

P/N: BIO-C012XX1-05

RELEASE 5.0

© Copyright 1993, 1994

ATI Technologies, Inc.

The information contained in this document has been carefully checked and is believed to be entirely reliable. No responsibility is assumed for inaccuracies. ATI reserves the right to make changes at any time to improve design and supply the best product possible.

All rights reserved. This document is subject to change without notice and is not to be reproduced or distributed in any form or by any means without prior permission in writing from ATI Technologies Inc.

ATI, mach8, mach32, mach64, GRAPHICS ULTRA PRO, GRAPHICS ULTRA+, GRAPHICS ULTRA, GRAPHICS VANTAGE, 8514-ULTRA, and VGAWONDER are trademarks of ATI Technologies Inc. All other trademarks and product names are properties of their respective owners.

Contents

Chapter 1 Introduction

About This Manual	1-1
Overview	1-1
Extended Video Modes	1-1
Supported BIOS Functions	1-2
Extended Graphics Accelerators	1-3
Customization	1-3

Chapter 2 Getting Started

Contents of the Kit	2-1
Other Tools	2-1
Copying Files	2-1
File Listings By Directories	2-2

Chapter 3 Video BIOS

Overview	3-1
VGA Compatibility	3-1
Symbolic Constants	3-1
88800GX RAMDAC Specific Constants	3-2
88800GX BUS Specific Constants	3-3
Clock Chip Specific Constants	3-3
DDC Specific Constants	3-4
Memory Timing Specific Constants	3-4
ATI264-CT Specific Constants	3-5
EEPROM and Built in CRT parameters Specific Constants	3-6
VESA BIOS Extension Constants	3-6
Custom BIOS	3-6
BIOS Initialization	3-7
Sign-On Messages	3-7
Character Fonts	3-7
Monitor Support - ATI88800GX/CX/EX	3-7
Internal and External Data Storage - EEPROM, CRTC Tables	s 3-8
8-/16-Bit ROM Selection, ISA Only	3-9
Clock Chip	3-9
Relocating ROM BIOS	3-10
Relocating the Video BIOS between C000:0 and E000:0	3-10
Paging Out the Initialization Code	3-10
PCI-Specific Implementation	3-11
VESA BIOS Extension Implementation	3-11
Making Non-Paged BIOS	3-13
Binary Files - Procedure Outline	3-13
Generating Binary Files - Parameters	3-13

Appendix A BIOS Function Calls

VGA Controller	A-1
Query Structure	A-18
Mode Table Structure	A-20

Appendix B EEPROM DATA

Rom Entries	B-1
mach64 EEPROM Data Structure	B-2
mach64 CRT Parameter Table	B-6

Appendix C VESA BIOS Extensions

-1
-1
-2
-3
-3
-5
-9
-9
10
11
12
13
13
13
14
15
15
16

Appendix D Parameter Table Format

Listing by Byte Numbers	D	-1	L
-------------------------	---	----	---

Appendix E Dot Clocks

ATI18811-1 Clock Chip Pixel Clocks	E-1
ATI18818 Programmable Clock Chip	E-2
ATI18818 Programmable Clock Chip	E-3

Appendix F Scratch Registers and Their Contents

Index

Chapter 1 Introduction

About This Manual

This manual is written for developers who wish to include a video BIOS and ATI's *mach*64 series in their system hardware. This manual explains how to generate a video BIOS, and provides example BIOS modules. Developers can modify the example modules in the kit to suit different types of monitors.

- *Chapter 1* provides an introduction to the organization of this manual. It includes an overview of the BIOS Kit contents.
- *Chapter 2* outlines the resources required to modify the source files and the object modules. It outlines the computer operating environment you require to get started. The supplied files and directory structures are listed.
- *Chapter 3* discusses compatibility, symbolic constant names, values and areas in the BIOS to be modified. It explains the use of the batch file MAKEROM.

Overview

The BIOS must be written for specific versions of controllers to provide support for specific video modes, monitor types, or extended functions as applicable. The specific versions of controllers are ATI88800GX, ATI88800CX, ATI88800EX, and ATI-264CT

Extended Video Modes

The following extended video modes are supported on standard PS/2 VGA monitors:

- 100x25 16 colors (Mode 21h)
- 100x30 16 colors (Mode 22h)
- 132x25 16 colors (Mode 23h)
- 132x44 16 colors (Mode 33h)

The following video modes require an analog monitor capable of displaying the stated resolutions:

- 800 x 600 16 colors (Mode 6Ah)
- 800x600 256 colors (Mode 63h)
- 1024 x 768 16 colors (Mode 55h)
- 1024x768 256 colors (Mode 64h)

Supported BIOS Functions

The following tested BIOS functions (Video Service INT 10h) are provided in source format for customization:

- Parameter AH=00h (Set Video Mode)
- Parameter AH=12h (Alternate Select)

The following tested BIOS functions (Video Service INT 10h) are provided in object format only. They need not be customized:

- Parameter AH=01h (Set Cursor Type)
- Parameter AH=02h (Set Cursor Position)
- Parameter AH=03h (Read Current Cursor Position)
- Parameter AH=04h (Read Light Pen Position)
- Parameter AH=05h (Select Active Display Page)
- Parameter AH=06h (Scroll Active Page Up)
- Parameter AH=07h (Scroll Active Page Down)
- Parameter AH=08h (Read Character/Attribute from Screen)
- Parameter AH=09h (Write Character/Attribute to Screen)
- Parameter AH=0Ah (Write Character Only to Screen)
- Parameter AH=0Bh (Set Color Palette)
- Parameter AH=0Ch (Write PEL)
- Parameter AH=0Dh (Read PEL)
- Parameter AH=0Eh (Write Teletype to Active Page)
- Parameter AH=0Fh (Read Current Video Status)
- Parameter AH=10h (Set Palette Registers)
- Parameter AH=11h (Load Character Generator)
- Parameter AH=13h (Write Strings: AL=00h-03h)
- Parameter AH=1Ah (Read/Write Display Combination Codes)
- Parameter AH=1Bh (Return Functionality/State Information)
- Parameter AH=1Ch (Save/Restore Video State)

Extended Graphics Accelerators

Source codes are provided to customize the BIOS for Graphics Accelerators. The source codes include the VGA parameter, coprocessor parameter conversion, extended video mode support, controller initialization, and extended function service call. Refer to the *Custom BIOS* section in Chapter 3 for details.

Customization

Source codes are also provided to customize the BIOS in the areas listed below. Refer to the *Custom BIOS* section in Chapter 3 for details.

- Sign-on messages
- Character fonts
- Add/Delete video mode
- Video mode support (AH=00h)
- 8-/16-bit ROM selection, ISA only
- ATI18820 mouse chip
- Integration with system BIOS
- Relocation of ROM BIOS to another address space
- Zero wait-state video RAM, ISA only
- Zero wait-state video ROM, ISA only
- *mach64* extended function service call
- DAC support

This page intentionally left blank.

Chapter 2 Getting Started

Contents of the Kit

The BIOS kit consists of this manual and a diskette that contains the *source* and *object* files required to customize and generate a video BIOS for the ATI mach64 series of graphics controller.

This kit requires 2M bytes of hard disk space for the BIOS files. Program tools for file preparation and generation are supplied. DOS 3.2 or a later operating system is recommended. You should specify 30 file handles in the CONFIG.SYS for efficient handling of files during the customization process. When generating the BIOS, the system must have 540K bytes or more of free conventional DOS memory.

- MS-DOS or PC-DOS Version 3.2 or later
- FILES=30
- 2M bytes free space in hard disk
- 540K bytes free conventional DOS memory

Other Tools

Not included in this kit are the following programs, which you will require:

- Microsoft MASM, version 5.1
- EXE2BIN.EXE
- LINK.EXE, version 3.65 or later
- EDLIN.EXE

Copying Files

To use the program tools provided, both *source* and *object* files must be organized in a directory structure identical to the one supplied on the diskette. You should copy the files and directories to the root directory or to a \BIOS directory on your hard disk.

Assuming XCOPY is in your path or the current directory, the commands shown below will copy all the files from diskette drive A: to hard disk drive C:. You may substitute any valid disk drive letters in this copy command.

XCOPY A:*.* C:*.* /S /V or XCOPY A:*.* C:\BIOS*.* /S /V

Files are stored in separate directories by file types. These files will support the generation of a non-paged BIOS.

1. \CXROM

mach64 BIOS source files.

- 2. \CXROM\OBJS mach64 BIOS object files.
- 3. \CXROM\CONFIG mach64 BIOS configuration files.
- 4. \CXVESA

mach64 VESA BIOS source files.

- 5. \VGACOMM Macros and files of symbolic constants.
- 6. **\FONTS** ATI proprietary character generator in source format.
- 7. \VGATOOLS

Tools that are required to generate video BIOS object codes.

File Listings By Directories

1. \CXROM - Source Codes

- ATI\$8\$16.ASM Routine to enable 16-bit ROM for ISA configuration
- ATI\$MICE.ASM Routine to enable the ATI18820 mouse chip
- CT\$003.ASM General routine to support the ATI-264CT
- CT\$009.ASM Routine to generate FIFO value for the ATI-264CT
- CT\$CLK.ASM Routine to support the ATI-264CT internal clock chip
- **CT\$DACS.ASM** Routine to support the *ATI-264CT* internal DAC
- CT\$DATA0.ASM Contains internal data used by the ATI-264CT BIOS
- CT\$INIT5.ASM Routine to detect monitor by the ATI-264CT

• CT\$REQS.ASM	- Routine to read and write to the ATI-264CT register
• CT\$V05.ASM	- Routine to program the ATI-264CT to SVGA modes
• CX\$000.ASM	- Main routine to support the CX BIOS extensions
• CX\$001.ASM	- Routines to convert VGA CRTC parameters to Coprocessor CRTC parameters
• CX\$002.ASM	- Routines to program the Coprocessor CRT Controller
• CX\$003.ASM	- General routines to support the Coprocessor
• CX\$004.ASM	- General routines to support the Coprocessor, OEM specific
• CX\$005.AM	- Routines to locate the VGA CRTC parameters for conversion
• CX\$006.ASM	- Routines to support the query functions in the CX extended BIOS
• CX\$007.ASM	- Routines to load the Coprocessor parameters and set the active display mode
• CX\$008.ASM	- Routines and tables to support different clock chips and frequency tables
• CX\$009.ASM	- Routine to generate FIFO value for mach64 series
• CX\$1703.ASM	- Routine to initialize the clock synthesizer portion of the STG1703
• CX\$18813.ASM	- Routines to support the ATI18813 or ATI18813 clock chip
• CX\$2595.ASM	- Routines to program the ATI18818 clock chip
• CX\$8398.ASM	- Routine to initialize the clock synthesizer portion of the CH8298
• CX\$ADJ.ASM	- Routine to retrial CRTC parameters from EEPROM tables
• CX\$C01.ASM	- Symbolic constants by the CX ROM BIOS
• CX\$C02.ASM	- Symbolic constants for the VGA extended modes
• CX\$C03.ASM	- Symbolic constants used for the extended bits in the VGA CRTC table
• CX\$C04.ASM	- Symbolic constants used for the Graphics Coprocessor
• CX\$CLKS.ASM	- Routines to program the clock chip
• CX\$CTBL0.ASM	I - Contains frequency table for ATI18811
• CX\$CTBL1.ASM	I - Contains frequency table when PCLK_TABLE equals 1
• CX\$CTBL2.ASM	I - Contains frequency table when PCLK_TABLE equals 2

• CX\$DAC.ASM - General routines to initialize the DAC

- CX\$DAC0.ASM Routines to initialize the ATI-264CT initial DAC
- CX\$DAC2.ASM Routines to initialize the TLC34075 and ATI68875 DACs
- CX\$DAC2A.ASM- Routine to initialize the TVP3026 DAC
- CX\$DAC4.ASM Routines to initialize the BT481, AT&T20C490/491/492/493 DACs
- CX\$DAC5.ASM Routines to initialize the ATI68860 DAC
- CX\$DAC6.ASM Routines to initialize the STG1700 and AT&T20C498 DACs
- CX\$DAC7.ASM Routines to initialize the SC15021, STG1702 and AT&T21C498 DACs
- CX\$DATA.ASM Contains internal data used by the BIOS. This includes all the different supported modes and refresh rates
- CX\$DATA0.ASM Contains internal data used by the BIOS. This includes all the different supported modes and refresh rates
- CX\$DATA1.ASM Contains internal data used by the BIOS. This includes Builtin CRTC parameter tables
- CX\$DDC.ASM General routines to support DDC
- CX\$DDC1.ASM Interface routines to support DDC1
- CX\$DDC2.ASM Interface routines to support DDC1 and DDC2
- CX\$DDCI.ASM Routines to support DDC and DDC initialization during Video BIOS initialization
- General routines to support DDC2 using the control bits defined in the graphics controller
- CX\$DEF.ASM Data structure for the EEPROM
- CX\$EE0.ASM Routines to read data from EEPROM
- CX\$EE1.ASM Routines to write data from EEPROM
- CX\$F00.ASM VGA set mode function (AH=0)
- CX\$F0F.ASM VGA functions AH=1, AH=2, AH=3, AH=4 and AH=0Fh
- **CX\$F11.ASM** Routines to load the character generator
- CX\$F11A.ASM Routines to load the character generator
- CX\$FNTS.ASM Includes information for fonts
- CX\$HEAD.ASM Extended header information for the video BIOS
- CX\$INIT.ASM Main routine to initialize the CX controller
- CX\$INIT0.ASM Routine to enable the controller and setup INT 10 vectors

٠	CX\$INIT1.ASM	- Routines to determine the total memory size installed
٠	CX\$INIT2.ASM	- Routines to set up the selected video mode at power-up
٠	CX\$INIT3.ASM	- Routines to initialize the extended VGA registers
٠	CX\$INIT4.ASM	- Routines to initialize the graphics coprocessor registers
•	CX\$INIT5.ASM	- Routines for monitor detection (color/mono)
•	CX\$INIT6.ASM	- Routines to detect individual DAC, the detectable DACs are BT481 and AT&T20C490/491/493, STG1700, STG1702, AT&T20C498 and AT&T21C498
٠	CX\$JMP.ASM	- Jump table for the Video BIOS functions
٠	CX\$MSG.ASM	- Routines to print out the sign-on message for the video BIOS
•	CX\$P00A.ASM	- CRTC parameter tables for 800x600 and 1024x768 SVGA modes
٠	CX\$P00B.ASM	- Tables identifying the supported refresh rate and color depth
•	CX\$P00C.ASM	- CRTC parameter tables for VGA modes in high refresh rate
٠	CX\$P132.ASM	- CRTC parameter tables for 132 column mode
•	CX\$PS2.ASM	- CRTC parameter tables for VGA modes
٠	CX\$PSTD.ASM	- CRTC parameter include files
•	CX\$REFSH.ASM	 Routines to setup the refresh rate information for differnet resolutions
٠	CX\$REGS.ASM	- Routines to read and write extended VGA registers
•	CX\$ROM.ASM	- Defines all the include files for the CX/GX BIOS when compiled with source code only
•	CX\$SAVE.ASM	- Routines to support the save and restore function of the mach64 controller states for VGA enable
٠	CX\$SUP.ASM	- Macro to print out messages during compile
٠	CX\$TIMER.ASN	I - Routines to use the 8253 controller to generate delays
٠	CX\$TBLS.ASM	- Tables and data used by the Video BIOS
٠	CX\$V00.ASM	- Main routine to support the standard VGA BIOS
٠	CX\$V02.ASM	- Routine to select the frequency entry for VGA mode
•	CX\$V03.ASM	- General routines used during power-up initialization
•	CX\$V04.ASM	- Routine to return pointer to SVGA CRTC parameter table
٠	CX\$V05.ASM	- Routines to program the extended VGA registers during set mode

