Tektronix
 COMMITTED TO EXCELLENCE

91A24/91AE24 SERVICE MANUAL ADDENDUM

TO THE DAS 9100 SERIES SERVICE MANUAL (PART NUMBERS 062-5848-00, -01, AND UP)

The 062-5848-00 manual set is a package consisting of loose leaf binders with manuals and addenda. Each manual and addendum in the set has its own part number starting with the prefix 070 . You can find your manual part number in the bottom left conrner of the manual title page.

This addendum contains service information specific to the 91A24 and 91AE24 Data Acquisition Modules. Refer to the DAS 9100 Series Service Manual for information on other DAS products, including mainframes, instrument modules, probes, and options.

How To Use This Addendum. This addendum is organized similarly to the DAS 9100 Series Service Manual: sections in the addendum correspond to the sections in the service manual. You can either leave the addendum whole and place it in one of the service manual binders, or you can separate the sections and insert them after the corresponding section in the main manual.

NOTE: You can order an extra service manual binder (Vol. III) by using P/N 016-0769-00.

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL

Copyright © 1984, Tektronix, Inc. All rights reserved.

Tektronix, Inc.
Walker Road Industrial Park
P.O. Box 4600

Beaverton, Or. 97075

TABLE OF CONTENTS

Page
List of Illustrations vi
List of Tables viii
Operator's Safety Summary X
Service Safety Summary xii
WARNING
The following service instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.
SECTION 1 INTRODUCTION AND SPECIFICATIONS
Description 1-1
Modes of Operation 1-1
Data Acquisition 1-1
ARMS Trigger Mode 1-1
Standard and Optional Accessories 1-2
91A24 Data Acquisition Module 1-2
91AE24 Data Acquisition Module 1-2
P6460 Data Acquisition Probe 1-2
P6462 Data Acquisition Probe 1-3
Specifications 1-4
91A24 and 91AE24 Electrical Specifications: Data Acquisition and Storage 1-4
91A24 and 91AE24 Electrical Specifications: Clocking 1-5
91A24 and 91AE24 Electrical Specifications: Word Recognizer Functions 1-6
91A24 and 91AE24 Electrical Specifications: Probe Interface and Support 1-7
91A24 and 91AE24 Environmental Specifications 1-7
P6460 Electrical Specifications 1-7
P6460 Environmental Specifications 1-7
P6460 Physical Specifications 1-8
P6462 Electrical Specifications 1-9
P6462 Environmental Specifications 1-10
P6462 Physical Specifications 1-10
SECTION 2 OPTIONS
SECTION 3 OPERATING INSTRUCTIONS
Firmware and Hardware Compatibility 3-1
Module Installation 3-2
Configuration Requirements 3-2
Module Interconnection Procedures 3-3
Connecting Acquisition Probes 3-5
P6460 Probe Characteristics 3-6
P6462 Probe Characteristics 3-7
Operator's Checkout Procedure 3-7
Power-up Self Test 3-7
Probe Self Test 3-8

TABLE OF CONTENTS (cont.)

Page
SECTION 4 THEORY OF OPERATION
Section Organization 4-1
Logic Conventions 4-1
System Architecture 4-1
91A24 Data Acquisition Module 4-1
91AE24 Data Acquisition Module 4-2
General System Description 4-2
91A24 Data Acquisition Module 4-2
91AE24 Data Acquisition Module 4-6
Detailed Circuit Description 4-8
91A24 Data Acquisition Module 4-8
91A24 Controller Interface 68) 4-9
91A24 Controller Interface Readback Circuitry 4-11
91A24 Probe A and B Receivers 4-11
91A24 Probe Interface and Probe C Receiver 4-12
91A24 Login Registers 4-13
91A24 Acquisition Memory 4-15
91A24 Data Qualifier Word Recognizers 4-18
91A24 Stack Word Recognizer 75 4-21
91A24 Trigger Circuitry 4-23
91A24 Clock Qualifier 4-26
91A24 Clock Generator 4-28
91AE24 Data Acquisition Module 4-29
91AE24 Controller Interface <98 4-30
91AE24 Controller Interface Readback Circuitry 4-31
91AE24 Probe A and B Receivers 4-32
91AE24 Probe Interface and Probe C Receiver 4-32
91AE24 Login Registers 4-34
91AE24 Acquisition Memory 4-34
91AE24 Data Qualifier Word Recognizers 4-34
91A24 Stack Word Recognizer 4-36
91AE24 Master Clock Selector 4-38
SECTION 5 VERIFICATION AND ADJUSTMENT PROCEDURES
Introduction 5-1
Test Setup Information 5-1
Suggested Test Instruments 5-1
Functional Check Procedures 5-5
Diagnostic Tests 5-8
Probe Tests 5-8
Pattern Generator-Driven Tests 5-9
Clock and Clock Qualifier Tests 5-25
DEMUX Mode Test 5-32
ARMS Mode Test 5-32
Adjustment Procedures 5-38
Introduction 5-38
Equipment Setup 5-38
Adjustments 5-39

TABLE OF CONTENTS (cont.)

SECTION 5 VERIFICATION AND ADJUSTMENT PROCEDURES (cont.)
Page
Performance Check 5-42
Performance Check Setup Procedure 5-42
Setup and Hold Tests 5-50
MUX Mode Test 5-52
SECTION 6 MAINTENANCE: GENERAL INFORMATION
Special 91A24 Maintenance Information 6-1
Installing or Removing Instrument Modules 6-1
Using Extender Boards 6-1
General Maintenance Precautions 6-1
Soldering 6-1
Static Precautions 6-1
Test Equipment Required for Maintenance 6-3
Tools Required for Maintenance 6-3
SECTION 7 MAINTENANCE: TROUBLESHOOTING
How to Use This Section 7-1
Troubleshooting Precautions 7-1
Internal Instrument Access 7-1
Soldering 7-2
Static Discharge Damage 7-2
Troubleshooting Equipment 7-2
Troubleshooting Aids 7-3
The Diagnostics Menu 7-3
Diagnostics Control Summary 7-5
Diagnostic Menu Fields 7-5
Quick Reference Function Descriptions 7-7
91A24 7-7
91AE24 7-8
91A24 Function 0 CNTR TIMR 7-9
Circuit Overview 7-9
Function Description 7-9
91A24 CNTR TIMR Test 0 Troubleshooting 7-9
91A24 CNTR TIMR Test 0 Description 7-12
91A24 Function 1 MEM ADDR, 91EA24 Function 0 MEM ADDR 7-14
Circuit Overview 7-14
Function Description 7-14
91A24 and 91AE24 MEM ADDR Test 0 Troubleshooting 7-15
91A24 and 91AE24 MEM ADDR Test 0 Description 7-19
91A24 and 91AE24 MEM ADDR Test 1 Troubleshooting 7-21
91A24 and 91AE24 MEM ADDR Test 1 Description 7-22
91A24 and 91AE24 MEM ADDR Test 2 Troubleshooting 7-23
91A24 and 91AE24 MEM ADDR Test 2 Description 7-25
91A24 and 91AE24 MEM ADDR Test 3 Troubleshooting 7-27
91A24 and 91AE24 MEM ADDR Test 3 Description 7-28

TABLE OF CONTENTS (cont.)

SECTION 7 MAINTENANCE: TROUBLESHOOTING (cont.) Page
91A24 Function 2 ACQ MEM, 91AE24 Function 1 ACQ MEM 7-30
Circuit Overview 7-30
Function Description 7-30
91A24 and 91AE24 ACQ MEM Test 0 Troubleshooting 7-31
91A24 and 91AE24 ACQ MEM Test 0 Description 7-34
91A24 and 91AE24 ACQ MEM Test 1 Troubleshooting 7-37
91A24 and 91AE24 ACQ MEM Test 1 Description 7-38
91A24 Function 3 STK PNTR, 91AE24 Function 2 STK PNTR 7-38
Circuit Overview $7-41$
Function Description 7-41
91A24 and 91AE24 STK PNTR Test 0 Troubleshooting 7-44
91A24 and 91AE24 STK PNTR Test 0 Description $7-44$
91A24 and 91AE24 STK PNTR Test 1 Troubleshooting 7-45
91A24 and 91AE24 STK PNTR Test 1 Description 7-47
91A24 and 91AE24 STK PNTR Test 2 Troubleshooting 7-47
91A24 and 91AE24 STK PNTR Test 2 Description 7-49
91A24 Function 4 WRD REC, 91AE24 Function 3 WRD REC 7-52
Circuit Overview 7-52
Function Description 7-52
91A24 and 91AE24 WRD REC Test 0 Troubleshooting 7-52
91A24 and 91AE24 WRD REC Test 0 Description $7-55$
91A24 and 91AE24 WRD REC Test 1 Troubleshooting 7-58
91A24 and 91AE24 WRD REC Test 1 Description 7-62
91A24 Function 5 OCCR CNTR 7-65
Circuit Overview 7-65
Function Description 7-65
91A24 OCCR CNTR Test 0 Troubleshooting 7-65
91A24 OCCR CNTR Test 0 Description 7-68
91A24 OCCR CNTR Test 1 Troubleshooting 7-70
91A24 OCCR CNTR Test 1 Description 7-72
91A24 OCCR CNTR Test 2 Troubleshooting 7-74
91A24 OCCR CNTR Test 2 Description 7-76
91A24 OCCR CNTR Test 3 Troubleshooting 7-79
91A24 OCCR CNTR Test 3 Description $7-81$
91A24 OCCR CNTR Test 4 Troubleshooting 7-83
91A24 OCCR CNTR Test 4 Description 7-84
91A24 Function 6 DAC THRSH, 91AE24 Function 4 DAC THRSH 7-86
Circuit Overview 7-86
Function Description 7-86
91A24 and 91AE24 DAC THRSH Troubleshooting 7-86
91A24 and 91AE24 DAC THRSH Function Description 7-88

TABLE OF CONTENTS (cont.)

Page
SECTION 7 MAINTENANCE: TROUBLESHOOTING (cont.)
91A24 Function 7 PRB CLK EX, 91AE24 Function 5 PRB CLK EX 7-89
Circuit Overview 7-89
Function Description 7-89
91A24 and 91AE24 PRB CLK EX Test 0 Troubleshooting 7-90
91A24 and 91AE24 PRB CLK EX Test 0 Description 7-96
91A24 and 91AE24 PRB CLK EX Test 1 Troubleshooting 7-96
91A24 and 91AE24 PRB CLK EX Test 1 Description 7-101
91A24 and 91AE24 PRB CLK EX Test 2 Troubleshooting 7-104
91A24 and 91AE24 PRB CLK EX Test 2 Description 7-106
SECTION 8 MAINTENANCE: DIAGNOSTIC TEST DESCRIPTIONS
SECTION 9 REFERENCE INFORMATION
Error and Prompter Messages 9-1
91A24/91AE24 Test Point, Jumper, and Adjustment Locations 9-3
91A24/91AE24 I/O Map 9-5
Signal Glossary 9-9
SECTION 10 REPLACEABLE ELECTRICAL PARTS
SECTION 11 DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS
SECTION 12 REPLACEABLE MECHANICAL PARTS

LIST OF ILLUSTRATIONS

Figure Page
3-1 Connecting the cables between the 91A24 and 91AE24 modules 3-4
3-2 Connecting acquisition probes and the sync output cable 3-5
3-3 P6460 Data Acquisition Probe characteristics and lead connections 3-6
4-1 91A24 probe receiver 4-11
4-2 91A24 acquisition memory chip select timing 4-16
4-3 91AE24 probe receiver 4-32
5-1 91A24 and 91AE24 jumpers and interconnect cables 5-7
5-2 Probe connections for the 91A24 functional tests 5-11
5-3 Pattern generator program for Functional Test 6 5-14
5-4 91A24 Trigger Specification menu setup for Functional Test 6 5-15
5-5 State Table display of data acquired using Functional Test 6 5-17
5-6 Pattern generator menu program for Functional Test 7 5-19
5-7 Trigger Specification menu setup for Functional Test 7 5-20
5-8 State Table display of Functional Test 7 5-21
5-9 Pattern Generator program for Test 8 5-23
5-10 Pattern Generator Timing menu for Functional Test 8 5-23
5-11 Trigger Specification menu setup for Functional Test 8 5-24
5-12 State Table display of Functional Test 8 5-25
5-13 Clock Specification sub-menu for Functional Test 9 5-26
5-14 State Table display of Functional Test 9 5-27
5-15 Clock Specification submenu setup for Functional Test 10 5-28
5-16 State Table display of Functional Test 10 5-28
5-17 Clock Specification sub-menu setup for Functional Test 11 5-29
5-18 State Table display of Functional Test 11 5-30
5-19 Clock Specification sub-menu setup for Functional Test 12 5-31
5-20 State Table display for Functional Test 12 5-31
5-21 State Table display of Functional Test 13 5-33
5-22 Test equipment setup for Functional Test 14 5-34
5-23 Trigger Specification menu setup for Functional Test 14 5-35
5-24 Pattern Generator menu setup for Functional Test 14 5-36
5-25 State Table display for Functional Test 14 5-37
5-26 91A24 performance check test equipment connections 5-44
5-27 91AE24 performance check test equipment connections 5-45
5-28 $\quad 250 \mathrm{MHz}$ pulse generator waveform 5-46
5-29 $\quad 50 \mathrm{MHz}$ pulse generator waveform 5-46
5-30 $\quad 100 \mathrm{MHz}$ oscilloscope waveform for step 5 of the performance check (TIME BASE $=50 \mathrm{~ns}$) 5-48
5-31 $\quad 100 \mathrm{MHz}$ oscilloscope waveform for step 5 of the performance check (TIME BASE $=10 \mathrm{~ns}$) 5-48

LIST OF ILLUSTRATIONS (cont.)

Figure Page
7-1 Failure in the power-up self test 7-4
7-2 Diagnostics menu 7-4
7-3 91A24 CNTR TIMR Test 0 readback display 7-9
7-4 Blocks of the 91A24 tested by the CNTR TIMR function, Test 0 7-12
7-5 MEM ADDR Test 0 readback display 7-15
7-6 Blocks of the 91A24 tested by the MEM ADDR function, Test 0 7-19
7-7 MEM ADDR Test 1 readback display 7-21
7-8 Blocks of the 91A24 tested by the MEM ADDR function, Test 1 7-22
7-9 MEM ADDR Test 2 readback display 7-23
7-10 Blocks of the 91A24 tested by the MEM ADDR function, Test 2 7-25
7-11 MEM ADDR Test 3 readback display 7-27
7-12 Blocks of the 91A24 tested by the MEM ADDR function, Test 3 7-28
7-13 ACQ MEM Test 0 readback display 7-31
7-14 Blocks of the 91A24 tested by the ACQ MEM function, Test 0 7-34
7-15 ACQ MEM Test 1 readback display 7-37
7-16 Blocks of the 91A24 tested by the ACQ MEM function, Test 1 7-38
7-17 STK PNTR Test 0 readback display 7-41
7-18 Blocks of the 91A24 tested by the STK PNTR function, Test 0 7-44
7-19 STK PNTR Test 1 readback display 7-45
7-20 Blocks of the 91A24 tested by the STK PNTR function, Test 1 7-47
7-21 STK PNTR Test 2 readback display 7-49
7-22 Blocks of the 91A24 tested by the STK PNTR function, Test 2 7-50
7-23 WRD REC Test 0 readback display 7-53
7-24 Blocks of the 91A24 tested by the WRD REC function, Test 0 7-55
7-25 WRD REC Test 1 readback display 7-58
7-26 Blocks of the 91A24 tested by the WRD REC function, Test 1 7-62
7-27 OCCR CNTR Test 0 readback display 7-65
7-28 Blocks of the 91A24 tested by the OCCR CNTR function, Test 0 7-68
7-29 OCCR CNTR Test 1 readback display 7-70
7-30 Blocks of the 91A24 tested by the OCCR CNTR function, Test 1 7-72
7-31 OCCR CNTR Test 2 readback display 7-74
7-32 Blocks of the 91A24 tested by the OCCR CNTR function, Test 2 7-76
7-33 OCCR CNTR Test 3 readback display 7-79
7-34 Blocks of the 91A24 tested by the OCCR CNTR function, Test 3 7-81
7-35 OCCR CNTR Test 4 readback display 7-83
7-36 Blocks of the 91A24 tested by the OCCR CNTR function, Test 4 7-84
7-37 Blocks of the 91A24 and 91AE24 tested by the DAC THRSH function 7-88
7-38 91A24 and 91AE24 PRB CLK EX, Test 0 readback display 7-90
7-39 Blocks of the 91A24 tested by the PRB CLK EX function, Test 0 7-96
7-40 91A24 and 91AE24 PRB CLK EX, Test 1 readback display 7-99
7-41 Blocks of the 91A24 and 91AE24 tested by the PRB CLK EX function, Test 1 7-101
7-42 91A24 and 91AE24 PRB CLK EX, Test 2 readback display 7-104
7-43 Blocks of the 91A24 and 91AE24 tested by the PRB CLK EX function, Test 2 7-106
9-1 91A24/91AE24 Test point, jumper, and adjustment locations 9-3

LIST OF TABLES

Table Page
1-1 91A24 and 91AE24 Electrical Specifications: Data Acquisition and Storage 1-4
1-2 91A24 and 91AE24 Electrical Specifications: Clocking 1-5
1-3 91A24 and 91AE24 Electrical Specifications: Word Recognizer Functions 1-6
1-4 91A24 and 91AE24 Electrical Specifications: Probe Interface and Support 1-7
1-5 P6460 Electrical Specifications 1-7
1-6 P6460 Environmental Specifications 1-8
1-7 P6460 Physical Specifications 1-8
1-8 P6462 Electrical Specifications 1-9
1-9 P6462 Environmental Specifications 1-10
1-10 P6462 Physical Specifications 1-10
3-1 Recommended Bus Slot Placement 3-3
3-2 Power-up Error Conditions 3-7
4-1 Assembly Numbers 4-8
4-2 91A24 Controller Interface Map 4-10
4-3 Counter/Timer Multiplexer Control 4-25
4-4 Clock Qualifier Generator Distribution 4-27
4-5 Clock Qualifier Control Bits 4-28
4-6 Integrated Circuits Intentionally Omitted from 91AE24 Circuit Boards 4-30
4-7 91AE24 Controller Interface Map 4-31
5-1 Equipment Needed for the Functional Check Procedures 5-2
5-2 Equipment Needed for the Adjustment Procedures 5-3
5-3 Equipment Needed for the Performance Check Procedures 5-3
5-4 Module Bus Slot Placement 5-6
5-5 Probe Connections for 91A24 Functional Test 5-10
5-6 Equipment Needed for the Adjustment Procedures 5-38
5-7 Power Supply Voltage Check 5-39
5-8 Setup for Setup and Hold Tests 5-50
6-1 Relative Susceptibility of Semiconductors to Static Discharge Damage 6-2
6-2 Tools Required for Maintenance 6-3

LIST OF TABLES (cont.)

Table Page
7-1 Relative Susceptibility of Semiconductors to Static Discharge Damage 7-2
7-2 Expected Diagnostic Readback Values for Test 0 7-15
7-3 Expected Diagnostic Readback Values for Test 0 7-21
7-4 Expected RAM Contents after Each ACQ MEM Test 0 Pass 7-35
7-5 Expected RAM Values for Each ACQ MEM Test 1 Pass 7-39
7-6 Expected Stack Pointer Counter Contents for STK PNTR Test 0 7-44
7-7 Expected Stack Control RAM Values for STK PNTR Test 1 7-48
7-8 Stack Word Recognizer RAM Failure Indications 7-55
7-9 Test Patterns Used in WRD REC Test 0 7-56
7-10 Test Patterns Used in WRD REC Test 1 7-64
7-11 Contents of Occurrence Counter RAM and Expected Values for OCCR CNTR Test 0 7-69
7-12 Clock Signal Correlation for Test 0 Error Code Display 7-90
7-13 Components for Bank and Clock Signal Values in Error Indication 7-91
9-1 Error and Prompter Messages 9-1
9-2 91A24/91AE24 I/O Map 9-5

OPERATOR'S SAFETY SUMMARY

The general safety information in this summary is for both operators and service personnel. Specific cautions and warnings are found throughout the manual where they apply but may not appear in this summary.

TERMS IN THIS MANUAL

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

TERMS AS MARKED ON EQUIPMENT

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS AS MARKED ON EQUIPMENT

DANGER — High voltage.
Protective ground (earth) terminal.
ATTENTION - refer to manual.

GROUNDING THE PRODUCT

The mainframe in which this product is installed is intended to operate from a power source that does not apply more than 250 V rms between the supply conductors or between either supply conductor and ground.

This product is grounded through the mainframe in which it is operating. To avoid electrical shock, plug the power cord of the mainframe into a properly wired receptacle before connecting to the product. A protective-ground connection by way of the grounding conductor in the power cord is essential for safe operation.

DANGER ARISING FROM LOSS OF GROUND

Upon loss of the protective-ground connection, all accessible conductive parts (including keys and controls that may appear to be insulated) can render an electric shock.

DO NOT OPERATE WITHOUT COVERS

To avoid personal injury, do not operate this product without mainframe covers or panels installed. Circuit boards and components can become very hot during operation.

DO NOT OPERATE IN EXPLOSIVE ATMOSPHERES

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

SERVICE SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY Refer also to the preceding Operator's Safety Summary.

DO NOT SERVICE ALONE

Do not perform service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

USE CARE WHEN SERVICING WITH POWER ON

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before soldering or replacing components.

DO NOT WEAR JEWELRY

Remove jewelry prior to servicing. Rings, necklaces, and other metallic objects could come into contact with dangerous voltages.

NOTE

Observe safety precautions stated in the DAS 9100 Series Service Manual concerning CRT safety, X-ray emission, and loose objects.

INTRODUCTION AND SPECIFICATIONS

DESCRIPTION

The 91A24 and 91AE24 Data Acquisition Modules are plug-in circuit board assemblies compatible with any DAS 9100 Series mainframe. They feature acquisition rates of up to 10 MHz nonmultiplexed, and 20 MHz multiplexed. Each module uses three P6460 or P6462 Data Acquisition Probes.

A maximum of one 91A24 module may be installed in a DAS mainframe. Up to three 91AE24 modules may also be installed to increase the width to 96 channels. The 91 AE24s are expander modules and can only be used if a 91A24 module is installed.

MODES OF OPERATION

DATA ACQUISITION

Each 91A24 and 91AE24 module provides twenty-four incoming data channels supplied by three P6460 Data Acquisition probes.

The 91A24 and 91AE24 modules can acquire data using the DAS internal clock at intervals ranging from 5 ms to 100 ns , or using an external clock's rising or falling edge (20 MHz maximum). The maximum memory depth in this mode is 1023 words.

91A24 and 91AE24 triggering can be positioned in the beginning, center, or end of acquisition memory; or it may be delayed for up to 32,767 clock cycles.

Data may be displayed in either the State Table or Timing Diagram menus.

ARMS TRIGGER MODE

The 91A24 and 91AE24 modules can be used in an ARMS trigger mode with 91A04 and 91A08 Data Acquisition Modules. In this mode, the two types of modules run simultaneously, but at different clock rates. The 91A04/91A08 trigger enables the 91A24/91AE24 modules to begin looking for a trigger.

The resulting time-aligned display can be viewed in either the State Table or Timing Diagram menus. In the ARMS mode, the 91A24/91AE24 data display is limited to the last 512 words acquired.

STANDARD AND OPTIONAL ACCESSORIES

91A24 DATA ACQUISITION MODULE

The following lists include the standard and optional accessories for the 91A24 Data Acquisition Module.

Standard Accessories

3 010-6460-01 P6460 Data Acquisition Probes with lead sets

1 070-4540-00 91A24, 91AE24, and P6460 Operator's Manual Addendum (to the DAS 9100 Series Operator's Manual)
1 175-8165-00 External SYNC OUTPUT cable
1 070-4672-00 91A24 Data Acquisition Module Instructions

Optional Accessories

1 070-4541-00 91A24 and 91AE24 Service Manual Addendum (to the DAS 9100 Series Service Manual)
1 175-8166-00 11-inch Interconnect Cable

91AE24 DATA ACQUISITION MODULE

The following lists include the standard and optional accessories for the 91AE24 (Expander) Data Acquisition Module.

Standard Accessories

3 010-6460-01 P6460 Data Acquisition Probes with lead sets
7 175-8167-00 3-inch Interconnection cable assembly.
1 070-4671-00 91AE24 Data Acquisition Module Instructions

Optional Accessories

There are no optional accessories for the 91AE24 module.

P6460 DATA ACQUISITION PROBE

The following lists include the standard and optional accessories for the P6460 Data Acquisition Probe.

Standard Accessories

1 070-4345-00 P6460 Data Acquisition Probe Instructions
1 012-0747-00 Lead set, 10 inch
1 020-0720-00 Package of 12 Probe Tips (each tip is a 206-0222-00)
2 012-0989-00 Ground (or VL) Sense Leads, 5-inch with
Pomona Hook Tips (344-0267-00)
2 344-0046-00 Alligator Clips (substitute for hook tips above)
Optional Accessories
012-0987-00 Flying Lead Set, 12.5 cm (5 inches)
012-0800-00 Flying Lead Set, 25 cm (10 inches)
012-1000-00 Diagnostic Lead Set, 10 inch
012-0989-01 Package of 10 Ground (or VL) Sense Lead Tips withPomona Hook Tips (344-0267-00)
103-0209-00 GPIB Connector/Adapter
003-0709-00 IC Extractor, 16 pin
015-0330-00 Adapter, Test Clip, 16 DIP
015-0339-02 Adapter, Test Clip, 40 DIP, 10 cm cable(requires 380-0560-05 Adapter)
015-0338-02 Adapter, Test Clip, 40 DIP, 30 cm cable(requires 380-0560-05 Adapter)
380-0560-05 Adapter, required for use with 40 DIP Adapters
119-1474-00 Probe Holder

P6462 DATA ACQUISITION PROBE

The following lists include the standard and optional accessories for the P6462 Data Acquisition Probe.

Standard Accessories

1	070-4724-00	P6462 Data Acquisition Probe Instructions
1	012-0747-00	Lead set, 10 inch
1	020-0720-00	Package of 12 Probe Tips (each tip is a 206-0222-00)
1	012-0989-00	Ground (or VL) Sense Leads, 5 -inch with Pomona Hook Tips (344-0267-00)
1	343-1048-00	Flat Mount Cable
2	344-0046-00	Alligator Clips (substitute for hook tips above)
Optional Accessories		
	2-0987-00	Flying Lead Set, 12 cm (5 in.)
	2-0800-00	Flying Lead Set, 25 cm (10 in.)
	2-1000-00	DAS Diagnostic Lead Set, 25 cm (10 inch)
	2-0556-00	1240 Diagnostic Lead Set, 25 cm (10 inch)
	-0989-01	Package of 10 Ground (or VL) Sense Lead Tips with Pomona Hook Tips (344-0267-00)
	3-0209-00	GPIB Connector/Adapter
	3-0709-00	IC Extractor, 16 pin
	5-0330-00	Adapter, Test Clip, 16 DIP
	-0339-02	Adapter, Test Clip, 40 DIP, 10 cm cable (requires 380-0560-05 Adapter)
	5-0339-00	Adapter, Test Clip, 40 DIP, 30 cm cable (requires 380-0560-05 Adapter)
	-0560-05	Adapter, required for use with 40 DIP Adapters

SPECIFICATIONS

Table 1-1
91A24 AND 91AE24 ELECTRICAL SPECIFICATIONS: DATA ACQUISITION AND STORAGE

Table 1-2
91A24 AND 91AE24 ELECTRICAL SPECIFICATIONS: CLOCKING

Characteristic	Performance Reqmnts.	Supplemental Information
Internal Clock		Interval is selectable from 100 ns to 5 ms in a 1-2-5 sequence. May be qualified using 91A24's pod C qualifier.
External Clocks \& Qualifiers		3 clocks, 3 qualifiers
Source		Via acquisition probes connected to 91A24
Selection		Boolean combinations used to form 3 POD CLOCK expressions.
Raw Clock Rate	20 MHz max.	Time between qualified master clocks may be no less than 100 ns. Other POD CLOCKs must occur $\geqslant 20$ ns before next cycle's master clock.
Clock Pulse Width	25 ns min., high and low (using P6460 probe)	
Qualifier Setup Time	25 ns min. (using P6460 probe)	
Qualifier Hold Time	0 ns max. (using P6460 probe)	

Table 1-3
91A24 AND 91AE24 ELECTRICAL SPECIFICATIONS: WORD RECOGNIZER FUNCTIONS

Characteristic	Performance Reqmnts.	Supplemental Information
Word Recognizer Width		Same as channel width
BEGIN STORE IF		Up to 2 ORed word recognizers
END STORE IF		Up to 2 ORed word recognizers
STORE ONLY IF		Up to 2 ORed word recognizers
RESET Word Recognizer		Resets sequential word recognizer to Level 1, and resets timer.
Independent Trigger		Parallel word recognizer ORed to sequential word recognizer. Not affected by trigger input signal.
Sequential Word Recognizer		Up to 16 levels of word recognition
OCCURS Counter		Number of event occurrences (1-4096) may be specified at each level.
Intermediate Level Actions		THEN, RUN TIMER, STOP TIMER, SYNC OUT selections
Final Level Actions		TRIGGER, INCR CNTR (12 decimal digits), SYNC \& TRG, NEVER TRG selections
Timer Accuracy	Indicated value $\pm 2 \%$, ± 100 ns each time started	Times to over 27 hours.
Sync Output Signal	TTL output level, terminated into $1 \mathrm{M} \Omega$	Remains high until completion of a subsequent word recognizer level with no sync-output specified.
Sync Output Delay	$\begin{aligned} & 3 \text { master clocks }+45 \mathrm{~ns} \\ & \pm 10 \mathrm{~ns} \end{aligned}$ between event occurrence and rising edge of syncoutput	Measured from master clock's active edge to connector output.
Word Recognizer Output		TTL-level signal output by mainframe BNC connector. 4 Master clock cycles after trigger event, signal goes and remains high.

Table 1-4
91A24 AND 91AE24 ELECTRICAL SPECIFICATIONS: PROBE INTERFACE AND SUPPORT

Characteristic	Performance Reqmnts.	Supplemental Information
Probe-to-Module Signals		8 data (91A24 \& 91AE24), 1 clock, 1 qualifier (91A24 only)
Module-to-Probe Signals		
Threshold Reference		
Voltage		+1.40 V
Fixed (TTL)		-6.40 V to +6.35 V in 50 mV
Variable (VAR)		
TTL and VAR Threshold		
Accuracy (to input of	Indicated value $\pm 0.5 \%$,	$\pm 65 \mathrm{mV}$
attached probe)		

91A24 AND 91AE24 ENVIRONMENTAL SPECIFICATIONS

The environmental specifications for the operation of this instrument meet or exceed those specified for the operation of the DAS9109 Mainframe and the DAS9129 Mainframe. For details, refer to the DAS 9100 Series Operator's Manual.

Table 1-5
P6460 ELECTRICAL SPECIFICATIONS

Characteristic	Description
User's Ground Sense	$<100 \Omega$ to user's ground
Input Impedance	$1 \mathrm{M} \Omega \pm 1 \%, 5 \mathrm{pF}$ nominal; lead set adds approx.
	5 pF
Max. Non-Destructive Input Voltage	$\pm 40 \mathrm{~V}$ (dc + peak ac)
Range	
Max. Voltage Between Any Two Inputs	$\pm 60 \mathrm{~V}$ (dc + peak ac)
Operating Input Voltage Range	From -40 V to input threshold's voltage +10 V
	$(+30 \mathrm{~V}$ for RS-232 only)
Threshold Offset and Accuracy	$\pm 0.25 \%$ of threshold $\pm 50 \mathrm{mV}$
Minimum Input Swing	0.5 V p-p centered on the threshold
Minimum Pulse Width (with input 250 mV	4 ns at threshold
over the threshold from +0.5 V and	
-0.5 V)	

Table 1-6 P6460 ENVIRONMENTAL SPECIFICATIONS

Characteristic	Description
Temperature	
Operating	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage	$-62^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Humidity	95% to 97% relative humidity
Altitude	
Operating	$4.5 \mathrm{~km}(15,000 \mathrm{ft}$.)
Non-operating	$15 \mathrm{~km}(50,000 \mathrm{ft}$.
Electrical	5 kV maximum from
Discharge	200 pF with $2 \mathrm{k} \Omega$ series resistance

Table 1-7
P6460 PHYSICAL SPECIFICATIONS

Characteristic	Description
Weight	$340 \mathrm{~g} \mathrm{(12} \mathrm{oz)}$.
Overall	
Dimensions	
Pod	$11.4 \mathrm{~cm}(4.5 \mathrm{in}$.$) long,$
	$5.6 \mathrm{~cm}(2.2 \mathrm{in}$.$) wide,$
	$2.2 \mathrm{~cm}(0.85 \mathrm{in}$.$) deep$
Cable	$2 \mathrm{~m}(78.8 \mathrm{in}.) \pm 10 \%$

Table 1-8
P6462 ELECTRICAL SPECIFICATIONS

Characteristic	Performance Reqmits.	Supplemental Information
Interface Presented to the User's System Input Capacitance		8 pF nominal
Max. Non-Destructive Input Voltage Range		-2 to $+7 \mathrm{~V}(\mathrm{DC}+$ peak AC$)$
Low-Level Input Current		-0.18 mA max.
High-Level Input Current		$10 \mu \mathrm{~A}$ max.
Minimum Input Signal	$\begin{gathered} \mathrm{TTL} \\ (0.8 \text { to } 2.0 \mathrm{~V}) \end{gathered}$	
Nominal Threshold Voltage		$\begin{aligned} & 1.4 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C} \\ & \mathrm{w} / \mathrm{Vcc}=5.000 \mathrm{~V} \pm 5 \mathrm{mV} \end{aligned}$
Threshold Temperature Dependence		$5.5 \mathrm{mV} /$ deg. C (referenced to 25 deg. C)
Threshold Temperature Power Supply Voltage Dependence (delta V-th/delta V-cc)		one-to one
Minimum Pulse Width (with min TTL signal input centered around the threshold and rise and fall times $\leqslant 2 \mathrm{~ns})$		10 ns at threshold
Internal Probe Characteristics		
Bandwidth		
Clock Channel Independent Input Channel		50 MHz 25 MHz

Table 1-9
P6462 ENVIRONMENTAL SPECIFICATIONS

Characteristic	Description
Temperature Operating Storage	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Humidity	95% to 97% relative humidity
Altitude Operating Non-operating	$4.5 \mathrm{~km}(15,000 \mathrm{ft})$. $15 \mathrm{~km}(50,000 \mathrm{ft})$.
Electrical Discharge	10 kV maximum from 200 pF with $2 \mathrm{~K} \Omega$ series resistance

Table 1-10
P6462 PHYSICAL SPECIFICATIONS

Characteristic	Description
Weight	$340 \mathrm{~g} \mathrm{(12} \mathrm{oz)}$.
Overall Dimensions	$4.5 \mathrm{in}$. long, 2.2 in. wide, $0.85 \mathrm{in} . \mathrm{deep}$
Pod	$78.75 \mathrm{in}.(2 \mathrm{~m})$

OPTIONS

There are no options to the 91A24 Data Acquisition Module, the 91AE24 Data Acquisition Module, the P6460 Data Acquisition Probe, or the P6462 Data Acquisition Probe. For information regarding DAS system options, refer to the DAS 9100 Series Service Manual.

OPERATING INSTRUCTIONS

This section describes the installation and basic operation of 91A24 and 91AE24 modules. For detailed operating instructions refer to the 91A24, 91AE24, and P6460 Operator's Manual Addendum to the DAS 9100 Series Operator's Manual.

Repackaging Information. All DAS 9100 Series products are shipped in specially designed transportation packaging. If you need to ship a product, use its original packaging. If the original packaging is no longer fit for use, contact your nearest Tektronix Field Office and obtain new DAS packaging.

If you need to ship any part of your 91A24/91AE24 system to a Tektronix Service Center, always include all components of the system: both your 91A24 and 91AE24 modules, and their P6460 probes and grabber-tipped leads.

When you ship a product to a Tektronix Service Center, be sure to attach an identifying tag to the product (inside the packaging). On this tag include your name, the name of your company, the name and serial number of the enclosed product, and a description of the service requested.

FIRMWARE AND HARDWARE COMPATIBILITY

Firmware Update Requirements. To operate with 91A24/91AE24 modules, your DAS must be equipped with firmware version 1.11 or higher. If your DAS has a lower firmware version, it will display the error message NEEDS FIRMWARE VERSION $>=1.11$ at power-up. You can determine your mainframe's firmware version by looking in the upper right corner of the power-up display.

Firmware version 1.11 requires that 91A04 modules be equipped with version 2 (or higher) firmware. You can determine if your 91A04 has the correct firmware by checking the 91A04 listing on the DAS powerup display: V2 (or higher) should appear at the right of this line.

To obtain version 1.11 update kits for your mainframe and/or 91A04, contact your Tektronix representative.

Hardware Update Requirements. For use with 91A24/91AE24 modules, your DAS system may require certain hardware updates. These updates can be performed by your Tektronix Service Center, or you can order the appropriate DAS hardware update kit. The following updates are necessary:

- DAS mainframes with serial numbers lower than B030100 require a controller board modification.
- 91A08 modules with serial numbers lower than B020100 require modification to operate in 91A24 ARMS 91A08 mode.
- PMA 100 Personality Module Adapters with serial numbers lower than B020100 require a new backpanel label.

Should any of your equipment require an update, contact your Tektronix representative.

MODULE INSTALLATION

NOTE

For information on setting up the modules for functional or performance checks, see Section 5, Verification and Adjustment Procedures in this addendum.

The following paragraphs describe the installation requirements for the 91A24 and 91AE24 modules and their probes. Operator's checkout procedures are discussed later in this section.

Throughout the following discussion, it is assumed that you are already familiar with the procedures for removing the mainframe top panel and module compartment cover, and with the procedures for installing modules into the mainframe bus slots. If you are not familiar with these procedures, refer to Section 3, Operating Instructions of the DAS 9100 Series Service Manual.

Do not remove or install a 91A24 or 91AE24 module until you have read the following warnings, cautions, adjustment procedures, and configuration requirements.

When you install instrument modules, turn off the mainframe and unplug it from its power source. You may damage the module's circuitry if the mainframe is receiving power while you install a module.

CONFIGURATION REQUIREMENTS

The power and configuration requirements for the 91A24 and 91AE24 modules are as follows:

1. The 91A24 module can only share a +5 V Power Supply with a 91A32, 91AE04, or 91AE24 Data Acquisition Module, or an empty bus slot. It cannot share a power supply with any other type of module.

If the 91A24 is installed in a bus slot sharing a +5 V Power Supply with any type of module other than those specified above, the $+5 V$ Power Supply may lose voltage regulation, causing the DAS modules to malfunction.

When positioning modules around the 91A24, be sure to allow for the power supply restriction. Table 3-1 shows the recommended positioning of 91A24 and 91AE24 modules.
You can see which power supplies are present in the mainframe by checking the chrome pins visible through holes in the black cover over the power supply area. $A+5 \mathrm{~V}$ power supply is present if a chrome pin is visible in the hole. The label next to each power supply indicator tells which bus slots that power supply supports. See Section 6, Maintenance: General Information of the DAS 9100 Series Service Manual for instructions on removing power supply area cover.
2. Without violating the power supply restriction, the 91A24 and 91AE24 modules must be positioned in adjacent bus slots. All 91AE24 modules must be positioned to the same side (either all to the right or all to the left) of the 91A24 module. Table 3-1 shows one possible bus slot positioning for 91A24 and 91AE24 modules.

Table 3-1
RECOMMENDED BUS SLOT PLACEMENT

Bus Slot	Module
0	Controller
1	91A24 Data Acquistion Module
2	91AE24 Data Acquisition Module
3	91AE24 Data Acquisition Module
4	91AE24 Data Acquisition Module
5	Any module other than a 91A24, or a 91AE24, or empty bus slot
6	Any module other than a 91A24, or a 91AE24, or empty bus slot
7	Trigger/Time Base

MODULE INTERCONNECTION PROCEDURES

When one or more 91AE24 expander modules are installed in the mainframe, interconnect pins on the top edge of the modules are used to communicate word recognizer and clock signals.

Each 91AE24 module comes with seven 3-inch twisted-pair cables. These cables connect the 91A24 and 91AE24 modules' word recognizer and clock interconnect pins. In addition, some of the 91A24's square-pin jumpers move to interconnect pins on the 91AE24 furthest from the 91A24. Interconnect cables and square-pin jumpers must be correctly installed for the modules to operate properly.

Figure 3-1 illustrates how these cables are connected.

Figure 3-1. Connecting the cables between the 91A24 and 91AE24 modules. This illustration shows correct configurations of interconnect cables and square-pin jumpers. Four possible cases are shown: a 91A24 without 91AE24s, and configurations with one, two, and three 91AE24s installed.

Sync Output Cable. The 91A24 module comes equipped with a 2-meter coaxial cable. This cable is used to carry a TTL sync-output signal. The signal can be synchronized with the occurrence of events defined in the Trigger Specification sub-menu's sequential word recognizer.

The sync-output cable is connected to the 91A24 through back-panel openings on the mainframe.
The cable plug-in jack is located on the back edge of the 91A24 module, immediately below the pod C connector. Connection of the sync-output cable is shown in Figure 3-2.

Figure 3-2. Connecting acquisition probes and the sync output cable.

CONNECTING ACQUISITION PROBES

You can use either P6460 or P6462 Data Acquisition Probes with 91A24/91AE24 modules. All probes must be of the same type. All probes connect to the 91A24 and 91AE24 modules through back-panel openings on the mainframe as shown in Figure 3-2. The probes attach to the modules' Pod A, Pod B, and Pod C connectors.

To connect probes to modules:

1. Grasp the probe by its cable holder.
2. Align the cable holder with the module's pod connector. Be sure the raised tab on the cable holder is facing towards bus slot 0 , and is aligned with the opening on the module's pod connector.
3. Gently push the cable holder onto the connector. Do not force the connection.

To disconnect the probe, grasp the cable holder and pull gently.

You may damage the probe if you try to disconnect it by pulling on the cable rather than the cable holder.

P6460 PROBE CHARACTERISTICS

The P6460 is a 100 MHz , 9-channel data acquisition probe. Each P6460 provides the 91A24 module with eight data input channels, one qualifier channel, and one clock channel. When connected to a 91AE24 module, only the data channels are active. For P6460 specifications and signal characteristics, refer to Table 1-5.

Figure 3-3 illustrates the various elements and features of the P6460 probe.

Figure 3-3. P6460 Data Acquisition Probe characteristics and lead connections.

P6462 PROBE CHARACTERISTICS

The P6462 is a 50 MHz , 9-channel data acquisition probe. Each P6462 provides the 91A24 module with eight data input channels, one qualifier channel, and one clock channel. When connected to a 91AE24 module, only the data channels are active. For P6462 specifications and signal characteristics, refer to Table 1-8.

Unlike the P6460, the P6462 has a NORM/AUX switch. For use with the DAS, set this switch to AUX. Also unlike the P6460, the P6462 has a flat ribbon cable instead of a round cable. With these exceptions, Figure 3-3 represents major P6462 features and accessories.

OPERATOR'S CHECKOUT PROCEDURE

The following paragraphs describe basic operator's checkout procedures. For more detailed instructions refer to the DAS 9100 Series Operator's Manual.

POWER-UP SELF TEST

When the DAS mainframe is powered up, any installed 91A24 and 91AE24 modules will be listed on the power-up configuration display. A PASS or FAIL notation will appear next to each module to denote the results of that module's power-up testing. Table 3-2 lists the power-up errors for the 91A24 and 91AE24 modules.

Table 3-2
POWER-UP ERROR CONDITIONS

Error Condition	Definition
91A24 Data Acquisition	The 91A24 module has failed the power-up test. The module Module FAIL will not operate properly. This failure does not affect the operation of any installed pattern generation modules or other data aqcuisition modules, except for 91AE24s. 91AE24 modules will not operate without a working 91A24 module.
91AE24 Data Acquisition	The 91AE24 module has failed the power-up test. The module will not operate properly.
This failure will occur if the clock and word recognizer jumpers	
and cables are disconnected or configured incorrectly. Power	
down the mainframe, check the cables and jumpers, then	
power up the mainframe.	

PROBE SELF-TEST

The general procedure for the probe self-test is described in the DAS 9100 Series Operator's Manual. Testing P6460 and P6462 probes requires modifications to the main test that are described in this section.

- The 91A24/91AE24 modules may be in any valid slots (restrictions are detailed under Configuration Requirements, earlier in this section). The probe may be connected to any 91A24 or 91AE24 pod connector.
- If you are testing a P6462, set the NORM/AUX switch to NORM. Leave the Channel Specification menu threshold value set to TTL +1.40 V (the default value).
- If you are using a P6460, there is no NORM/AUX switch to set. If you are getting the test pattern through a P6455 TTL/MOS pattern generator probe, leave the Channel Specification menu threshold value set to TTL +1.40 V (the default value). If you are getting the test pattern through a P6455 ECL pattern generator probe, set the threshold to VAR -1.30 V.
- When you enter the Timing Diagram menu to see the test results, you will need to change the value of the POD field to match the 91A24 bus slot and the pod where you have the probe connected. For example, if the 91A24 is in slot 1, and the probe is in pod A, enter 1A in the POD field).

In all other respects, this procedure is identical to the one detailed in the DAS 9100 Series Operator's Manual.

THEORY OF OPERATION

SECTION ORGANIZATION

This section is designed to familiarize service personnel with the operation of 91A24 and 91AE24 circuitry. It is divided into three main parts. The System Architecture part describes how 91A24 and 91AE24 modules fit into the DAS architecture. The General System Description describes both modules at the function block level. Last is the Detailed Circuit Description, which describes the module operation at the component level.

Throughout this section, references are made to the 91A24 and 91AE24 block diagrams and schematics located in the Diagrams section at the back of this addendum. The schematic and block diagram pages have tabs indicating the page title and, on schematics, the numbered diamond assigned to the schematic. Schematics are often referred to by the numbered diamond on the schematic tab.

For a more complete understanding of the 91A24 and 91AE24 modules, you may also want to refer to the signal glossary in the Reference Information section and to the diagnostic information in the Maintenance: Troubleshooting section.

LOGIC CONVENTIONS

In this manual, digital logic is described using the positive logic convention. The more positive voltage indicates a true or 1 state; the more negative voltage indicates a false or 0 state. In logic descriptions, the more positive voltage is referred to as high, and the more negative voltage is referred to as low. The specific voltage that specifies a high or low state varies depending on the type of logic device. TTL, ECL, and CMOS devices all have different logic threshold levels.

Signal names on schematics are normally asserted high. Only signal names with overscores are asserted low. This same convention is used in the text.

SYSTEM ARCHITECTURE

91A24 and 91AE24 Data Acquisition Modules are designed to reside in any of the instrument bus slots (1 through 6) of any DAS 9100 mainframe. All 91A24 and 91AE24 modules should be placed in adjacent bus slots. The mainframe must contain firmware version 1.11 or higher, along with the hardware changes associated with the firmware version. More information on firmware version 1.11 is located in the Operating Instructions section of this addendum.

Both types of modules are initialized and read by the Controller board in the DAS mainframe. The firmware that allows the Controller board to operate the modules is located on the 91A24. Some of the 91A24 trigger circuitry is located on the Trigger/Time Base board, which also provides the clock for asynchronous acquisition.

91A24 DATA ACQUISITION MODULE

The 91A24 module is a 24 -channel data acquisition module with a maximum clock rate of 100 ns . The 91A24 can take two separate samples within the 100 ns period, however, so its maximum sample rate is 20 MHz . The acquisition memory is 1023 words deep. Only one 91A24 module may be installed in a mainframe at one time, but the memory and trigger word can be widened by connecting 91AE24 modules to the 91A24 module.

The 91A24 has five independent word recognizers, one of which is stack-based so it can look for different words at different points in the trigger sequence. The four non-stack-based word recognizers may be used as either trigger conditions or as data qualifiers to selectively store only certain data.

When external clocks are used, the 91A24 can create a separate sample clock for each acquisition probe. Each clock controls when data is stored from its probe. The clocks are created from boolean expressions combining any of the three clock inputs and three qualifier inputs.

The 91A24 also provides signals and connectors to drive 91AE24 modules. The 91A24 sends clock signals to the 91AE24 modules. The 91A24 module also receives word recognition signals from the 91A24. These signals are transmitted through cables attached to the top of all the modules.

Probes. Full use of the 91A24 module requires three data acquisition probes. Each probe acquires eight channels of data, one clock qualifier, and one clock.

At this writing, P6460 and P6462 Data Acquisition Probes can be used with 91A24 modules. However, only one type of probe should be used with any set of 91A24 and 91AE24 modules at a given time. P6460 and P6462 probes have different propagation delays, so if probe types are mixed, setup and hold times may be violated.

91AE24 DATA ACQUISITION MODULE

The 91AE24 module is a depopulated version of the 91A24 module. The 91AE24 receives its clocks from the 91A24 module and sends word recognition signals back to the 91A24. The 91A24 determines when storage should occur and when trigger conditions are met. As many as three 91AE24 modules can be controlled by a 91A24. The wires that carry the controlling signals are dai-sy-chained across the top of all the modules.

Probes. Each 91AE24 module accepts up to three data acquisition probes. All 91AE24 modules should use the same type of probe that the 91A24 uses. If probe types are mixed, setup and hold times may be violated.

GENERAL SYSTEM DESCRIPTION

The function blocks used in this description are shown in the 91A24 and 91AE24 block diagram in the Diagrams section of this addendum. Refer to the block diagram while reading the description.

91A24 DATA ACQUISITION MODULE

91A24 Controller Interface and ROMs

The controller interface allows communication between the DAS Controller board and the 91A24. Any block in the 91A24 general block diagram identified with an asterisk (*) uses the 91A24 controller interface.

The three ROMs in the controller interface are read by the Controller board to control the 91A24 and any 91AE24 modules in the mainframe.

Data Acquisition Probes

The 91A24 uses three data acquisition probes. Each probe acquires eight data channels. Each probe also accepts one clock signal and one clock qualifier signal, for a total of three clocks and three qualifiers. Each probe is an active device that converts unbalanced signals to differential ECL signals for transmission to the acquisition module.

Probe Receivers

The 91A24 receives differential ECL signals from the probes. The probe receivers convert data signals from the probes into TTL level signals. The probe receivers also buffer the clock and qualifier signals out of the probes, but these signals remain differential ECL.

Clock Qualifier Generator

Before the 91A24 starts acquiring data, the Controller board programs the clock qualifier generator to pass the correct qualifier signals from the probes to the clock generator. The clock generator requires three qualifier signals per clock, and any of the three signals may be inverted, non-inverted, or don't cared. So the clock qualifier generator sends a total of nine clock qualifiers to the clock generator.

Clock Generator

The clock generator is programmed to create the three clocks that clock data from the probe receivers into the login registers. The clocks created match the clock expressions entered in the 91A24 Clock Specification sub-menu of the Trigger Specification menu. Clocks can be generated from the three external clocks acquired by the 91A24, or from the internal clocks from the Trigger/Time Base board.

The qualifiers in the clock expressions are received from the clock qualifier generator, where they are conditioned to match the expressions in the 91A24 Clock Specification sub-menu.

The three clocks from the clock generator regulate the acquisition circuitry on the 91A24 and all 91AE24 modules in the system. The clocks are sent to the 91AE24 modules through three of the wires running across the tops of the modules.

The clock generator also selects the 91A24 master clock from the three generated clocks. This master clock runs the data registers, the word recognizers, and the acquisition memory.

Login Registers

The login registers latch data from the probe receivers, so that stable data can be clocked into the data registers. The login registers operate from three separate clocks; one clock for the data from each probe.

When required, the login registers also demultiplex data from probe A into both the A and B memories. This is also the point where diagnostics can enter the 91A24 data stream for diagnostic testing.

Data Registers

The data registers clock in data from the login registers. The data registers prepare the acquired data for the word recognizers and for storage in the acquisition memory.

Data Qualifier

The data qualifier contains four independent word recognizers as well as the logic that determines the 91A24's response to a recognized word.

The four words to be recognized are loaded into the word recognition RAM by the controller interface. The controller interface programs the logic to control how the module will react to a recognized word.

The data qualifier only recognizes a word when all 91A24 and 91AE24 modules recognize their portions of a word at the same time. The 91AE24 modules indicate qualifier recognition through wires running to 91A24 J176 and J178.

Signals from the data qualifier block control the trigger block, the memory address register for the acquisition memory, and the stack pointer for the stack word recognizer. The signal to the trigger block completes the 91A24 trigger sequence. The signal to the memory address register starts or stops incrementing the acquisition memory address, which starts or stops data acquisition. The signal to the stack pointer resets the stack pointer to zero so the stack word recognizer restarts its sequence.

The data qualifier also stops storage when acquisition is done. When the trigger sequence is finished, the 91A24 signals the Trigger/Time Base to start its delay counter. When the delay counter is done, the Trigger/Time Base pulls the 91A32 QUAL signal on the Interconnect low. When this signal is low, the data qualifier stops the 91A24 memory address register from incrementing, which stops data storage.

Memory Address Register

The memory address register is a 10-bit counter that is clocked by the master clock. The counter provides the address for the acquisition memory.

The data qualifier can prevent the memory address register from incrementing. When the memory address register stops incrementing, the same acquisition memory address is reloaded each time new data is clocked in, which effectively stops data acquisition.

Acquisition Memory

The acquisition memory stores data from the data registers once every master clock cycle. The memory address register determines the address of the acquisition RAM.

Stack Word Recognizer

The stack word recognizer is capable of recognizing sixteen separate words. The stack pointer determines which of the sixteen words is active at a given time. Each time the active word is recognized, the stack word recognizer increments the stack occurrence counter.

The stack word recognizer also includes a RAM that determines the 91A24 reaction to each stack level. One bit causes the SYNC OUT output to go active, two bits start and stop the stack counter/timer, and one bit activates the 91A24 trigger.

Stack Occurrence Counter

The stack occurrence counter determines the number of times each word in the stack word recognizer must occur before moving to the next stack level.

The stack occurrence counter has two parts; the count RAM and the counter. Whenever the 91A24 starts, or enters a new stack level, a new count value is loaded from the count RAM into the counter. The stack pointer addresses the count RAM, so values loaded from the RAM into the counter correspond to the new stack level.

The stack word recognizer increments the counter each time it recognizes the word for the current stack level. The counter only increments when the stack word from the 91A24 and from all 91AE24 modules is satisfied. J171 carries stack word recognition signals from 91AE24 modules to the 91A24. When the counter runs out, it increments the stack pointer, which moves the stack word recognizer down another level.

Stack Pointer

The stack pointer sets the stack word recognizer level. Initializing the 91A24 sets the stack pointer to zero (level 1 of the sequential word recognizer in the 91A24 Trigger Specification sub-menu).

When the stack occurrence counter completes a level, it increments the stack pointer. So whenever the conditions for one stack level are completed, the stack occurrence counter moves the pointer to the next level. The signal that increments the 91A24 stack pointer is also sent to all 91AE24 modules, through J181, so they increment their stack pointers at the same time.

The stack pointer can also be set back to zero by the data qualifier. This happens whenever the data qualifier recognizes the RESET word in the 91A24 Trigger Specification sub-menu.

Stack Counter/Timer

Before acquisition begins, the stack counter/timer is initialized to act either as a counter or as a timer. If it acts as a timer, a 10 MHz oscillator drives the counter. In this configuration, the 10 MHz oscillator starts incrementing the counter when a RUN TIMER stack level is entered. The counter stops incrementing when a STOP TIMER level is completed or when the 91A24 triggers. When the counter/timer is initialized to act as a counter, the counter increments each time the INCR CNTR stack level is completed.

The counter/timer has 16 bits, but the 91A24 uses the DAS Z80 to extend the maximum count. Whenever the counter wraps around, the Z80 on the Controller board receives an interrupt. This interrupt causes the Z80 to increment a word in the Controller RAM. When the 91A24 stops acquisition, the Controller board adds the value from the counter to the value in the Controller RAM. This sum is the total elapsed time or the total count displayed on the DAS screen.

Trigger

The trigger is programmed to monitor triggering conditions. When the trigger conditions are met, the trigger pulls the EVENT 1 signal on the Interconnect low. This signals the Trigger/Time Base board that the 91A24 trigger has occurred. The Trigger/Time Base then finishes the acquisition stopping sequence with its delay counter. When the Trigger/Timer Base delay counter is done, the Trigger/Time Base stops the 91A24 module from acquiring more data by pulling the 91A32 QUAL signal on the Interconnect low.

Memory Readback

The memory readback circuits place the data in the 91A24 acquisition memory onto the Interconnect's CPU bus. The Controller board then processes and displays this data on the DAS screen.

91AE24 DATA ACQUISITION MODULE

All 91AE24 modules are driven by the 91A24 module. The 91A24 sends clocks and control signals to the 91AE24 modules. The 91AE24s return word recognition signals to the 91A24 for processing.

91AE24 Controller Interface

The controller interface allows communication between the DAS Controller board and the 91AE24. Any block in the 91AE24 general block diagram identified with an asterisk (*) uses the 91AE24 controller interface.

Data Acquisition Probes

The 91AE24 uses three data acquisition probes. Each probe acquires eight data channels. Probes attached to a 91AE24 do not acquire clock or qualifier signals, since the clocks for 91 AE24 modules are created by the master 91A24. Each probe is an active device that converts unbalanced signals to differential ECL signals for transmission to the acquisition module.

Probe Receivers

The 91AE24 receives differential ECL signals from the probes. The probe receivers convert data signals from the probes into TTL level signals. 91AE24 modules do not use the probe's clock and qualifier channels.

Clock Generator

The 91AE24 clock generator buffers the three pod clocks received from the 91A24. The clock generator also selects the 91AE24 master clock from the three received clocks. This master clock runs the data registers, the word recognizers, and the acquisition memory.

Login Registers

The login registers latch data from the probe receivers, so that stable data can be clocked into the data registers. The login registers operate from three separate clocks; one clock for the data from each probe. The 91AE24 receives these clocks from the 91A24 through the wires attached to the top of the modules.

When required, the login registers also demultiplex data from probe A into both the A and B memories. This is also the point where diagnostics can enter the 91A24 data stream for diagnostic testing.

Data Registers

The data registers clock in data from the login registers. The data registers prepare the acquired data for the word recognizers and for storage in the acquisition memory.

Data Qualifier

The data qualifier contains four independent word recognizers as well as the logic that determines the 91AE24's response to a recognized word.

The four words to be recognized are loaded into the word recognition RAM by the controller interface. The controller interface programs the logic to control how the module will react to a recognized word.

The data qualifier only recognizes a word when all 91A24 and 91AE24 modules recognize their portions of a word at the same time. The 91A24 and 91AE24 modules share their qualifier recognition signals through wires running to J 176 and J 178 .

Signals from the data qualifier block control the memory address register for the acquisition memory, and the stack pointer for the stack word recognizer. The signal to the memory address register starts or stops incrementing the acquisition memory address, which starts or stops data acquisition. The signal to the stack pointer resets the stack pointer to zero so the stack word recognizer restarts its sequence.

The data qualifier is also stops acquisition when the trigger is completed. When the trigger sequence is finished, the 91A24 signals the Trigger/Time Base to start its delay counter. When the delay counter is done, the Trigger/Time Base pulls the 91A32 QUAL signal on the Interconnect low. When this signal is low, the data qualifier stops the 91AE24 memory address register from incrementing, which stops data storage.

Memory Address Register

The memory address register is a 10-bit counter that is clocked by the master clock from the 91A24. The counter provides the address for the acquisition memory.

The data qualifier can prevent the memory address register from incrementing. When the memory address register stops incrementing, the same acquisition memory address is loaded each time new data is clocked in, which effectively stops data acquisition.

Acquisition Memory

The acquisition memory stores data from the data registers once every master clock cycle. The memory address register determines the address of the acquisition RAM.

Stack Word Recognizer

The stack word recognizer is capable of recognizing sixteen separate words. The stack pointer determines which of the sixteen words is active at a given time. Each time the active word is recognized, the stack word recognizer sends a signal to the 91A24 module.

Stack Pointer

The stack pointer sets the stack word recognizer level. Initializing the 91AE24 sets the stack pointer to zero (level 1 of the sequential word recognizer in the 91A24 Trigger Specification submenu).

The 91A24 module sends a signal to all 91AE24 modules whenever the 91A24 stack pointer increments. This signal increments all 91AE24 stack pointers so they stay at the same level as the 91A24.

The stack pointer can also be set back to zero by the data qualifier. This happens whenever the data qualifier recognizes the RESET word in the 91A24 Trigger Specification sub-menu.

Memory Readback

The memory readback circuits place the data in the 91AE24 acquisition memory onto the Interconnect's CPU bus. The Controller board then processes and displays this data on the DAS screen.

DETAILED CIRCUIT DESCRIPTION

Refer to schematics in the Diagrams section of this manual while reading this detailed circuit description. The numbered diamonds on the schematic tabs in the Diagrams section are keyed to the numbered diamonds in the detailed circuit descriptions.

Signal names which are asserted low are indicated with an overscore on the schematics and in the text. Signal names are assumed to be asserted high unless otherwise indicated.

Table 4-1 shows the assembly numbers of all etched circuit boards referred to in this circuit description. These assembly numbers are used to identify the board or assembly where a component is mounted. For example, A35Q101 is transistor Q101 located on the 91A24 module (A35).

NOTE

Assembly numbers are etched or printed on circuit boards when possible. Boards that are supplied by a vendor or special Tektronix boards may not have assembly numbers etched on them. Boards may be located using the board locator illustrations in the Diagrams section of this addendum or the DAS 9100 Series Service Manual.

Table 4-1
ASSEMBLY NUMBERS

A1	DAS9109 Interconnect
A6	DAS9109 Monochrome Controller board
A10	Trigger/Time Base board
A31	DAS9129 Interconnect
A33	DAS9129 Color Controller board
A35	91A24 Data Acquisition module
A36	91AE24 Data Acquisition module
A70	P6460 Data Acquisition Probe
A71	P6462 TTL Fixed Threshold Acquisition Probe

91A24 DATA ACQUISITION MODULE

The 91A24 Data Acquisition Module can acquire 24 independent channels of information at speeds up to 10 MHz . The 91A24 module also has five word recognizers, one of which is stack-based. The module stores up to 1023 data sequences.

All component numbers in the 91A24 module circuit description are assumed to have an A35 preface unless otherwise noted.

The 91A24 circuit description is organized by schematic, and then by functional blocks on the schematic. Numbers in diamonds refer to the numbers on schematic tabs in the Diagrams section of this addendum. Refer to those schematics while reading the circuit description. For an overview of the 91A24 module's circuits, refer to the General System Description, earlier in this section.

91A24 CONTROLLER INTERFACE

The controller interface allows communication between the DAS Controller board and the 91A24. Any block in the 91A24 block diagram identified with an asterisk (*) uses the 91A24 controller interface.

