
1 

Compile pihpsdr from the source-code (Linux) 
 (Desktop PC / Laptop / RaspBerry Pi / Tinker Board) 

 
 
A) Hardware, Software, and Skills required to follow the instructions 

in this document. 
 
•  An obvious prerequisite is that you have a computer running the Linux operating 

system (OS) in order to compile and run piHPSDR there. This can be a Desktop or 
laptop PC, or a small single-board computer (SBC) such as the RaspberryPi 
(RaspPi) or the ASUS TinkerBoard. The single but essential difference between the 
Raspberry Pi and the TinkerBoard on one side, and a Linux installation on a Desktop 
PC or laptop on the other hand, is that only the SBCs have general-purpose 
input/output (GPIO) connections that can be used for connecting push-buttons, 
rotary encoders, Morse keys etc. So it should be clear that all instructions 
concerning GPIO only apply to SBCs. 

 
• Since we need to install additional software components, the computer needs an 

internet connection, no matter whether this connection is realized by an ethernet 
cable or using a WLAN. At the very end, when piHPSDR is up and running, you 
most likely need an ethernet cable network connection to connect to the radio. 

 
• It will be necessary that you have the Linux OS running on this computer. In 

Appendix A some instructions how to obtain and install Linux from the internet are 
given. Installing Linux is actually the most complicated part of the whole business 
here, but in most cases you do not need it: if you want to use piHPSDR on a Linux 
PC, then most likely you already have one, and if you buy or have bought a RaspPi, 
the vendor almost certainly also offers SD cards with a pre-installed Linux OS that 
you simply have to insert in the SD card slot. Take care to use an SD card which 
holds at least 8 GByte. 

 
• The commands given in this document must be entered in a terminal window, so 

you must know how to open such a window. On a RaspPi, go into the menus behind 
the raspberry symbol in the top left corner of the screen and select "Accessoires-
>Terminal".  A terminal window opens and looks like displayed in the figure below. 
Because we will need the terminal window quite often, it is a good idea to create a 
Desktop icon (the result is shown in the figure) such that we can open new terminal 
windows by double-clicking this icon. On a RaspPi, this is done by navigating to the 
terminal application in the Raspberry menu and hitting the right mouse button. 



2 

  
 
 
 
 In this terminal window, you can now type in commands. Begin with typing in the 

command 
 
echo $HOME 
 
 Throughout this manual, commands to be typed into a terminal window are set in 

blue colour with a monospaced font. You have to type the command either exactly 
as printed here, open the "LibreOffice Writer program" (behind the Raspberry in the 
"Office" menu) and open this document (the OpenDocument version, that is the file 
name ending in .odt), then you can copy-and-paste the commands directly from this 
document into the terminal window. 

 As a results of this command, the name of your home directory should be printed 
on the screen. This is /home/pi for the RaspPi, /home/linaro for the TinkerBoard and 
/home/user for Desktop/Laptop Linux computers, where "user" is replaced by your 
Linux user name there. 

 
• You most likely have to install additional software components, and this requires 

administrator privileges. To check if you can execute a command with administrator 
privileges, type in the command 

 
sudo ls -l 
 
 This should list all the files in your home directory. On the RaspPi, this usually works 

without further a-do. On other systems, you might get asked the administrator 
password before the command is executed (if you do not know this password, you 
cannot manage the system and ask the person who installed the Linux). On some 
Desktop/Laptop Linux systems, the security level is even higher and you must be 
explicitly entitled to use the "sudo" command.  Ask a local Linux guru how to achive 
this (most likely, your user name must be included in the "sudoers" file, but this may 
depend on the system and/or the security level imposed there). 

 



3 

• The final prerequisite is that you are able to create and modify text files. I usually do 
this from within a terminal window using the "vi" command, but this is really old-
school since I am working with Linux/Unix systems for more than 30 years. I guess 
if you are reading these instructions this means that you have not been working with 
Unix/Linux since the 1980s, and then the learning curve for mastering the vi program 
is rather steep. Therefore these instructions are made such that you can equally 
well use a text editor with a graphical user interface (GUI). On the RaspPi, a very 
simple such text editor ("Mousepad") can be found behind the Raspberry: 
"Accessories->Text Editor". This opens a new window such that the screen looks 
like this: 

 

  
  
 

In the white area, you can type in text, but you can also copy-and-paste text there 
from this document, if opened in LibreOffice Writer. Type in the text 

 
 
Now is the time 
for all brave men 
to come to the party. 
 
