2pIND S,42SM) 21eMYOS 5 IXHIVW.

G661

MACHXL® Software User's Guide
1995

Advanced
Micro
Devices

MACHXL® 3.0 Software
AMD Part # AMPLDSW/MXLB1322

Platform: PC / Windows
Registration # 63786

MACHXL Software User’s Guide

© 1994 Advanced Micro Devices, Inc.
P.O. Box 3453
Sunnyvale, CA 94088

TEL:408-732-2400

TWX: 910339-9280
TELEX: 34-6306

TOLL FREE: 800-538-8450

APPLICATIONS HOTLINE:
800-222-9323 (US)
44-(0)-256-811101 (UK)
0590-8621 (France)
0130-813875 (Germany)
1678-77224 (ltaly)

Advanced Micro Devices reserves the right to make changes in specifications at
any time and without notice. The information furnished by Advanced Micro Devices
is believed to be accurate and reliable. However, no responsibility is assumed by
Advanced Micro Devices for its use, not for any infringemnets of patents or other
rights of third parties resulting from its use. No license is granted under any patents
or patent rights of Advanced Micro Devices.

Epson® is a registered trademark of Epson America, Inc.

Hewlett-Packard®, HP®, and LaserJet® are registered trademarks of Hewlett-
Packard Company

IBM® and OS/2® are registered trademarks and IBM PC™ is a trademark of
International Business Machines Corporation.

‘Microsoft®, Windows® and MS-DOS® are registered trademarks of Microsoft
Corporation.

MACH®, MACHXL®, PAL® and PALASM® are registered trademarks of Advanced
Micro Devices, Inc.

Pentium™ is a trademark of Intel Corporation.

Wordstar® is a registered trademark of MicroPro International Corporation

Document . zvision 3.0
Published July, 1995. Printed in U.S.A.

ii

Contents

Chapter 1 Brushing Up on PLDs/CPLDs
PLD/CPLD ArChiteCtUICS.vvviviiviiieiiiieeeieeeee e 2

Chapter 2 About MACHXL

MACHXL Overview and Architecture...............cccooceevieeviiiienieecie e 4
Design FIOW......cocoiiiiiiiiiicc et 6
Design ENtryoooiiiiiiiiiieccee e 7
Flexible Design Methodologyccooovviieiiirciiiiiie e 7
Design Synthesis Language (DSL)cocooviiniiiiiniiiiice 7
PDS Language............ccovooviiiiiiiiiieieeeeeeeee e 7
COMPIIING ...t 8
Functional Simulation..............cccccoeiiiiiiiiieiiieicc e 8
OPHMIZING ...ttt 8
Automatic DeMorganizationcccccoevvieeeiiciiieeeieeeeenen. 9
Automatic Flip-Flop Synthesisccccooviivieviieinicieiee 9
Automatic Don't Care Generation................ccoceeviiereerieeniieenienns 9
XOR SYNHESISveevieiiieiiicie e e 10
NODE COllapSing............cocieeiieiuieieeieiieeeeeeeesiiereeesseeseeeaseeenns 10
Logic Minimization...............cceoviiieeiiiiieeieeie e 10
Device SEIECHON...........ocuieiiiiieeiieie et 11
PLDS/CPLDS ..ottt 11
Design Partitioningccoccveviiiininiieie et 12
Solutions MeNU.............c.ccoviiiiiiiiiiiciiciecieeceee e 13
Devices LIDIary.........ccoooiiviiiiiiiicicccceeeee e 13
Building a MACHXL Design Synthesis Language Source File.................. 14
Parts of a Source File (Using MACHXL's Design Synthesis
Language)c.ooveiiiiiieceeeeeeeee e 14

iii

iv

Chapter 3 Windows Interface

INtrodUCtiON.... ..ot e e e ettt e e e e 17
FAle MENU......c..ooviiiiiiiieiecee ettt ev et enne reereeenin. 18
N W et ettt 18
Opening a File (New or EXisting)ccccoocevvveniiiiiininiciieen. 18

Project Filesoccooviviiiiieiiciiieeeeeecc e 19

Project Information Files...........c..occooiiiiiiiniiicninicnn, 19

Source Files........ ettt et h e bttt ettt nae s 19

PLFIlES (¥.P1) oo 19

PALASM Files (*.pds)cooveveniiiieienecieiieieieieeine 19

ABEL Files (*.abl)c..coovuiiiiiiieeieiece e 19

ANLFIlES (¥.%) .ooviieiiiiiiceceeceeeeee et 19

IMPOTL....eeiiiieee et 19
Project MENU......cceeiiiiiiiiieiiiciteeee ettt ettt e senen e 20
Build AllL......ooeee e 20
COMPILE ..o 22
DESIZN.....coiiiiiieiiiiieeie ettt 23

Design Libraries.........cc.cooovevveiivieniiiiiniinieeneeceece 23
Partition............ccooviieiiiiieie e 23
Generate Fusemapscceoveieiiineiincninencnce e 24

Build Options..........coocoiiiiiiieieie et 24
Equation Reduction Method...............ccocovvevveeicninnnnee, 24

Generate Warnings ettt aaaaens 25

VEIDOSEeieiiiieciieecie ettt 25

Nodes for If Statementscccceeevveeeiieeeccieeiieierens 25

MAX Number of Pterms...........ccccooereiienieniiieieeene 25

COPY NPLTO Pl.vviiiiiiiieieciiecieeeeeie et e e eere v esaeesse e nee e 25

0D ettt e ae e eaaes 26

ADOTE ...ttt ettt st e e 26

RESUIES MENU ...ttt st 26
LOg File ..o 26
DocUMENtAtION...........ecviiieiiireieiiiei ettt 26

Fitter REPOTtoooviiiiiiiiiiiciie ettt 27
Programmingccceceerieniieienieneeie e seeeeie e 27

DeVICEe MENUooiiiiiiiiieiiiieciieeiteeteesae e see e e e e s essaeensnaeeenes 27
Parameters..........ccoooviviiiiiicccee e 28
CONSLIAINESovviiiiiiericeiee e eeree et e e eeveeeeeeneeas 28

PrIOTIEIES ... e 30

SOIILIONSoeeiiieiiit ittt 31

Programmingccocceevieriiiienienieneee e 32

OPLIONS MENUoouuviiiiiiiiiiiiiiteee et 32

AUthOTIZAION.eiiviiiiieiieie e 32

OPLIONS. ..ottt 33

OK oo 33

Cancel.........oooviiie e 33

APDLY .o 33

Build Options.............ccooveviiiiniiiiciecie e 33

Documentation Optionsc.eecvevveeieeneeneeenieeneeenen 35

Schematic Options..........c.cooveriicienieiieieceecceee 36

Simulation Options..............cccevvriieriiiieeniiiie e 37

System Interface Options............cccoeeevveviiiiiireeiieee e, 39

VIEW MENU ...ttt 40

TOOIDAT ...t 40

Status Baroooiiiiiie e 41

HEIP IMENUooiiiiiiiiiicceee ettt et e et aaneae s 41

INAEX ..o 41

USING HEIP ..ot 41

About MACHXL.........coooiiiiiieieeceeeee e 42
Chapter 4 Conventions and Syntax

Introduction to Design Synthesis Language (DSL)c.coccvveeiieeiinieeennne 44

Description of a DSL Source Fileccccoooviiiiiiiiiiiceeeee 44

Conventions Used by Design Synthesis Languageccoooeevieniins 46

TAENtIfIETS ..o 46

KEYWOIAS.......ooiiiiii ettt 47

Integer CONSLANLS...........ccueiiiiiiiiiieeiieciee ettt e e eere e e eireeans 48

COMIMEIIES ...ttt ettt ettt bbb te et 49

Chapter 5 Signal Declarations and Modifiers

INtrOdUCHION........ouviiiiii e 52

DEClarationscc.eieiiieiiieeii et e 52

System and Local Signal Declarationscccoeeoiniiiiinins 53

ATITAYS .ooooiiieiiee e e e 53

Input Signals........cccoviiiiiiiiiii 54

Output/Biput Signals............occeoiiiiiinininice e 55

Biput Signal USageccovveiviiiiiiiiiiiceiere et 56

NOAES ...t e e 57

Wired-Bus Signalsocooviiiiiiiiniiicc 59

Declaration Modifiers...........occeeiviiiiiiiniieiiiiiiee et 61

FUHP-FI0P TYPES ..oveieiiiiiiieecieieee e 62

D _FLOP ..ottt 63

D LATCH........coiiiieteeeeeee e 63

JK FLOP......oooiiiii e 64

SR _FLOP ..ot 64

T FLOP ..ottt 65

Control Information Constructs............ccoecvevieiiinieerieiieeie e eree e 66

CLOCKED BY ..ottt 66

LATCHED BYoooiiiiiiiiiiieeeeceeeeeeeeeee e 66

CLOCK_ENABLED BYcccoooiiiiiiiieieceeeeeeeer e 67

RESET BY ..ottt 67

PRESET BY ..ot 67

ENABLED BYcooiiiiiiiiiiiiice ettt 67

Default Information Constructs.............c.oceecveriiirioiiiieiee e, 68

DEFAULT _TO ...ouoiiiiiieieeceeeeeeceee e 68

NO REDUCEcooiiiiiiieeceeeeee e 70
Chapter 6 Expressions

INtrOdUCHION.......coiiiiiiieicie e 72

IdentifierScooviviiiicie e feesvrenes 72

Logical OPEratorscccovueieveeivieeeiieireecreeeieeeereeeireeeseveeeeans 74

Expression Shorthand (ES).............cccoooioiiiiiiiiiiic, 74

Relational OPeratorsccceerirreeniienieiienienieie e e enees 75

Arithmetic Operators.............cccoiiviiviiniinieeiieieee e 76

Constant EXPressionscccceviiierieiiriorienenieeiine e sienneens 77

Using Parentheses to Change Precedence..............cccoovveeiiennnn. 78

Groups and Ranges..........ccccovieriiiiinieniiiieiec e 78

Array EXPressions...........cocooiiiriinioiiiieiiiic e 81
Don't Care Condition...........cccovviiiiiiiiiiiiee et ee e 83

Chapter 7 Statements and Constructs

INErOAUCHION.oviii ittt et e s ee e 86
ASSIZNMENt STALEMENLSo.ovovreieieeieieeeeieeeecesese e 86
TF StatemEntsccoceviiiiiieiiiiiiieeieeesreeeieeeeteenbeeseeeesnreesaeesemneeeeireeesenes 87
CASE CONSLIUCEoviiviiiiiieiieie ettt ettt et et eeae e 88
TRUTH _TABLE ..ottt 90
STATE_MACHINE Construct.............. e 92
CLOCKED_BY (in a STATE_MACHINE).........c.cccccoevniinennne 94
Rules for Using CLOCKED_BY in a State Machine........ 94
RESET BY (ina STATE MACHINE)..........cccccoviiiiiiiininne 96
"~ RULES for Using RESET BY in a State Machine 96
STATE BITS (ina STATE_MACHINE)...........cccoceoininrienene 97
Rules for Using the STATE_BITS Construct in a State
Maching.........cccoovveiiriiiieii e 98
STATE _VALUEScooiiiiiiiiieieetiieiteie et 100
Rules for Using the STATE_VALUES Construct............ 100
ONE _HOT ..o 100
GRAY CODE ..ottt 101
STATE Declarationsccccoevvievvieii veveeieeeiieeeeiiieeeivae e 102
Rules for Using the STATE Construct....................c...... 102
GOTO Statement..........ccvveiiiiieeeiireeeiiieeeiere v eeeaeeeenaeeas 104
Asynchronous State Machings ..., 105
Chapter 8 Procedures and Functions
INtrOAUCHION.veiiiiii e 108
ProcedUuIEscooiiiiiiiii et 108
Declaring a Procedure..............cocooovveiiiiiiiiiiiieccce e 109
Invoking a Procedureccceviiiieiiiiiieeicee e 109
FUNCLIONSoootiiiiiiiiiiic ettt e saae e 111
Declaring @ Function.................cccooooovviiieiiiiieiic e 111
Invoking a Functioncccocoeviiiiiiiieiiiic e 112
Input Parametersc.oooviiiiiiiiiiiiicieeiiecee e 113
Output Parametersc..oooievviiiiiiiiceeceeeeeeeee e 113
Local Declarationsccccccveriiriinienrienieeieneeee e eseeeeee e eee e 114
What Happens When a Procedure or Function is Invoked?......................... 114

vii

Invoking Procedures and Functions From Other Files 118

Chapter 9 Text Processing

INtrOAUCHION.uviiiiiet it e 120
IMACTOS ...ttt ettt st s b e 120
Including Other Files in a Designccoovvevieieieiieeiieeeieeeeee e 121
Commenting Out Blocks of Code............cceoieviiniiniiniiiiiiciicieieceee 122
Chapter 10 Compiling a Design

INErOAUCTION.......eoiiiiiiieit e eiee e 124
ComMPIlALION.cooviviiiiiie ittt 124
Multiple File DESIZNS......c..cooiiiriiiiiiiiiiiieciic et 124
Errors in Compilationccocoevieiiiriinieieetieeeiecc e 125

Chapter 11 Simulating and Testing a Design

INtrOQUCHION.......ouiiiiiiiieiiiieie et 128
Test Language Reference...............ccovviveveveeevieeeeeceeeeeeceeeeeeeennen 129
General Structure of a Simulation or Test File............................ 129
KEYWOTASoooviiiieiieieiececee e e 131
Declarations...........coocueiriiiriieiiieeiee e 132
Specifying the Clock Resolution..............c.ccoeveevieiiiennenn. 132

Variable and Signal EXpressions.............c.cocoevevieevieviiiieeieineennn, 133
Declaring Variables.............ccocooevieviiviciiiccieeceec 133

Tracing Signalscccoovvviiviiiiie e 135

SEALEMENLS ..ottt 136

Using the Table Format to Create Vectors....................... 137

Using Test Language Constructs to Create Vectors 141

SET o 141

CLOCKE ..ottt 144

INITIAL ..ot 146

INITIAL_TO ..ot 149

MESSAGE ..ottt 149

RETURN ..ottt 151

Test Language Operatorsccoevveevvierieiiieeieeieeiceieeeree e 154

The FOR-DO Constructccocoevievrerivieniiierieieiennens 155
IF/THEN/ELSEccooiiiiiiiiieeeiee e 157

WHILE-DOcoooiiiiiiiiiiiiiiceeeeeee e 159

An Example Simulation Section and Resultscccooovvieiiieniinennnn. 160

viii

A SYSTEM_TEST Example.........ccccoooviiiiniiniiiiiciiiiiiiciccic e 164

Internal Simulator OPerationccccoviiviiiiiiiniiiiiic e 166
Simulation CyClec.oooiiiiiiieiiii e 166
INtialize ... 167
Compute All Qutputs Until Stableccoeeveeneenn 167
If There is a Clock Signalccccooovviiiiiiiiniinn. 168
Write Out Results...........ccoooviiiiniiiiicc 168
Signal States.........cccooiuiiiiiiieie e 169
Truth Tables for the Test Language Logical Operatorsccccccee.n.. 171
Chapter 12 Optimizing a Design
INErOAUCLION.ooiiiiiiiiei et 178
Optimizer Operation.................. BSOS P TS PPIP 178
Node Collapsingccoveeeiiiieeiriiiieiieeeiee et 179
Virtual and Physical Nodesccooooiiiii 180
Controlling Node Collapsingc.cccovveviieiieerioniieiieeiee e 180
Node Collapsing and Partitioningccc.eeeeieveircrienneennnn. 184
Register Synthesis.............cccoooiviiiiiiiiiee e 185
Equation Reduction...............ccoooiiiiiiiiiniece e 186
FaCtOrINgc.cvviiiiiiiiiiiiiie ettt e e e 186
Chapter 13 Partitioning and Fitting (Optional)
INtrOQUCHION.ouiiiiiiiiiiiieic e 188
Partitioning Modescciiiiiiiiiiiie e 188
The Partitioning Process............ccoovviiiiiiiiiiiiii e 189
Directed Partitioning...............cooeeeviiiiiiriiiiiiieececeieee e 190
Placing Logic into Specified Devicesccccoeevninne 190
Placing Unspecified LOGICcccovviieiiiiiiiieeecee 191
Pinout and Architectural Feature Specification................. 192
Setting the Template Listc..occoovviiiiiiiiiiiceie e 192
Setting Partitioning Constraints.................ccc.ccceeeeveeeiireeeenneeeennne. 192
Setting Partitioning Prioritiesccccevvieieeiierireerieeeeieee e 194

Chapter 14 Controlling Partitioning and Fitting (Optional)

INErOdUCHION.......oviiiieiiciccie e 199
How the .pi File Controls Partitioning..................cccoccoeevieerieniieiieeeieeenn 201
Automatic Partitioning.............cccocooviiiiiiniiiiiiiie 201
Directed Partitioningcc.ooveevieiiieiiieciecieie e 201

1X

Manual Partitioningccccoveerieenieeniienieeeee e 202

Creating a .pi File.........ccoooiiiiiiiiiiiicc 202

Physical Information File Language Referencec.ccoooiis 202

Physical Information Language Keywords..................cc.ocoe 202

pi File Syntax Rules ... 203

COMMENLSovvieniiieiieeeeieeeie et 205

COMP_OFF and COMP_ON.......cccoviiininiiiiirirce 205

Input and Output Signals in the pi File............c..ocoviiiiiennn. 205

PiFile Structure ..o 206

Global Propertiesccoveriiiiiiiiiiiiiecccee, R 207

Ungrouped Signals........... e ettt 207

Virtual Signalsccooiviviiiiii e, 209

Signal Properties for Ungrouped Signals 211

DEFAULT Statement for Ungrouped Signals.................. 212

Group Specifications..............ceevreirieniiieieieeieeeiie e e e e 212

Naming @ GIOUP..........covvrvviiiiiieiiiieie e 213

Listing Signals in @ Groupcccccoovvemvieneeneeerieceene 214

Signal Properties for a Groupccccooevveeieiiencenennn. 216

DEFAULT Statement in @ Group............ccoeevveeviveeennnnn.. 217

Device SPecificationscccevveririiiinieninieeieiereeie e 217

Device Properties.........ccccooovveeviieiceieiieciieeiiee e 218

Naming @ Deviceccoovviiiiiiiiiicieee e 219

Targeting a Specific Device for Fitting............................ 220

Listing Signals in a Device...........ccccooeeieeieinireciieeeeee. 221

Renaming the Fusemap File of a Device.............ccooe.... 225

Specifying Signal Directions in a Device...............c......... 226

Signal Properties for a Device..........ccccoeveevieeeiieninnenn, 227

DEFAULT Statement in a Device...........c.ccoovevienieiennnn, 228
Assigning Logic Levels (High-Value, Low-Value,

NO_CONNECT) to Pins of a Device.............ccooeevveennnnn. 229

Device Section Specificationsccc.coecvveevveeviieneeennne. 229

Grouping Signals Within a Deviceccccoeeviennnnn. 233

Fuse-Level Programming Controlccc.coooeeniene. 233

Using the .npi File to Recreate a Pinoutcccoooi. 234

Examples Using the .pi Filecocooooiiiiiiiiiiiii e 235

Example 1: Controlling the Size of Equationsc....o...... 235

Example 2: Forcing Signals To Be Fit Together in the
SaME DEVICE ..ottt 235

Example 3: Using Specific DevICesccooeeviiiiiiiiniiiiins 236

Example 4: Maintaining Pin Assignments.................c.ccccceoeeeiens 236
Example 5: Fitting the Design into One Device............................ 237
Example 6: Fitting the Design into More Than One Device.......... 238
Example 7: Mixing Automatic and Directed Partitioning 239
Example 8: Refitting a Design Into the Same Footprint................ 239
Example 9: Specifying Devices Without Specifying Signals......... 240
Chapter 15 Device-Specific Partitioning (Optional)
INErodUCHION.ooiiiiiiiic e 245
General Device Fitting With .pi File Propertiesc.ccococoeiniiniennnn. 245
Controlling PLD Utilizationccccoveviiiiieniieniniiieeeeiieee e 245
Using the FIT _AS _OUTPUT Property...........cccccocvvevevieeneeeninenns 246
Controlling How Signals Fit Togetherc...occoooeiiiiii 247
Enables Used Only For Test..........cccocooiiiiiereniieiieeeieiee 248
Synthesis Control Propertiescccoeeviveeieeriiieeeriieenre e 249
Accessing Internal Points in a Device...............cococoiiiiiiiiii, 250
Hidden NOdesccooviiiiiiieiceecce e 251
Shadow NOESooviiviiiiiireieit e 251
UNary NOGES.........c.ooiiiiiiiiieiicie e 252
Devices With Unary NOdEscccooeviiiiieiiiiiiiicieeec 254
Other Device-Specific Information for PLDs...............coceveiiiiiiiinn. 255
Synchronous Preset in the 22V10 Architectures..............c.ocovennn 255
Accessing the Open-Drain Outputs of the PI6V8HD 256
Specifying JEDEC Filenames..............ccoocoovevveiiinieiieieiiiceieennene 259
AMD MAGCH. ... 259
MACH Pin Numberingcccooveiiiiiiniiiiaieieeieei e 259
Using the .pi File with MACH Devices.............cccoooovvvveiiiviinnnn. . 261
Properties and Device Utilization................c....cocveeeeennn.. 261
Equation Optimization...................ccccoevveiiiiiveeeceneeeeennes. 262
Targeting PAL Blockscocooiviiiiiiiiiceece e 263
Using GROUPs with MACH..............cc.ooooovieiiiii, 264
Using SECTIONs with MACHccocooiiiiii, 264
Using FLOAT NODES with MACH Devices 266
Accessing the MACH Internal Feedback Path.................. 267
Configuring the MACH 445 and MACH 465 Devices for
Zero-Hold TImecoooviiiiiiiiiiiieee e 268

xi

Xii

Accessing the MACH 445 and MACH 465

Signature Bits........c..ocoeiiiiiiii 269
The MACH .7pt File........coooveiiiiiiiieieicieeeeceeeis 269
The MACH LOW_POWER Attributeccccocveennenne 270
Chapter 16
INtrOQUCEION........eiieiit ettt e s s 272
Programming PLDs or CPLDSccoceoviiiiiiniiiinicneecicecvecieceeeene 272
Downloading Fusemapscccoovvvveeiienienieenenieiieeneenee e 272
Using Your Device Programmer's Downloading Software............. 272
Connecting Your Computer System to a Device Programmer-....... 273
Testing DEVICES........cceiiriiiiieiiiic e 273
Chapter 17
INtrOQUCHION.........ooviiiiciieiieiccie e et eeees 276
Tl PAGE.....cviiiiieiiiiccecee e e 276
Switch Values (OPLiONS)ccoevviivieieieieiieieierieieeee e 277
Reduced Design EQUations.............ccceevvveiieiieiieiierieesiieiieiieeeresee e 277
How Equations are Generatedccccoeevvveenieeiieeerneeesneee s 277
Equation Extensions Used in the .doc File.................cccoeeiins 277
DeMorgan EqUationscccoevuivieerieiiinee e 279
Equation Displaycccoovieiiiiiiiiieecccceeee e 280
Partitioning Criteria..............ccovieviiiiriiieieiee et 280
Solutions Listcc.coceverveirenirennenn eeetteer e ettt et e bt e tesrte e baeeaneaeeeanes 281
Fusemap Filescooiviiiiiiiiiieceeeee e 281
Pinout DIagrams...........cccooveviiiviieiiiiiiccie et 281
Possible Devices LiSt...........cceieiiiviniiiiieiceececece e 281
WIEE LSt ...ttt 282
Viewing the Documentationccceeveeeevieniiiiiinieiceeeeeeeeee e 282
Chapter 18
What If Equations Are Too Large?cccoevevvivriveeicieieeeecee e 284
What If MACHXL Runs Out of Memory?............cccoeveiniininniieieienen, 284
Inthe Compiler...........coooiiiiiiiiiiiccecee e 285
In the OPtIMIZErcvoiiiieieiiccecee e 285
Inthe FItter.......coooviiiiiiiiceee e 285
What Can Be Done to Speed Things Up?cccoooveeeeiiinicieiceeieee, 286
In the Compiler and Optimizer...............ccooceevvevieiecieiiceceree, 286

INhe FIter. ..ot e e e 286
What Can Be Done to Minimize the Amount of Hardware Needed to

Implement @ DESIZNTccoooviiviieiiiiiiieiieieeece e 286
Inthe Design Filesccoooviiiiiiiiiiiiii e 286
In the Fitting Constraints..................c.cccooovioiiiiiiiie e 287
.cst File and Fitter Speed............ccccoovviiiiiiiiiiiiiceeeecccee 287
Appendix A MACHXL Supported Devices
INErOAUCHION.eeuiiiiiiiieiis ettt ettt 290
AMD PLD Design Module...............ccoooviiviiiiiiiiiiiiiiice e 290
AMD MACH Design Module...............ccoooveiuiiiiiiiiiiiieeeeceeeee e 295
Devices Listed By Template Number................cccoccoooviviioieiieiiieeiece 298
Device Footprints by Template Number................c.ccoovevieviviiiiieiceenen, 304
NEW DBVICES ...ttt ettt 306
Renamed DEVICESccvvivuieiiiiiiiieieeie ettt 308
ODSOIEte DEVICESeecvvieeiiieiiiiciieeeieeceee et ete ettt e e e e 309
Deleted DEVICES..........oueieiieieiiiiiiiieetiieieiete ettt 310
Appendix B Language-Based Design Examples
INErOAUCHION.ooiiiiiiiiiecit et 313
Building a MACHXL Design Synthesis Language Source File................... 313
Gray_Code Counter EXamples................cccoooeviivieiiiiiiiiiicieceee e 315
Example 1: Asynchronously Reset Gray Code Counter Using Simple
Equations (PLDS)ccccocoovviiiiiieiicie e 315
.stm (Stimulus) File for Example 1..................ccccoooeiiiiiiii. 316
Example 2: Synchronously Reset Gray Code Counter Using Simple
EqQUationsccooooiiiiiiiiiieiee e 317
.stm (Stimulus) File for Example 2...............ccccooeiviiiiiiieniien, 318
Example 3: Synchronously Reset Gray Code Counter Using a Truth
Table.......oocovvviiiiiee e \ 319
.stm (Stimulus) File for Example 3...........\ e 320
Example 4: Synchronously Reset Gray Code Counter Using a Truth
Table and IF Construct (AMD MACH)cccooooviviviiin 321
.cst (Constraint) File for Example 4...................cocoooeiiiiiiiennnn, 322
.stm (Stimulus) File for Example 4..................c.cccoooeiiiiiiienn. 322
Example 5: Synchronously Reset Gray Code Counter Using CASE
STALEMENL.......coiiiiiiiieiiiiie et e 323
stm (Stimulus) File for Example 5...............cccooovveiininiiinincinn, 324

Xiil

Example 6: Synchronously Reset Gray Code Counter Using IF

STALCMENLovviiieeiieiic e 325
.stm (Stimulus) File for Example 6coccoooiiiiiiiin, 326
Example 7: Synchronously Reset Gray Code Counter Using a State
MaACRINE.cooouiiiiiiiiie e 328
stm (Stimulus) File for Example 7coocovviiiiiiiin, 329
Example 8: Synchronously Reset Gray Code Counter Using a State
MACKINE.....cccuviiiiiiiieiie e 330
Stm (Stimulus) File for Example 8cccocooviiiiins 331
Drink Machine Examples..............c.ccocociiiiiiiiiiniiccc 333
Example 1: Drink Machine Using a State Machine 333
Example 2: Drink Machine Using a State Machine and Default
ValUS ... 337
Seven-Segment Display Handler Example...............c.coooooininiinnn, 341
Adders and Multiplierscccoeiiiiiiiiiiie e 345
Example 1: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder Procedures.......... 345
Example 2: 1-Bit, 2-Bit, 4-Bit and 8-Bit Adder Functions............ 347
Example 3: Combinatorial 4x4 Multiplier Function 349
Example 4. Combinatorial 4x4 Multiplier Functions.................... 350
4-Bit ALU Example................ccocooine e 352

Appendix C MACHXL Warning and Error Messages
INtroduCtioNn..........cooiiiiiiiiiiii 368

Appendix D AMD MACH Support Supplement

INEEOAUCHIONooiiiiieeie ettt ee et eeeeaeee e 440
Overview of the Design Processc.ocoooiviiiiiiiiniiiiieieceee, 440
MACH Issues inthe Design Flowcoooociiiii, 441
Design COnCeptioncoveuirieriiriieiiiiiiiee et 441

Design EXPIeSSION.coivieiuieiiieiieiieie e ciieiiesiiae e e e e 442

Design Implementation...............ccocveviviirieniiicceeeeee 443

Design TESHNGoouiriiiiiiiiiiiiniecieecee e 444

Design INtegration............c.ooeviriirieiiiiiieieee e 445
AppPLcation NOLE:coouiiiiiiiiiiiiniiiei e 446
Summary of MACH Family Devices.............ccocooioiiiniiiieiieiiiieecee, 446
MACH Family of Devices...........ccovveriviniiiieieiieieeeeeeees e 446

Output Enable Functionscccooeeeiiieiiiciii. 447

Register Reset/Preset Functionscccoooveeiiieninns 448

Clock FUNCHIONSooooviiiiieeeee e 448

Packagingcccoooviiiiiiii 449

Low Power Mode..........c.coooviiiiiiiiiiiiciee e 449

ApPPLcation NOE:ooiiiiiiiiiie e 450
MACH Designs With Complex Clock Functions................cccccoooierieenn.. 450
MACH Clock Limitations................ccoocveviieieierieiieeeeieeieeiie e 450

MACH L and 2 ... 450

MACH 3 and 4cooooviiiiiiceeeee e 450

APPLCation NOTE:oooviiiiiiiiieii ettt 452
Fitting Asynchronous Functions in MACH Devicesc...cocveeenne 452
Devices: MACH215 MACHA4XXccccooovviiiiiiiiiiiiiiee e 452

Pterm Clock and Reset and Presetcocoooeiiiiiiiiiiiinn 452

More Than One RESET/PRESET Pair per PAL Block 452
APPLHCAtION NOLE:oiiiiiiiieiii ettt e 454
XOR T-Equations on the MACH4XXc.oocooiiiiiiiiiiiiiicee e 454
Devices: MACHAXXcccoooviiiiiiiiiieieeeeeeecee e 454
XOR-TFF Problem Definedccooooiiiiiiiicie 454
APPLHCAtion NOLE:ooviiiiiiiiii ettt et et 456
Guidelines for MACH-Specific Optimization....................ccccccooeueeennann... 456
Suitable Optimizing Parameters for MACH Devices..................... 456

Forthe MACHAXX:cooovviiiiiiieciiee e 456

For MACH 1xX/2XX deVICES:.......ccvveeiieriieeiciieiieciee, 456

Optimizing AdJuStments............cc.ocoovvieieeiieieieieeeeeie e 457

The Effect of MAX_PTERMS and MAX XOR_PTERMS 457
APPLCAtIOn NOLE:ccoovviiiiiiiiieiiie et 459
Understanding the .Jog File Messagescccooevvvieiieieccieciieeeen . 459
The Jog File.........oooioviiioiiiiceeeeeeee e 459
Information MeSSagescocoeevveeeeieeineeeeeeenne. SUUTURRRURURTR 459
General Failure Messagesc...cooeeviveeeceiciennnn, e 460

Pin Assignment Messagesccccvevveeieennnn. USRI 461
Grouping MESSAgESc.ccoveveveeeeereeereeens e, 463
APPLCAtIon NOLE:c.ooviiiiiiiiiiiit e 468
Understanding the .7pf File ... 468
Obtaining a .7pr File..........coooiiiiiiiiiii e 468
Contents of the Report File...............ccoooooviiiiiiiii 468
Headingccoooviiiiiiiiieceee e 470

Failure Disclaimersccceeiiiieniiiiiiee e 470

Summary Statistics...............ccooveiivieiiieceeeeee e 472

XV

Xvi

Device Resource Utilization..........oooeecoioiceeeieeeeeeee 473

Partitioner Reportcccoooiiiiiiiiie 475
Clock ASSIZNMENEScovveiiiiieiiieiiiiieieeie e 475
Signal DIrectory.........ccooiviiiiiiiiiiiiiiiiici e 476
Resource Assignment Map.............ccccoeveennee RO 478
APPLCAION NOLE:cvveiiieiieieeiieieeee e 482
MACH and the Number of Devices Constraint..............ccccoeeeeerveeniennnnnn 482
The Problemoccoviiiiiiiiieee e 482
Using 'default’ in the .pi File Entry..............cccoooooiniiiii 482
Using a Second DevVICE............coovviviiiiiiiiiiii e 483
ApPlication NOLE:oooiiiiiiiieiii e 484
Using MACH Input REGISLETSoooviiviiiiiiiieiiieieiieeie e 434
Input Register Pin Names...............ccoocooiiiiiiinii 484
MACH 2xX V8§ MACHA4XXooiiiiiiiiiiiiieeieeee e 484
Input RegIStrationcccooviiiiiiiiiiieieie e 485
DEtECHIONovvvieiiiieii e 486
Forcing a Functionto be Fitas Unary..............c.coccooii 486
Preventing a Function From Being Fit as Unary........................... 487
ApPlication NOLE:cceiiiiiiiiiiee e 488
Control of the Asynchronous Mode in the MACH4XXioccceeiieens 488
APPLCAtION NOLEc.voiiiiiiiiii e 489
Control of T-Flop Synthesis in the MACH4XXccocoociiiiiniiininnn, 489
DEVICES: MACHA4XX.........cccooviiiieiiiiiiiecieen v 489
Normal Operationccceveeiiiiiiioieiiit e 489
DFF Only Fittingcooooiiiiiiiieccee e 489
Using the T EqQUationcc.oooooviiiiiiiceeeceee 489
APPLCAtion NOLE:eeeiiiiiiiiiiieiieeiiecitc et 491
Analyzing Test Vector Errorscooooiiiiiiiiiiiiiicccee e 491
Simulator Warmingscccooevevieeioiiiieiieeie e 491
Initial States.........oocoviiii 491
Glitches in Control LOZICcovviiiviiiiiiiiiciieeccieeeeecieeeee 491
Application NOEcoooviiiiieiiiieee e 493
MACH Power-On Resetcccoiiiiiiiiiiiiiiicececeeee e 493
MACHXL DSL Reset Definition................c..coevoieiiiiiienienennn. 493
Nominal Casec..oeeeiiiviiiiiiieiiit e 493
EXCePtion Cases...........co.oovviviiiiiiiiiiieeeeeeee e 493
Application NOLE:coovviiiiiiiiiiiiicee e 495
Hazard-Free Combinatorial Latches................ccccooovviiiiiiiiiii, 495

Basic Latch CIrCUIL.........oooeeeiieeeeeeeeeeee e 495

Hazard Termoooiiiiii e 495
Hazard Free Latch ..o 495
ApPICation NOE:ooviiiiiiiiiiieiie et 497
MACH Pin and Node Identificationc...cccooviiiiiiniiiinnee e 497
Naming CONVENIONcc..ovvveriieiieeiieriieieeeeeie e 497
Pin Name Tablescccoooviiiiiiiiiiee e 498
APPLCAtion NOLE:oc.eemiiiiiieiieii e 502
Achieving Satisfactory Pinouts with MACH Devicescccoovrnnn.ne. 502
Procedureccooiiiiiiiiiii e 502
APPLCation NOTE:eooiiiiiiiciiiiiicecee e 506
Refitting into MACH DEVICES...........ccovieeiiiiiiiiciicciee e 506
CONCEPL ...t 506
Procedureoooiiiiiiiie e 507
ApPPLCation NOLE:cooviiiiiiiiieieieeeeee e 514
Forcing Unused MACH Outputs to be Driven or Floating......................... 514
Forcing Outputs Drivenccccoovveiiiiiiiiiciceeee 514
Forcing Outputs Floatingc.ccocooeviiiiieiiiceeeee 515
Application NOtE:covoiiiiiiieie e 517
Possible Pin Incompatibility Between MACH230 and MACH435 517
Devices: MACH230 and MACH435...........cooooviiiiiiiiiieee 517
APPLCAtIon NOTE:cc.oiiiiiiiiiiiicicee e 519
Complete List of MACH Pin Names..................ocooooiiiiiiiiiceee 519
Devices: AIMACH.............cccoooiiiiiieccceeec e, 519
Pin NUumbering...........ccocoooviiiiiiiiiiiiieecceceee e 519
44-Pin Packagesccooviiviiiiiiiiici e 519
68-Pin Packagesccoooveiiiiiiiiiee e 520
84-Pin Packagesccooueviiiiiiiieciee e 521
ApPLication NOtE:oooiiviiieieiiee e 526
Fuse Commands for Forcing Outputs to be Driven...................c..ccccooeee.o. 526
Devices: MACH IXX/2XX.....c.ocoiioiiioiiiieeeieieeeeeeeeeeee e 526

Xvii

1 Brushing Up on PLDs/CPLDs

Contents
PLD/CPLD AICRItECtUIES.eeeeeeeeeeeeee et 2

Chapter 1: Brushing Up on PLDs/CPLDs 1

X

PLD Architectures

Given the number of families and their different architectures, a single chapter
would be insufficient to cover all the necessary data. So, instead of trying to
present a brief subset of the information, we suggest you refer to AMD’s
PLD/CPLD data book for complete documentation about AMD’s families of
programmable devices.

