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2. Central Processor 

The Central Processor (CP) emulates the Mesa Processor as defined by 
the Mesa Processor Principles of Operation, and provides ALU service 
for the integral 110 controllers. The central processor is modeled 
almost exactly after the architecture of the Dandelion, but executes a 
slightly different version of the Dandelion microinstruction set. In 
addition, a small part of the Dandelion Mesa Emulator has been 
modified. 

Figure 1.1 in Section 1 illustrates the relationship of the Mesa 
Processor Board (MPB) to the rest of the system. Figure 2.1 illustrates 
the MPB functional blocks that are described in this section. 
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Figure 2.1. Mesa processor board logical blocks 
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2.1 General Board Hardware 

The central processor is a microprogrammed, 16-bit general purpose 
computer consisting of approximately 170 ICs of various sizes and 
complexity. It resides on a 10.9-inch by 16-inch printed wiring board 
assembly (PWBA), referred to as the Mesa Processor Board (MPB), 
located in slot 3 of the backplane. 

The MPB contains: 

• 4K by 48-bit writable control store and associated registers for 
loading and decoding microinstructions. Control store is 
expandable to 8K by 48 bits. An 84-pin gate array provides 
look-ahead decoding of certain microinstructions; the raw 
microinstruction register (RAW MIR) stores microinstructions. 

• Four 2901C LSI chips that make up the core of the central 
processor. The 2901C is a 4-bit processor; the four chips are 
cascaded to provide a 16-bit processor. Supporting the 2901C 
are four register sets (U, RH, IB, and Link), a four-bit rotator, 
and four emulator registers (stackP, ibPtr, pe16, and MInt). 

• The 68-pin gate array that serves as the Mesa bus controller, 
and the logic that interfaces the controller to internal buses (X 
and Y) and to the Mesa bus and backplane. 

• Support devices, such as the process timer and trap machine. 

• A 16 MHz clock generator which distributes a clock signal 
across the backplane. 

• lOP address mapping, which is part of the I/O subsystem, and is 
not discussed in this manual. 

Note: Not all devices are shown in Figure 2.1. 

Most devices are described in detail in the appropriate subsections of 
Section 2. This subsection describes the overall MPB; that is, board 
layout, interfaces, power requirements, and internal clock generation. 

2.1.1 Mesa Processor Board (MPB) 

Figure 2.2 illustrates the layout of the Mesa Processor board. 

2·2 Central Processor 
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Figure 2.2. Mesa Processor Board layout 

2.1.2 Backplane Interface 

Central Processor 

Table 2.1 lists the Mesa processor board interface to the backplane. 
On the backplane, pins are grouped in six rows of three columns each. 
The table reflects the grouping. 

The board interfaces to the Mesa processor or B bus and the 80186 or 
A bus. Two interrupt lines connects the Mesa processor with the lOP. 

Tables 2.2 and 2.3 list the pins and signals for the interfaces to the 
Mesa bus and 80186 bus, respectively. 
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Table 2.1. MPB Backplane Pin Assignment (Front View) 

Outmost Inmost 

1) 86 Bus 

~gil[a·l r.l~ QQl ~tfll Il~ QQ2 

~llQl!bil sla QQ~ A./UIlR'm Ila QQfi 

alb.O Q§!bil r.la QQl a£12E~' Ii! sla QQa 

6lAll Q~ !bil r.l~ Q1Q ~~ll sla Qll 

alb.ll Q~ ,bil sla Q13 alMllw&i:.: IiI r.l~QB 

b.lall Qa Ibil sla Ql§ ALb.!..E'm Ila Q11 

aLb.ll Q2 !bil r.l~ Qla ALlQeMl:w~[' m 113 Q2Q 

aLb.ll Ql !bil sla Q22 ~12g,[I1-~ sla Q2~ 

6lAll QQ 'bil r.la Q2~ ~~ll r.la Q2§ 

~~ll sl~ Q28 M:;!..&s; IiI sl~ Q2a 

J3.031 GND J3 .032 GND J3.033 GND 

J3 .034 (i) AJAA.19 J3.035 (i) AJS2' J3 .036 (i) AJAA.23 

J3.037 (i) AJAA.18 J3.038 (i) AJSl' J3.039 (i) AJAA.22 

J3 .040 til AJAA.17 J3 .041 Ii) AJSO' J3 .042 (i) AJAA.21 

J3.043 (i) AJAA.16 J3.044 (i) AlBHE' J3.045 (i) AJAA.20 

J3.046 AlUCS' J3.047 GND J3.048 (i) AJIOR' 

J3 .049 (0) Reserved-O J3 .050 (i) NLocRamCS" J3.051 Spare-4 

J3.052 (i) AJIOPLock' ·J3.053 GND J3 .054 (i) AJIOW 

J3 .055 AlPCHoldA ToArb* J3 .056 (0) AJIOPMemRd' J3 .057 Spare-5 

J3 .058 -5V J3 .059 ·5V J3.060 -5V 

2) MPB-DCM 

~NQ r.la Q!21 GNll sla Q!22 GNll r.la Q§3 

MQ &i:.: * r.la Q!2~ AJMb. 23 (01 Ila Q!2fi NMA22 101 r.la Q§!2 

S12lUl:l r.la Q!21 8LMb. 21 WI sla Q!2a NMb. 2Q (0) 113 Q@ 

~l2lmlll' s[~ Q1Q AJMb. la '01 J3Qll AJMb. la (01 .13 Q12 

O13BKLIlg,ilii* sl~ Qla AJMA 11 !Ill sl3014 AJAA I!2B 'ol s13Q15 
Mt;I~I'* ·sl~ Q16 GNll r.l3 Q71 MPB'OCM-SI2IL[d r.l3Q1a 
8LMfjI;UD1[' r.la Qla MPB-llCM-IiI2lL[lll sl3 Qao 

aLYBEIIN~ r.la Qa2 r----------
~Nll sl3 Qa~ 3) Mesa Bus 
AJRa:fl:';I.K. 'Ill sl3 aaa GNll sla Qa3 BtMWT' 'Ill r.l3 Q81 

MP13-11CM-spg,rea sla Qa6 Dawn. Mp .. sp8,rel sla Qa4 

GNll r.l3 Q8a BIMRll' (01 sl3 Qal 
VCC sJ3 09Q 

• notused 

- more-
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Table 2·1. MPB Backplane Pin Assignment (continued) 

