

INTERLISP REFERENCE MANUAL

BY WARREN TEITELMAN

contributions by:

A. K. HARTLEY
J. W. GOODWIN
D. C. lEWIS

BOLT BERANEK & NEWMAN

D. G. BOBROW
P. C. JACKSON
l. M. MASINTER

XEROX PALO ALTO RESEARCH CENTER

XEROX
PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

BOLT BERANEK & NEWMAN Copyright© 1974
Revised October, 1974

XEROX CORPORATION

Acknowledgements and Background

INTERLISP has evolved from a succession or LISP systems that began with a

LISP designed and implemented for the DEC ,PDP-1 by D. G. Bobrow and O. L.

Murphy1 at Bolt, Beranek and Newman in 1966. and documented by D. G. Bobrow.

An upwards compatible version of this LISP was implemented for the SOS 940 in

1967, by Bobrow and Murphy. This system contained the seeds for many or the

capabilities and features of the current system: a compatible compiler and

interpreter, 2 uniform error handling, an on-line LISP oriented editor, 3

sophisticated debugging facilities,4 etc. 940 LISP was also the first LISP

system to demonstrate the feasibility of u•ing software paging techniq~es and a

large virtual memory in conjunction with a list-processing sys tern [Bob2).

owrn, the Do-What-I•Mean error correction facility, was introduced into the

system in 1968 by W. Teitelman [TeiZ], who was also re~ponsible for

documentation for the 940 LISP system.

1--D. G. Bobrow is currently at Xerox Palo Alto Research Center (PARC). D. L.

2

8

4

Murphy is with Digital Equipment Corp.

The preliminary version of the compiler was written by L. P. Deutsch, now
at Xerox PARC. This was considerably modified and extended bY D. L. Murphy
before producing the final working version.

The original idea of a LISP oriented structure editor belongs to L. P.
Deutsch. The editor in its current form was written by W. Teitelman. now
of Xero·x PARC.

Designed and implemented by W. Teitelman.

i

In 1970, an upwards compatible version of 940 LISP called BBN LlSP5 was

designed for the PDP-10 by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W.

Teitelman, and implemented by Hartley with· assistance from Murphy. A. IC

Hartley was also responsible fo~ modifying the 940 LISP compiler to generate

code for the PDP-10. BBN-LISP ran under TENEX, a sophisticated time sharing

system for the PDP-10 designed and implemented by D. G. Bobrow, J. D.

Burchfiel, D. L. Murphy, T .. R. Strollo, and R. s .. Tomlinson.[Bob1]· With

hardware paging and Z56K of virtual memory provided by. TENEX, it became

practical to provide extensive .and .~ophisticated interactive user support

facilities, such as the prograrruner's as.sistant [Tei4], CLISP [Tei5J, and a more

sophisticated DWlM, all of which were designed and developed bY W. Tei telman.

In 1971, the bl~ck co~piler was designed and implemented by D. G. Bobrow. ·The

BBN-LISP Manual [Tei3J was written by w. Teitelman, with contributions from A.

IC Hartley and from J. W. Goodwin, who also wrote TRANSOR and the special

arithmetic functions, as well as a number of other utility functions. The name

of the system was changed from BBN·LISP to INTERLISP in 1973, when the . ' . . .

maintenance and development of the ~ystem evolved into a joint effort between

Bolt Beranek and Newman, and Xerox Palo Alto Research Center. The INTERLISP

reference manual was written by \./, Teitelman, with contributions from (in

alphabetic order) D. G. Bobrow, J. W. Goodwin, A. K.. Hartley, P. C. Jackson, D.

C. Lewis, and L. K~ Masinter. The cove~ was designed by Alice R. Fikes.

INTERLISP-10 is currently the LISP system used at Bolt Be.ranek. and Newman,

Xerox Palo Alto Res~arch Center, Stanford Research Institute Artificial

Intelligence Center, Information Sciences· Institute, and the Dendral Project at

5---1ti;·ci~~;~~~--;;;;;;;;;;;;·;~d-d~~~~~h~~~i~h·-;;;·;;N-ti8;-~~~--;;~~;~;;d·b;
the Information Processing Techniques Section of the Advanced Research
Project Agency, as was all of the subsequent work on the system that was
performed at . BBN. Since March 1972, the contributions made to the
development of the system by W. Teitelman, including the preparation of
this manual, were sponsored by Xerox Palo Alto Research Center.

ii

Stanford University, in addition to being available at Computer Corporation of

America and Case Institute of Technology. The total INTERLISP-10 usor

community now comprises approximately one hundred users. Implementations of

INTERLISP for the IBM 370, CDC 3300, and Burroughs 6700 are nearing

completion.

INTERLISP is a continuously evolving system, both in response to complaints,

suggestions, and requests of the many users scattered throughout the ARPA

network, as well as the long range goals of the individuals primarily

responsible for the system, which are currently:

Person
W. Teitelman
Xerox Palo Alto

Research Center
3180 Porter Drive
Palo Alto, Calif. 94304

A. K. Hartley
Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

D. C. Lewis
Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

J. W. Goodwin
Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

Responsible for
User facilities: i.e., pretty-print, editor,
break and trace, advising, printstructure,
D\.J!M, CLISP, programmer's assistant, etc.

INTERLISP·iO interpreter, garbage collector,
all SUBR's{hand-code machine language functions),
compiler.

INTERLISP-10 input-output, readtables,
terminal tables, user data types.

INTERLISP-10 overlays, sysin, sysout, makesys,
special arithmetic functions, functions
for accessing TENEX capabilities, TRANSOR.

L. M. Masinter pattern match compiler, record package,
Xerox Palo Alto INTERSCOPE.

Research Center
3180 Porter Drive
Palo Alto, Calif. 94304

Hi

The preparation of this manual has involved the efforts of several persons at

Xerox PARC, whom· I specifically want to mention, and to express my appreciation

for their support through this arduous, and at times seemingly endless task.

Thank you Suzan (Jerome), Janet (Farness), Peter (Deutsch), Bob (Walker), and

Larry (Tesler). I couldn't have done it without you.

•

Warren Teitelman
Palo Alto
December, 1973

Special thanks go to R. L. Walk.er, L. M. Masinter, and I... P. Deutsch for

assistance in the preparation of this first revision.

w. T.
October, 1974.

TABLE Of CONTENTS

SECTION 1: Introduction

SECTION 2: Using INTERLISP

Using the INTERLISP Manual • . • . . • . • • . • • • • • . . • • • . • . • 1
Using the INTERLISP-10 System on Tenex •••••••••••• 4

SECTION 3: Data types, Storage Allocation, and Garbage
Collection, ~nd Overlays

Data Types .. .
Literal Atoms
Pnames•••.•••.•••..•••.•...•••••. ~ •..•..
Numerical Atoms •••••••••.....••..•••••••••..•
Lists ··················••11i•·········~········
Arrays · , .•......... "'
Strings ••o•••••·········••••••••~••••••••••••

Storage Allocation and Garbage Collection •..••••••
Shared INTERLISP-10 ·····················~·········

SECTION 4: Function Types and Implicit PROGN

1
2
5
.5
8
9

10
12

· 15

Exprs•.......•..•••.•....•.....••...•.•••••.. 1
Compiled functions .••••.•••.•....••••.•..•.•.••.•. 3
Function Type • 3
PROGN .• •••• I ·• • • • • • • • • • .• 4
Implicit PROGN • . . • • • 4

SECTION 5: Primitive Functions and Predicates

Primitive functions ..•..•• , .. i., ,.......... 1
RESETVAR and RESETFORM , •......•. , .•.••••.• · •.••.•• ,. 9
Predicates a~d Logical Connectives .••.••••.••••.•• 12

SECTION 6: List Manipulation and Concatenation

SECTION 7: Property Lists and Hash Links

Property L1$tS•. ~......... 1
Hash Links•.•.....•• " •••••••••••• ,.......... 4

Hash Overflow ••••••••• ~...................... 7

1

TABLE OF CONTENTS (cont.)

SECTION 8: Function Defini Uon and Evaluation

SECTION 9: The INTERLISP Editor

Introduction
Commands for the New User•...•.•••••.•••.•..
Attention Changing Commands•....••••••••..••..

Local Attention Changing Commands ..•...• · ••...
Commands That Search .•...............•••..•..

Search Algorithm•.......•..
Search Commands •. " , .••••••• 9 ••••••••••••

Location Specification ..•...••••..••....
Commands That Save and Restore the

Edit Cha.in " ... ~. a~.: ••••••••••••••••••••

Commands That Modify Structure ...•.•...•......•.••
Implementation.of Structure Modification

Conunands .. · •....•• a ••••••• ~ •• _.· .••••••••• · ••••

The A, B, : Commands•...••.....•.• · ...
Form Oriented Editing and the Role of UP•
Extract *nd Emb6d .•........ ~ ...•.•....•• ~···~
The MOVE Corntniind ..•..•..•••••••••••••••••••••
Commands That "Move Parentheses" ••.•.........
TO and THRU•.....•.....•..• ~ • .•
The R Command ...••..••••••••.•••• o •••••••••••

Commands That Print :••..•.••••...•.. 9 ••

Commands That Evaluate•. , ~ •.••.•....•......
Corrunands That TE!st .•..• "' •• ·~ •••. ,~ ', ••••.••• • ·• •.••••••
~lac r· o s• ~ . . • • • • . • • • . • . ~ • . • • • . • • •
Miscellaneous Corrunands •..•............•.......•• ti.
UNDO ...•......•.•••.•.••• -.·:···· ~ •.••..•••••• o •••

EDITDEFAULT .•...•....••••••••••••.••.•••••.•••.•.•
Editor Functions

SECTION 10: Atom, String, Array, and Storage"T'ianipulation

1
10
15
15
21
23
25
28

34
36

37
. 3.9

43
45
48
51
54
57
60
62
64
67
70
78
80
83

Pnames and Atom Manipulation .. ;................... l
String Functions o..... 5

Searching Strings•....•. ., , .••..••.....•. -. 8
String Storage •••••••••o•••••••••••••••••••o• 11

Array Functions • • • • • • • • . • • • • • . • . • . • • • . . 12
Storage Functions ... 14

SECTION 11: Functions with Functional Arguments

SECTION 12: Variable Bindings and Pushdown List Functions

The Pushdown List and the Interp~eter .••••...•.•.. 3
The Pushdown List and Compiled Functions .,......... 6
Pushdown List Functions •..•...••..••.••••...•.•••. 7
The Pushdo~n List and Furiarg . ., . .,.................. II

H

TABLE OF CONTENTS (cont.)

SECTION 13: Arithmetic Functions

General Comments . . . • • . • • . . 1
Integer Arithmetic • • • • • . . • . . • 2
Floating Point Arithmetic •.••.•..••••.••••.••••••• 6
Mixed Arithmetic . . . • . . • • • • • . . . • • • • • • • • • • • 7
Special Functions . • . . . • . . • . • . . . • . . • . • • • • . . • • . • . • • • 8
Reusing Boxed Numbers in 1NTERLISP•10 • SETN •••••• 10
Box and Unbox .. ., • • . . • • • . • • . • . • . • • . • . • • . 13

SECTION 14: Input/Output Functions

files . 1
Addressable files • . . • • • • . • . • • . • . • • . • . 5
JFN Functions in INTERLISP-10 • • • • • • • • • • • • • • . • 9

Input functions •......... 11
Output Functions•.•.••...••••• , • • • • • • • • • • • • . 19

Printlevel . o.................................. 20
Readtables and Terminal Tables • • • . • • • • • • • • • • • • • • • . 21

Readtable Functions ..•.••••••••••••••.••••••• 22
Syntax Classes . . . • • • . . • • . • • 23
Read-macro Characters••.•..•.••.•.••••.• 26
Terminal Tables , . . . • . . • • • . • • • . . 28
Terminal Control Functions .•....•...••••••••. 30
Line-Buffering and Control • . . • . . • • • • • . • • . 32

Miscellaneous Input/Output Control Functions •..••• 35
Sys in and Sysout • • • • • • . . . • 37
Symbolic File Input . • • • • • • • • • . • • • • • • . • • • • . • • • • • • • . 39

File ~laps•..•• "'.......................... 42
Symbolic File Output . . • • • • . • . • . . • • • • • • • • • • . . . • • . • • 44

PRETTYPRINT • 45
Cor:iment Feat\lre GI ••••••••••••••••••••••••••• 8'. 46
PRETTYDEF • 47
Special PRETTYPRINT Controls .•••.•• ~......... 55

File Package • . . • • . . • • . • • • • • • . • 62
Noticing Files II. 63
Marking Changes ... , . . . • • . . • • . • • . • • . • . • . • . 64
Updating Files • • • • . • 65
~tAKEFILE•. G •••••••••••••••••••••••••• II. 65
Remaking a Symbolic File .;................... 67

SECTION 15: Debugging - The Break Package

Debugging Facilities .•.•.•.•..•.•.•••..••......••• 1
BREAK 1 ...•....•..•.•.••.••.•••.••. o • • • • • • • • • • • • • • • 4

Break Cornrnands • • • • . . • • . • • • • • • • • • . • • • • • • . • 7
Brkcoms • . • . • . . . • . . . • • • . • . . . • . • • • • • • 15
Brk.file .••...••..•.••••.••••••••.•••.•••••••• 1'5
BreakmaCros•...••...••...•. ·. 16
Break.resetforms . . • . . • • • • . • • • • • . . . • • • • • • • • • . • • 16.

Break Functions . 17
BREAK.IN "·························•·· 21

iU

TABLE OF CONTENTS (cont.)

SECTION 16: Error Handling

Unbound Atoms and Undefined Functions •..•..•.•.••.
Teletype Initiated Breaks ..•............•.......

Control H
Control B
Control E •

Other Types of Errors••.•••.••••...
Breakcheck - When to Break •...•.•.•••.....•.•
Error Types "

Error Handling by Error Type ...•..••••.....•.
Error Functions . Ill II

Interrupt Characters ..•.....•...•••••.•......•...•

SECTION 17: Automatic Error Correction - The DWIM Fae Hi ty

Introduction
Interaction with DWIM ..•....•...•.•..

Spelling Correction Protocol .•...•..
Parentheses Errors Protocol .•.••.•••••..

Spelling Correction ..•............•.•..•....
Synonyms • • • •••• fl •••••••••••••••••••

Spelling Lists
Error Correction

Unbound Atoms "
Undefined Car of Form
Undefined Function in Apply ..

DWIMUSERFN ••••••••••••••••••••
Spelling Corrector Algorithm ••.•..
DWIM Functions " "

SECTION 18: The Compiler and Assembler

The Compiler " e ••

Compiler Questions
Nlambdas
Global Variables
Compiler Functions

DECLARE:
RECOMPILE

Open Functions
Compiler Macros
FUNCTION and Functional Arguments
Block Compiling

Specvars
Loe a 1 freevars
Retfns•...•.•.............••.•• ".
Blkapplyfns
Blklibrary

Linked Function Calls ...••......•....•..••••.•..
Relinking

The Block Compiler•...
BLOCKCOMPILE
Block Declarations
BCONPL

iv

1
2
2
3
3
4
·4
7

12
13
16

1
5
5
7

10
1t
12
15
16
17
18
19
20
23

1
3
5
6
7

11
u
14
16
18
19
19
20
21
22
22
23
27
28
29
30
32

TABLE OF CONTENTS (cont.)

BRECOMPILE • • • 33
Compiler Structure • • . . . • . 35
ASSEMBLE•............• , • 36
LAP • • • . • . . • 4'1
Using ASSEMBLE . • . . . • 4 7
Miscellaneous . • 48
Compiler Printout and Error Messages•... 49

SECTION 19: Advising

Implementation of Advising•.•.•..•.. 2
Advise Functions , 5

SECTION 20: Printstructure, Interscope. and Helpsys

Printstructure . , . 1
Inter scope . 10
Help sys ·................................... 21

SECTION 21: Miscellaneous

Measuring Functions
BREAKDOWN
EDITA

Input Protocol
EDITA commands and variables

Interfork Communication in INTERLISP-10•...••
Subsys•.....
Miscellaneous TENEX Functions in INTERLISP-10 ..•..
Printing Reentrant and Circular List Structures ...
Typescript files•......•.•.

SECTION 22: The Programmer's Assistant and LISPX

1
5
8

10
12
18
19
22
23
30

Introduction . ·1
Overview · ,..................... 6
Event Specification . • 11
History Commands . • • 14

Implementation of REDO, USE, and FIX 17
History Commands Applied to History Conunands • 20
History Commands That Fail . . • • • . . • . . . 21
~lore History Commands . • • • . . . • • • 22

Mi see llaneous F ea tu res and Commands . . . • • • • . . • 28
Undoing . 38

Testmode•.•.........• Cl........... 41
Undoing out of order ...•..........•.........• 42
SAVESET ,•• , . , ... , . • . . 43

Format and Use of the History List .••...•......•.• 44
LI SPX and READLINE • . . . • • • . . • . • • . • 4 7
functions 48
The Editor and the Assistant•••....•.•.. 61
Statistics . 63
Greeting and User Initialization •.••.•.•••....••.• 64

v

TABLE OF CONTENTS (cont.)

SECTION 23: CLISP - Conversational LISP

Introduction .•.•••••••••.•.•...
CLI SP Syn tax
Infix Operators
Prefix Operators .•.....................
Constructing Lists - the <,>Operators
IF, THEN, ELSE
Iterative Statements••...•.........

Errors in Iterative Statements .•.............
Defining New Iterative Statement Operators

CLISP Translations
Declarations ,

Local Declarations ...•.•....•..•.•....
The Pattern Match Compiler •.•.••.••..••..•..

Element Patterns .•..•••...•...•.•.
Segment Patterns ··~····•..•
Assignments • . ••.•...
Place-markers,•....... •
Replacements ...•.........•.•.•......•.
Reconstruction

Record Package•.•.••...•.... ., ...
Record Declarations •.•...•...•...•...•..
CREATE•..•••.. I •••••••••••••••••••• II

Implementation
CLISPifY
DWIMIFY
Compiling CLISP e e e e e e I • e e e e I I e 0 • I • e • e e e • I I e e • '

Operation •
CLISP Interaction with User •.•••••.•.••••.•.•.
CLISP Internal Conventions ..•.••...••.•..••
CLISP Functions and Variables .•..•..•••....

APPENDIX 1: TRANSOR

Introduction
Using TRANSOR ••••••••
The Translation Notes
TRANSORSET
Controlling the sweep t e 0 0 t 't t t t t t t t t t I t t t t t t t II t e t t t

APPENDIX 2: INTERLISP Interpreter

APPENDIX 3: Control Characters

MASTER INDEX

Vi

1
9

10
13
16
17
18
28
29
31
35
37
38
41
43
45
46
46
47
50
53
59
61
62
65
67
68
71
72
15

1
3
4
a

14

SECTION 1

INTRODUCTION

This document is a reference manual for INTERLISP, a LISP system that is *
currently implemented on (or implementations are in progress for) at least five R

different machines. This manual is a reference manual for all INTERLISP R

implementations, although it does contain some material that is relevant only R

to INTERLISP-10, the implementation of INTERLISP for the DEC PDP-10 under the R

BBN TENEX time shar.ing system.[Bob1]1 Where this is the case, .such material is R

clearly marked. R

INTERLISP has been designed to be a good on-line tnteractive system (from which

it derives its name). Some of the features provided include elaborate

debugging facilities with tracing and conditional breakpoints (Section 15), and

a sophisticated LISP oriented editor within the system (Section 9).

Utilization of a uniform· error processing through user accessible routines

(Section 16) has allowed the implementation of DWIM, a ~o-~hat-!-~ean facility,

which automatically corrects many types of errors without losing the context of

computation (Section 17). The CLISP facility (Section 23) extends the LISP

syntax by enabling ALGOL-like infix operators such as +, -. *• /, =, ~. AND,

OR, etc., as well as IF-THEN-ELSE statements and FOR-WHILE-PO statements.

,--INTERLISP-10 is designed to provide the user access to the large virtual
memory allowed by TENEX, with relatively small penalty in speed (using
special paging techniques de~cribed in [Bob2]). INTERLISP-10 also providos +
for essentially unlimited quantity of compiled code vi~ the overlay +
facility described in section 3. INTERLISP-10 was the first +
implementation of INTERLISP, and is still the most widely used. +

1.1

CLISP expressions are automatically converted to equivalent INTERLISP forms

when they are first encountered. CLISP also includes a sophisticated pattern

match compiler, as well as a record package that facilitiates 11 data .. less 11

programming.

+ INTERLISP has also been designed to be a Jlextble system. Advising (section 19)

+ enables users to selectively modify or short-circuit any system function. Even

+ such "built-in" aspects of the system as interrupt characters, garbage

+ collection allocation and messages, output radix, action on variou~ error

+ conditions, line-buffering protocol, etc., all can be affected through system

·~ functions provided for that purpose. Readtables and terminal tables (section

+ 14) allow the user complete control over input, including the ability to define

+ read macro characters, specify echo modes, even redefine the action of

+ formatting characters such as parentheses. The user can also define new

+ datatypes (section 23) in addition to the lists, strings, arrays, and hash

+ association tables (hash links) already provided.

A novel and useful facility of the INTERLISP system is the programmer's

assistant (Section 22), which monitors and records all user inputs. The user

can instruct the programmer• s assistant to repeat a particular operation or

sequence of operation~. with possible modifications, or to UNDO the effects of

specified operations. The goal of the programmer's assistant, DWHI, CUSP,

etc. is to provide a programming environment which will "cooperate" w:I. th the

user in the development of his programs, and free him to concentrate more fully

on the conceptual difficulties and creative aspects of the problem he is trying

to solve.

To aid in converting to INTERLISP programs written in other LISP dialects,

e.g., LISP 1.5, Stanford LISP, we have implemented TRANSOR, a subsystem which

accepts transformations (or can operate from previously defined

transformations), and applies these transformations to source programs written

1.2

in another LISP dialect, producing object programs which will run on INTERLISP

(Appendix 1). In addition, TRANSOR alerts the programmer to problem areas that

(may) need further attention. TRANSOR was used extensively in converting from

940 LISP to BBN-LISP on the PDP·10. A set of transformations is available for

converting from Stanford LISP and LISP 1,5 to INTERLISP.

A complete format directed list processing system FLIP [Tei1J. i~ available for

use within INTERLISP.

Although we have tried to be as clear and complete as possible, this document

is not designed to be an introduction to LISP. Therefore, some parts may only

be clear to people who have had some experience with other LISP systems. A

good introduction to LISP has been written by Clark Weissman [Weil). Although

not completely accurate with respect to INTERLISP, the differences are small

enough to be mastered by use of this manual and on•line interaction. Another

useful introduction is given by Berkeley [Ber1J in the collection of Berkeley

and Bobrow [Ber2].

Changes to this manual will be issued by replacing sectio!"S or pages, and

reissuing the index and table of contents at periodic intervals. In addition,

the manual will be maintained on-line, and up to date versions of any or all

chapters will be available in machine readable form from W. Teitelman at Xerox

PARC. 2

1.3

+
+
+

+ First· revision, October, 1974.

+ The first revision to the INTERLISP reference ~ariual corr~sponds to changes or

+ additions to the INTERLISP system during the first ten ~onths or 1974.

+ Approximately 200 (out of 700) pages have been changed to some extent in this

+ revision. A significant number of these (about 60 pages) occur in section 14

+ (input/output). About 30 pages of chapter 23 (CLISP) have been changed, and

+ the rest of the changes are scattered throughout the manual. Changed material

+ in the text is flagged in the outside margin by the appearance of either a •+•
+ (for addition of completely new material), '·' (for deletion or original

+ material), or 1 • 1 (indicating changes to fitX'isting material ihat more or less

+ preserve 1 ts original structure.) Thus the reader who is already fa.mil iar with

+ the INTERLISP manual can quickly determine what has been changed. Note: very

+ few of these changes are not "upwards compatible" with the · original manual.

+ i.e. almost all of them represent extensions or additions. Nevertheless, the

+ reader is encouraged to skim through the manual noting changes which may affect

+ him.

+ For those whb do not wish to obtairi an entire new manual, an update consisting

+ of just the thanged p~ges is available~

1.4

Bibliography

[Berl]

(Ber2]

[Bobl J

[Bob2 J

[Bob3]

(McC1J

[MurlJ

[Smi1]

[Tei 1]

[Tei2]

[Tei3]

[Tei4)

(Tei5]

[Weil]

Berkeley, E.C., 11 LISP, A Simple Introduction" in Berkeley, E.C. and
Bobrow, D.G. [Ber2].

Berkeley, E.C., and Bobrow, D.G. (editors), The Programming Language
LISP, its Operation and Applications, MIT Press, 1966.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlin5on, R. S.
"TENEX, a Paged Time Sharing System for the PDP-i.O",
Communications of the ACM, March, 1972.

Bobrow, D.G., and Murphy, D.L. "The Structure of a LISP System Using
Two Level Storage", Communications or the ACM, V10 3, March 1967.

Bobrow, D.G., and Wegbreit, B. "A Model and Stack Implementation for
Multiple Environments" (to be published), Third International
~ Conference .Q.!l Artificial Intelligence, August 1973.

McCarthy, J. et al. LISP 1.5 Programmer's Manual, MIT Press, 1966.

Murphy, D. L. "Storage Organization and Management in TENEX 11 ,

Proceedings of f!!ll Joint Computer Conference, December 1972.

Smith, D. "MLISP 11 Artificial Intelligence Memo No. 135 Stanford
University, October 1970.

Teitelman, W. FLIP, A format Directed List Processor in USP,· BB!\1
Report, 196-::;:- -

Teitelman, \./. "Toward a Programming laboratory" in Walker, D. (ed.)
International Joint Conference .Q.!l ArtU'icial lntel liqence, Ney
1969. --

Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, [>.!... BBN°LISP
TENEX Reference Manual, Bolt Beranek. and Newman, July 1971, first
revision February 1972, second revision August !972.

Teitelman, W. "Automated Programmering 0 The Programmer·•s Assistant",
Proceedings of the Fall Joint Computer Conference, December 1972.

Teitelman, W. "CL.ISP • Conversational LISP 11 , Third International
~ Conference .QJ! Artificial Intelligence, August 1973.·

Weissman, c . .!::.!§f 1.:1 Primer, Dickenson Press (1967).

L5

SECTION 2

USING INTERLISP

2 .1 Using the INTERLISP Manual - Format, Notation, and Conventions

The INTERLISP manual is divided into separate, more or less independent

sections. Each section is paginated independently, to facilitate issuing

updates of sections. Each section contains an index to key words, functions,

and variables contained in that section. In addition, there is a composite

index for the entire manual, plus several appendices and a table of contents.

INTERLISP is currently implemented on (or implementations are in progress for) +

at least four different computers. This manual purports to be a reference +

manual for all implementations of INTERLISP, both present and future. However, +

since the largest user cummunity is still that of INTERLISP-10, the original +

implementation for the DEC PDP-10, the manual does contain some implementation +

dependent material. Where this is the case, the text refers to INTERLISP-10. +

and is indicated as such.

Throughout the manuai, terminology and conventions will be offset from the text

and typed in italics, frequently at the beginning of a section~ For example,

one such notational convention is:

The names of Juncttons and uartables are wrttten tn lower case and underltned
when they appear tn the text. ~leta•LISI' notatton ts used Jor descrtbtng forms.

Examples: member(x:y] is equivalent to (MEMBER X V), member(car[x];F'OO] is

2 .1

equivalent to (MEMBER (CAR X) (QUOTE FOO)). Note that in meta-LISP notation

lower case variables are evaluated, upper case quoted.

notation t.s u.sed to di.sttngui.sh betU1een ~ and !.!!!·

e.g., if' ~=(A B C), (FOO x) is (FOO (A 8 C)), whereas (FOO • x)

is {FOO ABC). In other words,~ is E!.Q.! of (FOOx) but E!!:'of (FOO. x).

Similarly, x is £fil!.!!!:. of (FOO x y), but cddr of (FOO x •· y). Note that this

convention is in fact followed by the read program,

i.e., (FOO • (A 8 C)) and (FOO ABC) read in as equal structures.

Other important conventions are:

TRUE in 111/TERLISI' mean.s not NIL.

The purpose of this is to allow a single function to be used both for the

computation of some quantity, and as a test for a condition. For example, the

value of member[x;y] is either NIL, or the tau of x beginning with ~·

Similarly. the value of .!?!: is the value or its first TRUE, Le., non-NIL.

expression, and the value of !.!ll! is either NIL, or the value of its last

expression.

Although most lists terminate in NIL, the occasional list that ends in an atom,

e.g., CAB. C) or worse, a number or string, could cause bizarre effects.

Accordingly, we have made the following implementation decision:

All Juncttons that iterate through a li.st, e.g., member. length. mapc, etc.
terminate by an nltstp check. rather than the con11entional null-check.. a.s a
safety precaution again.st encountering data tgpe.s which might cau.se inftnt. te
£!!..!:.loops, e.g .. .strtng.s, number&, arrag.s.

Thus, member[x;(A B • C)]•member[x;(A B)J

reverse[(A B • C)]=reverse[(A B)]

2.2

append[(A B . C);y]:append[(A B);y]

For users with an application requiring extreme efficiency, 1 we have provided

fast versions of' memb, last, nth, ~· . and length which compile open and

terminate on NIL checks, and therefore may cause infinite £.ill: loops if given

poorly formed arguments. However, to help detect these situations, fmcmb,

flast, fnth, fa~, and flength all generate errors when interpreted if their

argument ends in a non-list other than NIL, e.g. BAD ARGUMENT - FLAST.

Mo.st functions that .set .system parameters, e.g .. printlevel. linelenath, radix.
etc .. return a.s their value the old .setting. IJ given Nil a.s an argument. they
return the current value without changing it.

All SUBRS, i.e., hand coded functions, .such.as read. print, eval • .£.Q.!!2_. etc ..
have 'argument names' .selected from U. V, W. X. Y. Z. a.s de.scribed under
argli.st. Section 8. However. Jor tutorial purpo.se.s. more .suggestive names are
u.sed in the de.scription.s of these Junctions in the text.

No.st functions whose names end in I! are predicates. e.g. number11. !.!!.il.I!· exprp,
mo.st functions whose names end in~ are nlambda'.s, i.e .. do not require quoting
their arguments. e.g., .setq, defineq, nl.setq.

"! i.s equal to u.." means equal[x:y} i.s true. a.s opposed to "! i.s ~ to Y."
meaning eq[x,y] i.s true, i.e .• ! and ll are the .same identical LISP pointer.

When new literal atoms are created (by the read program. pack.. or mk.atom). tl1cy
are provided with a Junction definition cell initialized to NIL (Section 8). a
value cell initialized to the atom 1t!OBI1VD (Section 1.6). and a property Li.st
initialized to 1tlll (Section 7). The Junction definition cell ts acce.s.sed by
the Junctions getd and putd de.scribed in Section 8. The value eel l of an atom
i.s car of the atom, and it.s property Li.st i.s cdr of the atom. In particular,
££.!. of 1Vll and cdr of 1VIL are always NIL. and-riie .sg.stem will re.st.st att.empt.s
to change them.

The term list refers to any .structure created by one or more con.ses. i.e. it
does not have to end in 11/IL. For ex.ample. (A . 8) i.s a l i.s t. · The Ju net ion
li.stp. Section 5. i.s u.sed to test for li.st.s. Note that not being a list doe.s
not nece.s.sarily imply an atom, e.g., .strings and arrays are not li.st.s. nor ore
they atoms. See Section 10.

Many .system functions have extra optional arguments for internal u.se that are
not de.scribed in the writeup.s. For ex.ample. readline is de.scribed as a
function of one argument, but arglt.st(R£ADLIN£} returns <RDTBL LIN£ LISPXFLGJ.
In .such ca.se.s, the user .should Ju.st ignore the extra arguments.

2.3

INTERLISP departs from LISP L5 and other LISP dialects in that £.g£ of a form

i.-; never evaluated. In other words, if ill of a form is not an atom with n

function definition, and not a function object, Le. a list ill. of which is

LAMBDA, NLAMBDA, or FUNARG, an error is generated. ~ or ~· (section 8)

must be used if the name of a function is to be computed as for example. when

functional arguments are applied.

2.2 Using the INTERLISP·10 System on TENEX ·An Overview

Call INTERLISP-10 by typing LISP followed by a carriage return. INTERLISP will

type an identifying message, the date, and a greet~ng, followed by a ·~·. This

prompt character indicates ihat the user is "talking to" the top level

INTERLISP executive, called evalgt, (for historical reasons), just as 1 @1

indicates the user is talking to TENEX, evalqt calls l ispx which accepts.

inputs in either eval or !£ill format: if just one expression is typed on a

line. it is !Y.!.!Uated; if .two expressions are typed, the first is ~-ed to

the second. eval and !1!J?.!X are described in section 8. In both cases, the

value is typed, followed by~ indicating INTERLISP is ready for another input. . .

INTERLISP is normally exited via the function LOGOUT. i.e.,· the user types

LOGOUT(). However, typing control·C at any point in the computation returns

control ir.unediately to TENEX. The user can then conttnue his program with no

ill effects with the TENEX CONTINUE command, even if. he interrupted it during a

garbage collection. Or he can reenter his program at evalgt with the TENEX

REENTER command. lli lJ!!!!.r i! DEFI1V/TElY not adui.-;able U the Control-C !!!E

typed during !! garbage collection. Typing control·D at any point during a

computation will return ·control to evalqt. If typed during a garbage

collection~ the garbage collection will first be completed, and then control

will be returned . to INTERLISP'S top level, otherwise, control returns

immediately.

2.4

When typing to the INTERLISP read program, typing a control-Q will cause

INTERLISP to print 1 ## 1 and clear the input buffer, i.e., erase the entire line

up to the last carriage return. Typing control-A erases the last charactor

typed in, echoing a \ and the erased character. Control-A will not back up

beyond the last carriage return. Control-0 can be used to immediately clear
'..>

the output buffer, and rubout to immediately clear the input buffer."' ln

addition, typing controlmU (in most cases) will cause the INTERLISP editor

(Sect ion 9) to be called on tha expression being read, when the read is

completed. Appendix 3 contains a list of all control characters. and a

reference to that part of the manual where they are described. Section 16

describes how the system's interrupt characters can be disabled or redefined,

as well as how the user can define his own interrupt characters.

Since the INTERLISP read program is normally line-buffered to make possible the

action of control-Q, 3 the user must type a carriage return before any

characters are delivered to the function requesting input. e.g.,

G>E T .>
T

4

However, the read program automatically supplies (and prints) this carriage

return when a matching right parenthesis is typed, making it unnecessary for

the user to do so, e.g.,

.. coNS(A B)
(A • B)

2-- -~~;- _a_c_t_i_o_n_ -~;-~~~-t~~-1--Q··;;~;;·;;:~~--~~;~ -~~·-;;·;;~~:- - ·;f·· ~~~- 0 u0 s·;.:· ~;;

3

4

'typed ahead' several inputs, control-Q will only affect at most the last
line of input. Rubout however will clear the entire input buffer as soon
as it is typed. i.e., even during a garbage collection.

Except following control[TJ, see Section 14.

1) 1 is used throughout the manual to denote carriage-return.

2.5

The INT ERL ISP read program treats square brackets as 'super-parentheses 1 : a

right square bracket automatically supplies enough right parentheses to match

back to the la~t left square bracket (in the expression beihg read), or if none

has appea~e~~ to match the first left parentheses,

e.g.• (A (B (C J·= (A (B (C))) ,

(A (8 (C (D] E)=(A (B (C (0))) E).

% is the universal escape character for read. Thus to input an atom containing

a syntactic delimiter, precede it by"· e.g. ABX (C or ""· See Section 14 for

more details.

+ 1v (control-V) can be used to type a control character that would otherwise

+ interrupt the input process, e.g. control•D, control•C, etc. If the characte~

+ following tV is A, B, •.. ~~· Z, the corresportding control chara~ter is input,

+ e.g. tVATVBTVC is the atom control•Acontrol•Bcontrol·C. tV followed by any

+ other character has no effect, . i.e. FOOtV1 and F001 are identical. For more

+ details, see appendix 3.

Most of the "basics" of on.;.line use of INTERLISP, e.g. defining functions,

error handling, editing, saving your work, etc., are illustrated in the

following brief console session. Underlined characters were typed by the user.

1. The user calls INTERLISP from TENEX, INTERLISP prints a date, and a

greeting. The prompt character• indicates the user is at the top level or

INTERLISP.

2. The user defines· a .-unction, !!.tl. for computing factorial of n. In

INTERLISP, functions are defined via DEFINE or DEFINEQ, (Section 8).

Functions may independently evaluate arguments, or not evaluate them, and

spread their arguments, or not spread them (Section 4). The function fact

shown here is an example of an everyday run•of-the-mill function of one

argument, which is evaluated.

' 2.6

@LISP.;> 1

INTERLISP-10 11-17-73 ...

GOOD EVENING.
~DEFINEO((FACT (LAMBDDA (N) (COND ((EQ N 0) NIL) 2
(T (ITIMES N (FACTT (SUB1 N]
(FACT)
~CGETD (QUOTE FACT)} 3
(LAMBDDA (N) (CONO ((EQ N O) NIL) (T (ITIMES N (FACTT (SUBl N))))))
~FACT(3) 4
LAMBDDA [IN FACT) -> LAMBDA ? YESJ
FACTT [IN FACT) -> FACT ? YES.;>-

NON-NUMERIC ARG
NIL
HI !TIMES

(BROKEN)
:BT.>
IT IMES
COND
FACT
corm
FACT
COND
FACT
"""'TOP"'"'

5

6

=!U 7
1
:EDITF(FACT) 8
EDIT
""(R NIL 1) 9
1110K.> 10
FACT
:RETURN 1.;> 11
'BREAK' = 1
6
~PP FACT.> 12

(FACT
[LAMBDA (N)

ccorw

FACT

((EQ N 0)
1)

(T (!TIMES N (FACT (SUBl N])

~PRETTYOEF((FACT) FACT)
FACT. ; 1

2.7

13
14

3. The user "looks" at the function definition. Function definitions in

INTERLISP are stored in a special cell called the functi~n definition cell,

which is associated with the name of the function (Section 8). This cell

is accessible via the two functions, getd and putd,· (define and defineq u.se

putd). Note .that the user typed an input consisting of a single

expression, i.e. (GETD (QUOTE FACT)), which was therefore interpreted as a

form for~· The user could also have typed GETD(FACT).

4. The user runs his function. Two errors occur and corrections are off.ered

by DWIM (Section 17). In each case, the user indicates his approval, DWIM

makes the correction, i.e. actually changes the definition of fact, and

then continues the computation.

5. An error occurs tha't DWIM cannot handle, and the system goes into a break.

At this point, the user can type in expressions to be eval•ed or apply-ed

exactly a~ at the top level. The prompt character •i• indicat~s that the

user is in a break, i.e. that the context or his computation is available.

In other words, the system is actually "within" or "below" the call to

itimes in which the error occurred.

6. The user types in the break conunand, BT, which calls for a back trace to be.

printed. In INTERLISP, interpreted .and compiled code (see Section 18 for

discussion of the compiler) are completely compatible, and in both cases,

the name of the function that was called, as well ~s the names and values

of its arguments are stored on the stack. The stack can be searched and/or

modified in va~ious ways (see Section 12).

Break commands ·are discussed in Section 15, which also explains how the

user can "break" a particular function, i.e. specify that the system go

into a "break" whenever a certain function or functions are called. At

that point the user can examine the state of the computation. This

facility is very useful for debugging.

2.8

7. The user asks for the value of the variable Il• i.e. the most recent value,

or binding. The interpreter will search the stack for the most recent

binding, and failing to find one, will obtain the top level value from the

atom's value cell, which is .£!!: of the atom (Section 3). If there are no

bindings, and the value cell contains the atom NOB IND, an unbound atom

error is generated (Section 16).

8. The user realizes his error, and calls the editor to fix _it. (Note that

the system is still in the break.) The editor is described at length and in

detail in Section 9. It is an extremely useful facility of INTERLISP.

Section 9 begins with a simple introduction designed for the new user.

9. The user instructs the editor to replace all NIL's (in this case there is

only one) by 1. The editor physically changes the expression it is

operating on so when the user exits from the editor. his function, as it

is now being interpreted, has been changed.

10. The user exits from the editor and returns to the break.

11. The user specifies the value to be used by itimes in place of NIL by using

the break command RETURN. This causes the computation to continue. and 6 is

ultimately returned as the value of the original input, fact(3).

12. The user prettyprints (Section 14) fact, i.e. asks it be printed with

appropriate indentations to indicate structure. Prettyprint also provides

a comment facility. Note that both the changes made to fact by the editor

and those made by DWIM are in evidence.

13. The user writes his function on a file by using prettydef (Section 14).

creating a TENEX file, FACT.;1, which when loaded into INTERLISP at a later

date via the function 12!!! (Section 14), will cause!!.£! to be defined.as

2.9

it.currently is. There is also a facility in INTERLISP for saving and

restoring an entire core image via the functions sysout and sysin

(Section 14).

. .

14. The user logs ·out, returning control to TENEX. However, he can still

continue his session by re-entering INTERLISP via .the TENEX REENTER or

CONTINUE command.

2.10

Index for Section 2

APPLY[FN;ARGS] SUBR
apply format
APPLY*[F11;ARG1;
ARGUST[X]
back trace

;ARGn] SUBR~

BAD ARGUMENT FASSOC (arror message)
BAD ARGUMENT FLAST (error message)
BAD ARGUMENT FLENGTH (error message)
BAD ARGUMENT FMEMB (error message)
BAD ARGUMENT FNTH (error message)
BT (break command)
cornrnuE (tenex conunand)
CONTROL[U;TTBL] SUBR
control characters
control-A
control-C
control-D
control-0
control-Q
control-U
control-\/
debugging
DEFINE[X}
DEFINEQ(X] NL11
dot notation
DWIM
eq
EQ[X;Y] SLIBR
equal
EOUAL[X;V]
escape character
EVAL[X] SUBR
eval format
EVALQT
FASSOC[X;Y]
files
FLAST[X]
FLENGTH[X]
FMEMB(X;Y]
FNTH[X;N]
function definition cell
functional arguments
garbage collection
GE TD[X] SUBR
interrupt characters
LINELENGTH[N] SUBR
line-buffering
LISTP[X] SUBR
lists
LOAD[FILE;LDFLG;PRINTFLGJ
LOGOUT[] SUBR
IHL
HLISTP[X]
NOB mo
null-check
predicates

INDEX .2 .1

Page
Numbers

2.4
2.4
2.4
2.3
2.8
2.3
2.3
2.3
2.3
2.3
2.8
2.4,10
2.5
2.4·5
2.5
2.4
2.4
2.5
2.5
2.5
2.6
2.8
2.6,8
2.6,8
2.2
2.8
2.3
2.3
2.3
2.3
2.6
2.4,8
2.4
2.4
2.3
2.9
2.3
2.3
2.3
2.3
2.3.8
2.4
2.4
2.3.8
2.5
2.3
2.5
2.3
2.3
2.9
2.4
2.2
2.2
2.3,9
2.2
2.3

PRETTYDEF
PRETTY PRINT
PRINTLEVEL(N] SUBR
prompt character
property list
pushdown list
PUTD(X;Y] SUBR
RADIX(N) SUBR

. •
............................ ,

REENTER (tenex command)
RETURN (break command)

..... ~ ,•
rubout
square brackets
SYSIN(FILE] SUBR
SYSOUT[FILE) EXPR
TENEX

• 9: •••••••••••••••••••••.•••••• •
true
user interrupt c~aracters
U.S.A. (error message)
value cell ...•.....•••
variable bindings
) (carriage-return)
(typed by sy$tem)
% (escape character)

notation
(typed by
(typed by

system)
system)

............. ~
.

\
]
~ (typed by system) • ...

INDEX.2.2

Page
Numbers

2.9
2.9
2.3
2.4,6,8
2.3
2.8
2.3,8
2.3
2.4,10
2.9
2.5
2.6
2.10
2 .10
2.4,6,9•10
2.2
2.5
2.9
2.3
2.9
2.5
2.5
2.6
2.2
2.8
2.5
2.6
2.4,6

SECTION 3

DATA TYPES. STORAGE ALLOCATION, GARBAGE COLLECTION, AND OVERLA\'S1

INTERLISP operates in an 18-bit address space.2 This address space is divided

into 512 word pages with a limit of 512 pages, or 262,144 words, but only that

portion of address space currently in use actually exists on any storage

medium. INTERLISP itself and all data storage are contained within this

address space. A pointer to a data element such as a number, atom, etc., is

simply the address of the data element in this 18°bit address space.

3.1 Data Types

The data types of INTERLISP are lists, atoms. pnames. arrays, large ahd small

integers, floating point numbers, string characters and string pointers. 3

Compiled code and hash arrays are currently included with arrays.

In the descriptions of the various data types given below, for each data type,

first the input syntax and output format are described, that is, what input

sequence will cause the INTERLISP read program to construct an element of that

1--------------------------------a-•o•-----------G-----------------------------
This section was written by A. K. Hartley and J. W. Goodwin.

2

3

INTERLISP is currently implemented on (or implementations are in progress
for) at least four different machines. This section treats subjects that
are for the most part somewhat implementation dependent. Where this is the
case, the discussion refers to INTERLISP-10, the implementation. for the DEC
PDP-10, on which INTERLISP was first implemented.

The user can also define new data types, as described in section 23.

3.1

+
+
+
+
+

type, and how the INTERLISP print program will print such an element. Next,

those functions that construct elements or that data type are given. Note that

some data types cannot be input, they can only be constructed, e.g. arrays.

Finally, the format in which an element or that data type is stored in memory

is described.

3.1.1 Literal Atoms

A literal atom is input as any string of non-delimiting characters that cannot

be interpreted as a number. The syn ta tic characters that delimit atoms are

space, end-of-line, 4 line-feed,% () " J and[. However, these characters may

be included in atoms by preceding them with the escape character %.

Literal atoms are printed by print and prinZ as a sequence of characters with

%'s inserted before all delimiting characters (so that the atom will read back

in properly). Literal atoms are printed by print as a sequence of characters

without these extra %'s. For example. the atom consisting of . the five

characters A, B, C, (, and D will be printed as ABC%(D by print.and ABC(D by

prinl. The extra %'s are an artifact of the print program; they are not stored

in the atom's pname.

Literal atoms can be constructed by pack, mkatom, and gensym (which uses

mkatom).

Literal atoms are unique. In other words, if two literal atoms have the same

pname, i.e. print the same, they will always be the same identical atom, that

is, they will. always have the same address in memory, or equivalently, they

3.2

will always be ~· 6 Thus if pack or mkatom is given a list of' characters

corresponding to a literal atom that already exists. they return a pointer to

that atom, and do not make a new atom. Similarly, if the read program is given

as input of a sequence of characters for which an atom already exists. it

returns a pointer to that atom.

3.3

A literal atom is a 3 word (36 bits) datum containing:

WORD I: PROPERTY LI ST TOP LEVEL BINDING
(CDR) (CAR)

0 17 18 35

WORD 2: FUNCTION CALLING INSTRUCTION

0 35

WORD 3: PNAME I RESERVED FOR FUNCTIONS I
ON FILES

0 17 18 35

FIGURE 3-1

Car of a literal atom, i.e. the right half of word 1, contains its top level

binding, initially the atom NOBIND • .£!!!: of the atom is a pointer to its

property list, initially NIL.

~lord 2, the function definition cell, is a full 36 bit word, containing an

instruction to be executed for calling the function associated with that atom,

if any. The left half differs for different function types (i.e .• EXPR, SUBR,

or compiled code); the right half is a pointer to the function definition. 6

The pname cell, the left half of the third word, contains a pointer to the

pname of the atom. The remaining half word is reserved for an extension of

INTERLISP-10 to permit storing function definitions on files.

3.4

3.1.Z Pnames

The pnames of atoms/ pointed to in the third .word of. the atom. comprise

another data type with storage assigned as it is needed. This data type only

occurs as a component of an atom or a string. It does not appear, for example.

as an element of a list.

Pnames . have no input syntax or output format as they cannot be directly

referenced by user programs.

A pname is a sequence of 7 bit characters packed 5 to a word, beginning at a

word boundary. The first character of a pname contains its length; thus the

maximum length of a pname is 126 characters.

3.t.3 Numerical Atoms

Numerical atoms, or simply numbers, do not have property lists, value cells,

functions definition cells, or explicit pnames. There are currently two types

of numbers in INTERLISP: iritegers, and floating point numbers.

Integers

The input syntax for an integer is an optional sign (+ or ·) followed by a

I

7--All INTERLISP pointers have pnames, since we define a pname simply to bo
how that pointer is printed. However, only literal atoms and strings have
their pnames explicitly stored. Thus, the use of' the term pname in a
discussion of data types or storage allocation means pnames of atoms or
strings, and refers to~ sequence of characters stored in a·certain part of
INTERLISP'S memory.

3.5

sequence of digits, followed by an optional Q. 8 If the Q is present, the digits

are interpreted in octal, otherwise in decimal, e.g. 77Q and 63 both correspond

to the same integers. and in fact are indistinguishable internally since no

record is kept of how integers were created.

The setting of ~ (Section 14), determines how integers are printed: signed

or unsigned, octal or decimal.

Integers are created by pack and mkatom when given a sequence of characters

observing the above syntax, e.g. (PACK (LIST 1 Z (QUOTE Q))) = 10. Integers

are also created as a result of arithmetic operations, as described in Section

13.

An integer is stored in one 36 bit word; thus its magnitude must be less than

2t35. 9 To avoid having to store (and hence garbage collect) the values of small

integers, a few pages of address space, overlapping the INTERLISP-10 machine

language code, are reserved for their representation. The small number pointer

itself, minus a constant, is the value of the number. Currently the range of

1 small' integers is -1536 thru +1535. The predicate smallp is used to test

whether an integer is 'small'.

While small integers have a unique representation, large integers do not. In

other words, two large integers may have the same value, but not tho same

address in memory, and therefore not be ~· For this reason the function ~

(or equal) should be used to test equality of large integers.

9 If the sequence of digits used to create the integer is too large, the high
order portion is discarded. (The handling of overflow as a result of
arithmetic operations is discussed in Section 13.)

3.6

Floating Point Numbers

A floating point number is input as a signed integer, followed by a decimal

point, followed by another sequence of digits called the fraction, followed by

an exponent (represented by E followed by a signed integer). 10 Both signs are

optional, and either the fraction following the decimal point, or the integer

preceding the decimal point may be omitted. One or the other of the decimal

point or exponent may also be omitted, but at least one of them must be present

to distinguish a floating point number from an integer. for example, the

following will be recognized as floating point numbers:

5. 5.00 5.01 .3 5E2 5 .1E2

SE 0 3 ·5.2E+6

Floating point numbers are printed using the facilities provided by TENEX.

INTE.RLISP-10 calls the :floating point number to string conversion routines 11

using the format control specified by the function fltfmt (Section 14). fltfmt

is initialized to T, or free format. F'or example, the above floating point

numbers would be printed free format as:

5.0 5.0 5.01 .3 500.0 510.0

.005 -5.2£6

floating point numbers are also created by pack and mkatomo and as a result of

arithmetic operations as described in section 13.

A floating point number is stored in one 36 bit word in standard PDP-10 format.

The range is ~2.94E-39 thru ~1.69£38 (or 2t·128 thru 2t127).

20-·--------·----•••••••••o••m•••••••••••••••••a•o•••••••m•••o••••••••-•••••-••

and terminated by a delimiter.

11 Add it ion al information concerning these conversions may be obtained from
the TENEX JSYS Manual.

3.7

3.1.4 Lists

The input syntax for a list is a sequence (at least one)12 of INTERLISP data

elements, e.g. literal atoms numbers. other lists,. etc. enclosed in

parentheses or brackets. A bracket can be used to terminate several lists,

e.g. (A (B (CJ, as described in Section 2.

If there are two or more elements in a list, the final element can be preceded

by a . (delimited on both sides), indicating that cdr of the final node in the

list is to be the element immediately following the • , e.g. (A • B) or

CA B C . O). otherwise .s.ru: of the last node in a list will be NIL. 13 Note that

the input sequence (A B C . NIL) is thus equivalent to (AB C), and that (A B .

(C D)) is thus equivalent to (A 8 C 0) .• Note however that (AB • CO) will

create a list containing the five literal atoms A B • C and O.

Lists are constructed by the primitive functions .£2!1! and .!.!.!!·

Lists are printed by printing a left parenthesis. and then printin~ the first

element of the list. 14 then printing a space, then printing the second element,

etc. until the final node is reached. Lists are considered io terminate when

£9.!: of some node is not a list. If .5£!..!: of this terminal node is NIL (the usual

case), £!!:.of the terminal ~ode is printed followed by a right parenthesis. If

cdr of the terminal node is not NIL. ill of the terminal node is printed.

------------------------~--12 () is read as the atom NIL.

13

14

Note that in INTERLISP terminology. a list does not have to end in NIL. 1 t
is simply a structure composed of one or more conses.

The individual eleme.nts of a list are printed using prin2 if the list is
being printed by print or prin2, and by 2rint if the list is being printed
by prin1.

3.8

followed by a space, a period, another space, ill of the terminal node, and

then the right parenthesis. Note that a list input as (A B C • NIL) will print

as (A B C), and a list input as (A B . (C D)) will print as (A B C 0). Note

also that printlevel affects the printing of lists to teletype, and that

carriage returns may be inserted where dictated by linelength, as described in

Section 14.

A list is stored as a chain of list nodes. A list node is stored in one 36 bit

word, the right half containing .£!.!: of the list (a pointer to the first element

of the list), and the left half containing ill of the list (a pointer to the

next node of the list).

3. 1. 5 Arrays

An array in INTERLISP is a one dimensional block of contiguous storage of

arbitrary length. Arrays do not have input syntax; they can only be created by

the function array. Arrays are printed by both print. prin2, and prinl, as #

followed by the address of the array pointer (in octal). Array elements can be

referenced by the functions ill and !.lls!• and set by the functions !ill and

setd, as described in Section 10.

Arrays are partitioned into· four sections: a header, a section containing

unboxed numbers, a section containing INTERLISP pointers, and a section

containing relocation information. The last three sections can each be of

arbitrary length (including O); the header is two words long and contains 'the

length of the other sections as indicated in the diagram below. The unboxed

number region· of an array is used to store 36 bit quantities that are not

INTERLISP pointers •. and therefore not to be chased from during garbage

collections. e.g. machine instructions. The relocation informaion is used when

the array contains the definition of a compiled function, and spe~ifies which

3.9

locations in the unboxed region of the array must be changed if the array is

moved during a garbage collection.

The format of an array is as follows:

HEADER WORD 0

WORD

FIRST DATA WORD

The header contains:

word 0

word 1

right

left

right

left

3.1.6 Strings

ADDRESS OF RELOCATION
INFORMATION LENGTH

USED BY GARBAGE ADDRESS OF POINTERS
COLLECTOR

NON-POINTERS

POINTERS

RELOCATION
INFORMATION

FIGURE 3-2

length of entire block=ARRA\'SIZE+2.

address of relocation information relative to word O of
block (> O if relocation information exists, negative
if array is a hash array. 0 if ordinary array).

address of pointers relative to word O of block.

used by garbage collector.

The input syntax for a string is a 11 • followed by a sequence of any characters

except 11 and % , terminated by a 11 • " and % may . be included in a string by

preceding them with the escape character %.

3 .10

Strings are printed by print and prin2 with initial and final "'s, and %'s

inserted where necessary for it to read back in properly. Strings are printed

by prinl without the delimiting "'sand extr~ %'s.

Strings are created by mkstring, substring, and concat.

Internally a string is stored in two parts; a string pointer and the sequence

of characters. The INTERLISP pointer to a string is the address of the string

pointer. The string pointer, in turn. contains the character position at which

the string characters begin, and the number of characters. String pointers and

string characters are two separate data types, 15 and several string pointers

may reference the same characters. This method of storing strings permits the

creation of a substring by creating a new string pointer. thus av.oiding copying

of the characters. For more details, see Section 10.

String characters are 7 bit bytes packed 5 to a word. The format of a string

pointer is:

OF CHARACTERS 5 * ADDRESS OF STRING + CHARACTER
POSITION .

0 14 15 35

FIGURE 3-3

The maximum length or a string is 32K (K=1024) characters.

3.11

3.2 Storage Allocation and Garbage Collection

In the following discussion, we will speak of a quantity of memory being

assigned to a particular data type, meaning that the space is reserved for

storage of elements of that type. Allocatton will refer to the process used

to obtain from the already assigned storage a particular location for storing

one data element.

A small amount of storage is assigned to each data type when !NTERLISP-10 is

started; additional storage is assigned only during a garbage col)ection.

The page is the smallest unit of memory that may be assigned for use by a

particular data type. for each page of memory there is a one word entry in a

type table. The entry contains the data type residing on the page as well as

other information about the page. The type of a pointer is determined by

examining the appropriate entry in the type table.

Storage is allocated as . is needed by the functions which create new data

elements, such as £2..!:!!• pack, mkstring. For example, when a large integer is

created by iplus, the integer is stored in the next available location in the

space assigned to integers. If there is no available location, a garbage

collection is initiated, which may result in more storage being assigned.

The storage allocation and garbage collection methods differ for the various

data types. The major distinction is between the types with elements of fixed

length and the types with elements of arbitrary length. List node.s, atoms,

large integers, floating point numbers, and string pointers are fixed length;

all occupy 1 word except atoms which use 3 words. Arrays, pnames, and strings

(string characters) are variable length.

Elements of fixed length types are stored so that they do not overlap page

3 .12

boundaries. Thus the pages assigned to a fixed length type need not be

adjacent. If more space is needed, any empty page will be used. The method of

allocating storage for these types employs a free 0 list of available locations;

that is, each available location contains a pointer to the next available

location. A new element is stored at the first location on the free-list, and

the free-list pointer is updated. 16

Elements of variable length data types are allowed to overlap page boundaries.

Consequently all pages assigned to a particular variable length type must be

contiguous. Space for a new element is allocated following the last space used

in the assigned block of contiguous storage.

When INTERLISP-10 is first called, a few pages of memory are assigned to each

data type. When the allocation routine for a type determines that no more

space is available in the assigned storage for that type, a garbage collection

is initiated. The garbage collector determines what data is currently in use

and reclaims that which is no longer in use. A garbage collection may also be

initiated by the user with the function reclaim (S~ction 10).

Data in use (also called active data) is any data that can be •reached' from

the currently running program (i.e., ·variable bindings and functions in

execution) or from atoms. To find the active data the garbage collector

'chases• all pointers. beginning with the contents or the push-down lists and

the components (i.e., .£!.!:• .£!!!:, and function definition cell) of all atoms with

at least one non-trivial component~

i6--•--••-•-•••••••••••-••••••0~Du•oaaaaaao••OGoooao•••••••••••••••••••••-•••••

The allocation routine for list nodes is more complicated. Each page
containing list nodes has a separate free list. First a page is chosen
(see CONS for details), then the free list for that page is used. Lists
are the only data type which operate this way. ·

3.13

When a previously unmarked datum is encountered, it is marked, and all pointers

contained in it are chased. Host data types are marked using bit tables: that

is tables containing one bit for each datum. Arrays, however, are mar.ked using

a half-word in the array header.

When the mark and chase process is completed, unmarked (and therefore unused)

space is reclaimed. Elements or fixed length types that are no. longer active

are reclaimed by ad~ing their locations to th~ free-list for that type. This

free list allocaticin method permits reclaiming space without movirtg any djta,

thereby avoiding the time consuming process of updating all pointers to moved

data. To reclaim unused space in a block of storage assigned to a variable

length type, the active elements are compacted toward the beginning of tho

storage block, and then a scan or all active data that can contain point~ts tci

the moved data is performed to update the pointers.

Whenever a garbage collection or any type is initiated, 17 unused space for all

fixed length types is reclaimed since the additional cost is ·sUght. However,

space for a variable length type is reclaimed only when that type initiated the

garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage

collection is less than the minimum free storage requirement for that type, the

garbage collector will assign enough additional storage to s~tisfy the minimum

free storage requirement. The minimum free storage requirement for each data

may be set with the function minfs (Section 10). The garbage collector as Signs

additional storage to fixed length types by finding empty pages, and adding the

appropriate size elements from each page to the free list. Assigning

i,--~---------------------·--------------------------------------~-------------The 'type of a garbage collection• or the •type that initiated a garb•ge
collection' means either the type that ran out of space and called the
garbage collector. or the argument to reclaim.

3.14

additional storage to a variable length type involves finding empty pages and

moving data so that the empty pages are at tha end of the block of storage

assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage

collection, the garbage collector will attempt to minimize garbage collections

by assigning more storage to other fixed length types according to the

following algorithm . 18 Xf the amount of active data of a type has increased

since the last garbage collection by more than 1/4 of the minfs value for that

type, storage is increased (if necessary). to attain the ~ value. If

active data has increased by less than 1/4 of the minfs value, available

storage is increased to i/2 minfs. If there has been no increase, no more

storage is added. for example, if the minfs setting is 2000 words, the number

of active words has increased by 700, and after all unused words have been

collected there are 1000 words available, 1024 additional words (two pages)

will be assigned to bring the total to 2024 words available. If the number of

active words had increased by only 300, and there were 500 words available, 512

additional words would be assigned.

3.3 Shared INTERLISP-10

The INTERLISP-10 system initially obtained by the user is shared; that is. all

active users of INTERLISP-10 are actually using the same pages of memory. As a

user adds to the system, private pages are added to his memory. Similarly, if

the user changes anything in the original shared INTERLISP-10, for example, by

advising a system function, a private copy of the changed page is created.

i8--------------------··o•···----·--·-·-···-··········-··u••••••••••••e•-·-··-·
We may experiment with different algorithms.

3.15

+
+

In addition to the swapping time saved by having several users accessing the

same memory, the sharing mechanism permits a large saving in garbage collection

time, since we do not have to garbage collect any data in the shared system,

and thus do not need to chase from any pointers on shared pages during garbage

collections.

This reduction in garbage collection time is possible because the shared system

usually is not modified very much by the user. If the shared system is changed

extensively, the savings in time will vanish, because once a page that was

initially shared is made private, every pointer on it must be assumed active,

because it may be pointed to by something in the shared system. Since every

pointer on an initially shared but now private page can also point to private

data, they must always be chased.

A user may create his own shared system with the function make sys. If several

people are using the same system, making the system be shared will result in a

savings in swapping time. Similarly, if a system is large and seldom modified,

making it be shared Will result in a reduction of garbage collection time, and

may therefore be wo~thwhile even if the system is only being used by one user.

make sys[file] creates a saved file in which all pages in this

system, including private user pages, are made

read execute, i.e. shared. This system can then

be run via the TENEX command RUN, or GET and

START.

For example, new INTERLISP-10 systems are brought up by loading the appropriate

compiled files and then performing makesys[LISP.SAVJ. 19

19------------------------------·--------~-------------------------------------makesys is also advised (see section 19) to set the variable makesysdate to
(DATE), i.e. the time and date the system was made.

3.16

herald[string] makes string be the 'herald' for the system, i.e.

the message printed when the system is first +

started. Primarily for use in conjunction with +

makesys.20 •

3.4 The INTERLISP-10 Swapper2 i +

INTERLISP-10 provides a very large auxilary address space exclusively for +

swappable arrays (primarily compiled function definitions). In addition to the +

256K of resident address space, this "shadow space" can currently accomodate +

an additonal 256K words, can easily be expanded to 3.5 million words, and with +

some further modifications, could be expanded to 121 million words. Thus, the +

overlay system provides essentially unlimited space for compiled code.22 +

Shadow space and the swapper are intended to be more or less transparent to the +

user. However, this section is included in the manual to give programmers a +

reasonable feeling for what overlays are like, without getting unnecessarily •

technical, as well as to document some new functions and system controls which +

may be of interest for authors of exceptionally large systems. +

20---makesvs is advised ~o set the variable heraldstring to the concatenation +

2J.

22

of "INTERLISP-10", the month and day of the makesys, and 11 ... " and to call +
herald on this string. Alternatively, makesys can be given as a second +
argument a string to be used instead of "INTERLISP-10", e.g. +
makesys[STREK.SAV;STAR·TREK] would cause the message STAR-TREK followed by +
the date and"···" to be printed when STREK.SAV was run. +

The INTERLISP-to ~wapper was designed by E. L. Wegbreit (PARC)· and J. W.
Goodwin (BBN), and implemented by J. W. Goodwin.

Since compiled code arrays point to atoms for function names, and strings
for error messages, not to mention the fact that programs usually have data
base, which are typically lists rather than arrays, there is still a very
real and finite limit to the total size of programs that INTERLISP-10 can
accomodate. However, since much of the system and user compiled code can
be made swappable, there is that much more resident space available for
these other data types.

3.17

+
+

+
+
+
+
+
+
+

+ 3.4.1 Overlays

+ The shadow space is a very large. auxiliary address space used exclusively for

+ an INTERLISP data type called a swappable array. The regular address space is

+ called the "resident" space to distinguish it from shadow space. Any kind of

+ resident array - compiled code, pointer data, binary data, or a hash array -

+ can be copied into shadow space ("made swappable"), from which it is referred

+ to by a one-word resident entity called a handle. The resident space occupied

+ by the original array can then be garbage collected normally (assuming there

+ are no remaining pointers to it, and it has not been made shared by a makesys).

+ Similarly, a swappable array can be made resident again at any time, but of

+ course this requires (re)allocating the necessary resident space.

+ The main purpose and intent of the swapping system is to permit utilization of

+ swappable arrays directly and interchangeably with resident arrays, thereby

+ saving resident space which is then available for other data types, such as

lists, atoms, strings, etc.

+ This is accomplished as follows: A section of the resident address space is

+ permanently reserved for a swapping buffer.23 ~hen a particular swappable array

+ is requested, it is brought (swapped) in by mapping or overlaying the pages of

+ shadow space in which it lies onto a section of the swapping buffer, Th is

+ process is the swapping or overlaying . from which the system takes its name.

+ The array is now (directly) accessible. However, further requests for swapping

+ could cause the array to be overlaid with something else, so in effect it is

+ liable to go away at any time. Thus all system code that relates to arrays must

+ recognize handles as a special kind of array, fetch them into the buffer (if

+ not already there), when necessary check that they have not disappeared, fetch

+ them back in if they have, and even be prepared for the second fetch to bring

+ the swappable array in at a different place than did the first.

+ 23---------------------------------------··------------------------------------Currently 64 512 word pages.

3.18

The major emphasis in the design of the overlay system has been placed on +

running compiled code, because this accounts for the overwhelming majority of +

arrays in typical systems, and for as much as 60% of the overall data and codo. +

The system supports the running of compiled code directly from the swapping +

buffer, and the function calling mechanism knows when a swappable definition is +

being called, finds it in the buffer if it is already there, and brings it in +

otherwise. Thus, from the user's point of view, there is no need to

distinguish between swappable and resident compiled definitions, and in fact +

ccodep will be true for either. +

3.4.2 Non-Code Arrays +

The data-array functions (elt, !!!!• gethash, puthash, etc.,) do not yet +

recognize swappable arrays, and will generate ARG NOT ARRAY errors if called +

with one. This will be fixed someday, and then users will be free to copy +

resident data arrays into swappable ones or vice-versa. However, note that +

programs which generate and use pointers directly into the bodies of arrays, or +

take CAR or CDR of them, will not work, since they cannot fetch the array in, +

nor guarantee that it would not go away. +

3.4.3 Efficiency +

Once of the most impor.tant design goals for the overlay system was that +

swappable code should not execute any extra instructions compared to resident +

code, once it had been swapped in. Thus, the instructions of a swappable piece +

of code are identical (except for two instructions at the entry point) to those

of the resident code from which it was copied, 24 and similarly when a swappable

24· • ;:h;-;~ i~~~ ~~i,i;--i~~~~~~-t-i~~-s- -a-;e--t~d;~;d·b;·; • b~~~- _r_e_g_i_s_t·e·r·.- -;~ -~~k;- ~;;;;
run equally well at any location in the buffer. The net slowdown due to
this extra level of indirection is too small to measure accurately in tho
overall running of a program. On analytical grounds, one would expect it
to be around 2%.

3.19

+

+

+
+
+
+
+

+ function calls another function (of any kind) it uses the exact same calling

+ sequence as any other code. Thus, all costs associated with running of

·~ swappable code are paid at the point of entry (both calling and returning). 26

+ The cost of the swapping itself, i.e. the fetch of a new piece or swapped code

+ into the buffer, is even harder to measure meaningfully. since two successive

+ fetches of the same function are not the same, due to the fact that the

+ instance created by the first fetch is almost certain to be resident when the

+ second is done, if no swapping is done in between. Similarly, two successive

+ PMAP 1 s (the Tenex operation to fetch one page) are not the same from one moment

+ to another, even if the virtual state of both forks is exactly the same - a

+ difficult constraint to meet in itself .26 Thus, all that can be reported is

+ that empirical measurements and observations have shown no consistent slowdown

-f· in performance of' systems containing swappable functionsp viz a viz resident

+ functions.

3.4.4 Specifications

+ Associated with the overlay system is a datatype called a swparray, (numeric

+ datatype 4), which occupies one word of resident space, plus however much of

+ shadow space needed for the body of the array. arglist, f.!!m, nargs, 9etd,

+
+
+
+
+
+
+

+
+
+
+
+

putd, argtype, arraysiza, changename, calls, printstructure, break. advise, and

~~---If the function in question does nothing, e.g. a compiled

26

(LAMBDA NIL NIL), it costs approximately twice as much ,to enter 1 ts
definition if it is swappable as compared to resident. However, very small
functions are normally not made swappable (see mkswapp, page 3.21),
because they don't save much space, and are (typically) entered frequently.
Larger programs don't exhibit a measurable slow down since they amortize
the entry cost over longer runs.

The cost of fetching is probably not in the mapping operation itself but in
the first reference to the page, which has a high probability of faulting.
This raises the problem of measuring page fault activity, another morass of
uncertainty. The BBN INTERLISP group has a project in progress to measure
the interaction of INTERLISP·10 and TENEX.

3.20

edita all work equally well with swappable as resident programs. ccodep is true +

for all compiled functions/definitions. +

swparray[n;p;v]

swparrayp[x)

mkswap[x]

mkunswap[x]

mkswapp[fname;cdef]

Analogous to array. Allocates a swappable array.

Analogous to arrayp. Returns x if 2S is a swappable

array and, NIL otherwise.

If ~ is a resident array. returns a swappable

array which is a copy of 2S· If ~ is a literal

atom and ccodep[x] is true. its definition is

copied into a swappable array, and it is

(undoably) redefined with the latter. The value

of mkswap is lS·

the inverse of mkswap. 2£ is either a swappable

+

+

•
+

+

+

+

array, or an atom with .swapped definition on its +

CODE property. +

All compiled definitions begin life as resident +

arrays, whether they are created by load, or by +

compiling to core. Before they are stored away +

into their atom's function cell, mkswapp is +

applied to the atom and the array. If the value +

of mkswapp is T, the definition is made +

swappable: otherwise, it is left resident. By +

redefining mkswapp or advising it, the user can +

completely .control the swappability of all future •

definitions as they are created. The initial +

definition of mkswapp will make a function +

swappable if (1) noswapflg is NIL, and (Z) the +

3.21

+

+

+

+

+

+
+
+

setsbsize[n]

name of the function is not on noswapfns, and (3)

the size of its definition is . greater than

mkswapsize words, initially 128.

Sets the size of the swapping buffer to !!• a

number of pages. Returns the previous value.

setsbsize[] returns the current size without

changing it.27

27---Currently, the system lacks error recovery routines for situations such as
a call to a swappable function which is too big for the swapping buffer, or
when the size is zero. Therefore, setsbsize should be used with care.

3.22

Index for Section 3

ARG tJOT ARRAY (error message)
ARRAY[tJ; P ;VJ SUBR •••••••••••••••••••••••••••••••
array header .•••••••.•••••••••••••••••••••••••••
array pointer ••.•.••••••••.•••••••••••••••••••••
ARRAYP(X] SUBR .•••••••••••••••••••••••••••••••••
arrays
atoms
carriage-return II •••••••••

CCODEP[F1J] SUBR .•.••••.•••••••••••••••••••••••••
CODE (property name) •.••••.•••••••••••••••••••••
cor.ipacting ...••..••••.•.••••••••••••••••••••••••
CONCAT[Xl;X2; •.. ;Xn] SUBR* ••••••••••••••••••••••
CONS[X; Y] SUBR •...••.•••••••.•••••••.•••••..••••
data types •.•....•.••.••.•••••••••••••••••••••••
E (in a floating point number) ••••••••••••••••••
ELT[A;IJ] SUBR ••••••..••••.•••••••••••.•••..•••••
ELTO[A;IJ] SUBR ••••••.•••••••••••••••••••••.•••••
end-of-1 ine
EQP[X;Y] SUBR •••••••••••••••••••••••••••••••••••
escape character •.••••••••••••••••••••••••••••••
floating point numbers ••••••••••••••••••••••••••
FLTFMT[N] SUBR ••••••••••••••••••••••••••••••••••
free-1 ist II

function definition cell
garbage collection ••.•••••••••••••••••••••••••••
GENSYM[CHAR] ..••••••••••••••••••••••••••••••••••
handle .. .
hash arrays I I• I <II a I I I I IO GI e I 0 I 0

HtRALD[STRHlG] SUBR •••••••••••••••••••••••••••••
HERALDSTRING (system variable/parameter) ••••••••
i11tegers
large integers
LINELEl1GTH[N] SUBR ••••••••••••••••••••••••••••••
line-feed
LIST[Xl ;X2; ••• ;Xn] SUBRia ••••••••••••••••••••••••
list nodes
lists .. .
literal atoms •..••••••••••••••••••••••••••••••••
MAKESYS[FILE] EXPR •••••.•••.•••.•••.••••••••••••
MAKESYSDATE (system variable/parameter) •••••••••
MHIFS[t~;TYP] SUBR •••••••••••••••••••••••••••••••
MKA TOM[X] SUBR ••••••••••••••••••••••••••••••••••
MKS TR ING[X] SUBR •••••••••••••••••••••••••••• , •••
MKSWAP[X J•....• , . , , .••
MKSWAPP[f~M ;OF] ••••••••••••••••••••••••••• , ••••••
MKSWAPSIZE (Overlay variable/parameter) •••••••••
MKUl~SWAP[X] •••••••••••••••••••••••••••••••••••••
fJOB If·JD •'
NOSWAPFNS (Overlay variable/parameter) ••••••••••
octal ,
overlays .. ,
PACK[x] SUBR••••••.••.... I •• I I I I ••••••••••

P.age .. .
pname cell ··········•••.•e•••••••e••·············
pnames
pointer

..
••••••••••••••••••• 0 • •- •••••••••••••••••••

INDEX.3.1

Page
Numbers

3. 19
3.9,21
3.9
3.9
3.21
3.1,9,12.14
3.1,12
3.2
3.19,21
3.21
3.14
3 .11
3.8,12
3.1-12
3.7
3.9
3.9
3.2
3.6
3.2
3.1,5,7,12
3.7
3.13-14
3.4
3.12-15
3.2
3 .18
3. 1
3.17
3. 11
3.5
3.1,6,12
3.9
3.2
3.8
3.9.12
3. 1. 8
3.2,4
3 .16
3 .16
3.14-15
3.2-3,6-7
3.11-12
3.21
3.21
3.22
3.21
3.4
3.22
3.6,9
3.17·22
3.2-3,6-7,12
3 .12
3.4
3.1-2,4-5,12
3 .1

PRINT[X;FILE]
PRINTLEVEL(N]
PRINl[X;FILE]
PRIN2[X;FILE]
private pages
property list

SUBR
SUBR
SUBR
SUBR

Q (following a number)
RADIX[N] SUBR
RECLAIM[N] SUBR
relocation information
RUt~ (tenex command)
SETA[A;N;V]

(in arrays)

SETO[A;N;V]
SETSBSIZE[N] SUBR
shared pages
shared system
sharing
small integers
SMALLP[N]
space
storage allocation
string characters
string pointers
strings
SUBSTRING[X;N;M] SUBR
swappable array
swapping buffer
SWPARRAY[N;P;V] SUBR
SWPARRAYP[X] SUBR
TENEX

.... "

unboxed numbers (in arrays)
[

• • • • • • • • • a • • • • .- • • • • •
II

• (followed by a number)
% (escape character)
(
()
)

...

(in a floating point number)
]

.........

INDEX.3.Z

...

Page
Numbers

3.2,9,11
3.9
3.2,9,11
3.2,9,11
3 .16
3.4
3.6
3.6
3.13·14
3.9
3 .16
3.9
3.9
3.22
3.16
3 .16
3 .16
3 .1, 6
3.6
3.Z
3 .12
3.1,11·12
3.1,11·12
3.11
3 .11
3 .18
3 .18
3.20·21
3.21
3.Z,7,16
3.9
3.2
3.2,11
3.9
3.2,11
3.2
3.8
3.2
3.8
3.7
3.Z

SECTION 4

FUNCTION TYPES AND IMPLICIT PROGN

In INTERLISP, each function may independently have:

a. its arguments evaluated or not evaluated;

b. a fixed number of arguments or an indefinite number of arguments;

c. be defined by an INTERLISP expression, by built-in machine code, or by

compiled machine code.

Hence there are twelve function types (Z x 2 x 3).

4.1 Exprs

Functions defined by INTERLISP expressions are called exprs. Exprs must begin

with either LAMBDA or NLAMBOA, 1 indicating whether the arguments to tho

function are to be evaluated or not evaluated, respectively. Following the

LAMBDA or NLAMBDA in the expr is the 'argument list', which is either

(1) a list of literal atoms or NIL (fixed number of arguments); or

(2) any literal atom other than NIL, (indefinite number of arguments).

Case (1) corresponds to a function with a fixed number of arguments. Each atom

1•••-~-----•••••••••••••••••••••a••••D••••••••••o~•••••••••••••••••••••••••-•••

Where unambiguous, the term expr is used to refer to either the function,
or its definition.

4.1

in the list is the name of an argument for the function defined by this

expression. When the function is called, its arguments will be evaluated or

not evaluated, as dictated by whether the definition begins· with LAMBDA or

NLAMBDA, and then paired with these argument names.2 This process is called

"spreading" the arguments, and the function is called a spread· LAMBDA or a

spread-NLAMBOA.

Case (2) corresponds to a function with an indefinite number of arguments.

Such a function is called a no spread function. Ir its definition begins with

NLAMBDA, the atom which constitutes its argument list is bound to the list of

arguments to .the function (unevaluated). For example, if FOO is defined by

(ULAMBDA X --), when (FOO THIS IS A TEST) is evaluated, X will be bound to

(THIS IS A TEST).

If a nospread function begins with a LAMBDA, indicating its arguments are to be

evaluated, each of its n arguments are evaluated and their values stored on the

pushdown list. The atom following the LAMBDA is then bound to the number or
arguments which have been evaluated. For example, if FOO is defined by

(LAMBDA X --) when (FOO ABC) is evaluated, A, B, and Care evaluated and Xis

bound to 3. A built-in function, arg[atm;m), is available for computing the

value of the mth argument for the lambda-atom variable !!!!!· arg is described

in section 8.

2---~~~;-~h~~--;~;-;~~~;1~;-~~~~i!-~~~--;~;;~;;;·;;i;~~;~-~~~~~~~~~--b;-~;ii~~~
eval. In fact, since the function type can specify only that all arguments
are to be evaluated or none are to be evaluated, if it is desirable to
write a function which only evaluates some of its arguments, e.g. setq, the
function is defined as an nlambda, i.e. no arguments are evaluated in the
process of calling the function, and then included in the definition itself

+ are the appropriate calls to eval. In this case, the user should also put
+ on the property list .of the function under the property INFO the value
+ EVAL to inform the various system packages such as . DWIM, CL ISP,
+ PRINTSTRUCTURE, etc., that this function in fact does evaluate its
+ arguments, even though it is an nlambda. ·

4.2

4.2 Compiled functions

Functions defined by expressions can be compiled by the INTERLISP compiler, as

described in section 18. "The Compiler and Assembler". In XNTERL ISP· 10,

functions may also be written directly in machine code using the ASSEMBLE

directive of the compiler. Functions created by the compiler, whether from.s

expressions or ASSEMBLE directiv0s, are referred to as compiled functions. In

INTERLISP-10, compiled functions may be resident or swappable, as described in

section 3.

4.3 Function Type

The function f!:!m returns the function type of its argument. The value of

fntyp is one of the following 12 types:

EXPR .

FEXPR

EXPR*

FEXPR*

CEXPR

CFEXPR

CEXPR111

CFEXPR•

SUBR

FSUBR

SUBR11

FSUBR•

The types in the first c~lumn are all defined by expressions. The types in tho

second column are compiled versions of the types in the first column, as

indicated by the prefix ~· In the third column are the parallel types for

built-in subroutines. Functions of types ii) the first two rows have a fixed

number of arguments, Le., are spread functions. Functions in the third and

fourth rows have an indefinite number of arguments, as indicated by the

suffix 11t The prefix f. indicates no evaluation of arguments. Thus, for

example; a CFEXPR* is a compiled form of a nospread·NLAMBDA.

4.3

A standard feature of the INTERLISP system ts that no error occurs if a spread
function is called with too many or too Jew arguments. IJ a Junction is called
with too many arguments, the extra arguments are evaluated but ignored. IJ a
function is called with too Jew arguments. the un.supplied ones will be
delivered a.s 1Vll. Jn fact. the Junction it.self cannot distinguish between
being given 111/l as an argument. and not betng atuen that argument. e.g .•
(FOO) and (FOO 1Vll) are exactly the .same for .spread Junctions.

4.4 Progn

progn is a function of an arbitrary number of arguments. ~ evaluates tho

arguments in order and returns the value of the last, i.e., it is an extension

of the function ~ of LISP 1.5. Both ~ and lambda/nlambda expressions

have been generalized to permit 'implicit progns• as described below.

4.5 Implicit Progn

The conditional expression has been generalized so that each clause may contain

n forms (n 2 1) which are interpreted as follows:

ccorw
(Pl Ell E12 E13)
(P2 E21 E22)
(P3)
(P4 E41))

[1]

will be taken as equivalent to (in LISP 1.5):

(COND
(Pl (PROGN Ell E12 E13))
(P2 (PROGN E21 E22))
(P3 P3) [2)
(P4 E41)
(T NIL))

Note however that P3 is evaluated only once in [1], while it is evaluated a

second time if the expression is written as in [2). Thus a clause in a cond

with only a predicate and no following expression causes the value of the

4.4

predicate itself, if non-NIL, to be returned. Note also that NIL is returnod

if all the predicates have value NIL, i.e., the cond 'falls off the end'. No

error is generated.

LAMBDA and NLAMBOA expressions also allow implicit !!!..!lll.!!'s: thus for example:

(LAMBDA (Vl V2) (Fl V!) (F2 V2) NIL)

is interpreted as:

(LAMBDA (Vl V2) (PROGN (Fl V1) (F2 V2) NIL))

The value of the last expression following LAMBDA (or NLAMBDA) is returned as

the value or the entire expression. In this example, the function would always

return NIL.

4.5

Index for Section 4

ARG[VAR;M] FSUBR
argument evaluation
argument list
ASSEMBLE

.................

CEXPR (function type)
CEXPR• (function type)
CFEXPR (function type)
CFEXPR• (function type)
compiled functions

.... • .
compiler •••• Ill ••••••••

CONO[Cl;C2; ... ;Cn] FSUBR•
EVAL[X] SUBR
EXPR (function type)
exp rs
EXPR• (function type)

type)
.

FEXPR (function
FEXPR• (function type)
fixed number of arguments
FrHYP[X]
FSUBR (function type)

.. ~

FSUBR* (function type)
function types
implicit progn
incorrect number of arguments
indefinite number of arguments
INFO (property name) ·
LAMBDA
ti LAMBDA
nospread functions
PROGN[Xl;X2; ... ;Xn] FSUBR*
pushdown list
spread functions
spreading arguments
SUBR (function type)
SUBR• (function type)
too few arguments

....
.....

...........

......... ...

....

.•

too many arguments

INDEX.4.1

Page
Numbers

4.2
4 .1-2
4 .1
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.4
4.2
4.3
4 .1
4.3
4.3
4.3
4 .1
4.3
4.3
4.3
4 .1-4
4.4
4.4
4.2
4.2
4.1-2,5
4.1-2,5
4.2
4.4
4.2
4.2
4.2
4.3
4.3
4.4
4.4

SECTION 5

PRIMITIVE FUNCTIONS AND PREDICATES

5.1 Primitive Functions

car[x]

cdr[x]

caar[x] = car[car[x]J

cadr[x) = car[cdr[x]]

cddddr[x] =
cdr[cdr[cdr[cdr[x))]]

cons[x:y]

.£!!..!: gives the first element of a list ~. o·r the

left element of a dotted pair ~. For 11 teral

atom, value is top level binding (value) of the

atom. For all other nonlists, e.g. strings,

arrays, and numbers, the value is undefined (and

on some implementations may generate an error).

cdr gives the rest of a list (all but the first

element). This is also the right member of a

dotted pair. If ~ is a literal atom, cdr[~J gives

the property list of ~· Property lists are

usually NIL unless modified by the user. The

value of cdr is undefined for other nonlists.

All 30 combinations of nested ~

and cdrs up to ! deep are included

in the system. All are compiled

open by the compiler.

£.Q!!! constructs a dotted pair of ~ and X· If x is

a list, ~ becomes the first element of that list.

To minimize drum accesses the following algorithm

5 .1

cons[x;y) is placed

is used in INTERL lSP· 10, ror finding a page on

which to put thf constructed INTERLISP word.

1) on the page with x if xis a list and there is room;

otherwise

2) on the page with ! if! is a list and there is room:

otherwise

3) on the same page as the last £.Q!l! if there is room;

otherwise

4) on any page with a .spectJted mtntmum of storage, presently 16 LISP

words.

conscount[)

rplacd[x;y)

value is the number or £.Q!!.!es since this INTERLISP

was started up.

Places the pointer ·~ in the decrement. i.e. cdr,

or the cell pointed to by ~· Thus it physically

changes the internal list structure of ~· as

opposed to £.Q!l! which creates a new list element.

The only way to get a circular list is by using

rplacd to place a pointer to the beginning of a

list in a spot at the end of the list.

The value of rplacd is !· An attempt to rplncd

NIL will cause an error, ATTEMPT TO RPLAC NIL,

(except for rplacd[NIL;NIL]). For ~ a literal

atom, rplacd[x;y] will make x be the property list

of !· For all other non-lists, the effect of

rplacd is undefined.

5.2

rplaca[x;y) similar to rplacd, but replaces the address

pointer of 2!• Le., ill• with :i· The value of

rplaca is 2!· An attempt to rplaca NIL will cause

an error, ATTEMPT TO RPLAC NIL, (except for

rplaca[NIL;NIL]). For ~ a 11 teral atom,

rplaca[x;y) will make x be the top level value for

~· For all other non-lists, the effect of rplaca

is undefined.

Convention: 1Vaming. a function by prefixing an ext.sting Junction name with J_
u.sual ly indicates that the new Junction i.s a J.ast ver.sion of the
old. i.e .. one which has the .same definition but compile.s open and
runs without any '.safety• error checks. ·

frplacd[x;y] Has the same definition as rplacd but compiles

frplaca[x;y]

quote[x]

kwote[x]

open as one instruction. Note that no checks are

made on ~' so that a compiled frplacd can clobber

NIL, producing strange and wondrous effects.

Similar to frplacd.

This is a function that prevents its arguments

from being evaluated. Its value is~ itself, e.g.

(QUOTE FOO) is F00. 1

(LIST (QUOTE QUOTE) x),

if ~=A, and l=B, then

(KWOTE (CONS x y)): (QUOTE (A . B)).

i---;~~~~-~~~~~~-~~~~;-~~;;-~h;~-~~;-;;~~~;~~:-;:~:-(o~~~E-E;~~-(co~;-~-~>>~-~;
almost always a parentheses error, and one that would otherwise go
undetected, guote itself generates an error in this case,
PARENTHESIS ERROR.

5.3

The conditional function of INTERLISP, cond, takes

an indefinite number of arguments £ 1 ,£2 , Ek•

called clauses. Each clause £1 is a list <£u
~ni> of n ~ 1 items, where the first element is

the predicate, and the rest of the elements tho

consequents. The operation of cond can be

paraphrased as IF e11 THEN e21 ... 9 n1

ELSEIF e1z THEN ezz enz ELSEIF e13

The clauses are considered in sequence as follows:

the first expression !ti of the clause £1 is

evaluated and its value is classified as false

(equal to NIL) or l!JU! (not equal to NH). If the

value of !ti is ~. the expressions !zi £ni

that follow in clause ,£1 are evaluated in

sequence, and the value or the conditional is the

value of !ni' the last expression in the clause.

In particular, if n=l, i.e., if there is only one

expression in the clause s:.1 , the value of the

conditional is the value of !u. (which is

evaluated only once).

If !ii is false, then the remainder of clause £i

is ignored, and the next clause £i+t is

considered. If no !ii is true for an~ clause, tho

value of the conditional expression is NIL.

selects a form or sequence of forms based on the

value of its first argument ~· Each x1 is a list

of the form <.~ 1 !u !zi . . . !ki) where ! 1 is the

selection key. The operation of selectq can be

paraphrased as:

5.4

IF ~=s 1 THEN e 11

ELSEIF ~=sz THEN

If !i is an atom, the value of ~ is tested to soe

if it is ~ to !i (not evaluated). If so, the

expressions e11 ... eki are evaluated in sequence,

and the value of the selectg is the value of the

last expression evaluated, i.e. ~ki"

If !i is a list, the value of ! is compared with

each element (not evaluated) of !i• and if ~ is .£g

to any one of them, then e 11 to eki are evaluated

in turn as above.

If i 1 is not selected in one of the two ways

described, ~i+! is tested, etc., until all the ~·s

have been tested. If none is selected, the value

of the selectg is the value of ! . !: must be

present.

An example of the form of a selectg is:

[SELECTQ (CAR X)
(0 (PRINT FOO)

(FIE X))
((A E I 0 U)

(VOWEL X))
(COND

((NULL X)
NIL)

(T (QUOTE STOP]

which has two cases, Q and (A E I 0 U) and a

default condition which is a cond.

selectg compiles open, and is therefore very fast:

5.5

however, it will not work if the value of ~ is a

list, a large integer, or floati~g point number,

since selectg uses !9. for all comparisons.

evaluates its arguments in order, that is, first

;$1 • then ;;s2 , etc, and returns the value of its

first argument !t• e.g. (PROG1 X (SETQ X V)) sets

~ to ~. and returns :5'S original value .

.2!.2..9.!l evaluates ea th of its arguments in order,

and returns the value of its last argument as its

value. fil:.2.911 is used to specify more than one

computation where the syntax allows only one, e.g.

(SELECT() ... (PROGN •.•)) allows evaluation of

several expressions as the default condition for a

selectg.

This function allows the user to write an ALGOL

like program containing INTERLISP expressions

(forms) to be executed. The first argument, args,

is a list of local variables (must be NIL if no

variables are used). Each atom in args is treated

as the name of a local variable and bound to NIL.

args can

(atom form).

also contain lists of the form

In this case, il.2!!! is the name of

the variable and is bound to the value of f.:QJ::.m.

The evaluation takes place before any of the

bindings are performed, e.g.,

(PROG ((X Y) (Y X)) ...) will bind ;;s to the value

or ~ and ~ to the (original) value or ;;s.

5.6

go(x]

return[x)

The rest of the ~ is a sequence of non-atomic

statements (forms) and atomic symbols used as

labels for 9.Q• The forms are evaluated

sequentially; the labels serve only as markers.

The two special functions 9.Q and return alter this

flow of control as described below. The value of

the ~ is usually specified by the function

return. If no return is executed, 1.e., if the

prog "falls off the erid, 11 the· value of the ~ is

NIL.

9.Q is the function used to cause a transfer in a

~· (GO L) will cause the program to continue

at the label L. A 9.Q can be used at any level in

a illfl• If the label is not found, 9.Q will search

higher progs within the same Junction, e.g.

(PROG -- A (PROG (GO A))). If the label is

not found in the function in which the E.r.Q.U

appears, an error is generated, UNDEFINED OR

ILLEGAL GO.

A return is the normal exit for a Q!..Q.2· Its

argument is evaluated and is the value of the E.t:..£9.

in which 1t appears.

If a f1..2. or return is executed in an interpreted Junction which is not a proa,
the fJ.2. or return will be executed in the last interpreted e.!2Jl. entered if any,
otherwise cause an error.

fl!! or return instde of a compiled Junction that ts not a l!.!!lil. is not al lotued,
and will cause an error at compile time.

As a corollary, .9.2 or return in a functional argument, e.g. to .!2..1:!• will not

5.7

work compiled. Also, since nlsetg's and ersetg's compile as separate

functions, a .9.2 or return cannot be used inside of a compiled nlsetg or ersetq

if the corresponding .tU:,rul is outside, i.e. above, the nlsetg or ersetg.

set[x;y]

setq(x;y]

setqq(x;y]

This function sets is to ~· Its value is x. If ~

is not a literal atom, causes an error.

ARG NOT ATOM ·SET. If 2S is NIL. causes an error,

ATTEMPT TO SET NIL. Note that ·.!.!£ is a normal

lambda-spread function. i.e.. its arguments are

evaluated before it is called. Thus, if the value

of 2S is £• and the value of ~ is e. then set[x;y]

would result in £ having value !?_, and !! being

returned as the value of ill·

All nlambda version of set: the first argument is

not evaluated, the second is. 2 Thus if the value

of X is c and the value of Y is B, (SETQ X Y)

would result in X (not C) being set to B. and B

being returned. If ;s is not a literal atom, an

error is generated, ARG NOT ATOM • SET. If ;s is

NIL, the error ATTEMPT TO SET NIL is generated.

Like .. setq except that neither argument is

evaluated, e.g. (SETQO X (A B C))

(A B C).

sets to

2- --~~~~;-;;~~- ~;-~~- ~-l~~bd~·:·n·e·t·t;;e-;~·r·g·u~"a·n·t--;;·;~;;~;;;d· d~;i~~ .. ~~; .. ~;ii~~~
process. However, setg itself calls eval on its second argument. Note
that as a result, typing (SETQ var form) and SETQ(var form) to lispx is
equivalent: in both cases ~ is not evaluated, and form is.

5.8

rpaq(x;y]

rpaqq[x;y)

like setg, except always works on top lave l

binding of ~· i.e. on the value cell. rpoq

derives its name from r..E,lac!! guote, since it is

essentially an nlambda version of

(RPAQ FOO form) is

(RPLACA (QUOTE FOO) form).

like .2.il.!1.9. for top level bindings.

rplnca, e.g.

equivalent to

~ and ~ are used by prettydef (Section 14). Both ~ and rpagg

generate errors if ~ is not atomic. Both are affected by the value of dfnflg

(Section 8). If dfnflg :.: ALLPROP (and the value of 1$ is other than NOB IND),

instead of setting ~· the corresponding value is stored on the property list of

x under the property VALUE.

Resetvar and Resetform

resetvar[var;new-value;form] The effect of resetvar is the same as

form)), except

work on GLOBAL

(PROG ((var new-value)) (RETURN

that resetvar is designed to

variables, i.e. variables that must be reset, not

rebound (see section 18). resetvar resets the

variable (using frplaca), and then restores its

value after evaluating form. The evaluation of

form is errorset protected so that the value is

restored even if an error occurs. resetvar also

adds the old value of .Yi!! to a global list, so

that if the user types control 0 D (or equivalently

in INTERLISP-10, control·C followed by REENTER)

while form is being evaluated, the variable will

5.9

be restored by the top level INTERLISP executive.

The value of resetvar is the value returned by

form, if no error occurred. Otherwise. resetvnr

generates an error (after restoring the value of

Y.fil:). resetvar compiles open.

For example, the editor calls lispx to execute edito.r history

commands by performing (RESETVAR LISPXHISTORY EDITHISTORY (LISPX ··)), thereby

making lispx work on edithistory instead of lispxhistory.

The behavior of many system functions is affected by calling certain functions,

as opposed to resetting variables. e.g. printlevel, linelength, input, output,

radix. ~. etc. The function resetform enables a program to treat these

functions much like variables, and temporarily change their "setting".

resetform[form1;form2] nlambda, nospread. formt is evaluated, then form2

is evaluated, 'then form1 is 'restored', e.g.

(RESETFORM (RADIX 8) (FOO)) will evaluate (FOO)

while ~ is 8, and then restore the original

setting of radix.

forml must return as its value its "previous

setting" so that its effects can be undone by

applying£!!.!: of forml to this value.

resetform is errorset protected lik~ resetvar, and

also records its information on a global list so

that after control-D, formt is properly restored.

The value of resetform is the value returned by

f'orm2. if no error occurred. Otherwise,

5 .10

resetform generates an error (after restoring

forml). resetform compiles open.

Since each call to resetvar or resetform involves a separate errorsot and some +

additional overhead, the functions resetlst and reset save provide a more +

efficient (and convenient) way or performing several resetvars and/or +

resetforms at the same time. +

resetlst[resetx]

resetsave[resetxJ

nlambda, nospread. resetx is a list of forms. +

resetlst sets up the errorset so that any reset +

operations performed by resetsave are restored +

when the evaluation of resetx has been completed +

(or an error occurs, or a control-D is typed). +

The value of resetlst is the value of the last +

form on resetx, if no .error occurs, otherwise +

resetlst generates an. error (after performing the +

necessary restorations). resetlst compiles open. +

nlambda, nospread function for use under a

resetlst. Combines functions of resetvnr nnd

resetform. If £!! of resetx is atomic, acts like

resetvar, e.g.

(RESETSAVE LISPXHISTORY EOITHISTORV) res~ts the +

value of lispxhistory to be ed'ithistory and +

provides for the original value of lispxhistory to +

be restored when the resetlst completes operation, +

(or an error occurs, or a control·D is typed). +

If ill of resetx is not atomic, reset save acts +

like resetform, e.g. (RESETSAVE (RADIX 8)) +

performs (RADIX 8), and provides for ~ to be +

reset to its original value when the resetlst +

5.11

+

+

+

+

+

+

+

+

+

+

+

+

+

+

completes. For functions which do not return

their. "previous setting", resetsave can be given

the restoration expression as a second argument.

e.g.

[RESETSAVE(SETBRK •·)(LIST(QUOTE SETBRK)(GETBRK}. 3

(RESETSAVE NIL form) can be used to treat the

value of f2rm as a restoration expression, e.g.

(RESETSAVE NIL (LIST (QUOTE CLOSEF) FILE)) · will

cause !ll! to be closed when the -resetlst that the

resetsave is under completes (or an error occurs

or a control·D is typed).

Note that reset save provides a way of

condiUonall11 resetting a variable or form, e.g.

(RESETLST ·- (COND (·· (RESETSAVE ··))) -·).

resetsave compiles open. Its value is not a

+ •useful' quantity.

+
+

5.Z Predicates and Logical Connectives

atom[x]

li ta tom[x]

nomberp(x]

is T if! is an atom; NIL otherwise.

is T if 2S is a literal atom, i.e., an atom and not

a number, NIL otherwise.

is 2S if 2S is a number, NIL otherwise.

5.12

Convention: Funcitons that end in 2 are usually predicates. i.e. they test for
some condition.

stringp[x]

arrayp[x]

listp(x]

is x if ~ is a string, NIL otherwise. 4

is ~ if~ is an array, NIL otherwise.

is 2f i1f ~is a listastructure, i.e., one created

by one or more conses; Nll otherwise.

Note that arr~ys and strings are not atoms. but are also not lists. i.e. both
atom and l i.stp will return lVIL when given an array or a s trt.ng.

nlistp[x]

eq(x;y]

neq[x;y]

null[x]

not[x]

eqp[x;y]

not[listp[xJ]

The value of ~ is T, if ~ and l are pointers to

the same structure in memory, and NIL otherwise.

~ is compiled open by the compiler. Its value is

not guaranteed T f'or equal numbers which are not

small integers. See !9.J?·

The value of !!!.Q. is T, if ~ is not !9. to ~· and

NIL otherwise.

eq[x;NIL]

same as m!.!1· that is eq[x;NIL].

The value of ill is T if ~ and l are !!I• i.e.

4--~-----------------for other string functions, see Section 10.

5.13

pointers to the same structure in memory. or if ~

and ~ are numbers and are equal in value. 6 I ts

value is NIL otherwise.

equal[x;y] The value of egual is T (1) if ~ and ~ are ~,

i.e. pointers to the same structure in memory; or

6

(2) ill• i.e. numbers with equal value; or (3)

strequal, i.e. strings containing the sam~

sequence of characters; or (4) lists and £!.!.: of ~

is equal to ill of ~· and ill of ~ is equal to ill

of ~· 6 The value of equal is NIL otherise. Note

that ~ and ~ do not have to be !!I·

Takes an indefinite number of arguments (including

O). If all of its arguments have non-null value,

its value is the value of its last argument.

otherwise NIL. E.g. and[x:member[x;y]] will have

as its value either NIL or a tail of~· and[J=T.

Evaluation stops at the first argument whose value

is NIL.

Takes an indefinite number of arguments (including

O). Its value is that of the first argument whose

value is not NIL, otherwise NIL if all arguments

have value NIL. E.g. or[x:numberp[y)) has its

value~· ~. or NIL. or[J=NIL. Evaluation stops at

the first argument whose value is not NIL.

A loose description of equal might be to say that ~ and ~ are equal if they
print out the same way.

5.14

every[everyx;everyfni;everyfn2] ls T if the result of applying everyfnl

to each element in everyx is true, otherwise NIL.

E.g., every[(X V Z); ATOM]=T.

every operates by computing

everyfn1[car[everyx]J. 7 If this yields NIL. every

immediately returns NIL. Otherwise, every computes

everyfn2[everyx], or cdr[everyx] if everyfn2=NIL,

and uses this as the 'new' everyx, and the process

continues, e.g. every[x:ATOM:CDDRJ is true if

every other element of ~ is atomic.

every compiles open.

some[somex;somefn1;somefn2J value is the tail of~ beginning with the

first element that satisfies somefn1. 1. e., for

which somefn1 applied to that element is true.

Value i~ NIL if no such element exists.

E.g., some[x;(LAMBDA (Z) (EQUAL z V))J is

equivalent

analagously

to

to

member[y;x). operates

every. At each stage,

somefnt[car[somex];somex) is computed, and if this

is not NIL, ~ is returned as the value of

!2.!!!!. Otherwise, soll'iefn2[somex] is computed, or

cdr[somex] if somefn2=NIL, and used for the next

~·

!.Q!!1! compiles open.

,-----------------------------~--Actually, everyfn1[car[everyx];everyx] is computed, so for example everyfn1
can look at the next element on everyx if necessary.

5 .15

notany(somex:s~mefn1,somefn2J same as not[some[somex:somefn1:somefn2)J

notevery[everyx;everyfnt:everyfn2J not[every[everyx;everyfn1:everyfn2)J

memb[x;yJ

fmemb[x:yJ

member[x:yJ

Determines if! is a member of the list ~· i.e.,

if there is an element of X fill to ~. If so, its

value is the tail of the list x starting with that

element. If not, its value is NIL.

Fast version of !!!fill!!? that compiles open as a five

instruction loop, terminating on a NULL check.

Interpreted, gives an error,

BAD ARGUMENT • FMEHB, if ~ ends · in a non· list

other than NIL.

Identical to memb except that it uses equal

instead or !9. to check membership of ! in X·

The reason for the existence of both memb and member ts that !!I. compiles as one
instruction but equal requires a Junction call. and ts therefore considerablv
more expenstue. Whereuer possible. the user should write (and use> Junctions
that use !!I. instead of equal. ·

tailp[x;yJ

assoc(x;y]

Is ~.~if! is a list and a tail of~· i.e., ! is

!_g to some number of cdrs ~ 08 of ~· NIL

otherwise.

xis a list of lists (usually dotted pairs). The

value of .!!!2.£ is the first sublist of ~ whose ~

------------~------------~------------------····-------------------------------8 . .
If ~ is £,g to some number of s.!!!:! 2 1 of l• we say! is a proper tail.

5.16

fassoc[x;y]

sassoc[x;y]

is !S to ~· If such a list is not found. tho

value is NIL. Example:

assoc[B;((A • 1) (B . 2) (C . 3))] ~ (B . 2).

Fast version of ~ that compiles open as a 6

instruction loop, terminating on a NULL check.

Interpreted, fassoc gives an error if ~ ends in a

non-list other than NIL, BAD ARGUMENT - FASSOC.

Same as ~ but uses equal instead of ~·

5.17

Index for Section 5

ALLPROP ...•..••.•.••.••••.•..••••••• I

AND[Xl;X2; ••• ;Xn] FSUBR* ••••••••••••••••••••••••
ARG NOT ATOM - SET (error message) ••••••••••••••
ARRAYP[X] SUBR ••••••••••••••••••••••••••••••••••
arrays .. .
ASSOC[X;Y] •...•....••.••••••.•.•••.•••••••••.••••
ATOM[X] SUBR•.••....•.•.•...•••••.•.••••••••
ATTEMPT TO RPLAC NIL (error message) •••••••••• ,.
ATTEMPT TO SET NIL (error message) ·····•···•····
BAD ARGUMENT - FASSOC (error message) •••••••••••
BAD ARGUMENT - FMEMB ~error message) ••••••••••••
CAR[X] SUBR••..•.•••••••••••••••••••
CDR[X] SUBR
COllD[C1;C2; ••• ;Cn] FSUBR• •••••••••••••••••••••••
cond clause
COIJS[X; Y] SUBR ••••••••••••••••••••••••••••••••••
cons algorithm -.......................... .
CONSCOUNT(N) SUBR •••••••••••••••••••••••••••••••
control-D .. .
OFNFLG (system variable/parameter) .••..•••..••••
dot teci pair
EO[X; Y] SlfBR ...•.••..•..•.••..••••••••••.•••.•..•
EQP[X;Y) SUBR •••••••••••••••••••••••••••••••••••
EQUAL[X;Y]•••.••.•••••••••••.•.••.•••••••
ERRORSET[U ;VJ SUBR
ERSETO[ERSETX] NL •••••••••••••••••••••••••••••••
EVERY[EVERYX;EVERVFN1;EVERVFN2] •••••••••••••••••
false .. .
FASSOC[X;Y] ·····················••••••••••••••••
Ff1EMB[X;Y]•......•.•••..••.••.•••••.••••••••
FRPLACA[X;Y] SUBR •••••••••••••••••••••••••••••••
FRPLACD[X;Y] SUBR •••••••••••••••••••••••••••••••
GCGAG[MESSAGE] SUBR •••••••••••••••••••••••••••••
global variables
GO[X) f SU BR* ..•...•.•..•••.•••••••••••••••.•••.•
IL LE GAL RE TURN (error message) ••••••••••••••••••
INPUT[FILE] SUBR ••••••••••••••••••••••••••••••••
KWOTE(X]••...••..•••••••••.••..•••... • • •
large integers
LIUELEIJGTH[IJ] SUBR ••••••••••••••••••••••••• , ••••
LIST P [X] SU BR .•••.•••..••••••••••••••••••••••••.
lists .. .
LITATOM[X] SUBR •••••••••••••••••••••••••••••••••
literal atoms
local variables •
MEMB[X;Y] •••••••••••••••••••••••••••••••••••••••
MEMBER[X;Y] •••••••••••••••••••••••••••••••••••••
f·JEO[X;Y]•.•••••••••••.•••••••••••••••••••••
fJLISTP[X]••.....•••.•.•••.••••••
llLSETQ[NLSETX] NL •••••••••••••••••••••••••••••••
tJOBit·JD ...•.•..••••••••••••••••••••••••••••••••••
fJOT[X] SUBR •••••••••••••••••••••••••••••••••••••
NOTANY[SOMEX;SOMEFN1;SOMEFN2] •••••••••••••••••••
NOTEVERY[EVERYX;EVERYFN1;EVERYFN2] ••••••••••••••
NULL[X] SUBR ••••••••••••••••••••••••••••••••••••
NUMBERP[X] SUBR •••••••••••••••••••••••••••••••••

INDEX.5.1

Page
Numbers

5.9
5 .14
5.8·9
5 .13
5 .13
5 .16
5 .12
5.2-3
5.8
5.17
5 .16
5. 1
5. 1
5.4
5.4
5. 1
5.2
5.2
5.9-10
5.9
5.1
5.13
5 .13
5 .14
5.9
5.8
5 .15
5.4
5. 17
5 .16
5.3
5.3
5 .10
5.9
5.7
5.7
5. to
5.3
5. 13
5. 10
5 .13
5.13
5 .12
5.12
5.6
5.16
5.16
5 .13
5 .13
5.8
5.9
5.13
5.16
5.16
5 .13
5.12

numbers ·. · · ·
OR[Xl;X2; ... ;Xn] FSUBRt:
OUTPUT[FILE] SUBR•......
PARENTHESIS ERROR (error message)
predicates
PRETTYDEF•• 0 II •••••••••••••••••••••••

PRHHLEVEL[N] SUBR•
PROG[ARGS;El;E2; ... ;En] FSUBR" •....•...•........
PROG label•.•
PROGN[Xl;XZ; ... ;Xn] FSUBRt: ••••••••••••••••••••••
PROG1[Xl;X2; ... ;Xn] FSUBRtt ••••••••••••••••••••••
proper tail "
QUOTE[x J NL~ ..•....••.••.•..•. I ••• I •••••••••••••

RADIX[NJ SUBR •••••••••••••••••••••••••••••••••••
REEIHER (tenex command)
RESETFORM[RESETX;RESETY;RESETZ] NL ••••••••••••••
RESETLST[RESETX] NLR ..•...•.•....••.••.....••.••
RESETSAVE[RESETX] NLt: ..••••.••••••••••••••••••••
RESETVAR[RESETX:RESETY;RESETZ] NL •••••••••••••••
RETURf~[X] SUBR••
RPAQ[RPAQX;RPAQY] NL ••••••••••••••••••••••••••••
RPAQO[X;Y] NL •••••••••••••••••••••••••••••••••••
RPLACA[X;Y] SUBR ••••••••••••••••••••••••••••••••
RPLACD[X;Y] SUBR•.....
SASSOC[XSAS; YSAS]•........•...•
SELECTQ[X;Y1;Y2; ... ;Yn;Z] NLt: •••••••••••••••••••
SET(X;Y] SUBR ..•.•. I ••••••••••••••••••••••••••••

SETO[X;Y] FSUBRtt ·············"·················· SETQQ[XSET;YSET] NL
sm·a11 integers
SOME[SOMEX;SOMEFN1;SOMEFN2)•....•.....•
S TRINGP[X] SUBR•............•
strings ,.,
tail of a list
TAILP[X:Y] ··························••e•••••••••
top level value•..•.
true
UNDEFINED OR ILLEGAL GO (erro~ message)••
(UNDEFINED TAG) (compiler error message)•...
value cell "
VALUE (property name)•..•.......

INDEX.5.2

Page
Numbers

5 .12
5.14
5 .10
5.3
5 .13
5.9
5 .10
5.6
5.7
5.6
5.6
5 .16
5.3
5.10
5.9
5.10
5.11
5 .11
5.9
5.7
5.9
5.9
5.3
5.2
5 .17
5.4-5
5.8
5.8
5.8
5 .13
5 .15
5.13
5.13
5.16
5 .16
5.1,3,9
5.4
5.7
5.7
5 .1, 9
5.9

SECTION 6

LIST MANIPULATION AND CONCATENATION

lambda-nospread function. Its value is a list of

the values of its arguments.

Copies the top level of the list ~ 1 and appends

this to a copy of top level list ~2 appended to

.•. appended to ~n· e.g.

append[(A B) (C D E) (F G)] = (A B C D E F G) •

Note that only the first n· 1 lists are copied . .
However nai is treated specially: i.e. append[x]

can be used to copy the top level of a single

list. 1

The following examples illustrate the treatment of

non-lists.

append[(A 8 C);D] u (A 8 C . D)

append[A:(B C D)] = (8 C D)

append[(A B C . D):(E F G)] = (A B C E F G)

append[(A B C , 0)] • (A B C . D)

,---~----------To copy a list to all levels. use ~·

6.1

Returns same value as append but actually modifies

the list structure of x1 •.• xn·i·

+ Note that !!.£Q.!l£ cannot change NIL to a list. In other words, if the value of

+ foo is NIL, then the value of (NCONC FOO (QUOTE (A 8 C))) is (A 8 C), but foo

+ will not have been changed. The 'problem' is that .!l£.Q.!l£ simply has a

+ collection of pointers to work with, and does not know where they originally

+ came from, i.e. does not know that this NIL is the value of !fil?, and while it

+ is possible to alter list structure using rplaca, there is no way to change a

+ non-list to a list.

nconcl[1st ;x)

tconc[ptr;x]

Performs nconc[lst:list[x]J, The £.2.!l! will be on

the same page as lst.

ll2!!£ is useful for building a list by adding

el~ments on~ at a time at th~ end, i.e. its role

is similar to that of nconc1. However, unlike

nconcl, l£lli does not have to search to the end

of the list each time it is called. It does this

by keeping a pointer to the end of the list being

assembled, and updating this pointer after each

call. The savings can be considerable for long

lists. The cost is the extra word required for

storing both the list being assembled, and the end

of the list. ptr is that word: car[ptr] is the

list being assembled, cdr[ptr] is last [car[ptr]].

The value of ~ is ptr, with the appropriate

modifications to £!!and .£ru:. Example:

~CRPTO 5 (SETQ FOO {TCONC FOO RPTN)))
((54321)1)

6.2

lconc[ptr;x)

1£2.!1£ can be initialized in two ways. If ill is

NIL, ill.!!£ will make up a ill· In this case, tho

program must set some variable to th~ value of the

f:I. rs t ca 11 to ill.!!£. After that, it is

unnecessary to reset ptr since l£2..!l£ physically

changes it. Thus:

~(SET FOO (TCONC NIL 1))
((1) 1)
~(RPTQ 4 (TCONC FOO RPTN))
((1 4 3 z 1) 1)

If 1?.l!: is initially (NIL), the value of tconc is

the same as for ill=NIL, but tconc changes .!!.!J:,

e.g.

~csETQ FOO (CONS))
(NIL)
~(RPTQ 5 (TCONC FOO RPTN))
((5 4 3 2 1) 1)

The latter method allows the program to

initialize, and then call ~ without having to

perform setg on its value.

Where 1£Q.!!£ is used to add elements at the end of

a list, lconc is used for building a list by

adding lists at the end, i.e. it is similar to

.!.l£2.!l£ instead of nconc1, e.g.

~csETQ FOO (CONS))
(NIL)
~(LCONC FOO (LIST 1 2))
((1 2) 2)
~CLCONC FOO (LIST 3 4 5))
((1 2 3 4 5) 5)
~(LCONC FOO NIL)
((1 2 3 4 5) 5)

Note that

~(TCONC) FOO NIL)
((1 Z 3 4 5 NIL) NIL)
~(TCONC FOO (LIST 3 4 5))
((1 Z 3 4 5 NIL (3 4 5)) (3 4 5))

6.3

attach[x;y]

remove[x;l]

lconc uses the same pointer conventions as tconc

for eliminating searching to the end of the list,

so that the same pointer can be given to 1£2.!1£ and

lconc interchangeably.

Value is equal to cons[x:y], but attaches ~ to the

front of ~ by doing an rplaca and rplacd, 1. e.

the value of attach is ~ to ~· which it

physically changes. ~must be a list, or an error

is generated, ILLEGAL ARG.

Removes all occurrences of ~ from .!.!!! !• giving a

~ of ! with all elements equal to ~ removed.

Con11entton1 1Vamtng a Junctton by preftxtng 'an ext.sting Junctton with d
frequently tridtcates the new function ts a ~estructt11e 11erston of
the old one. i.e. it does not make anu new structure but
cannibalizes its argument(s).

dremove[x;l] Similar to remove, but uses ~ instead of egual,

and actually modifies the list ! when removing ~·

and thus does not use any additional storage.

More efficient than remove.

+ Note that dremove cannot change a list to NIL. For example, if the value of

+ f2.Q is (A), then (DREMOVE (QUOTE A) FOO) will return NIL, and not perform any

+ conses, but the value of ill will Utl L be (A) because there is not way to

+ change a list to a non-list. See disctission foll~wing description of nconc on

+ page 6.2.

copy[xJ Makes a copy of the list ~· The value of ~ is

6.4

reverse[l]

dreverse[l]

subst[x;y;zJ

the copied list. All levels · of ~ are copied. 2

down to non-lists, so that if 2S contains arrays

and strings, the copy of ~ will contain the same

arrays and strings, not copies. ~ is recursive

in the ~ direction only, so that very long lists

can be copied.

Reverses (and copies) the top level of a list,

e.g. reverse[(A B (C D))J = ((CD) BA). If 2S is

not a list, value is ~·

Value is same as that of reverse, but dreverse

destroys the original list l and thus does not use

any additional storage. More efficient than

reverse.

Value is the result of substituting the s

expression ~ for all occurrences of the s

expression Y.. in the S·expression z. Substitution

occurs whenever x is equal to £!.!:. of some

subexpression of !• or when Y.. is both atomic and

not NIL and fill to ill of some subexpre·ssion of ~.

For example:

subst[A;B;(C B (X . B))J = (C A (X . A))

subst[A;(B C);((B C) DB C)J Q (AD B C),

not (A D • A).

The value of subst is a copy of ! with the

2---D·-------------To copy just the top level of x, do append[x).

6.5

dsubst[x;y;z]

lsubst[x;y;zJ

esubst[x;y;z;flg]

sublis[alst;expr;flgJ

appropriate changes. Furthermore, if ! is a list~

it is copied at each substitution.

Similar to ~. but does not copy !• but changes

the list structure ! itself. Like ~. dsubst

substitutes with a copy of !· More efficient than

~·

Like ~ except ! is substituted as a segment,

e.g. lsubst[(A B):Y;(X V Z)] is (X A 8 Z). Note

that 1f ! is NIL, produces a copy of ! with all

x's deleted.

Similar to dsubst. but first checks to see if :t

actually appears in !· If not, calls error! where

!.!a=T means print a message of the form is ? This

function is actually an implementation of the

editor's R c.onunand (see Section 9), so that ~ can

use &, ·-. or alt-modes as with the R conunand.

!!!! is a list of pairs:

((u1 . v1) (u2 • v2) ••• (u0 • v0)) with each u1

atomic.

Tl\e value of' sub lis[als t: expr: flg] is the result

of substituting each ~ for the corresponding ~ in

expr. 3 Example:

sublis[((A • X) (C • V)):(A BC O)J = (X 8 Y D)

6.6

subpair[old;new;expr;flg]

New structure is ere a tad only if IH:Hlded, or if

f.19::1, e.g. if .fl.H=NIL and there are no

substitutions, value is ~ to expr.

Similar to sublis, except that elements of ~ are

substituted for corresponding &toms of old in

expr. Example:

subpair[(A C);(X V);(A 8 CD)] ~ (X B VD)

As with sublis, new structure is created only if

needed, or if f.!J!~T, e.g. if .f.!£I=Nil and there are

no substitutions, the value is 2.!l to expr.

If old ends in an atom other than NIL, the rest of

the elements on ~ are substituted for that atom.

For example, if old=(A B . C) and ~=(UV X Y .Z),

U is substituted for A, V for B, and {X Y Z) for

C. Similarly, if old itself is an atom (other than

NIL), the entire list ill!!! is substituted for it.

1Vote that .sub.st, d.sub.st, l.sub.st, and e.sub.st all .substitute copies of the
appropriateex;;Te.s.sion. whereas .subpr1ir and .subli.s substitute the identical
structure (unless tlJL:T).

last[x]

flast(x]

Value is a pointer to the last node in the list ~·

e.g. if ~=CA 8 C) then last[x] o (C). If

~=(A B • C) last[x) : (B • C). Value is NIL if x

is not a list.

Fast version of last that compiles open as a 5

instruction loop, terminating on a null-check.

Interpreted, generates an error 0 BAD ARGUMENT -

FlAST, if~ ends in other than NIL.

6.7

nleft[1 ;n; tail]

lastn[l;n]

nth(x;n]

fnth[x;n]

Tail is a tail of ! or NIL. The value of nleft is

the tail of ! that contains n more elements than

4 tail, e.g., if ~=(ABC DE), nleft[x;2]=(D E),

nleft[x;t;cddr[xJJ=(B C 0 E). Thus nleft can be

used to work backwards through a list. Value is

NIL if ! does not contain .!l more elements than

Value is cons[x;yJ where ~ is the last .!l elements

of l· and! is the initial segment, e.g.

lastn[(A BC 0 E);Z]=((A B C) 0 E)

lastn[(A B):Z]=(NIL AB).

Value is NIL if ! is not a list containing at

least n elements.

Value is the tail of. ! beginnin.g with the nth

element, e.g. if u=2. value is cdr[x]. if n.=3,

cddr[x], etc. If u=i, value is !• if rr=O, for

consistency, value is cons[NIL;xJ. If ! has fewer

than !l elements, value is NIL, e.g.

nth[(A B);3]=NIL, as iS nth[(A • B);3] Note that

nth[(A . B);2]=B.

Fast version of nth that compiles open as a 3

instruction loop, terminating on .a null-check.

Interpreted, generates an error, BAD ARGUMENT -

FNTH, if ! ends in other than NIL.

4--If tail is not NIL, but not a tail of 1, the result is the same as if tail
wereNIL, i.e. nleft operates by sc-anning l looking for tail, not-by
computing the lengths of l and tail. - --

6.8

length[x]

flength[x]

count[x]

ldiff[x;y;z]

Value is the length of the list ~ where length is

defined as the number of cdrs required to reach a

non°list, e.g.

length[(A BC)] c 3

length[(A B C D)J = 3

length[A] = 0

fast version of length that compiles open as a 4

instruction loop, terminating on a null-check.

Interpreted, generates an error, BAO ARGUMENT -

FLENGTH, if ~ ends in other than NIL.

Value is the number of list words in the structure

~· Thus, count is like a length that goes to all

levels. Count of a non°list is O.

X must be a tail of~· i.e . .!!! to the result of

applying some number of cdrs to ~· ldiff[x;y)

gives a list of all elements in ~up to ~. i.e.,

the list difference of ~ and ~· Thus

ldiff[x;member[FOO;xJJ gives all elements in ~ up

t~ the first FOO.

1Vote that the value of 1.!liJ.1. is always new List .structure unless y_.r1Vll, in
which case the value is ! itself.

If ! is not NIL the value of !!!!ff is effectively

nconc[z;ldif'f[x;y)J, i.e. the list difference is

added at the end of !·

If x is not a tail of ~· generates an error,

6.9

LDIFF: NOT A TAIL. terminates on

null•check.

intersection[x;y) Value is a list whose elements are members of both

lists ~ and ~· Note that intersection[x:x] gives

a list or all members or ~ without any

duplications.

union[x;y] Value is a (new) list consisting of all elements

included on either of the two original lists. It

is more efficient to make~ be the shorter list. 6

sort[data;comparefn]6 ~ is a list of i terns to be sorted using

comparefn, a predicate function of two arguments

which can compare any two items on data and return

T if the first one belongs before the second. If

comparefn is NIL, alphorder is used; thus

sort[data] will alphabetize a list. If comparefn

is T, ill' s of i terns are given to alphorder; thus

sort[a·list;T] will alphabetize by the SJ!.!: of each

item. sort[x;ILESSP] will sort a list of

integers.

The value of !2.!:! is the sorted list. The sort is

destructive and uses no extra storage. The value

a··-----------------------------·---~--The value of union is x with all elements of ~ not in x £!:!..!l!Od on the front

6

of it. Therefore, if an element appears twice in X• it will appear twice
in union[x;y). Also, since union[(A);(A A)) 111 (A A), while
union[(A A);(A)J = (A), !!!l!.2.!! is non-commut~tive.

§2..!::!, merge, and alphorder were written by J. W. Goodwin.

6 .10

returned is !_q to data but elements have been

switched around. Interrupting with control D, E,

or B may cause loss of data, but control H may bo

used at any time, and sort will break at a clean

state from which ? or control characters are safe.

The algorithm used by sort is such that tho

maximum number of compares is nnlog2 n, where n is

length[data].

Note: if comparefn[a;b] , comparejn[b:a). then the ordering of ! and b mau or
may not be pre~erued.

For example, if (FOO. FIE) appears before (FOO. FUM) in 2S· sort[x;T] may or

may not reverse the order of these two elements. Of course, the user can

always specify a more precise comparefn.

merge[a;b;comparefn]

alphorder[a;b]

! and ~ are lists which have previously been

sorted using !2£! and comparefn. Value is a

destructive merging of the two lists. It does not

matter which list is longerAfter merging both n

and~ are equal to the merged list In fact, cdr[a]

is ~ to cdr[b]). merge may be aborted a ft er

control H.

A predicate function of two arguments, for

alphabetizing. Returns T if its arguments are in

order, i.e. if ~ does not belong before a.

Numbers come before literal atoms, and are ordered

by magnitude (using greaterp). Literal atoms and

strings are ordered by comparing the (ASCII)

character codes in their pnames. Thus

6 .11

alphorder(23t123J is T, whereas

alphorder[A23;A123] is NIL, because the character

code for the digit Z is greater than the code for

1.

Atoms and strings are ordered before all other

data types. If neither ! nor ,!! are atoms or

strings, the value of alphorder is T, i.e. in

order.

iVote: alphorder doe.s no unpack..s, chcon.s, con.se.s or nthchar.s. It i.s .several
time.s fa.Ster for alphabetizing than an11thtng that can be written u.stng
the.se other Junctions.

cplists[x;y] compares ! and x and prints their differences,

i.e. cplists is essentially a SRCCOM for list

structures.

6.12

Index for Section 6

ALPHORDER[A:B]
APPEND[L] >'I

ATTACH[X;Y]
ATTEMPT TO RPLAC NIL (error message)
BAD ARGUMENT FLAST (error message)
BAO ARGUMENT FLENGTH (error message)
BAD ARGUMENT FNTH (error message)
copy
COPY[X]
COUNT[X]
CPLISTS[X;Y]
destructive functions
DREMOVE[X;L]
OREVERSE[L]
DSUBST[X;V;Z]
ERROR![] SUBR
ESUBST[X;Y;Z;ERRORFLG;CHARFLGJ
FLAST[X]
FLENGTH[X]
FfHH[X;N]
ILLEGAL ARG (error message)
INTERSECTION[X;Y]
LAST[X]
LASTN[L;N] . •

... I I

....
LCONC[PTR;X]
LOIFF[X;Y;Z) G
LDIFF: NOT A TAIL (error message)
LENGTH[L) ... '
LIST[Xl;X2; ... ;XnJ SUBR•
list manipulation and concatenation
LSUBST[X;Y;Z]
MERGE[A;B;COMPAREFN]
NCONC[X1;X2; ... ;XnJ SUBR•
NCONCl[LST;X]

...............
ULEFT[L;N;TAIL]
fHH[X;N)
null-check

.... ...
R (edit command)
REMOVE[X;L)
REVERSE[L]
SORT[OATA;COMPAREFNJ
SRCCOM
SUBLIS[ALST;EXPR;FLGJ
SUBPAIR[OLD;NEW;EXPR;FLGJ
SUBST[X:Y:ZJ
TCONC[PTR;X]

......................

UNION[X;Y] ~

INPEX.6.1

Page
Numbers

6.11
6 .1
().4

6.4
6.7
6.9
6.8
6.1.5-7
6.4
G.9
6.12
6.4-6
6.4
6.5
6.6-7
6.6
6.6-7
6.7
6.9
6.8
6.4
6.10
6.7
6.8
6.3·4
6.9
6 .10
6.9
6.1
6.1·12
6.6-7
6.11
6.2-3
6.2-3
6.8
6.8
6.7·10
6.6
6.4
6.5
6.10
6 .12
6.6-7
6.7
6.5,7
6.2·4
6.10

SECTION 1

PROPERTY LISTS AND HASH LINKS

7.1 Property Lists

Property l i.s t.s are enti tte.s as.sociated with literal atoms, and are .stored on
cdr of the atom. Property lists are conventionally lists of the form (property
value property value ... property value) although the user can store anything
he wi.she.s in cdr of a literal atom. However, the functions which manipulate
property l i.s tsob.serve this convention by cycling down the property l i.s t.s two
cdr.s at a time. Nost of the.se Junctions al.so generate an error. ARG 1VOT ATON.
if given an argument which is not a Literal atom, i.e., they cannot be used
directly on lists.

The term ·property name' or •property' is used for the property indicators
appearing in the odd positions, and the term 'property value' or 'value of a
property' or simply 'value' for the values appearing in the even positions.
Sometimes the phrase 'to store on the property--· is used, meaning to place
the indicated information on the property list under the property name --.

Properties are u.suaLLy atoms, although no checks are made to eliminate use of
non-atoms in an odd position. However, the property Lt.st .searching Junctions
all use !!.!/.·

Property List Functions

put[atm;prop;val]

putl[lst;prop;val]

puts on the property list of atm. the property

.l?!.2.e with value val. !!! replaces any previous

value for the property .2.!:.Q.J?. on this property list.

Generates an error, ARG NOT ATOM, if atm is not a

literal atom. Value is Y!.!·

similar to put except operates on lists instead of

property lists. Searches !!! one ~ at a time +

looking for an occurrence of ~· If one is ...

7.1

+

+

+

+

addprop[atm;prop;new;flgJ

remprop[atm;prop]

changeprop[x;prop1;prop2)

get[x;y)

found. ~ replaces the next element in the list.

If J!!:.21? is not found, adds ~ followed by ~ at

the end of lst. For example, putl[NIL:A;BJ•(A B),

putl[(A BC O);B;X)=(A B X 0).

adds the value ~ to the list which is the value

of property I!£.2.l! on property list of atm. If .f.19

is T, ~ is consed onto the front of value of

J!!:.21?• otherwise it is .!:1£.Q!!.£ed on the end (nconct).

If !l!!! does not have a property ~. the effect

is the same as put[atm;prop;Ust[new)), for

example, if addprop[FOO;PROP;FIEJ is followed by

addprop[FOO;PROP;FUM), getp[FOO;PROP) will

be (FIE FUM). The value of addprop is the (new)

property value. If' !!!!! is not a 11 teral atom,

generates an error, ARG NOT ATOM.

removes all occ.urrences or the property 1!.!:.2.1!• (and

1 ts vallJe) from the property list of atm. Value

is J!!:.21? if any were found, otherwise NIL. 1 f atm

is not a literal atom, generates an error,

ARG NOT ATOM.

Changes name of property fil:Q.IU to prop2 on

property list of ~· (but does not affect the value

of the property). Value is ~· unless J2!.Q.JU is not

found, in which case, the value is NIL. If ~ is

not a literal atom, generates an error,

ARG NOT ATOM.

Gets the item after the atom x on list ~· If x is

7.2

not on the list ~· value :!.s NIL. For example,

get[(A BC D);B]=C. get and putl ara inverse

operations.

1Vote: since fl!il. terminates on a non•list, get[atom1anythi11g] is iVll..

getp[atm;prop]

Therefore, to search a property ·11st, £lil.!?. should

be used, or get applied to cdr[atom].

gets the property value for ~ from the property

list of atm. The value of flill :l.s NIL H ~ is

not a literal atom, or 2.!:.Q.£ if not found.

1Vote: the value oJ getp may al.so be iVIL. if there ts an occurrence of l!..!2.£ but
the corresponding property value ts NIL.

getlis[x; props J

Note: Since ~ searches a list two i terns at a

time, the same object can be used as both a

property name and a property value, e.g. , if tho

property list of atm :l.s (PROPl A PROP2 B A C),

then getp(atm;A] = C. Note however that

get[cdr[atm);A] = PROP2.

searches the property list of ~· and returns the

property list as of the first property on pr.ops

that it finds e.g .• if the property list of~ is

(PROPl A PROP3 B AC),

getlis[x;(PROP2 PROP3))=(PROP3 B A C)

Value is NIL if no element on ~ is found. x

can also be a list itself, in which case it is

searched as above.

7.3

deflist[1 ;prop) is used to put values under the same property name

on the property lists of several atoms. ! is a

list of two-element lists. The first element of

each is a literal atom, and the second element is

the property value for the property · lli.l!. The

value of deflist is NIL.

/Vote: Nany atoms in the .system already have property Li.st.s. with propertie.s
u.sed by the compiler, the break pack.age, DWI/ol. etc. Be careful not to
clobber .such .su.stem properties. The lialue of .sg.sprop.s gives the complete
ii.st of the property name.s u.sed by the .sv.stem.

7.2 Hash Links

The description of the hash link facility in INTERLISP is included in the

chapter on property lists because of the similarities in the ways the two

features are used. A property list provides a way of associating information

with a particular atom. A hash link is an association between any INTERLISP

pointer. (atoms, numbers, arrays, strings, lists, et al) called the hash-item,

and any other INTERLISP pointer called the hash-value. Property lists are

stored in cdr of the atom. Hash links are implemented by computing an address,

called the hash-address, in a specified array, called the hash-array, and

storing the hash-value and the hash•item into the cell with that address~ The

contents of that cell, i.e. the hash-value and hash-item, is then called the

hash-link . 1

Since the hash-array is obviously inuch smaller than the total number of

7.4

possible hash-items,2 the hash-address computed from item may already contain a

hash-link. If this link is from !l!!!!.a the new hash-value simply replaces the

old hash-value. Otherwise, another hash-address (in the same hash-array) must

be coraputed, etc, until an empty cell is' found, 4 or a cell containing a

hash-link from item.

\.Jhen a hash link for i tern is being retrieved, the hash-address is computed

using the same algorithm as that employed for malting the hash linlc If the

corresponding cell 'is empty, there is no hash link for item. H it contains a

hash- link from i tern, the hash-value is returned.

hash-address must be computed, and so forth. 6

Otherwise, another

Note that more than one hash link can be associated with a given hash-item by

using more than one hash-array.

Hash Link Functions

In the description of the functions below, the argument array has one of throe

forms: (1) NIL. in which case the hash-array provided by the system,

j--which is the total number of INTERLISP.pointers, i.e. in lNTERLlSP-10.

3

4

5

2561(.

~ is used for comparing .!!fill! with the hash-item in the cell.

After a certain number of iterations (the exact algorithm is complicated),
the hash-array is considered to be full. and the array is either enlarged,
or an error is generated. as described below in the discussion of overflow.

For reasonable operation, the hash array should be ten to twenty percent
larger than the maximum number of hash links to be made to it.

7.5

syshasharray, is used; 6 (2) a hash-array created by the function harra~: or (3)

a list fl!..!: of which is a hash-array. The latter form is used for specifying

what is to be done on overflow, as described below.

harray[n]

clrhash[array)

puthash[item;val;array]

gethash[item;array]

rehash[oldar;newar)

maphash[array;maphfn)

creates a hash-array of size n. equivalent to

clrhash[array(n)].

sets all elements of array to 0 and sets left half

of first word of header to -1. Value is array.

puts into array a hash 0 link from item to val.

Replaces previous link from same item, if any .. If

val=NIL any old link is removed, (hence a

hash-value of NIL is not allowed). Value is val.

finds hash-link from lli.!!! in array, and returns

the hash-value. Value is NIL if no link exists.

gethash compiles open. Note that 9ethash makes

no legality checks on either argument.

hashes all items and values in oldar into new«r.

The two arrays do not have to be (and us1.rnl ly

aren't) the same size. Value is ~·

maphfn is a function of two. arguments. For each

hash·link in array, maphfn will be applied to the

hash-value and hash· item, e.g.

7.6

dmphash[arrayname]

maphash[a;(LAMBDA(X V) (AND(LISTP V) (PRINT X)))]

will print the hash-value for all hash-links from

lists. The value of maphash is array.

Nlambda-nospread that prints on the primary output

file a loadable form which will restore what is in

the hash-array specified by arrayname, e.g.

(E (DMPHASH SYSHASHARRAV)) as a prettydef command

will dump the system hash-array.

iVote: all !I!f. identities except atoms and .small integers are lo.st by dumping and
loading because read will create. new .structure for each item. Thus if
two li.st.s containan !!.!!. .sub.structure. when they are dumped and loa<.(ed
back. in. the corresponding .sub.structures while equal are no longer £!!.· 1

Hash Overflow

By using an array argument of a special form, the user can provide for

automatic enlargement of a hashmarray when it overflows, i.e., is full and an

attempt is made to store a hash link into it. The array argument is either of

the form (hash-array . n). rr a positive integer; or (hash-array . f), f a

floating point number; or (hash-array). In the first case, a new hash-array is

created with rr more cells than the current hash-array. In the second case, the

new hash array will be f times the size of the current hash 0 array. The third

case, (hash-array), is equivalent to (hash•array . 1.5). In each case, the now

hash-array is rplacaed into the dotted pair, and the computation continues.

If a hash-array overflows, and the array argument used was not one of these

7-------------•-••--•••••••••••a•a•••••••••-•••••G•-•••o-•m•••-••••••••--••-••-

Circlprint and circlmaker (Section 21) provide a way of dumping and
reloading structures containing !!! substructures so that these identities
are preserved.

7.1

three forms, t.he error HASH TABLE FULL is generated, which will either cause a

break or unwind to the last error.set~ as per treatment or errors described in

Section 16.

The system hash array, syshasharray, is automatically enlarged by t.5 when it

is full.

7.8

Index for Section 7

AODPROP[ATM;PROP:NEW;FLGJ
ARG NOT ATOM (error message)
CHANGEPROP[X;PROP1;PROP2]
CIRCLMAKER[LJ
CIRCLPRINT[L;PRINTFLG;RLKNTJ
CLRHASH[ARRAY] SUBR
DEF LIST[l; PROP]
OMPHASH[L] NL 111

ERRORSET[U;V) SUBR
GET[X;Y]
GETHASH[ITEM;ARRAYJ SUBR
GET LIS[X; PROPS]
GET P[A TM ; PROP J
HARRAY[LEN]
hash link functions
hash links
hash overflow
HASH TABLE FULL (error message)

.......
hash-address
hash-array
hash-item

.............................
hash-link
hash-value
MAPHASH[ARRAY;MAPHFN]
property
property list
property name
property value
PUT[ATM:PROP;VAL]
PUTHASH[ITEM;VAL;ARRAYJ SUBR
PUTL[LST;PROP;VAL]

.•

.
REHASH[OLDAR;NEWARJ SUBR •
REMPROP[ATM;PROP] •..•...••••••••.••.••••••••••••
SYSHASHARRAY (system variable/parameter)
SYSPROPS (system variable/parameter)
value of a property

INDEX.7.1

.. ,

Page
Numbers

7.2
7 .1-2
7.2
7.7
7.7
7.6
7.4
7.7
7.8
7.2
7.6
7.3
7.3
7.6
7.5-6
7.4-5,7
7.7
7.8
7.4
7 .4-5, 7
7.4-6
7.4·6
7.4-6
7.6
7.1
7.1•4
1. i,4
7.1.4
7.1-2
7.6
7.1
7.6
7.2
7.6,8
7.4
7.1

SECTION 8

FUNCTXON DEFINITION AND EVALUATION

General Conunents

A function definition in INTERLISP is stored in a special call called the

function definition cell, which is associated with each literal atom. This

cell is directly accessible via the two functions putd, which puts a .Qefinition

in the cell, and getd which gets the .QefiniUcm from the cell. Xn addition,

the function ~ returns the function type, i.e., EXPR, EXPR~ FSUBRlll as

described in Section 4. Exprp, ccode~. and subr~ are true if the function is

an expr, compiled function, or subr respectively; argtype returns

O, 1. 2, or 3, depending on whether the function is a spread or nospread (i.e.,

its fntyp ends in~), or evaluate or no-evaluate (i.e., its~ begins with F

or Cf); arglist returns the list of arguments; and nargs returns the number of

arguments. ~. exprp, ccodep, subrp, argtype, arglist, and nargs can be

given either a literal atom, in which case they obtain the function definition

from the atom's definition cell~ or a function definition itself.

Sub rs

Because subrs, 1 are called in a special wayD their definitions are stored

8 .1

differently than those of compiled or interpreted functions. In INTERLISP-10,

in the right half of the definition cell is the address of the first

instruction of the subr, and in the left half its argtype: 0, 1, 2, or 3. gotcl

of a subr returns a dotted pair of argtype and address. Note that this is not

the same word as appears in the definition cell, but a new ~; i.e.. each

getd of a subr performs a .£2.!l!· Similarly, putd of a definition of the form

(number . address), where number = 0, 1, 2, or 3, and address is in tho

appropriate range, stores the definition as a subr, i.e., takes the £2.D.! apart

and stores f!.!: in the left half of the definition cell and ill in the right

half.

Validity of Definitions in INTERLISP-10

Although the function definition cell is intended for function definitions.

putd and getd do not make thorough checks on the validity of definitions that

"look like" exprs, compiled code, or subrs. Thus if putd is given an array

pointer, it treats it as compiled code, and simply stores the array pointer in

the definition cell. getd will then return the array pointer. Similarly, a

call to that function will simply transfer to what would normally be the entry

point for the function, and produce random results if the array were not

compiled function.

Similarly, if putd is given a dotted pair of the form (number . address) where

number is O, 1, 2, or 3, and address falls in the subr range, putd assumes it

is a subr and stores it away as described earlier. getd would then return ~

of the left and right half, Le., a dotted pair egual (but not !_9.) to tho

expression originally given putd. Similarly, a call to this function would

transfer to the corresponding address.

Finally, if putd is given any other list, it simply stores it away. A call to

this function would then go through the interpreter as described in the

appendix.

8.2

Note that putd does not actually check to see H the s-expression is valid

def in it ion, i.e., begins with LAMBDA or NLAMBDA. Similarly, exprp is true if a

definition is a list and not of the form (number . address), number =
O, 1, 2, or 3 and address a subr address; subrp is true if it is of this form.

arglist and nargs worlt correspondingly.

Only fnt:rQ and argtype check function definitions further than that described

above: both argtype and ~ return NIL when exprp is true but ~ of the

definition is not LAMBDA or NLAMBDA. 2 In other words, if the user uses putd to

put (A B C) in a function defini t:l.on cell, getd will return this value, the

editor and prettyprint will both treat it as a definition, exprp will return T,

ccodep and subrp NIL, arglist B, and nargs i.

getd[x] gets the function gefini ti.on of ~. Value is tho

definition. 3 Value is NIL if 2£ is not a literal

atom, or has no definition.

fgetd[x] fast version of getd that compiles open.

Interpreted, generates . an error. BAD ARGUMENT -

FGETO, if ~ is not a literal atom. 4

2---------•--••-•••Ga••••••••••••••a•••-••••••••••e•-•••••-••-•••••••-•••••••••

These functions have different value on LAMBDAs and NLAMBDAs and hence must
check. The compiler and interpreter also take different actions for
LAHBDAs and NLAMBDAs, and therefore generate errors if the definition is
neither.

3

4

Note that in INTERLISP·10, getd of a subr performs a £2!!.!• as described on
page 8.2. See footnote on fgetd below.

Fgetd is intended primarily to check whether a function ha.s a definition,
rather than to obtain the definition. Therefore, for subrs, fgetd returns
just the address of the function definition, not the dotted pair returned
by getd, page 8.2, thereby saving the .£.Q!!!·

8.3

putd(x;y)

putdq(x;y)

movd(from;to;copyflg]

l!.!:!!S the ~efinition x into ~·s function cell.

Value is ~. Generates an error, ILLEGAL ARG -

PUTO, if ~ is not a literal atom, or x is a

string, number, or literal atom other than NIL.

nlambda version of putd; both arguments are

considered quoted. Value is ~·

Moves the definition of from to !£, i.e.,

redefines !Q. lf copyflg=T, a ~ of the

definition of f!:.Qm is used. copyflg=T is only

meaningful for exprs, although ~ works for

compiled functions and subrs as well. The value

of movd is !Q.

1\fote: /..ElJJJ!.. subrp. ccodep, ill!J!.• argtype. nargs. and argl ist. all can be gtven
either the name of a Junction, or a definition.

fntyp(fn] Value is NIL if fn is not a function definition or

the name of a defined function. Otherwise fntyp

returns one of the following as defined in the

section on function types:

EXPR CEXPR SUBR

FEXPR CFEXPR FSUBR

EXPR• CEXPR• SUBR•

FEXPR• CFEXPR• FSUBR*

The prefix f indicates unevaluated arguments, the

prefix £ indicates compiled code~ and the suffix •

indicates an indefinite number of arguments.

8.4

subrp[fn]

ccodep[fn]

exprp[fn]

argtype[fn]

~returns FUNARG if fn is a funarg expression.

See Section 11.

is true if and only if fntyp[fn] is either SUBR,

FSUBR, SUBR", or FSUBRn, i.e., the third column of

fntyp•s.

is true if and only if fntyp[fn] is either CEXPR,

CFEXPR, CEXPRa, or CFEKPRQ, i.e., second column of

fntyp•s.

is true if fntyp[fn] is either EXPR, FEXPR, EXPR"',

or FEXPRtt, i.e., first column of fntyp's.

However, exprp[fn] h also true if fn is (has) a

list definition that is not a SUBR, but does not

begin with either LAMBDA or NLAMBDA. In other

words, exprp is not quite as selective as fntyp.

fn is the name of a function or :I.ts definition.

The value of argtype is the argtype of fn, i. o ..

0, 1, 2, or 3, or NIL if fn is not a function.

The interpretation of the argtype is:

0 eval/spread function
(EXPR, CEXPR, SUBR)

1 no-eval/spread functions
(FEXPR, CFEXPR, FSUBR)

2 eval/nospread functions
(EXPR*, CEXPR*, SUBR~)

3 no-eval/nospread functions
(FEXPR*. CFEXPR*, FSUBR*)

i.e., argtype corresponds to the rows of fntyps.

8.5

nargs[fn]

arglist[fn]

value is the number of arguments of fn, or NIL if

fn is not a function. 5 nargs uses exprp, not

fn.!XJ?., so that nargs[(A (B C) D)]=2. If fn is a

nospread function, the value of nargs is 1.

value is the 'argument list 1 for fn. Note that

the 'argument list' is an atom for nospread

functions. Since NIL is a possible value for

arglist, an error is generated,

ARGS NOT AVAILABLE, if fn is not a function. 6

If fn is a SUBR or FSUBR, the value of arglist is (U), (U V), (U V W). etc.

depending on the number of arguments, if a SUBRit or FSUBR 114 , the value is U.

This is merely a 'feature' or arglist, ~ do not actually store the names of

their arguments(s) on the.stack. However, if the user breaks or traces a SUBR

(Section 15), these will be the argument names used when an equivalent EXPR

definition is constructed.

define[x] The argument of define is a list. Each element of

the list is itself a list either of the form (name

definition) or (name arguments •..). In the

second case, following 'arguments' is the body of

the definition. As an example, consider the

following two equivalent expressions for defining

the function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))

~------------------------------~---1.e., if~. ccodep, and subrp are all NIL.

If fn is.a compiled function, the argument list is constructed, i.e. each
calY-to arglist requires making a new list. For interpreted functions, the
argument list is simply .£!.9£. of getd.

8.6

2) (NULL (X) (EQ X NIL))

define will generate an error on encountering an atom where a defining list is

expected. If dfnflg=NIL, an attempt to redefine a function fn will cause

define to print the message (fn REDEFINED) and to save the old definition of fn

using savedef before redefining it. If dfnflg=T. the function is simply

redefined. If dfnflg=PROP or ALLPROP, the new definition is stored on the

property list under the property EXPR. (ALLPROP affects the operation of rpaqg

and~. section 5). dfnflg is initially NIL.

dfnflg is reset by load to enable various ways of handling the defining or

functions and setting of variables when loading a file. For most applications,

the user will not reset dfnflg directly himself.

1Vote: define will operate correctly if the Junction is alreadJI defined and
broken. advised, or broken-in.

savedef[fn)

nlambda nospread version of define. i.e., takes an

indefinite number of arguments which are not

evaluated. Each x1 must be a list. of the form

described in define. defineg calls define, so

dfnflg affects its operation the same as define.

Saves the definition of fn on its property list

under property EXPR. CODE, or SUBR depending on

its f..!!.lli. Value is the property name used. If

getd[fn] is non-NIL. but fntyp[fn] is NIL, saves

on property name LIST. This situation can arise

when a function is redefined which was originally

defined with LAMBDA misspelled or omitted.

8.7

unsavedef[fn;prop)

If fn is a list, savedef operates on each function

in the list, and its value is a. list of the

individual values.

Restores the definition of fn from its property

list under property J!!.Q£ (see savedef above).

Value is ru:.QJ!· If nothing saved under ~· and

fn is defined, returns (prop NOT FOUND), otherwise

generates an error, NOT A FUNCTION.

If ~ is not given, i.e. NIL, unsavedef looks

under EXPR, CODE, and SUBR, in that order. Tho

value of unsavedef is the property name, or if

nothing is found and fn is a function, the value

is (NOTHING FOUND); otherwise generates an error,

NOT A FUNCTION.

If dfnflg=NIL, the current definition of fn, if

any, is saved using savedef. Thus one can use

unsavedef to switch back and forth between two

definitions of the same function, keeping one on

its property list and the other in the function

definition cell.

If fn is a list, unsavedef operates on each

function of the list, and its value is a list of

the individual values.

a.a

eval[xf eval evaluates the expression ~ and returns th is

value i.e. eval provides a way of calling tho

interpreter. Note that eval is itself a lambda

type function, so tts argument is first evaluated,

e[x]

e.g.'

o-SET(FOO (ADD! 3))
(ADD1 3)
o-(EVAL FOO)
4
o-EVAL(FOO) or (EVAL (QUOTE FOO))
(ADD1 3)

nlambda nospread version of eval. Thus it

eliminates the extra pair of parentheses for the

list of arguments for eval. i.e., e x is

equivalent to eval[xJ. Note however that in

INTERLISP. the user can type just ~ to get ~

evaluated. (See Section 3.)

apply[fn;args] !.E_lli applies the function fn to the arguments

args. The individual elements of . args are not

evaluated by ~. fn is simply called with args

as its argument list. 8 Thus for the purposes of

~. nlambda's and lambda's are treated the

same. However like ~. ~ is a lambda

function so its arguments are evaluated before it

is called e.g .•

7----------------------------0---eval is a subr so that the 'name' ~ does not actually appear on the stack.

8 Note that fn may still explicitly evaluate one or more of its arguments
itself, as Til the case of setg. Thus
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD1 3)))) will set FOO to 4, whereas
(APPLY (QUOTE SET) (QUOTE (FOO (ADD1 3)))) will set FOO to the expression
(ADDl 3).

8.9

evala[x;a)

rpt[rptn;rptf]

.. SET(F001 3)
3
.. SET(FOOZ 4)
4
.. (APPLY (QUOTE IPLUS) (LIST FOOl FOOZ)
7 .

Here, fool and foo2 were evaluated when the second

argument to~ was evaluated. Compare with:

.. SET(FOOl (ADD1 2))
(ADDl Z)
.. SET(FOOZ (SUB1 5))
(SUBl 5)
.. (APPLY (QUOTE !PLUS) (LIST FOOl FOOZ]

NON·NUMERIC ARG
(ADD1 2)

equivalent to apply[fn;list[arg1; ... ;argn)) for

example, · if fn · is the name of a functional

argument to be applied to ~ and ~· one can write

(APPLY• FN X Y), which is equivalent to

(APPLY FN (LIST X Y)). Note that (FN X V)

specifies a call to the function FN itself, and

will cause an error if. FN is not defined. (See

Section 16.) FN will not be evaluated.

Simulates a-list evaluation as in LISP 1.5. ~is a

form, ! is a list of dotted pairs of variable namo

and value. ! is 'spread' on the stack, and then ~

is evaluated, 1.e., any variables appearing free

in ~· that also appears as £!!: of an element of ~

will be given the value in the £ru: of that

element.

Evaluates the expression rptf rptn times. At any

point, rptn is the number of evaluations yet to

8 .10

take place. Returns the value of tho last

evaluation. If rptn i O, rptf is not evaluated,

and the value of !:.I!! is NIL.

1Vote: !..PJ. i.s a lambda junctton, so both tt.s arguments are e11aluated before W..
i.s called. For mo.st appltcatton.s. the user wtll probably want to u.se
!.P..!:.!L.

rptq[rptn;rptf]

arg[var;m]

nlambda version of rpt: rptn is evaluated, rptf is

not, e.g. (RPTQ 10 (READ)) will perform ten calls

to read. !.P.19. compiles open.

Used to access the individual arguments of a

lambda nospread function. !.!Jl is an nlambda

function used like ill· Yfil: is the name of the

atomic argument list to a lambda-no~pread

function, and is not evaluated: m is the number of

the desired argument, and is evaluated. For

example, consider the following definition of

iplus in terms of plus.

[LAMBDA X
(PROG ((M 0)

(N 0))
LP (COND

((EON X)
(RETURN H)))

(SETO N (ADDl N))
[SETO H (PLUS H (ARG X N)))
(GO LP]

The value of arg is undefined for m less than or

equal to O or greater than the 11alue of Yfil:· 9

8.11

setarg[var;m;x]

Lower numbered arguments appear earlier in the

form, e.g. for (IPLUS A B C),

arg(X;t]•the value of A,

arg[X:Z]•the value of B, and

arg[X;3]•the value of c.

Note that the lambda v.ariable should never bo

reset. However. individual arguments can be reset

using setarg described below.

!!!§.· to ! the mth argument for the lambda nospread

function whose argument list is ~· Y.!U: is

considered quoted, m and ! are evaluated; e.g. in

the previous example, (SETARG X (A001 N)(MINUS M))

would be an example of the correct form for

setarg.

8.12

Index for Section 8

ADVISED (property name)
ALL PROP • • • • • • • • o e • • • e • • • • • "; • • • • ·• • • • e • • • e • I • • • • • e

APPLY[FN;ARGS] SUBR
APPLY"'[FN;ARG1; .. ;ARGn] SUBR~
ARG[VAR;M] FSUBR
ARGLIST[X]
ARGS NOT AVAILABLE (error message)
ARGTYPE[FN] SUBR
argument
a-list

list
BAD ARGUMENT - FGETD (error message)
BROKEN (property name)
BROKEN-IN (property name)
CCODEP[FN] SUBR
CEXPR (function type)
CEXPR~ (function type)
CFEXPR (function type)
CFEXPR* (function type)

• • • o • e

CODE (property name)
DEFINE[X]
DEFINEQ(XJ NLti
DFNFLG (system variable/parameter)
E(XEEEE J NL*
EVAL[X] SUBR
EVALA(X;A] SUBR
EXPR (function type)
EXPR (property name)
EXPRP(Fin SUBR
EXPR"' (function type)

...........

