
MACHXL ® Software User's Guide
1995

Advanced
Micro

Devices
'

AMO Part #: AMPLDSW/MXLB1322

Platform: PC I Windows

Registrat ion #: 63786

MACHXL Software User's Guide

© 1994 Advanced Micro Devices, Inc.
P.O. Box 3453
Sunnyvale, CA 94088

TEL:408-732-2400
T'NX: 910339-9280
TELEX: 34-6306
TOLL FREE: 800-538-8450

APPLICATIONS HOTLINE:
800-222-9323 (US)
44-(0)-256-811101 (UK)
0590-8621 (France)
0130-813875 (Germany)
1678-77224 (Italy)

Advanced Micro Devices reserves the right to make changes in specifications at
any time and without notice. The information furnished by Advanced Micro Devices
is believed to be accurate and reliable. However, no responsibility is assumed by
Advanced Micro Devices for its use, not for any infringemnets of patents or other
rights of third parties resulting from its use. No license is granted under any patents
or patent rights of Advanced Micro Devices.

Epson® is a registered trademark of Epson America, Inc.

Hewlett-Packard®, HP®, and LaserJet® are registered trademarks of Hewlett
Packard Company

IBM® and OS/2® are registered trademarks and IBM PC™ is a trademark of
International Business Machines Corporation.

Microsoft®, Windows® and MS-DOS® are registered trademarks of Microsoft
Corporation.

MACH®, MACHXL®, PAL® and PALASM® are registered trademarks of Advanced
Micro Devices, Inc.

Pentium™ is a trademark of Intel Corporation.

Wordstar® is a registered trademark of MicroPro International Corporation

Document . .:vision 3.0
Published July, 1995. Printed in U.S.A.

ii

Contents

Chapter 1 Brushing Up on PLDs/CPLDs
PLD/CPLD Architectures ... 2

Chapter 2 About MACHXL
MACHXL Overview and Architecture4
Design Flow ... 6
Design Entry .. 7

Flexible Design Methodology ... 7
Design Synthesis Language (DSL) ... ?
PDS Language ... 7

Compiling .. 8
Functional Simulation ... 8
Optimizing ... 8

Automatic DeMorganization .. 9
Automatic Flip-Flop Synthesis ... 9
Automatic Don't Care Generation ... 9
XOR Synthesis .. 10
NODE Collapsing .. 10
Logic Minimization .. 10

Device Selection ... 11
PLDs/CPLDs .. 11
Design Partitioning .. 12
Solutions Menu .. 13

Devices Library .. 13
Building a MACHXL Design Synthesis Language Source File14

Parts of a Source File (Using MACHXL's Design Synthesis
Language) ... 14

iii

Chapter 3 Windows Interface
Introduction ... 17
File Menu .. ; ... 18

New ..•......... 18
Opening a File (New or Existing) .. 18

Project Files ... 19
Project Information Files ... 19
Source Files ·· .. 19
.pi Files (*.pi) ... 19
PALASM Files (*.pds) ... 19
ABEL Files (*.abl) ... 19
All Files(*.*) ... -19

Import ... 19
Project Menu ... 20

Build All ... 20
Compile ... 22

Design .. 23
Design .Libraries ... 23

Partition .. 23
Generate Fusemaps ... 24
Build Options .. 24

Equation Reduction Method .. 24
Generate Warnings : 25
Verbose .. 25
Nodes for If Statements .. 25
MAX Number of Pterms ... 25

Copy npi to pi ... 25
Stop .. 26
Abort .. 26

Results Menu .. 26
Log File .. 26
Documentation .. 26
Fitter Report ... 27
Programming .. 27

Device Menu ... 27
Parameters .. 28

Constraints ... 28
Priorities ... 30

iv

TEMPLATES ... 30
Solutions ... 31

Programming .. 32
Options Menu .. 32

Authorization ... 32
Options .. 33

OK .. 33
Cancel. .. 33
Apply .. 33
Build Options .. 33
Documentation Options ... 35
Schematic Options ... 36
Simulation Options .. 37
System Interface'Options ... 39

View Menu .. 40
Toolbar ... 40
Status Bar ... 41

Help Menu ... 41
Index ... 41
Using Help .. 41
About MACIIXL ... 42

Chapter 4 Conventions and Syntax
Introduction to Design Synthesis Language (DSL) 44
Description of a DSL Source File .. .44
Conventions Used by Design Synthesis Language46
Identifiers ... 46
Keywords ... 4 7
Integer Constants .. 48
Comments .. 49
Headers .. 50

v

Chapter 5 Signal Declarations and Modifiers
Introduction ... 52
Declarations .. 5 2

System and Local Signal Declarations ... 53
Arrays .. : .. 53
Input Signals ... 54
Output/Biput Signals ... 55
Biput Signal Usage ... 56
Nodes ... 57
Wired-Bus Signals .. 59

Declaration Modifiers .. 61
Flip-Flop Types .. 62

D FLOP .. 63
D LATCH ... 63
JK FLOP ... 64
SR_FLOP .. 64
T_FLOP ... 65

Control Information Constructs .. 66
CLOCKED BY .. 66
LATCHED_ BY .. 66
CLOCK_ENABLED _BY ... 67
RESET_BY .. 67
PRESET BY .. 67
ENABLED_BY .. 67

Default Information Constructs .. 68
DEFAULT_TO .. 68
NO _REDUCE .. 70

Chapter 6 Expressions
Introduction ... 72
Identifiers .. , 72

Logical Operators ... 7 4
Expression Shorthand (ES) ... 74

Relational Operators ... 7 5
Arithmetic Operators ... 76
Constant Expressions .. 77
Using Parentheses to Change Precedence 78

Groups and Ranges .. 78

vi

Array Expressions .. 81
Don't Care Condition .. 83

Chapter 7 Statements and Constructs
Introduction .. 86
Assigilment Statements ... 86
IF Statements ... 87
CASE Construct .. 88
TRUTH_TABLE ... 90
STATE_MACHINE Construct. : .. 92

CLOCKED_BY (in a STATE_MACHINE) 94
Rules for Using CLOCKED_BY in a State Machine 94

RESET_BY (in a STATE_MACHINE) 96
. RULES for Using RESET_BY in a State Machine 96

STATE_ BITS (in a STATE_MACHINE) 97
Rules for Using the STATE_BITS Construct in a State
Machine .. 98

STATE_VALUES ... 100
Rules for Using the ST ATE_ VALUES Construct 100
ONE_ HOT ... 100
GRAY_CODE .. 101

STATE Declarations _ 102
Rules for Using the ST A TE Construct.. 102

GOTO Statement ... 104
Asynchronous State Machines .. 105

Chapter 8 Procedures and Functions
Introduction .. 108
Procedures ... 108

Declaring a Procedure .. 109
Invoking a Procedure ... 109

Functions ... 111
Declaring a Function .. 111
Invoking a Function ... 112

Input Parameters .. 113
Output Parameters ... 113
Local Declarations ... 114
What Happens When a Procedure_ or Function is Invoked? 114

vii

Invoking Procedures and Functions From Other Files 118

Chapter 9 Text Processing
Introduction ... 120
Macros .. 120
Including Other Files in a Design ... 121
Commenting Out Blocks of Code ... 122

Chapter 10 Compiling a Design
Introduction ... 124
Compilation .. 124
Multiple File Designs ... 124
Errors in Compilation .. 125

Chapter 11 Simulating and Testing a Design
Introduction ... 128
Test Language Reference ... : ... 129

General Structure of a Simulation or Test File 129
Keywords ... 131
Declarations .. 132

Specifying the Clock Resolution 132
Variable and Signal Expressions .. 133

Declaring Variables .. 133
Tracing Signals .. 135

Statements .. 136
Using the Table Format to Create Vectors 137
Using Test Language Constructs to Create Vectors 141
SET ... 141
CLOCKF ... 144
INITIAL .. 146
INIDAL_TO ... 149
MESSAGE .. 149
RETURN ... 151

Test Language Operators .. 154
The FOR-DO Construct ... 155
IFrrHEN/ELSE ... 157
WHILE-DO ... 159

An Example Simulation Section and Results .. 160

viii

A SYSTEM_TEST Example .. 164
Internal Simulator Operation .. 166

Simulation Cycle ... 166
Initialize .. 16 7
Compute All Outputs Until Stable 167
If There is a Clock Signal..168
Write Out Results .. 168

Signal States .. 169
Truth Tables for the Test Language Logical Operators 171

Chapter 12 Optimizing a Design
Introduction .. 178
Optimizer Operation ... 178

Node Collapsing .. 179
Virtual and Physical Nodes .. 180
Controlling Node Collapsing .. 180
Node Collapsing and Partitioning ... 184
Register Synthesis .. 185
Equation Reduction .. 186
Factoring ... 186

Chapter 13 Partitioning and Fitting (Optional)
Introduction .. 188
Partitioning Modes ... 188
The Partitioning Process ... 189

Directed Partitioning .. 190
Placing Logic into Specified Devices 190
Placing Unspecified Logic ... 191
Pinout and Architectural Feature Specification 192

Setting the Template List ... 192
Setting Partitioning Constraints .. 192
Setting Partitioning Priorities ... 194

Chapter 14 Controlling Partitioning and Fitting (Optional)
Introduction .. 199
How the .pi File Controls Partitioning ... 201

Automatic Partitioning ... 201
Directed Partitioning .. 201

ix

Manual Partitioning .. 202
Creating a .pi File .. 202
Physical Information File Language Reference ... 202

Physical Information Language Keywords 202
.pi File Syntax Rules ... 203

Comments .. 205
COMP _OFF and COMP _ON ... 205

Input and Output Signals in the .pi File .. 205
.pi File Structure ... 206
Global Properties .. 207
Ungrouped Signals : .. 207

Virtual Signals ... 209
Signal Properties for Ungrouped Signals 211
DEFAULT Statement for Ungrouped Signals 212

Group Specifications ... 212
Naming a Group ... 213
Listing Signals in a Group .. 214
Signal Properties for a Group ... 216
DEFAULT Statement in a Group 217

Device Specifications .. 217
Device Properties .. 218
Naming a Device .. 219
Targeting a Specific Device for Fitting 220
Listing Signals in a Device .. 221
Renaming the Fusemap File of a Device 225
Specifying Signal Directions in a Device 226
Signal Properties for a Device ... 227
DEFAULT Statement in a Device 228
Assigning Logic Levels (High-Value, Low-Value,
NO_CONNECT) to Pins ofa Device 229
Device Section Specifications ... 229
Grouping Signals Within a Device 233
Fuse-Level Programming Control 233

Using the .npi File to Recreate a Pinout 234
Examples Using the .pi File ... 235

Example 1: Controlling the Size of Equations 235
Example 2: Forcing Signals To Be Fit Together in the
Same Device ... 235

x

Example 3: Using Specific Devices ... 236
Example 4: Maintaining Pin Assignments 236
Example 5: Fitting the Design into One Device 237
Example 6: Fitting the Design into More Than One Device 238
Example 7: Mixing Automatic and Directed Partitioning 239
Example 8: Refitting a Design Into the Same Footprint 239
Example 9: Specifying Devices Without Specifying Signals 240

Chapter 15 Device-Specific Partitioning (Optional)
Introduction .. 245
General Device Fitting With .pi File Properties ... 245

Controlling PLO Utilization ... 245
Using the FIT_AS_OUTPUT Property ... 246
Controlling How Signals Fit Together .. 247
Enables Used Only For Test ... 248
Synthesis Control Properties .. 249

Accessing Internal Points in a Device .. 250
Hidden Nodes .. 251
Shadow Nodes ... 251
Unary Nodes .. 252
Devices With Unary Nodes .. 254

Other Device-Specific Infonnation for PLDs ... 255
Synchronous Preset in the 22V10 Architectures 255
Accessing the Open-Drain Outputs of the Pl6V8HD 256
Specifying JEDEC Filenames ... 259

AMO MACH ... 259
MACH Pin Numbering .. 259
Using the .pi File with MACH Devices ... 261

Properties and Device Utilization 261
Equation Optimization ... 262

Targeting PAL Blocks ... 263
Using GROUPs with MACH ... 264
Using SECTIONs with MACH 264
Using FLOAT_NODES with MACH Devices 266
Accessing the MACH Internal Feedback Path 267
Configuring the MACH 445 and MACH 465 Devices for
Zero-Hold Time .. 268

xi

Accessing the MACH 445 and MACH 465
Signature Bits · ... 269
The MACH .rpt File ... 269
The MACH LOW _POWER Attribute 270

Chapter 16
Introduction ... 272
Programming PLDs or CPLDs .. 272

Downloading Fusemaps .. 272
Using Your Device Programmer's Downloading Software 272
Connecting Your Computer System to a Device Programmer 273
Testing Devices ... 273

Chapter 17
Introduction ... 276
Title Page ... , 276
Switch Values (options) ... 277
Reduced Design Equations ... 277

How Equations are Generated ... 277
Equation Extensions Used in the .doc File 277
DeMorgan Equations .. 279
Equation Display .. 280

Partitioning Criteria ... 280
Solutions List ~ ... 281
Fusemap Files ... 281
Pinout Diagrams .. 281
Possible Devices List ... 281
Wire List ... 282
Viewing the Documentation ... 282

Chapter 18
What If Equations Are Too Large? .. 284
What lfMACHXL Runs Out of Memory? ... 284

In the Compiler ... 285
In the Optimizer .. 285
In the Fitter ... 285

What Can Be Done to Speed Things Up? ... 286
In the Compiler and Optimizer ... 286

xii

In the Fitter .. 286
What Can Be Done to Minimize the Amount of Hardware Needed to
Implement a Design? .. 286

In the Design Files ... 286
In the Fitting Constraints .. 287
.est File and Fitter Speed .. 287

Appendix A MACHXL Supported Devices
Introduction .. 290
AMD PLD Design Module ... 290
AMD MACH Design Module ... 295
Devices Listed By Template Number .. 298
Device Footprints by Template Number.. .. 304
New Devices .. 306
Renamed Devices ... 308
Obsolete Devices .. 309
Deleted Devices .. 310

Appendix B Language-Based Design Examples
Introduction .. 313
Building a MACHXL Design Synthesis Language Source File 313
Gray_ Code Counter Examples .. 315

Example l: Asynchronously Reset Gray Code Counter Using Simple
Equations (PLDs) .. 315
.stm (Stimulus) File for Example 1 ... 316
Example 2: Synchronously Reset Gray Code Counter Using Simple
Equations .. 317
.stm (Stimulus) File for Example 2 ... 318
Example 3: Synchronously Reset Gray ~ode Counter Using a Truth
Table ... \ 319
.stm (Stimulus) File for Example 3 : 320
Example 4: Synchronously Reset Gray Code Counter Using a Truth
Table and IF Construct (AMD MACH) 321
.est (Constraint) File for Example 4 .. 322
.stm (Stimulus) File for Example 4 ... 322
Example 5: Synchronously Reset Gray Code Counter Using CASE
Statement. .. 323
.stm (Stimulus) File for Example 5 ... 324

xiii

Example 6: Synchronously Reset Gray Code Counter Using IF
Statement .. 325
.stm (Stimulus) File for Example 6 .. 326
Example 7: Synchronously Reset Gray Code Counter Using a State
Machine .. 328
.stm (Stimulus) File for Example 7 .. 329
Example 8: Synchronously Reset Gray Code Counter Using a State
Machine .. 330
.stm (Stimulus) File for Example 8 .. 331

Drink Machine Examples ... 333
Example 1: Drink Machine Using a State Machine 333
Example 2: Drink Machine Using a State Machine and Default
Values .. 337

Seven-Segment Display Handler Example .. 341
Adders and Multipliers .. 345

Example 1: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder Procedures 345
Example 2: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder Functions 347
Example 3: Combinatorial 4x4 Multiplier Function 349
Example 4: Combinatorial 4x4 Multiplier Functions 350

4-Bit ALU Example ... 352

Appendix C MACHXL Warning and Error Messages
Introduction ... 368

Appendix D AMD MACH Support Supplement
Introduction ... 440
Overview of the Design Process ... 440
MACH Issues in the Design Flow .. 441

Design Conception .. 441
Design Expression ... 442
Design Implementation .. 443
Design Testing .. 444
Design Integration ... 445

Application Note: .. 446
Summary of MACH Family Devices .. 446

MACH Family of Devices ... 446
Output Enable Functions .. 44 7
Register Reset/Preset Functions 448

xiv

Clock Functions448
Packaging ... 449
Low Power Mode .. 449

Application Note: ... 450
MACH Designs With Complex Clock Functions450

MACH Clock Limitations450
MACH 1 and 2 .. .450
MACH 3 and 4 ... 450

Application Note: ... 452
Fitting Asynchronous Functions in MACH Devices 452

Devices: MACH215 MACH4xx ... 452
Pterm Clock and Reset and Preset .. 452
More Than One RESET/PRESET Pair per PAL Block 452

Application Note: ... 454
XOR T-Equations on the MACH4xx .. 454

Devices: MACH4xx ... 454
XOR-TFF Problem Defined .. .454

Application Note: ... 456
Guidelines for MACH-Specific Optimization456

Suitable Optimizing Parameters for MACH Devices456
For the MACH4xx: ... 456
For MACH lxx/2xx devices: .. .456

Optimizing Adjustments ... 457
The Effect of MAX PTERMS and MAX XOR PTERMS457 - - -

Application Note: ... 459
Understanding the .log File Messages .. .459

The .log File .. 459
Information Messages459
General Failure Messages ... y:460
Pin Assignment Messages 461
Grouping Messages463

Application Note: ... 468
Understanding the .rpt File ... 468

Obtaining a .rpt File ... 468
Contents of the Report File ... 468

Heading .. 470
Failure Disclaimers ... 470
Summary Statistics4 72

xv

Device Resource Utilization .. 4 73
Partitioner Report ... 4 7 5
Clock Assignments ... 475

Signal Directory .. 476
Resource Assignment Map .. 478

Application Note: .. 482
MACH and the Number of Devices Constraint ... 482

The Problem ... 482
Using 'default' in the .pi File Entry ... 482
Using a Second Device .. 483

Application Note: .. 484
Using MACH Input Registers .. 484

Input Register Pin Names .. 484
MACH 2xx vs MACH4xx .. 484
Input Registration ... 485
Detection .. 486
Forcing a Function to be Fit as Unary .. 486
Preventing a Function From Being Fit as Unary 487

Application Note: .. 488
Control of the Asynchronous Mode in the MACH4xx 488
Application Note ... 489
Control ofT-Flop Synthesis in the MACH4xx ... 489

DEVICES: MACH4xx .. 489
Normal Operation ... 489
DFF Only Fitting .. 489
Using the T Equation .. 489

Application Note: .. 491
Analyzing Test Vector Errors .. 491

Simulator Warnings .. 491
Initial States .. 491
Glitches in Control Logic ; 491

Application Note ... 493
MACH Power-On Reset .. 493

MACHXL DSL Reset Definition ... 493
Nominal Case ... 493
Exception Cases .. 493

Application Note: .. 495
Hazard-Free Combinatorial Latches ... 495

xvi

Basic Latch Circuit495
Hazard Term ... 495
Hazard Free Latch ... 495

Application Note: .. .497
MACH Pin and Node Identification497

Naming Convention ... 497
Pin Name Tables ... 498

Application Note: ... 502
Achieving Satisfactory Pinouts with MACH Devices 502

Procedure .. 502
Application Note: ... 506
Refitting into MACH Devices ... 506

Concept ... 506
Procedure .. 507

Application Note: ... 514
Forcing Unused MACH Outputs to be Driven or Floating 514

Forcing Outputs Driven ... 514
Forcing Outputs Floating ... 515

Application Note: ... 517
Possible Pin Incompatibility Between MACH230 and MACH435 517

Devices: MACH230 and MACH435 ... 517
Application Note: ... 519
Complete List of MACH Pin Names ... 519

Devices: All MACH. ... 519
Pin Numbering ... 519
44-Pin Packages .. 519
68-Pin Packages .. 520
84-Pin Packages .. 521

Application Note: ... 526
Fuse Commands for Forcing Outputs to be Driven 526

Devices: MACH lxx/2xx .. 526

xvii

1 Brushing Up on PLDs/CPLDs

Contents
PLD/CPLD Architectures .. 2

Chapter 1: Brushing Up on PLDs/CPLDs 1

PLO Architectures
Given the number of families and their different architectures, a single chapter
would be insufficient to cover all the necessary <h\;ta. So, instead of trying to
present a brief subset of the information, we suggest you refer to AMO' s
PLD/CPLD data book for complete documentation about AMD's families of
programmable devices.

2 MACHXL Software User's Gulde (Version 3.0)

2 About MACHXL

Contents
MACHXL Overview and Architecture .. 4
Design Flow · .. 6
Design Entry .. 7
Flexible Design Methodology ... 7
Design Synthesis Language (DSL) .. 7
PDS Language ... 7
Compiling .. 8
Functional Simulation ... 8
Optimizing ... 8

Automatic DeMorganization .. 9
Automatic Flip-Flop Synthesis ... 9
Automatic Don't Care Generation ... 9
XOR Synthesis .. 10
NODE Collapsing .. 10
Logic Minimization .. 10

Device Selection ... 11
PLDs/CPLDs .. 11
Design Partitioning .. 12
Solutions Menu .. 13

Devices Library .. 13
Building a MACHXL Design Synthesis Language Source File 14

Parts of a Source File (Using MACHXL's Design Synthesis
Language) ... : 14

Chapter 2: About MACHXL 3

MACHXL Overview and Architecture
MACHXL is a complete, universal programmable logic device (PLD, CPLD)
development tool that enables you to program PLDs for specialized
applications simply and efficiently. You determine what to design and
MACHXL supports you by:

o Allowing you to describe a design using the most suitable method
for your application-state machine, truth table, or equations.

o Optimizing and reducing a design to the smallest set of gates, using
industry-standard methods best utilizing the resources of selected
devices.

o Simulating functionality of your design while it is still in the design
phase, before committing to hardware.

o Automatically selecting devices based on your design criteria.
MACHXL maps your design into various device architectures and
presents the best solutions from which to choose.

o Automatic or manual placement of input and output signals in
selected progranimable devices including fitting the design across
as many as 20 devices (optional).

o Programming the devices using automatic fusemap generation and
easy device programmer communications.

o Testing the programmable device(s) by generating test vectors
from the functional simulator's results and downloading them to the
programmer with the fusemap file.

o Prototyping ASICs using programmable devices.

MACHXL provides full automated support, supplying a design environment
allowing you to concentrate on your design, not on the device. As a matter of
fact, you do not need to understand the inner workings of PLDs in order to do
PLD designs. And when you finish the design with MACHXL, the software
automatically selects the best devices, based on criteria you set (like price,
package, number of devices, etc.)

4 MACHXL Software User's Gulde (Version 3.0)

The following is a block diagram of the MACHXL system.

Device
availability
information

MACHXLPDS
lan!iPJag•

Design Synthesis
language

JEDECfiles

i
Device

programmers

simulatio
stimulus

Chapter 2: About MACHXL 5

The following figure shows the basic design flow when using MACHXL and
where the information for each step can be found in the User's Guide.

Describe the design Chapters 4-9

2 Compile the design Chapter 10

3
Simulate the design Chapter 11

whole design

4 Optimize the design Chapter 12

5 Partition and select
Chapters 13-1 devices

6 Program and test
devices Chapter 16

Design Flow
Programmable Logic Design Synthesis is the process of describing a design by
schematic or language entry and synthesizing that information into an
optimized form used to program one or more programmable devices.
MACHXL is a full-featured programmable Design Synthesis Tool letting you
concentrate on your design, not the operational details of the programmable
devices.

MACHXL synthesizes the path from design description to actual
programmable devices.

You run MACHXL through the Windows menu system (see Chapter 3).

6 MACHXL Software User's Guide (Version 3.0)

Key features of MACHXL include:

o Multiple design entry modes

o Full range of device support from PLDs to CPLDs

Each of these key features is discussed in the following sections.

Design Entry

Flexible Design Methodology
MACHXL provides a device-independent approach letting you enter your
logic design without specifying devices for implementation. If desired, you
may choose specific devices during design entry.

Design entry may be accomplished by one or a combination of methods. This
feature allows you to describe each function using the entry method best suited
for that particular function.

Design Synthesis Language (DSL)
DSL is a high-level behavioral language developed for use with programmable
logic. DSL provides constructs for state machine descriptions, truth tables
and Boolean equations. DSL also allows hierarchical design with procedures
and functions. Program control-flow statements such as IF and CASE,
combined with multiple nesting and hierarchical design capabilities, let you
describe complex designs quickly and easily. You may also create macros to
perform text-substitution.

nn~ 1 _ --
• -- '-U.ll~UQ~'V

MACHXL allows you to use PDS source files as language input for those
designs developed with P ALASM.

Chapter 2: About MACHXL 7

Compiling
Once the design is entered in DSL, it must be compiled. Compiling your
design creates an internal representation of the design with all high-level
constructs converted to Boolean equations. The compiler handles multiple
design files via the USE construct. The USE construct resolves all
invocations of procedures, functions, and components to create a set of
low-level synthesized gates.

Functional Simulation
MACHXL's functional simulator lets you verify the functionality of your
design before you commit it to programmable devices. By detecting problem
areas early, you can modify the design while still in the design process. This .
simulator can be used to verify individual procedures and functions or entire
systems. In addition to simulating each procedure and function to verify that
they describe the logic properly, the entire design can be simulated at the
system level. This assures your design's complete functionality at both
function and system levels.

Simulation in MACHXL is accomplished by a high-level test language similar
in construction to its Design Synthesis Language (DSL). The test language
lets you create high-level Constructs like iterative loops and truth tables to
make it easier to simulate your design.

This test language also lets you generate test vectors that can be used to verify
the devices after they have been programmed. Verification is done by sending
the programmed device stimulus vectors and checking the responses against
those from the simulator.

Optimizing
MACHXL uses various optimization techniques to find the necessary product
terms and select the smallest set to describe the original equations. All
optimization forms are stored and are available for device selection and
implementation.

8 MACHXL Software User's Gulde (Version 3.0)

By taking advantage of digital logic design rules, MACHXL utilizes fully the
device architecture capability.

Automatic DeMorganization
This feature allows the partitioning system to invert signals internally to a
device while maintaining the signal polarity and functionality as described by
the logic design. The ability to tailor equations internally to the device lets
you create a functional design that is independent of the signal polarity of a
particular device. It also gives maximum flexibility to the partitioning system,
which may allow larger, more complex designs to be placed into fewer
devices.

Automatic Flip-Flop Synthesis
Another logic design rule is synthesizing the proper flip-flop type to optimize
equation placement within a device. For example, a set of equations may be
described in terms of J-K flip flops in the design and MACHXL can place
these equations in a device that has only D flip flops by synthesizing the D
equation equivalents. A more common application is the use ofT flip-flop
equations, instead of D flip flops, to produce smaller equations.

Automatic Don't Care Generation
Don't Care conditions can be expressed in IFffHEN/ELSE, CASE, TRUTH
TABLE and STATE MACHINE statements as well as assigned to signals.
Unspecified output values are assumed to be Don't Care, allowing the
optimizer to assign either a zero or one value, depending upon which value
generates the most optimal equation. Signals can also be set explicitly to
Don't Care values. This feature gives you the potential to create highly
optimized designs resulting in smaller hardware solutions.

Chapter 2: About MACHXL 9

XOR Synthesis
The compiler and optimizer maintain an exclusive-OR representation of all
equations for which such a representation can be built. This gives the
partitioning system the ability to use the exclusive-OR representation in
devices with that capability or to use the sum-of-products representation in
devices without exclusive-ORs.

NODE Collapsing
The optimizer minimizes the use of intermediate nodes in the design. It
removes nodes, collapsing their equations into any equations referencing the
removed node. This collapsing process can be controlled by the designer to
produce the best results for the target hardware.

Logic Minimization
Reduction levels used by MACHXL include various combinations of industry
standard heuristic and exact methods to meet your design goals. These
reduction levels include:

o Espresso

o Espresso (Exact)

o Quine-McCluskey

You may also specify NO_ REDUCE, which performs logic conversion only
with no logic minimalization.

1 O MACHXL Software User's Guide (Version 3.0)

Device Selection

PLDs/CPLDs
MACHXL automates the selection of the best PLD/CPLD architectures and
specific devices for your design. Based on the device characteristics and the
design constraints, the device selection system searches the master library for
devices that match your constraints. Your design is then mapped into
combinations of the selected device architectures.

If the design requires more than one device, the design is automatically
partitioned across multiple devices (this capability is optional.) MACHXL
also lets you choose among many speed, power and package type variations
offered by the IC vendors. The following screen shows the menu used to set
Constraints.

Chapter 2: About MACHXL 11

The following screen shows the menu used to prioritize the constraints by
adding a relative weighting. For example, price may be given a weight that is
twice as important as power as is shown in the following menu.

Two user constraint fields let you enter data for a device that is specific to
your design or manufacturing environment.

If manual device selection is preferred, you may specify the devices for
implementation in a Physical Information (.pi) file. Specifying a device in a
Physical Information file will override the automatic device selection process.

Design Partitioning
Design equations are automatically divided among multiple PLDs/CPLDs to
create design solutions. The partitioning system searches PLD/CPLD device
architectures in the master library for the combination of devices creating the
best solutions for the design.

The partitioning system generates and displays the top ten design solutions,
using your design constraints in conjunction with the device requirements from
the design description (see the following screen.) The solutions are prioritized

12 MACHXL Software User's Gulde (Version 3.0)

using the design constraints and displayed in order. You may stop the process
at any time and select a solution.

Solutions Menu
This menu displays device solutions into which the design can fit. Design pin
outs can be assigned automatically or manually through the use of
MACHXL's physical information (.pi) file.

=··~
Solutions

•I I -
2. MJICH111

,_
20ns

!L MJICH110 203ma 24ns
4. MJICH211 120ma 18ns
.!i. MJICH21.!i 220ma 24ns
t>. MJICH210 23,ma 24ns
'1. 1!2'V12 1.!iOma 25ns
8. MJICH120 225ma 30ns

Devices Library
D Contains design data on all AMD devices

D Supported devices include AMD's PLDs and CPLDs

The device library contains the most up-to-date specification information
available from AMD.

For a complete list of the devices in MACHXL's device library, refer to the
separate Device Library listings in Appendix A. Appendix A lists the PLD
and CPLD devices supported by MACHXL.

Chapter 2: About MACHXL 13

Building a MACHXL Design Synthesis
Language Source File

MACHXL lets you create a source file to describe your design.
Chapters 4 - 9 cover the elements of this source file. The following shows the
general organization of a typical design source file. It also lists the chapter(s)
where information about each part of the design source file is located.

Parts of a Source File (Using MACHXL's
Design Synthesis Language)

Headers (information about the design)

MACRO Definitions (text substitution structures)

USE constructs (compiled Procedures and Functions to

be used by this source file)

Procedure/Function Definitions (Procedures/Functions

used in this design)

System-Level Declarations (declaring the signals to be

used in this design)

System-Level Statements (statements and constructs that

describe your design)

see Chapter 4

see Chapter 9

see Chapter 8

see Chapter 8

see Chapter 5

see Chapters 6,7

The outline above shows the main sections used in a source file. Each of the
sections listed is optional. In addition to these chapters Appendix B contains
a number of language design examples, complete with comments and
explanations.

14 MACHXL Software User's Guide (Version 3.0)

3 Windows Interface

Contents
Introduction .. 17
File Menu ... 18

New ... 18
Opening a File (New or Existing) ... 18

Project Files .. 19
Project Information Files .. .19
Source Files .. 19
.pi Files (*.pi) .. 19
PALASM Files (*.pds) .. 19
ABEL Files (* .abl) .. 19
All Files(*.*) .. 19

Import ... 19
Project Menu .. 20

Build All .. 20
Compile ... 22

Design ... 23
Design Libraries .. 23

Partition .. 23
Generate Fusemaps .. 24
Build Options .. 24

Equation Reduction Method ... 24
Generate Warnings .. 25
Verbose ... 25
Nodes for If Statements ... 25
MAX Number of Pterms ... 25

Copy npi to pi .. 25
Stop ... 26
Abort ... 26

~1;;:.u~i.:. ~V~\;;UU ••• .to
Log File ... 26
Documentation ... 26
Fitter Report .. 27

Chapter 3: Windows Interface 15

Programming .. 27
Device Menu ... 27

Parameters .. 28
Constraints ... 28

Priorities ... 30
TEMPLATES .. 30

Solutions ... 31
Programming .. 32

Options Menu .. 32
Authorization .. 32
Options ... 33

OK ... 33
Cancel .. 33
Apply ... 33
Build Options ... 33
Documentation Options .. 35
Schematic Options .. 36
Simulation Options ... 3 7
System Interface Options .. 39

View Menu .. 40
Toolbar ... 40
Status Bar ... 41

Help Menu .. 41
Index .. 41
Using Help .. 41
About MACHXL .. 42

16 MACHXL Software User's Gulde (Version 3.0)

Introduction

This chapter is intended to give the necessary detail to operate MACHXL in a
Microsoft Windows 3 .x or later environment.

We assume a basic knowledge of Windows and will not explain commonly
used Windows menus. Only those functions unique to MACHXL are
explained.

The following screen shows the MACHXL main screen with all the menu
functions.

Note: When you first enter MA.CHXL, the menu bar will show only three
Windows fanctions. Once you've opened a file (new or existing), the fall
menu bar, shown below, will appear.

Chapter 3: Windows Interface 17

File Menu

New
Starts a new project file. Selecting New opens a new window. If there are
already one or more windows open, MACHXL opens a new window without
closing any of the others.

Opening a File (New or Existing)
The New and Open menu items open a dialog box containing the names of all
files in the current directory with an extension matching the type of file you
select in the List Files of Type box. You can change the type of file displayed
by selecting List Files of Type and choosing the file type from the pulldown
list.

Project 1 nlormation
Source Files
Pl Files (".pi)
PALASM Files (".pds)
ABEL Files (".abl)
All Files •.•

0)c:\
~win32app
&machxl
.,. examples
~manual

18 MACHXL Software User's Guide (Version 3.0)

Project Files
Those used to build a design.

o *.mp/(Project Files)

D *.src (source files)

D *.pi (Physical Information files)

D *.dsl (Design Synthesis Language files)

Project Information Files
Those containing information about how your design was "built".

Source Files

.pi Files (*.pi)
Physical Information files to control partitioning of your design .. For more
information on .pi files, see chapters 13 through 15 .

PALASM Files (*.pds)

ABEL Files (*.abl)

All Files(*.*)

Import
Imports and translates the selected file to a .src (source file). Import types
are:

D PALASM

o ABEL

Chapter 3: Windows Interface 19

1 SEGMENT.MPF
.2.MULT.MPF
3. ORINK.MPF
! OECOOE.MPF
5. C:\WIN32APP\MACHXL\BOBS.MPF

Project Menu

,6.enerate Fusemaps
Simulate

Build .Qptions

Copy npl to pl

ID op
Abort

Build All
Runs the MACHXL tools on the open source file. The tools are run in the
following sequence:

Compiler - compiles the source file.

Optimizer - optimizes to the most efficient number of gates in the
smallest possible device(s).

20 MACHXL Software User's Gulde (Version 3.0)

Simulator - runs the simulator on the design. Please note the
simulator in MACHXL is a functional simulator only. The simulator
will only be run if there is a design_ name. stm file in the same
directory as the design file, and if the option Automatically Simulate
is set in the Simulate Options menu. See Chapter 11 for more
information on the Simulator and creating an .stm file.

Document File - documents the compile, optimize, and simulation
processes and places the information in the file design_ name.doc.

Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

Simulator - functionally simulates the design again, now that
partitioning is complete. The simulator will only be run if there is a
design_ name.stm file in the same directory as the design file, and if
the option Automatically Simulate is set in the Simulate Options
menu. See Chapter 10 for more information on the Simulator and
creating an .stm file.

Fuse Mapper - creates fusemaps for the design. These fusemaps can
then be downloaded to a device programmer to program the
PLDs/CPLDs.

Document File - after the Scanner, Fitter, Simulator, and Fuse
l\.K-.-- - _ - .. - -4-1....C.:1,.... ,/,,,..,,...;..-... ,..,,.... .. ,,.,.....,. ,...I,,.,,,._~""" -...J +,....,.t-?~+h ;-~-...._... +;_.....,
......... _t"t"_ ... _ _ ... _ , _ _ """''""""""b• .. _ • .,_ _.._w'-"''-' -r--... -- • '_,.....__ ---~-----------
abOUt the scan, fit, and fusemap processes. Note this information is

Chapter 3: Windows Interface 21

appended to the earlier compile, optimize, and simulate information in
the file.

During the Build process a window displays its progress. An information
message appears saying Build Completed at the end of the process.

If your design is hierarchical, each portion of the design will be compiled,
optimized, and simulated.

If a failure occurs in any of the Build processes, MACHXL will abort the
process.

Compile
MACHXL can compile a complete design or just certain modules. This
allows defining modules as symbols or library parts.

A normal design (i.e., one with system-level signals) will be run through all of
the Build processes (i.e., compile, optimize, simulate, etc.)

A library part will be run through only the compile process. Since it has no
system-level signals, a library part cannot be run through the optimizer.

Selecting Compile causes another pulldown menu to appear. This pulldown
allows telling MACHXL whether you are compiling a design or a design
library (i.e., a library part.)

When the compile if finished, an information message will display Compile
Completed.

Eartition
,Generate Fusemaps
Simulate

Build Qptions

Copy npi to pi

22 MACHXL Software User's Guide (Version 3.0)

Design
Compiles, optimizes, and simulates a design. A design must have system-level
signals.

Design Libraries
Allows compiling (but not optimizing or simulating) a module for use as a
library part. A module has no system-level signals, and therefore cannot be
run through the optimizer.

Partition
The process of partitioning a design involves several processes, each of which
is explained below.

Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

Simulator - functionally simulates the design again, now that
partitioning is complete. Tue simulator will only be run if there is a
design_ name.stm file in the same directory as the design file, and if
the option Automatically Simulate is set in the Simulate Options
menu. See Chapter 10 for more information on the Simulator and
creating an .stm file .

.ruse iv1apper - creates rusemaps ror me aes1gn. l nese rusemaps can
then be downloaded to a device programmer to program the
PLDs/CPLDs.

Chapter 3: Windows Interface 23

Generate Fusemaps
Generates fuse maps for PLD or CPLD devices. You do not need to run this
procedure for each PLD/CPLD in the design. MACHXL will create the
fusemap files for all the PLD/CPLD devices in your design (assuming there is
more than one device in your design solution.)

You need to generate the fuse maps before you can program the devices.

Build Options
This menu lets you view and set the equation reduction method used by the
optimizer to reduce equations. It also lets you specify whether you want
MACHXL to generate warning messages for conditions it deems unusual but
not catastrophic.

Equation Reduction Method
Controls how the optimizer reduces the design equations.

The Espresso technique is fast and generally produces very good equations.
Espresso Exact and Quine-McClusky methods are slower and use more of
your PCs dynamic memory (RAM) but may result in smaller equations. Due
to speed and memory use concerns, Espresso Exact and Quine-McClusky
reduction techniques should be restricted to designs with relatively small
equations where optimal equation reduction is critical.

24 MACHXL Software User's Guide (Version 3.0)

The default reduction method is Espresso.

Generate Warnings
This option controls whether or not MACHXL will produce messages for
conditions it deems unusual but not catastrophic.

The default is warnings to be displayed.

Verbose
MACHXL has a number of processes (compiler, optimizer, simulator, etc.),
each of which can generate messages to let you know what is going on with
the process. You can choose whether or not to have these messages displayed
with the Verbose option. It is useful to have these messages displayed if you
have a large, complex design requiring a lot processing time. However, if
you have a smaller design, you may not want these messages to appear. In
either case, these messages are contained in the .log file, so you still have
access to them.

The default for Verbose is off.

Nodes for If Statements
Specifies whether the compiler should generate nodes for IF /THEN/ELSE
statements.

MAX Number of Pterms
Specifies the maximum number ofpterms allowed in a design equation.

,...,...,..,, "'"'i ,.,.. "'i --.... ,
Copies the Partitioner-created .npi (New Physical Information) file to a .pi
file. For more information, see the section entitiled Using the .npi File to
Recreate a Pinout in Chapter 13.

Chapter 3: Windows Interface 25

Stop
Tells MACHXL to stop a Build that's in progress and exit all processes
gracefully. MACHXL will also report any errors to the file design_ name.err.

Abort
Tells MACHXL to abort a Build tha(s in progress and to stop all processes.
Processes will be aborted regardless of the stage they are in.

Results Menu

Log File

.O.ocumentation
fitter Report
Erogramming
.S.imulation

The .log file (design_ name.log) contains any warnings or errors that occurred
during the compile and partitioning phases. If you have problems during these
phases, this is the file to view.

Documentation
The .doc file (design_ name.doc) contains all information about your chosen
design solution, including signal names, pinouts of devices, equations that
were used in the solution, etc.

You can set how equations are printed in the documentation file. For more
information, see the section later in this chapter entitled Documentation
Options in the Options Menu.

26 MACHXL Software User's Gulde (Version 3.0)

Fitter Report
If you are using MACH devices in your design, this field will display the
MACH .rpt (report) file. The report contains all pertinent information about
fitting of MACH device(s), including the percentage of resource utilization.

For more information on reading the .rpt file, see Chapter 14 and
Appendix D.

Programming
Allows viewing of the programming (JEDEC) files for a design.

Device Menu

Programming

The Device Menu lets you run certain processes concerning devices in your
design. The pulldowns and submenus are explained below.

Chapter 3: Windows Interface 27

Parameters

Constraints

Constraints allows limiting the number of devices MACHXL considers as
valid solutions during the partitioning process. For example, you can set a
Logic Family constraint permitting only TTL device to be considered.

While constraints are a powerful feature of MACHXL, setting arbitrarily
stringent requirements may severely limit the number of devices MACHXL
can fit. It may also make it impossible to fit the design into any device or
devices.

Logic Family:
This field shows which logic families are considered as valid
partitioning devices. The default is all logic families.

Device Package:
This field shows which device package types are considered valid
during partitioning of your design. The default is all package types.

28 MACHXL Software User's Guide (Version 3.0)

Propagation Delay (nS):
This field sets the maximum propagation delay for any device in the
solution. Note this is the propagation delay for any device, not for the
design as a whole. The default is O.OnS.

Min. Operating Frequency (MHz):
Specifies the minimum operating frequency, in MHz, of any device
considered for a solution. The default is 0.0 MHz.

User 1:
User-supplied field to enter your own constraint. For example, if your
company keeps statistics on failure rate and MTBF, you could use
User 1 and User 2 to represent these statistics for devices or families.

Number of Devices:
Lets you tell MACHXL the maximum number of devices in the
solution. You may use any number from 1to20. Note depending on
the complexity of the design, setting an arbitrarily low number of
devices may force MACHXL to consider only very large devices.
MACHXL may also be unable to fit the design at all. The default for
this field is 20.

Temperature Range:
Allows selecting valid device operating temperature ranges.

The default is all temperature ranges.

Max Power Supply Current (mA):
Allows entering the maximum amount of current (in mA) a device
may draw. Note this is the maximum draw for any one device, not for
the whole design (if there is more than one device in the solution.)
The default is 0.0 mA.

User 2:
See User 1.

Chapter 3: Windows Interface 29

Priorities

This dialog box tells MACHXL how important are certain criteria when
selecting devices. Priorities are used as weighting factors to determine the
order of solutions displayed in the Top 10 List. Weighting is on a scale of 1
to 10 with 10 being the most important. By means of the Priorities menu you
tell MACHXL which are most important.

TEMPLATES

All
E1DP4
E18PI
E1DRI
E11P4
E11PI
E12P4
ESPI
EIP4
E9P4
EIPI
E9RI

30 MACHXL Software User's Guide (Version 3.0)

Every programmable device belongs to an architecture, which shares features
with other similar devices. For example, two devices with similar part
numbers may be identical inside, and vary only in their temperature range or
package type. These architectures are know as templates, and are set by the
manufacturer.

The templates menu allows specifying which architecturesare considered valid
during partitioning. Specifying only those templates needed will considerably
speed the partitioning process.

Note: You must select the Device template for each architecture you
use, even if a device is specified in the Physical Information (pi) file.
For more information on using a .pi.file to modifY MACHXLs
partitioning process, see Chapter 13.

Solutions
After MACHXL partitions and fits a design, it displays a list of the Top 10
Solutions (if there are at least 10), from which you can choose a solution.
These solutions are developed from your design and include constraints and
priorities you set.

Solutions
1 P22V10 90ma 30ns $3 38
2. IOICJl111
3. IOICJl110
4. IOICJl211
.5. IOICJl21.5

'- IOICXZ10
'l. P2,V12
8. IOICX1ZO

'· IOICX130

9!ima 20ns $.5.7.5
2D3ma 24ns $.5.7.5
120ma
220ma
236ma
1.50ma
Z2!ima

18ns
Z4ns
Z4ns
2.5ns
30ns
30ns

$.5.80
$,.1.5

$'.3.5
$7.80

$11 . .50
$12.40
$13. 3.5

Chapter 3: Windows Interface 31

You may go back to the Solutions menu at any time and choose a new
solution. Simple choose Solutions from the Device menu. This eliminates the
need to re-compile your design each time you want to investigate a new
solution.

Programming
Downloads the JED EC files for your design to the device programmer.

Options Menu

The Options Menu let you set parameters that affect the overall look and
operation ofMACHXL There are five option categories:

D Build Options

D Documentation Options

D Schematic Options

D Simulator Options

D System Interface Options

You can set the parameters by selecting each category, as explained in the
following sections.

Authorization
Allows you to modify authorization codes for MACHXL and the AMD device
modules.

32 MACHXL Software User's Guide (Version 3.0)

Options
There are four buttons at the bottom of the Options pulldown affecting options
menus.

OK
Saves the choices made in the current menu.

Cancel
Returns all values to their original state and closes the menu.

Apply
Applies the menu values to the current design.

Build Options
Equation Reduction Method
Controls how the optimizer reduces the design equations.

The Espresso technique is fast and generally produces very good
equations. Espresso Exact and Quine-McClusky methods are slower

Chapter 3: Windows Interface 33

and use more of your PCs dynamic memory (RAM) but may result in
smaller equations. Due to speed and memory use concerns, Espresso
Exact and Quine-McClusky reduction techniques should be restricted
to designs with relatively small equations where optimal equation
reduction is critical.

The default reduction method is Espresso.

Generate Warnings
This option controls whether or not MACHXL will produce messages
for conditions it deems unusual but not catastrophic.

The default is for warnings to be displayed.

Verbose
MACHXL has a number of processes (compiler, optimizer, simulator,
etc.), each of which can generate messages to let you know what is
going on with the process. You can choose whether or not to have
these messages displayed with the Verbose option. It is useful to have
these messages displayed if you have a large, complex design
requiring a lot processing time. However, if you have a smaller
design, you may not want these messages to appear. In either case,
these messages are contained in the .log file, so you still have access
to them.

The default for Verbose is off.

Nodes for If Statements
Specifies whether the compiler should generate nodes for
IF!THEN/ELSE statements.

MAX Number of Pterms
Sets the maximum number of pterms allowed in any design equation.

34 MACHXL Software User's Guide (Version 3.0)

Documentation Options
The documentation options allow you to set how equations will be displayed in
the documentation (design_name.doc) file.

Print Equations as Described in the Source
This option tells MACHXL to print the equations as specified in the
original source file. For example, if you specify x as a JK flop, you
will see both J and K equations in the .doc file.

Print Equations as Fitted
This option tells MACHXL to print the equations as fit onto the
devices. Because of the operations of the optimizer, these equations
may appear considerably different than those originally specified.

Print All Equations
The compiler takes the original equations you specify and attempts to
synthesize as many functionally-equivalent equations as possible.
This is to maximize the number of devices that MACHXL can fit
your design onto. This is done also to minimize the size of the design,
allowing it to be fit onto smaller, less-expensive devices.

Chapter 3: Windows Interface 35

This option writes the equations to the .doc file as you originally
described them, as well as All equations synthesized by the compiler.

Print DeMorgan Equations
This option prints all the DeMorgan equivalents of the equations used
during fitting.

Schematic Options
MACHXL uses schematic and language (source) files as input. The following
set options applying to schematic input.

Schematic Editor
Allows choosing which MACHXL-supported schematic editor will be
used to edit a schematic design file.

Use TTL library
This options allows you to specify whether or not to use the EDIF 200
TTL library.

Base Component library
The default component library used by MACHXL's schematic netlist
compiler is called PLDPRIMS. If you choose, you can replace this

36 MACHXL Software User's Guide (Version 3.0)

library with another. Enter the path and name of the library in the
field provided.

Extended Component Libraries
You can extend the component library provided with MACHXL
(PLDPRIMS) by adding schematic components of your own, or
component libraries from another source. MACHXL will recognize
up to five of these component libraries. These are used in addition to
the base component library, PLDPRIMS.

Simulation Options
Allows you to set options relating to MACHXL's functional simulator.

Simulation Output Level
These options change the way the simulator outputs information to its
listing (.sim) file. For more information on the simulator's operation,
see Chapter 11.

All .:>1c:n:e~

Causes both unstable and stable states to be written to the simulator
listing file.

Chapter 3: Windows Interface 37

Unstable States
Writes only unstable simulator states to the simulator listing file.

Stable States
Writes only stable simulator states to the simulator listing file.

Automatically Simulate
Runs the simulator during a normal Build process. The following
shows the order processes are run during the Build.

Compiler - compiles the source file.

Optimizer - optimizes the design, reducing it to the most efficient
number of gates into the smallest possible device(s).

Simulator - runs the simulator on the design. Please note the
simulator in MACHXL is a functional simulator only. The simulator
runs only ifthere is adesign_name.stm file in the same directory as
the design file, and if the option Automatically Simulate is set in the
Simulate Options menu. See Chapter 11 for more information on the
Simulator and creating an .stm file.

Document File - documents the compile, optimize, and simulation
processes and places the information in the file design _name.doc.

Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

38 MACHXL Software User's Guide (Version 3.0)

Simulator - functionally simulates the design again, to create test
vector files.

Fuse Mapper - creates fusemaps for the design. These fusemaps can
then be downloaded to a device programmer to program the
PLDs/CPLDs.

Document File - after the Scanner, Fitter, Simulator, and Fuse
Mapper are run, the file design_name.doc is updated with information
about the scan, fit, and fusemap processes. Note this information is
appended to the earlier compile, optimize, and simulate information in
the file.

Notice the simulator is run twice through a normal build and partition cycle.
By changing the Automatically Simulate field, you can tell MACHXL not to
run the simulator. If you do not need to simulate your design, disabling the
Simulator can speed the build and partition processes.

System Interface Options

Text Editor
Tells MACHXL which text editor to use to create source files. You
need to supply the name of the editor's executable file as well as the
path. Windows Notepad is default.

Chapter 3: Windows Interface 39

View Menu

Programmer Interface
Tells MACHXL the name and path of the device programmer's
communication software. You need to supply this before you can
download fusemaps to your device programmer.

User Options
Allows you to enter command strings or set parameters for the text
editor.

Cumulative Logging
· When MACHXL logs the prcess results to the design_ name. log file,

it overwrites previous information. This field tells MACHXL to
concatenate the new information to the file instead of overwriting.

Tool bar
Lets you specify whether or not to display the MACHXL tool bar. If the tool
bar is turned on, a check mark will appear to the left of the label. Turning the
toolbar off increases the size of the Main Window.

40 MACHXL Software User's Guide (Version 3.0)

Status Bar
Lets you specify whether or not to display the MACHXL status bar at the
bottom of the Main Window. If the status bar is turned on, a check mark will
appear to the left of the label. Turning the status bar off increases the size of
the Main Window, but will not allow you to see the status ofMACHXL
functions.

Help Menu

About MachXL30 ...

Index
Displays index of items avail; cble for help.

Using Help
A t.. _.. ~ ... + ~ 1 _ ,..,~- hol.- +a....,,+ a.""

............... _..._ _ _ _ ,,.., -~ ... --o ----i- ------ -- .

Chapter 3: Windows Interface 41

About MACHXL
Diplays the version number of MACHXL.

42 MACHXL Software User's Gulde (Version 3.0)

4 Conventions and Syntax

Contents
Introduction to Design Synthesis Language (DSL)44
Description of a DSL Source File .. 44
Conventions Used by Design Synthesis Language46
Identifiers .. 46
Keywords .. 4 7
Integer Constants ... 48
Conunents ... 49
Headers ... 50

Chapter 4: Conventions and Syntax 43

Introduction to Design Synthesis Language
(DSL)

The Design Synthesis Language (DSL) is a high-level behavioral language
developed for use with programmable logic. You can use DSL to build a
source file to describe your design. DSL provides constructs for state
machine descriptions, truth tables, and Boolean. DSL also allows hierarchical
design with procedures and functions. Program control statements such as IF
and CASE, combined with multiple nesting and hierarchical design
capabilities let you describe complex designs quickly and easily. You can also
create macros to perform text substitution.

There are two kinds ofDSL files, each providing different functions:

o Source file- this is a functional description of your design using
DSL. The source file describes the behavior of your design.

o Physical Information (.pi) file-this controls how a design is
implemented. This optional file can be used to specify:

c::> physical devices used when implementing the design

c::> pin out of each device in the design

c::> optimization techniques used on the design

c::> device-specific features required by the design

The structure and syntax ofDSL are described in the remainder of this
chapter and in chapters 5 through 9. The structure of the physical information
(.pi) file and device specific information are found in chapters 14 and 15.

Description of a DSL Source File
As mentioned earlier, the DSL source file contains the functional description
of your design. DSL has a structure similar to many programming languages.
If you have experience with a programming lar..3uage, you'll probably
recognize many of the constructs of DSL.

44 MACHXL Software User's Guide (Version 3.0)

A DSL source file will contain the following information:

1. Procedure and function definitions for frequently used descriptions.
Much like their programming language counterparts, procedures
and functions are declared before they are invoked in DSL.

2. Signal declarations that define the characteristics of the signals in
the design. Signal descriptions are equivalent to variable
declarations in a programming language.

3. Statements (including procedure and function instantiations) make
up the logic that is implemented in your programmable devices.

The following shows the suggested organization of a DSL source file and the
chapters where information on each part may be found:

Each section of the DSL design description is optional. For example, you may
create a simple DSL design description that consists only of a System-level
declaration and the system-level statements. Or, you may create a DSL
source file that includes only Procedure and Function definitions. This source
file could then in tum be used as a library of handy routines that can be
accessed by other DSL source files.

Examples of DSL source files can be found in Appendix B, Language-Based
Design Examples.

Chapter 4: Conventions and Syntax 45

Conventions Used by Design Synthesis Language
The following table shows the conventions used by DSL.

Identifiers
Identifiers are names given to specific items in a source file. Named items
include signals, macros, procedures, functions, state machines, states in a state
machine, and test language variables.

The rules for forming identifiers are:

1. The first character of an identifier must be a letter ("A" through
"Z", or "a" through "z") or an underscore (_).

2. Succeeding characters may be any sequence of letters (A..Z,
a .. z), digits (0 .. 9), the dollar sign($), or the underscore (_).

3. You may use any combination of upper-case and lower-case
letters in an identifier. The Design Synthesis Language is case
insensitive; thus, upper-case and lower-case letters are treated
alike.

46 MACHXL Software User's Guide (Version 3.0)

Keywords

4. Identifiers cannot contain spaces. Use the underscore character
to separate words in long identifiers to make them easier to read.

5. Identifiers may be of any length.

The identifiers listed below are reserved by the language as keywords and may
not be used for other identifier purposes.

FOOTPRINT
AND

FOR
BIN

FUNCTION
BIPUT

GOTO
BLOWN

CASE
GRAY_CODE

GROUP
CLOCK_ENABLED_BY

HEX
CLOCKED_BY

HIGH_ VALUE
CLOCKF

IF
COMP _OFF

INCLUDE
COMP_ON

INITIAL
D_FLOP

INITIAL_ TO
D_LATCH

INPUT
DEC

INTACT
DEFAULT

JK_FLOP
DEFAULT_TO

LAST_VALUE
DEMORGAN_ SYNTH

LATCHED_BY
DEVICE

LOW_ TRUE
DISABLED_ONLY_FOR_

LOW_VALUE
TEST

MACRO
DO

ELSE
MAX_PTERMS

ELSIF
MAX_ SYMBOLS

ENABLED_BY
MAX_XOR_PTERMS

MESSAGE
C::l'IU

MOD
FF_SYNTH

NAME
FIT_WITH

NO_COLLAPSE
FIXED

NO_CONNECT

Chapter 4: Conventions and Syntax 47

NO_REDUCE STATE_ VALUES

NODE STEP

NOT SYSTEM_ TEST

OCT T_FLOP

ONE_HOT TARGET

OR TEMPLATE

OUTPUT TEST_ VECTORS

PART_NUMBER THEN

PHYSICAL TO

POLARITY_ CONTROL TRACE

PRESET_BY TRUTH_ TABLE

PROCEDURE USE

RESET_BY VAR

RETURN VIRTUAL

SECTION WHEN

SET WHILE

SIMULATION WIRED_BUS

SR_FLOP XOR_POLARITY _CONT

STATE ROL

STATE_BITS XOR_TO_SOP_SYNTH

STATE_MACHINE

Integer Constants

Integer constants are used in DSL to assign a fixed value to a signal, for
arithmetic operations, or as part of a conditional test. Constants must follow
these rules:

D Constants must be integers.

D Constants may be of any length. Operations in DSL are performed
with unlimited precision.

D The first character of a constant must be a digit; otherwise the
compiler will interpret the character string as an identifier.

48 MACHXL Software User's Gulde (Version 3.0)

o Constants assigned to single bit or non-array signals can only be 0
or 1.

o If no base is specified, the constant is assumed to be decimal.

o Constants used in conditions or arithmetic operations can represent
values in four bases (binary, octal, decimal, or hexadecimal). To
set the base of the constant, add the first letter of the base name to
the end of the constant. For example, to represent the character C
as the hexadecimal value for 12, add a leading zero to the letter C
and follow it with h (for hexadecimal): OCh. This distinguishes it
from the letter C. Either upper case or lower case may be used for
the letter of the base name.

The following are examples of legal and illegal constants:

Legal Constants:

OlOlb
07320
973
973d
OAOAh

"binary constant
"octal constant
"decimal constant
"decimal constant
"hexadecimal constant

Illegal Constants:

2.54
AO Ah
OACOd

Comments

"constant must be an integer

"constants must start with a digit
"constant must match the base specified

Providing comments in your source file makes it easier to understand the
intent of certain sections of code for later reference. Commented code can be
particularly useful for design teams working on a project so each member can
better understand the other tP.::im mP.mhf'r<:' !''"""" "f'., ::'r"3""~

Comments begin with a quotation mark (") followed by text. A new line
indicates the end of a comment.

Chapter 4: Conventions and Syntax 49

Headers

Comments used as notes throughout a source file should not be confused with
the COMMENT keyword. The COMMENT keyword is used to include
comments in a JEDEC file.

For instance, with the comment next to the STATE allred; statement, it is
clear that allred is the first state of the state machine:

STATE allred: "First state

Headers are used to place design information in the source file.

Header statements, if used, must appear at the beginning of a source file. Six
optional header types are recognized by the Design Synthesis Language:
TITLE, ENGINEER, COMP ANY, REVISION, and COMMENT.

A design may use any combination of header types, in any order, or none at
all. Each header has an associated string. The format for a header is:

header_type 'header_information';

Where:

header_ type is one of the six header keywords: TITLE,
ENGINEER, COMPANY, REVISION, PROJECT, or COMMENT.

header_ information is text describing the header type
information for the design. This text is enclosed in single quote
marks.

Examples

#TITLE
#ENGINEER
#REVISION

'XlOOO MEMORY GLUE LOGIC';
'JOE SILICON';
'2.02';

To place multiple lines in the JEDEC file, use separate lines of text enclosed
by single-quote marks:

#COMMENT 'This design implements the glue'
'logic between the XlOOO and its memory. ';

50 MACHXL Software User's Guide (Version 3.0)

5 Signal Declarations and Modifiers

Contents
Introduction .. 52
Declarations ... 52

System and Local Signal Declarations .. 53
Arrays ... 53
Input Signals ... 54
Output/Biput Signals ... 55
Biput Signal Usage .. 56
Nodes .. 57
Wired-Bus Signals ... 59

Declaration Modifiers ... 61
Flip-Flop Types ... 62

D_FLOP ... 63
D LATCH .. 63
JK_FLOP ... 64
SR FLOP ~ .. 64
T FLOP ... 65

Control Information Constructs .. 65
CLOCKED _BY .. 66
LATCHED _BY ... 66
CLOCK ENABLED BY .. 67 - -
RESET_BY .. 67
PRESET BY .. 67
ENABLED_BY ... 67

Default Information Constructs ... 68
DEFAULT TO ... 68
NO REDUCE ... 70

Chapter 5: Declarations and Modifiers 51

Introduction

This chapter discusses the types of signals that the Design Synthesis Language
recognizes. Discussions include how to declare signals, as well as the
modifiers you may use on them. The types of signal declarations available
include:

o INPUTS

o OUTPUTS/BIPUTS

o NODES

o WIRED_BUS

Arrays of these signal types may also be declared.

Modifiers to the signal declarations allow you to declare signals as:

o lowtrue

o flip-flops

o latches

as well as setting the clocking/latching and their default states.

Declarations

Different types of signal declarations made at the beginning of a source file
define and name signals (identifiers) to be used in a design and indicate to the
compiler, optimizer, and fitting tools how these various signal identifiers will
function in the design. Signals may be declared at both the system and local
levels (see the next section, System and Local Signal Declarations).

The types of signals available in the Design Synthesis Language include:
INPUT, NODE, OUTPUT/ BIPUT, and WIRED_BUS. Any of these signal
types may also be declared as an array. A description of each follows.

52 . MACHXL Software User's Gulde (Version 3.0)

System and Local Signal Declarations
Signal declarations may appear inside or outside of a procedure or function.
A signal declaration made outside of a procedure or function is known as a
system signal, and is available at the system level. The signal will not be
recognized within any procedure or function.

All procedure and function descriptions must appear before any system level
design information, including system-signal declarations and system-level
statements.

A signal declaration made inside a procedure or function is local and is not
visible to any other procedure or function even at the system level.

Thus, a local signal can have the same name as a system signal and will exist
only until the end of the function or procedure. A system signal with the same
name as a local signal is immune to any changes made to the local signal
unless the value is passed explicitly through a procedure output.

Arrays
An array is a set of logically related signals that can be treated separately or
as a unit. All types of signals may be declared as arrays (Signals types
INPUTs, NODEs, OUTPUTs, BIPUTs, and WIRED_BUSes.)

The array identifier is listed along with a number or a range of numbers that
determines the size of the array. For instance, you may declare a range for an
array using beginning and ending indexes:

identifier[index_l •• index_n];

Indexes can be given in either ascending or descending order. When an array
is used in an expression, the first index is always the Most Significant Bit and
the last index is the Least Significant Bit.

The declaration:

OUTPUT addr[l5 •• 0]; "array addr declared using
··a range or inaexes

Specifies 16 elements to the array: addr[l5], addr[l4], addr[13], addr[l2],
addr[l 1], addr[IO] through addr[O].

Chapter 5: Declarations and Modifiers 53

As an alternative, you may simply specify the size of an array, which becomes
a shorthand way of giving a range of indexes from (array_size - 1) descending
to 0:

identifier[array_size];

The same array declaration given in the previous example, specifying 16
elements to the OUTPUT addr, can be declared as follows:

OUTPUT addr[l6]; "array addr declared using an
"array size

Again, the elements in the array include: addr[15], addr[14], addr[13],
addr[12], addr[ll], addr[IO] through addr[O].

The following array declaration for q:

OUTPUT q[4 •• 7];

Has four elements q[4], q[5], q[6], and q[7]. Note that this array has
ascending indexes: q[4] being the Most Significant Bit and q[7] being the
Least Significant Bit.

Each index can be a constant expression made up of constants and operators.
For example, the following:

INPUT in[2.*.5]

is exactly the same as:

INPUT in[lO]

Input Signals

" ·*· is the DSL operator for
" multiplication

Signals that serve only as inputs to a design may be declared using the
keyword INPUT.

The syntax for declaring input signals is as follows:

(LOW_TRUE] INPUT identifier_or_array_list;

54 MACHXL Software User's Guide (Version 3.0)

The optional LOW_ TRUE modifier may be used to indicate that a low voltage
will represent the true state of the declared input signal(s). (See Low_True in
the Declaration Modifiers section, later in this chapter for more information.)

Each signal name in the identifier list must be separated by a comma, and the
declaration must be followed by a semi-colon.

Examples

INPUT x,y[4],z;

LOW_TRUE INPUT x,y,z;

INPUT /x,y,z[7 •• 5];

"declares inputs x, y[3],
"y [2] , y [1] , y [0] , and z
"declares inputs x, y, and
"z as low-true
"declares inputs x as low

"true I y I z [7] I z [6] I z [5]

Output/Bi put Signals
Signals that will be visible outside a design can be declared using the
OUTPUT keyword. BIPUT may be used as a synonym for OUTPUT when
symbols are used for bi-directional operation. The syntax for declaring
outputs is as follows:

[LOW_TRUE] [flip_flop_type) OUTPUT
identifier_or_array_list [control_info]
[default_info);

OUTPUTs may be used without modifiers as a way to get signals out of a
design. On the other hand, NODEs with modifiers are a way of creating
internal design elements. An OUTPUT declared with the same modifiers as a
NODE is a shorthand or alternate way of representing a NODE that feeds a
regular OUTPUT.

Example

INPUT a, b;
D FLOP OUTPUT x CLOCKED BY elk;

x = a * b;

Chapter 5: Declarations and Modifiers 55

is equivalent to:

INPUT a, b;
D FLOP NODE x node CLOCKED BY elk;
OUTPUT x;
x = x_node;
x node = a * b;

Biput Signal Usage
From a language structure view point, an output statement that contains an
ENABLED_ BY can be used as a bidirectional signal. However, the following
information gives some insight into proper usage of BIPUTs:

The statement:

OUTPUT xx ENABLED_BY oe;

usually represents an output pin that will be driven with an input value ifthe
ENABLED_BY (i.e., oe) signal is asserted.

The statement

BIPUT xx ENABLED_BY oe;

usually represents a biput pin that is driven by internal logic when the
ENABLED_BY (i.e., oe) signal is asserted. This same pin is driven by an
input value when the ENABLED _BY (i.e., oe) signal is not asserted.

When the ENABLED_BYpin (i.e., oe) of an OUTPUT/BIPUT signal is not
asserted, the OUTPUT/ BIPUT signal will have a high impedance (.Z.) state.

The following example and screen show how OUTPUT and BIPUT
statements with an ENABLED_ BY modifier should be used. The example
also shows how signal feedback can be accessed before/or after the
ENABLED BY modifier.

56 MACHXL Software User's Guide (Version 3.0)

In the following example, xx is used as a BIPUT pin, yy is used as an
OUTPUT pin, and z z is used as an OUTPUT pin that is enabled and uses
internal feedback from nodel.

in1

Input inl,in2, oe;
PHYSICAL NODE nodel;
BIPUT xx ENABLED_BY oe;
OUTPUT yy;
OUTPUT zz ENABLED BY oe;
nodel = inl;
xx = node 1;
yy xx * in2;
zz = nodel * in2;

Nodes

>------yy

Nodes are signals in a design that are not visible outside the design (unlike
INPUTs and OUTPUTs.) A node simply identifies a point in a logic design.
This point (node) may be an actual physical point, or a virtual point that is
collapsed during optimization. Physical and Virtual nodes are discussed in
more detail later in this chapter.

A node without a clock (i.e., no CLOCKED_BY) will be a combinatorial
node. Combinatorial nodes are useful building blocks for connecting separate
pieces of combinatorial logic (much like a schematic net.) An equation for a
node may be created in one part of a design and referenced in other parts.

Chapter 5: Declarations and Modifiers 57

The logic optimizer may choose to leave nodes in the design to be fit as
physical nodes in hardware. The optimizer may also choose to remove a node
by passing its equation logic to all equations that reference the node (this is
called node collapsing.) One of two modifiers, PHYSICAL or VIRTUAL,
may be used with the keyword NODE to control node collapsing. The
PHYSICAL modifier is used to force the optimizer to create a physical node
in hardware. VIRTUAL is used to force the optimizer to collapse a node
during optimizing.

There are other control mechanisms for controlling node collapsing. These
mechanisms are properties that are placed in a Physical Information (.pi) file.
For more information on controlling node collapsing, see Chapter 13

Even though you may use the modifiers VIRTUAL and PHYSICAL, we
recommend that NODE be used without either unless there is a specific reason
to control node collapsing (e.g., when you need to duplicate a design.) By not
using the modifiers except when absolutely necessary, you give the optimizer
maximum freedom to reach the optimal equation sizes for the target hardware.

Nodes are declared with the NODE keyword using the following syntax:

[LOW_TRUE][flip_flop_type] [VIRTUALIPHYSICAL] NODE
identifier_or_array_list [aontrol_info]
[default_info];

Example

NODE x, y[4], z; "declares combinatorial NODEs
"x, y[3], y[2], y[l], y[O], and z

JK FLOP NODE x, y, z[6 •• 4] CLOCKED_BY elk;
"declares JK flip-flops x, y,
" z[6],z[5], z[4]

For example, with the declaration of i as a virtual node and its assignment as
a*b:

INPUT a, b, c;
VIRTUAL NODE i;
OUTPUT o;

58 MACHXL Software User's Gulde (Version 3.0)

i = a * b;
o = i * c;

The resulting assignment statement for o is:

o = a * b * c;

In the example given above, the VIRTUAL modifier forces the optimizer to
remove the node. However, ifthe VIRTUAL modifer were not given, the
optimizer would still have collapsed the node since the resulting equation is
smaller.

In.the following example, changing the PHYSICAL NODE declaration to
VIRTUAL NODE also changes the generated equation:

INPUT a, b, c;
OUTPUT q;
PHYSICAL NODE x;

x = a * b;
q = x * c;

x declared as a
PHYSICAL NODE is
implemented as:

q = a * b * c;
x = a * b;

INPUT a, b, c;
OUTPUT q;
VIRTUAL NODE x;

x = a * b;
q = x * c;

x declared as a
VIRTUAL NODE is
implemented as:
q = x * c;

Note: Node collapsing is also dependent on other properties you may
have specified (see Chapter 12).

Wired-Bus Signals
The WIRED_ BUS declaration defines a group of nodes or outputs that are to
be tied together electrically. Each node or output must have an
ENABLED_ BY expression that is independent of all others in the group, since

Chapter 5: Declaratlons and Modifiers 59

no two nodes or outputs may be enabled at the same time. A group of nodes
can be referenced in expressions by declaring them as WIRED _BUS signals.
The identifier named for the group has the value of whichever node is enabled.

The syntax for declaring wired bus signals is:

WIRED BUS identifier: node_!, node_2, node_n;

Where: node_ n is an enabled node or output.

Alternatively, you can declare an array of wired bus signals:

WIRED BUS identifier[size]: group_!, group_2,
group_n;

Where:group _ n is a group or array of enabled nodes or outputs
of the same width as the declared array.

With the following signal declarations:

INPUT a, b;
NODE xl ENABLED BY
NODE x2 ENABLED BY
NODE x3 ENABLED BY

a * b;
a * /b;
/a * b;

The wired bus declaration for w:

WIRED BUS w: xl, x2, x3;

defines the new name w to be equal to the value ofxl when a*b = 1, the value
ofx2 when a*/b = 1, and the value ofx3 when /a*b = 1. w can be used in
expressions just like any other signal.

Several arrays and individual signals are declared as follows:

INPUT a, b;
NODE xl[4] ENABLED BY a * b;
NODE x2[4] ENABLED BY a * /b;
NODE q, r, s, t ENABLED BY /a * b;

can be tied together by declaring a WIRED_ BUS:

WIRED BUS w[4]: xl, x2, [q, r, s, t];

60 MACHXL Software User's Gulde (Version 3.0)

This creates the following connections:

w[3] represents the connection of xl [3], x2[3], and q.

w[2] represents the connection of x1[2], x2[2], and r.

w[l] represents the connection ofxl[l], x2[1], ands.

w[O] represents the connection of xl [O], x2[0], and t.

Declaration Modifiers

Declaration modifiers are optional parameters that may be used when
declaring certain kinds of signals. These include:

o the low-true designator for inputs, nodes, outputs, and biputs

o the flip-flop type designators for outputs, biputs, and nodes

o control information for outputs, biputs, and nodes

o default information for outputs, biputs, nodes, and return values of
functions

o LOW TRUE

The optional LOW_ TRUE modifier is used to define an input, output, biput,
or node as low-true, indicating that a low voltage will represent the true state.
The LOW_ TRUE modifier appears first in a signal declaration:

LOW TRUE INPUT x, y, z;

A signal may also be declared as low true by preceding the signal name with
the logical negation symbol (/) in the declaration:

INPUT x, /y, z; "Declares inputs x, y as low-true,
"and z

Chapter 5: Declarations and Modifiers 61

If low-true is not indicated by either the LOW_ TRUE modifier or the logical
negation symbol when the signal is declared, the signal will default to high
true.

Flip-Flop Types
Node and output declarations may be preceded by a flip-flop type that allows
the signal to be described as the designated flip-flop or latch. The optimizer
will synthesize equations for other flip-flop types, allowing the fitting tools to
implement the signal using the most efficient actual hardware flip-flop type.
The declared type allows the design to be described in the most convenient
way for the user.

When a flip-flop type is declared, an accompanying CLOCKED_ BY
expression or LATCHED _BY expression (in the case of a D _LATCH) must
also be declared. If a flip-flop type is declared without a CLOCKED_ BY or
LATCHED_ BY expression, the compiler will generate an error.

The syntax for declaring a node or output is:

[flip_flop_type] NODE identifier_or_array_list
[control_info] [default_info];

[flip_flop_type) OUTPUT identifier_or_array_list
[control_info] [default_info];

Where flip_flop_ type is D_FLOP, D_LATCH, JK_FLOP,
SR_FLOP,orT_FLOP

When referencing a node or output signal that has a JK, SR, or T flip-flop
type, the corresponding suffix (.J, .K, .R, .S, or .T) must be appended to the
node or output signal name when an expression is assigned to it. .D is
optional for D flip-flops.

A declaration without a flip-flop type and without a CLOCKED_ BY or
LATCHED_ BY modifier will be combinatorial.

62 MACHXL Software User's Guide (Version 3.0)

D_FLOP
D _FLOP defines a node or output to be a D flip flop. If no flip-flop type is
specified and a CLOCKED_ BY expression is used when declaring a node or
output, a D-type flip-flop will be assumed.

Since the D-type flip-flop is the default register type, D-type node or output
signals do not require a .D suffix when an expression is assigned to it.

The optimizer will synthesize all other flip-flop types for this equation,
allowing MACHXL to fit any type.

Valid declarations and uses ofD FLOP include:

D FLOP NODE a CLOCKED BY elk; "D FLOP is optional
NODE a CLOCKED BY elk; "since it is the
a = b; " default suffix.

".D not required for
" node a with D FLOP

An invalid use of a D _FLOP in an assignment statement would be:

NODE x CLOCKED BY elk; "x is declared by default
x. j = 1; "as a D_FLOP, not a

"JK FLOP

D_LATCH
D _LATCH defines a node or output to be a latched signal for a D-latch type
device. The declaration modifier LATCHED_ BY (rather than
CLOCKED_ BY) must be used in the declaration statement when D _LATCH
is specified for flip_ flop_ type. If a flip-flop type other than D _LATCH is
declared with a LATCHED_ BY expression, the compiler will generate an
error.

Note: D _FLOP gives partitioning a greater number of device
architectures to choose from in selecting devices for a design than
does D _LATCH. For this reason, we recommend using D _FLOP
whenever possible, rather than D _LATCH.

The following is a valid LATCHED_ BY declaration:

D LATCH NODE b LATCHED BY latch;

Chapter 5: Declarations and Modifiers 63

An invalid D _LATCH declaration would be:

D LATCH NODE b CLOCKED BY elk; "D LATCH requires a
"LATCHED BY -
"expression

JK FLOP
JK_FLOP defines a node or output to be a JK flip-flop type. Expressions are
assigned to JK flops by appending the .J or .K suffix to the signal name (e.g.,
FLOP I .J, FLOPI.K). If an expression is assigned to a signal using the .J or
.K suffix but has not been declared as the JK_FLOP type, the compiler will
generate an error.

MACHXL's optimizer will synthesize versions of all other flop types,
allowing the tools to fit any of these versions.

The following two examples indicate valid declarations and uses of JK_FLOP:

JK FLOP OUTPUT jkl CLOCKED_BY elk;
JK FLOP NODE jkl CLOCKED_BY elk;
jkl. j = 1;
jkl.k = O;

Invalid uses of JK FLOP include: ·

JK FLOP NODE jkl;

jkl = a;

SR_FLOP

"declaration missing
"CLOCKED_BY expression
"jkl missing .J or .K
"suffix in assignment
"statement

SR_FLOP defines a node or output to be an SR flip-flop. Expressions are
assigned to SR flops by appending the .S or .R suffix to the signal name (e.g.,
FLOPl.S, FLOPl.R).

MACHXL' s optimizer will synthesize versions of all other flop types,
allowing the tools to fit any of these versions.

64 MACHXL Software User's Guide (Version 3.0)

Valid declarations and uses of SR_FLOP include:

SR FLOP NODE srl CLOCKED BY elk;
SR FLOP NODE srl CLOCKED BY elk;
srl.s O;
srl.r = 1;

Invalid uses of SR FLOP include:

SR FLOP OUTPUT srl; "missing CLOCKED BY
"expression in declaration
"srl missing .s or .R
"suffix in assignment
"statement

srl = a;

T_FLOP
T_FLOP defines a node or output to be a T flip-flop. Expressions are
assigned to T nodes or outputs by appending the . T suffix to the signal name
(e.g., FLOPI.T).

MACHXL's optimizer will synthesize versions of all other flop types, allowing
the tools to fit any of these versions.

Valid declarations and uses ofT FLOP include:

T FLOP OUTPUT tl CLOCKED_BY elk;
tl.t = O;
T FLOP NODE tl CLOCKED BY elk;
tl.t = 1;

Invalid T FLOP uses include:

T FLOP NODE tl;

tl = a;

"missing CLOCKED BY expression in
"declaration
"tl missing .T suffix in
"assignment statement

Chapter 5: Declarations and Modifiers 65

Control Information Constructs

Nodes or output signals can be declared with any combination of one or more
optional control information constructs. Each construct may be used only
once per declaration. Control information constructs include:

CLOCKED_BY expression
[CLOCK_ENABLED_BY expression}

LATCHED_BY expression
ENABLED_BY expression
RESET_BY expression
PRESET_BY expression

Note that in a declaration, control information constructs come after the
identifier list:

(LOW_TRUE] [flip_flop_type] NODE identifier_list
(control_into] (default_info];

[LOW_TRUE] [flip_flop_type] OUTPUT identifier_list
(control_info] [default_info];

Each control information construct is described in its own section.

CLOCKED BY
CLOCKED_ BY defines an expression for clocking the register of a flip-flop.
When the CLOCKED_ BY expression becomes true, signals on the input of
the register are clocked to the output of the register on the positive edge. For
D-latches, use LATCHED _BY rather than CLOCKED _BY.

LATCHED BY
LATCHED_ BY defines an expression for timing the latch of a D _LATCH.
As long as a LATCHED_BY expression is true, signals on the input of the
latch are transferred to the output of the latch (i.e., the latch becomes

66 MACHXL Software User's Guide (Version 3.0)

transparent from input to output). When the LATCHED_ BY expression is
false, the latch holds the last value.

CLOCK ENABLED BY - -
Valid only when preceded by a corresponding CLOCKED_BY expression.
Defines an enabling expression that must be true in order for the
CLOCKED_ BY expression to be seen by the register.

RESET BY
RESET_ BY defines an expression for the asynchronous resetting of the
register. When the RESET_ BY expression is true, the corresponding register
is false.

Note: Since only registers can be reset, a RESET_ BY statement must
be accompanied by CLOCKED_ BY or LATCHED_ BY.

PRESET BY
PRESET_ BY defines an expression for the asynchronous presetting of the
register. When the PRESET_ BY expression is true, the register is true.

Note: Since only registers can be reset, a PRESET_ BY statement
must be accompanied by CLOCKED_ BY or LATCHED_ BY.

ENABLED BY
ENABLED_ BY defines an expression to be used as an enable control on a
registered or combinatorial node. The node's value is enabled when the
ENABLED_ BY expression is true. When it becomes false, the node's value is
.Z. (tri-state).

Chapter 5: Declarations and Modifiers 67

Note: Assignment of.Z. to a signal is an alternate method of
creating an ENABLED_ BY expression. For example:

NODEn;
/Fa*bTHEN
n=c*d
ELSE
n=.Z.;
END IF;
is exactly the same as:
NODE n ENABLED _BY a*b;
n=c*d;

Default Information Constructs

Optional default information statements may be used with nodes, outputs,
output parameters of procedures, and return values of functions. The default
information [default_info] constructs include:

DEFAULT_TO expression
DEFAULT_TO expression, expression
DEFAULT TO LAST VALUE - -
DEFAULT TO .X.
NO REDUCE

DEFAULT_TO
DEFAULT_TO defines a value to which a node will default if not explicitly
assigned a value. These situations include the following:

a unspecified ELSE clause of an IF construct,
a unspecified conditions of a CASE statement,

a unspecified conditions in a truth table,

a unspecified STATE values in a state machine,

a any other conditions in which there is no assignment to the signal
of interest.

68 MACHXL Software User's Gulde (Version 3.0)

The following default values can be specified for a node or output: an
expression (such as 0, 1, a*b), .X. (DON'T CARE), and LAST_VALUE.
Commonly, the default value used will be 0 (denoting false) since this allows
the designer to specify only those cases when a signal is true.

Ifno DEFAULT_TO statement is given, the compiler assumes the default
value of DON'T CARE (.X.). The DON'T CARE value allows the optimizer
to produce the smallest equations possible. However, this also means that the
value of the signal in the default condition is unpredictable.

LAST_ VALUE causes a register to default to itself so that its value will not
change unless otherwise specified. LAST_ VALUE can be used only with
registers (i.e., signals with CLOCKED_ BY.)

If a node has been declared as a JK or SR flip-flop type, DEF AULT_ TO is
followed by two expressions separated by commas:

DEFAULT TO expressionl, expression2;

The first expression is the default value for the .J or .S inputs and the second
expression is the default for the .K or .R inputs.

For example, the DEFAULT_TO statement in the following declaration of the
JK flip-flop output outl causes outl. j to default to 0 and outl. k to
default to 1 :

JK_FLOP OUTPUT outl CLOCKED_BY elk DEFAULT_TO 0, 1;

Note: When using the DEFAULT_TO in a statement with other
modifiers, DEFAULT_ TO must be the last item in the statement. The
following is a legal use of DEFAULT_ TO:

JK_FLOP OUTPUToutl CLOCKED_BY elk DEFAULT_ TO 0, l;

The following is an illegal use of DEFAULT_ TO:

JK_FLOP OUTPUT outl DEFAULT_ TO 0, 1 CLOCKED_ BY elk;

Chapter 5: Declarations and Modifiers 69

NO REDUCE
NO_ REDUCE can be substituted for DEF AULT_ TO in a node or output
signal declaration in order to inhibit reduction of an equation or group of
symbols. NO_ REDUCE also prevents the optimizer from performing flip
flop synthesis. The declared flip-flop type will be used. Reduction within a
single product term is still performed, as demonstrated in the following
example:

When the nodes hmem and hblock are declared with the NO REDUCE
default information statement:

D_FLOP NODE hmem, hblock CLOCKED BY elk NO_REDUCE;

Normal reduction will not be performed on the equations:

hmem=a*b*c+a*b+a*c+b*c;
hblock=a*b*c*a*b*a+a*b

However, the equation for hblock will be reduced to a*b*c+a*b because there
are duplicate signals in the first product term (a*b*c*a*b*a).