2 MACHXL Software User’s Guide (Version 3.0)

2

About MACHXL

Contents

MACHXL Overview and Architecture..............ccc.eereereeriiecneeniieenneenneenns 4
Design Flow............. etteeieeenteee et et ae et e e e s b et e ntee e ubae senaea et eesarene s rerena 6
DESIZN ENLIY ...ttt 7
Flexible Design Methodologyc...oovveevuiiiriieiiieeeiie e ciee e 7
Design Synthesis Language (DSL)........cccccoooiiiiiiiiiiiiiice 7
PDS Languageccoovuieriierieniiiie ettt ettt et 7
COMPIIING ..ottt ettt e re e e e 8
Functional Simulation...............cccuiivviiiiiieioiii e e 8
OPUMIZINGooviiiiiieiiiiceiete ettt ettt e ete e ebe e eae e ebenbeeasessesasesse e 8
Automatic DeMorganizationc..ccooevevveeieeeiiereeereeeens 9
Automatic Flip-Flop Synthesiscccooovviinieneiiinccceeee 9
Automatic Don't Care Generation..................ccccveevieeeeveeeneeeeennnnen. 9
XOR SYNEHESISeovveieniiieeiieeeie ettt et 10
NODE CollapSing...........c.cceeuirieieieieiieieiieiieieieie st 10
Logic MINIMIzZation...........c.ccevveeierierieiienireiesieesiesieereeeeeneneeeens 10
Device SEIECHION...........coviiiiiiiiiiciicie et 11
PLDS/CPLDS ..ottt 11
Design Partitioningccoovevvieieerieieeriiieeieeeeere e 12
Solutions MENU.........c.coouiivieiriiiieeiieiieite et eieiee e 13
Devices LIDIary.........cccooviiiiiiiiiiiciee et 13
Building a MACHXL Design Synthesis Language Source File.................. 14
Parts of a Source File (Using MACHXL's Design Synthesis
Language)coocoveeiiiiiiiiieee e e14

Chapter 2: About MACHXL

3

&4

MACHXL Overview and Architecture

MACHXL is a complete, universal programmable logic device (PLD, CPLD)
development tool that enables you to program PLDs for specialized
applications simply and efficiently. You determine what to design and
MACHXL supports you by:

o0 Allowing you to describe a design using the most suitable method
for your application—state machine, truth table, or equations.

o0 Optimizing and reducing a design to the smallest set of gates, using
industry-standard methods best utilizing the resources of selected
devices.

0 Simulating functionality of your design while it is still in the design
phase, before committing to hardware.

0 Automatically selecting devices based on your design criteria.
MACHXL maps your design into various device architectures and
presents the best solutions from which to choose.

O Automatic or manual placement of input and output signals in
selected programmable devices including fitting the design across
as many as 20 devices (optional).

o0 Programming the devices using automatic fusemap generation and
easy device programmer communications.

0 Testing the programmable device(s) by generating test vectors
from the functional simulator's results and downloading them to the
programmer with the fusemap file.

0 Prototyping ASICs using programmable devices.

MACHZXL provides full automated support, supplying a design environment
allowing you to concentrate on your design, not on the device. As a matter of
fact, you do not need to understand the inner workings of PLDs in order to do
PLD designs. And when you finish the design with MACHXL, the software
automatically selects the best devices, based on criteria you set (like price,
package, number of devices, etc.)

4 MACHXL Software User’s Guide (Version 3.0)

The following is a block diagram of the MACHXL system.

MACHXL PDS
Language

translator E

Design Synthaesis
Language

simulatio
stimulus

information

Device : - \ Device scanne
availability — 1 H and fitter ||
information

Device
costing
information

Fusemap
generator

JEDEC files

Device
programmers i

Chapter 2: About MACHXL

5

The following figure shows the basic design flow when using MACHXL and
where the information for each step can be found in the User’s Guide.

1 [Describe the design Chapters 4-9
2 [Compile the design Chapter 10
3 [Simulate the design Chapter 11
AR
—— partial design
L whole design
4 [Optimize the design Chapter 12
L2055
Partition and select
5 [vices Chapters 13-1
A3
6 Program and test
devices Chapter 16

Design Flow

Programmable Logic Design Synthesis is the process of describing a design by
schematic or language entry and synthesizing that information into an
optimized form used to program one or more programmable devices.
MACHXL is a full-featured programmable Design Synthesis Tool letting you
concentrate on your design, not the operational details of the programmable
devices.

MACHXL synthesizes the path from design description to actual
programmable devices.

You run MACHXL through the Windows menu system (see Chapter 3).

6 MACHXL Software User’s Guide (Version 3.0)

Key features of MACHXL include:
0 Multiple design entry modes

0 Full range of device support from PLDs to CPLDs

Each of these key features is discussed in the following sections.

Design Entry

Flexible Design Methodology

MACHXL provides a device-independent approach letting you enter your
logic design without specifying devices for implementation. If desired, you
may choose specific devices during design entry.

Design entry may be accomplished by one or a combination of methods. This
feature allows you to describe each function using the entry method best suited
for that particular function.

Design Synthesis Language (DSL)

DSL is a high-level behavioral language developed for use with programmable
logic. DSL provides constructs for state machine descriptions, truth tables
and Boolean equations. DSL also allows hierarchical design with procedures
and functions. Program control-flow statements such as IF and CASE,
combined with multiple nesting and hierarchical design capabilities, let you
describe complex designs quickly and easily. You may also create macros to
perform text-substitution.

PRCOC | camaccoman-
1 W Al Uuayv

MACHXL allows you to use PDS source files as language input for those
designs developed with PALASM.

Chapter 2: About MACHXL 7

X

Compiling

Once the design is entered in DSL, it must be compiled. Compiling your
design creates an internal representation of the design with all high-level
constructs converted to Boolean equations. The compiler handles multiple
design files via the USE construct. The USE construct resolves all
invocations of procedures, functions, and components to create a set of
low-level synthesized gates.

Functional Simulation

MACHXL's functional simulator lets you verify the functionality of your
design before you commit it to programmable devices. By detecting problem
areas early, you can modify the design while still in the design process. This
simulator can be used to verify individual procedures and functions or entire
systems. In addition to simulating each procedure and function to verify that
they describe the logic properly, the entire design can be simulated at the
system level. This assures your design's complete functionality at both
function and system levels.

Simulation in MACHXL is accomplished by a high-level test language similar
in construction to its Design Synthesis Language (DSL). The test language
lets you create high-level constructs like iterative loops and truth tables to
make it easier to simulate your design.

This test language also lets you generate test vectors that can be used to verify
the devices after they have been programmed. Verification is done by sending
the programmed device stimulus vectors and checking the responses against
those from the simulator.

Optimizing

MACHXL uses various optimization techniques to find the necessary product
terms and select the smallest set to describe the original equations. All
optimization forms are stored and are available for device selection and
implementation.

8

MACHXL Software User’s Guide (Version 3.0)

A

By taking advantage of digital logic design rules, MACHXL utilizes fully the
device architecture capability.

Automatic DeMorganization

This feature allows the partitioning system to invert signals internally to a
device while maintaining the signal polarity and functionality as described by
the logic design. The ability to tailor equations internally to the device lets
you create a functional design that is independent of the signal polarity of a
particular device. It also gives maximum flexibility to the partitioning system,
which may allow larger, more complex designs to be placed into fewer
devices.

Automatic Flip-Flop Synthesis

Another logic design rule is synthesizing the proper flip-flop type to optimize
equation placement within a device. For example, a set of equations may be
described in terms of J-K flip flops in the design and MACHXL can place
these equations in a device that has only D flip flops by synthesizing the D-
equation equivalents. A more common application is the use of T flip-flop
equations, instead of D flip flops, to produce smaller equations.

Automatic Don't Care Generation

Don't Care conditions can be expressed in IF/THEN/ELSE, CASE, TRUTH
TABLE and STATE MACHINE statements as well as assigned to signals.
Unspecified output values are assumed to be Don't Care, allowing the
optimizer to assign either a zero or one value, depending upon which value
generates the most optimal equation. Signals can also be set explicitly to
Don't Care values. This feature gives you the potential to create highly-
optimized designs resulting in smaller hardware solutions.

Chapter 2: About MACHXL 9

XOR Synthesis

The compiler and optimizer maintain an exclusive-OR representation of all
equations for which such a representation can be built. This gives the
partitioning system the ability to use the exclusive-OR representation in
devices with that capability or to use the sum-of-products representation in
devices without exclusive-ORs.

NODE Collapsing

The optimizer minimizes the use of intermediate nodes in the design. It
removes nodes, collapsing their equations into any equations referencing the
removed node. This collapsing process can be controlled by the designer to
produce the best results for the target hardware.

Logic Minimization
Reduction levels used by MACHXL include various combinations of industry-

standard heuristic and exact methods to meet your design goals. These
reduction levels include:

O Espresso
o Espresso (Exact)
0 Quine-McCluskey

You may also specify NO_REDUCE, which performs logic conversion only
with no logic minimalization.

10 MACHXL Software User’s Guide (Version 3.0)

Device Selection

PLDs/CPLDs

MACHXL automates the selection of the best PLD/CPLD architectures and
specific devices for your design. Based on the device characteristics and the
design constraints, the device selection system searches the master library for
devices that match your constraints. Your design is then mapped into
combinations of the selected device architectures.

If the design requires more than one device, the design is automatically
partitioned across multiple devices (this capability is optional.) MACHXL
also lets you choose among many speed, power and package type variations
offered by the IC vendors. The following screen shows the menu used to set
Constraints.

Number of Desi

£ iy 8838
Temperature Range: |COM]

e L EXT {
: L]

Chapter 2: About MACHXL 11

The following screen shows the menu used to prioritize the constraints by
adding a relative weighting. For example, price may be given a weight that is
twice as important as power as is shown in the following menu.

Two user constraint fields let you enter data for a device that is specific to
your design or manufacturing environment.

If manual device selection is preferred, you may specify the devices for
implementation in a Physical Information (.p7) file. Specifying a device in a
Physical Information file will override the automatic device selection process.

Design Partitioning

Design equations are automatically divided among multiple PLDs/CPLDs to
create design solutions. The partitioning system searches PLD/CPLD device
architectures in the master library for the combination of devices creating the
best solutions for the design.

The partitioning system generates and displays the top ten design solutions,
using your design constraints in conjunction with the device requirements from
the design description (see the following screen.) The solutions are prioritized

12 MACHXL Software User’s Guide (Version 3.0)

e

using the design constraints and displayed in order. You may stop the process
at any time and select a solution.

Solutions Menu

This menu displays device solutions into which the design can fit. Design pin
outs can be assigned automatically or manually through the use of
MACHXL's physical information (.p7) file.

= Solutions 5:

1. P22vio0 90ma 30ns $3.38
2. MACH111 95ma 20ns $5.75
3. MACH110 203ma 24ns $5.75
4. MACH211 120ma 18ns $5.80
5. MACH215 220ma 24ns $6.15

6. MACH210 236ma 24ns $6.35
7. P26V12 150ma 25ns $7.80
8. MACH120 225ma 30ns $11.50
9. MACH130 37%9ma 30ns $12 a0
0

.~

- MACH131 95ma 25ns $13.35

Devices Library
0 Contains design data on all AMD devices

O Supported devices include AMD’s PLDs and CPLDs

The device library contains the most up-to-date specification information
available from AMD.

For a complete list of the devices in MACHXL's device library, refer to the
separate Device Library listings in Appendix A. Appendix A lists the PLD
and CPLD devices supported by MACHXL.

Chapter 2: About MACHXL 13

e

Building a MACHXL Design Synthesis

Language Source File

MACHXL lets you create a source file to describe your design.

Chapters 4 - 9 cover the elements of this source file. The following shows the
general organization of a typical design source file. It also lists the chapter(s)
where information about each part of the design source file is located.

Parts of a Source File (Using MACHXL's
Design Synthesis Language)

Headers (information about the design) see Chapter 4
MACRO Definitions (text substitution structures) see Chapter 9
USE constructs (compiled Procedures and Functions to see Chapter 8

be used by this source file)

Procedure/Function Definitions (Procedures/Functions see Chapter 8
used in this design)

System-Level Declarations (declaring the signals to be see Chapter 5
used in this design)

System-Level Statements (statements and constructs that see Chapters 6,7
describe your design)

The outline above shows the main sections used in a source file. Each of the
sections listed is optional. In addition to these chapters Appendix B contains
a number of language design examples, complete with comments and
explanations.

14 MACHXL Software User’s Guide (Version 3.0)

3 Windows Interface

Contents

INtrOdUCHION.eoviiiiiir ettt 17
FAle MENU.......ooiiiiiiiiiee e 18
N Wttt ettt ettt et e 18
Opening a File (New or EXiSting)ccccocceiiiiiiiiiiaiiieee 18

Project Filescccovvieiiiiiiiieececce e 19

Project Information Filescc.cocccoviiniiniiinnnn, 19

Source Filesccooovioiiiiiiiiiecee e 19

PLFIES (FP1) e 19

PALASM Files (*.pds)cocovvimieniiereeieieieeieeee e 19

ABEL Files (*.abl)cccoovoiiiiiiiiieiceeeceeee 19

ANLFIIES (F.*) oot 19

IIMPOIE ..ottt e e eee s 19
Project MENU.........oooiiiiiiiiieiiieeeiee ettt ee et eeeebeeste e e sneeeeenbeeeenes 20
Build AlL......oooiiiieeee e 20
COMPILE......c.oiiiiiiiiiieee e e 22

DIESIEN. ... 23

Design Libraries...........cccoooviiiiiiiiiiiiicie e 23

Partitioncooiiiiiiiiiiie e 23
Generate Fusemapscoooooiviieiiiiiiccecce e 24

Build OPLionsccoooiiiiiiiiiiiieiieie et 24
Equation Reduction Method..............ccooovininiiiiniinns 24

Generate Warnings..............coovveeveieeeeeeiieeeeeiireeee e 25

VETDOSE. ...ttt 25

Nodes for If Statementscccoeveeeeniiriiree e, 25

MAX Number of Ptermsccoocoovievrniiieeiieieeeeee, 25

(07070078 1103 B 1 5) SRR PPRR 25

0D . s 26

ADOTL ...ttt 26

TNUDULLD IVATIAU 1. vt eeateeeeeseeeeeseeeeeee et eeseaseeseaeateseaeeeeeseanseessasaaaseseesannaes 20
LOg File.....oooiiiiieee e 26
Documentation...............cooveuioieieieeieieiee e 26

Fitter REPOIt.......ccvviiiviiiiiieiciece e e 27

Chapter 3: Windows Interface 15

Programmingccccoveeiiiininiiiienic e 27

DEVICE MEINUoooviiiiiiiiieeiteie ettt e st 27
Parameters..........ccvieiieeriiieie et 28
CONSEIAINESoveeiiiniiiieeieeeiee et 28

PrIOTIEIES ...ttt s 30
TEMPLATESooiiiiieeeeeeeeeeceeeeee 30
SOIILIONS.......cuvivieiieieeeieiee ettt ettt sbe e 31
Programming..............cocoecevinieninieiiinenene e 32

OPLIONS IMENUL.......ooiiiiiiiiciiiciiceeece ettt e et e estreesaeseeeenenes 32
AUthOTIZAtIONeovviiiieiiciiecicct e 32
OPLIONSevviiieiieiieitt ettt 33

OK e 33
CanCel.......ooviieiieieie e 33

ADDLY e 33

Build Optionsceceviiiiineriiieni e 33

Documentation Optionscccceeeverenereneieieeene 35

Schematic Options.........c.ceeieiriininenece e 36

Simulation OPtONSccoeireireirieiecieereeeeeen 37

System Interface Options..........ccceevvevirieeiiieeniee e 39

VIEW MENU.......oiiiiiiiiieieieiieeee ettt ettt sreeeeens 40
TOOIDAT.......ccccieieiiiii et re e 40

Status Bar.........cccoiiiiiiieieicceec e 41

HEIP MENU ...ttt sree e 41
INEX ... e 41

USING HEIP ..ot 41

AbOut MACHXL.......ccooviiiiiiiiiiiceieteceee e 42

16 MACHXL Software User’s Guide (Version 3.0)

bu

Introduction

This chapter is intended to give the necessary detail to operate MACHXL in a
Microsoft Windows 3.x or later environment.

We assume a basic knowledge of Windows and will not explain commonly
used Windows menus. Only those functions unique to MACHXL are
explained.

The following screen shows the MACHXL main screen with all the menu
functions.

— Note: When you first enter MACHXL, the menu bar will show only three
Windows functions. Once you've opened a file (new or existing), the full
menu bar, shown below, will appear.

MACHXL - PLDPRIMS.SRC

Chapter 3: Windows Interface 17

rm

File Menu

New

Starts a new project file. Selecting New opens a new window. If there are
already one or more windows open, MACHXL opens a new window without
closing any of the others.

Opening a File (New or Existing)

The New and Open menu items open a dialog box containing the names of all
files in the current directory with an extension matching the type of file you
select in the List Files of Type box. You can change the type of file displayed
by selecting List Files of Type and choosing the file type from the pulldown
list.

_mpf; = src;® pi;*.dsl

c:\

win32app
machxl
= examples

roject Files
Project Information
Source Files
Pl Files (=.pi)
'ALASM Files (*.pds)
BEL Files (*.abl)

18 MACHXL Software User’s Guide (Version 3.0)

Project Files
Those used to build a design.

o *mpf (Project Files)

O *src (source files)

o *pi (Physical Information files)

0 *dsl (Design Synthesis Language files)

Project Information Files
Those containing information about how your design was “built”.

Source Files

.pi Files (*.pi)
Physical Information files to control partitioning of your design.. For more
information on pi files, see chapters 13 through 15.

PALASM Files (*.pds)
ABEL Files (*.abl)

All Files (*.*)

Import

Imports and translates the selected file to a .src (source file). Import types
are:

0 PALASM

o0 ABEL

Chapter 3: Windows Interface

19

New
Open...

Close
Save Ctri+S
Save As...

1 SEGMENT.MPF

2 MULT.MPF

3 DRINK.MPF

4 DECODE.MPF

5 CIWIN32APPAMACHXL\BOBS.MPF

Project Menu

e

55 Sl Results Device Options View Help .

Build All

Compile

Partition

Generate Fusemaps
Simulate

Build Options

Copy npi to pi

LOPFI

Build All

Runs the MACHXL tools on the open source file. The tools are run in the
following sequence:

Compiler - compiles the source file.

Optimizer - optimizes to the most efficient number of gates in the
smallest possible device(s).

20 MACHXL Software User’s Guide (Version 3.0)

A

Simulator - runs the simulator on the design. Please note the
simulator in MACHXL is a functional simulator only. The simulator
will only be run if there is a design_name.stm file in the same
directory as the design file, and if the option Automatically Simulate
is set in the Simulate Options menu. See Chapter 11 for more
information on the Simulator and creating an .stm file.

Document File - documents the compile, optimize, and simulation
processes and places the information in the file design _name.doc.

Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

Simulator - functionally simulates the design again, now that
partitioning is complete. The simulator will only be run if there is a
design_name.stm file in the same directory as the design file, and if
the option Automatically Simulate is set in the Simulate Options
menu. See Chapter 10 for more information on the Simulator and
creating an .stm file.

Fuse Mapper - creates fusemaps for the design. These fusemaps can

then be downloaded to a device programmer to program the
PLDs/CPLDs.

Document File - after the Scanner, Fitter, Simulator, and Fuse

AAncncane Awn wesa S AR o4 PN ,J,.m,..,. sma~tann Ann in sssmdatad corth infAarmantian

D e B R e R i R P

about the scan, fit, and fusemap processes. Note this information is

Chapter 3: Windows Interface 21

appended to the earlier compile, optimize, and simulate information in
the file. :

During the Build process a window displays its progress. An information
message appears saying Build Completed at the end of the process.

If your design is hierarchical, each portion of the design will be compiled,
optimized, and simulated.

If a failure occurs in any of the Build processes, MACHXL will abort the
process.

Compile

MACHXL can compile a complete design or just certain modules. This
allows defining modules as symbols or library parts.

A normal design (i.e., one with system-level signals) will be run through all of
the Build processes (i.¢., compile, optimize, simulate, etc.)

A library part will be run through only the compile process. Since it has no
system-level signals, a library part cannot be run through the optimizer.

Selecting Compile causes another pulldown menu to appear. This pulldown
allows telling MACHXL whether you are compiling a design or a design
library (i.e., a library part.)

When the compile if finished, an information message will display Compile
Completed.

i File WEY*S8® Results Device Options View Help

| [—

Compile D
Partition

Generate Fusemaps
Simulate

Build Options

Copy npi to pi

Stop
F_Ahort

vesig
Design Libraries

22 MACHXL Software User’s Guide (Version 3.0)

=

Design
Compiles, optimizes, and simulates a design. A design must have system-level

signals.

Design Libraries

Allows compiling (but not optimizing or simulating) a module for use as a
library part. A module has no system-level signals, and therefore cannot be
run through the optimizer.

Partition

The process of partitioning a design involves several processes, each of which
is explained below.

Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

Simulator - functionally simulates the design again, now that
partitioning is complete. The simulator will only be run if there is a
design_name.stm file in the same directory as the design file, and if
the option Automatically Simulate is set in the Simulate Options
menu. See Chapter 10 for more information on the Simulator and
creating an .stm file.

ruse viapper - creates rusemaps Ior the design. 1hese rusemaps can
then be downloaded to a device programmer to program the
PLDs/CPLDs.

Chapter 3: Windows Interface 23

Generate Fusemaps

Generates fuse maps for PLD or CPLD devices. You do not need to run this
procedure for each PLD/CPLD in the design. MACHXL will create the
fusemap files for all the PLD/CPLD devices in your design (assuming there is
more than one device in your design solution.)

You need to generate the fuse maps before you can program the devices.

Build Options

This menu lets you view and set the equation reduction method used by the
optimizer to reduce equations. It also lets you specify whether you want
MACHXL to generate warning messages for conditions it deems unusual but
not catastrophic.

Equation Reduction Method

Controls how the optimizer reduces the design equations.

The Espresso technique is fast and generally produces very good equations.
Espresso Exact and Quine-McClusky methods are slower and use more of
your PCs dynamic memory (RAM) but may result in smaller equations. Due
to speed and memory use concerns, Espresso Exact and Quine-McClusky
reduction techniques should be restricted to designs with relatively small
equations where optimal equation reduction is critical.

24 MACHXL Software User’s Guide (Version 3.0)

The default reduction method is Espresso.

Generate Warnings

This option controls whether or not MACHXL will produce messages for
conditions it deems unusual but not catastrophic.

The default is warnings to be displayed.

Verbose

MACHXL has a number of processes (compiler, optimizer, simulator, etc.),
each of which can generate messages to let you know what is going on with
the process. You can choose whether or not to have these messages displayed
with the Verbose option. It is useful to have these messages displayed if you
have a large, complex design requiring a lot processing time. However, if
you have a smaller design, you may not want these messages to appear. In
either case, these messages are contained in the .Jog file, so you still have
access to them.

The default for Verbose is off.

Nodes for If Statements

Specifies whether the compiler should generate nodes for IFF/THEN/ELSE
statements.

MAX Number of Pterms

Specifies the maximum number of pterms allowed in a design equation.

A nni A i

A& 4 r , LN | P . ww r |]

Copies the Partitioner-created .npi (New Physical Information) file to a .pi
file. For more information, see the section entitiled Using the .npi File to
Recreate a Pinout in Chapter 13.

Chapter 3: Windows Interface 25

Stop

Tells MACHXL to stop a Build that's in progress and exit all processes
gracefully. MACHXL will also report any errors to the file design_name.err.

Abort

Tells MACHXL to abort a Build that’s in progress and to stop all processes.
Processes will be aborted regardless of the stage they are in.

Results Menu

{| File Project JalEULE Options View Help
x Log File - T e
Documentation

Eitter Report

Programming
Simulation

Log File

The .log file (design_name.log) contains any warnings or errors that occurred
during the compile and partitioning phases. If you have problems during these
phases, this is the file to view.

Documentation

The .doc file (design_name.doc) contains all information about your chosen
design solution, including signal names, pinouts of devices, equations that
were used in the solution, etc.

You can set how equations are printed in the documentation file. For more
information, see the section later in this chapter entitled Documentation
Options in the Options Menu.

26 MACHXL Software User’s Guide (Version 3.0)

A

Fitter Report

If you are using MACH devices in your design, this field will display the
MACH .rpt (report) file. The report contains all pertinent information about
fitting of MACH device(s), including the percentage of resource utilization.

For more information on reading the .rpt file, see Chapter 14 and
Appendix D.

- Programming
Allows viewing of the programming (JEDEC) files for a design.

Device Menu

|| File Project Results JDISUINN Options View Help
: - : Parameters

Solutions _
Programming

The Device Menu lets you run certain processes concerning devices in your
design. The pulldowns and submenus are explained below.

Chapter 3: Windows Interface 27

Parameters

Constraints

ce Parameters

Constraints allows limiting the number of devices MACHXL considers as
valid solutions during the partitioning process. For example, you can set a
Logic Family constraint permitting only TTL device to be considered.

While constraints are a powerful feature of MACHXL, setting arbitrarily
stringent requirements may severely limit the number of devices MACHXL
can fit. It may also make it impossible to fit the design into any device or
devices. '

Logic Family:
This field shows which logic families are considered as valid
partitioning devices. The default is all logic families.

Device Package:
This field shows which device package types are considered valid
during partitioning of your design. The default is all package types.

28 MACHXL Software User’s Guide (Version 3.0)

e

Propagation Delay (nS):

This field sets the maximum propagation delay for any device in the
solution. Note this is the propagation delay for any device, not for the
design as a whole. The default is 0.0nS.

Min. Operating Frequency (MHz):
Specifies the minimum operating frequency, in MHz, of any device
considered for a solution. The default is 0.0 MHz.

User 1:

User-supplied field to enter your own constraint. For example, if your
company keeps statistics on failure rate and MTBF, you could use
User 1 and User 2 to represent these statistics for devices or families.

Number of Devices:

Lets you tell MACHXL the maximum number of devices in the
solution. You may use any number from 1 to 20. Note depending on
the complexity of the design, setting an arbitrarily low number of
devices may force MACHXL to consider only very large devices.
MACHXL may also be unable to fit the design at all. The default for
this field is 20. '

Temperature Range:
Allows selecting valid device operating temperature ranges.

The default is all temperature ranges.

Max Power Supply Current (mA):

Allows entering the maximum amount of current (in mA) a device
may draw. Note this is the maximum draw for any one device, not for
the whole design (if there is more than one device in the solution.)

The default is 0.0 mA.

User 2:
See User 1.

Chapter 3: Windows Interface 29

Priorities

This dialog box tells MACHXL how important are certain criteria when
selecting devices. Priorities are used as weighting factors to determine the
order of solutions displayed in the Top 10 List. Weighting is on a scale of 1
to 10 with 10 being the most important. By means of the Priorities menu you
tell MACHXL which are most important.

TEMPLATES

30 MACHXL Software User’s Guide (Version 3.0)

e

Every programmable device belongs to an architecture, which shares features
with other similar devices. For example, two devices with similar part
numbers may be identical inside, and vary only in their temperature range or
package type. These architectures are know as templates, and are set by the
manufacturer.

The templates menu allows specifying which architecturesare considered valid
during partitioning. Specifying only those templates needed will considerably
speed the partitioning process.

Note: You must select the Device template for each architecture you
use, even if a device is specified in the Physical Information (.pi) file.
For more information on using a .pi file to modify MACHXLs
partitioning process, see Chapter 13.

Solutions

After MACHXL partitions and fits a design, it displays a list of the Top 10
Solutions (if there are at least 10), from which you can choose a solution.

. These solutions are developed from your design and include constraints and
priorities you set.

Solutions

1. P22V10
2. MRACH111 95ma 20ns $5.75
3. MACH110 203ma 24ns $5.75
4. MACH211 120ma 18ns $5.80
5. MACH215 220ma 24ns $6.15
6. MACH210 23éma 24ns $6._35
7. P26V12 150ma 25ns $7.80
8. MRACH120 225ma 30ns $11.50
9. MACH130 379ma 30ns $12.40
. 10. MACH131 95ma 25ns $13.35

Chapter 3: Windows Interface 31

You may go back to the Solutions menu at any time and choose a new
solution. Simple choose Solutions from the Device menu. This eliminates the

need to re-compile your design each time you want to investigate a new
solution.

Programming
Downloads the JEDEC files for your design to the device programmer.

Options Menu

The Options Menu let you set parameters that affect the overall look and
operation of MACHXL There are five option categories:

0 Build Options

0 Documentation Options
o0 Schematic Options

o Simulator Options

o System Interface Options

You can set the parameters by selecting each category, as explained in the
following sections.

DDE1.SRC

Authorization

Allows you to modify authorization codes for MACHXL and the AMD device
modules.

32

MACHXL Software User’s Guide (Version 3.0)

bm
Options

There are four buttons at the bottom of the Options pulldown affecting options
menus.

OK

Saves the choices made in the current menu.

Cancel
Returns all values to their original state and closes the menu.

Apply

Applies the menu values to the current design.

Build Options

Equation Reduction Method
Controls how the optimizer reduces the design equations.

The Espresso technique is fast and generally produces very good
equations. Espresso Exact and Quine-McClusky methods are slower

Chapter 3: Windows Interface 33

and use more of your PCs dynamic memory (RAM) but may result in
smaller equations. Due to speed and memory use concerns, Espresso
Exact and Quine-McClusky reduction techniques should be restricted
to designs with relatively small equations where optimal equation
reduction is critical.

The default reduction method is Espresso.

Generate Warnings ,
This option controls whether or not MACHXL will produce messages
for conditions it deems unusual but not catastrophic.

The default is for warnings to be displayed.

Verbose

MACHXL has a number of processes (compiler, optimizer, simulator,
etc.), each of which can generate messages to let you know what is
going on with the process. You can choose whether or not to have
these messages displayed with the Verbose option. It is useful to have
these messages displayed if you have a large, complex design
requiring a lot processing time. However, if you have a smaller
design, you may not want these messages to appear. In either case,
these messages are contained in the .Jog file, so you still have access
to them.

The default for Verbose is off.

Nodes for If Statements
Specifies whether the compiler should generate nodes for
IF/THEN/ELSE statements.

MAX Number of Pterms
Sets the maximum number of pterms allowed in any design equation.

34 MACHXL Software User’s Guide (Version 3.0)

b=

Documentation Options

The documentation options allow you to set how equations will be displayed in
the documentation (design_name.doc) file.

Print Equations as Described in the Source

This option tells MACHXL to print the equations as specified in the
original source file. For example, if you specify x as a JK flop, you
will see both J and K equations in the .doc file.

Print Equations as Fitted

This option tells MACHXL to print the equations as fit onto the
devices. Because of the operations of the optimizer, these equations
may appear considerably different than those originally specified.

Print All Equations

The compiler takes the original equations you specify and attempts to
synthesize as many functionally-equivalent equations as possible.
This is to maximize the number of devices that MACHXL can fit
your design onto. This is done also to minimize the size of the design,
allowing it to be fit onto smaller, less-expensive devices.

