
x
m
Al

~

-i
:::r
(1)

m
CD
3
(1)
::l -en
o -

c.o
-...J
0)

The Elements of Mesa Style

June 1, 1976

XEROX
INFORMATION TECHNOLOGY G ROUP
SYSTE,\\S DEVELOPMENT DIVIS ION

The Elements of Mesa Style

June 1,1976

An essay and a few examples are presented to illustrate some of the novel features of

Mesa. Specifically, the compile-time checking facilities that deal with types and the

inter-module connections are brought to bear on some typical systems programming

problems.

XEROX
INFORMATION TECHNOLOGY GROUP
SYSTEMS DEVELOPMENT DIVISION
3406 Hillview Ave. / Palo Alto / California 94304

Foreword

The essay and examples that follow are the product of my effort to learn the Mesa
programming language and relate it to oft-disclissed but little understood ideas like
modularity, reliability, and structure. There are some suggestions about how Mesa can be
used to produce reliable software. This is far from the final word on Mesa programming; a
few years hence we shall all know a good deal more about programming in Mesa.

I have concentrated on some of the more interesting new features of Mesa and tried to use

them in solving some perennial systems programming problems. I have tended to emphasize

less obvious features of Mesa that may otherwise escape your attention. Because of the

emphasis this manual is neither a primer for Mesa nor an essay on general good style in

programming. I recommend the Mesa manual for the former and a few books for the latter:

The Elements of PrognHilllIin~: Style, by Kernighan and Plallger (McGraw-Hili), Structured

Programming by Dahl, Dijkstra and Hoare (Academic Press), or Systematic Programming by

Wirth (Prentice-Hall).

The discussion and examples herein are based upon the system that rllns today.

Several Mesa experts have given me a large amount of help in my efforts to learn Mesa and

write this manual, most notably Chuck Geschke, Rich Johnsson, Blltler Lampson, Jim

Mitchell, Ed Satterthwaite, and John Wick.

Static Checking as a Programming Tool

There isn't any debugger in Peoria. If you are writing a module of code which is going to

go into a system which a Xerox customer in Peoria is going to use, you must face up to the

fact that software, just like hardware, gets "shipped" and can't be fixed easily after that. The

customer will not be impressed with an interactive debugger -- his way of fixing bugs is to

replace the system with another manufacturer's.

Mesa differs from other languages commonly used for systems programming in that its

compiler has a rather elaborate part called the type checker. This checker is a tool. like a

debugger, which one uses to eliminate programming errors. It is unlike the debugger.

however. in that it is applied to the static program. and is not used at run time. When the

type checker catches an error of yours you should not grumble. because it means one less

error to plague you during the testing phase. In fact, you should be ecstatic, because it may

have caught an error which would have turned up in Peoria.

The type and range declaration facilities should be looked upon like the T-square. triangles,

and compass a draftsman uses. Once we learn how to use them they can be used to get the

details right, once and for all. It would be ridiculous for a draftsman to suggest that one of

these tools was interferring with his work; being able to draw straight lines free-hand is not

what he prides himself on. It would be equally ridiculous for the purveyor of a new

drafting tool to suggest that it will obsolete all the draftsman's skills.

Articulating Data Types

How do you use the Mesa type checker? What kinds of programming errors can it prevent?

To answer these questions we must first understand what it checks. Basically, it checks that

a certain partitioning of the value space into distinct types is respected. It performs the

same kind of checks that different arrangements of prongs on electrical connectors do.

Every time values are passed from one place to another by assignment, procedure call, etc.

the checker insists that the sender and receiver of the value agree aboL.:t its type.

The partitioning into types is initially set up by Mesa. As a minimum requirement any two

values requiring different amounts of storage must have a different type, but there are

further distinctions. For example. Mesa has decided that INTEGER and BOOLEAN values are

different and that a POINTER TO INTEGER is different from an INTEGER. It takes a while to

learn how to describe all one's favorite data structures lIsing Mesa's type language, but his

efforts are rewarded by the absence of any bit counting errors.

The real fun comes when the programmer adds further refinements to the partition by using

2

the type constructor RECORD. Every occurrence of a RECORD constructor generates a new

type distinct from all others.

If you made the declarations

Alist : TYPE = POINTER TO RECORD [hd: INTEGER, tl: Alist];

Blist : TYPE = POINTER TO RECORD [hd: INTEGER, tI: Blist];

x: Alist;

y: Blist;

you would be prohibiting yourself from mixing up Alists and Blists; e.g. the assignment

x+-y

would be illegal.

Why would a sensible programmer do such a thing when the only effect will be to cause the

type checker to complain more often? He would do it if there is a real, intentional

difference between Alists and Blists and he is worried enough about getting them mixed up

that he wants the compiler to check it.

For example, suppose Alists are expected to contain only even numbers while Blists may

contain any numbers at all. The type system is not versatile enough to express this

difference. but it is still of use in expressing the fact that there are two kinds of lists. If we

want to prove Alists always contain even numbers we can break the proof into two stages:

(1) Find all the assignments of the form x.hd +- e where x has type Alist.

(2) Prove that e is even.

The first part is greatly aided by the type checker. The second part must be done by hand.

but we have more mental energy left for this possibly difficult proof.

The difference between Alists and Blists may be virtually non-existent from a mathematical

point of view. For example, Alists might contain identification numbers of people with

top-secret security clearances while Blists contain the identification numbers of known

communists. Even though the difference between these lists is rather subtle for a computer,

a programmer is well advised to keep them separate.

If we keep these two types articulated we will run into certain problems. We might like to

write procedures for concatenating. comparing. and otherwise fiddling with lists in ways

which neither depend upon nor effect their "A ness" or "Bness". In fact we may even want

to change the type of a list occasionally. It is often better to use the type loopholes rather

than to make the types identical. For example. suppose the quintessential property of Alists

3

is that they contain only even numbers. Then the following procedures might be declared.

SumBlist: PROCEDURE [x: Blist] RETURNS [sum: INTEGER] =
BEGIN t: Blist;

sum ~ 0;

FOR t +- x, t.tl UNTIL t=NIL DO sum+-sum+t.hd ENDLOOP;

RETURN;

END;

SumList: PROCEDURE [UNSPECIFIED] RETURNS [INTEGER] = SumBlist;

ConcatBlists: PROCEDURE [X,y: Blist] =
BEGIN t: Blist +- x;

IF X=NIL THEN ERROR;

UNTIL t.tl = NIL DO t+-t.tl ENDLOOP;

ttl +- Y

END;

ConcatAlists: PROCEDURE [Alist, Alist] = COERCE[ConcatBlists];

ConvertList: PROCEDURE [x: Blist] RETURNS [Alist] =

BEGIN t: Blist;

FOR t ~ x, t.tl UNTIL t=NIL DO IF t.hd MOD 2 = 1 RETURN [NIL] END LOOP;

RETURN [COERCE[X]]

END;

SumList can be applied to Alists, Blists, or any other one word type. I would like to prevent

the third possibility but I can't see any way. The situation is safer for ConcatAlists. Even

though it is defined using COERCE, we can see that all is well since it demands that each of

its parameters be Alists, and the concatenation of two Alists is still an Alist. Similarly,

ConvertList is benign, as long as having even elements is the only qualification demanded of

Alists.

A record declaration can be used for the sole purpose of inventing a distinct type as in

Prime: TYPE = RECORD [INTEGER];

x: INTEGER; y, z: Prime;

No extra space is taken by these records, but the effect on the type checker is rather

interesting. We can convert Primes to INTEGERS without saying anything (because single

component records are automatically converted to their components if necessary), but we

must say "Prime" when going in the other direction. For example,

4

z ~ Prime[7]; y ~ z; x .. y; y ~ Prime[x];

It seems reasonable that we cannot omit the Prime from those two places; they signal the

places where the programmer is vouching for the primeness of the number.

The question of articulation comes up for variant records. Consider the following

declaration for the ever-popular set of arithmetic expressions:

exp: TYPE = POINTER TO ex;

ex: TYPE = RECORO[SELECT etag:· FROM

constant => [val: INTEGER],

identifier => rid: identifier],

negation => [neg: exp],

sum.difference,product.quotient

=> [Ieft,right: exp],

ENOCASE

];

The following alternative definition for ex minimizes variants by merging all the binary

operators into a single sub-type.

ex: TYPE = POINTER TO RECORO[SELECT etag:· FROM

constant => [val: INTEGER],

identifier => rid: identifier],

negation => [neg: exp],

binaryexp => Cop: {plus.minus,times,divide},

left,right: exp],

ENOCASE

];

The second definition is less articulated than the first. The advantage of the second is that

we can create expressions whose operator is not manifest and even change the operator, as in

the following.

x ,Y : exp;

x ~ AlloC[SIZE[ex]];

x1' .. binaryexp[variableop, y, x];

x.op ~ minus;

In all of these situations one must weigh flexibility against the likelihood and cost of a

mix-up.

5

Interfaces and modularity

I have occasionally heard that modularity is a concept like motherhood; but nothing could

be further from the truth. There are fairly well-defined requirements for achieving

motherhood, but there is no c1eal' criteria for what it takes to be a module. The general idea

seems to be that a module is something that performs some conceptually simple task in a

way its clients needn't be concerned with. Carried to its extreme it means that one can

replace a module with a functionally equivalent one and no one will know the difference.

All this points to the fact that a large part of module design must be devoted to designing

the interface between the module and its clients.

When designing an interface one should try to decide which of three increasingly difficult

situations obtains.

l. One-to-One. Even though we have decided to make an interface there will only

be one program on either side of it. These programs may change through time. of

course, but their identity wiJI not be in doubt. Example 1 illustrates this situation.

2. Many-to-one. We are implementing a module which will serve many clients.

There is only going to be one, possibly evolving. implementation; but it will be used

by code with many purposes. Examples abound, device drivers, directory systems,

etc. Examples 2 and 3 fall in this category.

3. Many-to-many. In this case the interface is the only thing left to design because

we contemplate many implementations serving many clients. The latter parts of

Example 2 illustrate this case.

Programming defenSively

In the more difficult situations it is often instructive to play the following game: Sit down

with a single module in front of you and try to say something about its behavior that does

not depend upon any other code with which it communicates. In fact, it helps to assume

that all the other code in the system was written by Murphy, the discoverer and foremost

exemplar of Murphy's law ("If something can go wrong it will"). Naturally, you will not be

able to say all the things that you hope are true because the over-all performance of the

module will depend on other components of the system. However, there may be some things

you can say, like "this table is always sorted" which you can prove without looking outside

the module. The starting point for such reasoning is the fact that we can restrict access to

the information that a module depends upon.

6

Mesa offers a simple tool for putting some teeth into the notion of modularity, namely the

ability to restrict the scope of text over which a name can be used. Generally speaking, a

name coined by a module cannot be used by other modules unless the coining module

declares it PUBLIC. This control can be applied to all kinds of names, including type names,

procedure names, and the names of fields in records.

Suppose I were really uptight about the integrity of Alists from the previous discussion.

wanted to be absolutely certain that they only contained even numbers. I can isolate all the

code that can affect Alists by writing the following module

AlistModuie: PROGRAM =
Alist: PUBLIC TYPE = POINTER TO RECORD [hd: PRIVATE INTEGER, tl: Alist];

Hd: PUBLIC PROCEDURE [a: Alist] RETURNS [INTEGER] =
BEGIN RETURN[a.hd] END;

SetHd: PUBLIC PROCEDURE [x: INTEGER, a: Alist] =

BEGIN

END.

IF X MOD 2 # 0 ,THEN ERROR ELSE a.hd +- x;
RETURN;
END;

Now we can be certain no Alist will ever have an odd number in it (except for initialization

problems), and we do not need to look at any other part of the program to be sure. This is

because the other parts of the program, even though they can declare Alists, cannot access

the hd component directly but must use the procedures. (If I could change the PRIVATE to

READ-ONLY the procedure Hd could be dispensed with. I understand that READ-ONLY is being

added to the language.)

A rather surprising, if not obviously useful, feature of private type names is that, by leaving

a type name private one can prevent a client from storing a class of values even though he

might handle them briefly. Consider the following module

Silly: PROGRAM =

BEGIN
Secret: TYPE = RECORD[id: INTEGER, mess: STRING];

Receiver: PUBLIC PROCEDURE[m: Secret] =

BEGIN
Wr i teDec; rna 1 [id];

7

WriteString[mess]
RETURN;

END;

Sender1: PUBLIC PROCEDURE RETURNS[Secret] =
BEGIN RETURN[Secret[1,"Hello"]] END;

Sender2: PUBLIC PROCEDURE RETURNS[Secret] =

BEGIN RETURN[Secrete 2, "Good-bye"]] END;

END.

Now a client is limited to saying Receiver[Sender1 []] or Receiver[Sender2[]] but little

else because he can never declare anything to be a Secret.

Confusion at the interfaces

Even if your module works, its clients may not know how to use it properly. Suppose I wish

to write a square root routine. We can distinguish three levels of misunderstanding about its

performance, based upon how quickly they can be cleared up.

A typo: Sqrt can be applied only to real parameters. It will not work on strings.

A bug: Sqrt cannot be applied to negative numbers.

An unpleasant discovery: Sqrt(x)*Sqrt(x) is not always x.

It should be our goal to push the various misunderstandings that can occur as far down in

this hierarchy as possible, in the direction of earlier detection. Notice that only the third

requires the implementor's presence to explain. Mimimizing the errors that occur at this

level saves wear and tear on implementor/client relations.

Signals considered harmful

Like any new and powerful language feature Mesa's signal mechanism, especially the

UNWIND option, should be approached with caution. Because it is in the language one

cannot always be certain that a procedure call returns, even if he is not using signals

himself. Every call on an extra-module procedure must be regarded as an exit from your

module, and you must clean things up before calling the procedure or include a catch phrase

to clean things up in the event that a signal occurs. It is hard to take this stricture seriously

because it is really a hassle, especially considering the fact that the use of signals is fairly

8

rare and their actual exercise even rarer. Because signals are rare there is hardly any

reinforcement for following the strict signal policy; i.e. you will hardly ever hear anyone

say, "I'm really glad I put that catch phrase in there; otherwise my program would never

work." The point is that the program will work quite well for a long time without these

precautions. The bug will not be found until long after the system is running in Peoria.

Here is a programming error I made which recently came to light (a year after its

commission!). The basic idea will be familiar to all: I made a modification to modules A

and B so that B passed A a piece of free space which A returned after a call on module C,

which can generate a signal. Since I failed to put a catch phrase on that call of C, the

expected return to free space was often missed, causing a gradual loss of free storage.

The discussion of DictionaryO presents another example.

Ironically, discouraging the use of signals has the opposite of the desired effect. The rarer

signals are, the less chance of catching signal-related bugs during testing. This line of

reasoning suggests that every module should generate an unwind signal now and then just to

keep everyone on their toes! Bah!!

Maybe someone will write a checker which runs over a system of modules and warns us of

all the procedure calls which may not return because of signals and don't have associated

catch phrases. It seems likely that this checker will cry wolf a lot of the time.

It should be noted that Mesa is far superior to most languages in this area. In principle, by

using enough catch phrases, one can keep control from getting away. The non-local

transfers allowed by most Algol languages preclude such control. It has been suggested that

systems programming is like mountaineering: One should not always react to surprises by

jumping, it could make things worse.

The problem of handling exceptional conditions is a thorny one and Mesa has provided one

of the more reasonable tools. This has not made the problem disappear, however.

9

How to breach the type system

Here is a summary of all the ways r know of to breach the Mesa type system. If a program

uses none of them, there should never be any anomalous, implementation-dependent

behavior. However, it is occasionally necessary to subvert the system. Here are some

suggestions about the relative dangers of the various ways of doing it. In general, the more

obvious and transient the breach the less dangerous it is.

1. UNSPECIFIED is a type that matches any other one-word data type. It is inherited from

PL/I. I try to avoid its use in favor of other constructs because it turns off too much type

checking. To store 0 into an arbitrary memory location, 421B say, one could write

pi: POINTER TO INTEGER;

u: UNSPECIFIED;
u+-421 B; pi +-u; pi t+-O

2. COERCE IS a compile time function which allows one to convert anyone-word type into

any other. Thus one can shorten the above to

pi: POINTER TO INTEGER = COERCE[421 B];

pit +- 0

It is better to lise COERCE than declaring a variable UNSPECIFIED because it turns off checking

at just one place in the program rather than every place the variable appears. If you cannot

think of any reasonable type to describe the variable, it is a strange variable indeed. The use

of COERCE also conveys much more information to the reader. It says, "I am now going to

start treating this integer as a pointer. OK?" The reader is then expected to decide from the

context whether that is a reasonable thing to do.

3. MEMORY is an array of UNSPECIFIEDS which happens to be the entire main memory of the

machine. When using it one is expected to perspire a little rather than laugh fiendishly.

Just say

MEMORY[421B] +- 0

4. Arithmetic on pointers is allowed. If x is a POINTER TO Bletch, so is x+ 1. If y is also a

POINTER TO Bletch, x-y is allowed and is an INTEGER.

p: POINTER TO INTEGER = NIL; -- NIL = 1777778 = -1

(p+422B)t +- 0

See ArrayStore2 for an example of where pointer arithmetic seems to be justified.

5. It is possible to change a variant record from one variant to another at a time when

10

someone is depending upon its not changing.

R: TYPE = RECORD[SELECT typetag:* FROM

int => [a: INTEGER],

];

i: INTEGER ~ 5;

r: R .. R[pint[@i]];

pint => [b: POINTER TO INTEGER],

ENDCASE

Ambush: PROCEDURE = BEGIN r .. R[int[4218]] END;

WITH r SELECT FROM pint => BEGIN Ambush[]; bt +- 0; END CASE;

This problem does not occur in practice very often because people don't change the variants

of records very much.

6. Variant records can be declared with the COMPUTED attribute. meaning that the variant tag

is computed by a programmer-supplied function. This is a useful facility, and not

considered too dangerous, especially if one makes the function computing the tag explicit

TypeTag: TYPE = {int,pint};

R: TYPE = RECORD[SELECT COMPUTED TypeTag FROM

int => [a: INTEGER],

];

r: R = R[int[421b]];

pint => [b: POINTER TO INTEGER],

ENDCASE

WITH r SELECT pint FROM pint =) bt .. 0; END CASE;

See ArrayStore4 for an example of this feature used properly.

7. A variable can be declared to be a specific variant of a record type. Then, one can manage

to falsify that declaration by assigning through a pointer to that variable which does not

insist on the right variant. Starting with the type declarations immediately above one can say

pi: pint R;

sneakpath: POINTER TO R = @pi;

sneakpatht +- R[int[4218]];

pi.pintt .. 0

As in 5. this problem only arises if you are in the habit of changing the variants of records

after they have been initialized.

11

8. For completeness I mention that out-of -bounds array subscripts are not checked

against. Thus one can say

A: AHRA Y [0 .. 10] OF INTEGER;

A[NIL-@A[0]+422B] +- 0

9. Again for completeness, note that variables are not initialized when they are declared.

Thus the following segment might clear the display. (On the Alto, 421B is the address of a

chain of control blocks for the display. A zero in 421B clears the display.)

P 1: PROCEDURE

p2: PROCEDURE

p1 []; p2[]

BEGIN x: INTEGER; x +- 421 B; RETURN END;

BEGIN y: POINTER TO INTEGER; Y t +- 0; RETURN END;

This will only work if the Mesa run-time system uses the stack frame released by p1 for the

invocation of p2. Who cares? No one is supposed to make a virtue of this vice.

