SWIG-3.0 Documentation

SWIG-3.0 Documentation

Table of Contents

SWIG-3.0 DOCUMENEIALION.vvuueeeeeiteteseeeeeetieeeeeeeeet et eeeee sttt e seeesestanaaeesesstanaeassesssaaaeesssssanaeessessaanaeesssbansaaesessssannseesesssrnneeeressranns
STl 110 0 PO RUPPTTR

SWIG COIEDOCUMENTATION. ...tuuteeeeeititie e e ettt e et e e ettt e e e e e e et b e e e e e e e ettt aeeeeseestan s aeeeessabanaeesesssaanaaeesessaanaeeesesssnneeeeesrannnss 1

I TaTo [WF=ToT= 1Yl o (] ST B ToTolU 0 0 =101 =i o) o RSP TRTPRRR 1

DSV Le [o] L=y (B Lo Yot U] Ty 0] 7= LA L0 o H U ETRT R PPR z

o (Y = Vo] = ST RPPRRY
I L0 (0T [0 o T o PP
L2 SWVIG VEISIONS . . . ceteeetii e e ettt e e e et ettt e e e et et e te e e e e ettt e aeees e s baa e eeeeeasban s ee s e e s aan e aees e s s ban s aeee e s sa b e eessebannaeeessssannsaeeeessnnnneens.
N YA [I [oT=) 4T TSRO
L S N LG TS OUI GBS . ettt et it e ettt e ettt e ettt e e ettt e e et ee e et e eeeeta e e et e e e taeeeata s asa e e tanaeseta e s saan e s baneessanessaneeetaeeesaneeennaeeetaaerannnns.

RN o (Y (=10 (WIS =P ERPRP PR
1.6 OrganizationDf thiS MANUAL..........c..eeieiiei ettt et e e e e e e s e ettt ettt e e eeeeeeeaanaeebeseeeeeaeaeeesesannsnneeeeeeas i
1.7 How to avoid readingtie MANUAL............uuiiiiiiieiee ettt e e ettt e e e e e e e s e s e nbbbe e et e e eeaeeeesaaannebbseeeeeeeaeeeeseaannnenreees 4

RSN S To ol V= 1o I oo 0] = Vil] 1 Y PR URP TR Z
I R (ST T 210 (TR

O O (=T 11 OO PPORR
TN o T =] oL TR PORPTPPRP
2 41 7= 1= Lo PSP
O 2 VA T Lo VY Ao [0 1Y 7= 11 = o] o PR S
O 2 O o1 T 1=y =1 | P 0 USSR UUPPRURRRRNE.
1.12.3MacCintOSNOS X INSEAIATION. . .vvuueeiieeii et eeeeete e e et e e ettt e e e e e et e e e e e eeaat e e e e e eebaa e e e e e s es b s eeeessraaseeseesrannnns 6

D I =Y U1 o PRSP PPPPPUPRY
2 e 141 0 = PO PPRTUPR

2.2 M NY USESWVIG 2. oottt ettt e e e oo oottt et e e e e e e e e e ottt be e ettt e e aeeeeea e ann b ettt e et et e e e e e e e e AR nAheEeeeeeeeeeeeeeaannnnbetaeetaaeaeeeeeeannnenes
AR AT\ A (e V0] o] = O PEURPURTRRTPPRRPS
I YLV [101 (=T 0 7= (o< 11 PUORRRRTPPIN ¢
2.3.2THe SWIQ COMIMEBIM.....ce et ettt ettt e e e e e oottt et e e e e e e e e s sa s aatbe e et e eeeeaeeeseaannnbebbe et e eeaaaeaeesaansnnbsbseeeeeaaeeeeesaannnneseeees 1(
2.3.3BUIldING @ PEISMOAUIEeeiiiiieee ettt e e e e e e e ettt et e e ae e e e e e aa b bbbt e et e eeaaeeeeseaannbenbeneaeeaeaeaeas 10
2.3.4BUildiNg 8 PYtNONMOAUIE.......ceiiiiiiie ittt e e e e e e ettt ettt e e e e e e s e s e nnbebbe et e eeaaaeeesaaannsbsaeeeeaeeaens 10
ST 1011 (o] | =T PRTPRRP 1
A BTNl o] o ol n(=Te O (0% PV a1 [0 Tz (o (= {=Yc LU (< P EPURTR 11
2.5 Non-intrusiveinterfaCebUIIAING............ueeieiii ettt e e e e e e ettt e et e e ae e e e e e s e nbabbeteeeeaeaeeeeaaannnnene 12
2.6 IncorporatingSWIG int0 @ DUIA SYSTEM.eiiiiie ettt e e e e e e e e ettt e e e e e e e e e e saannnba e e e e e e aaeeeaeaannenneees 12

AN A = = VaTo o) i Moo o [=To =Y a1y ir- Ao) o IO PRSPPI 12
R IV A LRz aTe L (=Y=T0 (0] o' T 1

R Tl aTo ISy r= T =Yoo o INYAY AT T 0T R T TP PPRRRR 1
I a1y =Y | oo T T] AT 0 [0y 1

I I RNV T T oV A (<Y o U= o] T 14

3.2 SWIG WINAOWSEXAMPIES.eeeeeeteee et e ittt e oottt et e e e a4 e s e ettt et eeeaaeeeaaaanseebsbaeeeeeaeeeeaeaannsbnbseeeeeeaaeeeesannnne 14

3.2.1Instructionsfor usingthe Examplegnith ViSual STUAIO.uuueeriiiieeaiiiiiiiiiieie e 14
T2t 0 O - TT 1

LT N - Y - VT 1
I TR] Y T 1

VN N Vi |2 To] P O PP P PP OPPPRPPN 1
G2 15X 1 TP PO P TP PPPPPPPPPRI 1

B I 4 U o RO UPRRRP 1
3.2.2Instructionsfor usingthe Exampleswith otherCoOmMPIIEIS.........uuuiiiiiiiei e 16
3.3 SWIG 0N CYAWIN ANAMINGWV.eeiieeiie ittt e e e ettt et e e e e e e s e s tbe bt ettt eeaeaeaesaanenbeeeeeeeeaaeeeeaaasnsbnbaeeeeaeaaeeaeaannnsnes 16

SWIG-3.0 Documentation

Table of Contents

3 Getting started on Windows
3.3.1BUIldiNG SWiQ.EXEON WWINAOWSeeeteeeeeieeeeeeeeeeeittteeeeeeeeeaeeaasaasabbaeaeeeeeeaeaeaesaanesbbeeeeeaaaaaaesseaannnnsbanseeaaaaaeeesanannns 16
3.3.1.1Building swig.exeusingMINGW andMSY S......uuiiiiiiiiiieeeiii it e e e e et e e e e e e e s e e s anebab e reeeaaaaeeas 16
3.3.1.2Building SWiQ.eXEUSINGCYOWINL....eeeeeiieiiieittteeeeeeeaeeeeesaaaaiteeteeeeaeaaeeaassansasbesseeeaaaaaeasasaannsssbseeeeaaaaaaessaannnns 17
3.3.1.3BUIldiNG SWiQ.EXEAIEINALIVES.eeeiiiieeeeee ittt e e e e e e ettt e e e e e e s e e sttt et eeeeeaeeeesaaasnbbntneeeeaaaeeeaens 17
3.3.2Runningthe exampleon WiNndOWSUSINGCYAWIN.eeiiiiieeaieiiiiiiiieeeeeeee e e e e e s e asiteeeeeeeeeeeeeaesaasnsntesaeeeeeaaeaesasannns 17
3.4 Microsoft extension®NdOtherWINAOWSQUITKScoiiiiiiiiiieeie ettt e e e e e e e e ettt e e e e e e e e e s seannnnbe e eaeaaaeeeseaann 17

A oY (0 VA o = 1SS < TP 2
4.3 Building ScriptinglanQUagEEXIENSIONSeetieeetei ittt ee e e e e et e s aeteeeeeeeeeeeaeaesaaasaabteseeaeaaaeaessaaannsbasaeeeeeaaeaesesannnsseseneees 22
4.3.1SharedibrariesanddyNamiClOAAING. ueeuieeeeeiieiitite it e e et e e e e ea e e e e e s bbe e ereeeaeaeeesaaannnbesbeeaeaaaeaeaanas 22
4.3.2LINKING With SNar@AIDIAIIESeei e e et e e e e e e e sttt e e e e e e e e e s e s e nnbebeeeeeeaaeeeeaas 23
TGS = L[] 11012 T PSPPSR 2

oSN AV [T 2= 1T o TR

o A U 0170 FS AT [R U P TPSPPPP 2
L0 I T U o 00T) SRR PR 2
LN 2 Y [T 11 1 1 PRSP PPRRURTR 2
oI T O] 101010 1=] 01 £ PP PRUPPURPPNt 2
T N L O (=T o] (o 1ol T 1T o) AR PUPPPPUPPPRRPPIN 2
oI RISV [€1 BT =Y od 1LY T PRTORRUPP 2
oI I O] =YY =) | I 1172 L0 1= PPN 2
5.2 WrappingSimPIeC DECIAIATIONS.eeet ittt e ee e e ettt e et e e e e e e s e s s ee b teeeeetaaaeeaaaaaasnsesbeeeeaaaaeaeaesaaasnsbesseeeeaaaeaesanannns 28

oI N S T= TS ol Y/ o 1= e =TT |1 o RPN 2€
oA €1 6] o F= A Z= 1 1 T=1 o] [T 3

IR 0o 0 1] =10 1 £ OSSOSO 3
oI N o4 (=Y ATV L0] (0 = oo U (o]0) 0 1= AR PPURTN 31
5.2.5A cautionarytale Of CRa™.o ettt e e e e e ettt e e e e e e e e e e e reeeaaaeaeaaaann 32
oRCT ado]l a1 (=T 6=V aTo [ofoTnaT o] [=3to] o] [=Tox £ RSO PEPPRRPRR 32
ORI T 101 o) =Y 0111 (=T F R U RSP PPPRR 3
5.3.2RUNtime POINTEIYPE CRECKING. ... ttttetieeiieeee e e ittt e e e e e ettt e e e e e e e e s s e bbb ettt eeaaaaeesasannnbsbeeeeeaaaaaeeesaaannns 33
5.3.3Derivedtypes.StrUCtS ANACIASSES.ccuuueeiieiiiee e e ettt e e e e e e e ettt e e ee e e e s e e e sbabe e e e e e eeaaeeesaaannbbnbreeeaaaaens 33
RS 8 LT oY i T=To (o Fo 1Y 0T PP PPPPURPRP 34
LR TSI N/ 1= [TP PPRRRRTT K
oI N @1 T=T o nd = (o1 (0= 11 F TP 3
5.4.1PaSSINGBIIUCIUIERIY VAIUE ...ttt e e e oot e oottt ettt e e e e e e e e s e aab bt te e e eeeaaeeeaesannnsnbbsneeeeaaaeaesanannn 35
B.4.2REIUINDY VAIUE ...ttt ettt e oo oo oottt ettt e e e e e e e s o e e bttt e e et eeeeaeeeeaeannnb b e beeeeeeaeeeeeesannnnbnsneeeeaaaeens 3
5.4.3LINKINQG 1O StIUCIUIEVAIADIES.eiieeiieeiee ettt et e e e e e e e ettt et e e e e e e e e e s aannsbeseeeeeaaaeeeeasannnnnnes 36
o I T o (o o = PR EURPPPRRPP 3
L Y AN £ 1= 1Y TP PPPPUPPUPTPTRRN K
5.4.6Creatingread-0NIWaKIBDIES.coii ittt e e e et e et e e e e e e e e e et e e e e e e e e e e e e e e b an e e e eaaaaaaaas 39
5.4.7RenaminandignNoringAECIAIAtIONSc.uueiiiiiiiiee e e e ettt e e e e e e s e ettt e e e ee e e e e e sa e s abb e et e e eeaaeeee e e e e nnnneeneeees 40
5.4.7.1Simplerenamingof SPeCifiCidentifierS............uueiiiiiiiiiii e 40
5.4.7.2AdVanCedrENamMINGSUDDOI.eettiiieeeeeee e e e e e ettt ettt e e e e e e e s e s e etat e et e eeeaaeeesaaannsbebaeeeaeaaeeeaesaaannnsbnseeeeaeaaens 41
5.4.7.3LIimiting globalreNaminOIUIES.ooi it e ettt e e e e e e e e s et et e e e e aeaaeeeaaaannnnnes 43
5.4.7.4lgnoringeverythingthenwrappinga few selectedBYmMDOIS ..o 43
5.4.8Default/OptioNaBIGUIMENTS.uuiiiiii ettt e et e e e e e e s e e ettt eeeaaeaesae s nn bbb beeeeaeeeaeeeeaaannneneeeees 44

SWIG-3.0 Documentation

Table of Contents

5 SWIG Basics
5.4.9P0intersto fuNCiONSANUCAIDACKSouuiiiiie ettt e et e e e e et e e e e e e et e e e et e e s et e e e sba s e e seaa e seaneeeeensss 44
oIS (0 (o 1=y L0 [T TT0) 1SR 4

TSN A /1= [7= T o Ko (0 od (1 o SRR 47
5.5.2CharacteBtriNGSANASITUCIUIESuteiiieiieeee e e ittt ettt e e e e e e ettt et e e e e e e ae s e ntebteeeeeeaaaeaessssannnbnbeseeeaaaaaeeesaaannn 47

oI Y AN = A 01 1] 0= SR T TSR PPPPRR :
5. 5.4 SITUCIUTEHATAMEIMIIELS. ... ettt e e et ettt e et e e e e e e e et e e e e e e s ea e e e et e e s aba e e s saa e e s aaeseebaseasaaneneen 48

SRR O o0 a1 (0 [01(0] 5N 10 [0 [STo (10 (01 (0] ¢TI 49

5.5.6 Adding membefunCtioNSIO C SITUCTUIES . ..iiii ittt e e e e e e e e e ettt e e e e e e e e e s e ennnbbneeeeeeaaeeeaaean 50
ORI AN ST (=0 Y 10 (o1 (0 (=TT 5!

5.5.80therthingsto NOteabOUtStIUCTUrEWIADDING. ... uuverreeeeeeeeeeeeeieeeetteetee et e e e e e e s e s aebatbeeeeeeeaaeeessaannnbsaneeeeeaaaeesaaanns 54
oI X @0 Yo (5] [TT=Y o 1T o F T r

oI A I 2 TS 10 11 0 10 (o S 1A PO PPPPURPRP 5E
ol A @ a0 [=1 A 1Y =T 0 10] 0] 0] (o] od -3 PPPRRR 55
ol oI 1] ITaT=Yo Koo To [] o] o od <4< O UTORR PR 5¢
N SR A a1 F= 1[4z L1 0] 41 o] [0To) L6 TSRS 5¢
5.7 AN INterfaCeBUIIAING STEALEOY. ...t eeeerteeeeeei ettt e e e e e ettt ettt e e e e e e s e s s te bt et eeeeaaeeaesaaasnbbeeaeeeeaaaeeesasaannnntbneeeeeaaaaaens 56

5.7.1Preparingd C Programifor SWWIG. e ettt e e e e e e e e e ettt e e aaeeeaasaaaeebeeeeeeaaaaeeesaaasntbsaeeeeeaaaeeeseaannnnne 56
5.7.2TheSWIG interfacefile ... 57

5.7.4Gett|ngthe Lo |18 Y= 1o 1= 1SRRI 58
5.7.5Whatto dOWIth MAIN(Y.....evvenieeiiiiiiee ettt e et e e e e et e e e e e e et e e e e e s e et e e e e e eesaa s eeesesbaaaaeeesssbannaeesessssannaaeseees 58

B SWIG BN Crrhio ittt h e s s b e e s a e e £ oh b e e e o b e e oo R b e e oo b e e e e b e e e s R E e e e R e e e e R R e e aa b e e e R e e e e b e e e e b e e s e r e e e s nee e s nee s

6.1 CoMMENTIIN Ctt WIAPPING .. eeeeieeeeeeiiiitieeteete e e e e e e s e e e be ettt et e eeeeeaeasaaas s s beeeeeeeeeaeeeaesaansssbeeeeeeeeaeeeeseaannsssbsnneeeaaaaeeesanannns 59
ST AN o] 01 (0 Y- T o ORI {
OGRS TN 0] 0 o]0 (=0 Ol (Y= LU (=Y PP TR 6(
6.4 Commandine optioNSANACOMPIIATIONLuureiiieiie e e e e ettt e e e e e e e e et e et e e e e e e s s e e e anbebae e e e eeaeaeaesaaannsanbeeeeeaeaeeaaaas 61
OIS d (0 A YA £ TS = TP PE PP €
6.5.1CONSIUCHIONT PrOXY CIASSES .. . utttieiiiieie e e ettt e e ettt ettt e e e e e e s e e e tbe b e e e e aeaeeeaesaananbeeaeeeeaaaeeesasaannnnnes 61
6.5.2Res0ouUrcENaNAGEMENN PIOXIES .. .uuuurerttteeeeeeiaiatttteeeeeeaaaeeaaaa i etbebeeeeeeaaeaaaaaaanesteseeeeaaaaeaesaaansnsessseeeeaaeeessesnnnnnnes 62
oI ST I- Lo (U= [y oT=Tod oo (=] 7= 1| PR 64
o RST8] o) (=Y O a1 =T o] o 11 e (TR 6
6.6.1COoNStIUCIOrENAAESITUCIOIS.vvuuieeieiiii et e e ettt e e e e e et e e e e et et e e eeeeeat e eeeeessabasaeessesasaeaeesessaaneaessssssanseeeeesraen 64
6.6.2Defaultconstructorscopy constructorandimpliCit deStIUCIOIS........oocviviiiiiiieeie e 64
6.6.3WhenconstructomrappersareN ICrEAtEM.c.iiii it e ettt e e e e e et e e e e e e e e e s e r e e e e aeaeeaan 66

OISR 1 @ 0] o)V oT0] 8 -1 1 (U (010 &= T PSRRI 6¢
(SN IV 1) 0] oYY 10T aTox 1] =TT 6

(SN IS] F= N1 [0] 10 T=1 001 0 1<) £ PRSPPIt {
(S ALY/ [=T 001 0]=T (0 P 7= PO 6
ORI =Y |1 =T o 18T 0 0T=T 0] T PRSPPI 7
SRSl =d (0] (=1 110] o P U ORRPPTRR '
(o = a 1000 =Y aTe [ole] 1S =1 0 £ TSP 7
ST 0] A1) T O '
B.11 REfEIENCEBINUPOINIEIS teeiieiieeee e e i ittt et e e e e e e e ettt ettt e eeaee s e s s aateebe e eeeeeaaeeeeaaasnsbebaeeeeeeaeeeeesaannnsbsseeeaaaaeaeensannns 72
6.12PasSANAIEIUINDY VAIUE.iii ittt e ettt e e e e e e e e ettt e e e e e e aesaa s s et ettt e eeaaaeeeeeesannsbsbeeeeeaeaeaeeesaannnneeseeees 7
(ST (o] T=T 7= T oo = ORI A
6.14 A brief discussiorof multiple inheritancepointers.andtype CheCKiNg..........coueeeiiiiiiiiiiiiiiiiiiee e 76
6.15WrappingOverloaded=unctioNSANAMETNOAScciieiiiiiiiieee et e e e e e e e e e e e e e s s b s e e eeeeaeeeeaean 77
6.15.1DiSpatChfUNCLION QENEIALIONiii e ettt e e e e e e e ettt e e e e e e e e e s ea e bnb bt b e e e e eaaeeeeaeannnnbnbaeeeeaeaens 77
6.15.2AMDbIgUIity IN OVEIOAAING.veeeeiiiiieee e ittt e ettt et e e e e e e s s e e ettt et e eaaeaeaaaaannbasbeeeeeeaeaeeeasansnneeeeeees 79
6.15.3AMbIiguity reSOIUtIONANATENAMIING. ... teeeeiieeeeeeie ettt ieeae e e e e e e e e e aebeeeeeeeaaaeeesesaanesbeeseeeeaaaeaessaannnnbsseneeeeaaaaeaens 80
6.15.4CoMMENIDN OVEIOAING.veeeeiiiiieeee ittt e e e e e ettt et e e e e e e s e e e e e b ettt e eeeaaeaeaas s nntesbaeeeeeeeeeeeesaasnneneseees 83
oI LAY =T ol o] 1 Te [o)VZ=Ta (o F=To [STa o] o T=T = 0] AP TRT PR 84

SWIG-3.0 Documentation

Table of Contents

6 SWIG and C++
ST A O F= 1T o) Y AT (0] o R 8

Lo ST =100 o] P =S PR U RPN {
oM RS L o0 1 T=TS] 0T Lol = TP ¢
6.19.1Thenspacdeaturefor NAMESPACESccuuuiiiiiiiieie e ettt et e e e e e e s e s et ettt e e teaaeeeeaaasnebaeeeeeeaaeeeesesannnnneesneees 99
6.20RenamingemplatedyPeSin NAMESPACES. ... uuuuureeretieaeeeeiaaiiteteeeteataaaeaesaaataeteaeeetaaaaaeasaaaasesbeseeeeaaaaeeesaaannnsesseeeeees 100
6.21 EXCEPLIONSPECITICALIONS. .. et i et eiet ittt ettt e e e e e oottt ettt e e e e e e ettt ettt e e e e e e e s e nn e beba e et e e eaeeeses s nneaebeeeeeeaeaeeesanannnnbenneees 101
6.22 ExceptionhandlinQWith J0CaICIESuuiiieiieiie et e e e e e e et e e e e e e e e e e e e st e e e eeeaaeeeaeaann 101
(SO] o] 101 (=1 (oMY (=Y 101 =] TSSO 10;
6.24 SMAartpOINtErSANAOPEIALON=()... . eeeeturreeeeeitteeeeeaattee e e e s sttt e e e e st b e e e e s aaba et e e e abb et e e e e ahbee e e e e aabbe e e e e e aabe e e e e e anbnneeeeaanbneeeean 102
6.25C++ referencecountedobjects- ref/unreffeature.............uuueeiiiiiiii e 104

6.26 UsingdeclarationBNAiNNerITANCE.uuiieiiiiiie et e e e ettt et e e e e e e e s e s e nbebbe et e e aaeaeeaeaaannbbarreeeeaaaeeeaeaanns 106
SO\ ST (<0 o] P2 T T 1C

6.28 A DIEf TANTADOUICON ST COIMTECIMESS. .. e u ieitteeeett ettt e ettt e e eea e e s et ee s et e e eeaa s es e s ee s et e s seaa s essaases et e sesaaesssansssstaesenanaees 109
6.29Whereto 9o for MOreiNfOrMATIONii i ittt e e e e e e e e s ettt et e e e e e e e s e e annbbnaneeeaaaeaeaeaan 109

XA A LT T Lo O e 5 U RPRPORRRRURRRRRN 1

% 1 110 o (8 Toi 10 o PP 1:

A A Ofe] (=] F-TaTo [0 F o < o1 =TT [P UEURPRR 11
7.2.1RvaluereferenCandmMOVESEMANTICS.cuuuuieieeiiirtiieeeeeetie e e e e e ettt e eeeeeaat e s eeesse b aeeeeessstaaeeseestanaaaeesessranenns 111
7.2.2Generalize@ONSIANEXPIESSIOMS. ... tutteeeteeeeeeteaaitetteeeeeeeeaaaassaaaseebeeeeeetaaaeeasaaaaantstbseeeeeaaaeaesaaaasnnbssseeeeaaaeeesesanns 111

AR] o (T 01 (=T 001 o] F= L= OSSPSR PRPRI 11.
A A A LA =Y A Y 1153 T 11

AR Y8 T o) A M T aT10 =] 4= 1 o o T 115

A 3 Y] 011101 (=T (=] 0o =R RP PP 11
7.2. 7RANGE-DASEIDI-IO0M ...ttt ettt e e e e e ettt e e ee e e e e e e e bbbttt e e eeeae e e e e e e nnbaebareeaeaeens 114
7.2.8L.ambdafunClioNSANAEXPIESSIONS.uutttiiiiieeieeeeeeiaaietteete e et e e eeeesaaaeebetbeeeaeaaaeeaesaaansasbeeaeeaeaaeeeesaaannnbanseeeeaaaeens 114
7.2. 9 AltErNAtEfUNCHION SYIEAX. ... eeteetieiee et e e ettt e e e e e ettt et e e e e e e e s e s as b be e e e et e e e eeeeae s e nssbbeseeeeeaaeeaeaeannnnennnnes 114
7.2.100DbjectCONStIUCTIOMMPIOVEMIENT. ttiiiiiieiee e et e ieitetee e et e e ee e e e e s aeatbebeeeeeeeaeeaaasaassebasseeaeeaaeeesasannnnsbenneaeaaaaeens 114
7.2.11EXPIicit oVerrideSanAIINGL.........oieiiieeee ettt e e e e e e e e e et e e e e e e e e e an 115
A 2\ U]| o1 (=T oo 1151 1= 1 | R PPRPRRPPT 115
A R ST (o Lo | AYANYd oT=To (=T A U 0 L=y = LA PR EU PP 115
A o0 o] (Y= TaTe | =] o] = (o1 (=) RPN 116
VN RS o] [Tofi oo] 1Y/ =T 6T (0 0 0] 0 =Tr= Lo) s U PRRPUPRRR 116
A LY = TSR (] 1] 0] (T PPRRPRTRR 11
R A L (=FS) (o1 0= o U] 1T o TP 117
A R AN V= (o [0 =Y 0] o) oY S USRS PRPRTT 11¢€
A R | YA (o 1L =] = PSR 11¢
018 =Y e 1<) (T T=Te [=Y = | TR 118
A N N T (=Y (o o (o To= 1 o] 7= Lo = SRS U TP 116
7.2.22Explicitly defaultedfunctionsanddeletedfUnCLIONS.............ueiiiiiieiiiiii e 119
A 1 Y] o 1= [0 To (o] T 10 FO PP RSOPRPRTT 12(
Y Y vz |1 oF= LYY= 11100 RPN 12
7.2.25Allow sizeofto work on memberof classesvithout anexplicit OBJECT..........uvviviiieiiii i 120
7.2.26ExceptionspecificatioNSBNANOEXCEPLiieii ittt et e e e e e ettt ettt e e ae e e e e e s e ebeeeeeeeeaeeeesaaannbesaneeeaeaaaeaeas 120
7.2.27ControlandgueryobjeCtalidNMIENLciii ittt e e e e e e e et e e e e e e e e e s e eraaaaaaeeaaan 120
<Y AN |]V (== PRSPPI 12
7.3 StandardiDrary ChANGES.ttt e e ettt et e e e e e e e e e e e e aa b be et e eeeaaaaeesesannsbsbbeeeeeeaaaeeesaaannnsbnbneeeeaaaens 12:
AR A N V== Vo [T o = Vo L= PR SR TR 121
ARSI WU o= 1Y o= USRI 12
R w P2 1S 1 7= 1 o] 1= P PUPRRR RPN 12
AR] =T o 8] Fo T (oNq o (1SS o] T USRS PRPRTT 121
7.3.5GeNneral-pUrPOSBMAITDOINTEIS.uutiiiiiiiie et ettt et e e e e e e s e s e beebe e et eeaeeeeessaaasebaeeeeeeaaaeaesaaannsssbneeeeeaaaeeessaannnns 121
7.3.6ExtensiblerandomMnUMBDEHACIITY.uuriiiiiiiee et e e e e e e e e e e e eaaaaa e s 121

SWIG-3.0 Documentation

Table of Contents

7 SWIG and C++11

AR I AT 7= o] o 1Y () (=Y (=T T = ST PRPRRRRT 12:
7.3.8Polymorphousvrapperdor funCtioN ODJECLS.uiiiiiiii e e e e 122
7.3.9Typetraitsfor MEtaPrOUIrAMIMUIG teeiuteereeeitteee e ettt e e s atb et e e s sb et e e s be e et e e asbe et e e s aabbe et e e sbbb et e e e ansbneeeeasneeeas 122
7.3.10Uniform methodfor computingreturntype of function ObJECES........c.evviiiiiiiiieeee e 123

oI (=] 0] (01011 |10 SRR RTTPT 1
I 1 L [ol [0 o SRR 17
T2 (=001 0T TP PRPEPPRTR 1-
e RC X Ofe]aTo [14[o] =1 (o] naT o)1 F= 11T o TR PPPRPRRR 12¢

ot 1Y = o (0] b d 0= 0 Y[o PP PTT TP 12
oI X YAV [T 1Y, 7= T TR 12

8.6 CO9ANUGNU EXIENSIONS ... uu i eeetietiiieeeeetettee e e et ettt e e e ee et ettt eeeseetataaaeesse st aeeesessaaeeesssbanaaeeessstansaeeseessanaseessssranseneeees 12¢
oA md (=] o) o ToToXSIST [0 1= Lo [0 (=Y 110 LT PRSPPI 127
8.7.1Preprocessinand%o{ ... %} & M . AEIMIEEIS . uuuuieeiieii e e e e e aaes 127
8.7.2PreprocessiNaNd{ ...} AEIMITEIS.uuieiiiiiieie ettt e et e e e e e e e e e ettt et e e e e e e e s e s e nbbtbenneeeaaaeeans 127
ol el md (= 0] (o 1e1=XStoYe . AT0 HINY 1) 1A= 10K P EER PR 127
8.9 VIEeWING PrePIrOCESSODULDULueettetteeeeeeteaauetteteeeeeeaeaeaesaaaaetteeeeeeaaaaeaasasanntateeseeeeaeaeeesaaannsbebeeeeeaaaeessesannnnbssseeaaaaaeans 128
8.10The#errorand#WarNINAAITECIIVES eiiiie e et ittt e e e e e e ettt e et e e e e e e e e s e se e bebaeeeeeaaeeeaesannnesbasseeeaaaeeeesaaannnnsenees 128

I A O N1 - VA X= |10 | 01101 (=] 1T TR 12
LS B2 o o To 0 PP PPPRRPP 13

I o L - 4= T U EUR TP 13
L AR To] 1 1= 11 (0T o N T 13

L A Yoo = v= N R 1:

O 53 (0 S 10T USSP PPPRPPTRR 14
O I B (o V=103 (0] PRSPPI 14
S R IS <ol =] [L U PRSP PRPRR 14
SR S AT T =10 I 0) 1Y 0= V1 0101 1= RO PETRPT 144
R Y- LU (o T 01115 A T= 1101101 (=Y PRI 14¢€
oIS 8 111 YA T o] 7= U= PP PPPRRRPR 14
LSBT =T (o <Y o] (o] o TR 14

O A T IU 1 o T T = T AT (] € T TP 14¢
10. 1. 3OULDULDAIAMIEIEIS ... eeeeeeeeitttttttitt e s e e e e e e e e e e e e e aeae et et eeeeeeeestetebbbb b s o oo 4o 4o 442 e e e e e eeeaaeeeaeaeaeeaebebnbebnbbnnnnn s 15(
10.1.4INPU/ OULDUIDIAIAIMETEIS. .. .eeieiieeeee s iieieteee et e e e e e e e e e ettt et e eeeaaeaesaaaaebeeeeeeaeaaeeeseaaanesbbseeeaaeeaeeeeaaannnnbsbneeeeeaaans 151
O T8 ST Lo Mo [(= =T 1 0T L1 PR USSP 151
10.2 Applying CONSrAINTE0 INPUEVAIUES. ... eveeeeiiieeeeee ittt e e e e e e e e ettt et e e ee e e e ae s e ebbbe e et e eeeaaeeesaeannbasbeeeeaaeeaeaeeaannnnns 152
10.2.1SIiMPleCONSITAINEXAMPIE......cei ittt e e e ettt e e e e e e e e s e et ettt e e eaaee s e e s nbebbeeeeeeeaaeeeesaaannsbsbaneeeaaaaaaaens 152
O O e] 1) (= 1101100111 41010 TR 152

10.2.3Applying coNStraintd0 NEW AALATYDESio i ettt e ee e e e e e ettt e e e e e e e e e et eeeaeeeeeesaasnnbatbeeeeeaeaeeaesaaannne 152