Chapter 3: Windows Interface 35

This option writes the equations to the .doc file as you originally
described them, as well as All equations synthesized by the compiler.

Print DeMorgan Equations
This option prints all the DeMorgan equivalents of the equations used
during fitting.

Schematic Options

MACHXL uses schematic and language (source) files as input. The following
set options applying to schematic input.

Schematic Editor
Allows choosing which MACHXL-supported schematic editor will be
used to edit a schematic design file.

Use TTL Library
This options allows you to specify whether or not to use the EDIF 200

TTL library.

Base Component Library
The default component library used by MACHXL's schematic netlist
compiler is called PLDPRIMS. If you choose, you can replace this

36 MACHXL Software User’s Guide (Version 3.0)

A

library with another. Enter the path and name of the library in the
field provided.

Extended Component Libraries

You can extend the component library provided with MACHXL
(PLDPRIMS) by adding schematic components of your own, or
component libraries from another source. MACHXL will recognize
up to five of these component libraries. These are used in addition to
the base component library, PLDPRIMS.

Simulation Options
Allows you to set options relating to MACHXL's functional simulator.

Simulation Output Level

These options change the way the simulator outputs information to its
listing (.sim) file. For more information on the simulator's operation,
see Chapter 11.

All dtates
Causes both unstable and stable states to be written to the simulator
listing file.

Chapter 3: Windows Interface 37

Unstable States
Writes only unstable simulator states to the simulator listing file.

Stable States
Writes only stable simulator states to the simulator listing file.

Automatically Simulate
Runs the simulator during a normal Build process. The following
shows the order processes are run during the Build.

Compiler - compiles the source file.

Optimizer - optimizes the design, reducing it to the most efficient
number of gates into the smallest possible device(s).

Simulator - runs the simulator on the design. Please note the
simulator in MACHXL is a functional simulator only. The simulator
runs only if there is a design_name.stm file in the same directory as
the design file, and if the option Automatically Simulate is set in the
Simulate Options menu. See Chapter 11 for more information on the
Simulator and creating an .stm file.

Document File - documents the compile, optimize, and simulation
processes and places the information in the file design_name.doc.
Device Scanner- scans the file of available devices to find those into
which your design will fit.

Fitter - creates solutions for your design, based on the devices from
the Scanner, and the constraints and priorities which you set (see the
Device menu and the Parameters menu items later in this section for
more information on setting priorities and constraints.) These
solutions are listed in the solutions menu, allowing you to choose one.
No fusemaps are actually created here. This step correctly partitions
your design into single or multiple devices, and takes care of routing
signals to each device.

38 MACHXL Software User’s Guide (Version 3.0)

A

Simulator - functionally simulates the design again, to create test
vector files.

Fuse Mapper - creates fusemaps for the design. These fusemaps can
then be downloaded to a device programmer to program the
PLDs/CPLDs.

Document File - after the Scanner, Fitter, Simulator, and Fuse
Mapper are run, the file design_name.doc is updated with information
about the scan, fit, and fusemap processes. Note this information is
appended to the earlier compile, optimize, and simulate information in
the file.

Notice the simulator is run twice through a normal build and partition cycle.
By changing the Automatically Simulate field, you can tell MACHXL not to
run the simulator. If you do not need to simulate your design, disabling the
Simulator can speed the build and partition processes.

System Interface Options

Text Editor
Tells MACHXL which text editor to use to create source files. You

need to supply the name of the editor's executable file as well as the
path. Windows Notepad is default.

Chapter 3: Windows Interface 39

Programmer Interface

Tells MACHXL the name and path of the device programmer's
communication software. You need to supply this before you can
download fusemaps to your device programmer.

User Options
Allows you to enter command strings or set parameters for the text
editor.

Cumulative Logging

- When MACHXL logs the preess results to the design_name.log file,
it overwrites previous information. This field tells MACHXL to
concatenate the new information to the file instead of overwriting.

View Menu

Toolbar

Lets you specify whether or not to display the MACHXL tool bar. If the tool
bar is turned on, a check mark will appear to the left of the label. Turning the
toolbar off increases the size of the Main Window.

40 MACHXL Software User’s Guide (Version 3.0)

£\
Status Bar

Lets you specify whether or not to display the MACHXL status bar at the
bottom of the Main Window. If the status bar is turned on, a check mark will
appear to the left of the label. Turning the status bar off increases the size of
the Main Window, but will not allow you to see the status of MACHXL
functions. ‘

Help Menu

Project Results Device Oitions View QM

Index
Using Help

About MachXL30...

Index

Displays index of items avail: ble for help.

Using Help

A Alnwt b nsial A sraine haly fantiirac

48 MDEAVAV ViU s svva Vas wemasery sewep ——eweeee o

Chapter 3: Windows Interface 41

About MACHXL

Diplays the version number of MACHXL.

42 MACHXL Software User’s Guide (Version 3.0)

Conventions and Syntax

Contents

Introduction to Design Synthesis Language (DSL) 44
Description of a DSL Source Filecocooconiiiiiiiiiiin, 44
Conventions Used by Design Synthesis Language 46
IAeNUFIErSooiiiiii e 46
KeYyWOTrdS......coviiiiiiiei e 47
Integer Constants..............coceeieiieiiieiieei e 48
COMIMENTS ... 49
Headers.o.oooiiiiiiiiee e 50

Chapter 4: Conventions and Syntax

43

e

Introduction to Design Synthesis Language
(DSL)

The Design Synthesis Language (DSL) is a high-level behavioral language
developed for use with programmable logic. You can use DSL to build a
source file to describe your design. DSL provides constructs for state-
machine descriptions, truth tables, and Boolean. DSL also allows hierarchical
design with procedures and functions. Program control statements such as IF
and CASE, combined with multiple nesting and hierarchical design
capabilities let you describe complex designs quickly and easily. You can also
create macros to perform text substitution.

There are two kinds of DSL files, each providing different functions:

0 Source file- this is a functional description of your design using
DSL. The source file describes the behavior of your design.

o Physical Information (.pi) file-this controls how a design is
implemented. This optional file can be used to specify:

= physical devices used when implementing the design
= pin out of each device in the design
= optimization techniques used on the design
= device-specific features required by the design
The structure and syntax of DSL are described in the remainder of this

chapter and in chapters 5 through 9. The structure of the physical information
(.pi) file and device specific information are found in chapters 14 and 15.

Description of a DSL Source File

As mentioned earlier, the DSL source file contains the functional description
of your design. DSL has a structure similar to many programming languages.
If you have experience with a programming laiiguage, you'll probably
recognize many of the constructs of DSL.

44 MACHXL Software User’s Guide (Version 3.0)

P

A DSL source file will contain the following information:

1. Procedure and function definitions for frequently used descriptions.
Much like their programming language counterparts, procedures
and functions are declared before they are invoked in DSL.

2. Signal declarations that define the characteristics of the signals in
the design. Signal descriptions are equivalent to variable
declarations in a programming language.

3. Statements (including procedure and function instantiations) make
up the logic that is implemented in your programmable devices.

The following shows the suggested organization of a DSL source file and the
chapters where information on each part may be found:

Each section of the DSL design description is optional. For example, you may
create a simple DSL design description that consists only of a System-level
declaration and the system-level statements. Or, you may create a DSL
source file that includes only Procedure and Function definitions. This source
file could then in turn be used as a library of handy routines that can be
accessed by other DSL source files.

Examples of DSL source files can be found in Appendix B, Language-Based
Design Examples.

Chapter 4: Conventions and Syntax 45

e

Conventions Used by Design Synthesis Language
The following table shows the conventions used by DSL.

Identifiers

Identifiers are names given to specific items in a source file. Named items
include signals, macros, procedures, functions, state machines, states in a state
machine, and test language variables.

The rules for forming identifiers are:

1. The first character of an identifier must be a letter ("A" through
"Z", or "a" through "z") or an underscore (_).

2. Succeeding characters may be any sequence of letters (A..Z,
a..z), digits (0..9), the dollar sign ($), or the underscore (_).

3. You may use any combination of upper-case and lower-case
letters in an identifier. The Design Synthesis Language is case-

insensitive; thus, upper-case and lower-case letters are treated
alike.

46 MACHXL Software User’s Guide (Version 3.0)

c

4. Identifiers cannot contain spaces. Use the underscore character
to separate words in long identifiers to make them easier to read.

5. Identifiers may be of any length.

Keywords

The identifiers listed below are reserved by the language as keywords and may
not be used for other identifier purposes.

FOOTPRINT

AND FOR
BIN FUNCTION
BIPUT GOTO
BLOWN GRAY_CODE
CASE GROUP
CLOCK_ENABLED_BY HEX
CLOCKED_BY HIGH_VALUE
CLOCKF IF
COMP_OFF INCLUDE
COMP_ON INITIAL
D_FLOP

_ INITIAL_TO
D_LATCH INPUT
DEC INTACT
DEFAULT JK_FLOP
DEFAULT_TO LAST_VALUE
DEMORGAN_SYNTH LATCHED_BY
DEVICE LOW_TRUE
DISABLED_ONLY_FOR_ LOW_VALUE
TEST MACRO
DO MAX_PTERMS
ELSE MAX_SYMBOLS
ELSIF MAX_XOR_PTERMS
ENABLED_BY MESSAGE
ciNu MOD
FF_SYNTH NAME
FIT_WITH NO_COLLAPSE
FIXED NO_CONNECT

Chapter 4: Conventions and Syntax 47

NO_REDUCE STATE_VALUES
NODE STEP

NOT SYSTEM_TEST

ocT T_FLOP

ONE_HOT TARGET

OR TEMPLATE

OUTPUT TEST_VECTORS
PART_NUMBER THEN

PHYSICAL TO
POLARITY_CONTROL TRACE

PRESET_BY TRUTH_TABLE
PROCEDURE USE

RESET_BY VAR

RETURN VIRTUAL

SECTION WHEN

SET WHILE

SIMULATION WIRED_BUS
SR_FLOP XOR_POLARITY_CONT
STATE ROL

STATE_BITS XOR_TO_SOP_SYNTH

STATE_MACHINE

Integer Constants

Integer constants are used in DSL to assign a fixed value to a signal, for
arithmetic operations, or as part of a conditional test. Constants must follow
these rules:

0 Constants must be integers.

0 Constants may be of any length. Operations in DSL are performed
with unlimited precision.

o The first character of a constant must be a digit; otherwise the
compiler will interpret the character string as an identifier.

48 MACHXL Software User’s Guide (Version 3.0)

b

o Constants assigned to single bit or non-array signals can only be 0
orl.

o If no base is specified, the constant is assumed to be decimal.

o Constants used in conditions or arithmetic operations can represent
values in four bases (binary, octal, decimal, or hexadecimal). To
set the base of the constant, add the first letter of the base name to
the end of the constant. For example, to represent the character C
as the hexadecimal value for 12, add a leading zero to the letter C
and follow it with h (for hexadecimal): OCh. This distinguishes it
from the letter C. Either upper case or lower case may be used for
the letter of the base name.

The following are examples of legal and illegal constants:

Legal Constants:

0101b "binary constant
07320 "octal constant

973 "decimal constant
973d "decimal constant
OAOAh "hexadecimal constant

Illegal Constants:

2.54 "constant must be an integer

AOAh "constants must start with a digit

OACOd "constant must match the base specified
Comments

Providing comments in your source file makes it easier to understand the
intent of certain sections of code for later reference. Commented code can be

particularly useful for design teams working on a project so each member can
better understand the other team memher<' r\ipppe nfa :‘."”)j‘:"f‘;

Comments begin with a quotation mark (") followed by text. A new line
indicates the end of a comment.

Chapter 4: Conventions and Syntax 49

Headers

Comments used as notes throughout a source file should not be confused with
the COMMENT keyword. The COMMENT keyword is used to include
comments in a JEDEC file.

For instance, with the comment next to the STATE allred; statement, it is
clear that allred is the first state of the state machine:

STATE allred: "First state

Headers are used to place design information in the source file.

Header statements, if used, must appear at the beginning of a source file. Six
optional header types are recognized by the Design Synthesis Language:
TITLE, ENGINEER, COMPANY, REVISION, and COMMENT.

A design may use any combination of header types, in any order, or none at
all. Each header has an associated string. The format for a header is:

header_type 'header_information';

Where:

header _type is one of the six header keywords: TITLE,
ENGINEER, COMPANY, REVISION, PROJECT, or COMMENT.

header information is text describing the header type
information for the design. This text is enclosed in single quote
marks.

Examples

#TITLE 'X1000 MEMORY GLUE LOGIC';
#ENGINEER '*JOE SILICON';
#REVISION '2.02';

To place multiple lines in the JEDEC file, use separate lines of text enclosed
by single-quote marks:

#COMMENT 'This design implements the glue'
'logic between the X1000 and its memory. ';

50 MACHXL Software User’s Guide (Version 3.0)

5 Signal Declarations and Modifiers

Contents .
INEPOQUCHION............ovviiiiiiiiiiiiieiieieeeeee e eee e ee ettt arernerbaaaeeeaseseseanananennaas 52
DECIarationSovvviiiiiiiiieeieiieieeeee et as 52

System and Local Signal Declarations.............c.ccecevveeveeniiniiennens 53

ATTAYS ..ttt 53

Input SigNalsccceeviiiieiieie e 54
Output/Biput Signalsccccoviiviiiiiiieieiececerc e 55

Biput Signal Usageccocevveriiruiiirieienecienieceesesieeie e 56

NOGES ...t et ae e e e setraae e e e e s 57
Wired-Bus Signals..........ccccevvivieiiniiiieieeeieeeee e 59
Declaration MOQIfIETS............ocvviiiiiiiiiiiieiee e 61
FLP-FIOP TYPES ...ccvviiiieiieiienieeiieieere ettt sve s e e e 62

D FLOP ...ttt 63

D LATCH. ...ttt 63

JK FLOP ..ot 64

SR _FLOP.................. e e et eat e e e e et reeeeenaan 64

T FLOP ..ottt 65

Control Information COnStIUCEScooviviiiiiiiiei e e 65
CLOCKED _BY ...ttt 66
LATCHED BY ..ottt 66
CLOCK_ENABLED BYccocooiiiiiiiieieieieeeieee e 67
RESET BY.......ccocovenee. et ————— e a———aaas 67
PRESET BYoooiiiiiiiiiiieiee ettt 67
ENABLED BYcooooiiieoeeeeeeeeseeeeeeeeeeeee s eess s 67
Default Information CONStIUCES............ccouvieereieeiiiiiee e eerere e 68
DEFAULT _TO ...ttt 68

NO REDUCE ..ot 70

Chapter 5: Declarations and Modifiers 51

A

Introduction

This chapter discusses the types of signals that the Design Synthesis Language
recognizes. Discussions include how to declare signals, as well as the
modifiers you may use on them. The types of signal declarations available
include:

o INPUTS

o OUTPUTS/BIPUTS
o NODES

o WIRED BUS

Arrays of these signal types may also be declared.
Modifiers to the signal declarations allow you to declare signals as:

0 low true
o flip-flops
0O latches

as well as setting the clocking/latching and their default states.

Declarations

Different types of signal declarations made at the beginning of a source file
define and name signals (identifiers) to be used in a design and indicate to the
compiler, optimizer, and fitting tools how these various signal identifiers will
function in the design. Signals may be declared at both the system and local
levels (see the next section, System and Local Signal Declarations).

The types of signals available in the Design Synthesis Language include:
INPUT, NODE, OUTPUT/ BIPUT, and WIRED_BUS. Any of these signal
types may also be declared as an array. A description of each follows.

52 MACHXL Software User’s Guide (Version 3.0)

A

System and Local Signal Declarations

Signal declarations may appear inside or outside of a procedure or function.
A signal declaration made outside of a procedure or function is known as a
system signal, and is available at the system level. The signal will not be
recognized within any procedure or function.

All procedure and function descriptions must appear before any system level
design information, including system-signal declarations and system-level
statements.

A signal declaration made inside a procedure or function is local and is not
visible to any other procedure or function even at the system level.

Thus, a local signal can have the same name as a system signal and will exist
only until the end of the function or procedure. A system signal with the same
name as a local signal is immune to any changes made to the local signal
unless the value is passed explicitly through a procedure output.

Arrays

An array is a set of logically related signals that can be treated separately or
as a unit. All types of signals may be declared as arrays (Signals types
INPUTs, NODEs, OUTPUTs, BIPUTs, and WIRED_BUSes.)

The array identifier is listed along with a number or a range of numbers that
determines the size of the array. For instance, you may declare a range for an
array using beginning and ending indexes:

identifier[index 1..index n];
Indexes can be given in either ascending or descending order. When an array

is used in an expression, the first index is always the Most Significant Bit and
the last index is the Least Significant Bit.

The declaration:

OUTPUT addr[15..0]; "array addr declared using

“a range oOr inaexes

Specifies 16 elements to the array: addr[15], addr[14], addr[13], addr[12],
addr[11], addr[10] through addr[0].

Chapter 5: Declarations and Modifiers 53

As an alternative, you may simply specify the size of an array, which becomes
a shorthand way of giving a range of indexes from (array_size - 1) descending
to 0:

identifier(array_size];

The same array declaration given in the previous example, specifying 16
elements to the OUTPUT addr, can be declared as follows:
OUTPUT addr[16]; "array addr declared using an

"array size

Again, the elements in the array include: addr[15], addr[14], addr[13],
addr[12], addr[11], addr[10] through addr[0].

The following array declaration for q:

OUTPUT q[4..7];

Has four elements q[4], q[5], q[6], and q[7]. Note that this array has
ascending indexes: q[4] being the Most Significant Bit and g[7] being the
Least Significant Bit.

Each index can be a constant expression made up of constants and operators.
For example, the following:

INPUT in[2.*.5]

is exactly the same as:

INPUT in[10] " .*, is the DSL operator for
" multiplication
Input Signals
Signals that serve only as inputs to a design may be declared using the
keyword INPUT.

The syntax for declaring input signals is as follows:

[LOW_TRUE] INPUT identifier or_array list;

54 MACHXL Software User’s Guide (Version 3.0)

e

The optional LOW_TRUE modifier may be used to indicate that a low voltage
will represent the true state of the declared input signal(s). (See Low_True in
the Declaration Modifiers section, later in this chapter for more information.)

Each signal name in the identifier list must be separated by a comma, and the
declaration must be followed by a semi-colon. :

Examples

INPUT x,y(4],2; "declares inputs x, y([3],
"y(2]),y(1]), y(0]}, and z

LOW_TRUE INPUT x,y,z; "declares inputs x, y, and
"z as low-true

INPUT /x,y,2[7..5]; "declares inputs x as low-

"true, y, z[7], 2[6], z[5]

Output/Biput Signals

Signals that will be visible outside a design can be declared using the
OUTPUT keyword. BIPUT may be used as a synonym for OUTPUT when
symbols are used for bi-directional operation. The syntax for declaring
outputs is as follows:

[LOW_TRUE] [flip flop type] OUTPUT
identifier or array list [control_info]
[default_info];

OUTPUTSs may be used without modifiers as a way to get signals out of a
design. On the other hand, NODEs with modifiers are a way of creating
internal design elements. An OUTPUT declared with the same modifiers as a
NODE is a shorthand or alternate way of representing a NODE that feeds a
regular OUTPUT.

Example
INPUT a, b;

D_FLOP OUTPUT x CLOCKED_BY clk;
X =a * b;

Chapter 5: Declarations and Modifiers 55

is equivalent to:

INPUT a, b;
D_FLOP NODE x node CLOCKED_BY clk;
OUTPUT x;
. X = X_node;
x_node = a * b;

Biput Signal Usage

From a language structure view point, an output statement that contains an
ENABLED _BY can be used as a bidirectional signal. However, the following
information gives some insight into proper usage of BIPUTs:

The statement:

OUTPUT xx ENABLED BY oe;

usually represents an output pin that will be driven with an input value if the
ENABLED BY (i.e., oe) signal is asserted.

The statement

BIPUT xx ENABLED BY oe;

usually represents a biput pin that is driven by internal logic when the

ENABLED_BY (i.e., o¢) signal is asserted. This same pin is driven by an
input value when the ENABLED_BY (i.e., o) signal is not asserted.

When the ENABLED_BY pin (i.¢., oe) of an OUTPUT/BIPUT signal is not
asserted, the OUTPUT/ BIPUT signal will have a high impedance (.Z.) state.

The following example and screen show how OUTPUT and BIPUT
statements with an ENABLED_BY modifier should be used. The example

also shows how signal feedback can be accessed before/or after the
ENABLED_BY modifier.

56 MACHXL Software User’s Guide (Version 3.0)

In the following example, xx is used as a BIPUT pin, yy is used as an
OUTPUT pin, and zz is used as an OUTPUT pin that is enabled and uses

internal feedback from nodel.

mr_# node1 [f\' XX

yy

in2

zz

oe

Input inl,in2, oe;
PHYSICAL NODE nodel;
BIPUT xx ENABLED BY oe;
OUTPUT yy;

OUTPUT zz ENABLED_BY oe;
nodel = inl;

XX = node 1;

Yy = xx * in2;

zz nodel * in2;

Nodes

Nodes are signals in a design that are not visible outside the design (unlikc

|

INPUTs and OUTPUTs.) A node simply identifies a point in a logic design.

This point (node) may be an actual physical point, or a virtual point that is
collapsed during optimization. Physical and Virtual nodes are discussed in

more detail later in this chapter.

A node without a clock (i.e., no CLOCKED_BY) will be a combinatorial

node. Combinatorial nodes are useful building blocks for connecting separate
pieces of combinatorial logic (much like a schematic net.) An equation for a

node may be created in one part of a design and referenced in other parts.

Chapter 5: Declarations and Modifiers

57

The logic optimizer may choose to leave nodes in the design to be fit as
physical nodes in hardware. The optimizer may also choose to remove a node
by passing its equation logic to all equations that reference the node (this is
called node collapsing.) One of two modifiers, PHYSICAL or VIRTUAL,
may be used with the keyword NODE to control node collapsing. The
PHYSICAL modifier is used to force the optimizer to create a physical node
in hardware. VIRTUAL is used to force the optimizer to collapse a node
during optimizing,.

There are other control mechanisms for controlling node collapsing. These
mechanisms are properties that are placed in a Physical Information (.pi) file.
For more information on controlling node collapsing, see Chapter 13

Even though you may use the modifiers VIRTUAL and PHYSICAL, we
recommend that NODE be used without either unless there is a specific reason
to control node collapsing (e.g., when you need to duplicate a design.) By not
using the modifiers except when absolutely necessary, you give the optimizer
maximum freedom to reach the optimal equation sizes for the target hardware.

Nodes are declared with the NODE keyword using the following syntax:

[LOW_TRUE]([flip flop type] [VIRTUAL|PHYSICAL] NODE
identifier or array list [control_info]
[default_info];

Example

NODE x, y(4], z; "declares combinatorial NODEs
"%, y[(31, v[2], y[1], y[O], and 2z

JK_FLOP NODE x, y, z[6..4] CLOCKED BY clk;
"declares JK flip-flops x, vy,
" z[6],2[5], z[4]

For example, with the declaration of 1 as a virtual node and its assignment as
a*b:

INPUT a, b, c;
VIRTUAL NODE 1i;
OUTPUT o3

58 MACHXL Software User’s Guide (Version 3.0)

"

i
o

a * b;
i * ¢;

The resulting assignment statement for o is:

o=a*b * ¢c;

In the example given above, the VIRTUAL modifier forces the optimizer to
remove the node. However, if the VIRTUAL modifer were not given, the
optimizer would still have collapsed the node since the resulting equation is
smaller.

In the following example, changing the PHY SICAL NODE declaration to
VIRTUAL NODE also changes the generated equation:

INPUT a, b, c; INPUT a, b, c;
OUTPUT q; OUTPUT q;
PHYSICAL NODE x; VIRTUAL NODE x;
X = a * b; X = a * b;
qg=x%*c; a=x * c;

x declared as a x declared as a
PHYSICAL NODE is VIRTUAL NODE is
implemented as: implemented as:
gq=a*b*c; g=x*c;

x = a * by

Note: Node collapsing is also dependent on other properties you may

have specified (see Chapter 12).

Wired-Bus Signals

The WIRED_BUS declaration defines a group of nodes or outputs that are to
be tied together electrically. Each node or output must have an

ENABLED_BY expression that is independent of all others in the group, since

Chapter 5: Declarations and Modifiers

no two nodes or outputs may be enabled at the same time. A group of nodes
can be referenced in expressions by declaring them as WIRED_BUS signals.
The identifier named for the group has the value of whichever node is enabled.

The syntax for declaring wired bus signals is:

WIRED_BUS identifier: node_1l, node_2, .. node n;

Where: node n is an enabled node or output.

Alternatively, you can declare an array of wired bus signals:

WIRED BUS identifier([size]: group_ 1, group_2, ..
group n;

Where:group_n is a group or array of enabled nodes or outputs

of the same width as the declared array.

With the following signal declarations:

INPUT a, b;

NODE x1 ENABLED BY a * b;
NODE x2 ENABLED _BY a * /b;
NODE x3 ENABLED_BY /a * b;

The wired bus declaration for w:

WIRED_BUS w: x1, x2, x3;

defines the new name w to be equal to the value of x1 when a*b = 1, the value
of x2 when a*/b = 1, and the value of x3 when /a*b = 1. w can be used in
expressions just like any other signal.

Several arrays and individual signals are declared as follows:

INPUT a, b;

NODE x1[4] ENABLED BY a * b;

NODE x2[4] ENABLED BY a * /b;
NODE q, r, s, t ENABLED BY /a * b;

can be tied together by declaring a WIRED_BUS:

WIRED_BUS w[4]}: x1, x2, [q, r, 8, t];

60 MACHXL Software User’s Guide (Version 3.0)

This creates the following connections:

w[3] represents the connection of x1[3], x2[3], and q.
w|[2] represents the connection of x1[2], x2[2], and r.
w[1] represents the connection of x1[1], x2[1], and s.

w[0] represents the connection of x1[0], x2[0], and t.

Declaration Modifiers

Declaration modifiers are optional parameters that may be used when
declaring certain kinds of signals. These include:

o the low-true designator for inputs, nodes, outputs, and biputs
o the flip-flop type designators for outputs, biputs, and nodes
o control information for outputs, biputs, and nodes

0 default information for outputs, biputs, nodes, and return values of
functions

o LOW_TRUE

The optional LOW_TRUE modifier is used to define an input, output, biput,
or node as low-true, indicating that a low voltage will represent the true state.
The LOW_TRUE modifier appears first in a signal declaration:

LOW_TRUE INPUT x, y, z;
A signal may also be declared as low true by preceding the signal name with
the logical negation symbol (/) in the declaration:

INPUT x, /y, 2z; "Declares inputs x, y as low-true,
"and z

Chapter 5: Declarations and Modifiers 61

If low-true is not indicated by either the LOW_TRUE modifier or the logical
negation symbol when the signal is declared, the signal will default to high
true.

Flip-Flop Types

Node and output declarations may be preceded by a flip-flop type that allows
the signal to be described as the designated flip-flop or latch. The optimizer
will synthesize equations for other flip-flop types, allowing the fitting tools to
implement the signal using the most efficient actual hardware flip-flop type.
The declared type allows the design to be described in the most convenient
way for the user.

When a flip-flop type is declared, an accompanying CLOCKED_BY
expression or LATCHED_BY expression (in the case of a D_LATCH) must
also be declared. If a flip-flop type is declared without a CLOCKED_BY or
LATCHED_BY expression, the compiler will generate an error.

The syntax for declaring a node or output is:

[flip flop_type] NODE identifier or array list
[control info) [default_info];

[flip_flop type] OUTPUT identifier or array list
[control_info] [default_info];

Where flip flop typeis D_FLOP, D_LATCH, JK_FLOP,
SR_FLOP, or T_FLOP

When referencing a node or output signal that has a JK, SR, or T flip-flop
type, the corresponding suffix (.J, K, .R, .S, or .T) must be appended to the
node or output signal name when an expression is assigned to it. .D is
optional for D flip-flops.

A declaration without a flip-flop type and without a CLOCKED_BY or
LATCHED_BY modifier will be combinatorial.

62 MACHXL Software User’s Guide (Version 3.0)

e

D_FLOP

D_FLOP defines a node or output to be a D flip flop. If no flip-flop type is
specified and a CLOCKED_BY expression is used when declaring a node or
output, a D-type flip-flop will be assumed.

Since the D-type flip-flop is the default register type, D-type node or output
signals do not require a .D suffix when an expression is assigned to it.

The optimizer will synthesize all other flip-flop types for this equation,
allowing MACHXL to fit any type.

Valid declarations and uses of D_FLOP include:

D_FLOP NODE a CLOCKED_BY clk; "D_FLOP is optional

NODE a CLOCKED_BY clk; "since it is the

a = b; " default suffix.
".D not required for
" node a with D_FLOP

An invalid use of a D_FLOP in an assignment statement would be:

NODE x CLOCKED BY clk; "x is declared by default
x.j = 1; "as a D_FLOP, not a
"JK_FLOP

D_LATCH

D_LATCH defines a node or output to be a latched signal for a D-latch type
device. The declaration modifier LATCHED_BY (rather than
CLOCKED_BY) must be used in the declaration statement when D_LATCH
is specified for flip_flop_type. If a flip-flop type other than D_LATCH is
declared with a LATCHED_BY expression, the compiler will generate an
error.

Note: D _FLOP gives partitioning a greater humber of device
architectures to choose from in selecting devices for a design than
does D LATCH. For this reason, we recommend using D FLOP
whenever possible, rather than D _LATCH.

The following is a valid LATCHED_BY declaration:

D_LATCH NODE b LATCHED_BY latch;

Chapter 5: Declarations and Modifiers 63

An invalid D_LATCH declaration would be:

D_LATCH NODE b CLOCKED BY clk; "D_LATCH requires a
"LATCHED_BY
"expression
JK_FLOP

JK_FLOP defines a node or output to be a JK flip-flop type. Expressions are
assigned to JK flops by appending the .J or .K suffix to the signal name (e.g.,
FLOP1.J, FLOP1 K). If an expression is assigned to a signal using the .J or
K suffix but has not been declared as the JK_FLOP type, the compiler will
generate an error.

MACHXL’s optimizer will synthesize versions of all other flop types,
allowing the tools to fit any of these versions.

The following two examples indicate valid declarations and uses of JK_FLOP:

JK_FLOP OUTPUT 3kl CLOCKED BY clk;
JK_FLOP NODE jkl CLOCKED BY clk;
jk1.§ = 1;
jkl.k = O;

Invalid uses of JK_FLOP include:

JK_FLOP NODE jkl; "declaration missing
"CLOCKED_BY expression

jkl = a; "jkl missing .J or .K
"suffix in assignment
"statement

SR_FLOP

SR_FLOP defines a node or output to be an SR flip-flop. Expressions are
assigned to SR flops by appending the .S or .R suffix to the signal name (e.g.,
FLOP1.S, FLOP1.R).

MACHXL’s optimizer will synthesize versions of all other flop types,
allowing the tools to fit any of these versions.

64 MACHXL Software User’s Guide (Version 3.0)

Valid declarations and uses of SR_FLOP include:

SR_FLOP NODE srl CLOCKED_BY clk;
SR_FLOP NODE srl CLOCKED_BY clk;
srl.s = 0;
srl.r 1;

Invalid uses of SR_FLOP include:

SR_FLOP OUTPUT srl; "missing CLOCKED_BY
"expression in declaration

srl = aj; "srl missing .S or .R
"suffix in assignment
"statement

T_FLOP

T _FLOP defines a node or output to be a T flip-flop. Expressions are
assigned to T nodes or outputs by appending the .T suffix to the signal name
(e.g., FLOP1.T).

MACHXL's optimizer will synthesize versions of all other flop types, allowing
the tools to fit any of these versions.

Valid declarations and uses of T_FLOP include:

T_FLOP OUTPUT tl1l CLOCKED_BY clk;

tl.t = 0;
T_FLOP NODE tl CLOCKED_BY clk;
tl.t = 1;

Invalid T_FLOP uses include:

T_FLOP NODE t1; "missing CLOCKED_BY expression in
"declaration
tl = a; "tl missing .T suffix in

"assignment statement

Chapter 5: Declarations and Modifiers 65

e

Control Information Constructs

Nodes or output signals can be declared with any combination of one or more
optional control information constructs. Each construct may be used only
once per declaration. Control information constructs include:

CLOCKED_BY expression
[CLOCK_ENABLED_ BY expression]

LATCHED_BY expression

ENABLED_BY expression

RESET_BY expression

PRESET_BY expression

Note that in a declaration, control information constructs come after the
identifier list:

[LOW_TRUE] ([flip_flop_type] NODE identifier_ list
[control info] [default_info];

[LOW_TRUE] [flip_flop_ type] OUTPUT identifier list
[control_info) [default_info];

Each control information construct is described in its own section.

CLOCKED_BY

CLOCKED_BY defines an expression for clocking the register of a flip-flop.
When the CLOCKED_BY expression becomes true, signals on the input of
the register are clocked to the output of the register on the positive edge. For
D-latches, use LATCHED _BY rather than CLOCKED_BY.

LATCHED_BY

LATCHED_BY defines an expression for timing the latch of a D_LATCH.
As long as a LATCHED_BY expression is true, signals on the input of the
latch are transferred to the output of the latch (i.c., the latch becomes

66 MACHXL Software User’s Guide (Version 3.0)

ot

transparent from input to output). When the LATCHED_BY expression is
false, the latch holds the last value.

CLOCK_ENABLED_BY

Valid only when preceded by a corresponding CLOCKED_BY expression.
Defines an enabling expression that must be true in order for the
CLOCKED_BY expression to be seen by the register.

RESET_BY

RESET BY defines an expression for the asynchronous resetting of the
register. When the RESET BY expression is true, the corresponding register
is false.

Note: Since only registers can be reset, a RESET BY statement must
be accompanied by CLOCKED BY or LATCHED BY.

PRESET_BY

PRESET _BY defines an expression for the asynchronous presetting of the
register. When the PRESET BY expression is true, the register is true.

Note: Since only registers can be reset, a PRESET BY statement
must be accompanied by CLOCKED BY or LATCHED BY.