10. The DESCRIPTOR construct allows the f ollowi ng fiddle.

A: DESCRIPTOR FOR ARRAY OF INTEGER:

B: DESCRIPTOR FOR ARRAY OF POINTER TO INTEGER;

A[O] +- 421;

B +- DESCRIPTOR[BASE[A],LENGTH[A]];

B[O] t +- 0;

Here are two equally silly views one can take about breaches of the type system:

Super-hardnose: One breach invalidates everything, since we cannot prove that code won't be

overwritten, etc ..

Flower-child: I and all my fellow programmers are reasonable people who will do whatever

is right.

Here are some less silly suggestions.

Understand when you are committing a breach and make it clear to the reader. Specifically,

watch out for breaches 5, 7, 8, and 9.

Confine the effect of a type breach to one module. Try to prove that, assuming all the

other modules don't commit a breach, nothing untoward will happen because of yours. In

12

particular, using UNSPECIFIED to declare public procedure entries seems dangerous since the

module using them may be entirely ignorant of the breach.

13

A guide to the examples

This edition contains three long examples. I am fully aware that they are not real, "blood 'n

guts" systems programs. They have been kept simple so as to illustrate various ideas more

clearly.

The programs appear after each example in the order discussed.

Program layout and Fontology

In an effort to make programs easier to read I have chosen the following conventions:

(1) A clean font, Helvetica, is used as the basic font. I have tried to avoid using the

identifier j which looks too much like i.

(2) A smaller font is used for keywords. Otherwise Mesa programs tend to look like a

blizzard of BEGINS, ENDS, and PROCEDURES. Most of the keywords are punctuation and don't

deserve to attract so much attention. The general rule is that any word that the Mesa

compiler knows about is i'n a smaller Helvetica font.

(3) Identifiers defined outside this manual, like Wr i teChar which is part of the Mesa

library. appear in Gacha. A general rule is to write both the name of an insert file in the

DIRECTORY section and all the identifiers that come from it in the same font. It is probably

not a good idea to have a different font for every insert file; the reader will contract a case

of font-fatigue, observed in people who habitually read ransom notes.

(4) The DIRECTORY and DEFINITIONS section of each program is pushed over to the right.

They are not usually the first thing one wants to read.

(5) Boldface is used for defining occurrences of procedure names and comments that

delineate major sections.

(6) Italics are used for comments that are remarks.

(7) The indentation methods suggested in the Mesa manual are used.

(8) Declarations usually appear in alphabetical order.

14

Example 1. KWIC

The problem is to write a program to produce Key Word In Context listings. This is the

same problem discussed by Pamas in "On the criteria to be used in decomposing systems

into modules," in the Comm. ACM 15,12 (Dec. 1972). The main point of his paper is vitally

important: the task should be decomposed according to representation of objects rather than

the sequence of events. In this specific example the trick is to construct a module

LineStorage which appears to be storing many more lines of text than it actually is. This

illusion is accomplished by requiring anyone outside the module to use procedure calls to get

at the characters in each line. The program consists of three modules, KWIC the master

controller, LineStorage, and Utilities which contains Sort, a general purpose sort routine.

The .program doesn't produce the nicest possible index. Given the (randomly chosen) input

lines:

types are not sets

protection in programming languages

the program is supposed to pr09uce the output

are not sets types

in programming languages protection

languages protection in programming

not sets types are

programming languages protection in

protection in programming languages

sets types are not

types are not sets

Go read the program now, come back, and ponder the following profundities:

Procedures as parameters are useful for making general interfaces.

Consider Sort. Since we want to be able to use it to sort all kinds of things, with many

kinds of ordering relations we want to be quite noncommittal about the things it is actually

sorting. Since Sort's commerce with its subject array can be reduced to two operations -

comparing and swapping -- we can get by with supplying two procedures which perform on

an array which Sort never sees! Surprisingly there is no need to breach the type system.

since the actual values from the hidden array never even make an appearance inside Sort.

15

Consider LineStorage. We know that it's going to get its input from a file, but it's nice to

relieve it from the responsibility for finding out which one. It's also nice to give it input

from the keyboard during debugging. Once again, we pass it two procedures, getc and

endofc, which are all that it needs to read in a stream of characters. Since this is a rather

common event we might even want to institutionalize such a pair of procedures as a record

type:

InputStream: TYPE = RECORD

[getc: PROCEDURE RETURNS [CHARACTER], endofc: PROCEDURE RETURNS [BOOLEAN]];

This idea is carried to wretched excess in some systems.

The reason procedure parameters are so useful is that they allow one to switch the locus of

control back and forth between two modules in a fairly arbitrary way. Thus one can divide

the responsibilty between two modules without worrying about the actual time sequence of

the activity.

Make the client pay for the space

I had problems deciding how to allocate space for LineStreams. I wanted KWIC to be

ignorant of how LineStorage was representing the LineStreams, so r thought that

LineStorage would have to allocate the space for them. On the other hand, I certainly

didn't want to have a general-purpose LineStream allocator since I knew at most two

streams would ever be open at one time. The rather clumsy solution I chose was to have two

distinct pairs of OpenLine and GetLineC routines, each with their own storage in the

module. The method used here was suggested by Butler Lampson and is much nicer: KWIC

allocates the storage; but, because of the PRIVATE attribute in the declaration of LineStream,

it still can't see the representation. Thus, for very little hassle, LineStorage is more general

since it can process any number of streams.

Support your local type-checker.

The stickiest part of LineStorage is the fact that Text is not a homogeneolls array of

characters; each CR gets replaced by an index of the array pointing back to the beginning of

the line. I suppose I could have re-designed the scheme for representing all the rotations of

a line, but I am rather fond of this one since it is so space economical.

The declaration of union is a circumlocution forced upon us by Mesa's insistence that type

variation can occur only within records. The actual code is not too ugly, however. We must

say

16

Text[i] +- union[char[c]]

where ALGOL-68 would let us get away with

Text[i] +- c

but you can't have everything.

The worst hassle, represented by the procedure AssertChar, is unavoidable in any language.

Throughout most of the initialization phase we know that all the elements in Text are

characters. The type checker is not very clever, however, so we have to surround every use

of a Text element with a call on AssertChar.

I was tempted to declare Text UNSPECIFIED, but decided to go along with the type checker. If

I had not, the GetLineC procedures would have been pretty messy, involving some

bit-extraction by hand or some other barbarism.

The gata is alive and well in Mesa.

It lives under a variety of assumed names, one of which is SELECT. Observe the UNTIL loop

which reads in the Text array. The four identifiers, Initial, LineEnded, InWard, and

Word Ended are thinly disguised labels and the assignments like state +- InWard are

delayed-action goto's. I arrived at this method of doing things after getting entirely

confused trying to get a loop-with-Ioop arrangement. The difficulty is that one ends up

testing for the end of the stream all over the place. This code was improved by B.
Lampson. I originally SELEcTed on the state first and then the character, a clumsy

arrangement.

Three loops are better than one.

A casual inspection will reveal that the three loops in the initialization phase can be merged

into one. Unless one is really pressed for computing time or code space it seems better to

leave them separate since. it makes the program easier to read. It is easier to read because it

is broken into three simply described activities. The sentence "Mary cried after the ball that

John threw hit her," is obviously more sophisticated than "John threw the ball. The ball hit

Mary. Mary cried." It is harder to read, however.

LineStorageA shows the initialization code for LineStorage with its three loops merged: It

took me about 15 minutes to derive from the original version and it would probably take

you at least 15 minutes longer to read it to find a bug, especially if you hadn't seen the

17

original. It may run a little faster, but there are a lot of microseconds in 15 minutes. The

program is also shorter, and we were able to eliminate all the AssertChar nonsense.

This idea is not very popular. Everyone seems to think that one should strive for short,

elegant programs. It is one's natural inclination to merge the loops, even while writing them

for the first time. One wishes to avoid the work and overhead associated with setting up a

loop, it seems.

Declarations can be decorative.

The use of constant and interval declarations is purely for the benefit of the reader. As far

as the type checker is concerned all intervals are integers. For example. the types Textlndex

and Linelndex in LineStorage could be replaced by INTEGER. Doing so would be in bad

taste, however. First of all, there may come a day when the compiler will check ranges.

Second, the allocation of space in records takes advantage of the smaller ranges. In any case,

the additional types are quite helpful to the reader. For example, declaring the parameter, i,

of OpenLine to be a Line!ndex and firstC to be a Textlndex would make it very easy for a

reader to spot the error of saying "firstC ~ i", even though the type checker couldn't.

The use of decorative declarations can be overdone, however. For example, declaring a
constant WordSize = 16 when you know it is never going to change has always struck me as

cruelly misleading. It seems better to write things like

i ~ 16; -- word size

to convey the message. The following scenario should be familiar: The reader encounters

WordSize somewhere and doesn't even know it's a constant so he has to go looking a\l over

the place to see who is setting it. Failing to find any assignments to it he finally locates its

constant definition on the third page of a definitions file. Not only has he wasted a lot of

time, he may also get the impression that all he needs to do is change the definition of

WordSize to make the code run on another machine! Hah!

Arrays always start at O.

Mesa has chosen that convention for array descriptors and strings; so we had best stick to it

whether we like it or not. In the privacy of your own module, you can start arrays at 1, -6,

or anything else; but if an interface conflict ever occurs the person who assumed O-origin is,

by definition, right.

You might think that the compiler would settle such conflicts, but it doesn't. Even if range

checking were added to the compiler there would be cases it wouldn't handle. Consider the

18

Sort procedure. Here the array in question is virtual since it is accessed through the

procedures LessThan and Swap. No type checker would notice if the Sort module assumed

that this virtual array started at 1. There might be an out of bounds array reference

sometime, but who knows whether it would be caught? Even though it would be very nice

to assume I-origin indexing (because the tree-encoding hack requires it) , made the Sort

module bend to the O-origin convention.

Certain other conventions are suggested from the O-origin one, and , have attempted to

illustrate them from the rather stylized declarations of the arrays in LineStorage.

Specifically,

a) Communicate the size of an array by giving the number of elements, N, rather

than the highest possible subscript, N-1. Thus 0, not -1, means the array is empty.

The use of the interval notation in FOR loops helps one avoid writing lots of -1's.

b) Declare a new array, A, with the following packet of declarations

A: ARRAY Aindex OF Foo;

Aindex: TYPE = [O .. mxA);

mxA: ,INTEGER = 1000;

It has been suggested that one waste a word at the end of arrays when he can afford

it, by changing the ")" to a "T'. The idea is to make things look safer to a putative

bounds checker when it encounters

i: Aindex;

UNTIL i=mxA DO Process[A[i]]; i+-i+1 ENDLOOP;

This idea seems unappealing. During testing one would like an index overflow to

clobbler someone else so it was brought to the tester's attention.

c) When the array is being filled lip the running index should point at the next cell

to receive a value. Thus it is initialized to 0 and denotes the number of elements

present. The general idea is captured by the following

nA: Aindex +- 0;

PutA: PROCEDURE [x:Foo]=

BEGIN IF nA>=mxA THEN ERROR;

A[nA] +- x;

nA +- nA + 1;

END;

d) The null index should be -1. When you want to return an index which says '"

19

couldn't locate the item," return -1, since 0 would mean "I found the item in A[O]."

All of this can be summarized by saying that intervals should normally be described by the

position of their first element and the position one after their last element

Anything goes between two consenting modules

The interface between KWIC and LineStorage is not particularly general because KWIC

accesses the array Line directly, rather than using a procedure call. I think this is alright

since it seems clear that LineStorage is never going to be used for any other purpose than

servicing KWIC or some revision of it. Contrast this with the extreme generality of the

interface to Sort. We know that the Sort module is going to be used by many other

modules, so we took some pains to generalize.

It takes a lot of thought to make a general, easy to use interface. It also takes the user of

such an interface some work to specialize it to his needs. Don't waste your energy when you

know there is only going to be one client for the module.

20

KWIC: PROGRAM =
BEGIN

-- Storage
c: CHARACTER;
i: INTEGER;
LSM: POINTER TO FRM~E[LineStorage];
N: INTEGER;
nxtC: CHARACTER'" SP;
st: LineStream;

- - Procedures
getc: PROCEDURE RETURNS [c: CHAR~.CTER] =

DIRECTORY
laDefs: FROM "loDefs".
UtilitiesOefs: FROM "UtilitiesOefs".
LineStorage: mOM "LineStorage";

DEFINITIONS FROM 100efs. UtilitiesDefs. LineStorage;

BEGIN c<-nxtC; nxtC--ReadChar[]: WriteChar[nxlCl RETURN END:

endofc: PROCEDURE RETURNS [BOOLEAN] ~

BEGIN RETURN [nxtC = 338] END; -- 33B=ESC

Swap: PROCEDURE: [i.k: INTEGER] =
BeGIN OPeN LSM; t:INTFGER;
I<-Line[i): Line[i]<-Line[k]: Line[k]<-t;
END;

LessThan: PROCEDURE [i.k: INTEGER] RETURNS [BOOLEAN] =
BEGIN OPEN LSM; tl.t2:CHARACTER;·

-- Code

s 1. s2: LineSlream:
OpenLine[@sl. iJ; OpenLine[@s2. k];
DO

ENDLOOP;
END;

II ... GetLineC[@sl]: 12 <- GelLineC[@s2];
IF II =12 WEN BEGiN IF tl =CR THEN RETURN [FALSE] END
ELSE RETURN [11<12]

c<-getc[]: - - just to get started
LSM ... NEW LineStorage [getc.endofc]; -- create space
BIND LSM: -- link externals
START LSM; -- execute initialization

Sort[LSM.nLine.Less Than,Swap];

FOR i IN [O .. LSM.nLine) DO
LSM.OpenLine[@st. i):
c <- SP;

END.

UNTIL c=CR DO c<-LSM.GetLineC[@st]; WriteCttar[c]: ENDLOOP;
ENDLOOP;

21

DIRECTORY IoDefs: FROM "loDefs";
DEFINITIONS FROM IoDefs;

LineStorage: PROGRAM [getc: PROCEDURE RETURNS [CHARACTER]. endolc: PROCEDURE RETURNS [BOOLEAN]] =
-- stores lines for KWIC. parameterized on input stream

BEGIN

-- Storage, Constants & Types
C: CHARACTER;

fel Textlndex;
i: Textlndex:
Line: PUBLIC ARRAY Linelndex OF Textlndex; -- holds line pointers
Linelndex: TYPE = [O .. mxLine):
LineStream: PUBLIC TYPE' = -- used by OpenLine, GetLineC

PRIVATE RECORD [firstC. nxtC: Textlndex, end: BOOLEAN];

mxLine: INTEGER = 500;
mxText: INTEGER = 1000;
nLine: PUBLIC Linelndex +- 0;
nText: Textlndex .. 0;
Text: ARRAY Textlndex OF union; -- holds input text
Textlndex: TYPE =[O .. mxText);
union: TYPE = RECORD [SELECT tag: • FROM

ptr =) [ptr: Textlndex].
char =) [char: CHARACTER].

ENDCASE

];

-- We contrive to represent all possibie rotations of a title by storing the text just once by the following
method:
-- Text will consist of the input lines each terminated by a pointer back to its first character. The elements of
the array Line point to the first characters of the words in each line. Thus. a particular pseudo line is gotten
by starting at Line[i] and reading characters until the back pOinter is reached, following the back pointer and
continuing until Line[i] is reached again.

- - Procedures
AssertChar : PROCEDURE [u:union] RETURNS [CHARACTER] =

-- This procedure is used solely to keep the type checker happy.
must be a char, so the ERROR will never happen.
BEGIN

WITH U SELECT FROM

END;

char =) RETURN [char];
ptr =) ERROR;
ENDCASE

GetLineC: PUBLIC PROCEDURE [s: POINTER TO LineStream] RETURNS [C:CHARACTER]

-- gets character from pseudo line
BEGIN OPEN S;

IF end THEN RETURN [CR];
WITH Text[nxtC] SELECT FROM

ptr =) BEGIN c .. S P; nxtC .. ptr END;

char =) BEGIN c +- char; nxtC .. nxtC + 1 END;

ENDCASE;

end .. nxtC = firstC;
RETURN;

END;

OpenLine: PUBLIC PROCEDURE [s: POINTER TO LineStream. i: linelndex]
-- opens pseudo line
BEGIN bPEN S:

lirstC"line[i]; end" FALSE; nxtC .. Line[i] ; RETURN

END;

PutLine: PROCEDURE [i:Textlndex] =
BEGIN IF nLine=mxline THEN ERROR;

Line[nline] .. i;
nLine .. nLine+ 1 ;

We know that the union item

22

END;

PutText: PROCEDURE [x:union] =
BEGIN IF nText=mxText THEN ERROR;

Text[nText] .. X;
nText .. nText+1;
END;

-- Initialization code

-- Read in Text, discarding extra lines and blanks
state: {lnitial,LineEnded.lnWord.WordEnded} .. Initial;

-- The subarray Text[O .. nText) consists of the characters read so far. except each sequence of SP's
is replaced by a single SP and any sequence of SP's and CR's is replaced by a CR. The variable
state tells what kind of input sequence we're in. Only when a character other than SP or CR is read
do we store an SP or CR in Text.

UNTIL endofc[] DO

e <- gete[] ;
SELECT e FROM

CR => IF stale#lnitial THEN state" LineEnded;
SP => IF stale=lnWord THEN stale" WordEnded:

ENoLOOP;

ENDCASE =>
BEGIN

SELECT stale FROM

Line Ended => PutTexl[union[char[CR]]]:
WordEnded => PutText[union[char[SP]]];
ENDCASE;

PutText[union[char[e]]]:
state <- InWord;
END;

PutText[union[char[C R]]];

-- Texl[nText-l]. is the CR of the last line read.
-- Every item in Text is a char. not a plr.

