrome Text

Mode 37h is the monochrome equivalent to mode 33h.

Mode 54h - 800 x 600 16 Color Graphics

800x600 is the highest 16-color resolution that can be supported using only 256K bytes of display memory. It is also the highest 16-color resolution that can be supported without utilizing display memory paging. This resolution is also the upper limit of resolution on many popular displays.

Mode 55h - 1024 x 768 16 Color Graphics

Only the highest frequency VGA displays can operate in this mode, which is the highest resolution mode of the *mach64* VGA. 512K bytes of display memory are required. Display memory paging is used to make the full display memory available to the processor.

This resolution is becoming a standard for medium cost displays (640x480 being the previous standard) and has been added to many popular monitors to support the SVGA adapter. The *mach64* VGA is capable of operating in this mode with interlaced as well as non-interlaced displays, and will automatically select the best one based on the attached display (indicated by configuration settings). Programming in this mode can be accomplished through a 128K aperture located at address A000h (on ATI28800-5 chips and above).

Mode 101h - 640 x 480 256 Color Graphics

This resolution is popular because it equals the highest standard VGA resolution, but has added 256 color capability and is supported by all low cost analog monitors. This mode requires 512K of display memory. Display memory paging is needed to make the larger display memory available to the processor.

Mode 103h - 800 x 600 256 Color Graphics

Mode 103h operates at the highest resolution that is available on the majority of multi-frequency (multi-scanning) monitors. Full color photographic images can be displayed with remarkable fidelity at this resolution. This mode requires 512K of display memory. Display memory paging is required to make the full display memory available to the processor.

Mode 105h - 1024 x 768 256 Color Graphics

Mode 105h operates at the highest resolution that is available on the majority of multi-frequency (multi-scanning) monitors. Full color photographic images can be displayed with remarkable fidelity at this resolution. This mode requires 1MB of display memory. Display memory paging is required to make the full display memory available to the processor.

Mode 107h - 1280 x 1024 256 Color Graphics

Mode 107h becomes a popular screen size for serious desktop and publishing user. It is recommended to set the refresh rate to 60Hz or higher to reduce flickering. The refresh rate can be set by running the INSTALL program found in Disk#1 of the product diskettes. This mode requires 2MB of video memory.

Display Memory Organization

Drawing algorithms for a given display mode are largely dictated by the organization of display memory (the organization of a pixel in memory and the mapping of display memory to the screen) for that mode. This section provides detailed descriptions of display memory organization for all extended modes.

Extended Text Modes

Modes 23h, 27h, 33h, and 37h

These modes utilize memory maps similar to those used in standard text modes (VGA modes 2, 3 and 7), except that the number of characters per line is increased from 80 to 132. Thus, the number of bytes used per text line increases from 160 to 264 (each character requires one ASCII character byte and one attribute byte). ASCII code is stored at even memory addresses and attribute data is stored at odd memory addresses.

Table 9-4 shows the standard IBM color text attributes. In 16 color text mode, D7 is defined as foreground blinking and D3 is the intensity bit. It allows one of sixteen colors for foreground and one of eight colors for the background. In addition, the character can be blinked.

Table 9-5 shows the standard IBM monochrome text attributes. D7 and D3 control the blinking and intensity respectively. Reverse video occurs only when bits 4-6 are one and bits 2-0 are zero. The organization of display memory for all extended text modes can be seen in figure 9-6. The character is stored in plane 0 and the attribute in plane 1. The ROM character patterns are transferred in plane 2 and addressed by the CRT Controller.

Attribute	Standard Color	Attribute	Intensified Color
000	Black	1000	Gray
001	Blue	1001	Light Blue
010	Green	1010	Light Green
011	Cyan	1011	Light Cyan
100	Red	1100	Light Red
101	Magenta	1101	Light Magenta
110	Brown	1110	Yellow
111	Gray	1111	White

 Table 9-4.
 Standard Color Text Attributes

Attribute	Color
0000000	Blank
00000111	Normal
10000111	Blinking
00001111	Intensified
10001111	Blinking and Intensified
0000001	Underlined
1000001	Blinking and Underlined
00001001	Intensified and Underlined
10001001	Blinking, Intensified and Underlined
01110000	Reverse Video
11110000	Reverse Video and Blinking

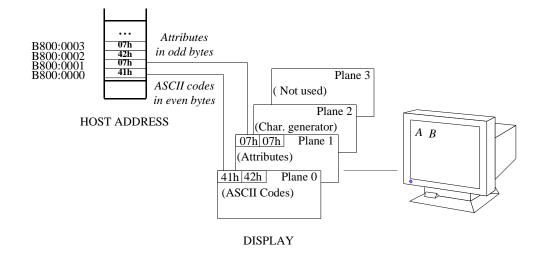


Figure 9-6. Display Memory Organization in Extended Text Modes

Extended Graphics Modes

Modes 54h - 800 x 600 (16 colors)

Memory organization for this mode resembles VGA mode 12h (640 x 480 16 color planar graphics), except that both the number of pixels per scan line and the number of scan lines increase. Display memory is organized as four color planes of 64K each. Each pixel consumes one bit position in each color plane (Plane Selection). The most significant bit in each byte (bit D7) corresponds to the leftmost pixel for that byte. One hundred consecutive bytes are used for each raster line.

For 600 lines, 60,000 bytes are required in each plane, which is less than the 64K that is addressable within the host window. So no display memory paging is required. Only 256K of display memory is required to support this mode.

Default colors are the same as the standard VGA colors (see table 9-4). To change colors in this mode, use the palette registers of the Attribute Controller.

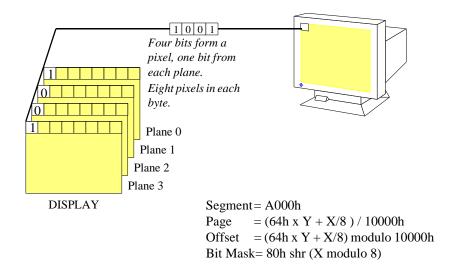


Figure 9-7. Memory Organization - Mode 54h

Index	Color
0000	Black
0001	Blue
0010	Green
0011	Cyan
0100	Red
0101	Magenta
0110	Brown
0111	White
1000	Dark Gray
1001	Light Blue
1010	Light Green
1011	Light Cyan
1100	Light Red
1101	Light Magenta
1110	Yellow
1111	Intensified White

Table 9-6. Standard VGA Color Palette - 16 Color Graphics

Mode 55h - 1024 x 768 (16 colors)

Memory organization for this mode resembles VGA mode 12h (640 x 480 16 color planar graphics), except that both the number of pixels per scan line and the number of scan lines increase. Display memory is organized as two pages, with four color planes in each page and 64K in each plane. Each pixel consumes one bit position in each color plane (see figure 9-2).

The most significant bit in each byte (bit D7) corresponds to the leftmost pixel for that byte. Each raster line uses 128 consecutive bytes. For 768 lines, this requires 98,304 bytes in each plane, which is addressable in two, 64K pages in the host window. 512K of display memory is required to support this mode.

Default colors are the same as the standard VGA colors (see table 9-4). To change colors in this mode, use the DAC registers.

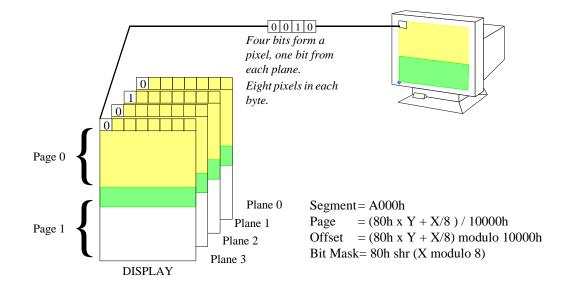


Figure 9-8. Display Memory Organization - Mode 55h

Mode 101h - 640 x 480 (256 colors)

Display memory organization for this mode resembles VGA mode 13h (320 x 200 256 color packed pixel graphics), except that the number of pixels per scan line is doubled and the number of scan lines is increased. Each pixel requires one byte of display memory. Each raster scan line uses 640 consecutive bytes. For 480 lines, this requires 307.2K (five 64K pages) of display memory. The adapter requires 512K bytes of memory. The memory map for this mode can be seen in figure 9-9.

Default colors are the same as for mode 13h. To change the default colors, use the DAC registers; the palette registers in the Attribute Controller should not be modified.

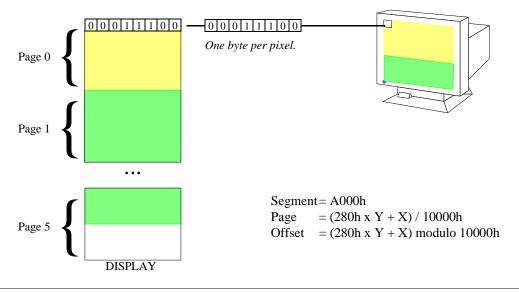


Figure 9-9. Display Memory Organization - Mode 62h

Mode 103h - 800 x 600 (256 colors)

Display memory organization for this mode resembles VGA mode 13h (320 x 200 256 color packed pixel graphics), except that the number of pixels per scan line and number of scan lines are both increased. Each pixel requires one byte of display memory. Each raster scan line uses 800 consecutive bytes. For 600 lines, this requires 480,000 bytes (eight 64K pages) of display memory. The adapter requires 512K bytes of memory. The memory map for this mode can be seen in figure 9-10.

Default colors are the same as for mode 13h. To change the default colors, use the DAC registers; the palette registers in the Attribute Controller should not be modified.

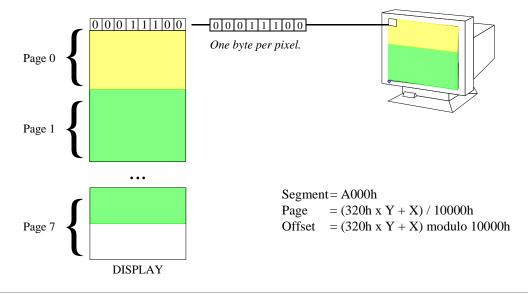


Figure 9-10. Display Memory Organization - Mode 63h

Mode 105h - 1024 x 768 (256 colors)

Display memory organization for this mode resembles VGA mode 13h. Each pixel requires one byte of display memory and 1024 bytes per scanline. The total display memory required for 768 lines is 786,432 bytes (12 64K pages). This mode works with an adapter of 1M memory only. The memory map for this mode is drawn in figure 9-11.

Default colors are the same as for mode 13h. To change the default colors, use the DAC registers; the palette registers in the Attribute Controller should not be modified.

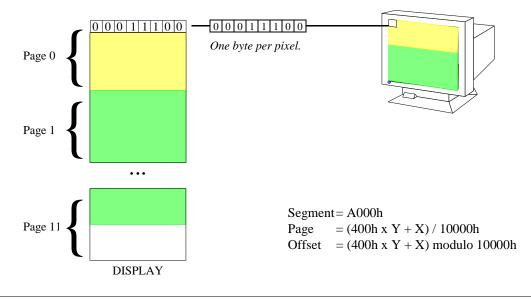


Figure 9-11. Display Memory Organization - Mode 64h

Table 9-7.	Display Mode Specifications - Multisync Monitors	
------------	--	--

				Horiz.	Vert.		Dot
Mode	Box	PELs	Colors	Sync	Sync	H/V	Clock
	Size			(KHz)	(Hz)	Polarities	(MHz)
0+/VGA	9x16	360x400	16/256K	31.47	70	-/+	28.3
1+/VGA	9x16	360x400	16/256K	31.47	70	-/+	28.3
0/CGA	8x8	320x200	16	31.47	70	-/+	25.2
1/CGA	8x8	320x200	16	31.47	70	-/+	25.2
2+/VGA	9x16	720x400	16/256K	31.47	70	-/+	28.3
3+/VGA	9x16	720x400	16/256K	31.47	70	-/+	28.3
2/CGA	8x8	640x200	16	31.47	70	-/+	25.2
3/CGA	8x8	640x200	16	31.47	70	-/+	25.2
4/VGA	8x8	320x200	4/256K	31.47	70	-/+	25.2
4/CGA	8x8	320x200	4 (2 sets)	31.47	70	-/+	25.2
5/VGA	8x8	320x200	4/256K	31.47	70	-/+	25.2
5/CGA	8x8	320x200	4 (2 sets)	31.47	70	-/+	25.2
6/VGA	8x8	640x200	2/256K	31.47	70	-/+	25.2
6/CGA	8x8	640x200	2	31.47	70	-/+	25.2
7+/VGA	9x16	720x400	2/256K	31.47	70	-/+	28.3
7/MDA	9x14	720x350	Mono	31.47	70	+/-	28.3
D/VGA	8x8	320x200	16/256K	31.47	70	-/+	25.2
E/VGA	8x8	640x200	16/256K	31.47	70	-/+	25.2
F/VGA	8x14	640x350	2/256K	31.47	70	+/-	25.2
10/VGA	8x14	640x350	16/256K	31.47	70	+/-	25.2
11/VGA	8x16	640x480	2/256K	31.47	60	-/-	25.2
12/VGA	8x16	640x480	16/256K	31.47	60	-/-	25.2
12/VGA	8x16	640x480	16/256K	37.73	72.15	-/-	32
13/VGA	8x8	320x200	256/256K	31.47	70	-/+	25.2
23	8x16	1056x400	16/64	31.47	70	-/+	40
27	8x16	1056x400	Mono	31.47	70	-/+	40
33	8x8	1056x352	16	31.47	70	-/+	40
37	8x8	1056x352	Mono	31.47	70	-/+	40
54	8x14	800x600	16/256K	35.16	56	-/-	36
54 ^V	8x14	800x600	16/256K	35.16	56	+/+	36
54	8x14	800x600	16/256K	37.87	60	+/+	40
54	8x14	800x600	16/256K	44.19	70	+/+	45
55 ¹	8x16	1024x768	16/256K	35.52	86	+/+	45
55	8x16	1024x768	16/256K	48.36	60	-/-	65
55	8x16	1024x768	16/256K	56.47	70	-/-	75
55	8x16	1024x768	16/256K	57.87	72	-/-	75

(continued on next page)

Mode	Box Size	PELs	Colors	Horiz. Sync (KHz)	Vert. Sync (Hz)	H/V Polarities	Dot Clock (MHz)
62	8x16	640x480	256/256K	31.47	60	-/-	25
62	8x16	640x480	256/256K	72.15	72	-/-	32
63	8x14	800x600	256/256K	35.16	56	-/-	36
63 ^V	8x14	800x600	256/256K	35.16	56	+/+	36
63	8x14	800x600	256/256K	37.88	60	+/+	40
63	8x14	800x600	256/256K	48.04	72	+/+	50
64 ¹	8x16	1024x768	256/256K	35.52	87	+/+	45
64	8x16	1024x768	256/256K	48.36	60	+/+	65
64	8x16	1024x768	256/256K	56.48	70	-/-	75
64	8x16	1024x768	256/256K	57.87	72	-/-	75

Table 9-7. Display Mode Specifications - Multisync Monitors

Notes:

I = Interlaced Mode V = Applicable to VESA compatible monitors

This page intentionally left blank.