When used in a function declaration, the NO _REDUCE modifier tells the
compiler not to reduce the function's return value. When NO_ REDUCE is
used in a procedure output declaration, the compiler will not reduce the
procedure output equation.

One purpose ofNO_REDUCE is to allow the creation of hazard-free
equations. Redundant product terms can be added where these product terms
would otherwise be reduced out.

The following declarations indicate that output c of procedure p and the return
value b of the function compare will not be reduced:

PROCEDURE p(INPUT a,b;
FUNCTION compare(a, b)

OUTPUT c
NO_REDUCE;

70 MACHXL Software User's Guide (Version 3.0)

NO_ REDUCE) ;

6 Expressions

Contents
Introduction ... 72
Identifiers .. 72

Logical Operators ... 7 4
Expression Shorthand (ES) 74

Relational Operators ... 7 5
Arithmetic Operators .. 7 6
Constant Expressions .. 77
Using Parentheses to Change Precedence 78

Groups and Ranges ... 78
Array Expressions ... 81
Don't Care Condition ... 83

Chapter 6: Expressions 71

Introduction

This chapter discusses the operators used to construct expressions in the
Design Synthesis Language, operator precedence, and several types of
expressions.

Combinations of one or more identifiers, signals, and/or constants that are
related by operators are called expressions. Operators specify the operation to
be performed among identifiers, signals, constants, and expressions.

Identifiers

There are three types of operators used in the Design Synthesis Language:
arithmetic, logical, and relational. 1.

Each operator has an operator precedence relative to other operators. This
precedence affects the order of evaluation in an expression.

The following table is a listing of all of the expression types and usable
operators in the Design Synthesis Language. The table indicates the relative
precedence of the operators. All binary operators of equal precedence
associate left to right.

Expression/
Operation

constant

identifier

identifier[index [.. index]]

identifier(expression _list)

[expression _list]

(expression)

72 MACHXL Software User's Gulde (Version 3.0)

Description

constant expression

simple signal or array

array reference

function invocation

group

parentheses for overriding
default precedence

Expression/ Description Precedence Operator Type
Operation
/a NOT 1 logical
*(a,b,c,d) AND 1 expression shorthand (logical)
/*(a,b,c,d) NAND 1 expression shorthand (logical)
+(a,b,c) OR 1 expression shorthand (logical
/+(a,b,c,d) NOR 1 expression shorthand (logical)
(+)(a,b,c) XOR 1 expression shorthand (logical)
/(+)(a,b,c) XNOR 1 expression shorthand (logical)

constant . *. constant multiplication 2 arithmetic
constant ./. constant division 2 arithmetic
constant .MOD. modulo 2 arithmetic
constant
a*b AND 2 logical
a/* b NAND 2 logical

a.+. b addition 3 arithmetic
a.-. b subtraction 3 arithmetic
a+b OR 3 logical
a/+b NOR 3 logical
a(+) b XOR 3 logical
a/(+) b XNOR 3 logical

a=b equal 4 relational
a<>b not equal 4 relational
a<b less than 4 relational
a>b greater than 4 relational
a<=b less than or equal 4 relational
a>=b greater than or 4 relational

e ual

NOT a logical negation 5 logical
aANDb logical AND 6 logical
aORb logical OR 7 logical

Chapter 6: Expressions 73

Logical Operators
Logical operators are used to describe logical relationships among signals in
expressions. The language supports the standard logical operators used to
perform Boolean functions in programmable logic design.

Symbol Description Precedence
/a NOT 1

a*b AND 1
a/* b NANO 1
a+b OR 1
a/+b NOR 1
a(+) b XOR 1
a/(+) b XNOR 1

Equations built with the(+) exclusive-OR operator can be fit into devices with
exclusive ORs and devices without exclusive ORs. Both representations of
the equation are maintained throughout the system, allowing automatic
partitioning to use either form.

Expression Shorthand (ES)
Expression shorthand provides a convenient way to express an operation on
many expressions.· Expression shorthand may be used for the commonly used
logical operators: *, +, (+), /*,/+,and/(+).

The syntax of expression shorthand is:

ES_Operator(expression_list)

Where ES_ Operator is one of the following logical operators: *, +, (+), /*,
/+, /(+).

74 MACHXL Software User's Guide (Version 3.0)

The Expression Shorthand Operators all have highest precedence.

Shorthand Example Evaluates to Precedence
Operator

* *(A,B,E(+}F) A*B*(E(+}F) 1
+ +(A,B,D*E) A+B+(D*E) 1

(+) (+)(A,B,E) A(+}B(+)E 1
I* /*(B,C,D) /(B*C*D) 1
/+ /+(B,C,D) /(B+C+D) 1

/(+) /(+)(B,D,F) /(B(+)D(+}F) 1

The binary operation:

outl = a7 * a6 * as * a4 * a3 * a2 * al * aO;

Using expression shorthand for the logical AND operator (*}, may be
shortened to:

outl = *(a7 •• aO);

Relational Operators
The relational operators are used for comparing expressions (including
identifiers, constants, and other expressions). Relational operations always
give a one (true) or zero (false) value as their result.

Symbol Description Precedence
a=b equal 4
a<> b not.equal 4
a<b less than 4
a>b greater than 4

a<= b less than or equal 4
a>= b greater than or equal 4

For the relational operators <, >, <=, and =>, the compiler will by default
insert a node at each bit position of the operation. MACHXL's optimizer will
then remove most of these nodes, resulting in optimal equation sizes,
according to the constraints placed on the optimizer. For more information on
the compiler and optimizer operations, see Chapters 11 and 13.

Chapter 6: Expressions 75

The logical operators OR, AND, and NOT have the same behavior as+,*,
and I but have lower precedence than the relational operators. These
operators are useful for combining relational expressions.

Relational operations may be performed on arrays and groups, as in the
following example:

IF [a[l •• 4] >= 5 AND a[l •• 4] <= 2 THEN
x = (a=l7);

END IF;
"If array a has value 17, x
"= 1.0therwise, x = O.

Some comparison expressions involving relational operators and their results
include the following:

Operation

a=l

a=l

b<>c

a=b OR a=c

Arithmetic Operators

Result

True, if a has a value of 1

False, if a has a value of 0

True, if b has a value of 1 and c has a
value of 0 or vice versa

True, if a has a value as b or c

The arithmetic operators are used for performing arithmetic operations on
arrays, groups or constants.

Oeerator Descrietion Examele Precedence
constant.*.constant multiJ2lication 5.*.7 2
constant ./. constant division 10./.2 2

constant .MOD. constant modulo 17.MOD.3 2
a.+.b addition a.+.b 3
a.-.b subtraction a.-.b 3

The arithmetic operators.*. (multiplication),./. (division), and .MOD.
(modulo) can only be used with constants, as shown in the table above. The
.+.(addition) and.-. (subtraction) operations may be performed on any array
or group built from signals or constants. The compiler will, by default,

76 MACHXL Software User's Guide (Version 3.0)

generate a node at each bit of an addition or subtraction operation.
MACHXL's optimizer will collapse most of these nodes to produce an optimal
set of equations, regardless of the form of the operands. For example,
constants in operands require less logic and will result in more nodes being
collapsed. For more information on the operation of the optimizer, see
Chapter 12.

The result of the .+. (addition) and .-. (subtraction) operations will be the same
array size as the operands. This means that if a carry bit is generated, it is
thrown away. In the following example, the array count can represent values
from 0 to l 023. If the value of count is 1023 and 1 is added to the array, the
count rolls over to 0 and the carry bit is lost.

NODE count[lO] CLOCKED_BY elk;
count=count .+. l; "counts by 1, rolls over

"at 1023,no carry bit

If you need to keep the carry bit, pad the operands with leading zeros, as
shown in the following example.

INPUT a[lO], b[lO];
OUTPUT x [11 J ;

"bit

x=[O,a] .+. [O,b]

"define an array 1-bit
"wider to accept the carry

"add arrays a and b into x
"including the carry bit

Constant Expressions
Constants can be used alone or with operators to form expressions. An
operator that acts only on constant expressions results in a constant
expression. If an operator acts on a constant and a non-constant, then the
constant is assumed to have a bit width equal to that of the non-constant
expression. If the value of the constant can not be represented in the available
bits then an error is generated.

Constant expressions are required in contexts such as array size declarations.

Chapter 6: Expressions 77

Examples

5 * 7 + 128

5 * [a,b,c)
13 * [a,b,c)

MACRO size 10;
INPUT in [size);

"This results in the constant
"163.
"This results in [a, O, c)
"This is an error since 13 cannot
"be represented in 3 bits.

OUTPUT out [size ·*· 2];

Using Parentheses to Change Precedence
Precedence in an expression may be overridden by use of parentheses. For
example, since logical AND(*) has higher precedence than logical OR(+),
the following expression:

a * b + c

will be evaluated as follows:

(a * b) + c

However, by using parentheses, you may override the default. Thus, in the
expression:

a * (b + c)

(b + c) will be evaluated first, then the result will be AND'd with a.

Groups and Ranges

A group of signals that will perform similar functions and which you want to
treat similarly can be referred to using brackets [] . Signals grouped together
within brackets can be assigned a single value or can be specified to take on
the values of another set of signals.

78 MACHXL Software User's Gulde (Version 3.0)

In the following assignment statement, the four signals a, b, c, and dare all
set to zero.

[a,b,c,d] = O;

Without group notation the previous operation would require four assignment
statements as shown below:

a = O;
b = O;
c = O;
d O;

The order in which signals are listed in a group is important. The first (left
most) signal in the group (e.g., a in the previous example) is the Most
Significant Bit and the last signal (right-most) specified (d) is the Least
Significant Bit. This is important when you set a group of signals equal to a
value.

You may combine group notation with the range notation. The range
statement,

[q3 •. qO] = 5;

is interpreted by the Design Synthesis Language as:

[q3,q2,ql,q0] = [0,1,0,l];

q3 is listed first, so the range is in descending order: q3, q2, q1, qO. The
binary representation of the numeral 5 is 0101, so the signals will be set to
the following values:

q3 = O;
q2 1;
ql = O;
qO 1;

If the order in the range is reversed ([q0 .. q3] = 5), the Most Significant Bit
would be qO, and the values for the assignments would become:

qO = O;
ql = 1;

Chapter 6: Expressions 79

q2 O;
q3 1;

To assign a group of signals to another group of signals, you can use the
group notation and the assignment operator:

[q3 •• q0] = [d3 .. d0];

In assigning groups, you may use the numerals 0 and 1, the don't care symbol
.X., and the tri-state symbol .Z., in the group on the right side of the
assignment operator:

[a,b,c,d) = [a,O,.X.,l];

The don't care symbol .X. may also be used within ranges that are acted upon
by relational operators. Wherever .X. appears in the range, the compiler will
ignore that term when doing a comparison of ranges.

Thus, the statement:

IF [alS •• aO] >= [blS •• b6,1, .X., .X., .X. ,O,bO] THEN
x = y;

END IF;

is exactly the same as:

IF [alS •• aS,al,aO] >= [bl5 •• b6,1,0,b0] THEN
x=y;

END IF;

You may also perform operations on groups, such as the following:

[a,b,c,d) = /[a,O,a+b,l]*addr[3 •• 6];

A member of any group that is itself a group will be unfolded so that its
members become members of the containing group.

Thus, with the following node declaration:

NODE a[2],b[2],c[4];

80 MACHXL Software User's Guide (Version 3.0)

The statement:

[a[l. .OJ ,b[l. .OJ J c[3 •• OJ;

has the same meaning as:

[a[lJ,a[OJ,b[lJ,b[OJJ = [c[3J,c[2J,c[lJ,c[OJ);

And

[a,cJ = [l,c,OJ;

is equivalent to:

[a[lJ,a[OJ,c[3J,c[2J,c[lJ,c[OJJ
[l,c[3J,c[2J,c[1J,c[OJ,OJ.

The following example shows a number of range and group notations as they
might appear in the context of other source code.

Example

INPUT rd, wt, dir;
OUTPUT q7 •• q0, up, down;

IF ([rd,wtJ=Olb) THEN

ELSE

[q7 •• qOJ = OOOOOOOOb;
[up,downJ = OOb;

[q7 •. q0] = [qO,q7 .• qlJ; "performs a rotate
[up,down) = Olb;

END IF;

Array Expressions

An array is a set of logically related signals that can be treated separately or
as a unit. (See Chapter 5, and the section on Arrays.)

Chapter 6: Expressions 81

An array, a subrange of an array, or an individual array element may be
assigned a single value. Or they may be specified to take on the values of
another set of signals.

Each element of an array can be indexed and used as an ordinary signal. Each
array element, a range of array elements, or the array as a whole may also be
given individual assignment statements.

For instance, for the array addr declared as follows:

OUTPUT addr[l6] ;

The value of an individual element can be referenced:

a= addr(S];

In this case, addr[5] is being assigned to a.

You may also assign a subrange of addr to individual signals as shown below:

addr [10 .• 0] = [xlO, x9, x8, x7, x6, xS, x4, x3, x2, xl,
xO];

A subrange of addr may also be referenced:

addr[2 •• 6] = 21;

In this case, array elements addr[2] through addr[6] are assigned the
corresponding values on the right. addr[2] is the Most Significant Bit and
addr[6] is the Least Significant Bit.

This assignment is equivalent to:

(addr[2],addr[3],addr[4],addr[5],addr(6]] = [l,0,1,0,l];

In addition, you may assign the array addr to a combination of another
smaller array and individual signals, as shown below:

addr = [a[9 •. 0] , xl, x2, x3, yl, y2, y3] ;

In this case addr[15] through addr[6] would be assigned to array elements
a[9] through a[O), and addr[5) through addr[O) would be assigned to x1, x2,
x3, yi, y2, and y3 respectively.

82 MACHXL Software User's Guide (Version 3.0)

The following array assignment ANDs the array addr with the hexadecimal
constant value FF:

addr = addr*OOf fH

which is also equivalent to:

addr[lS •• O] = [O,O,O,O,O,O,O,O,addr(7 •• 0]]

For the array q declared as follows:

OUTPUT q[4 •• 7] CLOCKED BY elk;

the assignment

q[7 •• 5] = q[4 •• 6];

is equivalent to

q[7]=q[4];
q[6]=q[5];
q[S]=q(6];

The above assignments would cause q[5) and q[6) to take on the same values.

Don't Care Condition

The Don't Care condition is denoted by .X in the Design Synthesis Language.
You can use the Don't Care condition explicitly when describing the value of a
signal. The optimizer will then assign either a 0 or 1 to the signal, depending
on which produces the smallest equation.

Examples

The following is an example of a valid usage of Don't Care:

f =a * /b * .x.; ".X. should be at the end
"of the equation

The following is an example of an invalid usage of Don't Care:

Chapter 6: Expressions 83

·~

f = .x. * a * /b; "This will produce
"incorrect results

You can also use .X to describe the behavior of undeclared states in a state
machine. The following example completely specifies all possible conditions
of a state machine, and ensures the most optimal equation generation:

STATE MACHINE dont care CLOCKED BY

STATE one:
IF count THEN

clear = 1;
IF (pulse = 0) THEN

counts = 1;

STATE

ELSE

GOTO
ELSE

GOTO
END IF;

END IF;

two:

GOTO .X.;
clear = .x.;
counts = .x.;

END dont_care;

one;

one;

elk;

84 MACHXL Software User's Gulde (Version 3.0)

7 Statements and Constructs

Contents
Introduction .. 86
Assignment Statements ... 86
IF Statements ... 87
CASE Construct .. 88
TRUTII TABLE ... 90
STATE MACHINE Construct. .. 92

CLOCKED_BY (in a STATE_MACHINE) 94
Rules for Using CLOCKED_BY in a State Machine 94

RESET_BY (in a STATE_MACHINE) 96
RULES for Using RESET_BY in a State Machine 96

STATE_BITS (in a STATE_MACHINE) 97
Rules for Using the STA TE_ BITS Construct in a State
Machine .. 98

STATE VALUES ... 100
Rules for Using the STA TE_ VALUES Construct 100
ONE HOT ... 100
GRAY CODE .. 101

ST ATE Declarations ... 102
Rules for Using the STA TE Construct 102

GOTO Statement ... 104
Asynchronous State Machines , ... 105

Chapter 7: Statements and Constructs 85

Introduction
The Design Synthesis Language provides various kinds of statements and
constructs that may be used to build design equations. The types available
include:

CJ Assignment statements

CJ IF statements

CJ CASE statements

Cl TRUTH TABLE constructs

CJ STATE MACHINE constructs.

Each of these is discussed in detail in this chapter.

Assignment Statements
The assignment statement is used to describe the values of the assignable
signals (OUTPUT, NODE, BIPUT) in a design. An expression is assigned to
a signal or group of signals by means of the assignment operator (=).

The syntax of the assignment statement is:

assignment_expression = expression;

Where:
assignment_expression: identifier [suffix]

identifier [index) [suffix]
identifier [index •• index) [suffix]
[assignment_expression_list)

suffix: is one of the following: .D
.J
.K
.R
.s
.T

86 MACHXL Software User's Guide (Version 3.0)

In the assignment of flip-flop signals, an optional suffix may be used to
indicate which of a flip-flop's equations is being assigned: D, J, K, R, S, or T.
The .D suffix is optional on D _FLOPs. As with expressions, arrays can be
assigned in whole or in part.

Examples

INPUT a, b;
OUTPUT x;
D FLOP d, darr(4] CLOCKED BY a;
JK FLOP jk, jkarr(4]
SR FLOP sr CLOCKED BY
T FLOP tl. .t4 CLOCKED

x = a * b;
d.D = a + b;
darr jkarr;
jk.J = a;
jk.K = b;
jkarr(2 •• l].J = [a, b];
jkarr.K = (a, b, 1, OJ;
[sr.R, sr.S, tl.T •. t4.T]

IF Statements

CLOCKED BY a;
a;

BY a;

[a, b, a* b, 1, 0, a+ b];

The IF statement allows an expression's value to determine whether a body of
statements will take effect. The syntax of an IF statement is:

IF expression THEN
statements

{ELSIF expression THEN
statements}

(ELSE
statements)

END IF;

The expressions in an IF statement must be single-bit values; they cannot be
multi-bit width arrays or groups. If an expression has a value of 1, then it is a
true condition; otherwise it is a false condition.

Chapter 7: Statements and Constructs 87

The statements contained inside the THEN take effect only when the
corresponding expression is true.

An IF statement may contain any number of optional ELSIF clauses. The
statements contained in an ELS IF clause take effect if its expression is true
and all preceding expressions are false.

An IF statement may contain an optional ELSE clause. The statements
contained in an ELSE take effect if all other expressions are false.

The IF statement ends with END IF;.

Example

IF a * b THEN

x = c;
ELSE

x = d;
END IF;

The resulting equation for x will be x = a*b*c + /a*d + /b*d.

CASE Construct
The CASE construct allows you to compare an expression against a list of
values, each of which has associated statements. If the expression matches a
given value, the associated statements take effect. Multiple values and ranges
may be given with each value.

The CASE construct may include an ELSE statement that processes any value
not specified by the listed values. The CASE construct ends with an END
CASE statement.

88 MACHXL Software User's Guide (Version 3.0)

The syntax of the CASE construct is:

CASE expression
WHEN value_range =>

statements
[ELSE

statements)
END CASE;

Where:
value_ range is a list of numbers or a range of numbers.

The value of the CASE expression is compared to each of the values
in the value_ranges of the WHEN clauses. If the value of the
expression matches any of the values in a value_range, the
associated WHEN statements take effect.

Example

INPUT a[S];
OUTPUT x, y, z;

CASE a
WHEN 5=>

x = y;
y = x;

WHEN 7 •• 15=>
z = x;

"The following statements take
"effect if a = 5

"The following statement takes
"effect if 7 S a S 15.

WHEN 30 •• 41, 53, 57, 100 .• 113=> "The following

ELSE

z = y; "statement takes effect if
"a = any of these values

y = z;
"The ELSE statement takes effect
"if a does not match any of the
"WHEN values

END CASE;

Chapter 7: Statements and Constructs 89

TRUTH_ TABLE
A truth table provides a convenient way to list output values for selected input
expression combinations. Any or all of the possible input combinations may
be used. ·

The syntax of a truth table is:

TRUTH TABLE
expression_list :: assignment_expression_list;

value_range_list :: expression_list;
ELSE:: expression_list;

END TRUTH_TABLE;

Where:
expression is defined in Chapter 7;
assignment_ expression is defined earlier in this chapter in
the Assignments Statements section;
value_ range is defined in the preceding section under the heading
CASE Construct.

To set up a truth table, list all input expressions to the left of a double colon
(::) and all signals that are to be assigned to on the right of the double colon.
List corresponding values for the signals in column format under the signal
names.

A .X. input value tells the compiler to ignore the corresponding input
expression when creating the condition. A .X. output value tells the compiler
to assign DON'T CARE to the corresponding output symbol.

For a .Z. output value, the compiler will build the necessary equation for the
output enable to cause a high impedance value for the corresponding output
signal. In the following example, if a and enable are low, the output x will be
placed in a high impedance (.Z.) state.

TRUTH TABLE
a, enable •• x;

"
O, 0

END TRUTH_TABLE;

.. . . .z.;

90 MACHXL Software User's Guide (Version 3.0)

The compiler automatically checks for duplicate input terms that yield
different output values. For example, the following will generate a compiler
error because the input values overlap:

TRUTH TABLE
a, b, c : : x;

"------------------
O, 0, 0 : : O;
o, 0, 0 : : 1;

END TRUTH_TABLE;

The ELSE statement may be used in a truth table to process unspecified input
conditions.

As with other statements, the truth table construct may be nested within other
constructs (IF, CASE, etc.). When a truth table is nested within another
construct, the resulting equations will be affected by the conditions of the
parent construct.

The following example sets up a truth table using an array of nodes and
individual node identifiers:

NODE a[4], b, c, x, j;

TRUTH TABLE
a, b, c •• x, j, a[0 .• 3]; "An array can be used

"in the expression
"list

"------------------------------------
o, 1, 0 .. d, b*c, [b I c, x, j] ; "In this case,

"j = b * c
1, 1, x .. o, x, 5; "In this case, a[O .. 3) = ..

" [b I c, x, j]

15, 1, x .. 1, o, 5; "In this case, c is tested ..
"against x

ELSE .. x, 1, 15; "Outputs for all other
"cases

END TRUTH TABLE; -

Chapter 7: Statements and Constructs 91

The next example demonstrates how a truth table may be used inside an IF
statement:

IF a = b THEN
TRUTH TABLE

c, d :: e, f;

··------------
o, 0 •• 1, l;

O, 1 : : 1, O;
1, 0 •. o, l;
1, 1 ••• x., .x.;

END TRUTH_TABLE;

ELSE
f = O;
e = O;

END IF;

STATE_MACHINE Construct

"Don't Care

The STATE_MACHINE construct is an efficient way to describe sequential
logic. A state machine features a set of unique states; each state performs a
set of operations, including branching to the next state in the state machine
sequence.

The syntax of a state machine is as follows:

STATE MACHINE identifier
{STATE state name

statements}
{STATE state name

statements}

[state_machine_control_info];
[[value)): "Description of

"first state including
"GOTO statements

[[value)): "Description of
"second state including
"GOTO staterients

92 MACHXL Software User's Guide (Version 3.0)

Where:

[ELSE "Description of behavior of
"undeclared states including

statements] "GOTO statements

END identifier;

state_machine_control_info=[CLOCKED_BY expression]
[RESET_BY expression]

[default info *]
[STATE_BITS array]
[STATE_BITS group]
[STATE_VALUES identifier]

*default info is discussed in Chapter 6 in the Declaration Modifiers
section.

State machines use hardware signals to keep track of which state the state
machine is in. These hardware signals are called state bits. If state bits are
not explicitly declared with the STATE_BITS construct, the DSL compiler
will automatically generate nodes to act as state bits for the design (the
STATE_BITS construct is discussed later in this chapter).

If the state machine is declared with a CLOCKED_ BY construct, the state
machine will be a synchronous state machine.

If the state machine does not have a CLOCKED BY construct and the state
bits are combinatorial, the state machine will be an asynchronous state
machine.

STATE_ MACHINE statements can be nested within other constructs, (i.e.,
CASE, IF, Functions, Procedures, TRUTH_TABLES) or may be nested
within themselves.

The elements of the state machine description are discussed in the following
sections.

Chapter 7: Statements and Constructs 93

CLOCKED_BY (in a STATE_MACHINE)
The CLOCKED BY construct controls when the state machine will advance
to the next state. IF the state machine declaration includes a CLOCKED BY
construct, the state machine will be a synchronous state machine. A
synchronous state machine advances to the next state in the sequence when the
CLOCKED_ BY expression goes true.

The syntax ofCLOCKED_BY is as follows:

CLOCKED_BY expression

The signal declaration for the state bits can also determine if the state machine
is a synchronous state machine. If explicitly declared state bits are registered
signals (i.e., declared with a CLOCKED _BY construct in the NODE,
OUTPUT, or BIPUT statements), the state machine will also be considered a
synchronous state machine.

If the state machine does not have a CLOCKED_ BY construct, and if the
explicitly declared state bits are combinatorial, the state machine will be an
asynchronous state machine. An asynchronous state machine will advance to
the next state when a GOTO statement is encountered in a STATE
declaration. For additional information on asynchronous state machines, see
the section later in this chapter entitled Asynchronous State Machines.

Rules for Using CLOCKED_BY in a State Machine
If the state machine includes explicitly declared state bits (using the
STATE_BITS construct), the following rules apply to the state machine
CLOCKED_ BY expression:

D The CLOCKED_ BY expression for the state machine must match
the CLOCKED _BY expression for all the state bit signals. The
CLOCKED_ BY expression for the state bit signals is included in
the NODE, OUTPUT, or BIPUT statement that is used to declare
the state bit signals.

o If the state machine is an asynchronous state machine, the state bit
signals must be declared combinatorial (i.e., no CLOCKED_ BY
construct in the NODE, OUTPUT, or BIPUT statements).

94 MACHXL Software User's Guide (Version 3.0)

Cl If the explicitly declared state bits are registered signals (i.e.,
declared with a CLOCKED_ BY expression), the state machine
will be considered a synchronous state machine.

For additional information on declaring state bits, see the STATE_BITS (in a
STATE_MACHINE) later in this chapter.

Examples

The following example shows a synchronous state machine with explicitly
declared state bits. Note the CLOCKED_ BY expression for the state bits
matches the CLOCKED_ BY expression for the state machine:

NODE sb[4] CLOCKED_BY (/elk);

STATE MACHINE sync_machine
STATE BITS sb CLOCKED BY (/elk);

The following example shows another way to declare a synchronous state
machine. In this case, the ST ATE_ MACHINE statement does not include a
CLOCKED_ BY statement. The state machine is forced to be a synchronous
machine by the explicitly declared state bits with a CLOCKED_ BY statement.

NODE sb[4] CLOCKED_BY (/elk);

STATE MACHINE sync_machine
STATE BITS sb;

The following example shows an asynchronous state machine with explicitly
declared state bits. Note that the state machine declaration does not include a
CLOCKED BY statement and that the state bits are also declared without a
CLOCKED BY statement.

Chapter 7: Statements and Constructs 95

NODE sb [4];

STATE_MACHINE asyna_maahine
STATE_BITS sb;

RESET_BY (in a STATE_MACHINE)
The RESET_BY statement lets you force (asynchronously) the state machine
to the first declared state in the state machine. To force this transition, the
individual state bits are asynchronously reset or preset to match the values of
the first state.

The format for using RESET_BY in a state machine is as follows:

RESET BY expression

RULES for Using RESET _BY in a State Machine
Cl The RESET_ BY construct may be used only with synchronous

state machines (i.e., state machines tbat are declared with a
CLOCKED_ BY statement).

Cl If state bits are declared explicitly (using the STATE_ BITS
construct), the state bit signal declarations cannot include a
RESET_ BY or PRESET_ BY statement. The DSL compiler will
automatically determine the appropriate reset or preset expression
for each individual state bit signal from the state machine
RESET_ BY statement.

For more information on declaring state bits, see the next section entitled
STATE_ BITS (In a STATE_MACHINE).

96 MACHXL Software User's Gulde (Version 3.0)

Example

The following example shows a synchronous state machine with explicitly
declared state bits and a RESET_BY statement. Note that the state bit signal
declaration does not include RESET_BY or PRESET_BY statements.

In this example the sb signals will be set immediately to the value 0101 b when
reset is true. Setting the state bits to this value forces the state machine to the
idle state.

NODE sb [4] CLOCKED_BY elk;

STATE MACHINE reset machine
STATE BITS sb CLOCKED BY RESET BY reset;

STATE idle [OlOlb):

STATE_BITS (in a STATE_MACHINE)
State machines use hardware signals to keep track of the state a state machine
is in. These hardware signals are called state bits.

A design can explicitly declare the state bits for a state machine by using the
STA TE_ BITS construct. If state bits are not explicitly declared, the DSL
compiler will automatically generate nodes to act as state bits for the design.

The format for the ST ATE_ BITS construct is:

STATE BITS array
or

STATE BITS group

Where:

array is an array of signals previously declared with a NODE,
OUTPUT, or BIPUT statement.

Chapter 7: Statements and Constructs 97

gr~up is a group of signals previously declared with a NODE,
OUTPUT, or BIPUT statement.

Rules for Using the STATE BITS Construct in a State
Machine -

a State bit signals must be declared using the NODE, OUTPUT, or
BIPUT statements before they can be used in a state machine.

a All of the state bits must be clocked by the same expression in a
synchronous state machine. The CLOCKED_ BY expression in
the state machine must match the CLOCKED_ BY expression in
the NODE, OUTPUT, or BIPUT statements that declare the state
bit signals.

a All of the state bits must be combinatorial (i.e., declared without a
CLOCKED_ BY expression in the NODE, OUTPUT, or BIPUT
statements) in an asynchronous state machine (i.e., a state
machine declared without a CLOCKED_BY expression).

a If a synchronous state machine includes a RESET_ BY statement,
the NODE, OUTPUT, or BIPUT statements that declare the state
bits cannot have a RESET_BY or PRESET_BY statement. The
DSL compiler will automatically determine the appropriate reset or
preset expression for each indiviual state bit signal from the state
machine RESET_ BY statement. This eliminates any possibility of
reset or preset conflicts.

a If a state machine includes default information, the NODE,
OUTPUT, or BIPUT stetements that declare the state bits cannot
have default information. The DSL compiler will automatically
determine the appropriate default information for each individual
state bit signal from the state machine default information. This
eliminates any possibility of default conflicts.

You can assign unique values to the state bits for each state using one of the
three following methods:

98 MACHXL Software User's Gulde (Version 3.0)

o Specify explicitly the state bit value in each state as part of the
STATE declaration. With this method you must first specify the
state bits using the STATE_BITS construct. See the heading
STATE Declarations later in this chapter for more information.

o Specify an algorithm for assigning state bit values with the
STATE_ VALUES construct. This construct lets you use a gray
code or one-hot assignment algorithm without having to specify
explicitly each state bit value. See the heading STATE_ VALUES
later in this section for more information.

o Let the DSL compiler assign values automatically. With this
method, the compler will assign the value ofO (zero) to the first
state in the state machine, 1 (one) to the second state, 2 to the third
state, and so on. The state bit assignment process is a simple
binary counter that starts at 0 (zero). The values are assigned by
the compiler in the order in which the states are declared.

Example

This example uses a group of individual signals for the state bits. This state
machine explicitly assigns a value to each state.

INPUT a, b, elk;
NODE c3 • • cO CLOCKED_BY elk;

STATE MACHINE counter STATE BITS [c3 •• cO] CLOCKED BY
elk;

STATE one [OOOlb]:
GOTO two;

STATE two [OOlOb]:
IF a THEN

GOTO three;

ELSIF b THEN
GOTO two;

ELSE
GOTO one;

END IF;

Chapter 7: Statements and Constructs 99

STATE three[llOOb]:
GOTO one;

END counter;

STATE_ VALUES
The ST ATE_ VALVES construct lets the user control how state-bit values are
assigned to states without explicitly assigning each value. The user declares
the assignment algorithm with the STATE_ VALUES construct.

The syntax of the STATE_ V ALuES construct is:

STATE VALUES ONE HOT
or

STATE VALUES GRAY CODE

Rules for Using the STATE_ VALUES Construct
a When you use the STATE_ VALVES construct, you cannot

explicitly assign state bit values to states. This would result in
assigning two different values to the same state.

a If the STATE VALUES construct is not used and the user does
not explicitly assign state bit values for each state, the DSL
compiler will automatically assign state bit values. In this case the
compiler will assign the value of 0 (zero) to the first state in the
state machine, 1 (one) to the second state, 2 to the third state, and
so on. The default state bit assignment is a simple binary counter
that starts at zero. The values are assigned in the order in which
the states are declared.

ONE_HOT
The "one hot" algorithm assigns a unique state bit to each state (shown in the
following example). This method is useful when targeting register-rich
architectures. The format for the one hot bit selection method is:

100 MACHXL Software User's Guide (Version 3.0)

STATE MACHINE sm name CLOCKED BY elk STATE VALUES
ONE_HOT;

Example

In the following state machine:

STATE MACHINE sml CLOCKED BY elk STATE VALUES ONE_HOT;
STATE one: .•.
STATE two: •••
STATE three: ••.
STATE four:

The state values will be:

one
two
three
four

[OOOlb]

[OOlOb]

[OlOOb]

[lOOOb]

With the one-hot bit selection method, the number of states is equal to the
number of state bits. This makes the one-hot bit selection method less
register-efficient than the default or GRAY_ CODE methods. However, the
equations for each state bit will be very efficient.

GRAY CODE
An alternate algorithm, GRAY_ CODE, causes the compiler to assign state
bits like a gray-code counter.

With the gray-code counting method, consecutive state values are defined by
changing only one bit, as shown in the following example. This reduces the
possibility of race conditions when going from one state to a consecutive state
in an asynchronous state machine. It may also result in smaller equations for
JK, RS, and T flip-flop state machines.

STATE MACHINE gray STATE VALUES GRAY_CODE;
STATE
STATE
STATE
STATE

first:
second: •..
third: ••.
fourth: •••

Chapter 7: Statements and Constructs 1 01

STATE fifth: ··•
STATE sixth:

END gray;

Using the GRAY_ CODE algorithm, the compiler will assign state values as
follows:
first [OOOb]
second [OOlb]
third [Ollb]
fourth [OlOb]
fifth [llOb]
sixth [lllb 1

STATE Declarations
The ST A TE construct allows you to declare the individual states in a state
machine. The syntax of the STATE construct is as follows:

STATE identifier [[value]];
statements

Where:

value is the optional state bit value that should be assigned in this
state.

statements are DSL statements that define the behavior of this
state. The statements can be used to assign values to signals. They
can also be used to define transitions to other states. IF, CASE,
TRUTH_TABLE, and other STATE_ MACHINE statements can be
used within a STATE declaration.

Rules for Using the STATE Construct
LI The identifier must be a unique identifier in the design description.

The design description cannot have a state with the same name as a
signal or other identifier.

102 MACHXL Software User's Guide (Version 3.0)

a The GOTO statement is used to transition to other states. If the
state declaration does not include a GOTO statement, the transition
will depend on the DEFAULT_ TO construct for the state machine.
The following table shows how the DEFAULT_TO construct
controls this transition:

DEFAULT_TO value Transition to

0 state whose state bit value is 0 (zero)

1 state whose state bit value is all ones

LAST VALUE same state

.x. unknown state

a The state machine can include as many states as necessary to
implement the design

Example

The following example shows a state machine with multiple states, including
conditional branching out of each state.

INPUT elk, pwr_up, start, stop, reset;
OUTPUT time[l6) CLOCKED_BY elk RESET_BY pwr_up;
NODE sbits[2] CLOCKED BY elk RESET BY pwr_up;

STATE MACHINE stop_wateh
CLOCKED BY elk
DEFAULT TO LAST VALUE
STATE BITS sbits;

Chapter 7: Statements and Constructs 103

STATE idle [OOb]:

IF (start) THEN
time = 1;
GOTO count;

ELSE
time = O;
GOTO idle;

END IF;

STATE count [Olb]

IF (stop) THEN
time = time;

"Wait until the start
"button is pressed

"Count up until the stop button
"is pressed

GOTO display_time;
ELSE

time = time .+.
GOTO count;

END IF;

STATE display_time [lOb]:

ELSE

IF (reset) THEN
time = O;
GOTO idle;

END IF;

GOTO .X.;
time = .x.;

END stop_watch;

GOTO Statement

1;

"Display the time until the
"reset button is pressed

The GOTO statement directs the transition from one state to another in a state
machine. The syntax of a GOTO statement is:

GOTO state_name;

104 MACHXL Software User's Guide (Version 3.0)

GOTO is allowed anywhere statements can occur in a STATE declaration.

Asynchronous State Machines
Sometimes you may need to create asynchronous state machines in order to
avoid clocking delays. If a CLOCKED_ BY expression is not declared for the
STA TE_ MACHINE or state bits, the resulting state machine will be
asynchronous.

Since registers are not used for the state bits in an asynchronous state
machine, a circuit may depend on the device propagation delays to be stable.
Also, logical hazards in the design may lead to unexpected transitions of the
state machine. For these reasons, circuits should be designed to avoid race
conditions and logical hazards.

One approach that may help reduce race conditions and logical hazards
involves selecting state-bit values that cause only a single state bit to change
when moving from one sequential state to another. The ST ATE_ VALUES
GRAY_ CODE construct will perform this automatically for you.

In addition, the NO _REDUCE default information may help reduce logical
hazards. If the state-bit equations contain redundant logic to avoid hazards,
the NO_ REDUCE construct will ensure that this extra logic is not reduced out
of the design equations.

Example

STATE MACHINE states STATE_BITS[s4 .• s0];
STATE one[OOOlOb]:

y = x;
GOTO two;

STATE two[OOllOb]:

Y = a;
GOTO three;

STATE three[OlllOb]:
y = b
GOTO one;

END states;

Chapter 7: Statements and Constructs 105

You can also use .X. to describe the behavior of undeclared states in a state
machine. The following example specifies completely all possible conditions
of a state machine, and ensures the most optimal equation generation.

STATE MACHINE dont care CLOCKED BY elk; .

STATE one;
IF count THEN

clear = 1;

ELSE

IF (pulse = 0) THEN
counts = 1;
GOTO one

GOTO one
END IF;

END IF;

STATE two;

106 MAC~XL Software User's Gulde (Version 3.0)

8 Procedures and Functions

Contents
Introduction ... 108
Procedures .. 108

Declaring a Procedure ... 108
Invoking a Procedure .. 109

Functions .. 111
Declaring a Function ... 111
Invoking a Function .. 112

Input Parameters ... 113
Output Parameters .. 113
Local Declarations .. 114
What Happens When a Procedure or Function is Invoked? 114
Invoking Procedures and Functions From Other Files 118

Chapter 8: Procedures and Functions 107

Introduction
Procedures and functions let you create logically distinct design blocks that
are independent of the rest of the design. This lets you create hierarchical
designs (i.e., designs that build complex functions from lower level blocks.)

Procedure and function descriptions do not create physical hardware. Their
purpose is to describe functionality that can be used any number of times in a
design. Only a function or procedure invoked at the system level (outside of
the function or procedure description) results in actual hardware.

Procedures and functions may invoke other procedures or functions but may
not invoke themselves. All statement constructs discussed in Chapter 8
(assignment, IF, CASE, TRUTH_ TABLE, STATE_MACHINE, GOTO)
may be used in a procedure or function.

All procedure and function descriptions must appear before any system-level
design information. This includes system-signal declarations and system-level
statements. A procedure or function must also appear before it is called by
another function or procedure. See Chapter 2 and the section entitled
Building a MACHXL Design Synthesis Language Source File for an
overview of how Procedure and Function definitions fit into the overall source
file.

Procedures
Procedures are the main building blocks of hierarchical design. A hierarchical
block diagram of a design can be easily mapped to a Design Synthesis
Language description by mapping each section of the block diagram to a
procedure in the language. The inputs and outputs of each block correspond
directly to the inputs and outputs of a procedure.

Procedures are invoked at the system level and have both input and output
parameters, allowing them to explicitly pass values in and out.

108 MACHXL Software User's Guide (Version 3.0)

Declaring a Procedure
The syntax for declaring a procedure is:

PROCEDURE procedure_name
(INPUT identifier_or_array_list;

[flip-flop type] OUTPUT
identifier_or_array_list
[control_info][default_info]);

local declarations
statements

END procedure_name;

The following procedure description declares andl as having three
parameters. The first two (a, b) are input parameters and the third (x) is an
output parameter:

PROCEDURE andl(INPUT a, b; OUTPUT x);

x = a * b;
END andl;

Once a procedure is declared, it can be invoked from within other procedures,
functions, and at the system level. Procedures can be invoked anywhere an
ordinary statement can be appear.

Invoking a Procedure
The format for invoking a procedure is:

procedure_name(expression_or_signal_list);

Where:

expression_ or_ signal_ list consists of two parts:

1. expressions in corresponding positions to those in the input
parameters, and

2. assignable signals (OUTPUT, BIPUT, NODE) in corresponding
positions to those in the output parameters.

Chapter 8: Procedures and Functions 109

As an example, we use the following steps to create a system level design
using the procedure andl shown above:

1. declare the actual inputs and outputs,

2. invoke the procedure with the appropriate expressions in
corresponding positions to the input and output parameters of the
procedure description, as shown below.

INPUT
OUTPUT

inl, in2;
result;

andl(inl, in2, result); "invoke andl, passing inl,
"in2 as input parameters
"and result as an output
"parameter

For more information about input and output parameters, see the sections
following entitled Input Parameters and Output Parameters.

As another example, the following procedure implements a 4-bit parity
generator. parity4 has two parameters: a 4-bit input array x, and a one-bit
output y.

PROCEDURE parity4(INPUT x[4]; OUTPUT y);
y = x[O] (+) x[l] (+) x[2] (+) x[3);

END parity4;

The parity4 procedure description does not in and of itself cause hardware
creation.

The following two invocations of the procedure parity4 cause hardware to be
created because they are invoked at the system level. These invocations
implement two separate 4-bit parity generators.

INPUT a[4], b[4);
OUTPUT outl, out2;

parity4(a, outl);
parity4(b, out2);

11 O MACHXL Software User's Gulde (Version 3.0)

Notice that the actual INPUTs and OUTPUTs for the two parity generators
are also declared at the system level.

Functions
Functions are a useful way to describe distinct pieces of logic that result in an
expression value.

Functions are invoked from within an expression. They have input parameters
that allow them to accept values into the function, but generate as output a
return value that is passed back to the original expression.

Declaring a Function
The syntax for declaring a function is:

FUNCTION function_name([INPUT] identifier_or_array_list)
[[size]][default_info];

local declarations;
statements; "including RETURN statements

END function_name;

Functions take declared input parameters and generate a return value.
Because functions only have input parameters, the INPUT keyword is optional
in the parameter declaration (unlike a procedure which must have input and
output paramenters). The input parameters for a function are the same as for
a procedure. (See the section following entitled Input Parameters.)

For information about default_info, see the heading Default Information in
Chapter 5.

The return value of a function can be any width. A size for the return value
can optionally be specified following the right parenthesis of the input
parameter declaration. As an example, the following function returns a 4-bit
array that is the bit-wise AND of arrays a and b.

FUNCTION and4(a[4], b[4])[4];
RETURN a*b;

END and4;

Chapter 8: Procedures and Functions 111

If [size] is omitted, a width of 1 is assumed.

The return value is used to pass signals out of a function. The return value of
a function is assigned by the RETURN statement:

RETURN expression;

A RETURN statement can appear anywhere in the function that statements
can occur. The width of expression must match the [size] declared for the
return value.

Function return values and procedure output parameters can be given default
values just like ordinary signal declarations. Ifno DEFAULT_TO statement
is given, .X. (DON'T CARE) is assumed.

Invoking a Function
A function is invoked from within an expression. Its return value becomes the
value of the expression where the function is invoked.

To invoke a function:

funotion_name(expression_list)

The following example illustrates how to invoke a function:

FUNCTION orl(x, y);
RETURN x+y;

END orl;

The function or 1 is invoked from within an expression to create hardware to
implement q = a * (b * c + d) :

INPUT a,b,c,d;
OUTPUT q;

q =a* orl(b*c, d);

The value of b * c is passed to the function as input parameter x, and d is
passed as the input parameter y.

112 MACHXL Software User's Gulde (Version 3.0)

Input Parameters
Input parameters are used to pass signals into a procedure or function. When
a procedure or function is invoked, any equal-width expression or group of
expressions can be passed to an input parameter. The passed expressions will
drive the inputs in the invocation of the procedure or function.

The procedure and1:

PROCEDURE andl(INPUT a, b; OUTPUT x);

x = a * b;
END andl;

can be invoked at the system level to create hardware to implement q =

(x+y) * (y+z*x). Todothis,declaretheactualinputs(x, y, z)
and outputs() of the system-level design and invoke the procedure with the
appropriate expressions or signals in corrresponding positions to the input and
output parameters of the procedure description, as shown in the following
example:

INPUT x, y, z;
OUTPUT q;

andl(x+y, y+z*x, q);

Output Parameters
Output parameters are the means of passing equations out of a procedure.
Ultimately, all of the statements (IF, CASE, etc.) in a procedure will result in
a single equation for each output parameter.

When a procedure is invoked, each output parameter must be passed an
argument that is an assignable signal (NODE, OUTPUT, BIPUT) or group of
equal-width assignable signals in its expression_or_signal_list. The output of
the procedure will be assigned to the passed argument.

For instance, using the procedure andl shown previously, the assignable
signal result corresponds to the output parameter x:

INPUT inl, in2;

Chapter 8: Procedures and Functions 113

OUTPUT result;

andl(inl, in2, result);

The equation for an output parameter defined by the procedure will have its
inputs driven by the corresponding arguments, and the resulting equation will
be assigned to the output signal.

Output parameters can be given control information and default information
just like ordinary signal declarations. For information about control_info and
default_info, see Control Information and Default Information in
Chapter 6.

Local Declarations
Local signals can be declared within procedures and functions. Procedure or
function signal declarations remain local to the procedure or function in which
they are defined.

These signals are only visible within the procedure or function in which they
are declared and will not conflict with other signais of the same name in other
procedures, functions, and at the system level.

These local signals may not be referenced at the system level or in any other
function or procedure.

What Happens When a Procedure or
Function is Invoked?

When a procedure or function is invoked, a new instance of its local signals is
created at the invocation level. An instance of a NODE is also created for
each input and output parameter of a procedure or function.

Each time a procedure or function is invoked, each local signal is given a
global name. The DSL compiler keeps each of these signals unique so that the
same name can be used in different procedures/functions. This also means

114 MACHXL Software User's Guide (Version 3.0)

that the same procedure/function may be invoked multiple times without name
conflicts. The form of these unique names is as follows:

Procedure name.instance number.local name
Function name.instance number.local name

Where:

instance number starts at 1 and increments each time the
procedure or function is invoked within a particular procedure or
function.

local_ name is the variable name within the procedure or function.

While this naming scheme works well to give each signal in a design a unique
name, it can cause problems if the design is still subject to change. For
example, suppose that a procedure named add2 has a local signal named a.
The signal name for a in its first invocation would be:

add2 .1.a

This says that the procedure_name is add2, the signal was created the first
time the procedure was invoked (its instance_number), and the local_ name is
a.

Let's further assume that this signal (a) is assigned to an output pin after
fitting. If the language source file is changed such that an invocation of add2
is added before the current one, this new invocation becomes instance_ number
1, and the previous invocation becomes instance_number 2. The signals are
renamed during the compile and the wrong signal add2. l. a is assigned to the
hardware pin.

The DSL compiler gives you the capability to label an instance of an
invocation (rather than having the compiler do it) so that signal names are
immune to changes in the design file. To label an invocation, use the
following:

[label:] procedure_name (argument_list);

[label:] function_name (argument_list);

Where label is any legal identifier.

This changes the signal's name to:

Chapter 8: Procedures and Functions 115

procedure name.label.local name. - -

To use the previous example, if we gave the procedure add2 a label of
func _ 1 the procedure invocation would look like the following:

func_l:add2 (argument list);

and the global signal name for signal a would become:

add2 • func 1. a.

In the following procedure declaration of a divide-by-two frequency divider:

PROCEDURE frequency_divider (INPUT in; OUTPUT out);
NODE x CLOCKED BY in;
x = /x;
out=x;

END frequency_divider;

the local declaration of NODE xis used to perform the frequency division.

A divide-by-four frequency divider could be implemented using the divide-by
two procedure:

INPUT in;
OUTPUT out;
NODE tmp;

frequency_divider(in,tmp);
frequency_divider(tmp,out);

Each invocation offrequency_divider creates a NODE at the system level to
perform each divide-by-two. The names of the NODEs as they will appear in
the documentation file are:

frequency_divider.l.x

and

frequency_divider.2.x

116 MACHXL Software User's Gulde (Version 3.0)

This same example can be implemented as a function:

FUNCTION frequency_divider(in);
NODE x CLOCKED BY in;

x = /x;
RETURN x;

END frequency_divider;

To create the divide-by-four counter, invoke the function as follows:

INPUT in;
OUTPUT out;
out= frequency_divider(frequency_divider(in));

The following example describes the procedure and4, which has three
parameters: 4-bit wide inputs a and b, and a 4-bit wide output x. The
equation for x is a * b.

PROCEDURE and4(INPUT a(4], b[4]; OUTPUT x[4]);
x = a*b;

END and4;

This procedure can be invoked at the system level to create hardware as
follows:

INPUT a, b, c, d, e[4];
OUTPUT w, x, y, z;

and4 ((a, b, c, d] , e, (w, x, y, z]) ;

This results in [w, x, y, z J = [a , b, c, d J * [e [3 J ,
e[2], e[l], e[O]].

In the following example, c will have the value 1 if a=b. Otherwise, c will
take on the value of a:

PROCEDURE p (INPUT a,b; OUTPUT c DEFAULT TO a);
IF a=b THEN
c=l;
END IF;

END p;

Chapter 8: Procedures and Functions 117

Invoking Procedures and Functions From
Other Files

The keyword USE allows procedures and functions from other compiled
source files to be used in a design. Two formats for using procedures and
functions from other files are available. The first format:

USE 'filename';

makes all procedures and functions from the referenced file available to the
current design file.

The second format

USE ' filename ' • name;

makes available only a named procedure or function from another file.

Note that the filename is enclosed by single quote marks (').

In the following example, the function andl from the designl.src file is used
in design2.src:

File designl.src:

FUNCTION andl(a,b);
RETURN a*b;

END andl;

File design2.src:

USE 'designl'.andl;
INPUT x, y;
OUTPUT z;
z = andl (x, y) ;

This capability allows a design to be broken up into multiple files for better
organization, and allows parallel development by several designers. It also
gives you the capability of developing a library of useful procedures and
functions that can be shared by many designs.

118 MACHXL Software User's Guide (Version 3.0)

9 Text Processing

Contents
Introduction .. 120
Macros ... 120
Including Other Files in a Design .. 121
Commenting Out Blocks of Code .. 122

Chapter 9: Text Processing 119

Introduction

Macros

To assist in the tedious aspects of entering a source code design, the Design
Synthesis Language provides several means to help you avoid retyping
frequently used sections of text. Macros (using the MACRO keyword) gives
you the ability to perform text substitution. You may also include text from
other source files in your current design, using the INCLUDE keyword.

In addition, there is a quick method to comment out blocks of code for
debugging purposes using the COMP_ OFF and COMP_ ON constructs.

This chapter discusses these time-saving constructs in detail.

Macros allow the user to create an identifier that will be replaced by an
associated block of text. Unlike procedures or functions, macros simply
perform text substitution. They are used as a type of shorthand to free the
designer from redundant typing.

The syntax of a macro definition is:

MACRO macro name [(parameters)] text;
MACRO macro name [(parameters)] {multi-line text}

A macro, when defined, is given a name, optional parameters (separated by
commas), and text. Unlike function or procedure parameters, nothing is
passed into or out of a macro since a macro simply substitutes a line or lines
of text. When a macro name is encountered by the compiler, the compiler
substitutes the pre-defined text for the MACRO name. Thus, if a MACRO is
defined as:

MACRO adder(a, b) a(+)b;

The compiler will replace every occurrence of adder(a, b) with the text a(+)b.

Each macro in a source file is global. This means that you cannot have two
macros with the same name or the DSL compiler will indicate that you have
tried to redeclare a macro. This also means that a macro may be used
anywhere in the source file (after its declaration) regardless of where the
declaration occurs.

120 MACHXL Software User's Guide (Version 3.0)

Macro names may also be used as part of an expression or equation. For
example, MACRO adder(a, b), defined previously, used in the following
assignment:

x = adder(y, z);

Will expand to:

x = y(+)z;

Some additional examples of valid macro definitions include:

MACRO bit_mask OOFFH;

MACRO fill(a, b, c) {
x = a;
y = b;
z = c;
}

Note: Macros containing semicolons must be surrounded by curly brackets
({ }).

Including Other Files in a Design
The INCLUDE statement allows you to include other text files in your current
design file. This can eliminate retyping of often used structures or macros.
Included files may in turn include other files. The text of the included file will
be inserted in your current design at the point where the keyword INCLUDE
occurs.

INCLUDE statements can occur anywhere in the design. The format for
including a file in your current design is:

INCLUDE ' filename';

The filename includes any filename extension (no default extension is
appended.) the filename must be enclosed by single quote marks (') .

Chapter 9: Text Processing 121

Commenting Out Blocks of Code
The Design Synthesis Language allows you to tell the compiler to ignore
sections of the design file at compilation time. COMP _OFF indicates the start
of a section of code to be ignored, and COMP_ ON indicates the end of that
section.

The syntax for using COMP_ OFF and COMP_ ON is:

COMP OFF
sec~ion of source code - - -
COMP ON

No semi-colons are used at the end of the COMP_ OFF and COMP_ ON
keywords.

You can either use the keywords COMP_ OFF and COMP_ ON to comment
out a section of code,. or you can use the comment symbol (") at the beginning
of every line you want the compiler to ignore.

In the following example, the compiler will ignore the ELSIF clause in the
following IF statement:

IF (reset) THEN
[q3 •• qO] = O;

COMP OFF
ELSIF ([q3 •• q0] = 9) THEN

[q3,q2,ql,q0] = O;
COMP ON
ELSE

[q3 •• qO] = 5;
END IF;

122 MACHXL Software User's Gulde (Version 3.0)

10 Compiling a Design

Contents
Introduction ... 124
Compilation .. 124
Multiple File Designs .. 124
Errors in Compilation .. 125

Chapter 1 O: Compiling a Design 123

Introduction
Once you have created the logic description (the source file) for a design, you
are ready to compile the file. The compiler converts the source file
(filename.src) into an internal representation Mthe design (filename.ajb).
The .ajb can be used by:

a the simulator to simulate the design,

a the optimizer to prepare a system-level design for device fitting,

a another run of the compiler on another .src file that USEs this file.

Compilation
The compiler's responsibility is to interpret the source language (described in
Chapters 4 - 9) and create the internal representation file (.ajb). During this
process the compiler converts the high-level constructs (declaration,
expression, and statement) of the source language into a simple list of signals
with associated equations, each of which are stored in the internal
representation. The compiler performs error checking on the design to make
sure it follows the rules and restrictions described in Chapters 4 - 9. The
equations that drive each signal are created so that the action described in the
high-level source language is implemented by the equations.

The output of the compiler (filename.ajb) contains the signals and associated
equations. This file can then be used by the simulator to verify the behavior of
the design. For more information on the simulator, see Chapter 11.

If the compiled source file (.ajb) contains a system-level design, this design
can be passed on to the optimizer and the remainder of the tool chain for
fitting into devices. A system-level design is one described outside of any
Procedure or Function (see Chapter 8 for more information on Procedures and
Functions.)

Multiple File Designs
MACHXL lets you implement a design in multiple source files. An advantage
of having multiple source files is that only the portions of a design that are

124 MACHXL Software User's Gulde (Version 3.0)

affected by file changes need be recompiled. If a bottom-up hierarchical
approach is used in your design, Procedures and Functions can be placed in
their own file that is compiled only once. Any additional design work that
requires these Procedures and Functions can still be done in another file
without the need to recompile these completed Procedures and Functions each
time.

Another advantage of multiple design files is that it lets you develop libraries
of generally useful Procedures and Functions and place them in their own
files. These Procedures and Functions can be used (via the USE command
shown in Chapter 8) by many different designs, giving greater leverage of
design effort.

There is always one parent source file that contains the system-level portion of
the design. All other files will contain only Procedures and Functions that
may be 'USEd' in the parent file to create the final design. A 'USEd' source
file must be compiled before any other source file that USEs its Procedures
and Functions.

Errors in Compilation
If errors are encountered in a language design, the errors and line numbers can
be found in the file filename. err. Appendix C, MACHXL Error and Warning
Messages, includes Design Synthesis Language error messages.

To correct language design errors, you will need to go to the line that contains
the error in the language source file (filename.src) and make the necessary
corrections, save the file, and recompile.

For information on the compiler menus and the actual process involved in
compilation, see Chapter 3.

Chapter 1 O: Complllng a Design 125

126 MACHXL Software User's Guide (Version 3.0)

11 Simulating and Testing a Design

Contents
Introduction ... 128
Test Language Reference ... 129

General Structure of a Simulation or Test File 129
Keywords ... 131
Declarations ... 13 2

Specifying the Clock Resolution 132
Variable and Signal Expressions 133

Declaring Variables .. 133
Tracing Signals .. 135

Statements .. 136
Using the Table Format to Create Vectors 137
Using Test Language Constructs to Create
Vectors .. 141
SET ... 141
CLOCKF .. : 144
INITIAL .. 146
INITIAL TO ... 149
MESSAGE .. 149
RETURN ... 151

Test Language Operators .. 154
The FOR-DO Construct.. 155
IF!fHEN/ELSE ... 157
WHILE-DO ... 159

An Example Simulation Section and Results 160
A SYSTEM_TEST Example ... 164
Internal Simulator Operation ... 166

Simulation Cycle .. 166
Initialize ... 16 7
Compute All Outputs Until Stable 167
If There is a Clock Signal 168
Write Out Results ... 168

Signal States ... 169
Truth Tables for the Test Language Logical Operators 170

Chapter 11: Simulating and Testing a Design 127

Introduction
An important feature of the MACHXL software is its simulation and test
language capabilities. The simulator gives you the ability to:

o simulate modules (procedures and functions) to verify correct
operation,

D simulate the complete design to verify correct operation,

D generate test vectors to verify correct operation of the progranuned
devices.

The simulator in MACHXL does not do
timing simulation. It is a functional
stimulator only.

You must have a compiled design
(design_name.ajb) file and a stimulus source
file (design_name.stm) to run MACHXL's
simulatvr. The remainder of this chapter
discusses how to use MACHXL's test
language to create a simulation source file
(the figure at right shows the files used by and
produced by the simulator). This chapter also
describes how to interpret the results.
Example simulation files may be found at the

compiled
design file

(.afb)

\

end of Appendix B, Language-Based Examples.

Simulator

1
simulation
output file

(.sim)

stimulus
source fil

(.stm)

I

The simulator takes input values provided by the designer in the .stm file (via
the Test Language) and applies them to the section to be simulated. The
simulated output is then checked against the expected output and any
discrepancies or unstable states are written to the simulator listing file
(filename.sim).

Device testing i.s done in the same fashion by sending the simulator-generated
input vectors to the device programmer via the JEDEC file. These actual
output vectors are then compared against the simulator-generated output
vectors to verify the device.

128 MACHXL Software User's Guide (Version 3.0)

Input vectors and expected output vectors are specified to the simulator by
means of the Test Language. The Test Language lets you specify which
variables to use in the simulation and which signals to trace. The Test
Language also provides operations needed to construct the test vectors.

Test Language Reference
The .stm file is a source file you create (using MACHXL's Test Language) to
give instructions to the simulator. The .stm file can be created using any
editor or word processor, the same as your design source file. This section
describes the commands and syntax of the Test Language and how to use
them in the .stm file. An example .stm file with explanations is provided at the
end of this section. Additional simulation examples are in Appendix B.

General Structure of a Simulation or Test
File
A .stm file has sections like other source language files. In the declaration
section signals and variables are declared and a step duration is set. In the
body of the source file you give the simulator specific instructions that
initialize signal values and compute the values for input and output signals.
Flow control constructs (like IFffHEN, WHILE-DO and FOR-DO) give
control over the simulation process. For more information on the internal
operation of the simulator, an explanatory section is provided at the end of this
chapter.

The simulator lets you simulate a module (i.e., a Procedure or Function) by
using the keyword SIMULATION with the Procedure's or Function's name
The general form of a module simulation section is shown below:

Procedure/function simulation:

SIMULATION procedure_namelfunction_name
{declarations}
{statements}

END SIMULATION ;

Chapter 11: Simulating and Testing a Design 129

The simulator also lets you simulate the whole design by using a
SIMULATION section at the global level (i.e., outside of any Proceedure or
Function). Any SIMULATION section without a Procedure or Function
name is considered global. The general form of the design-file SIMULATION
section is shown below:

Design file simulation:

SIMULATION ;
{declarations}
{statements}

END SIMULATION ;

There is also capability in the simulator to generate test vectors that can be
stored in the JEDEC file (that is sent to the device programmer). These test
vectors can check actual device outputs against simulated outputs to ensure
the device is working as expected. The SYSTEM_TEST keyword is used
when you want to generate vectors that test the programmed devices. The
following rules apply to using SYSTEM_TEST:

o The SYSTEM_TEST keyword is a system-level command placing
test vectors in the JEDEC file of the design. This differs from a
SIMULATION section that does not place simulation vectors in
the JEDEC file.

o The SYSTEM_ TEST keyword is not allowed in Functions or
Procedures because it is a system-level command, not a module
level command.

The general form of SYSTEM_ TEST section is shown below:

System test vector generation:

SYSTEM_TEST ;
{declarations}
{statements}

END SYSTEM_TEST;

130 MACHXL Software User's Guide (Version 3.0)

The following is a more explicit example of the form for system
SIMULATION and TEST_ SYSTEM sections showing the general usage of
some of the keywords. Each step and the keywords are explained in following
sections.

SIMULATIONISYSTEM_TEST;
Declarations

Body

clock resolution (STEP)
variable declarations (VAR)
signals to display in simulation output
(TRACE)

assign initial values to signals (INITIAL)
assign values to signals by table
assign values to signals by assignment (SET)
insert messages for simulation output
(MESSAGE)
compute values for input, output signals
(arithmetic operators)
flow control (IF/THEN/ELSE, WHILE-DO, FOR-DO)

END SIMULATIONISYSTEM~TEST ;

Keywords
The identifiers listed below are reserved by the simulator as keywords and
may not be used as signal names, procedure names, function names, or
variable names.

AND
BIN
CASE
CLOCKF
DEC
DO
ELSE
ELSIF
END
FOR
HEX

IF
INITIAL
MESSAGE
NOT
OCT
OR
RETURN
SET
SIMULATION
STEP
SYSTEM_ TEST

THEN
TO
TRACE
VAR
WHEN
WHILE

Chapter 11: Simulating and Testing a Design 131

Declarations
The following sections describe the three types of declaration statements for
the simulator. The types of declarations are as follows:

STEP time step labeling information
VAR variable declarations
TRACE output listing order and format.

These declarations must appear after the header (SIMULATION or
SYSTEM_TEST) and before any statements. They can be mixed in any
order.

Specifying the Clock Resolution
The STEP statement allows the user to specify how the time steps in the
simulation listing file are to be labeled. This does not affect the behavior of
the simulation, as the simulator is strictly functional. STEP lets the user
specify the time label associated with each simulation step. The general form
of the command is as follows:

STEP time_units;

Where:

time_ uni ts is an integer value and a time unit specification (ns,
us, ms, ors). If the STEP statement is omitted, the default step value
is lOns. If you use multiple STEP statements, a warning is generated
and only the last declaration is used.

For example, the following specifies that each step in the simulation should be
labeled in 50 ns intervals.

STEP SOns; "Labelling in time units

132 MACHXL Software User's Gulde (Version 3.0)

Valid time units and their abbreviations are:

Symbol Time Unit
ns nanoseconds
us microseconds
ms milliseconds
s seconds

The integer value and the time unit symbol cannot have spaces between them.
They must be adjacent. For example:

STEP SOns;
STEP SO ns;

"valid
"invalid

Note: The simulator in MACHXL is a fanctional simulator only.
The simulator does not do any timing simulation. Device delays are
not represented in the simulation results.

Variable and Signal Expressions
There are two types of expressions used in the test language: variable and
signal expressions. Variable expressions are made up of variables and
operators while signal expressions are made up of signals, variables, signal
values, and operators. Variables are defined in the simulation file and used to
control the flow of the simulation or to assign values to signals. Signals are
defined in the design file and are part of the design.

Declaring Variables
The VAR declaration lets a user allocate local integer variables that can be
used in:

Chapter 11: Simulating and Testing a Design 133

a generating values assigned to signals

a signal expressions

a control or conditional constructs (e.g., IFffHEN, CASE, FOR
DO, WHILE-DO).

Variables are declared using the VAR keyword:

VAR var name {,var_name};

Where:

var_ name is one or more identifiers naming variables for the
simulation or test section. Variable names are separated by commas.

The following statement declares j a variable:

VAR j;

Note: A variable should not be confused with a signal. A signal is
declared in the design language and assigned expected input or
output values in a simulation or test section for simulation. A
variable is declared and used only in a simulation or test section
to keep track of the flow of test operations or to assign values to
signals in the simulation section. Variables are assigned values
using variable assignment statements (Example: j = O; or,
j = j . +. 1 ;). Signals are assigned values using the INITIAL and
SET keywords.

The variable i is declared and initialized to 0 in the following example and
used as a counter to keep track of the number of WHILE-DO iterations
performed. It is also used in the SET statement to assign signals A 7 through
AO the value of i:

134 MACHXL Software User's Gulde (Version 3.0)

VAR i;
i = O;

WHILE (i < 255) DO
SET [A7 .. AO] = i;
CLOCKF;
i = i .+. 1;

END WHILE;

Tracing Signals
The TRACE declaration allows the user to specify which signals are written
to the simulation listing file. It also specifies how those signals are to be
formatted.

If no TRACE statement is given, all the signals in this section of the design
will appear in the simulation output in binary form.

If a TRACE statement is used in a simulation or test section, all the signals in
a design will be used in the simulation, but only the signals specified by the
TRACE statement will be displayed in the simulation listing file. Signals in
the listing file are written in the same order as given in the TRACE statement.

The format for using TRACE is:

TRACE signal [BINIDECjHEXjOCT] {,signal
[BINjDECjHEXjOCT]};

Where:

signal is one or more signals or groups of signals separated by
commas. Range notation and groups of signals may also be used. No
comma is used between a signal and its numeric base specification.
Signals must be previously declared in the language design under test.
The keyword RETURN may be used to trace a FUNCTION return
value. Groups of signals displayed in DEC format must be less than
31 bits wide.

Chapter 11: Simulating and Testing a Design 135

BINIDECIHEXIOCT are optional specifications to display the
associated signal or signals in binary, decimal, hexadecimal, or octal
form respectively. If no numerical base is specified, the default is
BIN.

Different bases can be used for different signals. The base representation for
a signal will only be visible in the table format of the simulation output. If no
base representation is supplied, binary is assumed.

Note: Only one TRACE statement can be used per SIMULATION or
SYSTEM TEST section.

The following TRACE statement shows how to specify individual signals
(elk, eountl, eount2) or groups of signals ([d7 .. dO],
x [5 . • O]), each with different numeric base representations.

TRACE elk, countl, count2, [d7 .• d0] DEC, x[5 •• 0] OCT;

Since signals elk, eountl, and eount2 are not given a base
specification, they will all be displayed in binary. The signals d7 .. dO are
followed by the base declaration DEC, and will be represented in decimal
form in the simulation listing file. The signals x5 through xO have a base
declaration of OCT and will be displayed in octal format.

When displaying groups of signals, any signal in the group with a value of
DON'T CARE or is in a HIGH IMPEDANCE (tri-state) condition will cause
the group to be displayed with asterisks(*).

Statements
Statements are used in a simulation or test section to construct vectors. You
can construct vectors manually using the table format to specify values for
inputs and outputs. You may also use the SET and CLOCKF language
constructs to create vectors. The high-level IFffHEN/ELSE, FOR-DO, and
WHILE-DO control flow constructs used with the SET and CLOCKF
keywords automate vector generation.

136 MACHXL Software User's Guide (Version 3.0)

The following sections discuss the table format and language constructs to
create simulation and test vectors.

Using the Table Format to Create Vectors
The TEST_ VECTORS statement lets the user enter both the input signal
values and the expected output values for each simulation step.

The form of the TEST_ VECTORS statement is as follows:

TEST VECTORS
signal_name [,signal_name);
var_expres [,var_expres];

var_expres [,var_expres];
END TEST_VECTORS;

Where:

signal_ name is the list of signals affected by this statement.

var_ expres contains values for input, output, or biput signals on
incremental clocks. Values for inputs, outputs, and biputs are shown
below:

Signal type
input

output

Allowable values
O (set to binary 0)
1 (set to binary 1)
.X. (don't care)
.C. (clock the pin)
0 (set to binary 0)
1 (set to binary 1)
.X. (don't care)
.Z. (high Impedance)
.S. (calculated during
simulation)

Chapter 11: Simulating and Testing a Design 137

Signal type
bi put

Allowable values
O (set to binary 0)
1 (set to binary 1)
.X. (don't care)
.Z. (high Impedance)
.S. (calculated during
simulation)

When the TEST_ VECTORS statement is executed, each line following the
signal list line is used to generate a simulation step. For each signal in the
signal list, the corresponding var_ expres from this state is used to set the
input value for this signal. Once all the signal values are set, the simulator
executes the step just as if a CLOCKF statement were executed. In fact, the
two following examples, one using the TEST_ VECTORS statement and the
other using the SET and CLOCKF statements, are equivalent:

TEST VECTORS
signal_namel, ••• , signal_namen;
var_expresl, ••• , var_expresn;

var_expresl, .•. , var_expresn;
END TEST_VECTORS;

SET [signal_namel, ••• ,signal_namen] =
[var_expresl, ••• var_expresn];

CLOCKF;
SET [signal_namel, ••• ,signal_namen] =

[var_expresl, ••• var_expresn];
CLOCKF;

The TEST_ VECTORS statement provides a shorthand method of setting
variables to signals. It eliminates the need for SET and CLOCKF statements
for each simulation step.

To enter test information in table format, list the individual input and output
signals or groups with their corresponding values.

138 MACHXL Software User's Guide (Version 3.0)

The following Gray-Code Counter example uses the table format to create
simulation test vectors for the procedure gr4_ truth. The Design Synthesis
Language source section is shown first, followed by the Test Language source
section.

#TITLE
#ENGINEER

'4-Bit Gray-code Counter with Reset';
'J. Engineer';

#COMPANY 'Hytek Co.';
" This file contains a procedure for a 4-Bit Gray-code
" counter using the TRUTH_TABLE construct. The previous
" state output values are used as inputs in the truth
" table to generate the next-state output values. The
" reset line is forced by using it as an input.

PROCEDURE gr4_truth()
INPUT elk, reset ;
OUTPUT p3, p2, pl, pO

TRUTH TABLE

CLOCKED BY elk

reset, p3, p2, pl, po p3, p2, pl, pO ;

"
0, x, x, X, x .. O, O, O, 0

1, o, 0, o, 0 .. 0, O, O, 1
1, o, o, o, 1 .. o, o, 1, 1
1, o, o, 1, 1 .. o, 0, 1, 0
1, o, o, 1, 0 .. o, 1, 1, 0

1, O, 1, 1, 0 .. 0, 1, o, 0
1, o, 1, o, 0 .. o, 1, o, 1
1, O, 1, 0, 1 .. O, 1, 1, 1
1, o, 1, 1, 1 .. 1, 1, 1, 1

1, 1, 1, 1, 1 .. 1, 1, 1, 0
1, 1, 1, 1, 0 .. 1, 1, O, 0
1, 1, 1, 0, 0 .. 1, 1, o, 1
1, 1, 1, o, 1 .. 1, o, o, 1

Chapter 11: Simulating and Testing a Design 139

1, 1, o, o, 1 .. 1, o, 1, 1

1, 1, o, 1, 1 .. 1, o, 1, 0
1, 1, o, 1, 0 .. 1, o, o, 0
1, 1, o, O, 0 .. 0, o, O, 0

END TRUTH_TABLE;
END gr4_truth;

SIMULATION gr4_truth ;

TRACE elk, reset, [p3 •• po 1 HEX

TEST VECTORS
elk, reset,p3, p2, pl, pO;
. c. , o, o, o, 0, O;

• C •I 1, o, o, o, 1;

. c.' 1, o, o, 1, O;

. e., 1, o, 1, 1, O;

• C •I 1, 0, 1, o, O;
. c.' 1, o, 1, o, 1;
. e., 1, o, 1, 1, 1;

• C •I 1, 1, 1, 1, 1;

. c. , 1, 1, 1, 1, O;

. e., 1, 1, 1, o, O;
• C •I 1, 1, 1, 0, 1;
. e., 1, 1, O, o, 1;

. c.' 1, 1, o, 1, 1;

. c. , 1, 1, O, 1, O;

. c.' 1, 1, o, 0, O;
• C •I 1, 0, O, 0, O;

END TEST _VECTORS;
END SIMULATION;

140 MACHXL Software User's Gulde (Version 3.0)

Using Test Language Constructs to Create Vectors
The test language extends the table concept by introducing the SET and
CLOCKF constructs. With SET and CLOCKF you only need to set values
that change at a specified time unit, without listing values that stay the same.

SET assigns values to input signals and expected values to output signals.
CLOCKF advances the simulation or test vector to the next time unit, which
in table format is the next row.

SET and CLOCKF allow mixing the table format and the language:

SET [a, b, c] = O;
SET [e, f, g] = llOb;
CLOCKF;

TEST VECTORS
a, b, c, e, f, g;
1, 1, 1, 0, z, Z;
1, x, 1, 1, o, O;

END TEST _VECTORS;

The rest of this section discusses the test language operators and constructs
used in building vectors. The constructs include: SET, CLOCKF, INITIAL,
MESSAGE, FOR-DO, IFffHEN/ELSE, and WHILE-DO.

SET
Test vectors can be created in the test language, without using table format at
all, by assigning values to input signals, assigning expected values to output
signals, and advancing the simulation using CLOCKF.

Values are assigned to signals using the SET keyword:

SET signal= variable expressionl.c. I .s. l.x. 1.z.
{, signal= variable expression I .c.1.s.1.x.1.z.};

Chapter 11: Simulating and Testing a Design 141

Where:

signal is one or more signals previously declared in the design
under test. Signals are separated by commas. Range and group
notation may also be used. The special signal name RETURN can be
used to refer to a function return value.

variable expression is any test language mathematical
expression. A mathematical expression can be a number, a variable,
or an expression used by itself or with any of the arithmetic operators
in the test language (e.g.,.*.,.+.,./.,.-., .MOD., etc.).

The test language has 6 different values that can be assigned to signals. These
values are shown below .

Value
0
1

.c.

.S.

.x.

.z.

Meaning
Set to Binary O
Set to Binary 1
Clock the pin

Calculated during simulation
Don't Care

High Impedance

Note: All signal names must be defined in the design file. Any
signal name used in the simulation file and not defined in a design
file generates an error message.

The binary values 0 and 1 represent false and true conditions depending on the
type of signal assigned the values. For example, if a signal is defined as
HIGH_ TRUE then a binary 1 represents the asserted condition. If a signal is
defined as LOW_ TRUE then a binary 0 represents the asserted condition.

A signal set to a value of .C. will be clocked during the simulation. This value
is typically assigned to signals connected to the clock input of a register device
(i.e., D-type flip flop, SR-type flip flop, etc.) but can be assigned to any
signal.

142 MACHXL Software User's Guide (Version 3.0)

The .S. value tells the simulator to calculate the signal value. This value is
often used to automate test vector generation using output values generated by
the simulator.

Any signals set to a value of .X. will not be checked during the simulation.
The difference between using .S. and .X. is important during test vector
generation as opposed to simulation vector generation. An output set to a
value of .S. will take on the calculated simulation value in the test vector. An
output set to .X. is set to X in the test vector.

A signal set to a value of .Z. forces the signal to a high impedance or tri-state
condition. This is useful when several output signals are connected as in an
address bus.

Setting an output signal to any value other than .S. tests the simulator
generated output value against the SET value, generating an error on a
mismatch.

A signal holds a value until another SET statement is specified.

If values are not initially specified for signals, the input signals are
automatically set to .X. (Don't Care), and the output signals are set to .S.
(computed by simulator).

Assign different signals to different values using one SET statement by
separating the assignments with commas:

SET a = 1, b = O, c = 1;

To set values to a group of signals, use the group notation. For example,

SET [X, Y, Z] = 4;

Assigns the value of 4 (in binary) to X, Y, and Z. Thus, the signals X, Y, and
Z contains the following values:

x = 1 ;
y = 0

z = 0

Chapter 11 : Simulating and Testing a Design 143

The values, .S., .X., .Z., and .C. can be assigned to a group of signals. As an
example, the statement,

SET [X, Y, Z] = .S.

sets signals X, Y, and Z to .S. (calculate during the simulation).

Another statement,

SET [A, B , C] = • Z • ;

sets outputs A, B, and C to the High Impedance value.

It is also possible to set one group of signals to another group of signals as
long as both groups have the same number of signals. As an example, the
statement,

SET (X 1 Y, Z] = [A, B, C] ;

sets signal X equal to A, signal Y equal to B, and signal Z equal to C.

CLOCKF
After assigning values to signals using SET statements, use the CLOCKF
keyword to advance the simulation one time step. The syntax for CLOCKF
is:

CLOCKF (clock_signal {,clock_signal}]

Where:

clock_ signal is one or more input signals used to clock a
registered output. Separate clock signals with commas.

To advance the simulation one time step, use one CLOCKF statement:

CLOCKF ; "advance 1 time unit

144 MACHXL Software User's Gulde (Version 3.0)

To advance the simulation several time steps, use CLOCKF commands in
succession:

CLOCKF
CLOCKF
CLOCKF
CLOCKF

"advance 4 time steps

You can force a registered output to be clocked using CLOCKF with a clock
signal. The statement:

CLOCKF elk; "This is identical to: SET elk= .c.;
"CLOCKF;

generates a pulse on the elk input and moves the simulator to the next time
step. This is equivalent to entering a C for the elk signal in the table format as
follows:

inputl, input2, ••• , elk, inputN :: outputl, •••
c,
c,

..
One CLOCKF statement can be used to clock a group of clock inputs:

CLOCKF clkl, clk2, clk3;

The following example shows how the SET and CLOCKF constructs can be
used to test a design. In this design, the outputs latch the inputs when· clocked
by the elk signal. The simulator software checks out this functionality.

INPUT In7 •• In0, elk;
OUTPUT Out7 •• 0ut0 CLOCKED BY elk;

[Out7 •• 0ut0] = [In7 •• In0];

Chapter 11: Simulating and Testing a Design 145

SYSTEM_TEST;
SET [In7 •• In0) = SSh;
CLOCKF elk;

SET [In7 •• In0) = OAAh;
CLOCKF elk;

END SYSTEM_TEST;

The resulting simulation is as follows:

Time us

0
10
20

00000000
I I I I I I I I C U U U U U U U U
N N N N N N N N L T T T T T T T T

7 6 5 4 3 2 1 0 K 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 c 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 c 1 0 1 0 1 0 1 0

A CLOCKF statement with no signal list is used to generate a combinatorial
step; i.e., unless the user is explicitly generating a clock, the simulator will
advance one step but no clock edges will be generated. This is useful when
testing latches. The following example shows how to explicitly generate a
clock:

SET elk = 0 ;
CLOCKF ;
SET elk = 1
CLOCKF ;

INITIAL
INITIAL sets the internal value of signals and creates a special simulation
step. In the case of inputs, the result of INITIAL and SET are similar. In the
case of outputs, the internal value is changed, but the pin and driven values
remain the same. During the propagation step, the values will be propagated
through the circuit

146 MACHXL Software User's Gulde (Version 3.0)

(see the section in this chapter entitled Internal Simulator Operation.) The
format for using INITIAL is the same as for SET.

INITIAL signal{, signal}= expression!.z.1.s.1.x.j.c.;

Examples

The following example sets the simple signal x to 1:

INITIAL x = 1;

In this example, the bus Y [1 6 J is set to 1001011000111100:

INITIAL Y 0963CH;
or

INITIAL Y = 10010110001111008;

The following sets simple signals A, B, c, and D to 1, 0, 1, 0 respectively:

INITIAL [A, 8, C, DJ = 10108;
or

INITIAL [A, 8, c, D] = 10; "default base 10 (decimal)

A group of INITIAL statements create an initial step in the simulator list.
Any non-INITIAL statement will separate INITIAL statements into separate
INITIAL steps. For example,

SET X = O; Q = O;
INITIAL y = 1;
INITIAL z = O;
FOR I = 0 TO 31 DO

will form one initial step containing Y 1 and z 0.

Chapter 11: Simulating and Testing a Design 147

SET X = O;
INITIAL y = 1;
SET Q = O;
INITIAL z = O;
FOR I 0 TO 31 DO

will form two initial steps,

1) Y = 1 and z having its previous value, and
2) Yhaving it's new value and z = 1.

Note the initial step only propagates combinatorial values, but cannot clock
registers. This means that the only way to change a register value during an
INITIAL is to set the register signal name to the value.

Note also that INITIAL changes only the value of the signal in the INITIAL
statement. To set a register inside of a count procedure, set the internal
register value, not the output signal.

PROCEDURE ent16 (INPUT elk, rst; OUTPUT Q[l6]);
NODE int_Q[l6] CLOCKED_BY elk, RESET BY rst;
int_Q = int_Q .+. 1;
END ent16;

INPUT e,r;
OUTPUT ent_out[l6];

ent16 (e, r, ent_out);

In this example, en t _out is a combinatorial output connected to the
register. Setting cnt.:.__ out to a value will not change the register. To
initialize the counter to 3FFH, you would have to enter the following into your
stimulus (.stm) file:

INITIAL ent16.1. int_Q 3FFH;

148 MACHXL Software User's Guide (Version 3.0)

To find the fully qualified name, run the optimizer and the documentor, and
look in the resulting .doc file for the name.

When an INITIAL statement is part of the SYSTEM_TEST section, the
resulting initial steps will be included in the test vectors. When a signal is set
to .C., the corresponding position in the test vector will contain a P, which on
many devices will cause the device programmer to pre-load the data on the
registered output pins into the internal registers.

INITIAL TO
INITIAL_ TO assigns the same initial value to all output signals with a single
command. The INITIAL_ TO command must appear before any
SIMULATION or SYSTEM_TEST sections but does not have to appear
before any macro definitions. The format for using the INITIAL_TO
command is:

INITIAL TO value;

Where:

value is one of the following values: 0, 1, and .X.

This value is overridden for any signals that appear in INITIAL statements
that may appear in a simulation or test section. All signals are set to the
specified value before the first simulation step.

MESSAGE
Messages you want to appear in the simulation output can be inserted in the
test code. Messages act as signposts when you examine the simulation output,
helping you determine where you are in the simulation process. To have a
message appear in the output, use the format:

MESSAGE (' message text ');

Chapter 11: Simulating and Testing a Design 149

Messages tag the next simulation step marked by a CLOCKF statement. Any
message statement placed after the last CLOCKF statement in a test section
will be ignored.