Outmost Inmost 

IOP·Mesa I 3) MesaBus (continued) 

I 
.13091 GNp J3 Q~2 ~i'l"D I J3093 GND 
J3094 m MOPlntMP' s13 Q~fi !::~~Rfjti· I J3 Q96 (reserved) 

J3097 (0) A1MPlntIOP' 113 Q~a !::~LQ6Pc§HIEr I J3 Q99 (0) Ba..ock' 

.13100 MOPRdNIA J3 IQI !::~lnlEEfjRfjti· I 113 102 (0) BIlQS' 
J3103 (0) Mjalt' 113 IQ~ !:;~P6161ti· I J3 105 (0) BlMemRef 
J3106 IOP's-SPArd 113 IQl !::~HlEI!::LK· I J3 IQa (9) BIlQ\y: 

.13 109 (0) AfResetMPB' J311Q !::~P616Qllr I J3 111 m BlRdy 

.13 112 YCC J3113 v!::!:: I J3 114 v!::!:: 

.13 115 YCC 113 lUi v!::!:: I J3 111 m v!::!:: 

.13 118 YCC J3 11~ v!::!:: I 113 120 v!::!:: 

r-------------------------~ 
GND J3 .121 GND J3.122 GND J3.123 
GND J3 .124 GND J3.125 GND J3.126 
GND J3.127 GND ·J3.128 GND J3.129 
INTDIS' J3 .130 B/A.18 (0) J3.131 S/ALE' (0) J3 .132 
BlA.23 (0) J3 .133 B/A.17 (0) J3.134 Dawn·Mp·Spare3J3.135 
S/A.22 (0) J3 .136 GND J3.137 BID.11 (hi) J3 .138 
B/A.21 (0) J3 .139 BID.15 (hi) J3.140 BID.I0 (hi) J3.141 
B/A.20 (0 ) J3 .142 BID.14 (hi) J3.143 BID.09 (hi) J3 .144 
B/A.19 J3 .145 BID.13 (hi ) J3.146 BID.08 (bi) J3 .147 
·12V J3 .148 ·12V J3.149 ·12V J3.150 

L ___________________________________ ~ 

J3 lfil ~tiP J31 52 ~i'l"P J3 IS3 GtiD 

J3 lfi~ Ibil aLP !11 Jalfifi Ibil IM212 J31fiS IbO BLPQ6 

113 I fiZ !bil aLP Qfi Ja lfia ~tiP J31fi9 (bj) B/DQ4 

J3 BiQ !lIil aLPQ3 J3 161 Ii! ~!::i!:L' J3 162 !bil BIDQ2 

113163 !bO WQl sf3164 GND J316fi (bil BID QQ 

• Notused 
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Table 2.2. Mesa (B) Bus Interface 

Pin Signal Signal Descril!tion Pin Signal Signal Description 

(ConnectorJll (ConnectorJll 

Jl.l40 BID.15 } Jl.133 B/A.23 } 
J1.l43 BID. 14 } Jl.l36 B/A.22 } 
Jl.l46 BID.13 } Jl.l39 B/A.21 } 
Jl.l55 BID.12 } JL142 B/A.20 } B·Bus Address line 
Jl.l38 BID. 11 } Jl.145 B/A.19 } 
Jl.l41 BID.I0 } Jl.131 B/A.18 } 
Jl.l44 BID.09 } B·Bus multiplexed Jl.134 B/A.17 } 
Jl.l47 BID.08 } AddresslData line. 
Jl.l54 BID.07 } bidirectional data Jl.l05 BlMemRet' B·bus Mesa memory reference 
Jl.l56 BID.06 } Jl.087 BIMRD' B·bus Memory Read 
Jl.l57 BID.05 } Jl.081 BIMWT' B·bus Memory Write 
Jl.l59 BID.04 } Jl.l02 BIIOR' B·bus I/O read 
Jl.l60 BID.03 } Jl.l08 BilOW' B·bus va write 
Jl.l62 BID.02 } Jl.099 BlLock' B·bus lock request to memory 
Jl.l63 BID.OI } Jl.l32 B/ALE' Address Latch Enable 
Jl.l65 BID.OO } Jl.l11 BlRdy Ready 

Table 2.3. 80186 (A) Bus Interface 

Pin Signal Signal Description Pin Signal Signal Description 
(Connector J 1) (Connector J 1) 

Jl.065 AlMA23 } Jl.088 NRawCLK 16 MHz clock 
Jl.066 AlMA.22 } Jl.029 NCLK 8 MHz clock (not used) 
Jl.068 AlMA.21 } A·bus Jl.l61 NReset' System reset 
Jl.069 AlMA.20 } Mapped Address Jl.l09 NResetMPB' 
Jl.071 AlMA.l9 } Jl.l03 AlHalt' 
Jl.072 AlMA. 18 } Jl.041 NSQ' A·bus status line 
Jl.074 AlMA.l7 } Jl.038 AlS1' A·bus status line 
Jl.075 NA.lSB } Jl.035 AlS2' A·bus status line 

Jl.017 NALE' Address Latch Enable 
Jl.005 AlDTIR' A Bus Data 

TransmitlRecei ve 
Jl.036 NA.23 } 
Jl.039 NA.22 } Jl.008 AlDEN' Data Enable 
Jl.042 NA.21 } A·bus Jl.020 AIIOPMemWr' Memory Write 
Jl.045 NA.20 } Address line Jl.054 AllOW' 10 Write 
Jl.034 NA.19 } Jl.056 AIIOPMemRd' Memory Read 
Jl.037 NA.18 } Jl.048 AIlOR' 10 Read 
Jl.040 NA.17 } Jl.044 AlBHE' Byte High Enable 
Jl.043 NA.16 } Jl.097 AlMPlntIOP' Mesa processor interrupts 

lOP, A·bus<-Mesa 

Jl.006 NAD.15 } Jl.094 AIIOPlntMP' lOP interrupts Mesa, 
Jl.OO9 NAD.14 } Multiplexed Mesa-A·bus 
J.lOI2 NAD.13 } AddresslData Jl.046 NUCS' Upper Chip Select 
Jl.015 NAD.12 } line. A·bus 
Jl.018 NAD.11 } Address line. 
Jl.021 NAD.10 } bidirectional data 
Jl.024 NAD.09 } 
Jl.027 NAD.08 } 
Jl.004 NAD.07 } 
Jl.OO7 NAD.06 } 
Jl.OI0 NAD.05 } 
Jl.013 NAD.04 } 
Jl.016 NAD.03 } 
Jl.019 NAD.02 } 
Jl.022 NAD.Ol } Jl.025 NAD.OO 

2·6 Central Processor 
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2.1.3 Power 

Power consumption estimates for the Mesa Processor Board are: 
Typical 8.187 A (40.94 W) 
max. 12.318 A (61.59 W) 
Average = Typical + Max 

2 
= 10.253 A (51.26 W) 

Table 2.4 lists power interface connections. 