 Throughout this document, contents of text files to be created, or parts of text files 

that need to be modified, are shown in green colour and a monospaced font. If you 



4 

type in the text, do not forget the Enter key after typing in the last line! If the text has 
been entered, you can go to the menu "File->Save As" of the text editor, and enter 
a name for the file (take the name TextFile). In the standard setup, the file saving 
dialog should be in your home directory, else you have to move there. Close the text 
editor window and go back to the terminal window by clicking somewhere in its area 
and type in the command 

 
echo TextFile 
 
 This should produce as output the text shown in green above. As the last step, we 

must be able to modify existing text files. To test if we can do this, open the text 
editor again and choose the file named TextFile through the "File->Open" menu by 
double-clicking the file. Now you can use the mouse but also the arrow keys on the 
keyboard to navigate, say, to the word "men" and add the words " and women" at 
the end of that line. Save the modified file through the "File->Save" menu and close 
the text editor window. Then activate the terminal window again and type in the 
command 

 
echo TextFile 
 
 again. Now the modified text should be printed on the screen. 
 
If you do not succeed in performing these tasks so far, it makes no sense to 
continue reading. It is strongly recommended to go to the next regular radio 
amateur meeting and ask for help. What we have done so far is just very basic 
Linux, below this you won't be able to proceed further. 
 
• In rare cases (using the GPIO on the RaspPi4, or permanently creating audio 

loopback interfaces) it will be necessary to modify a text file somewhere deep in the 
system, where you need administrator privileges to do so. In this case you usually 
can open the file with the text editor but cannot save it. To circumvent this problem, 
I suggest the following three-step procedure to modify such a file: 

 
 a) copy the file to your home directory 
 b) modify it using the text editor 
 c) copy the file back to its proper location 
 
 For example, to modify the file /boot/config.txt (which you might need if you want to 

use GPIO input lines on the RaspPi4, see below), step a) is performed by the 
command 

 
 cp /boot/config.txt $HOME 
 
 (note no "sudo" here!). Thereafter, a file named config.txt is in you home directory 

and you can modify it with the text editor (step b). Then copy it back (step c) with 
the command 

 
 sudo cp $HOME/config.txt /boot 
 
 
  



5 

B) Install required software packages 
 
In this step we will obtain and install software packages that may or may not be already 
present on your system and are needed to compile piHPSDR. This is done by a 
sequence of commands to by typed into the terminal window. It is a good idea to start 
with updating all existing packages to the most recent version. This is done with 
 
sudo apt-get update 
sudo apt-get upgrade 
 
It is a good idea to reboot the system at this stage, especially if the kernel has been 
updated.  
 
Standard tools for compiling a program. Since we want to compile a program, the 
standard tools for building a program (such as a compiler, a linker, etc.) are needed. 
These tools are often installed on a standard Linux system, but for the Desktop Linux 
installation I tried, this was not the case. To install packages, the computer needs an 
internet connection. The core command for installing software is the apt command, so 
install the standard tools with the following commands: 
 
sudo apt-get --yes install make 
sudo apt-get --yes install gcc 
sudo apt-get --yes install git 
sudo apt-get --yes install pkg-config 
sudo apt-get --yes install cmake 
 
Note that a large number of packages is installed with these commands, because the 
installation of a software package automatically triggers the installation of all 
prerequisite package. The option --yes eliminates the need to confirm each time that 
one really wants to install that package. 
 
Libraries and packages necessary to compile piHPSDR. In addition to the 
packages virtually necessary to compile any program, we need a set of libraries that 
piHPSDR is built on. These are installed with the commands 
 
sudo apt-get --yes install libfftw3-dev 
sudo apt-get --yes install libgtk-3-dev 
sudo apt-get --yes install libasound2-dev 
sudo apt-get --yes install libcurl4-openssl-dev 
sudo apt-get --yes install libusb-1.0-0-dev 
sudo apt-get --yes install libi2c-dev 
sudo apt-get --yes install wiringpi 
 
 
The last library, wiringpi, is only availabe and needed on SBCs which have GPIO 
connectors, so the last line should not be entered for a Desktop/Laptop system 
(although it does no harm there except producing an error message). 
 