The 91A24 controller interface performs two major functions:

1. It takes data from the DAS Controller board and writes it to appropriate 91A24 registers. The registers are selected by decoding the lowest five bits on the address bus and interpreting $\overline{B W R}, \overline{B P O R T}$, and $\overline{B R D}$ from the DAS Controller board.
2. It puts data from the 91A24 module on the data bus at the command of the DAS Controller board.

91A24 interface decoding and receiving circuitry is shown on schematic 68; readback circuitry is shown on schematic 69.

Receiving Control Data. As an example of how the 91A24 receives control data, suppose the Controller board is writing data into port 0, the map register (U968 on schematic 68). The Controller board sets the low five bits of the address bus to 00_{16}, places the data on the data bus, and asserts $\overline{\mathrm{BWR}}$ and $\overline{\text { PORT. The 91A24 reacts as follows: }}$

1. Asserting PORT enables U768 (schematic 68). This transmits data from the data bus to the D inputs of the map register.
2. $\overline{\mathrm{BWR}}, \overline{\mathrm{PORT}}$, and A4 being low together enable decoder U958 (schematic 68).
3. U958 decodes the 0_{16} on A0-A3 to assert the MAP REG signal. The rising edge when $\overline{M A P ~ R E G}$ is unasserted clocks the value on the data bus into the map register. Waiting for the rising edge of $\overline{M A P ~ R E G ~ a l l o w s ~ a d e q u a t e ~ s e t u p ~ t i m e ~ f o r ~ t h e ~ d a t a ~ o n ~ t h e ~ d a t a ~ b u s . ~}$

Sending Data. The readback procedure is similar, except $\overline{B R D}$ is asserted instead of $\overline{B W R}$. As an example of how the 91A24 sends data, suppose the Controller is reading the card ID from port 0 (register U791 on schematic 69). There are only 16 readback ports, so only address bits A0-A3 are decoded. The Controller board sets the low four bits of the address bus to 0_{16}, and asserts $\overline{B R D}$ and PORT. The 91A24 reacts as follows:

1. $\overline{\mathrm{BRD}}$ and $\overline{\text { PORT being low together enable decoder U998 (schematic 69). }}$
2. U998 decodes the 0_{16} on the address bus to assert the $\overline{\text { CARD ID signal. The } \overline{\text { CARD ID }} \text { signal }}$ enables tri-state buffer U791, which places the card ID on the data bus.

There are three exceptions to the read process. When ports 2 (DATA CLOCK), 8 ($\overline{\text { CNTR CLR }})$ and F (INT3 CLR $)$ are read, the Controller board does not expect to read any data back. Reading port 2 clocks serial probe status information out of the probes (on schematic 69). Reading port 8 clears the counter/timer (on schematic 76), and reading port F clears the INT3 register (U491B on schematic 76).

Table 4-2 shows which registers are connected to the data bus and the $\overline{\mathrm{BWR}}, \overline{\mathrm{BRD}}$, and $\overline{\mathrm{PORT}}$ signals.

Table 4-2
91A24 CONTROLLER INTERFACE MAP

Hex Addr	$\overline{B W R}$	$\overline{\text { BRD }}$	$\overline{\text { PORT }}$	Line Name	ICs Affected	
					U Number	Schem
XXXO	X	L	L	CARD ID	U791	69
XX00	L	X	L	MAP REG	U968	68
XXX1	X	L	L	POD STATUS	U775	69
XX01	L	X	L	THRESHOLD	U918	71
Xxx2	X	L	L	DATA CLOCK	J101, J401, J701	69
XX02	L	X	L	PROBE R/W	U925	71
XXX3	X	L	L	MAR LOW	U135	69
XX03	L	X	L	CNTL1	U761	68
XXX4	X	L	L	$\overline{\text { MAR HIGH }}$	U235	69
XX04	L	X	L	STACK A WE	U148	75
XXX5	X	L	L	CNTR RDBKO	U788	76
XX05	L	X	L	STACK B WE	U248	75
XXX6	X	L	L	CNTR RDBK1	U795	76
XX06	L	X	L	STACK C WE	U448	75
XXX7	X	L	L	DQ STATUS	U778	69
XX07	L	X	L	STACK CNTL	U555	75
XXX8	X	L	L	CNTR CLR	U475C, U198D, U471A, U298B, U585, U588, U478A, U591, U595	76
XX08	L	X	L	OCCR CNTR LD	U265A, U165B, U158, U258, U458	75
XX09	L	X	L	SINGLE STEP	U125, U225, U425	72
XXXA	X	L	L	STACK CNTL RD	U785	69
XXOA	L	X	L	OCCR CNTR RAM LD1	U455	75
XXXB	X	L	L	A MEM RD	U131	69
XXOB	L	X	L	OCCR CNTR RAM LDO	U155, U255	75
XXXC	X	L	L	B MEM RD	U231	69
XXOC	L	X	L	CNTL2	U758	68
XXXD	X	L	L	C MEM RD	U431	69
XXOD	L	X	L	STACK PTR CLK	U568C, U485A, U575D, U571	76
XXXE	x	L	L	TRIGGERED RD	U771	69
XXXF	X	L	L	INT3 CLR	U478A, U168C, U491B	76
XXOF	L	X	L	PADQ WE	U151	74
XX10	L	X	L	PBDQ WE	U351	74
XX11	L	X	L	PCDQ WE	U551	74
XX12	L	X	L	CLK INIT	U291D, U741B, U745B, U751, U841B, U845B, U851B, U478A	78
XX13	L	x	L	$\overline{\mathrm{PCO}}$	U938	77
XX14	L	X	L	PC1	U935	77
XX15	L	X	L	$\overline{\mathrm{PC} 2}$	U941	77
XX16	L	X	L	$\overline{\mathrm{PC}}$	U928	77
XX17	L	X	L	$\overline{\mathrm{PC} 4}$	U945	77
XX18	L	X	L	PC5	U931	77
XX1B	L	X	L	CNTL3	U765	68
XX1E	L	X	L	TIMER CLK	U491A	76
XX1F	L	X	L	OCCR CLK	U165A	75

91A24 CONTROLLER INTERFACE READBACK CIRCUITRY

This schematic shows the tri-state readback buffers that pass data from the 91A24 to the DAS Controller board. Data passes through these buffers from locations throughout the module. The buffers are enabled by U998 (schematic 69). Table 4-2 provides a list of the signals that enable these buffers.

Schematic 69 also shows part of the communication interface to the acquisition probes. 91A24 compatible probes have a serial communication line for probe identification. Data is clocked out of the probes by the DATA CLOCK signal through pin 28 of J101, J401, and J701 (schematic 69). Data is received back from the probes through pin 34 of J101, J401, and J701 (schematic 69). For more information about these signals refer to the probe interface circuit shown on schematic 71.

91A24 PROBE A AND B RECEIVERS

Probe A Receiver

The probe receivers translate signals from the probes into the voltage levels required by the 91A24. The probe receivers convert the eight data channels from the probe into TTL level signals. The two remaining probe channels, the clock and qualifier signals, are left as differential ECL signals.

The clock and qualifier signals from the probe are terminated then buffered by a comparator. Qualifier signals go to schematic 77, and clock signals go to schematic 78.

All eight of the data receivers are identical. They convert differential ECL signals into the TTL signals that the login registers expect. Figure 4-1 shows one of the channels. This description refers to Figure 4-1.

Figure 4-1. 91A24 probe receiver.

Transistors Q1 and Q2 and the 390Ω resistor are a differential TTL-to-ECL translator. The 150Ω and 120Ω resistors are line terminators that match the impedance of the transmission line. The 22 ns delay line adds time to the data signal so the corresponding clock and qualifier signals can be processed before the data is clocked in. The 430Ω and 220Ω resistors are signal terminators for the delay line.

Probe B Receiver

The probe B receiver is identical to the probe A receiver. Refer to the probe A receiver description for more information.

91A24 PROBE INTERFACE AND PROBE C RECEIVER

Probe C Receiver

The probe C receiver is identical to the probe A receiver. Refer to the probe A receiver description for more information.

Probe Interface

The probe interface controls the probe's acquisition threshold and reads the probe status.
Probe Status Readback. The DAS polls all 91A24 probe connectors to see if probes are attached. The DAS uses the same circuitry to sense if the Pod ID botton is depressed and to identify the type of probe attached. Each probe is identified by an eight-bit code that is received serially by the 91A24.

The DAS polls the probe by pulling the probe's $R(L) / W(H)$ line high. The DAS does this by writing ones into bits 4, 5, and 6 of register U925 (91A24 schematic 71). At this writing, only P6460 and P6462 acquisition probes can be used with the 91A24. Since neither of these probes use the DATA IN signal from the module, bits 0,1 , and 2 of this register are not used.

Once the $R(L) / W(H)$ signal is high, the 91A24 toggles the DATA CLOCK signal through data selector U998 (shown on schematic 69). Each rising edge from DATA CLOCK clocks out one bit of a word from each attached probe. DATA OUT from the probes is read through register U775 (on schematic 69).

When no probe is plugged in, the DATA OUT signal is pulled high by pull-up resistors on the 91A24 module. Any probe plugged into the module pulls this line low, which is how the DAS knows when a probe is plugged in. To read the probe type or monitor the Pod ID button, the 91A24 toggles the DATA CLOCK signal eight times. The first seven serial bits from the probe identify the type of probe and the probe's state. The eighth bit is low when the Pod ID button is depressed.

Probe Threshold DAC. Digital-to-analog converter U918 (on schematic 71) sets the threshold voltage of the 91A24 probes. To program the digital-to-analog converter (DAC), the 91A24 controller interface places a control word on DO-D7 and toggles the THRESHOLD line. Programming the DAC with FF_{16} sets the DAC voltage to +6.40 V , while 00_{16} sets the voltage to -6.35 V . If the DAC is programmed with 80_{16}, the DAC outputs 0.00 V .

Potentiometer R902 adjusts the offset of the DAC, so that when the DAC is programmed with 80_{16}, the DAC outputs 0 V . R110 adjusts the DAC gain so that a setting of FF_{16} puts the DAC voltage at +6.35 V .

Op amp U808C is configured as an inverting buffer for the DAC output. So the output of U808C, at TP910, is the negative of the voltage from the DAC. Because this is an inverting buffer stage, programming the DAC with FF_{16} results in a probe threshold of -6.35 . U808C drives the threshold sensors for the three probes.

Probe Threshold Sensors. There are three probe threshold sensors, one for each probe. Since the three circuits are identical, only the circuit for pod A is described here.

Op amps U711A and D (schematic 71) regulate the threshold for probe A. U711D is configured as a differential amplifier. The inverting input to U711D receives the threshold voltage from the DAC buffer (U808C). The non-inverting side of U711D receives USERS GND from the probe. This arrangement adjusts the output of U711D for differences between the DAS ground and the user's ground. Since the threshold voltage goes to U711D's inverting input, the output voltage is the negative of the desired voltage. The next stage inverts the signal again so the signal from the module has the correct polarity.

Op amp U771A (schematic 71) is also a differential amplifier, but its gain and offset are controlled by the attached probe. The probe provides a feedback resistor between VTHRESH and VTHRESH SENSE so the voltage received from the op amp has the correct gain factor. For example, a P6460 acquisition probe provides a 10,500 Ω feedback resistor which, in parallel with 200K Ω R706, gives the circuit a gain of $-1 / 4$.

The probe also provides the OFFSET SENSE signal to offset U771A's output voltage into the range required by the probe. For example, a P6460 acquisition probe provides -1.2 V as the OFFSET SENSE, so the output signal is referenced to -1.2 V rather than ground. This op amp is also configured as an inverter, which cancels out the inversion in the previous stage.

91A24 LOGIN REGISTERS

Clock Distribution

The clock distribution functional block is where the acquisition clocks generated by the 91A24 are sent to the attached 91AE24 modules. When the 91A24 is operating alone, J173, J183, and J185 (on schematic 72) are jumpered as shown on the schematic. When 91AE24 modules are included in the system, the jumper on pins 7 and 3 and the jumper on pins 8 and 3 are removed, as shown in the schematic inset. A twisted-pair cable runs from pins 7 and 8 to the adjacent 91AE24 module.

Comparators U275A, B, and C in the clock distribution block convert differential ECL into singleended ECL clock signals. These clock signals are used by the data login registers (on schematic 72) and by the master clock selector (U721 on schematic 77).

$\mathbf{V}_{\mathbf{b b}}$ Generator

U745D pin 11 (schematic 72) generates an ECL threshold voltage (V_{bb}). ECL-to-TTL converters in the login clock generator block and master clock distribution block use this voltage. Op amp U808B and transistor Q902 form a voltage follower with moderate current handling capabilities. This voltage follower buffers the V_{bb} source and supplies the voltage to the ECL-to-TTL converters.

Login Clock Generator

Transistors Q318, Q319, Q519, Q520, Q628, and Q629 (on schematic 72) are ECL-to-TTL converters. They convert the single-ended ECL clock signals coming from the clock distribution block into clocks for the data and mux mode login registers. ECL buffers U718B, C, and D reduce the interaction between the clock distribution block and the login clock generator.

Login Registers

There are seven login registers (shown on schematic 72), which latch data in to the data storage and word recognition system of the 91A24. Only three of these registers operate at any one time. The login registers operate in three different modes:

1. System data login (U125, U225, and U425), for loading word recognizers and running diagnostics.
2. Probe data login (U118, U221, and U421), for normal acquisition of data from the probes.
3. Probe data login with demultiplexing (U118, U121, and U421), where data from probe A is acquired in both the probe A and the probe B acquisition memories.

System Data Login

The system data login registers (U125, U225, and U425) load data from the DAS Controller into 91A24 word recognizers and data qualifiers. These registers are also used by the diagnostic routines which exercise circuitry at power-up and on command from the Diagnostics menu.

During acquisition, the outputs of these registers are tri-stated by pulling the $\overline{\text { ADIAG EN, }}$ $\overline{B D I A G E N}$ and CDIAGEN signals high. When word recognizers are being loaded or the diagnostics are running on the 91A24, data can be logged into these registers from the controller interface (using the LB0-LB7 bus and the SINGLE STEP TTL signals). Data logged into these registers may then be placed on the LIDO-LID23 bus. Data entering the 91A24 data stream at this point is used to test the data registers, the acquisition memory, and all five word recognizers.

Probe Data Login

Registers U118, U221, and U421 (on schematic 72) log in data from the probe receivers (shown on schematics 70 and 71). Clocks created by the the 91A24 clock generator (shown on schematic 78) latch data arriving from the probes into the probe data login registers. The outputs of the probe data login registers are next sampled by the data registers (U128, U228, and U428 on schematic 73).

Whenever any of the system data login registers (U125, U225, and U425 on schematic 72) are used, all the probe data login registers are tri-stated. This tri-stating results from inverting the enable signal for the system data login register. The inverted signal tristates the corresponding probe data login register. For example, C DIAG EN is inverted through U218B. The inversion of $\overline{\mathrm{C}}$ DIAG EN tristates U421 whenever U425 is enabled.

Mux Mode Login

The mux mode login register (U121 on schematic 72) is only used when the 91A24 Clock Specification sub-menu is set to demultiplex data acquired through 91A24 pod A into the acquisition memory and word recognizers for pod B. When demultiplexing is selected,

- Probe A data is clocked into Probe A memory through U118 by the Pod A clock;
- Probe A data is clocked into Probe B memory through U121 by the Pod B clock;
- Probe B data (at U221) is disabled; and
- Probe C data is clocked into Probe C memory through U421 by the Pod C clock.

The DAS selects demultiplexing by setting the MUX MODE signal high. This signal enables the mux mode login register, U121, and disables the probe B data login register, U221. The mux mode login register, U121, receives its data from probe A, but it receives the same clock as the probe B login register. U121 then places its data on the probe B section of the LID0-LID24 bus, effectively replacing the probe B login register.

91A24 ACQUISITION MEMORY

The acquisition memory consists of four parts:

1. Data registers to allow setup time before data is stored.
2. A chip-select generator that determines when data is stored in the acquisition memory.
3. The acquisition memory RAM which stores the acquired data.
4. A memory address register that determines the RAM address where storage occurs.

Acquisition Memory Data Registers

Acquired data comes from the login registers (shown on schematic 72) and is clocked into the acquisition memory data registers (U128, U228, and U428 on schematic 73). The data register clock, MASTER CLK II, comes from the master clock selector (U721 on schematic 77). The master clock is selected by the MASTER CLOCK field in the 91A24 Trigger Specification sub-menu.

Data output by the data registers is stored in the acquisition RAM and used as inputs to the data qualifier and stack-based word recognizers. By latching incoming data, the data registers give the acquisition memory and the word recognizers the setup time they need.

Chip-Select Generator

The chip-select generator is a mono-stable multivibrator. It creates a pulse in response to a falling edge from MASTER CLK III. C468 (on schematic 73) determines the pulse width. Figure 4-2 shows the timing of the chip-select generator.

Figure 4-2. 91A24 acquisition memory chip select timing.
Before acquisition starts, the controller interface sets READ ACQ low. When READ ACQ is low, U475B (on schematic 73) passes ACQ RAM SEL signals to the acquisition RAM.

A high level on MASTER CLK III enters the chip-select circuitry block (on schematic 73). The signal is inverted by U468E, and again by U468F. The high level at U468F pin 12 turns on Q465 and charges C467 and C468. This sets U578A pin 2 high.

On the next falling edge from MASTER CLK III, U578A pin 1 goes high, and U578A pin 3 goes low, asserting ACQ RAM SEL. U578A pin 3 stays low until C467 and C468 have discharged through R468. U578A pin 3 then returns high. C468 must be adjusted so that the pulse width of the ACQ RAM SEL signal at TP465 is 45 ns . The output at U578A pin 3 is used both for the chip select on the acquisition memory RAMs and to set U461A pin 6 (MAR CLOCK).

The chip-select generator has two outputs: MAR CLOCK which comes from U461A, and $\overline{A C Q ~ R A M ~ S E L ~ w h i c h ~ c o m e s ~ f r o m ~ U 475 B . ~ A C Q ~ R A M ~ S E L ~ c o n t r o l s ~ t h e ~ w r i t e ~ c y c l e ~ o f ~ t h e ~}$ acquisition RAM. The ACQ RAM SEL signal's 45 ns pulse width allows the RAM's address adequate setup time. When data is read from the acquisition memory, ACQ RAM SEL is activated by the READ ACQ signal from the controller interface.

The MAR CLOCK signal clocks the memory address register on the rising edge of MASTER CLK III. When data is being acquired, MAR CLOCK rising edges cause the acquisition memory address to increment. A low MAR EN signal from the data qualifier circuit prevents MAR CLOCK rising edges. Stopping these rising edges prevents the acquisition memory address from incrementing, so data in the acquisition memory is overwritten. This is how the data qualifier stops data acquisition.

Acquisition Memory RAM

The acquisition memory RAM (U141, U145, U241, U245, U441, and U445 on schematic 73) stores acquired data for later readback by the DAS Controller board.

Data Storage. Before acquisition, The controller interface selects a master clock. Then the controller interface programs the READ ACQ and the acquisition memory RAM's $\overline{\text { WEA }}-\overline{W E C}$ inputs low.

During acquisition the master clock, selected in the 91A24 Trigger Specification sub-menu, generates the MASTER CLK II and MASTER CLK III signals. These two clocks load acquired data into the data registers (U128, U228, and U428 on schematic 73) and run the chip-select generator.

Data is loaded from the data registers into the acquisition memory RAM. The acquisition memory write cycle is controlled by the chip-select generator. The chip-select generator creates the $\overline{A C Q}$ RAM SEL signal which induces data storage.

The $\overline{M A R ~ E N ~}$ signal determines which data is saved. When input data is recognized as qualified by the data qualifier, $\overline{M A R ~ E N ~ g o e s ~ l o w ~ a n d ~ M A R ~ C L O C K ~ i n c r e m e n t s ~ t h e ~ m e m o r y ~ a d d r e s s ~ r e g i s t e r . ~}$ When input data does not meet the data qualification requirements the RAM address does not increment, so the data just stored will be over-written on the next storage cycle.

Data Readback. When data is not being stored, the DAS Controller pulls the $\overline{W E A}-\overline{W E C}$ signals high to prevent further data storage. The current value of the memory address register is read first, since that address in the acquisition memory RAM contains invalid data. The invalid data at this address results from the data qualification scheme.

After reading the latest value of the memory address register, the Controller board reads data from the acquisition RAM by loading an address into the memory address register, then asserting READ ACQ. Asserting READ ACQ places the stored data on the DR0-DR23 bus, and tristates the input data registers (U128, U228, and U428 on schematic 73). The DAS Controller board reads DR0DR23 through the controller interface readback circuitry shown on schematic 69.

Memory Address Registers

The memory address registers (U138, U238, and U438 on schematic 73) provide the address for acquisition memory storage and readback. The memory address register is a ten-bit up counter that is clocked by the MAR CLOCK signal.

Data Storage. Before any data is stored, the memory address register is loaded with 0s in the ten low bits. The top two bits of the counter are not used for a RAM address, and they are loaded with 1s. So the initial value of the memory address register is $\mathrm{COO}{ }_{16}$.

During data acquisition, the memory address is incremented by every rising edge on the MAR CLOCK signal. When the address has incremented 400_{16} times (so all memory locations have been used), the counter wraps around to all zeros. New data is then loaded over the old data in the acquisition memory.

Register U461B (on schematic 73) indicates when all locations in the acquisition memory contain valid data. Before acquisition starts, register U461B is set so the ALL FULL signal is low. The counter wrapping to all 0 s clocks a 0 into the register U461B so the Q output goes low. A low from the Q output resets the register, so the \bar{Q} output (ALL FULL) goes high. When ALL FULL is high, all acquisition memory RAM locations have had data loaded in at least once.

Data Readback. The memory address register (MAR) value is always available to the DAS Controller board through the controller interface readback circuitry shown on schematic 69. To select the address of data read from the acquisition memory RAM, the controller interface loads the RAM address into the MAR in parallel. To increment the memory address, the controller interface loads the LB0-LB7 bus and toggles the MAR LD1 signal. The lowest two bits on LB0-LB7 are loaded into the top two memory address bits. The low eight address bits increment because MAR LD1 is connected to ENP and ENT inputs of U138.

91A24 DATA QUALIFIER WORD RECOGNIZERS

This schematic shows the circuitry for the four non-stack based word recognizers. These word recognizers are controlled through the 91A24 Trigger Specification sub-menu. The word recognizers can control data storage (BEGIN STORE IF, END STORE IF, and STORE ONLY IF conditions), control the stack-based word recognizer (RESET), and control triggering (OR TRIGGER).

This schematic also shows the 91A24 acquisition start and stop circuitry.

Data Qualifier Word Recognizer RAM

The data qualifier word recognizer is RAM-based, much like the 91A32 Data Acquisition module word recognizers. The RAMs (U151, U351, and U551 on schematic 74) are programmed to react to specific words on the DRO-DR23 bus.

To understand how the RAM is used for word recognition, consider the RAM as a set of addressable registers. The RAM is programmed by writing 1 s in all the addresses that correspond to the words to be recognized. Os are written into all other addresses. After programming, the stream of data containing the word to be recognized is used to address the RAM. The RAM indicates word recognition by outputting a 1.

Since the words to be recognized may have X (don't care) as an element, programming becomes slightly more complicated. For every X (don't care) entered in a word recognizer field, twice as many words meet the triggering requirements. For example, if the word to be recognized is 10100110_{2} a single 1 must be written into RAM address 10100110_{2}. If $\mathrm{X} 0100110_{2}$ is to be recognized, 1 s must be loaded into both addresses 00100110_{2} and 10100110_{2}. If $\mathrm{XX100110}{ }_{2}$ is to be recognized, 1 s must be loaded at four different addresses. So, if $\operatorname{XXXXXXXX} 2$ is to be recognized, all 256 addresses must have 1 s written in them.

Since 24 bits must be monitored for word recognition, three RAMs with 8 address lines each are used (for a total of 24 address lines). Each RAM recognizes 8 of the 24 bits involved. All three of the RAMs must recognize their word segments at the same time for word recognition to occur.

Each of the three RAMs have four data lines, so four independent words can be recognized. All four of the data lines in each RAM are programmed independently, so signals A1, B1 and C1 are used to recognize one word. Signals A2, B2, and C2 recognize another word.

Data Qualifier Word Recognizer

The data qualifier word recognizer completes the work of the data qualifier word recognizer RAM. AND gates U168B and U261A, B, and C (on schematic 74) make sure that all three 8-bit segments of a word are true before a word is recognized.

The outputs of the four AND gates are wire ANDed with all the data qualifier output signals from 91AE24 modules. These signals come from the 91AE24 modules through the cables across the top of the modules. Wire ANDing these signals means that all 91A24 and 91AE24 modules must recognize their portions of a word at the same time for word recognition to occur.

The output of inverting-input OR gate U568D (from the start/stop circuit) is also wire ANDed with the word qualifier signals through inverters U278A, B, E, and F (on schematic 74). The 91A24 start/stop circuit controls the 91A24 module through the data qualifier. Refer to the 91A24 start/stop circuit description, later, for more information.

The four word recognition signals that result from all these wire ANDed signals are buffered by U198B and U291A, B, and C (schematic 74). Exclusive-OR gates U291A, B, and C allow three of the signals to be inverted by changing one bit at the controller interface. OR gate U198B allows the DAS Controller board to assert the ENABLE signal through the controller interface.

Storage Control Circuitry

The circuitry surrounding U281, U288, and U478B (on schematic 74) determines when data is stored depending on the data qualifier word recognizer conditions. U281 determines when the BEGIN STORE IF conditions in the 91A24 Trigger Specification sub-menu are met. U478B saves the BEGIN STORE IF condition from the previous cycle as the STORING DATA signal. U288 uses the word recognizer conditons and the STORING DATA signal to control the memory address register for the acquisition memory.

There are three basic operating modes for the data qualifier.

1. In the default condition, the data qualifier is controlled by a BEGIN STORE IF (ENABLE) and an END STORE IF ($\overline{\mathrm{DISABLE}}$) word. To set up this mode, the DUAL QUAL signal is programmed low. In this mode the RESET word clears the stack word recognizer (schematic 75), and the OR TRIG word triggers the 91A24 module (schematic 76).
2. For dual qualifier operation, the RESET and OR TRIG signals are used as additional qualifiers. In this mode, the RESET word functions as the second BEGIN STORE IF or STORE ONLY IF word, and the OR TRIG word functions as the second END STORE IF word. This mode is enabled by programming the DUAL QUAL signal high.
3. For STORE ONLY IF operation, the END STORE word is set to OFF on the 91A24 Trigger Specification sub-menu display. The DISABLE WORD word recognizer is programmed so the DISABLE signal is always low (active), so storage only occurs when the ENABLE signal is active. If the DUAL QUAL signal is asserted, the word recognizer programming is the same but storage only occurs when either the ENABLE or the RESET signal is active.

A closer look at the DUAL QUAL signal shows when DUAL QUAL is low, two of the four AND gates in U281 (schematic 74) are disabled. The remaining AND gates (U281C and D) cause STORING DATA to go active if either ENABLE and DISABLE are both high or if STORING DATA and $\overline{\text { DISABLE }}$ are both high. This sets up the BEGIN STORE IF condition, so once storing is enabled it is held enabled by the STORING DATA signal until DISABLE goes active (low).

When DUAL QUAL is high, AND gates U281C and D are disabled, and U281A and B control the STORING DATA signal. U281A goes active when DISABLE and OR TRIG are both high and either RESET or ENABLE are high. U281B goes active when DISABLE and OR TRIG are both high and STORING DATA is active. This sets up the BEGIN STORE IF condition, so once storing is enabled it is held enabled by the STORING DATA signal until the DISABLE or the OR TRIG signals go active (low).

U288 actually controls data storage with the MAR EN signal. When MAR EN is low, the MAR CLOCK signal increments the memory address register. When input data does not meet the data qualification requirements then MAR EN is high, which prevents the memory address register from incrementing. When the memory address register does not increment, the data just stored will be overwritten on the next storage cycle.

When DUAL QUAL is low, AND gates U288C and D are both enabled. U288C enables storage when both STORING DATA and DISABLE are high. U288D enables storage whenever the ENABLE signal is high.

When DUAL QUAL is high, AND gates U288A, B, and D are enabled. U288A enables storage when the DISABLE, OR TRIG, and STORING DATA signals are all high. U288B enables storage when RESET is high, and U288D enables storage when ENABLE is high.

U198A determines whether the $\overline{\text { OR TRIG }}$ signal is being used as a second END STORE word or as an alternate trigger word. When DUAL QUAL is high, the $\overline{O R T R I G}$ signal is prevented from reaching the trigger circuitry on schematic 76.

91A24 Start/Stop

The 91A24 start/stop circuitry (register U488A and inverting-input OR gates U581B and U568D on schematic 74) delays 91A24 data acquisition until valid data is clocked into the acquisition memory data registers (U128, U228, and U428 on schematic 73). The start/stop circuitry also stops the 91A24 when the trigger condition is met and the delay count is complete. The start/stop circuitry operates by taking control of the data qualifier.

The DAS Controller board starts and stops the 91A24 using the 91A32 QUAL signal on the interconnect. 91A32 QUAL is held low prior to acquisition. This low passes through, and is inverted by, inverting-input OR gate U568D. This signal holds all of the data qualifier word recognizer signals low through buffers U278A, B, E, and F. By holding the data qualifiers low, the master clock can run freely without data being acquired.

MASTER CLK I logs the inverse of the 91A32 QUAL signal into register U488A. Once logged in, 91A32 QUAL goes high to start acquisition, but the data qualifier signals are not released until the next MASTER CLK I edge. The first master clock edge with 91A32 QUAL high starts acquisition.

After the 91A24 has signaled the DAS Trigger board that a trigger has occurred, the Trigger board finishes the trigger sequence with its delay counter. When the Trigger/Time Base board's delay counter finishes, the Trigger board pulls the 91A32 QUAL signal low, which stops 91A24 acquisition.

The 91 A24 INIT signal sets register U488A (schematic 74), so the 91 A24 initializes with acquisition turned off.

91A24 System Clock

The system clock circuit provides the Trigger/Time Base board with a modified version of the 91A24 master clock called FIRST CLOCK. FIRST CLOCK is also acquired by high speed modules for time alignment purposes. The rising edge of MASTER CLKI causes each falling edge of FIRST CLOCK. FIRST CLOCK only runs under two conditions.

1. FIRST CLOCK runs when U488A pin 6 (schematic 74) is low. Pin 6 of U488 is low when the 91A24 is initialized and ready to acquire data, but is not yet acquiring data because the 91A32 QUAL signal is still low. The Trigger/Time Base board needs a copy of the 91A24 master clock before acquisition starts to clear the Trigger/Time Base pipelined internal timing sequencer (schematic 17).
2. After acquisition starts FIRST CLOCK drives the delay counter on the Trigger/Time Base board (schematic 18). The 91A24 module uses the delay counter on the Trigger/Time Base board as its delay counter to save circuit board space. Because the delay counter should only increment when data is stored, FIRST CLOCK only runs when MAREN is active (low). $\overline{\text { MAR EN }}$ is only active when data can be stored in the 91A24 acquisition memory.

Register U481B and inverter U578C (schematic 74) act as a one-shot with a $20-30$ ns high pulse. The high pulse is triggered by a rising edge from MASTER CLK I. When either pin 6 of U488A or MAR EN are low, the D input of U481B receives a high which is clocked in on every MASTER CLK I rising edge. The high is clocked through the Q output and inverted by U578C. A low from U578C resets register U481B so the Q output returns low. R190 and C190 determine the width of the output pulse.

Resistors R954, R955, and R956 convert the TTL output from register U481B to ECL levels. NOR gates U921B and C double drive the ECL FIRST CLK signal across the DAS Interconnect to the Trigger/Time Base board.

A low on FIRST CLK EN holds the outputs of U921B and C low. FIRST CLK EN is used whenever any module other than the 91A24 needs to use the FIRST CLK path on the DAS Interconnect.

91A24 STACK WORD RECOGNIZER

The stack word recognizer is the hardware implementation of the sequential word recognizer in the 91A24 Trigger Specification sub-menu. The stack word recognizer is based around RAMs U148, U248, and U448 (on schematic 75). The RAMs recognize words by receiving acquired data on their address lines.

Sixteen levels of triggering are accomplished with a 4-bit stack pointer SP0-SP3 from U571 (on schematic 76). The stack pointer addresses the stack word recognizer RAMs. The value from the stack pointer effectively divides the stack word recognizer RAMs into sixteen separate sections. The stack pointer also provides the address for the stack occurrence counter RAM (U155, U255, and U455 on schematic 75). The stack occurrence counter RAM controls the number of times a word must be recognized to advance to the next stack level. The stack pointer provides the address for the stack control RAM as well. The stack control RAM is loaded with the action to be performed at eack stack level (for example: run timer, stop timer, or sync out).

Stack Word Recognizer RAM

The stack word recognizer is RAM-based, much like the data qualifier word recognizers. The RAMs (U148, U248, and U448 on schematic 75) are programmed to react to specific words on the DR0-DR23 bus according to the value of the stack pointer (SP0-SP3).

To understand how the RAM is used for word recognition, consider the RAM as a set of addressable registers. The stack word recognizer uses three RAMs with 12 address lines each; four of the address bits indicate the position in the stack, the other eight address bits are used for word recognition. The four stack pointer bits (SPO-SP3) effectively divide the RAMs into sixteen separate segments. The word recognizer segments are activated according to the value on SPOSP3.

The remaining eight bits of each RAM perform the actual word recognition. The RAM is programmed by writing 1 s in all the addresses that correspond to the words to be recognized. Os are written into all other addresses. After programming, the stream of data containing the word to be recognized is used to address the RAM. The RAM indicates word recognition by outputting a 1.

Since the words to be recognized may have X (don't care) as an element, programming becomes slightly more complicated. For every X (don't care) entered in a word recognizer field, twice as many words meet the triggering requirements. If the word to be recognized is 10100110_{2} a single 1 must be written into the RAM at address 10100110_{2}. If $\mathrm{X} 0100110_{2}$ is to be recognized, 1 s must be loaded into both addresses 00100110_{2} and 10100110_{2}. If $\mathrm{XX100110}{ }_{2}$ is to be recognized, 1 s must be loaded at four different addresses. So, if $\mathrm{XXXXXXXX}_{2}$ is to be recognized, all 256 addresses in the selected RAM segment must have is written in them.

Since 24 bits must be monitored for word recognition, three RAMs with 8 word recognition lines each are used (for a total of 24 word recognition lines). Each RAM recognizes one byte of the 24 bits involved. All three of the RAMs must recognize their byte of the word at the same time for word recognition to occur.

Stack Occurrence Counter RAM

Before acquisition starts, the stack occurrence counter RAMs (U155, U255, and U455) are loaded with the complement of the number of times a word must be recognized to move to the next stack level. For example, for an occurrence count of $1, \mathrm{FFE}_{16}$ is loaded into the RAM. During operation the occurrence counter RAM is addressed by the stack pointer (SP0-SP3). When the stack pointer increments, a new value is output by the occurrence counter RAM which is then loaded into the stack occurrence counter (U158, U258, and U458 on schematic 75).

Stack Occurrence Counter

The stack occurrence counter (U158, U258, and U458 on schematic 75) is a 12 bit up counter. The counter increments each time the word at the current stack level is recognized by the stack word recognizer RAM.

Before acquisition starts, the stack occurrence counter RAM (U155, U255, and U455 on schematic 75) is loaded with the complement of the number of event occurrences required to complete each stack level. Then the DAS Controller board sets the stack pointer to 0 . Finally, the Controller board toggles OCCR CNTR LD to load the stack 0 level occurrence count from the RAM into the counter.

During acquisition, the occurrence counter increments every time a word is recognized. When the counter increments to FFF_{16}, NAND gate U161 outputs a low edge that increments the stack pointer. When the stack pointer changes, a new value is output by the occurrence counter RAM. On the next rising edge from MASTER CLK II the Q output of U165B goes low, and this loads the new value into the occurrence counter. As soon as the new value is loaded, NAND gate U161 outputs a high and the occurrence counter returns to increment mode.

The counter is incremented by pulses from register U165A (schematic 75). When a word is recognized, the D input to U165A goes high. This high is clocked through on the next rising edge of MASTER CLK II. Inverter U268B inverts the high output caused by the clock. The inverted output resets the register, but the RC combination R266B and C165 acts as an integrator to delay the reset for about 30 ns . When the reset goes active, the Q output of U165A has a falling edge that increments the counter and removes the reset signal.

Stack Word Recognizer Control

At its simplest level, the stack word recognizer control circuit is a multiple input AND gate that outputs a high when all parts of the stack word are recognized. U168A is the AND gate for the three 91A24 stack word recognizer RAMs (schematic 75). When all three of the stack word recognizer RAMs (U148, U248, and U448) output high levels, AND gate U168A outputs a high to indicate word recognition.

The output of AND gate U168A (schematic 75) is wire ANDed through J171 to the stack word recognizer outputs of all 91AE24 modules in the mainframe. So all 91A24 and 91AE24 modules must recognize their stack words at the same time for stack word recognition to occur.

Exclusive OR gate U291C (schematic 75) implements the WHEN/WHEN NOT field in the 91A24 Trigger Specification sub-menu. While the stack is at a WHEN level, the SC3 signal is high, so the word recognition signal is inverted. This inversion means the stack occurrence counter increments when the programmed word is recognized. When a WHEN NOT level is reached, SC3 goes low, so the word recognition signal is not inverted. Since the signal is not inverted, the stack occurrence counter increments every time the word to be recognized is not present.

Inverting-input AND gate U485C (schematic 75) stops stack word recognition when the data qualifier stops acquisition. When MAR EN goes high, U485C prevents the stack word recognition signal from reaching the stack occurrence counter.

The Trigger Input BNC on the back of the mainframe controls the 91A24 trigger through the 91A24 stack word recognizer. When the 91A24 module is initialized before acquisition starts, register U488B (schematic 75) is reset by 91 A24 INIT. If the Trigger Input is low after the module is initialized, the EXT TRIG EN signal is low so U488B remains reset. The \bar{Q} output of U488B then prevents stack word recognition with the ENABLE TRIG signal. When EXT TRIG EN goes high, register U488B is set, which enables stack word recognition until acquisition is stopped.

Stack Control RAM

The DAS Controller board loads the stack control RAM (U555 on schematic 75) with stack level conditions before acquisition starts. Then during acquisition, the RAM is addressed by the stack pointer (SP0-SP3). The RAM outputs control signals SC0-SC3 as appropriate for each of the stack levels. The conditions controlled by the RAM are:

- TRIGGER and last level (SCO)
- RUN TIMER, STOP TIMER, and INC CNTR (SC1)
- SYNC OUT (SC2)
- WHEN and WHEN NOT (SC3)

91A24 TRIGGER CIRCUITRY

Schematic 76 shows the circuits that complete the operations of the stack word recognizer (schematic 75). The stack pointer block controls the stack level of the stack word recognizer.

The reset circuitry block reacts when the RESET word is recognized by clearing the stack pointer and reloading the stack occurrence counter (schematic 75).

When all trigger conditions have been met in the 91A24, the trigger circuitry block tells the Trigger/Time Base to run its delay counter. The Trigger/Time Base stops acquisition when the delay count is done.

The remaining blocks on schematic 76 comprise the counter/timer that is controlled by the stack word recognizer.

Stack Pointer

The stack pointer (U571 on schematic 76) is a four-bit synchronous up counter. The POINTER CLK signal, which increments the stack pointer, comes from the stack occurrence counter block on schematic 75. The POINTER CLK signal also goes to all 91AE24 modules in the mainframe through J181 at the top of the module. The stack pointer can also be incremented by the DAS Controller board by pulling STACK CLK EN low and toggling STACK PTR CLK.

Inverter U578D prevents the stack pointer from wrapping from 1111_{2} to 0000_{2} by disabling the counter. SC0 going low means the 91A24 is at the last programmed level of the stack, so SC0 being low disables the counter. The stack pointer is cleared by the reset circuitry (schematic 76), and loaded by the STACK PTR LD signal.

Reset Circuitry

The reset circuitry (schematic 76) clears the stack occurrence counter (schematic 75) and the stack pointer (schematic 76) when the RESET word is recognized. U558A NANDs the RESET signal with STACK WR, OR TRIGGER, and DUAL QUAL. This NAND operation disables the reset circuitry when the module is in dual qualifier mode, or when the stack word or the OR trigger word (from the data qualifier) is recognized.

If the RESET signal makes it through NAND gate U558A, it may still be masked out by the $\overline{\text { MAR EN }}$ signal at U575B (schematic 76). MAR EN only allows the RESET operation to occur while data is being stored.

If the RESET signal passes through U575B, it clears the stack pointer (U571 on schematic 76) and triggers a monostable multivibrator built around register U471B. If an active RESET signal is at the D input to U471B (RESET is active low at this pin) when MASTER CLK III has a rising edge, the Q output of the register goes low. This low reloads the stack occurrence counter (schematic 75) with the LOAD OCCR CNTR AFTER RESET signal.

The low from U471B's Q output may also pass through U475C and U198D to clear the counter/timer block to all 0s. This clear may be masked, however, by the RESET CNTR EN signal.

Register U471B and inverter U495B (schematic 76) act as a one-shot. The pulse is triggered by a rising edge from MASTER CLK III. When the D input of U471B receives a low, a high is clocked through the \bar{Q} output and inverted by U495B. A low from U495B sets register U471B so the \bar{Q} output returns low. R398, R397, and C396 determine the width of the output pulse.

Register U478A (schematic 76) is provided for readback purposes. Whenever the counter/timer is reset, register U478A is reset, causing the CNTR RESET signal to go high. Before acquisition starts this register is set by the $\overline{\mathrm{NT} 3 \mathrm{CLR}}$ signal.

Trigger Circuitry

Triggers come from two possible sources: the stack word recognizer and the OR TRIGGER word. Register U298A latches the OR TRIGGER if it is not masked by MAR EN (by inverting-input NAND gate U575A). $\overline{\text { MAR EN }}$ deactivates $\overline{\text { OR TRIGGER }}$ when the data qualifier is preventing data acquisition.

Register U481A clocks in trigger indications from the stack word recognizer. When the stack word recognizer trigger requirements are complete, SC0 goes low. This low is logged into U471A (schematic 76) when POINTER INC and MASTER CLK III both go active. If the last level of the stack is programmed with NEVER TRIGGER, then the NEVER TRIGGER signal is programmed low by the DAS Controller board. NEVER TRIGGER holds register U481A set, so the stack word recognizer can never cause a trigger.

The outputs of registers U298A and U481A are ORed together by inverting-input NOR gate U475A. If either of these trigger signals goes active, the active (low) signal is clocked through registers U798A and B. These registers delay the trigger by two TRIG CLK cycles, so the number of cycles the 91A24 trigger requires equals the number of cycles required by a 91 A 32 module. Inverting-input OR gate U581D is the driver for the trigger signal, called EVENT 1, to the Trigger/Time Base board. The 91A24 always keeps the EVENT 3 signal low when it is using the Trigger/Time Base, so no other module can disrupt acquisition.

When some module other than the 91A24 needs to use the EVENT 1 or EVENT 3 signals, the DAS Controller board programs the 91A24 TRIG DIS signal low. This low makes the 91A24 output a high impedance to these two lines so other modules can control the signals.

Register U471A (schematic 76) provides the SYNC OUT pulse which comes from the stack word recognizer. When the stack reaches a SYNC OUT level, the stack control RAM (U555 on schematic 75) sends SC2 high. This high is logged into U471A (schematic 76) when POINTER INC and MASTER CLK III both go active. Inverter U568A is the driver for the signal out the back of the module through J801.

Counter/Timer Multiplexer

The counter/timer multiplexer (U295 on schematic 76) controls the behaviour of the counter/timer. The DAS Controller board programs U295 with the CT SELO and CT SEL1 signals. Table 4-3 shows how the state of CT SELO and CT SEL1 control the counter/timer.

Table 4-3
COUNTER/TIMER MULTIPLEXER CONTROL

Inputs			Operation Selected
U285C pin 8	CT SEL1	CT SELO	
0	0	0	Disable both counter and timer. Neither the counter nor the timer is needed.
0	0	1	Operate the timer in non-stop mode. Used by the diagnostics.
0	1	0	Operate in counter mode. Counter started and stopped by CS1 high.
0	1	1	Operate in timer mode. Timer started and stopped by CS1 high.
1	x	X	Stop the timer or counter - a trigger has occurred.

Inverter U495D and AND gate U475D (schematic 76) generate the clock for the counter/timer when it is in counter mode. The clock has a rising edge when both MASTER CLK III and POINTER INC are active, which indicates that the pointer has just incremented one level.

Register U298B (schematic 76) uses the counter clock to latch in the timer enable signal. U298B holds the timer enable signal until either the stack moves to a level where the timer is turned off (SC1 goes low) or the RESET word is recognized (which resets the register).

Register U491A and inverter U495C (schematic 76) act as a one-shot. Pulses from this one-shot drive the counter/timer block. The pulse is triggered by a rising edge from U295 pin 9 while U295 pin 7 is high. When the D input of U491A receives a high, a high is clocked through the Q output and inverted by U495C. A low from U495C resets register U471B so the Q output returns low. R296, R399, and C397 determine the width of the output pulse. The diagnostics can also exercise this register by toggling the TIMER CLK signal, which triggers the one-shot action by setting the register.

Timer Oscillator

The timer oscillator is built around 10 MHz crystal Y 498 (on schematic 76). This 10 MHz oscillator drives the counter/timer circuit when it is in timer mode.

Counter/Timer

The counter/timer (U585, U588, U591, and U595 on schematic 76) is a 16 -bit synchronous up counter. The clock is provided by the counter/timer multiplexer (U295). The counter can also be cleared by the reset circuitry.

Counter/Timer Interrupt Generator

The counter/timer generates an interrupt for the DAS Controller board when it rolls over from FFFF_{16} to 0000_{16}. The interrupt is generated by register U491B when the most significant counter/timer bit goes from high to low. The Controller board increments a counter in software when it receives the interrupt. This is how the counter/timer function of the 91A24 counts past 65,535 . When the Controller board has reacted to the interrupt, the Controller toggles (low) the INT3 EN signal to set the register so the interrupt can be performed as many times as necessary during the count.

Counter/Timer Readback

Tri-state buffers U788 and U795 allow the DAS Controller board to read the counter/timer after acquisition is complete. The least significant byte is read through U788, which is activated by the CNTR RDBKO signal. The most significant byte is read through U795, which is activated by the CNTR RDBK1 signal.

91A24 CLOCK QUALIFIER

The 91A24 clock qualifier circuitry selects qualifier signals received from the acquisition probes. The signals are selected according to the 91A24 Clock Specification sub-menu. Schematic 77 also shows the master clock selector and drivers.

Clock/Clock-Qualifier Selector

The clock/clock-qualifier selector controls the clocks and clock qualifiers with a set of CMOS registers (U928, U931, U935, U938, U941, and U945 on schematic 77). Power for the registers is supplied through Q951, which drops the +5 V supply down to approximately $+4.5 \mathrm{~V} .+4.5 \mathrm{~V}$ is used for the register's power supply so the register's outputs are ECL compatible.

The clock/clock-qualifier selector receives programmed information from the 91A24 Clock Specification sub-menu and generates:

- Enable signals for the clock qualifier generator on schematic 77. These signals come from registers U928, U931, and U935 on schematic 77.
- Enable signals for the clock generator on schematic 78. These signals come from registers U938, U941, and U945 on schematic 77.
- Enable signals for the master clock selector (U721 on schematic 77). These signals come from registers U938, U941, and U945 on schematic 77.

Inputs PC0-PC5 from the controller interface (on schematic 68) are latch clocks. D0-D7 contain programmed information which selects the proper enabling outputs.

Clock Qualifier Generator

The clock qualifier generator passes qualifier signals to the clock generator (on schematic 78). These qualifier signals determine whether a clock received from the probes will cause data acquisition.

The clock qualifier generator receives differential qualifier signals (three qualifier signals and their inverses) from probes A, B, and C. Qualifier enabling signals determine how the clock qualifier generator combines the qualifiers for each pod clock. These enabling signals are programmed in the 91A24 Clock Specification sub-menu and are controlled by the clock/clock-qualifier selector.

The most complicated expression possible in the 91A24 Clock Specification sub-menu uses all three qualifiers for all three clock expressions. As a result, nine qualifier generators are needed one for each qualifier position in the menu. The menu also allows for the selection of an inverted or non-inverted qualifier.

Each inverting-input NAND gate in the clock qualifier generator block (on schematic 77) is programmed to pass either an inverted or a non-inverted qualifier signal. The DAS programs each of the inverting-input NAND gate pairs so only one or the other (or neither) of the qualifier signals is output. Additionally, the NAND gates are programmed to pass the inverse of the desired signal. For example, if the inverse of QA is used in the pod A clock expression, U825B would pass $\overline{Q A}$. Table 4-4 shows how each NAND gate pair matches a qualifier position in the 91A24 Clock Specification sub-menu.

Table 4-4
CLOCK QUALIFIER GENERATOR DISTRIBUTION

	Pod Clocks		
Qualifier	Pod C	Pod B	Pod A
QA	U831B	U828B	U825B
QB	U831A	U828A	U825A
QC	U728A	U728B	U731A

Each of the inverting-input NAND gate pairs is controlled by two bits; an even bit and an odd bit. Table 4-5 shows how the NAND gate pairs react to the possible bit values.

Table 4-5
CLOCK QUALIFIER CONTROL BITS

Odd Bit	Even Bit	
QA5, QA3, QA1	QA4, QA2, QA0	
QB5, QB3, QB1	QB4, QB2, QB0	
QC5, QC3, QC1	QC4, QC2, QC0	Clock Qualifier Reaction
0	0	Always allow clocks
0	1	Allow clocks when signal is high
1	0	Allow clocks when signal is low
1	1	Never allow clocks

In addition to the programming allowed, the qualifier C outputs are hardwired to the qualifier A and B inputs. This automatically ANDs qualifier C with all other clocks in the pod clock expression. This is also why the inverting-input NAND gates for qualifiers A and B each have three inputs, while the inverting-input NAND gates for qualifier C have only two inputs. As a result of this ANDing, the output qualifier C for a pod expression must be true (low) before the A or B qualifiers in the same expression can become true (low).

Master Clock Selector

The AND gates in U721 (on schematic 77) select the master clock. The master clock is chosen in the 91A24 Trigger Specification sub-menu with the MASTER CLK field. Once the selection is made, one of control bits CA6, CB6, CC6, or CA7 goes high to pass the selected clock. The other bits remain low so the clocks they control are masked out.

CA7 only goes high to select the single step clock. SINGLE STEP is used only for diagnostics and to program 91A24 and 91AE24 acquisition modules.

Master Clock Distribution

The master clock distribution circuitry translates the single-ended ECL output of the selected pod clock to TTL levels. The resulting master clock is divided into three identical clocks, MASTER CLK I, II, and III, to distribute the loading on the clocks.

91A24 CLOCK GENERATOR

The 91A24 clock generator takes the clocks from the acquisition probes and the processed qualifier signals from the clock qualifier generator to produce three independent acquisition clocks. The clock generator can also produce acquisition clocks from the 91 A 32 CLK or 91 A 08 CLK .

Clock Generator

The clock generator uses the nine clock qualifier signals generated on schematic 77 ($\overline{\mathrm{PAQA}}, \overline{\mathrm{PBQA}}$, and PCQA) to control the three clocks (and their inverses) received from the probes. Each qualifier signal controls one clock and its inverse. Since all clocks are programmed similarly, only the programming of pod A clocks is described.

U741A and U841A (on schematic 78) are programmed to generate clocks from the probe A input clocks (CLK1, $\overline{C L K 1}$). To generate a clock on the rising edge, the CA0 signal is programmed low, thereby enabling U741A to be clocked by the rising edge of CLK1. If qualifier $\overline{\text { PAQA }}$ at U741A pin 7 is low on the rising edge of CLK1, that low level will be clocked through to U741A pin 3 as a high level. This low-to-high transition is sent through OR gate U538A as CLK A.

The same rising edge of CLK1 also clocks U741B, causing U741B's Q output to go low. RC network R751D (1.5K), and C751 (100 pF) delays this signal for approximately 20 ns . U848A inverts this low to a high, which sets all the flip-flops associated with CLK1. The high level on the set input of U741A causes the \bar{Q} output (U741A pin 3) to return low, completing the clock pulse. The set on U741B pin 12 causes the Q output to go high, removing the set on the CLK1 flip-flops.

The last row of flip-flops, U741B, U841B, U751B, U851B, U745B, and U845B (schematic 78) are used to pulse-shape the pod clocks.

At run time, CLK $\operatorname{INIT}(\mathrm{L})$ is toggled low, causing the pulse-shaping flip-flops to generate one set pulse to preset all the clock flip-flops into a known state.

When an internal clock is selected, all the external clocks are disabled by programming all the clock enable signals high (CA0-CA5, CB0-CB5, and CCO-CC5). To select the 91 A32 CLK, CC7 (U731B pin 11) is programmed low, and CB7 (U731B pin 14) is programmed high. On the rising edge of 91A32 CLK, if $\overline{\text { PAQC }}$ is low, U748A will pulse, sending a clock to all three pod clocks.

+3 V Power Supply

The +3 V power supply is a voltage-regulated current sink for the ECL terminating resistors.
Voltage divider R905 and R906 (on schematic 78) set a reference voltage of +3 V for the non-inverting input of op amp U904. The feedback loop through Q901 biases the transistor so the emitter follows the reference voltage. Since Q901 acts as a current sink for terminators, there is always sufficient current to maintain the +3 V .

91AE24 DATA ACQUISITION MODULE

The 91AE24 Data Acquisition module is a depopulated version of the 91A24 module. The 91AE24 receives its clocks from the 91A24 module and sends word recognition signals back to the 91A24. As many as three 91AE24 modules are controlled through cables connecting them to the 91A24. The 91A24 determines when storage should occur and when trigger conditions are met.

All component numbers in the 91AE24 module circuit description are assumed to have an A36 preface unless otherwise noted.

The 91AE24 circuit description is divided first by schematic, and then by functional blocks on the schematic. Numbers in diamonds refer to the numbers on schematic tabs in the Diagrams section of this addendum. Refer to those schematics while reading the circuit description. For an overview of the 91AE24 module's circuits, refer to the General System Description, earlier in this section.

As a depopulated version of the 91A24 module, the 91AE24 module has approximately 75% of the ICs installed in the board. Table 4-6 shows the ICs omitted from the circuit board when a 91AE24 is manufactured.

Table 4-6
INTEGRATED CIRCUITS INTENTIONALLY OMITTED FROM 91AE24 CIRCUIT BOARDS

U155	U295	U491	U591	U741	U821	U845	U948
U158	U298	U495	U595	U745	U825	U848	U951
U161	U455	U535	U725	U751	U828	U851	U968
U165	U458	U538	U728	U781	U831	U921	U971
U255	U471	U581	U731	U788	U835	U928	U981
U258	U481	U585	U735	U795	U838	U931	U988
U278	U488	U588	U738	U798	U841	U935	U991

91AE24 CONTROLLER INTERFACE

The controller interface allows communication between the DAS Controller board and the 91AE24. Any block in the 91AE24 block diagram identified with an asterisk (*) uses the 91AE24 controller interface.

The 91AE24 controller interface performs two major functions:

1. It takes data from the DAS Controller board and writes it to appropriate 91AE24 registers. The registers are selected by decoding the lowest five bits on the address bus and interpreting $\overline{B W R}, \overline{B P O R T}$, and $\overline{B R D}$ from the DAS Controller board.
2. It puts data from the 91AE24 module on the data bus at the command of the DAS Controller board.

91AE24 interface decoding and receiving circuitry is shown on schematic 79; readback circuitry is shown on schematic 80.

Receiving Control Data. As an example of how the 91AE24 receives control data, suppose the Controller board is writing data into port 01, the digital-to-analog converter that controls the probe threshold (U918 on schematic 82). The Controller board sets the low five bits of the address bus to 01_{16}, places the data on the data bus, and asserts BWR and PORT. The 91AE24 react as follows:

1. Asserting PORT enables U768 (schematic 79). This transmits data from the data bus to the digital-to-analog converter.
2. $\overline{B W R}, \overline{\text { PORT }}$, and A4 being low together enable decoder U958 (schematic 79).
3. U958 decodes the 1_{16} on AO-A3 to assert the THRESHOLD signal. The rising edge when THRESHOLD is unasserted clocks the data on the address bus into the map register. Waiting for the rising edge of THRESHOLD allows adequate setup time for the data on the data bus.

Sending Data. The readback procedure is similar, except $\overline{\mathrm{BRD}}$ is asserted instead of $\overline{B W R}$. As an example of how the 91AE24 sends data, suppose the Controller is reading the card ID from port 0 (register U791 on schematic 80). There are only 16 readback ports, so only address bits A0-A3 are decoded. The Controller board sets the low four bits of the address bus to 0_{16}, and asserts $\overline{\mathrm{BRD}}$ and PORT. The 91AE24 reacts as follows:

2. U998 decodes the 0_{16} on $\mathrm{AO}-\mathrm{A} 3$ to assert the $\overline{\text { CARD ID signal. The } \overline{\text { CARD ID }} \text { signal enables tri- }}$ state buffer U791, so the card ID is placed on the data bus.

Table 4-7 shows which registers are connected to the data bus and the $\overline{\mathrm{BWR}}, \overline{\mathrm{BRD}}$, and $\overline{\mathrm{PORT}}$ signals.

Table 4-7
91AE24 CONTROLLER INTERFACE MAP

Hex Addr	BWR	BRD	$\overline{\text { PORT }}$	Line Name	ICs Affected	
					U Number	Schem
XXXO	X	L	L	$\overline{\text { CARD ID }}$	U791	80
XXX1	X	L	L	POD STATUS	U775	80
XX01	L	X	L	THRESHOLD	U918	82
XXX2	X	L	L	DATA CLOCK	J101, J401, J701	80
XX02	L	X	L	PROBE R/W	U925	82
XXX3	X	L	L	MAR LOW	U135	80
XX03	L	x	L	CNTL1	U761	79
XXX4	X	L	L	$\overline{\text { MAR HIGH }}$	U235	80
XX04	L	X	L	STACK A WE	U148	86
XX05	L	X	L	STACK B WE	U248	86
XX06	L	X	L	STACK C WE	U448	86
XXX7	X	L	L	$\overline{\text { DQ STATUS }}$	U778	80
XX07	L	x	L	STACK CNTL	U555	86
XX09	L	X	L	SINGLE STEP	U125, U225, U425	87
XXXA	X	L	L	STACK CNTL RD	U785	80
XXXB	X	L	L	A MEM RD	U131	80
XXXC	X	L	L	B MEM RD	U231	80
XXOC	L	X	L	CNTL2	U758	79
XXXD	X	L	L	C MEM RD	U431	80
XXOD	L	X	L	STACK PTR CLK	U568C, U485A, U575D U571	86
XXXE	X	L	L	TRIGGERED RD	U771	80
XXOF	L	x	L	PADQ WE	U151	85
XX10	L	X	L	PBDQ WE	U351	85
XX11	L	X	L	PCDQ WE	U551	85
XX13	L	X	L	$\overline{\mathrm{PCO}}$	U938	87
XX15	L	x	L	$\overline{\mathrm{PC} 2}$	U941	87
XX17	L	X		$\overline{\text { PC4 }}$	U945	87
XX1B	L	X	L	$\overline{\text { CNTL3 }}$	U765	79

91AE24 CONTROLLER INTERFACE READBACK CIRCUITRY

This schematic shows the tri-state readback buffers that pass data from the 91AE24 to the DAS Controller board. Data passes through these buffers from locations throughout the module. The buffers are enabled by U998 (schematic 80). Table 4-7 provides a list of the signals that enable these buffers.

Schematic 80 also shows part of the communication interface to the acquisition probes. 91AE24 compatible probes have a serial communication line for probe identification. Data is clocked out of the probes with the DATA CLOCK signal through pin 28 of J101, J401, and J701 (schematic 80). Data is received back from the probes through pin 34 of J 101 , J 401 , and J 701 (schematic 80). For more information about these signals refer to the probe interface circuit shown on schematic 82.

91AE24 PROBE A AND B RECEIVERS

Probe A Receiver

91AE24 modules receive 8 data channels from each probe, but no clock or qualifier signals; those are received exclusively by 91A24 modules. All eight of the receiver channels are identical. They convert differential ECL signals into the TTL signals that the login registers expect. Figure 4-3 shows one of the channels. This description refers to Figure 4-3.

Figure 4-3. 91AE24 probe receiver.
Transistors Q1 and Q2 and the 390Ω resistor are a differential TTL-to-ECL translator. The 150Ω and 120Ω resistors are line terminators that match the impedance of the transmission line. The 22 ns delay line adds time to the data signal so the corresponding clock and qualifier signals can be processed before the data is clocked in. The 430Ω and 220Ω resistors are signal terminators for the delay line.

Probe B Receiver

The probe B receiver is identical to the probe A receiver. Refer to the probe A receiver description for more information.

91AE24 PROBE INTERFACE AND PROBE C RECEIVER

Probe C Receiver

The probe C receiver is identical to the probe A receiver. Refer to the probe A receiver description for more information.

Probe Interface

The probe interface controls the probe's acquisition threshold and reads the probe status.

Probe Status Readback. The DAS polls all 91AE24 probe connectors to see if probes are attached. The same circuitry is used to sense if the Pod ID button is depressed and to identify the type of probe attached. Each probe is identified by an eight-bit code that is received serially by the 91AE24.

The DAS polls the probe by pulling the probe's $R(L) / W(H)$ line high. The DAS does this by writing ones into bits 4,5 , and 6 of register U925 (schematic 82). At this writing, only P6460 and P6462 acquisition probes can be used with the 91AE24. Since neither of these probes use the DATA IN signal from the module, bits 0,1 , and 2 of this register are not used.

Once the $R(L) / W(H)$ signal is high, the 91AE24 toggles the DATA CLOCK signal through data selector U998 (shown on schematic 80). Each rising edge from DATA CLOCK clocks out one bit of a word from each attached probe. This DATA OUT signal from each probe is read through register U775, also on schematic 80.

When no probe is plugged in, the DATA OUT signal is pulled high by pull-up resistors on the 91AE24 module. Any probe plugged into the module pulls this line low, which is how the DAS knows when a probe is plugged in. To read the probe type or monitor the Pod ID button, the 91AE24 toggles the DATA CLOCK signal eight times. The first seven serial bits from the probe identify the type of probe and the probe's state. The eighth bit is low when the Pod ID button is depressed.

Probe Threshold DAC. Digital-to-analog converter U918 (on schematic 82) sets the threshold voltage of the 91AE24 probes. To program the digital-to-analog converter (DAC), the 91AE24 controller interface places a control word on DO-D7 and toggles the THRESHOLD line. Programming the DAC with FF_{16} sets the DAC voltage to +6.40 V , while 00_{16} sets the voltage to -6.35 V . If the DAC is programmed with 80_{16}, the DAC outputs 0.00 V .