Note: For detailed dc power distribution, please see Section 1.3. 

RAW5v 

Table 2.4. Power Interface 

.11.030 
J1.090 
JU12 
JU13 
JU14 
JU15 
JU16 
J1.l17 
JU18 
JU19 
J1.l20 

GNO Jl.002 
J1.011 
Jl.026 
Jl.028 
Jl.031 
J1.032 
Jl.033 
Jl.047 
J1.061 
Jl.062 
Jl.063 
Jl.077 
Jl.083 
Jl.085 
Jl.089 
Jl.091 

GND Jl.092 
Jl.093 
J1.121 
J1.122 
JU23 
J1.124 
JU25 
JU26 
J1.127 
J1.128 
J1.129 
J1.137 
J1.151 
J1.152 
J1.l53 
J1.l58 
J1.164 

2.1.4 Clock Generation 

RAWCLK 

2XCLK' 

2XCLK 

CLKEnb --.J 
CLK 

CLKA',CLKB',CLKC' 

Central Processor 

Figure 2.3 illustrates the relationship of the generated clocks to' the 
system clock. 

I I I I 

n n n n 
U U U U 

I· 125 osee ·1 .. 125 osee .. I f 125 nsee .. I 
Figure 2.3. Internally generated clocks 
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2.2 Microinstructions 

2.2.1 Hardware 

Dove microcode implements Mesa bytecodes, as defined by the Mesa 
Processor Principles of Operation. The microcode does not controlllO 
devices, which are controlled by the lOP, an Intel 80186 
microprocessor. 

The microcode resides in RAM control store. The Mesa processor 
interprets control store through one of two devices: a microinstruction 
decoder gate array chip (MDC), and a microinstruction register (MIR). 
Control store is written by the lOP; the lOP also reads control store, 
but only the next instruction and only 8 bits at a time. During booting 
or debugging, the lOP can load microcode into control store, initialize 
the microcode program counter, and start and stop Mesa processor 
execution. 

Microcode source files consist of lists of microinstructions, assembler 
macros, and comments. Microinstructions consist of a list of one or 
more phrases. (Refer t~ the examples at the end of this subsection.) 

In this and subsequent sections discussing microinstructions, the 
following symbols are used: 

- logical complement 
+- assignment 
" (double comma) concatenation, 

Microinstruction hardware is described in section 2.3 titled "Control 
Architecture." 

2.2.2 Theory of Operations 

2-8 

Up to 8K microinstructions can be written into (or read from) the 
control store RAM by the lOP. 

Each microinstruction is decoded and executed in 125 nanoseconds, or 
one cycle. Microinstructions are not pipe lined over several cycles, 
except that while one microinstruction is being executed, its successor 
is being read from control store. 

Cycles are enumerated in cl, c2, and c3 order, and then cl again. The 
sequence is never interrupted or altered. Consequently, both targets 
of a two-way branch must be specified with the same cycle number. 
(Strictly speaking, this is necessary only if the target 
microinstructions contain cycle-dependent operations.) 

Three successful cycles, cI, c2, and c3, are grouped into one click. Five 
consecutive clicks (numbered 0 .. 4) are grouped into a round. Each 
click of a round is permanently allocated to one or more of the lIO 
controllers. If an I/O controller does not request the service of its 
corresponding task microcode, the emulator microcode task runs 
during that click instead. 

Microinstruction alignment, so that microinstructions execute in 
successful cycles, is, therefore, a necessary outcome of the fixed-task 
click structure. Moreover, when one desires code which is speed 

Central Processor 
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optimized, this structure requires the elimination of three 
microinstructions instead of one. 

Look-ahead decoding of microinstructions is done in the MDe for the 
function fields fS, fX, fY, and fl. The raw MIR stores the entire 
microinstruction except the Immediate Next Instruction Address 
(pINIA) field and the fS field. 

The pINIA field, together with the branching logic, generates the 
Next Instruction Address inputs (pNIA) to the Next Instruction 
Address register. 

2.2.3 Programmer Interface 

2.2.3.1 
Microinstruction 
Format 

Central Processor 

Microinstructions are executed from a 4K by 48-bit, writable control 
store. Each 48-bit microinstruction contains the 12-bit address of the 
next instruction. Throughout this section, the subsections titled 
"Programmer Interface" are described in terms of microinstructions. 
Microinstruction examples in subsection 2.2.3.2 illustrate how certain 
elementary functions are accomplished. 

Refer to Daybreak Microcode Reference Manual for detailed 
microcode instructions. 

Frequently applied operations are encoded in the smallest number of 
bits, and most of the important Mesa Emulator operations execute in 
one click. 

The three major parts of a 48-bit microinstruction are: 1) the 2901 
control bits (bits 0 through 15); miscellaneous function bits (bits 16-
35); and the 'goto' address field (bits 36-47). 

2901 control bits occupy the first word. They control the R register 
ports A and B, and specify ALU source address, function, and 
destination address. 

Miscellaneous function fields control carry input, enable the stack and 
U registers, specify a memory operation, and specify functions (fX, fY, 
and fl). 

The fS field controls the decoding of the fY and fl function fields: 

Depending on fSO-l, tY field can 
• specify a miscellaneous function (fYN orm) 
• name a branch or multi-way dispatch (DispBr) 
• name an UO register to be loaded (lOOut) 
• equal the high nibble of an 8-bit constant (Byte) 

Depending on fS3-4, fZ field can 
• specify a miscellaneous function (flN orm) 
• equal the low half of a U register address (U addr) 
• name an UO register to be read (IOXIn) 
• equal a 4-bit constant or the low half of an 8-bit constant (Nibble) 

The 'Goto' address, INIA, occupies 12 bits and specifies a control store 
address unless the previous microinstruction specifies condition bits. 
Condition bits are ORed into INIA, resulting in a branch or dispatch. 
Thus, every microinstruction is a potential jump instruction. 
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Figure 2.4 illustrates the microinstruction format and describes the 
fields and subfields. 