6 

 
Note on RaspPi-4 and GPIO: 
 
If you want to use the piHPSDR controller and/or a Morse key attached to the GPIO, 
you need the latest version of the wiringPi library. If you do not intend to use GPIO 
lines, nothing needs be done here. 
The version of the wiringPi library can be checked with the command 
 
gpio -v 
 
and it should be at least version 2.52. To install the latest version from the wiringPi 
web site, use the commands 
 
cd /tmp 
wget https://project-downloads.drogon.net/wiringpi-latest.deb 
sudo dpkg -i wiringpi-latest.deb 
 
But it is still not working, because (at least in version 2.52) the wiringPi library does not 
set the pull-up options correctly for the new BroadCom chip used in the RPi-4. So you 
have to set either manually or permanently at startup the GPIO pin modes.  
To do so, you first you to disable all Interfaces except SSH and I2C. This is done by 
opening in the "Raspberry Preferences->RaspberryPi Configuration" and select the 
"Interfaces" tab in the window that opens.  
To fix the problems of WiringPi not being able to set the GPIO pullups correctly you 
can add the following 2 lines to /boot/config.txt 
# setup GPIO for piHPSDR Controller 2 
gpio=4-27=ip,pu 
by the same three-step procedure. Now reboot the system and all should be OK. The 
latest version of the "V2" controller realizes the pullup resistors in hardware so this is 
possibly not necessary there. As a general recipe, the list in the line starting with 
"gpio=" should contain all GPIO lines used by the program for input. Note that this 
command uses the GPIO numbering scheme while in piHPSDR, you specify the lines 
by their WiringPi numbers. 
 



7 

 
C) download, compile and install WDSP 
 
The WDSP library is the core engine of piHPSDR. It is not available on the standard 
Linux archive, we have to compile and install it from the sources. To this end, type 
the following commands into a terminal window: 
 
cd $HOME 
git clone https://github.com/g0orx/wdsp 
cd $HOME/wdsp 
make clean 
make -j 4 
sudo make install 
 
Note that the option "-j 4" to the make command indicates that the compilation can 
proceed on four CPU cores in parallel – you can omit this option then compilation takes 
considerably more time. Compiling and installing WDSP should proceed without any 
error messages. 
 
D) download/adjust/compile piHPSDR 
 
Go to your home directory and download piHPSDR using these commands: 
 
cd $HOME 
git clone https://github.com/g0orx/pihpsdr 
 
The Makefile needs some adjustment before you start compilation. You can use the 
text editor you have already used before. Open the Makefile by the "File->Open" menu, 
navigate from the home directory to the "pihpsdr" folder and select the file named 
"Makefile". It is recommended to widen the window of the text editor such that the text 
lines in the Makefile do not get wrapped around. At the beginning of the Makefile, there 
are many lines that assume one of the two forms 
 
#NAME=TAG 
NAME=TAG 
 
The first form is the "deactivated" form, the second one the "activated" form. 
Inserting/deleting the hash tag in the first columns switches between the two forms. 
These lines enable/disable features to be built into the piHPSDR program. 
 
Here I give a comprehensive list of all features that I have enabled in my sample 
installation: 
 
GPIO_INCLUDE=GPIO 
PURESIGNAL_INCLUDE=PURESIGNAL 
LOCALCW_INCLUDE=LOCALCW 
STEMLAB_DISCOVERY=STEMLAB_DISCOVERY_NOAVAHI 
MIDI_INCLUDE=MIDI 
PTT_INCLUDE=PTT 
 



8 

This means that the program is, for example, compiled with MIDI support which does 
not harm if you do not plan to use MIDI input devices. 
 
Note 1: STEMLAB_DISCOVERY is an option to support RedPitaya-based SDRs where the 
SDR program on the RedPitaya has to be started through a web interface.  
 
Note 2: On desktop or laptop computers running Linux, the lines containing 
GPIO_INCLUDE and PTT_INCLUDE must be deactivated and thus read 
 
#GPIO_INCLUDE=GPIO 
#PTT_INCLUDE=PTT 
 
Note 3: There is support for using devices that are supported by SoapySDR.  These 
include the LimeSDR, PlutoSDR and RTLSDR (for the latter: receive only). 
 
To compile support for SoapySDR the line in the Make file should read: 
 
SOAPYSDR_INCLUDE=SOAPYSDR 
 
If support for SoapySDR is not required the line in the Makefile should read: 
 
#SOAPYSDR_INCLUDE=SOAPYSDR 
 
It is recommended to compile all the components required for SoapySDR support 
rather than install them from a Linux archive because the latest versions on the master 
(source code) repository have several improvements and bug fixes.  See Appendix B 
at the end of this document for details of downloading, compiling and installing these 
components. If you have not successfully installed these components but still have the 
SOAPYSDR feature activated, compilation of piHPSDR will fail. 
  