Chapter 10 VGA-Compatible Registers

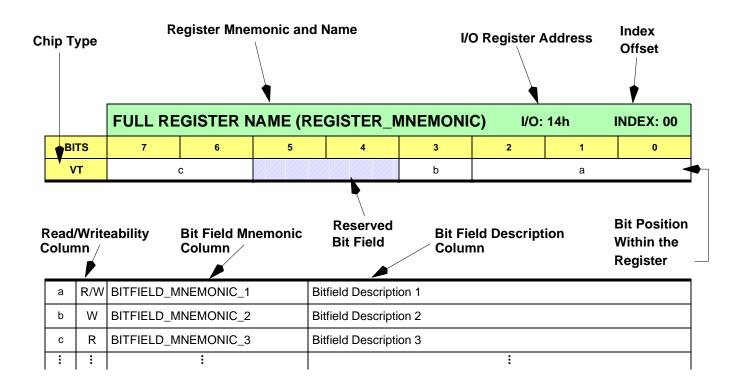
Overview

VGA registers in *mach64* controllers are fully hardware-compatible with registers in the IBM VGA video adapter. (See *Chapter 8, VGA Programming Overview*.)

VGA-compatible registers are listed in the *Index*. For convenience, they are also arranged by I/O Port address (and index) on the following page. This chapter contains detailed descriptions of the compatible registers, arranged by function, as follows:

Register Functional Classes	Page
CRT Controller Registers (GRAxx)	10-5
Attribute Controller Registers (ATTRxx)	10-18
General Status and Configuration Registers (GENxx)	10-22
Sequencer Registers (SEQxx)	10-25
DAC Registers (DACxx)	10-29
Graphics Controller Registers (GRAxx)	10-30

VGA Compatible Registers – By I/O Port


Port	Index	Function	Туре	Mnemonic	Register Name	Page
0102	-	General	W	GENVS	VGA Sleep	10-22
03?4	-		R/W	CRTX	CRTC Index	10-5
03?5	0		R/W	CRT00	Horizontal Total	10-5
03?5	1		R/W	CRT01	Horizontal Display Enable End	10-5
03?5	2		R/W	CRT02	Start Horizontal Blanking	10-6
03?5	3		R/W	CRT03	End Horizontal Blanking	10-6
03?5	4		R/W	CRT04	Start Horizontal Retrace	10-6
03?5	5		R/W	CRT05	End Horizontal Retrace	10-7
03?5	6		R/W	CRT06	Vertical Total	10-7
03?5	7		R/W	CRT07	CRTC Overflow	10-8
03?5	8		R/W	CRT08	Preset Row Scan	10-9
03?5	9		R/W	CRT09	Maximum Scan Line	10-9
03?5	А		R/W	CRT0A	Cursor Start	10-10
03?5	В		R/W	CRT0B	Cursor End	10-10
03?5	С	CRT	R/W	CRT0C	Start Address (High Byte)	10-11
03?5	D	Controller	R/W	CRT0D	Start Address (Low Byte)	10-11
03?5	E		R/W	CRT0E	Cursor Location (High Byte)	10-11
03?5	F		R/W	CRT0F	Cursor Location (Low Byte)	10-12
03?5	10		R/W	CRT10	Start Vertical Retrace	10-12
03?5	11		R/W	CRT11	End Vertical Retrace	10-13
03?5	12		R/W	CRT12	Vertical Display Enable End	10-13
03?5	13		R/W	CRT13	Offset	10-14
03?5	14		R/W	CRT14	Underline Location	10-14
03?5	15		R/W	CRT15	Start Vertical Blanking	10-15
03?5	16		R/W	CRT16	End Vertical Blanking	10-15
03?5	17		R/W	CRT17	CRT Mode	10-16
03?5	18		R/W	CRT18	Line Compare	10-17
03?5	1E,1F		R	CRT1E, 1F	Graphic Controller Index Decode	10-17
03?5	22		R	CRT22	RAM Data Latch Readback	10-17
03?A	_	Conorol	W	GENFC	Feature Control	10-22
03?A	_	General	R	GENS1	Input Status 1	10-22

(continued on next page)

Port	Index	Function	Туре	Mnemonic	Register Name	Page
03C0	_		R/W	ATTRX	Attribute Controller Index	10-18
03C0	00-0F		W	ATTR(00:0F)	Palette (00 to 0F)	10-18
03C0	10		W	ATTR10	Mode Control	10-19
03C0	11		W	ATTR11	Overscan Color	10-19
03C0	12		W	ATTR12	Color Map Enable	10-20
03C0	13		W	ATTR13	Horizontal PEL Panning	10-20
03C0	14	Attribute Controller	W	ATTR14	Color Select	10-21
03C1	00-0F	Controller	R	ATTR(00:0F)	Palette (00 to 0F)	10-18
03C1	10		R	ATTR10	Mode Control	10-19
03C1	11		R	ATTR11	Overscan Color	10-19
03C1	12		R	ATTR12	Color Map Enable	10-20
03C1	13		R	ATTR13	Horizontal PEL Panning	10-20
03C1	14		R	ATTR14	Color Select	10-21
03C2	_		W	GENMO	Miscellaneous Output	10-23
03C2	_	General	R	GENSO	Input Status 0	10-24
03C3	_		R	GENENB	Video Subsystem Enable (Board)	10-24
03C4	_		R/W	SEQX	Sequencer Index	10-25
03C5	0		R/W	SEQ00	Reset	10-25
03C5	1	Converser	R/W	SEQ01	Clock Mode	10-26
03C5	2	Sequencer	R/W	SEQ02	Map Mask	10-27
03C5	3		R/W	SEQ03	Character Map Select	10-27
03C5	4		R/W	SEQ04	Memory Mode	10-28
03C6	_		R/W	DAC_MASK	DAC Mask	10-29
03C7	_	DAC	R/W	DAC_R_INDEX	DAC Read Current Color Index	10-29
03C8	_	DAC	R/W	DAC_W_INDEX	DAC Write Current Color Index	10-29
03C9	_		R/W	DAC_DATA	DAC Data	10-29
03CA	_	General	R	GENFC	Feature Control	10-22
03CC	-	General	R	GENMO	Miscellaneous Output	10-23
03CE	_		R/W	GRAX	Graphics Controller Index	10-30
03CF	0		R/W	GRA00	Set/Reset	10-30
03CF	1		R/W	GRA01	Enable Set/Reset	10-31
03CF	2		R/W	GRA02	Color Compare	10-31
03CF	3	Graphics	R/W	GRA03	Data Rotate	10-32
03CF	4	Controller	R/W	GRA04	Read Map Select	10-32
03CF	5		R/W	GRA05	Graphics Mode	10-33
03CF	6		R/W	GRA06	Graphics Miscellaneous	10-34
03CF	7		R/W	GRA07	Color Don't Care	10-35
03CF	8		R/W	GRA08	Bit Mask	10-35
46E8	_	General	W	GENENA	Video Subsystem Enable (Add-On)	10-24

Register Legend

The table below describes the layout of all the Register Description Tables in Chapter 10.

In the following tables, the registers are grouped according to one of the six **Register Classes** listed on *page 10-1*. **Chip Type** refers to the VT chip, which supports VGA-compatible registers. The **I/O Address** indicates the read and write address of the register. The **Index** is also shown if the register is accessible indirectly.

VGA CRT Controller Registers

			CRT	C INDEX	(CRTX)		I/O: :	3?4h	INDEX:-
В	ITS	7	6	5	4	3	2	1	0
١	/т	a							
а	R/W	VCRTC_IDX	[5:0]	Th	(CRTC) at	s to one of the address 3?5h sters are desc	, for the next C	RTC read/wri	ite operation.

Note:

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		HORIZONTAL TOTAL (CRT00)				I/O: 3	3?5h I	INDEX: 00h		
BI	тѕ	7 6 5 4 3 2 1 0								
v	/Т	a								
а	R/W	H_TOTAL[7:0] These bits define the active horizontal display in a scan line, including the retrace period. The value is five less than the total number of displayed characters in a scan line.								

Note:

? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

_		HORIZO	HORIZONTAL DISPLAY ENABLE END (CRT01) I/O: 3?5h INDEX: 0									
E	BITS	7	7 6 5 4 3 2 1 0									
	VT		a									
а	R/W	H_DISP_END[7:0] These bits define the active horizontal display in a scan line. The value is one less than the total number of displayed characters in a scan line										

Note:

? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

_		START HORIZONTAL BLANKING (CRT02)				I/O:	3?5 II	NDEX: 02h	
BI	TS	7	6	5	4	3	2	1	0
v	Τ	a							
а	R/W	H_BLANK_START[7:0] These bits define the horizontal character count that represents the character count in the active display area plus the right border. In other words, the count is from the start of active display to the start of triggering of the H blanking pulse.							

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		END	HORIZO	NTAL BLA	NKING (C	CRT03)	I/O: 3	3?5h I	NDEX: 03h		
BI	тѕ	7	6	5	4 3 2 1 0						
V	т	С		D			а				
а	R/W	 W H_BLANK_END[4:0] H Blanking End bits 4-0, respectively. These are the five low-order bits (of six bits in total) of h character count for triggering the end of the horizo pulse. The sixth bit is CRT05[7]. The character count is equal t blanking start" plus "H blanking pulse width". 									
b	R/W	H_DE_SKEV	V[1:0]	00 01 10	Display Enable Skew: 00 = Zero-character-clock skew. 01 = One-character-clock skew. 10 = Two-character-clock skew. 11 = Three-character-clock skew.						
с	R/W	CR10CR11_	R_DISB	0 =		te-only to CR1 d/write access			rt/end register		

Note:

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		STAI	RT HORIZ	ONTAL R	ETRACE (CRT04)	I/O:	3?5h I	NDEX: 04h
BI	TS	7	6	5	4	3	2	1	0
V	т				ć	a			
а	R/W	H_SYNC_START[7:0] These bits define the horizontal character count at which the horizontal retrace pulse becomes active.							

Note:

		ENI	D HORIZO	NTAL R	ETRACE (C	RT05)	I/O: 3	3?5H II	NDEX: 05h
BI	TS	7	6	5	4	3	2	1	0
V	т	С	Ł)			а		
а	R/W	H_SYNC_EN	ID[4:0]		H Retrace Ends These are the 5- hoizontal re				e width of the
b	R/W	H_SYNC_SK	EW[1:0]		H Retrace Delay 00 = Zero chara 01 = One chara 10 = Two chara 11 = Three char Fhese two bits s	cter clocks cter clock cter clocks acter clocks	ontal Retrace	pulse	
с	R/W	H_BLANK_S	TART[5]		H Blanking End This is bit 5 of th The other f				end pulse.

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

			VERTIC	AL TOTA	L (CRT06))	I/O:	3?5h I	NDEX: 06h			
BI	тѕ	7	6	5	4	3	2	1	0			
V	/Т		a TAL[7:0] These are the eight low-order bits of the 10-bit vertical total register.									
а	R/W	V_TOTAL[7:()]	Th	The two hig register. T	gh-order bits a he value of thi ans plus vertio	ire CRT07[5:0 is register rep)] in the CRTC resents the to	Coverflow tal number of			

Note:

			CRTC C	VERFLO	W (CRT07)	I/O: 3	3?5h II	NDEX: 07h
В	TS	7	6	5	4	3	2	1	0
١	/т	h	g	f	е	d	С	b	а
а	R/W	V_TOTAL[8]			Total Bit 8 (CF t 8 of 10-bit ve CRT06 reg	rtical count for	r V Total (for f	unctional deso	cription, see
b	R/W	V_DISP_ENI	D[8]		nd V Display B t 8 of 10-bit ve description			able end (for t	functional
с	R/W	V_SYNC_ST	_SYNC_START[8] Start V Retrace Bit 8 (CRT10) Bit 8 of 10-bit vertical count for V Retrace start (for functional description, see CRT10 register)					nal	
d	R/W	/_BLANK_START[8] Start V Blanking Bit 8 (CRT15) Bit 8 of 10-bit vertical count for V Blanking start (for functional description, see CRT15 register)							
e	R/W	LINE_CMP[8]		ne Compare B t 8 of 10-bit ve description			re (for functior	nal
f	R/W	V_TOTAL[9]			Total Bit 9 (CF t 9 or 10-bit ve CRT06 reg	rtical count for	r V Total (for f	unctional des	cription, see
g	R/W	V V_DISP_END[9] End V Display Bit 9 (CRT12) Bit 9 of 10-bit vertical count for V Dis description, see CRT12 registe						able End (for	functional
h	R/W	V_SYNC_ST	ART[9]		art V Retrace t 9 of 10-bit ve description		r V Retrace st	art (for functio	nal

1. ? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

2. Various bits in this register are functionally part of other CRTC registers.

			PRESET	ROW SC	AN (CRT0	8)	I/O:	3?5h II	NDEX: 08h	
BI	TS	7	6	5	4	3	2	1	0	
v	/Т			b	a					
а	R/W	ROW_SCAN	ROW_SCAN_START[4:0] This register is used for software-controlled vertical scrolling in tex graphics modes. The value specifies the first line to be scan after a V retrace (in the next frame). Each H Retrace pulse increments the counter by 1, up to the Maxir Scan Line value programmed by CRT09, then the counter is cleared.							
b	R/W	BYTE_PAN[1:0]Byte Panning Control Bits 1 and 0 respectively.Bits 6 and 5 extend the capability of byte panning (shifting) three characters (for description, see H PEL Panning ATTR13).								

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

			MAXIMU	I SCAN	L	NE (CRT)9)	I/O:	3?5h	INDEX: 09h
BI	TS	7	6	5		4	3	2	1	0
V	/T	d	с	b				а		
а	R/W	MAX_ROW_	SCAN[4:0]			ximum Scan ese bits define character r	e a value that	is the actual r	number of sca	an line per
b	R/W	V_BLANK_START[9]			Start V Blanking bit 9 (CRT15) Bit 9 of 10-bit vertical count for V Blanking start (for functional description, see CRT15 register).					ional
с	R/W	LINE_CMP[9	9]			e Compare b 9 of 10-bit ve see CRT18	rtical count for	r line compare	e (for function	al description,
d	R/W	DOUBLE_CH	HAR_HEIGHT		 200-/400-Line Scan 0 = Counter is incremented per scan line. 1 = Clock pulses to the row scan counter are divided by two. Effectively, this allows the line in 200-line mode to be disp twice before the row scan counter is incremented once. NOTE: H/V display and blanking timings etc. (in CRT00-CRT06 registers) are not affected by these bits. 					be displayed nce.

Note:

			CURSC	OR STAF	RT (CRT0A)		I/O:	3?5h I	NDEX: 0Ah		
В	TS	7	6	5	4	3	2	1	0		
١	/Т			b			а				
а	R/W	CURSOR_S	b a OR_START[4:0] Cursor Starts bits 4-0, respectively. These bits define a value that is the starting scan line (on a character row) for the line cursor. The five-bit value is equal to the actual number minus one. This value is used together with Cursor End bits CRT0B [4:0] to determine the height of the cursor. The cursor height in VGA does not wrap around (as in EGA) and is actually absent when the 'end' value is less than the 'start' value. In EGA when the 'end' value is less, the cursor is a full block cursor which is the same height as the character cell.								
b	R/W	CURSOR_D	ISABLE		Cursor On/Off) = Cursor on. I = Cursor off.						