In the following test section for a rolling dice design, a message statement
appears where the new roll of the dice begins:

SET oe = .X.
SET dl, d2 = 0

CLOCKF elk

CLOCKF elk

CLOCKF elk
CLOCKF elk
CLOCKF elk
CLOCKF elk
CLOCKF elk
MESSAGE('New Roll');
CLOCKF elk ;

The simulation output displays "New Roll" after generating the vectors
previous to the new roll:

Time ns OE Dl 02 Messages

0
10
20
30

40
so
60

x 0 0
0 1 1
0 1 1
0 1 1

0 1 1
0 1 1

0 0 1 New Roll

Note: Only one MESSAGE statement should appear between any two
of the statements stepping the simulator (i.e., CLOCKF or INITIAL.)
If more than one MESSAGE statement is used between two statements,
a warning is issued and the first message encountered is used

150 MACHXL Software User's Guide (Version 3.0)

RETURN
When simulating a function, the keyword RETURN may be used wherever an
output signal is allowed. This indicates the return value of the function. In
the following example, RETURN is used to inspect the simulation results.

Examples

.src (source) file

FUNCTION xor (INPUT a, b);
RETURN a (+) b;

END xor;

.stm (stimulus) file

SIMULATION xor;
TRACE a, b, RETURN;

VAR i, j;

FOR i = 0 to 1 DO
SET a = 1;

FOR j = 0 to 1 DO
SET b = j;
SET RETURN
CLOCKF;

END FOR;
END FOR

END SIMULATION;

Output of Simulator

Simulation of xor
Design: xor.fb
Stimulus: xor.stm

i (+) j;

Chapter 11 : Simulating and Testing a Design 151

R
E
T
u
R

Time nSec a b N Messages

-----------BBB---BBB---BBB------------------------------
init x x x

10 0 0 0
20 0 1 1
30 1 0 1
40 1 1 0

When the function returns a signal vector, the return value is the full range of
the index, therefore RETURN should not be specified with an index .

. src (source) file

FUNCTION sprod INPUT a, b[8]) [8];

NODE t(B];

t[O] = a * b(O];
t[l] a* b[l];
t[2] = a * b[2];
t[3] a * b [3];
t[4] = a* b[4];
t[S] = a* b[S];
t[6) = a * b[6];
t[7] a* b[7];
RETURN t;

END sprod;

152 MACHXL Software User's Guide (Version 3.0)

.stm (stimulus) file

SIMULATION sprod;
TRACE a, b, RETURN DEC;
VAR i, j;

FOR i = 0 TO 1 DO
SET a = i;
FOR j = 0 to

SET b =

CLOCKF;
END FOR;

END FOR;
END SIMULATION

Output of Simulator

Simulation of sprod
Design: sprod.fb

Stimulus: sprod.stm

255

j;
DO

Chapter 11: Simulating and Testing a Design 153

Time nSec

RR

E E
T T

b b N N
[[[[

7 0 7 0
a] ••••••]].] Messages

-----'-----------888-88888888-DDD-------------------------

init x xxxxxxxx $$$
10 0 00000000 000
20 0 00000001 000
30 0 00000010 000
40 0 00000011 000
so 0 00000100 000
60 0 00000101 000
70 0 00000110 000
80 0 00000111 000
90 0 00001000 000

100 0 00001001 000
110 0 00001010 000
120 0 00001011 000
130 0 00001100 000
140 0 00001101 000
150 0 00001110 000
160 0 00001111 000
170 0 00010000 000

Test Language Operators
Three types of operators are available in the simulation and test sections:
arithmetic, bit oriented, and relational. Arithmetic operators are used to
compute values for input and output signals, and values to be assigned to local
test language variables. Bit-oriented operators are used to perform bit-wise
Boolean operations.

154 MACHXL Software User's Gulde (Version 3.0)

Relational expressions evaluate to a 1 if the expression is true; otherwise they
evaluate to 0. They are used to determine which clause in an IF!fHEN/ELSE
construct to perform, or the number of times to perform the statements in a
WHILE-DO loop.

The test language operators are shown below:

Operation Description Operator Type
a.+.b sum of a and b arithmetic
a.-.b difference of a and b arithmetic
a.*.b product of a and b arithmetic
a./.b quotient of a and b arithmetic

a. mod.b modulus of a and b arithmetic
.-.a negation of a arithmetic

a+b bit-wise OR of a and B bit oriented
a*b bit-wise AND of a and b bit oriented
la bit-wise complement of a bit oriented

a<b if a < b, then 1 else O relational
a>b if a > b, then 1 else 0 relational

a<= b if a < or = b, then 1 else O relational
a>= b if a > or = b, then 1 else O relational
a=b if a = b, then 1 else O relational

a<> b if a <> b, then 1 else 0 relational
a and b if both a and b = 1 , then 1 else O relational
a orb if either a or b = 1 then 1 else 0 relational
not a if a = o then 1 else O relational

a.<<.b shift a left b bits arithmetic
a.>>.b shift a right b bits arithmetic

The FOR-DO Construct
The FOR-DO construct allows you to create vectors iteratively. It bases its
looping on an inclusive counter value. The syntax of FOR-DO is:

FOR var name = lower limit TO upper_limit DO
statements

END FOR;

Chapter 11: Simulating and Testing a Design 155

Where:

var name is a local variable declared in this simulation section.

lower_ limit is any variable expression.

upper_ limit is any variable expression. If the value of
1 ow er_ limit is greater than the value of upper_ limit, the
loop will not be performed.

s ta temen ts is one or more test operations.

The following FOR loop performs eleven CLOCKF statements:

FOR i=O TO 10 DO
CLOCKF;

END FOR;

The next example shows the test section for a free-running two-bit ring
counter. It uses the FOR construct to perform 33 CLOCKF statements,
advancing the simulator 33 time steps.

SYSTEM_TEST;
STEP lOOns;
VAR i;
TRACE elk, teountl, teount2;

FOR i = 0 TO 32 DO
CLOCKF elk;

END FOR;
END SYSTEM_TEST;

FOR-DO statements can be nested within other FOR-DO statements. The
following example demonstrates nested FOR-DO statements.

156 MACHXL Software User's Guide (Version 3.0)

SET powerup = 1 ;
FOR j = 0 TO 10 DO

SET timeout = 1
CLOCKF
CLOCKF
CLOCKF
CLOCKF
SET timeout = 0
FOR i = 0 TO 10 DO

CLOCKF
END FOR;
END FOR;

IF/THEN/ELSE

" nested FOR-DO statement

The test language IF/THEN/ELSE construct has the format:

IF variable expression THEN
statements

{ELSIF variable expression THEN
statements}

[ELSE
statements]

END IF;

If the variable expression in the IF statement is true, the statements between
THEN and ELSE are performed. Otherwise, the statements following ELSE
are performed (if existing). If there is no ELSE section in an IF statement,
and if the value of the variable expression is true, the statements between the
IF and END IF statements are performed.

In the following example, an IF/THEN/ELSE construct is nested in a FOR
loop with additional IF statements nested in the ELSE clause:

Chapter 11: Simulating and Testing a Design 157

SIMULATION ;
VAR i, j

END

TRACE ei, [i 7 •• iO] , [aa2 .• aaO] , ggs, eeo

MESSAGE(' Test encoding ') ;
SET ei=O ;
j = 0 ;
FOR i=O TO 255 DO

SET [i7 .• i0] = 255-i;
IF (i=O) THEN " nested IF/THEN/ELSE

SET ggs=l, eeo=O
ELSE

SET ggs=O, eeo=l ;

IF (i=O) THEN
SET [aa2 •• aa0] = lllb

ELS IF (i=l) THEN
SET [aa2 •• aa0] lllb

ELS IF (i=2) THEN
SET [aa2 •• aa0) llOb

ELS IF (i=4) THEN
SET [aa2 •• aaO] = lOlb

ELS IF (i=8) THEN
SET [aa2 •• aaO] = lOOb

ELS IF (i=16) THEN
SET [aa2 •• aaO] = Ollb

ELS IF (i=32) THEN
SET (aa2 •• aa0] = OlOb

ELS IF (i=64) THEN
SET [aa2 •• aaO] = OOlb

ELS IF (i=128) THEN
SET (aa2 •• aa0] = OOOb

END IF;
CLOCKF

END IF;
END FOR;

SIMULATION;

158 MACHXL Software User's Guide (Version 3.0)

"nested
"IFS

WHILE-DO
The WHILE statement will repeat a group of statements as long as the
WHILE variable expression is true. If the variable expression is initially false
then the statements are not performed.

WHILE variable expression DO
statements

END WHILE;

The following example demonstrates how to use a WHILE loop to perform
eleven CLOCKF statements:

i = O; " initialize variable i
WHILE i <= 10 DO

CLOCKF;
i = i .+. 1;

END WHILE;

The next example demonstrates the WHILE-DO statement, and generates the
sequence, 0, 255, l, 254, 2, 253, ... , 128 for the variable j:

SIMULATION
VAR j

j 0 "initialize variable j

WHILE j <> 128 DO
SET [in7 .. in0] j
CLOCKF elk ;
j = 255 .-. j
IF (j < 128) THEN

j = j .+. 1
END IF;

END WHILE;

SET [in7 •. in0] j
CLOCKF elk

END SIMULATION;

Chapter 11: Simulating and Testing a Design 159

An Example Simulation Section and Results
The following are example design (.src), stimulus (.stm), and simulation result
(.sim) files used to explain the basic concepts of the simulator.

Design File (design_name.src)

11 Design file for address decoder example

LOW TRUE INPUT oe
INPUT al, aO, elk
OUTPUT rom CLOCKED BY elk ENABLED BY oe
OUTPUT ram CLOCKED BY elk ENABLED BY oe
OUTPUT i 0 CLOCKED BY elk ENABLED BY oe
OUTPUT a to d CLOCKED

rom /al * /aO ;
ram = /al * ao i

i o = al * /aO ;
a to d = al * aO

BY

Stimulus File (design_name.stm)

elk ENABLED BY oe

11 Stimulus file for address decoder example Line
Number

SIMULATION ;
VAR i, j;
STEP lOns;

111

112

113

TRACE elk, oe, al, aO, rom, ram, i_o, a:_to_d; 11 4

SET elk = .C.
SET oe = 0 ;

160 MACHXL Software User's Guide (Version 3.0)

115

116

FOR i = 0 TO 1 DO
j = 0
WHILE (j < 2) DO

SET al = i
SET ao = j
j = j .+. l;

CLOCKF elk ;
END WHILE ;
IF (i AND j THEN

SET oe = 1;
END IF

END FOR ;
CLOCKF elk

END SIMULATION ;

"7
"8

"9

"10

"11

"12
"13

"14
"15

"16
"17
"18
"19

"20

Line 1 of this stimulus file begins with the keyword, SIMULATION. For this
simple design there is only one simulation section. A more complex design
might have several simulation sections each testing part of the overall design.

Line 2 declares two variables, i and j, which are used to control the
simulation and to assign values to the signals in the design. Don't confuse a
variable with a signal. A variable is used only by the simulator and is not part
of the design.

Line 3 tells the simulator how you want to label each step in the simulation
results file. In this case, each step will be labeled in 10 ns increments. The
STEP statement is provided for your convenience and doesn't affect the
behavior of the simulator. The default is 10 ns.

Line 4 is a TRACE statement telling the simulator which signals should
appear in the simulation output file and in what format to display them. For
this simulation, all signals will appear in the listing file and the default display
format of binary is used.

Lines 5 and 6 contain signal expressions. The signal, elk, is assigned a
value of .C. indicating to the simulator this signal is to be clocked during the
simulation. The SET statement ofline 6 assigns a value of 0 to the signal OE.

Chapter 11: Simulating and Testing a Design 161

This signal will maintain this value until the end of the simulation section or
until another SET statement changes this value. SET statements are only used
for assigning values to signals and not to variables.

Line 7 is the beginning statement of a looping construct. Looping constructs
allow automating parts of a simulation section. The variable i is set initially
to a value of 0. This value is then compared to the value 1 which appears on
the right side of the keyword TO. If the value of i is greater than this value,
the loop is terminated; otherwise all statements appearing between lines 7 and
18 are performed. With each pass through the loop, the value of i is
incremented by 1. All FOR loop constructs must have an END FOR
statement.

In line 8, the variable j is assigned a value of 0.

Line 9, contains another type of looping construct, the WHILE loop. This
loop executes as long as the variable expression, between the WHILE and
DO, evaluates true. As long as the value of j is less than 2, the variable
expression is true and all statements between the WHILE statement header
and the END WHILE statement are executed.

Lines 10 and 11 contain SET statements assigning the values of i and j to
the input signals a 1 and a 0 respectively.

Line 12 increments the variable j by 1. If this statement is not present, the
WHILE loop will not terminate.

The CLOCK.F statement in line 13 is used to advance the simulator one time
step. When the simulator executes this statement, the rom, ram, i _ o,
and a_ to_ d outputs are evaluated, the clock signal, cl k, is clocked, and the
results are printed to the simulation output file.

Line 14 terminates the WHILE-DO loop.

The IF statement of line 15 evaluates the variable expression, i AND j.

If the value is true, line 16 is executed. This condition occurs when the value
of i is non-zero and the value of j is non-zero (i = 1, j = 2). Any variable

162 MACHXL Software User's Gulde (Version 3.0)

expression evaluating to a value of 0 is considered false; otherwise, the
variable expression is true.

Line 17 ends the IF construct started in line 15.

Line 18 ends the FOR construct started in line 7.

Line 19 causes the simulator to advance one time step.

The final statement of the simulation section is the END SIMULATION
statement. At this point it is possible to start another simulation section or
system test section. However, for this example, this is the only simulation
section.

The following is the simulation output file (design_name.sim) for our
example.

Simulation Results File (design_name.sim)

Simulation of SYSTEM
Design: DALE.FB

Simulation: DALE.STM

c
L 0 A A

Time nSec K E 1 0

BBB BBB BBB BBB

init x x x x
10 c 0 0 0

20 c 0 0 1
30 c 0 1 0
40 c 0 1 1
so c 1 1 1

R R

0 A
M M

BBB BBB

x x
1 0

0 1
0 0

0 0
z z

A

T
I 0

0 D Messages

BBB BBB--------------

x x
0 0

0 0
1 0

0 1
z z

Chapter 11: Simulating and Testing a Design 163

A SYSTEM_ TEST Example
The following example is a SYSTEM_ TEST section demonstrating many of
the test constructs discussed in this chapter. Remember a SYSTEM_ TEST
section places test vectors in the JEDEC file. This example is given without
explanation.

" Design file for counter example
Low_True Input oe
Input elk ;
Output qS •• qO clocked_by elk enabled_by oe

qO = /qO ;
ql ql (+) qO
q2 q2 (+) ql * qO
q3 = q3 (+) q2 * ql * qO
q4 = q4 (+) q3 * q2 * ql * qO
qS = qS (+) q4 * q3 * q2 * ql * qO

" Simulation file for counter example
SYSTEM_TEST;

VAR i, j;
STEP lOns;
TRACE elk, oe, [qS •• qO);

FOR i = 0 to 1 DO
SET oe = i ;
FOR j = 0 to 64 DO " nested FOR construct

IF i 1 THEN " nested IF/THEN/ELSE
" construct

MESSAGE('disable outputs') ;
ELSE

MESSAGE('enable outputs') ;
END IF
CLOCKF elk ;

END FOR;
END FOR;

END SYSTEM_TEST;

164 MACHXL Software User's Guide {Version 3.0)

The simulation output generated for this design is as follows:

c
L OQ. • • .Q

Time ns K ES •••• 0 Messages

------------B BBBBBBB--------------------------------
0 0 0000000
10 c 0000001 enable outputs
20 c 0000010 enable outputs
30 c 0000011 enable outputs
40 c 0000100 enable outputs
50 c 0000101 enable outputs
60 c 0000110 enable outputs
70 c 0000111 enable outputs
80 c 0001000 enable outputs
90 c 0001001 enable outputs
100 c 0001010 enable outputs
110 c 0001011 enable outputs
120 c 0001100 enable outputs
130 c 0001101 enable outputs
140 c 0001110 enable outputs
150 c 0001111 enable outputs

600 c 0111100 enable outputs
610 c 0111101 enable outputs
620 c 0111110 enable outputs
630 c 0111111 enable outputs
640 c 0000000 enable outputs
650 c 0000001 enable outputs
660 c lZZZZZZ disable outputs
670 c lZZZZZZ disable outputs
680 c lZZZZZZ disable outputs
690 c lZZZZZZ disable outputs
700 c lZZZZZZ disable outputs

Chapter 11: Simulating and Testing a Design 165

c
L OQ •••• Q

Time ns K ES •••• 0 Messages

------------B BBBBBBB--------------------------------
1250 c lZZZZZZ disable outputs
1260 c lZZZZZZ disable outputs
1270 c lZZZZZZ disable outputs
1280 c lZZZZZZ disable outputs
1290 c lZZZZZZ disable outputs
1300 c lZZZZZZ disable outputs

Internal Simulator Operation
The simulator uses two input files (design_ name.ajb and design_ name.stm) to
produce simulation results. The .ajb file contains compiled design information
while the .stm file contains stimulus (SIMULATION) and system test
(SYSTEM_TEST) sections. The results of the simulation are written to the
output file, .sim. If the .stm file has a system test section then the simulator
generated test vectors are written to a .tv file which is used during the fitting
process. The SYSTEM_TEST section also generates test vectors that are a
part of the JEDEC file. If simulation of the design is not required then
removing the .stm file will keep the simulator from running.

Each simulation and system test section of the .stm file is compiled into a set
of statement structures. These structures define signal values for the compiled
design equations and control the simulation cycles. The simulation cycles
create the simulation results and test vectors.

Simulation Cycle
Each time step in the simulation (specified by the STEP command) is divided
into simulation cycles. Each of these cycles computes a new intermediate
value for the design equations. A simulation cycle is a process which consists

166 MACHXL Software User's Guide (Version 3.0)

of several steps generating new values for the output signals. These steps are
shown below:

Initialize
Compute all outputs until stable
If there is a clock signal then

Clock step
Compute until outputs are stable

Write out the results

Any error or warning messages occuring during a simulation cycle are written
to the .sim and .log files. The maximum number of errors or warning allowed
during each simulation cycle is 10. If the number of errors or warnings
exceeds 10, the remaining errors and warnings are ignored for the current
cycle and a warning message is written to the .sim file indicating the limit was
exceeded.

Initialize
The initialize step in the previous flow diagram assigns values to the input and
output signals as defined in the statement structure. Any input or output
signals not assigned values in the statement structure are set to either a value
of unknown (X) or to the value in the INITIAL TO statement, if this
statement exists.

Compute All Outputs Until Stable
This step is a loop of statements which are executed until all combinatorial
outputs are stable or until the total number of times through the loop reaches a
count of 128. Outputs are considered stable if their value has not changed
from the previous step. The statements executed in the loop are as follows:

Chapter 11: Simulating and Testing a Design 167

1. Compute the values of all the output generators (i.e., clocks, resets,
inputs, etc.).

2. Generate the values of the outputs using the newly computed
output generator values.

3. If the new signal values are the same as the signal values in the
previous iteration, the outputs are stable and the loop is terminated.

If the loop count reaches 128 then some of the output signals are unstable. An
error message is written to the .sim file for each unstable signal and these
signals are set to a value of unknown (X).

If There is a Clock Signal
Each input signal set to a value of . C. is clocked and the value of all output
signals is calculated. If any of the output signals are unstable then the values
are recalculated until the output signals are stable or until the number of
calculations reaches 128. If the count reaches 128, some of the output signal
values are unstable. An error message is written to the .sim file for all
unstable signals and these signals are set to a value of unknown (X).

Write Out Results
Each signal value is set to the new value for this cycle and the results are
written to the .sim file.

The total number of cycles performed is controlled by the statement structures
compiled for each simulation and system test section. The maximum number
of cycles can be 128 before the clock step and a maximum 128 cycles after the
clock step.

Note: Any combinatorial outputs that are chained together in a
series of more than 128 gates may not be stable.

168 MACHXL Software User's Guide (Version 3.0)

Signal States
For each signal in the simulation, a state is stored. In the case of input
signals, this value is defined by the SET command or by the value of the
output which drives it. The circuit shown in the following figure contains an
example of the two types of inputs. Al, B 1, and CLK are defined by SET
commands while signal c 1 is defined by the output of AND gate U2.

SIMULATION ;

TRACE Al, Bl, Cl, CLK, Dl;
SET Al = O;
SET Bl = O;
SET CLK = • C. ;

END SIMULATION ;

A110)-U1 ---1 D
81

For output signals, a state is made up of three items:

1. the internal value of the signal

2. the value driven by the output onto the pin

3. the value driven by the simulator onto the pin.

Q>----D

U2

The internal value corresponds to the value associated with the signal before
the tri-state output and is internal to the device. The value being driven out is
the value after the tri-state output. The internal value can be set by using
INITIAL or INITIAL_ TO statements. The value driven by the simulator onto
an output is the result of using the SET command for an output signal. As an
example, in the circuit and simulation section as shown in the following figure,
the input signal, IN, is set to a value of l. The internal value for the output
signal, OUT, is 0. The value driven out of Ul is Z. The reason is the signal
ENABLE has a value of 0 thus placing Ul in the high-impedance state. The
value driven by the simulator is l.

Chapter 11: Simulating and Testing a Design 169

U1 >--------.-- OUT

SIMULATION

TRACE ENABLE,
IN, OUT;
SET ENABLE = O;
SET IN = 1;
SET OUT = 1;

END SIMULATION

For output signals that do not have a tri-state output, the internal value and the
value driven by the output are always equal.

The values these items can take are shown in the following table.

Symbol Meaning
L Low (or 0)
H High (or 1)
x Don't Care or Unknown
z High Impedance (Tri-state disabled)
c Clocked (Pulse)
s Simulated Value (for outputs)

170 MACHXL Software User's Guide (Version 3.0)

Truth Tables for the Test Language Logical
Operators

During each step of a simulation cycle, the equations associated with a
combinatorial output are evaluated. This evaluation is made by applying the
following truth tables:

Truth Table for the AND Operation

L H x x s
L x x x x s
x H x x x s
L c x x c s
s s s s s s

X = Don't Care

Truth Table for the OR Operation

H H H H H s
x H x x x s
x H x x x s
c H x x c s
s s s s s s

X = Don't Care

Chapter 11: Simulating and Testing a Design 171

Truth Table for the Exclusive OR Operation

x x
x x x x s
x H x x x s
c c x x c s
s s s s s s

X =Don't Care

Truth Table for the NOT (Complement) Operation

X = Don't Care

There are several possible equations associated with each output. An output
may have an enable, indicating the output is a tri-state component enabled by
this expression, or may have a register input with any of the optional clock,
clock enable, preset and reset equations, or may be combinatorial. If the
enable is not present, then it is assumed the output is always driving. The
resets and presets, if present, are used to indicate an asynchronous condition
taking precedence over the clock. The following truth tables describe the
possible register behavior:

172 MACHXL Software User's Guide (Version 3.0)

Truth Table for a D-type Flip Flop

x x L H H
x x ? x ?
x x x ? ?
? x L L ?
c ? L L ?
c L L L Qi-1

UH UH L L Qi-1
c H L L L
c H L L H
c H L L ?

X =Don't Care?= Unknown Qi= Current State Qi-1 =Previous State

Truth Table for a JK-type Flip Flop

x ?
x x H L L
x x L H H
? x L L ?
c ? L L ?
c L L L Qi-1
c H L L ?
c H L L ?
c H L L Qi-1
c H L L H
c H L L L
c H L L /Qi-1

X = Don't Care?= Unknown Qi= Current State Qi-1 =Previous State

Chapter 11: Simulating and Testing a Design 173

Truth Table for an RS-type Flip Flop

x x ? ?

x H L L;
x x L H H
? x L L ?

c ? L L ?

c L L L Qi-1
c H L L ?

c H L L ?
c H L L Qi-1
c H L L H
c H L L L
c H L L ?

X =Don't Care?= Unknown Qi= Current State Qi-1 =Previous State

Truth Table for a T-type Flip Flop

x x L H H
x x ? x ?
x x x ? ?

? x L L ?
c ? L L ?
c L L L Qi-1

UH UH L L Qi-1
c H L L Qi-1
c H L L /Qi-1
c H L L ?

X =Don't Care?= Unknown Qi= Current State Qi-1 =Previous State

174 MACHXL Software User's Gulde (Version 3.0)

Truth Table for a D-type Latch

D 1.a.i.~.b,."•oa.ij.1<
x H L
x L H
x ? x ?
x x ? ?
? L L ?
L L L Qi-1
H L L L
H L L H
H L L ?

X =Don't Care?= Unknown Qi= Current State Qi-1 =Previous State

Chapter 11: Simulating and Testing a Design 175

176 MACHXL Software User's Guide (Version 3.0)

12 Optimizing a Design

Contents
Introduction .. 178
Optimizer Operation ... 178

Node Collapsing .. 179
Virtual and Physical Nodes180
Controlling Node Collapsing .. 180
Node Collapsing and Partitioning ... 184
Register Synthesis .. 185
Equation Reduction .. 186
Factoring ... 186

Chapter 12: Optimizing a Design 177

Introduction

The optimizer in MACHXL takes the abstract representations of a compiled
language file (.ajb) and converts them into physical representations. During
optimization, the following functions are performed:

CJ nodes are collapsed out of the design when possible

CJ flip-flops are synthesized

CJ equations are reduced.

After optimization, the design file is ready for partitioning.

Optimizer Operation

The purpose of the optimizer is to reduce the size of design equations and the
number ofNODEs. This allows the design to fit into the fewest and smallest
possible devices. PLDs implement logic using two-level logic to feed the
macro cells. This means the equations feeding the inputs of the macro cells
are represented in a two-level Sum-of-Products form. The circuit shown
below is one example of a macro cell. The contents of a macro cell can be
quite different from one PLD or CPLD device to the next. These macro cells
can contain all of these logic devices, some of these logic devices, or none of
these logic devices. Some PLDs have a fused inverter and fused flip-flops.

While PLDs vary in their ability to share internal hardware between macro

178 MACHXL Software User's Guide (Version 3.0)

cells, they are all constrained by the number of input signals and by the
number of product terms used in a design equation. By optimizing the design
equations, it may be possible to keep the number of product terms to a number
less than the maximum number of product terms allowed for a specific device.
So, the goal of the optimizer is to take advantage of a particular device's
architecture while not exceeding the device limits. There are three techniques
used to reduce the design equations: node collapsing, register synthesis, and
final reduction.

Node Collapsing
The first technique used to optimize a design is called node collapsing. Node
collapsing is the process of removing an internal signal node by substituting
the node's equation into any equation that references the node. As an example,
the following design equations have an internal node x:

INPUT a, b, c, d ;
NODE x
OUTPUT y, z

x = a * b + c ;
y = x * d
z = x + b ;

Node collapsing results in NODE x being removed, yielding the following
equations:

y = a * b * d + c * d ;

z = c + b

Note: In addition, OUTPUT z has been optimized to yield c + b.

0

Chapter 12: Optimizing a Design 179

A hardware example of node collapsing is shown in the diagram shown above.
In this example, a design using 2-input logic gates is collapsed to a 2-level
equivalent to increase speed.

Virtual and Physical Nodes
It is possible to explicitly control node collapsing of individual nodes by
declaring them to be VIRTUAL or PHYSICAL in the design file. VIRTUAL
nodes are always collapsed while PHYSICAL nodes are never collapsed (for
more information on NODES and their modifiers, see Chapter 5 and the
section on Declarations.)

Any node mentioned in the .pi (physical information) file becomes a
PHYSICAL node because a node must exist physically to have properties
attached to it. Individual nodes can be declared to be VIRTUAL in the .pi file
(see Chapter 13 for more information on the .pi file). The following is an
example portion of a .pi file showing both PHYSICAL and VIRTUAL nodes:

PHYSICAL r06 ;
VIRTUAL vn, n ;

This is the mechanism used in the automatically generated .npi file to force the
optimizer to make the correct node collapsing choices. The .npi file can be
used to guarantee a design is implemented the same way on subsequent
iterations through the MACHXL design tools by copying the .npi file to the
.pi file. For more information on the .pi file, see Chapters 13, 14, and 15.

Controlling Node Collapsing
While collapsing reduces the number of equations, it can also increase the
number of terms in some equations. This can mean that there may not be
enough resources in some devices to implement the design. There are five
constraints you can use to limit the size of the equations produced during the
node collapsing process. These constraints can be chosen to suit the
requirements of a particular device. The constraints are specified as signal
properties in the .pi file (see Chapter 14 for more information on the .pi file
signal properties.) These global group or properties should be assigned on a

180 MACHXL Software User's Guide (Version 3.0)

device-by-device basis for each of the different target devices. The following
is a list of these properties:

MAX_SYMBOLS n
Lets you tell the optimizer the maximum number of unique symbols or
signals to allow in any one equation.
Default=20.

You may set MAX_SYMBOLS equal to the maximum number of
inputs and nodes feeding the array, and with some devices you may
also use some of the outputs as inputs. This allows increasing the
maximum number of symbols in an equation. Conversely, if you are
concerned about not having enough outputs, you may want to
decrease MAX _SYMBOLS.

MAX_PTERMS n
Lets you tell the optimizer the maximum number of product terms to
allow in a sum-of-products version of an equation.
Default=16.

In general, this parameter can be thought of as the number of inputs to
the OR gates in the device.

MAX_XOR_PTERMS n
Lets you tell the optimizer the maximum number of product terms you
want to appear on one input of an exclusive OR gate, assuming the
other input has one product term. If both inputs of an exclusive-OR
gate have more than a single product term, the equation will exceed
the MAX PTERMS constraint. If n = 0, the target device has no
exclusive-OR hardware.
Default= 0.

If the XOR representation of an equation has more than one pterm on
both sides then the equation will exceed the MAX_ PTERMS
constraint. If either the regular or the XOR pterm constraint is met,
then the equation is allowable. This means that devices with XOR
gates allow the most effecient form of the equation to be used.

Chapter 12: Optimizing a Design 181

POLARITY_CONTROL [TRUE I FALSE]
Lets you tell the optimizer whether a target device has a fusible
inverter in the path to the output macrocell. IfTRUE, you are telling
the optimizer the device has a fusible inverter. FALSE indicates there
is no fusible inverter.
Default= TRUE

XOR_POLARITY_CONTROL [TRUE I FALSE]
Lets you tell the optimizer whether a target device has a fusible
inverter on its XOR. IfTRUE, you are telling the optimizer the
device has a fusible inverter. FALSE indicates there is no fusible
inverter.
Default=F ALSE

The optimizer uses these properties when collapsing a node to determine if an
equation referencing a node will exceed these constraints.

If the target device has a fusible inverter (i.e., POLARITY_CONTROL or
XOR_POLARITY _CONTROL is TRUE), the optimizer can take the smaller
of the ordinary or DeMorgan equation set. This is because the optimizer can
make use of the fusible inverter to take the smaller of the two equations.

If the target device does not have a fusible inverter (i.e.,
POLARITY CONTROL or XOR POLARITY CONTROL is FALSE), the - - -
optimizer will take the larger of the ordinary equation set or the DeMorgan
equation set. This is to make sure it can fit the larger of the two equations
should it need to (since it cannot use the fusible inverter to select the smaller
of the two equations). The maximum number ofpterms the ordinary or
DeMorgan set can have is specified by MAX_PTERMS property.

In both cases it is important to remember the optimzer uses this information
only to determine whether it can collapse a node, not to determine Fit.

Note: Any equation exceeding the size constraints prior to optimization
are unaffected by the size limits. These size constraints only apply to
equations created during the node collapsing process.

182 MACHXL Software User's Guide (Version 3.0)

The MAX_XOR_PTERMS constraint applies to one input of an exclusive
OR gate ifthe other input is fed by a single product term. This is a common
situation for many device architectures. If the exclusive-OR representation of
an equation has more than a single product term on both inputs then the
MAX_PTERMS constraint is applied to the non-exclusive-OR form of the
equation.

If the corresponding equation representations meet either MAX_ PTERMS or
MAX_XOR_PTERMS constraints then that equation is acceptable. Thus,
fusible exclusive-OR gates allow use of the most efficient form of an equation.
As an example:

INPUT a, b, c, d, e
NODE x;
OUTPUT out

x = c * (d + e) ;

out = (a * b) (+) x ;

If the NODE x were collapsed, then the exclusive-OR form of the equation is:

out = (a * d) (+) (c * d + c * e) ;

and the ordinary form of the equation is:

out = (c * d */a) + (c * d */b) + (c * e */a) +
(c * e * /b) + (a *b * /c) + (a * b */d */e)

IfMAX_PTERMS is greater than or equal to 6 or MAX_XOR_PTERMS is
greater than or equal to 2 then node x would be collapsed. (For the sake of
simplicity, this example ignores the polarity control properties and the
DeMorgan form of the equations.)

Combinatorial feedback nodes are also removed whenever possible. However,
if the optimizer determines the combinatorial feedback node is required by the
feedback circuit, then that node is not removed. As an example, consider the
following design:

Chapter 12: Optimizing a Design 183

INPUT a, b, e
NODE y, x ;
OUTPUT out ;

y = a (+) x
x = y * b

out = x * e

Collapsing node x in equation y produces the following equations:

y = a (+) (y * b)

out = y * b * e;

Because the equation for node y contains y as one of its inputs, the node x
cannot be collapsed.

Any node referenced in a control equation (CLOCKED_ BY, RESET_ BY,
etc.) is not collapsed unless it is declared as VIRTUAL. (See the previous
section on Virtual and Physical Nodes for more information.) As an example:

INPUT elk, resetl, reset2, a, b
NODE reset
OUTPUT out CLOCKED BY elk RESET BY reset

reset = resetl * reset2 ;
out = a + b ;

The node reset is not collapsed since it is used in the RESET_BY equation
of the signal out. If it had been collapsed, this design would not have fit into
many devices that have a single reset line. Declaring reset to be VIRTUAL
causes the node to be collapsed anyway.

Node Collapsing and Partitioning
The equations resulting from node collapsing will have varying sizes up to the
maximum size specified by the constraints. Typically, you should set the
limits to match the characteristics of the largest equation that can be handled
by a target device to obtain good results.

184 MACHXL Software User's Guide (Version 3.0)

When directed partitioning is performed, the type of device each signal must
fit into is specified. Since the node collapsing constraints can be specified on
a device by device basis, equation sizes can be made to match each device.

When using automatic partitioning, you may prefer to use a particular set of
devices for a design. In this case, setting the node collapsing constraints to
that required by the largest of these devices gives good results.

Even if the types of target devices are unknown, approximate constraint
values will still yield good node collapsing results. The default values give
good results for a wide variety of devices. A little experimentation with the
constraints can help to refine the resulting equation sizes.

Register Synthesis
The second technique used to optimize the design for the largest variety of
target devices is called register synthesis. The optimizer is responsible for
synthesizing the equations for alternate flip-flop types for registers (see figure
below). The register type declared in the source file allows the equations for a
register to be expressed in terms of the given flip-flop type. The optimizer
synthesizes the equations for all the other flip-flop types to give the automatic
fitting process greater flexibility in its choice of devices used to implement a
register.

T~OUT-----~ CLK--LJ ...
T-FLOP D-FLOP EQUIVALENT

If a register is declared with the NO_ REDUCE modifier then it will be
implemented using the declared flip-flop type and no synthesis will be done.

Chapter 12: Optimizing a Design 185

Equation Reduction
The final reduction technique uses one of three reduction algorithms to reduce
the equations produced by node collapsing and register synthesis. The final
reduction algorithm takes advantage of DON'T CARE information. During
the node collapsing and register synthesis processes, the optimizer maintains
ON, OFF, and DON'T CARE information sets for every equation. This
allows the final reduction algorithm to best use the DON'T CARE information
in reducing all collapsed and synthesized forms of the equations.

There are three final reduction algorithms available: Espresso, Espresso
Exact, and Quine-McCluskey. The method used is selected by using the
options menu (for more information on setting this option, see Chapter 3.)
The default value for the final reduction algorithm is Espresso. The Espresso
algorithm is the fastest method and usually produces results as good as the
other two algorithms.

Factoring
Factoring allows for large equations to be broken up into various smaller
intermediate equations, Executing from the command line, and using the
MAX_PTERMS and MAX_SYMBOLS .pi file properties to control equation
factoring, may result in a better optimal set of equations for the programmable
logic device you are targeting.

186 MACHXL Software User's Guide (Version 3.0)

13 Partitioning and Fitting (Optional)

Contents
Introduction ... 188
Partitioning Modes .. 188
The Partitioning Process .. 189

Directed Partitioning ... 190
Placing Logic into Specified Devices 190
Placing Unspecified Logic 191
Pinout and Architectural Feature Specification 192

Setting the Template List .. 192
Setting Partitioning Constraints 192
Setting Partitioning Priorities .. 194

Chapter 13: Partitioning and Fitting (Optional) 187

Introduction

When you create a design with MACHXL, the design phase is separate from
the device implementation phase. Chapters 4 through 12 show the steps
required to create a design using MACHXL. Assuming that the design is
complete and correct, you can now concentrate on implementing the design
with various programmable device architectures.

Just as the design phase was an iterative process, the hardware implementation
steps ofMACHXL have been set up to allow iterating on various hardware
implementations of that design. MACHXL allows you to specify device
characteristics and constraints for implementation of your design. Based on
these settings, MACHXL searches its extensive library of PLD and CPLD
architectures, looking for deyices matching your criteria. MACHXL then
maps your design into the specified device or devices. If the design requires
more than one device, MACHXL can partition the logic across multiple
devices to obtain a solution (optional).

This chapter describes the process of mapping the logical design into physical
devices and discusses the ways a design can be fit and partitioned.

Partitioning Modes

When partitioning a design among the various device architectures, MACHXL
allows the user to operate in one or a combination of the following three
modes:

D Automatic Partitioning

D Directed Partitioning

o Manual Partitioning

188 MACHXL Software User's Guide (Version 3.0)

The Automatic Partitioning Mode allows the partitioning software to run
unconstrained. No direction is given to the software with regards to signal/pin
placement or logic partitioning. This mode is the easiest to use as it requires
no special files to be created or modified. For many designs, this is the only
mode needed to partition a design. MACHXL software partitions
automatically by using a set of constraints. Possible solutions are prioritized
according to a set of user priorities. From this a list of best solutions is
selected and displayed.

In the automatic mode, the software is able to generate many solutions in a
short period of time. This lets you look at different scenarios (what-ifs) and
decide which is best for your design implementation.

The Directed Partitioning Mode allows you to target logic into various device
architectures without specific knowledge of signal-to-pin placement. The
partitioning software automatically determines logic dependencies and makes
certain all required logic is partitioned into the specified devices.

The Manual Partitioning Mode allows editing the Physical Information file to
control every aspect of partitioning. The Manual Partitioning Mode is used
when you know exactly how the logic is to be placed into one or more devices.
This mode is most often used when recreating a design originally created by
the automatic mode.

The Partitioning Process

There are four possible ways to control partitioning for MACHXL to give the
best design implementation:

1) Directing the partitioning (i.e., setting the list of templates).

2) Selecting possible devices (available files).

3) Setting partitioning constraints.

4) Setting partitioning priorities.

Chapter 13: Partitioning and Fitting (Optional) 189

This section describes each of these steps in detail and explains how they can
be used to give the best implementation.

Directed Partitioning
When you determine the parts of your design to be placed into specific
programmable device architectures, you must use the directed partitioning
mode. Directed partitioning is accomplished through the use of a Physical
Information (.pi) file. The design_name.pi file contains the specifications for
device partitioning via the Physical Information Language (PIL). The
Physical Information Language is similar in construct to the Design Synthesis
Language, and allows you to direct partitioning aspects. For more detailed
information on the .pi file, please see Chapter 14.

Placing Logic into Specified Devices
The key to directed partitioning is the ability to specify which logic is placed
into a specific device. This is accomplished by placing a DEVICE construct
in the .pi file. As an example, ifthe design contains two OUTPUT signals
outland out2 and they are to be placed into an AMD PLD, the .pi file
might appear as in the following example.

Example
DEVICE

TARGET 'PART NUMBER AMD PALCE22V10H-5JC/5';
outl ;
out2 ;

END DEVICE;

If a different design has four outputs, outl, out2, out3, and out4,
and it is desirable to place outland out2 into an AMD PLD and out3
and out4 into an AMD MACH device, the .pi file might read as in the
following example.

190 MACHXL Software User's Guide (Version 3.0)

Example
DEVICE

TARGET 'PART NUMBER AMD PALCE22Vl0H-5JC/5';

outl ;
out2 ;

END DEVICE;

DEVICE
TARGET 'PART NUMBER AMD MACHllO-lSJC'

out3 ;
out4 ;

END DEVICE;

Placing Unspecified Logic
In the description of automatic partitioning, we mention that all logic
unspecified by directed partitioning will be left to the automatic partitioning
algorithms. The Physical Information Language lets you dictate where
unspecified logic is placed. It also eliminates the need to specify all the logic
in the system.

In order to place unspecified logic, use the default construct In the example
below, outland out2 are required in a fast (5ns) 22V10, but the rest of the
logic can be placed in a slower AMO device.

Example
DEVICE

TARGET 'PART NUMBER AMD PALCE22V10H-5JC/5'
outl ;
out2 ;

END DEVICE;

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8Z-25PC'

default
END DEVICE;

Chapter 13: Partitioning and Fitting {Optional) 191

Note: The DEFAULT construct can be applied to any DEVICE. If
the default construct is NOT used then automatic partitioning occurs
on the unspecified logic.

Pinout and Architectural Feature Specification
Another feature of directed partitioning is the ability to specify device pinouts
and architecture-specific features. Using the .pi file syntax, the signal-to
physical-pin assignment information and device-specific information may be
passed to the partitioning and fitting software. This feature is available in all
three modes of partitioning. For more information on this capability, see
Chapter 14 on .pi file usage, or Chapter 15 on directed partitioning for
specific devices.

Setting the Template List
You may also set up a template list for use in the MACHXL menu system.
For more information, see Chapter 3.

Setting Partitioning Constraints
Constraints allow you to further narrow the list of devices considered by the
partitioning software when producing device solutions. As mentioned earlier,
only those devices appearing in the device list are considered by the
partitioning software. Using this device list, the constraints are compared
against the devices and only those matching the specified constraints are
considered valid device solutions by the partitioning software.

By using constraints wisely, you can investigate various combinations of the
available devices for your design. For example, one run of the software may
generate all single device solutions. Without modifying the available file, a
second run could look for three or fewer device solutions using only TTL and
CMOS devices.

The following table shows the various constraints you may specify. These
constraints can be entered by using the MACHXL interface or by editing the
cost (.est) file directly.

192 MACHXL Software User's Guide (Version 3.0)

Constraint Purpose

FAMILY Use to select ECL, TTL, or CMOS devices.

MANUFACTURER AMO.

TEMPLATE Use as an alternative to paring down the available file to
contain only those templates of .interest. It is possible to
maintain a large available file and use the TEMPLATE
constraint to filter out those devices deemed undesirable.

NUMBER_DEVICES The MACHXL partitioning software generates solutions
containing up to 20 devices. By limiting this value, the
software considers only smaller solutions and greatly
improves the partitioning speed.

TEMP _RANGE Select COM, MIL, or EXT devices.

PACKAGE Programmable logic devices come in a variety of package
types. Use this constraint to limit the package types
considered valid. The section at the end of this chapter
entitled "IC Package Descriptions" shows more detail on
package types.

TPD The maximum propagation delay value can be entered as a
constraint. This value is used as a filter for each device
checked. The propagation delay of each individual device is
calculated as follows:

1) For combinatorial (non-registered) devices, the maximum
propagation delay is the worst case Tpd, as published by the
manufacturer.

2) For registered devices, the maximum propagation delay is
the sum of Ts and Teo (setup-and-hold time and clock-to
output time).

3) For devices with both combinatorial and registered
outputs, the larger of (1) or (2) is used.

Chapter 13: Partitioning and Fitting (Optional) 193

Constraint

ICC

FMAX

USER1 and USER2

Purpose

The maximum current value can be entered as a constraint.
Each individual device is checked against the entered value.

The minimum frequency value can be entered as a
constraint. Each device is checked against the entered value
to assure it greater than or equal to this value.

These user modifiable values that appear in the available file
can be used as constraints as well. It is possible to select
only devices with a user1 value greater than 75 or perhaps a
user2 value equal to 1.

One common application for these user fields is device
defect rate. If your production group has failure statistics on
devices (0-100), then it is possible to enter those values into
your available files. A user criterion could be used to select
devices with a failure rate of less than 10%.

Setting Partitioning Priorities
The device constraints described above allow limiting the list of possible
devices. Assigning priorities, on the other hand, enables the MACHXL
partitioning software to determine which solutions are better than others.

You can prioritize solution characteristics by assigning them values between 0
and 10. A value of 10 designates the highest priority should be assigned; a
value of 1 designates the lowest priority. All criteria assigned a priority of 0
are deemed unimportant in generating device solutions.

When multiple criteria are assigned priorities, the MACHXL software uses
relative weightings to determine the best solution. For price to be twice as
important as size, which is twice as important as frequency, you might assign
PRICE a priority of 8, SIZE a priority of 4, and FMAX a priority of 2. There
is no limit to the number of priorities you may use.

The following table shows the various priorities you may specify. These
priorities are entered by using the MACHXL interface or by editing the cost
(.est) file using a text editor.

194 MACHXL Software User's Gulde (Version 3.0)

Priority

PRICE

SIZE

TPD

ICC

FMAX

Purpose

Use this to find the solution with the total lowest price. If this is the
only priority set, it is possible that the MACHXL software will find
cheaper, multiple device solutions instead of more costly, single
device solutions.

In the MACHXL partitioning system, size equates to pin count. This
priority will cause the software to attempt to minimize total pin
count.

In multiple device solutions, the software determines the largest
propagation delay of all the individual devices (see above) and
uses this as the solution propagation delay. By prioritizing Tpd, the
MACHXL software attempts to find solutions with the smallest
solution propagation delay (the solution prop delay is, once again,
the largest of the individual prop delays).

This is the individual Ice value for each device in the solution. By
prioritizing Ice, MACHXL attempts to find solutions with the
LOWEST total Ice.

The minimum frequency value can be entered as a constraint.
Each individual device is checked against the entered value to
assure it is less than or equal to this value.

Chapter 13: Partitioning and Fitting (Optional) 195

Constraint Purpose

USER1 In the constraints section above, you can specify a user criteria
to indicate comparison (USER1 > 4) OR equality (USER1 =

USER2

11). When comparison constraints are used, this priority can
be used.

If "USER1 > O" is the constraint, then prioritizing USER1 will
cause a solution with a USER1 value of 99 to be considered
"better'' than a solution with a USER1 value of 4. Similarly, if
the constraint is "USER1 < 75", then a solution with a USER1
value of 6 is "better'' than a solution with a USER1 value of 44.

Note that if equality constraints are used, this priority will have
no effect (since all solutions will have the SAME user value).

The user value for a solution is the sum of the individual user
values of the devices in that solution.

Same as USER1 above

196 MACHXL Software User's Gulde (Version 3.0)

14
Contents

Controlling Partitioning and Fitting

(Optional)

Introduction ... 199
How the .pi File Controls Partitioning .. 201

Automatic Partitioning .. 201
Directed Partitioning ... 201
Manual Partitioning .. 202

Creating a .pi File .. 202
Physical Information File Language Reference 202

Physical Information Language Keywords 202
.pi File Syntax Rules ... 203

Comments .. 205
COMP_ OFF and COMP_ ON 205

Input and Output Signals in the .pi File 205
.pi File Structure ... 206
Global Properties .. 207
Ungrouped Signals .. 207

Virtual Signals ... 209
Signal Properties for Ungrouped Signals 211
DEFAULT Statement for Ungrouped Signals 212

Group Specifications ... 212
Naming a Group ... 213
Listing Signals in a Group 214
Signal Properties for a Group 216
DEFAULT Statement in a Group 217

Device Specifications .. 217
Device Properties ... 218
Naming a Device .. 219
Targeting a Specific Device for Fitting 220
Listing Signals in a Device 221
Renaming the Fusemap File of a Device 225
Specifying Signal Directions in a Device 226

Chapter 14: Controlling Partitioning and Fittlng.(Optional) 197

Signal Properties for a Device 227
DEFAULT Statement in a Device 228
Assigning Logic Levels (High-Value, Low-Value,
NO_CONNECT) to Pins of a Device 229
Device Section Specifications 229
Grouping Signals Within a Device 233
Fuse-Level Programming Control 233

Using the .npi File to Recreate a Pinout 234
Examples Using the .pi File ... 235

Example 1: Controlling the Size of Equations 235
Example 2: Forcing Signals To Be Fit Together
in the Same Device .. 235
Example 3: Using Specific Devices 236
Example 4: Maintaining Pin Assignments 236
Example 5: Fitting the Design into One Device 237
Example 6: Fitting the Design into More Than One
Device .. 238
Example 7: Mixing Automatic and Directed Partitioning.238
Example 8: Refitting a Design Into the Same Footprint ... 239
Example 9: Specifying Devices Without Specifying
Signals .. 240

198 MACHXL Software User's Guide (Version 3.0)

Introduction

MACHXL's Partitioner/Fitter automatically partitions and fits designs
without interaction. You can exercise control over how the fitter selects
devices by setting constraints and priorities. The fitter will still partition and
fit your design automatically, using these user-settable priorities and
constraints. For most designs this is a quick and easy way to get your design
into the programmable device(s).

However, there are some situations where you may need to exercise more
control over the partitioning and fitting process. The following are some
examples:

D Additional circuitry caused your design to outgrow its original
device. You need to change to a device with another architecture
but keep the same pinout as the old device.

o You have several signals in your design that are very interactive
and timing among them is very critical. For timing reasons these
signals should all be fit into the same device.

o The design you are working on has very tight PCB real estate
constraints and you would like to force the design into a single
device.

o Most of your design can be fit into a slower, less costly device.
However, one block needs to be fit into a fast PLD.

One major advantage of MACHXL is that it gives you the capability to
control the fitter's automatic partitioning and fitting as little or as much as
your situation requires. Control (outside of constraints and priorities set in the
Partitioning menu in MACHXL) is done with a Physical Information (.pi) file.
The .pi file directs how the fitter does its job. If you don't need the control, the
fitter will perform its functions automatically. However, if you need the
control, the .pi file tells the fitter how to modify its fitting.

Chapter 14: Controlling Partitioning and Fitting (Optional) 199

The .pi file contains instructions you give to the fitter on how the design
should be partitioned and fit. The following are some of the functions a .pi
file lets you control:

CJ Synthesis of equations, including the size of equations generated
and the amount of reduction performed on each equation

CJ How a design is partitioned among devices

CJ How signals are grouped together

CJ How signals are assigned to pins on a device

CJ How individual signals are fit inside the device

CJ Which specific fuses are blown or left intact

CJ Which device specific features are used within each device

The .pi file instructions may be as simple as specifying a particular device or
as complex as controlling node paths inside the programmable device. So, the
.pi file gives a continuum of control from fully automatic partitioning and
fitting to full user-specification of devices and signals within.

You create a .pi file using a text editor and the Physical Information Language
(PIL). PIL is a case-insensitive addition to MACHXL's Design Synthesis
Language allowing you to specify device-specific constraints. The text editor
can be invoked through the menuing system (see Chapter 3 for more
information on the menuing system), or you may use any text editor you
normally use to create a source file. The file must be named design_ name.pi
(where design_name is the name of your design) and must reside in the same
directory as the design.

The information in this chapter should be used in conjunction with Chapter
15. This chapter gives the basic structure of the .pi file, while Chapter 15
discusses the meaning of each of the device-specific .pi file properties.

This chapter is made up of three sections. The first section dicusses sections
of the .pi file and the purpose of each. The second section is a reference of the

200 MACHXL Software User's Gulde (Version 3.0)

commands and constructs used in the .pi file, giving the syntax and usage of
each command. The third section contains several examples of .pi files based
on common design issues and how they are controlled with a .pi file.

How the .pi File Controls Partitioning

When partitioning a design among the various device architectures, MACHXL
allows the user to operate in one or a combination of the following three
modes:

Cl Automatic partitioning

Cl Directed partitioning

Cl Manual partitioning

Automatic Partitioning
The Automatic Partitioning Mode allows the partitioning software to run
unconstrained. No direction is given to the software with regards to signal/pin
placement or logic partitioning. This mode is the easiest to use as it requires
no special files to be created or modified. For many designs, this is the only
mode needed to partition a design.

Directed Partitioning
In Directed Partitioning you edit the .pi file to control broad-based aspects of
partitioning without specifying all of the details of fitting the design.

The Directed Partitioning Mode allows you to target logic into various device
architectures without specific knowledge of signal-to-pin placement. The
partitioning software automatically determines logic dependencies and makes
certain all required logic is partitioned into the specified devices.

Chapter 14: Controlling Partitioning and Fitting (Optional) 201

Manual Partitioning
In the Manual Partitioning Mode you edit the .pi file to control every aspect of
partitionng.

The Manual Partitioning Mode is used when you know exactly how the logic
is to be placed into one or more devices. This mode is most often used when
recreating a design originally created by the automatic mode.

Creating a .pi File

You create a .pi file using a text editor and the Physical Information Language
(PIL). The file must be named design_ name.pi (where design_ name is the
name of your design) and must reside in the same directory as the design. PIL
is a case-insensitive, free-format language that's an addition to MACHXL's
Design Synthesis Language. You can also access the .pi file through the
menuing system. For more information on the menuing system, see
Chapter3.

Physical Information File Language
Reference

Physical Information Language Keywords
The Physical Information Language (PIL) has keywords allowing you to
describe the specifics of device partitioning and signal grouping. The
following are the keywords used in PIL. Notice that some of these keywords
are the same as in the Design Synthesis Language but are used in a different
context. The identifiers listed below are reserved by the language as keywords
and may not be used for other identifier purposes.

BLOWN
COMP_OFF

COMP_ON
DEFAULT

202 MACHXL Software User's Gulde (Version 3.0)

DEVICE
END

FIXED
GROUP
HIGH-VALUE
INPUT
INTACT

LOW-VALUE
NAME
NO_CONNECT
OUTPUT
PHYSICAL

SECTION
TARGET
VIRTUAL

In addition to the above reserved keywords, the following identifiers are used
as property strings in the Physical Information Language (PIL).

BLOCKMODE
CLOCK_BY _PIN
CLOCK_BY _ROW
COMB_OUT_REG_FB
COMMON_SET _PTERM
DEMORGAN_SYNTH
DISABLED_ONLY_FOR_TEST
FF_SYNTH
FIT _AS_OUTPUT
FIT_WITH
FLOAT NODES
FORCE:_INTERNAL_FB
FUSEMAP _FILE
JEDEC_FUSEMAP
MACH_LOW_POWER
MACH_USERCODE
MACH_ UTILIZATION
MACH_ZERO_HOLD_INPUT

.pi File Syntax Rules

MAX_PTERMS
MAX_ SYMBOLS
MAX_XOR_PTERMS
MAX_NODE_FROM_EXPANDERS
MINC_FITIER
NO_COLLAPSE
OPEN_DRAIN
PLA_FITIER
PLA_PROPERTY
PLA_PTERM_UTILIZA TION
PLD_INPUT_UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY _CONTROL
SET_PTERM
SIGNATURE
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

The following are rules for syntax in the .pi file.

Cl Signals and DEVICEs are not required to have properties attached
to them in order to be listed in the .pi file. However, properties
change the functions of the signals or DEVICEs to which they are
attached. This means while the following two lines are both valid
in a .pi file, their actions in the .pi file will differ.

syncl •• syncs;
syncl •• syncs { MAX_PTERMS 8 };

a As with the Design Synthesis Language, each line (with the
exception DEVICE, GROUP, or SECTION keywords), must end
with a semicolon, as shown in the following examples:

Chapter 14: Controlling Partitioning and Fitting (Optional) 203

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';
outl. .outs;

END DEVICE;

GROUP
count bits (8) ;
sync [S] { MAX PTERMS 8 }

END GROUP

SECTION
{ MAX PTERMS 8 }
TARGET 'a' ;

out7 : 5, outs

END SECTION

"force out7 •• outs into
"MACH block A
6 ; "and onto pins S

"and 6

Properties shown in this chapter with curly braces { } must be listed that way
in the .pi file. That is, the curly braces are not optional.

a Non-numeric property arguments must be surrounded by single
quotes''.

a The order in which properties are listed for a signal does not
matter. Thus the following two lines of a .pi file are functionally
the same.

INPUT ins { MAX_PTERMS a, MAX_SYMBOLS 4 };
INPUT ins { MAX_SYMBOLS 4, MAX_PTERMS 8 };

a The .pi file language is case insensitive. Certain keywords and
properties are shown in capital letters in this chapter for the sake of
clarity.

204 MACHXL Software User's Guide (Version 3.0)

Comments
Comments may be inserted into the .pi file in the same way as with the Design
Synthesis Language. Any comment must be preceded by a double quote(").
A new line ends a comment. Each line of multiple line comments must be
preceded by double quotes.

COMP OFF and COMP ON - -
As in the Design Synthesis Language, you may also use the COMP_ OFF and
COMP_ ON commands to exclude certain sections of the file executing (for
more information on COMP _OFF and COMP _ON, see Chapter 9.) This is
useful when debugging a .pi file.

Input and Output Signals in the .pi File
A signal list consists of input, output, and biput signals. Output signals are fit
on output or biput pins. There can be at most one reference to an output
signal in the .pi file for a design. Input signals are fit on input or biput pins.
There can be many references to an input signal in a .pi file. Signals declared
as OUTPUTs or NODEs in the design source (i.e., design_ name.src) may be
used as input signals to a device.

Note: The .pi file covers inputs and outputs from the device
perspective, not from the design perspective. In a design, an input or
output signal may be any signal coming into or out of a design block.
From the standpoint of a device, an input is a signal that can be fit on
an input pin, and an output is a signal that can be fit on an output or
a biput pin.

OUTPUTs or NODEs without the modifiers INPUT or OUTPUT are
assumed to be output signals. NODE signals in the design source file without
the modifiers VIRTUAL or PHYSICAL are assumed to be physical nodes in
the .pi file. Virtual nodes in the design source file may not appear as a signal
in the .pi file.

Chapter 14: Controlling Partitioning and Fitting (Optional) 205

Syntax

INPUT signal_list;
OUTPUT signal_list;

Example

outl, out2, out3;
INPUT out_as_inl, out_as_in2;

Note: The pin "identifier" is also the pin name, as indicated in a
data book specification for the device. A pin assignment is only
meaning/Ul if a target device is given .

. pi File Structure
The following is a suggested organization of a .pi file:

c:J Global Properties

c:J Ungrouped signals (signals not associated with group or device
specifications)

c:J Group specifications

c:J Device specifications

An explanation of each of these is given in the following sections.

Each section of the pi file is optional. For example, you can create a simple
.pi file consisting of only global properties. This allows you easy control of
design optimization. Or, you could create a .pi file with only device
specifications. This allows you to control the pinout on devices in your
design.

206 MACHXL Software User's Guide (Version 3.0)

Global Properties
Global Properties are properties applying to all of the signals or DEVICEs in
the design. These properties usually affect the optimization of signals. Global
properties can be overridden by properties within a device specification or by
pin-specific properties. For more information on the specifics of these
properties, see Chapter 15.

Global .pi File Properties

DEMORGAN_ SYNTH
DISABLED_ONLY _FOR_ TEST
FF_SYNTH
FIT _AS_OUTPUT
MACH_ UTILIZATION
MAX_PTERMS
MAX_ SYMBOLS
MAX_XOR_PTERMS

Syntax

{ global_property value};

Example

NO_COLLAPSE
PLA_PTERM_ UTILIZATION
PLD_INPUT_UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY_ CONTROL
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

The following example shows how to use a global property to limit the
number of p-terms (OR TERMS) of all the output signals in a design.

{MAX_PTERMS 8};

Ungrouped Signals
Individual signals not associated with a Group or Device Specification are
known as "ungrouped signals", and can be included in the .pi file. This lets
you control signal optimization without specifying the device into which the
signal should be fit.

Only output, biput, and node signals may be ungrouped signals. Ungrouped
signals must not include pin assignments.

Chapter 14: Controlling Partitioning and Fitting (Optional) 207

Any ungrouped signal will be treated as a physical node by MACHXL and
will not be collapsed out during optimization (see Chapter 12, Optimizing a
Design for more information on how the optimizer handles node collapsing.)

The syntax and examples of ungrouped signals are shown in the following
examples:

Syntax

signal_name { signal_J>roperty_l value,
signal_J>roperty_n value },

signal_name { signal_J>roperty_l value,
signal_J>roperty_n value };

Example

sync { MAX_PTERMS 8 } ;
sigl, sig2 { MAX_PTERMS 4, MAX_SYMBOLS 8 } ;

"MAX SYMBOLS and MAX_PTERMS apply
sig3, sig4 "to both sigl and sig2

Syntax

signal_name_l •• signal_name_n { signal_J>roperty_l
value, signal_property_n value } ;

Example

outl out2 { MAX_PTERMS S, MAX_SYMBOLS 4} ;

Syntax

"MAX PTERMS and MAX SYMBOLS apply
"to outl and out2 since they
"are listed as a range

array_id {signal_J>roperty_l value, •
signal_J>roperty_n value} ;

208 MACHXL Software User's Guide (Version 3.0)

Example

Y_array {MAX_PTERMS 4, MAX SYMBOLS 4};

Syntax

array id [index] { signal_propertyl value,
signal_property_n value } ; "index is an

"integer

Example

sync 5] { MAX PTERMS 8, MAX SYMBOLS 4 }

Syntax

array id [index_l •• index_n]
{ signal_property_l value,
signal_property_n value } ;

Example

gray_cnt [3 •• 8
} ;

Syntax

{ MAX SYMBOLS 9, MAX XOR PTERMS 2

DEFAULT {signal_property_l value, •
signal_property_n value} ;

Example

DEFAULT {MAX_PTERMS 8, MAX SYMBOLS 16};

Virtual Signals
If a signal is declared in the source (design_ name.src) file simply as a NODE,
the optimizer has the option of considering this signal as a virtual node or as a
physical node. If the signal is considered a virtual node, the optimizer

Chapter 14: Controlling Partitioning and Fitting. (Optional) 209

collapses it out during equation· synthesis. If the signal is considered a
physical node, the optimizer leaves it as an equation and the signal will be fit
into a device. The optimizer will determine whether a simple node should be
physical or virtual automatically in order to synthesize the most efficient
equations. See Chapter 5 for more information about PHYSICAL and
VIRTUAL NODEs.

The VIRTUAL modifier lets you specify explicitly which nodes in your design
can be collapsed out of equations during optimization. This helps ensure a
design is optimized the same way every time it's optimized.

Note: By default, if a simple NQDE signal is mentioned in the
physical information file, it is treated as a physical node, and will
not be collapsed during optimization.

The VIRTUAL modifier can only be used on ungrouped signals. Nodes
specified within the GROUP or DEVICE constructs will be treated as
physical nodes.

VIRTUAL nodes cannot haw properties or pin assignments associated with
them.

Syntax

CJ VIRTUAL signal_ name, signal_name;

CJ VIRTUAL signal_name_l .. signal_name_n;

CJ VIRTUAL array _id ;

CJ VIRTUAL array_id [index];

CJ VIRTUAL array_id [index_l .. index_n];

21 o MACHXL Software User's Guide (Version 3.0)

Example

VIRTUAL outl, out2;
VIRTUAL outl •• out4;
VIRTUAL yout;
VIRTUAL yin[8];
VIRTUAL yout [l •• 8];

Signal Properties for Ungrouped Signals
Ungrouped signals may be assigned signal properties affecting the
optimization of the signals. These signal properties have precedence over
global properties in the .pi file and affect only the associated ungrouped
signals .

. pi File Properties for Ungrouped Signals

DEMORGAN_SYNTH
DISABLED_ONLY _FOR_ TEST
FF_SYNTH
FIT_AS_OUTPUT
FIT_WITH
MACH_LOW_POWER
MAX_PTERMS

MAX_ SYMBOLS
MAX_XOR_PTERMS
NO_COLLAPSE
POLARITY _CONTROL
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

For more information on the specifics of these properties, see Chapter 15.

Syntax

signal_name { signal_JJroperty_l value,
signal_JJroperty_n value } ;

Example

To assign two properties to the same ungrouped signal use:

out {MAX_SYMBOLS 4, MAX PTERMS 4};

Chapter 14: Controlling Partitioning and Fitting (Optional) 211

DEFAULT Statement for Ungrouped Signals
The DEFAULT statement lets you specify the properties and grouping for all
of the signals in the design that are not otherwise listed in the .pi file. This
allows convenient property assignment to group together many signals without
explicitly specifying the signals in the .pi file.

When the DEFAULT statement is specified outside of a DEVICE or GROUP
specification (i.e., is ungrouped), all of the signals not specified in the .pi file
will be treated as ungrouped signals and will be affected by the DEFAULT
statement.

There can be at most one DEFAULT statement in each .pi file.

Syntax

DEFAULT {signal_J>roperty_l value, •
signal_J>roperty_n value};

Example

This example specifies all signals in the design except a 1, a 2, and a 3 will
have no more than eight product terms in their equations. There is no similar
limit on the number of product terms in the equations of a 1 , a 2, or a 3.

al, a2, a3;
default {MAX_PTERMS 8};

Group Specifications
The GROUP construct lets you specify a group of signals you want fit in the
same device (the device selected to fit the group is left to the MACHXL
partitioner). The .pi file can include multiple Group Specifications, if
needed. This construct is useful when you need to place a set of signals
together for timing, board layout, or other reasons.

Groups of signals specified in a GROUP construct may merge together with
other GROUPs and ungrouped signals to form the most efficient partitioning

212 MACHXL Software User's Gulde (Version 3.0)

solution. The ungrouped signals may consist of output, biput, or physical
node signals not otherwise mentioned in the .pi file, or signals at the global
level of the .pi file. Only output, bi put, and node signals may be members of a
GROUP. The signal list must not include pin assignments in the GROUP
construct.

Syntax

GROUP
name)
signal list
default

END GROUP;

The above items in the GROUP construct may appear in any order. There
may be at most one NAME construct per GROUP, and one DEFAULT
construct for each .pi file.

Naming a Group
The NAME construct is used to assign a name to a GROUP. The given name
will appear with the group in the .npi file. For more information the the .npi
file, see the section entitled Using the .npi File to Recreate a Pinout later in
this chapter.

Naming a group can be useful for documentation purposes. Naming has no
effect on the fitting process. There may be at most one NAME construct per
GROUP.

Syntax

NAME identifier

Chapter 14: Controlling Partitioning and Fitting (Optional) 213

Listing Signals in a Group
The signals list for a Group specification is a list of output, biput, and node
signals to be included in the GROUP construct, as well as any signal
properties for the list.

Examples and syntax of signal lists for grouped signals are shown below:

Syntax

signal_name { signal_J>roperty_l value,
signal_J>roperty_n value } ;

Example

GROUP
sync ;
sigl, sig2 { MAX SYMBOLS 8 } ; "MAX SYMBOLS 8

"applies to sigl and sig2
END GROUP

Syntax

signal_name_l •• signal_name_n { signal_J>roperty_l
value, • • signal _J>ropert y _ n value } ;

Example

GROUP
ol •• 08 ;
outl •• out2 { MAX_PTERMS 5 }

applies to outl and out2
END GROUP

Syntax

array id { signal_J>roperty_l value,
signal_J>roperty_n value } ;

214 MACHXL Software User's Gulde (Version 3.0)

"MAX PTERMS 5

Example

GROUP
Xarray
Yarray { MAX PTERMS 4, MAX SYMBOLS 4 }

, 1 END GROUP

Syntax

array id [index] { signal_yroperty_l value, ..
signal_yroperty_n value } ;

Example

GROUP
count bits [8] ;
sync [5] { MAX PTERMS 8 }

END GROUP

Syntax

array_id [index •• index_n] { signal_yroperty_l
value, •. signal_yroperty_n value} ;

Example

GROUP
out [0 •• 8] ;
grey_cnt [3 .. 8
MAX SYMBOLS 16 } ;

END GROUP ;

Syntax

{MAX_PTERMS 8;

DEFAULT { signal_yroperty_l value,
signal_yroperty_n value } ;

Chapter 14: Controlling Partitioning and Fitting (Optional) 215

Example

GROUP
DEFAULT { MAX PTERMS 8 }

END GROUP ;

Signal Properties for a Group
Signal properties for a GROUP construct are properties applying to the
signals which the properties are attached. Signal properties have precedence
over global properties in the .pi file. The properties affect the optimization of
the signals .

. pi File Signal Properties Supported in the GROUP Construct:

DEMORGAN_SYNTH
DISABLED_ ONLY _FOR_ TEST
FF_SYNTH
FIT _AS_ OUTPUT
FIT_WITH
MACH_LOW_POWER
MAX_PTERMS

MAX_ SYMBOLS
MAX_xOR_PTERMS
NO_COLLAPSE
POLARITY_ CONTROL
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

For more information on the use of these properties, see Chapter 15.

Syntax

{ signal_property_l value, .. signal_property_n
value } ;

Example

To assign two properties to the same grouped signal, use:

GROUP
out { MAX SYMBOLS 4, MAX PTERMS 4 }

END GROUP

216 MACHXL Software User's Guide (Version 3.0)

DEFAULT Statement in a Group
The DEFAULT statement lets you specify the properties and grouping for all
of the signals in the design not otherwise listed in the .pi file. This allows you
to conveniently assign properties and group together many signals without
explicitly specifying the signals in the .pi file.

When the DEFAULT statement is used in a GROUP construct, a group will
be created containing all unspecified signals in the design.

There may be at most one DEFAULT statement in each .pi file. Properties on
the DEF AULT statement are optional.

Syntax

DEFAULT { signal_property_l value,
signal_property_n value } ;

Example

This example specifies all signals in the design other than a 1 , a 2, and a 3
will be placed in one group, and fit into the same device. The optional
property MAX _PTERMS specifies signals in the group will have no more
than eight product terms in their equations.

al , a2 , a3 ;

GROUP
default { MAX PTERMS 8 }

END GROUP ;

Device Specifications
Device specifications let you describe device-specific information, such as the
placement of signals on each device in the design. Device specifications are
used as part of the Manual and Directed Partitioning modes, and give you
access to device-specific features.

Chapter 14: Controlling Partitioning and Fitting (Optional) 217

The DEVICE construct lets you define the device specifications. Each
DEVICE construct generally corresponds to one physical device. The
DEVICE construct may have embedded GROUPs or SECTIONs

(SECTIONs are discussed later in this chapter). The SECTION construct
allows you to describe subsections for devices having subsections, such as the
MACH devices.

Syntax

DEVICE
[properties]
[target~statement]

[NAME]
[signal lists]
[DEFAULT]
[HIGH-VALUE]
[LOW-VALUE]
[NO_CONNECT]
[SECTION]
[signal lists]
[GROUP]
[BLOWN fuses]
[INTACT fuses]

END DEVICE ;

The above items in the DEVICE construct may appear in any order.
However, there may be at most one NAME construct per DEVICE and one
DEF AULT construct in a .pi file.

Device Properties
Device properties are properties applying to all signals in the device or to the
device itself. These properties affect the optimization of signals, as well as
how device features are utilized. Device properties have precedence over
global properties. Signal properties can override device properties.

218 MACHXL Software User's Guide (Version 3.0)

Device properties supported in the .pi file:

BLOC KM ODE
CLOCK_BY _PIN
CLOCK_BY _ROW
COMMON_SET_PTERM
DEMORGAN_ SYNTH
DISABLED_ONLY _FOR_ TEST
FF_SYNTH
FLOAT_NODES
FIT_AS_OUTPUT
FORCE_INTERNAL_FB
FUSEMAP _FILE
JEDEC_FUSEMAP
MACH_LOW_POWER
MACH_ UTILIZATION
MACH_ZERO_HOLD_INPUT

MAX_NODE_FROM_EXPANDERS
MAX_PTERMS
MAX_ SYMBOLS
MAX_XOR_PTERMS
MINC_FITTER
NO_COLLAPSE
OPEN_DRAIN
PLA_PTERM_ UTILIZATION
PLD_INPUT _UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY_ CONTROL
SET_PTERM
SIGNATURE
XOR_POLARITY _CONTROL

For more information on the use of these properties, see Chapter 15.

Syntax

{ device_property_l, device_property_n value };

Example

To limit the number of p-terms (OR TERMS) of all the output signals on a
device, use the following device property:

DEVICE
{ MAX PTERMS 8 }

END DEVICE

Naming a Device
The NAME construct is used to assign a name to a DEVICE. The given
name will appear with the group in the .npi file. For more information the

Chapter 14: Controlling Partitioning and Fitting (Optional) 219

.npi file, see the section entitled Using the .npi File to Recreate a Pinout
later in this chapter.

Naming a device can be useful for documentation purposes. Naming has no
effect on the fitting process. There may be at most one NAME construct per
DEVICE.

Syntax

NAME identifier

Targeting a Specific Device for Fitting
The TARGET construct for device specifications tells the fitters which device
to use. When TARGET is used with the DEVICE construct, you can target
the device, template, part number or footprint you want to use.

The TARGET construct allows you to specify devices three ways:

Syntax

CJ You can specify the exact device using the manufacturer's part
number.

CJ You can specify the type of device you want to use and the
package type (footprint). The combination of device and footprint
can help MACHXL's fitters find second-source devices for your
design from its extensive Device Library.

o You can specify the footprint of the device only. The footprint
specification can help MACHXL's fitters find a replacement for an
existing device that may make modifications to your PCB layout
unnecessary.

TARGET 'PART NUMBER manufacturer abbreviation
part_number' ;

TARGET 'TEMPLATE template_name footprint_name•;
TARGET 'FOOTPRINT footprint_name';

220 MACHXL Software User's Gulde (Version 3.0)

Where:

manufacturer_abbreviation, part_number,
template_name, and footprint_name can be found in
Appendix A.

Examples

To place outputs ol, o2, and o3 into an AMD
PALCE16V8H-10JC/4, use the following entry in the .pi file:

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';
ol, o2, o3 ;

END DEVICE;

To place outputs ol and o2 on specific pins of a 22V10 DIP package, use
the following entry in the .pi file:

DEVICE
TARGET ' TEMPLATE P22V10 DIP-24-STD '
ol : 14, o2 : 15 ;

END DEVICE;

To place outputs ol, o2, and o3 on specific pins of a 20-pin DIP package,
use the following entry in the .pi file:

DEVICE
TARGET ' FOOTPRINT DIP-20-STD '
ol : 12, o2 : 13, o3 : 14 ;

END DEVICE;

Listing Signals in a Device
The following shows syntax and examples of how to list the signals, nodes,
signal properties, and signal directions to be included in a DEVICE construct.

Chapter 14: Controlling Partitioning and Fitting (Optional) 221

In the following examples, signal_ name and array _id are identifiers and index
is an integer. Pin_assignment is the name assigned by the device
manufacturer as shown in a part data book.

Syntax

Note: A pin assignment is meaningful only if a target device is
specified with the TARGET construct.

INPUTIOUTPUT* signal_name pin_assignment
{ signal_property_l value, ..
signal_property_n value } ;

Example

DEVICE
OUTPUT sync { MAX_PTERMS
INPUT inl : 5 , in2 : 6 ;

END DEVICE

Syntax

8 } ;
"INPUT applies to inl
"and in2

INPUT!OUTPUT* signal_name pin_assignment
{ signal_property_l value, ••
signal_property_n value } ,signal_name
pin_assignment{ signal_property_l value, .•
signal_property_n value } ;

* INPUT and OUTPUT are optional

222 MACHXL Software User's Guide (Version 3.0)

Example

DEVICE
TARGET ' FOOTPRINT DIP-20-STD ' ;
sync { MAX PTERMS 8 } ;
INPUT ol : 5 , o2 : 6 ; "INPUT applies to ol

"and o2
sigl , sig2 { MAX SYMBOLS 8 } ;

" MAX SYMBOLS applies to sigl and sig2
END DEVICE ;

Syntax

INPUTIOUTPUT* signal_name_l, .. signal_name_n
{ signal_property_l value, ..
signal_property_n value } ;

Example

DEVICE
OUTPUT ol •• 08
out 1 .. out2 {MAX PTERMS 5 }

END DEVICE ;

Note: Pin numbers cannot be assigned when using the 11 • • 11 range
indicator.

Syntax

INPUTIOUTPUT* array id { signal_property_l
signal_property_n value } ;

* INPUT and OUTPUT are optional

value, ..

Chapter 14: Controlling Partitioning and Fitting (Optional) 223

Example

DEVICE
INPUT
Yarray

END DEVICE ;

Xarray ;
{ MAX SYMBOLS 4, MAX PTERMS 4 }

Note: Pin numbers cannot be assigned when using an array to
represent a set of signals.

Syntax

INPUT,OUTPUT* array_id [index]
{ signal_yroperty_l value,
signal_property_n value } ;

Where index is an integer.

Example

DEVICE

pin_assignment

TARGET ' FOOTPRINT DIP-20-STD '
INPUT count bits [8) ;
sync 5] : 12 { MAX PTERMS 8 } ;

END DEVICE ;

Syntax

INPUT!OUTPUT* array_id [index_l •• index n]
{ signal_yroperty_l value, ••
signal_yroperty_n value } ;

224 MACHXL Software User's Guide (Version 3.0)

Example

DEVICE
INPUT gray_cnt [3 •• 8) {MAX SYMBOLS 8 }

END DEVICE ;

Note: Pin numbers cannot be assigned when using an array to
represent a set of signals.

Syntax

DEFAULT { signal_property_l value,
signal_property_n value } ;

Example

DEVICE
DEFAULT { MAX PTERMS 8 }

END DEVICE ;

Note: Pin numbers cannot be assigned when using DEFAULT to
represent a set of signals.

Renaming the Fusemap File of a Device
Should you need to, you can rename your fusemap files (typically JEDEC
files) with the FUSEMAP _FILE statement.

Syntax

DEVICE

Chapter 14: Controlling Partitioning and Fitting (Optional) 225

{ FUSEMAP_FILE 'newname.xxx' }
END DEVICE ;

If a fusemap filename is not specified, the default will be used. In the example
shown above, the file would be renamed to newname.xxx.

Specifying Signal Directions in a Device
It is common for the output signal of one device to feed input pins on other
devices in designs requiring multiple devices. To avoid ambiguity in device
specification, specify explicitly the signal direction of any pin in the device
specification. This will ensure the output signal is generated on the
appropriate device in your design.

Syntax

INPUT signal_list;
OUTPUT signal_list;

Note: For bidirectional (BIPUT) signals, use the OUTPUT
statement to specify the pin thar generates the bidirectional signal.

The following rules apply when specifying the signal direction:

n Output signals (specified with the OUTPUT statement) will be fit
onto output or biput pins of the device.

D The OUTPUT statement can only be used for node, output, and
biput signals. If you specify the OUTPUT statement more than
once for a signal, MACHXL will interpret this as specifying the
signal should be generated on more than one pin. This causes
MACHXL to generate an error.

Cl The INPUT statement can be used multiple times for a signal.

n The INPUT statement can be applied to any signal in the design.
If the INPUT statement is applied to a node, output, or biput

226 MACHXL Software User's Guide (Version 3.0)

signal, MACHXL interprets this as a signal generated on a
different pin than is fed to this pin as an input.

o Inputs from the design file declared without the INPUT modifier
are assumed to be input signals.

o Outputs and biputs from the design file declared without the
INPUT or OUTPUT modifiers are assumed to be output signals.

o Nodes from the design file declared without the INPUT or
OUTPUT modifiers are assumed to be physical nodes.

Signal Properties for a Device
Signal Properties for a DEVICE construct are properties applying only to the
signals to which they are attached. Signal properties have precedence over
global properties in the .pi file and device properties attached to the device.
These properties affect the optimization of the signals and provide access to
device-specific features .

. pi File Signal Properties Supported in the DEVICE Construct:

CLOCK_BY _PIN
CLOCK_BY _ROW
COMB_OUT_REG_FB
DEMORGAN_SYNTH
DISABLED_ ONLY _FOR_ TEST
FF_SYNTH
FIT _AS_ OUTPUT
FIT_WITH
FORCE_INTERNAL_FB
MACH_LOW_POWER

MAX_NODE_FROM_EXPANDERS
MAX_PTERMS
MAX_ SYMBOLS
MAX_XOR_PTERMS
NO_COLLAPSE
OPEN_DRAIN
POLARITY_ CONTROL
SET_PTERM
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

For more information on using these properties, see Chapter 15.

Syntax

(property_name_l value, •• property_name_n value};

Chapter 14: Controlllng Partitioning and Fitting (Optional) 227

Example

To assign two properties to the same device signal, use:

DEVICE
out { MAX SYMBOLS 4, MAX PTERMS 4 }

END DEVICE

DEFAULT Statement in a Device
The DEFAULT statement lets you specify properties for all of the signals in
the design not otherwise listed in the .pi file. This allows convenient
assignment of properties and grouping of many signals without explicitly
specifying the signals in the .pi file.

When the DEFAULT statement is used in a DEVICE construct, a group will
be created containing all unspecified signals in the design ..

There may be at most one DEFAULT statement in each .pi file.

Syntax

DEFAULT { signal_yroperty_l value,
signal_yroperty_n value } ;

Example

This example specifies signals in the design other than a 1 , a 2, and a 3 be
placed in one device. The property MAX_PTERMS specifies signals in the
group will have no more than eight product terms in their equations.

al, a2, a3 ;

DEVICE
DEFAULT { MAX PTERMS 8 }

END DEVICE ;

228 MACHXL Software User's Guide (Version 3.0)

Assigning Logic Levels (High-Value, Low-Value,
NO_CONNECT) to Pins of a Device
It is possible to assign logic levels to pins or to specify a pin not be used as a
signal pin. The HIGH-VALUE, LOW-VALUE, and NO_CONNECT
statements let you duplicate exactly the pin assignment of devices by not
allowing the partitioning software to place signals on the pins.

Syntax

HIGH-VALUE
LOW-VALUE
NO CONNECT

pin_assignment ;
pin_assignment ;

pin_assignment

Where:

pin-assignment is an identifier (an identifier is the name
assigned by the device manufacturer to a pin of the device as shown in
a data book). A pin assignment is meaningful only if a target device
is specified with a TARGET statement.

Example

DEVICE
TARGET I FOOTPRINT DIP-20-STD I ;

HIGH-VALUE 14 "Pin connected to the high
"voltage source

LOW-VALUE 7 ;

NO CONNECT 1, 2, 4;
END DEVICE;

"Pin connected to the low
"voltage source
"Pin left unconnected

Device Section Specifications
Some complex PLDs, like the AMD MACH, are organized into blocks or
quadrants. In these devices each block can be viewed as a small PLD.
Outputs from the block can be easily fed back into the same block. However,

Chapter 14: Controlling Partitioning and Fitting (Optional) 229

it may not be easy or possible to feed all outputs from a block into a different
block on the same device.

Because of this signal routing limitation in block-oriented devices, it may be
useful to control which signals are to be placed into which blocks in the
device. This helps ensure the device will be used efficiently.

The SECTION construct in a device specification lets you control which
signals are placed into which blocks in a block-oriented device. This construct
should only be used with block-oriented devices, such as the AMD MACH
devices.

Syntax

SECTION
properties]
target_statement

signal_lists
END SECTION;

Section Properties

Section properties are properties applying to all of the signals in the
section (i.e., a block or quadrant). These properties affect the
optimization of signals, as well as how device features are utilized.
Section properties have precedence over global properties and device
properties. Signal properties can override section properties.

Section Properties Supported in the .pi File.

DEMORGAN_SYNTH
DISABLED_ONLY _FOR_ TEST
FF_SYNTH
FIT_AS_OUTPUT
FLOAT _NODES
FORCE_INTERNAL_FB
MAX_PTERMS

MAX_ SYMBOLS
MAX_xOR_PTERMS
NO_COLLAPSE
POLARITY _CONTROL
XOR_POLARITY _CONTROL
XOR_TO_SOP_SYNTH

For more information on using these properties, see Chapter 15

230 MACHXL Software User's Guide (Version 3.0)

Syntax

{ property_name value, •• property_name value} ;

Example

To limit the number ofp-terms (OR terms) within a section of the AMD
MACHI 10, use the following declaration:

DEVICE
TARGET 'TEMPLATE machllO jlcc-44-std ' ;

" place group into MACHllO
SECTION
{ MAX_PTERMS S }
TARGET 'a' ; "force out7 •• outs into MACH

"block A
out? : 5, outs
END SECTION

6 "and onto pins 5 and 6

END DEVICE ;

Syntax

For more information on controlling specific devices, see Chapter 15.