After having adjusted the Makefile, the piHPSDR program can be compiled by the 
commands 

 
cd $HOME/pihpsdr 
make clean 
make -j 4 
 
 
The program should be built without any errors. 
 
 
E) Initial run of piHPSDR 
 
To test the compilation, we make an initial run of piHPSDR without any radios 
connected to the computer. 
 
a) If we are running pihpsdr on a SBC, we start with the commands 
 
cd $HOME/pihpsdr 
sudo chown root pihpsdr 
sudo chmod u+s pihpsdr 



9 

 
This makes piHPDR a "setuid root" application, which is (or rather used to be) 
recommended for programs that have access to the GPIO. While it seems no longer 
neccessary on recent versions of the RapsberryPi OS, it might be necessar on other 
SBCs. On Desktop/Laptop Linux systems, the last two commands need and 
should not be given. 
 
b) As a next step, we copy the HPSDR logo into the "pihpsdr" directory within our home 
directory. This enables pihpsdr to "find" this logo and display it in the top left of the 
initial screen. The command to do so is 
 
cp release/pihpsdr/hpsdr.png . 
 
(the closing point is part of the command!). 
 
c) Start pihpsdr just by entering the command 
 
./pihpsdr 
 
The piHPSDR window should open and the screen should look like this 
 

 
 
Because it is the first time you started the program, the WDSP library determines 
(once and for all) the optimum way to do the fast-Fourier-transforms (this will take 
few minutes). After this time, the piHPSDR window looked like this: 
 



10 

 
 
Since we have no radios connected (and therefore no devices have been found), 
clicking the "Exit" button is the only thing we can do at the moment. If we had connected 
radios (for example SOAPY devices such as the Adalm-Pluto via USB, or an ANAN 
radio via an ethernet cable) these devices should be "discovered" and the radio can 
be started via a "Start" button.. In the next picture, this situation is show, a RedPitaya 
based radio (STEMlab) has been connected to the RaspPi: 
 

 



11 

 
However, to make this work one either has to modify the software on the RedPitaya 
such that the SDR application automatically starts upon powering up, or one has to 
connect to the RedPitaya after powering up through a web browser and manually start 
the SDR application. However piHPSDR is able to do this for you! To this end, you 
must know the IP address of the RedPitaya (the one you are using when connecting 
to it with a browser). In my case the STEMlab had the IP address 192.168.1.100, and 
this address can be entered in the field right to the text  "Use new TCP Addr:", followed 
by clicking that text button (you have to type in the IP address only once, it is saved 
and restored the next time piHPSDR is started). Then after a short while, the piHPSDR 
screen looks like this: 
 

 
 
 
You see that piHPSDR has detected the RedPitaya through its web interface. The 
button reading STEMlab-Trx might be a menu with several entries, if more than on 
SDR application is found on the RedPitaya (in this case you have the choice which 
one to use). Clicking the Start button starts the SDR app on the RedPitaya and then 
connects piHPSDR to this radio. 
 



12 

 
Some possible trouble with the font sizes (only RaspPi): 
 
Some RaspPi users have reported that the radio window is messed up and looks like 
this: 
 

 
 
This happens especially when using a large monitor. The reason is, that the system 
may automatically choose a large font when using a large monitor, which is not 
reasonable for piHPSDR since it is using a fixed-size window. This is easily fixed from 
the Raspberry -> Preferences -> Appearance Settings menu, in the window that 
opens you click the System bar and change the font to a small one, e.g. FreeSans with 
font size 10. Then immediately the piHPSDR window looks OK. 
 
 
F) Create a desktop icon 
 
Normally one wants to start pihpsdr by clicking an icon on the Desktop. This eliminates 
the need to open a terminal window, go to the pihipsdr directory and issue the pihpsdr 
command. To so so, we have to create, in our home directory, a file named pi.desktop 
with the following content: 
 
[Desktop Entry] 
Name=piHPSDR 
Icon=/home/pi/pihpsdr/release/pihpsdr/hpsdr_icon.png 
Exec=/home/pi/pihpsdr/pihpsdr.sh 
Type=Application 
Terminal=false 
 
Now we have to copy the file into appropriate locations, this we do with the commands 
 
cd $HOME 
mkdir -p $HOME/.local/share/applications 
cp pi.desktop $HOME/Desktop 
cp pi.desktop $HOME/.local/share/applications 