Potentiometer R902 adjusts the offset of the DAC, so when the DAC is programmed with 80_{16}, the DAC outputs 0 V . R110 adjusts the DAC gain so a DAC setting of FF_{16} puts the DAC voltage at +6.35 V .

Op amp U808C is configured as an inverting buffer for the DAC output. So the output of U808C, at TP910, is the negative of the voltage from the DAC. Because this is an inverting buffer stage, programming the DAC with FF_{16} results in a probe threshold of -6.35 . U808C drives the threshold sensors for the three probes.

Probe Threshold Sensors. There are three probe threshold sensors, one for each probe. Since the three circuits are identical, only the circuit for pod A is described here.

Op amps U711A and D (schematic 82) regulate the threshold for probe A. U711D is configured as a differential amplifier. The inverting input to U711D receives the threshold voltage from DAC buffer (U808C). The non-inverting side of U711D receives USERS GND from the probe. This arrangement adjusts the output of U711D for differences between the DAS ground and the user's ground. Since the threshold voltage goes to U711D's inverting input, the output voltage is the negative of the desired voltage. The next stage inverts the signal again so the signal from the module has the correct polarity.

Op amp U771A (schematic 82) is also a differential amplifier, but its gain and offset are controlled by the attached probe. The probe provides a feedback resistor between VTHRESH and VTHRESH SENSE so the voltage received from the op amp has the correct gain factor. For example, a P6460 acquisition probe provides a $10,500 \Omega$ feedback resistor which, in parallel with $200 \mathrm{~K} \Omega$ R706, gives the circuit a gain of $-1 / 4$.

The probe also provides the OFFSET SENSE signal to offset U771's output voltage into the range required by the probe. For example, a P6460 acquisition probe provides -1.2 V as the OFFSET SENSE, so the output signal is referenced to -1.2 V rather than ground. This op amp is also configured as an inverter, which cancels out the inversion in the previous stage.

91AE24 LOGIN REGISTERS

The login registers schematic shows the 91AE24 login registers and the clock distribution circuits. The 91AE24 circuitry on this schematic is identical to the 91A24 circuitry shown on schematic 72. The only difference between the two schematics is the way the clock distribution circuits are connected. For this reason, the clock distribution circuit on schematic 83 is described next.

Clock Distribution

The clock distribution functional block is where the acquisition clocks generated by the 91A24 are received by the attached 91AE24 modules. The last 91AE24 in the daisy chain has J173, J183, and J185 (on schematic 83) jumpered as shown on the schematic. 91AE24 modules between the 91A24 and the final 91AE24 have the jumper on pins 7 and 3 and the jumper on pins 8 and 4 removed, as shown in the schematic inset. A twisted-pair cable runs from pins 7 and 8 to the next 91AE24 module.

Comparators U275A, B, and C in the clock distribution block convert differential ECL into singleended ECL clock signals. These clock signals are used by the data login registers (on schematic 83) and by the master clock selector (U721 on schematic 87).

All Other Circuits On Schematic

For descriptions of all other circuits on schematic 83, refer to the 91A24 Login Registers (schematic 72) description. The 91A24 login clock generator, V_{bb} generator, and login registers are shown on schematic 72.

91AE24 ACQUISITION MEMORY

The acquisition memory consists of four parts:

1. Data registers to allow setup time before data is stored.
2. A chip-select generator that determines when data is stored in the acquisition memory
3. The acquisition memory RAM which stores the acquired data.
4. A memory address register that determines the RAM address where storage occurs.

The 91AE24 acquisition memory circuits are identical to the 91A24 acquisition memory. Refer to the 91A24 Acquisition Memory (schematic 73) theory of operation for a description.

91AE24 DATA QUALIFIER WORD RECOGNIZERS

This schematic shows the circuitry for the four non-stack based word recognizers. These word recognizers are controlled through the 91A24 Trigger Specification sub-menu. The word recognizers can control data storage (BEGIN STORE IF, END STORE IF, and STORE ONLY IF conditions), control the stack-based word recognizer (RESET), and control triggering (OR TRIGGER).

Data Qualifier Word Recognizer RAM

The data qualifier word recognizer is RAM-based, much like the 91A32 Data Acquisition module word recognizers. The RAMs (U151, U351, and U551 on schematic 85) are programmed to react to specific words on the DRO-DR23 bus.

To understand how the RAM is used for word recognition, consider the RAM as a set of addressable registers. The RAM is programmed by writing 1 s in all the addresses that correspond to the words to be recognized. Os are written into all other addresses. After programming, the stream of data containing the word to be recognized is used to address the RAM. The RAM indicates word recognition by outputting a 1.

Since the words to be recognized may have X (don't care) as an element, programming becomes slightly more complicated. For every X (don't care) entered in a word recognizer field, twice as many words meet the triggering requirements. For example, if the word to be recognized is 10100110_{2} a single 1 must be written into the RAM. If $\mathrm{X} 0100110_{2}$ is to be recognized, 1 s must be loaded into both addresses 00100110_{2} and 10100110_{2}. If XX100110 is to be recognized, 1 s must be loaded at four different addresses. So, if XXXXXXXX $_{2}$ is to be recognized, all 256 addresses must have 1 s written in them.

Since 24 bits must be monitored for word recognition, three RAMs with 8 address lines each are used (for a total of 24 address lines). Each RAM recognizes 8 of the 24 bits involved. All three of the RAMs must recognize their word segments at the same time for word recognition to occur.

Each of the three RAMs have four data lines, so four independent words can be recognized. All four of the data lines in each RAM are programmed independently, so signals A1, B1 and C1 are used to recognize one word. Signals A2, B2, and C2 recognize another word.

Data Qualifier Word Recognizer

The data qualifier word recognizer completes the work of the data qualifier word recognizer RAM. AND gates U168B and U261A, B, and C (on schematic 85) make sure that all three 8-bit segments of a word are true before a word is recognized.

The outputs of the four AND gates are wire ANDed with the data qualifier word recognizer outputs from the 91A24 and all other 91AE24 modules. These word recognizer signals come from the other modules through the cables that go across the top of the modules. Wire ANDing these signals means that all 91A24 and 91AE24 modules must recognize their portions of a word at the same time for word recognition to occur.

The four word recognition signals that result from all these wire ANDed signals are buffered by U198B and U291A, B, and C (schematic 85). Exclusive-OR gates U291A, B, and C allow three of the signals to be inverted by changing one bit at the controller interface. OR gate U198B allows the DAS Controller board to assert the ENABLE signal through the controller interface.

Storage Control Circuitry

The circuitry surrounding U281, U288, and U478B (on schematic 85) determines when data is stored depending on the data qualifier word recognizer conditions. This circuitry operates identically, and is always programmed identically, to the 91A24 storage control circuitry. For more information on this circuit, refer to the 91A24 Storage Control Circuitry description. The 91A24 storage control circuitry is shown on schematic 74.

91A24 STACK WORD RECOGNIZER

The stack word recognizer is the hardware implementation of the sequential word recognizer in the 91A24 Trigger Specifiction sub-menu. The stack word recognizer is based on RAMs U148, U248, and U448 (on schematic 86). The RAMs recognize words by receiving acquired data on their address lines.

Sixteen levels of triggering are accomplished with a 4-bit stack pointer SP0-SP3 from U571 (on schematic 86). The stack pointer addresses the stack word recognizer RAMs. The value from the stack pointer effectively divides the stack word recognizer RAMs into sixteen separate sections. The stack pointer provides the address for the stack control RAM as well. The stack control RAM contains control bits for whether the recognition condition is WHEN or WHEN NOT.

Stack Pointer

The stack pointer (U571 on schematic 86) is a four-bit synchronous up counter. The POINTER CLK signal, which increments the stack pointer, comes through J181 from the 91A24 stack occurrence counter on schematic 75. This signal increments the 91AE24 stack pointer whenever the 91A24 stack pointer increments, so the 91A24 and the 91AE24 are always at the same stack level. The stack pointer can also be incremented by the DAS Controller board by pulling STACK CLK EN low and toggling STACK PTR CLK.

Inverter U578D prevents the stack pointer from wrapping from 1111_{2} to 0000_{2} by disabling the counter. The stack pointer is cleared by the reset circuitry through J181 (shown on 91A24 schematic 76), and loaded by the STACK PTR LD signal.

SCO from stack control RAM U555 is connected to an enable pin of the stack pointer. SCO goes low when the 91A24 is at the last programmed level of the stack, so SC0 being low disables the counter. This prevents the stack from incrementing past the last programmed level.

U588A clears the stack pointer when the reset word is recognized by the data qualifier circuit. The OR TRIGGER, DUAL QUAL, and STACK WR signals prevent the reset word from clearing the stack pointer except under the proper conditions.

Stack Word Recognizer RAM

The stack word recognizer is RAM-based, much like the data qualifier word recognizers. The RAMs (U148, U248, and U448 on schematic 86) are programmed to react to specific words on the DR0-DR23 bus according to the value of the stack pointer (SP0-SP3).

To understand how the RAM is used for word recognition, consider the RAM as a set of addressable registers. The stack word recognizer uses three RAMs with 12 address lines each; four of the address bits indicate the position in the stack, the other eight address bits are used for word recognition. The four stack pointer bits (SPO-SP3) effectively divide the RAMs into sixteen separate segments. The word recognizer segments are activated according to the value on SPOSP3.

The remaining eight bits of each RAM perform the actual word recognition. The RAM is programmed by writing 1 s in all the addresses that correspond to the words to be recognized. Os are written into all other addresses. After programming, the stream of data containing the word to be recognized is used to address the RAM. The RAM indicates word recognition by outputting a 1.

Since the words to be recognized may have X (don't care) as an element, programming becomes slightly more complicated. For every X (don't care) entered in a word recognizer field, twice as many words meet the triggering requirements. If the word to be recognized is 10100110_{2} a single 1 must be written into the RAM at address 10100110_{2}. If $\mathrm{X} 0100110_{2}$ is to be recognized, 1 s must be loaded into both addresses 00100110_{2} and 10100110_{2}. If $\mathrm{XX100110}{ }_{2}$ is to be recognized, 1 s must be loaded at four different addresses. So, if XXXXXXXX $_{2}$ is to be recognized, all 256 addresses in the selected RAM segment must have 1 s written in them.

Since 24 bits must be monitored for word recognition, three RAMs with 8 word recognition lines each are used (for a total of 24 word recognition lines). Each RAM recognizes one byte of the 24 bits involved. All three of the RAMs must recognize their byte of the word at the same time for word recognition to occur.

Stack Word Recognizer Control

The stack word recognizer control circuit has two parts: a three-input AND gate and an exclusive OR gate.

U168A is the AND gate for the three 91AE24 stack word recognizer RAMs (schematic 86). When all three of the stack word recognizer RAMs (U148, U248, and U448) output high levels, AND gate U168A outputs a high to indicate word recognition.

The output of AND gate U168A (schematic 86) is wire ANDed through J171 to the stack word recognizer outputs of all 91A24 and 91AE24 modules in the mainframe. So all 91A24 and 91AE24 modules must recognize their stack words at the same time for stack word recognition to occur.

Exclusive OR gate U291C (schematic 86) implements the WHEN/WHEN NOT field in the 91A24 Trigger Specification sub-menu. While the stack is at a WHEN level, the SC3 signal is high, so the word recognition signal is inverted. When a WHEN NOT level is reached, SC3 goes low, so the word recognition signal is not inverted. The output of the exclusive OR gate is used by four-input NAND gate U558A to prevent the pointer from being reset whenever a valid stack word is recognized.

Stack Control RAM

The DAS Controller board loads the stack control RAM (U555 on schematic 86) with stack level conditions before acquisition starts. Then during acquisition, the RAM is addressed by the stack pointer (SP0-SP3). The RAM outputs control signals SC0-SC3 as appropriate for each of the stack levels. The 91AE24 module only uses SC0 and SC3. SC1 and SC2 are not used. SC0 and SC3 control:

- last level (SCO)
- WHEN and WHEN NOT (SC3)

91AE24 MASTER CLOCK SELECTOR

Master Clock Selector

The master clock selector chooses the master 91AE24 clock with a set of CMOS registers (U938, U941, and U945 on schematic 87). Power for the registers is supplied through Q951, which drops the +5 V supply down to approximately $+4.5 \mathrm{~V} .+4.5 \mathrm{~V}$ is used for the register's power supply so the register's outputs are ECL compatible.

Inputs PC0, PC2, and PC4 from the controller interface (on schematic 79) are latch clocks. When one of these signals is toggled, the data on D0-D7 is loaded into the corresponding register to enable the correct master clock.

The AND gates in U721 (on schematic 87) select the master clock. The master clock is chosen in the 91A24 Trigger Specification sub-menu with the MASTER CLK field. Once the selection is made, one of control bits CA6, CB6, CC6, or CA7 goes high to pass the selected clock. The other bits remain low so the clocks they control are masked out.

CA7 only goes high to select the single step clock. SINGLE STEP is used only for diagnostics and to program 91A24 and 91AE24 acquisition modules.

Master Clock Distribution

The master clock distribution circuitry translates the single-ended ECL output of U721 to TTL levels. The resulting master clock is divided into two identical clocks, MASTER CLK II and III, to distribute the loading on the clocks. MASTER CLK I is not used by 91AE24 modules.

+3 V Power Supply

The +3 V power supply is a voltage-regulated current sink for the ECL terminating resistors.
Voltage divider R905 and R906 (on schematic 87) set a reference voltage of +3 V for the non-inverting input of op amp U904. The feedback loop through Q901 biases the transistor so the emitter follows the reference voltage. Since Q901 acts as a current sink for terminators, there is always sufficient current to maintain the +3 V .

91A24/91AE24 VERIFICATION PROCEDURES

 INTRODUCTION

 INTRODUCTION}

This portion of the 91A24/91AE24 Service Addendum contains three main parts: the functional check procedures, the adjustments procedures, and the performance check procedures. These procedures, along with the test setup information at the beginning, allow a qualified technician to verify the operation of a 91A24 or 91AE24 module.

These instructions are limited to the procedures necessary to verify the modules. Detailed information about normal menu operation may be found in the 91A24, 91AE24, and P6460 Operator's Addendum and the DAS 9100 Series Operator's Manual. Detailed information about diagnostic menu operation is located in the DAS 9100 Series Service Manual. Service information for the P6460 Data Acquisition Probe is covered in the P6460 Instructions.

Functional Check Procedures. These tests verify that the module is basically operational. The procedures exercise the main user interfaces of the module to verify their operation. The procedures also check the main internal features for operation. These tests can be used to see if adjustment and/or repair is necessary.

Adjustment Procedures. These procedures are designed to bring the module to or within product specifications. If the module cannot meet the specification, repair is necessary.

Performance Check Procedures. These tests provide a detailed check of internal and external product characteristics. All specifications listed in the performance requirement column of the specifications are verified. These checks can be extensive and time-consuming. Under normal circumstances the functional check procedures provide an adequate test of product performance in a less costly or time-consuming manner.

TEST SETUP INFORMATION

The setups for each functional and performance verification procedure rely on the setups left from the previous test. If you are not starting at the beginning test and working through sequentially, be sure to check that you have the equivalent setup for that point in the procedure.

SUGGESTED TEST INSTRUMENTS

There are three different sets of procedures in this section: the functional check, the adjustments, and the performance check. Following are lists of the instruments that are used at some point in each of these procedures, along with their Tektronix equivalents.

NOTE
Each separate procedure will use only some of the instruments given in these tables. Check the procedure in question before appropriating test instruments.

Table 5-1
EQUIPMENT NEEDED FOR THE FUNCTIONAL CHECK PROCEDURES

Equipment	Specifications	Equivalent Tektronix Equipment
DAS 9100 Series Mainframe	No substitute allowed	
91A24 Data Acquisition Module	No substitute allowed	
91E24 Data Acquisition Module (Optional)	No substitute allowed	
91P16 Pattern Generator Module	No substitute allowed	
91P32 Pattern Generator Module	No substitute allowed	
P6460 Data Acquisition Probe kits (3 needed to test only 91A24; 4 needed to test 91AE24 and 91A24)	No substitute allowed (Kits include leads and TTL-type grabber tips.)	10" lead set is Tektronix P/N 012-0747-00. TTL-type grabber tips have Tektronix P/N $020-0720-00$ (Optional) Diagnostic lead sets (3); can be used in place of the grabber tips if you are testing only a 91A24 module. Tektronix P/N 012-1000-00
P6455 Pattern generator probe kits (4 needed)	No substitute allowed. (Kits include twisted pair lead set and grabber tips.)	Lead set is Tektronix P/N 012-0926-00
(Optional) 91A24 Interconnect Cable Assembly, 28 cm (11 in.) (7 required)	No substitute allowed	$\begin{aligned} & \text { Tektronix P/N } \\ & 175-8166-00 \end{aligned}$
10-pin square pin connectors (3)	0.025 inch diameter square pins, 10 -in-line	Tektronix P/N 131-1934-00 (Note: This pin set comes with 36 pins inline; break to length.)
(Optional) Oscilloscope	Dual trace, 100 MHz	465
(Optional) Oscilloscope probe	X10, 100 MHz	P6106
Ground bar	Short length of uninsulated wire (approx. 5-10 inches) to ground probes	

Table 5-2
EQUIPMENT NEEDED FOR THE ADJUSTMENT PROCEDURES

Specifications	Equipment	Equivalent Tektronix Equipment
DAS 9100 Mainframe	No substitute allowed	
91A24 Data Acquisition Module	No substitute allowed	
91AE24 Data Acquisition Module (Optional)	No substitute allowed	
DAS 9100 Series Service Maintenance Kit (for extender board)	No substitute allowed	
91 A24 Interconnect Cable Assembly, 28 cm (11 in.) (7 required)	No substitute allowed	Tektronix P/N 175-8166-00
Oscilloscope		
Oscilloscope probe	Dual trace, 100 MHz	465
Digital Multimeter (DMM)	0.05% dc V accuracy	DM 501A (with TM 500

Table 5-3 EQUIPMENT NEEDED FOR THE PERFORMANCE CHECK PROCEDURES

Specifications	Equipment	Equivalent Tektronix Equipment
DAS 9100 Mainframe	No substitute allowed	
91A24 Data Acquisition Module	No substitute allowed	
91AE24 Data Acquisition Module (Optional)	No substitute allowed	
P6460 Data Acquisition Probe Kits (3) (kit includes lead sets and grabber tips)	No substitute allowed	
DAS 9100 Series Service Maintenance Kit	No substitute allowed	Tektronix P/N 067-0980-00
91A24 Interconnect Cable Assembly, 28 cm (11 in.) (7 required)	No substitute allowed	Tektronix P/N 175-8166-00

Table 5-3 (cont.)
EQUIPMENT NEEDED FOR THE PERFORMANCE CHECK PROCEDURES

Specifications	Equipment	Equivalent Tektronix Equipment
Dual-trace Oscilloscope system	Dual-trace, 250 MHz bandwidth, two x10 250 MHz oscilloscope probes	485 oscilloscope with P6106 probes
10-pin square pin connectors (3)	0.025 inch diameter square pins, 10-in-line	Tektronix P/N 131-1934-00 (Note: This pin set comes with 36 pins in-line; break to length.)
Pulse generator	250 MHz	PG 502
Pulse generator	50 MHz	PG 508
Digital multimeter (DMM)	0.05% dc V accuracy	DM 501A
TM 500 Mainframe	No substitute allowed	TM 504 or higher
Setup and Hold Time Test Fixture (including lead sets)	No substitute allowed	Tektronix P/N 067-1037-00
(Optional) 10-wide comb		
with harmonica connector		
(1 per probe)		Tektronix P/N 012-0800-00
10-inch BNC cables (4)		Tektronix P/N 012-0208-00
BNC T adapters (3)		Tektronix P/N 103-0030-00
Probe-tip-to-BNC adapters (2)		Tektronix P/N 013-0084-01
Dual-lead adapter P/N 015-0325-00		
Probe tip, flexible		

FUNCTIONAL CHECK PROCEDURES

The functional check procedures verify that all the major sections of the module being checked are operational. You can used these tests to determine whether adjustment or repair is necessary.

All of the tests in this section are designed to test either the 91A24 or the 91AE24 with the following exceptions:

- When testing a 91AE24 module, skip the SYNC OUT portion of functional test 8 . (This test is marked 91A24 only.)
- There are no input driver clock tests performed on the 91AE24 itself; the clock signal is acquired from the 91A24 module. Clock tests for the 91AE24 verify the latches and CLK I, II, and III.
- Equipment setup directions and probe connections for testing 91AE24 modules are indicated where relevent.
- Only one 91AE24 is verified at a time. To verify additional 91AE24 modules, replace the tested module with an untested module, and rerun the tests.

NOTE

If you are testing a 91A24 module by itself (without any 91AE24 modules), disconnect any 91AE24 modules in the mainframe. Taking this precaution eliminates the risk of a word recognizer failure on a 91AE24 module causing a diagnostics failure on the 91A24 module.

You will need the following equipment to perform the functional check:

- DAS 9100 Mainframe, with:

1 91A24 Data Acquisition module in slot 1
1 (Optional) 91AE24 Data Acquisition module in slot 2
3 P6460 Data Acquisition probe kits (kit includes lead sets and grabber tips)
1 91P32 Pattern Generator module in slot 3
1 91P16 Pattern Generator module in slot 4
4 P6455 Pattern Generator probe kits (kit includes lead sets and grabber tips)
3 10-pin square pin connectors

- 1 (Optional) 100 MHz dual-trace oscilloscope with probes

(1) Mainframe Setup for the Functional Check

The following steps configure the DAS for the functional check.

NOTE
Although you can place modules in other slots for the following procedures, the setup listed here is recommended. Using the same module configuration each time you perform the procedure allows you to save test patterns on tape. For instructions on how to save tape files, see the DAS 9100 Series Operator's Manual.

CAUTION

Do not install or remove any electrical module or sub-assembly while the power is on. Doing so may damage the sub-assembly.

1. Turn off the mainframe.
2. Install the data acquisition and pattern generation modules as listed in Table 5-4.

Table 5-4
MODULE BUS-SLOT PLACEMENT

Module	Slot
91A24	1
91AE24 (optional)	2
91P32	3
91P16	4

3. Check that the factory-installed jumpers on the 91A24 module are in the correct positions:

- J173, J183, and J185 should each have four jumpers installed parallel to the edge of the board.
- J271 (pins 1 and 2) and J272 (pins 1 and 2) should each have black jumpers installed perpendicular to the edge of the board.

If you have a 91AE24 module installed, also check the interconnect cables between the 91A24 and the 91AE24, as well as the jumpers on the 91A24. See Figure 5-1.

Figure 5-1. 91A24 and 91AE24 jumpers and interconnect cables. The jumpers are the small black 2-pin connectors. Interconnect cables are pin connector assemblies with wires.

DIAGNOSTIC TESTS

(2) Executing the Diagnostic Self-Test (91A24 Diagnostic Functions 0-5) (91EA24 Diagnostic Functions 0-3)

NOTE
Refer to the Maintenance: Troubleshooting section of this addendum for a detailed description of these tests.

Use the following procedure to enter the DAS diagnostics menu and operate all of the ALL mode tests at each level.

1. Turn on the mainframe while holding down the STOP key on the keyboard. This causes the power-up self-test to fail.
2. Press START SYSTEM to enter the Diagnostics menu.
3. Select SINGLE in module field.
4. Move cursor to slot field, enter 1 to test the 91A24 in slot 1. (If you are testing a 91AE24, enter 2 for slot 2.)
5. Leave the MODE field set to ALL (the default value).
6. Press START SYSTEM to begin test execution.

The DAS diagnostics will perform all available tests on the slot. Diagnostics tests CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, WRD REC, and OCCR CNTR should all pass. (Tests PRB CLK EXC and DAC are not run.)

PROBE TESTS

(3) Probe Connector Functional Tests

For these tests, a single P6460 probe must be connected successively to pods A, B, and C of the 91A24 Data Acquisition module.

This test verifies the pod ID, probe present, and probe disconnected functions. Specifically it verifies:

- The operation of the probe R/W line (U958-3 - 91A24 schematic 68, 91AE24 schematic 79) and the pod R/W IC U925 (91A24 schematic 71, 91AE24 schematic 82).
- The runs from U925 (91A24 schematic 71, 91AE24 schematic 82) to the probe connectors.
- The POD STATUS register U775 (91 A24 schematic 69, 91AE24 schematic 80) and its selector U998 (91A24 schematic 69, 91AE24 schematic 80).

To run this test:

1. Connect a P6460 probe to the pod A connector of the 91 A 24 in slot 1 . Verify that the message PROBE CONNECTED appears in the upper left corner of the DAS display.
2. Press the pod ID button on the P6460 probe in pod A, and verify that the display shows POD 1A in the upper left corner.
3. Remove the probe and verify that POD 1A DISCONNECTED appears in the upper left corner of the DAS display.
4. Repeat steps 1 through 3 of this test sequence for pods B and C on the $91 A 24$ module.
(4) Probe Clock Exerciser (PRB CLK EX) Test (91A24 Diagnostic Function 7) (91AE24 Diagnostic Function 5)

This test verifies the clock generator circuitry of a 91A24 module, and the clock driver circuitry of a 91AE24 module. For details of the circuitry covered by this test, see the explanation of the PRB CLK EX diagnostic test in section 7 of this addendum. This test requires three P6460 probes to test a 91 A24 and six P6460 probes to test a 91AE24.

1. 91A24. If you are testing only a 91A24, disconnect it from any 91AE24 modules in the mainframe, and terminate those connections with jumpers as shown in Figure 5-1.
91AE24. To test a 91AE24 module, first complete the test for the 91A24 module. Reconnect the 91A24 to the 91AE24 with interconnect cables and jumpers (as shown in Figure 5-1).
2. 91A24. Connect one P6460 probe to each 91A24 pod connector (pods A, B, and C).

91AE24. In addition to the three P6460 probes connected to the 91A24, connect three P6460 probes to the 91AE24 (pods A, B, and C).
3. 91A24. Select SINGLE mode and the PRB CLK EX test in the DAS Diagnostics menu.

91AE24. Select SLOT 2, SINGLE mode, and the PRB CLK EX test in the DAS Diagnostics menu.
4. Press START SYSTEM.
5. Verify that all tests pass.

PATTERN GENERATOR-DRIVEN TESTS

(5) Setup for Pattern Generator-Driven Tests (Functional Tests 6-13)

91A24 Probe Setup. The probe setup described in this section supports testing a 91A24 module (three channels). To test a 91AE24 module you must also make the probe connections described under the heading 91AE24 Probe Setup.

The 91A24 probe connections are presented in three different formats: they are summarized in Table 5-5, illustrated in Figure 5-2, and described in detail in the following text.

Table 5-5
PROBE CONNECTIONS FOR 91A24 FUNCTIONAL TEST

91A24 P6460 Probe	91P16 P6455 Probe	91P32 P6455 Probe
A pod to square pins to	B pod	
B pod to square pins to		
C pod to square pins to	C pod	A pod
A Clock (CLK, white) to	B Strobe (white)	
B Clock (CLK, white) to	C Strobe (white)	A Strobe (white)
C Clock (CLK, white) to		B bit 0 (black)
A Qualifier (Q, gray) to		B bit 1 (brown)
B Qualifier (Q, gray) to		B bit 2 (red)
C Qualifier (Q, gray) to		
A pod user's ground to	B pod VL	A pod VL
B pod user's ground to	C pod VL	both pod's VLs
C pod user's ground to	both pod's VLs	
all pod's user's gnds to		
(use ground bar)		

NOTE
If only a 91A24 is being tested, a diagnostic lead set can be used in place of the square-pin connector and flying lead sets. (The diagnostic lead set is included in the Service Maintenance Kit.)

For further details on connecting probes with the lead sets, refer to the DAS 9100 Series Service Manual.

Figure 5-2. Probe connections for the 91A24 functional tests.

1. Connect two P6455 pattern generator probes to pod connectors B and C of the $91 P 16$. Set the diagnostic slide switch on the back of both probes to AUX.
2. Connect the other two P6455 probes to pod connectors A and B of the 91P32. Set the diagnostic slide switch on the back of both probes to AUX.
3. Connect three P6460 acquisition probes to pod connectors A, B, and C of the 91 A 24 . When the P6460 is installed, the mainframe should beep and the message POD XA CONNECTED should show on the screen (where X represents the slot number).
4. Connect a 10 -inch lead set to each of the data acquisition probes from the 91A24 or 91AE24.
5. Connect these leads to $10-\mathrm{pin}$ square pin connectors (one set of leads to each 10 -pin square pin connector). Do not attach the gray lead to the connector.
6. Connect a pattern generator lead set to the pattern generator probes from pod connectors B and C of the 91P16, and from pod connectors A and B of the 91P32.
7. Connect the twisted-pair leads from the pattern generator probes to the square-pin assemblies attached to the data acquisition probes as follows:

- 91A24 probe from pod connector A to 91P16 probe from pod connector B;
- 91A24 probe from pod connector B to 91P16 probe from pod connector C;
- 91A24 probe from pod connector C to 91P32 probe from pod connector A.

Connect the pattern generator (twisted-pair) leads color-to-color to the acquisition leads (straight) with the following qualifications:

- Connect the white lead of the black-white twisted pair to the square pin assembly opposite the white lead from the data acquisition probe. Connect the black wire of the black-white twisted pair to a ground bar. You can use any short length (5-10 inches) of bare wire for the ground bar. You will use this wire to ground all the probes.
- Do not connect the gray-black twisted-pair from the pattern generator probe to the square pin assembly.

8. Connect the Q lead (gray) from the data acquisition probe from 91 A 24 pod A to the bit 0 lead (black) from the pattern generator probe connected to 91 P 32 pod B .
9. Connect the Q lead (gray) from the data acquisition probe from 91 A 24 pod B to the bit 1 lead (brown) from the pattern generator probe connected to 91 P 32 pod B.
10. Connect the Q lead (gray) from the data acquisition probe from 91 A 24 pod C to the bit 2 lead (red) from the pattern generator probe connected to 91 P 32 pod B .
11. Connect user's ground from all P6460 probes to VL of all P6455 probes using a bar adapter.

91AE24 Probe Setup. To test a 91AE24 module you must make the following probe connections:

1. Make all 91A24 probe connections described under 91A24 Probe Setup.
2. Connect a fourth P6460 probe to the 91AE24. You will need to connect this probe successively from pods A to B to C to test all channels of the 91AE24 module.
3. Connect the 91AE24 probe to the corresponding probe on the 91A24. For example, when the 91 AE24 probe is in the pod A connector, connect that probe to the 91 A24 probe in pod A. Make this connection by attaching grabber tips from the 91AE24 probe leads to the exposed section of pin on the square pin adapter already connected to the 91A24 probe. If for some reason using the grabber tips is not adequate, you can connect the leads directly by attaching them to a duplexed square pin adapter. To make a duplexed square pin adapter, take two square pin assemblies and interlace them to form a row of 10 Xs . Solder at each of the 10 connections.
4. Enter the Channel Specification menu and group the channels to match your probe connections. For example, if you are testing 91AE24 pod A, group those channels with the 91A24 pod A channels.
5. Enter the Trigger Specification menu. Program the word recognizer for the 91 AE24 pod you are testing to match the corresponding 91A24 pod. For example, if you are testing 91AE24 pod A, match its word recognizer values to those of the 91 A24 pod A. Use DON'T CARE values for all pod word recognizers not under test.

(6) Enable/Disable Functions

Stack Word Recognizers Run Timer and Stop Timer Functions

The following test verifies:

- the dual enable and disable functions.
- stack word recognizers 1 through 6.
- the RUN TIMER and STOP TIMER functions.

To run the test:

1. Enter the Pattern Generator menu. Load the program listed in Figure 5-3.

Figure 5-3. Pattern generator program for Functional Test 6. A dot next to a program line indicates data you should acquire when you run test 6 . The callouts label which function that part of the test exercises. (See Figure 5-5 to see this data in the State Table display.)
2. Go to the Channel Specification menu and change the radix of all groups to BIN (binary). If you are testing a 91AE24, you also need to group the channels to match your probe connections. For example, if you are testing 91AE24 pod A, group those channels with the 91A24 pod A channels.

NOTE

If you are testing a 91AE24, group the pods you are not testing toward the end of the Channel Specification menu. Doing so will make these channels show as the least significant bytes in the Trigger Specification menu, making it easy to change them to DON'T CARE values.

(1)
$26,2 E, A 6, A E$
(6) 64
(2)
$24,26,64,66$
(7) 8 E
(3) $26,27,2 \mathrm{E}, 2 \mathrm{~F}$
(8) FO
(4) $96, B 6, D 6, F 6$
(9) $26,36, \mathrm{~A} 6, \mathrm{~B} 6$
(5) C 5
(10) 52

Figure 5-4. 91A24 Trigger Specification menu setup for Functional Test 6. Hexadecimal values (shown with numbered callouts) indicate possible recognized words.
3. Go to the Trigger Specification menu. If you are testing a 91 A24, change the menu to match Figure 5-4. If you are testing a 91AE24, program the word recognizers for the 91AE24 pod being tested to match those of the corresponding 91A24 pod. For example, if you are testing $91 \mathrm{AE} 24 \operatorname{pod} \mathrm{~A}$, match its word recognizer values to those of the $91 \mathrm{~A} 24 \operatorname{pod} \mathrm{~A}$. Use DON'T CARE values for all pods not under test.

NOTE

If you are looking at both 91A24 and 91AE24 values in the Trigger Specification menu in binary, only one group at a time will be displayed. To see the other two groups, press SHIFT SCROLL.
4. Enter the Clock Specification sub-menu and set the internal clock rate to 100 ns .
5. Press the START SYSTEM key.
6. Verify that the $\mathrm{TIME}=$ field shows $3.2 \mu \mathrm{~S}$.
7. Go to the Channel Specification menu. Change the radix of all groups to hexadecimal.
8. Verify the data acquired. Compare your data with Figure 5-5. If any of the acquired data is different from the data shown, use the callout on that line of the State Table display to identify the function tested by that part of the program. For example, if your data corresponding to sequence 518 in Figure $5-5$ is other than AE AE AE, suspect the enable function. If you have acquired extra data that is not shown in the State Table display, look at the callouts in the pattern generator program shown in Figure 5-3 to determine which function is suspect.
9. When the data matches the State Table display in Figure 5-5, press the STORE key on the DAS keyboard.
10. Press the COMPARE \neq key.
11. Verify that the test runs for at least 5 RESTARTS.
12. Press the STOP key.

Figure 5-5. State Table display of data acquired using Functional Test 6.

(7) Stack Reset Function TRIGGER Function (OR IF Field)

This test:

- Verifies the stack RESET function from U291-3 (91A24 schematic 74, 91AE24 schematic 85) to U558-2,6 (91 A24 schematic 76, 91AE24 schematic 86) to U575-5,6 (91A24 schematic 76, 91AE24 schematic 86) to the stack pointer U571-1 (91A24 schematic 76, 91AE24 schematic 86).
- Verifies the trigger function of the OR IF field (the parallel start word recognizer).

To run this test:

1. Leave the Pattern Generator menu program as you set it up for Functional Test 6. Figure 5-6 shows this same pattern generator program with the callouts that identify the functions tested when you run Functional Test 7.
2. Go to the Channel Specification menu and change the radix of all groups to BIN (binary). If you are testing a 91AE24, you also need to group the channels to match your probe connections. For example, if you are testing 91AE24 pod A, group those channels with the 91 A 24 pod A channels.

NOTE
If you are testing a 91AE24, group the pods you are not testing toward the end of the Channel Specification menu. Doing so will make these channels show as the least significant bytes in the Trigger Specification menu, making it easy to change them to DON'T CARE values.

Figure 5-6. Pattern generator menu program for Functional Test 7. This program is the same as the program for Functional Test 6. The callouts in this illustration label which function that part of the program exercises when you are performing Test 7. A dot next to a program line indicates data you should acquire when you run Test 7. (See Figure 5-8 to see this data in the State Table display.)
3. Go to the Trigger Specification menu. If you are testing a 91A24, change the menu to match Figure 5-7. If you are testing a 91AE24, program the word recognizers for the 91AE24 pod being tested to match those of the corresponding 91A24 pod. For example, if you are testing 91AE24 pod A, match its word recognizer values to those of the 91A24 pod A. Use DON'T CARE values for all pods not under test.

NOTE

If you are looking at both 91A24 and 91AE24 values in the Trigger Specification menu in binary, only one group at a time will be displayed. To see the other two groups, press SHIFT SCROLL.

(1)
$26,2 E, A 6, A$
(6) 64
(2) 52
(7) 8 E
(3) $26,27,2 E, 2 F$
(8) FO
(4) $96, B 6, D 6, F 6$
(9) $24,26,64,66$
(5) C 5
(10) $26,36, A 6, B 6$

Figure 5-7. Trigger Specification menu setup for Functional Test 7. Lines marked with a dot are changes from the Trigger Specification menu setup for Test 6 (shown in Figure 5-4).
4. Press the START SYSTEM key.
5. Go to the Channel Specification menu and change the radix of all groups to hexadecimal.
6. Compare the time and data in the State Table menu display with Figure 5-8. If any of the acquired data is different from the data shown, use the callout on that line of the State Table display to identify the function tested by that part of the program. For example, if your data corresponding to sequence 521 in Figure $5-8$ is other than $A E$ AE AE, suspect the enable function. If you have acquired extra data that is not shown in the State Table display, look at the callouts in the pattern generator program shown in Figure 5-6 to determine which function is suspect.

Figure 5-8. State Table display of Functional Test 7. The callouts label the function exercised by that part of the test. If you acquire extra data not shown in this display, look at the pattern generator program shown in Figure 5-6 to determine which function is suspect.
7. Verify that the $\mathrm{TIME}=$ field shows $1.1 \mu \mathrm{~S}$.
8. When the data matches the State Table display in Figure 5-8, press the STORE key.
9. Press the COMPARE \neq key.
10. Verify that the test runs for at least 5 RESTARTS.
11. Press the STOP key.
(8) INC CNTR Function (with INT3) Sequential Word Recognizer WHEN NOT Function Sync Out Function

This test:

- Verifies the INCR CNTR (Increment Counter) function when used with INT 3. The signal path begins at U468-1,2 (91A24 schematic 76) where it continues to U491-11,8 (91A24 schematic 76) and finally ends at U495-11,10 (91A24 schematic 76).
- Verifies sequential word recognizer WHEN NOT function.
- Verifies the SYNC OUT circuit consisting of U161-9 (91A24 schematic 75), U268-9,8 (91A24 schematic 76), U265-12,11 (91A24 schematic 76), U471-3,6 (91A24 schematic 76), and finally U568-1,2,3 (91A24 schematic 76).

To run this test:

1. Load the Pattern Generator program shown in Figure 5-9.
2. Change the Pattern Generator Timing menu to match Figure 5-10.

Figure 5-9. Pattern Generator program for Test 8.

Figure 5-10. Pattern Generator Timing menu for Functional Test 8.
3. Go to the Channel Specification menu and change the THRESHOLD field value to +2.50 V . This setting reduces effects from probe noise.
4. Change the Trigger Specification menu to match Figure 5-11.

Figure 5-11. Trigger Specification menu setup for Functional Test 8.
5. Enter the Clock Specification sub-menu and verify that the internal clock is set to 100 ns .
6. Press the START SYSTEM key.
7. Verify that the DAS display shows a changing count value which eventually becomes greater than 65000. This information will be displayed on the line reading WAITING FOR MANUAL STOP \quad CNTR $=$ XXXXX .
8. (91A24 only. Optional.) Connect the SYNC OUT cable to the 91A24 module, and to an oscilloscope. Verify that the pulse coming from the cable is approximately 200 ns wide, with a period of $1.3 \mu \mathrm{~s}$.
9. Press STOP and verify that the data acquired repeats as shown in Figure 5-12. Note that the sequence numbers on your display will be different because of the lack of a trigger word.

STATE TABLE DISPLAY: ACOUISITITAX				COMPARE: START SEQ STOP SEQ	511
$\begin{aligned} & \text { CNTR }= \\ & \text { SRCH }= \end{aligned}$	1,242,694				
SEQ	A	B	c		
568	33	33	33		
503	44	44	44		
504	55	55	55		
505	66	66	66		
506	77	77	77		
507	88	88	88		
508	99	99	99		
509	A ${ }^{\text {a }}$	A ${ }^{\text {A }}$	Af		
510	BB	BB	BB		
511	CC	CC	CC		
512	00	00	00		
513	11	11	11		
514	22	22	22		
515	33	33	33		
516	44	44	44		
517	55	55	55		4541-112

Figure 5-12. State Table display of Functional Test 8.

CLOCK AND CLOCK QUALIFIER TESTS

The following tests check the rising and falling edges of the clocks and clock qualifiers.

NOTE

Since the trigger word is set to DON'T CAREs ($X X X X X X$), the sequence numbers for particular lines of data displayed in the State Table may vary.

(9) Clock Test 1: Rising Edge

This test:

- Verifies all rising-edge external clock flip-flops listed below. All of these ICs are found on 91A24 schematic 78.

U735	U738	U741
U745	U751	U948

To run this test:

1. Enter the Trigger Specification menu and change:

RESET field to OFF
X3 to XX (in level 3 of the sequential word recognizer)
INCR CNTR field to TRIGGER (in the last line of the sequential word recognizer)
2. Enter the Clock Specification sub-menu and change 91A24 CLOCK from INTERNAL to EXTERNAL.
3. Change the 91A24 clock setup as shown in Figure 5-13.

Figure 5-13. Clock Specification sub-menu for Functional Test 9.
4. Press START PAT GEN followed by START ACQ. Verify that the test triggers, and that the display matches Figure 5-14.

STATE TAELE DISPLAY: HISUISITITIN				COMPARE: START SEQ	13
$\begin{aligned} & \text { TRIG }= \\ & \text { SRCH }= \end{aligned}$	06		$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	STOP SEQ	511
SEQ	A	B	C		
5 LK 1	88	88	88		
509	Af	AA	An		
510 T	80	80	80		
511	22	22	22		
512	44	44	44		
513	66	66	66		
514	88	88	88		
515	A ${ }^{\text {A }}$	AA	An		
516	00	00	00		
517	22	22	22		
518	44	44	44		
519	66	66	66		
520	88	88	88		
521	An	An	An		
522	00	80	00		
523	22	22	22		4541-114

Figure 5-14. State Table display of Functional Test 9.

(10) Clock Test 2: Falling Edge

This test:

- Verifies all falling edge external clock flip-flops listed below. These ICs are all found on 91A24 schematic 78.

U835	U838	U841
U845	U851	U951

To run this test:

1. Go to the Clock Specification sub-menu.
2. Change the 91A24 clock setup to match Figure 5-15.

Figure 5-15. Clock Specification submenu setup for Functional Test 10.
2. Press the START PAT GEN key followed by the START ACQ key.
3. Verify that the test triggers and displays the repeating pattern in Figure 5-16.

STATE TABLE OISPLAY: ACOUISITIOX				$\begin{aligned} & \text { COMPARE: START SEQ } \\ & \text { STOP SEQ SER } \end{aligned}$	$\frac{1}{611}$
$\begin{aligned} & \operatorname{TRIG}= \\ & \text { SRCH }= \end{aligned}$	99		99		
SEQ	A	B	C		
568	55	55	55		
509	77	77	77		
510	T 99	99	99		
511	BB	BB	BB		
512	11	11	11		
513	33	33	33		
514	55	55	55		
515	77	77	77		
516	99	99	99		
517	BB	BB	BB		
518	11	11	11		
519	33	33	33		
520	55	55	55		
521	77	77	77		
522	99	99	99		
523	BB	BB	BB		

Figure 5-16. State Table display of Functional Test 10.

(11) Active-High Clock Qualifier Test

This test:

- Verifies that the active-high (positive) qualifiers are working.

To run this test:

1. Go to the Clock Specification sub-menu.
2. Change the 91 A 24 clock status to match Figure 5-17.
```
            CLICK SPECIFICATION
91A24 CLOCK: EXTEKNHL
                                    QU&LIFIERS: QA OB OC
CLOCKS: CLKA CLKB CLKC
    DATA FOR: MEM 1A/1B NEM 2G/2B
```



```
MASTER CLOCK: FIIGH
```



```
POOB CLOCKS = ( (CLKAJ * QA) + (CLKBJ* QB) + CLKCJ )* QC
PODC CLOCKS = ( (CLKAJ * QA) + (CLKBJ* QB) + CLKCJ )* QC

Figure 5-17. Clock Specification sub-menu setup for Functional Test 11.
3. Press the START PAT GEN key followed by the START ACQ key.
4. Verify that the test triggers and displays the repeating pattern in Figure 5-18.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{STATE TAELE DISPLAY: HCNISITITX:} & COPPARE: START SER
STOP SER & 511 \\
\hline \[
\begin{aligned}
& \text { TRIG }= \\
& \text { SRCH }=
\end{aligned}
\] & & & \[
44
\] & & \\
\hline SEQ & A & B & ¢ & & \\
\hline 581 & 00 & 00 & 00 & & \\
\hline 509 & 22 & 22 & 22 & & \\
\hline 510 T & 44 & 44 & 44 & & \\
\hline 511 & 00 & 00 & 00 & & \\
\hline 512 & 22 & 22 & 22 & & \\
\hline 513 & 44 & 44 & 44 & & \\
\hline 514 & 00 & 00 & 00 & & \\
\hline 515 & 22 & 22 & 22 & & \\
\hline 516 & 44 & 44 & 44 & & \\
\hline 517 & 00 & 00 & 00 & & \\
\hline 518 & 22 & 22 & 22 & & \\
\hline 519 & 44 & 44 & 44 & & \\
\hline 520 & 00 & 00 & 00 & & \\
\hline 521 & 22 & 22 & 22 & & \\
\hline 522 & 44 & 44 & 44 & & \\
\hline 523 & 00 & 00 & 00 & & 4541-118 \\
\hline
\end{tabular}

Figure 5-18. State Table display of Functional Test 11.
(12) Active-Low Clock Qualifier Test

This test:
- Verifies all active-low (negative) qualifiers.

To run this test:
1. Go to the Clock Specification sub-menu.
2. Change the 91A24 clock status to match Figure 5-19.


Figure 5-19. Clock Specification sub-menu setup for Functional Test 12.
3. Press the START PAT GEN key followed by the START ACQ key.
4. Verify that the test triggers and displays the repeating pattern in Figure 5-20.


Figure 5-20. State Table display for Functional Test 12.

\section*{DEMUX MODE TEST}
(13) DEMUX MODE Test

NOTE
Since the trigger word is set to DON'T CAREs \((X X X X X X)\), the number of sequences displayed in the State Table may vary.

This test:
- Verifies internal clock circuit ICs U731B, U748A, U921A, and U535A,B, and U538A. These ICs are all found on 91A24 schematic 78.
- Verifies the input multiplexing circuit consisting of U758 (91A24 schematic 68, 91AE24 schematic 79), U218D (91A24 schematic 72, 91AE24 schematic 83), and U121 (91A24 schematic 72, 91AE24 schematic 83).

To run this test:
1. Remove pod \(B\) probe from the 91 A 24 module under test.
2. Press the START PAT GEN key followed by the START ACQ key.
3. Verify that pod \(B\) acquires all zeros.
4. Change the ACQUIRED FROM field (in the Clock Specification sub-menu) from POD \(1 \mathrm{~A} / 1 \mathrm{~B}\) to POD 1A.
5. Press the START PAT GEN key followed by the START ACQ key.
6. Verify that the test triggers and the data matches Figure 5-21.

\section*{ARMS MODE TEST}

\section*{(14) 91A24 ARMS 91A08}

This test verifies that the 91A24 module can successfully arm a 91A08 module. Verifying the arming function for the 91A08 also verifies it for 91A04-type modules.
1. Connect the probes and modules as shown in Figure 5-22. This setup adds the 91A08 to the setup given at the beginning of the Functional Check section (shown in Figure 5-3). The connections between the 91A24, the 91P16, the 91P32, and their probes are unchanged.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
STATE TAELE \\
POD 3B \\
TRIG \(=\) \\
\(\mathrm{SRCH}=\)
\end{tabular} & O
88
88 & LAY:
88
88
XX & ACOUISTTITN

88
88 & \[
\begin{aligned}
\text { COMPARE: } \begin{aligned}
\text { START SEQ } \\
\text { STOP SER }
\end{aligned}
\end{aligned}
\] & 511 \\
\hline SEQ & A & B & C & & \\
\hline  & 88 & 88 & 88 & & \\
\hline 509 & AA & AA & A \({ }^{\text {a }}\) & & \\
\hline 510 T & 88 & 88 & 88 & & \\
\hline 511 & An & Af & Ah & & \\
\hline 512 & 88 & 88 & 88 & & \\
\hline 513 & AA & AA & AA & & \\
\hline 514 & 88 & 88 & 88 & & \\
\hline 515 & A \({ }^{\text {A }}\) & A & A \({ }^{\text {A }}\) & & \\
\hline 516 & 88 & 88 & 88 & & \\
\hline 517 & A \(A\) & AA & Af & & \\
\hline 518 & 88 & 88 & 88 & & \\
\hline 519 & Af & AA & Af & & \\
\hline 520 & 88 & 88 & 88 & & \\
\hline 521 & Af & AA & Af & & \\
\hline 522 & 88 & 88 & 88 & & \\
\hline 523 & Af & AA & Af & & 4541-303 \\
\hline
\end{tabular}

Figure 5-21. State Table display of Functional Test 13.


Figure 5-22. Test equipment setup for Functional Test 14.
2. Enter the Trigger Specification menu. Select 91A24 ARMS 91A08 mode. Change the menu to match Figure 5-23.


Figure 5-23. Trigger Specification menu setup for Functional Test 14.
3. Enter the Clock Specification sub-menu. Change the value in the 91A24 CLOCK field to \(2 \mu \mathrm{~S}\).
4. Enter the Pattern Generator menu. Change the field values to match those shown in Figure 524, and enter the pattern generator program as shown.


Figure 5-24. Pattern Generator menu setup for Functional Test 14.
5. Press the START SYSTEM key. Verify that the data matches the State Table display shown in Figure 5-25. It may be necessary to make multiple acquisitions before you will obtain matching data. When the data matches, press the STORE key.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{STATE TABLE DISPLAY: GCOUSSITIM:} & \[
\begin{aligned}
& \text { COAPARE: START SEA } \\
& \text { STOP SEA }
\end{aligned}
\] & \(\frac{17}{73}\) \\
\hline \[
\begin{aligned}
& \text { TRIG }= \\
& \text { SRCH }=
\end{aligned}
\] & & 82 & & FF & & \\
\hline SEQ & A & B & \(¢\) & 0 & & \\
\hline 15 & & & & 02 & & \\
\hline 16 & 82 & 02 & 02 & 02 & & \\
\hline 17 & & & & 04 & & \\
\hline 18 & 04 & 04 & 04 & 04 & & \\
\hline 19 & & & & 08 & & \\
\hline 20 & 08 & 08 & 08 & 08 & & \\
\hline 21 & & & & 10 & & \\
\hline 22 & 10 & 10 & 10 & 10 & & \\
\hline 23 & & & & 20 & & \\
\hline 24 & 20 & 20 & 28 & 28 & & \\
\hline 25 & & & & 40 & & \\
\hline 26 & 40 & 49 & 40 & 40 & & \\
\hline 27 & & & & 80 & & \\
\hline 28 & 80 & 80 & 80 & 80 & & \\
\hline 29 & & & & FF & & \\
\hline 36 & FF & FF & FF & FF & & 4541-307 \\
\hline
\end{tabular}

Figure 5-25. State Table display for Functional Test 15.
6. Press the COMPARE = key. When the acquisition memory equals the reference memory, the DAS exits the COMPARE \(=\) function, and the test passes. If the test fails, check the implementation of both 91A08 and 91A24 module hardware modifications.

To add the 91A08 to the original functional check setup (Figure 5-3), follow these steps:
a. Install a 91 A 08 module in slot 6 .
b. Connect a P6452 Data Acquisition Probe to the 91 A08 pod A.
c. Connect this P6452 to the P6455 from pod B of the 91P16.

Since the P6452 probe is already connected to the P6460 from pod A of the 91A24, you will need to connect the new probe to the exposed portions of the square-pin connector joining the P6455 and the P6460. To do so, put grabber tips on the P6452 leads, then connect the leads color-to-color (e.g., white-to-white, etc.).

\section*{ADJUSTMENT PROCEDURES}

\section*{INTRODUCTION}

This section contains procedures for adjusting the 91A24 and 91AE24 Data Acquisition Modules so that they meet or exceed performance specifications. All three of the adjustments can be used on either module. If the modules cannot be made to meet specifications by using these procedures, repair is necessary.

NOTE
Before adjusting any module, verify that the \(+12 V\) supply on the Main Power Supply board meets specifications. Directions for this check are given in the Verification and Adjustment Procedures section of the DAS Service Manual. Having the +12 V supply out of adjustment can cause intermittent failures.

The adjustments covered in this section include the power-up tests, the DAC adjustment, and the write-enable adjustment.

\section*{EQUIPMENT SETUP}

The adjustments require the test equipment listed in Table 5-6.
Table 5-6
EQUIPMENT NEEDED FOR THE ADJUSTMENT PROCEDURES
\begin{tabular}{l|l|l}
\hline Equipment & Specifications & Equivalent Tektronix Equipment \\
\hline \hline DAS Mainframe & No substitute allowed & \\
\begin{tabular}{l} 
91A24 Data Acquisition \\
Module
\end{tabular} & No substitute allowed & \\
91AE24 Data Acquisition & No substitute allowed & \\
Module (Optional) & & \\
\begin{tabular}{l} 
DAS 9100 Series Service \\
Maintenance Kit (for extend- \\
er board)
\end{tabular} & No substitute allowed & Tektronix P/N 067-0980-00 \\
\begin{tabular}{l} 
91A24 Interconnect Cable \\
Assembly, \(28 \mathrm{~cm}(11\) in.) (7 \\
required)
\end{tabular} & No substitute allowed & Tektronix P/N 175-8166-00 \\
Oscilloscope & & \\
Oscilloscope probe & Dual trace, 100 MHz & 465 \\
Digital Multimeter (DMM) & \(0.05 \%\) dc V accuracy & DM 501A (with TM 500 \\
& & mainframe) \\
\hline
\end{tabular}

\section*{ADJUSTMENTS}

\section*{Power-up Tests}

The power-up tests:
- Verify that all power supplies are operating within limits.
- Verify +3 volt supply parts U904 (91A24 schematic 78 and 91AE24 schematic 87) and Q901 (91A24 schematic 78, 91AE24 schematic 87).
- Verify Q951 (91A24 schematic 77, 91AE24 schematic 87 ) of the +4.5 volt supply.
- Verify DAC potentiometer R103 (91A24 schematic 71, 91AE24 schematic 82).
- Verify that Q902 (91A24 schematic 72, 91AE24 schematic 83) and U808B (91A24 schematic 72, 91AE24 schematic 83) are operating properly for Vbb.
1. Install the 91A24 on an extender board. If you are testing a 91 AE24, put it on an extender board as well.
2. Check that all power supplies are within the tolerances indicated in Table 5-7. There are useful ground test points near the following ICs: above U718, U441, and U591; and under U261.

Table 5-7
POWER SUPPLY VOLTAGE CHECK
\begin{tabular}{c|l|c}
\hline Voltage & Measured at & \multicolumn{1}{|c}{ Limits } \\
\hline \hline & top of C901 \((+)\) & \(2.80-3.20\) \\
+3 & U938, pin 20 & \(4.30-40\) \\
+5 & any IC Vcc & \(4.85-5.70\) \\
+5 & R526-1 & \(5.82-6.18\) \\
+6 & R103, pin 3 & \(11.82-12.82\) \\
+12 & R103, pin 1 & \(-10.80-13.20\) \\
-12 & U904, pin 4 & \(-4.85-5.15\) \\
-5 & Q902 emitter & 3.7 \\
\hline
\end{tabular}

\section*{DAC Adjustment}

\section*{(91A24 Diagnostic Function 6) (91AE24 Diagnostic Function 4)}

The DAC adjustment test verifies proper operation of the DAC IC U918, op amps U808, U711, and their associated components (91A24 schematic 71, 91AE24 schematic 82).
1. Enter the Diagnostics menu by powering-down the DAS, then powering-up again while holding down any key.
Select SINGLE mode and test function 6 in the DAS Diagnostics menu.
2. Press START SYSTEM.
3. Verify that the DAC test menu selection is set to 0.00 volts.
4. Connect the DMM black lead to ground and the positive lead to TP910 (91A24 schematic 71, 91AE24 schematic 82).
5. Adjust R103 (91A24 schematic 71, 91AE24 schematic 82) for a DMM reading of 0.00 volts.
6. Change the DAC test menu selection to +6.40 volts.
7. Adjust R110 ( 91 A24 schematic 71, 91AE24 schematic 82 ) until the DMM reads +6.40 volts.
8. Move the DMM positive lead to test points 707,711 , and 808 , and verify that the DMM reading is -6.40 volts \(( \pm 50 \mathrm{mV})\).
9. Change the DAC menu selection to -6.35 V and verify that the measurements in step 8 are \(-6.35 \mathrm{~V}( \pm 50 \mathrm{mV})\).
10. Connect the oscilloscope probe to TP910 and ground. Set the oscilloscope to:
\[
\begin{gathered}
\text { TIME BASE }-10 \mathrm{~ms} / \mathrm{div} . \\
\text { CH. } 1-2 \mathrm{~V} / \mathrm{div} . \\
\text { TRIGGER }- \text { AUTO }
\end{gathered}
\]

Press the SELECT key until the menu displays ramping.
11. Verify a linear ramp on the scope display. This verifies that all DAC input values can be programmed.
12. Press the STOP key.
13. Remove all DMM and scope probes.

\section*{Write-Enable Adjustment}

The write-enable test verifies that 'MASTER CLOCK III' gets through U468-11,10 to the pulseshaper circuit made up of U468-13,12, Q465, C468, and U578-1,2,3. The pulse must also pass through U475-4,5,6 to reach the storage RAM-select pin 8 of U141, U145, U241, U245, U441, and U445.

NOTE
All parts specified in this write-enable adjustment can be found on 91A24 schematic 73, 91AE24 schematic 84.
1. Remove all probes from the 91A24 module.
2. Press the Trigger Specification menu key.
3. In the 91A24 Trigger Specification menu, set the first level of the sequential word recognizer to FX XX XX. Press the START SYS key.
4. Verify that the display shows WAITING FOR 91A24 LEVEL: 1.
5. Connect a scope probe to TP465 and ground.
6. Adjust C 468 for a 45 ns wide negative-going pulse at the 1.4 volt level.
7. Press the STOP key and verify that acquired data is all zeros.
8. Remove the scope probe.

\section*{PERFORMANCE CHECK}

These procedures check the performance specifications for a 91A24 or 91AE24 module. You will need to run these tests once for each 91A24 or 91AE24 module you have installed. All tests in this section apply to both 91A24 and 91AE24 modules, although the setups differ slightly.

Completing all the 91A24/91AE24 performance check procedures verifies that the 91A24/91AE24 system can:
- acquire synchronous data at speeds up to 10 MHz ( 20 MHz in demultiplexing mode), and
- consistently store data with 25 ns setup and 0 ns hold times with TTL-level data.

You need the following equipment to complete this performance check procedure:
- DAS mainframe with:

91A24 in slot 1
(optional) 91AE24 in slot 2
four P6460 Probes with leads and grabber tips (three probes if you are only testing a 91A24 and no 91AE24s)
- TM 504 Mainframe with:
one digital multimeter
one 250 MHz pulse generator
one 50 MHz pulse generator
one Set-Up and Hold Time Test Fixture

NOTE
No more than four TM 504 mainframe slots are required for any single test.
- Dual-trace 100 MHz oscilloscope and probes
- Connectors:
three 10-inch BNC cables
three BNC T fittings
two probe-to-BNC adapters
three 10 -wide square pin connectors
(optional) one 10 -wide comb and harmonica connector lead set per probe

\section*{PERFORMANCE CHECK SETUP PROCEDURE}

Figures 5-26 and 5-27 show the basic equipment setup you need to begin the performance check. Detailed connection instructions follow.

\section*{Equipment Setup}
1. Connect the 50 MHz pulse generator to the Setup and Hold Time Test Fixture as follows:
a. Attach a BNC T connector to the TRIG GATE IN connector of the 50 MHz pulse generator.
b. Connect one end of a 10 inch piece of coax cable to one arm of the BNC T connector on the pulse generator, and the other end to the CLOCK IN connector of the test fixture.
2. Connect the 250 MHz pulse generator to the 50 MHz pulse generator as follows:
a. Connect a second BNC T adapter to one arm of the first BNC T (connector 1 in Figure 526).
b. Connect a probe tip adapter to one arm.
c. Connect one end of a 10 inch piece of coax to the remaining free arm of the second BNC T, and the other end of the coax to the OUTPUT connector of the 250 MHz pulse generator.
b. Connect the base of the second BNC T adapter to the free arm of the first BNC T adapter (on the 50 MHz pulse generator).
3. Connect a third BNC T adapter to the OUTPUT connector on the 50 MHz pulse generator. Attach one end of a length of coax to one arm of the BNC and the other end to the EXT DELAY connector of the test fixture. Attach a probe tip adapter to the free arm of the BNC T adapter.
4. Attach the oscilloscope probe from channel 1 to the probe tip adapter on the doubled BNC connector (connector 2 in Figure 5-26).
5. Attach the oscilloscope probe from channel 2 to the probe tip adapter on the single BNC connector (connector 3 in Figure 5-26).


Figure 5-26. 91A24 performance check test equipment connections. The three BNC T connectors are numbered to help you distinguish between them in the detailed connection instructions given under Equipment Setup.


Figure 5-27. 91AE24 performance check test equipment connections. The three BNC \(T\) connectors are numbered to help you distinguish between them in the detailed connection instructions given under Equipment Setup.

\section*{Waveform Adjustments}
1. Set up the 250 MHz pulse generator to display the waveform shown in Figure 5-28. This will be displayed on channel 1 of the oscilloscope.

If you are using a Tektronix PG 502, set the controls as follows:
\begin{tabular}{ll} 
Pulse duration & \(-\quad\) SQ. WAVE \\
Period & \(-0.1 \mu \mathrm{~S}\) \\
Output level & -2 volts p-p around ground \\
Back term & - OUT \\
NORM & - OUT \\
Variables & -
\end{tabular}
2. Set up the 50 MHz pulse generator to display the waveform shown in Figure 5-29. This will be displayed on channel 2 of the oscilloscope.


Figure \(\mathbf{5 - 2 8}\). \(\mathbf{2 5 0} \mathbf{M H z}\) pulse generator waveform.


Figure \(\mathbf{5 - 2 9 .} \mathbf{5 0} \mathbf{M H z}\) pulse generator waveform.

If you are using a Tektronix PG 508, set the controls as follows:
\begin{tabular}{|c|c|c|}
\hline Period & - & \(0.2 \mu \mathrm{~S}\) \\
\hline Delay & - & 10 nS \\
\hline Duration & - & 10 nS \\
\hline Mode & - & Delay \\
\hline Triggering & - & Slope + Sync gate \\
\hline Transition Time & - & 5 nS \\
\hline leading & - & X 1 \\
\hline trailing & - & X1 \\
\hline Duration var & - & See Preliminary Equipment Adjustments below \\
\hline Output Volts & - & Low level/High level: 2V p-p around GND COMP \\
\hline & & Var \\
\hline Trig Gate In & - & Internally set to \(50 \Omega\) \\
\hline
\end{tabular}

\section*{NOTE}

When you are using the PG 508, adjust the TRIG/GATE LEVEL until the TRIG'D GATED LED flickers. When the LED is not flickering, no pulse is being generated.
3. Set up the Setup and Hold Time Test Fixture as follows:
a. Press in the EXT DELAY button.
b. Connect P6460 probes to the Setup and Hold Time Test Fixture as follows:

91A24: Connect three P6460 probes from pods A, B, and C of the 91A24 to the AA-55 pattern pins on the lower three connectors. Connect the white clock lead from the P6460 probe in pod \(A\) to one of the clock \(\int\) output pins. Connect the gray qualifier lead from the same P6460 to bit 7 of the bottom (AA-55 pattern) row of the top data source connector.

Connect the USR GRND leads from all P6460 probes to the ground lug on the test fixture.
See Figure 5-26 for 91A24 connections.
91AE24: Connect three P6460 probes from pods \(A, B\), and \(C\) of the 91 AE24 to the AA-55 pattern pins on the lower three connectors.

Connect a fourth P6460 probe from the 91A24 module (pod A) to the test fixture by connecting the white clock lead from the 91A24 probe to one of the clock \(\lceil\) output pins.

Connect the USR GRND leads from all P6460 probes to the ground lug on the test fixture.
See Figure 5-27 for 91AE24 connections.
4. Set up the dual-trace, 100 MHz oscilloscope to display the Setup and Hold Time Test Fixture clock and data. Since you have no input yet, these traces will be flat.

If you are using a Tektronix 485, set the controls as follows:
\begin{tabular}{ll} 
CHANNEL 1 & \(-500 \mathrm{mV} /\) div. \\
GND & -1.4 V above center graticule \\
CHANNEL 2 & \(-1 \mathrm{~V} /\) div. \\
\(\quad\) GND & -1.4 V above center graticule \\
TRIGGER MODE & - Channel 2 \\
DISPLAY MODE & - Alt. \\
TIME BASE & \(-10 \mathrm{nS} / \mathrm{div}\).
\end{tabular}

\section*{Preliminary Equipment Adjustments}
1. Disconnect the oscilloscope probes from the pulse generators.
2. Connect the oscilloscope grounds to the test fixture ground lug.
3. Using probe tip adapters, connect the oscilloscope probes to the Setup and Hold Time Test Fixture as indicated below:
\[
\begin{array}{ll}
\text { CH } 1 & \text { CLK } \varsigma \\
\text { CH } 2 & \text { - Bit } 0 \text { of the top data source connector (AA-55 pattern) }
\end{array}
\]
4. Adjust channel 1 for a 25 ns positive pulse width using the PG 508 DURATION variable control.
5. Adjust the PG 508 DELAY variable so that the rising edge of channel 1 occurs 25 ns after the rising edge of channel 2 .
Figure \(5-30\) shows this waveform at \(50 \mathrm{~ns} / \mathrm{dv}\); Figure \(5-31\) shows the same waveform at 10 ns/div.


Figure 5-30. 100 MHz oscilloscope waveform for step 5 of the performance check (time base \(=50 \mathrm{~ns}\) ).


Figure 5-31. 100 MHz oscilloscope waveform for step 5 of the performance check (time base \(=10 \mathrm{~ns}\) ).
6. Readjust the 50 MHz pulse generator duration if necessary.
7. Set up the DAS as follows:
a. Power the DAS down, then up.
b. Enter the Channel Specification menu and change the threshold setting to -1.3 V .
c. Enter the Trigger Specification menu. If you are testing a 91A24, change word recognizer \#1 to AX XX XX. If you are testing a 91AE24, change word recognizer \#1 to AXXX XXXX XXXX.
d. Enter the Clock Specification sub-menu and select EXT CLK.
e. Change all clock expressions to (CLKA 」 * QA).
f. Enter the State Table menu and change the START SEQ field value to 14.
8. Press the START ACQUISITION key. You should acquire only AAs.
9. Press the STORE key.

\section*{SETUP AND HOLD TESTS}

To test setup and hold times on a 91A24 or 91AE24 module，you will need to perform six tests． These tests are summarized in Table 5－8．The initial test connections for a 91A24 module are shown in Figure 5－26；initial connections for a 91AE24 are shown in Figure 5－27．

For each of the six tests：
－make the connections and menu expression changes listed in Table 5－8，
－make any probe connection changes indicated under the numbered test directions，then
－follow the procedure listed under Setup and Hold Test Sequence．

Table 5－8
SETUP FOR SETUP AND HOLD TESTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test \({ }^{1}\) & \multicolumn{2}{|l|}{91A24 Clock Menu Expression \({ }^{2}\) （for all pod clocks：A，B，C）} & \[
\begin{gathered}
\mathrm{S} \& \mathrm{HC} \\
\text { CLK }
\end{gathered}
\] & nections QUAL \({ }^{3}\) & \begin{tabular}{l}
91A24 \\
Master Clock
\end{tabular} \\
\hline 1．Pod A Clock \(\rfloor\) & CLKA 」 & ＊QA & 」 & bit 7 & A \\
\hline 2．Pod A Clock［ & CLKA \({ }^{\text {L }}\) & ＊／QA & I & bit 6 & A \\
\hline 3．Pod B Clock 」 & CLKB 」 & ＊QA & 」 & bit 7 & B \\
\hline 4．Pod B Clock l & CLKB \({ }^{\text {l }}\) & ＊／QA & L & bit 6 & B \\
\hline 5．Pod C Clock \(」\) & CLKC 」 & ＊QA & 」 & bit 7 & C \\
\hline 6．Pod C Clock l & CLKC l & ＊／QA & L & bit 6 & C \\
\hline
\end{tabular}
\({ }^{1}\) The pod indicated in the Test column indicates which pod＇s clock and qualifier are used in that test（e．g．，use the clock and qualifier from the probe in pod \(A\) to run test 1）．
2 Enter the indicated clock expression for all three pod clocks（A，B，and C）．
\({ }^{3}\) Connect the gray qualifier lead from the P 6460 probe to bit 7 or 6 （as indicated for each test）of the AA－55 row of the top data source connector on the Setup and Hold Time Test Fixture．

\section*{Test 1：Pod A Clock 」}

Set all pod clock values in the DAS Clock Specification sub－menu to match the clock expression shown for test 1 in Table 5－8．Make the indicated connections to the test fixture．Follow the test sequence．

\section*{Test 2：Pod A Clock \(\\)}

Set all pod clock values in the DAS Clock Specification sub－menu to match the clock expression shown for test 2 in Table 5－8．Make the indicated connections to the test fixture．Follow the test sequence．

\section*{Test 3: Pod B Clock 」}

91A24: At the 91A24 module, swap the probes in pods \(A\) and \(B\).
91AE24: Leave the probes as initially set up. Set all pod clock values in the DAS Clock Specification sub-menu to match the clock expression shown for test 3 in Table 5-8. Make the indicated connections to the test fixture. Follow the test sequence.

\section*{Test 4: Pod B Clock \(\\)}

Leave the probes as set up for test 3. Set all pod clock values in the DAS Clock Specification submenu to match the clock expression shown for test 4 in Table 5-8. Make the indicated connections to the test fixture. Follow the test sequence.

\section*{Test 5: Pod C Clock 」}

91A24: At the 91A24 module, swap the probe in the pod A connector with the probe in the pod \(C\) connector.

91AE24: Leave the probes as initially set up. Set all pod clock values in the DAS Clock Specification sub-menu to match the clock expression shown for test 5 in Table 5-8. Make the indicated connections to the test fixture. Follow the test sequence.

\section*{Test 6: Pod C Clock \(]\)}

Leave the probes as set up for test 5 . Set all pod clock values in the DAS Clock Specification submenu to match the clock expression shown for test 6 in Table 5-8. Make the indicated connections to the test fixture. Follow the test sequence.

\section*{Setup and Hold Test Sequence}
1. Press the COMPARE \(\neq\) key and verify that the module restarts.
2. Press the TH OnS button on the test fixture and verify that the module continues to restart.
3. Press the STOP key.
4. Press in the EXT DELAY button on the test fixture.

\section*{MUX MODE TEST}
1. Reconnect all probes to the 91A24 as follows:
a. Connect the 91A24 pod A probe to the DAS and to the AA-55 pins of the data output port third up from the bottom on the Setup and Hold Time Test Fixture.
b. Connect 91A24 pods B and C probes to the DAS and to the AA-55 pins of the two lower data output ports on the Setup and Hold Time Test Fixture. Connect the 91A24 pod A lead set CLK lead (white) to the CLK \(\int\) top data source connector on the test fixture.
c. Connect the USER GND on all P6460 probes to the ground lug on the test fixture.
2. Enter the 91A24 Clock Specification sub-menu, and change all pod clock expressions to CLKA 」.
3. Change the Master Clock field to POD A.
4. Enter the 91A24 Trigger Specification sub-menu. Move the cursor to LEVEL 1 word recognizer and enter AX XX XX.
5. Press the START ACQ key. The DAS should acquire a repeating AA-55 pattern.
6. Acquire data until the data shows the AA-55 pattern, then press the STORE key.
7. Remove the P6460 from pod B.
8. Press the START ACQUISITION key and verify that the test triggers. Also verify that pod B data is all zeros while the other pods show AA-55 patterns.
9. Enter the 91A24 Clock Specification sub-menu. Change the ACQUIRED FROM field from \(1 A / 1 B\) to \(1 A\).
10. Press the COMPARE \(\neq\) key and verify that the system restarts.
11. Press the TH Ons button on the test fixture and verify that the module continues to restart.
12. Press the STOP key on the DAS.
13. Disconnect all test equipment.

\section*{MAINTENANCE: GENERAL INFORMATION}

Tektronix maintains repair and recalibration facilities at its local Field Service Centers and the Factory Service Center. For further information or assistance, contact your local Tektronix Field Office or representative.

\section*{SPECIAL 91A24 MAINTENANCE INFORMATION}

\section*{INSTALLING OR REMOVING INSTRUMENT MODULES}

See the Operating Instructions portion of this addendum for instructions on installing or removing 91A24 and 91AE24 modules.

\section*{USING EXTENDER BOARDS}

To operate a 91AE24 module on an extender board you need 11-inch interconnect cables to connect the 91AE24 module to the 91A24 module. These long interconnect cables are included as part of the Service Maintenance Kit. They can also be ordered separately.

\section*{GENERAL MAINTENANCE PRECAUTIONS}

The maintenance procedures for 91A24/91AE24 modules and the P6460 and P6462 probes are similar to the procedures for any other DAS module or probe. Refer to the DAS 9100 Series Service Manual for general maintenance procedures and precautions.

\section*{SOLDERING}

Most of the components in the instrument are soldered in place. If it is necessary to replace a soldered part, use a 15 W soldering iron to prevent heat damage to the circuit board or components. Excessive heat will lift circuit runs on the circuit board.

The flux in the solder may leave a residue on the circuit board that can provide a high resistance leakage path and affect instrument operation. Be sure to clean off this residue. Isopropyl alcohol is effective.

\section*{STATIC PRECAUTIONS}


Static discharge can damage any semiconductor in this instrument.
This instrument contains electrical components that are susceptible to damage from static discharge. See Table 6-1 for the relative susceptibility of various classes of semiconductors. Static voltages of \(1-30 \mathrm{kV}\) are common in unprotected environments.

\section*{Observe the following precautions to avoid damage:}
1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers, on a metal rail, or on conductive foam. Label any package that contains static-sensitive components or assemblies.
3. Discharge the static voltage from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies should be performed only in a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by the body, never by the leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only special anti-static suction-type or wick-type desoldering tools.

NOTE
Damage to electrical components may not be immediately apparent. Always follow the precautionary measures listed above when handling static-sensitive components.

Table 6-1
RELATIVE SUSCEPTIBILITY OF SEMICONDUCTORS TO STATIC DISCHARGE DAMAGE
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Semiconductor Class } & Danger Voltage \(^{\text {a }}\) \\
\hline \hline MOS or CMOS & \(100-500 \mathrm{~V}\) \\
ECL & \(200-500 \mathrm{~V}\) \\
Schottky signal diodes & 250 V \\
Schottky TTL & 500 V \\
High-frequency bipolar transistors & \(400-600 \mathrm{~V}\) \\
JFETs & \(600-800 \mathrm{~V}\) \\
Linear microcircuits & \(400-1000 \mathrm{~V}\) \\
Low-power Schottky TTL & 1200 V \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Voltage discharged from a 100 pF capacitor through a resistance of \(100 \Omega\).

\section*{TEST EQUIPMENT REQUIRED FOR MAINTENANCE}

Test equipment required to service the instrument is listed under Troubleshooting Equipment in the Maintenance: Troubleshooting section of this manual.

\section*{TOOLS REQUIRED FOR MAINTENANCE}

The following tools are those most often needed when servicing the instrument:
Table 6-2
TOOLS REQUIRED FOR MAINTENANCE
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Tool } & Tektronix Part No. \\
\hline \hline & \\
1. Soldering iron, (15 W) & \\
2. Rosin core solder, \(60 / 40\) & \\
3. Isopropyl alcohol & \\
4. Lint-free dust cloth & \\
5. Soft-bristle brush & \\
6. IC extractor & \\
7. Desolder tool & \\
8. Solder wick & \\
9. Magnetic screwdrivers, 7 inch shank and 4 inch shank & \\
10. PoZIDRIV-type magnetic bits, 2 inch and 1 inch & \(003-0866-00\) \\
11. TORX-type magnetic bit, size T-20 & \\
12. Angled tweezers, 6 inch & \\
13. Long-nose pliers & \\
14. \(1 / 4\) inch combination open/box wrench & \\
15. Plastic alignment tool, 5 inch & \\
16. Fiber adjustment tool, 9 inch & \\
17. Open-end wrench, \(7 / 16\) inch \\
18. Allen wrenches, 0.050 inch, \(1 / 16\) inch and \(5 / 64\) inch & \(214-3154-00\) \\
19. Circuit board ejector & \\
\hline
\end{tabular}

\section*{MAINTENANCE: TROUBLESHOOTING}

Tektronix maintains repair and recalibration facilities at its local Field Service Centers and the Factory Service Center. For further information or assistance, contact your local Tektronix Field Office or representative.

\section*{HOW TO USE THIS SECTION}

\section*{WARNING}

Read the troubleshooting precautions before using any of the troubleshooting procedures provided in this section.

This section contains troubleshooting information for the 91A24 and 91AE24 Data Acquisition modules. Most of the troubleshooting procedures rely on the self-diagnostics.

If you are not familiar with the DAS Diagnostics menu, read the description of it later in this section.
The self-diagnostics progressively test each module. The diagnostics test the smallest possible failure area first and gradually expand to test as much of the module as possible. Therefore, the first diagnostic test to fail will have isolated a small number of possible component failures.

Troubleshooting Procedures. To troubleshoot a module:
1. Enter the Diagnostics menu and turn on LOOPING.
2. Run the diagnostics on the suspect module. Stop when you reach the first function failure.
3. Note the failed function name and test number. Then look up the failed module, function, and test number in the Table of Contents at the front of this addendum. The page number indicated has the desired troubleshooting information.
4. Turn to the page indicated and follow the instructions given there.

Diagnostic Descriptions. Detailed descriptions of the diagnostic tests follow the corresponding troubleshooting information. The descriptions are useful when a diagnostic test has failed, but the troubleshooting information has not diagnosed the problem. In these situations, use the test description to understand how the diagnostic test works and perform your own diagnosis.

\section*{TROUBLESHOOTING PRECAUTIONS}

\section*{INTERNAL INSTRUMENT ACCESS}

\begin{abstract}
WARNING

Electric shock hazards inside the DAS mainframe may be exposed when protective covers are removed.
\end{abstract}

\section*{SOLDERING}

Most of the components in the instrument are soldered in place. If it is necessary to replace a soldered part, use a 15 W soldering iron to prevent heat damage to the circuit board or components. Excessive heat will lift circuit runs on the circuit board.

The flux in the solder may leave a residue on the circuit board that can provide a high-resistance leakage path and affect instrument operation. Be sure to clean off this residue with isopropyl alchohol or a similar solvent.

\section*{STATIC DISCHARGE DAMAGE}

Most of the devices in the DAS are static-sensitive and may be damaged by improper handling. See Table 7-1 for the relative susceptibility of various classes of semiconductors. Static voltages of 1 to 30 kV are common in unprotected environments.

Table 7-1
RELATIVE SUSCEPTIBILITY OF SEMICONDUCTORS TO STATIC DISCHARGE DAMAGE
\begin{tabular}{l|c}
\hline Semiconductor Class & Danger Voltage \(^{\text {a }}\) \\
\hline \hline MOS or CMOS & \(100-500 \mathrm{~V}\) \\
ECL & \(200-500 \mathrm{~V}\) \\
Schottky signal diodes & 250 V \\
Schottky TTL & 500 V \\
High frequency bipolar transistors & \(400-600 \mathrm{~V}\) \\
JFETs & \(600-800 \mathrm{~V}\) \\
Linear microcircuits & \(400-1000 \mathrm{~V}\) \\
Low-power Schottky TTL & 1200 V \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Voltage discharged from a 100 pF capacitor through a resistance of \(100 \Omega\).
}

\section*{TROUBLESHOOTING EQUIPMENT}

The following equipment, or equivalent, is recommended for troubleshooting the DAS 91A24 and 91AE24 modules:
- A DAS Mainframe.
- DAS 9100 Series Service Maintenance Kit (see the optional accessories list in under Optional Accessories in the Introduction and Specifications section for the part number).
- A two-channel oscilloscope and two probes. The scope and probe bandwidth should be at least 100 MHz .
- A 250 MHz pulse generator with variable pulse width and period (for example, the Tektronix PG502 Pulse Generator).
- A 3.5 digit, \(1 \%\) accuracy digital multimeter (for example, a Tektronix DM 502A Digital Multimeter).
- A variable voltage source.
- A logic analyzer is required to troubleshoot some bus problems.

\section*{TROUBLESHOOTING AIDS}

The DAS contains a set of self-diagnostic tests. These tests can be used by the troubleshooter to isolate the section of a circuit board that failed, and in some instances, to indicate the specific component at fault.

The self-diagnostics are the basis for most of the troubleshooting information provided in this section. How to use and access this troubleshooting information is discussed at the beginning of this section.

As an additional troubleshooting aid, schematics for the 91A24 and 91AE24 modules show the signal flow of the self-diagnostics with colors. For information on how to use the color coding on the schematics, refer to the introduction to the Diagrams section.

\section*{THE DIAGNOSTICS MENU}

DAS diagnostics information is presented in two menus: the power-up display and the Diagnostics menu.

The DAS self-diagnostics are only accessible when the power-up display shows that one of the modules has failed the power-up diagnostics. The power-up diagnostics are a limited number of brief functional tests that are run whenever the DAS is powered up. These tests verify the basic functions of the DAS, but are not comprehensive.

A module in the DAS can fail in such a way that the power-up diagnostics do not detect the failure. To access the self-diagnostics in this situation, the operator can induce a power-up diagnostic failure from the keyboard by holding down any key on the keyboard (other than SHIFT or START) from the time the DAS is turned on until the power-up diagnostics are finished.

When the power-up diagnostics fail, the power-up display should be similar to Figure 7-1. To enter the Diagnostics menu, press the START SYSTEM key.

NOTE
Do not press any key other than START SYSTEM. If you do, you may leave the power-up display and lose access to the Diagnostics menu. The diagnostics are only accessible when the power-up display shows a failure (or over GPIB).

TEKTRONIX DAS 9100 SELF TEST IN PROGRESS
FIRMWARE UERSION 1.11

\section*{COMFICIRATIOM:}

SLOT 0 CONTROLLER PASS
SLOT 1 gIA 2424 CHARNEL /BOENS ACQUISITION MODULE UI FAIL D
SLOT 2 91AE24 24 CHANNEL /IOERS ACQUISITION MODULE PASS
SLOT 3
SLOT 4
SLOT 5
SLOT 6 91A08 8 CHANNEL / IOnS ACOUISITION MOOULE PASS
SLOT 7 TRIGGER / TIME BASE PASS
SLOT 8 I/O OPTION

PRESS: START SYSTEM TD ENTER DIAGNOSTICS.
DON'T CARE TO BEGIN OPERGTION.

Figure 7-1. Failure in the power-up self test.

When first entered, the Diagnostics menu should look similar to Figure 7-2. The Diagnostics menu is controlled by the cursor keys, the SELECT key, and the data entry keys.

All changeable fields in the menu are shown in reverse video. Change fields by moving the blinking screen cursor into the field to be changed. Move the cursor by pressing the up, down, right, and left cursor arrows, and the NEXT key. Change the field value by using the SELECT key, or by entering a hexadecimal value from the data entry keys.


Figure 7-2. Diagnostics menu.

After the menu is set to run the desired test, start the test by pressing the START SYSTEM key. Tests then stop themselves or can be stopped by pressing the STOP key.

Exit the Diagnostics menu may by pressing any menu selection key while no tests are running. This will display the selected menu on the screen. You cannot re-enter the diagnostics from the standard menus.

\section*{DIAGNOSTICS CONTROL SUMMARY}

In summary, the diagnostics are controlled in the following way:
- Force a power-up diagnostic failure by pressing and holding down a keyboard key immediately after the DAS is turned on.
- Press the START SYSTEM key to enter the Diagnostics menu.
- Change the reverse-video fields on the display to the desired values using the cursor control keys and the data entry keys.
- Press the START SYSTEM key to start the diagnostic test or function.
- The function will stop by itself, or you can press the STOP key to stop the function.
- To exit the Diagnostics menu, press a menu selection key while no tests are running. You must turn off or reset the DAS to re-enter the Diagnostics menu.

\section*{DIAGNOSTIC MENU FIELDS}

There are six user-changeable fields normally in the Diagnostics menu. All of these fields can apply to any diagnostic test. These fields and the procedures for changing them are described next. There may also be other changeable fields associated with individual functions. These unique fields are explained by the Diagnostics menu with prompting messages or field names.

\section*{MODULE}

Use this field to specify whether a single module or all of the modules are to be tested. You may set the field to a value of either SINGLE or ALL by using the SELECT key.

If the field is set to ALL, all modules in the DAS are run through a limited number of diagnostic functions. To keep the running time reasonable, not all of the diagnostic functions are run when ALL is selected to.

If the field is set to SINGLE, another field (SLOT) appears that allows the user to select the specific module to be tested. You can then run all available functions for that module.

\section*{SLOT}

This field appears when the MODULE field is set to SINGLE. Use the SLOT field to specify which individual module is to be tested. Specify the module by entering the module's slot number into the field.

\section*{MODE}

The MODE field appears when a bus-slot number is entered in the SLOT field. The MODE field specifies whether a single function or all of the module functions are to be tested. Use the SELECT key to set the MODE field to either SINGLE or ALL.

When the cursor moves into the MODE field, a list of module functions appears on the DAS screen. If the MODE field is set to ALL, all of these module functions will be tested.

If the MODE field is set to SINGLE, a new field (FUNCTION) appears that allows testing of individual functions.

\section*{FUNCTION}

The FUNCTION field appears when the MODE field is set to SINGLE. The FUNCTION field is used to specify which one of the displayed list of functions will be tested. Specify a function by entering its number into the FUNCTION field.

\section*{LOOPING}

\section*{NOTE}

When the DAS self-diagnostics are in looping mode, the signal at TP191 on the Trigger/Time Base assembly (slot 7) pulses low at the end of each execution of any diagnostic test in the DAS. Use this test point to trigger an oscilloscope or a logic analyzer.

The LOOPING field is always present and may be set either ON or OFF with the SELECT key. When the field is set to ON, the looping feature allows one test or a sequence of tests to be run continuously. If it is set to OFF, the selected function tests run once, then stop.

The DAS loops differently depending on other Diagnostics menu settings. If the MODULE field is set to ALL with looping on, the DAS tests all modules in the mainframe then goes back to the beginning to repeat the tests. This mode is useful for finding intermittent failures on some unknown module in the mainframe. When an error occurs, it is highlighted and remains on the screen. Errors remain displayed even if the same module passes during a later loop.

If the MODULE field is set to SINGLE, but the MODE field says ALL, then all functions on the selected module are tested repeatedly. The DAS behaviour is similar to looping on all modules.

If the MODE field says single, the DAS loops on a single test in the selected function. The looping sequence starts by running the first test in a function, test 0 . Press the SELECT key to advance to the next test. You can select any test in the function by pressing the SELECT key repeatedly.

\section*{DISPLAY}

The DISPLAY field only appears on the screen when the LOOPING field is set to ON and the MODE field is set to SINGLE. The field may be used to turn off the video screen refresh while a test is looping. This is useful when tracing signals with an oscilloscope, since it helps to stablize the oscilloscope's traces.

Use the SELECT key to set the DISPLAY field to ON or OFF. If the field is set to ON, the video screen display is present. If the field is set to OFF, the screen is blank.

NOTE
When the DISPLAY field is turned OFF, the test loop being run can only be terminated by pressing the STOP key or turning off power to the DAS.

When the DISPLAY field has been set to OFF and a test is being run, the following keys have these effects:
- Pressing STOP ends the test and returns the display to normal.
- Pressing SELECT displays the results of the previous test momentarily, then turns the display off and runs the next test.
- Pressing any key on the keyboard (except SHIFT) turns the display on momentarily.

If an error occurs while a diagnostic test is running and the DISPLAY field is set to OFF, the LOCKOUT and REMOTE indicators on the keyboard light up.

\section*{QUICK REFERENCE FUNCTION DESCRIPTIONS}

The following list briefly describes the diagnostic functions for the 91A24 and 91AE24 Data Acquisition modules. If functions are run individually, they should be run in the listed order under the module type. Only the functions for the module in question need be run.

There are a few diagnostic functions that do not have self-readback capability (digital-to-analog converter tests, for example). These tests require the technician to monitor test points while the test is running. Non-readback tests are indicated by an * (asterisk) after the test name.

The tests in each function can be selected individually only when the diagnostics are in a looping mode. For more information, refer to the description of LOOPING earlier in this section.

\section*{91A24}

CNTR TIMR. This function verifies that the Counter/Timer counters can be cleared, clocked, and read. Most of the circuitry tested by the CNTR TIMR function is on schematics 68 and 76.

MEM ADDR. This function verifies the operation of the memory address registers and the write enable generators. These tests check the circuitry that addresses the acquisition RAMs. Most of the circuitry tested by the MEM ADDR function is on schematics 69, 73, and 77.

ACQ MEM. This function verifies the address and data independence of the 91A24 acquisition memory, and checks associated write and readback circuits. The ACQ MEM function tests the RAMs that are used by the 91A24 to store acquired data. Most of the circuitry tested by the ACQ MEM function is on schematics 69,72 , and 73.

STK PNTR. This function verifies that the occurrence stack pointer (U571) can be loaded and clocked, and runs a memory test on the control stack RAM (U555). Most of the circuitry tested by the STK PNTR function is on schematics 75 and 76.

WRD REC. This function tests the 91A24 word recognizer by verifying the operation of the word recognition RAMs. Most of the circuitry tested by this function is on schematics 74 and 75.

OCCR CNTR. This function verifies that the occurrence counter can be loaded and clocked, and runs a memory test on the occurrence counter RAM. This function also tests the stack word recognizer trigger and the OR trigger. Most of the circuitry tested by this function is on schematics 74,75 , and 76.

DAC THRSH*. This function exercises the probe threshold DAC to verify voltage accuracy, and to make sure all voltages may be selected. The circuitry exercised by this function is on schematic 71.

PRB CLK EX. This function tests the probe clock receiver and clock qualifier circuitry, and verifies the operation of the login registers. Most of the circuitry tested by this function is on schematics 70, \(71,72,77\), and 78.

NOTE
Probes with variable threshold capability must be installed on the 91A24 for the PRB CLK EX function to run properly.

\section*{91AE24}

MEM ADDR. This function verifies the operation of the memory address registers and the write enable generators. These tests check the circuitry that addresses the acquisition RAMs. Most of the circuitry tested by the MEM ADDR function is on schematics \(79,80,84\), and 87.

ACQ MEM. This function verifies the address and data independence of the 91AE24 acquisition memory, and checks associated write and readback circuits. The ACQ MEM function tests the RAMs that are used by the 91AE24 to store acquired data. Most of the circuitry tested by the ACQ MEM function is on schematics \(80,83,84\), and 85.

STK PNTR. This function verifies that the occurrence stack pointer (U571) can be loaded and clocked, and runs a memory test on the control stack RAM (U555). Most of the circuitry tested by the STK PNTR function is on schematics 86.

WRD REC. This function tests the 91AE24 word recognizer by verifying the operation of the word recognition RAMs. Most of the circuitry tested by this function is on schematics 85 and 86 .

DAC THRSH*. This function exercises the probe threshold DAC to verify voltage accuracy, and to make sure all voltages may be selected. The circuitry exercised by this function is on schematic 82.

PRB CLK EX. This function tests the probe clock receiver and clock qualifier circuitry, and verifies the operation of the login registers. Most of the circuitry tested by this function is on schematics 81, 82 , and 83.

\section*{NOTE}

Probes with variable threshold capability must be installed on the 91A24 for the PRB CLK EX function to run properly.

\footnotetext{
*Non-readback functions require test point monitoring.
}

\section*{91A24 FUNCTION 0 CNTR TIMR}

\section*{CIRCUIT OVERVIEW}

The CNTR TIMER (counter/timer) function tests the stack word recognizer's counter/timer circuit. This circuit contains a 16-bit counter, and associated control and readback circuitry. For a more detailed description of the counter/timer operation, see the Theory of Operation section.

\section*{FUNCTION DESCRIPTION}

The CNTR TIMR function consists of a single test. The function verifies that the counter/timer counters can be cleared, clocked, and read. Also, since this function (function 0 ) is the first to exercise the 91A24 Controller Interface, a PASS on the CNTR TIMR function indicates that a significant portion of the 91A24 controller interface is functional (See 91A24 schematic 68).

\section*{Readback Ports}

Results of counter/timer test 0 are read through U788 (port 05) and U795 (port 06) on schematic 76.

\section*{91A24 CNTR TIMR TEST 0 TROUBLESHOOTING}

\section*{Reading the Error Codes}

Test 0 of the CNTR TIMR function provides test results like those shown in Figure 7-3.


Figure 7-3. 91A24 CNTR TIMR test 0 readback display. The ACTUAL value is read from the counter/timer low byte first, followed by the high byte. The EXPECTED value may be 00,55 , or AA.

Error Indication

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Error Indication} \\
\hline CNTR TIMR T & TEST 0 & \[
\begin{gathered}
\text { ADDR } \\
\text { XX }
\end{gathered}
\] & EXPECTED
\(Y Y\) & ACTUAL ZZ \\
\hline & \multicolumn{4}{|c|}{Not 00} \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline Malfunctioning counter readback signals. & \multicolumn{4}{|l|}{Loop test 0 . With a scope, monitor U 998 pins 6 and 7 (on schematic 69) for low pulses. If low pulses are not present, suspect U998.} \\
\hline Malfunctioning TIMER CLK. & \multicolumn{4}{|r|}{With test 0 still looping, look for high pulses on U491A pin 5 (schematic 76). If pulses are present, TIMER CLK is okay, proceed to the next possible cause. Otherwise, check for low pulses on U965 pin 16 (schematic 68); if low pulses are not present, suspect U965. If low pulses are present on U965 pin 16, check U495C pins 5 and 6 (schematic 76) to see if they are always opposite each other. If they are not always opposite, suspect U495. Otherwise, suspect U491A.} \\
\hline Malfunctioning counters. & \multicolumn{4}{|r|}{Look for toggling output signals at pins 11, 12, 13, 14, and 15 of U585, U588, U591 (on schematic 76), and pins 11, 12, 13 , and 14 of U595 (on schematic 76). If any signal does not change states, suspect that IC.} \\
\hline Malfunctioning readback buffers. & \multicolumn{4}{|l|}{\begin{tabular}{l}
Suspect U788 or U795 (on schematic 76). If a logic analyzer is available, acquire data from the inputs and from the outputs of these buffers, with the logic analyzer clocking off of the enable signal. When compared on a state table, if the acquired inputs and outputs of one buffer are not equal, suspect that buffer. \\
If the inputs equal the outputs on both buffers, examine the acquired input data. If data input to the buffers from one of the counters (U585, U588, U591, or U595) does not equal \(0_{16}, 5_{16}\), or \(\mathrm{A}_{16}\), suspect that counter.
\end{tabular}} \\
\hline
\end{tabular}

\section*{91A24 CNTR TIMR TEST 0 DESCRIPTION}


Figure 7-4. Blocks of the 91A24 tested by the CNTR TIMR function, test 0.

CNTR TIMR test 0 checks the clear, readback, and clocking circuits of the counter/timer. The test contains five separate steps which include clearing, clocking, and reading the counters.
1. Clear the counter/timer, then read high and low bytes. Display an error if \(00_{16}\) is not read both times.
2. Clock the counter/timer to 0055 , then read and verify both bytes.
3. Clock the counter/timer to 00AA, then read and verify both bytes.
4. Clock the counter/timer to 5555 , then read and verify both bytes.
5. Clock the counter/timer to AAAA, then read and verify both bytes.

\section*{Test 0 Readback Port}

Test 0 results are read back through buffers U788 (port address 05) and U795 (port address 06) on schematic 76.

\section*{Test 0 Initial Conditions}

Before the test starts, the module is set up by disabling counter/timer interrupts and disabling clocks to the counter from normal sources.
1. \(00_{16}\) is written to U761 (on schematic 68), which clocks U761 pins 2, 5, and 9 low.
2. U761 pin 2 (INT3 EN) goes low, to disable interrupts from the counter/timer during this test.
3. U761 pin 5 (CT SEL0) and U761 pin 9 (CT SEL1) on schematic 68 go low, which makes U295 pins 7 and 9 (on schematic 76) low, to inhibit clocks to the counter through U295.

\section*{Test 0 Run Sequence}

After the module is prepared, the counter/timer is clocked through the 91A24 controller interface and the results read back. The test follows this sequence:
1. The counters are cleared by setting RESET CNTR EN (U758 pin 9 on schematic 68) and CNTR CLR (U998 pin 9 on schematic 69) low. These signals pass through U475C and U198D (on schematic 76) to clear counters U585, U588, U591, and U595 (also on schematic 76).
2. The counters are read by making CNTR RDBKO (U998 pin 6 on schematic 69) low. This places the low byte of the counter onto the data bus (BD0-BD7) through U788 (on schematic 76).

Then CNTR RDBK1 (U998 pin 7 on schematic 69) is made low, which places the high byte of the counter onto the data bus (BDO-BD7) through U795 (on schematic 76).

If the results read back do not equal \(00_{16}\) in both cases, an error is reported and the test stops.
3. The counters are clocked by making TIMER CLK (U965 pin 16 on schematic 68) low. This low goes to U491A pin 4 (on schematic 76), making U491A pin 5 (output) high.

The counters increment on each rising edge from U491A pin 5. When U491A pin 4 returns high, U491A pin 5 is reset low through U495C.

The counter is clocked \(55_{16}\) times. After this clocking the counter is read, as in step 2. The value read is expected to equal \(0055_{16}\).
4. The counter is clocked \(55_{16}\) more times. After this clocking the counter is read, as in step 2, and the read value compared to \(00 \mathrm{AA}_{16}\).
5. The counter is then clocked \(54 \mathrm{AB}_{16}\) times. Then the counter is read, as in step 2. The value read is expected to equal \(5555_{16}\).
6. The counter is finally clocked \(5555_{16}\) more times. After this clocking the counter is read, as in step 2 and value read is expected to equal AAAA \(_{16}\).

\section*{91A24 FUNCTION 1 MEM ADDR 91EA24 FUNCTION 0 MEM ADDR}

\section*{CIRCUIT OVERVIEW}

The MEM ADDR function tests the memory address register (MAR). The MAR consists of a 10 -bit up-counter (U138, U238, and U438 on 91A24 schematic 73 and 91AE24 schematic 84) that supplies the address for the acquisition memory. When these counters roll over from \(3 \mathrm{FF}_{16}\) to \(001_{16}\), a status bit (ALL FULL) is set.

For a more detailed treatment of memory address register theory, see the Theory of Operation section.

\section*{FUNCTION DESCRIPTION}

The MEM ADDR function consists of four separate tests.
Test 0 writes a value to each of the low eight bits of the MAR (MARO-MAR7, U138 and U238 on 91A24 schematic 73 and 91AE24 schematic 84) and reads back the results. This indicates that the eight low-order bits of the MAR are independent and can be read. Additionally, because MEM ADDR test 0 is the first test run on 91AE24 modules, a PASS on MEM ADDR test 0 indicates that a significant portion of the 91AE24 controller interface is functional.

Test 1 writes a value to each of the high two bits of the MAR (MAR8 and MAR9, U438 on schematic 73 or 84) and reads back the results. This indicates that the two high-order bits of the MAR are independent and can be read.

Test 2 clocks the MAR to count from \(000_{16}\) to \(3 \mathrm{FF}_{16}\). When this test runs at power-up, the MAR is only clocked from \(000_{16}\) to \(00 \mathrm{~F}_{16}\). This test verifies that the MAR counts correctly.

Test 3 clears the ALL FULL bit by loading the MAR with \(3 \mathrm{FF}_{16}\), then sets the ALL FULL bit by clocking the MAR once, so its count goes from \(3 \mathrm{FF}_{16}\) to \(000_{16}\). This test verifies the operation of the ALL FULL flip-flop (U461B on 91A24 schematic 73 or 91AE24 schematic 84).

\section*{Loading the Data}

To test the MAR, the DAS loads data onto BDO-BD7 of the controller interface ( 91 A24 schematic 68 or 91AE24 schematic 79). BD0-BD7 are buffered by U768, U561 and U565 (on schematic 68 or 79) to provide LB0-LB7. MAR CLOCK, coming from U461A pin 6 (on schematic 73 or 84), clocks the data on LB0-LB7 into the MAR.

\section*{Readback Ports}

Test data is read from U135 and U235 (on 91A24 schematic 69 or 91AE24 schematic 80). When U998 pin 4 (MAR LOW on schematic 69 or 80 ) goes low, U 135 (on schemtic 69 or 80 ) is enabled, and data is read from MARO-MAR7 onto the data bus (BDO-BD7).

When U998 pin 5 (MAR HIGH) goes low, U235 (on schematic 69 or 80 ) is enabled, and data is read from MAR8 and MAR9 onto the data bus (BD0-BD7).

\section*{91A24 AND 91AE24 MEM ADDR TEST 0 TROUBLESHOOTING}

\section*{Reading the Test 0 Error Codes}

Test 0 of the MEM ADDR function provides test results like those shown in Figure 7-5. The EXPECTED value depends on which of eight passes the test stopped on. These values and their meanings are shown in Table 7-2.


Figure 7-5. MEM ADDR test 0 readback display. The ACTUAL value is read from the low eight bits of the MAR. The EXPECTED field may have any of the values shown in Table 7-2.

Table 7-2
EXPECTED DIAGNOSTIC READBACK VALUES FOR TEST 0
\begin{tabular}{|c|c|c|}
\hline Pass & MAR Bit & Loaded and Expected Value \\
\hline 1 & 7 & 80 \\
2 & 6 & 40 \\
3 & 5 & 20 \\
4 & 4 & 10 \\
5 & 3 & 08 \\
6 & 2 & 04 \\
7 & 1 & 02 \\
8 & 0 & 01 \\
\hline
\end{tabular}

Error Indication: 91A24
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 1 & 03 & 80 & ZZ
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline\(\overline{\text { CNTL3 malfunction. }}\) & \begin{tabular}{l} 
Looping test 0. Check U965 pin 13 (on schematic 68) for low \\
pulses; if none, suspect U965.
\end{tabular}
\end{tabular}

MEM RD or \(\overline{\text { CNTL1 }}\) malfunction.

ENABLE malfunction.
\(\overline{\text { MAR EN malfunction. }}\)

SINGLE STEP malfunction.

CA7 malfunction.

MASTER CLK III malfunction.

MAR CLOCK malfunction

MAR counter or input buffer malfunction.
\(\overline{\text { MAR LOW }}\) or output buffer malfunction.

While test 0 is still looping, check U765 pin 2 (schematic 68) for low level; if not low, suspect U765.

Check U761 pin 16 (schematic 68) for high level; if not high, suspect U761. If replacing U761 does not correct the problem, suspect U958 (schematic 68).

Check U198B pin 6 (on schematic 74) for high level; if not high, suspect U198.

Check U288 pin 8 (schematic 74) for low level; if not low, suspect U288.

Check U958 pin 10 (on schematic 68) for low pulses; if none, suspect U958.

Check U945 pin 1 (on schematic 77) for low level; if not low, suspect R921 (schematic 77). If U945 pin 1 is low, check U945 pin 9 (on schematic 77) for high level; if not high, suspect U945 (on schematic 77) or U965 (on schematic 68).

Check U461A pin 3 (schematic 73) for low pulses. If pulses are present, MASTER CLK III is okay.

Check U721 pin 2 (schematic 77) for low ECL level pulses; if none, check for high levels on any of the following inputs: U721 pins 12, 10, and 7. If any of these are high, suspect U945 (on schematic 77) or U965 (on schematic 68). If none of the above signals are high, suspect U721.

If low pulses are present on U721 pin 2, check for low pulses on the collector of Q544; if no low pulses, suspect Q543 or Q544.

Check U461A pin 6 (schematic 73) for low pulses; if not pulsing and signal is steady high, check for low pulses on U461A pin 4. If no low pulses on U461A pin 4, refer to the 91AE24 Chip Select Generator description of \(\overline{\text { ACQ RAM SEL }}\) generation in the Theory of Operation. If low pulses are present at U461A pin 4, suspect U461.

Check U238 pin 6 (schematic 73) for high pulses; if none, suspect U565 (schematic 73). If high pulses are present, check U238 pin 11 for high level or high pulses; if none, suspect U238 (schematic 73).

Check U998 pin 4 (schematic 69) for low pulses; if none, suspect U998. If low pulses, suspect U135 (schematic 69).

\section*{Error Indication: 91A24}
\begin{tabular}{llrrr} 
MEM ADDR & TEST 0 & ADDR & EXPECTED & ACTUAL \\
& & \begin{tabular}{ll} 
YY \\
40 to 01
\end{tabular} & \(Z Z\)
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline MAR counter, I/O device & Loop test 0. With a logic analyzer, acquire data from inputs \\
malfunction. & of U138 and U238 (schematic 73). Clock the analyzer off of \\
& U138 pin 9 (MAR LDO) falling edge. If expected values never \\
& present, suspect U561 or U565 (on schematic 68). If expect- \\
& ed values present at inputs, use the analyzer to check for \\
& expected value on outputs of U138 and U238. If values not \\
& present, suspect U138 or U238. If expected values present, \\
& suspect U135 (on schematic 69).
\end{tabular}

Error Indication: 91AE24
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 0 & 03 & 80 & ZZ
\end{tabular}

91AE24 fails, but 91A24 passes MEM ADDR test 0. If the 91A24 fails also, troubleshoot the 91A24 first.
\begin{tabular}{c|c}
\hline Possible Cause & \multicolumn{1}{c}{ Action } \\
\hline \hline Address decoder malfunction. & Loop test 0. With an oscilloscope, check U558B pin 8 for
\end{tabular} low pulses; if none, suspect U558B (on schematic 79). Check U285B pin 6 for occasional low pulses (signal pulses low once during each loop); if no low pulses suspect U285 or U975 (on schematic 79). Otherwise, check U965 pin 13 for low pulses; if none, suspect U965.

Data buffer enable malfunction.
\(\overline{\text { MAR LDO }}\) malfunction.

MEM RD malfunction.

ENABLE malfunction.
matic 79) for low pulses. If low pulses are present, the data buffer enable is okay.

If low pulses are not present at \(\mathbf{U 7 6 8}\) pins 1 and 9 , check U975 pins 14 and 16 (on schematic 79 ) for low pulses; if not present, suspect U975. Otherwise, suspect U285.

Check U765 pin 2 (on schematic 79) for low level; if signal is low, MAR LDO is okay.

If U 765 pin 2 is not low, check U 768 pins \(3,5,7,9,12,14\), 16 , and 18 for toggling signals. If any of these signals do not toggle, suspect U768. Otherwise suspect U765.

Check U761 pin 16 (on schematic 79) for high level; if not high, suspect U761 or U958 (on schematic 79).

Check U198B pin 6 (on schematic 85) for high level; if not high, suspect U198.

Error Indication: 91AE24 (cont.)
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 0 & 03 & 80 & ZZ
\end{tabular}
\(\overline{M A R E N}\) malfunction.

SINGLE STEP malfunction.

CA7 malfunction.

MASTER CLK III malfunction.

MAR CLOCK malfunction.

MAR counter or input buffer malfunction.
\(\overline{\text { MAR LOW }}\) or output buffer malfunction

Check U288 pin 8 (schematic 85) for low level; if not low suspect U288.

Check U958 pin 10 (on schematic 79) for low pulses; if none, suspect U958.

Check U945 pin 1 (on schematic 87) for low level; if not low, suspect R921 (schematic 87). If U945 pin 1 is low, check U945 pin 9 (on schematic 87) for high level; if not high, suspect U945 (on schematic 87) or U965 (on schematic 79).

Check U461A pin 3 (schematic 84) for low pulses. If pulses are present, MASTER CLK III is okay.

Check U721 pin 2 (schematic 87) for low ECL level pulses; if none, check for high levels on any of the following inputs: U721 pins 12, 10, and 7. If any of these are high, suspect U945 (on schematic 87). If none of the above signals are high, suspect U721.

If low pulses are present on U721 pin 2, check for low pulses on the collector of Q544; if no low pulses, suspect Q543 or Q544.

Check U461A pin 6 (on schematic 84) for low pulses; if low pulses are present, the MAR CLOCK is okay. If U461A pin 6 is steady high, check for low pulses on U461A pin 4. If low pulses are present at U461A pin 4, suspect U461. If U461A pin 4 is static, refer to the 91AE24 Chip Select Generator in the Theory of Operation to troubleshoot.

Check U238 pin 6 (on schematic 84) for high pulses; if none, suspect U565 (on schematic 79). If high pulses present, check U238 pin 11 (on schemaic 84) for high level or high pulses; if none, suspect U238.

Check U998 pin 4 (on schematic 80) for low pulses; if none, suspect U998. If low pulses, suspect U135 (schematic 80).