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

			CUR	SOR END	(CRT0B)		I/O: 3	3?5h I	NDEX: 0Bh	
В	TS	7	6	5	4	3	2	1	0	
١	/т			b			а			
а	R/W	CURSOR_E	SOR_END[4:0] Cursor End Bits 4-0, respectively. These bits define the ending scan row (on a character line) for the line cursor. In EGA, this 5-bit value is equal to the actual number of lines plus one. The cursor height in VGA does not wrap around (as in EGA) and is actually absent when the 'end' value is less than the 'start' value. In EGA when the 'end' value is less, the cursor is a full block cursor which is the same height as the character cell. SOR_SKEW[1:0] Cursor Skew Bits 1 and 0, respectively.							
b	R/W	CURSOR_SI	KEW[1:0]	00 01 10	the right (s location (revealed when values when = Zero (zero) = One (zero) = Two (one)	s 1 and 0, res e the number of kewed) from the egisters CRT0 en in EGA mood) character ske character ske character ske) character ske	of characters t he character p E and CRTOF de are enclose ew ew w	oointed at by t), in VGA mod	the cursor de. Skew	

Note:

		STA	START ADDRESS (HIGH BYTE) (CRT0C) I/O: 3?5h INDEX: 0Ch								
BI	TS	7	6	5	4	3	2	1	0		
v	Τ		a 2 2 STADT[15:9] SA hite 15:9								
а	R/W	DISP_STAR	DISP_START[15:8] SA bits 15:8 These are the eight high-order bits of the 16-bit display buffer start location. The low order bits are contained in CRT0D. In split screen mode, CRT0C + CRT0D points to the starting location of screen A (top half). The starting address for screen B is always 0.								

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		STA	START ADDRESS (LOW BYTE) (CRT0D) I/O: 3?5h INDEX: 0Dh									
BI	TS	7	6	5	4	3	2	1	0			
V	/Т											
а	R/W	DISP_STAR	a DISP_START[7:0] SA bits 7:0 These are the eight low-order bits of the 16-bit display buffer start location. The high-order bits are contained in CRT0C. In split screen mode, CRT0C + CRT0D points to the starting location of screen A (top half.) The starting address for screen B is always 0.									

Note:

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		CURS	OR LOCA	TION (HIG	SH BYTE)	(CRT0E)	I/O:	3?5h II	NDEX: 0Eh
В	TS	7	6	5	4	3	2	1	0
N	'T				â	a			
а	R/W	CURSOR_LO	DC[15:8]	-	The low-or relative to t by CRT0C	ght high-orde der CA bits ar he start of phy + CRT0D. In he cursor still	e contained in /sical display r other words,	CRT0F. This memory addre if CRT0C + C	s address is ess pointed to RT0D is

Note:

		CURS		TION (LC	W BYTE)	(CRT0F)	I/O:	3?5h I	NDEX: 0Fh
BI	тѕ	7	6	5	4	3	2	1	0
V	/T				â	a			
а	R/W	CURSOR_LO	DC[7:0]	-	relative to t by CRT0C	rder CA bits a	re contained i /sical display i other words,	n CRT0E. Th memory addr if CRT0C + C	nis address is ess pointed to CRT0D is

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		ST	START VERTICAL RETRACE (CRT10) I/O: 3?5h INDEX: 10h									
В	TS	7	6	5	4	3	2	1	0			
١	/Т		a NC_START[7:0] Bits CRT10[7:0] are the eight low-order bits of the 10-bit vertical retrace									
а	R/W	V_SYNC_ST	ART[7:0]		start count.	The two high	n-order bits are ter.	e CRT07[2:7]	, located in			

Notes:

1. ? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

This register is read/write enabled if CRT03[7] is set to one. It is write-only enabled if CRT03[7] is set to zero. 2.

		E		CAL RET	RACE (CR	T11)	I/O: 3	3?5h II	NDEX: 11h	
В	ITS	7	6	5	4	3	2	1	0	
١	/т	е	d	С	b		i	а		
а	R/W	V_SYNC_EN	ID[3:0]	-	Retrace End E its CRT11[0:3] of the V Re		rizontal scan c	count that trigg	gers the end	
b	R/W	V_INTR_CLF	2		Retrace Interrupt Set: = V Retrace interrupt cleared.					
с	R/W	V_INTR_EN			Retrace Interr = Enable V Re		ot			
d	R/W	SEL_5RFRS	Н	R	eserved					
е	R/W	C0T7_WR_C	DNLY	0	rite Protect (C = Enables nor = Write-protect follows: Al	mal read/write	e of CRT00 to RT00 to CRT0	7 when in VG		

? = B when GENMO[0]=0 (Monochrome emulation). 1.

? = D when GENMO[0]=1 (Color/Graphics emulation).

This register is read/write enabled if CRT03[7] is set to one. It is write-only enabled if CRT03[7] is set to zero. 2.

		VERT	VERTICAL DISPLAY ENABLE END (CRT12) I/O: 3?5h INDEX: 12h									
В	TS	7	7 6 5 4 3		2	1	0					
١	т				a							
а	R/W	V_DISP_ENI	D[7:0]	Th	horizontal s screen sho	ight low-order scan count inc ould end. The ow register.	licating where	the active dis	splay on the			

Note:

			OFFSET (CRT13) I/O: 3?5h INDEX: 13h										
BI	TS	7	6	5	4	3	2	1	0				
٧	'T				i	a							
a	R/W	DISP_PITCH	a SP_PITCH[7:0] These bits define an offset value, equal to the logical line width of the screen (from the first character of the current line to the first character of the next line). Memory organization is dependent on the video mode. Bit CRT17[6] selects byte or word mode. Bit CRT14[6], which overrides the byte/word mode setting, selects Double-Word mode when it is logical one. The first character of the next line is specified by the start address (CRT0C + CRT0D) plus the offset. The offset for byte mode is 2x CRT13; for word mode, 4x; for double word mode, 8x.										

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		ι	JNDERLIN		TION (CRT	[14]	I/O:	3?5h	INDEX: 14h
B	ITS	7	6	5	4	3	2	1	0
١	/т		С	b			а		
а	R/W	UNDRLN_LC	DRLN_LOC[4:0] H Row Scan Bits 4-0. These bits define the horizontal scan row, from the top of the character line, that should be used for underlining. The 5-bit value is equal to the actual number minus one. DR CNT BY4 Count-by-4:						
b	R/W	ADDR_CNT_	_BY4	C) = Character cl for byte ad = Character cl address co	dressing.	by-4 at the cloby-4 clocks a	ock input to t re used for d	he Memory ouble-word
С	R/W	DOUBLE_W	ORD	C	Double-Word M = Allows addr = Enables dou byte/word	essing mode t			

Note:

		STA	START VERTICAL BLANKING (CRT15) I/O: 3?5h INDEX: 15h								
BI	тѕ	7	6	5	4	3	2	1	0		
V	т		a								
а	R/W	V_BLANK_S	TART[7:0]		e 10 bits spec units of hor	it 9 is CRT09[5]; bit 8 is CR location of the nes. The valu	T07[3] e vertical blar	nking pulse, in		

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		EN		CAL BLAN	NKING (CF	RT16)	I/O: :	3?5h I	NDEX: 16h
B	TS	7	6	5	4	3	2	1	0
N	Τ								
а	R/W	V_BLANK_E	ND[7:0]		blanking pu scan lines. e value to be sum of "pul	e the point at v ulse. The loca stored in this r lse width coun egister (CRT15	tion is specifie register is the t" plus the cor	ed in units of I seven low-ord	norizontal der bits of the

Note:

			CRT		(CRT17)		I/O: 3	3?5h I	NDEX: 17h	
BI	TS	7	6	5	4	3	2	1	0	
V	/T	g	f	e		d	с	b	а	
а	R/W	RAO_AS_A1	3b	C	Compatibility Mc = Substitutes r active displ the 6845 co = Enables row	ow scan coun ay time. For e ontroller or CG	example, this a BA APA mode	allows for com s.	npatibility with	
b	R/W	RA1_AS_A1	46	C	 Select Row Scan Counter: 0 = Selects row scan counter bit 1 (RA1) as bit 14 at the CRTC output during active display time. This substitution allows for compatibility with Hercules graphics and other 400-line graphics modes. 1 = Elects row scan counter bit 14 (RA14) as bit 14 at the CRTC output 					
С	R/W	VCOUNT_BY2			 Vertical_by_2 0 = Increments the vertical timing counter every horizontal retrace. 1 = Increments the vertical timing counter every two horizontal retrace pulses. It effectively doubles the vertical resolution by two, for example, to 2048 horizontal scan lines in VGA and 1024 in EGA. NOTE: When bit 2 is logical one, other vertical register values should be adjusted as well (CRT06, CRT10, CRT12, CRT15, and CRT18). 					
d	R/W	ADDR_CNT_	_BY2	C	Count_by_2:) = Increments t = Increments t clocks.					
e	R/W	/ WRAP_A15toA0			is wrapped = Enables 256 counter bits	ress counter b around to bit K video memo s are rotated lo	its are left-shi 0 position at t	fted once, so he CRTC out g. In word mo bit 15(MA15)	bit 13 (MA13) put. ode, address	
f	R/W	BYTE_MODE			 Byte/Word Mode: 0 = Selects word mode memory addressing. The memory address is rotated left by one. 1 = Selects byte mode memory addressing. 					
g	R/W	CRTC_SYNC	C_EN	C	H/V Retrace Enable: 0 = Disables horizontal and vertical retrace 1 = Enables horizontal and vertical retrace					

- 1. ? = B when GENMO[0]=0 (Monochrome emulation).
 - ? = D when GENMO[0]=1 (Color/Graphics emulation).
- 2. 640x200 mode is programmed for 100 horizontal scan lines with two row scan addresses per character row. Odd scan lines are offset in the display memory by 8K bytes.

			LINE COMPARE (CRT18) I/O: 3?5h INDEX: 1									
В	тѕ	7	6	5	4	3	2	1	0			
١	т					a						
а	R/W	LINE_CMP[7	: :0]		Bit 8 is CR used to dis when the s this value, cleared. e screen area called scre be scrolled by the PEL	ne eight low-on T07[4], bit 9 is sable scrolling plit screen is a the memory a a above the lin en A. The scr l, but it can pa panning com of this contro	CRT09[6]. T on a portion c active. When t ddress and ro e specified by een below is s nned togethe patibility bit A	the value of the of the display s he vertical cou w scan count this register is screen B. Scr r with screen TTR10[5]. (Fo	is register is screen, as unter reaches ers are s commonly een B cannot A, controlled			

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

		GRA	APHICS CO	NTROLLE (CRT1E,1	ER INDEX DI 1F)	ECODE	I/O: 3	3?5h	INDEX: 1Eh, 1Fh	
В	ITS	7	6	5	4	3	2	1	0	
١	/т				â	a				
а	R	GRPH_DEC[BRPH_DEC[8:0] This register is used to read back the graphics controller index decode							

Note:

? = B when GENMO[0]=0 (Monochrome emulation). ? = D when GENMO[0]=1 (Color/Graphics emulation).

_		RAM	I DATA LA	TCH REA	ADBACK (CRT22)	I/O: 3?5h INDEX: 22h				
BI	тѕ	7	7 6 5 4 3 2 1 0								
V	т		a								
а	R	GRPH_LATC	RPH_LATCH_DATA[7:0] This register is used to read the data in the Graphics Controller CPU data latches. The Graphics Controller Read Map Select register bits 0 and 1 determines which byte is read back.								

Note:

VGA Attribute Controller Registers

			ATT	R INDEX	(ATTRX)		I/O: 3C0h INDEX					
В	тѕ	7	6	5	4	3	2	1	0			
N	т			b			а					
а	R/W	ATTR_IDX[4	TR_IDX[4:0] ATTR Index Bits 4-0. This index points to one of the internal registers of the attribute controller (ATTR) at addresses 3C1h/3C0h, for the next ATTR read/write operation. Since both the index and data registers are at the same I/O port, a pointer to the registers is necessary. This pointer can be initialized to point to the index register by a read instruction to the GENS1 register.									
b	R/W	ATTR_PALR	W_ENB	0	Palette Address = Allows the p = Allows mem fter loading the	processor to lo nory data to ac	cess the colo	r palette regis	ters.			

Notes:

1. After initialization, OUT commands toggle between writing to the ATTRX and the indexed Attribute registers.

2. The Attribute registers operate with the Palette registers to establish the video DAC PEL definition.

		PALETTE 00-0F (ATTR00_0F)				F)		C1h(R) h(W)	INDEX: 00 to 0Fh		
BI	TS	7	6	5	4	3	2	1	0		
V	т		a								
а	R/W	ATTR_PAL[5	i:0]		color on th	e text attribute e screen. Colo o, enabled for	or is disabled f	or those bits	ue to a display s that are set to ne.		

Notes:

- 1. The two high-order bits of a 6-bit palette register content are stored in ATTR14[3:2].
- 2. Color bits 4 and 5 are substituted by ATTR14[1:0] when color source select ATTR10[7] is logical one.
- 3. In all modes except 256-color mode, pre-mapped 4-bit pixel values are used as addresses into the 16 ATTR palette registers. These internal registers allow 16 colors to be displayed simultaneously. The actual color output is the content of these registers.
- 4. In 256-color mode, where 256 colors can be displayed simultaneously, these registers are used only to index into the external registers, also called the DAC color table, where the color output values are stored.
- 5. Modification of these 16 internal palette registers enables the user to access 64 different addresses in the DAC color table.

			MODE	CONTRO	DL (ATTR10))		C1h(R) II h(W)	NDEX: 10h	
BI	тѕ	7	6	5	4	3	2	1	0	
V	/Т	g	f	е		d	С	b	а	
а	R/W	ATTR_GRPH	I_MODE		Graphics/*Alpha 0 = Selects A/N 1 = Selects APa	: Alphanumeri	c mode			
b	R/W	ATTR_MONG	D_EN		Monochrome/*(0 = Selects colo 1 = Selects mo	or display				
С	R/W	ATTR_LGRP	'H_EN		 Line Graphics Enable 0 = Sets the ninth dot to the background color: mandatory for character fonts that do not use the line graphics character codes (C0h-DFh) 1 = Enables the special line graphics character codes for monochrome emulation, and sets the ninth dot of a line graphics character to be the same as the eighth dot. 					
d	R/W	ATTR_BLINK	(_EN							
e	R/W	ATTR_PANT	OPONLY		panning re 1 = For panning output to a	halves of a spl are split screen gister ATTR13	function from and byte par alf of a split so art of the next	affecting the onling bits CR	output of PEL F08[6:5] ng ATTR13	
f	R/W	ATTR_PCLK								
g	R/W	ATTR_CSEL_EN Alternate Color Source: 0 = Selects palette register bits 4 and 5 (in ATTR00-0F) as source for color output bits P4 and P5. 1 = Selects ATTR14[1:0] as source for color output bits P4 and P5, respectively.								

	OVERSCAN COLOR (ATTR11)								INDEX: 11h		
E	BITS	7	6	5	4	3	2 1 0				
	νт				ć	a					
а	R/W	V ATTR_OVSC[7:0] Overscan color									

1. These bits define the color of the border (overscan) area in 80-column modes. Overscan borders are not supported in 40-column modes.

2. Refer to the description and notes for registers ATTR00-0F for information regarding how the color bits are substituted: bits 6 and 7, ATTR14[3:2], and bits 4 and 5, ATTR14[1:0].

				AP ENAB	LE (ATTR	12)		C1h(R) h(W)	INDEX: 12h
BI	TS	7	6	5	4	3	2	1	0
V	T				b		;	а	
а	R/W	ATTR_MAP_	EN[3:0]	0 =		a from maps 3			output. used for video
b	R/W	ATTR_VSMU	JX[1:0]	Th Th 00 01 10		ix bits 0-1 ol bits for the r is also indica			

		HOI	RIZONTAL	PEL PAI	NNING (A	TTR13)		C1h(R) h(W)	INDEX: 13h
В	тѕ	7	6	5	4	3	2	1	0
١	/Т							a	·
а	R/W	ATTR_PPAN	I[3:0]		nift Count Bit ne shift count left.		cates how ma	any pixel	positions to shift
					COUNT VALUE	MODES 0+, 1+, 2+, 3+		NODE 13	ALL OTHER MODES
					0	1		0	0
					1	2		-	1
					2	3		1	2
					3	4		-	3
					4	5		2	4
					5	6		-	5
					6	7		3	6
					7	8		-	7
					8	0		-	-

A/N modes 0+, 1+, 2+, 3+, and 7+ are enhanced modes with 9x16 box size resolution. A/N mode 7 has a 9x14 box size. APA mode 13 has a 320x200 screen resolution.