13 

 
You might have noted that the desktop entry file does not specify the program pihpsdr 
as the executable, but something named pihpsdr.sh. Therefore, we have to create 
this file. 
Simply create this file in your home directory with contents 
 
#!/bin/sh 
cd $HOME/pihpsdr 
./pihpsdr >pihpsdr.log 2>&1 
 
and issue the commands 
 
cd $HOME 
chmod 755 pihpsdr.sh 
mv pihpsdr.sh $HOME/pihpsdr 
 
The reason for using the file pihpsr.sh is that this mechanism puts lots of debugging 
and logging messages into the file /home/pihpsdr/pihpsdr.log, and this may help to 
resolve the issue if something goes wrong. Furthermore, the wrapper takes care that 
regardless of whether you start pihpsdr by clicking the desktop icon or by starting it 
from a terminal window, the same working directory is used, and this is important since 
pihpsdr stores the file with its internal settings there. 
 
 
TinkerOS: For TinkerOS, the procedure is essentially the same. Replace "/home/pi" 
everywhere by "/home/linaro".  
 
Desktop/Laptop: Again, the procedure is the same, but you have to replace 
"/home/pi" by "/home/user", where user is the name of the "normal user" you created 
when installing Linux. 
 
RaspPi Note: When you double-click the piHPSDR icon on your desktop, then 
probably the following dialogue pops up: 
 

 
 

This can be suppressed. Simply invoke the file manager (the icon in the top bar to the 
right of the browser "earth globe" icon, navigate to the "Desktop" folder in your home 
directory and single-click "piHPSDR". Then go to the menu Edit --> Preferences which 
looks like this: 
 



14 

 
 
Simply check the box at the beginning of the line "Don't ask options…", close the menu 
and close the file manager. That's it, you have to do this only once. In the (unlikely) 
case that you have no file manager icon in the top menu bar, you can open a terminal 
window and enter the command 
 
pcmanfm 
 
to start the file manager. 
 
 
G) Some further useful things 
 
Fixed IP address. As long as you have your Linux computer and your ANAN radio 
both connected to a router which offers DHCP service, both devices automatically get 
an IP address assigned upon powering up, and everything works as described. But 
there may be situations where this is not fulfilled, for example on a field day where you 
are outside and want to connect the RaspPi with the ANAN simply by plugging an 
ethernet cable with its two ends into both devices. The same you have to do if you 
have only WLAN in your house and have connected the RaspPi to the Internet via 
WLAN but must connect it to the radio via an Ethernet cable. In this case, you have 
two choices: 
 
• You assign a fixed IP address to the RaspPi and set it up as a DHCP server, such 

that the RaspPi provides the IP address for the ANAN 
 
• You do not set up a DHCP server but instead assign fixed IP addresses to both the 

RaspPi and the ANAN which must be in the same subnet, e.g. 192.1.168.50 for the 
RaspPi and 192.168.1.99 for the Anan. 

 
In Appendix C it is described how to set up the RaspPi with a fixed IP address. 
 
 



15 

Loopback interfaces. If you are running both piHPSDR and a digimode program such 
as fldigi or wsjt-x on the RaspPi, the preferred way of transporting audio data between 
piHPSDR and the digimode program is to do it fully in software, without the audio signal 
ever being converted from digital to analog. This can be done by using virtual sound 
cards also known as "virtual audio cables" or "loopback interfaces". Fortunately, 
loopback interfaces are already built into the Linux sound system, and Appendix D 
explains how to activate them and how to use them with piHPSDR and fldigi as well 
as wsjt-x. 
 
If you run piHPSDR on a RaspPi but the digimode program on, say, your Desktop 
PC, then you do not need loopback interfaces but rather a conventional sound 
interface connecting the PC and the microphone/PTT/headphone jackets of the 
radio. 
 
 



16 

 
Appendix A: Installing Linux 
 
Step 1: obtain OS image 
 
RaspPi: From the web page https://www.raspberrypi.org/downloads/raspbian, 
obtain the file 2019-09-26-raspbian-buster.zip which is denoted as the "Raspian 
buster with desktop" image. Note that the release date which is encoded in the file 
name may vary. This is a compressed disk image, so un-zip this file such that it 
becomes the file 2019-09-26-raspbian-buster.img which is about 3.6 GByte long. 
 
While I am sure that there are other sources of suitable image files, the following 
protocol (instructions) have been tested with exactly this one. 
 