-- Fill in the line table with pOinters to word beginnings
Line[O] ... 0;
nLine"l: -- next word
FOR i IN [0 .. nText-2] DO

IF AssertChar[Text[i]] SP OR AssertChar[Text[i]]=CR
THEN PutLine[i+l] ;

ENoLOOP;

-- Replace all the eR's with back pointers

END.

tel .. 0: -- First character of current line
FOR i IN [O .. nText) DO

IF AssertChar[Text[i]] = CR THEN

BEGIN

ENDLOOP;

Texl[i] .. union[plr[fel]];
fel." i+l:
END;

23

DIRECTORY SystemDefs: FROM "SystemDefs",
InL ineDefs: FROM "InL ineDefs",
UtilitiesOefs: FROM "UtilitiesDefs";
DEFINITIONS FROM SystemDefs, InL ineDefs, UtilitiesDefs;

Utilities: PROGRAM IMPLEMENTING UtilitiesOefs =

PUBLIC BEGIN

CompareString: PROCEDURE [x, y: STRING] RETURf.S [CompareAnswer] =
BEGIN
lowerCase: PROCEDURE [C:CHARACTER] RETURNS [CHARACTER]

BEGIN RETURN
[iF C II'< ['A .. 'Z] THEN c-'A+'a ELSE C]
END;

i:INTEGER ~ 0; - - current character
00

ENDLOOP;
END:

IF i=x.length AND i=y.length THEN RETURN [equal];
IF i=x.length Tf-!EN RE""U'iN [prefix];
IF i=y.length T"'EN RETL,;RN [extension):
IF lowerCase[x[i]] < lowerCase[y[i]] THEN RETUR~; [less];
IF lowerCase[x[i]] > 10werCase[y[i]] THEN RETURN [greater];
~ i +1

Copy String: PROCEDURE [S:STRING] RETURNS [new: STRING]
BEGiN i:WORD:
new ~ AllocateHeapString[s.length]:
new.length ... s.length;
FOR i Ir-< [O .. s.length) DO new[i] ~. sri] ENDLOOP:
RETURN:
END:

Sort: PROCEDURE

BEGIN

[N:INTEGER.
LessThan : PROCEDURE [INTEGER.INTEGER] RETURNS [BOOLEAN],
Swap: PROCEDURE [INTEGER.INTEGF.R]

] =
-- This is just your basic TreeSort. except that it never actually touches the array in
question but uses the procedures LessThan and Swap. Furthermore, by Mesa's convention,
Sort is obliged to work on O-origin arrays. This is coped with by subtracting (an italic) 1
from each actual param'eter of LessThan and Swap.

siftUp: PROCEDURE [Iow.high: INTEGER]
BEGIN k,son: INTEGER;
k~low:
DO

ENDLOOP;
RETURN
END;

;I:,TEGER;

IF 2~k>high THEN EXIT:
IF 2'k+1 >high OR LessThan[2'k+1-1,2'k-1] THEN son~2'k ELSE son+-2'k+1;
IF LessThan[son -l.k -1] THEN EXIT:
Swap[son -1 ,k -1];
k+-son;

FOR i DECREASING IN [1..N/2] DO siftUpP,N] ENDLOOP:
FOR i f)ECREASING IN [1..N) DO

Swap[1-1,i+1-1]:
siftUp[1 ,i];

ENDLOOP;
RETURN
END;

24

gt: PROCEDURE rX.y: UNSPECIFIED] RETGRNS [BOOLEAN] =
BEGIN RETURN[USC[X.y] > 0] END; -- USC is an UnSigned Compare primitive

ge: PROCEDURE [x.y: UNSPECIF!ED] RETURNS ['300LEAN]

BEGIN RETURt{USC[X.y] >" 0] END;

It: PROCEDURE [x.y: UNSPECIriED] RETURNS [BOOLEAN]

BEGIN RETURN[USC[X.y] (0] END;

Ie: PROCEDGRE [x.y: UNSPECIFIED] RETURNS [BOOLEAN]

BEGIN RETURN[USC[X.y] (= 0] END;

END.

UtilitiesDefs: DEFINITIONS "

BEGIN

CompareAnswer: TYPE = {less. prefix. equal. extension. greater};

CompareString: PROCEDURE [STR'NG STRING] RETURNS [CompareAnswer];

CopyString: PROCEDURE [smr,G] RETURNS [STRING];

LowerCase: PROCEDU"E [CHAR.~CTER] RETURNS [CHARACTER];

Sort : PUBLIC PROCEDURE

[N: INTEGER.

LessThan : PROCEDURE [ltHEGER.INTEGeR] RETURNS [BOOLEAN].

Swap: PROCEDURE [INTEGER.INTEGER]

];
gt: PROCEDURE [UNSPECIFIED UNSPECIFIED] RETURNS [BOOLEAN];

ge: PROCEDU"E [UNSPECIFIED. UNSPECIFIED] RETURNS [BOOLEAN];

It: PROCEDURE [UNSPECIFIED. UNSPECIFIED] RETURNS [BOOLEAN];

Ie: PROCEDURE [UNSPECIFIED. UNSPECIFIED] RETURNS [BOOLEAN];

END.

25

DIRECTORY loDefs: FROM "loDefs";
DEFINITIONS FROM loDefs;

LineStorageA: PROGRAM [getc: PROCEDURE RETURNS [CI-:ARACTER). endofc: PROCEDURE RETURNS [BOOLEAN]] =
-- simplied intitia/ization

BEGIN

-- Storage, Constants & Types, same as LineStorage

-- Procedures. same as LineStorage. omitting AssertChar

-- Initialization code

-- Read in Text. discarding extra lines and blanks

END.

state: {lnitiaI.LineEnded,lnWord,WordEnded} +- Initial;
fcl +- 0;
-- The subarray Text[O .. nText) consists of the characters read so far, execpt each sequence of SP's
is replaced by a single SP and any sequence of Sp·s and CR's is replaced by a CR. The variable
state tells what kind of input sequence we're in. Only when a character other than SP or CR is read
do we store an SP or CR in Text. The first character of the current line is Text[fcl].

UNTIL endofc[] DO

c ... getc[]
SELECT c FROM

CR =) IF state#lnitial THEN state +- LineEnded;
SP =) IF state=lnWord THEN state'" Word Ended;
ENDCASE =)

ENDLOOP:

PutText[union[ptr[fcl]]];

BEGIN

SELECT state FROM

Initial =) PutLine[nText];
LineEnded =) BEGIN PutText[union[ptr[fcl)]];

fel .. nText:
PutLine[nText]:
END:

WordEnded =) BWN PutText[union[char[SP]]]:

ENDCASE;

PutText[union[char[c]]];
state to InWord;
END;

PutLine[nText];
END;

26

Example 2. Dictionaries

Let us design a module to associate integer values with names -- a dictionary or symbol

table. In doing so let us try to make it as general and as impervious to its environment as

possible. In other words, let us assume that it will be used for many years in many different

contexts and that we won't be around to answer questions, fix bugs, or add enhancements.

The idea is that, even though we are designing a piece of software, we want it to have the

social characteristics of a hardware device: it performs reliably in any reasonable

environment and 99% of its users never look inside the cabinet. Thus we want to protect

the module from the programming mistakes of its clients and provide a simple, yet complete

interface. I shall also illustrate how to provide mechanisms for alternating between

different implementations and adjusting the type of things a dictionary stores.

Choosing a primitive set

The basic abstraction we have in mind is a memory that has strings for addresses. Thus we

have the primitives

Fetch: PROCEDURE [STRING] RETURNS [INTEGER]

Store: PROCEDURE [STRING,INTEGER]

Fetch returns the last value stored for a string or -1 if there is none. I considered having

Fetch generate a signal when there was no value stored. but decided that signals were a little

drastic and that many applications can get by without using -1 as a legitimate value.

Are these primitives enough? The answer to this question depends in complicated ways

upon how we are going to use the module and who is asking for the enhancement, but here

is a completely general argument that says these are not enough: Suppose one wants to write

a program to save a dictionary on the disk or send it over some telephone lines, and later

restore it. He cannot save it because there is no way for him to tell when he has fetched all

the previously stored values. If dictionaries could be arbitrary partial functions, including

ones with infinite domains, there might be intrinsic problems about saving them, but we

know that a dictionary, can contain only a finite amount of information. This problem

could, in principle, be solved if a primitive to cOllnt the number of non -1 values was

provided: one could then write a program which enumerated and tested all possible strings

and stopped after the right number had been found. That is not very pleasant; let us have

another primitive

Generate: PROCEDuRE[proc: PROCEDURE[STRING, INTEGER] RETURNS [INTEGER]]

27

which applies proc to each of the dictionary's non -1 entries (in alphabetical order), and

resets the value to whatever proc returns.

I spent an embarrassingly long time deciding what Generate should do. At first the plan

was to have Generate just apply proc to the strings, letting proc use Fetch and Store to

fiddle with the dictionary. This raised nasty conceptual problems: If proc deletes an entry

(by storing -1) should that entry be generated? If the entry has already been generated,

there is no question, but what if it is alphabetically later than the entry with which proc is

being called? If proc adds an item, should the item be generated? There seem to be two

extreme answers, with variations in between: (1) Let the bits fall where they may; i.e. just

implement Generate, and see what happens. I probably would have done this if I were in a

hurry. (2) Make a copy to generate from so that changes to the dictionary do not effect the

set of strings generated. This seemed rather expensive considering how often it will matter.

It seems that whatever one chooses there is going to be confusion. Finally, I decided to

prohibit all changes to the dictionary during a generation except to the entry being

generated, because in all the examples I could think of that was the only thing I ever wanted

to change anyway.

Incidentally, were it not for Mesa's'compile time checking of parameter types I would never

choose this kind of interface between Generate and proc. It would be too dangerous,

because the writer of proc might forget to return the same value he receives in those cases

he didn't care about. Then random values would get stored into the dictionary. Fortunately,

Mesa checks that proc has the right type and that every return from it gives some integer

val ue. This will serve to remind the forgetful. (A really nice designer would provide an

alternate version of Generate for the common case in which no alteration occurs.)

These primitives are complete in the weak sense that we can read and write the abstract state

of a dictionary with them. This ability is shown by the following code to copy the contents

of 01 into 02.

Forget2: PROCEDURE [S:STRING, x: INTEGER] RETURNS [INTEGER] =

BEGIN RETURN [-1] END;

Storeln2: PROCEDURE [S:STRING, x: INTEGER] RETURNS [INTEGER] =
BEGIN 02.Store[s,x]; RETURN [x] END;

02.Generate[Forget2];

01.Generate[Storeln2];

(Notice that Fetch is not needed anymore, except for efficiency.)

Now we know that any reasonable operation on the state of a dictionary can be

28

programmed using these primitives by the following brute force method:

(1) Read out the abstract state.

(2) Fiddle with it any way you like.

(3) Write the abstract state back.

Example of reasonable operations are: Count the entries, merge two dictionaries, and reset a

dictionary to empty. These are easily programmed in terms of the primitives.

Unreasonable operations are: tell which entry was stored last, create a duplicate entry, and

count available space for new entries. These are unreasonable because they have no meaning

in terms of the abstract state which, in this case, is a function from strings to integers.

Adding any of these operations would change the nature of the abstract state space.

The abstract state that a module implements is a rather slippery thing. In this case it is easy

to see, but in more realistic examples it is not. Here is a general rule: The concrete state is

the state of the storage inside the module when it is not running, i.e. the storage in its global

frame. Abstract states are represented by concrete states. Two concrete states represent the

same abstract state if there is no way to distinguish them from outside the module .

.
Here is a typical discussion about abstract dictionary states:

Client: I want a primitive to tell me the last thing I stored.

Programmer: That's not part of the abstract state.

C: Yes it is.

P: O.K., wise guy, write some code which behaves differently depending upon which

of "Store["a", 1]; Store["b",2]" or "Store["b",2]; Store["a", 1]" it follows.

C: That's exactly my point: I can't.

P: That's exactly my point: The abstract state that exists after those two sequences is

the same, so the information you want is not part of the abstract state. Providing

the primitive you want involves redesigning the abstraction, and that requires a

meeting of the board.

The basic design -- DictionaryO

Our strategy is to keep all the entries in an array Pair, ordered alphabetically. We use the

system's free space package to get space for both the arrays and the strings that go into them.

The representation mapping describes how the abstract state, a function, is represented by

the concrete state which is comprised of Pair, nPair, Psize, and indisposed. The second two

variables are irrelevant to the representation mapping.

29

The module invariant describes things about the concrete state that we hope are always true

when the module is entered. As we change things it may become false, but we will make it

true before we exit the module again. It is a good idea to make the invariant more precise

by writing it as a procedure, Check, which causes an error if the invariant is not true. This

is valuable, not only for debugging but also because it forces one to be more precise in

formulating the invariant. Unfortunately, part (c) of the invariant is hard to captlJre in the

check procedure because it asserts something about other modules and other instances of this

module. The check that the keys are in strictly increasing order guarantees that no sharing

occurs in this instance, but there seems to be no way to check elsewhere.

The heart of this module is the procedure Lookup which performs a binary search to find

an entry with a given string. If it fails to find it, it returns the index of where it should go

if we want to insert it.

Fetch and Forget are straight-forward. Notice that we can return the string to free space

because the module invariant assures us that no one else points to it.

Store is complicated because we must occasionally expand the array Pair. Notice that we

copy the string to assure that the module invariant (c) remains true.

Generate sets indisposed to TRUE upon entry, FALSE upon exit. This prevents re-entry to

the module via Store or Generate. This policy eliminates many problems, some of which

were discussed above.

What should we do if an entry is invoked when the module is indisposed? It is clearly a

bug. but the answer depends upon whether the programmer who commited the bug is sitting

in front of the screen. We shall temporize by signalling Dictionarylndisposed and

continuing as best we can. During testing this signal can invoke a debugger. When the

system containing this module is in service all one can do is log some information and try

to keep going. For example, Store just returns if it is running in Peoria.

Speaking of signals, what if proc causes a premature termination of Generate by an

UNWIND signal? If the UNWIND causes the end of the world we don't care, but if we ever

want to use this module again we had better reset indisposed, thus the ENABLE clause.

Notice that Generate does not let proc see the real string, on the off chance a perverse proc

might alter it.

Given all this hassle why not make Pair and nPair public and forget about the Generate

procedure? My main reason for not doing this is my fear that the client will someday alter

the array and cause the module to fail in some mysterious way. For example, if the array

becomes unordered the binary search in Lookup can fail. This worry could be overcome if

30

Mesa allowed us to grant read-only access to a module's storage. There are still reasons for

hiding the storage from even readers, however. Suppose after many months of the module's

use we change the strategy of keeping the array ordered, and decide to use linear searches.

How do we know that there are not programs out there which depend upon the ordering?

We don't, and we had better not change anything. By keeping the storage entirely private we

might be able to repeal, in a small way, a cardinal rule of programming: If it works don't

change it!

The program DictionaryClientO exercises this module in various ways. The procedure

Murphy reflects some of the problems alluded to above.

My original hope was to conclude the discussion of this module with an informal proof that

the module maintains its invariant; i.e. that the procedure Check can never cause an error.

Unfortunately, there are so many ways that the invariant can fail to be true, that I gave up.

Here is how I started:

The general idea is to assume that the invariant is true upon every entry (except the first) .

and prove that it is true upon every exit. Assuming that all the storage which the invariant

depends upon is private to the module, this proves that the invariant is, indeed, true upon

every entrance to the module. Thus the first step is to enumerate all the entries and exits;

there are more than you think.

Entries:

Exits

1. The beginning of the module, where indisposed is initialized, when

DictionaryClientO said NEW[DictionaryO].

2. At the Initialization comment, when DictionaryClientO said START Dict.

3. The beginnings of Fetch, Generate, and Store.

4. The return from proc, in Generate.

5. The catch phrase in Generate.

6. The returns from F reeHeapStr i ng, AppendStr i ng, CompareString,

All oca teHeapNode, F reeHe apNode, and CopyString.

7. The returns from signals of Dictionarylndisposed.

1. At the initialization comment, after entry 1.

2. At the very end, after entry 2.

3. The returns from Fetch, Generate, and Store.

4. The call of proc in Generate.

5. Leaving the catch phrase in Generate.

6. The calls on FreeHeapString, AppendStr i ng, CompareString,

31

A11ocateHeapNode, FreeHeapNode, and CopyString.

7. Signals of Dictionarylndisposed.

Right from the beginning there is trouble: What happens if someone calls Store before

performing the START operation (not to mention Bind!)? It might be in bad taste, but there

is nothing to prevent it. In Dictionary1 I shall expand the role of indisposed to detect this

problem.

I would like to leave out categories 6 and 7 by arguing that those things can be regarded as

atomic actions, and that every call is foHowed by a return at the same spot. However,

because of a possible UNWIND there is no guarantee of this. For example, suppose the call of

CopyString in Store results in an UNWIND. Then the assignments to Pair[place] and nPair

will not happen and the effect wiH be to duplicate one entry while deleting another. Thus

there will be two pointers to one string, and another wiH be lost. 1 don't know whether

CopyString can cause an UNWIND or not. If it or any of the procedures it calls performs

any signal whatsoever, the catcher of that signa\' who could be a caller of Store, can cause

an UNWIND to happen. Even if I inspect the code for CopyString and all its subordinates

and discover none of them perform signals today there is no guarantee that it will be true

tomorrow. If I were being really careful I would put a catch phrase in Store.

It should be emphasized that these difficulties are minor compared to those one finds in

most programming languages. Most languages offer no satisfactory way to keep a module's

storage private so that even contemplating such a proof is impossible.

Creating multiple dictionaries -- Dictionary1

Every time we say NEW[DictionaryO] we get a new dictionary, but if we are really going to

exploit this feature we should change the module a little.

First, we may want to be able to get rid of a dictionary. We need an entry Finalize which

returns the storage we allocated from the heap. While we are at it we might as well provide

an initialization procedure so that a module can be reset easily. The role of indisposed is

expanded to cover the case when an instance cannot be entered because it has not been

initialized.

As a further enhancement we add a procedure, Extend, which adds one dictionary to

another. This operation could be accomplished from outside the module by

StoreSink: PROCEDURE[S:STRING,X:INTEGER] RETURNS[INTEGER]
BEGIN sink.Store[s,x]; RETURN[X] END;

source. Generate[StoreSink]

32

For reasons of efficiency, however, we shall include a primitive in the module. Specifically

sink.Extend[source]

will accomplish the same thing, but faster.

Extend is programmed to grab the entries directly out of source's array, which it refers to

as source.Pair, and perform a merge with its own array. I was pleasantly surprised to

discover that I could do this. I thought, because the storage of the module was private. that

one instance of a module could not access the storage of another, but that is not the case.

Apparently the protection of storage is based upon the entirely static question of where the

code lives. The code in Dictionary1 can access the storage of any instance of the Dictionary1

module if it has its frame pointer.

Notice that I was careful to copy the strings coming out of source so as to preserve the

non-sharing property.

DictionaryClient1 shows how this module can be used.

33

Multiple dictionaries via private records -- Dictionary2

There is another method to provide multiple dictionaries that does not involve multiple

instances of modules: write a module that works on records which contain just the

information needed to specify an instance, namely Pair, nPair, Psize, and Indisposed. The

various procedures will have to be changed to take pointers to the records as parameters. By

using OPEN we avoid mentioning the dictionary parameter repeatediy, except in Extend

where I chose to use the variable sink. Is this version of Extend easier to read?

DictionaryClient2 shows how this module is used.

Even though the storage resides in the client's domain he cannot access its contents because

of the PRIVI,TE attribute in Dictionary's declaration. Thus the security of the module is not

lessened very much by usi ng records rather than instances.

This method will use less space per dictionary. Every time we create an instance of

Dictionary1 a certain amount of invisible space is used: about ten words of frame overhead

plus one word for each external procedure referenced (6, by my count). Since there is only

one instance of Dictionary2 space is saved. In this application, the amount of space taken

by a dictionary's data is large enO,ugh that one will not notice the extra 16 words, but it is

probably better to use this method for smaller objects.

Multiple implementations -- Distributor

Since we have designed such a simple interface for dictionaries it is easy to imagine

someone else writing a replacement. (Is that why we hardly ever make simple interfaces in

real life?) Suppose it is called Dictionary1 a. It is simple to switch over: just change the

"Dictionary1" to "Dictionary1 a" in the DIRECTORY section of a client who wants to use the

new version.

Suppose we want to be able to use both versions simultaneously, and in most contexts be

ignorant as well as indifferent ahout which one we have. This may sound rather strange, but

there are real life examples of this sort of thing, namely streams. Whether a particular

output stream is implemented by storing characters on a file, displaying them, or simply

discarding them is usually of no concern to the programmer. To achieve this variability of

implementation I used a record of procedure values, Dictionary, to play the role of a frame,

as shown in Distributor. The client, DistributorClient, calls InitializeDictionary with a

number indicating which implementation it wants. Initia!izeDictionary creates an instance of

the appropriate kind of module and snatches its procedure entries away, putting them into

the record. I was rather surprised that this worked; it was conceivable that Mesa wouldn't

slipport the creation of free floating procedure values in this way.