			COLOR SELECT (ATTR14) I/O: 3C1h(R) 3C0h(W) IN									
В	ITS	7	6	5	4	3	2	1	0			
N	/т						b		а			
а	R/W	ATTR_CSEL	[1:0]	Co		bits 5 and 4 o F) when altern	vely. These bi f the internal p ate color sour	palette registe	rs			
b	R/W	ATTR_CSEL	[3:2]	Co	(addressing	bits of the 8-b g different par	vely. These to it color used fo ts of the DAC gisters ATTR(or rapid color color lookup t	set switching			

General VGA Status and Configuration Registers

			VGA	SLEEP (GENVS)		I/O: ′	102h	INDEX:-
BI	TS	7	6	5	4	3	2	1	0
V	'T								а
а	W	VGA_ENABL	E2	0 =	The VGA v operations	to the BIOS F are suspende		nds to memor	

Notes:

- 1. Writes to this register are controlled by GENENA[4].
- 2. Example of enabling the VGA:

MOV DX, 46E8 MOV AL, 10 OUT DX, AL MOV DX, 102 MOV AL, 1 OUT DX, AL MOV DX, 46E8 MOV AL, 8 OUT DX, AL

			FEATUR		OL (GENF	C)	I/O: 3CAh(R) 3?Ah(W) INDEX:					
В	ITS	7	6	5	4	3	2	1	0			
١	/т					а						
а	R/W	VSYNC_SEL	-	Ve 0 = 1 =	ertical Sync Se = Normal vert = Sync is 'ver	elect: ical sync tical sync' OR	ed' vertical dis	play enable'				

Notes:

? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

			INPUT	STATUS '	1 (GENS1))	I/O: 3	3?Ah	INDEX:-
BI	TS	7	6	5	4	3	2 1		0
v	'T				с	b			а
а	R	NO_DISPLA	Y	0 :	splay Enable: = Enables disp = Disables dis	play of video d	ata Jata		
b	R	VGA_VSTAT	US	Ve	ertical Retrace	Status			

(continued on next page)

			INPUT STATUS 1 (GENS1) I/O: 3?Ah I										
BI	TS	7	6	5	4	3	2	1	0				
V	т			l	C		а						
С	R	PIXEL_REAI	D_BACK[1:0]		ese two bits a of the attrik	24 21	to two of the e . Connections						

1. ? = B when GENMO[0]=0 (Monochrome emulation).

? = D when GENMO[0]=1 (Color/Graphics emulation).

2. Bits 0 and 3 can be used to synchronize the video buffer updates with the screen refresh cycles to minimize interference with the displayed image.

		MIS	CELLANE	ous oi	JT	PUT (GEN	IMO)		CCh(R) h(W)	INDEX:-
В	ITS	7	6	5		4	3	2	1	0
,	٧Т	e	Э	d				C	b	а
а	R/W	GENMO_MC	NO_ADDRES	SS			for monochro for color/grap		(0)	
b	R/W	VGA_RAM_E	ENABLE				PU access to v U access to v		(default value	e)
с	R/W	VGA_CKSEL	_[1:0]				Hz (640PELs) Hz (720PELs)			
d	R/W	ODD_EVEN_	_PGSEL		Th 0 =	(A/N mode his bit is ignore Selects odd	n Even/Odd d s: 0,1,2,3, and d when bit GF (high) video r n (low) video r	I 7). RA06[1] or SE nemory locati	ons	led.
e	R/W	VGA_VSYNC VGA_HSYNC			(x= Sc	=Bit not used f creen Size: 00 = Rese 01 = Scree 10 = Scree 11 = Scree nc Polarity: x0 = H Re x1 = H Re 0x = V Re	,	lines lines lines active high active low active high	e and retrace s	sync polarity

Note:

In VGA mode, this register controls I/O port and video buffer addressing, and selects the dot clock frequency.

			INPUT	STATUS) (GENS0)		I/O: 3	3C2h	INDEX:-
BI	тѕ	7	6	5	4	3	2	1	0
V	Τ	b			а				
а	R	SENSE_SWI	ТСН	0 :	vitch Sense: = Output state = Output state	of the DAC lo of the DAC lo	okup table. C okup table. C	Comparators a Comparators a	are inactive are active
b	R	CRT_INTR		0 :	RT Interrupt: = Vertical retr = Vertical retr	ace interrupt is ace interrupt is	s cleared s pending		

		VIDEO S	UBSYSTE	M ENABL	E (BOARD) (GENEN	B) I /O:	3C3h	INDEX:-
В	BITS 7 6 5 4 3 2 1								0
١	VT								а
а	R	VGA_ENABL	_E1		GA Enable: ead back statu	is of GENVS[(0](0102)		

		VIDEO SI	VIDEO SUBSYSTEM ENABLE (ADD ON) (GENENA) I/O: 46E8h INDEX:-										
BI	TS	7 6 5		5	4	3 2		1	0				
V	Τ				b	а							
а	V	VGA_ENABL	-E0	0 =	 VGA Enable: 0 = Puts VGA video subsystem into sleep mode, during which the video subsystem only responds to memory read operations to BIOS ROM, and I/O writes to register 102h. All other I/O or wemory read/write operations are suspended. 1 = Enables I/O and memory address decoding of VGA video subsystem, if GENVS[0] is also a logical one. 								
b	W	GENVS ENA	BLE	0 =	ENVS[0] Enab = Disables I/C = Enables I/O	write to GEN							

In mach64VT, the decode of this register is optionally controlled by the PCI configuration space. Refer to Chapter 6, PCI Configuration Registers.

VGA Sequencer Registers

			SEQUE	NCER IND	DEX (SEQX)			3C4h	INDEX:-
B	TS	7	6	5	4	3	2	1	0
<u>۱</u>	/т							а	
а	R/W	SEQ_IDX[2:0)]	Th	address 30	s to one of the C5h, for the ne re described o	xt SEQ read/	write operation	at I/O port n. These

			R	ESET (SE	Q00)		I/O: 3C5h INDEX: 00		
В	ITS	7	6	5	4	3	2	1	0
١	/т							b	а
а	R/W	N SEQ_RST0b Synchronous Reset Bit 0: 0 = Follows SEQ00[1] 1 = Allows the sequencer to run unless SE							
b	R/W	SEQ_RST1b		0	and H/V sy	racter clock, a			video memory o

Notes:

- 1. Bits 0 and 1 must both be zero (sequencer halted) before any clock select bits are changed; for example, clock selects GENMO[3:2] or SEQ01[0:3].
- 2. The SEQ00[0:1] bits must both be set to one for normal operation.

			CLOC	K MODE	(SEQ01)		I/O:	3C5h I	NDEX: 01h	
BI	TS	7	6	5	4	3	2	1	0	
V	'T			е	b d c a					
а	R/W	SEQ_DOT8		0 1 M	 8/9 Dot Clocks: 0 = Selects 9-dot character clocks 1 = Selects 8-dot character clocks Modes 0, 1, 2, 3, 7 use 9-dot characters. To change bit 0, GENVS[0] must be logical zero. 					
b,c	R/W	SEQ_SHIFT4 SEQ_SHIFT2		00 01 10	Shift 4, Shift Load bits 00 = Loads video serializers every character clock 01 = Loads video serializers every other character clock 10 = Loads video serializers every fourth character clock 11 = Loads video serializers every fourth character clock					
d	R/W	SEQ_PCLKE	3Y2	0	Dot Clock: 0 = Indicates dot clock is Master clock 1 = Indicates dot clock is Master clock divided by 2 Typically, 320 and 360 horizontal modes use divide-by-2 to provide column displays. To change this bit SEQ00[0:0] must first be to zero					
е	R/W	SEQ_MAXB	W		 Allows CPU Blanks the s video mem memory. 		ables video-g	eneration logi	c access to	

To change this register, SEQ00[1 or 0] must first be logical zero.

			MAF	MASK (SEQ02)		I/O: 3	3C5h I	NDEX: 02h
В	тѕ	7	6	5	4	3	2	1	0
۱.	т					d	С	b	а
а	R/W	SEQ_MAP0_	EN	0	Enable Map 0: 0 = Disables write access to memory map 0 1 = Enables write access to memory map 0				
b	R/W	SEQ_MAP1_	EN	0	nable Map 1: = Disables wr = Enables wri				
с	R/W	SEQ_MAP2_	EN	0	nable Map 2: = Disables wr = Enables wri				
d	R/W	SEQ_MAP3_	EN	0	nable Map 3: = Disables wr = Enables wri				

1. In 4 bit per PEL graphics modes, when the value of this register is set to '1111' (0Fh), the processor can complete a 32-bit write operation in one memory cycle.

- 2. In text modes, the CPU only needs to access maps 0 and 1; therefore, this register should have a value of 03h.
- 3. When in odd/even modes, the map mask value for maps 0 and 1 should be same as the map mask value for maps 2 and 3.
- 4. Memory map updating such as bit map layering can be selectively enabled or disabled using bits in this register. For pixel-oriented operations, the graphics controller provides better control.

		CH	IARACTE	RMAP	SELECT (SE	Q03)	I/O: :	3C5h I	NDEX: 03h
BI	тѕ	7	6	5	4	3	2	1	0
V	т			f e d		С	b	а	
b,a,e	R/W	SEQ_FONTE	3[2:0]		Character Map Select B Bits 2:0				
d,c,f	R/W	SEQ_FONTA	\[2:0]		Character Map Select A Bits 2:0				

Notes:

4.

1. The above register may seem unusual in the way that bits 1,0,4 and 3,2,5 are grouped. This is correct and the above notation is valid.

2. Extended memory SEQ04[1] must be logical in order to enable this select function; otherwise, the first 8K of map 2 is always selected.

3. Any changes made to this register take effect at the start of the next character line on the display.

*Bit Pattern	Map Selected	Offset into Map
000	0	0K
001	1	16K
010	2	32K
011	3	48K
100	4	8K
101	5	24K
110	6	40K
111	7	56K

		МЕМО	RY MODE (SEQ04)	I/O: :	3C5h INDEX: 04h					
В	TS	3	2	1	0					
١	/т	С	b	а						
а	R/W	SEQ_256K	Indicates 256K of	Extended Memory: Indicates 256K of video memory is present. Also enables character map selection in SEQ03.						
b	R/W	SEQ_ODDEVEN	access. Ev addresses 1 = Enables sec modes. Ma	 Odd/Even: 0 = Uses the LSB CPU address bit A0 to select which memory map to access. Even CPU addresses access maps 0 and 2; odd addresses access maps 1 and 3. 1 = Enables sequential access to video data maps for odd/even modes. Map Mask register bits SEQ02[0:3] identify which maps are to accessed for each CPU address. 						
С	R/W	SEQ_CHAIN	register bits at any one $1 = \ln 256$ color A1, A0 0 0 0 1 1 0 1 1 When Chain is lo SEQ04[2] a the only bit Chain does not a		maps are to be accessed PU address bits AO and A1: ver odd/even mode bits even mode, SEQ04[2] is (double odd/even) o memory.					

VGA DAC Registers

			DACN	I/O: 0	3C6h	INDEX:-				
	BITS	7	6	5	4	3	2	1	0	
	νт				;	а				
а	R/W	DAC_MASK	DAC_MASK Participating bit positions in the mask for DAC lookup are set to one.							

	DAC READ CURRENT COLOR INDEX (DAC_R_INDEX)						I/O: 0	93C7h	INDEX:-
В	ITS	7	6	5	4	3	2 1 0		
,	٧Т				ä	a			
а	R/W	DAC_R_INDEX The current read index for a DAC operation - increments after every third read of DAC_Data (03C9). Also see DAC_W_Index (03C8h							

Note:

Only bit 0 of this register is readable. Writing the DAC at 03C8h results in a read-back value of 0. Writing the DAC at 03C7h results in a read-back value of 1.

_			DA		CURREN AC_W_I	IT COLOR I NDEX)	NDEX	I/O: 0)3C8h	INDEX:-
	Bľ	TS	7	6	5	4	3	2	1	0
	v	т								
;	a	R/W	DAC_W_IND	θEX		The current write (03C7h)	e index for a D	AC operation	. Also see DA	AC_R_INDEX

			DAC DATA (DAC_DATA) I/O: 03C9h INDEX:								
В	TS	7	6	5	4	3	2	1	0		
١	VT a										
а	R/W	DAC_DATA		D.	AC Data						

VGA Graphics Controller Registers

		GRAPHICS CONTROLLER INDEX (GRAX)					I/O: 3CEh		INDEX:-	
BITS		7	6	5	4	3	2	1	0	
VT						a				
а	R/W	GRPH_IDX[3	3:0]	Th	This index is used to address one of the internal registers of the graphics controller (GRAC) at I/O port 3CFh. These are described on the following pages.					

		SET/RESET			GRA00)		I/O: 3CFh		INDEX: 00h		
BITS		7	6	5	4	3	2	1	0		
νт						d	С	b	а		
а	R/W	GRPH_SET_	_RESET[0]	0 =	write if write the enable All eight bits write if write	Reset Map 0: All eight bits of buffer map 0 are to be written with zeros during CPU write if write mode is 0 (See write mode bits GRA05 [1:0], and if the enable set/reset bit GRA01[0] is a logical one. All eight bits of buffer map 1 are to be written with one during CPU write if write mode is 0 or 3 (See write mode bits GRA05[1:0]), and if the enable set/reset bit GRA01[0] is a logical one.					
b	R/W	GRPH_SET_	_RESET[1]	0 =	 Set/Reset Map 1: 0 = All eight bits of buffer map 1 are to be written with zeros during CPU write if write mode is 0 (see write mode bits GRA05[1:0]), and if the enable set/reset bit GRA01[1] is a logical one. 1 = All eight bits of buffer map 1 are to be written with ones during CPU write if write mode is 0 or 3 (see write mode bits GRA05[1:0]), and if the enable set/reset bit GRA01[1] is a logical one. 						
С	R/W	GRPH_SET_RESET[2]			 Set/Reset Map 2: 0 = All eight bits of buffer map 2 are to written with zeros during CPU write if write mode is 0 (see write mode bits GRA05[1:0]), and if the enable set/reset bit GRA01[2] is a logical one. 1 = All eight bits of buffer map 2 are to be written with ones during CPU write if write mode is 0 or 3 (See write mode bits GRA05[1:0]), and if the enable set/reset bit GRA01[2] is a logical one. 						
d	R/W	GRPH-SET-I	RESET[3]	0 =	the enable All eight bits write if write	of buffer map e mode is 0 (S set/reset bit G	See write mod GRA01[3] is a 3 are to be wr 3 (See write n	e bits GRA05 logical one. itten with one node bits GRA	[1,0], and if s during CPU		

			ENABLE	SET/RES	SET (GRA0	1)	I/O: 3	3CFh II	NDEX: 01h	
BI	TS	7	6	5	4	3	2	1	0	
V	/Т					d	с	b	а	
а	R/W	GRPH_SET_	RESET_ENA	0	Enable Set/Reset Map 0: 0 = If write mode is 0 (GRA05[1:0]=0), CPU data is written to memory map 0. 1 = If write mode is 0 (GRA05[1:0]=0), GRA00[0] is written to all eight bits of memory map 0.					
b	R/W	GRPH_SET_RESET_ENA[1]		0	nable Set/Rese = If write mode map 1. = If write mode bits of men	e is 0 (GRA05			-	
С	R/W	GRPH_SET_RESET_ENA[2]		0	 Enable Set/Reset Map 2: 0 = If write mode is 0 (GRA05[1:0]=0), CPU data is written to memory map 2. 1 = If write mode is 0 (GRA05[1:0]=0), GRA00[2] is written to all eight bits of memory map 2. 					
d	R/W	GRPH_SET_RESET_ENA[3]		0	nable Set/Rest = If write mode map 3. = If write mode bits of men	e is 0 (GRA05			-	

Note:

This register has no effect on data source select when the video memory map write mode is 1, 2, or 3.