Targeting a Block or Quadrant Within a Device

The TARGET construct for section specifications tells the
partitioning process which block or quadrant to use when fitting
specific signals.

For more information on Targeting specific devices, see Chapter 15.

TARGET 'section_specification•

Chapter 14: Controlling Partitioning and Fitting (Optional) 231

Where:

section_specification as well as TARGET usage is device
specific.

Example

To force the signals out 7 and outB into block A of an AMO MACHI 10,
use the following declaration:

DEVICE
TARGET 'TEMPLATE machllO jlcc-44-std ' ;

SECTION
{ MAX_PTERMS
TARGET 'a' ;
out7, out8 ;
END SECTION

END DEVICE ;

8 } ;

" place group into MACH110

"force out7 •• out8 into MACH
"block A

Specifying Signal Directions in a Section of a Device

Specifying signal direction in a section of a device is the same as
specifying them in a device as a whole. Please refer to the section
earlier in this chapter entitled Specifying Signal Direction in a
Device.

Listing Signals in a Section of a Device

Listing signals in a section of a device is the same as for a GROUP or
DEVICE construct. Please see the section earlier in this chapter
entitlied Listing Signals for a GROUP or Listing Signals in a
Device.

232 MACHXL Software User's Gulde (Version 3.0)

Grouping Signals Within a Device
Grouping signals within a block or quadrant of a block-oriented device is
similar to using the SECTION construct. The GROUP construct lets you
specify which nodes, outputs and biputs are to be grouped together.

Syntax

GROUP
signal_list

END GROUP;

The GROUP construct within a DEVICE specification differs from a
SECTION specification in three ways:

o The GROUP construct does not include a TARGET specification,
where a SECTION specification may.

a You cannot specify INPUTS in the GROUP construct. All signals
in the GROUP construct must be node, output, or biput signals.

o The signals in the GROUP construct may be merged with other
signals or GROUPs in the design.

The behavior of the GROUP construct in a device specification is device
specific for block-oriented devices. For a complete discussion of GROUP
usage with a specific device, please see the appropriate section in Chapter 15.

Fuse-Level Programming Control
The .pi file allows you to control how PLD and CPLD devices are
programmed at the fuse level. The fuse-level control commands, BLOWN
and INTACT may only be used with an explicit target device. Fuse-level
programming control commands override the programming done by the
partitioning process.

Chapter 14: Controlling Partitioning and Fitting (Optional) 233

BLOWN and INTACT

The .pi file commands, BLOWN and INT ACT indicate the fuses in a
device to be blown or left intact.

Syntax

BLOWN [fuse_list);
INTACT [fuse_list);

The list of fuses to be blown or left intact is represented by fuse _list
and may be either a list of fuses separated by commas or a range.
The order in which the commands are given does not matter.

Example

DEVICE
TARGET 'TEMPLATE Pl6V8A DIP-20-STD';

DEFAULT;
BLOWN 2056, 2058, 2060 •• 2118;
INTACT 2057, 2059;

END DEVICE;

Using the .npi File to Recreate a Pinout
After the design is successfully partitioned and fusemaps generated, the
partitioning process creates a physical information file to document (in terms
of PIL) how the design was fit into the devices in the solution. This
partitioning process-generated physical information file is called the .npi (new
pi) file, and is named design_ name.npi. This .npi file may be used to recreate
exactly the solution and signal placement on pins. This may be useful if, for
example, ~he design must be changed functionally after the printed circuit
board has been designed and laid out. GROUP and DEVICE constructs that
were assigned a NAME will retain the given NAME in the .npi file. To use
the .npi file, copy the file to the .pi file of the same file (i.e.,
same _file_ name.pi).

234 MACHXL Software User's Guide (Version 3.0)

Examples Using the .pi File

The following sections will show the form and content of the Physical
Information file as you could use it in different situations. The examples are
intended to illustrate the concepts behind the use of the .pi file. See the
reference section for details about PIL constructs shown in the examples.

Example 1: Controlling the Size of
Equations
You can use the .pi file to control the size of equations generated by the
optimizer. Controlling the size of equations can have a major impact on the
success of fitting and number of solutions generated by the fitter. If you know
you will be using devices with macrocells having 8 or fewer pterms, you
would want to keep the optimizer from collapsing nodes into equations with
more than 8 pterms. In this case, the .pi file could contain:

{MAX_PTERMS 8};
{MAX_SYMBOLS 16};

MAX _PTERMS and MAX_SYMBOLS are examples of "properties".
Properties are one means of controlling certain actions of the synthesis and
fitting processes.

Example 2: Forcing Signals To Be Fit
Together in the Same Device
A design implementing a counter has output signals heavily interdependent.
For timing reasons the designer wants them fit together in the same device.
The designer also wants the automatic device selection and partitioning to
determine the best device according to your priorities. In this case, the .pi file
could contain:

Chapter 14: Controlling Partitioning and Fitting (Optional) 235

GROUP
qO •• qS, carry;

END GROUP;

The signals that are members of the GROUP, qO . . q5 and carry, will be
fit together in the same device, but there are no limitations imposed by the
GROUP on the device used. In addition, other groups and ungrouped signals
may be fit in the same device with this group.

Example 3: Using Specific Devices
A small prototype design has several reprogrammable P 16V8As that are to be
used during the debugging stage. In this case, the .pi file could contain:

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';
o[0 •• 6];
carry;

END DEVICE;

Example 4: Maintaining Pin Assignments
You have an existing MACHXL design in which you have changed some logic
and want to refit the design into the same device. The device is a P20V8 in a
JLCC package, and you want to maintain the pin assignments. In this case,
the .pi file could contain:

DEVICE
TARGET 'TEMPLATE P20V8A JLCC-28-P28';
INPUT clk:2, in1:3, in2:4, in3:5, in4:6;
out1:18, out2:19, out3:20, out4:21;
NO CONNECT 7 •• 13, 15, 22 •. 27;

END DEVICE;

236 MACHXL Software User's Guide (Version 3.0)

Here, the target device is named by its TEMPLATE (P20V8) and its
"footprint" (JLCC-28-P28). A template is a device architecture and the
footprint is a certain pinout configuration consisting of three things:

a The type of package (e.g., DIP, SOIC, or JLCC).

a The number of pins in the package.

a The mapping of physical pins to logical, or virtual, pins.

For example, DIP-24-STD indicates a 24 pin DIP package with the standard
pinout mapping (i.e., pin 12 as ground and pin 24 as VCC.) Most parts use a
standard pin mapping, abbreviated as STD. An example of a non-standard
pin mapping is the 4.5ns Pl6L8 from AMO, which uses extra power and
ground pins in a 28 pin DIP. The footprint for such a device would be DIP-
28-A28.

Signals used as inputs to the device are marked with INPUT in the .pi file.
The signals are assigned to pins by appending a :pin_name to the signal
name, such as clk:2. Device pins to be left free are marked with
NO_CONNECT. The pin names in the pin assignments and no-connect pins
are the actual physical pin names for the targeted device. For example, ifthe
targeted device is a PGA, a pin assignment will look like clk:A 1.

Example 5: Fitting the Design into One
Device
A designer would like to fit an entire design into one MACHI 10. The .pi file
would look like the following:

Chapter 14: Controlling Partitioning and Fhting (Optional) 237

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC';
DEFAULT;

END DEVICE;

In this example, the DEVICE specification is marked as the DEFAULT
device. The default device is the device containing all the output signals NOT
mentioned elsewhere in the .pi file. Specifying a default device is optional.
Here, it provides a quick way to put all the signals in the design into the same
device. DEFAULT could even be given outside of any group or DEVICE
specification (the "global level" of the .pi file), which means all unmentioned
signals will be fit through automatic partitioning and fitting.

Example 6: Fitting the Design into More
Than One Device
You have a design that will take two parts. In this case, the .pi file could
contain:

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';
outl. .outs;

END DEVICE;

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';
out6 •• outlO;

END DEVICE;

238 MACHXL Software User's Gulde (Version 3.0)

Example 7: Mixing Automatic and Directed
Partitioning
This example shows how automatic and directed partitioning can be mixed in
the same design. Assume that your design is similar to the design of the last
example. However, it has several critical signals,
state_ bit_ 0 . . state_ bit_ 7, that must be placed into fast PLDs. In
this case, the .pi file could contain:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC';
outl. .outs;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC';
out6 •• out10;

END DEVICE;

Note the contents ofthis .pi file are the same as the previous example. In this
case, nothing needs to be said in the .pi file about the critical functions. If you
prioritize for speed during partitioning, MACHXL's automatic device
selection, partitioning, and fitting will find the fastest device or combination of
devices available that will fit the critical functions.

Example 8: Refitting a Design Into the Same
Footprint
A board is already in production, but a last minute specification change
dictates a change in the logic implemented in the PLD. This causes the design
to outgrow the P20R8 used. To refit the design into another architecture, but
keep the pinout the same, the .pi file could contain:

Chapter 14: Controlling Partitioning and Fitting (Optional) 239

DEVICE
TARGET 'FOOTPRINT DIP-24-STD';
INPUT clk:l, oe:13, in1:2, in2:3, in3:4, in4:5;
INPUT in5:6, in6:7, in7:8, in8:9, in9:10, inlO:ll;
INPUT in11:14, inl2:23;
outl:lS, out2:16, out3:17, out4:18;
out5:19, out6:20, out7:21, out8:22;
END DEVICE;

Here, the device is targeted to a FOOTPRINT (DIP-24-STD). Targeting a
device to a footprint will, in effect, apply automatic device selection and fitting
across devices matching the footprint. Depending on the form of the actual
equations, there are up to 79 architectures potentially fitting this .pi file
example. You can use the constraints and priorities ofMACHXL's automatic
device selection and partitioning to optimize the fit for price, speed, or other
factors. The old pin assignments will be enforced, even without knowing in
advance which architecture you will be using. This means the board layout
will be preserved!

Example 9: Specifying Devices Without
Specifying Signals
If you want to specify which devices to use without providing specific pin
information, the DEVICE construct may be used without a signal list.

For example, to fit a design into two MACH210 devices and a MACH 130
device, the following .pi file will perform the task.

DEVICE
TARGET 'PART NUMBER AMO MACH210-15JC';

END DEVICE;

DEVICE
TARGET 'PART NUMBER AMO MACH210-15JC';

END DEVICE;

240 MACHXL Software User's Guide (Version 3.0)

DEVICE
TARGET 'PART NUMBER AMD MACH130-15JC';

END DEVICE;

Chapter 14: Controlling Partitioning and Fitting (Optional) 241

242 MACHXL Software User's Guide (Version 3.0)

15 Device-Specific Partitioning (Optional)

Contents
Introduction ... 245
General Device Fitting With .pi File Properties 245

Controlling PLO Utilization .. 245
Using the FIT_AS_OUTPUT Property 246
Controlling How Signals Fit Together 247
Enables Used Only For Test.. .. 248
Synthesis Control Properties ... 249

Accessing Internal Points in a Device ... 251
Hidden Nodes ... 251
Shadow Nodes .. 251
Unary Nodes ... 252
Devices With Unary Nodes ... 254

Other Device-Specific Information for PLDs 255
Synchronous Preset in the 22Vl0 Architecttires 255
Using the Combinatorial Output/Registered Feedback
Accessing the Open-Drain Outputs of the Pl 6V8HD 256
Specifying JEDEC Filenames .. 259

AMO MACH .. 259
MACH Pin Numbering ... 259
Using the . pi File with MACH Devices 261

Properties and Device Utilization 261
Equation Optimization .. 262

Targeting PAL Blocks .. 263
Using GROUPs with MACH 264
Using SECTIONs with MACH 264
Using FLOAT_NODES with MACH Devices 266
Accessing the MACH Internal Feedback Path 267
Configuring the MACH 445 and MACH 465
Devices for Zero-Hold Time 268

Chapter 15: Device-Specific Partitioning (Optional) 243

Accessing the MACH 445 and MACH 465
Signature Bits ... 269
The MACH .rpt File ... 269
The MACH LOW POWER Attribute 270

244 MACHXL Software User's Gulde (Version 3.0)

Introduction

Chapter 14 introduces the Physical Information (.pi} file and how it is used to
control device partitioning. As is discussed in that chapter, the .pi file lets you
control MACHXL's automatic partitioning, specifically:

o How a design is partitioned among devices

o How device resources are used, including pin assignments.

While Chapter 14 deals with the structure of the .pi file and the general
device-control features, this chapter gives information about how to use the .pi
file with specific devices, architectures, and families of devices.

General Device Fitting With .pi File
Properties

Controlling PLO Utilization
In the case of some designs it is prudent to reserve PLD resources for future
logic expansion. The NO_ CONNECT construct can be used to keep specific
pins free (for more information, see Chapter 14). There are also three
additional properties for controlling the utilization of PLDs. These properties
have no effect on CPLDs such as the AMD MACH devices.

Cl PLO _INPUT_ UTILIZATION - sets the maximum percentage of
array inputs on a device that may be used during fitting.

Cl PLD _OUTPUT_ UTILIZATION - sets the maximum percentage of
output pins or output macrocells on a device that may be used
during fitting.

Cl PLA_PTERM_UTILIZATION - sets the maximum percentage of
PLA and row-product terms used during PLA fitting. There is no
equivalent control property for P ALs.

Chapter 15: Device-Specific Partitioning (Optional) 245

The default percentage for each of these properties is 100% (meaning that the
device properties are fully utilized). The syntax for all three properties is the
same, as shown below:

Syntax

{ PLD_INPUT_UTILIZATION percent };
{ PLD_OUTPUT_UTILIZATION percent };
{ PLA_PTERM_UTILIZATION percent };

Example

{PLD_INPUT_UTILIZATION 90};
{PLD_OUTPUT_UTILIZATION 85};
{PLA_PTERM_UTILIZATION 95};

In these examples, input utilization is limited to 90%, output utilization is
limited to 85%, and PLA pterm utilization is limited to 95%. As an example,
if a P22Vl0 is targeted, only 19 of the 22 available array inputs will be used,
and only 8 of the 10 available outputs will be used.

Using the FIT_AS_OUTPUT Property
The FIT_ AS_ OUTPUT property allows you to control whether a node is fit
as an OUTPUT or as a NODE. The FIT_ AS_ OUTPUT property can be
placed on NODEs or OUTPUTs in the .pi file. The property has no effect on
output signals, which are already destined to be fit on a visible output pin of a
device. For node signals, this property alerts the fitter to place this node
signal on an output pin.

c::J The user may wish to tell the fitter to fit NODEs on OUTPUTs in
PLD's. Defining a NODE to be on an OUTPUT during PLD
fitting may speed-up the process significantly.

246 MACHXL Software User's Guide (Version 3.0)

Example

SOURCE FILE

INPUT d,e,f,clk;
NODE d node CLOCKED BY elk;
output out, outl;

d node = d;
out = d_node*e;
outl = d_node+f;

PHYSICAL INFORMATION FILE

device
TARGET 'PART NUMBER AMO PALCE16V8H-10JC/4';
d_node{FIT_AS_OUTPUT};
out;

end device;

device
TARGET 'PART NUMBER AMO PALCE16V8H-10JC/4';
default;

end device;

Controlling How Signals Fit Together
Early in the fitting process, the fitter decides which signals fit together as one
inseparable block of functionality.

For PLDs this means signals will be fit in the same output macrocell. Signals
can be fit together if a NODE is the only signal feeding another NODE or
OUTPUT that has no register or latch equations.

You can control this fitting process with two .pi file properties,
NO COLLAPSE and FIT WITH. - -

a The NO_ COLLAPSE property tells the back-end tools to fit this
signal individually, separate from the fitting of any other signal.

Chapter 15: Device-Specific Partitioning (Optional) 247

CJ The FIT_ WITH property lets you specify two signals to be fit
together. The FIT_ WITH property is allowed on any .pi output,
and takes one argument. For example, to say that signal node_x
should be fit with x, the .pi file would contain:

node x {FIT_WITH 'x'};

Example

SOURCE FILE

INPUT d, e, elk, oe;
NODE d node CLOCKED BY elk;
NODE e node CLOCKED BY elk;
OUTPUT out, e_out, not e out ENABLED BY oe;

d node = d;
e node = e;
out = d_node;
not e out = e_node;
e_out = e_node;

PHYSICAL INFORMATION FILE

d node {NO_COLLAPSE};
e node {FIT_WITH 'e_out'};

Enables Used Only For Test
In some designs, an output is disabled only during test. During normal
operation the output is never disabled and the signal on the input of the tri
state buffer is functionally equivalent to the signal on the output of the tri-state
buffer.

MACHXL, however, treats two signals differently if there is an enable
equation between them. The signals are considered functionally different. To
indicate an output will only be disabled during testing, use the .pi property
DISABLED_ ONLY _FOR_ TEST. This property tells the fitter to:

CJ Program the enable equation.

248 MACHXL Software User's Guide (Version 3.0)

o Treat the signal on the input of the tri-state buffer as
EQUIVALENT to the signal on the output of the tri-state buffer
(for feedback purposes.)

Example

out x {DISABLED_ONLY_FOR_TEST};

If the output signal out_x has an enable, the enable equation will be
programmed. If out_x is fed only a single signal, e.g., node_y, out_x and
node_y will be interchangeable for feedback purposes. This property is for
outputs in the .pi file, but a shorthand allows the property to be applied to a
group.

Example

{DISABLED_ONLY_FOR_TEST};

This example applies the DISABLED_ ONLY _FOR_ TEST property to all
outputs in the design.

Synthesis Control Properties
Three properties are available to control synthesis in the fitter.

o The DEMORGAN_SYNTII property controls DeMorgan
synthesis of the data equations, where data equations are the D,
JK, SR, T, XOR left and XOR right equations.

o The FF _SYNTH property controls flip flop synthesis.

o The XOR_ TO_ SOP_ SYNTH property controls XOR to Sum-of
Products synthesis.

When using these properties, some things are not allowed.

o Control of DeMorganization of control equations, such as
ENABLE, CLOCK, RESET, or PRESET.

Chapter 15: Device-Specific Partitioning (Optional) 249

Cl Control of DeMorganization of the J equation of a JK flip flop
with no corresponding DeMorganization of the K equation.

By default, the fitter will automatically optimize the design. This means that
there is generally little reason to use these properties. If the need does arise,
however, the use of these properties is described in the following table:

Synthesis Control Properties for Use in the .pi File

Property
DEMORGAN_SYNTH

FF_SYNTH

XOR_TO_SOP_SYNTH

Value Action
AUTO (default) The back-end tool will automatically

select the best DeMorganization choice.
FORCE Force the back-end tool to DeMorganize

the primary equation (use the offset).
OFF Prevent the back-end tool from

DeMorganizing the primary equation
(use the onset).

AUTO (default) The back-end tool will automatically do
flip flop synthesis to meet the needs of
the target device.

OFF Require the target device to have the
flip flop type given in the design.

D_FLOP Require the target device to use a D flip
flop.

T _FLOP Require the target device to use a T flip
flop.

JK_FLOP Require the target device to use a JK
flip flop.

SR_FLOP Require the target device to use an SR
fli flo .

*AUTO (default) The back-end tool will automatically
select between the XOR equation and
the sum-of-products equation.

FORCE Force the back-end tool to use the sum
of-products equation.

OFF Force the back-end tool to use the XOR
e uation.

250 MACHXL Software User's Guide (Version 3.0)

Accessing Internal Points in a Device

Hidden Nodes
A hidden node is a node not terminating in a physical pin connection.

Node signals are signals placed on hidden nodes. However, node signals are
not restricted to hidden nodes; they can be placed on hidden nodes or visible
pins.

MACHXL may deliberately place a node signal on a visible pin for a variety
of reasons.

Hidden :--------------------,
I I
I I
I I
I====;;=>;
1---''--,

I
I
I
I
I

To array:::::::::::=== i----'
I
I
L--------------------

Hidden Node

Shadow Nodes
A shadow hidden node (known simply as a shadow node or shadow) is
created by disabling the output buffer of a normal output macrocell. The
shadow node terminates with the internal feedback to the array, and is
therefore not visible outside the device as shown in the following figure. See
Table 15-2 for the names of hidden and shadow nodes.

Chapter 15: Device-Specific Partitioning (Optional) 251

Shadow

OE
!disabled)

Shadow Node

Unary Nodes
Unary nodes are nodes with a single input. Usually the node is registered.
There are two basic types of unaries. The most common is a registered input
pin, also called an input unary. A second type is essentially a clocked
feedback path, called a feedback unary.

The following are diagrams and explanations of the two types ofunaries.

Input Unary - A hidden unary in an input macrocell, i.e., a clocked input pin
as shown below.

tnpu1 Unary
,----------------1
I INPUT I

INPUT : REGISTER :

~N

I
I
I
I
I
I
~----------------J

Input Unary

Feedback Unary - A feedback unary is a hidden unary path through the
feedback register of an output macrocell, as shown below.

252 MACHXL Software User's Guide (Version 3.0)

MACROCELL
,-----------------------~

=====D--

Feedback Unary

OE :
I
I
I

MACHXL allows selecting from these possible paths specifically. Nodes and
unaries are specified in the .pi file by means of labels. A hidden node is
specified with the label NODExx.

Feedback and input unaries are specified with the label UNARY_ OF_ xx,
where xx is the manufacturer-specified pin number in the primary package,
usually DIP.

A buried node is a hidden node where some external pin number is associated.
A buried node or shadow node is specified with the label BURIED_OF _xx or
SHADOW_ OF_ xx, where xx is the manufacturer-specified pin number in the
primary package, usually DIP.

These labels (used in the .pi file) are enumerated in Tables 15-1 and 15-2, and
Appendix D (for AMO MACH devices).

There are a large number of devices having general-purpose registers. The
following example shows a sample in the Design Synthesis Language allowing
the fitter to take advantage of these general-purpose registers.

Example

INPUT i_uneloeked, elk;
NODE i CLOCKED BY elk;

Chapter 15: Device-Specific Partitioning (Optional) 253

i = i_unclocked;

Functionally, this is equivalent to a clocked input. In this approach, however,
both the clocked (i) and unclocked (i _ unclocked) versions of the signal
can be referenced in the design. Another advantage of this approach is it
allows you to specify the hidden node in the .pi file. Furtheml.ore, this
description can be mapped into any device with a register. The above
functionality is a unary node.

Devices With Unary Nodes
The templates which have unary nodes are the Pl6V8HD, P29Ml6,
P29MA16, and the MACH2xx and MACH4xx parts. The MACH parts are
discussed in their own sections later in this chapter.

Table 15-1. Node Descriptions and Labels by Device Template

Template

P16V8HD

P29M16

P29MA16

Pin Description Pin Label

Input unaries UNARY_OF _2 ... UNARY_OF _9

Feedback unaries

Shadow nodes

Input unaries

Shadow nodes

Input unaries

UNARY_OF _13 ... UNARY_OF _16
UNARY _OF_ 19 ... UNARY _OF _20
UNARY_ OF _22 ... UNARY_ OF _23

SHADOW_OF_3, SHADOW_OF_4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF _21, SHADOW_OF _22

UNARY_OF _3 ... UNARY_OF _10
UNARY _OF_ 15 ... UNARY _OF _22

SHADOW_OF _3, SHADOW_OF _ 4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF _21, SHADOW_OF _22

UNARY_OF _3 ... UNARY_OF _10
UNARY_OF_15 ... UNARY_OF_22

254 MACHXL Software User's Gulde (Version 3.0)

Other Device-Specific Information for PLDs

Synchronous Preset in the 22V10
Architectures
One device architecture supported by MACHXL has a synchronous preset
row shared by some or all macrocells in the device.

The synchronous preset row can be used as a synchronous reset. If the fitter
has DeMorganized the D equation on a device, then the asynchronous reset is
now an asynchronous preset and the synchronous preset is now a synchronous
reset. Given this anomaly, and the priority MACHXL places on insuring the
same functionality for various device implementations, the fitter does not fit a
preset equation onto any synchronous preset.

In some architectures, however, this common set can still be used (i.e., set or
preset). A synchronous preset is like an extra AND row input to the OR, but
available only when the output is registered. Using the common set is
accomplished by specifying the set pterm to use in the .pi file. This
architecture is the 22V10.

In the 22V10, the synchronous preset row is common to all macrocells in the
device. The pterms to use as the common set pterm for the device is specified
with the COMMON_SET_PTERM property.

Example

SOURCE FILE
INPUT elk, reset!, reset2;}
OUTPUT a[lO] CLOCKED_BY elk;

IF (resetl*reset2) THEN
a = O;

ELSE
a = a • +. 1;

END IF;

Chapter 15: Device-Specific Partitioning (Optional) 255

PHYSICAL INFORMATION FILE
DEVICE

{COMMON_SET_PTERM 'resetl*reset2'};
TARGET 'TEMPLATE P22VP10 DIP-24-STD';
a;

END DEVICE;

In the above example, the common set pterm is resetl*reset2. This term
sets the output low, so the fitter will automatically use the DeMorgan equation
to meet this common set pterm requirement.

Accessing the Open-Drain Outputs of the
P16V8HD
The Pl 6V8HD architecture supports open-drain outputs. Unlike normal
totem-pole outputs, an open-drain output will only drive V 01. Whereas V oh is

driven on a totem-pole output, nothing is driven from an open-drain output.
The voltage level of an open-drain output will depend on external loading and
pull-up circuitry.

To direct outputs to be open drain, attach the OPEN_ DRAIN .pi file property
to the output signals, provided those outputs support open drain.

To express this functionality, the enable equation of an output (in this case x)
must be of the form:

/internal_name_for_x * enable_equation

This means the output is enabled only ifthe data is low and the enable
equation is true. The value internal_name_for_x is any signal just prior to the
enable buffer of the output on the device. The enable equation is independent
of the open-drain functionality.

MACHXL provides a function used to create open-drain output signals of the
proper form. This function is available in the library dfeature, which resides
in the dsllib directory under the MINC executable directory. The function is
as follows:

256 MACHXL Software User's Guide (Version 3.0)

FUNCTION open_drain(d, oe);
NODE out ENABLED BY /d*oe;
out = d;
return out;

END open_drain;

Example

SOURCE FILE
USE 'dfeature';
LOW TRUE INPUT oe;
INPUT i, j, elk;
NODE 1 x CLOCKED BY elk;
OUTPUT x;

i x = i*j;
x = open_drain(i_x, oe);

PHYSICAL INFORMATION FILE
DEVICE

TARGET 'PART NUMBER AMD PALCD16V8HD-15PC';
x {OPEN_DRAIN };

END DEVICE;

Once an output is in the proper form for an open-drain configuration, the
MACHXL's simulator will simulate the functionality correctly and test vectors
sent to the device programmer will also be correct. The fitter will generate
two enable equations, one for open-drain capable devices and one for all other
devices. In the example given above, the enable equation for open-drain
outputs is oe, and the enable equation for other outputs is Ii_ x *oe. To
maintain device independence, an output can be fit on parts without the open
drain capability at the cost of increased enable equation complexity. Timing
and parametric design issues should be considered independent of MACHXL's
open-drain synthesis capability.

The open-drain function may also be used to aid in bus design. The following
example shows bus functionality using the open-drain capablity.

Chapter 15: Device-Specific Partitioning (Optional) 257

Example

SOURCE FILE
USE 'dfeature';

" Declare the inputs
INPUT input_busl[4];
INPUT input_bus2[4];
INPUT elk;

" Declare the two busses and the associated wired bus
NODE internal_busl[4] CLOCKED BY elk;
NODE internal_bus2[4] CLOCKED BY elk;
OUTPUT bus1[4];
OUTPUT bus2[4];
WIRED_BUS combined_bus[4] : busl, bus2;

Declare an output that will refer to the wired bus
OUTPUT and_all;

Make assignments to the two busses
internal busl = input_busl;
internal bus2 = input_bus2;

Declare each bus to have open-drain outputs

busl[O] = open_drain (internal_busl[O], 1);

busl[l] = open_drain (internal_busl[l], 1);

busl[2] open_drain (internal_busl[2], 1);

busl[3] = open_drain (internal_busl[3], 1);
bus2[0] = open_drain (internal_bus2[0], 1);

bus2[1] = open_drain (internal_bus2[1], 1);
bus2[2] = open_drain (internal_bus2[2], 1);

bus2[3] open_drain (internal_bus2[3], 1);

Finally, reference the wired bus
and all =

combined_bus[O]*combined_bus[l]*combined_bus[2]
*combined_bus[3];

258 MACHXL Software User's Guide (Version 3.0)

PHYSICAL INFORMATION FILE
bus2 {OPEN_DRAIN };
busl {OPEN_DRAIN };

Specifying JEDEC Filenames
MACHXL places JEDEC files in the design directory, using names in the
form design_name.jn. To specify a name for each JEDEC file you can use
the FUSEMAP _FILE property in the .pi file. The FUSEMAP _FILE property
is only allowed within a DEVICE construct.

Syntax
{ FUSEMAP_ FILE ' filename ' }

Example
DEVICE
{ FUSEMAP FILE ' mypal . jedec ' }

END DEVICE

AMO MACH

MACH devices are handled like any other PLD in MACHXL with full
support for automatic device selection and partitioning. There are some
details involved in using MACH parts that can improve utilization and help
device-specific implementation issues. An overview of these issues is given in
this section. For more details on targeting MACH devices, please see
Appendix D.

MACH Pin Numbering
In the MACH family, there are six types of pins and internal nodes which may
be assigned signals. They are:

Chapter 15: Device-Specific Partitioning (Optional) 259

(j Input pins

(j Input-clock pins

(j Biput pins

(j Shadow pins

(j Buried pins

(j Unary pins

For physical pins, inputs, clock-inputs and VO pins, the MACHXL reference
is identical to the device pin number. The internal nodes, called buried,
shadow, and unary pins, are referenced by node numbers.

Buried and shadow pins are hidden (cannot be seen outside the device) and can
be used to hold functions which are only used within the device. A buried pin
is a macrocell within the device which cannot be connected to an VO pin. A
shadow pin is the internal part of an enabled output. It is simply the macrocell
and its internal feedback path. Using a shadow pin rather than a biput pin
allows the physical pin and its pin feedback path to be used as an input. For
more information on buried, shadow, and unary pins (nodes), see the earlier
sections in this chapter on Hidden Nodes , Shadow Nodes, and Unary
Nodes.

The macrocells are sequentially numbered through the device in the same
order as the macrocell names (AOO - Hl5). Depending on the device and PAL
block, these numbers may go in the same order as the neighboring physical pin
numbers or in the reverse order.

A buried node is specified with the label BURIED_ OF_ xx, where xx is the
manufacturer-specified pin number in the primary package, which is JLCC for
the MACH family.

A shadow node is specified with the label SHADOW_ OF_ xx, where xx is the
manufacturer-specified pin number in the primary package, which is JLCC for
the MACH family.

260 MACHXL Software User's Guide (Version 3.0)

A unary node is specified with the label UNARY_ OF _xx, where xx is the
manufacturer-specified pin number in the primary package, which is JLCC for
the MACH family.

These labels (used in the .pi file) are enumerated in the application note
entitled Complete List of MACH Pin Names in Appendix D. This
application note also contains the numbering for buried, shadow, and unary
pins, as well as pin/node numbering.

The label names have the following meanings:

node label Description

BURIED OF xx Buried node associated with pin xx on the device

SHADOW OF xx Shadow node associated with pin xx on the device

UNARY OF xx Unary nodes associated with pin xx on the device

Using the .pi File with MACH Devices
The .pi (Physical Information) file allows specifying details about
implementing a design in a MACH family device.

Properties and Device Utilization
The MACH_ UTILIZATION property allows specifying the amount of
reserve capacity to leave available in a device. This affects the use of pterms
and macrocells.

Syntax
{MACH_UTILIZATION percenf'i;

Where percent is the percentage of device resources to be used. The range of
values is 0 to l 00.

Chapter 15: Device-Specific Partitioning (Optional) 261

The unused resources are distributed throughout the device. There are two
reasons to reserve some resources in a device.

1. Resources may be reserved to allow for logic expansion.

2. Resources may be reserved to ease and speed the fitting process. It
is easier for the fitter to place and route a solution at 80%
utilization than at 100% utilization. If design iteration speed is
more important than density (e.g., earlier in the design cycle), set
the utilization factor to a lower value.

Equation Optimization
The MAX _PTERMS property provides a means of tuning the optimization to
best fit a design into MACH parts. The optimization process collapses
combinatorial nodes in the design up to a size specified by MAX_PTERMS.
The value used for this property affects fitting into MACH parts. If the value
is low, the design will typically be implemented as a larger number of smaller
equations. This makes placement somewhat easier because smaller functions
do not place demand on the pterm allocation mechanism, but more smaller
functions may require more routing resources and may require more overall
macrocell logic. At the other end, fewer larger functions may ease the routing
requirements, but be harder to place, because the demand for pterms may
cause conflicts in placing functions together in a PAL block.

For more information on the use and syntax of the MAX_PTERMS property,
see Chapter 12.

The minimum and maximum number of pterms along with a suggested value
for the MAX_ PTERMS value are shown in in the following table.

262 MACHXL Software User's Guide (Version 3.0)

Family Minimum Number Maximum Suggested
of Pterms per Number of Number for

Output Pterms per MAX PTERMS
Output

MACH 1XX 4 12 8

MACH2XX 4 16 8 to 12*

MACH4XX 5 20 10 to 15

• varies with the design.

For optimal fitting, you should try a number of values to determine the best
value for a given design.

Note: Any optimization property (for example MAX_PTERMS or
MAX_ SYMBOLS) may be used in GROUPs, SECTIONS, or with any
individual signals. For more information on the optimization properties,
see Chapter 13.

Targeting PAL Blocks
You can specify which nodes, outputs and biputs are to be placed together in
the same PAL block of a MACH device. Although in the MACH devices
there is no timing advantage to placing signals in the same PAL block, doing
so may make PCB layout easier by keeping related signals together.

With the MACH family, there are two ways to specify a group of signals be
placed together in the same PAL block:

o GROUP specifications in the .pi file

o SECTION specifications in the .pi file.

Chapter 15: Device-Specific Partitioning (Optional) 263

Using GROUPs with MACH
A GROUP specification inside a DEVICE targeted to a MACH device will
place all of the signals inside the GROUP into the same PAL block. Other
GROUPs inside the DEVICE may or may not also be fit into that same PAL
block.

Example

SOURCE FILE
INPUT I[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];

ogroupl = I;
ogroup2 i;

PHYSICAL INFORMATION FILE
DEVICE

TARGET 'PART NUMBER AMO MACHllO-lSJC';

GROUP
ogroupl;

END GROUP;

GROUP
ogroup2;

END GROUP;

END DEVICE;

"all ogroupl signals will go into
"the same PAL block

"all ogroup2 signals may or may
"not also go into ogroupl's PAL
"block

Using SECTIONS with MACH
A SECTION specification inside a DEVICE targeted to a MACH device will
place all of the signals inside the SECTION into the same PAL block. Signals
from one SECTION will not be placed into the PAL block of another
SECTION.

264 MACHXL Software User's Guide (Version 3.0)

You can specify which PAL block a SECTION should be placed into with the
TARGET construct. If a SECTION isn't targeted to a PAL block, MACHXL
will determine the best PAL block for the SECTION automatically.

Syntax
TARGET 'pal_block_name';

The following table lists the names of the PAL blocks for the MACH family:

Example

Template

MACH110
MACH120
MACH130
MACH210
MACH215
MACH220
MACH230
MACH435
MACH465

SOURCE FILE
INPUT I[8];
OUTPUT ogroupl[B);
OUTPUT ogroup2[8];

ogroupl = I;
ogroup2 I;

PAL Block Names

A .. B
A .. D
A .. D
A..D
A .. D
A..H
A .. H
A..H
A .. P

PHYSICAL INFORMATION FILE
DEVICE
TARGET 'PART_NUMBER AMO MACHllO-lSJC';

Chapter 15: Device-Specific Partitioning (Optional) 265

SECTION
TARGET 'A';
ogroupl; "all ogroupl signals will go into PAL

"block A
END SECTION;

SECTION
TARGET 'B';
ogroup2;

END SECTION;
END DEVICE;

"all ogroup2 signals will go into
"PAL block B

Using FLOAT _NODES with MACH Devices
When refitting a design into a MACH device, the designer often will want to
preserve the same pinout as in the original fit. However, the internal node
assignments do not necessarily need to be maintained. The FLOAT_NODES
property assists in the task of refitting a design in a MACH device.

The FLOAT_NODES property causes the MACH fitters to interpret a node
assignment in the .pi file as specifying only to which PAL block the signal
goes. The node assignment is released, allowing the nodes to float in the PAL
block indicated by the node assignment. This often gives the MACH fitters
the latitude required to successfully refit the design with a fixed pinout.

Syntax
{ FLOAT _NODES } ;

Example

SOURCE FILE
INPUT Il;
INPUT elk, oe;
NODE nl •• n2 CLOCKED_BY elk;
OUTPUT 01 ENABLED BY oe;

266 MACHXL Software User's Guide (Version 3.0)

nl - Il;
n2 = nl;
ol = n2;

PHYSICAL INFORMATION FILE
{FLOAT_NODES};

DEVICE
TARGET 'PART NUMBER AMO MACHll0-20/BXA';

o1:2;
INPUT clk:13;
INPUT oe:32;
INPUT I1:33;
ni:SHADOW_OF_16; "ni will be fit in PAL block A but not

"necessarily on node SHADOW OF 16
END DEVICE;

In the example shown above, the .pi file was created by copying the .npi file
created by MACHXL to a .pi file, then adding the FLOAT_NODES property
(some constructs normally found in a .npi file have been eliminated for
clarity). The FLOAT_NODES property is given globally, and will apply to
all MACH devices in the .pi file.

Accessing the MACH Internal Feedback Path
In the MACH devices, outputs without an output enable can be fed back into
the device through two paths:

1. Directly from the pin

2. Directly from the macrocell

These paths are functionally equivalent, but the pin feedback may be slightly
slower than macrocell feedback.

By default, MACHXL will route signals using the pin-feedback path. To use
the macrocell-feedback path, attach the FORCE_ INTERNAL _PB property to

Chapter 15: Device-Specific Partitioning (Optional) 267

the appropriate signal in the .pi file. To use this feedback on all signals in the
device, include the FORCE_INTERNAL_FB property in the DEVICE
specification.

Example

SOURCE FILE
INPUT a, b, c;
OUTPUT outl CLOCKD BY elk;
OUTPUT out2;

outl = a * b;
out2 outl * c;

PHYSICAL INFORMATION FILE
DEVICE

TARGET 'PART_NUMBER AMO MACH465-15KC';
outl{FORCE_INTERNAL_FB}; "Use the internal

"feedback
default;

END DEVICE;

Configuring the MACH 445 and MACH 465 Devices for
Zero-Hold Time
The MACH 445 and MACH 465 have an option to insert a delay between the
1/0 pins and the input registers in the device. This has the effect of increasing
the set-up time for the input registers and reducing the hold time for these
registers to zero.

To set the hold time on the input registers, use the
MACH_ZERO_HOLD_INPUT property in the DEVICE section of the .pi
file.

268 MACHXL Software User's Guide (Version 3.0)

DEVICE
TARGET 'PART NUMBER AMO MACH465-15KC';
{MACH_ZERO_HOLD_INPUT}; "Set all input registers to

"zero hold time

default;
END DEVICE;

If the MACH_ZERO_HOLD_INPUT property is assigned to a device, all of
the input registers in the device will be configured for zero-hold time.

Accessing the MACH 445 and MACH 465 Signature
Bits
The MACH 445 and MACH 465 devices have a 32-bit field to hold user data.
This field is called the Signature Bits (or USERCODE) field.

To place data in this field, use the SIGNATURE property in the DEVICE
section of the .pi file.

Example
PHYSICAL INFORMATION FILE
DEVICE

TARGET 'PART NUMBER AMO MACH465-15KC';
{SIGNATURE 'test'};
default;

END DEVICE;

The argument for this property may be a string or an integer. If a string is
used, up to four characters can be placed in the field. Alternately, any 32-bit
signed integer can be placed in the field.

The MACH .rpt File
The MACH fitter has the capability to write a complete description of a fitted
device showing resource utilization, all signal and routing information and full
placement details including internal nodes.

Chapter 15: Device-Specific Partitioning (Optional) 269

The . rpt file is produced for MACH devices fit in the directed partitioning
mode, that is, as a result of a DEVICE construct in the .pi file. The .rpt file is
not produced during automatic device selection and partitioning.

If you have a solution generated by automatic partitioning and need an . rpt
file, move the .npi file to design.pi and rerun the fitter. This should run quite
quickly and will produce .rpt files for any MACH devices in the solution.

If you are fitting a design into a known set of MACH parts, and want a .rpt
file on the first pass, put empty DEVICE constructs into the .pi file. This
forces an . rpt file while allowing the fitter the freedom to partition the design.
The following partitions a design into two MACHI I O's and produces a . rpt
for each device.

DEVICE
TARGET 'PART NUMBER AMO MACHllO-lSJC';

END DEVICE ;
DEVICE

TARGET 'PART NUMBER AMO MACHllO-lSJC';
END DEVICE ;

Note: Detailed MACH-specific information can be found in
AppendixD.

The MACH LOW_POWER Attribute
All MACHxxl (i.e., MACHI 11, MACH23 l, etc.) devices have a low-power
attribute that can be applied at the macrocell level. The attribute sets the
macrocell for a given signal to the low power consumption mode. This can be
applied globally for all signals in a device, or locally (in a DEVICE statement)
for only those signals specified.

{LOW_POWER}

DEVICE

global declaration for all signals in
a device

TARGET signal_l, signal_2 {LOW_POWER};
END DEVICE; affects only signal_l and signal_2

270 MACHXL Software User's Guide (Version 3.0)

16 Programming and Testing Devices

Contents
Introduction .. 272
Programming PLDs or CPLDs ... 272

Downloading Fusemaps ... 272
Using Your Device Programmer's Downloading Software 272
Connecting Your Computer System to a Device Programmer. 273
Testing Devices ... 273

Chapter 16: Programming and Testing Devices 271

Introduction

When selecting a PLD or CPLD device solution, MACHXL generates an
output file containing the information necessary to program devices using a
device programmer over an RS-232C communications port. This chapter
discusses ways of downloading fusemaps to your device programmer,
programming your devices, and testing your devices.

Programming PLDs or CPLDs

MACHXL creates device fusemap files containing all the information required
by a device programmer to program the devices. The device fusemap files
must be downloaded from your computer system to the device programmer
before a device can be programmed.

Downloading Fusemaps
Downloading the fusemap file from a system to a programmer is done using
the device programmer's communication software. This software can be
executed from MACHXL's menu system. To use your device programmer's
software from the MACHXL menu, select DOWNLOAD. (See Chapter 3 for
more information on this menu selection.)

Using Your Device Programmer's
Downloading Software
To download the device fusemaps you must run your device programmer's
communication software. This software will require the name of the device
fusemap file. MACHXL creates the following output files for PLD and
CPLD devices:

Format
JED EC

Output Filename
Ji lename. j 1 .. jn

272 MACHXL Software User's Guide (Version 3.0)

Device Type
P ALs and GALs

Where:

filename is the name of the file containing your design .

. j 1 Is the extension for a JED EC file, with the number 1
corresponding to the first device in the solution. For a
counter design with three devices in its solution, the names of
the output files would be: counter.JI, counter.j2, and
counter.j3.

Connecting Your Computer System to a
Device Programmer
You should use the cable recommended by the maker of your device
programmer when connecting the programmer to your computer system.
Refer to your device programmer's documentation for instructions on
connecting the cable from your computer system to the device programmer.

Testing Devices
Test vectors are produced by the simulator and are part of the device fusemap
file. The test vectors are produced only if there is a .stm file containing a
SYSTEM_ TEST. Refer to your device programmer's documentation for
more information on how to test your device using the test vectors.

Chapter 16: Programming and Testing Devices 273

274 MACHXL Software User's Guide (Version 3.0)

17 Documenting a Design

Contents
Introduction ... 276
Title Page .. 276
Switch Values (options) ... 277
Reduced Design Equations .. 277

How Equations are Generated ... 277
Equation Extensions Used in the .doc File 277
DeMorgan Equations .. 279
Equation Display .. 280

Partitioning Criteria ... 280
Solutions List .. 281
Fusemap Files ... 281
Pinout Diagrarris ... 281
Possible Devices List ... 281
Wire List ... 282
Viewing the Documentation ... 282

Chapter 17: Documenting a Design 275

Introduction

MACHXL documents a design during the various stages of compilation and
partitioning. All this information about a design is contained in the file
design_name.doc. The following information is contained in the .doc file:

Information about the design (title, designer, date, company, etc) and switch
values (options) specified for compiler and optimizer functions

a Reduced design equations

a A list of the solutions generated for the design

a Partitioning criteria used in generating the device solutions

a Pinout diagrams of the device solution selected

a A list of possible devices for the templates in the solution

a A wire list

These· sections of the documentation file are described in the.following
sections.

Title Page

The title page gives the header information optionally specified for a design,
including the title, engineer, company, project, revision number, and comments
about the design. The date and filename are automatically generated and
included in the beginning of the documentation. The individual

MACHXL module revision numbers are also provided.

The title page also includes information about switch values specified for the
compiler and optimizer.

276 MACHXL Software User's Gulde (Version 3.0)

Switch Values (options)

This section of the .doc file indicates the switch values used by the compiler
and optimizer. These reduction and optimization values assure the same
equation output on subsequent passes of the front end. These switch values
indicate levels for:

o Compiler reduction

o Optimizer reduction

o Optimizer node generation.

For more information on the switch values available for the compiler and
optimizer, see Chapters 10 and 12 respectively.

Reduced Design Equations

How Equations are Generated
When a source file is compiled and optimized, MACHXL takes the user
specified equations and synthesizes additional equations from them. For
example, if specifying a JK-flip flop as part of the design, the compiler
generates equations for all other flip flop types as well. These synthesized
equations are simply logically-equivalent versions of the flip flop specified.
These additional equations give the partitioning and fitting software more
options with which to fit your design. This means thi:tt the .doc file may
contain equations in addition to those supplied by you in the design source file.

Equation Extensions Used in the .doc File
The following tables list equation types and the equation extension used in the
.doc file:

Chapter 17: Documenting a Design 277

.doc File Description Example
Extension

* .XORL if y =a(+) b, then y.xorl =a Y.XORL
(left side of XOR operation)

* .XORR if y =a (+) b, then y.xorr = b Y.XORR
(right side of XOR operation)

.EQN Combinatorial equation A.EQN
(no CLOCKED_BY on output,
biput, or node)

* The compiler/optimizer may generate an XOR equation even if none was specified in the original
.src file. Examples include synthesis from T flops, arithmetic operators.+. and.-., etc. For more
information see chapters 10 and 12.

.doc File Description Example
Extension

.D D-flip-flop equation FLOP.D

.J J-flip-flop equation FLOP.J

.K K-flip-flop equation FLOP.K

.s S-flip-flop equation FLOP.S

.R R-flip-flop equation FLOP.R

.T T-flip-flop equation FLOP.T

.CLK clock equation X.CLK= /A
OUTPUT x CLOCKED_BY /a

.RESET reset equation X.RESET = RST
OUTPUT x CLOCKED_BY /a
RESET _BY rst

278 MACHXL Software User's Gulde (Version 3.0)

.doc File Description Example
Extension

PRESET preset equation X.PRESET = PRST
OUTPUT x CLOCKED_BY /a
PRESET _BY prst

.OE enabled equation X.OE =OE
OUTPUT x ENABLED_BY oe

.LATCH latched equation X.LATCH = LAT1
OUTPUT X LATCHED_BY lat1

.CE clock-enabled equation X.CE =CE

DeMorgan Equations
In addition to the equations listed in the previous table, the compiler/optimizer
may generate DeMorgan versions of the same equations.

Note: There are cases when the non-complemented version of an
equation can NOT be generated by the compiler/optimizer, due to
the size of the equation, but the complemented (DeMorgan) version
can.

The DeMorgan equivalent of the original or synthesized equations may be fit
into a device. In the .doc file, a tilde(-) after an equation name, such as
ORJ.EQN(-), indicates the DeMorgan version of that equation.

For example, an equation declared with the following specifications:

LOW_TRUE INPUT oe;
INPUT a, b;
OUTPUT orl ENABLED BY oe;
orl = a + b;

Chapter 17: Documenting a Design 279

After the system equations are created, the .doc file equations are:

ORl.EQN

.OE

ORl.EQN(-)

.OE(-)

A + B;
= OE;

/A * /B;
= /OE;

Equation Display
There are four equation categories displayed in the .doc file. They are:

1. Primary - equations used to describe the signal

2. Synthesized - equations generated by the compiler/optimizer

3. DeMorgan - complemented equations generated by the
compiler/ optimizer

4. Fit - form of the equations (primary, synthesized, or the DeMorgan
of the two) that was actually fit into the device .

The documentor can display any (or all) of these equation categories
independently. By default, the documentor will:

CJ Display the version of the equation that was used during Fitting

CJ Display the primary equation version if Fitting has not yet been
done

You can also access the .doc file by means of the menuing system. For more
information on using the menus, see Chapter 3.

Partitioning Criteria

A copy of the .est (cost) file, used to specify the partitioning constraints, is
placed in the .doc file for reference.

280 MACHXL Software User's Guide (Version 3.0)

A warning may appear in the .doc file to indicate the .est file used during
partitioning was updated since the solutions were generated. indicates the
partitioning criteria displayed in the .doc file may be incorrect.

This section appears in the .doc file only after the device scanner is run.

Solutions List

A copy of the solutions generated for a design are placed in the documentation
file for quick reference. Another solution may be selected for a design by
using the Solutions menu item from the Device Menu.

This section appears in the .doc file only after the device fitter is run.

Fusemap Files

This section indicates which fusemaps go to which device for a particular
solution. This section will appear in the .doc file only after the fuse mapper is
run.

Pinout Diagrams

Partitioning a design produces a pinout diagram (DIP or CDIP packages) or a
pinout table (all other packages) shows the device, the pin types (i.e., INPUT,
OUTPUT, BIPUT), and an indicator of the signal/pin placement.

Possible Devices List

When device solutions are generated, the solution list contains device template
names, not manufacturers' names for devices. The design documentation
displays actual devices to select for the device templates used in a solution.

Chapter 17: Documenting a Design 281

Wire List

A wire list shows which signals to connect to which pins for the device
solution selected.

Viewing the Documentation

For specific information on viewing the documentation file from within
MACHXL, see Chapter 3. You may also view the file outside ofMACHXL
by pulling the tile filename. doc into a text editor.

, 282 MACHXL SottWare User's Gulde (Version 3.0)

18 MACHXL Design Tips

Contents
What If Equations Are Too Large? .. 284
What If MACHXL Runs Out of Memory? 284

In the Compiler ... 285
In the Optimizer .. 285
In the Fitter ... 285

What Can Be Done to Speed Things Up? 286
In the Compiler and Op~imizer .. 286
In the Fitter ... 286

What Can Be Done to Minimize the Amount of Hardware Needed to
Implement a Design? ... 286

In the Design Files .. 286
In the Fitting Constraints ... 287
.est File and Fitter Speed ... 287

Chapter 18: MACHXL Design Tips 283

What If Equations Are Too Large?

Equations with too many product terms or input symbols for the target devices
won't fit into the devices. Very large equations may cause a fatal error from
the compiler. There are several good design practices that help avoid large
equations:

CJ Declare NODEs and use them to break up large equations or hold
intermediate values shared by other equations. These NODEs give
the optimizer more flexibility to do its job. It removes nodes if
their removal doesn't make equations too large. See Chapter 5 for
more on declaring NODEs.

CJ Use PROCEDUREs and FUNCTIONs to implement portions of
the design logically separate or for functionality repeated in more
than one place. Using PROCEDUREs and FUNCTIONs
automatically introduces NODEs that help the optimizer do its job.
See Chapter 5 for more on declaring NODEs. See Chapter 8 for
more information on Procedures and Functions.

CJ If a STATE_ MACHINE is used then the values assigned to each
state can affect the size of equations. The STATE_ VALUES
ONE_ HOT value assignment method produces small equations at
the cost of using more registers. (However, ONE_HOT state
machines do cause large intermediate equations prior to
optimization.) See Chapter 7 for more on STATE_MACHINEs.

There are several .pi properties used by the optimizer which affect the sizes of
equations produced by the optimizer. See Chapter 12 for more on the
optimizer.

What If MACHXL Runs Out of Memory?

The minimum recommended memory configuration on a PC is 8 Megabytes.
Large designs targeting the larger more complex devices may require more
than 8 Megabytes.

284 MACHXL Software User's Guide {Version 3.0)

In the Compiler
If this error occurs in the compiler it is probably due to an equation growing
too large to be represented in the available memory. See the previous question
What If Equations Are Too Large? for information on controlling equation
size.

Large state machines, and especially ONE_ HOT state machines, use lots of
memory since they produce large intermediate equations. Again, use of
NODEs to hold intermediate values of conditional expressions in each state
simplifies the resulting equations.

In the Optimizer
If this error occurs in the optimizer then it is probably due to the
MAX_PTERMs property in the pi file being too large. The default is 16.
Memory problems can crop up when MAX_PTERMs is set in the hundreds
for targeting devices handling very large equations.

In the Fitter
If this error occurs in the fitter, the combination of the size of the design and
the number of templates considered is too large. If some solutions have
already been found then the fitter recovers gracefully allowing one of the
existing solutions to be selected.

To avoid this error and allow the fitter to consider all possible solutions across
the available templates, use the template constraint menu to pare away those
templates not appropriate for the design. Very large designs may need the
templates pared down to just a few.

Chapter 18: MACHXL Design Tips 285

What Can Be Done to Speed Things Up?

In the Compiler and Optimizer
Slow performance of the compiler and the optimizer is usually due to very
large equations. See the previous question What If Equations Are Too
Large? for information on controlling equation size.

In the Fitter
The most important first step is restricting the number of device architectures
the fitter considers by specifying all device constraints. Prioritize according to
size if appropriate. Pay attention to the physical constraints in the constraints
menu, and the templates menu as well. Avoid including complex device
architectures, if they are not needed, in a large solution search. See Chapter 3
for information on controlling constraints.

The .pi file is used to direct partitioning. If particular devices are needed as
part of the solution, specify .pi file signal groups to assist the fitter in
partitioning the design. See Chapter 15 for information on directed fitting.

What Can Be Done to Minimize the Amount
of Hardware Needed to Implement a Design?

This is one of the goals of any design and depends on the design. However
several capabilities of MACH.XL software can help.

In the Design Files
It is important the equations being fitted are appropriate for the target
hardware. See the previous question What If Equations Are Too Large? for
information on controlling equation size.

286 MACHXL Software User's Guide (Version 3.0)

The language allows the designer to explicitly control whether NODEs remain
or are removed by the optimizer by declaring them to be PHYSICAL or
VIRTUAL. See Chapter 12, Optimizing a Design for more on PHYSICAL
and VIRTUAL NODEs.

In the Fitting Constraints
The fitter finds good solutions as long as it is allowed to search for solutions.
Avoid turning synthesis options off, such as Auto-Demorganization. Avoid
restricting the set of architectures considered by the fitter to those familiar
when there may be better, less familiar devices for implementing a design that
the fitter will find if given a chance. A good strategy is first allowing the fitter
to do a wide-open, extensive partitioning search across a complete set of
device architectures. For large designs, let this search run overnight or over a
weekend. Then, pick a solution and, if needed, fine-tune the solution by
moving the .npi file to the .pi file and modifying this new .pi file as needed.
See Chapter 15 for information on directed fitting .

. est File and Fitter Speed
By creating a .est file containing only the template of interest (see below), you
can save time during the execution of the fitter.

Example .est file

TEMPLATE= MACH210;

Similar to the default .pi above, this information can be placed into a default
constraint file (default.est) which will assure its use each time a new design is
fit.

Chapter 18: MACHXL Design Tips 287

288 MACHXL Software User's Gulde (Version 3.0)

A MACHXL Supported Devices

Contents
Introduction ... : ... 290
AMO PLO Design Module .. 290
AMO MACH Design Module .. 295
Devices Listed By Template Number 298
Device Footprints by Template Number 304
New Devices ... 306
Renamed Devices .. 308
Obsolete Devices ... 309
Deleted Devices ... 31 O

Appendix A: MACHXL Supported Devices 289

I

Introduction

This appendix has 8 sections. They are as follows:

a AMD PLD Design Module
a AMD MACH Design Module
CJ Devices listed by template number
a Device footprints
CJ New (added) devices (Version 3.0)
a Renamed devices (Version 3.0)

a Obsolete devices (Version 3.0)

a Deleted devices (Version 3.0)

AMO PLO Design Module

Each column is made up of the AMD abbreviation, and the AMD device part
number, which are grouped under the template name (in bold print).

This list is used to generate the appropriate TARGET statement to specify a
particular device in the .pi file.

Syntax

TARGET 'PART NUMBER manufacturer abbreviation
device_part_number';

Example

TARGET 'PART NUMBER AMD MACH110-12JC';

290 MACHXL Software User's Gulde (Version 3.0)

AMO PAL16L8-4JC AMO PAL 16R4B2CNL

AMO PAL16L8-5JC AMO PAL16R4B4CJ

AMO PAL 16L8-5PC AMO PAL 16R4B4CN

AMO PAL 16L8-70C AMO PAL16R4B4CNL

AMO PAL16L8-7JC AMO PAL16R4BCN
AMO PAL16L8-7PC AMO PAL 16R4BCNL

AMO PAL16L8A2CN AMO PAL16R4CN

AMO PAL16L8A2CNL AMO PAL16R4CNL

AMO PAL16L8ACN AMO PAL16R6-4JC

AMO PAL16L8ACNL AMO PAL16R6-5JC

AMO PAL16L8B2CN AMO PAL16R6-5PC

AMO PAL16L8B2CNL AMO PAL16R6-70C

AMO PAL16L8B4CJ AMO PAL16R6-7JC

AMO PAL 16L8B4CN AMO PAL 16R6-7PC

AMO PAL16L8B4CNL AMO PAL 16R6A2CN
AMO PAL16L8BCN AMO PAL16R6A2CNL
AMO PAL 16L8BCNL AMO PAL16R6ACN
AMO PAL 16L80/2JC AMO PAL16R6ACNL
AMO PAL 16L80/2PC AMO PAL 16R6B2CN
P16R4 AMO PAL 16R6B2CNL
AMO 5962-85155042A AMO PAL16R6B4CJ
AMO 5962-8515504RA AMO PAL 16R6B4CN

AMO 5962-85155082A AMO PAL16R6B4CNL

AMO 5962-8515508RA AMO PAL16R6BCN
AMO 5962-88515042A AMO PAL16R6BCNL

AMO 5962-8851504RA AMO PAL16R6CN
AMO 81036102A AMO PAL16R6CNL
AMO 8103610RA AMO PAL 16R60/2PC
AMO 81036142A P16R8
AMO 8103614RA AMO PAL 16R8-4JC
AMO PAL16R4-4JC AMO PAL16R8-5JC

AMO PAL 16R4-5JC AMO PAL16R8-5PC
AMO PAL 16R4-5PC AMO PAL16R8-70C
AMO PAL16R4-70C AMO PAL16R8-7JC
AMO PAL16R4-7JC AMO PAL 16R8-7PC
AMO PAL 16R4-7PC AMO PAL 16R8A2CN
AMO PAL 16R4A2CN AMO PAL16R8A2CNL
AMO PAL16R4A2CNL AMO PAL16R8ACN
AMO PAL16R4ACN AMO PAL 16R8ACN L
AMO PAL 16R4ACNL AMO PAL 16R8B2CN
AMO PAL16R4B2CN AMO PAL16R8B2CNL

Appendix A: MACHXL Supported Devices 291

AMO PAL16R8B4CJ AMO AMPAL 18P8ALJC

AMO PAL 16R8B4CN AMO AMPAL 18P8ALPC

AMO PAL16R8B4CNL AMO AMP AL 18P8APC

AMO PAL16R8BCN AMO AM PAL 18P8BJC

AMO PAL 16R8BCNL AMO AM PAL 18P8BPC

AMO PAL16R8CN AMO AMP AL 18P8LJC
AMO PAL16R8CNL AMO AMPAL18P8LPC

AMO PAL 16R80/2JC P20L8
AMO PAL 16R80/2PC AMO PAL20L8-10/2JC
P16V8A AMO PAL20L8-10/2PC

AMO PALCE16V8H-1 OJC/4 AMO PAL20L8-5JC

AMO PALCE16V8H-10PC/4 AMO PAL20L8-5PC

AMO PALCE16V8H-1 OSC/4 AMO PAL20L8-7JC

AMO PALCE16V8H-15JC/4 AMO PAL20L8-7PC

AMO PALCE16V8H-15PC/4 AMO PAL20L8A2CNL

AMO PALCE16V8H-15SC/4 AMO PAL20L8A2CNS

AMO PALCE16V8H-25JC/4 AMO PAL20L8ACNL

AMO PALCE16V8H-25PC/4 AMO PAL20L8ACNS
AMO PALCE16V8H-5JC/5 AMO PAL20L8B2CFN

AMO PALCE16V8H-7JC/5 AMO PAL20L8B2CNL

AMO PALCE 16V8H-7PC/5 AMO PAL20L8B2CNS

AMO PALCE16V8Q-10JC/5 AMO PAL20L8BCFN

AMO PALCE16V8Q-15JC/4 AMO PAL20L8BCNL

AMO PALCE16V8Q-15PC/4 AMO PAL20L8BCNS

AMO PALCE16V8Q-25JC/4 P20R4
AMO PALCE 16V8Q-25PC/4 AMO PAL20R4-5JC

AMO PALCE16V8Z-15JI AMO PAL20R4-5PC

AMO PALCE16V8Z-15PI AMO PAL20R4-70C

AMO PALCE16V8Z-25JC AMO PAL20R4-7JC

AMO PALCE16V8Z-25JI AMO PAL20R4-7PC
AMO PALCE16V8Z-25PC AMO PAL20R4A2CNL
AMO PALCE16V8Z-25PI AMO PAL20R4A2CNS

AMO PALLV16V8-10JC AMO PAL20R4ACNL

AMO PALLV16V8-10PC AMO PAL20R4ACNS

AMO PALLV16V8Z-20JI AMO PAL20R4B2CFN
AMO PALLV16V8Z-20PI AMO PAL20R4B2CNL
P16V8HD AMO PAL20R4B2CNS
AMO PALCE16V8H0-15JC AMO PAL20R4BCNL

AMO PALCE16V8H0-15PC AMO PAL20R4BCNS
P18P8 P20R6
AMO AMPAL18P8AOC AMO PAL20R6-5JC
AMO AMPAL18P8AJC AMO PAL20R6-5PC

292 MACHXL Software User's Guide (Version 3.0)

AMO PAL20R6-70C P20V8A
AMO PAL20R6-7JC AMO PALCE20V8H-1 OJC/4

AMO PAL20R6-7PC AMO PALCE20V8H-1 OPC/4

AMO PAL20R6A2CNL AMO PALCE20V8H-15JC/4

AMO PAL20R6A2CNS AMO PALCE20V8H-15Jl/4

AMO PAL20R6ACNL AMO PALCE20V8H-15PC/4

AMO PAL20R6ACNS AMO PALCE20V8H-25JC/4
AMO PAL20R6B2CFN AMO PALCE20V8H-25Jl/4
AMO PAL20R6B2CNS AMO PALCE20V8H-25PC/4
AMO PAL20R6BCNL AMO PALCE20V8H-5JC/5
AMO PAL20R6BCNS AMO PALCE20V8H-7JC/5
P20R8 AMO PALCE20V8H-7PC/5
AMO PAL20R8-10/2PC AMO PALCE20V8Q-15JC/4

AMO PAL20R8-5JC AMO PALCE20V8Q-15PC/4

AMO PAL20R8-5PC AMO PALCE20V8Q-20Pl/4
AMO PAL20R8-70C AMO PALCE20V8Q-25JC/4
AMO PAL20R8-7JC AMO PALCE20V8Q-25PC/4

AMO PAL20R8-7PC P22P10
AMO PAL20R8A2CNL AMO AMPAL22P1 OAJC
AMO PAL20R8A2CNS AMO AMPAL22P1 OALOC
AMO PAL20R8ACNL AMO AMPAL22P1 OALPC
AMD PAL20R8ACNS AMO AMPAL22P1 OBJC
AMO PAL20R8B2CFN AMO AMPAL22P1 OBPC
AMO PAL20R8B2C NL P22V10
AMO PAL20R8B2CNS AMO AMPAL22V1 OAJC
AMO PAL20R8BCNL AMO AMPAL22V1 OAPC
AMO PAL20R8BCNS AMO AMPAL22V10JC
P20RA10 AMO AMPAL22V10PC
AMO PAL20RA10-20CFN AMO CE22V1 OH-15E4/BKA

AMO PALCE20RA10H-10JC AMO PAL22V10-10JC
AMO PALCE20RA 1 OH-1 OJI AMO PAL22V10-10PC
AMO PALCE20RA 1 OH-1 OPC AMO PAL22V10-150C
AMO PALCE20RA 1 OH-1 OPI AMO PAL22V10-15JC
AMO PALCE20RA10H-15JC AMO PAL22V10-15PC
AMO PALC E20RA 1 OH-15J I AMO PALCE22V1 OH-1 OJC/5
AMO PALCE20RA 1 OH-15PC AMO PALCE22V1 OH-1 OPC/5
AMO PALCE20RA 1 OH-15PI AMO PALCE22V10H-15JC/4
AMO PALCE20RA 1 OH-20PC AMO PALCE22V1 OH-15PC/4
AMO PALCE20RA 1 OH-7 JC AMO PALCE22V1 OH-15SC/4
AMO PALCE20RA10H-7JI AMO PALCE22V1 OH-25JC/4

AMO PALCE22V1 OH-25PC/4

AMO PALCE22V1 OH-25SC/4

Appendix A: MACHXL Supported Devices 293

AMO PALCE22V1 OH-SJC/5 P600
AMO PALCE22V10H-7JC/5 AMO PALCE61 OH-15JC
AMO PALCE22V1 OH-7PC/5 AMO PALCE610H-15PC
AMO PALCE22V10Q-10JC AMO PALCE61 OH-20/B3A
AMO PALCE22V10Q-10PC AMO PALCE61 OH-20/BLA
AMO PALCE22V10Q-105C AMO PALCE61 OH-25JC
AMO PALCE22V1 OQ-15JC AMO PALCE61 OH-25PC
AMO PALCE22V10Q-15PC
AMO PALCE22V1 OQ-25JC/4
AMO PALCE22V1 OQ-25PC/4
AMO PALCE22V1 OZ-15JI
AMO PALCE22V10Z-15PI
AMO PALCE22V1 OZ-1551
AMO PALCE22V1 OZ-25JC
AMO PALCE22V1 OZ-25J I
AMO PALCE22V1 OZ-25PC
AMO PALCE2:?V10Z-25PI
AMO PALCE22V10Z-255C
AMO PALCE22V1 OZ-2551
AMO PALLV22V10-10PC
AMO PALLV22V10-7JC
AMO PALL V22V1 OZ-25JI
AMO PALLV22V10Z-25PI
AMO PALL V22V1 OZ-2551
P24V10
AMO PALCE24V10H-15JC
AMO PALCE24V10H-15PC
AMO PALCE24V1 OH-25JC
AMO PALCE24V1 OH-25PC
P26V12
AMO PALCE26V12H-15JC/4
AMO PALCE26V12H-15PC/4

AMO PALCE26V12H-20JC/4
AMO PALCE26V12H-20PC/4
P29M16
AMO PALCE29M16H25JC/4
AMO PALCE29M16H25PC/4
P29MA16
AMO PALCE29MA 16H25JC/4
AMO PALCE29MA 16H25PC/4

294 MACHXL Software User's Gulde (Version 3.0)

AMO MACH Design Module

The device templates (i.e., architectures) listed below are supported by this
Design Module.

MACH110
MACH111
MACH120
MACH130
MACH131
MACH210
MACH211
MACH215

MACH220
MACH230
MACH231
MACH355
MACH435
MACH445
MACH465

Each column is made up of the AMO abbreviation, and the AMO device part
number, which are grouped under the template name (in bold print).

This list is used to generate the appropriate TARGET statement to specify a
particular device in the .pi file.

Syntax

TARGET 'PART NUMBER manufacturer abbreviation
device_part_number';

Example

TARGET 'PART NUMBER AMD MACH110-12JC';

Appendix A: MACHXL Supported Devices 295

~

MACH110 AMO MAeH21aA-15Ve

AMO MAeH11 a-12Je AMO MAeH21 aA-2aVe

AMO MAeH11a-14JI AMO MAeH21aA-7Je

AMO MAeH11a-15Je AMO MAeH21 aAQ-12Je

AMO MAeH11a-18JI AMO MAeH21 aAQ-1 SJe

AMO MAeH11 a-2aJe AMO MAeH21aAQ-18JI

AMO MACH11a-24JI AMD MACH21 OAQ-20JC
MACH111 AMO MACH21 aAQ-24JI

AMO MAeH111-1aJe AMO MAeHLV21a-15Je

AMO MAeH111-12Je AMO MAeHLV21a-18JI

AMO MACH111-15Je AMO MAeHLV21a-2aJe

AMO MACH111-2aJe AMO MAeHLV210-24JI

AMO MAeH111-7Je MACH211
MACH120 AMO MAeH211-12Je

AMO MAeH12a-12Je AMO MAeH211-14JI

AMO MAeH12a-15Je AMO MAeH211-15Je

AMD MACH12a-18JI AMD MACH211-18JI

AMO MAeH12a-2aJe AMO MAeH211-2aJC

AMD MACH12a-24JI AMD MACH211-24JI
MACH130 AMO MACH211 A-1 aJC

AMO MACH13a-15JC AMO MAeH211 A-1 ave

AMO MAeH130-18JI AMO MACH211 A-12JC

AMO MACH13a-2aJe AMO MAeH211A-12JI

AMO MAeH13a-24JI AMO MAeH211A-12VC
MACH131 AMO MAeH211A-15VC

AMO MAeH131-1aJe AMO MACH211A-2aVC

AMO MACH131-12Je AMO MACH211A-7Je

AMO MACH131-15Je AMO MACH211 AQ-12Je

AMO MACH131-20JC AMO MAeH211AQ-15JC

AMO MACH131-7Je AMO MACH211AQ-18JI
MACH210 AMO MACH211AQ-2aJC

AMD MACH21a-12JC AMO MACH211AQ-24JI

AMO MAeH21a-14JI AMO MAeHLV211-15Je

AMO MACH21a-15JC AMO MACHLV211-18JI

AMO MAeH21a-18JI AMO MACHLV211-2aJe

AMO MACH21 a-2aJC AMO MACHLV211-24JI

AMO MAeH21a-24JI MACH215
AMO MAeH21aA-1aJe AMO MAeH215-12JC

AMO MACH21 aA-1 ave AMO MAeH215-14JI
AMO MACH210A-12JC AMO MACH215-15JC

AMO MAeH21aA-12JI AMO MACH215-18JI
AMO MACH21 aA-12VC AMO MACH215-2aJC

296 MACHXL Software User's Guide (Version 3.0)

AMO MACH215-24JI

MACH220
AMO MACH220-10JC

AMO MACH220-12JC

AMO MACH220-15JC

AMO MACH220-18JI

AMO MACH220-20JC

AMO MACH220-24JI

MACH230
AMO MACH230-10JC

AMO MACH230-15JC

AMO MACH230-18JI

AMO MACH230-20JC

AMO MACH230-24JI

MACH231
AMO MACH231-10JC

AMO MACH231-12JC

AMO MACH231-15JC

AMO MACH231-20JC

AMO MACH231-7JC

MACH355
AMO MACH355-15YC

AMO MACH355-20YC

MACH435
AMO MACH435-12JC

AMO MACH435-15JC

AMO MACH435-20JC

AMO MACH435Q-20JC

AMO MACH435Q-25JC

MACH445
AMO MACH445-12YC

AMO MACH445-15YC

AMO MACH445-20YC

MACH465
AMO MACH465-12YC

AMO MACH465-15YC

AMO MACH465-20YC

Appendix A: MACHXL Supported Devices 297

Devices Listed By Template Number

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

This section is a listing of all AMD devices supported by MACHXL. The
devices in this list are sorted alphabetically by template number. The columns
in the list consist of the manufactures abbreviation, followed by the device's
part number, and the footprint name.

This list can be used to generate a TAR GET statement in the .pi file to specify
a particular device.

Syntax

TARGET 'TEMPLATE template_name footprint_name';

Example

TARGET 'TEMPLATE MACHllO JLCC-44-STD;

AMO MACH120-15JC JLCC-68-STD

MACH110 AMO MACH120-18JI JLCC-68-STD

AMO MACH120-20JC JLCC-68-STD
MACH110-12JC JLCC-44-STD

AMO MACH120-24JI JLCC-68-STO
MACH110-14JI JLCC-44-STO

MACH110-15JC JLCC-44-STO
MACH130 MACH110-18JI JLCC-44-STD

MACH110-20JC JLCC-44-STO AMO MACH130-15JC JLCC-84-STO

MACH110-24JI JLCC-44-STD AMO MACH130-18JI JLCC-84-STD

AMO MACH130-20JC JLCC-84-STD

MACH111 AMO MACH130-24JI JLCC-84-STD

MACH111-1 OJC JLCC-44-STO
MACH131 MACH111-12JC JLCC-44-STD

MACH111-15JC JLCC-44-STD AMO MACH131-10JC JLCC-84-STD

MACH111-20JC JLCC-44-STD AMO MACH131-12JC JLCC-84-STD

MACH111-7JC JLCC-44-STO AMO MACH131-15JC JLCC-84-STD

AMO MACH131-20JC JLCC-84-STD

MACH120 AMO MACH131-7JC JLCC-84-STO

MACH120-12JC JLCC-68-STO

298 MACHXL Software User's Guide (Version 3.0)

MACH210 AMO MACH211AQ-12JC JLCC-44-STO

AMO MACH211AQ-15JC JLCC-44-STO
AMO MACH210-12JC JLCC-44-STO

AMO MACH211AQ-18JI JLCC-44-STO
AMO MACH210-14JI JLCC-44-STD

AMO MACH211 AQ-20JC JLCC-44-STO
AMO MACH210-15JC JLCC-44-STO

AMO MACH211AQ-24JI JLCC-44-STO
AMO MACH210-18JI JLCC-44-STO

AMO MACHLV211-15JC JLCC-44-STO
AMO MACH210-20JC JLCC-44-STO

AMO MACHLV211-18JI JLCC-44-STO
AMO MACH210-24JI JLCC-44-STD

AMO MACHLV211-20JC JLCC-44-STD
AMO MACH210A-10JC JLCC-44-STD

AMO MACHLV211-24JI JLCC-44-STD
AMO MACH21 OA-1 OVC TQFP-44-TQ44

AMO MACH21 OA-12JC JLCC-44-STO
MACH215 AMO MACH210A-12JI JLCC-44-STD

AMO MACH21 OA-12VC TQFP-44-TQ44 AMO MACH215-12JC JLCC-44-STO

AMO MACH210A-15VC TQFP-44-TQ44 AMO MACH215-14JI JLCC-44-STO

AMO MACH21 OA-20VC TQFP-44-TQ44 AMO MACH215-15JC JLCC-44-STO

AMO MACH210A-7JC JLCC-44-STO AMO MACH215-18JI JLCC-44-STO

AMO MACH210AQ-12JC JLCC-44-STO AMO MACH215-20JC JLCC-44-STO

AMO MACH210AQ-15JC JLCC-44-STO AMO MACH215-24JI JLCC-44-STO

AMO MACH21 OAQ-18JI JLCC-44-STD

AMO MACH21 OAQ-20JC JLCC-44-STO MACH220
AMO MACH21 OAQ-24JI JLCC-44-STD

AMO MACHLV210-15JC JLCC-44-STO
AMO MACH220-10JC JLCC-68-STO

AMO MACHLV210-18JI JLCC-44-STD
AMO MACH220-12JC JLCC-68-STD

AMO MACHLV210-20JC JLCC-44-STO
AMO MACH220-15JC JLCC-68-STD

AMO MACHLV210-24JI JLCC-44-STD
AMO MACH220-18JI JLCC-68-STD

AMO MACH220-20JC JLCC-68-STD

MACH211
AMO MACH220-24JI JLCC-68-STD

AMO MACH211-12JC JLCC-44-STO MACH230
AMO MACH211-14JI JLCC-44-STD

AMO MACH211-15JC JLCC-44-STO
AMO MACH230-10JC JLCC-84-STO

AMO MACH211-18JI JLCC-44-STD
AMO MACH230-15JC JLCC-84-STD

AMO MACH211-20JC JLCC-44-STO
AMO MACH230-18JI JLCC-84-STO

AMO MACH211-24JI JLCC-44-STD
AMO MACH230-20JC JLCC-84-STO

AMO MACH211A-10JC JLCC-44-STO
AMO MACH230-24JI JLCC-84-STO

AMO MACH211A-10VC TQFP-44-TQ44

MACH231 AMO MACH211A-12JC JLCC-44-STO

AMO MACH211A-12JI JLCC-44-STO AMO MACH231-10JC JLCC-84-STD
AMO MAC H211 A-12VC TQFP-44-TQ44 AMO MACH231-12JC JLCC-84-STO
AMO MACH211 A-15VC TQFP-44-TQ44 AMO MACH231-15JC JLCC-84-STD
AMO MACH211 A-20VC TQFP-44-TQ44 AMO MACH231-20JC JLCC-84-STO
AMO MACH211A-7JC JLCC-44-STO AMO MACH231-7JC JLCC-84-STD

Appendix A: MACHXL Supported Devices 299

~

MACH355 AMO PAL 16L80/2PC OIP-20-STO

AMO MACH355-15YC QFP-144-STD
P16R4 AMO MACH355-20YC QFP-144-STD

AMO 5962-85155042A LCC-20-STD

MACH435 AMO PAL 16R4-5JC JLCC-20-STO

AMO PAL 16R4-5PC OIP-20-STD
AMO MACH435-12JC JLCC-84-STD

AMO PAL16R4-70C OIP-20-STD
AMO MACH435-15JC JLCC-84-STO

AMO PAL16R4-7JC JLCC-20-STD
AMO MACH435-20JC JLCC-84-STD

AMO PAL 16R4-7PC OIP-20-STD
AMO MACH435Q-20JC JLCC-84-STD

AMO PAL 16R4A2CN OIP-20-STD
AMO MACH435Q-25JC JLCC-84-STD

AMO PAL 16R4A2CNL JLCC-20-STO

AMO PAL16R4ACN OIP-20-STD

MACH445 AMO PAL 16R4ACNL JLCC-20-STO

AMO MACH445-12YC QFP-100-STD AMO PAL 16R4B2CN OIP-20-STD

AMO MACH445-15YC QFP-100-STD AMO PAL 16R4B2CNL JLCC-20-STD

AMO MACH445-20YC QFP-100-STD AMO PAL 16R4B4CJ OIP-20-STD

AMO PAL16R4B4CN OIP-20-STO

MACH465 AMO PAL 16R4B4CNL JLCC-20-STO

AMO PAL16R4BCN OIP-20-STO
AMO MACH465-15YC QFP-208-STD AMO PAL 16R4BCNL JLCC-20-STD
AMO MACH465-20YC QFP-208-STO AMO PAL16R4CN OIP-20-STD

AMO PAL16R4CNL JLCC-20-STO

P16LB
AMO PAL16L8-4JC JLCC-28-A28 P16R6
AMO PAL16L8-5JC JLCC-20-STO AMO PAL 16R6-4JC JLCC-28-A28
AMO PAL 16L8-5PC OIP-20-STO AMO PAL16R6-5JC JLCC-20-STD
AMO PAL 16L8-70C OIP-20-STD AMO PAL 16R6-5PC OIP-20-STO
AMO PAL16L8-7JC JLCC-20-STO AMO PAL16R6-70C OIP-20-STD
AMO PAL 16L8-7PC OIP-20-STD AMO PAL16R6-7JC JLCC-20-STO
AMO PAL 16L8A2C N OIP-20-STO AMO PAL16R6-7PC OIP-20-STD
AMO PAL 16L8A2CNL JLCC-20-STD AMO PAL 16R6A2CN OIP-20-STD
AMO PAL16L8ACN OIP-20-STD AMO PAL16R6A2CNL JLCC-20-STD
AMO PAL16L8ACNL JLCC-20-STD AMO PAL16R6ACN OIP-20-STD
AMO PAL 16L882CN DIP-20-STO AMO PAL 16R6ACNL JLCC-20-STO
AMO PAL16L882CNL JLCC-20-STD AMO PAL 16R682CN OIP-20-STD
AMO PAL16L884CJ OIP-20-STO AMO PAL16R682CNL JLCC-20-STD
AMO PAL16L884CN OIP-20-STD AMO PAL16R684CJ OIP-20-STD
AMO PAL16L884CNL JLCC-20-STD AMO PAL16R684CN OIP-20-STD
AMO PAL16L88CN OIP-20-STD AMO PAL 16R684CNL JLCC-20-STD
AMO PAL16L8BCNL JLCC-20-STO AMO PAL16R68CN OIP-20-STO
AMO PAL16L80/2JC JLCC-20-STD

300 MACHXL Software User's Guide (Version 3.0)

AMO PAL16R6BCNL JLCC-20-STD AMO PALCE16V8Q-1 OJC/5 JLCC-20-STD

AMO PAL16R6CN OIP-20-STO AMO PALCE16V8Q-15JC/4 JLCC-20-STO

AMO PAL16R6CNL JLCC-20-STO AMO PALCE16V8Q-15PC/4 OIP-20-STO

AMO PAL16R60/2PC OIP-20-STO AMO PALCE16V8Q-25JC/4 JLCC-20-STO

AMO PALCE16VBQ-25PC/4 OIP-20-STD

P16RB AMO PALCE16VBZ-15JI JLCC-20-STD

AMO PALCE16V8Z-15PI OIP-20-STD
AMO PAL16R8-4JC JLCC-28-A28

AMO PALCE16V8Z-25JC JLCC-20-STO
AMO PAL16R8-5JC JLCC-20-STO

AMO PALCE16VBZ-25JI JLCC-20-STO
AMO PAL 16R8-5PC OIP-20-STD

AMO PALCE16V8Z-25PC OIP-20-STO
AMO PAL16R8-70C OIP-20-STD

AMO PALCE16VBZ-25PI OIP-20-STO
AMO PAL16R8-7JC JLCC-20-STO

AMO PALLV16V8-10JC JLCC-20-STO
AMO PAL 16R8-7PC OIP-20-STD

AMO PALL V16V8-1 OPC OIP-20-STD
AMO PAL16RBA2CN OIP-20-STD

AMO PALLV16V8Z-20JI JLCC-20-STO
AMO PAL16RBA2CNL JLCC-20-STO

AMO PALLV16V8Z-20PI OIP-20-STD
AMO PAL16RBACN OIP-20-STD

AMO PAL16RBACNL JLCC-20-STO
P16VBHD AMO PAL 16R8B2CN OIP-20-STD

AMO PAL16RBB2CNL JLCC-20-STO AMO PALCE16V8H0-15JC JLCC-28-P28

AMO PAL16RBB4CJ OIP-20-STD AMO PALCE16VBH0-15PC OIP-24-STO

AMO PAL16RBB4CN OIP-20-STO

AMO PAL16R8B4CNL JLCC-20-STO P20LB
AMO PAL16R8BCN OIP-20-STO

AMO PAL16R8BCNL JLCC-20-STO
AMO PAL20L8-10/2JC JLCC-28-P28

AMO PAL16R8CN OIP-20-STD
AMO PAL20L8-10/2PC OIP-24-STO

AMO PAL16R8CNL JLCC-20-STO
AMO PAL20L8-5JC JLCC-28-P28

AMO PAL16R80/2JC JLCC-20-STD
AMO PAL20L8-5PC OIP-24-STO

AMO PAL 16R80/2PC OIP-20-STO
AMO PAL20L8-7JC JLCC-28-P28

AMO PAL20L8-7PC OIP-24-STO

P16VBA
AMO PAL20L8A2CNL JLCC-28-U28

AMO PAL20LBA2CNS OIP-24-STO

AMO PALCE16V8H-1 OJC/4 JLCC-20-STD AMO PAL20L8ACNL J LCC-28-U28

AMO PALCE16V8H-1 OPC/4 OIP-20-STO AMO PAL20L8ACNS OIP-24-STO

AMO PALCE16V8H-1 OSC/4 SOIC-20-STO AMO PAL20L8B2CFN JLCC-28-P28

AMO PALCE16V8H-15JC/4 JLCC-20-STO AMO PAL20LBB2CNL JLCC-28-P28

AMO PALCE 16V8H-15PC/4 OIP-20-STO AMO PAL20LBB2CNS OIP-24-STD

AMO PALCE16VBH-15SC/4 OIP-20-STO AMO PAL20L8BCFN JLCC-28-U28

AMO PALCE16V8H-25JC/4 JLCC-20-STO AMO PAL20L8BCNL JLCC-28-U28

AMO PALCE16V8H-25PC/4 OIP-20-STD AMO PAL20LBBCNS OIP-24-STD

AMO PALCE16V8H-5JC/5 JLCC-20-STO

AMO PALCE16V8H-7JC/5 JLCC-20-STD

AMO PALCE16V8H-7PC/5 OIP-20-STD

Appendix A: MACHXL Supported Devices 301

AMO PAL20R8A2CNS OIP-24-STO

P20R4 AMO PAL20R8ACNL JLCC-28-U28

AMO PAL20R8ACNS OIP-24-STO
AMO PAL20R4-5JC JLCC-28-P28

AMO PAL20R8B2CFN JLCC-28-P28
AMO PAL20R4-5PC OIP-24-STO

AMO PAL20R8B2CNL JLCC-28-P28
AMO PAL20R4-70C OIP-24-STO

AMO PAL20R8B2CNS OIP-24-STD
AMO PAL20R4-7JC JLCC-28-P28

AMO PAL20R8BCNL JLCC-28-U28
AMO PAL20R4-7PC OIP-24-STO

AMO PAL20R8BCNS OIP-24-STD
AMO PAL20R4A2CNL JLCC-28-U28

AMO PAL20R4A2CNS OIP-24-STD
P20RA10 AMO PAL20R4ACNL JLCC-28-U28

AMO PAL20R4ACNS OIP-24-STO AMO PAL20RA 10-20CFN JLCC-28-P28
AMO PAL20R4B2CFN JLCC-28-P28 AMO PALCE20RA10H-10JC JLCC-28-P28
AMO PAL20R4B2CNL JLCC-28-P28 AMO PALCE20RA10H-10JI JLCC-28-P28
AMO PAL20R4B2CNS OIP-24-STO AMO PALCE20RA 1 OH-1 OPC OIP-24-STD
AMO PAL20R4BCNL JLCC-28-U28 AMO PALCE20RA10H-10PI OIP-24-STD
AMO PAL20R4BCNS OIP-24-STO AMO PALCE20RA 1 OH-1 SJC JLCC-28-P28

AMO PALCE20RA10H-15JI JLCC-28-P28

P20R6 AMO PALCE20RA 1 OH-1 SPC OIP-24-STD

AMO PALCE20RA10H-15PI OIP-24-STO
AMO PAL20R6-5JC JLCC-28-P28

AMO PALCE20RA 1 OH-20PC OIP-24-STO
AMO PAL20R6-5PC OIP-24-STD

AMO PALCE20RA10H-7JC JLCC-28-P28
AMO PAL20R6-70C OIP-24-STD

AMO PALCE20RA10H-7JI JLCC-28-P28
AMO PAL20R6-7JC JLCC-28-P28

AMO PAL20R6-7PC OIP-24-STO
P20VBA AMO PAL20R6A2CNL JLCC-28-U28

AMO PAL20R6A2CNS OIP-24-STD AMO PALCE20V8H-1 OJC/4 JLCC-28-P28
AMO PAL20R6ACNL JLCC-28-U28 AMO PALCE20V8H-10PC/4 OIP-24-STD
AMO PAL20R6ACNS OIP-24-STD AMO PALCE20V8H-15JC/4 JLCC-28-P28
AMO PAL20R6B2CFN JLCC-28-P28 AMO PALCE20V8H-15Jl/4 JLCC-28-P28
AMO PAL20R6B2CNS OIP-24-STO AMO PALCE20V8H-15PC/4 OIP-24-STO
AMO PAL20R6BCNL JLCC-28-U28 AMO PALCE20V8H-25JC/4 JLCC-28-P28
AMO PAL20R6BCNS OIP-24-STD AMO PALCE20V8H-25Jl/4 JLCC-28-P28

AMO PALCE20V8H-25PC/4 OIP-24-STD

P20RB AMO PALCE20V8H-5JC/5 JLCC-28-P28

AMO PALCE20V8H-7JC/5 JLCC-28-P28
AMO PAL20R8-10/2PC OIP-24-STD

AMO PALCE20V8H-7PC/5 OIP-24-STO
AMO PAL20R8-5JC JLCC-28-P28

AMO PALCE20V8Q-15JC/4 JLCC-28-P28
AMO PAL20R8-5PC OIP-24-STD

AMO PALCE20V8Q-15PC/4 OIP-24-STD
AMO PAL20R8-70C OIP-24-STD

AMO PALCE20V8Q-20Pl/4 OIP-24-STO
AMO PAL20R8-7JC JLCC-28-P28

AMO PALCE20V8Q-25JC/4 JLCC-28-P28
AMO PAL20R8-7PC OIP-24-STO

AMO PALCE20V8Q-25PC/4 OIP-24-STD
AMO PAL20R8A2CNL JLCC-28-U28

302 MACHXL Software User's Gulde (Version 3.0)

P22P10 AMO PALCE22V1 OZ-25JI JLCC-28-P28

AMO PALCE22V1 OZ-25PC OIP-24-8TO
AMO AMPAL22P10AJC JLCC-28-P28

AMO PALCE22V1 OZ-25PI OIP-24-8TO
AMO AMPAL22P10ALOC OIP-24-8TD

AMO PALCE22V1 OZ-258C 801C-24-8TD
AMO AMPAL22P1 OALPC OIP-24-8TO

AMO PALCE22V1 OZ-2581 SOIC-24-STD
AMO AMPAL22P1 OBJC JLCC-28-P28

AMO PALL V22V10-1 OPC OIP-24-STD
AMO AMPAL22P1 OBPC OIP-24-STD

AMO PALLV22V10-7JC JLCC-28-P28

P22V10
AMO PALLV22V10Z-25JI JLCC-28-P28

AMO PALLV22V1 OZ-25PI DIP-24-8TO

AMO AMPAL22V1 OAJC JLCC-28-P28 AMO PALLV22V1 OZ-2581 801C-24-8TO

AMO AMPAL22V10APC OIP-24-STD

AMO AMPAL22V10JC JLCC-28-P28 P24V10
AMO AMPAL22V10PC OIP-24-STO

AMO PALCE24V1 OH-15JC JLCC-28-STD
AMO CE22V1 OH-15E4/BKA FP-24-STO

AMO PALCE24V10H-15PC OIP-28-STD
AMO PAL22V10-10JC JLCC-28-P28

AMO PALCE24V1 OH-25JC JLCC-28-8TD
AMO PAL22V10-1 OPC OIP-24-8TO

AMO PALCE24V1 OH-25PC OIP-28-STO
AMO PAL22V10-1 SOC OIP-24-STD

AMO PAL22V10-15JC JLCC-28-P28
P26V12 AMO PAL22V10-1 SPC OIP-24-STD

AMO PALCE22V1 OH-1 OJC/5 JLCC-28-P28 AMO PALCE26V12H-15JC/4 JLCC-28-8TO

AMO PALCE22V1 OH-1 OPC/5 OIP-24-STO AMO PALCE26V12H-15PC/4 OIP-28-STO

AMO PALCE22V1 OH-15JC/4 JLCC-28-P28 AMO PALCE26V12H-20JC/4 JLCC-28-8TO

AMO PALCE22V1 OH-15PC/4 OIP-24-8TD AMO PALCE26V12H-20PC/4 OIP-28-STD

AMO PALC E22V1 OH-15SC/4 FP-24-STO

AMO PALCE22V1 OH-25JC/4 JLCC-28-P28 P29M16
AMO PALCE22V1 OH-25PC/4 OIP-24-STD

AMO PALCE22V1 OH-25SC/4 FP-24-STD
AMO PALCE29M16H25JC/4 JLCC-28-P28

AMO PALCE22V1 OH-5JC/5 JLCC-28-P28
AMO PALCE29M16H25PC/4 OIP-24-STO

AMO PALCE22V1 OH-7 JC/5 JLCC-28-P28

AMO PALCE22V1 OH-7PC/5 OIP-24-8TO P29MA16
AMO PALCE22V1 OQ-1 OJC JLCC-28-P28 AMO PALCE29MA 16H25JC/4 JLCC-28-P28
AMO PALCE22V10Q-10PC OIP-24-8TD AMO PALCE29MA 16H25PC/4 OIP-24-STO
AMO PALCE22V1 OQ-1 DSC SOIC-24-STO

AMO PALCE22V1 OQ-15JC JLCC-28-P28 P600
AMO PALCE22V1 OQ-15PC OIP-24-STO

AMO PALCE22V1 OQ-25JC/4 JLCC-28-P28 AMO PALCE610H-15JC JLCC-28-528

AMO PALCE22V1 OQ-25PC/4 OIP-24-8TO AMO PALC E61 OH-15PC OIP-24-STD

AMO PALCE22V10Z-15JI JLCC-28-P28 AMO PALCE61 OH-20/B3A JLCC-28-528

AMO PALCE22V10Z-15PI OIP-24-8TO AMO PALCE61 OH-20/BLA OIP-24-8TO

AMO PALCE22V10Z-15SI SOIC-24-STD AMO PALCE61 OH-25JC JLCC-28-528

AMO PALCE22V10Z-25JC JLCC-28-P28 AMO PALCE61 OH-25PC OIP-24-8TO

Appendix A: MACHXL Supported Devices 303

Device Footprints by Template Number

E10P4

E10P8

E11P4

E11P8

E12P4

E5P8

E8P4

The following is an alphabetical list of MACHXL templates (i.e.,
architectures) and the footprints available for each.