FEXPR (function type)
FEXPR"' (function type)

............... ~
FGETD[X)
FMTYP[X]

... ..
FSUBR (function type)
FSUBR~ (function type)
FUNARG (function type)
function definition and evaluation
function definition cell
functional arguments
GETD[X] SUBR • 0

ILLEGAL ARG - PUTO (error message)
INCORRECT DEFINING FORM (error messa~e)
interpreter
LAMBDA
LIST (property name)
MOVO[FROM;TO;COPYFLG]
NARGS[X]
NLAMBOA
nospread functions
NOT A FUNCTION (error message)
(NOT FOUND) (value of unsavedef)
(NOTHrnG FOUND)
PROP[X;Y)
PUTD(X;Y] SUBR
PUTDQ[X; Y] Nl.

..................................
...................................

REDEFINED (typed by system)

INDEX.8.i

Page
Numbers

8.7
8.7
6.9
8 .10
6.11
8.1,3-4,6
8.6
8, 1m5
8 .1
8 .10
8.3
8.7
8.7
8 .1. 3-5
8.4-5
8.4-5
8.4-5
8.4-5
6.7-8
8.6-7
8.7
8.7-8
8.9
8.9
8.10
6.4-6
8.7-8
8.1,3-6
8.4-5
8.4-5
8.4-5
B.3
8.1,3•7
8.4·6
8.4-6
8.5
8.1-12
6 .1-2
8 .10
8.1-3,7
8.4
8.7
8.9
8.3,5,7
8.7
8.4
8.1.3-4,6
8.3,5
8 .1
a.a
8.8
8.8
8.7
8.1•4
8.4
8.7

RPT[RPTN; RPTF]
RPTQ[RPTN;RPTF] NL
SAVEDEF[X]
SETARG[VAR;M;X] FSUBR
spread fuhctions
SUBR (function type)
SUBR (property name)
SUBRP[FN] SUBR
subrs
SUBR* (function type)
U (value of ARGLIST)
UNSAVEDEF[X;TYP]

.....

INDEX.8.2

.

.

rage
Numbers

8.10·11
8.11
8.7-8
8 .12
8 .1
8.4-6
8.7-8
8.1,3·5
8.1
8.4•6
8.6
8.8

SECTION 9

THE INTERLISP EDITOR 1

The INTERLISP editor allows rapid, convenient modification of list structures.

Most often it is used to edit function definitions, (often while the function

itself is running) via the function editf, e.g., EDITF(FOO). However, tho

editor can also be used to edit the value of a variable, via editv, to edit a

property list, via editp, or to edit an arbitrary expression, via edite. It is

an important feature which allows good on-line interaction in the INTERLISP

system.

This chapter begins with a lengthy introduction intended for the new user. The

reference portion begins on page 9.15.

9.1 Introduction

----------------------------------~---! The editor was written by and is the responsibility of W. Teitelrnan.

9.1

[LAMBDA (X)
y
(COND

((NUL X)
Z)

(T (CONS (CAR)
(APPEND (CDR X Y]

We call the editor via the function .!£!..!!!:

.. EDITF(APPEND)
EDIT
Ill

The editor responds by typing EDIT followed by *• which is the editor's prompt

character, i.e., it signifies t~at the editor is ready to accept conunands.2

At any given moment, the editor's attention is centered on some substructure of

the expression being edited. This substructure is called the current

expression. and it is what the user sees when he gives the editor the command

P, for print. Initially, the current expression is the top level one, i.e.,

the entire expression being edited. Thus:

•P
(LAMBDA (X) Y (COND & &))
It

Note that the editor prints the current expression as though printlevel were

set to 2, i.e., sublists of sublists are printed as &. The command ? will

print the current expression as though printlevel were 1000.

lll?

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (COR X Y))))))
lll

and the cor.unand PP will prettyprint the current expression.

2-------------------------··-··-------·······---------------·-----·------------In other wQrds, all lines beginning with • were typed by the user, tho rest
by the editor.

9.2

A positive integer is interpreted by the editor as a command to descend into

the correspondingly numbered element of the current expression. Thus:

A negative integer has a similar effect, but counting begins from the end or

the current expression and proceeds backward, i.e .. -1 refers to the last

element in the current expression, -2 the next to the last, etc. For either

positive integer or negative integer, if there is no such element, an error

occurs, 3 the editor types the faulty command followed by a ? , and then another

* The current expression is never changed when a command causes an error.

Thus:

tip
(X)
i:iz

.4 phrase of the form 'the current expression is changed' or 'the current
expression becomes' refers to a shift in the editor'.s attention. not to a
modification of the .structure being edited.

When the user changes the current expression by descending into it, the old

current expression is not lost. Instead, the editor actually operates by

3--'Editor errors• are not of the flavor described in Section 16, i.e., thoy
never cause breaks or even go through the error machinery but are direct
cal ls to error! indicating that a command is in some way faulty. W'h« t
happens next depends on the context in which the command was being
executed. For example, there are con di ti on al commands which branch on
efrors. In most situations, though, an error will cause the editor to type
the faul tY command followed by a ? and wait for more input. Note that
typing control-E while a command is being executed aborts the corrunand
exactly as though it had caused an error. ·

9.3

maintaining a chain of expressions leading to the current one. The current

expression is simply the last link in the chain. Descending adds the indicated

subexpression onto the end of the chain, thereby making it be the current

expression. The command O is used to ascend the chain; it removes the last

link of the chain, thereby making the previou$ link be' the current expression.

Thus:

*P
x
*O p
(X)
111 0 -1 p
(COND (& Z) (T &))
Ill

Note the use of several commands on a single line in the previous output. Tho

editor operates in a line buffered mode, the same as evalqt. , Thus no command

is actually seen by the editor, or executed, until the line is terminated,

either by a carriage return, or a matching right parenthesis. The user can

thus use control-A and control·Q for line-editing edit commands, the same as he

does for inputs to evalgt.

In our editing session, we will make the following corrections to append:

delete Y from where it appears, add Y to the end of the argument list, 4 change

NUL to NULL, change Z to Y, add Z after CAR, a~d insert a right parenthesis

following COR X.

First we will delete Y. By now we have forgotten where we are in the function

definition, but we want to be at the "top" so we use the command t, which

ascends through the enti~e chain of expressions to the top level expression,

a---~~;;;-~~;-;;;;;;;;~;-;;~i~·~;·;~;;;~·;;·;;·;~;-;;;;;;;;~:-;:;::·~~~~-;-~;;;
its current position to a new position, and in fact there is a MOVE command
in the editor. However, for the purposes of this introduction, we will
confine ourselves to the simpler edit corrunands.

9.4

which then becomes the current expression, i.e., t removes all links except the

first one.

tq p
(LAMBDA (X) V (CONO & &))
i:i

Note that if we are already at the top, t has no effect, i.e., it is a NOP.

However, O would generate an error. In other words, v means "go to the top,"

while O means "ascend one link."

The basic structure modification commands in the editor are:

(n) n ~ 1 deletes the corresponding

element from the current expression.

(n e 1 •.• em) n,m ~ 1 replaces the nth element in the current

expresdon with

Thus:

)'(p

el ~ •. em.

n,m 2 1 inserts et •.. em before the nth element

in the current expres~ion~

(LAMBDA (X) V (COND & &))
)'(e 3)
*(2 ex v))
*P .
(LAMBDA ex Y) (CONp & &)) . .

All .structure modiftcatfon done by the editor t3 de3tr'ucttve, i.e .. the edttor
u.se.s rplaca and rplacd to phy.stcally change the .structure tt w~s gtuen.

Note that all three of the above commands perform their operation with respect

9.5

to the nth element from the front of the current expression: the sign of n is

used to specify whether the operation is replacement or insertion. Thus, thoro

is no way to specify deletion or replacement of the !11!! element from the end of

the current expression, or insertion before the nth element from the ond

without counting out that element's position from the front of the list.

Similarly, because we cannot specify insertion after a particular element, wo

cannot attach something at the end of the current expression using the above

cor.unands. Instead, we use the command N (for !1.£Q.!!S). Thus we could have

performed the above changes instead by:

*P
(LAMBDA (X) Y (COND & &))
*(3)
111 2 (N Y)
*P
(x y)
fl f p
*(LAMBDA (X Y) (COND & &))
*

Now 1-1e are ready to change Nl)L to NULL. Rather than specify the sequence of

descent commands necessary to reach NUL, and then replace it with NULL, e.g., 3

2 l (l NULL), we will use F, the find command, to find NUL:

*P .
(LAMBDA (XV) (COND & &))
"'F NUL
ll!p
(NUL X)
" (1 NULL)
"0 p
((NULLX) 4)

"

Note that F is special in that it corresponds to two inputs. In other words, F

says to the editor, "treat your next command as an expression to be searchod

for." The search is carried out in printout order in the current expression.

If the target expression is not found there, F automatically ascends and

searches those portions of the higher expressions that would appear after (in a

printout) the current expression. If the search is successful, the new current

9.6

expression will be the structure where the expression was found, 6 and tho chain

will be the same as one resulting from the appropriate sequence of ascent and

descent commands. If the search is not successful, an error occurs, and

neither the current expression nor the chain is changed: 6

"'p
((NULL X) Z)
"'F COND P

corm ?
"'p
"'((NULL X) Z)

"'

Here the search failed to find a cond following the current expression,

al though of course a cond does appear earlier in the structure. This last

example illustrates another facet of the error recovery mechanism: to avoid

further confusion when an error occurs, all commands on the line. beyond the one

wh.ich caused the error (and all commands that may have been typed ahead while

the editor was computi~g) are forgotten. 7

We could also have used the R command (for replace) to change NUL to NULL. A

command of the form (R e 1 e2) will replace all occurrences: of e 1 in the current

expression by e2 • There must be at least one such occurrence or the R command

will generate an error. Let us use the R command to change all Z's (even

though there is only one) in append to V:

5--~-----------------If the search is for an ato~. e.g., F NUL, th~ current expression will be

6

7

the structure containing the atom.

F is never a NOP, i.e., if successful,· the· current expression after the
search will never be the same as the current expression before the search.
Thus F expr repeated without intervening commands that change· tho edit
chain can be used to find successive instances of expr.

i.e. the input buffer is cleared (and saved) (see clearbuf. Section 14).
It can be restored, and the type-ahead recovered via the command $BUFS
(alt-mode BUFS), described in Section 22. . .

9.7

i:tt (R Z V)
"'F Z

z ?
*PP

[LAMBDA (X Y)
(COND

((NULL X)
Y)

(T (CONS (CAR)
(APPEND (CDR X Y]

The next task is to change (CAR) to (CAR X).

(R (CAR) (CAR X)), or by:

•F CAR
• (N X)
wp
(CAR X)
Ill

We could do this by

The expression we now want to change is the next expression after the current

expression, i.e., we are currently looking at (CAR X) in (CONS (CAR X) (APPEND

(CDR X Y))). We could get to the append expression by typing 0 and then 3 or

-1, or we can use the co1M1and NX, which does both operations:

ftp

(CAR X)
*NX P
(APPEND (CDR X Y))
*

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we could perform

(2 (CDR X) Y), or (2 (CDR X)) and (NY), or 2 and (3), deleting the Y, and then

0 (N Y). However, if V were a complex expression, we would not want to have to

retype it. Instead, we could use a command which effectively inserts and/or

removes left and right parentheses. There are six of these commands:

BI,BO,LI,LO,RI, and RO, for ~oth !n. ~oth QUt, !eft !n. left QUt, [i9ht !n. and

~ight 2ut. Of course, we will always have the same number of left parentheses

as right parentheses, because the parentheses are just a notational guide to

9.8

structure that is provided by our print program. 8 Thus, left in, left out.

right in, and right out actually do not insert or remove just one parenthesis,

but this is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear folldwing X in (CDR X

Y). Therefore, we use the command (RI 2 2), which means insert a right

parentheses after the second element in the second ~lement (of the current

expression):

!lip
(APPEND (CDR XV))
""(RI 2 2)
•P
(APPEND (CDR X) V)
111

We have now finished our editing, and can exit from the editor, to test append,

or we could test it while still inside of the editor, by using the E conunand:

*E APPEND((A B) (CD E))
(A B C D E)
It

The E cor.unand causes the next input to be given to evalgt. If there is another

input following it, as in the above example, the first will be applied (apply)

to the second. Otherwise, the input is evaluated (eval).

We prettyprint append, and leave the editor.

9.9

111pp
[LAMBDA (X Y)

(COtm
((NULL X)

Y)
(T (CONS (CAR X)

(APPEND (CDR X) Y]
*OK
APPEND ..

9.l Commands for the New User

As mentioned earlier, the INTERLISP manual is intended primarily as a reference

manual, and the remainder of this chapter is organized and presented

accordingly. · \./hile the commands introduced in the previous scenario constitute

a complete set, i.e., the user could perform any and all editing operations

using Just those commands, there are many situations in which knowing the right

command(s) can save the user considerable effort. \.le include here as part of

the introduction a list of those commands which are not only frequently

applicable but also easy to use.· They are not presented in any particular

order, and are all discussed in detail in the reference portion of the chapter.

UNDO

BK

BF

undoes the last modification to the structure

being edited, e.g., if the user deletes the wrong

element, UNDO will restore it. The availability

Of UNDO should give the user confidence to

experiment with any and all editing commands, no

matter how complex, because he can always reverse

the effect of the command.

like NX, except makes the expression immediately

before the current expression become current.

Qackwards find. Like F, except searches

backwards, i:e., in invetse print order.

9.10

\P

· Restores the current expression to the exprossion

before the last "big jump", e.g., a find comrnancl,

an t, or another \. For example, if tho us or

types F COND, and then · F CAR, '\ would tnko him

batk to trie CONO. An6ther \ would take him back to

the CAR.

like \ except it restores the edit chain to its

state as of the last print, either by P, ?, or PP.

If the edit chain has not been changed since the

l~st print, \P restores it to its state as of tho

printing· before that one, i.e., two chains aro

always saved.

Thus if the user types P followed by 3 Z 1 P, \P will take him back to tho

first P, i.e., would be equivalent to 0 0 0. ·Another \P would then take him

back to the second P. Thus the us.er can use \P to flip back. and forth between

two current expressions.

&, -- The search expression given to the F or BF command

'need not be a ii teral S~expresSion. Instead. it

can be a pat tern. The symbol & can be use cl

anywhere within ihis pattern to match with any

single element of a list, and -- can be used to

match with any segment of a list. Thus, in tho

incorrect definitiori of append tised earlier,

· F (NUL &) could have been used to find (NUL X),

and F (CDR --) or F'(tDR & &), but not F (COR &),

to find (CDR X Y).

Note that & and -- can be nested arbitrarily deeply in the pattern. For

9 .11

example, if there are many places where the variable X is set, F SETQ may not

find the desired expression, nor may F (SETQ X &). It may be necessary to uso

F (SETO X (LIST--)). However, the usual technique in such a case is to pick

out a unique atom which occurs prior to the desired expression, and perform two

F commands. This "homing in" process seems to be more convenient than ultra·

precise specification of the pattern.

S (alt-mode) $ is equivalent to -- at the ch•racter level, e.g.

VERS will match with VERVLONGATOM. as will $ATOM,

SLONGS, (but not $LONG) and SV$NSMS. $ can be

nested inside of a pattern, e.g.,

F (SETQ VERS (CONS ··)).

lf the search is successful, the editor will print

= followed by the atom which matched with the $·

atom, e.g.,

•F (SETO VERS &)
.. VERVLONGATOM
*

Frequently the user will want to replace the en'tire current expression, or

insert something before it. In order to do this using a command of the form (n

e 1 ..• em) or (·n e1 •.• em). the user must be abo11e the current expression.

In other words,. he would have to perform a 0 followed by a command with tho

appropriate number. However •. if he has reached the current expression via an F

command, he may not know what that number is. In this case, the user would

like a command whose effect would be to modify the edit chain so that the

current expression became the first element in a new, higher current

expression. Then he could perform the desired operation via (1 e1 ••. em) or

(-1 e 1 .•. em>· UP is provided for this purpose.

9.12

UP

(B e 1 ••• em)

(A e 1 ••• em)

after UP operates, the old current expression is

the first elemerit of the new current expression.

Note that if the current expression happens to bo

the first element in the next higher expression,

then UP is exactly the same as O. Otherwise, UP

modifies ·the edit chain so that the new current

expression is & tai19 of the next higher

expression:

111 F APPEND P
(APPEND (CDR X) Y)
*UP P
... (APPEND & Y))
no p
(CONS (CAR X) (APPEND & Y))
Ill

The •.. is used by the editor to indicate that tho

current expression is a tail of the next higher

expression as opposed to being. an element (1.e .• a
.

member) of the next higher expression. Note: if

ttie current e·xpression is al ready a tail, UP has

no effect.

inserts e1 •.. em ·before . the current expression,

i.e., does an UP and then a -1.

inserts e1 •.• em after the current express ion.

i.e., does an UP and then either a (·2 e 1 ... em)

or an (N e1 ••. em), if the current expression is

the last one in the next higher expression.

9.13

(: el ••• em)

DELETE

replaces current expression by e 1 • • • em, i.e.,

does an UP and then a (1 e 1 ••• em>·

deletes current expression: equivalent to (:).

Earlier, we. introduced the RI command in the append example. The rest of the

corrunands in this family: BI, BO, LI, LO, and RO, perform similar functions and

are useful in certain situations. In addition, the commands MBD and XTR can be

used to combine the effec1;s of several commands of the BI•BO family. MBD is

used to embed the current expression in a larger expression. For example, if

the current expression is (PRINT bigexpression), and the user wants to replace

it by (COND (FLG (PRINT bigexpression))), he could accomplish this by (LI 1),

(-1 FLG). (Ll 1), and (·1 CONO), or by a single MBO command, page 9.47.

XTR is used to extract an expression from the current expression. For example, -.,...

extracting the PRINT expression from the above CONO .could be accomplished by

(1), (LO 1), (1), and (LO 1) or i>Y a single XTR command. The new user is

encouraged to include XTR and HBO in his repertoire as soon as he is familiar

with the more basic corrunands.

This ends the introductory material.

9.14

9.3 Attention Changing Commands

Commands to the editor fall into three classes: commands that change tho

current expression (i.e., change the edit chain) thereby "shifting the editor's

attention," conunands that modify the structure being edited, and miscellaneous

commands, e.g., exiting from the editor, printing. evaluating expressions, etc.

Within the context of commands that shift the editor's a1;tention, we con

distinguish among (1) those commands whose operation depends only on tho

.structure of the edit chain, e.g., 0, UP, NX; (2) those which depend on the

contents of the structure, i.e., commands that search; and (3) those commands

which simply restore the edit chain to some previous state, e.g., \, \P. (1)

and (2) can also be thought of as local, small steps versus open ended, big

jumps. Commands of type (1) are discussed on page 9 .15·21, type (2) on pago

9.21-34, and type (3) on page 9.34-36.

9.3.1 Local Attention-Changing Commands

UP (1) If a P command would cause the editor to typo

before typing the current expression, i.e. tho

current expression is a tail of the next higher

expression, UP has no effect; otherwise

(2) UP modifies the edit chain so that the old

current expression (i.e., the one at the time UP

was called) is the first element in the new

current expression. 10

10--· If the current expression is the first element in the next highor
expression UP simply does a o. Otherwise UP adds the corresponding tail to
the edit chain.

9.15

Examples: The current expression in each case is

(CONO ((NULL X) (RETURN Y))),

1. 1q p
corm
111 UP P
(COND (& &))

2. "-1 p
((NULL X) (RETURN Y))
1111 UP P

((NULL X) (RETURN Y))
•uP P
... ((NULL X) (RETURN Y)))

3. *F NULL P
(NULL X)
*UP P
((NULL X) (RETURN Y))
*UP P

((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current

expression appears more than once in the next higher expression. For example,

if the current expression is (A NIL B NIL C NIL) and the user performs 4

followed by UP, the current expression should then be ... NIL C NIL). UP can

determine which tail is the correct one because the commands that descend save

the last tail on an· internal editor variable, lastail. Thus after the 4

command is executed, lastail is (NIL C NIL). \./hen UP is called, it first

determines if the current expression is a tail of the next higher expression.

If it is, UP is finished. Otherwise, UP computes

memb[current-expression;next-higher-expressionJ to obtain a tail beginning with

the current expression •11 If there are no other instances of the current

expression in the next higher expression, this tail is the correct one.

ii--;~;-~~;;;~~-;~~;;~~~~~-~~~~i~-~~~~~~-~~-~~~~~~--;·;;;;-~;·;~~;~;~;~~-~f-~h~
next higher expression. If it is neither, for example the user has
directly (and incorrectly) manipulated the edit chain, UP generates an
error.

9.16

Otherwise UP uses lastail to select the correct tail. 12

n (n > 1) adds the nth element of the current expression to

the front of the edit chain, thereby making it bo

the new current.expression. Sets lastail for uso

by UP. Generates an error if the current

expression is not a list that contains at least n

elements.

-n (n > 1) adds the !lth element from the end of the current

expression to the front of the edit chain, thereby

0

making it be the new current expression. Sots

lastail for use by UP. Generates an error if tho

current expression is not a list that contains at

least n elements.

Sets edit chain to cdr of edit chain, thor(lby

making the next higher expression be the now

current expression. Generates an error if there

is no higher expression, i.e. cdr of edit chain is

NIL.

Note that 0 usually corresponds to going back to the next higher left

i2---0ccasionally the user can get the edit chain into a state where last<1il
cannot resolve the ambiguity, for example if there were two non-atomic
structures in the same expression that were ~· and the user descended more
than one level into one of them and then tried to come back out using UP.
In this case, UP prints LOCATION UNCERTAIN and generates an error. Of
course, we could have solved this problem completely in our implementation
by saving at each descent both elements and tails. However, this would bo
a costly solution to a situation that arises infrequently, and when it
does, has no detrimental effects. The las tail solution is cheap and
resolves 99% of the ambiguities.

9.17

parenthesis, but not always. For example, if the current expression is

(A B C D E F B), and the user performs~

•3 UP P
... c 0 E F G)
•3 UP P
••• E F G)
•o P
... c 0 E F G)

If the intention is to go back to the next higher left parenthesis, regardless

of any intervening tails, the command !O can be used. 13

! 0

't

NX

BK

does tepeated O's until it reaches a point where

the current expression is not a tail of the next

higher expression, i.e., always goes back to tho

next higher left parenthesis.

sets edit chain to last of edit cha in, thereby

making the top level expression be the current

expression. Never generates an error.

effectively does an UP followed by a 2, 14 the~eby

making the current expression be the next

expression. Generates an error if the current

expression is the last one in a list. (However,

!NX described below will handle this case.)

makes the current expression be the previous

ii--~--------------! O is pronounced bang-zero.

14 Both NX and BK operate by performing a !O followed by an appropriate
number, i.e. there won't be an extra tail above the new current expression;
as th.ere would be if NX operated by performing an UP followed by a 2.

9.18

expression in the next higher expression.

Generates an error H the current expression is

the first expression in a list.

For example, if the current expression is (COND ((NULL'X) (RETURN V))):

(NX n) n > 1

(BK n) n > 1

""'F RETURN P
(RETURN Y)
~BK P
(NULL X)

equivalent to .!! NX ccimmands, except if an error

occurs, the edit chain is not changed.

equivalent to !! BK commands, except if an error

occurs, the edit chain is not changed.

Note: (NX -n) is equivalent tb (BK n), and vice versa.

!NX makes current expression be the next expression at

a higher level, 1.e., goes through any number of

right parentheses to ~et to the next expression.

9 .19

for example:

•pp
(PROG ((L l)

(UF L))
LP <corm

*F CDR P
(CDR L)
*NX

NX ?
"!NX P
(ERROR!)
"!NX P

((NULL (SETQ L (COR L)))
(ERROR!))

([NULL (COR (FMEMB (CAR L)
(CADR L)

(GO LP)))
(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))

((NULL&) (GO LP))
*!NX P
(EDITCOM (QUOTE NX))
It

!NX operates by doing O's until it reaches a stage where the current expression

is not the last expression in the next higher expression, and then does a NX.

Thus !NX always goes through at least one unmatched right parenthesis, and the

new current expression is always on a different level, i.e., !NX and NX alwnys

produce different results. For example using the previous current expression:

(NTH n) n ~ 0

"'F CAR P
(CAR L)
"'!NX P
(GO LP)
*\P p
(CAR L)
lltfJX p
(CAOR L)
lit

equivalent to !! followed by UP, i.e., causes tho

list starting with the nth element of the current

expression (or nth from the end if n < O) to

9.20

become the current expression . 15 Causes an error

if current expression does not have at least !!

elements.

A generalized form of NTH using location specifications is described on page

9.32.

9.3.2 Commands That Search

All of the editor commands that search use the same pattern matching routine. 16

We will therefore begin our discussion of searching by describing the pattern

match mechanism. A pattern 2,il matches with :s if:

1. ~is~ to~·

2. E.il is &.

3. ~ is a number and~ to :S·

4. ~ is a string and strequal[pat;x] is true.

5. If car[pat] is the atom ~ANY~, cdr[pat] is a list of patterns and

pat matches x if and only if one of the patterns on cdr[pat]

matches x.

6a. If ill is a literal atom or string containing one or more alt

modes, each $ can match an indefinite number (including 0) of

contiguous characters in a literal atom or string, e.~.

VER$ matches both VERYLONGATOM and

"VERYLONGSTRING" as do $LONG$ (but not

$LONG), and VL$ T$.

]5--~ (NTH 1) is a NOP, as is (NTH -n) where n is the length of the current

16

expression.

This routine is available to the user directly, and is described on page
9.89.

9.21

6b. If pat is a literal atom or string ending in two alt-modes, pnt

matches with the first atom or string that is "close" to pat, in

the sense used by the spelling corrector (Section 17). E.g.

CONSSSS matches with CONS, CNONCSS with NCONC or NCONC1.

The patter~ matching routine always types a message of the form

=x to inform the user of the object matched by a pattern of typo

6a or Gb,1 7 e.g. =VERYLONGATOH.

7. If car[patJ is the atom ·-, .I:@.! matches ~ if

8.

a. cdr(pat]=NIL, i.e. pat=(-·), e.g.

(A ·-) matches (A) (A B C) and (A . B)

·In other words, -- can match any tail of a list.

b. cdr(pat] matches with some tail .of ~·

e.g. (A (&)) will match with (A B C (D)),

but not (ABC 0), or (ABC (0) E). However,

note that (A -- (&) --) will match with

(A B·C (0) E).

In other words, can match any interior segment or a list.

If car[pat] is the atom ----. PJil matches~ if and only if cdr[patJ

is~ to ~. 18

9. Otherwise if ~ is a list, .P!! matches ~ if car(pat]

matches car[x), and cdr[patJ matches cdr[xJ.

When the editor is searching, the pattern matching routine is called to match

with elements in the structure, unless the pattern begins with •.. , in which

case cdr of the pattern is matched against proper tails in the structure. Thus

if the current expression is (A B C (B C)),

i1--·----·----------------·------------unless editquietflg=T.

18 Pattern 8 is for use by programs that call the editor as a subroutine,
since any non-atomic expression in a command typed in by the user obviously
cannot be~ to already existing structure.

9.22

>'IF (B --)
>'<P (B C)
"'0 F (... B --)
"'P
••. BC (BC))

Matching is also attempted with atomic tails (except for NIL). Thus

'1 p
(A (B • C))
"'F C
"'P
. • . . c)

Although the current expression is the atom C after the final conunand, it is

printed as C) to alert the user to the fact that C is a tail, not an

element. Note that the pattern C will match with either instance of C in

(AC (B • C)), whereas (.... C) will match on.ly the second C. The pattern NIL

will only match with NIL as an element, i.e. it will not match in (A B), evon

though cddr of (A B) is NIL. However, (•.•. NIL) (or equivalently (...)) may

be used to specify a NIL tail, e.g. (..•• NIL) will match with cdr of the

third subexpression of (~A . B) (C . D) (E)).

Search Algorithm

Searching begins with the current expression and proceeds in print order.

Searching usually means find the next instance of this pattern, and

consequently a match is not attempted that would leave the edit chain

unchanged. 19 At each step, the pattern is matched against the next element in

the expression currently being searched, unless the pattern begins with ... in

which case it is matched against the next tail of the expression.

j9---However, there is a version of the find command which can succeed and leave
the current expression unchanged (see page 9.26).

9.23

If the match is not successful, the search operation is recursive first in the

f..§..!: direction and then in the .£.!!!: direction, i.e., if the element undor

examination is a list, the search descends into that list before attempting to

match with other elements (or tails) at the same leve1. 20

However, at no point is the total recursive depth of the search (sum of numbor

of £i!..l:S and f.Q!s descended into) allowed to exceed the value of the variable

maxlevel. At that point, the search of that element or tail is abandoned,

exactly as though the element or tail had been completely searched with out

finding a match, and the search continues with the element or tail for which

the recursive depth is below maxlevel. This feature is designed to enable tho

user to search circular list structures (by setting maxlevel small), as woll as

protecting him from accidentally encountering a circular list structure in tho

course of normal editing. maxlevel is initially set to 300. 21

If a successful match is not found in the current expression, the search

automatically ascends to the next higher expression, 22 and continues searching

there on the next expression after the expression it just finished searching.

If there is none, it ascends again, etc. This process· continues until the

entire edit chain has been searched, at which point the search fails. and an

error is generated. If the search fails (or, what is equivalent, is aborted by

control-E), the edit chain is not changed (nor are any conses performed).

If the search is successful, i.e., an expression is found that the pattern

---~-----------------20 There is also a version of the find command (see page 9.27) which only

21

22

attempts matches at the top level of the current expression, i.e., does not
descend into elements, or ascend to higher expressions.

rnaxlevel can also be set to NIL, which is equivalent to infinity.

See footnote on page 9.24.

9.24

matches, the edit chain is set to the value it would have had had the us or

reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the final link in tho

edit chain, i.e., the new current expression. If the expression that matchod

is not a list, e.g., is an atom, the current expression will be the tail

beginning with that atom, 23 i.e., that atom will be the first element in the

new current expression. In other words, the search effectively does an UP. 24

Search Commands

All of the commands below set lastail for use by UP, set unfind for use by \

(page 9. 35), and do not change the edit chain or perform any conses if they

are unsuccessful or aborted.

F pattern i.e., two commands: the F informs the editor that

the ne~t command is to be interpreted as a

pattern. This is the most conunon and useful form

of the find command. If successful, the edit

chain always chlmges, i.e., F pattern means find

the next instance of pattern.

If memb[pattern;current-expression) is true, F

does not proceed with a full recursive search. If

the value of the memb is NIL, F invokes the search

algorithm described earlier.

23---Unless the atom is a tail, e.g. B in (A . B). In this case, the current

24

expression will be B, but will print as 8).

Unless upfindflg=NIL (initially set to T).
9.43-44.

9.25

for discussion. see pago

Thus if the current expression is

(PROG NIL LP (COND (-• (GO LPl))) .•• LPl ••.), F LPl will find the prog label,

not the LPl inside of the GO expression, even though the latter appears first

(in print order) jn the current expression. Note that 1 (making the atom PROG

be the current expression), followed by F LPl would find the first LPl.

(F pattern N)

(F pattern T)

same as F pattern, i.e., finds the next instance

of pattern, except the ~ check of F pattern is

not performed.

Similar to F pattern, except may succeed without

changing edit chain, and does not perform the m~mb

check.

Thus if the current expression is (COND ••), F COND will look for the next

COND, but (F CONO T) will 'stay here'.

(F pattern n) n 1 1 Finds the

Equivalent

(F pattern N)

nth place that

to (F pattern

repeated n-1

pattern matches.

T) followed by

times. Each time

pattern successfully matches, !! is decremented by

1, and the search continues, until n reaches O.

Note that the pattern does not have to match with

!! identical expressions; it just has to match n

times. Thus if the current expression is

(FOOi FOOZ f003), (F FOOS 3) wil 1 find F003.

If the pattern does not match successfully !!

times, an error is generated and the edit chain is

unchanged (even if the pattern matched n-1 times).

9.26

(F pattern) or

(F pattern NIL)

only matches with elements at the

top level of the current expression, i.e., tho

search wi 11 not descend into the curront

expression, nor will it go outside of the curront

expression.

chain.

May succeed without changing edit

For example, if the current expression is

(PROG NIL (SETO X (COND & &)) (COND &) ...), F COND will find the COND inside

the SETO, whereas (F (CONO -·))will find the top level CONO, i.e., the second

one.

(FS pattern 1 ••• patternn)

(F= expression x)

equivalent to F pattern 1 followed by F

pattern2 followed by F patternn' so that if F

patternm fails, edit chain is left at place

patternm-l matched.

equivalent to (F C== expression) x), i.e.,

searches for a structure fill to expression, see

page 9.22.

{ORF pattern 1 ... pattern0) equivalent to (F (~ANY~ pattern 1 ..• patternn) N),

i.e., searches for an expression that is matched

by either pattern 1, pattern2, ... or pattern 11 •

See page 9.21.

BF pattern ~ackwards find. Searches in reverse print order,

beginning with expression immediately before the

current expression (unless the current expression

is the top level expression, in which case BF

searches the entire expression, in reverse order).

9.27

BF uses the same pattern match routine as F, and

maxlevel and upfindflg have the same effect, but

the searching begins at the end of each list, and

descends into each element before attempting to

match that element. If unsuccessful, tho so arch

continues with the next previous element, etc.,

until the front or the list is reached, at which

point BF ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETO X (SETQ Y (LIST Z))) (CONO ((SETQ W ··) --)) -·), F LIST

followed by ~F SETQ. will leave the current expression as (SETO Y (LIST Z)), as

will F COND followed by BF SETQ.

(BF pattern T) search always includes current expression, i.e.,

starts at the end of current expression and works

backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followed by BF SETO found

(SETO Y (LIST Z)), F CONO followed by (BF SETQ T) would find the (SETO W --)

expression.

(BF pattern) same as BF pattern.
(BF pattern NIL)

Location Specification

~lany of th.e more sophisticated commands described later in this chapter uso a

more general method or specifying position called a location specification. A

location specification 1S a list of edit commands that are executed in the

normal fashion with two exceptions. First, all commands not recognized by tho

9.28

editor are interpreted as though they had been preceded by F. 25 For example,

the location specification (COND 2 3) specifies the 3rd element in the first

clause of the next CONo.26

Secondly, if an error occurs while evaluating one of the commands in tho

location specification. and the edit chain had been changed, i.e., was not tho

same as it was at the beginning of that execution of the location

specification, the location operation will continue. In other words. tho

location operation keeps going unless it reaches a state where it detects that

it is 'looping•, at which point it gives up. Thus. if (COND 2 3) is being

located. and the first clause of the next COND contained only two elements. tho

execution of the command 3 would cause an error. The search would thon

continue by looking for the next COND. However, ir a point were reached whore

there were no further CONDs, then the first command, COND, would cause the

error; the edit chain would not have been changed, and so the entire location

operation would fail, and cause an error.

The IF command in conjunction with the ## function provide a way of using

arbitrary predicates applied to elements in the current expression. IF and ##

will be described in detail later in the chapter, along with examples

illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote a locatio11

specification. Thus @ is a list of conunands interpreted as described above. @

can also be atomic, in which case it is interpreted as list[@].

26 Note that the user could always write F COND followed by 2 and 3 for
(corm 2 3) 1f he were not sure whether or not COND was the name of an
atomic command.

9.29

(LC . @)

(LCL • @)

(2ND • @)

(3RO . @)

(o- pattern)

provides a way of explicitly invoking tho location

operation, e.g. (LC COND 2 3) will perform the tho

search described above.

Same as LC except the search is confined to the

current expression, i.e., the edit chain is

rebound during the search so that it looks as

though the editor were called on just the current

expression. For example, to find a COND

containing a RETURN, one might use the locntion

specification (COND (LCL RETURN) \) where the \

would reverse the effects of the LCL command, and

make the final current expression be the COND.

Same as (LC . @) followed by another (LC . @)

except that if the first succeeds and second

fails, no change is made to the edit chain.

Similar to ZND.

ascends the edit chain looking for a link which

matches pattern. In other words, it keeps doing

O's until it gets to a specified point. If

pattern is atomic, it is matched with the first

element of each link., otherwise with the entire

link.27

27-----------------------------·--·--·-------$·-----------·----------·---------If pattern is of the form (IF expression), expression is evaluated at each
link, and if its value is NIL, or the evaluation causes an error, the
ascent continues.

9.30

For example:

i:ipp
[PROG NIL

(COND

"'F CADR
"'< ~ corm>
"'P

[(NULL (SETQ L (CDR L)))
(COIJD

(FLG (RETURN L]
([NULL (CDR (FMEMB (CAR L)

(CADR L]]

(COND (& &) (& &))
>'!

Note that this command differs from BF in that it does not search i11.sicle of

each link, it simply ascends. Thus in the above example, F CADR followed by

BF COND would find (COND (FLG (RETURN l))), not the higher COND.

If no match is found, an error is generated, and

the edit chain is unchanged.

(BELOW com x) ascends the edit chain looking for a link

specified by ££!!!. and stops x28 links below

29 that, 1. e. BELOW keeps doing O's until it gets

to a specified point, and then backs off ~ O's.

(BELOW com) same as (BELOW com 1).

For example, (BELOW COND) will cause the cond clause containing the current

expression to become the new current expression. Thus if the current

expression is as shown above, F CADR followed by (BELOW COND) will make tho new

28---x is evaluated, e.g., (BELOW com (IPLUS X Y)).

29 Only links that are elements are counted, not tails.

9.31

expression be ([NULL (CDR (FMEMB (CARL) (CADR L] (GO LP)), and is therefore

equivalent to 0 0 0 0.

The BELOW command is useful for locating a substructure by specifying somethihg

it contains. For example, suppose the user is editing a list of lists, and

wants to find a sublist .that contains a FOO (at any depth). He simply executes

F FOO (BELOW \).

(NEX X) same as (BELOW x) followed by NX.

For example, if the user is ~eep inside of a SELECTQ claus•. he can advance to

the next clause wiih (NEX SE(ECTQ).

NEX same as (NEX ..) •

The atomic form of NEX iS useful if the user will be performing repeated

executions of (NEX x). By simply MARKing (see page 9.J4) the chain

corresponding to ~· he can use NEX to step through the sublists.

(NTH x) generalized NTH command. Effectively performs

(LCL . x), foliowed by (BELOW \), followed by UP.

In other words, NTH locates ~· using a search restricted to the current

expression, and then backs up to the current level, where the new current

expression is the tail whose first element contains, however deeply, the

expression that was the.terminus of the location operation. For example:

"'P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)
•p

(SETQ UNFIND UF) (RETURN L))

9.32

If the search is unsuccessful, NTH generates nn

error and the edit chain is not changed.

Note that (NTH n) is just a special case of (NTH x), and in· fact, no special

check is made for~ anumber; both conunands are executed identically.

(pattern .. @) 30 e . g. , (COND .. RETURN) • Finds a cond tlHlt

contains a return, at any depth. Equivalent to

(but more efficient than) (F pattern N), (LCL . @)

followed by c~ pattern).

For example, if the current expression is

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] ·-),then (COND .. RETURN) will

make (COND (FLG (RETURN L))) be the current expression. Note that it is the

innermost COND that is found, because this is the first COND encountered when

ascending from the RETURN. In other words, (pattern . . @) is not alwuys

equivalent to (F pattern N), followed by (LCL . @) followed by\.

Note that @ is a location specification, not just a pattirn. Thus

(RETURN •• COND z 3) can be used to find the RETURN which contains a COND

whose first clause contains (at least) three elements. Note also that since @

permits any edit conunand, the user can write corrunands of the form

(corm .. (RETURN •• COND)), which will locate the first COND that contains a

RETURN that contains a CONO.

30---~--~--------------An infix command, • ... ' is not a meta-symbol, it t.s the name of the command.
@ is cddr of the conunand.

9.33

9.3.3 Commands That Save and Restore The Edit Chain

Several facilities are available for saving the current edit chain and lntor

retrieving it: MARK, which marks the current chain for future reference, ... , 31

which returns to the last mark without destroying it, and , which returns to

the last mark and also erases it.

MARK

...

.......

adds the current edit chain to the front of tho

list marklst.

makes the new edit chain be (CAR MARK LS T) .

Generates an error if marklst is NIL, i.e., no

MARKs have been performed, or all have beon

erased.

similar to .. but also erases the MARK, i.e.,

performs (SETQ MARKLST (CDR MARKLST)).

Note that if the user has two chains marked, and wishes to return to the first

chain, he must perform , which removes the second mark, and then ... However,

the second mark is then no longer accessible. If the user wants to be able to

return to either of two (or more) chains, he can use the following generalized

MARK:

(MARK atom) sets atom to the current edit chain,

(\ atom) makes the current edit chain become the value of

ilQ!!!.

51---An atomic command; do not confuse .. with the list command (.. pattern).

9.34

If the user did not prepare in advance for returning to a particular odi t

chain, he may still be able to return to that chain with a single command by

using \ or \P.

\ makes the edit chain be the value of unfind.

Generates an error if unfind=NIL.

unfind is set to the current edit chain by each command that makes a 11 big

jump", i.e., a command that usually performs more than a single ascont or

descent, namely t, ~. ~~. !NX, all commands that involve a search. e.g., F, LC,

.. , BELOW, et al and\ and \P themselves. 32

For example, if the user types F CONO, and tHen F CAR, \ would. take him back. to

the COND. Another \ would take him back to the CAR. etc.

\P restores the edit chain to its state as of the

last print operation, i.e. P. ?, or PP. If tho

~dit chain has not changed since the last

printing, \P restores it to its state as of the

printing before that one, 1.e., two chains are

always s.aved.

For example, if the user types P followed by 3 2 1 P, \P will return to the

first P, i.e., would be equivalent to O O o.33 Another \P would then tako him

back to the second P, i.e., the user could use \P to flip back and forth

between the two edit chains.

a2---Except that unfind is not reset when the current edit chain is the top

33

level expression, since this cou.ld always be returned to via the t command.

Note that if the user had typed P followed by F CONO, he could use either \
or \P to return to the P, i.e., the ac~~on. of\ and \Pare independent.

9.35

(S var . @) Sets Y!!: (using setq) to the current expression

after performing (LC • @).

changed.

Edit chain is not

Thus (S FOO) will set foo to the current expression, (S FOO ·1 1) will set foo

to the first element in the last element of the current expression.

Th is ends the section on "Attention Changing Conunands."

9 .4 Commands That Modify Structure

The basic structure modification conunands in the editor are:

(n)

(-n e 1 ••• em)

As mentioned earlier:

n ~ 1 deletes the corresponding element from the

current expression.

n.m l 1 replaces the nth element in the current

expression with e1 ••• em.

n.m l 1 inserts e1 •.• em before th.e nth element

in the current expression.

ml 1 attaches e1 ••• em at the end of the current

expression.

all structure modifi~ation done by the editor is de~tructive. i.e. the editor
uses rplaca and rplacd to physicallg change the structure it was given.

However, all structure modification is undooble, see UNDO page 9.78.

9.36

All of the above commands generate errors if the current expression is not n

list, or in the case of the first three commands, if the list· contains fewor

than .!l elements; In addition, the conunand (1), i.e. delete the first element,

will cause an error if there is only one element, since deleting the first

element must be done by replacing it with· the second element, and then deleting

the second element. Or, to look.at it another way, deleting the first element

when there is only one element would require changing a list to an atom (i.e.

to NIL) which cannot be done.34

9.4.1 Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or attach .structure u.se
the .same low level editor functions, the remark..s made here are val id for
all .structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless tho

command was typed in directly to the editor, 36 copies of the corresponding

structure are used, because of the possibility that the exact same command,

(i.e. same list structure) might be used again. Thus if a program constructs

the command (1 (ABC)) e.g. via (LIST 1 FOO), and gives this command to the

editor, the (ABC) used for the replacement will not be !_g to foo. 36

34---However, the command DELETE will work even if there is only one element in

35

36

the current expression, since it will ascend to a point where it can do tho
deletion.

Sor.ie editor commands take as arguments a list of edit commnnds, e.g.
(LP F FOO (1 (CAR FOO))). In this case, the conunand (1 (CAR FOO)) is not
considered to have been "typed in" even though the LP command itself may
have been typed in. Similarly, commands originating from macros, or
cor:u:tands given to the editor as arguments to editf, editv, et al, e.g.
EDITF(FOO F corm (N ··)) are not considered typecfiii":"' - ·

The user can circumvent thi's by using the I command, which computes tho
structure to be used. In the above example, the form of the command would
be (I l FOO), which would replace the first element with the value of foo
itself. See page 9.62.

9.37

The rest of this section is incl.uded for applications wherein the editor is

used to modify a data structure, and pointers into that data structure are

stored elsewhere. .In these cases, th• actual mechani~s of structure

modification must b,e known in order to predict the effect that vario.us commands

may have on these outside pointers. For example, if the value of foo is cdr of

the current expression, what will the commands (2), (J), (2 X Y Z), (-2 X Y Z),

etc. do to foo?

Deletion of the first element in the current expression is performod by

replacing it with the second element and deleting the second element by

patching around it. Deletion of any other element is done by patching around

it, i.e., the previous tail is altered. Thus if f22 is !S to the current

expression which is (A B C 0), and lli is·· cdr of · foo, after executing tho

command (1), foo will be (B C D) (which is equal but not !S to fie). However,

under the same initial conditions, after executing (2) fie will. be unchanged,

i.e., fie will still be (B C D) even though the current expression and foo are

now (A C 0). 37

Both replacement and insertion are accomplished by smashing both fl!.!: and cdr of

the corresponding tail. Thus, if foo were .!!,g to the current expression,

(A B C D), after (1 X Y Z), f22 would be (X Y Z BC 0). Similarly, if. foo were

~ to the current expression, (ABC 0), then after (-1 X Y Z), foo would be

(XYZABCO).

The N conunand is accomplished by smashing the last £S!r of the current

i~---------------------------·--·----~-------~----------~--~~------------------A general solution of the problem just isn't possible, as it would require
being able to make two lists .!!,g to each other that were originally
different. Thus if fie is cdr of the current expression, and furn is cddr
of the current expression, performing (2) would have to make. fie be £..9 to
fun if all subsequent operation~ were to update both fie and furn correctly.
Think about it. · - -

9.38

expression a la !!.£2.!2£• Thus if foo were !51 to any tail of the currant

expression, after executing an N command, the corresponding expressions would

also appear at the end of foo.

In summary, the only situation in which an edit operation wi 11 not change an

external pointer occurs when the external pointer is to a proper tail of tho

data structure, i.e .• to cdr of some node in the structure, and the operation

is deletion. If all external pointers are to element.s of the structure, i.e.,

to car of some node, or if onl~ itis~rtions, re~lac~ments, or attachments are

performed, the edit operation will alway.s have the sa'me effect on an external

pointer as it does on the current expression.

9.4.2 The A, B, and Commands

In the (n), (n e 1 ... em)' and (·n e1 ... em) commands, the sign of the

integer is used to indicate the operation. As a result,, there is no direct way

to express insertion after a particular. element, ,(hence .the nece,ssi ty for a

separate N cor.unand). Similarly, the user cannot specify deletion or

replacement of the nth element from the end of a list without first converting

!l to the corresponding pos'i tive integer .. Accordingly, we have:

(B e 1 •.• em) inserts e 1 ... em ~efore the current expression.

Equivalent to U~ followed.by (~1 e 1 •.. em>·

For example, to insert FOO before the last element in .the current expression,

perform -1 and tben (B FOO).

(A e 1 ••. em) inserts e1 em _!fter the current expression.

Equivalent to UP followed by (-2 ,e 1 ... em) or

(N e1 ... em) whichever is appropriate.

9.39

(: e 1 . . . em)

DELETE or(:)

replaces the current expression by o1 ... em.

Equivalent to UP followed by (1 e1 ... em>·

deletes the current expression.

DELETE first tries to delete the current expression by performing an UP and

then a (1). This works in most cases. However, if after performing UP, tho

new current expression contains only one element, the command (1) will not

work. Therefore, DELETE .starts over and performs a BK, followed by UP.

followed by (2). For

(COND {(MEMB X Y)) (TY)),

BK-UP-(2) method is used,

((MEMB X Y)))

example, if the

and the user performs

and the new current

current expression

-1, and then DELETE,

expression will be

is

the

However, if the next higher expression contains only one element, BK will not

work. So in this case, DELETE performs UP, fOllowed by (: NIL). i.e., it

replaces the higher expression by NIL. For example, if the current expression

is (COND ((MEMS X Y)) (TY)) and the user performs F HEMB and then DELETE, the

new current expression will be ••. NIL (TY)) and the original expression would

now be (COND NIL (TY)). The rationale behind thi~ is that deleting (MEHB X Y)

from ((MEMB X Y)) changes a list of one element to a list of no elements, i.e.,

()or NIL.

If the current expression is a tail, then 8, A, : , and DELETE all work exactly

the same as though the current expression were the first element in that tail.

Thus if the current expression were ... (PRINTY) (PRINTZ)), (B (PRINT X))

would insert (PRINT X) before (PRINT Y), leaving the current expression

... (PRINT X) (PRINT Y) (PRINTZ)).

9.40

The following forms of the A, B, and commands incorporate a location

specification:

(IIJSERT el . . . em BEFORE . @) 38 Similar to (LC .@)39 followed by (B

e 1 ••• em).

l«P
(PROG (& & X) **COMMENT~= (SELECTQ ATM & NIL) (OR & &) (PRINl & T)
(PRitH & T) (SETO X &

J!!(lNSERT LABEL BEFORE PRIN1)
lllP
(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR & &) LABEL
(PRINl & T) (

40 *

Current edit chain is not changed, but unfind is

set to .the edit chain after the B was performod,

i.e.\ will make the edit chain be that chain

where the insertion was performed.

(INSERT e1 ... em AFTER . @)Similar to INSERT BEFORE except uses A instead of

B.

(INSERT e1 ... em FOR . @) similar to INSERT BEFORE except uses for B.

aa-------------------·---u·----
i .e. @ is cdr[member[BEFORE;command]]

39

40

except that if @ causes an error, the location process does not continue as
described on page 9.29. For example if @=(COND 3) and the next CONO does
not have a 3rd ele~ent, the search stops and the INSERT fails. Noto that
the user can always Write (LC CONO 3) if he intends the search to continue.

Sudden termination of output followed by a blank line return indicates
printing was aborted by control·E. ·

9.41

(REPLACE @ WITH e 1 ... em>41 Here @42 is the .segment of the command betwoon

REPLACE and WITH. Same as

(INSERT e 1 ••• em FOR . @).

Example: (REPLACE CONO -1 WITH (T (RETURN L)))

Same as REPLACE WITH.

(DELETE . @) does a (LC . @) 43 followed by DELETE. Current

edit chain is not changed, 44 but unfind is set to

the edit chain after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note: if 13' is it'll (i.e. empty), the corre.spondtng operation is performed here
(on the current edit chain).

For example, (REPLACE WITH (CAR X)) is equivalent to (: (CAR X)). For added

readability, HERE is also permitted, e.g. (INSERT (PRINT X) BEFORE HERE) will

insert (PRINT X). before the current expression (but not change the edit

chain).

Note: @does not have to specify a location w1thtn the current ex~ression. i.e.
it is perfectly legal to ascend to INSERT, REPLACE, or DELETE

41---BY can be used for WITH.

42

43

44

See footnote on page 9.41.

See footnote on page 9.41.

Unless the current expression is no longer a p~rt of the expression being
edited, e.g. if the current expression is ... C) and the user performs
(DELETE 1), the tail, (C). will have .been cut off. Similarly, if the
current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X)).

9.42

For example, (INSERT (RETURN) AFTER 9 PROG -1) will go to the top, find tho

first PROG, and insert a (RETURN) at its end, and not change the current edit

chain.

The A, B, and : conunands, conunands, (and consequently INSERT, REPLACE, and

CHANGE), all make special checks in e1 thru em for expressions of the form (-•

. corns). In this case, the expression used for inserting or replacing is a

copy of the current expression after executing~· a list of edit corrunands. 45

For example, (INSERT (## F CONO -1 -1) AFTER 3)46 will make a copy of the last

form in the last clause of the next cond, and insert it a.fter the third element

of the current expression.

9.4.3 Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands47 makes these operations

form-oriented. For example, if the user types F SETO, and then DELETE, or

simply (DELETE SETO), he will delete the entire SETO expression, whereas

(DELETE X) if X is a variable~ deletes just the variable X. In both cases, tho

operation is performed on the corresponding form, and in both cases is probably

what the user intended. Similarly, if the user types

(INSERT (RETURN V) BEFORE SETO). he means before the SETO expression, not

45---The execution of .£2.!!!.! does not change the current edit chain.

46

47

Not (INSERT F COND -1 (## ·1) AFTER 3), which inser~s four elements after
the third element, namely F, COND, -1, and a copy of the last element in
the current expression.

and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the
location portion of the operation has been performed.

9.43

before the atom SETQ. 48 A consequent of this procedure is that a pattern of the

form (SETO Y --) can be vie~ed as simply an elaboration and further refinement

of the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and

(INSERT {RETURN Y) BEFORE (SETQ Y ··)) perform the same operation49 and, in

fact, this is one of the motivations behind making the current expression after

F SETQ, and F (SETQ.Y --) be the same.

Occasionally, however, a user may have a data structure in which no special

significance or meaning is attached to the position of an atom in a list. as

INTERLISP attaches to atoms that appear as !:.!.!: of a list, versus those

appearing elsewhere in a list. In general, the user may not even know whether

a particular atom is at the head of a list or not. Thus, when he writes

(INSERT expression BEFORE FOO), he means before the atom FOO, whether or not it

is £i!..!: of a list. By setting the variable upfindflg to NIL, 60 the user can

suppress the implicit UP that follows searches for atoms, and thus achieve the

desired effect. With upfindflg=NIL, following F FOO, for example, the current

expression will be the atom FOO. In this case, the A, B, and : operations will

operate with respect to the atom FOO. If the user intends the operation to

refer to the list which FOO heads, he simply uses instead the pattern (FOO 0 -).

4a·--rhere is some ambiguity in (INSERT expr AFTER functionname), as the user

49

60

might mean make expr be the function's first argument. Similarly. the user
cannot write (REPLACE SETQ WITH SETQQ) meaning change the name of the
function. The user must in these cases. write .(INSERT expr AFTER
functioname 1), and (REPLACE SETQ 1 WITH SETQQ).

assuming the next SETO is of the form (SETO Y ••).

Initially, and usually, set to T.

9.44

9.4.4 Extract and Embed

Extraction involves replacing the current expression with one of its

subexpressions (from any depth).

(XTR • @) replaces the original current expression with tho

expression that is current after performing

(LCL • @). 51

For example, if the current expression is (CONO ((NULL X) (PRINTY))),

(XTR PRINT), or (XTR 2 2) will replace the cond by the print.

If the current expression after (LCL • @) is a

tail of a higher expression, its first element is

used.

For example, if the current expression is (CONO ((NULL X) Y) (T Z)), then

(XTR Y) will replace the ~ with V, even though the current expression after

performing (LCL Y) is .•• V).

If the extracted expression is a list, then after

XTR has finished, the current expression will be

that list.

Thus, in the first example, the current expression after the XTR would be

(PRINTY).

6i·--·-See footnote on page 9.41.

9.45

If the extracted expression is not a list, the now

C\lrrent expression will be a tail whose first

element is that non-list.

Thus, in the second example, the current expression after the XTR would bo

... Y followed by whatever followed the CONO.

If the current expression initial tu is· a tail, extraction works exactly tho

same as though the current expression were the first element in that tail.

Thus if the current expression is •.. (CONO ((NULL X) (PRINTY))) (RETURN Z)),

then (XTR PRINT) will replace the cond by the print, leaving (PRINT Y) as the

current expression~

The extract command can also incorporate a location specification:

Performs (LC • @2)63 and then (XTR . @1). Current

edit chain is not changed, but unfind is set to

the edit chain after the XTR was performed.

Example: If the current expression is (PRINT (CONO ((NULL X) Y) (T Z))) then

following (EXTRACT Y FROM COND), the current expression will be (PRINT V).

(EXTRACT 2 -1 FROM CONO), (EXTRACT Y FROM 2), (EXTRACT Z -1 FROM Z) will all

produce the same result.

~~--~------------------------------------@1 is the segment between EXTRACT and FROM.

53 See footnote on page 9.41.

9.46

While extracting replaces the current expression by a subexpression, embedding

replaces the current expression with one containing it as a subexpressio~~

MBD subs ti tutes64 the current expression for a 11

instances of the atom R in e1 ..• em• and replaces

the current expression with the result of that

subs ti tu ti on.

Examples: If the current expression is (PRINT V),

(MBD (COND ((NULL X) ~) ((NULL (CAR V)) R (GO LP)))) would replace (PRINT V)

with (COND ((NULL X) (PRINTY)) ((NULL (CAR V)) (PRINTY) (GO LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG R)) would

replace it with the two expressions (PRINT V) and (AND FLG (RETURN X)) i.e., if

the (RETURN X) appeared in the cond clause (l (RETURN X)), after the MBD, the

clause would be (l (PRINTY) (AND FLG (RETURN X))).

If a does not appear in e1 ... em• the MBD is

interpreted as (MBD (e1 ••• em R))._

Examples: If the current expression is (PRINTY), then (MBO SETO X) will

replace it with (SETQ X (PRINTY)). If the current expression is (PRINT V).

tMBD RETURN) will replace it with (RETURN (PRINT Y)).

MBD leaves the edit chain so that the larger expression is the new current

expression.

54---as with subst, a fresh copy is used for each substitution.

9.47

If the current expression tnttially is a tail, embedding works exactly the samo

as though the current expression were the first element in that tail. Thus if

the current expression were (PRINTY) (PRINT Z)), (MBD SETQ X) would

replace (PRINT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location specification:

(EMBED @ IN . x) 55 does (LC . @)66 and then (MBD . x). Edit chain is

not changed, but unfind is set ~o the edit chain

after the MBD was performed.

Example: (EMBED PRINT .IN SETQ X), (EMBED 3 Z IN RETURN),

(EMBED COND 3 1 IN (OR * (NULL X))),

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND

NUMBERP WITH (AND • (fllNUSP X))).

9.4.5 The MOVE Command

The MOVE command allows the user to specify (1) the expression to be moved, (2)

the place it is to be moved to, and (3) the operation to be performed there,

e.g., insert it before, insert it after, replace, etc.

where £2!!! is BEFORE, AFTER, or the name of a list

.66 See footnote on page 9.41.

57
@1 is the segment b_etween MOVE and T.O.

9.48

command, e.g .• ., N, etc. performs (LC @1). 58

and obtains the current expression there (or its

first eleraent, if it is a tail), which we wi 11

call expr; MOVE then goes back to the origi1rnl

edit chain, performs (LC . @2) fol lowed by

(com expr), 59 then goes back to @1 and deletes

expr. Edit chain is not changed. Unfind is sot

to edit chain after (com expr) was performed.

For example, if the current expression is (A B C 0), (MOVE 2 TO AFTER 4) will

make the new current expression be (A C D B). Note that 4 was executed as of

the original edit chain 0 and that the second element had not yet boon

removed. 60

As the following examples taken from actual editing will show, the MOVE command

is an extremely versatile and powerful feature of the editor.

'f(?
(PROG ((LL)) (EDLOC (COOR C)) (RETURN (CARL)))
~(MOVE 3 TO : CAR)

(PROG ((LL)) (RETURN {EDLOC (COOR C))))
"'

(SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
"'(MOVE 2 TON 1)
i:cp

(SELECTQ OBJPR & & &) LP2 (COND & &))

53---
see footnote on page 9.41.

69

60

Setting an internal flag so expr is not copied.

If @2 specifies a location inside of the expression to be moved, a message
is printed and an error is generated, e.g. (MOVE 2 TO AFTER X), where X is
contained inside of the second element.

9.49

*P
(OR (EQ X LASTAIL) (NOT&) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))
*P
(OR (EQ X LASTAIL) (NOT &))
*\ p

(& &) (AND & & &) (T & &))

1< p

((NULL X) **COMMENT** (COND & &))
"'(-3 (GO NXT]
•(MOVE 4 TO N (~ PROG))
ll<P
((NULL X) **COMMENT** (GO NXT))
"'\ p
(PROG (&) ••COMMENT** (COND & & &) (CONO & & &) (COND & &))
•(INSERT NXT BEFORE -1)
lllP
(PROG (&) **COMMENT** (COND & & &) (CONO & & &) NXT (COND & &))

Note that in the last example, the user could have added the prog label NXT and

moved the cond in one operation by performing (MOVE 4 TON(.. PROG) (N NXT)).

Similarly, in the next example, in the course of specifying @2 , the location

where the expression was to be moved to, the user also performs a structure

modification, via (N (T)). thus creating the structure that will receive the

expression being moved.

"'P
((COR &) **COMMENT** (SETO CL&) (EDITSMASH Cl & &))
*MOVE 4 TON 0 (N (T)) -1]
1< p

((COR &) **COMMENT** (SETQ CL&))
•\ p
*(T (EDITSMASH CL & &))
•

If @2 is NIL, or (HERE), the current position specifies where the operation is

to take place. In this case, unfind is set to where the expression that was

moved was originally located, i.e. @1 • For example:

t><p
(TENEX)
t><(MOVE t F APPLY TO N HERE)
"'P
(TENEX (APPLY & &))
""

9.50

it p
(PROG (& & & ATM IND VAL) (OR & &)
PRINl & T) (SETO IND

61

*(MOVE ~ TO BEFORE HERE)
*P

(OR & &) (PRIN1 & T) (

(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRINl &

i>:p
(T (PRINl C-EXP T))
"'(MOVE t BF PR!Nl TO N HERE)
*P
(T (PR!Nl C-EXP T) (PRINl & T))
"'

Finally, if @1 is NIL, the MOVE command allows the user to specify where tho

current expression is to be moved to. In this case, the edit chain is changed,

and is the chain where the current expression was moved to; unfind is set to

where it was.

"'P
(SELECTQ OBJPR (&) (PROGN & &))
*(MOVE TO BEFORE LOOP)
*P
... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ
tc

9.4.6 Cor.unands That "Move Parentheses"

The cor:unands presented in this section permit modification of the list

structure itself, as opposed to modifying components thereof. Their effect can

be described as inserting or removing a single left or right parenthesis. or

pair of left and right parentheses. Of course, there will always be the same

number of left parentheses as right parentheses in any list structure, since

the parentheses are just a notational guide to the structure provided by print.

Thus, no command can insert or remove just on~ parenthesis, but this is

suggestive of what actually happens.

6i·--Sudden termination of output followed by a blank line indicates printing
was aborted by control-E.

9.51

In all six commands, !l and !!! are used to specify an element of a list, usually

of the current· expression. In practice, !l and !!! are usually posit! ve or

negative integers with the obvious interpretation. However, all six commands

use the generalized NTH command, page 9.32, to find their element(s), so that

nth element means the first element of the tail found by performing (NTH n).

In other words, if the current expression is

(LIST (CAR X) (SETO Y (CONS W Z))), then (BI 2 CONS), (BI X ·1), and (BI X Z)

all specify the exact same opetation.

All six commands generate an error if the element is not found, i.e. the NTH

fails. All are undoable.

(BI n m) QOth 1n, inserts a left parentheses before the nth

element and after the mth element in the current

expression. Generates an error if the mth element

is not contained in the nth tail. 1. e.. the mth

element must be "to the right" of the nth element.

Examplei If the current expression is (AB (CD E) F G), then (BI Z 4) will

modify it to be (A (B (C DE) F) G).

(BI n) same as (BI n n).

Example: If the current expression is (AB (COE) F G), then (BI -2) will

modify it to be (A B (C D E) (F) G) •

(BO n) QOth gut. Removes both parentheses from the nth

element. Generates an error if nth element is not

a list.

Example: If the current· expressfon is (AB (CD E) F G), then (BO 0) will

modify it to be (ABC DEF G).

9.52

(LI n) left !n. inserts a left parenthesis before tho nth

element (and a matching right parenthesis at the

end of the current expression), i.e. equivalent

to (BI n ·1).

Example: if the current expression is (A 8 (C 0 E) F G), then (LI 2) will

modify it to be (A (B (C 0 E) F G)).

(LO n) left 2ut, removes a left parenthesis from the nth

element. i'lll elements following the !!.th element

are deleted. Generates an error if nth element is

not a list.

Example: If the current expression is (AB (C 0 E) F G). then (LO 3) will

modify it to be (AB C OE).

(RI n m) r_ight _!n, inserts a right parenthesis after the

mth element of the nth element. The rest of the

nth element is brought up to the level of the

current expression.

Example: If the current expression is (A (BC 0 E) F G), (RI 2 Z) will modify

it to be (A (B C) 0 E F G). Another way of thinking about RI is to read it as

"move the right parenthesis at the end of the nth element in to after its mth

element. 11

(RO n) right £Ut, removes the right parenthesis from the

nth element, moving it to the end of the current

expression. All elements following the nth

element are moved inside of the nth element.

Generates an error if nth element is not a list.

9.53

Example: If the current expression is (A B (C O E) F G), (RO 3) will modify it

to be (A B (C O E F G))., Another way of thinking about RO is to read it as

"move the right parenthesis at the end of the uth element out to the end of

the current expression.~

9.4.7 TO and iHRU

EXTRACT, EMBED, DELETE,. REPLACE, and HOVE can be made to operate on several

contiguous elements, i.e., a segment of a list, by using in their respective

location specifications the TO or THRU command.

does a (LC • @1), followed by an UP, and then ll

(BI 1 @2), thereby grouping the segment into a

single element, and finally does a 1, making the

final current expression be that element.

For example, if the current expression is (A (B (C D) (E) (F G H) I) J K),

following (C THRU ~). the current expression will be ((C 0) (E) (F G H)).

Same as THRU except last element not included,

i.e., after the BI, an (RI 1 -2) is performed.

If both @1 and @2 are numbers, and @2 is greater than @1, then @2 counts from

the beginning of· the current expression, the same as @1• In other words, if

the current expression is (A B C D E F G), (3 THRU 5) means (C THRU E) not

(C THRU G). In this case, the corresponding BI command is CBI 1 @2-@ 1+1).

THRU arid .TO are not very useful conunands by themselves; they are intended to be

used in .conjunction with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU

and TO have operated, they set an internal editor flag informing the above

9.54

commands that the element they are operating on is actually a segment, and that

the extra pair of parentheses should be removed when the operation is complete.

Thus:

i:tp

(PROG (& & ATM IND VAL WORD) (PRINl & T) (PRIN1 & T) (SETQ IND &) (SETO VAL &)
"'"'COMMENT•• (SETQQ

"'(MOVE (3 THRU 4) TO BEFORE 7)
•p
(PROG (& & ATM IND VAL WORD) (SETQ IND&) (SETQ VAL&) (PRINl & T) (PRIN1 & T)
"'"'COMMENT"'"'

"'P
("' FAIL RETURr~ FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR J\tJD
CURREIHFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE BEEN
TRANSLATED, AND IT CAUSED THE ERROR.)
~(DELETE (USER THRU CURR$))
=CURREtHFORM.
"'P
(* FAIL RETURN FROM EDITOR. CURRENTFORM IS

LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN V))
•(MOVE (1 TO OUT) TON HERE]
*P

OUT (SETO FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))

i:>:pp

[PROG (RF TEMP1 TEMP2)
ccorw

((NOT (MEMS REMARG LISTING))
(SETO TEMPl (ASSOC REMARG NAMEOREMARKS)) R*COMMENT~•
(SETO TEMP2 (CADR TEMP1))
(GO SKIP))

(T ·~coMMENT•ft

(SETQ TEMPI REMARG)))
(NCONC1 LISTING REMARG)
<corm

((NOT (SETQ TEMP2 (SASSOC

n(EXTRACT (SETO THRU CADR) FROM COND)
"'P
(PROG (RF TEMPI TEMP2) (SETO TEMP! &) *~COMMENT•• (SETQ TEMP2 &)
(NCONCl LISTING REMARG) (COND & &

9.55

TO and THRU can also be used directly with XTR. 62 Thus in the previous example,

if the current expression had been the COND, e.g. the user had first performed

F COND, he could have used (XTR (SETO THRU CADR)) to perform the extraction.

Examples:

1< p

both same as (@ 1 THRU -1), 1. e., from @ 1 through

the end of the list.

(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN))
*(MOVE (2 TO) TON (~ PROG))
*(N (GO VAR))
*P
(VALUE (GO VAR))

wp
(T *~COMMENT** (COND &) ~ACOMMENT"" (EDITSMASH CL & &) (COND &))
*(-3 (GO REPLACE))
*(MOVE (COND TO) TO N t PROG (N REPLACE))
ftp

(T *•COMMENT** (GO REPLACE))
"'\ p
(PROG (&) **COMMENT** (COND & & &) (COND & & &) DELETE (COND & &)
REPLACE (COND &) •~COMMENT** (EDITSMASH CL & &) (COND &))
lll:

62---Because XTR involves a location specification while A, B, : • and. MBD do
not.

9.56

"'PP
[LAMBDA (CLAUSALA X)

(PROG (A D)
(SETO A CLAUSALA)

LP (corm
((IJULL A)

(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(IJOTICECL (CAR A))
(SETO A (CDR A))
(GO LP]

"'(EXTRACT (SERCH THRU NOT$) FROM PROG)
=NOTICECL
"'P
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
"'(EMBED (SERCH TO} IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) •]
*PP

[LAMBDA (CLAUSALA X)
(MAP CLAUSALA (FUNCTION (LAMBDA (A)

(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR AJ

9.4.8 The R Command

(R x y) replaces all instances of ! by ::; in the current

expression, e.g., (R CAADR CADAR). Gener~tes an

error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor.

The search proceeds as described on page 9.23·25, and ! can employ any of the

patterns on page 9.21-23. Each time ~matches an element of the structure, the

element is replaced by (a copy of) }'.; each time ;s matches a tail of the ·
..

structure, the tail is replaced by ~~ copy of) ~·

For example, if the current expression is (A (BC) (B • C)),

{R C D) will change it to (A {B D) (B .• 0)),
·. (;,_

(R (• • • • C) D) to (A (B C) (B 0)) ,

{ R c (D E)) to (A (B (0 E)) (B D E)), and

(R (•••• NIL) D) to (A (BC ~ D). (B .,C) ; D).

9.57

If ! is an atom or string containing alt-modes, alt-modes appearing in x stand

for the characters matched by the corresponding alt-mode in·!• For example,

(R FOOS FIES) means for all atoms or strings that begin with FOO, replace tho

characters 'FOO' by 'FIE I .63 Applied to the list

(FOO F002 XF001), (R FOOS FIE$) would produce (FIE FIEZ XF001), and

(R FOO FIE) would produce (FIE FIEZ XFIE1). Similarly, (R SOS SAS) will

change (LIST (CADR X) (CADDR Y)) to (LIST (CAAR X) (CAADR)). 64

The user ~ill be informed .of all such alt-mode replacements by a message of tho

form x->y, e.g. CADR·>CAAR.

Note that .the $ feature can be used to delete or add characte~s. as well as

replace them. For example, (R $1 $)will delete the terminating i's from all

literal atoms and strings. Similarly, if an alt-mode in ! does not have a mate

in ~· the characters matched by the 3 are effectively deleted. For example,

(R $/S S) will change AND/OR to ANo; 66 l'. can also be a list containing

alt-mocles• e.g .. CR $1 (CAR$)) will change FOOl to (CAR FOO), FIE1 to

(CAR FIE).

If ! does not contain alt-modes, $ appearing in x refers to the entire

ai·~---1r x matche~ a string, it will be replaced by a string. Note that it docs
not- matter whether. ! or ~ themselves are strings, i.e.
(R 0 A), (R 11 0 11 A), (R 0 "SAS"), and (R 11 0 11 11 SAS 11) are
equivalent. Note also that x will never match with a number. i.e.
(R $1 $2) will not change 11 to-12.

64 Note that CADDR was not changed to CAAAR, i.e. (R SOS SAS) does not moan
replace every D with A, but replace the first D in every atom or string by
A. If the user wanted to replace every 0 by A, he could perform
(LP (R 0 SAS)).

65 However, there is no similar operation for changing AND/OR to OR. since the
first $ in x always co~responds to th~ first $ in !• the second $ in x to
the second in ~· etc.

9.58

expression matched by ;s, e.g. (R LONGATOM 1$) changes LONGATOM to 1 LONGATOM,

(R (SETO X &) (PRINT$)) changes every (SETQ X &) to (PRINT (SETQ X &)). 60

Since (R SxS Sy$) is a frequently used operatiori for replacing £haracters, tho

following conunand is provided:

(RC x y) equivalent to (R x y)

R and RC change all instances of ~ to ~· The commands Rl and RCl are available

for changing just one, (i.e. the first) instance of~ to~·

(Rl x y) find the first instance of ~ and replace it by ~·

(RCl x y) (R 1 x y) •

In addition, while R and RC only operate within the current expression, R1 and

RC1 will continue searching, a la the F command, until they find an instance of

~. even if the search carries them beyond the current expression.

(SW nm) switches the nth and mth elements of the current

expression.

For example, if the current expression is

(LIST (COl~S (CAR X) (CARY)) (CONS (CDR X) (CDR V))),

(SW 2 3) will modify it to be

(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR V))). The relative order of n

and m is not important, i.e., (SW 3 2) and (SW 2 3) are equivalent.

~~----------------------------~--If x is a pattern containing an alt-mode pattern somewhere within it, tho
characters matched by the alt-modes are not available, and for tho purposes
of replacement, the effect is the same as though x did not contain any alt
modes. For example, if the user types (R (CAR FSl (PRINTS)), the second $
will refer to the entire expression matched by (CAR FS).

9.59

SW uses the generalized NTH command to find the

nth and mth elements, a la the BI-BO commands.

Thus in the previous ~xample, (SW CAR CDR) would produce the same result.

9.5 Commands That Print.

PP prettyprints the current expression.

P prints the current expression as though printlevcl

were set to 2.

(P m)

(p 0)

(P m n)

(P 0 n)

?

prints mth element of current expression as though

printlevel were set to 2.

same as P

prints mth elem~nt of current expression as though

printlevel were set to U·

prints current expression as though printlevcl

were set to U·

same as (P O 100)

Both (P m} and (P m n) use the generalized NTH command to obtain tho

corresponding element, so that !!! does. not have to be a number, e.g. (P COND 3)

will work. PP causes all comments to be printed as °COMMENT 0 (see Section

9.60

14). P and ? print as l.'ll!ICOMMENTtii:t only those comments that are (top levol)

elements of the current expression. 67

PP* prettyprints current expression, including

comments.

PP* is equivalent to PP except that it first resets ucornment**flg to NIL (soo

Section 14). In fact, it is defined as (RESETVAR ucoMMENTUflG Nll PP), see

page 9. 77.

PPV

PPT

·.i :.

prettyprints current expression as a variAb1e,

Le .. no' special treatment for LAMBDA, COND, SETQ,

etc., or for CLISP.

prettyprints current expression, printing CLISP

translations, -if any ..

All printing functions print to the .terminal, .regardles·s of. the. p.rimar.y output

file. All use the readtable T. No printing function ever changes the edit "

chain. All record the current edit chain for.use by \P, page 9.35 .. All can be

aborted with control-E.

; . I

9.61

9.6 Comr:iands That Evaluate

E only when typed in, 68 causes the editor to call

lispx giving it the next input as argumont. 69

Example: 111 E SREAK(FIE FUM)
(FlE FUM)
111 E (FOO)

(FIE BROKEN)

· (E X) evaluates ~; i.e., performs eval[x], and prints

the result on 'he terminal.

(E x T) same as (E x) but does not print.

ihe (E x) and (E x T) commands are mainly intended for use by macros and

subroutine calls to ·the editor; the user would probably type in a form for

·evaluation using the more convenient format of the (atomic) E command.

(I c x 1 ·· ... x0)

Example: (I 3 (GETD (QUOTE FOO))) will replace the 3rd element of the current

expression with the definition of !gE_. 70 (I N FOO (C(\R FIE)) will attach the

--------------------~~-------·--------·------------------------------~---------68 . .

69

70

e~g. (INSERT O BEFORE E) will treat E as a pattern, and search for E.

1 ispx is. used tw evalgt and ~ for processing terminal inputs. If
nothing else is typed on the same line, lisp:< evaluates its argument.
Otherwise, lispx applies it to the next input. In both cases, lispx prints
the result. See above example, and Sections 2 and 22.

The I command sets an internal flag to indicate to the structure
modification commands not to copy expreS$ion(s) when inserting, replacing,
or att.;iching.

9.62

value of foo and £!.!: of the value of fie to the end of the current. expression.

(I F= FOO T) will search for an expression !Ul to the value_ .. of foo.

If £ is no~ an. atom, c is evaluated also.·

Example: (I (COND ((NULL FLG) (.QUOTE ·1)) (T 1)) FOO). -if flg. is NIL, inserts

the value of fo.o before the firs.t element. of the current expression, otherwise

replaces the first element by the value. o.f foo.

. . ~. '

is -an NLAMBDA; NOSPREAD function .. (not a· conunand).

Its value is what the current expression would bo

after executing the edit commands com 1 • . . comn

starting from t)le present edit chain. Generutes

an error if any of corni thru ,~qmn· -~~U.$e errors.

The current edit chain is never changed. 71

Example: (I R (QUOTE X) (## (CONS •• Z))) replaces all X's in the current

expression by the first -~ containing a Z. •

The I command is not very convenient for computing' an' entire. ed.'it: command for

execution, since it computes the command name· and its arguments separately.

Als_o, the. I command canno.t be. use.d to compute an. atomic: command.: ... The following

two commands provide· mo.re ge_neral ways of computing .commands.

Each xi is evaluat.ed and· its value i"s executed as

a command.

7i·---~--------------------Recall that A, B, :, INSERT, REPLACE, and CHANGE make special checks for ##
forms in the expressions used for inserting or replacing, and use a copy of
form instead (see page 9.43). Thus, (INSERT· (!II• 3 2)AFTER1) is
equivalent to (I INSERT (COPY (## 3 2)) (QUOTE AFTER);!-), ..

9.63

For example~ (COMS (COND (X (LIST 1 X)))) will replace the first element of tho

current expression with the value of ~ if non•NIL, otherwise do nothing. 72

(COMSQ com1 ~ •• ·· comn) executes com1 .•• com0 .

COMSQ is mainly useful in conjunction with the COMS command. For examplo.

suppose the user wishes to compute an entire list of commands for evaluation,

as opposed ~o c'omputing each command one at a time as does the COMS command.

He would then write (COM$ (CONS (QUOTE COMSQ) x)) wbere x computed the list of

commands, e.g., (COMS (CONS (QUOTE COMSO) (GETP FOO (QUOTE COMMANDS)))).

9.7 ·Commands That Test

(IF X) ~enerates an error unless the ~alue of eval[x] is

true. 1.e., if eval[xJ causes an error or

eval[xJ=NIL, IF will cause an error.

For some editor cominf!,nds; the occurrence of an error has a well defined

meaning, i.e., .theY use error.s to branch on, as gru! uses NIL .and non-NIL. For

examp~e, , an error condition in a location specification may simply mean "not

thi.s one, try the next." Thus the location specification

(IPLUS (E (OR (NUMBERP (II 3)) (ERROR!)) T)) specifies the first IPLUS whoso

second argument is a number. The IF command, by equating NIL to error,

provide$ a more natural way of accomplishing the same result. Thus, an

equiv~lent location specification ts (IPLUS (IF (NUMBERP (** 3)))).

---··-----------------·--·~~-----~----------------------------~-----------------72 because NIL ua command is a NOP. see page 9.70 •.

9.64

The IF command can also be used to select between two alternate lists of

commands for execution.

(IF x coms 1 coms2) If eval[x] is true, execute coms 1 ; if oval[x]

causes an error or is equal to NIL, exocuto

73 coms2 .

For e:<ample, the command (IF (REAOP T) NIL (P)) will print the current

expression provided the input buffer is empty.

IF can also be written as:

(IF x coms 1) if eval[x] is true, execute coms 1 ; otherwise

generate an error.

(LP . corns) repeatedly executes corns, a list of corrunands,

until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every print

expression. (LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T at the end of

each print expression which does not already have a second argument. 74

When an error occurs, LP prints n OCCURRENCES.

73---Thus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND

74

((CAR (NLSETQ (EVAL X))) (OMSl)
(T COMS2)))) .

i.e. the form (## 3) will cause an error if the edit command 3 causes an
error, thereby selecting ((N T)) as the list of commands to be executed.
The IF could also be written as (IF (COOR (~-)) NIL ((N T))).

9.65

(LPQ . corns)

where n is the number of times £.Q.~ was

successfully executed. The edit chain is left as

of the last complete successful execution of £2.!:!l!·

same as LP but does not print the message

n OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the

number of iterations reaches ma:doop, initially set to 30. 75 Since the edit

chain is left as of the last successful completion of the loop, the user can

simply continue the LP command with REDO (Section 22).

(SHOW . x)

(EXAM • x)

(ORR coms 1 ••. comsn)

~ is a list of patterns. SHOW does a LPQ printing

all instances of the indicated expression(s),

e.g. (SHOW FOO (SETQ FIE&)) Will print all F00 1 s

and all (SETQ FIE &) 's. Generates an error if

there aren't any instances of the expression(s).

like SHOW except calls the editor recursively

(via the TTY: command described on page 9.70) on

each instance of the indicated espression(s) so

that the user can examine and/or change them.

ORR begins by executing coms 1, a list of corrunands.

If no error occurs, ORR is finished. Otherwise,

ORR restores the edit chain to its original value,

and continues by executing coms2 ~ etc. If nono of

the command lists execute without errors, i.e.,

~~---~-------------------~-----------maxloop can also be set to NIL, which is equivalent to i~finity.

9.66

the ORR "drops off the end". ORR generates an

error. Otherwise, the edit chain is left as of

the completion of the first command list which

executes without an error. 76

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible, otherwise a

!NX, if possible, otherwise do nothing. Similarly, DELETE could be written as

(ORR (UP (1)) (BK UP (2)) (UP(: NIL))).

9.13 Macros

Many of the more sophisticated branching commands in the editor, such as ORR,

IF, etc., are most often used in conjunction with edit macros. The macro

feature permits the user to define new commands and thereby expand the editor's

repertoire. 77 Macros are defined by using the M corrunand.

CM c . corns) For£ an atom, M defines£ as an atomic command. 78

Executing £ is then the same as executing the list

of corrunands ££!!!!·

For example, (M BP BK UP P) will define BP as an atomic command which does

three things, a BK, and UP, and a P. Macros can use commands defined by macros

76--~1~--~;--~--;~~;~ci--i;;;-·;;-~~~f~~~i;--i~~~i~--~~~--~~ii--;i~~~~--;~~~~~~

77

78

successfully. Thus, making the last 'argument' to ORR be NIL will insure
that the ORR never causes an error. Any other atom is treated as (atom),
i.e., the above example could be written as (OR NX !NX NIL).

However built in corrunands always take precedence over macros, 1.e., the
editor's repertoire can be expanded, but not redefined.

If a macro is redefined, its new definition replaces its old.

9.67

as well as built in commands in their definitions. For example, suppose Z is

defined by (M Z -1 (IF (READP T) NIL (P))), i.e. Z does a -1. and then if

nothing has been typed, a p. Now we can define zz by

CM ZZ -1 Z), and ZZZ by (M ZZZ ·1 •1 Z) or (H ZZZ ·1 ZZ).

Macros can also define list commands, i.e., commands that take arguments.

(M (c) (arg 1 • • • argn) . coms) f an atom. M defines f as a .list corrunand.

Executing (c e 1 .•• en) is then performed by

substituting e1 for arg 1 , ''.' en

throughout ~· and then executing ££!!!!·

For example, we could define a more general BP by (M (BP) (N) (BK N) UP P).

Thus, (BP 3) would perform (BK 3), followed by an UP, followed by a P.

A list comnand can be defined via a macro so as to take a fixed or indefinite

number of 'arguments', as with spread vs. nospread functions. The form given

above specified a macro with a fixed number of arguments, as indicated by its

argument list. If the •argument list' is atomic, the command takes an

indefinite number of arguments. 79

(M (c) arg . corns) .£• arg both atoms, defines .£ as a list corrunand.

Executing (c e 1 en) is performed by

substituting (el en)' i.e ..• cdr of tho

command, for arg throughout ££!!!!· and then

executing ~·

For example, the command 2ND, page 9.30, can be defined as a macro by

(M (2ND) X (ORR ((LC. X) (LC. X)))).

9.68

Note that for all editor commands, 'built in' commands as well as conunands

defined by macros, atomic definitions and list definitions are complctelv

independent. In other words, the existence of an atomic definition for £ in no

way affects the treatment of £ when it appears as £fil: of a list command, and

the existence of a list definition for £ in no way affects the treatment of £

when it appears as an atom. In particular, £can be used as the name of either

an atomic command, or a list command, or both. In the latter case, two

entirely different definitions can be used.

Note also that once .£ is defined as an atomic command via a macro definition,

it will not be searched for when used in a location specification, unless it is

preceded by an F. Thus (INSERT •• BEFORE BP) would not search for BP, but

instead perform a BK, and UP, and a P, and then do the insert ion. Tho

corresponding also holds true for list commands.

Occasionally, the user will want to employ the S command in a macro to save

some temporary result. For example, the SW command could be defined as:

(M (SW) (NH) (NTH N) (S FOO 1) HARK 0 (NTH H) (S FIE 1)
(I 1 FOO) ~~ (I 1 FIE)) 80

Since this version of SW sets foo and fie, using SW may have undesirable side

effects, especially when the editor was called from deep in a computation, wo

would have to be careful to make up unique names for dummy variables used in

edit macros, which is bothersome. Furthermore, it would be impossible to

define a command that called itself recursively while setting free variables.

The BIND command solves both problems.

80---A more elegant definition would be:
(M (SW) (NM) (NTH N) MARK 0 (NTH H) (S FIE 1) (I 1 (U °" 1))

°"°" (I 1 FIE)), but this would still use one free variable.

9.69

(BIND . corns) binds three dummy variables 1111, lii2. !!13.

(initialized to NIL), and then executes the edit

commands ~· Note that these bindings nro only

in effect while the commands are being executed,

and that BIND can be used recursively; it will

rebind 11, 12, and 13 each time it is invoked. 81

Thus we could now write SW safely as:

(M (SW (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)
(I 1 #1) ~~ (I 1 #2)))).

User macros are stored on a list usermacros. The prettydef command USERMACROS

(Section 14), is available for dumping all or selected user macros.

9. 9 Niscellaneous Commands

IHL

TTY:

unless preceded by F or BF, is always a NOP. Thus

extra right parentheses or square brackets at tho

ends of commands are ignored.

calls the editor recursively. The user can thon

type in commands, and have them executed. The

TTY: command is completed when the user exits from

the lower editor. (see OK and STOP below).

The TTY: command is extremely useful. It enables the user to set up a comp lox

operation, and perform interactive attention-changing corrunands part way through

si·---------------------a·---
BlfJD is implemented by (PROG (#1 #2 #3) (EDITCOMS (CDR COM))) whore com
corresponds to the BIND command, and editcoms is an internal editor
function which executes a list of commands.

9.70

it. For example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows the user to

interact, in effect, within the MOVE command. Thus he can verify for himsolf

that the correct location has been found, or complete the specification "by

hand." In effect, TTY: says "I'll tell you what you should do when you got

there."

The TTY: command operates by printing TTY: and then calling the editor. Tho

initial edit chain in the lower editor is the one that existed in the highor

editor at the time the TTY: command was entered. Until the user exits from tho

lower editor, any attention changing commands he executes only affect the lowor

editor's edit chain. 82 When the TTY: command finishes, the lower editor's edit

chain becomes the edit chain or the higher editor.

OK

STOP

exits from the editor

exits from the editor with an error. Mainly for

use in conjunction with TTY: conunands that the

user wants to abort.

Since all of the commands in the editor are errorset protected, the user must

exit from the editor via a command. 83 STOP provides a way of distinguishing

between a successful and unsuccessful (from the user's standpoint) editing

session. For example, .if the user is executing (MOVE 3 TO AFTER COND TTY:) ,

and he exits from the lower editor with an 'OK, the MOVE command will then

82 - - - - - - - - - - - - - - - -,~ - - - - - - - - - - -- - - - -· - - - - - -- ~-- - - - - - - - - -• - - - - -- - - - - - - - - - - - - - - - - - - ..
Of course, if the user performs any structure modification commands while
under a TTY: command, these will modify the structure in both editors,
since it is the same structure.

83 Or by typing a control~D. STOP is preferred even if the user is editin~ at
the evalgt level, as. it will perform the necessary 'wrapup' to insure that
the changes made while editing will be undoable (see Section 22).

9.71

complete its operation. If the user wants to abort the MOVE command, he must

make the TTY: command generate an error. He does this by exiting from tho

lower editor with a STOP command. In this case. the higher editor's edit chain

wi 11 not be changed by the TTY: command.

SAVE

For example:

*P
(NULL X)
*F COND P

exits from the editor and saves the 'state of the

edit 1 on the property list of the function or

variable being edited under the property

EDIT-SAVE. If the editor is called again on tho

same structure, the editing is effectively

"continued," i.e .• the edit chain, mark list,

value of unfind and undolst are restored.

(COND (& &) (T &))
l'ISAVE
FOO

.
.. EDITF(FOO)
EDIT
*P
(CONO (& &) (T &))
•\ p
(NULL X)
Ill

SAVE is necessary only if the user is editing many different expressions; an

exit from the editor via OK always saves the state of the edit of that call to

the editor.84 Whenever the editor is entered, it checks to see if it is editing

the same expression as the last one edited. In this cas•, it restores the mark

9.72

list, the undolst, and sets unfind to be the edit chain as of the previous exit

from the editor. For example:

... EDITF(FOO)
EDIT
"'P
(LAMBDA (X) (PROG & & LP & & & &))

l'I p
{COND & &)
~OK

FOO

... ED ITF (FOO)
EDIT
l'IP

any number of lispx inputs
except for calls to the editor

(LAMBDA (X) (PROG & & LP & & & &))
~\ p
(COND & &)
~

Furthermore, as a result of the history feature (section 22), if the editor is

called on the same expression within a certain number of lispx inputs, 85 tho

state of the edit of that expression is restored, regardless of how many othor

expressions may have been edited in th~ meantime~

86---Namely, the size of the history list, initially 3~~ but it can be increased
by the user.

9.73

For example:

.,.ED ITF (FOO)
EOIT
Ill

"P
(CONO (& &) (& &) (&) (T &))
*OK
FOO
.., less than 30 lispx inputs, including editing

... EOITF (FOO)
EDIT
"\ p
(COND (& &) (& &) (&) (T &))
...

Thus the user can always continue editing, including undoing changes from a

previous editing session, if

(1) No other expressions have been edited since that session: 86 or

(2) That session was 'sufficiently' recent; or

(3) It was ended with a SAVE coliU'iland.

*

RAISE is an edit macro defined as UP followod by

(I 1 (U-CASE (## 1))), i.e. it raises to upper-

case the current expression, or if a ta 11, tho

first element of the current expression.

LOWER Similar to RAISE, except uses 1-case.

86---Since saving takes place at exit time, intervening calls that were abortod
via control-D or exited via STOP will not affect the e~itor's memory of
this last session.

9.74

CAP First does a RAISE, and then lowers all but the

first character, i.e. the first character is loft

capitalized.

A'ote: R..USE. l01>.1£R. and CAI' are all 1VOl'.s if the corresponding atom or .string i.s
already in that state.

(RAISE x) equivalent to (IR (L-CASE x) x), i.e. changes

every lower-case x to upper-case in the current

expression.

(LOWER x) similar to RAISE, except performs (I Rx (L-

CASE x)).

Note in both (RAISE x) and (LOWER x), ~ is typed in in upper case.

REPACK

For example:

Permits the 'editing' of an atom or string.

"THIS IS A LOGN STRING")
REPACK
l'.IEOIT
p
(T H I S % I S % A % L 0 G N % S T R I N G)
*(SW G N)
•OK
"THIS IS A LONG STRING" 87

REPACK operates by calling the editor recursively on unpack of the current

9.75

expression, or if it is a list, on unpack of its first element. If the lowor

editor is exited successfully, Le. via OK as opposed to STOP, tho list of

atoms is made into a single at6m or string, which replaces the atom or string

being 'repacked.' The new atom or string is always printed.

(REPACK @)

(: • x)

Jome

does (LC

(REPACK THI SS).

@) followed by REPACK. e.g.

;i:; is the text of a comment. : ascends the edit

chain looking for a 1 safe 1 place to insert tho

comment, e.g., in a cond clause, after a prog

Statement, etc, 1 and inserts (ft o X) after that

point. if possible, otherwise before. For

example, if the current expression is

(FACT (SUB1 N)) in

[COND
((ZEROP N) 1)

(T (ITIMES N (FACT (SUB! N]

(;CALL FACT RECURSIVELY) would insert

(* CALL FACT RECURSIVELY)

expression.BB

bef ote the itimes

; does not change the edit chain, but unfind is

set to where the comment was actually inserted.

is used to join two neighboring COND's together,

e.g. (COND clause1 clause2) followed by

ii--·--------------~-----------------1 f inserted after the i times, the comment would then be (incorrectly)
returned as the value of the cond. However, if the cond was itself a fil:Q.O
statement, and hence its valu.e. was not being used, the comment could be
(and would be) inserted ·after the itimes expression.

9.76

(SPLITC x)

CL

ow

(RESETVAR var form . corns)

(COND clause3 clause4) becomos

(COND clause 1 clause2 clause3 clause4). JO INC

does an (F COND T) first so that you don't have to

be at the first CONO.

splits one COND into two. ;s specifies tho last

clause in the first COND, e.g. (SPLITC 3) splits

(COND clause 1 clause2 clause3 clause4) into

(COND clause 1 clause2) (COND clause3 clause4).

Uses generalized NTH conunand, so that ;s does not

have to be a number, e.g.,the user can say

(SPLITC RETURN). meaning split after the clnuso

c9ntaining RETU~N. SPLITC also does an (F COND T)

first.

Clispifies current expression. See Section 23.

Dwimifies current expression. See Section 17 and

23.

executes ~ while ill is reset to the value of

form, and then restores ill• i.e. effectively

calls the function resetvar (Sectio~ 5).

9. 77

9.10 U~DO

Each command that causes structure modification automatically adds an ontry to

the front of undolst that contains the information required to restore all

pointers that were changed by that command.

UNDO undoes the last, i.e. most recent, structure

modification command that has not yet boon

undone, 89 and prints the name of that corrunand.

e~g., HBO UNDONE. The edit chain is then c~actlu

what it was before the 'undone' conunand had beon

performed. 90 If there are no conunands to undo,

UNDO types NOTHING SAVED.

!UfWO undoes all modifications performed during this

editing session, i.e. this call to the editor.

As each command is undone, its name is printed a

la UNDO. If there is nothing to be undone, ! UNDO

prints NOTHING SAVED.

i~---Since UNDO and !UNDO cause structure modification, they ~lso add an entry

90

to undolst. However, UNDO and !UNDO entries are skipped by UNDO, e.g., if
the user performs an INSERT, and then an MBD, the first UNDO will undo the
MBD, and the second will undo the INSERT. However, the user can also
specify precisely which commands he wants undone by identifying tho
corresponding entry on the history list as described in Section 22. In
this case, he can undo an UNDO command, e.g. by typing UNDO UNDO, or undo a
!UNDO corrunand, or undo a command other than that most recently performed.

Undoing an event containing an I, E, or •S command will al so undo the s 1do
effects of the evaluation(s), e.g. undoing (I 3 (/NCONC FOO FIE)) will not
only restore the 3rd element but also restore FOO. Similarly, undoing an S
cor:u:iand will undo the set. See discussion of UNDO in Section 22. (Note
that if the I command was typed directly to the editor, /NCONC would
automatically be substituted for NCONC as described in Section 22.)

9.78

W'henever the user continues an editing session as described on pago 9. 72-74,

the undo information of the previous session is protected by insorting a

special blip, called an undo-block, on the front of undolst. This undo-block

will terminate the operation of a !UNDO, thereby confining its effect to tho

current session, and will similarly prevent an UNDO corrunand from operating on

cor:unands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immedia to ly

executes an UNDO or !UNDO, the editor will type BLOCKED instead of

MOTHirJG SAVED. Similarly, if the user executes several commands and then undoos

them allf another UNDO or !UNDO will also cause BLOCKED to be typed.

UNBLOCK

TEST

removes an undo-block. If executed at a non

block.ed state, i.e. if UNDO or !UNDO could

operate, types NOT BLOCKED.

adds an undo-block at the front of undolst.

Note that TEST together with !UNDO provide a 'tentative' mode for editing, i.e.

the user can perform a number of changes, and then undo all of them with a

single !UNDO command.

9.79

9.11 Editdefault

Whenever a command is not recognized, i.e., is not 'built in' or defined as a

macro, the editor calls an internal function, editdefault, to determine. what

action to take. 91 If a location specification is being executed, an internal

flag informs editdefault to treat the conunand as though it had been preceded by

an F.

If the command is a list, an attempt is made to perform spelling correction on

~ of the command92 using editcomsl, a list of all !1st edit commands. 93 lf

spelling correction is successful, 94 the correct conunand name is rplacaed into

the corrunand, and the editor continues by executing the command.

In other words, if the user types (LP F PRINT (HBBD ANO (NULL FLG))), only one

spellinsi correction will be necessary to change HBBO to HBO. If spelling

correction is not successful, an error is generated~

If the command is atomic, the procedure followed is a little more elaborate.

~]---Since editdefault is part of the edit block, the user cannot advise or

92

93

94

redefine it as a means of augmenting or extending the editor. However, tho
user can accomplish this via . edituserfn. If the value of the variable
erJi tuserfn is T, edi tdefaul t calls the function edi tuserfn giving it the
cor:unand as an argument. If edi tuserfn returns a non-NIL value, its value
is interpreted as a single command and executed. Otherwise, the error
correction procedure described below is performed. ·

unless dwimflg=NIL. See Section 17 for discussion of spelling correction.

\./hen a macro is defined via the H conunand, the command name is added to
edi tcomsa or edi tcomsl, depending on whether it is an atomic or 1 ist
cor.unand. The prettydef conunand USERHACROS (Section 14), is aware of this,
and provides for restoring editcomsa and editcomsl.

Throughout this discussion, if the command was not typed .in directly, the
user will be asked to approve th~ spelling correction. See Section 17.

9.80

1) If the command is one of the list commands, i.e., a member of editcomsl,

and there is addition al input on the same terminal line, treat the on t iro

line as a single list command. 95 Thus, the user may omit parenthosos for

any list command typed in at the top level (provided the command is not

also an atomic command, e.g. NX, BK). for exa~ple,

t:tp
(COND (& &) (T &))
i:ixrn 3 2J
nMOVE TO AFTER LP
i:c

If the command is on the list editcomsl but no additional input is on tho

terminal line, an error is generated, e.g.

i:rp
(COND (& &) (T &))
ti MOVE

MOVE?
iii

If the command is on editcomsl, and not typed in directly, e.g. it appears

as one of the commands in a LP command, the procedure is similar, with the

rest of the command stream at that level being treated as

"the terminal line", a.g.

·(LP F (COND (T &)) XTR 2 2).96

2) If the command was typed in and the first character in the command is an 8,

95---The line is read using readline (Section 14). Thus the line can bo

96

ter~inated by a square bracket, or by a carriage return not preceded by a
space.

Note that if the command is being executed in location context, editdefnult
does not get thiS far, e.g. (MOVE' TO AFTER CONO XTR 3) will s'earch for XTR,
not execute it. However, (MOVE TO AFTER CONO (XTR 3)) will work.

9.81

treat the 8 as a mistyped left parenthesis, and and the rest of the line as

the arguments to the conunand, e.g.,

*P
(CONO (& &) (T &))
*8-2 (Y (RETURN Z)))
=(-2
*P
(COND (V 8c) (& &) (T &))

3) If the command was typed in, is the name of a function, and is followed by

NIL or a list ill of which is not an edit command. assume the user forgot

to type E and means to apply the function to its arguments, type =E and the

function name, and perform the indicated computation, e.g.

*BREAK(FOO)
=E BREAK
(FOO)
•

4) If the last character in the command is P, and the first n-1 characters

comprise a number, assume that the user intended two commands, e.g.,

*P
(COND (& &) (T &))
*OP
=O p
(SETQ X (COND & &))

5) Attempt spelling correction using editcomsa, and if successfui, 97 execute

the corrected command.

6) Otherwise, if there is addition al input on the same line, or command

stream, spelling correct using editcomsl as a spelling list, e.g.,

g7·-;;;-;~~~~~~;-~~-;;~;-9:;~:-------·------·----------------------------------

9.82

tiMBBD SETO)(
=MBD
SI

7) Otherwise, generate an error.

9:12 Editor Functions

edite[expr;coms:atm] edits· an expression:: Its value is tho lllst

element of editl[list[expr];coms;atm). C.eneratos

an error if mr is not a list.

editl[l;coms;atm;mess] editl98 i.s the editor. Its first argumont is tho

edit chain, and its value is an edit chain, namely

the value of ! at th0e t.ime editl is exited. 99

corns is an' optional list of commands. For

interactive editing, ·corns is NIL. In this case,

edi tl types EDIT and. then waits for input from

terminai. 100 All input is done with editrdtbl as a ~

read table. Exit occurs only via an OK,. STOP, or "'

SAVE command.

ga-------------------u-----------~------------------D--------------------------
edit-ell, not edit-one.

99 .! is a specvar, and so can be examined or set by edit commands. For
example, T is equivalent to· (E (SETO L (LAST L)) T). However, the usor
should only manipulate or examine l directly as a last resort, and thon
with caution. -

lOO lf mess is not NIL, editl types it instead of EDIT. For example, tho TTY:·
co171r.1and is essentially (SETQ L (EDITL l NIL NIL (QUOT.£ TTY:))).

9.83

If ~ is not NIL, no message is typed, and each

member of cor:is is treated as a corrunand and

executed. If an error occurs in the execution of

one of the com.r.Jands, no error message is printed,

the rest of the corrunands are ignored, and ocli tl

exits with an error, i.e. the effect is the same

as though a STOP corrunand had been executed. If

all conunands execute successfully, ed.itl returns

the current value of !·

.il!!J is optional. On calls from editf, it is tho

name of the function being edited; on calls from

editv, the name of the variable, and calls from

editp, the atom whose property list is being

edited. The property list of atm is used by the

SAVE conunand for saving the state of the edit.

Thus SAVE will not save anything if !!.!!!!=NIL, i.o.

when editing arbitrary expressions via edi te or

edi tl directly.

editlO{l;coms;mess;editlflg)101 like edi tl except does not rebind · or

editf[x~

initialize the editor's various state variables,

such as lastail, unfind, undolst, m~rklst, etc.

nlambda, nospread function for editing a function.

car[x] is the riame of the function,cdr[x] an

optional list of corrunands. For the rest of the

discussion, fn is car[x], and .£2!!!.! is cdr[x].

9.84

The value of editf is fn.

(1) In the most common case, fn is an expr, and editf simply performs

putd[fn;edite[getd[fn];coms;fn]]. However, if fn is an expr by virtue or +

its being broken or advised, and +

(la) the original definition is also an expr, then the brolten/adVisocl +

definition is given to edite to be edited (since any changos thoro +

will also affect the original definition because all changes aro +

destructive). However. a warning message is printed to alert th~ user +

that he must first position himself correctly -before he can begin +

typing commands such as (-3 --), (N. --), etc. +

(lb) the original definition is not an expr, and there is no EXPR property, +

then a warning message is printed, and the edit proceeds, e.g. tho · •

user may have called the editor to examine· the advice fo~ a compiled. •

function. +

(le) the original definition is n6t an expr~ and there is an EXP~ propo~ty, •

then the· function is unbroken/unadvised (latter only with user's +

. approval, since the user may really want to edit the advice) and •

proceed as in (2).

(2) If fn is not an expr, but has an EXPR property, editf prints PROP. and +

performs edite(getp[fn:EXPRJ;coms;fn]. If edite returns (i.e. if the +

editing is not terminated by a STOP), and some changes were made, cditf +

performs unsavedef[fnJ, prints UNSAVED, and then does +

putd[fn:value-of-editeJ. +

(3) if fn is neither an expr nor has an EXPR property, and the file package +

(see section 14) 'knows' which file fn is contained in. the expr definition +

9.85

+

+

+

+

of fn is automatically loaded (using loadfns) onto its property list, and

proceed to (2) above. 102 In addition, if fn is a member of a block. (soo

section 18), the user will be asked whether he wishes the rest of tho

functions in the block to be loaded at the same time. 103

+ (4) If fn is neither an expr nor has an EXPR property, but it does have a

+

+
+
+

+
+
+
+
+
+
+

definition, editf generates an fn NOT EDITABLE error.

(5) If fn i.s neither defined, nor has an EXPR property, but its top level valuo

is a list, editf assumes the user meant to call editv, prints =EDITV, calls

edi tv and returns. Similarly, if fn has a non-NIL property list, edit f

prints =EDITP, calls editp and returns.

(6) If fn is neither a function, nor has an EXPR property, nor a top lovo l

value that is a list, nor a non-NIL property list, editf attempts spelling

correction using the spelling list userwords, 104 and if successful, goos

back to (1).

Otherwise, editf generates an fn NOT EDITABLE error.

102--
Because of the existence of the file map (see section 14), this operation
is extremely fast, essentially requiring only the time to perform the READ
to obtain the actual definition.

103 The editor's behaviour in case (3) is controlled by the valuo of
edi tloadfnsflg, which is a dotted pair of two flags, the first of \~hich
(i.e. £!!..!:. of edi tloadfnsflg) controls the loading of the function, and tho
second the loading of the block. A value of NIL for either flag moans "load
but ask first, 11 a value of T means 11 don 1 t ask, just do it 11 and anything
else means 11 don't ask, don't do it." The initial value of editloadfnsflq is
(T), meaning load the function without asking, ask about loading the bTock.

104 Unless dwimfl9=NIL. Spelling correction is performed using the function
misspelled?. If fn=IHL, misspelled? returns the last •word' referenced,
e.g. by defineg, editf, prettyprint etc. Thus if the user defines foo and
then types. editf[], the editor will assume he meant foo, type =FOO, and
then type EDIT. See Section 17. -

9.86

If editf ultimately succeeds in finding a function to edit, i.e. does not exit

by calling editv or editp, editf calls the function addspell after editing has

been completed. 105 Addspell 'notices' fn, i.e. sets lastword to fn, and adds fn

to the appropriate spelling lists. If any changes were made, editf .also c.:1lls

the file pack.age to mark the function as being changed, as described in. soction

14.106

editv[editvx) nlambda, nospread function, similar to cditf, for

editing yalues. car[editvx] specifies the value,

cdr[editvx] is an optional list of commands.

If car[editvx] is a list, it is evaluated and its value given to edite, e.g.

EDITV((CDR (ASSOC (QUOTE FOO) DICTIONARY)))). In this case, the value of cditv

is T.

However, for most applications, car[editvx] is a variable name, i.e. atomic, as

in EDITV(FOO). If the value of this variable is NOBIND, editv checks to see if

it is the name of a function, and .if so, assumes the .user meant to call edi_!;.f,

prints =EDITF, calls edi tf and returns, Otherwise, editv at tempts spelling

correction using the list userwords. 107 Then editv will call edite on the valuo

of car[editvx) (or the corrected spelling thereof). Thus, if the value of foo

is NIL, and the user performs (EDITV FOO), no spelling correction will occur,

since foo is the name of a variable in the. user•~ system, i.e. it has a value.

106 Even though the call to newfile? does not occur until after the editing is
cor.ipleted, nevertheless the function is effectively marked as changed as
soon as the fir.st change i.s performed, so that even 1f the edit is aborted
via control-D, newfile? will still be called.

107 Unless dwimflg=fHL. Misspelled? is also called if car[editvx) is NIL, so
that EDITV() will edit lastword.

9.87

+
+
+
+

However, edite will generate an error, since foo•s value is not a list, «nd

hence not editable. If the user performs (EDITV FOOO), where the value of fooo

is NOBIND, and foo is on the user's spelling list, the spelling corrector will

correct FOOO to FOO. Then ~ will be called on the value of foo. Note that

this may still result in an error if the value of foo is not a list.

When (if) edi te returns, editv sets the variable to the value returned, and

calls addspell. If any changes were made, editv also calls the file package to

mark the variable as being changed.

The value of editv is the name of the variable whose value was edited.

editp[x]

editfns[x]

n lambda, nospread function, similar· to eel it f for

editing J.!roperty lists. If the property list of

car[x] is NIL, editp attempts spelling correction

using userwords. Then editE cal ls ~ on tho

property list of car[x], (or the correctocl

spelling thereof). When (if) edite returns, editp

rplacd 1 s car[x) with the value returned, and calls

adds pell.

The value of editp is the atom whose property list

was edited.

nlambda, nospread function, used to perform tho

same editing operations on several functions.

car[x] is evaluated to obtain a list of functions.

cdr[x] is a list of edit commands. edit fns mnps

down the list of functions, prints the name. of

each function, and calls the editor (via eclitf) on

9.88

that function. 108

For example, EDITFNS(FOOFNS (R FIE FUM)) will change every FIE to FUM in each

of the functions on foofns.

The call to the editor is error set protec tad, so

that if the editing of one function causes an

error, editfns will proceed to the next

function . 109

Thus in the above example, if ~ne of the functions did not cont~in a FIE, the R

command would cause an error, but editing would continue with the next

function.

The value of editfns is NIL.

edit4e[pat;x;changeflg] is the pattern match routine. Its value is T if

pat-matches ~· See page 9.21-23 for definition of

'match' . 110

Note: before each search operation in the editor begins, the entire pattern is

scanned for atoms or strings containing alt-modes. These are replaced by

iaa·~:;:-~~;-~;;1~1~1~~-~;-;~1~;~;-;1~~~-b;:·----------------------------------

109

[MAPc (EVAL (CAR X)) (FUNCTION (LAMBDA (Y)
(APPLY (QUOTE EDITF)

(CONS (PRINT Y T) (CDR X]

In particular, if an err6r occurred while editing a function via its EXPR
property, the function would not be unsaved. In other words, in the abovo
example, only those functions whi~h contained a FIE~ ·i.e. only those
actually changed, would be unsaved. ·

110 changeflg is for internal use by the editor.

9.89

patterns of the form (CONS (QUOTE S) (UNPACK atoin/string)) for 6a, and

(CONS (QUOTE $$) (CONS (NCHARS atom/string) (UNPACK atom/string))), for 6b.JJJ

Thus from the standpoint of edi t4e, pattern type 6a is indicated by car[pat)

being the atom $ ($ is alt-mode) and pattern type 6b by car[patJ being tho atom

$$ (double alt-mode).

Therefore, if the user wishes to call edit4e directly, he must first convort

any patterns which contain atoms or strings ending in alt-modes to the form

recognized by edit4e. This is done with the function editfpat.

edi tfpat[pat: flg] makes a copy of pat with all patterns of typo 6

converted to the form expected by edit4e. 112

editfindp[x;pat;flg] allows a program to use the edit find command as a

pure predicate from outside the editor. 25 is an

expression, pat a pattern. The value of editfindp

is T if the command F pat would succeed, NIL

otherwise. edi tfindp calls edi tfpat to convert

pat to the form expected by edit4e, unless f.lo.=T.

Thus, if the program is applying edi tf indp to

several different expressions using tho samo

pattern, it will be more efficient to call

editfpat once; and then call editfindp with tho

converted pattern and f!9=T.

111------------------------------~-------·-------------------------------------In latter case, atom/string corresponds to. the atom or string up to but not
including the final two-alt-modes. In both cases. dunpack is used wherever
possible.

112 flo=T is used for internal use by the editor.

9.90

esubst[x;y;z;errorflg;charflg) equivalent to performing (R y x) 113 with ~ as

changename[fn;from;to]

the current expression, 1. e. the order of

arguments· is the same as for subst. Note that y_

and/or ~ can employ alt-modes. The value of

esubst is the modified !· Generat~s an error 11 ~

if ~·not found in !· If errorflg=T. also prints

an error message of the form y ?.

esubst is always undoable.

replaces all occurrences of from by to in tho

definition of fn. If fn is an expr, changenamo

performs nlsetq[esubst[to; from; getd[fn]]]. If fn

is compiled. changename searches the literals of

(and all Of its compiler generated

subfunctiows), replacing each occurrence of from

with to.1 16

The value of changename is fn if at least one

instance of from was found, otherwise NIL.

changename is used by break and advise for changing calls to fn1 to calls to

fnl·IU-fn2.

jj3--unless charflg=T, in which case it is equivalent to (RC y x). See page
9.59.

114 of the type that never causes a break.

115 \.Jill succeed even if from is called from fn via a linked call. In this
case, the call will also be relinked to calrto instead.

9.91

editracefn[comJ is available to ~elp the user debug complex edit

macros, or subroutine calls to the editor. If

editracefn is set to T, the function editraccfn is

called whenever a corrunand that was not typed in by

the user is about to be executed, giving it that

c;:orrunand as its argument. However,

BREAK options described below

sufficient for most applications.

the TRACE and

are probllbly

If edi tracefn is set to TRACE, the name of tho

.corrunand and the current expression are printed.

If edi tracefn=BREAK, the same information is

printed, and the editor goes in to a break. Tho

user can then examine the state of the editor.

editracefn is initially NIL.

9.92

Index for Section 9

(A el ... em) (edit command)
ADDS PELL[X ;SPLST ;N] •••••••••••••••••••••••••••••
AFTER (in INSERT command) (in editor)•.•.•
AFTER (in MOVE command) (in editor)••••.•.•
(B el ... em) (edit command)
BEFORE (in INSERT command) (in editor) ••••.•••••
BEFORE (in MOVE command) (in editor) •..•••.••...
(BELOW com x) (edit command)
(BELOW com) (edit command)
(BF pattern T) (edit command)
BF (edit command) ...•.....••.•..•.••••.•••••••••
(BI n m) (edit command)
(BI n) (edit command) ..•...•.•.....•••.•••••••••
(Brno . corns) (edit cor.unand)
(BK n) (n a number, edit command) ••••.•.••••••••
BK (edit command) •.....•••..•••..•••.•••••••••••
BLOCKED (typed by editor)•..•....•..•.•.••.
(80 n) (edit command) •...•..•••••.•••••••••.••••
BY (in REPLACE command) (in editor) •.•••.••.••.•
CAI~' T - AT TOP (typed by editor) ••••.•••••••••••
CAP (edit command) ..••.•.••.•.•••••••.••••••••••
(CHAIJGE @ TO ...) (edit command) ••••..••••...••.
CHANGEIJAME[FN;FROM;TO] ••••••••••••••••••••••••••
CL (edit cor.unand)•..••••••.••.•••••••••••
commands that move parentheses (in editor) ••••••
(COMS xl ... xn) (edit command) •••••••••...•.•••
(COMSO • corns) (edit command)
continuing an edit session •••.•.•.••..••••••••••
control-D
cot1trol-E
current expression (in editor) ••••••.•••••.•••••
DELETE (edit command)
(DELETE • @) (edit command)
DESTifJATIOtJ IS INSIDE EXPRESSION BEING MOVED

(typed by editor)•.•••.•••.•.•...•.••
OW (edit com.r.iand) •••.•..••.••.•..•••••.....•.•.•
DWIMFLG (system variable/parameter) •...•.•.•.•.•
(E x T) (edit conunand) .•.••••.••••••...•••.•••.•
(E x) (edit command) .•...•.•••••.•••••...•...•••
E (edit cor.unand)•••.•••••••.••.••..•••..•.••
edit chain ·-·· -...... .

edit cor.unands that search •.••••••.•••••.••.•••••
edit commands that test ..••••.•••.•••.•••••..•••
edit r.lacros
EDIT (typed by editor) •.••..••..••.••••.••..••••
EDITCOMSA (editor variable/parameter) .••••••••••
EDITCOMSL (editor variable/parameter) ••••....•••
EDITDEFAULT (in editor) .•.••••.•••••••••••••••••
EDITE[EXPR;COMS;ATM] ••••••••••••••••••••••••••••
EDITF[EOITFX] NL* •••••••••••••••••••••••••••••••
EDITFIIJOP[X;PAT;FLG] ••••••••••••••••••••••••••••
EDITFNS[X] NL"' ••••••••••••••••••••••••••••••••••
EDITFPAT[PAT;FLG] •••••••••••••••••••• , ••••••••••
editing compiled functions •••••.•.•••.••.•••••••
EDITL[L;COMS;ATM;MESS] ••••••••••••••••••••••••••

INDEX.9.1

Page
Numbers

9.13,39-40
9 .8 7-88
9.41
9.48
9.13,39-40
9 .41
9.48
9.31
9.31
9.28
9.10,28
9.8,52
9.52
9.70
9 .19
9.10,18-19
9. 79 .
9.8,52
9 .42
9•51 17
9.75
9.42
9.91
9.77
9.51-54
9.63
9.64
9.72-74
9.71
9.3
9.2,4,8,11-21,23-36
9.14,37,40,42
9.42

9.49
9. 77
9.80,86-87
9.62
9.62
9.9,62
9.4,7,11-13,15-21.

23-36
9.21-33
9.64
9.67-70
9.83
9.80,82
9.80-82
9.80-83
9.1,83,87-88
9.1,84,86-87
9.90
9.88-89
9.90
9.91
9.83,.84

EDITLOADFNSFLG (editor variable/parameter) .•.•••
EDITLO[L;COMS;MESS;EDITLFLG]
EDITP[EDITPX] NL"'
EDITOUIETFLG (editor variable/parameter) ••.•••••
EDITRACEFU , , , ... , . , , ,
EDITUSERFll ,
EDITV[EDITVX] NL)!(•••••••••••••••••••••••••••••••
EDIT-SAVE (property name) •.•••••.•••.••.••.•••.•
EDIT4E[PAT;X;CHANGEFLG]•......
(EMBED@ IN ...) (edit command)
errors (in ecli tor)•..•••.•..••••••.•.•
ESUBST[X;Y;Z;ERRORFLG;CHARFLG]
(EXAM . x) (edit command)
EXPR (property name)•...•..••.•...•••••.•..
(EXTRACT @1 from . @2) (edit command) .•••..•••••
(F pattern N) (edit command)
(F pattern n) (n a number, edit command) ...•.•••
(F pattern T) (edit command)
F pattern (edit command) .•.•.••...•..•.•.•..••••
(F pattern) (edit command)
F (edit cor.lmand)•...•........•..••••....•••
FOR (in rnsERT command) (in editor) •••••••••••••
FROM (in EXTRACT command) (in editor) •••••.•••••
(FS ...) (edit command)
(F= ..•) (edit command) .•••..•.•..••..••.•.•••••
generalized NTH command (in editor) ••.•••••.••••
HERE (in edit command)
history list•........•..•.••••••.•••.•••.
(I c xl ... xn) (edit command)
(IF x corns 1 coms2) (edit command)
(IF x comsl) (edit command)
(IF x) (edit command)
iQplementation of structure modification commands

(in editor) ...•.••••..........•••.•••••••••
rn (in EMBED command) (in editor) •.•••••••••••••
(rnSERT ... AFTER.@) (edit command) •.•••••••••
(HJSERT ... BEFORE . @) (edit command) ..••••.•.•
(INSERT ... FOR . @) (edit command) ...••••.•••••
JOir~c (edit command) .••.•....•.•.••••.••••..••••
LASTAIL (editor variable/parameter) •••••••••.•••
LASTVALUE (property name) .•..••...••..•.••••••••
LASTWORD (system variable/parameter) .•••.•••••••
(LC . @) (edit command) ••••.•••.••••.••..•••••••
(LCL . @) (edit command) •.•..••.•••••••••••••.••
(LI n) (edit command)
L ISPX•....
(LO n) (edit command)•...•••••.•.••..••
location specification (in editor) ••••.•••••••••
LOCATION UNCERTAIN (typed by editor) •••.••••••••
(LOWER x) (edit command)
LOWER (edit command)
(LP . corns) (edit command)
(LPO • corns) (edit command)
L-CASE[X;FLG]•.............•
(M c . cons) (edit command)
(M (c) arg . corns)•...•••.•.•.•.••.••
(M (c) (argl •.• argn). corns) (edit command)

INDEX.9.2

Page
Numbers

9.86
9.84
9.1,87-88
9.22
9.92
9.80
9 .1,87-88
9.72
9.89
9.48
9.3
9.91
9.66
9.85-86,89
9.46
9.26
9.26
9.26
9.25
9.27
9.6,25-26
9.41
9.46
9.27
9.27
9.32,52,60
9.42
9.73,78
9.62
9.65
9.65
9.64

9.37·39
9.48
9.41
9.41
9.41
9.76
9.16-17,25,84
9.72
9.87
9.30
9.30
9.8,53
9.62,73
9.8,53
9.28-29,64
9 .17
9.75
9.74
9.65-66
9.66
9.74
9.67
9.68
9.68

macros (in editor) ••••..••••••••••••••••••••••••
(MARK atom) (edit command) ••••••.••••.••••••••••
MARK (edit cornnand)
MARKLST (editor variable/parameter) ······~······
MAXLEVEL (editor variable/parameter) ••••••••••••
MAXLOOP EXCEEDED (typed by editor) ••••••••••••••
MAXLOOP (editor variable/parameter) •••••••••••••
(MBO el .•. em) (edit cornmand) ••••••••••••••••••
(MOVE @1 TO com . @2). (edit command) ••••••••••••
(rJ el .•. em) (edit command)
(n el ••. em) (n a number, edit command) ••••••••
n (n a number, edit command)
(n) (n a nunber, edit command)
(fJEX x) (edit command) ••••••••••••••••••••••••••
fJEX (edit command) •••••••••.•••••••••••••••••••••
rill (edit command) ••••••••••••••••••••••••••••••
rlOBifJO •..•.•••..••••.•••••••••••••••••••••••••••
MOT BLOCKED. (typed by editor)
flOT CHAIJGEO, SO NOT UNSAVED (typed by editor)
NOT·EDITABLE (error message) •••• ~ •••••••••••••••
fJOTHrnG SAVED (typed by editor) •••••••••••••••••
(NTH n) (n a number, edit command) ••••••••••••••
(NTH x) (edit command)
(NX n) (n a number, edit command) •••••••••••••••
fJX (edit cor;unand) ..•..••..•..•••••••••.•.•.••••.••••
OCCURREflCES (typed. by editor)
OK (edit col'7lr.land)•••.•••••.•.•••••••••••••••
(ORF •••) (edit command)
(ORR •••) (edit command) •
(P m n) (edit command)••.••..••...• ·• ••.•..•
(Pm) (edit cor.unand) ••.•.••.•.•••••.••••••••••.•••
P (edit cor.lr.land)•..............•.••••.•.....••
pattern match (in editor) •••••••••••••••••••••••
(pattern .• @)(edit command) •••••••••••••••••••

·PP (edit cofi1r.land) .••.••.•••..••••••••••••••.•••••
PPT (edit cor.unand) •...•.......••.....•••...•...•
PPV (edit cor.lr.land)•..•••••.•••••••.•••••••.••
PPj!c (edit cor:'l.hland) ••••••••••••••••••••••••••••••
prompt character
PROP (typed by editor) ••••••••••••••••••••••••••
(R x y) (edit cornnand)
(RAISE X) (edit command)
RAISE (edit command) · ••••••••••••••••••••••••••••
(RC x y) (edit command) ••••••••••••••••••••.•••••
(RCl x y) (edit command)
READLiflE[RDTBL;LifJE;LISPXFLG] •••••••••••••••••••
REPACK (edit command) •.••••••••••••••••••••.•••••
(REPACK @) (edit command)
(REPLACE @ WITH ...) (edit command)
RESETVAR[RESETX;RESETY;RESETZ] NL •••••••••••••••
(RESETVAR var form • corns) (edit corrunand) •••••••
(RI nm) (edit command) •••••••••••••••••••••••••
(RO n) (edit corrunand) ..•••••••••••..•••••••••••••
(Rl x y) (edit command)
(S var • @) (edit command) ••.••••••••••••••••••••
SAVE (edit command) ••••••••••• ·• .~ •.•••••••••••••••
search algorithm (in editor) ••••••••••••••••••••

INDEX.9.3

Page
Numbers

9.67-70
9.34
9.34
9.34,84
9.24,28
9.66
9.66
9.47
9.48-51
9.36
9.5,36
9.3,17
9.5,36
9.32
9.32
9.64,70
9.87
9.79
9.85
9.83,86
9.78
9.20
9.32-33
9 .19
9.8,18-19
9.65
9.71,76,83
9.27
9.66
9.60
9.60
9.2,60
9.21-23,89•90
9.33
9.2,60
9.61
9.61
9.61
9.2
9.85
9.7,57
9.75
9.74
9.59
9.59
9.81
9.75
9.76
9.42
9.77
9. 77
9.8,53
9.8,53
9.59
9.36
9.72,74,83-84
9.23-25

(SHOW . x) (edit command)
spelling correction••.......•....•...
spelling lists
(SPLITC x) (edit command)
STOP (edit cor:unand) •..............••............•
s.tructure modification commands (in editor)
(SURRourm @ rn ...) (edit command) ..•••••••...••
(SW nm) (edit command) .•••.•••.••.••••••.•••.••.
terminal ,
TEST (edit cotil.mand) ••••.•.•.••••.••••••••••.•.••
THRU (edit cor.unand)•....•...••..•.••...••
TO (edit cor.triland) ..•.....••••••••••••.••••••••••
TTY: (edit cor.unand)•...•.•........•.•.
TTY: (typed by editor)•.•..•.•.......•..
UNBLOCK (edit cornnand) ,•••....••...•.
UUDO (edit command-) .•....•........••.•...•.••.•.•
undoing (in editor)•.........••..•
UNDOLST (editor variable/parameter) •.••...•••..•
UNDONE (typed by editor)•..•.•...•
UNFIND (editor variable/parameter) ·······~······ ...
UfJSAVED (typed by editor) :
UP (edit conraand)•....••.•..••
UPFINDFLG (editor variable/parameter)•••••.•
USERMACROS (editor variable/parameter) •..•...•.•
USERMACROS (prettydef command) •....•....••.••.••
USERWORDS (system variable/parameter) ..•.•.•.•..
u-CASE[XJ•..........••.....•....••.••
WITH (in REPLACE command) (in editor)•.•.
WITH (in SURROUND command) (in editor)•...•.
(XTR . @) (edit command)••.•.••.
!t-JX (edit command) ..•.....•...•••........••..••.
! ur~oo (edit command)•.........••..•.•..•.••.
! 0 (edit cor.unand)••••.
*#[COMS) NL"' ••••••••••••••••••••• , ••••••••••••••
•#(in INSERT, REPLACE, and CHANGE commands)
$ (alt-mode) (in edit pattern)•.•...••...•
$ (alt-mode, in R command) (in editor) ...•......
SBUFS (alt-modeBUFS) (prog. asst. command) .•.•.•
$$(two alt-modes) (in edit pattern) ..••.•••••••
& (in edit pattern) ...•..•..••..•.•••......•.••.
& (typed by editor) .•...•....••••..•..•.••..••..
"' (in MBD command) (in editor)•.......•••••
"' (typed by editor)•..••
•ANY* (in edit pattern)•......••..•
°COMMEIH*"' (typed by editor)•.......•••••
"'"'COMMENT*"'FLG (prettydef variable/parameter)
(-n el ... em) (n a number, edit command) .•.....
-n (n a number, edit command) .•••..•.•..•••.•.••

(in edit pattern) •........•.....•.....••.•.••
-> (typed by editor)•...••..•..••.....
.. (edit cor.lr.land)•....•.•••...•••..••
. . .. (in e di t pat t e r.n)
. . . (typed by editor) ..••..••••....•••...••..•.•.
0 (edit command)
(2ND . @) (edit corrunand) ,
(3RO . @) (edit command) •••.••••••••••••••••••••

INDEX.9.4

Page
Numbers

9.66
9.80,82,86-87
9.80,82,86
9. 77
9.71·72,76,83·85
9.36-60 '
9.48
9.59-60
9.61
9.79
9.54-57
9.54-57
9.66,70-72
9.71
9.79
9.10,78
9.10,36,78·79
9.72,78-79,84
9.78
9.25,35,41-42,46,48·51,

72-73,76,84
9.85
9.12,15-16,25,43
9.25,28,44
9.70
9.70,80
9.86-88
9.74
9.42
9.48
9.45
9.19-20
9.78
9 .18
9.29,63
9.43
9.12,21
9.58
9.7
9.22
9.11,21
9.2
9.47
9.2
9.21
9.60
9.61
9.5,36
9.3,17
9.11,22
9.58
9.33
9.22..,23
9.13,15
9.4-5,17
9.30
9,30

8 (instead of left parenthesis) ...•.•...••..••••
(: el ... en) (edit command)
(; . x) (edit comrnand)
= (typed by editor)••..•.....•..•.••
=E (typed by editor)•....••••.•••.•..•.
=EDITF (typed by editor) .••..•..••.•.••.•..•••..
=EDITP (typed by editor) •.....••.•••••••.••...•.
=EDITV (typed by editor) •...............••..••..
== (in edit pattern)••....•.....••••••••
? (edit cor:unand)•..••.•.•.••..•..•..
? (typed by editor)•..•..•.••..••...•••
@ (location specification) (in editor) ..••••••••
(@1 THRU) (edit command)
(@l THRU @2) (edit command)
(@1 TO) (edit command)
(@1 TO @2) (edit command)
(\ atom) (edit command)
\(edit conrnand)•..•.••••••••..•••.••••••••
\P (edit cor:lf.'land) ••.••.•••••••••••••.•.•.•••.•••
r (edit command)•......••.••••.•••.•••..•••
(o- pattern) (edit command)
.,.. (edit cor:ir:iand)•••••••••••.•..••.••••••••
...... (edit command)

INDEX.9.5

Page
Numbers

9.82
9.14,40
9.76
9 .12
9.82
9.87
9.86
9.86
9.22
9.2,60
9.3
9.29
9.56
9.54
9.56
9.54
9.34
9.11,34-35,41
9.11,35,61
9.4,18
9.30
9.34
9.34

SECTION 10

ATOM, STRING, ARRAY, AND STORAGE HANIPULATION

10.1 Pnames and Atom Manipulation

The term 'print name' (of an atom) in LISP 1.5 referred to the characters that

were output whenever the atom was printed. Since these characters were stored

on the atom's property list under the property PNAME, pname was used

interchangeably with 'print name'. In INTERLISP, all pointers have pnames,

although only literal atoms and strings have their pname explicitly stored.

The pname of a point1r are those characters that are output wh~n the pointer ts
printed using prtn1,

e.g., the pname of the atom ABCX(02 consists of the five characters ABC(D. Tho

pname of the list (A B C) consists of the seven characters (A B C) (two of the

characters are spaces).

Sometimes we will have occasion to refer to the prin2~pname.

The prin2-pname are those characters output when the corresponding pointer is
printed using prtn2.

1------.---------------------------~--except that for the purposes or the funtions described in this chapter, tho
prin1-pname of an integer is defined as though !.fil!!2£=10.

2 % is the escape character. See Sections 2 and 14,

10.1

+

+
+
+

+
+

Thus the erin2-pname of the atom ABCl(D is the six characters ABCl(D. 3

pack[xJ If ~ is a;. Ust of atoms o the valua of pnc~~ is a

single atom whou pname is the concatenation of

the pnames of the atoms in ~· e.g.

pack[(A BC DEF G)]=ABCDEFG.

Ir the pnama of the value of pack[x] is the same

as that or a number, pack[x] will be that number,

a.g. pack[(l 3.4)]~13.4.

pack[(1 E u2)]=.01.

Although ~ is usually a list of atoms, it can be a

list of arbitrary INTERLISP pointers.. The value

of pack is still a single atom whose pname is tho

same as the concatenation of the pnames of all the

pointers in~· e.g.

pack(((A B)"CO")] = %(A% B%)CD.

In other words, mapc(x;pr:l.n1J and prini[pack[x]]

always produce the same output. 4 In fact, 2nck

actually operates by calling ~rin1 to convert the

pointers to a stream of characters (without

printing} and then m&kes an atom out of the

result.

i--------------------------~--------~---------------------~--------------------Note that the prin2•pname also depends on what readtable is being used (see

4

section 14), since this determines where % 's will be inserted. Note also
that the prin2•pname of an integer depends on the setting of radix.

Except for integers when radix is other than 11.'I 0 e.g. ma pc[(X 9); PRIN 1]
produces X11 when ~ is 8, but pack[(X 1 lQ) JaX9. (See footnote :i..)

10.2

Note: In INTERllSP-J.O. atom.s are re.strtcted to < 99 character.s. Attempting to
create a larger atom either uta pack or by tvptng one tn (or reading from
a file) wtll cause an error. ATOM TOO LONG.

unpack[x:flg;rdtblJ The value of unpack is the pname of ~ as a list of

characters (atoms), 6 e.g.

unpack[ABCJ = (A B C)

unpack["ABC(D"] = (A B C %(D)

In other words prinl[x] and mapc[unpack[x):prinl]

produce the same output.

If !!s=T. the prin2·pname of ~ . is used. (and

computed with respect to e.g.

unpack["ABC(D";T]= (X" AB c X(0 %").

1Vote: unpack[x} performs !! conses, where !! t.s the number of characters tn t11e
pname of !·

•

dunpack[x;scratchlist;flg;rdtbl) a destructive version of uripack that does not *
perform any conses but instead uses scratchlist to

make a list equal to unpack[x;flg]. If the p·name

is t~o long to fit in scratchlist, dunpack calls

unpack and returns unpack[x:flg). Gives an error

if. scratchlist is not a list.

nchars[x;flg;rdtblJ number of characters in pname of ~. 6 If flg=T. the

6 Both nthchar and nchars work much faster on objects that ~ctually have an
internal representation of their pname. i.e. literal atoms and strings,
than they do on numbers and lists, as they do not have to simulate
printing.

10.3

+

nthchar[x~n;fl~;rdtblJ

packc(x]

chcon[x;flg;rdtblJ

chconl[x]

prin2-pname is used.

nchar~["ABC";TJ=5~

E.g. nchars[11 ABC 11]=3,

Value is rrth character of pname of ~· Equivalent

t.o car[nth[unpack[x: flgJ ;n JJ but faster and does

no conses. rr can be negative, in which case

counts from end of pname. e.g. ·1 refers to the

last character. ·2 next to last, etc. If ll is

gr~ater than the number of characters in the

phame, or less than minus that number, or O, the

value of nthchar is NIL~

like pack' except ~ is a list of character codes, 7

e.g. packc[(70 79 79)J=FOO.

like unpack, except returns the pname. of ~ as a

list of character codes, e.g. chcon[FOOJ = (70 79

79). ·If f.!Jl=T, the prin·2-pname is used.

returns character code of first character of pnamo

of ~· e.g. chcont[FOO] = 70. Thus chcon(x] could

be written a~mapcar[unpack[x];chcont].

dchcon[x;scratchlist;flg;rdtblJ similar to dunpack

character[nJ

8' See footnote 2.

n is a character code. Value is the atom having

the corresponding single character as its pname, 8

10.4

fcharacter[n]

gensym[char)

e.g. character[70] m F. Thus, unpack(x] could bo

written as mapcar[chcon(x];character].

fast version of character that compiles open.

Generates a new atom of the form xnnnn, whore

~=char (or A if char is NIL) in which each of tho

n's is a digit. Thus, the first one generated is

AOOOl, the second A0002, etc. gensym provides a

way of generating new atoms for various uses

within the system. The value of gennum, initially

10000, determines the next gensym, e.g. if gennum

is set to 10023, gensym[]•A0024.

The term gensym i.s u.sed to indicate an atom that wa.s produced by the function
gensym. 1ltoms generated by gensvm are the same a.s any other literal utom.s:
they have property lists, and can be given function definitions. Note that the
atoms are not guaranteed to be new.

For example, if the user has previously created A0012, either by typing it in,

or via pack or gensym itself, when gennum gets to 10011, the next value

returned by gens.YID will be the A0012 already in existence.

mapatoms[fn)

10~2 String Functions

stringp[x]

Applies fn to every 11tera1 a tom in the sys tern,

e.g. mapatoms((LAMBDA(X)(AND(SUBRP X)(PRINT X)))J

will print every!!:!!?.!:.· Value of mapatoms is NIL.

Is ~ if ~ a string, NIL otherwise. Note: if ~ is

a string, nlistp[x] is T, but atom[x] is NIL.

10.5

strequal(x;y]

mkstring[x]

rstring(l

substring(x;n;m)

gnc[x]

Is ~ if ! and ~ are both strings a~d equal, i.e.

prin.t the same, otherwise NIL. Equal uses

stregual. Note that strings may be egual without

being !£!·

Value is string corresponding to print of ~·

Reads a string - see.Section 14.

Va1ue is the substring of .:s consisting of the nth

thru· ~th cftaracters of ~· If ~ is NIL, the

:substring is the nth character of ~ thru the end

of !· . !l and m· can be negative numbers, as with

nthchar. Returns NIL if the substring is not well

defined, e.g. !l ·Or m > nchars[x] or

· < minus(nchars[x)l or· n corresponds to a character . - '

in ! to the right of the character indicated by ffi·

If is not a string, equivalent to

substring[mkstring[x);n:m], except substring does

not have to actually make the string if ~ is a

literal atom. 9 For example,

substring[(A B C);4;6]="B C".

~et rrext £haracter of string ~· Returns the next

character of the string, (as an atom), and removes

the character from the string~ Returns . NIL .if ~

is the null string. If! isn't a string, a string

9--See string storage section that follows.

10.6

is made. Used for sequential access to characters

of a string.

Note that if ~ is a substring of y_, gnc[x] doos

not remove the character from y_, i.e. gnc doesn't

physically change the string of characters, just

the pointer and the byte count.to

glc[x] gets !ast £haracter of string x. Above remarks

about rul£ also supply to a1.£.

lambda nospread function. Concatenates (copies

of) any number of strings. The arguments are

transformed to strings if they aren't strings.

Value is the new string, e.g.

concat[11 ABC 11 ;DEF; 11 GHI 11) "' "ABCOEFGHI 11 • The value

of concat[] is the null string, 1111

rplstring[x;n;y) BeJLl:ace characters of string .:$ beginning at

character !l with string l· !l may be positive or

negative. ~ and Y. are converted to strings if

they aren't already. Characters are smashed into

(converted) ~· Returns new ~· Error if there is

not enough room in ~ for y_, i.e. the new string

would be longer than the originai. 11 Note that if

~ is a substring of !• ! will also be modified by

the action of rplstring.

io---see string storage section that follows.

11 If Y. was not a string, ! will already have been partially modified since
rplstring does not know whether Y. will 'fit' without actually attempting
the transfer.

10.7

mkatom[x)

Searching.Strings

Creates an atom whose pname is the same as that of

the string ! or if ! isn't a string, the same as

that of mkstring[x), e.g. mkatom[(A B C)) is the

atom %(A% 8% C%)~ In INTERLISP-10. if the atom

would have > 99 characters, causes an error. ATOM

TOO LONG.

strpos is a function for searching one string looking for another. Roughly it

corresponds. to member •. except that it returns . a character positi,an nutnb~r

instead .of a tail. This number can then be. given to substring or utilized in

other calls to strpos.

strpos[x;y;start:skip;anchor;tail)

.! and x are, both string& (or else they are

converted automatically). Searches l beginning at

character number. start~ (or else 1 if. start i.s
.,....._ ·. ·.:· --

NIL) and look.s. for a sequence of characters equal

,to !· I.f a ,,match is found, the corresponding

character position ·is returned, otherwise NIL.

e.g.•·

strpos["ABC".~XYZABCOEF"]=4

s~rpos["ABC"."XYZABCOEF";S]=NIL

strpos[~ABC"."XYZABCOEFABC";5]=10

skip can be used to specify a character in ! that

matches Ci")' charac'ier in, ·~. e.g.

strpos["A&C&";"XYZABCDEF";NIL;&]=4

10.8

Example Problem

If anchor is T, strpos compares x with tho

characters beginning at position start, or 1. If

that comparison fails, strpos returns NIL without

searching any further down l· Thus it can be usod

to compare one string with some portion of another

string, e.g.

strpos["ABC":"XYZABCOEF":NIL:NIL;T]=Nll

strpos["ABC";"XYZABCDEF":4;NIL;T]=4

Finally, if tail is T, the value returned by

strpos if successful is not the starting position

of the sequence of characters corresponding to ~·

but the position of the first character after

that, i.e. starting point plus nchars[x] e.g.

strpos["ABC":"XYZABCDEFABC":NIL;NIL;NIL:TJ=7.

Note that strpos["A";"A";NIL;NIL;NIL;T]=2, · even

though "A" has only one character.

Given the strings ~. ~. and ~· write a function foo that will make a string

corresponding to that portion of between and

foo["NOW IS THE TIME FOR ALL GOOD MEN";"IS";"FOR"] is" THE TIME"

Solution:

(FOO
[LAMBDA (X Y Z)

(AND (SETO Y (STRPOS Y X NIL NIL NIL T))
(SETO Z (STRPOS Z X Y))
(SUBSTRING X Y (SUB1 Z])

10.9

e.g.

strposl[a;str;start;neg) str is a string (or else it is convertod

automatically to a string), a is a list of

characters or character codes .12 strposl

searches ill beginning at character number stllrt

(or else. 1. if start=Nll) for one of the characters

in !· If' one is found, strposl returns as its

value the corresponding character position,

otherwise·Nll. E.g., strposl[(A B C);"XYZBCD"]=4.

If neg=T, strposl searches for a character not on

!.• e .. g., strposl[(A BC); "ABCDEF":NIL:T]=4.

If! is an array, it is treated as a bit table.

The bits ·of .. (El T A 1) correspond to character

.codes O to 43Q~ of (ELT A 2) to codes 44Q to 107Q,

etc. Thus an array whose first element was 17Q

.would be equivalent to a list (40Q 410 420 43Q) or

(%_ ! %"· #).

If ! is not a bit table (array), strposl first converts it to a bit table using

makebittable described below. If strposl is to be called frequently wi~h tho

same list of characters, a considerable savings can be achie~ed by converting

the list to a bit table once, and then passing the bit table to strposl as its

first argument.

makebittable[l;neg:a] makes a bit table suitable for use by strposl. 1

and !l!.9 are as for strposl. If ! is not a

suitable array, makebittabl• will cr~ate an array

12---If any element of a is a number, it is assumed to be a character coclo.
Otherwise' it is converted to a character code via Cheon 1. Therefore' it
is more efficient to call strposl with a a list of character codes.

10.10

and return that as its value. Otherwise it uses

(and changes) !·

Note: if neg=T, strposl must call makebittable whether ! is a list or an

array. To obtain bit table efficiency with neg:T, makebittable should bo

called with neg=T, to construct the "inverted" table, and the r~sulting table

(array) should be given to strposl with neg=NIL.

String Storage

A string is stored in 2 parts; the characters of the string, and a pointer to

the characters. The pointer, or 'string pointer', indicates the bute at which

the string begins and the length of the string. It occupies one word· of

storage. In INTERLISP-10, the characters· of the string are stored five

characters to a word in a portion of the address'space devoted exclusively to

storing characters.

Since the internal pname of literal atoms also consists of a pointer to the

beginning of a string of characters ·and a byte count, conversion between

literal atoms and strings does not require any additional storage for the

characters of the pname, although one cell is required for the string

pointer. 13

\./hen the conversion is done internally, e.g. as in substring, strpos, or

strposl, no additional storage is required for using literal atoms instead of

strings.

10 .11

The use of storage by the basic string functions is given below:

mkstring(x] x string

x literal atom

other

substring[x;n;m] ~ string

x 11 teral atom

other

gnc[x] and glc[x] x string

other

args. ,any type

rplstring.(x;n ;y] x string

x other

y any ·type

no space

new pointer

new characters and· pointer

new pointer

new pointer

new characters and pointer

no space, pointer is modified

like mkstring, but doesn't make much

sense

new characters for whole now

string, one new pointer

no new space unless characters are in

pna,me space (as result of

mkstring[atom]) in which case ~ . is

quietly copied to string space

new pointer and characters

type of y doesn't matter

_,'·

10.12

10.3 Array Functions

Space for arrays and compiled code are both allocated out of a corrunon array

space. Arrays of pointers and unboxed numbers may be manipulated by the

following functions:

array[n;p;v] This function allocates a block of n+2 words, of

which the first two are header information. . The

next p S. n are cells which will contain unboxod

numbers, and are initialized to unboxed 0. The

last n-p 2 o cells will contain pointers

initialized with y, i.e., both £!U: and ££!::: are

available for storing information, and each

initially contain, y. If ~ is NIL, 0 is usod

(Le., an array containing all INTERLISP

pointers). The value of array is the array, also

called an array pointer. If sufficient space is

not available for the array, a garbage collection

of array space, GC: 1, is initiated. If this is

unsuccessful in obtaining sufficient space, an

error is generated, ARRAYS FULL.

Array-pointers print as In, where n ts the octal representation of the pointer.
1Vote that #n will be !!2Jl. as a literal atom, and not an arrav pointer.

swparray(n;p;x)
- .

like array but allocates ·.a swappable array. (So~

section 3.)

arraysize[a) Returns the size of array !· Generates an error,

ARG NOT ARRAY, if! is not an array.

10 .13

+

+

+

arrayp[x] Value is! if! is an array pointer -0thorwiso NIL.

No check is made to ensure that x actually

addresses the begtnntng of an array.

swparrayp[x] Value is ! if ! is a swappable array, NIL

otherwise.

elt[a;n] Value is !!1!l element of the array a14 el t

generates an error, ARG NOT ARRAY, if ! is not tho

beginning of an array. 16 If n corresponds to tho

unbox.ed region of !• the value of e1t is the ful 1

36 bit word, as a boxed integer. If n corresponds

to the pointer region of!.• the value of elt is

the m half of the corresponding element.

seta[a;n;v] sets the nth element of the array !.· Generates an

error, ARG NOT ARRAY t H ! is not the beginning

of an array. If !l corresponds to the u n box. ed

region of !_, v must be a number, and is unboxed

and stored as a full 36 bit word into the nth

element of a. If !!. corresponds to the pointer

region of !.• v replaces the £.!!.!: half of the nth

element. The value of seta is v .

• vote that .seta and el t are alwav.s inverse operations.

j4----~------------------------------~------------------~----------------------el t[a; 1] is the first element of the array (actually corresponds to the 3rd

15

cell because of the 2 word header).

arrayp is true for pointers into the middle of arrays, but elt and scta
must be given a pointer to the beginning of an array. i.e.,6 valueof
array.

10 .14

eltd[a;n]

setd[a;n;v)

same as alt for unboxed region of a, but returns
cdr halfOf nth element, if n corresponds to the
pointer regio"ilOf !· -

same as seta for unboxed region of a, but sets cdr
half of ""lith element, if n corre-sponds to the
pointer region of !· The value of ~ is ~·

In other words, eltd and setd are always inverse operations.

10.4 Storage Functions

reclaim[n] Initiates a garbage collection of type n. Value
of reclaim is number of words available (for thnt
type) after the collection.

Garbage collections. whether invoked directly by the user or indirectly bv need
for storage, do not confine their activity solely to the dat~ type for which
they were called, but automatically collect some or all of the other types (sec
Section 3).

ntyp[x) Value is type number for the data type of

INTERLISP pointer 2S• e.g. ntyp[(A • B)) is 8, the

type number for lists. Thus GC: 8 indicates n

garbage collection of list words.

10 .15

+

'II(

+
+

typep[x;n]

g~gag[message]

type

arrays, compiled code
stack positions
swapped array handles
list words
atoms
floating point numbers
large integers ·
small integers
string pointers
pname storage
string storage

eq[ntyp[x];n]

number

1
2
4
8

12
16
18
20
24
28
30 16

affects messages printed by garbage collector. If

message=T, its standard setting, whenever a

garbage collection is begun, GC: is printed,

followed by the type number. \..'hen the garbago

collection is complete, two numbers are printed

the number of words collected for that type, and

the total number of words available for that type,

i.e. allocated but not necessarily currently in

use (see~ below).

Example:

.. RECLAIM(18)

GC: 18
511, 3071 FREE WORDS
3071
--RECLAIM(12)

GC: 12
1020, 1020 FREE WORDS
1020

1a·---~----------------New user data types (see section 23) are assigned type numbers beginning
with 31.

10 .16

minfs(n;typ)

If message=NIL. no garbage collection message is

printed, either on entering or leaving the garbage

collector.

If message is a list, £!.!: of message is printed +

(using print) when the garbage collection is +

begun, and cdr is printed when the collection is +

finished. If message is an atom or string, +

message is printed when the garbage collection is +

begun, and nothing is printed when the collection +

finishes. +

The value of ~ is its previous setting

Sets the minimum amount of free storage which will

be maintained by the garbage collector for data

types of type number m. If, after any garbage

collection for that type, fewer than n free words

are present, sufficient storage will be added (in

512 word chunks) to raise the level to n·

If ~=NIL, 8 is used, i.e. the minfs refers to

list words.

If n=NIL. minfs returns the current minfs setting

for the corresponding type.

A minfs setting can also be changed dynamically. even during a garbage

10.17

collection, by typing control-S followed by a number, followed by a period. 17

If the control·S was typed during a garbage collection, the number is the now

minfs setting for the type beinq collected, otherwise for type 8, i.e. list

words.

Note: A garbage collection of a 'related' .type mav also cause more storage to
be assigned to that type. See discussion of garbage collector algorithm.
Section 3.

storage[flg J

gctrp[nJ

Prints amount of storage (by type number) used by

and assigned to the user, e.g .

.. STORAGE()

TYPE USED
1 8927
2 5120
4 23
8 6037
12 2169
16 0
18 173
24 110
28 802
30 312
SUM 23673

ASSIGNED
12288
ft120
512
15360
3584
512
2048
2048
2048
512
44032

If fl!l.=T, includes storage used by and assigned to

the system. Value is NIL.

Causes a (simulated)

control·H interrupt when the number of free list

words (type 8) remaining equals !!• i.e. when a

garbage collection would occur in n. more con sos.

i7---\.lhen the control·S is typed, INTERLISP immediately clears and saves the
input buffer, rings the bell, and waits for input, which is terminated by
any non-number. The input buffer is then restored, and the program
continues. If the input was terminated by other than a period, it is
ignored.

10 .18

cooscount[n]

closer(a;x]

openr[a]

The message GCTRP is printed, the function

interrupt (Section 16) is called, and a break

occurs. Note that by advising (Section 19)

interrupt the user can program the handling of a

ill.!J.! instead or going into a break. 18

Value of~ is its last setting.

gctrp[-1] will 'disable' a previous ~ since

there are never -1 free list words. .9.£1!:.2 1 s

initialized this way.

gctrp[] returns number of list words left, i.e.

number of conses until next type 8 garbage

collection, see Section 21.

conscount[] returns number of conses since

INTERLISP started up. If n is not NIL, resets

conscount to !1·

Stores 2S into memory location a. Both ~ and a

must be numbers.

Value is the number in memory location ! , 1. e.

boxed.

]i---For ··alli.1? interrupts, interrupt is called with in type (its third argument)
equal to 3. If the user does not want to go into a break, the advice
should still allow in.terrupt to be entered, but first set intype to -1.
This will cause interrupt to 11 quietly 11 go away by calling the function that
was interrupted. The advice should not exit interrupt via return, as in
this case· the function that was about to be called when the interrupt
occurred would not be called.

10.19

Index for Section 10

ARG NOT ARRAY (error message)
ARRAY[N;P;V] SUBR
array functions
array header
ARRAYP(X] SUBR

......... ·:• •
............. ,• .

ARRAYS FULL (error message)
ARRAYSIZE[A]
ATOM TOO LONG (error message)
AOOOn (gensym)

............. ,•
bell (typed by system)
CHARACTER[N] SUBR ·• character atoms
character codes
CHCON[X;FLG;RDTBL] SUBR
CHCONl(X] SUBR

. ·• ~- · .
........................ •

CLOSER[A;X] SUBR • • • • • • • • • • • • . • • ... • • .• ·• •••• ·- •' •.• ' • •1

compiled code
CONCAT[Xl;X2; ... ;Xn) SUBR*
CONSCOUNT[N] SUBR
control-H ·• •'
control-S
DCHCON[X;SCRATCHLIST;FLG:RDTBL]
DUNPACK[X;SCRATCHLIST;FLG;RDTBL]

....... ·~. ~ -,,. -~
ELT[A;N] SUBR
ELTD[A;U] SUBR
FCHARACTER[N] SUBR
garbage collection
GCGAG[MESSAGE] SUBR
GCTRP[N] SUBR
GCTRP (typed by system)
GC: (typed by system)
GC: 1 (typed by system)
GC: 8 (typed by system)

... ·• ' .. .

......... ~
................. ". ·•
...................•...

GENNUM (system variable/parameter)
GENSYM[CHAR]
GLC[X]. SUBR
GNC[X] SUBR

. · · ·• '
input buffer ·. · -. • .. .
INTERRUPT[INTFN:INTARGS:INTYPE]
literal atoms
MAKEBITTABLE[L;NEG;A]
MAPATOMS[FN] SUBR
MINFS[N;TYP] SUBR
MKATOM[X] SUBR
MKSTRING[X] SUBR

............... •·

NCHARS[X;FLG:RDTBL] SUBR
NTHCHAR[X;N:FLG;RDTBL] SUBR*
IHYP[X] SUBR
null string
OPEIJR[A] SUBR
PACK[X] SUBR
PACKC[X) SUBR
pnames
print name
prin2-pnames
RECLAIM[N] SUBR

• ;. .- ••••••••••• ti ••.••••••••••.•• ·'· ·• '• .. ·-··· ,• ·
...................... ' ·.~ ·.~ -..

INOEX.10 .1

Page
Numbers

10.13-14
10.13
10.13-15
10 .13
10.14

. 10 .13
10 .13
10.3,8
10.5
10.18
10.4
10.3
10.4
10.4
10.4
10.19
10.13
10.7,12
10 .19
10.18
10 .18
10.4
10.3
10 .14
10 .15
10.5
10.13,15-19
10.16
10.18-19
10.19
10 .16
10.13
10 .15
10.5
10.5
10.7,12
10.6,12
10 .18
10 .19
10 .11
10 .10
10.5
10 .17
10.8
10.6,12
10.3
10.4
10 .15
10,6·7
10.19
10.2
10.4
10 .1-5, 11
10.1
10. ·1-4
10 .. is

RPLSTRING[X:N;Y] SUBR
RSTRING[FILE;RDTBL] SUBR
searching strings•............•.....
SET A [A ; l·I ; V]••...............
SETD[A;IJ;V]•...............
STORAGE[FLG] ,
STREQUAL[X;Y]
string characters•...............
string functions•.........••.•
string pointers•............•.••..•..•.•.•
string storage•.........•.•..•.. , •..•...
STRitJGP[X] SUBR
STRPOS[X;Y;START;SKIP;ANCHOR;TAILJ
STRPOSL[A;STR;START;NEG]
SUBSTRING[X;N;M] SUBR
SWPARRAY[N;P;V] SUBR
SWPARRAYP[X] SUBR•...•.......••....
type numbers•...........•...•........•. II
T v P E P [x ; r~ J • " . . • . • • . • • • • . • . . • . . • • •
unboxed numbers (in arrays) ...••.•..••.•...•••.•
UNPACK[X;FLG;RDTBL] SUBR•...•.•....
user data types
(followed by a number)••.•..•.•.•..••....