•	CX\$V07.ASM	- Routine to return pointer to standard VGA CRTC parameter table
•	CX\$V08.ASM	- Routine to support CGA emulation
٠	CX\$V20.ASM	- Routines to program the Sequencer, Graphics and Attribute Controllers
٠	CX\$V21.ASM	- Routine to program the CRT controller
•	CX\$VADJ.ASM	- Routine to adjust the centering of the display for data in EEPROM
٠	O\$C.ASM	- Symbolic constant used when compiling the object code
•	O\$CX.ASM	- Main include file for supporting VGA enable configuration, this file will generate the binary from all source and compiled object code for <i>mach</i> 64 CX controller
•	O\$GX.ASM	- Main include file for supporting VGA enable configuration, this file will generate the binary from all source and compiled object code for <i>mach</i> 64 GX controller
•	O\$INIT.ASM	- Defines all the include files for the CX/GX BIOS when compiling the initialization code
•	O\$ROM.ASM	- Defines all the include files for the CX/GX BIOS when compiled with source and object code
•	O\$XFCN.ASM	- Symbolic constants used to generate the object files
•	U\$001.ASM	- Routine to load the coprocessor parameter for VGA disable configuration
•	U\$GX.ASM	- Main include file for supporting VGA disable configuration for ATI88800GX
•	U\$INIT0.ASM	- Routines to initialize the controller in VGA disable configuration
•	U\$INIT1.ASM	- Routines to initialize the controller in VGA disable configuration
•	U\$MSG.ASM	- Routine to put out a text string in VGA disable configuration
•	U\$ROM.ASM	- Main routine for VGA disabled configuration
•	U\$SAVE.ASM	- Routine to support the same and restore function of the <i>mach</i> 64 controller states for the VGA disable
•	V\$CX.ASM	- Main include file for supporting VGA enable configuration for ATI88800CX
•	V\$CT.ASM	- Main include file for supporting VGA enable configuration for ATI-264CT

- V\$GX.ASM Main include file for supporting VGA enable configuration for ATI88800GX
- VGA\$8\$16.ASM Routine to enable and disable 16-bit RAM for ISA configuration
- VGA\$WAIT.ASM Routine to test and enable zero wait state RAM for ISA configuration
- MAKEROM.BAT Batch file to compile the BIOS from source and object code
- MAKEROMS.BAT Batch file to compile the BIOS from source code
- CX\$MAP0.MAC Macro to support a mapped BIOS
- CX\$P00A.MAC Macro defining the 800x600, 1024x768 CRTC parameters for different refresh rate

2. \CXROM\OBJS

•	AH05.OBJ	- Select active display page function (AH=05h)
•	AH06.OBJ	- Scroll active page up function (AH=06h)
•	AH07.OBJ	- Scroll active page down function (AH=07h)
•	AH08.OBJ	- Read character/attribute from screen function (AH=08h)
•	AH09.OBJ	- Write character/attribute to screen (AH=09h) and Write character only to screen (AH=0AH)
•	AH0B.OBJ	- Set color palette
•	AH0C.OBJ	- Write PEL (AH=0Ch)
•	AH0D.OBJ	- Read PEL (AH=0Dh)
•	AH0E.OBJ	- Write TTY to active page (AH=0Eh)
•	AH0F.OBJ	- Read current video status (AH=0Fh)
•	AH10.OBJ	- Set palette registers (AH=10h)
٠	AH11.OBJ	- Load character generator (AH=11h)
•	AH13.OBJ	- Write strings (AH=13h)
•	AH1A.OBJ	- Read/write display combination codes (AH=1Ah) and return functionality/state information functions (AH=1Bh)
٠	V001.OBJ	- Print screen functions
٠	V002.OBJ	- Scroll functions
•	V003.OBJ	- General purpose routines used in mach64 BIOS
•	V004.OBJ	- Routines used in Mode 13 scrolling

- V006.OBJ Routine to set the cursor type
 - **V008.OBJ** Routine to emulate an INT 10 call
 - **V009.OBJ** CGA/MDA emulation and routine to print a message
 - **V010.OBJ** A global variable used to define the ending location of the BIOS core area
- VX001.OBJ Routine used for 256 colors scrolling
- VX002.OBJ Routine used for Mode 55 to scroll up and down

3. \CXROM\CONFIG

- **CX.ISA** Sample configuration file to support CXISA
- CX.VLB Sample configuration file to support CXVLB
- **CX.PCI** Sample configuration file to support CXPCI
- GX.ISA Sample configuration file to support GXISA
- GX.VLB Sample configuration file to support GXVLB
- **GX.PCI** Sample configuration file to support GXPCI
- **CTW1.PCI** Sample configuration file to support CTdualwrite
- **CTC1.PCI** Sample configuration file to support CTdualcas

4. \CXVESA

- VESA\$00.ASM Routines to support VESA BIOS function AL=0, 1, and 2
- VESA\$01.ASM Routines to support the frame buffer windowing function
- VESA\$02.ASM Routines to support save and restore extended VGA states
- VESA\$03.ASM Routines to support get/set logical scan line length and get/set display start
- VESA\$10.ASM Routines to support DPMS
- VESA\$15.ASM routine to support VGSE DDC extention
- VESA\$CNT.ASM Symbolic constants used by the VESA BIOS extension
- VESA\$DAT.ASM Data structure used by the VESA BIOS extension
- VESA\$JMP.ASM Jump table used by the VESA BIOS extension
- VESA\$XX.ASM Main include file for supporting the VESA BIOS extension

5. \VGACOMM - Source Codes

- ATIU\$06A.ASM Scrolling function to support ATI extended packed-pixel mode
- ATIU\$06C.ASM Scrolling function to support ATI extended 1024x768 4-plane planar mode
- ATIU\$07C.ASM Scrolling function to support ATI extended 1024x768 4-plane planar mode
- ATIU\$07D.ASM Scrolling function to support ATI extended 1024x768 4-color mode
- EGADATA.ASM DOS data segment definition

- EGAMAC.ASM Macros used in the video BIOS
- M50\$TAB.ASM Symbolic constants of parameter table offset
- VGA\$1AT.ASM Functionality support table
- VGA\$PAL.ASM Extended palette programming information
- VGACONST.ASM Symbolic constants of VGA used in the BIOS
- VGAF\$12.ASM Alternate select subfunctions
- VGAF\$12A.ASM Alternate select subfunctions
- VGAF\$1B.ASM Routine to return VGA functionality and state information
- VGAF\$1C.ASM Routines to save and restore video states
- VGAF\$1CA.ASM Routines to save and restore video states

6. \FONTS - Source Codes

- EGA8X8.ATI Include file definition for 8x8 font
- EGA8X8A.ATI Upper 128 characters of 8x8 font
- EGA8X8B.ATI Lower 128 characters of 8x8 font
- EGA8X14.ATI Include file definition, 8x14 font
- EGA8X14A.ATI Upper 128 characters of 8x14 font
- EGA8X14B.ATI Lower 128 characters of 8x14 font
- EGA8X14F.ATI 9x14 font supplement
- EGA8X16.ATI Include file definition, 8x16 font
- EGA8X16A.ATI Upper 128 characters of 8x16 font
- EGA8X16B.ATI Lower 128 characters of 8x16 font
- EGA8X16F.ATI 9x16 font supplementt

7. VGATOOLS - Program Tools

- **CHECKSUM.EXE** program that places timestamp and checksum values in BIOS binary files (not used if video BIOS is integrated in system BIOS)
- **FIXPAGED.EXE** program that places timestamp and checksum values in paged BIOS binary files (not used if video BIOS is integrated in system BIOS)
- **FIXE000.EXE** program that places timestamp and checksum values in BIOS files, should be used for a BIOS that is placed in the E000:0 area and has 36K total size and 32K runtime size
- FIXPCI.EXE program that places timestamp and checksum values in

BIOS files, should be used for a BIOS generated to support PCI configuration

• **CX.EXE** - program that invokes Coprocessor functions in real and protected modes, supplied for testing the extended BIOS functions

This page intentionally left blank.

Chapter 3 Video BIOS

Overview

This chapter describes how to set up the video BIOS for integration with a system BIOS or a separate, customized video BIOS.

Most commercially available programs and screen drivers extract information from the video BIOS in order to set themselves up properly for the video subsystem (display adapter). To maintain compatibility with ATI's graphics controllers, specific information is required in the video BIOS header as indicated below:

VGA Compatibility

- Video BIOS starting segment address is adjusted so that the offset of the video BIOS begins at zero.
- For ATI BIOS extended function AH=12h: AL must hold the mode value and BX must be 5506h.
- The first 60h bytes of the video BIOS must not be altered (00h-5Fh). These bytes contain the product signature "761295520" and other important data.
- Each BIOS is specific to a version of the graphics controller and mouse option. Files and parameters should be chosen accordingly when generating the BIOS binary file.
- A BIOS greater than 32KB will have pages mapped to the 32KB address.

Symbolic Constants

Symbolic constants are assigned values to indicate the type of hardware and software that the BIOS is to support. Once these values are declared, they will remain fixed (unchanged) in the program. In most cases, you should not re-define their values. You should use the default value that is already built into the BIOS kit. The following is a listing of symbolic constants that you may need to modify depending on your system configuration:

•	BIOS_START_ADDR	The value 0C000h is the segment address of video BIOS
٠	BIOS_MSG	Log on message string
•	HW_VER	20h=ATI88800GX graphics controller 28h=ATI88800CX graphics controller 30h=ATI-264CT graphics controller
•	IBMCG	0 = Uses ATI fonts
•	M_CHIP	 0 = Mouse chip not supported 2 = ATI18820 mouse chip or built-in mouse port supported
•	MAJ_VER	Major version number
•	MIN_VER	Minor version number
•	PAGE_E000	If defined, allows support of 36K total space and

88800GX DAC Specific Constants

- ATT21C498_SUPPORT if set to 1, the BIOS generated will support AT&T21C498 DACDAC. Default is 0.
- **ATT490_SUPPORT** if set to 1, the BIOS generated will support AT&T20C490 DAC. Default is **0**.

32K runtime space in E000h:0 or C000:0

- ATT491_SUPPORT if set to 1, the BIOS generated will support AT&T20C491 DAC. Default is 0.
- ATT493_SUPPORT if set to 1, the BIOS generated will support AT&T20C493 DAC. Default is 0.
- ATT498_SUPPORT if set to 1, the BIOS generated will support AT&T20C498 DAC. Default is 0.
- ATI68860_SUPPORT if set to 1, the BIOS generated will support ATI68860 Rev. B DAC. Default is 0.
- ATI68860C_SUPPORT if set to 1, the BIOS generated will support ATI68860 Rev. C DAC. Default is 0.
- **BT481_SUPPORT** if set to 1, the BIOS generated will support Brooktree BT481 DAC. Default is **0**.
- **BT481A_SUPPORT** if set to 1, the BIOS generated will support Brooktree BT481 DAC. Default is **0**.
- CH8398_SUPPORT if set to 1, the BIOS generated will support Chrontel CH8398 DAC. Default is 0.
- IMSG174_SUPPORT if set to 1, the BIOS generated will support Inmos IMSG174 DAC. Default is 0.

- MU9C1880_SUPPORT if set to 1, the BIOS generated will support Music MU9C1880 DAC. Default is 0.
- **MU9C4910_SUPPORT** if set to 1, the BIOS generated will support Music MU9C4910 DAC. Default is **0**.
- **DAC_AUTODETECT** if set to 1, the BIOS will automatically detect the type of supported DAC provided that they have the same strap setting.
- SC11486_SUPPORT if set to 1, the BIOS generated will support Sierra 11486 DAC. Default is 0.
- SC15021_SUPPORT if set to 1, the BIOS generated will support Sierra 15021 DAC. Default is 0.
- SC15026_SUPPORT if set to 1, the BIOS generated will support Sierra 15026/ 15025 DAC. Default is 0.
- **STG1700_SUPPORT** if set to 1, the BIOS generated will support SGS-Thompson 1700 DAC. Default is **0**.
- **STG1702_SUPPORT** if set to 1, the BIOS generated will support SGS-Thompson 1702 DAC. Default is **0**.
- **STG1703_SUPPORT** if set to 1, the BIOS generated will support SGS-Thompson 1703 DAC. Default is **0**.
- **TLC34075_SUPPORT** if set to 1, the BIOS generated will support Texas Instruments TLC 34075 DAC. Default is **0**.
- **TVP3026_SUPPORT** if set to 1, the BIOS generated will support TVP3026 DAC. Default is **0**.

88800GX BUS Specific Constants

- EISA if defined, the BIOS generated is EISA-specific.
- LOCAL_BUS if defined, the BIOS generated is LOCAL BUS-specific.
- **PCI** if defined, the BIOS generated is PCI-specific.
- If none of the above is defined, default is **ISA**.

Clock Chip Specific Constants

- **CLOCK_CHIP_TYPE** specifies the type of clock chip used.
 - = 0 ; ATI18811-1
 - = 1 ; ATI18818 or compatible
 - = 2 ; STG1703 DAC with built in clock chip
 - = 3 ; Chrontel CH8398 DAC with built in clock chip
 - = 4; *ATI-264CT* internal clock

- **REF_FREQ** specifies the reference frequency used. The unit is in KHz/10. Default is 1432.
- **PCLK_TABLE** specifies the frequency table used by the programmable clock chip.
 - = 0 ; ATI18811-1 clock chip is not programmable
 - = 1 ; See Appendix D
 - = 2 ; See Appendix D

Default value depends on CLOCK_CHIP_TYPE and DAC support. See "Clock Chip" in the Custom BIOS section.

DDC Specific Constants

- **DDC1_SUPPORT** if set to 1, DDC1 support will be enabled in the BIOS. Default is 0.
- **DDC2_SUPPORT** if set to 1, DDC1 and DDC2B will be enabled in the BIOS. Default is 0.
- DDC_CNTL_BITS if set to 1, DDC1 and DDC2B will use the control bits for monitoring the MONITOR ID BITS. This constants will be set to 1 for ATI88800CX and ATI264-CT if DDC1_SUPPORT or DDC2_SUPPORT is set to 1.
- DDC_DETAIL_TIMING_SUPPORT if set to 1, the EDID detailed timing will be saved in EEPROM at initialization time. This option is only available with system built with EEPROM and when DDC_POWERUP_INIT is set to 1. Enabling this option required 36K of BIOS space.
- DDC_POWERUP_INIT if set to 1, the BIOS will used the EDID data to setup the resolution and refresh rate information. This option should only be enable with BUILTIN_CRT set to 1. Default is set to 0.

Memory Timing Specific Constants

- **DRAM_MEM_CLK** specifies the memory clock when DRAM is installed. The unit is in KHz/10. Default is 5017.
- VGA_MC_D specifies the memory cycle in VGA modes when DRAM is installed.