Syntax

TARGET 'TEMPLATE template_name footprint_name I

E9P4 MACH215
DIP-18-STD DIP-16-STD JLCC-44-STD

FP-18-STD FP-16-STD MACH220
JLCC-20-U20 JLCC-20-V20 JLCC-68-STD

SOIC-16-STD MACH230
DIP-24-STD E9P8 JLCC-84-STD

JLCC-28-V28 DIP-20-STD MACH231
LCC-28-V28 JLCC-20-STD JLCC-84-STD

E9R8 MACH355
DIP-18-STD DIP-24-STD QFP-144-STD

JLCC-28-V28 MACH435
DIP-24-STD LCC-28-V28 JLCC-84-STD

FP-24-STD MACH110 MACH445
JLCC-28-V28 JLCC-44-STD QFP-100-STD

LCC-28-V28 MACH111 MACH465
SOIC-24-STD JLCC-44-STD QFP-208-STD

MACH120 P16L8
DIP-20-STD JLCC-68-STD DIP-20-STD

JLCC-20-V28 MACH130
/

FP-20-STD

JLCC-84-STD JLCC-20-STD

DIP-16-STD MACH131 JLCC-28-A28

FP-16-STD JLCC-84-STD LCC-20-STD

JLCC-20-V20 MACH210 SOJ-20-STD

SOIC-16-STD JLCC-44-STD P16R4
TQFP-44-TQ44 DIP-20-STD

DIP-16-STD MACH211 FP-20-STD

FP-16-STD JLCC-44-STD JLCC-20-STD

JLCC-20-V20 TQFP-44-TQ44 JLCC-28-A28

SOIC-16-STD LCC-20-STD

304 MACHXL Software User's Gulde (Version 3.0)

SOJ-20-STD LCC-28-P28 P26V12
P16R6 LCC-28-R28 DIP-28-STD

DIP-20-STD P20R8 JLCC-28-STD

FP-20-STD DIP-24-STD P29M16
JLCC-20-STD FP-24-STD DIP-24-STD

JLCC-28-A28 JLCC-28-P28 JLCC-28-P28

LCC-20-STD JLCC-28-U28 P29MA16
SOJ-20-STD LCC-28-P28 DIP-24-STD

P16R8 LCC-28-R28 JLCC-28-P28

DIP-20-STD P20RA10 P600
FP-20-STD DIP-24-STD DIP-24-STD

JLCC-20-STD JLCC-28-P28 JLCC-28-828

JLCC-28-A28 JLCC-28-R28 SOIC-24-STD

LCC-20-STD JLCC-28-U28

SOJ-20-STD LCC-28-P28
P16V8A LCC-28-R28

DIP-20-STD P20V8A
JLCC-20-STD DIP-24-STD

LCC-20-STD JLCC-24-STD

SOIC-20-STD JLCC-28-P28
P16V8HD JLCC-28-U28

DIP-24-STD LCC-24-STD

JLCC-28-P28 LCC-28-P28
P20L8 SOIC-24-STD

DIP-24-STD P22P10
FP-24-STD DIP-24-STD

JLCC-28-P28 JLCC-28-P28

JLCC-28-U28 P22V10
LCC-28-P28 DIP-24-STD

LCC-28-R28 FP-24-STD
P20R4 JLCC-24-STD

DIP-24-STD JLCC-28-P28

FP-24-STD JLCC-28-PC28

JLCC-28-P28 JLCC-28-V28

JLCC-28-U28 JLCC-28-W28

LCC-28-P28 LCC-24-STD

LCC-28-R28 LCC-28-P28
P20R6 LCC-28-W28

DIP-24-STD SOIC-24-STD

FP-24-STD P24V10
JLCC-28-P28 DIP-28-STD

JLCC-28-U28 JLCC-28-STD

Appendix A: MACHXL Supported Devices 305

New Devices

The following is a list of new devices that have been added to V3.0.

Mfg Template Manufacturer's Mfg Template Manufacturer's
Number Part Number Number Part Number

AMO MACH110 MACH110-14JI AMO MACH210 MACH21 OAQ-24JI

AMO MACH110 MACH110-18JI AMO MACH210 MACHLV210-18JI

AMO MACH110 MACH110-24JI AMO MACH210 MACHLV210-24JI

AMO MACH111 MACH111-10JC AMO MACH215 MACH215-14JI

AMO MACH111 MACH111-12JC AMO MACH215 MACH215-18JI

AMO MACH111 MACH111-15JC AMO MACH215 MACH215-24JI

AMO MACH111 MACH111-20JC AMO MACH220 MACH220-10JC
AMO MACH111 MACH111-7JC AMO MACH220 MACH220-18JI
AMO MACH120 MACH120-12JC AMO MACH220 MACH220-24JI
AMO MACH120 MACH120-18JI AMO MACH230 MACH230-10JC

AMO MACH120 MACH120-24JI AMO MACH230 MACH230-18JI
AMO MACH130 MACCH130-18Jll AMO MACH230 MACH230-24JI

AMO MACH130 MACH130-18JI AMO MACH231 MACH231-10JC
AMO MACH130 MACH130-24JI AMO MACH231 MACH231-12JC
AMO MACH131 MACH131-10JC AMO .MACH231 MACH231-15JC
AMO MACH131 MACH131-12JC AMO MACH231 MACH231-20JC

AMO MACH131 MACH131-15JC AMO MACH231 MACH231-7JC
AMO MACH131 MACH131-20JC AMO MACH355 MACH355-12JC

AMO MACH131 MACH131-7JC AMO MACH355 MACH355-15YC
AMO MACH210 MACH210-14JI AMO MACH355 MACH355-20YC
AMO MACH210 MACH210-18JI AMO MACH435 MACH435-12JC
AMO MACH210 MACH210-24JI AMO MACH435 MACH435Q-20JC
AMO MACH210 MACH210A-10VC AMO MACH445 MACH445-12YC
AMO MACH210 MACH210A-12JI AMO MACH445 MACH445-15KC
AMO MACH210 MACH21 OA-12VC AMO MACH445 MACH445-15YC

AMO MACH210 MACH210A-15VC AMO MACH445 MACH445-20YC
AMO MACH210 MACH21 OA-20VC AMO MACH465 MACH465-15YC

AMO MACH210 MACH21 OA-75C AMO MACH465 MACH465-20YC
AMO ·MACH210 MACH210A-7JC AMO P16V8A PALCE16V8Z-15JI
AMO MACH210 MACH21 OAQ-12JC AMO P16V8A PALCE16V8Z-15PI
AMO MACH210 MACH21 OAQ-18JI AMO P16V8A PALCE16V8Z-25JC

306 MACHXL Software User's Guide (Version 3.0)

Mfg Template Manufacturer's
Number Part Number

AMO P16V8A PALCE16V8Z-25PC

AMO P16V8A PALLV16V8-10JC

AMO P16V8A PALLV16V8-10PC

AMO P16V8A PALLV16V8Z-20JI

AMO P16V8A PALL V16V8Z-20PI

AMO P20RA10 PALCE20RA10H-10JC

AMO P20RA10 PALCE20RA10H-10JI

AMO P20RA10 PALC E20RA 1 OH-1 OPC

AMO P20RA10 PALCE20RA1 OH-1 OPI

AMO P20RA10 PALCE20RA10H-15JC

AMO P20RA10 PALCE20RA10H-15JI

AMO P20RA10 PALCE20RA1 OH-15PC

AMO P20RA10 PALCE20RA10H-15PI

AMO P20RA10 PALCE20RA10H-7JC

AMO P20RA10 PALCE20RA10H-7JI

AMO P20V8A PALCE20V8H-15Jl/4

AMO P20V8A PALCE20V8H-25Jl/4

AMO P20V8A PALCE20V8H-7 JC/5

AMO P20V8A PALCE20V8H-7PC/5

AMO P20V8A PALCE20V8Q-20Pl/4

AMO P22V10 PALL V22V10-1 OPC

AMO P22V10 PALLV22V10-7JC

AMO S128V128 PLA128V128-0UMMY

AMO S64V32 PLA64V32-0UMMY

Appendix A: MACHXL Supported Devices 307

Renamed Devices

Mfg

AMO

AMO

AMO

AMO

AMO

AMO

The following is a list of devices that have been renamed for various reasons
since VI .2. MACHXL will continue to support the architectures in the
Version 3.0 release.

New Old
Manufacturer's Manufacturer's
Part Number Part Number

MACH130-18JI MACCH130-18Jll

MACH210A-7JC MACH210A-75C

MACH355-15YC MACH355-12JC

MACH445-15YC MACH445-15KC

MACH465-20YC MACH465-20KC

MACH465-15YC MACH465-15KC

308 MACHXL Software User's Guide (Version 3.0)

Obsolete Devices

Mfg

AMO

AMO

AMO

The following is a list of devices that have become obsolete since V 1. 2. These
devices will remain obsolete for one (1) year, at which time they will no longer
be supported.

Manufacturer's
Part Number

MACH211-14JI

MACH211-18JI

MACH211-24JI

Appendix A: MACHXL Supported Devices 309

Deleted Devices

Mfg

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

AMO

The following is a list of devices that have been deleted since VI .2. They are
no longer supported.

Manufacturer's
Part Number

MACH110-20/BXA

MACH111-14JI

MACH111-18JI

MACH111-24JI

MACH131-18JI

MACH131-24JI

MACH210-20/BXA

MACH220-14JI

MACH231-18JI

MACH231-24JI

P20L 10-0IP-OBS

P20L 10-J LCC-OBS

31 O MACHXL Software User's Gulde (Version 3.0)

B Language-Based Design Examples

Contents
Introduction .. 313
Building a MACHXL Design Synthesis Language Source File 313
Gray_ Code Counter Examples .. 315

Example 1: Asynchronously Reset Gray Code Counter
Using Simple Equations (PLDs) ... 315

.est (Constraint) File for Example 1 329

.stm (Stimulus) File for Example 1 330
Example 2: Synchronously Reset Gray Code Counter
Using Simple Equations ... 331

.stm (Stimulus) File for Example 2 332
Example 3: Synchronously Reset Gray Code Counter
Using a Truth Table ... 333

.Stm (Stimulus) File for Example 3 334

.pi (Physical Information) File for Example 3 335
Example 4: Synchronously Reset Gray Code Counter
Using a Truth Table and IF Construct (AMD MACH) 335

.est (Constraint) File for Example 4 336

.stm (Stimulus) File for Example 4 ; 336
Example 5: Synchronously Reset Gray Code Counter
Using CASE Statement .. 337

.stm (Stimulus) File for Example 5338
Example 6: Synchronously Reset Gray Code Counter
Using IF Statement .. 339

.stm (Stimulus) File for Example 6 340
Example 7: Synchronously Reset Gray Code Counter
Using a State Machine ... 341

.stm (Stimulus) File for Example 7342
Example 8: Synchronously Reset Gray Code Counter
Using a State Machine ... 344

.stm (Stimulus) File for Example 8 345
Drink Machine Examples ... 347

Example 1: Drink Machine Using a State Machine 34 7

Appendix B: Language-Based Design Examples 311

Example 2: Drink Machine Using a State Machine and Default
Values .. 35I

Seven-Segment Display Handler Example .. 355
Adders and Multipliers .. 359

Example I: I-Bit, 2-Bit, 4-Bit and 8-Bit Adder Procedures 359
Example 2: I-Bit, 2-Bit, 4-Bit and 8-Bit Adder Functions 36 I
Example 3: Combinatorial 4x4 Multiplier Function 363
Example 4: Combinatorial 4x4 Multiplier Functions 364

4-Bit ALU Example ... 366

312 MACHXL Software User's Guide (Version 3.0)

Introduction

The examples in this chapter are intended as a tutorial of language constructs
and are ordered to introduce new concepts with each example.

Each example can be found in the examples/manual subdirectory of the
MINC installation directory. There are also other undocumented examples in
this subdirectory for reference.

Building a MACHXL Design Synthesis
Language Source File

MACHXL lets you build a source file to describe your design. Chapters 4 -
9 cover the elements of this source file. The following diagram shows the
general organization of a typical design source file. It also lists the chapter(s)
where information about each part of the design source file is located.

Appendix B: Language-Based Design Examples 313

Parts of a Source File (Using MACHXL's Design Synthesis Language)

Headers Chapter 4
(information about the design)

MACRO Definitions Chapter 9
(text substitution structures)

USE constructs Chapter 8
(compiled Procedures and Functions to be used by this source file)

Procedure/Function Definitions
(Procedures/Functions used in this design)

Chapter 8

System-Level Declarations Chapter 5
(declaring the signals to be used in this design)

System-Level Statements Chapters 6, 7
(statements and constructs that describe your design)

The sample above is a template of a typical source file. Each of the sections
listed is optional. In addition to these chapters, this appendix contains a
number of language design examples, complete with comments and
explanations.

314 MACHXL Software User's Guide (Version 3.0)

Gray_ Code Counter Examples

The following eight examples implement a 4-bit gray code counter with reset.
The first example uses an asynchronous reset while the others use a
synchronous reset. The functioning of each is similar, however each example
uses different statement constructs to illustrate the various capabilities
available in the Design Synthesis Language. These examples are complete
(where appropriate) with .est, .pi (if needed), and .stm files and represent
solutions using PLDs and CPLDs.

Example 1: Asynchronously Reset Gray
Code Counter Using Simple Equations
(PLDs)
This design implements a 4-bit gray code counter with an asynchronous reset.
The signals q3, q2, ql, and qO represent the 4-bit counter output values.
The equations were derived by writing out the 16 gray code values in order
and noting all combinations where a signal transitions to a 1.

"GRAY1
"AMO

INPUT clock, reset;
OUTPUT q3, q2, q1, qO CLOCKED_BY clock RESET _BY reset;

q3 = Q3*/Q2*/Q1*QO + Q3*/Q2*Q1*QO + Q3*/Q2*Q1*/QO +
Q3*Q2*Q1*/QO + Q3*Q2*Q1*QO + Q3*Q2*/Q1*QO +
Q3*Q2*/Q1*/QO + /Q3*Q2*/Q1*/QO;

q2 = Q3*Q2*Q1*QO + Q3*Q2*/Q1*QO + Q3*Q2*/Q1*/QO +
/Q3*Q2*/Q1*/QO + /Q3*Q2*/Q1*QO + /Q3*Q2*Q1*QO +
/Q3*Q2*Q1 */QO + /Q3*/Q2*Q1 */QO;

Appendix B: Language-Based Design Examples 315

q1 = Q3*/Q2*Q1*/QO + Q3*Q2*Q1*/QO + Q3*Q2*Q1*QO +
Q3*Q2*/Q1*QO + /Q3*Q2*Q1*/QO + /Q3*/Q2*Q1*/QO +
/Q3*/Q2*Q1*QO + /Q3*/Q2*/Q1*QO;

qO = Q3*/Q2*Q1*QO + Q3*/Q2*Q1*/QO + Q3*Q2*/Q1*QO +
Q3*Q2*/Q1*/QO + /Q3*Q2*Q1*QO + /Q3*Q2*Q1*/QO +
/Q3*/Q2*/Q1*QO + /Q3*/Q2*/Q1*/QO;

.stm (Stimulus) File for Example 1
• This is the stimulus source for the 4-bit gray code counter
• with •asynchronous reset' in the file •gray1 .src'.

•By using the keyword 'SYSTEM_ TEST' instead of
•'SIMULATION',

• JEDEC test vectors are produced when PLD/CPLD devices are
•targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q3,q2,q1,q0];

MESSAGE('RESET ... ?;
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = OTO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

316 MACHXL Software User's Gulde (Version 3.0)

MESSAGE('RESET ... ?;
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 2: Synchronously Reset Gray Code
Counter Using Simple Equations
This is the same gray code counter as in Example 1 except with a synchronous
reset rather than an asynchronous reset. To implement a synchronous reset
the reset signal has been incorporated into the equations of each counter
output value.

"GRAY2
"AMO

INPUT clock, reset;
OUTPUT q3, q2, q1, qO CLOCKED_BY clock;

q3 = /reset*(Q3*/Q2*/Q1*QO + Q3*/Q2*Q1*QO + Q3*/Q2*Q1*/QO +
Q3*Q2*Q1*/QO + Q3*Q2*Q1*QO + Q3*Q2*/Q1*QO +
Q3*Q2*/Q1*/QO + /Q3*Q2*/Q1*/QO);

q2 = /reset*(Q3*Q2*Q1*QO + Q3*Q2*/Q1*QO + Q3*Q2*/Q1*/QO +
/Q3*Q2*/Q1*/QO + /Q3*Q2*/Q1*QO + /Q3*Q2*Q1*QO +
/Q3*Q2*Q1*/QO + /Q3*/Q2*Q1*/QO);

q1 = /reset*(Q3*/Q2*Q1*/QO + Q3*Q2*Q1*/QO + Q3*Q2*Q1*QO +
Q3*Q2*/Q1 *QO + /Q3*Q2*Q1 */QO + /Q3*/Q2*Q1 */QO +
/Q3*/Q2*Q1*QO + /Q3*/Q2*/Q1*QO);

Appendix B: Language-Based Design Examples 317

qO = /reset*(Q3*/Q2*Q1*QO + Q3*/Q2*Q1*/QO + Q3*Q2*/Q1*QO +
Q3*Q2*/Q1 */QO + /Q3*Q2*Q1 *QO + /Q3*Q2*Q1 */QO +
/Q3*/Q2*/Q1*QO + /Q3*/Q2*/Q1*/QO);

.stm (Stimulus) File for Example 2
• This is the stimulus source for the 4-bit gray code counter
• with •synchronous reset' in the file •gray2.src'.

• By using the keyword 'SYSTEM_ TEST' instead of
"'SIMULATION',

• JEDEC test vectors are produced when PLD/CPLD devices are
•targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, (q3,q2,q1,qO];

MESSAGE('RESET...');
SET reset= 1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT...');
FOR i = OTO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET ... ');
SET reset=1;
CLOCKF clock;
SET reset=O;

318 MACHXL Software User's Gulde (Version 3.0)

MESSAGE('START COUNT .. .');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 3: Synchronously Reset Gray Code
Counter Using a Truth Table
This is another example of a 4-bit counter with a synchronous reset, this time
using a truth table to specify the output values.

II GRAY3
"AMO

INPUT clock, reset;
OUTPUT q3, q2, q1, qO CLOCKED_BY clock;

" This macro makes all X's be treated as don't cares.
MACROX .X.;

TRUTH_ TABLE
reset, q3, q2, q1, qO :: q3, q2, q1, qO;
''--------------------------------------

1, X, x,x, x·· 0, 0, 0, o·
'

0, 0, 0, 0, 0 .. 0, 0, 0, 1 ·
'

0, 0, 0, 0, 1 .. 0, 0, 1, 1 ·
'

0, 0, 0, 1, 1 .. 0, 0, 1, o·
'

0, 0, 0, 1, 0 .. 0, 1, 1, o·
'

0, 0, 1, 1, 0 .. 0, 1, 1, 1;
0, 0, 1, 1, 1 .. 0, 1, 0, 1 ·

'
0, 0, 1, 0, 1 .. 0, 1, 0, O;
0, 0, 1, 0, 0 .. 1, 1, 0, O;
0, 1, 1, 0, 0 .. 1, 1, 0, 1 ·

' 0, 1, 1, 0, 1 .. 1, 1, 1, 1 ·
' 0, 1, 1, 1, 1 .. 1, 1, 1, o·
'

0, 1, 1, 1, 0 .. 1, 0, 1, o·
'

0, 1, 0, 1, 0 .. 1, 0, 1, 1 ·
'

0, 1, 0, 1, 1 .. 1, 0, 0, 1 ·
'

Appendix B: Language-Based Design Examples 319

0, 1, 0, 0, 1 :: 1, 0, 0, O;
0, 1, 0, 0, 0 :: 0, 0, 0, O;

END TRUTH_ TABLE;

.stm (Stimulus) File for Example 3
" This is the stimulus source for the 4-bit gray code counter
11 with •synchronous reset' in the file •gray3.src'.

11 By using the keyword 'SYSTEM_ TEST' instead of
•'SIMULATION', JEDEC test vectors are produced when
• PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q3,q2,q1,qO];

MESSAGE('RESET ... ');
SET reset= 1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET ... ');
SET reset= 1;
CLOCKF clock;
SET reset=O;

320 MACHXL Software User's Guide (Version 3.0)

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 4: Synchronously Reset Gray Code
Counter Using a Truth Table and IF
Construct (AMO MACH)
This is the same gray code counter design. The handling of the synchronous
reset has been pulled out of the truth table and place in a parent IF statement.
The signals representing the counter value are now the array members q [3 J ,
q[2], q[l], and q[O].

"GRAY4
"AMD

INPUT clock, reset;
OUTPUT q[4] CLOCKED_BY clock;

IF reset THEN
q = O;

ELSE

TRUTH_ TABLE
q :: q;
II --------------
OOOOb :: 0001 b;
0001 b :: 0011 b;
0011b :: 0010b;
0010b :: 0110b;
0110b :: 0111b;
0111b :: 0101b;
0101 b :: 01 OOb;
01 OOb :: 11 OOb;
1100b :: 1101b;
1101b :: 1111b;
1111 b :: 111 Ob;

Appendix B: Language-Based Design Examples 321

1110b :: 1010b;
1010b :: 1011b;
1011b :: 1001b;
1001b :: 1000b;
1000b :: OOOOb;

END TRUTH_ TABLE;
END IF;

.est (Constraint) File for Example 4
WEIGHT PRICE 10 ;

TEMPLATE= MACH110 OR MACH120 OR MACH130 OR MACH210 OR
MACH215 OR MACH220 OR MACH230 OR MACH435 OR MACH465 ;

.stm (Stimulus) File for Example 4
" This is the stimulus source for the 4-bit gray code counter
•with 'synchronous reset' in the file 'gray4.src'. 11

11 By using the keyword 'SYSTEM_ TEST' instead of
•'SIMULATION', JEDEC test vectors are produced when
11 PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q[3],q[2],q[1),q[O]];
MESSAGE('RESET .. .');
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT .. .');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

322 MACHXL Software User's Guide (Version 3.0)

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET ... ');
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 5: Synchronously Reset Gray Code
Counter Using CASE Statement
This is the same gray code counter design using a CASE statement.

"GRAYS
"AMD

INPUT clock, reset;
OUTPUT q[4] CLOCKED_BY clock;
IF reset THEN

q = O;
ELSE

CASEq
WHEN OOOOb=>

q = 0001b;
WHEN 0001 b=>

q = 0011b;
WHEN 0011 b=>

q = 0010b;
WHEN 001 Ob=>

q = 0110b;
WHEN 011 Ob=>

q = 0111b;

Appendix B: Language-Based Design Examples 323

WHEN 0111 b=>
q = 0101b;

WHEN 0101 b=>
q = 0100b;

WHEN 01 OOb=>
q = 1100b;

WHEN 11 OOb=>
q = 1101b;

WHEN 1101 b=>
q = 1111b;

WHEN 1111 b=>
q = 1110b;

WHEN 111 Ob=>
q = 1010b;

WHEN 101 Ob=>
q=1011b;

WHEN 1011 b=>
q = 1001b;

WHEN 1001 b=>
q = 1000b;

WHEN 1 OOOb=>

END CASE;
END IF;

q = OOOOb;

.stm (Stimulus) File for Example 5
• This is the stimulus source for the 4-bit gray code counter
•with 'synchronous reset' in the file 'gray5.src'."

• By using the keyword 'SYSTEM_ TEST' instead of
• 'SIMULATION', "JEDEC test vectors are produced when
• PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q[3],q[2],q[1],q[O]);

MESSAGE('RESET... ');
SET reset=1;

324 MACHXL Software User's Guide (Version 3.0)

CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT .. .'};
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE ('RESET ... ');
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT .. .'};
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 6: Synchronously Reset Gray Code
Counter Using IF Statement
This is the same gray code counter design using IF statements.

"GRAY6
"AMD

INPUT clock, reset;
OUTPUT q[4] CLOCKED_BY clock;
IF reset THEN

q = O;

Appendix B: Language-Based Design Examples 325

ELSE

END IF;

IF q = OOOOb THEN
q = 0001b;

ELSIF q = 0001 b THEN
q = 0011b;

ELSIF q = 0011 b THEN
q = 0010b;

ELSIF q = 001 Ob THEN
q = 0110b;

ELSIF q = 011 Ob THEN
q = 0111 b;

ELSIF q = 0111b THEN
q = 0101b;

ELSIF q = 0101 b THEN
q = 0100b;

ELSIF q = 01 OOb THEN
q = 1100b;

ELSIF q = 1100b THEN
q = 1101b;

ELSIF q = 1101b THEN
q = 1111b;

ELSIF q = 1111 b THEN
q = 1110b;

ELSIF q = 1110b THEN
q = 1010b;

ELSIF q = 101 Ob THEN
q = 1011b;

ELSIF q = 1011b THEN
q = 1001b;

ELSIF q = 1001b THEN
q = 1000b;

ELSIF q = 1 OOOb THEN
q = OOOOb;

END IF;

.stm (Stimulus) File for Example 6
11 This is the stimulus source for the 4-bit gray code counter
11 with 'synchronous reset' in the file 'gray6.src'.

326 MACHXL Software User's Guide (Version 3.0)

11 By using the keyword 'SYSTEM_ TEST' instead of
•'SIMULATION', JEDEC test vectors are produced when
11 PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q[3],q[2],q[1],q[O)];

MESSAGE('RESET... ');
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET ... ');
SET reset= 1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Appendix B: Language-Based Design Examples 327

Example 7: Synchronously Reset Gray Code
Counter Using a State Machine
This is the same gray code counter design using a STATE_MACHINE
construct with explicit state values.

"GRAY7
AMO

INPUT clock, reset;
OUTPUT q[4] CLOCKED_BY clock;

IF reset THEN
q = O;

ELSE
STATE_MACHINE gray STATE_BITS q;

ST ATE s1 [OOOOb]:
GOTOs2;

STATE s2[0001b]:
GOTO s3;

STATE s3[0011b]:
GOTO s4;

STATE s4[0010b]:
GOTOs5;

STATE s5[0110b]:
GOTO s6;

STATE s6[0111b]:
GOTOs?;

STATE s7[0101b]:
GOTO s8;

STATE s8[0100b]:
GOTO s9;

STATE s9[11 OOb]:
GOTO s10;

STATE s10[1101b]:
GOTO s11;

STATE s11[1111b]:
GOTO s12;

STATE s12[1110b]:
GOTO s13;

328 MACHXL Software User's Guide (Version 3.0)

STATE s13[1010b):
GOTO s14;

STATE s14[1011b]:
GOTO s15;

STATE s15[1001b]:
GOTO s16;

STATE s16[1000b]:
GOTO s1;

END gray;
END IF;

.stm (Stimulus) File for Example 7
11 This is the stimulus source for the 4-bit gray code counter
11 with 'synchronous reset' in the file •gray7.src'.

•By using the keyword 'SYSTEM_ TEST' instead of
11 'SIMULATION', JEDEC test vectors are produced when
11 PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q[3],q[2],q[1],q[O]];

MESSAGE('RESET .. .');
SET reset= 1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT...');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

FOR i = OTO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET .. .');
SET reset=1;

Appendix B: Language-Based Design Examples 329

CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = OTO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

Example 8: Synchronously Reset Gray Code
Counter Using a State Machine
This is a synchronous reset gray code counter design using the
STATE_MACIBNE's built in gray code state value assignment capability.
This example takes advantage of gray code assignment to make a gray-code
counter. Normally, this built-in capability would be used as part of a more
involved state machine design.

"GRAYS
"AMO

INPUT clock, reset;
OUTPUT q[4] CLOCKED_BY clock;
IF reset THEN

q = O;
ELSE

STATE_MACHINE gray STATE_BITS q STATE_ VALUES
GRAY_CODE;

STATE s1:
GOTOs2;

STATE s2:
GOTOs3;

STATEs3:
GOTOs4;

STATE s4:
GOTOs5;

STATE s5:
GOTOs6;

330 MACHXL Software User's Gulde (Version 3.0)

STATE s6:
GOTO s7;

·STATE s7:
GOTOs8;

STATE s8:
GOTOs9;

STATE s9:
GOTO s10;

STATE s10:
GOTO s11;

STATE s11:
GOTO s12;

STATE s12:
GOTO s13;

STATE s13:
GOTOs14;

STATE s14:
GOTO s15;

STATE s15:
GOTO s16;

STATE s16:
GOTO s1;

END gray;
END IF;

.stm (Stimulus) File for Example 8
• This is the stimulus source for the 4-bit gray code counter
• with •synchronous reset' in the file •gray8.src'.

•By using the keyword 'SYSTEM_ TEST' instead of
•'SIMULATION', JEDEC test vectors are produced when
" PLD/CPLD devices are targeted.

SYSTEM_ TEST;

VARI;
TRACE reset, clock, [q[3),q[2],q[1],q[O]];
MESSAGE('RESET ... ');
SET reset=1;

Appendix B: Language-Based Design Examples 331

CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

FOR i = 0 TO 6 DO
CLOCKF clock;

END FOR;

MESSAGE('RESET ... ');
SET reset=1;
CLOCKF clock;
SET reset=O;

MESSAGE('START COUNT ... ');
FOR i = 0 TO 15 DO

CLOCKF clock;
END FOR;

END SYSTEM_ TEST;

332 MACHXL Software User's Gulde (Version 3.0)

Drink Machine Examples

The following examples implement the coin counting needs of a drink
machine. The purpose of these examples is to demonstrate some of the
capabilities of the STATE_MACHINE construct and give an introduction to
the effect of the DEFAULT_TO expression.

Example 1: Drink Machine Using a State
Machine
This implementation of a drink machine demonstrates the use of state
machines. It accepts inputs indicating the insertion of nickels, dimes, and
quarters. Its outputs are a dime coin return, nickel coin return, and a signal to
dispense a drink. A drink costs 30 cents. A drink will be automatically
dispensed when the correct total or greater is reached.

II DRINK1
11 AMD

INPUT nickel, dime, quarter, clock;
OUTPUT return_dime, return_nickel, dispense_drink;

11 This state machine, by default, uses D_FLOPs to represent 11 the
current state.

11 The CLOCKED_BY expression causes state transitions to
11 occur when the 'clock' signal transitions and the conditions
11 for a particular GOTO are met.

STATE_MACHINE drink_machine CLOCKED_BY clock;
STATE Zero:

IF nickel THEN
GOTO Five;

ELSIF dime THEN
GOTO Ten;

Appendix B: Language-Based Design Examples 333

ELSIF quarter THEN
GOTO Twe.ntyFive;

ELSE
GOTO Zero;

END IF;
dispense_drink = O;
return_dime = O;
return_nickel = O;

STATE Five:
IF nickel THEN

dispense_drink = O;
GOTO Ten;

ELSIF dime THEN
dispense_drink = O;
GOTO Fifteen;

ELSIF quarter THEN

ELSE

dispense_drink = 1;
GOTO Zero;

dispense_drink = O;
GOTO Five;

END IF;
return_dime = O;
return_nickel = O;

STATE Ten:
IF nickel THEN

dispense_drink = O;
return_nickel = O;
GOTO Fifteen;

ELSIF dime THEN
dispense_drink = O;
return_nickel = O;
GOTO Twenty;

ELSIF quarter THEN
dispense_drink = 1;
return_nickel = 1;
GOTO Zero;

334 MACHXL Software User's Guide (Version 3.0)

ELSE
dispense_drink = O;
return_nickel = O;
GOTO Ten;

ENDIF;
return_dime = O;

STATE Fifteen:
IF nickel THEN

dispense_ drink= O;
return_dime = O;
GOTO Twenty;

ELSIF dime THEN
dispense_drink = O;
return_dime = O;
GOTO TwentyFive;

ELSIF quarter THEN
dispense_drink = 1;
return_ dime= 1;
GOTO Zero;

ELSE
dispense_drink = O;
return_dime = O;
GOTO Fifteen;

ENDIF;
return_nickel = O;

ST A TE Twenty:
IF nickel THEN

dispense_drink = O;
return_nickel = O;
return_dime = O;
GOTO TwentyFive;

ELSIF dime THEN
dispense_drink = 1;
return_nickel = O;
return_dime = O;
GOTO Zero;

Appendix B: Language-Based Design Examples 335

ELSIF quarter THEN
dispense_ drink= 1;
return_ dime= 1;
return_nickel = 1;
GOTO Zero;

ELSE
dispense_ drink= O;
return_nickel = O;
return_dime = O;
GOTO Twenty;

END IF;
STA TE TwentyFive:

IF nickel THEN
dispense_drink = 1;
return_nickel = O;
return_dime = O;
GOTO Zero;

ELSIF dime THEN
dispense_drink = 1;
return_nickel = 1;
return_dime = O;
GOTO Zero;

ELSIF quarter THEN
dispense_ drink= 1;
return_nickel = O;
return_ dime= 1;
GOTO OweDime;

ELSE
dispense_drink = O;
return_nickel = O;
return_dime = O;
GOTO TwentyFive;

ENDIF;

336 MACHXL Software User's Guide (Version 3.0)

STA TE OweDime:
" This state causes a wait of a clock cycle
" before trying to return a second dime.
dispense_drink = O;
return_nickel = O;
return_ dime= 1;
GOTO Zero;

END drink_machine;

Example 2: Drink Machine Using a State
Machine and Default Values
This is the same drink machine design as in Example 1 with some changes:

The numerous assignments to the outputs (return_ dime, return_ nickel,
dispense_ drink) cluttered up the previous design. This design has a
DEFAULT_TO 0 on the outputs causing each signal to have a 0 value except
where they are explicitly assigned a different value. Without this
DEFAULT_ TO expression, the compiler would assume the design does not
care what value these signals have when they are not assigned to explicitly.

The design recommends to the fitting tools the signals representing the current
state be implemented with JK flip-flops rather than D flip-flops.

A DEF AULT TO LAST VALUE has been added to the state machine - -
declaration which makes the state not change unless an explicit GOTO is
given.

The state machine now has an ELSE clause making the machine more robust.
This handles cases when the signals representing the current state get an
undefined combination of values.

Appendix B: Language-Based Design Examples 337

II DRINK2
"AMO

INPUT nickel, dime, quarter, clock, reset;
OUTPUT return_ dime, return_nickel, dispense_ drink DEFAULT_ TO
o·

'

11 The CLOCKED_BY expression causes state transitions to
11 occur when the 'clock'signal transitions and the conditions
11 for a particular GOTO are met.

11 The RESET _BY expression causes the state machine to
11 transition back to the first state (Zero) whenever the 'reset'
11 signal is true.

"The DEFAULT_ TO LAST_ VALUE causes each state to
11 transition to itself by default. So, any GOTO from a state to 11 itself
is unnecessary.

STATE_MACHINE drink_machine
CLOCKED_BY clock RESET_BY reset DEFAULT_ TO
LAST_VALUE;

STATE Zero:
IF nickel THEN

GOTO Five;
ELSIF dime THEN

GOTO Ten;
ELSIF quarter THEN

GOTO TwentyFive;
ENDIF;

STATE Five:
IF nickel THEN

GOTO Ten;
ELSIF dime THEN

GOTO Fifteen;
ELSIF quarter THEN

dispense_drink = 1;
GOTO Zero;

END IF;

338 MACHXL Software User's Guide (Version 3.0)

STATE Ten:
IF nickel THEN

GOTO Fifteen;
ELSIF dime THEN

GOTO Twenty;
ELSIF quarter THEN

dispense_ drink= 1;
return_nickel = 1 ;
GOTO Zero;

ENDIF;
STATE Fifteen:

IF nickel THEN
GOTO Twenty;

ELSIF dime THEN
GOTO TwentyFive;

ELSIF quarter THEN
dispense_drink = 1;
return_ dime = 1;
GOTO Zero;

ENDIF;
STATE Twenty:

IF nickel THEN
GOTO TwentyFive;

ELSIF dime THEN
dispense_drink = 1;
GOTO Zero;

ELSIF quarter THEN
dispense_ drink= 1;
return_nickel = 1 ;
return_ dime = 1;
GOTO Zero;

ENDIF;
ST ATE TwentyFive:

IF nickel THEN
dispense_drink = 1;
GOTO Zero;

Appendix B: Language-Based Design Examples 339

ELSIF dime THEN
return_nickel = 1;
dispense_drink = 1;
GOTO Zero;

ELSIF quarter THEN
dispense_drink = 1;
return_ dime= 1;
GOTO OweDime;

END IF;
STATE OweDime:

ELSE

" This state causes a wait of a clock cycle
"before trying to return a second dime.
return_ dime = 1;
GOTO Zero;

11 This ELSE makes sure that the state machine
11 resets itself if it somehow gets into an
11 undefined state.
GOTO Zero;

END drink_machine;

340 MACHXL Software User's Guide (Version 3.0)

Seven-Segment Display Handler Example

The following example creates a design taking a binary number and displaying
it as two decimal digits on a 7-segment LED display. This example
demonstrates the use of the TRUTH TABLE statement and the CASE
statement. It also introduces the use of PROCEDUREs and the concept of
local versus system level signals.

II SEGMENT
11 AMD

11 This procedure takes a 4-bit number and creates the 7
11 signals needed to display its decimal image on a ?-segment
11 digit display. The numbering of the segments is as follows:

II 0-> ---
II 5-> 11 <-1
II 6-> ---
II 4-> 11 <-2
II 3-> ---

11 For values from 0-9 the corresponding digit is displayed. For
11 values from 10-15 an 'E' is displayed indicating an
11 erroneous value.

PROCEDURE display_digit(INPUT number[4]; OUTPUT digit[?]);

TRUTH_ TABLE
number : : digit;

II

11 exactly the same as:
11 number[3 .. 0] :: digit[6 .. 0]

0:: 0111111b;
1 :: 0000110b;
2:: 1011011 b;
3:: 1001111b;

Appendix B: Language-Based Design Examples 341

4:: 1100110b;
5:: 1101101b;
6:: 1111101b;
7:: 0000111 b;
8:: 1111111b;
9:: 1101111b;

ELSE:: 11111 OOb; " This creates the pattern
11 for an 'E'

END TRUTH_ TABLE;
END display_digit;

11 This procedure takes a 7 bit binary input value and
11 generates two decimal digit values to represent the value in
11 decimal. Values greater than 99 should not occur.

11 Note the CASE statements have no ELSEs. This is
11 because values greater than 99 won't be passed to this
11 procedure. The compiler will assume the design doesn't
11 care what values 'high' and 'low' have when 'value' is
11 greater than 99. It will take advantage of this assumption to 11

generate the smallest possible equations which guarantee
11 'high' and 'low' have the specified values when 'value' is
11 less than or equal to 99.

PROCEDURE make_decimal(INPUT value[?]; OUTPUT high[4],
low[4]);

11 Create the low order digit.
CASE value

WHEN 0, 10,20,30,40,50,60,70,80,90=>
low= O;

WHEN 1, 11,21,31,41,51,61,71,81,91=>
low= 1;

WHEN 2, 12,22,32,42,52,62,72,82,92=>
low=2;

WHEN 3, 13,23,33,43,53,63,73,83,93=>
low= 3;

WHEN 4, 14,24,34,44,54,64, 7 4,84,94=>
low=4;

342 MACHXL Software User's Guide (Version 3.0)

WHEN 5, 15,25,35,45,55,65,75,85,95=>
low=5;

WHEN 6, 16,26,36,46,56,66,76,86,96=>
low=6;

WHEN 7, 17,27,37,47,57,67,77,87,97=>
low= 7;

WHEN 8, 18,28,38,48,58,68,78,88,98=>
low=8;

WHEN 9, 19,29,39,49,59,69, 79,89, 99=>
low=9;

END CASE;

" Create the high order digit.
CASE value

WHEN 0 .. 9=>
high= O;

WHEN 10 .. 19=>
high= 1;

WHEN 20 .. 29=>
high= 2;

WHEN 30 .. 39=>
high= 3;

WHEN 40 . .49=>
high= 4;

WHEN 50 .. 59=>
high= 5;

WHEN 60 .. 69=>
high= 6;

WHEN 70 .. 79=>
high= 7;

WHEN 80 .. 89=>
high= 8;

WHEN 90 .. 99=>
high= 9;

END CASE;
END make_decimal;

Appendix B: Language-Based Design Examples 343

11 The following portion of the design is outside of any
11 PROCEDURE or FUNCTION. It is the portion of the design
11 specified at this level resulting in a real implementation.
11 The above PROCEDUREs only impact the real
11 implementation because they are called here. Note all
11 PROCEDUREs and FUNCTIONs must always come before
11 the system level portion of the design.

11 This is the 7-bit input value.
INPUT value[?];

" These are intermediate values of the two decimal digits.
NODE high_ val[4], low_ val[4];

11 These are the 7 segment values for the two digits.
OUTPUT digit_high[?], digit_low[7];

" These procedures calls create real instances of the
"procedures described above. Note 'display_digit' is
11 called twice and will create two separate instances of the
" logic described in that procedure.

make_ decimal(value, high_ val, low_ val);
display_digit(high_val, digit_high);
display_digit(low_val, digit_low);

344 MACHXL Software User's Guide (Version 3.0)

Adders and Multipliers

The following examples implement 1-bit, 2-bit, 4-bit, and 8-bit adders and a
4x4 multiplier. These examples demonstrate the use ofFUNCTIONs and
PROCEDUREs, the behavior of arrays and groups, and the concept of
libraries and the USE clause.

Example 1: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder
Procedures
This example consists of four adder PROCEDUREs. They implement 1-bit,
2-bit, 4-bit, and 8-bit adders, each with carry in and carry out. Since this
example contains only PROCEDUREs and no system level code, it does not
result in a real implementation of hardware.

"ADDER1
"AMO

"This example consists of four adder PROCEDUREs. They
"implement 1-bit, 2-bit, 4-bit, and 8-bit adders each with
" carry in and carry out. Since this example contains only
" PROCEDUREs and no system level code, it does not
11 result in a real design.

11 This example is intended to demonstrate PROCEDUREs.
"For real designs, the build in addition operator'.+.' can
11 be used to perform addition at any width.

"This PROCEDURE implements a 1-bit adder. The inputs 'a'
11 and 'b' are the signals to be added. The 'result' is the 1-bit
11 result of the addition. There is also a 1-bit carry in and a
" 1-bit carry out.

"

Appendix B: Language-Based Design Examples 345

PROCEDURE add1 (INPUT a, b, carry_in; OUTPUT result, carry);
result= a(+)b(+)carry_in;
carry= a*b+a*carry_in+b*carry_in;

END add1;

11 This PROCEDURE implements a 2-bit adder using the 1-bit
11 adder above. The inputs 'a' and 'b' are the 2-bit arrays to be
11 added. The 'result' is the 2-bit result of the addition.
11 There is also a 1-bit carry in and a 1-bit carry out.

"Each call of add1 creates a separate instance of the logic
11 described in add1. The NODE is used to hold the carry out
11 from addition of the low order bits. It is used as the carry in
11 to the addition of the high order bits.

PROCEDURE add2(1NPUT a[2], b[2], carry_in; OUTPUT result[2],
carry);

NODE low_carry;
add1 (a[O], b[O], carry_in, result[O], low_carry);
add1(a[1], b[1], low_carry, result[1], carry);

END add2;

"This PROCEDURE implements a 4-bit adder using the 2-bit
11 adder above. The inputs 'a' and 'b' are the 4-bit arrays to be
11 added. The 'result' is the 4-bit result of the addition. There
11 is also a 1-bit carry in and a 1-bit carry out.

PROCEDURE add4(1NPUT a[4), b[4], carry_in; OUTPUT result[4],
carry);

NODE low_carry;
add2(a[1..0], b[1..0], carry_in, result[1 .. 0], low_carry);
add2(a[3 .. 2], b[3 .. 2), low_carry, result[3 .. 2], carry);

END add4;

11 This PROCEDURE implements an 8-bit adder using the 4-
11 bit adder above. The inputs 'a' and 'b' are the 8-bit arrays to
11 be added. The 'result' is the 8-bit result of the addition.

346 MACHXL Software User's Guide (Version 3.0)

"There is also a 1-bit carry in and a 1-bit carry out.
"

PROCEDURE add8(1NPUT a[8], b[8], carry_in; OUTPUT result[8],
carry);

NODE low_carry;

add4(a[3 .. 0], b[3 .. 0], carry_in, result[3 .. 0], low_carry);
add4(a[7 .. 4], b[7 .. 4], low_carry, result[7 .. 4], carry);

END add8;

Example 2: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder
Functions
This example is very similar to the previous adder example except that it
implements four adder FUNCTIONs instead of PROCEDUREs. The return
value of each FUNCTION is an array 1 bit wider than the width of the arrays
being added.

II ADDER2
"AMO

" This example is very similar to the previous adder example
"except it implements four adder FUNCTIONs instead of
" PROCEDUREs. The return value of each FUNCTION is an
" array 1 bit wider than the width of the arrays being added.
"This example is intended to demonstrate PROCEDUREs.
"For real designs, the built-in addition operator'.+.' can be
" used to perform addition at any width.

"This FUNCTION implements a 1-bit adder. The
"RETURN instruction makes the associated 2-bit array be
"the RETURN value of the FUNCTION

FUNCTION add1 {a, b, carry_in)[2];
RETURN [a*b+a*carry_in+b*carry_in, a(+)b{+)carry_in];

END add1;

Appendix B: Language-Based Design Examples 347

" This FUNCTION implements a 2-bit adder.

FUNCTION add2(a[2], b[2], carry_in)[3];
NODE low_carry, carry, result[2];

[low_carry, result[O]] = add1(a[O], b[O], carry_in);
[carry, result[1]] = add1(a[1], b[1], low_carry);
RETURN [carry, result];

END add2;

"This FUNCTION implements a 4-bit adder. Note that the
"groups being assigned to consist of a 1-bit signal and a 2-bit
" array reference which combine to make a 3-bit group.

FUNCTION add4(a[4], b[4], carry_in)[5];
NODE low_carry, carry, result[4];

[low_carry, result[1 .. 0]] = add2(a[1 .. 0],b[1 .. 0],carry_in);
[carry, result[3 .. 2]] = add2(a[3 .. 2],b[3 .. 2],low_carry);
RETURN [carry, result];

END add4;

"This FUNCTION implements an 8-bit adder.

FUNCTION add8(a[8], b[8], carry_in)[9];
NODE low_carry, carry, result[8];

[low_carry, result[3 .. 0]] = add4(a[3 .. 0],b[3 .. 0],carry_in);
[carry, result[? .. 4]] = add4(a[7 . .4],b[7 . .4],low_carry);
RETURN [carry, result];

END add8;

348 MACHXL Software User's Guide (Version 3.0)

Example 3: Combinatorial 4x4 Multiplier
Function
This example is a combinatorial 4x4 multiplier implemented in a
FUNCTION. It uses the 4-bit adder FUNCTION from the previous example.

II MULT1
"AMO

This USE clause causes the definition of the 'add4'
FUNCTION to be brought in from library 'adder2' (assume
the previous adder FUNCTION example was in file
'adder2.src'). This is functionally the same as if the
'add4'FUNCTION were written here. However, USEing a
PROCEDURE or FUNCTION compiles faster than writing it
again since is has already been compiled.

USE 'adder2'.add4;

" 4-bit multiplier implemented with combinatorial logic.

FUNCTION mult(x[4], y[4))[8);
" These arrays are used to hold the intermediate
"results.The bit numbering corresponds to bit
" positions in the 8-bit product.

NODE temp0[4 .. 0), temp1[5 .. 1], temp2[6 .. 2], temp3[7 .. 3];

" This implements a simple shift-add multiply scheme,
" although the entire multiply is done combinatorially.

IF y[O) THEN
tempo= [O, x];

ELSE
tempo= O;

END IF;
IF y[1) THEN

temp1 = add4(temp0[4 .. 1). x, O);
ELSE

temp1 = [O, temp0[4 .. 1));
ENDIF;

Appendix 8: Language-Based Design Examples 349

IF y[2J THEN
temp2 = add4(temp1 [5 .. 2J, x, O);

ELSE
temp2 = [O, temp1 [5 .. 2));

END IF;
IF y[3] THEN

temp3 = add4(temp2[6 .. 3], x, O);
ELSE

temp3 = [O, temp2[6 .. 3]];
END IF;
RETURN [temp3, temp2[2J, temp1[1J, tempO[O]];

END mult;

Example 4: Combinatorial 4x4 Multiplier
Functions
This example is another implementation of a 4x4 multiplier. It uses the built
in addition operator.

"MULT2
"AMO

" This example is another implementation of a 4x4 multiplier.
" It uses the built in addition operator.

" 4-bit multiplier implemented with combinatorial logic.

FUNCTION mult1 (a[1], b[1])[1];
RETURN a*b;

END mult1;

FUNCTION mult2(a[2J,b[2])[4J;
RETURN [O, 0, 0, mult1 (a[OJ, b[OJ)]

.+. [O, 0, mult1(a[1J, b[O]), OJ

.+. (0, 0, mult1(a[OJ, b[1]), OJ

.+. (0, mult1(a[1J, b[1]), 0, OJ;
END mult2;

350 MACHXL Software User's Guide (Version 3.0)

FUNCTION mult4(a[4],b[4))[8];
RETURN [O, 0, 0, 0, mult2(a[1 .. 0], b[1 .. 0])]

.+. [O, 0, mult2(a[3 .. 2], b[1 .. 0]), 0, O]

.+. [O, 0, mult2(a[1..0], b[3 .. 2]), 0, O]

.+. [mult2(a[3 .. 2], b[3 .. 2]), 0, 0, 0, O];
END mult4;

Appendix B: Language-Based Design Examples 351

4-Bit ALU Exam pie

The following example implements the 7C901 4-bit arithmetic logic unit.
This example demonstrates a large real design that takes advantage of several
of the constructs covered in the previous examples.

"AMO

"reg_file"

" This procedure implements the 16x4 register file with 2
" read ports and one write port.

reg_ op -- operation to perform -- either no store (Nop) or
store b_in to addressed register (f_to_b)

a_ addr -- address of the register that appears on the
a_out port
b_addr -- address of the regsiter on the a_ out port and also

the address to write into from the b _in port
b_in -- input port for writing data
cp -- clock signal for the registers
a_ out -- a output port
b _out -- b output port

MACRO Nop O;
MACRO f_to_b 1;

PROCEDURE reg_file(INPUT reg_ op, a_addr[4], b_addr[4], b_in[4],
cp;

OUTPUT a_out[4], b_out[4]);

NODE reg0[4], reg1 [4], reg2[4], reg3[4] CLOCKED_BY cp;
NODE reg4[4], reg5[4], reg6[4], reg7[4] CLOCKED_BY cp;
NODE reg8[4), reg9[4), reg10[4), reg11[4) CLOCKED_BYcp;
NODE reg12[4), reg13[4), reg14[4], reg15[4) CLOCKED_BY cp;

CASE a addr
WHEN 0=> a_out = regO;

352 MACHXL Software User's Guide (Version 3.0)

WHEN 1=> a_out = reg1;
WHEN 2=> a_out = reg2;
WHEN 3=> a_out = reg3;
WHEN 4=> a_out = reg4;
WHEN 5=> a_out =regs;
WHEN 6=> a_out = reg6;
WHEN 7=> a_out = reg7;
WHEN 8=> a_out =regs;
WHEN 9=> a_out = reg9;
WHEN 10=> a_out = reg10;
WHEN 11=> a_out = reg11;
WHEN 12=> a_out = reg12;
WHEN 13=> a_out = reg13;
WHEN 14=> a_out = reg14;
WHEN 15=> a_out = reg15;

END CASE;

CASE b addr
WHEN 0=> b_out = regO;
WHEN 1 => b_out = reg1;
WHEN 2= > b _out = reg2;
WHEN 3=> b_out = reg3;
WHEN 4=> b_out = reg4;
WHEN 5=> b_out = reg5;
WHEN 6=> b_out = reg6;
WHEN 7=> b_out = reg7;
WHEN 8=> b_out = reg8;
WHEN 9= > b _out = reg9;
WHEN 10=> b_out = reg10;
WHEN 11 => b_out = reg11;
WHEN 12=> b_out = reg12;
WHEN 13=> b_out = reg13;
WHEN 14=> b_out = reg14;
WHEN 15=> b_out = reg15;

END CASE;

IF reg_ op= f_to_b THEN
CASE b_addr

WHEN 0=> [regO .. reg15] = [b_in,reg1 .. reg15];
WHEN 1=> [rego .. reg15) = (reg0,b_in,reg2 .. reg15);
WHEN 2=> [regO .. reg15] = [rego,reg1,b_in,reg3 .. reg15];

Appendix B: Language-Based Design Examples 353

WHEN 3=> [regO .. reg15] = [regO .. reg2,b_in,reg4 .. reg15];
WHEN 4= > [regO .. reg15] = [reg0 .. reg3,b_in,reg5 .. reg15];
WHEN 5=> [regO .. reg15] = [regO .. reg4,b_in,reg6 .. reg15];
WHEN 6=> [regO .. reg15] = [regO .. reg5,b_in,reg7 .. reg15];
WHEN 7=> [regO .. reg15] = [regO .. reg6,b_in, reg8 .. reg15];
WHEN 8=> [reg0 .. reg15] = [regO .. reg7,b_in,reg9 .. reg15];
WHEN 9=> [regO .. reg15] = [reg0 .. reg8,b_in,reg10 .. reg15];
WHEN 10=> [reg0 .. reg15] = [reg0 .. reg9,b_in,reg11..reg15];
WHEN 11 = > [reg0 .. reg15] =

[regO .. reg1 O,b _in,reg12 .. reg15];
WHEN 12= > [regO .. reg15] =

[reg0 .. reg11,b_in,reg13 .. reg15];
WHEN 13=> [regO .. reg15] =

[regO .. reg12,b_in,reg14 .. reg15];
WHEN 14=> [reg0 .. reg15] = [reg0 .. reg13,b_in,reg15];
WHEN 15= > [rego .. reg15] = [regO .. reg14,b _in];

END CASE;
ELSE 11 must be Nop

[regO .. reg15] = [regO .. reg15];
ENDIF;

END reg_file;

11 The shifter appears in two places, as the input to the
11 register file and as part of the a-register loop .
•
• dir -- direction of shift:

Pass -- no shift
Up -- shift left
Down -- shift right

• in -- 4-bit input value
in I -- low bit to shift in if left shift
in_h -- high bit to shift in if right shift
out -- 4-bit output value
out_I -- output of low bit if right shift
out_ h -- output of high bit if left shift

MACRO Pass O;
MACRO Up 1;
MACRO Down 2;

354 MACHXL Software User's Guide (Version 3.0)

PROCEDURE shifter(INPUT dir[2], in[4], in_I, in_h;
OUTPUT out[4], out_I, out_h);

CASE dir
WHEN Pass=>

out= in;
out_I = in_I;
out_h = in_h;

WHEN Up=>
[out_h,out,out_I] = [in,in_l,in_I);

WHEN Down=>
[out_h,out,out_I] = [in_h,in_h,in);

ELSE
[out_h,out,out_I] = [in_h,in,in_I];

END CASE;
END shifter;

II The a-register is a temporary 4-bit register

11 cp -- clock signal for registers
11 q_ op -- operation select

Nop -- no operation on a
q_to_q -- update a from a via the shifter
f_to_q -- store the f input into a

• f -- 4-bit input register
II q_in -- 4-bit input from the a shifter
11 q_ out -- 4-bit output to select mux and Q shifter

11 MACRO Nop O;
MACRO q_to_q 1;
MACRO f_to_q 2;

PROCEDURE Q_reg(INPUT cp, q_op[2], f[4], q_in[4]; OUTPUT q_out[4));

Appendix B: Language-Based Design Examples 355

NODE q[4] CLOCKED_BY cp;

q_out = q;
CASE q_op

WHEN f_to_q=> q = f;
WHEN q_to_q=> q = q_in;

ELSE
q = q;

END CASE;

END O_reg;

11 Alu data sel selects the data for the alu A and B inputs
•
• sel -- select input, one of the following=>

AO -- r <-A, s <- 0
AB -- r <- A, s <- B
ZO -- r <- 0, s <- 0
ZB -- r <- 0, s <- B
ZA -- r <- 0, s <-A
DA-- r <- D, s <-A
DO -- r <- D, s <- 0
DZ -- r <- D, s <- 0

11 a -- 4-bit a input
11 b -- 4-bit b input
• q -- 4-bit q input
11 d -- 4-bit d input
11 r -- 4-bit r output
11 s -- 4-bit s output

MACROAOO;
MACRO AB 1;
MACROZ02;
MACROZB3;
MACROZA4;
MACRO DAS;
MACRO DO 6;
MACRO DZ7;

356 MACHXL Software User's Guide (Version 3.0)

PROCEDURE Alu_data_sel(INPUT sel[3), a[4), b[4), q[4). d[4);
OUTPUT r[4), s[4]);

CASE sel
WHEN AO=> r = a; s = q;
WHEN AB=> r =a; s = b;
WHEN ZO= > r = O; s = q;
WHEN ZB=> r = O; s = b;
WHEN ZA= > r = O; s = a;
WHEN DA=> r = d; s = a;
WHEN DO=> r = d; s = q;
WHEN DZ=> r = d; s = O;

END CASE;
END Alu_data_sel;

11 Alu implements a 4-bit 8-function alu
II

11 Alu opcodes:

11 xADD ADD r+s
" xSUBR SUBR r-s
11 xSUBS SUBS s-r
11 xOR OR r Is

xAND AND r&s
xNOTRS NOTRS -r & s
xEXOR EXOR r A s
xEXNOR EXNOR - (r A s)

MACRO xADD O;
MACRO xSUBR 1;
MACRO xSUBS 2;
MACROxOR 3;
MACRO xAND 4;
MACRO xNOTRS 5;
MACRO xEXOR 6;
MACRO xEXNOR 7;

11 add_ op -- implement the add operator

Appendix B: Language-Based Design Examples 357

11 Cin -- carry in
r -- 4-bit r input

• s -- 4-bit s input
• f -- 4-bit sum
11 Cout -- Carry out
11 G -- generate output

P -- propagate output
11 Ov -- overflow output

PROCEDURE add_op(INPUT Cin, r[4], s[4];
OUTPUT f[4], Cout, G, P, Ov);

NODE g0,g1 ,g2,g3;
NODE p0,p1 ,p2,p3;
NODE c4,c3,c2,c1;
NODE f3,f2,f1 ,fO;
NODE gx, px, o;

go= r[O]*s[O]; g1 = r[1]*s[1]; g2 = r[2]*s[2]; g3 = r[3]*s[3];
pO = r[O]+s[O]; p1 = r[1]+s[1]; p2 = r[2]+s[2]; p3 = r[3]+s[3];
c1 = r[O]*s[O] + r[O]*Cin + s[O]*Cin;
c2 = r[1]*s[1] + r[1]*c1 + s[1]*c1;
c3 = r[2]*s[2] + r[2]*c2 + s[2]*c2;
c4 = r[3]*s[3] + r[3]*c3 + s[3]*c3;
to= r[D] (+) s[O] (+) Cin;
f1 = r[1] (+) s[1] (+) c1;
f2 = r[2] (+) s[2] (+) c2;
f3 = r[3] (+) s[3] (+) c3;

f = [f3,f2,f1,f0];
gx = /+(g3,p3*g2,p3*p2*g1 ,p3*p2*p1 *gO);
px = /*(p3,p2,p1 ,pO);
Cout = c4;
o = c3 (+) c4;
G = gx;
P = px;
Ov= o;

END add_op;

358 MACHXL Software User's Guide (Version 3.0)

11 or_ op -- implement the logical or operator
II

Cin -- carry in
r -- 4-bit r input
s -- 4-bit s input

• f -- 4-bit logical sum
Cout -- Carry out
G -- generate output
P -- propagate output
Ov -- overflow output

PROCEDURE or_op(INPUT Cin, r[4], s[4];
OUTPUT f[4], Cout, G, P, Ov);

NODE p0,p1 ,p2,p3;
NODE f3,f2,f1,f0;
NODE gx, px, o, c;

po= r[O]+s[O]; p1 = r[1]+s[1]; p2 = r[2]+s[2]; p3 = r[3]+s[3];
fO = r[O] + s[O];
f1 = r[1] + s[1];
f2 = r[2] + s[2];
f3 = r[3] + s[3];

f= [f3,f2,f1,f0];
gx = p3*p2*p1 *pO;
px = O;
c = /*(p3,p2,p1 ,pO) + Cin;
o = /*(p3,p2,p1 ,po) + Cin;
Cout = c;
G = gx;
P = px;
Ov= o;

END or_ op;

• and_ op -- implement the logical and operator
•

Cin -- carry in

Appendix B: Language-Based Design Examples 359

r -- 4-bit r input
" s -- 4-bit s input
" f -- 4-bit logical product

Cout -- Carry out
G -- generate output
P -- propagate output
Ov -- overflow output

PROCEDURE and_op(INPUT Cin, r[4], s[4];
OUTPUT f[4], Cout, G, P, Ov);

NODE g0,g1 ,g2,g3;
NODE f3,f2,f1 ,fO;
NODE gx, px, o, c;

go= r[O]*s[O]; g1 = r[1]*s[1]; g2 = r[2]*s[2]; g3 = r[3]*s[3];
fO = r[O] * s[O];
f1 = r[1] * s[1];
f2 = r[2] * s[2];
f3 = r[3) * s[3);

f= [f3,f2,f1,f0);
gx = /(go + g1 + g2 + g3);
px = O;
c = g3 + g2 + g1 + go + Cin;
o = g3 + g2 + g1 +go+ Cin;
G = gx;
p = px;
Ov= o;
Cout = c;

END and_op;

xnor_op -- implement the logical xnor (equivalence) operator

Cin -- carry in
r -- 4-bit r input
s -- 4-bit s input
f -- 4-bit logical equivalence
Cout -- Carry out

360 MACHXL Software User's Guide (Version 3.0)

G -- generate output
P -- propagate output
Ov -- overflow output

PROCEDURE xnor_op(INPUT Cin, r[4], s[4];
OUTPUTf[4], Cout, G, P, Ov);

NODE g0,g1 ,g2,g3;
NODE p0,p1 ,p2,p3;
NODE f3,f2,f1 ,to;
NODE ov1, ov2;
NODE gx, px, o, c;

gO = r[O]*s[O]; g1 = r[1]*s[1]; g2 = r[2]*s[2]; g3 = r[3]*s[3];
po = r[O] +s[O]; p1 = r[1] +s[1]; p2 = r[2] +s[2]; p3 = r[3] +s[3];
to= /(r[O] (+) s[O]);
f1 = /(r[1] (+) s[1]);
f2 = /(r[2] (+) s[2]);
f3 = /(r[3] (+) s[3]);

f = [f3,f2,f1 ,to];
gx = g3 + p3*g2 + p3*p2*g1 + p3*p2*p1 *gO;
px = g3 + g2 + g1 + gO;
c = /+(g3, p3*g2, p3*p2*g1, p3*p2*p1*pO*(gO+Cin));
ov1 = p2 + g2*p1 + /g2*/g1*/p0 + /g2*/g1*/gO*Cin;
ov2 = /p3 + /g3*/p2 + /g3*/g2*/p1 + /g3*/g2*/g1*/pO +

/g3* /g2* /g1 * /gO*Cin;
o = ov1 (+) ov2;
G = gx;
p = px;
Ov= o;
Cout = c;

END xnor_op;

• alu -- implement alu
•
11 op -- operation to perform -- see opcodes above
11 Cin -- carry in
" r -- 4-bit r input

Appendix B: Language-Based Design Examples 361

• s -- 4-bit s input
• f -- 4-bit function result output
11 Cout -- carry out
• G _ -- generate output
n p - -- propagate output
• sign -- sign of the result -- f[3]
" Ov -- overflow output
11 Zero -- asserted if f[O] . .f[3] all zero

PROCEDURE alu(INPUT op[3], Cin, r[4], s[4];
OUTPUT f[4], Cout, G_, P _,sign, Ov, Zero);

NODEfx[4];
NODE g, p, o;

CASE op
WHEN xADD=> add_op(Cin, r, s, fx, Cout, g, p, o);
WHEN xSUBR= > add_op(Cin, r, /s, fx, Cout, g, p, o);
WHEN xSUBS= > add_op(Cin, /r, s, fx, Cout, g, p, o);
WHEN xOR=> or_ op(Cin, r, s, fx, Cout, g, p, o);
WHEN xAND=> and_ op(Cin, r, s, fx, Cout, g, p, o);
WHEN xNOTRS=> and_ op(Cin, /r, s, fx, Cout, g, p, o);
WHEN xEXOR= > xnor_op(Cin, /r, s, fx, Cout, g, p, o);
WHEN xEXNOR= > xnor_op(Cin, r, s, fx, Cout, g, p, o);

END CASE;

sign = fx[3];
Zero= /(fx[3]+fx[2]+fx[1]+fx[O]);
f = fx;
G_= g;
P_= p;
Ov= o;

END alu;

11 Output Data Selector
II

• outsel -- output selection:
a_to_y => y <-a

362 MACHXL Software User's Guide (Version 3.0)

f_to_y => y <-f
11 a -- 4-bit a input
11 f -- 4-bit f input
• y -- 4-bit y output

MACRO a_ to _y O;
MACRO f_to_y 1;

PROCEDURE Out_select(INPUT outsel, a(4), f(4); OUTPUTy(4));

CASE outsel
WHEN a_to_y=> y =a;
WHEN f_to_y=> y = f;

END CASE;
END Out_select;

11 Destination decode

• Decode the destination information and generate control signals
11 for the various components related to destination control.

11 op -- destination opcode:
xQREG move f to q and y, no store or shift
xNOP move f toy, no store or shift
xRAMA move a toy, store a in reg_file, no shift, Q nap
xRAMF move f toy, store fin reg_file, no shift, Q nap
xRAMQD f to reg_file shifted right, and Q shifted right
xRAMD f to reg_file shifted right, Q nap
xRAMQU f to reg_file shifted left, and Q shifted left
xRAMU f to reg_file shifted left, Q nap

11 Rap -- reg_file control signal
11 Rshift -- reg_file shifter direction control
11 Qop -- Q register control signals
11 Qshift -- Q register shifter direction control
11 Yap -- Y output mux selection control

MACRO xQREG O;

Appendix B: Language-Based Design Examples 363

MACRO xNOP 1;
MACRO xRAMA 2;
MACRO xRAMF 3;
MACRO xRAMQD 4;
MACRO xRAMD 5;
MACRO xRAMQU 6;
MACRO xRAMU 7;

PROCEDURE DestDecode(INPUT op[3];
OUTPUT Rop, Rshift[2), Qop[2], Qshift[2], Yop);

TRUTH TABLE
op .. Rop, Rshift, Qop, Qshift, Yop;

xQREG : : Nop, Pass, f_to _ q, Pass, f_to _y;
xNOP : : Nop, Pass, Nop, Pass, f_ to _y;
xRAMA :: f_to_b, Pass, Nop, Pass, a_to_y;
xRAMF :: f_to_b, Pass, Nop, Pass, f_to_y;
xRAMQD :: f_to_b, Down, q_to_q, Down, f_to_y;
xRAMD :: f_to_b, Down, Nop, Pass, f_to_y;
xRAMOU :: f_to_b, Up, q_to_q, Up, f_to_y;
xRAMU :: f_to_b, Up, Nop, Pass, f_to_y;

END TRUTH_ TABLE;
END DestDecode;

• The following instantiations connect the components together to
• form the 7C901

uop -- 901 opcode:

I ia I i? I i6 I is I i4 I i3 I i2 I i1 I iO I

I I I I
I dst control I alu function I alu source

a addr -- reg_file a address (a output)
b_addr -- reg_file b address (b output and b_in store)
RinO -- reg_file shifter low-order in bit
Rin3 -- reg_file shifter high-order in bit
QinO -- Q register low-order in bit

• Qin3 -- a register high_ order in bit
Cin -- carry in from previous stage

364 MACHXL Software User's Guide (Version 3.0)

OE -- Y-output three-state control
d -- direct data input (4-bits)
cp -- synchronous clocking signal
y _out -- 4-bit output (three-state controlled)
RoutO -- reg_file shifter low-order output bit
Rout3 -- reg_file shifter high-order output bit
QoutO -- Q register shifter low-order output bit
Qout3 -- Q register shifter high-order output bit
G -- carry generate output
P _ -- carry propagate output
Cout -- carry out
Sign -- sign of the operation result (f[3])
Ov -- overflow result
Zero -- operation result is zero

11 Note 1 : in the device, the various shift in and out bits are combined
on bidirectional pins, if that were desired here, we could
create biput pins and connect the pins from the component to
the appropriate connections on the biputs.

11 Note 2: Some of the signals on the device are specified as low-true.
11 If this component were to be completely internal to a device,

this would not matter, but if this were to be the only component
in a package and the pins were to have the same polarity,
at the top level low-true signals can be declared for the
pins and the internally high-true signals connected to them,
and the external package will show the correct behavior.

PROCEDURE CY7C901 (INPUT uop[9], a_addr[4], b_addr[4], RinO, Rin3,
QinO, Qin3, Cin, OE, d[4], cp;

OUTPUTy_out(4], RoutO, Rout3, QoutO, Qout3,
G_, P _, Cout, Sign, Ov, Zero);

NODE B_in[4], Qin[4];
NODE f[4], a[4], b[4], q[4], r[4], s[4];
NODE Rop, Rshift[2], Qop[2], Qshift[2], Yop;
NODE y[4) ENABLED_BYoe;

Shifter(Rshift, f, RinO, Rin3, B _in, RoutO, Rout3) ;
Reg_File(Rop, a_addr, b_addr, B_in, cp, a, b);

Appendix B: Language-Based Design Examples 365

Q_reg(cp, Qop, f, Qin, q);
Shifter(Qshift, q, QinO, Qin3, Qin, QoutO, Qout3);
Alu_data_sel(uop[2 .. 0], a, b, q, d, r, s);
Alu(uop[5 .. 3], Cin, r, s, f, Cout, G_, P _,sign, Ov, Zero);
Out_ select(Yop, a, f, y);
y_out = y;
DestDecode(uop[8 .. 6], Rop, Rshift, Qop, Qshift, Yop);

END CY7C901;

INPUT uop[9], a_addr[4], b_addr[4], RinO, Rin3, QinO, Qin3, Cin, OE,
d[4], cp;
OUTPUTy_out[4], RoutO, Rout3, QoutO, Qout3, G_, P _, Cout, Sign, Ov,
Zero;

CY7C901 (uop, a_addr, b_addr, RinO, Rin3, QinO, Qin3, Cin, OE, d, cp,
y_out, RoutO, Rout3, Qouto, Qout3, G_, P _, Cout, Sign, Ov, Zero);

366 ~~CHXL Software User's Guide (Version 3.0)

c MACHXL Warning and Error Messages

Contents
Introduction .. 368

Appendix C: Warning and Error Messages 367

Introduction

This appendix is an alphabetical listing of errors and warnings used by
MACHXL during compiling, partitioning and optimizing, along with an
explanation of each. A listing of any errors in a design can be found in
filename.err.

'SYMBOL_NAME' cannot be LOW_ TRUE.
Only INPUTs, OUTPUTs, and NODEs can be declared to be
LOW TRUE.

'SYMBOL_NAME' cannot be a flip-flop.
Only OUTPUTs and NODEs can be declared as flip flops.

'SYMBOL_NAME' cannot have RESET _BY or
PRESET_BY without CLOCKED_BY.
Only a clocked register can be given RESET_ BY and PRESET_ BY
constructs. To create an SR_ LATCH make the CLOCKED_ BY
expression = O;

'SYMBOL_NAME' cannot have a DEFAULT_ TO.
Only OUTPUTs and NODEs can be given a DEFAULT_TO.

'SYMBOL_NAME' cannot have control information.
Only OUTPUTs and NODEs can be given CLOCKED_BY,
ENABLED_BY,RESET_BY,orPRESET_BY.

'SYMBOL_NAME' cannot have two DEFAULT_ TO
expressions.
Only JK_FLOPs and SR_FLOPs can be given two DEFAULT_TO
expressions.

368 MACHXL Software User's Gulde (Version 3.0)

'SYMBOL_NAME' has CLOCK_ENABLED_BY without
CLOCKED_BY.

'SYMBOL_NAME' needs two DEFAULT_ TO
expressions.
JK_FLOPs and SR_FLOPs must be given two DEFAULT_TO
expressions separated by a comma. The first expression is for the J
or S. The second expression is for the Kor R.

.pi target device did not pass plscan. Please run
plscan.

A BIT_WIDTH bit number cannot be represented in
BIT _WIDTH bits.

A WHEN clause needs a GOTO in STATE
'STATE_NAME'.
An example that would produce this warning is:

CASE a
WHEN 1:

GOTO stl;
WHEN2:

x = l;
ELSE

GOTO st2;
END CASE;

The above code says to go to st 1 when a is 1 and to go to st 2

when a is not 1 or 2, but it doesn't say where to go to when a is 2.
The compiler will fall back on the DEFAULT_TO values of the state
bits to determine the state transition when a is 2.

Access denied to product

Array 'SYMBOL_NAME' cannot be forward
referenced.

Appendix C: Warning and Error Messages 369

Array 'SYMBOL_NAME' cannot have >VALUE
members.

Array 'SYMBOL_NAME' cannot have zero size.

Array 'SYMBOL_NAME' was not renamed since an
element clashes with another symbol name
The period character is not a valid symbol in the HDL. Internally
generated names may contain periods however. In attempting to
recreate a .src file, all periods are converted to underscores. In this
design, renaming the specified array caused a conflict between one of
the array elements and an existing signal name. For this reason, the
array was NOT renamed.