34

The use of this intermediary seems required. This is because a frame pointer variable can

be tied to only one implementation, whereas we can stuff any procedures we like into a

record.

This arrangement seems to have nice "need-to-know" properties. The implementations,

Dictionary1 and Dictionary1 a, need not know they are being distributed. The distributor

can be entirely ignorant of how the various implementations work and of how they are

used. The client can distinguish between implementations only if he remembers what

numbers he passed InitializeDictionary or if the implementations behave differently. The

only improvement I could ask is that there be some way to guarantee that the Distributor is

the only module that fills in Dictionary records. As things stand, anyone who can access a

record's fieids can change them as well.

This module would be even simpler if it were not for Extend. First, in order to pass one

dictionary to another we must carry along the frame pointer in each record. Second. it

would be wrong to pass an instance of Dictionary1 a frame pointer for an instance of

Dictionary 1 a, since the former is not competent to fiddle with the latter's data structures.

Therefore we program Extend in Distributor as a two-parameter procedure which does the

right thing. What if Extend couldn't be programmed in terms of the other primitives? The

completeness property discussed above guarantees that. if our backs are to the wall. we can

always translate ane kind of dictionary into the other kind in order to perform a binary

operation on dictionaries with different implementations.

I tried to solve this problem using the implementation style of Dictionary2. The approach I

followed was to declare a variant record type which was either a Dictionary2-type record or

a Dictionary2a-type record. Then Fetch. Generate, and Store as well as Extend had to be

written inside Distributor. and each had to branch on the varianl It was a mess.

Multiple types -- Dictionary3. IntegerShel1 and StringShel1

Dictionaries that can store only integers are not very useful. In any application we would

have to keep an array around to hold the real values and lise the integers as indices.

A better alternative might be to give our client programmer the sources and let him edit in

whatever type he likes.

An intermediate solution is to say that our module will handle anyone-word type the client

likes, since it seems clear we are not depending upon the numerical nature of the items we

are storing. Then he can store pointers to any kind of things he likes.

The quickest way to effect this solution is to change all the INTEGER's in Dictionary1 to

35

UNSPECIFIED. It is not the preferred way, however. because it also turns off the the client's

type checker in all those places where he invokes our module. He thinks that he is always

storing Bletches in his dictionary and hopes he is getting nothing but Bletches. and might

like the type checker to remind him if he tries to store or fetch something else.

We must breach the type system to solve this problem, but there is a better way to do it.

The suggested method involves two independent steps.

First we change Dictionary1 into Dictionary3 by replacing INTEGER with the rather strange

one-word type

Thing: TYPE = REcoRD[a: [0..400B), b: [0 .. 400B)]

which is at the other end of the type semi-lattice from UNSPECIFIED; i.e. it matches nothing

but itself rather than everything. The purpose is to get the compiler to prove that we really

don't depend upon the things in the array being integers. As it turns out the compiler

complains about the -1 that Fetch returns, "'J. we have to amend Initialize to take a

parameter, nullValue, to play the role of -1. After this small change, the compiler accepts

Dictionary3, proving that it does not depend upon the nature of Things.

The property we're trying to establish is that if, from the day of its birth, an instance of

Dictionary3 is fed nothing but Bletches then the instance will emit only Bletches. Since

Thing is a unique type, private to the module we can be sure that it is not getting Things

from anywhere but the intakes explicitly labelled with Thing, namely the parameters of

Initialize and Store and the returned value of proc in Generate.

The second step is to make a shell module like IntegerShel1 whose instances sit between

Dictionary3 and its clients. Its only role is to instantiate the type of the instance. When the

client, ShellClient creates an instance of IntegerShel1 the effect is to create a new instance

of both IntegerShel1 and Dictionary3 and plug the procedures from the latter into the

former. (Again I was surprised that this was· allowed and worked.) By inspection of

IntegerShel1 we see that the only access to the intakes of this newly created instance are

through procedure variables that demand integers in all the places where Dictionary3 expects

Things. Therefore, we are justified in assigning integer types to all the outputs of this

instance of Dictionary3.

As usual Extend requires special treatment. We must declare the Extend in IntegerSheli to

take only frames instantiated from IntegerShel1. This seems like the only way: If we said

Extend could take frames instantiated from Dictionary3 then someone could extend an

integer dictionary with a string dictionary. One the other hand, passing an instance of

IntegerSheli to the Extend entry of an instance of Dictionary3 would have unpleasant

consequences: Extend would reach for the array Pair and get random bits<

36

Because I use "=" initializations of the procedure names in IntegerShell, no one can alter

them. Contrast this with the situation in Distributor where we stuffed the procedures into a

record.

The method we use to do the plugging in IntegerShell is very dangerous because it does not

guard against really gross discrepancies between the procedures, such as in how many

parameters they expect. If someone re-compiles Dictionary3, changing the type of Fetch in

a drastic way, we will never be warned, even when we recompile IntegerShel1. I'm told that

this kind of error will make the Mesa run-time system very unhappy. All we want the type

checker to ignore is the apparent discrepancy between Thing and INTEGER. The method

demonstrated in StringShel1 was suggested by Ed Satterthwaite and is much preferred. The

procedure Gedanken will not compile properly if our assumptions about Dictionary3 are

violated. This check is still not entirely fool-proof, e.g. df.Fetch might return a BOOLEAN

and we wouldn't be warned, but it is still pretty good.

Notice that none of the modules involved has interfaces with UNSPECiFIED types. All the

dirty doings are confined to the shell modules. This seems like a good policy: things are

confused enough at module interfaces. It seems to be an unfortunate historical accident that

type fudging is usually done between modules where the responsibility for it is unclear.

37

DIRECTORY SystemOefs: FRO~' "SystemOefs",
Stri ngOefs: FROIA "Stri ngOefs",
UtilitlesDefs: ,POM "UtilitiesDefs";

DEFINITiOIJS FROM UtilitiesDefs, SystemOefs, StringOefs;
DictionaryO: PROGRAM The basic design
BEGIN
-- Types
Pindex: TYPE = WORD:
R: TYFE = RrCORD [key: STRING, value: INTEGER]:

-- Signals
Dictionarylndisposed: PUBLIC SIGNAL CODE::
UNWIND: EXTERNAL S!GNAL;

-- Storage
indisposed: BOOLEAN <- FALSE:
nPair: Pindex <- 0;
Pair: DESCR,PTOR FOR ARR~Y OF R;
Psize: IfJTEGER <- 10; -- just initial value, see Store

The module invariant:
(a) 0< =nPair< =Psize

-- (b) Pair[O .. nPair) is alphabetically sorted by its keys.
-- (c) Each string !11 Pair is not shared with anyone else.

-- The representation: ThiS mOdule represents a function from STR',",GS to IIHFGERS. The non -1 values are given
by the elements of Pair[O.,nPair). The function is changed by Store and Generate. The function is sensed by
Fetch and Generate.

- - Procedures

Check: PUBliC PROCEDURE =
Bt:G!N i:WORD;
,r nPair NOT .N [O .. Psize] THEN ERROR:
FOR i ," [O .. nPair-1) DO

Sl:lfCT CompareString[Pair[i].key. Pair[i+1].key] FROM
IN [equal..greater] => ERROR;
E,'JDCASE;

ENDLOOP;
FOR i iN [O .. nP3.ir) DO IF Pair[i].value -1 THE~ ERROR ENDLOOP;
END;

Fetch: PUBLIC PROC[[)UF,E [s: STRING] RETURNS [INTEGER]
-- returns the value of the function at s
Si':GIN i:Pindex: t: BOOLEAN:
[t, iJ f- LookUp[s l
IF t THEN RETURN [Pair[i].value] ELSE RETURN [~1];
END;

Forget: PROCmU'-1E [i:Pindex] =
-- removes the entry
BrO'N i: Pindex;
F reeHe apS t r i n g[Pair[i].key];
Fc'r~ J IN [i .. nPair-1) DO Pair[i] f- Pair[i+ 1] ENDLOOP;
nPair f- nPair -1:
END:

Generate: PUGIIC PROCEDURe [proc:mOCEDURE! ST'-1iNG, "'TEGF'R] RETUF1NS [INTEGER]] =
-- applies proc to each element. in alphabetical order, resetting the item entry.
G[GI~J

i:Pindex:
temp STRING = [256]
!i indisposed THt:N GEGIIJ SIGNAL Dictionarylndisposed: RETURN END;
Indisposed f- TRUF;

llrUIN rNAiJlX UNWIND = > indisposed'" FALSE;
i ... 0;
WHILE i < nPair DO

38

FOND

temp.length <- 0: AppendStrin!][temp,Pair[ilkey]:
Pair[i].value ... proc[temp, Pair[i].value]:
IF Pair[i],value=-1 lHEN Forget[iJ -- decrements nPair
ELSE I <- i+1;
ENDLOOP:

indisposed <- FALSE:
END;

LookUp: P'iOCE:)UelE [s STRI"iG) P"TURNS [BOOLEAN, Pindex]
8rC;tJ i::r;TcCff~: lower,upper,m: Pindex:
lower<-O: upper+-nPair-1:

Pair[O .. lower),key are a/l less than S
Pair(upper"nPair).key are all greater than s.
lower (= upper+ 1
The Interval [Iower"upper] decreases with each iteration.

UNTiL lower=upper+ 1 DO
m<-(lower+upper)/2: -- lower(=m(=upper
SEI EC'" CompareString[s, Pair[m].key] FROM

equal => RETU~N [:RUE, m]:

ENDLOOP;

less, prefix = > upper +- m-1:
extension, greater = > lower <- m+ 1:
ENOCASE:

Thus s is not In the interval Pair[O .. nPair),
f1F:uRN [cALEE, lower]: -- lower is the first element greater than s
END;

Store: PUBLIC PROCeDURE [s: SmiNG, x: INTEGER] =
BEGiN place, j: Pindex: t: BOOLEAN;
-- makes the function at, S Ilave value x
- - remove entry if x is -1
newPair: DESCRiPTCR FOel ARRAY OF R:
I" indisposed THeN BeGIN SIGi'AL Dictionarylndisposed: RETURN ~ND;
[I. place) .. LookUp[s]:
IF t THeN BEGIN IF X = -1 THEN Forget[place] ELSe Pair[piace],value .. x END
ELSE !F x#-1 THEI,

END;

BEGiN
IF nPair=Psize THEN

BEGIN
PSlze ,. IF Psize<1000 'TH['N 2*Psize ELEE PsizQ+1000:
newPair +-
orSCF';,DTCR [AllocateHeapfJode[SIZE[Rl*Psize). Psize]:
FOR J !" [O"nPair) DO newPair[j) .. Pair[J] ENDLOOP;
F reeHeapNode[sASE[Pair]];
Pair <- newPair;
END:

FOR j OECR"J,S!~!G IN [place"nPair) DO Pair[j+ 1] +- Pair[j] ENDLOOP;
Pair[place]" R[CopyString[s], x];
nPair .. nPair + 1:
END;

Initialization
Pair e DESCRIPTOR [AllocateHeapNode[Slzr[Rl*Psize). Psize):

-- we have to do this here because All oc a teHe apNode is unbound during the initialization above,
END,

39

DIRECTORY 10De1's: FROM "loDefs",
StringDefs: FROM "StringDefs",
UtilitiesDpfs: FROM "UtilitiesDefs",
DklionaryO: FROt" "DietionaryO";

DEFINITiON", Fj"iOM IoDefs,StringDefs,
UtilitiesDefs

DictionaryClientO: FROGRAM This module drives the Dictionary
BEGIN

-- Storage & Constants & Signals
Diet: "O;:Q,-R -0 rP.f.M::rDietionaryO];
Numbers: I,RRAY [0 .. 10] OF STRING =
r"zero" "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"];
i: !t'>JTEGER:

UNWIND: [XTERNAL SIGNAL;

_ .. Procedures
Murphy: PROerDU'1[r s: STRI',G, x: ItJTEGER] RCTt.;:i';S [INTEGER]

,vha! an unpleasant client could do
5rG':, OPI-" Diet:
Wri teString[s];
WriteCtlar[SPl;
1'- EqualStrillg[s, "ten"] mEN SIGt'AI. UNWIND;
iF F etch I s 1 t,~C:::J 2 = 0 THEN RETURN [-1 J;
8rO] ... 'z: -_. mess up string
RETURN [x]
END:

PrintPair: PROCrOUF,E: [s: STRING, x: IN-:-EGER] RETUG.'i3 [INTEGER] =
8[GIN OPr''' Diet:

-- Code

WriteString[s]:
~JriteStr'ing[" = "];
Wr i teDee i!Tlo lex]:
Wri teChal'[SP];
RFTURN [x] -- keep going
END:

-- create and bind the dictionary module
Diet .. ww DietionaryO;-- create spaee
13;"0 Diet; -- bind its externals (like AlloeateHeapNode)
START Diet: -- intia/ize it
FlEGIN OPEl, Diet;

FOR i IN [0 .. 10J DO Store[Numbers[i],i] ENDLOOP;

GeneratefPrintPair 1: W r iteC h a r[CR];
-- should print "eight = 8 five = 5 four = 4 nine
= 3 two = 2 zero = 0 "

9 one 1 seven 7 six

Store["one", -1]: Store["two", -1]: Storer"three", -1]; Store["four", -1]: Store["five", -1];

Generate[PrintPair l W r i teC h a r[CR]:
-- should print "eight = 8 nine ~ 9 seven

BEGIN

Gonerate[Murphy ! UNWIND = > GOTO Stop];
EXITS

7 six 6 ten 10 zero 0"

Stop => WriteChal'[CR] -- em()lges here after Murphy["ten",10]
END;

-- should print "eight = 8 nine = 9 seven" 7 six = 6 ten ~ 10"

Generate[PrintPair1; Wri teChar[CR]:
-- should print "nine ~ 9 seven = 7 ten = 10 zero = 0"
[NO

[Nfl,

40

6 ten 10 three

DIRECTORY SystemOefs: FROM "SystemOefs",
StringDefs: FRO~,~ "StringDefs",
Utilit:esDefs: iROM "UtilitiesDefs";

D[FINii'ONS FRO!.'. UtiiiliesDets. SystelTlDefs. StringDefs:
Dictionary 1: PROGRAM = --A slight alteration of DictionaryO to support multiple instances
m:'CiN

-- Types (same as DictionaryO)
Pinde)(: T"'P~- ::: \\tORu;

R: ",fT = '·:FCORD [key: STRii··,C. value: INTEGER]:

-- Signals (same as DictionaryO)
DicllofldrylndlspClsed' PUBUC SIGNAL COOt:;

Uf'JV\/lf\JD: r ,\:ERt~AL S:ONJi.J;

-- Storage i same as DictionaryO)
In(JisposeJ: r~OGLEAf~ to- TRUE;

nPair: Pindex:
Pair: D::::SC~~!PT()F{ FOR ARRAY OF R:
Psize: I"T[GER:

The module invariant: if -indisposed
iaj D < =nPair< = Psile

- - to} Pair[O .. nPair) is 21phabetically sorted by its key components.
-- (c) Each strlllg in Pair IS not shared witil anyone eise.

-- The representation: An in:,!arJce of tillS rnocJule represents a funcllon from STRI"'GS to I'HEGER3 The non -1
values arc glvcn by the elcments of Pair[O .. nPair). The function IS changed by Store and Generate. The
functIOn is sensed by Felch and Generate.

- - Procedures

Check: PIJBUC D'10C!',)URE =
BFGii'~ i;\'/ORO:

If indisposed THEN RE""JRN: added
:~ nPair ~~("YT :'0 r O .. Psize J THF.:N ERROR:

Fon I I', [O.nPair-1) DO

SEl.ECT CompareStling[Pair[ilkey. Pair[i+ 1lkey] PROM

Ir-i [equal..greater] =) ERROR:

Er-iDCI,SE;

ENDLOOP;

FOR i IN [O .. nPair) DO IF Pair[i].value -1 THEN mROR ENDLOOP;

END;

Extend: r\X,UC P",OCEDUf1E [source: POiNTER TO FRlW,[[Dictionary 1]]
[iCCIN

nPairBound: Pindex = nPair + source.nPair;
newPsize' Pindex = nPairBound + nPairBound/4;
n~J\<'IPalr: J~~SCqlF'-TCR FOR ARRAY OF R:
i. ~;i, l1i: Pilldex <- 0:
:~ inciisposed OR source.tndisposed THrN BFON SI(i!'U~L Dictionaryindispcsed: RETURN END;

newPalr '" All ocateHeafl~JoderSiTrRrnewPsiLel newPsize]
on -- Invariant: Pair[O .. i) and source.PairrO .. si) have been merged into newPair[O .. ni)

It i=nPair TII[r-i GOT() FlushSource;
si=source.nPair THeN GOTO FlushSink:

s' LECT CompareString[Pair[i lkey, source .Pair[si].key FROM

equal =)

BEGIN -- extensioll takes precedence
newPallTni] <- RfP2ir[ilkey. soul"ce.Pair[silvalue]: -- reuse name
si .. si+1;
i .. i+1;
eND;

less. prefix =)
8EGIN

newPairf ni] <- Pnir[il;
i +- i+ 1 ;
[ND:

extension, greater = >

41

BEGiN

newPair[ni] <- R[CopyString[source.Pair[si].key 1 source.Pair[si].value];
si .. Si+1;
END;

ENDCASE;
ni .. ni+1;

REPEAT
FlushSink : >

FOR i IN [i .. nPair) DO
newPair[ni] ... Pair[i];
ni ... ni + 1:
ENDLOOP;

FlushSource = >
FOR si IN [si .. source.nPair) DO

ENDLOOP:

newPalr[ni] ... R[CopySlring[source.Pair[si].key]. source.Pair[si].value]:
ni .. ni + 1:
ENDLOOP;

F r e e He ap No d e[BAsE[Pair]];
Pair .. new Pair:
nPair .. ni;
Psize ... newPsize;
END;

Fetch: PUBLIC PROCEDLI"~ [s: STRING J RETURNS [INTEGER]
-- returns the value of the function at s
B:::C," i:Pindex: I: BOOLEAN:
IF indisposed THEN BEGIN S!G'<AL Dictionarylndisposed RETURN [-1] END; --added
[t. IJ <- LookUp[s]:
Ie t THEN RETURN [Pair[i].value] ELSE RETURN [-1];
END;

Finalize: PUBLIC PROCEDURE
-- prepare to die
BEGIN i: Pindex:
IF indisposed THEN BEGIN SIGNAL Dictionarylndisposed: RETURN END;
FOR i I~~ [O .. nPair) DO FreeHeapString[Pair[i].key] ENDLOOP;
Free He ap N ode[BPSE[Pair]];
indisposed'" TRUE:
RETURN:
END:

Forget same as DictionaryO
Generate same as DictionaryO

Initialize: PUBLIC PROCEDURE =
BEGIN
IF -indisposed THEN Finalize[];
Psize <- 10:
Pair ~ DESCRIPTOR [All oc a teHeapNode[sIZE[R]*Psize]. Psize];
nPair ... 0;
indisposed'" FALSE;
RETURr,
END;

LookUp same as DictionaryO
Store same as DictionaryO

-- Initialization
Inilialize[];
END.