SWIG-3.0 Documentation

Table of Contents

A Y o<1 11 P2 T Yol o= PR USUUPPPPPPPTPUPTPTRPIN 16!
e [Ofe] o1/ aTo F= HAY/ 0 1=T 1.0 T- o TSP PPPEURPTR: 162
B L= (=) o =AY 0 1=T 1.0 T= o TSP PPPRURPTRRN: 167
N2 Y ol P Tol =T Ty L0 YA 01T 0 T oL RO PERRPRR 163
11. 3P atterIMAtCRINGIUIES. ...ttt e e e e oo oottt et ee e e e e e sa e aa ettt b et eeeeeeeese s e nbnbbe e et e e eaaeeeeeeannnnbetaeeeeaeeens 16:¢
11.3.1BaSICMALCHINGAIUIES eeeeeieie ettt ettt e e e e e e e e e ettt et et e e e e e e e e e e n bbb be et e eeeaaeeesaaansnbbsbeeeeaaaaeeeeeannns 164
11.3.2TypedefredUcCtioNSMALCRINGuueiiiiiiieee ettt e e e e e e e e s e e e bttt eeeeaeeeeesaannbsbaeneeeeaaeeeesaaannns 165
11.3.3DefaulttypemapmMatChiNGIUIESoci ettt e e e e e e ettt e et e e e e e e e s e s nnnbebeeraeeaaeeeaeaanneeeeees 167
11.3. AMUlti-argUMENTEYPEMIGIS. .o e e ettt i eitittteeeee e e e e e e e e e ettt be e et e e aeeeaassaasnsbeeeeeeeeeaeeeaa s e ssnbbeseeeeeaaeeeesaaannnbstaneeaaaeaaeaens 168
11.3.5Matchingrulescomparedo C++ temMPIAIESoiieii it e e e e e e e e e 168
11.3.6DebugdinatypemappatternMatCRING.oieie it e e e e e e e aaaaaae s 170
oo T =T o [T =T = Lo o (1 = SR TR RO 17
S To o oL S TP 17
11.4.2DeclaringnNeWIoCal VAIADIEScoii ittt e e e e e e e e e e ettt e e e e e e e e e s e nnnnbeeeees 173
11.4.3SPECIAINANIADIES. ... eeeieeiee ettt e e e e e e oo ettt e et e e e e e e e e e e n R b ettt e eeeeaeeeeeeaannnraeteeeaaaaeeeeaaaann 17¢
Y 01T o o LAYz T = 0] (Y 010 o] (01 TSR UPT SR 176
I 0 o [T Yot 01 (o 1Y/ 0 1= O RUPRPPRPP 177
11.4.4.28typemap(MethOdYDEDRAIEIN).uteiieee ittt ettt ettt et e et e e st e e ssbe e e ssbe e e snbeeeanbeeeeneeeannes 177
11.5CoMMONtYPEMAPMETNOUS. .. eeiiiieei ittt e oo e ettt et e e e e e e e e e e bbbttt e e e e eaeeeeeaannnbeerreaeaeaeeeeaaannn 177
R T T 1Y/ 0= 0 7= o PSRRI 17
YA Y] o T=Tod [T o L YA 0 =T 0 T o SRR PUPPPRPRR 178
R o U A 1= =1 o PP SRSPURPPP 17
T - o [T TS 01T = PR RTRRSR 17¢
ST SN0 (=) oV L Y7 01T 010 - 1 o P ST PPPRT 17¢
ST S o] 0 T=T ol LAY 6 1) 7= o ST PPRRURTR 17¢
A= Vo [0 101 Y 1< 0 1= TSP PPPTRPPRUPPTPPIN 17¢
TR (e Lo YA 1= 7= o SRRSO 18(
ST I oA (=T YA 0 1=T0 0= o DS PPPRURPRRR: 18(
ST KO 0 T=T 0] o= T Y 0 1=T 010 o PRI 180
T V7 V[Y7 0= 0 7= o PSRRI 18:
N Y7 T (o 10 | 1A 0 1= 14 F= o PP PP 181
T G 1 (T (0TSl 1Y/ 0 1=T 0 1= o DTSR PPPRURPTRRR: 181
11.6 SOMELYPEMAPEXAMIPIES. uteteeeeeeeeeeeee ittt eteeee e e e s e aa e tbetee et eeeaaaaeesaaasanbeseeeeeaaaaaesessansebbeeeeeeeaaaeeesaaannsssbbeeeeaeaaaaaeas 181
ST Y o=t T o1 (o = U1 7= LY T TP PEPRPR 181
11.6.2ImplementingconStraintSVIth tYPEIMADS.vvveeeiieiee ettt e et e e e e e e e e e e s et eeeeeeaeeeeaeannnneeneees 184
11.7Typemapdor multiple targetlanQUEAGIES.uueeeeiiieee ettt e e e e e e ettt e e e e e e e e e st ebe e e eeeaeaeaesaannnnbeneeeeeaaaeens 185
11.8Optimalcodegenerationvhenreturningby VAIUE...........oooi it e e e e e e e e e e eeeas 185
11 OMUIti-argUMENIYDEIMIBIIS - et teteeeeeeiietetteeteeet e e e e e e s e e e eteteeeeeeeeeaeaesaaaaantbeeeeeeeeaeeaeseaannseebbeeeeeeaaaeeesaaannnsbsbneeaaaaeeeeaeaannnne 187
Ol Y 01T 0 Fo T V7= o 1T T PP TR 19i
I e Y 0T 0 F= T o = T 0 0= 01 SR PSPPSRt 19
11.11. 1FradmentyPe SPECIANZATION.eeiee ettt e e e e e e ettt ettt e e e e e e e e e et e e et eeeaeeeeae e e nnbara e et e e e aeeeeeeaannnnrreneeees 192
11.11 .2FragmentandautomatidypemapspeCialiZation..........cuueeeei i e e e e 192

Vi

SWIG-3.0 Documentation

Table of Contents

11 Typemaps
11.12Therun-tiMeEtYPE CRECKEEo i ettt et e oo e oo oottt et e e e e e e e e e e anb bt be e e e e aeaaeaeesannbsbesseeeaaeaeeesaaannn 193
2 N T T o Y 1T 1= LA PRSP PPRRURTR 19!
U - Lo T SO PRRPRT 1€

12 CUSIOMUZALION FEALIUIES.t ieeeee et ee ettt e et e ettt e ettt e e e e e e e et e e e et e e e e e e e e et ee e et e e s s e e e e s eaee e et e e s e e e e e eae e e e et e e s eaae e s e baessnbnsessansanenns 2C

12.1ExceptionhandliNQWith Y0EXCEPLION.eiii ittt ettt e e e e e e e e e ettt e e e e e e e e e e sa e aatb et e e e eaaaaeeeaesannnsreneeees 202
12.1.1HandliNgeXCePiONSN € COURceii ittt e e e e e e ettt et e e e e e e s e et ettt eeeaaeaesasaanssabeseeeeeaaaeeesasannensenneeeas 203
12.1.2ExceptionhandlingWith IONGJMP(). ...« .xeeeeeeeeeeeeeeiiaiiieiie et e e e e e e e et e e e e e e e e e s s e aanbbeeeeeeaaaeeesasannnsbnbeeeeeeaaaaeaans 203
12.1.3HANANNGC H+ EXCEPIIOMS. 1. tttetteeiteeee e et eeetetteeee et eeaeeeeaaaeaebeeaeeeeaeaeaesaaannbesbeeeeaeaeeeeesaansesbeseeeaeeaesessanannsrssseees 204
12.1.4Exceptionhandlerdor VAriabIeSc..uiiieiiiiee e e e e e e e aa s 205
12.1.5Defining differenteXCeptionNaNAIBIS.oiiii it e e e e e e e e e e e e eaaaaaaeas 205
12.1.6Specialvariable S Or Y0EXCEPLION it iiiiiiiiie ettt e e e e e e sttt e et e e e e e e s e s e na b et e e e e e eeeeeae e e nnnbatreaeeaaaeeas 206

12.2 ObjectownershipBNAYONEWODJECE.o ittt e e e e e e e ettt e e e eee e e e e s e nbe b beeeeeeaaaeeeeaaannnrbenneeeaaaeens 208
12.3FeatUre N0 INE Yo EaATUIEAITECIIVEeee e eiit ettt et e e e ettt e et e e e e e e et e e eeba e e s saae e e e et eeseba e s eaansessnnesennneees 209

R T N ST U 1= = L] oYU LT 21(

R I oY L (1= = o P EERPT PP 21
12.3.3CIEANNAIEALIUIES. . .. ettt ettt e ettt et e e e e e e s e e e bt be e et e e eeaeeeeeaaan e abete et eeeeaeeeaeaaannnbreteeeaaaaeeeeaaaann 21
12.3.4FeatureaNddefaultargUMENES..........uu i ittt e e e e e e e e ettt et e e e e e e e e e e e e nb et reaaaaaeae e s 213

12.3.5FCAIUIEEXAIMPIE.ttt e e oottt et e e e e e e e e s e et ettt et e et e e e e e e e aa R n bbb teeeeeeaeeeeaeaannbnbbeetaaaaeeeaaaanns 21:

IR T O 11172 11 £ z
I R TN Yoo a1 = Xoa o [T o1 (A= T 21°
I Yol 0] 11z 1012 T A0 [0 P2 13oY o - T 21!

13.3Constanfigdregatio@nd%agaregate CRECK. i it e e e e e e e e e e eeeeas 216
IR T N[0 (T 2

Y= T = o] [T o 1 I AN o T8 [0 0T=T 01U PPPRPPT 21
L Yo 0 o Yo T 2]

A N Y (0] o 1= 1 TP 2]

T B o) oV 1AY== U0 1S U]] 60 ¢ PO TP PPPPRRPR 22(
14.4 ArgumentreplacemMeNUSINGYOVAIAITS. .. . eeee et ieaeetteteeeetaaeeeeaaaaaetetbeeeeeaaaaeaaaaaasnsteeseeaaeaaeeasasannssbesseeaeaaaeeessaannnnseneees 220

oY A= L= Vo 1S L a0 AV 1<) 0T oL TS UP TP 22
14.6 VarargswrappinQWIth ioooiii i e e e e e e e e e e e e e 223

A YA =T o] o1 T T Y= W 1) SRR PR 22
T O e il £T oYU 1< 2:

B Tl 13y o 2:

L5 WWAITING MESSBUES. « - e teetetteeeeetiaaaiiitttteeaeeaeeaeseaaaseateeeeeeeeeaaeesaa s nneeebeeeeeeeaaeaeesansssteseeeeeeeaeeeaeeannsesbeseeaeaeeaeeesaaasnsbsbbeneaaaaeaesesannnnnes 2.
0 I (o To [0 o3 1o PR UPRRR 27
15, 2WarningmMESSAUBUDDIESSION. ... ot eutttteieeteeeee et e e aeeteeeeeteeaaeaesaaaasaeteeeeeeaaaaeaesaaasnsbstseeeeaeaeeesesaanssbssaeeeeaaaeeesaaannnnnes 229
15. 3ENADIINOEXITAWAININGS ... ce ettt iittttteeee e e e e e e e e e e e tetbeeeeeeeeaaeeasa s s asaateeeeeeeeaaeeeeaaaannebebeeeeeeaaeeeeesaaasssbasbeeeeaaeeeesesaannssbenneees 23(
15.41SSUINQA WA NINGIMIESSAGE - tttttteeeteeaaeesaaaantueteeeeeetaaaaaaaaaasnsteseeeeeaaaaaaaasaaassssteseeeeeeaaeaesasaanssssssseeaeaaaesessaansnssssneeeeaaaens 231
ST T 1Y 0] o Yo] oty 1] oo £ PR UO TSR 23
RS ST 0o a1 AT] 0172 TP PP PP PO PP TPPPPPRTTPT 2
ST = T a0 = ToT =Y 0] TSP PPPRURPTR 23
15.8MEeSSAU@ULDULTOIMIAL. eetiieieiiie e e ettt ettt e et e e e e e e s e s st ettt e et e eeeaeeeaeaannbebe s e e e eeaeeeaeeaaannntbaneeeeaaaaeaeaaannns 23:
15.9WarningNUMBDEIMEIEIENCE.uiiieiiii ettt e e e e ettt ettt e e e e e e e s e s e be bt e et e e e e eaeeeeaaannbbsbneeaeeaaens 2372

SWIG-3.0 Documentation

Table of Contents

15 Warning Messages

15.9.1DeprecatedeaturegL00-199)......ccciiiuiiietiitite e ettt ettt e et e e e e e e e e et e e e e e e e r e e e e b e e e anes 232
15.9.2PreproceSSAI200-299).... . .ueieiiireiee ettt e e ettt e et h ek e e b e e e e o R e e e e oo e b e et e e e o b b e et e e e e bb e e e e e abbeeeeenane 232
15.9.3C/CH+PArSEIB00-399) ... ueeiitiieeeetiiiiittttti ettt e e aee e s e e e eetbeeeeaetaaeaa e s e e _— b e e e et taeaaeeaaa e e nanbae et e ateeeeeeeaaaannrrbrteeeeaeens 232
15.9.4Typesandtypemapg400-499)........uumtieiiiieitee ittt ettt e et e e e e et e e e e e e e et e e b 234
15.9.5Codegeneratio500-599)........utiiiiiiiiiee ittt et r e e e e et e e annes 234
15.9.6Lanquagenodulespecific(700-899).......ccuuriiiieitiiie ettt 235
15.9.7Userdefined(900-99Q).........uuiiieiiiiiite ettt E e e ettt e e e b et e e s b e e e e e nne e s 236
ST 0 1S o TP PPPRRRR 2.
AV Yo T Yo Yo LU PO PPPRURPRP 23
T Y [T [U 1 =Y T 1o o [0 i 110 o PPN 23
T2 = 7 T o PO PRRPRR 2
16.3ThESWIG FUNIIMECOEuuueiieeieite e ee e ettt e e ettt e e e e e e et e e e e e e et e aeeeees b e e e e e e sa b e e e s eebaanaeeessasbaneeeesebsannseeessnrannnnns 23¢
16.4EXIErNalacCeSI0 tNEIUNTIMIE.vuuu i eeieeete ettt e et e e e e e ettt e e e e e et b e e e e e e saba e e e e eesbaa e seesessban e eeeesasbansaeessersnnaaeaees 239
16.5A word of cautioNabOULSTALICIDIAIIESvuuiiiiieiiie ettt e e et e e e e e e et e e e e e e ea b s e e s e esbaeeeeeeenranes 240
I Y =) (=] () Lo YO TRR 2
16.7ReducinNeWIAPPEITIIE SIZE.......ueeiiieiie ettt ettt e et e e e e e e e e ettt e e e e e e e e e e r e raeaaaeas 240
17 Using SWIG with ccache- ccache-SWig(L NANPAGE. ... uuuuuuetieeieaaae e iaiitteeeeeeeeeaaeaaeaaaeaebeeeeeaeaeaeaesaaaanntanbeeeaeaaeeeessaaasnsresneees 241
0 N N OO 2
A N A\ (] ST 1 RPN 24
AT B T O | 1 [PP TR 24
17. 4AO0PTIONSSUMMARY. ...ouuiiiittittiie ettt ee et e ettt eeee et ttaateeese et aaaeeesestataetessstaaseeseestanaeessssasansaeeseeransaseesssrannseeseens 24
Y O] o 1 (O S TR 2
Y N S N I N 1 1 ORI 24
L7 . 7EXTRA OPTIONS. ... ciitttiei ettt ettt ettt e ettt et e et ettt eeeee s e e et teeeeeesat s aees e e taaa e eeessssaaneeeeesbasnnseessssbansseesesssrannaeeseees 24
17.8ENVIRONMENT VARIABLES ..ottt ettt e e e e e e e e e e e et e e e e e e e sab s e e e e eesabneeeeeeeraannns 243
17.9CACHE SIZE MANAGEIMENT ... oottt ettt ettt e e e et e e e e e e e et e s eeeea st aeeseesaba s aeeseesaanaaeesesstanseeeeeeraen 244
17. 10CACHE COMPRESSION.otttiiiiit ittt ettt e e et e et e et ettt e e e e eesab e e aee s e e taaaeeeeses st sesessesasnnseeesesbannaaesesssrannsaesenes 244
O I (O A Y@ S SR PTORPPI 24
17.12USING CCACHEWITH DISTCC ... ciiiitiieie ettt e ettt et e e e ettt e e e e et et e e e e s e e aa s e e e e s e st b e e e eeeesabseeeseebaanaeeesserannnnns 245
17, 03SHARING A CACHE ittt ettt ettt et et e e e e et e e e e e e e e et e e e e e e e saa e e e e s ees b eeeeeessban s aeessetaaneaeeesssrannseeseens 24°¢
A SN O] R UPORR 24
17.15DIFFERENCES-ROM COMPILERCACHE ..ottt ettt e e e e et e e e e e e e s e e e e e et e e e e s eebaans 246
A N1 08 T = B 1 1 P OTPRRRPRIN 2¢
O N O I = [] SRR 2¢
18 SWIG and Allegro COMMION LS. .. eeettiiiutititieeitetee e et e e ettt ettt et e e ae e e e s e s aeaeteeeeeeeeaaeaesaaaanseaebeeeeeeaeaeeessaansnsbesseeeeaeaeeeseaannnsssenneees 247
ST I = 7 T o OO PPPPR 2
L18. 1. ARUNNMINGSWVIG ..ot ttteeeeeie ittt ettt et e e e e e e oottt et e e e e e e s e e o s tatbe e et e e e e aeeeeaa e Rn bttt e e e eeeeaeeeeesannnssbbeseeeeaeaeeeesaannnnnbneeeeens 24!
18.1.2C0o0MMANAINE OPIOMS. ... teeeitiieeeee s ittt e e e e e e s e e ettt e et e eaeeaeaasaaseabeeeeeeaeaaeeasasaanssbbseeeeeeaaeaeaaaannnnbsbneeeeeaaens 250
18.1.3Insertingusercodeinto geNeratedileSuu et iii et e e e e e e e 251
ST =T o] o1 Lo @ LY== PR UPPRT PP 25
S 2 ¥ T o] VAT 7= o] 1 T RSP PPPRURPTR: 251
S o] =T (o TNV A A= o 01T £ T ST PP PPPRT 252
IR AT = 0 01T TSSO UTUPPPPPP 25,
18.2.4N0N-0OVEINOAAEADETUNS.uuii ettt ettt e e e e ettt e e e e e et e e e e e e e ba e e e e e e esatan e eeesessban e eeseetannaaeaees 253
IR T @Y =T4 (oY= (o [=Te D= (010 TR 253
18.2.6WhataboutconstanBndvariabIEaACCESS™?........uuuiieiiieiiiiee ettt e ettt e e e e e e e e e e s et e e e e e e aabn e eeaens 253
RS2 ®] o T=Tol A TATA = o] o1 0T PP PETRT R 25/
SR YA =T o] o1 aTe| = r= V1 P PEURPRR 25
R TN A =T 11T o T2 Lo PP 25
TR T2 O] 1 151 = 0| TP PPP R PPRTRPN 25

SWIG-3.0 Documentation

Table of Contents

18 SWIG and Allegro Common Lisp
RS RGN 2= A r=Y o] [T R 25

RS 10 T a aT=] = L (T 0 T 25

RSy AN 1 = 1Y T PP 2
18.3.6Classeand StructsandUnNIiONS(ON MYuuuiiiiiiieiee ettt e e e e e e e e st e e e e e e e e e s e e annneeneees 259

18.3.6.1CLOSWIAPPINGOL. ...ttt e e e e e e et e e e e e e e et a et e e e ae e e e e e e e nnnreeeeees 260
R RN I O M@ 1SN 1] 41T 41 7= Lo = T 260

SR A =Y 0] o] o (T TP PEURPRRT 26
18.3.7.1Generatingvrappercodefor tEMPIALES.uuuiieiiiiiee et a e 260
18.3.7.2Implicit TemplateiNStANTIAIONiii et ee s nbebbeeeeeeeeeeeeesaannnes 260

18.3.8Typedef TemplateSand SYNONYIMITYDES.ccuiiiiieiieeiee e e e e ettt ee et e e e e e e s e e atbebe e e teaaeaeese s e nbnbbeeeeeaaaaeaeeaaannes 260
18.3.8.1Ch00SINGA PIIMAIYEYIDEt tteeeieeieee e e e ettt et e e e e e e e e e ettt et e e eeeeeaesansbnbae et e eaaaaeaesaaannsbnseeeeeaaaeeeaeannnnene 261

18.3.9Functionoverloading/Paramet@efaulting.............oooiiiiiiiiiii s 261

18.3.100peratomrappingandOpPeratOrOVErIOAING. ueieieee e i ittt eeee e e e e s e ettt e eeeeaeeeesaaannrereeeeeeeaeeaaeaaannnnes 264

R TN R AT = 10 TSRO PP PTPUPUPPPPPRPRN 26

TR T 2 Ol ot (ol=T 0 0] 1 1P RT R 26¢

18.3.13Pasdy value,passiy FEfEIEINECE ettt e e e e e e ettt e e e e e e e e e e e a bbb e eeaeaeeas 266

S IV T=T0.0 =T o S S PP U PP PP UTP TP 2

18.4.1CodeGenerationn the CH4 WEADDEE. .. ueiiiee e e e ettt et e e e e e e e e ettt e e e eeeeaaesaaaeebbeeeeeeeeaeeesasaannnnnbnneeeeeaaaaens 266
ST 0 1V I o= 00T o PP PRURPRR 26¢
T 2 O 1 N N Y/ 0T 1 4= PRSP 267
T G O N N LY/ 0 T= 110 Y o PRSPPI 267

18.4.2Codegenerationn LiSP WIAPDDEIS. .. . uuetaaeateiaeuutteeeeetaaaaaesaaaaateebeeeaeeaaaeaaesaasssbeeseeeaeaaeeasaaannnssnbseeeeaaaaesessannnnns 267
S e LV LY/ 0 T=T 0.1 Y o TP PPPRURPR 267
S O 1 I/ 0= 17 o F PP PERPPRR 268
S e I I = Y/ 01T 1 7= o PO 268
S I 1] el I o i IR/ 01=T1.0 - o PP ERUPP 269

18.4.2. 5L ISP CLAS STY DM . tttttttttetaaaaaaaaaauutttteeeaaeeaaeaaaaaaasntteaeeeaaaaaaeaseaaaassstaseeeeaaaaeaeassaannsssbeneeeeeaaaeessanannns 269
18.4.3Modifying SWIG behaViomUSINOLYDEIMIAS .. . cevuuierinieeeteeeeetesesaeeseteeesaaeeeaasesetasesatsessanseretseeretsessnaerees 269

18.51denNtifier CONVEITEIIUNCIIONS. eieeteieiete ettt e ettt e et e e e ettt e e e et s e s saaeeeeta e eeseaase s s s e e s aaeesaaa s e s saasssssessssaessanssesennassnnnsaes 270

18.5.1Creatingsymbolsin theliSp ENVIFONMENL..........oiii i e et r e e e e e e e e e s eeeeeeaeaeeas 270
18.5.2Existingidentifier-conVertefUNCLIONSuuiiiiiiii et et e e e e e e e e st et ereeeeaeeeeeaannnes 270
18.5.2. 1identifier-CONVEIT-NUIL........cooiieitie ettt e e e e et e e e e e ee e e e e e s esba s e e e eesbaaeeeesenbanns 270
18.5.2.2identifier-CONVEIt-lISPIfY........e ittt e e e e e e e e e st e e e e e e e e e e annnane 270
18.5.2.3Defaultidentifier t0 SYMBDOICONVEISIONS.oiiiiiiiiiiiiiie e e e ettt e e e e e e e e e et e e e e e e e e e e e e annnbeeeeeeeeas 270
18.5.3Defining your OWN ideNtifier-CONMVEITEEuuiiiiiiie ettt e e e e e e e et r e e e e e e e e e e e annnnanbaeeeeeas 270
18.5.4InstructingSWIG to usea particularidentifier-CoONVEITEL...........ooiiiiiiieii e 271

MR XYLV A (=T aTo N oo [o T 2
e T @ 1Y VLY TR 2

2 N o [(oo Nt V] o o PR URT TR 27
2 N e Va1 o) =S T 0T [o 1o o WP PRRSRT 272
19.2.2SIMPIEC EXAIMPIE. ... ettt e e e e oo oottt ettt e ee e e e e e s e eetbe e et et eaeaeaeea e nn b ettt e et e e aeeeeeeaannnnrerteaaaaaaeeas 272
19.2.3C++ ClASSEXAMIDIE. ...ttt eeee e e e ettt ettt et e e e e e e e oottt ettt e e e e e e s e e s atebbe et e e e e e aeaeeaa e s ahbee et e eeeaeeeeeeaannbnbaeteeaeaeeeaeeaannnne 27¢

S (@] 11T == 1111 0] [USRS 28:
(T O X I SRR PRTTRT 2

20 SWIG BIA CH ..ottt ekttt o ettt e o4kttt e 4okttt e 4442kttt 424k ke et 444 4R R R e e £ 44 4R R e e £ 444 AR R R e £ £ e e 4R E e e e 44 AR R R e et e e e R et e e e b e et e e a e e s 2

SWIG-3.0 Documentation

Table of Contents

20 SWIG and C#

P24 RS AV o] o [l o To 0| (] PP PEEPTRR 28
AR N Oy N =Y PP TRRPPP 2
20.4.1ThEe SWIG C @ITAYSIIBIV. .. .eeeiiiiee ettt e e e e e e e ettt e e ae e e e e s s naaebe e e e e eeaaaeeeaeaannnenneeeeeeas 287
20.4.2ManagedarraysusingP/Invokedefaultarraymarshalling...........ceeeeeeeeriiiiiiiiiiiiieieee e 287
20.4.3ManagearraySUSINODINNINGuueeeeteeeeeeeeaaaaeeetteeeeeeeeaeaesaaaasneeeeeeeeeeaaaeaasaaaasssbessaeeeaaaeaasasaanssssnseeesaaaesesannnnnns 289
AT O o= 01 L ST U PRSP 28
20.5.1C#exceptionexampleusing"CheCK tYPEIMAuuuueiieiiieeee e ittt e e e e e e et e e e e e e e e s e s anbebaeeeeaaaaaeeeas 291
20.5.2C# exceptioneXampleUSingUOEXCEPLION.uueiieiieeieee e e e et ettt et e e e e e e e e e st be et e eeeaaeesaesaannsbaneeeeeaaaeaeaaaannns 292
20.5.3C# exceptionexampleusingexceptionsPeCifiCatioNS..........cccuuuiieiiiiiie e 293
20.5.4CustomC# ApplicatioNEXCEPLIOMBXAMIPIEveeeiiiiieee ettt e e e e ettt e e e e e e e e s e e s e bbeeeeeeeaaeeeeaaannnnnnes 294
A0 ST Ok BT (=Tl (o] £ SRR 2€
A BT =Toa (o] £T =)= L0 1] o] = PR SRR R PRR 29¢
PAO NI B[=Tex (o] #1101 o] (=T 0 0T=T 01 =V i o) o ST PPPRRRTR 297
A0 SR T B[(=T o (0] o= \VL=Y= LK PR ORR 29¢
20.7MUIIPIE MOAUIES. ...ttt ettt e e e e e oottt ettt e e e e e e ae s s aebete ettt e eaeeeae s e nss b beseeeeeaaeeeesaannnbebeneeeaaaaeeaeaannnnnes 30
20.8 CH TYPEIMAPEXAMIPIES. .ottt e e ee e e e e e oottt ettt e e e e e e s e s e e ateebe e et e eeeaeeaaaaanaa b beeeeeeeaaeeeesesannsbsbeeeeeeeaeaeeesanannnsesbeeeeaaaaens 30(
20.8.1Memorymanagementshenreturningreference$o membewariables..............iiiieiiiiiiiiiiiiiiee s 300
20.8.2Memorymanagemerfor objectspassedo the CH+1aVer........uuuiiiiiiiieeii e 302
20.8.3Datemarshallingusingthe csintypemapandassociate@ttribUtes.oooviiiiiiiiiiiiieeee e, 303
20.8.4A dateexampledemonstratingnarshallingof C# ProPEITIES. ...cuvveeeeiii it 306
20.8.5Dateexampledemonstratinghe 'pre'and'post'typemapattributesfor directors..........cvvveeevevieeeeiiiiiiciiinee. 308
20.8.6Turningwrappedclassesnto Partial ClASSESc.ei ittt e e e e e e e e e s e e eeeeeeeas 308
20.8.7Extendingproxy classesvith additioN@lCH COAEouiiiiiiiiiiiiiiiiiie et e e e e e e e e 309
20.8.8UNderlyiNGtyPeIOr @NUMIS. ... ceiiiiieei ittt ettt et e e e e e e e ettt et e e ee e e e e s s nbb bt e e e e eeeaaeeeeaeaannenbeeeeeeas 310

YAV [Tz T aTe O T (03 =T o T 3
A o (S [T TR =TT TR 31

21.1.1RUNNINGSWIG IN C MOAE. . tetetieeeeeeie ittt et e e e e e e e e e e etb ettt et ee e e e e e saaaaanbe e teeeeeaaeeeaesaansesbeseeeeeaaaeeeseaannnenneeeeeeas 311
21.1.2RUNNINGSWIG IN Gt MO oottt et e e e e e ettt e e e e e e e e e s e bbbttt e e e aeaaeaesaaannbbebeeeeeeaeeeeeesansnsbesneeaaaaaaens 312
A A O To (=] 1<) =T\ ([0 1 USSR 31
A 1 = a0 T o [@0 V7= 110 T RSP PRPPRPPR 312
2 A (o 1o [| 1= PRSP 31
21.2.3C0oNStANtRNAVANIADIES.uvuie ettt e e e e et e e e e ettt et e e e s eeta e e e e e e s s st s eeeseesaaasaeeseebaanaeeeeresrannsass 312
2 I U (o3 1o] T PPN 31

AR (o] =] 01 [0 L TS PPRURPRR 31
A T I 01 O 1 S TR UPRPPRPR 3!
A] - T =PTSRS 3.
21.4.1Staticbinaryor sharedibrary linked at COMPILETIME..........oiiiiiiiiiieii e e e e 314
21.4.2Building chickeneXteNSIOMIDIAIIES.cieieeeiiiiiiee ettt e e e e e e e s e ettt e e e e e e e e e s aannnbbsareeeeaaeeeeeeaanns 314
21.4.3Linking multiple SWIG moduleswith TINYCLOSt e e e e e e e e e e e e s e s aneneeeeeees 315
A N Y] 01T 110 F= oL ST TR 3
A I 5] o] 01 (=] £ RO 3
A T K TV o= o <]| 1= od T o USSR 31¢
21.7UnsupportedeaturesandkNOWNPIOBIEIMIScoi ittt e e e e e e ettt e e e e e e e e s e e e bbb e eeeeeaaaeeeeaaannns 316
21.7.1TinyCLOS problemswith ChickenVerSion<=1.92.........oiiiiiiiiiiiiieee ettt e e e e e e e e et eee e e e e e e e e e annnnees 316

XY A (CI= T Lo I T 3
A N 11T o 11 Tt 1o TR 31
A A O] 1 1A T= 110 [1ATN101Y10]07= 11101 DT 31¢€

A AR I Y] 0= 110 F= o1 ST TRRPPP 3
22.3.1CH<->D NAMECOMPAIISON. .. .tttttttteteeeeeetaaatttteeeeeaeaaaaeasaaaaeteteeeeeaaaaeasasaasastesseaeeaaaeaesaaaasssbssaeeeeaaeaessesannssssnnes 319

AR B Y] o L= 11 0107 0 TSI o | Y7 o= RO TR PP 316
R RC 1 Ao 101 o [1(=Tox o) a1 o 14T 01 (0] (o] | ST 319

SWIG-3.0 Documentation

Table of Contents

22 SWIG and D
LRI Yo [T o [o]01 Mo o [T =Yo3 (o] {Ta o [0 [T (Yot (] (0] V) Fu TSR 320

PR R\ LYol A ToT0] YA 0T A= L PSP PPPRRRRTRRN: 32C
22.3.6C00EIN ECHONEYPEIMIADS. + .+t etteeteeetetiiitttteteeeetaaeaaeaaaaaeteteeeeeaaaeaaaasaaassstbeeeeeeaaaaaeasaaansssbeseeaaeaeeesesaaansnnesseeeeeaaeens 320
22.3.7SPECIaVANIADIEMACIOS. ...ttt ettt e e e e e e e e ettt ettt e e ee e e e s e aanntbe et et e eeaaeeeeaaaannnbbnaeeeeaaaeeeeaeannnnnee 321
S (=Y: 11U | (= R POPTRRTt 3!
A A wd =10 1112 PP 3

P o1 B (o =] o 1T 0 U EPRRRRT 32
A D N B 1 (=To3 (0] =TT 3:

R T @ L A1 A=Y= 11U (= TN 32

22.8.1ExtendedhamesSPaCBUPPOMNSPACE. . .. ttteeeeetiiauutttteeereeteeaeessaaaanteeteeeeaaaeeeaaesansesbeeeeeaeaaaaeesaaanntnseseeeaeaaaeaens 324
R I N F= VALY oY L (Y ST o] o Yo« SRR SSP 324
AR T @] o1 =101 (0 1Y/=T1 [0 =V |10 o TR PUPEPPRR 325
22.8. ARUNNINGINEIESI-SUITE. ...ttt ettt e e e e e ettt et e e e e e e e e e s et bttt e et e e eaaaeaesasannbbsbneeeaeaaaeaeesaannnns 325
22.9D TYPEMAPEXAMPIES. ... eeeeetiiieeeee s ittt et e e e e e e e ettt ettt e eeaeeeesaa e e a e bt teeeeeaeaaeeaeaanseebeeeeeeeaeeeeesaaassnbbsseeeaeaaeeeeaeaannnne 32!
22.10Work in progresSSaNdplannediEaiUIESuuueieeiiiee ettt e e e e e e e e ettt et e e e e e e s s e e abe et et eeeaaeeeae e e nnnran e aeaaaaeeas 325

AN AV [CI= T Lo T T 3
AT R @ LYY= ST 3.