ENABLED_BY

ENABLED_BY defines an expression to be used as an enable control on a
registered or combinatorial node. The node's value is enabled when the
ENABLED_BY expression is true. When it becomes false, the node's value is
Z. (tri-state).

Chapter 5: Declarations and Modifiers 67

= Note: Assignment of .Z. to a signal is an alternate method of
creating an ENABLED BY expression. For example:

NODE n;

IF a*b THEN

n=c*d

ELSE

n=2;

END IF;

is exactly the same as:
NODE n ENABLED BY a*b;
n=c*d;

Default Information Constructs

Optional default information statements may be used with nodes, outputs,
output parameters of procedures, and return values of functions. The default
information [default info] constructs include:

DEFAULT _TO expression

DEFAULT TO expression, expression
DEFAULT_TO LAST_VALUE

DEFAULT _TO .X.

NO_REDUCE

DEFAULT_TO

DEFAULT _TO defines a value to which a node will default if not explicitly
assigned a value. These situations include the following:

o unspecified ELSE clause of an IF construct,

O unspecified conditions of a CASE statement,

O unspecified conditions in a truth table,

0 unspecified STATE values in a state machine,

o

any other conditions in which there is no assignment to the signal
of interest.

68 MACHXL Software User’s Guide (Version 3.0)

e

The following default values can be specified for a node or output: an
expression (such as 0, 1, a*b), .X. (DON'T CARE), and LAST_VALUE.
Commonly, the default value used will be 0 (denoting false) since this allows
the designer to specify only those cases when a signal is true.

If no DEFAULT _TO statement is given, the compiler assumes the default
value of DON'T CARE (.X.). The DON'T CARE value allows the optimizer
to produce the smallest equations possible. However, this also means that the
value of the signal in the default condition is unpredictable.

LAST_VALUE causes a register to default to itself so that its value will not
change unless otherwise specified. LAST VALUE can be used only with
registers (i.e., signals with CLOCKED_BY')

If a node has been declared as a JK or SR flip-flop type, DEFAULT _TO is
followed by two expressions separated by commas: ,

DEFAULT _TO expressionl, expression2;
The first expression is the default value for the .J or .S inputs and the second
expression is the default for the .K or .R inputs.

For example, the DEFAULT _TO statement in the following declaration of the
JK flip-flop output out 1 causes out1. j to default to 0 and out1. k to
default to 1:

JK_FLOP OUTPUT outl CLOCKED_BY clk DEFAULT TO O, 1;
Note: When using the DEFAULT TO in a statement with other
modifiers, DEFAULT TO must be the last item in the statement. The
Jfollowing is a legal use of DEFAULT TO:
JK_FLOP OUTPUT outl CLOCKED BY clk DEFAULT TO 0, 1;
The following is an illegal use of DEFAULT TO:

JK_FLOP OUTPUT outl DEFAULT TO 0, 1 CLOCKED BY clk;

Chapter 5: Declarations and Modifiers 69

NO_REDUCE

NO_REDUCE can be substituted for DEFAULT_TO in a node or output
signal declaration in order to inhibit reduction of an equation or group of
symbols. NO_REDUCE also prevents the optimizer from performing flip-
flop synthesis. The declared flip-flop type will be used. Reduction within a
single product term is still performed, as demonstrated in the following
example:

When the nodes hmem and hblock are declared with the NO_REDUCE
default information statement:

D_FLOP NODE hmem, hblock CLOCKED BY clk NO_REDUCE;

Normal reduction will not be performed on the equations:

hmem=a*b*c+a*b+a*c+b*c;
hblock=a*b*c*a*b*a+a*b

However, the equation for hblock will be reduced to a*b*c+a*b because there
are duplicate signals in the first product term (a*b*c*a*b*a).

When used in a function declaration, the NO_REDUCE modifier tells the
compiler not to reduce the function's return value. When NO_REDUCE is
used in a procedure output declaration, the compiler will not reduce the
procedure output equation.

One purpose of NO_REDUCE is to allow the creation of hazard-free
equations. Redundant product terms can be added where these product terms
would otherwise be reduced out.

The following declarations indicate that output ¢ of procedure p and the return
value b of the function compare will not be reduced:

PROCEDURE p(INPUT a,b; OUTPUT c¢ NO_REDUCE);
FUNCTION compare(a, b) NO_REDUCE;

70

MACHXL Software User’s Guide (Version 3.0)

6 Expressions

Contents

INtroduCtioN.ooveiiiiiieiie et 72
IAEntifiers.......ooviiiiiiiieece e 72
Logical Operators..........cccovvvivvirieiieirieeiie e 74
Expression Shorthand (ES)..............c..cccocenn. 74

Relational Operators............cocooevieieiiiiinineceeee 75
Arithmetic Operatorscc.oooveiierieiieiiieieieeceann 76
Constant EXpressions...........cccoovivevenenenieieeseece e 77

Using Parentheses to Change Precedence........................ 78

Groups and Rangescccoooviiiiiiininie 78
Array EXPressions..........cocveeviiioieeiciieiiieccteee e 81
Don't Care Condition...............ocoeeivieiiiniiiiniiieeeeeeeee e 83

Chapter 6: Expressions 71

&

Introduction

This chapter discusses the operators used to construct expressions in the
Design Synthesis Language, operator precedence, and several types of
expressions.

Combinations of one or more identifiers, signals, and/or constants that are
related by operators are called expressions. Operators specify the operation to
be performed among identifiers, signals, constants, and expressions.

Identifiers

There are three types of operators used in the Design Synthesis Language
arithmetic, logical, and relational.

Each operator has an operator precedence relative to other operators. This
precedence affects the order of evaluation in an expression. '

The following table is a listing of all of the expression types and usable
operators in the Design Synthesis Language. The table indicates the relative
precedence of the operators. All binary operators of equal precedence
associate left to right.

Expression/

Operation Description

constant constant expression
identifier simple signal or array

identifier[index [.. index]]

array reference

identifier(expression_list)

function invocation

[expression_list]

group

(expression)

parentheses for overriding
default precedence

72 MACHXL Software User’s Guide (Version 3.0)

Expression/ Description Precedence Operator Type
Operation
/a NOT 1 logical
*(a,b,c,d) AND 1 expression shorthand (logical)
/*(a,b,c,d) NAND 1 expression shorthand (logical)
+(a,b,c) OR 1 expression shorthand (logical
/+(a,b,c,d) NOR 1 expression shorthand (logical)
(+)(a,b,c) XOR 1 expression shorthand (logical)
/(+)(a,b,c) XNOR 1 expression shorthand (logical)
constant .*. constant multiplication 2 arithmetic
constant ./. constant division 2 arithmetic
constant . MOD. modulo 2 arithmetic
constant
a*b AND 2 logical
a/*b NAND 2 logical
a.+.b addition 3 arithmetic
a.-b subtraction 3 arithmetic
a+b OR 3 logical
a/tb NOR 3 logical
a(+)b XOR 3 logical
a/(+)b XNOR 3 logical
a= equal 4 relational
a<b not equal 4 relational
a<b less than 4 relational
a>b greater than 4 relational
a<=b less than or equal 4 relational
a>=b greater than or 4 relational
equal
NOT a logical negation 5 logical
a AND b logical AND 6 logical
aORb logical OR 7 logical

Chapter 6: Expressions 73

Logical Operators

Logical operators are used to describe logical relationships among signals in
expressions. The language supports the standard logical operators used to
perform Boolean functions in programmable logic design.

Symbol Description Precedence
/a NOT 1
a*b AND 1
a/*b NAND 1
atb OR 1
a/+b NOR 1
a(H)b XOR 1
a/(+)b XNOR 1

Equations built with the (+) exclusive-OR operator can be fit into devices with
exclusive ORs and devices without exclusive ORs. Both representations of
the equation are maintained throughout the system, allowing automatic
partitioning to use either form.

Expression Shorthand (ES)

Expression shorthand provides a convenient way to express an operation on
many expressions. Expression shorthand may be used for the commonly used
logical operators: *, +, (+), /*, /+, and /(+).

The syntax of expression shorthand is:

ES_Operator (expression_list)

Where ES_oOperator is one of the following logical operators: *, +, (+), /¥,
1+, [(+).

74 MACHXL Software User’s Guide (Version 3.0)

bu

The Expression Shorthand Operators all have highest precedence.

Shorthand Example Evaluates to Precedence
Operator
* *(A,B.E(+)F) A*B*(E(+)F) 1
+ +(A,B,D*E) A+B+(D*E) 1
(+) (t)(A,B,E) A(+)B(+)E 1
/* /*(B,C,D) /(B*C*D) 1
I+ /+(B,C,D) /(B+C+D) 1
) /(HB.D.F) (B(H)DH)F) 1
The binary operation:

outl = a7 * a6 * a5 * a4 * a3 * a2 * al * a0;
Using expression shorthand for the logical AND operator (*), may be
shortened to: '

outl = *(a7 .. a0);

Relational Operators

The relational operators are used for comparing expressions (including
identifiers, constants, and other expressions). Relational operations always
give a one (true) or zero (false) value as their result.

Symbol Description Precedence
a=b equal 4
a<>b not equal 4
a<b less than 4
a>b greater than 4
a<=bh less than or equal 4
a>=b greater than or equal 4

For the relational operators <, >, <=, and =>, the compiler will by default
insert a node at each bit position of the operation. MACHXL's optimizer will
then remove most of these nodes, resulting in optimal equation sizes,
according to the constraints placed on the optimizer. For more information on
the compiler and optimizer operations, see Chapters 11 and 13.

Chapter 6: Expressions 75

The logical operators OR, AND, and NOT have the same behavior as +, *,
and / but have lower precedence than the relational operators. These
operators are useful for combining relational expressions.

Relational operations may be performed on arrays and groups, as in the
following example:

IF [a[l..4] >= 5 AND a[l..4] <= 2 THEN
x = (a=17); "If array a has value 17, x
END IF; "=].0therwise, x = 0.

Some comparison expressions involving relational operators and their results
include the following:

Operation Result
a=1 True, if a has a value of 1
a=1 False, if a has a value of 0
b<>c¢ True, if b has a value of 1 and c has a

value of 0 or vice versa

a=b OR a=c¢ True, ifahas a valueasbor ¢

Arithmetic Operators

The arithmetic operators are used for performing arithmetic operations on
arrays, groups or constants.

Operator Description Example Precedence
constant .*. constant multiplication 57 2
constant ./. constant division 10./.2 2

constant .MOD. constant modulo 17.MOD.3 2
a.+.b addition a+b 3
a.-b subtraction a.-b 3

The arithmetic operators .*. (multiplication), ./. (division), and .MOD.
(modulo) can only be used with constants, as shown in the table above. The
.+. (addition) and .-. (subtraction) operations may be performed on any array
or group built from signals or constants. The compiler will, by default,

76 MACHXL Software User’s Guide (Version 3.0)

A

generate a node at each bit of an addition or subtraction operation.
MACHXL's optimizer will collapse most of these nodes to produce an optimal
set of equations, regardless of the form of the operands. For example,
constants in operands require less logic and will result in more nodes being
collapsed. For more information on the operation of the optimizer, see
Chapter 12.

The result of the .+. (addition) and .-. (subtraction) operations will be the same
array size as the operands. This means that if a carry bit is generated, it is
thrown away. In the following example, the array count can represent values
from 0 to 1023. If the value of count is 1023 and 1 is added to the array, the
count rolls over to 0 and the carry bit is lost.

NODE count[10] CLOCKED_ BY clk;
count=count .+. 1; "counts by 1, rolls over
"at 1023,no carry bit

If you need to keep the carry bit, pad the operands with leading zeros, as
shown in the following example.

INPUT a[10], b[10];
OUTPUT x[11]; "define an array 1l-bit
"wider to accept the carry
"bit

x=[0,a] .+. [0,Db] "add arrays a and b into x
"including the carry bit

Constant Expressions

Constants can be used alone or with operators to form expressions. An
operator that acts only on constant expressions results in a constant
expression. If an operator acts on a constant and a non-constant, then the
constant is assumed to have a bit width equal to that of the non-constant
expression. If the value of the constant can not be represented in the available
bits then an error is generated.

Constant expressions are required in contexts such as array size declarations.

Chapter 6: Expressions 77

Examples

5 * 7 + 128 "This results in the constant
"163.

5 * [a,b,c] "This results in [a, O, c]

13 * [a,b,c] "This is an error since 13 cannot

"be represented in 3 bits.

MACRO size 10;
INPUT in [size];
OUTPUT out [size .*. 2];

Using Parentheses to Change Precedence

Precedence in an expression may be overridden by use of parentheses. For
example, since logical AND (*) has higher precedence than logical OR (+),
the following expression:

a* b +c
will be evaluated as follows:
(a * b) + ¢

However, by using parentheses, you may override the default. Thus, in the
expression:

a* (b + c)

(b + c) will be evaluated first, then the result will be AND'd with a.

Groups and Ranges

A group of signals that will perform similar functions and which you want to
treat similarly can be referred to using brackets []. Signals grouped together
within brackets can be assigned a single value or can be specified to take on
the values of another set of signals.

78 MACHXL Software User’s Guide (Version 3.0)

e

In the following assignment statement, the four signals a, b, ¢, and d are all
set to zero.

[a,b,c,d] = 0;

Without group notation the previous operation would require four assignment
statements as shown below:

0;

14

[o TR o R o 2 }
|

0
=0
0

¢ e

’

The order in which signals are listed in a group is important. The first (left-
most) signal in the group (e.g., a in the previous example) is the Most
Significant Bit and the last signal (right-most) specified (d) is the Least
Significant Bit. This is important when you set a group of signals equal to a
value.

You may combine group notation with the range notation. The range
statement,

[g3..90]) = 5;
1s interpreted by the Design Synthesis Language as:
(¢3,92,q91,90] = [0,1,0,1];

q3 is listed first, so the range is in descending order: 93, 92, q1, q0. The
binary representation of the numeral 5 is 0101, so the signals will be set to
the following values:

a3 = 0;
qz2 = 1;
ql = 0;
q0 = 1;

If the order in the range is reversed ([q0..q3] = 5), the Most Significant Bit
would be q0, and the values for the assignments would become:

q0 = 0;
ql = 1;

Chapter 6: Expressions 79

q2 = 0;
a3 = 1;

To assign a group of signals to another group of signals, you can use the
group notation and the assignment operator:

[g3..90] = [d3..d0];

In assigning groups, you may use the numerals 0 and 1, the don't care symbol

.X., and the tri-state symbol .Z., in the group on the right side of the
assignment operator:

[a,b,c,d] = [a,0,.X.,1];
The don't care symbol .X. may also be used within ranges that are acted upon

by relational operators. Wherever .X. appears in the range, the compiler will
ignore that term when doing a comparison of ranges.

Thus, the statement:

IF [al5..a0] >= [bl5..b6,1,.X.,.X.,.X.,0,b0] THEN
X =Y

END IF;

is exactly the same as:

IF [al5..a5,al,a0] >= [bl5..b6,1,0,b0] THEN
X=y;
END IF;

You may also perform operations on groups, such as the following:

[a,b,c,d] = /[a,0,a+b,1]*addr[3..6];

A member of any group that is itself a group will be unfolded so that its
members become members of the containing group.

Thus, with the following node declaration:

NODE a[2],b[2],c[4];

80 MACHXL Software User’s Guide (Version 3.0)

The statement:
[a[1..0],b[1..0]] = c[3..0];

has the same meaning as:
(a[1],a[0],b[1],b[0]]) = [c[3],c[2],c[1],c[O]];
And

ta,cl = [1,¢,0];

is equivalent to:

(afl],a[0],c[3],c[2],c[1],c[O0]] =
(1,c(31,c[2],c[1],c[0],0].

The following example shows a number of range and group notations as they
might appear in the context of other source code.

\

Example

INPUT rd, wt, dir;
OUTPUT g7..90, up, down;

IF ([rd,wt]=01b) THEN
[g7..90] = 00000000b;
[up,down] = 00b;

ELSE
[g7..90] = [q0,97..91]; "performs a rotate
[up,down] = 01l1b;

END IF;

Array Expressions

An array is a set of logically related signals that can be treated separately or
as a unit. (See Chapter 5, and the section on Arrays.)

Chapter 6: Expressions 81

An array, a subrange of an array, or an individual array element may be
assigned a single value. Or they may be specified to take on the values of
another set of signals.

Each element of an array can be indexed and used as an ordinary signal. Each
array element, a range of array elements, or the array as a whole may also be
given individual assignment statements.

For instance, for the array addr declared as follows:

OUTPUT addr([16] ;

The value of an individual element can be referenced:

a = addr([5];

In this case, addr[5] is being assigned to a.
You may also assign a subrange of addr to individual signals as shown below:

addr [10..0] = [x10, x9, x8, x7, x6, x5, x4, x3, x2, x1,
x01];

A subrange of addr may also be referenced:
addr[2..6] = 21;
In this case, array elements addr[2] through addr{6] are assigned the

corresponding values on the right. addr[2] is the Most Significant Bit and
addr[6] is the Least Significant Bit.

This assignment is equivalent to:

[addr([2],addr[3],addr[4],addr[5]),addr[(6]] = [1,0,1,0,1];

In addition, yoﬁ may assign the array addr to a combination of another
smaller array and individual signals, as shown below:

addr = [a[9..0] , x1, x2, x3, yl, y2, yv3 1] ;
In this case addr[15] through addr[6] would be assigned to array elements

a[9] through a[0], and addr[5] through addr[0] would be assigned to x1, x2,
x3, y1, y2, and y3 respectively.

82 MACHXL Software User’s Guide (Version 3.0)

e

The following array assignment ANDs the array addr with the hexadecimal
constant value FF:

addr = addr*00ffH

which is also equivalent to:

addr[15..0] = [0,0,0,0,0,0,0,0,addr[7..0]]
For the array q declared as follows:

OUTPUT q[4..7] CLOCKED BY clk;

the assignment

q(7..5]) = q[4..6];

is equivalent to

q[(7]1=q(4];
q(6]1=q[5];
q[(5]=q[6];

The above assignments would cause q[5] and q[6] to take on the same values.

Don't Care Condition

The Don't Care condition is denoted by .X in the Design Synthesis Language.
You can use the Don't Care condition explicitly when describing the value of a
signal. The optimizer will then assign either a 0 or 1 to the signal, depending
on which produces the smallest equation.

Examples

The following is an example of a valid usage of Don't Care:

f=a* /b * .X.; ".X. should be at the end
"of the equation

The following is an example of an invalid usage of Don't Care:

Chapter 6: Expressions 83

f = .X. * a* [b; "This will produce
"incorrect results

You can also use .X to describe the behavior of undeclared states in a state
machine. The following example completely specifies all possible conditions
of a state machine, and ensures the most optimal equation generation:

STATE_MACHINE dont_care CLOCKED_ BY clk;

STATE one:
IF count THEN
clear = 1;
IF (pulse = 0) THEN
count8 = 1;

GOTO one;
ELSE
GOTO one;
END IF;
END IF;
STATE two:
ELSE
GOTO .X.;

clear = .X.;
count8 = .X.;
END dont_care;

84 MACHXL Software User’s Guide (Version 3.0)

7 Statements and Constructs

Contents
INtrodUCHION.ooiiiiiiiiie s 86
Assignment StatemMENtS.............cccoeoeviiiiiiiiiiiiieeeee et e 86
IF Satementsc..oeviiiiiiieiiiiie ettt e e e snae s 87
CASE CONSIIUCEooiiiiiiiiiiiiic et 88
TRUTH_TABLEcooiiiiiiiitie et 90
STATE_MACHINE Construct............cccoooiiiiviiiiiiicieiceiecveee e 92
CLOCKED _BY (ina STATE MACHINE)............ccoccevinian. 94
Rules for Using CLOCKED_BY in a State Machine........ 94
RESET BY (ina STATE MACHINE)..........ccccooiviiiiiiieie, 96
RULES for Using RESET_BY in a State Machine 96
STATE _BITS (ina STATE MACHINE)...........ccccovvviiininne 97
Rules for Using the STATE_BITS Construct in a State
MaChine..........ccooviiiiiiiiciice e 98
STATE_VALUES ..ottt ettt 100
Rules for Using the STATE _VALUES Construct............ 100
ONE_HOT ...ttt 100
GRAY _CODEc.oooiiiiiieeieeeeeeeeee e 101
STATE Declarationsccceeovieiieenieeiieeeiieeeie e eeree e 102
Rules for Using the STATE Construct............c.ccccoeurnenne. 102
GOTO Statementccoevieieeieeiieieeieeeieeee et 104
Asynchronous State Machinesc..cocoevievreiiieieceeeceieee 105

Chapter 7: Statements and Constructs 85

e

Introduction

The Design Synthesis Language provides various kinds of statements and
constructs that may be used to build design equations. The types available
include:

O Assignment statements

o IF statements

0 CASE statements

o TRUTH TABLE constructs

o STATE MACHINE constructs.

Each of these is discussed in detail in this chapter.

Assignment Statements

The assignment statement is used to describe the values of the assignable
signals (OUTPUT, NODE, BIPUT) in a design. An expression is assigned to
a signal or group of signals by means of the assignment operator (=).

The syntax of the assignment statement is:
assignment_expression = expression;
Where:
assignment_expression: identifier [suffix]
identifier [index] [suffix]

identifier [index..index] [suffix]
[assignment_expression list]

suffix: is one of the following: .D

86 MACHXL Software User’s Guide (Version 3.0)

e

In the assignment of flip-flop signals, an optional suffix may be used to
indicate which of a flip-flop's equations is being assigned: D, J, K, R, S, or T.
The .D suffix is optional on D_FLOPs. As with expressions, arrays can be
assigned in whole or in part.

Examples

INPUT a, b;

OUTPUT x;

D FLOP d, darr(4] CLOCKED BY a;
JK_FLOP 3jk, jkarr[4] CLOCKED_BY a;
SR_FLOP sr CLOCKED BY a;

T FLOP tl..t4 CLOCKED BY a;

X = a * b;

d.D = a + b;

darr = jkarr;

jk.J a;

jk.K b;

jkarr(2..1].J = [a, b];

jkarr.K = [a, b, 1, 0];

[sr.R, sr.S, t1.T..t4.T] = [a, b, a * b, 1, 0, a + b];

IF Statements

The IF statement allows an expression's value to determine whether a body of
statements will take effect. The syntax of an IF statement is:

IF expression THEN
statements
{ELSIF expression THEN
statements}

(ELSE
statements]
END IF;

The expressions in an IF statement must be single-bit values; they cannot be
multi-bit width arrays or groups. If an expression has a value of 1, thenitisa
true condition; otherwise it is a false condition.

Chapter 7: Statements and Constructs 87

The statements contained inside the THEN take effect only when the
corresponding expression is true.

An [IF statement may contain any number of optional ELSIF clauses. The
statements contained in an ELSIF clause take effect if its expression is true
and all preceding expressions are false.

An IF statement may contain an optional ELSE clause. The statements
contained in an ELSE take effect if all other expressions are false.

The IF statement ends with END IF;.

Example

IF a * b THEN

X = C;
ELSE

x = d;
END IF;

The resulting equation for x will be x = a*b*c + /a*d + /b*d.

CASE Construct

The CASE construct allows you to compare an expression against a list of
values, each of which has associated statements. If the expression matches a
given value, the associated statements take effect. Multiple values and ranges
may be given with each value.

The CASE construct may include an ELSE statement that processes any value
not specified by the listed values. The CASE construct ends with an END
CASE statement.

88 MACHXL Software User’s Guide (Version 3.0)

The syntax of the CASE construct is:

CASE expression

WHEN value_range =>

statements
[ELSE
statements]
END CASE;
Where:
value_rangeis a list of numbers or a range of numbers.
The value of the CASE expression is compared to each of the values
inthe value ranges of the WHEN clauses. If the value of the
expression matches any of the values in a value_range, the
associated WHEN statements take effect.
Example
INPUT a[8];
OUTPUT x, y, z;
CASE a
WHEN 5=> "The following statements take
X =vy; "effect if a = 5
Y = %;

WHEN 7..15=>

z = X;
WHEN 30..41, 53,
z =y;

ELSE
Yy = z;
END CASE;

"The following statement takes

"effect if 7 < a < 15.

57, 100..113=> "The following
"statement takes effect if
"a = any of these values

"The ELSE statement takes effect
"if a does not match any of the
"WHEN values

Chapter 7: Statements and Constructs 89

A
TRUTH_TABLE

A truth table provides a convenient way to list output values for selected input
expression combinations. Any or all of the possible input combinations may
be used. :

The syntax of a truth table is:

TRUTH_TABLE
expression_list :: assignment_expression_list;
value_range list :: expression_list;
ELSE:: expression_list;
END TRUTH_TABLE;

Where:
expression is defined in Chapter 7,
assignment expressionis defined earlier in this chapter in
the Assignments Statements section;
value range is defined in the preceding section under the heading
CASE Construct.

To set up a truth table, list all input expressions to the left of a double colon
(::) and all signals that are to be assigned to on the right of the double colon.
List corresponding values for the signals in column format under the signal
names.

A X. input value tells the compiler to ignore the corresponding input
expression when creating the condition. A .X. output value tells the compiler
to assign DON'T CARE to the corresponding output symbol.

For a .Z. output value, the compiler will build the necessary equation for the
output enable to cause a high impedance value for the corresponding output
signal. In the following example, if & and enable are low, the output x will be
placed in a high impedance (.Z.) state.

TRUTH_TABLE
a, enable :: X;
o, O HES A+
END TRUTH_TABLE;

90 MACHXL Software User’s Guide (Version 3.0)

a -

The compiler automatically checks for duplicate input terms that yield
different output values. For example, the following will generate a compiler
error because the input values overlap:

TRUTH_TABLE
a, b, ¢ :: x;

The ELSE statement may be used in a truth table to process unspecified input
conditions.

As with other statements, the truth table construct may be nested within other
constructs (IF, CASE, etc.). When a truth table is nested within another
construct, the resulting equations will be affected by the conditions of the
parent construct.

The following example sets up a truth table using an array of nodes and
individual node identifiers:

NODE a[4], b, ¢, X, j;

TRUTH_TABLE

a, b, ¢ :: x, Jj, a[0..3]; "An array can be used
"in the expression
"list
o, 1, 0 :: d, b*c, [b, ¢, x, j); "In this case,
"y =b *
1, 1, x ¢ 0, x, 5; "In this case, a[0..3] =
"[b, ¢, %, J]
15, 1, x :: 1, O, 5; "In this case, c is tested
"against x
ELSE s x, 1, 15; "Outputs for all other
"cases

END TRUTH_TABLE;

Chapter 7: Statements and Constructs 91

The next example demonstrates how a truth table may be used inside an IF
statement:

IF a = b THEN
TRUTH_TABLE
c, d :: e, £;

0, 0 :: 1, 1;
0, 1::1, 0;
1, 0 :: 0O, 1;
1, 1 :: .X., .X.; "Don't Care

END TRUTH_TABLE;

ELSE
f = 0;
e = 0;
END IF;

STATE_MACHINE Construct

The STATE_MACHINE construct is an efficient way to describe sequential
logic. A state machine features a set of unique states; each state performs a
set of operations, including branching to the next state in the state machine
sequence.

The syntax of a state machine is as follows:

STATE_MACHINE identifier [state_machine_control_info];

{STATE state_name |[[value]]: "Description of
"first state including

statements} "GOTO statements

{STATE state_name [[value]]: "Description of
"second state including

statements} "GOTO statements

92 MACHXL Software User’s Guide (Version 3.0)

[ELSE "Description of behavior of
"undeclared states including
statements] "GOTO statements

END identifier;

Where:

state_machine_control_info = [CLOCKED_BY expression]
[RESET_BY expression]
[default info *]
[STATE_BITS array]
[STATE_BITS group]
[STATE_VALUES identifier]

* default_infois discussed in Chapter 6 in the Declaration Modifiers
section.

State machines use hardware signals to keep track of which state the state
machine is in. These hardware signals are called state bits. If state bits are
not explicitly declared with the STATE BITS construct, the DSL compiler
will automatically generate nodes to act as state bits for the design (the
STATE_BITS construct is discussed later in this chapter).

If the state machine is declared with a CLOCKED_BY construct, the state
machine will be a synchronous state machine.

If the state machine does not have a CLOCKED_BY construct and the state
bits are combinatorial, the state machine will be an asynchronous state
machine.

STATE_MACHINE statements can be nested within other constructs, (1.e.,
CASE, IF, Functions, Procedures, TRUTH_TABLES) or may be nested
within themselves.

The elements of the state machine description are discussed in the following
sections.

Chapter 7: Statements and Constructs 93

CLOCKED_BY (in a STATE_MACHINE)

The CLOCKED_BY construct controls when the state machine will advance
to the next state. IF the state machine declaration includes a CLOCKED_BY
construct, the state machine will be a synchronous state machine. A

synchronous state machine advances to the next state in the sequence when the
CLOCKED_BY expression goes true.

The syntax of CLOCKED_BY is as follows:

CLOCKED_BY expression

The signal declaration for the state bits can also determine if the state machine
is a synchronous state machine. If explicitly declared state bits are registered
signals (i.e., declared with a CLOCKED_BY construct in the NODE,
OUTPUT, or BIPUT statements), the state machine will also be considered a
synchronous state machine.

If the state machine does not have a CLOCKED_BY construct, and if the
explicitly declared state bits are combinatorial, the state machine will be an
asynchronous state machine. An asynchronous state machine will advance to
the next state when a GOTO statement is encountered in a STATE
declaration. For additional information on asynchronous state machines, see
the section later in this chapter entitled Asynchronous State Machines.

Rules for Using CLOCKED_BY in a State Machine

If the state machine includes explicitly declared state bits (using the
STATE_BITS construct), the following rules apply to the state machine
CLOCKED_BY expression:

0 The CLOCKED_BY expression for the state machine must match
the CLOCKED_BY expression for all the state bit signals. The
CLOCKED_BY expression for the state bit signals is included in
the NODE, OUTPUT, or BIPUT statement that is used to declare
the state bit signals.

o If the state machine is an asynchronous state machine, the state bit
signals must be declared combinatorial (i.e., no CLOCKED BY
construct in the NODE, OUTPUT, or BIPUT statements).

94 MACHXL Software User’s Guide (Version 3.0)

o If the explicitly declared state bits are registered signals (i.e.,
declared with a CLOCKED_BY expression), the state machine
will be considered a synchronous state machine.

For additional information on declaring state bits, see the STATE_BITS (in a
STATE_MACHINE) later in this chapter.

Examples

The following example shows a synchronous state machine with explicitly
declared state bits. Note the CLOCKED_BY expression for the state bits
matches the CLOCKED_BY expression for the state machine:

NODE sb[4] CLOCKED BY (/clk);

STATE_MACHINE sync_machine
STATE_BITS sb CLOCKED BY (/clk);

The following example shows another way to declare a synchronous state
machine. In this case, the STATE MACHINE statement does not include a
CLOCKED_BY statement. The state machine is forced to be a synchronous
machine by the explicitly declared state bits with a CLOCKED_BY statement.

NODE sb[4] CLOCKED BY (/clk);

STATE_MACHINE sync_machine
STATE_BITS sb;

The following example shows an asynchronous state machine with explicitly
declared state bits. Note that the state machine declaration does not include a
CLOCKED_BY statement and that the state bits are also declared without a
CLOCKED_BY statement.

Chapter 7: Statements and Constructs 95

NODE sb ([4];

STATE_MACHINE async_machine
STATE_BITS sb;

RESET_BY (in a STATE_MACHINE)

The RESET_BY statement lets you force (asynchronously) the state machine
to the first declared state in the state machine. To force this transition, the
individual state bits are asynchronously reset or preset to match the values of
the first state.

The format for using RESET_BY in a state machine is as follows:

RESET BY expression

RULES for Using RESET_BY in a State Machine

0 The RESET_BY construct may be used only with synchronous
state machines (i.e., state machines that are declared with a
CLOCKED_BY statement).

o If state bits are declared explicitly (using the STATE_BITS
construct), the state bit signal declarations cannot include a
RESET _BY or PRESET_BY statement. The DSL compiler will
automatically determine the appropriate reset or preset expression
for each individual state bit signal from the state machine
RESET _BY statement.

For more information on declaring state bits, see the next section entitled
STATE_BITS (In a STATE_MACHINE).

96 MACHXL Software User’s Guide (Version 3.0)

Example

The following example shows a synchronous state machine with explicitly
declared state bits and a RESET_BY statement. Note that the state bit signal
declaration does not include RESET_BY or PRESET_BY statements.

In this example the sb signals will be set immediately to the value 0101b when
reset is true. Setting the state bits to this value forces the state machine to the
idle state.

NODE sb [4] CLOCKED_BY clk;

STATE_MACHINE reset_machine
STATE_BITS sb CLOCKED BY RESET_BY reset;

STATE idle [0101b]:

STATE_BITS (in a STATE_MACHINE)

State machines use hardware signals to keep track of the state a state machine
is in. These hardware signals are called szate bits.

A design can explicitly declare the state bits for a state machine by using the
STATE_BITS construct. If state bits are not explicitly declared, the DSL
compiler will automatically generate nodes to act as state bits for the design.

The format for the STATE_BITS construct is:

STATE_BITS array
or
STATE_BITS group

Where:

array is an array of signals previously declared with a NODE,
OUTPUT, or BIPUT statement.

Chapter 7: Statements and Constructs 97

group is a group of signals previously declared with a NODE,
OUTPUT, or BIPUT statement.

Rules for Using the STATE_BITS Construct in a State
Machine

o State bit signals must be declared using the NODE, OUTPUT, or
BIPUT statements before they can be used in a state machine.

0 All of the state bits must be clocked by the same expression in a
synchronous state machine. The CLOCKED_BY expression in
the state machine must match the CLOCKED_BY expression in
the NODE, OUTPUT, or BIPUT statements that declare the state
bit signals.

o All of the state bits must be combinatorial (i.e., declared without a
CLOCKED_BY expression in the NODE, OUTPUT, or BIPUT
statements) in an asynchronous state machine (i.e., a state
machine declared without a CLOCKED_BY expression).

o If a synchronous state machine includes a RESET_BY statement,
the NODE, OUTPUT, or BIPUT statements that declare the state
bits cannot have a RESET_BY or PRESET_BY statement. The
DSL compiler will automatically determine the appropriate reset or
preset expression for each indiviual state bit signal from the state
machine RESET_BY statement. This eliminates any possibility of
reset or preset conflicts.