42

DictionaryClient 1: PROGRAM ::

DIRECTORY IoDefs: FROM "IoDefs",
UtilitiesDefs: FROM "UtilitiesDefs",
Dictionary 1: FROM "Dictionaryt";

DEFINITIONS FROM IoDefs, UtilitiesDefs;

This module drives multiple instances of Dictionary1
BEGIN
-- Storage & Constants

Dict1, Dict2, Dict3: POINTER TO FRAME[Dictionary1];
i : INTEGER;
Numbers: ARRAY [0 .. 10] OF STRING ::
["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"];

-- Procedures

PrintPair: PROCEDURE [s: STRING, x: INTEGER] RETURNS [INTEGER] ::

-- Code

BEGIN
WriteString[s];
WriteString[" :: "];
Wr; teDec ;ma lex]:
WriteChar[SP]:
RETURN [x] -- keep going
END:

Dict1 ... NEW Dictionary1; BIND Dict1: START Diet1;
Dict2 ... NEW Dictionary1; BIND Dict2; START Dict2;
Dict3 ... NEW Dictionary1; BIND Dict3; START Dict3;

FOR i IN [0,.7] DO Dict1.Store[Numbers[i],i] ENDLOOP;
FOR i IN [4 .. 10] DO Dict2.Store[Numbers[i],-i] ENDLOOP;

Dict3.Extend[Dict1]; Dict3.Extend[Diet2];

Dict1.Generate[PrintPair]: Wr i teChar[CR];
-- Should display "five = 5 four = 4 one = 1 seven = 7 six:: 6 three = 3 two:: 2 zero:: 0"

Dict2.Generate[PrintPairl: Wr; teChar[CR];
-- Should display "eight = -8 five:: -5 four:: -4 nine:: -9 seven = -7 six:: -6 ten:: -10"

Dict3.Generate[PrintPair]: W r ; te C h a r[C R];
-- Should display "eight:: -8 five:: -5 four:: -4 nine:: -9 one:: 1 seven:: -7 six:: -6 ten:: -10
three :: 3 two :: 2 zero = 0"

Dict3.Store["three", -1]: Dict3.Store["four", -1]: Dict3.Store["five", -1];

Dict1.Generate[PrintPair]: Wr i teC h are CR];
-- Should display "five = 5 four:: 4 one:: 1 seven:: 7 six:: 6 three = 3 two = 2 zero:: 0"

Dict1.Finalize[];

Dict2,Generate[PrintPair]: Wr iteCh ar[CR];
-- Should display "eight:: -8 five:: -5 four:: -4 nine = -9 seven:: -7 six:: -6 ten = -10"

Dict2.Finalize[];

Dict3.Generate[PrintPair]: Wr iteCh are CR]:
-- Should display "eight:: -8 nine:: -9 one:: 1 seven:: -7 six:: -6 ten:: -10 two = 2 zero:: 0"

Dict3.Finalize[];

END.

43

DIRECTORY SystemDefs: FROM "SystemDefs",
StringDefs: FROM "StringDefs",
UtilitiesDefs: FROM "UtilitiesDefs";

Dictionary2: PROGRAM =
BEGIN

DEFINITIONS FROM UtilitiesDefs. SystemDefs, StringDefs;
Achieving multiple dictionaries through private records

-- Types
Dictionary: PUBLIC TYPE = PRIVATE RECORD[

indisposed: BOOLEAN. -- wish I could initialize this to TRUE
nPair: Pindex.
Pair: DESCRIPTOR FOR ARRAY OF R,
Psize: INTEGER
];

Pindex: TYPE = WORD;
R: TYPE = RECORD [key: STRING, value: INTEGER];

-- Signals
Dictionarylndisposed: PUBLIC SIGNAL = CODE;
UNWIND: EXTERNAL SIGNAL;

-- The module invariant: if a given record, d. is not indisposed
(a) 0< =d.nPair< =d.Psize

-- (b) d.Pair[Oc.d.nPair) is alphabetically sorted by its key components.
-- (c) Each string in d.Pair is not shared with anyone else.

-- The representation: A Dictionary record represents a function from STRINGS to INTEGERS. The non -1 values are
given by the elements of d.Pair[O .. d.nPair). The function is changed by Store and Generate. The function is
sensed by Fetch and Generate.

-- Procedures

Check: PUBLIC PROCEDURE Ed: Dictionary] =~
BEGIN OPEN d: i:WORD;
-- same as Dictionary1
END:

Extend: PUBLIC PROCEDURE [sink. source: POINTER TO Dictionary] =
-- adds all the entries of source to sink.
BEGIN
nPairBound: Pindex = sink.nPair + source.nPair;
newPsize: Pindex = nPairBound + ·nPairBound/4:
newPair: DESCRIPTOR FOR ARRAY OF R:
isink. isource, inew: Pindex .. 0;
IF source.indisposed OR sink. indisposed THEN BEGIN SICNAL Dictionarylndisposed: RETURN END;
newPair ~ DESCRiPTOR[All ocateHeapNode[sIZE[RJ.newPsize], newPsize):

DO -- Invariant: sink.Pair[O .. isink) and source.Pair[O .. isource) have been merged into newPair[O .. inew)
IF isink=sink.nPair THEN GOTO FlushSource;
IF isource=source.nPair THEN GOTO FlushSink;
SELECT CompareString[sink.Pair[isink].key. source.Pair[isource].key] FROM

equal =>
BEGIN -- extension takes precedence
newPair[inew] .. R[sink.Pair[isink].key, source.Pair[isource].value];

-- reuse name
isource .. isource+ 1;
isink .. isink+ 1;
END;

less,prefix =>
BEGIN
newPair[inew] .. sink.Pair[isink]:
isink .. isink+1;
END;

greater, extension =>
BEGIN
newPair[inew]

.. R[CopyString[source.Pair[isource].key], source.Pair[isource].value];
isource .. isource+ 1;
ENfl;

44

REPEAT

ENDLOOP:

ENDCASE;
inew .. inew+ 1;

FlushSink = >
FOR isink IN [isink .. sink.nPair) DO

newPair[inew] .. sink.Pair[isink];
inew .. inew + 1;
ENDLOOP;

FlushSource = >
FOR isource IN [isource .. source.nPair) DO

newPair[inew]
.. R[CopyString[source.Pair[isource].key]. source.Pair[isource].value];

inew .. inew + 1;
ENDLOOP:

F reeHe a pNode[BASE[sink. Pair]]:
sink1' .. Dictionary[indisposed: FALSE, Pair: newPair, nPair: inew, Psize: newPsize];
END;

Fetch: PUBLIC PROCEDURE Ed: POINTER TO Dictionary. S: STRING] RETURNS [INTEGER] =
BEGIN OPEN d;
-- same as Dictionary1
END;

Finalize: PUBLIC PROCEDURE[d: POINTER TO Dictionary] =
BEGIN OPEN d;
-- same as Dictionary1
END:

Forget: PROCEDURE Ed: POINTER TO Dictionary, i:Pindex] =
BEGIN OPEN d;
-- same as Dictionary1
END:

Generate: PUBLIC PROCEDURE Ed: PO!NTER TO Dictionary, proC:PROCEDURE[STRING. INTEGER] RETURNS [INTEGER]] =
BEGIN OPEN d;
-- same as Dictionary1
END;

Initialize: PUBLIC PROCEDURE[d: POINTER TO Dictionary] =
BEGIN OPEN d:
-- same as Dictionary1
END;

LookUp: PROCEDURE Ed: POINTER TO Dictionary. S: STRING] RETURNS [BOOLEAN, Pindex] =
BEGIN OPEN d;
-- same as Dictionary1
END;

Store: PUBLIC PROCEDURE [d: POINTER TO Dictionary, s: STRING, x: INTEGER] =
BEGIN OPEN d;

END.

-- same as Dictionary1
END;

45

DIRECTORY loDefs: FROM "IoDefs",
SystemDefs: FROM "SystemDefs",
UtilitiesDefs: '-RO'I "UtilitiesDefs",
Dictlonary2: FROM "Dictionary2";

DEFINITIONS FROM IoDefs. SystemDefs.
UtilitiesDefs.Dictionary2 ;

DictionaryClient2: PROGR~.M =
This module drives Dictionary2. creating multiple Dictionaries

BEGiN
-- Storage & Constants
dm: Po:~nE" TO FRt"~E[Dictionary2];
d1.d2: Dictionary: -- create space
Dict 1. Dict2, Dict3: POINTER TO Dictionary;
i : "-TEGER:
Numbers: AHRAY [0 .. 10J OF STRING =
["zero". "one", "two", "three", "four", "five". "six", "seven", "eight", "nine", "ten"];

- - Procedures
PrintPair: ~POCEDURc [s: STRiNG, x: INTEGeR] RETU"NS [INTEGER]

.'- Code

WriteString[s];
vir i teStr i ng[" = "];
Wr i teDec ima lExJ:
WriteCtlar[SP]:
RcTUPI, [x J -- keep going
END;

drn ... ,jew Dictionary2: BIN:J dm: START dm:

EEG:', OPEN dm:
Dict1 ... @dl: Initialize[Dict1]: -- intialize pointers
Dict2 ... @d2: Initialize[Dict2]:
Dict3'" AllocateHeapNode[s:z[[Dictionary]J: Initialize[Dict3J: -- just for variety

FOR ill, [0 .. 7J DO Store[Dict1. Numbers[i].i] n,OLOOP;
FO" i IN [4 .. 10] DO Store[Dict2, Numbers[i].-i] nIOLOOP:

Extend[Dict3, Dictl]: Extend[Dict3, Dict2]:

Generale[Dict1, PrintPairl Wri teChar'[CR]:
-- Should display "five = 5 four = 4 one = 1 seven = 7 six = 6 three = 3 two = 2 zero = 0"

GenerateiOlct2 PrintPalrl: WriteChar[CR]:
-- Should display "eight = -8 five = -5 four = -4 nine -9 seven = -7 six = -6 ten = -10"

Generate[Dict3. PrintPair]: Wn teChar[CR]:
-- Should display "eight 0 -8 five -5 four = -4 nine -9 one = 1 seven = -7 six = -6 ten -10
three = 3 two = 2 zero = 0"

Store[Oict3. "three", -1]: Store[Dict3, "four". -1]: Store[Oict3, "five", -1]:

Generate[Oict1. PrintPalr]: \>Ir i teChar[CR];
-- Should display "five = 5 four = 4 one 1 seven 7 six 6 three 3 two 2 zero 0"

Finalize[Oict 1]:

Generate[Olct2. PrintPair]: \.Jr i teChar[CRJ:
-- Should display "eight = -8 five = -5 four = -4 nine -9 seven -7 six -6 ten -10"

Finalize[Dict2J;

GenerateiOict3. PrintPair]; 'vIr i teChar[CR]:
-- Should display "eight = -8 nine -9 aile 1 seven -7 six -6 ten -10 two 2 zero 0"

Finalize[Oict3]; F reeHeapNode[Oict3]:
FND
END.

46

DIRECTORY SystemDefs: FROM "SystemDefs",
StringDefs: FROM "StringDefs",
UtilitiesDefs: FROM "UtilitiesDefs";

DEFINiTIONS FROM UtilitiesDefs. SystemDefs, StringOefs;
Dictionary3: PROGRAM = -- Illustrates how to prove you're not depending upon the type of Thing
BEGiN
-- Types
Pindex: TYPE = WORD;
R: TYPE = RECORD [key: STRING. value: Thing];
Thing: TYPE = RECORD[a: [0..4008). b: [0 .. 4008)];

-- unique one-word type. matches only self. cannot come from outside this mOdule

-- Signals same as Dictionary1
Dictionarylndisposed: Pt.;BlIC SIGNAL = CODE;
UNWIND: EXTERNAL SIGNAL;

-- Storage
indisposed: BOOLEAN .. TRUE;
nPair: Pindex;
nullValue: Thing;
Pair: DESCRIPTOR FOR ARRAY OF R;
Psize: INTEGER: -- just initial value, see Store

-- The module invariant: if -indisposed
(a) O(=nPair(=Psize

-- (b) Pair[O .. nPair) is alphabetically sorted by its key components.
-- (c) Each string in Pair is not shared with anyone else.

-- The representation: An instance of this module represents a function from STRINGS to Thing. The
non-nullValue values are given by the elements of Pair[O .. nPair). The function is changed by Store. The
function is sensed by Fetch and Generate.

- - Procedures

Check: Pt.;BL!C PROCEDURE =
BEGIN i:WORD:
IF indisposed THEN RETURN;
IF nPair NOT IN [O .. Psize] THEN ERROR;
FOR i IN [0 .. nPair-1) DO

SELECT CompareString[Pair[i].key, Pair[i+ 1].key] FROM
IN [eQual..greater] => ERROR:
ENDCASE;

ENDLOOP;
FOR i IN [O .. nPair) DO

END:

IF Pair[i].value = nullValue THEN ERROR -- nullValue rather than -1
END LOOP;

Extend: PUBLIC PROCEDURE [d: POINTER TO FRAME [Dictionary3]] =
BEGIN -- same as Dictionary1
END;

Fetch: PUBIJC PROCEDURE [s: STRING] RETURNS [Thing] =
-- returns tile value of tile function at s
BEGIN i:Pindex: t: BOOLEAN;
IF indisposed THEN BEGIN SIGNAL Dictionarylndisposed. RETURN [nuIlValue]END;
[t. i] .. LookUp[s]:
IF t THEN RETURN [Pair[i].value] ELSE RETURN [nuIlValue];
END;

-- Finalize: PUBLIC PROCEDURE = same as Dictionary1

-- Forget: PROCEDURE [i:Pindex] = same as Dictionary1

Generate: PUBLIC PROCEDURE [proC:PROCEDURE[STRING. Thing] RETURNS [Thing]] =
-- applies proc to each element , in alphabetical order, resetting the item entry.
BEGIN

4

i:Pindex;
temp: STRING = [256]:
IF indisposed THEN BEGIN SIGNAL Dictionarylndisposed: RETURN END;
indisposed .. TRUE;
BEGIN ENABLE UNWIND =) indisposed .. FALSE;

i .. 0;

END:

WHILE i < nPair DO
temp.length .. 0; AppendStr i ng[temp.Pair[i].key];
Pair[i).value .. proc[temp. Pair[i).value];
IF Pair[i].value=nuIiValue THEN Forget[i] -- decrements nPair
ELSE i .. i+1;
ENDLOOP;

indisposed .. FALSE;
RETURN;
END;

Initialize: PUBLIC PROCEDURE[nv: Thing] =
BEGIN
IF -indisposed THEN Finalize[];
nuliValue <- nv:
Psize .. 10;
Pair ~ DESCRIPTOR [All ocateHeapNode[sIZE[R]"Psize], Psize];
nPair .. 0;
indisposed .. FALSE;
RETURN: .
END;

-- LookUp: PROCEDURE [s: STRING] RETURNS [BOOLEAN, Pindex] : same as Dictionary1

Store: PUBLIC PROCEDURE [S: STRING,. x: Thing] =
BEGiN place, j: Pindex; t: BOOLEAN;

END.

-- makes the function defined at s with value x if x is not null Value
-- remove entry if x is nuliValue
newPair: DESCRIPTOR FOR ARRAY OF R;
IF indisposed THEN BEGIN SIGNAL Dictionarylndisposed; RETURN END;
[t, place] .. LookUp[s];
IF t THEN BEGIN IF X = nuliValue THEN Forget[place] ELSE Pair[place]. value .. x END
ELSE IF x#nuliValue THEN

RETURN:
END;

BEGIN
IF nPair:Psize THEN

BEGIN
Psize .. IF Psize<1000 THEN 2"Psize ELSE Psize+1000;
newPair ..
DESCRIPTOR [All ocateHeapNode[sIZE[R]*Psize], Psize];
FOR j IN [O .. nPair) DO newPair[j] <- Pair[j] ENDLOOP;
F re eHe apNod e[BAsE[Pair]];
Pair .. newPair;
END;

FOR j DECREASING IN [place .. nPair) DO Pair[j+1] .. Pair[j] ENDLOOP;
Pair[place]<- R[CopyString[s], x];
nPair .. nPair + 1;
END;

4

IntegerShell: PROGRAM[nuIiValue: INTEGER] ::
BEGIN
df: POINTER TO FRAME [Dictionary3] :: NCW Dictionary3;

DIRFCTORY Dictionary3: FROM 'Dictionary3",
UtilitiesDefs: FROM "UtilitiesDefs";
DEFINITIONS FRO~' UtilitiesDefs;

Extend: PUBLIC PROCEDURE [d: POINTER TO FRAME [lntegerShell]]
BEGIN
df.Extend[d,df]
END;

Fetch: PUBLIC PROCEDURE [STRING] RETURNS [INTEGER] = COERcE[df.Fetch]:
Finalize: PUBLIC PROCEDURE = COERCE[df.Finalize]:
Generate: PUBLIC PRocmURE[PROCEDURE[STRING INTEGER] RETURNS [INTEGER]] = COERCE[df,Generate];
Initialize: PUBLIC PROCEDURC[iNTEGrR] = COERCEr df.lnitialize]:
Store: PUBLIC PROCEDURE [STRING.lNTEGERJ = COERCE[df.Store];

BIND df; START df;

-- This is a dangerous way to plug in the procedures! See StringShell for a safer way.

Initialize[nullValue]

END.

StringShell: PROGRA~" [nuIiValue: STRING] ::
BEGIN
df: POINTER TO FRAME [Dictionary3] :: NEW Dictionary3;

DIRECTORY Dictionary3: FROM' Dictionary3",
UtilitiesDefs: FROr,1 "UtilitiesDefs";
DEFINITIONS FROM UtilitiesDefs;

Extend: PUBLIC PROCEDURE [d: POINTER TO rRAME [StringShell]]
BEGIN
df,Extend[d.df]
END:

Fetch: PUBLIC PROCfDURE [STRING] R~TURNS [STRING] = COERCE[df.Fetch]:
Finalize: PUBLIC PROCEDUR~ = COERCE[df.Finalize]:
Generate: PUBliC PROCFDURE[PROCEDUR"[STRiNG STRING] RETURNS [STRINGl1 = COrRCE[df.Generate];
Initialize: PUBLIC PROCrDURF[STRING] = COERcr[df.lnitialize];
Store: PUBLIC PROCEDURE [STRING,STRiNG] :: COERCE[df.Store];

Gedanken: PROCEDURE =
-- This is a compile-time experiment to see if Dictionary3 is providing the right sort of procedures.
Tllis procedure is never executed!
BEGIN
uFetch: PUBLIC PROCEDURE [STRING] RETURNS [UNSPECIrIED] = df.Fetch;
uFinalize: PU()lIC PROCEDURE:: df,Finalize:
uGenerate: PUBLIC FROCCDUR[[PROCEDURr:[STRING UNSPECIFIFD] RETURNS [UNSPECIFIED]] = df,Generate;
ulnitialize: PUBLIC PROCEDURf[UNSP[C""rD] = df.lnitialize;
uStore: PUBLIC PROCEDURe [STRING,UNSPECIrIW 1 = df .Store;
END:

BIND df; START df;

Initialize[nuliValue]

END.