INDEX.10.2

Page
Numbers

10.7,12
10.6
10.8-11
10.14
10 .15
10 .18
10.6
10 .11
10.5-11
10.7,11
10.11-12
10.5
10.8-9
10.10
10.6,12
10. 13
10.14
10.15
10.16
10.13
10.3
10.16
10.13

SECTION 11

FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then be used as

functions. However, since fil!.!: of a form is never evaluated, ~ or npplyft

must be used to call the function specified by the value of the functional

argument.

Functions which use functional arguments should use variables with obscure

names to avoid possible conflict with variables that are used by the functional

argument. For example, all system functions standardly use variable nnmos

consisting of the function name concatenated with ~ or fn, e.g. mapx. Note

that .by specifying the free variables used in a functional argument as tho

second argument to function, thereby using the INTERLISP FUNARO feature. the

user can be sure of no clash.

function[x;y] is an nlambda function. If ~=NIL, the value of

function is identical to quote, for example,

(MAPC LST (FUNCTION PRINT)) will cause mapc to be

called with two arguments the value of 1st and

PRINT. Similarly,

(MAPCAR LST (FUNCTION(LAMBDA(Z) (LIST (CAR Z)))))

will cause mapcar to be called with the value of

1st and (LAMBDA (Z) (LIST (CAR Z))). When

compiled, function will cause code to be compiled

for ~: quote will not. Thus

11.1

map[mapx;mapfnl;mapfn2J

(MAPCAR LST (QUOTE (LAMBDA -·))) will cause mapcar

to be called with the value of 1st and tho

expression (LAMBDA ··). The functional argument

will therefore still be interpreted. The

corresponding expression using function will cause

a dummy function to be created with definition

(LAMBDA --), and then compiled. mapcar would then

be called with the value of 1st and the name of

the dummy function. See Section 18.

If ~ is not NIL, it is a list of variables that

are (presumably) used freely by !'S· In this caso,

the value of function is an expression of the form

(FUNARG x array), where array contains the

variable bindings for those variables on X·

Funarg is described on page 11.5-7.

If mapfn2 is NIL, map applies the function mapfn 1

to successive tails of' the list mapx. That is,

first it computes mapfn1[mapx), and then

mapfn1[cdr[mapx)J, etc., until mapx is exhausted. 1

If mapfn2 is provided, mapfn2[mapx] is used

instead of cdr[mapx] for the next call for mapfnt,

e.g., if mapfn2 were ~. alternate elements of

the list would be skipped.

The value of map is NIL. map compiles open.

i-------------------------------~---~--1. e .• becomes a non-list.

11.2

mapc[mapx;mapfn1;mapfn2] Identical to map, except that mapfnl[car[mapx]] is

computed at each iteration instead of

mapfnl[mapx], i.e., mapc works on elements, mtlp on

tails. The value of mapc is NIL. mapc compiles

open.

maplist[mapx;mapfnl ;mapfn2] successively computes the same values that m.1p

would compute: and returns a list consisting of

those values. maplist compiles open.

mapcar[mapx;mapfn1;mapfn2] computes the same values that mapc would compute,

and returns a list consisting of those values.

e.g. mapcar[x;FNTYP] is a list of fntyps for each

element on~· mapcar compiles open.

mapcon[mapx;mapfnl;mapfn2) Computes the same values as map and maplist but

nconcs these values t~ form a list which it

returns. mapcon compiles open.

mapconc[mapx;mapfn1 ;mapfn2) Computes the same values as mapc and mapcnr, but

nconcs the values to form a list which it returns.

mapconc compiles open.

Note that rnapcar creates a new list which is a mapping of the old list in that

each element of the new list is the result of applying a function to the

correspondin~ element on the original list. mapconc is used when there are a

variable number of elements (including none) to be inserted at each iteration,

e.g. mapconc[X;(LAMBOA (Y) (ANO Y (LIST Y)))) will make a list consisting of x

with all NILs removed, mapconc[X;(LAMBDA (Y) {ANO (LISTP Y) Y))] will make a

linear list consisting of all the lists on ~· e.g. if applied to

11.3

((AB) C (DEF) (G) HI) will yield (AB 0 E F G).2

subsettmapx;rnapfn1 :mapf112) applies mapfn1 to elements of mapx and returns a

list of those elements for which this application

is non-NIL. e.g.,

subset[(A B 3 C 4);NUMBERPJ • (3 4).

mapfn2 plays the same role as with map, mapc, et

al. subset compiles open.

map2c[mapx:mapy;mapfn1;mapfn2] Identical to mapc except mapfni is a function

of two arguments, and mapfnl[car[mapx];car[mapy)l

is computed at each interation. 3 Terminates when

etther mapx or ~ are exhausted.

map2car[mapx;mapy;mapfn1 :mapfn2J Identical to mapcar except mapfnt is a

function of two arguments·· and

mapfnl[car[mapx];car[mapy]J is used to as$emble

the new list; Terminates when either mapx or !!!.!I?}'.

is exhausted.

Note: CLISP (Section 23) provides a more 9eneral and complete facility for

expressing iterative statements, e.g. (FOR X IN Y COLLECT (CADR X) WHEN

(NUMBERP (CAR X)) UNTIL (NULL X)).

i----------------~----------------------~-------------------------~-----~------Note that since mapconc . uses nconc to string . the corresponding lists

3

together, in this example, the original list will be clobbered, i.e. it
would now be ((AB DE F G) C (DE F G) (G) H I). If this is an undesirable
side effect, the functional argument to mapconc should r~turn instead a top
level copy, e.g. in this case, use (AND (LISTP Y) (APPEND Y)).

mapfn2 is still a function of one argument, and is ~pplied twice on each
iteration; mapfn2[mapx) gives the new mapx, mapfn2[mapy) the .new ~· £.ill:
is used if mapfn2 is not supplied, i.e., is NIL.

11.4

maprint[lst:file:left:right:sep;pfn:lispxprintflg)

is a general printing function. It cycles through

1st applying pfn (or print if pfn not given) to

each element of 1st. Between each application,

maprint performs prinl of !!.E.• o'r"" if sep=NIL.

If left 1s given, it 1s printed (using print)

initially: if right is given it is printed (using

prinl) at the end.

For example, maprint[x;NIL:%(;%)) is equivalent to

pr in 1 for lists. To print a list with commas

between each element and a final '·'one could use

maprint[x;T:NIL;%.;%,).

If lispxprintflg = T, lispxprinl is used for prinl

(see Section 22).

Mapdl,searchpdl See Section tZ.

mapatoms See Section 5.

every, some, notevery~ notany See Section 5.

Funarg

function is a function of two arguments, ~· a function, and x a list of

variables used freely by 2S· If ~ 1s not NIL, the ualue of function is an

expression of the form (FUNARG x array), where array contains the bindings of

the variables on l •t the time the call to function was evaluated. funarg is

not a function itself. Li~e LAMBDA and NLAMBDA, it has meaning and is

specially recognized by INTERLISP only in the context of applying a function to

arguments. In other words, the expression (FUNARG x array) is used exactly

11.5

like a function. 4 When a funarg is applied, the stack is. modified. so that tho

bindings contained in the array will be in force when ~· the function. is

called. 5

For .example, suppose a program wished·. to compute (FOO X (FUNCTION FIE)), nnd

fie used .~ and ! as free yariables ... If foo rebound x and z, fie would obtain

the rebound values .when .. · it was .. a~plied ·from inside of foo. By evaluating

instead (FOO X (FUNCTION FIE (~ Z)))~ ·. foo · would be ·called With

(FUNARG FIE array) as its seco11d argument, wh·ere array contained the bindings

of ~ and ! (at. the time foo was called). Thus when fie was applied from inside
,_.~ -

of Joo, it would 1 see.' the original. values· of ~ and !·

However, funarg is more than just a way of circumventing the clashing of

variables. For examp.le, a funarg expressi;c;>n can be returned as the value of a

computation, and then used 'higher up•, e.g.,, when the bindings of tho

variables contained in array were no longer on the stack. Furthermore, if tho

function in a funarg expression .sets any ·of the variables contain.ad . in tl;le ..

array, the array itself (and only the array) will be changed. For example,

suppose foo is defined as

(LAMBDA (LST FN) (PROG (Y Z) (SETO V &) (SETO Z &) ... (MAPC LIST FN) ...))

and (FOO X (FUNCTION FIE (Y Z))) is evaluated. If .one application of fie. (by

the rnapc in foo) changes x and !• then the next application of ~ will obtain

the changed values of x and ! resulting from the previous application of· fie,

since both applications of fie come from the exact same funarg object, and

hence use the exact same. array. The bindings of .}!'. and ! bound inside 9f foo,

---~~--~~---~-~-----~------~~----~-
4 LAMBDA, NLAMBDA, and FUNARG ··expressions are sometimes called 1 function

objects' t.o distinguish them from functions, i.e., literal atoms which have
function definitions. ·

. ' -~

5 The implementation of funarg is desc:;rib~d in Section, 12.

11.6

and the bindings of ~ and ! above foo would not be affected. In other words,

the variable bindings contained in array are a part of the function object,

i.e .• the funarg carries its environment with it.

Thus by creating a funarg expression with function, a program can create a

function object which has updateable binding(s) associated with the objoc t

which last between calls to it, but are only accessible through that instance

of the function. For example, using the funarg device, a program could

maintain two different instances of the same random number generator in

different states, and run them independently.

Example

If foo is defined as (LAMBDA (X) (COND ((ZEROP A) X) (T (MINUS X))) and fie as -.-
(LAMBDA NIL (PROG (A) (SETQ AZ) (RETURN (FUNCTION FOO)))). then if we perform

(SETO A 0). (SETO FUM (FIE)), the value of rum is FOO, and the value of

(APPLY• FUM 3) is 3, because the value of A at the time foo is called is 0.
~

However if fie were defined instead as

(LAMBDA NIL (PROG (A) (SETQ A Z) (RETURN (FUNCTION FOO (A))))), the value of

furn would be (FUNARG FOO array) and so the value of (APPLY• FUM 3) would be -3,

because the value of A seen by foo is the value A had when the funarg was

created inside of fie, i.e. 2.

i1. 7

Index for Section 11

APPLY[FN;ARGS] SUBR ..•........••••.••.....•••••.
APPLY*[FN:ARGl; ... ;ARGn] SUBR* .••..•••.•...•.•..
CLISP•......... I ••••••

FUf,ARG•.. ,_~ ••.....•..• • ••.. • •.• ,,, ••.••• • ...• -. •••••
FUNCTION[EXP;VLIST] NL •..••.•..•.....•....••..••
function object·s · .. : .. . :•. :~ .. !' ••• ·

functional arguments•..•..•...•.....•...•.
MAP[MAPX;MAPFN1 ;MAPFN2] .• ; .•.. ; ••..•••. •:• ..••..••
MAPC[MA·PX; HAPFIH ;MAPFN2]
MAP CAR[MAPX ;MAPFfH ;MAPFN2] •••. •'• ;, .. : .•. ;,
MAPCOfJ[MAPX; MAPFN 1 ;MAPFr~2 l
MAPCONC[MAPX ;MAPFfH ;MAPFN2] · ...••.... ~ ..• ; .. ,,.,,. •.
MAPLIST[MAPX;MAPFN1;MAPFN2]•...••..•..••
MA PRINT[LS T: FILE; LEFT; RIGHT ;SH ;PFN.: LSPXPRNTFLG] .•
MAP2C[MAPX;MAPY;MAPFN1;MAPFN2] •.....•...•...••••
MAP2CAR[MAPX;MAPY;MAPFN1;MAPFN2) •.••••....••••••
SUBSET[MAPX;MAPFN1;MAPFN2) ••.••...•••••••••.••••
variable bindings •........•..•..•.•••.•.••..••••

INDEX.11.1

·.;.

Page
Numbers

11.1
11.1
11.4
11.1-Z.5-7
11.1-2,5.7
11.6 .
11.1
11.2
11.3
11.3
11.3
H.3
11. 3
11:5
11.4
11.4
11.4
11.5-7

SECTION 12

VARIABLE BINDINGS AND PUSH DOWN LIST FUNCTIONS1

A number of schemes have been used in different implementations of LISP for

storing the values of variables. These include:

1. Storing values on an association list paired with the variable names.

2. Storing values on the property list of the atom which is the name of

the variable.

3. Storing value• in a special value cell associated with the atom name,

putting old values on a pushdown list, and restoring these values when

exiting from a function.

4. Storing values on a pushdown list.

The first three schemes all have the property that values are scattered

t As of the date of this revision (October 1974), a major effort at BBN is +
nearing completion to implement in INTERLISP·10 the stack implementation +
for multiple environments (spaghetti stacks) described in [Bob3]. \.Jhcn .+
this is completed, much of the material in this section wilJ be obsolet~. •
However, our design philosophy of making the stack accessible to user •
programs will, if anything, be generalized and improved upon. In addition, +
the stack manipulating primitives will be defin~d in a less +
system~dependent way, so that user programs which referente the stac~ will +
be more readily transportable between different implementations of +
INTERLISP. +

12.1

throughout list structure space, and, in general, in a paging environment would

require references to many pages to determine the value of a variable. This

would be very undesirable in our system. In order to avoid this scatteritlg,

and possibly excessive secondary storage references, we utilize a variation on

the fourth standard scheme, usually only used for transmitting values of

arguments to compiled fut1ctions; that is, .we place these v~lues on the pushdown

lit list. 2 But since we want a compatible interpreter and compiler, the variable

lit

names must also be kept. The pushdown list thus contains pairs, each

consisting of a variable name and its value. In INTERLISP-10, each pair

occupies one word or 'slot' on the pushdown list, with the name in one half,

and the value in the other. The interpreter gets the value of a variable by

searching back up the pushdown list looking for a 'slot' containing the name of

that variable.

One advantage of this scheme is that the current top of the pushdown stack is

usually in core. and thus secondary storage references are rarely required to

find the value of a variable. Free variables work automatically in a way

similar to the association list scheme. except that within a function. a free

variable may be searched for only once (e.g. in compiled functions).

An additional advantage of this scheme is that it is completely compatible with

compiled functions which pick up their arguments on the pushdown Ust from

known positions, instead or doing a search. Since our compiled functions savo

lit the names of their arguments. 3 although they do not use them to reference

+
+
+
+
+
+
+

2--Also called the stack.

3 Currently, compiled func'tiOns 'Save the names of their arguments, on the
stack, the same as do interpreted functions. We ~re currently consi~ering
a scheme in INTERLISP-10 whereby the names of variables bciund by compiled
functions would not be stor•d on th~ st~ck, but would instead b~ computable
from the compiled definition~ However, this is an implementation detail.
The essential' point is that there be a way to associate a name wi'th the
value for variables bound by either interpreted or compiled functions.

12.2

variables, free variables can be used between compiled and interpreted

functions with no special declarations necessary. The names are also very

useful in debugging, for they make possible a complete symbolic backtrace in

case of error. Thus this technique, for a small extra overhead, minimizes

secondary storage references. provides symbolic debugging information, and

allows completely free mixing of compiled and interpreted routines.

There are (currently)4 three pushdown lists used in INTERLlSP-10: the first is

called the parameter pushdown list, and contains pairs of variable names and

values, and temporary storage of pointers; the second is called the control

pushdown list, and contains function returns and other control information; and

the third is called the number stack and is used for storing temporary partial

results of numeric operations.

However, it is more convenient f~r the user to consider the push-down list as a

single "list" containing the names of functions that have b~en entered but not

yet exited, and the names and values of the corresponding variables. Tho

multiplicity of pushdown lists in the actual implementation is for efficiency

of operation only.

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functions, information

regarding partially-evaluated expressions is kept on the push-down list. For

example, consider the following definition of the function fact (intentionally

faulty):

4~--·------------------------this will change in the spaghetti system.

12.3

(FACT
[LAMBDA (N)

ccorm
((ZEROP N)

L)
(T (ITIMES N (FACT (SUB1 N])

In evaluating the form (FACT 1). as soon as fact is entered, the interpreter

begins evaluating the implicit~ following the LAMBDA (see Section 4). The

first function entered in this process is cond. cond begins to process its

list of clauses. After calling zerop and getting a NIL value. cond proceeds to

the next clause and evaluates T. Since T is true. the evaluation of the

implicit E.!.Q..a!l that is the consequent of the T clause is begun (see Section 4).

This requires calling the function itimes. However before itimes can be

called, its arguments must be evaluated. The first argument is evaluated by

searching the stack for the last binding of N: the second involves a recursive

call to ~· and another implicit fil:.QBJ!. etc.

Note that at each stage of this process, some portion of an expression has been

evaluated, and another is awaiting evaluation. The output below illustrates

this by showing the state of the push-down list at the point in the computation

of (FACT 1) when the unbound atom L is reached.

12.4

... FACT(l)
u.b.a. L {in FACT} in ((ZEROP N) L)
(L BROKEN)
:BTV!

FORM (BREAKl L T L NIL ((CONO ((ZEROP N) l) (T (ITIMES N (FACT
(SUB 1 N)))))))

TAIL (L)

ARGl (((ZEROP N) L) (T (ITIMES N (FACT (SUBl N)))))
corm

FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBl N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBl N))))))

N 0
FACT

FORM (FACT (SUBl N))
FfJ ITIMES
TAIL ((FACT (SUBl N)))
*ARGVAL>11 1
*FORM>11 (ITIMES N (FACT (SUB1 N)))
TAIL ((ITIMES N (FACT (SUBl N))))

ARGl (((ZEROP N) L) (T (ITIMES N (FACT (SUBl N)))))
corm

*FORM>11 (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBl N)))))
TAIL ((CONO ((ZEROP N) L) (T (ITIMES N (FACT (SUBl N))))))

N 1
FACT

Internal calls to eval, e.g., from cond and the interpreter, are marked on tho

push-down list by a special mark which the backtrace prints as *FORM*. 5 The i:r

genealogy of *FORM*'s is thus a hiJtory of the computation. Other temporary

information stored on the stack by the interpreter includes the tail of a *
partially evaluated implicit J!!fill!l (e.g. a cond clause or lambda expression) 111

and the tail of a partially evaluated form (i.e. those arguments not yet 111

evaluated), both indicated on the backtrace by *TAIL*, the values of arguments 111

6---Note that *FORM*, *TAIL*, *ARGVAL*, etc., do not actually appear on the +
backtrace, i.e. evaluating *FORM• or calling stkscan to search for it will +
not work. However. spectal functions are available for accessing these +
internal blips. +

12.5

* that have already been evaluated, indicated by •ARGVAL*, and the names of

* functions waiting to be called, indicated by *FN*. *ARGl*, ... *ARGn* aro usod

*

by the backtrace to indicate the (unnamed) arguments to subrs.

Note that a function is not actually entered and does not appear on the stack,

until its arguments have been evalu~ted. 6 Also note that the *ARGl*, *FORM•,

TAIL. etc. 'bindings! ·comprise the actual working. storage. In other words,

in the above example, if a (lower) function changed the value of the *ARG 1111

binding, the cond would continue interpreting the new binding as a list of cond

clauses. Similarly, if the *ARGVAL• binding were changed, the new value would

be given to itimes as its first argument after its second argument had been

evaluated, and itimes was actually called.

The Pushdown List and Compiled Functions

. '.· . ;:

Calls to compiled functions. and the bindings of their arguments, 1. e. names

and values, are handled in the same way as for interpreted functions (hence the

compatibility between interpreted and compiled functions). However, compiled

functions treat free variables in a special way that interpreted functions do

not. Interpreted functions "look up" free variables when the variable is

encountered, and may look up the same variable many times. However, compiled
•. • . 1

functions look up . each free vari.able. only once. 7 Whenever a compiled function

is ent~red, the pushdown list is scanned and the most recent binding for each

free variable used in the function is found (or if there is no binding, the

value cell is obtained) and stored on the stack (and marked in a special way to

:;: .

7 A list of all free :varia~les is ·genera~ed at, compile time, and is in fact
obtainable from the compiled definition. See Section 18.

12.6

distinguish this 1 binding 1 from ordinary bindings). Thus, following tho

bindings of their arguments, compiled functions store on the pushdown list

pointers to the bindings for each free variable used in the function.

In addition to the pointers to free variable bindings, compiled func1;.ions

differ from interpreted functions in the way they treat locally bound

variables, i.e. ~ and open lambdas. Whereas in interpreted functions,

progs and open lambdas are called in the ordinary way as fun ct ions, wh(ln

compiled, ~ and open lambdas are merged into the functions that contain

them. However, the variables bound by them are stored on the stack in tho

conventional manner so that functions called from inside them can reference the

variables freely.

Pushdown List Functions

NOTE: Unless otherwise stated, for all pushdown list functions, ~ is a

position on the control stack or a literal atom other than NIL. If ~ is an

atom, (STKPOS pos 1) is used. In this case, if pos is not found, i.e., stkpos

returns NIL, an ILLEGAL STACK ARG error is generated.

stkpos[fn;n;pos] Searches back the control stack starting at ~

for the nth occurrence of fn. Returns stack

position of that fn if found, 8 else NIL. If n is

NIL, 1 is used. If pos is NIL, the search starts

at the current position. stkpos[] gives the

current position.

a---·------------------current1y, a stack position is a pointer to the corresponding slot on tho
control or parameter stack, i.e., the address of that cell.· It prints as
an unboxed number, e.p., #32002, and its type is.2 (Section 10).

12.7

*

*

+

+

+

+

+

+

+

+
+

stknth[n;pos]

stkname[pos]

Value is the stack position of the nth function

call before position pos' where n is negative. g If

pos is NIL, the current position is. assumed, i.e ..

stknth[·1J is the call before stknth. Value of

stknth is NIL, if there is no such call - e.g.,

stknth[•10000J.

Value is the name of the function at control sta~k

position. pos. ln .this case, pos must be a· real

stack position, not an atom.

In summary, stkpos converts function names to stack positions, stknth converts

numbers to stack po$itions, and stkname converts positions to function names.

Information about the variables bound at a particular function call, i.e. stack

position, can be obtained using the following functions:

stkn·args[pos]

s tkargval[n ;.pos]

Value is the number of arguments bound by the

function at position pos.

Value is the nth argument of the function at

position pos. n=1 corresponds to the first

argument at pos, n.:.2 to the second, etc. !!. can

also be O or negative, i.e., stkargval[O;FOOJ is

the value of the 'binding' immediately before tho

first argument to FOO, stkargval[• 1 ;FOO] the one

before that, etc.

12.8

stkargname[n;posJ value is the name of the nth argument of the

function at position pos.

As an example of the use of stknargs and stkargname:

variables[posJ

can be defined by:

(VARIABLES
[LAMBDA (POS)

(PROG (N L)

returns list of variables bound at pos.

(SETON (STKNARGS POS))
LP (COND .

((ZEROP N)
(RETURN L)))

(SETQ L (CONS (STKARGNAHE N POS)
L))

(SETQ N (SUBl N))
(GO LPJ)

The counterpart of variables is also available.

stkargs[pos] Returns list of values of variables bound at pos.

The next three functions, stkscan, evalv, and stkeval all involve searching the

parameter pushdown stack. For all three functions, pos may be a position on

the control stack, i.e., a value of stkpos or.· stknth. to In this case, tho

search will include the arguments to the function at pos but not any locally

bound variables. pos may also be a position on the parameter stack, i.e. a

slot, in which case the search starts with, and includes that position.

Finally, pos can be NIL, in which case the search starts with the current

position on the parameter stack.

--------------------------~~-----·--------------~------------------------------10 .
or a function name, which is equivalent to stkpos[pos;t] as described
earlier. ·

12.9

+

+

stkscan[var;pos]

evalv[var;pos]

stkeval[pos;form]

Searches backward on the parameter stack from pos

for a binding of ill· Value is the slot for that

binding if found, i.e., a parameter stack

position, otherwise lli ·itself.

returris•the·value of the atom var evaluated as of ____,

position pos.

is a more general evalv. It is equivalent to

eval[form] at position ~· i.e .• all· varjuble.s

evaluated in form, will be evaluated as of pos . 11

Finally, we have two functions which clear the stacks:·

retfrora[pos;value]

reteval[pos~form]

. ": ~ .. ·.

clears the stack back to the ~unction at position

pos, and effects a return from that function with

vdue as its value ..

clears the stack back to the function at position

pos, then evaluates form and returns with its

value to ~th~: next higher function.

words" reteval[pos, form) is eqUi valent to

ret from[pos; s·tkeva l[pos; form]] .1.2

In othor

11----------------~--However, any functions in form that specifically ref~rence the st~ck, e.g~.
stkpos, stknth, retfrom, ete:'", 'see' the stack as it currently is. (Seo
page 12.11-13 for description or how stkeval is implemented.)

12 ~rovided form does not ihvolve ariy ~ta~k functions, as· explained in
footnote a-:--

12.10

We also have:

mapdl[mapdlfn;mapdlpos] starts at position mapdlpos (current if NIL). and

applies mapdlfn, a function of two arguments, to

the function n!ffi! at each pushdown position, and

the pushdown position itself, to stkname[mapdlpos]

until the top of stack is reached. Value is NIL.

For example, mapdl[(LAMBOA (X) (ANO (EXPRP X) (PRINT X)))] will print all exprs

on the push-down list.

mapdl[(LAMBDA (X POS) (COND ((IGREATERP (STKNARGS POS) 2) (PRINT X] will print

all functions of more than two arguments.

searchpdl[srchfn;srchpos]

The Pushdown List and funarg

searches the pushdown list starting at position

srchpos (current if NIL) until it finds a position

for which srchfn, a function of two arguments.

applied to the n!ffi! of the function and tho

position itself is not NIL. Value is

(name . position) if such a position is found,

otherwise NIL.

The linear scan up the parameter stack for a variable binding can bo

interrupted by a special mark called a skip-blip (see figure 12-1), and a

pointer to the position on the stack where the search is to be continued. This

is what is used to make stkeval, page 12.10 work. It is also used by tho

funarg device (Section 11).

When a funarg is applied, INTERLISP puts a skip-blip on the parameter stack

with a pointer to the funarg array, and another skip-blip at the top of the

12 .11

*

1111

funarg array pointing back to the stack. The effect is to make the stack look

like it has a patch. The names and values stored in the funarg array will thus

be seen -before those high~r ;qn ·the stack. Similarly, setting a variable whose

binding is contained in the,,1funarg ar.ray will. change only the array. Note

however that as.a consequ·ence Qf.this implementation, the .same in.stance of a

Junarg object cannot be u.sed recur.sively.

.·'

·i'

: ';, •"·. ~ . .

'·,,.

'1··

1°2.12

USE OF 1SKIPBL1PS 1

PARAMETER PARAMETER
STACK STACK

• 9

C!I Ill
0 111

NM VAL NM VAL
NM VAL NM VAL

(ii SKIP
Ill> NM VAL

• NM VAL FUNARG
NM VAL ARGUMENTS • ARRAY

NM VAL TO STKEVAL •
KIP •

NM VAL BEGIN
NM VAL EVALUATION OF

• FORM
•
•
•

STKEVAL FUNARG

FIGURE 12-1

12 .13

Index for Section 12

association list
backt·race ,
control pushdown list .•...•••....•.......•.•..••
debugging
EVALV[VAR;POS] ••••••••••••••••••••••••••••••••••
free variables
free variables and compiled functions
FUt~ARG•..••.•.••. , •••..•••••••••••••••••.•
ILLEGAL STACK ARG (error mess~ge) •.••••...•.••••
implicit progn •
locally bound vari~bles •••.••.•••.••••••..••••.•
MAPDL[MAPDLFN;MAPDLPOS] •••••••••••••••••••••••••
number stack · •...•.•••.•.••••.•.••.•.••..
parameter pushdown list••..•••••..•.•...•..
pushdown list•.......•...... ,. _
pushdown list functions ··•·i····················
RETEVAL[POS;FORM] SUBR ···········•·••••••••4••••
RE TFROM[POS; VALUE] SUBR •••••••••••••••••••••••••
searching the pushdown list ••..•••.•..........•.
SEARCH PDL[SRCHFN; SRCHPO.S J •••••••••••••••••••••••
s~ip-blip ~ .. •
slot (on pushd~~n li~t) ..••..••••••.••..•...•••.
sta·ck pq.siti«;>.n .. _ .• ·~······;·.~·······~·······-··.····
S TKAR Gl~AME[N";.POS J . ··
S TKAR.G$[. POS] . . '. .. ·· • •••••••• • •.• ·• •••• • • • • • • • • • •
STKARGVAf[N;~OSJ ··~·•···········•···············
STK_~V~L[.POS;F_CiRM] ·SUBR .•• ; •••. .' .••••.••••. _~.-.: ••.•• .-.
STKNAME[PCS] Sl,JBR
S TKNARGS[POS:) SUBR
STKNTH[N: POS J ·suBR ~ •.••• ;
STKPOS[FN;N;POSJ ••••••••••••••••••••••••••••••••
STKSCAN(VAR;POSJ SUBR ···················~·······
value cell • •. · ... ···. !

variable bindings••••....•....•..••
VARIABLES[POS)
ARGVAL (i~ backtrace) .•••••..•••..••.•••••.•.•
ARG1 (in backtrace)
*FN11t (in back trace·) ...•....••.•••••..••...••••••
*FORM111: (in backtrace) .•.•.•••••••••.••..••••••••
TAIL (in backtrace) .•.••..•••••••••••••..•••••

INDEX •. U.1

Page
Numbers

12.1-2
12.3,5
12.3
12.3
12.10
12.2,6
12.6
12.11-12
12.7
12.4-5
12.7
12 .11·
12.3
12.3,9,11
12.1-13
12,7-11
12.10
12 .10
12.1,9 .. 11
12.11
12 .11
12.2,10
12.7-10
12.9
12.9
12.8
12.10-11
12.8
12.8
12.8-9
12.7-9
12 .10
12 .1
12.1-7

· 12 .9
12.6
12.6
12.6
12.5
12.5

SECTION 13

NUMBERS AND ARITHMETIC FUNCTIONS

13.0 General Comments

There are three different types of numbers in INTERLISP: small integers, large

integers, and floating point numbers. 1 Since a large integer or floating point

number can be (in value) any full word quantity (and vice versa), it is

necessary to distinguish between those full word quantities that represent

large integers or floating point numbers, and other INTERLISP pointers. \.Je do

this by "boxing" the number, which is sort of like a special "cons": when a

large integer or floating point number is created (via an arithmetic operatio11

or by read), INTERLISP gets a new word from "number storage" and puts the large

integer or floating point number into that word., INTERLISP then passes around

the pointer to that word, i.e., the "boxed number", rather than the actua 1

quantity itself. Then when a numeric function needs . the actual numeric

quantity, it performs the extra level of addressing to obtain the "value" of

the number. This latter process is called 11 unboxing 11 • Note that unboxing does

not use any storage, but that each boxing operation uses one new word of number

storage. Thus, if a computation creates many large integers or floating point

numbers, i.e., does lots of boxes, it may cause a garbage collection of large

i- --Fi~;~ ~~;-~~;~~--;u-;b·e-r~--~;;-~;;;~;d·b;··;h;-;;;d·~~~~~~~--;h·e"n. -~-: • ·o·r·-;~ -i
appears in a number, e.g. 1000 is ~n integer. 1000. a floating point
number, as are 1E3 and 1.£3. Note that 1000D, 1000F. and 1E30 are perfectly
legal literal atoms. · , ·

13.1

+
+
+

integer space, GC: 18, or of floating point number space, GC: 16.2

13.1 Integer Arithmetic

Small Integers

Small integers are those integers for which smallp is true. In INTERLISP·lO,

these are integers whose absolute value is less than 1536. Small integers are

boxed by offsetting them by a constant so that they overlay ·an area of
INTERLISP's address space that does not correspond to any INTERLISP data type.

Thus boxing small numbers does not use any storage, and furthermore, each small

number has a unique representation, so that !!! may be used to check equality.

Note that !t9. should not be used for large integers or floating point numbers,

e.g., eq[2000;add1(1999JJ is NIL! ill or equal inust be used instead.

Integer Functions

All of the functions described below work on. integers. Unless specified

otherwise, if given a floating point number, they first convert the number to

an integer by truncating the fractional bits, e.g., iplus[2,3;3.8J::5; if given

a non-numeric argument, they generat~ an error, NON-NUMERIC ARG.

It is important to use the integer arithmetic functions, whenever possible, in

place of the more general arithmetic functions which allow mixed floating point

and integer arithmetic, e.g., iplus vs plus, igreaterp vs greaterp. because the

integer functions compile open, and therefore run faster than the general

~-------------------------------~--Different implementations of .INTERLISP-10 may use different boxing
strategies. Thus, while lots of arithmetic operations may lead to garbage
collections, this is not necessarily always the case.

13.2

arithmetic functions, and because the compiler is "smart" about eliminating

unnecessary boxing and unboxing. Thus, the expression

(IPLUS (IQUOTIENT (ITIMES N 100) H) (ITIMES X Y)) will compile to perform only

one box, the outer one, and the expression

(IGREATERP (IPLUS X Y) (IDIFFERENCE A 8)) will compile to do no boxing at all.

Note that the PDP-10 is a 36 bit machine, so that in INTERLISP-to all integers

are between -2t35 and 2t35-1. 3 Adding two integers which produce a result

outside this range causes overflow, e.g., 2t34 + 2t34.

The procedure on overflow is to return the largest possible integer, i.e. , in

INTERLISP-10 2t35 - 1.4

iminus[x]

idifference[x;y] x - y

addt[x] x + 1

subl[x] x - 1

4 If the overflow occurs by trying to create a negative number of too large a
magnitude, •2t35+1 is used instead of 2t35·1.

13.3

iquotient[x;y]

iremainder[x;y]

igreaterp[x;y)

ilessp[;x;y]

zerop[x]

x/y truncated, e.g., iquotient[3;2}=1,

iquotient[-3,2]=-1

the remainder .when ~ is divided by ~~ e.g.,

iremainder [3;2}=1

T if x > y; NIL otherwise

T is x < y ;. NIL otherwise

defined as eq[x;O].

.vote that zerop should not be u.sed for floating point number.s because it uses
~· Use eqp(x:OJ instead.

minusp[x]

eqp[n;m]

smallp[n]

fixp[xJ

T if. ! is negative; NIL otherwise. Does not

convert ~ to an integer, but simply c:hecks sign

bit.

T if n and m are !_g, or equal numbers, NIL

otherwise. (!,g ,may be used if n and m are known

to be small integers.) ~ does not convert n and

m to integers, e.g., eqp[2000;2000.3]=NIL, but it

can be used to compare an integer and a floating

point number, e.g;, eqp[2000;2000.0J=T. Q.9.£ does

not generate an error if norm are not numbers.

T if n is a small integer, else NIL. smallp does

not generate an error if n is not a number.

· ·~ tf ~ is an integer, else NIL. Does not generate

an error if ! is not a number.

13.4

fix[x]

lsh(n;m]

rsh[n;m]

llsh[n;m]

Converts ~ to an integer by truncating fractional

bits, e.g., fix[2.3] 111 2, fix(-1.7] = -1. If xis

already an integer, fix(x)=x and doesn't use any

storage. 5

lambda no-spread, value is logical and of all its

arguments, as an integer, e.g., logand[7;5;6]=4.

lambda no-spread, value is the logical Q!. of all

its arguments, as an integer, e.g.•

logor[1 ;3 ;9]=11.

lambda no-spread, value is the logical exclusive

or of its arguments, as an integer, e.g.,

logxor[11;5] = 14,

logxor[11;5;9) = logxor(14;9) = 7.

(arithmetic) !eft shift, value is n•Ztm,i.e., n. is

shifted left m plac~s~ n ~an be positive or

negative. If m is neQative, n is shifted right -m
places.

(arithmetic) right shift, value is n111 2t-m, i.e., ~

is shifted right m places. n can be positive or

negative. If fil is negative, ll is Left -m places.

logical !eft !hift. On POP•10, llsh is equivalent

to lsh.

--------------------------------------~------------------·---~-----~-----------6 Since FIX is also a lispx command (Section 22), typing FIX directly to
lispx will not cause the function fix to be called.

13.5

+

+

lrsh[n;m] logical tight !hift.

The difference between a logical and arithmetic right shift lies in the

treatment of the sign bit for negative numbers. For arithmetic right shifting

of negative numbers, the sign bit is propagated, i.e., the value is a negative

number. For logical right shift, zeroes are propagated. Note that shifting

(arithmetic) a negative number 'all the way' to the right yi&lds •1, not o.

gcd[x;y] value is the greatest common divisor of ~ and ~·

e.g. gcd[72;64]=8.

13.2 Floating Point Arithmetic

All of the functions described below work on floating point numbers. Unless

specified otherwise, if given an integer, they first convert the number to a

floating point number, e.g., fplus[1;2.3) • fplus[l.0;2.3) = 3.3: if given a

non-numeric argument, they generate an error, NON-NUMERIC ARG.

The largest floating point number (in INTERLISP-10) is 1.7014118E38, the

smallest positive (non-zero) floating point number is 1.4693679E·39. Tho

procedure on overflow is the same as for integer arithmetic. For underflow,

i.e .. trying to create a number of too small a magnitude, the value will be 0.

fminus[x] • x

fquotient[x;y) x/y

13.6

fremainder[x;y)

minusp[x)

eqp[x;y]

fgtp[x;y)

floatp[x]

the remainder when ! is divided by ~· e.g.,

fremainder[l.0;3.-0)m 3.72529E·9.

T if! is negative; NIL otherwise. Works for both

integers and floating point numbers.

T if ! and z: are ~· or equal numbers.

discussion page 13.4.

T if x > y, NIL otherwise.

See

is ! if

otherwise,

number.

! is a floating point number; NIL

Does not give an error if ! is not a

Note that if numberp[x) ts true. then either ftxp[x) or Jloatp[x) ts true.

float[x]

13.3 Mixed Arithmetic

Converts ! to a floating point number, e.g.,

float[OJ = o.o.

The functions in this section are 'contagious floating point arithmetic'

fun ct ions, i.e., if any of the arguments are floating point numbers, they act

exactly like floating point functions, and float all arguments, and return a

floating point number as their value. Otherwise, they act like the integer

functions. If given a non-numeric argument, they generate an error,

NON-NUMERIC ARG.

13.7

+
+
+

minus(x]

difference(x;y]

quotient[x;y]

remainder[x;y]

greaterp[x;y]

lessp[x;y]

~bs[x]

13.4 Special Functions6

- x

x • y

if ! ancl ~ are both integers, . value is

iquotient[x;yJ, otherwise fquotient[x;yJ.

if ! and ~ are both integers. value. is

iremainder[x;yJ, otherwise fremainder[x;y).

T if x > y, NIL otherwise.

T if x < y, NIL otherwise.

! if x > O, otherwise -x. abs uses greaterp and

!!l!.!!.!!!• (not igreaterp and iminus).

They utilize a power series expansion and their values are (supposed to be) 27

bits accurate, e.g., sin[30J•.5 exactly.

expt[m;n] value is mtn. If !!! is an ~ntegElr and !! is a

positive intege_r, value is an integer, e .g,

---6 In INTERL ISP-10, these functions were implemented by J. W. Goodwin by
"borrowing" the corresponding routines from the FORTRAN library, and hand
coding them in INTERLISP· 10 via ASSEMBLE. . .

13.8

sqrt[n]

log[x)

antilog[x]

sin[x;radiansflg)

cos[x;radiansflg]

tan[x;radiansflg]

arcsin[x;radiansflg]

arccos[x;radiansflg]

expt[3;4]=81, otherwise the value is a floating

point number. If ~ is negative and n fractional,

an error is generated.

value is a square root of n as a floating point

number. n may be fixed or floating point.

Generates an error if n is negative. sqrt[n) is

about twice as fast as expt[n;.5)

value is natural logarithm of ~ as a floating

point number. ~can be integer or floating point.

value is floating point number whose logarithm is

x. ~ can be integer or floating point, e.g.,

antilog[l] = e = 2.71828 ...

~ in degrees unless radiansflg=T. Value is sine of

~as a floating point number.

Similar to sin.

Similar to sin.

~ is a number between ·1 and 1 (or an error is

generated). The value of arcs in is a floating

point number, and is in degrees unless

radiansflg=T. In other ·words, if

arcsin[x;radiansflg]=! then sin[z:radiansflg]=!·

The range of the value of arcsin is -90 to +90 for

degrees, -n/2 to n/2 for radians.

Similar to arcsin. Range is 0 to 180, 0 to n.

13.9

arctan[x;radiansflg]

rand[lower;upper]

randset[x]

Similar to arcsin. Range is O to 180, O to n.

Value is a pseudo-random number between lowor and

~ inclusive, i.e. rand can be used to generate

a sequence of random. numbers. If both limits are
•

integers, the value of rand is an integer,

otherwise it is a floating point number. Tho

algorithm is completely deterministic, i.e. givon

the same initial state, rand produces the same

sequence of values. The internal state of rand is

initialized using the function randset described

below, and is stored on the free variablo

randstate.

Value is inte.rnal state of rand after randset has

finished operating, as a dotted pair of two

integers. lf pNIL, value is current· state.•· If

~=T, .randstate is. initialized using the clocks.

Otherwise, ~ is interpreted as a previous internal

state, i.e. a value. of randset, and is used to

reset randstate. For example,

1. (SETO OLOSTATE (RANOSET))

2. Use rand to generate some random numbers.

3. (RANDSET OLOSTATE)

4. rand will generate same sequence as in 2.

13.5 Reusing Boxed Numbers in INTERLISP·10 • SETN

rplaca and rplacd provide a way of cannibalizing list structure for reuse in

13.10

order to avoid making new structure and causing garbage collections. 7 This

section describes an analogous function in INTERLISP-10 for large integors and

floating point numbers, setn. setn is used like setg, i.e., its first argument

is considered as quoted, its second is evaluated. If the current value of the

variable being set is a large integer or floating point number, the now value

is deposited into that word in number storage, i.e., no new storage is used. 8

If the current value is not a large integer or floating point number, e.g., it

can be NIL, setn operates exactly like setq, i.e., the large integer or

floating point number is boxed, and the variable is set. This . eliminates

initialization of the variable.

setn will work interpretively, i.e., reuse a word in number storage, but will

not yield any savings of storage because the boxing of the second argument will

still take place, when it is evaluated. The elimination of a box is achieved

only when the call to setn is compiled, since ~ compiles open, and does not

perform the box if the old value of the variable can be reused.

Caveats concerning use Of SETN

There are three situations to watch out for when using setn. The first occurs

when the same variable is being used for floating point numbers and largo

integers. If the current value of the variable is a floating point number, and

it is reset to a large integer, via !!.!!l• the large integer is simply deposited

into a word in floating point number storage, and hence will be interpreted as

a floating point number. Thus,

7--This technique is frowned upon except in well•defined, localized situations

8

where efficiency is paramount.

The second argument to ~ must always be a number or a NON-NUMERIC ARG
error is generated~

13 .11

.. (SETO FOO 2.3)
2.3
.. (SETN FOO 10000)
2 .189529E·43

Similarly, if the current value is a large integer, and the new value is a

floating point number, equally strange results occur.

The second situation occurs when a ill!l variable is reset from a large integer

to a small integer. In this case, the small integer is simply deposited into

large integer storage. It will then print correctly, and function

arithmetically correctly, but it is not a small integer, and hence will not be

~ to another integer of the same value, e.g.,

.. (SETQ FOO 10000)
10000
.. (SETN FOO 1)
1
.. (!PLUS FOO 5)
6
.. (EQ FOO 1)
NIL
.. (SMALLP FOO)
NIL

In particular, note that zerop will return NIL even if the variable is equal to

0. Thus a program which begins with FOO set to a large integer and counts it

down by (SETN FOO (SUB1 FOO)) must terminate with (EQP FOO 0), not (ZEROP FOO).

Finally, the third situation to watch out for occurs when you want to save ~he

current value of a ill!l variable for later use. For example, if FOO is being

used by setn, and the user wants to save its current value on FIE,

(SETO FOO FIE) is not sufficent, since the next setn on FOO will also change

FIE, because its changes the word in number storage pointed to by FOO, and

hence pointed to by FIE. The number must be copied, e.g. •

(SETO FIE (IPLUS FOO)), which sets fIE to a new word in number storage.

setn[var;x) n lambda · function like setq. Y!! is quoted, ~ is

13.12

evaluated, and its value must be a number. vnr

will ba set to this number. If the curront valuo

of ~ is a large integer or floating point

number, that word in number storage is

cannibalized. The value ·or setn is the (now)

value of Y!!:·

13.6 Box and Unbox in INTERLISP-10

Some applications may require that a user program explicitly perform the boxing

and unboxing operations that are usually implicit (and invisible) to most

programs. The functions that perform these operations are loc and vnu

respectively. For example, if a user program executes a TENEX JSYS using the

ASSEMBLE directive, the value of the ASSEMBLE expression will have to be boxed

to be used arithmetically, e.gop (lPLUS)((LOC (ASSEMBLE • 0))). It must be

emphasized that

Arbitrary unboxed numbers .should not be passed around as ordinary values
because they can cause trouble for the garbage collector.

For example, suppose the value of! were 150000, and you created (VAG X), and

this just happened to be an address on the free storage list. The next garbage

collection could be disastrous. For this reason, the function vag must be used

with extreme caution when its argument's range is not known.

loc is the inverse of vag. It takes an address, i.e., a 36 bit quantity, and

treats it as a number and boxes it. For example, loc of an atom, e.g.,

(LOC (QUOTE FOO)), treats the atom as a 36 bit quantity, and makes a number out

of it. If the address of the atom FOO were 125000, (LOC (QUOTE FOO)) would be

125000, i.e. the location of FOO. It is for this reason that the box operation

13.13

is called loc, which is short for location. 9

Note that FOO does not print as !11364110 (125000 in octal) because the print

routine recognizes. that it is an atom, and therefore prints it in a special

way, i.e. by printing the individual characters that comprise it. Thus

(VAG 125000) would print as FOO, and would in fact be FOO.

loc(xJ

vag(xJ

The compiler eliminates

Makes a number out of ~· i.ei, returns the

location or ~·

The inverse of !Qs. ~ must be a number; the value

of vag is the unbox of' ~·

extra vag's and for example

(IPLUS X (LOC (ASStHBLE ··))) will not box the value of the ASSEMBLE, and then

unbox it for the addition.

--------------------------------·---------···········-·····-·····--------------9 vag is an abbreviation of ~lue .set.

13 .14

Index for Section 13

ABS[X]••....••...••.••.••••••••••.••
ADDl[X]
ANTILOG[X]•.•..........•.
ARCCOS[X;RADIANSFLG]•..........•..•.•..••
ARCCOS: ARG NOT IN RANGE (error message) ...•..••
ARCSIN[X;RADIANSFLG]•...•..
ARCSIN: ARG NOT IN RANGE (error message)•..
ARCTAN[X;RADIANSFLG]•.•......•..........•...
arithmetic functions•.........•.........•
ASSEMBLE .•.•...••....•...•.•....•••••.••••.•••••
box .. .
boxed numbers•.......•.........••........
boxing
COS[X;RADIANSFLG]•......••..•...•..•....
DIFFERENCE[X; Y)•..•...•..•.•....••......
EQP[x: Y] SUBR •.••.•..•• I ••••••••••••••••••••••••

EQUAL[X; Y] ..•..••...•..••••.•.••••.••••••.••..••
EXPT[M;N]
FGTP[X;Y] SUBR .•.••.••••••.•••..••••••••••••••••••
FIX[X]•......•.............
FIXP[X]•..
FLOAT[X]•...........•••..••••••..••.•.••.•••
floating point arithmetic .•..••...••..•...•...••
floating point numbers ..••.••.••.•...•••••.....•
FLOATP[X] SUBR•••..•....•.•.......•••.••.
FMit~US[X] .••••••••••••••••••••••••••••••••••••••
FPLUS[Xl;X2; ... ;Xn] SUBR* •.......•..•••••.....•.
FQUOTIEIH[X;Y] SUBR ...•.•. ; ...•....••..•...•.•••
FREMAINDER[X;Y] SUBR ..•..•...•.•••••.••...••••..
FTIMES[Xl;X2; ... ;Xn) SUBR• ...••.••..•.••..•••.••
GCD[X;Y]•.•...•..•••••••••••••.••••.••••••••
GC: 16 (typed by system) •.•..••..•.•••••..•••..•
GC: 18 (typed by system) .•.•.••.••.•••.•...•.•••
GREATERP[X;Y] SUBR•.....•••..............
IDIFFERENCE[X;Y] ························~·······
IGREATERP[X;Y) SUBR•...•.•...•...•.•.•....•
ILESSP[X;V]•.•.................••..•••..
ILLEGAL EXPONENTIATION: jerror message)••..•
IMif4US[X]••..••.••••.....••.•••••••
integer arithmetic ...•.•••••.••.••••••.••..•••.•
IPLUS[Xl;X2; ... ;Xn] SUBR• •••••••••••••••••••••••
IQUOTIENT[X;YJ SUBR .•....•..••••••••.•••••••••••
IREMAINDER[X;YJ SUBR .•..••..•••.••••••••..••.•••
ITIMES[Xl;X2; ... ;Xn) SUBR* ..•••••..•......••....
large integers
LESSP[X;Y]•••.•...••.••••.•.••••..••••
LLSH[N;M] SUBR•...••.•...•...•.•...•.•••.•
LOC[X] SUBR•..••..••..••.••.•.•..••
LOG[X]••.•..•....•••••••..••••
LOGAND[Xl;X2; ... ;Xn) SUBR* •....•....•••....••.••
LOGOR[Xl; X2; ... ; Xn) SUBR* ••...•.......••••••••.•
LOG XOR[Xl; X2; .•. ; Xn) SUBR* •.•.•.•••••.••.•.••.••
LRSH[N;M]•.••..•••.••.•••..•.••.•••.••••
LSH[N;M] SUBR ...••.•.•••••.••.•••••.•••.••••••••
Mlt~US[X] SUBR ..•..•.•..•••••..••••••.•••••••••.•.
MINUSP[X] SUBR ••..•••••.•.•••.••..••••.•••..••.•

INDEX .13 .1

Page
Numbers

13.8
13.3
13.9
13.9
13.9
13.9
13.9
13.10
13.2·10
13 .13
13 .13
13.1
13.1,3,10-11,13
13.9
13.8
13.2.4,7
13.2
13.8
13.7
13.5
13.4
13.7
13.6-7
13.1-2.4, 11
13.7
13.6
13.6
13.6
13.7
13.6
13.6
13.2
13.2
13.8
13.3
13.4
13.4
13.9
13.3
13.2•6
13.3
13.4
13.4
13.3
13.1-2,11
13.8
13.5
13.13-14
13.9
13.5
13.5
13.5
13.6
13.5
13.8
13.4,7

mixed arithmetic
NON-NUMERIC ARG (error message)
numbers
overflow
PLUS[X1;X2; .;Xn] SUBR*
OUOTIENT[X;Y] SUBR
RAND[LOWER;UPPER]
random numbers
RANDSET[X)
RANOS TATE
REMAINDER[X;YJ SUBR
RSH[N;M]
SETN[VAR;X] NL
SIN[X;RADIANSFLG]
small integers
SMALLP[NJ
SQRT[NJ

.....
..... .. • ..

SORT OF NEGATIVE VALUE (error message)
SUBl[X]
TAN[X;RADIANSFLG]

......

.

...
TENEX
TIMES[Xl;X2; ... ;Xn] SUBR*
unboxed numbers
unboxing
VAG[X] SUBR
ZEROP[X]

• • • • • '!

JNDEX.13.2

..........

Page
Numbers

13.1·8
13.2,6-7
13.1-14
13.3,6

'13. 7
13.8
13.10
13.10
13.10
13.10
13.8
13.5
13.10-13
13.9
13.1-2
13.2,4
13.9
13.9
13.3
13.9
13 .13
13.8
13 .13
13.1,3,13
13 .13-14
13.4

14. 1 Files

SECTION 14

INPUT/OUTPUT FUNCTIONS

All input/output functions in INTERLISP can specify their source/destination

file with an optional extra argument which is the name or the file. This file

must be opened as specified below. If' the extra argument is not given (has

value NIL). the file specified as "primary• for input (output) is used.

Normally these are both T, for terminal input and output. However, the primary

input/output file may be changed by

input[file J1

output[file J

Sets !.!.!! as the primary input file. lts value is

the name of the old primary input file.

input[] returns current primary input file, which

is not changed.

Same as input except operates .on primary output

file.

Any file wh.tch is made primary must ha11e been previously opened for
input/output. except Jor the Jile T, which ts always open.

i-----------------------------------·--The argument name file is used for tutorial purposes only. Subrs do not •
have argument •name~per se. as described in section 8. •

14 .1

in file[file J Opens f.!!! for input, and sets it as the primary

input file. 2 The value of infile is the previous

primary input file. If f.!!! is already open, same

as input[file]. Generates a FILE WON'T OPEN error

if f.!!! won't open, e.g., file is already open for

output.

outfile[file] Opens file for output. and sets it as the primary

output file, 3 The value of outfile is the previous

primary output file. If !!!! is already open,

same as output[file]. · Generates a FILE WON'T OPEN

·error if f.!!! won't open, e.g., if!!!! iS already

open for input.

In INTERLISP-10, for all input/output functions, file follows the TENEX

conventions for file names, i.e. fi!! can be prefixed by a directory name

enclosed in angle brackets, can contain al t·modes or control· F's. and can

include sUffixes arid/or version riumbers. Consistent with TENEX~ when· a file is

opened for input and no version number is giv~n. the highest version number is

used. Similarly, when a file is opened for output and no version number is

gi~en, a new file is cr~ated with a version number one higher than the highest

one currently in use with that file name.

In Il\fTERLISP-10, regardless of the file name given to the INTERLISP function

j---------~---------------------~------····------------------------------------To open file without changing the primary input file, perform

3

input[infile[file]].

To open file without changing the primary output file, perform
output[outfile[file]].

14.2

that opened the file, INTERLXSP maintains only full TENEX file names4 in its

internal table of open files and any function whose value is a file name always

returns a full file name, e.g. openp[FOO]=F00.;3. Whenever a file argument is

given to an i/o function, INTERLISP first checks to see if the file is in its

internal table. If not, INTERLISP executes the appropriate TENEX JSYS to

"recognize" the file. If TENEX does not successfully recognize the file, a

FILE NOT FOUND error is generated. 5 If TENEX .does recognize the file, it

returns to INTERLISP the full rile name. Then, JNTERLISP can continue with the

indicated operation. If the file is being opened, INTERLISP opens the file and

stores its (full) name in the file table. If it is being closed. or written to

or read .from, INTERLISP checks its interMl table to rraake. sure the file is

open. and then executes the corresponding operation.

Note that each time a full file name is not used. INTERLISP·lO must c•ll TENEX

to recognize the name. Thus if repeated operations are to be performed, it is

considerably more efficient to obtain the full file name once, e.g. via infilep

or outfilep. Also. note that recognition by TENEX is performed on the user's

entire directory. Thus, even if only one file is open, say FOO. :1. F$

(F altmode) will not be recognized if the user's directory also contains the

file FIE.; 1. Similarly. it is possibh for a file name that was previously

recognized to become ambiguous. for example, a program performs infile[FOO],

opening FOO.; 1, and reads S1Bveral e:<;prsssions from FOO. Then the user types

control-C, creates a FOO. ;Z and reenters his program. Now a call to read

giving it FOO as its file argument will generate a FILE NOT OPEN error, because

TENEX will recognize FOO as F00.;2.

5 except for infilep, outfilep and ~· which in this case .return NIL.

14 .3

*

inf ilep[file l Returns full file name of f1!! if !.!.!! is

recognized as specifying the name of a file that

can be opened for input, NIL otherwise. In

INTERL1SP·11), the full file name will contain a

directory field only if the directory differs from

the currently attached directory. Recognition is

in input context, i.e. in INTERLISP-10, if no

version number is given, the highest version

number is returned.

infilep and out!ilep do noi open ang Jiles. or change the primary Jiles1 they
are pure predicates.

outfilep(rue J

closef(file]

closealH]

Similar to infilee, except recognition is in

output context, i.e. in INTERLISP-10, if no

version number is given, a version number one

higher than the highest version number is

returned.

Closo file. Generates an error, FILE NOT OPEN.

if !!!! not open. If !!!! is NIL, it attempts to

close the primary input file. if other than

terminal. Failing that, it attempts to close the

primary output file if other than terminal.

Failing both, it returns NIL. If it closes any

file, 1 t returns the name of that f :.I.le. If it

close~ either of the primary files, it resets that

primary file to terminal.

Closes all open files (except T). Value is a list

of the files closed.

14.4

openp[file; type)

Addressable riles

If ~=NIL. value is file (full name) if ~ is

open either ror reading or for writing. Otherwise

value is Nil.

If ~ is INPUT or OUTPUT. value is file if open

for corresponding type. otherwise NIL. If ~ is

BOTH. value is file if open for b.oth input and

output, (See iofile, page 14.6) otherwise NIL.

Note: the value of ~ h .NXL H file is not

recognized, i.e. ~ does not generate an error.

op0np[J returns a list or ell files open for input

or output, ex~luding T.

For most applications. files are read starting at their beginning and

proceeding sequentially, Le. the next character read h the one immediately

following the last character read. Similarly, files are written sequentially.

A program need not be aware of the fact that there is a file pointer associated

with each file that points to the location where the next character is to be

read from or written to, and that this file pointer is automatically advanced

after each input or output operation. This section describes a function which

can be used to reposttton the file pointer, thereby allowing a piogram to treat

a file as a large block of auxiliary storage which can be access randomly. 6 For

6---------------------•••-•••-••••a••••••••••••••••••••--•••••-••-•••••••••••••

Random access means that any location is as quickly accessible as any
other. For example, an array is randomly accessible, but a list is not,
since in order to get to the nth element you have to sequence through the
first n-1 elements. -

14.5

example, one application might involve writing an expression at the beotnntno

of the file, and then reading an expression from a specified point in its

mtddle. 7

A file used in this fashion is much like an array in that it has a certain

number of addressable locations that characters can be put into or taken from.

However, unlike arrays, files can be enlarged. for example, if the file

pointer is positioned at the end of a file and anything is written, the file

"grows." It is also possible to position the file pointer beyond the end of

file and then to write. 8 ln this case, the file is enlarged, and a "hole" is

created, which can later be written into. Note that this enlargement only

takes place at the end of a file; it is not possible to make more room in the

middle of a file. ln other words, if expression A begins at positon 1000. and

expression B at 1100, and the program attempts to overwrite A with expression

C, which is 200 characters long. part of' B will be clobbered.

iofile[file) Opens file for both input and output. Value is

f.lli. Does not change either primary input or

primary output. If no version number is given,

default is same as for infile, i.e. highest

version number.

7· -- ~~ ~;- -;;;;i-;u·i;;-~~~~~'i~--;;~~;;;;-·th-;-ft i~--b;--o·p·e~·-f~~ --;;;;- -i~~~-t- - ~~d

8

output. This can be achieved via the function iofile described below.
However, random file input or output can be performed on files that have
been opened in the usual way by in file or out file.

If the program attempts to read beyond the end of file, an END OF FILE
error occurs.

14.6

sfptr[file;address) §ets file £Oin!e! for file to address. 9 Value is

old setting. address=·i corresponds to the end of

file . .to

If address=NIL, sfEtr returns the current value or
file pointer without changing it.

filepos[x;file;start;end;skip;tai1J11 Searches file for ~ a la strpos (Section

10). Search begins at start (or if start=NIL,

the current position of file pointer), and goes to

end (or if end=Nil, to the end of file). Value is

address of start of match, or NIL H not found.

skip can be used to specify a character which

matches any character in the file. H tail is T,

end the search is successful, the value is the

address of the first character after the sequence

of characters corresponding to ~· instead of the

stariing address of the sequence. ln either case,

g--=------------•-•••--•-•---••a••••••••-m•••-•~••••~o•G•••--••-••••-•••o-•-••a

The address of a character (byte) is the number of characters (bytes) that
precede it in the file, i.e., 0 is the address of the beginning of the
file. However, the user should be careful about computing the space needed
for an expression, since end-of-line in INTERLISP-10 is represented as two
characters in a file, but nchars only counts it as one.

10

11

Note: in INTERLISP-10, if a file is opened for output only, either by
outfile, or openf[file;100000q] (see page 14.8), TENEX assumes that one
intends to write a new or different file, even if a version number was
specified and the corresponding file already exists. Thus, sfptr[file;-1]
will set the file pointer to O. If a file is opened for both reading and
writing, either by iofile or openf(file;300000q], TENEX assumes that there
might be material on the file that the user intends to read. Thus, the
initial file pointer is the beginning of the file, but sfptr[file;-1) will
set it to the end of the file. Note that one can also open a file for
appending by openf[file;20000qJ. ln this case, the file pointer right
after opening is set to the end of the existing file. Thus, a write will
automatically add material at the end of' the file, and an sfptr is
unnecessary.

filepos was written by J. W. Goodwin.

14.7

Openf

the file is left so that the next i/o operation

begins at the address returned as the value of

filepos.

~ The following function is available in INTERLISP•lO for specialized file

applications:

openf(file ;x) opens file. ~ is a number whose bits specify the

access and mode for file, i.e. ~ corresponds to

the second argument to the TENE'X JS\'S OPENf' (see

JS\'S Manual). Value is full name of file.

openf permits opening a file for read. write, execute, or append, etc. and

allows specification of byte size, i.e. a byte size of 36 enables reading and

writing of full words. openf does not affect the primary input ~r output file

settings, and does not check whether the file is already open • i.e. the same

file can be opened more than once, possibly for different purposes . 12 openp

will work for files opened with openf.

The first argument to openf can also be a number, which is then interpreted as

JFN. This results in a more efficient call to openf, and can be signficant if

the user is making frequent calls to openf, e.g. switching byte sizes.

14.8

1 ':;>
JFN functions in lNTERL!SP·iO-v

JFN stands for job f:!.la n,umber. Xt is an integral part of U10 TENEX file

system and is described in [Muri], and in somewhat more detail in the TENEX

JSYS manual. In INTERLISP·lO, tha following functions &ra available for direct a

manipulation of JFNs:

opnjfn[file] returns the JFN for ~· H file not open,

generates a fllE NOT OPEN error.

Example: to write a byte on a file

[DEFINEQ (BOUT
(LAMBDA (FILE BYTE)
(LOC (ASSEMBLE NIL

(CO (VAG BYTE))
(PUSH NP , 1)
(CQ (VAG (OPNJFN FILE)))
(POP NP , 2)
(JSVS 510)
(MOVE 1 , 2)]

or to read a byte from a file

[DEFINEQ (BIN
(LAMBDA (FILE)

(LOC (ASSEMBLE NIL
(CQ (VAG (OPNJFN FILE)))
(JSYS 5.00)
(MOVE 1 , 2)

Naking BIN and BOUT substitution macros can uve boxing and unboxing in

compiled code.

14.9

gtjfn(file;ext;v;flagsJ

rljfn[jfn]

Jfns(jfn;ac3]

sets up a 'long' call to &TJFN (see JSYS manual).

file is a file name possibly containing controlmF

and/or alt-mode. m is the default extension, ~

the default version (overriden if file specifies

extension/version. e.g. FOO.COM;2). flags is as

described on page 11, section 2 of JS\'S manual.

file and ill may be strings or atoms; y and flags

must be numb-ers. Value is JFN, or NIL on errors.

releases jfn. rljfn[• 1] releases all JFN 1 s which

do not specify open files. Value of rljfn is T.

converts..:!!!! (a small number) to a file name. ac3

is either NIL, meaning format the f':I. le name as

would .Q.E!.!lE. or other INTERLISP-10 file functions,

or else is a number, meaning format according to

JSYS manual. The value of jfns is atomic except

where enough options are specified by ac3 to

exceed atom size (2, 100 characters). In this

case, the value is returned as a string.

14. 10

14.2 Input Functions

Nost of the Ju'nctions described below have an (optional) argument .fJJ.!!.. which
specifies the name of· the Ji le on which the operation is to take place. and an
(optional) argument rdtbl, which specifies the readtable to be used for input.
IJ !JJ..!:. is i\lll, the primary input file will be used. IJ the file argument i.s a
string. input will be taken from that .string (and the string pointer re.set
accordingly>. If rdtbl ts Nil, the primary readtable will be used. readtables
are described on page 14.21.

1Vote: in all liVTERllSF'-10 symbolic Jiles. end•oJ-line is indicated by the
characters carriage-return and line-feed in that order. Accordingly, on input
from Jiles, l1VTERLISP-10 will skip all line-feeds which immediately follow
carriage-returns. On input from terminal. JNTERllSI' will ech'o a line-feed
whenever a carriage-return ts input.

For all input functions except readc and peekc. when reading from the terminal.
control-A erases the la.st character typed in. echoing a \ and the erased
character. Control-A will not backup beyond the last carriage return. Typing
control-Cl causes l1VTERlISP to print #JI! and clear JJe input buffer, i.e. erase
the entire line back to the la.st carriage-return~. When reading from a file.
and an end of file is encountered,· all input junctton.s close the file and
generate an error, END Of Fll£.

read(file;rdtbl:flg] Reads one s-expression from file. Atoms are

delimited by the break and separator characters as

defined in rdtbl. To ioput an atom which contains

a break or separator . ~haracter, precede the

character by the esc~pe charact~r %, e.g. AB%(C,

h the atom AB(C, %% is the atom %, %tA (i.e.

%control-A) is the atom ,A. For input from the +

terminal, an atom containing an interrupt

character can be input by typing instead the +

corresponding alphabetic character preceded by +

control-V, e.g. tVC ror control·C~ +

14---Note that the CHAROELETE and LINE DELETE characters can be .redef illed or +
disabled via setsyntax, see page 14.24. +

14 .11 .

*

Strings are delimited by double quotes. To input

a string containing a double quote or a %, precede

it by %, e.g. •ABX"C" is the string AB"C. Note

that % can always be typed even if next character

is not 'special', e.g. %A"B%C is read as ABC.

If an atom is interpretable as a number, .!:!.!Q will

create a number, e.g. 1E3 reads as a floating

point number, 103 as a literal atom, 1.0 as a

number, 1,0 as a literal atom, etc. Note that an

integer can be inp1,1t in octal by terminating it

with a Q, e.g. 170 and 15 read in as the s.ame

integer. The· setting of radix. page 14. 36,

·determines how integers are printed~ i.e .. with or

without Q's.

'When reading f[l'm the terminaC all input i.s line-buffered to enable the action
of control-Q .. Thu.s no character.s are actually .seen by the pro{jram until a
carriage-return i.s typed. However. Jot reading by!.!!.!!.!!.· when a matching right
parenthe.si.s is encountered. the effect i.s the .same a.s though a carriage return
wete typed; i.e. the characters are transmitted. To indicate thi.s, INTERLISP
al.so print.s a carriage-return Hne-Jeed on the t.erminal.

ratom[file; rdtbl]

!!S=T suppresses the carriage-return normally

typed by read following a matching right

parenthesis. (However, the characters are still

giVen to ,till • i.e. the user does not have to

type the carriage return himself.)

Reads in one atom from file. Separation of atoms

14 .12

rstring[file;rdtblJ

is defined by rdtbl. % is also an escape character

for ratom, and the remarks concerning control-A,

control-Q, control-V, and line-buffering also "'

apply.

lf the characters comprising the atom would

normally be inter~reted as a number by read, that

number is also returned by ~· Note however

that rill!!! takes no special action for 11 whether

or not it is a break character, i.e. !.!!Q!!! never

makes a string.

Reads in one string from file, terminated by next

break or separator character. Control-A, control-

Q, control 0 V, and % have the same effect as with Ill

lli2!!!·

1\lote that the break or separator character that terminates a· cal L to rat.om or
rstrino is not read by that call. but remains tn the buJJer to become the first
character seen by the next reading Junction that is called.

ratoms[a;file;rdtblJ

setsepr[lst:flg;rdtbl]

setbrk[lst;flg;rdtbl]

Calls !:.!!£m repeatedly until the atom ! is read.

Returns a list of ~toms read, not including !·

.§!.!separator characters for rdtbl. Value is NIL.

Set brea~ characters for rdtbl. Value is NIL.

14 .13

:It

:It

For both setsepr and setbrk. ~is a list of character codes. 16 I!.9 determinos

the action of setsepr/setbrk as follows:·

NIL clear out indic•ted readtable and reset break/separator characters to
be those in lst.

O clear out only those characters in !!! · i.e. this provides an
unsetsepr and unsetbrk.

1 add characters in lst.

Characters specified by setbrk wili delimit atoms, and be returned as separate

atoms themselves by ~· Characters specified by setsepr will serve only to

* delimit atoms, and are otherwise ignored. For . example, if $ was a break

character and * a separator character, the input stream ABC*~DEFSGH*SS would be

read by 6 calls to ··.!:.!l2!!! returning respectively ABC, DEF. s. GH,. S, S.

The elements of !il may also be characters, e.g. setbrk[(.•)] has the same

effect in INTERLISP-10 as setbrk[(46 44)), N~t• however that the 'characters'

1,2, •.• ,9 will be interpreted as character codes because they are numbers.

+ Note: L), (.], and " are normally break characters. Le. ·will be returned as·

+ sepal"'ate atoms when read by ratom. If any of these break characters are

+ disabled by an appropriate setbrk (or by making it be a separator character),
. .

+ its special action for read will not be restored by simply making it be a break

+ character again with setbrk. 17 For more details, see discussion in section on

+ readtables, page 14~25-26.

---------------------·----·-··----------------------------------~------·---~---+ 16 If lst=T, the break/separ~tor characters are reset to be.· those in the
+ system's readtable for terminals, regardless of value of flg, i.e.
+ setbrk[TJ is equivalent to setbrk[getbrk[T]]. If rdtbl t.s T, then the
+ characters are reset to those in the original system table.

+
+

17 However, making these characters be break characters when they already are
will have no effect.

14.14

Note that the action of % is not affected by setsepr or setbrk. To defeat the

action of% use escape(], as described below.

getsepr[rdtbl)

getbrk(rdtbl)

escape[flg J

ratest[x)

readc(file)

Value is a list of separator character codes.

Value is a list of break character codes.

If f.!a=NIL, makes % act like every other character

for input. 18 Normal setting is escape(T]. The

value of escape is the previous setting.

If is = T. ratest returns T if a separator was

encountered immediately prior to the last atom

read by !.!12!!!• NIL otherwise.

If ~ = NIL. ratest returns T if last atom read by

!!12fil or ~ was a break character. NIL

ottierwise.

If ~ = 1, ratest returns T if last atom read

(by !.!!S! or .!:!.12!!!) contained a % (as an escape

character, e.g., %(or %A%8%C), NIL otherwise.

Reads the next character, including % , " ' etc.

i.e. is not affected by break, separator, or •

escape character. Value is the character. Action *
of ~ is subject to line-buffering, i.e. readc

--------------------·-----·--·-··--·-----------·--····-·····-·-·····-·-···-----18 escape does not currently take a readtable argument, but will probably do +
so in the near future. +

14 .15

*

*

peekc[file; flg]

lastc[file]

will not return a value until the line has been

terminated even U' a character has been typed.

Thus, control-A, control·Q, and control-V will

have their usual effect. l r control[T] has been

executed (page 14.34), defeating line-buffering,

readc will return a value as soon as a character

is typed. In addition, if control-A, control-Q,

or control•V are typed, !:!!.9,£ will return them as

values.

Value is the next character. but does not actually

read it, i.e. remove it from the buffer. If

f.M!=NIL, peekc is riot subject· to line-buffering.

i.e. it returns a value as soon as a character has

been typed. If f!2=T. ~eekc waits until the line

has been terminated before ·returning its value.

This means that control-A, controlo.Q, and

control·V will be able to perform their usual

editing functions.

Value is lastfharacter read from!..!.!!·

Note: read, ratom, ratoms, peekc. readc all wait for input if there is none.
The only way to test whether or not there i.s input i.s to use readp.

readp[file; flg l Value is T if there is anything in the input

buffer of file, NIL otherwise. 19 Note that because

19----------------------~-----------------·------------------------------------Frequently, the input buffer will contain a single EOL chara.cter left over
from a previdus input. For most applications, this situation wants to be
treated as though the buffer were empty, and so readp returns NIL. However'.
if .fl.a=T, readp will also return T in this case, i.e. will return T if
there is any character in the input buffer.

14 .16

of line~buffering. reade may return T. indicating

there is input in the buffer, but ~ may still

have to wait.

readline[rdtbl)20 reads a line from the terminal, returning it as a

list. If readp[TJ is NIL, readline returns NIL.

Otherwise it reads expressions, using read 21 --·
until it encounters either:

(1) a carriage•return (typed by the user) that is

not preceded by any spaces, e.g.

A B CJ

and readline returns (A B C)22

(2) a list terminating in a •) '. in which case

the list is included in the· value of

readline, e.g. A B (C OJ and readline returns

(AB (CD)).

(3) an unmatched right parentheses or right

square bracket, which 1~ not included in the

value of readline, e.g.

A B CJ

20---~---DD•G~~----------------------
Readline actually has two extra arguments for use by the system, but the

21

22

user should consider it as a function of one argument.

Actually, readline performs (APPLY• LISPXREAOFN T), as described in Section
22. lispxreadfn is initially READ.

Note that carriage-return. Le. the EOL character. can be redefined with
setsyntax, page 14 .24. readline actually checks for the EOL character,
whatever that may be. The same is true for right parenthesis and right
bracket.

14.17

"'
Ill

and readline returns (ABC).

In the case that one or more spaces precede a carriage-return. or a list is

terminated with a ')'. readline will type '

next line, 23 e.g.

' and continue reading on the

A B C J
••• (D-E F)
••• (X Y ZJ

and readline returns (A B C (DE F) (X Y Z)).

skread[file;rereadstringJ24 is a skip ~ function. It moves the file

pointer for file ahead as if one call to read had

been performed, without paying the storage and

compute cost to really read in the structure.

rereadstring .is for the case where the user has

already performed some ~·s and .!:.!lQ.m's before

deciding to skip this expression. In this case,

rereadstring should be the material already read

(as a string), and skread operates as though it

had seen that material first, thus getting its

paren-count, double-quote count, etc. set up

properly.

23---lf the user then types another carriage return, the line will terminate
e.g.

A B C_J ... ,
and readline returns (A B C)

24 skread was written by J. w. Goodwin. lt always uses filerdtbl for 1 ts
readtable.

14 .18

14.3 Output Functions

The value of skread is %) H the first thing

encountered was a closing paren; %] H the read

terminated on an unbalanced %], :!..e. one which

also would have closed Gny extant open left

par~ns; otherwise the value of skread !$ NIL.

No.st of the Junctions described below have an (optional) argument .ti1..!f!. which
specifies the name oj the file on which the operation is to tak.e place. If
~ is A1Il. the primary output file will be u.sed. Some of the functions have ~
an (optional) argument rdtbl. which specifies the readtoble to be used for tt
output. If rdtbl is iiJll-;-Tiii primary readtabl e will be used. i:>

1Vote: in all H'TERllSf'-10 symbolic Jiles. end·oJ-line is indicated by the
characters carriage-return and line-feed in that order. llnles.s otherwise
.stated. carriage-return appearing in the description oJ rm output. Junction
means carriage-return and li.ne-Jeed.

prinl[x;file)

prin2[x;file;rdtbl) prints 15 on file with % 1 s and 111 s inserted where

required for it to read back in properly by read.

using ~·

Both prinl and pr1n2 print lists as well as atoms and strings; print is usually

used only for explicitly printing formatting characters. e.g.

(PRINI (QUOTE%[)) might be used to print a left square bracket (the % would

not be printed by print). prin2 is used for printing S-exprassions which can

then be read back into INTERLISP with read i.e. break and separator

characters in atoms will be preceded by %'s. e.g. the atom 1 () 1 is printed as

%(%) by prin2. If ~=8, prin2 prints a g after integers but print does not

(but both print the integer in octal).

14.19

print[x;file;rdtbl] Prints the S·expression ~using pr1n2; followed by

a carriage-return line-feed. Its value is ~·

For all printing Junctions.. pointer.s other than li.st.s, .string.s, atom.s. or
numbers. ar~ printed a.s #N, where N i.s the octal repre.sentation of the addre.s.s
of the pointer (regardle.s.s of radix). Note that thi.s will not read back. in
correctly, t.e., it will read in a.s the atom 'IN'.

spaces[n;file] Prints rr spaces; its value is NIL.

terpri[file] Prints a carriagemreturn; its value is NIL.

Print level

The print functions print, print, and prin2 are all affected by a level

parameter set by:

printlevel[n] Sets print level to U• value is old setting.

Initial value is 1000. printlevel[J gives current

setting.

The variable n controls the number of unpaired left parentheses.which will be

printed. Below that level, all lists will be printed as&.

Suppose ~ = (A (B C (D (E F) G) H) K). Then if Uc Z, print[x] would print

(A (B C & H) K), and if E ~ 3, (A (B C (0 & G) H) K). and if rr 5 0, just &.

If printlevel is negative, the action is similar except that a carriage·return

is inserted between all occurrences of right parenthesis inunediately followed

by a left parenthesis.

The printlevel setting can be changed dynamically, even while INTERLISP is

14.20

printing, by typing control-? followed by a number, i.e. a string of digits,

followed by a period or exclamation point.26 The printlevel will inunediately be

set to this number .26 If the print routine is currently deeper than the new

level, all unfinished lists above that level will be terminated by "- -) 11 •

Thus, if a circular or long list of atoms, is being printed out, typing

control-PO. will cause the list to be terminated.

If a period is used to terminate the printlevel setting, the printlevel will be

returned to its previous setting aftar this printout. If an exclamation point

is used, the change is permanent and the printlevel is not restored (until it

is changed again).

Note: printleuel only affects terminal output. Output to all other Jiles acts
as though level is infinite.

14.4 Readtables and Terminal Tables27

The INTERLISP input and (to a certain extent) output routines are table driven •

by readtables and terminal tables. A readtable is a datum28 that contains '°'

25---As soon as control-P is typed, INTERLISP clears and saves the input buffer,

26

27

28

clears the output buffer, rings the bell indicating it has seen the
control-P, and then waits for input which is terminated by any non-number.
The input buffer is then restored and the program continues. If the input
was terminated by other than a period or an exclamation point, it is
ignored and printing will continue, except that characters cleared from the
output buffer will have been lost.

Another way of "turning off 11 output is to type control-0, which simply
clears the output buffer, thereby effectively skipping the next (up to) 64
characters.

Readtables and terminal tables were designed and implemented by D. C.
Lewis.

In INTERLISP-10, readtables are represented (currently) by 128 word arrays.

14.21

+ information about the syntax class of each character, e.g. break character.

+ separator character, escape character. list or string delimiter, ·etc. The

+ system packages use three readtables: T for input/output from terminals, (tho

+ value of) filerdtbl for input/output from files, and (the value of) editrdtbl,

+ for input from terminals while in the editor. These three tables ~re

+ initially equal but not !_g. Using the functlons described below, the user may

+ change, reset~ or copy these tables. He can also create his own readtables,

+ and either explicitly pass them to input/output functions as arguments, or

+ install them as the primary readtable, via setreadtable, and then not specify a

+ rdtbl argument, i.e. use NIL.

+ In the discussion below, most functions that accept readtable arguments will

+ also accept NIL as indicating the primary readtable, or T as indicating the

+ system 1 s read table for terminals. \./here indicated, some will also accept ORIG

+ (not the value of ORIG) as indicating the original system readtab)e.

+ Readtable Functions

+ readtablep[rdtbl)

+

+ getreadtable[rdtbl)

+

+

+

Value is ~. if rdtbl is a real read table,

otherwise NIL.

If rdtbl•NIL, value is primary read table. If

.r,&lli•T, value is system's readtable for

terminals. If rdtbl is a real readtable. value is

~· Otherwise. generates an ILLEGAL READTABLE

error.

14.22

setreadtable[rdtbl;flg) resets primary readtable to be ~.29 Generates +

ILLEGAL READTABLE error if rdtbl is not NIL, T, ·or +

a real readtable. Value is previous setting of +

primary readtable, i.e. setreadtable is suitable +

for use with reset form (section 5). +

copyreadtable[rdtblJ value is a copy of !!!fil. rdtbl can be a real +

readtable. NIL, l, or ORIG, in which case value is +

a copy of original system readtable. otherwise +

generates an ILLEGAL READTABLE error. Note that +

copyreadtable is the only function that create.s a +

readtable. +

resetreadtable[rdtbl; from] copies (smashes) f!.Q!!! into rdtbl.. fr.2!)! and rdtb 1 +

can be NIL, l, or a real readtable. In addition, +

fr.2!!! can be ORIG, meaning use system's original +

readtable. +

Syntax Classes

A syntax class is a group of characters which behave the same with respect to a +

particular input/output operation. For example, break characters belong to tho +

syntax class BREAK, separators belong to the class SEPR. [belongs to the class +

LEFTBRACKET. " to STRINGDELIH, etc. Characters that are not otherwise special +

belong to the class OTHER.$O +

i~---1 f fl.Jl=T. setreadtable resets the system readtable for terminals. Note +

30

that the user can reset the other system readtables with setg. e.g. +
(SETQ FILEROTBL (GETREAOTABLE)). +

There are currently 11 syntax classes f'or read tables: LEFTBRACKE T.
RIGHTBRACKET, LEFTPAREN, RIGHTPAREN, STRINGDELIH, ESCAPE, BREAK, SEPR 0

BREAKCHAR, SEPRCHAR, and OTHER. .Syntax classes for term1n·a1 tables are
discussed on page 14.29.

14.23

+
+
+
+

+ The functions below are used to obtain and (re)set the syntax class of a

+ character. ch can either be a character code, or a character, i.e. if £!! is a

+ number, it is interpreted as a character code. For example, in INTERLISP•10, 1

+ indicates control-A, and 49 indicates the character 1.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

getsyntax[ch;table]

setsyntax[ch;class;table]

Value is syntax class of £h with respect to table.

table can be NIL, T, ORIG, or a real readtable or

terminal table. ch is either a character code, a

character, or a syntax class. In the last case,

the value of getsyntax is a list of the character

codes in that class, e.g.

getsyntax[BREAK]•getbrk[].

sets syntax class of' £.h, a character code, or a

character. table can be either NIL, T, or a real

readtable or terminal table. class is a syntax

class, or in the case of read-macro characters

(page 14.26), an expression or the form

(type fn). The value of setsyntax is the previous

class of ch.

setsyntax will also accept class=NIL, T, ORIG, or

a real readtable or terminal table, as being

equivalent to getsyntax[ch ;class J, i.e. means give

ch the syntax class it has in the table indicated

by class, e.g. setsyntax[%(;0RIGJ. class can also

be a character code or character. which is

equivalent to getsyntax[class:table'), i.e. means

give ch the syntax class of" the character

indicated by £!.ill, e.g. setsyntax[{ ;%[].

14.24

syntaxp[code;class;tableJ table is NIL, T, or a real readtable or terminal ~

table. Value is T U' coda is a member or syntax. .¢.

class class, e.g. syntaxp(41;LEFTPAREN]=T. •}

s;yntaxp compiles open. Note that syntaxp will not {-

accept a character as an argument. -e-

Format Characters ~

A format character is a character which is recognized as special by road. •

There are six format characters in INTERLISP namely[,],(,), 11 , and%. The +

six corresponding syntax classes are: lHTBRACKET, RXGHTBRACKEl, lEFTPAREN, -'>

R!GHTPAREN, STRINGDELIH, and ESCAPE. (Note that the class ESCAPE refers to the +

input escape character.) Making a character be a format character does not .¢.

disable the character currently filling that f1.rncUon, i.e. it is perfectly ..;.

acceptable to have both { and [function as left brackets. To disable a format ->

character, assign it syntax class 01'1-IER, e.g. setsyntax[%u ;OTHER). .:-

Breaks, Separators, and Readtables

The syntax class BREAK (or SEPR) corresponds to those characters treated as +

break (or separator) charactei'"s by ~· Thus. getsyntax[BREAK ;rdtbl) is +

equivalent to getbrk[rdtbl), and setsyntax[ch;BREAK;rdtblJ is equivalent to +

setbrk[list[ch];l;rdtbl). Note that the characters corresponding to the syntax +

classes LEFTBRACKET, RIGHTBRACKET, LEFTPAREN, RIGHTPAREN,. STRINGOELIM, and +

ESCAPE are all break characters, and therefore members of the class BREAK. +

However, getsyntax applied to these characters will return the syntax class +

corresponding to their format character function, not BREAK. +

In fact, getsyntax will never return BREAK or SEPR as a value. Instead, +

characters which are break or separator characters but have no other special +

Junction belong to the syntax class BREAKCHAR or SEPRCHAR (as well as being +

14.25

+ members of the class BREAK or SEPR). In most cases. BREAK can be used

+ interchangeably with BREAKCHAR. However, note that setsyntax["(:BREAK] is a

+ nop (since%(is already a break character), but that setsyntax[X(;BREAKCHA~)

+ means make %(b& Ju&t a break character, and therefore disables the LEFTPAREN

+ function of %(. It is equivalent to setsyntax["(;OTHER]· followed by

+ setsyntax[%(;BREAK}. If the user does disable one of the fo·rmat characters,

+ e.g. by performing setsyntax[%(;0THERJ. it is not sufficient for restorinp the·

+ formatting function simply to make the character again into a break character,

+ 1. e. setsyntax[%(:BREAK J would not restore "(as LEFTPAREN.

+ Read Macro Characters

+ The user can define various characters as read macro characters by specifying

+ as a class an .expression of the form (type fn). where lle! ~s MACRO. SPLICE, or

+ INFIX, and fn is the name of a function. or a lambda expression. Whenever llfil!

+ encounters a read-macro character,· it calls the usociated function, gi.ving it

+ as arguments the input file and readtable. being used for that call to ~· The

+ interpretation of the value 'returned depends on the type of read•macro:

+ (1) MACRO

+

+

+

+

+ (2) SPLICE

+

+

+

+

The result is inserted into the input as if that

expression had been read,· instead of the

read-macro character. For exa~ple.

defined by:

could be

[HACRO(LAHBDA(FL ROTBL)(KWOTE(REAO FL RDTBLJ.

The result (which should be a list or NIL) is

!15.2D£.'ed into the inpu.t list, e.g. if I is defined

by (SPLICE (LAMBDA NIL (APP~NO FOO))), and the

value of foo is (A B C). when the user inputs

(X I V). the result Will be (X AB c V).

14.26

(3) INFIX The associated function is called with the list of

what has been read (current level list only), in +

lli.!1£ format, as its third argument. The

function 1 s value is taken as a new tconc 1 is t ->

which replaces the old one. For example, + could +

be defined by: ~

(INFIX (LAMBDA (Fl RDTBL Z) +
(RPLACA (CDR Z) +

(LIST (QUOTE !PLUS) ~
(CADR Z) v
(READ FL ROTBL))) +

Z)) +

Note that read-macro characters can be 1 nested. 1 for example, if ~ is defined +

by (MACRO (LAMBDA (FL RDTBl) (EVAl (READ Fl RDTBl)))) and by

(SPLICE (LAMBDA (Fl RDTBl) (READ f'l RDTBL))), then if the value of foo is +

(AB C). and (X ,,,fOO V) is input, (X (ABC) V) will be returnad. If +

(X !=FOO Y) is input, (X ABC Y) will be returned. +

Note that if a read-macro 1 s function calls read, and the read returns NIL. the y

function cannot distinguish the case where a RIGHTPAREN or RIGHTBRACKET y

followed the read-macro character, e.g. (A B ') , from the case where the a tom .:-

NIL (or 1 () 1) actually appeared. Thus the first case is disallowed, i.e. -o-

reading a single RIGHTPAREN or RIGHTBRACKET via a read inside of a read-macro y

function. If this occurs, the pa.nm/bracket will be put back into the input +

buffer, and a READ-MACRO CONTEXT ERROR will be generated. 31 ~

readmacros[flg;rdtbl] If f.!!I=Nil, turns off action of readmacros in

rdtbl. If flg=T, turns them on. Value is

previous setting. +

ai·------------------------------D·---~-------------D·-------------------------
If a call to read from within a readmacro encounters an unmatched +
RIGHTBRACKET within a list, the bracket is also put back into the buffer to +
be read (again) at the higher level. Thus. inputting an expression such as +
(AB 1 (C DJ will work correctly. +

14.21

+ Terminal Tables

+ A readtable contains input/output information that is media-independent. For

+ example, the action of parentheses is the same regardless of the device from

+ which the input is being performed. A terminal table is a datum32 that

+ contains those syntax classes of characters that pertain to termtnal

+ input/output operations only, e.g. DELETECHAR (control-A). DELETELINE

+ (control-Q), etc. In addition, terminal tables contain such information as how

+ line-buffering is to be performed, how control characters are to be

+ echoed/printed, whether lower case input is to be converted to upper case, etc.

+ Using the functions below, the user may change, reset, or copy terminal tables.

+ He can also create his own terminal tables and install them as the primary

+ terminal table via settermtable. However, unlike readtables. terminal tables

+ cannot be passed as arguments to input/output functions.

+ Terminal Table Functions

+

+

+

+

+

+

+

+
+

termtablep[ttbl)

gettermtable[ttbl)

settermtable[ttbl)

value is ll.!tl• U' !ill is a real terminal table,

NIL otherwise.

If ttbl=NIL, value is primary (i.e. current)

terminal table. If~ is a real terminal table,

value ll1tl· Otherwise, generates an

ILLEGAL TERMINAL TABLE error.

resets primary terminal table to be ll!ll· Value

ij·-------------------------------·--·-··---·--···-·····-··-···-·····~---·-···· In INTERLISP-10, terminal tables are represented (currently) by 16 word
arrays.

14.28

copytermtable[ttblJ

resettermtable[ttbl;from)

is previous ttbl. Generates an '°'

ILLEGAL TERMINAL TABLE error if ttbl is not a real +

terminal tabla. y

value :l.s a copy of ll!ll· ttbl can be a real

terminal table, NIL, or ORIG, in which case value ~

is a copy of the original system terminal tabla. ~

Note that copytarmtable is the only function that +

creates a terminal table. +

smashes from into ttbl. from and ttbl can be NXL

or a real terminal table. In addition, from can +

bs ORIG, meaning use system's original terminal +

table. ~

getsyntax, setsyntax, and syntaxp all work on terminal tables as well as --0-

readtables. When given NIL as a table argument, getsyntax and syntaxp use the. ~

primary readtable or primary terminal table depending on which table contains ~

the indicated class argument, e.g. setsyntax[ch;BREAKJ will refer to the 4

primary readtable, setsyntax[ch ;CHARDELHE] will refer to the primary terminal +

table. In the absence of such information, all three functions default to the +

primary readtable, e.g. setsyntax[chi ;ch2 J re hrs to the primary read table. +

If given incompatible class and table arguments, all three functions generate .!).

errors, e.g. setsyntax[ch;BREAK;ttbll. where ttbl is a terminal table, -e-.

generates an ILLEGAL READTABLE error, getsyntax[CHARDELETE; rdtbl] an ILLEGAL +

TERMINAL TABLE error. +

Terminal Syntax classes

There are currently six terminal syntax classes: CHARDELETE (or DELETECHAR). +

LINEOELETE (or DELETELINE), RETYPE, CTRLV (or CNTRLV). and EOL These classes +

!4.29

+ correspond (initially) to the characters control-A, control·Q, control·R,

+ control-V, and carriagereturn/linefeed.33 All other characters belong to

+ terminal syntax class NONE. The classes CHARDELETE, LINEDELETE, RETYPE, CTRLV,

+ and EOL can contain at most one character. When a new character is assigned

+ one of these syntax classes by setsyntax, the previous character is disabled,

+ i.e. reassigned the syntax class NONE, and the value of setsyntax will be the

+ code for the previous character of that class, if any, otherwise NIL.

+ Terminal Control Functions

+ echocontrol[char;mode:ttblJ Used to indicate how control characters are to be

+

+

+

+

+

+

+

+

+

+

echoed or printed, char is a ·Character or

character code. If mode= IGNORE, char is never

printed.

printed.

If mode=REAL, char itself will be

If mode=SIMULATE, output will be

simulated. If mode=UPARROW, char will be printed

as t followed by the corresponding alphabetic

c;:haracter. The value of echocontrol is the

previous output mode for char. If mode=NIL, the

value is the current output mode without changing

it.

+ Note that echoing information can be independently specified for control

+ characters only. (However, the function echomode described below can be used

+ to disable all echoing.) Therefore, if char. is an alphabetic character (or

+

+

+

+
+
+

code). it refers to the corresponding control character, e.g.

charcontrol[A;UPARROW) makes control-A echo as tA. All other values of char

generate ILLEGAL ARG errors.

---------------------·-----------------------~---------------------------------33 On input from a terminal, the EOL character signals to the line buffering
routine to pass the input back to the calling function. It also is used to
terminate inputs to readline, page 14.17.

14.30

echomode[flg;ttblJ If flg=T, turns echoing for terminal table ttbl

on. If f.!.g=NIL, turns echoing off. Value :l.s •

previous setting. +

deletecontrol[type;message;ttbl) used for specifying the output protocol +

when a CHARDELETE or LINEDELETE is typed according +

to the following interpretations of ~: +

LINEDELETE

1STCHDEL

NTHCHDEL

POSTCHDEL

EHPTYCHDEl

ECHO

NOE CHO

message is the message printed
when LINEDELETE character is
typed. Initially "ll<cr>".

message is the message printed
the first time CHARDELETE is
typed. Xnitially "\".

message is the message printed
on subsequent CHARDELETE's
(without intervening
characters). Initially""·

message is the message printed
when input is resumed following
a sequence of one or ~~re
CHARDELETE 's. Initially "\". '

message is the message printed
when a CHARDELETE is typed and
there are no characters in the
buffer. Initially "f-<cr>".

the characters deleted by
CHARDELETE are. echoed.

the characters deleted by
CHARDELETE are not echoed.

for LINEDELETE, 1STCHDEL, NTHCHDEL, POSTCHDEL, and +

EMPTYCHDEL, the message to be printed must be less +

than 5 characters. The value of deletecontrol will +

be the previous message as a string. If

i~---~-----------------This setting of lSTCHDEL, NTHCHDEL, and POSTCHDEL makes it easy to +
determine exactly what has been deleted, namely all of the characters •
between the \'s. +

14.31

+

+

+

+

+ Note:

message=NIL, the value will be the previous

message without changing it. For ECHO and NOECHO.

the vc\lUe of deletecontrol is the previous echo

mode. i.e. ECHO or NOECHO. message is ignored.

If the user's terminal is a scope terminal. deletecontrol and

+ echocontrol can be used to make it really delete the last character by

+ performing the following1 echocontrol[8;REAL], ~8 is code for control·H, which

+ is backspace) deletecontrol[NOECHO], (eliminates echoing of del•ted ~haracters)

+ deletecontrol[1STCHOELi"tH tH"), and deletecontrol(NTHCHDEL;"tH TH"].

+

+

+

+

+
+
+
+
+
+
+
+
+

raise[flg; ttbl J If f.!fl=T, input is echoed as typed, but lowercase

letters are converted to upper case. If fl~p=NIL,

all characters are passed as typed. Value is

previous setting. 36

Line-buffering and CONTROL

In INTERLISP's normal state. characters typed on the terminal (this section

does not apply in any way to input from a file) are transferred to a line

buffer. Characters are transmitted from the line buffer to whatever input

function initiated the request (i.e., read, .!:!12!!!• rstring, or ~)36 only

ia---------------------------~---In INTERLISP-10,. both raise[] and raise[T] execute TENEX JSVS calls

36

corresponding to the TENEX command NORAISE. Conversion of lowercase
characters to uppercase before . echoing is also available via raise[O],
which executes the JSYS calls corresponding to the TENEX command RAISE.
The conversion is then performed at the TENEX level, i.e. before
INTERLISP-10 even sees the characters. The initial setting or raise in
INTERLISP-10 is det'ermined by the terminal mode at the time the user first
starts up the system. Following a sysin, the raise mode is restored to
whatever it was prior to the corresponding sysctut.

peekc is an exception; it returns the character invnediateiy.

14.32

when a carriage-return is typed. 37 Until thls time, the user can delete

characters on•~ at a time from the input buffer by typing control-A. The

characters are echoed preceded by a \. Or, the user can delete the entire line

buffer back to the last carriage-return by typing control·Q, .:l.11 which case

INTERLISP echoes ##. 38 (If no characters are in the buffer and either control-A

or control-Q is typed, INTERLISP ochoes ##,)39

Note that this line radH:l.ng is not performed by read or ratom, but by

INTERLISP, i.e. it does not matter (nor is it necessarily known) which function

will ultimately proc0ss the characters, only that they sire siiU in tho

INTERLISP input buffer. Note also that it is .the function that is currently

requesting input that determines whether parentheses counting is observed, e.g.
'

if the user executes (PROGN (RATOM) (READ)) and types in A (B C D) he will have

to type in the carriage-return following the right parenthesis before any

action is tal~en. whereas if he types (PROGN (READ) (READ)) ha would not.

However, once a carriage 0 return has been typed, the entire line is 'available'

even if not all of it is processed by the function initiating the request for

input, i.e. if any characters are 'left over', they w:l.11 be returned

immediately on the next request for input. 'for example,

(PROGN (RATOM) (READC)) followed by AB carriage•return will perform both

operations.

37--------------------G----Q 0 --------Q·------~QOD•~·o·---~--~-m-•-UGO~--~Gm•g-~

As mentioned earlier. for calls from read, the characters are also
transmitted whenever the parentheses count reaches 0. In this case, if tho
third argument to read is NXl, INTERLISP also outputs a carriage-return
line-feed.

38

39

Typing rubout clears the entire input buffer at the time it is t11ped,
whereas the action of control-A and control-Q occurs at the time they are
read. Rubout can thus be used to clear type-ahead.

As described earlier, the CHARDELETE, U:NEOELETE, and EOL characters can
all be redefined. Therefore, references to control-A, control-Q, or
carriage return in the discussion actually refer to the current CHARDELETE,
LINEDELETE, or EOl characters. whatever they may be.

14.33

Turning-off Line-buffering

The function control is available to defeat this line-buffering. After

control[T J, characters are returned to the calling function without line·

buffering as described below. The function that initiates the request for.

input determines how the line is treated:

1. read

if the expression being typed is a list. the effect is the same as though

control were NIL, i.e. line-buffering until carriage-return or matching

parentheses. If the expression being typed is not a list, it is returned as

soon as a break or separator character is encount~red,40 e.g. (READ) followed

by ABC space will immediately return ABC. Control-A and control·Q editing are

available on those characters still in the buffer. Thus, if a program is

performing several reads under control[TJ, and the user types NOW IS THE TIME

followed by control·Q, he will delete only TIME since the rest of the line has

already been transmitted to !:.!!!! and processed.

2. ratom

characters are returned as soon as a break or separator character is

encountered. Before then. control-A and control•Q may be used as with read,

e.g. (RATOM) followed by ABCcontrol•Aspace will return AB. (RATOH) followed by

(control-A will return (and type II indicating that control-A was attempted

with nothing in the buffer, since the (is a break character and would

therefore already have been read.

--------~--------------------·------~-----------------------~------------------40 An exception to the above occurs when the break or separator character is a
(, "• or[, since returning at this point would leave the line buffer in a
"funny" state. Thus if control is T and (READ) is followed by 'ABC('• the
ABC will not be read until a carriage-return or matching parentheses is
encountered. In this case the user could control·Q the entire litie, since
all of the characters are still in the buffer.

14.34

3. readc/peekc

the character is returned immediately; no line editing :l.s possible. !n

particular, (REAOC) followed by controluA w:l. ll read the control-A, (RE ADC)

followed by % will read the %.

control[u;ttbl)

y_=Nll

eliminates XNTERLlSP's normal
line 0 buffer:l.ng for the terminal table
ttbl.

restores line-buffering (normal).

The value of con~rol ls its previous setting.

14.5 Miscellaneous Input/Output Control Functions

clearbuf[file;flg)

linbuf[flg)

sysbuf[flg]

Clears the input buffer for file. If file is T

and f.!.g is T, contents of INTERLISP's line buffer

and the system buffer are saved (and can be

obtained via linbuf and sysbuf described below).

When either control·D, control·E, control 0 H,

control 0 i', or control·S is typed, INTERLISP

automatically does a clearbuf[T:T). (for control-P

and control·S, INTERLISP restores the buffer after

the interaction. Sae Appendix 3 ..)

if !ll:l=T. value is INTERLISP'S line buffer (as a

string) that \'.JCIS saved at last clearbuf[T: T]. If

!Jjz=NlL, clears this internal buffer.

same as linbuf for system buffer.

If both the system buffer and lNTERLISP's line buffer are empty, the internal

buffers associated with linbuf and sysbuf are not changed by a clearbuf[T;T).

14.35

bklinbuf[x]

bk$ysbuf[x]

!$ is a string. bk.linbuf sets INTERLISP' s lino

buffer to ::S· Ir greater than 160 characters,

first 160 taken.

~ is a string. bksysbuf sets system buffer to ~·

The effect is the same as though the user typed ~·

bklinbuf, bksysbuf, linbuf, and sysbuf prpvide a way of 'undoing' a clearbuf.

Thus if the user wants to "peek" at various charactars in the buffer, he could

perform clearbuf[T;T), examine the buffers via linbuf and sysbuf, and then put

them back.

radix[n J

fl tfmt[n]

Resets output radix41 to In I with sign indicator

the sign of n. For example, in INTERLISP-to. -9

will print as shown with the following radices:

radix printing

10 -9

·10 68719476727

i.e. (2t36-9)

8 •11Q

-8 777777777767Q

Value of radix is its last setting. radix[] gives

current setting without changing it.

setting is 10.

Initial

In JNTERLISP-10, sets floating format control to n

---------•-••~e-o~oeoa•••••••••-••••-••••~••••••••••·~~-·-•••••••••••••••••••••

41 Currently, there is no input radix.

14.36

linelength[n]

position[file ;n J

(See TENEX JSYS manual for interpretation of 'n).
fltfmt[TJ speciiiias free format (see Section 3).

Value of fltfmt is last setting. fltfmt[J returns

current setting without changing it.

set ting is T.

Initial

Sets the length of the print line for all files.

Value is the former setting of the line length.

Whenever printing an atom would go beyond the

length of the line, a carriageQreturn is

automatically inserted first. linelength[]

returns current setting. Initial setting is 72.

Gives the column number the next character will be

read from or printed to,

carriage 0 return, position=O.

resets position to Il·

e.g. 1after

Note that position[fUe) is not the same as sfptr[f:l.h) which gives the

position in the file. not on the !tne.

14.6 Sysin and Sysout

sysout[file) Saves the user's private memory on file. Also

saves the stacks, so that if a program performs a

sysout, the subsequent sysin will continue from

that point, e.g.

(PROGN (SYSOUT (QUOTE FOO)) (PRINT (QUOTE HELLO)))

will cause HELLO will be printed after

(SYSIN (QUOTE FOO)) The value of . sysout is file

14.37

+

+
+
+
+

+
+
+
+
+

(full name). 42 A value of NIL indicates the sysout

was unsuccessful, i.e., either disk or computer

error, or user's direptory was full.

Sy.sout doe.s !!.2.! .saue the .state of an11 open Jile.s.

Whenever the INTERLISP .s11.stem i.s rea.s.sembled and/or reloaded, old .sv.sout Jiles
are ~ compatible with the new .s11.stem.

sysin[fileJ restores the state ot INTERLISP from a sy•out

f:Ue. 43 Value is Ust[fileJ. If sysin returns

NIL, there was a problem in reading the file. If

f.!!! is not found, generates a FILE NOT FOUND

error.

Since .sy.sin continues immediately where .sv.sout left oJJ, the only way Jor a
program to determine whether it i.s Ju.st coming ba.cll. from a .su.sin or from a
.sv.sout i.s to te.st the value oJ .sv.sout.

For example, (COND ((LISTP (SYSOUT (QUOTE FOO))) (PRINT (QUOTE HELLO)))) will

cause HELLO to be printed following the sysin, but not when the sysout was

performed.

~i---sysout is advised t6 set the variable sysoutdate to (DATE), ~.e. the time

43

and date that the sysout was performed. sysout is also . advised to
evaluate the expressions on aftersysoutforms when coming back from a sysin,
i.e. when the value being returned by sysout is a list.

In INTERLISP-10, file is a runnable file, i.e. it is not necessary to start
up an INTERLISP aiidCaU sysin in order to restore the state of the user's
program. Instead, the user can treat the sysout file the same as a SAV
file, i.e. use the TENEX RUN conunand, or simply type the file name to
TENEX, and the effect will be exactly the sa~e ~shaving perform~d a sysin.

14 .38.

14.7 Symbolic File Input

readfile[file] Reads successive S-expressions from file using

read (with filerdtbl as readtable) until tho

single atom STOP is read, or an end of file

encountered. Value a list of these

IS-expressions.

load[file;ldflg;printflg] Reads successive S-expressions from file (with

filerdtbl as readtable) and evaluates each as 1 t ~

is read, until it reads either NIL, or the single

atom STOP. Value is file (full name).

If printflg=T, load prints the value of each S·

expression; otherwise it does not. ldflg affects

the operation of define, defineg, .!:..ill• and ~·

\./hile load is operating, dfnflg (Section 8) is

reset to ldflg.44 Thus, H ldflg:::NIL, and a

function is redefined, a message is printed and

the old definition saved.

definition is simply overwritten. If ldflg::PROP,

the function definitions are stored on the

property lists under the property EXPR. If

ldflg=ALLPROP, not only function definitions but

also variables set by ~ and !:2!.9. are stored on

property l:l.sts. 45

44----------•••-••a•••••-••••••••••••••••••••••••••••••••G•••••••••••••••o-••••

Using resetvar (Section 5). dfnflg cannot simply be rebound because it is
a global variable. See section is.

45 except when the variable has value NOBINO, in which case it is set to the
indicated value regardless of dfnflg.

14.39

*

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

ioadfns(fns;f1le;ldflg;varsJ46 permits selective loading of function

d_efinitions. !!!.! is a list of function names. a

single function name, or T, meaning all

functions. 47 file can be either a compiled or --.-

symbolic file, i.e., any file that can be loadod

by load. The interpretation of ldflg is the samo

as for load. -
!!!!::! specifies which non-DEFINEQ expreuion are to

be loaded: (i.e. evaluated): T means all, NIL

··means none, VARS is same as (RPAQQ RPAQ). FNS/VARS

is same as (fi1eCOMS file BLOCKS), and any other

atom is the same as list[atom].

When Y.illis a list, each atom on Y.ill is compared

with .both ill and ~ of non-DEFINEQ expressions,

eig. either RPAQQ or FOOCOMS can be used to

1ndicate (RPAQQ FOOCOHS ··) should be loaded. For·

more complicated specification, each list on vars

is ~reated as an edit pattern and matched with the

entire non•DEFINEQ expression~ In 9ther words, a

non•DEFINEQ expression will be loaded if either

its ill or cadr is !9. to some member of ~· or

it matches (using edit4e) some list on Y!.!:.!• e.g.

(FOOCOMS DECLARE: (OEFLIST & (QUOTE MACRO))) would

---46 loadfns was originally written by J. w. Goodwin, and subsequently modified

47

by w. Teitelman~ · ·

If a compiled definition
subfunctions.

is loaded,

14.40

so ~re all compiler generated

loadvars[vars;file;ldflg]

loadfrom[file;fns;ldflg]

cause (RPAOQ FOOCOMS 0 m), all DECLARE:'s, and all .o-

DEFUST 1 s which set up MACRO 1 s to be read and 4'

evaluated. ~

The value of loadfns is a list of (the names of) .o-

the functions that were found, plus a list of -i-

those functions not found (H any) headed by the ->

atom NOT-FOUND: e.g. (FOO FIE (NOT-FOUND: FUM)). -¢-

If ~ is non-NIL, the value will also include ->

those expressions that were loaded, plus a list of .;.

those members of Y!ll for which no corresponding ->

expressions were found (if any), again headed by ->

the atom NOT-FOUND:. .;.

!f file=Nll, loadfns will use whereis (page .:-

14.73) to determine where the first function in +

fns resides, and load from that file. Note that .;.

the file must previously have been 'noticed'. +

(For more discussion, see page 14.6(). +

same as loadfns[NIL.file;ldflg;varsJ

same as loadfns[fns;file;ldflg;T]

As mentioned in section 9, once the file package knows about the contents of a +

file, the user can edit functions contained in the file without explicitly +

loading them. Similarly, those functions which have not been modified do not +

have to be loaded in order to write out an updated version of the file. Files +

are normally noticed, Le. their contents become known to the f'i le package +

(page 14.63), when either the symbolic or compiled versions of the file are +

loaded. If the file is not going to be loaded, the preferred way to notice it +

14.41

+ is with loadfrom. For example, if the user wants to update the file FOO by

+ editing the function F001 contained in it, he need ·only perform loadfrom[FOOJ,

+ edit[F001J. and makefile(FOO]. Note that the user can also load some functions

+ at the same time by giving loadfrom a second argument, e.g. loadfrom[FOO;F001J,

+ but its raison d'etre is to inform the file package about the existence and

+ contents of a particular.file.

+ lbadblock[fn;file;ldflgJ

+

calls loadfns on those functions contained in the

block declaration ~ontaining fn. 48
. .. -

+ File Maps

+ A file map is a data structure which contains a symbolic 'map' of the contents

+ of a file. Currently, this consists of the begin and end address49 for each

+. defineg expression in the file, the begin and end address for each function

+ definition within the defineq. and ·the begin and end address for each compiled

+ function. 50

+ makefile, prettydef, loadfns, recompile, and numerous other system functions

+ depend heavily on the file map for efficient operation. For example, the file

+

+

+
+
+
+

+

+
+
+

map enables loadfns to load selected function definitions simply by setting the

f:i le pointer to the corresponding address using sfptr, and then performing a

48- -i~~~~i~~~ -~~-d~-s-i0g~~d-·;;;;;;r0i .. i;· ;;;-~;; -~;~h-~;b~-1 ;~- -/1"{e·~-.--1· :; : • ~~- i~;~·

49

60

the exprs for a given block. It will not load a function which already
has an in-core expr definition. and it will not load the block name,
unless it is also one of the block functions.

byte address, see sfptr, page 14.7.

The internal representation of the file map is not documented since it m!ElY ·
change when the map is exten~ed to include information ·about other than
just ftinction definitions.

14.42

single read. Similarly, the file map is heavily used by the 'remake' option of +

prettydef (page 14.68) those function definitions that have been changed since +

the previous version are prettyprinted; the rest are simply copied from the old +

file to the new one. resulting in a considerable speedup. +

Whenever a file is read by load or loadfns. a file map is automatically built61 +

and stored on the property list of the root name62 of the file, under the +

property FILEMAP. Whenever a file is written by prettydef, a file map for the +

new file is also built and stored on the FILEMAP property. 63 In addition, tho <}

file map is written on the file itself .64 Thus, in most cases, !.Q.ru! and loadf'ns +

do not have to build the file map at all, since a file map will usually appear +

in the corresponding file. 65 +

The procedure followed whenever a system package that uses file maps accesses a •

file is embodied in the function getfilemap. getfilemap first checks the +

FILEMAP property to see if a file map for this file was previously obtained or +

5i·---····-·--·-~------····-··-----unless buildmapf'lg=NIL. buildmapflg is initially T. +

62

63

64

55

the file name with directory and version number stripped off.

Building the map in this case essentially comes for free, since ·it requires
only reading the current file pointer before and after each definition is
written or copied. However, building the map does require that prettyprint
know that it is printing a DEFINEQ expression. For this reason, the user
should never print a DEFINEQ expression onto a file himself. but should
instead always use the FNS command, page 14.50.

For cosmetic reasons, the file map is written as the last expression in tho
file. However, the address of the file map in the file is (over)written
into the FILECREATED expression that appears at the beginning of the file
so that the file map can be rapidly accessed without having to scan the
entire file.

unless the file was written with buildmapflg=NIL. or was created in a pre
file map INTERLISP, or outside of INTERLISP altogether.

14.43

+

+
+
+
+
•
...
...

+ built. 66 If there is none, getfilemap next checks the first expression on the

+ file to see if it is a FILECREATED expression that also contains the address of

+ a FILEMAP. 67 If neither &re successful getfilemap returns NIL, 68 , and a file

+ map will be built. 69

+
+

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

14.8 Symbolic file Output

writefile[x;file] Writes a date expression onto file, followed by

successive s-expressions from ~· using fi lerdtbl

as a readtable. If ~ is atomic, its value is used.·

If file is not open, it is opened. If file is a

list, car[fileJ is used and the file is left

opened. Otherwise, when ! is finished, a STOP is

printed on file and 1 t h closed. Value is file.

66•••--------•••••-••• 0 •-•oO~•~••••••••o•o•o••••••oooa~-u-••••••••••••••••••••-

The full name of the file is also stored on the FILEMAP property along with
its map.

67

68

59

currently, file maps for compiled files are not written onto the files
themselves. However, load and loadfns will build maps for a compiled file
1,o1hen it is loaded, and store it on the property FILEMAP. Similary, loadfns
will obtain and use the file map for a compiled file, when available.

getfilemap also returns NIL, if usemapflg=NIL, initially T. usemapflg is
available primarily to enable the user to recover in those cases where tho
file and its map for some reason do not agree. For example, if the user
edits a symbolic file that contains a map using a text editor such as TECO,
inserting or deleting just one character will throw that map off. The
functions which use file maps contain various integrity checks to enablo
them to detect that something is wrong, and to generate the error FILEMAP
DOES NOT AGREE WITH CONTENTS OF file-name. In such cases, the user can set
usemapflg to NIL, causing the map contained in the file to be ignored, and
then reexecute the operation. A new map will then be built (unless
buildmapflg is also NIL).

While building the map will not help thts operation, it will help in future
references to this file. For example, if the user performs· loadfrom[FOO]
where FOO does not contain a file map, the loadfrom will be (slightly)
slower than if FOO did contain a file map, but subsequent calls to loadfns
for this version of FOO will be able to use the map that was built as tho
result of the loadfrom, . since 1 t will be stored on FOO 1 s FILEMAP proRerty.

14.44

single read. Similarly, the file map is heavily used by the 'remake' option of +

prettydef (page 14.68) those function definitions that have been changed since +

the previous version are prettyprinted; the rest are simply copied from the old +

file to the new one. resul.ting in a considerable speedup. +

Whenever a file is read by load or loadfns, a file map is automatically built51 +

and stored on the property list of the root name62 of the file, under tho +

property FILEMAP. Whenever a file is written by prettydef, a file map for the +

new file is also built and stored on the FILEMAP property. 53 In addition, tho +

file map is written on the file itself .54 Thus, in most cases. load and loadfns *
do not have to build the file map at all, since a file map will usually appear +

in the corresponding file. 66 +

The procedure followed whenever a system package that uses file maps accesses a +

file is embodied in the function getfilemap. getfilemap first checks the +

FILEMAP property to see if a file map for this file was previously obtained or +

6i••-••a••••••o••••••••••

unless buildmapflg=NIL. buildmapflg is initially T. +

52

53

65

the file name with directory and version number stripped off.

Building the map in this case esseniially comes for free, since it requires
only reading the current file pointer before and after each definition is
written or copied. However, building the map does require that prettyprint
know that it is printing a DEFINEQ expression. For this reason, the user
should never print a OEFINEQ expression onto a file himself. but should
instead always use the FNS command, page 14.50.

For cosmetic reasons, the file map is written as the last expression in tho
file. However, the address of' the file map in the file is (over)written
into the FILECREATED expression that appears at the beginning of the file
so that the file map can be rapidly accessed without having to scan the
entire file.

unless the file was written with buildmapflg=NIL, or was created in a pre·
file map INTERLISP, or outside of INTERLISP altogether.

14.43

+
+ ..
+
+
+

+
+
+
+
+

+
+

+ built. 66 If there is none, 9etfilemaQ next checks the first expression on the

+ file to see if it is a FILECREATEO expression that also contains the address of

+ a FILEMAP. 67 If neither are successful getfilemap returns NIL, 68 , and a file

+ map will be built. 69

+
+

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

14.8 Symbolic File Output

writefile[x;file] \./rites a date expression onto file, followed by

successive s-expressions from ~· using filerdtbl

as a readtable. If ~ is atomic, its value is used.

If file is not open, it is opened. lf file is a

list, car[file] is used and the file is left

opened. Otherwise, when ! is finished, a STOP is

printed on file and it is closed. Value is file.

66•-------------••-••••••••$•••••••••••o•••••••••••••••••o•••••e•••••••••••••••

The full name of the file is also stored on the FILEMAP property along with
its map.

67

58

59

currently, file maps for compiled files are not written onto the files
themselves. However, load and loadfns will butld maps for a compiled file
when it is loaded, and store it on the property FILEMAP. Similary, loadfns
will obtain and use the file map for a compiled file, when available.

9etfilernap also returns NIL, if usemapflg=NIL, initially T. usemapflg is
available primarily to enable the user to recover in those cases where the
file and its map for some reason do not agree. for example, if the user
edits a symbolic file that contains a map using a text editor such as TECO,
inserting or deleting just one character will throw that map off. The
functions which use file maps contain various integrity checks to enable
them to detect that something is wrong, and to generate the error FILEMAP
DOES NOT AGREE WITH (ONTENTS OF file-name. In such cases, the user can set
usemapflg to NIL, causing the map contained in the file to be ignored, and
then reexecute the operation. A new map will then be built (unless
buildrnapflg is also NIL).

While building the map will not help thi~ operation, it will help in future
references to this file. For example, if the user performs loadfrom[FOO)
where FOO does not contain a file map, the loadfrom will be (slightly)
slower than if FOO did contain a file map, but subsequent calls to loadfns
for this version of FOO will be able to use the map that was built as· tho
result of the loadfrom,. since it will be stored on F00 1 s FILEMAP property.

14.44

pp[x] nlambda, nospread function that performs

output[T],

prettyprint:

setreadtable[T]

PP FOO is

and then calls

equivalent to

PRETTYPRINT((FOO)); PP(FOO FIE) or (PP FOO FIE) is

equivalent to PRETTYPRINT((FOO FIE)).

Primary output file and primary readtable are

restored after printing.

prettyprint[lstJ60 61 1st is a list of functions (H atomic, its value

is used). The definitions of the functions are

printed in a pretty format on the primary output

file using the primary readtable. For example,

(FACTORIAL
(LAMBDA (N)

(COUD
((ZEROP N)

1)
(T (!TIMES N (FACTORIAL (SUB! NJ) 62

Note: prettyprint will operate correctly on functions that are brokon,

broken~in, advised, or have been compiled with their definitions saved on their

property lists - it prints the original, pristine definition, but does not

change the current state or' the function. If prettyprint is given an atom

which is not the name of a function. but has a value, it will prettyprint the

60-----------·------------------•G•--------q•DGDOGg••eouD•M•oo•ODO••••O•m•--·--
The prettyprint package was written by~. Teitelman.

61

62

prettyprint has a second argument that is T when called from prettydef. In
this case, whenever prettyprint starts a new function, it prints (on the
terminal) the name of that function if more than 30 seconds (real time)
have elapsed since the last time it printed the name of a function.

In order to save space on f:l.les, tabs are used instead of spaces for the
inital spaces on each line, assuming that each tab corresponds to 8 spaces.
This results in a reduction of file size by about 30%. Tabs will not be
used if prettytabflg is set to NIL (initially T).

14.45

value. 63 Otherwise, prettyprint will perform spelling correction.

fails, prettyprint returns (atom NOT PRINTABLE).

Comment Feature

If all

A facility for annotating INTERLISP functions is provided in prettyprint. Any

s-expression beginning with • is interpreted as a comment and. printed in the

right margin. Example:

(FACTORIAL
[LAMBDA (N)

ccorm
((ZEROP N)

1)
(T

(ITIMES N (FACTORIAL (SU~1 N])

(•COMPUTES NI)

(• O!=t)

(• RECURSIVE DEFINITION:
N!=N•N·l!) .

These corrunents actually form a part of the function definition. Accordingly, •

is defined as an NLAMBDA NOSPREAD function that returns its argument, i.e. it

is equivalent to guote. \.lhen running an interpreted function,. • h entered the

same as any other ·INTERLISP function. Therefore, comments should only be

placed where they will not harm the computation, i.e. where a quoted expression

could be placed. For example, writing

(ITIMES N (FACTORIAL (SUB1 N)) (• RECURSIVE DEFINITION)) in the above function

would cause an errQr when !TIMES attempted to multiply N, N•l.1, and RECURSIVE.

For compilation purposes, • is defined as a macro which compiles into no

instructions. Thus, if you compile a function with comments, and load the

compiled definition into another system, the extra atom and list structures

storage required by the comments will be eliminated. This is the way the

14.46

comment feature is intended to be used. for more options, see end of this

section.

Corrunents are designed mainly for documenting li.s t t ng.s. Thus whon

prettyprinting to the terminal, comments are suppressed and printed as the

string ~~cOMHENT~~. 64

Prettydef

prettydef[prttyfns;prttyfile;prttycomsJ65 Used to make symbolic files that

are suitable for loading which contain function

definitions, variable settings, property lists, et

al, in a prettyprint format.

filerdtbl as its readtable.

prettydef uses

The value of

prettydef is the name of the symbolic file that '°'

was created. Xf an error occurs, or a control-D +

is typed, all files that prettydef has opened will +

be closed, and the (partially complete) file being ~

written will be deleted. ~

The arguments to prettydef are interpreted as follows:

prttyfns is a list of function names. The functions on the

64---The value of ucommentoflg determines the action. If ucommentu flg_ is

65

NIL, the comment is printed. Otherwise, the value of 0 comment 0 flg is
printed. *stcomr.ient 0 flg is initially set to 11 ~*COMMENTO ". The function
~ is provided to prettyprint functions, including their comments, to the
terminal. ~operates exactly like .21? except it first sets •*yomment•*flg
to NIL.

prettydef actually has three additional arguments for use by the file
package. See discussion of remaking a file, page 14.69.

14.47

+
+
+
+
+

list are prettyprinted surrounded by a

(DEFINEQ ..•) so th&t they can be loaded with

load. If prttyfns is atomic (the proferrod

usage). its top level value .is used as the list of

function names, and an ~ 66 will also be

written which will set that atom to the list of

functions when the file is loaded.

expression will also be written which informs the

user of the named atom or list of functions when

the file is subsequently loaded. 67

prttyfile is the name of the file on which the output is to

be written.

The following options exist:

prttyfile=NIL

The primary output file is used.

prttYfi le atomic

The file is opened if not already open,

and becomes primary output file. file

is closed at end of prettydef and

primary output file is restored.

prttyfile a list

60----------••••-•••••••••a-•••••••••••••••••••••a•••••••••••••••••••••••••••o•

~ and ~ are like ~ and setg, except they set the top level
value. See section 5.

67 In addition, if any of the functions in the fiie (including those printed
by ms command) are nlambdas, prettydef will print a DECLARE: expression
suitable for informing the compiler about these functions, in case the user
recompiles the file without having first loaded the nlambda. functions. For
more discussion, see section 18.

14.48

prttycoms

Car of the list is assumed to be the

file name, and is opened if not already

open. The fUia is left open at end of

prettydef.

ls a list of commands interpreted as described

below. If prttycoms is atomic (the preferred

usage), its top level value is used and an rpngg

is written which will set that atom to the list of

commands when the file is subsequently loaded,

exactly as with prttyfns.

These commands are used to save on the output file top level bindings of

variables, property lists of atoms, miscellaneous INTERLISP forms to be

evaluated upon loading, arrays, and advised functions. It also provides for

evaluation of forms •t output time.

The interpretation of e~ch command in the command list is as follows:

1. if atomic, an ~ is written which will restore the top level value of

this atom when the file is loaded.

2. (PROP propname atom1 ••• atomn) an appropriate deflist will be written

which will restore the value of propname for each atom1 when the file is

loaded. 68 If propname is a list, deflist's will be written for each

property on that list. If propname=ALL, the values of all user properties

68---If atom1 does not have the property propname (as opposed to having tho
property with NIL value). a warning message 11 NO propname PROPERTY FOR
atomi" is printed. The command If PROP should be used H it is not known
whetner or not an atom will have the corresponding property.

14 .49

+
+
+

+
+
+

(on the property list of each atomi) are saved.69

3. (ARRAY atom1 •.• atom0), each atom following ARRAY should have an array as

its value. An appropriate expression will be written which will set the

atom to an array of exactly the same size, type, and contents upon loading.

4. (P •••.) , each S·expression following P will be printed on the output file,

and consequenUy evaluated when the file is loaded.

5. (E .. .) , each form following E will be evaluated at output time. 1. e .•

when prettydef reaches this command.

6. (FNS fn 1 ·~·fn~). a defineq is written with the definitions ~r rn1 ~·· fnm

exactly. as though (fn1 .•• fnm> were the .f~rst argument to prettyder. 70

7. (VARS var 1 ... var n). for each var i, an expression wi 11 be writ ten. which

will set its top level value when the file is loaded. If m 1 is atomic,

~i will be set to the top-level value it had at the time the file was

prettydefed, i.e. (RPAQQ vari top•level·value) is written.71 If .Y!!t. is

non-atomic, it interpreted .as (var· form). e.g.

(FOO (APPEND FIE FUM)) or (FOO (QUOTE (FOOl F002 F003))), ~n this case the

expression (RPAQ var form) is written.

-------------------------------~---··-------·----------------~-----------------69
sxsprops is ~ list of properties used by system functions. Only properties
not on that list are dumped when the ALL option is .u.sed ,, .

70

71

The user should never print a DEFINEQ expression directly onto a file
himself, but should instead always use the FNS convnand for dumping
functions. for more details, see page 14.43.

HORRIBLEVARS (section 21} pro~ide~ a way of saving and r~loading variables
whose values contain re•entrant or circular. list structure, use.r data
types, arrays, or hash arrays.

14.50

8. (ADVISE fn 1 ... fnmL for each fnn• an appropriate expression will be

written which will reinstate the function to its advised state when the

file is loaded.

9. (ADVICE fn 1 ... fnm,)' for each fni' will write a deflist which will put

the advice back on the property list of the function. The user can then

use readvise to reactivate the advice. Sae Section 19.

10. (BLOCKS block. 1 ..• blockn) for each block1 , a declare expression will be

written which the block compile functions interpret as block declarations.

See Section 18.

11 • (COMS com1 . . . comn), each of the commands com1 ·• • . comn wi 11 be

interpreted as a prettydef command.

12. (AOOVARS (var1 . lst1) ... (varn • lstn)) For each var1 , tha effect is the

same as (RPAQ var1 (UNION ht1 var1)), :Le. each element of lst 1 not a

member of var1 (at load time) is added to it. Y.!!:i can initially be

NOBINO, in which case it is first set to NIL.

13. (USERMACROS atom1 .•. atomn>• each atom1 is the name of a user edit macro.

USERMACROS writes expressions for adding the definitions to usermacros and

the names to the appropriate spelling lists. (USERMACROS) will save all

user edit macros.

14. (IFPROP propname atom1 • , . atomn) same as PROP command, except that only

non-NIL property values are saved. For example, if F001 has property PROP1

and PROP2, F002 has PROPJ, and F003 has property PROPl and PROP3,

(IFPROP (PROP1 PROP2 PROPJ) F001 F002 FOOJ) will save only those 5 property

values.

14.51

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+

15. (DECLARE: . prettycoms/flags) Normally expressions written onto a symbolic

file are (1) evaluated when loaded; (2). copied to the compiled file when

the symbolic file is compiled (see section 18); and (3) not evaluated at

compile time. DECLARE: allows the user to override these defaults. The

output of those prettycoms appearing within the DECLARE: command is

·embedded in a DECLARE: expression, alon,g w.ith any tags that are specified,

e.g. (DECLARE: EVAL@COHPILE DONTCOPY (FNS ••) (PROP··)) . would produ.ce

(DECLARE: EVAL@COMPILE DONTCOPV (DEFINEQ ··) (DEFLIST ··)), DECLARE: is

defined as an nlambda nospread function. When declare: is called, it

processes its arguments by ~valuating or not evaluating each list depending

on the setting of an internal state variable. The tags. EVAL@LOAD, or

DOEVAL@LOAD, and DONTEVAL@LOAD can be used to reset this state variable.

The initial setting is to evaluate. 72

In each of the commands described above. if the atom • follows the command

type. the form following the • , 1.e.. caddr of the .conunand, is evaluated and

its value used in executing the command, e.g., (FNS •(APPEND FNS1 FNS2)). 73

Note that (COMS * form) provides a way of corrrp~itng what should be done by

prettydef.

New prettydef commands can be defined via prettydefmacros (see page 14. 57).

lf prettydef is given a command not one of the above, and not defined on

72- -~;-i~cii~;~;ci· i~ · ;;~ ~i~~-;8 :· o£cL~~£ ~-;;~;;;;i~~;-;;;·;~;~i; ii;- ~-;~~;;;;ci- ;;;

73

the compiler. In this case. the relevant tags are COPY. O.OCOPY .• OONTCOPY,
EVAL@COMPILE, OOEVAL@COMPILE, and DONTEVAL@COM~ILE. The value of
declaretagslst is a list of· all the tags use~ in DECLARE: expressions~ If a
tag not on this list appears in a DECLARE: prettycom, prettydef performs
spelling correcton using declaretagslst as a spelling list.

Except for the PROP and IFPROP commands, in which case the • must fol low
the property name, e.g., (PROP MACRO* FOOHACROS).

14.52

prettydefmacros. it attempts spelling correction74 using prettycomsplst as a

spelling list. If successful, the corrected version of prettycoms is written

(again) on the output file. 76 If unsuccessful. prettydef generates an error,

BAD PRETTYCOM.

Example:

~SET(FOOFNS (FOOi F002 F003))
~sET(FOOCOMS(FIE (PROP MACRO FOOl F002) (P (MOVD (QUOTE FOOl)

(QUOTE FIE1]
~PRETTYDEF(FOOFNS FOO FOOCOMS)

would create a file FOO containing:

1. A message which prints the time and date the file was made (done

automatically)

2. DEF INEQ followed by the definitions of FOO!, F002, and F003

3. (PRWT (QUOTE FOOFNS) T)

4. { RPAQQ FOOFNS (FOOl F003 F003))

5. (PRINT (QUOTE FOOVARS) T)

6. (RPAQQ FOOVARS (FIE ...)

7. (RPAQQ FIE value of fie)

8. (DEFLIST (QUOTE ((F001 propvalue) (F002 propvalue))) (QUOTE MACRO))

9. (MOVO (QUOTE FOOl) (QUOTE FIE1))

10. STOP

75 since at this point, the uncorrected prettycoms would already have beon
printed on the output file. When the file is loaded, this will result in
prettycoms being reset, and a message printed, e.g. (FOOVARS RESET). The
value of FOOVARS wou.ld then be the corrected version.

14.53

prettydef functions

printfns[x)

printdate[file;changes)

tab[pos;minspaces;file)

endfile[file J

printdef[expr;left;defJ

~ is a list or functions. printfns prints defincg

and prettyprints the functions to primary output

file using primary readtable. Used by prettydef,

i.e. command (FNS • FOO) is equivalent to conunand

(E (PRINTFNS FOO)).

prints the FILECREATED expression at beginning of

prettydefed files that upon loading types .the time

and date the fite was made, 76 and stores this time

and date on the property list of file under the·

property FILEDATES. changes is for. use by the

file package.

performs appropriate number of spaces to move to

position pos. minspaces indicates the minimum

number of spaces to be printed by tab, i.e •• it is

intended to be small number (if NIL, 1 is used).

Thus, if position + minspaces is gre.ater than Q.Q.!•

£.!!!does a terpri and then spaces[posJ.

Prints STOP on .!.!.!! and closes it.

prints the expression expr ill a pretty format on

the primary output file using the primary

readtable. !fil 1s the left hand margin

7e;•• • • • • • • • - -• ci a••••• ••••oo•••G•••'•••••••••••••••••••••••••••.• •.•••••• •• •• • • • •,. •

The message printed when the file ~s loaded. is the value of prettyheader
followed by the time and date. prettyheader is initially "FILE CREATED 11

14.54

Special Prettyprint Controls

(line length determines the right hand margin). 2

is used if left=NIL.

def=T means expr is a function definition, or a

piece of one, i.e. prettyprint is essentially

printdef[getd[fn];NIL;T]. If def::NIL. no special

action will be taken for LAMBDA's, PROG's, COND's,

comments, CLISP, etc. def is NIL when prettydef

calls prettyprint to print variables and property

lists, and when printdef is called from the editor

via the command PPV.

All variables described below, i.e., #rpars, firstcol, et al, are global

variables, see Section 18. Therefore, if they are to be changed, they must be

reset, not rebound;

#rpars

linelength[n]

f irstcol

controls the number of right parentheses necessary

for square bracketing to occur. lf ~rpars=NIL, no

brackets are used. lrpars is initialized to 4.

determines the position of the right margin for

prettyprint. 77

is the starting column for comments. Initial

setting is 48. Comments run between firstcol and

77••--••••••••••••••0••••••a•••a•••••••••-••••o•a••••••O•••••••••••••••••••••••

Note that makefile, page 14.66, resets linelength to the value of +
filelinelength, before calling prettydef. filelinelength is initially 72. •

14.55

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

prettylcom

#carefulcolumns

line length. If a word in a conunent ends with a

' • • and is not on the list abbrev ls t, and the

position is greater than halfway between firstcol

and linelength, the next word in the comment

begins on a new line. Also, if a list is

encountered in a conunent, and the position is

greater than halfway, the list begins on a new

line.

If . a conunent is bigger (using .£2..!:!.!il) than

prettylcom in size, it is printed starting at

column 10, instead of f!rstcol. 78 prettylcom is

initialized to 14 (arrived at empirically).

. in the interests of efficiency, prettyprint

approximates the number of characters in each

atom, rather than calling nchars, when computing

how much will fit on a line. This procedure works

satisfactorily in most cases. However, users with

unusually long atoms in their programs, e.g. such

as produced by clispify, may occasionlly encounter

some glitches in the output produced by

prettyprint. The value of #carefulcolumns tells

prettyprint how many columns (counting from the

right hand margin) in which to actually compute

nchars instead of approximating. Setting

lcarefulcolumns to 20 or 30 will eliminate the

14.56

widepaper[flg)

commentflg

prettyflg

clispifyprettyflg

prettydefmacros

above glitches, although it will slow down -e-

prettyprint slightly. #carefulcolumns is initially +

o. +

widepaper[T) sets filelinelength to 120, firstcol

to 80, and prettylcom to 28. This is a usefu 1

setting for prettyprinting files to be listed on

wide paper. widepaper[] restores these parameters

to their initial values. The value of widepapor

is its previous setting.

If ~ of an expression is ~ to c?rrunentflg, the

expression is treated as a comment. corrunentfl~ is

initialized to Ill

If prettyflg is NIL. printdef uses prin2 instead

of prettyprinting. This is useful for producing a

fast symbolic dump (see FAST option of makefile,

page 14.66).

as if it

Note that the file loads the same

were prettyprinted. prettyflg is

initially set to T.

used to inform prettyprint to CLISPH'Y selected

function definitions before printing them.

section 23.

See

Is an assoc-type list for defining substitution

macros for

appears on

prettydef. Ir

prettydefmacros,

(FOO (X V) . corns)

then (FOO A B)

appearing in the third argument to prettydef will

14.57

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

prettyprintmacros

(* E x)

cause A to be substituted for X and B for V

throughout ~ (Le.. cddr of the macro), and

then £2!!!! treated as a list of commands for

prettydef. 79 If the atom • follows the name or
the command, ill&!: of the command is . eva lu,a tod

before substituting ·in the definition for the

command.

is an assoc-list that enables the user to format

selected expressions himself. . .£!! of each

expression being prettyprinted is looked up on

prettyprintmacros, and if found, cdr of the

corresponding entry is applied to the expression.

If the result of this application is NIL,

prettyprint will ignore the expression.This gives

the user the option of printing the expression ·

himself in whatever format he pleases. If the

result is non-NIL, it is prettyprinted in the

normal fashion. This gives the user the option of

computing some other expression to be

prettyprinted in its place. prettyprintmacros is

initially NIL.

A comment of this form causes ~ to be evaluated at

prettyprint time, e.g., (111 E (RADIX 8)) as a

comment in a function containing octal numbers can

79•---••••••-••m•••••••••••••••••

The substitution is carried out by subpair. (section 6), so that the
'argument list• for the macro can also be atomic. for example, if
(FOO X . COMS) appears on prettydefmacros, ·~hen (FOO A 8) will cause (AB)
to be substituted for X throughout £2.!!l!·

14.58

be used to change the radix to produce more

readable printout. The comment is also printed.

Converting Comments to Lower Case

Tpis section is for users operating on terminals without lower case who

nevertheless would like their comments to be converted to lower case for more

readable line-printer listings. Users with lower-case terminals can skip to

the File Package sections (as they can type comments directly in lower case).

%% If the second atom in a comment is %%, the text of

the comment is converted to lower case so that it

looks like English instead of LISP (see next

page).

The output on the next page illustrates the result of a lower casing operation.

Before this function was prettydefed, all comments consisted of upper case

atoms, e.g., the first comment was (• %% INTERPRETS A SINGLE COMMAND). Note

that comments are converted only when they are actually written to a file by

prettydef.

The algorithm for conversion to lower case is the following: If the first

character in an atom is ', do not change the atom (but remove the 1). If the

first character is %, convert the atom to lower case. 80 If the atom81 is an

lNTERL ISP word, 82 do not change it. Otherwise, convert the atom ·to lower case.

so-----------------------~-----o••··------------·---o·•··-------------------~--
User must type %% as % is the escape character.

81

82

minus any trailing punctuation marks.

i.e., is a bound or free variable for the function containing the comment,
or has a top level value, or is a defined function, or has a non-NIL
property list.

14.59

Conversion only affects the upper case alphabet. i.ew, atoms already converted

to lower case are not changed · if the ·comment is converted again. \Jhen

converting, the first character in the comment and the first character

following each period are left capitalized. After converslon. the comment is

physically modified to be the lower case text minus the %% flag. so that

conversion is thus only performed once (unless the user edits the conunent

inserting addiiional upper ~ase text and anothe~ %% flag).

14.60

(BREAKCOM

II)

[LAMBDA (BRKCOM BRKFLG) c~ Interprets a
s1ngle command.)

(PROG (BRKZ)
TOP (SELECTQ

BRKCOM
[t (RETEVAL (QUOTE BREAK1)

(QUOTE (ERROR)]
(GO (• Evaluate BRKEXP

unless already evaluated,
pr1nt value, and ex1t.)

(BREAKCOM1 BRKEXP BRKCOM NIL BRKVALUE)
(BREAKEXIT))

(OK (a Evaluate BRKEXP,
unless already evaluated,
do NOT print value,
and ex1t.)

(BREAKCOM1 BRKEXP BRKCOM BRKVALUE BRKVALUE)
(BREAKEXIT T))

(tWGO (A Same as GO except
never saves evaluation
on history.)

(BREAKCOMl BRKEXP BRKCOM T BRKVALUE)
(BREAKEXIT))

(RETURN

(~ User will type in expression to be evaluated and
returned as value of BREAK. Otherwise same as GO.)

(EVAL

(BREAKCOM1 (SETO BRKZ (COND
(BRKCOMS (CAR BRKCOMS))
(T (LISPXREAO T]

(QUOTE RETURN)
NIL NIL (LIST (QUOTE RETURN)

BRKZ))
(BREAKElCIT))

(* Evaluate BRKEXP but
do not exit from BREA't<.)

(BREAKCOM1 BRKEXP BRKCOM)
(COND

(BRKFLG (BREAK2)
(PRIN1 BRKFN T)
(PRIN1 (QUOTE " EVALUATED

T)))
(SETQ !VALUE (CAR BRKVALUE))

(a For user's benefit.)
)

14.61

lcaselst

ucaselst

abbrevlst

1-case[x;flg]

u-case[x)

Words on lcaselst will always be converted to

lower case. lcaselst is initialized to contain

words which are INTERLISP functions but also

appear frequently in comments. as English words.

e.g. AND, EVERY, GET, GO, LAST, LENGTH, LIST, etc.

Thus, in the example on the previous page, not was

written as tNOT, and GO as tGO in order that they

might be left in upper case.

words on ucaselst (that do not appear on lcaselst)

will be left in upper case. ucase ls t is

initialized to NIL.

abbrevlst is

abbreviations

· used to

and words

distinguish

that end in

between

periods.

Normally, words that end in periods and occur more

than halfway to the right margin cause carriage

returns. furthermore, during conversion to

lowercase, words ending in periods, except for

those on abbrevlst, cause the first character in

the next word to be capitalized. abbrevlst is

initialized to the upper and lower case forms of

ETC. I.E. and E.G.

value is lower case version of ~· lf fl.g is T,

the first letter is capitalized, e.g.

1-case[FOO;T] = Foo, 1-case[FOO] "' foo. If ~ is a

string, the value of 1-case is also a string, e.g.

l•case[rifJLE NOT FOUNOn;T) ~ "File not found".

Similar to 1-case

14.62

14.9 File Package83

This section describes a set of functions and conventions for facilitating the

bookkeeping involved with working in a large system consisting of many symbolic

files and their compiled counterparts. The file package keeps track of which

files have been in some way modified and need to be dumped, which files have

been dumped, but still need to ba listed and/or recompiled. The functions

described below comprise a coherent package for eliminating this burden from

the user. They require that for each file, the first argument to prettydef be *

NIL and the third argument be fileCOMS, where file is the name of the file, *

e.g. prettydef[NIL;FOO;FOOCOMS].84 •

All the system functions that perform global file operations, 85 e.g. load, +

loadfns, prettydef, tcompl, recompile, et al, as well as those functions that +

change data stored in files, e.g. editf, editv, DWIM corrections to user +

functions, reassignment of top-level variables. etc., interact with the file +

package. Some of these interactions are quite complex, such as those cases +

where the same function appears in several different files, or where the +

symbolic or compiled files reside in other directories, or were originally made +

under a different name, etc. Therefore, this section will not attempt to +

document how the file package works in each and every situation, but instead +

make the deliberately vague statement that it does the 'right' thing with +

respect to keeping track. of what has been changed, and what file operations +

need to be performed in accordance with those changes. +

sa--------------------------------·-----·-·-----------------------·------------The file package was written by \.I, Teitelman. It can be disabled by

84

85

setting filepkgflg to NIL.

file can contain a suffix and/or version number, e.g.
PRETTYDEF(NIL FOO.TEM;3 FOOVARS) is acceptable. The essential point is
that the COMS be computable from the name of the file.

as opposed to 'local' file operations such as those performed by print,
read, sfptr, etc.

14.63

•
•

+
+

+ Noticing files

+ Operations in the file package can be broken down roughly into three

+ categories: (1) noticing files, (2) marking changes, and (3) updating files.

+ Files are 'noticed' by load and loadfns (or loadfrom, loadvars. etc.). All

+ file operations in the file package are based on the root name of the file,

+ i.e. the filename ·with version number and/or directory field removed.

+ Noticing a · file consists of adding its root name . to the list filelst. and

+ adding the property FILE, value ((fileCOMS • type)), to the property list of

+ its root name, 86 87 where ~ in~icates how the file was loaded, e.g.

+ completely loaded, only partially loaded as with loadfns, loaded as a compiled

+ file, etc. For example, if' ths user performs load[<TEITELMAN>FOO.l..SP;Z],

+ FOO.LSP is added to fileht, and ((FOOCOMS • T)) is put on the property Us~ of

+ FOO.LSP.

+ The property FILE is used to determine whether or no.t the corresponding file

+ has been modified since the last time it was loaded or dumped as described

+ below. In addition, the property FILECHANGES contains the union of all changes

+

+
+
+
+
+
+
+
+
+

+
+
+
+
+

since the file was loaded (1. e. there may have been several sequences of

editing and rewriting the file), and the property FILEDATES a list of version

ao---·------------------------·----------The computation of the root name is actually based on the name of the file

87

as indicated in the FILECREATED expression appearing at ·the front of the
file, since this name corresponds to the name the file was originally made
under. Similarly, the file package can detect that the file being noticed
is a compiled file (regardless of its name), by the appearance of more than
one FILECREATEO expressions. In this case, each or the files mentioned in
the FILECREATED expr&ssions are noticed. For example, if the user performs
BCOMPL((FOO FIE)), and subsequently loadi FOO.COM. both roo and FIE will be
noticed.

The variable loadedfilelst contains a list of the actual names of the files
as loaded by load or loadfns. For exam~le, if the user performs
LOAD[<NEWLISP>EOITA .COM ;3], EDITA will be added . to . filelst, but
<NEWLISP>EDITA.COM;3 is added to loadedfilelst. loadedfilelst is not used
by the file package, it is mantained for the user's benefit.

14.64

numbers and the corresponding file dates. The use and maintenance of these +

properties is explained below. +

Marking changes +

Uhenever a function is changed. either explicitly, as with editing, or +

implicitly, e.g. via a DYlM correction, the function is marked as being changed +

by adding it to the list changedfnslst. A similar procedure is followed for +

variables and changedvarslst. 88 Periodically, the function updatefiles is +

called to find which file(s) contain the functions and variables that have been •

changed. 89 updatefiles operates by scanning filelst and interrogating the +

prettycoms for each file. When (if) such files are found, the .name of the +

function or variable is added to the value of the property FILE for the +

corresponding file, and the function or variable removed from changedfnslst or +

changedvarslst. Thus, after updatefiles has completed operating, the files +

that need to be dumped are simply those files on filelst for which cdr of their +

FILE property is non-NIL. For example, if the user loads the file FOO +
·•

containing definitions for F001, FOOZ, and F003, edits F002, and then calls +

updatefiles, 'getp[FOO;F!LE) will be ((FOOCOMS. T) F002). Functions or

variables that remain on their corresponding changedlst are those for which no

file has been found. 90

ss--~--------------------1ni tia11y. the file package only knows about two "types": functions and

89

90

variables. page 14.75 describes how to add additional types.

updatefiles is called by files?, cleanup, makefiles, and addfile, i.e. any
procedure that requires the FILE property to be up to date. (The user can
also invoke updatefiles directly.) This procedure is followed rather than
update the FILE property after each change because scanning filelst and
interrogating each prettycom can be a time-consuming process, and is not
so noticeable when performed in conjunction with a large operation like
loading or writing a file.

e.g. • the user defines a new function but forgets to add it to the
prettycoms for the corresponding file. For. this reason, both files? and
cleanup print warning messages when changedfnslst is not NIL following an
updatefiles.

14.65

...

+
...

...
+
+
...
...
...
+

+
+
+
+

+ Updating Files

+ Whenever a file is written using makefile (described below). the

+ functions/variables that have been changed, i.e. cdr of the FILE property, are

+ moved to the property FILECHANGES, and cdr of the FILE property is reset

+ (rplacd) to NIL. 91 In addition, the file is added to the list notlistedfiles

and notcompiledfiles. Whenever the user lists a file using listfiles, it is

removed from notlistedfiles. Similarly, whenever a file iS compiled by tcomp\,

recompile, bcompl, or brecornpile, the file is removed from notcornpi ledfi lcs.

Thus at each point, the state of all files can be determined. This information

is available to the user via the function files?. Similarly, the user can see

whether and how each particular file has been modified (by examining the

appropriate property values), dump all files that have been modified, list all

files that have been dumped but not listed, recompile all files that have been

dumped but not recompiled, or any combination of any or all of the above by

using one of the function described bG'low.

+
+
+
+

Makefile

makefile[file;options;reprintfns;sourcefile]

previously

notices !.ll.!

noticed.

if not

Performs

linelength[filelinelength], and calls prettydcf

giving it NIL, file, fileCOMS, reprintfns.

sourcefile, and the list or changes as its

~1-------------~-------------------~---If the file was not cin filelst; e.g. the user defined some functions and
initialized the corresponding prettydoms without loading • file, then tho
file will be •noticed' by virtue of its being written. i.e. added to
fITelst, and given appropriate FILE, FILEDATES and FILE CHANGES properties.

14.66

arguments, 92 restores original linelength, and

then adds f :I.le to notlistedfiles.

notcompiledfiles. 93 options is a list of options

or a single option Interpreted as f~llows:

FAST perform prettydef with prettyflg=NIL

RC

c

call recompile after prettydef or
brecompile H there are any ~Jock
declarations specified in fileCOMs.·

calls tcompl after prettydef or bcompl
if there are any block declarations
specified in fileCOMS.

CllSPIFV perform prettydef with
clispifyprettyflg=T, causing cl is pi fy
(see Section 23) to be cal led on each
function defin9g as an expr before it is
prettyprinted.

NOCLISP performs prettydef with prettytranflg=T,
causing CL ISP translations to be

92-----------------•••-~~•om•-•••••-••O•••e•••••mu•aoo•••m••~~au-ga~ao-o~--u••A

fileCOMS are constructed from the name field only, e.g. makefile[FOO.TEM] a

93

94

95

will work. The list of changes is simply cdr of the FILE property, as ~
described earlier, i.e. those items that have-been changed since the last
makefile. prettydef merges those changes with those handled in previous
calls to makefile, and stores the result on the property FILECHANGES. This •
list of changes is included in the FILECREATED expression printed at the lll

beginning of the file by printdate, along with the date and version number •
of the file that was originally noticed, and the date and version number of •
the current file, i.e. this one. (these two version numbers and dates are •
also kept on the property FILEDATE for various integrity checks in •
connection with remaking a file as described below.) •

Files that do not contain any function definitions or those that
their property list the property FlLETYPE with value DON'TCOMPILE,
added to notcornpiledfiles, nor are they compiled even when
specifies C or RC.

Including any generated via the COMS command or via a prettymacro.

have on
are not
options

Alternatively, if file has the property FlLETYPE with value CLISP,
prettydef is called with clispifyprettyflg reset to CHANGES, which will
cause clispify to be called on all functions marked as having been changed.
For more details, see discussion of clispifyprettyflg in section 23. Note
that if file has property FILE TYPE with value CUSP, the compiler wi 11
know to dWiinify its functions before compiling them, as described in
section 18 and 23.

14.67

It

lt

lt

lt

+

+

printed. H any. in place of the
corresponding CL ISP expression, e.g.
iterative statement.

LIST calls listfiles on flli;
REMAKE 'remakes'· file. See discussion below.

NEW does not remake rue. 96

If F, ST, STF, or S is the next item on options following C or RC. given to the

compiler as the answer to the compiler's question LISTING?, e.g.

makefile[FOO;(C F LIST)] will dump FOO, then tcompl or bcompl it specifying

that functions are not to be redefined, and finally list the file.

The user can indicate that f Ue must be block compiled together with other ·

files as a unit by putting a list of those files on the property list of each

file under the property FILEGROUP. For example, EDIT and WEDIT are one such

group, DWIM, FIX. CLISP, and DWIHIFY another. If !.!.!! has a FILEGROUP

property, the compiler will not be called until all files on this property have

been dumped that need to be.

+ Remaking a symbolic file

+ Most of the time that a symbolic file is written using prettydef, only some,

+ usally a few, of the functions that it contains have· baen changed since the

+ last time the file was written. A considerable savings in time is afforded by

+ copying the prettprinted definitions of those functions that have not changed

+ from an earlier version of the symbolic file. and prettyprinting only those

+
+
+

~a--··-----------------------------1r makefileremakefl~ is T (its initial setting), the.default for all calls
to makefile is to remake. The ~EW option ii provided in order to override
this default.

14.68

functions that have been changed. 97

To this end, prettydef has two additional arguments, reprintfns and sourccfile. •

reprintfns can be a list of functions to be prettyprinted, or EXPRS meaning +

prettyprint all functions with EXPR definitions, or ALL meaning prettyprint all +

functions either defined as exprs or with EXPR properties. 98 sourcefile is the +

name of the file from which to copy the definitions for those functions that +

are not going to be prettyprinted, i.e. those not specified by reprintfns. +

sourcefile=T means use most recent version (i.e. ~ighest number) of prttyfilo, +

the second argument to prettydef. If sourcefile cannot be found, prettydof ~

prints the message "file NOT FOUND, SO IT WILL BE WRITTEN ANEW", and proceeds +

as it does when reprintfns and sourcefile are both NIL.

Makefile and Remaking a file

While a file can be remade by appropriately specifying the reprintfns and +

sourcefile arguments to prettydef, remaking is intended td be used in +

conjunction with makefile, which performs a number of 'do-what-l•mean' type or •

services in this context, as described below. When a makefile remake is being +

97--·------------------------------Remaking a symbolic file does not depend on the earlier version having a +

98

file map, although it is considerably faster if one does exist. In the +
case of a remake where no file map is available, prettydef scans the file +
looking for the corresponding definition whenever it is about to copy the +
definition to the new file. The scan utilizes skread (page 14.18), and +
prettydef does not begin scanning from the beginning of the file each time. +
but instead 'walks through' the original file as it is writing the new +
file. Since the functions are for the most part in the same order, +
prettydef .never has to scan very far. However, prettydef also builds a map +
of the functions it has skipped over so that if the order of functions is +
reversed in the new file, prettydef is able to back. up and pick up a +
function previously skipped. The net result ·is still a significant +
savings over (re)prettyprinting the entire file, although not as great a +
savings as occurs when a map is available. +

Note that doing a remake with reprintfns=NIL makes sense if there have
been changes in the file, but not to any of the functions, e.g. changes to
~ or property lists.

14.69

•
+
+

+ performed, 99 prettydef will be called specifying as reprintfns those functions

+ that have been changed since the last version of the file was written. 10° For

+ sourcefile, makefile obtains the full name of the most recent version of the

+ file (that it knows about) 101 from the FILEOATES property, and checks to rnllke

+ sure that the file still exists, and has the same fil~ date as that ~tored on

+ the FILEDATES property. If it does, makefile calls prettydef specifying that

+ file as sourcefile •102 In the case where the most recent version of the file

+ cannot be found, makefile will attempt to remake using the original varsion of

+ the file, i.e. the one first loaded, and specifying as reprintfns the unioh of

+ all changes that have been made, which 1 t obt.ains from the FILE CHANGES

+ property. If both of these fail, makefile prints the message 11 CAN • T FIND

+ EITHER THE PREVIOUS VERSION OR THE ORIGINAL VERSION OF file, SO IT WILL HAVE TO

+ BE WRITTEN ANEW", and then calls prettydef with reprlntfns and sourcefile=NIL.