Error Indication: 91AE24
\begin{tabular}{lrrrr} 
MEM ADDR & TEST 0 & ADDR & EXPECTED & ACTUAL \\
& & 03 & \(\frac{Y Y}{40 \text { to } 01}\)
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline MAR counter, I/O device & \begin{tabular}{l} 
Loop test 0. With a logic analyzer, acquire data from inputs \\
malfunction.
\end{tabular} \\
& of U138 and U238 (schematic 84). Clock the analyzer off of \\
& U138 pin 9 (MAR LDO) falling edge. If expected values never \\
present, suspect U561 or U565 (on schematic 79). If expect- \\
ed values present at inputs, use the analyzer to check for \\
& expected value on outputs of U138 and U238. If values not \\
& present, suspect U138 or U238. If expected values present, \\
suspect U135 (on schematic 80).
\end{tabular}

\section*{91A24 AND 91AE24 MEM ADDR TEST 0 DESCRIPTION}


Figure 7-6. Blocks of the 91A24 tested by the MEM ADDR function, test 0.

MEM ADDR test 0 walks a high bit (1) through the low byte of the memory address register (see Table \(7-3\) for values). The high bit is walked from bit 7 down to bit 0 . After loading each bit pattern, the MAR is verified for the correct pattern. If an incorrect result is read during any of the eight passes, the test stops and no other passes are made.

\section*{Test 0 Readback Port}

All test 0 results are read through U135 (port 03) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 0 Initial Conditions}

The DAS sets the first four initial conditions outside of the test loop. So when the test is looping, these events occur only once before the loop is entered and never happen again. Watching for these events with an oscilloscope is not advised.
1. On the 91A24, registers U928, U931, U935, U938, U941, and U945 (on schematic 77) are initialized with 00 through PC0-PC5.
2. If a 91 AE24 is being tested, registers U938, U941, and U945 (on schematic 87) are initialized with 00 through PCO-PC5.
3. \(80_{16}\) is written onto D0-7, and U965 pin 8 (PC4 on 91A24 schematic 68 or 91AE24 schematic 79) is toggled low. This asserts U721 pin 5 (on schematic 77 or 87 ) high, selects the single-step clock to drive MASTER CLK III.
4. \(20_{16}\) is written to U 761 (on schematic 68 or 79 ), which sets U 761 pin 16 (MEM RD) high. The high from U761 pin 16 goes through U198B (on schematic 74 or 85) and sets U288 pin 8 (MAR EN on schematic 74 or 85 ) low. This enables U461A (on schematic 73 or 84 ) to load the MAR.

Initial condition 5 is inside the test loop, so it can be observed with an oscilloscope.
5. \(\mathrm{F7}_{16}\) is written to U 765 (on schematic 68 or 79 ). This sets U 765 pin 2 ( \(\overline{\text { MAR LDO }}\) ) low, which sets U138 pin 9 and U238 pin 9 (on schematic 73 or 84 ) low, enabling loading of the low eight bits of the MAR.

\section*{Test 0 Run Sequence}

This test takes eight passes to complete. During each pass, a different value is loaded into the MAR and read back. The values loaded during each pass are given in Table 7-2. For each of the eight passes:
1. The test value is first loaded into the MAR by setting U958 pin 10 ( \(\overline{\text { SINGLE STEP }}\) on schematic 68 or 79) low. This low passes through U721, Q543 and Q544 (on schematic 77 or 87) to produce MASTER CLK III on U461A pin 3 (schematic 73 or 84). MASTER CLK III produces MAR CLOCK, which clocks the test value on LB0-LB7 into U138 and U238 (on schematic 73 or 84 ).
2. The test value is read from the MAR onto the data bus through U135 (on schematic 69 or 80 ).

\section*{91A24 AND 91AE24 MEM ADDR TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the 91A24 MEM ADDR function provides test results like those shown in Figure 7-7.


Figure 7-7. MEM ADDR test 1 readback display. The ACTUAL value is read from the high two bits of the MAR. The EXPECTED field may have any of the values shown in Table 7-3.

Table 7-3
EXPECTED DIAGNOSTIC READBACK VALUES FOR TEST 0
\begin{tabular}{|c|c|c|}
\hline Pass & MAR Bit & Loaded and Expected Value \\
\hline 1 & 9 & 02 \\
2 & 8 & 01 \\
\hline
\end{tabular}

Error Indication:
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 1 & 04 & \(Y Y\) & ZZ
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Cause & Action \\
\hline \(\overline{\text { CNTL3 }}\) malfunction. & Loop test 1. Check U965 pin 13 (on 91A24 schematic 68 or 91AE24 schematic 79) for low pulses; if none, suspect U965. \\
\hline \(\overline{\text { MAR LD1 }}\) malfunction. & While test 1 is still looping, check U765 pin 19 (on schematic 68 or 79) for low; if not low, suspect U765. \\
\hline MAR counter malfunction. & Check for expected value on outputs of U438 (schematic 73 or 84); if values not present, suspect U438. \\
\hline \(\overline{\text { MAR HIGH }}\) malfunction. & Check U235 pin 1 (on schematic 69 or 80 ) for low pulses; if none, suspect U998 (on schematic 69 or 80 ). If low pulses are present, suspect U235. \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 MEM ADDR TEST 1 DESCRIPTION}


Figure 7-8. Blocks of the 91A24 tested by the MEM ADDR function, test 1.

MEM ADDR test 1 walks a high bit (1) through the high two bits of the MAR (see Table 7-3 for values). The high bit is walked from bit 9 down to bit 8 (bit 1 down to bit 0 on U438 on 91A24 schematic 73 or 91AE24 schematic 84). After the system loads each pattern, the pattern is verified by reading U235 (schematic 69 or 80 ). If an error is detected on the first pass, the second pass is not made.

\section*{Test 1 Readback Port}

Test 1 results are read through U235 (port 04) on 91A24 schematic 69 or 91 AE24 schematic 80.

\section*{Test 1 Initial Conditions}

The DAS sets the first four initial conditions before test 0 starts and never sets them again. The conditions remain true, however, and are necessary for test 1 to pass.
1. On the 91A24, registers U928, U931, U935, U938, U941, and U945 (on schematic 77) are initialized with \(00_{16}\) through PC0-PC5.
2. If a 91 AE24 is being tested, registers U938, U941, and U945 (on schematic 87) are initialized with \(00_{16}\) through PC0-PC5.
3. \(80_{16}\) is written onto DO-D7, and U965 pin 8 (PC4 on 91A24 schematic 68 or 91 AE24 schematic 79) is toggled low. This asserts U721 pin 5 (on schematic 77 or 87 ), which selects the singlestep clock to drive MASTER CLK III.
4. \(20_{16}\) is written to U 761 (on schematic 68 or 79 ), which sets U 761 pin 16 (MEM RD) high. The high from U761 pin 16 goes through U198B (on schematic 74 or 85 ) and sets U288 pin 8 (MAR EN on schematic 74 or 85 ) low. This enables U461A (on schematic 73 or 84 ) to load the MAR.

Initial condition 5 is inside the test 1 loop, so it can be observed with an oscilloscope.
5. \(\mathrm{EF}_{16}\) is written to U 765 (on schematic 68 or 79 ). This sets U 765 pin 19 (MAR LD1) low, which sets U 438 pin 9 (on schematic 73 or 84 ) low, enabling loading of the upper two bits of the MAR.

\section*{Test 1 Run Sequence}

This test takes two passes to complete. During each pass, a different value is loaded into the MAR and read back. The values loaded during each pass are given in table 7-3. For each of the two passes:
1. The test value is first loaded into the MAR by setting U958 pin 10 (SINGLE STEP on schematic 68 or 79) low. This low passes through U721, Q543 and Q544 (on schematic 77 or 87) to produce MASTER CLK III on U461A pin 3 (schematic 73 or 84). MASTER CLK III produces MAR CLOCK, which clocks the test value on LB0 and LB1 into U438 (on schematic 73 or 84).
2. The test value is read from the MAR onto the data bus through U235 (on schematic 69 or 80 ).

\section*{91A24 AND 91AE24 MEM ADDR TEST 2 TROUBLESHOOTING}

\section*{Reading the Test 2 Error Codes}

Test 2 of the 91A24 MEM ADDR function provides test results like those shown in Figure 7-9.


Figure 7-9. MEM ADDR test 2 readback display. The ACTUAL value is read from the MAR. The EXPECTED value depends on the port read. If port address 04 is read, the expected value may be 00-03. If port address 03 is read, the expected value may be \(00-\mathrm{FF}\).

\section*{Error Indication}
\begin{tabular}{|c|c|c|c|c|}
\hline MEM ADDR & TEST 2 & \[
\begin{array}{r}
\text { ADDR } \\
03
\end{array}
\] & EXPECTED
01 & \[
\begin{array}{r}
\text { ACTUAL } \\
00
\end{array}
\] \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline \(\overline{\text { CNTL3 }}\) malfunction. & \multicolumn{4}{|r|}{Loop test 2. Check U765 pin 11 (on 91A24 schematic 68 or 91AE24 schematic 79) for low pulses; if none, suspect U965.} \\
\hline \(\overline{\text { MAR LDO }}\) malfunction. & \multicolumn{4}{|r|}{While test 2 is still looping, check U765 pin 2 for high with low pulses; if present, suspect U138 (schematic 73 or 84); if none, suspect U765 (schematic 68 or 79 ).} \\
\hline
\end{tabular}

Error Indication
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 2 & 03 & 10 & \(0 F\)
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline MAR counter malfunction. & \begin{tabular}{l} 
Check U238 pin 10 (91A24 schematic 73 or 91AE24 sche- \\
matic 84) for high pulses; if present, suspect U238; if not \\
present, suspect U138 (schematic 73 or 84).
\end{tabular} \\
\hline
\end{tabular}

Error Indication
ADDR EXPECTED ACTUAL
\(\begin{array}{lllll}\text { MEM ADDR } & \text { TEST } 2 & 04 & 01 & 00\end{array}\)
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline\(\overline{\text { CNTL3 }}\) malfunction. & Loop test 2. Check U965 pin 13 (on 91A24 schematic 68 or \\
& 91AE24 schematic 79) for low pulses; if none, suspect \\
& U965. \\
\hline MAR LD1 malfunction. & While test 2 is still looping, check U765 pin 19 (on schematic \\
& 68 or 79) for high with low pulses; if not present, suspect \\
& U765. If low pulses are present, suspect U438 (on schemat- \\
& ic 73 or 84). \\
MAR counter malfunction. & \begin{tabular}{l} 
Check U438 pin 10 (on schematic 73 or 84) for high pulses; \\
if present, suspect U438; if not present, suspect U238 (on \\
schematic 73 or 84\().\)
\end{tabular} \\
&
\end{tabular}

Error Indication
\begin{tabular}{l|l}
\multicolumn{2}{c}{ MEM ADDR }
\end{tabular}

\section*{91A24 AND 91AE24 MEM ADDR TEST 2 DESCRIPTION}


Figure 7-10. Blocks of the 91A24 tested by the MEM ADDR function, test 2.

MEM ADDR test 2 loads the MAR with \(000_{16}\) and then single-steps it to \(3 \mathrm{FF}_{16}\). After each step, the MAR is read to verify that it contains the correct count. If an incorrect count is detected, the test stops.

Test 2 is also run on power-up, where it loads the MAR with 0 's and then single-steps the MAR to 0 F.

\section*{NOTE}

In this test, the MAR is read back in two parts: the low byte of the MAR first, followed by the two highest bits. If a failure occurs, the part that failed can be determined by the I/O port address that is displayed. 03 corresponds to the low byte of the MAR and 04 to the two highest MAR bits. On each pass both parts are read, but if an error is detected on the low byte of the MAR, the high MAR result is not displayed.

\section*{Test 2 Readback Port}

The low MAR (MAR0-MAR7) results are read through U135 (port 03 on 91A24 schematic 69 or 91AE24 schematic 80), and the high MAR (MAR8 and MAR9) results are read through U235 (port 04 on 91A24 schematic 69 or 91AE24 schematic 80).

\section*{Test 2 Initial Conditions}

The DAS sets the first four initial conditions before test 0 starts and never sets them again. The conditions remain true, however, and are necessary for test 2 to pass.
1. On the 91A24, registers U928, U931, U935, U938, U941, and U945 (on schematic 77) are initialized with \(00_{16}\) through PCO-PC5.
2. If a 91 AE24 is being tested, registers U938, U941, and U945 (on schematic 87) are initialized with \(00_{16}\) through PCO-PC5.
3. \(80_{16}\) is written onto D0-D7, and U965 pin 8 (PC4 on 91A24 schematic 68 or 91 AE24 schematic 79 ) is toggled low. This asserts U721 pin 5 (on schematic 77 or 87 ), which selects the singlestep clock to drive MASTER CLK III.
4. \(20_{16}\) is written to U 761 (on schematic 68 or 79 ), which sets U 761 pin 16 (MEM RD) high. The high from U761 pin 16 goes through U198B (on schematic 74 or 85 ) and sets U288 pin 8 (MAR EN on schematic 74 or 85 ) low. This enables U461A (on schematic 73 or 84 ) to load the MAR.

Initial conditions 5 through 9 are inside the test 2 loop, so they can be observed with an oscilloscope. To finish the set up for test 2 , the MAR is loaded with \(000_{16}\), as described below.
5. \(\mathrm{F7} 7_{16}\) is written to U 765 ( 91 A 24 schematic 68 or 91AE24 schematic 79 ). This sets U 765 pin 19 ( \(\overline{M A R ~ L D O}\) on schematic 68 or 79) low. This low is transmitted to U138 pin 9 and U238 pin 9 (on schematic 73 or 84 ), and enables loading the low eight bits of the MAR.
6. \(00_{16}\) is written to U 958 pin 10 (SINGLE STEP on schematic 68 or 79 ) which clocks a low into the Iow MAR (MARO-MAR7) through U461A (on schematic 73 or 84 ).
7. \(\mathrm{EF}_{16}\) is written to U 765 (schematic 68 or 79 ). This sets U 765 pin 2 (MAR LD1) low. This low is transmitted to U438 pin 9 (on schematic 73 or 84 ) to enable loading the high two bits of the MAR (MAR8, MAR9).
8. \(00{ }_{16}\) is written to U 958 pin 10 (SINGLE STEP on schematic 68 or 79 ) which clocks 0 s into U438 (MAR8, MAR9 on schematic 73 or 84) through U461A (on schematic 73 or 84 ).
9. \(\mathrm{FF}_{16}\) is written to U 765 (on schematic 68 or 79 ). This sets \(\overline{\text { MAR LDO }}\) and \(\overline{\text { MAR LD1 }}\) high at U765 pins 2 and 19, and at pin 9 of U138, U238, and U438 (on schematic 73 or 84). This allows the MAR to increment.

\section*{Test 2 Run Sequence}

The MAR is clocked from \(000_{16}\) to \(3 \mathrm{FF}_{16}\) as follows:
1. U958 pin 10 (SINGLE STEP on 91A24 schematic 68 or 91AE24 schematic 79) is written low. This, in turn produces MAR CLOCK from U461A (on schematic 73 or 84 ) which increments the MAR (U138, U238, and U438 on schematic 73 or 84).
2. After each clock, both high and low MAR are read for the correct data. The low MAR is read from U135 (on schematic 69 or 80) enabled by U998 pin 4 (MAR LOW on schematic 69 or 80 ), and the high MAR is read from U235 (on schematic 69 or 80 ) enabled by U998 pin 5 (MAR HIGH on schematic 69 or 80 ).

\section*{91A24 AND 91AE24 MEM ADDR TEST 3 TROUBLESHOOTING}

\section*{Reading the Test 3 Error Codes}

Test 3 of the 91A24 MEM ADDR function provides test results like those shown in Figure 7-11.


Figure 7-11. MEM ADDR test 3 readback display. The ACTUAL value is read from the ALL FULL flip-flop. The EXPECTED value depends on when the port is read. 00 indicates that the ALL FULL bit is low, and 80 indicates that the ALL FULL bit is high (set).

Error Indication
ADDR EXPECTED ACTUAL
\(\begin{array}{lllll}\text { MEM ADDR } & \text { TEST } 3 & 04 & 00 & 80\end{array}\)
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline ALL FULL flip-flop (U461B) & Loop test 3. Check U461B pin 8 (on 91A24 schematic 73 or \\
malfunction. & 91AE24 schematic 84) for low; if not low, suspect U461. If \\
& U461B pin 8 is low, suspect U235 (on schematic 69 or 80). \\
\hline
\end{tabular}

Error Indication
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
MEM ADDR & TEST 3 & 04 & 80 & 00
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Cause & Action \\
\hline MAR circuitry malfunction. & \begin{tabular}{l}
Loop test 3. Check U438 pins 5 and 6 (on 91A24 schematic 73 or 91AE24 schematic 84) for high; if not high, suspect R536 (on schematic 73 or 84). \\
If U 438 pins 5 and 6 are high, check U468B pin 3 (on schematic for 73 or 84 ) for low pulses; if none, suspect U438. I there are low pulses, check U468B pin 4 for high pulses; if present, suspect U461 (on schematic 73 or 84); if not present, suspect U468 (on schematic 73 or 84 ).
\end{tabular} \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 MEM ADDR TEST 3 DESCRIPTION}


Figure 7-12. Blocks of the 91A24 tested by the MEM ADDR function, test 3.

This test loads the MAR with \(3 F F_{16}\), checks to see that the ALL FULL signal is low, then singlesteps the MAR to set the ALL FULL signal high. The ALL FULL signal is read through U235 (bit 7) (shown on 91A24 schematic 69 or 91AE24 schematic 80).

\section*{Test 3 Readback Port}

Test 3 results are read through U235 (port 04) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 3 Initial Conditions}

The DAS sets the first four initial conditions before test 0 starts and never sets them again. The conditions remain true, however, and are necessary for test 3 to pass.
1. On the 91A24, registers U928, U931, U935, U938, U941, and U945 (on schematic 77) are initialized with \(00_{16}\) through PC0-PC5.
2. If a 91 AE24 is being tested, registers U938, U941, and U945 (on schematic 87) are initialized with \(00_{16}\) through PC0-PC5.
3. \(80_{16}\) is written onto D0-D7, and U965 pin 8 (PC4 on 91 A24 schematic 68 or 91 AE24 schematic 79 ) is toggled low. This asserts U721 pin 5 (on schematic 77 or 87 ), which selects the singlestep clock to drive MASTER CLK III.
4. \(20_{16}\) is written to U761 (on schematic 68 or 79 ), which sets \(U 761\) pin 16 (MEM RD) high. The high from U761 pin 16 goes through U198B (on schematic 74 or 85 ) and sets U288 pin 8 (MAR EN on schematic 74 or 85 ) low. This enables U461A (on schematic 73 or 84) to load the MAR.

Initial conditions 5 and 6 are inside the test 1 loop, so they can be observed with an oscilloscope. These steps load the MAR with \(3 \mathrm{FF}_{16}\) as follows:
5. \(\overline{\text { MAR LDO }}\) is asserted (low), and the low byte of the MAR (U138 and U238 on schematic 73 or 84 ) is loaded with FF. \(\overline{\text { MAR LDO }}\) is applied to U461B pin 10 (on schematic 73 or 84), which makes U461B pin 8 (ALL FULL) low.
6. The high two bits of the MAR (MAR8 and MAR9) is loaded with \(3_{16}\). All 10 bits of the MAR are now set to \(3 F F_{16}\). (This sets the MAR to FFF \(_{16}\). The MAR is actually a 12 bit counter, with the two most significant bits set high. The most significant bits, U438 pins 5 and 6, are hard-wired high). So writing \(3 F F_{16}\) to the MAR sets the MAR to \(\mathrm{FFF}_{16}\).

\section*{Test 3 Run Sequence}
1. U998 pin 5 (MAR HIGH on 91A24 schematic 69 or 91 AE24 schematic 80) enables U235 (on schematic 69 or 80 ). U235 is read to see if the ALL FULL signals is low. If ALL FULL is high, the test fails.
2. The MAR is clocked once by writing to U958 pin 10 ( \(\overline{\text { SINGLE STEP }}\) on schematic 68 or 79). This clocks the MAR to \(000_{16}\), making U 438 pin 11 low (on schematic 73 or 84 ). The signal from U438 pin 11 is inverted by U468B and clocks U461B, which sets U461 pin 8 (ALL FULL) high (also on schematic 73 or 84).
3. The status of the ALL FULL bit is read through U235 (on schematic 68 or 79 ).

\section*{91A24 FUNCTION 2 ACQ MEM 91AE24 FUNCTION 1 ACQ MEM}

\section*{CIRCUIT OVERVIEW}

The ACQ MEM function tests the 91A24 and 91AE24 acquisition memory. The acquisition memory consists of six \(1024 \times 4\) bit RAMs for a total of 1024 words by 24 bits. For a more detailed treatment of the acquisition memory, see the Theory of Operation section.

\section*{FUNCTION DESCRIPTION}

The acquisition memory RAM is loaded from the test bus (LB0-LB7) and read one byte (eight bits) at a time. A 24-bit word is assembled in the system data login registers (on 91A24 schematic 72 or 91AE24 schematic 83) using the SINGLE STEP TTL clock, and then written into the RAM by the master clock.

The ACQ MEM function consists of two separate tests:
Test 0 exercises the inputs and outputs of the acquisition memory data registers and RAM. Test 0 also verifies pod independence and checks the write enable and memory read logic.

Test 1 checks the acquisition memory RAM for address and bit independence.

\section*{Loading the Data}

Loading the system data login registers (on 91A24 schematic 72 or 91AE24 schematic 83) and MAR (memory address register on schematic 73 or 84 ) involves writing data onto BD0-BD7 in the controller interface (schematic 68 or 79). BDO-BD7 are buffered first by U768 then by U561 and U565 (all on schematic 68 or 79) to provide LB0-LB7. LB0-LB7 transmits data to the system data login registers (U125, U225, and U425 on schematic 72 or 83) and to the MAR (on schematic 73 or 84). The system data login outputs LID0-LID23 are loaded into the acquisition memory data registers by MASTER CLK II and into the acquisition memory RAM by MASTER CLK III and WEA-WEC.

\section*{Readback Ports}

Test results are read through memory readback ports OB (U131), OC (U231), and OD (U431 on 91A24 schematic 69 or 91AE24 schematic 80). Port OB transmits data from pod A memory. Port 0 C transmits data from pod B memory. Port OD transmits data from pod C memory.

\section*{91A24 AND 91AE24 ACQ MEM TEST 0 TROUBLESHOOTING}

\section*{Reading the Test 0 Error Codes}

Test 0 of the 91A24 ACQ MEM function provides test results like those shown in Figure 7-13.


4541-710

Figure 7-13. ACQ MEM test 0 readback display. The ACTUAL value is read from one of the acquisition RAMs, indicated by the port number. The EXPECTED field may show either 55 or AA, depending on the test pass and the port read back.

\section*{Error Indication}

ACQ MEM function fails along with CNTR TIMR or MEM ADDR functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits required by the ACQ \\
MEM function are \\
malfunctioning.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Error Indication} \\
\hline ACQ MEM & TEST 0 & \[
\begin{gathered}
\text { ADDR } \\
\text { XX }
\end{gathered}
\] & EXPECTED
AA or 55 & \begin{tabular}{l}
ACTUAL \\
55 or AA
\end{tabular} \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline Write enable malfunction. & \multicolumn{4}{|r|}{Check U765 pins 5, 6, and 9 (on schematic 68 or 79) for low pulses; if any do not pulse low, suspect U765.} \\
\hline Acquisition memory readback malfunction. & \begin{tabular}{l}
Loo \\
matic \\
as \\
- L \\
- L \\
- L \\
If sus
\end{tabular} & \begin{tabular}{l}
0. Chec or 91AE \\
ulses on \\
ulses on \\
ulses on \\
U998 pin U998.
\end{tabular} & \begin{tabular}{l}
U998 pins 13 schematic 80 \\
998 pin 13 ve \\
998 pin 14 ve \\
998 pin 15 ve \\
13,14 or 15
\end{tabular} & \begin{tabular}{l}
4, and 15 (91A24 schefor port address signals \\
es port address 0 B . \\
es port address OC. \\
es port address OD. \\
not show low pulses,
\end{tabular} \\
\hline \(\overline{\text { CNTL3 }}\) malfunction. & & \begin{tabular}{l}
test is \\
or 79) fo
\end{tabular} & looping, check ow pulses; if & U965 pin 13 (on schene, suspect U965. \\
\hline
\end{tabular}

\section*{Error Indication}
\begin{tabular}{lrrrr} 
ACQ MEM & TEST 0 & \begin{tabular}{rl} 
ADDR \\
XX
\end{tabular} & \begin{tabular}{r} 
EXPECTED \\
AA or 55
\end{tabular} & \begin{tabular}{l} 
ACTUAL \\
Not AA or 55
\end{tabular}
\end{tabular}
\begin{tabular}{c|c}
\hline Possible Cause & Action \\
\hline \hline
\end{tabular}

Diagnostic enable malfunction.

System data login register malfunction.

Loop test 0 . Check U758 pins 16, 12, and 15 (on schematic 68 or 79) for steady low. If any pin is not low, suspect U758.

With test 0 still looping, check the outputs of the following registers (on schematic 72 or 83 ) for \(\mathrm{AA}_{16}\) or \(55_{16}\) outputs.
- Check U125 output for AA or 55;
- Check U225 output for AA or 55;
- Check U425 output for AA or 55.

If any of these registers do not output AA or 55, suspect that chip.

With a logic analyzer, acquire the outputs of each of the acquisition memory readback registers (U131, U231, and U431 on schematic 69 or 80). Use pin 1 or 19 of each register to clock the analyzer. If any chip does not output \(A A_{16}\) or \(55_{16}\) suspect that chip.

With a logic analyzer, acquire the inputs of each of the acquisition memory readback registers (U131, U231, and U431 on schematic 69 or 80 ). Use pin 1 or 19 of each register to clock the analyzer. If any chip is not receiving \(A A_{16}\) or \(55_{16}\), suspect the RAM that is supplying the input (the RAM is shown on schematic 73 or 84). If the inputs are all \(A A_{16}\) or \(55_{16}\), suspect the readback register the data is acquired from.

\section*{91A24 AND 91AE24 ACQ MEM TEST 0 DESCRIPTION}


Figure 7-14. Blocks of the 91A24 tested by the ACQ MEM function, test 0.

ACQ MEM test 0 checks the write enable and the read logic on the module. This is done in three passes. On each pass two of the three bytes of the acquisition memory at location \(000_{16}\) are filled with \(\mathrm{AA}_{16}\) and the third is written with \(55_{16}\). The byte that receives 55 is determined by the pass.
- On the first pass the low byte (RAMs U141 and U145 on 91A24 schematic 73 or 91AE24 schematic 84 ) is written with \(55_{16}\).
- On the second pass the middle byte (RAMs U241 and U245 on schematic 73 or 84 ) is written with \(55_{16}\).
- On the third pass the high byte (RAMs U441 and U445 on schematic 73 or 84 ) is written with \(55_{16}\).

After each pass, all three bytes are read and compared to the value loaded. If an error is detected, the test stops with that pass.

Table 7-4 shows the expected RAM contents after each pass.

Table 7-4
expected ram contents after each acQ mem test 0 Pass
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Memory Content } \\
\cline { 3 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Pod A \\
Read Port OB
\end{tabular} & \begin{tabular}{c} 
Pod B \\
Read Port OC
\end{tabular} & \begin{tabular}{c} 
Pod C \\
Read Port OD
\end{tabular} \\
\hline 1 & 55 & AA & AA \\
2 & AA & 55 & AA \\
3 & AA & AA & 55 \\
\hline
\end{tabular}

\section*{Test 0 Readback Port}

Test 0 results are read through U131 (port 0B), U231 (port 0C), and U431 (port 0D) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 0 Initial Conditions}

Before this test runs, the following setup is performed:
1. \(20_{16}\) is written to U 761 (on schematic 68 or 79 ). This sets U 761 pin 16 (MEM RD) high. The high from MEM RD sets U461A pin 2 (MAR EN on schematic 73 or 84) low (through U198B and U288 on schematic 74 or 85), which enables loading the memory address register (MAR).
2. \(0 B_{16}\) is written to \(U 758\) (on schematic 68 or 79 ), setting \(U 758\) pins 16,12 , and \(15(A, B\), and \(C\) DIAG EN on schematic 68 or 79) low. These lows enable the system data login registers (U125, U225, and U425 on schematic 72 or 83). This also disables the run-time login registers (U121, U118, U221, and U421 on schematic 72 or 83).
3. \(80_{16}\) is written onto D0-D7, and U965 pin 8 (PC4 on schematic 68 or 79) is asserted. This asserts U721 pin 5 (on schematic 77 or 87) and connects MASTER CLK III to SINGLE STEP. This clock will load the MAR and clock data into the acquisition memory.
4. The MAR is loaded with \(000_{16}\).
a. \(\quad \mathrm{F7}_{16}\) is written to U 765 (on schematic 68 or 79 ). This makes U 765 pin 2 ( \(\overline{\mathrm{MAR} \mathrm{LDO}}\) ) low. MAR LDO low asserts U138 pin 9 and U238 pin 9 (on schematic 73 or 84 ), to enable loading the low 8 bits of the MAR.
b. \(00_{16}\) is written to U 958 pin 10 (SINGLE STEP on schematic 68 or 79 ) which clocks 0 's into U138, U238 (the low byte of the MAR on schematic 73 or 84 ) through U461A (on schematic 73 or 84 ).
c. \(E F_{16}\) is written to U 765 (on schematic 68 or 79 ), which makes U 765 pin 19 (ㅆMAR LD1) low. The low MAR LD1 goes to U 438 pin 9 (on schematic 73 or 84 ) to enable loading the high 2 bits of the MAR.
 U438 (the two high MAR bits on schematic 73 or 84 ) through U461A (on schematic 73 or 84).

\section*{Test 0 Run Sequence}
1. On all 91A24 and 91AE24 modules in the mainframe, \(10_{16}\) is written to U 761 (on schematic 68 or 79). This makes U761 pin 6 (READ ACQ) and U761 pin 16 (MEM RD) low. READ ACQ being low enables the acquisition memory RAMs (U141, U145, U241, U245, U441, and U445 on schematic 73 or 84) to store the data from acquisition memory data registers U128, U228, and U428 (on schematic 72 or 83).

MEM RD being low, along with TNO-TN2 being set low in initial condition 4a, sets U461A pin 2 (MAR EN on schematics 73 and 84) high to prevent the MAR from incrementing during this test.
3. For each of the three passes ( 1,2, or 3 ), a value is written to U 765 (on schematic 68 or 79 ). This value sets one of the acquisition RAM write enable bits low (active), and the others high. The low bit is \(\overline{W E A}\) for pass \(1, \overline{W E B}\) for pass 2 , and \(\overline{W E C}\) for pass 3.
4. \(55_{16}\) is written onto LB0-LB7 and U958 pin 10 ( \(\overline{\text { INGLE STEP }}\) ) is asserted three times. In this way, \(55_{16}\) is clocked through the three system data login registers (U125, U225, and U425 on schematic 72 or 83), and into the acquisition memory data registers (U128, U228, and U428 on schematic 73 or 84 ).

On each write, the SINGLE STEP clock produces MASTER CLK III. Each MASTER CLK III rising edge produces a low from U578A pin 3 (on schematic 73 or 84) to the chip select inputs, pin 8 of acquisition memory RAMs (U141, U145, U241, U245, U441, and U445 on schematic 73 or 84). This low causes the data output by the data registers (U128, U228, and U448 on schematic 73 or 84 ) to be stored in the acquisition memory RAMs if their write enables (WEA(L), WEB(L), and WEC(L)) are low.
5. A value is written to U 765 (on schematic 68 or 79 ), which makes the previously low \(\overline{\mathrm{WE}}\) signal high, and the other two \(\overline{\mathrm{WE}}\) signals low. In pass \(1 \overline{\mathrm{WEB}}\) and \(\overline{\mathrm{WEC}}\) are enabled (low). In pass 2 \(\overline{W E A}\) and \(\overline{W E C}\) are enabled. In pass \(3 \overline{W E A}\) and \(\overline{W E B}\) are enabled.
6. \(\mathrm{AA}_{16}\) is written onto D0-D7, and U958 pin 10 (SINGLE STEP on schematic 68 or 79 ) is asserted three times. This loads \(A A_{16}\) into the enabled acquisition RAMs.
7. \(1 \mathrm{~F}_{16}\) is written to U 765 (on schematic 68 or 79 ), which makes U 765 pins \(6,9,5\) ( \(\overline{\mathrm{WEA}}-\overline{\mathrm{WEC}}\) ) high. This stops the acquisition RAM from storing data.
8. \(31_{16}\) is written to U 761 (on schematic 68 or 79 ), which sets U 761 pin 6 (READ ACQ) high. READ ACQ high disables the outputs from memory latches U128, U228, and U428 (on schematic 73 or 84 ).
Asserting READ ACQ also enables writing data from the acquisition memory RAMs (U141, U145, U241, U245, U441, and U445 on schematic 73 or 84 ) to the memory readback ports (U131, U231, and U431 on schematic 69 or 80) by resetting U475B pin 6 low through U468D (on schematic 73 or 84 ).
9. At the end of each pass, the three bytes of stored data are read through the memory readback ports (U131, U231, and U431 on schematic 69 or 80 ) and checked for correctness.

\section*{91A24 AND 91AE24 ACQ MEM TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the 91A24 ACQ MEM function provides test results like those shown in Figure 7-15.


Figure 7-15. ACQ MEM test 1 readback display. The ACTUAL value is read from acquisitin RAM ports OB, 0 C , and OD. The EXPECTED value may be CA, A1, or 1C.

Error Indication
\begin{tabular}{|c|c|c|c|c|}
\hline ACQ MEM & TEST 1 & \[
\begin{array}{r}
\text { ADDR } \\
0 B
\end{array}
\] & \[
\begin{aligned}
& \text { EXPECTED } \\
& X X X \quad 1 \quad Y Y
\end{aligned}
\] & ACTUAL ZZ \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline MAR address failure (MAR0MAR9) & \multicolumn{4}{|r|}{Turn looping off and run the ACQ MEM test. When test 1 stops, see if the A0-A9 inputs of U141 (on schematic 73 or 84) are equal to the failure RAM address plus \(1\left(\mathrm{XXX}_{16}+1\right)\) in the Diagnostics menu display. If inputs do not equal the failure location plus 1, trace signals to the MAR (U138, U238, and U438 on schematic 73 or 84 ) to locate the suspect device.} \\
\hline
\end{tabular}

Error Indication
\begin{tabular}{rrr} 
ADDR & EXPECTED & ACTUAL \\
\(X X \quad X X X ~ P Y\) & \(Z Z\)
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Memory device malfunction. & \begin{tabular}{l} 
Turn looping off and run the ACQ MEM test. If one digit of \\
the ACTUAL value is incorrect, suspect the following \\
devices:
\end{tabular} \\
& \begin{tabular}{l} 
- With a failure at port 0B, suspect U141 for low four bits, or
\end{tabular}
\end{tabular} U145 for high four bits (on schematic 73 or 84).
- With a failure at port 0C, suspect U241 for low four bits, or U245 for high four bits (on schematic 73 or 84 ).
- With a failure at port OD, suspect U441 for low four bits, or U445 for high four bits (on schematic 73 or 84 ).

91A24 AND 91AE24 ACQ MEM TEST 1 DESCRIPTION


Figure 7-16. Blocks of the 91A24 tested by the ACQ MEM function, test 1.

ACQ MEM test 1 checks for address and bit independence in the acquisition memory and associated readback and select logic. The test makes three passes and uses three different patterns. These patterns are CA, A1, and 1C, as shown in Table 7-5. Each memory location is loaded with CACACA, A1A1A1, or 1C1C1C. On each pass a different pattern is written to each location, so after three passes all three values have been loaded at each location. The three patterns used ensure bit independence and, since the patterns repeat in multiples of three, they ensure address independence.

With each pass the entire memory is filled, then read back to verify correctness. Also, since this test takes considerable time to execute, you can abort the test during readback by pressing the stop key.

This test also runs on power-up to test acquisition RAM addresses \(000_{16}\) through \(008_{16}\). With each pass the first nine addresses are filled and then read to verify correctness. CA, A1, and 1C are written 11 times in sequence (nine locations tested plus two writes to get through the the login registers and the acquisition memory data registers). Table \(7-5\) shows the value loaded and expected for each pass.

Table 7-5
EXPECTED RAM VALUES FOR EACH ACQ MEM TEST 1 PASS
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Memory \\
Address
\end{tabular}} & \multicolumn{3}{|c|}{ Expected Value } \\
\cline { 2 - 4 } & Pass 1 & Pass 2 & Pass 3 \\
\hline 000 & CACACA & A1A1A1 & 1C1C1C \\
001 & A1A1A1 & 1C1C1C & CACACA \\
002 & 1C1C1C & CACACA & A1A1A1 \\
003 & CACACA & A1A1A1 & 1C1C1C \\
004 & A1A1A1 & 1C1C1C & CACACA \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Test 1 Readback Port}

Test 1 results are read through U131 (port 0B), U231 (port 0C), and U431 (port 0D) on 91A24 schemtic 69 or 91AE24 schematic 80.

\section*{Test 1 Initial Conditions}

These initial conditions are set as initial conditions for test 0 . They remain true during test 1 , however, and are necessary for test 1's execution. Since these initial conditions are not inside the loop, they cannot be observed with an oscilloscope.
1. \(O B_{16}\) is written to \(U 758\) (on schematic 68 or 79 ), setting \(U 758\) pins 16,12 , and \(15(A, B\), and \(C\) DIAG EN on schematic 68 or 79 ) low. These lows enable the system data login registers (U125, U225, and U425 on schematic 72 or 83). This also disables the run-time login registers (U121, U118, U221, and U421 on schematic 72 or 83).
2. \(80_{16}\) is written onto D0-D7, and U965 pin 8 (PC4 on schematic 68 or 79 ) is asserted. This asserts U721 pin 5 (on schematic 77 or 87 ) and connects MASTER CLK III to SINGLE STEP. This clock will load the MAR and clock data into the acquisition memory.

\section*{Test 1 Run Sequence}

At the beginning of each pass, the acquisition memory is entirely filled with a pattern. The pattern loading is described in the next three steps.
1. \(30_{16}\) is written to U 761 (on 91A24 schematic 68 or 91 AE24 schematic 79 ). This sets U761 pin 16 (MEM RD) high, and U461A pin 2 (MAREN on schematic 73) low, so the MAR can increment while patterns are being stored.
2. The MAR is loaded with \(3 \mathrm{FE}_{16}\) at the beginning of each pass. Storage begins at address \(000_{16}\). However, the MAR is loaded to 000 minus 2 to compensate for the pipeline effect of the login registers and acquisition memory data registers.
3. The write enables for all three pods ( \(\overline{\mathrm{WEA}}, \overline{\mathrm{WEB}}\), and \(\overline{\mathrm{WEC}}\), from U 765 on schematic 68 or 79 ) are set low to enable storage in the RAM.
4. CA, A1, and 1 C are written \(1026_{10}\) times in sequence ( 1024 locations tested plus 2 writes for the pipeline). These patterns are written as in ACQ MEM Test 0, except that U461A pin 2 (MAR EN on schematic 73 or 84 ) is reset low and U461A pin 6 (MAR CLOCK on schematic 73 or 84) is asserted by MASTER CLK III, incrementing the MAR with each write.

When the entire address space of the RAM is filled, the contents of the memory are read and compared with the expected value. This read and compare sequence is described in steps 5-9.
5. The write enables for the acquisition memory ( \(\overline{\mathrm{WEA}}, \overline{\mathrm{WEB}}\), and \(\overline{\mathrm{WEC}}\), from U765 on schematic 68 or 79) are set high and the MAR is loaded with \(000_{16}\), which is the first location to be read.
6. \(31_{16}\) is written to U 761 (on schematic 68 or 79 ). This makes U 761 pin 6 (READ ACQ) high, which disables the acquisition memory data registers, and resets U475B pin 6 ( \(\overline{A C Q}\) RAM SEL on schematic 73 or 84 ) low, which enables the acquisition memory RAMs to be read.
7. The location in RAM addressed by the MAR is read through U131, U231, and U431 (on schematic 69 or 80), and compared to the expected value. Ports U131, U231, and U431 are enabled by U998 pins 13, 14, and 15 ( \(\overline{\mathrm{A} M E M ~ R D-\bar{C}} \mathrm{MEM} \mathrm{RD}\) on schematic 69 or 80 ).
8. If no error is detected, the DAS writes to port 09, which toggles the SINGLE STEP clock (U958 pin 10 on schematic 68 or 79 ) SINGLE STEP clocks U461A (on schematic 73 or 84 ) which causes the MAR to increment.
9. Steps \(6-8\) are repeated until all memory locations have been read. All the above procedures, both write and read phases, are repeated three times to complete the three passes.

\section*{91A24 FUNCTION 3 STK PNTR 91AE24 FUNCTION 2 STK PNTR}

\section*{CIRCUIT OVERVIEW}

The STK PNTR (stack pointer) function tests the 91A24 and 91AE24 stack pointer and stack control RAM. The stack pointer is a 4-bit counter (U571 on 91A24 schematic 76 or 91AE24 schematic 86) which provides part of the address for the sequential word recognizer. The stack control RAM is the \(16 \times 4\)-bit RAM (U555 on 91A24 schematic 75 or 91 AE24 schematic 86 ) that is loaded with sequential word recognizer events, such as START TIMER and NEVER TRIGGER. For more information on these circuits, refer to the Theory of Operation.

\section*{FUNCTION DESCRIPTION}

The STK PTR function consists of three separate tests.
Test 0 loads a walking-ones pattern into the stack pointer counter (U571 on 91A24 schematic 76 or 91AE24 schematic 86) and reads back the loaded values.

Test 1 loads test patterns into the stack control RAM (U555 on 91A24 schematic 75 or 91AE24 schematic 86 ). The patterns are read back and compared to the loaded values.

Test 2 clocks the stack pointer counter (U571 on schematic 76 or 86) to see if the counter will increment from \(0_{16}\) to \(F_{16}\).

\section*{Readback Ports}

Test 0 and test 2 results are read through port 04 (U235 on schematic 69 or 80).
Test 1 results are read through port 0A (U785 on schematic 69 or 80 ).

\section*{91A24 AND 91AE24 STK PNTR TEST 0 TROUBLESHOOTING}

Reading the Test 0 Error Codes
Test 0 of the STK PNTR function provides test results like those shown in Figure 7-17.


Figure 7-17. STK PNTR test 0 readback display. The ACTUAL value is read from the pointer. The EXPECTED value may be \(20,10,08\), or 04.

\section*{Error Indication}

STK PNTR function fails along with CNTR TIMR, MEM ADDR, or ACQ MEM functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into STK PNTR \\
test are not functional.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

Error Indication: 91A24
STK PNTR test 0 fails on the 91A24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J181 \\
91A24, the 91AE24 may cause \\
the failure.
\end{tabular} \\
& \begin{tabular}{l} 
at the top of the 91A24 module. Turn on the DAS and re-run \\
STK PTRR test 0 on the 91A24 module. If the test fails with \\
the cables disconnected, the 91A24 is at fault. If the test \\
passes, suspect incorrectly installed interconnect cables or \\
a 91AE24 module.
\end{tabular} \\
\hline
\end{tabular}

Error Indication: 91AE24
STK PNTR test 0 fails on the 91AE24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Misconnected cables and staps \\
on the 91AE24 may cause the \\
failure.
\end{tabular} & \begin{tabular}{l} 
Turn off the DAS. make sure cables and straps are properly \\
connected to J181 of the 91AE24. Directions for these con-
\end{tabular} \\
& \begin{tabular}{l} 
nections are located in the Operating Instructions section of \\
this manual. I the test still fails after cable connections are \\
verified, continue on to next possible cause.
\end{tabular}
\end{tabular}

Error Indication
\begin{tabular}{rrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
STK PNTR & TEST 0 & 04 & 20 & 00
\end{tabular}
\begin{tabular}{c|l}
\hline Possible Cause & \multicolumn{1}{c}{ Action } \\
\hline \hline STACK PTR LD not functional. & \begin{tabular}{l} 
Loop test 0. Check U761 pin 19 (on schematic 68 or 79) for \\
low; if not low, suspect U761.
\end{tabular}
\end{tabular}

STACK CLK EN not functional. While still looping on test 0, check U758 pin 6 (on schematic

POINTER CLK not functional. 68 or 79 ) for low; if not low, suspect U758.

Check U575D pin 12 (on schematic 76 or 86) for steady low. If low, POINTER CLK is okay, go to next possible cause. If U575D not low, the 91A24 is at fault. On the 91A24, check U958 pin 9 (schematic 68) for a steady high; if not high, suspect U958. If U958 pin 9 is high, on the 91A24 check U265A both pins 1 and 3 (on schematic 75) for the same state. If pins 1 and 3 are not in the same state, suspect U265. If both pins are in the same state, suspect 91A24 U165 (on schematic 75).

STACK PTR CLK not functional.

Stack pointer malfunction.

Check U958 pin 15 (on schematic 68 or 79) for low pulses; if none, suspect U958. If low pulses present, check U568C pin 8 (schematic 76 or 86 ) for high pulses; if none, suspect U568. If high pulses present, check U485A pin 1 (schematic 76 or 86 ) for low pulses; if none, suspect U485. If low pulses present, check U575D pin 11 (on schematic 76 or 86 ) for low pulses; if none, suspect U575.

Check U571 pin 1 (on schematic 76 or 86 ) for a high level; if not, trace low back on schematics to find faulty IC. Check for \(08_{16}\) on outputs of U571. If outputs not \(08_{16}\) suspect U571; otherwise suspect U235 (on schematic 69 or 80 ).

\section*{Error Indication}
\begin{tabular}{|c|c|c|c|c|}
\hline STK PNTR & TEST 0 & \[
\begin{array}{r}
\text { ADDR } \\
04
\end{array}
\] & EXPECTED
\(Y Y\) & ACTUAL ZZ \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline Readback circuitry not functional. & \multicolumn{4}{|r|}{Loop test 0 . Check that the SP0-SP3 inputs to U235 (on schematic 69 or 80 ) match the outputs of U235 whenever U235 pin 1 is low. If inputs do not match outputs, suspect U235. Otherwise, suspect U571 (on schematic 76 or 86 ).} \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 STK PNTR TEST 0 DESCRIPTION}


Figure 7-18. Blocks of the 91A24 tested by the STK PNTR function, test 0.

STK PNTR test 0 verifies that the stack pointer counter (U571 on schematic 76 or 86) can be loaded and that the bits are independent. Test 0 makes four passes to walk a 1 from bit 3 to bit 0 of the counter. At the end of four passes a 1 has been loaded into and read from every bit position in the stack pointer counter. If an error is detected, the test stops.

The stack pointer counter outputs (SP0-SP3) are read back through bits 2-5 of U235 (on schematic 69 or 80 ). The DAS masks all undesired bits to 0s. Table 7-6 shows the values loaded and expected for each test pass.

Table 7-6
EXPECTED STACK POINTER COUNTER CONTENTS FOR STK PNTR TEST 0
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Binary Value Loaded On LB0-LB7} & \multirow[t]{2}{*}{Binary Value Read On BDO-BD7} & \\
\hline Pass & & & Expected Value \\
\hline 1 & 00001000 & XX1000XX & \(20_{16}\) \\
\hline 2 & 00000100 & XX0100XX & \(10_{16}\) \\
\hline 3 & 00000010 & XX0010XX & 0816 \\
\hline 4 & 00000001 & XX0001XX & \(04_{16}\) \\
\hline
\end{tabular}

\section*{Test 0 Readback Port}

All test 0 results are read through U235 (port 04) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 0 Initial Conditions}

Before test 0 runs the pointer is set to load mode. The next two steps describe the process.
1. \(80_{16}\) is written to \(\mathrm{U761}\) (on schematic 68 or 79), which makes U 761 pin 15 (DUAL QUAL) high and pin 19 (STACK PTR LD) low. DUAL QUAL low forces U571 pin 1 (on schematic 76 or 86) high. STACK PTR LD low goes to U571 pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00{ }_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes \(U 758\) pin 6 (STACK CLK EN) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86 ).

\section*{Test 0 Run Sequence}
1. One of the four test patterns (see Table 7-6) is loaded into the stack pointer counter (U571 on schematic 76 or 86 ) by writing the value onto LB0-LB3 and asserting U958 pin 15 (STACK PTR CLK on schematic 68 or 79). This low on STACK PTR CLK is inverted by U568C (on schematic 76 or 76) and passed through U485A and U575D (schematic 76 or 86 ) to clock the value on LB0-LB3 into U571.
2. After a pattern is loaded, the stack pointer counter outputs (SPO-SP3 from U571 on schematic 76 or 86 ) are read through buffer U235 (on schematic 69 or 80 ) by asserting U998 pin 5 (MAR HIGH on schematic 69 or 80 ). The read value is then compared with the loaded value.
3. If no error is detected, steps 1 and 2 are repeated until all four patterns have been loaded and read.

\section*{91A24 AND 91AE24 STK PNTR TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the 91A24 STK PNTR function provides test results like those shown in Figure 7-19.


Figure 7-19. STK PNTR test 1 readback display. The ACTUAL value is read from the RAM. The EXPECTED value may be \(A 0,10\), or C 0 .

\section*{Error Indication}

STK PNTR function fails along with CNTR TIMR, MEM ADDR, or ACQ MEM functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into STK PNTR \\
test are not functional.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication: 91A24}

STK PNTR test 1 fails on the 91A24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
If a 91AE24 is connected to the \\
91A24, the 91AE24 may cause \\
the failure.
\end{tabular} & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J181 \\
at the top of the 91A24 module. Turn on the DAS and re-run \\
test 1. If the test fails with the cables disconnected, the \\
91A24 is at fault. If the test passes, suspect incorrectly in- \\
stalled interconnect cables or a 91AE24 module.
\end{tabular} \\
\hline
\end{tabular}

Error Indication
\begin{tabular}{lrrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
STK PNTR & TEST 0 & \(0 A\) & 0 & 1 & \(A 0\)
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \hline STACK CNTL not functional. & Loop test 1. Check U958 pin 8 (on 91A24 schematic 68 or \\
& 91AE24 schematic 79) for low pulses; if none, suspect \\
& U958.
\end{tabular}

Chip select not functional.
With test 1 still looping, check U555 pin 2 (on schematic 75 or 86 ) for low; if not low, suspect R753 (on schematic 75 or 86).
\(\overline{\text { STACK CNTL RD }}\) not functional.

Readback circuitry or RAM not functional.

Check U998 pin 11 (on schematic 69 or 80) for low pulses; if none, suspect U998.

See if U785 (on schematic 69 or 80) inputs SC0-SC3 match the outputs of U785 when U785 pin 1 is low. If inputs do not match outputs, suspect U785. If inputs and outputs match, suspect U555 (on schematic 75 or 86 ).

\section*{91A24 AND 91AE24 STK PNTR TEST 1 DESCRIPTION}


Figure 7-20. Blocks of the 91A24 tested by the STK PNTR function, test 1.

STK PNTR test 1 checks the stack control RAM. This is done in three passes. In each pass a repeating test pattern is written to the 16 RAM addresses. The patterns loaded during each pass are shown in Table 7-7. The patterns were selected to verify both address and storage bit independence when all three passes are complete.

The patterns used in this test are A, 1 , and C as in other RAM tests. When these patterns are written to the stack control RAM, they are shifted left four bits and inverted since the stack control RAM loads and reads from the high four bits ( 7 through 4 ) and has inverting outputs.

On each pass, at every location, an address is loaded into the stack pointer and a data pattern is written to the RAM. For example, the first value written to location 0 (on LB0-LB7) in the stack control RAM is \(01010000\left(50_{16}\right)\). Only the four most significant bits (LB7-LB4) are stored by the RAM. The stack control RAM inverts its output data, so if this address passes, \(1010_{2}\left(\mathrm{~A}_{16}\right)\) will be read on SCO-SC3. After each write pass ( 16 writes) the stack pointer is again loaded with the addresses and the stack control RAM is read for the correct contents. If a failure is detected at any address on any pass, the test stops with that failure and an error message is displayed.

Table 7-7 shows the loaded and expected values for each pass.

Table 7-7
EXPECTED STACK CONTROL RAM VALUES FOR STK PNTR TEST 1
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Stack \\
Address
\end{tabular}} & \multicolumn{3}{|c|}{ Expected Value: Write/Read } \\
\cline { 2 - 4 } & Pass 1 & Pass 2 & Pass 3 \\
\hline 0 & \(50 / \mathrm{AX}\) & \(\mathrm{EO} / 1 \mathrm{X}\) & \(30 / \mathrm{CX}\) \\
1 & \(\mathrm{EO} / 1 \mathrm{X}\) & \(30 / \mathrm{CX}\) & \(50 / \mathrm{AX}\) \\
2 & \(30 / \mathrm{CX}\) & \(50 / \mathrm{AX}\) & \(\mathrm{E} / 1 \mathrm{X}\) \\
3 & \(50 / \mathrm{AX}\) & \(\mathrm{EO} / 1 \mathrm{X}\) & \(30 / \mathrm{CX}\) \\
4 & \(\mathrm{EO} / 1 \mathrm{X}\) & \(30 / \mathrm{CX}\) & \(50 / \mathrm{AX}\) \\
\(\ldots\) & \(\ldots\) & \(\cdots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Test 1 Readback Port}

All test 1 results are read through U785 (port 0A) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 1 Initial Conditions}

The following initial conditions repeat those of STK PNTR test 0 .
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), which makes U 761 pin 19 (STACK PTR LD) low. STACK PTR LD low goes to \(\mathbf{U 5 7 1}\) pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes \(U 758\) pin 6 (STACK CLK EN) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86 ).

\section*{Test 1 Run Sequence}
1. The stack control RAM address is first written onto LBO-LB3 and U958 pin 15 (STACK PTR CLK on schematic 68 or 79) is asserted. This loads the stack pointer counter (U571 on schematic 76 or 86 ) with the RAM address, which then addresses the stack control RAM (U555 on schematic 75 or 86 ).
2. The test pattern is written onto LB7-LB4 and STACK CNTL is asserted, which loads the pattern into the stack control RAM (U555 on schematic 75 or 86 ).
3. Steps 1 and 2 are repeated for all 16 stack control RAM addresses (U555 on schematic 75 or 86).
4. The stack control RAM address is again established as in step 1.
5. The stack control RAM outputs (SC0-SC3) are then read from U785 (on schematic 69 or 80 ) on the assertion of U998 pin 11 (STACK CNTL RD schematic 69 or 80 ). If the data read from a RAM address does not equal the data written to a RAM address, the DAS displays an error and the test stops.
6. Steps 4 and 5 are repeated for all 16 addresses.
7. Steps 1 through 6 are repeated two more times to complete all three passes.

\section*{91A24 AND 91AE24 STK PNTR TEST 2 TROUBLESHOOTING}

\section*{Reading the Test 2 Error Codes}

Test 2 of the 91A24 STK PNTR function provides test results like those shown in Figure 7-21.


Figure 7-21. STK PNTR test 2 readback display. The ACTUAL value is read from the stack pointer. The EXPECTED value may be any of the following: \(00,04,08,0 \mathrm{C}, 10,14,18,1 \mathrm{C}, 20,24,28,2 \mathrm{C}, 30,34\), 38 , or 3C,.

\section*{Error Indication}

STK PNTR function fails along with CNTR TIMR, MEM ADDR, or ACQ MEM functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into STK PNTR \\
test are not functional.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

Error Indication: 91A24
STK PNTR Test 2 fails on the 91A24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J181 \\
91A24, the 91AE24 may cause \\
at the top of the 91A24 module. Turn on the DAS and re-run \\
the failure.
\end{tabular} \\
& \begin{tabular}{l} 
test 2. If the test fails with the cables disconnected, the \\
91A24 is at fault. If the test passes, suspect incorrectly in- \\
stalled interconnect cables or a 91AE24 module.
\end{tabular} \\
\hline
\end{tabular}

Error Indication
\begin{tabular}{l|l}
\multicolumn{2}{c}{ STK PNTR }
\end{tabular} TEST \(\left.0 \quad \begin{array}{r}\text { ADDR } \\
04\end{array} \begin{array}{r}\text { EXPECTED } \\
\text { YY }\end{array} \begin{array}{r}\text { ACTUAL } \\
\text { ZZ }\end{array}\right]\)

\section*{91A24 AND 91AE24 STK PNTR TEST 2 DESCRIPTION}


4541-721
Figure 7-22. Blocks of the 91A24 tested by the STK PNTR function, test 2.

STK PNTR test 2 verifies the stack pointer's (U571 on schematic 76 or 86 ) ability to operate in count mode. The stack control RAM (U555 on 91A24 schematic 75 or 91AE24 schematic 86) is first loaded (on LB4-LB7) with Os which are inverted to 1s at the output (SCO-SC3). The stack pointer is then loaded with \(0_{16}\) on LB0-LB3.

After the stack pointer is loaded with \(\mathrm{O}_{16}, \mathrm{SCO}\) is asserted to enable the stack pointer, and the stack pointer is clocked from \(0_{16}\) to \(F_{16}\) using STACK PTR CLK. After each clock the stack pointer is read for the correct value. If an error is detected during any of the steps, the test stops with that failure.

NOTE
The loading function of the stack pointer is not tested in this test - only the counting function is tested. Stack pointer loading is tested in test 0 , where each stack pointer address location is manually loaded and clocked into the stack control RAM. In this test, the stack pointer counter (U571) is enabled by SCO to increment and generate addresses internally following a clocking signal.

\section*{Test 2 Readback Port}

All test 2 results are read back through U235 (port 04) on 91A24 schematic 69 or 91AE24 schematic 80 . The port reads the four stack pointer bits as the middle four bits of a byte. For example, a \(1_{16}\) from the stack pointer is read as \(04\left(00000100_{2}\right)\) and an \(\mathrm{F}_{16}\) from the pointer is read as 3 C \(\left(00111100_{2}\right)\).

\section*{Test 2 Initial Conditions}
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), which makes U 761 pin 19 (STACK PTR LD) low. STACK PTR LD low goes to U571 pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes U 758 pin 6 (STACK CLK EN) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86).
3. The stack control RAM (U555 on schematic 75 or 86 ) is filled with 0 s, which are inverted to 1 s by the RAM outputs.
4. \(00_{16}\) is written to U 958 pin 15 (STACK PTR CLK on schematic 68 or 79 ), which loads U571 (on schematic 76 or 86 ) with 0 s
5. \(90_{16}\) is written to U761 (on schematic 68 or 79), making U761 pin 19 (STACK PTR LD) high which enables the stack pointer to count.

\section*{Test 2 Run Sequence}
1. The stack pointer (U571 on 91A24 schematic 76 or 91AE24 schematic 86) is read back through U235 (SP0-SP3 on schematic 69 or 80 ), and compared against the expected value. The expected values are, in sequence: \(00,04,08,0 C, 10,14,18,1 \mathrm{C}, 20,24,28,2 \mathrm{C}, 30,34,38\), or 3C.
2. The stack pointer is incremented by writing \(00_{16}\) to \(\mathbf{U} 958\) pin 15 (STACK PTR CLK).
3. Steps 1 and 2 are repeated until an error is detected or the stack pointer reaches \(F_{16}\).

\title{
91A24 FUNCTION 4 WRD REC 91AE24 FUNCTION 3 WRD REC
}

\section*{CIRCUIT OVERVIEW}

The WRD REC (word recognizer) function tests all word recognizers on the 91A24 and 91AE24 modules. There are two separate word recognizer circuits on the modules: the stack word recognizer, and the data qualifier word recognizer.

Stack Word Recognizer. This circuit provides the module's 16 -level word recognizer. The circuit is centered around three \(4096 \times 1\) bit RAMS (U148, U248, and U448 on 91A24 schematic 75 or 91AE24 schematic 86). Four bits of the RAM address (SP0-SP3) indicate the position of a stack pointer (U571 on schematic 76 or 86 ). SP0-SP3 increments to set the sequential word recognizer set to watch for the next word in the trigger sequence.

The data being logged into acquisition memory (DR0-DR23 on schematic 73 or 84 ) provide the remaining address signals for the word recognizer RAMs. A RAM output goes high whenever the DRO-DR23 signals and the SP0-SP3 signals all point to a word to be recognized. The outputs of all three RAMs (SW0-SW2 from U148, U248, and U448 on schematic 75 or 86 ) must be high for a word to be recognized, because the outputs are ANDed by U168A (schematic 75 or 86 ).

Data Qualifier Circuit. This circuit controls the four programmable word recognizers that are independent of the stack word recognizer. The center of the circuit is three \(256 \times 4\) bit RAMs (U151, U351, and U551, on 91A24 schematic 74 or 91AE24 schematic 85). The data about to be logged into the acquisition memory (DR0-DR23 on schematic 73 or 84 ) provides the address for the word recognizer RAMs.

When DR0-DR23 correspond to a word to be recognized, the same output of all three RAMs goes high. Since each RAM has four outputs, four different words can be recognized. All three RAMs must recognize their portion of the word at the same time for a word to be recognized, because of AND gates U261A, B, and C, and U168B (on schematic 74 or 85 ).

\section*{FUNCTION DESCRIPTION}

The WRD REC function consists of two separate tests.
Test 0 exercises the stack word recognizer by loading test patterns into the three RAMs and reading them back.

Test 1 exercises the data qualifier word recognizer by loading patterns into the three RAMs and reading them back.

\section*{Readback Ports}

All the test 0 results are read through 91A24 port 0E (U771 on schematic 69 or 80 ).
All the test 1 results are read through 91A24 port 07 (U778 on schematic 69 or 80).

\section*{91A24 AND 91AE24 WRD REC TEST 0 TROUBLESHOOTING}

\section*{Reading the Test 0 Error Codes}

Test 0 of the WRD REC function provides test results like those shown in Figure 7-23.


Figure 7-23. WRD REC test 0 readback display. The ACTUAL value is read from the RAM. The EXPECTED value depends on the test pass and address. Refer to Table 7-9 for expected values.

\section*{Error Indication}

WRD REC function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, or STK PNTR functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into WRD REC \\
test are not functional.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication: 91A24}

WRD REC test 0 fails on the 91A24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & Turn off the DAS. Disconnect interconnect cable from J181 \\
91A24, the 91AE24 may cause & at the top of the 91A24 module. Turn on the DAS and re-run \\
the failure. & test 1. If the test fails with the cable disconnected, the \\
& 91A24 is at fault. If the test passes, suspect incorrectly in- \\
stalled interconnect cables or a 91AE24 module.
\end{tabular}

Error Indication
\begin{tabular}{lrrr} 
& & ADDR \(\quad\) EXPECTED & ACTUAL \\
WRD REC & TEST 0 & 0 XXX 1 40 & ZZ
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Cause & Action \\
\hline Stack write enable signals malfunctioning. & Loop test 0 and examine pins 5,6 , and 7 of U958 (on schematic 68 or 79) with a scope. If any pins do not pulse low, suspect U958. \\
\hline Stack word recognizer chip select malfunction. & While test is still looping, check U148 pin 10 (on schematic 75 or 86 ) for low; if not low, suspect R149 (on schematic 75 or 86). \\
\hline Readback circuitry malfunctioning. & Loop test 0 and check U998 pin 16 (on schematic 69 or 80) for low pulses; if none, suspect U998. If low pulses are present, check that inputs SW0-SW2 to U771 (schematic 69 or 80) match the outputs during the low pulse at U771 pin 1. If inputs to U 771 do not match outputs when U 771 pin 1 is low, suspect U771; otherwise continue to the next possible cause. \\
\hline
\end{tabular}

\section*{Error Indication}

ADDR EXPECTED ACTUAL
WRD REC TEST 0 OE XXX P YY ZZ
WRD REC test 0 fails and none of the previously listed test 0 failures occurred.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline RAM malfunction. Suspect & Suspect the RAM indicated by Table 7-8. Failure of multiple \\
U148, U248, or U448 (on sche- & RAMs is unlikely. If multiple RAM failures are indicated, \\
matic 75 or 86). & check the other failures described earlier. The DAS will not \\
& show ACTUAL values other than those in Table 7-8.
\end{tabular}

Table 7-8
STACK WORD RECOGNIZER RAM FAILURE INDICATIONS


91A24 AND 91AE24 WRD REC TEST 0 DESCRIPTION


Figure 7-24. Blocks of the 91A24 tested by the WRD REC function, test 0.

WRD REC test 0 verifies the operation of all three stack word recognizer RAMs (U148, U248, and U448 on 91A24 schematic 75 or 91AE24 schematic 86).

The ACQ MEM function has already verified the bus that loads the word recognizer RAMs (LBOLB2 on schematic 68 or 79). The ACQ MEM function has also verified the eight most significant address bits to the word recognizer RAMs (DR0-DR23 on schematic 73 or 84 ). If the ACQ MEM function passes, then the bus that loads the test into the word recognizer RAM, and the eight most significant address bits to the RAM, are functional.

The STK PNTR function has already verified the four least significant address lines to the stack word recognizer RAMs (SP0-SP3 on schematic 76 or 86 ). If the STK PNTR function passes, the four least significant address lines to the RAM are functional.

If both the ACQ MEM and STK PNTR functions pass, then all input signals to the word recognizer RAMs are verified except STACK A WE-STACK C WE and the chip select signals (U148 pin 10, U248 pin 10, and U448 pin 10 on schematic 75 or 86).

When test 0 runs at power-up, only addresses \(000_{16}-04 \mathrm{~F}_{16}\) in the RAM are tested. If the test is run at any time other than power-up, all 4096 addresses are checked.

Newly tested circuitry includes:
- The STACK A WE, \(\overline{\text { STACK B WE, and STACK C WE, signals. }}\)
- Stack word recognizer RAMs U148, U248, and U448 (schematic 75 or 86).
- The SW0-SW2 bus (on schematic 75 or 86 ).
- Readback port U771 (schematic 69) and its enable signal, TRIGGERED RD.

Test 0 treats the three word recognizer RAMs, U148, U248, and U448, (on schematic 75 or 86) as one \(4096 \times 3\) bit RAM. The RAM is tested in three passes. The test patterns loaded into the RAM are described in Table 7-9.
- The least significant loaded bit goes to U148.
- The middle loaded bit goes to U248.
- The most significant loaded bit goes to U448.

Table 7-9
TEST PATTERNS USED IN WRD REC TEST 0
\begin{tabular}{|c|cc|cc|cc|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Hex \\
RAM Addr
\end{tabular}} & \multicolumn{2}{|c|}{ Pass 1 } & \multicolumn{2}{c|}{ Pass 2 } & \multicolumn{2}{c|}{ Pass 3 } \\
\cline { 2 - 7 } & Loaded & Read & Loaded & Read & Loaded & Read \\
\hline 000 & 010 & 40 & 001 & 80 & 100 & 20 \\
001 & 001 & 80 & 100 & 20 & 010 & 40 \\
002 & 100 & 20 & 010 & 40 & 001 & 80 \\
003 & 010 & 40 & 001 & 80 & 100 & 20 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

\section*{Test 0 Readback Port}

All test 0 results are read through U771 (port 0E) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 0 Initial Conditions}
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), so STACK PTR LD goes low. This allows loading the stack pointer (U571 on schematic 76 or 86).
2. On all 91 A 24 and 91 AE 24 modules, \(00_{16}\) is written to U 758 (on schematics 68 and 79 ). This sets STACK CLK EN and \(\overline{\text { A DIAG EN }}\) - C DIAG EN low.
3. On all 91A24 and 91AE24 modules, \(80_{16}\) is written to U945 (on schematics 77 and 87 ). This enables the SINGLE STEP clock.

\section*{Test 0 Run Sequence}
1. The address of the RAMs is placed on the two buses controlling the address (SP0-SP3 and DRO-DR23).
2. The data to be loaded into the RAM is then written to ports \(04_{16}, 05_{16}\), and \(06_{16}\) (STACK WE A-STACK WE C ports from U958, on schematic 68 or 79 ). All three RAMs are completely loaded from address \(000_{16}\) to \(\mathrm{FFF}_{16}\) at the beginning of each test pass, before the DAS reads back the RAM contents.