Array index VALUE out of range.
Only elements within the range of the array declared in the .src file
may be referenced in the pi file. An array declared without a left
bound will be zero-based (e.g. OUTPUT a [4 J will have the elements
a [0}, a [1}, a [2 J, a [3]). An array declared with left and
right bounds will have elements between and including the bounds
(e.g. OUTPUT a [1 . . 4 J will have the elements a [1}, a [2 J,
a [3 J, and a [4]).

Assuming 'DEFAULT_AVAILABLE_FILE' as the
available file.

At TIME ns: Expected value 'SIM_ VALUE' does not
match pin value 'SIM_ VALUE' for signal
SYMBOL_NAME.

At TIME ns: both Rand S set on RS flip flop
SYMBOL_NAME -- result unknown.

At TIME ns: both preset and reset set for
SYMBOL_NAME -- result unknown.

370 MACHXL Software User's Guide (Version 3.0)

At TIME ns: more than one message defined during
this step.

At TIME ns: signal SYMBOL_NAME is unstable.

At TIME ns: signal value for SYMBOL_NAME in
expression is Z.
The current value associated with the named signal is Z, and the
signal is being used as an input to another function. In this situation,
the value of the signal is assumed to be X.

Attempting to find any device pin that can fit the
following signals:
The fitter will attempt to find AT LEAST ONE place a signal can fit.

Attempting to find at least one part that can fit any
output signal.
The fitter will attempt screen the parts which cannot fit ANY signals.
If no parts can fit any signals, then this is a fatal error.

Attempting to fit a reduced partition.
Identifies an attempt to fit into an AMD Mach device after removing
one or more functions from the prior fit attempt. The fitter may
repeat fitting attempts at reduced partitions until a fit is achieved.

Attempting to fit at UTILIZATION_ VALUE percent
utilization.
Identifies an attempt to fit into an AMD Mach device at the indicated
utilization. The fitter may repeat fitting attempts at lower utilizations
until a fit is achieved.

BLOWN and INTACT are not allowed at the global
level.
Fuse assignments may only be given inside a fixed group.

Appendix C: Warning and Error Messages 371

BLOWN and INTACT are not allowed in subgroups.
Fuse assignments may appear in a fixed group, but not in subgroups
of a fixed group, fixed subgroups of a fixed group, or at the global
level.

BLOWN and INTACT fuse lists overlap.
A fuse cannot be assigned to be both blown and intact.

Bad .afb file.
The .afb file is unreadable to the optimizer. Remove the .afb file and
rerun plcomp to regenerate it.

Bad database version in line 1.

Bad file format in 'FILE_NAME.afb'.
The .afb file has become corrupted. Remove it and recompile the .src
file to recreate the .afb file.

Bad file format in .afb file.
The .afb file has become corrupted. Remove it and recompile the .src
file to recreate the .afb file.

Bad flip-flop type in .fb file.

Bad mode 'SYMBOL_NAME' in
set_ db_access _mode().

Biput instance 'INSTANCE_NAME' not driven by a tri
state device.
All biput ports are required to be driven by a tri-state device.

Biputs-as-inputs exceed pal block limits.
The sum of inputs and outputs/biputs exceed the device/pal block
limits.

372 MACHXL Software User's Guide (Version 3.0)

Build of SYMBOL_NAME is complete.

CHECK 'LOG_FILE_NAME' FOR ERRORS.

CHECK 'LOG_FILE_NAME' FOR WARNINGS.

Can only multiply, divide, and modulo with
constants.

Can only use LATCHED_BY with D_LATCH.

Can't assign INPUT signal SYMBOL_NAME to
OUTPUT pin PIN_NAME on device DEVICE_NAME
An attempt was made to place an INPUT signal on an OUTPUT pin

Can't assign signal SYMBOL_NAME to NC pin
PIN_NAME on device DEVICE_NAME
An attempt was made to assign a signal to a NO_ CONNECT pin of
the device.

Can't assign signal SYMBOL_NAME to RESET pin
PIN_NAME on device DEVICE_NAME

Can't assign signal SYMBOL_NAME to ground pin
PIN_NAME on device DEVICE_NAME
An attempt was made to assign a signal to a GND pin of the device.

Can't assign signal SYMBOL_NAME to hidden pin
PIN_NAME on device DEVICE_NAME

Can't assign signal SYMBOL_NAME to power pin
PIN_NAME on device DEVICE_NAME
An attempt was made to assign a signal to a POWER pin of the
device.

Appendix C: Warning and Error Messages 373

Can't open FILE_ TYPE file FILE_NAME

Can't open NPI file FILE_NAME

Can't open error file ERROR_FILE_NAME

Can't open file SYMBOL_NAME

Can't open group file FILENAME
In attempting to generate a .npi file, the back annotation software
could not open the specified file for writing. Check existing file and
directory permissions.

Can't open manufacturer info database
DATABASE_NAME

Can't open new "src" file 'FILENAME' for writing
When using the PLDoc option to generate the reduced equations in
.src HDL format, the file design.src is created to hold the
information. When PLDoc attempted to open this file in write mode, it
was unable. Most probable cause of the error is file or directory
permissions.

Cannot RETURN .z. from FUNCTION.

Cannot assign 'SIGNAL_NAME' as an input signal on
the output pin 'PIN_NAME'.
A signal given as an input signal in the pi file may not be assigned to
an output pin.

Cannot assign 'SIGNAL_NAME' as an output signal
on the non-output pin 'PIN_NAME'.
A signal given as an output signal in the pi file may not be assigned to
a non-output pin; i.e. a pin that is not an output pin, biput pin, or a
node.

374 MACHXL Software User's Gulde (Version 3.0)

Cannot assign 'SIGNAL_NAME' to ground pin
'PIN_NAME' of template 'SYMBOL_NAME'.
No signals may be assigned to ground pins of the device.

Cannot assign 'SIGNAL_NAME' to no-connect pin
'PIN_NAME' of template 'SYMBOL_NAME'.
No signals may be assigned to pins of the device that are not
connected.

Cannot assign 'SIGNAL_NAME' to power pin
'PIN_NAME' of template 'SYMBOL_NAME'.
No signals may be assigned to power pins of the device.

Cannot assign .C., .S., .X., or .Z. to VAR
'SYMBOL_NAME'.

Cannot assign .S. or .X. to INPUT 'SYMBOL_NAME'.

Cannot assign .z. to 'SYMBOL_NAME'.
The .Z. can only be assigned to OUTPUTs and NODEs since only
these can have an ENABLED_ BY expression.

Cannot assign clock enable
Cannot assign the clock enable equation for this output.

Cannot assign clock to register
Cannot assign the clock expression for this output to this macrocell.

Cannot assign multiple array or range signals to a
single pin.
Only one signal can be assigned at a time to a pin. A signal declared
as an array in the .src file implies multiple signal array elements in the
pi file, so a single symbol assigned to a pin may be an illegal
assignment if the symbol is declared as an array.

Appendix C: Warning and Error Messages 375

Cannot assign output enable
Cannot assign the output enable expression for this output to this
macrocell.

Cannot assign preset
Cannot assign the preset equation for this output.

Cannot assign reset
Cannot assign the reset equation for this output.

Cannot assign to 'SYMBOL_NAME'.

Cannot determine default footprint of template
'SYMBOL_NAME'.

Cannot find 'SYMBOL_NAME' in 'FILE_NAME'.
This means that a USE construct has specified a FUNCTION or
PROCEDURE that cannot be found in the given file.

Cannot fit accumulated inputs on the device
The output signals in a group from the PI file require a certain set of
inputs. The complete set of inputs, however, could not be fit.

Cannot fit auxiliary signals needed for fixed signal
group
After fitting the original group of required signals from a group in the
PI file, other output signals were needed on this device. These other
output signals must be fit either as output or brought in on input pins.
The limits of this device, however, prevented the fitter from resolving
the need for these auxiliary outputs.

Cannot fit signal group due to fixed output signals
The output signals, unassigned to a pin, from a group in the PI file
could NOT all be fit on this device.

376 MACHXL Software User's Guide (Version 3.0)

Cannot give state values to ALGORITHM_ TYPE state
machine 'STATE_MACHINE_NAME'.
A state machine with a specified ST A TE_ VALUES algorithm cannot
have the state value specified for individual states since the specified
ST ATE_ VALVES algorithm will assign state values to all states.

Cannot have DONT CARE digits in this constant.

Cannot have NO_REDUCE on VIRTUAL
'SYMBOL_NAME'.

Cannot have OUTPUT parameters in FUNCTION
'FUNCTION_NAME'.

Cannot have a HIDDEN INPUT.

Cannot have more than MAX_MACRO_PARAMS
macro parameters.

Cannot index non-array 'SYMBOL_NAME'.

Cannot invoke FUNCTION_OR_PROCEDURE
'SYMBOL_NAME' as a PROCEDURE_OR_FUNCTION.

Cannot make high-true output

The macrocell does not have the capability to assign
a high-true output signal

to this pin.

Cannot make low-true output
The macrocell does not have the capability to assign a low-true output
signal to this pin.

Appendix C: Warning and Error Messages 377

Cannot make output combinatorial
The output macrocell cannot be made combinatorial. An example of
a macrocell that cannot be combinatorial is an output of the Pl 6R8.

Cannot make output hidden
The hidden node of this device cannot accept a node signal, or a signal
which for some reason must be visible.

Cannot make output registered
The output macrocell cannot be made registered. An example of a
macrocell that cannot be registered is an output of the Pl6L8.

Cannot negate a constant.

Cannot open 'SYMBOL_NAME' for error output.

Cannot open 'SYMBOL_NAME'.

Cannot open .log file 'SYMBOL_NAME' for writing.

Cannot open EDIF 2.0.0 file 'EDIF _FILE'

Cannot open simulation listing file 'FILE_NAME'.

Cannot open test vector file 'FILE_NAME'.

Cannot operate on number with DONT CAREs.

Cannot reference WIRED_BUS member
'SYMBOL_NAME'.
Any signal feeding a WIRED_ BUS cannot be referenced. Only the
WIRED_BUS signal itself can be referenced. This WIRED_BUS
signal and all signals feeding the WIRED _BUS will have the same
value since they are wired together.

378 MACHXL Software User's Guide (Version 3.0)

Cannot represent all STATE values with given
STATE_BITS.
This occurs when the state value given to a ST A TE is to large to be
represented with the number of bits given in the STATE_BITS
construct.

Cannot resolve OE requirements of macrocells.
The fitter cannot satisfy pal block output enable requirements.

Cannot set up XOR
There are not XOR rows available on this pin to fit this signal.

Cannot set up feedback
The feedback required to properly fit this signal is not available.

Cannot use .Z. in this context.

Cannot use DONT CARE digits in this constant.

Cannot use group in this context.

Character 'OPTION_DELIMITER' used in filename.

Clock pin needed for clock.
An input is assigned to a clock pin that must be reserved for a clock
signal.

Collapsing 'SYMBOL_NAME'.

Collapsing declared VIRTUALs.
This is the optimization phase where signals declared to be VIRTUAL
in the .src file or in the .pi file are collapsed.

Appendix C: Warning and Error Messages 379

Collapsing equations.
This is the optimization phase where NODEs are either collapsed or
made into PHYSICAL NODEs. This is controlled by the optimizer
equation properties specified in the .pi file.

Combinatorial feedback collapsing 'SYM BOL_NAM E'.
The collapsing of signals involved in combinatorial feedback is
postponed until this phase.

Combinatorial signal 'SYMBOL_NAME' cannot
DEFAULT_ TO LAST_VALUE.
Only registers can have DEFAULT_TO LAST_ VALUE. Only
registers hold a value from the previous clock cycle to default to.

Conflict between properties 'PROPERTY _NAME' and
'PROPERTY _NAME'.
The two properties' definitions or effects conflict, so the properties
cannot both be given on the same signal, in the same group, in the
same fixed group, or at the global level.

Constant too large.

Copying default .pi file 'DEFAULT _Pl_FILE_NAME' to
'Pl_FILE_NAME'.
There is no physical information file for your specific design, so the
system will attempt to use a default physical information file.

Copying default cost file 'SYMBOL_NAME' to
'SYMBOL_NAME'.

Cost VALUE larger than 1000.

380 MACHXL Software User's Guide (Version 3.0)

Could not copy default pi file 'Pl_FILE_NAME' to file
'Pl_FILE_NAME'.
The system attempted to use the default physical information file, but
was unable to copy the default pi file to a pi file for your specific
design. Read permissions on the default pi file or write permissions
on the current directory may have been denied.

Could not find default pi file 'Pl_FILE_NAME'.
There is no physical information file for your specific design, so the
system attempted to use a default physical information file, but was
unable to find the file.

Could not open 'SYMBOL_NAME' file

Could not open available file - SYMBOL_NAME

Could not open default .est file 'SYMBOL_NAME'.

Could not open device library: SYMBOL_NAME

Could not open file 'FILENAME' for reading.

Could not open part library: SYMBOL_NAME

Could not open text file: SYMBOL_NAME

D_LATCH 'SYMBOL_NAME' needs LATCHED_BY
expression.

Declaration has low true symbol '/' in addition to
LOW_ TRUE keyword.

Design SYMBOL_NAME is up to date.

Design SYMBOL_NAME not found

Appendix C: Warning and Error Messages 381

Design SYMBOL_NAME not found.

Design construct not followed by CELLREF design
name

Design has no input ports defined.

Design has no nets.

Design has no output ports defined.

Device 'DEVICE_NAME' - 1/0 PAD count exceeds
device limit of NUMPINS
The total number of INPUT/OUTPUT signals to be placed on the
device exceeds the total number of usable pins on the device

Device 'DEVICE_NAME' is not targeted in the Pl file,
and is therefore unusable.
This device architecture must be the target of a PI file fixed group to
be considered as part of a solution. Since it is not targeted, this device
architecture is thrown from the list of possible devices.

Device DEVICENAME used for annotation -- update
.pi accordingly
The back annotation software found a different device in the post
place and route netlist file than in the original pi file.

Device file missing: SYMBOL_NAME
(SYMBOL_NAME)

Device library SYMBOL_NAME not found

Different suffixes on identifiers with ' .. ' operator.

Directory SYMBOL_NAME not found

382 MACHXL Software User's Gulde (Version 3.0)

Divide by zero.

Division by 0.

Drawfield - illegal field number VALUE

Due to the above warnings, the Pl and NPI files may
be out of synch
Due to a mismatch between the original pi file and what actually
happened during place and route, the PI and NPI files are most likely
out of synch. To assure the pin placement the next time through,
manually merge the pi and npi files.

Duplicate STATE name 'STATE_NAME'.

Duplicate WHEN values.
The CASE statement has the same value in two different WHEN
clauses.

Duplicate value for STATE 'STATE_NAME'.
The STATE MACHINE has two different STATES with
overlapping state values. A dont care digit will overlap with any
other digit value.

EDIF 2.0.0 file 'EDIF _FILE' empty

EDIF 2.0.0 file 'EDIF _FILE' is incomplete

Appendix C: Warning and Error Messages 383

ELSE of CASE needs a GOTO in STATE
'STATE_NAME'.
An example that would produce this warning is:

CASE a

WHEN 1:

GOTO stl;

WHEN2:

GOTO st2;

END CASE;

The above code says to go to stl when 'a' is 1 and to go to st2 when 'a'
is 2, but it doesn't say where to go to when 'a' has some other value.
The compiler will fall back on the DEFAULT_TO values of the state
bits to determine the state transition for other values of 'a'.

END name 'SYMBOL_NAME' does not match
'SYMBOL_NAME'.

END name 'SYMBOL_NAME' does not match
STATE_MACHINE name 'SYMBOL_NAME'.

Edit aborted

Edit canceled

Encountered COMP _ON without preceding
COMP_OFF.

Equation reduction.

Equation too large for symbol 'SYMBOL_NAME'.
This indicates that the design was written in a way that caused an
equation to exceed the internal equation size limit. The design should

384 MACHXL Software User's Gulde (Version 3.0)

probably be modified to use NODEs to hold intermediate equation
values to avoid generating such large equations. There are options
available to raise the internal equation size limit and to have the
compiler automatically generate NODEs for some equations.

Equation too large.

Error in cost file SYMBOL_NAME.

Error opening source file 'HDL_SOURCE_FILE'.
PLSchematic was unable to open the output source file.

Error writing database SYMBOL_NAME in
replace_index_maker

Error writing database SYMBOL_NAME in
replace _maker

Errors found by the pterm string parser.
Errors that must be corrected were found while parsing the pterm
string.

Errors found in netlist unable to continue
This means that serious and/or fatal errors were encountered in the
input netlist. Processing is discontinued and no output files will be
generated.

Errors found in pin assignments.
Errors were found in the pin assignments in the physical information
file.

Errors found while comprehending fixed groups.
Errors that must be corrected were found while the system was
understanding the fixed groups in the physical information file.

Appendix C: Warning and Error Messages 385

Errors found while creating internal feedback groups.
Errors that must be corrected were found while the system was
creating groups of signals that depend on internal feedback.

Errors found while verifying available devices.

Errors in simulation vectors, error vectors ignored

Errors occurred while building the output and
equation lists.

Errors occurred while comprehending the fit_with
properties.
Errors that must be corrected were found while implementing
therequirements of the FIT_ WITH property.

Exceeded maximum of VALUE range identifiers.

Exceeds pal block enable limit.
The combined pin assignments exceed the number of enable terms for
a PAL block.

Exceeds pal block pterm allocation capabilities.
The combined pin assignments exceed the ability to assign product
terms.

Expecting '(' for parameter list of MACRO
'MACRO_NAME'.

Expecting '(expression list)' after unary 'OPERATOR'.

Expecting '.'.

Expecting':' after STATE value.

386 MACHXL Software User's Guide (Version 3.0)

Expecting ':' after WHEN number.

Expecting':' or '[value]:' after STATE name.

Expecting';'.

Expecting'=' after 'FOR VAR_NAME'.

Expecting'=' in INITIAL statement.

Expecting'=' in SET statement.

Expecting '=' to follow assignment expression.

Expecting '=>' after WHEN number.

Expecting ']'.

Expecting '}'.

Expecting argument name for MACRO
'MACRO_NAME'.

Expecting array namP. or '[signals]' to follow
STATE_BITS.

Expecting constant expression.

Expecting first WHEN clause after CASE expression.

Expecting function or procedure name after USE
filename.
The syntax of a USE construct is "USE 'filename'.name;" the filename
must be in single quotes and the .name must be outside of the quotes.
The .name is optional.

Expecting fuse number or list of numbers.

Appendix C: Warning and Error Messages 387

Expecting identifier to follow'.'.

Expecting integer value for switch SWITCH

Expecting name after KEYWORD.

Expecting number after '['.

Expecting number after KEYWORD.

Expecting number or DONT CARE in truth table
entry.

The TRUTH_ TABLE entries to the left of the : : must
be either constants
or.X.

Expecting number or identifier to follow'-'.

Expecting number to follow ' .. '.

Expecting pin name or number.

Expecting procedure name or number tag to follow
I I

Expecting property name.

Expecting quoted file name after KEYWORD.

Expecting quoted group name.

Expecting quoted target string.

Expecting second identifier after ' .. '.

Expecting second number after ' .. ' in range.

388 MACHXL Software User's Gulde (Version 3.0)

Expecting signal name.

Expecting single quoted filename name after
KEYWORD.

Expecting string value for switch SWITCH

Expecting symbol list after 'KEYWORD'.

Expecting symbol list in declaration.

Expecting the keyword 'GROUP' to follow the
keyword 'FIXED'.

Expecting variable after FOR.

FBINCLUDE not supported in SIMULATION.

Failed to close available file.

Failed to create database: SYMBOL_NAME in
create_acro

Failed to create database: SYMBOL_NAME in
create_dlib

Failed to create database: SYMBOL_NAME in
create_pinmp

Failed to find 'SIGNAL_NAME' for fitting with
'SIGNAL_NAME'.
The FIT_ WITH property indicated two signals should be fit together.
However, the second signal could not be found as an output or node
signal. The signal must exist in the original design as a output or non
virtual node.

Appendix C: Warning and Error Messages 389

Failed to find database version in first line.

Failed to find fit_with signal 'SIGNAL_NAME'.
The FIT_ WITH property indicated two signals should be fit together.
However, the second signal could not be found. The signal must exist
in the original design.

Failed to find suitable node assignment and signal
routing: MACH_PART:DEVICE#.
The current partition could not be placed and routed by the mach
fitter. It could be routed with no placement considerations or placed
with no routing considerations but no valid combination of placements
and routings could be found.

Failed to fit design. See SYMBOL_NAME
Your design cannot be fit. Refer to the .log file for the reasons for
this failure. The .log file will state which functions could NEVER be
fit, and also how many device attempts occurred. There are a large
number of factors which contribute to a design being unfittable, and
often these factors compound. Areas to examine are how signals are
fit as a group, how much 1/0 is required for the design, and also how
FPGAs are being used.

Failed to fit fixed group SYMBOL_NAME from Pl on
SYMBOL_NAME. See SYMBOL_NAME
The fixed groups must be fit successfully before any solution can be
given. The fixed group indicated, however, could not be fit. Refer to
the .log file.

Failed to generate fuse map: MACH_PART:DEVICE#.
A problem occurred in assigning pterm rows within the mach part.

Failed to open SYMBOL_NAME database in
get_pinout_array().

390 MACHXL Software User's Guide (Version 3.0)

Failed to read database TYPE in first line of text file.

Fast critical net fanout limit (12) exceeded -- check
after optimization

Fast critical net fanout limit (8) warning -- check after
optimization

File 'FILENAME' not found.

File 'FILE_NAME.afb' does not exist.

File 'SYMBOL_NAME' not found in path, File
generation ignored.

File 'SYMBOL_NAME' not found in path. File
modification ignored.

File - 'SYMBOL_NAME' not found

File FILENAME - The DEVICE string does not contain
a package designator
On the "DEVICE IS EPMXXXXYY" line, the XXXX is the template
name and the first Y is the package designator. The specified file
does not contain a package designator on this line.

File FILENAME - the package specified
(PACKAGE_STR) is not supported
On the "DEVICE IS EPMXXXXYY" line, the XXXX is the template
name and the first Y is the package designator where (Dis CDIP, Pis
DIP, J is CLCC, Lis LCC, G is PGA, Sis SOD, Wis CQFP, and Q
is PQFP.

Appendix C: Warning and Error Messages 391

File FILENAME -- SYMBOL_NAME does not contain
either an "Ice", "qfp", or "pga" package
The VAR DDFPACKAGE line should contain a string of the form:
"/minc/als/data/a1000/a1010/lcc44.ddf''. The package (lee or pga) in
this .pin file is not of this format.

File FILENAME contains an invalid VAR
DFFPACKAGE line
The VAR DDFPACKAGE line should contain a string of the form:
"/minc/als/data/al000/a1010/lcc44.ddf''. The line in the .pin file is not
of this format.

File FILENAME does not contain a template name
The .mpn (MINC pin) file must contain a template name on line 2.

File FILENAME does not contain a valid device name
The .mpn (MINC pin) file must contain a device name of the form
"MANUF PARTNAME" on line 1.

File FILENAME does not contain a valid fusemap file
name
The .mpn file must contain a fuse map file name on line 3.

File FILENAME does not contain a valid number of
pins value
The .mpn file must contain the number of pins on the device on line 4.

File FILENAME does not contain a valid template
name
The template name specified is not a valid MINC template name

392 MACHXL Software User's Guide (Version 3.0)

File FILENAME specified a different device than the
.pi file
The back annotation software found a different device in the post
place and route netlist file than in the original pi file.

File FILE_NAME does not exist - rerun The fitter with
netlisting ON

File PINFILE_NAME can not be opened in write mode

File SYMBOL_NAME can not be opened for reading

File SYMBOL_NAME can not be opened for writing

File SYMBOL_NAME can not be opened to rename
file contents

File SYMBOL_NAME does not define number of pins
on VAR DFFPACKAGE line
The VAR DDFP ACKAGE line should contain a string of the form :
"/minc/als/data/al000/a1010/lcc44.ddf' where 44 in the number of
pins in the package. The line in this .pin file is not of this format.

File devlib.dbf can not be opened

File does not begin with EDIF keyword

File is not EDIF version 2.0.0

File minclib.lib not found in path for reading

Appendix C: Warning and Error Messages 393

Fitting signal 'SIGNAL_NAME' on virtual pin
PIN_NUMBER implies fitting an unfittable group of
signals
The signal being fit has some feedback internal to the part, either
because it is a node or there is pre-enable feedback. The signals
needing to use this feedback must therefore be fit on this same part.
There are not enough device resources, however, to have all those
signals fit on this part.

Fixed grouping for MACH_PART:DEVICE# exceeds
limits for:
Precedes one or more device constraints violated by a function group.

Fixed grouping for MACH_PART:DEVICE# pal block
PAL_BLOCK_ID(OPTIONAL)exceeds limits for:
Precedes one or more pal block constraints violated by a function
group.

Flip-flop 'SYMBOL_NAME' needs CLOCKED_BY
expression.

Format error in library file line LINENO -- line skipped

Format error on line LINENO of newnames.txt -- line
skipped

Fs Could not locate device library 'SYMBOL_NAME'.

Fs Could not open device library 'SYMBOL_NAME'.

Function FUNCTION_ID cannot fit due to grouping
constraints.
Signal in user specified grouping or pin assignment violates Mach
constraints.

394 MACHXL Software User's Guide (Version 3.0)

Function SIGNAL cannot fit on pin PIN# because:
Mach function pin assignment cannot be satisfied for the reason(s)
listed.

Function SIGNAL_ID cannot fit on pin PIN# due to
buried register fanout constraints.
User pin assignments violate restrictions on Mach230 buried
macrocell fanouts. Mach230 buried register fanouts must be within
pal block pairs (A-H, B-G, C-F, D-D).

Function is not a unary function
The function does not qualify as a unary function for fitting on a
unary node of this device.

Functions FUNCTION_ID and FUNCTION_ID use the
same macrocell.
The named functions are assigned so that they require the same
macrocell.

Fuse assignment in a fixed group with footprint
target 'TARGET_STRING'.
A fixed group targeted toward a footprint will potentially be fit into
many different device architectures. Since fuse numbers and fuse
configurations depend on the device architecture, a fuse assignment in
a fixed group targeted toward a footprint may have radically different
and unexpected effects when implemented in different devices.

Fusemap file 'FUSEFILE' in file 'FILENAME' conflicts
with an existing fusemap file
The fusemap filename found on line 4 of the .mp in file conflicts with
an already existing fusemap filename for this design.

GLOBAL not supported.

Appendix C: Warning and Error Messages 395

GOTO STATE_NAME goes to nonexistent state.

GOTO STATE_NAME is outside of STATE_MACHINE.

Generation of NODEs for equation minimization is
on.
By default, the compiler generates NODEs to break up the logic for
complicated operators such as the arithmetic operators. This gives
the optimizer greater flexibility to generate efficient equations for the
target hardware. This node generation can pose a problem for
designers trying to fix the pinout of a portion of a design while
changing the functionality of another portion. This node generation
can be controlled from the menu. See the Optimizing a Design
chapter for more on optimization.

Group name must be quoted with single quotes (").

Hardware locking device NOT installed.

Hit end of file with unmatched COMP _OFF.

IF has GOTO in only one half in STATE
'STATE_NAME'.
An example that would produce this warning is:

IF a THEN

GOTO stl;

END IF;

The above code says to go to stl when 'a' is asserted, but it doesn't
say where to go to when 'a' is not asserted. The compiler will fall
back on the DEFAULT TO values of the state bits to determine the
state transition when 'a' is not asserted.

IS not supported.

396 MACHXL Software User's Guide (Version 3.0)

Illegal DONT CARE digit in decimal constant.

Illegal argument 'STRING' for demorgan property.
The legal arguments for the DEMORGAN_SYNTH property are
AUTO, FORCE, and OFF.

Illegal argument 'STRING' for flipflop synthesis
property.
The legal arguments for the FF_ SYNTH property are AUTO and
OFF.

Illegal argument 'STRING' for xor synthesis property.
The legal arguments for the XOR_TO_SOP _SYNTH property are
AUTO, FORCE, and OFF.

Illegal character ASCII_ VALUE in source.
An illegal character appeared in the file. Legal characters include all
alphanumeric characters, spaces, tabs, newlines, carriage returns,
formfeeds, vertical tabs and the punctuation characters indicated in
the manual for building each operator.

Illegal command line switch SWITCH found

Illegal command line switches

Illegal config file SYMBOL_NAME specified

Illegal digit in base NUMERICAL_BASE constant.
The digit is not a valid digit in the numerical base of the constant.

Illegal file name 'FILE_NAME'.

Illegal operation on .X.

Illegal operation on .Z.

Appendix C: Warning and Error Messages 397

Illegal operation on DONT CARE.

Illegal operation on constant and .X.

Illegal pin name 'PIN_NAME' for template
'TEMPLATE_NAME'.
The pin name given for a pin assignment in the physical
informationfile was not a valid pin name for the device.

Illegal solution number, using 1

Improper nesting of ')' in parameter for MACRO
'MACRO_NAME'.

Improper nesting of']' in parameter for MACRO
'MACRO_NAME'.

Incompatible suffix for flip-flop 'SYMBOL_NAME'.

Inconsistent member sizes in WIRED_BUS
declaration.

Incorrect target string formatting: 'SYMBOL_NAME'.

Initial routing of signals through switch matrix failed:
MACH_PART: DEVICE#.
The current partition could not be routed by the mach fitter.

Input SIGNAL_ID cannot fit on pin PIN# because:
Mach input pin assignment cannot be satisfied for the reason(s) listed.

Input has wrong ff/latch type
The input pin has the wrong configuration for fitting this unary signal.

398 MACHXL Software User's Gulde (Version 3.0)

Input pin 'PIN_NAME' of instance 'INSTANCE_NAME'
is not connected.
PLSchematic checks each component instance to verify that all input
pins are connected. Each unconnected input pin is connected to either
VCCorGND.

Input pin 'VALUE' of instance 'SYMBOL_NAME' is not
connected.

Input signal 'SYMBOL_NAME' may be given only
once without a pin assignment.
An input signal without a pin assignment may appear only once per
group or DEVICE.

Input signal SYMBOL_NAME is assigned to more
than one pin
A signal can only be placed on ONE input pin of the device. The .pi
file specifies that the signal in error be placed on TWO or more pins
of the device.

Input signals are not allowed at the global level.
Input signals may only be given inside a group or DEVICE.

Inputs within an unfixed group are ignored.
Since The fitter will automatically fit all of the input signals that a
group requires, there is no need to mention input signals in an unfixed
group.

Instance 'INSTANCE_NAME' of type
'COMPONENT_ TYPE' is not connected.
The named component instance is unconnected. This will not affect
the final results since the equations for this device will be optimized
out but is flagged because it is likely that the user either inadvertently
left the component or forgot to connect it to the rest of the design.

Appendix C: Warning and Error Messages 399

Instance keyword not followed by instance name

Instance not followed by component name

Instance or net keyword found before contents

Instance rename not followed by 2 instance names

Interface not followed by PORT keyword

Internally fit WIRED_BUS signal 'SYMBOL_NAME' is
needed on another device
In this design, the WIRED _BUS signal was fit inside of the Xilinx
device. This signal was, however, needed as an INPUT on another
device. You must either move all signals that need the WIRED_BUS
onto this Xilinx device OR implement the WIRED _BUS external to
the Xilinx device (by fitting each of the signals comprising the
WIRED_BUS on BIPUT pins.

Invalid PORT syntax

Invalid character 'VALUE'.

Invalid device #VALUE specified for solution VALUE
(valid values - 1 to VALUE)

Invalid pin label 'LABEL_NAME'.

Invalid solution #SOLUTION_NUMBER specified
assuming solution #1.

Invalid solution switch value -- VALUE

Invocation of undeclared
FUNCTION_ OR_ PROCEDURE 'SYMBOL_NAME'.

400 MACHXL Software User's Guide (Version 3.0)

Joined or portref statement not preceded by net
construct

Left parenthesis found in expression

Library Locking Error.

Line VALUE does not contain a line of the form
"signal:pin [INPUTIOUTPUTIBIPUT]"

Line too long.
A single line in the physical information file may be no longer
thanl024 characters.

List of SYMBOL_NAME signals already placed:

Locking device NOT installed or illegal authorization
file

Lost connection to server for SYMBOL NAME,
exiting ...

MACH PARTITION_LEVEL partitioning exceeds limits
The Mach partition cannot be reduced to the current limit due to user
specified fixed groups or internal feedback grouping.

MACH failed PARTITION_LEVEL partitioning
The partitioner cannot divide the functions into the required number of
partitions while remaining within the current limits.

MACH failed PARTITION_LEVEL pre-partitioning
The partitioner cannot divide the functions into the required number of
partitions while remaining within the current limits.

Appendix C: Warning and Error Messages 401

MACRO 'MACRO_NAME' never terminates.
The macro is missing the terminating } .

MACRO 'MACRO_NAME' spans multiple lines.

Macro expansion too large.

Making 'SYMBOL_NAME' be PHYSICAL NODE.

Manufacturer name 'SYMBOL_NAME' is too long -
must be VALUE or less characters

Max # of update entries (NUMENTRIES) exceeded -
processing terminated at line LINENO of library

Max # of update entries (NUMENTRIES) exceeded -
processing terminated at line LINENO of
newnames.txt

Medium critical net fanout limit (12) exceeded -
check after optimization

Medium critical net fanout limit (8) warning -- check
after optimization

Memory exhausted, VALUE of the VALUE solutions
are saved.
When The fitter detects the system no longer has memory available,
The fitter frees some memory to get room to work, and then saves in
order as many solutions as possible.

Mismatched group sizes.
This means that an operation h~Wfidohiyd on two arrays or
groups of signals that have a different number of bits from each other.

402 MACHXL Software User's Guide (Version 3.0)

Mismatched range identifiers 'SYMBOL_NAME' and
'SYMBOL_NAME'.

Missing '(' after 'KEYWORD'.

Missing ')' for argument list of MACRO
'MACRO_NAME'.

Missing')' in invocation of MACRO 'MACRO_NAME'.

Missing ';'.

Missing 'KEYWORD'.

Missing KEYWORD1 after KEYWORD2.

Missing TEST_ VECTORS keyword on simulation
vector table.

Missing name after END.

Missing quote on string.
A string must be enclosed by a pair of single quotes ('), but one of the
quotes on either the left or right side of the string was missing.

Missing right quote on string.

Mixed INPUT and BIPUT declarations for
'SYMBOL_NAME'.

Mixed use of NO_REDUCE on members of assigned
group.

Modulo by 0.

Appendix C: Warning and Error Messages 403

Multiple NODE declarations for 'SYMBOL_NAME' in
separate PROCEDUREs.

Multiple TARGET constructs in fixed group.
A fixed group may be targeted toward only one device.

Multiple cell constructs found in file 'EDIF _FILE'

Multiple conflicting assignments to
'SYMBOL_NAME'.
A signal can only be assigned one value for any condition. An
example that would produce this error is:

!Fa THEN

x= 1;

END IF;

IFbTHEN

x= O;

END IF;

This example says that 'x' should be 1 when 'a' is asserted. It also
says that 'x' should be 0 when 'b' is asserted. This is a problem if both
'a' and 'b' are asserted.

Multiple interface constructs found in file 'EDIF _FILE'

Multiple library constructs found with no design
construct

Multiple port assignments for a single net

Must pass assignable expression to OUTPUT
'SYMBOL_NAME'.

404 MACHXL Software User's Gulde (Version 3.0)

Must specify TARGET in order to specify fuse
assignments.
The target device must be known for fuse assignments to be
meaningful.

Must specify TARGET in order to specify no-connect
pin assignments.
The target device must b~ known for pin assignments to be
meaningful.

Must specify TARGET in order to specify pin
assignments.
The target device must be known for pin assignments to be
meaningful.

N bit number cannot be represented in M bits.

NAME is only allowed within a group or fixed group.

NO_ CONNECT is not allowed at global level.
No-connect pin assignments may only appear inside a fixed group.

NO_ CONNECT is not allowed in subgroups.
No-connect pin assignments may appear in a fixed group, but not in
subgroups of the fixed group, fixed subgroups of the fixed group, or
at the global level.

Need suffix for flip-flop 'SYMBOL_NAME'.
The signal name for a JK_FLOP, SR_FLOP, or T_FLOP must have
a suffix appended to indicate which input of the flop is driven by the
assigned expression.

Appendix C: Warning and Error Messages 405

Nested as~ignment to 'SYMBOL_NAME' which has
NO_REDUCE. .
A symbol declared with NO _REDUCE must be given its equation
outside of any IF, CASE, TRUTH_TABLE, or STATE_MACIDNE
statements to guarantee that the equation will be implemented as given
without any reduction.

Nesting of subgroups too deep.
The level of nesting of groups and fixed groups is restricted to two.
Fixed groups may have subgroups or fixed subgroups, but the
subgroups and fixed subgroups may not have subgroups or fixed
subgroups.

Nesting too deep.
This is caused by some construct or combination of constructs in the
source file being nested too deeply. Make sure you have an END on
all constructs requiring ENDs.

Net 'NET_NAME' does not drive any instance input
pins.

Net 'NET _NAME' is driven by multiple instance
output pins.
A net can be driven by only one device output pin.

Net 'NET _NAME' is not driven by an instance output
pin.

Net 'NET _NAME' is unconnected.

Net construct found before previous net complete

406 MACHXL Software User's Guide (Version 3.0)

No GOTO to STATE 'STATE_NAME'.
If there is no GOTO to a particular STATE then the state may not be
reachable and may not be necessary to the design.

No Pins Assigned Before Auto Pin Placement

No clock expression
This signal is registered, but the clock expression is unavailable,
probably because this equation earlier was deemed too large.

No device supports the construct of a latch with a
CLOCK_ENABLED_BY (SIGNAL_NAME).
There is no device known to The fitter which has a clock enable for a
latch.

No devices available that fit an output. See
LOG_FILE_NAME
The fitter will attempt screen the parts which cannot fit ANY signals.
No parts can fit any signals, and therefore The fitter could not
continue.

No devices match scan criteria ...
The criteria you supply remove device architectures from
consideration. These criteria, along with you authorization, combine
to create an available list of devices. In this case, there are no devices
available.

No equations in the fb file ...

No functions in design fit into target device
'SYMBOL_NAME'.
The device was targeted to fit a group of functions in the physical
information file, but was not able to fit any of the functions in the
design.

Appendix C: Warning and Error Messages 407

No input pins connected to instance
'INSTANCE_NAME' of type 'COMPONENT_TYPE'.
All of the input pins on the named instance are unconnected. This will
not affect the final results since the equations for this device will be
optimized out.

No library construct found in file 'EDIF _FILE'

No more than one DEFAULT construct per file is
allowed.
Only one fixed group may be specified as the default fixed group. All
signals in the design that were not mentioned in the pi file will be
placed into the default fixed group.

No output pins connected to instance
'INSTANCE_NAME' of type 'COMPONENT ... TYPE'.
All of the output pins on the named instance are unconnected. This
will not affect the final results since the equations for this device will
be optimized out.

No outputs in design.

No remaining data equations for output signal
'SIGNAL_ NAME'.
The DEMORGAN_SYNTH, XOR_TO_SOP _SYNTH, and
FF_ SYNTH properties remove equations from consideration. If other
equations were already removed due to their size, then there may be
no equations left to implement the output signal's functionality.

No solution has been selected in the fb

No solution information in fb

No solution selected during the fitter assuming
solution #1.

408 MACHXL Software User's Gulde (Version 3.0) ·

No solutions in .fb file.

No solutions were found for specified design

No stimulus file.

No system area in design.

No templates match criteria after execution of
PLScan.
The scanner, after screening out parts based on your criteria
andauthorization, has left NO parts for The fitter to use.

No valid devices
There are no device architectures available for fitting.

Noncritical net fanout limit (12) exceeded -- check
after optimization

Noncritical net fanout limit (8) warning -- check after
optimization

Not enough columns for this output signal
This device, probably a PLA, does not have enough AND columns.
The various data equations are all too large given the remaining
number of columns available.

Not enough inputs available on device
The number of inputs required to fit this output exceeds the available
number of input and biputs of this device.

Appendix C: Warning and Error Messages 409

Not enough rows feeding the OR gate for this output
signal
This device does not have enough AND rows feeding the OR gate.
The various data equations are all too large given the number of AND
rows available.

Number of inputs in truth table entry does not match
header.

Number of outputs in truth table entry does not
match header.

Number of test vector entries does not match header.

Number too large.

Numbers out of order in range.

Old VENDOR_NAME netlist file 'NETFILE_NAME' can
not be removed

Old VENDOR_NAME pinout file 'PINFILE_NAME' can
not be removed

On bus SYMBOL_NAME: signals SYMBOL_NAME
and SYMBOL_NAME are driving the bus in different
directions.

On bus SYMBOL_NAME: signals SYMBOL_NAME
and SYMBOL_NAME are driving the bus in the same
direction.

Operation produced negative number.

Operation would result in negative constant.

41 o MACHXL Software User's Gulde (Version 3.0)

Out of memory

Out of memory before any solution could be found.
The fitter has detected there is no remaining memory, and the solution
search was interrupted before any solution could be found.

Out of memory in make_set_element

Out of memory in newstr()

Out of memory, and NO alternative memory actions
available.
After attempting alternative memory actions, there still is no memory
available. The fitter can no longer proceed.

Out of memory, attempting to save solutions ...
When The fitter detects the system no longer has memory available,
The fitter frees some memory to get room to work, and then attempts
to save solution in order.

Out of memory.

Output file 'SYMBOL_NAME' already exists.

Output pin 'PIN_NAME' of instance
'INSTANCE_NAME' is not connected.
PLSchematic checks each component instance to verify that all output
pins are connected. The user is warned of this condition and
processing continues.

Output pin 'VALUE' of instance 'SYMBOL_NAME' is
not connected.

Appendix C: Warning and Error Messages 411

Output signal 'SIGNAL_NAME' cannot be fit with
'SIGNAL_NAME'.
The FIT_ WITH property indicated these two signals should be fit
together, but for some reason they CANNOT fit together. The
feeding signal must be the only signal in the other signals equation.
The feeding signal cannot be inverted. The feeding signal must be a
node. The receiving signal cannot be registered or latched. Both
signals cannot be enabled.

Output signal 'SYMBOL_NAME' can not ALSO be
placed on an input pin
A signal that was specified as an OUTPUT to this device was also
specified as an INPUT to this device. For the specified architecture,
this capability is not allowed.

Overlapping TRUTH_ TABLE entries.
The TRUTH_ TABLE statement has two different entries with an
overlapping set of conditions. At least one of the input values of each
entry must be different from the corresponding input value of the
other entries. A .X. overlaps with any other input value.

Pl Footprint: 'FOOTPRINT _NAME' not in .avl file or
has been eliminated by constraints.

Pl demorganization property for 'SIGNAL_NAME'
conflicts with the NOREDUCE option.
Demorganization is turned off if the NOREDUCE option is set, so the
only legal argument for the DEMORGAN_SYNTH property is OFF.

Pl target STRING1 STRING2 not in library ; please
check spelling

Pl target STRING1 STRING2 rejected, by lock:
'TEMPLATE_NAME', check constraints.

412 MACHXL Software User's Gulde (Version 3.0)

Pl target STRING1 STRING2 rejected,
family:'FAMIL Y _NAME', check constraints.

Pl target STRING1 STRING2 rejected, fmax =
FMAX_VALUE Mhz, check constraints.

Pl target STRING1 STRING2 rejected, ice =
ICC_VALUE ma, check constraints.

Pl target STRING1 STRING2 rejected,
manufacturer:'MANUFACTURER_NAME', check
constraints.

Pl target STRING1 STRING2 rejected,
package:'PACKAGE_NAME', check constraints.

Pl target STRING1 STRING2 rejected, price = PRICE,
check constraints.

Pl target STRING1 STRING2 rejected,
temp_range:'TEMP _VALUE', check constraints.

Pl target STRING1 STRING2 rejected, template:
'TEMPLATE_NAME', check constraints.

Pl target STRING1 STRING2 rejected, tpd =
TPD_VALUE ns, check constraints.

Pl target STRING1 STRING2 rejected, user1 =
'USER1_VALUE', check constraints.

Pl target STRING1 STRING2 rejected, user2 =
'USER2_VALUE', check constraints.

Appendix C: Warning and Error Messages 413

Pl target Template: 'TEMPLATE_NAME' Footprint:
'FOOTPRiNT _NAME' is not in .avl file or has been
eliminated by constraints.

Pl target error(s) detected.

Pl target template: 'STRING' is not a valid template
name.

PLA device DEVICE_NAME does not exist in
database -- no annotation performed
The back annotation software attempts to find a device in its database
with the template and numpins specified in the .mpn file. No part
exists to match the specified criteria.

PLDoc - file open error

PLDoc usage: pldoc design_name

The fitter has not been run

The fitter usage: the fitter design_name

PLFuse usage: plfuse design_name

PLOpt has not been run

PLOpt usage: plopt design_name

PLScan has not been run

PLScan usage: plscan design_name

PLSchematic usage: plsch design_name reader_flag

PLSim usage: plsim design_name [stimulus_file]

414 MACHXL Software User's Guide (Version 3.0)

PORTHID is obsolete and has been replaced by
NODE.
The PORTHID primitive is no longer supported and will be replace
internally by the NODE primitive. This primitive will not be included
in subsequent releases of the product.

Pal block PAL_BLOCK_ID is not valid for device
SYMBOL_NAME

Part name 'SYMBOL_NAME' is too long -- must be
VALUE or less characters

Pass 1 error checking.
During the first pass of compilation the compiler finds all errors that
can be found without generating equations. This is done to quickly
report errors and terminate compilation before the slower equation
generation is performed.

Pass 2 equation generation.
During the second pass of compilation the compiler generates the
equations for all of the signals in the design. Some errors may be
reported during this pass if they are discovered as a result of equation
generation.

Pin PIN_NAME (signal SYMBOL_NAME) exceeds the
maximum pins for the device
The pin name found in the post-place and route netlist is not a
recognized pin name.

Pin PIN_NAME is not a valid pin for device
DEVICE_NAME
There is no such pin for the specified device.

Pin PIN_NAME_OR_NUMBER already assigned.
A signal was assigned to a pin that already had a signal assigned to it.

Appendix C: Warning and Error Messages 415

Pin assignments are not allowed at global level.
Pin assignments may be given in fixed groups and fixed subgroups of
fixed groups.

Pin assignments are not allowed in unfixed groups.
Pin assignments may be given in fixed groups and fixed subgroups of
fixed groups.

Pin is not an output pin
The pin in this configuration is not an output pin. You cannot assign
an output signal to this type of pin.

Pin is not available
This pin has already been assigned or is otherwise unavailable.

Pin number must be numeric

Pin number must be preceded by an ampersand

Pinlabel 'SYMBOL_NAME' not in correct format

PrintDevices usage: pr_devs design_name
[#devices]

Procedure/function SYMBOL_NAME not in design.

Property 'PROPERTY _NAME' takes
NUM_ARGUMENTS argument(s).
The property must be given with the correct number of arguments.

Property 'PROPERTY _NAME' takes argument 'TRUE'
or 'FALSE'.
The property takes one argument that can only be the word 'TRUE' or
the word 'FALSE'.

416 MACHXL Software User's Guide (Version 3.0)

Property 'PROPERTY _NAME' takes one argument.
The property takes one argument which may consist of either a
number, a word consisting of alphanumeric characters and'_', or a
string (a sequence of characters enclosed in single quotes).

Property 'PROPERTY _NAME' takes one numeric
argument.
The property takes one argument which may consist of a number.

Property 'PROPERTY _NAME' was given twice.
The same property can appear only once in a given context. A
context can be one of: a signal, a group, a fixed group, or the global
level.

Property PROPERTY _NAME is not accepted globally,
on a group, or on a fixed group.
The named property was given at the global level, in a group, or in a
fixed group, but is not allowed to appear in these contexts.

Property PROPERTY _NAME is not accepted on input
signals.
The property may not be given on input signals.

Property PROPERTY _NAME is not accepted on
output signals.
The property may not be given on output signals.

Property PROPNAME is an invalid property name -
property ignored
When reading the FB, an invalid PI property was found. This
property will be ignored during the read.

RETURN must be inside of FUNCTION.

Appendix C: Warning and Error Messages 417

Ran out of dynamic memory.

Range identifier 'IDENT' needs to end with a number.

Range identifier 'SYMBOL_NAME' needs ending
number.

Range identifiers 'IDENT1' and 'IDENT2' not identical
before end numbers.

Ranging over more that VALUE identifiers.

Reason undisclosed
The reason for not fitting the signal is unstated, but could be a number
of contributing problems or a problem that cannot be easily described.

Recursive USE of SYMBOL_NAME

Recursive invocation of
FUNCTION_OR_PROCEDURE 'SYMBOL_NAME'.
A FUNCTION or PROCEDURE cannot invoke itself.

Recursive macro definition for MACRO
'MACRO_NAME'.

Redeclaration of 'SYMBOL_NAME'.

Redeclaration of CONTROL_KEYWORD expression.

Redeclaration of MACRO 'MACRO_NAME'.

Redeclaration of STATE_BITS.

Redeclaration of STATE_ VALUES.

Redeclaration of VAR 'VAR_NAME'.

418 MACHXL Software User's Gulde (Version 3.0)

Redeclaration of symbol 'SYMBOL_NAME'.

Redeclared step size, new value used.

Reducing 'SYMBOL_NAME'.

Reference of undeclared VAR 'SYMBOL_NAME'.

Removing 'SYMBOL_NAME'.

Removing special JEDEC character'*' from header.
Jedec files consider an asterisk to be a special character. Asterisks
are replaced by spaces in header strings to avoid creating a bad
JEDEC file.

Removing unused NODEs.
This is the optimization phase where signals that do not contribute to
any OUTPUT signal are removed since they are not needed in the
design.

Renaming array signal OLDNAME caused a clash
with signal EXISTING_SIGNAL -- new name is
NEWNAME

Repeated results of last partition.
A particular MACH partition attempt which is reduced or partitioned
at a lower utilization is discarded because it exactly repeats the prior
failed partition.

SIMULATION must be placed in the .stm file.

SPECIAL not supported.

STATE 'STATE_NAME' needs a GOTO.

Appendix C: Warning and Error Messages 419

If no GOTO is given for a STATE then the compiler will fall back on
the DEFAULT TO values of the state bits to determine the state
transition.

STATE_BIT 'SYMBOL_NAME' must be a NODE or
OUTPUT.

STATE_BITs have incompatible CLOCKED_BY
expressions.
The signals given in the ST A TE_ BITS construct must all have been
declared with the same CLOCKED_ BY expression. If a
CLOCKED_ BY is given in the STATE_ MACHINE header then it
must also match the CLOCKED_ BY expression of each state bit.

STATE_BITs have multiple DEFAULT_ TO
expressions.
The signals given in the ST A TE_ BITS construct must all have been
declared with the same DEFAULT_ TO expression. If a
DEFAULT_TO is given in the STATE_MACHINE header then it
must also match the DEFAULT_TO expression of each state bit.

STATE_MACHINE must default to 0, .X., or
LAST_VALUE.

SYMBOL_ NAME

SYMBOL_NAME is an illegal config file

Scan not necessary: files are up to date.

Schematic design error(s) found in 'INPUT_NETLIST'
- unable to continue.
PLSchematic has a built-in rules checker to verify that the input
netlist is consistent. If it is not the error is printed and processing is
discontinued before the output files are generated.

420 MACHXL Software User's Guide (Version 3.0)

Should not have'.' in library name 'FILE_NAME'.
The syntax of a USE construct is "USE 'filename' .name;" the filename
must be in single quotes and the .name must be outside of the quotes.
The .name is optional.

Signal 'SIGNAL_NAME' is an input through internal
feedback to 'SIGNAL_NAME', hence they must be fit
together, but cannot.
The two signals must be fit together because one signal uses the
internal feedback of the other signal, but they cannot be fit so that the
internal feedback is visible to the signal that uses it.

Signal 'SIGNAL_NAME' on virtual pin PIN_NUMBER
of device 'DEVICE_NAME' failed:
The device fitter/partitioner could not place the output signal on the
output or biput pin. The reason for the failure follows on the next
line.

Signal 'SYMBOL_NAME' already mentioned as an
output in the .pi file.
A signal may be mentioned as an output in the .pi file only once. A
signal may be mentioned as an input in the .pi file multiple times.

Signal 'SYMBOL_NAME' is an input and can't be
VIRTUAL.
Only node signals can be marked as virtual signals.

Signal 'SYMBOL_NAME' is not an output signal.
The signal is not an output signal, but was marked as an output with
OUTPUT.

Signal 'SYMBOL_NAME' is physical but used as a
virtual signal.
Only node signals can be marked as virtual signals.

Appendix C: Warning and Error Messages 421

Signal 'SYMBOL_NAME' is virtual but used as a
physical signal.
The signal was declared in the .src file as a virtual node signal but
was used in the pi file outside of the virtual construct.

Signal 'SYMBOL_NAME' was not renamed due to a
conflict with signal 'SYMBOL_NAME'
The period character is not a valid symbol in the HDL. Internally
generated names may contain periods however. In attempting to
recreate a .src file, all periods are converted to underscores. In this
design, renaming the signal caused a conflict with an existing signal
name. For this reason, the signal was NOT renamed.

Signal OLD_SYMBOL_NAME was placed on pin
PIN_NAME in pi - signal NEW_SYMBOL_NAME there
after place and route
In the original PI file, the user specified a signal be placed on the the
specified pin.. After the place and route software was run, however, a
DIFFERENT signal was placed on that pin.

Signal OLD_SYMBOL_NAME was specified in pi on
pin PIN_NAME as an INPUT _OR_OUTPUT but after
place and route is an INPUT_OR_OUTPUT.
In the original PI file, the user specified a signal be placed on the the
specified pin. After the place and route software was run, however,
the signal usage on the pin, input or output, was different.

Signal SIGNAL_ID cannot fit due to invalid pin type.

User specified pin assignment places signal on
invalid pin.

Signal SIGNAL_ID is assigned to multiple pins.
The mach pre-partitioner could not implement the fixed grouping of
the .pi file.

422 MACHXL Software User's Gulde (Version 3.0)

Signal SYMBOL_NAME -- DEMORGAN_SYNTH
FORCE was specified -- no OFFSET equation exists
In the .pi file, the specified signal has the DEMORGAN_SYNTH
FORCE property. This signal does not have an OFFSET
representation (probably due to the equation size) and cannot,
therefore, be used as specified.

Signal SYMBOL_NAME cannot fit as a registered
input as required by pin VALUE.
The signal does not meet the qualifications for a registered input
(unary) signal, but the pin specified requires that the signal be fit that
way.

Signal SYMBOL_NAME has neither a D equation or
an alternate flip-flop equation
The requested synthesized equation is not available for the specified
signal

Signal SYMBOL_NAME has no INPUT/OUTPUT/BIPUT
specification -- skipped
During back-annotation, the specified signal did not have a valid
input/output/biput specifier attached to it. For this reason, the signal
will be ignored during annotation.

Signal SYMBOL_NAME is an EXT signal in the .xnf
yet was not found in the .lea file
The EXT lines of the .xnffiles indicate INPUT/OUTPUT/BIPUT
status of the signals used in the design. The only allowed designators
are 1/0/B.

Signal SYMBOL_NAME is in a WIRED_BUS but is not
an enabled, non_clocked NODE

Appendix C: Warning and Error Messages 423

Signal SYMBOL_NAME was specified in pi on pin
PIN_NAME but not found after place and route
In the original PI file, the user specified a signal be placed on the the
specified pin. After the place and route software was run, however,
the signal was NOT placed on that pin.

Signal SYMBOL_NAMEA (line LINENO) is not a valid
signal name
The specified signal is not a valid signal name for this design

Signal may require split pin; split pin limit is
exhausted.
The fitter budgets split pins (biput converted to node and input) based
on the output (non-split pin) count for each pal block. The fitter has
detected that there are no more split pins available.

Signal name 'SYMBOL_NAME' does not end with a
number.
The signal is understood to be part of a range of signals, such as
'al..alO', but its name does not end with a number.

Signal range names 'SYMBOL_NAME' and
'SYMBOL ... NAME' have different bases.
The non-numerical prefixes on the signal range names are different,
so cannot form a range.

Signals SIGNAL_ID and SIGNAL_ID use the same pin.
The named signals are assigned to the same pin.

Signals cannot fit into any device. See
LOG_FILE_NAME
The fitter will attempt to find AT LEAST ONE place a signal can fit.
In this case, signals could not fit anywhere on any device.

424 MACHXL Software User's Gulde (Version 3.0)

Signals cannot fit into the targeted devices. See
LOG_FILE_NAME
Signals were targeted to certain devices, but some signal could not be
fit in their targeted device.

Simulating.

Single level device targeted, but fixed subgroups
were given.
Fitting a single level device such as a P22Vl0 implies that the fixed
group information must also be single level; i.e. no fixed subgroups
(which the system cannot merge into a single-level

description) may be present. Fixed subgroups of a fixed group are
useful in fitting a multi-level device.

Skipped - Invalid format

Skipped - Invalid manufacturer:
MANUFACTURER_NAME

Skipped - Invalid part number: PART_NUMBER

Skipped - Invalid status 'STATUS'

Solution switch value VALUE exceeds# of solutions
in fb(VALUE)

Source file 'SYMBOL_NAME' has been modified
since PLComp has been run

Source line too long.

State values must be given to all states or none.

String length cannot exceed 1024 characters

Appendix C: Warning and Error Messages 425

Switch table not initialized

Symbol 'SIGNAL_NAME', set in the Pl file, cannot fit
on pin 'PIN_NAME'. Either you
The signal cannot be fit on the pin that it is assigned to in the physical
information file. This can happen ifthe signal type (input or output)
does not match the pin type or if the signal has an equation that
requires device resources that are unavailable. See the .log file for
possible fitter error output.

Symbol 'SIGNAL_NAME', set in the Pl file, cannot fit
on virtual biput pin PIN_NUMBER

Symbol 'SIGNAL_NAME', set in the Pl file, cannot fit
on virtual input pin PIN_NUMBER

Symbol 'SYMBOL_NAME' -- The OUTFFT signal
MUST be an OUTPUT

Symbol 'SYMBOL_NAME' is not an array.
A symbol not declared as an array in the .src file cannot be indexed
like an array.

Symbol 'SYMBOL_NAME' not used by any OUTPUT.
The means that a signal is not needed to drive the value of any
OUTPUTs in the design. This signal is not necessary to the design.

Symbol SYMBOL_NAME - 'PRIMITIVE_NAME' INPUT
can not be used in any other equations

Symbol SYMBOL_NAME - 'SYMBOL_NAME' primitive
requires single signal input to NODE

Symbol SYMBOL_NAME - OUTFFT requires an
ENABLED output fed by a D flip-flop node

426 MACHXL Software User's Gulde (Version 3.0)

Symbol SYMBOL_NAME - The INFF input signal must
feed a D flip-flop NODE signal

Symbol SYMBOL_NAME - The INLAT input signal
must feed a D latch NODE signal

Symbol SYMBOL_NAME - The OUTFF property only
applies to CLOCKED D flip-flop outputs

Symbol SYMBOL_NAME - The OUTFF signal can not
have a RESET or PRESET equation

Symbol SYMBOL_NAME -The OUTFFT property only
applies to ENABLED outputs

Symbol SYMBOL_NAME - The PRIMITIVE_NAME
NODE can not have a RESET or PRESET equation

Symbol SYMBOL_NAME - The PROPERTY _NAME
property cannot be used on tristate signals with
feedback

Symbol SYMBOL_NAME - The PROPERTY _NAME
property must be used on a buffer

Symbol SYMBOL_NAME - The PROPERTY _NAME
property must be used on a inverter

Symbol SYMBOL_NAME - Use XOR was specified in
.pi, but does not exist. Property ignored.
In the .pi file, the signal had the XOR_TO_SOP _SYNTH OFF
property. The specified signal does not contain an XOR
representation however. The software will ignore the XOR request
and represent this signal in sum of products form.

Appendix C: Warning and Error Messages 427

Symbol SYMBOL_NAME is an internal node to the
OUTFFT primitive and can't be used in the design

Symbol SYMBOL_NAME is lowtrue with OUTFFT
primitive and can't be used in the design

Symbol SYMBOL_NAME not in this simulation
section.

Symbol SYMBOL_NAME, when used in an OUTFFT
primitive, can't have a RESET or PRESET equation

Syntax error in DECLARATION_ TYPE declaration.

Syntax error in MESSAGE. (May have used" instead
of')

Syntax error in SET statement.

Syntax error in expression list.
This is a syntax error that occurs when the compiler is attempting to
process a list of expressions. In this case, the compiler cannot
determine a more helpful description of what is wrong.

Syntax error in pterm string parser near 'STRING'.
The syntax for a pterm string is a series of signal names, optionally
inverted with a'/', and separated with '*'s. White space is allowed.

Syntax error in simulation statement.

Syntax error in statement.
This is a syntax error that occurs when the compiler is attempting to
process a statement. In this case, the compiler cannot determine a
more helpful description of what is wrong.

428 MACHXL Software User's Guide (Version 3.0)

Syntax error in target string 'TARGET_STRING'.

Syntax error while parsing the .est file near
SYMBOL_NAME at VALUE.

Syntax error.
This is a syntax error that occurs in a context where the system
cannot determine a more helpful description of what is wrong. It
indicates that a construct has not been legally constructed. See the
manual for the proper syntax of each construct. Synthesizing and
reducing. This is the phase where register synthesis and equation
reduction takes place. For signal by signal reporting of activity, tum
on the verbose option.

TARGET is only allowed within a fixed group.
Only fixed groups and fixed subgroups of fixed groups may be
targeted.

Target string 'TARGET_STRING' too long.
The target string cannot be more than 160 characters long.

Target string must be quoted with single quotes (").

Targeted subgroups of an untargeted group are not
allowed.
A fixed group must have a TARGET construct in order for subgroups
of a fixed group to have a TARGET.

Template TEMPLATE_NAME -the device's input
signal limit was exceeded placing signal The number
of signals specified as input to the device in the fixed
group
Exceeds the number of total input pins on the device.

Appendix C: Warning and Error Messages 429

Template TEMPLATE_NAME -the device's output
signal limit was exceeded placing signal
'SYMBOL_NAM E'
The number of output signals specified in the fixed group exceeds the
number of total output/biput pins on the device.

Template: 'TEMPLATE_NAME' in .pi file is not in .avl
file or has been eliminated by constraints.

Text file format error - line VALUE

The'[+]' operator is no longer supported. Use'(+)'.
The compiler now automatically generates equations for hardware
exclusive-or. There is no longer the need for the designer to specify
this via the hardware-exclusive-or operator.

The HEADER_ TYPE header is already given.

The NO_COLLAPSE property on 'SIGNAL_NAME'
conflicts with the FIT_WITH property on
'SIGNAL_NAME'.
If two signals are to be fit together, neither of them can have the
NO_COLLAPSE property.

The cost file (.est) has been modified. Please run
pl scan.

The design has no system level symbols.
Only system level symbols (those declared outside
PROCEDUREs/FUNCTIONs) will become actual signals in the
target devices. If a design consists solely of
PROCEDUREs/FUNCTIONs then there are no actual signals to
implement in the target devices. The PROCUDUREs/FUNCTIONs
must be invoked at the system level to create an implementable design.

430 MACHXL Software User's Guide (Version 3.0)

The optimizer generates this message when no system level signals
exist in the design.

The group consists of the following functions
Precedes a listing of a group of functions which violates Mach
constraints.

The specified .fb file is from a previous major release
(VERSION_NUMBER.X) - please recompile
An attempt has been made to use a .FB file from a previous release of
the software. This file is not binary compatible from release to
MAJOR release. It will be necessary to recompile the .src file and
run PLOpt to create a

new .FB file.

The third parameter is optional. If used, it must be a
positive integer.

The user1, user2, and price fields were all negative

There were errors in 'Pl_FILENAME'.
There were errors which must be corrected in the physical information
file.

This part will not be included in PLDPRIMS in
subsequent releases.

Too few parameters to 'SYMBOL_NAME'.

Too few pins for label 'LABEL_NAME'.

Too few pins for label SYMBOL_NAME

Too many entries in cmd file -- 4000 maximum

Appendix C: Warning and Error Messages 431

Too many equations

Too many equations in design.

Too many parameters to 'SYMBOL_NAME'.

Too many symbols in design.

Two GOTOs active under same condition in STATE
'ST ATE_ NAME'.
There can only be one ST A TE to go to for any condition. An
example of this error is:

IF a THEN

GOTO stl;

END IF;

GOTO st2;

The above code says to go to stl when 'a' is asserted, but it also says
to go to st2 regardless of the value of 'a'.

Unable to find component library 'LIBRARY _NAME'
The named component library was not found. The location of the
library has to specified either explicitly by prepending an absolute
path or by adding the location of the library to the environment
variable, MINC_PATH.

Unable to load OrCAD TTL library
Plschematic was unable to access the ORCAD TTL libraries. This is
either because they do not exist, they are not located in the MINC
distribution directory in the subdirectory orcadttl, or the environment
variable, MINC_PATH does not include the path to the MINC
distribution directory.

432 MACHXL Software User's Guide {Version 3.0)

Unable to load base component library
'LIBRARY _NAME'
PLSchematic was unable to access the requested library file. Check
the file permissions.

Unable to load extended component library
'Ll~RARY _NAME'
PLSchematic was unable to access the requested library file. Check
the file permissions.

Unable to open file 'FILE_NAME'.
The given filename either does not exist in the current directory or the
file does not have read permission.

Unable to open file minclib.lib for reading

Unable to validate product authorization.
The code which prevents unauthorized use of the product is not
allowing access to the product. On a PC, either the hardware lock is
not properly installed or the authorization code given via auth.exe do
not correspond to the hardware lock and the product being run. On a
workstation, the authorization codes given in the license.dat file do not
correspond to the host machine and the product being run. See the
Installation chapter of the manual for more on software locking.

Unassigned input signal 'SYMBOL_NAME' from .pi
file unneeded and ignored
An input signal was specified in the .pi file but was not needed on the
device

Unassigned node signal 'SYMBOL_NAME' from .pi
file unneeded and ignored
A node signal was specified in the . pi file but was not needed on the
device

Appendix C: Warning and Error Messages 433

Undeclared array member 'SYMBOL_NAME'.

Undeclared symbol 'SYMBOL_NAME'.

Undefined reader flag specified - 'NETLIST _READER'

Undetermined reason.
The fitter cannot detect the specific reason why the signal cannot fit
with other signals assigned to the device or pal_ block.

Unexpected EOF

Unexpected end of file.
This means the end of a source file was encountered before a
construct that was being processing had terminated. This is often
caused by a missing END on a construct requiring an END.

Unexpected token 'STRING' found by pterm string
parser.
Legal tokens in a pterm string are'*','/', and legal signal names.

Unknown STATE_VALUES method
'ALGORITHM_ TYPE'.

Unknown database type= VALUE, in
open_write_txt_db()

Unknown error message: SYMBOL_NAME

Unknown family: 'SYMBOL_NAME' in .est file.

Unknown header type 'HEADER_ TYPE'.
The'#' that initiates a header must be followed by one of the legal
header types specified in the manual section on headers.

434 MACHXL Software User's Guide (Version 3.0)

Unknown manufacturer: 'SYMBOL_NAME' in .est file.

Unknown package: 'SYMBOL_NAME' in .est file.

Unknown signal 'SIGNAL_NAME' found by the pterm
string parser.
Only signals declared in the design are allowed in this pterm string.

Unknown signal 'SYMBOL_NAME' in range.
The signal appeared as part of a range of signals in the pi file, but
was never declared in the .src file.

Unknown symbol 'SYMBOL_NAME'.
The symbol was not an INPUT, NODE or OUTPUT signal in the .src
file.

Unknown template: 'SYMBOL_NAME' in .est file.

Unknown temprange: 'SYMBOL_NAME' in .est file.

Unneeded input signal 'SYMBOL_NAME' was
ignored.
Since The fitter will automatically fit all of the input signals that
output signals require, an input signal in a fixed group that is not
assigned to a pin will only be fit on the device if one of the functions
that is fit in the device requires it.

Unrecogized database TYPE in text file.

Unrecognized property name 'PROPERTY_NAME'.

Updatelpf usage: updipf design_name

Usage: plbld design_name

Appendix C: Warning and Error Messages 435

User terminated with <CTRL><BREAK>

Virtual signal 'SYMBOL_NAME' was given a physical
assignment.
Virtual signals cannot be used anywhere in the pi file except in the
virtual construct.

Warnings during simulation, see FILE_NAME.

Weight VALUE larger than 100.

Word 'ARGUMENT' in target string too long.
No individual word in the target string may be more than 80
characters long.

Wrong number of params to MACRO
'MACRO_NAME'.

Wrong output register type
The register type of this output macrocell does not match the types of
equations available.

Wrong version of The fitter run

Wrong version of PLScan run

XORSOFT is obsolete and has been replaced by
XOR.
The XORSOFT primitive is no long~r needed now that exclusive-or
synthesis is supported. If a device has a hardware exclusive-or it will
be used. Otherwise, it will be synthesized.

Yacc stack overflow while parsing the .est file.

Yacc stack overflow.

436 MACHXL Software User's Gulde (Version 3.0)

D AMO MACH Support Supplement

Contents
Introduction ... 440
Overview of the Design Process ... 440
MACH Issues in the Design Flow441

Design Conception .. 441
Design Expression .. 442
Design Implementation .. 442
Design Testing .. 444
Design Integration ... 445

Summary of MACH Family Devices ... 446
MACH Family of Devices ... 446

Output Enable Functions44 7
Register Reset/Preset Functions 448
Clock Functions ... 448
Packaging .. 449
Low Power Mode ... 449

MACH Designs With Complex Clock Functions 450
MACH Clock Limitations ... 450

MACH 1 and 2 .. 450
MACH 3 and 4 .. 450

Fitting Asynchronous Functions in MACH Devices 452
Pterm Clock and Reset and Preset 452
More Than One RESET/PRESET Pair per PAL Block ... 452

XOR T-Equations on the MACH4xx ... 454
Devices: MACH4xx .. 454
XOR-TFF Problem Defined .. 454

Guidelines for MACH-Specific Optimization456
Suitable Optimizing Parameters for MACH Devices 456

For the MACH4xx: .. 456
For MACH lxx/2xx devices:456

Optimizing Adjustments .. 45 7
The Effect of MAX PTERMS and
MAX XOR PTERMS ... 457 - -

Appendix D: AMO MACH Support 437

Understanding the .log File Messages .. .459
Devices: All MACH ... 459
The .log File ... 459
Information Messages .. '. 459
General Failure Messages .. 460
Pin Assignment Messages ... 461
Grouping Messages ... 463

Understanding the .rpt File .. .468
Obtaining an .rpt File468
Contents of the Report File468

Heading .. 470
Failure Disclaimers ... 470
Summary Statistics ... 4 72
Device Resource Utilization 4 73
Partitioner Report ... 4 7 5
Clock Assignments ... 475

Signal Directory .. 476
Resource Assignment Map478

MACH and the Number of Devices Constraint.. 482
The Problem ... 482
Using 'default' in the .pi File Entry482
Using a Second Device .. 483

Using MACH Input Registers .. 484
Input Register Pin Names484
MACH 2xx vs MACH4xx484
Input Registration ... 485
Detection .. 486
Forcing a Function to be Fit as Unary486
Preventing a Function From Being Fitas Unary487

Control of the Asynchronous Mode in the MACH4xx488
Control ofT-Flop Synthesis in the MACH4xx489

Normal Operation ... 489
DFF Only Fitting489
Using the T Equation .. 489

Analyzing Test Vector Errors491
Simulator Warnings491
Initial States .. 491
Glitches in Control Logic491

438 MACHXL Software User's Guide (Version 3.0)

MACH Power-On Reset.. .. 493
MACHXL DSL Reset Definition 493
Nominal Case ... 493
Exception Cases ... 493

Hazard-Free Combinatorial Latches ... 495
Basic Latch Circuit ... 495
Hazard Term .. 495
Hazard Free Latch .. 495

MACH Pin and Node Identification ... 497
Naming Convention .. 497
Pin Name Tables .. 498

Achieving Satisfactory Pinouts with MACH Devices 502
Procedure ... 502

Refitting into MACH Devices .. 506
Concept .. 506
Procedure ... 507

Forcing Unused MACH Outputs to be Driven or Floating 514
Forcing Outputs Driven .. 514
Forcing Outputs Floating .. 515

Possible Pin Incompatibility Between MACH230 and MACH435 517
Complete List of MACH Pin Names .. 519

Pin Numbering .. 519
44-Pin Packages ... 519
68-Pin Packages ... 520
84-Pin Packages ... 521

Fuse Commands for Forcing Outputs to be Driven 526

Appendix D: AMO MACH Support 439

Introduction
This appendix contains a series of application notes specific to using
MACHXL with the MACH family of devices.

The MACH Family Data Book from AMD provides detailed device-specific
information. This appendix assumes you know how to use MACHXL and are
familiar with the MACH devices.

For the most part, this User's Guide assumes the design process flows
smoothly from beginning to end. In the real world this is seldom the case.
The information presented here focuses on things that can go wrong in the
design flow and steps you can take to remedy those problems.

In this section we first define a generic design process as a framework for
discussion. We then detail each step of the process for MACH-specific issues
you may encounter. We focus on optimizing the design for MACH devices,
and on covering what can go wrong in the design phase. Specific attention is
paid to interpreting output from MACHXL in cases where a design fails to fit
or test correctly.

Issues and questions are raised in each discussion of the design flow, and the
answers and technical information are presented following each of these
discussions.

Overview of the Design Process
In this appendix we will use a generic design process consisting of five steps:

o Design Conception

o Design Expression

D Design Implementation

o Design Testing

D Design Integration

440 MACHXL Software User's Guide (Version 3.0)

Design Conception is the user's responsibility. In this stage you have a well
defined problem and develop a basic idea of how a solution is achieved.

Design Expression involves producing a functional description of the solution
design in a form MACHXL understands, i.e., some combination ofHDL
source files and schematics.

Design Implementation places the design in an electronic device. Since most
designs go through iterations, there will probably be several implementations
before the final form is reached. But each implementation is a functional
realization of the current design.

Design Testing verifies the implementation works as intended. This meaning
generating test stimulus, simulating the design, and using the resulting vectors
to test the circuit(s).

The integration step insures the design is ready for manufacturing. This
includes achieving a suitable pinout, and making sure the pinout can be
reproduced.

MACH Issues in the Design Flow
This application note goes through the steps in the design flow presented in the
prior section and discusses device-specific enhancements for MACH designs.
It also discusses problems occurring when using MACH devices.

Discussions of device specific issues and problems are followed by references
to application notes providing techniques and information necessary for
resolution.

Design Conception
If your design requires:

o predictable speed

o capacity up to 10,000 gates (manufacturers specifications)

o larger designs with device partitioning (optional),

Appendix D: AMO MACH Support 441

the MACH family of devices and MACHXL are the path to your solution.

See the section later in this appendix entitled "Summary of MACH Family of
Devices" for more information.

Design Expression
Although MACHXL's Design Synthesis Language is device independent, there
are some practices that will help the designs to fit into MACH parts. These
practices also aid in selection of MACH lxx and 2xx parts appropriate to the
design.

The synchronous MACH parts, MACH 110, 120, 130, 210, 220 and 230,
have provisions for clocking by a signal on a pin. The asynchronous parts,
MACH 215 and 4xx, have provisions for clocking by either a pin or a single
product term. If your design needs a clock which is more complex than these
options provide, it is possible to clock by a complex logic function using the
MACHXL fitter. This function will be wired to a clock pin or used internally
on an asynchronous device.

See the application note later in this appendix entitled "MACH Designs With
Complex Clock Functions".

Although both the MACH215 and MACH4xx support asynchronous
functions, some functions or groups of functions can fit only in the 215.
Functions that are clocked by a pterm and have a reset and preset can only fit
in the 215. Groups of functions that have more than eight distinct pairs of
reset and preset equations can only fit on the MACH215.

See the application note later in this appendix entitled "Fitting A.synchronous
Function in MACH Devices" for more information on these restrictions.

When combining XOR equations with T-Flops, you may need to insert a node
ahead of the register.

See the application note later in this appendix entitled "XOR T-equations on
the MACH4xx".

442 MACHXL Software User's Gulde (Version 3.0)

Design Implementation
The design implementation phase consists of optimizing and fitting the design
(MACHXL takes care of these). In this phase you will have to set optimizing
parameters that give the best implementation. You may also cover designs not
fitting on the first attempt. Occasionally the design may fit, but may not meet
your speed or size requirements. In these cases there are things you can do to
help MACHXL fit the specific MACH part while meeting the design
requirements.

When implementing a design, the best results are achieved when you select
optimizing parameters tuned to the specific MACH part used. These
parameters control MACHXL's node collapsing. These include tradeoffs in
equation size, feedback passes through the array, and routing requirements.

For more information on selecting optimizing parameters see the application
note entitled "Guidelines for MACH Specific Optimization".

If a design fails to fit, there are several tools to help you find the problem(s).
These include the .log file, the .rpt file and MACHXL's ability to partition
your design.

Each time the MACHXL fitter runs it produces a .log file. If the run
succeeds, the . log file simply records the time of execution. If a fitting run
fails, the . log file will contain information that explains (to the degree
possible) why the design did not fit. If you are using group and pin
assignments in the .pi (physical information) file, the log file will contain any
messages regarding the validity of these assignments. The .log file is the first
place to look when you have fitting problems.

See the application note later in this appendix entitled "Understanding the
.log File Messages" for information on the contents of the .log file.

When you specify a MACH device in the .pi (physical information) file, the
MACH fitter generates a device-specific . rpt file. The . rpt file is generated
whether the fitter succeeds in fitting or not. If the fitter fails, the . rpt file may
be incomplete, but will contain valuable information showing which resources
presented the most problems in fitting. This may help to change the design or
the .pi file to make the design more fittable.

See the application note "Reading the MACH .rpt File" later in this appendix
for more information.

Appendix D: AMO MACH Support 443

Even if you are trying to fit a design into one device, it may be better to let the
partitioner in MACHXL use multiple MACH devices. This is especially true
for designs that fit all but one or all but a few functions. By letting
MACHXL's partitioner fit the design into two devices, it's easier to determine
which functions are causing problems.

Some techniques described in the application note entitled "MACH and the
NUMDEVS Parameter" later in this appendix can help complete the fitting.

If your design fits, you may still want to adjust it to take advantage of certain
speed/space tradeoffs available in the MACH4xx. These include the use of
input registers, and controlling use of the MACH4xx asynchronous mode and
T-flip-flop synthesis.

See the following application notes later in this appendix for more
information.

"Using MACH Input Registers"

"Control of the Asynchronous Mode in the MACH4xx"

"Control of T-Flop Synthesis in the MACH4xx"

Design Testing
In the design testing phase, you are burning parts and testing them with
vectors in the JEDEC file. These vectors are generated by the simulator using
the .stm file.

Errors reported by the tester can usually be tracked down to a few sources.
These are discussed in the following sections in this appendix. If you can't
track the errors from these sections, try a different part. The test vectors are
intended to weed out bad parts, however the electronically erasable MACH
parts are fully tested by the manufacturer and seldom faulty.

For more information see the following application notes in this appendix.

"Analyzing Test Vector Errors"

"MACH4xx Power-On Reset"

"Hazard Free Combinatorial Latches".

444 MACHXL Software User's Guide (Version 3.0)

Design Integration
The most important aspect of the integration step it to produce a pinout
suitable for board layout and duplicated in the event of design changes. This
can be difficult with complex programmable devices. We have developed
some techniques at AMO PLO Applications (SW) (call us during regular
business hours at l 800 222-4323 within the U.S. or l 408 749-5703
internationally) which can assist with this process.

The first note is simply on MACH Pin Identification. This will help with
reading and manipulating .pi files, the source file for all pin assignment
information.

See the application note entitled "MACH Pi,n and Node Identification".

In cases where you are not committed to a specific pinout you can guide the
fitter to a suitable pinout while letting the fitter have some flexibility in
partitioning the design for ease of routing. This will leave more resources for
future design changes.

See the application note entitled "Achieving Satisfactory l'i,nouts with
MACH Devices".

If you need to duplicate a pinout to which you are already committed, MINC
has developed helpful techniques that may be of help.

See the application note later in this appendix entitled "Refitting into MACH
Devices".

The MACH fitter generally leaves unused 1/0 pins floating, leaving it to the
user to tie them to VCC or GNO. In some integration environments it is
necessary to drive any unused pins from within the device rather than tying the
pin to a constant voltage. An application note describes how to force these
pins to be driven. See "Forcing Unused MACH Outputs to he Driven".

Appendix D: AMO MACH Support 445

~

Application Note:

Summary of MACH Family Devices
This application note provides an overview of the device capabilities in the
MACH family. The AMO MACH Data Book is the authoritative source of
this and similar information.

MACH Family of Devices
Macro PAL Inputs/ Max Pterms/ Output Burled

Device Pins cells Blks Blk Macrocell Macrocells Macrocells
MACH110 44 32 2 22 12 32 0
MACH111 44 32 2 26 12 32 0
MACH120 68 48 4 26 12 48 0
MACH130 84 64 4 26 12 64 0
MACH131 84 64 4 26 12 64 0

MACH210 44 64 4 22 16 32 32

MACH211 44 64 4 26 16 32 32
MACH215 44 64 4 22 12 32 0

MACH220 68 96 8 26 16 48 48

MACH221 68 96 8 26 16 48 48

MACH230 84 128 8 26 16 64 64
MACH231 84 128 8 32 16 64 64

MACH355 144 96 6 33 20 96 0

MACH435 84 128 8 33 20 128 0
MACH445 100 128 8 33 20 128 0
MACH465 208 256 16 34 20 256 0

446 MACHXL Software User's Gulde (Version 3.0)

Input Max Max Speed ns
Device R!i lneuts outeuts Clks

MACH110 0 38 32 2 12,15,20
MACH111 0 38 32 4 7, 10,12, 15,20
MACH120 0 56 48 4 15,20
MACH130 0 70 64 4 15,20
MACH131 0 70 64 4 7, 10,12, 15,20

MACH210 0 38 32 2 7, 10,12, 15,20

MACH211 0 38 32 4 7, 10, 12, 15,20
MACH215 32 38 48 2+32 12, 15,20

MACH220 0 56 48 4 12, 15, 20

MACH221 0 56 48 4 7, 10,12, 15,20

MACH230 0 70 64 4 10, 15,20
MACH231 0 70 64 4 7, 10,12, 15,20

MACH355 0 102 96 4 15,20

MACH435 64 70 64 4 12, 15,20
MACH445 64 70 64 4 12, 15,20
MACH465 128 146 128 4 12, 15,20

Output Enable Functions
MACHlxx

These devices have 12 or 16 outputs per block. There are two OE pterms for
the top half of the block, and two OE pterms for the bottom half of the block.
Each output can select its OE from either of the two available pterms or select
either constant 'I' or 'O'.

MACH2xx

These devices have 6 or 8 outputs per block. There are two OE pterms per
pal block. Each output can select its OE from either of the two available
pterms or select either constant 'l' or 'O'.

MACH 215, MACH 4xx

These devices have an OE pterm per output. They can be programmed
independently to 'l ', 'O', or any product of signals in the block.

Appendix D: AMO MACH Support 447

Register Reset/Preset Functions
MACH lxx, MACH 2xx

These devices have one reset and one preset in each block. The reset and
preset apply to all registers in the block. Note that in the MACHXL system, a
registered function without a reset (or preset) is the same as 'RESET_BY O'.
This will not fit in the same block with other functions with non-zero reset
expressions.

MACH215

This device has a reset and preset pterm for each output register. The input
registers do not have reset capabilities.