+ 'When a remake is specified, makefile also checks the state of the file (f..Qfil: of

+ the FILE property) to see how the file was originally loaded (~age 14.64). lf

+ the file was originally loaded as a compiled file, makefile will automatically

+ call loadvars to obtain those DECLARE: expressions that· are contained on tho

+ symbolic file. but not the compiled file. and hence have not been loaded. If

+ the file was loaded by loadfns (but not loadfrom), then loadvars will

+
+
+
+

+

+
+

+
+

~~--------------------------~-----------~---~----------------------------------The normal default for makefile is to remake, as indicated by the value of
makefileremakeflg, initially T, i.e. the user·does not ~ave to explicitly
include REMAKE as an option. Note that the user can override this default
for particular file~ by using the NEW option (page 14.68).

lOO The user can specify reprintfns as the third argument to makefile.

101 The user can also specify sourcefile as the fourth argument to makefile, in
which case the above checks are not executed.

102 This procedure permists the user to load or loadfrom a file in a different
directory, and still be able to makefile-remake.

14.70

automatically be called to obtain the non-DEFINEQ expressions. 103 If a remake +

is not being performed, 1 .e. mak.efileremakef'lg is NIL, or the option NEW was +

specified, makefile checks the state of the file to make sure that the entire +

symbolic file was actually loaded. If the file was loaded as a compiled file, +

makefile prints the message "CAN'T DUMP: ONLV THE COMPILED FILE HAS BEEN +

LOADED." Similarly, if only some of the symbolics were load via loadfns or +

loadfrom, makefile prints "CAN'T DUMP: ONLY SOME OF ITS SYMBOLICS HAVE BEEN -c-

LOADED." In both cases, makefile does not call prettydef, and returns +

(file NOT DUMPED) as its value.

makefiles[options;files)

listfiles[files)

•

For each file on files that has been changed,

performs makefile[file ;options), If files = NIL,

filelst is used, e.g. makefiles[LIST] will make

and list all files •104 Value is a list of all

files that are made.

nlambda, nospread function. Uses bksysbuf to load

system buffer appropriately to list each file on

!!.!!!• (if NIL, notlistedfiles is used) followed

by a QUIT command, then calls a lower EXEC via

subsys (section 21). The EXEC will then read from

103----------------------------------·--··----------····-----------------------
I f the file has never been loaded or dumped, e.g. the user simply set up +
the fileCOMS himself, then makefile will never attempt to remake the filo, +
regardless of the . setting of makefileremakeflg, or whether the REMAKE +
option was specified, but instead will call prettydef with +
sourcefile=reprintfns=Nll. +

104 In this case, if any functions have been defined or changed that are not
contained in one of the files on filelst, a message is printed alerting the
user.

14. 71

+

+

+

+

+
+
+
+
+

+
+
+
+
+

the system buffer, list the files, and QUIT back

to the program. 106

Each file listed is removed from notlistedfiles if

the listing is completed, e.g. if the user

control-C's to stop the listing and QUITS. For

each file not found, listfiles prints the message

11 <fi le· name> NOT FOUND" and proceeds to the next

file on files.

compilefiles[files) nlambda, nospread function. Executes the RC

option of makefile for each member of files. (If

files=NIL, notcompiledfiles is used.) 106

files?[] Prints on terminal the names of those files that

nave been modified but not dumped, dumped but not

listed, dumped ~ut not compiled, plus the names of

those functions (if any) that are not contained in

any file.

cleanup[files] nl&mbda, nospread. Dumps, lists, and recompiles

(or brecornpiles) any and all files on files

ios·----------------------------------a·---------------------------------------11str11es calls the function listfilesl on each file to be listed.

106

listfilesl computes the appropriate string to be fed to TENEX by concating
LISTS, the file name, and the value of listfilestr, initially ".>". The
user can reset listfilestr to specify subcommands for the list command, or
advise or redefine listfilest for more specialized applications.

If car of files is & list, it is interpreted as the options argmument to
makefiles. This feature can be used to supply an answer to the compiler's
LISTING? question, e.g. compilefiles[(STF)] will compile each file on
notcompi ledfiles so that the functions are redefined w:I. thout the exp rs
being saved.

14. 72.

whereis[x;type;files)

requiring the corresponding operation. If

files = NIL, filelst is used. Value is Nlt. 107

~ is the name of a prettycom. \<1hereis sweeps

through all the files on files and returns a list

of all files containing !· whereis knows about and

expands all prettydef commands and

prettydefmacros. iru=NIL is equivalent to FNS,

~=T is equivalent to VARS. Similarly, files=NIL

is equivalent to (the value of) filelst, and

is equivalent to

(APPEND FILELST SYSFILES).

1Vote that wherei.s requires that the JileCONS oj the corresponding Jile.s be
available. However. in INTERLISP-JO. the .system JtleCOMS are clobbered to save
.space. Therefore. iJ the user wants to a.st the location of a .system junction.
variable. etc., he .should fir.st load the Ji le <LISP>fl.JS/ViHlS.

fi lefnslst[file)

newfile2[name;coms;type)

returns a list of the functions in file, 1.e.

specified by fileCOMS. filefnslst knows about

prettydefmacros.

£Q!!!! is a list of prettydef commands, ~ is

usually FNS or VARS but may be BLOCKS, ARRAYS,

etc. or the name of any other prettydef command.

If ~=NIL, newfile2 returns a list of all

elements of type ~· (filefnslst and bcompl and

brecompile use this option.)

io1·---Q-------
The user can affect the operation of cleanup by resetting the variable +
cleanupoptions, initially (LIST RC). For example, if clennupoptions is +
(RC F), no listing will be performed, and no functions will be redefined as +
the result of compiling. Alternatively, if car of files is a list, it will +
be interpreted as the list of options regardless of the value of +
cleanupoptions. +

14.73

lf !1!.!!!!=T, newf ile2 returns T if there are anv

elements of type !ill· (makefile uses this option

to determine whether the file contains any FNS,

and therefore should be compiled~ and if so,

whether it contains any BLOCKS, to determine

whether to call bcompl/b~ecompile or

tcompl/recompile.)

Otherwise, newfile2 returns T if !l!!!l! is

"contained" in £2.!!!!· (whereis uses newfi le2 in

this way.)

If the user often employs prettydefmacros, their expan~ion by the various parts

of the system that need to interrogate files can result in a large number of

conses and garbage collections. If the user could inform the file package as

to what his various prettydefmacros actually produce, this expansion would not

be necessary. For example, the user may have a macro called GRAMMARS which

dumps various property list but no functions. Thus, the file package could

ignore this command when seeking information about FNS. The user can supply

this information by putting on the property list of the prettymacro, e.g.

GRAMMARS, under the property PRETTVTYPE,JOB a function (or LAMBDA expression)

of three arguments, £21!!• ~. and !!!!!!.!!• where .s.f!!!! is a prettydef command, and

~· and !l!!!!! corrrespond to the arguments to newfile2. The result of applying

the function to these arguments should be a list of those elements of type ~

14.74

contained in £2.!n. 109

Currently, the file package knows about two "types": functions and variables.

As described on page 14 .65, whenver a function or variable is changed, it is

added to changedfnslst o~ changedvarslst respectively by newfile? (see below).

Updatefiles operates by mapping down filelst and using newfile2 to determine if

the corresponding file c.ontains any of the functions on changedfnslst or

changedvarslst. The user can tell the file package about other types by adding

appropriate entries to prettytypelst. Each element of prettytypelst is a list

of the form (name-of-changedl:l.st type string), where string is optional. For

example, prettytypelst is initially ((CHANGEDFNSLST FNS "functions")

(CHANGEDVARSLST VARS)),IJO If the user adds (CHANGEDGRAMLST GRAMMARS) to

prettytypelst, then updatefiles will know to move elements on changedgramlst to

the FILE property for the files that contain them.

The function newfile? should be used to mark elements of other types as being +

changed, i.e. to move them to their respective changedlst. +

109--Actually. when name=T, it is sufficient to return T if there are anv +

110

elements of type type in £Qfil· Similary, when ~ is an atom other than T +
or NIL, return T if name is contained in com. finally, if name is a list, +
it is sufficient to return a list of only those elementsof type typo +
contained in com that are also contained in name. The user nay take +
advantage of .these conventions of newfi le2 to reduce the number of conses -i-

requ ired for various file package operations, such as calls to whereis that +
edi tf performs when given a function without an expr (see section 9). +
However, note that simply returning a list of all elements of type ~ +
found in £Q!!! will always work.. +

If string is supplied, files? will inform the user if any elements remain
on the changed list after updatefiles has completed. Similarly, makefiles
will warn the user that some elements of this type are not going to be
dumped in the event that it could not find the file to which they belonged.

14.75

newfile?[name;changedlst)

+

+

+

+

changedlst is the name of a changedlst. e.g.

CHANGEDFNSLST, CHANGEDGRA~ILST, etc. newf ile?

(undoably) adds !1!.fil! to changedlst. Value is

.!!.!!!!!· newfile? is used by the editor, DWIM,

define, etc.

14.76

Index for Section 14

ABBREVLST (prettydef variable/parameter) •..•.•••
addressable files•....•..••....••
ADOVARS (prettydef command)•...••••
ADVICE (pr et tydef command)
ADVISE (prettydef command)
AFTERSYSOUTFORMS (system variable/parameter)
ALL (use in prettydef PROP command)
ALLPROP (as argument to load)
ARRAY (prettydef command)
BAO PRETTYCOM (prettydef error message)
BCOMPL , .• , .. .
bell (typed by system)•.......•..........
BKLINBUF[X] SUBR
BKSYSBUF[X] SUBR•....
block declarations•.•...••.••........•.••
BLOCKS (prettydef command)
break characters ..•..•.........•..•.•....••.•...
BREAK (syntax c 1 ass)
BREAKCHAR (syntax class) •......•.•.•........•..•
BRECOMPILE
BUILDMAPFLG (system variable/parameter)•....
C (makefile option)•..•..••.....•..••
carriage-return•..••
CHANGEOFNSLST (file package variable/parameter) .
CHANGEDVARSLST (file package variable/parameter) ..
CHARDELETE (syntax class)
CLEANUP[FILES] NLA•.....•..•..••••
CLEANUPOPTIONS (file package variable/parameter) ..
CLEARBUF[FILE;FLG] SUBR •••••••••••••••••••••••••
CLISPIFY , . ,
CLISPIFY (makefile option)••.....
CLISPIFYPRETTYFLG (prettydef variable/parameter) ..
C LOSEALL(] SUBR
CLOSEF[FILE] SUBR
crJTRLV (syntax class)
COMMENTFLG (prettydef variable/parameter)•.
com.men ts (in listings)••...........
COMPILEFILES[FILES] NL*
COMS (prettydef command)
CONTROL[U;TTBL) SUBR ••••••••••••••••••••••••••••
control character echoing .•.•.•.•.......•....••.
control-A

control-D
control-E
control-f
control-H
control-0
control-P
control-Q

•••••••••••••••••.••• 9 ••••••••••••••••••••

• • • • I • • • I • • • I I • I I • • • • • I • I • I • • • a I I • • • • • I

I ' • ill 9 ill I • I I I I 111 I 9 I I I 111 I t 9 I 111 I I I o I 9 I I I 111 9 9 I I I

• I ol I I I I I I I I I I I I I I 111 I • I 0 I I I I I I • 111 I 9 I I 111 I 9 I I

• • I I I 111 I ill I I I 111 111 I I I I I <II I I I I I I I I 9 I I 111 I I I I I I I I

I I 111 I I 111 I 111 I I I I I I I 9 I Ill I I I I I I I I I I I I I 111 I I 9 t I I I 9 I

control-R
control-S
control-V
COPY (declare: tag)•..•...........•..•
COPYREAO TAB LE[ROT BL] SUBR

INDEX.14 .1

Page
Numbers

14.56,62
14.5
14.51
14.51
14.51
14.38
14.49
14.39
14.50
14.53
14.67
14.21
14.36
14.36,71
14.51
14.51 .
14.13-16,25,34
14.23,25-26
14.25
14.67,72
14.43
14.67
14.11-12,17-20,29,33
14.65,75
14.65,75
14.29,31
14.72
14.73
14.35-36
14.67
14.67
14.57,67
14.4
14.4
14.29
14.57
14.46-47,59-62
14.72
14.51
14.12,16,32-35
14 .30 .
14.11,13,16,28-29,31,

33·35
14.35
14. 35
14.2
14. 35
14.21
14.21,35
14.11-13,16,28-29,31,

33-34
14. 29
14.35
14.11,13,16,29
14.52
14.23

COPYTERMTABLE[TTBL] SUBR
CTRLV (syntax class) .••........•..•.•...••...•.•
DECLARE .. .
DECLARETAGSLST (prettydef variable/parameter)
DECLARE:[X] NL* •••••.••••..•••••••••••••••••••••
DEFLIST[L;PROP]
DELETECHAR (syntax class)•....
DELETECONTROL[TYPE;MESSAGE;TTBL]•...•
DELETELINE (syntax class)
DFNFLG (system variable/parameter) ..•...•....•..
DOCOPY (declare: tag) .••...••.••••.•.•.••..••..•
DOEVAL@COMPILE (declare: tag) •.•.•.••.•..••.••••
DOEVAL@LOAD (declare: tag)••...............
DONTCOPY (declare: tag)
oorHEVAL@COMPILE (declare: tag) •••••••••••••••••
DONTEVAL@LOAO (declare: tag) .•.................•
E (in a floating point number) .••.••....••.•...•
E (prettydef corrunand)•.•••••••••••.••.•••••
E (use in comments)
ECHOCONTROL[CHAR;MODE;TTBL] •......•......•...•.•
echoing .. .
ECHOMODE[FLG;TTBL] SUBR •••••••••••••••••••••••••
EDITRDTBL (system variable/parameter)
END OF FILE (error message)•...........
ENDFILE[Y]•.
end-of-line ".,
EOL (syntax class)•.•...•....•.••.••.....•
ESCAPE[FLG;RDTBL] SUBR ••••••••••••••••••••••••••
escape character••. o ••••••••• : ••••

ESCAPE (syntax class) .•.••..••.••••••••.••.•••••
EVAL@COMPILE (declare: tag) .••..•.••••.•••••.•••
EVAL@LOAD (declare: tag)•.............••
EXPR (property name)•..•.......•...•...
fast s:ymbolic dump ••••••••••••••••••••••••••••••
FAST (nakefile option)
FILE CREATED (file package)•.
file mar;s
file nar.les••..•.•••.••••.•••.•••••
FILE NOT COMPATIBLE (error message) .•....•......
FI LE llOT FOUND (error message)•....•...•••.
FILE NOT OPEN (error message)•.
file package•..........•.• ,•••..•
file pointer••....•••..•.••.••
FI LE \.ION' T OPrn (error message)
FILE (property name)
FILECHANGES (property name) ····················•
FILECOMS[FL;)<] .••.••••••••••••••••••••••••••••••
FILECREATED
FILEDATES (property name)•......•......•..•
FILEFf~SlST[FILE] •.••••••••••••••••••••••••••••••
FILEGROUP (property name)
FILELINELENGTH (file package variable/parameter) .•
FILELST (file package variable/parameter)
FILEMAP DOES NOT AGREE WITH CONTENTS OF ftle-name

(error message) ..••.• .,
FILEMAP (property name) •.••..••.••••••••••.•••••
FILEPKGFLG (file package variable/parameter)

INDEX. 14. 2

Page
Numbers

14.29
14.29
14.51
14.52
14.52
14.49
14.28-29
14.31
14.28·29
14.39
14.52
14.52
14.52
14.52
14.52
14.52
14.12
14.50
14.58
14.30
14.30
14.31
14.22
14.6,11
14.54
14.7,11,19
14.29
14.15
14 .11
14.25
14.52
14.52
14.39
14.57
14.67
14.54
14.42-44
14,2°3
14.38
14.3,38
14.3-4,9
14.63·75
14.5-7
14.2
14.64,66
14.64,66-67,70
14.63
14.53-54
14.54,64,67,70
14.73
14.68
14.55,57,66
14.71,73,75

14.44
14.43
14.63

FILEPOS[X:FILE;START:END;SKIP:TAIL]
FILERDTBL (system variable/parameter)
files
FILES?[] · ... · · · · · · · · · • · · · · · ·
FILETYPE (property name)•.•......
FIRSTCOL (prettydef variable/parameter)
floating point numbers
FLTFMT[N] SUBR•......
Ff.IS (prettydef command)
Ff~S/VARS .. .
forr:iat characters
GETBRK[RDTBL] SUBR
GETF ILE MAP[FILE; FL] ..•.•.•••••.•.•••••••.••.•••.
GETREADTABLE[RDTBL] SUBR
GE TSE PR[RDTBL] SUBR
GETSYtHAX[CH;TABLE]
GETTERMTABLE[TTBL] SUBR
global variables•..............
GTJFN[FILE;EXT;V;FLAGS]
IF PROP (prettydef command)
ILLEGAL ARG (error message)•..
ILLEGAL READTABLE (error message)
ILLEGAL TERMINAL TABLE (error message) ··········
INFILE[FILE) SUBR
INFILEP[FILE] SUBR•.....•....
INFIX (type of read macro)•.........•..
IUPUT[FILE] SUBR•........................
input buffer ••....
input functions•.......•
input/output
IOFILE[FILE] SUBR•..............
J Fr~ .. .
JFNS[JFN;AC3]•.....•••....
JS YS
LASTC[FILE] SUBR•..........
LCASELST (prettydef variable/parameter)
LEFTBRACKET (syntax class)
LEFTPAREN (syntax class)•............
LHJBUF[FLG] SUBR
1 ine buffer
LI!JEOELETE (syntax class)
LINELENGTH[N] SUBR•..
line-buffering ,
line-feed
LISPXREADFN (prog. asst. variable/parameter)
LIST (makefile option)
LISTFILES[FILES] Nt.111 ••••••••••••••••••••••••••••
LISTFILESTR (file package variable/parameter)
LISTFILESl[FILES]•.......•..
literal ator.is
LOAD[FILE;LDFLG;PRINTFLG]•......•..•..•
LOADBLOCK[FN;FILE;LDFLG]•.•
LOADEDFILELST (file package variable/parameter)
LOADFNS[FNS;FILE;LDFLG;VARSJ•..•••..••.•
LOADFROM[FILE;FNS;LDFLG]•...•..•..•......
LOADVARS[VARS;FILE;LOFLGJ••..•.....•.....•
lower case

INDEX.14.3

Page
Numbers

14.7-8
14.18,39,44,47
14.1-10
14.66,72,75
14.67
14.55,57
14. 12
14.36-37
14.50
14. 73
14.25
14. 15
14.43
14.22
14 .15
14.24
14.28
14.55
14. 10
14.51-52
14.30
14.22-23,29
14.28-29
14.2,6
14.3-4
14.27
14. 1

·14.16,21.33,35
14.11-19
14.1-75
14.6-7
14.8-10
14.10
14.8-10,37
14. 16
14.62
14.25
14.25
14.35-36
14.32,35
14.29,31
14.37,55
14.12-13,16-17,32·35
14.11.19
14. 17
14.68
14.66,68.71
14. 72
14. 72
14 .12
14.39
14 .42
14.64
14.40
14 .41
14.41
14.62

lower case comments
lower case input
L-CASE[X;FLG]•........•....••..•.••...••.•
MACRO (type of read macro)•....•..•
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILE)
MAKEFILEREMAKEFLG

(file package variable/parameter) .••••••..•
MAKEFILES[OPTIONS;FILES]
margins (for prettyprint)
NCHARS[X;FLG;RDTBL) SUBR •....•....•....•...•.•..
NEW (makefile option) •..••..•.••.•••..••••.•.•.•
NEWFILE2[NAME;COMS;TYPE;UPOATEFLG) ····~·········
tlEWFILE?[NAME;CHANGEOLST] •.••...•••.•.•....•.•••
NO propname PROPERTY FOR atom (error message)
r~oa1r~o .. .
tlOCLISP (makefile option)
FIOIJE (syntax class)••..••.••.••••••••••••••
NORA I SE (TENEX command)
NOT DUMPED (error message) .•••.••••••...••••••••
NOT FOUND (error message)••••••......•••
NOT FOUND, SO IT WILL BE WRITTEN ANEW

(error message)
(t~OT PRIUTABLE) •.... , ...•••.••.••.•••••......•..••
NOTCOMPILEDFILES (file package variable/parameter)
NOTLISTEDFILES (file package variable/parameter) •.
r10T-FOUrJD: ..•..•••.•••••.••••..•••••••••••• ,,, •••
numbers•........•..................••
octal .. .
OPENF[FILE;X) SUBR
opening files
OPENP[FILE;TYPE] SUBR .•....••...•....•.•••...•..
OPIJJFN[FILE] SUBR ••••••••••••••••••••••••••••• ••
ORIG (used as a readtable)
OTHER (syntax class) ..•.•••.....•.•.••...•..••..•
OUTFILE[FILE] SUBR•.•.•....•.•••••••.....•.•
OUTFILEP[FILE] SUBR •........••..•.•••..•••..••.•
OUT PUT[FI LE] SUBR , .•.••...•..•...••..•..•
output buffer
output functions
P (prettydef command) .•.•..••••.••..•..•••.•••••
parentheses counting (by READ) ..••••••.•.•.•.•••
PEEKC[FILE] SUBR ••••••••••••••••••••••••••••••••
POSITION[FILE] SUBR ...•....•...•.•••.........•..
PP[X] NLS!:
PPV (edit cotnmand)•....••...........•......•
PP>!t(X] NLt!: .•••••••••••.•••.••••••••••••••.••••••
PRETTYCOMSPLST (prettydef variable/parameter)
PRETTYDEF[PRTTYFNS:PRTTYFILE;PRTTYCOMS;REPRINTFNS;

SOURCEFILE;CHANGES] ...•..........•.....
prettydef commands• ·•.. ••
PRETTYDEFMACROS (prettydef variable/parameter)
PRETTYFLG (prettydef variable/parameter) .•.••..•
PRETTYHEADER•.....•.•.••..•
PRETTYLCOM (prettydef variable/parameter) •.•••.•
PRETTYPRIIH[FNS; PRETTYOEFLG] .•...••.•.. ~ .••.•.••
PRETTYPRINTMACROS (prettydef variable/parameter) .•
PRETTYTABFLG (prettydef variable/parameter)

INDEX.14.4

Page
Numbers

14.59-62
14.32
14.62
14.26
14.66,68,72

14.68
14.71,75
14 .54
14.7
14.68
14.73,75
14.76
14.49
14.~9
14.67
14.30
14.32
14.71
14. 72

14.69
14'46
14.66-67,72
14.66-67,71-72
14 .41
14.12-13
14.12,19
14.8
14 .1
14.3,5,8
14.9
.14 .22
14.23
14.2,6-7
14.3-4
14. 1
14.21
14 .19·21
14.50
14.12,33
14.16,35
14.37
14.45
14.55
14.47
14.53

14.47-55,57,63,66
14.49-53
14.52,57,73-74
14.57,67
14.54
14.56·57
14.45
14.58
14 .45

PRETTYTRANFLG (clisp variable/parameter) •.•.••..
PRETTYTYPE (property name)•.....••.......••.
PRETTYTYPELST (file package variable/parameter)
primary input file•••.•..•......•
primary output file
primary readtable•...•••.............
primary terminal table•..
PRINT[X;FILE] SUBR•••••
PRINTDATE[PRTTYFILE;CHANGES]•...••.•...•
PRINTDEF[EXPR;LEFT;OEF;PRETTYOEFLG] .•.•.••••••..
PR INTFr~S[X] •••.•••••••••••••••••••••••••••••••••
PRINTLEVEL[N] SUBR••.•..•....•.•.••••
printlevel
PRHH[X;FILE] SUBR
PRIN2[X;FILE] SUBR••.....•.•..•....•.•...•
PROP (prettydef command) ..•••.••........•••..•••
0 (following a number)•.....•...•••.•....••
QUIT (tenex conunand) .••.•••.•.••••••••••••.••.••
RADIX[NJ SUBR•.•....•....................•
RAISE[MODE;TTBL] SUBR .•........•...•....•••••..•
RAISE (TENEX command) ..•............•...•..•••..
RATEST[X] SUBR•....•••...•....•..•••••.••
RATOM[FILE;RDTBL] SUBR ...•......••.....•.•••....
RATOMS[A;FILE;RDTBL]••...•......•...•...•
RC (makefile option) ...•....•.••••.....•.•..•••.
READ[FILE;RDTBL;FLG] SUBR ..•...•..••••..••...•••
read macro characters•...•.••..•.•........•.
RE ADC[FI LE] SUBR•...•..•.........•.•..••
READFILE[FILE]•...•.••....•...•..•...•
reading from strings .•...•....•••.••.••...•••.••
READLINE[RDTBL;LINE;LISPXFLG] ••.••.•••.•.•.•••••
READMACROS[FLG;RDTBL] SUBR •••••.........•.•.•.••
READP[FILE;FLG] SUBR ...•••..••.•.•.••..•.•..••••
READTABLEP[RDTBL] SUBR ••......••...••.•.•••.•.••
readtables
READVISE•...•.•.....•..•••.•...•
READ-MACRO CONTEXT ERROR (error message) ...•..••
RECOMPILE•..••...•.••...•
(REDEFINED) (typed by system) ••.....•.•.•••.••..
REMAKE (makefile option)•••.••.•.•..•.•••
RESETREADTABLE(RDTBL;FROM] SUBR .•••.•.•••....••.
RESETTERMTABLE[TTBL;FROM] SUBR .•..•••••.•..•••••
RETYPE (syntax class)••.••••...•••.••••.•.••
RIGHTBRACKET (syntax class) ..•.•.•.•.••.•.•••..•
RIGHTPAREN (syntax class) ······•••••••••••••••••
RLJFr~[JFf~]•...•.••...•••••••.•••...•••••
root name of the file •.•.•.•.•••••••...•••••••••
RPAQ[RPAOX;RPAQY) NL ...•....•.•...•••••....•••••
RPAQQ[X;Y] NL .•...•.••••••••••••••••••••.••••••••
RSTRING[FILE;RDTBL] SUBR •...••....••.•.•.•.•••.•
rubout
searching files
separator characters .•..•.•••..••..•••.•••.•••••
SEPR (syntax class) ..•..•••.••..••••••••.•..••••
SEPRCHAR (syntax class) .••••.•••••••••••••••.•••
SETBRK[LST;FLG;RDTBL] SUBR
SETREADTABLE(RDTBL;FLG] SUBR •••.••••••••••••••••

INDEX.14.5

Page
Numbers

14.67
14.74
14.75
14.1-2,4,11
14.1,4,19
14. 11, 19, 22. 29
14.28-29
14.20
14 .54
14.54·55,57
14.54
14.20
14.20·21
14.19-20
14.19-20
14.49,52
14.12,19,36
14.71-72
14.12,19,36
14.32
14.32
14.15
14.12-14,34
14 .13
14.67
14 • 11-12. 34
14.24,26-27
14.15,35
14.39
14 .11
14.17-18
14.27
14 .16
14.22
14.11,19,21-27
14. 51
14.27
14.67,72
14.39
14.68
14.23
14.29
14.29
14.25
14.25
14 .10
14.64
14. 39. 4'8
14.39,48-49
14 .13
14.33
14. 7
14.13-16,25,34
14.23,25-26
14.25
14.13-14
14.23

SETSEPR[LST;FLG;RDTBL] SUBR•
SETSYNTAX[CH;CLASS;TABLE)
SETTERMTABLE[TTBL) SUBR•..........•..
SFPTR[FILE;ADDRESS] SUBR•
SKREAD[FILE;REREADSTRING] ..•.....•.•............
SPACES[N;FILE] SUBR•
spe 11 ing correction ...•.....•..••......•.•.•...•
spelling lists•...•
SPLICE {type of read macro)
square brackets (inserted by prettyprint)•..
STOP (at the end of a file) •.•••••••.••.••.•••••
STRINGDELIM (syntax class)•........•..
strings•...•.......•.•
STRPOS[X;Y;START;SkIP;ANCHOR;TAIL)•........
SUBSYS .. .
symbolic file input•.••..•.••.•.
symbolic file output•••..•.•.•...•
syn ta:..; classes "••.•..•••••••••• "' ••••••••
SYNTAXP[CH;CLASS;TABLE]•.......
SYSBUF[FLG] SUBR ••••••••••••••••••••••••••••••••
SYSIN[FILE] SUBR •••••••••••••••••••••••••••••• ,,
SYSOUT[FILE] EXPR •••••••••••••••••••••••••• , ••••
SYSOUTDATE (system variable/parameter)
SYSPROPS (system variable/parameter)•....
TAB[POS;MINSPACES;FILE)••......••....•.
TCOt1PL .•..•. ,. •••••••••••••••••••••••••••••••••••
TEf·JEX , •••••••••••••••••••••••••••••••••
terminal .. .
terminal syntax classes•.....
terminal tables•...... ,
TERMTABLEP[TTBL] SUBR •••••••••••••••••••••••••••
TERPRI[FILE] SUBR •••••.•••••••••••••••••••••••••
UCASELST (prettydef variable/parameter)
UPDATEFILES[PRLST;FLST)
USEMAPFLG (system variable/parameter) .•.........
USERMACROS (editor variable/parameter)
USERMACROS (prettydef command)•..•
U-CASE[X] .. .
VARS[Fr~;EXPRFLG] ••••••••••••••••••••••••••••••••
VARS (prettydef command)••.
version nurabers •••••••••••••••••••••••••••••••••
WHEREIS[X;TYPE;FILES]•......•.•.............
WIDEPAPER[FLG] •••••••••••.•• , •••••••• , •••••••••••
WRITEFILE[X;FILE] •••••••••••••••••••••••••••••••
[,)(inserted by prettyprint) .••.•.••..•.••..•••
;) (carriage-return)•
II

., .. .
(follo1·1ed by a number)•
•CAREFULCOLUMNS (prettydef variable/parameter)
#RPARS (prettydef variable/parameter) ...•..•••..
(typed by system)•....•....•....•.•......
$(alt-mode)
% (escape character) .•.....•....•••••••.•••..••.
% (use in comments) •••••••••••••••••••••••••••••
%% (use in comments) ••••••••••••••••••••••••••••
& (typed by system)••.•.•.•.•.••••••..•••.
trc (use in comments)

INDEX.14 .6

Page
Numbers

14.13-14
14.24
14.28
14.7,37
14.18-19
14.20
14.52-53
14.52-53
14.26
14.55
14.39,44,54

. 14.25
14 .12
14.7
14.71
14.39-44
14.44-55
14.23-30
14.25
14.35-36
14.38
14.37-38
14.38
14.50
14.54
14.67
14.2-3,7·9
14.1,4,11-12,17,32,47
14 .29
14.28-35
14.28
14.20
14.62
14.65,75
14.44
14.51
14.51
14.62
14.40
14.50
14.2
14.73
14.57
14.44
14.55
14.17-18
14.12·13,15
14.20
14.56
14.55
14 .11. 31, 33-34
14.2
14.11-13,15,19,35
14.59
14.59-60
14.20
14.46,57

"' (use in prettydef command)•.....•.......
"'"'COMMENT** (typed by system)•..
"'*COMMENT*"'FLG (prettydef variable/parameter)
-- (typed by system)
..• (typed by system) .••••••••••.••.•.•••••.••.•
\ (typed by system) •.•••.•.•••••••.•••••••••••••
] .. .
1 (use in comments)

INDEX.14. 7

Page
Numbers

14.52
14.47
14 .4 7
14.21
14 .18
14.11,31,33
14 .17
14.59

SECTION 15

DEBUGGING • THE BREAK PACKAG£1

15.1 Debugging Facilities

Debugging a collection of LISP functions involves isolating problems within

particular functions and/or determining when and where incorrect data are boing

generated and transmitted. In the INTERLISP system, there are three facilities

which allow the user to (temporarily) modify selected function definitions so

that he can follow the flow of control in his programs, and obtain this

debugging information. These three facilities together are called the break

package. All three redefine functions in terms of a system function, break!

described below.

Break modifies the definition of its argument, a function fn, so that if a

break condition (defined by the user) is satisfied, the process is halted

temporarily on a call to fn. The user can then interrogate the state of the

machine, perform any computation, and continue or return from the call.

Trace nodifies a definition of a function fn so that whenever fn is called, its

arguments (or some other values specified by the user) are printed. When the

value of fn is computed it is printed also. (trace is a special case of

break).

i------------------------~------------------~----------------------------------The break package was written by W. Teitelman.

15.1

Breakin allows the user to insert a breakpoint instde an expression defining a

function. When the breakpoint is reached and if a break condition (defined by

the Oser) is satisfied, a temporary halt occurs and the user can again

investigate the state of the computation.

The following two examples illustrate these facilities. In the first example,

the user traces the function factorial. trace redefines factorial SQ that it

calls break1 in such a way that it prints some information, in this case the

arguments and value of factorial, and then goes on with the computa,tion. When

an error occurs on the fifth recursion, break1 reverts to interactive mode, and

a fu 11 break occur's. The situ a ti on is then the same as though the user had

originally performed BREAK(FACTORIAL) instead of TRACE(FACTORIAL), and the user

can evaluate various INTERLISP forms and direct the course of the computation.

In this case, .the user examines the variable n~ and instructs breakt to return

1 as the value of this cell to factorial. The rest , of t"'e tracing proceeds

without incident. The user wotild then presumably edit factorial to change L to

1.

In the second example, the user has constructed a non-recursive definition of

factorial. He uses breakin to insert a call to breakt just after the PROG

label LOOP. This break is to occur only on the last two iterations, i.e., when

!l is less than 2. When the break occurs, the user looks at the value of !!. •

mistakenly typing NN. However, the break is, .maintained and no damage is done.

After examining ! and m the user allows the computation to continue by typing

OK. A second break occurs after the next iteration, tti1s time with N=O. When

this break is released, the function factorial returns its value of 120.

15.2

o-pp FACTORIAL

(FACTORIAL
(LAMBDA (N)

(corm
((ZEROP N

L)
(T (!TIMES N (FACTORIAL (SUBl N])

FACTORIAL
.. TRACE(FACTORIAL)
(FACTORIAL)
... FACTORIAL(4)

FACTORIAL:
N = 4

FACTORIAL:
N = 3

FACTORIAL:
N = 2

U.S.A.
L

FACTORIAL:
N = 1

FACTORIAL:
N = 0

(FACTORIAL BROKEN)
:N
0
:RETURN 1

FACTORIAL = 1
FACTORIAL = 1

FACTORIAL = 2
FACTORIAL = 6

FACTORIAL = 24
24 ..

15.3

.. pp FACTORIAL

(FACTORIAL
(LAMBDA (N)

(PROG ((M 1))
LOOP(COND

FACTORIAL

((ZEROP N)
(RETURN M)))

(SETO M (!TIMES H N))
(SETQ N (SUBl N))
(GO LOOP])

.. BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2)
SEARCHING ...
FACTORIAL
.. FACTORIAL(5)

((FACTORIAL) BROKEN)
·:NN
U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1
:M
120
:OK
(FACTORIAL)

((FACTORIAL) BROKEN)
:N
0
:OK
(FACTORIAL)
120 ..

15.2 Breakl

.1·.

.· , ...

The basic function of the break package is breakl. Whenever INTERLISP types a

message of the form (• BROKEN) followed by ': 1 the user is then 'talking to'

breakl, and we say he is 'in a break.' breaki allows the user to interrogate

the state of the world and affect the course or the computation. It uses the

prompt character ':' to indicate it is ready to accept input(s) for evaluation,

in the same way as evalgt uses • .. •. The user may type in an expression for

evaluation as with evalqt, and the value will be printed out, followed by

another : . Or the user can type in one of the commands specifically recognized

by breakl described below.

Since break1 puts all of the power of INTERLISP at the user's command, he can

do anything he can do at evalgt. For example, he can insert new breaks on

subordinate functions simply by typing:

(BREAK fn1 fn2 ...)

or he can remove old breaks and traces if too much information is being

supplied:

(UNBREAK fn3 fn4 •..)

He can edit functions, including the one currently broken:

EDITF(fn)

For example, the user might evaluate an axpression, see that the value was

incorrect, call the editor, change the function, and evaluate the expression

again, all without leaving the break.

Similarly, the user can prettyprint functions, define new functions or redefine

old ones, load a file, compile functions, time a computation, etc. In short,

anything that he can do at the top level can be done while inside of the break.

In addition the user can examine the pushdown list, via the functions described

in Section 12, and even force a return back to some higher function via the

function retfrom or reteval.

It .is important to emphasize that once a break occurs, the user is in complete

control of the flow of the computation, and the computation will not proceed

without specific instruction from him. If the user types in an expression

whose evaluation causes an error 0 the break is maintained. Similarly if the

15.5

user aborts a computation2 initiated from within the break, the break is

maintained. Only if the user·. gives one of the conunands that exits from· the

break, or evaluates a form which does a retfrom or reteval back out of breakt,

will the computation continue. 3

Note that breakt is just another INTERLISP function, not a special system

feature like the interpreter or the garbage collector. · It has arguments which

are explained later, and returns a value, the same as fQ.!1! or cond or fil:.29 or

any other function. The value returned by break1 is called 'the value of the

break.' The user can specify this value explicitly by using the RETURN command

described below. But in most cases, the value or a is given implicitly, via a

GO or OK command, and is the ·result of' evaluating ·'the break. expression,'

brkexp, which is one of the arguments to breakl.

The break expression is an expression equivalent to the computation that would

have taken pla·ce had no break occurred. For example, if the user. breaks on the

function FOO, the break .expression is the body of the definition of FOO •.. \./_hen

the user types OK or GO, the body of FOO is evaluated, and its value .returned

as the value of the break, i.e. to whatever function called FOO. The effect is

the same as though ·no break .had occurred .• · In other words, one can t.h inls. of

breakl as a fancy ill.!• which permits interaction before an.d after evaluation.

The break expression then corresponds to.the argument to ill.!·

2---·----------------By typing control-Ei see Section 16.

3 Except that breakl does not 'turn off' control•D, i.e. a control·D will
force an immediate return back to the top level.

15.6

Break Commands

GO

OK

EVAL

RETURN form
or

RETURN fn[args]

t

!EVAL

!OK

!GO

Releases the break and allows the computation to
proceed. breakl evaluates brkexp, its first
argument, prints the value of the break·. brkexp
is set up by the function that created the call to
break1. For break or !.!::!!.£!, brkexp· is equivalent
to the body of the definition of the broken
function. For breakin, using BEFORE or AFTER,
brkexp is NIL. For breakin AROUND, brkexp is the
indicated expression. See breakin, page 15.Zl.

Same as GO except the value of brkexp is not
printed.

Same as GO or OK except that the break is
maintained after the evaluation. The user can
then interrogate the value of the break which is
bound on the variable !value, and continue with
the break. Typing GO or OK following EVAL wi 11
not cause reevpluation but another EVAL will.
EVAL is a useful command when the user is not sure
whether or not the break will produce the correct
value and wishes to be able to do something about
it if it is wrong.

The value of the indicated computation is returned
as the value of the break.
For example, one might use the EVAL command and
follow this with RETURN (REVERSE !VALUE).

Calls error! and aborts the break. i.e. makes it
"go away' without returning a value. This is a
useful way to unwind to a higher level break. All
other errors, including those encountered while
executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

function is first unbroken, then the break
expression is evaluated, and then the function is
rebroken. Very useful for dealing with recursive
functions.

Function is first unbroken, evaluated, rebroken.
and then exited, i.e.· !OK is equivalent to !EVAL
followed by OK.

Function is first unbroken, evaluated, rebroken.
and exited with value typed, i.e., IEVAL followed
by GO.

15.7

UB

@

unbrealts E.!:.!iln, a. g.

(FOO BROKEN)
:UB
FOO

and FOO is now unbroken

resets the variable lastpos, which establishes a
context for the commands ?=, ARGS, BT, BTV, BTVR,
and EDIT, and IN? described below. lastpos is tho
position of a function call on the push-down
stack. It is initialized to the function just
before the call to break!, i.e. stknth[-1;BREAK1)

@treats the rest of the teletype lino as its
argument(s). It first resets lastpos to
stk.nth[0 1;BREAK1] and then for each atom on tho
line, @ searches bacl~ward, for a call to that
atom. The following atoms are treated specially:

@ do not reset lastpos to
stknth[-1;BREAKl] but leave .it as it
was, and continue searching from that
point.

numbers if negative, move lastpos back that
number of calls, if positive, forward,
i.e. reset lastpos to stknth[n;lastpos]

°" search forward for next atom

I the next atom is a number and can be
used to specify more than one call e.g.
@ FOO I 3 is equivalent to
@ FOO FOO FOO

Example:

if the push-down stack looks like

BREAK! (13)
FOO (12)
SETQ (11)
COND (10)
PROG (9)
FIE (8)
corm (7)
FIE (6)
CONO (5)
FIE (4)
CONO (3)
PROG (2)
FUM (1)

then @ FIE COND will set lastpos to the position
corresponding to (7); @ @ COND will then set
lastpos to (5); @ FUM °"FIE to (4): and
@FIE I 3 ·1 to (3).

If @ cannot successfully complete a search. it

15.8

1=

BT

types (fn NOT FOUND), where fn is the name of the
function for which it was searching.

When @ finishes, it types the name of the function
at lastpos, i.e. stkname[lastpos]

@ can be used on brkcoms. In this case, the noxt
command on brkcoms is treated the same as the rest
of the teletype line.

This is a multi-purpose command. Its most corrunon
use is to interrogate the value(s) of the
arguments of the broken function, e.g. if FOO has
three arguments (X V Z), then typing ?= to a break
on FOO, will produce:

: ?=
X = value of X
V = value of V
Z = value of Z

?= operates on the rest of the teletype line as
its arguments. If the line is empty, as in the
above case, it prints an· of the arguments. If
the user types ?= X (CARY), he will see the value
of X, and the value of (CAR Y). The difference
between using ?= and typing X and (CAR Y) directly
to breakt is that ?= evaluates its i.nputs as of
lastpos, i.e. it uses stk.eval. This provides a
way of examing variables or performing
computations as of a particular point on the
stack.. For example, @ FOO I 2 followed by ?= X
will allow the user to examine the value of X in
the previous call to FOO, etc.

?= also. recognizes numbers as refering to the
correspondingly numbered argument, i.e. it uses
stkarg in this case. Thus ·

:@ FIE
FIE
: ?= 2

will print the name and value of the second
argument or FIE.

?= can also be used on brkcoms, in which case the
next command on brkcoms is treated as the rest of
the teletype line. For example, if brkcoms is
(EVAL ?= (X Y) GO), brkexp will be evaluated, the
values of X and Y printed, and then the function
exited with its value being printed.

Prints a backtrace of Junction names onlv starting
at lastpos. (See discussion of @ above) The
several nested calls in system packages such as
break, edit, and the top level executive appear as
the single entries ••BREAK••, ••EDITOR••, and
••TOP•• respectively.

15.9

BTV

BTV!

Prints a back trace of function names wt th
variables beginning at lastpos.

Same as BTV except also prints arguments of
internal calls to eval. (See Section 12)

Same as BTV except prints everything on stack.
(See Section 12).

BT, BTV, BTV•, and BTV! all permit an optional functional argument which is a

predicate that chooses functions to be ~kipped on the backtrace, e.g., BT SUBRP

will skip all SUBRs, BTV (LAMBDA (X) (NOT (MEMS X FOOFNS))) will skip all but

those functions on FOOFNS. If used a$ a brkcom the functional argument is no

longer optional, i.e. the next brkcom must either be the functional argument,

or NIL if no functional argument is to be applied.

For BT, BTV, srv-, and BTV!, if control·P is used.to change a printlevel during

the backtrace, the printlevel will be restored after the backtrace is

completed.

ARGS Prints the names of the variables bound at
lastpos, i.e. variables[lastpos) (Section 12).
For most cases, these are the arguments to the
function entered at that posit ion, i.e.
arglist[stkname[lastposJJ.

The following two conunands are for use only with unbound atoms or undefined

function breaks (see Section 16).

= form, = fn[argsJ only for the break following an unbound atom
error. Sets the atom to the value of tho form, or
function and arguments, exits from the break
returning that value, and continues the
computation, e.g.

U.S.A.
(FOO BROKEN)
:= (COPY FIE)

sets FOO and goes on.

15.10

-> expr for use either with unbound atom error, or
undefined function error. Rep1.fces the express ion
containing the error with expr (not the value of
expr) e.g.,

EDIT

U.D.F.
(F001 BROKEN)
:-> FOO

changes the F001 to FOO and continues tho
computation.

expr need not be atomic, e.g.

U.S.A.
(FOO BROKEN)
:->(QUOTE FOO)

For U.O.F. breaks, the user can specify a function
and initial arguments, e.g.

U.D.F.
(MEMBERX BROKEN)
:·> MEMBER X

Note that in the case of a U.D.F. error occurring
immediately following a call to «J?ply, e.g.
(APPLY X V) where the value of x is FOO and FOO is
undefined, or a U.B.A. error immediately following
a call to eval, e.g. (EVAL X), where the value of
x is FOO----aild FOO is unbound, there is no
expression containing the offending atom. Iilthis
case, ·> cannot operate, so 1 is printed and no
action taken.

designed for use in conjunction with breaks caused
by errors. facilitates editing the expression
causing the break:

NON-NUMERIC ARG
NIL
(I PLUS BROKEN)
:EDIT
IN FOO ...
(IPLUS X Z)
EDIT
•(3 Y)
•OK
FOO

and user can continue by typing OK, EVAL, etc.

4-------------~---> does not change just brkexp: it changes the function .or expression
containing the erroneous form. In other words. the user does not have to
perform any additional editing.

15 .11

Th is command is very simple conceptually, but complicated in its :l.mplementa t ion

by all of the exceptional cases involving interactions with compiled functions,

breaks on user functions, error breaks, breaks within breaks, et al.

Therefore, we shall give the following simplified explanation which will

account for 90% of the situations arising in actual usage. For those others,

EDIT will print an appropriate failure message and return to the break.

EDIT begins by searching up the stack beginning at lastpos (set by @ command,

initially position of the break) looking for a form, i.e. an internal call to

eval. Then EDIT continues from that point looking for a call to an interpreted

function, or to eval. It then calls the editor on either the EXPR or the

argument to eval in such a way as to look for an expression !S to the form that

it first found. It then prints the form. and permits interactive editing to

begin. Note that the user can then type successive O's to the editor to see

the chain of superforms for this computation.

If ·the user exits from the edit with an OK, the break expression is reset, if

possible, so that the user can continue with the computation by simply typing

OK. 5 However, in some situations, the break expression cannot be reset. For

example. if a compiled function FOO incorrectly .called putd and caused the

error ARG NOT ATOM followed by a break. on putd, EDIT might be able to find the

form headed by FOO, and also find that form in some higher interpretod

function. But after the user corrected the problem in the FOO-form, if any, he

would still not have in any way informed EDIT what to do about the immediate

problem, i.e. the incorrect call to putd. However, if FOO were interpreted

EDIT would find the putd form itself, so that when the user correctod that

form, EDIT could use the new corrected form to reset the break expression. Tho

two cases are shown below:

5--Evaluating the new brkexp will involve reevaluating the form that causes
the break, e.g. if (PUTD (QUOTE (FOO)) big•computation) were handled by
EDIT, big-computation would be reevaluated.

15 .12

IN?

ARG NOT ATOM
(FUM)
(PUTD BROKEN)
:EDIT
rn FIE •••
(FOO X)
EDIT
"" (2 (CAR X))
"'OK
NOTE: BRKEXP NOT CHANGED
FIE
: ?=
U = (FUM)
:(SETQ U (CAR U))
FUM
:OK
PUTD

ARG NOT ATOM
(PUTO BROKEN)
:EDIT
IN FOO •••
(PUTO X)
EDIT
111 (2 (CAR X))
•OK
FOO
:OK
PUTD

similar to EDIT, but just prints parent form, and
superform, but does not call editor, e.g.

ATTEMPT TO RPLAC NIL
T
(RPLACD BROKEN)
:IN?
FOO: (RPLACD X Z)

Although EDIT and IN? were designed for error breaks. they can also be useful

for user breaks. For example. if upon reaching a break on his function FOO,

the user determines that there is a problem in the caJ l to FOO. he can edit the

calling form and reset the break expression with one operation by using EDIT.

The following two protocol's with and without the use of EDIT; illustrate this:

15.13

+

(FOO BROKEN)
: ?=
X = (A B C)
y = 0
:BT

FOO
SETO
COHO find which function
PROG FOO is called from
FIE

:EDITF(FIE)
EDIT
*F FOO P

(aborted with tE)

(FOO V U) edit it
*(SW 2 3)
*OK
FIE
:(SETO Y X) reset X and Y
(A B C)
: (SETQQ X 0) '
D
: ?=
X = D
Y = (A B C)
:OK
FOO

check them

(FOO BROKEN)
: ?=
X = (A B C)
y = 0
:EDIT
IN FIE •••
(FOO V U)
EDIT
•(SW Z 3)
*OK
FIE
:OK
FOO

REVERT. goes back · to position lastpos on stack and

+ reenters the function called at that point With

+ the arguments found on the ~t~ck. 7

+ REVERT is useful for continuing a computation in the situation where a bu~ is

+ discovered at some point below where the problem actually occurred. REVERT

+ essentially says "go back there and start over." 8

+
+
+

+
+

? prints the names of the break commands.

6--
~ and X have not been changed, but brkexp has. See previous footnote.

7

8

REVERT can also be given the position using the conventions described for @
on page 15.8, e.g. REVERT FOO ·1 is equivalent to @ FOO ·1 followed by
REVERT.

REVERT will work correctly if the names or arguments to the function, or
even its function type, have been changed.

15 .14

Brkcoms

The fourth argument to breakl is brkcoms, a list of break commands that breakt

interprets and executes as though they were teletype input. One can think of

brkcoms as another input file which always has priority over the teletype.

Whenever brkcoms=NIL, break1 reads its next command from the teletype.

Whenever brkcoms is not NIL, break1 takes as its next command car[brkcoms) and

sets brkcoms to cdr[brkcoms]. 9 For example, suppose the user wished to see the

value of the variable ~ after a function was evaluated. He would set up a

break with brkcoms=(EVAL (PRINT X) OK). which would have the desired effect.

The function ill.£! uses brkcoms: it sets up a break with two commands; the

first one prints the arguments of the function, or whatever the user specifics,

and the second is the command GO, which causes the function to be evaluated and

its value printed.

If brkcoms is not NIL, the value of a break command is not printed. If you

desire to see a value, you must print it yourself, as in the above example with

the command (PRINT X).

Note: whenever an error occur.s, brkcom.s i.s .set to NIL, and a Ju·L L tnteractive
break. occur.s.

Brkfile

The break package has a facility for redirecting ouput to a file. The variable

brkfile should be set to the name or the file, and the file must be opened.

9--Normal ly, when a user breaks or traces a function, the value of brkcoms for +
the corresponding call to break1 will be defaulted to NIL. However, it is +
possible to specify a list of break conunands, as described in the +
discussion of break and breakt below. +

15.15

All output resulting from brkcoms will be output to brkfile, e.g. output due to

TRACE. Output due to user typein is not affected, and will always go to the

terminal. brkfile is initially T.

Breakmacros

Whenever an atomic command 1s given break1 that it does not recognize, either

via brkcoms or the teletype, it searches the list breakmacros for tho command.

The form of breakmacros is ... (macro command 1 command2 ..• commrmdn) ...) .

If the command is defined as a macro, break1 simply appends its definition,

which is a sequence of commands, to the front of brkcoms, and goes on. lf the

command is not contained in breakmacros, it is treated as a function or

variable as before.to

Example: the command ARGS could be defined by including on breakmacros:

(ARGS (PRINT (VARIABLES LASTPOS T)))

+ Breakresetforms

+ If the user is developing programs that change the way a user and INTERLISP

+ normally interact. e.g. change or disable the interrupt or line-editing

+

+

+

+
+
+
+
+

characters, turn off echoing, etc., debugging them by breaking or tracing may

be difficult, because INTERLISP might be in a 'funny• state at the time of the

break.. break reset forms is designed to solve this problem. The user puts ·on

breakresetforms expressions suitable for use in conjunction with resetform

10---If the command is not the name of a defined function, bound variable, or
lispx command, break1 will attempt spelling correction using breakcomslst
as a spelling list. If spelling correction is unsuccessful, breakt will go
ahead and call lispx anyway, since the atom may also be a misspelled
history command.

15.16

(section 5). 11 When a break occurs, breakl evaluates each expression on +

breakresetforms before any interaction with the terminal, and saves the values. ~

When the break expression is evaluated via an EVAL, OK, or GO, breakt first +

restores the state of the system with respect to the various expressions on +

breakresetforms. When (if') control return.s to break1, the expressions on +

breakresetforms are again evaluated, and their values saved. 12 When the break ~

is exited via an OK, GO, RETURN, or command, breaki again restores state. Thus +

the net effect is to make the break invisible with respect to the user 1 s +

programs, but nevertheless allow the user to :interact in the break in the "°"

normal fashion. +

15.3 Break Functions

breakt[brkexp;brkwhen;brkfn;brkcoms;brktype)

is an nlambda. brkwhen determines whether a break

is to occur. If its value is NIL. brkoxp is

evaluated and returned as the value of brenk 1 .

Otherwise a break occurs and an identifying

message is printed using brkfn. Conunands are then

taken from brkcoms or the teletype and

interpreted. The commands, GO, !GO, OK, !OK,

RETURN and ~. are the only ways to leave breok1.

The command EVAL causes brkexp to be evaluated,

and saves the value on the variable !value. Other

11---i .e. the value of each form is its 'previous state, 1 so that the effect of +

12

evaluating the form can be undone by applying car of the form to the value, +
e.g. radix, print level, line length, setreadtablEi", interruptchar, etc., all +
have this property. +

Because a lower function might have changed the state of the system with
respect to one of the these expressions!

15.17

+
+

commands can

breakmacros.

be defined for

brktype is NIL for

break1 via

user breaks, ·

INTERRUPT for control-H breaks, and ERRORX for

error breaks.

For error breaks, the input buffer is cleared and saved. (For control-H

breaks, the input buffer was cleared at the time the control·H was typed, see

Section 16.) In both cases, if the break returns a value, i.e., is not aborted

via t or control-D, the input buffer will be restored (see Section 14).

breakO[fn;when;coms] sets up a break on the function fn by redefining

fn as a call to breaki with brkex~. an equivalent

definition of fn, and when, f~, and ~· as

brkwhen, brkfn, brkcoms. Puts property BROKEN on

property list of fn with value a gens:rm defined

with the original definition. Puts property

BRKINFO on property list of fn with value (BREAKO

when corns) (For use in conjunction with rebreak).

Adds fn to the front of the list brokenfns. Value

is fn.

If fn is non-atomic and of the form (fn1 IN fn2),

breakO first calls a function which changes the

name of fn1 wherever it appears inside of fn2 to

that of a new function, fn1-IN-fn2, which it

initially defines as fnt. Then breakO proceeds to

break. on fn1-IN-fn2 exactly as described above.

This procedure is useful for breaking on a

function that is called from many places. but

where one is only interested in th·e call from a

specific function. e.g. (RP LAC A IN FOO) ,

15.18

(PRINT IN FIE), etc. It is similar to breakin

described below, but can be performed even when

FiV2 is compiled or blockcompiled, whereas brenl~in

only works on interpreted functions.

If !!!..! is not found in fn2, breakO returns the

value (fnl NOT FOUND IN fn2).

If fn1 is found in fn2, in addition to breaking

fn1-IN-fn2 and adding fn1-IN-fn2 to the list

brokenfns, breakO adds fn1 to the property value

for the property NAMESCHANGEO on the property list

of fn2 and adds the property ALIAS with the value

(fn2. fni) to the property list of fn1-IN-fn2.

This will enable unbreak to recognize what changes

have been made and restore the function fn2 to its

original state.

If fn is nonatomic and not of the above form,

break.O is called for each member of fn using the

same values for when, ~· and file specified in

this call to breakO. This distributivity permits

the user to specify complicated break conditions

on several functions without excessive retyping,

e.g.•

breakO[(FOOl ((PRINT PRINl) IN (F002 F003)));
(NEQ X T):(EVAL ?= (Y Z) OK)]

will break on F001, PRINT-IN·F002, PRINT•IN·F003,

PRIN1-IN·f002 and PRIN1·IN·F003.

If' f.!l is non-atomic, the value of breakO is a list

of' the individual values.

15 .19

break[x]

trace(x]

is a nospread nlambda. For each atomic argument,

it performs break.O[atom;T]. For each list, it

performs apply[BREAKO;list]. For example,

break[F001 (F002 (GREATERP N 5) (EVAL))]

equivalent to breakO[F001,T] and

breakO[F002; (GREATERP N 5); (EVAL)]

is a nospread nlambda. For each atomic argument,

it performs breakO[atom:T:(TRACE ?= NIL GO)J 13 For

each list argument, ill is the function to be

traced, and cdr the forms the user wishes to see,

i.e. £!!!.£! performs:

breakO[car[list];i;list[TRACE;?=; cdr[list],GO]]

For example, TRACE(F001 (FOOZ Y)) will cause both

F001 and F002 to be traced. All the arguments of

FOOl will be printed; only the value of Y will be

printed for F002. In the special case that tho

user wants to see only the value, he can perform

TRACE ((fn)). This sets up a break with commands

(TRACE ?= (NIL) GO).

Note: the user can always call breakO himself to obtain combination of options

of break1 not directly available with break and ~· These two functions

merely provide convenient ways of calling breakO. and will serve for most uses.

j3---------------------••-•••••-•••••••••••••-•••o••••••••••••••••••••-••••••••

The flag TRACE is checked for in breakt and causes the message 'function : •
to be printed instead of (function BROKEN).

15.20

Break in

Break in enables the user to. insert a break, i.e. a call to break1, at a

specified location in an interpreted function. For example, if foo calls fio,

inserting a break in foo before the call to fie is similar to breaking fie.

However, break.in can be used to insert breaks before or after prog labels,

particular SETO expressions, or even the evaluation of a variable. This is

because breakin operates by calling the editor and actually inserting a call to

breakl at a specified point inside of the function.

The user specifies where the break is to be inserted by a sequence of aditor

commands. These commands are preceded by BEFORE. AFTER, or AROUND, wh 1 ch

breakin uses to determine what to do once t~e editor has found the specified

point, i.e. put the call to break1 BEFORE that point, AFTER that point. or

AROUND that point. For example, (BEFORE COND) will insert a break before the

first occurrence of cond, (AFTER COND Z 1) will insert a break after the

predicate in the first cond clause, (AFTER BF (SETQ X &)) after the last place

X is set. Note that (BEFORE TTY:) or (AFTER TTY:) permit the user to type in

commands to the editor, locate the correct point, and verify it for himself

using the P command if he desires, and exit from the editor with OK. 14 breakin

then inserts the break BEFORE, AFTER, or AROUND that point.

For breakin BEFORE or AFTER, the break expression is NIL, since the value of

the break. is irrelevant. For breakin AROUND, the break expression will be the

indicated form. In this case, the user can use the EVAL command to evaluate

that form, and examine its value, before allowing the computation to proceed.

For example, if the user inserted a break after a £2!1.9 predicate, e.g.

j4--------------------------------····-----·--···------------·-----------------A STOP command typed to TTY: produces the same effect as an unsuccessful
edit command in the original specification, e.g., (BEFORE CONDO). In both
cases, the editor aborts, and breakin types (NOT FOUND).

15.21

(AFTER (EQUAL X Y)), he would be powerless to alter the flow of computation if

the predicate were not true, since the break would not be reached. However, by

breaking (AROUND (EQUAL X V)), he can evaluate the break expression, i.e.

(EQUAL X Y), look at its value, and return something else if he wished.

The message typed for a break.in break, is· ((fn) BROKEN). where fn is the name

of the function inside of which the break was inserted. Any error. or typing

control-E, will cause the full identifying message to be printed, e.g.

(FOO BROKEN AFTER CONO 2 1).

A special check is made to avoid inserting a break inside of an expression

headed by any member of the list nobreaks, initialized to (GO QUOTE D), since

this break would never be activated. For example, if (GO L) appears before the

label L, breakin (AFTER L) will not insert the break inside of the GO

expression, but skip this occurrence of L and go on to the next L, in this case

the label L. Similarly. for BEFORE or AFTER breaks, break in checks to make

sure that the break is being inserted at a 11 safe 11 place. for example, if the

user requests a break (AFTER X) in (PROG (SETQ)(&) • 0), the break will

actually be inserted AFTER (SETQ X &) , and a message printed to this effect,

e.g. BREAK INSERTED AFTER (SETQ X &).

breakin[fn;where;when;comsJ breakin is an nlambda. ~ and £2.!l!! are similar

to when and £2.!!l! for breakO, except that if when

is NIL, T is used. where specifies where in the

definition of' fn the call to breakl is to be

inserted. (See earlier discussion).

If fn is a compiled function, break in returns

(fn UNBREAKABLE) as its value.

If fn is interpreted, breakin types SEARCHING ...

15.22

unbreak[x]

unbreakO[fn]

while it calls the editor. If the location

specified by where is not found, breakin types

(NOT FOUND) and exits. Ir it is found, break in

adds the property BROKEN-IN with value T, and the

property BRKINFO with value (where when corns) to

the property list of fn, and adds fn to the front

of the list brokenfns~

Multiple break points, can be inserted with a

single call to breakin by using a list of the form

((BEFORE ...) (AROUND ...)) for where. It is

also possible to call break or ~ on a function

which has been modified by breakin, and conversely

to breakin a function which has been redefined by

a call to break or ~·

unbreak is a nospread nlambda. It takes nn

indefinite number of functions modified by break,

~. or breakin and restores them to their

original state by calling unbreakO. Value is list

of values of unbreakO.

unbreak[] will unbreak all functions on brokenfns,

in reverse order. It first sets brkinfolst to

NIL.

unbreak[T] unbreaks just the first function on

brokenfns, i.e., the most recently broken

function.

restores f.u to its original state. If !!l was not

15.23

unbreakin[fn]

rebreak[x]

broken, value is (NOT BROKEN) and no changes are

made. If fn was modified by breakin, unbreakin is

called to edit it back to its original state. If

fn was created from (fn1 IN fn2), i.e. if it hns a

property ALIAS,. the function in which fn appanrs

is restored to its original state. All dummy

functions that were created by the break are

eliminated. Adds property value of BRKINFO to

(front of) brkinfolst.

Note: unbreakO[(fn1 IN fn2)] is allowed: unbraakO

will operate on fn1-IN·fn2 instead.

performs the appropriate editing operations to

eliminate all changes made by breakin. fn may bo

either the name or definition of a function.

Value is fn. Unbreakin is automatically called by

unbreak if fn has property BROKEN-IN with value T

on its property list.

is an nlambda, no.spread function for rebreaking

functions that were previously broken without

having to respecify the break. information. For

each function on ~· rebreak. searches brkinfolst

for break(s) and performs the corresponding

operation. Value is a list of values

corresponding to calls to breakO or break in. If

no information is found for a particular function,

value is (fn - NO BREAK INFORMATION SAVED).

rebreak[] rebreaks everything on brkinfolst, i.e.,

rebreak[] is the inverse of unbreak[J.

15.24

changename[fn;from;to)

virgin fn[fn; flg]

rebreak[T) rebreaks just the first break on

brkinfolst, i.e., the function most recently

unbroken.

changes all occurrences of from to lQ in fn. fn

may be compiled or blockcompiled. Value is fn if

f.!:.2!!! was found, otherwise NIL. Does not perform

any modifications of property lists. Note that

f.t.2.!!! and 1Q do not have to be functions, e.g. they

can be names of variables, or any other literals.

is the function that knows how to restore

functions to their original state regardless of

any amount of breaks, breakins, advising,

compiling and saving exprs, etc. It is used by

prettyprint, define, and the compiler. If

flg=NIL, as for prettyprint, it does not modify

the definition of fn in the process of producing a

11 clean 11 version of the definition, i.e. it works

on a copy. I~ f.!s=T as for the compiler and

define, it physically restores the function to its

original state, and prints the changes it is

making, e.g. FOO UNBROKEN, FOO UNADVISED, FOO

NAMES RESTORED, etc. Value is the virgin function

definition.

b~ktra.ce[pos1; pos2 ;skipfn ;varsflg ;• form11 flg ;allflg) prints back trace from

pos 1 to pos2. If

skipfn[stkname[pos]J

skipfn

is T,

is not NIL, and

pos is skipped

(including all variables).

varsflg=T for backtrace a la BTV

varsflg=T, 11 form11 flg=T - BTV•

15.25

varsflg:T, allflg:T 0 BTV!

15.26

Index for Section 15

AFTER (as argument to breakin)
ALIAS (property name)
ARGLIST[X]•................
ARGS (break command)
AROUND (as argument to breakin)•....
back trace ,
BAKTRACE[FROM;TO;SKIPFN;TYPE]•.........
BEFORE (as argument to brea~1n)•..
BREAK [X] NL~•........... , •...••. .:. •••••••.•••
break cornr:iands ..••...•......•.•.••...••••• , •.•.•
break expression
BREAK INSERTED AFTER (typed by breakin)
break package
BREAKCOMSLST (break variable/parameter)
BREAKIN[FN;WHERE;WHEN;BRKCOMS] NL•...
BREAKMACROS (break variable/parameter)•.
breakpoint
BREAKRESETFORMS (break variable/parameter) ..•...
BREAKO[FN;WHEN;COMS;BRKFN;TAIL]
BREAKl[BRKEXP;BRKWHEN;BRKFN:BRKCOMS;BRKTVPE) NL
BRKCOMS (break variable/parameter)•••
BRKEXP (break variable/parameter)•.•.
BRKFILE (break variable/parameter)
BRKFN (break variable/parameter)•....
BRKINFO (property name)••.••...........
BRKINFOLST (break variable/parameter)•.••.••
BRKTYPE (break variable/parameter)••.•••.
BRKWHEN (break variable/parameter) ..•...........
BROKEN (property name)•............•........
BROKEN (typed by system)•.....•..
BROKENFNS (break variable/parameter) .•.....•.••.
BROKEN-IN (property name) •.....••.........•.•...
BT (break command)•..•.....•.•...•
BTV (break command)
BTV! (break command)•...............
B TVlil (break command)•...........
CHANGENAME[FN;FROM;TO]•.........
control-D
control-E
control-H
control-P
debugging••
EDIT (break command)•....................•.
editing compiled functions ...•....•.............
ERROR![] SUBR
EVAL (break command)•.............•......••
EVALQT[CHAR]•.
(f n 1 I t~ f n 2) •
(fnl NOT FOUND IN fn2) ...•.................•.•.•
fn1-IN-fn2•....
GENSYM[CHAR]•••.•.
GO (break command)•......•..•...•
input buffer
IN? (break command)•.•.•......••..
LASTPOS (break variable/parameter) •••..••..••••.
NAMES RESTORED (typed by system) ...•.....•.••.••

INDEX.15.1

Page
Numbers

15.7,21
15.19,24
15. 10
15.8, 10
15.7,21
15.9-10,25
15.25
15.7,21
15.1,7,20,23
15.7-15
15.6,12
15.22
15.1-26
15. 16
15.2,7,19,21-24
15.16,18
15.2
15.16
15.18-20,22,24
15.1-2,4-18,20·22
15.9, 15-18
15.6-7,9,11-12,14,17·18
15.15
15.8,17-18
15 .18. 23·24
15.23-24
15.18
15.17-18
15.18
15.4
15.18-19,23
15.23-24
15.8-9
15.8,10
15. 10
15.8,10
15.25
15.6, 18
15.6,22
15.18
15.10
15.1
15.8,11-13
15.25
15.7
15.7,15,17,21
15.5
15.18,24
15 .19
15.18-19,24
15.18
15.6-7,15,17
15.18
15.8,13
15.8·10,12
15.25

NAMESCHAtrnEo (property name) ••••••••••.•••.•••••
(NO BREAK INFORMATION SAVED) ••••••••••••••••••••
NOBREAKS (break variable/parameter) ••..•.•.•.•••
(f~OT BROKEf~) ..•.•••.••••..•.•••••••••..•••••••••
(NOT FOUND) (typed by break) •••••••••.••••••••••
(UOT FOUUD) (typed by break in)
NOTE: BRKEXP NOT CHANGED. (typed by break) ••••••
OK (break cornrnand) .•••••..••••••••.••.•. , •••.•••
prompt character- .. .
RE BREAK[><] NL* ••.•..••••••••••••••••••••••••••••
RETEVAL[POS;FORM) SUBR ••••••• ; •••••••••••••• ~ •••
RETFROM[POS ;VALUE] SUBR
RE TURIJ (break command) •••.••••••••••••••••••••••
REVERT (break command) .•••••••••••••••.•••••••••
SEARCHING ••• (typed by breakin) ••••••••••••••••.
spelling correct1on •••••••••••.•••••••••••••••••
spelling list
STKARG[N;POS) SUBR ••••••••••••••••••••••••••••••
STKEVAL[POS;FORM] SUBR ••••••••••••••••••••••••••
STOP (edit command) •••••••••••••••••••••••••••••
TRACE[X] NL*•..•••.••.•••••• • •...•. -•••••
TTY: (edit command) •••••••••••.•••••••••••••••••
UB (breaK Coraman·d) •••.••••••••••••••••••••••••••
UNADVISED (typed by system) •••••••••••••••••••••
ur~BREf\K[x] NL* •••••••••••••••••••••••••••.•••••••
(UNBREAKABLE) •••••••••••••••••••••••••••• , ••••••
UNBREAKirJ[FN] •••••••••••••••••••••••••••••••••••
UNBREAKO[FN;TAIL) •••••••••••••••••••••••••••••••
UNBROKEN (typed by system)
U.S.A. breaks
U.O.F. breaks•••••••••••..•..••••••
\ 1 alue of a break ...•...•...•.•.•••..•••.•...••••
VARIABLES[POS] ••••••••••••••••••••• , ••••••••••••
VIRGINFN[FN;FLG] ••• •· •••••••••••••••••••••••••••
! EVAL (break command) •••••••••••••••••••••••••••
! GO (break corrunand) •...•..••.••••••.•.•••.•...••
! OK (break colTll':'land) ..•.••.•••••••••••••••••• , •••
!VALUE (break variable/parameter) •••••••••••••.•
BREAK (in backtrace) .•.••••.••••••••••••••••
EDITOR (in backtrace) •••.••..•.••.•••...••••
"'*TOP:R"' (in bt1ckt"race) •..•••••••••••••.•••••••••
-> (break corrunand) ••....•....•..•.•.••..•..•..•.

: (typed by systeni) ······~······················
= (break cor.unand) •.•.•.....••.••..•...•.••.••••.
? (break cor.unand) •.••.••.••.•••••••••.•••.••••••
?= (break command) .•.•••••.•••.••.••.•.•••.•••••
@ (break command) ..•..••••••..•.••.••••.••••••••
t (break command) ..•..•.•••••••.••.•.•••••••••••
.. (typed by system)•.•...•.••••.••••••.•••••

INDEX.15.2

Page
Numbers

15.19
15.24
15.22
15.24
15.9
15.21,23
15.12
15.6-7,12,15,17
15.4
15.18,24
15.5
15.5
15.6-7,17
15.14
15.22
15.16
15 .16
15.9
15.9
15.21
15.1,7,15,20,23
15.21
15.8
15.25
15.19,23·24
15.22
15.24
15.23-24
15.25
15 .10
15 .11
15.6
15.10
15.25
15.7
15.7,17
15.7,17
15.7,17
15.9
15.9

'15.9
15 .11
15.4
15 .10
15.14
15.8·9
15.8-9,12
15.7.17
15.4

SECTION 16

ERROR HANDLING

16.1 Unbound Atoms and Undefined Functions

Whenever the interpreter encounters an atomic form with no binding on the push

down list, and whose value contains the atom NOBIND, 1 the interpreter calls

the function faulteval. Similarly, faulteval is called when a list is

encountered, £2..!: of which is not the name of a function or a function object. 2

The value returned by faulteval is used by the interpreter exactly as though it

were the value of the form.

faulteval is defined to print either U.B.A., for ~n~ound !tom, or U.D.F., for

yn.Qefined function, and then to call breakl giving it the offending form as
. 3 .

brkexp. Once inside the break, the user can set the atom, define the function,

return a specified value for the form using the RETURN co1M1and, etc., or abort

i-------------------------·------------------·····--·-·-·--·-------------------All atoms are initialized (when they are created by the read program) with

2

3

their value cells (car of the atom) NOBIND, their function cells NIL, and
their property lists(cdr of the atom) NIL.

See Appendix 2 .for complete description of INTERLISP interpreter.

If DWIM is enabled (and a break is going to occur), faulteval also prints
the offending form (in the case of a U.B.A., the parent form) and the name
of the function which contains the form. For example, if FOO contains
(CONS X FIE) and FIE is unbound, faulteval prints:
U.S.A. FIE (in FOO] in (CONS X FIE). Note that if DWIM is not enabled, the
user can obtain this information after he is inside the break via the IN?
command.

16.1

the break using the f command. If the break is exited with a value, the

computation will proceed exactly as though no error had occurred. 4

The decision over whether or not to induce a break depends on the depth of

computation, and the amount of time invested in the computation. The actual

algorithm is described in detail below in the section on breakcheck. Suffico

it to say that the parameters affecting this decision have 'been adjusted

empirically so that trivial type-in errors do not cause breaks, but deep errors

do.

16.2 Terminal Initiated Breaks

Control-H

Section 15 on the break package described how the user could cause a break whon

a specified function was entered. The user can also indicate his desire to go

into a break at any time while a program is running by typing control-H. 5 At

the next point a function is about to be entered, the function interrupt is

called instead. interrupt types INTERRUPTED BEFORE followed by the function

4--A similar procedure is followed whenever ~ or apply* are called with an

5

undefined function, i.e. one whose f.!llll is NIL. In this case, faultapplx
is called giving it the function as its first argument and the list of
arguments to the function as its second argument. The value returned by
fau 1 tapply is used as the value of ~ or apply*. faultapply is definod
to print U.O.F. and then call breakl giving it
(APPLY (QUOTE fn) QUOTE args)) as brkexp. Once inside the break, the usor
can define the function, return a specified value, etc. If the break is
exited with a value, the computation will proceed exactly as though no
error had occurred. faultapply is also called for undefined function calls
from compiled code.

As soon as control-H is typed, INTERLISP clears and saves the input buffer,
and then rings the bell, indicating that it is now safe to type ahoad to
the upcoming break. If the break returns a value, i.e., is not nborted via
' or control·D, the contents of the input buffer before the control-H was
typed will be restored.

16.2

name, constructs an appropriate break expression, and then calls break1. Tho

user can then examine the state of the computation, and continue by typing OK,

GO or EVAL, and/or retfrom back to some previous point, exactly as with a usor

break. Control-H breaks are thus always 1 safe'. Note that control-H breaks

are not affected by the depth or time of the computation. However, they only

occur when a function is called, since it is only at this time tha~ the system

is in a "clean" enough state to allow the user to interact. Thus, if a

compiled program is looping without calling any functions, or is in a I/O wait,

control-H will not affect it. Control-B, however, will.

Control-B

Control-B is a stronger interruption than control-H. It effectively generates

an immediate error. This error is treated like any other error except that it

always causes a break, regardless of the depth or time of the computation. 6

Thus if the function FOO is looping internally, typing control-B will cause the

cor.iputation to be stopped, the stack unwound to the point at which FOO was

called, and then cause a break. Note that the internal variables of FOO are

not available in this break, and similarly. FOO may have already produced some

changes in the environment before the control·B was typed. Therefore whenever

possible, it is better to use control·H instead or control-B.

Control-E

If the user wishes to abort ~ computition, without causing a break, he should

type control-E. Control-E does not go through the normal error machinery of

6--However, setting helpflag to NIL will suppress the break. See discussion
of breakcheck below.

16.3

scanning the stack, calling breakcheck, printing a message, etc. as described

below, but simply types a carriage-return and unwinds.

16.3 Other Types of Errors

In addition to U.B.A. and U.O.F. errors, there are currently 28 other error

types in INTERLISP, e.g. P·STACK OVERFLOW, NON-NUMERIC ARG, FILE NOT OPEN,

etc. A complete list is given later in this section. When an error occurs,

the decision about whether or not to break is handled by breakcheck and is the

same as with U.S.A. and U.D.F. errors. Ir a break is to occur, the exact

action that follows depends on the ty~e of error. For example, if a break. is

to occur following evaluation of (RPLACA NIL (ADD1 5)) (which causes an

ATTEMPT TO RPLAC NIL error), the message printed will be (RPLACA BROKEN),

brkexp will be (RPLACA UV W), U will be bound to NIL, V to 6, and W to NIL,

and the stack will look like the user had broken on rplaca himself. Following

a NON-NUMERIC ARG error, the system will type IN followed by the name of the

most recently entered function, and then (BROKEN). The system will then·

effectiv~ly be in a break tnstde of this function. brkexp will be a call to

ERROR so that if the user types OK or EVAL or GO, a ? will be printed and the

break maintained. However, if the break is exited with n. valu.e Via the RETURN

command, 7 the computation will proceed exactly as though no error had occur.red.

16.4 Breakcheck - Uhen to Break

The decision as to whether or not to induce a break when an error occurs is

handled by the function breakcheck. 8 The user can suppress all error breaks by

8 Breakcheck is not actually avaUable to the user for· advising or breaking
since the error ~ackage is block-compiled.

16.4

setting the variable helpflag to NIL (initially set to T). If holpflag:T, tho

decision is affected by two factors: the length of time spent in tho

computation, and the depth of the computation at the time of the error. 9 If the

time is greater than helptime or the depth is greater than helpdepth,

breakcheck returns T, meaning a break will occur.

Since a function is not actually entered until its arguments are evaluatod, 10

the depth of a computation is defined to be the sum of the number of function

calls plus the number of internal calls to eval. Thus if the user types in the

expression [MAPC FOO (FUNCTION (LAMBDA (X) (COND ((NOT (MEMB X FIE)) (PRINT X]

for evaluation, and FIE is not bound, at the point of the U.B~A. FIE error, two

functions, mapc and cond, have been entered, and there are three internal calls

to eval corresponding to the evaluation of the forms

(COIJD ((IJOT (MEMS X FIE)) (PRINT X))), (NOT (MEMS X FIE)), and (MEMB X FIE). 11

The depth is thus 5.

breakcheck begins by searching back up the parameter stack looking for an

errorset. 12 At the same time, it counts the number of internal calls to eval.

As soon as (if) the number of calls to eval exceeds helpdepth, breakcheck can

stop searching for errorset and return T, since the position of the errorset is

only needed when a break is not going to occur. Otherwise, breakcheck

9--Except that control-B errors always break.

10

11

12

Unless of course the function does not have its arguments evaluated, i.e.
is an FEXPR, FEXPR*, CFEXPR, CFEXPR*, FSUBR or FSUBR•.

For complete discussion of the stack and the iriterpreter, see Section 12.

errorsets are simply markers on the stack indicating how far back unwinding
is to take place when an error occurs, i.e. they segment the stack into
sections such as that if an error occurs in any section, control returns to
the point at which the last errorset was entered, from which NIL is
returned as the value of the errorset. See page 16.15.

16.5

continues searching until either an ~rrorset is found13 or the top of the stack

is reached. Breakcheck then completes the depth check by counting the numbor

of function calls between the !!I.Q! and the last error set, or the top of the

stack. If the number of function calls plus the number or calls to eva 1

(already counted) is greaier than or equal to helpdepth, initially set to ~. 14

breakcheck returns T. Otherwise, it records the position of the last errorset,

and the value of errors et 1 s second argument, which is used in deciding whether

to print the error message, and returns NIL.

breakcheck next measures the length of time spent in the computation by

subtracting the value of the variable helpclock from the value of (CLOCK 2). 15

If the difference is greater than helptime milliseconds, initially set to 1000,

then a break .will occur, i.e., .breakcheck returns T, otherwise NIL. Tho

variable helpclock is rebound to the current value of (CLOCK 2) for each

computation typed in to lispx or to a break.

The time criterion for breaking can be suppressed by .setting helpt;l.me to NIL

(or a very big number), or by binding helpclock to NIL. Note that .setting

helpclock to NIL will not have any effect because ~elpclock is rebound by lispx

and by break.

If breakcheck is NIL, i.e., a break is not going to occur, then if an errorset

was found, NIL is returned (via retfrom) as the value of the errorset, aftor

first printing the error message if the errorset•s second argument was TRUE.

13---If the second argument to the errorset is INTERNAL, the errorset is ignored

14

15

and searching continOes. See discussion of errorset, page 16.15.

Arrived at empirically, takes into account the overhead due to lispx or
break.

Whose value is number of milliseconds of compute time. See Section 21.

16.6

If there was no errorset, the message is printed, and control returns to

evalgt. This procedure is followed for all types of errors.

Note that for all error breaks for which a break occurs, break1 will clear and

save the input buffer. If the break returns a value. i.e., is not aborted via

t or control-D, the input buffer will be restored as described in Section 15.

16.5 Error Types

There are currently forty-five error types in the INTERLISP system. 16 They are R

listed be low by error number. The error is set internally by the code that

detects the error before it calls the error handling functions. It is also the

value returned by errorn if called subsequent to that type of error, and is

used by errormess for printing the error message.

Nost error types will print the offending expression following the message,

e.g., NON-NUMERIC ARG NIL is very common. Error type 18 (control-B) always

causes a break. (unless helpflag is NIL). All other errors cause breaks if

breakcheck returns T.

0 NONXMEM

1

2 P-STACK OVERFLOW

(INTERLISP-10) reference to !!..Q!l•e;:sistent !n£.!!!Ory.

Usually indicates system is very sick.

Currently not used.

occurs when computation is too deep, either with

respect to number of function calls, or number of

io··------------------·-····-···············-········ 0
····-···-----------------

sor:ie of these errors are implementation dependent, i.e. appear in +
INTERLISP-10 but may not appear in other INTERLISP systems. +

16.7

+
+
+
+
+
+
+
+

3 ILLEGAL RETURN

4 ILLEGAL ARG • PUTO

5 ARG NOT ATOM - SET

6 ATTEMPT TO SET NIL

7 ATTEMPT TO RPLAC NIL

variable bindings . 17 Usually because of a non-

terminating recursive computation, i.e. a bug.

call to return when not inside of an interpreted

second argument to putd (the definition) is not

NIL, a list, or a pointer to compiled code.

first argument to set, setg, or ~ (name of the

variable) is not a literal atom.

via set or setg

attempt either to rplaca or to rplacd NIL with

something other than NIL.

8 UNDEFINED OR ILLEGAL GO ru? when not inside of a fil:.Q.9, or ru? to nonexiStent

9 FILE WON'T OPEN

10 NON-NUMERIC ARG

label.

from infile or outfile, Section 14.

a numeric function e.g. iplus, itimes, igreaterp,

expected a number.

17---In INTERLISP-10, the garbage collector uses the same stack as the rest of
the system, so that if a garbage collection occurs when deep in n
conputation, the stack can overflow (particularly if there is a lot of list
structure that is deep in the car direction). If this does happen, tho
garbage collector will flush thestack used by the computation in ordor
that the garbage collection can complete. Afterwards, the error message
STACK OVERFLOW IN GC - CMPUTATION LOST is printed, followed by a reset[],
i.e. return to top level.

16.8

11 ATOM TOO LONG

12 ATOM HASH TABLE FULL

13 FILE NOT OPEN

14 ARG NOT ATOM

15 TOO MANY FILES OPEN

16 END OF FILE

17 ERROR

18 BREAK

19 ILLEGAL STACK ARG

20 FAULT IN EVAL

21 ARRAYS FULL

In INTERLISP-10, > 100 characters.

no room for any more (new) atoms.

from an 1/0 function, e.g. read, print, closef.

e.g. E.!ll called on a list.

I 16 including terminal.

from an input function, e.g. read, readc, ratom.

Note: the file will then be closed.

cal,l to ~·

control 0 B was typed.

a stack function expected a stack position and was

given something else. This might occur if' the

arguments to a stack function are reversed. Also

occurs if user specified a stack position with a

function name, and that function was not found on

the stack. See Section 12.

artifact of bootstrap. Never occurs after

faulteval has been defined as described earlier.

system will first initiate a GC: 1, and if no

array space is reclaimed, will then generate this

error.

16.9

22 DIRECTORY FULL

23 FILE NOT FOUND·

24

25 UNUSUAL CDR ARG LIST

26 HASH TABLE FULL

27 ILLEGAL ARG

28 ARG NOT ARRAY

(INTERLISP-10) no new files can be created until

user deletes some old ones and expunges.

file name does not correspond to a file in the

corresponding directory. Can also occur if file

name is ambiguous.

not used.

a form ends in a non-list other than NIL, e.g.

(CONS T . 3).

see hash link functions, Section 7.

Catch-all error. Currently used by evala, arg,

funarg, allocate, rplstring, and sfptr.

elt or ~ given an argument that is not a

pointer to the beginning of an array.

29 ILLEGAL OR IMPOSSIBLE BLOCK (INTERLISP·lO) from getblk or relblk.

30

31 LISTS FULL

See Section 21.

for internal use.

following a GC: 8, if a sufficient amount of list

words have not been collected, and there is no un

allocated space left in the system, this error is

generated.

16.10

32 ATTEMPT TO CHANGE ITEM OF INCORRECT TYPE +

Before a field of a user-data type is changed, the +

type of the item is first checked to be sure that •

it is of the expected type. If not, this error is +

generated. See section 23. +

33 . ILLEGAL DATA TYPE NUMBER The argument is not a valid user-data type number. +

34 DATA TYPES FULL

35

36

See sections 23. +

All available user-data types have been allocated.

See sections 23.

for internal use.

for internal use.

37 READ-MACRO CONTEXT ERROR Occurs when a read is executed from within n +

read-macro function and the next token is a) or a +

]. See section 14. +

38 ILLEGAL READTABLE The argument was expected to be a·valid readtablo. +

See section 14.

39 ILLEGAL ARG - SWPARRAY (INTERLISP~10) See section 3.

40 SWAPBLOCK TOO BIG FOR BUFFER (INTERLISP-10) An attempt was made to

swap in a function/array which is too large for +

the swapping buffer. See setsbsize, section 3. +

41 ILLEGAL ARG - SETSBSIZE (INTERLISP-10) The argument to setsbsize must be +

either NIL or a number between O and 128. See +

section 3. +

16.U

+

+

+

+

+

+

+

42 ILLEGAL ARG ~ SWPPOS

43 USER BREAK

(INTERLISP-10) See section 3.

Error corresponding to 1 hard• user-interrupt

character. See page 16.16.

44 TOO MANY USER INTERRUPT CHARACTERS Attempt to enable a user interrupt

45 ILLEGAL TERMINAL TABLE

chartacter when all 9 user channels are currently

enabled. See page 16.16.

The argument was expected to be a valid terminal

table. See section 14.

In addition, many system functions, e.g. define, arglist, advise, l2!.z, exrt,

etc, also generate errors with appropriate messages by calling~ (see page

16.14) which causes an error of type 17.

Error handling by error type

Occasionally the user may want to treat certain error types different than

others, e.g. always break1 never break, or perhaps take some corrective action.

This can be accomplished via errortypelst. errortypelst is a list of elements

of the form (n expression), where n is one of the 28 error numbers. After

breakcheck has been completed, but before any other action is taken,

errortypelst is searched for an element with the same error number as that

causing the error. If one is found, and the evaluation of the corresponding

expression produces a non-NIL value, the value is substituted for the offender,

and the function causing the error is reeentered.

For this application, the following three variables may be useful:

16 .12

errormess

errorpos

breakchk

~ is the error number, cadr the "offendor 11 e.g.

(10 NIL) corresponds to NON-NUMERIC ARG NIL error.

position of the function in which the error

occurred, e.g. -stkname[errorpos] might be IPLUS,

RPLACA, INFILE, etc.

value of breakcheck, i.e. T means a break will

occur, NIL means one will not.

For example, putting

[10 (AND (NULL (CADR ERRORMESS))
(SELECTQ (STKNAME ERRORPOS)

((!PLUS ADD1 SUBl) O)
(!TIMES 1)
(PROGN (SETO BREAKCHK T) NIL]

on errortypelst would specify that whenever a NON-NUMERIC ARG - NIL error

occurred, and the function in question was !PLUS, ADD1, or SUBl, 0 should be

used for the NIL. If the function was ITIMES, 1 should be used. Otherwise,

always break. Note that the latter case is achieved not by the value returned,

but by the effect of the evaluation, i.e. setting BREAKCHK to T. Similarly,

(16 (SETO BREAKCHK NIL)) would prevent END OF FILE errors from ever breaking.

16.6 Error Functions

errorx(erxm] is the entry to the error routines. If ~=NIL,

errorn[] is used to determine the error-message.

Otherwise, seterrorn[erxrn] is performed, 'set ting'

the error type and argument. Thus following

either errorx[(10 T)] or (PLUS T), errorn[] is

(10 T). errorx calls break.check, and either

induces a break or prints the message and unwinds

16 .13

error(mess1;mess2;nobreak)

help(mess1;mess2]

to the last errorset. Note that errorx can be

called by any program to intentionally induce an

error of any type. However, for most

applications, the function !.!:!.Q.!: will be more

useful.

The message that is (will be) printed is mess 1

(using prin1), followed by a space if mess1 is an

atom, otherwise a carriage return. Then mess2 is

printed, using print if mess2 is a string,

otherwise print. e.g .. error("NON-NUMERIC ARG"; T)

will print

NON-NUMERIC ARG
T

and error[FOO;"NOT A FUNCTION") will print

FOO NOT A FUNCTION. (If both mess 1 and. mess2 are

NIL, the message is simply ERROR.)

If nobreaki:T, ~ prints its message and than

calls error!. Otherwise it calls

errorx[(17 (messl . mess2))], Le. generates an

error of type 17, in which case the decision as to

whether or not to break, and whether or not to

print a message, is handled as per any other

error.

prints messt and mess2 a la ~· and then calls

break1. If both mess1 and mess2 are NIL, HELP! is

used for the message. help is a convenient way to

program a default condition, or to terminate some

protion of a program which theoretically tho

computation is never supposed to reach.

16 .14

error! []18

reset[]

errorn[]

errormess[u]

errorset[u;v)19

progranunable control·E, i.e .• immediately returns

from last errorset or resets.

Progranunable control·D, i.e. immediately returns

to the top level.

returns information about the last error in tho

form (n x) where n is the error type number and ~

is the expression which was (would have been)

printed out after the error message. Thus

following (PLUS T), errcirn[] is (10 T) •.

prints message corresponding to an errorn that

yielded !!· For example, errormess[(lO T)J would

print

NON-NUMERIC ARG
T

performs eval[u]. Note that errorset is a lambda-

type of function, and that its arguments are

evaluated before it is entered, i.e. errorset[x)

means eval is called with the value of ~· In most

cases, ersetg and nlsetg (described below) are

more useful: If no error occurs in the evaluation

of y, the value of errorset is a list containing

one element, the value of eval[u]. If an error

did occur, the value of errorset is NIL.

ii·----------------~--~----------------Pronounced "error-bang".

19 error set is a !!:!!!.!:• so the names "u" and 11 v 11 don't actually appear on the
stack nor will they affect the evaluation.

16.15

ersetq[ersetx]

nlsetq[nlsetxJ

+ Interrupt characters

The argument y controls the printing of error

messages if an error occurs. If y=T, the error

message is printed; if y=NIL it is not.

If y=INTERNAL, the errorset is ignored for the

purpose of deciding whether or not to break or

print a message. However, the etrorset is in

effect for the purpose of flow of control, i.e. if

an error occurs, this errorset returns NIL.

nlambda, performs errorset[ersetx;t), Lo.

(ERSETQ (FOO)) equivalent to

(ERRORSET (QUOTE (FOO)) T).

nlambda, performs errorset[nlsetx;NILJ.

+ This section describes how the user can disable and/or redefine INTERLISP

+ interrupt characters, as well as defining his own interrupt characters.

+ INTERLISP is initialized with 9 interrupt channels which we shall call: HELP,

+ PRINTLEVEL, STORAGE, RUBOUT, ERROR, RESET, OUTPUTBUFFER, BREAK, and USER. To

+ these are assigned respectively, control·H, control·P, control·S,

+ delete/rubout, control·E, control·D, control·O, control·B, and control-U. Each

+ of these channels independently can be disabled, or have a new interrupt20

+ character assigned to it via the function interruptchar described below. In

+ addition, the user can enable up to 9 new interrupt channels, and associate

16.16

with each channel an interrupt character and an expression to be evaluated when +

that character is typed. User interrupts can be either 'hard' or 'soft'. A +

'hard' interrupt is lik~ control·E or control-D: it takes place as soon as it +

is typed. 21 A soft interrupt is like control·H: it does not occur until the +

next function call. +

interruptchar[char;typ/form;hardflg) char is either a character or a +

terminal interrupt code.22

If typ/form=NIL, £h!! is disabled. If typ/form=T, +

the current state of char is returned without +

changing it. 23 +

If typ/form is a literal atom, it must be the name +

of one of the 9 INTERLISP interrupt channels given +

above: HELP, PRINTLEVEL, ... USER. interruptchar +

assigns char to that channel, (reenabling tho +

channel if previously disabled). If char was

previously defined as an interrupt character, that +

interpretation is disabled. +

21---Hard interrupts are implemented by generating an error of type 43. and +

22.

23

retrieving the corresponding form from the list userinterruptlst once +
inside of errorx. Soft interrupts are implemented by calling interrupt with ~
an appropriate third argument, and then obtaining the corresponding form +
from userinterruptlst. In either case, if a character is enabled as a user +
interrupt, but for some reason it is not found on user interrupts, an +
UNDEFINED USER INTERRUPT error will be generated. +

The terminal interrupt code for break is O. for esc is 27, for +
rubout/delete is 28, and for space is 2~. The terminal interrupt codes for +
the control characters can be obtained with chconl. +

The current state is an expression which can be given back. to 1 interuptchar
to restore that state. This option is used in connection with undoing
and resetform.

16.17

• •
+

+ If typ/form is a list, char is enabled as a usor

+ interrupt character, and typ/form is the form that

+ is evaluated when char is typed. Tho intorrupt

+ will be hard if hardflg=T, otherwise soft. Any

+ previous interpretations or char are disabled.

+ All calls to interruptchar are undoable. ln

+ addition, the value of interruptchar is an

+ expression which when given back to 1nterruptchar

+ will restore things as they were before the call

+ to interruptchar. Thus, interruptchar can be used

+ in conjunction with reset form or resetlst (soo

+ section 5).

+ Note: interruptchar[T] will restore all INTERLISP channels to their original

+ state, and disable all user interrupts.

16 .18

Index for Section 16

APPLY[FN;ARGS] SUBR
APPLY~[FN;ARGl; ... ;ARGn] SUBRA ...•..............
ARG[VAR;M] FSUBR•.......•. , ..
ARG NOT ARRAY (error message) ··············'····
ARG NOT ATOM (error message)•.............
ARG NOT ATOM - .SET (error message)
ARRAYS FULL (error message)
ATOM HASH TABLE FULL (error message)
ATOM TOO LOt~G (error message)•...
ATTEMPT TO CHANGE ITEM OF INCORRECT TYPE

(error message)
ATTEMPT TO RPLAC NIL (error message)
ATTEMPT TO SET NIL (error message)
bell (typed by system)•....
BREAK (error message)
BREAKCHECK
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] NL
BRKEXP (break variable/parameter)•
(BROKEN) (typed by system)
control-B
control-D
control-E
con trol-H
DATA TYPES FULL (error message) ...•..........•..
DIRECTORY FULL (error message)
DWif1 , •••.••.••• 11••••••••••
El T [A ; N] SU BR
END OF FILE (error message)
ERROR[MESS1;MESS2;NOBREAKJ•............
error handling
error number ··
error types
ERROR (error message)•.••...
ERRORMESS[U]•....
ERRORJJ[J SUBR•..•... ,
ERRORSET[U;V] SUBR
ERRORTYPELST (system variable/parameter)•.
ERRORX[ERXM]•.....•
ERROR! [] SUBR•..
ERSE TO[ERSE TX] NL •••••••••••••••••••••••••••••••
EVAL[X] SUBR•.•...
EVAL (break command)•.•.•..
EVALA[X;A] SUBR•....
FAULT IN EVAL (error message) ,•......
FAULTAPPLY[FAULTFN;FAULTARGS]•..
FAULTEVAL[FAULTX] NL*•...•........••..
FILE rior FOUIW (error message)
FILE NOT OPEN (error message)•............
FILE WON'T OPEN (error message)•.......
FUf·JARG••••••••••••••••••••••••••••••.••••••
function definition cell••......
function objects
GC: 1 (typed by system)•..............•...
GETBLK[I~] SUBR•..........••..•......•..
GO (break. conunand)•.........••.......•• , •.
HASH TABLE FULL (error message) ...•...•....•.•••

INDEX.16. i

Page
Numbers

16.2
16.2
16 .10
16.10
16.9
16.8
16.9
16.9
16.9

16 .11
16.8
16.8
16.2
16.9
16.2-7,12-13
16.1-3,7,14
16.1-2,4
16.4
16.3,5,7,9
16.2,7,15
16.3,15
16.2-3
16 .11
16.10
16. 1
16.10
16.9
16.6,9,12,14
16.1-16
16.7
16.7-13
16.9
16.7,15
16.7,15
16.5-6,14·16
16.12-13
16.13
16.14-15
16.15·16
16. 15
16.3-4
16.10
16.9
16.2
16.1,9
16. 10
16.9
16.8
16.10
16.1
16.1
16.9
16. 10
16.3-4
16.10

HELP[MESS1;MESS2]•..•..........
HELPCLOCK (system variable/parameter)••
HELPDEPTH (system variable/parameter) •.........•
HELPFLAG (system variable/parameter)•...••..
HELPTIME (system variable/parameter) ..•.......••
HELP! (typed by system)•..•..•.........•
ILLEGAL ARG (error message)•..•.•.•••.•..••
ILLEGAL ARG - PUTD (error message) ••••••••••••••
ILLEGAL ARG - SETSBSIZE (error message) •••••••••
ILLEGAL ARG - SWPARRAY (error message) •••..••.••
ILLEGAL ARG - SWPPOS (error message) ..••••.•..••
ILLEGAL DATA TYPE NUMBER (error message) ••••••••
ILLEGAL OR IMPOSSIBLE BLOCK (error message) •••.•
ILLEGAL READTABLE (error message) ..••••.•.••.••.
ILLEGAL RETURN (error message) ..•..•••••••••....
ILLEGAL STACK ARG (error message) ..•••.•••••.•••
ILLEGAL TERMINAL TABLE (error message) •.•.••••.•
IN (typed by system) ..•....•....•.••••••••••••.•
input buffer
interpreter
IfHERRUPT[INTFN; INTARGS; INTYPE] ...•••......•••••
interrupt characters••.••.••••••••.••
INTERRUPTCHAR[CHAR;TYP/FORM;HARDFLG] •...•...•..•
INTERRUPTED BEFORE (typed by system)•......
IN? (break command)•..•.....•....•......•
LIS TS FULL (error message)
NLSETQ[NLSETX] NL•........••......••...••.•
r~OBir4o•...•.....•.•••..•...••.•.
r~ONXMEM (error message)•..•.......•.•••••••
NON-NUMERIC ARG (error message) •..•..•...•••••.•
OK (break cor:unand)••......••••.•.....•••••.••
property list
P-STACK OVERFLOW (error message)•....••••.••
READ-MACRO CONTEXT ERROR (error message) ••••••.•
RELBLK[ADDRESS;N] SUBR •• .-, ••••
RESET[] SLTBR
RETFROM[POS;VALUE] SUBR
RE TURIJ (break command)•...•..•..•....• , .••••
RPLSTRING[X;N;Y] SUBR •••••••••••••••••••••••••••
SETA[A;f·J;V]•..••..•.••••.•••••...••••••••..•
SETSBSIZE[N] SUBR •••••••••••••••••••••••••••••••
SFPTR[FILE;ADDRESS] SUBR•.•...•.•.•.••.
STACK OVERFLOW IN GC - COMPUTATION LOST

(error message)
SWAPBLOCK TOO BIG FOR BUFFER (error message)
terminal initiated breaks•
TOO MANY FILES OPEN (error message) ..•.•.......•
TOO MANY USER INTERRUPT CHARACTERS (error message)
unbound atom•...........•..•...•
undefined function••..••.•.
UNDEFINED OR ILLEGAL GO (error message)••..•
UNDEFINED USER INTERRUPT (error message) ••••••.•
UNUSUAL CDR ARG LIST (error message) •..•.•.•••••
USER BREAK (error message) •..••••••••••..•••••••
user interrupt characters .•••••••..•.••••.•••.••
U.S.A. (error message) •.••••••••••••••..••••••.•
U.D.F. (error message) •.••.••••.••••••••••••••••

INDEX .16 .2

Page
Numbers

16 .14
16.6

·16.5-6
16.3,5,7
16.5-6
16 .14
16 .10
16.8
16.11
16 .11
·16.12
16. 11
16 .10
16 .11
16.8
16.9
16 .12
16.4
16.2,7
16.1
16.2
16.16
16.17
16.2
16 .1
16.10
16.15-16
16 .1
16.7
16.4,8
16.3-4
16.1
t<L 7
16.11
16 .10
16.15
16.6
16 .1,4
16 .10
16 .10
16.11
16 .10

16.8
16.11
16.2-3
16.9
16.12
16 .1
16.1
16.8
16.17
16 .10
16.12
16 .16
16 .1,4
16.1-2,4

value cell•.............••............••.
value of a break•.....•..•
? (typed by system) •••••••••••••••••••••••.•••••
t (break command) .••.•••••••••••••••••••••••••••

INDEX.16.3

Page
Numbers

16.1
16.2
16.4
16.2,7

SECTION 17

AUTOMATIC ERROR CORRECTION a THE DWIM FACILITY1

17.1 Introduction

A surprisingly large percentage of the errors made by INTERLISP users are of

the type that could be corrected by another LISP programmer without any

information about the purpose of the program or expression in question, e.g.

misspellings, certain kinds of parentheses errors, etc. To correct these types

of errors we have implemented in INTERLISP a DWIH facility, short for DO-What·

I-Mean. is called automatically whenever an error2 occurs in the

evaluation of an INTERLISP expression. DWIM then proceeds to try to correct

the mistake using the current context of computation plus information about

what the user had previously been doing, (and what mistakes he had been making)

as guides to the remedy of the error. If DWIM is able to make the correction,

the computation continues as though no error had occurred. Otherwise, the

procedure is the same as though DWIM had not intervened: a break occurs, or an

unwind to the last errorset. as described in Section 16. The fol lowing

protocol illustrates the operation of D\.IIM.

--------------------.. -------------------------. -------... ---. -.. ---------..... -~ --..
1 D\.JHI was designed and implemented by W. Teitelman. it is discussed in

2

[Tei2]. .

Currently, DWIM only operates on unbound atoms and undefined function
errors.

17 .1

Example

The user defines a function f.ru:! of one argument, U• The value of fact[n] is

to be n factorial.

~DEFINEQ((FACT (LAMBDA (N) (CONO
((ZEROP N9 1) ((T (!TIMS N (FACCT 8SUB1 NJ
(FACT)

No.te that the definition of fact contains several mistakes: itimes and fact

have been misspelled; the 9 in N9 was intended to be a right parenthesis. but

the shift key was not depressed; similarly, the 8 in 8SUB1 was intended to be a

left parenthesis; and finally, there is an extra left parenthesis in front of

the T that begins the final clause in the conditional.

~PRETTYPRNT((FACCT) [1)
=PRETTYPRINT (2]
=FACT (3)

(FACT
(LAMBDA (N)

(COND
((ZEROP N9 1)

((T (!TIMS N (FACCT 8SUB1 NJ)
{FACT)

After defining fact, the user wishes to look at its definition using

PRETTYPRIIH, which he unfortunately misspells.[1] Since there is no fun ct ion

PRETTYPRWT in the system, a U .0 .F. error occurs, and DWIM is called. D\.JIM

invokes its spelling corrector, which searches a list of functions frequently

used (by this user) for the best possible match. Finding one that is extremely

close, D\.JIM proceeds on the assumption that PRETTVPRNT meant PRETTYPRINT.

notifies the user of this, [2] and calls prettyprint.

At this point, PRETTYPRINT would normally print (FACCT NOT PRINTABLE) and exit,

since facet has no definition. Note that this is not an INTERLISP error

11.Z

condition, so that OWIM would not be called as described above. However, it is

obviously not what the user meant.

This sort of mistake is· corrected by hav~ng prettyprint itself explicitly

invoke the spelling corrector portion of DWJM whenever given a function with no

expr definition. Thus with the aid of DWIM, prettyprint is able to determine

that the user wants to see the definition of the function fact,[3) and proceeds

accordingly.

... FACT(3]
N9 [IN FACT]->
[IN FACT] (COND

(COND
ITIMS [IN FACT]
FACCT [IN FACT)
8SUB1 [IN FACT)
6
... pp FACT

(FACT
[LAMBDA (N)

(COND
((ZEROP N)

1)

N) ? YES
((T --))) ->
(T --))

-> HIMES
·> FACT
-> (SUBl ? YES

(T (!TIMES N (FACT (SUBl NJ)
FACT ..

[4]

(5)

(6)

The user now calls his function fact.[4) During its execution, five errors

occur, and owrn is called five times.[5] At each point, the error is corrected,

a message printed describing the action taken, and the computation allowed to

continue as if no error had occurred. Following the last correction, 6 is

printed, the value of fact(3). Finally, the user prettyprints the new, now

correct, definition of f.!£1.(6]

In this particular example, the user was shown operating in TRUSTING mode,

which gives DWIM carte blanche for most corrections. The user can also 'operate

in CAUTIOUS mode, in which case DWIM will inform him of intended corrections

before they are made, and allow the user to approve or disapprove or them. For

17.3

most corrections, if the user does not respond in a specified interval of time,

DWIM automatically proceeds with the correction, so that the user need

intervene only when he does not approve. Sample output is given below. Note

that the user responded to the first, second, and fifth questions; DWIM

responded for him on the third and fourth •.

o-FACT(3)
N9 [IN FACT] -> N) ? YES
U.D.F. T [IN FACT] FIX? YES
[IN FACT] (COND ((T --))) ->

(COND (T .. -))
ITIMS [IN FACT)-> ITIMES? ..• YES
FACCT [IN FACT]•> FACT 7 ••. YES
8SUB1 [IN FACT] ·> (SUB1 ? NO
U.B.A. .
(8SUB1 BROKEN)

(1 J
[2]

[3J
(4J
[SJ

\.le have put a great deal of effort into making DWIM 'smart 1 , and experience

with perhaps fifty different users indicates we have been very successful; DWIM

seldom fails to correct an error the user feels it should have, and almost

never mistakenly corrects an error. However, it is important to note that even

when DWIM i.s wrong, no harm is done:8 since an error had occurred, the user

would have had to intervene anyway if D\.IIH took. no action. Thus, if D\./IM
.

mistakenly corrects an error, the user simply interrupts or aborts the ·

computation, UNDOes the DWIM change using UNDO described in Section 22, and

makes the correction he would have had to make without DWIM. It is this benign

quality of DWIM that makes it a valuable part of INTERLISP.

i--------~-----------~---Except perhaps if DWIM's correction mistakenly caused a destructive
conputation to be initiated, and information was lost before the user could
interrupt. We have not yet had such an incident occur.

i7.4

17.2 Interaction with DWIM

DWIM is enabled by performing either DWIM[C], for CAUTIOUS mode, or OWIM[T) for

TRUSTWG mode.4 In addition to setting dwimflg to T and redefining faultoval

and faultapply as described on page 17.15, DWIM[CJ sets approveflg to T, whilo

OWIM[T] sets approveflg to NIL. The setting or approveflg determines whether

or not the user wishes to be asked for approval before a correction that will

modify the definition of one of his functions. In CAUTIOUS mode, i.e.

approveflg=T, DWIM will ask for approvali in TRUSTING mode, DWIM will not. For

corrections to expressions typed in by the user for immediate execution, 6 DWIM

always acts as though approveflg were NIL. i.e. no approval necessary. 6 In

either case, DWIM always informs the user of its action as described below.

Spelling Correction Protocol

The protocol used by DWIM for spelling corrections is as follows: If the

correction occurs in type-in, print a followed by the correct spelling,

followed by a carriage-return, and then continue, e.g.

4--·---------------INTERLISP arrives with DWIH enabled in CAUTIOUS mode. DWIM can be disabled

5

0

by executing DWIM(] or by setting dwimflg to NIL. See page 17.23.

Typed into lispx. lispx is used by evalgt and break, as well as for
processing the editor's E command. Functions that call the spelling
corrector directly, such as editdefault (Section 9), specify whether or not
the correction is to be handled as type· in. For example, in the case of
editdefault, commands typed directly to the editor are treated as type-in,
so that corrections to them will never require approval. Commands given as
an argument to the editor, or resulting from macro expansions, or from IF,
LP, ORR commands etc. are not treated as type-in, and thus approval will be
requested if approveflg=T.

For certain types of corrections, e.g. run-on spelling corrections, 8·9
errors, etc., dwim always asks for approval, regardless of the ~etting of
approveflg.

17 .5 .

user types:
DWIM types:

~csETQ FOO (NCOCN FIE FUM))
=NCONC

If the correction does not occur in type•in, print the incorrect spelling,

followed by [IN function-name],. ·>, and then the correct spelling, e.g.

!TIMS [IN FACT]·> !TIMES as shown on page 17.3.7 Then, if approveflg=NIL,

print a carriage return, make the correction and continQe. Otherwise. print a

few spaces and a ? and then.wait for approval. 8 The user then bas six options.

He can:

1. Type Y; DWIM types ES, and proceeds with the correction.

2. Type N; DWIM types 0, and does not make the torrection.

3. Type t; DWIM does not make the correction, and furthermore guarantees
that the error will not cause a break. See-footnote on pag~ 17.15.

4. Type control-E; for error correction, thh has the same effect as
typing N.

5. Do nothing: in which case DWIM will wait a specified interval, 9 and if
the use~0has not responded, DWIM will type followed by the default
answer.

6. Type space or carriage· return; . in which case DWHI wi 11 · wa 1 t
indefinitely. This option is intended for those cases where the user
wants to think about his answer, and wants to insure that DWIM does
not get 'impatient' and answer for him.

7--The appearance of ·> is to call attention to the fact that the user's

8

9

10

function will be or has been changed.

Whenever an interaction is about to take place and the user has typed
ahead, owrn types several bells to warn the user to stop typing, then
clears and saves the input buffers, restoring them after the interaction is
co1:1plete. Thus if the user has typed ahead before a DWIM interaction. DWIM
will not confuse his type ahead with the answer to its question, nor will
his type ahead be lost.

Equal to dwimwait seconds. DWHI operates by dismissing for 500
milliseconds, then checking to see if anything has been typed. If not, it
dismisses again, etc. until dwimwait seconds. have elapsed. Thus, thore
will be a delay of at most 1/2 second before DWJM responds to the user's
answer.

The default is always YES unless otherwise stated.

17.6

The procedure for spelling correction on other than INTERLISP errors is

analogous. If the correction is being handled as type-in, 0\.11 M

prints = followed by the correct spelling, and returns it to the· function that

called owrn, e.g. ::=FACT as shown on page 17.2. Otherwise, .owrn prints the

incorrect spelling, followed by the correct spelling. Then if approveflg=NIL,

DWIM prints a carriage-return and returns the correct spelling. Otherwise,

owrn prints a few spaces and a ? and then waits for approval. The user can

then respond with Y, N, control-E, space, carriage return, or do nothing as

described.

Note that since the spelling corrector itself is not errorset protected, typing

N and typing control-E may have different effects when the spelling corrector

is called directly . 11 The former simply instructs the spelling corrector to

return NIL, and lets the calling function decide what to do next; the latter

causes an error which unwinds to the last errorset, however far back that may

be.

Parentheses Errors Protocol

As illustrated earlier .on page 17.3, DWIM will correct errors. consisting of

typing 8 for left parenth~sis and 9 for right parenthesis. In these cases, the

interaction with the user is similar to that for spelling correction. If the

error occurs in type-in, DWIM types = followed by the correction, e.g.

user types:
DWIM types:
lispx types:

~(SETO FOO 8CONS FIE FUH]
= (CONS
(A B C 0)

Otherwise, D\./IM prints the offending atom, [IN function-name J, ->. the proposed

ii---The DWIM error correction routines are errorset protection.

17.7

correction. a few spaces· and a ?, and then waits for approval, e.g.

U.D.F. T Errors Protocol

DWIM corrects certain types of parentheses errors involving a T clause in a

conditional, namely errors of the form:

1. (COIW --) (T ··), i.e. the T clause appears outside and immediately

following the COND;

2. (COIJD •• (-- & (T -·))), i.e. the T clause appears inside a previous

clause; and

3. (CONO -- ((T --))), i.e. the T clause has an extra pair of parentheses

around it. 13

If the error occurs in type-iri. DWIM simply types T FIXED and makes the

correction. Otherwise if approveflg=NIL, OWIM makes the correction, and prints

a message consisting of [IN function-name J, followed by one of the above

incorrect forms of COND, followed by ·>, then on the next line the

corresponding correct form of the COND, e.g.

i2---·-----------------------except the waiting time is 3111 dwimwai t seconds.

13 For U. D .F. T errors that are not one of these three types, D\.IIM takes no
corrective action at all, 1.~. the erro~ will occur.

17.8

[IN FACT] (COND
(COND

as shown on page 17.3.

((T ··))) ·>
(T ••)}

If approveflg=T, D\.IIM prints U.D.F. T. followed by [IN function-name], several

spaces, and then FIX? and waits for approval. The user then has the same

options as for spelling corrections and parenthesis errors. If the user types

Y or defaults, DWIM then proceeds exactly the same as when approveflg=NIL, i.e.

makes the correction and prints its message, as shown on page 17.4.

Having made the correction, DWIM must then decide how to proceed with the

computation. In case 1. (CONO ·-) (T --). owrn cannot know whether the last

clause of the COND before the T clause succeeded or not, i.e. if the T clause

had been inside of the COND, would it have been entered? Therefore DWIM asks

the user 'CONTINUE WITH T CLAUSE' (with a default of YES). If the user types

N. DWIM continues with the form after the COND, i.e. the form that originally

followed the T clause.

In case 2, (CONO -- (-- & (T --))), DWIM has a different problem·. After moving

the T clause to its proper place, DWIM must return as the value of the CONO,

the value of the expression corresponding to &. Since this value is no longer

around, owrn asks the user, 'OK TO REEVALUATE' and then prints the expression

corresponding to &. If the user types V, or defaults, DWHI continues by

reevaluating &, otherwise DWIM aborts, and a U.D.F. T error will then occur

(even though the COND has in fact been fixed). 14

i4·--If DWIH can determine for itself that the form can safely be reevaluated,
it does not consult the user before reevaluating. O\.IIM can do this if the
form is atomic, or car of the form is a member of the list okrcevalst, and
each of the arguments can safely be reevaluated, e.g.
(SETQ X (CONS (IPLUS Y Z) W)) is safe to reevaluate because SETQ, CONS, and
IPLUS are all on okreevalst.

17.9

In case 3, (COND -- ((T --))), there is no problem with continuation, so no

further interaction is necessary.

17.3 Spellin~ Correction

The spelling corrector is given as arguments a misspelled word (word means

literal atom). a spelling list (a list of words). and a number: xword, splst,

and rel respectively. Its task is to find that word on splst which is closest

to xword, in the sense described below. This word is called a re~pelltng of

xword. rel specifies the minimum 'closeness' between~ and a respelling.

If the spelling corrector cannot find a word on splst closer to xword than rel,

or if it finds two or more words equally close, its value is NIL~ otherwise its

value is the respelling.16

The exact algorithm for computing the spelling metric is described later on

page 17.20, but briefly 'closeness' is inversely proportional to the number of

disagreements between the two words, and ~irectly proportiorial to the length of

the longer word, e.g. PRTTVPRNT is 'closer' to PRETTYPRINT than CS is to CONS

even though both pairs of words have the same number of disagreements. The

spelling corrector operates by proceeding down splst, and computing the

closeness between each word and xword, and keep.ing a list of those that are

closest. Certain differences between words are not counted as disagreements,

for example a single transposition, e.g. CONS to CNOS. or a doubled letter,

e.g. CONS to CONSS, etc. In the event that the spelling corrector finds a word

on splst with no disagreements, it will stop searching and return this word as

the respelling. Otherwise, the spelling corrector continues through the entire

17.10

spelling list. Then if it has found one and only one 'closest• word, it

returns this word as the respelling. For example, if xword is VONS, the

spelling corrector will probably return CONS as the respelling. However, if

xword is CONZ, the spelling corrector will not be able to return a respelling,

since CONZ is equally close to both CONS and COND. If the spelling corrector

finds an acceptable respelling, it interacts with the user as described

earlier.

In the special case that the misspelled word contains one or more alt-modes,

the spelling corrector operates somewhat differently. Instead· of trying to

find the closest word as above, the spelling corrector searches for those words

on splst that match xword, where an alt-mode can match any number of characters

(including 0), e.g. FOO$ matches FOOl and FOO, but not NEWFOO. $FOOS matches

all three. In this case, the entire spelling list is always searched, and if'

more than one respelling is found, the spelling corrector prints AMBIGUOUS, and

returns NIL. For example, CONS would be ambiguous if both CONS and CONO were

on the spelling list. If the spelling corrector finds one and only one

respelling, it interacts with the user as de~cribed earlier.

For both spelling correction and spelling completion, regardless of whether or

not the user approves of the spelling corrector's choice, the respelling is

moved to the front of splst. Since many respellings are of the type with no

disagreements, this procedure has the effect of considerably reducing the time

required to correct the spelling of frequently misspelled words.

Synonyms

Spelling lists also provide a way of defin.ing synonyms for a particular +

context. If a dotted pair appears on a spelling list (instead of just an +

atom), .£!!! is interpreted as the correct spelling of the misspelled word, and +

ill as the antecedent for that word. If ill is identical with the misspelled +

17 .11

+ word. the antecedent is returned without any interaction or approval boing

+ necessary. For example, the user could make IFLG synonymous with CLISPIFTRANFLG

+ by adding (IFLG . CLISPIFTRANFLG) to spellings3~ the spelling list for unbound

+ atoms. Similarly, the user could make OTHERWISE mean the same as EL.SEIF by

+ adding (OTHERWISE . ELSE IF) to clispifwordsplst, or make L be synonymous with

+ LAMBDA by adding (L . LAMBDA) to lambdasplst. Note that L could also be used

+ as a variable without confusion, since the association or L with LAMBDA occurs

+ only in the appropriate context.

Spelling Lists

Any list of atoms can be used as a spelling list, e.g.· brokenfns, filelst,

* etc. Various system packages have their own spellings lists, e.g. lispxcoms,

pr et tycomspl st, clispforwordsplst, edi tcomsa, etc. These are documented undtir

their corresponding sections, and are also indexed under 'spelling lists.' In

.addition to these spelling lists, the system maintains, i.e. automatically adds

to, and occasionally prunes. four lists used solely for spelling correction:

spellings!, spellings2, spellings3, and userwords. 26

Spellings! is a list of functions used for spelling correction when an input is

typed in apply format, and the func~ion is undefined, e.g. EDTIF(FOO).

Spellings! is initialized to contain defineg, ill!!!• makefile, editf. tcompl,

load, etc. Whenever lispx is given an input in appiy format, i.e. a function

and arguments, the name of the function is added to spellingst. 17 For example,

typing CALLS(EDITF) will cause CALLS to be added to spellings1. Thus if the

user typed CALLS(EDITF) and later typed CALLLS(EOITV). since .spellingsl would

i6---·---------------------All of the remarks on maintaining spelling - lists apply only when DWIM is
enabled, as indicated by dwimflg:T.

17 Only if the function has a definition.

17.12

then contain CALLS, DWIM would be successful in correcting CALLLS to CALLS . 18

Spellings2 is. a list or functions used for spelling correction for all other

undefined functions. It is initialized to contain functions such as addt,

append, cond, ~· !l.2• list, !1£.2.!1£• print, ~· return. setg, etc. Whenever

lispx is given a non-atomic form, the name of the function is added to

spellings2. For example, typing (RETFROH (STKPOS (QUOTE FOO) 2)) to a break

would add retfrom to spellings2. Function names are also added to spellings2

by define, defineq, load (when loading compiled code), unsavedef, editf, and

prettyprint.

Spellings3 is a list of words used for spelling correction on all unbound

atoms. Spellings3 is initialized to edi tmacros. breakmacros, brokenfns, and

advisedfns. \./hen ever lispx is giVen an atom to evaluate, the name of the atom

is added to spellings3. 19 Atoms are also added to spellings3 whenever they are

edited by editv, and whenever they are set via !.ill or ~· for example,

when a file is loaded, all of the variables set in the file are added to

spellings3. Atoms are also added to spellings3 when they are set by a lispx

input, e.g. typing (SETQ FOO (REVERSE (SETQ FIE ··)))will add both FOO and FIE

to spe l lings3.

Userwords is a list containing both functions and variables that the user has

referred to e.g. by breaking or editing. Userwords is used for spelling

correction by arglist, unsavedef, prettyprint, break, editf, advise, etc.

Userwords is initially NIL. Function names are added to it by define, defineq,

ia·--·-·-------------------------1r CALLLS(EDITV) were typed before CALLS had been •seen' and added to

19

spellingsl, the correction would not succeed. However, the alternative to
using spelling lists is to search the entire oblist, a procedure that would
make spelling correction intolerably slow.

Only if the atom has a value other than NOBIND.

17 .13

load, (when loading compiled code, or loading exprs to property lists)

unsavedef, editf, !£!!Y, editp, prettyprint, etc. Variable names are added to

userwords at the same tim• as they are added to spelli~gsl. .In addition, tho

variable lastword is always set to the last word added to userwords, i.e. the

last function or variable referred to by the user, and the respelling of NIL is

defined to be the value of last word. Thus, if the user has just defined a

function, he can then edit it by simply typing EOITF(), or prettyprint it by

typing PP().

Each of the above four spelling lists are d~vided into two sections separated

by a NIL. The first section contains the 'permanent' words; the second section

contains the temporary words. New words are added to the corresponding

spelling list at the front of its temporary section.20 (If the word is already

in the temporary section, it is moved to th~ front of that section; if the word

is in the permanent section, no action is taken.) lf the length of the

temporary section then exceeds a specified number, the last (oldest) word in

the temporary section is forgotten, i.e. deleted. This procedure prevents the

spelling lists from becoming cluttered with unimportant words that are no

longer being used, and thereby slowing down spelling correction time. Since

the spelling corrector moves each word selected as a respelling to the front of

its spelling list, the word is thereby moved into the permanent section. Thus

once a word is mi spelled and corrected, it is considered important and wi 11

never be forgotten.

The maximum length of the temporary secti'on for spellings 1, spell ings2,

spellings3 and userwords is given by the value of j{!spellingst, #spellings2,

#spellings3, and #userwords, initialized to 30, 30, 30, and 60 respectively.

20---Except that functions added to spellings1 or spellings2 by lispx are always
added to the end of the permanent s•ction.

17.14

Using these values, the average length of time to search a spelling list for

one word is about 4 milliseconds.21

17.4 Error Correction

As described in Section 16, whenever the interpreter encounters an atomic form

with no binding, or a non-atomic form gr of which is not a function or

function object, it calls the function faulteval. Similarly, when ~ is

given an undefined function, it calls f'aultapply. \./hen D\.IIM is enabled,

faulteval and faultapply are redefined to first call dwimblock, a part of the

D\./IM package. If the user aborts by typing control·E, or if he indicates

disapproval of D\.IIM's intended correction by answering N as described on page

17.6, or if DWIM cannot decide how to fix the error, dwimblock returns NIL. 22

ln this case, faulteval and faultapply proceed exactly as described in Section

16, by printing a U.S.A. or U.D.F. message, and going into a break if the

requirements of breakcheck are met, otherwise unwinding to the last errorset.

If D\.IIM can (and· is allowed to) correct the error, dwi~block exits by

performing reteval of the corrected form, as of the position of the call to

faulteval or faultapply. Thus in the example at the beginning of the chapter,

when D\.IIM determined that ITIMS was !TIMES misspelled, DWIM called reteval with

(I TIMES U (FACCT 8SUB1 N)). Since the interpreter uses the value returned by

faulteval exactly as though it were the value of the erroneous form, the

computation will thus proceed exactly as though no error had occurred.

2i---If the word is at the front of the spelling list, the time required is only

22

1 millisecond. If the word is not on the spelling list, i.e. the entire
list must be searched, the time is proportional to the length of the list:
to search a spelling list of length 60 takes about 7 milliseconds.

If the user answers with t, (see page 17.6) dwimblock is exited by
performing reteval(FAULTEVAL;(ERROR!)], i.e. an error is generated at the
position of the call to faulteval.

17.15

In addition to continuing the computation, DWIM also repairs the cause of the

error whenever possible. 23 Thus in the. above example. DWIM also changed (with

rplaca) the expression (IT!MS N (FACCT SSUB1 N)) that caused the error.

Error correction in DWIM is divided into three categories: unbound atoms,

undefined cars of form, and undefined function in ~· Assuming that the

user approves if he is asked, the action taken by DWIM for the various types of

errors in each of these categories is summarized below. The protocol of DUIM's

interaction with the user has been described earlier.

Unbound Atoms

1. If the first character of the unbound atom is 1 , DWIM assumes that tho user
(intentionally) typed •atom for (QUOTE atom) and makes the appropriate
change. No message is typed, and no approval requested.

If the unbound atom is just ' itself, OWIM assumes the user wants the next
expression quoted, e.g. (CONS X '(ABC)) will be changed to
(COrJS X (QUOTE (ABC))). Again no message will be printed or approval
asked. (If no expression follows the '• DWIH gives up.)

2. If CLISP (Section 23) is enabled, and the atom is part of a CLISP
construct, the CLISP transformation is performed and the result returned,
e.g. N-1 is transformed to (SUB1 N).

3. If the atom contains an 8, D\./IM assumes the 8 was intended to be a left
parenthesis, and calls the editor to make appropriate repairs on the
expression containing the atom. DWIM assumes that the user did not notice
the mistake. i.e. that the entire expression was affected by the missing
left parenthesis. For example, if the user types
(SETO X (LIST (CONS SCAR Y) (CDR Z)) Y), the expression will be changed to
(SETO X (LIST (CONS (CAR Y) (CDR Z)) Y)).

The 8 does not have to be the first character of the atom, e.g. DWJM will
handle (CONS XSCAR Y) correctly.

4. If the atom contains a 9, DWIM assumes the 9 was int.ended to be a right
parenthesis and operates as in number 3.

5. If the atom begins with a 7, the 7 is treated as a '• e.g. 7FOO becomes
'FOO, and then (QUOTE FOO).

23--~------------------------------If the user's program had computed the form and called eval, e.g. performed
(EVAL (LIST X Y)) and the value of x was a misspelled----ruricuon; it would
not be possible to repair the cause of the error, al though DWIM could
correct the misspelling each time it occurred.

17 .16

6. If the atom is an edit command (a member of editcomsa). and the error
occurred in type-in, the effect is the same as though the user typed
EDITF (), followed by the atom, i.e. DWIM assumes the user wants to be in
the editor editing the last thing he 'referred to. Thus, if the user
defines the function foo and then types P, he will see =FOO, followed by
EDIT, followed by theprintout associated with the execution of the P
cor.unand, followed by •, at which point he can continue editing foo.

7. If dwimuserfn=T, DWIM calls dwimuserfn, and if it returns a non-NIL value,
DWI~! returns this value. dwimuserfn is discussed below.

8. If the unbound atoms occurs in a function, DWIM attempts spelling
correction using as a spelling list the list of lambda and prog variables
of the function.

9. If the unbound atom occurred in a type-in to a break, owrn attempts
spelling correction using the lambda and prog variables of the broken
function.

10. Otherwise, DWIM attempts spelling correction using spellings3.

If all fail, DWIM gives up.

Undefined car of Form

1. If car of the form is T, DWIM assumes a misplaced T clause and operates as
described on page 17.8.

2. If car of the form is F /L, D\./Illl changes the F /L to
FUllCTIOll(lAMBDA,e.g. (F/L (Y) (PRINT (CARY))) is changed to
(FUUCTION (LAMBDA (Y) (PRINT (CARY))). No message is printed and no
approval requested. If the user omits the variable list, D\./HI supplies
(X), e.g. (F/L (PRINT (CAR X))) becomes
(FUllCTIOIJ' (LAMBDA (X) (PRINT (CAR X)))). D\./HI determines that the user has
supplied the variable list when more than one expression follows F/L, car
of the first expression is not the name of a function, and every elemontTn
the first expression is atomic. For example, D\./HI will supply (X) when
correcting (F/L (PRINT (CDR X)) (PRINT (CAR X))).

3. If£!!: of the form is IF, if, or one of the CLISP iterative statement
operators, e.g. FOR, WHILE, DO et al, the indicated transformation is
performed, and the result returned as the corrected form.

4. If car of the form has a function definition, DWHI attempts spelling
correction on £2.!: of the definition us~9g as spelling list the value of
lar.ibdasplst, initially (LAMBDA NLAMBDA).

5. If car of the form has an EXPR property, D\.IIM prints car of the form.
followed by 'UNSAVED', performs an unsavedef, and continues. No approval
is requested. ·

6. If£!!: of the form has a property FILEDEF, the definition is to be found on

24·-----------------------------·------~-------------------------------------·-The user may wish to add to lar.ibdasplst if he elects to define new +
'function types' via an appropriate dwimuserfn. For example, the QLAHBOAs +
of SRI's QLISP are handled in this way. +

17 .17

a file. If the value of the property is atomic, the entire file is to be
loaded. If a list, car is the name of the. file and cdr the relevant
functions, and loadfns will be used. DWIM first checks tOS"ee if the file
appears in the attached directory, <NEWLISP> 's directory, or <LISP>' s
directory, and if found, types "SHALL I LOAD" followed by the file ~ame or
list of functions. If the user approves, owrn loads the function(s) or
file, and continues the computation. edita, breakdown, circlmaker,
cplists, and the pattern match compiler andrecord capability or CLlSP are
implemented in this fashion.

7. If CLISP is enabled, and car of the form is part or a CLISP construct, the
indicated transformation is performed, e.g. (No-N-1) becomes
(SETO N (SUB1 N)).

8. If car of the form contdns an 8, DWIM assumes a left parenthesis was
intended e.g. (.CONS8CAR X).

9. If car of the form contains a 9, DW'IM assumes a right parenthesis was
intended.

10. If car of the form is a list, DWIM attempts spelling correction on ~ of
• the form using lambdasplst as spelling list. If successful, DWIM returns

the corrected expression itself.

11. If car of the form is a small number, and the error occurred in type-in,
D\.IIM assumes the form is really an edit command and operates as described
in case 6 of unbound atoms. ·

12. If car of the form is an edit command (a member of editcomsl), DWIM
operates as in 11. ·

13. If dwinuserfn=T, dwimuserfn is called, and if it returns a no~·Nll value.
DWIM returns this value.

14. If the error occurs in a function, or in a type-in while in a break, OWIM
checks to see if the last character in car of the form is one of the lambda
or prog variables, and if the first na1 characters are the name of l\
defined function, and if so makes the corresponding change, e.g.
(MEMBERX Y) will be changed to (MEMBER XV). The ptotocol followed will be
the sane as for that. of spelling correction, e.g. if approveflg=T, DWIM
will type MEMBERX [IN FOO] ·>MEMBER X? .

15. Otherwise, DWIM attempts spelling correction using spellings2 as the
spelling list.

If all fail, DW'IM gives up.

Undefined Function in Apply

1. If the function has a definition, D\.IIM attempts spelling correction on £!!..!:
of the definition using lambdasplst as spelling list.

2. If the function has an EXPR property, DWHI prints its name followed by
1 UHSAVED 1 , performs an unsavedef and continues. No approval ii requested.

3. If the function has a property FILEDEF, DWIM proceeds as in case 6 of
undefined ~ of form.

4. If the error resulted from type-in, and CLISP is enabled, and the function
nane contains a CLISP operator, DWIM performs the indicated transformation,
e.g. the user types FOO .. (APPEND FIE FUM) •

17.18

5. If the function name contains an 8, D\./IM assumes a left parent.hes is was
intended, e.g. EDIT8FOO].

6. If the 'function' is a list, D\.IIM attempts spelling correction on~ of
the list using lambdasplst as spelling list.

7. If the function is a number and the error occurred in type a in, Dh'Hl assumes
the function is an edit command, and operates as described in case 6 of
unbound atoms, e.g. the user types (on one line) 3 -1 P.

8. If the function is the name of an edit command (on either edi tcomsa or
editcomsl), DWIM operates as in 7, e.g. user types F COND.

9. If dwimuserfn=T, dwimuserfn is called, and if it returns a non-NIL value,
this value is treated as the form used to continue the computation, i.e. it
will be eual-ed.

10. Otherwise DWIM attempts spelling correction using S[!ellingsi as the
spelling list,

11. Otherwise DWIM attempts spelling correction using seen in9s2 as the
spelling list.

If all fail, owrn gives up.

17. 5 DHIMUSERFN

Dwimuserfn provides a convenient way of adding to the transformations that DWIM

performs, e.g., the user might want to change atoms of the form $X to

(QA4LOOKUP X). The user defines dwimuserfn as a function of no arguments, and

then enables it by setting dwimuserfn to T. DWIH will call dwimuserfn before

attempting spelling correction, but after performing its other transformations,

e.g. F/L, 8, 9, CLISP, etc. If dwimuserfn returns a non-NIL value, this valuo

is treated as a form to be evaluated and returned as the value of faulteval or

faultapply. Otherwise, if dwimuserfn returns NIL, DWIM pro~eeds as when

dwimuserfn is not enabled, and attempts spelling correction. Note that in the

event that dwimuserfn is to handle the correction, it is also responsible for

any modifications to the original expression, i.e. DWIM simply takes its value

and returns it.

In order for dwimuserfn to be able to function, it needs to know various things

about the context of the error. Therefore, several of DWJM's internal

17 .19

variables have been made SPECVARS (See Section 18) and are therefore "visible"

to dwimuserfn. Below are a list of those variables that may be useful.

faultx for unbound atoms and undefined car of form,
faultx is the atom or form. For undefined
functions in ~. foul tx is the name of the
function.

faultargs for undefined functions in ~. faultargs is tho
list of arguments.

faultapplyflg' ls T for undefined functions in ~· (Since
faultargs may be NIL, faultapplyflg is necessary
to distinguish between unbound atoms and undef inod
function in ~. since faultx is atomic in both
cases).

tail for unbound errors, tail is the tail car of which
is the unbound atom.----rilus dwimuserfn can replace
the atom by another expression by performing
(/RPLACA TAIL expr)

parent for unbound atom errors, parent is the form in
which the unbound atom appears, i.e. tail is a
tail of parent.

type-in? true if error occurred in type-in.

faul tfn name of function in which error occurred.
(faul tfn is TYPE-IN when the error occurred in
type-in, and EVAL or APPLY when the error occurred
under an explicit call to EVAL or APPLY).

dwirnifyflg true if error was encountered during dwimifying as
opposed to during running the program.

expr definition of faultfn, or argument to eval, i.e.
the superform in which the error occurs.~~

17.6 Spelling Corrector Algorithm

The basic philosophy of DWIM spelling correction is to count the number of

disagreements between two words, and use this number divided by the length of

the longer of the two words as a measure of their relative disabreement. One

minus this number is then the relative agreement or closeness. for example,

CONS and CONX differ only in their last character. Such subs ti tu ti on errors

count as one di~agreement, so that the two words are in 75% agreement. Most

17.20

calls to the spelling corrector specify rel=7o, 26 so that a singl.e substitution

error is permitted in words of four characters or longer. However, spelling

correction on shorter words is possible since certain types of differences such

as single transpositions are not counted as disagreements. For example, AND

and NAO have a relative agreement of 100.

The central function of the spelling corrector is chooz. choo2 takes as

arguments: a word, a spelling list, a minimum relative agreement, and an

optional functional argument, xword, splst, ~el, and fn respectively. 26

chooz proceeds down splst examining each word. Words not satisfying fn, or

those obviously too long or too short to be sufficiently close to xword are

immediately rejected. For example, if rel=70, and ~ is 5 characters long,

words longer than 7 characters will be rejected.27

If tword, the current word on splst, is not rejected, ~ computes the number

of disagreements between it and xword by calling a subfunction, skor.

skor operates by scanning both words from left to right one character at a

time. 28 Characters are considered to agree if they are the same characters: or

25---Integers between 0 and 100 are used instead of numbers between 0 and 1 in

26

27

28

order to avoid floating point arithmetic.

fn=fHL is equivalent to fn=(LAHBDA NIL T).

Special treatment is necessary for words shorter than xword, since doubled
letters are not counted as disagreements. For example:-cONNSSS and CONS
have a relative agreement of 100. (Certain teletype diseases actually
produce this sort of stuttering.) chooz handles this by counting the number
of doubled characters in xword before it begins scanning splst, and taking
this into account when deciding whether to reject shorter words.

skor actually operates on the list of character codes for each word. This
list is computed by chooz before calling skor using dchcon, so that no
storage is used by the--ent'ire spelling correction process.

17.21

+
+
+

appear on the same teletype key (i.e. a shift mi$take), for example, • a~r~es

with : , 1 with ! , 29 etc.; or if the character in ~ is a lower case version

of the character in tword. Characters that agree are ·discarded, and the

skoring continues on the rest of the characters in ~ and tword.

If the ffrst character in xword and tword do not agree, skor checks to see if

either character is the same as one previously encountered, and not accounted-

for at that time. (In other ~ords, transpositions are not handled by

lookahead, but by look.back..) A displacement .of · two or fewer positions is

counted as a tranposition; a displacement by more than two positions is counted

as a disagreement. In either case. both characters are now considered as

accounted for and are discarded, and skoring continues.

If the first character in xword and tword do not agree, and neither are. equal

to previously unaccounted-for characters, and tword has more characters

remaining than xword, ~ removes and saves the first character. of tword, and

continues by comparing the rest of tword with ~ as described above. If

tword has the same or fewer characters remaining than ~. the procedure is

the same except that the character is removed from ~. 30 In this case, a

special check is first made to see if that character is equal to t.he previous

character in xword, or to the next character in xword, i.e. a double character

typo, and if so, the character is considered accounted-for, and not counted as

-----------------------•••••••••••••••••••a•J•••••••••••••••••••-••••••-•-•••••
29

30

For users on model 33 teletypes, as indicated by the value of model33flg
being T, @and P appear on the same key, as do Land/, N and L, and O and
.. , and D\.IIM wi.11 proceed accordingly. The initial value for model33f1Q is
NIL. Certain other terminals. e.g. Anderson Jacobs terminal, have keyboard
layouts similar to the model 33, i.e. N on same key as t, etc. In this
case, the user might also want to set model33flg to T.

Whenever more than two characters in either xword or tword are unaccounted
for, skoring is aborted, i.e. xword and tword are considered to disagree.

17.22

a disagreernent. 31

When skor has finished processing both xword and tword in this fashion, tho

value of skor is the number of unaccounted-for characters, plus the number of

disagreements, plus the number of tranpositions, with two qualifications: (1)

if both xword and tword have a character unaccounted-for in the same position,

the two characters are counted only once, i.e. subs ti tut ion errors count as

only one disagreement, not two; and (2) if there are no unaccounted-for

characters and no disagreements, transpositions are not counted. This permits

spelling correction on very short words, such as edit commands, e.g.

XRT->XTR. 32

17.7 DWIM Functions

dwim[x) If ~=NIL, disables DWlM; value is NIL. If ~=C,

enables DWIM in cautious mode; value is CAUTIOUS.

1 f 2S=T, enables DWJM in trusting mode; value is

TRUSTING. For all other values of ~· generates an

error.

dwimify(x] 2S is a form or the name of a function. dwimi fy

performs all corrections and transformations that

31---In this case, the 'length' of xword is also decremented. Otherwise making

32

xword sufficiently long by adding double characters would make it be
arbitrarily close to tword, e.g. XXXXXX would correct to PP.

Transpositions are also not counted when fastypeflg=T, for example, IPLILX
and !PLUS will be in 80% agreement with fastypeflg=T, only 60% with
fastypeflg=NIL .. The rationale behind this is that transpositions are much
more comr:ton for fast typists, and should not be counted as disagreements,
whereas more deliberate typists are not as likely to combine tranpositions
and other mistakes in a single word, and therefore can use more
conservative metric. fastypeflg is initially NIL.

17.23

ow

would occur if :i were actually run. dwimi fy is

undoable.

edit macro. dwimifies current expre~sion.

addspell[x;splst;n] Adds ::: to one of the four spelling lists as

fOllows :33

if splst=NIL. adds ~ to userwords and t.o

spell ings2. Used by defineg.

If splst=O, adds !$ to userwords. Used by load

when loading exp rs to property lists.

If splst=1, adds],! to spellings 1 (at end of

permanent section). Used by lispx.

if splst=2, adds ~ to spellings2 (at end of

permanent section). Used by lispx.

If splst=3, adds!$ to userwords and spellings3.

splst can also be a spelling list, in which case !l

is the (optional) length of the temporary section.

addspell sets lastword to x when splst=NIL, 0 or

3.

If ~ is not a literal atom, addspell takes no

action.

55·-------~------------------·---------------------·-··-----·------------------If x is already on the spelling list, and in its temporary section,
addSpell moves ::; to the front of that section. See page 17 .14 for complete
description of algorithm for maintaining spelling lists.

17.24

misspelled?[xword;rel;splst;flg;tail;fn]

If xword=NIL or alt-mode, misspelled?

prints = followed by the value of lastword, and

returns this as the respelling, without asking for

approval. Otherwise, misspelled? checks to see if

xword is really misspelled, i.e. if fn applied to

xword is true, or xword is already contained on

splst. In this case, misspelled? ~imply returns

~· Otherwise misspelled? computes and returns

fixspell[xword:rel;splst;flg;tail;fn)

fixspell[xword;rel:splst;flg:tail;fn;tieflg)34

The value of fixspell is either the respelling or

xword or NIL. fixspell performs all of the

interactions described earlier, including

requesting user approval if necessary.

If ~=NIL or $ (alt~mode), the respelling is

the value of lastword, and no approval is

requested.

If !.!9=NIL, the correction is handled in type- in

mode, i.e. approval is never requested, and xword

is not typed. If !.!9=T, xword is typed (before

the =) and approval is requested if approveflg=T:

If tail is not NIL, and the correction is

successful, .£!!:. of ~ is replaced by the

17.25

*

respelling (using .{rplaca). In addition, fixspoll

will correct misspellings caused by runnin.g two

words together. 35 In this case, £fil: of tail is

replaced by the two words, and the value of

fixspell is the first one. For example, if

f:l.xspell is called to correct the edit command

(MOVE TO AFTERCOND 3 2) with tail=(AFTERCOND 3 2),

tail would be changed to (AFTER COND 2 3). and

fixspell would return AFTER (subject to user

approval where n0cessary). 86

If tieflg=T and a tie occurs, i.e. more than ono

word on ,;?pl st is found with the same degree of

'closeness', the first word is taken as tho

correct spelling. If tieflg=Nil and a tie occurs,

fixspell returns NIL, i.e. no correction. If

tiefl9=All, the value of fixspell is a list of the

respellings (even if there is only one). and

fixspell will not perform any interaction with the

user, nor modify !ill• the idea being that the

calling program will handle those tasks.

The time required for a call to fixspell with a spelling list of 'length 60 when

the entire list must be searched is .5 seconds. If f:ixspell determines that

35---·-------------------------In this case. user approval is always requested. In addition, if the first

36

word contains either fewer than 3 characters, or fewer characters than tho
second word, the default will be N. 1 Run-on 1 spelling corrections can be
suppress~d by setting the variable runonflg to NIL (initially T).

If tail=T, fixspell will also perform run-on corrections, returning a
dotted pair of the two words in the event the correction is of this type.

17 .26

the first word on the spelling list is the respelling and does not need to

search any further, the time required is .02 seconds. ln other words, tho timo

required is proportional to the number of words with which xword is compared,

with the time for one comparison, i.e. one call skor. being roughly .01 seconds

(varies slightly with the number of characters in the words being compared.)

The function chooz is provided for users desiring spelling correction without

any output or interaction:

17.27

•

•

*
•
•

*

chooz[xword; rel; splst: tail:: fn; tieflg)37 The value of chooz is the

corrected spelling ·of xword38 or NIL; chooz

performs no interaction and no output .
' splst, tail, tetflg, and !.!! are as described under

fixspell above.
• .• • ., • J

If ll1! is not NIL and the

misspelling consists of running two words

together, e.g. (BREAK FOO) for (BREAK ,.FOO), tho

value of £!12.2! will be a dott~d pair of 'the two

words, e.g. (BREAK • FOO).

fncheck[fn;nomessflg;spellflg] The task of fncheck is to check whether fn is

the name of a function and if not, to correct its

spelling. 39 If fn is the name of a function or

spelling correction is successful, fncheck adds

the (corrected) name of the function to userwords

using addspell, and returns it as its value.

nomessflg informs fncheck whether or not the

calling function wants to handle the unsuccessful

case: if nomessflg is T, fncheck· simply returns

NIL, otherwise it prints fn NOT A FUNCTION and

generates a non-breaking error.

37---chooz has some additional arguments, for internal use by DWIM.

88

89

chooz does not perform spelling completton, only spelling correction.

Since fncheck is called by many low level functions such as arglist,
unsavedef, etc., spelling correction only takes place when dwimflg=T. so
that these functions can operate in a small INTERLISP system which does not
contain D\.IIM.

11:2a

fncheck calls misspelled? to perform spelling

correction, so that if fn=NIL, the value of

lastword wi 11 be returned. spe 11 flg corresponds

to misspelled? 1 s fourth argument, flg. If

spellflg=T, approval will be asked if DWIM was

enabled in CAUTIOUS mode, i.e. if approveflg=T.

fncheck is currently used by arglist, unsavedef, prettyprint, breakO, breakin,

chngnm, advise, printstructure, firstfn, lastfn, calls, and edita. for

example, breakO calls fncheck with nomessflg~T since if fnchcck cannot produce

a function, breakO wants to define a dummy one. printstructure however calls

fncheck with nomessflg=NIL, since it cannot operate without a function.

Many other system functions. call misspelled? or fixspell directly. For

example, breakl calls fixspell on unrecognized atomic inputs before attempting

to evaluate them, using as a spelling list a list of all break conunands.

Similarly, lispx calls fixspell on atomic inputs using a list of all lispx

commands. When unbreak is given the name of a function that is not broken, it

calls fixspell with two different spelling lists, first with brokenfns, and if

that fails, with userwords. makefile calls misspelled? using filelst as a

spelling list. Finally, load, bcompl, brecompile, tcompl, and recompile all

call misspelled? if their input file(s) won't open.

17.29

Index for Section 17

ADDSPELL[X;SPLST;N]•......•..••.. ,•
alt-mode (in spelling correction) •••...•...•.•.•
AMBIGUOUS (typed by dwim)•••.
approval (of dwim corrections) •••.•••...•.•.••••
APPROVEFLG (dwim variable/parameter) .•.•.••.••••
bell (typed by dwim)
BREAKCHECK•..
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTVPE] NL
BROKErJFIJS (break variable/parameter) •..•....••••
CAUTIOUS (DWIM mode)•..............••....
CHOOZ[XWORD;REL;SPLST;TAIL:FN:TJEFLG;NDBLS;CLST] ••
CLISP ••••••••o••••••••••o•••coo•o••o•••••••••·•••

CONTINUE WITH T CLAUSE (typed by dwim) •..•...••.
control-E ·························"············· DW (error message)•...•.•..••••...•••.•••
DWIM[X]•.•..•..•.•..••...••.••.
DWIM•.• , •••••••.••••••.•••••••••
DWIM interaction with user•........•..
DWIM variables•............••.•..•...•..
DWIMFLG (dwim variable/parameter)•......•...
DWIMIFY[X;L]• , •....•.••..
DWIMUSERFN (dwim variable/parameter)••.....
DWIMWAIT (dwim variable/parameter)
EOITCOMSA (editor variable/parameter)
EDITCOMSL (editor variable/parameter)•.•..
EDITDEFAULT•
error correct ion•..
ERRORSET[U;V) SUBR ••••••••••••••••••••••••••••••
EXPR (property name)•....
FASTYPEFLG (dwim variable/parameter)•.....
FAULTAPPLY[FAIJLTFN;FAULTARGS]•.....
FAULTEVAL[FAULTX] NL••....•.
FILEDEF (property name)
FILELST (file package ~ariable/parameter) .•....•
FIXSPELL[XWORD;REL;SPLST;FLG;TAIL;FN;TIEFLG;CLST;

APPROVALFLG]
FNCHECK[FN;NOMESSFLG;SPELLFLG;PROPFLG) .•........
FIL · • · · · · · · · · · · · · ·
keyboard layout•.......
LAMBDASPLST (dwim variable/parameter)
LASTWORD (dwim variable/parameter)•..
LISPX ... , .
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILE]
MISSPELLED?(XWORD;REL;SPLST;FLG;TAIL;FN]•..
MODEL33FLG (dwim variable/parameter)•.....
OK TO REEVALUATE (typed by dwim)
OKREEVALST (dwim variable/parameter)•.••....
RETEVAL[POS;FORM] SUBR ·········~················
RUNONFLG (dwim variable/parameter) ...••..•..•...
run-on spelling corrections •.......•.•..•.•.•..•
SHALL I LOAD (typed by dwim) ...•...............•
SKOR•..••..•.••••••••••••••••• 0 •••

spelling corrlpletion
spelling correction protocol ..•.•...........•.•.
spelling corrector
spelling lists ···············••••oe•••••••••••o•

INDEX.17 .1

Page
Numbers

17.24,28
17.11,25
17 .11
17.3,5.5-9,26
17.5-9,18,25,29·
17.6
17 .15
17.29
17.29
17.3,5,23,29
17.21,27-28.
17.16-18
17.9
17.6-7,15
17.24
17. 5. 23
17.1-29
17 .5
17.20
17.5,12,28
17.23-24
17 .17-19
17.6,8
17.17,19
17.18-19
17.5
17.1·29
17.15
17.17-18
17.23
17.5,15,19
17.5,15,19
17.17-18
17.29

17.25-26,29
17.28-29
17.17
17.22
17.17-19
17.14,24-25,29
17.5,12-14,29
17.29
17.25,29
17.22
17.9
17.9
17. 15
17.26
17.5,26
17. 18
17.21•23
17 .11
17.5·7
17.2,10-12,20-23,28
17,12~15,17v19

SPELLIHGSl (dwim variable/parameter)
SPELLillGS2 (dwim variable/parameter)
SPELLIHGS3 (dwim variable/parameter)
synon~s•..•..
T FIXED (typed by dwim)
TRUSTHJG (O\./IM mode)
unbound atom•..•....
undefined function•......•......•..•.
UllDO (prog. asst. command)
UIJSAVED (typed by dwim)•.• , ..•.........•••
ur~SAVEDEF[X;TYP] ••••••••••••••••••••••••••••••••
USERWOROS (dwim variable/parameter) .••....•••..•
U.B.A. (error message)•.•.....•....•..••...
U.D.F. T FIX? (typed by dwim)
U.D.F. T (typed by dwim)
U. D. F. (error message)•......•..•..•.•
#SPELL IrlGS 1 (dwim variable/parameter)••.•.••
#SPELLillGS2 (dwim variable/parameter) •....•.•..•
tJSPELLHIGS3 (dwim variable/parameter) •.••..••.••
#USERWORDS (dwim variable/parameter) •..•••••.•••
$ (alt-mode) (in spelling correction) ..••....•••
I

• • "' • • • • • • e • e e e • • e e e 0 I • e 0 • • e ••••• 0 •• I • e ' e ' ' e ' •• '

-> (typed by dwim) ..•••.•..•..•.•.••...••.•••••.
. . . (typed by dwim) ..•.........•..•..•.•••••..••
7 (instead of') ...•.•........••••••••.•••••.•••
8 (instead of left parenthesis) •••••••••••••••••
9 (instead of right parenthesis) •.••.•.••.••.•••
= (typed by dwim) •..•.••.••.•..•.•••••........•.
? (typed by dwim) .. .,

INDEX.17.2

Page
Numbers

17.12-14,19,24
17.13-14,18-19,24
17.13-14,17,24
17. 11
17.8
17.3,5,23
17.15-19
17.15-19
17.4
17.17-18
17.17-18
17.13-14,24,28-29
17.15
17.8
17.8
17.2,15
17.14
17.14
17.14
17.14
17. 11, 25
17.16
17.3-4,6°7
11.4,G

. 11.16
17.2,7,16,18-HI
17.2,7,16,18
17.5,7
17.6-7

SECTION 18

THE COMPILER AND ASSEMBLER1

18.1 The Compiler

The compiler is available in the standard INTERLISP system. It may be used to

compile individual functions as requested or all function definitions in a

standard format LOAD file. The resulting code may be stored as it is compiled,

so as to be available for immediate use, or it may be written onto a file for

subsequent loading. The compiler in INTERLISP-10 also provides a means of

specifying sequences of machine instructions via ASSEMBLE.

The most conunon way to use the compiler is to compile from a symbolic

(prettydef) file, producing a corresponding file which contains a set of

functions in compiled form which can be quickly loaded. An alternate way of

using the compiler is to compile from functions already defined in the user's

INTERLISP system. In this case, the user has the option of specifying whether

the code is to be saved on a file for subsequent loading, or the functions

redefined, or both. In either case, the compiler will ask the user certain

questions concerning the compilation. The first ~uestion is:

i-------------------------·----------------------------------·------------------The INTERLISP-10 compiler itself, i.e. the part that actually generates
code, was written and documented by, and is· the responsibility of A.K.
Hartley. The user interfaces, i.e. tcompl, recompile, bcompl, and
brecompile, were written by W. Teitelman.

18.1

LISTING?

The answer to this question controls the generation of a listing and is

explained in full below. However, for most applications, .the user will want to

answer this question with either ST or f, which will also specify an answer to .
the rest of the questions which would otherwise be asked. ST means the us or

wants the compiler to STore the new definitions; f means the· user is only

interested in compiling to a file, and no storing of definitions is performed.

In both cases, the compiler will then ask the user one more question:

OUTPUT FILE:

to which the user can answer:

Example:

N or NIL no output file.

File name file is opened if not already opened. and compiled code

is written on th~ file.