			COLOR	COMPAR	2)	I/O:	3CFh II	NDEX: 02h		
BIT	S	7	6	5	4	3	2	1	0	
VT	r					а				
a	R/W	GRPH_CCOMP[3:0]		In As	register are bit from eac long as the C maps are lo of the PEL position. he Color Don' from the ma	GRA05[3] beir e compared wi ch map), from color Don't car ogical ones, th value, and the t Care bit for c ap is excluded	ith the 4-bit Pl bit positions e bits (GRA07 e compare tal e CPU reads one map is log d from the con), the four bits EL value (mad 0 to 7. 7[0:3]) for the r kes place only a one for a ma gical zero, the npare, and onl generate the b	le up of one respective on those bits tch in that bit latched data ly the	

			DATA	ROTATE	(GRA03)		I/O: :	3CFh I	NDEX: 03h	
В	ITS	7	6	5	4	3	2	1	0	
١	νт			b a						
а	R/W	GRPH_ROT	ATE[2:0]	Sp	 Rotate Count Bits 2-0. Specifies the number of bit positions the CPU data is to be rotated to the right, before doing the function selected by bits 3 and 4 above and subsequent bit mask select and write operations. Rotation is carried out only in write modes 0 and 3. In these two modes, the CPU data is rotated first, then operated on by the function bits GRA03[4:3], then updated by the bit mask register GRA05. 					
b	R/W	GRPH_FN_SEL[1:0]			GRA05. Function Select Bits 1 and 2 00 = CPU data replaces latched data 01 = CPU data ANDed with latched data 10 = CPU data ORed with latched data 11 = CPU data XORed with latched data These functions are performed on the CPU data before the selected bits are updated by the bit mask register, and then written to the display buffers.					

			READ M		CT (GRA0	4)	I/O: :	3CFh I	NDEX: 04h
B	TS	7	6	5	4	3	2	1	0
N	/т								а
а	R/W	GRPH_RMA	Ρ		the latches represents		to the CPU ea oits (0 and 1) o here the CPU	ach time a CP define a value is to read da	PU read loads that ta - useful in

Notes:

- 1. In Odd/Even modes, the value may be binary 00 or 01 for chained bit maps 0 and 1.
- 2. In mode 13h, where all maps are chained to form one map and in read mode 1, this register is ignored.

			GRAP		E (GRA05)		I/O: (BCFh	INDEX: 05h
В	TS	7	6	5	4	3	2	1	0
۱.	/Т			d	С	b			а
a	R/W	GRPH_WRITE_MODE[1:0]		- 0(U 0 ⁻ 1(Byte-or Pixel-or predefined pdates are cor graphics co bits are all function bit GRA08[7:0 Each map These latcl operation. Pixel-orient combined b functions s masked by Pixel-orient manipulation CPU dates the Bit Massion use in w below) are are update The set set/reset b 	wo dimension iented: to upd iented: to upd pixel value. htrolled using vo pontroller, name zeros, CPU d is GRA03[4:3] 0]. is written with hes are loaded ted: The four with the pixel vo GRA08[7:0]. ted, write mode ons: ata is rotated b sk register bits vrite mode 3, t to be updated d directly from vreset pixel va its GRA00[0:3]	s: late any or all date any or all values in the ir ely GRA00-GF ata updates th , and each ma the contents of d by a previous low-order bits values from the RA03[4:3], an de 3 involves t oy GRA03[2:0]. GRA08[7:0]. to determine w d by the set/res	maps. eight pixel tternal regi 2008. If en e latches a p is update f its resper s CPU mel of the CPL e maps ac d each ma he followin , then logic The result which pixels set value, a uced as fol d with eac	s using sters of this able set/reset according to the ed as masked by ctive latches. mory read J data are cording to the p is updated as g data cal ANDed with is an 8-bit mask s (from step 2 and which pixels lows: The h pixel value
b	R/W	W GRPH_READ1 Read Mode: 0 = Byte-oriented: The CPU reads the memory mane Read Map Select Register GRA04 unless SEC (Chain). In the case where SEQ04[3] is logicated bits A0 and A1 are used to read the specified 1 = Pixel-oriented, 4-bit value: The value is made to each map. The CPU reads the result of the criteria pixel value ANDed with the 4-bit color compared bit in the Color Don't Care register (GRA07) is position is excluded from the compare. A materia position in the byte to be read out by the CPU process is repeated for all eight pixels.			ess SEQ04 s logical on ecified me made up c of the comp compare re tA07) is ze A match ne CPU as	[3] is logical one le, CPU address mory map. of one bit from parison of this gister value. If a ro, that bit causes that			
С	R/W	CGA_ODDE	VEN	O U	memory m	CGA emulatio mode when i	n, this bit enat t is logical one 4[2] are set to	. Normally	

(continued on next page)

			GRAPI	HIC MODE	(GRA05)		I/O: :	3CFh I	NDEX: 05h
В	TS	7	6	5	4	3	2	1	0
١	/Т			d	с	b	a		а
d	R/W	GRPH_PACP GRPH_OES	K	Bit Th MC Th 00 01	registers. DD0:M0D7, M ⁻ representa e LSB bits are MSB M0D0 M0E M1D0 M1E M2D0 M2E M3D0 M3E M1D0 M1E M1D1 M1E M3D0 M3E M3D1 M3E = When GRA consequent		2D0:M2D7, ar ata. rst: 3 M0D4 M0D3 3 M1D4 M1D3 3 M2D4 M2D3 3 M3D4 M3D3 6 M0D0 M0D3 7 M0D1 M0D3 6 M2D0 M2D3 7 M2D1 M2D3 5 is ignored - 1 cked pixels. 5 is ignored - 1	LSB 5 M0D6 M0D 5 M1D6 M1D 5 M2D6 M2D 5 M3D6 M3D 5 M3D6 M3D 2 M0D4 M0D 3 M0D5 M0D 2 M2D4 M2D 3 M2D5 M0D maps 0:3 data	07 are O/P $7 \rightarrow C0$ $7 \rightarrow C1$ $7 \rightarrow C3$ $7 \rightarrow C4$ O/P $6 \rightarrow C0$ $7 \rightarrow C1$ $6 \rightarrow C2$ $7 \rightarrow C3$ a is

		GRA	APHICS N	IISCELLA	NEOUS (G	GRA06)	I/O: 3	3CFh II	NDEX: 06h	
В	ITS	7	6	5	4	3	2	1	0	
١	νт		·			(C	b	а	
а	R/W	GRPH_GRA	ORPH_GRAPHICS		 Graphics/Alphanumeric Mode: 0 = Selects A/N (alphnumeric mode): display data bypasses the graphics controller and latches into the attribute controller. 1 = Selects APA (graphics) mode: color data is serialized in the shift registers before it is passed to the attribute controller. 					
b	R/W	GRPH_ODDEVEN			CPU address	Maps to Even: dress bit AO is replaced by a higher order address bit. Even (0 and 2) are select when A0 = zero; odd maps are selected A0 = one.				
С	R/W	GRPH_ADRSEL[1:0]			 Memory Map Read Bits 1 and 0, respectively: 00 = Maps the display buffer into processor address A0000h for 128K bytes. 01 = Maps the display buffer into processor address A0000h for 64K bytes. 10 = Maps the display buffer into processor address B0000h for 32K bytes. 11 = Maps the display buffer into processor address B8000h for 32K bytes. 					

			COLOR [DON'T CA	RE (GRA	07)	I/O: 3	3CFh I	NDEX: 07h
В	TS	7	6	5	4	3	2	1	0
۱.	/т					d	с	b	а
а	R/W	GRPH_XCA	GRPH_XCARE[0]						
b	R/W	GRPH_XCA	RE[1]	Ig	Ignore Map 1.				
с	R/W	GRPH_XCARE[2]		Ig	Ignore Map 2.				
d	R/W	GRPH_XCARE[3]		Ig	nore Map 3.				

Notes:

- 1. A byte is latched from each memory map in a CPU read, mode 1. The color value of a pixel (PEL) is made up of a bit from each map. The 4-bit PEL value is ANDed with the four bits from this register.
- 2. Any bit (map x) indicated by a logical zero in this register causes the corresponding bit in the PEL value to exclude itself from the comparison with the color compare bits. The remaining bits are ANDed with the 4-bit color compare register, where a match produces a logical one for that bit position in the CPU data byte as read data.
- 3. For example, if register value is "1111", the entire 4-bit PEL value is compared with the color compare bits. If any bit position matches, a logical one in the corresponding bit position is generated as the CPU reads the data.

			BIT	MASK (G	RA08)		I/O: :	3CFh I	NDEX: 08h	
В	ITS	7	6 5 4 3				2	1	0	
	/т				a					
а	R/W	GRPH_BMSI	K [7:0]		memory co Data is from updating of This registe	de 3 involves	our maps in the ogical one in a bits that are in ctly in write me	e same bit po a bit position n the same bi odes 0-2 only	sition. allows t position. . Bit masking	

This page intentionally left blank.

Appendix A VGA BIOS Function Calls

VGA Controller

AH = 0

; set video mode (AL = video mode)

AL	Mode/Type	Resolution	Dim/Colour	Start Address
IBM Co	mpatible Modes:			
00h	color/alpha	640x200	40x25/BW	B800h:0
01h	color/alpha	640x200	40x25/16	B800h:0
02h	color/alpha	640x200	80x25/BW	B800h:0
03h	color/alpha	640x200	80x25/16	B800h:0
04h	color/graphics	320x200	40x25/4	B800h:0
05h	color/graphics	320x200	40x25/BW	B800h:0
06h	color/graphics	320x200	80x25/BW	B800h:0
07h	mono/alpha	720x350	80x25/BW	B000h:0
0Dh	color/graphics	320x200	40x25/16	A000h:0
0Eh	color/graphics	640x200	80x25/16	A000h:0
0Fh	mono/graphics	640x350	80x25/BW	A000h:0
10h	color/graphics	640x350	80x25/16	A000h:0
11h	color/graphics	640x480	80x30/BW	A000h:0
12h	color/graphics	640x480	80x30/16	A000h:0
13h	color/graphics	320x200	80x25/256	A000h:0

AL	MODE/TYPE	RESOLUTION	DIM/COLOR	START ADDRESS
ATI En	hanced Modes:			
21h	color/alpha	800x400	100x25	B800h:0
22h	color/alpha	800x480	100x30	B800h:0
23h	color/alpha	1056x200	132x25/16	B800h:0
33h	color/alpha	1056x352	132x44/16	B800h:0
55h	color/graphics	1024x768	128x48/16	A000h:0
61h	color/graphics	640x400	80x25/256	A000h:0
62h	color/graphics	640x480	80x30/256	A000h:0
63h	color/graphics	800x600	100x42/256	A000h:0
64h	color/graphics	1024x768	128x48/256	A000h:0
6Ah	color/graphics	800x600	100x42/16	A000h:0

AH = 1 ; set cursor type

- CH = start line of cursor
- CL = end line of cursor
- CX = 1F00h to turn off cursor

AH = 2 ; set current cursor position

BH = page number of the desired page DH, DL = row and column of cursor

AH = 3 ; read current cursor position at the specified page

BH = page number of the desired page On Exit: CH, CL = cursor type DH, DL = row, column of cursor at the specified page

AH = 4 ; read current light pen position (VGA does not support light pen)

AH = 5 ; select active display page

AL = page number to be active

AH = 6	; scroll active page up
	AL = number of lines to be scrolled
	= 0; blanks the whole window
	BH = attribute of blanked line
	CH, CL = row, column of upper left hand corner of scrolling window DH, DL = row, column of lower right hand corner of scrolling window
	Dif, DL = low, column of lower right hand collier of scioling window
AH = 7	; scroll active page down
	AL = number of lines to be scrolled
	= 0; blanks the whole window
	BH = attribute of blanked line
	CH, CL = row, column of upper left hand corner of scrolling window DH, DL = row, column of lower right hand corner of scrolling window
	DI, DL – Tow, column of tower right hand comer of scronning window
AH = 8	; read character/attribute at current active cursor position
	BH = page number of the desired page
	On Exit:
	AL = character AH = attribute (for text mode only)
	The autobale (for text mode only)
AH = 9	; write character/attribute at current cursor position of a specified page
	AL = character to be written
	BL = attribute of character
	BH = page number CX = count of character to write
	CX = Count of character to write
AH = 0Ah	; write character at current cursor position of a specified page
	AL = character to be written
	BH = page number
	CX = count of character to write
AH = 0Bh	; set color palette, valid for modes 4 and 5 only
	BH = 0; selects the background color
	BL = color value used with that color id
	BH = 1; selects the palette to be used BL = 0; palette value is $GREEN(1)/RED(2)/BROWN(3)$
	= 1; palette value is CYAN(1)/MAGENTA(2)/WHITE(3)
	· , Finite for the contract of
AH = 0Ch	; write dot (graphics mode)
	BH = page number
	DX, CX = row, column of dot position AL $=$ color value of dot (if hit 7 of AL is ON) the color value will XOP with the surrent
	AL = color value of dot (if bit 7 of AL is ON, the color value will XOR with the current value of the dot)

AH = 0Dh ; read dot (graphics mode)

AH = **0Eh** ; write teletype to active page

AL = character to write

BL = foreground color in graphics mode

AH = **0Fh** ; return current video setting

On Exit:

AL = current mode

- AH = number of column (in characters) on screen
- BH = current active display page

AH = 10**h** ; set palette registers

AL = 0	; set individual palette register
	BL = palette register
	BH = palette value
AL = 1	; set overscan register
	BH = palette value
AL = 2	; set all palette and overscan registers
	ES:DX = pointer to palette value table (17 bytes long), bytes 0 - 15 are
	palette values for 16 palette registers, byte 16 is palette value
	for the overscan register
AL = 3	; toggle between intensity/blinking bit
	BL = 0; set intensity on
	BL = 1; set blinking on
AL = 7	; read individual palette register
	BL = palette register
	On Exit:
	BH = palette value
AL = 8	; read overscan register
	On Exit:
	BH = overscan value
AL = 9	; read all palette and overscan registers
	ES:DX = pointer to 17-byte buffer
	On Exit:
	ES:DX = pointer to palette value table (17 bytes long), bytes 0 - 15 are
	palette values for 16 palette registers, byte 16 is palette value
	for the overscan register
AL = 10h	; set a color register
	BX = color register
	DH = red value
	CH = green value
	CL = blue value
AL = 12h	; set a block of color registers
	BX = first color register to be set

	CX = total number of color registers to be set ES:DX = pointer to table of color register values in red, green, blue, red,
	green, blue , format
AL = 13h	; set color pages (only valid for 16 color modes)
	BL = 0 ; select color page mode
	BH $= 0$; select 4 pages of 64 color registers each
	BH = 1; select 16 pages of 16 color registers each
	BL = 1; select color page
AT 171	BH = color page number
AL = 15h	; read a color register
	BX = color register On Exit:
	DH = red value
	CH = green value
	CL = blue value
AL =17h	; read a block of color registers
ML = 1/M	BX = first color register to be set
	CX = total number of color registers to be set
	ES:DX = pointer to buffer to store the color register values
	On Exit:
	ES:DX = pointer to table of color register values in red, green, blue, red,
	green, blue,, format
AL =18h	;update DAC mask register
	BL = new mask value
AL =19h	;read DAC mask register
	BL = value read from DAC mask register
AL = 1Ah	; read current color page information
	BL = current color page mode
	BH = current color page
AL = 1Bh	; change color values to gray shades
	BX = first color register to be changed
	CX = total number of color registers to be changed
; character	generator routines
AL = 00	; load user specified character set
	ES:BP = pointer to character table
	CX = number of characters to be stored
	DX = character of offset into current table
	BL = block to load
	BH = bytes per character
AL = 01	; load 8x14 character set
	BL = block to load
AL = 02	; load 8x8 character set
	BL = block to load
AL = 03	; set block specifier
	BL = character generator block specifier
AL = 04	; load 8x16 character set
	BL = block to load
NT / /1 / /1	

Note that the following functions, AL = 1?h, are similar to the functions AL = 0?h, except that

AH=11h

with AL=1?h, the number of rows on the screen is recalculated.