AT =111 o] =TSP PPRPRPRRR 3!

23.3RUNNINGSWIG WILN GO eteeiee ettt ettt e oot ettt e e e e e e e e e s e be et e et e e eaeee s e e s nnbesbeeeeeeeeaeeesaaannsnbenneees 32¢
23.3.1Additional ComMMAaNAINEDPIIONSuueeiieiieeee ettt e e e e e e e e e et e e eeeeaeeeaaasaansbbaeaeeaeeaaeeesasaansnsbeneeeeaaaaeens 327
AT T €10 X O 11 11 010 1 [PR SORPPR 32

23.4 A tour Of DASICC/CHHWIAPPDING: ..o eteeeeeeeeeeeee e e e e e aeteeteeeeeeeeaaeeasaaaaaneeeteeeeeaaaeeaasaanssbbeseeeeeeaaaeesaaannnbanbeeeeeaeaeeaesaannnes 328

23.4. 1 GO PACKAGENAIMIE.uiteeieiiieeee e e e ettt e e ee e e e e e e e e ae e bat e e e eaeaaaaeaa s s n e bebee et e eeeeaeeeeaaannnbbebeeeeeeeaeeeaaeannnnteeteaeaaaeeeas 32¢
T B 10] AN = 1 11T PR 32

P I G T T 0 Y O 0] 1] =\ 11 TN 32
AR L o 101 a 1<) = L o) 0 T 32¢
A] 0 Y O P 1Ty YT 32

23.4.5.1G0 ClassMemMOry MaNAOEMIENT.ciiiiiiiiieieee e e e e ettt et eeeeaeaeeasaaaeabbeeeeeeeeaaeeesa s s nntssseeeeeeaaaeaesaaannne 330
23.4.5.2G 0 ClaSSINNEIIANCE.ceueiiiete ettt e e et e e et e e e et e e e et e e e eaa e e s et ee s et s sssaa e sebaneesetasesnanenees 331

AR ST C Lo =Y 1] 0] o (S TR RPN 33
A A CTo Y B (ol (0] O = YT =L NPT 331
23.4.8Default GO primitive tYPE MEAPDINGS. .« teieeeeeeieieiitttie et et e e e e e e e e ettt et e e e et e aeeeesaaaanbebbeaeeeeaaeeaesaaasnrbsaneeeeaaaaesaeaanns 331

23. 4. QO ULPDULBIGUIMIEIILS. oo oot e oo e e e et et ettt ettt ettt ettt e oo oo 4 o4 4o 4o 22 e e e e e et e e et eeeeeaete bttt beeb b e o e o e e e e e e e eeaeaeaeaeaeaeeennennnnnns 33
AT SN 0VAe [o TaToTr= o [o [T TeT T 1 (o o X odo o = Ju PR PPPEPRT 333
A T 3 N L CTo] 1] 01T 110 F= 1 0L TP SRUPURPPP 33

XAV A [Tz T aTe U 11T 3
24.1 SUPPOIEASUIIE WVEISIONS. ... eeeeeeteeee e e e ettt e e e e e et e e ettt et e e ee e e e e e aa e st beteeeeeeaaeaese s e nnbebaeeeeeeeeaeeesaaannnsbnbeeeeaaeaeaaaeas 33¢€

P A V(Y= LT e o) 1Y (o o (UL P UEURPRR 33
T O] (o K €] = N TN 11 S N = A PTPRR 33
P] - Vo= U U PSR PPRI 3
P ST 00 o] 1= I - Vo T R PPRRPPTRR 33
P e 1T\ < I = Lo [R TSR RPPI 33
24.4.3Native GUIIE MOAUIE LINKBOE. veveeeieeiee e ittt e e e e e e e ettt e e e e e e e e e e saaae b ae e et eeeaaeeesaaannbssbneeeeaaaaeeesaaannnn 338
24.4.401d Auto-LoadingGuile MOAUIE LINKAGE.ceiiiiiiiitieeie ettt e e e e et e e e e e e e e e e s annnb e aeeeaeaaeeeas 338
P) w (0] o] 0TI 22 1] = o = PP SPOPRPRTT 33¢
P oY e (=TT oo T < o] [0 |1 1o TP PRSP 33
P X YA 01T 11 F= o 1 S PR RRTPPP 3
24.7Representationf POINTEISASSIMODIS.iiiiiiiiiiie ettt e e e e e e ettt et e e e ae e e e s s s n bbb be et e eeeaaeeaeaaannnbeeneeeeaaaeens 339
A 1S 11T oSSR 34
Y €T Vg o= o < 9o [T ox 1o] NS PPEPRPTRN: 34(
2Rt e1 =5 Cod=] 0 1[0]] F- V0T | T T PP PR 34

SWIG-3.0 Documentation

Table of Contents

24 SWIG and Guile
e] ad (eYol<Yo [[z [oYeI0 [a 1<) a1 £= 10) A T 34(
KO] ad o Tol= T [L=y N AT 1 () TP 34

24. 11 GOOP SPIOXY ClASSES . ttttttttetaeaetataiaittttetetaeaaaeaaaaaaaatteteeeeeeaaaeaaasaasseeteseeeeeaaaeeesaaaanbesbeeeeeaaaeeeessannsnsbssneeeaaaaeeesaaanns 34
P I NP2 U 0T T | TS 1= USSP 34
o 2 I 1< T P PR TT PR 34

AN AV A [Tz T aTe I 2 A= TP 3
ST K O LYY YT T 3
SV md (= [T AT =TT T 34

25. 2. ARUNNMINGSWIG ...t e e itttiie e e ettt e ettt e e e ettt e e e e sttt e e e s sataeee e e st beeeeeessteeeeeeaataeeeeeeasbaeeeeeentteeeeeeasbaeeeesansseeeeesnssneeeenanes 34¢
25.2.2Additional ComMmMaNdINEDPIIONSuueriieiieeee e ittt et e e e e e e e e e et e et e e e e aeeeeaasaasabbaeeeeaeeaaeeesaeaannnsbeneeeaaaaaeans 349
25.2.3Gettingthe right NEAAEHKIIESceeiieieee ittt e e e e e e s e e ettt e e e e e e e e e e eaannneeenees 349
25.2.4CompilingadyNamiCMOAUIE.ueiiiiii ettt e e e ettt et e e e e e s sa e e tbeee et eeeaaeaesaaannnbssbneeeeaaaaeaesaannnnes 349
25.2.5USINGYOUIMOAUIE.ceeiiieeeei ittt et e e e e e e ettt et e e ee e e e e e e s ete bt e et e e eaeeeaesanesbbeeeeeeaaaeeesaaansnsbssseeeaaaaeeaaeaannnnnes 35(
25.2.6DYyNamIiCliNKING PrOBDIEMISeiiiiiiee ittt et e e e e e e e e ettt et et e e eeeeaesaansebbe st e e eeaaaeeeseaannntnneeeeeeas 350
25.2.7CompilationproblemsandcompilingWiIth Cr....oiivviiee i e e e e st e e e e s snbraeee e 351
AR <] 201 o [T aTe Mo RAYiT 0 Te (o TV TP PRPPRRR 352
25.2.8.1RUNNINGSWIG from VISUAISTUIO.ceieiiiiiiieeiie ettt e e e e e e e s et eeeaeaee s 352
25.2.8. 2USINGINIMAKEeetieiittiete e e ittt e e ettt e e e sttt e e s et e e e e e asta e e e e e s steeeeeaastae e e e e e sbe e e e e s anbae e e e e annae e e e e anntnaeeeannreean 352
25.3 A tour Of DASICC/CH+WIAPDING: .1ttt tivtreteeeitteeeeeeittieeeesstteeeeaaastaeaeesasteeeaeaassbeaeeeaastsaeeeaasteeeesaassseeessassseeeessssseneessnssens 353

25.3.1Modules packagesindgeneratedaVaClasSSESuuuu ittt e e a e e e e e 353
ARG I U o 110 1T 35

SRR €1 (0] o =Y AVZ= 1A E=1 o] [) - T 35:
BTG T 1O 0] 1] = 1] TN 35
SIS A 18 00 1=] =1 10 0 35

25.3.5. JANONYIMIOUSEIUIIS. ..ot eeeeeeeeeeeteteeteeeeeeeeaetaebababaee oo oo o1 o4 e a2 e e e e e e aeeeeaeeteeeaeassesesbebe b aba e ae e e e e e e e e aeaeaaaaaeas 357
AT STV Y] 01T U= =1 101001 T TSSO PPRRT 357
25.3.5. 3P IOPEIJAVAEIIUITIS.eeiiieeiittiiettttttebett e o e oo oo e e e e e e e e aaaaeeaeeeeeeeeseasbe bt bb bbb e e o e o e e e e e e eeeaeaeaeaeeeeeeesesssnnbnnes 358
25.3.5. 4TYPEUNSAIEENUIMIS. ...ttt e e ettt e e e e e e e e s e ettt ettt e eeeaaeeeassannsnsbseeeeaaaaeaeeaaannnn 359

AT BT o 1100101 (=TT 410 00T PP T PSSO 356
SR I o] Lo 111 (=Y TR 3€

B TG A (11103 (U N 36
SRR] O o] F= 1YY YT 36
AR I L O 18] 1<) 17=1 1101 < T 36:

25.3.10Pointersreferencesarraysandpassy VAIUE.cooiii ittt e e e e e e eeeeae e e e e e annnnnees 363
25.3. L0, INUI POINEEIS .. tttteeeeeeee e e e e ettt e e e e e e e e e e e ettt ittt et aeeeeea e s s nneaebe e e e e e eeaeaeesaaannsbebteeeeeeaeaeaesaaannnsbnsnneeaeaaens 364
25.3.11C++ 0VEerlOAEAUNCLIONS.vvueieeieiit et e et ettt e e e ettt e e e e et e e e e e e et e e e e e s e et e eeeeessbaaseessestanaaeessestansaeeererees 364
AT I 2 O o [7= LU]| =T o 1800 T= 01 PP ESURT R 365
AT T RS Ol =V 11T 01 (o] 1 T TSRO PUUPPPTPPPURPPROPON 36°¢
A TN O (Y 1410] = () YR PPRRPPTRRR 36
AT T S O T 1 =111 01101 (=1 £ PSPPSR 367
25.4Furtherdetailson the geNerate@aVaCIBSSES.cuuiea e ittt e ettt e e e e e e ettt et e e e e e e e s e e e nnbabbneaeaeaaaeeeas 367
25.4.1TheinterMEIArYINT CIASS ettt e ettt e et e e e e e e e e e ettt et eeeaeeaesaanssebeeeeeeeaaeeeeseaannntnneeeeeens 368
25.4.1.1TheintermediaryJNI CIaSSPIAGMES. ... uuuuueeteeieeeeeeiaaiitieeieeteeeeeaeaaaaabetbeeeeaeeaaeeasaaaannsasereeeeaaaaeesesanannnes 369
25.4.2The JaVAmMOUUIECIASS.uuteiieeieeie et e ettt ettt e e e ettt e e e e e e ea b e e e e s eesaa e e e e s sestanaeeeesssaban s eeeseesataneeeesesrannnnns 370
25.4.2.1The JavamOdUuleCIaSSPIAGMEAS. .. .c.eeiiuutreeieeieeeee e e e e e ettt eeeeaeaeeaaaaasssbeaseeeeaaaaessaaannbssseeeeeeaeeeeesananne 370
A B N o \VZ: 10110) AV o F= 1SS < F PSR PR 37(

25.4.3. AMEMONY MANGGEIMIEIALttt e e e e e e e e e e e ettt et ettt et tete b e b e oo e oo o oo o2 e e e e e aeaaaeeeeeeeaeeeesebnbsbebbbbsnnn e e e e e as 371
A I 0] AT=Y 1= 1 10 = TR 37:

25 SWIG and Java

SWIG-3.0 Documentation

Table of Contents

AR o 18 1o F= T < T 37

25.4.5. 1 TYPESAIEENUMCIASSES. ... ettttteeieeee e e e e e ettt ettt e e e e e e e et e ettt e e ee e e e e e s ntbbbe e et e aeeeeeeeaannnsnbsneeeeeaaaeaeaanannns 379

25.4.5.2Pr0PEIJAVAENUMICIASSES. ... eetiiiieieeeei e ittt et e e e e e e e e s st e e e e eeaaee e s s s e s nbaebeeeeeeaaaeaeesaannnsbssneeeaaaaeaeseaanns 380

25.4.5.3TYPeUNSAfEENUMCIASSES. ...ci i e ettt ettt e e e e e e ettt e e e e e e e e e s e nbebbe et e eeeaaeeeeeeannneneeees 381
25.5CrosslanguageolymMorphiSMUSINGAINECIONS.uueeeieieeeee e i ittt e e e e e e e e e e sat ettt e e e eaeeeeeaaasnnnbeeeeeeeeaaeeesseannnsnnseeeeeeas 381

A TSI A = g F= o] T T o [T (Yo () PSRRI 381
AR I B (=01 (0] Ml 1Y T 38:

AT C] O \V/<T daT<F-Te s alo [o]0Ye 1) o (o= | ST 382

AR ST 100 o] [=To [T =T o (0] £I)= 11 1]][TR PPPRRRTR 383
25.5.5DIreCtONtNIEAGINGUSSUES. ... e eittieeeee ettt et e e e e e e e e ettt et et e e e e e e s e e naetbe et e eeeeaeeeaae e nnsasbeeeeeeeaeeesesanansnbesbeeeeaaaeans 383
25.5.6DireCtOr PErfOrMEANCEUNING ettteeeee ittt et e e e e e e e ettt e et e e e eeeeaesaaaaabbeeeeeeaaaaeeesaaansbsbaeeeeeeaeaeeeaaaannsennnees 384
25.5.7JavaeXCeptioNGrOM QIFECIOIS ... iiii e e e it ittt e e e ettt et e e e e e e e e e ettt et e eeeaeeeeseaasnabebeeeeeeeaeeeeeaannnenreeeeeeas 384
AN Y Yool oIS 110 0] (0 10T oA (=0 00 1=T00] 0 1<) £ PR PPPRRRP 387
AT ©0]1111110]0 01011 (0] 1017411108 (Y= 110 | (== TSRO 388

25.7. 1C/CH+NEIPEIMUNCHIONS. ... ettt e e ettt e e e e e e e e ettt ettt e e eaeeesesannbbe e e et e eeaaeeeesaannnbesaeeeeeaaeeeeasannnnnnes 388
25.7.2C1assexXteNSIONNVITN YOEXIENM.iiieiiiiii ettt e et e e e e e e e e et e e e e e e e sab e e e e s eesba e aeesesabanaaeeeees 389
25.7.3Exceptionhandlingwith %exceptiorNd%jaVaeXCePLION.uuuuiiiie ettt e e e e e e et ee e e e e e e e e e aeananes 390
25.7.4Methodaccesavith %javamethodmMOIfIErS.iii i e e e as 391
A S I o 1SX= Lo L (=Tod 0] 0 10 [1= PP PR 39
25.8.1Inputandoutputparametersisingprimitive pointersandreferences...........cccvvvvviieiiieeei i 392
AR e IS 110 o [=T 0 To 0] (=T TR PPRRPPPRRN 39:
25.8.3WrappingC arraySWith JAVBITAYS.ueteieeeeeaiaaiiiteiteeeeaeae e e s e s aetteteeeeeeaaeeeaesaasesbeseeeaeaaaaeesaaansrssbneeaaaaaaesaann 394
25.8.4UNDOUNAEAT ATTAYS. .. etetttieeeee ittt eeteeeee e e e e e s eaeteeeeeeeaeaaaesaa s s nteeeeeeeeaaaeesaaaannsbsbeeeeeaaaaeesssaasssbesseneeaaaaeesanannns 395
25.8.5BiINArY AatAVS STINGS .. e ettt i ittt ittt e e e e e e e ettt et e et e e e e s e s aa abaebeeeeeeaeaaeaeasaansesbseeeeaaaaaeaesssannnsesbeeeeaaaaaeseesannnnns 396
25.8.60verridingnewanddeleteto allocatefrom JAVANEAN..........cc.uuiiiiiiiiiee e 396

AT O Y o1 1A F= 10 = 0] o] 1= PSP PEPRTT 41
25.10.1SimplerJavaenumsfor enumMSNVIthOULINIEIANZEIS.........oooeeiiiiieiiee e e e 411
25.10.2HandlingC++ exceptionspecificationsasS JAVAEXCEPLIONS.uvvurrriieeeeeeieiiiiitiiiieeeee e e e e e e e eireeeeeeeeaeaeeaeeanns 412
25.10.3NaN Exception- exceptiorhandlingfor @ partiCulantype...........coooi i 414
25.10.4ConvertingJavaStringarraystO CRA™ ™o e e e e e e e e e s e e e e e e as 415
25.10.5Expandinga Javaobjectto MUltiple argUMENES.uuuiiiiiiiee et e e e et e e e e e e e e e s e e enneb e eeeeaeeas 417
25.10.6Usingtypemapg0 retUINAIGQUMIENESueeeieeeee e esietitieeeeeeeaeeeeesaaasettesseeaeeeaeeesaaasntesbeeeaaaaeeeeeesannnnnbssneeeeaaaaens 418
25.10.7Adding Javadowncastdo polymorphiCretUrNtyPES ..ot e e e e e e 420
25.10.8Adding anequalsmethodto the JAVACIASSEScooi it e e e e e e e 422
25.10.9Void pointersanda commOnNJaVaDASECIASS.ceiiiiiiiiiiiiii e e e e ettt e e e e e e e e e e e e 423
25.10.10StrUCPOINTEITO POINMEEL. tteeieeeeeee e e e e ettt et e e e e e e s ettt e e e e e e e e e sa s nsabe e et e eaeaaeeeseaannnbebbeeeaeaeeaesesaannsnnesseeees 423
25.10.11Memorymanagemenivhenreturningreference$o membemariables...........cccveeiiiiiiiiiiiiiis 425
25.10.12Memorymanagementor objectspassedo the CH+1aYEI........oioi i 427
25.10.13Datemarshallinqusingthejavaintypemapandassociate@ttribUtes...........eevvereeeiiiiiiiiiiiiiiieeeee e 428

25.11LIVING WIth JAVADIIECIOIS. .. . teeeeeiieeeeeeiei ittt et e e e e e e e e ettt ettt et e e e e e e e sa s e antabbe e e e e eeeaeeeeaaannsbeteeeeeaaaeeeeesannnnbbsseeaeaaaaens 430

25.120ddsandends

ST A N = V7= 1 o T oo] 111 T=] 1 TR 432

SWIG-3.0 Documentation

Table of Contents

25 SWIG and Java

25.12.2FunctionalinterfacewithOUt ProXY CIASSES.ccii ittt e et e e e e e e e e e e e eeeeeeeas 433
25.12.3Usingyour OWN INTFUNCLIONS ...ttt ettt e e e e e e e s e s ettt e e e e e e e e e e e e annneneneeeeeas 433
25.12.4PerformanC@ONCEINSANGANINTS.uuuiiiiiiiiiie e ettt e et e e e e e et e e e e ee s s e e e eeseesba e eeeesssbaseeeseesataaeeesesranns 434
AT 2R 1Y o 11 o o o RPN 43
AT RSN oYz | e V1] o) = TP EETRR PP 43

A A TAY A (= T To I F= Y= TS o] 1) PRSP PPERPPR 4
T R @ LYY Y= T 4

A I md (= [T AT F= T T3 T 4z

26.2. TRUNNMINGSWVIGt teeeeettee e ettt e e e e oo oottt ettt e e e e e e s e e s nte e be e eeeeeeaeeeesa e s s ebetaeeeeeeaeeeeesaannsbesseeeaaaaeaasssannnnnne 43!
26.2.2RUNNINGTESISANAEXAMPIES. ...ttt e e e ettt e e e e e e e e e e e ba et e eeaeaaeeesaaanntbebeeeeeeeaeeeeesannnsbssneeaeaaaeens 436
26.2. 3KNOWN ISSUEBS. ... eitieeeiie et tee e et e et e et e e et e e e ettt e e et e e e e et e e eaa e e tan e e etaeeeaan e s san e s staeeeaanessaneestaneeestnesenneeeran 43
A TS] [a1 (=To =1 1o o RO RPPPTR 4

26.3.1CreatingNOde . JSEXLENSIONS.uuteeiteieeeee et ettt e e e e e e e s e e bbbt et e e aaeeese s e saebeeaeeeeeaaeeesaaannbbesseeeeeaeeeeseaannnnreees 437
TS T8 W N I (18] 117 T T 11T O PO P PP PPPRPRPI 438

PRI 0] 1Yo [0 =10 LAY L=Y o TR 43¢
R I (1) G T 43
RS T C 1 T 43

26.3.3CreatingApplicationswith NOAE-WEDKIL............oii e er e e e e e e e s e aeeeeeeaeeas 439
P =T 1] o] L= OO PPPRPPPRRR 4

P T S0 0] o] = SO PPPPERRRP 4.

A I B O F= 13 USRI 4¢

A TSY 1101 0] (<Y 0 A TT 1= LA TR RPPRRRPR 44
R T Yo U (o= O e Yo [T TR 44

ARSI @fo e [l =T 0] o] Fo (= TR TSP 44!
I TR 4110 G 44
RN | 110 (Y Y 4= L ()T 44

26.5.5HandlingEXCeptioNgn JAVASCIPICONE.uuiiiiiiiiieeee e e e e ettt et e e e e e e e s e e ettt eeeeeeeaeeeeeeaaasnbbeseeeeeeaaaeeseaannnenes 448

AT T O 1] PP PP PP PP O PP PPPPUPPPPRPPPP 4

27.3.1Additional ComMMAaNAINEDPIIONSuueeiiiiieeee ettt et e e e e e e e e e et e e e e e aeeeaaasaasebbaeaeeaeeaaeeesasannsnsbeneeeeaaaaeans 457

27.3.2DetailSON CLISP DINAINGS. . ..tteetietieeiieiiittteee ettt e e e e e e ettt ettt e e e e e e s e e aaabe e teeeeeeaeeeaesaansssbeseeeeaeaaeeeseaannrnneseeeens 458
QA N T 4

SN AT A [I= T o To I U - T 4
S I N (S LRI =TT 4¢

28. 2 RUNNMINGSWVIG ..ottt ettt ettt e e e e e e e e ettt bttt e et eeaeeeesaaaa s e tatt et e e e e eeeeee e e nns b be e st eeeeaaeeeeeaannbnbbeneeeeaaaeeeeaaann 46
28.2.1Additional coMMANAINE OPTIONS.uuteiiiiiieeee ettt e e e e e e e e et e e e e e aeee e e e s e e nabbaeaeeaeeaaeeesasaannnsbeneeeeaaaaeans 461
28.2.2CompilingandLinking @ndINtEIPIEIEL.uiiiieiiieeee e ettt e e e e e e e s e ettt e e e e e e e e e s aaaanbbeeeeeeaaaaeeeaeaaannnne 462
28.2.3CompilingadyNamiCMOMUIE.ueeiiiiie ettt e e e e e ettt et ee e e e e e sa s aebbee et e eeeaaeaesaaannnbssbneeeeaaaaeaesaaannnn 463
28.2.4USINGYOUIMOAUIE.eeeiieeeeie ittt ettt e e e e e e ettt et e ee e e e s e s a e ebe bttt eeeeaeeeaesaaneabbseeeeeaaaeeeesaansssbsbneeeeaaaeeaseaannnnne 464

28.3A tour Of DASICC/CH+WIAPDING: ..ttt ettttrrteeeetteeeeeastteeeeesstteeeesaastaeeeesastaeeaesassteaaeeaasteseeesasteeeesaassseeessasssaeeesssssneeessnssees 464
A SR I 1Y, o Yo V][RR 46

SR I U o 110 1= 46
A R €1 (o] o =Y AV Z= A=Y o] () TR 46!
A R R L Ofa a1y v= i L0 L= 10 10 0T 466

SWIG-3.0 Documentation

Table of Contents

28 SWIG and Lua
28.3.4.1Constants/eNUNEBNACIASSES/SITUCTULES.vuuiieeeeeiiiiee e e ettt e e e e e e e e e e et ee e e e e s esbaeeeeseessbaeaeeeeeseans 466
A SR ST o 101 (=] =TT PUPPRRR 4¢€
A s I S 11 (o1 10 | (=Y PSPPSRI 46
s R I A 0% ol I oYL YRR 46
AR <L O 111 01=) 117-1 o =TT PPT SRR 47

28.3.9PointersreferenCesyalueS ANUAITAYS.ccuuvueiiiiieiee e ettt e e e e e e e e s s e s bbbt eeeeaaaeeeaaaasnsbetseaeeaaaeeeaesannnnnes 471
A R I N0 O o o)V <Yt (oY= Vo [T 0 aTe 110] 0 471

P T T B O 0] =T = (0] £ PP PP PTTUTP PP 47
28.3.12C1asSEXIENSIONNITN YOEXEEINM.ueiiiee e ettt et e et e et e e e e e e et e e e et e e e eaa e e s et e s saba e e saaeessaneeenrans 475

P T TN O (Y 1410 = (S YT PPRRPPTRRN 47
AT T S O e T 1 1= 1 01101 (=1 £ PO PPPSR 476
P T T O o= 010 1 ST PPPRRRRT 47"
P TS T A NP2 T 4 ST 0= Lo OO P PP PTPUPUPPPPPPPPON 47

28.3.17.1C0MPALDIIEY INOLE. .. .ee ettt ettt e e e e e e e ettt e e e e e e e e e s aa e nnbbeteeeeeaaeeeeseaannnbnbeeneeaaaaaeaans 480
< TG R A\ P2 T 1= 48

A I ARG 1 aT<Y 41 0= Lo T 48(

AN T AU LS (o] aTv4=\i o] o) MY/ 10T o =T aTe 1o I TP PPRRIT 485
28.6.1Writing YOUF OWN CUSTONMIWIADDEIS ... teeeteeteeeeeesaauuttteteeaeaeaeaasaaasnsesseeeeaeaaaassssaassstesseeeaaaaaeesaaanssssseeeaeaaaaesaan 485
28.6.2AddIiNg additiONAILUB COAE.uueeieiieee ettt e e e e ettt e e e e e e e e e s e aab e et e e eaeaeeessaannebesaeeeeeaeeeeseaannnnreees 486

28.7DetailsSON the LUBDINAING.......cie ittt e e e e e et ettt et e e e e e e e e s s ant bt be et eeeaaaaeaesaannnsbesaeeeaaaaeeesaaannnnnne 48¢
28.7.1Binding globaldatainto the MOAUIE..............uuiiiiiiiiee annneeeeeees 486
28.7.2Userdat@BNAMETAtaIESttt e et e e et e e e e et ae e aerrnr s 487

28.7.3MEMOIY MANAUEIMIENL. ... ieeeeeeietetetetee oo oo e e e e e e e e e e e ee e et et eeeeeaeasbebebees s e oo oo 4o oo e e e e e eaeeeeeaeeeeeeeassnbenbsbabnnnn e as 489

A AT [CI= 1 aTo 1Y o o [1= e TR 4
A I @ Y=Y VA= RS PPPPN 4

A I Y o 1172 1 1o o O ERPPPURIN 49

A B4 ©fo] 1 o3 =] o[o T U PPPRRRPTR 4

A I N 101 (=) 0 7= (ol (0 N O 11 =1 1Y F PPN 491

A AV A 111 0 7= (o) (0N Ol 1] 0] = 1 L= OO 492

A] o (= 1100110 TV OO A€

A TS T K @011 o 1 Y U 49
PASRSIV.Xo [o [1iToTa - K @foT a0 - VaTe | 1T aTs ©] o) iTe] TSP 492
A I V(oo [N T 1Y 01T 1= o PP RPN 49
29.4. 1INPULSANAOUEDULS.ce oottt e e e e e ettt et e e e e e e e s e s aatb ettt e e e e aaeeasesannsbe bt e et e e e aeaeeesaaannnbesbeeeeaaaeeeaeeaannnsbenneees 49
29.4.25Ubrange g NUMEIAtIONSSELS. .. oiiiii ettt ettt e e e e ettt e e e e e e e e e e s et bbe e e e eeeaeaeeasaasnnbebeeeeeaeaeeeaesannnenneeneeeas 494
A e 1@] o] = ox £ U UR TR 4¢
A B B 1 0] 0 To S PP TP U TP PPPPPPTTR 4¢
AR] (el =] 01 1[0 L TSRS PPEURPRR 49
A o] =V 1] o) = PP PPPRPPTRR 49
A RS Y V(o1 C=a a1 a1 ESS (o aT=Yo =T L= = Lo) P EEE PR 496
29 . 5. I BALUIES. . ..een ittt e et eeteeeeteeeetaeettaaeeeetaeeeeateeetteeeetaeeettaeraaaaaets 48

A BT = Te |10 F= TP 40
A T A=) 1 =1 TR 4!