\section*{NOTE}

The DAS will not stop 91A24 WRD REC test 0 while the RAM is being loaded. This loading takes about 20 seconds at the beginning of each test pass. After the RAMs are loaded, the test may be stopped with the STOP key.
3. After loading the entire memory, the DAS reads the RAM contents over the SWO-SW2 bus. This bus goes to the three most significant bits of U771 (on schematic 69 or 80 ). The output of this port goes to the DAS Controller data bus on the Interconnect board.

The readback from the RAMs occupies the highest three-out-of-eight bits of U771. The readback through U 771 has the bit significance reversed from the input data. So if \(10 \mathrm{O}_{2}\) is written into the RAM, the diagnostics read back \(001_{2}\), and display \(20_{16}\). The bottom five readback bits are masked, in this example to \(001[00000]_{2}\), by the diagnostics.
4. Steps 1-3 are repeated two more times, using different input values (see Table 7-9).

\section*{91A24 AND 91AE24 WRD REC TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the WRD REC function provides test results like those shown in Figure 7-25.


Figure 7-25. WRD REC test 1 readback display. The ACTUAL value is read from the RAM. The EXPECTED values are shown in Table 7-10.

\section*{Error Indication}

WRD REC function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, or STK PNTR functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into WRD REC \\
test are not functional.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication: 91A24}

WRD REC test 1 fails on the 91A24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J176 \\
91A24, the 91AE24 may cause \\
and J178 at the top of the 91A24 module. Turn on the DAS \\
the failure.
\end{tabular} \\
\begin{tabular}{l} 
and re-run test 1. If the test fails with the cables disconnect- \\
ed, the 91A24 is at fault. If the test passes, suspect incor- \\
rectly installed interconnect cables or a 91AE24 module.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication: 91A24}


Test 1 fails at RAM address 00, 01, or 02, test pass 1 on the 91A24.
\begin{tabular}{c|c}
\hline Possible Cause & Action \\
\hline
\end{tabular}

Data qualifier disabling circuitry is malfunctioning.

Loop test 1. Examine pin 11 of U568D (schematic 74). If this pin is static low, the data qualifier disabling circuitry is probably okay. Continue on to the next possible cause.

If U 568 D pin 11 is not static low, examine pin 5 of U581B (91A32 QUAL on schematic 74). If this pin is not static high, then suspect the Interconnect or the Trigger/Time Base board, which supply this signal.

Examine pin 4 of U581B (91A24 INIT signal on schematic 74). If this pin is not static high, suspect U761.

Examine pin 3 of U488A (MASTER CLK I on schematic 74). This pin should carry occasional clock pulses (while the test reads and writes). If there is no clock signal, suspect Q545 or Q546 (schematic 77).

Examine pin 6 of U488A (on schematic 74). If this pin is not static high, suspect U488.
Examine pin 11 of U568D. If this pin is not low, suspect U568.

Error Indication: 91A24 and 91AE24
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
WRD REC & TEST 1 & \(\underbrace{}_{00,01, \text { or } 02} 10 \mathrm{AX}\) & ZZ
\end{tabular}

Test 1 fails at RAM address 00,01 , or 02 , test pass 1 on either module type.
\begin{tabular}{|c|c|}
\hline Possible Cause & Action \\
\hline Write enable signals to one of the word recognizer RAMs are malfunctioning. & \begin{tabular}{l}
Loop test 1. Check pin 17 of U958 ( \(\overline{\text { PADQ WE on schematic }}\) 68 or 79) with a scope. If the pin does not show occasional low pulses, suspect U958. \\
Check pins 1 and 2 of U965 ( \(\overline{\mathrm{PBDQ} \text { WE }}\) and \(\overline{\mathrm{PCDQ} \mathrm{WE}}\) on schematic 68 or 79 ) with a scope. If one or both of these pins do not show occasional low pulses, suspect U965.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication: 91A24 and 91AE24 (cont.)}

\section*{WRD REC TEST 1}
\begin{tabular}{crr} 
ADDR & EXPECTED & ACTUAL \\
\(\frac{07}{00,01, \text { or } 02}\) & &
\end{tabular}

One of the word recognizer RAMs is malfunctioning.

ANDing circuit is malfunctioning.

Word recognizer output control logic is malfunctioning.

Readback circuitry is malfunctioning.

Loop test 1. Examine U261A, B, C, pins 6, 8, and 12 and U168B pin 6 (on schematic 74 or 85 ) with a scope. If all these pins toggle, then the ANDing circuit works; proceed to the next probable cause. Otherwise, go to the next paragraph.

If one or all of pins 6, 8, or 12 on U261A, B, C is stuck, but U168B pin 6 operates properly, then U261 (on schematic 74 or 85) has probably failed. If U261 is not causing the problem, suspect U278 (on the 91A24 only, schematic 74).

If only U168B pin 6 is stuck low, then U168 has probably failed. Suspect U168 (on schematic 74 or 85 ). If U168 is not causing the problem, suspect U278 (on the 91A24 only, schematic 74).

If all of U261A, B, C, pins 6,8 , and 12 and U168B pin 6 are stuck, then U278 (on the 91A24 only, schematic 74) has probably failed.

Loop test 1. Examine U778 pins 11, 13, 15, and 17 (schematic 69 or 80 ). If all of these pins toggle, then the word recognizer output control logic is probably functional. Proceed to the next probable cause.

If any of U 778 pins \(11,13,15\) or 17 do not toggle, examine U765 pins 12, 15, and 16 (TNO-TN3 on schematic 68 or 79). If any of these pins are high, then suspect U765.

Examine U761 pin 16 (MEM RD on schematic 68 or 79). If this pin is stuck high, then suspect U761.

Examine U291A, B, D, pins 3, 6, and 11 (on schematic 74 or 85). If any of these pins do not toggle, then suspect U291.

Examine U198B pin 6 (schematic 74 or 85 ). If this pin does not toggle, then suspect U198.

Loop test 1. Check U998 pin 8 (DQ STATUS on schematic 69 or 80 ) for low pulses; if none, suspect U998. Otherwise suspect U778 (on schematic 69 or 80 ).

\section*{Error Indication}
\begin{tabular}{lrrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
WRD REC & TEST 1 & 07 & \(X X \quad\) A \(X\) YY & \(Z Z\)
\end{tabular}

Test 1 fails during a test pass on RAM A.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline RAM malfunction. Prime suspect \\
is U151. Secondary suspects are & \begin{tabular}{l} 
Suspect U151 (on schematic 74 or 85). Because the outputs \\
of all three RAMs are ANDed together, the fault may be with \\
one of the other two RAMs. If replacing U151 does not re- \\
solve the failure, try replacing U351 and/or U551.
\end{tabular} \\
U351 and U551.
\end{tabular}

\section*{Error Indication}

ADDR EXPECTED ACTUAL
WRD REC TEST 1 \(07 \quad X X \quad B \quad X \quad Y Y \quad Z Z\)
Test 1 fails during a test pass on RAM B.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline RAM malfunction. & Suspect U351 (on schematic 74 or 85). \\
\hline
\end{tabular}

\section*{Error Indication}
\begin{tabular}{lrrrrr} 
& & ADDR & \multicolumn{2}{r}{ EXPECTED } & ACTUAL \\
WRD REC & TEST 1 & 07 & \(X X \quad \mathrm{C} \quad \mathrm{Y}\) & & \(Z Z\)
\end{tabular}

Test 1 fails during a test pass on RAM C.
\begin{tabular}{c|c}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline RAM malfunction. & Suspect U551 (on schematic 74 or 85). \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 WRD REC TEST 1 DESCRIPTION}


Figure 7-26. Blocks of the 91A24 tested by the WRD REC function, test 1. The Storage Control and Data Qualifier Start/Stop circuitry on the 91A24 is used to test both 91A24 and 91AE24 modules.

WRD REC test 1 verifies operation of all three data qualifier word recognizer RAMs (U151, U351, and U551 on 91A24 schematic 74 or 91AE24 schematic 85).

Test 0 has already verified the data and address buses that load the word recognizer RAMs. The only input signals to the RAM that were not verified by test 0 are PADQ WE, PBDQ WE, and PCDQ WE.

When test 1 runs at power-up, only addresses \(00_{16}-04_{16}\) in the RAM are tested. If the test is run at any time other than power-up, all 256 addresses are checked.

Newly tested circuitry includes
- The \(\overline{\text { PADQ WE, }} \overline{\mathrm{PBDQ} \text { WE, and }} \overline{\mathrm{PCDQ} \mathrm{WE}}\) signals (from U958 and U965 on schematic 68 or 79).
- Word recognizer RAMs U151, U351, and U551 (schematic 74 or 85 ).
- The A1-C4 bus from the word recognizer (schematic 74 or 85 ).
- AND gates U261A, B, and C, and U168B (schematic 74 or 85 ).
- Disable circuitry U488A, U581B, U568D, and U278A, B, E, and F (only on 91A24 schematic 74).
- The TNO-TN2 bus and exclusive OR gates U291A, B, and D (schematic 74 or 85 ).
- The MEM RD signal and OR gate U198B (schematic 74 or 85 ).
- Readback port U778 (schematic 69 or 80 ) and its enable signal, DQ STATUS.

\section*{Test 1 Readback Port}

Test 1 results are read through U778 (port 07) on 91A24 schematic 69 or 91AE24 schematic 80.

\section*{Test 1 Initial Conditions}

The readback from the RAMs passes through some active circuits before arriving at the RESET, ENABLE, DISABLE, \(\overline{O R}\) TRIG bus (on schematic 74 or 85 ). For proper readback to occur from the RAMs, these circuits must be partially functional, and the incoming control lines must be at the proper levels.

On the 91A24, the following control lines are placed in the states given below in order to turn off the disable circuits on the 91A24 built around flip-flop U488A, NAND gates U568D and U581B, and inverters U278A, B, E, and F (schematic 74).
- 91A24 INIT must be high.
- 91A32 QUAL from the Trigger/Time Base must be high.
- MASTER CLK I must be able to make at least one rising edge.

The following control lines must be in the given states to prevent the output signal onto the RESET, ENABLE, DISABLE, OR TRIG bus from being inverted.
- All three TNO-TN2 signals must be low.
- The MEM RD signal must be low.

Finally, the RESET WORD and ENABLE WORD signals (J176, schematic 74 or 85 ) and the DISABLE WORD and OR TRIG WORD signals (J178, schematic 74 or 85 ) must be high on all 91A24 and 91AE24 modules not being tested. These signals are set high by writing FF to U151, U351, and U551 (schematic 74 or 85 ) on all 91A24 and 91AE24 modules not being tested.

\section*{Test 1 Run Sequence}

At the beginning of each pass the data qualifier RAMs are entirely filled with a pattern. The pattern loading is described in the next five steps.
1. DRO-DR23 is loaded with \(000000_{16}\) at the beginning of each test pass. DR0-DR23 provides the address of the RAMs under test. The address comes from the LID0-LID23 bus, where it is initially latched into the system data login registers (U125, U225, and U425 on schematic 72 or 83).
2. The test value for that address is loaded into the RAM under test by writing the value on LBOLB7 and asserting PADQ WE, PBDQ WE, or PCADQ WE. The proper test value is shown in Table 7-10. RAMs U151 and U351 are loaded from LB0-LB3, and RAM U551 is loaded from LB4-7.
3. \(\mathrm{F}_{16}\) is loaded into the same address on the other two RAMs. To do this, LBO-LB7 are loaded with \(\mathrm{FF}_{16}\), and the write enables of the two RAMs are asserted.
4. The address on the DRO-DR23 bus is increased. For the purposes of this test, DRO-DR23 is divided into three parts. For the second loaded address to be \(01_{16}\), DRO-DR23 is set to \(010101_{16}\). The third DRO-DR23 value is \(020202_{16}\), and so on up to EFEFEF \(_{16}\) and FFFFFF \(_{16}\).
5. Steps 2 through 4 are repeated until all addresses of all three RAMs are loaded with the value appropriate to the test pass.

When all addresses are filled, the contents of the RAM are read and compared to the expected value. This read and compare sequence is described in steps 6 through 10.
6. DRO-DR23 is loaded with \(000000_{16}\) as described in step 1.
7. Port 07 (U778 on schematic 69 or 80) is read by asserting DQ STATUS. The top four bits from port 07 are compared to the expected value. If the values do not match, an error is displayed and the test stops.
8. If no error is found, the DR0-DR23 value is increased (as described in step 4).
9. Steps 7 and 8 are repeated until all 256 addresses have been read or an error is found.
10. Steps 1 through 9 are repeated two more times using different test values on the same RAM. After three passes, that RAM is completely tested.
11. Steps 1 through 10 are repeated two more times, once each on the remaining RAMs for a total of nine test passes.

Table 7-10
TEST PATTERNS USED IN WRD REC TEST 1
\begin{tabular}{|c|cc|cc|cc|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Hex \\
RAM Addr
\end{tabular}} & \multicolumn{2}{|c|}{ Pass 1 } & \multicolumn{2}{c|}{ Pass 2 } & \multicolumn{2}{c|}{ Pass 3 } \\
\cline { 2 - 7 } & Loaded & Read & Loaded & Read & Loaded & Read \\
\hline 00 & 1010 & A0 & 0001 & 10 & 1100 & C0 \\
01 & 0001 & 10 & 1100 & C0 & 1010 & A0 \\
02 & 1100 & C0 & 1010 & A0 & 0001 & 10 \\
03 & 1010 & A0 & 0001 & 10 & 1100 & C0 \\
.. & \(\ldots\). &.. & \(\ldots\) &.. & \(\cdots\). &.. \\
\hline
\end{tabular}

\section*{91A24 FUNCTION 5 OCCR CNTR}

\section*{CIRCUIT OVERVIEW}

The OCCR CNTR (occurrence counter) function verifies the sequential word recognizer's occurrence counter (on schematic 75) and the RAMs that load it. The occurrence counter is a 12-bit upcounter. The three \(16 \times 4\) bit RAMs that load the counter value are configured as a single 12 bit \(\times 16\) deep RAM.

\section*{FUNCTION DESCRIPTION}

The OCCR CNTR function has five tests. Test 0 verifies that the occurrence counter and each address in the occurrence counter RAM can be loaded. Test 1 verifies that the occurrence counter can count. Test 2 verifies that the occurrence counter RAM will load the counter with the next value when a count is complete. Tests 3 and 4 verify that the 91A24 can trigger.

The occurrence counter is loaded from the occurrence counter RAM. The occurrence counter RAM is loaded by placing the desired address into the stack pointer (U571 on schematic 76), writing the data onto LB0-LB7, and asserting OCCR CNTR RAM LD0 then OCCR CNTR RAM LD1 low.

\section*{Readback Ports}

Tests \(0,1,3\), and 4 results are read back through U771 (port 0E) on schematic 69.
Test 2 results are read back through U771 (port 0E) and U235 (port 04) on schematic 69.

\section*{91A24 OCCR CNTR TEST 0 TROUBLESHOOTING}

\section*{Reading the Test 0 Error Codes}

Test 0 of the OCCR CNTR function provides test results like those shown in Figure 7-27.


Figure 7-27. OCCR CNTR test 0 readback display. The ACTUAL value is read from the counter. The EXPECTED value depends on the RAM address. Refer to Table 7-11 for expected values.

\section*{Error Indication}

OCCR CNTR test 0 fails.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J181 \\
91A24, the 91AE24 may cause \\
the failure.
\end{tabular} \\
at the top of the 91A24 module. Turn on the DAS and re-run \\
the test. If the test fails with the cables disconnected, the \\
91A24 is at fault. If the test passes, suspect incorrectly in- \\
stalled interconnect cables or a 91AE24 module.
\end{tabular}

\section*{Error Indication}

OCCR CNTR function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, or WRD REC functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into OCCR \\
CNTR test are malfunctioning.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

Error Indication


\section*{91A24 OCCR CNTR TEST 0 DESCRIPTION}


4541-728
Figure 7-28. Blocks of the 91A24 tested by the OCCR CNTR function, test 0.

OCCR CNTR test 0 checks the occurrence counter RAM and verifies that the occurrence counters can be loaded. This is done by loading the RAM with 16 patterns and then loading these patterns into the occurrence counters to be read. Only three bits are read back from the occurrence counters, so the patterns used in the diagnostic routine cause these three lines to increment from 0 to 7 twice. The patterns also toggle all the bits that the DAS cannot read, so they can be observed with a scope.

Table 7-11 shows the values loaded into each RAM address, and the readback data expected by the DAS. Since the three readback lines are connected to U771 in reverse order and in the middle of the byte, the data read from the port appears reversed as Table 7-11 shows.

Table 7-11
CONTENTS OF OCCURRENCE COUNTER RAM AND EXPECTED VALUES FOR OCCR CNTR TEST 0
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{RAM Address} & \multicolumn{3}{|c|}{RAM Output} & \multicolumn{2}{|l|}{Expected Result} \\
\hline & \(11-8\) & 7-4 & 3-0 & Binary & Hex \\
\hline 0 & 0101 & 0001 & 0101 & XXX000XX & 00 \\
\hline 1 & 1010 & 1010 & 1000 & XXX001XX & 04 \\
\hline 2 & 0101 & 0101 & 0101 & XXX010XX & 08 \\
\hline 3 & 1010 & 1110 & 1000 & XXX011XX & 0C \\
\hline 4 & 0101 & 0001 & 0111 & XXX100XX & 10 \\
\hline 5 & 1010 & 1010 & 1010 & XXX101XX & 14 \\
\hline 6 & 0101 & 0101 & 0111 & XXX110XX & 18 \\
\hline 7 & 1010 & 1110 & 1010 & XXX111XX & 1C \\
\hline 8 & 0101 & 0001 & 0101 & XXX000XX & 00 \\
\hline 9 & 1010 & 1010 & 1000 & XXX001XX & 04 \\
\hline A & 0101 & 0101 & 0101 & XXX010XX & 08 \\
\hline B & 1010 & 1110 & 1000 & XXX011XX & 0C \\
\hline C & 0101 & 0001 & 0111 & XXX100XX & 10 \\
\hline D & 1010 & 1010 & 1010 & XXX101XX & 14 \\
\hline E & 0101 & 0101 & 0111 & XXX110XX & 18 \\
\hline F & 1010 & 1110 & 1010 & XXX111XX & 1 C \\
\hline
\end{tabular}

\section*{Test 0 Readback Port}

All test 0 results are read through U771 (port 0E) on schematic 69.

\section*{Test 0 Initial Conditions}

Before test 0 actually starts, the DAS initializes the 91A24 module as described in the following steps.
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), which makes U 761 pin 15 (DUAL QUAL) high and pin 19 (STACK PTR LD) low. DUAL QUAL low forces U571 pin 1 (on schematic 76 or 86) high. STACK PTR LD low goes to U571 pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes U 758 pin 6 ( \(\overline{\text { STACK CLK EN }}\) ) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86 ).

\section*{Test 0 Run Sequence}

Test 0 loads values into the occurrence counter RAM. This loading process is described in the next four steps.
1. For each of the 16 passes, an address \(\left(0-\mathrm{F}_{16}\right)\) is written onto D0-D7, and U958 pin 15 (STACK PTR CLK on schematic 68) is asserted. This loads the address into the stack pointer (U571 on schematic 76) and establishes an address for the occurrence counter RAMs (U155, U255, and U455 on schematic 75).
2. The low eight bits of one of the patterns are then written onto D0-D7, and U958 pin 13 (OCCR CNTR RAM LDO on schematic 68) is asserted. This loads the pattern into the low byte of the RAM (U155 and U255 on schematic 75).
3. The high four bits of the pattern are then written onto D0-D4 and U958 pin 11 ( \(\overline{O C C R}\) CNTR RAM LD1 on schematic 68) is asserted. This loads the pattern into RAM U455 (on schematic 75).
4. Steps 1-3 are repeated until all 16 addresses of the occurrence counter RAM are filled.

After the RAM is entirely filled, the DAS reads the values from the RAM through the occurrence counter. Steps 5 through 8 describe this readback process.
5. DAS now reads the contents of the RAM in 16 passes. For each of these passes, an address \(\left(0-\mathrm{F}_{16}\right)\) is written onto D0-D7, and U958 pin 15 (STACK PTR CLK on schematic 68) is asserted.
6. The contents of the occurrence counter RAM at the address loaded in step 5 is then loaded into the occurrence counter (U158, U258, and U458 on schematic 75). The DAS causes this loading by toggling U958 pin 9 (OCCR CNTR LD on schematic 68) low. The low on U958 pin 9 passes through U265 (on schematic 75) to pin 1 of U158, U258, and U458 (on schematic 75), which loads the pattern from the occurrence counter RAM.
7. The DAS then reads the three bits of the pattern that can be read (OCCR1-OCCR3) through U771 (on schematic 69), which is enabled by U998 pin 16 (TRIGGERED RD on schematic 69).
8. Steps \(5-7\) are repeated until all 16 patterns have been read or until an error is detected.

\section*{91A24 OCCR CNTR TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the OCCR CNTR function provides test results like those shown in Figure 7-29.


Figure 7-29. OCCR CNTR test 1 readback display. The ACTUAL value is read from the RAM. The EXPECTED value may be 10,08 , or 04 .

\section*{Error Indication}

OCCR CNTR function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, or WRD REC functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Circuits feeding into OCCR & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

OCCR CNTR test 1 fails.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & Turn off the DAS. Disconnect interconnect cables from J181 \\
91A24, the 91AE24 may cause & at the top of the 91A24 module. Turn on the DAS and re-run \\
the failure. & OCCR CNTR test 1. If the test fails with the cables discon- \\
& nected, the 91A24 is at fault. If the test passes, suspect \\
incorrectly installed interconnect cables or a 91AE24 \\
module.
\end{tabular}

\section*{Error Indication}
\begin{tabular}{rrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
OCCR CNTR & TEST 1 & \(0 E\) & \(Y Y\) & \(Z Z\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Cause & Action \\
\hline \(\overline{\text { OCCR CLK }}\) malfunction. & \begin{tabular}{l}
Loop test 1. Check U965 pin 17 (on schematic 68) for low pulses; if none, suspect U965. If low pulses present check U165A pin 5 (on schematic 75) for high pulses. If U165A shows high pulses, then OCCR CLK is okay. Proceed to the next possible cause. \\
If U165A pin 5 is steady low, suspect U165. If U165A pin 5 is steady high, check U165A pin 1 (on schematic 75) for low; if low, suspect U165. If U165A pin 1 is high, check U268B pin 4 (on schematic 75) for low; if low, suspect R266 (also on schematic 75); otherwise suspect U268 (on schematic 75).
\end{tabular} \\
\hline Counter malfunction. & \begin{tabular}{l}
Determine from EXPECTED and ACTUAL values which bit is at fault. \\
1. If bit 4 is bad, suspect U158 (on schematic 75). \\
2. If bit 3 is bad, suspect U 258 (on schematic 75). \\
3. If bit 2 is bad, suspect U 458 (on schematic 75).
\end{tabular} \\
\hline
\end{tabular}

\section*{91A24 OCCR CNTR TEST 1 DESCRIPTION}


4541-730
Figure 7-30. Blocks of the 91A24 tested by the OCCR CNTR function, test 1.

OCCR CNTR test 1 test checks the occurrence counter's ability to count. This is accomplished by loading 0 into the occurrence counter, clocking the counters to three different values, and reading back the results. The test has three parts:
- First, the counters are loaded with \(000_{16}\), clocked twice, then checked for \(002_{16}\).
- Next, the counters are clocked 62 more times, and the counters checked for \(040_{16}\).
- Last, the counters are clocked 1984 more times, and the counters checked for \(800_{16}\).

\section*{Test 1 Readback Port}

All test 1 results are read through U771 (port 0E) on schematic 69.

\section*{Test 1 Initial Conditions}

Before test 1 runs, the stack occurrence counter RAM address is set to \(0_{16}\). Then the RAMs are loaded with \(000_{16}\) at that address. Finally the \(000_{16}\) in the RAMs is loaded into the occurrence counter, so it will start its count from \(\mathrm{OOO}_{16}\).

The first two steps are performed as initial conditions to test 0 , but they remain true in test 1 and are required for the test to pass.
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), which makes U 761 pin 15 (DUAL QUAL) high and pin 19 (STACK PTR LD) low. DUAL QUAL low forces U571 pin 1 (on schematic 76 or 86) high. STACK PTR LD low goes to U571 pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes \(U 758\) pin 6 (STACK CLK EN) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86).

The remaining initial conditions are set immediately before test 1 begins.
3. \(00_{16}\) is written onto DO-D7 and U958 pin 15 (STACK PTR CLK on schematic 68) is asserted. This loads the stack pointer (U571 on schematic 76) with 0s.
4. The low byte of the occurrence counter RAM is loaded with \(00_{16}\) by writing \(\mathrm{FF}_{16}\) onto D0-D7 and asserting U958 pin 13 (OCCR CNTR RAM LDO on schematic 68). \(\mathrm{FF}_{16}\) is inverted by the occurrence counter RAM to produce 0 s on the RAM outputs.
5. The high four bits of the occurrence counter RAM are loaded with 0 s by writing \(\mathrm{FF}_{16}\) onto DOD7 and asserting U958 pin 11 (OCCR CNTR RAM LD1 on schematic 68). \(\mathrm{FF}_{16}\) is inverted by the occurrence counter RAM (U455 on schematic 75) to produce 0s on the outputs.
6. The occurrence counter ( \(\mathrm{U} 158, \mathrm{U} 258\), and U458 on schematic 75) is then loaded with the 0s that were loaded into the RAM in steps 2 and 3 . The counter is loaded by writing \(00_{16}\) to U958 pin 9 (OCCR CNTR LD on schematic 68).

\section*{Test 1 Run Sequence}

After the counter is loaded with \(00{ }_{16}\), it is clocked and the clocked value is read for comparison with the expected value.
1. The occurrence counter is clocked to \(002_{16}\) by writing to port 1 F twice ( \(\overline{\text { OCCR CLK }}\), U965 pin 17 on schematic 68). This causes two low pulses on U165A pins 4 and 5 which clocks U158 pin 8 (all on schematic 75).
2. The three bits that can be read from the occurrence counter (OCCR1-OCCR3) are then read from U771 (on schematic 69) and compared to the expected value. If an error is detected, the test will stop here.
3. The occurrence counter is then clocked to \(040_{16}\) by writing to port 1 F 62 more times ( \(\overline{O C C R ~ C L K, ~ U 965 ~ p i n ~} 17\) on schematic 68).
4. The occurrence counter is again read as in step 2, and if an error is detected here, the test stops.
5. The occurrence counter is clocked to \(800_{16}\) by writing to port 1F 1984 more times ( \(\overline{\text { OCCR CLK }}\), U965 pin 17 on schematic 68).
6. The occurrence counter is read as in step 2, and this value is compared to the expected value.

\section*{91A24 OCCR CNTR TEST 2 TROUBLESHOOTING}

\section*{Reading the Test 2 Error Codes}

Test 2 of the OCCR CNTR function provides test results like those shown in Figure 7-31.


Figure 7-31. OCCR CNTR test 2 readback display. The ACTUAL value is read from the counter. The EXPECTED value is 04 from port 04 , and 08 from port \(0 E\).

\section*{Error Indication}

OCCR CNTR function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, or WRD REC functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Circuits feeding into OCCR & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

OCCR CNTR Test 2 fails.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the \\
91A24, the 91AE24 may cause \\
the failure. & \begin{tabular}{l} 
Turn off the DAS. Disconnect interconnect cables from J171 \\
and J181 at the top of the 91A24 module. Turn on the DAS \\
and re-run the test. If the test fails with the cables discon- \\
nected, the 91A24 is at fault. If the test passes, suspect \\
incorrectly installed interconnect cables or a 91AE24 \\
module.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
OCCR CNTR & TEST 2 & 04 & 01 & 00
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline POINTER CLK malfunction. & \begin{tabular}{l} 
Loop test 2. Check U165B pin 8 (on schematic 75) for high \\
pulses. If high pulses are present, POINTER CLK is okay. \\
Continue to the next possible cause.
\end{tabular} \\
& \begin{tabular}{l} 
If high pulses are not present, check U165B pin 13 (on sche- \\
matic 75) for a steady high. If signal is steady high, go to the \\
next paragraph. If U165B pin 13 is not steady high, trace \\
signal back through U471B (on schematic 76) to find the \\
problem.
\end{tabular} \\
& \begin{tabular}{l} 
If U165 pin 13 is static high, check U165B pin 10 (on sche- \\
matic 75) for low pulses. If no low pulses on U165B pin 10, \\
trace through U265A (schematic 75) and U265A (also in \\
schematic 75) to correct; otherwise suspect U165 (on sche- \\
matic 75).
\end{tabular} \\
\hline With test 2 still looping, check U161 pin 9 (on schematic 75) \\
formTER INC malfunction. & \begin{tabular}{l} 
foggling signal. If signal is steady low, suspect U161 (on \\
schematic 75). If U161 pin 9 is steady high, check U161 \\
inputs for a steady low. Suspect any input that is steady
\end{tabular} \\
& low.
\end{tabular}

Error Indication
\begin{tabular}{llrrr} 
& & ADDR & EXPECTED & ACTUAL \\
OCCR CNTR & TEST 2 & OE & YY & ZZ
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Counter won't load itself. & Loop test 2. Check U165B pin 9 (on schematic 75) for low \\
& pulses; if none, suspect U165. Check for low pulses on \\
& U265A pin 1; if none, suspect DL195 (on schematic 75). \\
& Check for low pulses on U265A pin 3; if none, suspect U265 \\
& (on schematic 75).
\end{tabular}

\section*{91A24 OCCR CNTR TEST 2 DESCRIPTION}


4541-733
Figure 7-32. Blocks of the 91A24 tested by the OCCR CNTR function, test 2.

OCCR CNTR test 2 checks the ability of the occurrence counter to load itself from the occurrence counter RAM. This is done by:
1. loading address \(0_{16}\) of the occurrence counter RAM with \(\mathrm{FFF}_{16}\),
2. loading address \(1_{16}\) of the occurrence counter RAM with \(\mathrm{FBF}_{16}\),
3. setting the stack pointer to \(0_{16}\),
4. clocking the occurrence counter,
5. then reading the counter and comparing the value to the value loaded into occurrence counter RAM address \(1_{16}\).

\section*{Test 2 Readback Port}

Test 2 results are read through U771 (port 0E) and U235 (port 04) on schematic 69.

\section*{Test 2 Initial Conditions}

The first two steps are performed as initial conditions to test 0 , but they remain true in test 2 and are required for the test to pass.
1. \(80_{16}\) is written to U 761 (on schematic 68 or 79 ), which makes \(\mathbf{U 7 6 1}\) pin 15 (DUAL QUAL) high and pin 19 (STACK PTR LD) low. DUAL QUAL low forces U571 pin 1 (on schematic 76 or 86) high. STACK PTR LD low goes to U571 pin 9 (on schematic 76 or 86 ) and sets the stack pointer in the load mode.
2. \(00_{16}\) is written to U 758 (on schematic 68 or 79 ), which makes U 758 pin 6 ( \(\overline{\text { STACK CLK EN }}\) ) low. When STACK CLK EN is low, the stack pointer counter can be clocked through U568C, U485A, and U575D (on schematic 76 or 86 ).

The remaining initial condition is set immediately before test 2 begins.
3. The internal master clock is selected on all 91A24s and 91AE24s in the DAS by writing \(80_{16}\) to D0-D7 and asserting U965 pin 8 (PC4 on 91A24 schematic 68 and 91AE24 schematic 79).

\section*{Test 2 Run Sequence}

The stack pointer on all 91A24 and 91AE24 modules is set to \(0_{16}\), as shown in steps 1 through 4. Step 3 also sets the stack word recognizer address (DR0-DR23) to \(00_{16}\).
1. \(00_{16}\) is written to \(U 758\) (on schematics 68 and 79) on all 91A24 and 91AE24 modules in the DAS. This asserts STACK CLK EN, which sets U485A pin 2 (on schematics 76 and 86) low, to enable clocking the stack pointer (U571 on schematics 76 and 86).
2. \(\mathrm{AO}_{16}\) is written to U761 (on schematics 68 and 79) on all 91A24 and 91AE24 modules in the DAS. This sets U571 pin 9 (on schematics 76 and 86) low, to enable loading the stack pointer.
3. The data registers (DR0-DR23 on schematics 73 and 84) on all of the 91A24 and 91AE24 modules in the DAS are initialized to \(00_{16}\) by writing \(00_{16}\) onto D0-D7 and asserting U958 pin 10 (SINGLE STEP on schematics 68 and 79) twice. This sets the address of stack word recognizer RAMs U148, U248, and U448 to \(00_{16}\).
4. The stack pointers on all of the 91A24 and 91AE24 modules are set to \(0_{16}\) by writing \(00_{16}\) onto D0-D7 and asserting U958 pin 15 (STACK PTR CLK on schematics 68 and 79).

In steps 5, 6, and 7 values are loaded into the stack control RAM at address 0 , the occurrence counter RAMs at address 0 , and the stack word recognizers.
5. The stack control RAM (U555 on schematics 75 and 86) on all 91A24 and 91AE24 modules is set to \(F_{16}\) by writing \(0_{16}\) on LB4-LB7 and asserting U958 pin 8 (STACK CNTL on schematics 68 and 79). The RAM inverts this \(0_{16}\) to produce \(F_{16}\) on its outputs.
6. The outputs of the stack word recognizers (U148, U248, and U448 on schematics 75 and 86) on all 91A24 and 91AE24 modules are set high by writing \(07_{16}\) to D0-D7 and asserting U958 pins 5, 6, and 7 (STACK A WE, STACK B WE, and STACK C WE on schematics 68 and 79). This sets U168A pin 12 (on schematics 75 and 86) high on all of the modules.
7. The occurrence counter RAM (U155, U255, and U455 on schematic 75) has FFF \({ }_{16}\) loaded at address \(0_{16}\) by writing \(000_{16}\) onto LBO-LB7 and asserting U958 pins 13 and 11 (OCCR CNTR RAM LD0 and OCCR CNTR RAM LD1 on schematic 68). These 0s are inverted to produce Fs at the RAM output.

In steps \(8,9,10\), and 11 the stack pointer is incremented to \(1_{16}\). With the new stack pointer value, data is loaded into the stack control RAM at address \(1_{16}\), the occurrence counter RAMs at address \(1_{16}\), and the stack word recognizers.
8. The stack pointers (U571 on schematics 76 and 86) on all 91A24 and 91AE24 modules are incremented to \(1_{16}\) by toggling 4958 pin 15 (STACK PTR CLK on schematics 68 and 79) low.
9. The stack control RAMs (U555 on schematics 75 and 86) on all 91A24 and 91AE24 modules are set to \(\mathrm{F}_{16}\) by writing \(00_{16}\) onto LB4-LB7 and asserting U958 pin 8 (STACK CNTL on schematics 68 and 79) low. The RAM inverts the loaded \(0_{16}\) to produce \(F_{16}\) on its outputs.
10. The outputs of the stack word recognizers (U148, U248, and U448 on schematics 75 and 86) on all 91A24 and 91AE24 modules are set high by writing \(07_{16}\) onto D0-D7 and asserting U958 pins 5, 6 , and 7 (STACK A WE, STACK B WE, and STACK C WE on schematics 68 and 79) low. This sets U168A pin 12 (on schematics 75 and 86 ) high on all of the modules.
11. The occurrence counter RAM (U155, U255, and U455 on schematic 75) is loaded with \(040_{16}\) at address \(1_{16}\) by writing \(\mathrm{BF}_{16}\) onto D0-D7 and asserting U958 pin 13 (OCCR CNTR RAM LD0 on schematic 68) and then writing \(\mathrm{FF}_{16}\) onto DO-D7 and asserting U958 pin 11 (OCCR CNTR RAM LD1 on schematic 68). This pattern is inverted by the RAM outputs to produce \(0^{40}{ }_{16}\).

Now that all necessary RAM addresses are loaded, the stack pointer is re-initialized, the occurrence counter is loaded with \(\mathrm{FFF}_{16}\), and the occurrence counter is prepared to increment. This is described in steps 12 through 15.
12. The stack pointers on all 91 A24 and 91AE24 modules are set to \(0_{16}\) again by setting U958 pin 15 low (STACK PTR CLK on schematic 68).
13. The occurrence counter (U158, U258, and U458 on schematic 75) is loaded with \(\mathrm{FFF}_{16}\) from address 0 in the occurrence counter RAM by toggling U958 pin 9 low (OCCR CNTR LD on schematic 68).
14. \(\mathrm{FO}_{16}\) written to U 761 (on schematics 68 and 79) on all 91 A 24 and and 91 AE 24 modules. This makes U761 pin 19 (STACK PTR LD) high, which pulls U571 pin 9 high (on schematics 76 and 86) to enable the stack pointer to count.
15. \(01_{16}\) is written to U758 (on schematics 68 and 79) on all 91A24 and 91AE24 modules. This makes U758 pin 6 (STACK CLK EN) high, which pulls U485A pin 2 high (on schematics 68 and 79) to enable POINTER CLK through U575D (on schematics 76 and 86).

Finally, the test is ready to run. The \(\overline{\text { SINGLE STEP }}\) clock increments the the stack pointer and loads a new value from address \(1_{16}\) of the occurrence counter RAM into the counter. Step 16 describes the sequence of events.
16. U958 pin 10 ( \(\overline{\text { SINGLE STEP }}\) on schematic 68 ) is toggled low, to clock U165B pin 11 (on schematic 75). This causes a high pulse on U165B pin 8 (POINTER CLK on schematic 75). This increments the stack pointer (U571 on schematic 76) from \(0_{16}\) to \(1_{16}\). The new pointer value changes the occurrence counter RAM address to \(1_{16}\).

When POINTER CLK goes high, U165B produces a low pulse which passes through U265A, to load the occurrence counter with the data from address \(1_{16}\) of the occurrence counter RAM. This low pulse is also applied to U165B pin 10, to SET flip-flop U165B back to its default condition.

The remainder of the test reads the stack pointer and occurrence counter values to see if the test was successful.
17. The stack pointer (U571 on schematic 76) is read to ensure that it incremented to \(1_{16}\). The stack pointer is read through U235 (on schematic 69). If the stack pointer is not at \(1_{16}\), an error is displayed from readback port 04 with an expected value of 04 , and the test stops.
18. If the expected value was read in step 17, then the occurrence counter is read through U771 (on schematic 69). The read value is compared to the pattern ( \(040_{16}\) ) loaded into address \(1_{16}\) of the occurrence counter RAM. If an unexpected value is read, an error is displayed from readback port 0 E with an expected value of 08.

\section*{91A24 OCCR CNTR TEST 3 TROUBLESHOOTING}

\section*{Reading the Test 3 Error Codes}

Test 3 of the 91A24 OCCR CNTR function provides test results like those shown in Figure 7-33.


Figure 7-33. OCCR CNTR test 3 readback display. The ACTUAL value is read from the counter. The EXPECTED values are 00 and 02.

Error Indication
\begin{tabular}{|c|c|c|c|c|}
\hline OCCR CNTR & TEST 3 & ADDR OE & \[
\begin{array}{r}
\text { EXPECTED } \\
02
\end{array}
\] & ACTUAL 00 \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline 91 A 24 INIT malfunction. & \multicolumn{4}{|r|}{Loop test 3. Check U761 pin 12 (on schematic 68) for low pulses; if none, suspect U761 (on schematic 68).} \\
\hline Triggered flip-flop malfunction. & \multicolumn{4}{|l|}{With test 3 still looping, check U798 pins 9 and 5 (on schematic 76) for high level; if not high level suspect U798.} \\
\hline Readback circuitry malfunction. & \multicolumn{4}{|l|}{Check U771 pin 8 (on schematic 69) for high whenever U771 pin 1 is low. If high, suspect U771.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Error Indication} \\
\hline OCCR CNTR & TEST 3 & \[
\begin{array}{r}
\text { ADDR } \\
0 \mathrm{E}
\end{array}
\] & EXPECTED
00 & ACTUAL 02 \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline 91A24 INIT malfunction. & \multicolumn{4}{|r|}{Loop test 3. Check U761 pin 12 (on schematic 68) for low pulses; if none, suspect U761.} \\
\hline \(\overline{\text { POINTER INC }}\) malfunction. & \multicolumn{4}{|r|}{With test 3 still looping, check U265D pin 12 (on schematic 76) for high or pulses. If neither high nor pulsing, suspect U268 or U161 (on schematic 75). If high or pulsing, check U265D pin 11 (on schematic 76) for low pulses; if none, suspect U265.} \\
\hline \(\overline{\text { NEVER TRIG }}\) malfunction. & \multicolumn{4}{|l|}{Check U758 pin 2 (on schematic 68) for low pulses; if low pulses not present, suspect U758.} \\
\hline U481A malfunction. & \multicolumn{4}{|l|}{Check U481A pin 5 (on schematic 76) for low or low pulses; if none, suspect U481.} \\
\hline TRIG CLK malfunction. & \multicolumn{4}{|l|}{Check U481B pin 8 (schematic 74) for low pulses. If no low pulses, suspect U481B or U578B and C (on schematic 74).} \\
\hline U475A malfunction. & \multicolumn{4}{|r|}{Check U475A pin 3 (on schematic 76) for low or low pulses; if none, suspect U475; otherwise suspect U798 (on schematic 76).} \\
\hline Readback circuitry malfunction. & \multicolumn{4}{|r|}{See if U771 pins 8 and 12 (on schematic 69) are at the same state while U771 pin 1 is low. If they have different states, suspect U771.} \\
\hline
\end{tabular}

\section*{91A24 OCCR CNTR TEST 3 DESCRIPTION}


Figure 7-34. Blocks of the 91A24 tested by the OCCR CNTR function, test 3.

OCCR CNTR test 3 checks the triggered flip-flop, (U798A and B on schematic 76) to ensure that the 91A24 stack word recognizer can trigger and assert the TRIGGERED signal (on schematic 76). First the TRIGGERED signal is set high by resetting 91A24 INIT low, which sets U798 (on schematic 76). TRIGGERED is then read to ensure that the module has not triggered. Then the stack word recognizer trigger is asserted, the 91A24 is clocked twice, and TRIGGERED (on schematic 76) is checked for a low (triggered) state.

\section*{Test 3 Readback Port}

Test 3 results are read through U771 (port 0E) on schematic 69.

\section*{Test 3 Initial Conditions}
1. The internal single-step clock is selected by writing \(80_{16}\) onto D0-D7 and asserting PC4 (U965 pin 8 on schematic 68).
2. \(90_{16}\) is written to LB0-LB7 and U958 pin 8 (STACK CNTL on schematic 68 ) is asserted. This resets SC0 from U555 (on schemtic 75 ) low so that the stack pointer (U571 on schematic 76) will not increment.
3. The outputs of the occurrence counter RAMs (U155, U255, and U455 on schematic 75) are set high by writing \(00_{16}\) to ports 0 A and 0 B ( \(\overline{\mathrm{OCCR}} \mathrm{CNTR}\) RAM LD1 and OCCR CNTR RAM LDO from U958 on schematic 68).
4. The occurrence counter ( \(\mathrm{U} 158, \mathrm{U} 258\), and U 458 on schematic 75 ) is loaded with \(\mathrm{FFF}_{16}\) from the occurrence counter RAM by writing to port 08 (OCCR CNTR LD, U958 pin 9 on schematic 68).
5. The acquisition memory data registers (U128, U228, and U428) are loaded with zeros by writing \(00_{16}\) three times to LBO-LB7 and asserting U958 pin 10 (SINGLE STEP on schematic 68).
6. U168 pin 12 (on schematic 75) is made low by writing \(00_{16}\) to U 958 pin 5 (STACK A WE on schematic 68). This, along with the low from SC3 (U555 pin 11 on schematic 75) makes U291C pin 8 low (on schematic 75).

\section*{Test 3 Run Sequence}

After the initialization is complete, the test is set up in steps 1 through 4.
1. \(\mathrm{BO}_{16}\) is written to U 761 (on schematic 68). This makes 91 A 24 INIT low to set U298A, U798A and U798B (on schematic 76).

The \(\mathrm{BO}_{16}\) to U761 also sets MEM RD high, which makes \(\overline{\text { MAR EN }}\) (from U288 on schematic 74) low. Due to the lows on MAR EN, ENABLE TRIG, and CS3, and the highs on the occurrence counter outputs, POINTER INC (from U161 pin 9 on schematic 75) goes low.
2. \(03_{16}\) is written to U 758 (on schematic 68 ) to make \(\overline{\text { NEVER TRIG low. }}\)
3. \(\mathrm{FO}_{16}\) is written to U 761 (on schematic 68 ). This makes U 761 pin 12 ( \(\overline{91 \mathrm{~A} 24 ~ I N I T)}\) ) high so that U798 (on schematic 76) is not held in the set condition. In addition, DUAL QUAL is set high, which sets OR TRIGGER high.
4. \(\mathrm{OB}_{16}\) is written to U 758 (on schematic 68 ). This makes U 758 pin 2 ( \(\overline{\text { NEVER TRIG) high to }}\) enable U481A (on schematic 76).

Now the test starts. There are two parts to the test. In the first part, steps 5, 6 and 7 make sure that the trigger signal is not premature. In the second part, steps 8 and 9 verify that a trigger is indicated when expected.
5. TRIGGERED is read from U771 pin 12 (on schematic 69). TRIGGERED should be high, because U798A (on schematic 76) was set by the 91A24 INIT signal.
6. The 91A24 is then clocked by writing to address 09 (SINGLE STEP, U958 pin 10 on schematic 68). SINGLE STEP drives the TRIG CLK signal which clocks a low from U475A (on schematic 76) into U798B (also on schematic 76).
7. U771 (on schematic 69) is then read to ensure that bit 1 (TRIGGERED) is high. If it is low, the test stops with an error message.
8. The 91A24 is again clocked by writing to address 09 ( \(\overline{\text { SINGLE STEP, }} 4958\) pin 10 on schematic 68). This clocks a low from U798B into U798A (both on schematic 76), resetting TRIGGERED low.
9. U771 (on schematic 69) is again read to ensure that bit 1 (TRIGGERED) is low. If the bit is high the DAS reports an error.

\section*{91A24 OCCR CNTR TEST 4 TROUBLESHOOTING}

\section*{Reading the Test 4 Error Codes}

Test 4 of the OCCR CNTR function provides test results like those shown in Figure 7-35.


Figure 7-35. OCCR CNTR test 4 readback display. The ACTUAL value is read from the RAM. The EXPECTED value may be \(00,02\).

Error Indication
\begin{tabular}{|c|c|c|c|c|}
\hline OCCR CNTR & TEST 4 & \[
\begin{array}{r}
\text { ADDR } \\
0 \mathrm{E}
\end{array}
\] & EXPECTED
00 & ACTUAL 02 \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline DUAL QUAL malfunction. & \multicolumn{4}{|r|}{Loop test 4. Check U761 pin 15 (on schematic 68) for low; if not low, suspect U761.} \\
\hline TN2 malfunction. & \multicolumn{4}{|r|}{While test 4 is still looping, check U765 pin 15 (on schematic 68) for low; if not low, suspect U765.} \\
\hline \(\overline{\text { OR TRIGGER }}\) malfunction. & \multicolumn{4}{|r|}{Check U198A pin 3 (on schematic 74) for low. If not low, check U198A pin 2 for low; if pin 2 is low, suspect U198.} \\
\hline U298A malfunction. & \multicolumn{4}{|r|}{Check U298A pin 5 (on schematic 76) for low or low pulses; if low, suspect U475 (on schematic 76). If high, check U298A pin 2 (on schematic 76) for low or low pulses; if low, suspect U298. Otherwise suspect U575A (on schematic 76).} \\
\hline
\end{tabular}

\section*{91A24 OCCR CNTR TEST 4 DESCRIPTION}


Figure 7-36. Blocks of the 91A24 tested by the OCCR CNTR function, test 4.

OCCR CNTR test 4 test checks the triggered flip-flop (U798A and B on schematic 76) to ensure that the 91A24 can trigger and assert TRIGGERED (on schematic 76) low by way of the OR trigger mode. First, the TRIGGERED line is set high by resetting 91 A 24 INIT low, which sets U798 (on schematic 76). TRIGGERED is then read to ensure that it is not triggered. Then the 91A24 is set to a state where it will trigger using the OR trigger mode, clocked twice, and checked for a triggered state.

\section*{Test 4 Readback Port}

Test 4 results are read through U771 (port 0E) on schematic 69.

\section*{Test 4 Initial Conditions}

The internal single-step clock is selected by writing \(80_{16}\) to \(\mathbf{U 9 4 5}\) (on schematic 77) and toggling U965 pin 8 (PC4 on schematic 68).

\section*{Test 4 Run Sequence}

After the 91A24 module is initialized, the test begins. Steps 1 through 4 set up the test.
1. \(07_{16}\) is written to U 765 (on schematic 68). This makes TN2 low, which makes OR TRIG from U291D (on schematic 74) low.
2. \(30_{16}\) is written to U 761 (on schematic 68 ). This makes U 761 pin 12 ( 91 A 24 INIT\()\) low to set flipflops U298A and U798A and B (on schematic 76). 91A24 INIT also sets U488A (on schematic 74) so the MAR EN output of U288 (schematic 74). The \(30_{16}\) also makes U761 pin 15 (DUAL QUAL on schematic 68) low. DUAL QUAL pulls U198A pin 1 low (on schematic 74) to make OR TRIGGER low.
3. \(13_{16}\) is written to U 758 (on schematic 68). This sets U 758 pin 2 (NEVER TRIG) low.
4. \(70_{16}\) is written to U 761 (on schematic 68 ). This makes U 761 pin 12 ( 91 A 24 INIT) high so that U798 (on schematic 76) is not held set.

Now the test starts. The first part, steps 5 and 6 , makes sure that the trigger signal is not premature. The second part, steps 7 and 8 , verify that a trigger is indicated when expected.
5. U771 (on schematic 69) is read to ensure that bit 1 (TRIGGERED) is high. If it is low, the test stops with an error message.
6. The 91A24 is clocked by writing to port 09 (SINGLE STEP, U958 pin 10 on schematic 68). SINGLE STEP pulses TRIG CLK (on schematic 74) which clocks a low from U475A (from schematic 76) into U798B (also on schematic 76).
7. U771 (on schematic 69) is again read to ensure that bit 1 (TRIGGERED) is high. If it is low, the test stops with an error message.
8. The 91A24 is again clocked by writing to port 09 (SINGLE STEP, U958 pin 10 on schematic 68). This clocks a low from U798B into U798A (both on schematic 76), resetting TRIGGERED low.
9. U 771 (on schematic 69 ) is read a last time to ensure that bit 1 (TRIGGERED) is low. If the bit is high the DAS reports an error.

\section*{91A24 FUNCTION 6 DAC THRSH 91AE24 FUNCTION 4 DAC THRSH}

\section*{CIRCUIT OVERVIEW}

The DAC THRSH (DAC threshold) function tests the circuitry that controls the thresholds for the three acquisition probes. Schematic 71 shows the 91A24 threshold control circuitry. Schematic 82 shows the corresponding circuits on the 91AE24. The threshold circuit is a monolithic digital-to-analog converter (U918) and an op amp (U808C) which acts as an inverting buffer. There are also six more op amps (U711A, B, C, and D and U808A and D) that adjust the voltage from the DAC to match the requirements of the probes. For more information about this circuit refer to Probe Interface in the Theory of Operation section.

\section*{FUNCTION DESCRIPTION}

The DAS cannot read back from the DAC circuitry, so you must connect a DMM or oscilloscope to TP910 on the module for test results. The function sets the DAC to three different voltages, then sweeps the output voltage with a ramp. Select the test voltage in the DAC THRESHOLD SET field with the SELECT key.

Setting the DAC Voltage. The controller interface loads the DAC by placing a hexadecimal value on D0-D7 and toggling the THRESHOLD signal.

Test Points. The DAC output is tested at TP910. The first half of the three output buffer circuits can be tested at TP707, TP711, and TP808. The second half of the output buffer circuits can be tested at \(U 711\) pins 1 and 7 and at \(U 808\) pin 1.

\section*{91A24 AND 91AE24 DAC THRSH TROUBLESHOOTING}

\section*{Error Indication}

Threshold of all three probes is stuck at the same voltage regardless of menu setting.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline THRESHOLD signal is stuck. & \begin{tabular}{l} 
Set the DAC THRSH function to RAMPING. With an oscillo- \\
scope, monitor U918 pin 10 (on schematic 71 or 82). If the \\
signal is not toggling at TTL levels, suspect U958
\end{tabular} \\
& (THRESHOLD's source on schematic 68 or 79). \\
DAC has failed. & \begin{tabular}{l} 
With the Diagnostics menu still set to RAMPING, monitor \\
pin 18 of U998 (the DAC output on schematic 71 or 82) with \\
an oscilloscope If this signal does not ramp downward, sus- \\
pect the DAC (U918).
\end{tabular} \\
Op amp U808 has failed. & \begin{tabular}{l} 
If U918 pin 18 shows a ramp down on an oscilloscope, but \\
the signal at TP910 does not change or is very small, sus- \\
pect U808 (on schematic 71 or 82).
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

Threshold of all three probes changes, but not to the expected voltage.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline DAC is out of adjustment. & \begin{tabular}{l} 
Adjust the DAC according to the instructions in the Verifica- \\
tion and Adjustments section.
\end{tabular} \\
\begin{tabular}{ll} 
DAC cannot be brought into & \begin{tabular}{l} 
Trimmer potentiometers R902 and R110 (on schematic 71 \\
or 82) may be bad. Use a DMM to verify that trimmer poten- \\
adjustment.
\end{tabular} \\
tiometers R902 and R110 are operating properly.
\end{tabular} \\
\begin{tabular}{ll} 
If the trimmers work well, use the diagnostics DAC THRSH \\
function to compare the voltage at TP910 to the voltage at
\end{tabular} \\
U918. If the voltages are not inverse centered around \\
ground, suspect U808 (on schematic 71 or 82). If the volt- \\
ages do track properly, suspect U918 (on schematic 71 or \\
82).
\end{tabular}

\section*{Error Indication}

DAC circuit is in adjustment, but one or more pods do not track the threshold.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline The probe is not functional. & \begin{tabular}{l} 
Install a known good probe in the pod connector and see if \\
the threshold tracks the threshold value specified in the \\
Channel Specification menu. If the channel now behaves \\
correctly, suspect the old probe.
\end{tabular} \\
\begin{tabular}{l} 
The channel's threshold buffer \\
circuit is not functional.
\end{tabular} & \begin{tabular}{l} 
Suspect the buffer op amps (on schematics 71 or 82). Sus- \\
pect U711 for problems in pods A and B. Suspect U808 for \\
problems in pod C.
\end{tabular}
\end{tabular}

\section*{Error Indication}

Threshold is correct except at some menu settings.
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline The DAC has a stuck bit. & \begin{tabular}{l} 
Set the DAC THRSH diagnostics function to RAMPING and \\
set the DISPLAY field to OFF. With an oscilloscope, monitor \\
test point TP910. The voltage at the test point should show
\end{tabular} \\
a linear ramp wave. If you look closely, you will see very \\
small steps. If steps in the ramp are missing, suspect U918.
\end{tabular}

\section*{91A24 AND 91AE24 DAC THRSH FUNCTION DESCRIPTION}


4438-539
Figure 7-37. Blocks of the 91A24 and 91AE24 tested by the DAC THRSH function.

This function has four operations that can be selected with the SELECT key on the DAS. The four selections set the DAC to 0.00 volts by writing \(80_{16}\) to the DAC, set the DAC to -6.40 volts by writing \(00_{16}\), set the DAC to +6.35 volts by writing \(\mathrm{FF}_{16}\), and ramp the DAC by continuously writing decrementing values from FF to 00 . The voltage values can be measured at test point TP910 to adjust and verify accuracy.

While ramping, a scope can be connected to test point TP910. The scope should show a staircase display which makes malfunctioning bits visible. To produce a steady and consistent display while ramping, select LOOPING ON with the DISPLAY OFF in the Diagnostics menu.

\title{
91A24 FUNCTION 7 PRB CLK EX 91AE24 FUNCTION 5 PRB CLK EX
}

\begin{abstract}
NOTE
This function fails unless variable threshold probes are connected to the 91A24 module and to all 91AE24 modules being tested, even though the tested circuitry may be functional.
\end{abstract}

\section*{CIRCUIT OVERVIEW}

The PRB CLK EX (probe clock exerciser) function verifies the 91A24 and 91AE24 circuits that lie between the inputs from the probes and system data login registers (U125, U225, and U425). This circuitry includes the probe receivers, the probe data login registers (U118, U221, and U421), and the multiplex mode login register (U121). Test 0 of the PRB CLK EX function also checks the 91A24 clock qualifier circuits (schematic 77) and clock generator circuits (schematic 78).

\section*{FUNCTION DESCRIPTION}

All three tests in this function cause the probes attached to the module to output data. This data then stimulates the module's data-receiving circuits and external clock circuits. The acquired data is analyzed to give the test results.

Because data actually comes from the probes to run this function, three probes with variable thresholds must be connected to the 91A24 and the probe leads left unconnected. P6462 probes will not work, because their threshold is fixed. Three additional variable threshold probes must also be connected to each tested 91AE24 module.

Do not connect any of the probe leads to voltage sources. Certain voltage levels on the probe leads could cause this test to fail. This is because the test swings the probe threshold to the high and low limits to cause the probes to output data. If the probe is connected to voltages near or above maximum thresholds, the probes may not detect a change in state.

Test 0 uses levels from the 91A24 probes as inputs to the 91A24 clock and qualifier circuits shown on schematics 77 and 78 . Test 0 runs on the 91AE24 also, but only verifies the 91AE24 circuitry that receives clocks from the 91A24.

Test 1 acquires data bytes out of the probe to see if the login registers work. The 91 A24 login registers are on schematic 72, and the 91AE24 login registers are on schematic 83.

Test 2 acquires data bytes out of the probe into the multiplex mode login register U121 (91A24 schematic 72 and 91AE24 schematic 83 ). This verifies the integrity of the demultiplexing mode data path.

\section*{Readback Ports}

Test 0 results are read back through U135 on both the 91A24 (schematic 69) and the 91AE24 (schematic 80). This is port 03.

Tests 1 and 2 results are read back through U131 (port 0B), U231 (port 0C), and U431 (port 0D) on both the 91A24 (schematic 69) and the 91AE24 (schematic 80).

\section*{91A24 AND 91AE24 PRB CLK EX TEST 0 TROUBLESHOOTING}

\section*{Reading the Test 0 Error Codes}

Test 0 of the PRB CLK EX function provides test results like those shown in Figure 7-38. Along with the usual diagnostic information, this test also indicates which pod clock (see Table 7-12) was being tested when the test stopped.


Figure 7-38. 91A24 and 91AE24 PRB CLK EX, test 0 readback display. The ACTUAL value is read from the MAR. The EXPECTED value may be 00 or 02.

Table 7-12
CLOCK SIGNAL CORRELATION FOR TEST 0 ERROR CODE DISPLAY
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Displayed Clock \\
Signal Number
\end{tabular} & \begin{tabular}{c} 
Clock Signal \\
Input Probe
\end{tabular} & \begin{tabular}{c} 
Clock Signal Name \\
(Schematic 78)
\end{tabular} \\
\hline 0 & A & CLK1 \\
1 & A & \(\overline{\text { CLK1 }}\) \\
2 & B & CLK2 \\
3 & B & \(\overline{\text { CLK2 }}\) \\
4 & C & CLK3 \\
5 & C & \(\overline{\text { CLK3 }}\) \\
\hline
\end{tabular}

Table 7-13
COMPONENTS FOR BANK AND CLOCK SIGNAL VALUES IN ERROR INDICATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|c|}{Bank} & \multirow[b]{2}{*}{Set Flip-Flop} \\
\hline & & 1 & 2 & 3 & \\
\hline & 0 & U735A & U735B & U741A & U741B \\
\hline & 1 & U835A & U835B & U841A & U841B \\
\hline CLOCK & 2 & U948A & U948B & U751A & U751B \\
\hline SIGNAL & 3 & U951A & U951B & U851A & U851B \\
\hline & 4 & U738A & U738B & U745A & U745B \\
\hline & 5 & U838A & U838B & U845A & U845B \\
\hline
\end{tabular}

\section*{Error Indication}

PRB CLK EX function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, WRD REC, OCCR CNTR, or DAC THRSH functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Circuits required by the PRB & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
CLK EX function are \\
malfunctioning.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

Any or all 91A24 and 91AE24 modules fail.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Incorrect probes & \begin{tabular}{l} 
Verify that 91A24 compatible probes with variable threshold \\
capability are connected to the all pod connectors of the
\end{tabular} \\
Bad probe & \begin{tabular}{l} 
91A24 and any other tested modules. The test will fail if \\
fixed threshold probes are used.
\end{tabular} \\
\begin{tabular}{l} 
Move the probes around to new pod connectors. If the fail- \\
ure indication changes, suspect one of the probes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

PRB CLK EX Test 0 fails on both the 91A24 and a 91AE24.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & Turn off the DAS. Disconnect interconnect cables from \\
91A24, the 91AE24 may cause & \(\mathrm{J} 173, \mathrm{J183}\), and J185 at the top of the 91A24 module, then \\
the failure. & replace the square pin jumpers as shown in the Operating \\
& Instructions section. You must replace the jumpers to prop- \\
& erly terminate the 91A24's clock signals. Turn on the DAS \\
& and re-run test 0 on the 91A24. If the test fails with the \\
& cables disconnected, the 91A24 is at fault. If the test \\
& passes, suspect incorrectly installed interconnect cables or \\
& a 91AE24 module.
\end{tabular}

Error Indication: 91A24
\begin{tabular}{llrrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
PRB CLK EX & TEST 0 & 03 & B & P & 00 & 01
\end{tabular}
\begin{tabular}{c|c}
\hline Possible Cause & Action \\
\hline \hline
\end{tabular}

If probes are not connected the function will not pass.
\(\overline{\text { CLK INIT }}\) malfunction.

Make sure that probes are connected to all three pod connectors on the 91A24 module.

Loop test 0 . Check U965 pin 3 (on schematic 68) for low pulses; if none, suspect U965.

If low pulses are present, check U921D pin 12 (on schematic 78) for low pulses. If no low pulses, suspect R917, R916, or R915 (schematic 78).

If low pulses on U921D pin 12, check U921D pin 15 for high pulses; if none, suspect U921 (schematic 78). If high pulses are present, refer to Table 7-13 for the applicable set flipflop and check for low pulses on pin 15 of that flip-flop. If there are no low pulses on pin 15, suspect the set flip-flop or U848 (schematic 78).

Refer to the displayed error code and Table 7-13 to decide on a suspect flip-flop (shown on schematic 78). While test 0 is looping, check for a high or high pulses on pin 9 of the suspected flip-flop. If pin 9 is steady low, trace the applicable CLK or CLK back to find the faulty IC. If pin 9 is steady high, check the applicable flip-flop \(\bar{Q}\) output for a steady low. If \(\bar{Q}\) is not steady low, then replace the suspect flip-flop.
\begin{tabular}{|c|c|}
\hline PRB CLK EX T & \[
\] \\
\hline Possible Cause & Action \\
\hline Pod qualifier ( \(\overline{\mathrm{PXQX}}\) ) malfunction (schematic 78). & \begin{tabular}{l}
Refer to the displayed error code and Table 7-13 to decide on a suspect flip-flop (shown on schematic 78). Loop test 0. While looping, check for pulses on the D input to that flipflop. If high pulses are present, suspect that flip-flop. If no high pulses, trace the D input signal ( \(\overline{\mathrm{PXQX}}\) pod qualifier line) to its source device in the clock-qualifier generator (schematic 77). Check that the QX and \(\overline{\mathrm{QX}}\) inputs to the device are of opposite polarity. If the QX and \(\overline{\mathrm{QX}}\) inputs are not toggling opposite to each other, suspect U725A, B, or C (on schematics 70 and 71). (U725 contains the clock buffers for all three probes, but the individual buffers are shown on different schematics.) \\
Otherwise, check that the clock qualifier (Table 7-13) enable line (QX0-QX5 on schematic 77) from the clock/clock-qualifier selector to the suspect device carries high pulses. If no high pulses are present, trace that enable signal to its source and suspect that device in the clock/clock-qualifier selector (U935, U928, or U931 on schematic 77). If high pulses are present on the enable lines to the suspect device in the clock-qualifier generator, replace the device in the clock qualifier generator (schematic 77).
\end{tabular} \\
\hline
\end{tabular}

Error Indication: 91A24
\begin{tabular}{lrrrrrr} 
& & ADDR & \multicolumn{2}{r}{ EXPECTED } & ACTUAL \\
PRB CLK EX & TEST 0 & 03 & B & P & 02 & 00
\end{tabular}
\begin{tabular}{c|c}
\hline Possible Cause & Action \\
\hline \hline
\end{tabular}

Clock enable malfunction (schematic 78).

Clock receiver flip-flop malfunction (schematic 78).

Refer to the displayed error code and Table 7-13 to decide on a suspect flip-flop (shown on schematic 78). Loop test 0. Then, while looping, check for high pulses on the CXX clock enable input (CCO-CC5, CB0-CB5, or CA0-CA5) of the suspect flip-flop. If there are no high pulses, trace the signal to its source in the clock/ clock-qualifier selector (on schematic 77) to locate the faulty component.

Refer to Table 7-13 to determine the suspect device; then, while test 0 is still looping, check for a low or low pulses on pin 9 of that device. If pin 9 is never low, trace the signal back to correct. Otherwise, check for high pulses on the CXX clock enable input to that device (CC0-CC5, CB0-CB5, or CAO-CA5). If no high pulses on the CXX clock enable, trace the signal back to locate the faulty device. If there are high pulses on the CXX input, check for high pulses on the \(\overline{\mathrm{Q}}\) output of the suspect device. If there are no high pulses, replace the flip-flop (schematic 78).

\section*{Error Indication: 91AE24}

91AE24 fails PRB CLK EX test 0, but the 91A24 module does not.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Probes must be connected to \\
both the 91A24 and the 91AE24. & \begin{tabular}{l} 
Make sure that variable threshold probes are connected to \\
all three pod connectors of the the 91A24 as well as to the \\
91AE24.
\end{tabular} \\
\begin{tabular}{l} 
Cables are not properly connect- \\
ed between the 91A24 and \\
91AE24
\end{tabular} & \begin{tabular}{l} 
Check the interconnect cable connections and jumper posi- \\
tions. After cables and jumpers are properly installed, re-run \\
the test to see if the failure has gone away.
\end{tabular} \\
\hline
\end{tabular}

Error Indication: 91AE24


\section*{Error Indication: 91AE24}


Error Indication: 91AE24
\begin{tabular}{lrrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
PRB CLK EX & TEST 0 & 03 & 3 & 0 & XX
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline CLKA receiver may be & Loop test 0. Examine U721 pin 13 (on schematic 87) with a \\
malfunctioning. & scope. If pulses are not present, suspect U275A on sche- \\
& matic 83. \\
& If pulses are present on U721 pin 13, then examine U721 \\
& pin 12 (also on schematic 87). If pin 12 is high, suspect \\
& U721. If pin 12 is low, examine U945 pin 11 for pulses. If \\
& U945 pin 11 is pulsing, suspect U945. If U945 pin 11 is \\