AL = 10h	; load user specified character set
	ES:BP = pointer to character table
	CX = number of characters to be stored
	DX = character of offset into current table
	BL = block to load
	BH = bytes per character
AL = 11h	; load 8x14 character set
	BL = block to load
AL = 12h	; load 8x8 character set
	BL = block to load
AL = 14h	; load 8x16 character set
	BL = block to load
AL = 20h	; update alternative character generator pointer (INT 1F)
	ES:BP = pointer to table
AL = 21h	; update alternative character generator pointer (INT 43)
	ES:BP = pointer to table
	CX = bytes per character
	BL = row specifier
	= 0; DL = rows
	= 1; rows $= 14$
	= 2; rows $= 25$
	= 3; rows = 43
AL = 22h	; update alternative character generator pointer (INT 43) with the 8x14
	; character generator in ROM
AL = 23h	; update alternative character generator pointer (INT 43) with the 8x8
	; character generator in ROM
AL = 24h	; update alternative character generator pointer (INT 43) with the 8x16
	; character generator in ROM
AL = 30h	; return EGA character generator information
	BH = 0; return current INT 1F pointer
	= 1 ; return current INT 43 pointer
	= 2; return pointer to 8x14 character generator
	= 3; return pointer to 8x8 character generator (lower)
	= 4; return pointer to 8x8 character generator (upper)
	= 5; return pointer to alternate 9x14 alpha
	= 6; return pointer to 8x16 character generator
	= 7; return pointer to alternate 9x16 alpha
	On Exit:
	ES:BP = pointer to table as requested
	25.21 Pointer to table as requested

CX = points (pixel column per char)

DL = rows (scan line per char)

```
AH = 12h
              ; return current EGA settings/print screen routine selection
              BL = 10h
                          ; return EGA information
                          On Exit:
                          BH = 0; color mode in effect
                               = 1 ; monochrome mode in effect
                          BL = 3; 256k video memory installed (always return 3)
                          CH = simulated value of feature bits
                          CL = simulated EGA/VGA dip switch setting
              BL = 20h
                          ; select alternate print screen routine for EGA graphics mode
              BL = 30h
                          ; select number of scan lines for alpha modes
                          AL = 0; 200 scan lines
                               = 1 : 350 scan lines
                               = 2; 400 scan lines
                          On Exit:
                          AL = 12h; function supported
              BL = 31h
                          ; default palette loading during mode set
                          AH = 0
                          AL = 0; enable
                               = 1 : disable
                          On Exit:
                          AL = 12h; function supported
              BL = 32h
                          : video controller
                          AL = 0; enable video controller
                               = 1 : disable video controller
                          On Exit:
                          AL = 12h; function supported
              BL = 33h
                          ; summing of color registers to gray shades
                          AL = 0; enable summing
                               = 1; disable summing
                          On Exit:
                          AL = 12h; function supported
              BL = 34h
                          ; cursor emulation
                          AL = 0; enable cursor emulation
                               = 1; disable cursor emulation
                          On Exit:
                          AL = 12h; function supported
              BL = 36h
                          ; video screen on/off
                          AL = 0 : video screen on
                               = 1; video screen off
                          On Exit:
                          AL = 12h; function supported
               BX=5506h : VGAWONDER BIOS extension
                          AL = video mode
                          BP = 0FFFFh
                          DI = 0
                          SI = 0
                          On Exit:
                          if BP is not equal to 0FFFFh
                               then ES:BP = pointer to parameter table
                          if SI is not equal to 0
                               then ES:SI = pointer to parameter table supplement
```

AH = 13h; write string to specified page ES:BP = pointer to string CX = length of string BH = page number DH.DL = starting row and column of cursor in which the string is placed AL = 0: cursor is not moved BL = attributestring = (char, char, char, char, ...) AL = 1; cursor is moved BL = attributestring = (char, char, char, char, ...)AL = 2; cursor is not moved string = (char, attr, char, attr, ...) AL = 3; cursor is moved string = (char, attr, char, attr, ...) AH=1Ah ; read display combination code AL = 0; read current display combination information

On Exit AL = 1AhBL = current active display codeBH = alternate display code Display codes 00 - No display 01 - MDA mode 02 - CGA mode 04 - EGA in color mode 05 - EGA in monochrome mode 07 - VGA with analog monochrome monitor 08 - VGA with analog color monitor ;set display combination information AL = 1BL = active displayBH = inactive displayOn Exit AL = 1Ah; return VGA functionality and state information BX = 0ES:DI = pointer to buffer used to store the functionality and state information (minimum 64 bytes) On Exit: AL = 1Bh

ES:DI = pointer to buffer with functionality and state information

[DI+00h] word = offset to static functionality information

[DI+02h] word = segment to static functionality information

[DI+04h] byte = current video mode

[DI+05h] word = character columns on screen

[DI+07h] word = page size in number of bytes

[DI+09h] word = starting address of current page

AH=1Bh

[DI+0Bh] word = cursor position for eight display pages

[DI+1Bh] word = current cursor type

[DI+1Dh] byte = current active page

[DI+1Eh] word = current CRTC address

[DI+20h] byte = current 3x8 register setting

[DI+21h] byte = current 3x9 register setting

[DI+22h] byte = number of character rows on screen

[DI+23h] word = number of scan lines per character

[DI+25h] byte = active display combination code

[DI+26h] byte = alternate display combination code

[DI+27h] word = number of colors supported in current mode

[DI+29h] byte = number of pages supported in current mode

- [DI+2Ah] byte = 0 ; 200 scan lines in current mode
 - = 1; 350 scan lines in current mode
 - = 2 ; 400 scan lines in current mode
 - = 3 ; 480 scan lines in current mode

[DI+2Bh] byte = Reserved

- [DI+2Ch] byte = Reserved
- [DI+2Dh] byte = miscellaneous state information

bits 7, 6 = Reserved

- bit 5 = 0; background intensity
- = 1 ; blinking
- bit 4 = 1; cursor emulation active
- bit 3 = 1; mode set default palette loading disabled
- bit 2 = 1; monochrome display attached
- bit 1 = 1; summing active
- bit 0 = 1; all modes on all display active
- [DI+2Eh] byte = Reserved
- [DI+2Fh] byte = Reserved
- [DI+30h] byte = Reserved
- [DI+31h] byte = 3; 256Kb of video memory available
- [DI+32h] byte = save pointer information
 - bits 7, 6 = Reserved
 - bit 5 = 1; DCC extension active
 - bit 4 = 1; palette override active
 - bit 3 = 1; graphics font override active
 - bit 2 = 1; alpha font override active
 - bit 1 = 1; dynamic save area active
 - bit 0 = 1; 512 character set active
- [DI+33h] 13 bytes = Reserved

static functionality table format

- 0 function not supported
 - 1 supported function

[00h] byte = supported video mode

- bit 7 = mode 07h
- bit $6 = mode \ 06h$
- bit 5 = mode 05h
- bit 4 = mode 04h
- bit 3 = mode 03h
- bit 2 = mode 02h

```
bit 1 = \text{mode } 01\text{h}
            bit 0 = \text{mode } 00h
[01h] byte = supported video mode
            bit 7 = \text{mode 0Fh}
            bit 6 = mode 0Eh
            bit 5 = mode 0Dh
            bit 4 = \text{mode 0Ch}
            bit 3 = \text{mode 0Bh}
            bit 2 = \text{mode } 0\text{Ah}
            bit 1 = \text{mode } 09h
            bit 0 = \text{mode } 08h
[02h] byte = supported video mode
            bits 7 to 4= Reserved
            bit 3 = mode 13h
            bit 2 = \text{mode } 12h
            bit 1 = \text{mode } 11\text{h}
            bit 0 = \text{mode } 10h
[03h] to [06h] = Reserved
[07h] = scan lines available in text modes
            bits 7 to 3 = Reserved
            bit 2 = 400 scan lines
            bit 1 = 350 scan lines
            bit 0 = 200 scan lines
[08h] = number of character fonts available in text modes
[09h] = maximum number of character fonts that can be active in text modes
[0Ah] byte = miscellaneous functions
            bit 7 = \text{color paging}
            bit 6 = \text{color palette (color register)}
            bit 5 = EGA palette
            bit 4 = cursor emulation
            bit 3 = default palette loading when mode set
            bit 2 = character font loading
            bit 1 = \text{color palette summing}
            bit 0 = all modes supported on all displays
[0Bh] = scan lines available in text modes
            bits 7 to 4 = Reserved
            bit 3 = DCC supported
            bit 2 = background intensity/blinking control
            bit 1 = \text{save/restore supported}
            bit 0 = light pen supported
[0Ch] to [0Dh] = Reserved
[0Eh] = save pointer functions
            bits 7 to 6 = Reserved
            bit 5 = DCC extension supported
            bit 4 = palette override
            bit 3 = graphics font override
            bit 2 = alpha font override
            bit 1 = dynamic save area
            bit 0 = 512-character set
[0Fh] = Reserved
```

AH=1Ch ; save and restore video state AL = 0; return video save state buffer size requirement CX = requested states bit 0 = video hardware state bit 1 = video BIOS data area bit 2 = video DAC state and color registers On Exit: AL = 1ChBX = number of 64 bytes block required for the states requested in CX AL = 1; save video state CX = requested states (see AL=0) ES:BX=pointer to buffer to store the video states information On Exit: AL = 1ChAL = 2; restore video state CX = requested states (see AL=0) ES:BX = pointer to buffer with previous saved video states information On Exit: AL = 1Ch

This page intentionally left blank.

Appendix B Programming PLL Registers

Introduction

The PLL registers on the next page are accessed indirectly through the CLOCK_CNTL register on *page 4-38*. Example reads and writes of the PLL registers are given below. The address CLOCK_CNTL0 represents bits 7:0, CLOCK_CNTL1 bits 15:8, and CLOCK_CNTL2 bits 23:16.

PLL Register Read

iow8 CLOCK_CNTL1 PLL_ADDR	; PLL address to read (PLL_WR_EN = 0)
ior8 CLOCK_CNTL2 PLL_DATA	; data is put into variable PLL_DATA

PLL Register Write

iow8 CLOCK_CNTL1 PLL_ADDR | PLL_WR_EN; PLL address to write and PLL_WR_EN = 1 iow8 CLOCK_CNTL2 PLL_DATA ; PLL data to write

32 bit I/O write:

iow32 CLOCK_CNTL CLOCK_SEL | PLL_ADDR | PLL_WR_EN | PLL_DATA

Clock Sources

All clock signals in *mach64*VT/3D RAGE are derived from three master clocks — Bus Clock (CPUCLK), MCLK and VCLK. MCLK and VCLK each has four different source choices. These include internal PLLs (PLLMCLK and PLLVCLK), external clock pins (CPUCLK and EXTFREQ0 or EXTFREQ1), XTALIN pin and the PLL reference (PLLREFCLK), which XTALIN/reference divider setting. When RESETb goes active, all clocks switch to using CPUCLK as their source. After reset, either the test vectors will select external sources or the BIOS will select internal sources.

PLL Registers

	PLL Registers					
Addr	Register Name	Field	Bits	Function		
0	Reserved					
1	PLL_MACRO_CNTL			Controls to analog PLL macro (default = D4h)		
		PLL_PC_GAIN	2:0	Charge-pump gain setting		
		PLL_VC_GAIN	4:3	VCGEN gain setting		
		PLL_DUTY_CYC	7:5	Duty cycle control for pixel clock PLL		
2	PLL_REF_DIV		7:0	Reference divider setting (default = 36h)		
3	PLL_GEN_CNTL			MCLK and general control (default = 4Fh)		
		PLL_OVERRIDE	0	1 : Power-down PLL		
		PLL_MRESET	1	1 : Reset MCLK PLL		
		OSC_EN	2	1 : Oscillator enable		
		EXT_CLK_EN	3	1 : Force DCLK pin output to tri-state		
		MCLK_SRC_SEL	6:4	000 : MCLK_SRC = PLLMCLK 001 : MCLK_SRC = PLLMCLK / 2 010 : MCLK_SRC = PLLMCLK / 4 011 : MCLK_SRC = PLLMCLK / 8 100 : MCLK_SRC = CPUCLK 101 : MCLK_SRC = DCLK 110 : MCLK_SRC = PLLREFCLK 111 : MCLK_SRC = XTALIN		
		(reserved)	7	Used in CT and LT		
4	MCLK_FB_DIV		7:0	MCLK feedback divider (default = 97h, 40 MHz)		
5	PLL_VCLK_CNTL	VCLK_SRC_SEL	1:0	Pixel clock control (default = 04h) 00 : VCLK = CPUCLK 01 : VCLK = DCLK 10 : VCLK = XTALIN 11 : VCLK = PLLVCLK/(VCLK Post Divider)		
		PLL_PRESET	2	Reset VCLK PLL		
		VCLK_INVERT	3	Invert VCLK to get opposite duty cycle		
		ECP_DIV	5:4	00 : ECP = VCLK 01 : ECP = VCLK / 2 10 : ECP = VCLK / 4 11 : reserved		
		ERATE_GT_XRATE	6	Set when ERATE greater than XRATE 0 = Normal 1 = Always request		
		SCALER_LOCK_EN	7	Set when scaler requires exclusive memory access 0 = Normal 1 = Lock out memory requesters of lower priority than scaler		
6	VCLK_POST_DIV			Post dividers for VCLK 0–3 (default = 6Ah)		
		VCLK0_POST	1:0	Post divider for VCLK setting 0		
		VCLK1_POST	3:2	Post divider for VCLK setting 1		
		VCLK2_POST	5:4	Post divider for VCLK setting 2		
		VCLK3_POST	7:6	Post divider for VCLK setting 3		
7	VCLK0_FB_DIV		7:0	Feedback divider for VCLK 0 (default = BEh)		

(continued on next page)