TinkerBoard: There is a bunch of different LINUX-type systems for the TinkerBoard. 
This description refers to the "official" one obtained from the web page 
 
https://www.asus.com/uk/Single-Board-Computer/Tinker-Board/HelpDesk_Download/ 
 
From there I got the compressed image file (about 1.13 GByte long) with file name 
20190821-tinker-board-linaro-stretch-alip-v2.0.11.img. Again, the release date 
encoded in the file name may vary. 
 
Desktop/laptop Linux system: Here it depends on which Linux distribution is being 
used. The instructions given here have been tested with the "Debian GNU Linux" 
distribution. To this end, a "small" CD-image file (about 350 MByte) with file name 
debian-10.3.0-amd64-netinst.iso  has been obtained from the internet page 
https://www.debian.org/CD/netinst/ (netinst CD image for the amd64 architecture) 
and this file has to be "burnt" onto a CD or DVD, or onto an USB stick if the PC/laptop 
supports booting from an USB stick. 
 
 
Step 2: Install operating system 
 
RaspberryPi and TinkerBoard: The OS image file already contains the complete OS. 
It has to be written (or "burned") onto an SD card (or, in the case of the TinkerBoard, 
on the internal eMMC card). How to do this varies depending on which computer you 
are using. Detailed instructions how to "burn" an image to an SD card from, say, a 
computer running various operating systems can be found on the internet, see for 
example 
 
https://www.raspberrypi.org/documentation/installation/installing-images 
 
Note that "burning" can take several minutes, since the I/O speed is about 10 MB/sec 
on most cards. If you have "burnt" an SD card, it then has to be inserted in the SD-
card slot. 
 
Desktop/laptop computer:  If you boot from this CD/DVD or USB stick, you get a 
Debian installation screen from which you choose "Graphical Install". Then proceed 
further choosing your localization etc. Because only a small boot image has been 



17 

downloaded, additional components are obtained from the internet during installation, 
so you clearly need internet connection for the installation. 
When the "software selection" screen appears, check the boxes "desktop 
environment", "ssh server" and "standard system tools".  For the look-and-feel of the 
desktop environment, there are several choices, I have checked "LXDE" because this 
is also the standard desktop on the RaspPi. Since more than 1000 software packages 
are going to be installed, the process may take some time, mainly depending on the 
speed of your internet connection. 
During the installation, you have to specify the password for the administrator ("root") 
account as well as choosing the name and the password of at least one regular user. 
 
Step 3: First-time boot 
 
RaspPi: The micro-SD-card was then inserted in the RaspPi and the machine booted 
(with keyboard, mouse and monitor attached). The RaspPi should be connected to a 
router with a DHCP server via an Ethernet cable. 
The system boots, asks for the country/timezone, and for the password of the default 
user "pi". It automatically connects to the internet and updates all installed software. 
When this is complete, the system should be restarted. 
 
TinkerBoard: Connect the TinkerBoard to Keyboard, Mouse and Ethernet and 
power up. Nothing has to be done. 
 
Desktop/laptop: The system automatically boots after the installation. Because this is 
a standard Linux system, it is much more restrictive concerning the allowance for users 
to use the sudo command to perform administrator tasks. Normally the file 
/etc/sudoers has to be edit to grant the "normal user" such privileges. One possiblity 
is to add the line 
 
user   ALL=(ALL:ALL) ALL 
 
to the file /etc/sudoers where the name of the "normal user" has to used instead of 
"user". This gives this user full administrator privileges so the system is potentially 
insecure.  



18 

Appendix B: Compiling and installing the SoapySDR library 
and components for specific radios 
 
You will need "cmake" and " libusb1.0" to be installed on your system, so enter the 
commands (as said before: no harm can be done if these packages are already 
installed) 
 
sudo apt install cmake 
sudo apt-get install libusb-1.0-0-dev 
 
If these packages are already installed on your system, issuing these commands does 
no harm 
 
Step 1: Download, compile and install SoapySDR 
 
cd $HOME 
git clone https://github.com/pothosware/SoapySDR.git 

 
cd $HOME/SoapySDR 
mkdir build 
cd build 
cmake .. 
make -j 4 
sudo make install 
sudo ldconfig 
 
 
Step 2: For LimeSDR radios, compile and install LimeSuite 
(skip this step if you do not need to run LimeSDR devices) 
 
cd $HOME 
git clone https://github.com/myriadrf/LimeSuite.git 
 
cd $HOME/LimeSuite 
cd build 
cmake .. 
make -j 4 
 
sudo make install 

 
Install the udev rules: 
 
cd $HOME/LimeSuite 
cd udev-rules 
sudo ./install.sh 

 