The valid settings are:

For ATI88800GX/CX/EX

MEM_CYC_LNTH5;set to 5 non-page cycle MEM_CYC_LNTH6;set to 6 non-page cycle MEM_CYC_LNTH7;set to 7 non-page cycle

For ATI264-CT

BR_MEM_CYC_LNTH5;set to 5 non-page cycle BR_MEM_CYC_LNTH6;set to 6 non-page cycle BR_MEM_CYC_LNTH7;set to 7 non-page cycle BR_MEM_CYC_LNTH8;set to 8 non-page cycle

- **COPRO_MC_D** specifies the memory cycle in accelerator modes when DRAM is installed. Normally, this should has the same setting as VGA_MC_D. See VGA_MC_D for valid setting.
- VRAM_MEM_CLK- specifies the memory clock when VRAM is installed. The unit is in KHz/10. Default is 4700. This has no meaning for *ATI264-CT*.
- VGA_MC_V specifies the memory cycle in VGA modes when VRAM is installed. See VGA_MC_D for valid setting. This has no meaning for *ATI264-CT*.
- **COPRO_MC_V** specifies the memory cycle in accelerator modes when VRAM is installed. Normally, this should have the same setting as VGA_MC_V. See VGA_MC_D for valid setting. This has no meaning for *ATI264-CT*.
- SCLK- specifies the serial clock. The unit is in Khz/10. This only has meaning for VRAM product that has a second ATI18818 clock chip as the serial clock. Default is 5000. This has no meaning for *ATI264-CT*.

ATI264-CT Specific Constants

• **BR_CONFIG_STAT0** - specifies the memory type and dual CAS setting. The valid settings are:

BR_DRAM;to use 256x4, 256x16 DRAM BR_EDO_DRAM;to use EDO DROM BR_CFG_DUAL_CAS_EN;enable dual CAS

EEPROM and Built in CRT parameters Specific Constants

- **BUILTIN_CRT** if set to 1, the BIOS will include the builtin CRTC tables. This would allow the selection of different refresh rate without the use of EEPROM. When EE_LAST_ENTRY is 0, this option will enable automatically.
- **EE_CRTC_TABLE** defines the number of CRTC tables in the EEPROM data structure. Default is 15.
- **EE_TABLE1** defines the location of the first CRTC table in the EEPROM. Default is 17h.
- **EE_TABLE_SIZE** defines the size of the CRTC table. Default is 0Fh.
- **EE_LAST_ENTRY** defines the last location of the internal storage. Default is OFFh, if set to 0, no external storage.

VESA BIOS Extension Constants

- VESA_BIOS if set to 1, the BIOS generated will support VESA super VGA standard. Default is 1.
- VESA_DPMS if set to 1, the BIOS generated will support VESA Display Power Management BIOS Extensions. Default is 1. (To set this to 1, VESA_BIOS must be set to 1).
- VESA_DDC if set to 1. The BIOS generated will support VESA/DDC extensions. This will set automatically to 1 if DDC1_SUPPORT or DDC2_SUPPORT is set.

Custom BIOS

The video parameter tables in the BIOS contain video mode data that controls proper monitor synchronization, screen refresh rates, screen sizing, and screen positioning. This data is programmed in the Sequencer registers, CRT Controller registers, Attribute Controller registers, and Graphics Controller registers. As a result of customizing the BIOS, proper monitor operation is assured.

In addition to customizing for specific monitor types, the BIOS also supports custom sign-on messages, mouse support, character font support, video modes and the like. The video BIOS may be integrated into the system BIOS or can be located at C000:0000h. See *BIOS Integration* later in this Chapter.

Supplied files for generating the video BIOS are organized in separate directories. The four directories containing shared files for both BIOS versions are as follows:

- \CXROM Source Codes
- \CXVESA Source Codes

- \VGACOMM Source Codes
- \FONTS Source Codes
- \VGATOOLS Program Tools

BIOS Initialization

In order for the system BIOS to recognize the video BIOS, the first three bytes of the video ROM must be as follows: bytes one and two are 55h and AAh respectively; byte three is a number indicating the size of the BIOS in 2K byte blocks.

On power-up, the system BIOS calculates the checksum on the specified 2K byte blocks. If the last two digits of the checksum is 00h, the system BIOS executes a JMP instruction into the fourth location of the ROM BIOS for initialization.

Included in this kit is a batch file called **MAKEROM** which is used to automate the process of generating BIOS binary files.

Sign-On Messages

A sign-on message is displayed during power-up to indicate the BIOS version and mouse support. This message string is the symbolic constant BIOS_MSG. It is usually defined in the \CXROM\CONFIG\CX*.* files or CXROM\CONFIG\GX*.* files.

Character Fonts

Three sets of character generators are provided in source format in the \FONTS directory. Generators support 8x8, 8x14, and 8x16 characters. Include file definitions are in the FONTS.ASM file which is in the \CXROM directory.

Customized fonts can be added. To indicate the presence of these fonts, symbolic constant IBMCG and file CX\$FNTS.ASM should be updated.

Monitor Support - ATI88800GX/CX/EX

The Graphics Accelerator BIOS supports a wide variety of popular monitors. The BIOS uses actual refresh rates for specific video mode and monitor combinations.

ATI's software installation/configuration program (INSTALL.EXE) translates the userselected monitor types to refresh rate values and stores them in EEPROM entries 5, 6 and 7. These rates are then loaded into scratch registers during power-up. See Appendix E for the usage of scratch registers.

During *Set Mode*, the VGA initializes its controller to the specified refresh rate. If the Graphics Accelerator is enabled, the BIOS will automatically calculate the coprocessor CRTC parameters using VGA CRTC parameters and program the coprocessor

accordingly.

If you wish to have higher refresh rates that only the coprocessor can support, you must load the CRTC into the EEPROM for programming the coprocessor using the installation/configuration program.

Internal and External Data Storage - EEPROM, CRTC Tables

The BIOS supports an external storage device, such as EEPROM, for storing the video configuration information. The device can be read and write through the extended BIOS function AL=3 and AL=4. The EEPROM can be replaced by CMOS or other storage device by replacing the READ_EE and WRITE_EE routines in the \CXROM\CX\$EE0.ASM and \CXROM\CX\$EE1.ASM files. These routines must be executable in protected mode. The layout of the storage device is in Appendix A. The starting location and size of the tables are returned in the extended function AL=11h. The implementation also supports an internal table which is attached to the end of the external storage device. The internal table is intended to store coprocessor parameters and the maximum number of the external and internal entries is 64K. The layout of the external table and internal table can be viewed in the following table:

The symbolic constants EE_TABLE1 specifies the starting location of the CRTC parameter table, EE_TABLE_SIZE specifies the size of the CRTC parameter table, EE_LAST_ENTRY specifies the size of the external storage and STORAGE_LAST_ENTRY specifies the total size of the external and internal storage.

In the case when the internal table contains multiple CRTC parameter tables of the same

resolution of different refresh rate, the routine GETREFRESHMASK in the file \CXROM\CX\$REFSH.ASM has to be modified to tell the other routines which table to use. For the Coprocessor Only mode, bit 7 of the refresh mask has to be 1 in order to have the algorithm work correctly. There are internal CRTCs defined in the BIOS which can be found in the file CXROM\CX\$DATA1.ASM.

8-/16-Bit ROM Selection, ISA Only

If the graphics controller is integrated with the motherboard, 8-bit or 16-bit ROM operation is normally hard-wired. Thus, 8-/16-bit ROM switching is unnecessary. 16-bit ROM switching is disabled by setting the symbolic constant B16 to "0" in the user's customization file. The option is only available for ISA.

Clock Chip

This BIOS is structured to support different types of clock chips, both fixed and programmable ones. For the current release of the BIOS, both fixed and dynamic frequency tables are supported. For fixed frequency table, the BIOS will initialize a set of predefined frequencies and these will not be changed at run time. The predefined frequency table is returned through the BIOS extended function AL=0Ah. The BIOS assumes there is a maximum of 16 frequency entries and if there are less than 16 entries, the remaining entries are zeros.

The code has been implemented and tested to support dynamic programming. The benefit of having dynamic programming is that the BIOS can support clock chips with very little programmable entries. The BIOS will program the clock chip to the required frequency at the time when required. The drawback to this approach is that the SCO Unix like drivers will be more hardware dependent. The driver has to actually program the clock chip to a particular frequency rather than just select a frequency in the frequency table. An example has been setup when PCLK_TABLE = 3.

The current BIOS supports the ATI18818 programmable clock chip and the BIOS will initialize the two different frequency tables based on the hardware configuration. The symbolic constant PCLK_CHIP specifies which frequency table to use. See Appendix D for frequency table information.

For "PCLK_TABLE = 1", the frequency table is intended for use with all products at the present time.

It is recommended to use the same frequency table as suggested to maintain product compatibility. For developers who want to support different programmable clock chips and frequency tables, they have to modify the following files. The file \CXROM\CX\$CLKS contains routines to program the clock chip, whereas the files \CXROM\CX\$008.ASM and \CXROM\CX\$CTBL*.ASM define the frequency table. The symbolic constants VGA_PROG_CLK and CX_PROG_CLK specify the entry to be used for supporting dynamic programming in the VGA and Coprocessor modes. Both VGA_PROG_CLK and CX_PROG_CLK should be set to 0FFh if fixed frequency table is used.

There are two frequency tables defined by the BIOS. They are labelled as EXTCLK_ENTRIES and CLK_ENTRIES. The EXTCLK_ENTRIES are entries of the clock chip that are viewed by the application and are used to program the clock chip. The CLK_ENTRIES is the frequency table used internally by the BIOS. Under normal circumstances (when PCLK_TABLE = 1 or 2), the EXTCLK_ENTRIES and CLK_ENTRIES are the same because the CRTC parameter tables in the BIOS are using the chosen frequency table. In the case when a different fixed frequency table is used, the user can define a table corresponding to its clock chip and the BIOS will automatically find the closest frequency when setting video modes.

Relocating ROM BIOS

Symbolic constant BIOS_START_ADDR specifies the starting segment address of the video BIOS. The default value is C000h. It can be re-defined in the user's configuration file to accommodate different designs. In addition, if the video BIOS is in the E000:0 area, it can be relocated to the C000:0 by setting RELOCATE_E000 to 1. For the system BIOS, it needs to initialize the video BIOS in the corresponding segment at least once by performing a call to X000:3.

Relocating the Video BIOS between C000:0 and E000:0

The video BIOS can be located in a different location by setting the corresponding value to BIOS_START_ADDR. In some cases, you may want to put the video BIOS in E000:0 area and later shadow it to the C000:0 area. Setting the symbolic constant RELOCATE_E000 to 1 allows the BIOS to generate all the necessary tables. To relocate a video BIOS from E000:0 to C000:0, the system BIOS has to do the following:

- Initialize the video BIOS by doing a call E000:3.
- Copy the first 32K from E000:0 to C000:0.
- Do a call C000:3 to have the video BIOS update the video interrupt vector and tables.

Paging Out the Initialization Code

The BIOS is organized such that the initialization is at the end of the BIOS and can be paged out after the video is initialized. There are also signature bytes used by the BIOS to determine if the initialization code is paged out before jumping into the code. The symbolic constant PAGE_E000 enables the code for size checking and paging out of the initialization code. The BIOS supporting this feature can be in C000:0 or E000:0. To use this paging mechanism, the FIXE000 has to be used to put in the correct checksum and signature bytes for 32K and 36K binary.

PCI-Specific Implementation

The PCI system BIOS has the capability to support the paging mechanism described in the last paragraph. In addition, the implemented PCI code can also be in C000:0 or E000:0 because the BIOS will patch all the pointers and checksum in the video BIOS at initialization. The BIOS assumes that the video BIOS is loaded into the shadow RAM and the shadow RAM is writable when the video BIOS is initialized as outlined in the PCI specification 2.0. The PAGE_E000 has to be set to 1 and the FIXPCI.EXE has to be run to generate the correct checksum and signature bytes.

VESA BIOS Extension Implementation

The ATI88000GX/CX/EX incorporates a VGA CRT controller and a graphics processor CRT controller for display. The VGA CRT controller is used for all standard VGA modes (0h — 13h). The graphics coprocessor CRTC controller is used for all accelerated and hicolor modes.

To maximize support of hicolor modes, the VESA BIOS extensions are implemented to support the graphics coprocessor CRT controller rather than the VGA CRT controller. All CRTC parameters are graphics-coprocessor-based. Because the translation of CRTC parameters is transparent to the application, this implementation should have little effect on existing applications that use VESA BIOS extensions.

Because the VESA BIOS extensions use the graphics coprocessor base, the VESA BIOS extended function, AL=4 (save and restore extended VGA states), is not implemented.

Figure 3-1. Non-Paged BIOS File Generation

Making Non-Paged BIOS

A batch file is provided in the BIOS kit for generating binary files, which in turn are used to program the BIOS ROMs. The file is called **MAKEROM**. The output of the processing is a binary file named **WONDER.X01**, which is then used for programming the BIOS ROM.

Files and copying requirements for BIOS generation are provided in *Chapter 2*. In order to use **MAKEROM.BAT**, the following conditions must be satisfied:

- The directory structure for source and object files for the non-paged BIOS (in \VGAOBJ directory) must be identical to the directory structure of the provided diskette.
- Programs such as Microsoft Macro Assembler (MASM 5.1), Microsoft Object Linker (LINK), and EXE2BIN.EXE must be available.

Binary Files - Procedure Outline

- 1. Assemble your customized source modules using Microsoft Macro Assembler MASM.
- 2. Link the output from step 1 with the provided object modules to create an EXE file.
- 3. Convert the EXE file from step 2 to a binary file called B\$<Par1><Mouse>.<Par2>. The parameters are explained in the following section.
- 4. Use the supplied checksum program, CHECKSUM, to place a correct checksum and timestamp (at offset 0X50h) in the binary file.
- 5. Rename this binary file to **WONDER.X01**.
- 6. Program the **WONDER.X01** file into a video ROM.

Generating Binary Files - Parameters

MAKEROM.BAT file is easy to use. Each file takes source modules and produces the required binary file **WONDER.X01**. You need supply only the required parameters.

<Par1>[M].<Par2> should be the name of the file containing the required object modules in the directory called \CXROM\CONFIG.