4(

DIRECTORY loDefs: FROM "loDefs",
UtilitiesDefs: FROM "UtilitiesDefs",
IntegerShell: Fp.or~ "lntegerShell" ,
StringShell: FROM "StringShell";

DEFINITIONS FROM loDefs, UtilitiesDefs;

SheliClient: PROGRAM =
This module drives Dictionary3 through Intc.~erShell and StringShell

BEGIN
-- Storage & Constants

IntDict:POINTER TO FRAME[lntegerShell];
StrDict1, StrDict2:PO!NTER TO FRAME[StringShell];

i : INTEGER;
Numbers: ARRAY [0 .. 10] OF STRING =
["zero". "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"];
Zahlen: ARRAY [0 .. 10] OF STRING =
["null", "eins", "zwei", "drei", "vier", "funf", "sechs", "sieben", "acht", "neun", "zehn"];

-- Procedures

IntPrint: PROCEDURE [s: STRING, x: INTEGER] RETURNS [INTEGER] =
BEGIN
Wr ite~tr i og[s]; Wr iteStr i og[" = "); Wr iteDecima lex]: WriteChar[SP];
RETURN [x]
END;

Reverse: PROCEDURE [s: STRING, x: STRING] RETURNS [STRING] =
BEGIN
StrDict1.Store[x,CopyString[s]]; -- forgetting to copy was a nasty bug!
RETURN [x] .,
END;

StrPrint: PROCEDURE [s: STRING, x: STRING] RETURNS [STRING] =
BEGIN

-- Code

WriteString[s]; WriteStriog[" = "]; WriteStriog[x]; WriteChar[SP]:
RETURN [x]
END;

IntDict .. NEW IntegerShell[-1]; BIND IntDict: START IntDict;
StrDict1 .. NEW StringShell[NIL]; BIND StrDict1: START StrDict1;
StrDict2 .. NEW StringShell[NIL]; BIND StrDict2; START StrDict2;

FOR i IN [0 .. 10] DO IntDict.Store[Numbers[i],i] ENDLOOP;
FOR i IN [0 .. 10] DO StrDict1.Store[Numbers[i],Zahlen[i]] ENDLOOP;

StrDict2.Extend[StrDict1]; StrDict2.Generate[Reverse];

IntDict.Generate[lntPrint]; WriteChar[CR];
-- Should display" eight = 8 five" 5 four = 4 nine = 9 one" 1 seven" 7 six = 6 ten = 10 three = 3
two = 2 zero = 0"

StrDict1.Generate[StrPrint]; Wr i teChar[CR];
-- Should display "acht = eight drei = three eight" acht eins = one five = funf four" vier funf = five
neun = nine nine = neun null = zero one ;: eins sechs = six seven = sieben sieben = seven Six =
sechs ten = zehn three = drei two = zwei vier = four zehn = ten zero = null zwei = two"

StrDict2.Generate[StrPrint); Wr i teChar[CR];
-- Should display "eight = acht five = funf four = vier nine = neun one = eins seven = sieben six =
sechs ten = zehn three = drei two = zwei zero = null"

StrDict1.Store["vier", Nil]; StrDict 1.Store["four", NIL];
StrDict1.Generate[StrPrint]; W r i teC h are C R]: StrDict 1 .Finalize[];

END:
END,

-- Should display "acht = eight drei = three eight = acht eins " one five = funf funf " five neun = nine
nine " neun null = zero one = eins sechs = six seven = sieben sieben = seven six = sechs ten =
zehn three = drei two = zwei zehn = ten zero = null zwei = two"

S(

Example 3. Compacting storage allocators

Let us design a series of space allocators that rearrange the storage occasionally to make

room for a new array. This exercise is interesting for a number of reasons:

a) It taxes the Mesa type system severely. We must deal with an array containing

variable length, heterogeneous objects. Furthermore, the clients of the allocator wish

to use it for arrays of differing types.

b) As a programming exercise it can involve tricky pointer manipulations. We

would like to use the type system to help us detect programming errors such as the

ubiquitous address/contents confusion.

c) There are some nasty kinds of bugs associated with the use of such packages

which the language might help us discourage. First, as with all free space allocators,

someone might use some space after he has apparently relinquished it. Second,

peculiar to compacting allocators, he can squirrel away a pointer to storage that the

compacter might move.

We shall present a series of allocators, culminating with a version of Larry Tesler's Rack

allocator which tortures the Mesa type system much as its namesakes tortured heretics!

A Simple allocator -- ArrayStoreO

First let us consider a naive, Algol style solution. We shall assume, unrealistically, that the

client wants arrays of integers only. The module ArrayStoreO maintains a storage area,

Storage, and a table of indices, Table. These arrays are private to the module and no

pointer to them is ever created (much less passed outside). Thus, ignoring acts of God, all

access to the arrays is through the. procedures Fetch, Store, and Length. This means that

the long comment is true every time the module is entered and the Check procedure never

signals error, independently of what happens outside.

What happens if a client uses an array after relinquishing it? If he is lucky an error will

occur because the Table entry for the array has been set to -1. If he is unlucky a subsequent

allocation has used that entry for a new array and his program will charge on without an

immediate error. In either case, ArrayStore1 keeps functioning happily. Thus from a

"module-centric" point of view we have solved the relinquishment problem, but in the more

global sense we have not.

On the other hand the pointer-squirreling violation has been made impossible. Since Fetch,

51

Store, and Length all" use Table, which is adjusted to compensate for compactions, we know

that the occurrence of a compaction will not be noticed by anyone outside the module.

ArrayClientO shows how this module might be used.

This solution has little to recommend it other than its simplicity and lack of type

violations. In fact, living within the type system has decreased the reliability of the code!

Because we declared everything to be an INTEGER or, equivalently, a subrange of the integers,

ArrayStoreO can make many mistakes about which the type checker will never complain.

For example, we can change any "+2" (or "+ovh") to a "+1 It, or vice-versa. We can change

any occurrence of ''Table[p]'' to "Storage[p]" or even "p", and there will be no complaint

because they all have the same type. Another problem is that the client can pass any integer

he likes as a Tablelndex, rather than ones he has previously received from AliocArray. It

seems that declaring everything to be INTEGER is nearly as bad as declaring everything

UNSPECIFIED.

Provide different types of arrays -- ArrayStore1

Let us change the program to provide arrays of Things, an arbitrary one-word type of the

sort described in Example 2. We must now face up to the fact that some of those INTEGERS

in Storage were really of a different type. The long comment explains the situation. The

only way to force things entirely into the type system would be to define Storage as follows:

Storage: ARRAY Storage Index OF union;

union: TYPE = RECORD [SELECT tag:· FROM

backPointer => [backPointer: Linelndex],

length => [length: INTEGER],

element => [element: Thing].

ENDCASE]

Then we would be branching on the type of the elements of Storage all the time, even when

we knew which kind we had. It would be horrible. It seems better to use a type loophole

and be careful. Specifically, we use the function COERCE to convert Things to INTEGERS on

their way in and back on their way out of the module. The revised program is

ArrayStore1. Aside from the addition of declarations for Thing and COERCE, the only

changes are to Fetch and Store.

I feel it is better to use the COERCE function than the more obvious method of declaring the

elements of Storage to be UNSPECIFIED. If I did, I would get much less checking for my

money; e.g. I could say really crazy· things like

52

Storage[i] ~ Fetch

and no one would complain. Using COERCE pinpoints the places where the type checker

would have complained, and draws the reader's attention to them.

Another way to breach the tyoe system would be to define Thing to be UNSPECIFIED.

Declaring Thing to be UNSPECIFIED would not decrease the quality of checking inside

ArraryStore1. It would decrease it in al1 the clients of ArrayStore1. This would be much

more pernicious, in my opinion. For example, a client could say

X:INTEGER; y: POINTER TO STRING;

a: INTEGER = AliocArray[10];

Store[a,1 ,x]; y~Fetch[a, 1]

to perform a sneaky type conversion. If he real1y wanted to do that he could have used

COERCE himself. While it may be al1 right to turn off the type checking in the module you

are writing, it is not very nice to turn it off in everyone else's without even telling them!

ArrayClient1 shows how to make type specific procedures in the same way that StringSheli

from Example 2 does it. I have declared three distinct sets of procedures to work on the

three distinct types, IntArray, StrArray, and MixedArray. The rationale behind this particular

way of breaching the type system is the following: the part of the program that follows the

"no breaches below here" comment is usually long and complicated, so we wish to apply the

full force of the type checker to it. Specifically, we would like to have a mechanical check

that we are not mixing up INTEGERS and STRINGS as we fiddle with arrays of them. Using

lots of loopholes in that code is likely to make things even more confusing and

error-prone. Therefore we commit the breach once and for all when linking to the

procedures, satisfy ourselves that things will work properly, and swear off loopholes for the

rest of the program.

Notice that one of the array types, MixedArray, has elements of UNSPECIFIED type. This is

perfectly fine with me, in contrast to declaring Thing UNSPECIFIED, since the client knows he

is doing it.

How do we satisfy ourselves that things will work properly? Consider Fetchlnt. We have

claimed that it is a "PROCEDURE [lntArray, INTEGER] RETURNS [INTEGER]" while m.Fetch from

ArrayStore1 is a "PROCEDURE [INTEGER. INTEGER] RETURNS [Thing]" How can we be sure that

Fetchlnt always returns an INTEGER, when it appears that it never returns one? First, we have

to believe that ArrayStore 1 is implemented properly; i.e. that it keeps the various arrays

separate and doesn't mix up their values. Second, we must assume that after this initial

flurry of loopholes we are not going to violate the type system again. Then we reason as

follows: IntArray is a type distinct from StrArray and MixedArray. Fetchlnt can only be

applied to IntArrays. IntArrays can get elements put into them only by Storelnt, and

Storelnt accepts only INTEGER. (Of course, if we use Fetchlnt to access an element we have

not stored into yet we shall get what we deserve.) The assignment of NIL to the frame

pointer m is just an extra precaution to assure that no later part of the program can call

m.Store directly.

It seems too bad that we need type-specific procedures for finding the length and for

freeing an array, but the alternative of defining procedures which take UNSPECIFIED

parameters seems a little risky.

Notice that ArrayClient1 could work just as well with ArrayStoreO because it makes no

mention of the type Thing. The only reason to give the client ArrayStore1 is to emphasize

that it will work on arbitrary one word types.

Another improvement is that, after the type breaches are over, it is impossible for

ArrayClient1 to pass anything except a Tablelndex to Fetch, Store, Length, or Free.

Pointerize the indices -- ArrayStore2:

Now we shall re-write the program changing all the indices into absolute pointers. This has

a number of effects, most of them beneficial:

1) Access to the elements is a mite faster (and the code a bit shorter), since the base

of the array needn't be added to the pointer.

2) We can more easily use a record declaration to describe the layout of an array in

Storage. Thus Storage[Table[p]+1] becomes pt .Iength (which really means

pt t .Iength) a much less error-prone expression.

3) Many potential address/contents errors will now be checked for. The situation we

had before where p, Table[p], and Storage[p] were all of the same type has

changed: p, pt, and pt t all have different types, ArrayPtr, PR, and R, respectively.

4) We must perform arithmetic on pointers as in

source +- source + n + ovh

You might think, as I did, that this is in bad taste; but it is not much worse than

array indexing without bounds checking. (The phrase MACHINE DEPENDENT increases

our confidence that the arithmetic makes sense.) In fact, the type checker is rather

54

scrupulous about preserving the type information. If source is a PR, so is

source+n. In this program I have chosen the convention that a PR is any PW that

points to the beginning of a record in Storage, or where a record might reasonably

begin. It is necessary to check by eye that statements such as the above that assign to

variables of type PR preserve this property. The loop

FOR k IN [O .. source.length+ovh) DO (sink+k)t ~ (source+k)t ENDLOOP;

is a little worrisome because the type checker thinks that sink+k is of type PR while,

by our informal definition, it is not. We could reduce such worry if we were

willing to write the equivalent statements:

sink.backp ~ source.backp;

sink.length ~ source. length;

FOR k IN [O .. sink.length) DO sink.a[k] source.a[k] ENDLOOP;

Formally speaking I could have eliminated the type PW by replacing it with PR

everywhere. Doing so would have eliminated some hassle, but I feel it is good to be

reminded that not every word in Storage is the start of a record.

Notice that we must use home-made procedures, gt and ge (defined in Utilities), to

compare pointers. If Mesa provided them it would probably insist that the pointers

be of the same type, in which case we would have to convert some PR's to PW's.

Here we have been a little lazy, letting gt and ge take UNSPECIFIED values.

Despite this rather massive perturbation, the program ArrayClient1 can happily use this new

module without changing anything save its directory section. Viva modularity!

However, now that we are passing absolute pointers to the client he can by-pass the Fetch,

Store, and Length procedures and access the arrays directly as shown in ArrayClient2.

There is a clear gain in speed to compensate for. the loss in safety. It is now the client's

responsibility to see that subscripts are in bounds, etc. Thus ArrayStore2 and the truth of its

invariant are susceptible to programming errors on the part of the client.

However, somewhat surprisingly, one of the bugs we are most concerned about -

squirreling away a raw pointer -- cannot happen as long as the client does not commit any

further breaches of the type system. The trick is in the way we declared IntArray -- all in

one mouthful. That makes it impossible for anyone to declare a variable to hold a raw

pointer. This is because (as mentioned before) every occurrence of the type constructor

RECORD generates a new type, distinct from all other types. Therefore, even if we should

declare

rawPointer: POINTER TO MACHINE DEPENDENT

RECORD [NoNa: IntArray, length: INTEGER, a: ARRAY[O .. O] OF UNSPECIFIED];

we could not perform the assignment "rawpointer +- IA t" because IA t has a different type

even though it looks the same. If one cannot declare the type of IAt it is rather difficult to

hang onto it for very long. In fact, we believe that it is impossible for any type-checked

program to hold such a pointer across a procedure call, but this requires a rather detailed

study of the compiler.

Now, you ask, what gives us the right to violate the type system in one place and expect it to

be obeyed elsewhere? The answer is that we don't really expect it to be obeyed elsewhere all

the time, but we do expect the programmer to proceed with caution when disobeying it.

Recall that our original problem was simply one of forgetfulness -- forgetting that certain

pointers become invalid if a compaction occurs. Hopefully, if one goes to the trouble of

saying

rawPointr +- COERCE[IA t]

he will also take the trouble to worry about compactions.

A clever compacter -- ArrayStore3:

As a first real step towards the Rack program let us eliminate the permanent back-pointer

fields. The trick is to reverse the pointers that go from Table to Storage by temporarily

putting the length part of the record in the Table entry. I am not very pleased with the

encoding method used -- using negative indices as back-pointers -- but at least it is entirely

confined to the Compact procedure.

A suitable client for this revision, and the ones that follow, can be derived from

ArrayClient2 by removing the No No field from all the record declarations.

Make a free space list -- ArrayStore4:

To avoid the need to search for a free entry in Table, we chain them all together on a list.

The contents of a Table entry can now be either a pointer into Storage or, if it is free, a

pointer into Table. I chose to cope with this by inventing a variant record type, Finger

(Tesler's name), and using Mesa's computed variant feature (which is a sort of controlled

loophole). If I had used a genuine variant record, with a bit to discriminate, the entries in

Table would have grown to two words. The procedure FingerType is llsed to discriminate

between the two types by detecting which array a Finger points into. It is recommended

that one put the procedure next to the record declaration and always lise it to compute the·

56

variant in SELECT statements. Notice that there is one place, in AllocArray, where we must

test the variant of DeadFingerList in order to keep the type checker happy even though we

know that it must be dead, barring acts of God. I am tempted to replace the

FingerType[DeadFingerListt] by dead here. In an earlier version of this program, I tried

declaring DeadFingerList and the next variant of Finger to have type dead Finger since it

happened to be true. This made things messier because I had to use COERCE in AliocArray

and FreeArray when fiddling with DeadFingerList.

Chaining all the free entries together (instead of leaving them NIL) makes the effect of

relinquishment errors rather devastating. Is the increase in allocation speed worth it?

Grow Storage alld Table in the same array, Rack -- ArrayStore5

As a final step, we merge the two arrays so that there is only one ceiling to bump against.

This complicates things a little more. We use a slightly different representation during

compaction, and describe the temporary state of a deformed record by a type definition in

Compact.

The final version seems rather overburdened with type declarations and COERCES. In

practice, given the small size of the program, I think a more liberal use of UNSPECIFIED would

be in order. Nevertheless, this program is of interest since it shows how to deal with an

extremely fluid type situation. Such extreme violations of the type system should never

occur in practice.

57

ArrayStoreO: PROGRAM

BEGIN
Storage: ARRAY Storagelndex OF INTEGER:

-- Storage will hold a mixture of things, see the description below,
Storagelndex: TYPE = [O .. StorageSize):
StorageSize : INTEGER = 2000:
nStorage: Storagelndex +-0:-- next available space in Storage

Table: ARRAY Tablelndex OF Storagelndex:
Tablelndex: TYPE = [O .. TableSize):
TableSize: INTEGER = 500:

ovh: INTEGER = 2: -- overhead per array represented. backpointer and length

-- The sub-array Storage[O .. nStorage) consists of m sequences each with the form <bp.n,eO, ... ,e(n-1 p, where
n(>=O) varies from sequence to sequence. If bp is not -1 then Table[bp] is the index of the element of
Storage containing bp. The array represented by the sequence is (eO, ... e(n-1). Conversely, if Table[i] is not
-1. it is the index of the first element (bp) of one of these sequences. See Check for a precise statement of
how things should be.

- - Procedures

AllacArray: PUBLIC PROCEDURE [n:INTEGER] RETURNS [new: Tablelndex] =
BEGIN i:INTEGER:
IF n(O THEN ERROR:

-- find some space
IF n+ovh > StorageSize-nStorage THEN

BEGIN
Compact[]:
IF n+ovh > StorageSize-nStorage THEN ERROR:
END:

Find a table entry
FOR new IN Tablelndex DO

ENDLOOP:

IF Table[new]=-1 THEN EXIT
REPEAT
FINISHED = > ERROR

Table[new] .. nStorage: -- put indirect pointer in table

-- initialize the array storage
Storage[nStorage] ... new: -- the back pointer
Storage[nStorage+1J <- n: -- the length
FOR i IN [nStorage+ovh .. nStorage+ovh+n) DO Storage[i]"O: ENOLOOP:

zero his array ·for him

nStorage<-nStorage+n+ovh: -- move available pointer

RETURN:
END:

Check: PUBLIC PROCEDURE =
BEGIN
i, length: WORD:
InUse: ARRAY Tablelndex OF BOOLEAN:
FOR i IN Tablelndex DO InUse[i] ... FALSE ENOLOOP:

-- check layout of Storage and backpointers
IF nStorage r-;OT IN [O .. StorageSize] THEN ERROR:
FOR i ... 0, i+Storage[i+1]+ovh UNTIL i>=nStorage DO

IF Storage[i+1] (0 THEN ERROR:
IF Storage[i] # -1 THEN -. array is alive

BEGIN
Ir TablerStorage[i]] # i THEN ERROR:
InUse[Storage[i]] ... TRUE:

58

ArrayStoreO: PROGRAM

BEGIN
Storage: ARRAY Storagelndex OF INTEGER;

-- Storage will hold a mixture of things, see the description below,
Storagelndex: TYPE = [O .. StorageSize);
StorageSize : INTEGER = 2000;
nStorage: Storagelndex "0;-- next available space in Storage

Table: ARRAY Tablelndex OF Storagelndex;
Tablelndex: TYPE = [O .. TableSize);
TableSize: INTEGER = 500:

ovh: INTEGER = 2; -- overhead per array represented, backpointer and length

-- The sub-array Storage[O .. nStorage) consists of m sequences each with the form (bp,n,eO, ... ,e(n-1), where
n()=O) varies from sequence to sequence. If bp is not -1 then Table[bp] is the index of the element of
Storage containing bp. The array represented by the sequence is (eO,. .. e(n-1 ». Conversely, if Table[i] is not
-1, it IS the index of the first element (bp) of one of these sequences. See Check for a precise statement of
how things should be.