XV

SWIG-3.0 Documentation

Table of Contents

30 SWIG and MZSCREMEIRACKELttt ettt et e ettt e et e e et et e e e e ee s et e e e aaa s e s e et ee s et e e eaaa s e s saaee s et e e esaa e seaaneeretass 49’

30.1 CreatiNONAtIVESITUCTUIES. tieiieeee e et e ittt et e e e e e e e e e ettt e e eeeeeeeaaaneaabeteeeeeaaeeeese e e nnbebae et e e eeaaeeesaaannnsbnbeeeeeaeaeaeaeas 497

TS0 o (=TSt T 41 [P EETR PP 49
IO RCT o (=T aT=1 [0 [o od U ATy a1 7= 11T o W 49¢

NN AV [CI= T aTo @ 7= a1 T 4
N o (S [T TR =TT TR 4¢

o3 I 0 I T 011 T RS LT PSP PRPPPPPRP 50(
I3 I 2 @fo 0.1 o1 T aTo 1 =Yoo Yo [T PEPRPTRR: 50(
31.1.3TheCAMIPAMOAUIE.......cci ittt e e e ettt e e e e e e e e e e ettt et e e e e e e e e e e s aabbeeeeeeeeaaaeeseaannnssbbnseeeeaaaeeesaaannnnnnes 50C
O3 I I L ST T Yo T 2T Yo [= TS PPEPRPRR: 501
31.1.5CompilationproblemsandcompilingWiIth Cr....oiiviiieei i e et e e s e e e e s enbraeee e 501

N 2 1 a1 (o A oAV S @ or= T 0 1 1L O (=] = o = PPN 501

31.2.1Thegenerate@NOAUIE.uu ettt e e e e ettt ettt e e e e e e s e e e atbtbe e eeeeeaaeeeeaaasnsbeeeeeeaaeaeeesesannnnsnenneees 502

N 2] =1 010 10 11 S PORPPPORPPRTRN 5(C
31.2.2. 1ENUMEYPINGIN OCAML. ettt e e ettt e e e e e e e e ettt et e e e e e e s e s s nbbebe et e eeaeeeeeeaaanssnbneneeeeaaaeeesanannns 503

I A N =\ T PP TR 5(C
31.2.3.1Simpletypesof DOUNAEMAITAYS.........oiieiiiieiee ittt e e et e e e e e e e e e e e s bt eeeeaeeeeeeeaannnnes 503
31.2.3.2ComplexandunbOUNAE@ITAYS oiiuiiiieieeiieeee e e e e ettt ee et aeae e e s e s aaabbe et e e eeeaaeeesa s s nnbssseeeeeeaeeesesanannes 503
O3 R e U 1S o T =T Ko) [T o A PSRRI 504
31.2.3.4Exampletypemapfor afunctiontakingfloat* andint..............ooooeiiiiiiiiiiiie e 504

N I O O F= 11T =Y PTSRR 50
31.2.4.1STL vectorandStrNG EXAMIPIE. ... ceeieieeee ettt e e ettt e e e e e e e e e s e e bbb et eeeaeeeeeesannbnbeeeeeeeaaaeens 505
B B O O 1= 1SS = 1111][RR 506
31.2.4.3C0MPIlINGTNE EXAMIPIE ... e eeeee ettt e e e e e e e e e ettt e e e e e e e e e e e e e e nbbebereeaeaeaeeeeaaanne 506

R Y ST 1101 0] (YT o P EPRRP PSP 506
NS B (=T ot (] O P 1Ty YT 50°

N ST 1 B 1 =Yox (o) [1 i(Yo [U o110 N 507

31.2.5.20verridingMethodSin OCAIMI........oiieiiiiiiiii e e et e e e e e e e e et eeeaeaeeeeeeaannneereees 507
31.2.5.3DIreCtOrUSAgEEXAIMPIE. ... et et ettt e e e e e e ettt e e e e e e e e e e e bbbt e e et e e e e e e e e e e b e arrraeaaaaeeaa s 507
31.2.5.4Creatingdir€CtOrODJECES. ...ttt e e e e ettt e e e e e ettt e e e e e e e e e e e bt e et e e e e e e e e e e b e et reeaaaaeeaaan 508
31.2.5.5Typemapdor directorsdirectorin,directorout direCtorargouLeevveieeerir i e e 508
I RS o [=Toa (o] 1T 1A 1=y 0T o PRSPPI 508
I I R ST (o [T (=Tox (o] (010 118/ 0 1=T0 7Y o PSRRI 508
NSRS o [[(=To (o] =T o [0 101 1Y 1<) 1 AT | o N PP PRRPRRT 509
O §] o Ced = 1 [0 1L TSP PEURPRR 50

Y ALY [C IRz T aTo @ o1 v= 1Y/ T 5.
Y N o (S [T TR =TT T 51

A U 1011010 1A RO PPPRPRPR 51
YA L @fe] 1100 F-TaTo B [TaT< o]) iTo] o RO TPRTRPT 511
32.2.2CompilingadyNamiCMOAUIE.ueiiiiiie ettt e e e e ettt e et e e e e e e saaae b be e e eeeaeaaeeesaaannnbssbneeeeaaaaeaesaaannnn 511
32.2.3USINGYOUIMOAUIE. ... ceeeieeeeee ettt ettt e e e e e e ettt ettt e e e e e e e e s a e ete bttt e e eaeeeeaesannesbeeeeeeeaaaeeeeaaansnsbsbneeeaaaaeeaneaannnnne 511

32.3A tour Of DASICC/CH+WIAPDPING: .1ttt tivteeeeeeettereeeesttteeeesstteeeessastaeaeesastaeeaeasasberaeeaastseeeesasseeeeesassseeeeaassseeeessssseeeeesnssees 511
YR T 1Y, o Yo V][RR 51

TR Il U o 1o 1 PRSPPI 51
R T €] o] o= | AV T =1 o] [T ORI 51
32.3.4CONSIANTEINTENUITIS .. .uuu i eeieeititiee e ettt et e eeeeett e eeeesestt s eeeeeesaaseeesestaaaaeesesstanseesesssaaaeeessstaanaeesserstnnseeessnranns 513
R ST o 101 (=] £ U PRPRRRR 51
R I (0 [0 (0 (=Y a0 [O e o F= ToY oY=t PSP 514
R I A 0% 111 01 117-1 o TP 51
PR R <1 0% o 0)V/=) 1 [oF=Te [=Yo U] o3 10) o OO 516

ARG I [0] 01T = 10] TP TRUPURPPP 511
32.3.10CI1asSSEXIENSIONNITN YOEXEEINM. .. .eee ettt et e et e et e e e e e e e et e e e et e e e s et e e s aaessaba e e saanseseaneeenrass 517

SWIG-3.0 Documentation

Table of Contents

32 SWIG and Octave

R TN O (Y1410 = (S YRR PPERPPPRRN 51¢
R I I O e Y 1 AT 111 =0 101 () £ 51¢

32.3.13Directors(calling OCtaVeffOM C+ COARY) .. uuvurriiiiiaee ettt e e e e e e e e ettt e e e e e e e e s e s aanbabbeaeeeeeaaeaeeaaannnnnnes 519

R T 1 1 a1 (=Y= 16 £ TP 52
YA T RV [T aaTo] A VA a =T a = To =T 00T) APPSR SPURRP 520
A T KO X I U] o] o To | A SO P PP PPPUPUPPRPPPPPIN: 52
B T A\ D A 6T 0= L PP ER TR 521

I I LY [Tz T aTe =T o 5T 5
IS R @ LYY= T 5:
I I o (= [T TR =TT 52

33.2.1Gettingthe rght NEAAEHKIIESceiiieieeei ettt e e e e e e s e s ettt e e e e e e e e e e e e annneereees 523
33.2.2CompiliNgadyNamiCMOAUIE.ueeiiiie ettt e e e e e e ettt e e e ee e e e e e sa s ae bt eeeeeeaeaaeeesaaannnbssbneeeeaaaaeeesaaannnn 523
33.2.3Building adynamicmodulewith MaKeMAEaKEE.............ccuuiiiiiiiieeie ettt e e e e e e e e e ee s 524
33.2.4Building @ StatiCVerSIONOT PEIL......... i e e e e e e e e e e r e e e e e e e e e aaan 524
33.2. 5Usingthe 00700 L1 | =T PUPPR 52¢

33.2.7C0mp|lmgfor oL o1 o] P2 a0 1P EU PP RRTPP 528
33.3Building PerlEXtenSioNSINAENVINAOWS.ceiiiiiiiitiiiieete e e e e e e e e ettt ee et e eeeeeaessaaasnnbesseeeaeaaeaeaesaaannnsbsseeaeeaaaaesaasannnrnes 528
33.3.1RUNNINGSWIG from DEVEIOPEISTUTIO.vvveeeieeeeeeieiiiititie ettt e e e e e e ettt e e e e e e e e e s eebe e e e e e e eeaeeesasannnnbnbeeeeeeas 528

I RS I 8 LS T To T] {aT=T o] 0] o] =T O PRPPPPR 529
I N W A1) (o N R VL M1 (=Y =Y o < 52¢

oG I U o3 1o T PRSPPI 52
RN B €1 o] o= | AV T =1 o] [T PPT SR 52¢
I e 1 101 4151 v= 101 K- PSPPSRI 53
I o 101 (=] =TT PPPRRR 53
I o1 Y 11 (o1 11 | (=Y TSP 53
I 1 O el I T oY L= YOO 53
33.4.7C++ classeRNALYPE-CRECKING.o iriiie ettt e e e e e e e e et e e e e e st te e e e e stb e e e e e e antaeeeeeannres 533
I <1 O 01 V7= 1 [oF=Te [=Yo U] o3 (T0) 0 OO 533
I B[O o 1] = 1o TR PUPUPPURPRPRN 53
33.4.10MOdUIESANAPACKAGES.o ittt et e e e e e ettt ettt e e e e e e e e e ettt et e e aaeeeeasanebebeeaeeeeaaeeeeaaaannnbeeaeeeeaaaeeeeaeannnnnee 534
33.5INPULt ANAOULPULDATAIMEIEESeeeeeee ittt et e e e e e e e ettt ettt e e e e e e e s e s ettt et eeeeaeeeeeesaasanbbeaeeeeaaaeeeseeaannsssbsseeaeaaaeeeesannnnns 535
I o1 = Ced=T 011 [o] /= o |1 TP PPRRURR 53
33.7RemappinalatatyPeSVItN LYPEMADS.cvvuieieeeietiie i ee ettt e e e ettt e e e e e e e et e e e e eeeaaa e e eesees b e eeeessstan e aeeseesabaaaeeseerrannns 539
33.7. 1A SIMPIEtYPEMAPEXAMIPDIE ... ettt ettt et e e e e e e e e e ea bttt et e e eeeeeae e e nnbebeeeeeeeaeeeeeaaaannbbebatreaaaeeeaaaan 539
I YA Y 1 511 1= 1 7= 01 U PPRRPPPRRN 54(

AR Y] 01T 00 F= Yo N7 V= o] (USRS 541
A L8 Y 1 iU Lot 10 1< 54

33.8.3Returningvaluesfrom argUIMENTS. i ittt e e e e ettt e e e e e e e e e e s e a b b e e e e eeeaaeeesasannensbeneeeeaaaaeens 543
33.8.4ACCESSINCAITAYSITUCIUNEIMEIMIDBES. ...ttt e e e ettt e e e e e e e e e ettt e e ee e e e e e s aaannntbeteeeeeeaeeeeaeaannsenbeneeeeas 544
33.8.5TurningPerlreferenCesnto C POINLELS.coc.uuuiiiiiiieeee e e e ettt e e e e e e e e e ettt eeeeaeeeeesaaasnbbeaeeaeaeaaeeeaesannnnne 545
GRS o] o101 (=Y 1 =TT | 1T R T R PO R PPR 54!
OISl o (0 VA 0 = 1SS F U PEPETRRT 54
OIS N ad (=1 110 01T P 1O UUPPR 54
33.9.2StrUCtUrEANACIASSUWIAPPETS. ... e eeteeeeeei ittt e et e e e e e e e e e ettt et eeeeeeaesaaneabbe et e e eaeaaeeeseaannsbsbbneeeeeaeaeeeaaaannnsensnees 546
IS 1@] o] =To (@11 1T 5] 11 o PR 54¢
IS |\ 11 (T0 @ o] [T ol £ T PRSPPI 54!

OIS] (0)1 VA U 11 [T TR 54!
JCIC IS o111 A=) 1 7= o] < T 55

SWIG-3.0 Documentation

Table of Contents

33 SWIG and Perl5

33.9.7Modifying the ProXy METNOAS.ueeiiiiiii ettt e e e e e e sttt et e e e e e e s e s e nbbtbeeeeeeaaeeeeeaaannnes 551
TN 07 Ao [[T ToTr=To [o [T Te] T | =Y o Koo Yo L= RO PPPRRRPT 551
33.11Crosslanguag@OlYMOIPRISITL.cciiii ittt e e e e e e e e ettt e e e e e e e e e s e s nanbbeaeeeeeeaeeeeeeaannbnbeetreeaaaaaeas 551

OG0 I I = o] T o o [T =Y o1 o U PPEPRPRRR: 557

I I 2 BT (= od (] o F= LYo T TSR 55!

I N IRC @)Y/ aT<Y ST alTo:=VaTe [o] o] [=Toa (o [=1SY 1 [od 1o T o PO TR 553

33.11. AEXCEPUONUNIOIINGeeeeeieeeee i ettt e e e e e e ettt et e e e e e e s e e e e te et e et e e aeeeeee s nnebebeeeeeeaaaeeeesaansnbesseaeaaaaeeesanannns 554

I S @AY =T aT=T=Te ;T aTe [ofeTo [T o] o=\ oSO 554

G 70t Y Y o1 <] 0 7= 0 F TR UUUPP PP PPPPPPPRPRPPN 55

A SWIG BIA PHP. ...ttt ettt ookttt e 4k bttt e 44 s ket e e 4 4Rk b £ e 444 AR Rt £ 44 AR e e e o4 4R Rt e e e R e et e e e bt e e e e e e e e e nnae s 5

B N G =y a1 o A0 o |l S =T T L PRSPPI 556
34.1.1BuildiNg @108dabIEEXIENSIONuutiiiiiiie ettt e e e e ettt e e e ee e e e e e sa e e bttt et e e e aaeee e e e e nbbrbeereeaaaeeeeeaaanne 557

B B ST Lo | | =T T S RPN 557
YA S T o (o] o | md 101 (=) 7= 101 = TR 55

B KO0] 1] = 11 TN 55
A €1 (0] o =Y AN 2= 1 A= o] [T 55¢
e U o110 F T 55

B (@ LY/=T1 (o -V |10 e (PP 55
34.2. 5P OINtEISANAREIEIENCES .. .ceee ettt ettt e e et e et e et e e et et e e s et e e e et e e eaaa e e s aaa e s et eesaan s e s sanseesbaeesnnnanes 559

34.2.6.5SpecifyingImplementednterfaCes.ui e 563
34.2.7PHPPragmasStartupand SHUtdOWNCOTEuuuuiiiiiieieee e i ittt ee e e e e e e e e s ettt eeeeeaeeeeseaannnbetaeeeeeeaaeesesannnne 563
T RS @1 (o TSI F=TaTo 0Pz Lo (= o Yo VA0 L0 /0] 0TS o P PEURR R 564
B RS I = g F= o] T T o [T (=T o (o PSRRI 56¢
R I B [(=To (0] ol = Fo 1Y =)= F OO PPRN 56!
KT RCRSI@INY aT=T 6] allo:=TaTe (o] o] [=Tox (o [S1S] 1 N [ox 1T o FON PRSP PRPRR 566
B R | oy (ed=] 011[0] (8 [10 11T F PSS PPPRRURTRN: 56€
R RSIO)V/=Tdal=Y: (e Va0 (o0)0 (<) o] (o - | SO PP 567

G I X Y/ 01T 1A F= oL T TSP SRURPPP 56
I\ Tt =) | 2T T YU 56

IS AV [Tz T aTo [| (ST 5
ST N o (S [T T TR =TT 5¢€

BTN I U T T T 0o 1YL T PPRUPRTRRN 56!
35.1.2Gettingthe rght NEAAEHKIIESceiiiiiee ettt e e e e e e s e et e e e e e e e e e e e e e e nnneeeeees 568
35.1.3USINGYOUIMOAUIE.ceeeeeee ettt et e e e e e e e ettt ettt e ee e e e s s s st bebe e e e e e aaaeeaesannesbeseeeeeaaaeeesaaansnsbsbneeeaaaaeeasesannnnne 56¢

oIV ST Y (o] O O e 1V = o o 1o PSSP 56!
TSI 1Y, o Yo U] [T 56

oI U o 10 41 PUPORRRRI 56
oI €] o] o= | AV T =1 o] [T PPT SRR 56¢
35.2.4C0oNstantBNdeNUMEIAEAYPES. .. .eiiie e ettt ettt e e e e e e e e e ettt et eeeeeaeeeesaaanenbbe et e eeaeeeeeeaeannneeereees 570
35.2. 5C0ONSIUCIOIEINAD ESIIUCIONS. ..uu i eeeeeetiee e e ettt e e e e e ettt e e e e et et e e e e e eee b e eeeeessbaseeseesbaa e seesessbanaeeseesstansaeesenranns 570
oI I v= 11 To 1V [T 0] 1= TP 571

BT RSN TAYA (= T To N YA (o o TP 5
ST R @ LYY YT ST 5

IV md (= [T AT TR F= T T3P 57
36.2. LRUNNMINGSWVIG ...ttt eeeteee e e ettt e e e e oottt ettt e e e e e e s e e s nt et be e eeeeeaaeeeesa e s s b betaeeeeeeaeeeeesaannnbbeseeeaaaaeeesasaannnne 57:

SWIG-3.0 Documentation

Table of Contents

36 SWIG and Python

BT A2 ST T o [y (1 1] PP TR POTPPPRRRR 57.
36.2.3Handcompilinga dynNamiCmMOAUIE.............uuiiiiiiieeee et e et e e e e e e e s et eeeeaaeeeeseaannnenbeeeeeeas 575
LI] = L Tod 11014V PRSP PPPPRPURPR 57
36.2.5USINGYOUIMOAUIE.ceeiiieeeei ittt ettt e e e e e e e ettt ettt e e e e e e s e e s tbe et eeeeeaaeeaeeaanesbbseeeeeeaaeeesaaansnsbsbneeeeaaaeeaeeaannnnne 57¢
36.2.6CoMPIlatioNOf CH+ EXEENSIONSceii ittt ettt e e e ettt e e e e e e e e e e e ettt e e eeaaeeesa s s nbebbeeeeeeaaaeeesaaannnnrsbeeeeeeas 577
36.2.7Compilingfor 64-Dit PIAtIOIMIS.ei ittt e e e e e e s e ettt e e e e e e e e e e e e n e aeeeas 578
36.2.8Building PythonEXtenSioNSINAENWVINAOWS.uutuiiiiiiieeeeee ittt e e ee e e e e e s ettt eeeaaeaeeaesaaannnbbseeeeeeeaaaaeaaannns 578

36.3A tour Of DASICC/CH+WIAPDPING: .1ttt tiutteteeeettireeeeittteeeeestaeeeesssstataeesastaeeaesassteeeeeaastareeeaasteeeessassseeesaassseeeesssssneeeesnssees 580
I 1Y, o o U] [T 58

T ST I U [od 1o] T PPN 58
R RCT €] o] o1 AV T =1 o] (=TSRRI 58(
36.3.4CONSIANTEINTENUITIS .. .uuuieeieeiti et ee ettt e eeeeett e eeees e sttt eeeeessaaaeeeeestaaaaessesstanseesesssaaaeeesssssanaeeeserstanseeesenranns 581
SR I SY o 101 (=] £ T PPPRR 58
BRI S 11 (o1 11| (= PSPPSR 58
] SR A 0% ol 1YL YOO 58
SRR <1 O 1] 01 117-1 o =TSR 58t
36.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuuueeiiiieiee e ettt et e e e e e e e s s e aatebbeeeeeeaeaeaeaaaasnsbeseeaeaaaaaeesesaannnnes 586
36.3.10C++ 0VErOAEAUNCLIONS.ovvueieeiieit e e et ettt e e e ettt e e e e e et e e e e e eet e e e e e s ee bt e eeeeessbaseesesstanaaeessestansaseeeeseen 587
O IS T B (O 0] =T = (0] £ PP PP PP 58:
BT N 2 O 0T 11 11T 0= (o =1 TSR 58¢
BT T (O (T 1410 = (S YR PPRRPPTRR 58!
I SR N O ST 1 =111 01101 (=1 £ PSPPSR 590
B SR I S O e (=) (=) (=) 4101 = 010 01 1=Y0) 0] (=T o USRS 591
36.4Furtherdetailson the PythonClaSSINTEITACEuuiiiiiiiiee e 591

BT 0 0)TV o F= 1SS < U RETUR TP 59

BT 2 = 1 T I LY = U PT R PO PP PRPRI 59
T S I T 411 = Lo T 59

36.4.3MEMOIY MANAUEIMIENL. ... eeeeeeieeietetetet e e e e e e e e e e e e e e aaeet et eeeeeaeaebebebbee s e o s oo oo o2 eeeeeeaeeeteeeaeeeseasbnsenbsbnbnnnn e ens 595
36.4.4PYthoN2.2 ANACIASSICOIASSES. ... vtteeetieieeee i e ittt e e e e e e e e e ettt e e ea e e e e s saaae et ee e e e eaaaaeeesaaannnbssbneeeeeaaaeaesaaannnes 597
L Y @i (o 1T P TaTo 0Pz Lo [= o Yo VA0 L0 0] 0TS o S PEURR R 597
T RSN S P2 o] T T o [T (Yo (o) PSR 59¢
RS B[(=To (0] ol = Fo 1Y =)= VPPN 59!
36.5.30wWnershipandobjeCtAESIIUCTION.uuuiiiiieie ettt e e e e e e e e e et eee e e e e e e s e s annanbbeeneeeaaaaeens 599
36.5.4EXCEPLONUNIOIINGei e ettt ettt e e e e e e e ettt et e e e e e e e e e e s aatb e teeeeeeaeaeesesannnbebenseeaeaaaeeeeaaannnnnnes 60C
SRR O)V/=Tdal=Y: (e Va0 (o0)0 (=) o] (o - | SRR 601
G RN SN Y/ 01T 1A T2 o T TSP SRURRPP 60
] RS A Y 1Yot | F=T =T T O PPTPR 60.
36.6 COMMONCUSTOMIZAL O EAIUIES .. . ceeeeetiei e e ettt ee e e e ettt e e et ettt e e e e e s e et s e e e e e e sab s e e e s eebaa e eeeesssbaaseeseesabaaseesesstanaeeeens 601

36.6.1C/CH+NEIPEIMUNCHIONS. ... ettt e ettt e e e e e e e e ettt ettt e e eaeeesesannsbe b e et e eeaeeeeesaansnbesaeeeeaaaeaesaeannnnnnes 602
36.6.2Adding additioNalPYINONCOAE. ..ottt e e e e e e s e e ettt e e e e e e e e e e e e e eeeeas 602
36.6.3C1asseXtENSIONNVITN YOEXIENM.ii it e ettt e e e et e e e e e e e et e e e e e e e sab e e e s eesbaa e aeessssbanaaeeeees 605
36.6.4ExceptionhandlingWith Y0EXCEPLION.utiiiiieiieie e ettt e e e e e e e e ettt e e e e e e e e e sannaebe e e e e eeaeaeeesaaannneeeeeees 606
LA N o 1SX= Lo L (=Tod 00 o U 1= PP ERT PP 60
36.7.1INPUt ANAOULPULDAIAMIETIELS eeeeeeiee e et e s ettt e e e e e e e s e ettt et e e aaee e s e s e aaebeeeeeeeaeaeeesaaannbbesseeeeeaeeeeeesannenneees 608
LIS 1101 o] [=T o To 10 (=T TR PPRRPRTRR 60!
36.7.3UNDOUNAEAT ATTAYS. ... eeetetieeeeeiiaaiitteteeetaeeeeeeaaaaa et et eeeeaeeaaaasaaas s s teeteeeeeeaaeessaaannsbsbeeeeeeaaaeeeesaassnbssseaeaaaaaeesanannns 610
LI S ([To] =V T |1 T TR PPRRPPPRRN 61
36.7. 5D fAUILAIGUMENTS. ... ettt e ettt e oottt e e e e e e e e s s bttt e e e e eaeeeessaannnbb et e e e eeeeaeeeae e e nnenbteeeeaeaaeaaeas 611
oS I LY 01T 110 F= T oL ST TRTPPP 6!

BTS2 A aTe] 1Y 01T 1T TSP PRPRRRRT 61:
36.8.3TYPEMAVAIADIES. ... ettt ettt e oottt e e e e e e s e s s et bbbttt eeeeeaeeeeaa e nnn bbbttt ee e e e e e e e e e e nannreeteaeaaeaaean 614

SWIG-3.0 Documentation

Table of Contents

36 SWIG and Python

36. 10D OCSINUEEAIUIES.eeeeeeteeeee ettt e e e e e e e e e ettt e et et ee e e e e e s s s s ettt e teeeeeaaaeeaas e nnea e beeeeeeeeeeeeeaannssbbssseeeeaaeeeeaannnnnbnnnnees 62
BT O 1Y/ oo [= [0 Yoy 110 T ST SPSPPRPRTT 621
36.10.29%FEALUIE("AULOTOC!) ... ettt ettt ettt ettt e ettt e e e e bt e e e ook et e e ek b b et e e e e b et e e e e R b e et e e e e b e e e e e e nneeeeean 621

36.10.2.1%feature("aUtOAOC™I0™)ue ettt ettt e e et e et e e e e et e e e e e e et e e et e rt e e e rarr s 622
T ST I) (=F= 110 (=) (=10 110 1o [0 o K PR 622
T A) (=F= 1 10 (=) (=10 1 (0 1o [0 o P RRTOR 622
B A (Y= 1 10 (=) (=10 1 (0 1o [0 oaec 1 PO 623
TSI N0 V2 S 71 (== L (BT (=Y (=101 (o [o Yoo [oToxS] o N NP EUUPR R 623
36.10.3%F@ALUIE ("AOCSIIINT) - .+ttt taeteeeee ettt ettt ettt e ettt e st e e 4t e 4 et e e e et e e e e sk e e e e e b et e e e e e e e e 623
BT I Y1 o] o Tod 2= Lo =S P PRRRTR 62

BT 2 Vi1 o] X BT o] oY PRSPPI 62
o] S 2 N T aTod 1o aF=T a1 0T0) =11 o) o O 628

o T A 21U (=Y 01 =T 7= Lo =TT 62¢
36.12.3ADSITACHIASECIASSES. ceeeeeiete ettt et e e ettt et e e ettt e et e e e et e e et e et et e ea b e e raa e eraa e atteeraraa 629

36.12.4Byte StriNQ OULPULCONVEISION......eiieeieiiiitiiieeeeeeeeae e e e e e ettt e eeeeaeaesasaaantebbeeeeeeaeaeeeeaaaasnsbnbaeeeeaeaeaesssannnsnranneeeas 629

A LT L= T [T PP PP PU PP P OPPPPT 6

A U (o 1T U U PP PPTPUPUPTPUPTIN 6
37.2USINGR GNASWIG ettt ittt e e ettt e e e e e e s e o e et ettt et et eeeaeaesaaam e e Eee b et et e e eeeeeeeeannebsbeeeeeeeaeeeeesannnnbeseeeeeaaaeaeeasanns 63
T AR] o =Todo] 0] o] T Te FoT o =] a1 =T PP PRTUPPR 632
A C =] 1Y ir- 1 o] o AR RPN 63

A SY = T To [N F= o< T 1YY a1 1T 0P PRURP TR 63:
A Y O i £ 1Y =Y TR 6

A A = 1T 11 aT=T =110 T 67

BT A VAT A (= T To I U o TP 6
TSI o (= (10T T 0=V =T OSSR 67
TS 0 I B T T 0o 1YL R PPRRPRPRRN 63!
38.1.2Gettingthe rght NEAAEHKIIESceeiieieeee ettt e e e e e e e e e ettt e e e e e e e e e e e e annneeeeees 635
38.1.3CompiliNgadyNamiCMOAUIE.uueiiiiiie ettt e e e e e ettt et ee e e e e e saaaebbaeeeeeeeaaeaesaaannnbssbneeeeeaaaeeesaannnne 635
38.1.4USINGYOUIMOAUIE.ceeiiteeeeii ittt ettt e e e e e e e ettt ettt e ee e e e s e e e ebebe e et e eaeeeeaesaanesbeseeeeeaaaeeessaasnsbsbseeeeaaaeeaseaannnnne 63¢
BTN 1] = L] 11014V PRSP PPPRPURPR 63
38.1.6ComMPIlatioNOf CH+ EXEENSIONSii ittt ee e e ettt e e e e e e e e e s ettt ettt e e eeaaeeesa s e nnbebaeeeeeeaeaeeeeaaannnnbnbeeeeaeas 636
38.2Building Ruby ExtensionsiNdenWINAOWS O5/NTeeiiieeee ittt e e e e e e e e ettt e e e e e e e s e s s nenbbeeeeeeaeaeeeeseaannneneeees 637
38.2.1RUNNINGSWIG from DEVEIOPEISTUGIO. ... vvvveeeieeeeeeieiiiiitte ettt e e e e e e e ettt e e e e e e e e e s et e e e e eeeaeeeseaannnebnbeeeeeeas 637

38.3The RUDY-10-C/CHHVIADPING. ... tveteeeitrrieeesistteeeeaattteeeesastseeeesateseeaeasstaseeesastsseeeeaasssaseesasssseeessassaseeessnsseseessnsseseeesanes 638
TSI 1Y, o Yo V][RR 63

TSI Il U (o 10] T PSRRI 63
T RS R AVA= U r= o] (=Y T 1< T PRSP PPRRURTR 63"
TS R L 0] 4151 v= 101 K- PSPPSRI 63
TSI ST o 101 (=] £ T PPPRRR 64

38 SWIG and Ruby

SWIG-3.0 Documentation

Table of Contents

TS R S 11 (o1 11 | (= PSPPI 64
TS R I OF e el oYL YRR 64
TSR ST Ol [2] =T 41 7= 1 o] =TT PPT SR 64.
38.3.9C++ OVEIOAUEATUNCLIONS.evvueeeeeieite e e e e ettt e e e e ettt e e e e e eet et e e e e eetat e seeesesbaaaeeeeesssannseesesssanaseessestanaseeeernes 644
T TS T K0 Ol @ 01T -0 T TSSO UU PP 64!
BT N O 0T 1111 1S] 0 Y- (o =1 F PSRRI 64¢
Lo TR TN 2 O (Y 14101 = (S YRR PPRRPPTRR 641
38.3.13C++ StandardlempPlatelibrary (STL)ocoieeeiieeieee ettt e e e e e et ee e e e s e er b e e e eesessbaaeesesssbneaeeseees 646
TSI O e SN I I I [Tod (] = TP 647
TSI I S O e SN I I 1 (=T =1 0] PR 64¢
TSI N O e T 1 =11 0] 101 (=1 £ PSRRI 649
38.3.17CrosS-LanguagB OlYMOIDNISIN. ...t ie e ettt e e e e e e e e ettt e e e ae e e e e e sanaaebeeeeeeeeeeeeesaannnsbenbeeeaaaaeens 650
38.3.17. IEXCEPUONUNIOIINGeteeeeeetee e e e ettt e e e e e e ettt et e e e e e e e s e e et et et e e e e eaeeeaesaansnbbesneeeeeaeeeeseaannnenenees 650
TS0 1 A F= 0 11 0o TP 6!
38.4. L DEfINING ALIBSES. ... ettt ittt e e e ettt e e e e e e oo ettt ettt e e e e e e e s e o aatbebe et e e e eaeeeeeaa Rt e beeteeetaeeeeeeaaannbanbeeeeaeaeeeeaaaanns 65:
TSI B md (=T0 [Tor= 1 (=1 1= {100 PR 651
Lo e | 2 U o |11 1o o RO P RSP PRPRR 65.
LS L O 1 (=T 6= a0 Y=l 1= o PR 65°
38.5INPUt ANAOULPULDATAIMEIEESee e e et ittt ettt e e e e e e e ettt ettt e ee e e e s s s ettt be e et e eaeeeeaeaaassnbbeaeeeeaeaeeesaeannnsssbsneeaaaaaeeeesannnnns 653
T o] b Ced=T o11[] /= n e | 1T TP PPPRRURT 65.
38.6.1UsiNgthe Y0eXCOPLIOMIITECLIVE.......ei ittt e e ettt e e e e e ettt e e e e e e e e s e s s nbbbbe et e e eeaeeeesaeannnbnbeeeeeeas 654
38.6.2HanNdlINGRUDY BIOCKSctiiiie ettt ettt e e e e e e e ettt et e e e e e e e e e e ne e bttt e e e e eaeeeeseannnbsbneeeeaaaaeeaens 656
T TS | = TS 0 [y et =] 01 [0 L ST SOPRPRTT 657
BT I | oy (ed=] 0110 0103 P TS = YU PRPRRRRT 657
TS A Y] 0= 110 F= o1 ST TRRPPP 6!
T AN ALY T LA EST= WY 01T 7= 1 1 PSP PPPERURTRRIN: 65€
O A Y] 01T 1A= 0 STel0] o= PP PP PR 66
T AR T @To])Y/ 1o F= N0 01T 10 o TSP PERRPRRR: 66(
T A | D= (Sl Lo F= AT 01T 1= o TSP PEURPRRRR: 661
T IR] d P ol =T 0 =TT 0) YA 01=T 0.0 T=T o USRS 661
BT IS U] 01T A0 01T 1= R PPRRPRTRRN 66:
TS A S T T N Y/ 0 1= 010 o PP PRURPRR 66
BT A S VAN 1Y/ 01T o [G 1Y/ 0 1=T 1 =Y o PP URUPPR 662
O A TG o 10 | 1Y/ 01T 1A= | o OSSO PP PP PTPTPPPUUTPTPRPRN 663
T A G T o= 1 |01 A =Y 10T o P T T STSPPPPI 663
T A oo 1= 7= LU LY 01T 1 7= PSRRI 663
BT A G S ol [Tl Y7 =] 0= o RSP ORTPPERRPT 663
T A A= 10 [0 10 1Y/ 01=T 1 0 F= T o PR 664
T I RS (=YY= L0 IAYA 0 1=T 0T o PR T T STSPPPR 664
T A 1= VA (TS Y] 01T 1.1 1 o PRSP PPRRURPT 664
38.7.6. 10 MEMBDEIIN " IYDEIMEAD. ... e e et ee ittt e e e e et ettt et e e e e e e e s s sttt be et e e e eaeeeaeaannbebee et e eaeeeeeeaaaannrerteeeaaaeaens 665
Lo A S T I V7 VT Y/ 0 1= 010 o P PPEUPPPR 665
38.7.6.12'VAIrOUL" TYPEIMIAN. ... et eeeeeeeieeeitttttttet e e e e e oo e e e e e e e e e e e e e e e et eeeee e e asbe bttt bbb e o e oo e e e e e e e e aeaeaeeeeeeeeeeeanaanrares 665
T A S T G 1 110 1LVl 1Y/ 0 1= 11 1 o PO PPTRURPT 665
T A ST o [T (o 1 AYA 0 1=T0 T o PR STP 666
T A IS s (=Y (o] (o 101117/ 0 1= 1.0 - o PP EPUPPR 666
38.7.6.16direCtOrargOULYDEIMAD. ... eetteetieieeaeeeee e s ettt eeeeeeaeeeaaaasatbeaseeeeaeaeeeseaaannbsbeseeeeeaaaeaesaaannsbnbneeeeaaaaaaaens 667
O T ST (=3 A/ 0 1] 14T o TS UUUUPPPPPPPPPPTPTPPIN 667
T A RS 'o | (o] -1 1KYy 01T A= o SRR 667
T A A Y] 01T 0 F= Yo N7 V= o] (USRS PRPRTR 667
38. 7. BUSEIUIFUNCLIONS.cvvtiieeieeitie e e ettt e e ettt e e et et e e e e e e e e tt e eeeeeeeaa b eeeeseebaaaeeesssbaan e eeessssbaseeesessannneeeesenranns 66¢
38.7.8.1C Datatyped0 RUDY OBJECES .. .eeiiiiiieeeee ittt e e ettt ettt e e e e e e e e ettt e e e aeeeeeeaaaananbenaeeeeaaaaaaeaaan 668
38.7.8.2RUDY ODJECLSIO € DAIAIYPES. . veveeetieeeeeiieiiiitiieeeee e e e e e e e e e ettt et e e aeaeesa e ntbe e e eeeaeeeaeeesaaannnbreseeeeaaaeaesanan 668