.. COMPILE((FACT FACTl FACT2))
LISTING? ST
OUTPUT FILE: FACT.COM
(FACT COMPILING)

(FACT REDEFINE0)2

(FACT2 REDEFINED)
(FACT FACT1 FACTZ) ..

18.Z

This process caused the functions FACT, FACTl, and FACTZ to be compilod,

redefined, and the compiled definitions also written on the file FACT.COM for

subsequent loading.

18.2 Compiler Questions

The compiler uses the free variables lapflg, llr.f, svng, lcfil and lstfil

which determines various modes of operation. These variables are set by the

answers to the 'compset' questions. \./hen any of the top level compiling

functions are called, the function compset is called which asks a number of

questions. Those that can be answered •yes' or 'no' can be answered with YES,

Y, or T for YES; and NO, N, or NIL for NO. The questions are:

1. LISTING?

The answer to this question controls the generation of a listing. Possible

answers are:

1 Prints output of pass 1, the LAP macro code. 3

2 Prints output of pass 2, the machine code.

YES Prints output of both passes.

NO Prints no listings.

The variable lapflg is set to the answer. If the answer is affirmative,

cornpset will type FILE: to allow the user to indicate where the output is to be

written. The variable lstfil is set to the answer.

18.3

+

There are. three other possible answers to LISTING? - each of which specifies a

complete mode for compiling. They are:

S §ame as last setting.

F Compile to file (no definition of functions).

ST STore new definitions.

STF .§!ore new definitions, forget exprs.

Implicit in these three are the answers to the questions on disposition of

compiled code and expr 1 s, so questions 2 and 3 would not be asked if 1 were

answered with S, F, ST, or STF.

2. REDEFINE?

YES Causes each function to be redefined as 1 t is compiled. The

compiled code is stored and the function definition changed.

The variable !!!f is set to T.

NO Causes function definitions to remain unchanged. The variable

strf is set to NIL.

The answer ST or STF for the first question implies YES for this question, F

implies NO, and S makes no change.

3. SAVE EXPRS?

If answered YES, svflg is set to T, and the exprs are saved on the property

list of the functfon name. Otherwise they are discarded. The answer ST for

the first question implies YES for this question, F or STF implies NO, and S

makes no change.

18.4

4. OUTPUT FILE:

If the compiled definitions are to be written for later loading, you should

provide the name of a file on which you wish to save the code that is

generated. If you answer T or TTY:, the output will be typed on the teletype

(not particularly useful). If you answer N, NO, or NIL, output will not be

done. If the file named is already open, it will continue to be used. The

free variable lcfil is set to the name of the file.

18.3 Nlambdas

When compiling the call to a function, the compiler must prepar~ the arguments

to the function in one or three ways:

1. Evaluated (SUBR, SUBRR, EXPR, EXPRitt, CEXPR, CEXPR~)

2. Unevaluated, spread (FSUBR, FEXPR, CFEXPR)

3. Unevaluated, not spread (FSUBR*, FEXPR*, CFEXPR*)

In attempting to determine which of these three is appropriate, the compiler

will first look for a definition among the functions in the file that is being

compiled. If the function is not contained there, the compiler will look for

other information which can be supplied by the user by including nlambda

nospread functions on the list !l!fil!!! (for n.l!.mbda !toms), and including nlambdn

spread functions on the list nlaml (for !.!lfil!:!bda !ist). and including lambda

functions on the list l!m.!· 4 If the function is not contained in the file, 6 or

~--Including functions on lams is only necessary to override in-core nlambda

6

definitions, since in the absence of other information, the compiler
assumes the function is a lambda.

The function can be defined anywhere in any of the files given as arguments
to bcompl, tcompl, brecompile or recompile.

18.5

*

on the list nlarna, nlaml, or lams, the compiler will look for a current

definition. If the function is defined, its function type is assumed to be the

desired type. If it is not defined, the. compiler assumes that·the function is

of type 1, i.e. its arguments are to be evaluated.6 7 In other words,. if thore

are type 2 or 3 functions called from the functions being compiled, and thoy

are only defined in a separate file, they must be included on· nlama or nlaml,

or the compiler will incorrectly assume that their .arguments are to be

evaluated, and compile the calling function correspondingly. Note that this is

only necessary if the compiler does not 'know' ab.out the function. lf tho

function is defined at compile time, or is handled via a macro, or is contained

in the same group of files as the functions that call it. the compiler will

automatically handle calls to that function correctly.

18.4 Global Variables

Variables that appear on the list globalvars or have the property GLOBALVAR,

with value T~ are called global variables. Such variables are always accessed

through their value cell when they are used freely in a compiled funtion. In

other words,. a reference to the value of this variable i.s equivalent to

(CAR (QUOTE variable)), regardless of whether or not it appears on the stack,

5--Before making this assumption, if the value of compileuserfn is not NIL.

7

the compiler calls (the. value of) cornpileuserfn giving it as arguments f_Q!.
of th~ form and the form itself, i.e. the compiler doos
(APPLY* COMPILEUSERFN (CDR form) form). If a non·NIL value is returned, it
is compiled instead of form. If NIL is returhed, the compiler compilos the
original expression as a call to a lambda-spread that is not yet dofinod.
CLISP (Section 23) uses compileuserfn to tell the compiler how to compilo ·
iterative statements, IF~THEN·ELSE statements, and pattern match
constructs.

The names of functions so treated
(for !Ssumed lamda!). alams is not used
for the user's benefit, i.e. so that the
incorrect assumptioris were made •

. 18.6

are added to the list n 1 ams
by the compiler; it is maintained
user can check to s~e whether any

i.e., the stack is not even searched for this variable when the compiled

function is entered. Similarly, (SETO variable value) is equivalent to

(RPLACA {QUOTE variable) value); i.e., it sets the top•level value.

All system parameters, unless otherwise specified, are global variables, 1. o. *

have on their property lists the property GLOBALVAR with value T, e.g. *

brokenfns, editmacros, #rpars, dwimflg, et a1. 8 Thus, rebinding these variables t1

will not affect the behavior of the system: instead, the variables must be

re.set to their new values, and if they are to be restored to their original

values, reset again. For example, the user might write

..• (SETO globalvar new-value) form (SETO globalvar old-value). Note that in

this case, if an error occurred during the evaluation of form, or a control-D

was typed, the global variable would not be restored to its original value.

The function reset var (described in Section 5) provides a convenient way of

resetting global variables in such a way that their values are restored even if

an error occurred or control-D is typed.

18.5 Compiler Functions

Note: when a function is compiled from its in core definition, i.e., via t1

compile, recompile, or brecompile, as opposed to tcompl ur bcompl (which uses ~

the definitions on a file), and the function has been modified by break, trace,

breakin, or advise, it is first restored to its original state, and a message

printed out, e.g., FOO UNBROKEN~ If the function is not defined as an expr, its

property list is searched for the property EXPR (see savedcf, section 8). If

i------------~---~--~----------------Since the stack does not have to be searched to find the values of these
variables, a considerable savings in time is achieved, especially for deep
computations.

18.7

+ there is a property EXPR, its value is used for the compilation. If there is no

+ EXPR and the compilation iS being performed by recompile or brecompilo, the

+ definition of the function is obtained from the file (using loadfns).

Otherwise, the compiler prints (fn NOT COMPILEABLE), and goes on to ·the next

function.

compile[x; flg]

compilel[name;def]

tcompl[files]

~ is a list of functions (if atomic, list[x] is

used). compile first asks the standard compiler

questions,· and then compiles each function on ::;.

using its in~core definition. Value is ~·

If compiled definitions are being dumped to a

file, the file is closed unless flfl=T.

compiles def, redefining~ if strf=T. 9 compilot

is used by compile, tcompl, and recompile. If

dwimifycompflg is T, or def contains· a CLISP

declaration, def is dwimified before compiling.

See Section 23.

tcompl is used to 'compile files', i.e., given a

symbolic load file (e.g., one created by

prettydef), it produces a 'compiled file' that

contains the same S-expressions as the original

symbolic file, except that (1) a special

FILECREATED expression appears at the front of tho

file which contains information used by the filo

package, and which causes the message COMPILED

18 .8

ON 10 followed by the date, to be printed when tho

file is loaded; (2) every dofineg in the symbolic

file is replaced by the corresponding compiled

definitions in the compiled file; 11 and (3)

expressions of the form (DECLARE: -- DONTCOPY --) .
that appear 1n the symbolic file are not copied to

the compiled file. This 'compiled' file can be i:i

loaded into any INTERLISP system with load.

files 1s a list of symbolic files to be compiled

(if atomic, list[f11es) is used). tcompl asks the

standard compiler questions, except for

OUTPUT FILE: Instead, the output from tho

compilation of each symbolic file is written on a

file of the same name suffixed with COM, 12 o. g., i:i

tcompl[(SVM1 SYM2)J produces two files; SYMl .COM

and SYM2.COM. 13

tcompl processes each file one at a time, reading

ia---The actual string printed is the value of compileheader, initially

11

12

13

"COMPILED ON". The user can reset compileheader~ for example to
distinguish between files compiled by different systems.

The compiled definitions appear at the front of the compiled file, i.e.
before the other expressions in the symbolic file, regardless of 11Jhere tlley
appear tn the symbolic file.

The actual suffix used is the value of the variable compile.ext, which is
initially COM. The user can reset compile.ext or rename the compiled file
after it has been written, without adversely affecting any of the system
packages.

The file name is constructed from the name field only, e.g.
tcornpl(<BOBROW>FOO.TEM;3] produces FOO.COM on the connected directory. The
version number will be the standard default.

18.9

+
+
+

+
+ ...
+

*

+
+

+
+
+
+
+

in the entire file. For each FILECREATED

expression, the list of functions ~hat were marked

as changed by the file package (see section 14) is

not~d, 14 and the FILECREATED expression is written

onto the output file. ·For each DEFINEQ expression,

tcompl adds any NLAMBDA's in the DEFINEQ to nlama

or lam1, 16 and adds LAMBDA's to the list lams, 16

so that calls to these functions will be compiled

correctly. Expressions beginning with DECLARE:

are processed specially as described b.elow. All

other ex·pressions are collected to be subsequently

written onto the output file. After processing the

file in this fashion, tcompl compiles each

funtion, 17 and writes the compiled definition onto

the output file. tcompl ihen writes onto the

output file the other expressions found in the

symbolic file.

The value of tcompl is a list of the names of the

14--~----D----------~------
for use by recompile and brecompile which use the same low level funtions

16

16

17

as tcompl and bcompl.

described earlier, page 18.5.

nlama, nlaml, and lams are rebound to their top level values (using
resetvar)by tcompl, recompile, bcompl, brecompile, compile, and
blockcompile, so that any additions to these lists while i.nside of those
functions will not propagate outside.

except for those functions which appear on the list dontcompilofns,
initially NIL. For example, this option might be used for functions that
compile open, since their definitions would be superfluo~s when operating
with the compiled file. Note that dontcompilefns can be set via block
declarations page 18.30.

18.10

DECLARE:

output files. All files are properly termina tod

and closed. If the compilation of any file is +

aborted via an error or control-D, all files are +

properly closed, and the (partially complete) +

compiled file is deleted. +

for the purposes of compilation, DECLARE: (see section 14) has two principal +

applications: (1) to specify forms that are to be evaluated at compile time, +

presumably to affect the compilation, e.g. to set up macros; and/or (2) to +

indicate which expressions appearing in the symbolic file are not to be copied +

to the output file. (Normally, expressions are not evaluated and are copied.) '°"

Each expression in cdr of a DECLARE: form is either evaluated/not-evaluated and +

copied/not-copied de.pending on the settings of two internal state variables,

initially set for copy and not-evaluate. These state variables can be reset +

for the remainder of the expressions in the DECLARE: by means of the. tags -1-

DOEVAL@COMPILE (or EVAL@COMPILE) and DONTCOPV, e.g. +

(DECLARE: DOEVAL@COMPILE DONTCOPV (OEFL!ST (QUOTE MACRO))) could be used to ->

set up macros at compile time. ~

Recompile

The purpose of recompile is to allow the user to update a compiled file without

recompiling every function in the file. Recompile does this by using the

results of a previous compila~ion. It produces a compiled file similar to one

that would have been produced by tcompl, but at a considerable savings in time

by compiling selected functions and copying from an earlier tcompl or recompile

file the compiled definitions for the remainder or the functions in the file.

18 .11

+

+
+

+
+
+
+
+

recompile(pfile;cfile;fns) pfile is the name of the ~retty file to bo

compiled, .£.f.il! is the name of the £Omp·iled f i lo

containing compiled definitions that may bo

copied. fns indicates which functions in pfilo

are to be recompiled, e.g., have been changed or

defined for the first time since cfi le was made.

Note that pfile, not fns, drives rec.ompile.

recompile asks the standard compiler questions,

except for OUTPUT FILE:. As with tcompl, the

output automatically goes to pfile.COM.18 19

recompile process pfile the same as does tcompl

except that DEFINEQ expressions are not actually

read into core. Instead, recompile uses the

filemap (see section 14)20 to obtain a list of the

functions contained in pfile, and simply skips

over the DEFINEQ's.21

After this initial scan of pfile, recompile then

ia---or pfile.ext, where ill is the value of compile.ext.

19

20

21

In general, all constructions of the form pfile. COM, pf ileCOMS,
pfileBLOCKS, etc., are performed using the name field only.. For examplo,
if pfile=<BOBROW>FOO.TEM;3, pfile.COM means FOO.COM, pfileCOMS means
FOOCOMS, etc.

A map is built if the symbolic file does not already contain ono, e.g. it
was written in an earlier system, or with buildmapflg=NIL.

The filemap enables recompile to skip over the DEFINEQ' s in the file by
simply resetting the file pointer, so that in most cases the scan of tho
symbolic file is very fast (the only processing required is the reading of
the non-DEFINEQ's and the processing of the DECLARE: expressions as
described earlier).

18 .12

processes the functions defined in the file. For

each function in pfile, recompile determines

whether or not the function is to be (re)cornpiled. R

A function is to be recompiled22 if (1) fns is a ~

list and the function is a member of that list; or R

(2) fns=T or EXPRS and the function is an expr; or R

(3) fns=CHANGES and the function is marked as

having been changed in the FILECREATED expression; *

or (4) fns=ALL. 23 If ·a function is not to be R

recompiled, recompile obtains its compiled

definition from cfile, and copies it (and all

generated sub functions) to the output file,

pfile.COM. 24 Finally, after processing all

functions, recompile writes out all other

expressions that were collected in the prescan of

pfile.

lf cfile=NIL, pfile.COM is used for copying

Jrom. 25 If both ill and £..ti:!! are NIL, fns is

22·------------------~---~----------------····--·--···---··-----------·--------. Functions that are members of dontcompilefns are simply ignor'ed.

23

24

26

In this latter case, cfile is superfluous, and in fact does not have to
exist. This option is useful, for example; to compile a symbolic file that
has never been compiled before, but which has already been loaded (since
using tcompl would require reading the file in a second time).

If the function does not appear on cfile, an fn NOT FOUND error is
generated, and recompile aborts.

In other words, if cfile, the file used for obtaining compiled definitions
to be copied, is NIL, pfile.COM is used, i.e., same name as output file but
a different version number (one less) than the output file.

18.13

+.
+
+
+

+
+

set to T, meaning recompile all exprs.26

The value of recompile is the new compiled file,

+ pfile .COM. If recompile is aborted due to an

+ error or control-D, the new (partially completo)

+ compiled file will be closed and deleted.

+ recompile is designed to allow the user to conveniently and efficiently update

+ a compiled file, even when the corresponding symbolic file has not been

+ (completely) loaded. For example, the user can perform a loadfrom (section 14)

+ to 'notice' a symbolic file, 27 and then simply edit the functions he wanted to

+ change, 28 call makefile, 29 and then perform recompile[pfileJ. 30

+
+
+
+

+
+

+
+

+
+

+
+
+
+

18.6 Open Functions

When a function is called from a compiled function, a system ioutine is invoked

--~-----···-26

27

28

29

30

This is the most common useage. Typically, the functions· the user has
changed will have been unsavedefed by the editor, and therefore wi 11 be
exprs. Thus the user can perform his edits, dump the file; and then simply
recompile[file] to update the compiled file.

The loadfrom would be unnecessary if the compiled file had been previously
loaded, since this would also result in the file having been 1 noticed 1 •

As described in section 9, the editor would
functions not already loaded.

automatically load those

As described in section 14, makefile would
from the symbolic file.

copy the unchanged functions

Since pret.tydef automatically outputs a suitable DECLARE: expression to
indicate which functions in the file (if any) are defined as NLAMBDA' s,
calls to these functions will be handled correctly, even though the NLAMBDA
functions themselves may never be loaded, or even looked at, by recompile.

18 .14

that sets up the parameter and control push lists as necessary for variable

bindings and return information. As a result, function calls can talc.a up to

350 microseconds per call. If the amount of time spent inside the function is

small, this function calling time will be a significant percentage of the total

time required to use the function. Therefore, many 'small' functions, e.g.,

.£!!..!.:• cdr, £.g_, not, ~are always compiled 'open', i.e., they do not result in

a function call. Other larger functions such as .QLQ.g, selectq, mapc, etc. are

compiled open because they are frequently used. It is useful to know exactly

which functions are compiled open in order to determine where a program is

spending its time. Therefore below is a list of those functions which whon

compiled do not result in function calls. Note that the next section tells how

the user can make other functions compile open via MACRO definitions. 31

The following functions compile open in INTERLISP-10:

AC, ADDl, AND, APPLY•, ARG, ARRAYP, ASSEMBLE, ATOM, BLKAPPLY, BLKAPPLY~. CAR,

CDR, CAAR, ... CDDDAR, CDDDDR, CLOSER, COND, CONS, EQ, ERSETQ, EVERY, EVQ,

FASSOC, FCHARACTER, FDIFFERENCE, FGTP, FIX, FIXP, FLAST, FLENGTH, FLOAT,

FLOATP, FMEMB, FMINUS, FNTH, FPLUS, FQUOTIENT, FRPLACA, FRPLACD, FSTKARG,

FSTKNTH, FTIMES, FUNCTION, GETHASH, GO, !DIFFERENCE, IGREATERP, ILESSP, !MINUS,

IPLUS, !QUOTIENT, !REMAINDER, !TIMES, LIST, LISTP, LITATOM, LLSH, LOC, LOGAND,

LOGOR, LOGXOR, LRSH, LSH, MAP, MAPC, MAPCAR, MAPCON, MAPCONC, MAPLIST, MINUSP,

NEQ, NLISTP, NLSETQ, NOT, NOTEVERY, NOTANY, tHVP, NULL, NUMBERP, OPENR, OR, *
PROG, PROG 1. PROGN, RESETFORM, RESETLST, RESETSAVE, RESETVAR, RETURN, RPTQ, 11t

RSH, SELECTQ, SETARG, SETN, SETQ, SMALLP, SOME, STRINGP, SUB1, SUBSET, TYPEP, ~

UNDONLSETQ, VAG, ZEROP

3i------------------•••••••••••••••••••••••••-•••••••••••••••••••••••••••••••e•

The user can also affect the compiled code via compileuserfn, described in
footnote on page 18.6.

18 .15

18.7 Compiler Macros

The INTERLISP.compiler includes a macro capability by which the user can affect

the compiled code. Macros are defined.by placing the macro definition on tho

property list of the corresponding function. under the ·property MACRO .32 Whon

the compiler begins compiling a form, it retrieves a macro definition for ~

of the form, if any, and uses it to. direct the compilation. 33 The three

different types of macro definitions are given below.

(1) Open macros - (LAMBDA ••.)or (NLAMBOA ...)

A function can be made to compile open by giving it a macro definition of tho

form (LAMBDA ...)or (NLAMBOA ...),e.g.,

{LAMBDA (X) (COND ((GREATERP X 0) X) (T (MINUS X)))) for abs. The effect is

the same as though the macro definition were written in place. of the function

wherever it appears in a function being compiled, i.e., it compiles as an open

LAMBDA .or NLAMBDA expression. This saves the time necessary to call the

function at the price of more compiled code generated.

(2) Computed macros - (atom expression)

A macro definition beginning with an atom other than LAMBDA, NLAMBOA, or NIL,

allows computation of the INTERLISP expression that is to be compiled in place

of the form. The atom which starts the macro definition is bound to cdr of the

32--~~-;~~;;;;~~~-~;-~;;;·;~;~~CDECL~~E-CDEFLisr-:::·cQ~OTE·~~c~o)))-~;~-~;-;.;;~

33

within a function to define a MACRO. DECLARE is defined ~he same a~ QUOTE
and thus can be placed so as to have no effect on the running of the
function.

The compiler has built into it how to compile certain basic functions such
as f.2..!:, ~· etc., so that these will not be affected by macro
definitions. Thes• functions are listed above. However, some of thorn are
themselves implemented via macros, so. that the user could change the way
they compile. ·

18 .16

form being compiled. The expression following the atom is then evaluated, and

the result of this evaluation is compiled in place of the form. 84 For example.

list could be compiled this way by giving it the macro definition:

[X (LIST (QUOTE CONS)
(CAR X)
(AND (COR X)

(CONS (QUOTE LIST)
(COR X]

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL))).

Note the recursion in the macro expansion. 85 Ersetg, nlsetg, map, mapc, mapcar,

mapconc, and ~· are compiled via macro definitions of this type.

(3) Substitution macro - (NIL expression) or (list expression)

Each argument in the form being compiled is substituted for the corresponding

atom in ~ of the macro definition, and the result of the substitution is

compiled instead of the form, i.e.,

(SUBPAIR (CAR macrodef) (CDR form) (CADR macrodef)). For example, the macro

definition of add1 is ((X) (!PLUS X 1)). Thus. (ADD1 (CARY)) is compiled as

(IPLUS (CARY) 1). The functions. add1, sutit, neg, nlistp, zerop, flength,

fmemb, fassoc,· flast, and fnth are all compiled open using substitution macros.

Note that abs could be compiled open as shown earlier or via a substitution

macro. A substitution macro, however~ would cause (ABS (FOO X)) to compile as

(CONO ((GREATERP (FOO X) 0) (FOO X)) (T (MINUS (FOO X)))) and consequently

(FOO X) would be evaluated three times.

34--~------------------------------------In INTERLISP-10, if the result of the evaluation is the. atom INSTRUCTIONS,

36

no code will be generated by the compiler. It is then assumed the
evaluation was done for effect and the necessary code, if any, has been
added. This is a way of giving direct instructions to the compiler if you
understand it.

list is actually compiled more efficiently.

18 .17

18.8 FUNCTION and Functional Arguments·

Expressions that begin with FUNCTION will always be compiled as separate

functions36 named by attaching a gensyrn to the end of the name of the function

in which they appear, e.g., FOOAOOOJ. 37 This gensY!J! function will be called at

run ~ime. Thus if FOO is defined as

(LAMBDA (X) .•. (FOOl X (FUNCTION ...)) •..) and compiled, then when FOO is

run, FOOl will be called with two arguments, X, and FOOAOOOn, 38 and then FOOt

will call FOOAOOOn each time it must use its functional argument.

Note that a considerable savings in time could be achieved by defining FOOl as

a computed macro of the form:

(Z (LIST (SUBST (CAOADR Z) (QUOTE FN) def) (CAR Z)))

where def is the definition of FOOl as a function or Just its first argument

and FN is the name used for its functional argument in its definition. The

expression compiled contains what was previously the functional argument to

FOOl, as an open LAMBDA expression. Thus you save not only the function call

to FOOl, but also each of the function c•lls to its functional argument. For

example, if F001 operates on a list of length ten~ eleve~ function calls will

be saved. Of course, this savings in time cost space, and the user must decide

which is more important.

30---except when they are compiled open, as is the case with most of the mapping

37

38

functions.

nlsetg and ersetq expressions also compile using gensym functions. As a
result, a 11.Q or return cannot be used inside of a com.piled nlsetq or ersetg
if the corresponding 2!Q..9 is outside, i.e. above the nlsetg or ersetg.

or an appropriate funarg expression, see Section 11.

18 .18

18.9 Block Compiling

Block compiling provides a way of compiling several functions into a single

block. Function calls between the component functions of the block. are vory

fast, and the price of using a free variable, namely the time required to look

up its value on the stack, is paid only once - when the block. is entered.

Thus, compiling a block consisting of just a single recursive function may be

yield great savings if the function calls itself many times, e.g., equal, ~·

and. count are block compiled in INTERLISP.

The output of a block. compilation is a single, usually large, function. This

function looks like any other compiled function; it can be broken, advised,

printstructured, etc. Calls from within the block to functions outside of the

block look like regular function calls, except that they are usually linked

(described below). A block can be entered via several different functions.

called entries. These must be specified when the block is compiled. 39 For

example, the error block has three entries, errorx, interrupt, and fault 1.

Similarly, the compiler block has nine entries.

Specvars

One savings in block compiled functions results from not having to store on the

stack the names of the variables bound within the block, since the block

functions all 'know• where the variables are stored. However, if a variable

bound in a block is to be referenced outside the block, it must be included on

39·---·----------------------Actually the block is entered the same as every other function, i.e., nt
the top. However, the entry functions call the main block with their name
as one of its arguments, and the block dispatches on the name, and jumps to
the portion of the block corresponding to that entry point. The effect is
thus the same as though there were several different entry points.

18.19

the list specvars.4° For example, helpclock is on specvars, since it is rebound

inside of lispxblock and editblock, but the error functions must be able to

obtain its latest value.

Localfreevars

Localfreevars is a feature designed for those variables which are used freely

by one or more of the block functions, but which are always bound (by somo

other block function) before they are referenced, i.e. their free values above

the block are never used. Normally, when a block is entered, all variables

which are used freely by any function in the block are looked up and pointers

to the bindings are stored on the stack.. , When any of these variables are

rebound in the block, the old pointer is saved and a pointer to the new binding

is stored in the original stack position. It frequently happens that variables

used freely within a block are in fact always bound within the block prior to

the free reference. The unnecessary lookup. of the value of the free variable

at the time of entry to the block can be avoided by putting the variable name

on the list localfreevars. If a variable is on localfreevars, its value will

not be looked up at the time of entry. ~hen the variable is bound, the value

wi 11 be stored in the proper stack position. Should the variable in fact be

referenced before it is bound, the program will still work correctly.

Invisible to the user. a rather time-consuming process wi 11 take place. The

reference will cause a trap which will invoke code to determine which variable

was referenced and look up the value. Future references to that variable

during this call to the block will be normal, i.e. will not cause a trap.

18.20

trapcount[x] is a function to monitor the performance of block

compiled code with respect to localfreevars. If~

is NIL, trapcount returns the cumulative number of

traps caused by localfreevars that were not bound

before use. If ::s is a number, the trapcount is

reset to that number.

evg is another compiler artifice for free variables references. (EVQ X) has

the effect of (EVAL (QUOTE X)) without the call to eval (if X is an atom). evq

is intended primarily for use in conjunction with localfreevars. For example,

suppose a block consists of three functions, F001, FOOZ, and F003, with FOOl

and FOOZ being entries,·and F003 using X freely, w~ere Xis bound in F001, but

not in FOOZ, i.e. F001 rebinds X, but when entered via FOOZ, the user intends X

to be used freely, and its higher value obtained. If X is on localfreevars,

then each time the block is entered via FOOZ, a trap will occur when F003 first

references X. In order to avoid this, the user can insert. (EVO X) in F002.

This will circumvent the trap by explicitly invoking the routine that searches

back up the stack for the last binding of X. Thus, when used with

localfreevars, evg does two things: it returns the value of its argument, and

also stores that value in the binding slot for the variable so that no future

references to that· variable (in this call) will cause traps.· Since the time

consumed by the trap can greatly exceed the time required for a variable

lookup, using evg in these situations can result in a considerable savings.

Retfns

Another savings in block compilation arises from omitting most of the

information on the stack about internal calls between functions in the block.

However, if a function•s name must be visible on the stack, e.g., if the

function is to be returned from retfrom, it must be included on the list

retfns.

18.21

Blkapplyfns

Normally, a call to ~ from inside a block would be the same as a call to

any other function outside of the block. If the first argument to ~ turned

out to ·be one of the entries to . the block1 the block would have to be

reentered. blkapplyfns enables a program to compute the name of a function in

the block to be called next, without the overhead of leaving the block and

reentering it. This is don.a by including on the list . blkapplyfns those

functions which will be called in this fashion, and by.using blkapply in. place

of apply, and blkapply* in place of apply•. For example, the calls to the

functions handling RI, RO, LI, LO, BI, and BO in the editor are handled this

way. If blkapply or blkapplY"' is given a function not on blkapplyfns, the

effect is the same as a call to !£ill or apply• and no error is generated.

Note however, that blkapplyfns must be set at comptle time, not run time. and

furthermore, that all functions on blkapplyfns must be in the block, or an

error is generated (at compile time), NOT ON BLKFNS.

Blklibrary

Compiling a function open via a macro provides a way of eliminating a function

call. For block compiling, the same effect can be achieved by including the

function in the block. A further advantage is that the code for this function

will appear only once in the block, whereas when a function is compiled open.

its code appears at each place where it is called.

The block library feature provides a convenient way of including functions in a

block. It is just a convenience since the user ·cane always achieve the same

effect by specifying the function(s) in question as one.of the block functions,

provided it has an expr definition at compiie time.. The block library feature

simply eliminates the burden of supplying this definition.

18.22

To use the block library feature, place the names of the functions of interest

on the list blklibrary, and their EXPR definition on the property list of the

function under the property BLKLIBRARYDEF. When the block compiler compiles a

form, it first check to see if the function being called is one of the block

functions. If not, and the function is on blklibrary, its def in i ti on is

obtained from. the property value. of BLKLIBRARYDEF, arid it is automatically

included as part of the block. The functions .!!!££, equal, ~. last, length,

lispxwatch, memb, nconct. nleft, nth, and /rplnode already have BLKLIBRARYDEF

properties.

18.10 Linked Function Calls

Conventional (non-linked) function calls from a compiled function go through

the function definition cell, i.e., the definition of the called function is

obtained from its function definition cell at call time. Thus, when the us or

breaks, advises, or otherwise modifies the definition of the function FOO,

every function that subsequently calls it instead calls the modified function.

For calls from the system functions, this is clearly not a feature. For

example, the user may wish to break on basic functions such as print, oval.

rplaca, etc., which are used by the break package. In other words, we would

like to guarantee that the system packages will survive through user

modification (or destruction) of basic functions (unless the user specifically

requests that the system packages also be modified). This protection is

achieved by linked function calls.

For linked function calls, the definition of the called function.is obtained at

link. time, i.e., when the calling function is defined, and stored in the

literal table of the calling function. At call time, this definition is

retrieved from where it was st~red in the literal table, not from the function

definition cell of the called function as it is for non· linked calls. These

two different types of calls are illustrated in Figure 18•1.

18.23

Note that while function calls from block compiled functions are u..sual ly

linked, and those from standardly compiled functions are u..sua l ly non· linked,

linking function calls and blockcompiling are independent features of the

INTERLISP compiler, i.e., linked function calls are possible, and frequently

employed, from standardly compiled functions.

18.24

CALLING
FUNCTION

CALLING
FUNCTION

LINKED CALL

NON-LINKED CALL

DEFINITION
CELL

LINKED CALL

NON-LINKED

DEFINITION
CELL

FIGURE 18-1

18.25

DEFINITION

OLD
DEFINITION

NEW
DEFINITION

Note that normal function calls require only the called function's name in the

literals of the compiled code, whereas a linked function £!!..!.! uses two literals

and hence produces slightly larger compiled functions.

The compiler's decision as to whether to· link a particular function call is

determined by the variables linkfns and nolinkfns as follows:

(1) If the function appears on nolinkfns, the call is not linked:

(2) If block compiling .and the function is one of the block functions, the

call is internal as described earlier;

(3) If the function appears on linkfns, the call is linked;

(4) If nolinkfns=T, the call is not linked:

(5) If block compiling, the call is linked:

(6) If linkfns=T, the call is linked:

(7) Otherwise the call is not linked.

Note that (1) takes precedence over (2), i.e., if a function appears on

nolinkfns, the call to it is not linked, even if it is one of the functions in

the block, i.e., the call will go outside of the block.

Nolinkfns is initialized to various system functions such as errorset, broak1,

etc. Linkfns is initialized to NIL. Thus if the user does not specify

otherwise. all .calls from a block compiled function (except for those to

functions on nolinkfns) will be linked; all calls from standardly compiled

functions will not be linked. However, when compiling system functions such as

help, error, arglist, ~. breakl, et al, linkfns is set to T so that even

though these functions are not block compiled, all of their calls will be

linked.

If a function is not defined at link time, i.e., when an attempt is made to

link to it, it is linked instead to t~e function nolinkdef. When the function

18.26

is later defined, the link can be completed by relinking the calling function

using relink described below. Otherwise, if a function is run which attempts a

linked call that was not completed, nolinkdef is called. If the function is

now defined, i.e., it was defined at some point after the attempt was made to

link to it, nolink.def will quietly perform the link. and continue the call.

Otherwise, it will call faultapply and proceed as described in Section 16.

Linked function calls are printed on the back.trace as ;fn; where fn is the namo

of the function. Note that this name does not actually appear on the stack,

and that stkpos, retfrom, and the rest of the pushdown list functions (Section

12) will not be able to find it. Functions which must be visible on the stack

should not be linked to, i.e., include them on nolinkfns when compiling a

function that would otherwise link its calls.

printstructure, calls, break on fn1·IN·fn2 and advise fn1-IN·fn2 all work

correctly for linked function calls, e.g., break[(FOO IN FIE)), where FOO is

called from FIE via a linked function call.

Relinking

The function relink is available for relinking a compiled function, i.e.,

updating ali of its linked calls so that they use the definition extant at the

time of the relink operation.

relink[fn] fn is either WORLD, the name of a function, a list

of functions, or an atom whose value is a list of

functions. relink performs the corresponding

relinking operations. relink[WORLOJ is possible

because laprd maintains on linkedfns a list of all

user functions containing any linked calls.

18.27

syslinkedfns is a list of all system functions

that have any linked calls. relink[WORLD]

performs both relink[linkedfns] and

relink[syslinkedfns] •.

The value of relink is fn.

It is important to stress that linking takes place when a function is defined.

Thus, if FOO calls FIE via a linked call, and a bug is found in FIE, changing

FIE is not sufficient; FOO must .be relinked. Similarly, if FOOL F002, and

F003 are defined (in that orde~) in a file, and each call the others via linked

calls, when a new version of the file is loaded, FOOl will be linked to the old

F002 and F003, since those definitions will be extant at the time it is rend

and defined. Similarly, F002 will link to the new F001 and old FOOJ. Only

F003 will link to the new FOOl and F002. The user would have to perform

relink[FOOFNS) following the load.

18.11 The Block Compiler

There are three user level functions for blockcompiling, bloc;compilo, bcompl,

and brecompile, corresponding to compile, tcompl, and recompile. All of them

ultimately call the same low level functions in the compiler, i.e., there is no

'blockcompiler' per se. Instead, when blockcompiling, a flag is set to enable

special treatment for specvars, retfns, blkapplyfns, and for determining

whether or not to link a function call. Note that all of the previous remarks

on macros, globalvars, compiler messages, etc,. all apply equally for block

compiling. Using block declaratiohs describ~d below, the user can intormix in

a single file functions compiled normally, functions compiled normally with

linked calls, and b.lock compiled functions.

18.ZS

Blockcompile

blockcompile(blkname;blkfns;entries;flg) blkfns is a list of the functions

comprising the block, blkname is the name of the

block, entries a list of entries to the block,

e,g, I

~BLOCKCOMPILE(SUBPRBLOCK (SUBPAIR SUBLIS SUBPR) (SUBPAIR SUBLIS))

Each or the entries must also be on blkfns or an

error is generated, NOT ON BLKFNs. 41

If entries is NIL, list[blkname) is used, e.g.,

~BLOCKCOMPILE(COUNT (COUNT COUNT!))

If blkfns is NIL, list[blkname) is used, e.g.,

~BLOCKCOMPILE(EQUAL)

blockcompile asks the standard compiler questions

and then begins compiling. As with compile, if

the compiled code is being written to a file, the

file is closed unless f.!Jl=T. The value of

blockcompile is a list of the entries, or if

entries:NIL, the value is blkname.

The output of a call to blo~kcompile is one

41··---~-----------------If only one entry is specified, the block name can also be one of the
blkfns, e.g. BLOCKCOMPILE(FOO (FOO FIE FUM) (FOO)). However, if more than
one entry is specified, an error will be generated,
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME.

18.29

Block Declarations

function definition for blkname, plus definitions

for each of the functions on entries if any.

These entry functions ·are very short functions

which immediately call .blkname.

Since block compiling a file frequently involves giving the compiler a lot of

information about the nature and structure of the compilation, e.g.. block

functions, entries, specvars, linking, et. al, we; have implemented a special

prettydef command to facilitate this commmunication. The user includes in the

third argument to prettydef a command of the form

(BLOCKS block 1 ... block2 •.• blockn) where each.block1 is a block declaration.

bcompl and brecompile described below are sensitive to these declarations and

take the appropriate action.

The form of a block declaration is:

(blkname blkfn 1 ... blkfnm (var1 • value) ... (v:ar0 • value))

blkfn 1 ... blk.fnm are the functions in the block and correspond to blkfns in

the .call to blockcompile. The (var , value) expressions indicate the settings

for variables affecting the compilation,

As an example, the value of editblocks is shown below. It consists of three

block declarationsi editblock, editfindblock~ and edit4e.

18.30

(RPAQQ EDITBLOCKS
((EDITBLOCK EDITLO EDITLl UNDOEDITL EDITCOM EDITCOMA EDITCOML

EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM
UNDOEDITCOMl EDITSMASH EDITNCONC EDITlF EDIT2F
EDITNTH BPNT BPNTO BPNT1 RI RO LI LO BI BO
EDITDEFAULT #• EDUP EDIT* EDOR EDRPT EDLOC EDLOCL
EDIT: EDITMBD EDITXTR EDITELT EDITCONT EDITSW
EDITMV EDITTO EDITBELOW EOITRAN TAILP EDITSAVE
EDITH (ENTRIES EDITLO ## UNDOEOITL)
(SPECVARS L COM LCFLG #l #2 #3 LISPXBUFS

••COMMENT**FLG PRETTYFLG UNDOLST
UNDOLST1)

(RETFNS EDITLO)
(GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS

HISTORYCOMS EDITRACEFN)
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EDITMBD

EDITMV EDITXTR)
(BLKLIBRARY LENGTH NTH LAST)
(NOLINKFNS EOITRACEFN))

(EDITFINDBLOCK EDIT4E EOIT4El EDITQF EDIT4F EDITFPAT
EDITFPATl EDIT4F1 EOIT4F2 EOIT4F3 EDITSMASH
EDITFINDP EDITBF EDITBFt ESUBST
(ENTRIES EDITQF EOIT4F EDITFPAT EDITFINDP

EDITBF ESUBST))
(EDIT4EBLOCK EOIT4E EDIT4E1 (ENTRIES EDIT4E EDIT4E1]

Whenever bcompl or b~ecompile encounter a block declaraction42 they rebind

retfns, specvars, localfreevars, globalvars, blklibrary, nolinkfns, linkfns,

and dontcompilefns to their top level value, bind blkapplyfns and entries to +

NIL, and bind blkname to the first element of the de~laration. They then scan

the rest of the declaration, gathering up all atoms, and setting .£!.!: of e.ach

nonatomic element to ill of the expression if atomic, e.g., (LINKFNS . T), or

else to ~ of cdr of the expressions with the current (rebo1.1nd) value, 43

e.g., (GLOBALVARS EOITCOMSA EDITCOMSL). When the declaration is exhausted, the

block compiler is called and given blkname, the list of block functions. and

entries.

42------------~--~---------------The BLOCKS conunand outputs a DECLARE expression, which is noticed by bcompl

43

and brecompile.

Expressions of the form (var 11 form) will cause form to be evaluated and
the resulting list used as described above, e.g.
(GLOBALVARS * HYGLOBALVARS).

18.31

Note that since all compiler variables ~re rebound for each block declarationi

the declaration only has to set those variables it wants changed. Furthermore,

setting a variable in one declaration has no effect on the variable's value for

another declar~tion.

After finishing all blocks, bcornpl and brecompile treat any functions. in the

file that did not app~ar in a block declaration in the ~ame way as do tcompl

and recompile. If the user wishes a function compiled separately as well as in

a block, or if he wishes to compile some functions (not blockcompile). with

some compiler variables changed, he can use a special pseudo-block declaration

of the form (NIL fn 1 ... fnm (var1 . value) •.. (varn • value)) which means

compile fn 1 ... fnm after first setting var 1 •.. varn as described above. For

example, (NIL CGETO FNTYP ARGLIST NARGS NCONC1 GENSYM (LINKFNS . T))

appearing as a 'block declaration' will cause the six indicated functions to be

compiled while linkfns=T so that all of their calls will be linked .. (exceptrfor

tho$e functions on nolinkfns).

bcompl

bcompl[files;cfile] files is a list of symbolic files. (If atomic,

list[files] is used.) bcompl differs from tcompl

in that it. compiles all of the files at once,

instead of one at a time, in order to permit one

block to contain functions in several files .44

Output is to ~ if given, otherwise to a file

whose name is car[files] suffixed with COM, 45

44---·----Thus if you have several files to be bcompled .separately, you must make
several calls to bcompl.

45 or value of compile.ext, as explained earlier.

18.32

Brecompile

e.g., bcompl[(EOIT WEOIT)] produces one file,

EDIT.COM.

bcompl asks the standard compiler questions,

except for OUTPUT FILE:, then processes each file

exactly the same as does tcompl (see page !II

18 .10). 46 Bcompl next processes the block 111

declarations as described above. Finally, it

compiles those functions not mentioned in one of

the block declarations, and then writes out all

other expressions.

The value of bcompl is the output file (the new

compiled file). If the compilation is aborted due +

to an error or control·D, all files are closed and +

the (partially complete) output file ~s deleted. +

Note that it is permissible to tcompl files set up

for bcompl: the block declarat'toris will simply

have no effect. Similarly, you can bcompl a file

that does not contain any block declarations and

the result will be the same as having tcompled it.

Brecompile plays the same role for .bcompl that recompile plays for tcompl:

46~-~----------------~---~---In fact, tcompl is defined in terms of bcompl. The only difference is +
that tcompl calls bcompl with an extra argument specifying that all block +
declarations are to be ignored. +

18.33

lit

lit

lit

its purpose is to allow the user to update a compiled file without requiring an

entire bcompl.

brecompile[files ;cfile; fns] files is a list.· of symbolic file~ (if atomic,

list[files] is used). cfile is the compiled file

corresponding to bcompl(filesJ or a previous

brecompile, i.e., it contains compiled definitions

th.at may be copied. The interpretation of fns is

the same as with recomp~le.47

brecompile asks the standard compiler questions

except for OUTPUT FILE: As with bcompl, output

automatically goes to file.CON, where file is the

first file in f.!.!!.!~

brecompile process~s each file the same as does

recompile as described on page 18 .12, then

processes each block declaration. If any of the

functions in the block are to be recompiled, tho

entire block must be (is) recompiled. Otherwise,

the block is c.opied from cfile as with recompile.

For pseudo-block declarations of the form

{NIL fn1 .••), all variable ~ssignments are made,

but only those functions so indicated by fns are

recompiled.

After completing the block declaration$,

18.34

brecompile processes all functions that do not

appear in a block declaration, recompiling those

dictated by fns, and copying the compiled

definitions of the remaining from cfile.

Finally, brecompile writes onto the output filo

the •other expressions• collected in the initial

scan or files.

The value of brecompile is the output file (tho

new compiled file). If the compilation is abortod +

due to an error or control•D, all files are closed +

and the (partially complete) output file is +

deleted.

If ill.!!= NIL, file.COM is used.48 In addition, if

fns and .£f!1! are both NIL,!!!.! is set to T.

18.12 · Compiler Structure

The compiler has two principal passes. The first compiles its input into a

macro assembly language called LAP. 49 The second pass expands the LAP codo.

producing (numerical) machine languag~ instructions. The output of the second

pass is written on a file and/or stored in binary program space.

ai·---~----------------------------------see footnote on page 18.12,

49 The exact form of the macro assembly language is extremely implementation
dependent, as well as being influenced by the arc.hitecture and instruction
set for the machine that will run the compiled program. The remainder of
section 18 discusses LAP for the INTERLISP-10.

18.35

+

Input to the compiler is usually a standard INTERLISP S·expression function

definition. However, in INTERLISP·10, machine language coding can be included

within a function by the use of one or more assemble forms. In other words,

assemble allows the user to write protions of a function in LAP. Note that

assemble is only a compiler directive; it has no independent definition.

Therefore, functions which use assemble must be compiled in order to run.

18.13 Assemble

The format of asse~ble is similar to that of PROG: (ASSEMBLE V s1 s2 ... SN).

V is a list of variables to be bound during the first pass of the compilation,

not during the running of the object code. The assemble statements s 1 ••• SN

are compiled sequentially, each resulting in one or more instructions of object

code. When run, the value of the assemble 'form' is the contents of ACt at the

end of the execution of the assemble instructions. Note that assemble may

appear anywhere in an INTERLISP•10 function. For example, one may write:

(IGREATERP (!QUOTIENT (LOC (ASSEMBLE NIL

1000)
4)

to test if job runtime exceeds 4 seconds.

Assemble Statements

(MOVEI 1 , ·5)
(JSVS 13)))

If an assemble statement is an atom, it is treated as a label identifying the

location of the next statement that will be assemb~ed. 60 Such labels defined in

18.36

an assemble form are like .2..!:.2fl labels in that they may be referenced from tho

current and lower level nested .!2!..Q.9.! or assembles.

If an assemble statement is not an atom, .£2.!: of the statement must be an atom

and one of the following: (1) a number: (2) ·a LAP op-def (i.e. has a property

value OPD); (3) an assembler macro (i.e. has a property value AMAC): or (4) one

of the special assemble instructions given below, e.g. C, CQ, etc. Anything

else will cause the error message OPCODE? - ASSEMBLE.

The types of assemble statements are described here in the order of priority

used in the assemble processor; that is, if an atom has both properties OPD and

AMAC, the OPD will be used. Similarly a special assemble instruction may bo

redefined via an AMAC. The following descriptions are of the first pass

processing of assemble statements. The second pass processing is described in

the section on LAP, page 18.41.

(1) numbers - If·.£!!.!: of an assemble statement is a number, the statement is not

processed in the first pass. (See page 18.41.)

(2) LAP op-defs - The property OPD is used for two different types of op-defs:

PDP-10 machine instructions, and LAP macros. If the OPD

definition (i.e. the property value) is a number, the op-def is a

machine instruction. When a machine instruction, e.g. HRRZ,

appears as £!!: of an assemble statement, the statement is not

processed during the first pass but is passed to LAP. The forms

and processing of machine instructions by LAP are described on

page 18.42.

If the OPD definition is not a number, then the op-def is a LAP

macro. When a LAP macro is encountered in an assemble statement,

its arguments are evaluated and processing of the statement with

18.37

evaluated arguments is left for the second pass and LAP. ~or

example, LDV is a LAP macro, and (LDV (QUOTE X) SP) in a~semble

code results in (LDV X N) in the LAP code, where N h the value

of SP.

The form and processing of LAP macros .. are described on page

18.45.

(3) assemble macros - If m of an assemble statement has a property AMAC,

the statement is an assemble macro call. There are two types of

assemble macros: lambda and substitution. If car of the macro·

definition is the atom LAMBDA, the definition will' be applied to

the arguments of the call arid the resulting list of stat·ements

will be assembled. For example, repeat could be a LAMBDA·macr6

with two argumentsi !!. and !!!• which expands into !!. occurrences of·

!!!•e.g. (REPEAT 3 (CARl)) expands to ((CAR1) (CARl) (CAR1)). The

definition (i.e. value of property AMAC) for repeat is:

(LAMBDA (N M)
(PROG (YY)

A (COND
((ILESSP N 1) .

(RETURN (CAR YY)))
(T (SETQ YV (TCONC YV M))

(SETQ N (SUBl N))
(GO A)))))

If£!!.!: of the macro definition is riot the atom LAMBDA, it must be

a list of dummy symbols. The arguments of the macro call will be

substituted for corresponding appearances of the dummy symbols in

cdr of the definition, and the resulting list of statements will

18.38

be assembled. 61 For example, ubox could be a substitution macro

which takes one argument, a number, and expands into instructions

to compile the unboxed value of this number and put the result on

the number stack.

The definition of UBOX is:

((E)
(CQ (VAG E))
(PUSH NP , 1))

Thus (UBOX (ADO! X)) expands to:

((CQ (VAG (AD01 X)))
(PUSH NP , 1))

(4) special assemble statements -

CQ (compile quote) takes any number of arguments

which are assumed to be regular S·expressions and

are compiled in the normal way. E.g.

(CQ (COND ((NULL Y) (SETQ Y 1)))
(SETQ X (IPLUS V Z)))

Note: to avoid confusion, it is best to have as much of a function as possible

compiled in the normal way, e.g. to load the value of.~ to ACl. (CQ X) is

preferred to (LDV (QUOTE X) SP).

(Cs 1 s2 •••) C Csompile) takes any number of arguments which

a.re first evaluated, then compiled in the usual

6i---~-Note that assemble macros produce a list of statements to be assembled,
whereas compiler macros produce a single expression. An assemble macro
which compute.s a list of statements begins with LAMBDA and· may be either
spread or no-spread. The analogous compiler macro begins with an atom,
(i.e. is always no-spread) and the LAMBDA is understood.

18.39

(SETQ var)

(FASTCALL fn)

(II< .. •)

COREVALS

way. Both C and CQ permit the inclusion of

regular compilation within an assemble form.

E (!valuate) takes any number of arguments which

are evaluated in sequence. For example, (PSTEP)

calls a function· which increments the compiler

variable SP.

Compiles code to set the variable Y2.!: to the

contents of AC1.

Compiles code to call fn. Fn must be one of the

SUBR's that expects its arguments in the

accumulators, and not on the push-down stack.

Currently, these are ~· and the boxing and

unboxing routines. 52

Example:

(CO X)
(LDV2 (QUOTE Y) SP 2)
{FASTCALL CONS)

and cons[x,y] will be in AC1.

* is used to indicate a comment; the statement is

ignored.

There are several locations in the basic machine code of INTERLISP-10 which may

52··-----------------C·-----------------------------------Q~D$ ________________ _
list may also be called with fastcall by placing its arguments on the
pushdown stack, and the number of arguments in AC1.

18.40

be referenced from compiled code. The current value of each location is stored

on the property list under the property COREVAL. 63 Since these locations may

change in different reassemblies of INTERLISP-10, they are written symbolically

on compiled code files, i.e. the name of the corresponding COREV~L is written,

not its value. Some of the COREVALs used frequently in assemble are:

CONS entry to function CONS

LIST entry to function LIST

KT contains (pointer to) atom T

KNIL contains (pointer to) atom NIL

MKN routine to box an integer

MKFN routine to box floating number

IUNBOX routine to unbox an integer

FUNBOX routine to unbox floating number

The index registers used for the push-down stack pointers are also included as

COREVALS. These are not expected to change, and are not stored symbolically on

compiled code files; however, they should be referenced symbolically in

assemble code. They are:

PP parameter stack

CP control stack

NP number stack

18.14 LAP

LAP (for 1ISP _!Ssembly frocessor) expands the output of the ·first pass of

compilation to produce numerical machine instructions.

35---~---------------------The value of corevals is a list of all atoms with COREVAL properties.

18.41

LAP Statements

If a LAP statement is an atom, it is· treated as a label. identifying the

location of the next statement to be processed. If a LAP statement is not ari:

atom, £fil: of it must be an atom and one· of. the following: (1) a number; (2) :a

machine instruction; or (3) a LAP macro.

(1) numbers - If£!.!: of a LAP.statement is a 'number, a location containing the

number is produced in· the· objec·t code. ·

e.g.

A·

(ADD 1 , A (1))

(1)
(4)
(9)'

Statements of this type are processed like machine instructions,

with the initial number serving as a 36-bit op-code.
; ..

... ·
(2) Machine Instructions - If £!.!: of a LAP statement has a numeric valu.e for

the property OPD, 64 the statement is a machine instruction.' The

general form of a machine instruction is:

(opcode ac • @ address (indeK))

Opcode is any PDP•10 instruction mnemonic or INTERLISP UUo. 55

54---The value is an 18 bit quantity. (rather than.9), since. some UUO's also·use

66

the AC field of the instruction.

The TENEX JSYS's are not defined, that is, one must write (JSVS 107).
instead ~f (KFORK)~

18.42

Ac, the accumulator field, is optional. However,. if present, it

must be followed by a comma. Ac is either a number or an atom

with a COREVAL property. The low order 4 bits of the number or

COREVAL are OR'd to the AC field of the instruction .

.! may be used anywhere in the instruction to specify indirect

addressing (bit 13 set in the instruction) e.g. (HRRZ 1 , @ ' V).

Address is the address field which may be any of the following:

= constant

1 pointer

Reference to an unboxed constant. A location

containing the unboxed constant will be created in

a region at the end of the function, and the

address of the location containing the constant is

placed in the address field of the current

instruction. The constant may be a number o. g.

(CAME 1 , = 3596); an atom with a property COREVAL

(in which case the constant is the value of tho

property, at LOAD time); any other atom which is

treated as a label (the constant is then the

address of the labeled location) e.g.

(MOVE 1 , = TABLE) is equivalent to

(MOVEI 1 , TABLE): or an expression whose value is

a number.

The address is a refe~ence to.a INTERLISP pointer,

e.g. a list, number, string, etc. A location

containing the pointer is assembled at the end of

the function, and the current instruction wi 11

have the address of this location. E.g.

(HRRZ 1 • I II IS NOT DEFINED")

18.43

*

(HRRZ 1 , ' (NOT FOUND))

Specifies the current location in the compiled

function: e.g. (JRST * 2) has the same effect as

(SKIPA).

literal atom If the atom has a property COREVAL, it is a

number

list

reference to

(SKIPA 1 , KNIL),

a

and

system location,

the address used

e.g.

is the

value of the coreval. Otherwise the atom is a

label referencing a location in the LAP code, e.g.

(JRST A).

The number is the address: e.g.

(MOVSI 1 , 400000Q)

(HLRZ Z , 1 (1))

The form is evaluated, and its value is the

address.

Anything else in the address field causes an error message, e.g.

(SKIPA 1 , KNILL) - LAPERROR. A number may follow the address

field and will be added to it, e.g. (JRST A 2).

Index is denoted by a list following the address field, i.e. tho

address field must be present if an index field is to be used.

The index (£!£ of the list) must be either a number, or an atom

with a property COREVAL, e . g.

18.44

(HRRZ 1 • 0 (1)) or (ANDM 1 , 0 1 (NP)). 66

(3) LAP macros - If £!!!'. of a LAP statement is the name of a LAP macro, i.e.

has the property OPO, the statement is a macro call. The

arguments of the call follow the macro name: e.g. (LQ2 FIE 3).

LAP macro calls comprise most of the output of the first pass of

the compiler, and may also be used in assemble. The definitions

of these macros are stored on the property list under the

property OPD, and like assembler macros, may be either lambda or

substitution macros. In the first case, the macro· definition is

applied to the arguments of the call; 67 in the second case, the

arguments of the call are substituted for occurrences of the

dununy symbols in the definition. In both cases, the resl,llting

list of statements is again processed, with macro expansion

continuing till the level of machine instructions is reached.

Some examples of LAP macros are shown in Figure 18-2.

57 The arguments were already evaluated in the first pass, see page 18.37.

18.45

+
+

(DEFLIST(QUOTE(
(SVN ((N P)

(MOVE 1 • I N)
(HRLM 1 , P (PP))))

(SVB ((N)
(HRL 1 ' I N)
(PUSH PP l)))

(LQ ((X)
(HRRZ 1 ' I X)))·

(LQ2 ((X AC)
(HRRZ AC I X)))

(LOV ((A SP)
(HRRZ 1 , (VREF A SP))))

(STV ((A SP)
(HRRM 1 , (VREF A SP))'))

(LDV2 ((A SP AC)
(HRRZ AC , (VREF A SP))))

(LDF ((A SP)
(HRRZ 1 , (FREF A SP))))

(STF ((A SP)
(HRRM 1 (FREF A SP))))

(LDF2 ((A SP)
(HRRZ Z

(CARl (NIL
(HRRZ 1

(CDRl (NIL

·(FREF A SP))))

0 (1))))

(HLRZ 1 0 (1))))
(CARO ((V)

(HRRZ 1 @ I V)))
(CARQ2 ((V AC)

c HRRZ Ac , @ • v> > >
(CAR2 ((AC)

(HRRZ AC, 0 (AC))))
(RPQ ((V)

(HRRM 1 , @ 1 V)
(CLL ((NAM N)

(CCALL N • I NAM)))
(LCLL ((NAM N)

(LNCALL N , (MKLCL NAM))))
(STE ((TY) .

(PSTEl TY)))
(STN ((TY)

(PSTNl TY)))
(RET (NIL

(POPJ CP ,)
(PUSHP (NIL (PUSH PP , 1)))
(PUSHQ ((X)

(PUSH PP I x)))
)) (QUOTE OPD))

(* STORE VARIABLE NAME)

(• STORE VARIABLE NAME AND VALUE)

. __ r,-, -- •·

(* LOAD QUOTE TO ACl)
,·. ,:

(• LOAD QUOTE TO AC)
•.

(*LOAD LOCAL VARIABLE TO AC1)

(*SET LOCAL VARIABLE FROM ACl)

(• LOAD LOCAL VARIABLE TO AC)
.·::1',

(* LOAD FREE VARIABLE TO ACl)

(• SET FREE VARIABLE FROM ACl)
' 1.,

(* LOAD FREE VARIABLE TO AC)

(•CAR OF AC1 iO ACl)

(* CDR OF ACl TO AC1)
, :\

(•_CAR QUOTE)

(* CAR QUOTE TO AC)

(* CAR OF AC T~ AC)
")'

(* RPLACA QUOTE)

(* CALL FN WITH N ARGS GIVEN)
. .

(Ill LINKED CALL WITH N ARGS)

(* SKIP IF TYPE EQUAL)

(* SKIP IF TYPE NOT EQUAL)

(* RETURN FROM FN)

(* PUSH QUOTE)

:foigure 18·2

Examples of LAP Macros
.:;~.

18.46

18.15 Using Assemble

In order to use assemble, it is helpful to know the following things about how

compiled code is run. All variable bindings and temporary values are stored on

the parameter pushdown stack. When a compiled function is entered, the

parameter pushdown list contains, in ascending order of address:

1. bindings of arguments to the function, where each binding occupies one

word on the stack· with the variable name in the left half and tho

value in the right half.

2. pointers to the most recent bindings of free variables used in tho

function.

·The parameter push-down list pointer, index register PP, points to the last

free variable pointer on the stack.

Temporary values, PROG and LAMBDA bindings, and the arguments to functions

about to be called, are pushed on the stack following the free variable

pointers. The compiler uses the value of the variable SP to keep track of the

number of stack positions in use beyond the last free variable pointer, so that

it knows where to find the arguments and free variable pointers. The function

PSTEP adds 1 to SP, and PSTEPN(N) adds N to SP (N can be positive or negative).

The parameter stack. should only be used for storing pointers. In addition,

anything in the left half of a word on the stack is assumed to be a variable

name (see Section 12). To store unboxed numbers. use the number stack, NP.

Numbers may be PUSH'ed and POP'ed on the number stack.

18.47

18.16 Miscellaneous

The value of a function is always returned in AC1. Therefore. the pseud9-

function, s.f • is available for obtaining the current content~ of ,AC 1. fc:w

example (CO (FOO (AC))) compiles a call to FOO with the current contents of ACl

as argument, and is equivalent to:

(PUSHP)
(E (PSTEP))
(CLL (QUOTE FOO) 1)
(E (PSTEPN •1))

In using s.f, be sure that it appears as the first argument to be evaluated in

the expression. For example: (CQ (IPLUS (LOC (AC)) 2))

There are several ways to reference the values of variables in assemble code.

For example:

to put value of X in AC1: (CQ X)

to put value of X in ACJ: (LOVZ (QUOTE X) SP 3)

to set X to contents of AC1: (SETQ X)

to set X to contents of AC2:

(E (STORIN (LIST (QUOTE HRRM) 2 (QUOTE ,)
(LIST (VARCOMP (QUOTE X))

(QUOTE X)

to box and unbox a number:

(CQ (LOC (AC)))
(FASTCALL MKN)
(FASTCALL MKFN)
(CQ (VAG X))
(FASTCALL IUNBOX)
(FASTCALL FUNBOX)

SP)))) ..

18.48

box contents of ACl
box contents of ACt
floating box contents of AC1
unboxed value of X to AC1
unbox contents of AC1
floating unbox of AC1

To c01J. a function directly, the arguments must be pushed on the parameter

stack, and SP must be updated, and then the function called: e.g.

(CQ (CAR X))
(PUSHP)
(E (PSTEP))
(PUSHQ 3.14).
(E (PSTEP))
(CLL (QUOTE FUM) 2)
(E (PST E Pr~ - 2))

and is equivalent to:

(CQ (FUM (CAR X) 3.14))

ca stack first argument)

(a stack second argument)
(a call FUM with 2 arguments)
(a adjust stack count)

18.17 Co~piler Printout and Error Messages

For each function compiled, whether from tcompl, recompile, or compile, tho

compiler prints:

(fn COMPILING)
(fn (arg1 ... argn) (free 1

The first message is printed when the compilation of fn begins. The second

message is printed at the beginning of the second pass of the compilation of

fn. (arg 1 argn) is the list of arguments to fn, and (free 1 ... freen) tho

list of free variables referenced or set in fn. 58 Thie appearance of non

variables, e.g. function names, words from a comment, etc. in (free 1 ... freen)

is a good indication of parenthesis errors.

If the compilation of fn causes the generation of one or more gensYffi functions

(see page 18.18), compiler messages will be printed for these functions botwoon

the first message and the second message for fn, e.g.

68---Does not include global variables, see page 18.6.

18.49

(FOO COMPILING)
(FOOA0027 COMPILING)
(FOOA0027 NIL (X))
(FOO (X) NIL)

The cor:ipiler output for block compilation is similar to normal compilation.

The pass one message, i.e. (fn compiling) is printed for each Junction in tho

block. Then a second pa~s message is printed for the entire block. 69 Then both

messages are printed for each entry to the block.

In addition to the above output, both recompile and brecompile print tho namo

of each function that is being copied from the old compiled file to the new

compiled file. The normal compiler messages are printed for each function that

is actually compiled.

Compiler Error Messages

Messages describing errors in the function being compiled are also printed on

the teletype. These messages are always preceded by •****
indicated below, the compilation will continue.

((form) - NON ATOMIC CAR OF FORM)

Unless otherwise

If user intended to treat the value of f.2!::m as a function, he should

use apply*, form is compiled as if apply* had been used. See Section

8.

(fn - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)

The compiler has assumed fn is the name of a function. If the us or

a§---------------------~-------------------------~-----------------------------The names of the arguments to the block are generated by suffixing ·~· and
a number to the block name, e.g.
(FOOBLOCK (FOOBLOCK#O FOOBLOCK.#1) free-variables).

18.50

intended to treat the value of fn as a function, he must use ~£~·

See Section 8. 60

(tg - MULTIPLY DEFINED TAG)

!2 is a PROG label that is defined· more than once in a single PROG.

The second definition is ignored.

(tg - UNDEFINED TAG)

!.9 is a PROG label that is referenced but not defined in a PROG.

(tg - MULTIPLY DEFINED TAG, ASSEMBLE)

!£ is a label that is defined more than once in an assemble form.

(tg - UNDEFINED TAG, ASSEMBLE)

!..9 is a label that is referenced but not defined in an ASSEMBLE form.

(tg - MULTIPLY DEFINED TAG, LAP)

!.9 is a label that was encountered twice during the second pass of the

compilation. If this error occurs with no indication of a multiply

defined tag during pass one, the tag is in a LAP macro.

(tg - UNDEFINED TAG, LAP}

!..9 is a label that is referenced during the second pass of compilation

and is not defined. LAP treats 19 as though it were a corevnl, and

continues the compilation.

6o- -~~ ~~ --~e-;;a-;e· -~~--;~;~;;d- _w_h_e_n·-~~- -;;- ~~~- -~;;~~;~~ - ·;n·d- - ~~- -;;;~ -:- -i~~~ i
variable of the function being compiled. Note that earlier versions of tho
INTERLISP compiler did treat fn as a functional argument, and compiled code
to evaluate it. ---

18.51

(fn - USED AS ARG TO NUMBER F~?)

The value of a predicate, such as GREATERP or EQ, is used as «n

argument to a function that expects numbers, such as IPLUS.

(x - rs GLOBAL)

~ is a global variable, and is also rebound in the function being

compiled, either as an argument or as a local variable. The error

message is to alert the user to the fact that other functions will not

see this binding, ;:ance ! ·iS always accessed directly through· its

value cell.

(op - OPCODE? - ASSEMBLE)

.2.E appears as ill of an assemble statement, and is illegal. See P«go

18.36-40 for legal assemble statements.

(blkname - USED BLKAPPLY WHEN NOT APPLICABLE)

blkapply is used in the block blkname, but there are no blkapplyfns or

entries declared for th• block.

(fn - ILLEGAL RETURN)

return encountered when not in ~·

(tg - ILLEGAL GO)

S.Q encountered when not in a fil:.Q.9·

(fn NOT COMPILEABLE)

An expr definition for fn could not be found. In this case, no codo

is produced for fn, and the compiler proceeds to the next function to

be compiled, if ~ny.

fn NOT COMPILEABLE.

18',52

Same as above except generates an error, thereby aborting all

compilation. For example, this error condition occurs if fn is one of

the functions in a block.

fn NOT FOU!W.

Occurs when recompile or brecompile try to copy the compiled

definition of fn from cfil~. and cannot find it. See page_ 18.53.

Generates an error.

fn NOT ON BLKFNS.

fn was specified as an entry to a block, or else was on blkapplyfns,

but did not appear on the blkfns. Generates an error.

fn CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME.

Generates an error.

(fn NOT IN FILE - USING DEFINITION IN CORE)

on calls to bcompl and brecompile.

18.53

Index.for Se~iion 18
./ .. Page·

Numbers
('.

AC (in a lap statement) •••••••••••••••.••••••••• 18.43
AC (in an assemble statement) ••••••••••.•••••••• 18.48
AC1 .. , 18.36,40,48
ALAMS (compiler variable/parameter) •••••••••...• 18.6
AMAC (property name). • . • • • . . • • • • • • • . . • • • • . • • • • • . • 18.37•38
APPLY[FN; ARGS J SUSR ••.••••. , •• , ••••••••.• ~...... 18 .22 ·
APPLV11 [FN;ARG1; .•.• ;ARGn] SUBR~ ..•••••••••••••••••• 18.22
ASSEMBLE ...• ~ •·· •. ~ .• · ••• .' •.•• ·.·'~. ~>;.·.~·;.-.·-~· •·:·· 1.8 .. ;46·4·1,.47·49
ASSEMBLE macros .••.••....•..••••.••...•••••....• 18.38 ..
ASSEMBLE statements . . . • • • • • . • • • . • • • • • • • • • • 18. 36.".'40,: .· . . ; . ,
BCOMPL[FILES:CFILE;NOBLOCKSFLGJ .••.•...••••...•• 18.28,30,32·34
BLKAPPL Y[FN ;ARGS J SUBR . . • . • . . . • • • . • • • • • • 18. 22
BLKAPPLYFNS (compiler variable/parameter) .•.•..• 18.22,28,31
BLKAPPLY*[FN;ARG1; ... ;ARGn) SUBRft ••••.••.••••••• 18.22
BLKLIBRARY. (compiler variable/parameter) • • . • 18.23,31
BLKLIBRARYDEF (property name·) · ..• ~'. •.. ~ .". ~ •• ·••••..•• 18 .23 .
block compiler •..•••..•.•••..••••••...•..••.•••• 18~i8~35
block compiling• ; ~·:· ...• ~ /. ~ :•,, •• ~ •.•••.•. ~ · 18 .19·35
block. declarations • • • • • • • • • . . . • . • • • . • . • . • • • • • • • • 18 .30·32 ·
block. library ·................................... 1a·.22
BLOCKCOMPILE[BLKNAME;BLKFNS:ENTRIES;FLG] •••••.•• 18.28•30
BLOCKS (prettydef command) ..•.••...•••• , •• ~.;.:; •. ··18.30•31
BRECOMPILE[F!LES;CFILE;FNS;NOBLOCKSFLG] •..••.•.• 18.28,30~32~35
BUILOMAPFLG (system variable/parameter) ••..•.•.• 18.12
C (in an assemble statement) 18.39
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME

(compiler error message) ••••••..•..••.•••••
CLISP •··············••••••o•••••••••••••·····•···•••'·•·
COM (as suffix to file name)
COMPILE[X:FLGJ · •••••••••••••••.••••••• \ ~-~ •• ... ~.···!•• .. __
compiled file , ..
COt'1PILEO or~•..............................
COMPILEHEADER (compiler variable/parameter)
compiler
compiler error messages .•...••••.••.••.••. , •••.•
compiler functions .••••.••••.••••.•••.••.•••••••
compiler macros
compiler printout ••••••.••••••••••..••.•••••••••
comp·iler questions
compiler structure .••••.•...•..•.......•..••••.•

· COMPILEUSERFN (compiler variable/parameter) ••.••
COMPILE.EXT (compiler variable/parameter) •••••.•
COMPILEl[FN;DEFJ .•.••••••••••.••.••.....•.••.••.
coi:npi·ling files
compiling FUNCTION .••.•.•.••••••••••••.•.•••••.•
compiling NLAMBDAs .••.••••••..••••....••.•.••..•
COMPSET[FILE;FLG;FILES] ••••..••••.....•.•.••••••
computed macros ~ .•..••••••••.••••.•.••••••••••••
control-D•....
COREVAL (property name) •••.••••••.•••••.••..•.••
COREVALS •••••••••••••••••• , •••••••••••••••••••••
COREVALS (syst~m variable/parameter) •.•••.••••••
CQ (in an assemble statement) •••••••.•••.•••••••
DECLARE •.•••••.•• ·• •••••• , •••••••••••••••••••••••
0 EC LARE : •••••••••••• -: • •••••••••.••••••••••
DECLARE: [x] . NL• •.•••••••••••••••••••••••••••••••

INDEX.18.·t

18.29,53
· 1a •.. 6,a .,
18.9,33
18. 7.-8.
15;9·, u
18.9
18.9
18.1·53
18.50·53
18.7·14,Z9·30,3Z•35
18.16·17
18.49•50
18.3·5
18.35
18.6,15
18.9
18.8
18.8,11,32
18 .18
1B .5-6
18.3
18 .16
18.7
18.41,43•44
18.40·41
18.41
18.39
18.16,31
18.10
18.11 .

DOEVAL@COMPILE (DECLARE: option)
DOflTCOM PI LEF fJS (compiler variable /parameter)
DONTCOPY (DECLARE: option)
DWIMIFYCOMPFLG (compiler variable/parameter)
E (in an assemble statement)
ENTRIES (compiler variable/parameter) •..........
entries (to a block)
ERSETO[ERSE TX] NL
EVAL@COMPILE (DECLARE: option)•.•.......
EVO[X]
EXPR (property name)•...••..
F (response to cor.lpiler question)•..•.•.
FASTCALL (in an assemble statement)•......
FAULTAPPLY[FAULTFN;FAULTARGS]••
FILECREATED[X) NL"'
FILE: (compiler question)••..•.•
FUt·JARG••.•••••••.• I ••••••• I •••••••••••••••••

FUIJCTIOll[EXP; VLIS T) NL
function definition cell
functional arguments•......
GEfJSYM[CHAR]•..
global variables•................•••.•••..
GLOBALVAR (property name)•
GLOBALVARS (compiler variable/parameter) ...•.•..
(ILLEGAL GO) (compiler error message) ...•..••.••
(ILLEGAL RETURN) (compiler error message) ..•.•..
INSTRUCTIONS (in compiler)•.............•.
(IS GLOBAL) (compiler error message)•..
LAMS (compiler variable/parameter) .••.••••.•..••
LAP•............•.•••
LAP_ macros•....•...........•..
LAP op-defs•.....•
LAP statements
LAPFLG (compiler va~iable/parameter)
LAPRD[Ft·J]•........•.....•.....•..
LCFIL (compiler variable/parameter) .•...........
linked function calls•
LINKEDFNS (system variable/parameter)•••
LINKFNS (compiler variable/parameter)
LISTING? (compiler question) ...•.••..........•..
LOAD[FILE;LDFLG;PRINTFLG]
LOAOFROM[FILE;FNS;lDFLG]•..........••.••
LOCALFREEVARS (compiler variable/parameter)
LSTFIL (compiler variable/parameter)•
raachine instructions
MACRO (property name)•.................•..
nacros (in compiler)•.•....
MAKEFILE[FILE;OPTIONS:REPRINTFNS;SOURCEFILE]
(MULTIPLY DEFINED TAG) (compile~ error message)
(MULTIPLY DEFINED TAG, ASSEMBLE)

(compiler error message)•.....•..••
(MULTIPLY DEFINED TAG, LAP)

(compiler error message)••.
tJIL (use in block declarations)•.....•..•
NLAMA (compiler variable/parameter)•..•••
NLAML (compiler variable/parameter) •••..••.•....
ULSETO[NLSETX] NL•.......•.•. , .•..•...••.

INDEX.18.Z

Page
Numbers

18. 11
18.10,13,31
18. 11
18.8
18.40
18.31
18.19,29
18 .18
18. 11
18.21
18.7,23
18.2,4
18.40
18.27
18.8
18.3
18 .18
18 .18
18.23
18 .18
18 .18
18.7
18.6
18.6,31
18.52
18.52
18 .17

. 18.52
18.5,10
18.3,35,41-45
18.37,45
18.37
18.42-45
18.3
18.27
18.3,5
18.23-28
18.27
18.26,31-32
18.2-3
18.9
18.14
18.20-21,31
18.3
18.1,41-45
18.15-16
18.16-17
18.14
18.51

18.51

18.51
18.32
18.5
18.5
18 .18

(NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)
(compiler error message)•.....

flOL IIJKDEF•
IJOLHIKFrJS (cornpiler variable/parameter)
(IJOIJ ATOMIC CAR OF FORM) (compiler error message).
(NOT COMPILEABLE) (compiler error message)
NOT COMPILEABLE (compiler error message)
IJOT FOUIJD (compiler error message)
NOT FOUND (error message)
(NOT IN FILE - USING DEFINITION IN CORE)

(compiler error message)•....•.....•..
NOT ON BLKFNS (compiler error message) ...•......
NP (in an assemble statement)
number stack•.....•.......
OPCODE (in a lap statement)
(OPCODE? - ASSEMBLE) (compiler error message)
OPD (property name)•
open functions
open macros
OUTPUT FILE: (compiler question)••..
parameter pushdown list•..........•.......
PP[X] NL* ..•....•.......•..•••••••••••••••••••••
PSTEP (in an assemble statement)•
PSTEPIJ (in an assemble statement) ..•..........•.
RECOMPILE[PFILE;CFILE;FNS]•...•...........
REDEFINE? (compiler question)•.............
RELIIJK[FIJ;UIJLINKFLG]•.•.
relinking•........
RESETVAR[RESETX;RESETY;RESETZ] NL•...•....
RETFNS (compiler variable/parameter)•......
S (response to cornpiler question) ..•........••..
SAVE EXPRS? (compiler question)•..•....•
second pass (of the cornpiler) ...••........•.•.•.
SETO (in an assemble statement)•.......•.
SP (in an assemble statement)••....•.
SPECVARS (compiler variable/parameter)•.
ST (response to compiler question)•..
STF (response to compiler question)
STRF (coDpiler variable/parameter) •............•
substitution macros•.•....
SVFLG (compiler variable/parameter)•.....
SYSLirJKEDFllS (system variable/parameter)•.
TCOMPL[FILES]•......
TRAPCOUIJT[X] SUBR ••..••••.•.••••••••••••••••••••
UllBROKEIJ (typed by cornpi ler)•.•
(UIJDEF mm TAG) (compiler error message)
(UNDEFINED TAG, ASSEMBLE) (compiler error message)
(UIJOEFirJED TAG, LAP) (comptler error message)
(USED AS ARG TO NUMBER FN?)

(conpiler error message)••..•.•••
(USED BLKAPPLY WHEN NOT APPLICABLE)

(compiler error message)••
WORLD (as argument to RELINK) .••..•.•.•..•.•.••.
' (in a lap statement)•.•..••...•.... · · · · · • ·
"' (in a lap statement) ..•..•..••••.....•..••..•.
"' (in an assemble statement)••..•
"':iroa::in·1 (in comp i 1 er error messages) ...•.•....••••

INDEX.18.3

Page
Numbers

18.50
18.26-27
18.26-27,31-32
18.50
18.8,52
18.52
18. 53
18 .13

18.53
18.22,29,53
18.47
18.47
18.42
18.37,52
18.37,42,45
18.14-15
18 .16
18.2,5
18.47
18.47
18.47
18 .47
18.7-8,11,11-14,32
18.4
18.27-28
18.27-28
18.7
18.21,28,31
18 .4
18.4
18.35
18.40
18.40,47
18.20,28,31
18.2,4
18.4
18.3-4,8
18 .17
18.3-4
18.28
18.7-11,32-33
18.21
18.7
18.51
18.51
18.51

18.52

18.52
18.27
18 .43
18.44
18.40
18.50

= (in a lap statement)
@ (in a lap statement) ••011•••11••••1t•C1••·········

lNDEX.18.4

Page
)\lumbars

SECTION 191

ADVISING

The operation of advising gives the user a way of modifying a function without

necessarily knowing how the function works or even what it does. Advising

consists of modifying the interface between functions as opposed to modifying

the function definition itself, as in editing. break, ~. and broakdo\oJn,

are examples of the use of this technique: they each modify user functions by

placing relevant computations between the function and the rest of the

programming environment.

The principal advantage of advising, aside from its convenience, is that it

allows the user to treat functions, his or someone else's, as "black boxes,"

and to modify them without concern for their contents or details of operations.

For example, the user could modify sys~ut to set sysdate ta the time and date

of creation by advise[SVSOUT;(SETQ SYSOATE (DATE)))

As with break, advising works equally well on compiled and interpreted

functions. Similarly, it is possible to effect a modification which only

operates when a function is called from some other specified function, i.e., to .
modify the interfac~ between two particular functions, instead of the interface

between one function and the rest of the world. This latter feature is

especially useful for changing the internal workings of a system function.

1------------------------------~---Advising was developed and implemented by W. Teitelman.

19 .1

For example, suppose the user wanted time (Section 21) to print the results of

his measurements to the file FOO ·instead of the teletype. He could accomplish

this by ADVISE(((PRINl PRINT SPACES) IN TIME) BEFORE (SETQQ U FOO))

Note that advising prinl, print, or spaces directly wolild have affected all

~alls t.o these very frequently used function, whereas advising

((PRIIH PRINT SPACES) IN TIME) affects just those calls to pr in 1, print, and

spaces from time.

Advice can also be specified to operate after a function has beeh evaluated.

The value of the body of the original function can be obtained from tho

variable !value, as with breakl. For example, ·suppose· tho user wanted to

perform some computation following each sys in, e.g. check whether his files

were up to date. He could then:

ADVISE(SYSOUT AFTER (COND ((LISTP !VALUE) ·-)))2

19.1 Implementation of Advising

The structure of a function after it has been modified several times by advise

is given in the following diagram:

2--After the sysin, the system will be as it was when the ~ysout Wils
performed, hehce the advice mlist be to sysout, not sysin. See Section 14
for complete discussion of sysout/sysin.

19.2

MODIFIED
FUNCTION ADVICEN

ENTER

ORIGINAL
FUNCTION

EXIT

ADVICE 1

FIGURE 19-1

19.3

ADVICE
BEFORE

ADVICE
AFTER

The corresponding INTERLISP definition is:

(LAMBDA arguments (PROG (!VALUE)
(SETQ !VALUE (PROG NIL

advicel

advicen
(RETURN body)))

advice!

advicem
(RETURN !VALUE)))

ADVICE
BEFORE

ADVICE
AFTER

where body is equivalent to the original definition. 3 4

Note that the structure of a function mo·dified by advise .. allows a· piece of

advice to bypass the original definition by using the functio.n RETURN. For

example, if (COND ((ATOM X) (RElURN Y))) were one of the pieces of' advice

BEFORE a function, and this function ·was entered with 2:: atomic. X would be

returned as the value of the inner ·PROG, !value would be set to ~· and control

passed to the advice, if any, to be executed AFTER the function. If this samo

piece of advice appeared AFTER the function, ~ would be returned as the value

of the entire advised function.

The advice (COND ((ATOM X) (_SETQ !VALUE Y))) AFTER the function would have a

similar effect, but the rest of the advice AFTER the function would still be

executed.

3------------------~---~---------------Actually, advise uses its own versions of PROG, SETQ. and RETURN, (called

4

ADV-PROG, ADV·SETQ, and ADV-RETURN) in order to enable advising tho so
functions.

If fn was originally an EXPR, body is the body of the definition, otherwise
a form using a gensym which is defined with the original definition .

. 19.4

19.2 Advise Functions

Advise

Advise is a function of four arguments: fn, when, where. and what. fn is tho

function to be modified by advising, what is the modification, or pioce of

advice. when is either BEFORE, AFTER, or AROUND, and indicates whether the

advice is to operate BEFORE, AFTER, or AROUND the body of the function

definition. where specifies exactly where in the list of advice the new advice

is to be placed, e.g., FIRST, or (BEFORE PRINT) meaning before the advice

containing print, or (AFTER 3) meaning after the third piece of advice, or even

(: TTY:). If where is specified, advise first checks to see if' it is one of

LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly; Otherwise, it

constructs an appropriate edit command and calls the editor to insert the

advice at the corresponding location.

Both when and where are optional arguments, in the sense that they can be

omitted in the call to advise. In other words, advise can be thought of as a

function of two arguments [fn;what], or a function of three arguments:

(fn ;when ;what], or a function of four arguments: [fn ;when ;where ;what]. Noto

that the advice is always the la.st argument. If when=NIL, BEFORE is used. If

where=NIL, LAST is used.

advise(fn;when;where;what] fn is the function to be advised, when=BEFORE,

AFTER, or AROUND, where specifies where in tho

advice list the advice is to be inserted, and what

is the piece of advice.

If fn is of the form (fn1 IN fn2), f.!!.! is changed

to fn1-IN-fn2 throughout fn2, as with break, and

19.5

then fni·IN·fn2 is used in place of fn. 6

If fn is broken, it is unbroken before advising.

If fn is not defined, an error is generated,

NOT A FUNCTION.

If f..!l is being advised for the Hr st time, i.e. if

getp[name,ADVISED]=NIL. ·a Qensym is generated and

stored on the property list of fn under tho

property ADVISED, and the gensym is defined with

the original definition of fn. An appropriate s

expression definition is then created for fn. 6

Finally, fn is added to the (front of)

advisedfns. 7

If fn has been advised before, it is moved to the

front of advisedfns.

·If ~=BEFORE or AFTER, the advice is inserted

in f.!l!! definition. either BEFORE or AFTER the

original body of the function. Within that

context, its position is determined by where. If

~--------------------~---If fnl and/or ~ are lists, they are distributed as shown in the example

6

7

on page 19.Z.

Using private versions of PROG, SETQ, and RETURN, so that these functions
can also be advised.

So that unadvise[T) always unadvises the last function advised. · See page
19.8.

19.6

\vhere~LAST, BOTTOM, END, or NIL, the advice is

added following all other advice, if any. If

where=FXRST or TOP, the advice is inserted as the

first piece of advice. Otherwise, where is

treated as a command for the editor, a 18 breakin,

e.g. (BEFORE 3), (AFTER PRINT) .

Xf when=AROUNO, the body is substituted for ti in

the advice, and the result becomes the new body,

e.g. advise[FOO;AROUND;(RESETFORM (OUTPUT T) ~)],

Note that if several pieces of AROUND advice are

specified, earlier ones will be embedded inside

later ones. The value of where is ignored.

Finally list[when;where;what) added (by

addprop) to the value o!f property ADVICE on the

property list fn. 8 Note that this property valuo

is a list of the advice in order of calls to

advise, not necessarily in order of appearance of

the advice in the definition of fn.

The value of advise is fn.

If fn is non-atomic, every function in fn is

advised with the same values (but copies) for

when, where, and what. In this case, the value of

advise is a list of individual functions.

s---------------------------~--Q-GW•OOOOQDOP•aO•DOQgOO•Qo•-•DOD•a•o•-----------

So that a record of' all the changes is available for subsequent use in
readvising, see page 19.8.

19.7

Note: advised functions can be broken. (However if a function is broken at

the time it is advised, it is first unbroken.) Similarly, advised functions can

be edited, including their advice. unadvise will still restore the function to

its unadvised state, but any changes to the body of the dt:tfinition will

survive. ·Since the advice stored on the property list is the same structure as

the advice inserted in the function, editing of advice can be performed on

either the function's definition or its property list.

unadvise[x] is a no-spread NLAMBDA a la unbreak. It takes an

indefinite number of functions and restores them

to their original unadvised state, including

removing the properties added by advise. 9 unadvise

saves on the list advinfolst enough information to

allow restoring a function to its advised state

using readvise. advinfolst and readvisc thus

correspond to brkinfolst and rebreak.

unadvise(] unadvises all functions on

advisedfns. 10 It first sets advinfolst to NIL.

unadvise[T] unadvises the first function of

advisedfns, i.e., the most recently advised

function.

readvise[x] is a no-spread NLAMBDA a la rebreak for restoring

9--Except if a function also contains the property READVICE (see reactviso

10

below), unadvise moves the current value of the property ADVICE to
READVICE.

In reverse order, so that the most recently advised function is unadvised
last.

19.8

a function to its advised state without having to

specify all the advise information. For each

function on ~· readvise retrieves the adviso

information either from the property READVICE for

that function, or from advinfolst, and performs

the corresponding advise operation(s). In

addition it stores this information on tho

property READVICE if not already there. If no

information is found for a particular function,

value is (fn ·NO ADVICE SAVED).

readvise[] readvises everything on advinfolst.

readvise[T) readvises just the first function on

advinfolst, 1.e., the function most recently

unadvised.

A difference between advise, unadvise, and re advise versus break, unbreak, and t1

rebreak, is that if a function is not rebroken between successive unbreak[]'s, t1

its break information is forgotten. However, once readvised, a function's

advice is permanently saved on its property list (under READVICE); subsequent

calls to unadvise will not remove it. In fact, calls to unadvise update the

property READVICE with the current value of the property ADVICE. so that the

sequence readvise, advise, unadvise causes the augmented advice to become

permanent. Note that the sequence readvise, advise, readvise removes the

'intermediate advice' by restoring the function to its earlier state.

advisedump[x;flg] Used by prettydef when 1 given a command of the form

(ADVISE --) or (ADVICE ·-). f.19=T corresponds to

(ADVISE -·), i.e. advisedump writes both a deflist

and a readvise. f!.9=NIL corresponds to (ADVICE --

19.9

). Le. only the deflist is written. In either

case, advisedump copies the advise information to

the property READVICE, thereby making it

'permanent' as described above.

19 .10

Index for Section 19

advice ",
ADVICE (prettydef command)
ADVICE (property name)•.
ADVINFOLST (system variable/parameter)
ADVISE[FN;WHEN;WHERE;WHAT]
ADVISE (prettydef command)•.................
ADVISED (property name)
ADVISEDFNS (system variable/parameter)
ADVISEDUMP[X;FLG]
advising••...•.
ADV-PROG
ADV-RETURf~
ADV-SETQ
AFTER (as argument to advise)
AROUND (as argument to advise)
BEFORE (as argument to advise)
BOTTOM (as argument to advise) ..•...............
FIRST (as argument to advise)
(fnl IN fn2)
fn1-IN-fn2•.....•..•.
GEtJSYM[CHAR)•..............
LAST (as argument to advise)
NOT A FUNCTION (error message) ..•..•............
PRETTYDEF " ••••
READVICE (property name)••........
READVISE[X] l\JL>'l ••••••••••••••••••••••••••••• , •••
TOP (as argument to advise)
UtJADVISE[X] NL~• •••••••••••••••••••••••••••••••••
UNBROKEIJ (typed by advise)•......•..•....
!VALUE (with advising)

INDEX .19 .1

Page
Numbers

19.2,4
19.9
19.7-9
19.8-9
19 .4-8
19.9
19.6
19.6,8
19.9
19.1-10
19.4,6
19 .4' 6
19.4,6
19.2,4-6
19.5,7
19.4-6
19.5,7
19.5,7
19.5
19.5
19.4,6
19.5,7
19.6
19.9
19.8-10
19.8·9
19.5,7
19.6,8-9
19.6
19.2,4

SECTION 20

PRINTSTRUCTURE, INTERSCOPE, AND HELPSYS

20.1 Printstructure1

In trying to work with large programs, a user can lose track of the hierarchy

which defines his program structure; it is often convenient to have a map to

show which functions are called by each of the functions in a system. If fn is

the name of the top level function called in your system, then typing in

printstructure[fn] will cause a tree printout of the function-call structure of

fn. To illustrate this in more detail, we us~ the printstructur·e program

itself as an example~

1---~-----------------·----------A preliminary version of printstructure was written by D. G. Bobrow. Tho
current form of printstructure was written by W. Teitelman.

20.1

PRINTSTRUCTURE PRGETO
PROGSTRUC PRGETO

PRGSTRC NOTFN PRGETO
PROGSTRUC
PRGSTRC1 PRNCONC

PRNCONC
PRGSTRC

CALLSl MAKE LIST
, NOTFN

PRGSTRC1
PRGSTRC

CALLSZ CALLSl

TREEPRINT TREEPRINT1
TREE PRINT

VARPRINT VARPRINT1 TREEPRINT1

PRGETO

VARPRINTZ ALLCALLS ALLCALLS1 ALLCALLS1
TREE PR IN Tl

+++

PRINTSTR0CTURE [X,FILEi DONELST,N,TREELST,tREEFNS,LSTEM,X,V,Z,
FN,TREE;PRDEPTH,LAST·PRINTSTRUCTURE]

CALLED BY:

PRGETD [X,FLG; ;]
CALLED BY: PRINTSTRUCTURE,PROGSTRUC,NOTFN,CALLSZ

PROGSTRUC [FN,DEF; N,V,Z,CALLSFLG,VARSFLG,VARS1,VARSZ,O,X; N,DONELST]
CALLED BY: PRINSTRUCTURE,PRGSTRC

PRGSTRC [X,HEAO,FLG; Y,TEM,X; VARSFLG,O,NOFNS,CALLSFLG,N,DONELST,
TREEFNS,NOTRACEFNS,FN,VARSt,QUOTEFNSJ

CALLED BY: PROGSTRUC,PRGSTRC1,PRGSTRC

NOTFN [FN; DEF; NOFNS,YESFNS,FIRSTLOC,LASTLOCJ
CALLED BY: PRGSTRC,CALLS1

PRGSTRC1 (L,HEAD,FLG; A,B; VARSl,VARSZ]
CALLED BY: PRGSTRC,PRGSTRCl

PRNCONC [X,Y; ; CALLSFLG]
CALLEO BY: PRGSTRC1,PRGSTRC

CALLSl [ADR,GENFLG,0; LIT,END,V1,V2,LEFT,OPO,X,X; VARS1,VARS2,
VARSFLG]

CALLEO BY: PROGSTRUC,CALLSZ

MAKELIST [N,ADR; L;]
CALLED BY: CALLSl

Figure 20·1

20.2

The upper portion of this printout is the usual horizontal version of a troo.

This tree is straighforwardly derived from the definitions of the functions:

printstructure calls prgetd, progstruc, treeprint, and varprint. progstruc in

turn calls prgetd, prgstrc and callsl. prgstrc calls notfn, proostruc,

prgstrcl, prnconc, and itself. prgstrcl calls prnconc, itself, and prgstrc.

Note that a function whose substructure has already been shown is not expanded

in its second occurrence in the tree.

The lower portion of the printout contains, for each function, information

about the variables it uses, and a list of the functions that call it. For

example, printstructure is a function of two arguments, ~ and file. It binds

2 . . . ill!• and uses prdepth and eleven variables internally: donelst, n.
last-printstructure as free variables. It is not called by any of the

functions in the tree. prgetd is a function of two arguments, ~.and flg, binds

no variables internally, uses no free variables, and is called by

printstructure, progstruc, notfn and calls2.

printstructure calls many other low-level functions such as getd, £.ill:• list,

nconc, etc. in addition to the four functions appearing in the above output.

The reason these do not appear in the output is that they were defined

"uninteresting" by the user for the purposes of his analysis. Two functions,

firstfn and lastfn, and two variables, yesfns and nofns are used for th is

purpose. Any function that appears on the list nofns is not of interest, any

function appearing on yesfns is of interest.

yesfns=T effectively puts all functions on yesfns. As for functions appearing

on neither nofns or yesfns, all interpreted functions are deemed interesting,

but only those compiled functions whose code lies in that portion of bpspaco

j--·-------------------------Variables are bound internally by either PROGs LAMBDA-expressions.

20.3

between the two limits established by firstfn and lastfn. For example, the

above analysis was performed following firstfn[PRINTSTRUCTURE] and

lastfn[ALLCALLS1].

Two other variables, notracefns and prdepth, also affect the action of

Qrintstructure. Functions that appear on the list notracefns will appear in

the tree, assuming they are "interesting" functions as defined above, but their

definitions will not be analyzed. prdepth is a cutoff depth for analysis. It

is initially set to 7.

+ printstructure assumes that all functions whose argtypes are 1 or 3. i.e. all

+ NLAMBDAs, do not. evaluate their arguments. for example, if the function ~

+ were defined as. (NLAMBDA (X) (MAPC X (FUNCTION PRIN1))). ·and the form

+ (PRINO (NOW IS THE TIME)) appeared in a function being analyzed, IS, THE, and

+ TIME would not be reported as free variables, and NOW as an undefined function.

+ The user can inform printstructure (and other system packages which require

+ this information) that an nlambda function doe.s evaluate its arguments by

+ putting on its property list the property INFO value EVAL. For example, the

+ functions and, ersetg, ™• etc., are all initialized in this fashion.

If printstructure encounters a form beginning with two left parentheses in tho

course of analyzing an interpreted function (other than a COND clause or opon

lambda expression) it notes the presence of a ~ossible Qarentheses ~rror by the·

abbreviation P.P.E., followed by the function .in which the form appears, and

the form itself, as in the example below. Note also that since printstructure

detects functions that are not defined, (i.e., atoms appearing as CAR of a

form), printstructure is a useful tool for debugging.

20.4

o-PP FOO

(FOO
[LAMBDA (X)

ccorm
((CAR X) (F001 X))
(T ((CONS X (CAR X])

FOO
~PRINTSTRUCTURE(FOO)

FOO FOOl

FOO [X; ;]
CALLED BY:

F001 IS NOT DEFINED.

P.P.E. IN FOO - ((CONS X (CAR X)))

Other Options

Figure 20·2

printstructure is a function of three arguments, ~· exprflg, and file.

printstructure analyzes 2S• sets the free variable last-printstructure to the

results of its analysis, prints the result (in the format shown earlier) to

file (which is opened if necessary and closed afterwards), and returns ~ as its

value. Thus if the user did not want to see any output, he could call

printstructure with file=NIL:, 3 and then process the result himself by using

last-printstructure.

printstructure always checks· for EXPR properties on the property list of

functions that are not defined. However, if exprflg=T. printstructuro will

i----------------------~---NIL: is a TENEX output device that acts like a 'bottomless pit'. Note
that file=NIL (not NIL:) means print the tree to primary output file.

20.5

prefer to analyze EXPR definitions whenever possible, i.e. if the function

definit:l.on call contains a compiled definition, and there is also an EXPR

property, the latter will be analyzed.

~can be NIL, a list, a function, or an atom that evaluates to a list. If x is

NIL, printstructure does not perform any analysis, but simply prints the result

of the last analysis, i.e., that stored on last-printstructure. Thus the user

can effectively redirect the output that is going to the terminal to a disc

file by aborting the printout, and then performing printstructufe[NIL;file).

If x is a list, printstructure analyzes the first function on ;s. and thon

analyzes the second function, unless it was already analyzed, then the third,

etc.. producing however many trees required. Thus, H the user wishes to

analyze a collection of functions, e.g., breakfns, he can simply perform

(PRINTSTRUCTURE BREAKFNS).

If :::; is not a list, but is the name of a function, printstructure[x) is the

same as printstructure[(x)). Finally, if the value of ~ is a list of

functions, printstructure will process that list as described above.

Note that in the case that !5 is a list, or evaluates to a list, subsequent

functions are not separately analyzed if they have been encountered in the

analysis of a function appearing earlier on the list. Thus, the ordering of x

can be important. For example, if both FOO and FIE call FUM,

printstructure[(FOO FIE FUM)), will produce a tree for FOO containing emboddod

in it the tree for FUM. FUM will not be expanded in the tree for FIE, nor will

it have a tree of its own. (Of course, if FOO also calls FIE, then FIE will

not have a tree either.) The convention of listing FUM can be used to force

printstructure to give FUM a tree of its own. Thus

printstructure[(FOO FIE (FUM))] will produce three trees, and neither of the

calls to FUM from FOO or FIE will be expanded in their respective trees. Of

20.6

course, in this example, the same effect could have been achieved by

reordering, i.e., printstructure[(FUM FOO FIE)]. However, if FOO, FIE, and

FUM, a 11 called each other, and yet the user wanted to see three sopara to

trees, no ordering would suffice. Instead, the user would have to do

printstructure[((FOO) (FIE) (FUM))].

The result of the analysis of printstructure is in two parts: donelst, a list

summarizing the argument/variable information for each function appearing in

the tree(s), and treelst, a list of the trees. last·printstructure is set to

cons[donelst;treelst].

donelst is a list consisting, in alternation, of the functions appearing in any
0

tree, and a variable list for that function. ill of the variable list is a

list of variables bound in the function, and cdr is a list of those variables

used freely in the function. Thus the form of donelst for the earlier example

would be:

(PRINTSTRUCTURE ((X FILE DONELST N TREELST TREEFNS L TEM XV Z
FH TREE) PRDEPTH LAST~PRINTSTRUCTURE) PRGETD ((X FLG))
PROGSTRUC ((FN DEF NV Z CALLSFLG VARSFLG VARS1 VARS2 0 X)
N DONELST) ... ALLCALLS1 ((FN TR AB)))

Possible parentheses errors are indicated on donelst by a non-atomic form

appearing where a function would normally occur, i.e., in an odd position. The

non-atomic form is followed by the name of the function in which the P.P.E.

occurred.

20.7

Printstructure Functions

printstructure[x;exprflg;file] analyzes saves· result on·

treeprint[x;n]

varprint[donelst;treelst]

allcalls[fn;treelst]

firstfn[fn]

lastfn[fn]

1ast·printstructure, outputs trees·. and variable

information to file, and returns ~ as its value.

If exprflg=T, printstructure will. prefer to

analyze expr's. See page 20.5.

prints a tree in the horizontal fashion shown in

the examples above. i.e., printstructure performs

(MAPC TREELST (FUNCTION TREEPRINT)).

prints the ·"lower half" of the pri~tstructure

output.

uses treelst to produce a list of the functions

that call fn.

If fn=T, lower boundary is set to O, i.e., all

subrs and all compiled functions will pass this

test. If fn=NIL, lower boundary set at end of

bpspace, i.e .• no compiled functions will pass

this test. Otherwise fn is the name of a compiled

function and the boundary is set at fn, i.e., all

compiled functions defined earlier than fn are

rejected.

if fn=NIL, upper boundary set at end of bpspaco,

i.e., all compiled functions will pass this test.

Otherwise boundary set at fn, 1.e.. all compiled

functions defined later than fn are rejected.

20.8

Thus to accept all compiled functions, perform firstfn(T) and lastfn(NIL): to

reject all compiled functions, perform firstfn(].

calls[fn;exprflg;varsflg]

vars[fn;exprflg]

freevars[fn;exprflg]

is a fast 'one-level' printstructure, i.e.. it

indicates what functions fn calls, but does not go

further and analyze any of them. calls does not

print a tree, but reports its findings by

returning as its value a list of three elements: a

list of all functions called by fn. a list of

variables bound in !!!• and a list of variables

used freely in fn, e.g.,

calls[progstruc] = ((PRGETD EXPRP PRGSTRC CCODEP
CALLSl ATTACH) (FN DEF N Y Z CALLSFLG VARSFLG
VARSl VARSZ 0 X) (N OONELST))

fn can be a function name, a definition. or a

form. Calls first does firstfn(T), lastfn() so

that all subrs and compiled functions appear,

except those on nofns. If varsflg is T, calls

ignores functions and only looks at the variables

(and therefore runs much faster).

cdr(calls[fn;exprflg;T])

cadr[vars[fn;exprflg))

20.9

20.2 Interscope4

While printstructure is a convenient tool for giving the user an overvtew of

the structure of his programs~ it~is not well suited for determining the answor

to particular questions the user may have about his programs. For example, if

FOO uses X freely, and the user wants to kno~where Xis bound 1 above 1 FOO, he

has to visually trace ·back Up the tree that ts output by printstructure, and,

at each point, look down at tile· lower portion of the printout and find whether

the corresponding function binds X. For large systems, such a procedure can be

quite tedious. Furthermore~ printstructure does not even compute certain

certain important types of information. for example, printstructure does not

distinguish between functions that use a variable freely and those that set it

(or smash it).

Interscope is an extension of printstructure designed to resolve these

shortcomings. Like printstructure, interscope analyses programs (functions),

although it extracts considerably more information and relationships than does

printstructure. However, instead of presenting the information it obtains in a

predetermined format, interscope allows the user to ask it questions about the
''

programs it has analysed, i.e. to interrogate its data base. These questions

can be input in English, and contain conjunctions, disjunctions, and negations

of the many relationships between functions and variables that .interscope knows

about. The questions can be closed questions. e.g. 11 DOES FOO CALL FIE?", or

open questions, "WHAT FUNCTIONS CALL FIE? 11 • The answers to some questions are

obtainable directly from the data base, e.g. 11 WHAT VARIABLES DOES. FOO SET?"

Other questions cause interscope to search its data base, e.g.

"WHAT FUNCTIONS BIND VARIABLES THAT FOO SETS?". Figure 20~3 contains a sample

session with interscope.

20. iO

~INTERSCOPE]
Hello, shall I analyze a system?

&~WTFIXFNS AND CLISPFNS.
This may take a few minutes.

GC: 8
1233, 10431 FREE WORDS
Shall I analyze another system?

[1]

&~NO [2]
Ok, what would you like to know?

&WHO CALLS RETDWIM?
(WTFIX FIX89TYPEIN FIXAPPLY FIXATOM FIXCONTINUE CLISPATOM FIXT)
&HOW IS CLISPATOM CALLED?

I didn 1 t understand that. [3)
&WHAT FUNCTIONS CALL CLISPATOM? [4]
(WTFIX FIXAPPLY FIXATOM)
&WHAT FREE VARIABLES DOES CLISPATOM USE?
(ONLYSPELLFLG CLISPCHANGES CLISPFLG TYPE-IN? CLISPSTATS INFIXSTATS LST
FAULTXX CHCONLST FAULTX DWIMIFYFLG 89CHANGE FAULTPOS)
&WHO BINDS TAIL? •
(WTFIX RETDWIMl RETDWIM2 RETDWIM3 CLISPFUNCTION? CLISPATOMO CLISPATOMl
CLISPATOMlA CLISPATOM2A DWIMIFYlA OWIMIFY2 DWIMIFYZA CLISPRESPELL)
&WHO BINDS TAIL AND CALLS CLISPATOM SOMEHOW?
(WTFIX DWIMIFY2)
&WHAT VARS DOES HELPFIX CHANGE?
(FORM LASTPOS NOCHANGEFLG HELPFIXTAIL FN TEH BRKEXP)
&WHAT FUNCTIONS CHANGE THE VARIABLE TENTATIVE?
(CLISPATOMl CLISPATOM2 C~ISPATOM2C CLISPATOM2A CLISPATOHlA)
&WHO CHANGES TAIL?
(FIXATOM HELPFIXl CLISPATOMl CLISPATOM2 OWIMIFY2)
&WHAT FNS USE TEM AS AN INTERANL VAR ANO
... ARE CALLED BY CLISPATOM INDIRECTLY?
INTERANL=INTERNAL ? Yes
(RETDWIM RETDWIMl FIX89TYPEIN)
&HOW DOES CLIAPTOM CALL LISTP?
CLIAPTOM=CLISPATOM ? Yes
((CLISPATOM LISTP) (CLISPATOM ••• RETOWIM *** LISTP) (CLISPATOM (5)
FIX89 FIX89A LISTP))
&SHOW ME THE PATHS FROM CLISPATOH TO LISTP .•
CLISPATOM LISTP

RETDWIM LISTP (6)
. RETDWIMl LISTP

FIX89TYPEIN RETDWIM •.•
FIX89 FIX89A LISTP

&DOES GETVARS SMASH ANY VARIABLES?
(L)
&SHOW ME HOW GETVARS SMASHES L.

(NCONC L (AND (LISTP X) (MAPCAR & &)))
&GOODBYE.

Goodbye.

figure 20-3

20.11

In order to answer questions about programs, interscope must analyze them and

build its data-base. When interscope is first called, it will ask the usor

what functions he wahts analyzed. The user can respond to this question by

giving interscope either: I) the name of the top level function called in his

system, or 2) the name of a variable that evaluates to a list of top level

functions, or 3) the list itself. All of the functions below each top levol

function will be analyzed, except those which are declared to bo

"uninteresting," as described below. Note that after interscope goes into

question-answering mode, 6 the user can instruct interscope to analyze

additional functions, either in English input, e.g. "ANALYZE FOOFNS." or by

calling the function lookat directly (page 20.16).

The structure of intersco12.2 may be divided into three major subsystems: a

top-level monitor function, an English preprocessor, and the functions which

build and search the data base. The monitor function is implemented via

userexec (see Section 22), so that the features of the programmer's assistant

are available from within interscope. 6 For example, the user can REDO or FIX

interscope questions, interrogate the history list for his session, or run

5--h!hen interscope is first called, and it has not previously analyzed any

6

functions, it is in analysis mode, as indicated by its greeting and prompt
character (&~instead of&) (see [1] in Figure 20-3). Interscope goes into
question-answering mode when the user answers NO to the question "Shall I
analyse a (another) system?" ([2] in Figure 20-3). The only difference
between analysis mode and question-answering mode is that in analysis mode,
interscope treats forms as indicating a list of functions to be analysed,
whereas in question-answering mode, interscope simply passes forms back to
lispx for evaluation.

interscope assumes that any input line terminated by a punctuation mark is
intended for it to process. interscope will also attempt to process othor
input lines, i.e. those not ending in punctuation. Howev~r, if it is not
able to make sense of the input, interscope will assume that it w<1s
intended to be handled by lispx, and pass it back for evaluation. For
exar.iple, if the user types "HAS THOU SLAIN THE JABBERWOCK ?", intorscor.o
will respond "I didn't understand that", but if the user omits the '?', tho
line will be given to lispx for evaluation and (probably) cause a
U.D.F. HAS error.

20.12

progra~s from within interscope. 7

The English preprocessor translates English questions, 8 statements, and

commands into INTERLISP forms appropriate for searching and building the

interscope data base. Although this preprocessor is fairly flexible and

robust (e.g. includes spelling correction), it translates only a limited subset

of English sentences, and replies "I didn't understand that.ri to anything

outside this subset ([3] in Figure 20-3). 9 When this happens, usually a simple

rephrasing of the question will suffice to allow interscope to handle it ([4]

in Figure 20·3).

The interscope data-base can be accessed directly by the user via the functions

described below. It should be noted that ihterscope actually creates two data

bases, the first containing information about the elementary relations between

the functions and variables in the user's system, and the second containing

information derived from the first, i.e. the paths by which one function calls

another. The first data base is created when interscope analyzes a system (via

the function lookat). The second data base is developed incrementally (by the

function paths), depending on the questions asked by the user. Both data basos

are stored on the property lists of the functions and variables which are

analyzed.

7--Since the data base that interscope constructs is global (storod on

8

9

property lists), the user can also exit from interscope, either by typing
OK or GOODBYE, or via control·D, and then reenter interscope at somo lator
point and continue asking questions, without having to reanalyze his
functions.

The translation of the most recent input is always stored in the function
definition cell of the atom MEANING.

Where possible, interscope will try to inform the user what part of the
sentence it did not understand.

20 .13

Interscope "understands" a wide variety of the elementary relations that exist

between functions and variables, e.g. which functions bind, use, change, test,

or smash a given variable, which functions may ·cause a given fun ct ion to bo

called, either directly or indirectly, 10 which variables are used as global or

local free variables, either by a given function or by a group of functions,

etc.

Information about the function-call paths from one program to another is

"generalized" when it is stored; e.g. at [5] in Figure 20·3, one of the paths

by which CLISPATOM calls LISTP is given as (CLISPATOM •** RETDWIM *** LISTP),

which means that there is more than one path from CLISPATOM to RETDWIM, and

more than one path from RETDWIM to LISTP~

The conventions· used by interscbpe for recognizing functions that arc

"uninteresting" are the same as those used by printstructure (page 20.3), i.e.

yesfns ,. nofns firstfn, and lastfn all have the same effect as for

pr in tstrucwre.

Interscope Functions

paths[x;y;type;rnust;avoid;only] Value is a list of paths from ! to ~· where

each path is an ordered list of functions. *** is

used to indicate multiple paths. For example. if

FOO calls FIE, and FIE calls FUM directly as well

as. calling· FIEl . which calls FUM, then

paths[FOO;FUM] returns ((FOO FIE*** FUM)).

20 .14

~. must, avoid, and only are optional. !l.!!Q cnn

be either CALLS or CALLEDBV (NIL is equivalent to

CALLS), e.g. in the above example,

paths[FUM;FOO;CALLEDBY] would return the same set

of paths as paths[FOO;FUM), except each path would

be in the. reverse order.

must, avoid, and only are used to select out

certain types of paths. Each can be specified by

an atom which evaluates to a list of functions, or

a form which evaluates to such a list. If (the

value of) must is non-NIL, each path is required

to go through at least one of the members of must.

If avoid is non-NIL. no path can go through any

member of avoid. If only is non-NIL, no path can

go through any function which is not a member of

only, 1.e. each pat~ can only go through functions

on only. 11

treepaths[x;y;type;must;avoid;only) Like paths. except prints paths as a

tree structure, as shown at [6] in Figure 20·3.

~. must, avoid, and only have the same meaning

as with paths. 12

ii·--paths is cailed for English inputs of the form:

12

"WHAT ARE THE PATHS FROM x TO y?". Such questions can be modified with
subordinate clauses to indicate values (or must, avoid, and/or onlv, o.g.
11 WHAT ARE THE PATHS FROM FOO TO FIE WHICH ONLY GO THROUGH FOOFNS AN°c) AVOID
FIEFNS?"

treepaths is called for English inputs of the form "SHOW ME HOW x CALLS y",
"DISPLAY THE PATHS FROM x TO y 11 , etc.

20 .15

lookat[x) Builds the initial data base describing the system

!• where ! is either the name of a function, tho

name of a variable which evaluates to a list of

functions, or the list of functions itself.

clumpget[object;relation:universe] Value is a list of objects (functions or

variables) which have the indicated relation with

respect to object, e.g. clumpget[FOO;CALLERS]

returns a list of functions that call FOO,

clumpget[X;SMASHERS] a list of functions that

smash the variable X, etc. A com.plete list of tho

possible values for relation is given below. 13

object can be a list of objects (or a variable

which evaluates to a list of objects), in which

case the value returned by clumpget is the list or

all objects which have the indicated relation to

any of the members of object.

Similarly, universe can be a list of·objec~~ (or a

variable which evaluates to a list -0f object~). in

which case the value returned by clumrget is tho

list of all objects in uni verse which have tho

indicated relation to object (or any of the

members of object), e.g.

clumpget[X;SMASHERS:FOOFNS].

ia---If clur.1pget is given a value for relation that it does not: recognize, it
will attempt spelling correction, and if that fails, generat~f an error. If
given a value for object that it has not seen before, it will type "I don't
know anything about obJect, shall I analyse a syste~?" and go into analysis
mode.

20 .16

Finally,, universe can be a relation, which is

equivalent to supplying clumpget(object;univorso]

in place of object, i.e. the value returned is tho

list of all objects which have the indicatod

relation to any.of the members of the {set of all

objects which bear the relationship universe to

object}. For example,

clumpget(FOO;CALLERS;CALLEDFNS] is a list of all

functions that call any of the functions (CALLERS)

that are directly called by FOO (CALLEDFNS).

clumpget[FOO;FREEUSERS;LOCALVARSJ is a list of

functions that use freely any of the variables

that are bound locally by FOO.

Currently, the following relations are implemented:

CALLERS

CALLE OF NS

CALLCAUSERS

CALLSCAUSED

ABOVE

BELOW

ARGS

list of functions that directly call qbject.

list of functions directly called by object.

list of functions that call object, perhaps

indirectly. In English: "WHO CALLS FOO SOMEHOW?".

list of functions called by

indirectly. In English: 11 WHO

SOMEHOW?"

union of object with CALLCAUSERS.

union of object with CALLSCAUSED.

arguments of object.

20.17

object, perhaps

DOES FOO CALL

ARGBrnDERS

LOCAL VARS

LOCALBINDERS

f REEVARS

FREEUSERS

LOCALFREEVARS

GLOBALFREEVARS

ENTRYFNS

list of functions that have object as an argument.

list of variables that are locally bound in

object, e.g. PROG vars.

list of functions that bind object as a local

variable.

list of variables used freely by object.

list of functions that use object freely.

list of variables that are used freely in object,

but are bound in object before they are used, e.g.

clurnpget[FOO;LOCALFllEEVARS;BELOW] gives a list of

those variables used freely below FOO, but arc

bound above the place that they are used .14 In

English: "WHAT ARE THE LOCAL FREE VARS (VARIABLES)

BELOW FOO?"

list of variables used freely in object without

previously being bound in object.

list of each function in object which is not

called by any function in object other than

itself, e.g. clumpget[FOOFNS;ENTRYFNS].

14---Note that if object is the name of a function and universe is NIL,
LOCALFREEVARS will always be NIL, and GLOBALFREEVARS the same as FREEVARS.
It is only in connection with collections of functions that LOCALFREEVARS
and GLOBALFREEVARS become interesting.

20 .18

SELFRECURSIVE list of functions in object which call themselves

directly.

CAUSESELFCALL list of functions in object which could call

themselves, perhaps indirectly.

CAUSERECURSION list of functions in object which cause somo

function to call itself, perhaps indirectly.

CHANGEVARS list of variables that are changed by obj net,

where 'changed' means any flavor of assignment,

i.e. via SETQ, SETQQ, RPAQ, SETN, or even an

expression of the form (RPLACA (QUOTE atom) value)

(or FRPLACA, /RPLACA, SAVESET, etc.) 15

CHANGERS list of functions that change object.

1Vote: 'set' in English tnput means anv flavor of assignment. and translates the
same as 'change'.

SMASHVARS list of variables whose value are smashed by

object, where •smash 1 means the variable appears

as the first argument to one of the list of

functions on smasherslst. 16

i5- - ~ i ~~~;~~- -;;;;- ~~~~~~--;~--r·e-ia-t-;o-n-;·5Erov~~;:--;iro;R5: • 5[;-V~~s ~ -· ;E ~~£~$ ~

16

SETQQERS, SETQQVARS, etc., in case the user wants to distinguish betwonn
the various flavors of assignments. In English, "WHAT ARE THE SETQERS OF
X?", etc.

Initially (RPLACA RPLACD FRPLACA FRPLACD /RPLACA /RPLACO NCONC NCONCl
/NCONC /NCONCl ATTACH /ATTACH RPLNODE /RPLNODE RPLNODE2 /RPLNODE2). As
with assignments, clumpget will accept as relations RPLACAERS, RPLACAVARS,
RPLACDERS, RPLACDVARS, etc., in case the user wants to distinguish tho
different types of smashing.

20 .19

SMASHERS

TESTVARS

TESTERS

USE VARS

USERS

list of functions that smash object.

list of variables that are tested by object, whoro

'tested' means they appear as the first argument

to one of the list of·functions on tosterslst,

initially (ATOM USTP NUMBERP NLISTP STRINGP EQ

EQP EQUAL NULL), or anywhere in an ·AND or OR, or

as the predicate in a CONO clause, or as the first

argument to SELECTQ, etc.

list of functions that test object.

list of variables that are· used in object, where

'used' means· actually appear in the body of tho

function, i.e. if a variable is simply bound, but

not actually used any-Where, it wi 11 not bo

included in the value of USEVARS. CHANGEVARS and

TESTVARS are subsets of USEVARS.

list of functions that use object.

20.20

?0.3 Helpsys17

Helpsys provides yet another form of on-line assistance to the user, namely in +

the area of documentation of INTERLISP. Helpsys uses the INTERLISP Reference +

Man~al as a data. base, and answers simple questions about INTERLISP by +

presenting the appropriate passages from the manual. Inquiries are made in tho +

form of simple sentences, void of punctuation, terminated with a +

carriage-return. The following sample session illustrates the use of Helpsys. +

User inputs are underlined.

~HELPSYS]
Type ??? <CR> for assistance
!TELL ME ABOUT WHILE>
... WHILE as a CLISP iterative statement operator from section 23

WHILE pred
provides a way of terminating the i.s. WHILE pred evaluates

pred before each iteration, and if the value is NIL, exits.

!TELL ME ABOUT EVAL)
Do you want to see the function ? No
Do you want to see the break command ? yes
EVAL

Sane as GO or OK except that the break is maintained after the
evaluation. The user can then interrogate the value of the break
which is bound on the variable !value, and continue with the break.
More? Yes

Typing GO or OK following EVAL will not cause reevaluation but
another EVAL will. EVAL is a useful command when the user is not
sure whether or not the break will produce the correct value and.
wishes to be able to do something about it if it is wrong.

!TELL ME ABOUT UB~
UB as a break command from section 15

UB
unbreaks brkfn, e.g.

(FOO BROKEN)
:UB
FOO

and FOO is now unbroken

!REDO EVAL)

20.21

+

+
+
+

+
+
+
+
+
+
+
+
+
+
+
+

+
+

+
+
+
+
+
+
+

+

+

+
+
+
+
+

Do you want to see the function 1
eval(x]

eval evaluates the expression
eval provides a way of calling the
Footnote (7] now? yes

... yes

x and returns this value i.e.
interpreter.

+ { "'7"'} eva 1 is a subr so that the 'name 1 x does not actua llY appear
+ on the stack.

+
+

Note that eval is itself a
is the first evaluated, e.g.,

+ !WHAT ARE THE ARGS FOR BREAKl)

lambda type function, so its argument
{user aborts output by typing control-£) 18

+ Valid arguments for BREAKl are: [BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE]

+ !TELL ME AOUT THE THIRD ARG FOR BREAK1l
+ =ABOUT
+ ... BREAKl as a function from section 15

+ breakl[brkexp;brkwhen;brkfn;brkcoms;brktype]
+ is an nlambda. brktype is NIL for user breaks, INTERRUPT for
+ control-H breaks, and ERRORX for error breaks.

+ !TELL ME ABOUT ERROR IN ARRAYSIZE?
+ ••• ARRAYSIZE as a function from section 10

+ Generates an error, ARG NOT ARRAY, if a is not an array.

+ !TELL ME ABOUT THE LAST ARUGNEMT OF CHANGEPROP?
+ =ARGUMErn
+ ••• CHANGEPROP as a function from section 7

+ changeprop[x;propl;prop2]
+ Changes name of property prop1 to prop2 on property list of x.
+ (but does not affect the value of the property).

+ !USE 2ND FOR LAST(
+ •.. CHANGE PROP as a function from section 7

+ changeprop[x;propl;prop2]
+ Changes name of property propl to prop2 on property list of x,
+ (but does not affect the value of the property). Value is x,
+ (but does not affect the value of the property).

+ !WHAT IS THE VALUE OF MAPC(
+ ••• MAPC as a function from section 11

+ The value of mapc is NIL.
+ ! OK.?
+ NIL

+
+
+

i8---The user could also interrupt the output by striking the 1 del 1 key, which
sir.iply causes helpsys to skip over what it was currently typing, e.g.
footnote, paragraph; etc., and continue with the same subject further on.

20.22

Index for Section 20

ALLCALLS[rn; TREELST]
CALLS[FN;EXPRFLG;VARSFLG]
CLUMPGET[OBJECT;RELATION;UNIVERSE]
debugging , ,
OONELST (printstructure variable/parameter)
EXPR (property. name)
EXPRFLG (printstructure variable/parameter)
FIRSTFf~[FN]•
FREEVARS[FN; EXPRFLG]
HELPSYS .. .
IrJFO (property name)•
INTERSCOPE , .. .
IS NOT DEFINED (typed by PRINTSTRUCTURE)
LASTFf~[FIJ]•
LAST-PRINTSTRUCTURE

(printstructure variable/parameter)•
LOOKAT[FNL]
f.l IL : , , .. , .
NOFNS (printstructure variable/parameter)•.•
NOTRACEFf.lS (printstructure variable/parameter)
PATHS[X;Y;R;MUST;AVOID;ONLY]
PROEPTH (printstructure variable/parameter}
PRINTSTRUCTURE[X;EXPRFLG;FILE]
P.P.E. (typed by PRINTSTRUCTURE)
TEf.lEX .. .
TREELST (printstructure variable/parameter)
TREEPATHS[X;Y;R;MUST;AVOID;ONLY]•
TREEPRIIJT[X; N]•.
VARPRINT[OONELST;TREELST]•........
VARS[FN;EXPRFLG]•....
YESFNS (printstructure variable/parameter)••
x*~ (in interscope output)

INDEX.20.1

Page
Numbers

20.8
20.9
20 .16
20.4
20.7
20.6
20.5,8
20.4,8
20.9
20.21-22
20.4
20.10-20
20.4
20.4,8

20.5,7-8
20.12.16
20.5
20.3
20.4
20.13-14
20.4
20.1-9
20.4,7
20.5
20.7
20. 15
20.8
20.8
20.9
20.3
20 .14

21.1 Measuring Functions

time[tirnex;timen;timetyp)

SECTION 21

MISCELLANEOUS1

is an nlambda function. It executes the

computation timex, and prints out the number of

conses and computation time. Garbage collect ion

time is subtracted out.

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)
FILE CREATED 7·MAY·71 12:47:14

GC: 8
582, 10291 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
10 .655 SECONDS
PRETTY

If timen is greater than 1 (timen=NIL equivalent

to timen=l), time executes timex timen number of

times and prints out number of conses/timen, and

computation time/timen. This is useful for more

accurate measurement on small computations, e.g.

i---~--------------Some of the functions in this section are TENEX or implementation +
dependent. They may not be provided in other implementations of INTERLISP. +

21.1

~TIME((COPY (QUOTE (ABC))) 10)
30/10 = 3 CONSES
.055/10 = .0055 SECONDS
(A B C)

If timetype is O, ~ measures and prints total

real time as well as computation time, e.g.

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 OJ
FILE CREATED 7-MAY-71 12:47:14

GC: 8
582, 10291 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
11.193 SECONDS
27.378 SECONDS, REAL TIME
PRETTY

If timetYE? :: 3, time measures and prints garbage

collection time as well as computation time, e.g.

~TIME((LOAD (QUOTE PRETTY) (QUOTE PROP)) 1 3)
FILE CREATED 7-MAY-71 12:47:14

GC: 8
582, 1091 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
10.597 SECONDS
1.487 SECONDS, GARBAGE COLLECTION TIME
PRETTY

Another option is timetype::T, in which case t imo

measures and prints the number of pagefaults.

The value of time is the value of the last

evaluation of timex.

21.2

date[J2 obtains date and time, returning it as single string in

format "dd-mm-yy hh:mm:ss", where dd is day, mm is

month, yy year, hh hours, !Ml minutes, ss seconds,

e.g., 11 14·MAV 0 71 14:26:08 11 •

clock[n] for n=O current value of the time of day clock

for !lc1

i.e., number of milliseconds since last

system start up.

value or tho time of day clock when tho

user started up this INTERLISP, i.o.,

difference between clock[O] and clock[1]

is number of milliseconds (i-eal timo)

since this INTERLISP was started.

for n.=2 number of milliseconds of compute time

since user started up this INTERLISP

(garbage collection time is subtracted

off).

for n.=3 number of milliseconds ·of compu ta time

spent in garbage collections (all

types) .3

dismiss[n] In INTERLISP-10, dismisses program for n

2--In INTERLISP·lO, date will accept a value for ac3 as an argument. acJ can +
be used to specify other formats. e.g. day ofweek.. time zone. etc .• as +
described in TENEX JSYS manual. +

3 ;

In INTERLlSP· 10, this number is directly accessible via the COREVAL GCTIM.

21.3

*

conscount[n]

boxcount[type;n]

gctrp[]

pagefaults[)

milliseconds, during which time program is in a

state similar to an I/O wait, i.e., it uses no CPU

time. Can be aborted by control·D, control-E, or

control-B.

conscount(J returns the number of' conses since

INTERLISP started up. If n is not NIL, resets

conscount to !!·

ln INTERLISP-10, number of boxing operations (soo

Section 13) since INTERLISP started up. If

~=N1L, returns number of large integer boxes;

type=FLOATING, returns number of floating boxes. 4

If n is not NIL, resets the corresponding counter

to !l ·

number of cons es to next GC: 8, i.e.. number of

list words not in use. Note that an intervening

GC of another type could collect as well as

allocate additional list words. See Section 3.

gctrp[n J can be used to cause an interrupt when

value of gctrp[J=n, see Section 10.

In INTERLISP-10, number of page faults since

INTERLISP started up.

4--In INTERLISP-10, these counters are directly accessible via the COREVALs
IBOXCN and FBOXCN.

21.4

logout[] returns control to operating system. 5 In

INTERLISP-10, a subsequent CONTINUE command wi 11 ~

enter the INTERLISP-10 program, return NIL as tho

value of the call to logout, and continue tho

computation exactly as if nothing had happened,

i.e., logout is a programmable control-C. As with

control-C. a REENTER command following a logout

will reentet INTERLISP-10 at the top level.

logout[J will not affect the state of any open

files.

21.2 Breakdown6

Time gives analyses by computation. Breakdown is available to analyze the

breakdown of computation time (or any other measureabl~ quanti~y) function by

function. The user calls breakdown giving it a list of functions of interest.

These functions are modified so that they keep track of the "charge" assessed

to them. The function results gives the analysis of the statistic requested as

well as the number ~f calls to each function. Sample output is shown below.

~--In INTERLISP-10, if INTERLISP was started as a subsidiary f~rk (see subsvs, ~
page 21.19), control is returned to ~he higher fork.

6 breakdown was written by W. Teitelman.

21.5

~BREAKDOWN(SUPERPRINT SUBPRINT COMMENTl)
(SUPERPRINT SUBPRlNT COMMENTl)
~PRETTYOEF((SUPERPRINTt FOO)
FOO. ;3
~RESULTS()
FUNCTIONS TIME I CALLS PER CALL %
SUPERPRINT 8.261 365 0.023 20
SUBPRINT 31.910 141 0,226 76
COMMENTl 1.612 · 8 0.201 4
TOTAL 41.783 514 0.081
NIL

The procedure used fot measuring is such that if one function calls other and

both are 'broken down', then the time (or whatever quantity is being measured)

spent in the inner function is not char~ed to the outer function as well. 7

To remove functions from those being monitored, simply unbreak the functions,

thereby restoring them to their original state. To add functions; call

breakdown on the new functions. This will not reset the counters for any

functions not on the new list. However breakdown[] can be used for zeroing the

counters of all functions being monitored.

To use breakdown for some other statistic, before calling breakdown, set the

variable brkdwnt¥pe to the quantity of interest, e.g .. TIME, CONSES, etc.

\.lhenever breakdown is called with brkdwntyp~ not NIL, breakdown performs tho

necessary changes to its internal state to conform to the new analys i~. In

particular, if this is the first time an analysis is being run with this

statistic, the compiler may be called t~ compile the measuring function. 8 When

breakdown is through initializing, it sets brkdwntype back to NIL. Subsequent

7· - -b~;~~~~~~ -~iii. ·;o·t· -~i ~;· ;~~~;;~; · ~-e~~-1~~·-;; ·; • f~~~~i~~. -b·e-;n·g- -~;;;~,:;~ - ~;

8

not returned from normally, e.g. a lower retfrom (or error) bypasses it.
In this case, all of the time (or whatever quantity '"TSbeing moasured)
between the time th~t function is entered and the time the next function
being measured is entered will be charged to the first functi~n.

The measuring functions for TIME and CONSES have already been compiled.

21.6

calls to breakdown will measure the new statistic until brkdwnt~pe is again sot

and a new breakdown performed. Sample output is shown below:

... SET(BRKDWNTYPE CONSES)
COl~SES
... BREAKDOWN(MATCH CONSTRUCT)
(MATCH CONSTRUCT)
... FLIP ((A B C D E F G H C Z) (.. $1 • • #2 ..) (. • !Ii 3 ••))
(A B D E F G H Z)
.. RESULTS()
FUNCTIONS
MATCH
CONSTRUCT
TOTAL
NIL

CONS ES
32
47
79

CALLS
1 '
1
z

PER CALL
32.000
47.000
39.500

%
41
59

The value of brkdwntype is used to search the list brkdwntypes for tho

information necessary to analyze this statistic. The entry on brkclwntvpCls

corresponding to brkdwntype should be or the form (type form function), whore

form computes the statistic, and function (optional) converts the,value of form

to some more interesting quantity, e.g.

(TIME (CLOCK 2) (LAMBDA (X) (FQUOTIENT X 1000)))9 measures computation time and *
reports the result in seconds instead of milliseconds. If brkdwntype 1s not

defined on brkd\'fntypes, an error is generated. brkd\-intypes currently contains

entries for TIME, CONSES, PAGEFAULTS, BOXES, and FBOXES~

More Accurate Measurement

Occasionally, a function being analysed is sufficiently fast that the overhead

involved in measuring it obscures the actual time spent in the function. If

the user were using time, he would specify a value for timen greater than 1 to

give greater accuracy. A similar option is available for breakdown. -Tho user

~---~------~--------------~~-------------For more accurat'e measurement, the form for ·TIME in INTERLISP-10 is not
(CLOCK 2) but (ASSEMBLE NIL (JSYS 206) (SUB 1 , GCJIMH. . ,,

21.7

•
•
•

can specify that a function(s) be executed a multiple number of times for each

measurement, and the average value reported, by including a number in tho list

of functions given to breakdown, e.g., BREAKOOWN(EDITCOM EDIT4F 10 EDIT4E EQP)

means normal breakdown for editcorn and edit4f but executes (the body of) odit4o

and £gQ 10 times each time they are called. Of course, the functions so

measured must not cause any harmful side effec~s. since they are executed more

than once for each call. The printout from results will look the same as

though each function were run only once, except that the measurement will be

more accurate.

21.3 Edita10

Edita is an editor for arrays. However, its most frequent application is in

editing compiled functions (which are also arrays in INTERLISP-10), and a great

deal of effort in implementing edita, and most of its special features, are in

this area. For example, ~knows the format and conventions of INTERLISP-10

compiled code, and so, in addition to decoding instructions a la DDT, 11 edita

can fill in the appropriate COREVALS, symbolic names for ·index reg is tors,

ref~rences to literals, linked function calls, etc. The following output shows

a sequence of instructions in a compiled function first as they would be

printed by DDT, and second by edita.

1a·-------------------~-----------~-~--------------------·---------------------ed1 ta was written by \./, Teitelman, and modified by D. C. Lewis. That

11

portion of edita relating to compiled code may or may not be available in
implementations of INTERLISP other than INTERLISP-10 •

DDT is one of the oldest debugging systems still around. For users
unfamiliar with it, let us simply say that !!!lli was patterned after it
because so many people are familiar with it.

21.8

466716/ PUSH 16, LISP&KtHL 3/ PUSH PP,KNIL
466717/ PUSH 16, LISP&KNIL 4/ PUSH PP,KNIL
466 720 I HRRZ 1,-12(16) 5/ HRRZ 1,·lO(PP)
466721/ CAME 1, LISP&KNIL 6/ CAME 1,KNIL

12 466722/ JRST 466724 71 JRST 9
466723/ HRRZ 1,@467575 8/ HRRZ 1.@ I BRKF ILE
466724/ PUSH . 16, 1 9/ PUSH PP,1
466725/ LISP&IOFIL,,467576 10/ PB IND I BRKZ
466726/ -3 .. -3 11/ -524291
466727/ HRRZ 1,-14(16) 12/ HRRZ 1,-12(PP)
466730/ CAMIJ 1,467601 13/ CAMN 1, 'OK
466731/ JRST 466734 14/ JRST 17
466732/ CAME 1,467602 15/ CAME 1, I STOP
466733/ JRST 466740 16/ JRST 21
466734/ PUSH 16,467603 17/ PUSH pp. I BREAK 1
466735/ PUSH 16,467604 18/ PUSH PP, '(ERROR!)
466736/ LISP&FILEN,,467605 19/ CCALL 2,'RETEVAL
466737/ JRST 467561 20/ JRST 422
466740/ CAME 1,467606 21/ CAME 1, 'GO
466741/ JRST 466754 221 JRST 33
466742/ HRRZ 1,@-12(16) 231 HRRZ 1,@-10(PP)
466743/ PUSH 16,1 24/ PUSH PP,1

Therefore, rather than presenting edita as an array editor with some extensions

for editing compiled code, we prefer to consider it as a facility for editing

compiled code, and point out that it can also be used for editing arbitrary

arrays.

Overview

To the user, edit a looks very much like DDT with INTERLISP-10 ex tens ions. It

is a function of one argument, the name of the function to be edited . 13

Individual registers or cells in the function may be examined by typing their

address followed by a slash, 14 e.g.

12---
Note that edi ta prints the addresses of cells contained in the function

13

14

relative to--ui"eorigin of the function.

An optional second argument can be a list of commands for cdita.
then executed exactly as though they had come from the teletype.

These are

Underlined characters were typed by the user. edit a uses its own read
program, so that it is unnecessary to type a space before the slash or to
type a carriage return after the slash.

21.9

6/ HRRZ 1,-10(PP)

The slash is really a command to edita to open the indicated register . 15 Only

one register at a time can be open, and only open registers can be changed. To

change the contents of a register, the user first opens it, types the new

contents, and then closes the register with a carriage-return, 16 e.g,

CAME 1, It CAMN 1, 't~

If the user closes a register without specifying the new contents, the contents

are left unchanged. Similarly, if an error occurs or the user types control-E,

the open register, if any, is closed without being changed.

Input Protocol

Edita processes all inputs not recognized as commands in the same way. If the

input is the name of an instruction (i.e. an atom with a numeric OPD property),

the corresponding number is added to the input value being assembled, 17 and a

flag is set which specifies that the input context is that of an instruction.

The general form of a machine instruction is (opcode ac , @ address (index)) ns

described in Section 18. Therefore, in instruction context, edit a evaluates

all atoms (if the atom has a COREVAL property, the value of the COREVAL is

j5·--edi ta also converts absolute addresses of cells within the function to

16

17

relative address on input. Thus, if the definition of foo begins at 85660,
typing 6/ is exactly the same as typing 85666/. -

Since carriage-return has a special meaning, !J!!!! indicates the balancing
of parentheses by typing a space.

The input value is initially 0.

21.10

used), and then if the atom corresponds to an !!£, 18 shifts it left 23 bits and

adds it to the input value, otherwise adds it directly to the input valuo, but

performs the arithmetic in the low 18 bits. 19 Lists are interpre-ted ns

specifying index registers, and the value of .£!!.!: of the list (again COREVALs

are permitted) is shifted left 18 bits. Examples:

PUSH PP, KNIL
HRRZ 1,·10(PP)

. CAME 1, 'GO
JRST 33 ORG 20

The user can also specify the address of a literal via the ' command, seo pago

21.14. For example, if the literal " UNBROKEN" is in ·cell 85672,

HRRZ 1, Ill UNBROKEN" is equivalent to HRRZ 1, 85672.

When the .input context is not that of an instruction, i.e. no OPD has be on

seen, all inputs are evaluated (the value of an atom with a COREVAL property is

the COREVAL.) Then numeric values are simply added to the previous input value:

~on-numeric values become the inp~t value.21

The only exception to the entire procedure occurs when a register is open that

is in the pointer region of the function, .i.e. literal table. In this case,

is---1. e. if a ',' has not been seen, and the value of the atom is less than 1~.

19

20

21

and the low 18 bits of the input value are all zero.

If the absolute value of the atom is greater than 1000000Q. fi.J 11 word
arithmetic is used. For example, the indirect bit is handled by simply
binding @ to 20000000Q.

edita cannot in general know whether an address field in an instruction
that is typed in is relative or absolute. Therefore, the user must add
ORG, the origin of the function, to the address field himself. Note that
edita would prtnt this instruction, JRST 53 ORG, as JRST 53.

Presumably there . is only one input in this case.

21.11

atomic inputs are not evaluated. For example, the user can change the literal

FOO to FIE by simply opening that register and then typing FIE followed by

carriage~return, e.g.

FOO

Note that this is equivalent to 'FOO/ FOO (QUOTE FIE))

Edita Commands and Variables

) (carriage-return)

ORG

I

If a register is open · and an input was t~_QOd,
store the input in the register and ~lose it.

If a .register is open and nothing was typed, close
the register without changing it.

If.' a register is not open and input was typed,
type its value.

Has the value of the address of the first
instruction in the function. i.e .. loc of gctd of
the function.

Opens the register specified by the low 18 bits of
the quantity to the left of the /, and types its
contents. If nothing has been typed, it uses the
li;lst thing typed by edita, e.g.

~ JRST 53 L CAME 1,'RETURN !.. RETURN

tab (control-I)

If. a register was open, I closes it without
changing its contents.

After a I command, edita returns to that state of
no input having been typed.

Same as carriage-return, followe·d by the address
of the quantity to the left of the tab, e.g.

35/ JRST 53 tab

22---If the register is in the uhboxed region of the function, the unboxed value
is stored in the register.

Zt.12

53/ CAME 1, 1 RETURN

Note that if a register was open and input was typed, tab will change tho open
register before closing it, e.g.

. (period)

line-feed

f

SQ (alt-modeQ)

LITS

BOXED

$ (dollar)

=

OK

?

35/ JRST 53
54/ JRST 70
35/ JRST 54

JRST 54 tab
~

has the value of the address of the current (last)
register examined.

same as carriage-return followed by (ADOl .)/i.e.
closes any open register and opens the next
register.

same as carriage-return followed by ~SUBl .)/

has as its value the last quantity typed by ectita
e.g.

35/ JRST 53 ~
./ JRST 54

has as value the (relative) address of the first
literal.

same as LITS

has as value the relative address of the last
literal in the function.

Sets radix to -a and types the qunn ti ty to the
left of the = sign, i.e. if anything has boon
typed, types the input value, otherwise, types SQ,
e.g.

35/ JRST 54 =254000241541Q JRST 54=254000000066Q

Following =, radix is restored and edi ta returns
to the no inpu""'tS'iate.

leave edita

return to •no input• state. ? is a •weak'
control-E, i.e. it negates any input typed, but
does not close any registers.

21.13

addressl, address2/ prints23 the contents of registers Mldross 1
through address2. . is set to adclress2 aftertii-o
completion.

'x corresponds to the ' in LAP. The noxt oxprossion
is read, and if it is a small number, the
appropriate offset is added to it. Otherwise, tho
literal table is searched for x, and the value of
•x is the (absolute) address -of that coll. An
error is generated if the 11 tertil is not found,
i.e. 'cannot be used to create literals.

:atom defines atom to an address
(1) the value of SQ if a
(2) the input if any

otherwise
(3) the value of 1 ' 24

For example:

35/ JRST 54 :FOO,?
:FIE.?
FIE/ JRST FOO ..:...:,35

register is opon,
input was typed,

Edita keeps its symbol tables on two free variables, usersyms and symlst.

Users;:cms is a list of elements of the form (name . value) and is used for

encoding input, i.e., all variables on usersyrns are bound to tho i r

corresponding values during evaluation of any expression inside edita. Sym1st

is a list of elements of the form (value name) and is used for decoding

addresses. Usersyms is initially NIL, while symlst is set to a list of all the

corevals. Since the : command adds the appropriate information to both these

two lists, new definitions will remain in effect even if the user exits from

edita and then reenters it later.

Note that the user can effectively define symbols without using the conunand

23---output goes to file, initially set to T. The user can also set file (while

24

in edita) to the name of a disc file to redirect the output. (The user is
responsible for opening and closing file.) Note that file only affects
output for the addressl, address2/ command. --

Only the low 18 bits are used and converted to a relative address whenever
possible.

21.14

by appropriately binding user.syms and/or SYJ:llSt before calling edita. Also, ho

can thus use different symbol tablas for different applications.

$W (alt-modeW) search command.

Searching consists of comparing the object of the search with the contents of

each register, and printing those that match, e.g.

HRRZ @ $~/,)

8/ HRRZ 1,@'BRKF!LE
23/ HRRZ 1,@-lO(PP)
28/ HRRZ 1,@-12(PP)

The $W corrunand can be used to search either the unboxed portion of a .. function.

i.e. instructions, or the pointer region, 1.e. literals, depending on whether

or not the object of the search ls a number. If any input was typed before the

$W, it will be the object of the search, otherwise the next expression is road

and used as the obje~t. 26 The user can specify a starting point for the ~earch

by typing an address followed by a 1 , 1 before calling $\:/, e.g. 1, JRST $W. If

no starting point is specified, the search will begin at 0 if the object is a

number, otherwise at LITS, the address of the first literai.26 After the search

is completed, I I . is set to the address of the last register that matched.

If the search is operating in the unboxed portion of the function, only those

fields (i.e. instruction, ac, indirect, index, and address) of the obje~t that

contain one bits are compared.27 For example, HRRZ @ $W will find all instances

25---Note that inputs typed before the $W will have been processed according to

26

27

the input protocol, i.e. evaluated; inputs typed after the $W wi 11 not.
Therefore, the latter form is usually used to specify searching the
literals, e.g. SW FOO is equivalent to (QUOTE FOO) SW.

Thus the only way the user can se~rch the pointer region for a number is to
specify the starting point via ·~·

Alternately, the user can ,specify his own mask by setting the variable mask
(while in edita), to the appropriate bit pattern.

21.15

of HRRZ indirect, regardless of ac, index, and address fields. Similarly,

''PRINT SW will find all instructions that reference the literal PRINT. 28

If the search is operating in the pointer region, a 'match' is as defined in

the editor. For example, SW (&) will find all registers that contain a list

consisting of a sin~le expression.

SC (alt-modeC) like SW except only prints the first match, thon
prints the number of matches when the search
finishes.

Editing Arrays

Edi ta is called to edit a function by giving it the name of the function.

Edita can also be called to edit an array by giving it the array as its first

argument, 29 in which case the following differences are to be noted:

1. decoding - The contents of registers in the unboxed region are boxed

and printed as numbers, i.e. they are never interpreted ns

instructions, as when editing a function.

2. addressing convention - ~hereas 0 corresponds to the first instruction

of a function, the first element of an array by convention is element

number 1.

28---The user may need to establish instruction context for input without giving

29

a specific instruction. For example, suppose the user wants to find all
instructions with ac=l and index=PP. In this case, the user can give & as
a pseudo-instruction, e.g. type & 1, (PP).

the array itself, not a variable whose value is an array, e.g. (EDITA FOO),
not ED IT A (F 00) .

21 .16

3. input protocols - If a register is open, lists are evaluated, atoms

are not evaluated (except for $Q which is always evaluated). If no

register is open, all inputs are evaluated, and if the value is a

number, it is added to the 'input value'.

4. left half - If the left half of an element in the pointer region of an

array is not all O's or NIL, it is printed followed by a ;, e.g.

10/ (A B) ; T

Similarly, if a register is closed, either its left half, right half,

or both halves can be changed, depending on the presence or absence,

and position of the ; e.g.

(A B) ; ,.
B T

B

A

NIL

c

!1.i.1. changes left

NIL) changes right

A c,? changes both

If : is used in the unboxed portion of an array, an error will bo

generated.

The SW command will look at both halves of elements in the pointer region, and

match if either half matches. Note that SW A ; B is not allowed.

This ends the section on !911!·

21.17

"" 21.4 Interfork Colllr.lunication in INTERLISP•tO

The functions described below permit two forks (one or both of thom

INTERLISP-10) to have a corrunon area' of address space for corrununication by

providing a means of assigning a block of storage guaranteed not to move during

garbage collections.

getblk[n] Creates a block n pages in size (512 words por - '

page). Value is the address of the first word in

the block, which is a multiple of 512 since the

block will , always begin at a page boundary. If

not enough pages are available, generates the

error ILLEGAL OR IHPO~SIBLE BLOCK.

1tlote: the block. can be used for s tori.no unboxed numbers £.!!lll.

To store a number in the block, the following function could be used:

(SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LOC START) N) X]

Some boxing and unboxing can be avoided by making this function compile opon

via a substitution macro.

Note: aetblk should be used sparingly since several un~ovable regions of memoru
can make it difficult or impossible for the garbage collector to find a
contiguous region large enough for expanding array space.

relblk(address;n] releases a block of storage beginning at address

and extending for n pages. Causes an error

ILLEGAL OR IMPOSSIBLE BLOCK if any of the range is

not a block. Value is address.

21.18

21.5 Subsys30

Th is sect ion describes a function, sub sys, which permits the user to. run a

TENEX subsystem, such as SNDMSG, SRCCOM, TECO, .or even another INTERLISP, from

inside of an INTERLISP. without destroying the latter. In porticulor.

SUBSYS(EXEC) will start up a lower exec, which will print the TENEX herald,

followed by @. The user can then do anything at this.exec level that;he can at

the top level, without affecting his superior INTERLISP. For example, he can

start another INTERLISP, perform a sysin, run for a while, type a control·C

returning him to the lower exec, RESET, do a SNDMSG, etc. The user exits from

the lower exec via the conunand QUIT, which will return control to suhsys in the

higher INTERLISP. Thus with subsys, the user need not perform a sysout to savo

the state of his INTERLISP in order to use a TENEX capability which would

otherwise clobber the core image. Similarly, subsys provides a way of chocking

out a sysout file in a fresh INTERLISP with out having to commandeer another

teletype or detach a job.

While subsys can be used to run any. TENEX. subsystem directly, without going

through an intervening exec, this procedure. is no,t recommended. The problem is

that control-C always returns control to the next highest exec. Thus if the

user is running an INTERLISP in which he performs SUBSYS(LISP), and then typos

control-C to the lower INTERLISP, control will be returned to the exec abovo

the first INTERLISP. The natural REENTER C()nunand would then clear the lowor

INTERLISP, 31 but any files opened by. it. would remain open (until the noxt

@RESET). If the user elects to call a subsystem directly. he must therefore

ao·--·------------------~---------------------·-·------------------------------subsys was written by J. \./. Goodwin. It is TENEX dependent and may not be 111

31

available in implementations of INTERLISP other than INTERLISP·l~. ft

A CONTINUE command however will return to the .. subordinate progr:am, i.e.
control-C followed by CONTINUE is safe at any level~

21.19

know how it is normally exited and always exit from it that way. 32

Starting a lower exec does not have this· disadvantage, since it can onl v ho

exited via QUIT, i.e., the lower exec is effectively 'errorset protected'

again~t control-C.

subsys[file/fork;incomfile;outcomfile;entrypointflgJ

If file/fork=EXEC, starts up a lower exoc,

otherwise runs <SUBSYS>'system, e.g.

subsys[SNDMSG),subsys[TECOJ etc. subsys[) is sarno

as subsys[EXECJ. Control-C always returns control

to next higher exec. Note that more than one

INTERLISP can be stacked, but there is no

backtrace to help you figure out where you are.

incomfile and outeomf ile provide a way of

specifying files for input and output. incomfi lo

can also be a string, in which case a temporary

file is created; and the string printed on it.

entrypointflg may be START, REENTER, or CONTINUE.

NIL is equivalent to START, except when .. fi lo/fork

is a handle (see below) in which case NIL is

equivalent to CONTINUE.

The value of subsys is a large integer which is a handle to the lower fork.

The lower fork is not reset unless the user specifically does so using kfork,

ii---~-------------INTERLISP is exited via the function logout, TECO via the command ;H,
SNDMSG via control·Z, and EXEC via QUIT.

21.20

described below. 33 If subsys is given. as its first argument the value of a

previous call to sub sys, 34 , it continues the subsystem run by that call. For

example, the user can do (SETO SOURCES (SUBSYS TECO)), load up the TECO with a

big source file, massage the file, leave TECO with ;H, run INTERLISP for nwhilo

(possibly including other calls to subsys) and then perform (SUBSYS SOURCES) to

return to TECO, where he will find his file loaded and even the TECO pointor

position preserved.

Note that if the user starts a lower EXEC, in which· he runs an INTERLISP,

control-C's from the INTERLISP, then QUIT from the EXEC, if he subsequently

continues this EXEC with subsys, he can reenter or continue the INTERLISP.

Note. also that calls to subsys can be stacked. For example, using subsys, the

user can run a lower INTERLISP, and within that INTERLISP, yet another, etc.,

and ascend the chain of INTERL ISPs using logout, and then descend back down

again using subsys.

for convenience, subsys[T] continues the last subsystem run.

SNDMSG, LISP, TECO, and EXEC, are all LISPXHACROS which perform the

corresponding calls to subsys. CONTIN is a LISPXMACRO which performs

subsys[TJ, thereby continuing the last subsys.

~5------------------------------------~--The fork is also reset when the handle is no longer accessible, i.e., whon

34

nothing in the INTERLISP system points to it. Note that the fork is
accessible while the handle remains on the history list.

Must be the exact same large number, i.e. ~· Note that if the usor
neglects to set a variable to the value of a call to subs~s. (and has
performed an intervening call so . that subsys[T J . will not work), he can
still continue this subsystem by obtaining the value of the call to ~·-L~
for the history list using the function valueof, described in Section 22.

21. 21

+

+

+

+

kfork[fork] accepts a value from subsys and kills it (RESET in

TENEX terminology). If subsys[fork] is

subsequently performed, an error is generated.

kfork[T] kills all outstanding forks (from this

INTERLISP).

21.6 Niscellaneous Tenex Functions in INTERLISP·t036

fildir[filegroup]

loadav[)

erstr[ern]

jsys(n;acl:ac2;ac3;resultac]

filegroup is a TENEX file group descrip~or, i.e.,

it can contain stars. fildir returns a list of

the files which match filegroup, a la the TENEX

DIRECTORY command, e.g. (FILDIR (QUOTE *.COM:O)).

returns TENEX current load average as a floating

point number (this number is the first of tho

three printed by the TENEX SYSTAT command).

lli is an error number from a JS\'S fail return.

fil=NIL means most recent error. illll returns

the TENEX error diagnostic as a string

(from <SYSTEM>ERROR.MNEMONICS).

loads (unboxed) values of acl, ac2, and ac3

into appropriate accumulaters, and executes TENEX

JSYS number N. If fil, ac2, or ac3=NIL, 0 is

used. Value of ~ is the (boxed) contents of

~~---All of the functions in section 21.5, except for tenex, were written by
J.\J. Goodwin.

21 .22

the accumulator specified by resultac, i.e. 1 +

means acl, 2 means ~. and 3 moans ac3, with NIL +

username[a]

usernumber[a]

equivalent to 1.

If !=NIL, returns login directory name; if ~=T,

returns connected directory name; if ! is a

number, username returns the user name

corresponding to that user number. In all cases,

the value is a string.

If !=NIL, returns login user number; if ~=T,

returns connected user number; if ! is a literal

atom or string,· usernumber returns the number of

the corresponding user, or NIL if no such user

exists.

Note: greeting (see Section 22) sets the variable username to the login user

name, and firstnarne to the name used in the greeting.

tenex[str] Starts up a lower EXEC (without a message) using

subsys, and then unreads ill• followed by "QUIT"

(using bksysbuf, described in Section 14). For

example, the LISPXMACRO SY which does a SYSTAT is

implemented simply as TENEX["SY111].

21.7 Printing Reentrant and Circular List Structures

A reentrant list structure is one that contains more than one occurrence of the

same (!!,g) structure. For example, !£.ill (Section 6) makes uses of reentrant

list structure so that it does not have to search for the end of the list each

21.23

+

time it is called. Thus, if ~ is a list of 3 elements, (ABC), being

constructed by lli!l£, the reentrant list structure used by 1£.Q.!1£ for this

riurposo is:

A B

FIGURE 21-1

This structure would be printed by print as ((ABC) C). Note that print would

produce the same output for the non-reentrant structure:

c

A B c

FIGURE 21-2

In other words, print does not indicate the fact that portions of the structure

in Figure 21·1 are identical. Similarly, if print is applied to a circular

list structure (a special type of reentrant structure) it will never terminate.

For example, if print is called on the structure:

FIGURE 21-~

it \vill prtnt an endless sequence of loft parentheses, and if applied to:

21.24

FIGURE 21-4

will print a left parenthesis followed by an endless sequence of A's.

The function circlprint described below produces output that will exactly

describe the structure of any circular or reentrant list structure. 36 This

output may be in either single or double-line formats •. Below are a few

examples of the expressions that circlprint would produce to describe the

structures discussed above.

expression in Figur~ 21-1:

single-line:

double .. line:

((A B *11'1 C) {1})

((ABC) • {1}).
1

expression in Figure 21-3:

single-line: (*1* {1})

double-line: ({1})
1

expression in Figure 21·4:

single-line: (*1* A •. {1})

double-line: (A • {1})
1

36---Circlprint and circlmaker were written by P. c. Jackson.

21.25

The more complex structure:

A

FIGURE 21-5

is printed as follows:

single-line: (*2* (*1* {1} *3* {2} A *4* B . (3}) . {4})

double-line: (({1} {i} A B . {3}) . (4))
z 1 3 4

In both formats, the reentrant nodes in the list structure are labeled by

numbers. (A reentrant node is one that has two or more pointers coming into

it.) In the single•line format, the label is printed between asterisks at the

beginning of the node (list or tail) that it identifies. In the double-lino

format, the label is printed below the beginning of the node it identifies. An

occurrence of a reentrant node that has already been identified is indicated by

printing its label in brackets.

circlprint[list;printflg;rlknt] prints an expression describing list. If

printflg=NIL, double-line format is used,

otherwise single-line format. circlprint first

calls circlmark[li~t:rlknt], and then calls either

rlprinl[list J or rlprin2[list], depending on tho

value of printflg (Tor NIL, respectively).