0 If a state machine includes default information, the NODE,
OUTPUT, or BIPUT stetements that declare the state bits cannot
have default information. The DSL compiler will automatically
determine the appropriate default information for each individual
state bit signal from the state machine default information. This
eliminates any possibility of default conflicts.

You can assign unique values to the state bits for each state using one of the
three following methods:

98 MACHXL Software User’s Guide (Version 3.0)

ba

o Specify explicitly the state bit value in each state as part of the
STATE declaration. With this method you must first specify the
state bits using the STATE_BITS construct. See the heading
STATE Declarations later in this chapter for more information.

o Specify an algorithm for assigning state bit values with the
STATE_VALUES construct. This construct lets you use a gray
code or one-hot assignment algorithm without having to specify
explicitly each state bit value. See the heading STATE_VALUES
later in this section for more information.

0 Let the DSL compiler assign values automatically. With this
method, the compler will assign the value of 0 (zero) to the first
state in the state machine, 1 (one) to the second state, 2 to the third
state, and so on. The state bit assignment process is a simple
binary counter that starts at 0 (zero). The values are assigned by
the compiler in the order in which the states are declared.

Example

This example uses a group of individual signals for the state bits. This state
machine explicitly assigns a value to each state.

INPUT a, b, clk;
NODE c¢3 . . c0 CLOCKED_BY clk;

STATE_MACHINE counter STATE_BITS [e3 . .. c0] CLOCKED_ BY
clk; '
STATE one [0001b]:
GOTO two;
STATE two [0010b]:
IF a THEN
_ GOTO three;
ELSIF b THEN

GOTO two;
ELSE

GOTO one;
END IF;

Chapter 7: Statements and Constructs 99

STATE three[1100b]:
GOTO one;
END counter;

STATE_VALUES

The STATE_VALUES construct lets the user control how state-bit values are
assigned to states without explicitly assigning each value. The user declares
the assignment algorithm with the STATE_VALUES construct.

The syntax of the STATE_VALUES construct is:

STATE_VALUES ONE_HOT
or -
STATE_VALUES GRAY_CODE

Rules for Using the STATE_VALUES Construct

0 When you use the STATE_VALUES construct, you cannot
explicitly assign state bit values to states. This would result in
assigning two different values to the same state.

o Ifthe STATE_VALUES construct is not used and the user does
not explicitly assign state bit values for each state, the DSL
compiler will automatically assign state bit values. In this case the
compiler will assign the value of 0 (zero) to the first state in the
state machine, 1 (one) to the second state, 2 to the third state, and
so on. The default state bit assignment is a simple binary counter
that starts at zero. The values are assigned in the order in which
the states are declared.

ONE_HOT

The "one hot" algorithm assigns a unique state bit to each state (shown in the
following example). This method is useful when targeting register-rich
architectures. The format for the one hot bit selection method is:

100 MACHXL Software User’s Guide (Version 3.0)

A

STATE_MACHINE sm name CLOCKED_BY clk STATE_VALUES
ONE_HOT;

Example

In the following state machine:

STATE_MACHINE sml CLOCKED BY clk STATE_VALUES ONE_HOT;
STATE one: ...
STATE two: ...
STATE three: ...
STATE four: ...

The state values will be:

one [0001b]
two [0010b]
three [0100b]
four [1000b]

With the one-hot bit selection method, the number of states is equal to the
number of state bits. This makes the one-hot bit selection method less
register-efficient than the default or GRAY_CODE methods. However, the
equations for each state bit wili be very efficient.

GRAY_CODE

An alternate algorithm, GRAY CODE, causes the compiler to assign state
bits like a gray-code counter.

With the gray-code counting method, consecutive state values are defined by
changing only one bit, as shown in the following example. This reduces the
possibility of race conditions when going from one state to a consecutive state
in an asynchronous state machine. It may also result in smaller equations for
JK, RS, and T flip-flop state machines.

STATE_MACHINE gray STATE_VALUES GRAY_CODE;
STATE first: ...
STATE second: ...
STATE third: ...
STATE fourth: ...

Chapter 7: Statements and Constructs 101

STATE fifth: ...
STATE sixth:
END gray;

Using the GRAY_CODE algorithm, the compiler will assign state values as

follows:

first [000b]
second [001b]
third [011b]
fourth [010b]
fifth [110b]
sixth [111b]

STATE Declarations

The STATE construct allows you to declare the individual states in a state
machine. The syntax of the STATE construct is as follows:

STATE identifier [[value]];
statements

Where:

value is the optional state bit value that should be assigned in this
state.

statements are DSL statements that define the behavior of this
state. The statements can be used to assign values to signals. They
can also be used to define transitions to other states. IF, CASE,
TRUTH_TABLE, and other STATE_MACHINE statements can be
used within a STATE declaration.

Rules for Using the STATE Construct

0 The identifier must be a unique identifier in the design description.
The design description cannot have a state with the same name as a
signal or other identifier. '

102 MACHXL Software User’s Guide (Version 3.0)

A

0 The GOTO statement is used to transition to other states. If the
state declaration does not include a GOTO statement, the transition
will depend on the DEFAULT _TO construct for the state machine.
The following table shows how the DEFAULT_TO construct
controls this transition:

DEFAULT _TO value Transition to
0 state whose state bit value is 0 (zero)
1 state whose state bit value is all ones
LAST VALUE same state
X. unknown state

0 The state machine can include as many states as necessary to
implement the design

Example

The following example shows a state machine with multiple states, including
conditional branching out of each state.

INPUT clk, pwr_up, start, stop, reset;
OUTPUT time[16] CLOCKED BY clk RESET BY pwr_up;
NODE sbits[2] CLOCKED_BY clk RESET_BY pwr_up;

STATE_MACHINE stop watch
CLOCKED_BY clk
DEFAULT_TO LAST_VALUE
STATE_BITS sbits;

Chapter 7: Statements and Constructs 103

STATE idle [0Ob]: "Wait until the start
"button is pressed
IF (start) THEN
time = 1;
GOTO count;

ELSE
time = 0;
GOTO idle;
END IF;
STATE count [0lb] : "Count up until the stop button

"is pressed

IF (stop) THEN

time = time;

GOTO display_time;
ELSE

time = time .+. 1;

GOTO count;
END IF;

STATE display_time [10b]: "Display the time until the
"reset button is pressed
IF (reset) THEN
time = 0;
GOTO idle;
END IF;
ELSE
GOTO .X.;
time = .X.;
END stop_watch;

GOTO Statement

The GOTO statement directs the transition from one state to another in a state
machine. The syntax of a GOTO statement is:

GOTO state_name;

104 MACHXL Software User’s Guide (Version 3.0)

e

GOTO is allowed anywhere statements can occur in a STATE declaration.

Asynchronous State Machines

Sometimes you may need to create asynchronous state machines in order to
avoid clocking delays. If a CLOCKED_BY expression is not declared for the
STATE_MACHINE or state bits, the resulting state machine will be
asynchronous.

Since registers are not used for the state bits in an asynchronous state
machine, a circuit may depend on the device propagation delays to be stable.
Also, logical hazards in the design may lead to unexpected transitions of the
state machine. For these reasons, circuits should be designed to avoid race
conditions and logical hazards.

One approach that may help reduce race conditions and logical hazards
involves selecting state-bit values that cause only a single state bit to change
when moving from one sequential state to another. The STATE_VALUES
GRAY_CODE construct will perform this automatically for you.

In addition, the NO_REDUCE default information may help reduce logical
hazards. If the state-bit equations contain redundant logic to avoid hazards,
the NO_REDUCE construct will ensure that this extra logic is not reduced out
of the design equations.

Example

STATE_MACHINE states STATE_BITS[s4..s0];
STATE one[00010b}:
Yy = X;
GOTO two;
STATE two[00110b]:
y = aj
GOTO three;
STATE three[01110b]:
y =b
GOTO one;
END states;

Chapter 7: Statements and Constructs 105

You can also use .X. to describe the behavior of undeclared states in a state
machine. The following example specifies completely all possible conditions
of a state machine, and ensures the most optimal equation generation.

STATE_MACHINE dont_care CLOCKED_BY clk;

STATE one;
IF count THEN
clear = 1;
IF (pulse = 0) THEN
count8 = 1;

GOTO one
ELSE
GOTO one
END IF;
END IF;

STATE two;

v

106 MACHXL Software User’s Guide (Version 3.0)

Procedures and Functions

Contents

INtroduction..........c.ooiiiiieiiiiei e 108
Procedurescoouiiiiiiiriiiiice s 108
Declaring a Procedure...............cocooveveeeiicieieciecieee. 108
Invoking a Procedurecoevveieeeniiciiiiceeiiienee, 109
FUNCLIONSoviiiiiieiieie e 111
Declaring @ Function.................cccoevevveeeiieieenicicceneen. 111
Invoking a Functioncccceouvviieiiiciecieccecee 112
Input Parameterscooveviinieiiieiie e 113
Output Parameterscocueeeveieiiiiiiiiiciece e 113
Local Declarationsccccoeveeverieieierinieeeieieieeeeeeeeeere e 114
What Happens When a Procedure or Function is Invoked? 114
Invoking Procedures and Functions From Other Files................... 118

Chapter 8: Procedures and Functions

107

&

Introduction

Procedures and functions let you create logically distinct design blocks that
are independent of the rest of the design. This lets you create hierarchical
designs (i.e., designs that build complex functions from lower level blocks.)

Procedure and function descriptions do not create physical hardware. Their
purpose is to describe functionality that can be used any number of times in a
design. Only a function or procedure invoked at the system level (outside of
the function or procedure description) results in actual hardware.

Procedures and functions may invoke other procedures or functions but may
not invoke themselves. All statement constructs discussed in Chapter 8
(assignment, IF, CASE, TRUTH_TABLE, STATE_MACHINE, GOTO)
may be used in a procedure or function.

All procedure and function descriptions must appear before any system-level
design information. This includes system-signal declarations and system-level
statements. A procedure or function must also appear before it is called by
another function or procedure. See Chapter 2 and the section entitled
Building a MACHXL Design Synthesis Language Source File for an
overview of how Procedure and Function definitions fit into the overall source
file.

Procedures

Procedures are the main building blocks of hierarchical design. A hierarchical
block diagram of a design can be easily mapped to a Design Synthesis
Language description by mapping each section of the block diagram to a
procedure in the language. The inputs and outputs of each block correspond
directly to the inputs and outputs of a procedure.

Procedures are invoked at the system level and have both input and output
parameters, allowing them to explicitly pass values in and out.

108 MACHXL Software User’s Guide (Version 3.0)

Declaring a Procedure

The syntax for declaring a procedure is:

PROCEDURE procedure_name
(INPUT identifier or_ array list;
[flip-flop type] OUTPUT
identifier or_ array list
[control_info][default_info]);
local declarations
statements
END procedure_name;

The following procedure description declares and1 as having three
parameters. The first two (a, b) are input parameters and the third (x) is an
output parameter:

PROCEDURE andl(INPUT a, b; OUTPUT x);
X = a * b;
END andl;

Once a procedure is declared, it can be invoked from within other procedures,
functions, and at the system level. Procedures can be invoked anywhere an
ordinary statement can be appear.

Invoking a Procedure

The format for invoking a procedure is:

procedure_name(expression or signal list);

Where:
expression or signal list consists of two parts:

1. expressions in corresponding positions to those in the input
parameters, and

2. assignable signals (OUTPUT, BIPUT, NODE) in corresponding
positions to those in the output parameters.

Chapter 8: Procedures and Functions 109

As an example, we use the following steps to create a system level design
using the procedure and1 shown above:

1. declare the actual inputs and outputs,

2. invoke the procedure with the appropriate expressions in
corresponding positions to the input and output parameters of the
procedure description, as shown below.

INPUT inl, in2;
OUTPUT result;

andl(inl, in2, result); "invoke andl, passing inl,
"in2 as input parameters
"and result as an output
"parameter

For more information about input and output parameters, see the sections
following entitled Input Parameters and Qutput Parameters.

As another example, the following procedure implements a 4-bit parity
generator. parity4 has two parameters: a 4-bit input array x, and a one-bit

output y.

PROCEDURE parity4(INPUT x[4]; OUTPUT y);
y = x[0] (+) x[1] (+) x[2] (+) x[3];
END parity4;

The parity4 procedure description does not in and of itself cause hardware
creation.

The following two invocations of the procedure parity4 cause hardware to be
created because they are invoked at the system level. These invocations
implement two separate 4-bit parity generators.

INPUT a[4], b[4];
OUTPUT outl, out2;

parity4(a, outl);
parity4 (b, out2);

110 MACHXL Software User’s Guide (Version 3.0)

bm

Notice that the actual INPUTs and OUTPUTs for the two parity generators
are also declared at the system level.

Functions

Functions are a useful way to describe distinct pieces of logic that result in an
expression value.

Functions are invoked from within an expression. They have input parameters
that allow them to accept values into the function, but generate as output a
return value that is passed back to the original expression.

Declaring a Function
The syntax for declaring a function is:

FUNCTION function_name([INPUT] identifier or array list)
[[size]][default_info];
local declarations;
statements; "including RETURN statements
END function_name;

Functions take declared input parameters and generate a return value.

Because functions only have input parameters, the INPUT keyword is optional
in the parameter declaration (unlike a procedure which must have input and
output paramenters). The input parameters for a function are the same as for
a procedure. (See the section following entitled Input Parameters.)

For information about default_info, see the heading Default Information in
Chapter 5.

The return value of a function can be any width. A size for the return value
can optionally be specified following the right parenthesis of the input
parameter declaration. As an example, the following function returns a 4-bit
array that is the bit-wise AND of arrays a and b.

FUNCTION and4(a[4], b[4])[4];
RETURN a*b;
END and4;

Chapter 8: Procedures and Functions 111

If [size] is omitted, a width of 1 is assumed.

The return value is used to pass signals out of a function. The return value of
a function is assigned by the RETURN statement:

RETURN expression;
A RETURN statement can appear anywhere in the function that statements

can occur. The width of expression must match the [size] declared for the
return value.

Function return values and procedure output parameters can be given default
values just like ordinary signal declarations. If no DEFAULT _TO statement
is given, .X. (DON'T CARE) is assumed.

Invoking a Function

A function is invoked from within an expression. Its return value becomes the
value of the expression where the function is invoked.

To invoke a function:

function_name(expression_list)

The following example illustrates how to invoke a function:

FUNCTION orl(x, y);
RETURN x+y;
END orl;

The function or1 is invoked from within an expression to create hardware to
implementg = a * (b * ¢ + d):

INPUT a,b,c,d;

OUTPUT q;

g = a * orl(b*c, d);

The value of b*c is passed to the function as input parameter x, and d is
passed as the input parameter y.

112 MACHXL Software User’s Guide (Version 3.0)

e

Input Parameters

Input parameters are used to pass signals into a procedure or function. When
a procedure or function is invoked, any equal-width expression or group of
expressions can be passed to an input parameter. The passed expressions will
drive the inputs in the invocation of the procedure or function.

The procedure and1:

PROCEDURE andl(INPUT a, b; OUTPUT x);
X = a * b;
END andl;

can be invoked at the system level to create hardware to implement g =

(x+y) * (y+z*x). Todo this, declare the actual inputs (x, y, 2)
and outputs () of the system-level design and invoke the procedure with the
appropriate expressions or signals in corrresponding positions to the input and
output parameters of the procedure description, as shown in the following
example:

INPUT x, y, 2;
OUTPUT q;

andl(x+y, y+z*x, q);

Output Parameters

Output parameters are the means of passing equations out of a procedure.
Ultimately, all of the statements (IF, CASE, etc.) in a procedure will result in
a single equation for each output parameter.

When a procedure is invoked, each output parameter must be passed an
argument that is an assignable signal (NODE, OUTPUT, BIPUT) or group of
equal-width assignable signals in its expression_or_signal_list. The output of
the procedure will be assigned to the passed argument.

For instance, using the procedure and1 shown previously, the assignable
signal result corresponds to the output parameter x:

INPUT inl, in2;

Chapter 8: Procedures and Functions 113

OUTPUT result;
andl(inl, in2, result);

The equation for an output parameter defined by the procedure will have its
inputs driven by the corresponding arguments, and the resulting equation will
be assigned to the output signal.

Output parameters can be given control information and default information
just like ordinary signal declarations. For information about control_info and
default_info, see Control Information and Default Information in

Chapter 6.

Local Declarations

Local signals can be declared within procedures and functions. Procedure or
function signal declarations remain local to the procedure or function in which
they are defined.

These signals are only visible within the procedure or function in which they
are declared and will not conflict with other signals of the same name in other
procedures, functions, and at the system level.

These local signals may not be referenced at the system level or in any other
function or procedure.

What Happens When a Procedure or
Function is Invoked?

When a procedure or function is invoked, a new instance of its local signals is
created at the invocation level. An instance of a NODE is also created for
each input and output parameter of a procedure or function.

Each time a procedure or function is invoked, each local signal is given a
global name. The DSL compiler keeps each of these signals unique so that the
same name can be used in different procedures/functions. This also means

114 MACHXL Software User’s Guide (Version 3.0)

e

that the same procedure/function may be invoked multiple times without name
conflicts. The form of these unique names is as follows:

Procedure_name.instance_number.local_name
Function_name.instance_number.local_ name

Where:

instance number starts at 1 and increments each time the
procedure or function is invoked within a particular procedure or
function.

local name is the variable name within the procedure or function.

While this naming scheme works well to give each signal in a design a unique
name, it can cause problems if the design is still subject to change. For
example, suppose that a procedure named add? has a local signal named a.
The signal name for a in its first invocation would be:

add2.1l.a

This says that the procedure_name is add2, the signal was created the first
time the procedure was invoked (its instance_number), and the local_name is
a.

Let's further assume that this signal (a) is assigned to an output pin after
fitting. If the language source file is changed such that an invocation of add?2
is added before the current one, this new invocation becomes instance_number
1, and the previous invocation becomes instance_number 2. The signals are
renamed during the compile and the wrong signal add?2. 1.a is assigned to the
hardware pin.

The DSL compiler gives you the capability to label an instance of an
invocation (rather than having the compiler do it) so that signal names are
immune to changes in the design file. To label an invocation, use the
following:

[label:) procedure_name (argument_list);
[label:) function_name (argument_list);

Where label is any legal identifier.

This changes the signal's name to:

Chapter 8: Procedures and Functions 115

procedure_name.label.local_name.
To use the previous example, if we gave the procedure add?2 a label of
func_1 the procedure invocation would look like the following:

func_l:add2 (argument list);

and the global signal name for signal a would become:

add2.func_l.a.

In the following procedure declaration of a divide-by-two frequency divider:

PROCEDURE frequency divider (INPUT in; OUTPUT out);
NODE x CLOCKED_BY in;
X = [x;
out=x;

END frequency_ divider;

the local declaration of NODE x is used to perform the frequency division.

A divide-by-four frequency divider could be implemented using the divide-by-
two procedure:

INPUT in;
OUTPUT out;
NODE tmp;

frequency_divider(in,tmp);
frequency_divider (tmp,out);

Each invocation of frequency_divider creates a NODE at the system level to
perform each divide-by-two. The names of the NODEs as they will appear in
the documentation file are:

frequency_divider.1l.x

and

frequency_divider.2.x

116 MACHXL Software User’s Guide (Version 3.0)

This same example can be implemented as a function:

FUNCTION frequency divider(in);
NODE x CLOCKED BY in;
x = [/x;
RETURN x;

END frequency_divider;

To create the divide-by-four counter, invoke the function as follows:

INPUT in;
OUTPUT out;
out = frequency divider (frequency divider(in));

The following example describes the procedure and4, which has three
parameters: 4-bit wide inputs a and b, and a 4-bit wide output x. The
equation for x is a*b.

PROCEDURE and4 (INPUT a[4], b[4]; OUTPUT x[4]);
X = a*b;
END and4;

This procedure can be invoked at the system level to create hardware as
follows:

INPUT a, b, ¢, d, e[4];
OUTPUT w, X, Yy, 2Z;

and4([a, b, ¢, d], e, [w, x, ¥, 2]);

This resultsin [w, x, y, z] = [a, b, ¢, d] * [e[3],
e(2], ell], e[0]].

In the following example, ¢ will have the value 1 if a=b. Otherwise, ¢ will
take on the value of a:

PROCEDURE p (INPUT a,b; OUTPUT ¢ DEFAULT TO a);
IF a=b THEN
c=1;
END IF;

END p;

Chapter 8: Procedures and Functions 117

Invoking Procedures and Fuhctions From
Other Files

The keyword USE allows procedures and functions from other compiled
source files to be used in a design. Two formats for using procedures and
functions from other files are available. The first format:

USE 'filename';

makes all procedures and functions from the referenced file available to the
current design file.

The second format

USE ' filename ' . name;

makes available only a named procedure or function from another file.
Note that the filename is enclosed by single quote marks ().

In the following example, the function and1 from the designl.src file is used
in design2.src.

File designl.src:

FUNCTION andl(a,b);
RETURN a*b;
END andl;

File design2.src:

USE ‘'designl'.andl;
INPUT x, y:

OUTPUT =z;

z = andl(x, y);

This capability allows a design to be broken up into multiple files for better
organization, and allows parallel development by several designers. It also
gives you the capability of developing a library of useful procedures and
functions that can be shared by many designs.

118 MACHXL Software User’s Guide (Version 3.0)

9

Text Processing

Contents

INtrodUCHION.cviiiiiiiieeeee et 120
IMACTOS. ...ttt sttt ettt b et e e beesbeeneeens 120
Including Other Files in a Design.............coocooviiiiiniinienieieieeeee 121
Commenting Cut Blocks of Code............oooovveviiiiiiii 122

Chapter 9: Text Processing

119

X

Introduction

Macros

To assist in the tedious aspects of entering a source code design, the Design
Synthesis Language provides several means to help you avoid retyping
frequently used sections of text. Macros (using the MACRO keyword) gives
you the ability to perform text substitution. You may also include text from
other source files in your current design, using the INCLUDE keyword.

In addition, there is a quick method to comment out blocks of code for
debugging purposes using the COMP_OFF and COMP_ON constructs.

This chapter discusses these time-saving constructs in detail.

Macros allow the user to create an identifier that will be replaced by an
associated block of text. Unlike procedures or functions, macros simply
perform text substitution. They are used as a type of shorthand to free the
designer from redundant typing.

The syntax of a macro definition is:

MACRO macro_name [(parameters)] text;
MACRO macro_name [(parameters)] {multi-line text}

A macro, when defined, is given a name, optional parameters (separated by
commas), and text. Unlike function or procedure parameters, nothing is
passed into or out of a macro since a macro simply substitutes a line or lines
of text. When a macro name is encountered by the compiler, the compiler
substitutes the pre-defined text for the MACRO name. Thus, if a MACRO is
defined as:

MACRO adder(a, b) a(+)b;

The compiler will replace every occurrence of adder(a, b) with the text a(+)b.

Each macro in a source file is global. This means that you cannot have two
macros with the same name or the DSL compiler will indicate that you have
tried to redeclare a macro. This also means that a macro may be used
anywhere in the source file (after its declaration) regardless of where the
declaration occurs.

120 MACHXL Software User’s Guide (Version 3.0)

e

Macro names may also be used as part of an expression or equation. For
example, MACRO adder(a, b), defined previously, used in the following
assignment:

x = adder(y, 2z);

Will expand to:

x = y(+)z;

Some additional examples of valid macro definitions include:

MACRO bit_mask OOFFH;

MACRO fill(a, b, c) {
= a;
= b;
= Cc;

NN

Note: Macros containing semicolons must be surrounded by curly brackets

({H)

Including Other Files in a Design

The INCLUDE statement allows you to include other text files in your current
design file. This can eliminate retyping of often used structures or macros.
Included files may in turn include other files. The text of the included file will
be inserted in your current design at the point where the keyword INCLUDE
occurs.

INCLUDE statements can occur anywhere in the design. The format for
including a file in your current design is:

INCLUDE ' filename ';

The filename includes any filename extension (no default extension is
appended.) The filename must be enclosed by single quote marks ().

Chapter 9: Text Processing 121

Commenting Out Blocks of Code

The Design Synthesis Language allows you to tell the compiler to ignore
sections of the design file at compilation time. COMP_OFF indicates the start
of a section of code to be ignored, and COMP_ON indicates the end of that
section.

The syntax for using COMP_OFF and COMP_ON is:

COMP_OFF
section_of_source_code
COMP_ON

No semi-colons are used at the end of the COMP_OFF and COMP_ON
keywords.

You can either use the keywords COMP_OFF and COMP_ON to comment
out a section of code, or you can use the comment symbol (") at the beginning
of every line you want the compiler to ignore.

In the following example, the compiler will ignore the ELSIF clause in the
following IF statement:

IF (reset) THEN
[@3..90] = 0;
COMP_OFF
ELSIF ([g3..90] = 9) THEN
[a3,92,91,90] = O;
COMP_ON
ELSE
[q3..90] = 5;
END IF;

122 MACHXL Software User’s Guide (Version 3.0)

10

Compiling a Design

Contents

INtroduction............cccveviiriieiiiiieie e 124
Compilationc.oooeeiiiiiiieie e 124
Multiple File Designsccccocevviiiiiniiiieiiicie e 124

Errors in Compilation.............ccoceceiiininninnineiccee 125

Chapter 10: Compiling a Design

123

Introduction

Once you have created the logic description (the source file) for a design, you
are ready to compile the file. The compiler converts the source file
(filename.src) into an internal representation of the design (filename.afb).
The .afb can be used by:

O the simulator to simulate the design,
O the optimizer to prepare a system-level design for device fitting,

0 another run of the compiler on another .s7c file that USEs this file.

Compilation

The compiler's responsibility is to interpret the source language (described in
Chapters 4 - 9) and create the internal representation file (.afb). During this
process the compiler converts the high-level constructs (declaration,
expression, and statement) of the source language into a simple list of signals
with associated equations, each of which are stored in the internal
representation. The compiler performs error checking on the design to make
sure it follows the rules and restrictions described in Chapters 4 - 9. The
equations that drive each signal are created so that the action described in the
high-level source language is implemented by the equations.

The output of the compiler (filename.afb) contains the signals and associated
equations. This file can then be used by the simulator to verify the behavior of
the design. For more information on the simulator, see Chapter 11.

If the compiled source file (.ab) contains a system-level design, this design
can be passed on to the optimizer and the remainder of the tool chain for
fitting into devices. A system-level design is one described outside of any
Procedure or Function (see Chapter 8 for more information on Procedures and
Functions.)

Multiple File Designs

MACHXL lets you implement a design in multiple source files. An advantage
of having multiple source files is that only the portions of a design that are

124 MACHXL Software User’s Guide (Version 3.0)

e

affected by file changes need be recompiled. If a bottom-up hierarchical
approach is used in your design, Procedures and Functions can be placed in
their own file that is compiled only once. Any additional design work that
requires these Procedures and Functions can still be done in another file
without the need to recompile these completed Procedures and Functions each
time.

Another advantage of multiple design files is that it lets you develop libraries
of generally useful Procedures and Functions and place them in their own
files. These Procedures and Functions can be used (via the USE command
shown in Chapter 8) by many different designs, giving greater leverage of
design effort.

There is always one parent source file that contains the system-level portion of
the design. All other files will contain only Procedures and Functions that
may be 'USEd' in the parent file to create the final design. A 'USEd' source
file must be compiled before any other source file that USEs its Procedures
and Functions.

Errors in Compilation

If errors are encountered in a language design, the errors and line numbers can
be found in the file filename.err. Appendix C, MACHXL Error and Warning
Messages, includes Design Synthesis Language error messages.

To correct language design errors, you will need to go to the line that contains
the error in the language source file (filename.src) and make the necessary
corrections, save the file, and recompile.

For information on the compiler menus and the actual process involved in
compilation, see Chapter 3.

Chapter 10: Compiling a Design 125

126 MACHXL Software User’s Guide (Version 3.0)

1 1 Simulating and Testing a Design

Contents

INtroduction.............cooveiieeieiiieieeee e 128
Test Language Reference.............occoeiiiiiiiiniii e, 129
General Structure of a Simulation or Test File................. 129
Keywordsooviiiiiiiiiiie e 131
Declarationsccceoviriiieriierieee e 132
Specifying the Clock Resolution 132
Variable and Signal Expressionscccccoveeiennnnnn. 133
Declaring Variables............c.c.ccceeviveieiiereiennenns 133
Tracing Signalscc.ccoveiiiiiiiiiiecieee 135
StateMENTS ..ot 136
Using the Table Format to Create Vectors........... 137

Using Test Language Constructs to Create
VECIOTS ... 141
SET oo 141
CLOCKE ...t 144
INITIAL ..o 146
INITIAL TO ... 149
MESSAGEcooiiiii 149
RETURN.......oooiiiiiiiiiec e 151
Test Language Operatorsccoveevveeeiieieiecieeneneenne 154
The FOR-DO Constructcccoeevvverenannnn 155
IF/THEN/ELSE ..o 157
WHILE-DOccoooiiiiiiiiiiiieeeeee e 159
An Example Simulation Section and Results..................cccocoeee. 160
A SYSTEM_TEST Example...........cccoevveviiieiiiiiiieie e 164
Internal Simulator Operationccooovevvieieieieeeie, 166
Simulation Cyclecccooviviiiiiiiiiiiice 166
Initialize.......ooooiviiii e 167
Compute All Outputs Until Stable 167
If There is a Clock Signalcccoooeeiinnn 168
Write Qut Results............c.coooiiiiiiiiiiiicce. 168
Signal States........oocoviiiiiiiiiiiiee e 169
Truth Tables for the Test Language Logical Operators 170

Chapter 11: Simulating and Testing a Design 127

P

Introduction

An important feature of the MACHXL software is its simulation and test-
language capabilities. The simulator gives you the ability to:

o simulate modules (procedures and functions) to verify correct
operation,

o simulate the complete design to verify correct operation,

O generate test vectors to verify correct operation of the programmed

devices.
The simulator in MACHXL does not do compiled stirmltﬁ
timing simulation. It is a functional o L stm)

stimulator only. \ /

You must have a compiled design
(design_name.afd) file and a stimulus source
file (design_name.stm) to run MACHXL's
simulator. The remainder of this chapter
discusses how to use MACHXL's test _
language to create a simulation source file l
(the figure at right shows the files used by and

produced by the simulator). This chapter also simulation
describes how to interpret the results. 0‘{23!;?'9
Example simulation files may be found at the

end of Appendix B, Language-Based Examples.

Simulator

The simulator takes input values provided by the designer in the .stm file (via
the Test Language) and applies them to the section to be simulated. The
simulated output is then checked against the expected output and any
discrepancies or unstable states are written to the simulator listing file
(filename.sim).

Device testing is done in the same fashion by sending the simulator-generated
input vectors to the device programmer via the JEDEC file. These actual
output vectors are then compared against the simulator-generated output
vectors to verify the device.

128 MACHXL Software User’s Guide (Version 3.0)

e

Input vectors and expected output vectors are specified to the simulator by
means of the Test Language. The Test Language lets you specify which
variables to use in the simulation and which signals to trace. The Test
Language also provides operations needed to construct the test vectors.

Test Language Reference

The .stm file is a source file you create (using MACHXL's Test Language) to
give instructions to the simulator. The .s#m file can be created using any
editor or word processor, the same as your design source file. This section
describes the commands and syntax of the Test Language and how to use
them in the .stm file. An example .stm file with explanations is provided at the
end of this section. Additional simulation examples are in Appendix B.

General Structure of a Simulation or Test
File

A .stm file has sections like other source language files. In the declaration
section signals and variables are declared and a step duration is set. In the
body of the source file you give the simulator specific instructions that
initialize signal values and compute the values for input and output signals.
Flow control constructs (like IF/THEN, WHILE-DO and FOR-DO) give
control over the simulation process. For more information on the internal

operation of the simulator, an explanatory section is provided at the end of this
chapter.

The simulator lets you simulate a module (i.e., a Procedure or Function) by
using the keyword SIMULATION with the Procedure's or Function's name
The general form of a module simulation section is shown below:

Procedure/function simulation:

SIMULATION procedure_name|function_name ;
{declarations}
{statements}

END SIMULATION ;

Chapter 11: Simulating and Testing a Design 129

The simulator also lets you simulate the whole design by using a
SIMULATION section at the global level (i.e., outside of any Proceedure or
Function). Any SIMULATION section without a Procedure or Function
name is considered global. The general form of the design-file SIMULATION
section is shown below:

Design file simulation:

SIMULATION ;
{declarations}
{statements}

END SIMULATION ;

There is also capability in the simulator to generate test vectors that can be
stored in the JEDEC file (that is sent to the device programmer). These test
vectors can check actual device outputs against simulated outputs to ensure
the device is working as expected. The SYSTEM_TEST keyword is used
when you want to generate vectors that test the programmed devices. The
following rules apply to using SYSTEM_TEST:

0 The SYSTEM_TEST keyword is a system-level command placing
test vectors in the JEDEC file of the design. This differs from a
SIMULATION section that does not place simulation vectors in
the JEDEC file.

0 The SYSTEM_TEST keyword is not allowed in Functions or
Procedures because it is a system-level command, not a module-
level command.

The general form of SYSTEM_TEST section is shown below:
System test vector generation:

SYSTEM_TEST ;
{declarations}
{statements}

END SYSTEM_TEST;

130 MACHXL Software User’s Guide (Version 3.0)

1

The following is a more explicit example of the form for system
SIMULATION and TEST_SYSTEM sections showing the general usage of
some of the keywords. Each step and the keywords are explained in following
sections.

SIMULATION | SYSTEM_TEST;
Declarations
clock resolution (STEP)
variable declarations (VAR)
signals to display in simulation output
(TRACE)

Body

assign initial values to signals (INITIAL)
assign values to signals by table
assign values to signals by assignment (SET)
insert messages for simulation output
(MESSAGE)
compute values for input, output signals
(arithmetic operators)
flow control (IF/THEN/ELSE, WHILE-DO, FOR-DO)

END SIMULATION|SYSTEM TEST ;

Keywords

The identifiers listed below are reserved by the simulator as keywords and
may not be used as signal names, procedure names, function names, or
variable names.

