
Implementing XNS Protocols for 4.2bsd

James O'Toole <james@maryland>
Chris Torek <chris@maryland>
Mark Weiser <mark@maryland>

Department of Computer Science
University of Maryland

College Park, Maryland 20742

Abstract

We have implemented the Xerox Networking Systems protocol suite in 4.2bsd Unix
y

in order to communicate with Xerox workstations which do not implement IP/TCP. In
this paper, we discuss the problems we encountered while making the necessary changes
to the Unix kernel. We found a multitude of IP/TCP dependencies in the lowest level
Unix device driver and network interface code, which were eliminated by replacing inline
code with protocol speci�c subroutine calls. Another problem was that 4.2bsd expects
all protocols to be connectionless or byte stream, and the XNS stream level is neither.
We generalized the socket code to satisfy the additional requirements of the XNS stream
protocol. The result of all these changes is not just the ability to handle XNS but a more
general network system without IP/TCP dependencies, ready for the next generation of
protocols.

Portions of this work were supported by grants from the National Science Foundation,
the Air Force O�ce of Scienti�c Research, Xerox Corporation, and Digital Equipment
Corporation.

y
Unix is a trademark of AT&T Bell Laboratories

Implementing XNS Protocols for 4.2bsd

Introduction

We have implemented the Internet Datagram Protocol (IDP) and the Sequenced Packet Protocol (SPP)
of the Xerox Networking Systems (XNS) protocol suite. In June of 1984, Xerox corporation awarded the
Computer Science Department thirty Xerox Development Environment (XDE) workstations and associated
equipment for research purposes. This equipment was not due to arrive until mid-November; in the meantime,
we obtained as much documentation as possible, and read. This quickly became boring, so we started looking
around for something to do! We implemented the XNS protocols under 4.2bsd Unix

y on our department
research minicomputers because we needed them to communicate with the Xerox workstations.

The Berkeley Unix kernel supports two di�erent forms of interprocess communication (IPC): pipes and
sockets. Pipes are a standard Unixism, but sockets are a new form of Unix IPC. As distributed, 4.2bsd
supports three di�erent domains of communication within the socket abstraction: Unix internal, DOD
IP/TCP, and Xerox PUP. The Unix internal protocols do not provide for communication between processes
on separate Unix systems. The Defense Department protocols IP 1 and TCP 2 are used widely, and are the
primary means of intermachine communication in use in the department today. The Xerox PARC Universal
Protocol (PUP) is a predecessor to the newer XNS 3 protocols. However, the Xerox workstations do not
support any of these protocols, so we were faced with two choices:

1. Implement IP/TCP on the XDE.

2. Implement XNS under 4.2bsd.

We chose to implement XNS under 4.2bsd for a number of reasons:

1. We are very familiar with the 4.2bsd Unix kernel.

2. The Xerox workstations had not yet arrived when we were ready to begin work.

3. We wanted the Unix machines to communicate with the workstations as soon as they arrived.

This paper describes some of the changes we chose to make to the standard 4.2bsd socket code in order
to permit the addition of the XNS protocols, as well as the implementation details of the XNS protocols
themselves.

y
Unix is a trademark of AT&T Bell Laboratories

1 See RFC 791 for the complete Internet Protocol speci�cation
2 See RFC 793 for the complete Transmission Control Protocol speci�cation
3 See Internet Transport Protocols (ISIS 018112), the XNS protocol speci�cation

1

1. Preparing for Multiple Protocol Families

Application Code

4.2bsd Socket Code

SPP TCP

IDP IP

Network Interface

Device Drivers

4.2bsd Network Kernel Organization
Figure 1.

The 4.2bsd socket code is designed around the IP/TCP protocols. Figure 1 shows how the 4.2bsd

network kernel is organized, including the XNS protocol implementation we have added. The data structures
used for network interfaces contain �elds called if net and if host, which are used for speedy access to
network and host numbers. However, other (non-IP) addresses have very di�erent formats, so these data
structures are too inexible. Similarly, even general socket code makes assumptions about the internal format
of a struct sockaddr. Frankly, the problem was that all the code was using bcmp() 4 to deal with network
addresses. We also modi�ed the code which manipulates struct sockbufs to support protocols which di�er
from those already included in 4.2bsd. All of these changes are internal to the 4.2bsd socket abstraction,
and therefore transparent to user code.

1.1. Remove Fields from Network Interface Structure

In order to remove these stupid �elds (i.e., if net, if host) we had to provide the same address lookup
and network number matching functionality as before. So, we rewrote several routines in if.c to use address
family based comparison routines and use only the if addr �eld. All the code that \knew" about the if net

or if host �elds had to be changed to use the new versions of these routines.