	PLL Registers					
Addr	Register Name	Field	Bits	Function		
8	VCLK1_FB_DIV		7:0	Feedback divider for VCLK 1 (default = D6h)		
9	VCLK2_FB_DIV		7:0	Feedback divider for VCLK 2 (default = EEh)		
10	VCLK3_FB_DIV		7:0	Feedback divider for VCLK 3 (default = 88h)		
11	PLL_XCLK_CNTL			Extended control of MCLK (default = 00h)		
		XCLK_MCLK_RATIO	1:0	Division of XCLK and MCLK from MCLK_SRC 00 : XCLK = MCLK_SRC, MCLK = MCLK_SRC 01 : XCLK = MCLK_SRC/2, MCLK = MCLK_SRC/4 10 : XCLK = MCLK_SRC/2, MCLK = MCLK_SRC/3 11 : XCLK = MCLK_SRC/3, MCLK = MCLK_SRC/4		
		MFB_TIMES_4_2b	2	Selects ratio of MCLK_FB_DIV to effective feedback value 0 = PLLMCLK feedback = 2 * MCLK_FB_DIV 1 = PLLMCLK feedback = 4 * MCLK_FB_DIV		
		XCLK_MCLK_TST	3	Sets XCLK and MCLK to their respective tester clocks 0 = Normal 1 = Tester mode (override XCLK/ MCLK ratio)		
		(reserved)	7:4			
12	PLL_FCP_CNTL	FCP_POST_DIV	3:0	Controls FCP clock to video port (default = 41h) FCP post divider setting 0 : FCP_SRC is off other N : FCP_SRC = FCP_REF/N		
		FCP_SRC_SEL	6:4	000 : FCP_REF = PLLMCLK 001 : FCP_REF = PLLMCLK / 2 010 : FCP_REF = PLLMCLK / 4 011 : FCP_REF = PLLMCLK / 8 100 : FCP_REF = CPUCLK 101 : FCP_REF = DCLK 110 : FCP_REF = PLLREFCLK 111 : FCP_REF = XTALIN		
		DCLK_BY2_EN	7	0 : DCLK = VCLK in VGA Mode 13 1 : DCLK = VCLK/2 in VGA Mode 13		
13	VFC_CNTL (VT-A4)			Control of VESA feature connector (default = 00h)		
	(VT-A3 = reserved)	DCLK_INVb	0	0 : Invert DCLK output, DCLK = not VCLK 1 : DCLK = VCLK		
		DCLKBY2_EN	1	DCLK frequency select for VGA Mode 13. No effect in other display modes. 0 : DCLK 25 MHz in VGA Mode 13 1 : DCLK 12.5 MHz in VGA Mode 13		
		VFC_2PHASE	2	Selects VFC operation mode in 15 and 16 bpp. No effect in other display modes. 0 : Single phase operation in 15 and 16 bpp 1 : Two phase operation in 15 and 16 bpp		
		VFC_DELAY	4:3	PIXEL and BLANKB hold adjustment 00 : Least delay to 11 : most delay		
		(reserved)	7:5			

(continued on next page)

	PLL Registers						
Addr	Register Name	Field	Bits	Function			
14	PLL_TEST_CRTL			PLL test mode control (forced to 00h when not in PLL test mode from GEN_TEST_CTRL register).			
		TST_SRC_SEL	4:0	Selects source of PLL test clock.			
		TST_DIVIDERS	5	1 : Open reference and feedback dividers for test			
		PLL_MASK_READb	6	0 : Mask PLL_TEST_COUNT(2:0) and disable test output pin			
		(reserved)	7				
15	PLL_TEST_COUNT		7:0	PLL test mode counter (read only, no default). Writing any value will reset to 00h.			

Notes:

- 1. PLL_MACRO_CNTL settings control gain and duty cycle of analog PLL's. Gain bits affect lock and jitter of PLL's. This register should only be adjusted by the BIOS.
- 2. The reference divider setting must be in the range of 2h to FFh.
- 3. Oscillator enable is only supported in NEC foundry due to limitations in oscillator macro cells. Oscillator will always run in other foundries, no matter how this bit is set.
- 4. The effective feedback divider for PLLMCLK is controlled by MFB_TIMES_4_2b and is either 4*MCLK_FB_DIV or 2*MCLK_FB_DIV. The effective feedback divider for PLLMCLK should not be set below 100h (i.e., 80h or 40h). The effective feedback divider for PLLVCLK is always twice the current VCLKx_FB_DIV value. The suggested range for VCLK feedback dividers is 80h to FFh. Setting the effective feedback divider below the suggested limits results in coarser control of output frequency and possibility of clock jitter. Feedback dividers below 02h will not function.
- 5. Pixel clock (VCLK) post-divider values are: 00=divide-by-1; 01=divide-by-2; 10=divide-by-4; 11=divide-by-8.
- 6. All clock sources can be programmed to exceed the frequency limitations of the hardware. Do not attempt to program the PLL registers without a good understanding of the frequency limitations of all clock nets.
- 7. PLL_TEST_CTRL and PLL_TEST_COUNT are used only during manufacturing tests of analog PLL's.

External Clock Support

The external clock sources are supported by *mach64*VT, primarily for testing but also on a board if required. The control signals for the external clock chip are multiplexed on the feature connector pins. The feature connector may not be used when the external clock sources are active.

Switching to external clocks is done as follows:

- 1. Disable the feature connector (DAC_FEA_CON_EN@DAC_CNTL, defaults to disabled).
- 2. Set EXT_CLK_EN@PLL_GEN_CNTL = 1 to enable external clock support pins (defaults to high).
- 3. Make sure the external clock signals are being driven into the chip.
- 4. Set MCLK_SRC_SEL@PLL_GEN_CNTL = 101 for EXTFREQ1 as MCLK. Also set VCLK_SRC_SEL@PLL_VCLK_CNTL = 01 for EXTFREQ0 as VCLK.

Switching to internal clocks at boot time is done as follows:

- 1. Program reference, feedback and VCLK post dividers to the desired settings.
- 2. Write to PLL_GEN_CNTL, setting PLL_OVERRIDE = 0, PLL_MCLK_RST = 0 and OSC_EN = 1.
- 3. Write to PLL_VCLK_CNTL, setting PLL_VCLK_RST = 0.
- 4. Allow 5 ms for internal PLL to lock frequencies.
- 5. Set MCLK_SRC_SEL@PLL_GEN_CNTL = 001.
- 6. Set VCLK_SRC_SEL@PLL_VCLK_CNTL = 11.

Frequency Limits

The design of *mach64*VT imposes the following limits on the clock source frequencies:

- MCLK may not exceed 68 MHz or the limit imposed by memory type.
- VCLK is limited by the current display mode:
 - In VGA, it may not exceed 80 MHz.
 - In 4 bpp and 8 bpp, it may be up to 135 MHz.
 - In 15 to 32 bpp, it may not exceed 80 MHz.
- CPUCLK may not exceed 33 MHz.

The clock going out the feature connector (DCLK) may not exceed 40 MHz according to the VESA specification. In practice, a higher limit (possibly 80 MHz) will be attempted. When VCLK is set to exceed the limit, then DAC_FEA_CON_EN@DAC_CNTL must be set low to turn off the feature connector.

Frequency Synthesis Description

To generate a specific output frequency, the reference (M), feedback (N), and post dividers (P) must be loaded with the appropriate divide-down ratios. The internal PLLs for CT and ET are optimized to lock to output frequencies in the range from 135 MHz to 68 MHz. The PLLs for other members of the *mach64*VT family are optimized to lock with output frequencies from 100 MHz to 200 MHz. Setting the PLLs to lock outside these ranges can result in increased jitter or total malfunction (no lock).

The PLLREFCLK lower limit is found based on the upper limit of the PLL lock range (e.g., 135 MHz) and the maximum feedback divider (255) as follows:

Minimum PLLREFCLK = 135 MHz / (2 * 255) = 265 kHz

This is then used to find the reference divider based on the XTALIN frequency.

XTALIN is normally 14.318 MHz and the maximum reference divider M is found by:

M = Floor[14.318 MHz / 265 kHz] = 54 (the Floor function means round down)

Using the maximum reference divider allowed (in this case is 54) ensures the best clock step resolution. However, lower reference dividers might be used to improve clock jitter.

Feedback dividers (N) should kept in the range 80h to FFh. The effective feedback divider is twice the register setting due to the structure of the internal PLL. The post divider (P) may be either 1, 2, 4, or 8.

To determine the N and P values to program for a target frequency, follow the procedure below (where R is the frequency of XTALIN and T is the target frequency):

1. Calculate the value of P. Find the value of Q from the equation below and use it to find P in the following table:

Q Range	Result
more than 255	M too big
127.5 to 255	P = 1
63.5 to 127.5	P = 2
31.5 to 63.5	P = 4
16 to 31.5	P = 8
less than 16	M too small

$$Q = (T * M) / (2 * R)$$

2. Calculate the value of N by using the value of P obtained in step 1. N is given by:

$$N = Q * P$$

The result N is rounded to the nearest whole number.

3. Determine the actual frequency. Given P and the rounded-off N, the actual output frequency is found by:

Output_Frequency = (2 * R * N) / (M * P)

For example:

If R = 14.318 MHz and M = 54, then Q = 75.43 (if the desired frequency is 40MHz). The table indicates P = 2 for this Q value. The calculation of N = Q*P gives 150.85 and rounding up gives N = 151. The final output frequency is therefore 40.04 MHz.

The maximum frequency that can be synthesized is the upper limit of PLL lock range for the specific version of *mach64*VT. It may be 135, 160, 200, or 240 MHz. The minimum frequency that can be synthesized depends on the largest post divider available. For VCLK, P = 8 is always available and minimum VCLK = (2*R*128)/(M*8). For MCLK, post divider settings of 4 and 8 are not available on some versions of the controller. The minimum frequency setting for MCLK is limited to the correspondingly higher values for these controllers.

Sample divider settings for typical Pixel and Memory clock frequencies when R = 14.318 MHz and M = 54:

Target Freq. (MHz)	Post Divider P	Feedback Register N	Feedback Register N	Actual Freq. (MHz)	Percent Error (%)
135	1	255	FFh	135.23	0.17
126	1	238	EEh	126.21	0.17
110	1	207	CFh	109.77	0.21

Target Freq. (MHz)	Post Divider P	Feedback Register N	Feedback Register N	Actual Freq. (MHz)	Percent Error (%)
100	1	189	BDh	100.23	0.23
92.4	1	174	AEh	92.27	0.14
80	1	151	97h	80.08	0.1
75	1	141	8Dh	74.77	0.31
65	2	245	F5h	64.96	0.06
56.6	2	213	D5h	56.48	0.21
50.2	2	189	BDh	50.11	0.19
49.95	2	188	BCh	49.85	0.2
45	2	170	AAh	45.08	0.18
44.95	2	170	AAh	45.08	0.29
40	2	151	97h	40.04	0.1
36	2	136	88h	36.06	0.17
32.97	4	249	F9h	33.01	0.12
32	4	241	F1h	31.95	0.16
31.5	4	238	EEh	31.55	0.16
28.322	4	214	D6h	28.37	0.17
25.175	4	190	BEh	25.19	0.06

Duty Cycle Control

The DAC clock (VCLK) is the fastest clock on a *mach64*VT chip. When displayed in 1280x1024 or higher resolutions, VCLK will exceed 100 MHz. The DAC circuitry is sensitive to the duty cycle of VCLK in this range. Duty cycle adjustment for VCLK is available through PLL_DUTY_CYC@PLL_MACRO_CNTL and VCLK_INVERT@PLL_VCLK_CNTL.

The optimal settings for the duty cycle control bits have been determined by ATI during testing under extreme conditions of temperature and voltage. The BIOS sets the proper values for each version of *mach64*VT. There should be no need to change these settings.

PLL Gain Settings

The internal PLLs have two settings that affect their gain characteristics. These are set by PLL_PC_GAIN and PLL_VC_GAIN in the PLL_MACRO_CNTL register. They will affect optimal lock ranges and jitter characteristics. ATI has determined the optimal settings for these bits under extreme operating conditions. The BIOS sets these bits to optimal values for each version of *mach64*VT. There should not be any need to modify these values.

This page intentionally left blank.

Index

Numerics

VGA Modes, display Modes 0/1, 9-7 Modes 2/3. 9-7 Modes 4/5. 9-8 Mode 6, 9-8 Mode 7, 9-7 Mode D, 9-8 Mode E, 9-8 Mode F, 9-8 Mode 10, 9-8 Mode 11, 9-8 Mode 12, 9-9 9-9 Mode 13, Mode 23, 9-7 Mode 27. 9-7 Mode 33. 9-7 Mode 37. 9-7 Mode 54, 9-9 Mode 55. 9-9 Mode 62, 9-9 Mode 63. 9-9 Mode 64, 9-9 HOST_DATA, 4-77

A

Accelerator CRTC and DAC registers, 1-3 Accelerator CRTC, 4-20 Clock control, 4-38 DAC control, 4-39 Hardware cursor, 4-33 Listings, 4-20 Overscan, 4-31 Accelerator CRTC registers, 4-20 ALPHA_START, 6-14 ALPHA_X_INC, 6-14 ALPHA_Y_INC, 6-14 ALPHA_Y_INC, 6-14 Aperture modes, 2-1 Illustration, 2-2 ATI Enhanced Modes, A-2 Attr Index register (ATTRX), 10-18 ATTRxx, VGA attribute controller registers, 10-18-10-21

B

BIOS function calls, VGA Character generator routines, A-5 Print screen routine selection, A-7 Read character/attribute, A-3 Read current cursor position, A-2Read current light pen position, A-2 Read display combination code, A-8Read dot, A-4 Return current EGA settings, A-7 Return current video setting, A-4 Return VGA functionality and state information, A-8 Save and restore video state. A-11 Scroll active page down, A-3 Scroll active page up, A-3Select active display page, A-2Set color palette, A-3Set current cursor position, A-2 Set cursor type, A-2Set palette registers, A-4 Set video mode, A-1 Write character at current cursor position, A-3Write character/attribute, A-3 Write dot, A-3 Write string to specified page, A-8Write teletype to active page, A-4Bit Mask register (GRA08), 10-35 Block 0/1, 2-1, 2-3 Block diagrams, VGA, 9-3 BLUE_START, 6-7, 6-13 BLUE_X_INC, 6-7, 6-13 BLUE_Y_INC, 6-13 BUF0_CAP_ODD_OFFSET, 5-25 BUF0 OFFSET, 5-26 BUF0 PITCH, 5-27 BUF1_CAP_ODD_OFFSET, 5-28 BUF1 OFFSET, 5-29 BUF1_PITCH, 5-30