19 

Step 3: For Adalm-Pluto, compile and install SoapyPlutoSDR 
(skip this step if you do not need to run Adalm-Pluto devices) 
 
Install libad9361 and some more prerequisites 
 
sudo apt install libad9361-dev 
sudo apt install bison 
sudo apt install flex 
sudo apt install libxml2-dev 

 
 

Download, compile and install libiio: 
 
cd $HOME 
git clone https://github.com/analogdevicesinc/libiio.git 
 
cd $HOME/libiio 
mkdir build 
cd build 
cmake .. 
make 
sudo make install 
sudo ldconfig 
 
Download, compile and install SoapyPlutoSDR 
 
cd $HOME 
git clone https://github.com/pothosware/SoapyPlutoSDR 
 
cd $HOME/SoapyPlutoSDR 
mkdir build 
cd build 
cmake .. 
make -j 4 
sudo make install 

 
To install the udev rules read and follow the instructions at 
https://wiki.analog.com/university/tools/pluto/drivers/linux 
(that is, copy the file 53-adi-plutosdr-usb.rules to /etc/udev/rules.d).  
 
 



20 

Step 4: For RTLSDR radios, compile and install SoapyRTLSDR 
(skip this step if you do not need to run SOAPY-supported RTL sticks) 
 
Download and install librtlsdr 
 
cd $HOME 
git clone git://git.osmocom.org/rtl-sdr.git 
 
cd $HOME/rtl-sdr 
mkdir build 
cd build 
cmake .. 
make 
sudo make install 
sudo ldconfig 
 
Download, compile and install SoapyRTLSDR 
 
cd $HOME 
git clone https://github.com/pothosware/SoapyRTLSDR 
 
cd $HOME/SoapyRTLSDR 
mkdir build 
cd build 
cmake .. 
make 
sudo make install 
 
 



21 

 
Appendix C: setting a fixed IP address 
 
This step is not necessary as long you have both the RaspPi/TinkerBoard and the radio 
(e.g. the ANAN) connected to a router which offers a DHCP service. Personally, I like 
connecting the RaspPi and the ANAN directly by an Ethernet cable, and have a fixed 
IP address for both (!) of them. Then I can do QSOs without having any IP routers or 
switches involved. For example, I use the fixed IP address 192.168.1.50/24 for my 
RaspPi and 192.168.1.99/24 for my ANAN. These were chosen such that the devices 
can also be run when connected to my router (for example, if the RaspPi should be 
connected to the Internet). 
 
To enable a static fixed IP address, use the text editor to create a new text file named 
eth0 in your home directory with contents 
 
auto eth0 
 iface eth0 inet static 
 address 192.168.1.50 
 netmask 255.255.255.0 
 gateway 192.168.1.1 
 dns-nameservers 192.168.1.1 
 
 
and then copy it to its proper location with the command 
 
sudo cp eth0 /etc/network/interfaces.d 
 
Reboot the machine and you will have a fixed IP address (192.1681.50 in the example). 
Note that there is the possibility to set a fixed IP address through a graphical user 
interface, but that unfortunately did not work for me because the routing table was not 
setup correctly. 
 
If you need "guru assistance", you may also ask for setting up a DHCP server on the 
RaspPi, since this eliminates the need of having a fixed IP address on the radio. 
 
 



22 

 
Appendix D: creating loop-back "sound cards" 
 
Loopback sound cards are interesting if you plan to run piHPSDR and a digimode 
program such as Fldigi or WSJTX on the same computer (say, both are running on a 
RaspPi, or both are running on a Linux laptop). In this case, you want to transfer audio 
from piHPSDR to the digimode program and back, and this is best done directly, that 
is, without ever going analog. 
 
Since there is some misunderstanding around what this is and how it must be 
configured, imagine you have a conventional rig and a computer running a digimode 
program. To do so, you need two (physical) cables: 
 
- cable #1: connects the headphone jack of the computer with the microphone jack of 

the TRX 
- cable #2: connects the microphone jack of the computer with the headphone jack of 

the TRX 
 
In reality these cables can transport audio in either direction, but you can imagine 
defining for each cable an "input side" and an "output side", e.g. marked with a red 
(input side) and a blue (output side) plug, and that you alway connect red plugs with 
headphone jacks and blue plugs with microphone jacks. Then, audio always flows 
through the cables from the red (input side) to the blue (output side) plug. 
A loopback device is a virtual sound card offering a "headphone/speaker" and a 
"microphone" device. This forms a virtual cable where the "red plug" (input side) is 
always associated with the headphone device and the "blue plug" (output side) is 
always associated with a microphone device. Audio data written to the "input side" of 
the device from one application can be read by another application at the "output side". 
 