MACH4xx

These devices have one reset and one preset in each block. These apply to the
macrocells but not to the input registers. The macrocells have an
asynchronous option which allows for a local reset OR preset, but not both, on
an individual function basis.

Clock Functions
MACH lxx, MACH 2xx

These devices support pin clock only.

MACH215

This device supports pin clock or clock by pterm. The output macrocells can
be clocked by pin 13 or by a local pterm or by the inverse of either of those
signals. The input registers can be clocked by either pin 13 or pin 35 or by
the inverse of either of those signals.

MACH4xx

This device supports clock by pin or clock by pterm. The pin clock mode can
select from any of four clock pins or the inverse of those signals. Not all
possible clock signal and inverse combinations are available in a given block.
See device manufacturer literature for specifics.

For all MACH devices the clock signals are also signal inputs to the switch
matrix and can be routed to the blocks.

448 MACHXL Software User's Guide (Version 3.0) ·

Packaging
All like pin-count packages are pin compatible. Therefore, when a
MACHl 10 design, for example, exceeds the capacity of the device, a
MACH210 can generally be substituted.

Low Power Mode
The MACH2l1 has a low-power mode selectable pin-by-pin or for the whole
device. This mode lowers power consumption, but also limits the speed of the
device.

Appendix D: AMO MACH Support 449

Application Note:

MACH Designs With Complex Clock
Functions

Devices: All MACH
When a design requires a clock expression that can't be implemented directly
in the clock resources of a MACH device, the designer can place the clock
logic in a separate NODE or OUTPUT. The MACHXL fitter will
automatically wire the function to the clock resources of the device.

MACH Clock Limitations
The synchronous MACH parts (MACHlxO and MACH2x0) can only be
clocked by pin.

The synchronous MACH parts (MACH215 and MACH 3 & 4 families) can
clock by single pterms, and invert clock signals in most cases.

In either case, the fitter allows the user to generate and use a more complex
clock than the part supports directly. This could be the sum of two or more
pterms, or a single pterm on an asynchronous part. The user must describe an
output that has the clock function as its data equation, and clocks by that
output signal.

MACH 1and2
The complex clock output in the MACH 1 & 2 families can be used internally
or externally as the clock. The only exception is ifthe MACH215 clock pin is
unavailable. Then the clock signal is routed to the PAL blocks where it is
needed and connected using the clock pterm.

MACH 3 and 4
A function generated in the MACH 3 & 4 family parts can be used internally
or externally as the clock. The fitter will default to using the clock signal

450 MACHXL Software User's Guide (Version 3.0)

internally to save the pins used in external routing. In this case you can
declare the clock function to be a node to prevent the clock from taking an 1/0
pm.

If you need the faster timing provided by an external clock pin connection,
simply place the clock signal on a clock pin in the .pi file.

Example

The following source file can fit into any MACH device.

input I;
input cl, c2;
output ck;
output a clocked_by ck;
a = 1;

Appendix D: AMO MACH Support 451

Application Note:

Fitting Asynchronous Functions in MACH
Devices

Devices: MACH215 MACH4xx
Both the MACH215 and MACH4xx devices support asynchronous functions,
but they have different capabilities, making some functions or groups of
functions suitable for the MACH2 l 5 which will not fit in the MACH4xx.

Pterm Clock and Reset and Preset
Any equation requiring the MACH4xx to be in asynchronous mode must have
at most one reset or preset equation. This is encountered specifically when the
clock expression is a product term (pterm).

Functions of this type can fit only on the MACH215, using the following
construct:

OUTPUT ol CLOCKED BY (elkl * elk2) RESET BY reset
PRESET_BY preset;

More Than One RESET/PRESET Pair per
PAL Block
In the MACH4xx, any function which has both a reset and preset expression
must use the block resources for reset and preset. If a design has more than
eight pairs of RESET and PRESET equations it cannot fit in one MACH4xx,
but may fit in one MACH215. The following set of functions can fit only in a
MACH215:

OUTPUT ol CLOCKED_BY elk RESET_BY reset PRESET_BY pre_l;
OUTPUT o2 CLOCKED_BY elk RESET_BY reset PRESET_BY pre_2;
OUTPUT o3 CLOCKED_BY elk RESET_BY reset PRESET_BY pre_3;
OUTPUT o4 CLOCKED_BY elk RESET_BY reset PRESET_BY pre_4;
OUTPUT oS CLOCKED_BY elk RESET_BY reset PRESET_BY pre_S;

452 MACHXL Software User's Gulde (Version 3.0)

OUTPUT 06 CLOCKED BY
OUTPUT o7 CLOCKED BY
OUTPUT 08 CLOCKED BY
OUTPUT o9 CLOCKED BY

elk RESET BY
elk RESET BY
elk RESET BY
elk RESET BY

reset PRESET BY
reset PRESET BY
reset PRESET BY
reset PRESET BY

Appendix D: AMO MACH Support

pre_6;
pre_7;
pre_B;
pre_9;

453

Application Note:

XOR T-Equations on the MACH4xx

Devices: MACH4xx
Although the MACH4xx supports XOR and hardware TFF registers, if you
are fitting an XOR T-equation you may need to insert a node between the
equation and the T-register.

XOR-TFF Problem Defined
When a function requires both a TFF register and an XOR equation, it may
not fit in MACHXL. Within the compiler, the XOR equation must be
expanded to be placed as a T-equation. If the size of the expanded XOR
equation is greater than 20 pterms, it must be placed on a node as an XOR
equation where it can be fit.

Example

This design will not fit because equation o2. T expands to 24 terms.

INPUT elk;
INPUT il, i2, i3, i4, IS;
INPUT jl, j2, j3, j4, jS;
T FLOP OUTPUT ol CLOCKED BY elk;
T_FLOP OUTPUT o2 CLOCKED_BY elk;

ol.T = il (+) (i2 + j2 + j3 + j4 * jS);
o2.T = (il*jl) (+) (i2*j2 + i3*j3 + i4*j4 + iS*jS);

If rewritten with a node for the T equation, the design will fit because the
combinatorial equation does not need to be expanded.

INPUT elk;
INPUT il, i2, i3, i4, IS;
INPUT jl, j2, j3, j4, jS;

454 MACHXL Software User's Gulde (Version 3.0)

T FLOP OUTPUT ol CLOCKED BY elk;
T FLOP OUTPUT o2 CLOCKED BY elk;
NODE n;

ol.T = il (+) (i2 + j2 + j3 + j4 * jS);
n = (il*jl) (+) (i2*j2 + i3*j3 + i4*j4 + iS*jS);
o2.T = n;

Appendix D: AMO MACH Support 455

Application Note:

Guidelines for MACH-Specific Optimization

Devices: All MACH
There are specific optimizing parameters suitable for the MACH devices.
Within this range of suitable parameters there are tradeoffs on equation size
and speed.

Suitable Optimizing Parameters for MACH
Devices
The following parameters are used in the .pi file for MACH designs.

For the MACH4xx:
{

MAX PTERMS 10,
MAX XOR PTERMS 9,
MACH UTILIZATION 100,
MAX SYMBOLS 20,
POLARITY CONTROL TRUE,

. XOR POLARITY CONTROL TRUE - -
}

For MACH 1 xx/2xx devices:
{

MAX PTERMS 8,
MACH UTILIZATION 100,
MAX SYMBOLS 20,
POLARITY CONTROL TRUE,
MAX XOR PTERMS 0
}

456 MACHXL Software User's Guide (Version 3.0)

Optimizing Adjustments
The MAX_PTERMS (and MAX_XOR_PTERMS for MACH4xx)
parameters are the most critical values affecting fitting and speed. We suggest
selecting values from the list following those parameters. For MACH4xx, the
MAX_XOR_PTERMS value is typically one less than the MAX_PTERMS
value to allow for the single pterm which is placed on the XOR row. The
MACH lxx/2xx devices do not support XOR.

MACH4xx

MACH 1xx/2xx

MAX_PTERMS
MAX_XOR_PTERMS

MAX_PTERMS

¢>Larger
¢>Faster

20
19

16

15
14

12

The Effect of MAX PTERMS and
MAX_XOR_PTERMS

Smaller¢
Slower¢

10
9

8

5
4·

4

The effect of changing the optimizing parameters can be checked by the nodes
in the .doc file after optimizing. The number of nodes will generally decrease
as the MAX_PTERMS parameter increases.

The effect of changing the parameters is summarized here:

Higher MAX_PTERMS

D More node collapsing

D Larger functions

D Faster implementation

LI May increase routing requirements

Appendix D: AMO MACH Support 457

Lowerl\fAX_PTERM:S

CJ Less node collapsing

CJ Smaller functions

CJ Slower implementation

CJ May increase routing requirements

Note that either High or Low MAX_PTERMS cause greater routing demand.

Lower MAX_ PTERMS can produce more internal nodes which must be
routed to the equations where they are used.

Higher MAX_ PTERMS allows a node to be collapsed into multiple equations
so that the signals required to generate the node may be needed in multiple
places. Furthermore, large equations may require large numbers of signals to
be routed into the block where the equation is placed, producing a locally high
routing demand. •

In critical fitting cases, it may be necessary to try several optimizing values
for satisfactory results.

458 MACHXL Software User's Guide (Version 3.0)

Application Note:

Understanding the .log File Messages

Devices: All MACH
The .log file, design_name.log, stores error messages and status information
emitted from the fitting system. When a design fails to fit, it is the first place
to check for information on what caused the failure. The types of messages
appearing in the .log file are described.

The .log File
The .log file from the fitter contains messages generated in the process of
fitting a design. Some of these messages also appeared on the screen as the
fitting was in progress, but many of them appear only in the .log file.
Messages in the .log file appear in generally chronological order and range
from informational to immediately fatal.

Information Messages
These messages track the progress of the fitter but do not provide information
on specific signals that do or do not fit. The fitter may make several attempts
at fitting different combinations of signals before it succeeds or fails. These
messages delimit the attempts. Generally, the first attempt will have the most
specific information on why a design fails to fit.

"Attempting to fit at <UTILIZATION_ VALUE> percent
utilization."
Identifies an attempt to fit into an AMD MACH device at the
indicated utilization. The fitter may repeat fitting attempts at lower
utilizations until a fit is achieved.

Appendix D: AMO MACH Support 459

"Attempting to fit a reduced partition."
Identifies an attempt to fit into an AMD MACH device after removing
one or more functions from the prior attempt to fit. The fitter may
repeat attempts at reduced partitions until a fit is achieved.

"Repeated results of last partition."
A particular MACH partition attempt reduced or partitioned at a
lower utilization is discarded because it exactly repeats the prior
failed partition.

General Failure Messages
The following general failure messages indicate the fitting point where an
error occurred.

"Initial routing of signals through switch matrix
failed: <PART#:DEV#>."
The current partitioning could not be routed by the MACH fitter.

I

"Failed to find suitable node assignment and signal
routing: <PART#:DEV#>."
The current partitioning could not be placed and routed by the MACH
fitter. It could be routed with no placement considerations or placed
with no touting considerations but no valid combination of placements
and routings could be found.

"Failed to generate fuse map: <PART#:DEV#>."
A problem occurred in assigning pterm rows within the MACH part.

"Cannot resolve OE requirements of macrocells."
The fitter cannot satisfy PAL block output enable requirements.

"MACH <DEVICE I PAL_BLOCK> partitioning
exceeds limits"
The MACH partition cannot be reduced to the current limit due to a
group of functions placed in a .pi file DEVICE or SECTION or
because of internal feedback grouping.

460 MACHXL Software User's Gulde (Version 3.0)

"DEVICE number <DEV#> in the Pl file contains
functions which cannot be fit by <PART#>."
The DEVICE contains functions which are not fittable by this MACH
part.

"MACH failed <DEVICE I PAL_BLOCK> pre
partitioning."
The partitioner cannot divide the functions into the required number of
partitions while remaining within the current limits. This is a failure
in applying .pi file DEVICE or SECTION groups.

"MACH failed <DEVICE I PAL_BLOCK> partitioning."
The partitioner cannot divide the functions into the required number of
partitions while remaining within the current limits. This is a failure
during automatic partitioning.

"MACH failed to route clock signals to PAL blocks."
The partitioner could not accomodate the combined clock
requirements of the PAL blocks as partitioned (check clock polarity
and clock pin assignments).

"No functions are remaining which can fit into a
<PART#>."
The fitter has run out of functions which can fit into a MACH device
of type <PART#>.

Pin Assignment Messages
When the .pi file specifies pins for specific signals, two classes of errors are
possible. The first is invalid pin assignments. These errors are listed here.
The second is invalid groupings, where no single pin assignment is in error,
but some combination of assignments in a given device or PAL block is in
error.

Appendix D: AMO MACH Support 461

"MACH clock signal <SIGNAL_ID> must be assigned
to a clock pin"
The clock signal has been placed on a pin other than a clock pin. The
signal needs to be on a clock pin in order to clock one or more
functions.

"Signal <SIGNAL_ID> cannot fit due to invalid pin
type."
Us.er-specified pin assignment places signal on invalid pin.

"Signal <SIGNAL_ID> is assigned to multiple pins."
The MACH pre-partitioner could not implement the multiple pin
assignments of the .pi file.

"Function <SIGNAL_ID> cannot fit on pin <PIN#>
because:"
MACH function pin assignment cannot be satisfied for the reason(s)
listed. The possible reasons are shown below:

"Functions <SIGNAL_ID> and <SIGNAL_ID> use the
same macrocell."
The named functions are assigned so that they require the same
macrocell.

"Signal <SIGNAL_ID> cannot fit as a registered input.
as required by pin <PIN#>."
The signal does not meet the qualifications for a registered input
(unary) signal, but the pin specified requires the signal be fit that way.

"Exceeds PAL block enable limit."
The combined pin assignments exceed the number of enable terms for
a PAL block.

"Exceeds PAL block pterm allocation capabilities."
The combined pin assignments exceed the ability to assign product
terms.

462 MACHXL Software User's Guide (Version 3.0)

"Signal may require split pin; split pin limit is
exhausted."
The fitter budgets split pins (biput converted to node and input) based
on the output (non-split pin) count for each PAL block. The fitter has
detected no more split pins are available.

"Undetermined reason."
The fitter cannot determine why the signal did not fit with other
signals assigned to the device or PAL_ block.

"Input <SIGNAL_ID> cannot fit on pin <PIN#>
because:
MACH input pin assignment cannot be satisfied for the reason(s)
listed:

"Clock pin needed for clock."
An input is assigned to a clock pin that must be reserved for a clock
signal.

"Biputs-as-inputs exceed PAL block limits."
The sum of inputs and outputs/bi puts exceed the device/PAL block
limits.

"Signals <SIGNAL_ID> and <SIGNAL_ID> use the
same pin."
The named signals are assigned to the same pin.

"Node assigned to buried logic has fanouts assigned
to another device."
The function cannot be placed on a buried macrocell because a fanout
of the function is on another device.

Grouping Messages
Signals may be placed in groups by using a GROUP or SECTION statement
in the .pi file, or by assigning signals to pins in the same PAL block which

Appendix D: AMO MACH Support 463

implicitly groups them. Some combination of signals cannot be groups
because of device constraints. The following messages address these issues.

"PAL block <BLOCK_ID> is not valid for device
<PART#>"
A .pi file SECTION contains a reference to an invalid PAL block
name.

"PAL block <BLOCK_ID> cannot satisfy reset/preset
requirements of all functions"
The PAL block partition contains functions which are interdependent
due to reset/preset requirements. The inverted form of one function
must be fit with the true form of the other, or vice-versa, however they
cannot both fit in an acceptable form due to cluster availability
constraints.

"Function <SIGNAL_ID> cannot fit on pin <PIN#> due
to buried register fanout constraints."
User pin assignments violate restrictions on MACH230 buried
macrocell fanouts. MACH230 buried register fanouts must be within
PAL block pairs (A-H, B-G, C-F, D-E).

"Function <SIGNAL_ID> cannot fit due to grouping
constraints."
Signal in user specified grouping or pin assignment violates MACH
group constraints. This is usually a conflict between pin assignments
and PAL block targets in the .pi file.

"Function grouping in .pi file DEVICE for
<PART#:DEV#> exceeds limits for:"

"Function grouping in .pi file SECTION for
<PART#:DEV#> PAL block <BLOCK_ID> exceeds
limits for:"
"---Number of functions"
"--- Number of signals"
"---Number of clocks"

464 MACHXL Software User's Guide (Version 3.0)

"---Number of output enables"
"---Number of reset and presets"
"---Number of pterm clusters"
"--- Number of inputs"
"---Number of pins"
"--- Number of outputs"
"---Number of feedback paths"
"---Number of input registers (or invalid
assignment)"

Either of the first two message lines is followed by one or more of the
resource constraints on the following lines. This indicates the
DEVICE or SECTION group violated the indicated resource limits
for the MACH part.

"The group consists of the following functions"

"--- <SIGNAL_ID>"

"--- <SIGNAL_ID>" ...

This message contains a listing of functions in a group which violates
MACH constraints. It may follow any other grouping error message.

Examples

.log File of a Successful Fit:

PLFit V3.1 - Patent (S,140,526) - Copyright MINC
Incorporated 1987-1993

checking: •••
fitting
Elapsed time: 00:00:49

Appendix D: AMO MACH Support 465

.log file with a specific violation, in this case, "Number of Clocks":

PLFit V3.1 - Patent (5,140,526) - Copyright MINC
Incorporated 1987-1993
checking: •••
fitting •••
Attempting device 1, template MACH435 •••
Warning: Function grouping in PI file DEVICE for
MACH435:1 exceeds limits for:
Warning: Number of clocks
Warning: The group consists of the following functions
Warning:

·warning:
Warning:
Warning:
Warning:
Warning:
Warning:

BIT_l_p14
BIT_2_p15
BIT_3_p16
BIT_4_pl7
BIT_5_p18
BIT_6_p19
BIT_7_p20

Warning: BIT_8~_p21

Attempting to fit at 100 percent utilization.
MACH device partitioning exceeds limits
Elapsed time: 00:00:03

.log file where place and route failed without a specific cause:

PLFit V3.1 - Patent (5,140,526) - Copyright MINC
Incorporated 1987-1993

checking: •••
fitting •••
Attempting device 1, template MACH435 •.•
Attempting to fit at 100 percent utilization.
Failed to find suitable node assignment and signal
routing: MACH435:1.
Attempting to fit a reduced partition.
Attempting to fit at 97 percent utilization.
Repeated results of last partition.

466 MACHXL Software User's Guide (Version 3.0)

Attempting to fit at 94 percent utilization.
Repeated results of last partition.
Attempting to fit at 91 percent utilization.
Repeated results of last partition.
Attempting to fit at 88 percent utilization.
Repeated results of last partition.
Attempting to fit at 85 percent utilization.
MACH device partitioning exceeds limits
Elapsed time: 00:37:28

Appendix D: AMO MACH Support 467

Application Note:

Understanding the .rpt File

Devices: All MACH
A report file, design_name.rpt, is generated if and only if a MACH device is
targeted in the .pi file. There will be one .rpt file for each MACH device in a
TAR GET statement. The contents of the .rpt file is described here. It is
useful both to aid in understanding cases that do not fit and to determine how
a design was fit and the resources it used.

Obtaining a .rpt File
To obtain a .rpt file, you must place both DEVICE and TARGET statements
in the .pi file. No further specifications are required. If you use internal
groupings or pin assignments, that also goes in the DEVICE statement but is
strictly optional.

The simplest .pi file which will generate a .rpt file is as follows:

DEVICE TARGET
'part_number amd <part number>';

END DEVICE;

Contents of the Report File
The report file contains device specific fitting information regarding the
internal resources of the MACH device. It shows which macrocells and
routing paths are used by each signal.

The report file is not a replacement for the documentation (.doc) file. It does
not list the equations for any given function, or give a simple pinout diagram.
It gives in depth information that the documentation file cannot provide.

The report file serves two purposes. When the design fits, it describes the
specific placement and routing of the solution. If a design fails to fit, it

468 MACHXL Software User's Guide (Version 3.0)

provides information to help the user understand why the fit attempt failed,
how far the fitting proceeded and what aspect of the fitting caused problems.

The MACH lxx and 2xx fitter produces a slightly different format .rpt file
output than the 435 fitter (and future members of the MACH 3 and 4 family).
In either case, the report file has the same structure. The sections of the report
file are listed here with a brief description of each.

Heading
Before any information section, the report file gives the date the
design was run through the fitter, the part type and device number, the
design name and user supplied design information.

Failure Disclaimers
If the design fails in partitioning or place and route, a disclaimer is
printed immediately following the heading. This alerts the user the
design did not fit successfully and the information may be missing or
inconsistent.

Summary Statistics
This section summarizes the design in terms of number of inputs
nodes and outputs which fall into certain catagories.

Device Resource Utilization
This section provides utilization statistics for the different resource
types of the device and its PAL blocks.

Partitioner Report
This section shows how the design is partitioned into pal blocks.

Clock Assignments
In the MACH 3 and 4 family, this clock assignment section shows
which pin clocks are used in which pal blocks.

Signal Directory
Here all inputs, outputs and nodes on the part are listed with specific
assignment information for each signal.

Appendix D: AMO MACH Support 469

Resource Assignment Map
Here we go through the device in physical order by pin and macrocell
and show which resources are used by which signal.

An example of each section is shown below.

Heading
To identify the .rpt file by design and fitter run, the header contains the date
and time the design was run through the fitter and the users information from
the source file.

DATE: Thu May 6 20:40:18 1993

DESIGN: f215g12
DEVICE: MACH435:1

TITLE: FILE f215gl2.src

COMPANY: AMD, SANTA CLARA
PROJECT: MACH Certification
REVISION: 001
COMMENT: Mon Sep 14 14:08:26 1992

Failure Disclaimers

Date design was
run

Design name Part name
and position in PI file
DEVICE statement list.

User supplied
information from
.src file.

If the design fails in partitioning or place and route, a disclaimer is printed
immediately following the heading. This alerts the user the design did not fit
successfully and the information may be missing or inconsistent.

There are different disclaimers depending on where the fitting failed and the
device type being fit.

470 MACHXL Software User's Gulde (Version 3.0)

If a MACH435 or MACH lxx or 2xx family device design fails in
partitioning the following disclaimer is printed:

FAILURE-TO-PARTITION DISCLAIMER:

The following partitioner reports show the last failed
attempts to partition the design. Partitions which
violate device limits are indicated. Also, if there are
more Block partitions than blocks in the device, the
partition will fail.

Because of different fitting algorithms for the two MACH families, MACH 1
and 2 family devices have a different fit disclaimer from MACH 3 and 4
family devices. If a MACH lxx or 2xx family device fails in fitting, the
following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER:

The following report represents the final status of a
failed fit attempt. The report is accurate but
incomplete. It indicates which signals were not placed
or routed. In the 'SIGNAL DIRECTORY' si9nal lines
preceded by '-' represent signals which could not be
placed. Fanouts ending in ·--· represent signals which
could not be routed.

The SIGNAL DIRECTORY information indicates how far the fitting process
proceeded before it was abandoned. The un-routed and/or un-placed signals
should point to the cause of fitting problems. You may need to modify the
design or manually direct the partitioner to achieve a fit in the selected design.

If a MACH4xx design fails in fitting, the following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER:

The following report represents the final status of a
failed fit attempt. The 'SUMMARY STATISTICS', 'RESOURCE
UTILIZATION',and 'CLOCK ASSIGNMENTS' sections are
accurate. The 'SIGNAL DIRECTORY' is accruate except for
pin and macrocell designations. The RESOURCE ASSIGNMENT

Appendix D: AMO MACH Support 471

MAP may have missing or redundant signals and conflicting
resource assignments.

The relative conflict levels for each resource type are listed here. This
indicates the reason for failure in fitting.

Pins 3
Input Regs 0
Macrocells 0
Pterms 352
Feedbacks 0
Fanouts 0

This disclaimer includes statistics showing which resource proved most
troublesome during the fit operation, in this case the fitter had trouble
assigning product terms. This gives you, the designer, key information on
where to modify your design to attempt another fit.

Summary Statistics
This section summarizes the design in terms of number of inputs nodes and
outputs which fall into certain catagories. It breaks out the nodes and outputs
both by PAL block (how many function per block). Because the MACH 3
and 4 family have more ways to fit a function, the fitter provides more
statistics for these designs.

MACH 1and2 statistics look like this:

5 Inputs
0 Registered/Latched Inputs
11 Outputs
0 Tri-states
0 Nodes

Functions by block (8, 3, O, 0)

472 MACHXL Software User's Gulde (Version 3.0)

MACH 3 and 4 statistics look like this:

4 Inputs
0 Outputs
32 Tri-states
0 Nodes

Functions by block
D Register Macrocells
T Register Macrocells
D Latch Macrocells
Combinatorial Macrocells
D Input Registers
D Input Latches

Xor Equations
Asynchronous Equations
Single-Pterm Equations
Total Pterms Required

(4, 4, 4, 4, 4, 4, 4, 4)
2
26
2
2

0

0

0

32
32

Note the total of 'Outputs', 'Tri-states' and 'Nodes' should equal the total of
'Function by block' and the total of the 'Macrocells' and 'Input
Registers/Latches' statistics. The numbers from XOR Equations' down are
not mutually exclusive nor should they match the total number of functions.

Device Resource Utilization
This section provides utilization statistics for the different resource types of
the device and its pal blocks. First, the global resource utilization is
presented, then resource statistics for each PAL block are listed.

Because of the different architectures of the MACH I and 2 family and the
MACH 3 and 4 family, each has a slightly different set ofresource statistics.
These examples show theglobal statistics and one PAL block statistic set for
each device family.

The MACH 1 and 2 family resource statistics look like this:

Resource
Clocks:

Pins:

Available
2

38

Used
1

35

Remaining
1
3

Appendix D: AMO MACH Support

%

so
92

473

Input Lines: 88 72 16 81
I/O Macro: 32 16 16 50

Total Macro: 64 48 16 75
Product Terms: 256 48 64 75

PAL BLOCK 'A'
Input Lines: 22 18 4 81

I/O Macro: 8 4 4 50
Total Macro: 16 12 4 75

Product Terms: 64 12 16 75

The MACH 3 and 4 family resource statistics look like this:

Resource Available Used Remaining %

Clocks: 4 1 3 25
Pins: 70 67 3 95

Input Regs: 64 0 64 0
Macrocells: 128 96 32 75

Pterms: 640 314 326 49
Feedbacks: 192 125 67 65

Fanouts: 264 161 103 60

PAL BLOCK 'A'
Blk Clocks: 4 1 3 25

I/O Pins: 8 8 0 100
Input Regs: 8 0 8 0
Macrocells: 16 12 4 75

Pterms: 80 42 38 52
Feedbacks: 24 16 8 66

Fanouts: 33 18 15 54

The resources referenced in these tables are defined here.

Clocks Clock pins used for clock signals
Pins Input and 1/0 pins used in any capacity
Input Lines Array inputs
1/0 Macro Output Macrocells
Total Macro Output and Buried Macrocells
Product Terms AND array rows used in equation generation
Input Regs Dedicated input registers

474 MACHXL Software User's Gulde (Version 3.0)

Macrocells
Feedbacks
Fanouts

Macrocells without output/buried distinction
Inputs to the Switch matrix
Inputs to the AND Array(s)

Partitioner Report
This section shows which functions (outputs and nodes) are assigned to which
pal block. It shows which signals must be routed to the pal block to generate
the functions assigned to the block. It also shows how many unique clocks,
enables, and register set/reset equations are required for the assigned
functions.

Clock Assignments
In the MACH 3 and 4 family, the clocks signals may vary from one pal block
to another. This clock assignment sections shows which clocks are required in
which pal blocks, and which phase (true or inverted) is needed.

The CLOCK ASSIGNMENT section may have zero to four clock pins listed
depending on how many clocks are used in the design. Here is an example
with two clocks:

CLOCK ASSIGNMENTS:

Notes:

clock signal
pin
block usage

clock signal
pin
block usage

block usage 'H' indicates used in TRUE sense.

block usage 'L' indicates used in INVERSE
sense.

[35] CLKl
23

' ' ' L, '

[34] CLKO
62

, ,

H , H , H , H , H , H , H , H

This design uses CLKO on pin 62 and it is used in its true sense in all eight pal
blocks. CLKI is on pin 23 and is used in its inverted sense in pal block 'D'.

Appendix D: AMO MACH Support 475

Signal Directory
Here all inputs, outputs and nodes on the part are listed with specific
assignment information for each signal. The format of this section is different
for the MACH 1 and 2 family and for the MACH 3 and 4 family.

The MACH 1 and 2 signal directory looks like this:

SIGNAL DIRECTORY:

Notes: Leading ' - ' indicates signal not
assigned.

Trailing '+' indicates feedback path is from

pin.

Functions with '0' Clusters are input

registered.

Signal Source PalBlk Pal Block Inputs
Name Type Clusters

0 A_l0__p2 Cmb Output D 1 Dll

1 A_ll_p3 Cmb Output D 1 DlO

2 A_8__p4 Cmb output D 1 D09

3 A_9__pS Cmb Output D 1 DlS

4 A_19__p9 Input AOl +
s RESET__plO Input AOS BOS cos DOS +
6 A_20__pll Input D21 +

This example is cut short due to space. Every input, output and node is listed
in this directory. The data columns are defined here:

Signal#
The index number used to reference the signal

Signal Name
The user Identifyer for the signal

Source Type
{Input I Hidden I Output I Biput I Internal} with register type
qualifiers

476 MACHXL Software User's Guide (Version 3.0)

PalBlk
PAL block where output or node is assigned

Clusters
Number of Pterm Clusters used to generate function

Pal Block Inputs
Array input lines for Signal Fanouts

The MACH 3 and 4 signal directory looks like this:

SIGNAL DIRECTORY:

Notes: Register type suffix ' X' indicates XOR used;

Register type suffix ' A' indicates Asychronous mode

used;

[

[

OJ

1)

[2]

Register type suffix ' LT' indicates function is

LOW TRUE.
'RS_SWAP' flags functions which are preset at power-on.

'OE' flags tri-state functions.

Output: SAO 8

Pin 72 (I/O) Block G Macrocell Gl4 1 Pterm COMB

Output: SAO 7

Pin 48 (I/O) Block E Macrocell ElO 1 Pterm COMB

Output: SAO 6

Pin 45 (I/O) Block E Macrocell EOO 1 Pterm COMB

[32] Reg. Input: NBDIR

Pin 3 (I/O) Block A Unary_of_3 1 Pterm LATCH

[33) Reg. Input: NCDIR

Pin 78 (I/O) Block H Unary_of_78 1 Pterm LATCH

Appendix D: AMO MACH Support 477

[34] Node: ST4
Block D Macrocell D03 13 Pterm DFF A

[35] Node: ST3
Block H Macrocell H09 15 Pterm DFF A

[44] Input: ADIR
Pin 5 (I/O) Block A

45] Input: BDIR
Pin 3 (I/O) Block A

Each of the entries has two lines. The first line has the signal index, signal
type and signal name. The signal index, always in brackets, is used in the
RESOURCE ASSIGNMENT MAP to identify the signal since there is not
always enough room for the full signal name. The Signal type is one of {Input
I Reg. Input I Reg. Feedback I Node I Tri-state I Output}.

The second line contains the assignment information for the signal. If the
signal appears on a pin, the pin number and type is provided. Function and
Inputs on 1/0 pins provide the block number of the pin and/or macrocell.
Functions provide macrocell assignment infonnation along with specifics on
how the function is fit. This includes the number of ptenns the functions
require, the register type used to implement the function, and notes ifthe
function implementation has any notable characteristics. These are noted in
the 'Notes:' section at the top.

Resource Assignment Map
This section follows the physical layout of the device and shows where each
signal is assigned. As with the SIGNAL DIRECTORY, the fonnat of this
section is different for the two families of MACH devices.

The MACH 1 and 2 family is simpler to represent since there is a one-to-one
relationship between pins, macrocells, and array inputs. The format of the
RESOURCE ASSIGNMENT MAP looks like this:

478 MACHXL Software User's Gulde (Version 3.0)

RESOURCE ASSIGNMENT MAP:

MINC Node Pin/Macro Signal

Node# Type ID (###) Name

1 Vcc/Gnd PWR

2 I/O I0-00 34) A 13

45 Shadow AOO 34) A 13

46 Buried AOl 64) B 16

3 I/O I0-01 24) A 17

47 Shadow A02 61) c 13

48 Buried A03

8 I/O I0-06 32) A 15

57 Shadow Al2 32) A 15

58 Buried Al3

9 I/O I0-07 31) A 20

59 Shadow Al4 65) B 17

60 Buried Al5 63) c 15

10 Input IO 6) A 24

11 Input Il 30) A 21

12 Vcc/Gnd PWR

13 In/Clk I2/CO 8) CLK2

14 I/O I0-08 21) A 30

75 Shadow Bl4

76 Buried B15 53) B 25

This example is cut short due to space. Every input, output and node is listed
in this directory. The data columns are defined here:

MINCNode#

Node Type

Pin/Macro ID

Signal#

Signal Name

The physical pin number or internal node number

{Vcc/Gnd I Shadow I Buried I 110 I Input I In/Clk}

Pin or Macrocell identifyer

Signal index (see SIGNAL DIRECTORY)

Signal Name

Appendix D: AMO MACH Support 479

If the same signal is assigned to a Shadow node and the adjacent 1/0 pin, the
signal is an output. If these two are different, the signal on the Shadow pin is
a node, and the signal on the 1/0 pin is an input.

The MACH 3 and 4 family is more complex to represent since the paths
between pins, macrocells, and array inputs are programmable. The format of
the RESOURCE ASSIGNMENT MAP looks like this:

Resource Assignment Map
Notes: Signal index '[###]' refers to SIGNAL DIRECTORY entry ###.

-PINOUT--
Pin [Sig]

1 PWR
2 PWR

Signal index '[N/C]' is specified 'NO CONNECT' in the .pi
file.
Signal index '[---]' indicates no signal present.
Resource 'IR' is input register; 'MC' is macrocell.
Pterm Cluster 'E' is equation cluster (2 pterms).
Pterm Cluster 'A' is async cluster (2 pterms).
Pterm Cluster 'S' is single cluster (1 pterm).
Cluster Steering 'd': down one macrocell {by macrocell
number).
Cluster Steering 'u': up one macrocell.
Cluster Steering 'U': up two macrocells.
Cluster Steering '=': to adjacent macrocell.
Cluster Steering '-': cluster not used.

--PLACEMENT-------- -------------ROUTING--------
InReg/ [Sig] Pterms Feedback----- Fanout--------
MCell --- EAS ID - [Sig] Src Block and Input Line --

3 [45] IR 0 [32] AOO [32] IR AOS BOS COS Dll EOS GOS H19
MC AOO [24] AOl [---] -
MC AOl [---] ddd A02 [---] -

4 [---] IR 1 [---] A03 [---] -
MC A02 [42] A04 [42] MC HOO
MC A03 [---] uuu AOS [---] -

5 [44] IR 2 [31] A06 [31] IR A03 B03 C03 D03 E03 G03 H03
MC A04 [---] uuu A07 [---] -
MC AOS [---] AOS [---] -

480 MACHXL Software User's Gulde (Version 3.0)

This example is cut short due to space. Every input, output and node is listed
in this directory. The data columns are defined here:

PINO UT
Pin
[Sig]

PLACEMENT
InReg/Mcell
[Sig]
Pterms EAS

ROUTING
Feedback
Feedback [Sig]
Feedback Src
Fanout

Signals on physical pins
Physical pin number
Signal index of pin signal

Resources used to generate nodes and outputs
Input Register (IR) or Macrocell (MC) identifier
Signal index of node or output
Pterm steering (See below)

Signals into and out of Switch Matrix
ID Identifyer of Switch Matrix input
Signal index of feedback signal
Source directed to Switch Matrix {Pin I IR I MC }
PAL block inputs assigned to signal

Pterm steering is indicated for three pterm clusters per macrocell. The three
clusters, designated 'E', 'A' and 'S', are the 'equation', 'asynchronous' and
'single' clusters. The E cluster consists of the two pterms which are always
part of the data equation. The A cluster is the two pterms which are either
used as part of the data equation or used as asychronous clock and reset. The
S cluster is the single pterm which is either part of the data equation or half of
the XOR equation. The steering of these clusters is designated by the
characters'=', 'u', 'd' and 'U', which mean 'local macrocell', 'up one macrocell',
'down one macrocell', or 'Up two macrocells' respectively. 'Up' and 'down' are
not necessarily physically up or down the printout. Up is to a lower numbered
macrocell, while down is to a higher numbered macrocell. In odd numbered
pal blocks (blocks B, D, F, H) the macrocells are numbered in reverse order
compared to the pins. Since this printout is ordered by physical pins, the
macrocells in those blocks show up in reverse order. However, down from
any macrocell 3 is always macrocell 4.

Appendix D: AMO MACH Support 481

Application Note:

MACH and the Number of Devices
Constraint

DEVICES: ALL MACH
In cases which fail to fit into a single MACH device, the "Number of Devices"
constraint (NUMBER_DEVICES in the .est file) should be removed to
investigate the problem. Two alternative approaches to investigation are
provided here.

The Problem
When you want a single device solution, it is natural to set the ''Number of
Devices" constraint to 1. In the case where the design does not immediately fit
into one device, this provides minimal information on why the design does not
fit.

Using 'default' in the .pi File Entry
One alternative is to force all of the design into the first part. It may appear
setting NUMDEVS to 1 would do this, but it is really a much weaker
statement, saying only "quit after one device is filled". This is reasonable in
the context of automatic device selection and a device limit greater than one.

To force the entire design into one part, a MACH2 l 0 for example, use the
'default' signal reference in a DEVICE statement int the .pi file. The default
reference is the same as naming all signals in the design not mentioned
elsewhere in the .pi file.

Example

DEVICE
TARGET 'part_number AMO MACH210-15JC';
default;

END DEVICE;

482 MACHXL Software User's Guide (Version 3.0)

When you do this, the design may fit the first time. If it does not, the . log file
may contain valuable information about why the circuit cannot be fit.

It may exceed device limits such as Reset/Preset constraints. In this case, you
may need to adjust the design to the limits of the device, or use another part or
parts with greater resources.

The fitter may not be able to find a suitable partition. In this case the .log file
indicates that this is the case. The .rpt file shows you the best partition the
system could produce and why it is not valid for the device. At this point, you
may see a better partition, or you may again need to adjust the design or
implementation specifications.

Finally, the partitioner may be able to assign functions to PAL blocks, but the
fitter may fail at place and route. Again, the . rpt file will show how far the
fitter proceeded and what areas proved troublesome. The designer may be
able to assist the fitter by adjusting the design and/or providing some direction
to the fitting process through the .pi file.

In general, look for resources which are in high utilization. If macrocells are
in high demand, more node collapsing may relieve the problem. If pterms are
in high demand, you might try extracting some common factors into a
common node. At any rate, knowing why a design doesn't fit is the first step
to solving a fitting problem.

Using a Second Device
Another approach to a difficult fitting problem is to allow the design to
overflow into a second device, and then see which functions are being left out
of the first device.

If you generate fusemaps for the two device solution, the .npi file may allow
you to work one or two functions back into the first device. To do this, edit
the .npi file to make a new .pi file. In the process, take the functions assigned
to the second device and include them in the DEVICE statement for the first
device but without any pin assignments. The fitter may be able to work them
in even when it could not find a solution on the first pass.

If that does not work, you may be able to adjust the design by node collapsing
or factoring to allow room for the left out functions, or you may conclude the
design requires a larger device.

Appendix D: AMO MACH Support 483

Application Note:

Using MACH Input Registers

DEVICES: MACH2xx, MACH4xx
The MACH 2xx and 4xx devices are capable ofregistering signals between
the 1/0 pin and the switch matrix. In the MACH215 and MACH4xx, there is
a dedicated register for each 1/0 pin. The other MACH2xx devices use the
buried macrocell adjacent to the pin to perform the registration. The MACH
fitters attempt to use these registers as often as possible because their use
saves both routing resources and propagation delay. This application note
describes how to detect when these resources are used and how to direct the
fitter to use them fitting your design.

Input Register Pin Names
The MACH4xx and MACH215 have dedicated hardware for the input register
function. These are called Unary pins in MACHXL because they support a
function of exactly one signal. In both devices, the pin is designated as
'UNARY_ OF_##', where '##' is the associated physical pin number.

In the MACH 2x0 devices, the pin signal is registered by routing it through
the adjacent buried register. This effectively takes one buried register
macrocell and reduces the number of nodes which the part can fit internally.

The MACH 2x0 devices register 1/0 pin signals on nodes designated as
'BURIED_OF _##'where'##' is the associated physical pin number. To force
use of the input register mode, it is not enough to assign a signal to that pin.
The assignment is ambiguous and will be interpreted by MACHXL as an
internal node assignment. Later in this application note we will discuss how to
make an input register assignment on these devices.

MACH 2xx vs MACH4xx
The MACH4xx devices have separate input register resources. Because this
much simplifies the fitting of unary functions, these assignments are simple

484 MACHXL Software User's Guide (Version 3.0)

and direct. Any unary function can be manually assigned to
UNARY_ OF_ <pin>, or can be placed by the fitter in automatic fitting.
Further, the MACH4xx is able to automatically use these resources to register
the feedback of an output function. Because of the simplicity of this
mechanism, the remainder of this application note covers the MACH2xx
series parts.

The MACH215 does have separate hardware for input registers, but because
of its general architecture, it is handled by the MACH 1 xx/2xx fitter and
shares the restrictions of that fitter.

Input Registration
The input register configuration has several advantages over the conventional
routing where the input goes into the switch matrix, is brought to the PAL
block array and fit as any other node. It saves one PAL block input and four
pterms needed to generate the function in the standard configuration. It also
saves propagation time of one pass through the array for the signal generated.

In MACHXL Version 3.0, there is no "INPUT CLOCKED_BY ... "construct, so
fitters look for nodes that have a single signal as the D equation. These
functions are referred to as 'unary' functions because they are functions of one
signal. Fitters for devices with input registers automatically fit unaries on
input registers whenever possible.

The MACH 2xx user may need to detect, force or prevent use of input
registers for any given signal.

Example

The following source generates the unary compatible function u:

INPUT i, ui, elk;
NODE u CLOCKED BY elk;
OUTPUT o;
u = ui;
0 = u * i;

Appendix D: AMO MACH Support 485

Detection
To detect signals which fit as unaries, the user must inspect the .rpt file. In
the signal list section of the .rpt file is a column with the number of clusters
used for each function. A function with zero ('O') clusters was fit as a unary.

In the example shown above, the function 'u' is fit as a unary as shown in this
extract from it's .rpt file:

Signal
Name
0 i

1 ui
2 elk
3 u
4 0

Source
Type
Input
Input
Input
DFF Hidden
Cmb Internal

PalBlk Pal Block Inputs
Clusters

Al2

A 0 A18
A 1

Forcing a Function to be Fit as Unary
To force a function to be fit as unary, the function must meet all of the
following conditions:

o Must be a NODE, not an OUTPUT

o Must have a single signal data equation

o Must be DFF, TFF or DLATCH equation

o Must conform to the Reset and Preset equation of the PAL block

To force the function into the input register, use the .pi file and simply place
the input signal on an 1/0 pin and the function on the adjacent BURIED
macrocell.

The following .pi statements when used with the above example source file,
will use the input register configuration to register the signal 'ui' to form the
function 'u' which goes into the switch matrix:

486 MACHXL Software User's Guide (Version 3.0)

DEVICE
TARGET 'PART NUMBER AMD MACH210-12JC';
INPUT ui :4;
u :BURIED_OF_4;

END DEVICE;

Preventing a Function From Being Fit as
Unary
To prevent a function from being fit as a unary, the user should fix either the
input or the function signal to a pin. The pin may be the same pin which was
previously fit automatically as a unary. The fact that one but not both signals
is fixed is sufficient to prevent the unary configuration.

Appendix D: AMO MACH Support 487

Application Note:

Control of the Asynchronous Mode in the
MACH4xx

Devices: MACH4xx
This application note explains how the MACH4xx fitter uses the
asynchronous macrocell feature of this device. It explains how the designer
can manually control the implementation of asynchronous clocking of
functions.

The MACHXL fitter operates on the assumption that asynchronous fitting is
an available option to it, but at a resource and timing cost. The fitter tries to
fit designs without resorting to asynchronous mode if this does not require
leaving PAL-blocks underutilized, or using extra devices.

If a design is to be fit using asynchronous mode, the fitter will select the block
reset and preset, and the block clock signals so as to minimize the number of
macorcells that are fit in asynchronous mode.

Since the macrocell-local reset pterm and the shared PAL-block reset and
preset pterms are generated in the PAL-block array, there is no timing penalty
for using the asynchronous mode reset. Therefore, an algorithm minimizing
the number of asynchronous resets should be adequate.

On the other hand, this algorithm may not be enough to select the functions
using asynchronous clocking. The difference in timing between the pin clock
and an array pterm generated clock signal may be of overriding importance to
the designer.

By using manual grouping and selecting the signals are placed on the clock
pins, the designer can control which functions are clocked asynchronously.

488 MACHXL Software User's Guide (Version 3.0)

Application Note

Control of T-Flop Synthesis in the MACH4xx

DEVICES: MACH4xx
This application note covers the implementation of equations in the
MACH4xx device. For some equations, the T-Flop may have a smaller
equation, but has slightly greater delay. For speed-sensitive circuits, the
designer may wish to use 0-flops exclusively. The XOR in the MACH4xx
provides for relatively efficient implementation of T equations using the 0
register.

Normal Operation
Unless otherwise directed, the fitter will fit the smallest equation of 0, T, or
XOR, or their complements.

OFF Only Fitting
If the designer does not want the TFF mode of the macrocell to be used, he
must first design his circuit in terms of OFF equations. This is the default that
will be generated if the designer does not reference T _FLOP or other register
types.

The next step in the procedure is to assert the .pi file option"{ FF _SYNTH
OFF } " in the designs .pi file. This will restrict the design to fitting only OFF
equations.

This option can be applied to specific signals or to the entire device or design.
This is controlled by the scope of the option placement.

Using the T Equation
If a given function is most easily expressed using an equation for toggle
operation, then the 0 equation is the XOR of that equation and the register
output.

Appendix D: AMO MACH Support 489

If (T) defines the toggle equation of function F, then the direct TFF expression
of that function in the MINC language is

T FLOP OUTPUT F CLOCKED BY elk ••• ;
F = (T);

while the DFF equivalent function is

OUTPUT F CLOCKED BY elk ••• ;
F = (T) (+) F;

· 490 MACHXL Software User's Guide (Version 3.0)

Application Note:

Analyzing Test Vector Errors

DEVICES: All MACH
When a programmed device fails the JEDEC test vectors, there are some
common areas to investigate to determine the source of the problem. This
application note discusses some common sources oftest vector problems (for
additional information see the next two application notes entitled "MACH
Power-On Reset" and "Hazard Free Combinatorial Latches".

Simulator Warnings
The simulator portion of MACHXL is the authority on exactly what
functionality the source language defined. Its output file, design_ name.sim,
may contain warnings indicating the circuit functionality conflicts with the test
vectors defined in your .stm file. These conflicts should be resolved before
you can expect to pass test vectors.

It is often easiest to let the simulator determine the output value. You can use
the '.S.' value in the .stm file test language to select this choice.

Initial States
A recurring problem in test vectors is conflicts during the initial states. The
'INITIAL' and 'INITIAL_TO' statements in the test language can be used to
tell the simulator what assumptions to make regarding the initial state of
signals.

It is good general practice to put a reset in the early steps of the test to place
the device in a known state.

Glitches in Control Logic
If a register is clocked or set using a product of signals, it is important to
realize the tester does not change all the inputs at one time. The tester may

Appendix D: AMO MACH Support 491

generate glitches in the control equations which cause unexpected chang~ of
state in a register.

If, for example, an output is clocked by (clkl * clk2) and on a particular step
clkl goes from 1to0 while clk2 goes from 0 to 1, there is a 50/50 chance that
clk2 will transition first producing a momentary pulse on the clock line. This
can cause a change of state in the register which is not reflected in the
simulati0n.

In such cases, it is best to use two test steps to insure that clkl goes low
before clk2 goes high.

492 MACHXL Software User's Gulde (Version 3.0)

Application Note

MACH Power-On Reset

Devices: MACH4xx
The MACH4xx has a built in power-on reset feature that sets all registers to a
known state when power is applied to the part. This application note
discusses how the user can determine the state of the registers, and steps the
user can take to manage the power-on feature.

MACHXL DSL Reset Definition
MACHXL's DSL defines the term "reset" in a device independent way. To
"reset" a signal means to put the signal in the unasserted state. A
HIGH_ TRUE signal will go the the low-voltage state when it is reset. If the
signal is a LOW_ TRUE sense, then the a reset will cause the signal to go to
the high voltage state. In both cases, the signal is in its unasserted condition.
This is a logical reset.

Nominal Case
Most applications of the MACH4xx will perform a logical reset on power-up.
Registered signals will go to the unasserted state.

Exception Cases
Cases violating the power-on logical reset are flagged in the . rpt file signal
directory with the string "RS_ SW AP". These signals will receive a logical
preset at power-on. This condition can be caused by one of two things.

1. Macrocells in asynchronous mode having a preset equation will
perform a power-on logical preset. Functions which are fit using
an asynchronous macrocell are flagged in the .rpt file signal
directory with the string "ASYNC".

Appendix D: AMO MACH Support 493

2. A function will perform a power-on logical preset if it is fit on a
macrocell in a PAL block where its reset and preset are "out-of
phase" with the majority of functions in the PAL block. "Out-of
phase" means that a function's reset and preset equations are
identical to the PAL block preset and reset equations
(respectively).

Manual partitioning can prevent this "out-of-phase" condition. Manual
partitioning may allow a function with a preset equation fit in an
asynchronous macrocell to be fit in a synchronous macrocell if the function is
not inherently asynchronous, (i.e., if it does not have a clock which is a
product of multiple signals.)

494 MACHXL Software User's Guide (Version 3.0)

Application Note:

Hazard-Free Combinatorial Latches

Devices: All MACH
You may need to implement combinatorial latches in MACH devices. A
combinatorial latch is a simple combinatorial function in which the output is
derived from inputs and feedbacks. A seemingly correct logical design for a
latch may be subject to hazard conditions that may cause the latch to fail..
This application note describes how to protect against hazard conditions by
inserting redundancy into the latch equation.

Basic Latch Circuit
The basic transparent D-Latch expressed in MACHXL looks like the follwing:

INPUT Data;
INPUT LatchEnable;
NODE Dlatch;
DLatch = LatchEnable * Data

+ /LatchEnable * DLatch;

Hazard Term
A Kamaugh map will reveal a potential hazard when the LatchEnable goes
from 1 to 0 while Data is asserted. In the MACH devices, it is possible to lose
the data during this transition. To protect against this hazard condition, a
"Cover Term" must be added to the DLatch equation. In addition, steps must
be taken to prevent the Cover Term from being reduced out.

Hazard Free Latch
We suggest encapsulating the combinatorial latch function in a DSL
procedure which adds the hazard Cover Term and the 'NO_REDUCE' option
to the output. Here is the source for this procedure:

Appendix D: AMO MACH Support 495

PROCEDURE DLatch(INPUT Data, LatchEnable; OUTPUT
DLatchOut NO_REDUCE);
DLatchOut = LatchEnable * Data

+ /LatchEnable * DLatchOut
+ Data * DLatchOut; "Cover Term

END Dlatch;

496 MACHXL Software User's Guide (Version 3.0)

Application Note:

MACH Pin and Node Identification

Devices: All MACH
This application note describes the naming convention for pins of MACH
devices. It provides a table of which pins are on which device. As a
companion to this information, see the table at the end of this appendix,
Complete List of MACH Pin Names.

Naming Convention
MACH devices have both physical pins (the ones on the device package), and
virtual pins (i.e., node locations within the device).

Physical pins are referenced by the pin number in the package diagram.

MACH virtual pins are named according to their characteristics and their
location in the device. The virtual pin names are derived from the following
base names which imply the listed characteristics.

BURIED OF
Buried pins are nodes internal to the device which can never be made visible to
a pin. In the MACH 2xx parts, these are the odd numbered macrocells.

SHADOW OF
Shadow pins are biput macrocells that can be disconnected from an 1/0 pin.
The macrocell is then used as a buried node, and the pin as an input. In the
lxx and 2xx parts all 1/0 pins have corresponding shadow pins.

UNARY OF
Unary pins are nodes which register a single signal. Most often they are input
registers. In the MACH215 and MACH4xx input registers are available on
all 1/0 pins.

MACROCELL_
This designator is used in the MACH4xx for all logic macrocells. This is
because any of the macrocells can be buried or tied to an I/O pin. In fact, any
of the macrocells can be tied to any one of four I/O pins. Since the macrocells

Appendix D: AMO MACH Support 497

are neither truly buried as defined above, nor are they directly associated with
an identifiable I/O pin, they are simply designated as macrocells.

The suffix of the virtual pin names indicates its location in the device. The
first three pin base names are suffixed with an I/O pin number. This is the pin
adjacent to the buried pin, tied to the shadow pin, or input to the unary pin.

The last base name, MACROCELL_, is suffixed with the PAL Block
designator and location index within the block.

Pin Name Tables
This table shows the physical pin numbers according to PAL Block. It then
provides the names ofrelated virtual pins. In each case'##' refers to the
associated physical pin number.

Device 1/0 Pins Virtual Pins
PAL Block

MACH110/111
'A' 2-9, 14-21 SHADOW OF##
'B' 24-31, 36-43 SHADOW OF##

MACH210/211
'A' 2-9 SHADOW OF## BURIED OF##
'B' 14-21 SHADOW OF## BURIED OF##
'C' 24-31 SHADOW OF## BURIED_OF _##
'D' 36-43 SHADOW OF## BURIED OF##

MACH215
'A' 2-9 SHADOW OF## UNARY OF##
'B' 14-21 SHADOW OF## UNARY OF##
'C' 24-31 SHADOW OF## UNARY OF##
'D' 36-43 SHADOW OF## UNARY OF##

MACH120
'A' 2-7, 9-14 SHADOW OF##
'B' 21-26, 28-33 SHADOW OF##
'C' 36-41, 43-48 SHADOW OF##
'D' 55-60, 62-67 SHADOW OF##

498 MACHXL Software User's Guide (Version 3.0)

Device 1/0 Pins Virtual Pins
PAL Block

MACH220/221
'A' 2-7 SHADOW OF## BURIED OF ##
'B' 9-14 SHADOW OF## BURIED OF##
·c· 21-26 SHADOW OF## BURIED OF##
'D' 28-33 SHADOW OF## BURIED OF##
'E' 36-41 SHADOW OF## BURIED OF##
'F' 43-48 SHADOW OF## BURIED OF ##
'G' 55-60 SHADOW_OF _## BURIED_OF _##
'H' 62-67 SHADOW OF## BURIED OF##

MACH130/131
'A' 3-10, 12-19 SHADOW OF##
'B' 24-31, 33-40 SHADOW OF##
'C' 45-52, 54-61 SHADOW OF##
'D' 66-73, 75-82 SHADOW OF##

MACH230
'A' 3-10 SHADOW OF## BURIED OF##
'B' 12-19 SHADOW OF ## BURIED OF##
'C' 24-31 SHADOW OF## BURIED OF##
'D' 33-40 SHADOW OF## BURIED OF##
'E' 45-52 SHADOW OF## BURIED OF##
'F' 54-61 SHADOW OF## BURIED_ OF_##
'G' 66-73 SHADOW OF## BURIED OF##
'H' 75-82 SHADOW OF## BURIED OF##

MACH435
'A' 3-10 MACROCELL _ AOO - MACROCELL _A 15,

UNARY OF##
'B' 12-19 MACROCELL_BOO - MACROCELL_B15,

UNARY OF##
·c· 24-31 MACROCELL_COO - MACROCELL_C15,

UNARY OF##
'D' 33-40 MACROCELL_DOO- MACROCELL_D15,

UNARY OF##
'E' 45-52 MACROCELL_EOO - MACROCELL_E15,

UNARY OF##

Appendix D: AMO MACH Support 499

Device 1/0 Pins Virtual Pins
PAL Block

'F' 54-61 MACROCELL_FOO- MACROCELL_F15,
UNARY OF##

'G' 66-73 MACROCELL_GOO- MACROCELL_G15,
UNARY OF##

'H' 75-82 MACROCELL_HOO- MACROCELL_H15,
UNARY OF##

MACH465
'A' 190-197 MACROCELL _ AOO - MACROCELL _A 15,

UNARY_OF_##
'B' 200-207 MACROCELL_BOO- MACROCELL_B15,

UNARY_OF _##
·c· 3-10 MACROCELL_COO- MACROCELL_C15,

UNARY OF##

'0' 13-20 MACROCELL_DOO - MACROCELL_D15,
UNARY OF##

'E' 32-39 MACROCELL_EOO- MACROCELL_E15,
UNARY OF##

'F' 42-49 MACROCELL_FOO-MACROCELL_F15,
UNARY_OF _##

'G' 54-61 MACROCELL_GOO- MACROCELL_G15,
UNARY OF##

'H' 64-71 MACROCELL_HOO- MACROCELL_H15,
UNARY OF##

'I' 86-93 MACROCELL_IOO- MACROCELL_l15,
UNARY OF##

'J' 96-103 MACROCELL_JOO- MACROCELL_J15,
UNARY OF##

'K' 107-114 MACROCELL_KOO- MACROCELL_K15,
UNARY OF##

'L' 117-124 MACROCELL_LOO- MACROCELL_L15,
UNARY OF##

'M' 136-143 MACROCELL_MOO- MACROCELL_M15,
UNARY OF##

'N' 146-153 MACROCELL_NOO- MACROCELL_N15,
UNARY OF##

500 MACHXL Software User's Guide (Version 3.0)

'0' 158-165

'P' 168-175

MACROCELL_OOO- MACROCELL_015,
UNARY OF##
MACROCELL_POO- MACROCELL_P15,
UNARY OF##

Appendix D: AMO MACH Support 501

Application Note:

Achieving Satisfactory Pinouts with MACH
Devices

Devices: All MACH
This application note gives general guidelines for shaping the pinout
configuration of a design fit into MACH devices.

Procedure
The general approach is to first fit the problem unconstrained to prove there is
a solution; then mold that solution into a pin-out meeting the board layout
requirements. The steps needed to do this are listed below:

1. Generate an unconstrained solution. Run the fitter to get an .npi
file.

2. Copy the .npi file to the .pi file. Strip the pin assignments and take
out the NO CONNECT information.

3. Determine which sets of signals must be fit together on localized or
sequential pins. The group statement will fit those signals in the
same PAL block. Group those signals within the fixed group of
the device. Leave the INPUT signals for later. Not every function
must be in a group. It may help to sort the .pi file first to get
signals with like names together, as they often are grouped
together.

The .pi file will look like this:

DEVICE
TARGET 'PART NUMBER AMD MACH130-15JC';
INPUT B20M;
INPUT NACKIO;

502 MACHXL Software User's Guide (Version 3.0)

INPUT NACKil;

TXC;

GROUP
COLl;
CRSl;

END GROUP;

GROUP
COL2;
CRS2;

END GROUP;

GROUP
NACKOO;
NACKOl;
NACK02;

END GROUP;

END DEVICE;

4. Run the fitter on the grouped .pi file. This shows which groups go
best with other groups due to similar signal, OE, and RESET
requirements. If this fails to fit the most likely cause is a group
which violates the constraints of a PAL block. This will be noted
in the .log file. Find the offending group and either dissolve it or
divide it into two groups.

5. When the local groups are fit into PAL blocks, generate another
.npi file and make that the current .pi file.

6. It may be necessary at this time to swap the contents between two
PAL blocks. If the PAL block assignments are satisfactory, go to
step 7. Remember that if you have outputs in different PAL blocks
that must be adjacent, you can have them span the boundary of
adjacent PAL blocks or the wrap-around between the last PAL

Appendix D: AMO MACH Support 503

block and the first. Pal block assignment can be done by using
targeted groups within the device groups. The PAL blocks are
named 'A' through 'H', 'D' or 'B' depending on how whether there
are eight, four or two PAL blocks in the device.

7. The first step is to target PAL blocks. The .pi file will show the
pins of each signal but not the PAL block, refer to a pin-out table
for the device and determine where the PAL block divisions occur.
Divide the current .pi file into PAL block groups using the fixed
group construct with target statements. Again, save the inputs for
later. Then strip the pin numbers and reassign the groups as
required.

The .pi file will look like this:

DEVICE
TARGET 'PART NUMBER AMD MACH130-15JC';

INPUT B20M;
INPUT NACKIO;
INPUT NACKil;

TXC;

SECTION
TARGET
NACKOO;
NACKOl;
NACK02;

END SECTION;

SECTION
TARGET
COLl;
CRSl;
COL2;

'A I;

I B';

504 MACHXL Software User's Gulde (Version 3.0)

CRS2;
END SECTION;

END DEVICE;

8. Now fit and generate an .npi file. If the fit fails, consult the .log
file and make adjustments as required. One thing to try would be
rotating the PAL block assignments ('A' to 'B', 'B' to 'C', ... 'H' to
'A').

9. When the PAL block assignments are satisfactory, generate
another .npi file and make that the current .pi file.

10. The last step is to find suitable pin assignments within the PAL
blocks. First, add comments to the .pi file to show the PAL blocks
limits. Then separate all the inputs and strip off their pin numbers.
Again, they will be handled last unless there are overriding reasons
to place them earlier. The reasoning here is inputs have only
routing constraints, while functions have routing, pterm allocation,
and control function constraints and are generally the harder
assignments.

11. The key here is to take small steps. Work on one PAL block at a
time. Strip off the pin numbers. Pick one group of signals and
assign it the desired pin assignment. Then run fit. If it fails, be
sure to check the .log file, although often it will indicate routing
could not be achieved. Try shifting the signals by one pin; try
walking an unassigned pin through the group; try assigning the
other pins, and see where the group ends up. When you finish one
PAL block, go on to the next. Be sure to leave room for sequential
assignments of input groups. It may by helpful to leave biputs
available adjacent to the dedicated input pins so input groups can
fit across dedicated inputs and onto the biputs. Remember clock
signals must go on clock/input pins.

Appendix D: AMO MACH Support 505

Application Note:

Refitting into MACH Devices

Devices: All MACH
The first step to successfully refitting a MACH design is to plan from the
beginning of design implementation to allow for refitting. Keep utilization
low, below 70%. Keep pinout options open as long as possible. Don't release
board layout after the first successful fit, since the design will undoubtedly
change and changes may not refit the way the original design was fit. As
much as possible, try to work with what the fitter would prefer to do,
especially in terms of partitioning into PAL blocks, rather than forcing a pre
conceived pinout.

This application note describes the best method currently available to recreate
a specific pinout for a MACH design. We assume you have fit a design, and
produced a JED EC map and a .npi file. The objective is to make a .pi file
which reproduces the pinout.

For more information on these subjects, see the application notes entitled
"Achieving Satisfactory l'i,n-outs with the MACH Fitter" and ''MACH Pi,n
and Node Identification".

Concept
The procedure described below preserves the PAL block partitioning of all the
functions while allowing the fitter the freedom to move buried logic within a
PAL block, but not from one PAL block to another. Outputs and inputs
remain fixed to specific device pins. To do this, we convert the flat .npi file to
a two level file adding PAL block SECTIONs within a DEVICE construct. In
the PAL block groups we place all the outputs and all the buried nodes which
were in one PAL block. In general, we leave the pin assignments on the
outputs, but not on the nodes. Special attention must be paid to nodes which
were brought to pins for routing purposes (i.e., omit pin assignment) and
functions fit as registered inputs (i.e., preserve buried pin assignment).

506 MACHXL Software User's Guide (Version 3.0)

The .pi file property FLOAT_NODES can be used to release the nodes from
their pin assignments, while keeping them in the PAL block to which they
were assigned. This is useful when trying to recreate a pinout. The
FLOAT_NODES .pi file property can be used in replacement of the
procedure described below.

Procedure
1) Fit the design using a template statement in the .pi file (the fitter).

This .pi file produces the design_ name. rpt file which will be
needed later. The .pi file can be as simple as:

DEVICE TARGET 'PART_NUMBER amd mach210-15jc'; END DEVICE;

2) Document the design. This produces the design_name.doc file.

3) Implement the design. This produces the JED EC file and also the
design_name.npi file.

4) Copy design_name.npi to design_name.pi.

5) In the .pi file, move all inputs to the top (or bottom) of the file,
preserve pin assignments.

6) Set up two, four or eight fixed groups depending on the device.
See tables following for grouping information.

7) Segregate all outputs and nodes into sections according to which
PAL block they were originally fit.

8) For MACH2xx parts, check the .rpt file for nodes fit using zero
clusters (SIGNAL DIRECTORY section). These nodes are fit
with input registers and the pin assignment must be preserved. See
the previous section entitled "Using MACH Input Registers".

9) For MACH435, preserve any pin assignment to UNARY _OF_##.
This is an input register assignment.

Appendix D: AMO MACH Support 507

signal
Name

1 O)Check for nodes which have been fit on I/O pins and are not
required on another device. The .doc file lists all nodes (at the
top), and the wire list (at the bottom) shows which are wired to
another device. You can drop the pin assignment on nodes which
are not needed on another device.

11) Except as indicated in steps 7) and 8), drop all pin assignments
for buried logic, and preserve all pin assignments for I/O pins.

12) Rerun the fitter. If the design fits successfully, you have a
repeatable solution.

Example

A design was fit into a MACH230. The .rpt file contains the following lines
in the signal directory indicating that 'df_reg[l]' and 'df_reg[2]' are fit on input
registers:

source
Type

PalBlk Pal Block Inputs

68 df_reg[2]
69 df_reg[l]

DFF Hidden
DFF Hidden

clusters
A 0 Al3

A 0 Al2

In addition, we see node df _reg [o J is placed on a pin. This is done for
routing purposes, since the signal is not needed outside the device.

Using the procedure above, we generate the .pi file below from the .npi file
produced by the fuse mapper .

. npi file -------------------------

DEVICE
TARGET 'PART NUMBER AMD MACH230-15JC';
dout[l9]:3;
dout[6]:4;
dout[5]:5;
dout[2]:6;
INPUT dflags[l]:7;
INPUT dflags[2]:8;
dout[l]:9;
INPUT dflags[O]:l2;

508 MACHXL Software User's Guide (Version 3.0)

INPUT din[O]:l3;
INPUT din[l0]:14;
INPUT din[2]:15;
frame:16;
INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[l8]:23;
dout[9]:24;
dout[8]:25;
dout[4]:26;
dout[3]:27;
INPUT din[4]:29;
INPUT din[l7]:33;
INPUT tx_en:34;
INPUT din[l5]:35;
INPUT delay[0]:36;
INPUT din[l6]:37;
INPUT din[ll] :38;
INPUT ef0:39;
INPUT phase:40;
INPUT delay[5]:41;
dout[l8] :45;
INPUT delay[2]:46;
INPUT din[9]:47;
INPUT delay[3]:48;
INPUT din[5]:49;
INPUT din[l]:50;
INPUT din[l4):51;
INPUT din[l9]:52;
dout[l7]:54;
INPUT delay[l]:55;
dout[l4]:56;
dout[ll] :57;
dout(7]:58;
INPUT din[3):65;
dout[l6]:66;

Appendix D: AMO MACH Support 509

dout[l5]:67;
INPUT din[l2]:68;
INPUT din[8]:69;
dout[l2]:70;
INPUT din[7] :71;
fifo_ren:72;
df_reg[0]:75;
INPUT ef1:76;
INPUT din [6] : 77;
dout[l3]:78;
dout[l0]:79;
dout[0]:80;
INPUT din[l3]:83;
df_reg[l]:BURIED_OF_7;
df_reg[2]:BURIED_OF_8;
s0:SHADOW_OF_19;
s2:SHADOW_OF_l8;
dcnt[O]:SHADOW_OF_17;
sl:SHADOW_OF_l4;
dval:SHADOW_OF_l3;
dcnt[2]:BURIED_OF_38;
dcnt[4]:SHADOW_OF_36;
prep_done:SHADOW_OF_35;
dcnt[S):SHADOW_OF_33;
dcnt[3]:BURIED_OF_SO;
dcnt[l):SHADOW_OF_71;
dv_lvl0:BURIED_OF_80;
dv_lvll:SHADOW_OF_76;
END DEVICE;

NEW .pi file -----------------------

DEVICE
TARGET 'PART NUMBER AMO MACH230-15JC';

INPUT dflags[l]:7;
INPUT dflags[2]:8;
INPUT dflags[O]:l2;
INPUT din[O]:l3;

51 o MACHXL Software User's Gulde (Version 3.0)

INPUT din[l0]:14;
INPUT din[2]:15;
INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[l8]:23;
INPUT din[4] :29;
INPUT din[l7]:33;
INPUT tx_en:34;
INPUT din[l5]:35;
INPUT delay[0]:36;
INPUT din[l6]:37;
INPUT din[ll] :38;
INPUT ef0:39;
INPUT phase:40;
INPUT delay[5]:41;
INPUT delay[2]:46;
INPUT din[9]:47;
INPUT delay[3]:48;
INPUT din[5):49;
INPUT din[l]:SO;
INPUT din[l4] :51;
INPUT din[l9]:52;
INPUT delay[l]:SS;
INPUT din[3]:65;
INPUT din[l2]:68;
INPUT din[8]:69;
INPUT din[7]:71;
INPUT ef1:76;
INPUT din[6]:77;
INPUT din[l3]:83;

SECTION
dout[l9]:3;
dout[6]:4;
dout[S]:S;
dout[2]:6;

Appendix D: AMO MACH Support 511

dout[l]:9;
df_reg(l]:BURIED_OF_7; "Part of input register assignment
df_reg(2]:BURIED_OF_8; "Part of input register assignment
END SECTION;

SECTION
frame:16;
sO;
s2;
dent [0];
sl;
dval;
END SECTION;

SECTION
dout(9]:24;
dout[8]:25;
dout(4]:26;
dout(3]:27;
END SECTION;

SECTION
dent(2];
dent(4];
prep_done;
dent(S];
END SECTION;

SECTION
dout[18]:45;

":SHADOW_OF_19;
":SHADOW_OF_l8;
":SHADOW_OF_l7;
":SHADOW_OF_l4;
":SHADOW_OF_13;

":BURIED_OF_38;
":SHADOW_OF_36;
":SHADOW_OF_35;
":SHADOW_OF_33;

dent [3]; ": BURIED_OF _50;
END SECTION;

SECTION
dout(l7]:54;
dout[l4]:56;
dout [11] : 5 7;
dout[7]:58;
END SECTION;

512 MACHXL Software User's Guide (Version 3.0)

SECTION
dout[l6]:66;
dout[l5]:67;
dout[l2]:70;
fifo_ren:72;

•dent [1] ; " : SHADOW_ OF_ 71;
END SECTION;

SECTION
df_reg[O]; ":75; This is a node on a pin
dout[l3]:78;
dout[l0]:79;
dout[0]:80;
dv_lvlO;
dv_lvll;
END SECTION;

END DEVICE;

":BURIED_OF_80;
":SHADOW_OF_76;

Appendix D: AMO MACH Support 513

Application Note:

Forcing Unused MACH Outputs to be Driven
or Floating

DEVICES: MACH 1xx and 2xx
. For MACH lxx and 2xx devices, 1/0 pins having neither input or output
signals may be driven or floating, depending on whether the associated
macrocell (shadow pin) is used. If a hidden function is placed on the
macrocell, the pin is placed in the high impedance or 'floating' state. If the
macrocell is not used, the pin is placed in a driven state and a constant value is
placed on the pin. This application note describes a method to configure these
pins, should you need to do so.

This does not apply to the MACH435 because these outputs have built in pull
ups on the outputs, providing a default input when left unconnected.

Some of the lxx and 2xx family of devices are available with pull ups as well.
Consult the AMD Data Book for this information. Also see the table at the
end of this appendix, Fuse Commands for Forcing Outputs to be Driven.

Forcing Outputs Driven
To force an output to be driven, the user must first assign all outputs to pins
so that the unused pins are known. Then, in the .pi file, the user places fuses
statements ('INTACT <fuse no.>' and 'BLOWN <fuse no.>' to modify the
implementation.

The table, Fuse Commands for Forcing Outputs to be Driven, contains fuse
assignment statements to assert the tri-state enable for unused pins on all
MACH devices.

If a node was placed on the corresponding shadow pin, its signal is present on
the pin. Otherwise, the pin will be asserted either high or low depending on
how other unused internal resources are dispensed.

514 MACHXL Software User's Guide (Version 3.0)

Example

An example .pi file would look like this. For space, we consider only PAL
block 'A'. We have outputs on pins 2-9, and wish to assert the OE on pins 14
to 21.

DEVICE TARGET 'PART NUMBER AMD MACH110-15JC I;

o1:2; o2:3; o3:4; o4:5;
o5:6; o6:7; o7:8; o8:9;

"Assert OE on remaining outputs
INTACT 6230 BLOWN 6231 " Pin 14:
INTACT 6238 BLOWN 6239 " Pin 15:
INTACT 6246 BLOWN 6247 " Pin 16:
INTACT 6254 BLOWN 6255 " Pin 17:
INTACT 6262 BLOWN 6263 " Pin 18:
INTACT 6270 BLOWN 6271 " Pin 19:
INTACT 6278 BLOWN 6279 " Pin 20:
INTACT 6286 BLOWN 6287 " Pin 21:

END DEVICE;

Forcing Outputs Floating
To force an output to float, the user must first assign all outputs to pins so the
unused pins are known. Then, in the .pi file, the user places fuse statements
('INTACT <fuse no.>' and 'INTACT <fuse no.>' to modify the
implementation.

The table, Fuse Commands for Forcing Outputs to be Driven, can be used
to configure floating outputs. Just replace the 'BLOWN' keyword with the
'INTACT' keyword.

If a node has been placed on the corresponding shadow pin, its signal is
present on the pin. Otherwise, the pin is asserted either high or low depending
on how other unused internal resources are dispensed with.

Appendix D: AMO MACH Support 515

Example

An example .pi file would look like this. For space, we only consider PAL
block 'A'. We have outputs on pins 2-9, and wish to float the OE on pins 14
to 21.

DEVICE TARGET 'PART NUMBER AMO MACH110-15JC';
o1:2; o2:3; o3:4; o4:5;
o5:6; o6:7; o7:8; o8:9;

"Float OE on remaining outputs
INTACT 6230 INTACT 6231 ; " Pin 14:

INTACT 6238 INTACT 6239 ; " Pin 15:
INTACT 6246 ; INTACT 6247 " Pin 16:
INTACT 6254 INTACT 6255 " Pin 17:
INTACT 6262 INTACT 6263 " Pin 18:
INTACT 6270 INTACT 6271 " Pin 19:
INTACT 6278 INTACT 6279 ; " Pin 20:
INTACT 6286 INTACT 6287 " Pin 21:

END DEVICE;

516 MACHXL Software User's Gulde (Version 3.0)

Application Note:

Possible Pin Incompatibility Between
MACH230 and MACH435

Devices: MACH230 and MACH435
In rare cases, designs fitting in a MACH230 are not pin compatible with the
MACH435. We say 'rare' because it happens only when using both registers
and latches in the same PAL block using pins 20 and 22, or pins 62 and 65 for
the clock and latch enable signals.

This is due to the change in latch implementation between the MACH 1 and 2
families and the MACH 3 and 4 families. In the MACH 1 and 2 case, latches
are transparent low, and latched high. In the MACH 3 and 4 families, this
sense is reversed to provide the more common funtionality of transparent
high, latch low.

Since the MACH435 can select clock polarity, this change is seldom a
problem for the 435. Not all combinations of clock polarities for all clock
pins are availible within a single PAL block. This means a problem can arise
when porting a design with clocks and registers in the same block using clock
pins from the same clock pair.

The clock pins are paired internally as CLKO (pin 20) and CLKI (pin 22) and
as CLK2 (pin 62) and CLK3 (pin 65). Within each PAL block, the MACH
435 can select a clock polarity configuration (from each pair) allowing:

o both clocks TRUE

o both clocks inverted

o both phases of one of the clock pair.

A given PAL block cannot have one clockofthe pair with true sense and the
other with inverted sense.

Consider a MACH230 design with a register and latch in the same PAL block.
Assume the register is clocked by one clock pin of a pair and the latch is

Appendix D: AMO MACH Support 517

enabled by the other pin of the pair. Differences between the latches of the
MACH230 and the MACH435 mean the 435 must invert the latch enable to
achieve the same functionality. This means the PAL block needs exactly the
same clock polarity (but can't have it), having true sense of one member and
inverted sense of the other.

If one of the functions is a node, it may be possible to move it to another
block. It may also be possible to force one of the clocks to be asynchronous
(clocking by pterm row) by using an internal node to produce the clock signal.
The point is to be aware there may be problems in these rare cases with ported
designs.

518 MACHXL Software User's Guide (Version 3.0)

Application Note:

Complete List of MACH Pin Names

Devices: All MACH
This table gives a complete list of MACH device pin names and the internal
pin numbers associated with each.

Pin Numbering
The internal pin numbers refer to the physical pins followed by the virtual
pins. Internal pin numbers start with zero, so the first pin of a 44-pin package
is 0 and the last is 43. The first virtual pin is 44. A similar numbering
scheme is used for the 68 and 84 pin packages.

44-Pin Packages
These devices use 0 through 43 for the physical pins. Virtual pins begin at 44
and go on as required by the device. The MACHl 10 has 32 virtual pins, the
MACH210 and MACH215 each have 64 virtual pins.

MACH110
SHADOW_OF _2, SHADOW_OF _3,
SHADOW_ OF _6, SHADOW_OF _7,
SHADOW_OF _14,SHADOW_OF _15,
SHADOW_OF_18,SHADOW_OF_19,
SHADOW_ OF _24, SHADOW_OF _25,
SHADOW_OF _28, SHADOW_OF _29,
SHADOW_OF _36, SHADOW_OF _37,
SHADOW_OF _ 40,SHADOW_OF _ 41,

MACH210
SHADOW_ OF _2, BURIED_OF _2,
SHADOW_ OF_ 4, BURIED_OF _ 4,
SHADOW_ OF _6, BURIED_OF _6,
SHADOW_OF _8, BURIED_OF _8,
SHADOW_ OF _21, BURIED_OF _21,
SHADOW_OF _19,BURIED_OF _19,
SHADOW_OF _17,BURIED_OF _17,
SHADOW_OF _ 15, BURIED_OF _15,
SHADOW_OF _24, BURIED_OF _24,

SHADOW_OF _ 4,
SHADOW_OF _8,
SHADOW_OF _16,
SHADOW_OF _20,
SHADOW_OF _26,
SHADOW_OF _30,
SHADOW_OF _38,
SHADOW_OF _ 42,

SHADOW_ OF _3,
SHADOW_ OF _5,
SHADOW_OF_7,
SHADOW_OF _9,
SHADOW_OF _20,
SHADOW_OF _18,
SHADOW_OF _16,
SHADOW_OF_14,
SHADOW_OF _25,

SHADOW_OF _5,
SHADOW_OF _9,
SHADOW_OF_17,
SHADOW_OF_21,
SHADOW_OF _27,
SHADOW_ OF _31,
SHADOW_ OF _39,
SHADOW_ OF_ 43

BURIED_ OF _3,
BURIED_ OF _5,
BURIED_OF _7,
BURIED_OF _9,
BURIED_OF _20,
BURIED_OF _18,
BURIED_OF _16,
BURIED_OF _14,
BURIED_OF _25,

Appendix D: AMO MACH Support 519

SHADOW_OF _26, BURIED_OF _26,
SHADOW_OF _28,BURIED_OF _28,
SHADOW_OF _30, BURIED_OF _30,
SHADOW_OF _ 43, BURIED_OF _ 43,
SHADOW_OF _ 41, BURIED_OF _ 41,
SHADOW_OF _39, BURIED_OF _39,
SHADOW_OF _37, BURIED_OF _37,

MACH215
SHADOW_OF_2, UNARY_OF_2,
SHADOW_OF_4, UNARY_OF_4,
SHADOW_OF _6, UNARY _OF _6,
SHADOW_OF_8, UNARY_OF_8,
SHADOW_OF _21, UNARY _OF _21,
SHADOW_OF_19,UNARY_OF_19,
SHADOW_OF _17,UNARY_OF_17,
SHADOW_OF_15,UNARY_OF_15,
SHADOW_OF _24,UNARY_OF _24,
SHADOW_OF_26,UNARY_OF_26,
SHADOW_OF _28, UNARY _OF _28,
SHADOW_OF _30, UNARY _OF _30,
SHADOW_OF _ 43, UNARY _OF_ 43,
SHADOW_OF _ 41,UNARY_OF _ 41,
SHADOW_OF _39, UNARY _OF _39,
SHADOW_OF _37, UNARY _OF _37,

68-Pin Packages

SHADOW_OF _27,
SHADOW_ OF _29,
SHADOW_OF_31,
SHADOW_ OF_ 42,
SHADOW_ OF_ 40,
SHADOW_OF _38,
SHADOW_OF _36,

SHADOW_ OF _3,
SHADOW_ OF _5,
SHADOW_OF _},
SHADOW_OF_9,
SHADOW_OF _20,
SHADOW_OF_18,
SHADOW_OF _16,
SHADOW_OF _14,
SHADOW_OF _25,
SHADOW_OF _27,
SHADOW_ OF _29,
SHADOW_ OF _31,
SHADOW_OF _ 42,
SHADOW_OF _ 40,
SHADOW_OF _38,
SHADOW_OF _36,

BURIED_OF _27,
BURIED_ OF _29,
BURIED_ OF _31,
BURIED_ OF_ 42,
BURIED_ OF_ 40,
BURIED_OF _38,
BURIED_OF _36

UNARY_OF _3,
UNARY_OF_5,
UNARY OF 7,
UNARY - OF-9,
UNARv::::oF::::20,
UNARY_OF _ 18,
UNARY_OF_16,
UNARY_OF_14,
UNARY_OF _25,
UNARY_OF _27,
UNARY_OF _29,
UNARY_ OF _31,
UNARY_OF _ 42,
UNARY_OF_40,
UNARY_OF _38,
UNARY_OF _36

These devices use 0 through 67 for the physical pins. Virtual pins begin at 68
and go on as required by the device. The MACH120 has 48 virtual pins, the
MACH220 has 96 virtual pins.