00 04 08 11 14 16 20 24 28 32 36 47 

I 
rA 

I 
rB 

I 
aSl alD 1~~ln'l fS 

I 
fX 

I 
rY 

I 
fZ 

I 
INIA 

I 
~----------------------------------~ 
: Field Descril!tion 
:~ 2901 A reg addr. U addr [0·3) 
IrB 2901 B reg addr. RH addr 
I as 2901 ALU source operand pair 
aF 2901 ALU function 
aD 2901 ALU desinationlshift control 
eF B ;eu pal it) 
Cin 2901Carryin.shiftends.writeU(ifenU = 1) 

mem MAR-<ifel), MDR-(ifc21, -MD(ifc3) 2901 Control Bits 
fS Function field selector 
fX X function r- - - ..,,. - - - - - .,,.. - - - - - - - - - - - .., 
fY Y function I as ~ II aF E II sh"aD r[rB) Q.=: Y bus-
fZ Z function I II II 0 no write F F 

~~!~_~:x~~n_s:r~~t~o~~~~r~~s ___________ ~~ ~:~ II~ ~~~~g:. II ~ ~owrite ~~:~~~: ~ 
I 2 O.Q II 2 O,Q II 3 F no write F 
13 O,B 113 O,B II 4 FFI2I2 Ql2 FF 

5 no write I 4 O,A II 4 O,A II 6 
5 D,A 5 D,A 2F 2Q F 

16 0 Q II 6 D,Q II 7 2F no write F 

I 7 0:0 II 7 0,0 II I ~ __ ~L _____ ~~ ___________ ~ 

Function Field Selector and Function Fields 

~-----~r--------------------, I fS[Q·11 fY = II fS[2·31 fZ = 
I 0 DispBr II 0 fZNorm 

I 2
1 fYNorm II 1 Nibble· 

IOOut 2 Uaddr[4·7) 
I 3 Byte· II 3 IOXIn 

I. X[O.ll)-o. II. X[O.ll)-o 
I X[8.151-rY,fZ II X[12.151-tZ 

SU addr[O· 71 
o "stackP 
O"stackP 
rA,,fZ I rA"Y[12·15J*· iffZ = AltUaddr·· 
rA,,fZ I rA"Y[12· 15)** iffZ = AltUaddr·* 

**As executed by a previous ~nstruction 

~-----~~--------------------~ r-------'r--------------'r-------------, I fX fXNorm II fY fYNorm Disl!Br IOOut II ~ fZNorm IOXln 
o pCalVRetO· 0 ClrMPIntlOP NegBr DebA- 0 

11 pcalVRetl· 111 SetMPlntlOP ZeroBr ExCtrl- III IBPtr-1 
I 2 pCalVRet2· II 2 ClrlntErr NZeroBr II 2 IBPtr-o 
I II (ClrIntTrap) II 

3 pCaIVRet3* 3 IBDisp MesalntBr 3 Cin-pc16 
I 4 pCalVRet4* 114 MesalntRq PgCarryBr 114 
I 5 pCaIVRet5* II 5 stackP- CarryBr II 5 pop (pOpZ) 
I 6 pCalVRet6* II 6 18- XRefBr II 6 

I 
7 pCalVRet7* 117 cycle (cycle Y) NibCarryBr II 7 

push (pushZ) -ExtStat 
AltUaddr 10-

8 Noop 8 Noop XDisp 8 
19 RH- 119 Map-. or YDisp 119 

Noop -DebB 

I II (MapRefY) II 
A shift (shiftX) A MAPA- XC2npcDisp A 

I B cycle (cycleX) II B push (pushY) XWtOKDisp II B 
I C Cin4-pC16 II C 10- XwdDisp 10- II C 
I 0 Map-, or II 0 Bank- XHDisp II 0 

ClrLOCK 
SetLOCK 
LRotO 
LRot12 

(MapRefX) 
I E pop (popX) II E ClrIE XLDisp II E LRotS 
I F push (pushX) II F SetlE PgDrOvOisp .. F LRot4 

I II II 
1

* PCall when NIA7 = 0; II II 
PRet when NIA 7 = 1 

-IntStat 

-ErrnIBnStkp (Mise> 
-RH 
-ibNA 
-ib 

-ibLow 
-ibHIgh 

L _______ ~L ______________ ~L _____________ J 

Figure 2.4. Microinstruction format and subfield formats 
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Microinstruction 
Examples 
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The Central Processor hardware should be viewed in light of its 
corresponding microcode. The following four examples of microcode 
illustrate how and in what time frame certain elementary functions 
are accomplished. See the Daybreak Microcode Reference Manual for 
a description of the microcode format. 

(1) The Mesa Emulator Load Locall (LLl) macroinstruction indexes 
the local frame pointer and then pushes the addressed word from 
memory onto the Stack. If the indexing operation does not cross a 
page boundary, then the microinstruction executes in one click. If a 
page cross occurs, then the microinstruction executes in three clicks. 
If the Map flags must be updated (RMapFix), then another two clicks 
are required. 

@LLl: MAR -Q -(rhL, L+ 1], L1-Ll.PopDec, push, cl,opcode(l'b]; 

LLn:STK - TOS, PC - PC + PC 16, IBDisp, L2+-L2.LL, BRANCH(LLa,LLb,l], c2; 
LLa:TOS - MD, push, fZpop, DISPNI(OpTable],c3; 
LLb:Rx +-UvL, c3; 

LSMap: Noop, c1; 

~ - Q - Rx, L2Disp, c2; 
Q-QandOFF,RET(LSRtn], c3; 

LLMap: Map - Q - (rhMDS, Rx + Q1, c1, at(3,10,LSRtn]; 
Noop, c2; 

Rx -rhRx - MD, XRefBr, c3; 

MAR-(rhRx,Q + 01,LO-LO.R,BRANCH(RMUD,51, c1; 
IBDisp, GOTO(LLa], c2; 

RMUD: CALL(RMapFix], c2; 

(2) The Mesa Emulator Read 1 (Rl) macroinstruction indexes the 
virtual address on the top of stack and then pushes the addressed word 
from memory onto the stack. The microinstruction executes in two 
clicks. If the page has been read for the first time, then four clicks are 
required; that is, the Map flags must be updated. 