AND IF THEN
BIN INITIAL TO
CASE MESSAGE TRACE
CLOCKF NOT VAR
DEC OCT WHEN
DO OR WHILE
ELSE RETURN

ELSIF SET

END SIMULATION

FOR STEP

HEX SYSTEM_TEST

Chapter 11: Simulating and Testing a Design 131

Declarations

The following sections describe the three types of declaration statements for
the simulator. The types of declarations are as follows:

STEP time step labeling information
VAR variable declarations
TRACE output listing order and format.

These declarations must appear after the header (SIMULATION or
SYSTEM_TEST) and before any statements. They can be mixed in any
order.

Specifying the Clock Resolution

The STEP statement allows the user to specify how the time steps in the
simulation listing file are to be labeled. This does not affect the behavior of
the simulation, as the simulator is strictly functional. STEP lets the user
specify the time label associated with each simulation step. The general form
of the command is as follows:

STEP time_units;
‘Where:

time units is an integer value and a time unit specification (ns,
us, ms, or s). If the STEP statement is omitted, the default step value
is 10ns. If you use multiple STEP statements, a warning is generated
and only the last declaration is used.

For example, the following specifies that each step in the simulation should be
labeled in 50 ns intervals.

STEP 50ns; "Labelling in time units

132 MACHXL Software User’s Guide (Version 3.0)

Valid time units and their abbreviations are:

Symbol Time Unit
ns nanoseconds
us microseconds
ms milliseconds

S seconds

The integer value and the time unit symbol cannot have spaces between them.
They must be adjacent. For example:

STEP 50ns; "valid
STEP 50 ns; "invalid

Note: The simulator in MACHXL is a functional simulator only.
The simulator does not do any timing simulation. Device delays are
not represented in the simulation results.

Variable and Signal Expressions

There are two types of expressions used in the test language: variable and
signal expressions. Variable expressions are made up of variables and
operators while signal expressions are made up of signals, variables, signal
values, and operators. Variables are defined in the simulation file and used to
control the flow of the simulation or to assign values to signals. Signals are
defined in the design file and are part of the design.

Declaring Variables

The VAR declaration lets a user allocate local integer variables that can be
used in:

Chapter 11: Simulating and Testing a Design 133

O generating values assigned to signals
O signal expressions

0 control or conditional constructs (e.g., IF/THEN, CASE, FOR-
DO, WHILE-DO).

Variables are declared using the VAR keyword:
VAR var_name {,var_name};
Where:

var_name is one or more identifiers naming variables for the
simulation or test section. Variable names are separated by commas.

The following statement declares j a variable:
VAR j;

= Note: A variable should not be confused with a signal. A signal is
declared in the design language and assigned expected input or
output values in a simulation or test section for simulation. A
variable is declared and used only in a simulation or test section
to keep track of the flow of test operations or to assign values to
signals in the simulation section. Variables are assigned values
using variable assignment statements (Example: j = 0; or,

Jj=Jj.+. 1;). Signals are assigned values using the INITIAL and
SET keywords.

The variable i is declared and initialized to 0 in the following example and
used as a counter to keep track of the number of WHILE-DO iterations
performed. It is also used in the SET statement to assign signals A 7 through
AQ the value of i:

134 MACHXL Software User’s Guide (Version 3.0)

VAR i;
i=0;

WHILE (i < 255) DO
SET [A7..R0] = i;
CLOCKF;
i=1i .+. 1;

END WHILE;

Tracing Signals

The TRACE declaration allows the user to specify which signals are written
to the simulation listing file. It also specifies how those signals are to be
formatted.

If no TRACE statement is given, all the signals in this section of the design
will appear in the simulation output in binary form.

If a TRACE statement is used in a simulation or test section, all the signals in
a design will be used in the simulation, but only the signals specified by the
TRACE statement will be displayed in the simulation listing file. Signals in
the listing file are written in the same order as given in the TRACE statement.

The format for using TRACE is:

TRACE signal [BIN|DEC|HEX|OCT] {,signal
[BIN|DEC|HEX|OCT]};

Where:

signal is one or more signals or groups of signals separated by
commas. Range notation and groups of signals may also be used. No
comma is used between a signal and its numeric base specification.
Signals must be previously declared in the language design under test.
The keyword RETURN may be used to trace a FUNCTION return
value. Groups of signals displayed in DEC format must be less than
31 bits wide.

Chapter 11: Simulating and Testing a Design 135

BIN|DEC|HEX|OCT are optional specifications to display the
associated signal or signals in binary, decimal, hexadecimal, or octal
form respectively. If no numerical base is specified, the default is
BIN.

Different bases can be used for different signals. The base representation for
a signal will only be visible in the table format of the simulation output. If no
base representation is supplied, binary is assumed.

— Note: Only one TRACE statement can be used per SIMULATION or
SYSTEM TEST section.

The following TRACE statement shows how to specify individual signals
(clk, countl, count?2)or groups of signals (/d7..d0],
x[5..0]), each with different numeric base representations.

TRACE clk, countl, count2, [d47..d0) DEC, x[5..0] OCT;

Since signals c1k, countl, and count?2 are not given a base
specification, they will all be displayed in binary. The signals d7. .d0 are
followed by the base declaration DEC, and will be represented in decimal
form in the simulation listing file. The signals x5 through x0 have a base
declaration of OCT and will be displayed in octal format.

When displaying groups of signals, any signal in the group with a value of
DON'T CARE or is in a HIGH IMPEDANCE (tri-state) condition will cause
the group to be displayed with asterisks (*).

Statements

Statements are used in a simulation or test section to construct vectors. You
can construct vectors manually using the table format to specify values for
inputs and outputs. You may also use the SET and CLOCKF language
constructs to create vectors. The high-level IF/THEN/ELSE, FOR-DO, and
WHILE-DO control flow constructs used with the SET and CLOCKF
keywords automate vector generation.

136 MACHXL Software User’s Guide (Version 3.0)

The following sections discuss the table format and language constructs to
create simulation and test vectors.

Using the Table Format to Create Vectors

The TEST_VECTORS statement lets the user enter both the input signal
values and the expected output values for each simulation step.

The form of the TEST VECTORS statement is as follows:

TEST_VECTORS
signal_name [,signal_name];
var_expres [,var_expres];

.

var_expres [,var_expres];
END TEST_VECTORS;

Where:
signal name is the list of signals affected by this statement.
var expres contains values for input, output, or biput signals on

incremental clocks. Values for inputs, outputs, and biputs are shown
below:

Signal type Allowable values

input 0 (set to binary 0)
1 (set to binary 1)
X. (don't care)
.C. (clock the pin)

output 0 (set to binary 0)
1 (set to binary 1)
X. (don't care)
.Z. (high Impedance)
.S. (calculated during
simulation)

Chapter 11: Simulating and Testing a Design 137

Signal type Allowable values

biput 0 (set to binary 0)
1 (set to binary 1)
X. (don't care)
.Z. (high Impedance)
.S. (calculated during
simulation)

When the TEST_VECTORS statement is executed, each line following the
signal list line is used to generate a simulation step. For each signal in the
signal list, the corresponding var expres from this state is used to set the
input value for this signal. Once all the signal values are set, the simulator
executes the step just as if a CLOCKF statement were executed. In fact, the
two following examples, one using the TEST_VECTORS statement and the
other using the SET and CLOCKEF statements, are equivalent:

TEST_VECTORS
signal namel,..., signal namen;
var_expresl,..., var_expresn;

var_expresl,..., var_expresn;
END TEST_VECTORS;

SET [signal_namel,...,signal_namen) =
[var_expresl,...var_expresn];

CLOCKF;

SET [signal_namel,...,signal _namen] =
[var_expresl,...var_expresn];

CLOCKF';

The TEST_VECTORS statement provides a shorthand method of setting
variables to signals. It eliminates the need for SET and CLOCKF statements
for each simulation step.

To enter test information in table format, list the individual input and output
signals or groups with their corresponding values.

138 MACHXL Software User’s Guide (Version 3.0)

bn

The following Gray-Code Counter example uses the table format to create
simulation test vectors for the procedure gr4 truth. The Design Synthesis
Language source section is shown first, followed by the Test Language source
section.

#TITLE '4-Bit Gray-code Counter with Reset';
#ENGINEER 'J. Engineer';
#COMPANY 'Hytek Co.';

" This file contains a procedure for a 4-Bit Gray-code

" counter using the TRUTH_TABLE construct. The previous-
" state output values are used as inputs in the truth

" table to generate the next-state output values. The

" reset line is forced by using it as an input.

PROCEDURE gr4_truth() ;
INPUT clk, reset ;
OUTPUT p3, p2, pl, pO CLOCKED_BY clk ;

TRUTH_TABLE

reset, p3, p2, pl, pO0O :: p3, p2, pl, pO;

0, X, X, X, X s o, o, 0, 0 ;
1, o, 0O, 0, 0 H 0, o, o, 1 ;
1, o, o0, o, 1 s o, 0, 1, 1 ;
1, o, O, 1, 1 s o, o, 1, 0 ;
1, o, O, 1, 0 HH o, 1, 1, 0 ;
1, o, 1, 1, 0 s o, 1, 0, 0 ;
1, o, 1, o, 0 s o, 1, o, 1 ;
1, o, 1, 0, 1 : 0, 1, 1, 1 ;
1, o, 1, 1, 1 : 1, 1, 1, 1;
1, 1, 1, 1, 1 : 1, 1, 1, 0 ;
1, 1, 1, 1, 0 : 1, 1, o, 0 ;
1, i, 1, o, 0 s 1, 1, 0, 1 ;
1, 1, 1, o, 1 : 1, 0, o, 1 ;

Chapter 11: Simulating and Testing a Design 139

END gr4_truth;

1, i, O, 0, 1 $s 1,

1, i, O, 1, 1 23 1,

1, i, O, 1, 0 s 1,

1, i, O, o, 0 K o,

END TRUTH_TABLE;
SIMULATION gr4_truth ;

TRACE clk, reset, [p3..p0]
TEST_VECTORS
clk, reset,p3, P2, rl,
cCo, O, 0, 0l OI
.c., 1, o, o, o,
.c., 1, o, o, 1,
.C., 1, o, 1, 1,
«C.y 1, 0, 1, ol
.C., 1, o, 1, o,
.C., 1, o, l' ll
.C.p, 1, 1, 1, 1,
.C-, 1' 1, ll 1!
.C., l, 1, ll ol
.C., 1, 1, 1, o,
.c., 1, 1, o, o,
«Coey 1, 1, ol 1!
.C., 1, 1, o, 1,
«eC.y 1, 1, o, ol
oCo, 1, o, Ol ol

END SIMULATION;

END TEST_VECTORS;

HEX

O O o

Ne we we we

140 MACHXL Software User’s Guide (Version 3.0)

rm

Using Test Language Constructs to Create Vectors

The test language extends the table concept by introducing the SET and
CLOCKEF constructs. With SET and CLOCKF you only need to set values
that change at a specified time unit, without listing values that stay the same.

SET assigns values to input signals and expected values to output signals.
CLOCKEF advances the simulation or test vector to the next time unit, which
in table format is the next row.

SET and CLOCKEF allow mixing the table format and the language:

SET [a, b, ¢] = 0;
SET [e, £, g] = 110b;
CLOCKF;

TEST_VECTORS
a, b, ¢, e, £, g;
i, 1, 1, 0O, 2, Z;
i, X, 1, 1, 0O, O;
END TEST_VECTORS;

The rest of this section discusses the test language operators and constructs
used in building vectors. The constructs include: SET, CLOCKF, INITIAL,
MESSAGE, FOR-DO, IF/THEN/ELSE, and WHILE-DO.

SET

Test vectors can be created in the test language, without using table format at
all, by assigning values to input signals, assigning expected values to output
signals, and advancing the simulation using CLOCKEF.

Values are assigned to signals using the SET keyword:

SET signal = variable expression|.c.].S.I.X.I.Z.
{, signal = variable expression].c.|.S.|.X.|.Z.};

Chapter 11: Simulating and Testing a Design 141

Where:

signal is one or more signals previously declared in the design
under test. Signals are separated by commas. Range and group
notation may also be used. The special signal name RETURN can be
used to refer to a function return value.

variable expressionis any test language mathematical
expression. A mathematical expression can be a number, a variable,
or an expression used by itself or with any of the arithmetic operators
in the test language (e.g., .*., .*+., /., .-, . MOD., etc.).

The test language has 6 different values that can be assigned to signals. These
values are shown below .

Value Meaning

Set to Binary 0
Set to Binary 1
Clock the pin
Calculated during simulation
Don't Care
High Impedance

Nx»wo-o

= Note: All signal names must be defined in the design file. Any
signal name used in the simulation file and not defined in a design
file generates an error message.

The binary values 0 and 1 represent false and true conditions depending on the
type of signal assigned the values. For example, if a signal is defined as
HIGH_TRUE then a binary 1 represents the asserted condition. If a signal is
defined as LOW_TRUE then a binary 0 represents the asserted condition.

A signal set to a value of .C. will be clocked during the simulation. This value
is typically assigned to signals connected to the clock input of a register device
(i.e., D-type flip flop, SR-type flip flop, etc.) but can be assigned to any
signal.

142 MACHXL Software User’s Guide (Version 3.0)

e

The .S. value tells the simulator to calculate the signal value. This value is
often used to automate test vector generation using output values generated by
the simulator.

Any signals set to a value of .X. will not be checked during the simulation.
The difference between using .S. and . X. is important during test vector
generation as opposed to simulation vector generation. An output set to a
value of .S. will take on the calculated simulation value in the test vector. An
output set to .X. is set to X in the test vector.

A signal set to a value of .Z. forces the signal to a high impedance or tri-state
condition. This is useful when several output signals are connected as in an

address bus.

Setting an output signal to any value other than .S. tests the simulator-
generated output value against the SET value, generating an error on a
mismatch.

A signal holds a value until another SET statement is specified.
If values are not initially specified for signals, the input signals are
automatically set to .X. (Don't Care), and the output signals are set to .S.

(computed by simulator).

Assign different signals to different values using one SET statement by
separating the assignments with commas:

SET a =1, b =0, c = 1;
To set values to a group of signals, use the group notation. For example,
SET [X, ¥, Z] = 4;

Assigns the value of 4 (in binary) to X, Y, and Z. Thus, the signals X, Y, and
Z contains the following values:

X=1;
Y =0;
Z2 =0 ;

Chapter 11: Simulating and Testing a Design 143

The values, .S., . X., .Z., and .C. can be assigned to a group of signals. As an
example, the statement,

SET (X, Y, 2] = .S. ;

sets signals X, Y, and Z to .S. (calculate during the simulation).

Another statement,

SET [A, B, C] = .Z. ;

sets outputs A, B, and C to the High Impedance value.

It is also possible to set one group of signals to another group of signals as
long as both groups have the same number of signals. As an example, the
statement,

SET [X, Y, Z] = [A, B, C] ;

sets signal X equal to A, signal Y equal to B, and signal Z equal to C.

CLOCKF
After assigning values to signals using SET statements, use the CLOCKF

keyword to advance the simulation one time step. The syntax for CLOCKF
is:
CLOCKF [clock_signal {,clock_éignal}] ;

Where:

clock signal is one or more input signals used to clock a
registered output. Separate clock signals with commas.

To advance the simulation one time step, use one CLOCKF statement:

CLOCKF ; "advance 1 time unit

144 MACHXL Software User’s Guide (Version 3.0)

et

To advance the simulation several time steps, use CLOCKF commands in
succession:

CLOCKF
CLOCKF
CLOCKF
CLOCKF

"advance 4 time steps

e Ne wo we

You can force a registered output to be clocked using CLOCKF with a clock
signal. The statement:

CLOCKF clk; "This is identical to: SET clk = .C.;
"CLOCKF;

generates a pulse on the clk input and moves the simulator to the next time
step. This is equivalent to entering a C for the clk signal in the table format as
follows:

inputl, input2, ..., clk, inputN ::
C, HE

c,

outputl, ...

One CLOCKEF statement can be used to clock a group of clock inputs:
CLOCKF clkl, clk2, clk3;

The following example shows how the SET and CLOCKF constructs can be
used to test a design. In this design, the outputs latch the inputs when clocked
by the clk signal. The simulator software checks out this functionality.

INPUT 1In7..In0, clk;
OUTPUT Out7..0utO CLOCKED_BY clk;

[Out7..0ut0] = [In7..In0];

Chapter 11: Simulating and Testing a Design 145

SYSTEM_TEST;

SET [In7..In0) = 55h;
CLOCKF clk;
SET [In7..In0] = OAAh;

CLOCKF clk;
END SYSTEM TEST;

The resulting simulation is as follows:

000000O0O

IIIIIIIICUUUUUUUU

NNNNNNNNLTTTTTTTT

Time us 76543210K76543210
0 010101010 0000 0

10 01010101c01010101

20 10101010cCc10101010

A CLOCKEF statement with no signal list is used to generate a combinatorial
step; i.e., unless the user is explicitly generating a clock, the simulator will
advance one step but no clock edges will be generated. This is useful when
testing latches. The following example shows how to explicitly generate a
clock:

SET clk = 0
CLOCKF ;
SET clk = 1 ;
CLOCKF ;

~e

INITIAL

INITIAL sets the internal value of signals and creates a special simulation
step. In the case of inputs, the result of INITIAL and SET are similar. In the
case of outputs, the internal value is changed, but the pin and driven values

remain the same. During the propagation step, the values will be propagated
through the circuit

146 MACHXL Software User’s Guide (Version 3.0)

8

(see the section in this chapter entitled Internal Simulator Operation.) The
format for using INITIAL is the same as for SET.

INITIAL signal {, signal} = expression|.z.|.s.|.X.|.c.;
Examples

The following example sets the simple signal x to 1:

INITIAL x = 1;

In this example, the bus Y[16] is set to 1001011000111100:

INITIAL Y = 0963CH;
or
INITIAL Y = 1001011000111100B;

The following sets simple signals A, B, C,and Dto 1, 0, 1, O respectively:

INITIAL [A, B, C, D]
or
INITIAL [A, B, C, D] = 10; "default base 10 (decimal)

1010B;

A group of INITIAL statements create an initial step in the simulator list.
Any non-INITIAL statement will separate INITIAL statements into separate
INITIAL steps. For example,

SET X = 0; Q = 0;
INITIAL Y = 1;
INITIAL Z = O;

FOR I = 0 TO 31 DO

.

will form one initial step containing Y = land Z = 0.

Chapter 11: Simulating and Testing a Design 147

SET X = 0;
INITIAL Y = 1;
SET Q = 0;

INITIAL Z2 = O;
FOR I = 0 TO 31 DO

will form two initial steps,

1) Y = 1 and Z having its previous value, and
2) Y having it's new valueand Z = 1.

Note the initial step only propagates combinatorial values, but cannot clock
registers. This means that the only way to change a register value during an
INITIAL is to set the register signal name to the value.

Note also that INITIAL changes only the value of the signal in the INITIAL
statement. To set a register inside of a count procedure, set the internal
register value, not the output signal.

PROCEDURE cntl6 (INPUT clk, rst; OUTPUT Q[16]);
NODE int_Q[16] CLOCKED BY clk, RESET BY rst;
int_ Q = int_Q .+. 1;

END cntl6;

INPUT c,r;
OUTPUT cnt_out[16];
cntlé (¢, r, cnt_out);

In this example, cnt_out is a combinatorial output connected to the
register. Setting cnt’ out to a value will not change the register. To
initialize the counter to 3FFH, you would have to enter the following into your
stimulus (.stm) file: '

INITIAL cntl6.l. int_Q = 3FFH;

148 MACHXL Software User’s Guide (Version 3.0)

i

To find the fully qualified name, run the optimizer and the documentor, and
look in the resulting .doc file for the name.

When an INITIAL statement is part of the SYSTEM_TEST section , the
resulting initial steps will be included in the test vectors. When a signal is set
to .C., the corresponding position in the test vector will contain a P, which on
many devices will cause the device programmer to pre-load the data on the
registered output pins into the internal registers.

INITIAL_TO

INITTIAL_TO assigns the same initial value to all output signals with a single
command. The INITIAL_TO command must appear before any
SIMULATION or SYSTEM_TEST sections but does not have to appear
before any macro definitions. The format for using the INITIAL_TO
command is: '

INITIAL_TO value;
Where:
value is one of the following values: 0, 1, and .X.

This value is overridden for a;ny signals that appear in INITIAL statements
that may appear in a simulation or test section. All signals are set to the
specified value before the first simulation step.

MESSAGE

Messages you want to appear in the simulation output can be inserted in the
test code. Messages act as signposts when you examine the simulation output,
helping you determine where you are in the simulation process. To have a
message appear in the output, use the format:

MESSAGE (' message text ');

Chapter 11: Simulating and Testing a Design 149

Messages tag the next simulation step marked by a CLOCKF statement. Any
message statement placed after the last CLOCKEF statement in a test section
will be ignored.

In the following test section for a rolling dice design, a message statement
appears where the new roll of the dice begins:

SET oe = .X.
SET d1, d2
CLOCKF clk
CLOCKF clk
CLOCKF clk
CLOCKF clk
CLOCKF clk
CLOCKF clk
CLOCKF clk
MESSAGE('New Roll');
CLOCKF clk ;

i
O ~
~e

Ne Ne Ne Ne Ne Ne we

The simulation output displays "New Roll" after generating the vectors
previous to the new roll:

Time ns OE D1 D2 Messages
0 X 0 0
10 0 1 1
20 0 1 1
30 0 1 1
40 0 1 1
50 0 1 1
60 0 0 1 New Roll
o Note: Only one MESSAGE statement should appear between any two

of the statements stepping the simulator (i.e., CLOCKF or INITIAL.)
If more than one MESSAGE statement is used between two statements,
a warning is issued and the first message encountered is used.

150 MACHXL Software User’s Guide (Version 3.0)

e

RETURN

When simulating a function, the keyword RETURN may be used wherever an
output signal is allowed. This indicates the return value of the function. In
the following example, RETURN is used to inspect the simulation results.

Examples
.src (source) file

FUNCTION xor (INPUT a, b);
RETURN a (+) b;
END xor;

.stm (stimulus) file

SIMULATION xor;
TRACE a, b, RETURN;

VAR i, j;

FOR i = 0 to 1 DO
SET a = 1;
FOR j = 0 to 1 DO
SET b = j;
SET RETURN = i (+) j;
CLOCKF;
END FOR;
END FOR
END SIMULATION;

Output of Simulator

Simulation of xor
Design: xor. fb
Stimulus: Xor.stm

Chapter 11: Simulating and Testing a Design 151

Z2waL\smEx

Time nSec a b Messages

init X X X
10 0 0 0
20 0] 1 1
30 1 0 1
40 1 1 0]

When the function returns a signal vector, the return value is the full range of
the index, therefore RETURN should not be specified with an index.

src (source) file
FUNCTION sprod (INPUT a, b[8]) [8];

NODE t[8];

t[{0] = a * b[0];
t[1l] = a * b[1];
t(2] = a * b[2];
t[3] = a * b[3];
t{4] = a * b[4];
t[5] = a * b[5];
t(6] = a * b[6];
t[7] = a * b[7];
RETURN t;
END sprod;

152 MACHXL Software User’s Guide (Version 3.0)

.stm (stimulus) file

SIMULATION sprod;

TRACE a, b, RETURN DEC;
VAR i, 3J;

FOR i = 0 TO 1 DO

SET a = i;
FOR j = O to 255 DO
SET b = j;
CLOCKF;
END FOR;
END FOR;

END SIMULATION
Output of Simulator
Simulation of sprod

Design: sprod.fb
Stimulus: sprod.stm

Chapter 11: Simulating and Testing a Design 153

H &H X0
HH W

b b
[(
7 0
]]

—_ Q- 2.
— O ™ Z

Time nSec a Messages

e e e 000 .

----- =======~——-BBB-BBBBBBBB-DDD--==========———————— e

init X XXXXXXXX SS
10 0 00000000 000
20 0 00000001 000
30 0 00000010 000
40 0 00000011 00O
50 0 00000100 000
60 0 00000101 000
70 0 00000110 000
80 0 00000111 00O
90 0 00001000 000
100 0 00001001 000
110 0 00001010 00O
120 0 00001011 000
130 0 00001100 000
140 0 00001101 00O
150 0 00001110 000
160 0 00001111 00O
170 0 00010000 000

Test Language Operators

Three types of operators are available in the simulation and test sections:
arithmetic, bit oriented, and relational. Arithmetic operators are used to
compute values for input and output signals, and values to be assigned to local
test language variables. Bit-oriented operators are used to perform bit-wise
Boolean operations.

154 MACHXL Software User’s Guide (Version 3.0)

ra

Relational expressions evaluate to a 1 if the expression is true; otherwise they
evaluate to 0. They are used to determine which clause in an IF/THEN/ELSE
construct to perform, or the number of times to perform the statements in a
WHILE-DO loop. '

The test language operators are shown below:

Operation Description Operator Type
a+.b sumofaandb arithmetic
a.-.b difference of aand b arithmetic
a.*b product of a and b arithmetic
a.l.b quotientof aand b arithmetic

a. mod.b modulus of a and b arithmetic
-.a negation of a arithmetic
a+b bit-wise OR of a and B bit oriented
a*b bit-wise AND of a and b bit oriented
/a bit-wise complement of a bit oriented
a<b if a<b,then1else 0 relational
a>b ifa>b,then1else 0 relational
a<=b ifa<or=Dh,then1else0 relational
a>=b ifa>or=b,then1else0 relational
a=b ifa=Db,then1else0 relational
a<>b ifa<>b,then1else0 relational
aandb if bothaandb=1,then1else0 relational
aorb if eitheraorb=1then 1 else 0 relational
not a ifa=0then1else 0 relational
a.<<.b shift a left b bits arithmetic
a>>b shift a right b bits arithmetic

The FOR-DO Construct

The FOR-DO construct allows you to create vectors iteratively. It bases its
looping on an inclusive counter value. The syntax of FOR-DO is:

FOR var_name = lower_limit TO upper limit DO

statements
END FOR;

Chapter 11: Simulating and Testing a Design

155

Where:
var name is a local variable declared in this simulation section.
lower limit is any variable expression.

upper limit is any variable expression. If the value of
lower limit is greater than the value of upper 1imit,the
loop will not be performed.

statements is one or more test operations.
The following FOR loop performs eleven CLOCKF statements:

FOR i=0 TO 10 DO
CLOCKF;
END FOR;

The next example shows the test section for a free-running two-bit ring
counter. It uses the FOR construct to perform 33 CLOCKF statements,
advancing the simulator 33 time steps.

SYSTEM TEST;
STEP 100ns;
VAR i;
TRAcﬁrclk, tcountl, tcount2;

FOR i = 0 TO 32 DO
CLOCKF clk;
END FOR;
END SYSTEM TEST;

FOR-DO statements can be nested within other FOR-DO statements. The
following example demonstrates nested FOR-DO statements.

156 MACHXL Software User’s Guide (Version 3.0)

SET powerup = 1 ;
FOR j = 0 TO 10 DO
SET timeout = 1 ;
CLOCKF ;
CLOCKF ;
CLOCKF ;
CLOCKF ;
SET timeout = 0 ;
FOR i = 0 TO 10 DO " nested FOR-DO statement
CLOCKF ;
END FOR;
END FOR;

IF/THEN/ELSE
The test language IF/THEN/ELSE construct has the format:

IF variable expression THEN
statements

{ELSIF variable expression THEN
statements}

[ELSE
statements]

END IF;

If the variable expression in the IF statement is true, the statements between
THEN and ELSE are performed. Otherwise, the statements following ELSE
are performed (if existing). If there is no ELSE section in an IF statement,
and if the value of the variable expression is true, the statements between the
IF and END IF statements are performed.

In the following example, an [F/THEN/ELSE construct is nested in a FOR
loop with additional IF statements nested in the ELSE clause:

Chapter 11: Simulating and Testing a Design 157

SIMULATION ;
VAR i, J ;
TRACE ei, [i7..i0]
MESSAGE(' Test en
SET ei=0 ;
j=0;
FOR i=0 TO 255 DO
SET [i7..i0]

, [aa2..aal0], ggs, eeo

coding ') ;

= 255-1i ;

IF (i=0) THEN " nested IF/THEN/ELSE

SET gg
ELSE

IF (i=

ELSIF
ELSIF
ELSIF
ELSIF
ELSIF
ELSIF
ELSIF
ELSIF
END IF
CLOCKF
END IF;

END FOR;
END SIMULATION;

s=1, eeo=0 ;

SET ggs=0, eeo=1

0) THEN
SET [aa2..aal]

(i=1) THEN
SET [aa2..aa0l]
(i=2) THEN
SET [aa2..aal]
(i=4) THEN
SET [aa2..aal]
(i=8) THEN
SET [aa2..aal]
(i=16) THEN
SET [aa2..aal]
(i=32) THEN
SET [aa2..aal]
(i=64) THEN
SET [aa2..aal]
(i=128) THEN
SET [aa2..aal]
4

14

e

111b

111b

110b

101b

100b

O0l1l1lb

010b

001b

000b

.

~

~

~e

-

~e

~e

~

~

.
’

"nested
"IFs

158 MACHXL Software User’s Guide (Versio

n 3.0)

et

WHILE-DO

The WHILE statement will repeat a group of statements as long as the
WHILE variable expression is true. If the variable expression is initially false
then the statements are not performed.

WHILE variable expression DO
statements
END WHILE;

The following example demonstrates how to use a WHILE loop to perform
eleven CLOCKEF statements:

i = 0; " initialize variable i
WHILE i <= 10 DO

CLOCKF;

i=1i .+. 1;
END WHILE;

The next example demonstrates the WHILE-DO statement, and generates the
sequence, 0, 255, 1, 254, 2, 253, ..., 128 for the variable j:

SIMULATION
VAR j ;

j = 0 ; "initialize variable j

WHILE j <> 128 DO
SET [in7..in0] = j ;
CLOCKF clk ;
j = 255 .-. J ;
IF (j < 128) THEN

=3 .+. 1 ;

END IF;

END WHILE;

SET [in7..in0) = j ;
CLOCKF clk ;
END SIMULATION;

Chapter 11: Simulating and Testing a Design 159

e

An Example Simulation Section and Results

The following are example design (.src), stimulus (.stm), and simulation result
(.sim) files used to explain the basic concepts of the simulator.

Design File (design_name.src)

”

" Design file for address decoder example
LOW_TRUE INPUT oe ;

INPUT al, a0, clk ;

OUTPUT rom CLOCKED BY clk ENABLED_BY oe
OUTPUT ram CLOCKED BY clk ENABLED BY oe
OUTPUT i_o CLOCKED_BY clk ENABLED_BY oe
OUTPUT a_to_d CLOCKED BY clk ENABLED BY oe ;

Ne we ~e

rom /al * /a0 ;
ram /al * a0
io al * /a0

i
i
a to d =al * a0 ;

Stimulus File (design_name.stm)

" Stimulus file for address decoder example Line

" Number

SIMULATION ; "1
VAR i, j; "2
STEP 10ns; "3
TRACE clk, oe, al, a0, rom, ram, i_o, a_to_d; "4
SET clk = .C. ; "5
SET oe = 0 ; "6

160 MACHXL Software User’s Guide (Version 3.0)

FOR i = 0 TO 1 DO "7
j=0; "8
WHILE (j < 2) DO "9
SET al = i ; "10
SET a0 = j ; "11
jo=3 .+, 1; "12
CLOCKF clk ; "13
END WHILE ; "14
IF (i AND j) THEN "15
SET oe = 1; "16
END IF ; "17
END FOR ; "18
CLOCKF clk ; "19
END SIMULATION ; "20

Line 1 of this stimulus file begins with the keyword, SIMULATION. For this
simple design there is only one simulation section. A more complex design
might have several simulation sections each testing part of the overall design.

Line 2 declares two variables, i and 7, which are used to control the
simulation and to assign values to the signals in the design. Don't confuse a
variable with a signal. A variable is used only by the simulator and is not part
of the design.

Line 3 tells the simulator how you want to label each step in the simulation
results file. In this case, each step will be labeled in 10 ns increments. The
STEP statement is provided for your convenience and doesn't affect the
behavior of the simulator. The default is 10 ns.

Line 4 is a TRACE statement telling the simulator which signals should
appear in the simulation output file and in what format to display them. For
this simulation, all signals will appear in the listing file and the default display
format of binary is used.

Lines 5 and 6 contain signal expressions. The signal, c1k, is assigned a
value of .C. indicating to the simulator this signal is to be clocked during the
simulation. The SET statement of line 6 assigns a value of 0 to the signal OE.

Chapter 11: Simulating and Testing a Design 161

This signal will maintain this value until the end of the simulation section or
until another SET statement changes this value. SET statements are only used
for assigning values to signals and not to variables.

Line 7 is the beginning statement of a looping construct. Looping constructs
allow automating parts of a simulation section. The variable i is set initially
to a value of 0. This value is then compared to the value 1 which appears on
the right side of the keyword TO. If the value of i is greater than this value,
the loop is terminated; otherwise all statements appearing between lines 7 and
18 are performed. With each pass through the loop, the value of i is
incremented by 1. All FOR loop constructs must have an END FOR
statement.

In line 8, the variable j is assigned a value of 0.

Line 9, contains another type of looping construct, the WHILE loop. This
loop executes as long as the variable expression, between the WHILE and
DO, evaluates true. As long as the value of 7 is less than 2, the variable
expression is true and all statements between the WHILE statement header
and the END WHILE statement are executed.

Lines 10 and 11 contain SET statements assigning the values of i and j to
the input signals a 1 and a 0 respectively.

Line 12 increments the variable j by 1. If this statement is not present, the
WHILE loop will not terminate.

The CLOCKEF statement in line 13 is used to advance the simulator one time
step. When the simulator executes this statement, the rom, ram, i o,
and a_to_d outputs are evaluated, the clock signal, c1x, is clocked, and the
results are printed to the simulation output file.

Line 14 terminates the WHILE-DO loop.
The IF statement of line 15 evaluates the variable expression, i AND 7.

If the value is true, line 16 is executed. This condition occurs when the value
of i is non-zero and the value of j is non-zero (i =1, j=2). Any variable

162 MACHXL Software User’s Guide (Version 3.0)

expression evaluating to a value of 0 is considered false; otherwise, the
variable expression is true.