Sample files are provided in the most commonly used configurations. You can use them for reference and either customize or create files based upon their requirements. Batch file commands and parameters are as follows:

MAKEROM <Par1> <Par2> [M]

• $\langle Par1 \rangle = CX \text{ for ATI88800CX}$

EX for ATI88800EX GX for ATI88800GX CT for ATI-264CT

<Par2> = ISA for ISA
 <Par2> = PCI for PCI
 <Par2> = VLB for VLB

Example 1:

If you use an **ATI88800CX** controller for ISA bus, the parameters for generating the BIOS file would be:

MAKEROM CX ISA

Example 2:

If you use an ATI88800CX controller for VLB bus, the command for generating the BIOS file would be:

MAKEROM CX VLB

Example 3:

If you use an **ATI88800CX** controller for PCI bus, the parameters for generating the BIOS file would be:

MAKEROM CX PCI

Example 4:

If you use an **ATI88800GX** controller for ISA bus, the parameters for generating the BIOS file would be:

MAKEROM GX ISA

Example 5:

If you use an ATI88800GX controller for VLB bus, the command for generating the BIOS file would be:

MAKEROM GX VLB

Example 6:

If you use an ATI88800GX controller for PCI bus, the parameters for generating the BIOS file would be:

MAKEROM GX PCI

Example 7:

If you use an **ATI88800EX** controller for ISA bus, the parameters for generating the BIOS file would be:

MAKEROM EX ISA

Example 8:

If you use an **ATI88800EX** controller for VLB bus, the command for generating the BIOS file would be:

MAKEROM EX VLB

Example 9:

If you use an **ATI88800EX** controller for PCI bus, the command for generating the BIOS file would be:

MAKEROM EX PCI

Example 10:

If you use an *ATI-264CT* controller for PCI bus, using dual write memory, the command for generating the BIOS file would be:

MAKEROM CT PCI W1

Example 11:

If you use an *ATI-264CT* controller for PCI bus, using dual CAS memory, the command for generating the BIOS file would be:

MAKEROM CT PCI C1

This page intentionally left blank.
Appendix A BIOS Function Calls

VGA Controller

AH = 0 ; set video mode (AL = video mode)

3. VEMPET LEVELOV/C. DURANT/C. NOVACIL/VEMPET/2003/00/2012/2012/2012/2012/2012/2012/2	2 962677777667657572.0667
- WHY REAL ASSOCIATION CONTRACTORY STREET, STRE	(X879/97777777777777777777777777777777777
24/ 40/ 2012 2012 2012 2012 2012 2012 2012 20	THEY WANTE THE TANK THE
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1
************************************	< 6
- A MARTIN AND A MARTIN	
- C. M. LEWING, C. M. W.	NY N
THE ACTIVE AND A CONTRACT OF A	and a first of the second s

IDM CO	inpatible modes.			
00h	color/alpha	640x200	40x25/BW	B800h:0
01h	color/alpha	640x200	40x25/16	B800h:0
02h	color/alpha	640x200	80x25/BW	B800h:0
03h	color/alpha	640x200	80x25/16	B800h:0
04h	color/graphics	320x200	40x25/4	B800h:0
05h	color/graphics	320x200	40x25/BW	B800h:0
06h	color/graphics	320x200	80x25/BW	B800h:0
07h	mono/alpha	720x350	80x25/BW	B000h:0
0Dh	color/graphics	320x200	40x25/16	A000h:0
0Eh	color/graphics	640x200	80x25/16	A000h:0
0Fh	mono/graphics	640x350	80x25/BW	A000h:0
10h	color/graphics	640x350	80x25/16	A000h:0
11h	color/graphics	640x480	80x30/BW	A000h:0
12h	color/graphics	640x480	80x30/16	A000h:0
13h	color/graphics	320x200	80x25/256	A000h:0

IBM Compatible Modes:

AH = 1

AH = 2

AH = 3

AH = 4

AH = 5

AH = 6

00463230353	MODE/TYPE	RESOLUTION	DIM/COLOR	START ADDRESS
ATI En	hanced Modes:			
21h	color/alpha	800x400	100x25	B800h:0
22h	color/alpha	800x480	100x30	B800h:0
23h	color/alpha	1056x200	132x25/16	B800h:0
33h	color/alpha	1056x352	132x44/16	B800h:0
55h	color/graphics	1024x768	128x48/16	A000h:0
61h	color/graphics	640x400	80x25/256	A000h:0
62h	color/graphics	640x480	80x30/256	A000h:0
63h	color/graphics	800x600	100x42/256	A000h:0
64h	color/graphics	1024x768	128x48/256	A000h:0
6Ah	color/graphics	800x600	100x42/16	A000h:0
; set cu CH = CL = CX = : set cu	start line of cursor end line of cursor 1F00h to turn off cu	rsor		
; set ci CH = CL = CX = ; set ci	start line of cursor end line of cursor 1F00h to turn off cu	rsor D n		
; set cu CH = CL = CX = ; set cu BH = DH, DI	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the cursor and column of	rsor on desired page of cursor		
; set ci CH = CL = CX = ; set ci BH = DH, DI ; read	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the current cursor posi	rsor on desired page of cursor tion at the specifi	ied page	
; set ci CH = CL = CX = ; set ci BH = DH, DI ; read BH =	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the current cursor posi page number of the	rsor on desired page of cursor tion at the specifi desired page	ed page	
 ; set cu CH = CL = CX = ; set cu BH = DH, DI ; read BH = on exit: CH, CL 	start line of cursor end line of cursor 1F00h to turn off cu irrent cursor position page number of the current cursor posi page number of the page number of the current cursor posi page number of the	rsor on desired page of cursor tion at the specifi desired page	ed page	
; set cu CH = CL = CX = ; set cu BH = DH, DI ; read BH = on exit: CH, CL DH, DI	start line of cursor end line of cursor 1F00h to turn off cu irrent cursor position page number of the = row and column of current cursor position page number of the = cursor type = row, column of cur	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi	ed page	
<pre>; set cu CH = CL = CX = ; set cu BH = DH, DI ; read BH = on exit: CH, CL DH, DI ; read</pre>	start line of cursor end line of cursor 1F00h to turn off cu page number of the = row and column of current cursor position page number of the = = cursor type = = row, column of current light pen po	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi osition (VGA doe	ied page ied page s not support light pe	n)
<pre>; set cu CH = CL = CX = ; set cu BH = DH, DI ; read BH = on exit: CH, CL DH, DI ; read ; select</pre>	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the current cursor posi- page number of the current cursor posi- page number of the current cursor posi- page number of the current light pen posi- t active display page	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi osition (VGA does	ied page ied page s not support light pe	n)
 ; set ci CH = CL = CX = ; set ci BH = DH, DI ; read BH = on exit: CH, CI DH, DI ; read ; read ; select AL = 	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the current cursor posi- page number of the current cursor posi- page number of the current light pen posi- t active display page page number to be a	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi osition (VGA does e active	ied page ied page s not support light pe	n)
 ; set ci CH = CL = CX = ; set ci BH = DH, DI ; read BH = on exit: CH, CI DH, DI ; read ; select AL = ; scrol 	start line of cursor end line of cursor 1F00h to turn off cu urrent cursor position page number of the arrow and column of current cursor posi page number of the are cursor type are cursor type are row, column of current light pen position tactive display page page number to be are are cursor to be are are cursor to be are are are are are are are are are page number to be are are are are are are are are are ar	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi osition (VGA does e active	ied page ied page s not support light pe	n)
<pre>; set cu CH = CL = CX = ; set cu BH = DH, DI ; read BH = on exit: CH, CL DH, DI ; read ; select AL = ; scrol AL = </pre>	start line of cursor end line of cursor 1F00h to turn off cu page number of the arrent cursor position page number of the arrow and column of current cursor posi page number of the are cursor type are cursor type are row, column of current light pen position tactive display page page number to be are lactive page up number of lines to b	rsor on desired page of cursor tion at the specifi desired page ursor at the specifi osition (VGA does e active be scrolled hole window	ied page ied page s not support light pe	n)

	CH, CL = row, column of upper left hand corner of scrolling window DH, DL = row, column of lower right hand corner of scrolling window
AH = 7	; scroll active page down AL = number of lines to be scrolled = 0 : blanks the whole window
	BH = attribute of blanked line CH, CL = row, column of upper left hand corner of scrolling window DH, DL = row, column of lower right hand corner of scrolling window
AH = 8	; read character/attribute at current active cursor position
	BH = page number of the desired page on exit: AL = character AH = attribute (for text mode only)
AH = 9	; write character/attribute at current cursor position of a specified page
	AL = character to be written BL = attribute of character BH = page number CX = count of character to write
AH = 0Ah	; write character at current cursor position of a specified page
	AL = character to be written BH = page number CX = count of character to write
AH = 0Bh	; set color palette, valid for modes 4 and 5 only
	BH = 0 ; selects the background color BL = color value used with that color id = 1 ; selects the palette to be used BL = 0 ; palette value is GREEN(1)/RED(2)/BROWN(3) = 1 ; palette value is CYAN(1)/MAGENTA(2)/WHITE(3)
AH = 0Ch	; write dot (graphics mode)
	 BH = page number DX, CX = row, column of dot position AL = color value of dot (if bit 7 of AL is ON, the color value will be XOR'd with the current value of the dot)
AH = 0Dh	; read dot (graphics mode)
	BH = page number DX, CX = row, column of dot position on exit AL = color value of dot

AH = 0Eh; write teletype to active page AL = character to writeBL = foreground color in graphics mode AH = 0Fh; return current video setting on exit: AL = current modeAH = number of column (in characters) on screen BH = current active display pageAH = 10h; set palette registers AL = 0; set individual palette register BL = palette registerBH = palette valueAL = 1; set overscan register BH = palette valueAL = 2; set all palette and overscan registers ES:DX = pointer to palette value table (17 bytes long), bytes 0 - 15 are palette values for 16 palette registers, byte 16 is palette value for the overscan register ; toggle between intensity/blinking bit AL = 3BL = 0; set intensity on BL = 1; set blinking on ; read individual palette register AL = 7BL = palette registeron exit: BH = palette value; read overscan register AL = 8on exit: BH = overscan valueAL = 9; read all palette and overscan registers ES:DX = pointer to 17-byte bufferon exit: ES:DX = pointer to palette value table (17 bytes long), bytes 0 - 15 are palette values for 16 palette registers, byte 16 is palette value for the overscan register AL = 10h; set a color register BX = color registerDH = red valueCH = green valueCL = blue valueAL = 12h; set a block of color registers BX = first color register to be setCX = total number of color registers to be set ES:DX = pointer to table of color register values in red, green, blue, red, green, blue format AL = 13h; set color pages (only valid for 16 color modes) BL = 0; select color page mode ; select 4 pages of 64 color registers each BH = 0

- BH = 1 ; select 16 pages of 16 color registers each
- BL = 1; select color page
- BH = color page number
- AL = 15h; read a color register
 - BX = color register
 - on exit:
 - DH = red value
 - CH = green value
 - CL = blue value
- AL =17h ; read a block of color registers
 - BX = first color register to be set
 - CX = total number of color registers to be set
 - ES:DX = pointer to buffer to store the color register values
 - on exit:
 - ES:DX = pointer to table of color register values in red, green, blue, red, green, blue, ..., format
- AL = 1Ah; read current color page information
 - BL = current color page mode
 - BH = current color page
- AL = 1Bh; change color values to gray shades
 - BX = first color register to be changed
 - CX = total number of color registers to be changed

AH=11h ; character generator routines

AL = 00 ; load user specified character setES:BP = pointer to character tableCX = number of characters to be storedDX = character of offset into current tableBL = block to loadBH = bytes per characterAL = 01 ; load 8x14 character setBL = block to loadAL = 02 ; load 8x8 character setBL = block to loadAL = 03 ; set block specifierBL = character generator block specifierAL = 04 ; load 8x16 character setBL = block to load

The function AL = 1? is similar in function to AL = 0? except the number of rows on the screen is recalculated.

- AL = 10h; load user specified character set
 - ES:BP = pointer to character table
 - CX = number of characters to be stored
 - DX = character of offset into current table
 - BL = block to load
 - BH = bytes per character

AL = 11h; load 8x14 character set

BL = block to load

AL = 12h	; load 8x8 character set
4 T - 4 4 1	BL = block to load
AL = 14h	; load 8×16 character set BL = block to load
AL = 20h	: update alternative character generator pointer (INT 1F)
	ES:BP = pointer to table
AL = 21h	; update alternative character generator pointer (INT 43)
	ES:BP = pointer to table
	CX = bytes per character
	BL = row specifier
	= 0; DL = rows
	= 1; rows $= 14$
	= 2; rows $= 25$
	= 3; rows $= 43$
AL = 22h	; update alternative character generator pointer (INT 43) with the 8x14 character
	; generator in ROM
AL = 23h	; update alternative character generator pointer (INT 43) with the 8x8 character
	; generator in ROM
AL = 24h	; update alternative character generator pointer (INT 43) with the 8x16 character
	; generator in ROM
AL = 30h	; return EGA character generator information
	BH = 0; return current INT 1F pointer
	= 1 ; return current INT 43 pointer
	= 2; return pointer to 8x14 character generator
	= 3 ; return pointer to 8x8 character generator (lower)
	= 4 ; return pointer to 8x8 character generator (upper)
	= 5 ; return pointer to alternate $9x14$ alpha
	= 6; return pointer to 8x16 character generator
	= 7; return pointer to alternate 9x16 alpha
	on exit:
	ES:BP = pointer to table as requested
	CX = points (pixel column per char)
	DL = rows (scan line per char)
; return cu	rrent EGA settings/print screen routine selection
BL = 10h	· return EGA information
	on exit:
	BH = 0 : color mode in effect
	= 1 : monochrome mode in effect
	BL = 3; 256k video memory installed (always return 3)
	CH = simulated value of feature bits
	CL = simulated EGA/VGA dip switch setting
BL = 20h	; select alternate print screen routine for EGA graphics mode
BL = 30h	; select number of scan lines for alpha modes
	AL = 0; 200 scan lines
	= 1; 350 scan lines
	= 2; 400 scan lines
	on exit:
	AL = 12h; function supported

AH = 12h

BL = 31h; default palette loading during mode set AH = 0AL = 0; enable = 1; disable on exit: AL = 12h; function supported ; video controller BL = 32hAL = 0; enable video controller = 1; disable video controller on exit: AL = 12h; function supported BL = 33h; summing of color registers to gray shades AL = 0; enable summing = 1; disable summing on exit: AL = 12h; function supported BL = 34h: cursor emulation AL = 0; enable cursor emulation = 1; disable cursor emulation on exit: AL = 12h; function supported ; video screen on/off BL = 36hAL = 0; video screen on = 1; video screen off on exit: AL = 12h; function supported BX=5506h ; VGAWONDER BIOS extension AL = video modeBP = 0FFFFhDI = 0SI = 0on exit: if BP is not equal to 0FFFFh then ES:BP = pointer to parameter table if SI is not equal to 0 then ES:SI = pointer to parameter table supplement ; write string to specified page ES:BP = pointer to stringCX = length of stringBH = page number

DH,DL = starting row and column of cursor in which the string is placed

AL = 0 ; cursor is not moved BL = attribute string = (char, char, char, char, ...) AL = 1 ; cursor is moved BL = attribute string = (char, char, char, char, ...) AL = 2 ; cursor is not moved

AH = 13h

AL = 3 ; cursor is moved string = (char, attr, char, attr, ...)