@R1: Map -Q -(rhMDS, TOS + 11, L1-L1.Dec, pop, c1,opcode(101'b); 

push,PC -PC + PC16,c2; 

Rx - rhRx - MD, XRefBr, c3; 

MAR -(rhRx, Q + 0), LO+-LO.R, BRANCH(RMUD,$], cl; 

IBDisp, GOTO[LLa], c2; 
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(3) The Mesa Emulator Jump 2 (J2) macroinstruction increments the 
program counter by 2 bytecodes and then refills the instruction buffer. 
The microinstruction executes in two clicks. If the jump crosses a page 
boundary, then five clicks are required. 

@J2: MAR-PC-[rhPC,PC.+l],push, c1,opcode[201'b]; 

STK - TOS, L2 - L2.PopOIncrX, Xbus-o, XC2npcDisp, DISP2[jnPNoCross I, c2; 

jnPNoCross: IB - MD, POP. DISP4[JPtrIPopO. 2), c3, at[O,4jnPNoCrossl; 
jnPICross! Q -OFF + I. LO - LO.JRemap. CANCELBR[UpdatePC, OF). c3. 
at[2,4jnPNoCross); 

JPtrIPopO: MAR-[rhPC,PC + 1),IBPtr-l,push,GOTO[Jgo), cl. 

at(2.10,JPtrIPopO); 

JPtrOPopO: MAR-[rhPC.PC + 1). IBPtr-o. push. GOTO[Jgo]. cl. 
at(3,10,JPtrlPopO]; 

J go: TOS - STK, AlwaysIBDisp, LO - LO.NERefill.Set. DISP2[NoRCross), c2; 

(4) The Mesa Emulator instruction buffer refill code executes in one 
click if the buffer was not empty. If the buffer was empty, then two 
clicks are required. If the refill occurs across a page boundary, then 
four to six clicks are required 

{Buffer Empty Refill. Control goes from NoRCross to RefillNE since RefillE + 1 does not 
contain an IBDisp.} 
RefillE: MAR-[rhPC,PC),PC -PC·l,LO -LO.ERefill, cl.at(400); 

PC - PC + 1, DISP2[NoRCross], c2; 

{Buffer Not Empty Refill.} 
OpTable: {"Noop" location ofInstruction Dispatch table} 
RefillNE:MAR-[rhPC,PC + 1),cl,at[500]; 

AlwaysIBDisp. LO - LO.NERefill.Set. DISP2[NoRCross]. c2; 

NoRCross: IB - MD, uPCCross -0, DISPNI[OpTable). c3, at[O,4,NoRCross); 
RCross: Q -OFF + 1, GOTO[UpdatePC]. c3. at[2,4.NoRCross); 

2.3 Microinstruction Control Architecture 

2·12 

Microinstructions are loaded into control store from the lOP via data 
transfer on the 80186 bus. During the execution of a program, 
microinstructions are read from control store RAM and stored in the 
Raw Microinstruction register, except for the pINIA field and the pfS 
field. 

The pINIA field, together with the branching logic, generates the 
pNIA inputs to the Next Instruction Address register. 

The encoded pfS, piX, prY, and pfZ fields are fed to the MOC, decoded 
into instruction commands, and stored in corresponding command 
registers in the MOC. 

Because the Mesa processor is split into lower and upper bytes with no 
propagated carry, the paS and paF fields are modified to provide 
separate aShL and aFL for the low byte and aShH and aFH for the 
high byte. 

Figure 2.5 illustrates microinstruction control architecture. 

Central Processor 
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2.3.1 Hardware 

2.3.1.1 
Control Store 

2.3.1.2 
Control Store 
Interface 

2 -14 

Control hardware described below consists of the control store, the 
control store interface, the Microinstruction Decoder Chip (MDC), and 
the MicroInstruction Register (MIRL Other control hardware, 
consisting of the interface to the lOP, miscellaneous support logic, the 
trap machine, and MInt and Link registers, is described elsewhere. 

Two banks, each consisting of twelve 4K x 4 static RAM chips with a 
55 ns access time, make up the 4K x 48 writable control store, 
expandable to 8K x 48. Figure 2.6 illustrates the control store pins 
and signals. For signal functions, refer to Figure 2.4, illustrating 
microinstruction format. 

NIA.OO 16 All V04 12 ( CSnn)- (._) 

NIA.01 17 AIO V03 13 (CSnn) (--) 

NIA.02 18 A9 V02 14 (CSnn) (._) 

NIA.03 19 AS VOl 15 (CSnn) (--) 

NIA.04 1 A7 

NIA.05 2 A6 

NIA.06 3 AS WE' 11 CntStWEnn"-

NIA.07 4 A4 CS' 9 BankO' (or 

NIA.08 5 A3 Bank1') 

NIA.09 6 A2 

NIA.10 7 Al - where nn = Control Store 
from 00·47 sequentially; for 

NIA.ll 8 AO examte,12 isC800,13 isCS01, 
14 is 802,15 isC803,etc. 

* * Control Store Assignments 

IF THEN 
CSis V04 V03 V02 I/O 1 WE' 

is is is is is 

0·3 prA.O prA.1 prA.2 prA.3 0' 
4-7 prB.O prB.l prB.2 prB.3 0' 
8· 11 paS.O paS.l psS.2 paF.O I' 

As above (NIA.00:l1 1 12-15 paF.1 paF.2 paD.O paD.l I' 

for all 16-19 pEP pCin pEnU pMem 2' 
20·23 piS.O piS. 1 piS.2 piS.3 2' 
24-27 pfX.O pfX.1 pfX.2 pfX.3 3' 
2S-31 ptY.O ptY.l ptY.2 ptY.3 3' 

32-35 ptZ.O ptZ.l ptZ.2 ptZ.3 4' 
36-39 p.lNIA.OO .01 .02 .03 4' 
40-43 p.INIA.04 .05 .06 .07 5' 
44·47 p.INIA.OS' .09' .10' .11' 5' 

Figure 2.6. Writable control store pins and signals 

The control store interface consists of a bank register, address 
registers , and supporting logic. Table 2.5 summarizes control store 
interface signals. 

Central Processor 
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Table 2.5. Control Store Interface Signals 

Interface to: Signal Function 

Control Store 1. CntStWEO'/l' 1. Control store Write Enable 0 (byte 0) and 1 (byte 1). 