SWIG-3.0 Documentation

Table of Contents

38 SWIG and Ruby

38.7.8.3MACIOSION WALUEttt ettt e e e e et e e e e e es it e e e e e ee b e eeeeessbaaseeseessanaaeesesstansaneeees 669

TR S | (ol =] 01 1[0 TP ERUR PSR 66¢

S AR S 1 (=] =1 (0] £ PSP 67

38. 7. 0TYPEMAPEXAMPIES. ... ce e ettt ettt e e e e e e e ettt ettt e e e e e e s e e aa ettt ettt e eeeeeeeaaanaaabeteeeeeeaeeeeaeaannbeaeeeeeaeaaaeeeaaaannnnene 67C
38.7.10Convertinga RUBYArrayto @ CRar ™.ooooiiiiiieei et e e e e e e st eeeeaeaeeeas 670
38.7.11Collectingargumentsn @haSN..........u i e e e e e e et e e e e e e e e e aaan 671

T A 24 o1 (=11 = U o [T Vo RO PRPRRRRT 674
38.7.12. IRUDY DatatyPDEVVIADIDING ... evtteeeieeeeeaeeeeeaaeiteteeeeeeaaeeeaeaaasaebbeeeeeaeeaeeeasaannsbsbeeeeeaeaeeeesaaannnbssneeeeaaaeens 674
38.7.13Example:STL VECtOrtO RUDY AITAY.ccuii ittt et ettt e e e e e e e e e sttt e e e ae e e e e e s e e annnbnsaneeeeeaaaeaens 674

T e] o Toto (] 10 | o= L1 = PSR TTSSTRPR 67

CTe TS I 1Y (oo L8] (=Y o fo o=y T ST PRPRRRTT 67¢

TSR I =T (0 (= =10 1 (0o (oY o) PO P P OTPPRT 676
38.8.2.1%0feature("aUtOAOC™0™) .. e ettt e e e e e e e e e aaaeaeaeaeaeteaaaaa——— i ——————— 676
38.8.2.206feature("aULOAOC L") ... e e e e e e e e e e e et e e e e e e aaaaaeaeaaaeeeaeaaaa—— i ——————— 677
38.8.2.3%0feature("aULOAOC™ 2™) ettt e et e et e e e e e e e e e aeaeaaeetaara—a— i —————— 677
38.8.2.4%feature("aULOAOC™3") ... ettt e e e e e e e e e e e e ettt a e e e e e e e aeaeaeaeaeteaeaaa— i —————— 677
TSRS IS0 (=1-\101 =] (= L0 10 Te (o onle [o101s] 111 o [N NPT 677

TSR =T (0= o (0111 [o 1 TP PP PP PP TOPPPPPRPPPPPR 677

Tl Y V7= VLot =T | 0] o) o3P PEERPRR 67

TR e I @] o1Y =1 o] (01Y/=T1 [0 =T |10 o TR PUPPRPRRR 677
38.9.2CreatingMulti-ModUle PACKAGES.uuuieiiiiiieeeee ittt e e e e e e e e e st e e e e e e e e e e s e e nnnnbeeneeeaaaaeeas 679

38.9.3SpeCifyiNngMIXIN MOAUIBScoiiiieiiie ittt e e e e e e e ettt e e e ae e e e e e e nebebe e e e e eeaaaeeeseannnsnneeeeeeas 680

38.10MEMOIY MANAGEIMIEINT. ... eeeei ettt ettt ettt oo oo o e e e e e e e e e aeaa e e et et eeeeeaessbebe bbb b s s e e o a4 e e e e e e e eeaeaeaaeeeeeeeesennsnnbnrnnns 68!
38.10.1Mark and SweepGarbagECOIECION.eiieiiiiie ettt e e e e ettt e e e e e e e e e e e r e e e e e e e e e e annbeereees 681

T TN 002 @ o] [=Toa (@Y Ty] 01 o TSP PEPRPRRRN: 681

TN (O RS (@][Toa i I = Vo] (1T PSPPSR PRPRTRRT 68

38.10.4AMATK FUNCLIONS.vvtiieeieiiiiiee e e e e ettt e e e e ettt e e e e et e e e e e s e e st eeeeeessat s eeesesbaa e eeesssbaanaeeessssbnnsaeesesranneeeesenranns 68t

TSI O (=T=) UL o3 10 T OO 68t
38.10.6EmbeddedRuUbyandthe C++ SEACK.......cuuiiiiiiiiieiee e e e e e e e e e e e e e e e annneeeeeees 690

1 AT [CI= 1 aTo B To | = o OSSR 6!

T I (= 110 0T 10 =V =T OO 6¢

BTS2 U T T 110 To 1A TP EPPRPPRR 69

39.2.1GeNeratiNGNEIMOUUIE.coeiiiei it e ettt e e e e e e e ettt et et e e e e s e e e neebbe et e e eeaaeeesaaannnbnbeneeeaaaeeeaeas 692

1S I 1 (o [T aTo W aT=Y Lo T U] = RS TR 69¢

TS IR Mo Y= o [T aTo 1 Y=Y 0o e LU= OO PPPRRURTRRI: 69¢

39.2.4USINGINEIMOTUIE.eeeeeeee ettt e e e e e e oo ettt ettt e e e e e e e e s aanbetbe bt e eeeaeeeeeaeaannbnbeneeeaaaaaeeeaaaannn 69

KIS IVARSISTo = oToleTnalant=TaTo [T = o] o1 ilo] o TN PR PP 693

39.3A basiCtOUr Of C/C+H+WIAPDPING: ...eeetiurvreeeeitttreeesitieeeesstteeeessastareeesastaeeaeaaasteaaeaaastereeesssseeeesaasssetessansaeeeessssteneeessssens 694

T R (@ =] A=) PP 69

T R A [0 [T 01 11 1<) £ PPN 69

T R Tl U od 1o T PPN 69

TS IR I Y (o (U0 1= 01102 ES T T T ST RTPPPI 694
39.3.3.2MUltiple QUEPULAIGUIMENES. ... eetteeeieeeeee e e e e e ettt e e e e e e e e e et e et e e e aeee e s s e nnebebeeeeeaeaaeeeeaannnnbsssneeeaaaaens 695

39.3.4GI0DAIVATIADIES.ei ettt et et e e et e e e e e a—r e e e et eaerea e arrrrr s 69¢
39.3.5C0oNStaNtRANAENUMEIALIONS.ovviieieeiiiriieeeeeeeett e e e e e ettt eaeeeeseetaaeeeesas st e eeeeetataseeeeeebaaaeeeessstanaeeeerssranaeess 697

BT RS T (O] 1 51 =1 0 £ PSPPSR 69

T R I = a1V 10 01=T = L0 o L PPN 69¢€

T RS o1 o 101 (=] =TT PPPORR 6

39.3.6. LULIILY TUNCHIONS.eeeeieiiie ettt e e e e e ettt et e e e e e e s e e nab bt b e et e e e e e e e e s e s e nnbnbbneeeeeaeaeaens 700

BTSN S 102 N 11| o111 (= TSP PRURT PR 70(

BT RIS (11 (o1 10| (=Y TSP RRPPPPS 70

T R R <] OF el [Fo1oY == YU 70

SWIG-3.0 Documentation

Table of Contents

39 SWIG and Scilab

T RS O% 1] 01 117-1 o =TSR 70:
39.3.10PointersreferencesvalueS ANUAITAYS. . ..ouu e e ittt e e e e et e e et e e e e e e s e e st e e e e aaaaeeessaannnbseaeeeeaaeens 703
TSR T O (T 141 0] = (S U PPRRPPTRRN 70:
O TS T 2 O 0] =T = (0] £ PP P PP 70!
TS TS T RS Ol = V0 11T o1 (o0 1 TP U OO PTPTPPPTRPPUOPON 70"
TS IR N O oy (oT=T 110 1 L PRSP PRRRRTR 70¢
T R T S O S 1 I O PRRORR 70

39.4TypemMapPINGSANAIIDIAIIESci ittt e ettt e e e e e e e e ettt ettt et e e e e e e s e s se et bt aeeeeeaaeeesaeannnbasbeeeeeaaaeeeeeaaannnn 707
39.4.1Default primitive tYPE MAPPINGS. .. .eeeeeee et ieieeiiieeee et e e e e e e e et bee ettt e e aeeeeasaansbebeeeeeeaeaeeaesaaasssebeseeeeaaaeeesaaannnsensnees 707
39.4.2Defaulttype mappingSor NON-PrMItIVETIYDES.uuiiiiiiiiiee et e e e e e e e e s e eeeaaeee s 708
1S I G N =\ T PP 7(

TS | o1 (=Y o (0 0101 1= = T USSP PRPRTT 70¢
T) Fo Lo <Y 70

T I X I PP 7:
T YV oo [N LY a1 F= | [4= Lo) OO 71
TS o1 21011 o [T aTe s aTo o f= U PRPPRRPPR 71
T S NN Lo 0T [o 1T g Voo [TP 71
T I =10 110 [0 1o Yo [O UPTRRPRN 71
LS A G =] ATy o =T o 01T PEERPRR 71
TS I 21 o [=T ST o | PR TR 71

TS I A2 Mo = (o (=] STt] o) PRSP PPPRPURPR 71
I T @ 1 A1 (YT 0 10 o1 =Y= TR 71

F R 3) (8 [od (U (=T PSSP PP PR 72
R T A 0% o ol - oY= OO PUTIRN 72
F R 1Ok o [0 8 =141 7= 01l =TSRRI 72
40.3.9PointersreferencesyalueS ANUAITAYS.eee i ittt e e e e e e e e ettt e e e e e e s e e s bbb et e eeaaaeeesaaannsbnaeeeeaaaaaaeaeas 729

Z ORI K0 (O o 01 V/=T 4 oY= Vo [=Ta iU T o3 110] a1~ TR 729
RS T O o] 0 1= = 0] = TP 73
RS T 2 O 1 = 10 4[5S 6=V o] = S TSP PRTRRRRR 73!

TN Tl (=] 1] 0] F= 1 = USSP PPPRRRPRN 73:
F I Ok ST 1 A= 1 £ md 01101 (=Y £ 732

40.4 FurtherdetailSON the TCl CIASSINIEITACEcceueieieee e et e e et ettt e et e e e et e e e e e e e s et e s esaa e essaeesebaseerannees 733
O B N ()Y o] = LT =TRSO PPPPRRRRR 73

SWIG-3.0 Documentation

Table of Contents
40 SWIG and Tcl

40.4.2MEMONY MANAUEIMIEIIL ...ttt e e e e e e e e e e e e e e aaaaaeeteteteeeetasastestsbas s s o os o5 oo oo e e e e eeaaaaeeeteeeteeesessbnbebbsnbnnnnn i aas 734
40.51INPUL AN OULPULPDAIBIMETEES ... eeeeeiieeee e s ittt ettt e e e e e e e e e e eebee et eeeeaeaesaaaaanebebe et eeeeaeaeeesaaanssbbeteeeaeaaeeesasaannnsnbsnnneaaaaaaens 736
O o ot=T o Lo a|aF= Vo | 1T RSP PPPR 73
O A Y] 01T 1 AT oL OO URPRPPPPPPPPPRPPPPIN 7:

A ALY oV = WA o= 0= o 1S PPPERRRTRRRN: 73C€

A ol 1Y 1= 10T o1 TSP PPPRRRRR 74

ARG YA 01T 0 A= 0 V7= = o] = PR ERR RS 741

40.7.4Convertinga TClIIST 10 8 CRAI ™o ittt e et e e e e e e e e e s et bbb e e e e eeaeeeeeaaaannneeeeeees 742

40.7.5ReturninQValUESIN AIQUIMEIES.uetiieieeeeeesiiititeeeeeeeeaeeeesaaaseabaeeeeeeaeaeeasasaansstbeseaeeaaaaeeeaaaannsbsssneeeaaaaaesesannsnes 742

A0, 7 . BUSEIUTUNCIIONS. ..t v e eeeeetiee e ettt e e e et e e e ettt e e e e e e ettt e e e e e ettt seee s e s baa e eeeee s s b s eeseessbaeeeessssbanaeesessssnnaeeeeenes 74

A 457 =V a1 U0 1Y 01T 1P PR ERT RS 741

AR ST o101 (=10 = a T | T To TS URT TR 74
40.8Turninga SWIG mModuleint @ TCI PACKAGE.uuueriiiiieeeeie ittt e e e e e e ettt eeeee e e e e e s s e snnbeeeeeeeeaaeeesesaannnneeeeeees 745
40.9Building newkinds of Tl INtErfac@iN TCIY......uueuiiiiiiiieeei ittt e e e e e e et e e e e e e e s e e e nenneeeeeeas 746

0.9, L P OXY ClASSES. 1. ttttteteee et e e ettt e ettt ettt e e e e e e e e e e te bttt ettt e e e e e e e ae e aEbe et ettt e eeee e e e e e R RRh et eeeeeeeeeeeeaeaannaaneneeeaaaeaeeeaaaannn 74
O O o T IS U] LSOO 74

41 Extending SWIG t0 SUPPOIt NEW IANGUAGES.eeeieiueetttiieeteeee e e e e e aaaietteeeeeeaeaeeeasa s e stetbs e eeeaeaaeaeasaaasnsbsbeeeeeaaaeaesssaaannnsssneeeeaaaaens 750
I T 0o 11 T 1 o PSPPI 7"
A e (Y (=10 8T 5SEEEPURP PP 7"
G I 1= S To T T (U OO PPRRRRRR 75
o =Yo1 011 To] 01\, oo [R UUPPRRRPP 75

N (=] 01 (011 o AT TP PP PUPPPPPPPPPRP 75

S - V£ 1 T P PO PPPPURTRR 7

R] = 1 £1=) (== J USSP UPRTRRR 75

A1 .4 AAHTTIDULE MAMESPACES. .. ttteeeiteieeeee e i ittt et e e e e e e e e e e et et ettt e eeea e e e s e e naabe e et e eeeaeeeeeaaaannsesbeeeeeaeaeeeeesaannnnbasaeeeeaaaaans 757

R B S3 S Y] 0 0] oo I =V o] 1= PP PRPRPR 75

41.4.6The YO EAIUIEIITECIIVE.cevvvie ettt e e e ettt e e e e e et e e e e e e s b bt e e e e e e s baa e eeeesesban e eeseessban s eeseesrannnns 758

N A 00 o (<] C1=] 4= = Lo A OO 75¢

A1.4.BSWIG ANAXML .. .oeeitiiiee e eeeeiee ettt e e ettt e e e et ee e e e e e et eeeeee s s ba s e e e e e s taa e s eeseasban e e eeeesaban e eeseesbaneeeesesrsnnsenss 76(
Y ad €100 V1AV B o 7= BN 140 (o3 (U= PSRN 76(

TN S 11T 1 SRR PRPPRR 7€

A = 1 1SRN 7€

G I £ PP PRR 7¢

S [@o] 00 0] 0(0] 0 1= 7= LA (] 0L TSP PPRRRRTRRRN: 763

41.5.51teratingoVverListS aNAHASNES.coi ittt e et e e e e e e e e e e e e e e e e nnb e e eeeeas 763

L1 O SR PPPSRR 7
41.6 NavigatingandmanipUlatiNnQDAISEITEES.coc.uueetiieieet e e e e e ettt e e e e e e e e e s e e eeebe e et eeaaeaeeesaaannbesaeeeeaeeaeeeasaaasnnreeneees 765
A1, 7WOrKIiNGWIth GtIDULES ...ttt e e e e e e e ettt e et e e e e e e e s e s s s bbt e e et e e eaeeeeesannnnnbenneeeeaaaeens 76¢
IR Y 011N Y] (<] 1 PRSP SUSSURPPR 7€

T S i aTo F=T aToTo o [T T o) 1Y o= PP PSURT TR 767

T Y] 01X o0 1S3 18 (o (0] o U PPRRRTRR 76¢

IR SRl Y 01 (o1 £ TP PP PP 76

g Y] oT=To (<) r=VaTo 1] 0 T=T 01 =TTt = PP PSURT TR 769

R T IRV7= 1 [0 =PRI 77

41.8.60ULPULTUNCLIONS.c ettt e oo oottt et e e e e e e e e s s an e bete e et eeeaeeeee s e nnbnbbeseeeeeeaeeesaeannnsbnsneeeeaaeens 77:
F e] == 1 1<) (=) PP UPPTSRRPRN T
41.10Writing @ LanqUAgEMOAUIE.ueiiiiiiie ettt e e e e e e e ettt et e e e e e e s e s e eb e beeeeeeeeaaeeessaansnebebeeeaeaaaeeeseaannnennreneaens 772

T N =Yoo a0 o [PR 772

O 22 = o (1T T T PR R PSRRI 77

41.10.3COMMANAINE OPLIOMS ... et ttteeeiee ittt ettt e e e e e e e e e et ettt eeeeeaaeaaaaa e eabbeeeeeeeaaaeaeseaannsbsbeeeeeeaaaeeeesaaansntesbneeeaaaeaeeannn 773

41.10.4ConfiguratioNanNdPIEPIOCESSIIIG ... vveeeeiurteteeeattrteeeaatteeeeeaastt et e e e e tbe e e e e e aabb e e e e e et be e e e e aasbb e e e e e anbbe e e e e anbreeeeeannees 774

41.10.5ENtry POINttO COABUENETATION. ... ieeieeeieiee e e e e e ettt et et e e e e e e s ettt e e aeeee s e e s nbabbeeeeeeeaaeeeesaaannnbnbbeeeeaeaens 774

SWIG-3.0 Documentation

Table of Contents

41 Extending SWIG to support newlanguages
41.10.6Module /O andWrapPerSKEIBTOMN.ei ittt e e e e e e s e e ettt teeeeeeeaesaaannnbbeaneeeeaaaaeeaeaannnene 775
41.10.7L OW-1EVEI COABUENEIALOLS. ...ttt e e e e e e ettt ettt e e e e e e e e et bt e e e e e e e e e s e s e nbebbe e e e eeeaaeeeeaaannnsbsaeeeaaaaaaaeaeaanns 777
41.10.8CONFIQUIALIONIIES. ... e eee e e ettt e e e e e e ettt et e e e e e e e e s bbb ettt e e eeeeeeeeaannnnbbeaeeeeaeaeeeaaaannnnane 77¢
A42.710.9RUNEIMESUDDOIL ... eeeeeeeeeeeee ettt ettt e e e e e e s e e asseteteeeeeeeaeaeaasaaaneet b eeeeeeaaaeeeaaesannsbebseeeeeaaaaeeesanannntssbnneeaeaaaesessannnnes 78(
41.10.10StandardiDrary filES.......ooiii et e et e e e e e e s e e taaaaeaaaa s 780
O B L ST = 10 1] 0] [PR PPPRRRRT 78(
41.10.12TestdrivendevelopmenBndthe teSt-SUILE..........ueiiiiieiei it e e e e e e e e 781
41.710.12. IRUNNINQGENEEESI-SUILE. ... et eeee ettt e e e e e e ettt e e e e e e e e e s aaasnbbeaneeeaeaaeeesesannnnes 781

T G B T Yol U 4 1<) 01 7= 110 o PR 78:
41.10.14Prerequisite$or addinga newlanguagemoduleto the SWIG distribution............ccccccveeeiiiiiiiiiiiiieenneeenn. 784
O I S oo T [To TS Y [o TU o (= [T T TP PRPPRRRTR 784

S R BTy o1 o 1T @] 0] T T PRSP 78

N TN T S (ol ooV (=TT 100 [SRS PPRRSTTR 78E

41.13FurtherDevelopmMentnfOrMEaLION. e it e e e e e e e ettt e e e e e e e e e s e nenbesreeeaaaaeeeeaeanns 788

XXV

SWIG-3.0 Documentation

Last update : SWIG-3.0.6 (5 Jul 2015)

Sections

SWIG Core Documentation

» Preface
« Introduction

« Getting started on Windows
» SWIG Basics (Read this!)

* SWIG and C++

* SWIG and C++11

» The SWIG preprocessor
e The SWIG library
» Argument handling

» Typemaps
« Customization features

e Contracts

« Variable length arguments
» Warning messages

» Working with Modules
 Using SWIG with ccache

Language Module Documentation

« Allegro Common Lisp support
« Android support

o C# support

 Chicken support

* D support

¢ GO support

 Guile support

« Java support

« Javascript support

« Common Lisp support
e Lua support

» Modula3 support

» MzScheme/Racket support
» Ocaml support

* Octave support

« Perl5 support

* PHP support

« Pike support

 Python support

* R support

« Ruby support

» Scilab support

e Tcl support

SWIG-3.0 Documentation

SWIG-3.0 Documentation

Developer Documentation

» Extending SWIG

Developer Documentation

1 Preface

« Introduction

* SWIG Versions

* SWIG License

« SWIG resources

« Prerequisites

« Organization of this manual

« How to avoid reading the manual

» Backwards compatibility
» Release notes

* Credits
* Bug reports
* |nstallation
+ Windows installation
+ Unix installation
+ Macintosh OS X installation
¢ Testing
¢+ Examples

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces tc
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Lo
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and &
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration--allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used
in a wide variety of applications--in fact almost anything where C/C++ programming is involved.

1.2 SWIG Versions

In the late 1990's, the most stable version of SWIG was release 1.1p5. Versions 1.3.x were officially development versions and
these were released over a period of 10 years starting from the year 2000. The final version in the 1.3.x series was 1.3.40, but
truth the 1.3.x series had been stable for many years. An official stable version was released along with the decision to make
SWIG license changes and this gave rise to version 2.0.0 in 2010.

1.3 SWIG License

The LICENSE file shipped with SWIG in the top level directory contains the SWIG license. For further insight into the license
including the license of SWIG's output code, please visit the SWIG legal page - http://www.swig.org/legal.html.

The license was clarified in version 2.0.0 so that the code that SWIG generated could be distributed under license terms of the
user's choice/requirements and at the same time the SWIG source was placed under the GNU General Public License version

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

1 Preface 3

http://www.swig.org/legal.html
http://www.swig.org

SWIG-3.0 Documentation

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the swig-user mailing list by visiting the page

http://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

Git and Subversion access to the latest version of SWIG is also available. More information about this can be obtained at:

SWIG Bleeding Edae

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages suc
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. N
prior experience with building C extensions to these languages is required---after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Over time SWIG releases have become significantly more capable in their C++ handling--especially support for advanced featt
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction” which contains a few simple examples. These examples contain abou
95% of everything you need to know to use SWIG. After that, simply use the language-specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards compatibility

If you are a previous user of SWIG, don't expect SWIG to provide complete backwards compatibility. Although the developers
strive to the utmost to keep backwards compatibility, this isn't always possible as the primary goal over time is to make SWIG
better---a process that would simply be impossible if the developers are constantly bogged down with backwards compatibility
issues. Potential incompatibilities are clearly marked in the detailed release notes.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage ¢
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

1.4 SWIG resources 4

http://www.swig.org/mail.html
http://www.swig.org/svn.html

SWIG-3.0 Documentation

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG-1.3.11.

1.9 Release notes

The CHANGES.current, CHANGES and RELEASENOTES files shipped with SWIG in the top level directory contain,
respectively, detailed release notes for the current version, detailed release notes for previous releases and summary release |
from SWIG-1.3.22 onwards.

1.10 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people working in their spare time. If
you have benefitted from using SWIG, please consider Donating to SWIG to keep development going. There have been a larg
varied number of people who have made contributions at all levels over time. Contributors are mentioned either in the
COPYRIGHT file or CHANGES files shipped with SWIG or in submitted bugs.

1.11 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig-devel mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dur
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper ct
We can only fix bugs if we know about them.

1.12 Installation

1.12.1 Windows installation

Please see the dedicated Windows chapter for instructions on installing SWIG on Windows and running the examples. The
Windows distribution is called swigwin and includes a prebuilt SWIG executable, swig.exe, included in the top level directory.
Otherwise it is exactly the same as the main SWIG distribution. There is no need to download anything else.

1.12.2 Unix installation
You must use_ GNU make to build and install SWIG.

PCRE needs to be installed on your system to build SWIG, in particular pcre-config must be available. If you have PCRE head:
and libraries but not pcre-config itself or, alternatively, wish to override the compiler or linker flags returned by pcre-config, you
may set PCRE_LIBS and PCRE_CFLAGS variables to be used instead. And if you don't have PCRE at all, the configure script
will provide instructions for obtaining it.

To build and install SWIG, simply type the following:

$./configure
$ make
$ make install

By default SWIG installs itself in /usr/local. If you need to install SWIG in a different location or in your home directory, use the
--prefix option to ./configure. For example:

$./configure --prefix=/home/yourname/projects
$ make
$ make install

1.8 Backwards compatibility 5

http://www.swig.org/donate.html
http://www.swig.org/mail.html
http://www.swig.org/bugs.html
http://www.gnu.org/software/make/
http://www.pcre.org/

SWIG-3.0 Documentation

Note: the directory given to --prefix must be an absolute pathname. Do not use the ~ shell-escape to refer to your home
directory. SWIG won't work properly if you do this.

The INSTALL file shipped in the top level directory details more about using configure. Also try

$./configure --help.

The configure script will attempt to locate various packages on your machine including Tcl, Perl5, Python and all the other targe
languages that SWIG supports. Don't panic if you get 'not found' messages -- SWIG does not need these packages to compile
run. The configure script is actually looking for these packages so that you can try out the SWIG examples contained in the
'Examples’ directory without having to hack Makefiles. Note that the --without-xxx options, where xxx is a target language,
have minimal effect. All they do is reduce the amount of testing done with 'make check'. The SWIG executable and library files
installed cannot currently be configured with a subset of target languages.

SWIG used to include a set of runtime libraries for some languages for working with multiple modules. These are no longer buil
during the installation stage. However, users can build them just like any wrapper module as described in the Modules chapter.
The CHANGES file shipped with SWIG in the top level directory also lists some examples which build the runtime library.

Note:

« If you checked the code out via Git, you will have to run ./autogen.sh before ./configure. In addition, a full
build of SWIG requires a number of packages to be installed. Full instructions at SWIG bleeding edge.

1.12.3 Macintosh OS X installation

SWIG is known to work on various flavors of OS X. Follow the Unix installation instructions above. However, as of this writing,
there is still great deal of inconsistency with how shared libaries are handled by various scripting languages on OS X.

Users of OS X should be aware that Darwin handles shared libraries and linking in a radically different way than most Unix
systems. In order to test SWIG and run the examples, SWIG configures itself to use flat namespaces and to allow undefined
symbols (-flat_namespace -undefined suppress). This mostly closely follows the Unix model and makes it more

likely that the SWIG examples will work with whatever installation of software you might have. However, this is generally not
the recommended technique for building larger extension modules. Instead, you should utilize Darwin's two-level namespaces.
Some details about this can be found here

http://developer.apple.com/documentation/ReleaseNotes/DeveloperTools/Twol evelNamespaces.html.

Needless to say, you might have to experiment a bit to get things working at first.

1.12.4 Testing

If you want to test SWIG after building it, a check can be performed on Unix operating systems. Type the following:
$ make -k check

This step can be performed either before or after installation. The check requires at least one of the target languages to be
installed. If it fails, it may mean that you have an uninstalled language module or that the file 'Examples/Makefile' has been
incorrectly configured. It may also fail due to compiler issues such as a broken C++ compiler. Even if the check fails, there is a
pretty good chance SWIG still works correctly --- you will just have to mess around with one of the examples and some makefil
to get it to work. Some tests may also fail due to missing dependency packages, eg PCRE or Boost, but this will require carefu
analysis of the configure output done during configuration.

The test suite executed by the check is designed to stress-test many parts of the implementation including obscure corner case
some of these tests fail or generate warning messages, there is no reason for alarm --- the test may be related to some new S\
feature or a difficult bug that we're trying to resolve. Chances are that SWIG will work just fine for you. Note that if you have
more than one CPU/core, then you can use parallel make to speed up the check as it does take quite some time to run, for
example:

1.12.2 Unix installation 6

http://www.swig.org/svn.html
http://developer.apple.com/documentation/ReleaseNotes/DeveloperTools/TwoLevelNamespaces.html

SWIG-3.0 Documentation

$ make -j2 -k check

Also, SWIG's support for C++ is sufficiently advanced that certain tests may fail on older C++ compilers (for instance if your
compiler does not support member templates). These errors are harmless if you don't intend to use these features in your own
programs.

Note: The test-suite currently contains over 500 tests. If you have many different target languages installed and a slow machine
might take more than an hour to run the test-suite.

1.12.5 Examples

The Examples directory contains a variety of examples of using SWIG and it has some browsable documentation. Simply point
your browser to the file "Example/index.html".

The Examples directory also includes Visual C++ project 6 (.dsp) files for building some of the examples on Windows. Later
versions of Visual Studio will convert these old style project files into a current solution file.

1.12.4 Testing 7

2 Introduction

* What is SWIG?

» Why use SWIG?

« A SWIG example
+ SWIG interface file
¢ The swig command
¢ Building a Perl5 module
¢ Building a Python module
¢ Shortcuts

 Supported C/C++ language features
» Non-intrusive interface building
« Incorporating SWIG into a build system

« Hands off code generation
* SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C/C++ declarations and creates the wrappers needed to access those declarations fror
other languages including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing code
and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

« Building interpreted interfaces to existing C programs.

* Rapid prototyping and application development.

« Interactive debugging.

« Reengineering or refactoring of legacy software into scripting language components.

» Making a graphical user interface (using Tk for example).

* Testing of C libraries and programs (using scripts).

« Building high performance C modules for scripting languages.

« Making C programming more enjoyable (or tolerable depending on your point of view).

* Impressing your friends.

 Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects. However, nowadays SWIG is known to be used in many large open source and commercial projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengf
of C/C++ programming:

« Excellent support for writing programming libraries.

« High performance (number crunching, data processing, graphics, etc.).
« Systems programming and systems integration.

* Large user community and software base.

Next, let's list a few problems with C/C++ programming

2 Introduction 8

SWIG-3.0 Documentation

» Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

« Testing is time consuming (the compile/debug cycle).

» Not easy to reconfigure or customize without recompilation.

» Modularization can be tricky.

 Security concerns (buffer overflows for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programr
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might grea
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of softwe
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

* A collection of functions and variables that do something useful.
« A main() program that starts everything.
« A horrible collection of hacks that form some kind of user interface (but which no-one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high-level language interface, but not the tedious and complex chore of making the two languages talk t
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG h,
such a large user manual ;-).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:
/* File : example.c */
double My_variable = 3.0;

/* Compute factorial of n */
int fact(int n) {
if (n<=1) return 1;
else return n*fact(n-1);

}

/* Compute n mod m */
int my_mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My _variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

I* File : example.i */
%module example

2.2 Why use SWIG? 9

SWIG-3.0 Documentation

%{

/* Put headers and other declarations here */
extern double My_variable;

extern int fact(int);

extern int my_mod(int n, int m);

9%}

extern double My_variable;
externint fact(int);
extern int my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of tt
module that will be created by SWIG. The %{ %]} block provides a location for inserting additional code, such as C header files
or additional C declarations, into the generated C wrapper code.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig -tcl example.i

unix > gcc -c -fpic example.c example_wrap.c -l/ust/local/include
unix > gcc -shared example.o example_wrap.o -0 example.so
unix > tclsh

% load ./example.so

% fact 4

24

% my_mod 23 7

2

% expr $My_variable + 4.5

7.5

%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.

Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig -perl5 example.i

unix > gcc -c example.c example_wrap.c \
-l/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o -0 example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig -python example.i

2.3.1 SWIG interface file 10

SWIG-3.0 Documentation

unix > gcc -c -fpic example.c example_wrap.c -l/usr/local/include/python2.0
unix > gcc -shared example.o example_wrap.o -0 _example.so
unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.

>>> import example

>>> example.fact(4)

24

>>> example.my_mod(23,7)

2

>>> example.cvar.My_variable + 4.5

7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig -perl5 -module example example.h

unix > gcc -c example.c example_wrap.c \
-l/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o -0 example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

* Full C99 preprocessing.

< All ANSI C and C++ datatypes.
 Functions, variables, and constants.
* Classes.

* Single and multiple inheritance.
 Overloaded functions and methods.
» Overloaded operators.

« C++ templates (including member templates, specialization, and partial specialization).
* Namespaces.

* Variable length arguments.

* C++ smart pointers.

Most of C++11 is also supported. Details are in the C++11 section.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generate
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able to handle C++ code that stresses the very limits of mal
C++ compilers.

2.3.4 Building a Python module 11

SWIG-3.0 Documentation
2.5 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of th
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support differel
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from popular IDEs
such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ax_pkg_swig, see

http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig. The ax_python_devel macro is also helpful
for generating Python extensions. See_the Autoconf Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross-platform, open-source build manager wit
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It can also generate the custom commands necessary for driving SWIG from IDEs and makefiles
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATH})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
SET(CMAKE_SWIG_FLAGS ™)

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall)
SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.pyd (Windows). For other target languages c
Windows a dll, instead of a .pyd file, is usually generated.