MACH120
SHADOW_ OF _2, SHADOW_ OF _3,
SHADOW_ OF _6, SHADOW_ OF _7,
SHADOW_ OF_ 11,SHADOW_OF _ 12,
SHADOW_ OF _33,SHADOW_OF _32,
SHADOW_OF~29,SHADOW_OF _28,
SHADOW_OF _24, SHADOW_OF _23,
SHADOW_OF _36,SHADOW_OF _37,
SHADOW OF 40, SHADOW OF 41,
SHADow::::oF::::45,SHADOW::::oF::::46,
SHADOW_OF _67, SHADOW_OF _66,
SHADOW_OF _63,SHADOW_OF _62,
SHADOW_OF _58, SHADOW_ OF _57,

MACH220
SHADOW_ OF _2, BURIED_ OF _2,
SHADOW_OF _ 4, BURIED_ OF_ 4,
SHADOW_ OF _6, BURIED_OF _6,

SHADOW_OF_4,
SHADOW_OF _9,
SHADOW_OF _13,
SHADOW_OF _31,
SHADOW_ OF _26,
SHADOW_OF _22,
SHADOW_ OF _38,
SHADOW OF 43,
SHADow::::oF::::47,
SHADOW_OF _65,
SHADOW_OF _60,
SHADOW_OF _56,

SHADOW_ OF _3,
SHADOW_ OF _5,
SHADOW_ OF _7,

520 MACHXL Software User's Gulde (Version 3.0)

SHADOW_OF_5,
SHADOW_OF _10,
SHADOW_OF _14,
SHADOW_ OF _30,
SHADOW_ OF _25,
SHADOW_OF_21,
SHADOW_ OF _39,
SHADOW_OF _ 44,
SHADOW_OF _ 48,
SHADOW_ OF _64,
SHADOW_OF _59,
SHADOW_ OF _55

BURIED_ OF _3,
BURIED_OF _5,
BURIED_ OF _7,

MACH220 (con't)
SHADOW_OF _14,BURIED_OF _14,
SHADOW_OF _12,BURIED_OF _12,
SHADOW_OF _ 10, BURIED_OF _ 10,
SHADOW_OF _21, BURIED_OF _21,
SHADOW_OF _23, BURIED_OF _23,
SHADOW_ OF _25, BURIED_ OF _25,
SHADOW_OF _33, BURIED_OF _33,
SHADOW_OF _31, BURIED_OF _31,
SHADOW_ OF _29, BURIED_OF _29,
SHADOW_OF _36, BURIED_OF _36,
SHADOW_OF _38, BURIED_OF _38,
SHADOW_OF _ 40, BURIED_OF _ 40,
SHADOW_OF _ 48, BURIED_ OF_ 48,
SHADOW_ OF_ 46, BURIED_OF _ 46,
SHADOW_OF _ 44, BURIED_OF _ 44,
SHADOW_OF _55, BURIED_OF _55,
SHADOW OF 57, BURIED OF 57,
SHADOW= OF =59, BURIED= OF =59,
SHADOW_ OF _67, BURIED_OF _67,
SHADOW_OF _65, BURIED_OF _65,
SHADOW_OF _63, BURIED_OF _63,

84-Pin Packages

SHADOW_OF_13,
SHADOW_OF_11,
SHADOW_ OF _9,
SHADOW_OF _22,
SHADOW_ OF _24,
SHADOW_OF _26,
SHADOW_ OF _32,
SHADOW_OF _30,
SHADOW_ OF _28,
SHADOW_ OF _37,
SHADOW_ OF _39,
SHADOW_OF _41,
SHADOW_ OF_ 47,
SHADOW_ OF_ 45,
SHADOW_OF _ 43,
SHADOW_OF _56,
SHADOW_ OF _58,
SHADOW_ OF _60,
SHADOW_ OF _66,
SHADOW_ OF _64,
SHADOW_OF _62,

BURIED_OF _ 13
BURIED_OF _11,
BURIED_ OF _9,
BURIED_ OF _22,
BURIED_ OF _24,
BURIED_ OF _26,
BURIED_ OF _32,
BURIED_ OF _30,
BURIED_ OF _28,
BURIED_OF _37,
BURIED_ OF _39,
BURIED_OF _ 41,
BURIED_OF _ 47,
BURIED_OF _ 45,
BURIED_OF _ 43,
BURIED_ OF _56,
BURIED_ OF _58,
BURIED_OF _60,
BURIED_OF _66,
BURIED_ OF _64,
BURIED_ OF _62

These devices use 0 through 83 for the physical pins. Virtual pins begin at 84
and go on as required by the device. The MACH130 has 64 virtual pins, the
MACH230 has 128 virtual pins, and the MACH435 has 192 virtual pins.

MACH130
SHADOW_OF _3, SHADOW_ OF_ 4,
SHADOW_ OF _7, SHADOW_OF _8,
SHADOW_OF _12,SHADOW_OF _13,
SHADOW_OF _16,SHADOW_OF _17,
SHADOW_OF _ 40,SHADOW_OF _39,
SHADOW_OF _36,SHADOW_OF _35,
SHADOW_OF _31, SHADOW_OF _30,
SHADOW_OF _27, SHADOW_OF _26,
SHADOW_OF _ 45, SHADOW_OF _ 46,
SHADOW OF 49, SHADOW OF 50,
SHADOW=OF =54, SHADOW=OF=55,
SHADOW OF 58, SHADOW OF 59,
SHADOW=OF=82,SHADOW=OF=81,
SHADOW_OF _78,SHADOW_OF _77,
SHADOW_OF _73, SHADOW_OF _72,
SHADOW_OF _69, SHADOW_OF _68,

SHADOW_ OF _5,
SHADOW_OF _9,
SHADOW_OF _14,
SHADOW_OF _18,
SHADOW_OF _38,
SHADOW_ OF _34,
SHADOW_OF _29,
SHADOW_OF _25,
SHADOW_ OF_ 47,
SHADOW_OF _51,
SHADOW_ OF _56,
SHADOW_OF _60,
SHADOW_OF _80,
SHADOW_ OF _76,
SHADOW_ OF _71,
SHADOW_ OF _67,

SHADOW_ OF _6,
SHADOW_OF _10,
SHADOW_OF _15,
SHADOW_OF _19,
SHADOW_ OF _37,
SHADOW_OF _33,
SHADOW_ OF _28,
SHADOW_OF _24,
SHADOW_ OF_ 48,
SHADOW_OF _52,
SHADOW_ OF _57,
SHADOW_OF _61,
SHADOW_ OF _79,
SHADOW OF 75,
SHADOW=OF :)a,
SHADOW_ OF _66

Appendix D: AMO MACH Support 521

MACH230
SHADOW_ OF _3, BURIED_ OF _3,
SHADOW OF 5, BURIED_OF _5,
SHAoow=:oF =:1. BURIED_OF _7,
SHADOW_ OF _9, BURIED_OF _9,
SHADOW_ OF_ 19, BURIED_OF _ 19,
SHADOW_OF_17,BURIED_OF_17,
SHADOW_OF_15,BURIED_OF_15,
SHADOW_OF_13,BURIED_OF_13,
SHADOW_ OF _24, BURIED_OF _24,
SHADOW_OF _26, BURIED_OF _26,
SHADOW_ OF _28, BURIED_OF _28,
SHADOW_ OF _30, BURIED_OF _30,
SHADOW_OF _ 40, BURIED_ OF_ 40,
SHADOW_ OF _38, BURIED_ OF _38,
SHADOW_ OF _36, BURIED_ OF _36,
SHADOW_ OF _34, BURIED_ OF _34,
SHADOW_OF _ 45, BURIED_ OF_ 45,
SHADOW_OF _ 47, BURIED_OF _ 47,
SHADOW_OF _ 49, BURIED_ OF_ 49,
SHADOW_OF _51, BURIED_OF _51,
SHADOW_ OF _61, BURIED_ OF _61,
SHADOW_ OF _59, BURIED_OF _59,
SHADOW_ OF _57, BURIED_OF _57,
SHADOW_OF _55, BURIED_ OF _55,
SHADOW_OF _66, BURIED_OF _66,
SHADOW_OF _68, BURIED_ OF _68,
SHADOW_ OF _70, BURIED_ OF _70,
SHADOW_OF _72, BURIED_OF _72,
SHADOW_OF _82,BURIED_OF _82,
SHADOW_ OF _80, BURIED_OF _80,
SHADOW_OF _78, BURIED_OF _78,
SHADOW_OF _76, BURIED_OF _76,

MACH435
UNARY_OF _3,
UNARY_OF _7,
UNARY_OF _19,
UNARY_OF _15,
UNARY_OF _24,
UNARY_OF_28,
UNARY_OF _ 40,
UNARY_OF _36,
UNARY_OF_45,
UNARY_OF _ 49,
UNARY_OF _61,
UNARY_OF _57,
UNARY_OF _66,
UNARY_OF_70,
UNARY _OF _82,
UNARY_OF _78,

UNARY_ OF_ 4,
UNARY_OF _8,
UNARY_OF _18,
UNARY_OF _14,
UNARY_OF _25,
UNARY_ OF _29,
UNARY_OF _39,
UNARY_OF _35,
UNARY_ OF_ 46,
UNARY _OF _50,
UNARY_OF_60
UNARY_OF_56,
UNARY_OF _67,
UNARY_ OF _71,
UNARY OF 81,
UNARY=OF=77.

SHADOW_ OF_ 4,
SHADOW_ OF _6,
SHADOW_ OF _8,
SHADOW_OF_10,
SHADOW_OF_18,
SHADOW_ OF_ 16,
SHADOW_OF_14,
SHADOW_OF_12,
SHADOW_ OF _25,
SHADOW_OF _27,
SHADOW_ OF _29,
SHADOW_OF_31,
SHADOW_ OF _39,
SHADOW_ OF _37,
SHADOW_ OF _35,
SHADOW_ OF _33,
SHADOW_OF _ 46,
SHADOW_ OF_ 48,
SHADOW_ OF _50,
SHADOW_ OF _52,
SHADOW_ OF _60,
SHADOW_OF _58,
SHADOW_ OF _56,
SHADOW_ OF _54,
SHADOW_OF _67,
SHADOW_ OF _69,
SHADOW_ OF _71,
SHADOW_ OF _73,
SHADOW_ OF _81,
SHADOW_ OF _79,
SHADOW_ OF _77,
SHADOW_ OF _75,

UNARY_OF _5,
UNARY _OF _9,
UNARY_OF_17,
UNARY_OF_13,
UNARY_OF_26,
UNARY _OF _30,
UNARY_OF _38,
UNARY _OF _34,
UNARY_OF_47,
UNARY _OF _51,
UNARY_OF_59,
UNARY_OF_55,
UNARY_OF_68,
UNARY_OF_72,
UNARY _OF _80,
UNARY_ OF _76,

522 MACHXL Software User's Guide (Version 3.0)

BURIED_OF _ 4,
BURIED_OF _6,
BURIED_ OF _8,
BURIED_OF _10,
BURIED_OF _18,
BURIED_OF _16,
BURIED_OF _14,
BURIED_OF _12,
BURIED_OF _25,
BURIED_OF_27
BURIED_ OF _29,
BURIED_OF _31,
BURIED_OF _39,
BURIED.;,_ OF _37,
BURIED_OF _35,
BURIED_ OF _33,
BURIED_OF _ 46,
BURIED_OF _ 48,
BURIED_ OF _50,
BURIED_ OF _52,
BURIED_ OF _60,
BURIED_ OF _58,
BURIED_OF _56,
BURIED_ OF _54,
BURIED_OF _67,
BURIED_OF _69,
BURIED_ OF _71,
BURIED_OF _73,
BURIED_OF _81,
BURIED_OF _79,
BURIED_ OF _77,
BURIED_ OF _75

UNARY_OF_6,
UNARY_OF_10,
UNARY_OF _16,
UNARY_OF _12,
UNARY_Ol.:_27,
UNARY_OF_31,
UNARY_OF_37,
UNARY_OF_33,
UNARY_OF_48,
UNARY _OF _52,
UNARY_OF_58,
UNARY_OF_54,
UNARY_OF_69,
UNARY_OF_73,
UNARY_ OF _79,
UNARY_OF _75,

MACH435 (con't)
MACROCELL_AOO, MACROCELL_A01, MACROCELL_A02, MACROCELL_A03,
MACROCELL_A04, MACROCELL_A05, MACROCELL_A06, MACROCELL_A07,
MACROCELL_AOB, MACROCELL_A09, MACROCELL_A 10, MACROCELL_A11,
MACROCELL_A 12, MACROCELL_A 13, MACROCELL_A 14, MACROCELL_A 15,
MACROCELL_BOO, MACROCELL_B01, MACROCELL_B02, MACROCELL_B03,
MACROCELL_B04, MACROCELL_B05, MACROCELL_B06, MACROCELL_B07,
MACROCELL_BOB, MACROCELL_B09, MACROCELL_B10, MACROCELL_B11,
MACROCELL_B12, MACROCELL_B13, MACROCELL_B14, MACROCELL_B15,
MACROCELL_ COO, MACROCELL_ C01, MACROCELL_ C02, MACROCELL_C03,
MACROCELL_C04, MACROCELL_ C05, MACROCELL_C06, MACROCELL_C07,
MACROCELL_COB, MACROCELL_C09, MACROCELL_C10, MACROCELL~C11,
MACROCELL_ C12, MACROCELL_C13, MACROCELL_C14, MACROCELL_C15,
MACROCELL_DOO, MACROCELL_D01, MACROCELL_D02, MACROCELL_D03,
MACROCELL_D04, MACROCELL_D05, MACROCELL_D06, MACROCELL_D07,
MACROCELL_DOB, MACROCELL_D09, MACROCELL_D10, MACROCELL_D11,
MACROCELL_D12, MACROCELL_D13, MACROCELL_D14, MACROCELL_D15,
MACROCELL_EOO, MACROCELL_E01, MACROCELL_E02, MACROCELL_E03,
MACROCELL_E04, MACROCELL_E05, MACROCELL_E06, MACROCELL_E07,
MACROCELL_EOB, MACROCELL_E09, MACROCELL_E10, MACROCELL_E11,
MACROCELL_E12, MACROCELL_E13, MACROCELL_E14, MACROCELL_E15,
MACROCELL_FOO, MACROCELL_F01, MACROCELL_F02, MACROCELL_F03,
MACROCELL_F04, MACROCELL_F05, MACROCELL_F06, MACROCELL_F07,
MACROCELL_FOB, MACROCELL_F09, MACROCELL_F10, MACROCELL_F11,
MACROCELL_F12, MACROCELL_F13, MACROCELL_F14, MACROCELL_F15,
MACROCELL_ GOO, MACROCELL_G01, MACROCELL_ G02, MACROCELL_G03,
MACROCELL_ G04, MACROCELL_ G05, MACROCELL_ G06, MACROCELL_G07,
MACROCELL_ GOB, MACROCELL_ G09, MACROCELL_G10, MACROCELL_G11,
MACROCELL_ G12, MACROCELL_ G13, MACROCELL_ G14, MACROCELL_ G15,
MACROCELL_HOO, MACROCELL_H01, MACROCELL_H02 MACROCELL_H03,
MACROCELL_H04, MACROCELL_H05, MACROCELL_H06, MACROCELL_H07,
MACROCELL_HOB, MACROCELL_H09, MACROCELL_H10, MACROCELL_H11,
MACROCELL_H12, MACROCELL_H13, MACROCELL_H14, MACROCELL_H15,

MACH465
UNARY_OF _190, UNARY _OF_ 191, UNARY_OF _192, UNARY_OF _193,
UNARY_OF_194, UNARY_ OF_ 195, UNARY_OF _196, UNARY_OF _197,
UNARY_OF _200, UNARY_OF _201, UNARY_ OF _202, UNARY_OF _203,
UNARY_OF _204, UNARY_OF _205, UNARY_ OF _206, UNARY _OF _207,
UNARY_OF_20, UNARY_OF_19, UNARY_OF_18, UNARY_OF _17,
UNARY_~~-16, UNARY_OF _15, UNARY_OF _14, UNARY_OF _13,
UNARY_O _10, UNARY_OF _9, UNARY_ OF _8, UNARY _OF _7,
UNARY_OF_6, UNARY _OF _5, UNARY_ OF_ 4, UNARY_OF_3,
UNARY_OF _32, UNARY_ OF _33, UNARY_OF_34, UNARY_OF _35,
UNARY_ OF _36, UNARY _OF _37, UNARY_OF_38, UNARY_OF_39,
UNARY_OF_42, UNARY_OF _ 43, UNARY_ OF_ 44, UNARY_OF_45,
UNARY _OF_ 46, UNARY_OF_47, UNARY_ OF_ 48, UNARY_OF_49,
UNARY_OF_71, UNARY_OF _70, UNARY_OF _69, UNARY_OF_68,
UNARY _OF _67, UNARY_OF _66, UNARY_OF _65, UNARY_OF_64,
UNARY_OF_61, UNARY_OF_60, UNARY_OF_59, UNARY_OF_58,
UNARY _OF _57, UNARY_ OF _56, UNARY_ OF _55, UNARY_OF _54,

Appendix D: AMO MACH Support 523

MACH465 (con't)
UNARY_OF _86,
UNARY_OF _90,
UNARY_OF _96,
UNARY_OF _100,
UNARY_OF _124,
UNARY_OF _120,
UNARY_OF_114,
UNARY_OF_110,
UNARY_OF_136,
UNARY_OF_140,
UNARY_OF _146,
UNARY_OF _150,
UNARY_OF _175,
UNARY_OF _171,
UNARY_OF _165,
UNARY_OF _161,
MACROCELL_AOO,
MACROCELL_A04,
MACROCELL_A08,
MACROCELL_A 12,
MACROCELL_BOO,
MACROCELL_B04,
MACROCELL_B08,
MACROCELL_B12,
MACROCELL_C15,
MACROCELL_C11,
MACROCELL_ C07,
MACROCELL_ C03,
MACROCELL_D15,
MACROCELL_D11,
MACROCELL_D07,
MACROCELL_D03,
MACROCELL_EOO,
MACROCELL_E04,
MACROCELL_E08,
MACROCELL_E12,
MACROCELL_FOO,
MACROCELL_F04,
MACROCELL_F08,
MACROCELL_F12,
MACROCELL_ G15,
MACROCELL_G11,
MACROCELL_G07,
MACROCELL_ G03,
MACROCELL_H15,
MACROCELL_H11,
MACROCELL_H07,
MACROCELL_H03,
MACROCELL_IOO,
MACROCELL_I04,

UNARY_OF_87,
UNARY_OF_91,
UNARY_OF_97,
UNARY_OF _101,
UNARY_OF _123,
UNARY_OF_119,
UNARY_OF _113,
UNARY_OF_109,
UNARY_OF_137,
UNARY _OF_ 141,
UNARY_OF _147,
UNARY_OF _151,
UNARY_OF_174,
UNARY_OF _170,
UNARY_OF _164,
UNARY_OF _160,
MACROCELL_A01,
MACROCELL_A05,
MACROCELL_A09,
MACROCELL_A 13,
MACROCELL_B01,
MACROCELL_B05,
MACROCELL_B09,
MACROCELL_B13,
MACROCELL_C14,
MACROCELL_C10,
MACROCELL_C06,
MACROCELL_ C02,
MACROCELL_D14,
MACROCELL_D10,
MACROCELL_D06,
MACROCELL_D02,
MACROCELL_E01,
MACROCELL_E05,
MACROCELL_E09,
MACROCELL_E13,
MACROCELL_F01,
MACROCELL_F05,
MACROCELL_F09,
MACROCELL_F13,
MACROCELL_ G14,
MACROCELL_G10,
MACROCELL_ G06,
MACROCELL_ G02,
MACROCELL_H14,
MACROCELL_H10,
MACROCELL_H06,
MACROCELL_H02,
MACROCELL_I01,
MACROCELL_105,

UNARY_OF_88, ·
UNARY_OF _92,
UNARY_ OF _98,
UNARY_OF _102,
UNARY_OF _122,
UNARY_OF _118,
UNARY_OF _ 112,
UNARY_OF _108,
UNARY_OF _138,
UNARY_OF_142,
UNARY_OF_148,
UNARY_OF_152,
UNARY_OF_173,
UNARY_ OF_ 169,
UNARY_OF_163,
UNARY_OF _159,
MACROCELL_A02,
MACROCELL_A06,
MACROCELL_A 10,
MACROCELL_A14,
MACROCELL_B02,
MACROCELL_B06,
MACROCELL_B10,
MACROCELL_B14,
MACROCELL_C13,
MACROCELL_ C09,
MACROCELL_C05,
MACROCELL_C01,
MACROCELL_D13,
MACROCELL_D09,
MACROCELL_D05,
MACROCELL_D01,
MACROCELL_E02,
MACROCELL_E06,
MACROCELL_E10,
MACROCELL_E14,
MACROCELL_F02,
MACROCELL_F06,
MACROCELL_F10,
MACROCELL_F14,
MACROCELL_ G13,
MACROCELL_ G09,
MACROCELL_ G05,
MACROCELL_G01,
MACROCELL_H13,
MACROCELL_H09,
MACROCELL_H05,
MACROCELL_H01,
MACROCELL_102,
MACROCELL_106,

524 MACHXL Software User's Gulde (Version 3.0)

UNARY_ OF _89,
UNARY_OF _93,
UNARY_OF _99,
UNARY_OF _103,
UNARY.:._OF _121,
UNARY_OF _117,
UNARY_OF _111,
UNARY_OF_107,
UNARY_OF _139,
UNARY_OF_143,
UNARY_OF_149,
UNARY_OF _153,
UNARY_OF_172,
UNARY_OF _168,
UNARY_OF_162,
UNARY_OF_158,
MACROCELL_A03,
MACROCELL_A07,
MACROCELL_A11,
MACROCELL_A 15,
MACROCELL_B03,
MACROCELL_B07,
MACROCELL_B11,
MACROCELL 815,
MACROCELL-C12,
MACROCELL=C08,
MACROCELL_C04,
MACROCELL_COO,
MACROCELL_D12,
MACROCELL_D08,
MACROCELL_D04,
MACROCELL DOO,
MACROCELL=E03,
MACROCELL_E07,
MACROCELL_E11,
MACROCELL_E15,
MACROCELL_F03,
MACROCELL_F07,
MACROCELL_F11,
MACROCELL_F15,
MACROCELL_G12,
MACROCELL_ G08,
MACROCELL_G04,
MACROCELL_ GOO,
MACROCELL H12,
MACROCELL=H08,
MACROCELL_H04,
MACROCELL_HOO,
MACROCELL_103,
MACROCELL_107,

MACH465 (con't)
MACROCELL_108,
MACROCELL_112,
MACROCELL_JOO,
MACROCELL_J04,
MACROCELL_J08,
MACROCELL_J12,
MACROCELL_K15,
MACROCELL_K11,
MACROCELL_KO?,
MACROCELL_K03,
MACROCELL_L 15,
MACROCELL_L 11,
MACROCELL_LO?,
MACROCELL_L03,
MACROCELL_MOO,
MACROCELL_M04,
MACROCELL_M08,
MACROCELL_M12,
MACROCELL_NOO,
MACROCELL_N04,
MACROCELL_N08,
MACROCELL_N12,
MACROCELL_015,
MACROCELL_ 011,
MACROCELL_ 007,
MACROCELL_003,
MACROCELL_P15,
MACROCELL_P11,
MACROCELL_P07,
MACROCELL_P03,

MACROCELL_I09,
MACROCELL_l13,
MACROCELL_J01,
MACROCELL_J05,
MACROCELL_J09,
MACROCELL_J13,
MACROCELL_K14,
MACROCELL_K10,
MACROCELL_K06,
MACROCELL_K02,
MACROCELL_L 14,
MACROCELL_L 10,
MACROCELL_L06,
MACROCELL_L02,
MACROCELL_M01,
MACROCELL_M05,
MACROCELL_M09,
MACROCELL_M13,
MACROCELL_N01,
MACROCELL_N05,
MACROCELL_N09,
MACROCELL_N13,
MACROCELL_014,
MACROCELL_010,
MACROCELL_006,
MACROCELL_002,
MACROCELL_P14,
MACROCELL_P10,
MACROCELL_P06,
MACROCELL_P02,

MACROCELL_l10,
MACROCELL_l14,
MACROCELL_J02,
MACROCELL_J06,
MACROCELL_J10,
MACROCELL_J14,
MACROCELL_K13,
MACROCELL_K09,
MACROCELL_K05,
MACROCELL_K01,
MACROCELL_L 13,
MACROCELL_L09,
MACROCELL_L05,
MACROCELL_L01,
MACROCELL_M02,
MACROCELL_M06,
MACROCELL_M10,
MACROCELL_M14,
MACROCELL_N02,
MACROCELL_N06,
MACROCELL_N10,
MACROCELL_N14,
MACROCELL_ 013,
MACROCELL_009,
MACROCELL_ 005,
MACROCELL_ 001,
MACROCELL_P13,
MACROCELL_P09,
MACROCELL_P05,
MACROCELL_P01,

..

MACROCELL_l11,
MACROCELL_l15,
MACROCELL_J03,
MACROCELL_J07,
MACROCELL_J11,
MACROCELL_J15,
MACROCELL_K12,
MACROCELL_K08,
MACROCELL_K04,
MACROCELL_KOO,
MACROCELL_L 12,
MACROCELL_L08,
MACROCELL_L04,
MACROCELL_LOO,
MACROCELL_M03,
MACROCELL_MO?,
MACROCELL_M11,
MACROCELL_M15,
MACROCELL_N03,
MACROCELL_N07,
MACROCELL_N11,
MACROCELL_N15,
MACROCELL_012,
MACROCELL_008,
MACROCELL_004,
MACROCELL_ 000,
MACROCELL_P12,
MACROCELL_P08,
MACROCELL_P04,
MACROCELL_POO

Appendix D: AMO MACH Support 525

Application Note:

Fuse Commands for Forcing Outputs to be
Driven

Devices: MACH 1xx/2xx
The following table gives the fuse commands for the .pi file to force the named
pin to be driven.

MACH110 OE ASSERTION
Pin02: INTACT 6166; BLOWN 6167;
Pin03: INTACT 6174; BLOWN 6175;
Pin04: INTACT 6182; BLOWN 6183;
Pin05: INTACT 6190; BLOWN 6191;
Pin06: INTACT 6198; BLOWN 6199;
Pin07: INTACT 6206 ; BLOWN 6207;
Pin08: INTACT 6214; BLOWN 6215;
Pin09: INTACT 6222 ; BLOWN 6223;
Pin 14: INTACT 6230; BLOWN 6231;
Pin 15: INTACT 6238; BLOWN 6239;
Pin 16: INTACT 6246; BLOWN 6247;
Pin 17: INTACT 6254; BLOWN 6255;
Pin 18: INTACT 6262; BLOWN 6263;
Pin 19: INTACT 6270; BLOWN 6271;
Pin20: INTACT 6278; BLOWN 6279;
Pin 21: INTACT 6286; BLOWN 6287;
Pin24: INTACT 6294; BLOWN 6295;
Pin25: INTACT 6302; BLOWN 6303;
Pin26: INTACT 6310; BLOWN 6311;
Pin27: INTACT 6318; BLOWN 6319;
Pin28: INTACT6326; BLOWN 6327;
Pin29: INTACT 6334; BLOWN 6335;
Pin30: INTACT 6342; BLOWN 6343;
Pin 31: INTACT 6350 ; BLOWN 6351;
Pin36: INTACT 6358; BLOWN 6359;
Pin37: INTACT 6366; BLOWN 6367;

526 MACHXL Software User's Guide (Version 3.0)

Pin38: INTACT 6374; BLOWN 6375;
Pin39: INTACT 6382 ; BLOWN 6383;
Pin40: INTACT 6390 ; BLOWN 6391;
Pin 41: INTACT 6398; BLOWN 6399;
Pin42: INTACT 6406 ; BLOWN 6407;
Pin43: INTACT 6414; BLOWN 6415;

MACH120 OE ASSERTION
Pin02: INTACT 2918; BLOWN 2919;
Pin03: INTACT 2927; BLOWN 2928;
Pin04: INTACT2936; BLOWN 2937;
Pin05: INTACT 2945; BLOWN 2946;
Pin 06: INTACT 2954; BLOWN 2955;
Pin07: INTACT 2963; BLOWN 2964;
Pin09: INTACT 2972 ; BLOWN 2973;
Pin 10: INTACT 2981 ; BLOWN 2982;
Pin 11: INTACT 2990 ; BLOWN 2991;
Pin 12: INTACT 2999; BLOWN 3000;
Pin 13: INTACT 3008 ; BLOWN 3009;
Pin 14: INTACT 3017; BLOWN 3018;
Pin 21: INTACT 6037; BLOWN 6038;
Pin22: INTACT 6028; BLOWN 6029;
Pin23: INTACT 6019; BLOWN 6020;
Pin24: INTACT 6010; BLOWN 6011;
Pin25: INTACT 6001; BLOWN 6002;
Pin26: INTACT 5992; BLOWN 5993;
Pin28: INTACT 5983; BLOWN 5984;
Pin29: INTACT 5974; BLOWN 5975;
Pin30: INTACT 5965; BLOWN 5966;
Pin 31: INTACT 5956; BLOWN 5957;
Pin32: INTACT 5947; BLOWN 5948;
Pin33: INTACT 5938; BLOWN 5939;
Pin36: INTACT 8958; BLOWN 8959;
Pin37: INTACT 8967; BLOWN 8968;
Pin38: INTACT 8976; BLOWN 8977;
Pin39: INTACT 8985; BLOWN 8986;
Pin40: INTACT 8994 ; BLOWN 8995;
Pin 41: INTACT 9003; BLOWN 9004;
Pin43: INTACT 9012 ; BLOWN 9013;
Pin44: INTACT 9021 ; BLOWN 9022;
Pin45: INTACT 9030; BLOWN 9031;

Appendix D: AMO MACH Support 527

MACH120 OE ASSERTION (con't)
Pin 46: INTACT 9039 ;
Pin 47: INTACT 9048 ;
Pin 48: INTACT 9057 ;
Pin 55: INTACT 12077;
Pin 56: INTACT 12068;
Pin 57: INTACT 12059;
Pin 58: INTACT 12050;
Pin 59: INTACT 12041 ;
Pin 60: INTACT 12032;
Pin 62: INTACT 12023;
Pin 63: INTACT 12014;
Pin 64: INTACT 12005;
Pin 65: INTACT 11996 ;
Pin 66: INTACT 11987;
Pin 67: INTACT 11978;

MACH130 OE ASSERTION
Pin 03: INTACT 3750 ;
Pin 04: INTACT 3759 ;
Pin 05: INTACT 3768 ;
Pin 06: INTACT 3777 ;
Pin 07: INTACT 3786 ;
Pin 08: INTACT 3795 ;
Pin 09: INTACT 3804 ;
Pin 10: INTACT 3813;
Pin 12: INTACT 3822;
Pin 13: INTACT 3831 ;
Pin 14: INTACT 3840;
Pin 15: INTACT 3849;
Pin 16: INTACT 3858;
Pin 17: INTACT 3867;
Pin 18: INTACT 3876 ;
Pin 19: INTACT 3885 ;
Pin 24: INTACT 7773;
Pin 25: INTACT 7764 ;
Pin 26: INTACT 7755;
Pin 27: INTACT 7746 ;
Pin 28: INTACT 7737;
Pin 29: INTACT 7728 ;
Pin 30: INTACT 7719;

BLOWN 9040;
BLOWN 9049;
BLOWN 9058;
BLOWN 12078 ;
BLOWN 12069 ;
BLOWN 12060 ;
BLOWN 12051 ;
BLOWN 12042 ;
BLOWN 12033 ;
BLOWN 12024 ; ·
BLOWN 12015 ;
BLOWN 12006 ;
BLOWN 11997 ;
BLOWN 11988 ;
BLOWN 11979 ;

BLOWN3751;
BLOWN3760;
BLOWN3769;
BLOWN 3778;
BLOWN3787;
BLOWN 3796;
BLOWN3805;
BLOWN3814;
BLOWN3823;
BLOWN3832;
BLOWN3841;
BLOWN3850;
BLOWN3859;
BLOWN3868;
BLOWN 3877;
BLOWN 3886;
BLOWN 7774;
BLOWN 7765;
BLOWN 7756;
BLOWN 7747;
BLOWN 7738;
BLOWN 7729;
BLOWN7720;

528 MACHXL Software User's Guide (Version 3.0)

MACH130 OE ASSERTION (con't)
Pin 31: INTACT 7710; BLOWN 7711;
Pin33: INTACT 7701 ; BLOWN 7702;
Pin34: INTACT 7692; BLOWN 7693;
Pin35: INTACT 7683; BLOWN 7684;
Pin36: INTACT 7674; BLOWN 7675;
Pin37: INTACT 7665; BLOWN 7666;
Pin38: INTACT 7656 ; BLOWN 7657;
Pin39: INTACT 7647; BLOWN 7648;
Pin40: INTACT 7638; BLOWN 7639;
Pin45: INTACT 11526; BLOWN 11527 ;
Pin46: INTACT 11535; BLOWN 11536 ;
Pin47: INTACT 11544; BLOWN 11545 ;
Pin48: INTACT 11553; BLOWN 11554 ;
Pin49: INTACT 11562; BLOWN 11563 ;
Pin 50: INTACT 11571; BLOWN 11572 ;
Pin 51: INTACT 11580; BLOWN 11581 ;
Pin 52: INTACT 11589; BLOWN 11590 ;
Pin54: INTACT 11598; BLOWN 11599 ;
Pin55: INTACT 11607; BLOWN 11608 ;
Pin56: INTACT 11616; BLOWN 11617;
Pin 57: INTACT 11625; BLOWN 11626 ;
Pin 58: INTACT 11634; BLOWN 11635 ;
Pin59: INTACT 11643; BLOWN 11644 ;
Pin60: INTACT 11652; BLOWN 11653 ;
Pin 61: INTACT 11661; BLOWN 11662 ;
Pin 66: INTACT 15549; BLOWN 15550 ;
Pin67: INTACT 15540; BLOWN 15541 ;
Pin 68: INTACT 15531 ; BLOWN 15532 ;
Pin69: INTACT 15522; BLOWN 15523 ;
Pin 70: INTACT 15513; BLOWN 15514;
Pin 71: INTACT 15504; BLOWN 15505 ;
Pin72: INTACT 15495 ; BLOWN 15496 ;
Pin73: INTACT 15486; BLOWN 15487 ;
Pin 75: INTACT 15477; BLOWN 15478;
Pin76: INTACT 15468; BLOWN 15469 ;
Pin77: INTACT 15459; BLOWN 15460 ;
Pin78: INTACT 15450; BLOWN 15451 ;
Pin 79: INTACT15441; BLOWN 15442 ;
Pin80: INTACT 15432; BLOWN 15433 ;
Pin 81: INTACT 15423; BLOWN 15424 ;

Appendix D: AMO MACH Support 529

MACH130 OE ASSERTION (con't)
Pin 82: INTACT 15414;

MACH21 O OE ASSERTION
Pin 02: INTACT 3086 ;
Pin 03: INTACT 3102;
Pin 04: INTACT 3118 ;
Pin 05: INTACT 3134;
Pin 06: INTACT 3150;
Pin 07: INTACT 3166;
Pin 08: INTACT 3182;
Pin 09: INTACT 3198;
Pin 14: INTACT 6406;
Pin 15: INTACT6390;
Pin 16: INTACT6374;
Pin 17: INTACT6358;
Pin 18: INTACT 6342 ;
Pin 19: INTACT 6326;
Pin 20: INTACT 6310;
Pin 21: INTACT 6294 ;
Pin 24: INTACT 9502 ;
Pin 25: INTACT 9518;
Pin 26: INTACT 9534 ;
Pin 27: INTACT 9550 ;
Pin 28: INTACT 9566 ;
Pin 29: INTACT 9582 ;
Pin 30: INTACT 9598 ;
Pin 31: INTACT 9614;
Pin 36: INTACT 12822;
Pin 37: INTACT 12806;
Pin 38: INTACT 12790;
Pin 39: INTACT 12774;
Pin 40: INTACT 12758;
Pin 41: INTACT 12742;
Pin 42: INTACT 12726;
Pin 43: INTACT 12710;

MACH215 OE ASSERTION
Pin 02: BLOWN 88 .. 131;
Pin 03: BLOWN 440 .. 483 ;
Pin 04: · BLOWN 792 .. 835 ;

BLOWN 15415;

BLOWN3087;
BLOWN3103;
BLOWN3119;
BLOWN3135;
BLOWN3151;
BLOWN 3167;
BLOWN 3183;
BLOWN 3199;
BLOWN 6407;
BLOWN 6391;
BLOWN 6375;
BLOWN 6359;
BLOWN 6343;
BLOWN6327;
BLOWN 6311;
BLOWN 6295;
BLOWN 9503;
BLOWN 9519;
BLOWN 9535;
BLOWN 9551;
BLOWN 9567;
BLOWN 9583;
BLOWN 9599;
BLOWN 9615;
BLOWN 12823 ;
BLOWN 12807 ;
BLOWN 12791 ;
BLOWN 12775 ;
BLOWN 12759 ;
BLOWN 12743;
BLOWN 12727 ;
BLOWN 12711 ;

530 MACHXL Software User's Gulde (Version 3.0)

MACH215 OE ASSERTION (con't)
Pin05:
Pin06:
Pin07:
Pin08:
Pin09:
Pin 14:
Pin 15:
Pin 16:
Pin 17:
Pin 18:
Pin 19:
Pin20:
Pin 21:
Pin24:
Pin25:
Pin26:
Pin27:
Pin28:
Pin29:
Pin30:
Pin 31:
Pin36:
Pin37:
Pin38:
Pin39:
Pin40:
Pin 41:
Pin42:
Pin43:

BLOWN 1144 .. 1187;
BLOWN 1496 .. 1539 ;
BLOWN 1848 .. 1891 ;
BLOWN 2200 .. 2243 ;
BLOWN 2552 .. 2595 ;
BLOWN 5536 .. 5579 ;
BLOWN 5184 .. 5227;
BLOWN 4832 .. 4875 ;
BLOWN 4480 .. 4523 ;
BLOWN 4128 .. 4171 ;
BLOWN 3776 .. 3819 ;
BLOWN 3424 .. 3467 ;
BLOWN 3072 .. 3115 ;
BLOWN 6056 .. 6099 ;
BLOWN 6408 .. 6451 ;
BLOWN 6760 .. 6803 ;
BLOWN 7112 .. 7155;
BLOWN 7464 .. 7507;
BLOWN 7816 .. 7859 ;
BLOWN 8168 .. 8211 ;
BLOWN 8520 .. 8563 ;
BLOWN 11504 .. 11547;
BLOWN 11152 .. 11195 ;
BLOWN 10800 .. 10843 ;
BLOWN 10448 .. 10491 ;
BLOWN 10096 .. 10139 ;
BLOWN 9744 .. 9787 ;
BLOWN 9392 .. 9435 ;
BLOWN 9040 .. 9083 ;

MACH220 OE ASSERTION
Pin 02: INTACT 2814;
Pin 03: INTACT 2830;
Pin 04: INTACT 2846;
Pin 05: INTACT 2862;
Pin 06: INTACT 2878;
Pin 07: INTACT 2894;
Pin 09: INTACT 5798;
Pin 10: INTACT 5782;
Pin 11: INTACT 5766 ;

BLOWN 2815;
BLOWN 2831;
BLOWN 2847;
BLOWN 2863;
BLOWN 2879;
BLOWN 2895;
BLOWN 5799;
BLOWN 5783;
BLOWN 5767;

Appendix D: AMO MACH Support 531

MACH220 OE ASSERTION (con't)
Pin 12: INTACT 5750; BLOWN 5751;
Pin 13: INTACT 5734; BLOWN 5735;
Pin 14: INTACT 5718; BLOWN 5719;
Pin 21: INTACT 8622; BLOWN 8623;
Pin22: INTACT 8638; BLOWN 8639;
Pin23: INTACT 8654 ; BLOWN 8655;
Pin24: INTACT 8670 ; BLOWN 8671;
Pin25: INTACT 8686; BLOWN 8687;
Pin26: INTACT 8702 ; BLOWN 8703;
Pin28: INTACT 11606; BLOWN 11607 ;
Pin29: INTACT 11590; BLOWN 11591 ;
Pin30: INTACT 11574; BLOWN 11575 ;
Pin 31: INTACT 11558; BLOWN 11559 ;
Pin 32: INTACT 11542; BLOWN 11543 ;
Pin 33: INTACT 11526; BLOWN 11527 ;
Pin36: INTACT 14430; BLOWN 14431 ;
Pin37: INTACT 14446; BLOWN 14447;
Pin38: INTACT 14462; BLOWN 14463 ;
Pin39: INTACT 14478; BLOWN 14479;
Pin40: INTACT 14494; BLOWN 14495 ;
Pin 41: INTACT 14510; BLOWN 14511 ;
Pin43: INTACT 17414; BLOWN 17415;
Pin44: INTACT 17398; BLOWN 17399 ;
Pin45: INTACT 17382; BLOWN 17383 ;
Pin46: INTACT 17366; BLOWN 17367 ;
Pin47: INTACT 17350; BLOWN 17351 ;
Pin48: INTACT 17334; BLOWN 17335 ;
Pin 55: INTACT 20238; BLOWN 20239 ;
Pin 56: INTACT 20254; BLOWN 20255 ;
Pin 57: INTACT 20270; BLOWN 20271 ;
Pin 58: INTACT 20286; BLOWN 20287 ;
Pin 59: INTACT 20302; BLOWN 20303 ;
Pin 60: INTACT 20318; BLOWN 20319;
Pin 62: INTACT 23222; BLOWN 23223 ;
Pin 63: INTACT 23206; BLOWN 23207 ;
Pin 64: INTACT 23190; BLOWN 23191 ;
Pin 65: INTACT 23174; BLOWN 23175 ;
Pin 66: INTACT 23158; BLOWN 23159;
Pin 67: INTACT 23142; BLOWN 23143 ;

532 MACHXL Software User's Guide (Version 3.0)

MACH230 OE ASSERTION
Pin03: INTACT 3646 ; BLOWN3647;
Pin04: INTACT 3662 ; BLOWN3663;
Pin05: INTACT 3678 ; BLOWN3679;
Pin06: INTACT 3694 ; BLOWN 3695;
Pin07: INTACT 371 O ; BLOWN 3711;
Pin08: INTACT 3726 ; BLOWN3727;
Pin09: INTACT 3742; BLOWN3743;
Pin 10: INTACT 3758 ; BLOWN3759;
Pin 12: INTACT 7526 ; BLOWN 7527;
Pin 13: INTACT 7510 ; . BLOWN 7511 ;
Pin 14: INTACT 7494 ; BLOWN 7495;
Pin 15: INTACT 7478 ; BLOWN 7479;
Pin 16: INTACT 7462 ; BLOWN 7463;
Pin 17: INTACT 7446 ; BLOWN 7447;
Pin 18: INTACT 7430 ; BLOWN 7431;
Pin 19: INTACT 7414; BLOWN 7415;
Pin24: INTACT 11182; BLOWN 11183;
Pin25: INTACT 11198; BLOWN 11199;
Pin26: INTACT 11214; BLOWN 11215;
Pin27: INTACT 11230; BLOWN 11231 ;
Pin28: INTACT 11246; BLOWN 11247;
Pin29: INTACT 11262; BLOWN 11263 ;
Pin30: INTACT 11278; BLOWN 11279 ;
Pin31: INTACT 11294; BLOWN 11295 ;
Pin33: INTACT 15062; BLOWN 15063 ;
Pin34: INTACT 15046; BLOWN 15047 ;
Pin35: INTACT 15030; BLOWN 15031 ;
Pin36: INTACT 15014; BLOWN 15015 ;
Pin37: INTACT 14998; BLOWN 14999 ;
Pin38: INTACT 14982; BLOWN 14983 ;
Pin39: INTACT 14966; BLOWN 14967 ;
Pin40: INTACT 14950; BLOWN 14951 ;
Pin45: INTACT 18718; BLOWN 18719 ;
Pin46: INTACT 18734; BLOWN 18735 ;
Pin47: INTACT 18750; BLOWN 18751 ;
Pin48: INTACT 18766; BLOWN 18767 ;
Pin49: INTACT 18782; BLOWN 18783 ;
Pin50: INTACT 18798; BLOWN 18799 ;
Pin 51: INTACT 18814; BLOWN 18815 ;
Pin52: INTACT 18830; BLOWN 18831 ;

Appendix D: AMO MACH Support 533

MACH230 OE ASSERTION (con't)
Pin54: INTACT 22598 ; BLOWN 22599 ;
Pin55: INTACT 22582 ; BLOWN 22583 ;
Pin56: INTACT 22566; BLOWN 22567 ;
Pin57: INTACT 22550; BLOWN 22551;
Pin58: INTACT 22534 ; BLOWN 22535 ;
Pin59: INTACT 22518; BLOWN 22519 ;
Pin60: INTACT 22502; BLOWN 22503 ;
Pin 61: INTACT 22486; BLOWN 22487 ;
Pin66: INTACT 26254; BLOWN 26255 ;
Pin67: INTACT 26270; BLOWN 26271 ;
Pin68: INTACT 26286; BLOWN 26287 ;
Pin 69: INTACT 26302; BLOWN 26303 ;
Pin70: INTACT 26318; BLOWN 26319;
Pin 71: INTACT 26334; BLOWN 26335 ;
Pin72: INTACT 26350; BLOWN 26351;
Pin73: INTACT 26366; BLOWN 26367 ;
Pin75: INTACT 30134; BLOWN 30135 ;
Pin76: INTACT 30118; BLOWN 30119 ;
Pin77: INTACT 30102; BLOWN 30103 ;
Pin 78: INTACT 30086; BLOWN 30087 ;
Pin 79: INTACT 30070; BLOWN 30071 ;
Pin80: INTACT 30054; BLOWN 30055 ;
Pin 81: INTACT 30038; BLOWN 30039 ;
Pin82: INTACT 30022; BLOWN 30023 ;

534 MACHXL Software User's Guide (Version 3.0)

Index

'

'FOOTPRINT, 240
'local macrocell', 481
'SYSTEM_TEST', 316, 318, 320, 322,

324, 327, 329, 331
'TEMPLATE, 236, 298, 304
'UNARY_OF_##, 484

*
*.dsl, 19
*.mpf, 19
*.pi, 15, 19
*.src, 19

.ajb, 166

.est (cost) file, 280

.est file, 287, 482

.doc file, 149, 276, 277

.log file, 25, 26, 34, 443, 459, 466, 483,
503,505

.npi file, 180, 234

.npi file to.pi file
copying, 180

.pi.file, 199, 245, 443, 451, 456, 460, 461,
462,463,464,468,482,483,486,489,
502,503,504,505,506,507,508,510,
514,515,516,526

.pi file examples, 235

.pi File Properties, 245

.pi File Structure, 202, 206

.pi File Syntax Rules, 203

.rpt (report) file, 27, 443, 468, 469, 470,
483,486,493,507,508

.stm file, 128, 129, 166, 273

[

[Sig], 480, 481

A

ABEL, 15, 19
ABEL Files (*.abl), 15, 19
Abort, 15, 26
About MACHXL, 16, 42
addition, 73, 76, 77, 82
All Files(*.*), 15, 19
All States, 37
AMD MACH, 259
AMD MACH Design Module, 295
AMD PLD Design Module, 290
Analyzing Test Vector Errors, 438, 444,

491
AND,47, 73, 74, 75, 76, 78, 131, 155,

161, 162, 169, 171
Apply, 16, 33
architecture, 31
architectures, 188, 189, 190
architecture-specific features, 192
arithmetic, 72, 73, 76, 131, 142, 154, 155
Arithmetic Operators, 71, 76

Index 1

Arrays, 51, 52, 53
elements, 82
Expressions, 71, 81
identifier, 53
reference, 72

assignable signals, 86, 109, 113
assignment operator, 80
assignment statements, 82, 85, 86
asterisks, 136
asychronous 442, 444, 448, 450, 452, 481,

488,493,494,518
clock, 481

asynchronous MACH, 442
asynchronous state machine, 93, 94, 95,

98, 101, 105
asynchronously reset, 96
authorization codes, 32
AUTO, 250
Auto-Demorganization, 9, 287
Automatic

Don't Care Generation, 9
Flip-Flop Synthesis, 9
fusemap generation, 4
partitioning, 185, 188, 189, 191, 192,

201, 239
modifying, 199

Automatically Simulate, 21, 23, 38, 39

B

behavioral language, 7, 44
bidirectional signals, 226
BIN, 47, 131, 135, 136
binary counter, 99, 100
binary operators, 72
BIPUT,47,52,55,56,57, 86,94,97,98,

109, 113, 226, 281

Index 2

Biput Signal Usage, 51, 56
bit oriented, 154, 155
block clock signals, 488
BLOCKMODE, 203, 219
BLOWN, 47, 202, 234
Boolean

equations, 7, 8
functions, 7 4
operations, 154

Build, 15, 16, 20, 22, 24, 26, 32, 33, 38
Build All, 15, 20
building blocks, l 08
BURIED

macrocell, 486
node,253
pins, 497

BURIED_OF_, 484, 497, 498, 499
BURIED_ OF_##, 484
BURIED_OF _xx, 253, 260

c
Cancel, 16, 33
CASE, 7, 9, 44, 47, 85, 86, 88, 89, 90, 91,

93, 102, 108, 113, 131, 134, 311, 323,
341,342,343,352,353,354,355,356,
357,362,363

CASE statements, 86
CE, 279
CLK, 278
Clock Assignments, 438, 469, 475
Clock Functions

MACH,448
Clock Resolution, 127, 132
CLOCK_BY_PIN, 203, 219, 227
CLOCK_BY_ROW, 203, 219, 227
CLOCK_ENABLED_BY, 47, 51, 66, 67

CLOCKED_BY, 47, 51, 55, 56, 57, 58,
62,63,64,65,66,67,69, 70, 85, 87,
93, 94, 95, 96, 97, 98, 99, 100, 101,
103, 105, 106, 333

CLOCKF, 47, 127, 131, 135, 136, 138,
141, 144, 145, 146, 150, 151, 153, 156,
157, 158, 159, 161, 162, 164

Clusters, 476, 477, 486, 508
COMB_OUT_REG_FB, 203, 227
combinatorial, 93, 94, 98, 146, 148, 167,

168, 171, 172,454,495
feedback, 183
Latches, 495

COMMENT,50
comment symbol("), 122
Comments, 49
COMMON_SET_PTERM, 203, 219
communication software, 272
COMP _OFF, 47, 120, 122, 202, 205
COMP _ON, 47, 120, 122, 202, 205
COMP ANY, 50, 276
Compile, 15, 22, 124
compiled source files, 118
compiler, 10, 20, 38, 90, 91, 93, 96, 97,

98,99, 100, 101, 120, 122, 124, 125
compiler options, 276
Compiler reduction, 277
Compiling, 8
complemented equations, 280
complex clock output, 450
complex device architectures, 286
complex functions, 108
conditional expressions, 285
constant expression, 72, 77
constants, 72, 75, 76
Constraints, 16, 28, 180, 182, 183, 184,

185, 188, 189, 192, 194, 196
control information, 61, 66

controlling constraints, 286
Controlling Node Collapsing, 177, 180
Controlling PLD Utilization, 245
Controlling the Size of Equations, 235
Copy npi to pi, 15, 25
cost (.est), 192, 194
criteria, 4
Cumulative Logging, 40
curly braces, 204
curly brackets, 121

D

D, 278
D flip flops, 9
D_FLOP, 47, 51, 55, 56, 62, 63, 70
D_LATCH, 47, 51, 62, 63, 64, 66
data equation, 450, 481, 486
date, 276
DEC, 47, 131, 135, 136, 153
Declaration modifiers, 61
declaration section, 129
declaration statements

simulator, 132
Declarations, 52
declaring a function, 111
Declaring a Procedure, 107, 109
DEFAULT, 47, 192, 202, 217, 228, 238,

482
device, 228
in a group, 217
ungrouped signals, 212

default.est, 287
default _info, 68
DEFAULT_TO, 47, 51, 68, 69, 70, 102,

103, 112, 117
Deleted Devices, 310

Index 3

DeMorgan equation, 182
DeMorgan Equations, 279
DEMORGAN_SYNTH, 47, 203, 207,

211,216,219,227,230,249
Design, 15, 19, 23
Design Conception, 437, 440, 441
design constraints, 11, 12
design entry modes, 7
design equations, 24, 33

optimizing, 179
Design Expression, 437, 440, 441, 442
Design Implementation, 437, 440, 441,

443
Design Integration, 437, 440, 445
Design Libraries, 23
design phase, 188
Design Synthesis Language, 43, 44, 46, 50
Design Synthesis Language (DSL), 7
Design Testing, 437, 440, 441, 444
design_name.ajb, 128, 166
dfsign_name.doc, 21, 26, 35, 38, 39, 276
design_name.err, 26
design_ name.log, 26, 40, 459
design_ name.pi, 190, 200
design_name.rpt, 468, 507
design_ name.src, 209
design_name.stm, 21, 23, 38, 128, 160,

166
designer, 276
DEVICE, 47, 190, 191, 192, 202, 212,

218,219,221,227,460,461,464,465,
466,468,470,482,483,487,502,503,
504,505,506,507,508,510,513,515,
516
without signal list, 240

device architectures, 4
device characteristics, 11
Device Footprints, 304

Index 4

device fusemaps
downloading, 272

device library, 13
device list, 192
Device Menu, 16, 27
device number, 469
Device Package, 28
device pinouts

specifying, 192
device programmer, 21, 23, 32, 39, 40,

272
connecting, 273

Device Properties, 218
Device Resource Utilization, 438, 469, 473
Device Scanner, 21, 23, 38
Device Section Specifications, 229
device solution, 272
device solutions, 13
Device specifications, 206
device support, 7
device template, 281
device-independence, 7
DEVICEs, 203
Devices With Unary Nodes, 253
DFF,438,478,486,489,490,508
directed partitioning, 185, 187, 188, 189,

190, 191, 192,201,239
mixing with automatic, 239

DISABLED_ONLY_FOR_TEST,47,
203,207,211,216,219,227,230,248

divide-by-four counter, 117
division, 73, 76
DLATCH, 486
D-Latch, 495
DO, 47, 127, 129, 131, 134, 135, 136,

141, 147, 148, 151, 153, 155, 156, 157,
158, 159, 161, 162, 164

Document File, 21, 38, 39

Documentation, 15, 16, 26, 32, 35
documentation file, 116

viewing, 282
DON'T CARE, 69, 112, 136, 186
Don't Care Condition, 71, 83
double quotes, 205
Downloading Fusemaps, 271, 272
DSL conventions, 43, 44, 45, 46, 48
DSL source file, 44, 45

E

ELSE,47, 87, 88, 89,90,91,92,93,99,
104, 106, 127, 131, 136, 141, 155, 157,
158, 164,321,323,326,328,330,334,
337,340,342,349,354,355,356

ELSIF, 47, 87, 88, 99, 131, 157, 158, 326,
333,338

embedded GROUPs, 218
enable equation, 248
ENABLED_BY, 47, 51, 56, 57, 59, 60,

66,67,68
Enables Used Only For Test, 248
END,47, 129, 130, 131, 135, 137, 138,

140, 141, 146, 148, 151, 152, 153, 155,
156, 157, 158, 159, 161, 162, 163, 164,
169, 170,202

END CASE, 88, 89
ENGINEER, 50
EQN, 278
equation categories, 280
equation extension

.doc file, 277
Equation Optimization

AMO MACH, 262
equation placement, 9
Equation Reduction Method, 15, 24, 33

equation synthesis, 210
error checking, 124
Errors in Compilation, 123, 125
Espresso, 10, 24, 25, 33, 34, 186
Espresso Exact, 10, 24, 33, 186
evaluation in an expression, 72
Examples Using the .pi File, 235
exclusive-OR, 181, 183
exclusive-ORs, 10
expression, 109, 111, 112, 113
Expression shorthand, 7 4
expression shorthand (logical), 73
expressions, 72, 74, 75, 76, 77, 109, 110,

113
simulator, 133

extension, file, 18

F

FffHEN/ELSE, 9
Factoring, 177, 186
Failure Disclaimers, 438, 469, 470
FAMILY, 193
Fanout, 480, 481
Feedback,478,480,481
Feedback [Sig], 481
Feedback Src, 481
feedback unary, 252
FF_SYNTH,47,203,227,249
FF _SYNTH OFF, 489
File Menu, 15, 18
filename. j 1, 272
filename.ajb, 124
filename.sim, 128
filename.src, 124, 125
final reduction, 179, 186
final reduction algorithm, 186

Index 5

Fit equations, 280
FIT_AS_OUTPUT, 203, 207, 211, 216,

219,227,230,246
FIT_\VITlf,47,203,211,216,227,247
Fitter, 15, 21, 23, 27, 38, 39
Fitting Asynchronous Functions

MACH,452
fitting signals together, 247
Fitting the Design into One Device, 237
FIXED, 47, 203
flip-flop type, 61, 62, 63, 64, 69, 70
Flip-Flop Types, 51, 62, 185
FLOAT_NODES, 203, 219, 230, 266,

507
FLOP, 278
FLOP.K, 278
FLOP.R, 278
FLOP.T, 278
FMAX, 194, 195
FOOTPRINT, 47, 220, 237
FOR, 47, 127, 129, 131, 134, 136, 141,

147, 148, 151, 153, 155, 156, 157, 158,
161, 162, 163, 164

FORCE_INTERNAL_FB, 203, 219, 227,
230,267

Forcing Outputs Driven, 439, 514
Forcing Outputs Floating, 439, 515
function, 45, 47, 52, 53, 70, 344, 347,

348,349,350,351
simulating, 129, 131, 142, 151, 152

function descriptions, 53
function invocation, 72
Function return values, 112
functional description, 44
functional simulator, 8, 21, 37, 38
functions, 8, 107, 108, 109, 111, 114, 118,

125, 128, 130, 284
Fuse Mapper, 21, 23, 39

Index 6

fused flip-flops, 178
Fuse-Level Programming Control, 233
fusemap files, 24, 272, 281
FUSEMAP_FILE,203,219,226,259
fusemaps, 21, 23, 38, 39, 40, 483
fusible inverter, 182

G

Generate Fusemaps, 15, 24
Generate \Vamings, 15, 25, 34
generating test vectors, 4
global name, 114
Global Properties, 206, 207
GOTO, 47, 85, 92, 93, 94, 99, 102, 104,

105, 106
gray code counter, 315, 316, 317, 318,

320,321,322,323,324,325,326,328,
329,330,331
example, 315

GRAY_CODE, 47, 85, 100, 101, 105
GROUP, 47, 72, 76, 78, 79, 80, 81, 203,

212,233,236,463,503
listing signals in, 214
MACH,263

GROUP DEFAULT, 217
group notation, 80, 81
group of signals, 86, 97
Group specifications, 206, 212
Grouping Messages, 438, 463
Grouping signals within a block, 233
GROUPS, 218
Groups and Ranges, 78
GROUPsignal properties for, 216

H

hardware creation, 110
hardware implementations, 188
hardware TFF registers, 454
Hazard Term, 439, 495
HDL source, 441
Headers, 50
Heading,438,469,470
Help Menu, 16, 41
HEX, 47, 131, 135, 136, 140
hexadecimal, 83
Hidden Nodes, 251
hierarchical, 125
hierarchical design, 108
hierarchical designs, 108
HIGH IMPEDANCE, 136, 514
high utilization, 483
HIGH_ VALUE, 47
high-level constructs, 124
HIGH-VALUE, 203, 229

I

ICC, 194, 195
Identifiers, 43, 46, 4 7, 52, 72, 75
IF, 7, 47, 108, 113, 117, 127, 129, 131,

134, 136, 141, 155, 157, 158, 159, 161,
162, 163, 164, 311, 321, 322, 323, 325,
328,330,331,333,338,349,353,354

IF statement, 87, 88, 92
IF statements, 86
IF!fHEN/ELSE, 25, 34
Import, 15, 19
INCLUDE, 47, 120, 121

Index, 16, 41, 152
INITIAL, 47, 127, 131, 134, 141, 146,

147, 148, 149, 150, 167, 169, 491
INITIAL_TO, 47, 491
initialize signal, 129
INPUT, 47, 52, 54, 55, 56, 58, 59, 60, 61,

70, 109, llO, 111, 112, 113, 116, 117,
118, 203, 281

input parameters, 108, 109, 110, 111, 113
Input Register Pin, 438, 484
Input Signals, 51, 54
input symbols, 284
input unary, 252
Input vectors, 129
INPUTS, 52
InReg/Mcell, 481
INTACT, 47, 203, 234
Integer Constants, 48
intermediate nodes, 10
intermediate values, 285
internal hardware

PLD, 179
internal signal node

removing, 179
inverter, 178
invocations, 110
Invoked, 107, 108, 109, 110, ll 1, 112,

ll3, 114, 115, 117
Invoking a Function, 107, 112
Invoking a Procedure, 107, 109

J

JEDEC, 27, 32, 128, 130, 164, 166, 272,
316,318,320,322,324,327,329,331,
444,491,506,507

JEDEC file, 50

Index 7

JEDEC_FUSEMAP, 203, 219
JK_FLOP,47,51,58,62,63,64,69

K

keyword, 111, 118
Keywords, 43, 47

simulation, 131

L

language entry, 6
language source file, 115
large equations, 284, 285, 286

avoiding, 284
LAST VALUE, 103
LAST_ VALUE, 47, 68, 69
LATCH, 279
LATCHED_BY, 47, 51, 62, 63, 64, 66,

67
latches, 5 2, 66
Least Significant Bit, 53, 54, 79
library parts, 22
Listing signals

in device sections, 232
Listing Signals in a Device, 221
Listing Signals in a Group, 214
Local Declarations, l 07, 114
local level signals, 52
Local signals, 114
Logic Family, 28
Logic Minimization, I 0
logical design, 188
logical hazards, I 05
Logical Operators, 71, 7 4, 171
Low Power Mode, 437, 449

Index 8

low true, 52, 61
LOW_TRUE, 47, 54, 55, 58, 61, 62, 66
LOW_VALUE, 47
low-true, 55, 61, 62
LOW-VALUE, 203, 229

M

MACH .rpt (report) file, 27
MACH .rpt file, 269
MACH Devices

using with the .pi file, 261
MACH family, 440, 442, 446
MACH Family Data Book, 440
MACH fitter, 443, 445, 460
MACH Input Registers, 438, 444, 484,

507
MACH Internal Feedback Path, 267
MACH LOW _POWER, 270
MACH Pin Identification, 445
MACH Pin Numbering, 259
MACH Power-On Reset, 439, 491, 493
MACH_USERCODE, 203
MACH_UTILIZATION, 203, 219, 261
MACH_ZERO_HOLD_INPUT, 203, 219,

269
MACH4xx asynchronous mode, 444
MACHXL block diagram, 5
MACRO, 47, 314, 319, 352, 354, 355,

356,357,363,364
macro cells, 178, 179
macro definition, 120
MACROCELL_, 497, 498
macrocells, 448, 460, 468, 478, 480, 481,

483,497
macros, 7, 119, 120, 121
Maintaining Pin Assignments, 236

Manual Partitioning, 202
MANUFACTURER, 193
MAX Number of Pterms, 15, 25, 34
Max Power Supply Current (mA):, 29
MAX_ NODE _FROM_ EXPANDERS,

203,219,227
MAX_PTERMS, 47, 183, 186, 203, 207,

211,216,219,227,230,235,262,285,
437,456,457,458

MAX_PTERMS n, 181
MAX_SYMBOLS, 47, 181, 186, 203,

207,211,216,219,227,230,235
MAX_SYMBOLS n, 181
MAX_XOR_PTERMS, 47, 181, 183,

203,207,211,216,219,227,230,457
MAX_XOR_PTERMS n, 181
menu functions, 17
MESSAGE, 47, 127, 131, 141, 149, 150,

158, 164, 316, 317, 318, 319, 320, 321,
322,323,324,325,327,329,330,331,
332

Microsoft Windows 3.x, 17
Min. Operating Frequency (MHz):, 29
MINC_FITTER, 203, 219
minimum recommended memory, 284
MOD, 47
module, 129, 130
module revision numbers, 276
module simulation, 129
modules, 22, 32
modulo, 73, 76
Most Significant Bit, 53, 54, 79
multiple design files, 8, 125
multiple devices, 21, 23, 38
Multiple File Designs, 123, 124
multiple files, 118
multiple line comments, 205
multiple PLDs/CPLDs, 12

multiple source files, 124
multiplication, 73, 76

N

NAME, 47, 203, 213, 220, 234
Naming a Device, 219
Naming a Group, 213
NAND, 73, 74
New, 15, 18, 25
New Devices, 306
NO_COLLAPSE, 47, 207, 211, 216, 219,

227,230,247
NO_CONNECT, 47, 203, 229, 245
NO_REDUCE, 10, 48, 51, 68, 70, 105,

185,495,496
NODE, 48, 86, 91, 94, 95, 97, 98, 99,

103, 109, 113, 114, 116, 117, 179, 180,
182, 183, 184, 185, 186,344,346,347,
348,349,352,356,358,359,360,361,
362,365,450,455,485,486,495

NODE Collapsing, 10, 58, 59, 77, 179,
180, 182, 184, 185, 186,443,457,458,
483

Node Type, 479
Nodes, 51, 52, 57, 58, 66, 178, 205, 246,

284,285,287
Nodes for If Statements, 15, 25, 34
NOR, 73, 74
NOT,48, 73, 74, 76, 131, 172
npi file, 267
Number of Devices, 29
NUMBER_DEVICES, 193, 482
NUMDEVS, 444, 482

Index 9

0

OCT, 48, 131, 135, 136
OE, 279
OE pterms, 447
OK, 16, 33
on constant expressions, 77
ONE_HOT, 48, 85, 100, 101, 284, 285
Open, 18
OPEN_DRAIN,203,219,227,256
open-drain outputs, 256
operator precedence, 72
operators, 72, 74, 75, 76, 77, 80
optimization, 8
optimize, 9
optimizer, 9, 10, 20, 22, 23, 24, 25, 33,

34, 35, 38, 58, 124, 178, 179, 180, 181,
18~ 183, 185, 186,284

Optimizer node generation., 277
Optimizer Operation, 177, 178
Optimizer reduction, 277
Optimizing, 4
Options Menu, 16, 26, 32
OR, 48, 73, 74, 76, 78, 131, 155, 171, 172
OR_TO_SOP _SYNTH, 219
OUTPUT,48,52,53,54,55,56,57,58,

59, 62, 64, 65, 66, 69, 70, 86, 87, 89,
94, 97, 98, 103, 109, 110, 112, 113,
114, 116, 117, 118, 190, 203, 281, 450,
452,454,455,485,486,490,496

output parameter, 109, 113, 114
output parameters, 108, 109, 110, 112,

113, 114
output vectors, 128, 129
Output/Biput Signals, 51, 55
OUTPUTs,205,246

Index 10

OUTPUTS/BIPUTS, 52
overriding default precedence, 72

p

PACKAGE, 193
Packaging, 437, 449
PAL block, 460, 461, 462, 463, 464, 472,

473,477,481,485,486,494,502,503,
504,505,506,507,515,516,517

Pal Block Inputs, 476, 477, 486, 508
PAL block SECTIONs, 506
PAL blocks, 450, 461, 469, 483, 503, 504,

505,506
PALASM, 15, 19
PALASM Files (*.pds), 15, 19
PalBlk, 476, 477, 486, 508
parallel development, 118
Parameters, 16, 21, 23, 28, 38
parentheses, 72, 78
PART NUMBER, 48, 204, 220, 221,

236,238,247
Partition, 15, 23
Partitioner Report, 438, 469, 475
partitioning, 31
partitioning constraints, 189
Partitioning criteria, 276, 281
Partitioning Modes, 201
partitioning priorities, 189
PDS Language, 7
PDS source files, 7
PHYSICAL, 48, 57, 58, 59, 180, 203, 287
physical devices, 188
physical hardware, 108
physical information, 13, 44
Physical Information file, 189
Physical Information Language, 190, 191

Physical Information Language (PIL), 200
Physical Information Language Keywords,

202
physical node, 209
physical pin, 479, 484, 498
physical pins, 481, 497, 519, 520, 521
physical-pin assignment, 192
Pin,438,439,445,461,477,478,479,

480,481,484,497,498,506,515,516,
517,519,520,521,526,527,528,529,
530,531,532,533,534

Pin/Macro ID, 479
pinout, 480, 481

preserving, 266
pinout diagram, 281
Pinout diagrams, 276
pinout table, 281
PLA_FITTER, 203
PLA_PROPERTY, 203
PLA_PTERM_UTILIZATION, 203, 207,

219,245
PLACEMENT, 480, 481
Placing Unspecified Logic, 191
PLD/CPLD, 4
PLD/CPLD architectures, 11
PLD_INPUT_UTILIZATION, 203, 207,

219,245
PLD_OUTPUT_UTILIZATION, 203,

207,245
PLDs

fitting signals together, 247
PLDs/CPLDs, 21, 23, 39
PLFit, 255
POLARITY_CONTROL, 48, 203, 207,

211,216,219,227,230
POLARITY_CONTROL[TRUEI

FALSE], 182
Precedence, 71, 73, 74, 75, 76, 78

PRESET,437,442,448,452,464,477,
488,493,494

PRESET_BY, 48, 51, 66, 67, 96, 97, 98
PRICE, 194, 195
Primary equations, 280
Print DeMorgan Equations, 36
Print Equations, 35
Priorities, 30, 189, 194
Procedure, 45, 48, 53, 70, 108, 109, 110,

111, 112, 113, 114, 115, 116, 117, 118,
341,342, 344,345, 346,347,349, 352,
355,357,358,359,360,361,362,363,
364, 365

procedure description, 108, 109, 110, 113
procedure parameters, 120
procedures, 8, 107, 108, 109, 118, 125,

128, 130, 284
product terms, 179, 181
Programmer Interface, 40
Programming, 16, 27, 32
programming file, 27
Programming PLDs or CPLDs, 272
project file, 18
Project Files, 15, 19
Project Information Files, 19
Project Menu, 15, 20
Propagation Delay (nS):, 29
Properties and Device Utilization

AMD MACH, 261
Prototyping ASICs, 4
Pterms EAS, 481

Q

Quadrant, 231
Quine-McCluskey, 10, 186
Quine-McClusky, 24, 33

Index 11

R

race conditions, 101, 105
range, 79, 80, 81, 82
Recreating a pinout, 234
Reduced design equations, 276, 277
Refitting a Design, 239
register synthesis, 179, 185, 186
relational, 154, 155
relational expressions, 76
relational operators, 75, 76, 80
relative precedence, 72
relative weightings, 194
Renamed Devices, 308
Renaming the Fusemap File, 225
RESET, 278, 315, 316, 317, 318, 319,

320,321,322,323,324,325,326,327,
328,329,330,331,332,338,437,442,
448,452,464,465,475,476,481,488,
491,493,494,503

RESET BY, 48, 51, 66, 67, 85, 93, 96,
97, 98, 103

Resource Assignment Map, 438, 470, 478,
480

resource utilization, 27
Results Menu, 15, 26
RETURN",48, 127, 131, 135, 142, 151,

152, 153,347,348,350,351
RETURN statement, 112
return value, 111, 112
REVISION, 50
ROUTING, 480, 481
RS-232C, 272

Index 12

s
S cluster, 481
schematic entry, 6
Schematic Options, 16, 32, 36
SECTION, 48, 203, 230, 460, 461, 463,

464,465,504,511,512,513
MACH,263

Section properties, 230
SECTIONs, 218
semicolons, 121
SET, 48, 127, 131, 134, 135, 136, 138,

141, 143, 144, 145, 146, 147, 148, 150,
151, 153, 157, 158, 159, 160, 161, 162,
164, 169, 170

SET_PTERM, 203, 219
shadow hidden node, 251
shadow nodes, 251, 252
SHADOW OF_, 497, 498, 499
SHADOW _OF _xx, 253, 260
Signal#, 476, 479
Signal declarations, 45, 53, 108, 112, 114
Signal Directions, 226

in a device section, 232
Signal Directory, 438, 469, 476
signal expressions, 133, 134, 161
Signal Lists, 205
Signal Name, 476, 479
signal polarity, 9
Signal Properties

device, 227
signals, 72, 74, 76, 78, 79, 80, 81, 82, 203

fit together, 235
SIGNATURE, 203, 219, 269
Signature Bits, 269
simple signal or array, 72

simulate, 128, 129, 130
Simulate Options, 21, 23, 38
Simulating, 4
SIMULATION, 48, 128, 129, 130, 131,

132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 149,
150, 151, 153, 154, 156, 158, 159, 160,
161, 162, 163, 165, 166, 167, 168, 169,
170, 171

Simulation Options, 16, 37
Simulation Output Level, 37
simulation vector generation, 143
Simulator, 21, 23, 32, 38, 39, 124
simulator listing file, 3 7, 3 8
Simulator Operation, 166
Simulator Warnings, 438, 491
single equation, 113
single pterm, 450, 457, 481
single quotes, 204
SIZE, 194, 195
solution, 24, 26, 29, 31, 32
solutions, 21, 23, 28, 30, 31, 38
solutions generated, 281
solutions list, 276
Solutions menu, 32
source, 19, 20, 35, 36, 37, 38, 39
source file, 124, 125, 128, 129, 313, 314
Source Files, 15, 19
Source Type, 476
Specifying JEDEC Filenames, 259
SR_FLOP, 48, 51, 62, 64, 65
stable states, 37
STATE, 48, 85, 86, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104, 105,
106,328,330,331,333,338

state machine, 7, 9, 86
STATE_BITS, 48, 85, 93, 94, 95, 96, 97,

98, 99, 103, 105

STATE_MACHINE, 48, 85, 92, 93, 94,
95,96,97,9~ 100, 101, 102, 103, 105,
106,284,333

STATE_ VALUES, 85, 93, 99, 100, 101,
105,284

state-bit values, 100, 105
Statements, 45

simulation, 136
Status Bar, 16, 41
STEP, 48, 131, 132, 133, 156, 160, 161,

164, 166
stimulus source, 316, 318, 320, 322, 324,

326,329,331
Stop, 15, 26
subtraction, 73, 76, 77
Summary Statistics, 438, 469, 472
Sum-of-Products, 178
symbols, 22
synchronous MACH, 442, 450
Synchronous Preset

22Vl 0, 750,2500, 255
synchronous preset row, 255
synchronous reset, 315, 317, 318, 319,

320,321,322,324,326,329,330,331
synchronous state machine, 93, 94, 95, 97,

98
Synthesis Control Properties, 249
Synthesis of equations, 200
synthesize, 3 5
synthesize equations, 62
synthesized equations, 277, 279, 280
synthesized gates, 8
System and Local Signal Declarations, 53
System Interface Options, 16, 32, 39
system level, 53, 108, 109, 110, 111, 113,

114, 116, 117
system level signals, 5 2
system signal, 5 3

Index 13

SYSTEM_TEST, 48, 127, 130, 131, 132,
136, 146, 149, 156, 164, 166, 273

SYSTEM_TEST;, 318, 324
system-level design, 124
system-level signals, 22, 23
system-level statements, 108
system-signal declarations, 108

T

T flip-flop, 9
T_FLOP, 48, 51, 62, 65, 454, 455, 489,

490
table format, 136, 137, 138, 139, 141, 145
TARGET, 48, 203, 220, 231, 233, 290,

295,298,304
target devices, 284
target hardware,·· 10
Targeting a Specific Device, 220
Targeting PAL Blocks, 263
TEMP_ RANGE, 193
Temperature Range:, 29
TEMPLATE, 48, 193, 220, 237, 285, 287
template list, 192
Template Number, 298
TEMPLATES, 16, 30, 189, 193, 276,

285,286
TEST, 47
test language, 8, 127, 128, 129, 139, 141,

154, 171
test operations, 134, 156
test stimulus, 441
test vectors, 128, 129, 130, 137, 139, 149,

164, 166, 273
TEST_ VECTORS, 48, 137, 138, 140, 141
Testing Devices, 273
testing latches, 146

Index 14

test-language, 128
Text Editor, 39, 282
text substitution, 120
text-substitution, 7
TFF,437,454,486,489,490
T-Flop Synthesis, 438, 444, 489
the Least Significant Bit, 79, 82
the Most Significant Bit, 79, 82
THEN,48,87,88,92,99, 104, 106, 127,

129, 131, 134, 136, 141, 155, 157, 158,
159, 161, 164,321,323,325,328,330,
333,338,349,353

tilde(-), 279
TITLE, 50, 276
title page, 276
TO, 48, 127, 131, 147, 148, 149, 153,

155, 156, 157, 158, 161, 162, 167, 169
Toolbar, 16, 40
Top 10 List, 30
TPD, 193, 195
TRACE,48, 131, 132, 135, 136, 140,

151, 153, 156, 158, 160, 161, 164, 169,
170

TRUTH TABLE, 9, 86, 90, 91, 92
truth tables, 7
TRUTH_TABLE, 48, 139, 140, 319, 320,

321,341,342,364
type of package, 237

u
unary,462,484,485,486,487,498
Unary Nodes, 252

devices with, 254
Unary pins, 484, 497
UNARY _OF_, 484, 485, 497, 498, 499,

500,507

UNARY_OF_xx,253,261
undeclared states, 84
Ungrouped signals, 206, 207

signal properties, 211
unstable, 37, 38
Unstable States, 38
Unused MACH Outputs, 439, 445, 514
USE,8,48, 118, 124
User 1:, 29
User 2:, 29
User Options, 40
USERl, 194, 196
USERl and USER2, 194
USER2, 194, 196
USERCODE, 269
USEs, 125
Using GROUPs with MACH, 264
Using Help, 16, 41
Using SECTIONs with MACH, 264
Using Specific Devices, 236

v
VAR, 48, 131, 132, 133, 134, 135, 151,

153, 156, 158, 159, 160, 164
variable, 131, 132, 133, 134, 141, 142,

156, 157, 159, 161, 162
variable declarations, 45
vectors

test, 441, 444, 491
Verbose, 15, 25, 34
verify, 128
View Menu, 16, 40
VIRTUAL,48,58,59, 180, 184,203,287
virtual node, 209

virtual pins, 497, 498, 519, 520, 521
Virtual Signals, 209

w
warning messages, 24
\VHEN,48,89, 131,324,342,343,352,

353,354,355,356,357,362,363
\VHILE,48, 127, 129, 131, 134, 135, 136,

141, 155, 159, 161, 162
wire list, 276, 282
WIRED_ BUS, 48, 52, 59, 60

x
XILINX_PULLUP, 227
XNOR, 73, 74
XOR, 73, 74, 437, 442, 454, 456, 457,

473,477,481,489
XOR Synthesis, 10
XOR T, 454
XOR_POLARITY_CONTROL, 48, 182,

207,211,216,219,227,230
XOR_TO_SOP_SYNTH; 48, 211, 216,

230,249
XORL, 278
XORR, 278

z
Zero-Hold Time

MACH445/465, 268

Index 15

Sales Offices

North American

ALABAMA .. (205) 830-9192
ARIZONA ... (602) 242-4400
CALIFORNIA,

Calabasas ... (818) 878-9988
Irvine ... (714) 450-7500
Sacramento (Roseville) (916) 786-6700
San Diego ... (619) 560-7030
San Jose ... (408) 922-0300

CANADA, Ontario,
Kanata ... (613) 592-0060
Willowdale.................. (416) 222-7800

COLORADO ... (303) 741-2900
CONNECTICUT ... (203) 264-7800
FLORIDA,

Boca Raton ... (407) 361-0050
Clearwater .. (813) 530-9971
Orlando (Longwood) ... (407) 862-9292

GEORGIA .. (404) 449-7920

IDAHO .. (208) 377-0393
ILLINOIS, Chicago (Itasca) (708) 773-4422

KENTUCKY .. (606) 224-1353
MARYLAND ... (410) 381-3790
MASSACHUSETTS .. (617) 273-3970
MINNESOTA .. , (612) 938-0001
NEW JERSEY,

Cherry Hill ... (609) 662-2900
Parsippany ... (201) 299-0002

NEW YORK,
Brewster .. (914) 279-8323
Rochester ... (716) 425-8050

NORTH CAROLINA,
Charlotte ... (704) 875-3091
Raleigh., .. (919) 878-8111

OHIO,
Columbus (Westerville) (614) 891-6455
Dayton ... (513) 439-0268

OREGON ... (503) 245-0080
PENNSYLVANIA ... (610) 398-8006
TEXAS,

Austin .. (512) 346-7830
Dallas ... (214) 934-9099
Houston ... (713) 376-8084

International

BELGIUM,Antwerpen TEL (03) 248-4300
FAX (03) 248-4642

CHINA,
Beijing TEL (861)465-1251

FAX (861) 465-1291
Shanghai TEL (8621) 267-8857

TEL (8621) 267-9883
FAX (8621) 267-8110

FINLAND, Helesinki T_EL (358) 0 881 3117
FAX (358) 08041110

FRANCE, Paris TEL (1)49-75-1010
FAX (1)49-75-1013

GERMANY,
Bad Homburg TEL (06172)-92670

FAX (06172)-23195
MOnchen TEL (089) 450530

FAX (089) 406490
HONG KONG, Kowloon TEL (852) 2956-0388

FAX (852) 2956-0588
ITALY, Milano TEL (02) 339-0541

FAX (02) 3810-3458

JAPAN,
Osaka TEL (06) 243-3250

FAX (06) 243-3253
Tokyo......... TEL (03) 3346-7600

FAX (03) 3346-5197
KOREA, Seoul TEL (82) 2784-0030

FAX (82) 2784-8014
SINGAPORE, Singapore ... TEL (65) 348-1188

FAX (65) 348-0161
SWEDEN,

Stockholm area TEL (08) 98-6180
(Brom ma) FAX (08) 98-0906

TAIWAN, Taipei TEL (886) 2715-3536
FAX (886) 2712-2182

UNITED KINGDOM,
London area TEL (01483) 74-0440
(Woking) FAX (01483) 75-6196
Manchesterarea TEL (01925)83-0380
(Warrington) FAX (01925)83-0204

North American Representatives

ARIZONA
THORSON DESERT STATES, INC (602) 998-2444

CALIFORNIA
Chula Vista - SONI KA ELECTRONICA (619) 498-8340

CANADA,
Burnaby, B.C. - DAVETEK MARKETING (604) 430-3680
Kanata, Ontario- VITEL ELECTRONICS (613) 592-0090
Mississauga, Ontario - VITEL ELECTRONICS . (905) 564-9720
Lachine, Quebec-VITEL ELECTRONICS (514) 636-5951

ILLINOIS
Skokie - INDUSTRIAL REPS, INC (708) 967-8430

IN DIANA
Kokomo - SCHILLINGER ASSOC (317) 457-7241

IOWA
LORENZ SALES.................... (319) 377-4666

KANSAS,
Merriam -LORENZ SALES (913) 469-1312
Wichita- LORENZ SALES... (316) 721-0500

MEXICO,
Guadalajara - SONIKA ELECTRONICA (523) 647-4250
Mexico City - SONI KA ELECTRONICA (525) 754-6480
Monterrey - SONIKA ELECTRONICA (528) 358-9280

MICHIGAN,
Brighton -COM-TEK SALES, INC (810) 227-0007
Holland -COM-TEK SALES, INC (616) 335-8418

MINNESOTA
MEL FOSTER TECH. SALES, INC (612) 941-9790

MISSOURI
LORENZ SALES

NEBRASKA
LORENZ SALES

NEW YORK,

................................... (314) 997-4558

................................... (402) 475-4660

Hauppauge - COMPONENT
CONSULTANTS, INC
East Syracuse - NYCOM ..
Fairport - NYCOM ..

OHIO,

........................ (516) 273-5050
.. (315) 437-8343

(716) 425-5120

Centerville - DOLFUSS ROOT & CO
Westlake - DOLFUSS ROOT & co

PUERTO RICO

..... (513) 433-6776

..... (216) 899-9370

COMP REP ASSOC, INC (809) 746-6550
UTAH

FRONT RANGE MARKETING........ (801) 288-2500
WASHINGTON

ELECTRA TECHNICAL SALES (206) 821-7442
WISCONSIN

Brookfield- Industrial Representatives, Inc (414) 574-9393

Advanced Micro Devices rese1Ves the right to make changes in its product without notice in order to improve design or performance characteristics. The
performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For
specific testing details, contact your local AMO sales representative. The company assumes no responsibility for the use of any circuits described herein.

@
RECYCLED &
RECYCLABLE

Advanced Micro Devices, Inc. One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453, USA
Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450

APPLICATIONS HOTLINE & LITERATURE ORDERING• TOLL FREE: (BOO) 222-9323 • (408) 749-5703
• UK & Europe 44-0-256-811101 • France 0590-8621 •Germany 0130-813875 •Italy 1678-77224

©1995 Advanced Micro Devices, Inc.

BAN-BM-7/95-0 6/01/95

177030 Printed in USA

ADVANCED
MICRO

DEVICES, INC.
One AMO Place

P. 0. Box 3453
Sunnyvale,

California 94088-3453
(408) 732-2400
(800) 538-8450

TWX: 910-339-9280
TELEX: 34-6306

APPL/CA T/ONS HOTLINE &
LITERA TL/RE ORDERING

USA (408) 749-5703

JAPAN (03)-3346-7600
UK & EUROPE 44-(0)256-811101

TOLL FREE
USA (800) 222-9323
FRANCE 0590-8621

GERMANY 0130-813875
ITALY 1678-77224

http://www.amd.com

RECYCLED &
RECYCLABLE

Printed in USA

BAN-SM-7 /95-0

177030