AH=1Ah ; read display combination code

AL = 0 ; read current display combination information on exit
AL = 1Ah
BL = current active display code
BH = alternate display code
Display codes
00 - No display
01 - MDA mode
02 - CGA mode
04 - EGA in color mode
05 - EGA in monochrome mode
07 - VGA with analog monochrome monitor
08 - VGA with analog color monitor

AH=1Bh ; return VGA functionality and state information

$$BX = 0$$
 ;

ES:DI = pointer to buffer used to store the functionality and state information (minimum 64 bytes)

on exit: AL = 1BhES:DI = pointer to buffer with functionality and state information [DI+00h] word = offset to static functionality information [DI+02h] word = segment to static functionality information [DI+04h] byte = current video mode [DI+05h] word = character columns on screen [DI+07h] word = page size in number of bytes [DI+09h] word = starting address of current page [DI+0Bh] word = cursor position for eight display pages [DI+1Bh] word = current cursor type [DI+1Dh] byte = current active page [DI+1Eh] word = current CRTC address [DI+20h] byte = current 3x8 register setting [DI+21h] byte = current 3x9 register setting [DI+22h] byte = number of character rows on screen [DI+23h] word = number of scan lines per character [DI+25h] byte = active display combination code [DI+26h] byte = alternate display combination code [DI+27h] word = number of colors supported in current mode [DI+29h] byte = number of pages supported in current mode [DI+2Ah] byte = 0 : 200 scan lines in current mode ; 350 scan lines in current mode = 1 = 2 ; 400 scan lines in current mode = 3; 480 scan lines in current mode

[DI+2Bh] byte = *Reserved* [DI+2Ch] byte = *Reserved* [DI+2Dh] byte = miscellaneous state information bits 7, 6 = Reservedbit 5 = 0; background intensity = 1 ; blinking bit 4 = 1; cursor emulation active bit 3 = 1; mode set default palette loading disabled bit 2 = 1; monochrome display attached bit 1 = 1; summing active bit 0 = 1; all modes on all display active [DI+2Eh] byte = *Reserved* [DI+2Fh] byte = *Reserved* [DI+30h] byte = Reserved [DI+31h] byte = 3; 256Kb of video memory available [DI+32h] byte = save pointer information bits 7, 6 = Reservedbit 5 = 1; DCC extension active bit 4 = 1; palette override active bit 3 = 1; graphics font override active bit 2 = 1; alpha font override active bit 1 = 1; dynamic save area active bit 0 = 1; 512 character set active [DI+33h] 13 bytes = Reserved static functionality table format 0 - function not supported 1 - supported function [00h] byte = supported video mode bit 7 = mode 07hbit 6 = mode 06hbit 5 = mode 05hbit 4 = mode 04hbit 3 = mode 03hbit 2 = mode 02hbit 1 = mode 01hbit 0 = mode 00h[01h] byte = supported video mode bit 7 = mode 0Fhbit 6 = mode 0Ehbit 5 = mode 0Dhbit 4 = mode 0Chbit 3 = mode 0Bhbit 2 = mode 0Ahbit 1 = mode 09hbit $0 = mode \ 08h$ [02h] byte = supported video mode bits 7 to 4= Reserved bit 3 = mode 13h

bit 2 = mode 12hbit 1 = mode 11hbit 0 = mode 10h[03h] to [06h] = *Reserved* [07h] = scan lines availabe in text modes bits 7 to 3 = Reservedbit 2 = 400 scan lines bit 1 = 350 scan lines bit 0 = 200 scan lines [08h] = number of character fonts available in text modes [09h] = maximun number of character fonts that can be active in text modes [0Ah] byte = miscellaneous functions bit 7 = color pagingbit 6 = color palette (color register) bit 5 = EGA palette bit 4 = cursor emulation bit 3 = default palette loading when mode set bit 2 = character font loading bit 1 = color palette summingbit 0 = all modes supported on all displays [0Bh] = scan lines availabe in text modes bits 7 to 4 = Reservedbit 3 = DCC supported bit 2 = background intensity/blinking control bit 1 = save/restore supportedbit 0 =light pen supported [0Ch] to [0Dh] = Reserved[0Eh] = save pointer fuctions bits 7 to 6 = Reservedbit 5 = DCC extension supported bit 4 = palette override bit 3 = graphics font override bit 2 = alpha font override bit 1 = dynamic save areabit 0 = 512-character set [0Fh] = Reserved; save and restore video state AL = 0; return video save state bufffer size requirement CX = requested states bit 0 = video hardware state

bit 1 =video BIOS data area

bit 2 = video DAC state and color registers

on exit:

ES:BX=pointer to buffer to store the video states information

AL

AH=1Ch

	on exit: AL = 1Ch
AL = 2	; restore video state
	CX = requested states (see AL=0)
	ES:BX = pointer to buffer with previous saved video states information
	on exit:
	AL = 1Ch

Extended	BIOS Support					
ROM Services	The Graphics Accelerator BIOS has a special entry function to support <i>Set Mode</i> in the coprocessor mode. This function reduces the development efforts for programmers writing coprocessor mode screen drivers.					
	The benefits of using function calls in the Graphics Accelerator are numerous:					
	• Using function calls reduces development time as well as the complexity of the driver.					
	• It can be used in protected mode, 16-bit only.					
	• The interface is upward-compatible and can be expanded to support 800x600, 1280x1024, and 1600x1200.					
	• Version-specific hardware code goes with the firmware.					
	Calculating ROM Base Address					
	The ROM base address is calculated as follows:					
	xxxx = (SCRATCH_REG1 & 0x7F) * 0x80 + 0xC000					
	where SCRATCH_REG1 is 046ECh.					

Function Calls

Base ROM address is determined by the register SCRATCH_REG1 (46ECh) and the ROM services are accessible by absolute calls at this address with the following instructions:

CALL XXXX:64h

Another way to invoke the extended ROM service is by calling INT 10h with AH = A0h. The support of INT 10h is also available with VGA disabled mode. The only requirement is that the primary adapter has to be a VGA. No CGA or monochrome card can be supported.

Extended ROM Services

XXXX:64h

all func	tions ret	urn with	error code in AH		
	an = 0; no error $ah = 1$; function complete with error				
	an = 1, function complete with error ab = 2; function not support				
	an = 2;	runction	not support		
al = 0	; Load	Coproce	ssor CRTC parameters		
	cl[3-0]	= color	depth		
		= 1	;4bpp;		
	•	= 2	;8bpp		
		= 3	;15bpp(555)		
		= 4	;16bpp(565)		
		= 5	;24bpp (in RGB format if available, else in BGR)		
		= 6	;32bpp (in RGBx format if availabe, else whatever 32bpp		
			that is supported)		
cl[3,] =			;32bpp color orientation		
		= 0,0	;RGBx, R is byte 0		
		= 1,0	;xRGB, x is byte 0		
	15.43	1			
	ci[4]	= 1	;enable gamma correction if 150pp and above		
			;set the RAMDAC to 8bit if in 8bpp mode, for support 250		
	-117 (1				
	ci[/-0]	= pitch	size		
		= 0	;1024		
		= 1	; don t change		
		= 2	;pitch size is the same as norizontal display		
ch = resolu	ition				
		= 12h	;640x480		
		= 6ah	;800x600		
		= 55h	;1024x768		
		= 80h	;load table from offset of external storage(EEPROM) in bx		
		= 81h	;load table according to data in dx:bx		
		= 82h	;OEM specific mode		
		= 83h	;1280x1024		
		= 84h	;1600x1200		
			to a compared to here if $ab = 91b$		
	dX:DX	= poin	ter to parameter table if $ch = 80h$		
	DX	= onse	1 Into EEPROM table II cn = 80n		
al = 1	; Set di	splay mo	ode		
	cl[0]	= 0	;VGA and set the RAMDAC to 6 bit		
		= 1	; Coprocessor		
	cl[7]	= 1	; enable 8bit DAC or Gamma Correction		
			; this bit is or with cl[4] in functoin AL=0		
al = 2	; Load	Coproce	ssor CRTC parameters and set display mode		

same arguments as al = 0; read EEPROM data al = 3bx = index returns bx = dataal = 4; write EEPROM data bx = index dx = data al = 5; memory aperture service cl = 0 ; disable memory aperture cl [0] = 1 ; enable memory aperture cl [2] = 1 ; enable VGA memory aperture = 1 cl [7] ; set memory aperture location = memory aperture location in Mbyte supported with BIOS bx internal 1.000 or higher al = 6; short query function al[5-0] = aperture configuration= 0 ; disable = 1 ; 4M = 2;8M = 0al[6] ; aperture address is user configurable ; aperture address in predefined or hard coded in BIOS = 1 al[7] = 1 ; aperture address is in 128M range = 0; aperture address is in 4G range = aperture address bx = Color deep support ch see offset 13 in query structure

cl = memory size

dx = asic identification, [7-0]= revision, [15-8]=type

al = 7; return hardware capability list

in return dx:bx = offset into a table specifying the max. dot clock information, the table is terminated by a zero in the first column.

al = format type = 0

H_DISP	DACMASK	MEMREQ	MAX	PIXEL
			DOTCLOCK	WIDTH
0(end of table)				

in return dx:cx = pointer into table specifying the maximum dot clock information (only if the value in cx has be modified, set cx=0ffffh and check if the value changed after calling), the table is terminated by a zero in the first column. The application program should check this table first to determine if the video mode is supported.

H_DISP	DACTYPE	MEMREQ	MAX	PIXEL
			DOTCLOCK	WIDTH
0(end of table)				

H_DISP ACADEM MEMREQ MAX DO	IES } TCLOC	: : : : : : : : : : : : : : : : : : :	 = horizontal resolution in number of characters = (1 shl dactype) = the minimum memory required to support the specified resolution and color depth (DRAM requirement shl 4) or (VRAM requirement) = max dot clock with the specified resolution and color depth n MHz 			
PIXEL W	IDTH	:	= color depth			
DACTYP	Е	:	= dactype including the subtype information			
al = 8	; return on entry cl[0] = return cx	query y 0; buff 1; buff = nui	device data structure in bytes er size for header information only fer size for header information and mode tables nber of bytes			
al = 9; que	erv devid	ce				
···· · · · · · · · · · · · · · · · · ·	dx:bx	= poi	nter to buffer			
	c1[0]	= 0	return header information only			
	[-]	= 1	; return header information and mode table			
al = 0ah; r	eturn cle al = clo dx:bx = dx:cx =	ock chi ock chi = offset dot cl = offset follow db	p frequency table p type pointing to the 16 words containing the pre-programmed ock frequency, unit is in KHz/10(4 significant digits) pointing to the table containing clock chip information in the wing format clock chip type			
db		db	frequency table identification			

- dw minfreq, maxfreq (in Khz /10)
- db user programmable entry if <> 0ffh

db reserved dw hardware dependent information al = 0bh program a specified clock entry cl = 0: ch = entry in the frequency table bx = unit in Khz/10in return al = clock chip typebx = programming word depending on type al = 0ch, DPMS service, set DPMS mode cl[1-0] = 0; active= 1, stand-by = 2, suspend = 3, off = 4, blank the display(this is not a DPMS state) al = 0dh ; return current DPMS state in cl al = 0eh; set Graphics Controller's Power Management state cl[1-0] = 0; active= 1, stand-by = 2, suspend = 3, offal = 0fh, return current Graphics Controller's Power Management state al = 10h; set the RAMDAC to different states cl =80h; reserved cl[0] = 0; set RAMDAC to normal mode cl[1] = 1; set RAMDAC to sleep mode al =11h; return external storage device info, INSTALL should use this information to dynamic configure the data structure cl =external data structure information cl [7] = 1; no external data storage can be used, Write EEPROM will not work cl [6-4] = 000; external data is readable and writeable = 001; external data storage is readable but not writeable = 011; external data storage is not readable and writeable = 100; external data storage is readable and writeable, the writing has to be handled by the application program based on device type in cl[3-0] cl [3-0] = 0; device type ch = number of read only entry in the storage device after the writeable entry dl = the last 16bit writeable entry in the storage device dh[7] = 1; the BIOS has built in CRTC parameters dh [5]=1; the BIOS support extended function AL = 15h

bl = offset into the CRTC parameter table

bh =size of the CRTC parameter table, if the number is smaller than the one in the CRTC table, then discard the bottom ones

For INSTALL.EXE,

- if cl[7] == 0; normal Mach64 operation
- if((cl[7] == 1) & (dh[6] == 0)),

the refresh information is predefined or handle by OEM's own program.

if((cl[7] == 1) & (dh[7-6] == 11b)),

the refresh information can be handle through extended function AL=15h

al = 12h; short query

on return

ax = reserved

bx = reserved

- cx = see dx below
- dx = IO Base Address and alias (2ECh or 1C8) if cx[0] = 0;
 - = IO Base Address with range of 256 if cx[0] = 1;

al = 13h; Display Data Channel Support(DDC)

bl = 0; return DDC format supported by Graphics controller and monitor on return bx = 0 ;DDC not supported

- bx[0] = 1 ;DDC1 supported by monitor
- bx[1] = 1;DDC2B supported by monitor
- al[0] = 1;DDC1 supported by BIOS

al[1] = 1;DDC2B supported by BIOS

al[6] = 1;BIOS support detailed EDID timing at powerup

- al[7] = 1;BIOS can use EDID information to setup the board at powerup
- bl = 1; read EDID data(support DDC1/DDC2B only, first EDID block for DDC2B)
- cx = buffer size
- dx:di = pointer to buffer
- bl = 2; read buffer(only support DDC2B or DDC2AB)
- cx = buffer size
- dx:di = pointer to buffer(monitor address in first byte of dx:di when calling)
- bl = 3; write buffer(only support DDC2B or DDC2AB)
- cx = buffer size
- dx:di = pointer to buffer
- al = 14h; Save and restore Graphics Controller states
 - cl = 0; return buffer size required in number of bytes
 - cx = buffer size

bx = save and restore mechanism used

bx[0] = 1; use 0b000h:0 for memory map

- bx[1] = 1; can pass in segment pointer pointing to 0:0 with full access
- bx[2] = 1; can pass in segment pointer pointer to beginning of memory aperture
- cl = 1; save controller states

dx:di = pointer to buffer

bx = save and restore mechanism used

if bx[0] = 0 in the cl=0 function) si = segment pointer to 0b000h:0 with 64K limit

if(bx[1] = 1 in the cl=0 function) si = segment pointer to 0:0 with full access

if (bx[2] = 1 in the cl=0 function) si = segment pointer to memory aperture

cl = 2; restore controller states

dx:di = pointer to buffer

bx = save and restore mechanism used

if (bx[0] = 0 in the cl= 0 function) si = segment pointing to 0b000h:0 with 64K limit

if (bx[1] = 1 in the cl=0 function) si = segment pointer to 0:0 with full access

if (bx[2] = 1 in the cl=0 function) si = segment pointer to memory aperture

al = 15h; Refresh Rate support

bl = 0; Get current refresh rate information

= 1; Change current refresh rate information

= 2; Save refresh rate information

dx:di = pointer to buffer(min 20bytes required and is terminated by 0FFFFh)

offset(word)	· content
0	12h(640x480), refresh mask
	bit $6 = 72$ Hz
	bit 5 = 75Hz
	bit $6,5 = 0$; = 60 Hz
1	6Ah(800x600), refresh mask
	bit $3 = 56$ Hz
	bit $2 = 60$ Hz
	bit 1 = 72Hz
	bit $0 = 75$ Hz
2	55h(1024x768), refresh mask
	bit 3 = 87Hz Interlaced
	bit $2 = 60$ Hz
	bit 1 = 70Hz
	bit 0 = 75Hz
3	83h(1280x1024), refresh mask
	bit $4 = 43$ Hz
	bit $3 = 47$ Hz
	bit $2 = 60$ Hz
	bit 1 = 70Hz
	bit $0 = 75$ Hz
4	84h(1600x1200), refresh mask
5	mode#(1152), refresh mask
	OFFFFh