2.7 Hands off code generation

SWIG is designed to produce working code that needs no hand-modification (in fact, if you look at the output, you probably wor
want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the
resulting output file. While this approach may limit flexibility for hard-core hackers, it allows others to forget about the low-level
implementation details.

2.5 Non-intrusive interface building 12

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig
http://www.gnu.org/software/autoconf-archive/
http://www.cmake.org

SWIG-3.0 Documentation
2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written wit!
a certain "philosophy" about programming---namely that programmers are smart and that tools should just stay out of their way
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At its core
SWIG tries to distill even the most advanced C++ code down to a small well-defined set of interface building techniques based
ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer's way----t
last thing any developer wants to do is to spend their time debugging the output of a tool that relies on non-portable or unreliab
programming features. Dependencies are often a source of incompatibilities and problems and so additional third party libraries
are not used in the generated code. SWIG will also generally avoid generating code that introduces a dependency on the C++
Standard Template Library (STL). SWIG will generate code that depends on the C libraries though.

2.8 SWIG and freedom 13

3 Getting started on Windows

« |nstallation on Windows
+ Windows Executable
+ SWIG Windows Examples
¢ Instructions for using the Examples with Visual Studio
OC#
¢ Java
O Perl
¢ Python
OICL
OR
¢ Ruby
¢ Instructions for using the Examples with other compilers
+ SWIG on Cygwin and MinGW
¢ Building swig.exe on Windows
¢ Building swig.exe using MinGW and MSYS
¢ Building swig.exe using Cygwin
¢ Building swig.exe alternatives
¢ Running the examples on Windows using Cygwin
 Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

» Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

* Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95 and later. If you want to build your own swig.exe have a look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6. Newer versions of Visual Studio should be ak
to open and convert these project files. Each C# example comes with a Visual Studio 2005 solution and associated project files
instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in a custom build rule for the SWIG
interface (.i) file. Alternatively run the_ examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).
3.2.1 Instructions for using the Examples with Visual Studio

Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages requi
some environment variables to be set before running Visual C++. Note that Visual C++ must be re-started to pick up any chanc

3 Getting started on Windows 14

http://www.swig.org

SWIG-3.0 Documentation

in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the
Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with the
current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use
environment variables then change all occurrences of the environment variables in the .dsp files with hard coded values. If you
interested in how the project files are set up there is explanatory information in some of the language module's documentation.
3.211C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solu
file in Visual Studio .NET 2003 or later, select Release Build, and do a Rebuild All from the Build menu. The accompanying C#
and C++ project files are automatically used by the solution file.

3.2.1.2 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: D:\jdk1.3\include
JAVA_BIN: D:\jdk1.3\bin

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Python

PYTHON_INCLUDE : Set this to the directory that contains Python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: D:\python21\include
PYTHON_LIB: D:\python21\libs\python21.lib
3.2.15TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: D:\tcl\include
TCL_LIB: D:\tcNib\tcI83.lib
3.216R

R_INCLUDE : Set this to the directory containing R.h
R_LIB : Set this to the R library (Rdll.lib) including path for linking. The library needs to be built as described in the R

3.2.1 Instructions for using the Examples with Visual Studio 15

SWIG-3.0 Documentation

README.packages file (the pexports.exe approach is the easiest).
Example using R 2.5.1:

R_INCLUDE: C:\Program Files\R\R-2.5.1\include

R_LIB: C:\Program Files\R\R-2.5.1\bin\RdIl.lib

3.2.1.7 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:

RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586-mswin32
RUBY_LIB: D:\ruby\lib\mswin32-ruby16.lib

3.2.2 Instructions for using the Examples with other compilers
If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a

section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows
If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.
3.3.1.1 Building swig.exe using MinGW and MSYS
The short abbreviated instructions follow...

« Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.

* Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG
from Github follow... Note that the instructions for obtaining SWIG from Github are also online at SWIG Bleeding Edge.

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default
installation directories.

1. Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that
at the time of writing, the majority of these are in the Current release list and some are in the Snapshot or Previous
release list.

¢ MinGW-3.1.0-1.exe

MSYS-1.0.11-2004.04.30-1.exe

msysDTK-1.0.1.exe

bison-2.0-MSYS.tar.gz

msys-autoconf-2.59.tar.bz2

msys-automake-1.8.2.tar.bz2

* & & o o

3.216R 16

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
http://www.swig.org/svn.html
http://www.mingw.org/download.shtml
http://sourceforge.net/projects/mingw/files/

SWIG-3.0 Documentation

2. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)
3. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW
(C:\msys\1.0 is default). In the post install script,
¢ Answer y to the "do you wish to continue with the post install?"
¢ Answer y to the "do you have MinGW installed?"
¢ Type in the folder in which you installed MinGW (C:/MinGW is default)
4. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
5. Copy the following to the MSYSS install folder (C:\msys\1.0 is default):
¢ msys-automake-1.8.2.tar.bz2
¢ msys-autoconf-2.59.tar.bz2
¢ bison-2.0-MSYS.tar.gz

6. Start the MSYS command prompt and execute:
cd/
tar -jxf msys-automake-1.8.2.tar.bz2
tar -jxf msys-autoconf-2.59.tar.bz2
tar -zxf bison-2.0-MSYS.tar.gz

7. The very latest development version of SWIG is available from SWIG on Github and can be downloaded as a zip file o
if you have Git installed, via Git. Either download the latest Zip file snapshot and unzip and rename the top level folder

to /usr/src/swig. Otherwise if using Git, type in the following:
mkdir /usr/src
cd /usr/src
git clone https://github.com/swig/swig.git

Pitfall note: If you want to place SWIG in a different folder to the proposed /usr/src/swig, do not use MSYS emulated
windows drive letters, because the autotools will fail miserably on those.

8. The PCRE third party library needs to be built next. Download the latest PCRE source tarball, such as
pcre-8.10.tar.bz2, from PCRE_and place in the /usr/src/swig directory. Build PCRE as a static library

using the Tools/pcre-build.sh script as follows:
cd /usr/src/swig
Tools/pcre-build.sh

9. You are now ready to build SWIG. Execute the following commands to build swig.exe:
cd /usr/src/swig
JJautogen.sh
configure
make

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the
Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin
The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are

known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++
standard. SWIG parses ISO C/C++ so cannot deal with proprietary conventions such as __declspec(dllimport),

3.3.1.1 Building swig.exe using MinGW and MSYS 17

https://github.com/swig/swig
https://github.com/swig/swig/archive/master.zip
http://www.pcre.org

SWIG-3.0 Documentation

__stdcall etc. There is a Windows interface file, windows.i, to deal with these calling conventions though. The file also
contains typemaps for handling commonly used Windows specific types such as __int64, BOOL, DWORD etc. Include it like yc
would any other interface file, for example:

%include <windows.i>

__declspec(dllexport) ULONG __stdcall foo(DWORD, __int32);

Note that if you follow Microsoft's recommendation of wrapping the __declspec calls in a preprocessor definition, you will

need to make sure that the definition is included by SWIG as well, by either defining it manually or via a header. For example, i
you have specified the preprocessor definition in a header named export_lib.h and include other headers which depend on it,
you should use the %include directive to include the definition explicitly. For example, if you had a header file, bar.h, which
depended on export_lib.h, your SWIG definition file might look like:

/Il bar.i

%module bar
%include <windows.i>
%include "export_lib.h"
%include "bar.h"

where export_lib.h may contain:

/I export_lib.h
#define BAR_API __declspec(dllexport)

and bar.h may look like:

/I bar.h
#include "export_lib.h"
BAR_API void bar_function(int, double);

Using the preprocessor to remove BAR_API is a popular simpler solution:

/I bar.i

%module bar
#define BAR_API
%include "bar.h"

3.4 Microsoft extensions and other Windows quirks 18

4 Scripting Languages

« The two language view of the world
« How does a scripting language talk to C?
+ Wrapper functions

¢ Variable linking
¢ Constants

+ Structures and classes

¢ Proxy classes
« Building scripting language extensions
¢ Shared libraries and dynamic loading
¢ Linking with shared libraries
+ Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

Scripting Language
RS

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands.” If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model--the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high-level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The nex
few sections illustrate the process.

4 Scripting Languages 19

SWIG-3.0 Documentation

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
if (n<=1) return 1;
else return n*fact(n-1);

}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

« Gather function arguments and make sure they are valid.
* Call the C function.
 Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int result;
int argo;
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}

arg0 = atoi(argv[1]);

result = fact(arg0);
sprintf(interp->result,"%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact”, wrap_fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpreter. For
example, suppose you had the following variable:

double Foo = 3.5;
It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

4.2.1 Wrapper functions 20

SWIG-3.0 Documentation

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the vall
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is callec

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluatin
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xff0000
#define BLUE 0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and class
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x,y,z;

can be transformed into the following set of functions :

Vector *new_Vector();

void delete_Vector(Vector *v);

double Vector_x_get(Vector *v);
double Vector_y get(Vector *v);
double Vector_z_get(Vector *v);

void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v

% delete_Vector $v

% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

4.2.2 Variable linking 21

SWIG-3.0 Documentation

4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. A
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C++ definition :

class Vector {
public:
Vector();
~Vector();
double x,y,z;

¥

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For examp
in Python, you might want to do this:

>>> v = Vector()
>>>y.Xx=3
>>>vy =4
>>>v.z=-13
>>>

>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v->{x} = 3;
Sv->{y} =4
$v->{z} = -13;

Finally, in Tcl :
Vector v

v configure -x 3-y 4 -z -13

When proxy classes are used, two objects are really at work--one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ objec

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itse
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the fo
of a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common platforms is shown below:

Build a shared library for Solaris
gcc -fpic -c example.c example_wrap.c -l/usr/local/include
Id -G example.o example_wrap.o -0 example.so

Build a shared library for Linux

gcc -fpic -c example.c example_wrap.c -l/usr/local/include
gcc -shared example.o example_wrap.o -0 example.so

4.2.5 Proxy classes 22

SWIG-3.0 Documentation

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). Thi
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4

24

%

When working with C++ codes, the process of building shared libraries may be more complicated--primarily due to the fact that
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module
following the above procedures, but changing the link line to the following :

c++ -shared example.o example_wrap.o -0 example.so
4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run-time. Otherwise, you may get
error such as the following :

>>> jmport graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py”, line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

« Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as -R, -rpath, etc. This is not implemented in a standard manner so read the man pages
for your linker to find out more about how to set the search path for shared libraries.

« Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operatiol
non-Unix platforms.

* Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

4.3.3 Static linking
With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a shol
main program that adds your customized commands to the language and starts the interpreter. You then link your program witt

library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extension
In fact, there are very few practical reasons for doing this--consider using shared libraries instead.

4.3.1 Shared libraries and dynamic loading 23

5 SWIG Basics

e Running SWIG
¢ Input format
¢ SWIG Output
+ Comments
¢ C Preprocessor
+ SWIG Directives
+ Parser Limitations
» Wrapping Simple C Declarations

¢ Basic Type Handling
¢ Global Variables

+ Constants

+ A brief word aboutonst

¢ A cautionary tale ofhar *

- Pointers and complex objects

¢ Simple pointers

¢ Run time pointer type checking

¢ Derived types, structs, and classes

¢ Undefined datatypes

¢ Typedef

» Other Practicalities

¢ Passing structures by value

¢ Return by value

¢ Linking to structure variables

¢ Linking tochar *

¢ Arrays

¢ Creating read-only variables

¢ Renaming and ignoring declarations
¢ Simple renaming of specific identifiers
¢ Advanced renaming support
¢ Limiting global renaming rules
¢ lgnoring everything then wrapping a few selected symbols

+ Default/optional arguments
+ Pointers to functions and callbacks

« Structures and unions

¢ Typedef and structures
¢ Character strings and structures

¢ Array members
+ Structure data members

+ C constructors and destructors

¢ Adding member functions to C structures
+ Nested structures

¢ Other things to note about structure wrapping
 Code Insertion

¢ The output of SWIG
¢ Code insertion blocks
¢ Inlined code blocks
+ Initialization blocks
« An Interface Building Strategy
¢ Preparing a C program for SWIG
+ The SWIG interface file
+ Why use separate interface files?

¢ Getting the right header files
¢ What to do with main()

5 SWIG Basics

24

SWIG-3.0 Documentation

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C
declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to unders
the basics. Specific details about each target language are described in later chapters.

5.1 Running SWIG

To run SWIG, use the swig command with options and a filename like this:

swig [options] filename

where filename is a SWIG interface file or a C/C++ header file. Below is a subset of options that can be used. Additional
options are also defined for each target language. A full list can be obtained by typing swig -help or swig -lang -help.

-allegrocl Generate ALLEGROCL wrappers

-chicken Generate CHICKEN wrappers

-clisp Generate CLISP wrappers

-cffi Generate CFFI wrappers

-csharp Generate C# wrappers

-go Generate Go wrappers

-guile Generate Guile wrappers

-java Generate Java wrappers

-lua Generate Lua wrappers

-modula3 Generate Modula 3 wrappers

-mzscheme Generate Mzscheme wrappers

-ocaml Generate Ocaml wrappers

-perl Generate Perl wrappers

-php Generate PHP wrappers

-pike Generate Pike wrappers

-python Generate Python wrappers

-r Generate R (aka GNU S) wrappers

-ruby Generate Ruby wrappers

-sexp Generate Lisp S-Expressions wrappers

-tel Generate Tcl wrappers

-uffi Generate Common Lisp / UFFI wrappers

-xml Generate XML wrappers

-C++ Enable C++ parsing

-cppext ext Change file extension of C++ generated files to ext (default is cxx, except for PHP which uses cpp)
-Dsymbol Define a preprocessor symbol

-Fstandard Display error/warning messages in commonly used format
-Fmicrosoft Display error/warning messages in Microsoft format

-help Display all options

-dir Add a directory to the file include path

-Ifile Include a SWIG library file.

-module name Set the name of the SWIG module

-0 outfile Set name of C/C++ output file to <outfile>

-oh headfile Set name of C++ output header file for directors to <headfile>
-outcurrentdir Set default output dir to current dir instead of input file's path
-outdir dir Set language specific files output directory

-pcreversion Display PCRE version information

-swiglib Show location of SWIG library

-version Show SWIG version number

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you m
not want to do this (described later).

The most common format of a SWIG interface is as follows:

5.1 Running SWIG 25

SWIG-3.0 Documentation

%module mymodule

9%{

#include "myheader.h"

%0}

/I Now list ANSI C/C++ declarations
int foo;

int bar(int x);

The module name is supplied using the special %smodule directive. Modules are described further in the Modules Introduction
section.

Everything in the %({ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code comp
is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatice
appear in the generated wrapper code---therefore you need to make sure you include the proper header files in the %({ ... %}
section. It should be noted that the text enclosed in %({ ... %} is not parsed or interpreted by SWIG. The %f{...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc o
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the -c++ option has been used). The name of the

output C/C++ file can be changed using the -0 option. In certain cases, file suffixes are used by the compiler to determine the
source language (C, C++, etc.). Therefore, you have to use the -0 option to change the suffix of the SWIG-generated wrapper
if you want something different than the default. For example:

$ swig -c++ -python -0 example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct an extension module for the targe
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

For many target languages SWIG will also generate proxy class files in the target language. The default output directory for the
language specific files is the same directory as the generated C/C++ file. This can be modified using the -outdir option. For
example:

$ swig -c++ -python -outdir pyfiles -o cppfiles/example_wrap.cpp example.i
If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

If the -outcurrentdir option is used (without -0) then SWIG behaves like a typical C/C++ compiler and the default output
directory is then the current directory. Without this option the default output directory is the path to the input file. If -0 and

-outcurrentdir are used together, -outcurrentdir is effectively ignored as the output directory for the language files is
the same directory as the generated C/C++ file if not overridden with -outdir.

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.1 Input format 26

SWIG-3.0 Documentation

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor featur
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the -includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied heade
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %f{...%]} block. In addition, the preprocessor
includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extens
are described in the "Preprocessor” chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h --- Some header file */

I* SWIG directives -- only seen if SWIG is running */
#ifdef SWIG

%module foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of thes
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

» Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):

/* Non-conventional placement of storage specifier (extern) */
const int extern Number;

[* Extra declarator grouping */
Matrix (foo); /I A global variable

[* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

* Running SWIG on C++ source files (the code in a .C, .cpp or .cxx file) is not recommended. The usual approach is to
feed SWIG header files for parsing C++ definitions and declarations. The main reason is if SWIG parses a scoped
definition or declaration (as is normal for C++ source files), it is ignored, unless a declaration for the symbol was parse
earlier. For example

/* bar not wrapped unless foo has been defined and
the declaration of bar within foo has already been parsed */
int foo::bar(int) {

5.1.4 C Preprocessor 27

SWIG-3.0 Documentation

... whatever ...
}
« Certain advanced features of C++ such as nested classes are not yet fully supported. Please see the C++ Nested clas
section for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with
incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces eve
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to
implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef-name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be us
in a C program. For example, consider the following interface file:

%module example

%inline %{

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

9%}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts $STATUS
50

% puts $VERSION
1.1

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp('Dave’,'Mike")
-1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

11

5.1.6 Parser Limitations 28

SWIG-3.0 Documentation

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run-time environments, and semantics, it is not always possible to do so. The next few section
describe various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into tt
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype is
mapped as a one-character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64-b
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as larg
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost alway
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language i
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character strinc
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value °f'.

5.2 Wrapping Simple C Declarations 29

SWIG-3.0 Documentation

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8-bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them int
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter_ on Typemaps for details about this.

At this time, SWIG provides limited support for Unicode and wide-character strings (the C wchar_t type). Some languages
provide typemaps for wchar_t, but bear in mind these might not be portable across different operating systems. This is a delica
topic that is poorly understood by many programmers and not implemented in a consistent manner across languages. For thos
scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as UTF-8
can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are wrapping uses
Unicode, there is no guarantee that Unicode characters in the target language will use the same internal representation (e.qg.,
UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] # Set foo to 3.5

puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Setfooto 3.5
print cvar.foo # Print value of foo

Perl

$foo = 3.5; # Set foo to 3.5

print $foo,"\n"; # Print value of foo

Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Pyth
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the

value.

Finally, if a global variable has been declared as const, it only supports read-only access. Note: this behavior is new to
SWIG-1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define |_CONST 5 /I An integer constant
#define PI 3.14159 /I A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE \n' /I Character constant

5.2.1 Basic Type Handling 30

SWIG-3.0 Documentation

enum boolean {NO=0, YES=1};

enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};

%constant double BLAH = 42.37;

#define PI_4 Pl/4

#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will no
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above
example, the declaration

#define PI_4 Pl/4

defines a constant because Pl was already defined as a constant and the value is known. However, for the same conservative
reasons even a constant with a simple cast will be ignored, such as

#define F_CONST (double) 5 /I A floating point constant with cast

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output fil
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type-checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header fil
or in the %¢{,%} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not

usually needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically,

%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations--especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly--a situation that
SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read-only variable. To tell if a variable is const or not, you neec
to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most const
occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; /I A constant character
char const b; /I A constant character (the same)
char *const c; /I A constant pointer to a character

const char *const d; // A constant pointer to a constant character
Here is an example of a declaration that is not const:

5.2.3 Constants 31

SWIG-3.0 Documentation

const char *e; /I A pointer to a constant character. The pointer
/l may be modified.

In this case, the pointer e can change---it's only the value being pointed to that is read-only.

Please note that for const parameters or return types used in a function, SWIG pretty much ignores the fact that these are cons
see the section qn const-correctness for more information.

Compatibility Note: One reason for changing SWIG to handle const declarations as read-only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its

public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified--it's only the pointer itself that is constant. In an embedded system, a const declaration might refer t
a read-only memory address such as the location of a memory-mapped I/O device port (where the value changes, but writing t
the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the new
interpretation of const as "read-only" is simple and exactly matches the actual semantics of const in C/C++. If you really want
to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

%constant double Pl = 3.14159;
or

#ifdef SWIG

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
constint spam =42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings at
supposed to be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)
Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data |

the target language---data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects

Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these dataty

5.2.4 A brief word about const 32

SWIG-3.0 Documentation

5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simp
encodes the pointer itself into a representation that contains the actual value of the pointer and a type-tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

~10081012_p_int
~1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to othet
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would u
the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown |
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little-endian machines, the
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

 There is not enough information in a C declaration to properly map pointers into higher level constructs. For example,
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

» The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all--perhaps it is an output value!

« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to errc

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile-time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run-time type checking. This type-checking process is an integral part of SWIG and can not be disabled or modified without usi
typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive ¢

pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to deno
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer
In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs mak

heavy use of pointers and SWIG can use the type-checked pointer mechanism already present for handling pointers to basic
datatypes.

5.3.1 Simple pointers 33

SWIG-3.0 Documentation

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

Copy a file
def filecopy(source,target):
f1 = fopen(source,"r")
f2 = fopen(target,"w")
buffer = malloc(8192)
nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
fwrite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)
free(buffer)

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain--our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size_t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.3 Derived types, structs, and classes 34

SWIG-3.0 Documentation
5.3.5 Typedef
Like C, typedef can be used to define new type names in SWIG. For example:
typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

9%{
* Include in the generated wrapper file */
typedef unsigned int size_t;
9%}
/* Tell SWIG about it */
typedef unsigned int size_t;
or
%inline %{
typedef unsigned int size_t;
%0}
In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"

In this case, you might run SWIG as follows:

$ swig -l/usr/include -includeall example.i
It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non-standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right inclt

directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run-time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:
double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;

5.3.5 Typedef 35

SWIG-3.0 Documentation

Vector y = *b;
return dot_product(x,y);

}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2;
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x,y);
return result;

}
or if SWIG was run with the -c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector x = *v1;
Vectory = *v2;
Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
return result;

}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example,
global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
return &unit_i;

}

void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting languac
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy

5.4.1 Passing structures by value 36

SWIG-3.0 Documentation

constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */

void foo_set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+1);
strcpy(foo,value);

}

/* C++ mode. When -c++ option is used */
void foo_set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1];
strcpy(foo,value);

}

If this is not the behavior that you want, consider making the variable read-only using the %immutable directive. Alternatively,
you might write a short assist-function to set the value exactly like you want. For example:

%inline %({

void set_foo(char *value) {
strncpy(foo,value, 50);

}
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")
A common mistake with char * variables is to link to a variable declared like this:
char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection f
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to decla
the variable as an array:

char VERSION[64] = "1.0";
When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warnir
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory

The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

5.4.3 Linking to structure variables 37

SWIG-3.0 Documentation

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the poi
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object
list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points to a suitably allocate
region of memory.

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; /I Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays
before using them with SWIG.

Array variables are supported, but are read-only by default. For example:
int a[100][200];

In this case, reading the variable 'a’ returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a’ results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{
void a_set(int i, int j, int val) {
a[i](i] = val;

int a_get(int i, int j) {
return a[i][j];

}
%)

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

/I Some array helpers
%inline %{
[* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));

}

5.4.4 Linking to char * 38

SWIG-3.0 Documentation
[* Create a two-dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));

}
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. F
example, if you have a declaration like this,

char pathname[256];
SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
return pathname;

}

void pathname_set(char *value) {
strncpy(pathname,value,256);

In the target language, the value can be set like a normal variable.

5.4.6 Creating read-only variables

A read-only variable can be created by using the %immutable directive as shown :

/Il File : interface.i

int a; /I Can read/write
%immutable;

int b,cd /I Read only variables
%mutable;

double x,y /I read/write

The %immutable directive enables read-only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read-only mode off and on like this, individual declarations can also be tagged as immutable. For example

%immutable x; I/l Make x read-only
double x; /I Read-only (from earlier %immutable directive)

double y; /I Read-write

The %mutable and %immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %omutable %feature("immutable”,")

If you wanted to make all wrapped variables read-only, barring one or two, it might be easier to take this approach:

%immutable; /I Make all variables read-only
%feature("immutable”,"0") x; // except, make x read/write

double x;

double y;
double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

5.4.5 Arrays 39

SWIG-3.0 Documentation

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations
5.4.7.1 Simple renaming of specific identifiers

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can us
the %rename directive as shown :

/ interface.i

%rename(my_print) print;
extern void print(const char *);

%rename(foo) a_really_long_and_annoying_name;
extern int a_really _long_and_annoying_name;

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

Il interface.i

%rename(my_print) print;
%rename(foo) a_really_long_and_annoying_name;

%include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two-dozen C++ classes, all with a membe
function named “print' (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename(output) print; // Rename all “print' functions to “output’

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.

Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print; /I lgnore all declarations named print
%ignore MYMACRO; /I lgnore a macro

#define MYMACRO 123
void print(const char *);

Any function, variable etc which matches %ignore will not be wrapped and therefore will not be available from the target
language. A common usage of %ignore is to selectively remove certain declarations from a header file without having to add
conditional compilation to the header. However, it should be stressed that this only works for simple declarations. If you need tc
remove a whole section of problematic code, the SWIG preprocessor should be used instead.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:

5.4.6 Creating read-only variables 40

SWIG-3.0 Documentation

%name(output) extern void print(const char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful

and better supports wrapping of raw header file information.

5.4.7.2 Advanced renaming support

While writing %rename for specific declarations is simple enough, sometimes the same renaming rule needs to be applied to
many, maybe all, identifiers in the SWIG input. For example, it may be necessary to apply some transformation to all the name:

the target language to better follow its naming conventions, like adding a specific prefix to all wrapped functions. Doing it

individually for each function is impractical so SWIG supports applying a renaming rule to all declarations if the name of the

identifier to be renamed is not specified:

%rename("myprefix_%s") "; // print -> myprefix_print

This also shows that the argument of %rename doesn't have to be a literal string but can be a printf()-like format string. In
the simplest form, "%s" is replaced with the name of the original declaration, as shown above. However this is not always
enough and SWIG provides extensions to the usual format string syntax to allow applying a (SWIG-defined) function to the

argument. For example, to wrap all C functions do_something_long() as more Java-like doSomethingLong() you can
use the "lowercamelcase" extended format specifier like this:

%rename("%(lowercamelcase)s") *"; // foo_bar -> fooBar; FooBar -> fooBar

Some functions can be parametrized, for example the "strip" one strips the provided prefix from its argument. The prefix is

specified as part of the format string, following a colon after the function name:

%rename("%(strip:[wx])s") "; // wxHello -> Hello; FooBar -> FooBar

Below is the table summarizing all currently defined functions with an example of applying each one. Note that some of them

have two names, a shorter one and a more descriptive one, but the two functions are otherwise equivalent:

Function Returns Example (in/out)
uppercase or upper Upper case version of the string. Print PRINT
lowercase or lower Lower case version of the string. Print print
title String with first letter capitalized and the rest in lower print Print

case.
firstuppercase String with the first letter capitalized and the rest printlt Printlt
unchanged.
, String with the first letter in lower case and the rest . :
firstlowercase Printlt printlt
unchanged.
String with capitalized first letter and any letter following
camelcase or ctitle an underscore (which are removed in the process) and m#t_it Printlt
in lower case.
String with every letter following an underscore (which |s
lowercamelcase or . S) . L .
Ictitle removed in the process) capitalized and rest, including|thant_it printlt
first letter, in lower case.
Lower case string with underscores inserted before every
undercase or utitle upper case Iettgr in the ergmal §tr!ng and any number n trintlt orint_it
at the end of string. Logically, this is the reverse of
camelcase.

5.4.7.1 Simple renaming of specific identifiers

41

SWIG-3.0 Documentation

String with all underscores replaced with dashes, resulfin

schemify in more Lispers/Schemers-pleasing hame. pﬂnt_lt print-it

String without the given prefix or the original string if it
doesn't start with this prefix. Note that square brackets
should be used literally, e.g.

%rename("strip:[wx]")

strip:[prefix] wxPrint Print

String after (Perl-like) regex substitution operation. This
function allows to apply arbitrary regular expressions td
the identifier names. The pattern part is a regular
expression in Perl syntax (as supported by the Perl
Compatible Reqular Expressions (PCRE)) library and the
subst string can contain back-references of the form \N
where N is a digit from 0 to 9, or one of the following
escape sequences: \I, \L, \u, \U or \E. The
back-references are replaced with the contents of the
corresponding capture group while the escape sequenges
perform the case conversion in the substitution string:
and \L convert to the lower case, while \u and \U
convert to the upper case. The difference between the
elements of each pair is that \l and \u change the case [of
the next character only, while \L and \U do it for all the
remaining characters or until \E is encountered. Finally
please notice that backslashes need to be escaped in C
strings, so in practice "\\" must be used in all these
escape sequences. For example, to remove any alphapetic
prefix before an underscore and capitalize the remaining
part you could use the following directive:
%rename("regex:/(\\w+)_(.*)AN\u\\2/")

regex:/pattern/subst/ | prefix_print Print

Output of an external command cmd with the string
passed to it as input. Notice that this function is extremely
slow compared to all the other ones as it involves
spawning a separate process and using it for many Print Pt
declarations is not recommended. The cmd is not enclpsed’

in square brackets but must be terminated with a triple
'<" sign, e.g. %rename("command:tr -d aeiou

<<<") (nonsensical example removing all vowels)

command:cmd

The most general function of all of the above ones (not counting command which is even more powerful in principle but which
should generally be avoided because of performance considerations) is the regex one. Here are some more examples of its us

/I Strip the wx prefix from all identifiers except those starting with wxEVT
%rename("%(regex:/wx(?'EVT)(.*)\\1/)s™) "; // wxSomeWidget -> SomeWidget
/Il WXEVT_PAINT -> wxEVT_PAINT

/I Apply a rule for renaming the enum elements to avoid the common prefixes

/I which are redundant in C#/Java

%rename("%(regex:/N[A-Z][a-z]+)+_(.*)\2/)s", %S$isenumitem) "™; // Colour_Red -> Red
/ Remove all "Set/Get" prefixes.

%rename("%(regex:/"(Set|Get)(.*)\2/)s") ""; Il SetValue -> Value
/I GetValue -> Value

As before, everything that was said above about %rename also applies to %ignore. In fact, the latter is just a special case of th
former and ignoring an identifier is the same as renaming it to the special "$ignore” value. So the following snippets

%ignore print;

5.4.7.2 Advanced renaming support 42

http://www.pcre.org/
http://www.pcre.org/

SWIG-3.0 Documentation

and
%rename("$ignore") print;

are exactly equivalent and %rename can be used to selectively ignore multiple declarations using the previously described
matching possibilities.

5.4.7.3 Limiting global renaming rules

As explained in the previous sections, it is possible to either rename individual declarations or apply a rename rule to all of ther
at once. In practice, the latter is however rarely appropriate as there are always some exceptions to the general rules. To deal !
them, the scope of an unnamed %rename can be limited using subsequent match parameters. They can be applied to any of tl
attributes associated by SWIG with the declarations appearing in its input. For example:

%rename("foo", match$name="pbar") "";
can be used to achieve the same effect as the simpler
%rename("foo") bar;

and so is not very interesting on its own. However match can also be applied to the declaration type, for example
match="class" restricts the match to class declarations only (in C++) and match="enumitem" restricts it to the enum
elements. SWIG also provides convenience macros for such match expressions, for example

Y%rename("%(title)s”, %$isenumitem) ™;

will capitalize the names of all the enum elements but not change the case of the other declarations. Similarly, %$isclass,
%S$isfunction, %$isconstructor, %3$isunion, %$istemplate, and %$isvariable can be used. Many other

checks are possible and this documentation is not exhaustive, see the "%rename predicates" section in swig.swg for the full lis
of supported match expressions.

In addition to literally matching some string with match you can also use regexmatch or notregexmatch to match a string
against a regular expression. For example, to ignore all functions having "Old" as a suffix you could use

%rename("$ignore”, regexmatch$name="0ld$") "";

For simple cases like this, specifying the regular expression for the declaration name directly can be preferable and can also b
done using regextarget:

%rename("$ignore", regextarget=1) "OId$";

Notice that the check is done only against the name of the declaration itself, if you need to match the full name of a C++
declaration you must use fullname attribute:

%rename("$ignore", regextarget=1, fullname=1) "NameSpace::ClassName::.*Old$";

As for notregexmatch, it restricts the match only to the strings not matching the specified regular expression. So to rename all
declarations to lower case except those consisting of capital letters only:

%rename("$(lower)s", notregexmatch$name=""[A-Z]+$") ";

Finally, variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods or C++
methods which use default arguments. This is described in the Ambiguity resolution and renaming section in the C++ chapter.

5.4.7.4 Ignoring everything then wrapping a few selected symbols

Using the techniques described above it is possible to ignore everything in a header and then selectively wrap a few chosen
methods or classes. For example, consider a header, myheader.h which has many classes in it and just the one class called

5.4.7.3 Limiting global renaming rules 43

SWIG-3.0 Documentation

Star is wanted within this header, the following approach could be taken:

%ignore ""; // Ignore everything

// Unignore chosen class 'Star'
%rename("%s") Star;

/I As the ignore everything will include the constructor, destructor, methods etc
/I in the class, these have to be explicitly unignored too:

%rename("%s") Star::Star;

%rename("%s") Star::~Star;

%rename("%s") Star::shine; // named method

%include "myheader.h"

Another approach which might be more suitable as it does not require naming all the methods in the chosen class is to begin b
ignoring just the classes. This does not add an explicit ignore to any members of the class, so when the chosen class is unignc
all of its methods will be wrapped.