1.2. Address Family Based Address Comparison

Too much socket code made assumptions about the internal format of a struct sockaddr in each
address family, so we changed this code to use two new routines in the afswitch table, based on the address
family of the address in question. The new routines in afswitch are:

1. af addrmatch()

2. af rtinit()

The af addrmatch routine is a predicate which decides (for a particular address family) whether two struct
sockaddrs represent the same host. The af rtinit routine is called at interface initialization time to set
up a routing table entry in the proper way (for a particular address family). Also, the af netmatch was put
to good use by all the code which had been using the if net �eld of the network interface structure.

1.3. Support for Multiple Addresses Per Interface

Since we wanted to use the same Ethernet interface for both our IP/TCP and XNS communications, we
needed to support multiple addresses per interface. Then we could get to the real work: actually implementing
the datagram and packet stream XNS protocols.

To support multiple addresses per interface, we had to hide even more knowledge of struct ifnet from
most code. That meant we had to modify all the IP/TCP code to use the routines in if.c for all access to

4 bcmp()�assembly code for block memory compare

2

XNS OSI DoD

...

Courier

SPP

IDP

Ethernet

Application

Presentation

Session

Transport

Network

Data Link

Physical

...

...

TCP

IP

Ethernet

Relationship among XNS, OSI, and IP/TCP
Figure 2.

interface addresses. We further modi�ed all the code in if.c to search a list of addresses for each interface,
and changed the if addr �eld in struct ifnet into a small array of addresses.

1.4. Connectionless, Atomic, and Rights-Based Protocols

The code dealing with socket bu�ers (send and receive queues) assumed that any protocol was either
a byte stream (e.g., TCP, pipes) or a connectionless protocol with optional rights (e.g., UDP). There are
protocols which are atomic and also connection based. Such protocols would not pass source addresses with
each message. 4.2bsd already includes ags called PR ATOMIC, PR ADDR, and PR RIGHTS; we modi�ed the
socket bu�er code and the receive system call to use these ags independently. With our changes, a protocol
may be atomic without being unreliable, or vice versa. The only remaining restriction is that protocols with
source addresses and/or rights must be atomic.

2. Actual XNS Protocol Implementation

Figure 2 shows how the IP/TCP and XNS protocol families �t into the the seven level OSI model of
the International Standards Organization. There are di�erences between IP and IDP addressing that cause
some problems when trying to splice IDP support into the 4.2bsd socket level interface. The semantic and
functional di�erences between TCP and SPP are so great that providing SPP to the user level through the
SOCK STREAM type interface is di�cult.

2.1. Internet Datagram Protocol

Both the Internet Protocol (Defense Department) and the Internet Datagram Protocol (Xerox) are
designed to unreliably transport reasonable size pieces of data (packets) from one machine to another.
Therefore, as one would expect, they are very similar. Both wrap headers around the data to be transported.
Both headers provide for source, destination, rudimentary error checking, and some control over who (at the
destination machine) receives the data. However, there are a number of big di�erences between IP and IDP
semantics and functionality. Figure 3 shows how these �elds are arranged in an IDP header.

IP includes all sorts of doodads for doing prioritized service and security, fragmentation for networks
that can't handle large packet sizes, and a multitude of other options (i.e., source routing, recording route
taken, packet timestamp, stream identi�er). None of these embellishments exist in IDP. In the XNS protocol
family, these features are provided by higher level protocols, if at all.

One of the above embellishments that is frequently considered necessary is fragmentation.5 The IDP
strategy for fragmentation is to require the gateways on any network which can't handle the maximum
packet size (576 bytes) to implement their own private fragmentation method appropriate to that network.
The fragmented packet must, however, leave that network whole once again. To our knowledge, this has
never been done, because hardly any networks with such tiny maximum packet sizes use IDP.

5 Many machines don't implement any of the other IP options.

3

checksum

length

reserved hopcount packet type

destination

network

destination

host

address

destination socket

source

network

source

host

address

source socket

Internet Datagram Protocol Packet Header
Figure 3.

The most important di�erence between IP and IDP is how the sockets are multiplexed across the upper
level protocols. In IP, each packet belongs to a particular protocol, and the individual upper level protocols
(ICMP, UDP, TCP) must implement some kind of socket number in order to separate the tra�c in that
protocol. In IDP, the source and destination addresses include a socket number which accomplishes this
separation. Another IDP header �eld speci�es the packet type, and this �eld is interpreted by the process
which receives the packet, not by the IDP layer.