= 3; set current external CRT table state

bh = 1; use external CRTC table

= 0; donot use external CRTC table

= 4; current external CRT table state.

al0] = 1; external CRTC table will be used by the BIOS

= 0; external CRTC table will not be used by the BIOS

Query Structure

Offset	Description
0 - 1	Size of structure in bytes
2	Revision of structure
3	Number of mode tables
4-5	Offset in bytes to mode tables
6	Size of each mode table in bytes
7	VGA Type 0 = disabled 1 = enabled
8 - 9	ASIC identification
	bit 15-0 = Asic type
	=0xD700, GX-C
	=0xD701, GX-D
	=0xD702, GX-E
	=0x57xx, CX
	=0x43xx, CT
0Ah	VGA Boundary 0 = full access 1 = 256K 2 = 512K 3 = 768K 4 = 1M 10h = no access through VGA
0Bh	Memory Size 0 = 512K 1 = 1M 2 = 2M 3 = 4M 4 = 6M 5 = 8M

Offset	Description			
0Ch	bit 3-0, DAC Type, bit 7-4, DAC subtype			
	00h = Internal DAC			
	01h = IBM RGB514			
	02h = TLC 34075 / ATI68875			
	72h = TVP3026			
	03h = Brooktree BT476/8			
	04h = Brooktree BT481			
	14h = AT&T20C490, AT&T20C491, AT&T20C493,			
	SC15025/15026, IMS-G174, MU9C4910, MU9C1880			
	05h = ATI68860 RevB			
	15h = ATI68860 RevC			
	75h = TVP3026			
	06h = STG1700			
	16h = AT&T20C498			
	07h = STG1702			
	17h = SC15021			
	27h = AT&T21C498			
	37h = STG1703			
	47h = Chrontel CH8398			

Offset	Description
0Dh	Memory Type for GX Controller 0 = DRAM 256Kx16 1 = VRAM 256Kx4 2 = VRAM 256Kx4 3 = DRAM 256Kx4 special 6 = VRAM 256Kx4 special Memory Type for CX Controller: 0 = DRAM symmetric RAS/CAS 1 = EDO DRAM 3 = DRAM asymmetric RAS/CAS Memory Type for CT Controller: 1 = DRAM 2 = EDO DRAM 3 = BRAM 4 = SDRAM
OEh	Bus Type 0 = ISA 1 = EISA 2 = Reserved 3 = Reserved 4 = Reserved 5 = VLB non-multiplexed 6 = VLB 7 = PCI
OFh	Bit 7 - enable composite sync Bit 6 - enable sync on green

Offset	Description			
10h-11h	Aperture address in megabytes (0-4095)			
12h	Aperture Configuration (see extended BIOS function al=6)			
13h	Bit Definition 7 = 1; support 32bpp (unpack 24bpp in xRGB, B is the least significant byte) 6 = 1; support 32 bpp (unpack 24 bpp in BGRx, x is the least significant byte) 5 = 1; support 32 bpp (unpack 24 bpp in RGBx, x is the least significant byte) 4 = 1; support 32 bpp			
	(unpack 24 bpp in xBGR, R is the least significant byte) 3 = 1; support BGR in 24bpp 2 = 1; support RGB in 24bpp 1 = 1; support 16 bpp, 555 0 = 1; support 16 bpp, 565			
14h	 RAMDAC Support Feature Bit Definition 7 = 1 ; support sync on green 6 = 1 ; support gamma correction 5 = 1 ; support 256 greyscale 4 = 1 ; support sleep mode 			
15h	bit 0 = I/O address type, see extended function AL=12h			
16h - 17h	Offset into current mode table if non-zero (not implemented)			
18h - 19h	I/O Base Address			
1Ah - 1Bh	Offset to additional DAC parameter information			
1Ch - 1Fh	Reserved			

Mode tables immediately follow the device status table. Use the forward pointer to reference mode tables, as the device status table may expand in the future. It is possible to have no modes installed. Typically, between 2 and 7 mode tables will be returned.

Mode Table Structure

Offset	Description
	Installed Mode Table 1
0-1	Horizontal display resolution in pixels
2-3	Vertical display resolution in scanlines
4	Maximum pixel depth (see extended function AL=0, CL[3-0] for interpretation)
5	Mode number (see extended function AL=0, CH)
6-7	Offset into EEPROM = 0 ; table is generated from VGA parameters <> 0 ; offset into EEPROM table
8-9	Reserved
0Ah-0Bh	Reserved
0Ch-0Dh	bit 15-14 =Reserved bit 13 = Enable Mux mode bit 12 = Enable Compsite Sync bit 11 = Enable hsync delay in BIOS bit 10 = Reserved, used for TLC34075 bit 9 = Enable interlace bit 8 = Enable double scan bit 7- 0 = reserved
0Eh	CRTC_H_TOTAL .
0Fh	CRTC_H_DISP
10h	CRTC_H_SYNC_STRT
11h	CRTC_H_SYNC_WID
12h-13h	CRTC_V_TOTAL
14h-15h	CRTC_V_DISP
16h-17h	CRTC_V_SYNC_STRT
18h	CRTC_V_SYNC_WID
19h	CLOCK_CNTL
1Ah-1Bh	Dot clock for coprocessor mode, for programmable clock chip
1Ch-1Dh	Bits 15-12 = Reserved Bits 11-8 = CRTC_H_SYNC_DLY Bits 7-4 = OVR_WID_RIGHT Bits 3-0 = OVR_WID_LEFT

Offset	Description
1Eh-1Fh	OVR_WID_TOP, OVR_WID_BOTTOM
20h-21h	OVR_CLR_B, OVR_CLR_8
22h-23h	OVR_CLR_G, OVR_CLR_R
	Installed Mode Table 2
24h-47h	Entries definition same as mode table 1.
	•
	•
	·
	Installed Mode Table n
N*24h- (N*24+23h)	Entries definition same as mode table 1.

Appendix B EEPROM DATA

Rom Entries

Information required for programming the graphics controller is stored in the video ROM. With the ATI BIOS, extra sets of values called parameter tables are stored in the EEPROM. For your convenience, EEPROM entries are explained in this appendix as functional units, for example, parameter tables.

Using a configuration program, users can customize the size and position of the extended video mode displays on their monitors and store the values in parameter tables. The BIOS will then use them instead of the values from standard tables defined for a selected monitor type. This feature allows users to change monitors and still have perfect screen alignment without changing the existing BIOS ROM. The first location of the first CRT parameter table is returned by the extended BIOS call al=11h.

mach64 EEPROM Data Structure

Offset	Bits	Description
Oh	15 - 0	EEPROM Write Counter.
1h	15 - 8 7 - 0	Checksum value for DDC data EEPROM checksum, modular 8 of 8-bit data, the sum- mation of all the entries in the EEPROM must be 0.
2h	15 - 0	Reserved. No application program should touch this entry. Factory default should set field to 0.
3h	15 - 4 3 - 0	Reserved. EEPROM table revision.
4h	15 - 0	Custom monitor indices.
5h	15 - 9 8	1280x1024 refresh rate information = 1; select 1280x1024 60Hz(use with built in CRTC parameter table)
	7	= 1; use stored 640x480 coprocessor parameters for coprocessor mode
	6	= 1; enable 640x480 72Hz
	5 - 2	Reserved
	1 0	Enable sync on green Enable composite sync
6h	15 - 8	Reserved
OII	7	= 1; use stored 800x600 coprocessor parameters for coprocessor mode
	6	Reserved
	5	= 1; Reserved
	4	= 1; Reserved
	3	= 1; select 800x600 in 56Hz(used with built in CRTC parameter tables)
	2	= 1; select 800x600 in 60Hz(used with built in CRTC parameter tables)
	1	= 1; select $800x600$ in 72Hz (used with built in CRTC parameter tables)
	0	= 1; select 800x600 in 75Hz (used with built in CRTC parameter tables)

.

Offset	Bits	Description
7h	15 - 8 7	Reserved = 1; use stored 1024x768 coprocessor parameters
	6.1	Pecerved
	3	= 1; select 1024x768 in 87Hz Interlaced (used with built in CRTC parameter)
	2	= 1; select 1024x768 in 60Hz (used with built in CRTC parameter)
	1	= 1; select 1024x768 in 70Hz (used with built in CRTC parameter)
	0	= 1; select 1024x768 in 75Hz (used with built in CRTC parameter)
8h	15 - 8	Power Up Video Mode
		03h = VGA color - secondary
		05h = VGA monochrome - secondary
		09h = VGA color - primary
		0Bh = VGA monochrome - primary
	7-6	Monochrome Mode Color Select
		0 = white
		1 = green
	5	2 = amber
	5	Dual Monitor Enable
	4	Font Selection at Power Up
		$0 = 8 \times 14 \text{ or } 9 \times 14$
	2	$I = \delta X I 0 \text{ of } 9 X I 0$
	5	V G A B us I/O 0 = 8 bits
		1 - 16 bits
	2	Zero Waite State RAM
	2	0 = disable
		1 = enable
	1	Zero Waite State ROM
		0 = disable
		1 = enable
	0	16 bits ROM
		0 = disable
		1 = enable

Offset	Bits	Description
9h	15 - 14	Host Data Transfer Width 0 = auto select 1 = 16-bit 2 = 8-bit 3 = 8-bit host/16-bit other
	13 - 8	Monitor Code
	7-6	Reserved VGA Boundary
	5 4	0 = no boundary 1 = 512K
	3	2 = 1M Monitor Alias Enable
	2 - 0	Monitor Alias
0Ah	15 - 4	Aperture Location (in MByte)
	3 - 0	Aperture Size (will not be used by the BIOS, if Aperture Location is non-zero, assume the aperture will be
		enabled, the aperture size will be based on video memory size)
0Bh	15 - 8	Mouse Address
		00h = mouse disable
		18h = primary address selected
	7 - 0	Interrupt Level
		20h = IRQ 5
		28h = IRQ 4
		38h = IRQ 2
0Ch -1Dh		Reserved
1Fh -2Dh		CRT Parameter Table 1
2Eh - 3Ch		CRT Parameter Table 2
3Dh - 4Bh		CRT Parameter Table 3
4Ch - 5Ah		CRT Parameter Table 4
5Bh - 69h		CRT Parameter Table 5
6Ah - 78h	,	CRT Parameter Table 6
79h - 87h		CRT Parameter Table 7
88h -96h		CRT Parameter Table 8
97h - 0A5h		CRT Parameter Table 9
0A6h -0 B4h		CRT Parameter Table 10
0B5h - 0C3h		CRT Parameter Table 11

Offset	Bits	Description
0C4h -0D2h		CRT Parameter Table 12
0D3h -0E1h		CRT Parameter Table 13
0E2h -0F0h		CRT Parameter Table 14
0F1h - 0FFh		CRT Parameter Table 15

.

.

mach64 CRT Parameter Table

Offset	Bits	Description
0	15 - 8	Video Mode Select 1 / Reserved
Ŭ	7 - 0	Video Mode Select 2 / Reserved
1	15 - 8	Video Mode Select 3 / Video Mode Select
*	7 - 0	CRT refresh rate bit mask / (bit 7=1 if the parameter is in coprocessor
		mode)
2	15 - 14	Reserved
	13	Enable MUX mode
	12	Enable composite Sync
	11	Enable HSYNC delay adjust in BIOS
	10	Reserved, used for TLC34075
	9	Enable interlace
	8	Enable double scan
	7	Vertical Sync Polarity (VGA only)
	6	Horizontal Sync Polarity (VGA only)
	5	Used by INSTALL.EXE
	4	CRT Usage (VGA only)
		0 = use sync polarities only
-		1 = use all CRT parameters
	3-0	Reserved
3	15 - 8	MAX_SCAN_LINE (CRT09) / CRTC_H_DISP
	7 - 0	H_TOTAL (CRT00) / CRTC_H_TOTAL
4	15 - 8	H_RETRACE_END (CRT05) / CRTC_H_SYNC_WID
	7 - 0	H_RETRACE_STRT (CRT04)/CRTC_H_SYNC_STRT
5	15 - 8	V_RETRACE_END (CRT11) / CRTC_V_TOTAL (15 - 8)
	7 - 0	V_RETRACE_STRT (CRT10) / CRTC_V_TOTAL (7 - 0)
6	15 - 8	H_BLANK_END (CRT03) / CRTC_V_DISP (15 - 8)
Ŭ	7 - 0	H_BLANK_STRT (CRT02) /CRTC_V_DISP (7 - 0)
7	15 - 8	V_BLANK_END (CRT16) / CRTC_V_SYNC_STRT (15 - 8)
	7 - 0	V_BLANK_STRT (CRT15) /CRTC_V_SYNC_STRT (7 - 0)
8	15 - 8	CRTC_OVERFLOW (CRT07) / CLOCK_CNTL
_		if == 0ffh or == programmable entry in clock chip, use dot clock in
		entry 9 and programmable entry in dot clock
	7 - 0	V_TOTAL (CRT06) / CRTC_V_SYNC_WIDTH
9	15 - 8	V_DISP_END (CRT 12) / DOT CLOCK (15 - 8)
-	7 - 0	CRT_MODE (CRT17) / DOT CLOCK (7 - 0)

Offset	Bits	Description
A	15 - 0	Bits 15 - 12 = reserved
		Bits 11 - 8 = CRTC_H_SYNC_DLY
		Bits 7 - 4 = OVR_WID_RIGHT
		Bits $3 - 0 = OVR_WID_LEFT$
В	15 - 0	OVR_WID_TOP, OVR_WID_BOTTOM
С	15 - 0	OVR_CLR_B, OVR_CLR_8
D	15 - 0	OVR_CLR_G, OVR_CLR_R
Е	15 - 0	Reserved

This page intentionally left blank.

.

Appendix C VESA BIOS Extensions

Introduction

The *mach64* product family has the VESA BIOS extension VP911922 implemented in the ROM. The VESA BIOS supports 16 color and hicolor modes through the extension. A brief description of the VESA BIOS functions is included for completeness. For detailed information, please refer to the original, published documents.

Status Information

Every function returns status information in the AX register. The format of the status word is as follows:

AL= = 4Fh:Function is supported AL != 4Fh:Function is not supported AH= = 00h:Function call successful AH= = 01h:Function call failed

Software should treat a non-zero value in the AH register as a general failure condition.

Function 00h - Return Super VGA information

Input:	AH=4Fh	Super VGA support
	AL=00h	Return Super VGA information
	ES:DI = P	ointer to 256-byte buffer
Output:		AX= Status
All other	registers are	e preserved.