Finally, rlrestore[listJ is called, which restores

.!.!.!! to its unmarked state. Value is list.

21.26

circl~ark[list;rlknt]

rlprin1[list]

rlprin2[list]

rlrestore[list)

marks each reentrant node in 1 ist with a uni quo

number, starting at rlknt+1 (or 1, if rlknt · 1s

NIL). Value is (new) rlknt.

Marking 1 ist physically alters it. However, tho

marking is performed undoably. In addition, list

can always be restored by specifically calling

rlrestore.

prints an expression describing list in tho

single-line format. Does not restore list to its

uncirclmarked state. !ill must previously havo

been circlmarked or an error is generated.

same as rlprin1,

describing list is

format.

except that

printed in

the

the

expression

double-lino

physically restores list to its original, unmarked

state.

Note that the user can mark and print several structures which together share

common substructures, e.g. several property lists, by making several calls to

circlmark, followed by calls to rlprinl or rlprin2, and finally to rlrestoro.

circlmaker[list] list may contain labels and references following

the convention used by circlprint for printing

reentrant structures in single line format, e.g.

(•t• . {1}). circlmaker performs the necessary

rplaca•s and rplacd 1 s to make list. correspond to

the indicated structure. Value is (altered) list.

21.27

circlmaker1[1ist] Does the work for circlmaker. Uses free variablos

labelst and reflst. labelst is a list of dottod

pairs of label.s and corresponding nodes. ref ls t

is a list of nodes containing references to labels

not yet seen. Circlmaker operates by initializing

labelst and reflst to NIL, and then calling

circlmakerl. It generates an error if reflst is

not NIL when circlmaker1 returns. The user can
..

call circlmakeri directly to "connect up" several

structures that share common substructures, e.g.

several property lists.

+ Dumping Unusual Data Structures

+ The circlprint package is designed primarily. for dtsplautng complex list

+ structures, 1.e. printing them so that the user can look at them (al though

+ circlmaker can be used in conjunction with read for dumping and reloading

+ re-entrant list structures). Hprint37 is a package for printing and rending

+ back in more general data structures that cannot normally be dumped and loadod

+ easily, e.g., (possibly re-entrant or circular).structures containing user

+ datatypes, arrays, hash tables, as well as Ust structures. 38 Hprint will

+ correctly print and read back in any structure containing any or all of the

+ above, chasing all pointers down to the level of atoms, number.s·or strings.

';; -

+ Hprin t operates by simulating the INTERLISP print . routine for normal list

+ structures. When it encounter~ a user datatype (see section 23), or an array

--~-----------------~~--~-~----~-----~-~--~--~-~~~-----------------------------
+ 37 for !:!orrible PRINT. The hprint package was written by L. ~L Nasinter.

+
+

38 Hprint currently cannot handle . compiled code arrays, stack positions, or
arb 1 trary unboxed numbers.·

21.28

or hash array, it prints the data contained therein, surroullded by spec i«l +

characters defined as read-macro characters (see section 14). While chasing +

the pointers of a list structure, it also keeps a hash table of those items it +

encounters, and if any item is encountered a second time, another read-macro +

character is inserted before the first occurrence, 39 and all subsequent +

occurrences are printed as a back reference using an appropriate macro +

character. Thus the inverse function, hread merely calls the INTERLISP road +

routine with the appropriate readtable, so that reading time is only a function +

of the complexity of the structure. +

hprint[x; file] prints ~ on file. 40

hread[file] reads an hprint-ed expression from file.

HORRIBLEVARS is a prettydef macro for saving and loading the +

·value of 'horrible' variables. A prettydef

command of the form (HORRIBLEVARS var 1 . . . var 11) +

will cause appropriate expressions to be written +

which will restore the .values of var i . . • var 11 +

when the file is loaded. The values of var i

var0 are all printed by the same operation, so +

that they may contain cross references to· common +

structures. +

39---by resetting the file pointer using sfptr. +

40 Note: hprint is intended primarily for output to disk files, since tho
algorithm depends on being able to reset the file pointer. If f!le is not
a disk file, a temporary file is opened, ! is printed on it, and then that
file is copied to the final output file.

21.29

+
+
+
+

+ 21.8 Typescript Files

+ A typescript file is a 1 transcript 1 of all·· of the input and output on a

+ terminal. The following function enables transcript files for INTERLISP.

+ dribble[filename;appendflgJ41 Opens filename and begins recording tho

+ typescript. · 1 f appendflg=T, the typescript wi 11

+ be appended to the end of· filename. 42 dribble[]

+ closes the typescript file. 43

+ dribble operates by redefining all of the various input and output functions,

+ and then relinking the world. (Thus the first time it is called, there will bo

+ a noticable delay before· it returns.) The typescript produced is somewhat

+ neater than t~at generated by TELNET because it does not show characters that

+ were erased via control-A or control-Q, i.e. the only input shown is that

+

+

+
+

+
+

actually returned by the various input functions.

4i--------·------~------------------------------M·------------------------------
dribble was written by D. C. Lewis.

42

48

dribble also takes an extra argument, thawedflg.
will be opened in "thawed" mode.

If thawedflg=T, the file

Only one typescript file . can be active at any one point; i.e.
dribble[file1 J followed by dribble[file2J will cause filel to be closed.

21.30

Index for Section 21

BKS YSBUF [X] SUBR•........•.••..•..•..
BOXCOUNT[TYPE;N] SUBR •••••••••••••••••••••••• , ••
BOXED (edita corrunand/parameter)•....•.•....
BREAKDOWtJ[HIS] NL"' .•.••••••..••.•.••••••••••••.•
BRKDWNTYPE (system variabl~/parameter) ..•..•....
BRKDWNTYPES (system variable/parameter) ..•....•.
carriage-return (edita command/parameter) ...•..•
CIRCLMAKER[L]•.......................•.•
CIRCLPRINT[L;PRINTFLG;RLKNT] .••.•..•.•...••.....
CLOCK[NJ SUBR •••••••••••••••••••••••••••••••••••
COl~SCOUIH[I~] SUBR•.••...............•...
cornrn (prog. asst. command)
COIHIIWE (tenex command) ...••....•..•......•.•••
control-B
control-C
control-D
control-E
COREVAL (property name) •....••...•.•............
DATE[] SUBR•..................•
DDT[] SUBR••.•.••••••..••••.••..••
01sr11ss[t~J
DRIBBLE[FILE; APPENDFLG; THAWEDFLG) .•...••...•....
dumping unusual data structures ..••••••..•......
EOITA[EDITARRY;COMS] .•..••.•...•.•.•....••......
editing arrays
editing compiled code ••.•.•.•...•••••..•.....•..
e q e • • e • e • • • • • • e e • e e • • e • , • • • • • • I • • e I • • I • e e • 1 e I I I I

ERSTR[ERN;ERRFLGJ •.. ,••...•..••.••..•....•...
EXEC•.....•...•• I •••••••••••••••• I ••••• I ••••

EXEC (prog. asst. command) .••..••..•..•••.•.•••.
FILDIR[FILEGROUP;FORMATFLG] .•..•..•..••....•.•..
FILE (edi ta command/parameter) •••.••• , ~ ••....•••
FIRSTNAME (system variable/parameter) .•.....••..
fork handle
forks •
.GCTRP[N) SUBR •••••••••••••••••••••••••••••••••••
GC: 8 (typed by system) .••.•..••••......•.•..••.
GETBLK[l1] SLIBR ••••••••••••••••••••••••••••••••••
HORRIBLEVARS prettydef macro .•.•...•...•..•..••.
H p R nn [E x p R ; F I LE J • . • • • . • • • • • • . . • • • • • • • • •••••••••
ILLEGAL OR IMPOSSIBLE BLOCK (error message)
interfork communication .•.•......••..... • •..••••.•
JS YS•...•.•.••.•.•••••••...•••••.••••••••••
JSYS[N;AC1;AC2;AC3;RESULTAC) SUBR• •....•.......•
KF.ORK[FORK] .•... I •••••••••••• I • I ••• I I •••••••••••

line-feed (edita command/parameter)
LISP (prog. asst. command)•••.••••.....•••
LISPXMACROS .•..........•..••..•..••••..••...•••.
LITS (edi ta command/parameter) ..•.•.•.•....•..••
LOADAV[] .•....••.. I • I •••••••••••••••••••••••••••

LOGOUT[] SUBR •...••..••••••••.•••••••••••.••••••
machine instructions•••..........•...•.••.
MASK (edi ta command/parameter) •.•.•.••....••..••
OK (edita command/parameter) ••....•.•.••.•.•.•••
OPD (property name)
ORG (edita command/parameter) •••••.....•••••••••

INDEX.21. l

Page
Numbers

21.23
21.4
21.13
21.5-8
21.6-7
21. 7
21.10.12
21.27
21.25-26
21.3
21.4
21.21
21.5,19
21.4
21.5, 19-20
21.4
21.4,10
21.3-4.10-11
21.3
21.8
21.3
21.30
21.28
21.8-17
21.8-17
21.8-17
21.23
21.22
21.21,23
21.21
'21.22
21.14
21.23
21.20
21.18
21.4
21.4
21.18
21.29
21.28
21.18
21.18
21.22
21.22
21.20,22
21.13
21. 21
21. 21
21.13
21.22
21.5,21
21.10
21.15
21.13
21.10-11
21.12

PAGEFAUL TS[] ..•..•.•.•••••••••••••••••••••••••••
printing circular lists ••..••....•••..••••••••••
QUIT (ten ex command) •.••.••••.••••••••.••.•.•.••
REENTER (tenex command) •.•.••.•••••••.••••••• , ••
RELBLK[ADDRESS;N] SUBR ••..•••.•...••••••••.•••• ~
RESULTS[]•.....•.••.....••..•••.••.•
running other subsystems from within INTERLISP
saving unusual data structures•••..•••.•••••
SNDMSG (prog. asst. command) .•••••..••.•••.•.•••
SUBSYS[FILE/FORK;INCOMFILE;OUTCOMFILE;

ENTRYPOINTFLG]•...•...• • .•.•••••. ,., ••
SYMLST (edita command/parameter) ..••••••.••.••.•
SYS TAT •.•...•....•.•.•..••.•••••••••••.•••••••••
tab (edita command/parameter) .••.•••.....•.••••.
TECO (prog. asst. command) ..•....••.•..••..•••••
TELNET .•........•••.•••••.••••••...•.•..••.•.•.•
TEf~EX •.••...•••.•.•••••••••••.••••••• I

TENEX[STR]•............•••.•.•••
TIME[TIMEX;TIMEN;TIMETYP] NL•............
typescript files
UNBREAK[X] NLR ..••..•.•.•.•..• ; •• ~ ••.•..•.••••••
USERNAME[A J ...•.•..... •'• .•.• .- •..••.•..•.•.•.•••••
USERNAME (system variable/parameter) ••.••..•••••
USERNUMBER[A]••.....••.... , .••••••••••
USERSYMS (edita command/parameter)•..•••••.
VALUEOF[X] NL* ························•········· S (dollar) (edita command/parameter) .•.••..•..••
SC (a 1 t-modeC) (edi ta command/parameter)•• , .
$Q (alt-modeQ) (edita command/parameter) •...•.••
SW (alt-modeW) (edita command/parameter) •..••••.
' (edi ta command/parameter)•••....••...•
, (edita command/parameter)•......•.
. (edi ta cor.u:iand/parameter) ..•.•..•...•.••. • ••.•
I (edita command/parameter)· .•..............•....

(edita comr:1and/parameter) ••.•........••...•.•.
(edita command/parameter)••••...•....•.••.•

= (edita command/parameter)
? { edita corrunand/parameter) •••••..•.•..••••..•••
@ (edita corrunand/parameter) .•••••••....•••••..••
t (edita conunand/parameter) ••••.•••••••..•••••••

INDEX.21.2

Page
Numbers

21.4
21.23-29
21.19·21
21.5,19

·21.18
21.5,8
21.19
21.28
21.21

21.19·22
21.14-15
21.23
21.12
21.21
21.30
21.19,22
21.23
21. 1-2
21.30
21.6
21.23
21.23
21.23
21.14-15
21.21
21.13
21.16
21.13
21.15,17
21.11,14
21.10
21.13
21.10.12
21.14
21.17
21.13
21.13
21.10
21.13

SECTION 22

THE PROGRAMMER'S ASSISTANT AND LISPX1

22. 1 Introduction

This chapter describes one of the newer addit1ons to INTERLISP: tho

programmer's assistant. The central idea of the programmer's assistant is that

the user, rather than talking to a passive sxstem which merely responds to ench

input and waits for the next, is instead addressing an active intermediary,

namely his assistant. Normally, the assistant is invisible to the user, and

simply carries out the user's requests. However, since the assistant remembers

what the user has told him. the user can instruct him to repeat a particular

operation or sequence of operations, with possible modifications, or to undo

the effect of certain specified operations. like D\.IIM, the programmor 1 s

assistant is not implemented as a single function or group of functions, but is

instead dispersed throughout much of INTERLISP .2 Like owrn. the prograrruner Is

assistant embodies a philosophy and approach to system design whose ultimate

goal is to construct a programming environment which would "cooperate" with tho

user in the development of his programs, and free him to concentrate more fully

on the conceptual difficulties and creative aspects of the problem he is trying

to solve.

1--~-------------The programmer 1 s assistant was designed and implemented by \./. Tei telman.

2

It is discussed in (Tei4].

Some of the features of the programmer's assistant have been described
elsewhere, e.g. the UNDO command in the editor. the file package, etc.

22.1

Example

The following dialogue, taken from an actual session at the console, gives tho

flavor of the progranuner's assistant facility in INTERLISP. The user is about

to edit a function loadf, which contains several constructs of the form

(PUTD FN2 (GETD FNl)). The user plans to replace eath of these by equivalent

MOVD expressions.

... EDITF(LOAOFF]
=LOADF
EDIT
•PP

[LAMBDA (X Y)
[COIW

((NULL (GETD (QUOTE READSAVE)))
(PUTD (QUOTE READSAVE)

(GETD (QUOTE READ]
(PUTD (QUOTE READ)

(GETD (QUOTE REED)))
(NLSETQ (SETQ X (LOAD X Y)))
(@UTD (QUOTE READ)

(GETD (QUOTE READSAVE)))
X]

*F PUTD (1 ,MOVD)
*3 (XTRR 2)
=XTR
lltQP
=O p
(MOVD (QUOTE READSAVE) (QUOTE READ))
*(SW 2 3) . .
JI(

.

[1]

[2]
[3)

[4]

[.5 J

At (1), the user begins to edit ~.3 At [Z) the user finds PUTD and replaces

it by MOVD. He then ~hifts context to the third subexpression, [3), extracts

its second subexpressiori, and ascends one level [4] to print and result. Tho

user now switches the second and thiid subexpression [5], thereby completing

i------------~-----~--~~---
\.le prefer to consider the programmer's assistant as the moving force behind
this type of spelling correction (even though the program that docs the
work is part of the DWIM package). Whereas correcting @PRINT to PRINT, or
XTRR to XTR does not require any information about what this user is doing,
correcting LOAOFF to LOADF clearly required noticing when this user dofinod
loadf.

zz.z

the operation for this PUTD. Note that up to this point, the user hils not

directly addressed the assis.tant. The user now requests that the ass i stiln t

print out the operations that the user has performed, [6], and the user thon

instructs the assistant to REDO FROM F, [7], meaning repeat tho entire sequence

of operations 15 through 20. The user then prints the current expression, and

observes that the second PUTD has now been successfully transformed.

"'?? FROM F

15. >llf PUTD
16 . "' (1 MOVD)
17. "'3
18. "'(XTR 2)
19. 11 0
20. l>l(S\.I 2 3)

"'REDO FROM F
lolp
(MOVD (QUOTE RE~D) (QUOTE READ))
"'

[6]

[7)

The user now asks the assistant to replay the last three steps to him, [8].

Note that the entire REDO FROM F operation is now gro~ped together as a single

unit, (9), since it corresponded to a single user request. Therefore, the user

can instruct the assistant to carry out the same operation again by simply

saying REDO. This time a problem is encountered [10). so the user asks tho

assistant what it was trying to do [11].

*?? FROM -3 [8]

19. l!l:Q
20. • (S\.I 2 3)
21. REDO FROM F [9]

"'F PUTD
•(1 MOVD)
n3
•(XTR 2)
"'0
it(SW 2 3)

nREDO

PUTD 1 [10]

It?? -1 [11]

22. REDO

22.3

"F PUTD
* (1 MOVD)
*3
* (XTR 2)
1110

The user then realizes the problem is that the third PUTO is misspelled in the

definition of LOADF (see page 22.2). He therefore instructs the assistant to

USE @UTO FOR PUTD, (12), and the operation now concludes successfully.

*USE @UTD FOR PUTO
"p
(MOVD (QUOTE READSAVE) (QUOTE READ))
ilq pp

[LAMBDA (X V)
[corm

StQK

LOADF ..

((NULL (GETD (QUOTE REAOSAVE)))
(MOVD (QUOTE READ)

(QUOTE READSAVE]
(MOVD (QUOTE REED)

(QUOTE READ))
(NLSETO (SETO X (LOAD X V)))
(MOVD (QUOTE REAOSAVE)

(QUOTE READ))
X]

[12 J

An important point to n·ote here is that while the user could have defined n

macro to execute this operation,·the operation is sufficiently complicated that

he would want to try out the individual steps before attempting to combino

them. At this point, he would already have executed the operation once. Thon

he would have to type in the steps again to define them as a macro, at which

point the operation would only be repeated once more before failing. Then the

user would have to repair the macro, or else change @UTD to PUTO by hand so

that his macro would work correctly. It is far more natural to decide after

trying a series of operations whether or not one wants them repeated or

forgotten. In addition, frequently the user will think that the operation(s)

in question will never need be repeated, and only discover afterwards that he

is mistaken, as occurs when the operation wa$ incorrect, but salvageabl~:

22.4

"'P
(LAMBDA (STR FLGCQ VRB) ~~coMMENT"R (PROG & & LPl & LP2 & &))
"'-1 -1 p
(RETURN (COND &))
"'(-2 ((EQ BB (QUOTE OUT)) BB] [1]
l.'IP
(RE TURN (& BB) (CONO &)) (Z J
"'UIJDO
(-2 --) UNDONE
•2 p
(COND (EXPANS & & T))
*REDO EQ
lllP
(COND (& BB) (EXPANS & & T)
'/(

Here the operation was correct, [1), but the context in which it was executed,

(2), was wrong.

This example also illustrates one of the most useful functio~s of tho

prograr.u:ier's assistant: its UNDO capability. In most systems, i.f a user

suspected that a disaster might result from a particular operat;ion, e.g. «n

untested program running wild and chewing up a complex data structure, he would

prepare for this contingency by saving the state of part or all of his

environment before attempting the operation. If anything went wrong, he would

then back up and start over. However. saving/dumping operations are usually

expensive and time consuming, especially compared to a Short computation, and

are therefore.not performed that frequently,·and of course there is always the

case when diaster strikes as a result of a 'debugged' or at least innocuous

operation, as shown in the following example:

~(MAPC ELTS (FUNCTION (LAMBDA (X) (REMPROP X (QUOTE MQRPH) [1]
fl IL
--urrno [2 J
MAPC UNDONE.
--USE ELEMENTS FOR ELTS [3)
IHL ...

The user types an expression which removes the property MORPH fro~ every member

of the list ELTS [1]. ahd then realizes that he meant to remove that property

22.5

only from those members of the list ELEMENTS, a much shorter list. In other

words, he has deleted a lot of information that he actually wants savod. Ho

therefore simply reverses the effect of the MAPC by typing UNDO (2), and thon

does what he intended via the USE command [3].

22.2 Overview

The programmer's assistant facility is built around a memory structure callocl

the 'history list.' The history list is a list of the information associatod

with each of the individual 'events' that have occurred in the system, whore

each event corresponds to one user input. 4 For example, (XTR 2) ([3] on pa go

22.2) is a single event, while REDO FROM F ([7) on page 22.3) is also a singlo

event, although the latter includes executing the operation (XTR 2), as well as·

several others.

Associated with each event on the history list is its input and its value, plus

other optional information such as side-effects, formatting information, otc.

If the event corresponds to a history command, e.g. REDO FROM f, the input

corresponds to what the user would have had to type to execute the samo

operation(s). although the user's actual input, i.e. the history command, is

saved in order to clarify the printout of that event ((9) on page 22.3). Noto

that if a history command event combines several events, it will have moro than

one value:

~-------------------~-------·----------------~---------------------------------For various reasons, there are two history lists: one for the editor, and
one for liSI??<• which processes inputs to evalgt and break, see page 22 .44.

22.6

~(LOG (ANTILOG 4))
4.0
~usE 4.0 40 400 FOR 4
4.0
40.0
ARG NOT IN RANGE
400

~usE -4o.o -4.00001 -19.
-40.0
-4.00007
-19.0
~USE LOG ANTILOG FOR ANTILOG LOG IN -z AND ·1
4.0
40.0
400.0
4.00007
19.0
~??

4. USE LOG ANTILOG FOR ANTILOG LOG IN ·Z ·1
~CANTILOG (LOG 4.0))
4.0
~(ANTILOG (LOG 40))
40.0
~CANTILOG (LOG 400))
400.0
~CANTILOG (LOG -40.0))
40.0
~(ANTILOG (LOG ·4.00007))
4.00007
~(ANTILOG (LOG -19.0))
19.0

3. USE -40.0 -4.00007 •19.0
~(LOG (ANTILOG ~40.0))
-40.0
~(LOG (ANTILOG •4.00007))
-4.00007
~(LOG (ANTILOG -19.0))
-. J 9. 0

2. USE 4.0 40 400 FOR 4
~(LOG (ANTILOG 4.0))
4.0
(LOG (ANTILOG 40.0)
40.0
~CLOG (ANTILOG 400))

1. ~CLOG (ANTILOG 4))
4.0

As new events occur, existing events are aged, and the oldest event is

'forgotten.' For efficiency, the storage used to represent the forgotten event

is cannibalized and reused in the representation of the new event, so tho

history list is actually a ring buffer. The siie of this ring buffer is a

22.7

system parameter called the 'time-slice. •6 Larger time-slices enable lotlgor

.'memory spans,' but tie up correspondingly greater amounts of storage. Sinco

the user seldom needs really 'ancient history,' and a NAME and RETRIEVE

facility is provided for saving and remembering selected events, a relatively

small time slice such as 30 events is more than adequate, although some users

prefer to set the time slice as large as 100 events.

,' J•

Events on the history list can be referenced in a number of ways. The output

on page 22. 9 shows a printout of a history list with time-slice 16. The

numbers printed at the left of the page are the event numbers. More recent

events have higher numbers; the most:' recent ·event is event number 52, tho

oldest and about-to-be-forgotten event is number 37. 6 At this point. in timo,

the Oser can reference event number 51, RECOMPilE(EDIJ), by its event number, . . '~

51; its relative position, ·2 (because it occurred two events back from tho

current time), or by a 'description' of its input, e.g. (RECOMPILE (EDIT)), or

(&(EDIT)), or even just EDIT. As new events occur, existing events retain

their absolute event numbers, although their relative positions change.

Similarly, descriptor references may require more precision to refer to an

older event. for example, the description RECOMPILE would have sufficed to

refer to event 51 had event 52, also containing a RECOMPILE, not intervened.

Event specification will be ~escribed in detail later.

~----------------·-------~~--------------·-------------------------------------Initially 30 events; .. The time':.slice 'can be changed with the function

6

changes lice. page 2?.54. . , ~; ;

When the event number o'f ·the 'curren't event 15· 100. tti"e next event wi 11 bo
given number 1. (If the time slice is greater than 1.00, the 'roll-over'
occurs· at the ne~t ·highest' hundred, so that at 'no ·time will two events ever
have the same event number. For example, if the time slice is 150, event
nur.iber 1 follows event number 200.)

22.a··

<-??

52 HIST UNDO
.. RECOMPILE(HIST)
HIST.COM
.. RECOMPILE(UNDO)
UNDO.COM

51. ~RECOMPILE(EDIT)
EDIT .COM

50 . .,_LOGOUT]

49 ... MAKEFILES)
(EDIT UNDO HIST)

48 ... EDITF(UNDOLISPX)
UIWOLISPX

4 7. REDO GETD
... GETD(FIE)
(LAMBDA (X) (MAPC X (F/L (PRINT X))))

46. +-UIWO
FIE

45 GETD(FIE)
(LAMBDA (X) (MAPC X (FUNCTION (LAHBOA (X) (PRINT X)))))

44 FIE]
NIL

43. o-DEFINEQ((FIE (LAMBDA (X) (MAPC X (F/L (P~INT X))))))
(FIE)

42. REDO GETD
+-GETD(FIE)
(LAMBDA (Y) Y)

41. <>-UIJDO
MOVD

40. REDO GETD
o-GETO(FIE)

. (LAMBDA (X) X)
3~. o-MOVD(FOO FIE)

FIE
38. o-DEFINEQ((FOO (LAMBDA (X) X)))

(FOO)
37. --GETD(FIE)

(LAMBDA (Y) Y)

The most common interaction with the progranuner's assistant occurs at the top

level evalgt, or in a break,· where the user types in expressions for

evaluation, and sees the values printed out. In this mode, the assistant acts

much like a standard LISP evalgt, except that .before attempting to evaluate an

input, the assistant first stores it in a new entry on the history list. Thus

if the operation is aborted or causes an error, the input is still saved and

available for modification and/or reexecution. The assistant also notes now

functions and variables to be added to its spelling lists to enable future

corrections. Then the assistant executes thq computation (i.e. evaluates the

ZZ.9

form or applies the function to its arguments), saves the value in the entry on

the history list corresponding to the input, and prints the result, followod by

a prompt character to indicate it is again ready for input.7

If the input typed by the user is recognized as a history command, tho

assistant takes special action. Conunands such as UNDO, 17, NAME, and RETRIEVE

are iffifilediately performed. Commands that involved reexecution of previous

inputs, e.g. REDO and USE, are achieved by computing the corresponding input

expression(s) and then unreading them. The effect of this unreading operation

is to cause the assistant's input routine, lispxread, to act exactly as though

these expression were typed in by the user. Except for the fact that those

inputs are not saved on new and separate entries on the history list, but

associated with the history conunand -that gf)nerated them, they are processed

exactly as though they had been typed.

The advantage of this implementation is that it makes the programmer's

assistant a callable facility for other system packages as well as for users

with their own private executives. For example, break1 accept user inputs,

recognizes and executes certain break commands and macros, and interprets

anything else as INTERLISP expressions for evaluation. To interface brellk 1

with the programmer's assistant required three small modifications to break1:

(1) input was to be obtained via lispxread instead of read; (2) instead of

calling eval or ~ directly, break1 was to give those inputs it could not

7--·-----$·---------------·----------The function, .. that accepts a user input, saves the input on the history
list, performs the indicated computation or history command, and pt'ints the
res·ult, is lispx .. lispx is called by evalgt and breakl, and in most cases,
is synonymous with •programmer's assistant.• However, for various renson s,
the . editor saves its own. inputs on a history list, carries out the
requests, i.e. edit commands, and even handles undoing independently of
lis~. The ,editor· only calls lispx to e~ecute a history conunand, such as
REDO, USE, etc. Therefore we use the term assistant (loosely) when tho
discussion applies to feat.ures shared by evalgt, break and the editor, and
the term lispx when we are discussing the specific function.

22 .10

interpret to lispx, and (3) any commands or macros handled by broakl, 1.o. not

given to lispx, were to be stored on the history list by break1 by calling tho

function historysave, a part of the assistant package.

Thus when the user typed in a break corrunand, the command would be stored on tho

history list as a result of (3). If the user typed in an expression for

evaluation, it would be evaluated as before, with the expression and its valuo

both saved on the history list as a result of (2). Now if the user entered a

break and typed three inputs: EVAL, (CAR !VALUE), and OK, at the next broak, ho

could achieve the same effect by typing REDO FROM EVAL. This would cause tho

assistant to unread the three expressions EVAL, (CAR !VALUE), and OK. Bocauso

of (1), the next 'input' seen by breaki would then be EVAL, which break1 would

interpret. Next would come (CAR !VALUE). which would be given to lispx to

evaluate, and then would come OK, which break1 would again process. Thus, by

virtue of unreading, history operations will work even for those inputs not

interpretable by lispx, in this case, EVAL and OK.

The net effect of this implementation of the programmer's assistant is to

provide a facility which is easily inserted at many levels, and embodies a

consistent set of commands and conventions for talking about past events. This

gives the user the subjective feeling that a single agent is watching

everything he does and says, and is always available to help.

22.3 Event Specification

All history commands use the same conventions and syntax for indicating which

event or events on the history list the command refers to, even though

different commands may be concerned with different aspects of the corresponding

event(s), e.g. side-effects, value, input, etc. Therefore, before discussing

the various history commands in the next section, this section describes the

22.11

+

types of event specifications currently implemented. All examples refer to the

histo~y list on page 22.9.

An event address identifies one event on the history list. It consists of a

sequence of 'commands' for moving an imaginary cu.rsor up or down the history

list, much in the manner of the arguments to the @ command in break (soo

Section 15). The event identified is the one •under' the imaginary cursor when

there are no more commands. (If any command fails, an error is generated and

the history command is aborted.)

The commands are interpreted as follows:

n (n > 1)

n (n ~ -1)

... atom

..

F

=

\

SUCHTHAT pred

move forward !l events, i.e. in direction of
increasing event number. If given as the first
'command,' !l specifies the event with event number
!l ·

move backward -n events.

specifies an event whose Junction matches atom
(i.e. for !illill format only), e.g. whereas FIE
would refer to event ~7, ~FIE would refer to evont
44. Similarly, EDS would specify event 51,
whereas ~EDS event 48. ·

next search is to go forward instead of backwnrd,
(if given as the first •command', next search
begins with last, i.e. oldest, event on history
list), e.g. .., LAMBDA refers to event 38;
MAKEFILES~ RECOMPILE refers to event 51.

next object is to be searched for, regardless of
what it is, e.g. F -2 looks for an event
containing a -2.

next object (presumably a pattern) is to bo
matched against ualues, instead of inputs, e.g. =
UNDO refers to event 49; 45 = FIE refers to event
43; ~ = LAMBDA refers to event 37.

specifies the event last located.

specifies an event for which pred, a function of

~---~----------------------------~----------------------~~-------~--------~----i.e. EOalt-mode.

22.12

pat

two arguments, when given the input portion of tho
event as its first argument, and the event itsolf
as its second argument, returns true. E. 9 .•
SUCHTHAT (LAMBDA (X Y) (MEMB (QUOTE *ERROR•) 9Y))
specifies an event in which an error occurred.'

anything else specifies
contains an expression
described in section 9.

an event whose input
that matches pat us

Note: each search skips the current event, i.e. each conunand always moves the

cursor. For example, if FOO refers to event n,. FOO FIE will refer to some

event before event n,, even if there is a FIE in event n,.

An event specification specifies one or more events:

FROM # 1 THRU #2
#1 THRU #2

FROM #1 TO #2
#1 TO #2

FROM #1

THRU #2

TO

#1 ANO #2 ANO ... ANO #n

the sequence of events from the
eve2h with address #1 through event with address
#2, e.g. FROM GETD THRU 49 specifies events 47,
48, and 49. #1 can be more recent than #2, e.g.
FROM 49 THRU GETP specifies events 49, ~8, and 47
(note reversal of order).

Same as THRU but does .not include event #2.

Same as FROM !Ill THRU ·1, e.g~ FROM 49 specifies
events 49, 50, 51, and 52.

Same as FROM -1 THRU #2, e.g. THRU 49 specifies
events 52, 51, 50, and 49. Note reversal of
order.

Same as FROM ~1 TO #2.

i.e. a sequence of event specifications separated

+
+
+
+
+

~-------~-------------·------------·------------··-----------------------------See page 22.44·for discussion of the format of events on the history list. +

10 i.e. the symbol #1 corresponds to all words between FROM and THRU in the
event specification, and #2 to all word~ from THRU to the end of the event
specification. For example, in FROM FOO Z THRU FIE ~1. #1 is (FOO Z), and
#2 is (FIE -1).

22 .13

+
+

ALL #1

empty

@ atom

@@ t.

by AN0 1 s, e.g. FROM 47 TO LOGOUT would bo
equivalent to 47 ANO 48 ANO MAKEFILES.

speclfies all events satisfying #1, e.g. ALL LOAD,
ALL SUCHTHAT FOO.

i.e. nothing specified, same as ·1. unless11 last ·
event was an UNDO, in which case same as ~z.

refers to the events named by atom, via tho NAME
command, page 22.26 e.g., if the user names a
particular event or events FOO, · @ , FOO spec Hies
those events.

I/. is an event specification and interpreted as
above,. but with respect to' the a.rchived history
list, as specified on page 22.27.

+ If no events can be found that satisfy the event specification, spelling

+ correction on each word in the event specification is perfor~ed using

+ lispxfindsplst as a spelling list, ~.g~ REDO 3 THRUU 6 will wo~k correctly. ir
+ the event specification still· .fails to specify ·any events after spelling

+ correction, an error is generated.

+
+
+
+
+
+

22.4 History Cor:vnands

All hi.story command.s can be input a.s either lt.st.s. or a.s line.s (.see readline
Section 14, and al.so page 22.47).

J1 i.s u.sed to denote an event .specification. llnles.s .specified otherwi.se. t!
omitted i.s the .same a.st .r-1. e.g. REDO and REDO -1 are the .same.

REDO I/.

REDO t. N TIMES

redoes the event or events specified by ~. e.g.
REDO FROM -3 redoes the last three events.

redoes the event or events specified by ~ N timos,
e.g. REDO 10 TIMES redoes the last event ten
times. If n is not a positive number, e.g. REDO
MANY TIMES, - the effect is the same as though n
were inHn'ite: the events(s) are repeated until
an error occurs, or user types control-d.

ii••••••••••••••••••••··~··••••·~··•••••••••·-•~••••••••••••••W••••••••••••••••

For example,. if the user types (NCONC FOO FIE), he can then type UNDO,
followed by USE NCONCl.

22.14

USE vars FOR args IN ~ substitutes ~ for args in t, and redoos tho
result, e.g.
USE LOG ANTILOG FOR ANTILOG LOG IN -2 AND -1.
Substitution is done by esubst, Section 9, and is
~arried out as described below.

USE vars 1 FOR args 1 AND ... AND varsn FOR argsn IN t
More general form of USE command. See description
of substitution algorithm below.

Every USE command involves three pieces of information: the· variables to be

substituted, the arguments to be substituted for, and an event specification,

which defines the expression (input) in which the substitution takes place. 12

If args are omitted, i.e. the form of the command is USE vars IN t, or just USE

vars (which is equivalent to USE vars IN -1). and the event referred to '"as

itself a USE command, the arguments and expression substituted into are tho

same as for the indicated· USE command. In effect, this USE command is thus a

continuation of the previous USE command. For example, on page 22.7, when the

user types (LOG (ANTILOG 4)), followed by USE 4.0 40 400 FOR 4, followed by

USE -40.0 -4.00007 -19., the latter command is equivalent to

USE -40.0 -4.00007 -19. FOR 4 IN •2.

If args are omitted and the event referred to was not a USE command,

substitution is for the operator in that command, i.e. if a lispx. input, the

name of the function, if an edit command, the name of the command. For example

ARGLIST(FF) followed by USE CALLS is equivalent to USE CALLS FOR ARGLIST.

If t. is omitted, but args are specified, the first member of args is used for

i2-----------~-----·--------------------------~--·-----------------------------The USE command is parsed by a small finite state parser to distinguish tho
variables and arguments. For example, USE FOR FOR ANO AND AND FOR FOR will
be parsed correctly. ·

22.15

t, e.g. USE PUTO FOR @UTO is equivalent to USE PUTO FOR @UTO IN F @UT0. 13
... ;·

If the USE command has the same number of expressions as arguments, tho

subs ti tut ion procedure is straightforward, 14 i.e. USE X Y FOR U V means

substitute X for U and Y for V, and is equivalent to USE X FOR U AND Y FOR V.

However, the USE command also permits distributive substitutions, i.e.

substituting several expressions for the same argument. For example,

USE A B c FOR X means first substitute A for X then substitute B for X (in a

new copy of the expression), then substitute C for X. The effect is the same

as three separate USE commands. Similarly, USE ABC FORD AND XV Z FOR W'is

equivalent to US_E A FOR D AND X FOR W, followed by USE B FOR D AND Y FOR \J,

followed by USE C FOR D AND Z FOR W. USE A B C FOR D AND;X F~R y15 also

corresponds to three subs ti tions, the first with· A for D and x for Y, the

second with B for D, and X for Y, and the third with C for D, and again x for

Y. However, USE A B C FOR D AND X Y FOR Z is ambiguous and will cause an

error. Essentially, the USE command operates by proceeding from left to right
I

handling each 'AND' separately. Whenever the number of expressions exceeds the

number of expressions available, the expressions multiply. 16

ii--~-------------~----------------The F is inserted to handle correctly the case where the first member of

14

15

16

ar~ is a number, e.g. USE-4.0 4.0_400 FOR 4.-0bviously the user means find
the event containing a 4 and perform the indicated substitutions, whercns
USE 4 .0 40 400 FOR 4 IN 4 would mean perform the substitutions in evont
number 4.

Except when one of the arguments and one of the variables are the snmo,
e.g. USE X Y FOR Y X, or USE X FOR V AND Y FOR X. This situation is noticed
when parsing the coiiimand, and-handled correctly:

or USE X FOR Y AND A B C FOR D.

Thus USE A B C D FOR E F means substitute A for E at the same time as
subs ti tu ting B for F, then in another copy of the indicated exprossion,
substitute C for E and 0 for F. Note that this is also equivalent to
USE AC FORE AND B D FOR F.

22.16.

FIX rf. puts the user in the editor looking at a copy of
the input(s) for ~. Whenever the user exits via,
OK, the result is unread and reexecuted exactly as
with REDO.

FIX is provided for those cases when the modifications to the input(s) are not

of the type that can be specified by USE, i.e. not substitutions. for example:

~(DEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70]

IfJCORRECT DEFINWG FORM
FOO

... FIX
EDIT
*P
(DEFINEQ FOO (LAMBDA & &))
)l<(LI 2)
OK
(FOO) ..

The user can also specify the edit command(s) to lispx, by typing - followed by

the corrunand(s) after the event :specification, e.g. FIX - (LI 2). In this case,

the editor will not type EDIT, or wait for an OK after executing the commands.

Implementation of REDO, USE. and FIX

The input portion of an event is represented internally on the history list

simply as a linear sequence of the expressions which were read. For example,

an input in ~ format is a list consisting of two expressions, and an input

in eval format is a list of just one expression. 17 Thus if the user wishes to

convert an input in ~ format to eval format, he simply moves the function

name inside of the argument list:

]7---For inputs in eval format, i.e. single expressions, FIX calls the editor so
that the current expression is that input, rather than the list consisting
of that input - see the example on the preceding page. However, the entire
list is actually being edited. Thus if the user typed ' P in that example.
he would see ((OEFINEQ FOO&)).

22 .17

.. MAPC(FOOFNS (F/L (ANO (EXPRP X) (PRINT X]
NIL
.. EXPRP(FOOl)
T
.. FIX MAPC
EDIT
•P
(MAPC (FOOFNS &))
,.. (BO 2)
•(LI 1)
•P
((MAPC FOOFNS &))
OK
FOOl
FIE2
FUM
NIL

By simply converting the input from two expressions to one expression, tho

desired effect, that of mapping down the list that was the value of foofns, was

achieved.

REDO, USE, and FIX all operate by obtaining the input portion of tho

corresponding event, processing the input (except for REDO), and then storing

it on the history list as the input portion of a new event. The history

command completes operating by simply unreading the input. \./hen the input is

subsequently 1 reread•, the event which already contains the input will be

retrieved and used for recording the .. value of' the operation, saving sido-

effects, etc., instead of creating a. new event. Otherwi"se the input is treated

exactly the same as if it had been typed in directly.

If t. specifies more than one event, the inputs for the corresponding events are

simply concatenated into a linear sequence, with special markers (called

pseudo-carriage returns) representing carriage returns18 in~erted between each

1~------~----------------·----~--The value of the variable histsrO is used to represent a carria~e return.
For readability, this value. is the string 11 <c.r.> 11 • Note that since the
cor.iparison is made using; !.9.• this marker will never be confused with a
string that was typed in by the, user.

22.18

input to indicate where new lines start. The result of this concatenation is

then treated as the input referred to by ~. For example, when the user typod

REDO FROM F ([7] on page 22.3) the inputs for the corresponding six events wore

concatenated to prod~ce:

{F PUTD "<c.r.>"(1 MOVD)"<c.r.>" 3 "<c.r.>"(XTR 2)"<c.r.>" 0 "<c.r.>"(SW 2 3)).

Similarly, if the

list would have

throughout it.

user had typed USE @UTD FOR PUTD IN 15 THRU 20, the above

been constructed, and then @UTD substituted for PUTD

The same convention is used for representing multiple inputs when a USE command

involves sequential substitutions. For example, if the user types GETD(FOO)

and then USE FIE FUM FOR FOO, the input sequence that will be constructed is

(GETD (FIE) "<c.r.>" GETD (FUM)), which is the result of substituting FIE for

FOO in (GETD (FOO)) concatenated with the result of substituting FUM for FOO in

(GETD (FOO)).

Once such a multiple input is constructed, it is treated exactly the same as a

single input, Le. the input sequence is recorded in a new event, and then

unread, exactly as described above. When the inputs are •reread,' the 'pseudo

carriage-returns 1 are treated by lispxread and readline exactly as real

carriage returns, i.e. they serve to distinguish between ~ and evnl formats

on inputs to lispx. and to delimit line commands to the editor. Note that once

this multiple input has been entered as the input portion of a new event, thnt

event can be treated exactly the same as one resulting from type in. In other

words, no special checks have to be made when referencing an event, to see if

it is simple or multiple. Thus, when the user types REDO following

REDO FROM F, ((10) page 22.3) REDO does not even notice that the input

retrieved from the previous event is (F PUTD "<c.r.>" ... (SW 2 3)) i.e. a

multiple input, it simply records this input and unreads it. Similarly, whon

the user then types USE @UTD FOR PUTD on this multiple input, the USE command

simply carries out the substitution, and the result is the same as though the

user had typed USE @UTO FOR PUTD IN 15 THRU 20.

22.19

In sum, this implementation permits ¢ to refer to a single simple event, or to

several events, or to a single event originally constructed from several events

(which may themselves have been multiple input events. etc.) without having to

treat each case separately.

History Commands Applied to History Commands

Since history commands themselves do not appear in the input portion of events

(al though they are stored elsewhere in the event), they do not· interfere with

or affect the ~earching operations of event specifications. In effect, history

commands are invisible to event specifications. 19 As a result, history corrunands

themselves cannot be recovered for execution in the normal way. For examplo,
. .

if the user types USE A B C FOR 0 and follows this with USE E FOR 0, he wi 11

not produce the effect of USE A B C FOR E (but instead will simply cause E to

be substituted for D in the last event containing a 0). To produce this

effect, i.e. USE ABC FORE, the user should type USED FORE IN USE. Tho

appearance of the word REDO, USE or FIX in an· event addr~ss specifies a search

for the corresponding hhtory command. (For example, the user can also type

UNDO REDO.) It also specifies that the text of the history command itself bo

treated as though it were the input. However, th~ user must remember that the

context in which a history command ts reexecuted t.s that of the current

hi.story. not the original context. For example, if the user typos

USE FOO FOR FIE IN -1, and then later types REDO USE, the -1 will refer to the

event before the REDO, not before the USE. Similarly, if the user typos

REDO REDO followed by REDO REDO, he would cause an infinite loop, except for

the fact tha~ a special check detects this type of situation.

j9-----------------------------------··-----------------·------------··--------Wi th the exception described below under "History Commands that Fail 11 •

22.20

Histor.y Conraands that Fail

The one exception to the statement that 'history commands are invisible to

event specifications• occurs when a history conunand fails to produce any input.

For example, suppose the user types USE LOG FOR ANTI LOG AND ANTI LOG FOR LOGG,

causing 1 ispx to respond LOGG ? . Since the USE command did not produce any

input, the user can repair it by typing USE LOG FOR LOGG (i.e. does not have to

specify IN USE). This latter USE corrunand will invoke a search for LOGG, which

will find the bad USE command. lispx then performs the indicated substitution,

and unreads USE LOG FOR ANTILOG AND ANTILOG FOR LOG. In turn, this USE command

invokes a search for ANTILOG, which, because tt wa.s not typed in but reread.

ignores the bad USE command which was found by the earlier search for LOGG, and

which is still on the history list. In other words, ht.story commands tllat Jail

to produce input are vi.sible to .searches ari.stng from event .specifications

typed in by the u.ser, but not to .secondary event .specifications.

In addition, if the most recent event is a history command which failed to

produce input, a secondary event specification will effectively back up tho

history list one event so that relative event numbers for that event

specification will not count the bad history command. For example, suppose the

user types USE LOG FOR ANTILOG AND ANTILOG FOR LOGGIN ·2 AND ·1, and after

lispx types LOGG ?, the user types USE LOG FOR LOGG. He thus causes the command

USE LOG FOR ANTILOG AND ANTILOG FOR LOG IN -z ANO ·1 to be constructed and

unread. In the normal case, ·1 would refer to the last event, i.e. the 'bad'

USE comr:iand, and -2 to the event before it. However, in this case, -1 refers

to the event before the bad USE conunand, and the ·2 to the event before that.

In short, the caveat that "the user must remember that the context in which a

history command is reexecuted is that of the current history, not the original

context" does not apply if the correction is performed immediately.

22.21

More History Cor.unands

RETRY i similar to REDO except sets helpclock so that any
errors that occur while executing t! will cause

,breaks.·

••• vars similar to USE except substitutes for the (first)
operand.

For example, EXPRP(FOO) followed by •.. FIE FUM is equivalent to

USE FIE FUM FOR FOO; See also e~ent 52 on page 22.9.

?? i prints history list. If i
the entire history list,
recent events. Otherwise
events specified in t
sp•cified), e.g. 11 -1, 1?

is omitted, n prints
beginning with most

?? prints only those
(and in the . order
10 THRU 15, etc.

?? commands are not entered on the history Hst •. and so do not affect relative

event numbers. In other words, an event specification of -1 typed following n

?? command will refer to the event immediately preceding the ?? command.

?? will print the history command, if any, associated with each event as shown

at (9) on page 22.3 and page 22.7~ Note that these history commands are not

preceded by prompt characters, indicating they are not stored ~s input. 20

?? prints multiple input events under one event number (see page 22.7).

Since events are initially stored on the history list with their value field

equal to bell (control-G), if an operation fails to complete for any reason,

e.g. causes an error, is aborted, etc., its 'value• will be bell. This is the

explanation for the blank line in event 2, page 22.7, and event 50, page 22.9.

20--~----------------REDO. RETRY, ·USE, ... , and FIX commands, i.e. those cor:unands that reoxocute
previous events, are not stored as inputs, because the input portion fo~
these events are the expressions to be 'reread'. The history conunands
urmo' NAME. RETRIEVE. BEFORE. and AFTER are recorded as inputs. and ? 1
prints them exactly as they were typed.

22.22·

?? is inplernented via the function printhistory, page 22.60, which can also bo

called directly by the user.

UNDO i undoes the side effects of the specified events.
For each event undone, UNDO prints a rnessaao: e.g.
RPLACA UIJDONE, REDO UNDONE etc. If nothing is
undone because nothing was saved, UNDO typos
NOTHIIJG SAVED. If nothing was undone because tho
event(s) were already undone, UNDO typos
ALREADY UNDONE. If t is empty, UNDO searches bnck
for the last event that contained side effects,
was not21u~~one, and itself was not an UNDO
command.

UNDO i Each x. refers to a message printed by D\.l.IM in tho
event(l) specified by t. The side effects or tho
corresponding D\.IIM corrections, and only those
side effects, are undone.

For example, if the message PRINTT [IN FOO] ·> PRINT were printed.

UNDO : PRINTT or UNDO : PRINT would undo.the correction. 23

i1---~-------------Note that the user can undo UNDO commands themselves by specifying tho

22

23

corresponding event address, e.g. UNDO -3 or UNDO UNDO.

UtlDOing events in the reverse order from which they were executed 1 s
guaranteed to restore all pointers correctly, e.g. to undo all effects of
last five events, perform UNDO THRU -5, not UNDO FROM .;5, Undoing out of
order may have unforseen effects if the operations are .dependent.. For
exar:iple, if the user performed (NCONC1 FOO FIE), followed by
(NCONCl FOO FUM), and then undoes the (NCONCl FOO FIE), he will also have
undone the (NCONCl FOO FUM). If he then undoes the (NCONCl FOO FUM), ho
will cause the FIE to reappear, by virtue of restoring FOO to its stato
before the execution of (NCONCl FOO FUM). For more details, see page
22.42.

Sorne portions of the messages printed by.DWIM are strings, e.g. the mossago
FOO UNSAVED is printed by printing FOO and then "UNSAVED". Therefore, if
the user types UNDO : UNSAVED, the DWHI correction will not be found. Ho
should instead type UNDO : FOO or UNDO : $UNSAVED$ (al.t·modeUNSAVEDalt
mode, see R conunand in editor, section 9).

22.23

$ is a special form of the USE command for conveniently specifying character

substitutions. In addition. it has a number of useful default options in

con~ection with events that involve errors.

$ x FOR y equivalent to USE x FOR y

For example, the user types MOVD(FOO FOOSAVE T), he can then type $ FIE FOR FOO

to perform MOVO(FIE FIESAVE T). Note that USE FIE FOR FOO would perform

MOVD(FIE FOOSAVE T).

An abbreviated form of $ is available:

$ y x same as $ x FOR y, i.e. y's are changed to x*s.

can also be written as $ y TO x, $ y = x, or

$ y ·> x .

.$ does event location the same as the USE command, i.e. if IN -- is not

specified, it searches for 'l.. 24

After S finds the event, it looks .. to see if an error was involved in thnt

event, 26 and if the indicated character substitution can be performed in the

offender. If so, $ assumes the subs ti tut ion refers to the offender, performs

the substitution, and then substitutes the result for the offender throughout.

For example, the user types (PRETTYDEF FOOFNS !FOO.FOOVARS) causing a

U.B.A. FOOOVARS error message. The user can now type S 00 o. which will chango

FOOOVARS to FOOVARS, but not change FOOFNS or FOO.

24- - - - - - - - - - - - - -- -- -- - --- ---- -- - ... - - -- ----- ---- -- --- -- -- - --- - .- - - -- - - - - - - - - - -· - - - -
However, unlike USE, $ can only be used to specify one substitution at a

26

time.

Whenever an error occurs, the object of the error message, called the
offender, is automatically saved on that event's entry in the history list,
under the property •ERROR•.

22.24

If an error did occur in the specified event, the user can also omit specifying

~. in which case the offender is used. Thus, the user could have corrected tho

above example by simply typing $ FOOVARS. Similarly, if the user types

LOAD(PRSTRUC PROP), causing the error FILE NOT FOUND PRSTRUC, he can request

the file to be loaded from LISP's directory by simply typing $ <iISP>$. Sinco

esubst is used for substituting, this· is equivalent to performing

(R PRSTRUC <LISP>$) on the event, and therefore replaces PRSTRUC by

<LISP>PRSTRUC (see Section 9). Note also the usefulness of $ '$, meaning: put

a. ' in front of the offender.

S also works for events in the editor. For example, if the user typos

(MOVE COND 33 2 TO BEFORE HERE), and editor types 33 ?, the user can type $ 3,

causing 3 to be substituted for 33 in the MOVE command.

Finally, the user can omit both ~ and ~· This specifies that two alt-modes bo

packed onto the end of the offender, and the result substituted throughout the

specified event. For example, suppose the user types to the editor

(MOVE 3 2 TO AFTER CONDO 1), and gets the error message CONDO ?. because the

find command failed to find CONDO. $ will cause the edit command

(MOVE 3 2 TO AFTER CONDO$$ 1) to be executed, which will search for an atom

that is "close" to CONDO in the sense used by the spelling corrector (soo

pattern type 6b, Section 9).26

Note that $ never searches for an error. Thus, if the user typos

LOAD(PRSTRUC PROP) causing a FILE NOT FOUND error, types CLOSEALL(), and tllcn

types S <LISP>S, lispx will complain that there is no error in CLOSEALL(). In

2a·---· The sarne effect could be achieved by S COND, which specifies substituting
corm for cormD, but not by $ CONDOS$, since the latter is equivalent to
performing (R CONDO CONDDSS) on the event, which would result in
CONDDCONDDCONDD being substituted for CONDO (as described in Section 9).

22.25

this case. the user would have to type $ <LISP>S IN LOAD, or

S PRS <LISP>PRS (which would cause a search for PRS).

Note also that $ operates on tnput, not on programs. If the user types FOO(),

and within the call to FOO gets a U.O.F. CONDO error, he cannot repair this by

S corm. 1 ispx will type CONDO NOT FOUND IN FOO().

NAME atom t

RETRIEVE atom

saves the event(s) (including side effects)
specified by rt on the property list of ill.TI) (under
the property HISTORY) e.g. NAME FOO 10 THRU 15.
NAME commands are undoable.

Retrieves and reenters on the history list tho
events named by atom. Causes an err.or if ilQ.!)! W<1s
not named by a NAME command.

For example, if the user performs NAME FOO 10 THRU 15, and at some .time lator

types RETRIEVE FOO, 6 new events will be recorded on the history list (whether

or not the corresponding events have been forgotten yet). Note that RETRIEVE

does not reexecute the events, it simply retrieves them. The user can then

REDO, UNDO, FIX, etc. any or all of these events. Note that the user can

combine the effects of a RETRIEVE and a subsequent history command in a single

operation by using an event specification b~ the form @ atom~ as described on

page 22 .14, e.g. REDO @ FOO is equivalent to RETRIEVE FOO, followed by an

appropriate RED0. 27 Note that UNDO @ FOO and ?? @ FOO are permitted.

BEFORE atom undoes the effects of the events named by !!.1.2J!!.

AFTER atom undoes a BEFORE !!2!!!·

27---Actually, REDO @ FOO is better than RETRIEVE followed by REDO since in tho
latter case, the c6rresponding events would be entered on th~ history list
twice, once for the RETRIEVE and once for the REDO.

22.26

BEFORE/AFTER provide a convenient way of flipping back and forth between t\\'O

states, namely that state before a specified event or events wore exocutod, and

that state after execution. For example, if the user has a complox du.to

structure \':hich he wants to be able to interrogate before and after certu.in

modifications, he can execute the modifications, name the corresponding events

with the NAME command, and then can turn these modifications off and on vin

BEFORE or AFTER commands. 28 Both BEFORE and AFTER are i\lOPs if the atom wns

already in the corresponding state; both generate errors if atom was not namod

by a t~AME command.

Note: since UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs they

can be referenced by REDO, USE, etc. in the normal way. However, the us or

must again remember that the context in which the command is reexecutod is

different than the original context. For example, if the user typos

NAME FOO DEFINEQ THRU COMPILE, then types ... FIE, the input that will bo

reread will be NAME FIE DEFINEQ THRU COMPILE as was intended, but both DEFINEQ

and COMPILE, will refer to the most recent event containing those atoms, namoly

the event consisting of NAME FOO DEFINEQ THRU COMPILE!

ARCHIVE Cl! records the events specified by ~ on a pormanont
history list. This history list can be referenced
by preceding a standard event specification with
@@, e.g. ?? @@ prints the archived history list,
REDO @@ -1 will recover the corresponding event
from the archived history list and redo it, etc.

The user can also provide for automatic archiving of selected events by

appropriately defining archivefn, as described on page 22.33.

---~-------------28 The alternative to BEFORE/AFTER for repeated switching back and forth
involves UNDO, UNDO of the UNDO, UNDO of that etc. At each stage, tho user
would have to locate the correct event to undo, and furthermore would run
the risk of that event being 'forgotten• if he did not switch at least once
per time-slice.

22.27

FORGET t permanently erases the record of the side effects
for the events specified by t. If t is omitted,
forgets side effects for entire history list.

FORGET is provided for users with space problems •. For example, if the user has

just performed ~s, rplacas, rplacds, putd, remprops, etc. to roleaso

storage, the old pointers would not be garbage collected until the

corresponding events age sufficiently to drop off the end of the history list

and be forgotten. FORGET can be used to force immediate forgetting (of the

side-effects only). FORGET is not undoable (obviously).

22.5 Miscellaneous Features and Commands

TYPE-AHEAD is a command that allows the user to type-ahead an

indefinite number of inputs.

The assistant responds to TYPE-AHEAD with a prompt character of >. The user

can now type in an indefinite number of lines of input, under errorsot

protection. The input lines are saved and unread when the user exits the type

ahead loop with the command SGO (al t·modeGO). While in the type-ahead loop, ??

can be used to print the type-ahead, FIX to edit the type-ahead, and SQ to

erase the last .input (may be used repeatedly). For example:

22.28

o-TYPE-AHEAD
>SYSOUT(TEM)
>MAKEFILE(EDIT)
>BRECOMPILE((EDIT WEDIT))
>F
>SO
\\F
>SO
\\BRECOMPILE
>LOAD(WEDIT PROP)
>BRECOMPILE((EDIT WEDIT))
>F
>MAKEFILE (BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT(CURRENT)
>LOGOUT]
>??

>FIX
EDIT

>SYSOUT(TEM)
>MAKEFILE (EDIT)
>LOAD(WEDIT PROP)
>BRECOMPILE((EDIT WEDIT))
>F
>MAKEFILE (BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT(CURRENT)
>LOGOUT]

*(R BRECOMPILE BCOMPL)
itip
((LOGOUT) (SYSOUT &) (LISTFILES &)
(LOAD&) (MAKEFILE&) (SYSOUT &))
"'(DELETE LOAD)
*OK
>$GO

29

(MAKEFILE &) (F) (BCOMPL &)

The TYPE-AHEAD conunand may be aborted by SSTOP; control·£ simply aborts the

current line of input.

----------------------------------~---------·---··-----------------------------29 Note that type-ahead can be addressed to the compiler. since it usos
lispxread for input. Type-ahead can also be directed to the editor. but
type-ahead to the editor and to lispx cannot be intermixed.

22;29

$BUFS (alt-modeBUFS) is a command for recovedng the input buffers.

Whenever an error occurs in executing a lispx input or ~ command, or a

control-E or control-D is typed, the input buffers are saved and cleared. Tho

SBUFS command is used to restore the input buffers, i.e. its effect is exactly

the same as though the user had retyped what was 'lost.i Fo~ ~xample;

"'(-2 (SETO X (CONO ((NULL Z) (CONS
"'P
c corm < & &) < T &))
"'2
"'SBUFS
(-2 (SETO X (CONO ((NULL Z) (CONS

(user typed_ control-E)

and user can now finish typing the (·2 ..) command.

;, '· ..
Note: the type-ahead does riot have to _have been ~een by INTERLISP, i.e.,

echoed, since the system buffer is also saved.

Input buffers are not saved on the history list, but on a free variable. Thus,

only the contents ·of the input buffer as· of the last clearbuf can ever bo

recovered. However, input buffers cleared at evalgt are saved independently

from those cleared by break or the editor. The procedure followed when tho

user types SBUFS is to recover first from the local buffe~. otherwise from the

top level buffer. 30 Thus the user can lose input in the editor, go back to

evalqt, lose input there, then go back into the editor, recover the editor's

30--.---The 16cal buffer i~ stored on lispxbufs; the top level buffer on
toplispxbufs. The forms of both buffers· are (CONS (LINBUF) (SYSBUF)) (soc
Section 14). Recovery of a buffer is destructive, i.e. SBUFS sets the
corresponding variabl~ to'~IL. If the user types SBUFS when both lisexht1fs
and toplispxbufs are NIL, ~he message NOTHING SAVED is typed. and an error
generated. ·· ~ ·

22.30

buffer, etc. Furthermore, a buffer cleared at the top can be recovered in a

break, and vice versa.

The following four commands, 00, !F, !E, and !N, are only recognized in tho

editor:

DO com allows the user to supply the command name when it
was omitted. (USE is used when a command name is
incorrect).

For example, suppose the user wants to perform

(-2 (SETO X (LIST Y Z))) but instead types just (SETO X (LIST Y Z)). Tho

editor will type SETO 7, whereupon the user can type DO -2. The effect is tho

same as though the user had typed FIX, followed by (LI 1), (·1 -2), and OK,

i.e. the command (-2 (SETQ X (LIST Y Z))) is executed. 00 also works if the

last command is a line command.

!F same as DO F.

In the case of ! F, the previous command is always treated as though 1 t were a

line command, e.g. if the user types (SETO X &) and then IF, the effect is tho

same as though he had typed~ (SETQ X &), not (F (SETQ X &)).

! E

!U

same as DO E. Note !E works correctly for
1 commands 1 typed in eval or·~ format. ·

same as DO N.

22.31

control-U when typed in at any point during an input boing
read by lispxread, permits the user to edit tho
input before it is returned to the calling
function.

This feature is useful for correcting mist(!kes noticed in typing before tho

input is executed, instead of waiting till after execution and then performing

an UNDO and a FIX. For example, if the user typos

(DEFWEO (FOO (LAMBDA (X) (FIXSPELL X and at that point notices the missing

left parenthesis, instead of completing the· input and allowing tho error to

occur, and then fixing the input, he can simply type control-u, 31 finish typing

normally, whereupon the editor is called on (FOO (LAMBDA (X) (FJXSPELL X --],

which the user can then repair, e.g. by typing (LI 1). If the user exits from

the editor via OK, the (corrected) expression will be returned to whoever

called lispxread exactly as though it had been typed. 32 If the user exits via

STOP, the expression is returned so that it can be stored on the history list.

However it will not be executed. In other words, the effect is the same ns

though the user had typed cdntrol·E at exactly the right instant.

31---Control-U can be typed at any point, even in the middle of an atom; it
siraply sets an internal flag checked by lispxread.

32 Control-U also works for calls to readline, i.e., for line commands.

22.32

valueof is an nlambda function for obtaining tho value 95
a particular event, e.g. (VALUEOF -1).
(VALUEOF ~FOO ·2).

The value of an event consisting of sovernl
operations is a list of the values for each of tho
individual operations.

Note: the value field of a history entry is initialized to bell <control-G>.
Thus a value of bell indicates that the corresponding operation did not
complete, i.e. was aborted or caused an error (or else returned bell>.

prompt#flg

archivefn

is a flag which when set to T causes tho current
event number to be printed before each ... , : nnd "'
prompt characters. See description of promptchnr,
page 22.51.

prompt#flg is initially NIL.

allows the user to specify events
automatically archived.

to bo

When archivefn is set to T, and an event is about to drop off the end of the

history list and be forgotten, archivefn is called giving it as its first

argument the input portion of the event, and as its second argument, the entiro

33---Although the input for valueof is entered on the history list beforo
valueof is called, valueof[·l] still refers to the value of the expression
ir.u:iediately before the valueof input, because valueof effectively backs tho
history list up one entry when it retrieves the specified event.
Similarly, (VALUEOF FOO) will find the first event before this one that
contains a FOO.

22.33

event."34 If archivefn returns T, the event :l.s archived. for example, somo

users like to keep a record of all calls to load. Defining archivofn as:

(LAMBDA (X Y) (EQ (CAR X) (QUOTE LOAD))) will accomplish this. Note that

archivefn must be both set and defined .. archivefn is initially NIL and

undefined.

lispxmacros ·provides a macro facility for lispx.

lis2xr.iacros allows the user to define his own lispx conunands. It is a list of

elements of the form (command def). Whenever command appears as tho first

expression on a line in a lispx input, the variable lispxline is bound to tho

rest of the line, the event is recorded on the history list, and def is

evaluated. Similarly, whenever command appears as £!!!'. of a form in a lispx

input, the variable lispxline is bound to cdr o·r the form, the event recorded,

and clef is evaluated. (See page 22.61 for an example of a lispxmncro).

" RETRIEVE, BEFORE, and AFTER are implemented as lispxmacros. In addition· in

+

INTERLISP-10, LISP, SNDMSG, TECO, and EXEC are lispxmacros which perform tho

corresponding calls to sub sys (section 21), and CON TIN is a lispxmacro \llh ich

performs (SUBSYS T). Finally, SY and DIR are lispxmacros which perform tho

EXEC, SYSTAT, and DIRECTORY conunands respectively. DIR can be given arguments,

e.g., DIR *.SAV;~.

lispxhistorymacros provides a macro facility for history commands.

+ lispxhistorymacros allows the user to define his own hi.story commands. Tho

22.34

form.:.t of lispxhistorymacros is the same as that of lispxmacros, excopt that +

the result of evaluating def is treated as a list of expressions to bo u11re11d, +

exactly as though the expressions had been retrieved by a REDO conunand, or +

computed by a USE command. 35 +

lispxuserfn provides a way for a user function to process
selected inputs.

When lispxuserfn is set to T, it is applied36 to all inputs not recognized as

one of the corrunands described above. If lispxuserfn decides to handle this

input, it simply processes it (the event was already stored on the history list

before lispxuserfn was called), sets lispxvalue to the value for the event, and

returns T. lispx will then know not to call eval or ~. and will simply

store lispxvalue into the value slot for the event, and print it. If

lisp:wserfn returns NIL, lispx proceeds by calling eval or ~ in the usual

way. Thus by appropriately defining (and setting) lispxuserfn, the user can

with a minimum of effort incorporate the features of the programmer's assistant

into his own executive (actually it is the other way around).

35·----·---See page 22.17 for discussion of implementation of REDO, USE, and FIX. +

36 Like archivefn, lispxuserfn must be both set and defined.

22.35

The following output illustrates such a coupling. 37

••SETQ(ALTFORM (MAPCONC NASDIC (FIL (GETP X 'ALTFORMS] [1)
=l~ASDICT
(AL26 BE7 C056 C057 C060 C13 H3 MN54 NA22 SC46 534 TI44)
••(GIVE ME LINES CONTAINING COBALT) [2]
SAMPLE PHASE CONSTIT. CONTENT UNIT CITATION TAG
510002 OVERALL C056 40.0 DPM/KG 070-237 0

C13 8.8 DEL 070·228 0
H3 314.0 OPM/KG
MN54 28

••GETP(COBALT ALTFORMS)
(C056 C057 C060 C13 H3 MN54
R:i:tUNDO MAPCONC
SETO UNDONE.
RlllREDO GETP
(C056 C057 C060)
"""REDO COBALT
SAMPLE PHASE
510002 OVERALL
510003 OVERALL

cor~STIT.
C057
co
C056
C057
C060

~·usE MANGANESE FOR COBALT

NA22 SC46 534 T144)

CONTENT UNIT
40.0 DPM/KG
15.0
14.1
43.0 DPM/KG
43.0
1.0

CITATIQN
070-237
070-203
070-216
070-237
070·241

[3)

[4)

[5]

[6]
TAG
0
0

0
0

The user is running under his own executive program which accepts requests in

the form of sentences, which it first parses and then executes. The user first

'innocently' computes a list of all ALTERNATIVE-FORMS for the elements in his

system [1]. He then inputs a request in sentence format [2) expecting to soo

under the column CONSTIT. only cobalt, CO, or its alternate forms, C056, C057,

or C060. Seeing C13, H3, and MN54, he aborts the output, and checks tho

property ALTFORMS for COBALT [3). The appearance of C13, H3, MN54, ho aborts

the output, and checks the property ALTFORMS for COBALT (3). The appearance of

C13, H3, MN54 et al, remind him that the mapconc is destructive, and that in

the process of making a list of the ALTFORMS, he has inadvertently strung thorn

all together. Recovering from this situation would require him to individually

§~---The output is from the Lunar Sciences Natural Language Information Systom
being developed for the NASA Manned Spacecraft Center by William A. Woods
of Bolt Beranek and Newman Inc., Cambridge, Mass.

22.36

examine and correct the ALTFORMs for each element in his dictionary, a tedious

process. Instead, he can simply UNDO MAPCONC, [4] check to make sure the

ALTFORM has been corrected [5], then redo his original request (6) and

continue. The UNDO is possible because the first input was executed by lispx:

the (GIVE ME LifJES CONTAINING COBALT) is possible because tho user defined

lispxuserfn appropriately; and the REDO and USE are possible because the

(GIVE ME LINES CONTAINING COBALT) was stored on the history list before it was

transmitted to lispxuserfn and the user•s parsing program.

lispxuserfn is a function of two arguments, ,::s and line, where Z$ is the first

expression typed, and line the rest of the line, as read by readline (see pago

22.47). For example, if the user types FOO(A BC). ~=FOO, and line=((A BC)):

if the user types (FOO A B C), ::;= (FOO A B C), and line=NIL; and if the us or

types FOO AB C, x=FOO and line=(A BC).

Thus in the above example, lispxuserfn would be defined as:

[LAMBDA (X LINE)
(COND

((ANO (NULL LINE)
(LISTP X))

(SETQ LISPXVALUE (PARSE X))
T]

Note that since lispxuserfn is called for each input (except for p.a.

commands), it can also be used to monitor some condition or gather statistics.

In addition to saving inputs and values, lispx saves most system messages on

the history list, e.g. FILE CREATED --, (fn REDEFINED), (var RESET), output of

TIME, BREAKDOWN, STORAGE, DWIM messages, etc. When printhistory prints tho

event, this output is replicated. This facility is implemented via tho

functions lispxprint, lispxprint, lispxprin2, lispxspaces, lispxterpri, nnd

22.37

lispxtab. 38 In addition to performing the corresponding output operation, thoso

functions store an appropriate expression on the history event undor tho

property •LISPXPRINTit. 39 This expression is used by printhistory to reproduce

the output.

It It

In addition to the above features, lispx checks to see if car or cdr of NIL or

£!!!: of T have been clobbered, and if so, restores them and prints a message.

Lispx also perf6rms spelling corrections using lispxcoms, a list of its

commands, as a spelling list whenever it is given an unbound atom or undefined

function, i.e. before attempting to evaluate the input. 40

22.6 Undoing

The UNDO capability of the progranuner 's assistant is implemented by requiring

that each operation that is to be undoable be responsible itself for saving on

the history list enough information to enable reversal of its side effects. In

other words, the assistant does not 'know' when it is about to perform a

destructive operation, 1.e. it is not constantly checking or anticipating.

Instead, it simply executes operations, and any undoable changes that occur are

aa---10 fact, all six of these functions have the same definition. ~hen called,

39

40

this function looks back on the stack to see what name it was called by,
and determines what to do. Thus, if the user wanted to make any other
output function, e.g. printdef, record its MOVD(LISPXPRINT LISPXPRINTOEF),
and then use lispxprintdef for printdef. (This will work only for
functions of three or fewer arguments.)

unless lispxprintflg is NIL.

li spx is also responsible for rebinding helpclock, used by breukcheck,
Section 16, for computing the amount of time spent in a computation, in
order to determine whether to go into a break if and when an error occurs.

22.38

automatically saved on the history list by the responsible function. 41 Tho

operation of UNDOing, which involves recovering the saved information and

performing the corresponding inverses, works the same way, so that the user can

UNDO an UNDO, and UNDO that etc.

At each point, until the user specifically requests an operation to be undono.

the assistant does not know, or care, whether information has been saved to

enable the undoing. Only when the user attempts to undo an operation does tho

assistunt check to see whether any information has been saved. If none hns

been saved, and the user has specifically named the event he wants undone. tho

assistant types NOTHING SAVED. (When the user simply types UNDO, tho assistant

searches for the last undoable event, ingnoring events already undone as well

as UNDO operations themselves.)

This implementation minimizes the overhead for undoing. Only those operations

which actually make changes are affected, and the overhead is 'small: two or

three cells of storage for saving the information, and an extra function call.

However, even this small price may be too expensive if the operation is

sufficiently primitive and repetitive, i.e. if the extra overhead may seriously

degrade the overall performance of the program. 42 Hence not every destructive

operation in a program should necessarily be undoable 0 the programmer must be

allowed to decide each case individually.

4i---\.Jhen the number of changes that have been saved exceeds the value of

42

•undosaves (initially set to 50), the user is asked if he w~nts to continue
saving the undo information for this event. The purpose of this feature is
to avoid tying up large quantities of storage for operations that will
nev~r need to be undone. The interaction is handled by the sa~o routines
used by DWIN, so that the input buffers are first saved and cleared, the
message typed. then the system waits dwimwai t seconds, and if there is no
response, assumes the default answer, which in this case is NO: Finally
the input buffers are restored. See page 22.56 for details.

The rest of the diScussion applies only to lispx;
undoing itself in a slightly different fashion, as
22 .61.

22.39

the editor hnndlos
described on page

"'
"'
"'
Ill

Therefore for each primitive destructive operation, we have implemented two

separate functions, one which always saves information, i.e. is always

undoable, and one which does not, e.g. /rplaca and rplnca, ~ and ~.43 In

the various system packages, the appropriate function is used. For exnmple,

break uses /putd and /r~mprop so as to be undoable, and DWIM uses /rplacn and

/rplacd, when it makes a correction. 44 Similarly the user can simply use tho

corresponding I function if he wants to make a destructive operation in his own

program undoable. When the I function is called, it will save the undo

information in the current event on the history list.

However, all operations that are typed in to lispx are made undoable, simply by

subs ti tu ting the corresponding I function 45 for any destructive function

th~oughout the input. 46 For example, on page 22.8, wheh the user typod

(MAPCONC NASOIC (F/L ...)) it was (/MAPCONC NASDIC (F/L ...)) that wns

evaluated. Since the system cannot know whether efficiency and overhead aro

serious considerations for the execution of an expression in a user program,

the user must decide, e.g. call /mapconc if he wants the operation undoablo.

43---
The 'slash' functions currently implemented are /addpro~. /attach, L~~C'.!:·

44

45

46

/drer:iove, /dreverse, /dsubst, /lconc, /mapcon, /m<1pconc, /rnovd, Lt!S~S:·
/nconc1, ~. /putd,·/putdg, /puthash, /putl, /remprop, /rplnca, {r_plncd,
/rplnode, /rplnode2, /set, /seta, /setd, and /tconc. Note that /setg «nd
fsetq_g are not included. If the user wants a set operation undoable in his
program, he must see /set, or /rplaca.

The effects of the following functions are always undoable (regardless of
whether or not they are typed in): define, defineg_, defc (used to give n
function a compiled code definition), deflist, load, savedef, unsavNIPf,
brea15:, unbreak, re break, l!:3!.££, breaki n, unbreaiZ'fil:° changenmne ;---o-ctitf~\s,
editf, editv, editp, edite, editl, esubst, advise, unadvise, readviso, plus
any changes caused by DWIM.

Since there is no /setg, ~s appearing in type-in are handled specially
by substituting a call to saveset, page 22.43.

The substitution is performed by the function lispx/, described on page
22.58.

22.40

However, expressions that are typed-in rarely involve iterations or lengthy

computations directly. Therefore, if all primitive destructive functions that

are ir.unediately contained in a type-in are made undoable, there will raroly be

a significant loss of efficiency. Thus lispx scans all user input boforo

evaluating it, and substitutes the corresponding undoable .function for a 11

primitive destructive functions. Obviously with a more sophisticated analysis

of both user input and user programs, the decision concerning which operations

to make undoable could be better advised. However, we have found tho

configuration described here to be a very satisfactory one. The user pays a

very small price for being able to undo what he types in, and if he wishes to

protect himself from malfunctioning in his own programs, he can have his

program specifically call undoable functions, or go into testmodo as describod

next.

Testmode

Because of efficiency considerations, the user may not want certain functions

undoable after his program becomes operational. However, while debugging ho

may find it desirable to protect himself against a program running wild, by

making primitive destructive operations undoable. The function testmodo

provides this capability by temporarily making everything undoable.

tes tmode[flg] testmode[J} redefines all primitive destructive
functions with their corresponding undoablc
versions and sets testmodeflg to T. tcstmodo[]
restores the oriijY'al definitions, and sets
testmodeflg to NIL.

~~---~-------------i.e. the 1 slash 1 functions; see footnote on page 22.40.

48 testnode will have no effect on compiled mapconc•s. since they compile open
with frplacd 1 s.

22.41

Note that setq's are not undoable, even in testmode. To make the corresponding

operation undoable in testrnode, ~ or rplaca should be used.

Undoing Out of Order

/rplaca and /rplacd operate by saving the pointer that is to be changed and its

original contents (i.e. /rplaca saves ill and /rplacd saves cdr). Undoing

/rplaca and /rplacd simply restores the pointer. Thus, if the user types

(RPLACA FOO 1), followed by (RPLACA FOO 2), then undoes both events by u11doing

the most recent event first, then undoing the older event, FOO ~ill be restored

to its state before either rplaca operated. However if the user undoes tho

fi~st event, then the second event, (CAR FOO) will be 1, since this is what wns

in EE.I of FOO before (RPLACA FOO 2) was executed. Similarly, if the user

performs (NCONC1 FOO 1) then (NCONC1 FOO 2), undoing just (NCONC1 FOO 1) will

remove both 1 and Z from FOO. The problem in both cases is that the two

operations are not 'independent.' In general, operations are always independent

if they affect different lists or different sublists of the same list. 40

Undoing in reverse order of execution, or undoing independent operations, is

always guaranteed to do the 'right' thing. However, undoing dopendont

operations out of order may not always have tha predicted eff~ct.

a~---Prorerty list operations, (i.e. put, addprop and rei:!)_~) are handled
specially so that they are always independent, even when they affect the
sa~e property list. For example, if the user types PUT(FOO FIEl FUMl) thon
PUT(FOO FIE2 FUM2). then undoes the first event, the FIE2 property will
remain, even though CDR(FOO) may have been NIL at the time the first event
was executed.

22.42

Savesc ·~

Setg's are made undoable on type in by substituting a call to Si\Vl'St:'t.

(described in detail on page 22.55), whenever setq is the name of the function

to be applied, or car of the form to be evaluated. In addition to saving

enough information on the history list to enable undoing, savesei operates in a

manner analogous to save def when it resets a top level value, i.e. when it

changes a top level binding from a value other than NOBIND to a new value that

is not egual to the old one. In this case, save set saves the old value of tho

variable being set on the variable's property list under the property VALUE,

and prints the message (variable RESET). The old value can be restored via tho

function unset, 50 which also saves the current value (but does not print a

message). Thus unset can be used to flip back and forth between two valuos.

~ and ~ are implemented via calls to saveset. Thus old values will bo

saved and messages printed for any variables that are reset as the result of

loading a file. 51 Calls to set and ~ appearing in type in are also

converted to appropriate calls to saveset.

For top level variables, saveset also adds the variable to the appropriato

spelling list, thereby noticing variables set in files via rpag or ~· as

well as those set via type in.

60---------------------- 0
--

0f course, UNDO can be used as long as the event containing this call to

51

saveset is still active. Note however that the old value will remain on
the property list, and therefore be recoverable via unset, even after tho
original event has been forgotten. ~~-

To complete the analogy with define, saveset will not save old values on
property lists if dfnflg=T, e.g. when load is called with second argument
T, (however, the call to saveset will still be undoable,) and whon
dfnflg=ALLPROP, the value is stored directly on the property list undor
property VALUE (the latter applies only to calls from~ and~).

22.43

22.7 Format and Use of the History List

There are currently two history lists. lispxhistory and edi thistory. Both

history lists have the same format, and in fact, each use the samo function,

historysave, for recording events, and the same set of functions for

implementing commands that refer to the history list, e.g. historyfind,

printhistory, undosave, etc. 52

Each history list is a list of the form (! evenU size mod), where .! is tho

list of events with the most recent event first, event# is the event number for

the most recent event on l· size is the size of the time-slice, i.e. tho

maximum length of l• and mod is the highest possible event number (see footnote

on page 22. 8). lispxhistory and edithistory are both initin1i2ed to

(NIL o 30 100). Setting lispxhistory or edithistory to NIL is permitted, and

simply disables all history features, i.e. lispxhistory and edithistory act

like flags as well as repositories of events.

Each individual event on l is a list of the form (input id value • props).

where input is the input sequertce for the event, as described on page 22.17-20,

id the prompt character, e.g ... , :, •, 63 and Y!!Y.! iS the value of the event,

and is initialized to beU. 64

~~---~-------------------~---------------A third history list, archivelst, is used when events are archived, as

53

64

described on page 22.27. It too uses the same format.

id is one of the arguments to lispx and to historvsavc. A user can call
lispx giving it any prompt character he wishes (except for •, since in
certain cases, lispx must use the value of id to tell whether or not it was
called from the editor.) For example, on page 22.36, the user's prompt
character was *•.

On edi thistory, this field is used to save the side effects of each
command.

22.44

props is a property list, i.e. of the form (property value property value--).

props can be used to associate arbitrary information with a particular evont.

Currently, the properties SIDE, RGROUPn, RHISTORYR, nPRINTR, USE-ARGS, ... ARGS,

*ERRORR, and *LISPXPRINTn are being used. The value of property SIDE is a list

of the side effects of the event. (See discussion of undosave, page 22. 56,

and undolispx, page 22.59). The *HISTORYR and nGROUPn properties are used for

corrunands that reexecute previous events, i.e. REDO, RETRY, USE, ... , and FIX.

The value of the i<:HISTORY* property is the history conunand itself, i.e. what

the user actually typed, e.g. REDO FROM F, and is used by the ?? command for

printing the event. The value of the property nPRINT" is also for use by tho

?? comr:land, when special formatting is required, for example, in printing

events corresponding to the break commands OK, GO, EVAL, and ?=. USE-ARGS and

... ARGS are used to save the arguments and expression for the corresponding

history corunand. i:iERRQR11 is used by the $ command. nLISPXPRINTA is used to

record calls to lispxprint, lispxprint, et al, See page 22.37.

When lispx is given an input, it calls historysava to record the input in a now

event. 66 Normally. historysave returns as its value cddr of the now event, i.o.

£2.!: of _its value is the value field of the event. lispx binds lispxhist to tho

value of historysave, so that when the operation has completed, lispx knows

where to store the value, namely in.£!!.!: of lispxhist. 56 lispxhist also provides

access to the property list for the current event. For example, the I

functions are all implemented to call undosave, which simply adds tho

corresponding information to lispxhist under the property SIDE, or if there is

no property SIDE, creates one, and then adds the information.

ss---The commands ??, FORGET, TYPE-AHEAD, $BUFS, and ARCHIVE are executed

66

ir:unediately, and are not recorded on the history list ..

Note that by the time it completes, the operation may no longer correspond
to the most recent event on the history list. For example, all inputs
typed to a lower break will appear later on the history list.

22.45

After binding lispxhist, lispx executes the input, stores its value in £fil: of

lispxhist, prints the value, and returns.

\.Jhen the input is a REDO, RETRY, USE, ••• , or FIX conunand, the proceduro is

similar, except that the event is also given a *GROUP* property, initially NIL,

and a •HISTORY* property, .and lispx. simply unreads the input and returns. Whon

the input is 'reread', it is historysave, not lispx, that notices this fact,

and finds the event from which the input originally came. 57 historysave thon

adds a new (value . props) entry to the *GROUP* property for this event, and

returns this entry as the 'new event.• lispx then proceeds exactly as when its

input was typed directly, i.e. it binds lispxhist to the value of historysavo,

executes the input, stores the value in £sr of lispxhist, prints the value, and

returns. In fact, lispx never notices whether it is working on freshly typed

input, or input that was reread. Similarly, undosave will store undo

information on lispxhist under the property SIDE the same as always, and does

not know or care that lispxhist is not the entire event, but one of tho

elements of the *GROUP* property. Thus when the event is finished, its entry

will look like:

(input id value *HISTORY* conunand *GROUP• ((valuel SIDE side1) .·
(value2 SIDE side2) ...)) 58

This implementation removes the burden from the function calling historysave of

distinguishing between new input and reexecution of input whose history entry

. .

a~---1r historysave cannot find the event, for example if a user program unroads

58

the input directly, and not via a history command, historysave proceeds as
though the input were typed.

In this case, the value field is not being used; valueof instead collocts
each of the values from the *GROUP* property, i.e. returns
mapcar[get[event;•GROUP*];CAR]. Similarly, undo operates by collecting the
SIDE properties from each of the elements of the *GROUP* property, and then
undoing them in reverse order.

22.46

has already been set up. 69

22.8 lispx and readline

lispx is called with the first expression typed on a line as its first

argument, lispxx.

If this is not a list, lispx always does a readline, and treats lispxx plus the

line as the input for the event, and stores it accordingly on the history

list. 60 Then it decides what to do with the input, i.e. if it is not recognizod

as a colilf.land, a lispxmacro, or is processed by lispxuserfn, call eval or

apply. 61 readline normally is terminated either by (1) a carriage return that

is not preceeded by a space, or (2) a list that is terminated by a], or (3) an

unmatched) or] , which is not included in the line. However, when called from

lispx, readline operates differently in two respects:

(1) If the line consists of a single) or], read line returns (NIL)

instead of NIL, i.e. the or J is included in the line. This permits

the user to type FOO) or FOO], meaning call the function' FOO with no

arguments, as opposed to FOO.> (FOOcarriage•return), meaning evaluate

the variable FOO.

(2) If the first expression on the line is a list that is not preceded by

59---Although we have not yet done so, this implementation, i.e. keeping tho

60

61

various 'sub-events' separate with respect to values and properties, also
permits constructing commands for operating on just one of the sub-events.

If lispxx is a list car of which is LAMBDA or NLAMBDA, lispx calls
lispxread to obtain the arguments.

If the input consists of one expression, eval is called; if two, apply; if
more than two, the entire line is treated as a single form and eval is
called.

22.47

any spaces, the list terminates the line regardless of whether or not

it is terminated by]. This permits the user to type EOITF(FOO) as a

single input.

Note that if any spaces are inserted between the atom and th~ left parentheses

or bracket, readl ine will assume that the list does not terminate the line.

This is to enable the user to type a line command such as USE (FOO) FOR FOO. In

this case, a carriage return will be typed after (FOO) followed by 11 " ns

described in Section 14. Therefore, if the user accidentially puts an extra

space between a function and its arguments, he will have to complete the input

with another carriage return, e.g.

~EDITF _(FOO)
... ~
EDIT ,_

22.9 Functions

l ispx[lispxx; lispxid; lispxxmacros; lispxxuserfn]62

lispx is like eval/~. It carries out a single

computation, and returns its value. Tho first

argument, lispxx is the result of a single call to

lispxread. lispx will call readline, if necessary

as described on page 22.47. lispx prints tho

value of the computation, as well as saving tho

02·----·--------------------------------·-·------------------------------------lisp;.:id corresponds to id on page 22.44. Lispx also has a fifth argument,
lispxflg, which is used by the E command in the editor.

22.48

input and value on lispxhistory. 63

If lispxx is a history command, lispx executos tho

command, and returns bell as its value.

If the value of the fourth argument. lispxxmacros,

is not NIL, it is used as the lispx macros.

otherwise the top level value of lispxmacros is

used. If the value of the fifth argument,

lispxxuserfn, is not NIL. it is used as

lispxuserfn. In this case, it is not necessary to

both set and define lispxuserfn as described on

page 22.35.

The overhead for a call to lispx (in INTERLISP-10) is approximately 17

milliseconds, of which 12 milliseconds are spent in maintaining the spelling

lists. In other words, in INTERLISP, the user pays 17 more milliseconds for

each eval or ~ input over a conventional LISP executive, in order to enable

the features described in this chapter.

userexec[lispxid;lispxxmacros;lispxxuserfnJ

repeatedly calls lispx under errorset protection

specifying lispxxmacros and lispxxuserfn, and

using lispxid (or .. if lispxid=NIL) as a. prompt

character. Userexec is exited via the lispxmacro

OK, or else with a retfrom.

03---Note that the history is not one of the arguments to lispx, i.e. the editor
must bind (reset) lispxhistory to edithistory before calling lispx to carry
out a history command.
Lispx will continue to operate as an eval/!E.e!X function if lispxhistor~ is
NIL. Only those functions and co1M1ands that involve the history list will
be affected. · ·

22.49

lispxread[file;rdtbl) is a generalized read. If readbuf=NIL, lispxread

performs read[file;rdtbl], which it returns as its

value. (If the user types control-U during tho

call to read, lispxread calls the editor and

returns the edited value.)

If readbuf is not NIL, lispxread , 'reads' tho next

expression on readbuf, i.e. essentially returns

(PROG1 (CAR READBUF)
(SETQ READBUF (COR READBUF))). 64

readline, described in Section 14, also uses this generalized notion of

reading. When readbuf is not NIL, read line 'reads' expressions from roadbttf

until it either reaches the end of readbuf, or until it reads a pseudo-carringo

return (see page 22.18). ·In both cases, it ,returns a list of the expressions

"' it has. 'read'. (The pseudo-carriage return is not included in the list.)

+
+

When readbuf is not NIL, both lispxread and readline actually obtain thoir

input by performing (APPLY* LISPXREADFN FILE), where lispxreadfn is initially

set to READ. Thus, 1f the user wants 1 ispx, the editor, break, et a 1 to do

their reading via a different input function, e.g. uread. he simply sets

lispxreadfn to the name of that function (or an appropriate LAMBDA expression).

lispxreadp[flg) is a generalized readp. If f.!g=T, l ispxrendp

returns T if there is any input waiting to bo

•read', a la lispxread. If fl9.=NIL, lispxrondp

returns T only if there is any input waiting to be

04--------------------------------·--Except that pseudo-carriage returns, as represented by the value of
histstrO, are ignored, i.e. skipped. Lispxread also sets rereadflg to NIL
when it reads via read, and sets rereadflg to the value of readbuf whon
rereading.

22.50

lispxunread[lst]

promptchar[id;flg;hist]

'read' on thi5 line. In both cases, loading spoces

are ignored, i.e. skipped over with readc, so that

if only spaces have been typed, l1spxreadp will

return NIL.

unreads 1st, a list of expressions to be read. If

readbuf is not NIL, lisf?xunread attoches 1st at

the front of readbuf. separating it from the rest

of readbuf with a (HISTSTRO O). The definition of R

lispxunread is:

(LISPXUNREAD
[LAMBDA (LST)

(SETQ READBUF (COND
((NULL READBUF)

LST)
(T (APPEND LST (CONS HISTSTRO

READBUF])

prints the prompt character id.

promptchar will not print anything when the next

input will be •reread', i.e. readbuf is not NIL.

promptchar will also not print when readp[J=T,

unless f.19 is T.

Thus the editor calls promptchar with fl!l=NIL so that extra ~·s are not printed

when the user types several commands on one line. However, evalg.t calls

promptchar with flg=T since it always wants the c- printed (except whon

•rereading').

Finally, if prompt#flg is T and hist is not NIL,

promptchar prints the current event number (of

hist) before printing id.

22.51

lispxeval[lispxform;lispxid] evaluates lispxform (using eval) · the samo as

though it were typed in to lispx, i.e. the event

is recorded, and the evaluation is made undo ab lo

by substituting the slash functions for the

corresponding destructive functions, as. described

on page 22.40. lispxeval returns the value of tho

form, but does not print it.

historysave[history;id;input1;input2;input3;props)

records on~ event on history. If inputt is not

NIL, the input is of the form

(input1 1nput2 . input3). If input1 is NIL, and

input2 is not NIL, the input · is of the form

(input2 . input3). Otherwise 1 the input is just

input3.

histor:z:save creates a new event with tho

corresponding input, ig. value field initialized

to bell, and E!.21?.!. If the histor:z: has reached

its full size, the last event is removed and

cannibalized.

The value of historysave is cddr of the event.

However, if rereadflg is not NIL, and is a tail of

the input of the most recent event on the history

list, and this event contains a ftGROUP* property,

historysave does not create a new event, but

simply adds a (bell . props) entry to the *GROUP

property and returns that entry. See discussion

on page 22.46.

22.52

lispxfind[history;line;type;backup]

line is an event specification, !tl!! specifies tho

format of the value to be returned by lispxf ind,

and can be either ENTRY, ENTRIES, COPY, COPIES,

INPUT, or REDO. lispxfind parses line, and uses

historyfind to find the corresponding events.

lispxfind then assembles and returns the

appropriate structure.

lispxfind incorporates the following special features:

(1) if backup=T, lispxfind interprets line in the context of the history list

before the current event was added. This feature is used, for example, by

valueof, so that (VALUEOF ·1) will not refer to the valueof event itself:

(2) if line=NIL and the last event is an UNDO, the next to the. last event is

taken. This permits the user to type UNDO followed by REDO or USE;

~3) lispxfind recognizes @@, and substitutes archivelst for history (see page

22.14); and

(4) lispxfind recognizes @, and retrieves the corresponding event(s) from the

property list of the atom following@ (see page 22.14).

historyfind(lst;index:mod:x;yJ

searches 1st and returns the tails of lst

beginning with the event corresponding to ~· lst,

~. and mod are as described on page 22.44.

~ is an event address, as described on page

22.11·14, e.g. (43), (·1), (FOO FIE),

22.53

(LOAD ~ FOO), etc.65 If historyfind cannot find ~·

it generates an error.

entry#[hist;x] hist is a history list, i.e. of the form describod

on page 22.44. ,::s is one of the events on hist,

i.e. (MEMBX(CARHIST)) is.true. The value of

entry# is the event number for x.

valueof[x] is an nlambda, nospread function for obtaining tho

value of the event specified by ~· e.g.

(VALUEOF ·1), (VALUEOF LOAD 1), etc. valueof

returns a list of the corresponding values if .::!

specifies a multiple event.

changeslice[n;history)66 changes time-slice for history to !l· If history

is NIL, changes both edithi&tory and lispxhistor~.

Note: the effect of increa.sing a time-slice is gradual: the history list is

simply allowed to grow to the corresponding length before any events are

forgotten. Decrea.sing a time-slice will immediately remove a sufficient numbor

of the older events to bring the history list down to the proper s izo.

However, changes lice is undoable, so that· these events are (temporarily)

recoverable. ·Thus if the user wants to recover the storage associated with

these events without waiting !l more events for the changeslice event to be

forgotten, he must perform a FORGET command.

55---If l'. is given, the event address is the Li.st difference between x and .>.'.·

66

e.g. ~=(FOO FIE AND \ ·1), x=CAND \ ·1) is equivaleni to
~=(FOO FIE), x=NIL.

changeslice has a third argument used by the system for undoing a
changes lice.

22.54

savaset[name;value;topflg;flg)

an undoable !!E.· (see page 22.43). saveset scans

the pushdown list looking for the last binding of

lli!fil!• sets~ to value, and returns value.

If the binding changed was a top level binding,

~ is added to spellings3 (see Section 17).

Furthermore, if the old value was not NOBIND, and

was also not equal to the new value, saveset calls

the file package to update the necessary file

records. Then, if dfnflg is not equal to T,

saveset prints (name RESET), and saves the old

value on the property list of ~· under the

property VALUE. If fl.g=NOPRINT, saveset saves the

old value, but does not print the message. Th is

option is used by !!..!:!.!.!!!·

If topflg=T, saveset operates as above except that

it does not scan the pushdown list but goes right

to !!.fil!!!'s value cell, e.g. rpaqq[x;y) is simply

saveset(:qy;T]. When topflg is T, and dfnflg is

ALLPROP and the old value was not NOBIND. savesot

simply stores value on the property list of name

under the property VALUE, and returns value. This

option is used for loading files without

disturbing the current value of variables (soo

Section 14).

If fJJl=NOSAVE, saveset does not save· the old value

on the property list, nor does· it add !!i!.!!lQ to

spellings3. However, the call to saveset is still

undoable. This option is used by /set.

22.55

unset(name] if ~ does not contain a property VALUE, unsot

generates an error. Otherwise !ill.ill calls savosot

with ~· the property value, topflg=T, and

flg:NOPRINT.

undosave(undoform]67 if lispxhist is not NIL (see discussion on page

22.45), and get[lispxhist:SIDE] is not equal to

NOSAVE, undosave adds undoform to the value of tho

property SIDE on lispxhist, creating a SIDE

property if one does not already exist. The form

of undoform is (fn. args), 68 i.e. undoform is

undone by performing

apply[car[undoformJ:cdr[undoformJJ. For example,

if the definition of FOO is £!!!, /putd[FOO;newdof]

will cause a call undosave with

undoform =(/PUTD FOO def).

£!.!: of the SIDE property is the number of

'undosaves', i.e. length or cdr of the SIDE

property, which is the list of undoforms. Each

call to undosave increments this ·count, and adds

undoform to the front of the list, i.e. just after

the count. When the count reaches the value of

#undosaves (initially 50), 69 undosave prints a

67---Undosave has a second· optional argument, histentry, which can be used to

68

69

.specify lispxhist directly, saving the time to look it. up. If both
histentry and lispxhist are NIL, undosave is a NOP.

Except for /rplnode, as described below.

#undosaves=NIL is equivalent to #undosaves=infinity.

22.56

message asking the user if he wants to continue

saving. If the user answers NO or defaults,

undosave makes NOSAVE be the value of the property

SIDE, which disables any further saving for th is

event. If the user answers YES, undosave changes

the count to -1, which is then never incremented,

and continues saving. 70

/rplnode[x;a;d] Undoably performs rplaca[x;a] and rplacd[x;d].

Value is 2'.S· Generates an error, ILLEGAL ARG, if

2:S is not a list. The principle advantage of

/rplnode is that when ~ is a list, /rplnode saves

its undo information

cons[x;cons[car~x];cdr[x]]],

(x originalcar . originalcdr), and

as

i.e.

therefore

requires only 3 cells of storage, instead of the 8

that would be required for a /rplaca and a /rplacd

that saved their information as described

earlier. 71

/rplnode has a BLKLIBRARVDEF.

/rplnode2[x;y] same as /rplnode[x;car[y];cdr[y]].

10·------------------------------·--------------------·--·---------------------load initializes the count on SIDE to ·1, so that regardless of the value

71.

of ~undosaves, no message will be printed, and the load will be undoable.

Actually. /rplaca and /rplacd also use this format for saving their undo
information when their first arguments are lists. However. if both u
/rplaca and /rplacd are to be performed, it is still more efficient to use
/rplnode (3 cells versus 6 cells).

22.57

+ Note: for consistency, there are definitions for both rplnode and rplnode2,

+ although there primary reason for existence is the undoable versions .

*

new/fn[fn] . After the user has defined /fJJ.. new/fn porf orms

the necessary housekeeping operations to make fn

be undoable.

For example, the user could define /radix as

(LAMBDA (X) (UNDOSAVE (LIST (QUOTE /RADIX) (RADIX X))) and then perform

new/fn[radix], and radix would then be undoable when typed in or in testmode.

lispx/(x;fn;vars] performs the substitution of I functions for

destructive functions. If fn is not NIL, it is

the name of a functi'on, and ~ is its argument

list. If fn is NIL, :::sis a form. In both cases,

lispx/ returns ~ with the appropriate

substitutions. ~ is a list of bound variables

(optional).

lispx/ incorporates information about the syntax

and semantics of INTERLISP expressions. For

example, it does not bother to make undoable

operations involving variables bound in ~· It

does not perform subs ti tut ion inside of

expressions fi!!. of which is NLAMBDA, i.e. hu.s

argtype 1 or 3 (unless £!.!: of the form has tho

property INFO value EVAL, as described in section

20). For example, (BREAK PUTO) typed to lispx,

will break on putd, not · /putd. Similarly,

substitution should be performed in the arguments

for functions like mapc, !'...l!!.9.· etc.. since these

22.58

undolispx[line]

undolispx1[event;flg]

contain expressions that will be· evaluated or

applied. For example, if the user types

mapc[(F001 F002 F003);PUTO] tho putd must bo

replaced by /putd.

line is an event specification. undolispx is tho

function that executes UNDO commands by calling

undolispx1 on the appropriate entry(s).

undoes one event. The value of undolispx1 is NIL

if there is nothing to be undone. If the event is

already undone, undolispxl prints ALREADY UNDONE

and returns T. 72 Otherwise, undol ispx1 undoes tho

event, prints a message, e.g. SETQ UNDONE, and

returns T.

Undoing an event consists of mapping down (cdr of) the property value for SIDE,

and for each element, applying £!.!: to cdr, and then marking the event undone by

attaching (with /attach) a NIL to the front of its SIDE property. Note that

the undoing of each element on the SIDE property will usually cause undosavos

to be added to the current lispxhist, thereby enabling the effects of

undolispxl to be undone.

undonlsetq[form] is an nlambda function similar to nlsetq.

undonlsetq evaluates form, and if no error occurs

during the evaluation, returns list[eval[form]]

72---~-----------------------If flg=T and the event is already undone. or is an undo command, undolispxl
takes no action and returns NIL. Undolispx uses this option to search for
the last event to undo. Thus when line=Nll, undolispx simply searches
history until it finds an event for. which undolispxt returns T, i.e.
undolispx performs (SOME (COAR LISPXHISTORV) (Fil (UNDOLISPX1 X T)))

ZZ.59

and passes the undo information from form (if any)

upwards. 73 If an error does occur, the value of

undonlsetq is NIL, and any changes made by I

functions during the evaluation of form are

undone.

undonlsetq compiles open.

undonlsetg will operate even if lispxhistory or

lispxhist are NIL, or if #undosaves is or has been

exceeded for this event.

Note that undonlsetg provides a limited form of backtracking.

printhistory[history;line;skipfn;novalues)

line is an event specification. , printhistorl

prints the events on history specified by 1 ino.

e.g. (·1 THRU ·10). skipfn is an (optional)

functional argument that is applied to each event

before printing. If its value is true, the event

is skipped, i.e. not printed. If novalues=T, or

novalues applied to the corresponding event is

true, the value is not printed. 74

73---~-----Actually, undonlsetq does not rebind lispxhist, so that any undo

74

information is stored directly on the history event, exactly as though
there were no undonlsetq. Instead, undonlsetq simply marks the state of
the undo information when it starts, so that if' an error occurs, it can
then know how much to undo. The purpose of this is so that if the user
control-D's out of the undonlsetg, the event is still undoable.

For example, novalues is T when printing events on edithistory.

22.60

For example, the following lispxmacro will define ??' as a command for printing

the history list while skipping all 'large events' and not printing any valuos.

(??' (PRINTHISTORV LISPXHISTORY LISPXLINE
(FUNCTION (LAMBDA (X)

(IGREATERP (COUNT {CAR X)) 5)))
T))

22.10 The Editor and the Assistant

As mentioned earlier, all of the remarks concerning 'the assistant 1 apply

equally viell to user interactions with evalgt, break or the editor. The

differences between the editor's implementation of these features and that of

1 ispx are mostly obvious or inconsequential. However, for completeness, th is

section discusses the editor's implementation of the programmer 1 s· a.ssis tant.

The editor uses promptchar to print its prompt character, and lispxread,

lispxreadp, and readline for obtaining inputs. When the editor is given an

input, it calls historysave to record the input in a new event on its history

list, edithistory. 75 Edithistory follows the same conventions and format as

lispxhistory. However. since edit commands have no value, the editor usos tho

value field for saving side effects, rather than storing them under tho

property SIDE.

The editor processes DO, ! E, ! F, and ! N commands itself, since lispx does not

recognize these commands. The editor also processes UNDO itself, as described

75---Except that the atomic commands OK, STOP, SAVE, P, ? , PP and E are not
recorded. In addition, number commands are grouped together in a singlo
event. for example, 3 3 -1 is considered as one command for changing
position.

22.61

below. All other history comrnands76 are simply given to lispx for execution,

after first binding (resetting) lispxhistory to edithistory. The editor also

calls lispx when given an E conunand as described in Section 9. 77

The major implementation difference between the editor and lispx occurs in

undoing. Edi thistory is a list of only the last !!. commands, where !!. is tho

value of the time-slice. However the editor provides for undoing all changes

made in a single editing session, even if that s~ssion consisted of more than n
edit commands. Therefore, the editor saves undo information independently of

the edithistory on a list call undolst, (although it also stores each entry on

undolst in the field of the corresponding event on edithistory.) Thus, the

commands UNDO, !UNDO, and UNBLOCK, are not dependent on edithistory, 78 i.e ..

UNDO specifies undoing the last command on· undolst, even if that event no

longer appears on edi thistory. The only interaction between UNDO and tho

history list occurs when the user types UNDO followed by an event

specification. In this case, the editor calls lispxfind to find the event, and

then undoes the corresponding entry on undolst. Thus the user can only undo ·a

specified command within the scope of the edithistory. (Note that thh is also

the only way UNDO commands themselves can be undone, that is, by using the

history feature, to specify the corresponding event, e.g. UNDO UNDO.}

76---as indicated by their appearance on historycoms, a list of the history

77

78

connands. editdefault interrogates historycoms before attempting spolling
correction. (All of the commands on historycoms are also on editcomsa and
editcomsl so that they can be corrected if misspelled in the editor.) Thus
if the user defines a lispxmacro and. wishes it to operate in the editor as
well. he need simply add it to historycoms. For example. RETRIEVE is
implemented as a lispxrnacro and works equally well in lispx and the editor.

In this case, the editor uses the fifth argument to lispx. lispxflg, to
specify that any history c.ommands are to be executed by a recursive call to
lispx, rather than by unreading. For example, if the user types E REDO in
the editor. he wants the last event on lispxhistory processed as lispx
input, and not to be unread and processed by the editor.

and in fact wiil work if edithistory=NIL, or even in a system which does
not contain lispx at all.

Z2.6Z

The implementation of the actual undoing is similar to the way it is done in

lispx: each command that makes a change in the structure being edited docs so

via a function that records the change on a variable. After the command has

completed, this variable contains a list of all the pointers that have been

changed and their original contents. Undoing that command simply involves

mapping down that list and restoring the pointers.

22.11 Statistics

The programmer 1 s assistant keeps various statistics about sys tern usage, e.g.

number of lispx inputs, number of undo saves, number of calls to editor, number

of edit commands, number of p.a. commands, cpu time, console time, et al.

These can be viewed via the function lispxstats.

lispxstats[] prints statistics.

The user can add his own statistics to the lispx statistics via the function

addstats.

addstats[statlst]

lispxwatch[stat;n]

no spread, nlambda. Statlst is a list of elements

of the form (statistic-name . message). e.g.

(EDITCALLS CALLS TO EDITOR) (UNDOSTATS CHANGES

UNDONE), etc. statistic-name is set to tho co 11

in an unboxed array, where the corresponding

statistic will be stored. This statistic can then

be incremented by lispxwatch.

increments stat by !! (or 1 if rr=NIL). lispxwa tch

has a BLKLIBRARYDEF.

22.63

+
+
+
+

The user can save his statistics for loading into a new system by performing

MAKEFILE(DUMPSTATS). After the file DUMPSTATS is loaded, the statistics printed

by lispxstats will be the same as those that would be printed following the

makefile.

2~.12 Greeting and User Initialization

Many of the features of INTERLISP are parameterized to allow the user to adjust

the system to his or her own tastes. Among the more corrunonly adjustod

parameters are prompt#flg, dwimwait, changeslice, #rpars, lowercase, archivefn,

#undosaves, fltfmt, etc. In addition, the user can modify the action of system

functions in ways not specifically provided for by using advise (Section 19).

In order to encourage this procedure, and to make it as painless and automatic

as possible, the p.a. includes a facility for a user-defined profile. When

INTERLISP is first run, it obtains and evaluates a list of user-specifiod

expressions for initializing the system, 79 and the p.a. prints a greeting,

e.g., "HELLO, WARREN." or "GOOD AFTERNOON, DANNY.", etc.

Greeting (i.e., the initialization) is undoable, and is stored as a separate

event on the history list. The user can also specifically invoke the greeting

operation via the function greet, for example. if he wishes to effect another

user's initialization.

greet[name;flg) performs greeting for user whose username is !U!!!!.Q. or

if ~=NIL, for login name (see usernamo and

79---In INTERLISP-10, a specially formatted file on tho LISP directory contains
the initializations for all users. This file is indexed into using tho
user's usernumber as a key. The expressions (if any) found there are then
evaluated.

22.64

usernumber, Section 21), i.e., when INTERLISP first

starts up, it performs greet[]. Before greet porforms

the indicated initialization, it first undoos tho

effects of the previous greeting.80 If f.!!l=T, greot

also resets the counters for the various statistics

reported by lispxstats (page 22.63).

greet also sets the va~iable username to the name for which the greeting was

performed. Sys in is advised to compare username with usernamo[]. If they aro

the same, sys in prints heraldstring, followed by the greeting mossago.

Ohterwise, sys in prints a message alerting the user. 81 for example, if us or l'Z