Bus control registers, 4-8 BUS_CNTL, 4-8

C

CAPTURE_CONFIG, 5-18 CAPTURE_HEIGHT_WIDTH, 5-20 CAPTURE_Y_X, 5-21 Character generator, VGA, 9-6 BIOS function call, A-5 Character Map Select register (SEQ03), 10-27 Clock control registers, 4-38 Clock Mode register (SEQ01), 10-26 Clock sources, *B-1* CLOCK CNTL, 4-38 CLR_CMP_CLR, 4-98 CLR_CMP_CNTL, 4-100 CLR_CMP_MSK, 4-99 Color Compare register (GRA02), 10-31 Color compare registers, 4-98 Color Don't Care register (GRA07), 10-35 Color Map Enable register (ATTR12), 10-20 Color Select register (ATTR14), 10-21 Command FIFO registers, 4-101 CONFIG_CHIP_ID, 4-17 CONFIG_CNTL, 4-16 CONFIG_STAT0, 4-18 Configurable memory aperture VGA, 8-2 Configuration registers, 4-16 Context control registers, 4-102 CONTEXT_LOAD_CNTL, 4-103 CONTEXT_MASK, 4-102 CRC SIG, 4-42 Cross reference Accelerator and multimedia registers, 3-1 VGA-compatible registers, 10-2 CRT Mode register (CRT17), 10-16 CRTC Accelerator registers, 4-20 VGA, <u>9-4</u> CRTC Index register (CRTX), 10-5 CRTC Overflow register (CRT07), 10-8 CRTC_GEN_CNTL, 4-27 CRTC_H_SYNC_STRT_WID, 4-21 CRTC_H_TOTAL_DISP, 4-20 CRTC_INT_CNTL, 4-26 CRTC OFF PITCH, 4-25 CRTC_V_SYNC_STRT_WID, 4-23 CRTC_V_TOTAL_DISP, 4-22 CRTC_VLINE_CRNT_VLINE, 4-24

CRTxx, VGA CRTC registers, 10-5-10-17 CUR_CLR0, 4-33 CUR_CLR1, 4-34 CUR_HORZ_VERT_OFF, 4-37 CUR_HORZ_VERT_POSN, 4-36 CUR_OFFSET, 4-35 Cursor End register (CRT0B), 10-10 Cursor Location (High Byte) register (CRT0E), 10-11 Cursor Location (Low Byte) register (CRT0F), 10-12 Cursor Start register (CRT0A), 10-10

D

DAC, 9-3, 9-5 DAC control registers, 4-39 DAC Data register, 10-29 DAC Mask register, 10-29 DAC Read Current Color Index register, 10-29 DAC registers, VGA, 10-29 DAC Write Current Color Index register, 10-29 DAC_CNTL, 4-40 DAC REGS, 4-39 Data path registers, 4-88 Data Rotate register (GRA03), 10-32 Destination trajectory registers, 4-43 Display memory, VGA Organization, 9-18 Paging, *9-13* Plane selection, 9-12 Display modes Extended VGA summary, 9-16 VGA mode resolutions and colors, 9-2 $DP_BKGD_CLR, 4-88$ DP_CHAIN_MSK, 4-91 DP FOG CLR, 4-89 DP_FRGD_CLR, 4-89 DP_MIX, 4-95 DP_PIX_WIDTH, 4-92 DP_SRC, 4-97 DP WRITE MSK, 4-90 Draw engine Control registers, 1-3 Color compare, 4-98 Command FIFO. 4-101 Context control, 4-102 Data path, 4-88 Draw engine composite control, 4-104 Draw engine status, 4-106 Host data, 4-77

Listings, 4-77 Pattern, 4-79 Scissors, 4-82 Trajectory registers, 1-3 Destination trajectory, 4-43 Listings, 4-43 Source trajectory, 4-62DST BRES DEC, 4-43 DST_BRES_ERR, 4-44 DST BRES INC, 4-45 DST_BRES_LNTH, 4-46 DST_CNTL, 4-48 DST HEIGHT, 4-51 DST_HEIGHT_WIDTH, 4-52 DST_OFF_PITCH, 4-53 DST_WIDTH, 4-54 DST_X, 4-55 DST_X_WIDTH, 4-56 DST_Y, 4-57 DST Y X, 4-58 Duty cycle control, B-7

E

Emulations, 9-14 Enable Set/Reset register (GRA01), 10-31 End Horizontal Blanking register (CRT03), 10-6 End Horizontal Retrace register (CRT05), 10-7 End Vertical Blanking register (CRT16), 10-15 End Vertical Retrace register (CRT10), 10-12 End Vertical Retrace register (CRT11), 10-13 EXT_CRTC_GEN_CNTL, 4-29, 4-30 Extended modes (VGA) Graphics, 9-19 Summary, 9-16 Text, 9-18 External clock support, B-4

F

Feature Control register (GENFC), 10-22 FIFO_STAT, 4-101 FOG_START, 6-14 FOG_X_INC, 6-14 FOG_Y_INC, 6-14 Frequency limits, B-5 Frequency synthesizer, B-5

G

GEN_TEST_CNTL, 4-14

General I/O control registers, 4-3 General/test registers, 4-14 GENxx, General VGA register, 10-22-10-24 GP_IO, *4-4* GP_IO_CNTL, 4-3 Graphic Mode register (GRA05), 10-33 Graphics Controller Index Decode register (CRT1E,1F), *10-17* Graphics Controller Index register (GRAX), 10-30 Graphics Miscellaneous register (GRA06), 10-34 GRAxx, VGA graphics controller registers, 10-30-10-35 GREEN START, 6-13 GREEN_X_INC, 6-2, 6-12 GREEN_Y_INC, 6-12GUI_STAT, 4-106 GUI_TRAJ_CNTL, 4-104

H

Hardware cursor registers, 4-33
High-resolution and wide-column graphics/text modes, 9-2
Horizontal Display Enable End register (CRT01), 10-5
Horizontal Pel Panning register (ATTR13), 10-20
Horizontal Total register (CRT00), 10-5
Host data registers, 4-77
HOST_CNTL, 4-78
HW_DEBUG, 4-19

Ι

I/O mapping, 2-3 Determining absolute address, 2-4 Determining base address, 2-4
IBM compatible VGA modes, A-1
Input Status 0 register (GENS0), 10-24
Input Status 1 register (GENS1), 10-22

L

LEAD_BRES_DEC, 4-43 LEAD_BRES_ERR, 4-44 LEAD_BRES_INC, 4-45 LEAD_BRES_LNTH, 4-46 Line Compare register (CRT18), 10-17

M

mach64 VESA BIOS Extension, 8-2

VGA controller, 8-2 VGA functional blocks, 9-3 Address decoder, 9-4 Attribute controller. 9-5 CRT controller, 9-4 Graphics controller, 9-5 Sequencer controller, 9-4 VGA memory aperture, 8-2 VGA programming overview, 8-1 Map Mask register (SEQ02), 10-27 MEM_CNTL, 4-10 MEM_VGA_RP_SEL, 4-13 MEM_VGA_WP_SEL, 4-12 Memory control registers, 4-10 Memory mapping, 2-3 Determining memory mapped address, 2-3 Non-Intel based, 2-5 Memory maps VGA, 9-3 Host address space, 9-10 Memory Mode register (SEQ04), 10-28 Memory start addresses VGA, 9-2 Miscellaneous Output register (GENMO), 10-23 Mode Control register (ATTR10), 10-19 Modes, aperture, 2-1 Illustration, 2-2 Modes, VGA Extended, 9-14 Graphics, 9-19 Text, 9-18 Setting by BIOS call, 9-16 Multimedia registers, 1-4 Reference, 5-1

N

Notation conventions, 1-5

0

Offset register (CRT13), 10-14 OVERLAY_GRAPHICS_KEY_CLR, 5-1 OVERLAY_GRAPHICS_KEY_MSK, 5-2 OVERLAY_KEY_CNTL, 5-3 OVERLAY_SCALE_CNTL, 5-8 OVERLAY_SCALE_INC, 5-10 OVERLAY_TEST, 5-11 OVERLAY_VIDEO_KEY_CLR, 5-4 OVERLAY_VIDEO_KEY_MSK, 5-5 OVERLAY_Y_X, 5-6 OVERLAY_Y_X_END, 5-7 Overscan Color register (ATTR11), 10-19 Overscan registers, 4-31 OVR_CLR, 4-31 OVR_WID_LEFT_RIGHT, 4-32 OVR_WID_TOP_BOTTOM, 4-32

P

PAT CNTL, 4-81 PAT_REG0, 4-79 PAT REG1, 4-80 Pattern registers, 4-79 PCI configuration space, 1-4, 7-1 registers Adapter_ID, 7-3 ASIC_ID, 7-2 BIOS ROM, 7-3 Bist, 7-3 Block_Decoded_I/O_Base_Address, 7-3 Cache Line Size, 7-2 Command, 7-1 Device ID, 7-1 Header Type, 7-2 Interrupt_Line, 7-4 Interrupt_Pin, 7-4 Latency_Timer, 7-2 Memory_Aperture_Base_Address, 7-3 User-Defined_Configuration, 7-4 Vendor_ID, 7-1 **Pixels** Packed vs. planar, 9-11 PLL registers, B-1 Clock sources, B-1 External clock support, B-4 PLL gain settings, B-7 Register tables, *B*-2 Preset Row Scan register (CRT08), 10-9

R

RAM Data Latch Readback register (CRT22), 10-17 Read Map Select register (GRA04), 10-32 RED_START, 6-7, 6-12 RED_X_INC, 6-2, 6-12 RED_Y_INC, 6-12 Register classifications, 1-2 Register listings By address, 3-1 By mnemonic, 3-5

VGA compatible registers, 10-2 **Register summary** Accelerator CRTC and DAC, 1-3 Draw engine control, 1-3 Draw engine trajectory, 1-3 PCI configuration space, 1-4 Scaler and 3D operations, 1-4 Setup and control, 1-2 Standard VGA, 1-5 VT multimedia registers, 1-4 Registers How to find, 1-5I/O mapping, 2-3 Mapping, introduction, 2-1 Memory mapping, 2-3 Reset register (SEQ00), 10-25

S

S_START, *6-9* S_X_INC2, 6-8 S_XINC_START, 6-9 S_XY_INC2, 6-9 S Y INC, 6-2, 6-9 S_Y_INC2, 6-8 SC_BOTTOM, 4-86 SC LEFT, 4-82 SC_LEFT_RIGHT, 4-84 SC_RIGHT, 4-83 SC_TOP, 4-85 SC_TOP_BOTTOM, 4-87 SCALE_3D_CNTL, 6-4 SCALE_HACC, 6-7, 6-12 SCALE_HEIGHT, 6-2 SCALE_UV_HACC, 6-7, 6-13 SCALE VACC, 6-3 SCALE WIDTH, 6-2 SCALE_X_INC, 6-2, 6-12 SCALE_XUV_INC, 6-7, 6-13 SCALE_Y_INC, 6-2, 6-12 SCALE_Y_OFF, 6-1 SCALE Y PITCH, 6-2, 6-9 Scaler and 3D operations registers, 1-4 SCALER_HEIGHT_WIDTH, 5-12 SCALER THRESHOLD, 5-13 Scissors registers, 4-82 Scratch pad registers, 4-6 SCRATCH REGO, 4-6 SCRATCH REG1, 4-7 Sequencer Index register (SEQX), 10-25 SEQxx, VGA sequencer registers, 10-25-10-28

Set/Reset register (GRA00), 10-30 Setup and control registers, 1-2 Bus control, 4-8Configuration, 4-16 General I/O control, 4-3 General/test, 4-14 Listings, 4-3 Memory control, 4-10 Scratch pad, 4-6 Source trajectory registers, 4-62SRC_CNTL, 4-62 SRC_HEIGHT1, 4-64 SRC_HEIGHT1_WIDTH1, 4-65 SRC_HEIGHT2, 4-66 SRC_HEIGHT2_WIDTH2, 4-67 SRC_OFF_PITCH, 4-68 SRC_WIDTH1, 4-69 SRC_WIDTH2, 4-70 SRC_X, 4-71 SRC_X_START, 4-72 SRC_Y, 4-73 SRC Y START, 4-74 SRC Y X, 4-75 SRC_Y_X_START, 4-76 Start Address (High Byte) register (CRT0C), 10-11 Start Address (Low Byte) register (CRT0D), 10-11 Start Horizontal Blanking register (CRT02), 10-6 Start Horizontal Retrace register (CRT04), 10-6 Start Vertical Blanking register (CRT15), 10-15 Start Vertical Retrace register (CRT10), 10-12

T

T_START, 6-10 T_X_INC2, 6-9 T_XINC_START, 6-10 T_Y_INC2, 6-10 T_Y_INC2, 6-10 TEX_(0-10)_OFFSET, 6-8 TEX_0_OFF alias, 6-1 TEX_7_OFF alias, 6-2 TEX_8_OFF alias, 6-2 TEX_SIZE_PITCH, 6-11 TRAIL_BRES_DEC, 4-59 TRAIL_BRES_INC, 4-59 TRAIL_BRES_INC, 4-59 TRAIL_BRES_INC, 4-59

U

Underline Location register (CRT14), 10-14

V

Vertical Display Enable End register (CRT12), 10-13 Vertical Total register (CRT06), 10-7 VESA BIOS Extension (VBE), 8-2 VGA alphanumeric modes, 9-6 VGA controller, 8-2 BIOS function calls. A-1 Functional blocks Address decoder, 9-4 Attribute controller, 9-5 CRT controller, 9-4 Graphics controller, 9-5 Sequencer controller, 9-4 High-resolution and wide-column graphics/text modes, 9-2IBM compatible modes, 9-2 Memory maps, 9-3 Memory organization, 9-18 Overview. 9-1 VGA DAC registers, 10-29 VGA display modes, 9-5 alphanumeric modes, 9-6 graphics modes, 9-8 IBM compatible modes, A-1 VGA programming overview, 8-1 VGA registers Summary, 2-5 VGA Sleep register (GENVS), 10-22 Video Subsystem Enable (Add on) register (GENENA), 10-24 Video Subsystem Enable (Board) register (GENENB), 10-24 VIDEO_CONFIG, 5-14 VIDEO_FORMAT, 5-16 VIDEO_SYNC_TEST, 5-24 VMC_ARG0, 5-33 VMC ARG1, 5-34 VMC CMD, 5-35 VMC_CONFIG, 5-31 VMC_SNOOP_ARG0, 5-37 VMC SNOOP ARG1, 5-38 VMC_STATUS (Debug1/2 Modes), 5-32 VMC_STATUS (Default Mode), 5-32 VMC_STATUS (Schedule Mode), 5-32 VMC_STRM_DATA[i] registers, 5-39

VT multimedia registers, 1-4

Ζ

```
Z_CNTL, 4-61
Z_OFF_PITCH, 4-60
Z_START, 6-14
Z_X_INC, 6-13
Z_Y_INC, 6-14
```


User Response Form

In our continuing effort to improve our products and documentation, ATI Technologies Inc. is anxious to obtain your feedback on this manual. Using a scale of 1 to 5, with 5 representing the most favorable, and 1 the least favorable, please circle the number that best reflects your opinion. Everyone who completes and returns this questionnaire will receive an ATI souvenir (e.g. golf shirt, mug etc.) depending on availability.

Name and Organization						
Title	Years	in pos	sition			
Manual _mach64 Register Reference Guide – ATI-264VT &	3D RAC	ΞE]	Release	e No.		
How do you rate the manual, generally?	1	2	3	4	5	
Is the technical level of the manual appropriate?	1	2	3	4	5	
Are operating instructions clear and complete?	1	2	3	4	5	
Are terms and concepts explained clearly?	1	2	3	4	5	
Is the manual well organized?	1	2	3	4	5	
Are the tables easy to understand?	1	2	3	4	5	
Is the artwork clear and easy to understand?	1	2	3	4	5	
How helpful is the index?	1	2	3	4	5	
How does this manual compare with other, similar manuals you have used?	1	2	3	4	5	
Comments:						
What did you like best about this manual ?						
What did you like least about this manual ?						
Are there any errors/omissions in the manual?						

THANK YOU FOR YOUR COMMENTS! Please mail to: ATI Technologies Inc., 33 Commerce Valley Drive East, Thornhill, Ontario, Canada L3T 7N6. You may also fax this to (905) 882-2620 (Attention: Technical Publications)

Perfecting the PC