The information block has the following structure:

VgaInfoBlock struc			전 방영국 소설은 이 관련이었다. 이 이
VESASignature	db	'VESA'	;4 signature bytes
VESAVersion	db	102h	;VESA version number
OEMStringPtr	dd	?	;Pointer to OEM string
Capabilities	db	4 dup (?)	;Capabilities of the video ;environment
VideoModePtr	dd	?	;Pointer to supported Super VGA ;modes
TotalMemory	dw	?	;Number of 64Kb memory blocks ;on board
Reserved	db	242 dup (?)	;Remainder of VGAInfoBlock
VgaInfoBlock ends			

- The VESASignature field contains the characters VESA if this is a valid block.
- **VESAVersion** is a binary field that specifies what level of the VESA standard the Super VGA BIOS conforms to.
- **OEMStringPtr** is a far pointer to a null-terminated, OEM-defined string that currently points to **ATI MACH64**.
- The **Capabilities** field describes the general features supported in the video environment. The bits are defined as follows:

D0	=	DAC is switchable	
		0 = DAC is fixed-width, with 6 bits per primary color	
		1 = DAC width is switchable	
D1 -31	=	Reserved	

• The VideoModePtr points to a list of supported Super VGA (VESA-defined as well as OEM-specific) mode numbers. Each mode number occupies one word (16

bits). The list of mode numbers is terminated by a -1 (0FFFFh) The pointer could point into either ROM or RAM, depending on the specific implementation. Either the list would be a static string stored in ROM, or the list would be generated at run-time in the information block (see above in RAM). It is the application's responsibility to verify the current availability of any mode returned by this function, through the **Return Super VGA mode information** (Function 1) call. Some returned modes may not be available, due to the video board's current memory and monitor configuration.

• The **Total Memory** field indicates the amount of memory installed on the VGA board. Its value represents the number of 64Kb blocks of memory currently installed.

Super Vga Mode Numbers

Supported VESA Modes

The following VESA modes are supported:

Graphics

15-bit Mode Number - M	7-bit ode Number	Resolution	Colors
100h		640x400	256
101h		640x480	256
102h		800x600	16
103h		800x600	256
104h		1024x768	16
105h		1024x768	256
107h		1280x1024	256
110h		640x480	32K (5:5:5)
111h		640x480	64K (5:6:5)
112h		640x480	16.8M (8:8:8)
113h		800x600	32K (5:5:5)
114h		800x600	64K (5:6:5)
115h		800x600	16.8M (8:8:8)
116h		1024x768	32K (5:5:5)
117h		1024x768	64K (5:6:5)
118h		1024x768	16.8M (8:8:8)

Graphics

15-bit Mode Number	7-bit Mode Number	Resolution	Colors
119h		1280x1024	32K (5:5:5)
11Ah		1280x1024	64K (5:6:5)
11Bh		1280x1024	16.8M (8:8:8)

Function 01h - Return Super VGA Mode Information

This function returns information about a specific Super VGA video mode.

Input:	AH=4Fh	
	AL=01h	
	CX=	Super VGA video mode*
	ES:DI=	Pointer to 256-byte buffer
Output:	AX=	Status
	All other i	registers are preserved
*. Mode	e number mu	st be one of those returned by Function 0

The mode information block has the following structure:

ModeInfoBlock struc

;mandatory information

ModeAttributes	dw	?	;mode attributes
WinAAttributes	db	?	;window A attributes
WinBAttributes	db	?	;window B attributes
WinGranularity	dw	?	;window granularity
WinSize	dw	?	;window size
WinASegment	dw	?	;window A start segment
WinBSegment	dw	?	;window B start segment
WinFuncPtr	dd	?	;pointer to window function
BytesPerScanLine	dw.	?	;bytes per scan line

;formerly optional information (now mandatory)

	XResolution	dw	?:	;horizontal resolution
	YResolution	dw	?	;vertical resolution
	XCharSize	db	?	character cell width
	YCharSize	db	?	character cell height
•	NumberOfPlanes	db	?.	number of memory planes
	BitsPerPixel	db	?	bits per pixel
	NumberOfBanks	db	?	number of banks
	MemoryModel	db	?	memory model type
	BankSize	db	?	bank size, in Kb
۰. ب	NumberOfImagePages	db	?	number of images
	Reserved	db	1	Reserved for page function

;New Direct Color Fields

?	;bit position of lsb of red mask ;size of direct color green mask, in ;bits
?	;size of direct color green mask, in ;bits
alle alles i	
?	;bit position of 1sb of green mask
?	;size of direct color blue mask, in bits
?	;bit position of lsb of blue mask
?	;size of direct color Reserved mask, ;in bits
?	;bit position of lsb of Reserved mask
?	;direct color mode attributes
	? ? ? ? ?

216 ;remainder of ModeInfoBlock dup

ModeInfoBlock ends

Reserved

• The **ModeAttributes** field describes certain important characteristics of the video mode.

(?)

db

The field is defined as follows:

- D0= Mode supported in hardware:
 - 0= mode not supported in hardware
 - 1= mode supported in hardware

D1=1 (Reserved)

D2= Output functions supported by BIOS:

- 0= output functions not supported by BIOS
 - 1= output functions supported by BIOS
- D3= Monochrome/color mode (see note below):
 - 0= monochrome mode
 - 1= Color mode
- D4= Mode type:
 - 0= text mode
 - 1= graphics mode

D5-D15=Reserved
- The **BytesPerScanline** field specifies the number of bytes in each logical scanline. The logical scanline could be equal to or larger than the displayed scanline.
- WinAAttributes and WinBAttributes describe the characteristics of the CPU windowing scheme, such as whether the windows exist and are read/writeable, as follows:

D0=	Window supported:
	0= window is not supported
	1= window is supported
D1	Window readable:
· 、	0= window is not readable
	1= window is readable
D2	Window writeable:
. 9	0= window is not writeable
·	1= window is writeable
D3-D7=	Reserved

If windowing is not supported (bit D0 = 0) for both Window A and Window B, an application can assume that the display memory buffer resides at the standard CPU address appropriate for the **MemoryModel** of the mode.

- WinGranularity specifies the smallest boundary, in KB, on which the window can be placed in the video memory. The value of this field is undefined if Bit D0 of the appropriate WinAttributes field is not set.
- WinSize specifies the size of the window, in KB.
- WinASegment and WinBSegment addresses specify the segment addresses where the windows are located in the CPU address space.
- WinFuncAddr specifies the address of the CPU video memory windowing function. The windowing function can be invoked either through VESA BIOS function 05h or by calling the function directly. A direct call will provide faster access to the hardware paging registers than using Int 10h, and is intended tp be used by high-performance applications. If this field is Null, Function 05h must be used to set the memory window, if paging is supported.
- **XResolution** and **YResolution** specify the height and width of the video mode, in pixels.
- XCharCellSize and YCharCellSize specify the size of the character cell, in pixels.
- The NumberOfPlanes field specifies the number of memory planes available to software in that mode. For standard 16-color VGA graphics, this would be set to 4. For standard packed pixel modes, the field would be set to 1.
- The **BitsPerPixel** field specifies the total number of bits that define the color of one pixel. For example, a standard VGA 4-plane, 16-color graphics mode would have a 4 in his field, and a packed-pixel, 256-color graphics mode would specify

8 in this field. The number of bits per pixel *per plane* can normally be derived by dividing the **BitsPerPixel** field by the **NumberOfPlanes** field.

• The **MemoryModel** field specifies the general type of memory organization used in this mode. The following models have been defined:

00h=	Text mode	
01h=	CGA graphics	••••
02h=	Hercules graphics	•
03h=	4-plane planar	
04h=	Packed pixel	
05h=	Non-chain 4, 256 color	
06h=	Direct Color	2
07h=	YUV	
08h-0fh=	Reserved, to be defined by VESA	
10h-ffh=	To be defined by OEM	

In version 1.1 and earlier of the VESA Super VGA BIOS Extension, OEM-defined Direct Color video modes with pixel formats 1:5:5:5 and 8:8:8:8 were described as a **Packed Pixel** model with 16, 24, and 32 bits per pixel, respectively.

- NumberOfBanks is the number of banks in which the scan lines are grouped. This field is set to 1.
- The **BankSize** field specifies the size of a bank, in units of 1KB. This field is set to 0.
- The **NumberOfImagePages** field specifies the number of additional, complete display images that will fit into the memory, at one time, in this mode. The application may load more than one image into the memory if this field is non-zero, and flip the display between the images.
- the Reserved field has been defined to support a future VESA BIOS extension feature, and will always be set to 1 in this version.
- The **RedMaskSize**, **GreenMaskSize**, **BlueMaskSize**, and **RsvdMaskSize** fields define the size, in bits, of the red, green, and value components of a direct color pixel. A bit mask can be constructed from the MaskSize fields, using simple shift arithmetic. For example, the MaskSize values for a Direct Color 5:6:5 mode would be 5, 6, 5, and 0, for the red, green, blue, and Reserved fields, respectively.
- The **RedFieldPosition**, **GreenFieldPosition**, **BlueFieldPosition**, and **RsvdFieldPosition** fields define the bit position within the direct color pixel or YUV pixel of the lsb of the respective color component. A color value can be aligned with its pixel field by shifting the value left by the FieldPosition. For example, the FieldPosition values for a Direct Color 5:6:5 mode would be 11, 5, and 0, for the red, green, blue, and Reserved fields, respectively.

• The **DirectColorModeInfo** field describes important characteristics of direct color modes. **Bit D0** specifies whether the color ramp of the DAC is fixed or programmable. If the color ramp is fixed, it cannot be changed. If the color ramp is programmable, it is assumed that the red, green, and blue lookup tables can be loaded using a standard VGA DAC color registers BIOS call (AX=1012h). **Bit D1** specifies whether the bits in the **Rsvd** field of the direct color pixel can be used by the application, or are Reserved, and thus unusable.

D0= Color ramp is fixed/programmable:

- 0= color ramp is fixed
- 1= color ramp is programmable

D1= Bits in Rsvd field are usable/Reserved

- 0= bits in Rsvd field are Reserved
- 1= bits in Rsvd field are usable by the application

Function 02h - Set Super VGA Video Mode

This function initializes a video mode. The BX register contains the mode to set.

Input:	AH=4Fh	Super VGA support
	AL=02h	Set Super VGA video mode
	BX=	Video mode
		D0-D14= Video mode
		D15= Clear memory flag:
		0= clear video memory
	۰ ۲ ۲	1= don't clear video memory
Output:	AX=	Status
	All other i	registers are preserved

Function 03h - Return Current Video Mode

This function returns the current video mode in BX.

Input:	AH=4Fh	· · · · · ·	Super VGA support
	AL=03h	an Ar State the	Return current video mode
Output:	AX=	Status	
	BX=	Current	video mode
	All other i	registers a	re preserved

Function 05h - CPU Video Memory Window Control

This function sets or gets the position of the specified window in the video memory. The function allows direct access to the hardware paging registers. To use this function properly, the software should use **VESA BIOS Function 01h** (Return Super VGA mode information) to determine the size, location, and granularity of the windows.

Input:	AH= 4Fh		Super VGA support
	AL= 05h		Super VGA video memory window control
	BH= 00h		Select Super VGA video memory window
	BL=	Window	' number:
		0=	Window A
		1=	Window B
	DX=	Window	position in video memory (in window granularity
e totse givense og en er		units)	같이 가슴 사람이 들어 있었다. 것은 이 가 가 있는 것 다. 가 가 가 있다. 가 사람은 그들 것 같은 가장 유민이가 같은 것 같은 것이 같은 것이 같이 하는 것이다.
Output:	AX=	Status	

(See notes below.)

Input:	AH= 4Fh		Super VGA support
an an an an an	AL=05h		Super VGA video memory window control
	BH=01h		Return Super VGA video memory window
	BL=	Window	/ number:
		0=	Window A
		1=	Window B
Output:	AX=	Status	에는 사람이 있는 것을 가장한 것을 다니지 않는다. 이는 사람이 같은 것을 다시지 않는 것이다. 같은 것을 다니지 않는다.
	DX=	Window	v position in video memory (in window granularity
		units)	
(See notes	s below.)		

Notes:

- This function is also directly accessible through a far call from the application. The address of the BIOS function may be directly obtained by using VESA BIOS function 01h (return Super VGA mode information). Afield in the ModeInfoBlock contains the address of this function. Note that this function may be different among video modes in a particular BIOS implementation, so the function pointer should be obtained after each set mode.
- In the far call version, no status information is returned to the application. Also, in the far call version, the AX and DX registers will be destroyed. Therefore, if AX and/or DX must be preserved, the application must do so before making the call.
- The application must load the input arguments in BH, BL, and DX (for set window), but does not need to load either AH or AL in order to use the far call version of this function.

Function 06h - Set/Get Logical Scan Line Length

This function sets or gets the length of a logical scan line. It allows an application to set up a logical video memory buffer that is wider than the displayed area. Function 07h then allows the application to set the starting position that is to be displayed.

Input:	AH = 4Fh	Super VGA support
	AL = 06h	Logial scan line length
	BL = 00h	Select scan line length
	CX =	Desired width, in pixels
an an taon ang ang ang ang ang ang ang ang ang an		
Output:	AX =	Status
	BX =	Bytes per scan line
	CX =	Actual pixels per scan line
	DX =	Maximum number of scan lines
Input:	AH = 4Fh	Super VGA support
1. A.	AL = 06h	Logical scan line length
×	BL = 01h	Return scan line length
	the April	1989년 1월 28일 - 1989년 1989년 1989년 1989년 198 1989년 1989년 198
Output:	AX =	Status
*	BX =	Bytes per scan line
	CX =	Actual pixels per scan line
	DX =	Maximum number of scan lines

Notes:

- The desired width, in pixels, may not be achievable because of hardware limitations. The next-larger value that will accommodate the desired number of pixels will be selected, and the actual number of pixels will be returned in CX.
 BX returns a value, which when added to a pointer into video memory, will point to the next scan line.
- The *mach64* implementation only supports this function in 256 color mode and above.

Function 07h - Set/Get Display Start

This function selects the pixel to be displayed in the upper left corner of the display from the logical page. This function can be used to pan and scroll around logical screens that are larger than the displayed screen. This function can also be used to rapidly switch between two, different displayed screens for double-buffered animation effects.

Input:	AH = 4Fh	Super VGA support
	AL = 07h	Display start control
	BH = 00h	Reserved, and must be 0
	CX =	First displayed pixel in scan line
an an t-t-t- 17 an t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-	DX =	First displayed scan line

Output: AX =

Status

Input:	AH = 4Fh	Super VGA support
	AL = 07h	Display start control
	BL = 01h	Return display start

Output: AX =	Status
BH =	00h Reserved, and will be 0
CX =	First displayed pixel in scan line
DX =	First displayed scan line

Notes:

• The *mach64* implementation only supports this function in 256 color mode and above.

Power Management Services

VBE/PM Function 0 - Report VBE/PM Capabilities

Input:	AH = 4Fh	VESA Extension
	AL = 10h	VBE/PM Services
	BL = 00h	Report VBE/PM Capabilities
	ES:DI	Null pointer; must be 0000:0000h in version 1.0. Reserved for future use
Output:	AX =	Status
	BH =	Power saving state signals supported by the controller: 1 = supported, $0 =$ not supported
	bit 0	STANDBY
	bit 1	SUSPEND
	bit 2	OFF .
	BL =	VBE/PM Version number (0001 0000b for this version)
	bits 0-3	Minor Version number
	bits 4-7	Major Version number
	ES:DI	Unchanged

VBE/PM Function 1 - Set Display Power State

Input:	AH = 4Fh	VESA Extension
	AL = 10h	VBE/PM Services
	BL = 01h	Set Display Power State
	BH =	Requested Power state:
	00h	ON
	01h	STANDBY
	02h	SUSPEND
	04h	OFF
 	•	
Output:	AX =	Status
	BH =	Unchanged

VBE/PM Function 2 - Get Display Power State

Input:	AH = 4Fh	VESA Extension
	AL = 10h	VBE/PM Services
a stational a Alexandria	BL = 02h	Get Display Power State
Output:	AX =	Status
	BH =	Power state currently requested by the controller:
	00h	ON
	01h	STANDBY
	02h	SUSPEND
	04h	OFF

Display Identification Extensions

The VESA VBE sub-function 15h is used to implement the VBE/DDC services. The VBE/DDC services are defined below and are not included in the VBE Standard documentation.