HARTLEY performs a sys in of a sysout made by user GOODWIN, the following

message is printed:

~~~*ATTENTION USER HARTLEY: 
THIS SYSOUT IS INITIALIZED FOR USER GOODWIN. 
TO REINITIALIZE, TYPE GREET() 

INTERLISP-lo Implementation of Greetin9 

greet operates off the file <LISP>USERNAMEFILE. To change an existing 

initialization, or create a new one, a new <LISP>USERNAMEFILE must be writton. 

This is accomplished by loading th• file <LISP>USERNAMES, editing usernamolst, 

and then performing makeusernames[ ], which will create new versions of both 

---·--------~--~---------------------------------------------------------------80 . . 

81 

The side effects of the greeting operation are stored on a global variablo 
as well as the history list, thus enabling the previous greeting to be 
undone even if it is no longer on the history list. 

sysout first checks the value of the variable sysoutgilg, initially NIL. If 
~soutgag is T, no message is printed following a sysin. If sysoutgi!_!l is « 
list, it will be evaluated in lieu of printing a message. for example, tho 
user can use this option to print his own message. 

22.65 

+ 
+ 
+ 
+ 



USERtJAMEFILE and USERNAMES. (Note that the person performing this operation 

must therefore either be connected to the LISP directory, or have write access 

to it.) 

usernamelst is a list of elements of the form (username firstname T . forms), 

e.g., (TEITELMAN WARREN T ('CHANGESLICE 100) (SETO DWlMWAIT 5)). ~ of the 

list is used in the greeting message. ~ is a list of forms that arc 

evaluated. 

usernanelst can be edited just like any other list, e.g.; with ~· The file 

USERIJAMEFILE, created by makeusernames, •.contains usernamelst along with an 

index block which contains for each us•r on usernamelst.the addr•js in the file· 

(i.e., byte position) of the start of his entry. greet then simply does· an 

sfptr and a read. 

If usernamelst contains an element for which the u.sername .is NIL, i.e., an 

element of the form (NIL • forms), this is interpreted to mean that forms are 

evaluated regardless of user name. This feature can be used to 11 patch 11 an 

INTERLISP system when a bug is found, or to change some'.def'ault for INTERLISP 

at a particular site, e.g., turn off DWIM, perform lowercase[TJ, etc. 

Individual user initialization will . still be performed following this system 

initialization. 

22.66 



Index for Section 22 

ADDSTATS[STATLST] NL~ ············~·············· 
AFTER (prog. asst. command) ................•..•. 
ALL (in event specification) ....•...•....•.•.... 
ALLPROP .............•.........•••••••.••••.••••• 
ALREADY UNDONE (typed by system) ........••...... 
AND (in event specification) ...................• 
AND ( in USE command) .................•...•.••••• 
ARCHIVE (prog. asst. command) .....•.....•••..••. 
ARCHIVEFN (prog. asst. variable/parameter) .•..•• 
ARCHIVELST (prog. asst. variable/parameter) 
back tracking ................................... . 
BEFORE ( prog. asst. command) .................. .. 
bell (in history event) ....•••••.....•..•....••• 
BLKLIBRARYDEF (property name) •.........••. , .. , •. 
CHANGESLICE[N;HISTORY;L] .....••.•.•...•.••.•.•.• 
CLEARBUF[FILE;FLG] SUBR ••••••••••••••••••••••••• 
cornrn ( prog. asst. command) ....•...•..•.•....•• 
CONTINUE SAVING? (typed by system) ....•...•.•... 
control-D ...................................... . 
con.trol-E ........................................ . 
con trol-U ...................................... . 
DFNFLG (system variable/parameter) •...•......... 
DIR ( prog. asst. command) ...•..........••......• 
DO (~dit command) .......•...•....••....••. ,. •.•.. 
DO (prog. asst .. command) •.....•.....•••........• 
OWIM ............................................. . 
DWIMWAIT (dwim variable/parameter) ............. . 
E (ec;lit ~or.unand) .•.••••••••.••••••••••••••••.••• 
EOITOEFAULT .....•.•... · ........ .- ..••••.••••...•••• 
EDITHISTORY (editor variable/parameter) •••..•••• 
ENTRY#[HIST;X] •........•.....••.•.••....••.••..• 
ESUBST[X;Y;Z;ERRORFLG;CHARFLG] ••...•...••••..••• 
event address .................................. . 
event· nui:lber ....................••..•.........•. 
event specification ....••..••••..•......••.•..•• 
EXEC ( prog. asst. command) ..................... . 
F (in event address) ....•...•...... , •.•..••...•.• 
FIX ( prog. asst. command) ....••.••...•.•...•.••. 
FOR (in USE command) ........•..••••....••..••..• 
FORGET (prog. asst. command) ••.••.......••...... 
format and use of history list ············~····· 
FROM (in event specification) ..•.••••...••.•.... 
GREET[NAME;FLG] ................•.•..... , ....... . 
greeting and user initialization ....•..........• 
HELPCLOCK (system variable/parameter) .......... . 
history cornr:"lands ••••...•••..•••.•••.••••••...••• 
history cor:ir.lands applied to history commands ..•. 
history cor:ir.lands that fail ..•.•.........••.....• 
history list ..........................•....•..•. 
HISTORYCOMS (editor variable/parameter) ••...•..• 
HISTORYFIND[LST;INDEX;MOD;X;Y] ..........•....... 
HISTORYSAVE[HISTORY;ID;INPUT1;INPUT2;INPUT3;PROPS] 
HISTSRO (prog. asst. variable/parameter) ...•.•.. 
ILLEGAL ARG (error message) ...•..•..••••••••.••. 
implementation of REDO, USE, and FIX •.•••••••••• 
IN (in USE command) ...••••••.•.••••.•..••••••••• 

INDEX.22.1 

Page 
Numbers 

22.63 
22.22,26,34 
22 .14 
22.55 
22.23,59 
22 .13 
22 .15 
22.27 
22.27,33-34 
22.44,53 
22.60 
22.22,26,34 
22.22,33,44,49,52 
22.57,63 
22.8,54 
22.30 
22.34 
22.39,57 
22.30 
22.30 
22.32,50 
22.43,55 
22.34 
22.31,61 
22.31 
22.23 
22.39 
22.62 
22.62 
22.44,49,60"62 
22.54 
22.15 
22.12-13 
22.8,12,22,33,54 
22.11-14,20•21 
22.34 

.22 .12 
22.17-18,22 
22.15 
22.28,54 
22.44-47 
22.13 
22.64 
22.64 
22.22,38 
22 .10-28 
22.20 
22.21 
22.6-14,44-47 
22.62 . 
22.53 
22.11,44·46,52,61 
22.18 
22.57 
22.17·20 
22.15 



LISP (prog. asst. command) .................... .. 
LISPX[LISPXX;LISPXID:LISPXXMACROS;LISPXXUSERFN; 

LISPXFLG) ................................. . 

LISPXCOMS (prog. asst. variable/parameter) ..... . 
LISPXEVAL[LISPXFORM;LISPXID] ................... . 
LISPXFIND[HISTORY;LINE;TYPE;BACKUP;QUIETFLGJ 
LISPXFINDSPLST (prog. asst. variable/parameter) 
LISPXHIST (prog. asst. variable/parameter) •.•.•. 
LISPXHISTORY (prog. asst. variable/parameter) 
LISPXHISTORY (system variable/parameter) ....... . 
LISPXHISTORYMACROS 

(prog. asst. variable/parameter) ......•.... 
LISPXLINE (prog. asst. variable/parameter) ....•. 
LISPXMACROS (prog. asst. variable/parameter) 
LISPXPRINT[X;Y;Z;NOOOFLG) ...................... . 
LISPXPRINTFLG (system variable/parameter) ...... . 
LISPXREAD[FILE;RDTBL] .........................•. 

LISPXREADFIJ (prog. asst. variable/parameter) 
LISPXREADP[FLG] .........................•....... 
LISPXSTATS[FLG] ................................ . 
LISPXUrmEAD[ LST] ..............................•. 
LISPXUSERFN (prog. asst~ variable/parameter) 
LISPXWATCH[STAT;N] ......•.....•.....•......•.... 
LISPX/[X;FfJ;VARS] .............................. . 
MAKEUSERNAMES ..................................• 
NAME ( prog. asst. command) ..................... . 
f~EW/Ffl[FrJ] ........................ , ........•.... 
t-ILSETQ[ t~LSETX] NL .............................•. 
NO VALUE SAVED: (error message) ................• 
t~OBitJD ..................................... · · · · · 
NOSAVE ......................................... . 
NOTHING SAVED (typed by system) ................ . 
PRINTHISTORY[HISTORY:LINE:SKIPFN;NOVALUES) ..... . 
prograruler's assistant ......................... . 
prograruler's assistant and the editor .......... . 
prograr.uner's assistant commands ..............•.. 
prompt character ............................... . 
PROMPTCHAR[ID;FLG;HIST] ........................ . 
PROMPT#FLG (prog. asst. variable/parameter) 
pseudo-carriage return ......................... . 
READBUF (prog. asst. variable/parameter) ....... . 
READLINE[RDTBL;LINE;LISPXFLG) .................. . 

REDO N TIMES ( prog. asst. command) ............. . 
REDO ( prog. asst. command) ............ , ........ . 
REREADFLG (prog. asst. variable/parameter) ..... . 
RESET (typed by system) ...............•.....•... 
restoring input buffers ...............••...•.... 
RETRIEVE (prog. asst. command) ................ .. 
RETRY (prog. asst. command) ................... .. 
RPAO[RPAQX;RPAQY] NL ........................... . 
RPAOQ[ X; Y] ~L ....•......•.•..•••.••. , ..•••....•.• 
RPLNODE2[X;Y] ...............•...•............... 
SAVESET[NAME;VALUE;TOPFLG;FLG) ........•....•.... 

INDEX, 22. 2 

Page 
Numbers 

22.34 

22. 10-11' 15. 1 7' 19. 21 '29' 
34-35,37-38,40-41, 
44-47,47-49,52,62 

22.38 
22.52 
22.53,62 
22 .14 
22,45°46,56,59•60 
22.44,49,60,62 
22.62 

22.34 
22.34 
22.34,49 
22.37,45 
22.38 
22.10,19,29,32,47-48,50, 

61 
22.50 
22.50,61 
22.63,65 
22.51 
22.35,37,47,49 
22.63 
22.40,58 
22.66 
22.14,22,26-27 
22.58 
22.59 
22.56 
22.43,55 
22.56-57 
22.23,39 
22.23,37-38,60 
22. 1-48 . 
22.61 
22.10-31 
22.10,33,51 
22.33,51,61 
22.33,51 
22 .18 
22.50-51 
22.14,19,32,37,47-48,50, 

61 
22 .14 
22.14,18,22 
22.50,52 
22.43,55 
22.30 
22.22,26,34 
22.22 
22.43 
22.43 
22.57 
22.40,43,55 



SIDE (property name) .............•..••.•.....••• 
SNDMSG ( prog. asst. command) .................. .. 
spelling correction ...................•......•.. 
spelling lists ..............................••.. 
SPELLINGS3 (dwim variable/parameter) ..•.......•. 
statistics ...............................•...... 
SUBSYS[FILE/FORK;INCOMFILE:OUTCOMFILE: 

EfHRYPOIIHFLG] ...................••..•.... 
SUCHTHAT (in event address) ...•.............•... 
SY (prog. asst. command) .........•......•..•.... 
TECO ( prog. asst. command) ...................••• 
TESTMODE[FLG] ..............•.............•. , •.•.. 
TESTMODEFLG (prog. asst. variable/parameter) 
THRU (in event specification) ................. .. 
time-slice (of history list) .......•......•..•.. 
TO (in event specification) .....••........••.••. 
TYPE-AHEAD (prog. asst. command) ..•..•..•.•..... 
UNDO (edit command) ................•.....•..••.• 
UIJDO ( prog. asst. command) •........•...•..••••.. 
undoi11g ........................................ . 
undoing DWIM corrections .•......•..•..•••.•..•.. 
undoing out of order ...••..•...••••••••• , .. , , ••• 
undoing (in editor) .............•...••••...•.••. 
UNOOLISPX[LINE] ..................•.........•.••• 
UNOOLISPXl[EVENT;FlG;DWIMCHANGESJ .••.•.•••..•••• 
UNDOLST (editor variable/parameter) .........••.• 
UNDONE (typed by system) ......•.••..••••.......• 
UIJOOIJLSE TO[ UNDOFORM; UNDOFN] NL ••...........•.... 
UNDOSAVE[UNDOFORM;HISTENTRY] ..•.•..••..••..•.•.• 
unreading ...................................... . 
UNSET[ UAME J ...................•.•.. , .•.....••.•. 
USE ( prog. asst. command) .................... , .. 
USEREXEC[LISPXIO:LISPXXMACROS;LISPXXUSERFN) 
USERNAME (prog. asst. variable/parameter) •••..•. 
USERNAMELST (prog. asst. variable/parameter) 
USE-ARGS (property name) ••...••.•.•.•..•••.•.•.• 
VALUE (property name) ..•.....••..•.....•••.•.••. 
VALUEOF[ x] ~L" .............••••.•••••• I ••••••••• 

E (edit coramand) .....•...•.••••.•......••..•..• 
E (prog. asst. command) .•.•...••...•..•••.•.... 
F (edit cor.unand) ... , ......•...••••••••.•..••.•.• 
F (prog. asst. command) .•.......•.....•...•.. , . 
N (edit corru:ta·nd) ............•.•.••...•.••.•.••• 
N (prog. asst. command) ........•••••.. ;.,, .•••• 
<c.r.>" (use in history commands) .......•...... 

#UNDOSAVES (prog. asst. ~ariable/parameter) 
S (alt-mode) (prog. asst. command) . , •....••...•.. 
SBUFS (alt-modeBUFS) (prog. asst. command) ..•.•• 
*ERROR* (property name) ..........•...•..•..... ~. 
*GROUP* (property name) ....••.•.••...........•.• 
*HISTORY* (property name) .•••.•.......•.••.•...• 
*LISPXPRINT* (property name) ................... . 
*PRINT* (property name) ....••...•...•..........• 
*****ATTENTION USER-~ (~yped by system) .....•.• 
••• (J)roQ .. asst. cor:unand) •.•••••.••••••••••••••• 
.•. (typed by system) ......•.••••••...•..•.•••.. 
I functions ....................................... . 

INDEX.22.3 

Page 
Numbers 

22.45-46,56-57,59,61 
22.34 
22.14,38 
22.14,38 
22.55 
22.63 

22.34 
22.12 
22.34 
22.34 
22.41 
22.41 
22 .13 
22.8,54 
22.13 
22.28-29 
22.61 
22.14,22-23,43,59,61 
22.5,38•43,55-60,62 
22.23 
22.23,42 
22.62 
22.59 
22.59 
22.62 
22.23,59 
22.59-60 
22.45-46,56 
22.10-11,18,51 
22.43,56 
22.15-16,18,22 
22.49 
22.65 
22.66 
22.45 
22.43,55-56 
22.33,46,54 
22.31,61 
22.31 
22.31,61 
22.31 
22.31,61 
22.31 
22.19,50-51 
22.39,56-57,60 
22.24-26 
22.30 
22.24,45 
22.45-46,52 
22.45-46 
22.38,45 
22.45 
22.65 
22.22 
22.48 
22.40,58 



/RPLNOOE[X;A:D] ••••••••• -•••••••••••••••••••••••• 
= (in event address) ............•..........•.... 
?? ( prog. asst. command) •• , •••• , •••••••••••••••• 
@ (in event specificatio~) ..•••••••.••.••.•...•• 
@@ (in' event specification) .•.•...••.•.••••••..• 
\ (in event address) •...••...••.•.••.••.•••...•• 
... ( 1 n event address) •.•.•••.•••.....••.•••••.•.• 

INDEX.22.4 

Page 
Numbers 

22.57 
22 .12 
22.22 
22.14,53 
22.14,27,53 
22.12 
22.12 



SECTION 23 1 

CLISP • CONVERSATIONAL LISP 

23.1 Introduction 

The syn tax of LISP is very simple, in the sense that it can be describod 

concisely, but not in the sense that LISP programs are easy to read or write! 

This simplicity of syntax is achieved by, and at the expense of, extensive uso 

of explicit structuring, namely grouping through parenthesesization. Unliko 

many languages, there are no reserved words in LISP such as IF, THEN, AND, OR. 

fOR, DO, BEGIN, END, etc., nor reserved characters like+, -, * I, -, ~. etc. 2 

This eliminates entirely the need for parsers and precedence rules in tho LISP 

interpreter and compiler, and thereby makes program manipulation of LISP 

programs straightforward. In other words, a program that "looks at" other LISP 

programs does not need to incorporate a lot of syntactic information. For 

example, a LISP interpreter can be written in one or two pages of LISP code 

([NcC1], pp. 70-71). h is for this rea~on that LISP is by far the most 

suitable, and frequently used, programming language for writing programs that 

deal with other programs as data, e.g .. programs that analyze, modify, or 

construct other programs. 

i------------------------------------------------------------------------------CLISP was designed and implemented by W. Teitelman. It is discussed in 

2 

[Tei5]. 

except for parentheses (and period), which are used for 
structure, and space and end-of-line, which are used for 
identifiers. 

23 .1 

indicating 
delimiting 



However, it is precisely this same simplicity of syntax that mak.es LISP 

programs difficult to read and write (especially for beginners). 'Pushing 

down' is something programs do very well, and people do poorly. As an example, 

consider the following two 'equivalent' sentences: 

"The rat that the cat that the dog that ! owned chased caught ate tho 
cheese. 11 

versus 

"I own the dog that chased the cat that caught the rat that ate the 
cheese." 

Natural language contains many linguistic devices such as that illustrated in 

the second sentence above for minimizing embedding, because embedded sentencos 

are more difficult to grasp and understand than equivalent non•embodded onos 

(even if the latter sentences are somewhat longer). Similarly, most high levol 

progral11I'.'ling languages offer syntactic devices for reducing apparent depth and 

complexity of a program: the reserved words and infix operators used in ALGOL-

like languages simultaneously delimit operands and operations, and also convey 

meaning to the programmer. They are far more intuitive than parentheses. In 

fact, since LISP uses parentheses (i.e. lists) for almost all syntactic forms, 

there is very little information contained in the parentheses for the person 

reading a LISP program, and so the parentheses tend mostly to be ignored: tho 

meaning of a particular LISP expression for people is found almost entirely in 

the words, not in the structure. For example, the following expression 

(COND (EQ N 0) 1) (T TIMES N FACTORIAL ((SUB1 N))) 

is recognizable as FACTORIAL even though there are five misplaced or missing 

parentheses. Grouping words together in parentheses is done more for LISP' s 

benefit, than for the programmer's. 

CLISP is designed to make INTERLISP programs easier to read and write by 

23.2 



permitting the user to employ various infix operators. IF-THEN-ELSE statomonts, 

FOR-DO-WHILE-UNLESS-FROM-TO-etc. expressions, which are automatically convertod 

to equivalent INTERLISP expressions when they are first interpreted. For 

example, FACTORIAL could be written in CLISP: 

(IF N=O THEN 1 ELSE N•(FACTORIAL N-1)) 

Note that this expression would become an equivalent COND after it had boon 

interpreted once, so that programs that might have to analyze or otherwise 

process this expression could take advantage of the simple syntax. 

There have been similar efforts in other LISP systems, most notably the MLISP 

language at Stanford [Smi1]. CLISP differs from these in that it does not 

attempt to replace the LISP syntax so much as to augment it. In fact, one of 

the principal criteria in the design of CLISP was that users be able to freely 

intermix LISP and CLISP without having to. identify which is which. Users can 

write programs, or type in expressions for evaluation, in LISP, CLISP, or a 

mixture of both. In this way, users do not have to learn a whole n~w language 

and syntax in order to be able to use selected facilities of CLISP when and 

where they find them useful. 

CLISP is implemented via the error correction machinery in INTERLISP (see 

Section 17). Thus, any expression that is well-formed from INTERLISP's 

standpoint will never be seen by CLISP (i.e., if the user defined a function 

IF, he would effectively turn off that part of CL ISP). This means that 

interpreted programs that do not use CLISP constructs do not pay for its 

availability by slower execution time. In fact, the INTERLISP interpreter does 

not 'know• about CLISP at all. It operates as before, and when an erroneous 

form is encountered, the interpreter calls an error routine which in turn 

invokes the Do-What·.I•Mean (DWIM) analyzer which contains CLISP. If the 

expression in question turns out to be a CLISP construct, the equivalent 

23.3 



INTERLISP form is returned to the interpreter. In addition, the original CLISP 

expression, is modified so that it becomes the correctly translated INTERLISP 

form. In this way, the analysis and translation are done only once. 

Integrating CLISP into the INTERLISP system (instead of, for example, 

implementing it as a separate preprocessor) makes possible Do-What-I-Mean 

features for CLISP constructs as well as for pure LISP expressions. For 

example, if the user has defin~d a function named GET•PARENT, CLISP would know 

not to attempt to interpret the form (GET-PARENT) as an arithmetic infix 

operation. (Actually, CLISP would never get to see this form, since it docs 

not contain any errors.) If the user mistakenly writes (GET·PRAENT), CLISP 

would know he meant (GET•PARENT), and not (DIFFERENCE GET PRAENT), by using tho 

information that PRAENT is not the name of a variable, and that GET-PARENT is 

the name of a user function whose spelling is "very close" to that of 

GET-PRAENT. Similarly, by using information about the program's environment not 

re~dily available to a preprocessor, .CLISP can successfully resolve the 

following sorts of ambiguities: 

1) (LIST X"'FACT ro, where FACT is the name of a variable, means 

(LIST (X*FACT) N). 

2) (LIST X*FACT N), where FACT is not the name of a variable but. instead is 

the name of a function, means (LIST X*(FACT N)), i.e., N is FACT's 

argument• 

3) (LIST X•FACT(N)), FACT the name of a function (and not the name of a 

variable), means (LIST X*(FACT N)) .. 

4) ca~es (1),(2) and (3) with FACT misspelled!. 

The first expression is correct both from the standpoint of CLISP syntax and 

23.4 



semantics and the change would be made without the user being notified. In tho 

other cases, the user would be informed or consulted about what was taking 

place. For example, to take an extreme case, suppose the exprossion 

(LIST Xl«FCCT N) were encountered, where there was both a function named FACT 

and a variable named FCT. The user would first be asked if FCCT were a 

misspelling of FCT. If he said YES, the expression would be interpreted as 

(LIST (X:<tFCT) N). 3 If he said NO, the user would be asked if FCCT were n 

misspelling of FACT, i.e., if he intended xi:iFcCT N to mean )(l'l(FACT N). If he 

said YES to this question, the indicated transformation would be performed. If 

he said NO, the system would then ask if X*FCCT should be treated as CLISP, 

since FCCT is not the name of a (bound) variabla. 4 If he said Vf.S, tho 

expression would be transformed, if NO, it would be left alone, i.e., as 

(LIST XRFCCT N). Note that we have not even considered the case where X*FCCT is 

itself a misspelling of a variable name, e.g., a variable named XFCT (as with 

GET-PRAENT). This sort of transformation would be considered after the user 

said NO to X*FCCT N -> X*(FACT N). The graph of the possible interpretntions 

for (LIST X*FCCT N) where fCT and XFCT are the names of variables, and FACT is 

the name of a function, is shown in Figure 23-1 below. 

3--------------•-••••-•-••••••••w•••••••••~•••••o•••••••••-••-••••-a~•--••----• 

Through this discussion, we speak of CLISP or DW!M asking tho user. 
Actually, if the expression in question was typed in by the user for 
innediate execution, the user is simply informed of the transformation, on 
the grounds that the user would prefer an occasional misinterpretation 
rather than being continuously bothered, especially since he can always 
retype what he intended if a mistake occurs, and ask the programmer's 
assistant to UNDO the effects of the mistaken operations if necessary. For 
transformations on expressions in user programs, the user can inform CLISP 
whether he wishes to operate in CAUTIOUS or TRUSTING mode. In the formor 
case (most typical) the user will be asked to approve transformations, in 
the latter, CL.ISP will operate as it does on type-in, Le., perform tho 
transformation after informing the user. 

4 This question is important because many INTERLISP users already havo 
programs that employ identifiers containing CLISP operators. Thus, if 
CLISP encounters the expression A/B in a context where either A or B are 
not the names of variables, it will ask the user if A/B is intended to be 
CLISP, in case the user really does have a free variable named A/B. 

23.5 



FCCT- )FCT? 

FCCT N - ) (FACT Nl? 

2 X* FCCT-) XFCT 

3 
X* FCCT TREAT AS CL I SP ? 

4 5 

FIGURE 23-1 

23.6 



The final states for the various terminal nodes shown in the graph are: 

1: (LIST (TIMES X FCT) N) 

2: (LIST (TIMES X (FACT N))) 

3: (LIST XFCT N) 

4: (LIST (TIMES X FCCT) N) 

5: (LIST X•FCCT N) · 

CLISP can also handle parentheses errors caused by typing 8 or 9 for ' ( ' or 

')'. (On most terminals, 8 and 9 are the lower case characters for ' (' and 

1 ) 1 , i.e., 1 ( 1 and 18 1 appear on the same key, as do 1 ) 1 and 1 9 1 .) For 

example, if the user writes N*BFACTORIAL N•l, the parentheses error can be 

detected and fixed before the infix operator ~ is converted to the INTERLISP 

function TIMES. CLISP is able to distinguish this situation from cases like 

N*Swx meaning (TIMES N 8 X), or N*BX, where BX is the name of a variable, again 

by using information about the programming environment. In fact, by 

integrating CLISP with DWUI, CLISP has been made sufficiently tolerant of 

errors that almost everything can be misspelled! For example, CLISP can 

successfully transl•te the definition of FACTORIAL: 

(IFF N=O THENN1 ESLE N*8FACTTORIALNN~1) 

to the corresponding COND, while making 5 spelling corrections and fixing tho 

parenthesis error. 6 

This sort of robustness prevails throughout CLISP. For example, the iterative 

5---------------------~---------------------------------------------.-----------CLISP also contains a facility for converting from lNlERLlSP back to CLISP, 
so that after running the above incorrect definition of FACTORIAL, tho user 
could 'CLISPIFY' the now · correct LISP version to obtain 
(IF N=O THEN 1 ELSE N*(FACTORIAL N·1)). 

23.7 



statement permits the user to say things 11ke:6 

FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X) 

However, the user can also write OLD (X~M), (OLD x~M), (OLD (X~M)), permute the 

order of the operators, e.g., DO PRINT XTO N FOR OLD x~M WHILE PRIMEP X, omit 

either or both sets of parentheses, misspell any or all of the operators FOR, 

OLD, FROM, TO, 00, or WHILE, or leave out the word DO entirely! And, of 

course, he can also misspell PRINT, PRIMEP, M or N! 7 

CLISP is well integrated into the INTERLISP system. For example, the above 

iterative statement translates into an equivalent INTERLISP form using PROG, 

COND, GO, etc. 8 When the interpreter subsequently encounters this CLISP 

expression, it automatically obtains and evaluates the translation. 9 Similarly, 

the compiler "knows" to compile the translated form. However. if the usor 

PRETTYPRINTs his program, at the corresponding point in his function, 

PRETTYPRINT "knows" to print the original CLISP. Similarly, when the user 

edits his program, the editor keeps the translation invisible to the user. If 

6--~------------·-----------------------------------------------~------------·-This expression should be self explanatory, except possibly for tho 

7 

8 

9 

operator OLD, which says X is to be the variable of iteration, i.e., tho 
one to be stepped from N to M, but X is not to be rebound. Thus when this 
loop finishes execution, X will be equal to N+t. 

In this example, the only thing the user could not misspell is the first X, 
since it specifies the name of the variable of iteration. The other two 
instances of X could be misspelled. 

(PROG NIL 
(SETO X M) 

ssLP( corm 
((OR (IGREATERP X N) 

(NOT (PRIMEP X))) 
(RETURN))) 

(PRINT X) 
(SETO X (ADDI X)) 
(GO SSLP)) 

See page 23.31, for discussion of how translations are stored. 

23.8 



the user modifies the CLISP, the translation is automatically discarded and 

recomputed the next time the expression is evaluated. 

In short, CLISP is not a language at all, but rather a system. It plays a role 

analagous to that of the programmer's assistant (Section 22). Whereas the 

prograr.uner 1 s assistant is an invisible intermediary agent between the user's 

console requests and the INTERLISP executive, CLISP sits between the user's 

programs and the INTERLISP interpreter. 

Only a small effort has been devoted to defining the core syntax of CLISP. 

Instead, most of the effort has been concentrated on providing a facility which 

'makes sense' out of the input expressions using context information as well as 

built-in and acquired information about user and system programs. It has boon 

said that communication is based on the intention of the speaker to produce an 

effect in the recipient. CLISP operates under the assumption that what the 

user said was intended to represent a meaningful operation, and therefore tries 

very hard to make sense out of it. The motivation behind CLISP is not to 

provide the user with many different ways of saying the same thing, but to 

enable him to worry less about the syntactic aspects of his corrununication with 

the system. In other words, it gives the user a new degree of freedom by 

permitting him to concentrate more on the problem at hand, rather than on 

translation into a formal and unambiguous language. 

23.2 CLISP Syntax 

Throughout CLISP, a non-atomic form, i.e., a list, can always be substituted 

for a variable, and vice versa, without changing the interpretation. For 

example, if the value of (FOO X) is A, and the value of (FIE Y) is B, then 

(LIST (FOO X)+(FIE Y)) has the same value as (LIST A+B). Note that the first 

expression consists of a list of foµr elements: the·· atom 'LIST'. the list 

23.9 



+ 
+ 
+ 

'(FOO X)', the atom•+•, and the list '(FIE X)', whereas the second expression, 

(LIST A+B), consists of a list of only two elements: the atom 'LIST' and tho 

atom 1 A+B 1 • Since (LIST (FOO X)+(FIE Y)) is indistinguishable from 

(LIST (FOO X)_+_(FIE Y)) because spaces before or after parentheses have no 

effect on the INTERLISP READ progra~. 10 to be consistent, extra spaces have no 

effe6t on atomic operands either. In other words, CLISP will treat 

(LIST A+_B), (LIST A_+B), and (LIST A_+_B) the same as (LIST A+B). 

23.3 Infix Operators 

CLISP recognizes the arithmetic infix o.perators +, -, 111 , /, and t. These are 

converted to IPLUS, ·!DIFFERENCE (or in the case of unary minus, IMINUS), 

!TIMES, !QUOTIENT, and EXPT. 11 T~e usual precedence rules apply (although these 

can be easily changed ~Y the user), 12 i.e., * has higher precedence than + so 

that A+B*C is the same as. A+(B*C), and both * and. I are lowe;r than t so that 

2*Xt2 is the same as 2*{Xt2). Operators of the same precedence group from left. 

to right, e.g .• A/B/C is equivalent to (A/B)/C. Minus is binary whenever 

possible, i.e., except when it is the first operator in a list,, as in (-A) or 

11 

12 

The I in IPLUS denotes jnteger arithmetic, i.e., IPLUS converts its 
argunents to integers, and returns an integer value. INTERLISP also 
contains floating point arithmetic functions as well as mixed arithmetic 
functions (see Secticin 13). Floating point arithmetic functions are used 
in the translation if one or both of the Operands are themselves floating 
point numbers, e.g. X+l.5 translates as (FPLUS X 1.5). In addition, CLISP 
contains a facility .for declaring which type of arithmetic is to be used, 
either by making a global declaration, or by separate declarations about 
individual functions or Variables. See section on declarations, p.1ge 
23.35. 

The complete order of precedence for CL.ISP operators is 
Figure 23-2, page 23.15. 

23.10 

given in 



(-A), or when it immediately follows another operator, as in A*-B. 13 14 

Note that arouptng with parenthe.se.s can alwag.s be u.sed to override the normal 
precedence grouping, or when the user i.s not .sure how a particular expression 
iuill pa.r:;e. 

CLISP also recognizes as infix operators =· GT~ LT, GE, and LE, 16 as woll as 

various predicates~ e.g., MEMBER, ANO, OR, EQUAL, etc. 16 AND is higher than OR, 

e.g., (XOR Y AND Z) is the s.ame as (XOR (Y AND Z)), and both AND and OR aro 

lower than the other infix operators, e.g., (X ANDY EQUAL Z) is the same as 

( X AND ( Y EQUAL Z)). All of the. infix preqicates have lower precedence than 

INTERLISP forms, i.e., (FOO X GT FIE Y) is the same as ((FOO X) GT (FIE V)), 

since it is far more common to apply a predicate to two forms, than to use a 

Boolean as an argument to a function, e.g. (FOO (X GT (FIE Y))). However, 

again, the user can easily change this. 

Note that only .single character operators, e.g. ·~ •, =, etc., can·appear in 
the interior of an atom. All other operators mu.st be .set· oJJ from identifiers 

ia-------------------------------------------------------------·------·-------~ There are some do-what-I-mean features associated with Unary minus, as in 

14 

16 

16 

(LIST -X Y). See ~action on operation, page 23.68. 

Note that + in front of a number will disappear when the number is rend, 
e.g., (FOO X +2) is indistinguishable from (FOO X 2). This moans that 
(FOO X +2) will not be interpreted as CLISP, or be converted to 
(FOO (!PLUS X 2)). Similarly, (FOO X ·2) will not be interpreted tho same 
as (FOO X-2). To circumvent this, always type a space between the + or -
and a number if an infix operator is intended, e.g., write (FOO X + 2). 

Greater Than, Less Than, Greater than or Equal to, and Less than or Equal 
to, respective-ly. GT, LT, GE, and LE -are all affected by the - same 
declarations as + and •, with the init.ial default to use IGREATERP and 
ILESSP. 

Currently the complete list is MEMBER, MEMB, FMEMB, ·ILESSP, IGREATERP, 
LESSP, GREATERP, FGTP, EQ, NEQ, EQP, EQUAL, OR, and AND. Now infix 
operators can be easily added, as described in the section on CL ISP 
internal conventions, page 23.72. Spelling correction on misspelled infix 
operators is peformed using clispinfixsplst as a spelling list. 

23.11 



with spaces. For example, XLTV will not be recogntzed a~ CLJsr. 17 

• • 

: is an infix operator used in CLISP for extracting substructures from lists. 18 

e.g .• X:3 specifies the 3rd element of x. (FOO Y)::Z specifies the second tail 

of (FOO Y). i.e., (COOR (FOO V)), and Z:l:Z is the second element of the first 

element of z. or (CADAR Z). Negative numbers may be used t6 indicate position 

counting from the end of a list, e.g., X:·l is the last element of X, or 

(CAR (LAST X)). X::-1 is the last tail, i.e., (LAST )(). 19 

.. is used to indicate assignment, e.g., x~v translates to (SETQ X Y) .20 21 In 

i 7- -I~ -~~~~- -;;s·e-s·.--o~iM-~tii. be··;bi;· ;~--d-;a-g_n_o_s_e_ • ;h;;·; t ;·~~; i~~ --,;s· ·; • ;~~=~~ 

18 

19 

20 

21 

spelling error, in which case after the atom is split apart, CLISP will be 
able to perform the indicated transformation. · 

The record facility, page 23.50, provides another way of extractinn 
substructures by allowing the user to assign names to the various parts of 
the structure and then retrieve from or store into the corresponding 
structure by name. The pattern match facility, page 23.38, also can bo 
used to extract substructure. : is also used to indicate both record and 
pattern match operations. 

The interpretation of negative numbers can be explained neatly in terms of 
edit commands: . :-n returns what would be the current expression after 
executing the command ·n, and : :·n returns what would be the current 
expression after executing ·n followed by UP. 

If ~ does not have a value, and is not the name of one of the bound 
variables of the function in which it appears, spelling correction is 
atter.ipted. However, since this may simply be ·a case of assigning an 
ini.tial value to a new free variable, DWIM will always ask for approval 
before making the correction. · 

Note that an atom of the form x~v. appearing at the top level 6f a PROG, 
will not be recognized as an assignment statement because ·it will bo 
interpreted as a PROG label by the INTERLISP interpreter, and therefore 
wi 11 not cause an error, so DWIM and CL ISP will · never get to see it. 
Instead, one mu•t write CX~Y). 

23.12 



conjunction with : and ::, .. can also be used to perform a more .general type of 

assignr.ient, namely one involving structure modification. For example, X: z .. y 

means make the second element of X be Y, in INTERLISP terms 

(RPLACA (CDR X) Y). 22 23 Negative numbers. can also be used, ·e.g., X:-2 .. v. 24 .. 

is also used to indicate assignment in record operations, page 23.50. and 

pattern match operations, page 23.38 . 

.. has different precedence on .the left from on the right. On the left, .. is a 

"tight" operator, i.e., high precedence; so that A+B .. C is the same as A+(B .. C). 

On the right, .. has broader scope so that A .. B+C is the same as A .. (B+C). 

On typein, $0-form (alt-modeo-form) is equivalent to . set the "last thing 

mentioned". 26 For example, immediately after examining the value of 

LONGVARIABLENAME, the user could set it by typing s .. followed by a form. 

23.4 Prefix Operators 

CLISP recognizes 1 and - as prefix operators. ' means QUOTE when it is the 

first character in an identifier, and is ignored when it is used in the 

interior of an identifier. Thus, X='V means (EQ X (QUOTE V)), but X=CAN'T 

means (EQ X CAN'T), not (EQ X CAN) followed by (QUOTE T). This enables users 

22-----------------------------------------------------------------------------Note that the value of this operation is the value of rplaca. which is the 

23 

24 

25 

corresponding node. 

The user can indicate he wants /rplaca and /rplacd used (undoable version 
of rplaca and rplacd, see Section 22), or frplaca and frplacd (fast 
versions of rplaca and rplacd, see Section 5), by means of declarations 
(page 23.35). The initial default is for rplaca and rplacd. 

which translates to (RPLACA (NLEFT X Z) V). 

i.e. is equivalent to (SETQ lastword form). See Section 17. 

23.13 



to have variable and function names with • in them (so long as the ' is not tho 

first character). 

Following ' all operators are ignored for the rest of the identifier. e.g., 

'-A means (QUOTE ~A), and 'X=Y means (QUOTE X=V), not (EQ (QUOTE X) Y). 26 

On typein, 1 $ (i.e. 'alt-mode) is equivalent to (QUOTE value-of-lastword) (seo 

Section 17). For example, after calling prettyprint on LONGFUNCTION, the usor 

could move it.s definition to FOO by typing (MOVD •s 'F00).27 

- means NOT. - can negate a form, as in -(ASSOC X V). or ... x, or negate an 

infix operator, e.g., (A -GT B). is the same as (A LEO B). Note that -A=B means 

( EQ (tmT A) B). 

----·------------------------------·-------------~-------------~---------------26 

27 

To write (EQ (QUOTE X) Y), one writes V='X, or 'X_=Y. 
where an extra space does make a difference. 

This is one place 

A'ot (MOVD $ 'FOO), which would be equivalent to (MOVD LONGFUNCTION 'FOO), 
and would (probably) cause a U.S.A. LONGFUNCTION error, nor MOVO(S FOO), 
which would actually move the def1ntt1on of S to FOO, since D\./IM and tho 
spelling corrector would never be invok~d. · 

23 .14 



Order of Precedence of CLISP operators 

~ (left precedence) 

- (unary). .. 

i:i I 

.:-, - (binary) 

~ (right precedence) 

::: 

INTERLISP forms 

LT, GT, EQUAL, MEMBER, etc. 

AND 

OR 

IF, THEN, ELSEIF, ELSE 

iterative statement operators 

Figure 23·2 

28 

29 

28-----------------------------------------------------------------------------.. has a different left and right precedence, e.g~. A+B .. C+D is the same as 

29 

A+(B--(C+D)). In other words, .. has minimal scope on the left and maximal 
scope on the right. 

When - negates an operator, e.g., .. :::, -LT, the two operators are treated as 
a single operator whose precedence is that of the second operator. ~hen .. 
negates a function,_ e.g .. , ( .. FOO X Y). it negates the whole form, i.e., 
(-(FOO X Y)). 

23 .15 



23.5 Constructing Lists - the <.> operators30 

Angle brackets are used in CLISP to indicate list construction. The appearance 

of a '<' corresponds to a 1 ( 1 and indicates that a list is to be constructed 

containing all the elements up to the corresponding '>'.For example. <AB <C>> 

translates to (LIST A B (LIST C)). ! can be used to indicate that the next 

expression is to be inserted in the list as a segment, . e.g., <A B C> 

translates to (CONS A (CONS BC)) and<! A I BC> to (APPEND AB (LIST C)). ! I 

is used to indicate that the next expression is to be inserted as a segment, 

and furthermore, all list structure to its right in the angle brackets is to be 

physically attached to it, e.g., <! ! AB> translates to (NCONCl AB). and 

<!!A !B !C> to (NCONC A (APPEND B C)). 31 32 Note that<. I, !I; and> need not 

be separate atoms. for example. <A B ! C> may be written equally well as 

< A B !C >. Also, arbitrary INTERLISP or CLISP forms may be used within angle 

brackets. For example, one can write <FOO .. ( FIE X) I V> which translates to 

(CONS (SETO FOO (FIE X)) Y). CLISPIFY converts expressions in ~· fil1. 
append, !l.£2.!1£• nconcl, /nconc, and /nconc1 into equivalent CL ISP expressions 

using<,>,!, and!!. 

~ote: angle brackets differ from other C~ISP operator$ in that they act more 

like brackets than operators. For example, <A B 'C> translates to 

(LIST AB (QUOTE C)) even though following', all operators are ignored for the 

rest of the identifier.33 Note however that <A B •_c> D> .is equivalent to 

31 

32 

33 

Not (NCONC (APPEND AB) C), which would have the same value, but would 
attach C to B, and not attach either to A. 

The user can indicate /nconc or /nconcl be used instead of !1£.Ql!.£ and nconct 
by declarations. 

Only if a previous unmatched < has been seen, e.g. 
print the atom A>B. 

23.16 

(PRINT I A>B) will 



(LIST A B (QUOTE C>) D). 

23.6 IF, THEN, ELSE 

CLISP translates expressions employing IFITHENIELSEIFIELSE into equivalent 

conditional expressions. The segment between IF I ELSE IF and the next THEN 

corresponds to the predicate of a COND clause, and the segment between THEN and 

the next ELSEIELSEIF as the consequent(s). ELSE is the same as ELSEIF T THEN. 

IF, THEN, ELSE, and ELSEIF are of lower precedence than all infix and prefix 

opera tors, as well as INTERLISP forms, so that parentheses can be omitted 

between IFIELSEIF, and THEN. 34 For example, (IF FOO X Y THEN --) is equivalent 

to (IF (FOO x Y) THEN --). 36 Similarly, cl.ISP treats (IF x THEN FOO )( y ELSE 

--) as equivalent to (IF X THEN (FOO)( Y) ELSE··) because it does not 'make 

sense' to evaluate a variable for effect. In other words, even if FOO were 

also the name of a variable, (COND (X FOO X Y)) doesn't make sense. 

Essentially, CLISP determines whether. the segment between THEN and the next 

ELSE I ELSE IF corresponds to one f'~rm or several and acts accordingly. 36 Thus, 

(IF - - THEN (FOO X) Y ELSE -- ) corresponds to a clause with two consequents. 

Similarly, (IF -- THEN FOOo-X Y ELSE -- ) corresponds to a .clause with two 

ia-•--•••••••••••~••••p•••••••-••••••••••••-••••••••••••••••••••••-•••••••••••• 

IF, THEN, ELSE, and ELSEIF can also be misspelled. Spelling correction is 
performed using clispifwordsplst as a spelling list. 

35 

36 

If FOO is the name of a variable, IF FOO THEN is translated as 
(corm (FOO -- ) ) even if FOO is also the name of a function. If tho 
functional interpretation is intended, FOO should . be enclosed in 
parentheses, e.g.; IF (FOO) THEN··· Similary for IF ·- THEN FOO ELSEIF 

occasionally interacting with the user to resolve ambiguous cases. 

23.17 



consequents, and is equivalent to (IF -- THEN (Foo~x> Y ELSE --). 37 

23.7 Iterative Statements 

The following is an example of a CLISP iterative statement: 

(WHILE x~(READ)-='STOP DO (PRINT (EVAL X))) 

This statement says "READ an expression and set X to it. If X is not equal to 

the atom STOP, then evaluate X, print the result, and iterate."38 

The i.s. (iterative statement) in its various forms permits the user to specify 

complicated iterative· statements in a straightforward and visible manner; 

Rather than the user having to perform the mental tran~formations to an 

equivalent INTERLISP form using PROG, MAPC, HAPCAR, etc., the system does it 

for him. The goal was to provide a robust and tolerant facility which could 

"make sense" out of a wide class of iterative statements. Accordingly, . the 

user should not feel obliged to read and understand in detail the description 

of each operator given below in order to use iterative statements. 

Currently, the following i.s. operators are implemented: FOR, BIND, OLD, IN, 

ON, FROM, TO, BY, WHEN, WHILE, UNTIL, REPEATWHILE, REPEATUNTIL, UNLESS, 

COLLECT, JOIN, DO; SUM, COUNT, ALWAYS, NEVER, THEREIS, AS, FIRST, FINALLY, 

i~----------------------------------------------------------~--~---------------To write the equivalent of a singleton cond clause, i.e., a clause with a 

38 

predicate but no consequent, write either nothing following the THEN, or 
omit the THEN entirely, e.g., (IF (FOO X) THEN ELSEIF ··) or 
(IF (FOO X) ELSE IF -·), meaning if (FOO X) is not NIL, it is the value of 
the cond. 

The statement translates to: 
(PROG (SSVAL) SSLP(COND ((EQ (SETQ X (READ))(QUOTE STOP)) (RETURN SSVAL))) 
(PRINT (EVAL X)) SSITERATE (GO SSLP)) . 

23.18 



EACHTIME. Their function is explained below. New operators can be defined as 

described on page 23.29. Mis~pellings of operators are recognizod and 

corrected. 39 The order of appearari~e of operators is never important;4° CLISP 

scans the entire statement before it begins to construct the equivalent 

INTERLISP form. 

DO form 

COLLECT form 

specifies what is.to be done at each iteration. DO with no 

other operator specifies an infinite loop. If some explicit 

or implicit terminating condition is specified, the value of 

the i.s. is NIL. Translate to MAPC or MAP whenever 

possible. 

like DO, except specifies that the value of form at each 

iteration is to be collected in a list, which is returned as 

. the value of the L·S. when it terminates. Translates to 

MAPCAR, MAPLIST or SUBSET whenever possible.41 ~ 

JOIN form like 00, except that the values.are NCONted.- Translates to 

MAPCONC or MAPCON whenever possible.42 

,,i 

39-----------------------------------------------------------------------------using the spelling list clispforwordsplst. 

40 

41 

42 

DWIM and CLISP are invoked on iterative statements because car of tho i.s. 
is not the name of a function, and hence generates ;an. error.- If the us or 
defines a function by the same name as an i.s. operator, e.g. WHILE, TO. 
etc.. the operator will no longer have the CL ISP interpretation when 1 t 
appears as car of a form, although it will continue to be treated as an 
i.s. operatorl.f it appears in the interior of an i.s. To alert the user, a 
warning message is printed, e.g. 
(WHILE DEFINED, THEREFORE DISABLED IN CLISP)~ 

... ·, 

when COLLECT translates to a PROG, e.g. a WHILE operator appears in the 
iterative statement, the translation employs an open tconc using .two 
pointers similar to that used by the compiler for cornpilinQiiiai}car. 

·' ·;:' 

/NCONC, /MAPCONC, and /MAPCON'· are used when the declaration UNDOABLE is in 
effect. 

·• 23.19 

+ 
+ 
+ 

+ 
+ 
+ 



SUM form like DO, except specifies that the values of form at each 

iteration be added together and returned as the value of tho 

i.s., e.g. (FOR I FROM 1 TO 5 SUM ItZ) 

1+4+9+16+25.43 

is equal to 

COUNT pred like DO, except counts number of times that pred is truo. 

and returns that count as its value. 

ALWAYS pred like DO, except returns T if the value of pred is non-NIL 

for all iterations (returns NIL as soon as the value of prod 

is NIL). e.g. (FOR X IN Y ALWAYS (ATOM X)) is the same as 

(EVERY Y (FUNCTION ATOM)). 

NEVER pred like ALWAYS, except returns T if the value of pred is never 

true, i.e. NEVER pred is the same as ALWAYS -pred. 

THEREIS pred returns the first value of the 1. v. for which pred is 

non-NIL, e.g. (tOR X IN Y THEREIS NUMBERP) returns the 

first number in ". and is equivalent to 

(CAR (SOME Y (FUNCTION NUMBERP))). 44 

DO, COLLECT, JOIN, SUM, ALWAYS, NEVER, and THEREIS are exa~ples of a certain 

kind of i.s. operator called an i.s.type. The i.s.type specifies what is to bo 

done at each iteration. Its operand is called the body of the iterative 

43----------------------------------------------------------~------------·-----iplus, fplus, or plus will be used for the translation depending on tho 

44 

declarations in effect. 

THEREIS returns the i.v. instead of the tail (as does the function some) in 
order to · provide an interpretation consistent with statements such as 
(FOR I FROM 1 TO 10 THEREIS --), where there is no tail. Note that 
(SOME V (FUNCTION NUMBERP)) is equivalent to 
(FOR X ON Y THEREIS (NUMBERP (CAR X))). 

23.20 



stater;,·o·nt. Each i.s. must have one and only one Ls.type. The function 

i.s.type, page 23.29, provides a means of defining additional i.s.types. 

FOR var 

FOR vars 

OLD var 

BIND var, vars 

specifies the variable of iterationo or i.v., which is usod 

in conjunction with IN, ON, FROM, TO, and BY. The variable 

is rebound for ~he .scope of the i.s., except when modified 

by OLD ~s described below. 

~a list of variables, e.g., FOR (X Y Z) IN --. The first 

variable is the i. v., the rest are dummy variables. See 

BIND below. 

indicates is not to be rebound, e.g.• 

(FOR OLD X FROM 1 TON DO •• UNTIL -·), 

used to specify dummy variables, e.g., FOR (XV Z) IN-· is 

equivalent to FOR X BIND (V Z) IN -- • BIND · can be usod 

without FOR. For example, in the 1.s. shciwn on ~age 23.18, 

X could be made local by writing 

(BIND X WHILE x~(READ)~='STOP ... ). 

Note: FOR, OLD, and BIND variables can be initialized by using ~, e.g., 

(FOR OLD (X~form) BIND (V~form) ..• ). 

rn form specifies that the i.s. is to iterate down a list with tho 

i.v. being rese~ to the co~responding element at each 

iteration. For .example, FOR X IN Y DO corresponds to 

(MAPC V (FUNCTION (LAMBDA (X) ··))). If no i.v. has boon 

specified, a dummy is supplied, e.g., IN Y COLLECT CADR is 

equivalent to (MAPCAR Y (FUNCTION CADR)). 

23.21 



ON form 

IN OLD var 

same as IN except that the i. v. is reset to tho 

corresponding tail at each iteration. Thus IN corresponds 

to MAPC, MAPCAR, and MAPCONC, while ON corresponds to MAP, 

MAPLIST, and MAPCON. 

specifies that the i.s. is to iterate down Y!!.!'.:· with vcir 

itself being reset to the corresponding tail at each 

iteration, e.g.' after (FOR X IN OLD L DO •• UNTIL ··) 

finishes, L will be some tail of its original value. 

IN OLD (var .. form) same as IN OLD lli• except fil is first set to value of 

form. 

ON OLD var same as IN OLD m except the i. v. is reset to the current 

value of lli at each iteration, instead of to car[var]. 

ON OLD ( var .. form) same as ON OLD fil• except lli is first set to value of 

form. 

WHEN pred 

UIRESS pred 

WHILE pred 

UNTIL pred 

provides a way of excepting certain iterations. For 

example, (FOR X IN Y COLLECT X WHEN NUMBERP X) collects only 

the elements of Y that are numbers. 

same as WHEN except for the difference in sign, i.e., WHEN Z 

is the same as UNLESS -z. 

provides a way of terminating the i.s. WHILE pred evaluates 

pred before each iteration, and if the value is NIL. exits. 

Same as WHILE except for difference in sign, i.e., 

WHILE PRED is equivalent to UNTIL ~PRED. 

23.22 



UNTIL n 

REPEATWHILE pred 

REPEATUNTIL pred/n 

FROM form 

TO form 

n a number, equivalent to UNTIL (i.v. GT n). 

same as WHILE except the test is performed after tho 

evalution of the body, but before the i.v. is reset for the 
·:··1 

next iteration. 

' ; ~~ 

same as UNTIL, except the test is performed after the 

evaluation of the body. 

is used to specify an initial value for a numerical i .v. 

The i.v. is automatically incremented by 1 after each 
.. 

iteration (unless BY is specified). If no i. v. has been 

specified, a dummy Lv. is supplied and initialized, e.g., 

(COLLECT SQRT FROM 2 TO 5) returns (1.414.1.732 2.0 2.236). 

is used to specify the final value for a numerical i.v. If 
., . 

FROM is not specified, the i.v. is initialized to 1. If no 

i.v. has been specified, a dummy i.v. is supplied and 

initialized. If BY is not specified, the i.v. is 
.,,. 

automatically incremented by 1 after each 1 ter~tio~ .45 When 

the i.v. is definitely being incremented, i.e. either BY is 

not specified, or its operand 1~ a positive number, the i.s. 
',:_ 

terminates when the i.v. exceeds the value of form (which is 

reevaluated each iteration) e.g., (FOR X FROM 1 TO 10 --), 

is equivalent to (FOR X FROM 1 UNTIL (X GT 10) ·-). 

45-----------------------------------------------------------------------------except when both the operands to TO and FROM are numbers, an~ TO's operand 
is less than FROM' s operand, e.g. FROM 10 TO l, in which case the i ;-V, is 
decremented by 1. after each i.teration. In this case, the· Ls. terminates' 
when the i.v. becomes less than the value of f2.!:!!!. 

23.,23 

+ 

+ 

... 

+ 

+ 



• 

Similarly, when the i.v. is definitely being decremented the 

i.s. terminates when the i.v. becomes less than the value of 

f.2r.m (see description of BY). 

BY x (with IN/ON) If IN or ON have been specified, the value of ! determines 

the tatl for the next iteration, which in turn determines 

the value for the i. v. as described earner, 1. e. the now 

i.v. is £!!.!: of the tail for IN, the tail itself for ON. In 

conjunction with IN, the user can refer to the current tail 

within ! by using the i.v. or the operand for IN/ON, e.g. 

(FOR ZIN L BY (COOR!) ..• ) or 

(FOR Z IN L BY (COOR .!:,) ••• ) • At translation time, the namo 

of the internal variable which holds the value of the 

current tail is substituted for the i.v. throughout ~· For 

example, (FOR X IN Y BY (COR (MEMB 'FOO (COR X))) COLLECT X) 

specifies that after each iteration, cdr of the current tail 

is to be searched for the atom FOO, and (cdr of) this latter 

tail to be used for the next iteration. 

BY x (without IN/ON) If IN or ON have not been used, BY specifies how the 

i.v. itself is reset at each iteration. If FROM or TO havo 

been specified, the i. v. is known to be numerical, so the 

new i.v. is computed by adding the value of x 

(which is reevaluated each iteration) to the current value 

of the i.v., e.g., (FOR N FROM 1 TO 10 BY Z COLLECT N) makes 

a list of the first five odd numbers. 

If ~· is a positive number, 46 the i.s. terminates when the 

a~-----------------------------------------------------------------------------
~ itself, not its value, which in general CL ISP would have no way of 
knowing in advance. 

23.24 



FIRST form 

FINALLY form 

EACHTIME form 

value of the i.v. ex.ceeds the value of TO's operand. Ir x 

is a negative number, the i.s. terminates when the value of 

the i.v. becomes less than TO's operand, e.g. 

(FOR I FROM N TOM BY -2 UNTIL (I LT M) ... ). Otherwise, 

the terminating condition for each iteration depends on the 

value or ! for that iteration: if! < 0, the test is whethor 

the i.v. is less than TO's operand, if ! > O the test is 

whether the i.v. exceeds TO's operand, otherwise if ~=0, tho 

i.s. terminates unconditionally. 47 

If FROM or TO have not been specified, the i .v .. is simply 

reset to the value of ! after each iteration, e.g. 

(FOR I FROM N BY 2 ... ) is equivalent to 

{FOR I~N BY (IPLUS I 2) ... ). 

form is evaluated once before the first iteration, e.g. 

(FOR X Y Z IN L -- FIRST (FOO Y Z)), and FOO could be used 

to initialize Y and Z. 

form is evaluated after the Ls. terminates. For example, 

(FOR x IN L BIND v~o DO (IF ATOM){ THEN v~Y+l) 

FINALLY (RETURN Y)) will return the number of atoms in L. 

form is evaluated at the beginning of each iteration beforo, 

and regardless of, any testing. For example; consider (FOR I 

FROM 1 TO N DO ( . . . (FOO I) ... ) UNLESS ( . . . (FOO I) •.. ) 

UNTIL (... (FOO I) ... ) ) . The user might want to set a 

47-----------------------------------------------------------------------------A temporary variable is used so that x is only evaluated once. However, 
code for TO' s operand appears twice in- the translation, even though it is 
evaluated only once. 



AS var 

Miscellaneous 

temporary variable to the value of (FOO I) in order t.o avoid 

computing it three times each iteration. However. without 

knowing the translation, he would not know whether to put 

the assignment in the operand to DO, UNLESS, or UNTIL, i.e. 

which one would be executed first. He can avoid this 

problem by simply writing EACHTIME J .. (Fbo I). 

is used to specify an iterative statement involving more 

than one iterative variable, e.g. 

(FOR X IN Y AS U INV DO --) corresponds to map2c. Tho i.s. 

terminates when any of the terminating conditions are met, 

e.g. (FOR X INV AS I FROM I TO 10 COLLECT X) makes a list 

of the first ten elements of V, or however many elements 

there are on Y if less than 10. 

The operand to AS, ill• specifies the new i. v. For tho 

remainder of the i.s., or until another AS is encountered, 

all operators refer to the new i. v. For example, 

(FOR I FROM I TO N1 AS J FROM 1 TO N2 BY 2 

ASK FROM N3 TO 1 BY -1 --) terminates when I exceeds Nl, or 

J exceeds· NZ, or K becomes less than 1. After each 

iteration, I is incremented by 1, J by 2, and K by -1. 

1. Lowercase versions of all i .s. operators are equivalent to the uppercase, 

e.g., (for X in Y ... }. 

2. Each i.s. operator is of lower precedence than all INTERLISP forms. so 

parentheses around the operands can be omitted, and will be supplied where 

necessary, e.g., BIND (X Y Z) can be wl'itten BIND X Y Z, OLD (X .. form) as 

OLD X .. form, WHEN (NUMBERP X) as WHEN NUMBERP X, etc. 

23.26 



3. RETURf~ or GO may be used in any operand. (In this case, the translation of 111 

the iterative statement will always be in the form of a 'PROG, novor a l'l 

mapping function.) RETURN means return from the i .s. (with the indicatocl l'l 

value), not from the function in which the Ls appears. GO refers to « 

label elsewhere in the function in which the i.s. appears, except for tho i:i 

labels $$LP,SSITERATE, and $$OUT which are reserved, as described in 6 i:i 

below. 

4. In the case of FIRST, FINALLY, EACHTIME, or one of the i.s.~ypes, e.g. DO, 

COLLECT, SUM, etc., the operand can consist of more than one form, e.g., 

COLLECT (PRINT X:l) X:2, in which case a PROGN is supplied. 

5. Each operand can be the name of a function, in which ~ase it is applied to 

the (last) i. v., 4B 49 fJO e.g., FOR X IN V DO PRINT WHEN NUMB ERP, is tho 

same as FOR X IN Y DO (PRINT X) WHEN (NUMBERP X). Note that the Lv .. noocl 

not be explicitly specified, e.g., IN Y DO PRINT WHEN NUMBERP will work. 

6. While the exact form of the translation of an iterative statemon~ depends + 

on which operators are present, a PROG will always be used whenever the + 

i.s. specifies dummy variables, i.e. if a BIND operator appears, or there "°' 

is more than one variable specified by a FOR operator~ or a GO, RETURN, or + 

a reference to the variable $$VAL appears in any of the operands. When a "°' 

PROG is used, the form of the translation is: 

4a--------------------------·-------·--------------·----------------~-·---------For Ls.types, e.g. DO, COLLECT, JOIN, the function is always applied to 

49 

50 

the first 1.v. in the 1.s., whether explicity named or not. For example, 
(IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on Y, not integers 
between 1 and 10. 

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or 
ON, since they "operate" before the loop starts, when the i.v. may not even 
be bound. 

In the case of BY in conjunction with IN, the function is. applied to tho 
current tail e.g., FOR X IN Y BY COOR •.• , ,is the same as FOR X IN Y BY 
(COOR X) •.. See page 23.24. 

23.27' 



+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 
+ 

(PROCi variables 
{initialize} 

$$LP {eachtime} 
{test} 
{body} 

$$ITERATE 
{aftertest} 
{update} 
(GO SSLP) 

$$OUT (finalize} 
(RE TURN SS VAL)) 

where {test} corresponds to that portion of the -loop that tests for 

termination and also for those iterations for which {body} is not going to 

be executed, (as indicated by a WHEN or UNLESS); (body} corresponds to tho 

operand of the i.s.type, e.g. DO, COLLECT, etc.; {aftertest} correspond~ to 

those tests for termination specified by REPEATWHILE or REPEATUtHIL; and 

{update} corresponds to that part that resets the tail, incremonts the 

counter, etc. in preparation for the next iteration. {initial12a}, 

{finalize}, and {eachtime} correspond to the operands of FIRST, FINALLY, 

and EACHTIME, if any. 

Note that since {body} always appears at the top level of the PROG, tho 

user can insert labels in {body}, and .9.2 to them from within (body} or from 

other i.s. operands, e.g. (FOR X IN Y FIRST (GO A) DO (FOO) A (FIE)). 61 The 

user can also S.2 to SSLP, $$ITERATE or SSOUT. or explicitly set $$VAL. 

Errors in Iterative St~tements 

An error will be generated and an appropriate diagnostic printed if any of tho 

f6llowing conditions hold: 

a1·-----~---------------------------------------------···----------------------However, since {body} is dwimified as a list of forms, the label(s) should 
be added to the dumrt1y variables for the iterative statement in ordor to 
prevent their being dwimified and possibly 'corrected', e.g. 
(FOR X IN Y BIND A FIRS.T (GO A) DO (FOO) A (FIE)). 

23.28 



1. Op0rator with null operand, i.e. two adjacent operators, as in FOR X IN Y 

UNT.LL DO 

2. Operand consisting of more than one form (except as operand to FIRST, 

FINALLY, or one of the 1.s.types), e.g., FOR X INV (PRINT X) COLLECT 

3. IN, Or!, FROM, TO, or B V appear twice in same :!.. s. 

4. Both IN and ON used on same i.v. 

5. FROM or TO used with IN or ON on same i.v. 

6. More than one i.s.type, e.g. a DO and a SUM. 

In 3, 4, or 5, an error is not generated if an intervening AS occurs. 

If an error occurs, the i.s. is left unchanged. 

If no DO, COLLECT, JOIN or any of the other i.s.types are specified, CLISP will 

first attempt to find an operand consisting of more than one form, e.g .• 

FOR X IN Y (PRINT X) WHEN ATOM X, and in this case will insert a DO after the 

first form. (In this case, condition 2 is not considered to be met, and an 

error is not generated.) If CLISP cannot find such an operand, and no WHILE or ~ 

UNTIL appears in the 1.s., a warning message is printed: NO DO, COLLECT, OR .:: 

JOIN: followed by the i.s. 

Similarly, if no terminating condition is detected, i.e. no IN, ON, WHILE, 

UNTIL, TO, or a RETURN or GO, a warning message is printod: 

POSSIBLE NON-TERMIIMTING ITERATIVE STATEMENT: followed by the i. s. Howover, 

since the user may be planning to terminate the i.s. via an error, control-E, 

or a retfrom from a lower function, the i.s. is still translated. 

Defining New Iterative Statement Operators 

The i.s.type specifies what is to be done at each iteration, e.g. collecting 

values on a list, adding numbers, searching for a particular con di ti on, etc. 

23.29 



+ 

+ 

+ 

+ 

Each i.s. can have one and only one i.s.type. The function 1.s.typo provides a 

means of defining new i.s.types. 

i.s.type[name;form;others] !l!!!1! is the name of the i.s.type. form is the form 

to be evaluated at each iteration. In form $$VAL 

can be used to reference the value being 

assembled, I.V. to reference the current value of 

the i. v., and BODY to reference the body of the 

statement, i.e. !l!!n!'S operand. 

For example, for COLLECT, form would be ( SETQ $$VAL ( NCONC1 SS VAL BODY)), for 

SUM: ( $$VAL .. $$VAL+BODY), 02 for NEVER: (IF BODY THEN $$VAL ... NIL (GO $$OUT))), 53 

THEREIS: (IF BODY THEN $$VAL ... I.V. (GO $$OUT)). 

others specifies an optional list of additional 

i.s. operators and operands which will be tacked 

on to the end of the i.s. For example, others for 

SUM is (FIRST $$VAL ... O). 

i.s.type is undoable. 

Examples: 

1) To define RCOLLECT, a version of COLLECT which uses £.Q.!12. instead of nconc1 

and then reverses the list of values: 

i.s.type[RCOLLECT;($SVAL .. (CONS BODY $$VAL)); 
(FINALLY (RETURN (DREVERSE $$VAL)))] 

52- -$$~~~:6;~;- _i_s_ -~~;~ -1~~~~~d- ·;i-( i~L~;-;;~;L- BO~;):-~~--;~;;-~~~ --c·h-; ;;e--~; 

53 

function used in the translation, i.e. iplus, fplus, or plus, will be 
determined by the declarations then in effect. 

(IF BODY THEN RETURN NIL) would prevent any operations specified via a 
FINALLY from being executed. 

23.30 



2) To define TCOLLECT, a version of COLLECT which uses tconc: 

i.s.type[TCOLLECT;(TCONC $$VAL BODY); 
(FIRST $$VAL~(CONS) FINALLY (RETURN (CAR $$VAL)))] 

3) To define PRODUCT: i.s.type[PRODUCT;($$VAL~$$VAL~BODY);(FIRST $$VAL~1) 

i.s.type performs the appropriatG modifications to the property list for n«mo, 

as well as for the lower case version of name, and also updates the appropriate 

spelling lists. 

i.s.type can also be used to define synonyms for all i.s. operators, (not just 

those that are i.s.types), by calling 1.s.type with form· an atom, e.g. 

i.s.type[~.JHERE;~IHEN] makes ~IHERE be the same as WHEN. Similurly, following 

i.s.type[ISTHERE;THEREIS] one can write (ISTHERE ATOM IN Y), and following 

i.s.type[FIND;FOR) and i.s.type[SUCHTHAT;THEREIS], one can write 

(FIND X IN Y SUCHTHAT X MEMBER Z). 54 

This completes the description of iterative statements. 

23.8 CLISP Translations 

The translation of infix operators and IFITHENIELSE statements are handled in 

CLISP by replacing the CLISP expression with the corresponding INTERLISP 

expression, and discarding the original CLISP, because (1) the CLISP expression 

aa-----------------------------------------------~-----------------------------rn the current system, WHERE is synonymous with WHEN, SUCHTHAT and ISTHERE 
with THEREIS, and FIND with FOR. 

23.31 



is ensily recomputable (by clispify), 65 and (2) the INTERLISP expressions aro 

simple and straightforward. In addition to saving the space required to retain 

both the CLISP and the INTERLISP, another reason for discarding the original 

CLISP is that it may contain errors that were corrected in the course of 

translation, e.g. the user writes FOO~FOOO:l, NW8FOO X), etc. If the original 

CLISP were retained, either the user would have to go back and fix these errors 

by hand, thereby negating the advantage of having DWIM perform those 

corrections, or else DWIM would have to keep correcting these. errors over and 

over. 

\.Jhere ( 1) or (2) are not the case, e.g. with iterative statements, pattern 

matches, record expressions, etc. 66 the original CLISP is retained (or a 

slightly modified version thereof), and the translation is stored elsewhere, 

+ usually in clisparray, a hash array. 67 68 The interpreter automatically checks 

+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

55-----------------------------------------------------------------------------Note that clispify is sufficiently fast that it is practical for the usar 

66 

67 

5$ 

to configure his INTERLISP system so that all expressions are automatically 
clispifved immediately before they are presented to him. For example, he 
can define an edit macro to use in place of P which calls clispify on tho 
current expression before printing it. Similarly, he can inform prettyprint 
to call clispify on each expression before printing it, etc. 

The handling of translations for IFITHENIELSE statements is determined by 
the value of clispiftranfl!jl. If T, the translations are stored elsewhere, 
and the (modified) CLISP retained as described below. If NIL, tho 
corresponding COND replaces the IFITHENIELSE expression. The initial value 
of clispiftranflg is NIL. 

The actual storing of the translation is performed by the 
clisptran, page 23.76. 

function 

The user can also indicate that he wants the original clisp rot«ined by 
embedding it in an expression of the form (CLISP . clisp~expression), e.g. 
(CLISP X:5:3) or (CLISP <ABC ! D>). In such cases, the translation will 
be stored remotely as described in the text. Furthermore, such expressions 
will be treated as clisp even if infix and prefix transformations have boon 
disabled by setting clispflg to NIL, as described on page 23.75. In other 
words, the user can instruct the system to interpret as clisp infix or 
prefix constructs only those expressions that are specifically flagged as 
such. 

23;32 



th:ls urray using gethash when given a form .£!!!: of which is not a function. 50 + 

Similarly, the compiler performs a gethash when given a form it does not 

recognize to see if it has a translation, which is then compiled instead of tho 

form. \-lhenever the user changes a CLlSP expresson by editing it, the editor 

automatically deletes its translation (if one exists), so that the next time it 

is evaluated or dwimified, the expression will be retranslated. 60 The function 

l?..R.! and the edit commands PPT and CUSP: are available for examining 

translations, see page 23.80. Similarly, if prettytranflQ is T, ll_ottyprint 

will print the translations instead of the corresponding CLISP expression. 61 

If clisparray is NIL, 62 translations are implemented instead by replacing tho 

CLISP expression by an expression of the form 

(CLISP%_ translation . CLXSP·expression), 63 e.g. (FOR X IN Y COLLECT (CAR X)) 

would be replaced by 

59-------·--••-U••-•••••a••••-••••••••••••••••••u••••••••••••------------------

CLISP translations can also be used to supply an interpretation for funtion + 
objects, as well as forms, either for function objects that are usod + 
openly, i.e. appearing as car of form, function objects that are explicitly + 

60 

61 

62 

63 

~ed, as with arguments to mapping functions, or function objects + 
contained in function definition cells. In all cases, if car of the object + 
is not LAMBDA or NLAMBDA, the interpreter and compiler will check + 
clisparray. + 

If the value of clispretranflg is T, dwimify will also (re)translate any 
expressions which have translations stored remotely. The initial value of 
clispretranflg is NIL. 

Note that the user can always examine the translation himself by performing 
(GETHASH expression CLISPARRAV). 

clisparray is initially NIL, and #clisparray is its size. The first time a 
translation is performed, a hash array of this size is created. Therefore 
to disable clisparray, both it and #clisparray should be set to NIL .. 

CLISP% is an atom consisting of the six characters C, L, I. s. P, and 
space,-which must be preceded by the escape character % in order for it to 
be included as a part of an identifier. The intent was to deliberately 
make this atom hard to type so as to· make it unlikely that it would 
otherwise appear in a user's program or data, since the editor and 
prettyprint treat it very specially, as described above. 

23.33 

+ 
+ 
+ 



(CLISP%_ (MAPCAR Y (FUNCTION CAR)) FOR X IN Y COLLECT (CAR X)). Both tho 

editor and prettyprint know about CllSP%_ expressions and treat them specially 

by suppressing the translations: Prettyprint prints just the CLlSP 

(unless QrettytranflgmT, as described below), while the editor makes the 

translation completely invisible, e.g. if the current expression were the above 

CLISP% expression, F MAPCAR would fail to find the MAPCAR, and ( 3 ON) would 

replace IN with ON, i.e. the editor operates as though both the CLISP%_ and tho 

MAPCAR were not there. As with translations implemented via clisparray, if tho 

CLISP expression is changed by editing it, the translation is automatically 

deleted. 

CLISP%_ expressions will interpret and compile correctly: CLISP%_ is defined as 

an nlambda nospread function with an appropriate compiler macro. Note that if 

the user sets clisparray to NIL, he can then break, trace, or ·advise CllSP%_ to 

monitor the evaluation of iterative statements, pattern matches, and record 

operations. This technique will work even if clisparray was not Nil at the time 

the expressions were originally translated, since setting clisparray to NIL 

will effectively delete the translations, thereby causing the CLISP expressions 

to be retranslated when they are first encountered. Note that if the user only 

wishes to monitor the CLISP in a certain function, he can accomplish this by 

embedding its definition in (RESETVAR CLISPARRAY NIL •). 

If a CLISP%_ expression is encountered and clisparra~ is not NIL, the 

translation is transferred to the hash array, and the CLISP%_ expression 

replaced by just the CLISP. Setting prettytranflg to CLISP%_ causes 

prettyprint to print CLISP expressions that have been translated in the form of 

(CLISP%_ translation • CLISP-express1on), even if the translation is currently 

stored in clisparray. These two features together provide the user with a way 

of dumping CLISP expressions together with their translations so that when 

reloaded (and run or dwimified), the translations will automatically be 

transferred to clisparray. 

23.34 



In sunr.1ary, H orettytranflg=NIL, only the CLISP is printed (used for producing 

listings). If prettytranflg=T, only the translation is printed (used for 

exporting programs to systems that do not provide CLISP, and to examino 

translations for debugging purposes). 64 If prettytranflg=CLISP%_, an expression 

of the form (CUSP%_ translation . CUSP) is printed, (used for dumping both 

CLISP and translations). The preferred method of storing translations is in 

clisparray, so that if any CLISP%_ expressions are converted while clispurri1y 

is not NIL, they will automatically be converted so as to use clispurra~. If 

clisparray=NIL, they will be left alone, and furthermore, new translations will 

be implemented using CLISP%_ expressions. 

23.9 Declarations 

Declarations are used to affect the choice of INTERLISP function used as tho 

translation of a particular operator. For example, A+B can be translatod us 

either (IPLUS AB), (FPLUS AB), or (PLUS AB), depending on the declaration in 

effect. Similarly X:l~Y can mean (RPLACA X Y), (FRPLACA X Y), or 

(IRPLACA X Y), and <!!AB> either (NCONC1 AB) or (/NCONC1 AB). The table 

below gives the declarations available in CLISP, and the INTERLISP functions 

they indicate. The choice of Junction on all CL/Sf transformations arc 

affected by these declarations, i.e. iterative .statements. pattern matches. 

record operations. as well as infix and prefix operators. 

The user can make (change) a global declaration by calling the function 

CLISPDEC and giving it as its argument a list of declarations, e.g., 

(CLISPDEC {QUOTE (FLOATING UNDOABLE))). Changing a global declaration does not 

affect the speed of subsequent CLlSP transformations, since all CLISP 

23.35 



transformation are table driven (i.e. property list), and global declarations 

are accor:lplished by making the appropriate internal changes to Cl.ISP at tho 

time of the declaration. If a function employs local declarations (described 

below), there will be a slight loss in efficiency owing to the fact that for 

each CLISP transformation, the declaration list must be searched for possibly 

relevant declarations. 

Declarations are implemented in the order that they are given, so that later 

declarations override earlier ones. For example, the declaration FAST 

specifies that FRPLACA, FRPLACD, FMEMB, and FLAST be used in place of RPLACA, 

RPLACD, MEMS, and LAST; the declaration RPLACA specifies that RPLACA bo used. 

Therefore, the declarations (FAST RPLACA RPLACD) will cause FMEMB, FLAST, 

RPLACA, and RPLACD to be used. 

The initial global declaration is INTEGER and STANDARD. 

Table of Declarations 

Declaration 

INTEGER or FIXED 

FLOATING 

MIXED 

FAST 

UUDOABLE 

STANDARD 

RPLACA, RPLACD, 
/RPLACA, ... 

INTERLISP functions to be used 

!PLUS, !MINUS, !DIFFERENCE, IT IMES, !QUOTIENT, ILESSP, 
IGREATERP 

FPLUS, FMINUS, FDIFFERENCE, FTIMES, FQUOTIENT, LESSP, 
FG.TP 

PLUS, MINUS, DIFFERENCE, TIMES, QUOTIENT, LESSP, 
GREATERP 

FRPLACA, FRPLACO, FMEMB, FLAST, FASSOC 

/RPLACA, /RPLACD, /NCONC, /NCONCl, /MAPCONC, /MAPCON 

RPLACA, RPLACD, MEMS, LAST, ASSOC, NCONC, NCONCl, 
MAPCONC, MAPCON 

corresponding function 

23.36 



Local Declarations 

The user can also make declarations affecting a selected function or functions 

by inserting an expression of the form (CUSP: . declarations) irrunodiatoly 

following the argument list, i.e., as CADDR of the .definition. Such local 

declarations take precedence over global declarations. Declarations affocting 

selected variables can be indicated by lists, where the first element is the 

name of a variable, and the rest of the list the declarations for that 

variable. For example, (CUSP: FLOATING (X INTEGER)) specifies that in this 

function integer arithmetic be used for computations involving X, and floating 

arithmetic for all other computations. 66 The user can also _make local record 

declarations by inserting a record declaration, e.g. (RECORD - - ). 

(ARRAYRECORD -·), etc., in the local declaration list. Local record 

declarations override global record declarations for the function in which thoy 

appear. Local declarations can also be used to override the global setting of 

certain D\.JHl/CLISP parameters effective only for transformations within that 

function, by including in the local declaration an expression of the form 

(variable = value), e.g. (PATVARDEFAULT = QUOTE). 

The CLISP: expression is converted to a comment of a special form recognized by 

CL ISP. Whenever a CLISP transformation that is affected by declarations is 

about to be performed in a function, this comment will be searched for a 

relevant declaration, and if one is found, the corresponding function will bo 

used. Otherwise, if none are found, the global declaration( s) currently in 

effect will be used. 

aa·------------------~---------------------------------------------------------• 1nvo1ving' means where the variable itself is an operand; For example, 
with the declaration (FLOATING (X INTEGER)) in effect, (FOO X)+(FIE X) 
would translate to FPLUS, i.e., use floating arithmetic, even though X 
appears somewhere inside of the operands, whereas X+(FIE X) would translate 
to !PLUS. If there are declarations involving both operands, e.g. X+Y, 
with (X FLOATING) (V INTEGER)~ whichever appears first in the declaration 
list will be used. 

23.37 



Local declarations are effective in the order that they are given, so th.1t 

later declarations can be used to override earlier ones, e.g. 

(CLISP: FAST RPLACA RPLACD) specifies that FMEMB, FLAST, RPLACA~ and RPLACD bo 

used. An exception to this is that declarations for specific variables tako 

precedence of general, function~wide declarations, regardless of the order of 

appearance, as in (CLISP: (X INTEGER) FLOATING). 

Clispify also checks the declarations in effect before selecting an infix 

operator to ensure that the corresponding CLISP construct would in fact 

translate back to this form. For example, if a FLOATING declaration is in 

effect, clispify will convert (FPLUS X Y) to X+Y, but leave (I PLUS X Y) as is. 

Note that if (FPLUS X Y) iS CLISPIF\'ed while a FLOATING declaration is under 

effect, and then the declaration is changed to INTEGER, when X•Y is translated 

back to INTERLISP, it will become (IPLUS X V). 

23.10 The Pattern Match Compiler66 

CLISP contains a fairly general pattern match facility. The purpose of this 

pattern match facility is to make more convenient the specifying of certnin 

tests that would otherwise be clumsy to write (and not as intelligible). by 

allowing the user to give instead a pattern which the datum is supposed to 

match. Essentially, the user writes "Does the (expression) X look like 

(the pattern) P?" For example, X:(& 'A -- 1 8) asks whether the second .element 

of X is an A, and the last element a B. The implementation of the matching is 

performed by computing (once) the equivalent INTERLISP expression which wi 11 

perform the indicated operation. and substituting this for the pattern, and not 

by invoking each time a general purpose capability such as that found in FLIP 

23.38 



or PLANt\!ER. For example, the translation or X:(& 'A -- 'B) is: 

(AND (EQ (CADR X) (QUOTE A)) (EQ (CAR (LAST X)) (QUOTE B))). Thus the CLISP 

pattern match facility is really a Pattern Compiler, and the emphasis in its 

design and implementation has been more on the efficiency of object codo than 

on generality and sophistication of its matching capabilities. The goal was to 

provide a facility that could and would be used even where efficiency was 

paramount, e.g. in inner loops. As a result, the CLISP pattern ~atch facility 

does not contain (yet) some of the more esoteric features of other pattorn 

match languages, such as repeated patterns, disjunctive and conjunctive 

patterns, recursion, etc. However, the user can be confident that what 

facilities it does provide will result in INTERLISP expressions comparable to 

those he would generate by hand. 67 

The syntax for pattern match expressions is form:pattern, where pattern is a 

list as described below. As with iterative statements, the trans.lation of 

patterns, i.e., the corresponding INTERLISP expressions, are stored in 

clisparray, a hash array, as described on page 23.31. The original expression. 

form:pattern, is replaced by an expression of the form 

(MATCH form WITH pattern). CLISP also recognizes expressions input in this 

form. 

If forn appears more than once in the translation, and it is not ~ithor a 

variable, or an expression that is easy to (re)compute, such as (CARY). 

CCDDR Z), etc., a dummy variable will be generated and bound to the value of 

form so that form is not evaluated a multiple number of times. For example, 

the translation of (FOO X):($ 'A$) is simply (MEMB (QUOTE A) (FOO X)), while 

the translation of (FOO)():( 'A 'B --) is: 

~~-----------------------------------------------------------------------------W'herever possible, already existing INTERLISP functions are used in the 
translation, e.g., the translation of (S 'AS) uses MEMB, ($('A$) S) uses 
ASSOC, etc. . . 

23.39 



[PROG ($$2) (RETURN 
(AND (EO (CAR (SETO SS2 (FOO X))) 

(QUOTE A)) 
(EQ (CADR $$2) (QUOTE B]. 

In the interests of efficiency. the pattern match compiler assumes that all 

lists end in NIL, i.e. there are no LISTP checks inserted in the translation to 

check tails. For example, the translation of X:('A & ··) is 

(AND (EQ (CAR X) (QUOTE A)) (CDR X)), which will match with (A 8) as well ns 

(A • B). Similarly, the pattern match compiler does not insert LISTP checks on 

elements, e.g. X:(( 'A ·-) ··) translates simply as (EQ (CAAR X) (QUOTE A)), and 

X:((Sl Sl --) --) as (COAR X). 68 Note that the user can explicitly insert LISTP 

checks himself by using @, as described on page 23.42, e,g. 

X:((Sl $1 ··)@LISTP ··) translates as (CDR (LISTP (CAR X))). 

Pattern Elements 

A pattern consists of a list of pattern elements. Each pattern element is said 

to match either an element of a data structure or a segment. (cf. the editor's 

pattern matcher, "··" matches any arbitrary segment of a list, while & or a 

subpattern match only one element of a list.) Those patterns which may match a 

segment of a list are called SEGMENT patterns; those that match a s_ingle 

element are called·ILEMENT patterns. 

ai·-----------------~---~------------------------·-----------------------------The insertion of LISTP checks for elements is controlled by tho variable 
patlistpcheck. When patlistpcheck is T, LJSTP checks are inserted, e.g. 
X:(( 'A ··) ··) translates as: 

(EQ (CAR (LISTP (CAR (LISTP X)))) (QUOTE A)) 
patlistpcheck is ini'tially NIL. Its .value can be changed within a 
particular function by using a local declaration. as described on page 
23.37. . 

23.40 



Elemcrt Patterns 

There are several types of element patterns, best given by their syntax: 

PATTERN 

S1, or & 

'expression 

=form 

==form 

atom 

MEANING 

matches an arbitrary element of a list 

matches only an element which is equal to the given 

expression e.g., 'A, 69 '(AB). 

matches only an element which is equal to the value of form, 

e.g., =X, =(REVERSE Y). 

same as=, but uses an~ check instead of equal. 

treatment depends on setting of patvardefault. 

If 12atvardefault is I or QUOTE, same as 'atom. 

If 2atvardefault is :: or EQUAL, same as =atom. 

If 12atvardefault is == or EQ, same as ==atom . 

If 2atvardefault is .. or SETQ, same as atomo-&. 

2atvardefault is initially =. 70 

Note: numbers and strings are always interpreted as though patvardefault were 

=, regardless of its setting. ~. memb, and il!Q£ are used for comparisons 

involving small integers. 

a~-----------------------------------------------------------------------------
~· memb, and il!Q£ are automatically used in the translation when tho 

70 

quoted expression is atomic, otherwise equal, member, and sassoc. 

patvardefault can be changed within a particular function by using a local 
declaration, as described on page 23.37. 

23.41 



matches a list which matches the givon 

patterns, e.g., (& &), (-- 'A). 

element-pattern@function-object matches an element if the element-pattern 

matches it, and the function-object (name of a function or a 

LAMBDA expression) applied to that element returns non-NIL. 

e.g. &@NUMBERP matches a number, ('A --)@FOO matches a list 

whose first element is A,'and for which FOO applied to that 

list is non·NIL. 71 

matches any arbitrary element. If the entire match 

succeeds, the element which matched the ~ will be returned 

as the value of the match. 

Note: normally, the pattern match compiler constructs an expression whose value 

is guaranteed to be non-NIL if the match succeeds and NIL if it fails. 

However, if a " appears in the pattern, the expression generated will either 

return NIL if the match fails, or whatever matched the • even though that may 

be NIL. For example, translates as 

(AND ( EQ (CAR X) (QUOTE A)) ( CADR X)). 

-element-pattern matches an element if the element is not matched by 

element-pattern, e.g. ·'A, -=X, ·(-· 'A--). 

23.42 



Segment Patterns 

$, or -- matches any segment of a list (including one of zoro 

length). 

The difference between $ and -- is in the type of search they generate. For 

example, X:($ 'A 'B $) translates as (EQ (CADR (MEMB (QUOTE A) X)) (QUOTE B}}, 

whereas X:(-• 'A 'B $) translates as: [SOME X (FUNCTION (LAMBDA ($$2 $$1) 

(AND (EQ $$2 (QUOTE A)) (EQ (CADR $$1) (QUOTE BJ. Thus, a paraphr«se of 

( $ 'A 'B $) would be "ls the element following the Jt rs t A a B ?", whereas a 

paraphrase of (--'A 1 B $)would be "Is there any A immediately followed by a 

B?" Note that the pattern employing $ will result in a more efficient search 

than that employing However, ($ 'A 1 8 $) will not match with 

(X V Z A M N 0 A B C), but (·· 'A 'B $) will. 

Essentially, once a pattern following a $ matches, the $ never resumes 

searching, whereas produces a translation that will always continue 

searching until there is no possibility of success. However, if the pattern 

match compiler can deduce from the pattern that continuing a search after a 

particular failure cannot possibly succeed, then the translations for both -

and $ will be the same. For example, both X:($ 'A $3 $) and (-- 'A $3 --) 

translate as (CDDDR (MEMS (QUOTE A) X)), because if there are not thrco 

elements following the first A, there certainly will not be throe elements 

following subsequent A's, so there is no reason to continue searching, even for 

Similarly, ($ 'A$ 'B $) and (-- 'A -- 'B --) are equivalent. 

$2, $3, etc. 

!element-pattern 

matches a segment of the given length. Note that $1 is not 

a segment pattern. 

matches any segment which the given element pattern would 

match as a list. For example. if the value of FOO is 

23.43 



(ABC) !=FOO will match the segment ... ABC ... etc. 

Note that 1- is permissible and means Value-of-match~$, e.g. 

X:($ 'A !*) translates to (CDR (MEMB (QUOTE A) X)). 

Note: since ! appearing in front of the last pattern specifies a match with 

some tail of the given expression, it also makes sense in this case for a I to 

appear in front of a pattern that can only match with an atom. e.g., ($2 ! 'A) 

means match if £.9..s!r: of the expression is the atom A. Similarly, X:($ ! 'A) 

translates to (EQ (CDR (LAST X)) (QUOTE A)). 

!atom treatment depends on setting of patvardefault. If 

patvardef a ult is ' or QUOTE, same as ! 'atom (see ('\bove 

discussion). If patvardefault is = or EQUAL, some os 

!=atom. If 11atvardefault is== or EQ, same as !:-:=atom. If 

patvardefault is ~ or SETQ, same as atom~$. 

The atom '.' is treated exactly like ! . 12 In addition, if a 

pattern ends in an atom, the '.' is first changed to ! • 

e.g., ($1 . A) and ($1 ! A) are equivalent, even though the 

atom I I does not explicitly appear in the pattern. 

Segment-pattern@function-object matches a segment if the segment-pattorn 

matches it, and the function object applied to tho 

corresponding segment (as a list) returns non-NIL, e.g. 

72-----------------------------------------------------------------------------W'i th one exception, namely '.' preceding an assignment does not have the 
special interpretation that ! has preceding an 
23.45). For example, X:('A. FOO .. 'B) 
(AtW (EQ (CAR X) (QUOTE A)) (EQ (CDR X) (QUOTE B)) 
but X:( 'A ! FOO~'B) translates as: 

(ANO (EQ (CAR X) (QUOTE A)) 
(NULL (COOR X)) 
(EQ (CADR X) (QUOTE B)) 
(SETQ FOO (CDR X))). 

23.44 

assignment (see pago 
translates as: 

(SETQ FOO (CDR X))), 



(S@CDDR '0 $) matches (ABC DE) but not (AB DE), sinco 

COOR of (A B) is NIL. 

Note: an @ pattern applied to a segment will require computing tho 

corresponding structure (with ldiff) each time the predicate is applied (except 

when the segment in question is a tail of the list being matched). 

Assignr:ients 

Any pattern element may be preceded by a variable and a •o.:•, meaning if the 

match succeeds (i.e., everything matches), the variable given is to be sot to 

what matches that pattern element. For example, if X = (AB C D E), 

X:($2 y ... $3) will set Y to (CD E). Assignments are not performed until the 

entire match ha.s succeeded. Thus, assignments cannot be used to specify a 

search for an element found earlier in the match, e.g. X:(Y~s1 =Y --) 73 will 

) 74 not match with (A A S C . . . . This type of match is achieved by using 

place-markers, described below. 

If the variable is preceded by a !, the assignment is to the tail of the list 

as of that point in the pattern, i.e. that portion of the list matched by tho 

remainder of the pattern. For example, if X is (ABC DE). X:($ 1v~·c 'D S) 

sets Y to (C DE), i.e. cddr of X. In other words, when precedes an 

assignment, it acts as a modifier to the ~. and has no effect whatsoever on the 

pattern itself, e.g. X:('A 'B) and X:('A !Foo~•s) match identically,· and in 

the latter case, FOO will be set to CDR of X. 

73·------------------------------------P•••O·-~----OWQ~O••·--------------------

The translation of this pattern is: 
(CONO ((AND (CDR X) (EQUAL (CADR X) Y)) 

(SETQ Y (CAR X)) 

74 

T)) • 
The AND is because if Y is NIL, the pattern should match with (A NIL), but 
not with just (A). The T is because (CAR X) might be NIL. 

unless, of course, the value of Y was A before the match started. 

23.45 



Note: n~pattern-element and t•~pattern•element are acceptable, 

X:(S 'A n~( 'B --) -·) translates as: 

Place-r.iarkers 

[PROG (SS2) (RETURN 
(AND (EQ (CAADR (SETQ SS2 (HEHB (QUOTE A) X))) 

(QUOTE B)) 
(CAOR SS2J 

e.g. 

Variables of the form #n, !l a number, are called place-markers, and are 

interpreted specially by the pattern match compiler. Place-markers are used in 

a pattern to mark or refer to a particular pattern element. Functionally, thoy 

are used like ordinary variables, i.e. they can be assigned values, or usod 

freely in forms appearin~ in the pattern, e.g. X:(~1~$1 =(ADDl #1)) will match 

the list (2 3). However, they are not really variables in the sense that they 

are not bound, nor can a function called from within the pattern expect to bo 

able to obtain their values. For convenience, regardless of the setting of 

patvardefault, the first appearance of a defaulted place-marker is int~rpretod 

as though patvardefault were ~. Thus the above pattern could have been written 

as X:(#l =(ADDl 11)). Subsequent appearances of a place-marker are interpretod 

as though patvardefault were =· For example, X:(#l !!11 --) is equivalent to 

X:(#l ... $1 =#1 ·-), and translates as (AND (CDR X) (EQUAL (CAR X) (CADR X)). 75 

Replacements 

Any pattern element may be Jollow~d by a ·~· and a form, meaning if th~ match 

succeeds, the part of the data that matched is to be re pl aced (e.g. , with 

RPLACA or RPLACD) 76 with the value of <form>. For example, if .x =(AB c DE), 

76·-----------------·-···---------------·---------------------------------------Just (EQUAL (CAR X) (CAOR X)) would incorrectly match with (NIL). 

76 The user can indicate he wants /rplaca and /rplacd used, or frplaca and 
frplacd, by means of declarations. The initial default is for rplaca and 
rplacd. 

23.46 



X:(S 'C s1~v $1) will replace the fourth element of X with the value of Y. As 

with assignments, replacement.s are not performed until after it i.s determined 

that the entire match will be .succe.s.sjul. 

Replacements involving segments splice the corresponding structure into tho 

list being matched, e.g. if X is (ABC DEF) and FOO is (1 2 3), after the 

pattern ('A s~Foo 'D S) is matched with X, X will be (A 1 2 3 DE F), and FOO 

will be~ to CDR of ,;:s, i.e. (1 2 3 DEF). 

Note that (S FOO~FIE $) is ambiguous, since it is not clear whether FOO or FIE 

is the pattern element, i.e. whether c- specifies assignment or replacement. 

For example, if patvardefault is =, this pattern can be interpreted as 

($ FOO~=FIE $), meaning search for the value of FIE, and if found set FOO to 

it, or ($ =FOO~FIE $) meaning search for the value of FOO, and if found, store 

the value of FIE into the corresponding position. In such cases, the user 

should disambiguate by not using the patvardefault option, i.e. by specifying ' 

or -. 

Reconstruction 

The user can specify a value for a pattern match operation other than what is 

returned by the match by writing after the pattern => followed by anothe~ form, 

e.g. X:(Foo~s 'A--) => (REVERSE F00), 77 which translates as: 

[PROG ($$2) (RETURN 
(COND ((SETO $$2 (MEMB (QUOTE A) X)) 

(SETO FOO (LDIFF X $2)) 
(REVERSE FOO]. 

7r-1~;- -_o_r_i;1_n_a_i __ CLI;P-·-;;·--r·e·p·l~~-ed00 ·b;- ··;;·-~~;;~~~ i~~-- .. ~f-. 0 th·o- --f~~'~ 
(MATCH forml WITH pattern => form2). CLISP also recognizes express1ons 
input in this form. 

23.47 



Place-markers in the pattern can be referred to from within form, e.g. tho 

above could also have been written as X:(l#l 'A ··)=>(REVERSE ~1). If ·> is 

used in place of=>, the expression being matched is also phusicallu changed to 

the value of form. For example, X:(#l 'A !#2) ·> (CONS #1 #2) would remove tho 

second element from X, if it were equal to A. 

In general, forml :pattern·>form2 is translated so as to compute form2 if the 

match is successful, and then smash its value into the first node of forml. 

However, whenever possible, the translation does not actually require form2 to 

be computed in its entirety, but instead the pattern match compiler uses form?. 

as an indication of what should be done to form1. For example, 

X:(#l 'A !#2) -> (CONS #1 !!12) translates as: 

(AND (EQ (CADR X) (QUOTE A)) (RPLACO X (COOR X))). 

Examples 

X:(•• 'A ·-) 

X:(-· 'A) 

X:( 'A 'B -- 'C $3 ··) 

matches any arbitrary segment. 'A matches only nn 

A, and the 2nd •• again matches an arbitrary segment; 

thus this translates to (HEMB (QUOTE A) X). 

Again, •• matches an arbitrary segment; however, since 

there is no after the 'A, A must be the last element 

of x. Thus this translates to: 

(EQ (CAR (LAST X)) (QUOTE A)). 

CAR of X must be A, and CAOR must be B, and there must 

be at least three elements after the first c. so tho 

translation is: 

(ANO (EQ (CAR X) (QUOTE A)) 
(EO (CAOR X) (QUOTE B)) 
(COOOR (MEMB (QUOTE C) (COOR X)))) 

23.48 



X:(( 'A 'B) 'C y .. $1 $) Since ('A 'B) does not end in $ or 

be NIL. 

(COND 
((AND (EQ (CAAR X) (QUOTE A)) 

(EQ (CADAR X) (QUOTE.B)) 
(NULL ( CDOAR X)) 
(EQ (CAOR X) (QUOTE C)) 
(COOR X)) 

(SETQ Y (CADDR X)) 
T)) 

, (CDDAR X) must 

X: (#1 'A $ 1 6 'C #1 $) #l is implicitly ass-igned to the first element in tho 

list. The $ searches for the first B following A. This 

B must be followed by a C, and the C by an expression 

equal to the first element. 

[PROG ($$2) (RETURN 
(AND (EO (CAOR X) (QUOTE A)) 

(EO [CADR (SETO $$2 (MEMB (QUOTE B) (COOR X] 
(QUOTE C)) 

(COOR $$2) + 
(EQUAL (CADOR $$2) (CAR X] 

X:(#l 'A -- 'B •c #1 $) Similar to the pattern above, except that -- specifies 

a search for any B followed by a C followed by the 

first element, so the translation is: 

[AND (EQ (CAOR X) (QUOTE A)) 
(SOME (COOR X) (FUNCTION (LAMBDA ($$2 $$1) 

(AND (EQ $$2 (QUOTE B)) 
(EQ (CADR $$1) (QUOTE C)) 
(COOR $$1) 
(EQUAL (CADDR $$1) (CAR X] 

This concludes the description of the pattern match compiler. 

23.49 



23.11 The Record Package78 

The advantages of "data-less" or data-structure-independent programming have 

long been known: more readable code, fewer bugs, the ability to change the data 

structure without having to make major modifications to the program, etc. Tho 

record package in CLISP both encourages and facilitates this good programming 

practice by providing a uniform syntax for accessing and storing data into many 

different types of data structures, e.g. those employing arrays, list 

structures, atom property lists, hash links, etc., or any combination thereof, 

. as well as removing from the user the task of writing the various access and 

storage routines themselves. The user declares (once) the data structure(s) 

used by his programs. and thereafter indicates the manipulations of the data in 

a data-structure-independent manner. The record package automatically computos 

from the declaration(s) the corresl>onding INTERLISP expressions necessary to 

accomplish the indicated access/storage operations. The user oan change his 

data structure simply by changing the corresponding declaration(s), and his 

program automatically (re)adjusts itself to the new conventions. 

The user informs the record package about the format of his data structure by 

making a record declaration. A record declaration defines a record. i.e. a 

data structure. (No.te. that the record itself is an abstraction that exists 

only in the user's head.) The record declaration is essentially a templute 

which describes the record, associating names with its various parts or fields. 

For example, the record declaration (RECORD MSG (ID (FROM TO) . TEXT)) 

describes a data structure called MSG, which contains four fields: ID. FROM, 

TO, and TEXT. The user can then reference these fields by name, either to 

retrieve their contents, or to store new data into them, by using the 

operator followed by the field name. For example, for the above record 

23.50 



declaration, X:FROM would be equivalent (and translate) to (CAADR X), and 

Y:To~z to (RPLACA (CDADR Y) Z). 79 The fields or a record can be further broken 

down into subfields by additional declarations within the record, e.g. 

(RECORD MSG (ID (FROM TO) . TEXT) (RECORD TEXT (HEADER TXT))) 

would permit the user to refer to TEXT, or to its subfields HEADER and TXT. 

Note that what the record declaration is really doing is specifying tho 

data-paths of the structure, and thereby specifying how the corresponding 

access/storage operations are to be carried out. For examplo, 

(RECORD MSG (ID (FROM TO) . TEXT) (RECORD TEXT (HEADER TXT))) says tho HEADER 

of a MSG is to be found as the first element of its TEXT, which is the second 

tail of the MSG itself. Hence, X:HEADER<-string :i.s achieved by performing 

(RPLACA (COOR X) string). 

Note also that when the user writes X:HEAOER, he is implicitly saying tho X ls 

an instance of the record MSG, or at least is to be treated as such for this 

particular operation. In other words, the interpretation of X:FORM never 

depends on the value g,1.. K· The record pack.age (currently) does not provide any 

facility which uses run-time checks to determine data paths. nor is there any 

error checking other than that provided by INTERLISP itself. For example, if X 

happened to be an array, X:HEADER would still compute (CADDR X). 80 A 

The user may also elaborate a field by declaring that field name in a separate + 

79--------------------------D··-----------------~D-•OGO _______ p _______________ _ 

or /RPLACA or FRPLACA, depending on the CLISP declaration in effect. Noto A 

80 

that the value of X:lo~z is neither X, X:TO, nor Z. In general, the usor A 

should not depend on the value of a replacement record operation as it mny A 

differ from one record type to the next. A 

However, it is possible to make the interpretation of X:HEADER differ from 
that of Y:HEADER (regardless of the values of X and Y), by using local 
record declarations. as described on page 23 ,37. Note that th is 
distinction depends on a translation-time check, not run-time. 

23.51 



+ record declaration (as opposed to an embedded declaration). For example, the 

+ two declarations 

+ (RECORD MSG (ID (FROM TO) . TEXT)) and (RECORD TEXT (HEADER . TXT)) 

+ subdivide TEXT into two subfields. The user may then specify X:MSG.HEADER .to 

+ achieve the interpretation "X is a MSG, retrieve its HEADER". 81 The central 

+ point of separate declarations is that the record is not tied to another record 

+ (as ·with embedded declarations), and therefore can be used in many different 

+ contexts. For example, one might additionally have a declaration 

+ (RECORD REPLY (TEXT TO . RESPONSE)). In this case, one could specify 

+ X:REPLY.HEADER to mean that X is a REPLY, and to retrieve (CAAR X). In 

+ general, the user may specify as a data path a chain of record/field namos, 

+ e.g. X :MSG. TEXT. HEADER .SUBHEAD... etc., where there is some ·path from each 

+ record to the next in the chain. Only as much of the path as is necessary to 

+ disambiguate it needs to be specified. For example, with the above declarations 

+ of MSG, TEXT, and REPLY, the path X:MSG.HEADER is unambiguous (it must go thru 

+ TEXT); however, X:TEXT is not, as this could mean that Xis either a MSG or a 

+ RESPONSE. 82 

+ 

+ 

+ 

+ 
+ 

+ 
+ 
+ 
+ 

RECORD (used to specify elements and tails of a list structure) is just ono of 

several record-types currently implemented. For example, the user can ~pecify 

'optional' fields, i.e. property list format, by using the record type 

PROPRECORO; or fields to be associated with parts of the data structure Vii\ 

hash links, by using the record-type HASHRECORD; or that an entirely now 

data-type be allocated with both pointer and unboxed number fields by using tho 

record type DATATVPE; or even specify the access definitions in the record 

81-----------------------------------------------------------------------------X:HEADER by itself is interpreted to mean that X is an instance of TEXT, 

82 

and translates as (CAR X) .. · 

In this case, the message AMBIGUOUS RECORD FIELD is printed and an error is 
generated. If a data-path rather than a single field is ambiguous, (e.g. if 
there were yet another declaration (RECORD TO (NAME . HEADER)) .and the user 
specified X:MSG.HEADER), the error AMBIGUOUS DATA PATH is generated. 

23.52 



declaration himself, by using the record-type ACCESSFN. These are described in 

detail below. 

The record package also provides a facility for creating new data structures 

using a record declaration as a guide or template. Initial values for ~ho 

various fields can be specified in the CREATE expression, or defaulted to 

values specified in the record declaration itself. Alternatively, CREATE can 

be instructed to use an existing datum as a model, i.e. to obtain the field 

values for the new datum from the corresponding fields of the existing datum, 

or even to actually re-use the structure of the existing datum itself. 

Additionally, the record package provides the facility for te.sting a data -o. 

structure to determine if it is an instance of a given record, via a TYPE? + 

expression. + 

As with all DWIN/CLISP facilities, the record package contains many 

do-what-I-mean features, spelling correction on field names, record types, etc. 

In addition, the record package includes a RECORDS prettydef macro fbr dumping 

record declarations. as well as the appropriate modifications to the file 

package (Section 14), so that files? and cleanup will inform the user about 

records that need to be dumped. 

Record Declarations 

A record declaration is an expression of the form 

(record-type record-name fields . {defaults and/or subfields}) 

This expression is evaluated to effect the corresponding declaration. 83 

sa--------------------------·--··-····--·------···-------------------------·---Loca1 record d~clarations are performed by including an expression of this 
forr.i in the CLISP declaration for that function (page 23.37). rather than 
evaluating the expression itself. 

23.53 



1. recorrJ-tyQ.~ specifies the "type" of data being described by the record 

declaration, and thereby implicitly specifies the data paths. Le. how tho 

corresponding access/storage operations are performed. record-tvr_Q 

currently is either RECORD, TYPERECORD, ARRAYRECORD, ATOHRECORD, PROPRECORO, 

HASHRECORD, DATATYPE, or ACCESSFN. RECORD and TYPERECORD are used to 

describe list structures, DATATYPE to describe user data-types, ARRAYRECORD 

to describe arrays, ATOMRECORD to describe (the property list of) atoms, and 

PROPRECORD to describe lists that use property list format. HASHRECORD can 

be used with any type or data: since it simply specifies the data path to be 

a hash-link. ACCESSFN is also type 0 less; the user specifies the 

data-path(s) in the record declaration itself, as described below. 

2. record-name is a literal atom used to identify the record declaration for 

dumping to files via the RECORDS prettydef macro, and for creating instancos 

of the record via CREATE. For most top-level declarations, reco.rd-nnme is 

optional, e.g. (RECORD (ID (FROM TO) . TEXT)) is perfectly acceptable. 84 

For TYPERECORD, record-name is obligatory and is used as an indicator in CAR 

of the datum to signify what "type" of record it is. CREATE wi 11 insert an 

extra field containing record-name at the beginning of the structure, and 

the translation of the access and storage functions will take this extra 

field into account.85 

For subfield declarations, record-name is also obligatory, ~nd specifies the 

parent field that is being elaborated, as described below. 

34-----------------------------------------------------------------------------If record-name is omitted, it simply means that the user cannot specify the 

86 

record by name, e.g. in CREATE expressions, or when using the RECORDS 
prettydef command. 

This type-field is used by the record package in the translation of TYPE? 
expressions. 

23.54 



3 . .LGLl_g_J?. desc1ibes the structure of the record. Its exact interpretation 

varies with the record-type: 

For RECORD, fields is a list whose non-NIL literal atoms are taken as 

field-names to be associated with the. corresponding elements and 

tails of a list structure. NIL can be used as a place marker to fill 

an unnamed field, e.g. (A NIL B) describes a three element list, with 

B corresponding to the third element. 

For TYPERECORD, fields has the same meaning as for RECORD. However, 

since CAR of the datum contains an indicator signifying its 11 typo, 11 

the translation of the access/storage functions differ fGom those of 

RECORD. For example 0 for (TYPERECORD MSG (ID (FROM TO) . TEXT)), 

X:FROM translates as (CAADDR X), not (CAAQR X). 

For ATOMRECORD declarations, fields is a list of property names, e.g. 

(ATOMRECORD (EXPR CODE MACRO BLKLIBRARYOEF)). Accessing will be 

performed with ~. storing with filll· 

For PROPRECORD, fields is also a list of property names. Accessing 

is performed with get, storing with put1. 86 For example, 

(RECORD ENTRY (INPUT VALUE ID . PROPS) (PROPRECORD PROPS (~HISTORY* 

*LISPXPRINT* SIDE 1ilGROUP 11 *ERRORl!I))) could be used to describe an 

36-----------------------------------------------------------------------------A new function (part of the record package), similar to rut, which takes a 
list as its first argument, searches the list looking for an occurrence of 
the given property name (its second argument). If found, it replaces the 
next element with the new property value (:I.ts third argument), otherwise 
adds the property name and property value to the list. 

23.55 



+ 

+ 

+ 

+ 

entry on the history list (see Section 22).87 

For HASHRECORO (or HASHLINK), fields is usually just field-name, i.o. 

an atom, and is the name by which the corresponding hash-value is 

referred to. For example, for (RECORD (AB • C) (HASHRECORO B FOO)), 

X:FOO translates as (GETHASH (CADR X)). If field-name is a list, it 

is interpreted as (field-name arrayname arraysize). In this case, 

arrayname indicates the hash-array to be used. For example, 

(HASHRECORO (CLISP CLISPARRAY)) would permit the user to obtain the 

CLISP translation of X by simply writing X:CLISP. arraysize is used 

for initializing the hash array: if arrayname has not boon 

initialized at the time of the declaration, it will be set to 

(HARRAY (OR arraysize 100)). 

For ARRAYRECORD, fields is a list of field-names that are associated 

with the corresponding elements of the array. NIL can be used as a 

place marker for an unnamed field (element). Positive integers can be 

used as abbreviation for the corresponding number of Nils. For 

example, (ARRAYRECORO (ORG DEST NIL IO 3 TEXT)) describes an eight 

element array, with ORG corresponding to the first element. IO to 

the fourth, and TEXT to the eighth. 

For OATATYPE, the user may specify data structures which are more 

compact and which can be accessed faster than if list structures were 

used. When the u.ser declares a DATATYPE for the first time, tho 

record package informs the garbage collector of the structure: tho 

81------------------------·-·-·-------------------·----------------------------Note that (ATOMRECORD (FOO FIE))) is equivalent to (RECORD (VALUE . PROPS) 
( PROPRECORD PROPS (FOO FIE))), the difference being in the translations. 
In the first case, X:FIE translates as (GETP X (QUOTE FIE)),, in the second 
case, as (GET (CDR X) (QUOTE FIE)). Note also that in the first case, if X 
is not a literal atorn, INTERLISP (i.e. gm) will generate an error. 

23.56 



system then allocates storage space and a type number for that clnta + 

type. 88 for DATATYPE record declarations, fields is a list of fiold + 

specifications, where each specification is either fieldname or + 

(fieldname fieldtype). If fieldtype is omitted (or fieldtype=POINTER) + 

then the field can contain a pointer to. any arbitrary INTERLISP + 

datum. Other options for fieldtype are: + 

BITS fr field contains an n·bit unsigned integer. + 

INTEGER or INT field contains a full word signed integer. + 

FLOATING or REAL field contains a full word floating point number. + 

HALFWORD or HALF field contains a half word signed integer. 

For example, the declaration 

(OATATYPE MESSAGE ((FLG BITS 12) TEXT (CNT BITS 4) 
(DATE HALF) (PRIO REAL) HEADER)) 

would define a data type MESSAGE which occupies 111 INTERLISP-10 

three words of storage with two pointer fields, with 2 bits left 

over. 89 

For ACCESSFN (or ACCESSFNS), fields is a list of . the form 

(field-name accessdefini tion. setdefini tion), or a list .9L elements of 

this form. accessdefinition is a Junction of one argument, the datum, 

and will be used for accessing. setdefini tion is a function of two 

• 
+ 

+ 

sa-----------------------------------------------------------------------------The necessary support, at the system level, for user data types was writton + 

89 

by O.C. Lewis. + 

Fields are allocated in such a way as to optimize the storage used, and not 
necessarily in the order specified. Thus in this example the first word 
would contain TEXT and HEADER (pointers are put together); the second PRIO; 
and the third, DATE in the left half and FLG and CNT ~n the right. 

... 
+ 
+ 
... 

Note that to st6re this informa~ion in a conventional RECORD list + 
structure, e.g. (RECORD MESSAGE (FLG TEXT CNT DATE PRIO • HEADER)), would + 
take 5 words of list space and three .number boxes (for FLG, DATE, and + 
PRIO). + 

23.57 



arguments, the datum and the new value, t)O and is used for storing.· 

For example, (HASHRECORO FOO) and (ACCESSFN (FOO GETHASH PUTHASH)) 

are equivalent: in both cases, X:FOO translates as (GETHASH FOO). 

Similarly, (ACCESSFN (DEF GETD PUTO)) would permit defining functions 

by writing fn:DEF~definition. 91 

4. {defaults and/or subfields} is optional. It may contain expressions of tho 

form·: 

(1) field-name .. form - specifies the default value for field-name. 

·used by CREATE. 

( 2) DEFAULT .. form - specifies default value for every field not 

given a specific default via (1). 

(3) a subfield declaration - i.e. a record declaration of any of the 

above types. For subfield declarations. record-name is obligatory. 

Instead of identifying the declaration as with the case of top levol 

declarations. record-name identifies the parent field or record that 

is being described by the subfield declaration. It must be either the 

record-name of the inunediately superior declaration, or one of its 

field-names (~r ~lse an error is generated). 

Subfields can be nested to an arbitrary depth. 

Note that in some cases, it makes sense for a given field to have 

~3--------------------------·--------------------------------------------------Currently. an error is generated if CREATE is called with a record 

f} 1 

declaration containing an ACCESSFNS record-type. 

[ACCESSFN (DEF GETD (LAMBDA (FN DEF) (DEFINE (LIST (LISi FN DEF) would bo 
preferable to using putd. 

23.58 



more than one subfield declaration. For example, in 

(RECORD (A B) ( PROPRECORD B (FOO FIE FUM)) ( HASHRECORO B C)), B is 

elaborated by both a PROPRECORD and HASHRECORD. Similarly, 

(RECORD (A B) (RECORD A (C 0)) (RECORD A (FOO FIE))) is also 

acceptable, and essentially 11 overlays 11 (FOO FIE) and (CD), i.e. 

X:FOO and X:C would be equivalent. In such cases, the Jir~t subfield 

declaration is the one used by CREATE, e.g. 

(RECORD X (A B) (RECORD A (C 0)) (RECORD A (FOO FIE FUM)) .will 

cause (CREATE X) to construct ((NIL NIL) NIL), not 

((NIL NIL NIL) NIL), as would be the case if the subfield declaration 

(RECORD A (C 0)) were removed. 

CREATE 

Record operations can be applied to arbitrary structures, i.e. structures 

created directly by user programs can be manipulated in a data·indopcndent 

manner using record declarations. However, to be completely data-independent, 

new data should be created using the same declarations that define its data 

paths. This can be done by means of an expression of the form 

(CREATE record-name . {assignments}). 92 {assignments) is optional and may 

contain expressions of the following form: 

(1) tield·name ~form specifies initial value for field-name. 93 

92-----------------------------------------------------------------------------CREATE is not defined as a function. Instead, D\.IIM calls the appropri«to 

98 

function in the record package giving it the entire CREATE expr~ssion as an 
argument. The translation of the CREATE expression, i.e. the INTERLISP 
form which is evaluated to construct the datum, is then stored elsewhere, 
as with iterative statements and pattern matches. 

The record package goes to great pain to insure that the order of 
evaluation in the translation is the same as that given in the original 
create expression. 

23.59 

+ 
+ 
+ 



"' 
"' 
"' 
"' 
"' 

( 2) USING form 

( 3) COPYING form 

( 4) REUSING form 

specifies that for all fields not given n 

value by (1), the value of the corresponding 

field in form is to be used. 

like USING except the corresponding values 

are copied (£.Q..l?X). 

like USING, except that wherever possible, 

the corresponding .structure in form is usod 

(similar to operation of subp•ir and sublis). 

For example, following (RECORD FOO (AB C)), 
-

(CREATE FOO A .. T USING X) translates as (LIST T (CADR X) (CADDR X)), 

(CREATE FOO A~T COPYING X)) as (LIST T (COPY (CAOR X)) (COPY (CAODR X))), and 

(CREATE FOO A~T REUSING X) as (CONS T (CDR X)). 

A CREATE expression translates into an appropriate INTERLISP form using ~· 

list, fil!!, putl, puthash, seta, etc., that creates the new datum with tho 

various fields initialized to the appropriate values. If values are neither 

explicitly specified, nor implicitly specified via USING or COPYING, the 

DEFAULT value in the declaration is used, if any, 94 otherwise NIL. 96 96 

g4·----------------------------------------------------------------------------For RECORD and TYPERECORO declarations with non-NIL defaults, all elomonts 

95 

96 

and named tails will be initialized; unnamed tails will not be initialized. 
For example, (RECORD FOO (A NIL B) OEFAULT .. T) will cause (CREATE FOO) to 
construct (TT T) not (TT T • T). Of courso. 
(RECORD FOO (A B . C) DEFAULT .. T) will cause (CREATE FOO) to construct 
(T T . T) as expected. 

For PROPRECORO, initialization is only performed where necessary. For 
exanple, (RECORD FOO (AB) (PROPRECORO B (CD E))) would cause 
(CREATE FOO D .. T) to construct (NIL (0 T)), not (NIL ,(C NI.L D T E NIL)). 
However, with the declaration (PROPRECORO FIE (H I J)) the expression 
(CREATE FIE) would still construct (H NIL), since a later operation. of 
X:J .. T could not possibly change the instance of the record if it were NIL. 

For non-pointer fields in DATATYPE records, zero is used. 

23.60 



Record operations are implemented by replacing expressions of the form X:FOO by 

(FETCH FOO OF X), and X:Foo~v by (REPLACE FOO OF x WITH Y), 97 and thon storing 

the translation elsewhere, usually in a hash array, as described on page 23.31. 

Expressions involving data•paths, e.g. X:FOO.FIE.A and X:FOO.A~19, are replaced + 

by (FETCH (FOO FIE A) OF X) and (REPLACE (FOO A) OF X WITH 19) respectively. + 

Translations of CREATE and TYPE? expressions are also stored elsewhere. + 

The list of global record declarations currently in effect is stored as the + 

value of the variable userreclst. Particular declarations may be edited by + 

calling the function editrec, giving the record name (or the name of one of tho + 

fields). editrec calls the editor on a copy of all relevant declarations, and + 

on exit redeclares those that have changed. Calling (EDITREC) allows the usor + 

to edit all declarations. + 

Records can also be declared local to a particular function by using a CLISP t1 

declaration, as described on page 23.37; all local record declarations override A 

global ones. ~ 

for both global and local records, the translation is computed using all CLISP 

declarations in effect as described on page 23.35, e.g. if the declaration 

UNDOABLE is in effect, /RPLACA, /RPLACD, /PUTHASH, etc. will be used. 98 

When the user redeclares a global record, the translations of all expressions 

involving that record are automatically deleted, 99 and thus will be recomputod 

97-----------------------------------------------------------------------------CLISP also recognizes expressions input in this form. 

98 

99 

Currently, there are no UNOOABLE versions of the replace functions for 
OATATYPEs. 

fron clisparray. If the user is not using this method for storing 
translations, i.e. is instead using the CLISP% method (page 23.33), thoso 
express ions already trans lated wi 11 remain as they are. (There is no 
practical way to locate them.) 

23.61 

+ 
+ 



using the new information. If the user changes a local record declaration, or 

changes some other CLISP declaration, e.g. STANDARD to FAST, and wishes tho now 

information to affect record expressions already translated, he must make sure 

the corresponding translations are removed, usually either by CLISPIF\'ING or 

applying the !OW edit macro. 

23.12 CLISPIFY 

Clispify converts INTERLISP expressions to CLISP. Note that the exprossion 

given to clispify need not have originally been input as CLISP, i.e., clispify 

can be used on functions that were written before CLISP was even implomentod. 

Clispify is cognizant of declaration rules as well as all of the precedonco 

rules. 10° For example, clispify will convert (IPLUS A (!TIMES BC)) into A+B*C, 

but (ITIMES A (IPLUS BC)) into A*(B+C). 101 Clispify converts calls to the six 

basic mapping functions, MAP, MAPC, MAPCAR, MAPLIST, MAPCONC, and MAPCON, into 

equivalent iterative statements. It also converts certain easily recognizable 

internal PROG loops to the corresponding i.s. For example, 

... label (COND (pred ... forms •.. (GO label))) 

becomes 

... label (WHILE pred 00 ••• forms ... ) ..• 102 

ioo----------------------------------------------------------------------------
clispify is table .driven exactly the same as CLISP, so that if the user 

101 

changes any precedence, or defines new operators, clispify "automatically" 
knows about it. 

clispifX also k~ows how to handle expressions consisting of a mixture of 
I~TERLISP and CLISP, e.g. (IPLUS A BftC) is converted to A+B•C, but 
(ITIMES A B+C) to (A*(B+C)). clispify handles such cases by first 
dwirnifying the expression. 

102 clispify can convert all iterative statements input in CLISP back to CLISP, 
regardless of how complicated the translation was, because the original 
CLISP is saved. 

23.62 



Clispify is not destructive to the original INTERLISP expression, i.e. clispifX 

produces a new expression without changing the originai. 103 Clispify will not 

convert expressions appearing as arguments to NLAHBOA runctions. 104 

The value of various global parameters affect the operation of clispify: 

cl: flg 

The user can disable the. : transformation by setting the variable cl: flg to 

NIL. This will prevent clispify from constructing any expres~ion employing a : 111 

infix operator, e.g. (CADR X) will not be transformed to X:2. When cl: flg is 111 

T, clispify will convert to : notation only when the argument is atomic or a ~ 

simple list (a function name and one atomic argument). ·1r cl:flg is ALL, " 

clispify will convert to : expressions whenever possible. The initial value of " 

cl:flg is T. 

clrer:iparsflg 

Clispify will remove parentheses in certain cases from simple forms, whoro 

'simple' means a function name and one or two atomic arguments. For example, 

(COND ((ATOM X) --)) will CLISPIFY to (IF ATOM X THEN -·), However, if 

clrer:iparsflg is set to NIL,· clispify will produce (IF (ATOM X) THEN--). Note 

that regardless of the setting of this flag, the expression can be input in 

either form. The initial value of clremparsflg is T. 

c lisp ifypackflg 

clispifypackflg affects the treatment of infix operators with atomic operands. 

1ii·---------------------------------------------------------------------------The new expression may however contain some 'pieces' of the original, since 
clispify attempts to minimize the number of CONSes by not copying structuro 
whenever possible. 

104 Except for those functions with property INFO, value EVAL such as nlsetg, * 
resetlst, etc. clispify also contains built in information enabling it to * 
process special forms such as lli.9• selectg, etc. • 

23.63 



If clispifypackflg is T, clispify will pack these into single atoms, e.g., 

( IPLUS A ( ITIMES B C)) becomes A+B•C. If clispifypackflg is NIL, no packing is 

done, e.g., the above becomes A_+_B_•_c. The initial value of clispifypackflg 

is T. 

funnvatonlst 

Suppose the user has variables named A, s. and A•B. If clispify were to 

convert (ITIMES AB) to A•B, A•B would not translate back correctly to 

(ITIMES A B), since it would be the name of a variable, and therefore would not 

cause an error. The user can prevent this from happening by adding A•B to the 

list funnyatomlst. Then, (lTlMES AB) would clispify to A_•_B. 

Note that A•B 1 s appearance on funnyatomlst would not enable D\.IIM/CL ISP to 

decode A•B+C as (IPLUS A•B C); funnyatomlst is used only by clispify. Thusj if 

an identifier contains a CLlSP character, it should always be separated (with 

spaces) from other operators. For example, if x• is a variable, tho user 

should write (SETQ x• form) in CLISP as X• .. form, not x• .. form. However, in 

general, it is best to avoid ~ Qi identifiers containing cusr character 

operators as much !!.2. possible. 

clispifyprettyflg 

If T, causes prettyprint to clispify all expres~ions before printing them (but 

not to redefine any funct.ions). clispifyprettyflg is temporarily reset to T, 

using resetvar, when makefile is called with the option CLISPIFY, or when the 

file in question has property FILETVPE with value CLISP on its property list. 

clispifyprettyflg is initially NIL. 

In addition to the ab6ve controls, disabling a CLISP operator (see cldisahlo, 

page 23.78) will also disable the corresponding CLISPIFY transformation. 

23.64 



Thus, if .... is "turned off", Ac:-B will not transform to (SETO A B). nor vice 

versa. 

· 23.13 Dwimify 

Dwimify is effectively a preprocessor for CLISP. Owimify operates by scanning 

an expression as though it were being interpreted, and for each form that would 

generate an error, calling D\./IM to 'fix' it. 105 Thus the user will see the same 

messages, and be asked for approval in the same situations, as he would if tho 

expression were actually run. If DWIM is unable to make a correction, no 

message is printed, the form is left as it was, and the analysis proceeds. 

Dwimif~ knows exactly how the interpreter works. It knows the syntax of progs, 

selectqs, lambda expressions, setgs, et al. It knows that thf! argument of 

nlambdas are not evaluated. 106 It also knows how variables are bound. ln the + 

course of its analysis of a particular expression, dwimify builds a list of the 

bound variables from the LAMBDA expressions and PROGs that it encounters. It 

uses this list for spelling corrections. Dwimify also knows not to try to 

'correct' variables that are on this list since they would be bound if the 

expression were actually being run. However, note that dwimify cannot, a 

priori, know about variables that are used freely but would be bound in a 

higher function if the expression were evaluated in its normal context. 

Therefore, dwimify will try to •correct• these variables. Similarly, dwimify 

will attempt to correct forms for which ill is undefined, even when the form is 

i06 _______________________________ D ___________________________________________ _ 

Thus dwimify performs all D\.JIM transformations, not Just CLISP 
transformations, i.e., it does spelling correction, fixes 8·9 errors, 
handles F/L, etc. 

106 The user can inform dwimify that an NLAMBDA function 
arguments (presumably by direct calls to eval), by 
property list the property INFO with value EVA~ 

23.65 

doe~· evaluate 1 ts 
including on its 

+ 
+ 
+ 



not in error from the user's standpoint, but the corresponding function has 

simply not yet been defined. 

In most cases, an attempt to transform a form that is already as the usor 

intended will have no effect (because there will be nothing to which that form 

could reasonably be transformed). However, in order to avoid needless calls to 

DWIM or to avoid possible confusion, the user tan inform dwimifv not to attempt 

corrections or transformations on certain functions or variables by adding 

+ them to the list nofixfnslst or nofixvarslst respectively.1o7 108 

+ 
+ 

+ 
+ 
+ 
+ 
+ 

Dwimify and dwimifyfns (used to dwimifY several functions) maintain two 

internal lists of those functions and variables for which corrections were 

unsuccessfully attempted. These lists are initialized to nofixfnslst and 

nofixvarslst. Once an attempt is made to fix a particular function or 

variable, and the attempt fails, the function or variable is added to the 

corresponding list, so that on subsequent occurrences (within this call to 

dwimify or dwimifyfns), no attempt at correction is made. For example, if FOO 

calls FIE several times, and FIE is undefined at the time FOO is dwimified. 

dwimify will not bother with FIE after the first occurrence. In other words, 

once dwimify "notices" a function or variable, it no longer attempts to correct 

it. 109 Moreover, once dwimify "notices" such functions or· variables, it 

subsequently treats them the same as though they were actually defined or set. 

107----------------------------------------------------------------------------Note that the user could achieve the same effect by simply setting tho 

108 

corresponding variables, and giving the functions dununy definitions. 

Dwimify will never attempt corrections on global variables, i.e. variables 
that are a member of the list globalvars, or have the pro~erty GLOBALVAR 
with value T, on their property list. Similarly, variables declared to bo 
LOCALFREEVARS or SPECVARS in block declarations are automatically added to 
nofixvarslst at compile time, so that they will not be 'corrected.' 

109 Dwimify and dwimifyfns also "notice" free variables that are set in the 
expression being processed. 

Z3.66 



Note that these internal lists are local to each call to dwimifv and 

dwimifyfns, so that if a function containing FOOO, a misspelled call to FOO, is 

dwimified before FOO is defined or mentioned, if the function is dwimified 

again after FOO has been defined, the correction will be made .. 

Note that the user can undo selected transformations performed by dwimify, ns 

described in section 22. 

Compiling CLISP 

Since the compiler does not know about Cl.ISP, in order to compile ftlnctions 

containing CLISP constructs, the definitions must first be dwimified. The usor 

can automate this process in several ways: 

1) If the variable dwimifycompflg is T, the compiler will always dwimifv 

expressions before compiling them. dwimifycompflg is initially NIL. 

2) If a file has the property FILETYPE with value CLISP on its property list, 

tcompl, bcompl, recompile, and brecompile will operate as though dwimifycompflg 

is T and dwimify all expressions before compiling. 

3) If the function definition has a CLISP declaration (see page 23. 35), 

including a null declaration, i.e., just (CUSP:), the definition will be 

automatically dwimified before compiling. 

Note: tcompl, bcompl, recompile, and brecompile all scan the entire file before 

doing any compiling, and take note of the names of all functions that are 

defined in the file as well as the names of all variables that are set by 

adding them to nofixfnslst and nofixvarslst, respectively .. Thus, if a function 

is not currently defined, but i.s defined in the file being compiled, when 

dwimify is called before compiling, it will not attempt to correct the function 

when it appears as £fil: of a form. 

23.67 



Note: compileuserfn (Section 18) is defined to call dwimify on iterativo 

statements, as well as IF-THEN statements. Thus, it the only CLISP constructs 

in a function appear inside of iterative statements or IF statements, tho 

furiction does not have to be dwimified before compiling. 

23.14 Operation 

CLISP is a part of the basic INTERLISP system. Without any spocial 

preparations, the user can include CLISP constructs in programs, or type thorn 

in directly for evaluation (in eval or ~ format), and when the "orror 1' 

occur rs, and DWIM is called, it will destructively110 transform tho CL ISP to 

the equivalent INTERLISP expression and evaluate the INTERLISP expression. 

User approval is not requested, and no message is printed. 111 

However, if a CLISP construct contains an error, an appropriate diagnostic is 

generated, and the form. is left unchanged. For example, if the user writos 

(LIST X+Y"'), the error diagnostic MISSING OPERAND AT X+Y 111 IN (LIST X+Y 111 ) would 

be generated. Similarly, if the user writes (LAST+EL X), ·.CL ISP knows thnt 

((!PLUS LAST EL) X) is not a valid lNTERLISP expression, so the error 

diagnostic MISSING OPERATOR IN (LAST+EL X) is generated. (For example, the 

user might have meant to say (LAST+EL 111 X).) Note that if LAST+EL were the name 

of a defined function, CLISP would never see this form. 

Since the bad CLISP transformation might not be CLISP at all, for example, it 

might be a misspelling of a user function or variable, DWIM holds all CLISP 

-------~---------------------------------··------·--·-·------------------------110 . 
CLISP transformations, like all DWIM corrections, are undoable. 

111 This entire discussion also applies to ,CLISP transformation initiated by 
calls to DWIM from dwimify. 

23.68 



error Qessages until after trying other corrections. If one of these succeeds, 

the CLISP message is discarded. Otherwise, if all fail, tho message is printed 

(but no change is made). 112 For example, suppose the user types (R/PLACA X Y). 

CLISP generates a diagnostic, since ((!QUOTIENT R PLACA) X Y) is obviously not 

right. However, since R/PLACA spelling corrects to /RPLACA, this diagnostic is 

never printed. 

If a CLISP infix construct is well formed from a syntactic standpoint, but ono 

or both of its operands are atomic and not bound, 113 it is possible that either 

the operand is misspelled, e.g., the user wrote X•YY for X+Y, or that a CLISP 

transformation operation was not intended at all, but that tho entire 

expression is a misspelling. For example, if the user has a variable named 

LAST-EL, and writes (LIST LAST-ELL). Therefore, Cl.ISP computes, but. does not 

actually perform, the indicated infix transformation. DWIK then continues, and 

if it is able to make another correction, does so, and ignores tho CLlSP 

interpretation. For example, with LAST-ELL, the transformation 

LAST-ELL -> LAST-EL would be found. 

If no other transformation is found, and DWIM is about to interpret a construct 

as CLISP for which one of the operands is not bound, DWIM will ask the user 

whether CL ISP was intended, this case by printing 

LAST-ELL TREAT AS CLISP 7114 

ii2----------------------------------------------------------------------------Except that CLISP error messages are not printed on type-in. For example, 
typing x+~Y will just produce a U.S.A. x+~Y message. 

113 For the purpose of dwimifying,, 'not bound' means no top level value, not 
on list of bound variables built up by dwimify during its analysis of tho 
expression, and not on nofixvarslst, i.e., not previously seen. 

114 If more than one infix operator was involved in the CLISP construct, e.g., 
X+Y+Z, or the operation was an assignment to a variable already noticed, or 
treatasclispflg is T (initially NIL), the user will simply be informed of 
the correction. Otherwise, even if DWIM was eriabled in TRUSTING mode, the 
user will be asked to approve the correction. 

23.69 



The sane sort of procedure is followed with 8 and 9 errors. For examplo, 

suppose the user writes F008*X where FOOS is not bound. The CLISP 

transformation is noted, and DWHI proceeds. It next asks the user to approve 

F00811tX -> FOO ( "X. (For example, this would make sense if the user has (or 

plans to define) a function named "X.) If he refuses, the user is askod 

whether F008"X is to be treated as CLISP. Similarly, if FOOS were the name of 

a variable, and the user writes F0008"X, he will first be asked to approve 

Foooa-x -> FOOO ( xx, 116 and if he refuses, then be offered the F0008 -> Fooa 
correction. 

CLISP also contains provision for correcting misspellings of infix operators 

(other than single characters), IF words, and 1.s. operators. Th is is 

implemented in such a way that the user who does not misspell them is not 

penalized. For example, if the user writes IF N=O THEN 1 ELSSE N*(FACT N-1) 

CLISP does not operate by checking each word to see if it is a misspelling of 

IF~ THEN, ELSE, or ELSEIF, since this would seriously degrade CLISP's 

performance on all IF statements. Instead, CLISP assumes that all of the IF 

words are spelled correctly, and transforms the expression to 

(COND ((ZEROP N) 1 ELSSE N*(FACT N·l))). Later, after DWIM cannot find any 

other interpretation for ELSSE, and using the fact that this ·atom originally 

appeared in . an IF statement, owrn attempts spelling correction, using 

(IF THEN ELSE ELSEIF) for a spelling list. When this is successful, DWIM 

'fails' all the way back to the original IF statement, changes ELSSE to ELSE, 

and starts over. Misspellings of ANO, OR, LT, GT, etc. are handled similarly. 

CLISP also contains many Do-What-I-Mean features besides spelling corrections. 

For example, the form (LIST +X Y) wo~ld generate a MISSING OPERATOR error. 

iis-----------------------------------------·----------------------------------
rhe 8-9 transformation is tried before spelling correction since it is 
enpirically more likely that an unbound atom or undefined function 
containing an 8 or a 9 is a parenthesis error, rather than a spelling 
error. 

23.70 



However, (LIST uX Y) maims sense, if the minus is unary, so DWIM offors this 

interpretation to the user. Another comr.'\On error, especially for new usors, is 

to write (LIST XgFOO(Y)) or (LIST xaFoo V), wher~ FOO is the norno of a 

function, instead of (LIST x~(FOO Y)). Therefore, whenever an operand thot is 

not bound is also ·the name of a function (or corrects to one), the nbovo 

interpretations are offered. 

23.15 CLISP Interaction with User 

Syntactically and semantically well formed CLISP transformations are always 

performed without informing the user. Other CLISP transformations .described in 

the previous section, e.g. misspellings of operands, infix opera tors, 

parentheses errors, unary minus - binary minus errors, all fo1low the snmo 

protocol as other DWIN transformations (Section 17). That is, if. DWIM has boon 

enabled in TRUSTING mode, or the transformation is in an expression typed in by 

the user for ir.unediate execution, user approval is not requested, but the user 

is informed. 116 However, if the transformation involves a user program, and 

DWIM was enabled in CAUTIOUS mode, the user will be asked to approve. If ho 

says :'-JO, the transformation is not performed. Thus, in the previous sect ion, 

phrases such as 11 one of these (transformations) succeeds" and "tho 

transformation LAST-ELL-> LAST·EL would be found" etc., all moan if tho usor 

is in CAUTIOUS mode and the error is in a program, the corresponding 

transformation will be performed only if the user approves (or defaults by not 

responding). If the user says NO, the procedure followed is the same as thouah 

the transformation had not been found. For example, if A*B appears in tho 

ii6·---------------------------------------------------------------------------
However, in certain situations, DWIM will ask for approval even if DWIM is 
enabl~d in TRUSTING mode. For example, the user will always be asked to 
approve a spelling correction that might also be interpreted as a CL ISP 
transformation, as in LAST-ELL -> LAST-EL. 

23.71 



function FOO, and B is not bound (and no other transformations are found) tho 

user would be asked 

A*B [IN FOO) TREAT AS CLISP ? 117 

If the user approved, A•B would be transformed to (HIMES AB), which would 

then cause a U.S.A. B error in the event that the program was being run 

(remember the entire discussion also applies to DWIMIF\'ing). If the user said 

NO, A•B would be left alone. 

23.16 CLISP Internal Conventions 

Note: the reader can skip this section and proceed to "Function and Variables" 

(page .23.75), unless he wants to add new operators, or modify the action of 

existing ones (other than by making declarations). 

CL ISP is almost entirely table driven by property lists for the corresponding 

infix or prefix operators. Thus it is relatively easy to add new infix or 

prefix operators or change old ones, simply by adding or changing selected 

property values.11~ 

CLISPTYPE The property value of the property CLISPTYPE is the 

precedence number of the operator: 119 higher values 

have higher precedence, i.e. are tighter. Note that 

11,-----------------------------------·---------------------·------------------The waiting time on such interactions is three times as long as for simple 
corrections, i.e., 3*dwimwait. 

118 There is some built in information for handling minus, : , ', <. >, and .. , 
i.e., the user could not himself add such •special' operators, although he 
can disable them. · · · 

119 Unles& otherwise specified~ the property is stored on the property list of 
the operator. 

23.72 



UNARYOP 

BROADS COPE 

the actual value is unimportant, only tho vnluo 

relative to other operators. For example, CLISPTYPE 

for ., ?, and (: are 14, 6, and 4 respectivoly. 

Operators with the same precedence group loft to right, 

e.g., I also has precedence 4, so A/B*C is (A/B)~c. 

An operator can have a different left and right 

precedence by making the value of CLISPTYPE be a dot tod 

pair of two numbers, e.g., CLISPTYPE of ... is (8 . -12). 

In this case, £5!..!: is the left precedence, and cdr the 

right, i.e., car is used when comparing with operators 

on the left, and cdr with operators on the right. For 

example, Ai::B ... C+D is parsed as Ao;,, ( B<-( C.¢-D)) because tho 

left precedence of ... is 8, which is higher than that of 

~ which is 4. The right precedence of • is -12, which 

is lower than that of ~. which is 2. 

If the CLISPTYPE property for any infix operator is 

removed, the corresponding CLISP transformation is 

disabled, as well as the inverse CLISPIF\' 

transformation. 

The value of property UNARYOP must be T for unary 

operators. The operand is always on the right, 1. o., 

unary operators are always prefix operators. 

The value of property BROADSCOPE is T if the operator 

has lower precedence than INTERLISP forms, e.g., LT, 

EQUAL, AND, etc. for example, (FOO X AND Y) parses ns 

((FOO X) ANDY). If the BROADSCOPE property were 

removed from the property list of AND, (FOO X AND Y) 

would parse as (FOO (X ANO Y)). 

23.73 



LISPFN 

SETFN 

CLISPINFIX 

The value of the property LISPFN is the name of tho 

function to which the infix operator translates. For 

example, the value of LISPFN for t is EXPT, for 

QUOTE, etc. If the value of the property llSPFN is 

NIL, the infix operator itself is also the function 

e.g., ANO, OR, EQUAL. 

If FOO has a SETFN property FIE, then (FOO ·-)~X 

translates to (FIE -- X). For example, if the us or 

makes ELT be an infix operator •. e.g. #, by putting 

appropriate CLISPTYPE and LISPFN properties on tho 

property list of # then he can also make ' followed by 

.. translate to SETA, e.g. X#N .. Y to (SETA X N Y). by 

putting SETA on the property list of EL T under the 

property SETFN. Putting (ELT) (i.e. list[ELT])) on tho 

property list of SETA under property SETFN will enable 

SETA forms to CLISPIFY back to ELT's. 

The value of this property is the CLISP infix to be 

used in CLISPIF\'ing. This property is stored on tho 

property list of the corresponding INTERLISP function, 

e.g., the value of property CLISPINFIX for EXPT is t, 

for QUOTE is ' etc. 

Global declarations operate by changing the corresponding LISPFN and CLISPINFIX 

properties. 

clispchars is ~ list of single character operators that can appear 

in the interior of an atom. Currently these are: +, -

11t, I, ', .. , ' , =, .. , : , <, and >. 

23.74 



clispcharray 

clispinfixsplst 

is a bit table of the characters on clispchars usad for 

calls to strposl (see Section 10). clispcharray is 

initialized by performing 

(SETQ CLISPCHARRAY (HAKEBITTABLE CLISPCHARS)), 

is a list of infix operators used for spelling 

correction. 

As an example, suppose the user wants to make I be an infix character operator 

meaning· OR. He performs: 

~(PUT (QUOTE I) (QUOTE CLISPTYPE) (GETP (QUOTE OR) (QUOTE CLISPTYPE))) 
~PUT( I LISPFN OR) 
~PUT(! BROADSCOPE T) 
~PUT(OR CLISPINFIX I) 
~sETQ(CLISPCHARS (CONS (QUOTE J) CLISPCHARS)) 
~SETQ(CLISPCHARRAY (MAKEB!TTABLE CLISPCHARS)) 

23.17 CLISP Functions and Variables 

clispflg if set to NIL, disables all CLISP infix. or prefix 

transformations (but does not affect ·. IF /HIEN/ELSE 

statements, or iterative statements). 

If clispflg=TYPE·IN, CLISP transformations arc 
·I - ·'• 

performed only on expressions· ttiat a.re typed in for 

evaluation, i.e. no~ on user programs. 

If clispflg:T, CLISP transformations are performed on 

all expressions. 

The initial value for clispflg is T. cl is pi fying 

anything will cause clispflg to be set to T. 
I 

23. 75. 



clisparray 

+ clisptran[x;tran] 

+ 

+ 

nofixfnslst 

nofixvarslst 

nospellflg 

hash array used for storing translations. cl isparray 

is checked by faul teval and faultapply on erroneous 

forms before calling DWIM, and bY the compiler. 

gives ::i: the translation !!.fill· If clisparray is not 

NIL; uses hashing scheme, otherwise uses CLISP:t._ 

scheme. See page 23.31 - page 23.35. 

list of functions that dwimify will not try to correct. 

See page 23.66. 

list of variables that dwimify will not try to correct. 

See page 23.66. 

If nospellflg is T, dwimify will ·not perform any 

spelling corrections. The initial value of nospellflo 

is NIL. 

+ For example, setting nospellflg to T might be useful in the case where a filo 

+ known to contain no misspellings had been clispified, and was now being 

+ dwimified, e.g. as it was being compiled. With nospellflg=T, DWIM would not 

+ waste time trying to spelling correct the free variables. Note that if all of 

+ the free variables are known, the same effect could be achieved by simply 

+ adding them to nofixvarslst. 

dwimify[x;l) dwimifies ~. i.e., performs all corrections and 

transformations that would be performed if ~ were run. 

If ~ is an atom and l~is NIL, ! is treated as the n~mo 

of a function, and its entire definition is dwimifiod. 

Otherwise, if ~ is a list or ! is not Nll, 2S is the 

expre~slon to be dwimifi~d. If ! is not NIL, it is the 

23.76 



dwimifyfns[ fns] 

dwimifycompflg 

clispdec[ declst J 

clispify[x; 1] 

edit push-down list leading to ::;. and is used for 

determining context, i.e., what bound variables would 

be in effect when ! was evaluated, whether ~ is a form 

or sequence of forms, e.g., a cond clause, etc. 120 

nlambda, nospread. Dwimifies each function on fns. l f 

fns consists of only one element, the value of car[ fns] 

is used, e.g., dwimifyfns[FOOFNSJ. Every 30 seconds, 

dwimifyfns prints the name of the function it is 

processing, a la prettyprint. 

if T, dwimify is called before compiling an expression. 

See page 23.67. 

puts into effect the declarations in declst. clispctcc 

performs spelling corrections on words not recognized 

as declarations. clispdec is undoable. 

clispifies !· If ! is an atom and l is NIL, ! is 

treated as the name of a function, and its definition 

(or EXPR property) is clispified. After clisp1fy has 

finished, ~ is redefined (using /PUTD) with its new 

CLISP definition. The value of clispify is ~· If x is 

atomic and not the name of a function, spelling 

correction is attempted. If this fails, an error is 

generated. 

If ;s is a list, or l is not NIL, ~ itself is tho 

23. 77 



clispifyfns[fns] 

cldisable[op] 

clispiftranflg 

+ clispretranflg 

+ 

+ 

expression to be clispified. If 1 is not NIL, it is 

the edit push-down list leading to x and is used to 

determine context as with dwimify, as well as to obtain 

the local declarations, if any. The value of clispify 

is the clispified version or ~· 

See earlier section on CLISPIFY for more details. 

nlambda, nospread. Calls clispify on each member of 

fns under errorset protection. If fns consists of only 

one element, the value of car[fns] is used, e.g .. 

clispifyfns[FOOFNS]. Every 30 seconds, clispifyfns 

prints the name of the function it is working, a la 

prettyprint. Value is list of functions clispifyod. 

disables .Ql?.• e.g. cldisable[·] makes - be just another 

character. cldisable can be used on all CL ISP 

operators, e.g. infix operators, prefix operators, 

iterative 

undoable. 

statement operators, etc. cldisnblo is 

affects handling of translations of IF I THEN I ELSE 

statements. If T, the translations are s torod 

elsewhere, and the (~odified) CLISP retained. lf NIL, 

the corresponding COND expression, replaces tho CLISP. 

clispiftranflg is initially NIL. See page 23.31. 

If T, informs dwimify to (re)translate all expression 

which have remote translations, either in hash array or 

using CLISP%. Initially NIL. 

23.78 



cl:flg 

clremparsflg 

clispifypackflg 

clispifyprettyflg 

prettytranflg 

affects clispif;,: 1 s handling of forms beginning with 

~· cdr, ... cddddr, as well as pattern match t1nd 

record expressions. See page 23.63. 

affects clispify 1 s removal of parentheses from "small" 

forms. See page 23.63. 

if T, informs clis2if:t to pacl;. operator and atomic 

operands into single atoms: if NIL, no packing is done. 

See page 23.63. 

if nonui\IIL, causes prettyprint to CLISP!F\' seloctod 

function definitions before printing them according to 

the following interpretations of clispfifyprettyflg: 

ALL all functions 

T,EXPRS functions currently defined as 
exp rs 

CHANGES functions marked as having boon 
changed 

a list a member of that list 

clispifyprettyflg is (temporarily) reset to T when 

makefile is called with the option CLISPIFY, and resot 

to CHANGES when the file being dumped has the property 

FILETVPE value ClISP. 

NIL.121 

clispifyprettyflg is initially 

If T, causes prettyprint to print translations instead 

i2i----------------------------------------------------------------------------If clispifyprettyflg is non-NIL, and the only transformation performed by 
DWIM are well formed CLISP transformations, i.e. no spelling corrections, 
the function will not be marked as changed, since it would ohly have to bo 
re-clispified and re-prettyprinted when the file was written out. 

23.79 



PPT 

CLISP: 

funnyatomlst 

CL 

OW 

of CLISP expressions.. This is useful for creating a 

file for compilation, or for exporting to a LISP systom 

that does not have CLISP. prettytrnnflg is 

(temporarily) reset to T when makefile is called with 

the option NOCLISP. If prettytranflg is CLISP%_, both 

the CLISP and translations are printed in appropriate 

form. For more details, see page 23.34. prettytrnnflg 

is initially NIL. 

is both a function and an edit macro for prettyprinting 

translations. It performs a PP after first resotting 

prettytranfl~ to T, thereby causing any translations to 

be printed instead of the corresponding CLISP. 

edit macro that obtains the translation of the correct 

expression, if any, from clisparray, and calls edite on 

it. 

list of identifiers containing CLISP operators. Used 

by clispify to avoid accidentally constructing a usor 

identifier, e.g., (!TIMES AB) should not become ARO if 

A*B is the name of a PROG variable. See page 23.64. 

edit macro. Replaces current expression with 

CLISPIFVed current expression. Current expression con 

be an element or tail. 

edit macro. DWIMIFYs current expression. which can bo 

an element (atom or list) or tail. 

Both CL and DW can be called when the current ex~ression is either an element 

23.80 



or a tail and will work properly. Both consult the declarations in the 

function being edited, if any, and both are undoable. 

lowercase[ flg] If f..Lq=T, lowercase makes the necessary internal 

modifications so that clispif:V will use lower case 

versions of AND, OR, IF, THEN, ELSE, ELSEIF, and «11 

i .s, operators. This produces more readable output. 

Note that the user can always type in either upper or 

lower case (or a combination), regardless of the action 

of lowercase. 

If flg=IHL, clispify will use uppercase versions of 

AND, OR, et al. The value of lowercase is its previous 

'setting•. Lowercase is undoable. The initial setting + 

for lowercase is T. 

23.81 



Index for Section 23 

ACCESSFN (record package) ••..•.......•........•. 
ALWAYS (clisp iterative statement operator) •..•• 
AMBIGUOUS DATA PATH (record package error) .•.••• 
AMBIGUOUS RECORD FIELD (record package error) 
ARRA YR ECORD (record package) ......•..........•.. 
AS (clisp iterative statement operator) ..•..•..• 
ass igntnen·ts (in clisp) ...............•...•...... 
assignments (in pattern match compiler) •••.•..•. 
ATOMRECORD (record package) .............•..•.•.. 
BIND (clisp iterative statement operator) •.•.•.• 
BITS (record field type) .....•...•.....•......•• 
BODY (use in iterative statement in ~lisp) ....•• 
BROADSCOPE (property name) ...••.•...••....•••..• 
BY (clisp iterative statement operator) •.•.....• 
CAUTIOUS (DWIM mode) ..••...•..•.•.•....•....••.. 
CL (edit cor:unand) ...•.....•.•••..........•....•. 
CLDISABLE[ OP] .................................. . 
CLISP ................. I I ........................ . 

CLISP interaction with user .....•.•.....••..•••• 
CLISP internal conventions •...•...•...••..••.••. 
CLISP operation ...•.............................. 
CLISPARRAY (clis~ variable/parameter) ....•...•.. 
CLISPCHARRAY (clisp variable/parameter) .••.•••.. 
CLISPCHARS (clisp variable/parameter) .••.••••••. 
CLISPDEC[ DECLST] .•.•......•.•.....•.•....•..•.••. 
CLISPFLG (cl isp variable/parameter) ......•...••• 
CLISPFORWORDSPLST (clisp variable/parameter) 
CLISPIFTRANFLG (clisp variable/parameter) ••.•••• 
CLISPIFWORDSPLST (clisp variable/parameter) 
CLISPIFY[X;L] .................. , ................•. 
CLISPIFY (makefile option) ..•.•..••.••.•.•.•..•• 
CLISPIFYFNS[FNSJ NL• •..•••...............•....•• 
CLISPIFYPACKFLG (clisp variable/parameter) .••..• 
CLISPIFYPRETTYFLG (clisp variable/parameter) 
CLISPINFIX (property name) ............•.....•.... 
CLISPINFIXSPLST (clisp variable/parameter) .•..•. 
CLISPRETRANFLG (clisp variable/parameter) ..•.... 
CLISPTRAIJ( X; TRAN] ...............•............•. , 
CLISPTYPE (property na~e) .......•..........•.... 
CL ISP% ....•...... ~ ••...••..•.••••••....••..•••••• 
.CLISP: (edit cor.unand) .................•..•.••... 
CLREMPARSFLG (clisp variable/parameter) ......•.. 
CL:FLG (clisp variable/parameter) ..........•..•• 
COLLECT (clisp it~rative statement operator) 
COMPILEUSERFN (use by clisp) .•••...•.....•.••••. 
compiling CL ISP ................................ . 
constructing lists (in clisp) .....•.•...•...•... 
COPYING (record package) ......•.•..•.....•.•••.• 
COUNT (clisp iterative statement operator) .•.... 
CREATE (r~cord package) •.....••••..•...•..••.... 
DATATYPE (record package) ......•.•....•....•...• 
data-paths (in records in clisp) ..•........••..• 
declarations (in clisp) .....•••..•.•••..••••.••• 
DEFAULT (record package) •.•.•.•.....••••.•.••••• 
DEFINED~ THEREFORE DISABLED IN CLISP 

(.error message) ............•................ 

INDEX.23.1 

Page 
Numbers 

23.57 
23.20 
23.52 
23.52 
23.56 
23.26 
23.12 
23.45 
23.55 
23.21 
23.57 
23.30 
23.73 
23.23-24,27 
23.5,71 
23.80 
23.78 
23.1-81 
23.71 
23.72 
23.68·71 
23.32,39,76,80 
23.75 
23.74 
23.35,77 
23.75 
23 .19 
23.32,78 
23 .17 
23.38,62-65,77-78 
23.64,79 
23.78 
23.64,79 
23.79 
23.74 
23 .11, 75 
23.33,78 
23.76 
23.72-73 
23.33·34,80 
23.33,80 
23.63,79 
23.63,79 
23 .19 
23.68 
23.67 
23 .16 
23.60 
23.20 
23.53,59-60 
23.56,61 
23.51 
23.13,16,35•38,46 
23.58,60 

. 23 .19 



defining new iterative statement operators ..... . 
disabling a CLISP operator ...............•...... 
DO (clisp iterative statement operator) ........• 
DW (edit cor.u:w.nd) ..........................•.... 
DWIMIFY[X;L] ................................... . 
DWIMIFYCOMPFLG (clisp variable/parameter) ......• 
DWIMIFYFNS[ ms J l\JL>': .........•................... 
EACHTIME (clisp iterative statement operator) 
EDITREC (record package) ......................•. 
element patterns (in pattern match compiler) 
errors in iterative statements ................. . 
FETCH (use in records in cl1sp) ............ , ..•. 
FILETYPE (property name) ....................... . 
FINALLY (clisp iterative statement operator) 
FIRST (clisp iterative statement operator) ..... . 
FLOATIIJG (record field type) ................... . 
FOR (clisp iterative statement operator) ....... . 
FROM (clisp iterative statement operator) .•..•.. 
FUNNYATOMLST (clisp variable/parameter) ...•..... 
GETHASH[ITEM;ARRAY] SUBR •••••••••••••••••••••••• 
global variables ............................... . 
GLOBALVAR (property name) .....•.•............... 
GLOBALVARS (compiler variable/parameter) ....... . 
GO (use in iterative statement in cl1sp) .•.•..•. 
HALF (record field type) ........•..•..••.•...••• 
HALFWORD (record field type) ...••.......•....•.. 
HASHRECORD (record package) .....•......•........ 
IF-THEN-ELSE statements ............•...........• 
IN (clisp iterative statement operator) .•..•.... 
infix operators (in clisp) ...•.••.••...••......• 
INFO (property name) .........•...•.....•......•.. 
INT (record field type) ....•.......•...•....•... 
INTEGER (record field type) .....•........•.....• 
iterative statements (in clisp) ................ . 
I.S.TYPE[NAME;FORM;OTHERS] ..............•......• 
i.s.types ...................................... . 
JOIN (clisp iterative statement operator) •..•.•. 
LASTWORD (dwim variable/parameter) .....•••..•.•• 
LISPFN (property name) ................•......... 
listp checks (in pattern match compiler) .•.••.•• 
local record declarations (in clisp) ....•..•...• 
LOWERCASE[ FLG] ..........................•....••. 
makefile and cl isp ...................•..•....... 
MATCH (use in p~ttern match in clisp) ..•••..•... 
MISSWG OPERAIJD (d1·1im error message) ........... . 
MISSillG OPERATOR (dwim error message) •.•• , ..•••• 
NEVER (clisp iterative statement operator) •••••• 
IJOCLISP (makefile. option) ...................... . 
llOFIXFllSLST (clisp variable/parameter) .•....•.•• 
llOF IXVARSLST ( clisp variable/parameter) ..•.•...• 
NOSPELLFLG (clisp variable/parameter) .......•... 
OLD (clisp iterative statement operator) •....... 
ON (clisp iterative statement operator) ....•..•• 
order of precedence of CLISP operators ..•...••.• 
PATLISTPCHECK (in pattern match compiler) ......• 
pattern match compiler .......•...........•••.••. 
PATVARDEFAULT (in pattern match compiler) •.••.•• 

INDEX.23.2 

Page 
Numbers 

23.29-31 
23.64 
23 .19 
23.80 
23.65-68,76·78 
23.67,77 
23.66,77 
23.25,27 
23.61 
23.41-42 
23.28 
23.61 
23.64,67,79 
23.25,27 
23.25,27 
23.57 
23.21 
23.23·25 
23.64,80 
23.33 
23.66 
23.66 
23.66 
23.27 
23.57 
23.57 
23.56 
23.17 
23.21-22,24,27 
23.10·13 
23.63,65 
23.57 
23.57 
23.18-31 
23.30-31 
23.20,29·31 
23.19 
23.13 
23.74 
23.40 
23.37 
23 .81 
23.35,79 
23.39 
23.68 
23.68 
23.20 
23.35,80 
23.66-67,76 
23.66-67,69,76 
23.76 
23.8,21-22 
23.22,24 
23.15 
23.40 
23.38-49 
23.41,44,47 



place-markers (in pattern match compiler) ...•... 
POINTER (record field type) ........•....•...•... 
PPT[X] NL"' •••••••••••••••••••••••••••••••••••••• 
PPT (edit cor.ll7land) ....•.•••••..•••.•••••••.••••• 