& static, suspect U965 on schematic 79. \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 PRB CLK EX TEST 0 DESCRIPTION}


Figure 7-39. Blocks of the 91A24 tested by the PRB CLK EX function, test 0.

PRB CLK EX test 0 checks the probe clocks and qualifiers. This is done with three checks for both levels (positive and negative) of each clock (A, B, and C), and each pod (A, B, and C). There are, therefore, a total of 54 possible test results when the three checks are applied to all cases.

All three checks in PRB CLK EX test 0 verify 91A24's clock generator. All three checks use the memory address register (MAR) as a detector to see if clocks occur.
- The first check exercises the clock generator flip-flops (on schematic 78), the clock qualifier generator and clock/clock qualifier selector (on schematic 77), and the clock receivers (on schematics 70 and 71). It verifies that inputs to the clock generator flip-flops can be set so clocks are not generated.
- The second check exercises the same circuits as the first, except the qualifier receivers, rather than the clock receivers, are checked. It verifies that the qualifiers can be set so that clocks are not generated.
- The third check verifies that every clock generator flip-flop can generate clocks.

\section*{Test 0 Readback Port}

Test 0 results are read back through U135 on schematic 69 (port 03), which is the memory address register port.

\section*{Test 0 Initial Conditions}

The test is executed in two parts: a setup and the three checks. The setup is described here, the checks are described later. The first step in the initial conditions is performed only once at the beginning of the test. The setup is performed at the beginning of each loop through the test. The test loops 18 times.
1. U965 pins 5, 7, and 9 (PC1, PC3, and PC5 on schematic 68) are set low, disabling all of the qualifiers from U935, U928, and U931.

The remaining initial conditions are executed at the beginning of each loop through the test. The test loops 18 times to complete.
2. The clock flip-flops (on schematic 78) are initialized by setting 4965 pin 3 ( \(\overline{\text { CLK INIT }}\) on schematic 68) low. This sets the clock one-shots (U741B, U841B, U751B, U851B, U745B, and U845B on schematic 78), which set the clock flip-flops
3. The clock/clock-qualifier selector registers on all of the 91A24s and 91AE24s are initialized by writing \(80_{16}\) onto DO-D7 and asserting U965 pins 4 and 6 (PCO, PC2 on schematic 68); and writing 0 to U965 pins 5, 7, 8, and 9 (PC1, PC3, PC4, and PC5 on schematic 68).
4. The MAR is loaded with \(000_{16}\).
5. The threshold is set low for a positive clock, or high for a negative clock. This sets the clock input to the clock flip-flop high so that it cannot be clocked by the select bit (CC0-CC5, CB0-CB5, or CA0-CA5 on schematic 77).
6. The clock flip-flops are initialized by setting U965 pin 3 (CLK INIT on schematic 68) low. This initializes any flip-flops that were clocked when the threshold changed.

\section*{Test 0 Run Sequence}

These are the three checks that are executed after the setup given previously. Each of the three checks is described in even greater detail later.

Each clock generator flip-flop is tested individually. The combination of the initial conditions and the next three steps complete the first check. The first check verifies that no clocks are generated when the qualifier is true, but the clock signal is disabled.
1. The clock ( \(\mathrm{A}, \mathrm{B}\), or C ) whose flip-flop is being tested is selected by writing bit 6 high in the appropriate clock select register (U938, U941, U945 on schematic 77). This enables the selected clock through U721 (on schematic 77).
2. The clock select bit for the flip-flop being tested is set high and then set low. This should not clock the flip-flop because the common clock input should be high from a previous step.
3. The low eight bits of the MAR are read from U135 (on schematic 69) to ensure that the MAR did not increment. If the MAR reads other than 0 , the test stops at this point.

The second check occupies steps 4 through 9 . This check verifies that the clock qualifier generator (on schematic 77) passes qualifier signals. This is done by setting the qualifier signal false, passing the false qualifier through the clock qualifier generator, and attempting to cause a clock in the clock generator (schematic 78). No clock should result, so the MAR should not increment.
4. The clock being tested is de-selected by setting bit 6 of its clock select register low. This prevents the following threshold change from incrementing the MAR.
5. The threshold is now set so that the common clock input to the flip-flop being tested is low, enabling clocking from the clock select bit.
6. The clock flip-flops are initialized by setting U965 pin 3 ( \(\overline{\text { CLK INIT }}\) on schematic 68 ) low. This initializes any flip-flops that were clocked when the threshold changed.
7. The qualifier input to the flip-flop being tested is set high by setting the appropriate bit (0-5) of the appropriate register U 965 pin 5,7 , or 9 (PC1, PC3, or PC5 on schematic 68) high. This prevents a clock from being generated.
8. The flip-flop being tested is selected and clocked as in steps 1 and 2.
9. The MAR is read as in step 3 , and tested for 0 . If the MAR does not contain 0 , the test stops here.

The remaining steps finish the loop and complete the third check. The third check verifies that every clock generator flip-flop can generate clocks.
10. The qualifier bit for the flip-flop being tested is set low.
11. The flip-flop is clocked as in steps 1 and 2 . This will cause a clock to be produced by clocking the flip-flops' \(\overline{\mathrm{Q}}\) output high.
12. The clocks are de-selected as in step 4.
13. The clock flip-flops are then initialized by setting U965 pin 3 (CLK INIT on schematic 68) low. This sets all of the clock flip-flops so that they may be re-clocked.
14. The flip-flop under test is once again clocked as in steps 1 and 2.
15. The MAR is read as in step 3 and tested for a count of 2 . If the DAS does not read \(02_{16}\) from the MAR, the test stops looping and writes an error message.

\section*{91A24 AND 91AE24 PRB CLK EX TEST 1 TROUBLESHOOTING}

\section*{Reading the Test 1 Error Codes}

Test 1 of the PRB CLK EX function provides test results like those shown in Figure 7-40.


Figure 7-40. 91A24 and 91AE24 PRB CLK EX, test 1 readback display. The ACTUAL value is read from the acquisition memory. The EXPECTED value may be 00 or FF.

\section*{Error Indication}

PRB CLK EX function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, WRD REC, OCCR CNTR, or DAC THRSH functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline \begin{tabular}{l} 
Circuits feeding into PRB CLK \\
EX test are malfunctioning.
\end{tabular} & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

PRB CLK EX Test 1 fails.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & Turn off the DAS. Disconnect interconnect cables from \\
91A24, the 91AE24 may cause & \(\mathrm{J} 173, \mathrm{~J} 183\), and J185 at the top of the 91A24 module. Turn \\
the failure. & on the DAS and re-run test 1. If the test fails with the cables \\
disconnected, the 91A24 is at fault. If the test passes, sus- \\
& pect incorrectly installed interconnect cables or a 91AE24 \\
module.
\end{tabular}

Error Indication
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{PRB CLK EX T} & \[
\begin{array}{lr} 
& \text { ADDR } \\
\text { ST } 1 & 0 X
\end{array}
\] & EXPECTED 00 & ACTUAL FF \\
\hline & & Action & \\
\hline Login not enabled (91A24 schematic 68 or 91AE24 schematic 79). & Loop test 1. Check 68 or 79) for high high, suspect U75 for lows; if any pi & U758 pins 16, gnals; if any Otherwise, ch are not low, & , and 15 (on schematic hese three pins are not k U218 pins 3, 6, and 8 pect U218. \\
\hline
\end{tabular}

Error Indication


Error Indication
\begin{tabular}{lrrrr} 
& & ADDR & EXPECTED & ACTUAL \\
PRB CLK EX & TEST 1 & \(0 X\) & \(X X\) & \(X X\)
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Probe receiver malfunction. & \begin{tabular}{l} 
Loop test 1. Check that all of the PXDX inputs to U118, \\
U221, and U421 (on schematic 72 or 83) are toggling to the \\
\\
level indicated by the EXPECTED field on the display. If one \\
of the inputs is not toggling to the proper level, trace those \\
signals back and correct. If all inputs are toggling to the \\
correct level, then suspect the following devices:
\end{tabular} \\
& - Suspect U118 (schematic 72 or 83) for error address 0B. \\
& - Suspect U221 (schematic 72 or 83) for error address 0C. \\
& - Suspect U421 (schematic 72 or 83) for error address 0D. \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 PRB CLK EX TEST 1 DESCRIPTION}


Figure 7-41. Blocks of the 91A24 and 91AE24 tested by the PRB CLK EX function, test 1.

This test verifies that the probe data login registers can transmit both 1 s and 0 s .
First, the probe threshold is set so that the probe inputs are 0 ; then the probe data login registers are clocked using the internal 91A24 clock on the Trigger/Time Base.

Then the acquisition memory receives three internal single-step clocks. The memory is then read to ensure that pods \(\mathrm{A}, \mathrm{B}\), and C contain 0 s. If any pod contains other than 0 s the DAS reports an error; otherwise the probe thresholds are set so the probe inputs are high and the clocking sequence is performed again. The acquisition memory is then checked for 1 s .

\section*{Test 1 Readback Ports}

Test 1 results are read back through U131 (pod A memory port), U231 (pod B memory port), and U431 (pod C memory port) on 91A24 schematic 69 or 91AE24 schematic 80 (ports 0B, 0C, and OD).

\section*{Test 1 Initial Conditions}

Before any checks are done, the module is set up to perform the diagnostic test. The test itself is described next, under Test 1 Run Sequence.
1. The single-step clock from the Trigger/Time Base is selected by writing E8 to 91A32 CLK on the Trigger board. This clock is used later to clock the probe data login registers.
2. The system data login registers are disabled and the probe data login registers (U118, U121, and U421 on schematic 72 or 83 ) are enabled by writing \(\mathrm{EB}_{16}\) to U 758 (on schematic 68 or 79 ). This makes U 758 pins 12,15 , and 16 high. This write also sets U758 pin 19 (MUX MODE on schematic 68 or 79 ) low which disables the multiplex mode login register U121 (on schematic 72 or 83 ).
3. The DAS writes \(20_{16}\) to U 761 (on schematic 68 or 79 ). This makes U 761 pin 16 (MEM RD on schematic 68 or 79) high, and U461A pin 2 (MAR EN on schematic 73 or 84 ) low, allowing loading of the MAR (U138, U238, and U438 on schematic 73 or 84).
4. On the \(91 \mathrm{~A} 24,7 \mathrm{~F}_{16}\) is written onto DO-D7, and U965 pin 4 (PCO on schematic 68) is asserted. This sets U731B pin 11 (CC7 on schematic 78) low, which enables the 91A32 clock through U731B to clock the login registers.
5. Still on the 91A24, 80 \({ }_{16}\) is written onto D0-D7, and U965 pins 5-9 (PC1-PC5 on schematic 68) are toggled. This selects the single-step clock through U721 (schematic 77).
6. If a 91AE24 is being tested, \(80_{16}\) is written onto the 91AE24 D0-D7, and U965 pin 8 (PC4 on schematic 79) is asserted on the board being tested. This enables the 91AE24 single-step clock through U721.

\section*{Test 1 Run Sequence}

Test 1 performs two checks, the first verifies that 0 s can be clocked in, the second verifies that 1 s can be clocked in.
1. The MAR is loaded with \(000_{16}\). At the same time, \(18_{16}\) is written to U 765 (on 91 A24 schematic 68 or 91AE24 schematic 79). This makes WEA-WEC (U765 pins 5, 6, and 9) to the acquisition memory RAMs low.
2. \(10_{16}\) is written to U761, on schematic 68 and 79 , on all of the 91 A 24 s and 91 AE 24 s in the DAS. This makes U761 pin 16 (MEM RD on schematics 68 and 79) low and sets U461A pin 2 (MAR EN on schematics 73 and 84) high so that the MAR will not increment during this test.
3. The threshold is run to its highest limit by writing FF onto D0-D7 and asserting U958 pin 2 (THRESHOLD on schematic 68 or 79). This makes all of the probe inputs appear low.
4. On the 91A24, 0 is written to U965 pin 3 (CLK INIT on schematic 68 ) to clear all the clock flipflops on schematic 78 that may have been clocked when the threshold was set high. A set flipflop could inhibit the 91A32 clock at U535 (schematic 78).
5. 0 is written to SINGLE STEP on the Trigger/Time Base board. This causes a clock that is passed through U731B, U748A, U535A, B, and C (on 91A24 schematic 78), and U275A, B, and \(C\) (on 91A24 schematic 72 and 91AE24 schematic 83) to clock 0 s into the probe data login registers.
6. The 0 s in the login registers are loaded into the acquisition memory by writing 0 to U958 pin 10 (SINGLE STEP on schematic 68 or 79 ) three times. This generates three internal master clocks.
7. \(1 \mathrm{~F}_{16}\) is written to U 765 (schematic 68 or 79 ). This makes \(U 765\) pins 5,6 , and 9 ( \(\overline{\mathrm{WEA}}-\overline{\mathrm{WEC}}\) ) high to the acquisition memory RAMs (on schematic 73 or 84).
8. \(31_{16}\) is written to U761 (on schematic 68 or 79 ). This makes U761 pin 6 (READ ACQ on schematic 68 or 79) high. This enables the contents of the acquisition memory to be read by disabling the acquisition memory data registers (U128, U228, and U428 on schematic 73 or 84).
9. The three bytes of acquisition memory are read from the acquisition memory ports, U131, U231, and U431 (on schematic 69 or 80 ), to verify that only 0 s were acquired.
10. The threshold is set to its lower limit.
11. \(10_{16}\) is written to U761 of the board under test (on schematic 68 or 79 ). This makes U761 pin 16 (MEM RD on schematic 68 or 79) low and sets U461A pin 2 (MAR EN on schematic 73 or 84) high so that the MAR will not increment.
12. Steps 3 through 8 are repeated. Then the acquisition memory is read to verify that only 1 s were acquired.

\section*{91A24 AND 91AE24 PRB CLK EX TEST 2 TROUBLESHOOTING}

\section*{Reading the Test 2 Error Codes}

Test 2 of the PRB CLK EX function provides test results like those shown in Figure 7-42.


Figure 7-42. 91A24 and 91AE24 PRB CLK EX, test 2 readback display. The ACTUAL value is read from the acquisition memory. The EXPECTED value may be 00 or FF.

\section*{Error Indication}

PRB CLK EX function fails along with CNTR TIMR, MEM ADDR, ACQ MEM, STK PNTR, WRD REC, OCCR CNTR, or DAC THRSH functions.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline Circuits feeding into PRB CLK & \begin{tabular}{l} 
Debug according to the failed function with the smallest \\
EX test are malfunctioning.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Indication}

PRB CLK EX Test 2 fails.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Possible Cause } & \multicolumn{1}{c}{ Action } \\
\hline \hline If a 91AE24 is connected to the & \multicolumn{1}{c}{ Turn off the DAS. Disconnect interconnect cables from } \\
91A24, the 91AE24 may cause & \begin{tabular}{l} 
J173, J183, and J185 at the top of the 91A24 module. Turn \\
the failure.
\end{tabular} \\
\begin{tabular}{l} 
on the DAS and re-run test 1. If the test fails with the cables \\
disconnected, the 91A24 is at fault. If the test passes, sus- \\
pect incorrectly installed interconnect cables or a 91AE24 \\
module.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Error Indication} \\
\hline \multicolumn{2}{|l|}{PRB CLK EX TEST 2} & ADDR 0X & EXPECTED
00 & ACTUAL XX \\
\hline Possible Cause & \multicolumn{4}{|c|}{Action} \\
\hline Multiplex mode latch malfunctioning (on 91A24 schematic 72 or 91AE24 schematic 83) & \multicolumn{4}{|l|}{Suspect U121 (on schematic 72 or 83).} \\
\hline
\end{tabular}

\section*{91A24 AND 91AE24 PRB CLK EX TEST 2 DESCRIPTION}


Figure 7-43. Blocks of the 91A24 and 91AE24 tested by the PRB CLK EX function, test 2.

This test verifies that the probe data login registers can transmit both 1 s and 0 s in demultiplexing mode.

First, the probe threshold is set so that the probe inputs are 0 ; then the probe data and multiplex mode login registers are clocked using the internal 91A24 clock on the Trigger/Time Base.

Then the acquisition memory receives three internal single-step clocks. The memory is then read to ensure that pods \(A, B\), and \(C\) contain \(0 s\). If any pod contains other than \(0 s\) the DAS reports an error; otherwise the probe thresholds are set so the probe inputs are high and the clocking sequence is performed again. The acquisition memory is then checked for 1 s .

\section*{Test 2 Readback Ports}

Test 2 results are read back through U131 (pod A memory port), U231 (pod B memory port), and U431 (pod C memory port) on 91A24 schematic 69 or 91AE24 schematic 80 (ports 0B, 0C, and 0D).

\section*{Test 2 Initial Conditions}

Before any checks are done, the module is set up to perform the diagnostic test. A description of the test itself follows, under Test 2 Run Sequence.
1. The single-step clock from the Trigger/Time Base is selected by writing E8 to 91 A32 CLK on the Trigger board. This clock is used later to clock the probe data login registers.
2. The system data login registers are disabled and the probe data login registers (U118, U121, and U421 on schematic 72 or 83 ) are enabled by writing \(\mathrm{FB}_{16}\) to U 758 (on schematic 68 or 79 ). This makes U758 pins 12, 15, and 16 high. This write also sets U758 pin 19 (MUX MODE on schematic 68 or 79 ) high which enables the multiplex mode login register U121 (on schematic 72 or 83 ).
3. The DAS writes \(20_{16}\) to U 761 (on schematic 68 or 79 ). This makes U 761 pin 16 (MEM RD on schematic 68 or 79) high, and U461A pin 2 (MAR EN on schematic 73 or 84 ) low, allowing loading of the MAR (U138, U238, and U438 on schematic 73 or 84).
4. On the \(91 \mathrm{~A} 24,7 \mathrm{~F}_{16}\) is written onto D0-D7, and U965 pin 4 ( PCO on schematic 68 ) is asserted. This sets U731B pin 11 (CC7 on schematic 78) low, which enables the 91A32 clock through U731B to clock the login registers.
5. Still on the \(91 \mathrm{~A} 24,80_{16}\) is written onto D0-D7, and U965 pins 5-9 (PC1-PC5 on schematic 68) are toggled. This selects the single-step clock through U721 (schematic 77).
6. If a 91 AE 24 is being tested, \(80_{16}\) is written onto the 91 AE 24 D0-D7, and U965 pin 8 (PC4 on schematic 79) is asserted on the board being tested. This enables the 91 AE24 single-step clock through U721.

\section*{Test 1 Run Sequence}

Test 1 performs two checks, the first verifies that 0 s can be clocked in, the second verifies that 1 s can be clocked in.
1. The MAR is loaded with \(000_{16}\). At the same time, \(18_{16}\) is written to \(U 765\) (on 91 A24 schematic 68 or 91AE24 schematic 79). This makes \(\overline{W E A}-\overline{W E C}\) (U765 pins 5, 6, and 9) to the acquisition memory RAMs low.
2. \(10_{16}\) is written to U761, on schematic 68 and 79 , on all of the 91 A24s and 91 AE24s in the DAS. This makes U761 pin 16 (MEM RD on schematic 68 and 79) low and sets U461A pin 2 (MAR EN on schematics 73 and 84 ) high so that the MAR will not increment during this test.
3. The threshold is run to its highest limit by writing FF onto DO-D7 and asserting U958 pin 2 (THRESHOLD on schematic 68 or 79). This makes all of the probe inputs appear low.
4. On the 91 A24, 0 is written to U 965 pin 3 (CLK INIT on schematic 68 ) to clear all the clock flipflops on schematic 78 that may have been clocked when the threshold was set high. A set flipflop could inhibit the 91A32 clock at U535 (schematic 78).
5. 0 is written to SINGLE STEP on the Trigger/Time Base board. This causes a clock that is passed through U731B, U748A, U535A, B, and C (on 91A24 schematic 78), and U275A, B, and C (on 91A24 schematic 72 and 91AE24 schematic 83) to clock Os into the probe data login registers.
6. The 0 s in the login registers are loaded into the acquisition memory by writing 0 to U 958 pin 10 (SINGLE STEP on schematic 68 or 79 ) three times. This generates three internal master clocks.
7. \(1 F_{16}\) is written to \(U 765\) (schematic 68 or 79 ). This makes U765 pins 5,6 , and 9 ( \(\overline{\mathrm{WEA}} \overline{\mathrm{WEC}}\) ) high to the acquisition memory RAMs (on schematic 73 or 84 ).
8. \(31_{16}\) is written to U 761 (on schematic 68 or 79 ). This makes U761 pin 6 (READ ACQ on schematic 68 or 79) high. This enables the contents of the acquisition memory to be read by disabling the acquisition memory data registers (U128, U228, and U428 on schematic 73 or 84).
9. The three bytes of acquisition memory are read from the acquisition memory ports, U131, U231, and U431 (on schematic 69 or 80 ), to verify that only 0 s were acquired.
10. The threshold is set to its lower limit.
11. \(10_{16}\) is written to U 761 of the board under test (on schematic 68 or 79 ). This makes U 761 pin 16 (MEM RD on schematic 68 or 79) low and sets U461A pin 2 (MAR EN on schematic 73 or 84) high so that the MAR will not increment.
12. Steps 3 through 8 are repeated. Then the acquisition memory is read to verify that only 1 s were acquired.

\section*{MAINTENANCE: DIAGNOSTIC TEST DESCRIPTIONS}

For diagnostic test descriptions, see section 7 of this addendum, Maintenance: Troubleshooting. The diagnostic information has been integrated with the troubleshooting information.

\section*{REFERENCE INFORMATION}

This section contains the following information:
- 91A24/91AE24 error and prompter messages
- 91A24/91AE24 test point, jumper, and adjustment locations
- 91A24/91AE24 I/O map
- 91A24/91AE24 signal glossary

\section*{ERROR AND PROMPTER MESSAGES (Additions with Firmware Version 1.11)}

Table 9-1 lists the error and prompter messages added to the DAS by Firmware Version 1.11.
Table 9-1 ERROR AND PROMPTER MESSAGES

ACQUISITION STARTED -- If you hold down the START ACQ or START SYSTEM keys for CONTINUOUS an extended period, the DAS continuously acquires and displays data until you press the STOP key.

Holding down START SYSTEM also begins automatic restart of the Pattern Generator.

\section*{ALL LEVELS USED}

You are attempting to add levels to the stack even though all 16 levels have been allocated.

MUST ASSIGN 1 CLOCK TO POD [X]

\section*{MUST BE A SUBSET OF} STORE ONLY IF

You must specify at least one clock term in the POD[X] CLOCK expression, where \([X]\) equals \(A, B\) or \(C\).

You have specified a word recognizer value that is not a subset of your STORE ONLY IF value. You may not exit the menu while this condition exists.
Each incorrect sequence is marked with a highlighted question mark (if it is visible on the screen) or indicated by a highlighted \(M\) (if you need to scroll it onto the screen).

\section*{NEEDS FIRMWARE}

VERSION > = 1.11
You must have firmware version 1.11 or higher.

You have attempted to specify a non-acquisition pod ID in a Channel Specification menu POD field. Specify an acquisition pod.

Table 9-1 (cont.)

UNDISPLAYABLE GROUP
The data entry field for the channel group requires more than 30 characters for display, and therefore cannot fit on the screen. In the Channel Specification menu, change the group's display radix and/or reduce the number of channels in the group.

WAITING FOR LEVEL: [1-16] The sequential word recognizer's current level [1-16] is not yet satisfied.

WAITING FOR LEVEL: [1-16] If you have specified RUN TIMER in the sequential word TIME \(=\) [value] recognizer, and the DAS is waiting to trigger, the TIME = message shows you the timer's current total.

WAITING FOR LEVEL: [1-16] If you have specified INCR CNTR in the sequential word CNTR = [value] recognizer, and the DAS is waiting to trigger, the CNTR = message gives you the counter current total.

WAITING FOR MANUAL STOP Either the NEVER TRG level or the CNTR level has been satisfied. Press STOP to end acquisition.

\section*{91A24/91AE24 TEST POINT, JUMPER, AND ADJUSTMENT LOCATIONS}

The following illustration and text are intended as a fast reference for adjusting and troubleshooting the 91A24/91AE24. For further information on verifying, adjusting, or troubleshooting the 91A24/91AE24, refer to the Verification and Adjustment Procedures section and the Maintenance: Troubleshooting section of this addendum.


Figure 9-1. 91A24/91AE24 test point, jumper, and adjustment locations.
1. C468. This trimmer capacitor adjusts the width of the acquisition memory RAM chip-select pulse. The pulse width should be adjusted to 45 ns while monitoring TP 465 . Be sure to ground your oscilloscope probe to the nearest ground point (TP461).
2. J271 (91A24 only). These pins are normally shorted together. Opening the connection halts the stack word recognizer for troubleshooting.
3. J272 (91A24 only). These pins are normally shorted together. Opening the connection disables the OR trigger.
4. R103. DAC offset adjustment. This trimmer resistor is used to set the offset voltage of the DAC to 0 volts.
5. R110. DAC gain adjustment. This trimmer resistor is used to set the voltage output of the DAC to +6.40 volts at TP910.
6. TP138 \(<73>,<84>\). This test point is used to verify that the MAR is clocking correctly.
7. TP461 <68>, < \(49>\). System ground.
8. TP465 \(<73>,<84>\). The ACQ RAM SEL(L) line. This test point is a monitoring point for the acquisition memory RAM chip select pulse. This pulse should be 45 ns wide. Monitor this test point while adjusting C468.
9. TP544 \(<68>,<79>\). System ground.
10. TP592 \(<68>,<79>\). System ground.
11. TP622 \(<68>,<79>\). System ground.
12. TP707 \(<71>,<82>\). This test point is used to set the threshold DAC reference voltage for pod \(A\) to -6.40 volts.
13. TP711 \(<71>,<82>\). This test point is used to set the threshold DAC reference voltage for pod \(B\) to -6.40 volts.
14. TP808 \(<71>,<82>\). This test point is used to set the threshold DAC reference voltage for pod \(C\) to -6.40 volts.
15. TP910 \(<71>,<82>\). This test point is used to monitor the DAC output while adjusting the DAC offset voltage (at R103) and gain (at R110).

\section*{91A24/91AE24 I/O MAP}

The following table lists all the I/O ports on the 91A24/91AE24. Bit maps are supplied for multifunction control registers and readback buffers. You can use this table with the on-line debugging tool (ODT) to access any part of the 91A24 or 91AE24 that the DAS firmware writes to or reads from.

Table 9-2
91A24/91AE24 I/O MAP
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
I/O \\
Address
\end{tabular} & \begin{tabular}{l}
Read (R) \\
Write (W)
\end{tabular} & \[
\begin{aligned}
& \text { 91A24 (A) } \\
& \text { 91AE24 (AE) }
\end{aligned}
\] & Description and Location ( \(<91\) A24 \(>,<91\) AE24 \(>\) ) \\
\hline 00 & R & A-AE & Module identification (82 Hex); U791<69>, <80> \\
\hline 00 & w & A & \begin{tabular}{l}
Clocks ROM select latch; U968<68> \\
Output address 00 selects ROM U981<68> \\
Output address 01 selects ROM U988<68> \\
Output address 10 selects ROM U991<68>
\end{tabular} \\
\hline 01 & R & A-AE & \begin{tabular}{l}
Pod status register; U775<69>, <80> \\
Bit 0: Pod A status readback \\
Bit 1: Pod B status readback \\
Bit 2: Pod C status readback \\
Bits 3-7: not connected
\end{tabular} \\
\hline 01 & W & A-AE & Enables D/A converter; U918<71>, <82> \\
\hline 02 & R & A-AE & Clocks acquisition probe for status \\
\hline 02 & w & A-AE & \begin{tabular}{l}
Sets acquisition probe for read/write; U925 <71>, <82> \\
Bits 0, 1, 2: Not used \\
Bits 3, 7: Not connected \\
Bits \(4,5,6: R(L) / W(H)\) lines to probes \(A, B\), and \(C\)
\end{tabular} \\
\hline 03 & R & A-AE & MARO-MAR7 readback; U135 <69>, <80> Bits 0-7: MAR readback lines MAR0-MAR7 \\
\hline 03 & w & A-AE & \begin{tabular}{l}
Clocks control register; U761<68>, <79> Bit \(0(\mathrm{H})\) : Enable read of acquisition memory Bit 1, 2: Counter/timer function select Bit 1 Bit 2 \\
\(\begin{array}{lll}1 & 1 & \text { Enable timer function }\end{array}\) \\
01 Enable counter function \\
Bit 3(H): Enables INT3(L) \(<76>\) signal \\
Bit 4(L): Loads stack pointer \\
Bit 5(H): Enables acquisition memory read \\
Bit 6(H): Sets flip-flops to temporarily inhibit word recognition and triggering operations \\
Bit 7(H): Makes RESET qualifier an ENABLE, and the OR trigger qualifier a DISABLE
\end{tabular} \\
\hline 04 & R & A-AE & Enables readback of MAR8, 9; SP0-SP3; STORING DATA; and ALL FULL; U235<69>, <80> Bits 0, 1: MAR8, 9 readback Bits 2-5: Stack pointer status readback Bit 6: STORING DATA status readback Bit 7: Memory Address Register (MAR) ALL FULL status readback \\
\hline
\end{tabular}

Table 9-2 (cont.)
91A24/91AE24 I/O MAP
\begin{tabular}{|c|c|c|c|}
\hline I/O
Address & Read (R) Write (W) & \[
\begin{aligned}
& 91 \mathrm{~A} 24(A) \\
& \text { 91AE24 (AE) }
\end{aligned}
\] & Description and Location ( \(<91\) A24 \(>\), <91AE24 \(>\) ) \\
\hline 04 & W & A-AE & Writes probe A data into stack word recognizer; U148 <75>, <86> \\
\hline 05 & R & A & Enables readback of counter/timer bits 0-7; U788 <76> \\
\hline 05 & w & A-AE & Writes probe B data into stack word recognizer; U248 <75>, <86> \\
\hline 06 & R & A & Enables readback of counter/timer bits 8-15; U795 <76> \\
\hline 06 & w & A-AE & Writes probe C data into stack word recognizer; U448 \(<75>,<86>\) \\
\hline 07 & R & A-AE & \begin{tabular}{l}
Enables readback of data qualifier status; U778 <69>, <80> \\
Bits 0-2: Not connected \\
Bit 3: Stack word recognizer status readback \\
Bit 4: RESET word recognizer/qualifier status readback \\
Bit 5: ENABLE word recognizer/qualifier status readback. \\
Bit 6: DISABLE word recognizer/qualifier status readback. \\
Bit 7: OR Trigger word recognizer/qualifier status readback.
\end{tabular} \\
\hline 07 & w & A-AE & \begin{tabular}{l}
Writes system control and stack pointer data into stack control RAM; U555<75>, <86> \\
U555 outputs function as follows: \\
SCO(L): Disables stack pointer and triggers 91A24 \\
SC1(H): Enables counter/timer. \\
SC2(H): Enables SYNC OUT. \\
SC3(H): NOT function for stack word recognizer output.
\end{tabular} \\
\hline 08 & R & A & Clears counter/timer < 76> \\
\hline 08 & W & A & Controls loading of stack occurrence counter \(<75>\) \\
\hline 09 & W & A-AE & Single-step clock \(<77>,<87>\) \\
\hline OA & R & A-AE & \begin{tabular}{l}
Enables readback of stack control status bits and counter reset status; U785 <69>, <80> \\
Bits 0-2: Not connected. \\
Bit 3: CNTR RESET status readback. \\
Bits 4-7: Stack control RAM output status readback.
\end{tabular} \\
\hline OA & w & A & Writes system control and stack pointer data into bits 8 -11 of stack occurrence counter RAM; U455 \(<75>\) \\
\hline OB & R & A-AE & Enables readback of bits 0-7 of acquisition memory;
\[
\mathrm{U} 131<69>,<80>
\] \\
\hline
\end{tabular}

Table 9-2 (cont.) 91A24/91AE24 I/O MAP
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
I/O \\
Address
\end{tabular} & \[
\begin{aligned}
& \text { Read (R) } \\
& \text { Write (W) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 91A24 (A) } \\
& \text { 91AE24 (AE) }
\end{aligned}
\] & Description and Location ( \(<91\) A24 \(>,<91\) AE24 \(>\) ) \\
\hline OB & W & A & Writes system control and stack pointer data into bits 0-7 of stack occurrence counter RAM; U155, 255 <75> \\
\hline OC & R & A-AE & Enables readback of bits 8-15 of acquisition memory; U231 <69>, <80> \\
\hline OC & W & A-AE & \begin{tabular}{l}
Clocks control register; U758<68>, <79> \\
Bit 0(L): Enables stack pointer clock \\
Bit 1(L): Enables CNTR RESET \\
Bit 2(L): Disables 91A24 trigger \\
Bit 3(L): Prevents triggering of stack word recognizer \\
Bit 4(H): Selects MUX MODE for probe data login Bits 5-7(L): Enables diagnostic login registers and disables probes A, B, and C login registers
\end{tabular} \\
\hline OD & R & A-AE & Enables readback of bits 16-23 of acquisition memory; U431 <69>, <80> \\
\hline OD & W & A-AE & Clocks stack pointer; \(<76>,<86>\) \\
\hline OE & R & A-AE & \begin{tabular}{l}
Enables readback of INT3(L), TRIGGERED(L), OCCR1-OCCR3, and SW0-SW2; U771 <69>, <80> \\
Bit 0: INT3(L) status readback \\
Bit 1: 91A24 triggered status readback \\
Bits 2-4: Occurrence counter status readback \\
Bits 5-7: Readback of stack word recognizer RAM outputs for probes A, B, and C
\end{tabular} \\
\hline OF & R & A & Sets INT3(L) <76> high, removing interrupt \\
\hline OF & W & A-AE & Writes probe A and system control data into data qualifier word recognizer RAM; U151 \(<74>,<85>\) \\
\hline 10 & W & A-AE & Writes probe B and system control data into data qualifier word recognizer RAM; U351 \(<74>,<85>\) \\
\hline 11 & W & A-AE & Write probe C and system control data into data qualifier word recognizer RAM; U551 \(<74>,<85>\) \\
\hline 12 & w & A & Initializes clock generator latches; \(<78>\) \\
\hline 13 & W & A-AE & Clocks clock selector register; U938 <77>, <87> \\
\hline 14 & W & A & Clocks clock-qualifier selector register; U935 <77> \\
\hline 15 & W & A-AE & Clocks clock selector register; U941 <77>, <87> \\
\hline 16 & W & A & Clocks clock-qualifier selector register; U928 < 77> \\
\hline 17 & W & A-AE & Clocks clock selector register; U945<77>, <87> \\
\hline 18 & W & A & Clocks clock-qualifier selector register; U931<77> \\
\hline
\end{tabular}

Table 9-2 (cont.)
91A24/91AE24 I/O MAP
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
1 / 0
\] \\
Address
\end{tabular} & \[
\begin{aligned}
& \text { Read (R) } \\
& \text { Write (W) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 91A24 (A) } \\
& \text { 91AE24 (AE) }
\end{aligned}
\] & Description and Location ( \(<91\) A24 \(>,<91\) AE24 \(>\) ) \\
\hline 1B & W & A-AE & \begin{tabular}{l}
Clocks control register; U765<68>, <80> \\
Bits 0-2(L): Enables write of probes A, B, and C data into acquisition memory RAMs \\
Bit 3(L): Enables loading of the low 8 bits (MAR0-7) of the MAR counter \\
Bit 4(L): Enables loading of the upper 2 bits (MAR8,9) of the MAR counter \\
Bits 5-7(H): Polarity control lines for the RESET, DISABLE, and OR TRIG word recognizer/ qualifiers
\end{tabular} \\
\hline 1E & W & A & Clocks counter/timer in timer mode; U491A < 76> \\
\hline 1F & W & A & Clocks stack occurrence counter during diagnostic routines; U165A <75> \\
\hline
\end{tabular}

\section*{SIGNAL GLOSSARY}

This signal glossary lists the signals used in the 91A24 and 91AE24. The signals are arranged alphabetically, then numerically. The signal description contains the signal mnemonics, the long-form signal name, a brief description of the signal function, and a schematic location.

NOTE
1. Signals occurring on both the 91A24 and 91AE24 are marked with an asterisk. Signals without an asterisk occur only on the 91A24.
2. Schematic reference indicates schematic where the signal is generated, or where it enters or leaves the 91A24/91AE24.
3. Multiple signals having identical functions are normally grouped under one heading. Look for the signal name that occurs first alphabetically.
*A DIAG EN(L), B DIAG EN(L), C DIAG EN(L): \(<68><79>\) — Signals generated by 91A24/91AE24 controller interface that enable both the diagnostic login and probe data login registers.
*A MEM RD(L), B MEM RD(L), C MEM RD(L): \(<69><80>-\) Signals that enable the acquisition memory readback buffers for probe \(\mathrm{A}, \mathrm{B}\), and C data.
*A0-A12: \(<68><79>-91\) A24/91AE24 address bus. These signals originate at the DAS Controller.
*ACQ RAM SEL(L): \(<73><84>\) Acquisition RAM select - Signal that selects the acquisition memory RAMs for write or read operation.
*ALL FULL: \(<73><84>\) - Memory Address Register (MAR) status bit that is asserted on the next master clock after the MAR counter reaches full count. It indicates that all data in the acquisition memory RAM is valid.
*BA0-BA12: \(<68><79>-\) Buffered 91A24/91AE24 address lines that connect the DAS Controller board to the 91A24/91AE24 via the CPU bus.
*BDO-BD7: \(<69><80>\) - Buffered data lines on the CPU bus that connect the DAS Controller board to the 91A24/91AE24.
*BRD(L): \(<68><79>\) - Buffered read enable signal from the DAS Controller.
*BWR(L): \(<68><79>\) - Buffered write enable signal from the DAS Controller.
CAO-CA7, CB0-CB7, CC0-CC7: \(<77>-\) Clock enable inputs for pod A, B, and C differential clocks in the clock generator.
*CARD ID(L): <69> <80> - Enable signal for readback of card identification register U291.
*CHO-CH7, CHO(L)-CH7(L): \(<70>,<71>\); \(<81>,<82>\) - Differential data inputs from a probe.

CH8, CH8(L): \(<70>,<71>\) - Incoming, differential qualifier signals from a probe.
CLK, \(\operatorname{CLK}(\mathrm{L}):<70>,<71>\) - Differential clock inputs from a probe.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}

CLK1, CLK1(L); CLK2, CLK2(L); CLK3, CLK3(L): \(<70><71>\) — Differential, buffered clock inputs from probes \(A, B\), and \(C\).

CLK INIT(L): \(<68>\) Clock Initialization - Clock pulse programmed low at run time to preset all clock generator flip-flops to a known state.

CLKA, CLKA(L); CLKB, CLKB(L); CLKC, CLKC(L): \(<78>-\) Probe A, B, and C differential ECL clock outputs from the clock generator.
*CLK AA, CLK BB, CLK CC: \(<72><83>-\) Probe A, Band C single-ended ECL clock.
*CNTL1(L), CNTL2(L), CNTL3(L): \(<68><79>-\) Control 1, 2, 3 Clocking signals for control registers in the 91A24/91AE24 controller interface.

CNTR CLR(L): <69> Counter Clear - This signal clears counter/timer counters to 000 at load time.

CNTR RDBKO(L): \(<69>\) Counter Readback 0 - Counter readback enable signal that enables readback buffer for U585 and U588 <76>

CNTR RDBK1(L): <69> Counter Readback 1 - Counter readback enable signal that enables readback buffer for U591 and U595 < 76>

CNTR RESET: <76> Counter Reset - Readback status bit from the trigger circuitry. CNTR RESET, when asserted, indicates that a reset has occurred in timer mode.

CT SELO, CT SEL1: \(<68>\) Counter/Timer Select - Select signals to the counter/timer multiplexer. When CT SELO is \((\mathrm{H})\) and CT SEL1 is \((\mathrm{H})\), the timer function is enabled. When CT SELO is \((\mathrm{L})\) and CT SEL1 is \((\mathrm{H})\), the counter function is enabled.
*D0-D7: \(<68><79>-91\) A24/91AE24 data bus whose inputs come from the DAS Controller.
*DATA CLOCK: \(<69><80>\) - Signal line to a data acquisition probe that enables readback of probe status.
*DATA IN: \(<71><82>\) - Data input line to acquisition probe - not active for the 91A24/91AE24.
*DATA OUT A, DATA OUT B, DATA OUT C: \(<69><80>-\) Signal line on which status of data acquisition probe is read.
*DISABLE(L): \(<74><85>-91\) A24/91AE24 qualification signal. A low on DISABLE(L) stops storage of data in the acquisition memory.
*DISABLE WORD: \(<74><85>-\) Output of data qualifier word recognizer. When high, DISABLE WORD indicates that the programmed disable word has been recognized.
*DQ STATUS(L): <69> < 80> Data Qualifier Status - Enables readback buffer for data qualifier and stack word recognizer status - reads STACK WR (91A24 only), RESET, ENABLE/ DISABLE(L) and OR TRIG(L).

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}
*DR0-DR23: \(<73><84>\) Data Register - Probe data input that has been processed through the acquisition memory data registers.
*DUAL QUAL: \(<68><79>\) Dual Qualification Control signal from the 91A24/91AE24 controller interface to the data qualifier. When asserted high, DUAL QUAL turns the RESET qualifier into an ENABLE, and the OR Trigger qualifier into a DISABLE.
*DUAL QUAL(L): \(<74><85>\) Dual Qualification Control signal from the data qualifier to the trigger circuitry \(<76>\). When asserted low, DUAL QUAL(L) turns the RESET qualifier into an ENABLE, and the OR Trigger qualifier into a DISABLE.
*ENABLE: \(<74><85>-91\) A24/91AE24 qualification signal. A high on ENABLE enables storage of data.

ENABLE TRIG: \(<75>\) - Signal derived from EXT TRIG EN \(<75>\) that holds off the stack word recognizer until EXT TRIG EN is asserted.
*ENABLE WORD: \(<74><85>\) - Output of data qualifier word recognizer. When high, indicates that the programmed enable word has been recognized.

EVENT 1: \(<76>\) - Output of the 91A24 trigger circuitry that is used by the DAS Trigger/Time Base event conditioner to develop the 91A24 trigger signals.

EVENT 3: \(<76>\) - Output of the 91A24 trigger circuitry that is used by the DAS Trigger/Time Base event conditioner to develop the 91A24 trigger signals.

EXT TRIG EN: \(<75>\) External Trigger Enable - External trigger input to the 91A24. Connection is through a BNC connector on the back of the DAS.

FIRST CLK(L): \(<74>-\) Storage-enabling signal from the 91A24 to the DAS Trigger board.
FIRST CLK EN(L): <77> First Clock Enable - Enables FIRST CLK(L) to other DAS modules when 91A24 ONLY mode is selected. In modes other than 91A24 ONLY, holds FIRST CLK(L) off.

INT3 CLR(L): \(<69>\) Interrupt 3 Clear - Turns off CNTR RESET after counter/timer counters are reset; also clears U491B, removing INT3(L).

INT3 EN: \(<68>\) Interrupt 3 Enable - This signal controls the INT3(L) line. Enables INT3(L) when counter and timer functions are selected. A low on INT3 EN holds off INT3(L).

INT3(L): \(<76>\) Interrupt 3 - Readback status line for interrupt 3.
*LIDO-LID23: \(<72><83>\) Login Data - Probe input data at the outputs of the probe data login registers.
*LB0-LB7: \(<68><79>\) Load Bus - Derived data signals from the DAS Controller BD0-BD7 bus.

LOAD OCCR CNTR AFTER RESET(L): \(<76>\) - Generated at run time in normal mode whenever a reset occurs. When asserted, the signal causes the occurrence counter to be reprogrammed at level 0 when a reset occurs.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}

MAP REG(L): <68> Map Register - Clock signal that drives U968 <68> to select a particular 91A24 ROM for readout.
*MAR CLOCK: \(<73><84>\) Memory Address Register (MAR) Clock - Clocking signal that increments the MAR.
*MAR LDO(L): <68> <79> MAR Load 0 - Signal from the 91A24/91AE24 controller interface that enables loading the lower 8 bits (MARO-MAR7) of the MAR counter.
*MAR LD1(L): \(<68><79>\) MAR Load 1 - Signal from the 91A24/91AE24 controller interface that enables loading the upper 2 bits (MAR8, MAR9) of the MAR counter.
*MAR EN(L): \(<74><85>\) MAR Enable Enable signal from the data qualifier that, when asserted low, causes the MAR to be incremented on the next clock. MAR \(\operatorname{EN}(\mathrm{L})\) allows qualified data to be written into the acquisition memory.
*MAR HIGH(L): <69> <80> - Enables readback buffer U235<69><80> to allow sampling of MAR8, MAR9, STORING DATA, ALL FULL, and SP0-SP3 by the DAS Controller.
*MAR LOW(L): \(<69><80>\) MAR Low - Enables readback buffer U135 \(<69><80>\) to allow sampling of MARO-MAR7 by the DAS Controller.
*MARO-MAR9: \(<73><84>-\) MAR counter outputs that address the acquisition memory RAMs.
*MASTER CLK I (91A24 only), MASTER CLK 11,MASTER CLK 111: <77> \(<87>-91\) A24/91AE24 internal clock, divided into two (91AE24) or three (91A24) separate clocks for fanout reasons.
*MEM RD: \(<68><79>\) Memory Read - Signal that asserts MAR EN(L) after the delay counter has finished, enabling the MAR to read data from the acquisition memory.
*MUX MODE: \(<68><79>\) Multiplexer Mode - Signal that allows the demultiplexing of probe A data by the probe A clock through U118 \(<72><83>\) and by the probe B clock through U121.

NEVER TRIG(L): <68> - Asserted when NEVER TRIG or INCR CNTR is selected in the menu; prevents triggering in stack word recognizer, but does not affect OR TRIG.
*OC(L): \(<77><87>\) Output Control - Output enable signal for a number of flip-flops.
OCCR CLK(L): <68> Occurrence Clock — Signal from the 91A24 controller interface to the stack occurrence counter that is used only during diagnostics to clock the stack occurrence counter.

OCCR CNTR RAM LDO(L): <68> Occurrence Counter RAM Load 0 - Signal that loads the lower 8 bits of the occurrence count for a specific stack level into stack occurrence counter RAMs U155 and U255.

OCCR CNTR RAM LD1(L): <68> Occurrence Counter RAM Load 1 - Signal that loads the upper 4 bits of the occurrence count for a specific stack level into Stack Occurrence Counter RAM U455.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}

OCCR CNTR LD(L): <68> Occurrence Counter Load - Signal from the 91A24 controller interface to the stack occurrence counter that loads the occurrence count from the stack occurrence counter RAMs into the stack occurrence counter \(<75>\).

OCCR1-OCCR3: \(<75>\) Occurrence - Signal lines that sample the status of the stack occurrence counter for readback (through U771<69>).
*OR TRIG(L): \(<74><85>-\) Signal derivation of OR TRIG WORD that will cause the 91 A24 to trigger independently from the stack word recognizer when the 91A24 is in normal mode, and functions as a disable word in dual qualification mode. OR Trigger = disable is programmed as OR IF in the Trigger Specification menu on the line below END STORE.
*OR TRIGGER(L): \(<74><85>-\) Signal derived from OR TRIG(L) that will trigger the 91A24 independently from the stack word recognizer in normal mode.
*OR TRIG WORD: \(<74><85>\) — Output of data qualifier word recognizer. When high, indicates that the programmed OR trigger word has been recognized.
*OFFSET SENSE: \(<71><82>-\) Acquisition probe sense line for offset voltage.
*PAD0-PAD7, PBD0-PBD7, PCD0-PCD7: \(<70>,<71>;<81>,<82>-\) Probe input data for Probes A, B, or C (TTL-level).

PAQA(L)-PAQC(L), PBQA(L)-PBQC(L), PCQA(L)-PCQC(L): \(<77>-\) Probe A, B, and C qualifiers \(A-C\) from the clock qualifier generator \(<77>\) to the clock generator \(<78>\).
*PADQ WE(L), PBDQ WE(L), PCDQ WE(L): \(<68><79>-\) Probe A, B, and C data qualifier write enable signals from the 91A24/91AE24 controller interface to the data qualifier RAMs \(<74>\).
*PC0, PC2, PC4: \(<68><79>\) Pod Control - Signals from the controller interface that clock the clock registers \(<77><87>\) in order to logically combine and select probe clocks.

PC1, PC3, PC5: \(<68>\) Pod Control - Signals from the controller interface that clock the clockqualifier registers \(<77>\) in order to logically combine and select probe qualifiers.

PERSONALITY(L): \(<68>-\) A memory map output from the DAS Controller that enables selection and readout of the 91A24 personality ROMs.
*POD STATUS(L): \(<69><80>\) — Enable line to read back buffer U775 < \(<69><80>\) that allows sampling of probe status lines DATA OUT A, DATA OUT B, and DATA OUT C.

POINTER CLK: \(<75>\) - Signal from the stack occurrence counter \(<75>\) to the stack pointer \(<76>\) that increments the stack pointer by 1.

POINTER INC(L): \(<75>\) Pointer Increment - Signal from the occurrence counter output that enables the function that is specified upon recognition of an event. The function may be to increment the stack pointer, enable or disable the timer, trigger, or assert the SYNC OUT signal.
*PORT(L): <68> <79> - Signal from the DAS Controller to the 91A24/91AE24 that, when asserted with \(\operatorname{BRD}(\mathrm{L})\) or \(\operatorname{BWR}(\mathrm{L})\), enables read and write operations to and from the 91A24/91AE24.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}
*PROBE R/W(L): <68> < 79> — Signal that enables reads to, and writes from, the data acquisition probes.

QA, QA(L); QB, QB(L); QC, QC(L): \(<70><71>\) — Differential qualifier input signals from probes A, B, and C.

QAO-QA5, QBO-QB5, QC0-QC5: <77> - These signals program the clock qualifiers. In each of the three groups of six signals, bits 0 and 1 program the probe A qualifiers; bits 2 and 3 program the probe \(B\) qualifiers; and bits 4 and 5 program the probe \(C\) qualifiers.
* \(\mathbf{R}(\mathbf{L}) / \mathbf{W}(\mathbf{H}):<71><82>-\) Data acquisition probe read/write enable line.
*RD(L): <68> < \(49>\) Read - Read enable signal from the DAS Controller.
*READ ACQ: \(<68><79>\) Read Acquisition - Input to the acquisition memory that disables the data registers during acquisition memory readback \(<73><84>\).
*RESET: \(<74><85>-\) Signal derived from RESET WORD, that resets the stack word recognizer to 0 in normal mode, and functions as a second enable word in dual qualification mode.The reset \(=\) enable function is initiated by programming line two in the Trigger Specification menu with OR IF.

RESET(L): \(<76>-\) Reset signal from the DAS Controller to the 91A24.
*RESET WORD: \(<74><85>\) - Output of data qualifier word recognizer. When high, indicates that the programmed reset word has been recognized.

RESET CNTR EN(L): \(<68>\) Reset Counter Enable - Input to the trigger circuitry that allows the counter/timer counters to be cleared.
*SCO-SC3: \(<75><86>\) Stack Control - Stack control status bits from the stack control RAM. SC0:Trigger bit - When low, disables the stack pointer and causes the 91A24 to trigger. SC1: Counter and timer enable bit; readback only on 91AE24.
SC2: Sync out bit; readback only on 91AE24.
SC3: Creates NOT function for stack word recognizer output.
SEL SLOT(L): \(<68>\) Select Slot — Signal from the DAS Controller slot select logic that, along with \(\mathrm{RD}(\mathrm{L})\) addresses \(\mathrm{U} 971<68>\) and enables selection and readout of the 91A24 personality ROMs.
*SINGLE STEP(L): <68> < 79> — Signal that, when asserted, initiates the 91A24/91AE24 master clock in a single-step fashion during diagnostics setup, and at load time.
*SINGLE STEP TTL(L): <77><87> - Signal that, when asserted, initiates the 91A24/91AE24 master clock in a single-step fashion during diagnostics and at load time.
*SPO-SP3: \(<76><86>\) Stack Pointer - Outputs from the stack pointer \(<76><86>\) that indicate the current stack pointer level.
*STACK A WE(L), STACK B WE(L), STACK C WE(L): \(<68><79>\) — Write enable signals from the 91A24/91AE24 controller interface to the stack word recognizer RAMs.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}
*STACK CNTL RD(L): <69> < 80> Stack Control Read — Enables readback buffer U785 <69> \(<80>\) for CNTR RESET (91A24 only) and SC0-SC3.
*STACK CNTL(L): <68> <79> Stack Control - Write enable signal for the stack control RAM <75> <86>.
*STACK PTR LD (L): <68> <79> Stack Pointer Load - Stack pointer load enable signal from the 91A24/91AE24 controller interface.
*STACK PTR CLK(L): <68> < 79> Stack Pointer Clock - Clocking signal that loads the stack pointer from the LBO-LB3 bus at load time.
*STACK CLK EN(L): \(<68><79>\) Stack Clock Enable - Clocks the stack pointer counter to set it to 00 at load time.
*STACK WR: \(<75>\) Stack Word Recognizer - Stack word recognizer status line that is read back by the DAS Controller through U778 <69>.
*STACK WR(L): \(<75><86>\) Stack Word Recognizer - Stack word recognizer output \(<75>\) \(<86>\).
*STORING DATA: \(<74><85>\), STORING DATA(L) \(<74>,<85>\) - Output of the data qualifier that establishes enable storage status and maintains it until a DISABLE word occurs.
*SW0-SW2: \(<75><86>\) Stack word recognizer - These signals are the outputs of the stack word recognizer RAMs. SW0 corresponds to probe A, SW1 to probe B, and SW2 to probe C.

SYNC OUT: \(<76>\) - Synchronizing output signal from the 91A24 that is asserted when programmed in the Trigger Specification menu.
*THRESHOLD(L): <68> <79> — Enable line for digital-to-analog converter U918 <71> \(<82>\). When THRESHOLD(L) is asserted, the threshold voltage encoded on the D0-D7 inputs of U918 is output on U918 pin 18.

TIMER CLK(L): \(<68>\) - Clocking signal for the counter/timer, used only for diagnostic routines.
*TNO-TN2: \(<68><79>\) Then Not - Signal lines exclusive-ORed to the outputs of the RESET, DISABLE and OR TRIG data qualifier word recognizers. These lines control the polarity of RESET, DISABLE(L) and OR TRIG(L). This includes the programmed THEN NOT function on the Trigger Specification menu.

TRIG CLK: \(<74>-\) A trigger clocking signal, delayed in the trigger circuitry, that asserts EVENT1 \(<76>\) to indicate the 91A24 has triggered, and enable the delay counter.
*TRIGGERED RD(L): \(<69><80>\) Triggered Read - Signal that enables readback buffer U771 \(<69><80>\) and allows sampling of INT3(L) (91A24 only), TRIGGERED(L) (91A24 only), OCCR1OCCR3 (91A24 only), and SW0-SW2.

TRIGGERED(L): \(<76>\) - Used during diagnostic routines to verify trigger circuitry.
*USER GND: \(<71><82>\) - Acquisition probe line which senses user's system ground.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}
*VTHRESH SENSE: \(<71><82>-\) Voltage Threshold Sense Part of acquisition probe feedback circuitry to control threshold voltage.
*VTHRESH: \(<71><82>\) — Voltage threshold line from the 91A24/91AE24 to the data acquisition probe.
*Vbb: \(<72><83>\) - Voltage source which sets threshold for ECL-to-TTL translator transistors.
*WEA(L)-WEC(L): \(<68><79>\) - Write enable lines (one for each probe) to the acquisition memory RAMs \(<73><84>\).
*WR(L): <68> < \(\quad\) 79> Write - Write enable signal from the DAS Controller.
91A08 CLK(L): <78> — DAS internal clock, generated by the DAS Trigger/Time Base. May be selected by the 91A24 as system clock when user selects internal clock on Clock Specification Menu.

91A24 INIT(L): <68> 91A24 Initialize - Multi-purpose signal from the 91A24 controller interface.
91A24 INIT(L): when asserted
1. Holds off the data qualifier word recognizers \(<74>\);
2. Holds off the stack word recognizer and stack trigger. \(<75>,<76>\).
3. Holds off the OR trigger \(<76>\).

91A24 TRIG DIS(L): <68> Trigger Disable - When asserted low, sends EVENT 3 high, and EVENT 1 low, disabling the 91A24 trigger, and enabling 91A32 operation. When high, holds off Q952 <76> , disabling EVENT 3 and enabling EVENT 1.

91A32 CLK(L): <78> - DAS internal clock, generated by the DAS Trigger/Time Base. May be selected by the 91A24 as system clock when user selects internal clock on Clock Specification Menu.
*91A32 QUALIFIER: \(<74><85>-\) Signal from the DAS Trigger/Time Base that controls the 91A24 start and stop. A low on 91A32 QUALIFIER disables the data qualifier word recognizers.

\footnotetext{
*Signals marked with an asterisk occur on both the 91A24 and 91AE24. Signals without an asterisk occur only on the 91A24.
}

\section*{REPLACEABLE ELECTRICAL PARTS}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{LIST OF ASSEMBLIES}

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

\section*{CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER}

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS
Abbreviations conform to American National Standard Y1.1.

\section*{COMPONENT NUMBER (column one of the Electrical Parts List)}

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

\section*{Example a.}
component number


Read: Resistor 1234 of Assembly 23


Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

\section*{TEKTRONIX PART NO. (column two of the Electrical Parts List)}

Indicates part number to be used when ordering replacement part from Tektronix.

\section*{SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)}

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

\section*{NAME \& DESCRIPTION (column five of the Electrical Parts List)}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

\section*{MFR. CODE (column six of the Electrical Parts List)}

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

\section*{MFR. PART NUMBER (column seven of the Electrical Parts List)}

Indicates actual manufacturers part number.

\section*{CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER}
\begin{tabular}{|c|c|c|c|}
\hline Mfr. Code & Manufacturer & Address & City, State, Zip \\
\hline 01121 & ALLEN-bRADLEY COMPANY & 1201 2ND STREET SOUTH & MILWAUKEE, WI 53204 \\
\hline \multirow[t]{2}{*}{01295} & TEXAS INSTRUMENTS, INC. & & \\
\hline & SEMICONDUCTOR GROUP & P.O. BOX 5012 & DALLAS, TX 75222 \\
\hline 01961 & PULSE ENGINEERING, INC. & 7250 CONVOY COURT & SAN DIEGO, CA 92111 \\
\hline 04222 & AVX CERAMICS, DIVISION OF AVX CORP. & P O BOX 867 & MYRTLE BEACH, SC 29577 \\
\hline 04713 & MOTOROLA, INC., SEMICONDUCTOR PROD. DIV. & 5005 E MCDOWELL RD,PO BOX 20923 & PHOENIX, AZ 85036 \\
\hline \multirow[t]{2}{*}{07263} & FAIRCHILD SEMICONDUCTOR, A DIV. OF & & \\
\hline & FAIRCHILD CAMERA AND INSTRUMENT CORP. & 464 ELLIS STREET & MOUNTAIN VIEW, CA 94042 \\
\hline 18324 & SIGNETICS CORP. & 811 E. ARQUES & SUNNYVALE, CA 94086 \\
\hline \multirow[t]{2}{*}{24546} & CORNING GLASS WORKS, ELECTRONIC & & \\
\hline & COMPONENTS DIVISION & 550 HIGH STREET & BRADFORD, PA 16701 \\
\hline 27014 & NATIONAL SEMICONDUCTOR CORP. & 2900 SEMICONDUCTOR DR. & SANTA CLARA, CA 95051 \\
\hline 32997 & BOURNS, INC., TRIMPOT PRODUCTS DIV. & 1200 COLUMBIA AVE. & RIVERSIDE, CA 92507 \\
\hline 34335 & ADVANCED MICRO DEVICES & 901 THOMPSON PL. & SUNNYVALE, CA 94086 \\
\hline 34649 & INTEL CORP. & 3065 BOWERS AVE. & SANTA CLARA, CA 95051 \\
\hline 55680 & NICHICON/AMERICA/CORP. & 6435 N PROESEL AVENUE & CHICAGO, IL 60645 \\
\hline 56289 & SPRAGUE ELECTRIC CO. & 87 MARSHALL ST. & NORTH ADAMS, MA 01247 \\
\hline 57668 & R-OHM CORP. & 16931 MILLIKEN AVE. & IRVINE, CA 92713 \\
\hline 57924 & BOURNS INC NETWORKS DIV 12155 & magnolia ave & RIVERSIDE, CA 92503 \\
\hline 59660 & TUSONIX INC. & 2155 N FORBES BLVD & TUCSON, AZ 85705 \\
\hline 73138 & BECKMAN INSTRUMENTS, INC., HELIPOT DIV. & 2500 HARBOR BLVD. & FULLERTON, CA 92634 \\
\hline 80009 & TEKTRONIX, INC. & P O BOX 500 & BEAVERTON, OR 97077 \\
\hline 91637 & DALE ELECTRONICS, INC. & P. O. BOX 609 & COLUMBUS, NE 68601 \\
\hline 96733 & SAN FERNANDO ELECTRIC MFG CO & 1501 FIRST ST & SAN FERNANDO, CA 91341 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1 & 670-7933-00 & & CKT BOARD ASSY:DATA ACQUISITION MODULE & 80009 & 670-7933-00 \\
\hline A2 & 670-7944-00 & & CKT BOARD ASSY:DATA ACQUISITION MODULE & 80009 & 670-7944-00 \\
\hline A1 & 670-7933-00 & & CKT BOARD ASSY:DATA ACQUISITION MODULE & 80009 & 679-7933-00 \\
\hline A1C101 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C126 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C129 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C136 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C143 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C158 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C163 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C165 & 281-0814-00 & & CAP.,FXD,CER DI:100PF,10\%,100V & 04222 & GC101A101K \\
\hline A1C190 & 281-0809-00 & & CAP.,FXD,CER DI:200PF,5\%,100V & 96733 & R2915 \\
\hline A1C201 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C202 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C222 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C232 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C262 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C302 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C318 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C319 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%\),50V & 04222 & DG015E104Z \\
\hline A1C361 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C371 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C378 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C388 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C395 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C396 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, 10\%,100V & 04222 & GC101A101K \\
\hline A1C397 & 281-0798-00 & & CAP.,FXD,CER DI:51PF,1\%,100V & 96733 & R2928 \\
\hline A1C401 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C402 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C403 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C405 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C429 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C432 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C439 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C467 & 281-0814-00 & & CAP.,FXD,CER DI:100PF,10\%,100V & 04222 & GC101A101K \\
\hline A1C468 & 281-0167-00 & & CAP.,VAR,CER DI:9-45PF,200V & 59660 & 538-011D9-45 \\
\hline A1C476 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C486 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C502 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C505 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C508 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C524 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, + 80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C541 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C544 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C549 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C558 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C566 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C573 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C586 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C588 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C591 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, + 80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C595 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C597 & 281-0775-00 & & CAP.,FXD,CER DI:0.1UF,20\%,50V & 04222 & MA205E104MAA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1C622 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C668 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, \(+80-20 \%\),50V & 04222 & DG015E104Z \\
\hline A1C681 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C697 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C702 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 04222 & MA201C103KAA \\
\hline A1C703 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF, \(10 \%\), 100 V & 04222 & MA201C103KAA \\
\hline A1C704 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%\),50V & 04222 & DG015E473Z \\
\hline A1C705 & 283-0422-00 & & CAP.,FXD,CER DI:00.047UF, +80-20\%,50V & 04222 & DG015E473Z \\
\hline A1C707 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C708 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C711 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A1C712 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, + 80-20\%,50V & 04222 & DG015E473Z \\
\hline A1C716 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, + 80-20\%,50V & 04222 & DG015E473Z \\
\hline A1C718 & 283-0422-00 & & CAP.,FXD,CER DI:00.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A1C719 & 290-0891-00 & & CAP.,FXD,ELCTLT:1UF,+75-10\%,50V & 55680 & ULA1H010TEA \\
\hline A1C722 & 290-0891-00 & & CAP.,FXD,ELCTLT:1UF,+75-10\%,50V & 55680 & ULA1H010TEA \\
\hline A1C726 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C741 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C751 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, \(10 \%\),100V & 04222 & GC101A101K \\
\hline A1C752 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, 10\%,100V & 04222 & GC101A101K \\
\hline A1C753 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, \(10 \%\),100V & 04222 & GC101A101K \\
\hline A1C759 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C782 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C786 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C789 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C801 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C802 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 04222 & MA201C103KAA \\
\hline A1C803 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF,+80-20\%,50V & 04222 & DG015E473Z \\
\hline A1C804 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C806 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A1C808 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C809 & 281-0816-00 & & CAP.,FXD, CER DI:82PF, \(5 \%\), 100 V & 96733 & R3247 \\
\hline A1C810 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, +80-20\%,50V & 04222 & DG015E473Z \\
\hline A1C813 & 283-0422-00 & & CAP.,FXD,CER DI:00.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A1C814 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, 10\%,100V & 04222 & GC101A101K \\
\hline A1C823 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.14 \mathrm{~F},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C825 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C838 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C846 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C851 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, \(10 \%\),100V & 04222 & GC101A101K \\
\hline A1C852 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, \(10 \%\),100V & 04222 & GC101A101K \\
\hline A1C853 & 281-0814-00 & & CAP.,FXD,CER DI: \(100 \mathrm{PF}, 10 \%, 100 \mathrm{~V}\) & 04222 & GC101A101K \\
\hline A1C865 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C868 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C871 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C878 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C889 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A1C901 & 290-0743-00 & & CAP.,FXD,ELCTLT:100UF,+50-10\%,16V & 56289 & 500D146 \\