2. BankO'/ll213 2. Control store RAM bank select 0,1,2, 3. 
3. NIA.OO·ll 3. Next Instruction Address 00-11 . Control store RAM address. 

Control store 00-03 4. prA.0-3 4. Pipelined microinstruction rA field. 
04-07 5. prB.0-3 5. Pipe lined microinstruction rB field . 
14-15 6. paD.0-1 6. Pipelined microinstruction aD field. 
11·13 7. paF.0-2 7. Pipe lined microinstruction aF field. 
08-10 8. paS.0-2 8. Pipe lined microinstruction as field. 

9. CntStWE2'/3' 9. Control store Write Enable2 (byte 2) and 3 (byte 3). 
17 10. pCin 10. Pipe lined microinstruction CarryIn bit. 
18 11. pEnU 11. Pipe lined microinstruction Enable U register bit. 
16 12. pEP 12. Pipe lined microinstruction Enable Parity bit (not used). 
19 13.pMem 13. Pipe lined microinstruction Memory reference bit 

20-23 14. piS.O-3 14. Pipe lined microinstruction is field. 
24-27 15. pfXO-a 15. Pipe lined microinstruction fX. field. 
28-31 16. plY.0-3 16. Pipelined microinstruction lY field. 

17. CntStWE4'/5' 17. Control store Write Enable 4 (byte 4land 5 (byte 5). 
36-43 18. pINIA.00-07 18. Pipe lined Immediate Next Instruction address 00-07. 
44·47 19. pINIA.08'-11' 19. Pipelined Immediate Next Instruction address 08-11 . 
32-35 20. pfZ.0-3 20. Pipelined microinstruction fZ field. 

Mesa processor control RunModeB' Mesa processor Run mode 
line 

Next Address Register NIA.OO:ll N ext Instruction Address 00: 11. 

80186 bus interface 1. AlAD.00:15 1. AddresslData bus 00:15. 
2. AlBHE' 2. Byte High Enable. 
3. AIlOR' 3. YO Read. 
4. AlDEN' 4. Data Enable. 
5.AlDTIR' 5. Data TransmitlReceive (direction). 
6. AllOW 6. YO write. 
7.A/SO'-2' 7. A bus Status bits 0-2 
8. AlALE 8. Address Latch Enable. 

Internal logic signals 1. AlA.llB:15B 1. Buffered A bus address 11-15. 
2. AlDENB' 2. Buffered A bus Data Enable 
3. AlDirB 3. Buffered A bus Direction control. 
4. AllOWS' 4. Buffered A bus YO write. 
5. CntStDenO'·5' 5. Control store Data Enable 0' ·5'. 
6. CSMP' 6. Control store or Mesa processor select. 
7. DB.0-7 7. Transceiver·buffered A bus data (byte only). 
8. IOPDisable 8. Disable signal from debugger. 

(lOPDisable') 
9. LdBankReg' 9. Load Bank Register (A bus). 
10.NIAEn' 10. Next Instruction Address Enable (A bus side). 
11. SelectMP' 11. Select Mesa Processor (EOOO-E777l. 
12. EnNIA 12. Next Instruction Addresss enable (Mesa processsor side). 
13. Write Bank 13. Write Bank register (Mesa processor). 

Central Processor 2·15 
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2.3.1.3 
Microinstruction Decoder 
Chip (MDC) Microinstructions are decoded via an 84-pin gate array chip (MOC). 

2·16 

Figure 2.7 illustrates the signals for the microinstruction decoder gate 
array chip. Table 2.6 describes the signals. 

XLow....{;onst' 1 PI P84 84 (OUTPUT) Xbus+-Rot' 

(INPUT) P2 P83 83 (OUTPUT) XLow+-IB' 
~ 

<iNPUT) t-
P3 P82 82 <OUTPUT) XHigh+-{)' 

<iNPUT) P4 P8l 81 (OUTPUT) RdExtStat' -
(INPUT) P5 P80 80 (OUTPUT) IBHigh' -
(INPUT) P6 P79 79 (OUTPUT) Lock' -(INPUT) P7 P78 78 (OUTPUT) lBitBrEn' 

t-
otS.2 (INPUT) 8 P8 P77 -otS.3 (INPUT) 9 P9 P76 76 (OUTPUT) 2BitBrEn' 

VCC 10 PlO P75 75 (OUTPUT) 4BitBrEn' 

GND 11 P11 P74 74 VCC 

(INPUT) 

~t-
P12 P73 73 GND 

RawCLKB (INPUT) P13 P72 72 (OUTPUT) XLow+-Byte' 

CLKEnb <INPUT) 14 P14 P71 71 (OUTPUT) WriteBank 

(INPUT) 

~t-
P15 P70 70 (OUTPUT) WriteMapA 

olZ.O (INPUT) PI6 P69 69 (OUTPUT) WritelB 

olZ.l (INPUT) 17 P17 P68 68 (OUTPUT> WriteStkP 

DtZ.2 <iNPUT) 18 PI8 P67 67 (OUTPUT> SetInt 

otZ.3 (INPUT) 19 P19 P66 66 (OUTPUT) IBDisp 

(INPUT) 2~ P20 P65 65 (OUTPUT) ClrlntTrap' 

ReadlB (OUTPUT) 21 P21 P64 ~ WrtExtCtrl 

ReadRH' (OUTPUT) 22 P22 P63 63 WriteDebA' 

ReadMisc' (OUTPUT) 23 P23 P62 ~(lNPUT) 

RdlntStat' (OUTPUT) 24 P24 P6I b (INPUT) 

ReadDebB' <OUTPUT) 25 P25 P60 ~ (INPUT) 

AltUAddr (OUTPUT) 26 P26 P59 ~(lNPUT) 

PopZ (OUTPUT) 27 P27 PS8 ~ (INPUT) 
Cln+-PCI6Z' (OUTPUT) 28 P28 P57 57 (INPUT) ptY.O 

IBPtr+-Word (OUTPUT) 29 P29 P56 56 (INPUT) ptY.l 

VCC 30 P30 P55 55 (INPUT) ptY.2 

IBPtr+-Byte (OUTPUT) 31 P31 P54 54 (INPUT) ptY.3 

GND 32 P32 P53 53 VCC 

GND 33 Pa3 P52 52 (INPUT) ptS.l 

Push (OUTPUT) 34 P34 P51 51 (INPUT) ptS.O 

IORei' <OUTPUT) 35 P35 P50 ~ (INPUT) 