- - Procedures

AllocArray: PUBLIC PROCEDURE [n:INTEGER] RETURNS [new: Tablelndex]
BEGIN i:INTEGER;
IF n(O THEN ERROR;

-- find some space
IF n+ovh > StorageSize-nStorage THEN

BEGIN
Compact[]:
IF n+ovh > StorageSize-nStorage THEN ERROR;
END:

Find a table entry
FOR new IN Tablelndex DO

ENDLOOP;

IF Table[new]=-l THEN EXIT
REPEAT
FINISHED => ERROR

Table[new] .. nStorage: -- put indirect pointer in table

-- initialize the array storage
Storage[nStorage] .. new: -- the back pOinter
Storage[nStorage+1] .. n; -- the length
FOR i IN [nStorage+ovh .. nStorage+ovh+n) DO Storage[i]"O: ENDLOOP:

zero his array .for him

nStorage"nStorage+n+ovh; -- move available pointer

RETURN;
END:

Check: PU[JLlC PROCEDURE
BEGIN
i, length: WORD;
InUse: ARRAY Tablelndex OF BOOLEAN;
FOR i IN Tablelndex DO InUse[i] ... FALSE ENDLOOP;

-- check layout of Storage and backpOinters
IF nStorage I\OT iN [O .. SlorageSize] TIIEN ERROR;
FOR i ... 0, i+Storage[i+ 1]+ovh UNTIL i>=nStorage DO

IF Storage[i+ 11 (0 THEN ERROR;
IF Storage[i] # -1 THEN -- array ;s alive

BEGIN
Ir TablerStorage[i]J # i THEN ERROR:
InUse[Storage[iJ] .. TRUE:

58

END;
ENDLOOP;

IF i#nStorage THEN ERROR;

-- Are any pointers wrong
FOR i IN Tablelndex DO

END;

IF -lnUse[i] AND Table[i]#-1 THEN ERROR;
ENDlOOP;

Compact: PROCEDURE =
BEGIN
source .sink: Stcragelndex;
length. k: INTEGER:
sink" 0;
FOR source" O. source+length+ovh UNTil source>=nStorage DO

length" Storage[source+1]; -- copy to avoid clobber below
IF Storage[source]#-1 THEN -- sequence is in use

ENDLOOP;
nStorage+-sink;
RETURN
END;

BEGIN
Tnble[Storage[source]] .. sink; -- adjust painter
FOR k IN [O .. length+ovh) DO Storage[sink+k]"Storage[source+k]; ENDLOOP;
sink .. sink+length+ovh:
END;

Fetch: PUBLIC PROCEDURE [p:Tablelndex,i:INTEGER) RETURNS [INTEGER] =
BEGIN IF Table[p]=-1 OR i NOT IN [0 .. Storage[Table[p]+1]) THEN ERROR;
RETURN [Storage[Table[p]+i+ovh]]
END;

FreeArray: PUBLIC PROCEDURE [p:Tablelndex] =
B[GIN IF Table[p]=-1 THEN ERROR;
Storage[Table[p)) .. -1;
Table[p] .. -1;
RETURN:
END;

Length: PUBLIC PROCEDURr [p:Tablelndex] RETURNS [INTEGER]
BEGIN IF Tablerp)=-1 THEN ERROR;
ReTURN [Storage[Table[p]+1]]
END:

Store: PUBLIC PRocmURE [p:Tablelndex, i:INTEGER, V:INTEGER] =
BEGIN IF Table[p]=-1 OR i NOT IN [O .. Storage[Table[p]+1]) THEN ERROR;
Storage[Table[p]+i+ovh] "V;
RETURN:
END;

-- Initialization

i:Tablelndex;
FOR i IN [O .. TableSize) DO Table[i] .. -1 ENDlOOP:

END.

59

DIRECTORY ArrayStoreO: FROM" ArrayStoreO":

ArrayClientO: PROGRAM =

BEGIN

x, y : INTEGER;

i: iNTEGER;

m: PO~NTER TO FRAME[ArrayStoreO] = NEW ArrayStoreO;
START m;
BEGIN OPEN m;

x .. AllocArray[1 0];
Y .. AllocArray[20]:

FOR i IN [O .. Length[x]) DO Store[x.i.2·iJ ENOLOOP;
FOR i!N [O .. Length[y]) DO Store[y,i.Fetch[x.i/2]] ENDLOOP;

FreeArray[x]:

END;

END.

60

ArrayStore1: PROGRAM ::
-- generalize to hand arbitrary one-word types

BEGIN
Thing: TYPE = RECORD [a: [0..4008). b: [0 .. 4008)];

-- unique one-word type. matches only self. cannot come from outside this module

Storage: ARRAY Storagelndex OF INTeGER:
-- Storage wi/I hold a mixture of things. see the description below.

Storagelndex: TYPE:: [O .. StorageSize);
StorageSize : INTEGER :: 2000;
nStorage: Storagelndex "'0:-- next availble space in Storage

Table: ARRAY Tablelndex OF Storagelndex;
Tablelndex: TYPE = [O .. TableSize);
TableSize: INTEGER 500;

ovh: INTEGER = 2: -- overhead for represented array. backpointer and length

-- Tile sub-array StoragerO .. nStorage) consists of m sequences each with the form <bp.n.eO e(n-1 », where
n(>=0) varies from sequence to sequence. If bp is not -1 then Table[bp] ;s tlie index of the element of
Storage containing bp. The array represented by the sequence is < eO e(n-1 ». Conversely. if Table[i] is not
-1. it ;s tile index of tile first element (bp) of one of these sequences. See Check for a precise statement of
how things should be.

-- Procedures

AllocArray same as ·in ArrayStoreO

Check same as in ArrayStoreO

-- Compact same as in ArrayStoreO

Fetch: PUBLIC PROCEDURE [p:Tablelndex.i:INTEGER] RETURNS [Thing] =
BEGiN IF Table[p]::-1 OR i<O OR i>=Storage[Table[p]+1] THEN ERROR;
RETURN r COERCE[Storage[Table[p]+i+ovh]]]

-- Breach: convert INTEGER to Thing
ENO;

-- FreeArray same as in ArrayStoreO

-- length same as in ArrayStoreO

Store: PUBLIC PROCEDURE [p:Tablelndex. i:INTEGER, v:Thing] =
BEGIN IF Table[p]=-1 OR i<O OR i>=Storage[Table[p]+1] THEN ERROR;
Storage[Table[p]+i+ovh] "'COERCE[v];

-- Breach: convert Thing to INTEGER
RETURN:
END;

Initialization

i:Tablelndex;
FOR i IN [O .. TableSize) DO Tahle[i] ... -1 ENDLOOP;

END.

6]

DIRECTORY UtilitiesDefs: FROM "UtilitiesDefs",
ArrayStore: FROM "ArrayStore1 ":

DEFINiTIONS rRO~.~ UtilitiesDefs;

ArrayClient 1: PROGRAM =

BEGIN

m: POINTER TO FRI>.ME[ArrayStore] NEW ArrayStore;

Gedanken: PROCEDURE =
-- This procedure will fail to compile if ArrayStore does't have the right sort of procedures. It is not
meant to run
BEGiN
uFetch PROCEDURE [UNSPECIFIED.INTEGER) RETURNS [UNSPECIFIED] = m.Fetch:
uStore PROCEDURE (UNSPECIF'ED INTEGER. U~;SPECIFIED] = m.Store:
uLength PROCEDuRE [UNSPECIFIED] RETURNS [ltHEGER] = m.Length:
uAllocArray PROCEDURE [I"TEGER] RETURNS [LJriS?ECiCIED) = m.AllocArray:
uFreeArray PROCEDURE [UNSPECIFIED] = m.FreeArray:

END:

Thus the procedures aI/ have roughly the expected shape and the COERCES below are ok.

-- Integer array primitives
IntArray: TYPE = ReccO':o[a: [0 . .400B). b: [0 . .400B)];
Fetchlnt: PROCEDLRE [lntArraY.INTEGE'i] RETURN.$ [iNTEG[R] = COERc.E[m.Fetch]:
SIoreln!: PRGCED<':RE [lntArray. INTEG~R. INTEGER] = COEClCE[m.Store]:
Lengthln!: P"'OCtDL!R~ [lntArray] RETURNS [1~H[GER] = COERCEr m.Length]:
AIIDclntArray: PROCEDU'1E f!r. TEGER] ;1[TUR!~S [lntArray J = COERCE[m.AllocArray]:
FreelntArray: PROCED:JRE [lntArray] : COERCE[m.FreeArray]:

-- String array primitives
StrArray: TYPE = RECORD[a: [0 . .400B). b: [0 .. 400B)]:
FetchStr' PROCEDJlCe [StrArray.ifHEGER] RETURNS [STRING] = COERCE[m.Fetch]:
StoreStr: PROCEDURE [StrArray.INTEGER.STRiNG] = COERCE[m.Store]:
LengthStr: PROCED0RE [StrArray J RETUR'<S [i"TES':R] = COERCE{m.Length]:
AliocStrArray: PROCEDURE [INTEGER] RETUR"S [StrArray] : COERc[[m.AllocArray]:
FreeStrArray: PROCEDU'1E [StrArray] : COERCE[m.FreeArray]:

-- Mixed array primitives
MixedArray: TYPe = RcCOClD[a: [0 . .400B), b: [0..400B)]:
FetchMixed: PROCEDURE [MixedArraY.INTEGER] RETURNS [UNSPEC:FIED] = COFRCE[m.Fetch]:
StoreMixed: PROCEDURE [MixedA.rraY.INTEGER.UNSPECICIED] = COERcE[m.Store]:
LengthMixed: PriOCEDUric [MixedArrayl RETURNS [INT[G[R] = COERCE[m.Length]:
AllocMlxedArray: PROCEDUCl:' [INTEGER] RETURNS [MixedArray] : COERCE[m.AllocArray]:
FreeMixedArray: PROCEDURE [MixedArray] : COERCf[m.FreeArray]:

IA: IntArray: SA: StrArray: MA: MixedArray:
i: INTEGER:

BIND m: START m: m ... NIL: -- cuts off any other kind of access to this instance of ArrayStore

-- no type breaches below here

IA ... AlloclntArray[1 00]: SA ... AliocStrArray[10]: MA ... AllocMixedArray[50];

FOR i IN [O .. Lengthlnt[IA]) DO Storelnt[IA.i.i/3] ENDLOOP; .
StoreStrfSA.O. "zero"]: StoreStr[SA.1,"one"]: StoreStr[SA.2. "two"]: StoreStr[SA.3."surprise"]: StoreStr[SAA,"four"]:
r-GR i IN [O .. LengthMixed[MA]) DO

IF i MOD 7 > 4
THEr, StoreMixed[MA. i, FetchStr[SA.i MOD 5]]
ELS[StoroMixed[MA, i. Fetchlnt[IA,i]]

ENDlOOP:

FreelntArray[IA]:
END.

62

ArrayStore2: PROGRAM =

DIRECTORY UtilitiesDefs FROlvl "UtilitiesDefs";
DEFINITIONS FROM UtilitiesDefs;

change the indices of ArrayStore1 into pOinters
BEGIN

-- Types
ArrayPtr: TYPE = POINTER TO PA;
PR: TYPE = POINTER TO A;
PW: TYPE = POINTER TO W;
R: TYPE = MACH:~E DEPENDENT

RECO'iD [backp: ArrayPtr, length: INTEGER, a: ARRAY [0 .. 0] OF Thing]; ,
-- We expect each field to take 1 machine word

Tablelndex: TYPE = [O .. TableSize):
Thing: 'TYPE = R!':COR::J [a: [0 . .4008). b: [0,,4008)];
W: TYPE = RECORD [a: [0 .. 4008), b: [0 .. 4008)]; -- just a machine word, not equal to Thing

-- Storage & Constants
Storage: ~RRAY [O"StorageSize) OF W;
StorageSize : INTEGER = 2000;
beginStorage: PR = COERCE[@Storage[O]]:

-- Breach: The informal requirement for being a PR is that one be a PW which
pOints to the beginning of an R as defined below in the invariant.

nStorage: PA <- beginStorage: -- next availble space to lay an R
endStorage: PW = @Storage[StorageSize];

Table: ARRAY Tablelndex OF PR;
TableSize: INTEGER = 500:
beginTable: ArrayPtr = @Table[O];
endTable: ArrayPtr = @Table[TableSize]:

ovh: INTEGER = 2: -- overhead for represented array. backpointer and length

The storage area [beginStorage .. nStorage) consists of m As. each with the form
(backp,length,eO ,e(length-1 », where lenglh(>=0) varies from sequence to sequence. If backp is not NIL then
backp is an address in Table and backpt is the address of backp itself. The array represented by the record
is (eO e(n-1 ». Conversely. if Table[i] is not NIL. it is the address of one of these records.
-- See Check for a precise statement of how things should be.

-- Procedures

AllocArray: PUBLIC PROCEDURE [n:INTEGER] RETURNS [new: ArrayPtr]
BEGIN i:Tablelndex;
IF n(O OR n)77777B-ovh THEN ERROR;
-- find some space
IF n+ovh) endStorage-coERCE[nStorage,PW] THEN

-- Breach: demote nStorage to a PW.
BEGIN
Compact[]:
IF n+ovh) endStorage-coERCE[nStorage.PW] THEN ERROR;
END;

Find a table entry
FOR i IN Tablelndex DO

IF Table[i]=NIL THEN GOTO found
REPEAT
found => new <- @Table[i];
fiNISHED = > ERROR
ENDLOOP:

newt <- nStorage;
-- initialize the array storage
newt.backp <- new;
newt.length <- n;
nStorage<-nStorage+n+ovh;

-- Breach: move available pointer. nStorage is still a good PA because we move it just the

63

RETURN
END;

right distance past the new R.

Check: PlJBUC PROCEDURE =
BEGIN
i, length: WORO;p: PR;
InUse: ARR/, Y Tablelndex OF BOOLEAN;
FOR i IN Tablelndex DO InUse[i] +- FALSE END LOOP;

-- check layout of Storage and backpointers
IF gt[beginStorage, nStorage) OR gt[nStorage, endStorage] THEN ERROR;
FOR P +- beglllStorage, p+p.length+ovh UNTIL ge[p, nStorage] DO

-- Breach: adding to p
IF p.length<O THEN ERROR:
IF p.backp # NIL THEN -- array is alive

BEGIN

ENDLOOP;

IF p.backpr # p THEN ERROR;
InUse[p.backp-@Table[O]J +- TRUE;
END;

IF p#nStorage THEN ERROR;

-- Are any painters wrong
FOR i IN Tablelndex DO

if -lnUse[i] AND Table[i]#NIL THEN ERROR:
ENDLOOP;

END;

Compact: PROCEDURE =

BEGIN
source. sink: PR;
length. k: INTEGER;
sink +- beginStorage:
FOR source beginStorage. source+length+ovh UNTIL ge[source. nStorage] DO

-- Breach: source remains a good PR
length +- source. length; -- copy to avoid ambush below
iF source.backp#NIL THEN -- record ;s in use

ENDLOOP;

nStorage +-sink;
RETURN
END;

BEGIN
source.backpr ... sink;-- adjust pointer
roH k I~ [O .. length+ovh) DO (sink+k)t ... (source+k)t ENDLOop;--Breach
sink'" sink+length+ovh; -- Breach: sink remains a good PR
END;

Fetch: PUBLIC PROCEDURF [p:ArrayPtr.i:INTEGER] RETURNS [Thing]
BEGIN IF pt=NIL OR i NOT IN [O .. pt.length) THEN ERROR;
RETURN [p t .a[i]]
END;

FreeArray: PUBLIC PROCEDURE [p:ArrayPtr] =
BEGIN IF pt=NIL THEN ERROR; -- array already free
pt .backp +- NIL;
pt +- NIl.;
RETURN:
END;

Length: PUBLIC PROCEDURE [p:ArrayPtr] RETURNS [INTEGER]
BEGIN IF P t =NIL THEN ERROR;
RETURN [P t .Iength]
END;

64

Store: PUBLIC PROCEDURE [p:ArrayPtr. i:INTEGER. v:Thing] =
BEGIN IF pt=NIL OR i NOT IN [O .. pt.length) THEN ERROR;
pt.a[i] .. v;
RETURN:
END:

Initialization

i: Tablelndex:
FOR i IN Tablelndex DO Table[i] .. NIL ENDLOOP;

END.

ArrayClient2: PROGRAM =

BEGIN

DIRECTORY UtilitiesOefs: FROM "UtilitiesDefs".
ArrayStore: FROt.- "ArrayStore2";

DEFINITIOI,S FROM UtilitiesDefs;

m: POINTER TO FRAME[ArrayStore] NEW ArrayStore;

Gedanken: PROCEDURE =
-- This procedure will fail to compile if ArrayStore does't have the right sort of procedures. It is not
meant to run
BEGIN
uAliocArray: PROCEDURE [INTEGER] RETURNS [UNSP[CItIED] m.AllocArray:
uFreeArray PROCEDURE [UNSPECIFIED] = m.FreeArray:
END;

Thus the procedures a/l have roughly the expected shape and the COERCES below are ok.

- - Integer array primitives
IntArray: TYPE =

POINTrR TO POINTER TO MACHINE DEPENDrNT RECORD[NoNo: IntArray. length: INTEGER. a: ARRAY [0 .. 0] OF INTEGER];
AlloclntArray: PRocmUR, rINTEGeR] ReTURNS rlntArray] = COCRCE[m.AllocArray];
FreelntArray: PROCE!)LR[[lntArray] 0 COERcr[m.FreeArray];

- - String array primitives
StrArray: TYPE =

FO:~FCR TO PO;"TER TO f.IACHI"E DEPE"DENT RrCORDr NoNo: StrArray. length: INTEGER. a: ARRAY [0 .. 0] or STRING];
AllocStrArray: PROC~DUR:: [nHEGER] RFTURNS [StrArray 1 = COERcE[m.AllocArray];
FreeStrArray: PROCEDURE' [StrArray] 0 COERCE[m.FreeArray];

- - Mixed array primitives
MixedArray: TYPE =
POI"JTER TO POINTER TO MACHINE DEPENIlENT RECORllrNoND: MixedArray. length: INTEGER, a: A8RAY [0 .. 0] OF UNSPECIFIED]:
AllocMixedArray: PROCEDURE [INTEGCR] RETURNS p,,1ixedArray] = COERcE[m.AllocArray]:
FreeMixedArray: PROc[DURE [MixedArray] 0 COERcc[m.FreeArray];

IA: IntArray;
SA: StrArray;
MA: MixedArray;
i: INTEGER;

BIND m; START m: m ~ NIL; -- cuts off any other kind of access to this instance of ArrayStore

-- no type breaches below here

IA .. AlloclntArray[100];
SA .. AliocStrArray[1 01;
MA .. AllocMixedArray[50];

FOR i IN [O .. IAt.length) DO IAt.a[i] .. i/3 ENDlOOP;

SAt.a[O] .. "zero"; SAt.a[1] .. "one"; SAt.a[2] .. "two"; SAt.a[3] .. "surprise"; SAt.a[4] .. "four";

FOR i IN [O .. MAt.length) DO
IF i MOD 7 > 4
TIIEN MAt.ari] .. SAt.a[i MOD 5]
ELSE MAt.a[i] .. IAt.a[i]

ENDlOOP;
FreelntArray[IA];
END.