Line 17 ends the IF construct started in line 15.
Line 18 ends the FOR construct started in line 7.
Line 19 causes the simulator to advance one time step.

The final statement of the simulation section is the END SIMULATION
statement. At this point it is possible to start another simulation section or
system test section. However, for this example, this is the only simulation
section.

The following is the simulation output file (design_name.sim) for our
example.

Simulation Results File (design_name.sim)
Simulation of SYSTEM

Design: DALE.FB
Simulation: DALE.STM

A
T
C R R I o
L o A A O A
Time nSec K E 1 0] M M (o) D Messages

BBB BBB BBB BBB BBB BBB BBB BBB------——=—=—=——==-

init X X X X X X X X
10 (o] 0 0 0 1 0 0 0
20 Cc 0 0 1 0 1 0 0
30 C 0 1 0 0 0 1 0
40 c 0 1 1 0 0 0 1
50 (o] 1 1 1 2 2 2 z

Chapter 11: Simulating and Testing a Design 163

A
A SYSTEM_TEST Example

The following example is a SYSTEM_TEST section demonstrating many of
the test constructs discussed in this chapter. Remember a SYSTEM_TEST

section places test vectors in the JEDEC file. This example is given without
explanation.

" Design file for counter example

Low_True Input oe ;

Input clk ;

Output g5..9q0 clocked_by clk enabled_by oe ;

q0 = /q0 ;

ql = ql (+) g0 ;

g2 = g2 (+) g1 * g0 ;

g3 = g3 (+) g2 * q1 * g0 ;

g4 = g4 (+) 93 * g2 * q1 * g0 ;

g5 = g5 (+) g4 * g3 * g2 * gl * qO0 ;

" Simulation file for counter example
SYSTEM_TEST;

VAR i, 3j;

STEP 10ns;

TRACE clk, oe, [g5..90];

FOR i = 0 to 1 DO
SET oe = i ;
FOR j = 0 to 64 DO " nested FOR construct
IF i = 1 THEN " nested IF/THEN/ELSE
" construct
MESSAGE('disable outputs') ;
ELSE
MESSAGE ('enable outputs') ;
END IF ;
CLOCKF clk ;
END FOR;
END FOR;
END SYSTEM_ TEST;

164 MACHXL Software User’s Guide (Version 3.0)

The simulation output generated for this design is as follows:

100
110
120
130
140
150

600
610
620
630
640
650
660
670
680
690
700

Rt

w

o000 0ano

oo

0Q....Q
E5....0

BBBBBBB

0000000
0000001
0000010
0000011
0000100
0000101
0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111

0111100
0111101
0l11110
0111111
0000000
0000001
122722722
12222722
12272222
12722222
1222222

Message

S

enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable

enable
enable
enable
enable
enable
enable
disable
disable
disable
disable
disable

outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs

outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs
outputs

Chapter 11: Simulating and Testing a Design

165

C
L 0Q....Q
Time ns K E5....0 Messages
———————————— B BBBBBBB—~—==—— e e e
1250 (o] 122722722 disable outputs
1260 (o] 12222722 disable outputs
1270 (o] 1222222 disable outputs
1280 (o] 12222272 disable outputs
1290 C 12222722 disable outputs
1300 C 12272222 disable outputs

Internal Simulator Operation

The simulator uses two input files (design_name.afb and design_name.stm) to
produce simulation results. The .afb file contains compiled design information
while the .s¢m file contains stimulus (SIMULATION) and system test
(SYSTEM_TEST) sections. The results of the simulation are written to the
output file, .sim. If the .stm file has a system test section then the simulator
generated test vectors are written to a .¢v file which is used during the fitting
process. The SYSTEM_TEST section also generates test vectors that are a
part of the JEDEC file. If simulation of the design is not required then
removing the .stm file will keep the simulator from running.

Each simulation and system test section of the .stm file is compiled into a set
of statement structures. These structures define signal values for the compiled
design equations and control the simulation cycles. The simulation cycles
create the simulation results and test vectors.

Simulation Cycle

Each time step in the simulation (specified by the STEP command) is divided
into simulation cycles. Each of these cycles computes a new intermediate
value for the design equations. A simulation cycle is a process which consists

166 MACHXL Software User’s Guide (Version 3.0)

of several steps generating new values for the output signals. These steps are
shown below:

Initialize
Compute all outputs until stable
If there is a clock signal then
Clock step
Compute until outputs are stable
Write out the results

Any error or warning messages occuring during a simulation cycle are written
to the .sim and .Jog files. The maximum number of errors or warning allowed
during each simulation cycle is 10. If the number of errors or warnings
exceeds 10, the remaining errors and warnings are ignored for the current
cycle and a warning message is written to the .sim file indicating the limit was
exceeded.

initialize

The initialize step in the previous flow diagram assigns values to the input and
output signals as defined in the statement structure. Any input or output
signals not assigned values in the statement structure are set to either a value
of unknown (X) or to the value in the INITIAL_TO statement, if this
statement exists.

Compute All Outputs Until Stable

This step is a loop of statements which are executed until all combinatorial
outputs are stable or until the total number of times through the loop reaches a
count of 128. Outputs are considered stable if their value has not changed
from the previous step. The statements executed in the loop are as follows:

Chapter 11: Simulating and Testing a Design 167

1. Compute the values of all the output generators (i.e., clocks, resets,
inputs, etc.).

2. Generate the values of the outputs using the newly computed
output generator values.

3. If the new signal values are the same as the signal values in the
previous iteration, the outputs are stable and the loop is terminated.

If the loop count reaches 128 then some of the output signals are unstable. An
error message is written to the .sim file for each unstable signal and these
signals are set to a value of unknown (X).

If There is a Clock Signal

Each input signal set to a value of .C. is clocked and the value of all output
signals is calculated. If any of the output signals are unstable then the values
are recalculated until the output signals are stable or until the number of
calculations reaches 128. If the count reaches 128, some of the output signal
values are unstable. An error message is written to the .sim file for all
unstable signals and these signals are set to a value of unknown (X).

Write Out Results

Each signal value is set to the new value for this cycle and the results are
written to the .sim file.

The total number of cycles performed is controlled by the statement structures
compiled for each simulation and system test section. The maximum number
of cycles can be 128 before the clock step and a maximum 128 cycles after the
clock step.

Note: Any combinatorial outputs that are chained together in a
series of more than 128 gates may not be stable.

168 MACHXL Software User’s Guide (Version 3.0)

Signal States

For each signal in the simulation, a state is stored. In the case of input
signals, this value is defined by the SET command or by the value of the
output which drives it. The circuit shown in the following figure contains an
example of the two types of inputs. A1, B1, and CLK are defined by SET
commands while signal C1 is defined by the output of AND gate U2.

SIMULATION ; A1
SO SN
B1

TRACE Al, Bl, Cl, CLK, Di;

SET Al = 0; u2
SET Bl = 0;
SET CLK = .C.; CLK————>C

END SIMULATION ;
For output signals, a state is made up of three items:
1. the internal value of the signal
2. the value driven by the output onto the pin
3. the value driven by the simulator onto the pin.

The internal value corresponds to the value associated with the signal before
the tri-state output and is internal to the device. The value being driven out is
the value after the tri-state output. The internal value can be set by using
INITIAL or INITIAL_TO statements. The value driven by the simulator onto
an output is the result of using the SET command for an output signal. As an
example, in the circuit and simulation section as shown in the following figure,
the input signal, IN, is set to a value of 1. The internal value for the output
signal, OUT, is 0. The value driven out of U1 is Z. The reason is the signal
ENABLE has a value of 0 thus placing U1 in the high-impedance state. The
value driven by the simulator is 1.

Chapter 11: Simulating and Testing a Design 169

ENABLE

IN — OUT

out

SIMULATION" ;

TRACE ENABLE,
IN, OUT;

SET ENABLE = 0;
SET IN = 1;

SET OUT = 1;

END SIMULATION ;

For output signals that do not have a tri-state output, the internal value and the
value driven by the output are always equal.

The values these items can take are shown in the following table.

Symbol Meaning

Low (or 0)
High (or 1)
Don't Care or Unknown
High Impedance (Tri-state disabled)
Clocked (Pulse)
Simulated Value (for outputs)

O|O|N|X|I|r

170 MACHXL Software User’s Guide (Version 3.0)

Truth Tables for the Test Language Logical
Operators

During each step of a simulation cycle, the equations associated with a
combinatorial output are evaluated. This evaluation is made by applying the
following truth tables:

Truth Table for the AND Operation

o

L
H
X
H
C
S

X = Don't Care

Truth Table for the OR Operation

H
H
H
H
H
S

X =Don't Care

Chapter 11: Simulating and Testing a Design 171

Truth Table for the Exclusive OR Operation

H
L
X
H
C
S

X =Don't Care

Truth Table for the NOT (Complement) Operation

X =Don't Care

There are several possible equations associated with each output. An output
may have an enable, indicating the output is a tri-state component enabled by
this expression, or may have a register input with any of the optional clock,
clock enable, preset and reset equations, or may be combinatorial. If the
enable is not present, then it is assumed the output is always driving. The
resets and presets, if present, are used to indicate an asynchronous condition
taking precedence over the clock. The following truth tables describe the
possible register behavior:

172 MACHXL Software User’s Guide (Version 3.0)

Truth Table for a D-type Flip Flop

m{rjr|r|rr e X T
e o X T

X = Don't Care ? = Unknown Qi = Current State Qi-1 = Previous State

Truth Table for a JK-type Flip Flop

Q
X X ? X ?
X X X ? ?
X X H L L
X X L H H
? X L L ?
C ? L L ?
C L L L Qi-1
Cc H L L ?
C H L L ?
Cc H L L Qi-1
Cc H L L H
Cc H L L L
C H L L 1Qi-1

X = Don't Care ? = Unknown Qi = Current State Qi-1 = Previous State

Chapter 11: Simulating and Testing a Design 173

Truth Table for an RS-type Flip Flop

X X ? X ?
X X X ? ?
X X H L L
X X L H H
? X L L ?
Cc ? L L ?
C L L L Qi-1
Cc H L L ?
C H L L ?
Cc H L L Qi-1
Cc H L L H
C H L L L
C H L L ?

X =Don't Care ? = Unknown Qi = Current State Qi-1 = Previous State

Truth Table for a T-type Flip Flop

X X H L L
X X L H H
X X ? X ?
X X X ? ?
? X L L ?
C ? L L ?
C L L L Qi-1
L/H L/H L L Qi-1
C H L L Qi-1
C H L L 1Qi-1
C H L L ?

X = Don't Care ? = Unknown Qi = Current State Qi-1 = Previous State

174 MACHXL Software User’s Guide (Version 3.0)

Truth Table for a D-type Latch

Jatch enabl | reset | preset | Qi
X H L L
X L H H
X ? X ?
X X ? ?
? L L ?
L L L Qi-1
H L L L
H L L H
H L L ?

X = Don't Care ? = Unknown Qi = Current State Qi-1 = Previous State

Chapter 11: Simulating and Testing a Design 175

176 MACHXL Software User’s Guide (Version 3.0)

1 2 Optimizing a Design

Contents
INErOAUCHION.cotiiiiiiciiicicce e e s e 178
Optimizer OPEration.............c.ceeeuiiiieeeeeriieeieeeree st e stee et ereaeeeeeeesaeeees 178
Node Collapsingcceeeeeiiieeiiieirieeceeeereeecee et e 179
Virtual and Physical Nodescc.cccevireeniniininiiciiniiineee, 180
Controlling Node Collapsingccoceoveveerieecieneerinieneenneeenns 180
Node Collapsing and Partitioningccocceeevereriencveneennennne 184
Register Synthesis............cccoooiiiiiiiiiiicce e 185
Equation Reduction..............cccooevieiiiiiiiiniicececceee e 186
Factoringcoovieiiiiieicicece et 186

Chapter 12: Optimizing a Design 177

Introduction

The optimizer in MACHXL takes the abstract representations of a compiled
language file (.afb) and converts them into physical representations. During
optimization, the following functions are performed:

O nodes are collapsed out of the design when possible
o flip-flops are synthesized
O equations are reduced.

After optimization, the design file is ready for partitioning.

Optimizer Operation

The purpose of the optimizer is to reduce the size of design equations and the
number of NODEs. This allows the design to fit into the fewest and smallest
possible devices. PLDs implement logic using two-level logic to feed the
macro cells. This means the equations feeding the inputs of the macro cells
are represented in a two-level Sum-of-Products form. The circuit shown
below is one example of a macro cell. The contents of a macro cell can be
quite different from one PLD or CPLD device to the next. These macro cells
can contain all of these logic devices, some of these logic devices, or none of
these logic devices. Some PLDs have a fused inverter and fused flip-flops.

While PLDs vary in their ability to share internal hardware between macro

178 MACHXL Software User’s Guide (Version 3.0)

m OoOow >

rm

cells, they are all constrained by the number of input signals and by the
number of product terms used in a design equation. By optimizing the design
equations, it may be possible to keep the number of product terms to a number
less than the maximum number of product terms allowed for a specific device.
So, the goal of the optimizer is to take advantage of a particular device's
architecture while not exceeding the device limits. There are three techniques
used to reduce the design equations: node collapsing, register synthesis, and
final reduction.

Node Collapsing

The first technique used to optimize a design is called node collapsing. Node
collapsing is the process of removing an internal signal node by substituting
the node's equation into any equation that references the node. As an example,
the following design equations have an internal node x:

INPUT a, b, ¢, 4 ;

NODE x ;
OUTPUT y, z ;
Xx=a*b+c;
y=x*d;

z =x + ;

Node collapsing results in NODE x being removed, yielding the following
equations:

y=a*b*d+c*d;
z c + b ;

]

Note: In addition, OUTPUT z has been optimized to yield ¢ + b.

A —

I

Chapter 12: Optimizing a Design 179

A hardware example of node collapsing is shown in the diagram shown above.
In this example, a design using 2-input logic gates is collapsed to a 2-level
equivalent to increase speed.

Virtual and Physical Nodes

It is possible to explicitly control node collapsing of individual nodes by
declaring them to be VIRTUAL or PHYSICAL in the design file. VIRTUAL
nodes are always collapsed while PHYSICAL nodes are never collapsed (for
more information on NODES and their modifiers, see Chapter S and the
section on Declarations.)

Any node mentioned in the .pi (physical information) file becomes a
PHYSICAL node because a node must exist physically to have properties
attached to it. Individual nodes can be declared to be VIRTUAL in the pi file
(see Chapter 13 for more information on the .pi file). The following is an
example portion of a pi file showing both PHYSICAL and VIRTUAL nodes:

PHYSICAL r06 ;
VIRTUAL vn, n ;

This is the mechanism used in the automatically generated .npi file to force the
optimizer to make the correct node collapsing choices. The .npi file can be
used to guarantee a design is implemented the same way on subsequent
iterations through the MACHXL design tools by copying the .npi file to the
pi file. For more information on the pi file, see Chapters 13, 14, and 15.

Controlling Node Collapsing

While collapsing reduces the number of equations, it can also increase the
number of terms in some equations. This can mean that there may not be
enough resources in some devices to implement the design. There are five
constraints you can use to limit the size of the equations produced during the
node collapsing process. These constraints can be chosen to suit the
requirements of a particular device. The constraints are specified as signal
properties in the pi file (see Chapter 14 for more information on the .pi file
signal properties.) These global group or properties should be assigned on a

180 MACHXL Software User’s Guide (Version 3.0)

e

device-by-device basis for each of the different target devices. The following
is a list of these properties:

MAX_SYMBOLS n

Lets you tell the optimizer the maximum number of unique symbols or
signals to allow in any one equation.

Default=20.

You may set MAX SYMBOLS equal to the maximum number of
inputs and nodes feeding the array, and with some devices you may
also use some of the outputs as inputs. This allows increasing the
maximum number of symbols in an equation. Conversely, if you are
concerned about not having enough outputs, you may want to
decrease MAX_SYMBOLS.

MAX_PTERMS n

Lets you tell the optimizer the maximum number of product terms to
allow in a sum-of-products version of an equation.

Default=16.

In general, this parameter can be thought of as the number of inputs to
the OR gates in the device.

MAX_XOR_PTERMS n

Lets you tell the optimizer the maximum number of product terms you
want to appear on one input of an exclusive OR gate, assuming the
other input has one product term. If both inputs of an exclusive-OR
gate have more than a single product term, the equation will exceed
the MAX PTERMS constraint. If n = 0, the target device has no
exclusive-OR hardware.

Default=0.

If the XOR representation of an equation has more than one pterm on
both sides then the equation will exceed the MAX PTERMS
constraint. If either the regular or the XOR pterm constraint is met,
then the equation is allowable. This means that devices with XOR
gates allow the most effecient form of the equation to be used.

Chapter 12: Optimizing a Design 181

POLARITY_CONTROL [TRUE | FALSE]

Lets you tell the optimizer whether a target device has a fusible
inverter in the path to the output macrocell. If TRUE, you are telling
the optimizer the device has a fusible inverter. FALSE indicates there
is no fusible inverter.

Default=TRUE

XOR_POLARITY_CONTROL [TRUE | FALSE]

Lets you tell the optimizer whether a target device has a fusible
inverter on its XOR. If TRUE, you are telling the optimizer the
device has a fusible inverter. FALSE indicates there is no fusible
inverter.

Default=FALSE

The optimizer uses these properties when collapsing a node to determine if an
equation referencing a node will exceed these constraints.

If the target device has a fusible inverter (i.e., POLARITY_CONTROL or
XOR_POLARITY_CONTROL is TRUE), the optimizer can take the smaller
of the ordinary or DeMorgan equation set. This is because the optimizer can
make use of the fusible inverter to take the smaller of the two equations.

If the target device does not have a fusible inverter (i.c.,
POLARITY_CONTROL or XOR_POLARITY_CONTROL is FALSE), the
optimizer will take the larger of the ordinary equation set or the DeMorgan
equation set. This is to make sure it can fit the larger of the two equations
should it need to (since it cannot use the fusible inverter to select the smaller
of the two equations). The maximum number of pterms the ordinary or
DeMorgan set can have is specified by MAX PTERMS property.

In both cases it is important to remember the optimzer uses this information
only to determine whether it can collapse a node, not to determine Fit.

— Note: Any equation exceeding the size constraints prior to optimization
are unaffected by the size limits. These size constraints only apply to
equations created during the node collapsing process.

182 MACHXL Software User’s Guide (Version 3.0)

n

The MAX_XOR_PTERMS constraint applies to one input of an exclusive-
OR gate if the other input is fed by a single product term. This is a common
situation for many device architectures. If the exclusive-OR representation of
an equation has more than a single product term on both inputs then the
MAX_PTERMS constraint is applied to the non-exclusive-OR form of the
equation.

If the corresponding equation representations meet either MAX_PTERMS or
MAX_XOR_PTERMS constraints then that equation is acceptable. Thus,
fusible exclusive-OR gates allow use of the most efficient form of an equation.
As an example:

INPUT a, b, ¢, 4, e ;
NODE x;
OUTPUT out ;

XxX=c¢c* (d + e) ;
out = (a * b) (+) x ;

If the NODE x were collapsed, then the exclusive-OR form of the equation is:
out = (a * d) (+) (¢ *d + c * e) ;
and the ordinary form of the equation is:

out = (¢ * d */a) + (¢ *d */b) + (c * e */a) +
(c * e* [b)y + (a *b * [c) + (a * b *¥/d */e) ;

If MAX_PTERMS is greater than or equal to 6 or MAX_XOR_PTERMS is
greater than or equal to 2 then node x would be collapsed. (For the sake of
simplicity, this example ignores the polarity control properties and the
DeMorgan form of the equations.)

Combinatorial feedback nodes are also removed whenever possible. However,
if the optimizer determines the combinatorial feedback node is required by the
feedback circuit, then that node is not removed. As an example, consider the
following design:

Chapter 12: Optimizing a Design 183

INPUT a, b, c ;
NODE y, x ;
OUTPUT out ;

y =a(+) x;
x=y*b;
out = x * ¢ ;

Collapsing node x in equation y produces the following equations:

y =a(+) (y * b) ;
out =y * b * c;

Because the equation for node y contains y as one of its inputs, the node x
cannot be collapsed.

Any node referenced in a control equation (CLOCKED_BY, RESET BY,
etc.) is not collapsed unless it is declared as VIRTUAL. (See the previous
section on Virtual and Physical Nodes for more information.) As an example:

INPUT clk, resetl, reset2, a, b ;
NODE reset ;
OUTPUT out CLOCKED_BY clk RESET BY reset ;

reset = resetl * reset2 ;
out = a + b ;

The node reset is not collapsed since it is used in the RESET_BY equation
of the signal out. Ifit had been collapsed, this design would not have fit into
many devices that have a single reset line. Declaring reset to be VIRTUAL
causes the node to be collapsed anyway.

Node Collapsing and Partitioning

The equations resulting from node collapsing will have varying sizes up to the
maximum size specified by the constraints. Typically, you should set the
limits to match the characteristics of the largest equation that can be handled
by a target device to obtain good results.

184 MACHXL Software User’s Guide (Version 3.0)

pm

When directed partitioning is performed, the type of device each signal must
fit into is specified. Since the node collapsing constraints can be specified on
a device by device basis, equation sizes can be made to match each device.

When using automatic partitioning, you may prefer to use a particular set of
devices for a design. In this case, setting the node collapsing constraints to
that required by the largest of these devices gives good results.

Even if the types of target devices are unknown, approximate constraint
values will still yield good node collapsing results. The default values give
good results for a wide variety of devices. A little experimentation with the
constraints can help to refine the resulting equation sizes.

Register Synthesis

The second technique used to optimize the design for the largest variety of
target devices is called register synthesis. The optimizer is responsible for
synthesizing the equations for alternate flip-flop types for registers (see figure
below). The register type declared in the source file allows the equations for a
register to be expressed in terms of the given flip-flop type. The optimizer
synthesizes the equations for all the other flip-flop types to give the automatic
fitting process greater flexibility in its choice of devices used to implement a
register.

T—T7 Qq—— OUT D Q ou
ﬁ T “L
CLK —p>C CLK —p>C
T-FLOP D-FLOP EQUIVALENT

If a register is declared with the NO_REDUCE modifier then it will be
implemented using the declared flip-flop type and no synthesis will be done.

Chapter 12: Optimizing a Design 185

Equation Reduction

The final reduction technique uses one of three reduction algorithms to reduce
the equations produced by node collapsing and register synthesis. The final
reduction algorithm takes advantage of DON'T CARE information. During
the node collapsing and register synthesis processes, the optimizer maintains
ON, OFF, and DON'T CARE information sets for every equation. This
allows the final reduction algorithm to best use the DON'T CARE information
in reducing all collapsed and synthesized forms of the equations.

There are three final reduction algorithms available: Espresso, Espresso
Exact, and Quine-McCluskey. The method used is selected by using the
options menu (for more information on setting this option, see Chapter 3.)
The default value for the final reduction algorithm is Espresso. The Espresso
algorithm is the fastest method and usually produces results as good as the
other two algorithms.

Factoring

Factoring allows for large equations to be broken up into various smaller
intermediate equations, Executing from the command line, and using the
MAX_PTERMS and MAX_SYMBOLS .pi file properties to control equation
factoring, may result in a better optimal set of equations for the programmable
logic device you are targeting.

186 MACHXL Software User’s Guide (Version 3.0)

1 3 Partitioning and Fitting (Optional)

Contents

INtrodUCHION.c.viiiiieiieie ettt 188
Partitioning Modesooeeeviiiiriiiieiiiie e 188
The Partitioning Process..............oovveeeiuieiiieeoiieieeieeee e 189
Directed Partitioning..............cccccovvevvineiiienniinienicinene. 190

Placing Logic into Specified Devices 190

Placing Unspecified Logicccceeoeveviveeeeennne 191

Pinout and Architectural Feature Specification.... 192

Setting the Template Listcccoooveeviinieiiniiiniiccnenne 192

Setting Partitioning Constraints.................ccceevveveernennnn. 192

Setting Partitioning Prioritiesccoocveeeiieeniieennnee. 194

Chapter 13: Partitioning and Fitting (Optional) 187

tn

Introduction

When you create a design with MACHXL, the design phase is separate from
the device implementation phase. Chapters 4 through 12 show the steps
required to create a design using MACHXL. Assuming that the design is
complete and correct, you can now concentrate on implementing the design
with various programmable device architectures.

Just as the design phase was an iterative process, the hardware implementation
steps of MACHXL have been set up to allow iterating on various hardware
implementations of that design. MACHXL allows you to specify device
characteristics and constraints for implementation of your design. Based on
these settings, MACHXL searches its extensive library of PLD and CPLD
architectures, looking for devices matching your criteria. MACHXL then
maps your design into the specified device or devices. If the design requires
more than one device, MACHXL can partition the logic across multiple
devices to obtain a solution (optional).

This chapter describes the process of mapping the logical design into physical
devices and discusses the ways a design can be fit and partitioned.

Partitioning Modes

When partitioning a design among the various device architectures, MACHXL
allows the user to operate in one or a combination of the following three
modes:

O Automatic Partitioning

0 Directed Partitioning

0 Manual Partitioning

188 MACHXL Software User’s Guide (Version 3.0)

A

The Automatic Partitioning Mode allows the partitioning software to run
unconstrained. No direction is given to the software with regards to signal/pin
placement or logic partitioning. This mode is the easiest to use as it requires
no special files to be created or modified. For many designs, this is the only
mode needed to partition a design. MACHXL software partitions
automatically by using a set of constraints. Possible solutions are prioritized
according to a set of user priorities. From this a list of best solutions is
selected and displayed.

In the automatic mode, the software is able to generate many solutions in a
short period of time. This lets you look at different scenarios (what-ifs) and
decide which is best for your design implementation. '

The Directed Partitioning Mode allows you to target logic into various device
architectures without specific knowledge of signal-to-pin placement. The
partitioning software automatically determines logic dependencies and makes
certain all required logic is partitioned into the specified devices.

The Manual Partitioning Mode allows editing the Physical Information file to
control every aspect of partitioning. The Manual Partitioning Mode is used
when you know exactly how the logic is to be placed into one or more devices.
This mode is most often used when recreating a design originally created by
the automatic mode.

The Partitioning Process

There are four possible ways to control partitioning for MACHXL to give the
best design implementation:

1) Directing the partitioning (i.e., setting the list of templates).

2) Selecting possible devices (available files).

3) Setting partitioning constraints.

4) Setting partitioning priorities.

Chapter 13: Partitioning and Fitting (Optional) 189

This section describes each of these steps in detail and explains how they can
be used to give the best implementation.

Directed Partitioning

When you determine the parts of your design to be placed into specific
programmable device architectures, you must use the directed partitioning
mode. Directed partitioning is accomplished through the use of a Physical
Information (.pi) file. The design_name.pi file contains the specifications for
device partitioning via the Physical Information Language (PIL). The
Physical Information Language is similar in construct to the Design Synthesis
Language, and allows you to direct partitioning aspects. For more detailed
information on the pi file, please see Chapter 14.

Placing Logic into Specified Devices

The key to directed partitioning is the ability to specify which logic is placed
into a specific device. This is accomplished by placing a DEVICE construct
in the pi file. As an example, if the design contains two OUTPUT signals
outl and out2 and they are to be placed into an AMD PLD, the pi file
might appear as in the following example.

Example
DEVICE
TARGET 'PART_NUMBER AMD PALCE22V10H-5JC/5"';
outl ;
out2 ;

END DEVICE;

If a different design has four outputs, out1, out2, out3, and out4,
and it is desirable to place outl and out2 into an AMD PLD and out3
and out4 into an AMD MACH device, the . pi file might read as in the
following example.

190 MACHXL Software User’s Guide (Version 3.0)

A

Example
DEVICE
TARGET 'PART NUMBER AMD PALCE22V10H-5JC/5';
outl ;
out2 ;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC' ;

out3 ;
outd ;
END DEVICE;

Placing Unspecified Logic

In the description of automatic partitioning, we mention that all logic
unspecified by directed partitioning will be left to the automatic partitioning
algorithms. The Physical Information Language lets you dictate where
unspecified logic is placed. It also eliminates the need to specify all the logic

in the system.

In order to place unspecified logic, use the default construct. In the example
below, out1 and out2 are required in a fast (Sns) 22V 10, but the rest of the

logic can be placed in a slower AMD device.

Example
DEVICE
TARGET 'PART_NUMBER AMD PALCE22V10H-5JC/5' ;
outl ;
out2 ;

END DEVICE;

DEVICE
TARGET 'PART NUMBER AMD PALCE16V8Z-25PC' ;

default ;
END DEVICE;

Chapter 13: Partitioning and Fitting (Optional) 191

— Note: The DEFAULT construct can be applied to any DEVICE. If
the default construct is NOT used then automatic partitioning occurs
on the unspecified logic.

Pinout and Architectural Feature Specification

Another feature of directed partitioning is the ability to specify device pinouts
and architecture-specific features. Using the .pi file syntax, the signal-to-
physical-pin assignment information and device-specific information may be
passed to the partitioning and fitting software. This feature is available in all
three modes of partitioning. For more information on this capability, see
Chapter 14 on pi file usage, or Chapter 15 on directed partitioning for
specific devices.

Setting the Template List

You may also set up a template list for use in the MACHXL menu system.
For more information, see Chapter 3.

Setting Partitioning Constraints

Constraints allow you to further narrow the list of devices considered by the
partitioning software when producing device solutions. As mentioned earlier,
only those devices appearing in the device list are considered by the
partitioning software. Using this device list, the constraints are compared
against the devices and only those matching the specified constraints are
considered valid device solutions by the partitioning software.

By using constraints wisely, you can investigate various combinations of the
available devices for your design. For example, one run of the software may
generate all single device solutions. Without modifying the available file, a
second run could look for three or fewer device solutions using only TTL and
CMOS devices.

The following table shows the various constraints you may specify. These
constraints can be entered by using the MACHXL interface or by editing the
cost (.cst) file directly.

192 MACHXL Software User’s Guide (Version 3.0)

Constraint Purpose

FAMILY Use to select ECL, TTL, or CMOS devices.
MANUFACTURER AMD.

TEMPLATE Use as an alternative to paring down the available file to

contain only those templates of interest. It is possible to
maintain a large available file and use the TEMPLATE
constraint to filter out those devices deemed undesirable.

NUMBER_DEVICES

The MACHXL partitioning software generates solutions
containing up to 20 devices. By limiting this value, the
software considers only smaller solutions and greatly
improves the partitioning speed.

TEMP_RANGE

Select COM, MIL, or EXT devices.

PACKAGE

Programmable logic devices come in a variety of package
types. Use this constraint to limit the package types
considered valid. The section at the end of this chapter
entitled "IC Package Descriptions” shows more detail on
package types.

TPD

The maximum propagation delay value can be entered as a
constraint. This value is used as a filter for each device
checked. The propagation delay of each individual device is
calculated as follows:

1) For combinatorial (non-registered) devices, the maximum
propagation delay is the worst case Tpd, as published by the
manufacturer.

2) For registered devices, the maximum propagation delay is
the sum of Ts and Tco (setup-and-hold time and clock-to-
output time).

3) For devices with both combinatorial and registered
outputs, the larger of (1) or (2) is used.

Chapter 13: Partitioning and Fitting (Optional) 193

Constraint Purpose

ICC The maximum current value can be entered as a constraint.
Each individual device is checked against the entered value.

FMAX The minimum frequency value can be entered as a
constraint. Each device is checked against the entered value
to assure it greater than or equal to this value.

USER1 and USER2 These user modifiable values that appear in the available file
can be used as constraints as well. It is possible to select
only devices with a user1 value greater than 75 or perhaps a
user2 value equal to 1.

One common application for these user fields is device
defect rate. If your production group has failure statistics on
devices (0-100), then it is possible to enter those values into
your available files. A user criterion could be used to select
devices with a failure rate of less than 10%.

Setting Partitioning Priorities
The device constraints described above allow limiting the list of possible

devices. Assigning priorities, on the other hand, enables the MACHXL
partitioning software to determine which solutions are better than others.

You can prioritize solution characteristics by assigning them values between 0
and 10. A value of 10 designates the highest priority should be assigned; a
value of 1 designates the lowest priority. All criteria assigned a priority of 0
are deemed unimportant in generating device solutions.

When multiple criteria are assigned priorities, the MACHXL software uses
relative weightings to determine the best solution. For price to be twice as
important as size, which is twice as important as frequency, you might assign
PRICE a priority of 8, SIZE a priority of 4, and FMAX a priority of 2. There
is no limit to the number of priorities you may use.

The following table shows the various priorities you may specify. These
priorities are entered by using the MACHXL interface or by editing the cost
(.cst) file using a text editor.

194 MACHXL Software User’s Guide (Version 3.0)

A

Priority

Purpose

PRICE

Use this to find the solution with the total lowest price. If this is the
only priority set, it is possible that the MACHXL software will find
cheaper, multiple device solutions instead of more costly, single
device solutions.

SIZE

In the MACHXL partitioning system, size equates to pin count. This
priority will cause the software to attempt to minimize total pin
count.

TPD

In multiple device solutions, the software determines the largest
propagation delay of all the individual devices (see above) and
uses this as the solution propagation delay. By prioritizing Tpd, the
MACHXL software attempts to find solutions with the smallest
solution propagation delay (the solution prop delay is, once again,
the largest of the individual prop delays).

ICC

This is the individual Icc value for each device in the solution. By
prioritizing Icc, MACHXL attempts to find solutions with the
LOWEST total Icc.

FMAX

The minimum frequency value can be entered as a constraint.
Each individual device is checked against the entered value to
assure it is less than or equal to this value.

Chapter 13: Partitioning and Fitting (Optional) 195

Constraint Purpose

USER1 In the constraints section above, you can specify a user criteria
to indicate comparison (USER1 > 4) OR equality (USER1 =
11). When comparison constraints are used, this priority can
be used.

If"USER1 > 0" is the constraint, then prioritizing USER1 will
cause a solution with a USER1 value of 99 to be considered
"better" than a solution with a USER1 value of 4. Similarly, if
the constraint is "USER1 < 75", then a solution with a USER1
value of 6 is "better" than a solution with a USER1 value of 44.

Note that if equality constraints are used, this priority will have
no effect (since all solutions will have the SAME user value).

The user value for a solution is the sum of the individual user
values of the devices in that solution.