VBE/DDC Function 0 - Report VBE/DDC Capabilities

Input:	AH = 4fh	VESA Extension
	AL = 15h	VBE/DDC Services
	BL = 00h	Report DDC Capabilities
	CX = 00h	Controller unit number (00=primary controller)
	ES:DI	Null pointer, must be 0:0 in version 1.0 Reserved for future use.
Output:	AX =	Status
	BH =	Approximate time in seconds, rounded up, to transfer one EDID block (128 byte)
	BL=	DDC level supported (*)
	bit0	=0 DDC1 not supported
		=1 DDC1 supported
:	bit1	=0 DDC2 not supported
		=1 DDC2 supported
	bit2	=0 Screen not blanked during data transfer (**)
		=1 Screen blanked during data transfer
	CX=	Unchanged
an a	ES:D1	Unchanged
	All other	registers may be destroyed
	(*) DDC (**) This SW	level supported by both the display and the controller refers to the behavior of the controller and the VBE/DDC

VBE/DDC Function 2 - Read EDID

Input:	AH = 4fh	VESA Extension
	AL = 15h	VBE/DDC Services
•	BL = 01h	Read EDID
	CX = 00h	Controller unit number (00=primary controller)
	DX = 00h	EDID block number. Zero is only a valid value in version 1.0
	ES:DI	Pointer to area in which the EDID block (128 bytes shall be returned
Output:	AX =	Status(*)
	BH =	Unchanged
	CX =	Unchanged
	ES:DI	Pinter to area in which the EDID block is returned
	All other	r registers may be destroyed

,

Appendix D

Parameter Table Format

Listing by Byte Numbers

Byte	Description
0	Number of text columns
1	Number of text rows
2	Character height (in pixels)
3	Display page length (LSB Byte)
4	Display page length (MSB Byte)
5	SEQ01 - Clocking Mode Register
6	SEQ02 - Map Mask Register
7	SEQ03 - Character Map Select Register
8	SEQ04 - Memory Mode Register
9	GENMO - Miscellaneous Output Register
0Ah	CRT00 - Horizontal Total Register
0Bh	CRT01 - Horizontal Display End Register
0Ch	CRT02 - Start Horizontal Blanking Register
0Dh	CRT03 - End Horizontal Blanking Register
0Eh	CRT04 - Start Horizontal Retrace Register
0Fh	CRT05 - End Horizontal Retrace Register
10h	CRT06 - Vertical Total Register
11h	CRT07 - Overflow Register

.

Byte	Description
12h	CRT08 - Preset Row Scan Register
13h	CRT09- Maximum Scan Line Register
14h	CRT0A- Cursor Start
15h	CRT0B - Cursor End
16h	CRT0C - Start Address High
17h	CRT0D - Start Address Low
18h	CRT0E - Cursor Location High
19h	CRT0F - Cursor Location Low
1Ah	CRT10 - Start Vertical Retrace Register
1Bh	CRT11 - End Vertical Retrace Register
1Ch	CRT12- Vertical Display Enable End Register
1Dh	CRT13 - Offset Register
1Eh	CRT14 - Underline Location Register
1Fh	CRT15 - Start Vertical Blanking Register
20h	CRT16 - End Vertical Blanking Register
21h	CRT17 - Mode Register
22h	CRT18 - Line Compare Register
23h	ATTR00 - Palette Register 0
24h	ATTR01 - Palette Register 1
25h	ATTR02 - Palette Register 2
26h	ATTR03 - Palette Register 3
27h	ATTR04 - Palette Register 4
28h	ATTR05 - Palette Register 5
29h	ATTR06 - Palette Register 6
2Ah	ATTR07 - Palette Register 7
2Bh	ATTR08 - Palette Register 8
2Ch	ATTR09 - Palette Register 9
2Dh	ATTR0A -Palette Register A

Byte	Description
2Eh	ATTROB - Palette Register B
2Fh	ATTROC - Palette Register C
30h	ATTROD - Palette Register D
31h	ATTROE - Palette Register E
32h	ATTR0F - Palette Register F
33h	ATTR10 - Mode Control Register
34h	ATTR11 - Overscan Color Register
35h	ATTR12 - Color Map Enable Register
36h	ATTR13 - Horizontal PEL Panning Register
37h	GRA00 - Set/Reset Register
38h	GRA01 - Enable Set/Reset Register
39h	GRA02 - Color Compare Register
3Ah	GRA03 - Data Rotate Register
3Bh	GRA04 - Read Map Select Register
3Ch	GRA05 - Mode Register
3Dh	GRA06 - Miscellaneous Register
3Eh	GRA07 - Color Don't Care Register
3Fh	GRA08 - Bit Mask Register

,

In addition, the VIDEO BIOS is using some of the unused bits in the parameter table to store the extended registers programming information. This information defines the video memory model, DAC programming information, CRTC and Dot Clock selection.

. J
1 = Set ATI38[7] to 1

Parameter Table Entry 7

Bit 8	0 = Set ATI31[6] to 0
	1 = Set ATI31[6] to 1
Bit 7	0 = Set ATI3E[1] to 0
	1 = Set ATI3E[1] to 1

Parameter Table Entry 8

Bit 7	0 = Set ATI39[1] to 1
	1 = Set ATI39[1] to 0
Bit 6	0 = Set ATI3E[4] to 1
	1 = Set ATI3E[4] to 0
Bit 5	0 = Set ATI38[7,6] to 0,1
	1 = Set ATI38[7,6] to 0,0
Bit 4	0 = Set ATI30[0] to 0
	1 = Set ATI30[0] to 1

Appendix E Dot Clocks

ATI18811-1 Clock Chip Pixel Clocks

F reedow and				
Output (MHz)	ATI3E[4]	ATI39[1]	GENMO[3]	GENMO[2]
100.00	0	0	0	0
126.00	0	0	0	1
92.40	0	0	1	0
36.00	0	0	1	1
50.35	· 0	1	0	0
56.64	0	1	0	1
External Frequency	0	1	.1	0
44.90	0	1	1	1
135.00	1	0	0	0
32.00	1	0	0	1
110.00	1	0	1	0
80.00	1	0	1	1
39.91	1	1	0	0
44.90	1	1	0	1
75.00	1	1	1	0
65.00	1	1	1	1

• •

ATI18818 Programmable Clock Chip

-	Select Bits			
Output (MHz)	ATI3E[4]	ATI39[1]	GENMO[3]	GENMO[2]
50.35	0	0	0	0
56.64	0	0	0	1
63.00	0	0	1	0
72.00	0	0	1	1
40.00	0	1	0	0
44.90	0	1	0.	1
49.50	0	1	1	0
50.00	0	1	1	1
Reserved	1	0	0	0
110.00	1	0	0	1
126.00	1	0	1	0
135.00	1	0	1	1
Reserved	1	1	0	0
80.00	1	1	0	1
75.00	1	1	1	0
65.00	1	1	1	1

$PCLK_TABLE = 1$

ATI18818 Programmable Clock Chip

L	Select Bits			
Output (MHz)	ATI3E[4]	ATI39[1]	GENMO[3]	GENMO[2]
25.18	0	0	0	0
28.32	0	0	0	1
31.50	0	0	1	0
36.00	0	0	1	1
40.00	0	1	0	0
44.90	0	1	0	1
49.50	0	1	1	0
50.00	0	1	1	1
Reserved	1	0	0	0
110.00	1	0	0	1
126.00	1	0	1	0
135.00	1	0	1	1
Reserved	1	1	0	0
80.00	1	1	0	1
75.00	1	1	1	0
65.00	1	1	1	1

 $PCLK_TABLE = 2$

This page intentionally left blank.

Appendix F Scratch Registers and Their Contents

SCRATCH_REG0(42ECh)

bit 1-0	graphics controller power management states
SCRATCH_REG0 + 1(42EDh)	800x600 refresh rate information
bit 7	external crtc table indicator
bit 6 - 0	800x600 refresh mask
SCRATCH_REG0 + 2(42EEh)	reserved(can be 1280x1024)
bit 7	DDC2 detected state
bit 6	640x480 72Hz
bit 5	640x480 75Hz
bit 4 - 0	1280x1024 refresh mask
SCRATCH_REG0 + 3(42EFh)	1024x768 refresh rate information
bit 7	not used
bit 6 - 0	1024x768 refresh mask

SCRATCH_REG1(46ECh) ROM location

SCRATCH_REG1 + 1(46EDh)	
bit 7-4	RAMDAC subtype
bit 3-2	not used
bit 1	reserved
bit 0	sync on green enable
SCRATCH_REG1 + 2(46EEh)	
bit 7 - 6	CRTC pitch size
bit 5	mux moude
bit 4	enable gamma correction or 256 color greyscale
bit 3	32bpp color orientation information
bit 2	TLC34075 output clock select or TVP3026 15/16bpp information
bit 1	32bpp color orientation information
bit 0	current gamma correction or 256 color state_cation

SCRATCH_REG1 + 3(46EFh)Programmable dotclock information

1CE/BB(VGA enable only)	
bit 7-6	640x480 refresh rate information
bit 5-4	monochrome mode, color information
bit 1	if set, use VGAWONDER compatible paging mechanism
	in packed pixel mode
bit 0	Set to VGA display if int10 is called

Index

A

ATI Enhanced Modes A-2

B

Binary Files Parameters 3-13 Procedure Outline 3-13 BIOS Customization 3-6 customization 1-3 function calls A-11 Initialization 3-7 support A-11 Supported Functions 1-2 BIOS services A-1, B-1, C-1 Bus EISA 3-3 ISA 3-3 Local Bus 3-3 PCI 3-3 Bus - ISA 3-14, 3-15 Bus - PCI 3-14, 3-15 Bus - VLB 3-14, 3-15

C

Calculating ROM Base Address A-11 Character Fonts 3-7 Character generator routines A-5 Clock Chip 3-9, E-1 Contents of the Kit 2-1 Copying Files 2-1 CRT Parameter table entry D-4 table format D-1 Custom BIOS 3-6

D

Dot Clocks E-1

E

EDLIN.EXE 2-1 EEPROM 3-8 entries B-1 internal and external data storage 3-8 EEPROM data B-1, F-1 EXE2BIN.EXE 2-1 Extended Graphics Accelerators 1-3 Extended ROM Services A-11 Extended Video Modes 1-1

F

File Listings By Directories 2-2 File Listings by Directories CXROM 2-2 CXROMCONFIG 2-9 CXROMŒBJS 2-7 CXVESACONFIG 2-9 FONTS 2-10 VGACOMM 2-9 VGATOOLS 2-10 Frequency Tables E-1

G

Get Display Power State C-14

I

IBM Compatible Modes A-1

L

LINK 3-13

LINK.EXE 2-1

М

mach64 accelerator Overview 1-1 MAKEROM.BAT 3-7, 3-12, 3-13, 3-14, 3-15 Making Non-Paged BIOS 3-13 Microsoft MASM 2-1 Mode Table Structure A-20 Monitor Support 3-7

N

Non-Paged BIOS 2-2 Non-paged BIOS 3-13

0

Overview 1-1

P

Paging Out the Initialization Code 3-10 PCI-Specific Implementation 3-10 Print screen routine selection A-6 Program Tools - VGATOOLS 2-10

Q

Query Structure A-18

R

Read character/attribute A-3 Read current cursor position A-2 Read current light pen position A-2 Read display combination code A-8 Read dot A-3 Report VBE/PM Capabilities C-13 Return current EGA settings A-6 Return current video setting A-4 Return Super VGA Information C-2 Return VGA functionality and state information A-8 ROM BIOS Relocation 3-10 ROM Selection 3-9

S

Save and restore video state A-10

Scratch Registers 3-7, A-11 Scroll active page down A-3 Scroll active page up A-2 Select active display page A-2 Set color palette A-3 Set current cursor position A-2 Set cursor type A-2 Set Display Power State C-13 Set Mode 3-7, A-11 Set palette registers A-4 Set video mode A-1 Sign-on Messages 1-3, 3-7 Source Codes 1-3 **CXROM 2-2 FONTS 2-10** VGACOMM 2-9 VGAROM 2-2 Super VGA Mode Numbers C-3 Supported VESA Modes C-3 Supported VESA Modes C-3 Function 01h - Return Super VGA Mode Information C-5 Function 02h - Set Super VGA Video Mode C-9 Function 03h - Return Current Video Mode C-9 Function 05h - CPU Video Memory Window Control C-10 Function 06h - Set/Get Logical Scan Line Length C-11 Function 07h - Set/Get Display Start C-12 Symbolic Constants 3-1, 3-8, 3-9, 3-10 88800GX BUS 3-3 88800GX RAMDAC 3-2 Clock Chip 3-3 VESA BIOS Extension 3-6 System BIOS 3-1, 3-7, 3-10

V

VESA BIOS Extension Constants 3-6
VESA BIOS Extension Implementation 3-11
VESA BIOS extensions Status information C-1
VGA Compatibility 3-1
VGA Controller A-1
Video BIOS 3-1, 3-7, 3-10
Video BIOS Relocation 3-10

\boldsymbol{W}

WONDER.X01 3-13 Write character at current cursor position A-3 Write character/attribute A-3 Write dot A-3 Write string to specified page A-7 Write teletype to active page A-4

X

хсору 2-2

*

This page intentionally left blank.

•

٠

User Response Form

In our continuing effort to improve our products and documentation, ATI Technologies Inc. is anxious to obtain your feedback on this manual. Using a scale of 1 to 5, with 5 representing the most favorable, and 1 the least favorable, please circle the number that best reflects your opinion. Everyone who completes and returns this questionnaire will receive an ATI souvenir (e.g. golf shirt, mug etc.) depending on availability.

Name and Organization								
Title	Years in position							
Name of Manual <i>mach64</i> BIOS Kit Release No.								
How do you rate the manual, generally?	1	2	3	4	5			
Is the technical level of the manual appropriate?		2	3	4	5			
Are operating instructions clear and complete?		2	3	4	5			
Are terms and concepts explained clearly?		2	3	4	5			
Is the manual well organized?		2	3	4	5			
Are the tables easy to understand?	1	2	3	4	5			
Is the artwork clear and easy to understand?	1	2	3	4	5			
How helpful is the index?	1	2	3	4	5			
How does this manual compare with other, similar manuals you have used?		2	3	4	5			
Comments								
What did you like best about this manual ?								
What did you like least about this manual ?	•							
Are there any errors/omissions in the manual?					. <u>.</u>			

THANK YOU FOR YOUR COMMENTS! Please mail to: ATI Technologies Inc., 33 Commerce Valley Drive East, Thornhill, Ontario, Canada L3T 7N6. You may also fax this to (905) 882-2620 (attn: Technical Publications)

. .

•

Perfecting the PC