ArrayStore3: PROGRAM =

DIRECTORY UtilitiesDefs FROM "UtilitiesDefs";
DEFINITIONS FROM UtilitiesDefs;

eliminate the backp field by making the compactor more clever.
BEGIN

-- Types
ArrayPtr: TYPE" POINTER TO PR:
PW: TYPE " POINTER TO W;
PR: TYPE " POiNTER TO R:
R: TYPE = MACHINE DEPENDENT

RECORD [length: INTEGER a: ARRAY [0 .. 0] OF Thing];
-- We expect each field to take 1 machine word

Tablelndex: TYPE" [O .. TableSize);
Thmg: TYPE" RECO'lO [a: [0 . .4008), b: [0 . .4008)];
W: TYPE" RcCORD [a: [0..4008). b: [0 . .4008)]: -- just a machine word, not equal to Thing

-- Storage & Constants
Storage: ARRAY [O .. SlOrageSize) OF W;
StorageSize : INTEGER " 2000:
beginStorage: PR " COERCE[@Storage[O]]:

-- Breach: The informal requirement for being a PR is that one be a PW which
points to the beginning of an R as defined below in the invariant.

nStorage: PR .. beginStorage; -- next available space to lay an R
endStorage: PW " @Storage[StorageSize];

Table: ARRAY Tablelndex OF PR:
TableSize: INTEGER " 500;
beginTable: ArrayPtr " @Table[O]:
endTable: ArrayPtr " @Table[TableSize];

ovh: INTEGER " 1 : -- overhead for represented array length

-- The storage area [beginStorage .. nStorage) consists of mRs. each with the form <length.eO e(length -1 P.
where length(>"O) varies from sequence to sequence. The array represented by the record is
<eO e(length-1». If Table[i] is not NIL.' it is the address of one of these records. See Check.

-- Procedures

AllocArray: PUBLIC PROCEDURE [n:INTEGER] RETURt,S [new: ArrayPtr]
BEGIN i:Tablelndex:
IF n(O OR n>777778-ovh THEN ERROR;
-- find some space
IF n+ovh > endStorage-coERCE[nStorage.PW] THEN

-- Breach: demote nStorage to a PW.
BEGIN
Compact[]:
IF n+ovh > endStorage-coERCE[nStorage.PW]THEN ERROR;
END:

Find a table entry
FOR i IN Tablelndex DO

IF Table[i]=NIL THEN GOTO found
REPEAT
found => new" @Table[i]:
FIN!SHED ,,> ERROR
ENDLOOP;

newt .. nStorage;
new t .Iength .. n:

nStorage "nStorage+ n + ovh;

RETURN
END;

-- Breach: move available pointer. Note that nStorage is still a good PR because we move it
just the right distance past the new R.

Check: PUBLIC PROCEDURE =
8EGIN
i, length: WORD;P: PR;
FOR i IN Tablelndex DO InUse[i] .. FALSE ENDLOOP;

-- check layout of Storage
IF gtrbeginStorage. nStorage] OR gt[nStorage. endStorage] THEN ERROR:
FOR p +- beginStorage. p+p.length+ovh UNTil ge[p, nStorage] DO

IF p.length(O THEN ERROR;
ENDLOOP;

IF p#nStorage THEN ERROR;

-- Are any pointers wrong?
FOR i IN Tablelndex DO

END;

-- This is not too efficient
IF Table[i] # NIL THEN

ENDLOOP;

FOR P .. beginStorage. p+p.length+ovh UNTIL p=nStorage DO
IF p=Table[i] THfN EXIT: -- entry is valid
REPEAT
FINISHED = > ERROR
ENDLOOP;

Compact: PROCEDURE =

8EGiN
source, sink: PR;
length,k: INTEGER;
i: [O .. TableSize]:

-- Reverse all the pOinters. Replace the length of each live block with a back pointer (actually a
negated index of Table) and hide the displaced length in the Table entry.

FOR i IN Tablelndex DO
IF Table[i] # NIL THEN

BEGIN

ENDLOOP;

length +- Table[i].length;
Table[i].length +- -i;
Table[i] +- COERcE[length];

Breach: replace painter with length, temporarily
END;

-- Move all the live records towards beginStorage, fixing up the reversals as we go. A record is live
iff its length is negative because negative lengths are impossible normally.

sink +- beginStorage:
FOR source +- beginStorage, source+length+ovh UNTIL ge[source, nStorage] DO

-- Note: length is set inside loop!
-- source remains a good PR

IF source.length(O THEN -- record is alive
BEGIN
length +- CO;cRcE[Table[-source.length]]:-- copy to avoid ambush be/ow

-- Breach: undo previous
Tabler -source.length] +- sink; -- new location
source.length <- length:
-- reversal is undone now
FOR k IN [O .. length+ovh) DO (sink+k)t +- (source+k)t ENDLOop;--Breach
sink +- sink + length+ovh:

-- sink remains a good PR
END

ELSE length +- source.length
ENDLOOP;

nStorage <-sink;
RETURN
END;

68

FreeArray: PUBLIC PROCeDURE [p:ArrayPtr] :
BEGIN IF pt:NIL THEN ERROR; -- array already free
pt <- NIL:
RETURN;

END;

Initialization

i: Tablelndex;
FOR I IN Tablelndex DO Table[i] .. NIL ENDLOOP;

END.

69

DIRECTORY UlilitiesDefs FROM "UtilitiesDefs";
DEFINITIONS FROM UtilitiesDefs:

ArrayStore4: PROGRAM = -- chain a/l the free entries together
BEGIN
-- Types
ArrayPtr: TYPE = PF;
Finger: TYPE = RECORD [SELECT COMPUTED FT FROM -- by FingerType

alive => [ptr: POINTER TO R],
dead => [next: POINTER TO Finger],
ENDCASE
];

FingerType: PROCEDURE' [f:Finger] RETURNS [FT] =
-- test if it paints into Storage
BEGIN
RETURN [IF le[beginStorage,f] AND It[f,endStorage] THEN alive ELSE dead]
END;

FT: TYPE = {alive, dead};
PR: TYPE = POINTER TO R;
PW: TYpe: = POII-HER TO W;
PF: TYPE = POINTER TO Finger;
R: TYPE = MACf-liNE DEPENDENT

RECORD [length: INTEGER a: ARRAY [0 .. 0] OF Thing];
-- We expect each field to take 1 machine word

Tablelndex: TYPE =[O .. TableSize):
Thing: TYPE = RECORD [a: [0 .. 4008), b: [0 . .4008)];
W: TYPE = RECORD [a: [0 .. 4008), b: [0 .. 4008)]; -- just a machine word, not equal to Thing

-- Rs are kept in ...
Storage: ARReY [O .. StorageSize) OF W;
StorageSize : INTEGER = 2000;
beginStorage: PR = COERCE[@Storage[O]];

-- Breach: The informal requirement for being a PR is that one be a PW which
points to the beginning of an R as defined below in the invariant.

nStorage: PR ... beginStorage; -- next availble space to lay an R
endStorage: PW = @Storage[StorageSize];

Table: ARRAY Tablelndex OF Finger;
TableSize: INTEGER = 500;
beginTab!e: PF = @Table[O];
endTable: PF = @Table[TableSize];

DeadFingerList: PF;
ovh: INTEGER = l' -- overhead for represented array, length

-- The storage area [beginStorage .. nStorage) consists of mRs, each with the form <length,eO ,e(length-1 p,
where length(>=O) varies from sequence to sequence The array represented by the record is
< eO e(iength -1 ».
-- Table[i] is either the address of one of these records, in which case it is an alive Finger. or it is and
address in Table or NIL, in which case it is a dead Finger. DeadFingerList is a chain of all the dead Fingers. A
record in Storage is alive iff it is pointed to from Table. See Check,

-- Procedures

AllocArray: PUBLIC PROCeDURE [n:INTEGER] RETURNS [new: ArrayPtr]
BEGIN
IF n<O OR n)777778-ovh THEN ERROR:
-- find some space
IF n+ovh > endStorage-coERCE[nStorage,PW] THEN

-- Breach: demote nStorage to a PW.
BEGIN
Compact[]:
IF n+ovh > endStorage-coERCE[nStorage,PW] THEN ERROR;
END;

Find a table entry
IF DeadFingerList = NIL THEN ERROR;

70

new ... DeadFingerList:
DeadFingerList .. WITH DeadFingerList SELECT

FingerType[OeadFingerListt] FROM
dead => next,
ENDCASE :> NIL: -- not possible

newt .. Finger[alive[nStorage]];

-- initialize the array storage
nStorage.length .. n;

nStorage+-nStorage+n+ovh;
-- move available pointer. Note that nStorage is still a good PR because we move it just the
right distance past the new R.

RETURN
END;

Check: PUBLIC PROCEDURE =
BEGIN
i, length: WORD:P: PR; f:PF;

-- check layout of Storage
Ir gt[beginStorage. nStorage] OR gt[nStorage, endStorage] THEN ERROR;
FOR p .. beginStorage. p+p.length+ovh UNTIL ge[p, nStorage] DO

IF p.length<O THEN ERROR:
ENDLOOP:

IF p#nStorage THEN ERROR;

-- Is the OeadFinger list good? If circular we won't return
f .. DeadFingerList;
UNTIL f=NIL DO

WITH f SELECT FingerType[ft] FROM
alive => ERROR;
dead = > f .. next;
ENDCASE::

ENDLOOP;

Check aI/ the pOinters in Table
FOR i IN Tablelndex DO

END;

-- This is not too efficient
WITH tableEntry:Table[i] SELECT FingerType[Table[iJ] FROM

alive =>

dead =>

ENDCASE:

ENDLOOP;

FOR P .. beginStorage. p+p.length+ovh UNTIL p=nStorage DO
IF p=ptr THEN EXIT: -- entry is valid

BEGIN

REPEAT
FINISHED = > ERROR
ENDLOOP;

f .. OeadFingerList;
UNTIL f=NIL DO

END;

WITH f SELECT FingerType[ft] FROM
dead = > BEGIN

IF f=tableEntry.next THEN EXIT:
f .. next:
END;

ENDCASE -- alive is impossible
REPEAT
FINISHED = > ERROR; - - lost finger
ENDLOOP;

Compact: PROCEDURE :

71

BEGIN
source, sink: PR;
length,k: INTEGER:
i: Tablelndex;

-- Reverse all the pOinters. Replace the length of each live block with a back pointer (actually a
negated mdex of Table) and hide the displaced length in the Table entry.

FOR i IN [O .. TableSize) DO
WiTH Tableri] snECT FingerType[Table[i]] FROM

alive =>
BEGIN
length ... ptr.length;
ptr.length ... -i:
Tableri1 ... cOERcr[length];

Breach: replace pointer with length, temporarily
END;

ENDCASE:
ENDLOOP;

-- Move all the live records towards beginStorage, fixing up the reversals as we go. A record is live
iff its length IS negative because negative lengths are impossible normally.

sink ... beginStorage:
FOR source ... beginStorage. source+length+ovh UNTIL gee source, nStorage] DO

-- length IS always set inside loop
IF source.length<O THEN -- record is alive

BEGIN
length'" COERcE[Table[-source.lenglh]):-- copy to avoid ambush below

-- Breach: undo previous breach
Table[-source.length] ... Finger[alive[sink]J;

. - - new location
FOR k IN [O .. length+ovh) DO (sink+k)t .. (source+k)t ENOIOop:--Breach
sink" sink+length+ovh;

-- sink remains a good PR
END

ELSE length'" source.length; -- just normal length of dead record
[NOLOOP:

nStorage "sink:
RETURN
END;

FreeArray: PUBLIC PROCEDURE [p:ArrayPtr] =
BFGIN
WITH P SELECT FingerType[p t] FROM

RETURN:
END:

alive = > BEGIN
P t ... Finger[dead[DeadFingerList]J:
DeadFingerList .. p;
END:

dead => ERROR: -- this error is possible, dangling reference
ENOCASE;

Initialization

i: Tablelndex:
FOR i IN rO .. TableSize-l) DO

Table[i] .. Finger[deadr@Table[i+1]1]
[NDLOOP:

Table[TableSize-l J .. Finger[dead[NIL]]:

END.

DIRECTORY UtilitiesDefs rROM "UtilitiesDefs";
DEFINITIO'<S FROM UtilitiesDefs:

ArrayStore5: PROGRAM ,,-- No, no. Not the Rack!
-- Put Table and Storage at oPposite ends of same array

BEGIN
-- Types
ArrayPtr: TYPE " PF;
Finger: TYPE" RECORD [SELECT COMPUTm FT FROM -- by FingerType

alive = > [ptr: POINTi'R TO R],
dead => [next: POINTER TO Finger].
ENDCASE

];
FingerType: PROCEDURE [f:Finger] RETURNS [FT] =

-- test if it points into [beginStorage .. nStorage)
BEGIN
RETURN [IF le[beginStorage.f] ANI) It[f.nStorage] THE"N alive ELSE dead]
END;

FT: ',y;o[= (alive. dead};
PR: TYF[= POI:>TER TO R:
PW: TYPE" POIN"TER TO W:
PF: TYPE" POINTeR TO Finger:
R: TYPE = MACHINE DEPENDENT
R~CORD [length: INTEGFR. a: ,\'iRI,{ rO .. O] OF Thing 1:

-- We expect each field to take 1 machine word
Thing: TYP[= R~COR'j fa: [0..400B). b: [0 . .4008)]:
W: TYPE = RECOP:) [a. [0..4008). b: [0..400B)J; -- just a machine word. not equal to Thing

Rs and Fingers are kept in ...
Rack: ARRAY [O .. RackSize) OF W:

RackSize : INTEG~R = 2500:

beginStorage: PR = COERcE[@Rack[OJJ:

-- Breach: The informal requirement for being a PR is that one be a PW which
points to the beginning of an R as defined below in the invariant.

nStorage: PR .. beginStorage: -- next availble space to lay an R
beginTable: PF = corRc.r[@RackrRackSize-111:

-- Breach: end of rack contains Fingers

nTable: PF .. beginTable: -- next Finger to aI/ocate

DeadFingerList: PF;

ovh: INTEGER = 1 : -- overhead for represented array. length

-- The storage area [beginStorage .. nStorage) consists of mRs. each with the form <length.eO e(length -1 P.
where length(>"O) varies from sequence to sequence. The array represented by the record is
< eO e(length-1 p.
-- The storage area (nTable .. beginTable 1 contains Fingers which are either the address of one of the above
records. In w/lich case it IS an alive Finger. or it is an address in (nTable .. begiIlTable -J or NIL. in which case it
is a dead Finger. DeadFingerList is a chain of all the dead Fingers. A record is alive iff it IS painted to from
thiS area. Sec Check.

-- Procedures

AliocArray: PUBliC PRocmURE rn:INTfGfR] RErURI,S [new: ArrayPtrJ =

BEGIN new:ArrayPtr:
IF n(O OR n>77777B-ovh THEN ERROR:

-- find some space. The + 1 on the left allows room for new finger as well as array. The expression
on the right is the number of unused words in the Rack.

IF n+ovh+1> COrRcr[IlTable.PW1-coERcE[nStorage.PW]+1 THEN

-- Breach: demote pointers to same type
BEGIN
Compact[]:
It ll+ovh+1 > cOrRcr[IlTable.PW1-cofRcr[IlStorage.PW1+1 THEN LRROR;

73

END;

Find a table entry. there must be one
IF DeadFingerList = Nil THEN

BEGIN
new ... nTable;
nTable ... nTable - 1;
END

ELSE BEGIN

new"'DeadFingerList;
DeadFingerList ... WITH DeadFingerList SELECT

E~ID;

FingerType[DeadFingerListt] FROM

dead = > next.
ENDCASE 0> Nil: -- not possible

newt ... Finger[alive[nStorage]];
-- initialize the array storage
nStorage.length ... n;

nStorage<-nStorage+n+ovh;

RETURN
END;

-- move available painter. Note that nStorage is still a good PR because we move it just the
right distance past the new R.

Check: PUBLIC PROCEDURE
BEGIN
i. length: WOR::>;P: PR; f.t :PF;
-- check layout of Rack
IF gt[beginStorage. nStorage] OR gt[nStorage. nTable+ 1] OR gt[nTable, beginTable] THEN ERROR;
FOR P ... be:;;inStorage. p+p.leng!l1+ovh UNTIL ge[p. nStorage] DO

IF p.length<O T'"!EN ERROR.
ENOlOOP:

Ie p#nStorage THEN ERROR;
-- Is the DeadFinger list good? If circular we won't return
f <- DeadFingerList;
UNTil f=NIL DO

WITH f SELECT FingerType[ft] FROM
alive => ERROR;
dead = > f <- next;
ENOCASE:

ENDlOOP:
Check al/ the pointers in Table

FOR t ... beginTable. t-1 UI,Tll t=nTable DO
-- This is not too efficient
WITH tableEntry:t SELECT FingerType[\1'] FROM

alive =>

dead =>

FOR P ... beginStorage. p+p.length+ovh UNTIL p=nStorage DO
IF p=ptr THEI, EXIT -- entry is valid

BEGIN

REPEAT
FINISHED = > ERROR
ENOlOOP;

f <- DeadFingerList;
UNTil f=NIL DO

END;

WITH f SEL~CT FingerType[ft] FROM
dead = > Be GIN

IF l=tableEntry.next THEN EXIT;
f ... next:
END;

ENDCASE: -- alive is impossible
REPEAT
FINISHED = > ERROR; - - lost finger
ENDlOOP;

74

ENDCASE:
ENDLOOP;

END;

Compact: PROCEDURE =
BEGIN
DeformedR: TYPE

RECORD [backp: POINTER TO INTEGER. a: ARRAY [0 .. 0] OF Thing];
source. sink: PR .. beginStorage;
length.k: INTEGER;

pFing: POINTER TO Finger;

pDR: POINTER TO DeformedR;
-- Reverse all the pointers. Replace the length of each live block with a back pointer and hide the
displaced length in the Table entry.

FOR pFing ... beginTable. pFing-1 WHILE gt[pFing.nTable] DO

WITH pFing SELECT FingerType[pFing t] FROM

alive =>

ENDCASE:

ENDLOOP;

BEGIN
length'" ptr.length;
pDR ... COERcerptr]:
pDR.backp .. COERCE[pFing];

-- Breach: deform ptr
pDR.backpt <- length;
END:

-- Move aU the live records towards beginStorage. fixing up the reversals as we go. A record is live iff
its length is greater than nTable. Secause of the way Rack is laid out it would be impossible for a
legitimate length to be greater .than nTable; therefore such a length must be one of the pOinters we
stuck in before!

sink <- beginStorage;
FOR source" beginStorage. source+length+ovh UNTIL ge[source. nStorage] DO

IF gt[source.length.nTable] THEN -- record is alive
BEGIN
pDR <- COERCE[source J:

-- Breach: source is a pointer to a DeformedR
length <- pDR.backpt;-- copy to avoid ambush below
pDR.backpt .. COERcE[sink]:

-- Breach: new location written over length
source.length .. length;
-- reversal is undone now
FOR k IN [O .. length+ovh) DO (sink+k)t ... (source+k)t ENDLOop;--Breach

sink .. sink + length+ovh;
-- sink remains a good PR

END

ELSE length" source.length: -- dead record

ENDLOOP;

nStorage "'sink;
RETURN
END;

FreeArray: PUBLIC PROCEDURE [p:ArrayPtr] = -- same as ArrayStore5
BEGIN

END.

WITH P SELECT FingerType[pt] FROM

RETURN:
END;

alive ~> BEGIN
pt ... Finger[dead[DeadFingerlistJ];
DeadFihgerlist ... p;
END;

dead = > ERROR: - - this error is possible. dangling reference
ENDCASE;

7S