IntEnb (OUTPUT) 36 Pa6 P49 49 (INPUT) pfX.3 

MPIntlOP' (OUTPUT) 37 Pa7 P48 48 (INPUT) pfX.2 

MapRei' (OUTPUT) 38 P38 P47 47 (INPUT) pfX.l 

Sh (OUTPUT) 39 P39 P46 46 (INPUT) pfX.O 

Cln+-PC16X' (OUTPUT) 40 P49 P45 45 (INPUT) Test09 

PopX (OUTPUT) 41 P41 P44 ~ (INPUT) 

Shift' (OUTPUT) 42 P42 P43 43 (OUTPUT) WriteRH 

Figure 2.7. MOC pins and signals 
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Table 2.6. MDe Signal Description 

Signal Function 

1I2/4BitBrEn' 1 bit, 2 bit. 4 bit branch enable. 

AltUAddr Select U address source from lower Y bus nibble. 

CLKEnb Processor clock enable (8 MHz). 

Cln-PC16Z' PC16 becomes the carry input of the 2901 (ALU). 
Cln-PC16X' 

ClrIntTrap' Clear interrupt trap. 

IBDisp Instruction buffer dispatch. 

IBHigh' Puts the high 4 bits of the IBFrontonto X (12-15). High order X bus bits are zeroed. 

IBPtr-Byte Instruction buffer pointer gets byte. 

IBPtr-Word Instruction buffer pointer gets word. 

IntEnb Enable interrupt. 

IORel" Input/Output reference. 

Lock' Memory lock by Mesa. 

MapRel" Memory map reference. 

MPlntIOP' Mesa processor interrupts lOP. 

piS.0-3 Pipe lined microinstruction is field. 

pfX.0-3 Pipe lined microinstruction fX field. 

pfY.0-3 Pipe lined microinstruction fY field. 

pfl.O· 3 Pipe lined microinstruction fl field. 

PopZ/X Pop from the stack. 

Push Push to the stack. 

RawCLKB 16 MHz system clock. 

RdExtStat' Read External Status. 

RdlntStat' Read Interrupt Status. 

ReadIB Read Instruction Buffer. 

ReadMisc' Read miscellaneous status information through the X bus. 

ReadRH' Read RH registers through X bus. 

SetInt Set interrupt. 

Sh ALU destination control with shift up and down enable. 

Shift' Single, double, left. right shift enable. 

Test09 Testability input, sets all outputs of MDC high. 

- more-

Central Processor 
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Table 2.6. MDe Signal Pescription (continued) 

Signal Function 

WriteBank Write Bank selection data from Y·bus (Y12-15) to the bank register. 

WriteDebA' Write to the debugger mailbox from the X bus. 

WriteIB Write to instruction buffer. 

WriteRH Write RH register enable. 

WriteStkP Write to the stack pointer. 

Xbus-Rot' X bus gets Rotation. 

XHigh-o' X bus high byte gets zero. 

XLow-Byte' X bus low byte gets constant data such that X.08-11 = fYO-3. 

XLow+-Const' X bus low byte gets constant, byte or nibble constant. 

XLow-IB' X bus low byte gets ibFront. Either the full byte or nibble can be read into the X bus, such that 
all other X bits are set to zero. 

2.3.1.4 
MicroInstruction 
Register (MIR) The MicroInstruction Register (MIR) consists of five ALS374 chips. 

The MIR stores microinstructions, except for fS and pINIA fields. 
Table 2.7 summarizes MIR interfaces. 

Table 2.7. Raw MIR Interfaces 

Interface to: Signal(s) Function 

ALU aD.O/l; aF.O; aFH.1I2; aFL.1I2; See Figure 2.4 for microinstruction field definitions. 
aShH.0-2; aShL.0-2; rA.0-3; rB.0-3 

ALU Carry & Shift aD.O/l; aFL.l; Cln See Figure 2.4 for microinstruction field definitions. 

Branch and Link fX.0-3; fY.1-3; tZ.O-l See Figure 2.4 for microinstruction field definitions. 
registers 

Constants register fY.0:3; tZ.0:3 See Figure 2.4 for microinstruction field definitions. 

Control store BankO [0-151: paD.O/l; paF.0:2; See Figure 2.4 for microinstruction field definitions. 
paS.O:2; pMem; prA.O-3;.prB.0·3 
BankO [16-311: pCln;.pEnU; pEP; 
pfX.O-3; pfY.O-3; ptZ.O-3; pMem 

RH register rB.O-3 See Figure 2.4 for microinstruction field definitions 

Rotator tZ.2-3 See Figure 2.4 for microinstruction field definitions 

U register EnU;Cin See Figure 2.4 for microinstruction field definitions 

IB state control Mem Memory bit. If set and the instruction is executing in cl , 
then MAR is loaded from YH .. Y. If set in c2, then 
memory write data register is loaded from the Y bus and 
the memory location is written. If set in c3 , then 
returning memory data is placed onto the X bus. 

MBC Cycle3 Mesa processor cycle 3. 

CLKB' 8 MHz processor clock. 

2 - 18 Central Processor 



2.3.2 Theory of Operations: Mode Control 

2.3.2.1 
Boot Mode 

2.3.2.2 
Run Mode 

2.3.2.3 
Stop Mode 

Central Processor 

The lOP interfaces with the CP both as a standard 110 controller and 
as a boot loader/debugger. This subsection discusses the loading of 
control store (Boot mode), the initial trapping of microprograms (Run 
mode), and the reading of Next Instruction (Stop mode). 

Either of the two reset signals, AlReset' or AlResetMPB', initializes 
the CP to a quiescent condition. The first AlHalt' signal puts the CP 
into Boot mode. 

In Boot mode, the lOP loads control store by writing to its 110 space 
8000H to DFFFH, 24 Kbytes (or 4K x 48 bits; that is, one bank). The 
least six decoded numbers (000 - 101) of A bus address bits 14, 13, and 
12, together with the A bus status bits AlSO-2 and Data Enable 
(AlDEN'), generate six enable signals (EnO' - 5') to enable data· to the 
control store RAM. The corresponding six decoded write enables 
(CntStWEO' - 5') are applied to the appropriate control store RAM to 
write in the data. 