Since we need two cables, we need to have two such loopback "sound cards", which 
can be created with the following command in a terminal window: 
 
sudo modprobe snd-aloop enable=1,1 index=4,5 id=vac1,vac2 pcm_substreams=2,2 
 
The two "virtual audio cable" (vac) sound cards will have the numbers 4 and 5 and the 
names vac1 and vac2. I chose the numbers 4 and 5 since this leaves some room for 
other audio devices already connected. On the other hand it does not matter if devices 
in-between (e.g. with numbers 2 and 3) do not exist. You will see them using the 
command 
 
aplay -l 
 
if you want. As the output of this command, you  should see, among others (many lines 
deleted): 
 
**** List of PLAYBACK Hardware Devices **** 
card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA] 
card 4: vac1 [Loopback], device 0: Loopback PCM [Loopback PCM] 
card 4: vac1 [Loopback], device 1: Loopback PCM [Loopback PCM] 
card 5: vac2 [Loopback], device 0: Loopback PCM [Loopback PCM] 
card 5: vac2 [Loopback], device 1: Loopback PCM [Loopback PCM] 



23 

 
 
 
Now imagine that a digimode program and piHPSDR is running on the same computer. 
You will need two such virtual cables and the configuration is as follows: 
 
piHPSDR: 
- TX local microphone activated, device: "cable #1 output side" 
- RX local audio activated, device:   "cable #2 input side" 
 
fldigi, wsjtx etc.: 
- Audio output (playback) device:   "cable #1 input side" 
- Audio input (capture) device:   "cable #2 output side" 
 
Unfortunately, the actual device names to be used for, e.g. "cable #1 input side" differ 
between the programs. Here is a list of the various possibilities we have seen, and we 
indicate the program where we have seen this:  
 
cable#1 input side Loopback: PCM (hw:4,1) 

plughw:4,1 Loopback 

plughw:CARD=vac1,DEV=1 

Fldigi 

piHPSDR 

WSJT-X 

cable#1 output side  Loopback: PCM (hw:4,0) 

plughw:4,0 Loopback 

plughw:CARD=vac1,DEV=0  

Fldigi 

piHPSDR 

WSJT-X 

cable#2 input side Loopback: PCM (hw:5,1) 

plughw:5,1 Loopback 

plughw:CARD=vac2,DEV=1 

Fldigi 

piHPSDR 

WSJT-X 

cable#2 output side Loopback: PCM (hw:5,0) 

plughw:5,0 Loopback 

plughw:CARD=vac2,DEV=0 

Fldigi 

piHPSDR 

WSJT-X 
  
 
Note that the "input side" of a cable is always connected to a program actually 
producing sound and thus used as a "headphone device", while the "output side" of a 
cable is considered as a "microphone device" connected to a program reading audio 
data. So for any program, use device number 0 where you expect a "microphone or 
capture device" and device number 1 where you expect a "headphone or playback 
device". As an example, we provide screen-shots from Fldigi (SoundCard panel) and 
piHPSDR (RX and TX panels): 
 



24 

 
 

 
 

 
 



25 

 
Through the "modprobe" command, the virtual sound cards were created once, and 
this gets lost after a re-boot. You may want to create the "virtual audio cables" 
automatically when powering on machine. There are different ways to do this. 
 
If the file /etc/rc.local exists, it is most easy to automatically execute the modprobe 
command on startup by inserting a line reading 
 
modprobe snd-aloop enable=1,1 index=4,5 id=vac1,vac2 pcm_substreams=2,2 
 
at the bottom of the file before the final line reading "exit 0". This can be done with 
the three-step procedure for modifying files that require administrator privileges 
outlined above. 
 
This worked on my RasPi4. Some Linux variants do not have the file /etc/rc.local 
but a file named /etc/modules and a directory named /etc/modprobe.d exists. In this 
case you have to modify the file /etc/modules and add a line reading 
 
snd-aloop 
 
and you have to create (in your home directory) a new file with name loopback.conf 
containing a single text line reading 
 
options snd-aloop enable=1,1 index=4,5 id=vac1,vac2 pcm_substreams=2,2 
 
and then copy it to /etc/modprobe.d with the commands 
 
sudo cp $HOME/loopback.conf /etc/modprobe.d 
 