Where the IP code would hand each packet to the upper level handler based on the protocol �eld of
the packet, the IDP code must determine the proper handler for the packet based on the socket �eld, and
the upper layers must interpret the protocol �eld. To be speci�c, this means the XNS protocol control
block (PCB) data structures comprise one big global namespace. The IP/TCP PCBs, on the other hand,
are maintained by the individual protocol code. Also, since the format of the sockets in the IP world is
dependent upon the upper level protocol, the IP PCBs are necessarily a hodgepodge of various numbers
needed by each protocol.

There are a few other minor di�erences. IDP packets are checksummed, so the data passed to the upper
level is assumed to be correct. In IP, each upper level protocol must perform its own checksum. The internal
format of XNS addresses includes both a network number and a host number; the network number is used for
routing purposes, and the host number uniquely identi�es the machine in question. IP addresses have a more
complicated format, and do not uniquely identify a machine. This is one of the reasons bcmp() shouldn't be
used to compare XNS addresses; the network and socket numbers are not relevant to determining whether
two struct sockaddr xns refer to the same machine.

4

checksum

length

reserved hopcount packet type = SP

destination

network

destination

host

address

destination socket

source

network

source

host

address

source socket

control datastream type

source connection id

destination connection id

sequence number

acknowledge number

allocation number

Sequenced Packet Protocol Packet Header
Figure 4.

2.2. Sequenced Packet Protocol

2.2.1. Comparison of TCP and SPP

The di�erences between TCP and SPP are similar to those between IP and IDP. TCP has more options
than SPP, while SPP leaves more decisions to the client protocol layer. SPP provides no special acknowl-
edgement sequence to process the closing of a connection; the client protocol must determine when it is
safe to shut down a socket. SPP provides more information to the client protocol than TCP. SPP provides
end-of-message boundaries and a datastream type �eld, which are interpreted by the client. Figure 4 shows
the format of a complete SPP header. The datastream type �eld is an example of what XNS calls a bridge

�eld, that is, a �eld which is interpreted by the client protocol.6 The bridge �eld in IDP is the packet type.

Because SPP leaves more of the work to the client layer, implementing it is easier than implementing
TCP. However, because SPP provides the extra datastream type information and delimits the end of mes-
sages, it does not �t easily into the standard Unix stream abstraction (read() and write()). The 4.2bsd
socket abstraction also expects protocols to be either

1. Connectionless, usually for unreliable protocols, or

2. Byte Stream, connection based protocols.

The semantics of SPP require that the data packets be delivered to the client separately, and that end-of-
message boundaries and the datastream type be communicated as well. Individual protocol requirements

6 Courier is the primary client of the SPP protocol.

5

L I
?
?
yseq=0

?
?
ydst6=0

A ������!
dst6=0

E

Homegrown Finite State Automaton for SPP
Figure 5.

such as these are what prompted us to make the changes to the socket level code described in section 1.4.

2.2.2. Formal Protocol Speci�cation

The particular Xerox document we used to develop our implementation of IDP and SPP, Internet

Transport Protocols (ISIS 018112), contains no formal speci�cation of these protocols. It does provide the
format of the headers used, and contains prose descriptions of these protocols in operation. These descriptions
su�ce to specify IDP, but seem inadequate in the case of SPP; the descriptions are too general, and appear
to make optional certain behaviors which are in fact required. We found ourselves asking many questions
about the details of SPP.

At any time, an end of an SPP connection (established or not) is in a particular state. When a packet
arrives, some action must be taken (i.e., adjust window, acknowledge, drop packet, etc.). A complete
speci�cation of a protocol such as SPP would provide an algorithm for determining the proper action to be
taken given the current state of the connection and the contents of the incoming packet. In other words, we
needed a Finite State Automaton to answer all our questions. Therefore, we constructed our own FSA,
illustrated in Figure 5.

Our SPP state machine is remarkably simple. As it turns out, there are only four states for any given
connection: LISTEN, INIT SENT, ALMOST, and ESTABLISHED.7 These are represented in Figure 5 as
the letters \L", \I", \A", and \E". These states correspond roughly to the TCP states LISTEN, SYN SENT,
SYN RECEIVED, and ESTABLISHED.

In a typical connection setup, the following events should occur:

1. A server enters the LISTEN state and awaits a connection.

2. A client sends a system packet with sequence number zero to the server, and enters the INIT SENT
state.

3. The server receives the system packet, sends a system packet with sequence number zero in reply,
and enters the ALMOST state. At this point, the server may send data, but must not act on any
received data (in other words, received data must not be passed up to user code).

4. The client receives the reply and become ESTABLISHED, allowing it to send and receive data.

5. The server receives data (close requests are data, as far as SPP is concerned) from the client, telling
it that the client is indeed connected. The server enters the ESTABLISHED state, and may now
receive, as well as send, data.