%rename($ignore, %S$isclass) "; // Only ignore all classes
%rename("%s") Star; // Unignore 'Star'
%include "myheader.h"

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot-3.4 7.5 # Use default value
% plot -3.4 7.5 10 # set color to 10 instead

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with bo
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used in C code, the default values are emitted into the wrappers and the function is invoked with a full se
arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions--possibly to serve as callbacks. SWI
provides full support for function pointers provided that the callback functions are defined in C and not in the target language. F
example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
return x+y

>>> binary_op(3,4,add)
Traceback (most recent call last):

5.4.7.4 Ignoring everything then wrapping a few selected symbols 44

SWIG-3.0 Documentation

File "<stdin>", line 1, in ?
TypeError: Type error. Expected
>>>

f_int_int__int

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
7

>>> binary_op(3,4,mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accessible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p f int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb");

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback;

The argument to %callback is a printf-style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> binary_op(3,4,add_cb)
7

>>> hinary_op(3,4,mul_cb)
12

>>> add(3,4)

7

>>> mul(3,4)

12

Notice that when the function is used as a callback, special names such as add_cb are used instead. To call the function
normally, just use the original function name such as add().

5.4.9 Pointers to functions and callbacks 45

SWIG-3.0 Documentation

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper case constants such as ADD, SUB, and MUL:

/* Some callback functions */
%callback("%(uppercase)s");
int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback;

A format string of "%(lowercase)s" converts all characters to lower case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. See the Typemay
chapter for more about typemaps and individual target language chapters for more on callbacks and the 'director' feature.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions makes it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x,y,z;
}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj->x;

}

double Vector_y_get(struct Vector *obj) {
return obj->y;

}

double Vector_z_get(struct Vector *obj) {
return obj->z;

}

void Vector_x_set(struct Vector *obj, double value) {
obj->x = value;

}

void Vector_y_set(struct Vector *obj, double value) {
obj->y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj->z = value;

}
In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(1,sizeof(struct Vector));
}
void delete_Vector(struct Vector *obj) {
free(obj);
}

5.5 Structures and unions 46

SWIG-3.0 Documentation

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like this

v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)
Vector_z_set(v,-5)

delete_Vector(v)

However, most of SWIG's language modules also provide a high-level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is "Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
return obj->x;

}
If two different names are used like this :

typedef struct vector_struct {
double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the
appropriate type-checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamical
allocated using malloc() and that they are NULL-terminated ASCII strings. When such a member is modified, the previous
contents will be released, and the new contents allocated. For example :

%module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo->name,;
}

char *Foo_name_set(Foo *obj, char *c) {
if (obj->name) free(obj->name);
obj->name = (char *) malloc(strlen(c)+1);

5.5.1 Typedef and structures a7

SWIG-3.0 Documentation

strcpy(obj->name,c);
return obj->name;

}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See t
typemaps chapter for further details.

Note: If the -c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read-only. SWIG will write an accessor function that returns t
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situatior
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

inty;

Foo f; [* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the %naturalvar directive is used where it is handled
more like a C++ reference (see C++ Member data). The accessors to the member variable as a pointer are effectively wrappec
follows:

Foo *Bar_f_get(Bar *b) {
return &b->f;

void Bar_f_set(Bar *b, Foo *value) {

b->f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;
Foo_x_set(Bar_f_get(b),37);

In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!

5.5.2 Character strings and structures 48

SWIG-3.0 Documentation

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. Fo
instance, if you had a structure like this,

struct Foo {
WORD w;

h
and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
return f->w;

void Foo_w_set(FOO *f, WORD value) {
f->w = value;

}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non-primitive member datatypes to pointers. Starting in
SWIG-1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the -c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the %nodefaultctor directive or the
-nodefaultctor command line option. For example:

swig -nodefaultctor example.i
or

%module foo
%nodefaultctor; / Don't create default constructors

... declarations ...
%clearnodefaultctor; // Re-enable default constructors

If you need more precise control, %nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; /I No default constructor for Foo

struct Foo { /I No default constructor generated.
X

struct Bar { /I Default constructor generated.

X

Since ignoring the implicit or default destructors most of the time produces memory leaks, SWIG will always try to generate
them. If needed, however, you can selectively disable the generation of the default/implicit destructor by using
%nodefaultdtor

%nodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { /I No default destructor is generated.
h
struct Bar { /I Default destructor generated.

5.5.4 Structure data members 49

SWIG-3.0 Documentation
¥

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using -make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

Note: There are also the -nodefault option and %nodefault directive, which disable both the default or implicit destructor
generation. This could lead to memory leaks across the target languages, and it is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no di
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the follow
declaration :

[* file : vector.h */

typedef struct Vector {
double x,y,z;
} Vector;

You can make a Vector look a lot like a class by writing a SWIG interface like this:

/I file : vector.i
%module mymodule
%{

#include "vector.h"
9%}

%include "vector.h" /I Just grab original C header file
%extend Vector { /I Attach these functions to struct Vector
Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V->X = X;
v->y =y,
v->z = z;
return v;
}
~Vector() {
free($self);
}
double magnitude() {
return sqgrt($self->x*$self->x+$self->y*$self->y+$self->z*$self->z);
}
void print() {
printf("Vector [%g, %g, %g]\n", $self->x,$self->y,$self->2z);
}

Note the usage of the $self special variable. Its usage is identical to a C++ 'this' pointer and should be used whenever access t
the struct instance is required. Also note that C++ constructor and destructor syntax has been used to simulate a constructor a
destructor, even for C code. There is one subtle difference to a normal C++ constructor implementation though and that is
although the constructor declaration is as per a normal C++ constructor, the newly constructed object must be returned as if ths
constructor declaration had a return value, a Vector * in this case.

Now, when used with proxy classes in Python, you can do things like this :

5.5.5 C constructors and destructors 50

SWIG-3.0 Documentation

>>>v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0

>>> v.print() # Print it out

[3,4,0]

>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

/I file : vector.i
%module mymodule
%

#include "vector.h"
0}

typedef struct Vector {
double x,y,z;
%extend {
Vector(double x, double y, double z) { ... }
~Vector() { ... }

}

} Vector;

Note that %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

* File : vector.c */
* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V->X = X;
vV->y =y,
V->Z = Z;
returnv;

void delete_Vector(Vector *v) {
free(v);

}

double Vector_magnitude(Vector *v) {
return sqrt(v->x*v->x+v->y*v->y+v->z*v->z);

}

/I File : vector.i

Il Interface file
%module mymodule
%

#include "vector.h"
9%}

typedef struct Vector {
double x,y,z;
%extend {
Vector(int,int,int); // This calls new_Vector()
~Vector(); /I This calls delete_Vector()
double magnitude(); // This will call Vector_magnitude()

}

} Vector;

The name used for %extend should be the name of the struct and not the name of any typedef to the struct. For example:
typedef struct Integer {

5.5.6 Adding member functions to C structures 51

SWIG-3.0 Documentation

int value;
}Int;
%extend Integer { ... }/* Correct name */
%extend Int { ... }/* Incorrect name */

struct Float {
float value;
h
typedef struct Float FloatValue;
%extend Float { ... } /* Correct name */
%extend FloatValue { ... }/* Incorrect name */

There is one exception to this rule and that is when the struct is anonymously named such as:

typedef struct {
double value;
} Double;
%extend Double { ... } /* Okay */

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavio
of existing data attributes. For example, suppose you wanted to make magnitude a read-only attribute of Vector instead of a
method. To do this, you might write some code like this:

// Add a new attribute to Vector
%extend Vector {
const double magnitude;

}
/I Now supply the implementation of the Vector_magnitude_get function
%
const double Vector_magnitude_get(Vector *v) {
return (const double) sqrt(v->x*v->X+v->y*v->y+v->7*v->7);

}
%}

Now, for all practical purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with data members that you want to process. For example, consider this interface

typedef struct Person {
char name[50];

} Person;

Say you wanted to ensure name was always upper case, you can rewrite the interface as follows to ensure this occurs whenev
name is read or written to:

typedef struct Person {
%extend {
char name[50];

}
} Person;

9%{
#include <string.h>
#include <ctype.h>

void make_upper(char *name) {
char *c;
for (c = name; *c; ++c)
*c = (char)toupper((int)*c);
}

5.5.6 Adding member functions to C structures 52

SWIG-3.0 Documentation

/* Specific implementation of set/get functions forcing capitalization */

char *Person_name_get(Person *p) {
make_upper(p->name);
return p->name;

}

void Person_name_set(Person *p, char *val) {
strncpy(p->name,val,50);
make_upper(p->name);

}
9%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.qg., their values must be entirely synthesized from existing attributes
the structure or obtained elsewhere).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char *strvalue;
void ‘*ptrvalue;
}intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {

int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;

typedef struct Object {
int objType;
Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
return (Object_intRep *) &o->intRep;

}

int Object_intRep_ivalue_get(Object_intRep *0) {
return o->ivalue;

}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o->ivalue = value);

}

5.5.7 Nested structures 53

SWIG-3.0 Documentation

double Object_intRep_dvalue_get(Object_intRep *0) {
return o->dvalue;
}

... etc ...
Although this process is a little hairy, it works like you would expect in the target scripting language--especially when proxy
classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$0 = CreateObiject(); # Create an object somehow
$o->{intRep}->{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot of nested structure declarations, it is advisable to double-check them after running SWIG. Although, there is a
good chance that they will work, you may have to modify the interface file in certain cases.

Finally, note that nesting is handled differently in C++ mode,_see Nested classes.

5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structut
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definitior

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though struc
access has been described in terms of high-level accessor functions such as this,

double Vector_x_get(Vector *v) {
return v->Xx;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
struct Vector *arg1 ;
double result ;

if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
SWIGTYPE_p_Vector) == TCL_ERROR)
return TCL_ERROR;
result = (double) (arg1->x);
Tcl_SetObjResult(interp, Tcl_NewDoubleObj((double) result));
return TCL_OK;

}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low-level interface described here, most of SWIG's language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may wan
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useft
to know how the output of SWIG is structured first.

5.5.8 Other things to note about structure wrapping 54

SWIG-3.0 Documentation

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into five sections corresponding to runtime code, headers, wrapper functions
and module initialization code (in that order).

 Begin section.
A placeholder for users to put code at the beginning of the C/C++ wrapper file. This is most often used to define
preprocessor macros that are used in later sections.

* Runtime code.
This code is internal to SWIG and is used to include type-checking and other support functions that are used by the res
of the module.

* Header section.
This is user-defined support code that has been included by the %({ ... %} directive. Usually this consists of header
files and other helper functions.

» Wrapper code.
These are the wrappers generated automatically by SWIG.

* Module initialization.
The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the code insertion directives listed below. The order of the
sections in the wrapper file is as shown:

%begin %f{
... code in begin section ...
9%}

%runtime %{
... code in runtime section ...
%0}

%header %({
... code in header section ...
%%}

Y%wrapper %f{
... code in wrapper section ...
9%}

%init %{
... code in init section ...
%0}

The bare %{ ... %} directive is a shortcut that is the same as %header %f{ ... %]}.

The %begin section is effectively empty as it just contains the SWIG banner by default. This section is provided as a way for
users to insert code at the top of the wrapper file before any other code is generated. Everything in a code insertion block is co|
verbatim into the output file and is not parsed by SWIG. Most SWIG input files have at least one such block to include header
files and support C code. Additional code blocks may be placed anywhere in a SWIG file as needed.

%module mymodule

%

#include "my_header.h"
90}

... Declare functions here
%{

void some_extra_function() {
}

5.6.1 The output of SWIG 55

SWIG-3.0 Documentation

%}

A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of
building an interface, but which are generally not visible to the normal C program. For example :

9%{
/* Create a new vector */
static Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));
}

9%}
/I Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follov

%inline %{
/* Create a new vector */
Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));
}

%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %f{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

%init %{
init_variables();
9%}

5.7 An Interface Building Strategy

This section describes the general approach for building interfaces with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the resu
might not be what you expect---in fact, they might be awful. Here's a series of steps you can follow to make an interface for a C
program :

« Identify the functions that you want to wrap. It's probably not necessary to access every single function of a C
program--thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files are
a particularly good source for finding things to wrap.

 Create a new interface file to describe the scripting language interface to your program.

« Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C

5.6.2 Code insertion blocks 56

SWIG-3.0 Documentation

source/header file.

» Make sure everything in the interface file uses ANSI C/C++ syntax.

» Make sure all necessary “typedef' declarations and type-information is available in the interface file. In particular,
ensure that the type information is specified in the correct order as required by a C/C++ compiler. Most importantly,
define a type before it is used! A C compiler will tell you if the full type information is not available if it is needed,
whereas SWIG will usually not warn or error out as it is designed to work without full type information. However, if type
information is not specified correctly, the wrappers can be sub-optimal and even result in uncompilable C/C++ code.

« If your program has a main() function, you may need to rename it (read on).

* Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard
improve the SWIG parser--you should report parsing errors to the swig-devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate a separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

[* File : interface.i */
%module mymodule

%f

#include "header.h"

%0}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could use a simpler approach and use an interface file like this:

/* File : interface.i */

%module mymodule
%f

#include "header.h"

0}

%include "header.h"

The main advantage of this approach is minimal maintenance of an interface file for when the header file changes in the future.
more complex projects, an interface file containing numerous %include and #include statements like this is one of the most
common approaches to interface file design due to lower maintenance overhead.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.

There are several reasons why you might want to do this:

5.7.1 Preparing a C program for SWIG 57

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

SWIG-3.0 Documentation

« It is rarely necessary to access every single function in a large package. Many C functions might have little or no use ir
scripted environment. Therefore, why wrap them?

» Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructe

« Interface files can provide more structure and organization.

* SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

« Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to t
interface file and immediately see what is available without having to dig it out of header files.

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure
include certain header files by using a %{,%} block like this:

%module graphics
9%{

#include <GL/gl.h>
#include <GL/glu.h>
9%}

/I Put the rest of the declarations here

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

* Get rid of main() entirely.

* Rename main() to something else. You can do this by compiling your C program with an option like
-Dmain=oldmain.

* Use conditional compilation to only include main() when not using a scripting language.

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, th
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: In some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

5.7.3 Why use separate interface files? 58

6 SWIG and C++

+ Comments on C++ Wrapping
» Approach
 Supported C++ features
« Command line options and compilation
 Proxy classes
¢ Construction of proxy classes
+ Resource management in proxies
¢ Language specific details
* Simple C++ wrapping
¢ Constructors and destructors
+ Default constructors, copy constructors and implicit destructors
¢ When constructor wrappers aren't created

¢ Copy constructors
+ Member functions

+ Static members
¢+ Member data
« Default arguments
* Protection
» Enums and constants
* Friends
» References and pointers
« Pass and return by value
« Inheritance
« A brief discussion of multiple inheritance, pointers, and type checking
» Wrapping Overloaded Functions and Methods
¢ Dispatch function generation
+ Ambiguity in Overloading
¢ Ambiguity resolution and renaming
+ Comments on overloading

» Wrapping overloaded operators
» Class extension
» Templates
+ Namespaces
¢ The nspace feature for namespaces
« Renaming templated types in hamespaces
» Exception specifications
 Exception handling with %catches
 Pointers to Members
» Smatrt pointers and operator->()
» C++ reference counted objects - ref/unref feature

« Using declarations and inheritance
* Nested classes

« A brief rant about const-correctness
» Where to go for more information

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

6 SWIG and C++ 59

SWIG-3.0 Documentation

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advance
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target
language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when 1
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary-level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non-obvious wa:
Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing languac
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedur
ANSI-C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low-level
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built-in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. On top of the
low-level procedural (flattened) interface, SWIG generates proxy classes that provide a natural object-oriented (OO) interface t
the underlying code. The proxy classes are typically written in the target language itself. For instance, in Python, a real Python
class is used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside a special C++ adaptor, it does not rely upon templates, nor does it add in additional C
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise--it does not play sneaky tricks
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Some of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modul
Keep in mind that the target languages also provide the high-level OO interface via proxy classes. More detailed coverage can
found in the documentation for each target language.

6.3 Supported C++ features
SWIG currently supports most C++ features including the following:

* Classes

* Constructors and destructors

* Virtual functions

* Public inheritance (including multiple inheritance)
* Static functions

 Function and method overloading

» Operator overloading for many standard operators
* References

» Templates (including specialization and member templates)
* Pointers to members

* Namespaces

 Default parameters

* Smart pointers

6.1 Comments on C++ Wrapping 60

SWIG-3.0 Documentation

The following C++ features are not currently supported:
» Overloaded versions of certain operators (new, delete, etc.)
As a rule of thumb, SWIG should not be used on raw C++ source files, use header files only.

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the “-c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the -c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig -c++ -tcl example.i
$ c++ -fPIC -c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) -0 example.so

Unfortunately, the process varies slightly on each platform. Make sure you refer to the documentation on each target language
further details. The SWIG Wiki also has further details.

Compatibility Note: Early versions of SWIG generated just a flattened low-level C style API to C++ classes by default. The
-noproxy commandline option is recognised by many target languages and will generate just this interface as in earlier
versions.

6.5 Proxy classes

In order to provide a natural mapping from C++ classes to the target language classes, SWIG's target languages mostly wrap (
classes with special proxy classes. These proxy classes are typically implemented in the target language itself. For example, if
you're building a Python module, each C++ class is wrapped by a Python proxy class. Or if you're building a Java module, eacl
C++ class is wrapped by a Java proxy class.

6.5.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses low-level accessor functions. To illustrate, suppo
you had a C++ class like this:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;

h
Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:
FooProxy() {
self = new_Foo();

}
~FooProxy() {

6.3 Supported C++ features 61

SWIG-3.0 Documentation

delete_Foo(self);

}
int bar(int x) {
return Foo_bar(self,x);
}
int x_get() {
return Foo_x_get(self);

void x_set(int x) {
Foo_x_set(self,x);
}
h

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy mit
look roughly like this:

class Foo:
def __init__(self):
self.this = new_Foo()
def _ del__(self):
delete_Foo(self.this)
def bar(self,x):
return Foo_bar(self.this,x)
def __getattr__(self,name):
if name == 'x"
return Foo_x_get(self.this)

def __setattr__(self,name,value):
if name == 'x"
Foo_x_set(self.this,value)

Again, it's important to emphasize that the low-level accessor functions are always used by the proxy classes. Whenever possi

proxies try to take advantage of language features that are similar to C++. This might include operator overloading, exception
handling, and other features.

6.5.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
h
class Spam {
public:
Foo *value;

k

Consider some script code that uses these classes:

f=Foo() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value = f # Stores a reference to f inside s
g = s.value # Returns stored reference
g=4 # Reassign g to some other value
del f # Destroy f

6.5.1 Construction of proxy classes 62

SWIG-3.0 Documentation

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by ne!
created proxy classes. That is, there is both a new proxy class instance and a new instance of the underlying C++ class. In this
example, both f and s are created in this way. However, the statement s.value is rather curious---when executed, a pointer to f
is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the sam:
object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new proxy
class g that provides a wrapper around the C++ object stored in s.value. In general, there is no way to know where this object
came from---it could have been created by the script, but it could also have been generated internally. In this particular exampls
the assignment of g results in a second proxy class for f. In other words, a reference to f is how shared by two proxy classes ar
a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many
languages, this makes the old value of g available for garbage collection. Therefore, this causes one of the proxy classes to be
destroyed. Later on, the statement del f destroys the other proxy class. Of course, there is still a reference to the original object
stored inside another C++ object. What happens to it? Is the object still valid?

To deal with memory management problems, proxy classes provide an API for controlling ownership. In C++ pseudocode,
ownership control might look roughly like this:

class FooProxy {

public:
Foo *self;
int thisown;

FooProxy() {
self = new_Foo();
thisown = 1; /I Newly created object

~FooProxy() {
if (thisown) delete_Foo(self);
}

/I Ownership control API
void disown() {
thisown = 0;

void acquire() {
thisown = 1;
}
h

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self =s;
thisown = 0;
}
h

class SpamProxy {

FooProxy *value_get() {
return FooPtrProxy(Spam_value_get(self));

void value_set(FooProxy *v) {
Spam_value_set(self,v->self);
v->disown();

}
o

Looking at this code, there are a few central features:

« Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set

6.5.2 Resource management in proxies 63

SWIG-3.0 Documentation

* When new objects are created in the target language, the ownership flag is set.

* When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not ha
ownership.

« In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is

» Manual ownership control is provided by special disown() and acquire() methods.

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible
memory management problem. However, proxies do provide a mechanism for manual control that can be used (if necessary) t
address some of the more tricky memory management problems.

6.5.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has m«
introduced the topic in a very general way.

6.6 Simple C++ wrapping
The following code shows a SWIG interface file for a simple C++ class.

%module list
%

#include "list.h"
%0}

/I Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int length;
static void print(List *1);

¥

To generate wrappers for this class, SWIG first reduces the class to a collection of low-level C-style accessor functions which &
then used by the proxy classes.

6.6.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
return new List;

void delete_List(List *I) {
delete I;
}

6.6.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will automatically assume there is one even when they ¢
not explicitly declared in the class interface.

In general then:

6.5.3 Language specific details 64

SWIG-3.0 Documentation

« If a C++ class does not declare any explicit constructor, SWIG will automatically generate a wrapper for one.

« If a C++ class does not declare an explicit copy constructor, SWIG will automatically generate a wrapper for one if the
%copyctor is used.

« If a C++ class does not declare an explicit destructor, SWIG will automatically generate a wrapper for one.

And as in C++, a few rules that alters the previous behavior:

« A default constructor is not created if a class already defines a constructor with arguments.

 Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

« A default constructor is not created unless all base classes support a default constructor.

« Default constructors and implicit destructors are not created if a class defines them in a private or protected
section.

« Default constructors and implicit destructors are not created if any base class defines a non-public default constructor
destructor.

SWIG should never generate a default constructor, copy constructor or default destructor wrapper for a class in which it is illeg:
to do so. In some cases, however, it could be necessary (if the complete class declaration is not visible from SWIG, and one of
above rules is violated) or desired (to reduce the size of the final interface) by manually disabling the implicit
constructor/destructor generation.

To manually disable these, the %nodefaultctor and %nodefaultdtor feature flag directives can be used. Note that these
directives only affects the implicit generation, and they have no effect if the default/copy constructors or destructor are explicitly
declared in the class interface.

For example:

%nodefaultctor Foo; // Disable the default constructor for class Foo.
class Foo { /I No default constructor is generated, unless one is declared

)

class Bar { /I A default constructor is generated, if possible
¥
The directive %nodefaultctor can also be applied "globally”, as in:

%nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless one is declared

I3

class Bar {

public:

Bar(); /I The default constructor is generated, since one is declared

I3

%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding %nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if
needed. Be aware, however, that this could lead to memory leaks in the target language. Hence, it is recommended to use this
directive only in well known cases. For example:

%nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { /I No destructor is generated, unless one is declared
h

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7.
This may break certain older modules, but the old behavior can be easily restored using %nodefault or the -nodefault
command line option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be ab
to gather information from both the private and protected sections (specifically, it needs to know if a private or protected

6.6.2 Default constructors, copy constructors and implicit destructors 65

SWIG-3.0 Documentation

constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously genere
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

Note: The %nodefault directive/-nodefault options described above, which disable both the default constructor and the
implicit destructors, could lead to memory leaks, and so it is strongly recommended to not use them.

6.6.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a construct
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo(); /I Not wrapped.
public:

¥

Next, SWIG won't generate wrappers for a class if it appears to be abstract--that is, it has undefined pure virtual methods. Here
some examples:

class Bar {
public:
Bar(); /I Not wrapped. Bar is abstract.
virtual void spam(void) = 0;
h
class Grok : public Bar {
public:
Grok(); /I Not wrapped. No implementation of abstract spam().

k

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caus
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig -Wall -python module.i
In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
public:
Foo(); /I Generated no matter what---not abstract.

h
More information about %feature can be found in the Customization features chapter.

6.6.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:

6.6.3 When constructor wrappers aren't created 66

SWIG-3.0 Documentation

List();
List(const List &); // Copy constructor

h
then the copy constructor can be used as follows:

x = List() # Create a list
y = List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
return new List(*f);
}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor--other definition
will result in a name-clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in

SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors. However, copy constructor wrappers can be generated if using the copyctor
feature flag. For example:

%copyctor List;
class List {
public:

List();
h

Will generate a copy constructor wrapper for List.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
Foo();
%name(CopyFoo) Foo(const Foo &);

h
For backwards compatibility, SWIG does not perform any special copy-constructor handling if the constructor has been manual

renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in old:
versions.

6.6.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj->search(value);
}

This translation is the same even if the member function has been declared as virtual.

6.6.4 Copy constructors 67

SWIG-3.0 Documentation

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access
as obj->search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the low-level procedural wrappers match the accessor function prototype described above.

6.6.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member functic
print(List *I) directly invokes List::print(List *I) in the generated wrapper code.

6.6.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. F
example :

int List_length_get(List *obj) {
return obj->length;
}

int List_length_set(List *obj, int value) {

obj->length = value;
return value;

A read-only member can be created using the %immutable and %omutaf#ature flag directive. For example, we probably
wouldn't want the user to change the length of a list so we could do the following to make the value available, but read-only.

class List {
public:

%immutable;
int length;
%mutable;

3
Alternatively, you can specify an immutable member in advance like this:
%immutable List::length;
él.ass List {
mt length; /I Immutable by above directive
h

Similarly, all data attributes declared as const are wrapped as read-only members.

By default, SWIG uses the const reference typemaps for members that are primitive types. There are some subtle issues wher
wrapping data members that are not primitive types, such as classes. For instance, if you had another class like this,

class Foo {
public:
List items;

then the low-level accessor to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {

6.6.5 Member functions 68

SWIG-3.0 Documentation

self->items = *value;

}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural fc
some types. For example, a user would expect the STL std::string class member variables to be wrapped as a string in the tarc
language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a feature t
tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the naturalvar feature and can be used tc
effectively change the way accessors are generated to the following:

const List &Foo_items_get(Foo *self) {
return self->items;

}
void Foo_items_set(Foo *self, const List &value) {
self->items = value;

}
The %naturalvar directive is a macro for, and hence equivalent to, %feature("naturalvar”). It can be used as follows:

/I All List variables will use const List& typemaps
%naturalvar List;

/I Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;

struct Foo {

List myList;

h

/I All non-primitive types will use const reference typemaps
%naturalvar;

The observant reader will notice that %naturalvar works like any other feature flag directive but with some extra flexibility.

The first of the example usages above shows %naturalvar attaching to the myList's variable type, that is the List class.

The second usage shows %naturalvar attaching to the variable name. Hence the naturalvar feature can be used on either the
variable's name or type. Note that using the naturalvar feature on a variable's name overrides any naturalvar feature attached t
variable's type.

It is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to the

pointer typemaps. A pointer can be NULL, whereas a reference cannot, so the extra checking ensures that the target language
does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereferences. Th
%naturalvar feature will apply to global variables in addition to member variables in some language modules, eg C# and Java.

The naturalvar behavior can also be turned on as a global setting via the -naturalvar commandline option or the module
mode option, %module(naturalvar=1). However, any use of %feature("naturalvar") will override the global
setting.

Compatibility note: The %naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually
apply the const reference typemaps, eg %apply const std::string & { std::string * }, but this example would
also apply the typemaps to methods taking a std::string pointer.

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
size_t len;

6.6.7 Member data 69

SWIG-3.0 Documentation
¥

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure c
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over
few problems related to structure wrapping and some of SWIG's customization features.

6.7 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, inty = 3, int z = 4);
h

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively
handling methods with default arguments as if it was wrapping the equivalent overloaded methods. Thus for the example abov:
is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, int 'y, int z);
void bar(int x, int y);
void bar(int x);

¥

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this are covered later
the Wrapping Overloaded Functions and Methods section. This approach allows SWIG to wrap all possible default arguments,
can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using %feature with functions with default
arguments. The Ambiguity resolution and renaming section also deals with using %rename and %ignore on methods with
default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need
write a typecheck typemap. See the_Typemaps and overloading section for details or otherwise use the

compactdefaultargs feature flag as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single
wrapper method was generated and the default values were copied into the C++ wrappers so that the method being wrapped \
then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods:
default arguments can be re-activated by using the compactdefaultargsfeature flag.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
void bar(int x, inty = 3, int z = 4);
¥

This is great for reducing the size of the wrappers, but the caveat is it does not work for the statically typed languages, such as
and Java, which don't have optional arguments in the language, Another restriction of this feature is that it cannot handle defau
arguments that are not public. The following example illustrates this:

class Foo {
private:
static const int spam;
public:
void bar(int x, int y = spam); // Won't work with %feature("compactdefaultargs"”) -
/I private default value

6.7 Default arguments 70

SWIG-3.0 Documentation

This produces uncompilable wrapper code because default values in C++ are evaluated in the same scope as the member fun
whereas SWIG evaluates them in the scope of a wrapper function (meaning that the values have to be public).

The compactdefaultargs feature is automatically turned on when wrapping C code with default arguments. Some target
languages will also automatically turn on this feature if the keyword arguments feature (kwargs) is specified for either C or C++
functions, and the target language supports kwargs, the compactdefaultargs feature is also automatically turned on.

Keyword arguments are a language feature of some scripting languages, for example Ruby and Python. SWIG is unable to suy
kwargs when wrapping overloaded methods, so the default approach cannot be used.

6.8 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of th
using directive. In general, anything specified in a private or protected section will be ignored, although the internal code
generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for defau
constructors and destructors. Directors could also modify the way non-public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a “public:' declaration (This is the
same convention used by C++).

6.9 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the
appropriate language chapter. However, many languages map enums and constants in a class definition into constants with th
classname as a prefix. For example :

class Swig {
public:
enum {ALE, LAGER, PORTER, STOUT}
b
Generates the following set of constants in the target scripting language :
Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER

Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read-only members and do not create constants.

6.10 Friends

Friend declarations are recognised by SWIG. For example, if you have this code:

class Foo {
public:

%lr.iend void blah(Foo *f);
h
then the friend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:
h

6.8 Protection 71

SWIG-3.0 Documentation

void blah(Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can have

%ignore bar::blah(Foo *f);
namespace bar {

class Foo {
public:

friend void blah(Foo *f);

B
)

and a wrapper for the method 'blah’ will not be generated.

6.11 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:
double bar(double &a);
}
has a low-level accessor
double Foo_bar(Foo *obj, double *a) {
obj->bar(*a);
}
As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,
void foo(const int &x);
it is called from a script as follows:
foo(3) # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam();
h

Generates an accessor like this:
Foo *Bar_spam(Bar *obj) {
Foo &result = obj->spam();

return &result;

}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

6.10 Friends 72

SWIG-3.0 Documentation

const int &bar();
will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this wi
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications---especially related to templates and the STL. This was first added in SWIG-1.3.12.

6.12 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:
Vector cross_product(Vector a, Vector b);
If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector X = *a;
Vectory = *b;
Vector r = cross_product(x,y);
return new Vector(r);

}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as a class in the interface, but it does not support a default constructor, SWIG changes the wrapper code b
encapsulating the arguments inside a special C++ template wrapper class, through a process called the "Fulton Transform". Tt
produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x,y);
return new Vector(r);

}

This transformation is a little sneaky, but it provides support for pass-by-value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Although SWIG usually detects the classes to which the Fulton Transform should be applied, in some situations it's necessary
override it. That's done with %feature("valuewrapper") to ensure it is used and %feature("novaluewrapper") to
ensure it is not used:

%feature("novaluewrapper") A
class A;

%feature("valuewrapper") B;
struct B {

B0

...
¥

It is well worth considering turning this feature on for classes that do have a default constructor. It will remove a redundant
constructor call at the point of the variable declaration in the wrapper, so will generate notably better performance for large
objects or for classes with expensive construction. Alternatively consider returning a reference or a pointer.

6.11 References and pointers 73

SWIG-3.0 Documentation

Note: this transformation has no effect on typemaps or any other part of SWIG---it should be transparent except that you may s
this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only
absolutely necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

6.13 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target
language. The SWIG type-checker knows about the relationship between base and derived classes and allows pointers to any
object of a derived class to be used in functions of a base class. The type-checker properly casts pointer values and is safe to |
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most c:
this means that SWIG will parse the non-public inheritance declarations, but that will have no effect in the generated code, bes
the implicit policies derived for constructors and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

/I shapes.i
%module shapes
%f

#include "shapes.h"
9%}

class Shape {
public:
double x,y;
virtual double area() = 0;
virtual double perimeter() = O;
void set_location(double x, double y);

¥
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();
I3
class Square : public Shape {
public:
Square(double size);
~Square();
double area();
double perimeter();
}

When wrapped into Python, we can perform the following operations (shown using the low level Python accessors):

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)
>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

6.12 Pass and return by value 74

SWIG-3.0 Documentation

>>> shapes.Shape_set_location(square,2,-3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making ca
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low-level accessor functions are only generated for classes in which they
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the

Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y get(), and Shape_y_set().