\hline A1C902 & 283-0164-00 & & CAP.,FXD,CER DI:2.2UF,20\%,25V & 04222 & SR402E225MAA \\
\hline A1C903 & 283-0421-00 & & CAP.,FXD, CER DI:0.1UF, + 80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C904 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A1C906 & 283-0177-00 & & CAP.,FXD,CER DI:1UF,+80-20\%,25V & 56289 & 2C20z5U105Z025B \\
\hline A1C910 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, +80-20\%,50V & 04222 & DG015E4732 \\
\hline A1C925 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1Q319 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q465 & 151-0447-00 & & TRANSISTOR:SILICON,NPN & 04713 & SRF502-1 \\
\hline A1Q501 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q502 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q503 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q504 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q505 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q506 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q507 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q508 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q509 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q510 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q511 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q512 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q513 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q514 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q515 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q516 & 151-0221-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS246 \\
\hline A1Q519 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q520 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q539 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q540 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q543 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q544 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q545 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q546 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q596 & 151-0188-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS6868K \\
\hline A1Q598 & 151-0188-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS6868K \\
\hline A1Q628 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q629 & 151-0271-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS8236 \\
\hline A1Q901 & 151-0429-00 & & TRANSISTOR:SILICON,PNP & 04713 & SJE957 \\
\hline A1Q902 & 151-0188-00 & & TRANSISTOR:SILICON,PNP & 04713 & SPS6868K \\
\hline A1Q951 & 151-0301-00 & & TRANSISTOR:SILICON,PNP & 27014 & 2N2907A \\
\hline A1Q952 & 151-0190-00 & & TRANSISTOR:SILICON,NPN & 07263 & S032677 \\
\hline A1R101 & 307-0695-00 & & RES NTWK,FXD FI:9,150 OHM, \(2 \%, 0.2 \mathrm{~W}\) EACH & 01121 & 110A151 \\
\hline A1R102 & 307-0695-00 & & RES NTWK,FXD FI:9,150 OHM,2\%,0.2W EACH & 01121 & 110A151 \\
\hline A1R103 & 311-1245-00 & & RES.,VAR,NONWIR: 10 K OHM, \(10 \%, 0.50 \mathrm{~W}\) & 73138 & 72-28-0 \\
\hline A1R104 & 321-0763-07 & & RES.,FXD,FILM:1.12K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C11200B \\
\hline A1R106 & 307-0486-00 & & RES,NTWK,THK FI:100 OHM,20\%,1.125W & 91637 & MSP10A01-101J \\
\hline A1R107 & 307-0736-00 & & RES,NTWK,THK FI:10,390 OHM,2\%,0.19W & 91637 & CSP11G01391G \\
\hline A1R108 & 307-0832-00 & & RES NTWK,FXD,FI:9,120 OHM,2\%,0.15W & 01121 & 210 A 121 \\
\hline A1R110 & 311-1236-00 & & RES.,VAR,NONWIR:250 OHM, 10\%,0.50W & 73138 & 72-22-0 \\
\hline A1R114 & 307-0674-00 & & RES NTWK,THK,FI:9,430 OHM,2\%,1.25W & 01121 & 210 A 431 \\
\hline A1R115 & 307-0592-00 & & RES,NTWK,FXD FI:9,220 OHM,2\%,2W & 91637 & MSP10A01-221G \\
\hline A1R149 & 315-0101-00 & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R162 & 315-0101-00 & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R166 & 307-0540-00 & & RES,NTWK,FXD,FI:(5) 1K OHM,10\%,0.7W & 57924 & 4306R-101-102 \\
\hline A1R185 & 307-0598-00 & & RES NTWK,FXD FI:7,330 OHM, \(2 \%, 1.0 \mathrm{~W}\) & 91637 & MSP08A01331G \\
\hline A1R186 & 315-0750-00 & & RES.,FXD,CMPSN:75 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7505 \\
\hline A1R187 & 315-0750-00 & & RES.,FXD,CMPSN:75 OHM,5\%,0.25W & 01121 & CB7505 \\
\hline A1R190 & 315-0101-00 & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R191 & 315-0391-00 & & RES.,FXD,CMPSN:390 OHM,5\%,0.25W & 01121 & CB3915 \\
\hline A1R196 & 321-0140-00 & & RES.,FXD,FILM:280 OHM, 1\%,0.125W & 91637 & MFF1816G280R0F \\
\hline A1R197 & 321-0124-00 & & RES.,FXD,FILM:191 OHM, 1\%,0.125W & 91637 & MFF1816G191R0F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Tektronix & & del No. Dscont & & Mfr Code & Mfr Part Number \\
\hline Component No. & & & & Name \& Description & & Mfr Part Number \\
\hline A1R198 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A1R266 & 307-0717-00 & & & RES NTWK,FXD FI:4,100 OHM,2\%,0.3W & 01121 & 208B101 \\
\hline A1R273 & 307-0546-00 & & & RES NTWK,FXD FI:5,75 OHM, \(5 \%, 0.15 \mathrm{~W}\) & 91637 & MSP06A01750J \\
\hline A1R278 & 315-0750-00 & & & RES.,FXD,CMPSN:75 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7505 \\
\hline A1R281 & 315-0750-00 & & & RES.,FXD,CMPSN:75 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7505 \\
\hline A1R296 & 315-0511-00 & & & RES.,FXD,CMPSN:510 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5115 \\
\hline A1R297 & 315-0101-00 & & & RES.,FXD,CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1R306 & 307-0486-00 & & & RES,NTWK,THK FI:100 OHM,20\%,1.125W & 91637 & MSP10A01-101J \\
\hline A1R307 & 307-0736-00 & & & RES,NTWK,THK FI:10,390 OHM,2\%,0.19W & 91637 & CSP11G01391G \\
\hline A1R308 & 307-0832-00 & & & RES NTWK,FXD,FI:9,120 OHM, \(2 \%, 0.15 \mathrm{~W}\) & 01121 & 210 A121 \\
\hline A1R314 & 307-0674-00 & & & RES NTWK,THK,FI:9,430 OHM, \(2 \%, 1.25 \mathrm{~W}\) & 01121 & 210 A431 \\
\hline A1R315 & 307-0592-00 & & & RES,NTWK,FXD FI:9,220 OHM,2\%,2W & 91637 & MSP10A01-221G \\
\hline A1R381 & 315-0101-00 & & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R391 & 315-0101-00 & & & RES.,FXD,CMPSN:100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R397 & 315-0101-00 & & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R398 & 315-0511-00 & & & RES.,FXD,CMPSN:510 OHM,5\%,0.25W & 01121 & CB5115 \\
\hline A1R399 & 315-0101-00 & & & RES.,FXD,CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1R401 & 307-0695-00 & & & RES NTWK,FXD FI:9,150 OHM,2\%,0.2W EACH & 01121 & 110A151 \\
\hline A1R414 & 307-0674-00 & & & RES NTWK,THK,FI:9,430 OHM, \(2 \%, 1.25 \mathrm{~W}\) & 01121 & 210 A431 \\
\hline A1R415 & 307-0592-00 & & & RES,NTWK,FXD FI:9,220 OHM,2\%,2W & 91637 & MSP10A01-221G \\
\hline A1R419 & 315-0101-00 & & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R459 & 307-0540-00 & & & RES,NTWK,FXD,FI:(5) 1 K OHM, \(10 \%, 0.7 \mathrm{~W}\) & 57924 & 4306R-101-102 \\
\hline A1R467 & 315-0152-00 & & & RES.,FXD,CMPSN:1.5K OHM,5\%,0.25W & 01121 & CB1525 \\
\hline A1R468 & 315-0201-00 & & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline A1R491 & 307-0541-00 & & & RES,NTWK,THK FI:(7)1K OHM,10\%,1W & 91637 & MSP08A01-102G \\
\hline A1R502 & 307-0695-00 & & & RES NTWK,FXD FI:9,150 OHM, \(2 \%, 0.2 \mathrm{~W}\) EACH & 01121 & 110A151 \\
\hline A1R506 & 307-0486-00 & & & RES,NTWK,THK FI:100 OHM,20\%,1.125W & 91637 & MSP10A01-101J \\
\hline A1R507 & 307-0736-00 & & & RES,NTWK,THK FI:10,390 OHM,2\%,0.19W & 91637 & CSP11G01391G \\
\hline A1R508 & 307-0832-00 & & & RES NTWK,FXD,FI:9,120 OHM,2\%,0.15W & 01121 & 210 A121 \\
\hline A1R526 & 307-0492-00 & & & RES.NTWK,FXD FI:(3)50 OHM, \(5 \%, 0.125 \mathrm{~W}\) & 91637 & CSCO4C01-500J \\
\hline A1R529 & 307-0488-00 & & & RES,NTWK,FXD,FI:100 OHM,20\%,0.75W & 01121 & 106A101 \\
\hline A1R534 & 307-0546-00 & & & RES NTWK,FXD FI:5,75 OHM,5\%,0.15W & 91637 & MSP06A01750J \\
\hline A1R536 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R538 & 307-0546-00 & & & RES NTWK,FXD FI:5,75 OHM,5\%,0.15W & 91637 & MSP06A01750J \\
\hline A1R539 & 315-0202-00 & & & RES.,FXD,CMPSN:2K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2025 \\
\hline A1R540 & 315-0111-00 & & & RES.,FXD,CMPSN: 110 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1115 \\
\hline A1R541 & 315-0330-00 & & & RES.,FXD,CMPSN:33 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3305 \\
\hline A1R544 & 315-0111-00 & & & RES.,FXD,CMPSN:110 OHM,5\%,0.25W & 01121 & CB1115 \\
\hline A1R545 & 315-0330-00 & & & RES.,FXD,CMPSN:33 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3305 \\
\hline A1R546 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R547 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R548 & 315-0111-00 & & & RES.,FXD,CMPSN:110 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1115 \\
\hline A1R549 & 315-0330-00 & & & RES.,FXD,CMPSN:33 OHM, 5\%,0.25W & 01121 & CB3305 \\
\hline A1R572 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R585 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R595 & 315-0201-00 & & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline A1R596 & 315-0152-00 & & & RES.,FXD,CMPSN:1.5K OHM,5\%,0.25W & 01121 & CB1525 \\
\hline A1R598 & 315-0102-00 & & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline A1R599 & 315-0101-00 & & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R624 & 307-0546-00 & & & RES NTWK,FXD FI:5,75 OHM,5\%,0.15W & 91637 & MSP06A01750J \\
\hline A1R631 & 315-0750-00 & & & RES.,FXD,CMPSN: 75 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7505 \\
\hline A1R658 & 307-0675-00 & & & RES NTWK,FXD FI:9,1K OHM, \(2 \%, 1.25 \mathrm{~W}\) & 01121 & 210 A102 \\
\hline A1R698 & 315-0101-00 & & & RES.,FXD,CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1R699 & 315-0201-00 & & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & tronix & Serial/Model No. & & Mfr & \\
\hline Component No. & Part No. & Eff Dscont & Name \& Description & Code & Mfr Part Number \\
\hline A1R701 & 307-0695-00 & & RES NTWK,FXD FI:9,150 OHM, 2\%,0.2W EACH & 01121 & 110A151 \\
\hline A1R702 & 307-0695-00 & & RES NTWK,FXD FI: 9,150 OHM, \(2 \%, 0.2 \mathrm{~W}\) EACH & 01121 & 110A151 \\
\hline A1R703 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A1R704 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A1R706 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A1R707 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A1R708 & 321-0318-07 & & RES.,FXD,FILM:20K ОНM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R709 & 321-0318-07 & & RES.,FXD,FILM:20K ОНM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R710 & 321-0318-07 & & RES.,FXD,FILM: 20 K ОНм, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R711 & 321-0318-07 & & RES.,FXD,FILM:20K ОНM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R715 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R716 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R717 & 321-0924-07 & & RES.,FXD,FILM:40K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A1R718 & 321-0924-07 & & RES.,FXD,FILM:40K ОНM , \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A1R720 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R721 & 321-0289-02 & & RES.,FXD,FILM:10K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R722 & 307-0489-00 & & RES,NTWK,FXD,FI: 100 OHM, 20\%,1W & 57924 & 4308R-101-101 \\
\hline A1R723 & 307-0832-00 & & RES NTWK,FXD,FI:9,120 OHM, 2\%,0.15W & 01121 & 210A121 \\
\hline A1R731 & 307-0546-00 & & RES NTWK,FXD FI: 5,75 OHM, \(5 \%, 0.15 \mathrm{~W}\) & 91637 & MSP06A01750J \\
\hline A1R737 & 307-0539-00 & & RES NTWK,THK FI:(7)510 OHM, \(10 \%\),1W & 01121 & 208A511 \\
\hline A1R746 & 307-0539-00 & & RES NTWK,THK FI:(7)510 OHM, 10\%,1W & 01121 & 208A511 \\
\hline A1R749 & 307-0546-00 & & RES NTWK,FXD FI: 5,75 OHM, \(5 \%, 0.15 \mathrm{~W}\) & 91637 & MSP06A01750J \\
\hline A1R751 & 307-0719-00 & & RES NTWK,FXD,FI:9,1.5K ОНM, \(1 \%, 0.15 \mathrm{~W}\) EACH & 32997 & 4310R101152F \\
\hline A1R753 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R754 & 315-0102-00 & & RES.,FXD,CMPSN: 1 K ОНM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A1R772 & 307-0446-00 & & RES,NTWK,FXD FI:10K OHM, 20\%,(9) RES & 91637 & MSP10A01-103M \\
\hline A1R793 & 307-0675-00 & & RES NTWK,FXD FI: \(9,1 \mathrm{~K}\) OHM, \(2 \%, 1.25 \mathrm{~W}\) & 01121 & 210 A 102 \\
\hline A1R798 & 315-0102-00 & & RES.,FXD,CMPSN:1K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A1R799 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R801 & 315-0390-00 & & RES.,FXD,CMPSN:39 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3905 \\
\hline A1R803 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A1R804 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A1R808 & 321-0318-07 & & RES.,FXD,FILM: 20 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R810 & 321-0318-07 & & RES.,FXD,FILM: 20 K О \(\mathrm{HM}, 0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R811 & 321-0289-02 & & RES.,FXD,FILM: 10 K ОНM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R812 & 321-0924-07 & & RES.,FXD,FILM:40K ОНM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A1R813 & 321-0318-07 & & RES.,FXD,FILM:20K ОНM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R814 & 315-0152-00 & & RES.,FXD,CMPSN: 1.5 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1525 \\
\hline A1R823 & 321-0261-00 & & RES.,FXD,FILM: 5.11 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G51100F \\
\hline A1R824 & 307-0611-00 & & RES NTWK,FXD Fl:7,150 OHM,5\%, 1.125W & 32997 & 4308R101-151J \\
\hline A1R831 & 307-0546-00 & & RES NTWK,FXD FI: 5,75 OHM, \(5 \%, 0.15 \mathrm{~W}\) & 91637 & MSP06A01750J \\
\hline A1R842 & 307-0539-00 & & RES NTWK,THK FI:(7)510 OHM, 10\%,1W & 01121 & 208A511 \\
\hline A1R849 & 307-0546-00 & & RES NTWK,FXD FI:5,75 OHM,5\%,0.15W & 91637 & MSP06A01750J \\
\hline A1R901 & 315-0103-00 & & RES.,FXD,CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A1R902 & 315-0105-00 & & RES.,FXD,CMPSN:1M OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1055 \\
\hline A1R904 & 315-0122-00 & & RES.,FXD,CMPSN:1.2K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1225 \\
\hline A1R905 & 321-0222-07 & & RES.,FXD,FILM:2K OHM \(, 0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C20000B \\
\hline A1R906 & 321-0239-00 & & RES.,FXD,FILM: 3.01 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G30100F \\
\hline A1R907 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A1R908 & 321-0318-07 & & RES.,FXD,FILM:20K OHM \(, 0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A1R910 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R911 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A1R912 & 315-0201-00 & & RES.,FXD,CMPSN:200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline A1R913 & 315-0201-00 & & RES.,FXD,CMPSN:200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1R914 & 315-0201-00 & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline A1R915 & 315-0181-00 & & RES.,FXD,CMPSN: \(180 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1815 \\
\hline A1R916 & 315-0271-00 & & RES.,FXD,CMPSN: 270 OHM,5\%,0.25W & 01121 & CB2715 \\
\hline A1R917 & 315-0821-00 & & RES.,FXD,CMPSN: 820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline A1R918 & 307-0445-00 & & RES NTWK,FXD,FI:4.7K OHM, 20\%,(9) RES & 91637 & MSP10A01-472M \\
\hline A1R921 & 315-0101-00 & & RES.,FXD,CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1R924 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A1R948 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A1R949 & 315-0511-00 & & RES.,FXD,CMPSN:510 OHM,5\%,0.25W & 01121 & CB5115 \\
\hline A1R950 & 315-0511-00 & & RES.,FXD,CMPSN:510 OHM,5\%,0.25W & 01121 & CB5115 \\
\hline A1R951 & 315-0181-00 & & RES.,FXD,CMPSN: 180 OHM,5\%,0.25W & 01121 & CB1815 \\
\hline A1R952 & 315-0271-00 & & RES.,FXD,CMPSN: 270 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2715 \\
\hline A1R953 & 315-0821-00 & & RES.,FXD,CMPSN: 820 OHM, 5\%,0.25W & 01121 & CB8215 \\
\hline A1R954 & 315-0181-00 & & RES.,FXD,CMPSN: 180 OHM,5\%,0.25W & 01121 & CB1815 \\
\hline A1R955 & 315-0271-00 & & RES.,FXD,CMPSN:270 OHM,5\%,0.25W & 01121 & CB2715 \\
\hline A1R956 & 315-0821-00 & & RES.,FXD,CMPSN:820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline A1R958 & 315-0202-00 & & RES.,FXD,CMPSN:2K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2025 \\
\hline A1R959 & 315-0221-00 & & RES.,FXD,CMPSN:220 OHM,5\%,0.25W & 01121 & CB2215 \\
\hline A1R960 & 307-0445-00 & & RES NTWK,FXD,FI:4.7K OHM,20\%,(9) RES & 91637 & MSP10A01-472M \\
\hline A1R961 & 315-0302-00 & & RES.,FXD,CMPSN:3K OHM,5\%,0.25W & 01121 & CB3025 \\
\hline A1R962 & 315-0432-00 & & RES.,FXD,CMPSN:4.3K OHM,5\%,0.25W & 01121 & CB4325 \\
\hline A1R969 & 315-0101-00 & & RES.,FXD,CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1R970 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline A1U118 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U121 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U125 & 156-0982-02 & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A1U128 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U131 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U135 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U138 & 156-1198-01 & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A1U141 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A1U145 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A1U148 & 156-1690-00 & & MICROCIRCUIT,DI:SCAM, \(4096 \times 1\) & 34649 & D2147H-2/S7578 \\
\hline A1U151 & 156-1360-01 & & MICROCIRCUIT,DI:256 \(\times 4\) STATIC RAM & 80009 & 156-1360-01 \\
\hline A1U155 & 156-1189-00 & & MICROCIRCUIT,DI:16 X 4 RAM & 34335 & AM74S189J \\
\hline A1U158 & 156-1183-00 & & MICROCIRCUIT,DI:PRESET BINARY LATCH/CNTR & 80009 & 156-1183-00 \\
\hline A1U161 & 156-0472-03 & & MICROCIRCUIT,DI:13 INPUT NAND GATE,SCRN & 01295 & SN74S133 \\
\hline A1U165 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U168 & 156-1680-00 & & MICROCIRCUIT,DI:TRIPLE 3-INPUT \& GATE & 01295 & SN74S15 \\
\hline A1U198 & 156-0739-02 & & MICROCIRCUIT,DI:QUAD 2 INP OR GATE,SCRN & 01295 & SN74S32 \\
\hline A1U218 & 156-0382-02 & & MICROCIRCUIT,DI:QUAD 2-INP NAND GATE & 01295 & SN74LS00 \\
\hline A1U221 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U225 & 156-0982-02 & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A1U228 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U231 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U235 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U238 & 156-1198-01 & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A1U241 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A1U245 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A1U248 & 156-1690-00 & & MICROCIRCUIT,DI:SCAM, \(4096 \times 1\) & 34649 & D2147H-2/S7578 \\
\hline A1U255 & 156-1189-00 & & MICROCIRCUIT,DI:16 X 4 RAM & 34335 & AM74S189J \\
\hline A1U258 & 156-1183-00 & & MICROCIRCUIT,DI:PRESET BINARY LATCH/CNTR & 80009 & 156-1183-00 \\
\hline A1U261 & 156-1680-00 & & MICROCIRCUIT, DI:TRIPLE 3-INPUT \& GATE & 01295 & SN74S15 \\
\hline A1U265 & 156-0459-02 & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1U268 & 156-0323-02 & & MICROCIRCUIT,DI:HEX INVERTER,BURN-IN & 01295 & SN74S04 \\
\hline A1U275 & 156-1640-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H116(LD OR P \\
\hline A1U278 & 156-0403-02 & & MICROCIRCUIT,DI:HEX INVERTER,SCRN & 01295 & SN74S05 \\
\hline A1U281 & 156-0703-02 & & MICROCIRCUIT,DI:4-2-3-2 INPUT \& OR GATE & 07263 & 74S64 \\
\hline A1U285 & 156-0479-02 & & MICROCIRCUIT,DI:QUAD 2-INP OR GATE & 01295 & SN74LS32NP3 \\
\hline A1U288 & 156-0703-02 & & MICROCIRCUIT,DI:4-2-3-2 INPUT \& OR GATE & 07263 & 74S64 \\
\hline A1U291 & 156-1800-00 & & MICROCIRCUIT,DI:QUAD 2 INPUT EXCLUSIVE OR & 07263 & 74F86(PCQR OR DC \\
\hline A1U295 & 156-0325-02 & & MICROCIRCUIT,DI:DUAL 4-1 LINE DATA,BURN-IN & 01295 & SN74S153JP3 \\
\hline A1U298 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U351 & 156-1360-01 & & MICROCIRCUIT,DI:256 X 4 STATIC RAM & 80009 & 156-1360-01 \\
\hline A1U421 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U425 & 156-0982-02 & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A1U428 & 156-1704-00 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A1U431 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U438 & 156-1198-01 & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A1U441 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM,1024 X 4 & 34649 & D2149H-2/S7570 \\
\hline A1U445 & 156-1695-00 & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A1U448 & 156-1690-00 & & MICROCIRCUIT,DI:SCAM, \(4096 \times 1\) & 34649 & D2147H-2/S7578 \\
\hline A1U455 & 156-1189-00 & & MICROCIRCUIT,DI:16 X 4 RAM & 34335 & AM74S189J \\
\hline A1U458 & 156-1183-00 & & MICROCIRCUIT,DI:PRESET BINARY LATCH/CNTR & 80009 & 156-1183-00 \\
\hline A1U461 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U468 & 156-0323-02 & & MICROCIRCUIT,DI:HEX INVERTER,BURN-IN & 01295 & SN74S04 \\
\hline A1U471 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U475 & 156-0459-02 & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A1U478 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U481 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U485 & 156-0690-03 & & MICROCIRCUIT,DI:QUAD 2 INP NOR GATE,BURN IN & 01295 & SN74S02 \\
\hline A1U488 & 156-0388-03 & & MICROCIRCUIT,DI:DUAL D FLIP-FLOP & 07263 & 74LS74A \\
\hline A1U491 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U495 & 156-0403-02 & & MICROCIRCUIT,DI:HEX INVERTER,SCRN & 01295 & SN74S05 \\
\hline A1U535 & 156-1682-00 & & MICROCIRCUIT,DI:DUAL 4-5 INPUT OR/NOR GATE & 04713 & MC10H109(LD OR P \\
\hline A1U538 & 156-1682-00 & & MICROCIRCUIT,DI:DUAL 4-5 INPUT OR/NOR GATE & 04713 & MC10H109(LD OR P \\
\hline A1U551 & 156-1360-01 & & MICROCIRCUIT,DI:256 \(\times 4\) STATIC RAM & 80009 & 156-1360-01 \\
\hline A1U555 & 156-1189-00 & & MICROCIRCUIT,DI:16 X 4 RAM & 34335 & AM74S189J \\
\hline A1U558 & 156-0304-02 & & MICROCIRCUIT,DI:DUAL 4 INP NAND GATE & 01295 & SN74S20 \\
\hline A1U561 & 156-0459-02 & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A1U565 & 156-0459-02 & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A1U568 & 156-0180-04 & & MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE & 01295 & SN74S00NP3 \\
\hline A1U571 & 156-1198-01 & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A1U575 & 156-0739-02 & & MICROCIRCUIT,DI:QUAD 2 INP OR GATE,SCRN & 01295 & SN74S32 \\
\hline A1U578 & 156-0413-02 & & MICROCIRCUIT,DI:QUAD 2-INP SCHMITT TRIG & 80009 & 156-0413-02 \\
\hline A1U581 & 156-1393-01 & & MICROCIRCUIT,DI:QUAD 2 INPUT NAND BFR,SCRN & 01295 & SN74S38 \\
\hline A1U585 & 156-1044-01 & & MICROCIRCUIT,DI:4 BIT SYNC BIN CNTR,SCRN & 07263 & F93S16DCQR \\
\hline A1U588 & 156-1044-01 & & MICROCIRCUIT,DI:4 BIT SYNC BIN CNTR,SCRN & 07263 & F93S16DCQR \\
\hline A1U591 & 156-1044-01 & & MICROCIRCUIT,DI:4 BIT SYNC BIN CNTR,SCRN & 07263 & F93S16DCQR \\
\hline A1U595 & 156-1044-01 & & MICROCIRCUIT,DI:4 BIT SYNC BIN CNTR,SCRN & 07263 & F93S16DCQR \\
\hline A1U711 & 156-1200-01 & & MICROCIRCUIT,LI:OPERATIONAL AMPL,QUAD & 01295 & TL074CN/PEP3 \\
\hline A1U718 & 156-0759-02 & & MICROCIRCUIT,DI:QUAD 2-INP OR GATE,SCRN & 04713 & MC10103PD/LD \\
\hline A1U721 & 156-1674-00 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H104 \\
\hline A1U725 & 156-0860-02 & & MICROCIRCUIT,DI:TRIPLE LINE RECEIVER,SCRN & 04713 & MC10116PD/LD \\
\hline A1U728 & 156-1214-01 & & MICROCIRCUIT,DI:DUAL 2 WIDE, 3 INPUT OR GATE & 04713 & SC22689 \\
\hline A1U731 & 156-1214-01 & & MICROCIRCUIT,DI:DUAL 2 WIDE,3 INPUT OR GATE & 04713 & SC22689 \\
\hline A1U735 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U738 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A1U741 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U745 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U748 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U751 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U758 & 156-0865-02 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF W/CLEAR & 01295 & SN74LS273NP3 \\
\hline A1U761 & 156-0982-02 & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A1U765 & 156-0865-02 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF W/CLEAR & 01295 & SN74LS273NP3 \\
\hline A1U768 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U771 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U775 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U778 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U781 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U785 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U788 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U791 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U795 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U798 & 156-0331-03 & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A1U808 & 156-1200-01 & & MICROCIRCUIT,LI:OPERATIONAL AMPL,QUAD & 01295 & TL074CN/PEP3 \\
\hline A1U821 & 156-1640-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H116(LD OR P \\
\hline A1U825 & 156-1214-01 & & MICROCIRCUIT,DI:DUAL 2 WIDE,3 INPUT OR GATE & 04713 & SC22689 \\
\hline A1U828 & 156-1214-01 & & MICROCIRCUIT,DI:DUAL 2 WIDE, 3 INPUT OR GATE & 04713 & SC22689 \\
\hline A1U831 & 156-1214-01 & & MICROCIRCUIT,DI:DUAL 2 WIDE, 3 INPUT OR GATE & 04713 & SC22689 \\
\hline A1U835 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U838 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U841 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U845 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U848 & 156-0542-01 & & MICROCIRCUIT,DI:HEX INVERTER,SCRN & 04713 & MC10189PD/LD \\
\hline A1U851 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U904 & 156-0067-00 & & MICROCIRCUIT,LI:OPERATIONAL AMPLIFIER & 01295 & MICROA741CP \\
\hline A1U918 & 156-1311-00 & & MICROCIRCUIT,LI:D/A CONVERTER & 18324 & NE5018N-11B \\
\hline A1U921 & 156-0205-02 & & MICROCIRCUIT,DI:QUAD 2-INP NOR GATE,SCRN & 04713 & MC10102PD/LD \\
\hline A1U925 & 156-1327-00 & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U928 & 156-1327-00 & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U931 & 156-1327-00 & & MICROCIRCUIT, DI: 3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U935 & 156-1327-00 & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U938 & 156-1327-00 & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U941 & 156-1327-00 & & MICROCIRCUIT,DI: 3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U945 & 156-1327-00 & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A1U948 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U951 & 156-1639-01 & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H131PD OR PL \\
\hline A1U958 & 156-0078-02 & & MICROCIRCUIT,DI:1 OF 16 DECODER DEMUX,SCRN & 01295 & SN74154 \\
\hline A1U965 & 156-0078-02 & & MICROCIRCUIT,DI: 1 OF 16 DECODER DEMUX,SCRN & 01295 & SN74154 \\
\hline A1U968 & 156-0865-02 & & MICROCIRCUIT,DI:OCTAL D-TYPE FF W/CLEAR & 01295 & SN74LS273NP3 \\
\hline A1U971 & 156-0541-02 & & MICROCIRCUIT,DI:DUAL 2 TO 4 LINE DCDR & 01295 & SN74LS139NP3 \\
\hline A1U975 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U978 & 156-0956-02 & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A1U981 & 160-1997-00 & & MICROCIRCUIT,DI:8192 \(\times 8\) PROM & 80009 & 160-1997-00 \\
\hline A1U988 & 160-1998-00 & & MICROCIRCUIT,DI:8192 \(\times 8\) PROM & 80009 & 160-1998-00 \\
\hline A1U991 & 160-1999-00 & & MICROCIRCUIT,DI:8192 \(\times 8\) PROM & 80009 & 160-1999-00 \\
\hline A1U998 & 156-1026-02 & & MICROCIRCUIT,DI:4/1 LINE DECODER,BURN-IN & 80009 & 156-1026-02 \\
\hline A1W918 & 131-0566-00 & & BUS CONDUCTOR:DUMMY RES,2.375,22 AWG & 57668 & JWW-0200E0 \\
\hline A1W925 & 131-0566-00 & & BUS CONDUCTOR:DUMMY RES,2.375,22 AWG & 57668 & JWW-0200E0 \\
\hline A1Y498 & 158-0248-00 & & XTAL UNIT,QTZ:10MHZ, 0.01\%,SERIES & 80009 & 158-0248-00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A2 & 670-7944-00 & & CKT BOARD ASSY:DATA ACQUISITION MODULE & 80009 & 670-7944-00 \\
\hline A2C101 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C126 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C129 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C136 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C143 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C158 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C163 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C201 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C202 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C222 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C232 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C262 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C302 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C318 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C319 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, + \(80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C361 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C371 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C378 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF + + \(80-20 \%\),50V & 04222 & DG015E104Z \\
\hline A2C388 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C395 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C401 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C402 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C403 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C405 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C429 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C432 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C439 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C467 & 281-0814-00 & & CAP.,FXD,CER DI:100PF, \(10 \%, 100 \mathrm{~V}\) & 04222 & GC101A101K \\
\hline A2C468 & 281-0167-00 & & CAP.,VAR,CER DI:9-45PF,200V & 59660 & 538-011D9-45 \\
\hline A2C476 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C486 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C502 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C505 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C508 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C524 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C541 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%\),50V & 04222 & DG015E104Z \\
\hline A2C544 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C549 & 283-0421-00 & & CAP.,FXD,CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C558 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C566 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C573 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C586 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C588 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C591 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C595 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C622 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C668 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C681 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%\),50V & 04222 & DG015E104Z \\
\hline A2C702 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 04222 & MA201C103KAA \\
\hline A2C703 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 04222 & MA201C103KAA \\
\hline A2C704 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, +80-20\%,50V & 04222 & DG015E473Z \\
\hline A2C705 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A2C707 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A2C708 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF \(,+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C711 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A2C712 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A2C716 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, +80-20\%,50V & 04222 & DG015E473Z \\
\hline A2C718 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E4732 \\
\hline A2C719 & 290-0891-00 & & CAP.,FXD,ELCTLT:1UF,+75-10\%,50V & 55680 & ULA1H010TEA \\
\hline A2C722 & 290-0891-00 & & CAP.,FXD,ELCTLT:1UF, \(+75-10 \%, 50 \mathrm{~V}\) & 55680 & ULA1H010TEA \\
\hline A2C726 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C741 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C759 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C782 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C786 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C789 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C801 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C802 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 04222 & MA201C103KAA \\
\hline A2C803 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, +80-20\%,50V & 04222 & DG015E473Z \\
\hline A2C804 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C806 & 283-0204-00 & & CAP.,FXD,CER DI:0.01UF,20\%,50V & 96733 & R2676 \\
\hline A2C808 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C809 & 281-0816-00 & & CAP.,FXD,CER DI:82PF, \(5 \%, 100 \mathrm{~V}\) & 96733 & R3247 \\
\hline A2C810 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF,+80-20\%,50V & 04222 & DG015E473Z \\
\hline A2C813 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E473Z \\
\hline A2C823 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, + 80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C865 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C868 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C871 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C878 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C889 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C901 & 290-0743-00 & & CAP.,FXD,ELCTLT:100UF, \(+50-10 \%, 16 \mathrm{~V}\) & 56289 & 500D146 \\
\hline A2C902 & 283-0164-00 & & CAP.,FXD,CER DI:2.2UF,20\%,25V & 04222 & SR402E225MAA \\
\hline A2C903 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C904 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C906 & 283-0177-00 & & CAP.,FXD,CER DI:1UF, +80-20\%,25V & 56289 & 2C20Z5U105Z025B \\
\hline A2C910 & 283-0422-00 & & CAP.,FXD,CER DI:0.047UF,+80-20\%,50V & 04222 & DG015E473Z \\
\hline A2C925 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2C942 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, \(+80-20 \%, 50 \mathrm{~V}\) & 04222 & DG015E104Z \\
\hline A2C965 & 283-0421-00 & & CAP.,FXD,CER DI:0.1UF, +80-20\%,50V & 04222 & DG015E104Z \\
\hline A2CR708 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR709 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR710 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR711 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR715 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR716 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR717 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR718 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR808 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR809 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR812 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR813 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR908 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2CR909 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 01295 & 1N4152R \\
\hline A2DL115 & 119-1664-00 & & DELAY LINE,ELEC-22NS,200 OHM & 01961 & PE22612 \\
\hline A2DL315 & 119-1664-00 & & DELAY LINE,ELEC-22NS,200 OHM & 01961 & PE22612 \\
\hline A2DL415 & 119-1664-00 & & DELAY LINE,ELEC-22NS,200 OHM & 01961 & PE22612 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & \begin{tabular}{l}
Tektronix \\
Part No.
\end{tabular} & Serial/Model No. Eff Dscont & Name \& Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline A2R658 & 307-0675-00 & & RES NTWK,FXD FI:9,1K OHM, \(2 \%, 1.25 \mathrm{~W}\) & 01121 & 210 A102 \\
\hline A2R701 & 307-0695-00 & & RES NTWK,FXD Fl:9,150 ОНM, \(2 \%, 0.2 \mathrm{~W}\) EACH & 01121 & 110A151 \\
\hline A2R702 & 307-0695-00 & & RES NTWK,FXD Fl:9,150 ОНM, \(2 \%, 0.2 \mathrm{~W}\) EACH & 01121 & 110A151 \\
\hline A2R703 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A2R704 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A2R706 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A2R707 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A2R708 & 321-0318-07 & & RES.,FXD,FILM:20K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R709 & 321-0318-07 & & RES.,FXD,FILM: 20 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R710 & 321-0318-07 & & RES.,FXD,FILM: 20 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R711 & 321-0318-07 & & RES.,FXD,FILM:20K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R715 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R716 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R717 & 321-0924-07 & & RES.,FXD,FILM:40K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A2R718 & 321-0924-07 & & RES.,FXD,FILM 40 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A2R720 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R721 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R749 & 307-0546-00 & & RES NTWK,FXD FI:5,75 OHM, \(5 \%, 0.15 \mathrm{~W}\) & 91637 & MSP06A01750」 \\
\hline A2R753 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, 5\%,0.25W & 01121 & CB1015 \\
\hline A2R754 & 315-0102-00 & & RES.,FXD,CMPSN:1K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A2R772 & 307-0446-00 & & RES,NTWK,FXD Fl:10K OHM, 20\%,(9) RES & 91637 & MSP10A01-103M \\
\hline A2R793 & 307-0675-00 & & RES NTWK,FXD FI:9,1K OHM, 2\%,1.25W & 01121 & 210 A 102 \\
\hline A2R798 & 315-0102-00 & & RES.,FXD,CMPSN:1K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline A2R799 & 315-0101-00 & & RES.,FXD,CMPSN: \(100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A2R803 & 321-0414-04 & & RES.,FXD,FILM:200K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D20002B \\
\hline A2R804 & 315-0392-00 & & RES.,FXD,CMPSN:3.9K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3925 \\
\hline A2R808 & 321-0318-07 & & RES.,FXD,FILM:20K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R810 & 321-0318-07 & & RES.,FXD,FILM: 20 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R811 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R812 & 321-0924-07 & & RES.,FXD,FILM 40 K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C40001B \\
\hline A2R813 & 321-0318-07 & & RES.,FXD,FILM:20K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R823 & 321-0261-00 & & RES.,FXD,FILM: 5.11 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G51100F \\
\hline A2R901 & 315-0103-00 & & RES.,FXD,CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A2R902 & 315-0105-00 & & RES.,FXD,CMPSN:1M OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1055 \\
\hline A2R904 & 315-0122-00 & & RES.,FXD,CMPSN:1.2K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1225 \\
\hline A2R905 & 321-0222-07 & & RES.,FXD,FILM:2K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816C20000B \\
\hline A2R906 & 321-0239-00 & & RES.,FXD,FILM:3.01K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFFi816G30100F \\
\hline A2R907 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, 5\%,0.25W & 01121 & CB1015 \\
\hline A2R908 & 321-0318-07 & & RES.,FXD,FILM:20K OHM, \(0.1 \%, 0.125 \mathrm{~W}\) & 24546 & NE55E2002B \\
\hline A2R910 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R911 & 321-0289-02 & & RES.,FXD,FILM: 10 K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & CMF55-116D10001D \\
\hline A2R912 & 315-0201-00 & & RES.,FXD,CMPSN: 200 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2015 \\
\hline A2R913 & 315-0201-00 & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline A2R914 & 315-0201-00 & & RES.,FXD,CMPSN:200 OHM,5\%,0.25W & 01121 & CB2015 \\
\hline A2R918 & 307-0445-00 & & RES NTWK,FXD,FI:4.7K OHM, 20\%,(9) RES & 91637 & MSP10A01-472M \\
\hline A2R921 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A2R951 & 315-0181-00 & & RES.,FXD,CMPSN: 180 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1815 \\
\hline A2R952 & 315-0271-00 & & RES.,FXD,CMPSN:270 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2715 \\
\hline A2R953 & 315-0821-00 & & RES.,FXD,CMPSN: 820 OHM, 5\%,0.25W & 01121 & CB8215 \\
\hline A2R959 & 315-0221-00 & & RES.,FXD,CMPSN: 220 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2215 \\
\hline A2R960 & 307-0445-00 & & RES NTWK,FXD,FI:4.7K OHM, \(20 \%\),(9) RES & 91637 & MSP10A01-472M \\
\hline A2R962 & 315-0432-00 & & RES.,FXD,CMPSN:4.3K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB4325 \\
\hline A2R969 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A2R970 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Component No.} & ktronix & \multicolumn{3}{|l|}{Serial/Model No.} & \multicolumn{2}{|l|}{Mfr} \\
\hline & Part No. & Eff & Dscont & Name \& Description & Code & Mfr Part Number \\
\hline A2U118 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U121 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U125 & 156-0982-02 & & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A2U128 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U131 & 156-0956-02 & & & MICROCIRCUIT, DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U135 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U138 & 156-1198-01 & & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A2U141 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U145 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U148 & 156-1690-00 & & & MICROCIRCUIT,DI:SCAM, \(4096 \times 1\) & 34649 & D2147H-2/S7578 \\
\hline A2U151 & 156-1360-01 & & & MICROCIRCUIT,DI: \(256 \times 4\) STATIC RAM & 80009 & 156-1360-01 \\
\hline A2U168 & 156-1680-00 & & & MICROCIRCUIT,DI:TRIPLE 3-INPUT \& GATE & 01295 & SN74S15 \\
\hline A2U198 & 156-0739-02 & & & MICROCIRCUIT,DI:QUAD 2 INP OR GATE,SCRN & 01295 & SN74S32 \\
\hline A2U218 & 156-0382-02 & & & MICROCIRCUIT,DI:QUAD 2-INP NAND GATE & 01295 & SN74LS00 \\
\hline A2U221 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U225 & 156-0982-02 & & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A2U228 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U231 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U235 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U238 & 156-1198-01 & & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A2U241 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U245 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U248 & 156-1690-00 & & & MICROCIRCUIT,DI:SCAM, \(4096 \times 1\) & 34649 & D2147H-2/S7578 \\
\hline A2U261 & 156-1680-00 & & & MICROCIRCUIT,DI:TRIPLE 3-INPUT \& GATE & 01295 & SN74S15 \\
\hline A2U265 & 156-0459-02 & & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A2U268 & 156-0323-02 & & & MICROCIRCUIT,DI:HEX INVERTER,BURN-IN & 01295 & SN74S04 \\
\hline A2U275 & 156-1640-01 & & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H116(LD OR P \\
\hline A2U281 & 156-0703-02 & & & MICROCIRCUIT,DI:4-2-3-2 INPUT \& OR GATE & 07263 & \(74 \mathrm{S64}\) \\
\hline A2U285 & 156-0479-02 & & & MICROCIRCUIT,DI:QUAD 2-INP OR GATE & 01295 & SN74LS32NP3 \\
\hline A2U288 & 156-0703-02 & & & MICROCIRCUIT,DI:4-2-3-2 INPUT \& OR GATE & 07263 & 74S64 \\
\hline A2U291 & 156-1800-00 & & & MICROCIRCUIT,DI:QUAD 2 INPUT EXCLUSIVE OR & 07263 & 74F86(PCQR OR DC \\
\hline A2U351 & 156-1360-01 & & & MICROCIRCUIT,DI:256 X 4 STATIC RAM & 80009 & 156-1360-01 \\
\hline A2U421 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U425 & 156-0982-02 & & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A2U428 & 156-1704-00 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF,W/3-ST OUT & 07263 & 74F374(PCQR OR D \\
\hline A2U431 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U438 & 156-1198-01 & & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A2U441 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U445 & 156-1695-00 & & & MICROCIRCUIT,DI:SRAM, \(1024 \times 4\) & 34649 & D2149H-2/S7570 \\
\hline A2U448 & 156-1690-00 & & & MICROCIRCUIT,DI:SCAM,4096 X 1 & 34649 & D2147H-2/S7578 \\
\hline A2U461 & 156-0331-03 & & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A2U468 & 156-0323-02 & & & MICROCIRCUIT,DI:HEX INVERTER,BURN-IN & 01295 & SN74S04 \\
\hline A2U475 & 156-0459-02 & & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A2U478 & 156-0331-03 & & & MICROCIRCUIT,DI:DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A2U485 & 156-0690-03 & & & MICROCIRCUIT,DI:QUAD 2 INP NOR GATE,BURN IN & 01295 & SN74S02 \\
\hline A2U551 & 156-1360-01 & & & MICROCIRCUIT,DI:256 \(\times 4\) STATIC RAM & 80009 & 156-1360-01 \\
\hline A2U555 & 156-1189-00 & & & MICROCIRCUIT,DI:16 X 4 RAM & 34335 & AM74S189J \\
\hline A2U558 & 156-0304-02 & & & MICROCIRCUIT,DI:DUAL 4 INP NAND GATE & 01295 & SN74S20 \\
\hline A2U561 & 156-0459-02 & & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A2U565 & 156-0459-02 & & & MICROCIRCUIT,DI:QUAD 2 INPUT \& GATE,BURN & 01295 & SN74S08 \\
\hline A2U568 & 156-0180-04 & & & MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE & 01295 & SN74S00NP3 \\
\hline A2U571 & 156-1198-01 & & & MICROCIRCUIT,DI:SYNCHRONOUS 4 BIT CNTR & 01295 & SN74S163J4 \\
\hline A2U575 & 156-0739-02 & & & MICROCIRCUIT,DI:QUAD 2 INP OR GATE,SCRN & 01295 & SN74S32 \\
\hline A2U578 & 156-0413-02 & & & MICROCIRCUIT,DI:QUAD 2-INP SCHMITT TRIG & 80009 & 156-0413-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & & del No. Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A2U711 & 156-1200-01 & & & MICROCIRCUIT,LI:OPERATIONAL AMPL,QUAD & 01295 & TL074CN/PEP3 \\
\hline A2U718 & 156-0759-02 & & & MICROCIRCUIT,DI:QUAD 2-INP OR GATE,SCRN & 04713 & MC10103PD/LD \\
\hline A2U721 & 156-1674-00 & & & MICROCIRCUIT,DI:SCREENED & 04713 & MC10H104 \\
\hline A2U758 & 156-0865-02 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF W/CLEAR & 01295 & SN74LS273NP3 \\
\hline A2U761 & 156-0982-02 & & & MICROCIRCUIT,DI:OCTAL D EDGE TRIG F-F & 80009 & 156-0982-02 \\
\hline A2U765 & 156-0865-02 & & & MICROCIRCUIT,DI:OCTAL D-TYPE FF W/CLEAR & 01295 & SN74LS273NP3 \\
\hline A2U768 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U771 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U775 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U778 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U785 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U791 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U808 & 156-1200-01 & & & MICROCIRCUIT,LI:OPERATIONAL AMPL,QUAD & 01295 & TL074CN/PEP3 \\
\hline A2U904 & 156-0067-00 & & & MICROCIRCUIT,LI:OPERATIONAL AMPLIFIER & 01295 & MICROA741CP \\
\hline A2U918 & 156-1311-00 & & & MICROCIRCUIT,LI:D/A CONVERTER & 18324 & NE5018N-11B \\
\hline A2U925 & 156-1327-00 & & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A2U938 & 156-1327-00 & & & MICROCIRCUIT, DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A2U941 & 156-1327-00 & & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A2U945 & 156-1327-00 & & & MICROCIRCUIT,DI:3 STATE OCTAL D FF,SCRN & 27014 & MM74C374 \\
\hline A2U958 & 156-0078-02 & & & MICROCIRCUIT,DI: 1 OF 16 DECODER DEMUX,SCRN & 01295 & SN74154 \\
\hline A2U965 & 156-0078-02 & & & MICROCIRCUIT,DI: 1 OF 16 DECODER DEMUX,SCRN & 01295 & SN74154 \\
\hline A2U975 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U978 & 156-0956-02 & & & MICROCIRCUIT,DI:OCTAL BFR W/3 STATE OUT & 01295 & SN74LS244NP3 \\
\hline A2U998 & 156-1026-02 & & & MICROCIRCUIT,DI:4/1 LINE DECODER,BURN-IN & 80009 & 156-1026-02 \\
\hline
\end{tabular}

Section 11- DAS 9100 Series 91A24/91AE24

\section*{DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.} & 15, 1966 & \\
\hline & 2, 1973 & Line Conventioss and Lettering. \\
\hline \multirow[t]{2}{*}{Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufac turer's data.} & & Letter Symbols for Quantities Used in Engineering \\
\hline & & \begin{tabular}{l}
an National Standard Institute \\
Y York, New York 10018
\end{tabular} \\
\hline \multirow[t]{2}{*}{The overine on a signal name indicates that the signal
periorms its itended fuction when it is in the low state.} & \multicolumn{2}{|l|}{Component Values} \\
\hline & Electrical
the following & mponents shown on the diagrams ar nits unless noted otherwise \\
\hline  & & Values one or greater are in picofarads (pF) values less than one are in microfarads \(\mu\) F). \\
\hline
\end{tabular}


\section*{COLORS ON SCHEMATICS}

Introduction

 PARTS OF THE COLOR SCHEMATICS There eare three parts to each color schematic in this
manual:
- Color. The color follows the lines of the schematics that
are first used by a diagnostic tunction
- Legent. The elenend makes the correation between col
- Function Tags. The tunction tag at the begining and end of each colorea
present on the ine.
The colors on the schematics indicate the presence of a

 board. (This has been done to avoid possible contusion aris.
ing trom trying to show mutitife colors on a a single ine.) Note, however, trat it the diagnostic test functions are run in
the recommmonded sequence, then ant y ircuitry that was
 most recent test. Only the new circuitry that is tested by a
dianososit function is indicicated in the colors of the
schematics.
note
Any color will always stand for the same test on all
shematictor sor one board That same color may bee
used on schematics tor another board and simity an




To indicate unich colors correspond to each diagnostic test,
there is
e egend near the lower lett comer of t the schematic. there is a legend near the lowe letif corner of ofthe schememtic.
Refer to to this legend whenever the DAS self-diagnostics are


At the point where a colored line enters or leaves a sche-
matic therei is onet t that refers
Use to the tunctions on that tine.

 cated by the tunction tag. USING THE COLOR
IN TROUBLESHOOTING
The color on the schematics is sesigned exclusivily as a.
troubleshooting acic. Three examples follow that show how troubleshooting aid. Thee exampes folow
the colors can be used to find oricuit fauts. One Diagnostic Function Failure Start the trouteshooting procedure by running al the DAS


 the color correspondidg the the
prooable location of the talure.
Multiple Diagnostic Function Failures
Start the troubleshooting procedure by running all the DAS







\section*{No Diagnostic Function Failures}

When troulleshooting faiures not detected by the
diagnossics, 5 rist tefine the type of failure and the possible



\section*{ic pin information} evice Type Vcocr Voo \({ }^{\text {GND }}\)




\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\({ }_{91 \text { 1242 Data Acaulsition boaro assemmil a }}\)} \\
\hline  & \(\xrightarrow{\text { SCHEMATC }}\) & LOCAADON & \({ }_{\text {cirlecur }}^{\text {cimer }}\) & \(\xrightarrow{\text { SCHEMATIC }}\) COCATON & \({ }_{\text {L }}^{\text {Location }}\) \\
\hline  &  &  &  &  &  \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline culd & ocation & Location & NUMBER & Location & Location & NUMBER & Location & Location \\
\hline  &  &  &  &  &  &  &  &  \\
\hline
\end{tabular}

\section*{}

















\begin{tabular}{|c|c|c|c|c|c|}
\hline Clincur & SMEMA & Locait & fixcm & SCHEMATIC & LOCAA \\
\hline  &  & ัละ &  &  &  \\
\hline
\end{tabular}

A
B




\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline
\end{tabular}

\footnotetext{

}



\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NUMBER & Location & Locaton & NUMBE & catio & ecaton & NuM & cator & OCAT \\
\hline  &  &  &  &  &  &  &  & สৃণ \\
\hline
\end{tabular}













\title{
REPLACEABLE MECHANICAL PARTS
}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{ITEM NAME}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

\section*{INDENTATION SYSTEM}

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.
\(12345 \quad\) Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
- . * .-.

Detail Part of Assembly and/or Component
Attaching parts for Detail Part
\[
\ldots \text {. . . }
\]

Parts of Detail Part
Attaching parts for Parts of Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol ---* -- indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

\section*{ABBREVIATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline " & INCH & ELCTRN & ELECTRON & IN & INCH & SE & SINGLE END \\
\hline \# & NUMBER SIIE & ELEC & ELECTRICAL & INCAND & INCANDESCENT & SECT & SECTION \\
\hline ACTR & ACTUATOR & ELCTLT & ELECTROLYTIC & INSUL & INSULATOR & SEMICOND & SEMICONDUCTOR \\
\hline ADPTR & ADAPTER & ELEM & ELEMENT & INTL & INTERNAL & SHLD & SHIELD \\
\hline ALIGN & ALIGNMENT & EPL & ELECTRICAL PARTS LIST & LPHLDR & LAMPHOLDER & SHLDR & SHOULDERED \\
\hline AL & ALUMINUM & EQPT & EQUIPMENT & MACH & MACHINE & SKT & SOCKET \\
\hline ASSEM & ASSEMBLED & EXT & EXTERNAL & MECH & MECHANICAL & SL & SLIDE \\
\hline ASSY & ASSEMBLY & FIL & FILLISTER HEAD & MTG & MOUNTING & SLFLKG & SELF-LOCKING \\
\hline ATTEN & ATTENUATOR & FLEX & FLEXIBLE & NIP & NIPPLE & SLVG & SLEEVING \\
\hline AWG & AMERICAN WIRE GAGE & FLH & FLAT HEAD & NON WIRE & NOT WIRE WOUND & SPR & SPRING \\
\hline BD & BOARD & FLTR & FILTER & OBD & ORDER BY DESCRIPTION & SQ & SQUARE \\
\hline BRKT & BRACKET & FR & FRAME or FRONT & OD & OUTSIDE DIAMETER & SST & STAINLESS STEEL \\
\hline BRS & BRASS & FSTNR & FASTENER & OVH & OVAL HEAD & STL & STEEL \\
\hline BRZ & BRONZE & FT & FOOT & PH BRZ & PHOSPHOR BRONZE & SW & SWITCH \\
\hline BSHG & BUSHING & FXD & FIXED & PL & PLAIN or PLATE & T & TUBE \\
\hline CAB & CABINET & GSKT & GASKET & PLSTC & PLASTIC & TERM & TERMINAL \\
\hline CAP & CAPACITOR & HDL & HANDLE & PN & PART NUMBER & THD & THREAD \\
\hline CER & CERAMIC & HEX & HEXAGON & PNH & PAN HEAD & THK & THICK \\
\hline CHAS & CHASSIS & HEX HD & HEXAGONAL HEAD & PWR & POWER & TNSN & TENSION \\
\hline CKT & CIRCUIT & HEX SOC & HEXAGONAL SOCKET & RCPT & RECEPTACLE & TPG & TAPPING \\
\hline COMP & COMPOSITION & HLCPS & HELICAL COMPRESSION & RES & RESISTOR & TRH & TRUSS HEAD \\
\hline CONN & CONNECTOR & HLEXT & HELICAL EXTENSION & RGD & RIGID & \(V\) & VOLTAGE \\
\hline COV & COVER & HV & HIGH VOLTAGE & RLF & RELIEF & VAR & VARIABLE \\
\hline CPLG & COUPLING & IC & INTEGRATED CIRCUIT & RTNR & RETAINER & W/ & WITH \\
\hline CRT & CATHODE RAY TUBE & ID & INSIDE DIAMETER & SCH & SOCKET HEAD & WSHR & WASHER \\
\hline DEG & DEGREE & IDENT & IDENTIFICATION & SCOPE & OSCILLOSCOPE & XFMR & TRANSFORMER \\
\hline DWR & DRAWER & IMPLR & IMPELLER & SCR & SCREW & XSTR & TRANSISTOR \\
\hline
\end{tabular}

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER
\begin{tabular}{llll} 
Mfr. Code & Manufacturer & Address & City, State, Zip \\
\hline & & & \\
00779 & AMP, INC. & P.O. BOX 3608 & HARRISBURG, PA 17105 \\
09922 & BURNDY CORPORATION & RICHARDS AVENUE & NORWALK, CT 06852 \\
22526 & BERG ELECTRONICS, INC. & YOUK EXPRESSWAY & NEW CUMBERLAND, PA 17070 \\
80009 & TEKTRONIX, INC. & P O BOX 500 & BEAVERTON, OR 97077 \\
82389 & SWITCHCRAFT, INC. & 5555 N. ELSTON AVE. & CHICAGO, IL 60630
\end{tabular}

Fig. \&


STANDARD ACCESSORIES
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{-13} & 175-8167-00 \\
\hline & ----- --- \\
\hline & 070-4672-00 \\
\hline & ------ \\
\hline \multirow[t]{9}{*}{-14} & 175-8165-00 \\
\hline & ---------- \\
\hline & 070-4672-00 \\
\hline & ---------- \\
\hline & 010-6460-01 \\
\hline & ---------- \\
\hline & ----- --- \\
\hline & 070-4540-00 \\
\hline & 070-3694-02 \\
\hline
\end{tabular}

070-4541-00 175-8166-00 062-6939-00 020-1041-00
\begin{tabular}{lll} 
CABLE ASSY,RF:50 OHM COAX,3.0 INCH LONG \\
(91A24 ONLY) \\
MANUAL,TECH:INSTRUCTION & 80009 & \(175-8167-00\) \\
\begin{tabular}{l} 
(91A24 ONLY) \\
CABLE ASSY,RF:50 OHM COAX,79.0 INCH LONG \\
(91AE24 ONLY)
\end{tabular} & 80009 & \(070-4672-00\) \\
\begin{tabular}{l} 
MANUAL,TECH:INSTRUCTION \\
(91AE24 ONLY)
\end{tabular} & 80009 & \(175-8165-00\) \\
\begin{tabular}{l} 
PROBE,DATA ACQ: \\
(SEE 070-4345-00 MANUAL FOR BREAKDOWN OF \\
REPLACEABLE PARTS)
\end{tabular} & 80009 & \(070-4672-00\) \\
\begin{tabular}{l} 
MANUAL,TECH:OPERATORS ADDENDUM \\
MANUAL,TECH:OPERATORS \\
(91A24 ONLY)
\end{tabular} & 80009 & \(010-6460-01\) \\
\hline
\end{tabular}

\section*{OPTIONAL ACCESSORIES}
\begin{tabular}{lll} 
MANUAL,TECH:SERVICE ADDENDUM & 80009 & \(070-4541-00\) \\
CA ASSY,SP,ELEC:10.0 INCH LONG & 80009 & \(175-8166-00\) \\
SOFTWARE,PKG:UTILITY MNEUMONICS II & 80009 & \(062-6939-00\) \\
ACCESSORY PKG:40 PIN UNIV PROBE INTERFACE & 80009 & \(020-1041-00\)
\end{tabular}


Date: 12-7-84 \(\qquad\)
Product: 91A24 and 91AE24 Service Addendum

\section*{DESCRIPTION}

\section*{DIAGRAM AND ELECTRICAL PARTS LIST CHANGES}

The following have value and partnumber changes.
\begin{tabular}{lll} 
R823 & \(321-0260-09\) & 4.99 K ohm \\
R104 & \(321-0159-08\) & 442 ohm \\
R110 & \(311-1248-01\) & 500 ohm variable resistor \\
U918 & \(156-1311-01\) &
\end{tabular}

The above parts are located on diagram 71 for the 91424 and diagram 82 for the 91AE24.

\title{
Tektronix
}

COMMITTED TO EXCELLENCE
Date: 1-29-85 \(\qquad\) Change Reference: M49091
Product: +5 VOLT POWER SUPPLY DAS 9100

\section*{DESCRIPTION}
- D
DAS 9120 SN B 060100
\(\varepsilon \quad U P\)

DAS 91ヵロ SN Bø50326
\(\varepsilon \quad U P\)

TEXT AND ELECTRICAL PARTS LIST CHANGES

Front Cover 2nd paragraph

CHANGE TO:
This adendum contains service information about the upgraded +5 Volts poser Supply Module for the DAS 9100 Series Mainframes. All DAS mainfrmaes will use the upgraded +5 v power supply 620-0296\(\varnothing 1\) as well as the previous model 620-ø296-ø0.

Front cover

Delote 1 st NOTE paragraph

EPL CHANGE

C258, Q224, and R257
CHANGE TO:
C258
Q224
R257
283-0696-00
CAP,FXD,CER,DI, \(2300 \mathrm{PF}, 1 \%, 500 \mathrm{~V}\) 305-0271-00 TRANSISTOR:SILICON,PNP RES,FXD,CMPSN, 270 OHM, \(5 \%, 2 \mathrm{~W}\)

DESCRIPTION

\section*{THIS IS A PAGE PULL AND REPLACEMENT PACKAGE}
1. Remove the designated pages from your manual and insert the following pages 5-47 and 5-48.
2. Keep this cover sheet in the Change Information section at the back of your manual for a permanent record.
d. Trigger on the external trigger output of the pulse generator.
e. Position the trace at the graticule center line.
7. Move the oscilloscope probe tip to pin 20 of U448, and connect the probe ground to TP449 (ground test point).
8. Press START ACQUISITION.
9. Carefully center the rising edge of the clock pulse on the vertical and horizontal center lines of the graticule (see Figure 5-9).
10. Move the P6201 FET probe tip to pin 15 of U448.
11. Verify that the pulse geometry of the trigger input signal at pin 15 is at least 2.7 ns high and at least 2.7 ns low.
12. Verify that the setup time is \(\geqslant 1.1 \mathrm{~ns}\) and hold time is \(\geqslant 0.7 \mathrm{~ns}\) as shown in Figure 5-9.


Figure 5-9. 91A04A high-speed clock setup and hold times.
(16) 91AE04A to 91A04A High-Speed Word Recognizer Timing

The following steps verify timing of the word recognizer circuits in any 91AE04A expander modules installed.

Do not install or remove any instrument modules in the DAS mainframe with the power on. Doing so can damage the module.
1. Power down the DAS.
2. Place the 91AE04A to be tested and the 91A04A master module on module extenders so that the short clock and word recognizer cables can be used.
3. Power up the DAS and perform the Module Deskewing procedure located in the Operating Instructions section of this addendum.
4. Connect channels 0 and 1 on the 91A04A P6453 probe to data channels 0 and 1 on the test fixture, connect channels 0 and 1 on the 91AE04A P6453 probe to data channels 2 and 3 on the test fixture, and connect the unused probe channels to the deskew connectors on the probe.
5. Enter the DAS Trigger Specification menu and select:
- falling-edge triggering in the 91A04 External Trigger sub-menu, and
- XX11 XX11 (binary) as the trigger word
6. Set up the oscilloscope as follows:
a. Set the sensitivity at \(200 \mathrm{mV} /\) div.
b. Set the sweep rate at \(500 \mathrm{ps} / \mathrm{div}\).
c. Connect the P6201 FET probe tip to 100 K threshold at TP533, and connect the probe ground to the ground (G) test point next to U435.
d. Trigger on the the external trigger output of the pulse generator.
e. Position the trace at the graticule center line (reference).
7. Move the oscilloscope probe tip to pin 20 of U448 on the 91A04A master module, and connect the probe ground to TP449 (ground test point).
8. Press START ACQUISITION.
9. Carefully center the rising edge of the clock pulse on the center vertical and horizontals lines of the graticule (see Figure 5-9).
10. Move the P6201 FET probe tip to pin 15 of U448 on the 91A04A master module.
11. Verify that the pulse geometry of the trigger input signal at pin 15 is at least 2.3 ns high and at least 2.3 ns low.
12. Verify that the setup time is \(\geqslant 1.1 \mathrm{~ns}\) and hold time is \(\geqslant 0.7 \mathrm{~ns}\) as shown in Figure 5-9.
13. Repeat this procedure (16) for each 91AE04A in the system. This completes the performance check of the 91A04A and 91AE04A system. The test setup may now be dismantled. Turn off the DAS mainframe before removing any modules in order to prevent damage to the modules or the mainframe.

\section*{6453 DATA ACQUISITION PROBE PERFORMANCE CHECK}

Perform the P6453 Data Acquisition Probe Function Check that appears in the Functional Check subsection of this Verification and Adjustments section.

\section*{MANUAL CHANGE INFORMATION}

Date: 12-5-84
\(\qquad\) Change Reference: \(\qquad\) C2/1284
Product: 91A04A, 91AE04A, and P6453 Service ADD. Manual Part No.: 070-4298-00

\section*{DESCRIPTION}

THIS IS A PAGE PULL AND REPLACE PACKAGE
1. Remove the designated pages from your manual and insert the following page 5-23 and 5-24.
2. Keep this cover sheet in the Change Information section at the back of your manual for a permanent record.

Table 5-6
CHANNELS, TEST POINTS, AND OFFSET ADJUSTMENTS FOR FLUKE 5101B METHOD
\begin{tabular}{c|c|c|c}
\hline CHANNEL & \begin{tabular}{c} 
RED \\
CONNECTOR
\end{tabular} & \begin{tabular}{c} 
OSCILLOSCOPE \\
PROBE TIP
\end{tabular} & \begin{tabular}{c} 
ADJUSTMENT \\
(RXXX)
\end{tabular} \\
\hline \hline Data 0 & \begin{tabular}{c} 
U218, pin 1 \\
(top of R203) \\
Data
\end{tabular} & U218, pin 1 & R201 \\
D311, pin 2 \\
(top of R303) \\
Data 3 & \begin{tabular}{c} 
U411, pin 2 \\
(top of R403) \\
U511, pin 2 \\
(top of R503) \\
U115, pin 2 \\
(top of R113)
\end{tabular} & U418, pin 1 & R301 \\
\begin{tabular}{c} 
Clock \\
(91A04A \\
only)
\end{tabular} & U121, pin 13 pin 1 pin 1 & R401 & R501 \\
\hline
\end{tabular}
5. Perform the following measurements for each channel listed in Table 5-6.
a. Program the Fluke 5101 B to output 15.080 mA , and adjust RXXX for a solid ECL high (approximately 4.1 V ) on the oscilloscope with no noise present.
b. Program the Fluke 5101 B to output 14.920 mA , and adjust RXXX for a solid ECL low (approximately 3.3 V ) on the oscilloscope with no noise present.
c. Program the Fluke 5101 B to output 15.060 mA , and adjust RXXX for a solid ECL high with very little noise present.
d. Program the Fluke 5101 B to output 14.940 mA , and adjust RXXX for a solid ECL low with very little noise present.
e. Program the Fluke 5101 B to output \(15,040 \mathrm{~mA}\), and adjust RXXX for a solid ECL high; some noise may be present.
f. Program the Fluke 5101 B to output 14.960 mA , and adjust RXXX for a solid ECL low; some noise may be present.

\section*{ADJUSTING COMPARATOR OFFSETS USING A TEKTRONIX PG502 250 MHz PULSE GENERATOR AS A SIGNAL SOURCE}

This procedure describes an alternate method of adjusting comparator offset levels in a 91A04A or 91AE04A Data Acquisition Module using a Tektronix PG502 250 MHz Pulse Generator as a signal source. Performing this test requires that the P6453 Data Acquisition Probe be kept with the data acquisition module with which it was calibrated.

\section*{Test Equipment Required}

Table 5-7 lists test equipment required for comparator offset adjustment using a Tektronix PG502 250 MHz Pulse Generator as a signal source. Unless otherwise specified, equivalent test equipment may be used.

Table 5-7
EQUIPMENT REQUIRED FOR THE COMPARATOR OFFSET ADJUSTMENT USING THE TEKTRONIX PG502
\begin{tabular}{|c|c|c|}
\hline QTY & FUNCTION & RECOMMENDED TYPE \\
\hline 1 & logic analyzer mainframe & DAS 9100 Series (no substitute) \\
\hline 1 & module extender & DAS Main Extender Board, p/n 670-674800 (no substitute) \\
\hline 1 & \(\geqslant 400 \mathrm{MHz}\) oscilloscope & Tektronix 7904 mainframe with a 7A19 vertical amplifier, a 7B10 timebase, and Tektronix P6201 X10 FET probe \\
\hline 1 & 250 MHz pulse generator & Tektronix PG502 250 MHz Pulse Generator \\
\hline 1 & high-speed acquisition test fixture & Tektronix p/n 067-1139-00 (no substitute) \\
\hline 1 & 5-1/4 inch probe ground cable & Tektronix p/n 175-0848-01 \\
\hline
\end{tabular}

\section*{Equipment Setup Procedure}

Do not install or remove any electrical module or sub-ssembly in a DAS mainframe while the power is on. Doing so can cause damage to the module or subassembly.```