precedence rules (for CLISP operators) ......... . 
prefix operators (in clisp) ....................• 
PRETTYTRANFLG (clisp variable/parameter) ..•....• 
PROPRECORD (record package) •.•...•...•...•.•...• 
PUTL[ LS T; PROP ;VAL] ......................... , ... . 
REAL (record field type) ....•.•.....•........... 
reconstruction (in pattern match compiler) ...•.• 
record declarations (in clisp) •••...•...•....••. 
record package (in clisp) ...........•.........•• 
RECORD (record package) .•.....•...•..•...•...•.. 
RECORDS (prettydef macro) .....•••..........••... 
REPEATUNTIL (clisp iterative statement operator) .• 
REPEATWHILE (clisp iterative statement operator) •. 
REPLACE (use in records in clis~) .............. . 
replacements (in pattern match compiler) .......• 
RETURN (use in iterative statement in clisp) 
REUSING (record package) ........•..........•.•.. 
segment patterns (in pattern match. compiler) 
SETFN (property name) ....................•.•...• 
spelling correction ... •'• ....................... . 
spelling lists .................................. . 
SUM (clisp iterativ~ statement operator) .••..•.. 
THEREIS (clisp iterative statement operator) 
TO (clisp iterative statement operator) •.•.•.•.• 
translations (in clisp) ...........•.....••..•.•. 
TREAT AS CLISP ? (typed by dwim) •.....•.•.....•. 
TREATASCLISPFLG (Clisp variable/parameter) .•..•• 
TRUSTING (DWIM mod~) .......••.••...•....•.•.•... 
TYPERECORD (record package) •.•.....•.•...•.•.•.• 
TYPE? (record package) .•.••..•...........•.••••• 
UNARYOP (property name) .....••.............•.••. 
undoing DWIM corrections .........•.........•..•. 
UNLESS (clisp iterative statement operator) 
UNTIL (clisp iterative statement operator) ..••.. 
user data types ................................ . 
USERRECLST (record package) ............•....••.• 
USING (record package) ..•.................•..•.. 
WHEN (clisp iterative state.ment operator) ..•..•• 
WHERE (clisp iterative statement operator) ...••. 
WHILE (clisp iterative statement operator) ....•. 
- (clisp operator) ..........................•... 
- (in pattern match compiler) ..............••••. 
! (in pattern match compiler) ......•............ 
! (use with <,> in clisp) ...................... . 
! ! (use with <.> in clisp) .................... .. 
#n (n a number, in pattern match compiler) ..•... 
S (alt-node) (in clisp) ........................ . 
S (dollar) (in pattern match compiler) .....•..•. 
SN (in pattern match compiler) ....•....••...•••. 
SSVAL (use in iterative statement tn cltsp) 
Sl (in pattern match compiler) •.••....•.••..•..• 
& (in pattern match compiler) •••...•.•.•.•.••••• 
• (cl1sp operator) ....................... ······· 

INDEX.23.3 

Page 
Numbers 

23.46 
23.57 
23.33,80 
23.33,80 
23.10 
23 .13 
23.33-34,79 
23.55 
23,55 
23.57 
23.47 

"23.37,53-59 
23.50-62 
23.55 
23.53-54 
23.23 
23.23 
23.61 
23.46 
23.27 
23.60 
23.43-45 
23.74 
23. 11. 17. 19. 75 
23.11,17,19,75 
23.20 
23.20 
23.23-25 
23.31-35 
23.69 
23.69 
23.5,69,71 
23.54-55 
23.53-54 
23.73 
23.67 
23.22 
23.22 
23.53,56 
23.61 
23.60 
23.22 
23.31 
23.22 
23 .14 
23.42 
23.43-45 
23.16 
23 .16 
23.46 
23.13-14 
23.43 
23.43 
23.30 
23.41 
23.41 
23.13 



' (in' pattern match compiler) ...•.•..........•.. 
* (in pattern match compiler) .................. . 
-- (in pattern match compiler) •................. 
-> (in pattern match compiler) ........•..•••.... 
. (in pattern match compiler) ..•................ 
: (clisp operator) ...........•.....•............ 
<,> (use in clisp) ..........•....•......•.•...•. 
= (in pattern match compiler) ....•.............• 
== (in pat tern. match compiler) ..............•... 
=> (in pattern match compiler) ..•...••.....•..•• 
@ (in pattern match compiler) ..............•..•. 
.. operator (in clisp) ......................•.... 
.. (in pattern match compiler) ...•••.•.•....••••. 

INDEX .23 .4 

rage 
Numbers 

23.41 
23.42 
23.43 
23.48 
23.44 
23 .12 
23 .16 
23.41 
23 .41 
23.47 
23.42,44 
23.12,15 
23.45 





APPENDICES 

Appendix 1 

Transor 

Introduction 

transor is a LISP-to-LISP translator intended' to help the user who has a 

~rogram coded in one dialect of LISP and wishes to carry it over to another. 

The user loads transor along with a file of transformations. These 

transformations describe the differences between the two LlSPs, expressed in 

terms of INTERLISP editor commands needed to convert the old to new. 1. e. to 

edit forms written in the source dialect to make them suitable f~r the target 

dialect. transor then sweeps through the user's program and applies the edit 

transformations, producing an object file for the target system. In addition, 

transor produces a file of translation notes, which· catalogs the major changes 

made in the code as well as the forms that require further attention by the 

user. Operationally, therefore, transor is a facility for conducting massive 

edits, and may be used for any purpose which that may suggest. 

Since the edit transformations are fundamental to this process, let us begin 

with a definition and some examples. A transformation is a list of edit 

commands associated with a 11 teral atom, usually a function name. transor 

conducts a sweep through the user's code, until it finds a form whose car is a 

11 teral atom which has a transformation. The sweep then pauses to let the 

editor execute the list of commands before going on. for example, suppose the 

order of arguments for the function ~· must be reversed for the target 

system. The transformation for .!S.2.!1£ would then be: ((SW 2 3)). When the 

Ai.1 



sweep encounters the form (TCONC X (FOO)), this transformation would be 

retrieved and executed, converting the expression to (TCONC (FOO) X). Then tho 

sweep would locate the next form, in this case (FOO), and any transformations 

for foo would be executed, etc. 

Most instances of ~ would be successfully tran.slated by this 

transformation. However, if there were no second argument to 1£2..!!£• e.g. tho 

form to be translated was (TCONC X), the command (SW 2 3) would cause an error, 

which transor would catch. The sweep would go on as before, but a note would 

appear in the translation listing stating that the transformation for this 

particular form failed to work. The user would then have to compare the form 

and the commands, to figure out what caused the problem. One might, however, 

anticipate this difficulty with a more sophisticated transformation: 

((lF (## 3) ((SW 2 3)) ((·2 NIL)))), which tests for a third element and does 

(SW 2 3) or (-2 NIL) as appropriate. It should be obvious that the translation 

process is no more sophisticated than the transformations used. 

This documentation is divided into two main parts. The first describes how to 

use transor assuming that the user already has a complete set . of 

transformations. The second documents transorset, an interactive routine for 

building up such sets. transorset contains commands for writing and editing 

transformations, saving one's work on a file, . testing transformations by 

translating sample forms, etc. 

Two transformations files presently exist for translating programs into 

INTERLISP. <LISP>SDS940.XFORMS is for old BBN LISP (SDS 940) programs, and 

<LISP>LISP16.XFORMS is for Stanford Al LISP 1.6 programs. A set for LISP 1.5 

is planned. 

At.2 



Using Transor 

The first and most exasperating problem in carrying a program from ono 

implementation to another is simply to get it to read in. For example, SRI 

LISP uses I exactly as INTERLISP uses %, i.e. as an escape character. The 

function prescan exists to help with these problems: the user uses prescan to 

perform an initial scan to dispose of these difficulties, rather than 

attempting to transor the foreign sourcefiles directly. 

prescan copies a file, performing character-for-character substitutions. It is 

hand-coded and is much faster than either readc's or text-editors. 

prescan[file;charlst] Makes a new version of performing 

substitutions according to charlst. Each element 

of charlst must be a dot .. pa:l.r of two character 

codes, (OLD . NEW). 

For exar.iple, SRI files are ,erescan 1 ed with charlst i:: ((37 . 47) (47 • 37)), 

which exchanges siash (47) and percent-sign (37). 

The user should also make sure that the treatment of doublequotes by the source 

and target systems is similar. In INTERLISP, an unmatched do4ble•quote (unless 

protected by the escape character) will cause the rest of the file to read in 

as a string. 

Finally, the lack of a STOP at the end of a file is harmless, since transor 

will suppress END OF FILE errors and exit normally. 

Translating 

transor is the top-level function of the translator itself, and takes one 

At.3 



argument, a file to be translated. The file is assumed to contain a sequence 

of forms, which are read in, translated, and output to a file called file.TRAN. 

The translation notes are meanwhile output to file.LSTRAN .. Thus the usual 

iequence for bring a foreign file to INTERLISP is as follows: prescan the file; 

examine code and transformations, making changes to the transformations if 

needed; transor the file: and clean up remaining problems, guided by the notes. 

The user can now make a pretty file and proceed to exercise and check out his 

program. To export· a file, it is usually best to trans2£ it, ·then l:!l"escan it. 

and perform clean-up on the foreign system where the file can be loaded. 

transor[sourcefileJ 

t~ansorfor~[formJ 

transorfns[fnlst] 

Translates sourcefile. · Prettyprints translation 

on file.TRAN: translation listing on file.LSTRAN. 

Argument is a LISP form. Returns ·the 

(destructively) "translated form. The translation 

listing is dumped to the primary output file. 

Argumeht is a list of function · n•mes whcise 

interpreted definitions are destructively 

translated. Listing to primary output file. 

transform ~nd transorfns can be used to translate expressions that are already 

in core, whereas transor itself only works on files. 

The Translation Notes 

The translation notes are a catalog of changes made in the user's code, and of 

problems which require, or may require, further attention from the user. This 

catalog consist~ of two cross-indexed sections: an index of forms and an index 

of notes. The first tabulates all the notes applicable to any form, whereas 

A1.4 



the second tabulates all the forms to which any one note applies. forms appear 

in the index of forms in the order in which they were encountered, 1. e. the 

order in which they appear on the source and output files. The index of notes 

shows the narae of each note, the entry numbers where it was used, and its text, 

and is alphabetical by name. The following sample was made by translating a 

small test file written in SRI LISP. 

A1.5 



LISTING FROM TRANSORING OF FILE TESTFILE.:5 
DONE ON 1·NOV·71 20:10:47 

INDEX OF FORMS 

1. APPLY/EVAL at 
[DEFHJEQ 

(FSET (LAMBDA & 
( PROG ... 3 .•. 

(SETQ Z (COND 

2. APPLY/EVAL at 
(DEFINEQ 

l 

(FSET (LAMBDA & 

((ATOM (SETQ ·-)) 
(COND 

-- )) 

((ATOM (SETQ Y (NLSETQ "(EVAL W)"))) ... ) 
--)) 

(PROG ... 3 ••• 
(SETQ Z (COND 

] 
3. MACHINE-CODE at 

(OEFiliEQ 
(LESSl (LAMBDA & 

((ATOM (SETQ ··)) 
(COND 

--)) 

((ATOM (SETQ ··)) 
"(EVAL (NCONS W))") 

--)) 

(PROG ••• 3 ••• 
(COND 

4. MACHINE-CODE at 
(OEFINEQ 

(LESS! (LAMBDA & 

••• 2 ••• 
((NOT (EQUAL (SETQ X2 "(OPENR (MAKNUM & ·))" 

) 
--)) 

--)) 

( PROG ••• 3 ••• 
(CONO 

••• 2 ••• 
((NOT (EQUAL & (SETQ Y2 

"(OPENR (MAKNUH & --))"))) 

--)) 
l 

INDEX OF NOTES 

APPLY/EVAL at 1. 2. 
TRANSOR will translate the arguments of the APPLY or EVAL expression. but 

the user must make sure that the run-time evaluation of the arguments returns a 
BBN-compat1ble expression. 
MACHINE-CODE at 3, 4. 

Expression dependent on machine-code. User must recode. 

A1.6 



The translation notes are generated by the transformations used. and therefore 

reflect the judgment or their author as to what should be included. 

Straightforward conversions aro usually made without comment; for example, tho 

DEFPROP's in this file were quietly changed to OEFINEQ's. transor found four 

noteworthy forms on the file, and printed an entry for each in the index of 

forms, consisting of an entry number. the name of the note, and a printout 

showing the precise location of the form. ~he form appears in double-quotes 

and is the last thing printed, except for closing parentheses and dashes. An 

ampersand represents one non-atomic element not shown, and two or more elements 

not shown are represented as •.. n ... , where n is the number of elements. Noto 

that the printouts describe expressions on the output file rather than the 

source file; in the example. the DEFPROP's of SRI LISP have been replaced with 

DEFXNEQ's. 

Errors and Message! 

·;;ransor records its progress through the source file by teletype printouts 

which identify each expression as it is read in. Progress within largo 

e'(press1.ons. such as a long DEFINEQ, is reported every three minutes by a 

printout showing the location or the sweep. 

1f a transformation fails, transor prints a diagnostic to the teletype which 

identifies the faulty transformation, and resumes the sweep with the next form. 

The translation notes will identify the form which caused this failure. and the 

e:<tent to which the form and its arguments wer!SI compromised by the error. 

If the transformation for a common function fails repeatedly. the user can type 

control-H. ~hen the system goes into a break, he can use transorset to repair 

the transformation, and even test it out (see TEST command 9 page AL 11). Ha 

may then continue the main translation with OK. 

AL 7 



Transorset 

To use transorset, type transorset() to INTERLISP. transorset will respond 

with a + sign, its prompt character, and await input. The user is now in an 

executive loop which is like evalqt with some extra context and capabilities 

intended to facilitate the writing of transformations. transorset will thus 

progress apply and eval input. and execute history commands just as evalgt 

would. Edit commands, however, are interpreted as additions to the 

transformation on which the user is currently working. transorset always saves 

on a variable named currentfn the name of the last function whose 

transformation was altered or examined by the user. currentfn thus represents 

the function whose transformation is currently being worked on. Whenever edit 

commands are typed to the + sign, transorset will add them to the 

transformation for currentfn. ThiS is the basic mechanism for writing a 

transforll\ation. In. addition, transorset contains commands for printing out a 

transformation, editing a transformation, etc., which all assume that the 

command appliEls to currentfn if' no function h specified. The following 

example illustrates this process. 

AL8 



... TRAIJSORSET() 
+FN TCONC [1] 
TCONC 
+(SW 2 3) [Z) 
+TEST {TCONC A B) [3] 
p 
(TCONC B A) 
+TEST (TCONC X) [4) 
TRANSLATION ERROR: FAULTY TRANSFORMATION 
TRANSFORMATION: ((SW Z 3)) [5) 
OBJECT FORM: (TCONC X) 

l. TRANSFORMATION ERROR AT [6] 
"(TCONC X) 11 

(TCONC X) 
+(IF (## 3) ((SW 2 3)) ((·2 NIL] [7] 
+SHOW 
TCOfJC 

[(SW 2 3) 
(IF(;'># 3) [8] 

((SW 2 3)) 
((-2 NIL] 

TCOl~C 
+ERASE [9) 
TCO!JC 
+REDO IF [10] 
+SHOW 
TCONC 

[(IF ( ## 3) 
((SW 2 3)) 
((·2 NIL] 

TCONC 
.;.TDST 
=TEST 
(TCONC IHL X) 
~ 

[ 11] 

Al.9 



In this example, the user begins by using the FN command to set currentfn to 

TCONC ( 1 J. He then adds to the (empty) transformation for 1£2..!!£ a command to 

switch the order of the arguments [2] and tests the transformation [3). His 

second TEST (4) fails, causing an error diagnostic [5) and a translation note 

[ 6). He writes a better command [ 7 J but forgets that th-a original SW command 

is still in the way (8). He therefore deletes the entire transformation [9) 

and redoes the IF (10). This time, the TEST works [11]• 

Transorset Commands 

The following commands for manipulating transformations are all lispxmacros 

which treat the rest of their input line as arguments. All are undoable. 

FN 

SHOW 

Resets currentfn to its argument, and returns the 

new value. In effect FN says you are done with 

the old function (as least for the moment) and 

wish to work on another. If the new function 

already has a transformation. the message 

(OLD TRANSFORMATIONS) is printed, and any 

editcorrunands typed in will be added to the end of 

the existing commands. FN followed by a carriage 

return will return the value of currentfn without 

changing it. 

Command to prettyprint a transformation. SHOW 

followed by a carriage return will show the 

transformation for currentfn, and return currentfn 

as its value. SHOW followed by one or more 

function names will show each one in turn. reset 

currentrn to the last one, and return the ·new 

value of currentfn. 

AL 10 



EDIT 

Efl.1-\SE 

TEST 

DUMP 

Command to edit a transformation. Similar to SHOW 

except that instead of prettyprlnting the 

transformation, EDIT gives. it to edite. The ussr 

can then work on the transformation until he 

leaves the editor with o~. 

Command to del~t© a transformation. 

s:l.mU.ar to :SHOH. 

Otherwise 

Command for checking out transformations. TEST 

taltes one argumento a form for translation. The 

translation notes. if any. are printed to the 

teletype, but in an abbr®viated format which omits 

the index of nptes. The value returned is the 

translated form. TEST saves a copy of its 

argument on the free variable testform. and if no 

argument h givEm, it uses testf'orm. it.It!. tries 

the previous test again. 

Command to save your work on a file. DUMP takes 

one argument, a filename. The argument is saved 

on tho var·iabh durnpU_l_!, so that :!.f no argument 

is provided. a MW version of the previous file 

wiU be created. 

The DUMP command creates files by makefile. Normally fileFNS will be unbound, 

but the user may set it himself; functions called from a transformation by the 

E command may be saved in this way. DUMP makes sure that the necessary corrunand 

is included on the fileVARS to save the user's transformations. The user may 

add anything else to his fileVARS that he wishei. When a transformation file 

is loaded, all previous transf:0r111aUons iu·0 erased unless the veriabl!S !!lerge is 

set to T. 

Ai. ii 



EXIT transorset returns NIL. 

The REMARK Feature 

The translation notes are generated by those transformations that are actually 

executed via an editmacro called REMARK. REHARK takes one argument. the name 

of a note. When the macro is executed, it saves the appropriate information 

for the translation notes, and adds one entry to the index of forms. The 

location that is printed in the index of forms is the editor's location when 

the REMARK macro is executed. 

To write a transformation which makes a new note, one must therefore do two 

things: de.fine the note, i.e. choose a new name and associate 1 t with the 

desired text; and call the new note with the REMARK macro, i.e. insert the edit 

command (REMARK name) in some transformation. The NOTE command, described 

below, is used to def'ine a new note. The call to the note may be added to a 

transformation like any other edit command. Once a note. is defined. it may be 

~alled from as many different transformations as desired. 

The user can also specify a remark with a new text, without bothering to think 

of a name and perform a separate defining operation, by calling REMARK with 

more than one argu~ent, e.g~ (REMARK text•of-remark). This is interpreted to 

mean that the arguments are the text. transorset notices all such expressions 

as they are typed in, and handles naming automatically: a new name is 

generated1 and defined with the text provided. and .the expression itself is 

edited to be (REMARK generated-name). The following example illustrates the 

use of REMARK. 

i----------------------------·------------------·--------------·------------.---The name generated is the value of currentfn suffixed with a colon. or with 
a number and a colon. 

A1.12 



~TRANSORSET() 
+NOTE GREATERP/LESSP (BBN 1 S GREATERP AND LESSP ONLY [1) 
TAKE TWO ARGUMENTS. WHEREAS SRI'S FUNCTIONS TAKE AN 
IllOEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI CODE 
USED MORE THAN TWO ARGUMENTS, AND THE USER HUST RECODE.] 
GREATERP/LESSP 
+FN GREATERP 
GREATERP 
+(IF (IGREATERP (LENGTH (#1))3) NIL ((REMARK GREATERP/LESSP) [2] 
+FN LESSP 
LESSP 
+REDO IF [3] 
+SHOW 
LESSP 

[(IF (IGREATERP (LENGTH (I#)) 
3) 

NIL 
((REMARK GREATERP/LESSP] 

LESSP 
+FN ASCII 
(OLD TRANSFORMATIONS) 
ASCII 
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL [4] 
TO THE BBN FUNCTION CHARACTER, THE USER MUST MAKE SURE THAT 
THE CHARACTER BEING CREATED SERVES THE SAME PURPOSE ON BOTH 
SYSTEMS, SINCE THE CONTROL CHARACTERS ARE ALL ASSIGNED 
DIFFRENTLY.] . 
+SHOW [5) 
ASCII 

((1 CHARACTER) 
(REMARK ASCII:)) 

ASCII 
+NOTE ASCII: [6] 
EDIT 
~NTH -2 
~p 

... ASSIGNED DIFFRENTLY.) 
~(2 DIFFERENTLY.) 
OK 
ASCII: 
+ 

Al.13 



In this example, the user defines a note named GREATERP/LESSP by using the NOTE 

command [ 1 J, and writes transformati.ons which call this note whenever the sweep 

encounters a GREATERP or LESSP with more than two arguments [2·3). Next, the 

implicit naming featu.re is used (4] to add a REMARK command to the 

transformation for ASCII, which has already been partly written. The user 

realizes he mistyped' part ·Of the text, so he uses the SHOW command to find the 

name chosen for the note [ 5]. Then he uses the NOTE command on th is name, 

ASCII:, to edit the note [6]~ 

NOTE first argument is note name and must be a literal 

atom. If already defined, NOTE edits the old 

text: otherwise· it defines the name, rtlading the 

text either from the rest of the input line or 

from the next line. The text may be given as a 

line or as a list. Value is name of note. 

The text is actually stored.2 as a comment, i.e. a * and ~% are added in front 

when the note is first defined; The text will therefore be ·lower-cased the 

first time the tiser OUMPs (see Section 14). 

DELNOTE 

Controlling the Sweep 

Deletes a note completely (al though any calls to 

it remain in the transformations). 

transor 1 s sweep searches in print-order until it finds a form for which a 

transformation exists. The location is marked, and the transformation is 

Al .14 



executed. The sweep then takes over again, beginning from the marked location, 

no matter where the last command of the transformation left the editor. User 

transformations can therefore move around freely to examine the context, 

without worrying about confusing the translator. However, there are many cases 

where the user wants his transformation to guide the sweep, usually in order to 

direct the 1processing of special forms am! HXPR 1 s. for example. tho 

transformation for QUOTE has only one objective: to tell the sweep to skip over 

the argument to QUOTE, which :il.s (presumably) not a LXSP form. NLAM is an 

editmacro to permit this. 

NLAM An atomic editmacro which sets a flag which causes 

the sweep to skip the arguments of the currant 

form when the sweep resumes. 

Special forms such as cond, prog, selectg, etc., present a more difficult 

problem. For e:<ample, (COND (AB)) is processed just like (FOO (AB)): i.e. 

after the transformation for cond finishes, the sweep will locate the "next 

form, 11 (A B). retrieve the transformation for the function A, if any, and 

execute it. Therefore, special forms must have transformations that preempt 

the sweep and direct the translation themselves. The following two atomic 

editmacros permit such transformations to p~ocess their forms. translating or 

skipping over arbitrary sub~xpressions as desired. 

DOTH IS 

DOTHESE 

Translates the editor's current 

treating it as a single form. 

Translates the editor's current 

treating it as a list of forms. 

AL 15 

expression, 

expression, 



For example, a transformation for setg might be (3 DOTHIS). 3 This translates 

the second argument to a setg without translating the first. For ~. one 

might write ( 1 ( LPQ NX OOTHESE)), .which locates each clause of the CONO in 

turn, and translates it as a list of forms, instead of as a single form. 

The user who is starting a completely new set of transformations must begin by 

writing transformations for all the special forms. To assist him in this and 

prevent oversights, the file <LISP>SPECIAL.)CFORMS contains a set of 

transformations for LISP special forms, as well as some other transformations 

which should also be included. The user will probably have to revise these 

transformations substantially, . since they merely perform sweep control for 

INT ERL ISP, i.e. they make no chani;ies in the object code. They are provided 

chiefly as a checklist and tutorial device, since these transformations are 

both the first to be written and the most difficult, especially for users new 

to the INTERLISP editor. 

* 

When the sweep mechanism encounters a form which is riot a list, or a form ~ 

of which is ·not an atom, it retriev&s one of the following special 

transformations. 

NLISTPCOMS Global value is used as a transformation for any 

form which is not a list. 

For example, if the user wished to make sure that all strings were quoted, he 

might set nlistpcoms to 

((IF (STRINGP (##)) ((ORR cc~ QUOTE))((HBO QUOTE)))) NIL)). 

---------------~----·-----------~--~-~----------·-----~------------------------3 Recall that a transformation is a list of edit commands. 
there are two commands, 3 and OOTHIS. 

At.16 

in this case, 



LAMBDACOMS Global value is used as a transformation for any 

form, ~ of which is not an atom. 

These variables are initialized by <LISP>SPECIAL.XfORMS and are saved by tho 

DUMP command. nlistpcoms :i.s initially NIL, making it a NOP. lambdacoms is 

initialized to check first for open LAMBDA expressions, processing them without 

translation notes unless the expression is badly formed. Any other forms with 

a non-atomic .£fil: are simply treated as lists of forms and are al'ways mentioned 

in the translation notes. The user can change or add to this algorithm simply 

by editing or resetting lambdacoms. 

A1.t7 



Index for Section A1 

CURRENTFN (transor variable) •.•••••••••••••••••• 
DELNOTE ( transor command) ••••••••••••.•••••••••• 
DOTHESE ( transor command) •••••••••• , •..••••••••• 
DOTHIS ( transor command) ••••••.•.••••••.•••••••• 
DUMP ( transorset command) ..................... .. 
EDIT ( transorset command) ••••.••...••.•••••..••. 
ERASE ( transorset command) ••.••••• i •••••• ~ •..••• 
EXIT (transorset command) •••..•.•••.•••••••••.••• 
Ft~ ( transorset command) •..••...•••.•.••.••••.••••• 
LAMBDACOMS ( transor command) .•••••••••.••••.•••• 
NLAM (transor command) ..••••..••••••••.••••.•••.• 
tJLISTPCOMS ( transor command) • • ••••. • .••••••••••• 
NOTE (_transor comm.and) ••••••• ~· •. ;· ••••••.••••.•• ~ •• 
PRESCAN[FILE;CHARLST) .••...•.....•.............. 
REMARK ( transor command) ••••..•..••••.....•.••. , .• -
SHOW (transorset command) •••••.••...•..•.•.••.•• 
TEST ( transorset command) ••...••...•.•.••••••••. 
translation notes .•.•.••••.••••.••..••.••••••.•• 
TRANSOR[SOURCEFILE) .•...•.....•.•.......•...•..• 
TRArJSOR ................................... • •• • • • • • 
transor sweep .~ •.••••••••••••••.••••••..•••..••• 
TRArJSORFIJS ••.••••••••.. • •••••••••••••••••••••••• 
TRAfJSORFORM ••••••••••••••••••••••••••••••••••••• 
TRANSORSE T[ ] •••••.•••••••••••••••••••••••••••••• 

INDEX.A1.1 

Page 
Numbers 

A1.8 
At.14 
AL 15 
A1.15 
A1.11 
At.11 
At.11 
AL 12 
At.10 
A1.17 
At.15 
At.16 
At.12,14 
A1.3 

. At.12 
At.10 
A1.11 
Ai .4·7 
Al .3-4 

·At.1·17 
At .14 
At.4 
Ai.4 
Al .2,8 



Appendix 2 

The INTERLISP Interpreter 

The flow chart presented below describes the operation of the INTERLISP 

interpreter, and corresponds to the m-expression definition of the LISP 1.5 

interpreter to be found in the LISP 1.5 manual, [McCtJ. Note that £i!! of a 

form must be a function; it cannot ~valuate to a function. 

If £fil: of a form is atomic. its function cell must contain 

(a) an S-expression of the form (LAMBDA •.. ) or ( NLAMBDA ..• ) ; or 

(b) a pointer to compiled code; or 

(c) a SUBR definition (see Section 8); 

Otherwise the form is considered faulty. 

If £fil: of a form is an S-expression beginning with LAMBDA or NLAMBDA, the 

s-expression is the function. If car of the rorin begins with FUNARG, the 

funarg mechanism is invoked (see Section 11). Otherwise the form is faulty. 

A2.1 



NO 

CAOR C 
IS FN, 

CAOOR C 
SPECIFIES 
BINDINGS 

ENTER EVAL WITH FORM 

SET ~ = CAR FORM 

NO 

SET O= 

CONTENTS OF 
DEFINITION CELL 

NO 

RETURN 
FAULTEVAL (FORM) 

FIGURE A2-1 

RETURN 
FAULTEVAL [FORM] 

YES CALL SUBR, 
COMPILED CODE I 

OR EXPR 

Note: variables c and ~ are for description only; they are not actually bound 
as variables. 

A2.2 



Appenc\:i:-.: 3 

Control Characters 

Several teletype control characters are available to the user for conununicating 
directly to INTERLISP, i.e., not through the read program. These characters 
are enabled by INTERLISP as interrupt characters;-io that INTERLISP 1mmodiatcly 
'sees' the characters, and takes the corresponding action as soon as possible. 
For ~xample. control characters are available for aborting or interrupting a 
conputa ti on, changing the printlevel, etc. This section summarizes the action 
of these characters, and references the appropriate section of the manual whore 
a more complete description may be obtained. Section 16 describes how these '°' 
interrupt characters can be disabled and/or redefined, as well as how the user ~ 
can define his own new interrupt characters. + 

Control Characters Affecting the Flow of Computation 

1. control-H 

2. control-B 

3. control-E 

4. control-D 

5. control-C 

(interrupt) ~i next functi~n call, INTERLISP goes into 
a break. Section 16. 

(break) computation is stopped, stack backed up to the 
last function call, and a break occurs. Section 16. 

(error) computation is stopped, stack backed up to the 
last errorset, and NIL returned as its value. Section 
16. 

(reset) ~omputation is stopped, contr6l returns to 
evalgt. 

In INTERLISP-10, computation is stopped, control 
returns to TENEX. Program can always, be continued 
without any ill effect with TENEX CONTINUE command. 

If typed during a garbage collection the action of control-B, control-£, and 

control-D is postponed until the garbage collection is completed. 

Typing control-£ and control•D causes INTERLISP to clear and save the input 

buffers. Their contents can usually be recovered via the $BUFS (alt-modeBUFS) 

command, as described in Section 22. 

I/O Control Characters 

1. rubout clears teletype input buffer. For example, rubout 
would be used if the user typed ahead while in a 
garbage collection and then changed his mind. Section 
2. A bell is rung when the buffer has been cleared, so 
that the user will know when he may begin typing again. 

A3.1 



+ 
+ 
+ 
+ 
+ 
+ 
+ 

Note: a sudden burst of noise on a telephone line frequently causes INTERLISP 

to receive a rubout, since the code for rubout is 177Q, i.e. all i's. This 

causes INTERLISP to (mistakenly) clear the input buffer and ring a bell. 1 f 

INTERLISP seems to be typing many spurious bells, it is a good indication that 

you have a bad connection. 

2. control-0 

3. control-P 

4. control-A, Q 

5. control·R 

6. control-V 

MiScellaneous 

1. control-T 

2. control-S 

3. control-U 

clears teletype output buffer, Sections 2 and 14. 

changes printlevel. Section 14. 

line editing characters, Sections 2 and 14. 1 

causes INTERLISP to retype the input line, useful after 
several control-A's, e.g., 
user types: ~DEFINEQ((lAMOA\A\DBA\Acontrol·R 
INTERLISP types: DEFINEQ((LAMB 

on input from the terminal, control·V followed by A, B, 
Z inputs the corresponding control charactor, 

otherwise is a nop. The control-V is not passed to tho 
line buffer; the transformation takes place before 
that. Thus ABCtVD followed by two control-A's erases 
the control-D and the C. tV takes precedence over , 
i.e. tV inputs a control•C, tVC inputs a C. 

(time) prints total execution time for program. as well 
as its status, e.g., 

.,RECLAIM() 

GC: 8 
RUNNING AT 15272 USED 0:00:04.4 IN 0:00:39 
1933, 10109 FREE WORDS 
10109 
.. IO WAIT AT 11623 USED 0:00:05.1 IN 0:00:49 

(storage) change minfs. Section 10. 

if typed in the middle of an expression that is being 
typed to evalqt, break1 or the editor, will cause the 
editor to be called on the expression when it is 
finished being read. See Section 22. 

,------------------------------------------------------------------------------Control-A, Q, R, and V are not interrupt characters, since their effect 
does not take place when they are typed, but when they are read. Soction 
14 describes how these pseudo-interrupt characters can also be disabled 
and/or redefined. Note that control-A, Q, R, and V have their special 
effect· only on input from the terminal. On input from files, they are 
treated the same as any other character. 

Al.2 



Index for Section A3 

bell (typed by system) ......................... . 
bells (typed by system) .•••••••.•••••••••••••••• 
COtJTHWE ( tenex command) •••••••••••••••••••••••• 
control characters ..........................•.•• 
control-B ·······-······························· cont r o 1- C ......... , ... ,_ ........................ . 
control-D ....................... , .............. . 
control-E ...................................... . 
control-0 
control-R 
control-T 
control-V 

e 9 "I e e • e II ••• e e •••• e e I I e • e • I I • ' e •• e 9 e • 9 e I 

interrupt characters .....................•..••.. 
rubout .,,,0 ....................................... . 

$ BUF S (a lt-modeBUFS) ( prog. asst. command) .•.•.• 

INDEX.A3.1 

Page 
Numbers 

A3.t 
A3.2 

·A3.1 
A3.1·2 
A3.1 
A3.1 
A3.1 
A3.1 
A3.Z 
A3.2 
A3.2 
A3.2 
A3.2 
A3.1 
A3.1 





MASTER INDEX 

Names of functions are in upper case. followed by their arguments enclosed in 
square brackets [], e.g. ASSOC(X;VJ. The FNTVP for SUBRs is printed in full; 
for other functions, NL indicates an NLAMBDA function. and • a nosprend 
func·don, e.g. U:STFILES[ FILES] NL" indicates that LISTFILES is an NLAMBDA 
nospread function. Words in upper case .not followed by square brackets are 
other INTERLISP words (sys um parameters. property names, messages. etc.). 
Words and phrases in lower case are not formal INTERLISP words but are ·gen~ral 
topic references. 

(A el ... em) (edit command) •.•.••.••.•••••••••• 
ABBREVLST (prettydef variable/parameter) ..•..•.. 
ABS[ X J ........................................... . 
AC (in a lap statement) ....•••.••.•..•...••••••. 
AC (in an assemble statement) ••.....•.••.•.•.••• 
ACCESSFN (record package) ...•.••.•......•••.•... 
AC 1 ..•..... " ..• , .......•••••••.••..•••...••••••• 
ADD PROP[ ATM; PROP; NEW; FLG] ••••••••••• , • , ••• , ••••• 
addressable files ...••.....•••..•..•••..••.••••• 
ADDSPELL[X;SPLST;NJ ······••••••••••••••••••••••• 
ADDSTATS(STATLST] NL~ .......................... . 
ADDVARS ( prettydef command) ................... .. 
AOD1[ X] ••••••••••••••••••••••••••••••••••••••••• 
advice ........................................... . 
ADVICE ( prettydef command) ...••...•.....••.•••.• 
ADVICE (property name) ..•..............••...•..• 
AOVINFOLST (system variable/parameter) •••••••••• 
ADVISE[ FN ;WHEN ;WHERE ;WHAT) •••••••••••••••••••••• 
ADVISE (pr et tydef command) •..••..•.••..••..•.... 
ADVISED (property name) .•..••....••.....••••.••• 
ADVISEDFNS (system variable/parameter) ...•...•.• 
ADVISEDUMP[X;FLGJ ...••.•...••••.•.•.•...••....•• 
advising ....................................... . 
ADV-PROG ...••••.••.•..••• ·• •.•.•••.•••.•••••••••• 
ADV-RETURf4 ..•••••.••.••••••••••••••••••••••••••• 
ADV-SETQ .•.•.••.•••••••••••.•••.••••.••••••••••• 
AFTER (as argument to advise) .•.......••...•...• 
AFTER (as argument to breakin) •.....••....•••••. 
AFTER (in INSERT command) (in editor) •••..•.•..• 
AFTER (in MOVE command) (in editor) .•...•.•••••• 
AFTER (prog. asst. command) ..••.•....•.......... 
AFTERSYSOUTFORMS (system variable/parameter) 
ALAMS (compiler variable/parameter) ...••.•.•.... 
ALIAS (property name) .•...••.••...•..••••••••..• 
ALL (in event specification) •••••••••••••••••••• 
ALL (use in prettydef PROP command) ..••.•....•.• 

Il\IDEX. i 

Page 
Numbers 

9.13,39-40 
14.56,62 
13.8 
18.43 
18.48 
23.57 
18.36.40.48 
7.2 

14.5 
9.01-0s: 11.a4,20 

22.63 
14.51 
13.3 
19.2,4 
14.51; 19.9 . 
19.7-9 
19.8-9 
19.4·8 
14.51: 19.9 
8.7; 19.6 

19.6,8 
19.9 
19.1-10 
19.4,6 
19.4,6 
19.4,6 
19.2,4-6 
15.7,21 
9.41 
9.48 

22.22,26,34 
14.38 
18.6 
15.19.24 
22.14 
14 .49 



ALLCALLS[FN;TREELST] .................•.......... 
ALLPROP ........................................ . 
ALLPROP (as argument to load) ...........••...... 
ALPHORDER[ A; B] .......... , .......•.....•.•..••.•• 
ALREADY UNDONE (typed by system) .•.....•.......• 
alt-mode (in spelling correction) ..•.....•.•.•.. 
ALWAYS (clisp iterative statement operator) 
AMAC (property name) ..............••.•......•••. 
AMBIGUOUS DATA PATH (record package error) ...•.. 
AMBIGUOUS RECORD FIELD (record package error) 
AMBIGUOUS (typed by dwim) ....•••........•......• 
AND[Xl;X2; ... ;Xn] FSUBRa •...•.••....••.•...•.•.. 
AND (in event specification) .•••.••.•.•.•.....•• 
ArJD ( in USE command) •.....•........•.•.•...•••... 
AfJTILOG[X) ...................................... . 
APPEIJD[L].!C ...................................... . 
APPLY[FN;ARGSJ SUBR ••••••••••••••••••••••••••••• 

.............................. 0 •••••••••••••••• 

apply format ..................... , .............. . 
APPLYA[FN;ARG1; ... ;ARGn) SUBRA ....•..•.•...••... 

••••••••'••111e1.i•••••••••••••••1101o•lo1eee1t 

approval (of dwirn corrections) .............••..• 
APPROVEFLG (dwirn variable/parameter) .....•...... 
ARCCOS[X;RADIANSFLG] ........................... . 
ARCCOS: ARG NOT IN RANGE (error message) •..•.... 
ARCHIVE { prog. asst. command) ••••••••••••••••••• 
ARCHIVEFN (prog. asst. variable/parameter) •....• 
ARCHIVELST (prog. asst. variable/parameter) 
ARCSIN[X;RADIANSFLG} ........•.................•. 
ARCSIN: ARG NOT IN RANGE (error message) ...•.••• 
ARCTAl![X;RADIANSFLG] ....•..•...••••.••..••..••.• 
ARG[VAR;M] FSUBR ..........•..•.•.•.•.......••..• 
ARG NOT ARRAY (error message) .....•........••... 
ARG NOT A TOM (error message) .......•...••......• 
ARG NOT ATOM - SET (error message) .......•...... 
ARGLIS T[ X) .••••••••••••••••••••••••••••••••••••• 
ARGS NOT AVAILABLE (error message) .•.•.....•..•. 
ARGS (break corrunand) •••••••••••••••••••••••••••• 
ARGTYPE[ FN] SUBR •••••••••••••••••••••••••••••••• 
argument evaluation ......•................•...•. 
argument list ................................... . 
arithmetic functions .........•....•........•••.. 
AROUND (as argument to adv{se) .•..•.•....•. : ••.• 
AROUND (as argument to break in) •........•...•..• 
ARRAY[N;P;V] SUBR ••••••••••••••••••••••••••••••• 
array functions ................................. . 
array header ................................... . 
array pointer .................................. . 
ARRAY (prettydef command) .•...•.•....•.••.•....• 
ARRAYP[X) SUBR •.•...••..•••••.•••.••.••••••••••• 
ARRAYRECORD (record package) .•.......•...•.•••.• 
arrays ..................... ,, , .................. . 
ARRAYS FULL (error message) •.••.•...•...•......• 
ARRAYSIZE[A] .........................•........•• 
AS (clisp iterative statement operator) .....••.• 
ASSEMBLE ..•...••..•..••.•..••.•••..••....••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • e • • • • • • • • • • • • • 

INDEX .2 

Page 
Numbers 

20.8 
5.9: 8.7; 22.55 

14.39 
6 .11 

22.23,59 
17.11,25 
23.20 
18.37·38 
23.52 
23.52 
17 .11 

' 5. 14 
22 .13 
22. 15 
13.9 

6 .1 
2.4; 8.9; 1i.1; 16.2, 

18.22 
2.4 
2.4; 8.10: 11.1; 16.2, 

18.22 
17.3,5,5-9,26 
17.5-9,18,25,29 
13.9 
13.9 
22.27 
22.27,33°34 
22.44,53 
13.9 
13.9 
13. 10 
4.2; 8.11; 16.10 
3.19; 10.13=14; 16.10 
7.1=2; 16.9 
5.8-9; 16.8 
2.3; 8.1,3=4,6: 15.10 
8. 6 . 

15.8,10 
8.1-5 
4.1-Z 
4.1; 8.1 

13.2-10 
19.5,7 
15.7,21 
3.9,21; 10.13 

10.13-15 
3.9; 10.13 
3.9 

14.50 
3.21; 5.13; 10.14 

23.56 
3.1,9,12,14; 5.13 

10.13: 16.9 
10.13 
23.26 
4.3; 13.13; 18.36-41, 

41-49 



ASSEMBLE macros .................•....•.......... 
ASSEMBLE statements ..............•..........•..• 
assignments (in clisp) ......................•.•• 
assignments (in pattern match compiler) .•..•.•.• 
ASSOC [ X : V] ...................................... . 
association list ................................ . 
A TOM[ X] SUBR ......................••...•.....•.. 
ATOM HASM TABLE FULL (error message) ...•.•....•• 
A TOM TOO LONG (error m~ssage) ••••••••••••••••••• 
ATOMRECORD (record package) ••••••••••••••••••••• 
a toms .•.•.•.••.••••••••••••••••••••••••••••••••• 
ATTACH[X;Y] ••••••••••••••••••••••••••••••••••••• 
ATTEMPT TO CHANGE ITEM OF INCORRECT TYPE 

(error message) ....••......•.•.•.••••••••.• 
ATTEMPT TO RPLAC NIL (error message) ••...•.•.••• 
ATTEMPT TO SET NIL (error message) •••••••••••••• 
a-list .........................................• 
AOOOn (gensym) •••••••••••••••••••••••••••••••••• 
( B el ... em) (edit command) .................. .. 
backtrace ••••o•••••••tto••••••••••••••••••••••••• 

••••••••••• Ill ••••••••••••••••••••••••••••• 

backtracking ..•...••••..•.•.••.••••••..••••••••• 
BAD ARGUMENT - FASSOC (error message) •...•••.•.• 
BAD ARGUMENT - FGETD (error message) •..••..•.•.. 
BAD ARGUMENT - FLAST (error message) .....••..•.• 
BAD ARGUMENT - FLENGTH (error message) •.......•• 
BAO ARGUMENT - FMEMB (error message) •...•.••.•.• 
BAD ARGUMENT - FNTH (error message) .•.........•• 
BAD PRETTYCOM (prettydef error message) ••••••••• 
BAKTRACE[FROM;TO;SKIPFN;TYPE] .•.•...•......•.••• 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] ....••.•.•....••• 
BEFORE (as argument to advise) •••••••••••••••••• 
BEFORE (as argument to break1n) ..••.•.••••....•. 
BEFORE (tn INSERT command) (in editor) •.•.•..••• 
BEFORE (.in MOVE command) (in editor) ••••••.•.••. 
BEFORE ( prog. asst. command) •••.••••.• , ••••••••• 
bell (in history even~) •••...••.•••••••••..••••. 
bell (typed by dwim) ••• , •••.•.•••.••..• , ••••••.• 
bell (typed by system) ••••••..••••••••.••••••••• 

••••••••••••••••••••••••••••• 0 •••••••••••••••• 

bells (typed by system) .•••••••••••••..••.••.••• 
(BELOW com x) (edit command) •.••••••.••••.•••••• 
(BELOW com) (edit command) •..••••••••••.•••••••• 
(BF pattern T) (edit command) .................. . 
BF (edit c9rrunand) ••••••••••••••••••••••••••••••• 
(BI nm) (edit command) ••••••••.••••••••••••••••. 
(BI n) (edtt command) ••••••••••••••••••••••••••• 
BIND (clisp iterative statement operator) ..•.••• 
(BIND . corns) (edit conunand) .................. .. 
BITS (record field type) .........•.•..•.•.••.•.• 
(BK n) (n a number, edit command) ••..•.••••••..• 
BK (..edi.t cor.u:tan-;i) ••••••••••••••••••••••••••••••• 
BKLINBUF[ X] SUBR ...•.••••. , •.•.... , •....•.•.•• , • 
BKSVSBUF[X] SUBR •....•••••....••.....•.•••..•••• 
BLKAPPLY[FN:ARGS] SUBR ...........••....•••.••••• 
BLKAPPLYFNS (compiler variable/parameter) •.••••• 
BLKAPPLY*[FN;ARGl; ••. ;ARGn] SUBR• •••••••••.••••• 

INDEX.3 

Page 
Numbers 

18.38 
18.36·40 
23.12 
23.45 
5.16 

12.1·2 
5 .12 

16.9 
10.3,8; 16.9 
23.55 

3 .1. 12 
6.4 

16.11 
5.2-3; 6.4; 16.8 
5.8: 16.8 
8.10 

10.5 
9.13,39-40 
2.8: 12.3,5; 15.9-10, 

25 
22.60 
2.3; 5.17 
8.3 
2.3; 6.7 
2.3: 6.9 
2.3; 5.16 
2.3; 6.8 

14.53 
15.25 
14.67: 18.28,30,32-34 
19.4-6 
15.7,21 
9.41 
9.48 

22.22,26,34 
22.22,33,44,49,52 
17.6 
10.18; 14.21; 16.2, 
A3.1 
A3.2 

9.31 
9.31 
9.28 
9.10,28 
9.8,52 
9.52 

23.21 
9.70 

23.57 
9.19 
9.10,18-19 

14.36 
14.36,71; 21.23 
18.22 
18.22,28,31 
18.22 



BLKLIBRARY (compiler variable/parameter) •..•••.• 
BLKLIBRARYOEF {property name) .•......•.••......• 
block compiler , . Ill ••••••••••••• Ill •••••••••• Ill Ill Ill ••• Ill. 

block compilin_g ...... .- ........................... . 
block declarations .••.••.••••••.•.••••.••••••••• 
block ·library .................................. . 
BLOCKCOMPILE[BLKNAME;BLKFNS;ENTRIES;FLGJ •••••.•. 
BLOCKED (typed by editor) .... , ................. . 
BLOCKS ( prettydef command) .................... .. 
(BO n) (edit command) ....••••••.•.•.•••.•••••••• 
BODY (use in iterative statement in c11sp) •••••• 
BOTTOM (as argument to advise) ••.•••.•••••.••••• 
box ... '° ••••••••••••••••••••••••••••••••••••••••• 
BOXCOUNT[TYPE;NJ SUBR .•.•..••••••.•.•.•••..••••• 
boxed numbers ...............•.....•....•..••..•• 
BOXED (edita command/parameter) ••••••.•••••.•••• 
boxing ..................•....................... 
BREAK[ X] NL* .•.•...•••..••••••...••.•.•.•••••••• 
break characters •..•.•..••...•.••.••..••••••••.. 
break commands •...•..•••.. '! ••••••••••••••••••••• 

break expreision ..•.••••.•.•••.••••••••••••••••• 
BREAK INSERTED AFTER (typed by breakin) •••.••••• 
break packag'e ........•.•.•...•.•..•.•••.•••••.... 
BREAK (error message)' ••...••.•••.•••••.••••••••• 
BREAK (syntax class) .•.•••••••••••••••••••••.••• 
BREAKCHAR (syntax class) •.•.•••••••••••••.•••••• 
BREAKCHECK ••.•••••••.••.••••.••••••••••••••••••• 
BREAKCOMSLST (break. variable/parameter) ••••••••• 
BREAKDOWN( ms J NL* .•••••••••••••••••••••••••••••• 
BREAKIN[FN;WHERE;WHEN;BRKCOMS] NL ••••••••••••••• 
BREAKMACROS (break ~ariable/param~ter) •••••••••• 
b~eakpoint ......... ·· ............................ . 
BREAKRESETFORMS (break variable/parameter) ••••.• 
BREAKO[ Ft~; WHEN: COMS; BRKFN; TAIL J ...•.•...••.•••• , 
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTVPEJ NL ................................... • ........ . 
BRECOMPILE[FILES;CFILE;FNS;NOBLOCKSFLGJ ......................................... 
BRKCOMS (break variable/parameter) ..•...•..••••• 
BRKDWHTYPE (system variable/parameter) •.••••.••• 
BRKDWHTYPES (system variable/parameter) •••••..•. 
BRKEXP (break variable/parameter) ~ •..••••••••••• ............................................. 
BRKFILE (break variable/parameter) •••....••••••• 
BRKFN (break variable/parameter) ••••..•••••••••• 
BRKINFO (property name) ......•...••..•.••..••••• 
BRKINFOLST (break variable/parameter) .•••••..••• 
BRKTYPE (break v~riable/parameter) •••••••••••••• 
BRKWHEN (break variable/parameter) ••...••••••••. 
BROADSCOPE (property name) .~ .•••.••.••.•••••.••. 
BROKEN (property nacie) ..••••..•.••••••••.••••••• 
B·ROKEr~ (typed by system) •••.•..••••••••.••• ~ •••• 
(BROKEN) (typed by system) .•...••••••••..••••••• 
BROKENFNS (break variable/parameter) ••••.••••••• 
BROKEN-IN (property name) •••.• ~ •• ~.~············ 
BT (break command) •.••••••••.•••••.•••••.••••••••• 
BTV (break command). • •••••••••••••••••••••••••••• 

INDEX.4 

Page 
Numbers 

18.23,31 
18.23; 22.57,63 
18.28·35 
18.19-35 
14.51: 18.30-32 
18.22 
18.28-30 
9.79 

14.51: 18.30·31 
9.8,52 

23.30 
19.5,7 
13.13 
21.4 
13.1 
21.13 
13.1,3,10-11,13 
15.1,7,20,23 
14.13-16,25,34 
15.7-15 
15.6,12 
15.22 
15.1·26 
16.9 
14.23,25-26 
14.25 
16.2-7,12·13; 17.15 
15.16 
21.5·8 
15.2,7,19,21 .. 24 
15.16,18 
15.2 
15.16 
1s.19 .. zo.22,z4 
15.1-2,4-18,20-22, 
16.1-3,7,14; 17.29 
14.67,72; 18.28,30, 

32-35 
15.9,15-18 
21.6-7 
21. 7 
15.6-7,9,11-12,14,17-18, 
16.1-2,4 
15.15 
15.8,17-18 
15.18,23·24 
15.23-24 
15 .18 
15.17-18 
23.73 
8.7; 15.18 

15.4 
16.4 
15.18-19,23; 17.29 
8.7; 15.23·24 
2.8; 15.8·9 

15.8,10 



BTV! (bre~l!~ command) ........................... . 
BTV* (break command) ••.•• , ••••.•••••••••••• , •••• 
BUILDMAP~LG (system variable/parameter) ........ . 
BY (clisp iterative statement operator) ........ . 
BY (in REPLACE command) (in editor) ....•.......• 
C (in an assemble statement) ................... . 
C (makefile option) ...••.......•••••.•••.•.•.••• 
CALLS[FN;EXPRFLG;VARSFLG] ...................... . 
CAN'T BE BOTH AH ENTRY AND THE BLOCK NAME 

(compiler error message) ................•.. 
CAN'T - AT TOP (typed by editor) ............... . 
CAP (edit command) •••••••••••••••••••••••••••••• 
CAR[ X] SUBR ...................•...............•• 
carriage-return ................................ . 

carriage-return (edita command/parameter) ...... . 
CAUTIOUS ( DWIM mode) •••••••••••••••••••••••••••• 
CCODEP[ Ft-J] SUBR ................•.......••.....•. 
CDR[X] SUBR .................................... . 
CEXPR (function type) .......................... . 
CEXPRR (function type) ......................... . 
CFEXPR (function type) ..................•...•... 
CFEXPR• (function type) ..................•.••.•. 
(CHANGE @ TO ... ) (edit command) ............... . 
CHANGEDFNSLST (file package variable/parameter) . 
CHANGEDVARSLST (file package variable/parameter) •• 
CHANGENAME[FN;FROM;TO] ........•••.••••.•••.•.••. 
CHANGEPROP[X;PROP1;PROP2] ......................• 
CHANGESLICE[N;HISTORY;l] ..•..................... 
CHARACTER[ N] SUBR ••••••••••••••••••••••••••••••• 
character atoms ........ ., . ,,, ........ e ••••••••••••• 

character codes .................................. . 
CHARDELETE (syntax class) ......................• 
CHCON[X;FLG;RDTBL] SUBR ••••••••••••••••••••••••• 
CHCONl[X) SUBR •••••••••••••••••••••••••••••••••• 
CHOOZ[XWORD;REL;SPlST;TA!l;FN;TIEFLG;NDBLS;ClSTJ •• 
CIRCLMAKER[l] ....................•............•. 
CIRCLPRINT[L;PRINTFLG;RLKNT] ............•....•.. 
CL (edit command) ..............................• 
CLDISABLE[ OP] ........................ , , , .•...•. , 
CLEANUP[ FILES] NL* ............................. . 
CLEANUPOPTIONS (file package variable/parameter) .. 
CLEARBUF[FILE;FLG) SUBR .......•.....•...•..••.•• 
CLISP ··················••111••·············,······ 
CLISP interaction with user ...•....•..•.••.•..•• 
CLISP internal conventions ......•.•••..••...•.•• 
CLISP operation .................. , .............. . 
CLISPARRAY (cl1sp variable/parameter) ...••..•..• 
CLISPCHARRAY (clisp variable/parameter) ........• 
CLISPCHARS (clisp variable/parameter) .......... . 
CLISPDEC[ DECLST] ............................... . 
CLISPFLG (clisp variable/parameter) ..........•.• 
CLISPFORWORDSPLST (clisp variable/parameter) 
CLISPIFTRANFLG (clisp variable/parameter) .....•. 
CLISPIFWORDSPLST (clisp variable/parameter) 
CLISPIFY[ X; L] ................•.••..••.. , ••.••• , . 

•••••••••••• 0 ••••••••• 0 ••••••••••••••••••• 

INDEX.5 

Page 
Numbers 

i 5 .10 
15.8,10 
14.43; 18.12 
23.23~24,27 
9.42 

18.39 
14.67 
20.9 

18.29,53 
9.5, 17 
9.75 
5 .1 
3.2; 14.11-12,17-20,29, 

33 
21.10,12 
17.3,5,23,29; 23.5,71 
3.19,2!; 8.!_3·5 
5.1 
4.3; 8.4-5 
4.3; 8.4-5 
4.3; 8.4D5 
4.3; l:L4°5 
9.42 

14.65,75 
14.65,75 
9.91; 15.25 
7.2 

22.8,54 
10.4 
10.3 
10.4 
14.29.31 
10.4 
10.4 
17.21,27·26 
7.7; 21.27 
7.7; 21.25~26 
9. 17; 23. 80 

23.78 
14.72 
14.73 
14.35·36: 22.30 
11.4: 17.16·18; 18.6,8, 
23.1-81 
23.71 
23.12 
23.68·71 
23.32,39,76,80 
23.75 
23.74 
23.35,77 
23.75 
23 .19 
23.32,78 
23.17 
14.67; 23.38,62-65, 

77·78 



CLISPIFY (makefile option) ...................•.. 
CLISPIFYFNS[FNS) NL~ ........................... . 
CLISPIFYPACKFLG (clisp variable/parameter) ....•. 
CLISPIFYPRETTYFLG (clisp variable/parameter) 
CLISPIFYPRETTYFLG (prettydef variable/parameter) .• 
CLISPINFIX (property name) ...•...........•.•.... 
CLISPINFIXSPLST (clisp variable/parameter) ..•... 
CLISPRETRANFLG (clisp variable/parameter) .••.•.. 
CLISPTRAIJ[X;TRAN] ......••.•..•••...•...•....•.•• 
CLISPTYPE (property name) ....................•.. 
CLISP% ..............•...•.•..•...............•.. 
CLISP: (edit command) ....•....•.•.•.•........•.. 
CLOCK[ N] SUBR ..•••. " •••••..•.••••••••••••••.•••• 
CLOSEALL[ ] SUBR ...•...........•..•...•.•......•• 
CLOSEF[FILE] SUBR ...•..•...........•.....•••.... 
CLOSER[A;X] SUBR ........ , . , ................•••.• 
CLREMPARSFLG (clisp variable/parameter) .....•... 
CLRHASH[ARRAY) SUBR ............................ . 
CLUMPGET[OBJECT;RELATION;UNIVERSEJ ............. . 
CL: FLG ( clisp variable/parameter) ............. .. 
CNTRLV (syntax class) .....•......•........•.•... 
CODE (property name) ............•........••.••.. 
COLLECT (clisp iterative statement operator) 
COM (as suffix to file name) ..•...............•• 
commands that move parentheses (in editor) .•.•.• 
COMMENTFLG (prettydef variable/parameter) .•..••. 
comments (in listings) ...•...••.........•..•.... 
compacting ................................... t ••• 

COMPILE[X;FlGJ ........•..•.......•........•..... 
compiled code ............................... · ... . 
compiled file ................................... . 
compiled functions ....•..•..•...••....• ~ ....••.• 
COMPILED Of~ ......•.....•.•........•......••...•• 
COMPILEFILES[FILESJ NL~ .•.............•..•.....• 
COMPILEHEADER (compiler variable/parameter) 
cOrnpiler ........................................ . 
compiler error messages .•.•....................• 
compiler functions ......••..•............•.•.•.• 
compiler macros ................................ . 
compiler printout ........•................••.••. 
compiler questions .........................•.... 
compiler structure ......•................•...... 
COMPILEUSERFN (compiler variable/parameter) 
COMPILEUSERFN (use by clisp) ................•.•. 
COMPILE.EXT (compiler variable/parameter) ...... . 
COMPILEl[FN;OEF] ...........................••... 
compiling CL ISP ••••••••••••••••••••••.•••••••••• 
compiling files ................................. . 
compiling FUNCTION •••••••••••••••••••••••••••••• 
compiling NLAMBOAs ....•.....•.......•.•.•...•... 
COMPSET[FILE;FLG;FILESJ .....•...•.•.........•... 
computed macros .........•..........•........•.•. 
( COMS x1 ... xn) (edit command) ............... .. 
COMS (prettydef command) .....•...••..........•.. 
( COMSQ . corns) (edit command) ................. .. 
CONCAT[Xl;X2; ... ;Xn] SUBR~ .•..•...............•• 
corm[C1;C2; ... ;CnJ f'SUBR• •......•••••••••••••••• 

INDEX.6 

Page 
Numbers 

14.67; 23.64,79 
23.78 
23.64,79 
23. 79 
14.57,67 
23.74 
23.11, 75 
23.33,78 
23.76 
23.72-73 
23.33-34,80 
23.33,80 
21.3 
14.4 
14 .4 
10.19 
23.63,79 

7.6 
20 .16 
23.63,79 
14.29 
3.21; 8.7·8 

23. 19 
18.9,33 
9.51-54 

14.57 
14.46-47,59-62 

3 .14 
18.7°8 
10 .. u 
18.9,U 
4.3 

18.9 
14. 72 
18.9 
4.3; 18.1-53 

18,50a53 
18,7•14,29aJ0,32°35 
18.16-17 
18.49-50 
18.3-5 
18.35 
18.6,15 
23.68 
18.9 
18.8 
23.67 
18.8,U,32 
18.18 
18. 5-6 
18.3 
18 .16 
9.63 

14.51 
9.64 
3.U; 10.7,U 
4.4; 5.4 



cond clause .................................... . 
CONS[ X; Y] SUBR ................................. . 
cons algo~~j.thrn .. a ••• " ••• It ....................... . 

COl-lSCOUfJT[ I~] SUBR ••.•••••••••••••••••••••••••••• 
constructing lists (in clisp) .................•• 
cornrn (prog. asst. command) ••••••••••.••••••••• 
CONTINUE SAVING? (typed by system) ............. . 
CONTINUE WITH T CLAUSE (typed by dwim) ........•. 
C01HrnUE (ten ex cormnand) •••••••••••••••••••••••• 
continuing an edit session ...•.................. 
corHROL[U;TTBL) SUBR ........................... . 
control character echoing ...................... . 
control characters .............................• 
control pushdown list ..............•............ 
control-A .....................................•. 

control-B 
control-C 
control-D 

control-E 

control-F 
control-H 

control 0 0 
control-P 
control-Q 

control-R 
control-S 
control-T 
control-U 
control-V 

copy ••••u•• .. •eeoeo••Geee•ooe••eeeeeG••eeeDeOteoo 

COPY[ x] ...... II •••••••••••••••• 0 •••••••• G •••••••• 

COPY (declare: tag) ......•..•...•..........•.... 
COPYING (record package) ...........•........•... 
COPYREADTABLE[RDTBL] SUBR ••••••••••••••••••••••• 
COPYTERMTABLE[TTBL] SUBR •••••••••••••••••••••••• 
COREVAL (property name) ........................ . 

e 0 • • • e e e e e e e e e e O 9 O O e e D e e II e 0 e 4' 0 D 0 e 0 • e e e e 9 e 0 e 

COREVALS ........................................ . 
COREVALS (system variable/parameter) ..•..•.•.... 
COS[X;RADIAfJSFLG] .......................••...•.. 
COUf~T(X] .............•.•...•..•.••......••••••.• 
COUNT (clisp iterative statement operator) •••..• 
CPLISTS[X;Y] ························•O••········ 
CO (in an assemble statement) .••.•••.•..•.••••.• 
CREATE (record package) .....••.•.•...•.........• 
CTRLV (syntax class) ...........•...........••.•• 
current expression (in editor) ..........••.•..•. 
CURRENTFN (transor variable) ..•....•...•.•.••••• 

INDEX.7 

Page 
Numbers 

5.4 
3.B,12; 5.1 
5.2 
5.2; 10.19; 21.4 

23 .16 
21 • 21 ; 2 2 • 34 
22.39,57 
17 .9 
2.4,10; 21.5,19; A3.1 
9.72-74 
2.5; 14.12,16.32-35 

14 .30 
2.4~5; A3.1w2 

12.3 
2.5; 14.11,13,16,28-29, 

31,3Jm35 
16.3,5,7,9; 21.4; A3.1 
2.4; 21.5,19·20; A3.1 
2.4; 5.9~10; 9.71, 

14.35; 15.6,18; 16.2,1, 
15; 18.7: 21«L 

22.30; A3.1 
9.3; 14.35; 15.6,22. 

16,J,15; 17.6°7,15, 
21.4,10; 22.30; A3.l 
14.2 
i0.18; 14.35: 15.18, 
16.2-3 
2.5; 14.21; A3.2 

14.21,35; 15.10 
2.5; 14.11-13,16,28-29, 

31,33-34 
14.29; A3.2 
10.18; 14.35 
A3.2 

2.5; 22.32,50 
2.6; 14.11.13,16,29, 

A3.2 
6,1,5°7 
6.4 

14.52 
23.60 
14.23 
14.29 
18.41,43-44; 21.3-4, 

10· 11 
18.40·41 
18.41 
13.9 
6.9 

23.20 
6. 12 

18.39 
23,53,59v60 
14.29 
9.2,4,8,11·21,23·36 

Al.8 



data types ..................................... . 
DATA TYPES FULL (error message) ••••...•••••••••• 

. DATA TYPE (record package) ...•..••.••••••.•.••••• 
data-paths (in records in clisp) .••.•.••..•••••• 
DATE[] SUBR .........•.•...•...••••.•...••••.••••• 
OCHCON[X;SCRATCHLIST;FLG;ROTBL) •........•..••..• 
DDT[ ) SUBR •..••..••••••••••••••••••••• • ••••••••• 
debugging ....................................... . 
declarations (in clisp) •••.•.•••.•••.•••.•.••••• 
DECLARE ....•......• •·• ••.••.••.•••••••....•••••••• 
DECLARETAGSLST (prettydef ~ariable/parameter) 
DECLARE:[XJ NL• ...•• .- .•••••••••.••••••••••. : ••.• 
DECLARE: ......•.•...•..•.••.•••••.•.••••••••••••• 
DEFAULT (record package) •..•••....••..•••••.•••• 
DEFINE[ X] ...............•.•.•••...••••.•••.•.••• 
DEFINED, THEREFORE DISABLED IN CLISP 

(error message) .•.••.•.••••••••.•••.••••••. 
DEF IflEQ[ X] NL• ...........................•....... 
defining new iterative statement operators •••••• 
DEFLIST[L;PROP] ......... ,, ..•••••••.... •••••·••• 
DELETE (edit command) ........................... . 
(DELETE . @) (edit command) .................... . 
OE LE TE CHAR (syn tax c 1 ass) ..................... .. 
DELETECONTROL[TVPE;MESSAGE;TTBLJ ....••.•••..••.. 
DELETELINE (syntax class) ...................... . 
DELNOTE ( transor command) .•...•••.•••••••..••••• 
DESTINATION IS INSIDE EXPRESSION BEING MOVED 
· ( ~yped by· ·edit.or·) ...•........•...•....••.•. 
destruc.tive functions ..•..•.••.••.•••••••••••••• 
OF HF LG (sys tern ·variable /parameter) ••.••••••••••• 

' ' ....................... ·• ..................... . 
DIFFERENCE(X:YJ ············••4•o••w············· 
DIR (prog. asst. command) ••.•••••••••••••••••••• 
DIRECTORY FULL (error message) •••••••••••••••••• 
disabling a CLISP operator ••... ~ •..••••••••••••• 
·DISMISS[ r~] ........ •'• • ...•.....••..•..•••.••••..•. 
·or"1PHASH[ L J NL* •.••..•••••••••••••••••••••••••••• 
DO (clisp iterative statement operator) ••••••••• 
DO (edi-t co.rnmand) .•...••.•••..••••..••••••••••••• 
DO ( prog. asst. command) •.••.••••••••••.••••••.• 
DOCOPV (declare: tag) .~ ....•..•.•••...••..•••••• 
DOEVAL@COMPILE (DECLARE: option) •••••••••••••••• 
DOEVAL~COMPILE (declare: tag) .•••••.•.••••••••.• 
DOEVAL@LOAD (declare: tag) •....••........••••••• 
DONELST (printst~ucture variable/parameter) 
DONTCOMPILEFNS (compiler variable/parameter) 
DOIHCOPV (DECLARE: option) •..•••••....•.••.•••• , 
DONTCOPY (declare: tag) ...•..•.•••....•...•.•.•• 
DONTEVAL@COMPILE (declare: tag) .•••••......•.••• 
DONTEVAL@LOAD (declare: tag) ••....•••••••••••.•. 
Qot notatipn. . ..... · .............................. . 
DOTHESE ( transor command) ••.•••.•••.•••••••••••• 
DOTH IS ( transor command) ••••••••.•••••••.••••••• 
dotted pair .................................... . 
DREMOVE[ X; L ]. • .•.••.••••••••.••••••••••••••••• • •• 
DREVERSE[ L J •....••••••••...••••••••••••••••.••••• 
DRIBBLE[FILE:APPENDFLG;THAWEDFLGJ •.•.....•.••••• 

INDEX.8 

Page 
Numbers 

3.1-12 
16.11 
23.56,61 
23.51 
21.3 
10.4 
21.8 
2~8; 12.3: 15.1; 20.4 

23.13,16,35-38,46 
14.51; 18.16,31 
14.52 
14.52; 18.11 
18.10 
23.58,60 
2.6,8; 8.6-7 

23.19 
2.6,8: 8.7 

23.29·31 
7.4: 14.49 
9.14,37,40,42 
9.42 

14.28•29 
14.31 
14.28-29 
Al .14 

9.49 
6.4-6 
5.9; 8.1•8: 14.39, 

22.43,55 
13.8 
22.34 
16 .10 
23~64 
21.3 

1.1 
23 .19 
22.31,61 
22;31 
14.52 
18 .11 
14.52 
14.52 
20.7 
18.10,13,31 
18.11 
14.52 
14.52 
14.52 
2.2 

At .15 
At .15 

5.1 
6.4 
6.5 

21.30 



DSUBST[K;Y;Z] .................................. . 
DUMP ( transor .set command) ....................•.• 
dumping cnusual data structures ............•.... 
DUNPACK[X;SCRATCHLIST;FLG;RDTBL) .•.......•..••.• 
D\tJ (edit c·orn.rnand) ..... o ••• , ••• , ••••••••• ,, ••••• D •• 

OW (error message) •.•••••••••••••••••••••••••••• 
D W I f1 [ X ] . . . . . • . . • . . • • . • • o • • • • • • o • • • • • • • • • • • • • • ••• 

DW IM ..........................•...••.........••. 
••• .•••.••••••••••• .,, .... 11.001000100••·········· 

DWIM interaction with user ...................•.• 
DWIM variables ................•..•.•...•••.••••• 
DWIMFLG (dwim variable/parameter) .............. . 
DWIMFLG (system variable/parameter) .•...•..•.•.• 
DWIMIFY[X;L] ................................... . 

DWIMIFYCOMPFLG (clisp variable/parameter) ...... . 
DWIMIFYCOMPFLG (compiler variable/parameter) 
D\.fIM IF YFNS[ FNS] NL~• ••••••.••••..•••••••••••••••• 
DWIMUSERFN (dwim variable/parameter) ...........• 
DWIMWAIT {dwim variable/parameter) ...........•.. 
E[ XEEEE J !IJL:Il ...........................•.....•.. 
(E x T) (edit command) .•••••••••.••••••••••••••• 
(Ex) (edit command) .•••..••••••••••••••••.••••• 
E (edit command) ............................••.• 
E (in a floating point number) .•............•... 
E (in an assemble statement) .....•.......•....•• 
E ( prettydef command) .........................•• 
E (use in comments) .........•....•....•.•......• 
EACHTIME (clisp iterative statement operator) 
ECHOCOrHROL[CHAR;MODE;TTBLJ .•..•••••..•.••.•.••• 
echoing ......................................... . 
ECHOMODE[FLG;TTBLJ SUBR ••••••••••••••••••••••••• 
edit chain ....................................... . 

edit commands that search •..........•.•....••... 
edit commands that test ...•••....•••...•.•..•••• 
edit macros .......•.••..••.••••...••..••••.••••• 
EDIT (break command) ...............•.........•.. 
EDIT ( transorset command) .........•........•.... 
EDIT (typed by editor) •...................•..... 
EDITA[EDITARRY;COMS] .....•.............••....•.• 
EDITCOMSA (editor variable/parameter) ......•.... 
EDITCOMSL (editor variable/parameter) ......•.... 
EOITDEFAULT ..............•.....•.•............•. 
EOITDEFAULT (iri editor) ...•..•..•.....•......... 
EOITE[EXPR;COMS;ATH] .•........•.•.....•..••..••. 
EOITF[EDITFX] N1..i11 ••••••••••••• , •• , , ••••••• , , , • , • 
EDITFINDP[X;PAT;FLG) ....•..•.•........•....••.•• 
EDITFf~S[X] NL* •••••••••••••••••••••••••••••••••• 
EOITFPAT[PAT;FLG) .........•.•.•...•..•.•....• ,,, 
EDI THIS TORY (editor variable/parameter) ....•.... 
editing arrays ................................. . 
editing compiled code ·~························· 
editing corapiled functions •.••.•..••..•...•....• 
EDITL[L;COMS;ATM;MESSJ ....••..............•••..• 
EDITLOADFNSFLG (editor variable/parameter) .••••• 
EOITLO[L;COMS;MESS;EDITLFLG] •.••...••.•••..••••• 

INDEX.9 

Page 
Numbers 

6.6-7 
A1.11 
21.28 
10.3 
9. 77; 23 .80 

17.24 
17.5,23 
Z.B: 16.1; 17.1·29, 

22.23 
17.5 

·17.20 
17.5,12,28 
9.60,86-87 

17.23·24; 23.65-68, 
76-78 

23.67,77 
18.8 
23.66,77 
17.17-19 
17.6,8; 22.39 
8.9 
9.62 
9.62 
9.9,62; 22.62 
3.7; 14.12 

18.40 
14.50 
14.58 
23.25,27 
14.30 
14.30 
14.31 
9.4,7,11·13,15-21, 

23-36 
9.21-33 
9.64 
9.67-70 

15.8.11-13 
Al.11 

9.83 
21.8-17 
9.80,82; 17.17,19 
9.80·82; 17.18-19 

17.5; 22.62 
9.80-83 
9.1,83,87-88 
9 .1,84 ,86-87 
9.90 
9.88-89 
9.90 

22.44,49,60-62 
21.8-17 
21.8-17 
9.91: 15.25 
9.83-84 
9.86 
9.84 



EDITP(EDITPXJ NL• ....•....••.•..........•••.••••• 
EDITOUIETFLG (editor variable/parameter) ••.••••• 
EDITRACEFf~ .•........•.•.•.••.•.•••.•••••••.•••.•• 
EDITRDTBL (system variable/parameter) .•••••••••• 
EDITREC (record package) ..•.•.•....••••••••••. , • 
EOITUSERFr~ •.••.•••.•..•.•••••••••••••••••••••••• 
EDITV[EDITVXJ NL• ......•........................ 
EDIT-SAVE (property name) .•...•.•.••.•.••..•.•.• 
EDIT4E(PAT;X:CHANGEFLGJ ..............•.......•.. 
element patterns (in pattern match compiler) 
EL T[ A: N]. SUBR . . ...•. ; ...•...••••. • .•.•.•..•.•.••• 
EL TD[ A; NJ SUBR •. ~ •....•.•..••.••.•.••••••.•.•.••• 
(EMBED @ IN ... ) (edit command) ............... .. 
END OF FILE (error message) ••••••.•••••••••••••• 
ErJOFILE(YJ •.....•.•.•••.••..••••.••••••.••.•••••• 
end-of-1 ine .............•....................... 
E1JTRIES (compiler variable/parameter) ••••••••••• 
entries (to a block) ...••...••.••..•...•••••••.• 
ENTRY#(HIST;Xl ......•..•.................•.••••• 
EOL (Syntax class) ••••.••.•.•••••....••.••••.••• 
e q ..... • .. •, • ............. • . • ... • .... • ...... • ..... • 
E Q[ X ; Y ] SU BR •••••••••••••••••••••••••••••••••••• 
EQP[ X; Y J SUB.R .••••••••••. • •••••••••••••••••.••••• 
equal .......................................... . 
EOUAL[X:Y.] ...............••••..•••.•••••••••••••• 
ERASE. ( transorset co1M1arid) •..••••••••••••••••••• 
ERROR[MESS1;MESS2;NOBREAK] •...•.•..•....•...•.•. 
error correction ••••••.••.••••.•.•.•••••••.••••. 
err.or· handling .. _ ..... ~ .......................... . 
error number ...... -..•••.••.•••••••••••.•••••••••• 
error types .... • .................................. . 
ERROR (error message) •••••.•••.•.•..•.•••••••••• 
ERRORMESS[U] ~···································· ERRORN[ ·] SUBR ••.•• ·• ••••• ·• •••••••••••••••••••••••• 
errors in iterative statements .•••.•••.•...••••• 
errOrs (in editor) ............................. . 
ERRORSET[U;VJ SUBR ...•• ~.~~ .. ~ .....•..••••..•.•• ........................................... 
ERRORTYPELST (syste~ variable/parameter) ••.••••• 
ERRORX[ERXM] •••••••••••••••••••••••••••••••••••• 
ERROR! [] SUBR •.•••••.•.••••••••••••••••••••••••• 
ERSETQ(ERSETXJ NL ~ ....••.•...•..•..••••.••.•.•.. 
ERSTR(ERN;ERRFLGJ ........•.....•••.....••......• 
ESCAPE(FLG;RDTBL] SUBR ..•.•.••.....••....•....•. 
escape ~haracter ....••.•.••••....•••.•.•••.•.•.• 
ESCAPE (syntax class) •..••••••••.•.••.•••••••••• 
ESUBST[X;Y;Z;ERRORFLG;CHARFLG] ·········~········ 
EVA L[ X ] SU BR ••••••••••.•.•• ~ •••••••••••••••••••••• 
eval format .................................... . 
EVAL (break command) ••......•••.•..•.•...•••••.• 
EVALA[X;A] SUBR •.•••••••••• ·············•····· •• 
EVALOT .....•...•.•.••.••• • · · • • • • • • • • • • • • • • • • • • • • 
EVALQT[ CHAR] •..•••..•••••••••••••••••••••••••••• 
EVALV(_VAR;POS] ................•........•. • •.•..• 
EVAL@COMPILE (DECLA~E: option) ••••••••.•• ~ •••••• 
EVAL@COMPILE (declare: tag) ····•····•••••••••••• 
EVAL@LOAD (declare: tag) ···············~········ 

INDEX.10 

Page 
Numbers 

9 .1,87-88 
9.22 
9.92 

14.22 
23.61 

9.80 
9. 1,87•.88 
9.72 
9.89 

23.41-42 
3.9; 10.14; 16.10 
3.9; 10.15 
9.48 

14.6,11; 16.9 
14 .54 
3.Z: 14.7,11,19 

18.31 
·18.19,29 
22.54 
14.29 
2.3; 21.23 
2.3; 5.13 
3.6; 5.13: 13.2,4,7 
2.3 
2.3; 5.14; 13.2 

A1.11 
i6.6,9,12,14 
17.1·29 
16.1·16 
16.7 
16.7•13 
16.9 
16.7,15 
16.7,15 
23.28 
9.3 
5.9; 7.8; 16.5•6,14-16, 

17 .15 
16.12·13 
16 .13 

. 6.6: 15.7; 16.14-15 
5.8; 16.15·16; 18.18 

21.22 
14 .15 
2:6; 3.2; 14.11 

14.25 
6.6·7: 9.91; 22.15 
2.4,8; 4.2; 8.9; 16.15 
2.4 

15.7,15.17,21; 16.3·4 
8.10; 16.10 
2.4 

15.5 
12.10 
18.11 .. 
14.52 
14.52 



event address .................•....•........••.• 
event number ..................................... . 
event specification ..........• o ••••••••••••••••• 

EVERY(EVERYX;EVERYFNl;EVERVFN2) ......•...•..••.• 
EVO[ X] ••.••••••••••••••••••••••••••••••••••••••• 
(EXAM . x) (edit command) ...................... . 
EXEC •••••••••••••••••••••••••••••••••••••••••••• 
EXEC (prog. asst. command) ••.•..••.•.••••••••••• 
EXIT ( transorset command) •...•...•...••.•.••.••• 
EXPR (function type) .•.•........••.....•.••••••. 
EXPR (property name) ••• , ••• , •••••••••••••••••• , • ............................................... 
EXPRFLG (printstructure variable/parameter) 
EXPRP[FN] SUBR •••••••••••••••••••••••••••••••••• 

exprs ············•••41•••························ EXPRA (function type) ..•.•.....•.•......•••..••. 
Exp T [ M ; f.J ] •••••••••••••• II •••• II •••••••••••• I •••••• 

(EXTRACT @1 from. @2) (edit command) ...•••••••• 
(F pattern N) (edit command) .•.........••....••• 
(F pattern n) (n a number, edit command) •••••••• 
(F pattern T) (edit corrunand) •.•............••.•. 
F pattern (edit command) .••••••.•••.•••.•••••.•• 
(F pattern) (edit command) .................... .. 
F (edit cor:unand) •••••••• o ••••••••••••••••••••••• 

F (in event address) ...•.•..••..•••••••.•••••••• 
F (response to compiler question) •...••..••....• 
false ........................................... . 
FASSOC[X;Y) ..................................... . 
fast symbolic dump ....•..•..••.....•..•.•••••••• 
FAST (makefile option) •••••.•...•.••••.•••••.••• 
FASTCALL (in an assemble statement) •.•••...••••• 
FASTYPEFLG (dwim variable/parameter) •....••••••• 
FAULT IN EVAL (error message) •••.•.•..•..•...•.• 
FAULTAPPLY[FAULTFN;FAULTARGSJ •..•••.•....•••.••• 
FAULTEVAL[FAULTX] NL~ ••••••••••••••••••••••••••• 
FCHARACTER(N] SUBR •••••••••••••••••••••••••••••• 
FETCH {use in records. in clisp) ..••••.•..•.•••.• 
FEXPR (function type) ...............•..••.....•• 
FEXPR~ (function type) ...••.•••.•..•••..•..••••. 
FGETD[X] .••••••••••••••••••••••••••••••••••••••• 
FGTP[X;Y) SUBR ................................... . 
FILDIR[FILEGROUP;FORMATFLGJ ...•...........••..•. 
FILE CREATED (file package) ................... .. 
file maps ......••..•...••.•••••••..••.•.•••••••• 
file nanes ...................................... . 
FILE NOT COMPATIBLE (error message) .....•..•..•. 
FILE NOT FOUND (error message) ••.•..••..•.•••.•• 
FILE NOT OPEN (error message) •••.••..•...•.•.•.• 
file package ........•.•..••••••.•..•••.•.••••••• 
file pointer .•..............••••..••••.••.•••••• 
FILE WON'T OPEN (error message) ••..•••.•••.•.••• 
FILE (edita command/parameter) •••.•••...•..•.••• 
FILE (property name) •.•..•.••••••••••••••••.•••• 
F ILECHAtlGES (property name) ••.••...••••..••••••• 
FILECOMS[FL;X] •••••••••••••••••••••••••••••••••• 
FILECREATED ·············~·····•••••••••••••••••• 

INDEX.11 

Page 
Numbers 

22.12-13 
22.8,12,22,33,54 
22.11-14,20-21 
5. 15 

18.21 
9.66 

21.21, 23 
21.21; 22.34 
At.12 
4.3; 8.4•6 
8.7-8; 9.85-86,89, 

14.39; 17.17-18; 18.7, 
23; 20 .6 

20.5,8 
8.1,3•6 
4 .1 
4.3: 8.4-5 

13.8 
9.46 
9.26 
9.26 
9.26 
9.25 
9.27 
9.6,25-26 

22.12 
18.2,4 
5.4 
2.3; 5.17 

14.57 
14.67 
18.40 
17.23 
16.9 
16.2; 17.5,15,19; 18.27 
16.1,9; 17.5,15,19 
10.5 
23.61 
4.3; 8.4-5 
4.3; 8.4-5 
8.3 

13.7 
21.22 
14.54 
14.42-44 
14.2·3 
14.38 
14.3,38; 16.10 
14.3-4,9: 16.9 
14.63-75 
14.5-7 
14.2: 16.8 
21.14 
14.64,66 
14.64,66·67,70 
14.63 
14.53·54 



FILECREATED[X) NL~ ............................. . 
FILEDATES (property name) ........•.......•..•... 
FILEDEF (property name) ........................ . 
FILEFNSLST[FILE) ........ ~ ...................... . 
FILEGROUP (property name) ....................•.. 
FILELINELENGTH (file package variable/parameter) .• 
FILELST (file package variable/parameter) ....•.• 
FILEMAP DOES NOT AGREE WITH CONTENTS OF file-name 

(error message) .................•........•. 
FILEMAP (property name) ........................ . 
FILEPKGF(G (file package variable/parameter) 
FILEPOS[X;FILE;START;END;SKIP;TAIL) ..........••. 
FILERDTBL (system variable/parameter) .......... . 
files .......................................... . 
FILES?[] ...................... I ••••••••••••••• I. 

FILE TYPE (property name) ....•...............•.•. 
FILE: (compiler question) ..................... .. 
FINALLY (clisp iterative statement operator) 
FIRST (as argument to adv1se) ............•.•..•. 
FIRST (clisp iterative statement operator) ...••. 
FIRSTCOL (prettydef variable/parameter) .•..••••• 
FIRSTFt~[FN) ........................•.•.......... 
FIRSTNAME (system variable/parameter) ...•...•... 
FIX[X] ..................•........................ 
FIX (prog. asst. corrunand) ...•..........•..•....• 
fixed number of arguments .••...........•.•..••.• 
F IX P [ X ] . . . . . . . . , . . . . . . . . . . , . . ......• ·, . . . . . . . : . . .. 
FIXSPELL(XWORD;REL;SPLST;FLG;TAIL;FN;TIEFLG:CLST; 

APPROVALFLGJ ....•.•..................... 
FLAST[X] ············•·•••6••···················· FLENGTH[ X) •••••••••••••••••••••••••••••••••••••• 
FLOAT[X] ...........••..•••...••...••••••..•.••.•• 
floating point arithmetic ...............•.....• ~ 
floating point numbers ..•.••.•.•..•.....•....... 

FLOATING (record field type) ..•.•..............• 
FLOATP[ X] SUBR ..• ·, •.••• I •••••••••••••••••••••••• 

FL TFMT[ t~] SUBR •.•.•.•••••••• I ••••••••••••••••••• 

FMEMB[X;Y] ..........•.•••••.•.••.••••••••.••••.••• 
FM I r~ US [ X ] . . . . . . . . . . . . . . . • . . .. • • . • • • • • • • . • • • . • •••• 
Ft~ ( transorset command) ............•..••.•.•.••. 
FNCHECK[FN;NOMESSFLG;SPELLFLG;PROPFLG] .•...•.... 
FNS ( prettydef command) ........................ . 
Fr~S/VARS ...........•..••••..••...•.•••..••.• • • .• 
F t4 TH [ X : r~ ] . . . . . . . . . . . . . . . . . . . . . . . . . ....•....•..•. 
Fr~TYP[ X] ..........•...•.••••.•.•••••.••••••••••• 
( f n 1 Ir~ f n 2 ) ....... It •• I ••••••••••• •· ••••••••••••• 

(fnl NOT FOUND IN fn2) ..•.....•............••... 
fn1-IN-fn2 ············•••••••·••••••••••o••••••••• 
FOR (clisp iterative statement operator) •..•..•. 
FOR (in INSERT command) (in editor) ......••...•. 
FOR (in USE command) ...•..•.................•.•• 
FORGET (prog. asst. corrunand) ..............•...•• 
fork· handle .................................... . 
forks .......................................... . 
format and use of history list •.•..•.•.•.••..••• 
format characters .....••...•........•.....•..••• 

INDEX.12 

Page 
Numbers 

18.8 
14.54,64,67,70 
17.17·18 
14.73 
14.68 
14.55,57,66 
14.71,73,75: 17.29 

14.44 
14.43 
14.63 
14.7°8 
14.18,39,44~47 
2.9; 14.1-10 

14.66.72,75 
14.67; 23.64,67,79 
18.3 
23.25,27 
19.5, 7 
23.25,21 
14.55,57 
20.4,8 
21.23 
13.5 
22. 1 7-18. 22 
4. 1 

13.4 

17.25-26,29 
2.3: 6.7 
2.3; 6.9 

13.7 
13.6-7 
3.1,5,7,12; 13.1-2,4, 

11; 14.12 
23.57 
13.7 
3.7; 14.36-37 
2.3; 5.16 

13.6 
AL 10 
17.28-29 
14.50 
14.73 
2.3: 6.8 
4.3: 8.1,3-7 

15.18,24; 19.5 
15. 19 
15.18-19,24; 19.5 
23.21 

9.41 
22 .15 
22.28,54 
21.20 
21.18 
22.44-47 
14.25 



FPLUS[Xl;X2; •.. ;Xn] SUBRi:i ...................... . 
FQUOTIENT[X;Y] SUBR ............................ . 
free var2.ab1;es ................................•. 
free variables and compiled functions •.•..•••..• 
FREEVARS[FN;EXPRFLG] ........................... . 
free-list ...................................... . 
FREMAirJDER[X;Y] SUBR ........................... . 
FROM (clisp iterative statement operator) ...... . 
FROM (in event specification) .•..•.••.•••..••..• 
FROM (in EXTRACT command) (in editor) •.......... 
FR P LACA( X ; Y] SUBR ••••••••••••••••••••••••••••••• 
FRPLACD[X;Y] SUBR ••••••••••••••••••••••••••••••• 
(FS ... )(edit command) ················•·o•••••• 
FSUBR (function type) •••••••••••••••••••••••••••. 
FSUBRA (function type) .........................• 
FTIMES[ )(1; XZ; .•• ; Xn) SUBR~ ...........•..•....... 
Fur~ AR G .......... " ...•. 0 • II • Q ••••••••• ,. ••••••••••• 

FUNARG (function type) ......................... . 
FU1JCTI01J[ EXP ;VUST] NL ........................ .. 
function definition and evaluation ....•..•.•.... 
function definition call ....................... . 

function objects ............................... . 
function types ........ , ........................ . 
functional arguments ........................... . 
FUNNYATOMLST (clisp variable/parameter) ..•...... 
F / L •••••••.•••••••••••• • • •• • • • • • • • • • • • • • • • • • • • • • 
(F= •.. ) (edit command) ••••••••••••••••••••••••• 
garbage collection . , ..................... , ....... . 

GCD[X;Y] •..••••••••••••••••••••••••••••••••••••• 
GCGAG[ MESSAGE] SUBR .................... , ....... . 
GCTRP[ fJ] SUBR ...........................•....... 
GCTRP (typed by system) ...............•......... 
GC: (typed by system) .............•............. 
GC: 1 (typed by system) •••••••.••..••..•••.••••• 
GC: 16 (typed by system) ................•....... 
GC: 18 (typed by system) ..............•..•.•...• 
GC: 8 (typed by system) ................•.•...•.. 
generalized NTH command (in editor) ..•.....••..• 
GENNUM (system variable/parameter) ............. . 
GENS YM[ CHAR] ......................•............. 

GET[X;Y] .............. , ................ ,, , ..... . 
GETBLK[ N] SUBR ................................. . 
GETBRK[ RDTBL] SUBR ............................. . 
GETD[X] SUBR ................................... . 
GETFILEMAP[FILE;FL] ............................ . 
GETHASH[ITEM;ARRAY] SUBR ....................... . 
GE TL IS[ X; PROPS] ........... , ................. , .. . 
GETP(ATM;PROP] ..........•......................• 
GETREADTABLE[RDTBL] SUBR .....................•.. 
GETSEPR[RDTBL] SUBR ............................ . 
GETSYNTAX[CH;TABLE] ........................•.•.. 
GETTERMTABLE[TTBLJ SUBR .....................•... 
GLC[X] SUBR ........................ " •••..•..••••• 

INDEX.13 

Page 
Numbers 

13.6 
13.6 
12.2,6 
12.6 
20.9 

3.13-ll!. 
13. 7 
23.23-25 
22 .13 

9 .46 
5.3 
5.3 
9.27 
4.3; 8.4-6 
4.3; 8.4-6 

13.6 
11.!-2,5-7; 12.11°12, 
16.10; 18.18 
8. !5 

11.1°2,5,7; 18.18 
8.1-12 
2.3,8; 3.4: s.1-2. 

16.1; 18.23 
11.6; 16.1 

4 .1-4 
2.4; 8~10; 11.l; 18.18 

23.64,80 
i7 .17 
9.27 
2.4; 3.12-15; 10.13, 

15-19 
13.6 
5.10; 10.16 

10.18-19; 21.4 
10.19 
10.16 
10.13; 16.9 
13.2 
13.2 
10.15; 21.4 
9.32,52,60 

10.5 
3.2; l0.5;·15.18, 

18.18; 19.4,6 
7.2 

16.10; 21.18 
14. 15 
2.3,8; 8.1-3,7 

14.43 
7.6; 23.33 
7.3 
7.3 

14.22 
14. 15 
14. 24 
14.28 
10.1.12 



global variables ................................ 
GLOBALVAR (property name) ..•.•.•........•.....•• 
GLOBALVARS (compiler variable/parameter) •....••• 
Gt~C[ X] SUBR ..•.••••....••.•.•••.•........•.•.••• 
GO(X] FSUBR• ................•...•............... 
GO (break command) .............................. . 
GO (use in iterative statement in clisp) .•.•...• 
GREATERP[X;Y] SUBR ..•....•....•..........•.•.••. 
GREET[NAME;FLG] ..................•.•......•.•••• 
greeting and user initialization •..••....•...... 
GTJFN[FILE;EXT;V;FLAGS] .•...••...•.........•••.• 
HALF (record field type) .....••.•.•.......••.... 
HALFWORD (record field type) ...•................ 
handle ........................................... . 
HARRAY[LEN] ...................•............••... 
hash arrays ..................................... . 
hash 1 ink functions ......................•....•• 
hash links ..................................... . 
hash overflow .................................. '° 
HASH TABLE FULL (error message) ....•.....•...•.. 
HASH RECORD (record package) •......••.....•.••••• 
hash-address .... , .•....•.....•... II •••••••••••••• 

hash-array • • 11 11 11 ea 11 11 11·0 11 11 • • 11 11 11 11 11 II II I 11 11 11 II 11 II e II II II II II 0 II• 

hash-i tern ................................... 9 ••• 

hash-1 ink ....................................... . 
hash-value ..................................... . 
HELP[MESS1;MESS2] ..................•............ 
HELPCLOCK (system variable/parameter) ..........• 
HELPDEPTH (system variable/parameter) ..••.•..••• 
HELPFLAG (system variable/parameter) ...••...•.•. 
HELPSYS .......•....••••.••.•••••.••••••••••••••• 
HELPTIME (system·variable/parameter) •......•..•. 
HELP! (typed by system) .......•.............•... 
HERALD[STRING] SUBR ·~··························· 
HERALDSTRING (system variable/parameter) •...•..• 
HE RE ( in edit command) ...................•.•.... 
history cornrnands ...........................•...• 
history commands applied to history commands 
history commands that fail ..................... . 
history list ................................... . 
HISTORYCOMS (editor variable/parameter) ........ . 
HISTORYFIHD[LST;INDEX;MOD;X;Y] •................. 
HISTORYSAVE[HISTORY;ID;INPUT1:INPUT2;INPUT3;PROPS] 
HISTSRO (prog. asst. variable/parameter) ......•. 
HORRIBLEVARS prettydef macro ..............•..•.. 
HPRitH[EXPR;FILE] .............•.•.............•. 
(I c xl ... xn) (edit conunand) ................. . 
IDIFFEREf~CE[ X; Y] ...............•................ 
(IF x comsl coms2) (edit command) .............. . 
(IF x car.isl) (edit command) •....•.•.•....•..••.• 
(IF x) (edit command) ...••...••....•..•.•.•••••• 
IFPROP (prettydef command) ..••.•.........••..•.• 
IF-THEN-ELSE statements· ..•..••••..•..•......•.•. 
IGREATERP[X;Y] SUBR .....•••..••.•.•.•..••..••••• 
ILESSP[X:Y] ...............••......•......•.•.•.• 
ILLEGAL ARG (error message) .••.•.•••..••..••.•.• ....................................... 

INDEX .14 

Page 
Numbers 

5.9; 14.55; 18.70 
23.66 
18.6; 23.66 
18.6,31: 23.66 
10.6,12 
5.7 

15.6-7,15,17; 16.3-4 
23.27 
13.8 
22.M 
22.64 
14 .10 
23.57 
23.57 

3 .18 
7.6 
3. 1 
7.5-6 
7.4-5,7 
1.1 
7.8; 16.10 

23.56 
7.4 
7.4-5,7 
7.4-6 
7.4-6 
7.4-6 

16.14 
16.6; 22.22,38 
16.5·6 
16.3,5,7 
20.21-22 
16.5-6 
16.14 
3.17 
3.17 
9.42 

22 .10°28 
22.20 
22.21 
9.73,78; 22.6-14,44-47 

22.62 
22.53 
22.11,44-46,52,61 
22 .18 
21.29 
21. 28 

9.62 
13.3 
9.65 
9.65 
9.64 

14,51°52 
23. i 7 
13.4 

.13 .4 
6.4; 14.30; 16.10, 

22.57 



ILLEGAL ARG - PUTD (error message) .........•.•.• 
ILLEGAL ARG - SETSBSXZE (error message) ....••... 
ILLEGAL ARG - SWPARRAY (error message) •.....•... 
ILLEGAL ARG - SWPPOS (error message) .......••... 
ILLEGAL DATA TYPE NUMBER (error message) ..•....• 
ILLEGAL EXPONENTIATION: (error message) ....•.••. 
(ILLEGAL GO) (compiler error message) .....•....• 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
ILLEGAL READTABLE (error message) ...........•... 
(ILLEGAL RETURN) (compiler error message) ...... . 
ILLEGAL RETURN (error message) .....••...... \' .. . 
ILLEGAL STACK ARG (error message) ..........••..• 
ILLEGAL TERMINAL TABLE (error message) •....••..• 
IMitJUS[ X] ............................... , •••••••••• 
implenentation of REDO, USE, and FIX ...........• 
implementation of structure modification commands 

(in editor) ................................ . 
implicit progn ............................... , ... . 
IN (clisp iterative statement operator) ••••..••• 
IN ( in EMBED comf11and) (in iadi tor) , .....•.. , .•••• 
IN (in USE command) ..... , .. , ••.......• , ....•.••• 
IrJ (typed by system) ..............•....•.•...•.• 
INCORRECT DEFINING FORM (error message) •.••••••• 
incorrect number of arguments •••..••..•.•••••••• 
indefinite number of arguments ••••••••..••.••••• 
INF ILE[ FILE] SUBR .•..........•.••.••..•.••.•••.• 
INFILEP[FILE] SUBR .......••...•..•.••.•.•..•...• 
infix .operators (in clisp) .............••..•.... 
INFIX (type of read macro) •...........••.•.•••.. 
INFO (property name) .•...••............••...•••• 
lNPUT[FILE] SUBR .••....•••••..•...••.••.•..••••. 
input buffer .................... o ••••••••••••••• 

input functions ........ o •••••••••••••••••••••••• 

input/output ................................... . 
(HISERT ... AFTER . @) (edit command) •...•.••••. 
(HISERT ... BEFORE . @) (edit command) ....••..•• 
( WSER T . .. FOR . @) (edit command) ............ . 
INSTRUCTIONS (in compiler) •••...•..••......•..•• 
INT (record field type) ..•• i •••••••••••••••••••• 
i.nteger arithmetic ............................. . 
INTEGER (record field type) ...•.•.•.•..•••.•••.• 
integers ....................................... . 
interfork communication .•...•......•......•.•••• 
interpreter .................................... . 
INTERRUPT[INTFN;INTARGS;INTYPE] ••.•......•..•••• 
interrupt characters ......•.....••....••.•.••••• 
INTERRUPTCHAR[CHAR;TYP/FORM;HARDFLG] ..•.••.•.••. 
INTERRUPTED BEFORE (typed by system) .. ~ .••..••.. 
It~TERSCOPE .•..••.•••..•••••••.•••••••••••••••••• 
INTERSECTION[X;Y) .••.•••..•..••••.....••••.••••. 
IN? (break command) ............................ . 
IOFILE[FILE] SUBR •....• , •.••..•.•••••.•.••..••• , 
IPLUS[Xl;X2; ... ;Xn] SUBR* •••.••••••••••••••••••• 
IQUOTIENT[X;Y) SUBR .•..•..•••.•.•...•..•.•.••.•• 
IREMAINDER[X;Y] SUBR ••.•.•••.•...•.••..••••••••• 
(IS GLOBAL) (compiler error message) .•••.••••••• 

INDEX.15 

Page 
Numbers 

8.4; 16.8 
16 .11 
16.11 
16 .12 
16 .11 
13.9 
18.52 
16.10; 21.18 
14.22-23,29; 16.11 
18.52 
5.7; 16.8 

12.7; 16.9 
14 .28·29: 16 .12 
13.3 
22.17·20 

9,37 .. 39 
4.4; 12.4·5 

23.21-22,24.2? 
9.48 

22.15 
16.4 
8.7 
4.4 
4.2 

14.2,6 
14.3-4 
23.10·13 
14.27 
4.2; 20.4; 23.63.65 
5.10; 14.1 

10.18; 14.16,21,33,35, 
15.18; 16.2,7 
14 .11-19 
14.1-75 
9.41 
9.41 
.9 .41 

18 .17 
23.57 
13.2-6 
23.57 
3.5 

21.18 
8.9; 16.1 

10.19; 16.2 
2.5; 16.16; A3.2 

16 .17 
16.2 
20.10-20 
6.10 

15.8,13; 16.1 
14.6•7 
13.3 
13.4 
13.4 
18.52 



IS NOT DEFINED (typed by PRINTSTRUCTURE) .,,,,,,, 
iterative statements (in clisp) ...•.•....•..••.• 
ITIMES[Xl;X2; ... ;XnJ SUBR* •..•.••••.••...•..•••• 
I.S.TYPE[NAME;FORM;OTHERSJ ...•....•........••.•• 
i.s.types ...................................... . 
JF f~ ............................................. . 
JFNS[JFl~;AC3] ............•..•.......•..••...•••• 
JOIN (clisp iterative statement operator) ••••••• 

· JO INC (edit command) .•••.•••••••..•..•.••••••••. 
JS YS ........•••..•..••..•••••••.•••••••••••••.••• 
JS YS[ I~; AC 1 ; AC2 ; AC3; RE SUL TAC J SUBR* ............. . 
keYboard l~yout ................................ . 
KFORK[FORK] •.••••••••••••••••••••••••••••••••••• 
KWOTE[ X] •...•••••••.•••••••••••••••••••••••••••• 
LAMBDA .....•••••••••.••••••• ·• ••.••••••••••••••••• 
LAMBOACOMS ( transor command) •..••.••••••••.••••• 
LAMBDASPLST (dwim variable/parameter) ••••..•••.• 
LAMS (compiler variable/parameter) ••...••..•.•.. 
LAP ..... • .•...•••..•...•..•.•.•.••••••.•.•.••••. 
LAP macros ...••...•....••••.•.•.••••..•.•....••• 
LAP op-defs .................................... . 
LAP statements ................................. . 
LAPFLG (compiler variable/para~eter) ••.•••..•••• 
LA PRO[ Fl~ J ....••••...•.•..••••.••••.•......•••••• 
large integers· .................................. . .................................... 
LAST( X] ............................... • ••••••••••• 
LAST (as argument to advise) .•.••••.•.•••••••••• 
LASTAIL (editor variable/parameter) •.•..•••••••• 
LASTC[FILE) SUBR ...........••....•...••..••.....• 
LASTFr-~[Fr~J ••..•••••.••••.••••.•••.•..•••••.••••••••••• 
LASTN[L;t~) ••... ····-·· ..•.....•.....•..••..•••••••.• 

· LASTPOS (break variable/parameter) ••.••••.•••••• 
LASTVALUE (property name) ...•...•.•••••••••••••• 
LASTWORO (dwim variable/parameter) ••••.•••.••••• 
LASTWORD (system variable/parameter) •••.••.••••• 
LAST-PRINTSTRUCTURE . 
· (printstructure variable/parameter) ••.••••• 

.(LC.@) (edit command) .•.•....•...•.••.••.•••.• 
LCASELST (prettydef variable/parameter) .•.•••••• 
LCFIL (compiler vari•ble/parameter) •.•.••...•.•• 
(LCL. @)(edit conunand) ••.......•.•••..•.•• : .••• 
L~Of~C[PTR;X] ..••••.••.•• e ••••••••••••••••••••••• 

LOIFF[X;Y;ZJ " .••......•.•••.•..•...••...••••..•• 
LDIFF: NOT A TAIL (error message) •..•.••.••.•••• 
LEFTBRACKET (syntax class) ..................... . 
LEFTPAREN (syntax class) ••.....•.......••.•..••• 
LEf~GTH[· L] ...•.••.•••.•.••..•••..••••••.•••.••••• 
LESSP[X;YJ ...................................... . 
(LI n) (edit command). • ••••••.••••••.••••.•.•.••• 
LINBUF[FLG] SUBR •••••••••••••••••••••••••••••••• 
line bu_ffer ..................................... ·· 
LINEDELETE (syntax class) ...................... . 
LINELENGTH[N) SUBR ..•...••..•...••••••.•..••••.• ....................................... ~ 
line-buffering •••••••••• !t ••••••••••••••••••••••• ........ , ........................... .. 

INOEX.16 

Page 
Numbers 

20.4 
23.18-31 
13.3 
23.30-31 
23.20,29-31 
14.8-10 
14 .10 
23 .19 
9.76 

.14.8·10,37: 21.22 
21.22 
17.22 
21.20,22 

5.3 
4.1-2,5; 8.3,5,7 

At.17 
17.17-19 
18.5,10 
18.3,35,41·45 
18.37,45 
18.37 
18.42-45 
18.3 
18.27 
3.1,6,12; 5.1,3, 

13.1-2.11 
6.7 

19.5,7 
9.16•17,25,84 

14.16 
20.4,8 
6.8 

15.8-10,12 
9.72 

17.14,24•25,29: 23.13 
9.87 

20.5,7·8 
9.30 

14.62 
18.3,5 
9.30 
6.3-4 
6.9 
6.10 

14.25 
14.25 
6.9 

13.8 
9.8,53 

14.35-36 
14.32,35 
14.29,31 
2.3; 3.9; 5.10; 14.37, 

55 
2.5; 14.12·13,16•17, 

32-35 



line-feed ....................................... . 
line-feed (edita command/parameter) •••..•••.••.• 
linked function calls .............••..•.•...••.. 
LINKEDFNS (system variable/parameter) ••••••••••• 
LINKFNS (compiler variable/parameter) .••...•.••• 
LISP. {prog. asst. command) •........•.••.....••.• 
LISPFN (prbperty name) ...............•...•..•.•• 
LISPX[LISPXX;LISPXID;LXSPXXMACROS;LISPXXUSERFN; 

llSPXFLGJ . 8 •••••• o ......................... . 

LISPXCOMS (prog. asst. variable/parameter) .•.••• 
LISPXEVAL[LISPXFORM;LISPXIDJ ............•..••.•. 
LISPXFIND[HISTORY;LINE;TYPE;BACKUP;QUIETFLG) 
LISPXFINDSPLST (prog. asst. variable/parameter) 
LISPXHIST (prog. asst. variable/parameter) .••.•• 
LISPXHISTORY (prog. asst. variable/parameter) 
LISPXHISTORY (system variable/parameter) •..•.••• 
LISPXHISTORYMACROS 

(prog. asst. variable/parameter) ••.•••••••• 
LISPXLINE (prog. asst. variable/par~meter) •••••• 
LISPXMACROS ........................... , •••••••••• 
LISPXMACROS (prog. asst. variable/parameter) 
LISPXPRINT[X;Y;Z;NODOFLG] ..•...•.•••...••••••••• 
LISPXPRINTFLG (system variable/parameter) ••••••• 
LISPXREAD[FILE;RDTBL] •........••...•.•...•.••••• ............... • .......................... . 
LISPXREADFN (prog. asst. variable/parameter) 
LISPXREADP[ FLG] .....•• , , ..•..........•..••••• , • , 
LISPXSTATS[FLG] ............•..••..••........ , , ••. 
L ISPXUNREAD[ LS T] .......................•...•.•.. 
LISPXUSERFIJ (prog. asst. variable/parameter) 
LISPXWATCH[STAT;N) ..........••......•..•••.•.••• 
LISPX/[ X; FN ;VARS] .•....•.•••.••••.•...•.•••• , • , , • 
LIST[Xl;X2; ... ;Xn] SUBR* .•••••••••••••••••••••••• 
list manipulation and concatenation ..•..•.••..•• 
list nodes ...................................... . 
LIST (makefile option) ··~······················· 
LIST (property name) •........••...•.•..••..••••• 
LISTFILES[FILES] NL*, ••••..•••••••••••••••••••••• 
LISTFILESTR (file package variable/parameter) 
LISTFILESl[FILES] ...•.......•..•.••......••••••• 
LISTING.? (compiler question) .•..••...•..••...••• 
LISTP[X] SUBR •••••••••••••••••••• •···· •••••••••• 
listp checks (in ~attern match compiler) •••••••. 
i·1sts .......................................... . 
LISTS FULL (error message) .•••••••••.•••••.•.••• 
LIT A TOM[ X] SUBR ••••••••• , ••••• , , •• , , ••• , •••••••• 
literal atoms .................................. . 

LITS (edita command/parameter) ••..••••..••••.••• 
LLSH(U;M) SUBR •••••••••••••••••••••••••••••••••• 
(LO n) (edit command) .......•.•..•.•.•..••.•..•• 
LOAD[FILE;LDFLG;PRINTFLG] •••.•.•.••.•.•.•..••••• 
LOAOAV[ ] ••.••.•.•.•••••••••••••••••••••••••••••• 

INDEX. 17 

Page 
Numbers 

3.2; 14.11,19 
21.13 
18.23·28 
18.27 
18.26,31-32 
21.21; 22.34 
23.74 

9.62,73: 17.5,12-14,29, 
22.10-11,15,17,19,21, 

29,34-35,37-38, 
40-41,44-47.47-49. 
52,62 

22.38 
22.52 
22.53,62 
22.14 
22.45-46.56.59-60 
22.44,49,60.62 
22.62 

22.34 
22.34 
21.21 
22.34,49 
22.37,45 
22.38 
22.10,19.29,32.47°48,50, 

61 
14.17; 22.50 
22.50,61 
22.63,65 
22.51 
22.35,37,47,49 
22.63 
22.40,58 
3.8; 6.1 
6.1-12 
3.9,12 

14.68 
8.7 

14.66,68, 71 
14.72 
14.72 
18.2-3 
2.3: 5.13 

23.40 
2.3; 3.1,8; 5.13 

16.10 ' 
5.12 
3.2,4; 5.12: 10.11, 

14 .12 
21.13 
13.5 
9.8,53 
2.9: 14.39; t'8.9 

21.22 



LOAOBLOCK[FN;FILE;LOFLG) .....................••. 
LOADEDFILELST (file package variable/parameter) 
LOADFNS[FNS;FILE;LDFLG;VARS] ....•......•...••... 
LOAOFROM[FILE;FNS;LDFLG] .........•.•....•..•.•.. 
LOAOVARS[VARS;FILE;LDFLG] .....••.....•...•...•.• 
LOC[ x] SUBR ....•.....••.•... I •• 0 •••••••••••••••• 

local record declarations (in clisp) ...•....•••• 
local variables ............•.............•...•.• 
LOCALFREEVARS (compiler variable/parameter) 
locally bound variables .•.......•...........•.•• 
location specification (in editor) .......•.•..•• 
LOCATION UNCERTAIN (typed by editor) •..•.•.•.•.• 
LOG[X] ·····················••o•••••••••e•••o•••• 
LOGAfW[ Xl; X2; ... ; Xn] SUBR* ••••••••••••••••••••• , 
LOGOR[ Xl; X2; ... ; Xn] SUBR* ••••••••••••••••••••••• 
LOGOUT[ ] SUBR ••••••••.•••••••••••••••••••••••••• 
LOG XOR[ Xl; X2; ... ; Xn] SUBRlll ••••••••••••••••••••• , 
LOOKAT[FNL] .............•....................... 
1 owe r case ...... , .................................. . 
lower case comments ............................ . 
lower case input .........•••.....••............• 
(LOWER x) (edit command) ...•.................... 
LOWER (edit command) ....•.........•............. 
LOWERCASE[ FLG] .................................. . 
(LP • corns) (edit command) ..............•......• 
(LPO . corns) (edit command) .................... . 
LRSH[f~;r1] .............•.....•...•.•.•.......•... 
LSH[ N ;M] SUBR ••••••••.•••••••••••••••••••••••••• 
LSTFIL (compiler variable/parameter) ...•..••••.• 
LSUBST[X;Y;Z] ......................•..••...•••.. 
L-CASE[X;FLG] ······················••••1t1t••••••D 
(M c . corns) (edit command) .•....••••..•...••••• 
(M (c) arg. corns) ········••••••••••••,••••••••o• 
(M (c) (argl ... argn) . corns) (edit command) 
machine instructions ....•..•..••...............• 
MACRO (property name) ........................•.. 
MACRO (type of re~d macr~) .....•..•..•.....•..•• 
macros (in compiler) ...........•.•.........•.••. 
macro.s (in editor) .............................. . 
MAKEBITTABLE[L;NEG;A] .......................... . 
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILEJ ..................................... " .... 
makefile and clisp ......•.........•..•...•...... 
MAKEFILEREMAKEFLG 

(file package variable/parameter) ......... . 
MAKEFILES[OPTIONS;FILESJ ....•......•.......•.... 
MAKESYS[FILE] EXPR .......................•.•.... 
MAKESYSDATE (system variable/parameter) ..•••••.• 
MAKEUSERl~AMES .........•.•.•...•.........•.•.•.•• 
MAP[MAPX;MAPFN1:MAPFN2] ..•....•....••...•.••.••. 
MAPATOMS[FN] SUBR ••••••••••••••••••••••••••••••• 
MAPC[MAPX;MAPFN1;MAPFN2] •....••..•.....•.•.•..•• 
MAPCAR[MAPX;MAPFN1;MAPFN2] ......•..••...•..••.•• 
MAPCON[MAPX;MAPFN1;MAPFN2] .•.•..•••.....•.••••.• 
MAPCONC[MAPX;MAPFN1;MAPFN2J .•.•.•.•.••..•..•.••• 
MAPOL[MAPDLFN;MAPDLPOSJ ••••••••••••••••••••••••• 
MAPHASH[ARRAY:MAPHFN] .......................... . 

INDEJC.18 

Page 
Numbers 

14.42 
14.64 
14.40 
14.41; 18.14 
14.41 
13.13-14 
23.37 
5.6 

ta. 20 .. zi. 31 
12.7 
9.28•29,64 
9.17 

13.9 
13.5 
13.5 
2.4; 21.S,21 

13.5 
20.12,16 
14.62 
14.59-62 
14.32 
9.75 
9. 74 

23.81 
9.65-66 
9.66 

13.6 
13.5 
18.3 
6.6-7 
9. 74; 14. 62 
9.67 
9.68 
9.68 

18.1,41·45; 21.10 
18.15-16 
14.26 
18.16·17 
9.67-70 

10.10 
14.66,68.72; 17.29, 
18 .14 
23.35,79 

14.68 
14.71,75 

3 .16 
3. 16 

22.66 
11. 2 
10.5 
11.3 
11.3 
11.3 
U.3 
12.u 
7.6 



MAPLIST[MAPX;MAPFN1;MAPFN2] ....................• 
MAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFLG] •. 
MAP2C[MAPX;MAPY;MAPFN1;MAPFN2] ................. . 
MAP2CAR[MAPX;MAPY;MAPFN1;HAPFN2] .........•...... 
margins (for prettyprint) ...................•... 
(MARK atom) (edit command) •••••••••••••••••••••• 
MARK (edit command) ••••••••••••••••••••••••••••• 
MARKLST (editor variable/parameter) ............ . 
MAS:< (edit a comr.1and/parameter) ..........••....•. 
MATCH (use in pattern match in clisp) •.•••.•.••• 
MAXLEVEL (editor variable/parameter) ....•......• 
MM\LOOP EXCEEDED (typed by editor) ••••.•...•.•.. 
MAXLOOP (editor variable/parameter) ............ . 
(MBD el ..• em) (edit command) •••••••••••••••••• 
f1Ef18[X;Y] .................. ~····················· 
MEMBER[X;Y] .................................... . 
MERGE[A;B;COMPAREFN] ...........................• 
MirJFS[ 11; TYP] SUBR ••••••••••••••••••••••••••••••• 
Mif.!US[ X] SUBR .................................. . 
MINUSP( X] SUBR •••••• , ••••••••••••••••••••••••••• 
MISSING OPERAND (dwtm error message) ...•.•...... 
MISSING OPERATOR (dwim error message) ......•...• 
MISSPELLED?[XWORD;REL;SPLST;FLG;TAIL;FN] ....... . 
mixed arithmetic .. " ••... , .. o ••• o •••••••••••••••• 

Mt<ATOM[X] SUBR •••••••••••••••••••••••••••••••••• 
MKSTRHJG[X] SUBR ..•...••.......•.......•.•.•..•• 
f~KSi/AP[X) ······•••ooo••••••••e•••••••11•••······· 
MKSWAPP[NM;DF] ................................. . 
MKSWAPSIZE (Overlay variable/parameter) .....•..• 
MKUNSWAP[ X] ••••••••••••••••• , •••••••••• , , •••• , •• 
MODEL33FLG (dwim variable/parameter) ••..•..••••• 
MOVO[FROM;TO;COPYFLG] ..............•.....•.••••• 
(MOVE @1 TO com • @2) (edit command) .......•..•• 
(MULTIPLY DEFINED TAG) (compiler error message) 
(MULTIPLY DEFINED TAG, ASSEMBLE) 

(compiler error message) .••...............• 
(MULTIPLY DEFINED TAG, LAP) 

(compiler error message) ..............•.... 
(N el ... em) (edit command) .................. .. 
(n el ... em) (n a number, edit command) .......• 
n (n a number, edit command) ................... . 
(n) (n a number, edit command) ...•..........•... 
NAME ( prog. asst. command) ..................... . 
NAMES RESTORED (typed by system) .............•.. 
NAMESCHANGEO (property name) ................... . 
fJARGS[ X] .................. , •••••••••••••••••••••• 
NCHARS[X;FLG;ROTBL] SUBR .....................•.. 
NCONC[Xl;X2; ... ;Xn) SUBR* .............•......... 
r~CONCl[ LST; X] .................................. . 
r·JEQ[X;Y) •••••••••••••••••••••••••••• , ••••••••••• 
NEVER (clisp iterative statement operator) .•...• 
NEW (makefile option) ...........•.••..•........• 
NEWF!LE2[NAME;COMS;TYPE;UPOATEFLG) ••••.••...•••. 
IJEWFILE ?[NAME; CHANGEDLST) .......•..•..•....•••.. 
fJE\J/Ft'[ FtJ] .............••.•.•••.•••••••••••••..•• 
(NEX x) (edit command) ........................ .. 
NEX (edit command) ..........•..•..•.....•...•.•• 

INDEX .19 

Page 
Numbers 

11.3 
11.5 
11.4 
11.4 
14.54 
9.34 
9.34 
9.34,84 

21.15 
23.39 

9.24,28 
9.66 
9.66 
9.47 
5.16 
5. 16 
6 .11 
3.14-15; 10.17 

13.a 
13.4,7 
23.68 
23.68 
17 .25,29 
13.7-8 
J,2•J,6u7; 10,8 
3.11-12; 10.6,12 
3.21 
3.21 
3.22 
3.21 

17 .22 
8.4 
9.48-51 

18.51 

18.51 

18.51 
9.36 
9.5,36 
9.3,17 
9.5,36 

22.14,22,26-27 
15.25 
15 .19 
8.1,3-4,6 

10.3; 14.7 
6.2-3 
6.2-3 
5 .13 

23.20 
14.68 
14.73,75 
14.76 
22.58 
9.32 
9.32 



r~IL ............ ·· · · · · · • · · · • .. • · · · • · • • • • · · · · • • • • · • • • 
NIL (edit command) ., ...............•............. 
NIL (use in block declarations) .•••••.•••.••.••• 
r~ IL : .•..•••••••••••••••••••••••••••••••••••••••• 
ULAM ( transor eorrunand) ....•.....••••. • .•••••••••• 
NLAMA (compiler variable/parameter) •••.••.••.•.• 
f~LAMBDA .•.•..•••••.•••.••.• .- •••••••••••••••••••• 
NLAML (compiler variable/parameter) •..••••..•.•• 
NLEFT[L;N;TAILJ ····················•············· fJL.ISTP[X] ..............••.•.•••••••..•.•.•..•.•• 
IRISTPCOMS ( transor command) •.•••••..••••••••••• 
NLSETQ( NLSETX] NL ..•••.....••••••••.••• • .••••••• ............................................ 
(NO BREAK INFORMATION SAVED) .•..••••..•.•••••••• 
(NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT) 

(compiler error message) ..•.••...•••.•.•••• 
NO propname PROPERTY FOR atom (error message) 
rm VALUE SAVED: (error message) .....•.•.••.•.••• 
t40Bit~O ............•..............•.•....•..•.... 

e e e • • e • e • a e e a e e e • a e e e • e e e •• II •• e e e • a e t a • e •• e t 

NOBREAKS (break variable/parameter) ..•.•••••.••• 
NOCLISP (m~kefile option) ...............•••••.•• 
NOFIXFNSLST (clisp variable/parameter) ••...••••• 
NOFIXVARSLST (clisp variable/parameter) ••••••i•• 
NOFNS (printstructure variable/parameter) .•••••• 
IJOLIHKDEF ............ , ...... • ........•......•. ,,. 
NOLINKFNS (compiler variable/parameter) .•..••... 
(NOH ATOMIC CAR OF FORM) (compiler error message). 
NONE (syntax class) ••••••••••••••••••••• • ••••••• 
NONXMEM (error message) ......•....•.•..••••••.•• 
NON-NUMERIC ARG (error message) •..•.•••..•..•••• 
NORAISE (TENEX command) ...•.•...•••••....••.•••• 
r~OSAVE ..........•.••. • .•..••••.•.•••••••••••••••••• 
NOSPELLFLG ( clisp variable/parameter) •..•••••••• 
nbspread functions ···~···········~··~··~········ 
NOSWAPFNS (Overlay variable/parameter) .•••.•.••• 
t·IOT[ X ].· SUBR ..••. ·• •. ·-··· •.• ~ ............ • •• • • • •• • • • • 
NOT A FUt~CTION (error message) · .•.•. , •.••.••••••• 
NOT BLOCKED (typed by editor) ••••••••..•••.••••• 
(NOT BROKEN) ............•..•.•.•. , • , .•.....••••. 
NOT CHANGED, SO NOT UNSAVED (typed by editor) 
(NOT COMPILEABLE) (compiler error.message) ••.••• 
NOT COMPILEABLE (compiler error message) ••••••.• 
NOT DUMPED {error message) ....•.••.•••••.••.•••• 
tJOT EDITABLE (error message) .................. .. 
NOT FOUND (compiler ~rror message) •.••••••.•.••• 
NOT FOUND (error message) ..•.•••.••••••••••••.•• 
(NOT FOUND) (typed by break) .••.•••.•.••••.•.••• 
(HOT FOUND) (typed by breakin) .••••••..••••••••• 
(NOT FOUND) (value of unsavedef) ..•..•••.•.••••• 
HOT FOUND, SO IT WILL BE WRITTEN ANEW 

(error mess.age) ............................ . 
(NOT IN FILE - USING DEFINITION IN CORE) 

(compiler error message) ••••.•..••••••••••• 
NOT ON BLKFNS (compiler errot message) •••••••••• 
(NOT PRINTABLE) ••....•.....••.••.•••••.••••••••• 
NOTANY[SOMEX;SOMEFNl;SOMEFNZ] ••••••••••••••••••• 

INDEX.20 

Page 
Numbers 

2.2 
9.64,70 

18.32 
20.5 
At.15 
18.5 
4.1-2,5: 8.3,5 

18.5 
6.8 
2.2; 5.13 

AL 16 
5.8: 16.15•16: 18.18. 

22.59 
15.24 

18.50 
14.49 
22.56 
2.3,9; 3.4; 5.9; 9.87, 

14.39: 16.1; 22.43,55 
15.22 
14.67; 23.35,80 
23.66-67,76 
23.66-61,69,76 

. 20.3 
18.26-27 
18.26-27,31-32 
18.50 
14.30 
iG.7 
13.2,6-7; 16.4,8 
14.32 
22.56-57 
23.76 
4.2: 8.1 
3.22 
5 .13 
8.8; 19.6 
9. 79 

15.24 
9.85 

18.8,52 
18.52 
14.71 
9.83,86 

18.53 
14.72; 18.13 
15.9 
15.21.23 
8.8 

14.69 

18.53 
18.22,29,53 
14 .46 
5.16 



UOTCOMPILEDFILES (file package variable/parameter) 
NOTE ( transor command) .........................• 
NOTEVERY[EVERYX;EVERYFN1;EVERVFN2] ............. . 
NOTE: BRKEXP NOT CHANGED. (typed by break) ••.••• 
(NOTHil~G FOUND) .......•......•.......•••....•..• 
NOTHING SAVED (typed by editor) ................• 
IJOTHirJG SAVED (typed by system) ........•........ 
NOTLISTEDFILES (file package variable/parameter) •. 
110TRACEF1JS ( printstructure variable/parameter) 
fJOT-FOUtJD: .••.•.•••••••••.•••••••••••••••••••••• 
NP (in an assemble statement) ...•...•.•...••...• 
f~TH[X:f~] ..........•.•.....••.•••••••••••••...••• 
(NTH n) ( n a number, edit command) ••...•.•.••••• 
(IJTH x) (edit command) .....•...••••..•• ,,,,,,,,, 
IHHCHAR[X;ll;FLG;RDTBL] SUBRtt .••...•......••....• 
NTYP[ X] SUBR ........••.•..••....•.•..•..••.•..•• 
r~ULL[ X] SUBR ......•..•..•...•....•.......•...••. 
null string .................................... . 
null-check ...................................... . 
number stack .................................... . 
NUMBERP[ X] SUBR ..............•.•..•....•..•••.•.. 
numbers .......................................... . ........................................... 
(NX n) (n a number, edit command) .••......•.•••• 
NX (edit command) .........•.•.•......•..••...••.. 
OCCURRENCES (typed by editor) ...••••..•••.•••••• 
octal .......................................... . 
OK TO REEVALUATE (typed by dwim) ....•...•.•••..• 
OK ·(break cornrnand) •.•.••••.•.•...•••••.•.••••••• .................................. ·• ............ . 
OK (edit cornrnand) .•.•....••...••...•...•...••••• 
OK (edita command/parameter) ....•.•..••...••••.• 
OKREEVALST {dwim variable/parameter) ••..•••••••. 
OLD (clisp iterative statement operator) •••.••.• 
ON (clisp iterative statement operator) ••...•••• 
OPCODE (in a lap statement) .•••...•.••...•.••••• 
(OPCODE? - ASSEMBLE) (compiler error message) 
OPD (property name) .••.•..•..••••••.•..•••••••.• 
open functions ..................... ~ ........... . 
open macros ........•.••..•..••••••.......•.•.••• 
OPENF[FILE;X] SUBR ...••.•••.•.•...••...••••.••.• 
opening files .................................. . 
OPENP[FILE;TYPE] SUBR .•....•..........•..•.••••• 
OPE UR[ A] SUBR ........••...••.•••• , •• , ••....... , . 
OPNJFN[FILE] SUBR .....•.•.•.•..••••••.••••.•.••• 
OR[ X 1 ; X2 ; ... ; Xn] f' SUBR* .•.•...••..•..••••..••••. 
order of precedence of CLISP operators .•••.•.•.. 
(ORF •.• ) (edit command) ••.•..•••••••.•••...•••• 
ORG (edita command/parameter) .••.•..•••....••••• 
ORIG (used as a readtable) .••.•••.••.•••••.••••• 
(ORR ... ) (edit command) ....................... . 
OTHER (syntax class) •..•••••.••..•.•••...•...••• 
OUTFILE[FILE] SUBR .•..•••..•.••..••.••.....•.••• 
OUTFILEP[FILE] SUBR •.•.••••••••.•••••..•••.••••• 
OUTPUT[FILE] SUBR ....... ~ ....••••••••.••••••.••. 
output buffer ........ "" ......................... . 
OUTPUT FILE: (compiler question) •••.....••.•••.• 

INDEX.21 

Page 
Numbers 

14.66•67,72. 
Al.12,14 

5.16 
15 .12 
8.8 
9.78 

22.23,39 
14.66-67,71·72 
20.4 
14.41 
18.47 
6.8 
9.20 
9.32-33 

10.4 
10 .15 
5.13 

10.6•7 
2.2; 6.7-10 

12.3; 18.47 
5.12 
5.12; 13 .. 1-14. 

14.12-13 
9.19 
9.8, 18-19 
9.65 
3.6.9; 14.12,19 

17.9 
15.6·7,12,15,17. 
16.3-4 
9.71,76,83 

21.13 
17.9 
23.8,21•22 
23.22.24 
18.42 
18.37,52 
18.37,42,45: 21.10-11 
18.14-15 
18.16 
14.8 
14.1 
14.3,5,8 
10.19 
14.9 
5.14 

23.15. 
9.27 

·2i.12 
14.22 
9.66 

14.23 
14.2,6-7 
14.3-4 
5.10; 14.1 

'14.21 
18.2,5 



output functions ............................... . 
overflow ....................................... . 
overlays ....................................... . 
(Pm n) (edit command) •••.•••.••••••••..•••.•••• 
( P m) (edit command) •••••.••••••••.•••.••••••• , • 
P (edit conunand) ...•.............................. 
P (prettydef command) .•..•••••••••••••.•••• , .••. 
PACK[X] SUBR •.•• I. I ••••••••••••••••••••••••••••• 

PACKC[ X] SUBR •••.••••••.•••••••••••••••••••••••• 
page ...................••....•••..••• · · · • · · · • • • • • 
PAGEFAULTS[] ..•..•..•.•••••••••••••••••••••••••• 
parameter pushdown list .•....•••.•••.•..•••••••• 
parentheses counting (by READ) .••..••...•..•.... 
PARENTHESIS ERROR (error message) ......•••.•.... 
PATHS[X;Y;R;MUST;AVOID;ONLY] •..•...........••••• 
PATLISTPCHECK (in pattern match compiler) .•••.•• 
pattern match compiler ..•...........•..••..•••.• 
pattern match (in editor) ...•..........•....•••• 
(pattern .. @) (edit command) •....•.....•••••••• 
PATVARDEFAULT (in pattern match compiler) ••••••• 
PEEKC[FILE] SUBR •••.••••••••••••••••••••••••••••• 
place-markers (in pattern match compiler) ••.•••• 
PLUS[Xl;X2; ... ;Xn] SUBRlll •••••••••••••••••••••••• 
pname cell ..................................... . 
pnames ....... · •..••.•...••••.••••..••.••.••.•..•• 

• • I • • • • I • • • • • e • e e I I I I e I • I I I I I • I I I I I I I I I I I I I I 

pointer ..................................... , ... . 
POrnTER (record field type) .................... . 
POSITIOU[FILE] SUBR ....• , •........••...•.... , .. . 
PP[ X] NL- •.••.•••••••••••••••••••••••••••••••••• 
PP (edit conunand) ...•...••...... · ..•....•..••.•.• 
PPT(X]. NL• .........••.•...•.•••...•.•...•....••. 
PPT (edit command) .•.•...•......••.••••.....••••• 
PPV (edit command) ........••••.••....•....•.•.•• 
PP11t[X] NL* •.•••.••.•••••••••••••••••••••••••••••• 
PP* (edit cotu":1and) ...............•.•.......•••..• 
PRDEPTH (printstructure variable/parameter) 
precedence rules (for CLISP operatQrs) .••.••..•• 
predicates ..........•.•....••....•••.•....•••••..• 
prefix operators (in clisp) .................... . 
PRESCAN[FILE;CHARLST] .•..........•..•....•...••• 
PRETTYCOMSPLST (prettydef variable/parameter) 
PRETTYDEF[PRTTYFNS;PRTTY~ILE;PRTTVCOMS;REPRINTFNS; 

SOURCEFILE;CHANGES] ....•..•......••.••• ......................................... 
prettydef cor:tmands .•.•..•.•....•••.....••••.•••• 
PRETTYDEFMACROS (prettydef variable/parameter) 
PRETTYFLG (prettydef variable/parameter) .••.••••• 
PRETTYHEADER ....••••.••••.••••••••••••••.•.•••• II 
PRETTYLCOM (prettydef variable/parameter) •.••••• 
PRETTYPRINT(FNS;PRETTYDEFLG] .....•....•......••• 
PRETTYPRINTMACROS (prettydef variable/parameter) •• 
PRETTYTABFLG (prettydef variable/parameter) 
PRETTYTRANFLG (clisp variable/parameter) .•....•. 
PRETTYTYPE (property name) •••••••••..•.•.•.••••• 
PRETTYTYPELST (file package variable/parameter) 
primary input file ............................. . 

INDEX.22 

Page 
Numbers 

14.19-21 
13.3,6 
3.17·22 
9.GO 
9.60 
9.2,60 

14.50 
3.2•3,6•7,12; 10.2 

10.4 
3.12 

21.4 
12.3,9,11; 18.47 
14.12,33 
5.3 

20.13-14 
23.40 
23.38-49 
9.21·23,89°90 
9.33 

23 .41.44 ,41 
14 .16, 35 
23.46 
13.7 
3.4 
3.1·2,4·5,12; 10.1-5. 

11 
3 .1 

23.57 
14.37 
14.45; 18.47 
9.2,60 

23.33.80 
9.61; 23.33,80 
9.61; 14.55 

14.47 
9.61 

20.4 
23.10 
2.3; 5.13 

23.13 
Al.3 
14.53 

2.9; 5.9; 14.47-55,57, 
63,66; 19.9 

14.49·53 
14.52,57,7Jn74 
14.57,67 
14.54 
14.56·57 
2.9; 14.45. 

14.58 
14 .45 
14.61; 23.33-34,79 
14.74 
14.75 
14.1•2,4,U 



primary output file .........•.•............••... 
primary readtable ............................•.• 
primary terminal table ...........•••.......••••. 
PRI1H[X;FILE] SUBR •••••••••••••••••••••••••••••• 
print name ...........•.•..••.•••••••..••...•••.• 
PRINTDATE[PRTTYFILE:CHANGESJ .....••.....•.•••... 
PRINTDEF[EXPR;LEFT;DEF;PRETTYDEFLG) ............ . 
PRINTFIJS[ XJ .............................•....... 
PRIIHHISTORY[ HIS TORY; LINE ;SKIPFN ;NOVALUES J .•••.. 
printing circular lists ..••.•......•..•.•.....•• 
print level ...................................... . 
PRINTLEVEL[NJ SUBR •••••••••••••••••••••••••••••• 
PRINTSTRUCTURE[X;EXPRFLG;FILE] •••.....•.••.••..• 
PRINl[X;FILE] SUBR •••••••••••••••••••••••••••••• 
PRIN2[X;FILEJ SUBR ....... , .••.• , ••. , •........•.. 
prin2-pnames •••.•••••••••••••••••••••••••••••••• 
private pages .•..............•..••.........•..•. 
PROG(ARGS;E1;E2; ... ;En] FSUBR~ ..•......•........ 
PROG label ••••••••••••.•••••••••••••••••••••••••• 
PROGN[X1;X2; ... ;Xn] FSUBR~ ..•.......•.......•.•. 
prograr.uner' s assistant ......................•••• 
programmer's assistant and the editor •.•....•.•. 
programmer's assistant commands .....••..•..•.••• 
PROG1[X1;X2; ... ;Xn] FSUBRA ••••••••••·••••••••••• 
prompt character .....••..•..•...••..••...•.••••• 

••••••• 0 •••••••••••••••••••••••••• 

PROMPTCHAR[ID;FLG;HIST] .......•••..............• 
PROMPTFFLG (prog. asst. variable/parameter) 
PROP[X:Y] ·····~··•••'i•••••••••.•••••••••••••••••• 
PROP (prettydef corrunand) •••••.•••.••••••...•.••• 
PROP (typed by editor) .......................... . 
proper tail ....•.••••.••••••••••..••••••••.••••.• 
property ....••••.•...•••••••••••••••••••••..•••.•. 
prope.rty list ......•••••.•.• , .•••.••••••..•....•• 
property name .•••••••••••••••••••••••••.•••••••• 
property value .•.......•.••..•.....•••..•..••••• 
PROPRECORO (record package) •••••••••••• , ••• , , •• , 
pseudo-carriage return· ..•..•••. ~ •••••••••..•••.. 
PSTEP (in an asse~ble statement) .•.•••.•.•.••••. 
PSTEPN (in an assemble statement) •..••••..•••••• 
pushdown 1 is t .......•.••.••••••••.•••••••.••••.•. 
pushdown list functions .••••.•••••••...••••••••• 
PUT[ATM;PROP;VAL] ..•.....••••...•••...•.•.••.••• 
PUTD[ X; Y] SUBR . • ••••••••••••••••••••••••••••••••• 
PUTDQ[X;Y] NL ••••••••••••••••••••••••••••••••••• 
PUTHASH[ITEM;VAL;ARRAY] SUBR ....•.•.........•..• 
PUTL[LST;PROP;VALJ ············•••••••••••••••••• 
P-STACK OVERFLOW (error message) .••.....•.••••.. 
P.P.E. (typed by PRINTSTRUCTURE) .••••...••.•.•.• 
Q (following a number) ••••.•.•••.•••...•...•...• 
QUIT ( tenex command) •••••••••••••••••••••••••••• 
QUOTE[ X] NL* •••••••••••••••••••••••••••••••••••• 
QUOTIENT[X;Y] SUBR •••••••••••••••••••••••••••••• 
(Rx y) (edit command) .......................... . 
R (edit command) ••••••••••••••.•••••••••••••••••• 
RADIX[NJ SUBR ..•••••••..•••.••••••....•••••••••• ............................................. 

INOEX.23 

Page 
Numbers 

14.1,4,19 
14.11,19,22,29 
14.28-29 
3.2,9,11; 14.20 

10.1 
14.54 
14.54-55,57 
14.54 
ZZ.23,37-38,60 

'21.23-29 
14.20-21 
2.3; 3.9; 5.10; 14.20 

20.1-9 
3.2,9,11; 14.19•20 
3.2,9,11; 14.19·20 

10.1·4 
3.16 
5.6 
5.7 
4.4; 5.6 

22.1-48 
22.61 
22.10-31 
5.6 
2.4,6,8; 9.2r 15.4, 

22.10,33,51 
22.33,51,61 
22.33,51 
8. 7 

14.49,52 
9.85 
5.16 
7.1 
~.3; 3.4; 7.1·4; 16.1 
7.1,4 
7 .1,4 

23.55 
22.18 
18.47 
18.47 
2.8; 4.2; 12.1•13 

12.1-u 
7.1·2 
2. 3, 8: 8. 1-4 
8.4 
7.6 
7.1; 23.55 

16.7 
20.4,7 
3.6; 14.12,19,36 

14.71-72; 21.19-21 
5.3 

13.8 
9.7,57 
6.6 
2.3; 3.6; 5.10; 14.12. 

19,36 



RAISE[MODE;TTBLJ SUBR ..........••......•.....•.• 
(RAISE X) (edit command) ....................... . 
RAISE (edit command) ••••••••••••••••••••••.••••• 
RAISE (TENEX command) •••••••••••••••••••••••••.• 
RAND[LOWER;UPPER) ..•..•.•...•.•................. 
random numbers ................................. . 
RArJOSE T[ X] .••••..••••••••••••••••••••••••••••••• 
RAr~OSTATE . I •. • ••••••••••••••••.•••••••••••••. • ••• a. 
RATEST[X] ·suBR ....•.•••.•.•.••••••••••••••••••••• 
RATOM[FILE;RDTBLJ SUBR .~i···········•••••••••••• 
RATOMS[A;FILE;ROTBL) •••••••••••••••••••••••••••• 
(RC x y) (edit command) ••••••••••••••••••••••••• 
RC (makefile option) •••••••••••••••••••••••••••• 
(RC1 x y) (edit command) •••••••••••••••••••••••• 
READ[FILE;RDTBL;FLGJ SUBR ...................... . 
read macro characters •• , •••• i ••••••••••••••••••• 

REAOBUF (prog. asst. variable/parameter) •••••••• 
REAOC[FILE] SUBR ................•..........••... 
RE·ADF I LE[ FI LE J ....................••...•.•.•••.. 
reading from strings •••••••••••••••••••••••••••• 
READLINE[RDTBL;LINE;LISPXFLG) •....••...•.....•.• ........................................... 
READMACROS[FLG;ROTBLJ SUBR •••••••••••••••••••••• 
READP[FILE;FLG] SUBR ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
READTABLEP[ROTBL] SUBR ,,,,,,,,,,,,,,,,,,,,,,,,,, 
readtables ..... •·· ............................... . 
READV.lCE (property name) ••••••••••••••••.••••••• 
READVISE [ x] NLt.t •••••..••..• I ••••••• I • I ••••••••••• 

READ-MACRO CONTEXT ERROR (error message) •••••••• 
REAL (record field type) •••••••••••••••••••••••• 
REBREAK[ X] NL* •.. · ••.•.•..••••••••.•••.•.••••••••• 
. RECLAIM[ NJ SUBR .........••...• ,., .....•...•. , .... 
RECOMPILE[PFILE;CFILE;FNS) ; .•... , •.......... , • , . ...................... ,, .................. . 
reconstruction (in pattern match compiler) •••••• 
record declarations (in clisp) •.•.•••••.•••••••• 
record package (in clisp) ...................... .. 
RECORD (record package) •••••.••.••••••••••••••••• 
RECORDS ( prettydef macro) ...................... . 
(REDEFINED) (typed by system) .••••••••••••.••••• 
REDEFINED (typed by system) ••••••••••••••••••••• 
REDEFINE? (compiler question) ••••••••••••••••••• 
REDO N TIMES (prog. asst. command) •••••••••••••• 
REDO (prog. asst. command) •••••••••••••••••••••• 
REENTER ( tenex command) ••••••••.•••••.•••••••••••• 
REHASH[OLOAR;NEWAR] SUBR ••..•.••......• , .•....•. 
RELBLK[AOORESS;N) SUBR .....•.•••••.••..•••...••• 
RELINK[FN;UNLINKFLGJ ..........•.•.•.....•..••.•• 
relinking ...................................... . 
r~location information (in arrays) •••••••••••••• 
REMAil~OER[X;Y) SUBR ... ,,,,.,,,,,,,, ,,,,,,,,,,,,,, 
REMAKE (makefile option) •••••••••••••••••••••••• 
REMARK ( transor command) •••••••••••• ~ ••••••••••• 
REMOVE[ X.; L] .....•. , ..••• , •••.•••••. • • ~ ••••••••••••• 
REMPROP[ATM;PROP) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
RE PACK (edit ·command) ••••••••••••••••••••••••••• 
(REPACK @)·(edit comm~nd") ·•·····•·4!·~ •.... · •......• 

INDEX.24 

Page 
Numbers 

14 .32 
9.75 
9.74 

14.32 
13.10 
13 .10 
13.10 
13.10 
14 .15 
14.12·14,34 
14 .13 
9.59 

14.67 
9.59 

14.11-12.34 
14. 24' 26·27 
22.50·51 
14 .15,35 
14.39 
14 .11 
9.81; 14.17·18; 22.14. 

19,32,37,47-48,50,61 
14.27 
14 .16 
14.22 
14.11,19,21•27 
19.8-10 
14.51; 19.8·9 
14.27; 16.11 
23.57 
15.18,24 
3.13-14; 10.15 

14.67,72; 18.7-8,11, 
11·14,32 

23.47 
23.37,53-59 
23.50-62 
23.55 
23.53-54 

. 14.39 
8.7 

18.4 
22 .14 
22.14,18,22 
2.4,10: 5.9: z1.s,19 
7.6 

16.10; 21.18 
18.27·28 
18.27•28 
3.9 

13.8 
14.68 
At.12 
6.4 
7.2 
9.75 
9.76 



REPEATUNTIL (clisp iterative statement operator) .• 
REPEATWHILE (clisp iterative statement operator) .• 
REPLACE (use in records in clisp) ..............• 
(REPLACE @ \HTH ... ) (edit command) ...........•. 
replacements (in pattern match compiler) ....... . 
REREADFLG (prog. asst. variable/parameter) ..... . 
RESET[] SUBR ................................... . 
RESET (typed by system) ...........•.•.......•.•• 
RESETFORM[RESETX;RESETY;RESETZ] NL ............. . 
RESETLST[RESETX] NLA ......•....•..•....••...•••• 
RESETREADTABLE[RDTBL:FROM] SUBR ................ . 
RESETSAVE[RESETX] NLR ............••••...•.•••..• 
RESETTERMTABLE[TTBL;FROM] SUBR ................. . 
RESETVAR[RESETX;RESETY;RESETZ] NL .............•• 
(RESETVAR var form . corns) (edit command) ...... . 
restoring input buffers .••.....•....••.•......•• 
RESULTS[] ...................................... . 
RETEVAL[POS;FORM] SUBR ......................... . 
RETFNS (compiler variable/parameter) ..........•. 
RETFROM[POS;VALUE] SUBR ........•................ 
RETRIEVE (prog. asst. co1umand) ................. . 
RETRY ( prog. asst. command) .................... . 
RE .. iURf·J[X] SUBR ••••••e••o•cioo•o••••••••••••••e••• 
RE TURfJ (break command) •••••••••••••••••••••••••• 

RETURN (use in iterative statement 1n clisp) 
RETYPE (syntax class) ......................... .. 
REUSING (record package) •.......••..........•... 
REVERSE[l] .•..•••••••••••••••••••••••••••••••••• 
REVERT (break command) ..........•..•...........• 
(RI n rn) (edit command) ........................ . 
RIGHTBRACKET (syntax class) .....•....••..•....•• 
RIGHTPAREN (syntax class) .........•...•........• 
RLJFN[ JFN] .............................••....•.• 
(RO n) (edit command) ......................... .. 
root name of the file .....•.•..••.•.•......•...• 
RPAQ[RPAQX;RPAQY] NL ........................... . 
RPAQQ[X;Y] NL ••0•00011•,.••••••••o•••••••••••••••• 

•o11 •••••••••••o•o(tooo••••••••••••••••••••••••• 
RPLACA[ X; Y] SUBR ...•...•......•................• 
RPLACD[X;Y] SUBR •••••••••••••••••••••••••••••••• 
RPLNODE2[X;Y] ......................... , ..••.•. "' •• 
RP LS TR W G [ X ; N ; Y J SU BR ......•..•.•..............• 
RPT[RPTr~;RPTF] ..............................•.• , 
RPTQ[RPTN;RPTF] NL ••• , ••••••• , •••••••••••••••••• 
RSH[fJ;M] ........................................ . 
RSTRING[FILE;RDTBL] SUBR ...•.................... 
rubout .................. "' ......................... . 
RUN (ten ex command) ..........................•.• 
running other subsystems from within INTERLISP 
RUNONFLG (dwim variable/parameter) ............. . 
run-on spelling corrections .....•......•........ 
(Rl x y) (edit command) .•...•.•.•..•.....•...•.• 
(S var . @) (edit command) ..................... . 
S (response to compiler question) ......••..••.•• 
SASSOC[XSAS;YSAS] ••••••••••••••••••••••••••••••• 
SAVE EXPRS? (compiler question) ..•...•.....••••. 

INDEX.ZS 

Page 
Numbers 

23.23 
23.23 
23.61 

9.42 
23.46 
22.50,52 
!6 .15 
22.43,55 

5.10 
5.11 

14.23 
5.11 

14 .29 
5. 9; 9. 77; 1~. 7 
9. 77 

22.30 
21 .5,8 
12.10; 15.5; 17.15 
HL21, 28. 31 
12.10; 15.5: 16.6 
22.22,26,34 
22.22 
5.7 
2.9; 15.6·7,17; 16.1, 

4 
23.27 
14.29 
23.60 
6.5 

15. 14 
9.8,53 

14.25 
14.25 
14 .10 
9.8,53 

14 .64 
5.9; 14.39,48; 22.43 
5.9; 14.3~.48·49, 

22 .43 
5.3 
5.2 

22.57 
10.7,12; 16.10 
a .10-u 
8 .11 

13.5 
10.6: 14.13 
2.5; 14.33; A3.1 
3 .16 

21.19 
17.26 
17. 5. 26 
9.59 
9.36 

18.4 
5.17 

18.4 



SAVE (edit conunand) .............•.••...•.•••••.. 
SAVE DEF[ X] ..........................•••.•••• , .. , 
SAVESET[NAME;VALUE;TOPFLG;FLG] •••.•.•••.••...... 
saving unusual data structures ..•..•.•..•.....•• 
search algorithm (in editor) ••......•..••.••...• 
searching files ................................ . 
searching strings .............................. . 
searching the pushdown list ........•.......••..• 
SEARCHING ... (typed by breakin) ••.•.•........••• 
SEARCHPDL[SRCHFN;SRCHPOSJ ..•..•••••..••....••.•• 
second pass (of the compiler) ...••......•..••••. 
segment patterns (in pattern match compiler) 
SELECTQ[X;Y1;Y2; ... ;Vn;Z) NL~ •................•. 
separator characters .........••.••.•.•.••••..••. 
SEPR (syntax class) .........•............•...... 
SEPRCHAR (syntax class) ..•.....••...•.........•. 
SET[X;Y] SUBR .............•..•...•.......•..•... 
SETA[ A; fJ ;V] ...........•............•......•..... 
SETARG[VAR;M;X] FSUBR ..........••......•.....•.. 
SETBRK[LST;FLG;ROTBL] SUBR ...................•.. 
SET D [ A ; f~ ; V ) ...•....••.•.••.••••...••.•.••••••.•. 
SETFN (property name) ..•...........•..•..•.....• 
SETN[VAR;X] NL •••••••••••••••••••••••••••••••••• 
SETQ[X;Y] FSUBR* •. ., ...••.••.••••••••••.••••••.•• 
SETO (in an assemble statement) .•..•.•.....•...• 
SETQO(XSET;YSET] NL ••••• .' ••••••••••••••••••••••• 
SETREADTABLE[RDTBL;FLGJ SUBR •••••••••••••••••••• 
SETSBSIZE[N] SUBR ••••••••••••••••••••••••••••••• 
SETSEPR[LST;FLG;RDTBL) SUBR ..•.................. 
SETSYNTAX[CH;CLASS;TABLEJ ..•.....•.•.....•...... 
SETTERMTABLE[TTBL] SUBR ....•............•....... 
SFPTR[FILE;ADDRESS] SUBR ....................•... 
SHALL I LOAD (typed by dwim) .•.•.•......•..••••• 
shared pages ...........•...•.............••..••• 
shared system .................................. . 
sharing ................................. ., ...... . 
SHOW ( transorset command) •......•.•......•..•... 
(SHOW . x) (edit command) ..................... .. 
SIDE (property name) ...............•.•..••...••. 
SIIJ[X;RADIAtJSFLG] ...........................•... 
skip-blip ...............•......•.•...........••. 
SKOR ...•.....•.•••...•.•••••••••••••••••••••• • •• 
SKREAO[FILE;REREADSTRING] ........•..•........... 
slot (on pushdown list) ........•..•........•..•. 
small integers 9 9 e Cl II 0 II 9 t t •Cl 0 II II II 0 t 0 0 II 0 0 0 II t II II t 0 II t 0 11 

SMALLP[N] ...........•............•......•..•.... 
SIJDMSG (prog. asst. command) .................. .. 
SOME[SOMEX;SOMEFN1;SOMEFN2] ...••..•..•......•••• 
SORT[DATA;COMPAREFN) ..........•...•.•••••...•••• 
SP (in an assemble statement) •......••.••..••••. 
space ............•••••••••.•••••••••••••••.••••• 
SPACES[l~;FILE) SUBR .........••.................. 
SPECVARS (compiler variable/parameter) ••.....••• 
spelling completion .•.••..•.•....•••••••.••.•.•• 
spelling correction ·····~······················· ............................... ................................ 

INDEX.26 

Page 
Numbers 

9.72,74,83·84 
8.7-8 

22.40,43,55 
21 .28 
9.23·25 

14.7 
10 .8-11 
12.7,9·11 
15.22 
12 .11 
18.35 
23 ,43 .. 45 
5.4-5 

14.13·16,25,34 
14.23,25-26 
14.25 
5.8 
3.9; 10.14; 16.10 
8 .12 

14.13·14 
3.9; 10.15 

23.74 
13.10·13 
5.8 

18.40 
5.8 

14.23 
3.22; 16.U 

14.13·14 
14.24 
14.28 
14.7,37; 16.10 
17.18 
3.16 
3 .16 
3.16 

AL10 
9.66 

22.45-46,56-57,59,61 
13.9 
12 .11 
17.21-23 
14.18-19 
12.2,10 
3.1,6; 5.13; '13.1-2 
3.6; 13.2,4 

21.21; 22.34 
5.15 
6 .10 

18.40,47 
3.2 

14.20 
18.20,28,31 
17. u 
9.80,82,86·87, 

14.52-53; 15.16: 22.14, 
38i 23.11,17,19,75 



spelling correction protocol .•....•..•.•......•• 
spelling corrector ......•..••••.•..•.•••••.••••. 
spelling list •..••.........•....••••..•..•••••.• 
spelling lists ................•.•••••......••••• 

........... ' ................ • ....... . 
SPELLINGSl (dwim variable/parameter) .•.•••••.••• 
SPELLINGS2 (dwim variable/parameter) ....••.•.•.. 
SPELLINGS3 (dwim variable/parameter) ...•••••.... 
SPLICE (type of read macro) ................... .. 
(SPLITC x) (edit corrunand) ........•..••...••••••• 
spread functions .••••.••••••••.••••••••••••••••• 
spreading arguments ...........••....•....•.••••• 
SORT[ N] .................................•..••..• 
SQRT OF NEGATIVE VALUE (error message) .••..••.•• 
square brackets ................•..•.•..•....•••• 
square brackets (inserted by prettyprint) •..••.. 
SRCCOM •••••••••••••••••••••••••••••••••••••••••• 
ST (response to compiler question) .......••••..• 
STACK OVERFLOW IN GC - COMPUTATION LOST 

(error message) · ••••••••..•••.••••••••.••••• 
stacli\. position .•••••••.•.••••••••••••••••••••••• 
statistics ........................................ . 
STF (response to compiler question) •.•.•••.•••.• 
S TKARG[ N; POS) SUBR ...••.••••••••.••• , ••.•••••••• 
STKARGNAME[N:POS] .••.•••.•••••••••••••.•••.•••.• 
s TKARGS[ POS] • I •••• ' ••••••••••••••••••••••••••••• 

STKARGVAL[N;POS) .•..•....••.•..••........•.••.•• 
STKEVAL[POS;FORM)SUBR ......................... . 
STKNAME[POS) SUBR ••.•.•..•.••••.••••..••••••.••• 
STKNARGS[POS] SUBR •.••••.•.•.•.•.••.•.. ~ .••••••• 
STKIJTH[rJ;POS] SUBR ••.•••••••••••••••••••••••••••• 
STKPOS[ Ft~; t~; POS) •..•.....••.•••••••••••••..••••• 
STKSCAN[VAR;POS] SUBR ••..•..•••.•••..•..•••••••• 
STOP (at the end of a file) .................... . 
STOP (edit command) ...•••....••.. • •••.••••...•.•• 

• • • o o • • • • • • • • • • I • • • • a • • • • 1111 •• • • • • • • • •• • ••• 0 ••• 9 • 

STORAGE[FLG] •••••••••••••••••••••••••••••••••••• 
storage allocation ...•..•..•••.•.•••..•.•.••.••• 
STREQUAL[X;YJ ••••••••••••••••••••••••••••••••••• 
STRF (compiler variable/parameter) •••.•••.•••••• 
string characters •.•..•••.•.•.•.••••••••...••••• 
string functions ..........•.......•....••....•.•. 
string pointers ..........................•.....• 
string storage ......................•...••.•.••• 
STRIIJGDELIM (syntax class) ..................... . 
STRil~GP[X] SUBR .....•..•••...••.•••.• ••••••••••• 
strings ......................................... . 
STRPOS[X;Y;START;SK!P;AHCHOR;TAILJ •••••.••••..•• 
STRPOSL[A;STR;START;NEG) •••••••••••••••••••••••• 
structure modification conunands (in editor) ••••• 
SUBLIS[ALST;EXPR;FLGJ .•.••.••.••••••.••••..••••• 
SUBPAIR[OLD;HEW;EXPR;FLGJ ••.••••.••.••.•..••.••• 
SUBR (function type) ..•••.•.•••.•••.•.......•••• 
SUBR (property name) .••.•..•.••..••.•.......•••• 
SUBRP[FN) SUBR •••••••••••••••••••••••••••••••••• 
subr s ••••••••••••••••••••••••••••••••••••••••••• 

INDEX.27 

Page 
Numbers 

17.5·7 
17.2,10-12,20-23,28 
15. 16 
9.80,82,86: 14.52-53, 

17.12-15,17-19; 22.14, 
38: 23.11,17,19,75 

17.12·14, 19,24 
17.13-14,18-19,24 
17.13-14,17,24; 22.55 
14.26 
9.77 
4.2; 8.1 
4.2 

13.9 
13.9 
2.6 

14.55 
6.12 

18.2,4 

16.8 
12.1-10 
22.63 
18.4 

· 15.9 
12.9 
12.9 
12.8 
12.10-11: 15.9 
12.8 
12.8 
12.8-9 
12.7-9 
12 .10 
14.39,44,54 
9.71-72,76,83•85, 

15.21 
10.18 
3.12 

10.6 
18.3-4,8 
3.1,11•12;·10.11 

10.5-11 
3.1,11·12; 10.7,11 

10.11-12 
14.25 
5.13; 10.5 
3.11; 5.13; 14.12 

10.8-9; 14.7 
10.10 
9.36·60 
6.6·7 
6.7 
4.3: .8.4-6 
8.7-8 
8 .1, 3·5 
8.1 



SUBR• (function type) .............•..........••. 
SUBSET[MAPX;MAPFN1;MAPFN2J •..................•.. 
SUBST[X;V;Z) ......••••••••••••.•••••••••••.••••• 
substitution macros ......................•....•. 
SUBSTRING[X;N;M) SUBR ................•.......... 
SUBSYS[FILE/FORK;INCOMFILE;OUTCOMFILE; 

ENTRYPOil~TFLG) .•.....•.......•...•.••..••• 
SUBl(X] ......................................... . 
SUCHTHAT (in event address) ..•..........•.....•• 
SUM (clisp iterative statement operator) •..••.•• 
(SURROUND @ rn ... ) (edit command) ••...••.•••••• 
SVFLG (compiler variable/parameter) ....•...••.•. 
(SW n m) (edit command) ........................ . 
SWAPBLOCK TOO BIG FOR BUFFER (error message) 
s\-:appable array .......... II •••••••••••••••••••••• 

swapping buffer ................................ . 
SWPARRAY[N:P;V] SUBR ..••••••••••••••••••••.•..•• 
SWPARRAYP[XJ SUBR ..............•......•......•.• 
SY (prog. asst. corrunand) ...•..••.••.••.....•..•• 
SYJllbOl ic file input ............................ . 
symbolic file output ...•......•.••.....•••.•..•• 
S YMLS T (edit a conunand/parameter) •............•.• 
synonyrn.s ........•.....•.••••.•.••..••.•.••..••.. 
syntax classes ................................. " 
SYNTAXP[CH;CLASS;TABLE] ................•........ 
SYSBUF[FLG] SUBR ................•......•.....••• 
SYSHASHARRAY (system variable/parameter) •....•.. 
SYSit~[FILE] SUBR ........•.............•......•.. 
SYSLINKEDFNS (system variable/parameter) •••....• 
SYSOUT[FILE] EXPR ..............................• 
SYSOUTDATE (system variable/parameter) •.•..•...• 
SYSPROPS (system variable/parameter) .....•.•.... 
SYS TAT ........•......••••••••••••••••••••••••••• 
T FIXED (typed by dwim) .••.•.••••..•.........••. 
TAB[POS;MINSPACES;FILEJ ················~········ 
tab ( edi ta command/parameter) ............•..•••• 
tail of a list ................................. . 
TAILP[X;V) .......•......••...•.•....•...••...•.. 
TAN[X;RADIA!~SFLG) .....•......•....••....•..•..•. 
TCOMPL[FILES] ....•..........•...•........•...... 
TCONC[PTR;X] ......................•.....••..•••• 
TECO ( prog. asst. command) ..................... . 
TELr..JET ..•..•..•••••••••.••••.•••.••••••••••••••• 
TENEX[STR] ..................•..............•.... 
TENEX .......................................... . 

......... • ................................... . ............................................. 
terminal 

terminal initiated breaks .•...•...••...•........ 
terminal syntax classes .........•..•......•..... 
terminal tables ................................ . 
TERMTABLEP[TTBL) SUBR ....••..•...••......•.••.•• 
TERPRI[FILE] SUBR ...•..•..•...•.•..••.••.••••..• 
TEST (edit command) ....••.••••••••••..•••••••••• 
TEST (transorset command) .•.•..••.•...•..•.•..•• 
TESTMODE[FLGJ ................................... . 

INDEX.28 

Page 
Numbers 

4.3; 8.4-6 
11.4 
6.5,7 

18 .17 
3.11; 10.6,12 

14.71; 21.19-22; 22.34 
13.3 
22 .12 
23.20 
9.48 

18.3·4 
9.59-60 

16 .11 
3 .18 
3 .18 
3.20·21: 10.13 
3.21; 10.14 

22.34 
14 .39·44 
14.44-55 
21.14· 15 
17 .11 
14.23-30 
14.25 
14.35-36 
7.6,8 
z. 10; 14. 38 

18.28 
2 • 10 ; 14 • 3 7 • 38 

14.38 
7.4: 14.50 

21.23 
17.8 
14.54 
21.12 
5.16 
5.16 

13.9 
14.67; 18.7-11,32-33 
6.2-4 

21.21; 22 .34 
21.30 
21.23 
2.4,6,9°10; 3.2,7,16, 

13.13; 14.2-3,7-9, 
20.5; 21.19,22 
9.61; 14.1,4,11-12,17, 

32,47 
16.2-3 
14.29 
14.28·35 
14.28 
14.20 
9.79 

At.11 
22.41 



TESTMODEFLG (prog. asst. variable/parameter) 
THEREIS (clisp iterative statement operator) 
THRU (edit command) ....•....•.•............••••. 
THRU (in event specification) ••.•....••••..••..• 
TIME[TIMEX;TIMEN;TIMETYP] NL .•..••••...•••.•.••• 
TIMES[Xl;X2; ... ;Xn] SUBR~ ...................... . 
time-slice (of history list) ...........••...•..• 
TO (clisp iterative statement operator) .....••.• 
TO (edit cor.unand) .......••••..••••••.•••.•.••••• 
TO (in event specification) ................ ~ .. .. 
too few arguments .............................. . 
too many arguraents ..........................•.•. 
TOO MANY FILES·OPEN (error message) .......•..... 
TOO MANY USER INTERRUPT CHARACTERS (error message) 
top le\1 el value ............ " ................... . 
TOP (as argument to advise) ................... .. 
TRACE(X] NL~ .••••••••••••••••••••••••••••••••••• 
translation notes- ·········~····················· 
translations (in clisp) ......•.••••...•••..••.•• 
TRANSOR[SOURCEFILE] •.••.•.•....•.••.•...•..•..•. 
TRAt~SOR ..••••.••.••••••••••••.••••••••••••••••••• 
transor sweep .................................... . 
TRAfJSORF flS ••••.•••.••••••••••••••••••••••••••••• 
TRAtJSORFORM .••••••••••.••••••••••••••••••••••••• 
TRANSORSET[] .........•........••.••.•..•••.••••. 
TRAPCOUtJT[ X] SUBR ........................•...•.. 
TREAT AS CLISP? (typed by dwim) .........•..•..• 
TREATASCLISPFLG (clisp variable/parameter) .••••. 
TREELST (printstructure variable/parameter) 
TREEPATHS[X;Y;R;MUST;AVOIO;ONLV) ••...•..••.••••• 
TREEPRINT[X;N) •••••••••••••••••••••••••••••••••• 
true ............................................... . 
TRUSTING (DWIM mode) •••.••..••.••.••••...•.••••• 
TTY: (edit corrunand) •..•••• • ••••••.••••••••••.••• 
TTY: (typed by editor) ..••...•....•.•.•.....•... 
type numbers ........••.••••..•••...•.•••....•••• 
TYPEP[X;f~] ........••....•.••••••...••....•••.••• 
TYPERECORD (record package) .•••••.••••.••..••••• 
typescript files ...................••.•.•.•....• 
TYPE-AHEAD (prog. asst. corrunand) .••••.•••••••••• 
TYPE? (record package) ••.•.••••••..••••••••••••• 
U (value of ARGLIST) ..••.•••••••••.•••••••.••.•• 
UB (break command) .....••.•..••..•.•.•••••.••••• 
UCASELST (prettydef variable/parameter) •••.••.•• 
UNADVISE[ X] NLti .. , ..• , .•.....••. , ••••.• , ••. , , .•. 
UNADVISED (typed by system) •••••••••.••.••.••••• 
UNARYOP (property name) ..•••.•.••••.•.••••••••.. 
UNBLOCK (edit corrunand) ....•••••.•..•••••••.••••• 
unbound a tom .•.•••.•.••..•••.••..•••...••••••••• 
unboxed numbers ..•..•..••.••.•..•..•..•.••••••••• 
unboxed numbers (in arrays) .•..••.•.••••••••.••• 
unboxing ....................................... . 
UN BREAK[ X] NL* ...•.•••••..••.•. ~ .•.•..•••••••.•• 
( UNBREAKABLE) ••••••••••••••••••••••••••••••••••• 
UNBREAKIN[FN) ...••••.•• , • , •••••• , ••••••••••••••• 
UNBREAKO[FN;TAILJ •..•.••••••••••.•••..••••.••••• 
UNBROKEN (typed by advise) •••.••••.••.•••••••••• 

INDEX.29 

Page 
Numbers 

22 .41 
23.20 
9.54·57 

22. 13 
21.1·2 
13.8 
22.8.54 
23.23·25 
9.54·57 

22 .13 
4.4 
4.4 

16.9 
16 .12 
5.1.3.9 

19.5,7 
15.1,7,15,20.23 
Ai.4-7 
23.31·35 
At.3-4 
Al.1·17 
A1 .14 
AL4 
AL4 
At.2,8 
18.21 
23.69 
23.69 
20.7 
20 .15 
20 •. 8 
2.2: 5.4 

17.3,5,23: 23.5.69.71 
9.66,70-72; 15.21 
9.71 

10.15 
10 .16 
23.54·55 
21.30 
22.28-29 
23.53-54 
8.6 

15.8 
14.62 
19.6,8-9 
15.25 
23.73 

9.79 
16.1; 17.15·19 
13.13 
3.9: 10.13 

13.1,3,13 
15.19.23-24; 21.6 
15.22 . 
15.24 
15.23·24 
19.6 



UNBROKEN (typed by compiler) ................... . 
UNBROKEN (typed by system) ···················••· 
undefined function ............................. . 
UNDEFINED OR ILLEGAL GO (error message) ........ . 
(UNDEFINED TAG) (compiler error message) ....... . 
(UNDEFINED TAG, ASSEMBLE) (compiler error message) 
(UNDEFINED TAG, LAP) (compiler error message) 
UNDEFINED USER INTERRUPT (error ~essage) ....... . 
UNDO (edit command) .....•.........•...........•. 
UNDO ( prog. asst. command) •........•..........•• 

• • • • • • • • II e • 11 • • • II II I II II II II e I II II II II I I II • II I II • II II II • II II II II I I 

undoing ........................................ . 
undoing DWIM corrections ..•..•.....•........•••. 
undoing out of order .........................•.. 
undoing (in editor) ...............••..•..•.•..•• 
UflDOLISPX[ LitJE] ..............•...•....••.•.••••. 
UNDOLISPXl[EVENT;fLG;DWIMCHANGESJ .•.•.......•.•• 
UNDOLST (editor variable/parameter) ..•...•.••••• 
UllDONE (typed by editor) .................•.....• 
urrnorJE (typed by system) .....•....••.••..•...•.• 
UNDOt~LSETQ[UtJDOFORM;UNDOFN] NL ..•..•..•...•..•.• 
UNDOSAVE[UNDOFORM;HISTENTRVJ .•...•.......••..••• 
UNFIND (editor variable/parameter) .••..•.••....• .................. ' ......................... . 
ur~1ori[X;YJ ..... ·-· ............•..............••.•• 
UNLESS (clisp iterative statement operator) 
UNPACK[X;FLG;ROTBL] SUBR •••••••••••••••••••••••• 
unrearJing ........................... o ••••••••••• 

UNSAVED (typed by dwim) •........•...•........••. 
UNSAVED (typed by editor) ....•.........•••....•. 
UNSAVEDEF[X;TYPJ ..............•..............•.. 
UUSE T[ NAME] .................•...........••...... 
UNTIL (clisp iterative statement operator) ..•••• 
UNUSUAL CDR ARG LIST (error message) .....•.••..• 
UP (edit command) ......•.•.........••......•.••• 
UPDATEFILES[PRLST;FLST] ..•.........•.....•.•.••. 
UPFINDFLG (editor variable/parameter) .•.••••...• 
USE (prog. asst. command) .•.•....••.••.•••.•.••• 
(USED AS ARG TO NUMBER FN?) 

(compiler error message) .....•....•••..••.• 
(USED BLKAPPLY WHEN NOT AP~LICABLE) 

(compiler error message) ..............•...• 
USEMAPFLG (system variable/parameter) •...•.....• 
USER BREAK (error message) .....................• 
user data types .........................•...•..• 
user interrupt characters ...................... . 
USEREXEC[LISPXID;LISPXXMACROS;LISPXXUSERFN] 
USERMACROS (editor variable/parameter) .........• 
USERMACROS (prettydef command) ................. . 
USERNAME[ A] .............................•......• 
USERNAME (prog. asst. variable/parameter) ....•.. 
USERNAME (system variable/parameter) ..•........• 
USERNAMELST (prog. asst. variable/parameter) 
USERfJUMBER[A) ..................... , .....•.••.... 
USERRECLST (record package) ...............••.•.. 
USERSYMS (edita command/parameter) .•...••...•••. 
USERWORDS (dwim variable/parameter) ......•.•••.• 

INDEX.30 

Page 
Numbers 

18. 7 
15.25 
16.1; 17.15·19 
5.7; 16.8 
5.7; 18.51 

18.51 
18.51 
16.17 
9.10,78; 22.61 . 

·11.4; 22.14,22-23,43,59, 
61 

22.5,38-43,55·60,62 
22.23: 23.67 
22.23,42 
9.10,36,78-79; 22.62 

22.59 
22.59 
9.72,78-79,84; 22.62 
9.78 

22.23,59 
22.59-60 
22.45-46,56 
9.25,35,41·42,4~.48-51, 

72·73, 76,84 
6 .10 . 

23.22 
10.3 
22. 10-11 • 18. 51 
17.17-18 
9.85 
8.8; 17.17·18 

22.43,56 
23.22 
16 .10 
9.12,15-16,25,43 

14.65,75 
9.25,28,44 

22.15·16, 18, 22 

18.52 

18.52 
14.44 
16 .12 
10.16; 23.53,56 
2.5; 1().16 

22.49 
9.70; 14.51 
9.70,80; 14.51 

21.23 
22.65 
21.23 
22.66 
21.23 
23.61 
21.14-15 
17.13-14,24,28-29 



USERWORDS (system variable/parameter) .••.•..•.•• 
~SE-ARGS (property name) ....•..••.•••.•..•.••.•• 
USING (record package) ........•.•..••..•.•..•••• 
U - CASE [ X ] ................. ., •••••••••••••••••••••• 
U .. B.A. breaks .•••••••••••••••••••••••••••••••••• 
U.B.A. (error message) •.......•••.••.••.••..•••• 
U.D.F~ breaks ................................... . 
U.D.F. T FIX? (typed by dwim) ••••••••••••••••••• 
U.D.F. T (typed by dwim) •••••••••••••••••••••••• 
U.D.F. (error message) ..•..•••..•.•••.•..•.••••• 
VAG[)<] SUBR ··················•o••···········•••o 
value cell ····················••o•oo••·········· 
value of a break ................................. . 
value of a property •...• "' •.•. " ...... ., •.•.•.•••••• 
VALUE (property name) ••••••••••••••••••••••••••• 
VALUEOF[ X] !IJL"' •••••••••••••••••••••••••••••••••• 
variable bindings .................•••.••••••.••• 
VARIABLES[POS] •••••••••••••••••••••••••••••••••• 
VARPRIIJT[ DOrJELST; TREELST] ••••••••••••••••••••••• 
VARS[F1-l;EXPRFLG] •••••••••••••••••••••••••••••••• 
VARS ( prettydef comraand) •••••••••••••••••••••••• 
version numbers . ., ................ o ••••••••••••• "'. 

VI R G Hl FrJ [ Fr~ ; F LG ] •••••••••••••••••••••••••••••••• 
WHEN (clisp iterative statement operator) ...... . 
WHERE (clisp iterative statement operator) ..... . 
WHEREIS[X;TYPE;FILES] ••••••••••••••••••••••••••• 
WHILE (clisp iterative statement operator) ..... . 
\./IOEPAPER[ FLG] •••••••••••••••••••••••••••••••••• 
WITH (in REPLACE command) (in editor) •••••.•...• 
WITH (in SURROUND command) (in editor) ••..••.•.• 
WORLD (as argument to RELINK) ••••••••••••••••••• 
WRITEFILE[X;FILE] ••••••••••••••••••••••••••••••• 
(XTR • @) (edit corrunand) ...•.•..•.••...••.•••••• 
YESFNS (printstructure variable/parameter) .•••.• 
ZEROP[X] •••••••••••••••••• ., ••••• 11•••••0••••••••• 
[ ................................ 11••••0·········· 
[,] (inserted by prettyprint) ..•...............• 
- (clisp operator) .....................•........ 
- (in pattern match compiler) ...•..•.........•.. 
.) (carriage-return) •.....•..•.•.•.••.•• , •..••••• 
! (in pattern match compiler) ...•........•...... 
! (use with <.> in clisp) ..................... .. 
! E ( e di t command ) •.••••••••••••••••••••••••••••• 
! E ( prog. asst. _command) •••••••••••••••••••••••• 
! EVAL (break coliir:land) ••.•..•.••.•..••••.••.••••• 
!F (edit col7lmand) •. ., •.•••••••••••••••••••••••••• 
! F ( prog. asst. command) •••••••••••••••••••••••• 
!GO (break cornr.land) ••••••••••••••••••••••••••••• 
! N (edit COm.Iiland) ••••••• , ••••••••••••••••••••••• 
!IJ (prog. asst. command) •.••••..•.•••••.••.••••• 
!IJX (edit cor:unand) •••••••••••••••••••••••••••••• 
!OK (break command) ....••...•...•.••.•.•••.•.••• 
! UtlDO (edit cor.lf.land) ...•...•••.••.••• , , ••••••••• 
!VALUE (break variable/parameter) ..•..•.•..••..• 
!VALUE (with advising) •.•..•••..• , .•.•.• , ••.•.•. 
! ! (use with <.> in clisp) ..................... . 

INDEX.31 

Page 
Numbers 

9.86-88 
22.45 
23.60 
9.74: 14.62 

15. 10 
2.9; 16.1,4; 17.15 

15. 1! 
17.8 
17 .s 
16.1-2,4; 17.2,15 
13.13-14 
2.3; 5.1,9: 12.1. 

16 .1 
15.6; 16.2 
7.1 
5.9; 22.43,55-56 

21.21; 22.33,46,54 
2.9; 11.5°7; 12.1•7 

12.9; 15.10 
20.8 
14.40; 20.9 
14.50 
14.2 
15.25 
23.22 
23.31 
14.73 
23.22 
14.57 
9.42 
9.48 

18.27 
14.44 
9.45 

20.3 
13.4 
3.2 

14.55 
23 .14 
23.42 
2.5; 14.17·18 

23.43·45 
23 .16 
22.31,61 
22.31 
15.7 
22.31,61 
22.31 
15.7,17 
22.31,61 
22.31 
9.19-20 

15.7,17 
9.78 

15.7,17 
19.2,4 
23 .16 



!O (edit comr:land) 
" 
"<c.r.>" (use 1n history commands) ...........•.• 
# (foll6wed by a number) ....................•..• 
#CAREFULCOLUMNS (prettydef variable/parameter) 
#n (n a number, in pattern match compiler) .... .. 
#RPARS (prettydef variable/parameter) .......... . 
#SPELLINGSl (dwim variable/parameter) .......... . 
#SPELLINGS2 (dwim variable/parameter) .........•• 
#SPELLINGS3 (dwim variable/parameter) ......•••.. 
#UNDOSAVES (prog. asst. variable/parameter) 
#USERWORDS (dwim variable/parameter) .••.•....•.• 
Ii#[ COMS] NLR •••••••••••••••••••••••••••••••••••• 
•# (in INSERT, REPLACE, and CHANGE commands) 
## (typed by system) ...•.......•...••...•••.•..• 
$ (alt-mode) .................................... . 
S (a 1 t-rnode) ( in c 1 i sp) ............•.•.••..•..•• 
$ (alt-mode). (in edit pattern) ................ .. 
S (alt-mode) (in spelling correction) ...•...•.•. 
$ (alt-mode) ( prog. asst. command) ............. . 
S (alt-mode, in R command) (in editor) .•.•.•.••• 
S (do11ar) (edita command/parameter) ....•..•.... 
$ (do11ar) (in pattern match compiler) ...••.•.•. 
SBUFS (alt-modeBUFS) (prog. asst. command) ..•.•. 
SC (alt-modeC) (edita command/parameter) ....... . 
SI~ (in pattern match compiler) ................. . 
SQ (a 1 t-modeQ) ( edi ta command/parameter) .•..•••. 
SW (alt-modeW) (edita command/parameter) ••.••••• 
SS (two alt-modes) (in edit pattern) ..••.••..••. 
SSVAL (use in iterative statement in clisp) 
$1 (in pattern match compiler) .•..•....•..•.••.. 
% (escape character) ·········~·················· 

% (use in comments) 
%% (use in comments) 
& (in edit pattern) 
& (in pattern match 
& (typed by editor) 
& (typed by system) 

compiler) 

' (clisp operator) .............•.............••. 
' ( edi ta command/parameter) ...••.•.....•••••.••• 
' (in a lap statement) ..•.•..............•.•.•.. 
' (in pattern match compiler) .........•..•...... 

( .............................................. 0 • 

( ) .............................................. . 
) •••••••••••••••••••••••••••••••••••• 0 •••••••••• 

• (in a lap statement) .......•....•••••....•••.• 
111 (in an assemble statement) ................... . 
• (in MBD command) (in editor) ................ .. 
11: (in pattern match compiler) ................. .. 
"' (typed by editor) .........•.•....•....•....•.. 
"' (use in comments) ........•.................•.. 
• (use in prettydef command) .....•.....•.•...•.. 
•ANY"' (in edit pattern) .............•.........•• 
*ARGVAL"' (in backtrace) ....................•..•. 
"'ARGl"' (in backtrace) .....•...•.•••....•...••.•• 

INDEX.32 

Page 
Numbers 

9 .18 
3.2,11; 14.12-13,15 

22.19,50·51 
3.9; 10.13; 14.20 

14.56 
23.46 
14.55 
17.14 
17.14 
17.14 
22,39,56a57,60 
17.14 
9.29,63 
9.43 
2.5; 14.11,31.33-34 

14.2 
23.13·14 
9.12,21 

17.11,25 
22.24·26 
9.58 

21.13 
23.43 
9.7: 22.30; Al.1 

21.16 
23.43 
21. 13 
21.15,17 
9.22 

23.30 
23.41 
2.6; 3.2,11; 14.11•13, 

15,19,35 
14.59 
14.59-60 
9.11,Zl 

23.4i 
9.2 

14.20 
17 .16 
23 .13 
21.11,14 
18.43 
23.41 
3.2 
3.8 
3.2 

18 .44 
18.40 
9.47 

23.42 
9.2 

14.46,57 
14.52 
9.21 

12.6 
12.6 



USERWORDS (system variable/parameter) ••••••••••• 
~SE-ARGS (property na~e) •••••••••••••••••••••••• 
US I t,J G ( r e cord package ) .••••••••••••••••••••••••• 
u -c ASE [ x J ............... -.••. D •••••••••••••••••••• 

U.B.A. breaks ············••@••·················· 
U.S.A. (error message) •••••••••••••••••••••••••• 
U.D.F. breaks .............. 11·•···················· 
U.O.F. T FIX? (typed by dwim) .................. . 
U.D.F. T (typed by dwim) •••••••••••••••••••••••• 
U.D.F. (error message) •••••••••••••••••••••••••• 
VAG[ }(] SU BR ......••••••.•.•••• 0 0 ••••••• D ••••••• D 

value cell ............... , ..................... . 

value of a break ·······••••••o•••••••••••ot••••• 
value of a property ••••••••••••••••••••••••••••• 
VALUE (property name) .•••••••••••••••••••••••••• 
VALUEOF[ X] !\IL~ •••••••••••••••••••••••••••••••••• 
variable bindings .••••.••••••••••••••••••••••••• 
VARIABLES[ POS] .•..•••••••••••••••••••••••••••••• 
VARPRirH[ DOIJELST; TREELST] ••••••••••••••••••••••• 
VARS[F1J;EXPRFLG] ••••• , •••••••••••••••••••••••••• 
VARS (pr et tydef command) •• , ••••••••••.•••••••••• 
version numbers ............................... ". 
VIRGir!Fr![ FN; F LG] •.•••.•••••••••••••••••••••••••• 
WHEN (clisp iterative statement operator) ••••••• 
WHERE (clisp iterative statement operator) ..... . 
WHERE IS[ X; TYPE; FILES] ..••••••••.•••••••••••••••• 
WHILE (clisp iterative statement operator) ..... . 
\./IDEPAPER[ FLG] •••••••••••••••••••••••••••••••••• 
WITH (in REPLACE command) (in editor) ••••••••••• 
WITH (in SURROUND command) (in editor) ......... . 
WORLD (as argument to RELINK) ••••••••••••••••••• 
WRITEFILE[X;FILE] •••.••••••••••••••••••••••••••• 
( XTR . @) (edit command) .. ., ................... . 
YESFNS (printstructure variable/parameter) •••••• 
ZEROP[X) ················••o••··················· 
[ •••••••••••••••••••••••••••••••••••• Ill •••••••••• 

[,] (inserted by prettyprint) •••••••••.••••••••• 
- (clisp operator) .•.•..•.•..••••••••••••••••••• 
- (in pattern match compiler) .................. . 
.) (carriage-return) ••••••••••••••••••••••••••••• 
! (in pattern match compiler) ••••••••••••••••••• 
! (use with <,> in clisp) ..................... .. 
! E ( e di t command ) •.••••••••••••••••••••••••••••• 
!E (prog. asst. command) •••••••••••••••••••••••• 
!EVAL (break command) ••••••••••••••••••••••••••• 
!F (edit command) •••••.••••••••••••••••••••••••• 
! F ( prog. asst. command) •••••••••••••••••••••••• 
!_GO (break cornr.land) ..•. ••'• •.••••.••••••••.•.•.•• 
!N (edit cornrnand) .•..•••.••••.••••••••••••.••••• 
!rJ (prog. asst. command) •••••••••••••••••••••••• 
!IJX (edit command) •••••••••••••••••••••••••••••• 
!OK (break command) ••••••••••••••••••••••••••••• 
! UNDO (edit cor.lf.land) •••••••••••••••••••••••••••• 
!VALUE (break variable/parameter) •.•..••.•.••..• 
!VALUE (with advising) •••••••••••••••••••••••••• 
! ! (use with <.> in clisp) ..................... . 

INDEX.31 

Paga 
Numbers 

9.86-88 
22 .45 
23.60 
9.74; 14.62 

15.10 
2.9; 16.1,4; 17.15 

15. 11 
17 .8 
17.8 
16.1-2,4; 17.2,15 
13.13-14 
2.3: 5.1,9; 12.1. 

16.1 
15.6; 16.2 
7.1 
5.9; 22.43,55-56 

21.21; 22.33,46,54 
2.9; 11.5-7; 12.1-7 

12.9; 15.10 
20.8 
14.40; 20.9 
14.50 
14.2 
15.25 
23.22 
23.31 
14.73 
23.22 
14 .57 
9.42 
9.48 

18.27 
14.44 
9.45 

20.3 
13.4 
3.2 

14.55 
23.14 
23 .42 
2.5; 14.17-18 

23.43-45 
23 .16 
22.31,61 
22.31 
15.7 
22.31,61 
22.31 
15.7,17 
22.31,61 
22.31 
9.19·20 

15.7,17 
9.78 

15.7,17 
19.2,4 
23.16 



!O (edit comr.1and) 
II 

"<c.r.> 11 (use in history commands) ............ .. 
# (fo116wed by a number) .••......•.•.•..••.••••• 
#CAREFULCOLUMNS (prettydef variable/parameter) 
#n (n a number, in pattern match compiler) ..••.• 
#RPARS (prPttydef variable/parameter) •••••.••••• 
#SPELLINGSl (dwim variable/parameter) ••..•.•.••• 
#SPELLINGS2 (dwim variable/parameter) •.•••..•.•• 
#SPELLINGS3 (dwim variable/parameter) •.....•••.• 
#UNDOSAVES (prog. asst. variable/parameter) 
#USERWORDS (dwim variable/parameter) .••••••••••• 
##[ COMS] NLR •••••.•••••••••••••••••••••••••••••• 
## (in INSERl, REPLACE, and CHANGE commands) 
## (typed by system) •••••••••••••.•••••••••••••• 
S (alt-mode) ....................................... . 
$ (alt-mode) (in clisp) ........................ . 
$ (alt-mode). (in edit pattern) .........••••••••• 
S (alt-mode) (fn spelling c~~rection) •.••.•••••• 
S (alt-mode) (prog. a·sst. command) ............. . 
$ (alt-mode. in R command) (in editor) .••••••••• 
$ (do 11 ar) ( edita coirunand/parameter) ...••••••••• 
$ {dollar) (in pattern match compiler) ...••••••• 
SBUFS (a1t-modeBUFS) (pros. asst. command) ...... 
SC (a 1 t-modeC) ( edi ta command/parame'ter) •••••••• 
SN (in pa.ttern match co111piler) •••.••••.••••••••• 
SQ (alt-modeQ) (edita command/parameter) •••••••• 
SW (a lt-modeW) ( edi ta command/parameter) •••••••• 
$$ (two alt-modes) (in ~dit pattern) ••••.•.••••• 
SSVAL (use in iterative statement in clisp) 
Sl (in pattern match compiler) •••••••..•.••••••• 
% (escap• character) •.•.•••••••••.•.•.••.•.•••.• 

% (use in comments) 
%% (use in comments) 
& (in edit pattern) 
& (in pattern match 
& (typed by editor) 
& (typed by system) 
I 

.............................. 
compiler) ................... 

............................................... 
• (clisp 9pera.tor) .............................. . 
1 ( edi ta command/parameter) •..•••••••••••••••••• 
1 (in a lap statement) .•.••••.••••••••.•••.••••. 
• (in pattern match compiler) ................. .. 
( .......... •, • .. •· ........................ • ........... . 
( ) ............................................. . 
). ...... • .................... :• .................... . 
* (in a lap statement) ....•.••.•.••••••.••.••••• 
* (in an assemble statement) •••••••.•••••• ; ••••• 
* (in MBD command) (in editor) •••...••••••.•••• , 
* (in pattern match compiler) ••••.•.•.••.•.••••• 
* (typed by .editor) ...••..•.••••••.•.••••..•.•.• 
* (use .in comments) ..........•.•.••...•.•..••••• 
* (use in prettydef command) •••••••.•..••••.•••• 
*AUY* (in edit pattern) •..••.• ; •••••••.••. • ••••••• 
*ARGVAL* (in backtrace) .••••••••.•.•••••.•.•..•• 
*ARGl* (in backtrace) •••••••.••••••••••••••••••• 

INDEX.32 

Page 
Numbers 

9.18 
3.2,11~ 14.12-13,15 

22.19,50-51 
3.9; 10.13; 14.20 

14.56 
23.46 
14.55 
17.14 
17.14 
17.14 
22.39,56·57,60 
17 .14 
9.29,63 
9.43 
2.5; 14.11,31,33•34 

14.2 
23.13·14 
9.12,21 

17 .11, 25 
22.24-26 
9.58 

21.13 
23.43 
9.7: 22.30; A3.1 

21.16 
23.43 
21.13 
21.15,17 
9.22 

23.30 
23.41 
2.6; 3.2~11; 14~11-13, 

15,19,35 
14.59 
14.59-60 
9.11,21 

23.41 
9.2 

14.20 
t 7 .16 
23.13 
21.11,14 
18.43 
23.41 

3.2 
3.8 
3.2 

18.44 
18.40 
9.47 

23.42 
9.2 

14.46,57 
14.52 
9.21 

12.6 
12.6 



•ERROR• (property name) ...••.......•.....•...••• 
*FH"' (in back trace) ••••••••••••••••••••••••••••• 
*FORM* (in back trace) ••••••••••••••••••••••••••• 
*~ROUP• (property name) .•....•...•••.•.•.•.•...• 
*HISTORY• (property name) ••••••••••••••••••••••• 
* LISPXPR!NTll< (property name) •....•.•.•...•..•.•• 
•PRINT• (property name) ...•...•.•••.••...•.••.•• 
11: TAIL:t:i (in back trace) ...........•.......•.•••••. 
••BREAK•• (in back.trace) •••••••••••••••••••••••• 
*"'COMMEIJT>'<• (typed by editor) ....•..•.•.•..•.•.. 
i:cll<COMMErni:0~ (typed by system) •.............••..• 
•*COMMENT••FLG (prettydef variable/parameter) 
••EDITOR•• (in backtrace) .....•••.•...••...••..• 
*"'TOP•• (in backtrace) ........•.•...•......•.... 
••• (in interscope output) ..•....••••...••.•..•• 
•••*• (in compiler error messages) •.....••..•••• 
••••*ATTENTION USER·· (typed by system) .•.••.•• 
, (edita command/parameter) ..••.........•..••••• 
(-n el ... em) (n a number, edit command) •.•.••• 
-n (n a nur.iber, edit command) ................. .. 

(in edit pattern) .........•.•.•.•...•...•..•. 
(in pattern match compiler) ................. . 
(typed by system) •••••••••••••••••••••••••••• 

-> (break command) ••••.••••••••••••••••••••••••• 
-> (in pattern match compiler) ·············~···· 
-> (typed by dwim) .............•...•..........•. 
-> (typed by e_di tor) .•......•.....•.....••.•..•• 

•••••••••••••••••••••• 0 •••••••••••••••••••••••• 

notation ...............••••••.••••.••••••••••• 
( edi ta command/parameter) ••••••••••••••••••••• 

• (in a floating point number) ••••••••••••.••••• 
• (in pattern match compiler) ................. .. 
• • (edit cornraand) ••.•••• · ••••••••••.••••••••••••••• 

(in edit pattern) •.••.••.••••••••••••••••••• 
(prog. asst. command) ••••••••••••••••••••••• 

••• (typed by dw-im) •• " ........................... . 
••. (typed by editor) ........................... . 
... (typed by system) .••.....•••••.•...•••••••.• 
I functions ......•. .- ••••••.•.•.••••••.••••••• ~ •• 
I (edita cor.ll':land/parameter) ••••••••••••••••••••• 
/RPLUODE[X;A;D] ••••••••••••••••••••••••••••••••• 
0 ( e·di t corrunand) ................................... . 
czrm . @) (edit command) ...................... .. 
(3RD • @) (edit command) ...................... .. 
7 (instead of 1 ) ................................. . 

8 (instead of left parenthesis) ••.......•......• 
9 (instead of right parenthesis) .....•....••.... 
(: el ... em) (edit command) •••••••••••••••••••• 

(c1isp operator) ............................... . 
: (edita command/parameter) .•.•.•••.•..•.•.••.•• 
: (typed by sys tern) ••••••••••••••••••••••••••••• 
; (edita command/parameter) .••.•.•.••.••.•.•.••• 
( : • x) (edit corrunand) ••••••••••••••.•••••••••••• 
<,> (use in c11sp) •••••••••••••••••••••••••••••• 
= (break cornI7land) ••••••••••••••••••••••••••••••• 
= ( edi ta command/parameter) ••••••••••••••••••••• 
= (in a lap statement) .••••••.•.••••..•••••••••• 

INDEX.33 

Page 
Numbers 

22.24,45 
12.6 
12.5 
22.45·46,52 
22.45-46 
22.38,45 
22.45 
12.5 
15.9 
9.60 

14 .47 
9.61; 14.47 

15.9 
15.9 
20.14 
18.50 
22.65 
21.10 
9.5,36 
9.3,17 
9 .11. 22 

23.43 
14.21 
15.11 
23.48. 
17.3·4,6•7 
9.58 
3.8 
2.2 

21.13 
3.7 

23.44 
9.33 
9.22-23 

22.22 
17.4,6 
9.13,15 

14.18; Z2.48 
22.40,58 
21.10,12 
22.57 
9.4-5,17 
9.30 
9.30 

17.16 
9.82; 17.2,7,16,18·19 

17.2,7,16,18 
9.14,40 

23.12 
21.14 
2.8: 15.4 

21.17 
9.76 

23.16 
15.10 
21.13 
18.43 



= (_in e,1ent address) ....•......•..••.......•.... 
= (in pattern match compiler) .................. . 
= (typed by dwim) .............................. . 
= (typed by editor) •..•••...••.••.•••..•••.••••• 
=E (typed by editor) ..•.•••.•••.••••..•••••••••. 
=EDITF (typed by editor) ••...••.••••..•..•.••••• 
=EDITP (typed by editor) ••..•••.•.••...••..••••• 
=EDITV (typed by editor) ....•••.••.•.•..••.••••• 
==(in edit pattern) ...•••..••.....•••••••.••••• 
== (in pattern match compiler) ...•...••.•..•.•.• 
=> (in pattern match compiler) ...•••.•••••.••••• 
? (break conr:iand) .....•..••.•.•.•.••...•••••.••• 
? (edit comr.1and) ...•......•....••..•..••••.•.••• 
? (edita command/parameter) ......•••.••.•••••.•• 
? (typed by dwim) ....••••••..•.•.......••..•• , •• 
? (typed by editor) •.••..•.•••.••••••••. , ••.••.• 
? (typed by system) ••.•••..•••••..••.•••.•.••..• 
?= (break corrunand) . e •••••••••••••••••••••••••••• 

?? (prog. asst. command) ...•.••••..•••••••.••••• 
@ (break cornrnand) ••....•..•.•• t: ••••••••••••••••• 

@ ( ed i ta corrtr.Hmd/parameter) •.••.•••••••••••• , ••• 
@ (in a lap statement) .•.•...••••••••.•••••.•.•• 
@ (in event specification) ••••.•..•.•.•.•••••••• 
@ (in pattern match compiler) .•••..••••••••••••• 
@(location specification) (in editor) ........ .. 
(@1 THRU) (edit command) ...................... .. 
(@1 THRU @2) (edit command) .................... . 
(@1 TO) (edit command) ........................ .. 
(@1 TO @2) (edit command) ...................... . 
@@ (in event specification) •••••••.•••••..•••••• 
(\ atom) (edit command) ........................ . 
\ (edit command) ..•.........••.••.•......•••.... 
\ (in event address) ........................... . 
\· (typed by system) ........•.••••..•.••.••.•.•.• 
\P (edit conunand) .............................. . 
] .............................................. . 
t (break conr:iand) .•.......••••.••..•.•••..••••.. 
' {edit corarn.and) .........••.•.•.•.••.•.••••.••• , 
t ( edi ta command/parameter) ••••••.••.•..••••.••• 
t (use in comments) .•...•.••.•••••••.•••••..••.• 
... operator (in clisp) .•.••...••..••••••••••••••• 
( .. pattern) (edit command) •..••••••••••••••••••• 
.. (edit corrunand) ..........•.•••.....•..•...••.•• 
.. (in event address) ........................... . 
~(in pattern ~atch compiler) ••••••••••.•••••••• 
... (typed by system) ............................ . 
.... (edit command) .................•............. 

INDEX.34 

Page 
Numbers 

22 .12 
Z3.41 
17.5,7 
9.12 
9.82 
9.87 
9.86 
9.86 
9.Z2 

23.41 
23.47 
15.14 
9.2,60 

21.13 
17.6·7 
9.3 

16.4 
15.8·9 
22.22 
15.8-9,12 
21.10 
18.43 
22.14,53 
23.42,44 

9.29 
9.56 
9.54 
9.56 
9.54 

22.14,27,53 
9.34 
9.11,34-35,41 

22 .12 
2.5; 14.11.31,33 
9 .11, 35' 61 
2.6; 3.2; 14.17 

15.7,17; 16.2,7 
9.4,18 

21.13 
14.59 
23.12,15 
9.30 
9.34 

22 .12 
23.45 
2.4.6; 15.4 
9.34 


	Title page
	Acknowledgements and Background
	Table of Contents
	1. Introduction
	2. Using INTERLISP
	3. Data types, storage allocator, garbage collection, and overlays
	4. Function types and implicit PROGN
	5. Primitive functions and predicates
	6. List manipulation and concatenation
	7. Property lists and hash links
	8. Function definition and evaluation
	9. The INTERLISP editor
	10. Atom, string, array, and storage manipulation
	11. Functions with functional arguments
	12. Variable bindings and push down list functions
	13. Numbers and arithmetic functions
	14. Input/output functions
	15. Debugging - the BREAK package
	16. Error handling
	17. Automatic error correction - the DWIM facility
	18. The compiler and assembler
	19. Advising
	20. PRINTSTRUCTURE, INTERSCOPE, and HELPSYS
	21. Miscellaneous
	22. The programmer's assistant and LISPX
	23. CLISP - conversational LISP
	Appendix 1: Transor
	Appendix 2: The INTERLISP interpreter
	Appendix 3: Control characters
	Master index