Functions such as Circle_x_get() are not available--instead you should use Shape x_get().

Note that there is a one to one correlation between the low-level accessor functions and the proxy methods and therefore there
also a one to one correlation between the C++ class methods and the generated proxy class methods.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get a warning
message like this:

example.i:18: Warning 401: Nothing known about base class 'Foo'. Ignored.

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive tc
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface qr use warning suppression.

Note: typedef-names can be used as base classes. For example:

class Foo {
h

typedef Foo FooObj;
class Bar : public FooObj{ // Ok. Base class is Foo

3
Similarly, typedef allows unnamed structures to be used as base classes. For example:
typedef struct {
} |;C-JO;
class Bar : public Foo{ // Ok.
3

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes at
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module)
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further optimizations a
enabled when using the -fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are
already defined in a base class.

6.13 Inheritance 75

SWIG-3.0 Documentation
6.14 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value o
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type-tag could be safely removed from the pointer. For instance, to get be
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in t
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features--especially
multiple inheritance. For example, suppose you had code like this:

class A{
public:
int X;

¥

class B {

public:
inty;

b

class C : public A, public B {
I

int A_function(A *a) {
return a->x;

}

int B_function(B *b) {
return b->y;

}
Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;

int x = A_function((A *) p):
inty = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,

one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points tc
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representatior
C. With multiple inheritance, the data from each base class is stacked together. For example:

------------ <—(C*), (A®)

E— | <= (8"

Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

6.14 A brief discussion of multiple inheritance, pointers, and type checking 76

SWIG-3.0 Documentation

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

Some of the language modules are able to solve the problem by storing multiple instances of the pointer, for example, A *, in tf
A proxy class as well as C * in the C proxy class. The correct cast can then be made by choosing the correct void * pointer to
use and is guaranteed to work as the cast to a void pointer and back to the same type does not lose any type information:

C *c = new C();

void *p = (void *) c;
void *pA = (void *) c;
void *pB = (void *) c;

|nt x = A_function((A *) pA);
inty = B_function((B *) pB);

In practice, the pointer is held as an integral number in the target language proxy class.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example,
you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", X);

void foo(char *x) {
printf("x is '%s'\n", x);

}
The function is used in a completely natural way. For example:

>>> foo(3)

xis 3

>>> foo("hello")
x is 'hello’

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

h
it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo
>>> f.bar("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtir
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. Fo
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

6.15 Wrapping Overloaded Functions and Methods 77

SWIG-3.0 Documentation

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To cre:
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.
2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in incre:
order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int X, int y, int z, int w);
void foo(int x, inty, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double);

[2] foo(int);

[3] foo(Bar *);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)

[7] foo(int X, inty, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

[1] foo(Bar *);

[2] foo(int);

[3] foo(double);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, Bar *z)

[6] foo(double x, double y)
[7] foo(intx, inty, int z, int w);

6.15.1 Dispatch function generation 78

SWIG-3.0 Documentation

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same ord:
they appear in this ranking.

If you're still confused, don't worry about it---SWIG is probably doing the right thing.

6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning 509: Overloaded method foo(long) effectively ignored,
example.i:3: Warning 509: as it is shadowed by foo(int).

or for statically typed languages like Java:

example.i:4: Warning 516: Overloaded method foo(long) ignored,
example.i:3: Warning 516: using foo(int) instead.
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

« Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

« Floating point conversion. float and double can not be disambiguated in some languages.

« Pointers and references. For example, Foo * and Foo &.

« Pointers and arrays. For example, Foo * and Foo [4].

« Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.

« Qualifiers. For example, const Foo * and Foo *.

« Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier meth
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get a warning message like this:

example.i:3: Warning 467: Overloaded foo(int) not supported (incomplete type checking rule -
no precedence level in typecheck typemap for ‘int’).

This error means that the target language module supports overloading, but for some reason there is no type-checking rule tha
be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug to tt
SWIG bug tracking database if this is due to one of the typemaps supplied with SWIG.

If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

6.15.2 Ambiguity in Overloading 79

http://www.swig.org/bugs.html

SWIG-3.0 Documentation

it means that the target language module has not yet implemented support for overloaded functions and methods. The only wa
fix the problem is to read the next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing wit
the problem. First, you can tell SWIG to ignore one of the methods. This is easy---simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long); ~ // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename("foo_short") foo(short);
%rename(foo_long) foo(long);

void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be
essential in order to avoid a parsing error. The %ignore and %rename directives are both rather powerful in their ability to
match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int); // Becomes 'foo_i'
void foo(char *c); /I Stays 'foo' (not renamed)

class Spam {
public:

void foo(int); // Becomes 'foo_1i'
void foo(double); // Becomes 'foo_d'

h
If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
/I (will not rename class members)

%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {
public:

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {
public:

6.15.3 Ambiguity resolution and renaming 80

SWIG-3.0 Documentation

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
¥

class Grok : public Bar {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

h
It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

3

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam:..

A special form of %rename can be used to apply a renaming just to class members (of all classes):
%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *:: syntax is non-standard C++, but the '*" is meant to be a wildcard that matches any class name (we couldn't think o
a better alternative so if you have a better idea, send email to the swig-devel mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double); /Il lgnore all foo(double)

%ignore Spam::foo; /I Ilgnore foo in class Spam

%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); /I lgnore foo(double) in all classes

When applied to a base class, %ignore forces all definitions in derived classes to disappear. For example, %ignore
Spam::foo(double) will eliminate foo(double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

« Since, the %rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface
This makes it possible to apply a consistent name resolution without having to modify header files. For example:

%module foo

/* Rename these overloaded functions */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

%include "header.h"
* The scope qualifier (::) can also be used on simple names. For example:

6.15.3 Ambiguity resolution and renaming 81

http://www.swig.org/mail.html

SWIG-3.0 Documentation

%rename(bar) ::foo; /I Rename foo to bar in global scope only
%rename(bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only
« Name matching tries to find the most specific match that is defined. A qualified name such as Spam::foo always has
higher precedence than an unqualified name foo. Spam::foo has higher precedence than *::foo and *::foo has
higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the
same scope level. However, an unparameterized name with a scope qualifier has higher precedence than a parametel
name in global scope (e.g., a renaming of Spam::foo takes precedence over a renaming of foo(int)).
» The order in which %rename directives are defined does not matter as long as they appear before the declarations to
renamed. Thus, there is no difference between saying:

%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;

and this

%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated %rename directive
will change the setting for a previous %rename directive if exactly the same name, scope, and parameters are suppliec
» For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a
depth-first traversal of the class hierarchy is used.
» The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:

;/.é)id bar() const;
h
the declaration
%rename(name) Spam::bar();
will not apply as there is no unqualified member bar(). The following will apply as the qualifier matches correctly:
%rename(name) Spam::bar() const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their
qualifiers, like this:

class Spam {
public:

void bar(); /I Unqualified member
void bar() const; // Qualified member

N

%rename can then be used to target each of the overloaded methods individually. For example we can give them sepe
names in the target language:

%rename(namel) Spam::bar();
%rename(name2) Spam::bar() const;

Similarly, if you merely wanted to ignore one of the declarations, use %ignore with the full qualification. For example,
the following directive would tell SWIG to ignore the const version of bar() above:

6.15.3 Ambiguity resolution and renaming 82

SWIG-3.0 Documentation

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone
« Currently no resolution is performed in order to match function parameters. This means function parameter types must
match exactly. For example, namespace qualifiers and typedefs will not work. The following usage of typedefs

demonstrates this:
typedef int Integer;

%rename(foo_i) foo(int);

class Spam {
public:
void foo(Integer); // Stays 'foo' (not renamed)

c’Iass Ham {

public:

void foo(int); // Renamed to foo_i
h
« The name matching rules also use default arguments for finer control when wrapping methods that have default

arguments. Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had beel
parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:

void bar(int i=-1, double d=0.0);
¥

The following %rename will match exactly and apply to all the target language overloaded methods because the
declaration with the default arguments exactly matches the wrapped method:

%rename(newbar) Spam::bar(int i=-1, double d=0.0);
The C++ method can then be called from the target language with the new name no matter how many arguments are
specified, for example: newbar(2, 2.0), newbar(2) or newbar(). However, if the %rename does not contain
the default arguments, it will only apply to the single equivalent target language overloaded method. So if instead we
have:

%rename(newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar(2, 2.0) when both
arguments are supplied or with the original name as bar(2) (one argument) or bar() (no arguments). In fact it is
possible to use %rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

%rename(bar_2args) Spam::bar(int i, double d);
%rename(bar_larg) Spam::bar(inti);
%rename(bar_default) Spam::bar();

Similarly, the extra overloaded methods can be selectively ignored using %ignore.

Compatibility note: The %rename directive introduced the default argument matching rules in SWIG-1.3.23 at the
same time as the changes to wrapping methods with default arguments was introduced.

6.15.4 Comments on overloading
Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared to
similar tools. For instance, the order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not re

upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of
overloading support may vary from language to language. As a general rule, statically typed languages like Java are able to

6.15.4 Comments on overloading 83

SWIG-3.0 Documentation

provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Wrapping overloaded operators

C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:
double rpart, ipart;
public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {
rpart = c.rpart;
ipart = c.ipart;
return *this;

}

Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);

}

Complex operator-(const Complex &c) const {
return Complex(rpart-c.rpart, ipart-c.ipart);

}

Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart - ipart*c.ipart,
rpart*c.ipart + c.rpart*ipart);
}

Complex operator-() const {
return Complex(-rpart, -ipart);

}

double re() const { return rpart; }
double im() const { return ipart; }

¥

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of
methods are set to strings like "operator +" or "operator -". The problem with these names is that they are illegal

identifiers in most scripting languages. For instance, you can't just create a method called "operator +" in Python--there won't
be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the targe
language). However, the underlying implementation of this is really managed in a very general way using the %rename directiv
For example, in Python a declaration similar to this is used:

%rename(__add__) Complex::operator+;

This binds the + operator to a method called __add___ (which is conveniently the same name used to implement the Python +
operator). Internally, the generated wrapper code for a wrapped operator will look something like this pseudocode:

_wrap_Complex___add__(args) {
...getargs ...
obj->operator+(args);
}
When used in the target language, it may now be possible to use the overloaded operator normally. For example:
>>> a = Complex(3,4)

>>> b = Complex(5,2)
>>>c=a+b # Invokes __add__ method

It is important to realize that there is nothing magical happening here. The %rename directive really only picks a valid method
name. If you wrote this:

6.16 Wrapping overloaded operators 84

SWIG-3.0 Documentation

%rename(add) operator+;

The resulting scripting interface might work like this:

a = Complex(3,4)
b = Complex(5,2)
c=a.add(b) # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

%ignore Complex::operator=; /I lgnore = in class Complex
%ignore *::operator=; /I lgnore = in all classes
%ignore operator=; /I lgnore = everywhere.

%rename(__sub__) Complex::operator-;
%rename(__neg__) Complex::operator-(); // Unary -

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

 In C++, it is fairly common to define different versions of the operators to account for different types. For example, a
class might also include a friend function like this:

class Complex {
public:

friend Complex operator+(Complex &, double);
I

Complex operator+(Complex &, double);

SWIG simply ignores all friend declarations. Furthermore, it doesn't know how to associate the associated
operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename(add_complex_double) operator+(Complex &, double);
« Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion
operators.
» The semantics of certain C++ operators may not match those in the target language.

6.17 Class extension

New methods can be added to a class using the %extend directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For example :

%module vector
%f

#include "vector.h"
%%}

class Vector {
public:
double x,y,z;
Vector();
~Vector();
... bunch of C++ methods ...
%extend {
char* _str () {
static char temp[256];
sprintf(temp,"[%g, %g, %g |", $self->x,$self->y,$self->z);
return &templO0];

6.17 Class extension 85

SWIG-3.0 Documentation

¥

This code adds a __str__ method to our class for producing a string representation of the object. In Python, such a method
would allow us to print the value of an object using the print command.

>>>
>>> v = Vector();
>>>yx=3
>>>vy =4
>>>v,z=0

>>> print(v)
[3.0,4.0,0.0]
>>>

The C++ 'this' pointer is often needed to access member variables, methods etc. The $self special variable should be used
wherever you could use 'this'. The example above demonstrates this for accessing member variables. Note that the members
dereferenced by $self must be public members as the code is ultimately generated into a global function and so will not have
any access to non-public members. The implicit 'this' pointer that is present in C++ methods is not present in %extend methods
In order to access anything in the extended class or its base class, an explicit 'this' is required. The following example shows h
one could access base class members:

struct Base {
virtual void method(int v) {

}...

int value;
h
struct Derived : Base {
I8
%extend Derived {
virtual void method(int v) {
$self->Base::method(v); // akin to this->Base::method(v);
$self->value = v; /I akin to this->value = v;

=
}

The following special variables are expanded if used within a %extend block: $name, $symname, $overname, $decl, $fulldecl,

$parentclassname and $parentclasssymname. The Special variables section provides more information each of these special
variables.

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the Adding member
functions to C structures section for further details.

Compatibility note: The %extend directive is a new name for the %addmethods directive in SWIG1.1. Since
%addmethods could be used to extend a structure with more than just methods, a more suitable directive hame has been chos

6.18 Templates

Template type names may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int,100> *x);

There are some restrictions on the use of non-type arguments. Simple literals are supported, and so are some constant expres

However, use of '<' and '>' within a constant expressions currently is not supported by SWIG ('<="and '>=" are though). For
example:

6.18 Templates 86

SWIG-3.0 Documentation

void bar(list<int,100> *x); /I OK
void bar(list<int,2*50> *x); Il OK
void bar(list<int,(2>1 ? 100 : 50)> *x) // Not supported

The type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this
code:

typedef int Integer;
void foo(vector<int> *x, vector<integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo() will accept either
variant.

Starting with SWIG-1.3.7, simple C++ template declarations can also be wrapped. SWIG-1.3.12 greatly expands upon the earli
implementation. Before discussing this any further, there are a few things you need to know about template wrapping. First, a k
C++ template does not define any sort of runnable object-code for which SWIG can normally create a wrapper. Therefore, in
order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>,
array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier name in most

target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating
a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;

}
~List() {
delete [] data;
h
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;

}

}

int length() {
return nitems;

}

T get(int n) {
return data[n];

}

k

By itself, this template declaration is useless--SWIG simply ignores it because it doesn't know how to generate any code until
unless a definition of T is provided.

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly |i
this:

%rename(intList) List<int>; /I Rename to a suitable identifier
class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:

6.18 Templates 87

SWIG-3.0 Documentation

List(int max);
~List();
void append(int obj);
int length();
int get(int n);

h

The %rename directive is needed to give the template class an appropriate identifier name in the target language (most langue
would not recognize C++ template syntax as a valid class name). The rest of the code is the same as what would appear in a
normal class definition.

Since manual expansion of templates gets old in a hurry, the %template directive can be used to create instantiations of a
template class. Semantically, %template is simply a shortcut---it expands template code in exactly the same way as shown
above. Here are some examples:

/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;

The argument to %template() is the name of the instantiation in the target language. The name you choose should not conflict
with any other declarations in the interface file with one exception---it is okay for the template name to match that of a typedef
declaration. For example:

%template(intList) List<int>;
typedef List<int> intList; // OK
SWIG can also generate wrappers for function templates using a similar technique. For example:

/I Function template
template<class T> T max(T a, Tb) {returna>b ?a:b;}

/l Make some different versions of this function

%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

The number of arguments supplied to %template should match that in the original template definition. Template default
arguments are supported. For example:

template vector<typename T, int max=100> class vector {
h

%template(intvec) vector<int>; /I OK
%template(vec1000) vector<int,1000>; // OK

The %template directive should not be used to wrap the same template instantiation more than once in the same scope. This
will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a syr
table conflict. Besides, it probably more efficient to only wrap a specific instantiation only once in order to reduce the potential f
code bloat.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:

6.18 Templates 88

SWIG-3.0 Documentation

%template(intList) vector<int>;
typedef int Integer;

;)éid foo(vector<integer> *x);
In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<iInteger> is mapped

back to the instantiation of vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type
Integer (doing so is redundant and will simply result in code bloat).

When a template is instantiated using %template, information about that class is saved by SWIG and used elsewhere in the
program. For example, if you wrote code like this,

%template(intList) List<int>;
class UltraList : public List<int> {
¥

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance
correctly. If, on the other hand, nothing is known about List<int>, you will get a warning message similar to this:

example.h:42: Warning 401. Nothing known about class 'List<int >'. Ignored.
example.h:42: Warning 401. Maybe you forgot to instantiate ‘List<int >' using %template.

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derive
classes. For example:

template<class T> class Foo {

E

template<class T> class Bar : public Foo<T> {
E

/I Instantiate base classes first
%template(intFoo) Foo<int>;
%template(doubleFoo) Foo<double>;

/I Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting
wrapper code (and base classes need to be wrapped before derived classes). Don't worry--if you get the order wrong, SWIG
should generate a warning message.

Occasionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be
wrapped. Since SWIG is not able to automatically instantiate templates for this purpose, you must do it manually. To do this,
simply use the empty template instantiation, that is, %template with no name. For example:

/I Instantiate traits<double,double>, but don't wrap it.
%template() traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For
example:

%define TEMPLATE_WRAP(prefix, T...)
%template(prefix ## Foo) Foo<T >;
%template(prefix ## Bar) Bar<T >;

6.18 Templates 89

SWIG-3.0 Documentation

%enddef

TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(String, char *)
TEMPLATE_WRAP(PairStringint, std::pair<string, int>)

Note the use of a vararg macro for the type T. If this wasn't used, the comma in the templated type in the last example would n
be possible.

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
¥

then SWIG will use this code whenever the user expands List<int>. In practice, this may have very little effect on the
underlying wrapper code since specialization is often used to provide slightly modified method bodies (which are ignored by
SWIG). However, special SWIG directives such as %typemap, %extend, and so forth can be attached to a specialization to
provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when tl
template argument is a pointer.

template<class T> class List<T*> {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
T get(int n);
¥

SWIG supports both template explicit specialization and partial specialization. Consider:

template<class T1, class T2> class Foo {}; /I (1) primary template
template<> class Foo<double *, int *>{}; // (2) explicit specialization
template<class T1, class T2> class Foo<T1, T2 *>{ }; /I (3) partial specialization

SWIG is able to properly match explicit instantiations:

Foo<double *, int *> /] explicit specialization matching (2)

SWIG implements template argument deduction so that the following partial specialization examples work just like they would
with a C++ compiler:

Foo<int *, int *> /I partial specialization matching (3)
Foo<int *, const int *> // partial specialization matching (3)

Foo<int *, int **> /I partial specialization matching (3)

6.18 Templates 20

SWIG-3.0 Documentation

Member function templates are supported. The underlying principle is the same as for normal templates--SWIG can't create a
wrapper unless you provide more information about types. For example, a class with a member template might look like this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

h
To expand the template, simply use %template inside the class.

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

%template(barint) bar<int>;
%template(bardouble) bar<double>;
h
Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

h
%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;
¥
or simply
class Foo {

public:
template<class T> void bar(T x, Ty){ ... };

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the %extend directive is not needed, and %template does exactly the same job, i.e., it adds two new methods to
the Foo class.

Note: because of the way that templates are handled, the %template directive must always appear after the definition of the
template to be expanded.

Now, if your target language supports overloading, you can even try

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

and since the two new wrapped methods have the same name 'bar’, they will be overloaded, and when called, the correct mett
will be dispatched depending on the argument type.

When used with members, the %template directive may be placed in another template class. Here is a slightly perverse
example:

/I A template

6.18 Templates 91

SWIG-3.0 Documentation

template<class T> class Foo {
public:
/I A member template
template<class S> T bar(Sx, Sy){... };

¥

/I Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
%template(bard) bar<double>;

}

/I Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari() and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
T1 first;
T2 second;
pair() : first(T1()), second(T2()) {}
pair(const T1 &x, const T2 &y) : first(x), second(y) { }
template<class U1, class U2> pair(const pair<U1,U2> &x)
: first(x.first),second(x.second) { }

¥

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. Tc
do that, you could expand a few versions of the constructor in the template class itself. For example:

%extend pair {
%template(pair) pair<T1,T2>; /I Generate default copy constructor

h
When using %extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

/ Instantiate a few versions
%template(pairii) pair<int,int>;
%template(pairdd) pair<double,double>;

/I Create a default constructor only
%extend pair<int,int> {
%template(paird) pair<int,int>; /I Default constructor

g

/I Create default and conversion constructors

%extend pair<double,double> {

%template(paird) pair<double,dobule>; // Default constructor
%template(pairc) pair<int,int>; /I Conversion constructor

h
And if your target language supports overloading, then you can try instead:

/I Create default and conversion constructors

%extend pair<double,double> {
%template(pair) pair<double,dobule>; // Default constructor
%template(pair) pair<int,int>; /I Conversion constructor

g

6.18 Templates 92

SWIG-3.0 Documentation

In this case, the default and conversion constructors have the same name. Hence, SWIG will overload them and define an unic
visible constructor, that will dispatch the proper call depending on the argument type.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as %rename,
%extend, and %typemap can be included directly in template definitions. For example:

/I File : list.h
template<class T> class List {

public:
%rename(__getitem__) get(int);
List(int max);
~List();

T get(int index);
%extend {
char*__str () {
/* Make a string representation */

}
}
k

In this example, the extra SWIG directives are propagated to every template instantiation.
It is also possible to separate these declarations from the template class. For example:

%rename(__getitem__) List::get;
%extend List {
char* _str () {
/* Make a string representation */

}
/* Make a copy */

T*_copy_ ({
return new List<T>(*$self);

}
h
template<class T> class List {
public:
List() { }
T get(int index);

N

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class
definition. These are replaced when the template is expanded. In addition, the %extend directive can be used to add additional
methods to a specific instantiation. For example:

%template(intList) List<int>;
%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>I\n");
}

k

SWIG even supports overloaded templated functions. As usual the %template directive is used to wrap templated functions.
For example:

template<class T> void foo(T x) { };

6.18 Templates 93

SWIG-3.0 Documentation

template<class T> void foo(T x, Ty) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take
two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final
point is that SWIG does not perform extensive error checking of templates! Specifically, SWIG does not perform type

checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler ct
this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this functionality.

As SWIG's template support does not perform type checking %template can be used as early as after a template declaration.
You can, and rarely have to, use %template before the template parameters have been declared. For example:

template <class T> class OuterTemplateClass {};

/I The nested class OuterClass::InnerClass inherits from the template class

/I OuterTemplateClass<OuterClass::InnerStruct> and thus the template needs

/I to be expanded with %template before the OuterClass declaration.

%template(OuterTemplateClass_OuterClass__InnerStruct)
OuterTemplateClass<OuterClass::InnerStruct>

/I Don't forget to use %feature("flatnested") for OuterClass::InnerStruct and
/I OuterClass::InnerClass if the target language doesn't support nested classes.
class OuterClass {
public:
/I Forward declarations:
struct InnerStruct;
class InnerClass;

h
struct OuterClass::InnerStruct {};

/I Expanding the template at this point with %template is too late as the
/I OuterClass::InnerClass declaration is processed inside OuterClass.

class OuterClass::InnerClass : public OuterTemplateClass<InnerStruct> {};

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor.
Templates have been more tightly integrated into the parser and type system in SWIG-1.3.12 and the preprocessor is no longe
used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the %template directive introduced a new class name. This hame could then
be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {
void somemethod() { }

h
This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
void somemethod() { }

¥

Similar changes apply to typemaps and other customization features.

6.18 Templates 94

SWIG-3.0 Documentation
6.19 Namespaces

Support for C++ namespaces is comprehensive, but by default simple, however, some target languages can turn on more advz
namespace support via the nspace feature, described later. Code within unnamed namespaces is ignored as there is no exterr
access to symbols declared within the unnamed namespace. Before detailing the default implementation for named namespac
is worth noting that the semantics of C++ namespaces is extremely non-trivial--especially with regard to the C++ type system a
class machinery. At a most basic level, namespaces are sometimes used to encapsulate common functionality. For example:

namespace math {
double sin(double);
double cos(double);

class Complex {
double im,re;
public:

h
h
Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other wa
namespace can be used. For example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c); /I Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head-exploding code like this:

namespace A {
class Foo {

h
}

namespace B {
namespace C {
using namespace A,

}
typedef C::Foo FooClass;

}

namespace BIGB = B;

namespace D {

6.19 Namespaces 95

SWIG-3.0 Documentation

using BIGB::FooClass;
class Bar : public FooClass {

}
k

class Spam : public D::Bar {

k

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into t
target language. Clearly this code defines three different classes. However, one of those classes is accessible under at least si
different names!

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it
will be parsed correctly, it will generate compilable wrapper code, and it will produce a working scripting language module.
However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

%module foo
namespace foo {
void bar(int);
void spam();

}

namespace bar {
void blah();

}

then SWIG simply creates three wrapper functions bar(), spam(), and blah() in the target language. SWIG does not
prepend the names with a namespace prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a
natural correlation between the likely contents of a SWIG module and the contents of a namespace. For instance, it would not |
unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, i
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a
namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each
namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in th
target language. For example:

namespace A {
void foo(int);

}

namespace B {
void foo(double);

}
When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated target language module.
example.i:23. Previous declaration of 'foo’

To resolve this error, simply use %rename to disambiguate the declarations. For example:
%rename(B_foo) B::foo;
namespace A {

6.19 Namespaces 96

SWIG-3.0 Documentation

void foo(int);

}
namespace B {
void foo(double); // Gets renamed to B_foo

}

Similarly, %ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and t
do not result in any code. However, these declarations are used by the internal type system to track type-names. Therefore, if \
have code like this:

namespace A {
typedef int Integer;
}

using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same as A::Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the %template directive can be used to expand a template define
in a different namespace. For example:

namespace foo {
template<typename T> T max(T a, Tb) {returna>b ?a:b;}

}
using foo::max;

%template(maxint) max<int>; /I Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {
using namespace foo;
%template(maxdouble) max<double>; // Okay.

}

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to kee
mind is that all SWIG generated wrappers are produced in the global namespace. Symbols from other namespaces are always
accessed using fully qualified names---names are never imported into the global space unless the interface happens to do so v
using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done in
code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the following:

namespace foo {
typedef int Integer;
class bar {
public:

k
}

%extend foo::bar {
Integer add(Integer x, Integer y) {
Integerr=x +y; /I Error. Integer not defined in this scope
returnr;

}
k

In this case, SWIG correctly resolves the added method parameters and return type to foo::Integer. However, since function
bodies aren't parsed and such code is emitted in the global namespace, this code produces a compiler error about Integer. To
fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {

6.19 Namespaces 97

SWIG-3.0 Documentation

Integer add(Integer x, Integer y) {
foo::Integerr=x +vy; I/l Ok.
returnr;

}
¥

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface,
they should also appear in any header files that might have been included in a %{ ... %} section. In other words, don't insert
extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as %f{ ... %} or %inline %{ ... %} should not be placed inside a namespace
declaration. The code emitted by these directives will not be enclosed in a namespace and you may get very strange results. If
need to use namespaces with these directives, consider the following:

// Good version

%inline %{

namespace foo {
void bar(int) { ... }

}
9%}

/I Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{

void bar(int) { ... } /*I'm bad */

o
}

Note: When the %extend directive is used inside a namespace, the namespace name is included in the generated functions. F
example, if you have code like this,

namespace foo {
class bar {
public:
%extend {
int blah(int x);
h
h
}

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function
resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same name
conventions as used in the input file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generate
code.

Note: In the same way that no resolution is performed on parameters, a conversion operator name must match exactly to how |
defined. Do not change the qualification of the operator. For example, suppose you had an interface like this:

namespace foo {
class bar;
class spam {
public:

operator bar(); // Conversion of spam -> bar

6.19 Namespaces 98

SWIG-3.0 Documentation

The following is how the feature is expected to be written for a successful match:

%rename(tofoo) foo::spam::operator bar();

The following does not work as no namespace resolution is performed in the matching of conversion operator names:

%rename(tofoo) foo::spam::operator foo::bar();

Note, however, that if the operator is defined using a qualifier in its name, then the feature must use it too...

%rename(tofoo) foo::spam::operator bar(); // will not match
%rename(tofoo) foo::spam::operator foo::bar(); // will match
namespace foo {

class bar;

class spam {

public:

operator foo::bar();

%
}

Compatibility Note: Versions of SWIG prior to 1.3.32 were inconsistent in this approach. A fully qualified name was usually
required, but would not work in some situations.

Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. None of the target langua
modules are currently programmed with any namespace awareness. In the future, language modules may or may not provide |
advanced namespace support.

6.19.1 The nspace feature for namespaces

Some target languages provide support for the nspéeature. The feature can be applied to any class, struct, union or enum
declared within a named namespace. The feature wraps the type within the target language specific concept of a namespace,
example, a Java package or C# namespace. Please see the language specific sections to see if the target language you are
interested in supports the nspace feature.

The feature is demonstrated below for C# using the following example:

%feature("nspace") MyWorld::Material::Color;
%nspace MyWorld::Wrapping::Color; // %nspace is a macro for %feature("nspace")

namespace MyWorld {
namespace Material {
class Color {

E
)

namespace Wrapping {
class Color {
h
}
}

Without the nspace feature directives above or %rename, you would get the following warning resulting in just one of the
Color classes being available for use from the target language:

example.i:9: Error: 'Color' is multiply defined in the generated target language module.
example.i:5: Error: Previous declaration of 'Color'

6.19.1 The nspace feature for namespaces 99

SWIG-3.0 Documentation

With the nspace feature the two Color classes are wrapped into the equivalent C# namespaces. A fully qualified constructor
call of each these two types in C# is then:

MyWorld.Material.Color materialColor = new MyWorld.Material.Color();
MyWorld.Wrapping.Color wrappingColor = new MyWorld.Wrapping.Color();

Note that the nspace feature does not apply to variables and functions simply declared in a namespace. For example, the
following symbols cannot co-exist in the target language without renaming. This may change in a future version.

namespace MyWorld {
namespace Material {
int quantity;
void dispatch();
}
namespace Wrapping {
int quantity;
void dispatch();
}
}

Compatibility Note: The nspace feature was first introduced in SWIG-2.0.0.

6.20 Renaming templated types in namespaces

As has been mentioned, when %rename includes parameters, the parameter types must match exactly (no typedef or namesp
resolution is performed). SWIG treats templated types slightly differently and has an additional matching rule so unlike
non-templated types, an exact match is not always required. If the fully qualified templated type is specified, it will have a highe
precedence over the generic template type. In the example below, the generic template type is used to rename to bbb and the
qualified type is used to rename to ccc.

%rename(bbb) Space::ABC::aaa(T t); /I will match but with lower precedence than ccc
%rename(ccc) Space::ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence
/ than bbb

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}

1

}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

It should now be apparent that there are many ways to achieve a renaming with %rename. This is demonstrated by the followi
two examples, which are effectively the same as the above example. Below shows how %rename can be placed inside a
namespace.

namespace Space {
%rename(bbb) ABC::aaa(T t); I/l will match but with lower precedence than ccc
%rename(ccc) ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename(ddd) ABC<Space::XYZ>::aaa(XYZ t); /I will not match

}

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}

1

}
%template(ABCXYZ) Space::ABC<Space:: XYZ>;

Note that ddd does not match as there is no namespace resolution for parameter types and the fully qualified type must be
specified for template type expansion. The following example shows how %rename can be placed within %extend.

6.20 Renaming templated types in namespaces 100

SWIG-3.0 Documentation

namespace Space {
%extend ABC {
%rename(bbb) aaa(T t); /I will match but with lower precedence than ccc

}
%extend ABC<Space::XYZ> {

%rename(ccc) aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename(ddd) aaa(XYZ t); /I will not match

}
}

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}

}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

6.21 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaratiot
For example:

class Error { };

class Foo {
public:

void blah() throw(Error);
¥

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, wh
possible, rethrowing it into the target language, or converting it into an error in the target language otherwise. For example, in
Python, you can write code like this:

f=Foo()
try:
f.blah()
except Error,e:
e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converting it into the target language's exception/error
handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++
exceptions. To do that, a different set of special SWIG directives are used. Consult the "Exception handling with %exception”
section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.22 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methoc
without exception specifications through the %catches feature. It is also possible to replace any declared exception specificatic
using the %catches feature. In fact, %catches uses the same "throws" typemaps that SWIG uses for exception specifications
in handling exceptions. The %catches feature must contain a list of possible types that can be thrown. For each type that is in
the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception specification. Not
that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Errorl : EBase { };
struct Error2 : EBase { };

6.21 Exception