USER2 Same as USER1 above

196 MACHXL Software User’s Guide (Version 3.0)

14

Controlling Partitioning and Fitting
(Optional)

Contents

INtrOdUCLION.ooiiiiiiieiectciec e 199
How the .pi File Controls Partitioning.................cccccooevevieenenenne. 201
Automatic Partitioning..............c..cccoeeevveeiieevriecieeie e 201
Directed Partitioning.............coccevievieneriiincnienencrineennen 201

Manual Partitioningccceceevvevvieieveieieciiseeeee s 202
Creatinga .pi File.........ccoooooiiiiiiiicc 202
Physical Information File Language Reference..............ccceeeene 202
Physical Information Language Keywords....................... 202

pi File Syntax Rules...........cccoocoiiiiniiinie 203
CommentsS...........c.oovuieriiiiienieeieee e 205

COMP_OFF and COMP_ONccoovviiirennnn 205

Input and Output Signals inthe pi File 205

PEFIle Structure..........ooviiiiieiieceeeceee e 206

Global Properties..........ccovvvvveveeiemirieeeeiece e e 207
Ungrouped Signals...........c.occoevveiiniiienieiieeeeeees e, 207

Virtual Signalsccccovvevveiieiiiiiecieeee e, 209

Signal Properties for Ungrouped Signals............. 211

DEFAULT Statement for Ungrouped Signals212

Group Specifications..............c.oeceevveiieienieeieieeeeieeen 212
Naming a Group.........ccocccveeevveeiieeniirereeeeeeee 213

Listing Signals in a Group..........c..ccoeevevveeennenne.. 214

Signal Properties for a Groupc.ccoveunenne. 216

DEFAULT Statement in a Group 217

Device Specifications............cccceceeveeeeeiieeeeeineeecereeeennes. 217

Device Propertiesc.oovevvevieriieieeieieeenee. 218

Naming a Device.........ccccoevviviiiiiiiiieiieiee, 219

Targeting a Specific Device for Fitting................ 220

Listing Signals in a Deviceccoooevievireerneens 221

Renaming the Fusemap File of a Device.............. 225

Specifying Signal Directions in a Device............. 226

Chapter 14: Controlling Partitioning and Fitting (Optional)

Signal Properties for a Device...........cccoevveeveennenne 227

DEFAULT Statement in a Device....................... 228
Assigning Logic Levels (High-Value, Low-Value,
NO_CONNECT) to Pins of a Device.................. 229
Device Section Specificationsc.c....... 229
Grouping Signals Within a Device 233
Fuse-Level Programming Control 233
Using the .npi File to Recreate a Pinout 234
Examples Using the .pi Filecccooooeiiviiiieee 235
Example 1: Controlling the Size of Equations 235
Example 2: Forcing Signals To Be Fit Together
in the Same Device..........ccovviiiiniininiiiiecc e, 235
Example 3: Using Specific Devices............ccoocerverriennnnen. 236
Example 4. Maintaining Pin Assignments........................ 236
Example 5: Fitting the Design into One Device............... 237
Example 6: Fitting the Design into More Than One
DEVICE ...ttt 238

Example 7: Mixing Automatic and Directed Partitioning.238
Example 8: Refitting a Design Into the Same Footprint ...239
Example 9: Specifying Devices Without Specifying

198 MACHXL Software User’s Guide (Version 3.0)

Introduction

MACHXL’s Partitioner/Fitter automatically partitions and fits designs
without interaction. You can exercise control over how the fitter selects
devices by setting constraints and priorities. The fitter will still partition and
fit your design automatically, using these user-settable priorities and
constraints. For most designs this is a quick and easy way to get your design
into the programmable device(s).

However, there are some situations where you may need to exercise more
control over the partitioning and fitting process. The following are some
examples:

0 Additional circuitry caused your design to outgrow its original
device. You need to change to a device with another architecture
but keep the same pinout as the old device.

0 You have several signals in your design that are very interactive
and timing among them is very critical. For timing reasons these
signals should all be fit into the same device.

o0 The design you are working on has very tight PCB real estate
constraints and you would like to force the design into a single
device.

0 Most of your design can be fit into a slower, less costly device.
However, one block needs to be fit into a fast PLD.

One major advantage of MACHXL is that it gives you the capability to
control the fitter's automatic partitioning and fitting as little or as much as
your situation requires. Control (outside of constraints and priorities set in the
Partitioning menu in MACHXL) is done with a Physical Information (.p7) file.
The . pi file directs how the fitter does its job. If you don't need the control, the
fitter will perform its functions automatically. However, if you need the
control, the . pi file tells the fitter how to modify its fitting.

Chapter 14: Controlling Partitioning and Fitting (Optional) 199

The .pi file contains instructions you give to the fitter on how the design
should be partitioned and fit. The following are some of the functions a .pi
file lets you control:

0 Synthesis of equations, including the size of equations generated
and the amount of reduction performed on each equation

0 How a design is partitioned among devices

0 How signals are grouped together

o0 How signals are assigned to pins on a device

0 How individual signals are fit inside the device

0 Which specific fuses are blown or left intact

o0 Which device specific features are used within each device

The .pi file instructions may be as simple as specifying a particular device or
as complex as controlling node paths inside the programmable device. So, the
.pi file gives a continuum of control from fully automatic partitioning and
fitting to full user-specification of devices and signals within.

You create a . pi file using a text editor and the Physical Information Language
(PIL). PIL is a case-insensitive addition to MACHXL's Design Synthesis
Language allowing you to specify device-specific constraints. The text editor
can be invoked through the menuing system (see Chapter 3 for more
information on the menuing system), or you may use any text editor you
normally use to create a source file. The file must be named design_name. pi
(where design_name is the name of your design) and must reside in the same
directory as the design.

The information in this chapter should be used in conjunction with Chapter
15. This chapter gives the basic structure of the .pi file, while Chapter 15
discusses the meaning of each of the device-specific pi file properties.

This chapter is made up of three sections. The first section dicusses sections
of the . pi file and the purpose of each. The second section is a reference of the

200 MACHXL Software User’s Guide (Version 3.0)

bu

commands and constructs used in the pi file, giving the syntax and usage of
each command. The third section contains several examples of .pi files based
on common design issues and how they are controlled with a .pi file.

How the .pi File Controls Partitioning

When partitioning a design among the various device architectures, MACHXL
allows the user to operate in one or a combination of the following three
modes:

O Automatic partitioning
0 Directed partitioning

O Manual partitioning

Automatic Partitioning

The Automatic Partitioning Mode allows the partitioning software to run
unconstrained. No direction is given to the software with regards to signal/pin
placement or logic partitioning. This mode is the easiest to use as it requires
no special files to be created or modified. For many designs, this is the only
mode needed to partition a design.

Directed Partitioning

In Directed Partitioning you edit the pi file to control broad-based aspects of
partitioning without specifying all of the details of fitting the design.

The Directed Partitioning Mode allows you to target logic into various device
architectures without specific knowledge of signal-to-pin placement. The
partitioning software automatically determines logic dependencies and makes
certain all required logic is partitioned into the specified devices.

Chapter 14: Controlling Partitioning and Fitting (Optional) 201

Manual Partitioning

In the Manual Partitioning Mode you edit the .pi file to control every aspect of
partitionng.

The Manual Partitioning Mode is used when you know exactly how the logic
is to be placed into one or more devices. This mode is most often used when
recreating a design originally created by the automatic mode.

Creating a .pi File

You create a .pi file using a text editor and the Physical Information Language
(PIL). The file must be named design_name.pi (where design_name is the
name of your design) and must reside in the same directory as the design. PIL
is a case-insensitive, free-format language that's an addition to MACHXL's
Design Synthesis Language. You can also access the .pi file through the
menuing system. For more information on the menuing system, see

Chapter 3.

Physical Information File Language
Reference

Physical Information Language Keywords

The Physical Information Language (PIL) has keywords allowing you to
describe the specifics of device partitioning and signal grouping. The
following are the keywords used in PIL. Notice that some of these keywords
are the same as in the Design Synthesis Language but are used in a different
context. The identifiers listed below are reserved by the language as keywords
and may not be used for other identifier purposes.

BLOWN COMP_ON DEVICE
COMP_OFF DEFAULT END

202 MACHXL Software User’s Guide (Version 3.0)

FIXED
GROUP
HIGH-VALUE
INPUT
INTACT

LOW-VALUE SECTION
TARGET
NO_CONNECT VIRTUAL

PHYSICAL

In addition to the above reserved keywords, the following identifiers are used
as property strings in the Physical Information Language (PIL).

BLOCKMODE
CLOCK_BY_PIN
CLOCK_BY_ROW
COMB_OUT_REG_FB
COMMON_SET_PTERM
DEMORGAN_SYNTH
DISABLED_ONLY_FOR_TEST
FF_SYNTH
FIT_AS_OUTPUT

FIT_WITH

FLOAT_NODES
FORCE_INTERNAL_FB
FUSEMAP_FILE
JEDEC_FUSEMAP
MACH_LOW_POWER
MACH_USERCODE
MACH_UTILIZATION
MACH_ZERO_HOLD_INPUT

.pi File Syntax Rules

MAX_PTERMS
MAX_SYMBOLS
MAX_XOR_PTERMS
MAX_NODE_FROM_EXPANDERS
MINC_FITTER

NO_COLLAPSE

OPEN_DRAIN

PLA_FITTER

PLA_PROPERTY
PLA_PTERM_UTILIZATION
PLD_INPUT_UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY_CONTROL
SET_PTERM

SIGNATURE
XOR_POLARITY_CONTROL
XOR_TO_SOP_SYNTH

The following are rules for syntax in the pi file.

o Signals and DEVICE:s are not required to have properties attached
to them in order to be listed in the pi file. However, properties
change the functions of the signals or DEVICEs to which they are
attached. This means while the following two lines are both valid
in a .pi file, their actions in the .pi file will differ.

syncl .

syncl . . sync5 { MAX PTERMS 8 };

0 As with the Design Synthesis Language, each line (with the
exception DEVICE, GROUP, or SECTION keywords), must end
with a semicolon, as shown in the following examples:

Chapter 14: Controlling Partitioning and Fitting (Optional) 203

DEVICE

TARGET 'PART NUMBER AMD PALCE16V8H-10JC/4';

outl. .out5;
END DEVICE;

GROUP
count_bits [8] ;

sync [5] { MAX PTERMS 8 } ;

END GROUP ;

SECTION
{ MAX_PTERMS 8 }
TARGET ‘'a' ;

out7 : 5, out8 :

END SECTION

.
1

"force out7 .. out8 into

"MACH block A

6 ; "and onto pins 5
"and 6

Properties shown in this chapter with curly braces { } must be listed that way
in the .pi file. That is, the curly braces are not optional.

o0 Non-numeric property arguments must be surrounded by single

quotes ' .

0 The order in which properties are listed for a signal does not
matter. Thus the following two lines of a .pi file are functionally

the same.

INPUT in5 { MAX PTERMS 8, MAX SYMBOLS 4
INPUT in5 { MAX SYMBOLS 4, MAX PTERMS 8

}
}

.
’
.
14

o The .pi file language is case insensitive. Certain keywords and
properties are shown in capital letters in this chapter for the sake of

clarity.

204 MACHXL Software User’s Guide (Version 3.0)

e

Comments

Comments may be inserted into the .pi file in the same way as with the Design
Synthesis Language. Any comment must be preceded by a double quote ().
A new line ends a comment. Each line of multiple line comments must be
preceded by double quotes.

COMP_OFF and COMP_ON

As in the Design Synthesis Language, you may also use the COMP_OFF and
COMP_ON commands to exclude certain sections of the file executing (for
more information on COMP_OFF and COMP_ON, see Chapter 9.) This is
useful when debugging a . pi file.

Input and Output Signals in the .pi File

A signal list consists of input, output, and biput signals. Output signals are fit
on output or biput pins. There can be at most one reference to an output
signal in the .pi file for a design. Input signals are fit on input or biput pins.
There can be many references to an input signal in a .pi file. Signals declared
as OUTPUTs or NODE:s in the design source (i.¢., design_name.src) may be
used as inputi signals io a device.

Note: The .pi file covers inputs and outputs from the device
perspective, not from the design perspective. In a design, an input or
output signal may be any signal coming into or out of a design block.
From the standpoint of a device, an input is a signal that can be fit on
an input pin, and an output is a signal that can be fit on an output or
a biput pin.

OUTPUTs or NODEs without the modifiers INPUT or OUTPUT are
assumed to be output signals. NODE signals in the design source file without
the modifiers VIRTUAL or PHYSICAL are assumed to be physical nodes in
the pi file. Virtual nodes in the design source file may not appear as a signal
in the pi file.

Chapter 14: Controlling Partitioning and Fitting (Optional) 205

Syntax

INPUT signal_list;
OUTPUT signal_list;

Example

outl, out2, out3;
INPUT out_as_inl, out_as_in2;

- Note: The pin "identifier" is also the pin name, as indicated in a
data book specification for the device. A pin assignment is only
meaningful if a target device is given.

.pi File Structure

The following is a suggested organization of a .pi file:
o Global Properties

0 Ungrouped signals (signals not associated with group or device
specifications)

o Group specifications
0 Device specifications
An explanation of each of these is given in the following sections.

Each section of the pi file is optional. For example, you can create a simple
pi file consisting of only global properties. This allows you easy control of
design optimization. Or, you could create a .pi file with only device
specifications. This allows you to control the pinout on devices in your
design.

206 MACHXL Software User’s Guide (Version 3.0)

Global Properties

e

Global Properties are properties applying to all of the signals or DEVICEs in
the design. These properties usually affect the optimization of signals. Global
properties can be overridden by properties within a device specification or by
pin-specific properties. For more information on the specifics of these

properties, see Chapter 185.

Global .pi File Properties

DEMORGAN_SYNTH
DISABLED_ONLY_FOR_TEST
FF_SYNTH

FIT_AS_OUTPUT
MACH_UTILIZATION
MAX_PTERMS
MAX_SYMBOLS
MAX_XOR_PTERMS

Syntax
{ global_property value },

Example

NO_COLLAPSE
PLA_PTERM_UTILIZATION
PLD_INPUT_UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY_CONTROL
XOR_POLARITY_CONTROL
XOR_TO_SOP_SYNTH

The following example shows how to use a global property to limit the
number of p-terms (OR TERMS) of all the output signals in a design.

{MAX PTERMS 8};

Ungrouped Signals

Individual signals not associated with a Group or Device Specification are
known as "ungrouped signals", and can be included in the .pi file. This lets
you control signal optimization without specifying the device into which the

signal should be fit.

Only output, biput, and node signals may be ungrouped signals. Ungrouped
signals must not include pin assignments.

Chapter 14: Controlling Partitioning and Fitting (Optional) 207

Any ungrouped signal will be treated as a physical node by MACHXL and
will not be collapsed out during optimization (see Chapter 12, Optimizing a
Design for more information on how the optimizer handles node collapsing.)

The syntax and examples of ungrouped signals are shown in the following
examples:

Syntax

signal_name { signal property 1 value, ..
signal property n value },

signal name { signal property 1 value, ..
signal property n value };

Example

sync { MAX PTERMS 8 } ;

sigl, sig2 { MAX_PTERMS 4, MAX SYMBOLS 8 } ;
"MAX SYMBOLS and MAX PTERMS apply

sig3, sig4 ; "to both sigl and sig2

Syntax

signal name_l1 .. signal _name n { signal property 1
value, .. signal_ property n value } ;

Example

outl .. out2 { MAX PTERMS 5, MAX_ SYMBOLS 4} ;
"MAX_PTERMS and MAX_SYMBOLS apply
"to outl and out2 since they
"are listed as a range

Syntax

array id {signal property 1 value, .
signal property n value} ;

208 MACHXL Software User’s Guide (Version 3.0)

Example

Y array {MAX PTERMS 4, MAX SYMBOLS 4};

Syntax

array id [index] { signal propertyl value, ..
signal_ property n value } ; "index is an
"integer

Example
sync [5] { MAX PTERMS 8, MAX SYMBOLS 4 } ;
Syntax
array id [index_ 1 .. index n]
{ signal property 1 value, ..
signal property n value } ;

Example

gray cnt [3 .. 8]| { MAX SYMBOLS 9, MAX XOR_PTERMS 2
}i

Syntax

DEFAULT {signal property 1 value, .
signal property n value} ;

Example

DEFAULT {MAX PTERMS 8, MAX SYMBOLS 16};

Virtual Signals

If a signal is declared in the source (design_name.src) file simply as a NODE,
the optimizer has the option of considering this signal as a virtual node or as a
physical node. If the signal is considered a virtual node, the optimizer

Chapter 14: Controlling Partitioning and Fitting (Optional) 209

collapses it out during equation synthesis. If the signal is considered a
physical node, the optimizer leaves it as an equation and the signal will be fit
into a device. The optimizer will determine whether a simple node should be
physical or virtual automatically in order to synthesize the most efficient
equations. See Chapter 5 for more information about PHYSICAL and
VIRTUAL NODEs.

The VIRTUAL modifier lets you specify explicitly which nodes in your design
can be collapsed out of equations during optimization. This helps ensure a
design is optimized the same way every time it's optimized.

= Note: By default, if a simple NODE signal is mentioned in the
Y P b1
Physical information file, it is treated as a physical node, and will
not be collapsed during optimization.

The VIRTUAL modifier can only be used on ungrouped signals. Nodes
specified within the GROUP or DEVICE constructs will be treated as
physical nodes.

VIRTUAL nodes cannot have properties or pin assignments associated with
them.

Syntax
0 VIRTUAL signal name, signal name ;

0 VIRTUAL signal_name 1 .. signal name n;
o VIRTUAL array id ;
0 VIRTUAL array id [index];

0 VIRTUAL array id [index_1 ..index n];

210 MACHXL Software User’s Guide (Version 3.0)

Example

VIRTUAL outl, out2;
VIRTUAL outl..out4;
VIRTUAL yout;
VIRTUAL yin([8];
VIRTUAL yout [1..8];

Signal Properties for Ungrouped Signals

Ungrouped signals may be assigned signal properties affecting the
optimization of the signals. These signal properties have precedence over
global properties in the .pi file and affect only the associated ungrouped
signals.

.pi File Properties for Ungrouped Signals

DEMORGAN_SYNTH MAX_SYMBOLS
DISABLED_ONLY_FOR_TEST MAX_XOR_PTERMS
FF_SYNTH NO_COLLAPSE
FIT_AS_OUTPUT POLARITY_CONTROL
FIT_WITH XOR_POLARITY_CONTROL
MACH_LOW_POWER XOR_TO_SOP_SYNTH
MAX_PTERMS

For more information on the specifics of these properties, see Chapter 15.

Syntax

signal_name { signal property 1 value, ..
signal_property n value } ;

Example

To assign two properties to the same ungrouped signal use:

out {MAX SYMBOLS 4, MAX PTERMS 4};

Chapter 14: Controlling Partitioning and Fitting (Optional) 211

DEFAULT Statement for Ungrouped Signals

The DEFAULT statement lets you specify the properties and grouping for all
of the signals in the design that are not otherwise listed in the pi file. This
allows convenient property assignment to group together many signals without
explicitly specifying the signals in the pi file.

‘When the DEFAULT statement is specified outside of a DEVICE or GROUP
specification (i.e., is ungrouped), all of the signals not specified in the .pi file
will be treated as ungrouped signals and will be affected by the DEFAULT
statement.

There can be at most one DEFAULT statement in each pi file.

Syntax

DEFAULT {signal_property 1 value, .
signal_ property n value};

Example

This example specifies all signals in the design except a1, a2, and a3 will
have no more than eight product terms in their equations. There is no similar
limit on the number of product terms in the equations of a1, a2, or a3.

al, a2, a3;
default {MAX_PTERMS 8};

Group Specifications

The GROUP construct lets you specify a group of signals you want fit in the
same device (the device selected to fit the group is left to the MACHXL
partitioner). The pi file can include multiple Group Specifications, if
needed. This construct is useful when you need to place a set of signals
together for timing, board layout, or other reasons.

Groups of signals specified in a GROUP construct may merge together with
other GROUPs and ungrouped signals to form the most efficient partitioning

212 MACHXL Software User’s Guide (Version 3.0)

I

solution. The ungrouped signals may consist of output, biput, or physical
node signals not otherwise mentioned in the pi file, or signals at the global
level of the pi file. Only output, biput, and node signals may be members of a
GROUP. The signal list must not include pin assignments in the GROUP
construct.

Syntax

GROUP
[name]
[signal list]
[default]

END GROUP;

The above items in the GROUP construct may appear in any order. There
may be at most one NAME construct per GROUP, and one DEFAULT
construct for each .pi file.

Naming a Group

The NAME construct is used to assign a name to a GROUP. The given name
will appear with the group in the .npi file. For more information the the .npi
file, see the section entitled Using the .npi File to Recreate a Pinout later in
this chapter.

Naming a group can be useful for documentation purposes. Naming has no
effect on the fitting process. There may be at most one NAME construct per
GROUP.

Syntax

NAME identifier ;

Chapter 14: Controlling Partitioning and Fitting (Optional) 213

Listing Signals in a Group

The signals list for a Group specification is a list of output, biput, and node
signals to be included in the GROUP construct, as well as any signal
properties for the list.

Examples and syntax of signal lists for grouped signals are shown below:

Syntax

signal_name { signal property 1 value, ..
signal property n value } ;

Example

GROUP

sync ;

sigl, sig2 { MAX SYMBOLS 8 } ; "MAX_ SYMBOLS 8
"applies to sigl and sig2

END GROUP ;

Syntax

signal name_1 .. signal name_n { signal_ property_l
value, .. signal property n value } ;

Example
GROUP
ol .. 08 ;
outl .. out2 { MAX PTERMS 5 } ; "MAX PTERMS 5

applies to outl and out2
END GROUP ;

Syntax

array _id { signal property 1 value, ..
signal property n value } ;

214 MACHXL Software User’s Guide (Version 3.0)

Example

GROUP

Xarray ;

Yarray { MAX PTERMS 4, MAX SYMBOLS 4 } ;
END GROUP ;

Syntax

array id [index] { signal_property 1 value, ..
signal_property n value } ;

Example
GROUP
count_bits [8] ;
sync [5] { MAX PTERMS 8 } ;

END GROUP ;
Syntax

array id [index .. index n] { signal_ property 1
value, .. signal property n value } ;

Example

GROUP
out [O .. 8] ;
grey cnt [3 .. 8] {MAX PTERMS 8;
MAX SYMBOLS 16 } ;

END GROUP ;

Syntax

DEFAULT { signal_ property 1 value, ..
signal property n value } ;

Chapter 14: Controlling Partitioning and Fitting (Optional) 215

Example

GROUP
DEFAULT { MAX_PTERMS 8 } ;
END GROUP ;

Signal Properties for a Group

Signal properties for a GROUP construct are properties applying to the
signals which the properties are attached. Signal properties have precedence
over global properties in the pi file. The properties affect the optimization of
the signals.

.pi File Signal Properties Supported in the GROUP Construct:

DEMORGAN_SYNTH MAX_SYMBOLS
DISABLED_ONLY_FOR_TEST MAX_XOR_PTERMS
FF_SYNTH NO_COLLAPSE
FIT_AS_OUTPUT POLARITY_CONTROL
FIT_WITH XOR_POLARITY_CONTROL
MACH_LOW_POWER XOR_TO_SOP_SYNTH
MAX_PTERMS

For more information on the use of these properties, see Chapter 15.

Syntax

{ signal_property 1 value, .. signal_property n
value } ;

Example
To assign two properties to the same grouped signal, use:
GROUP

out { MAX SYMBOLS 4, MAX PTERMS 4 } ;
END GROUP ;

216 MACHXL Software User’s Guide (Version 3.0)

e

DEFAULT Statement in a Group

The DEFAULT statement lets you specify the properties and grouping for all
of the signals in the design not otherwise listed in the pi file. This allows you
to conveniently assign properties and group together many signals without
explicitly specifying the signals in the .pi file.

When the DEFAULT statement is used in a GROUP construct, a group will
be created containing all unspecified signals in the design.

There may be at most one DEFAULT statement in each pi file. Properties on
the DEFAULT statement are optional.

Syntax

DEFAULT { signal property 1 value, ..
signal property n value } ;

Example

This example specifies all signals in the design other than a1, a2, and a3
will be placed in one group, and fit into the same device. The optional
property MAX_PTERMS specifies signals in the group will have no more
than eight product terms in their equations.

al , a2 , a3 ;

GROUP
default { MAX PTERMS 8 } ;
END GROUP ;

Device Specifications

Device specifications let you describe device-specific information, such as the
placement of signals on each device in the design. Device specifications are
used as part of the Manual and Directed Partitioning modes, and give you
access to device-specific features.

Chapter 14: Controlling Partitioning and Fitting (Optional) 217

The DEVICE construct lets you define the device specifications. Each
DEVICE construct generally corresponds to one physical device. The
DEVICE construct may have embedded GROUPs or SECTIONs

(SECTIONS are discussed later in this chapter). The SECTION construct
allows you to describe subsections for devices having subsections, such as the
MACH devices.

Syntax

DEVICE
[properties]
[target_statement]
[NAME)]
[signal lists]
[DEFAULT)
[HIGH-VALUE]
[LOW-VALUE]
[NO_CONNECT]
[SECTION]
[signal lists]
[GROUP]
[BLOWN fuses]
[INTACT fuses]
END DEVICE ;

The above items in the DEVICE construct may appear in any order.
However, there may be at most one NAME construct per DEVICE and one
DEFAULT construct in a .pi file.

Device Properties

Device properties are properties applying to all signals in the device or to the
device itself. These properties affect the optimization of signals, as well as
how device features are utilized. Device properties have precedence over
global properties. Signal properties can override device properties.

218 MACHXL Software User’s Guide (Version 3.0)

Device properties supported in the .pi file:

BLOCKMODE
CLOCK_BY_PIN
CLOCK_BY_ROW
COMMON_SET_PTERM
DEMORGAN_SYNTH
DISABLED_ONLY_FOR_TEST
FF_SYNTH

FLOAT_NODES
FIT_AS_OUTPUT
FORCE_INTERNAL_FB
FUSEMAP_FILE
JEDEC_FUSEMAP
MACH_LOW_POWER
MACH_UTILIZATION
MACH_ZERO_HOLD_INPUT

e

MAX_NODE_FROM_EXPANDERS
MAX_PTERMS
MAX_SYMBOLS
MAX_XOR_PTERMS
MINC_FITTER
NO_COLLAPSE
OPEN_DRAIN
PLA_PTERM_UTILIZATION
PLD_INPUT_UTILIZATION
PLD_OUTPUT_UTILIZATION
POLARITY_CONTROL
SET_PTERM

SIGNATURE
XOR_POLARITY_CONTROL

For more information on the use of these properties, see Chapter 15.

Syntax

{ device_property 1, .. device property n value };

Example

To limit the number of p-terms (OR TERMS) of all the output signals on a

device, use the following device property:

DEVICE

{ MAX_PTERMS 8 }

END DEVICE ;

Naming a Device

The NAME construct is used to assign a name to a DEVICE. The given
name will appear with the group in the .#pi file. For more information the

Chapter 14: Controlling Partitioning and Fitting (Optional) 219

.npi file, see the section entitled Using the .npi File to Recreate a Pinout
later in this chapter.

Naming a device can be useful for documentation purposes. Naming has no
effect on the fitting process. There may be at most one NAME construct per
DEVICE.

Syntax

NAME identifier ;

Targeting a Specific Device for Fitting

The TARGET construct for device specifications tells the fitters which device
to use. When TARGET is used with the DEVICE construct, you can target
the device, template, part number or footprint you want to use.

The TARGET construct allows you to specify devices three ways:

0 You can specify the exact device using the manufacturer's part
number.

o0 You can specify the type of device you want to use and the
package type (footprint). The combination of device and footprint
can help MACHXL's fitters find second-source devices for your
design from its extensive Device Library.

O You can specify the footprint of the device only. The footprint
specification can help MACHXL's fitters find a replacement for an
existing device that may make modifications to your PCB layout
unnecessary.

Syntax

TARGET 'PART_NUMBER manufacturer_abbreviation
part_number' ;

TARGET 'TEMPLATE template_name footprint_name';

TARGET 'FOOTPRINT footprint_name';

220 MACHXL Software User’s Guide (Version 3.0)

Where:

manufacturer abbreviation, part number,
template name, and footprint_ name can be found in
Appendix A.

Examples

To place outputs 01, o2, and 03 into an AMD
PALCE16V8H-10JC/4, use the following entry in the .pi file:

DEVICE
TARGET 'PART_NUMBER AMD PALCE16V8H-10JC/4';
ol, 02, o3 ;

END DEVICE;

To place outputs o1 and o2 on specific pins of a 22V10 DIP package, use
the following entry in the .pi file:

DEVICE
TARGET ' TEMPLATE P22V10 DIP-24-STD ' ;
ol : 14, o02 : 15 ;

END DEVICE;

To place outputs 01, o2, and 03 on specific pins of a 20-pin DIP package,
use the following entry in the pi file:

DEVICE
TARGET ' FOOTPRINT DIP-20-STD ' ;
ol : 12, o2 : 13, o3 : 14 ;

END DEVICE;

Listing Signals in a Device

The following shows syntax and examples of how to list the signals, nodes,
signal properties, and signal directions to be included in a DEVICE construct.

Chapter 14: Controlling Partitioning and Fitting (Optional) 221

In the following examples, signal_name and array_id are identifiers and index
is an integer. Pin_assignment is the name assigned by the device
manufacturer as shown in a part data book.

- Note: A pin assignment is meaningful only if a target device is
specified with the TARGET construct.

Syntax

INPUT|OUTPUT* signal _name : pin_assignment
{ signal property 1 value, ..
signal_property n value } ;

Example

DEVICE

OUTPUT sync { MAX PTERMS 8 } ;

INPUT inl ¢ 5, in2 : 6 ; "INPUT applies to inl

"and in2

END DEVICE ;

Syntax

INPUT|0UTPUT* signal name : pin_assignment
{ signal property 1 value, ..
signal property n value } ,signal name :
pin_assignment{ signal_ property 1 value, ..
signal property n value } ;

* INPUT and OUTPUT are optional

222 MACHXL Software User’s Guide (Version 3.0)

Example

DEVICE
TARGET ' FOOTPRINT DIP-20-STD ' ;
sync { MAX PTERMS 8 } ;
INPUT o1 : 5, 02 : 6 ; "INPUT applies to ol
"and o2
sigl , sig2 { MAX_SYMBOLS 8 } ;
" MAX SYMBOLS applies to sigl and sig2
END DEVICE ;

Syntax

INPUT|OUTPUT* signal _name_1, .. signal _name_n
{ signal property 1 value, ..
signal property n value } ;

Example
DEVICE
OUTPUT ol .. o8 ;
out 1 .. out2 { MAX PTERMS 5 } ;

END DEVICE ;

D Note: Pin numbers cannot be assigned when using the " . . " range
indicator.
Syntax
INPUT|0UTPUT* array id { signal_property 1 value, ..

signal_ property n value } ;

* INPUT and OUTPUT are optional

Chapter 14: Controlling Partitioning and Fitting (Optional) 223

Example

DEVICE

INPUT Xarray ;

Yarray { MAX SYMBOLS 4, MAX PTERMS 4 } ;
END DEVICE ;

- Note: Pin numbers cannot be assigned when using an array to
represent a set of signals.

Syntax

INPUT|OUTPUT* array _id [index] : pin_assignment
{ signal property 1 value, ..
signal property n value } ;

- Where index is an integer.

Example

DEVICE
TARGET ' FOOTPRINT DIP-20-STD ' ;
INPUT count_bits [8]
sync [5] : 12 { MAX PTERMS 8 } ;
END DEVICE ;

~e

Syntax

INPUTIOUTPUT* array_id [index 1 .. index n]
{ signal property 1 value, ..
signal property n value } ;

224 MACHXL Software User’s Guide (Version 3.0)

Example

DEVICE
INPUT gray cnt [3..8] { MAX _SYMBOLS 8 } ;
END DEVICE ;

Note: Pin numbers cannot be assigned when using an array to
represent a set of signals.

Syntax

DEFAULT { signal property 1 value, ..
signal property n value } ;

Example

DEVICE
DEFAULT { MAX PTERMS 8 } ;
END DEVICE ;

Note: Pin numbers cannot be assigned when using DEFAULT to
represent a set of signals.

Renaming the Fusemap File of a Device

Should you need to, you can rename your fusemap files (typically JEDEC
files) with the FUSEMAP_FILE statement.

Syntax

DEVICE

Chapter 14: Controlling Partitioning and Fitting (Optional)

225

{ FUSEMAP_FILE 'newname.xxx' } ;
END DEVICE ;

If a fusemap filename is not specified, the default will be used. In the example
shown above, the file would be renamed to newname.xxx.

Specifying Signal Directions in a Device

It is common for the output signal of one device to feed input pins on other
devices in designs requiring multiple devices. To avoid ambiguity in device
specification, specify explicitly the signal direction of any pin in the device
specification. This will ensure the output signal is generated on the
appropriate device in your design.

Syntax

INPUT signal list;
OUTPUT signal_list;

— Note: For bidirectional (BIPUT) signals, use the OUTPUT
statement to specify the pin that generates the bidirectional signal.

The following rules apply when specifying the signal direction:

0 Output signals (specified with the OUTPUT statement) will be fit
onto output or biput pins of the device.

o The OUTPUT statement can only be used for node, output, and
biput signals. If you specify the OUTPUT statement more than
once for a signal, MACHXL will interpret this as specifying the
signal should be generated on more than one pin. This causes
MACHXL to generate an error.

a0 The INPUT statement can be used multiple times for a signal.

a The INPUT statement can be applied to any signal in the design.
If the INPUT statement is applied to a node, output, or biput

226 MACHXL Software User’s Guide (Version 3.0)

A

signal, MACHXL interprets this as a signal generated on a
different pin than is fed to this pin as an input.

0 Inputs from the design file declared without the INPUT modifier
are assumed to be input signals.

0 Outputs and biputs from the design file declared without the
INPUT or OUTPUT modifiers are assumed to be output signals.

o0 Nodes from the design file declared without the INPUT or
OUTPUT modifiers are assumed to be physical nodes.

Signal Properties for a Device

Signal Properties fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>