Real networks are not so nice as to deliver packets in order and without loss. Data packets will be
retransmitted if they are not acknowledged, but system packets cannot be acknowledged, since they do not
consume sequence numbers. Thus data packets are reliably delivered, but system packets are not, and the
�ve-step process above is not su�cient to implement SPP.

With some modi�cations, however, the procedure outlined above will work. We now describe exactly
what action should be taken for an incoming packet in each state. First we make the following de�nitions:

7 The Xerox documents use \ESTABLISHED" where we use \ALMOST", and \OPEN" where we use
\ESTABLISHED". We prefer our own names.

6

De�nition. An initiating packet is any packet with sequence number zero and destination connection ID
zero (i.e., unspeci�ed).

De�nition. A fully speci�ed packet is one with a nonzero destination connection ID. (This connection ID
must match the local connection ID at the receiving machine.)

1. In the LISTEN state (entered when the client opens a passive connection), any initiating packet
must be accepted, causing a transition to the ALMOST state, and a system packet with sequence
number zero must be sent in reply. Any other packets must be dropped (ignored).

2. In the ALMOST state, any fully speci�ed packet must be accepted, causing a transition to the
ESTABLISHED state. Other packets must be dropped.

3. In the INIT SENT state (entered when client opens an active connection, at which time an ini-
tiating packet is sent), any fully speci�ed packet must be accepted, causing a transition to the
ESTABLISHED state. All other packets must be dropped. If no fully speci�ed packet is received
within a reasonable time, another system packet with sequence number zero should be sent.

Acceptance of a packet implies that an acknowledgement must be sent (if requested), windows must be
updated, and so forth, as outlined in the Xerox XNS documentation.

We claim that these procedures will successfully transfer data even if the the transport layer loses,
reorders, or delays packets. Arguments showing the correctness of this kind of reliable transmission protocol
abound; we will not repeat them here. However, a connection could remain in the ALMOST state indef-
initely if a stray initiating packet were delivered. Aborting such a connection after an arbitrary timeout
is unreasonable, because this is a legitimate state: a client might connect to a server but not send data
immediately.

3. Conclusions About Integration of Multiple Protocols

Implementing another unreliable datagram protocol in the 4.2bsd kernel was not too hard. Implement-
ing a reliable protocol was much harder, because the state information for each connection (e.g., FSA state,
sequence numbers, data packets) must be maintained awlessly. As we write this, the equipment being
provided by Xerox Corporation is due to begin arriving next week. Therefore, we have not yet had the
opportunity to test our implementations with the actual Xerox implementations. Although our implementa-
tion does enable our 4.2bsd machines to communicate, there may be some discrepancies with the standard
which will only be resolved in the next few months. In our talk, we hope to have more to report about the
success of our implementation.

In order to add multiple protocols to 4.2bsd Unix cleanly, it is necessary to make small modi�cations to
many portions of the socket code. Some of these modi�cations require corresponding changes in specialized
user level programs such as netstat, ifcon�g, and routed. Together, all these changes make our current 4.2bsd
kernel very di�erent internally from most other kernels, and any bug �xes or other kernel modi�cations we
receive from other 4.2bsd sites must now be installed with care. We had to modify portions of all code in
the net, netinet, and vaxif directories. We estimate that we modi�ed approximately 700 lines of code in
these directories, and added 2900 lines of code in the new netxns directory. We chose to ignore the PUP
implementation distributed with 4.2bsd, because it is superceded by the XNS protocols, and was not in use
in the Computer Science Department.

As we modi�ed the 4.2bsd network code, we tried to make it as general as possible without doing much
more work than necessary to implement the XNS protocols. Now that we have made these changes, we
expect that it will be far easier to add new protocols in the future.

7

Table of Contents

Introduction . 1
1. Preparing for Multiple Protocol Families . 2

1.1. Remove Fields from Network Interface Structure . 2
1.2. Address Family Based Address Comparison . 2
1.3. Support for Multiple Addresses Per Interface . 2
1.4. Connectionless, Atomic, and Rights-Based Protocols . 3

2. Actual XNS Protocol Implementation . 3
2.1. Internet Datagram Protocol . 3
2.2. Sequenced Packet Protocol . 5

2.2.1. Comparison of TCP and SPP . 5
2.2.2. Formal Protocol Speci�cation . 6

3. Conclusions About Integration of Multiple Protocols . 7

i

List of Figures

1. 4.2bsd Network Kernel Organization . 2
2. Relationship among XNS, OSI, and IP/TCP . 3
3. Internet Datagram Protocol Packet Header . 4
4. Sequenced Packet Protocol Packet Header . 5
5. Homegrown Finite State Automaton for SPP . 6

ii