Data is enabled a byte at a time, with-the selection of high or low byte 
controlled by the signal A/BHE' (A bus Byte High Enable) and 
AlA.OOB (A bus Address bit 00 buffered), respectively. Direction of 
data flow is controlled by AlDTIR' (A bus Data Transmit/Receive 
NOT), a high AlDTIR' implying data transmitted from the lOP to the 
control store and vice versa. Since control store is 48 bits wide and 
data is enabled only 8 bits at a time, a software algorithm must be 
exercised to load the correct byte into the correct location. 

When the lOP finishes loading control store, it deactivates the AlHalt' 
signal to put the CP into Run mode. As CP enters Run mode, the first 
order of business is to generate an InitTrap (Initialization Trap) 
signal, which in turn causes a trap to location O. 

In Run mode, the lOP is isolated from the Mesa processsor except for 
the two reset signals (A/Reset' and A/ResetMPB'), two mutual 
interrupt lines (AiIOPlntMP' and AlMPlntIOP'), and the AlHalt' 
signal. 

An active AlHalt' during the Run mode puts the processor in the Stop 
mode. 

In the Stop mode, the 8 MHz processor clock (CLK, CLKA, CLKB, and 
CLKC) is stopped, putting the Mesa processor in a hold state. At this 
time, the lOP can activate the A/IOPRdNIA (lOP Read Next 
Instruction) signal, which enables the Next Instruction Address to the 
control store RAM. 

lOP then issues an AILOR' (A bus I/O Read) to read the "Next 
Instruction." This Next Instruction being read is addressed by the 
Next Instruction Address register (not alterable by the lOP). 
However, the byte to be read is selectable by the lOP and is controlled 
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2.3.2.4 
Mode Control 
Timing 

2XCLK' 

Halt 

HaltSynl ____ ---' 

HaitSyn2 _____ --' 

HaitSyn3 ______ ~ 

by the A bus address bits 14, 13, and 12. The signal NIOPRdNIA 
remains active for the entire duration of the lOP Read Next 
Instruction process. 

It must be pointed out that the lOP can only halt the Mesa processor 
randomly and that only the Next Instruction, not the Next 
Instruction Address, can be read back a byte at a time. The actual 
Next Instruction Address has to be arrived at through certain 
deductions from the information read back. 

The lOP can restore the Mesa processor to its Run mode simply by 
dropping the NHait signal. 

Figure 2.8 illustrates mode control timing. 

RunMode _____________ +-___________ ~ 

RunDel 

InitTrap 

InitFF 

BootMode ---------' InltFF R ••• t 

SwpMode _________________________ ~ InitFF Sec 

Figure 2.8. Mode (boot/run/stop) control timing 

2.3.3 Programmer In terface 

2·20 

This section briefly discusses the algorithms that control the 
execution of microinstructions. For each subsection, refer also to the 
Daybreak Microcode Reference Manual. Refer also to Figure 2.4. 

Figure 2.9 illustrates the location of the writable control store in the 
va address space map. 

Central Processor 
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64K-1 
62K 

62K -1 
60K 
60K -1 
58K 
58K -1 
56K 
56K -1 

48K 
48K -1 

40K 
40K-1 

32K 
32K-1 

OK 

80186 Reserved 2K 

Color Display 2K 

Mono Display 2K 

Mesa Processor 2K 

Writable Control Store 8K 

Writable Control Store 8K 

Writable Control Store 8K 

Figure 2.9. I/O address space map 

FFFFH 

F800H 
F7FFH 
FOOOH 
EFFFH 
E800H 
E7FFH 
EOOOH 
DFFFH 

COOOH 
BFFFH 

AOOOH 
9FFFH 

8000H 
7FFFH 

OOOOH 

Conditional Branching 
and Dispatching Every microinstruction can potentially branch. During each cycle, 

condition bits specified by the executing microinstruction are ORed 
into the next instruction's go-to-address field (INIA) being read from 
control store. At the end of the cycle, the resulting addresss (NIA) 
reads the next microinstruction. If the executing microinstruction 
does not specify a branch function, then 0 is ORed into INIA, and a 
branch does not occur. When a microinstruction specifies a dispatch 
function, up to 4 bits are ORed into the INIA field, selecting one of up 
to 16 target microinstructions. 

Central Processor 

Thus, all branches and dispatches take two cycles to complete: one 
cycle to specify the branch and one cycle to read out the target 
microinstruction. The microinstruction bits required to specify a 
branch are fS[O-l] = DispBr and the fY field that names the branch or 
dispatch. 

Table 2.8 lists branches and dispatches. 
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Table 2.8. Conditional Branching and Dispatching 

Mnemonic Source INIA Remarks 

NegRR F[O) 11 sign of ALU resultinot necessarily Y[O]) 
ZeroBr F=O 11 ALU output equal to zero 
NZeroBr F;eO 11 ALU output not equal to zero 
CarryBr Cout(O) 11 ALU carry out 
NibCarryBr Cout(l2) 11 ALU carry out from low nibble 
PgCarryBr Cout(8) 11 ALU carry out from low byte 
xaemr XUl} 11 present & referenced Map bit 
MesalntBr Interrupt 11 Emulator interrupt 
XwdDisp X[9] .. X[10] [10-11] write protect & dirty Map bits 
XHDisp X[4] .. X[0] [10-111 X (high) bus 
XLDisp X(8) .. X[151 (10-11] X <lOW) bus 
PgCrOvDisp PgCross .. OVR [10-11] pageCross & ALU overflow 
XDisp X[12-151 [8-11] low nibble of X bus 
YDisp Y(12-151 [8-111 low nibble of Y bus 
XC2npcDisp X[12-13] .. c2 .. -pcl6 [8-111 X bus,cycle 2, inverse ofpc16 
XW + OKDisp l,l,(X.08 and X.09 and X.IO·),(] [8-11] I/O branches (bp = backplane pin) 

X.08 = ref; X.09 = dirty; X.IO = wp' 
IBDisp ibFront [4-111 Instruction Buffer 
LnDisp Linkn [8-111 Link register (n = 0 .. 3) 

Equivalent names: Ether Disp :: YIODisp; XDirtyDisp = XLDisp 

2.3.3.2 
Instruction Buffer 
Dispatch 

2·22 

Both targets of a two-way branch must be specified with the same 
cycle number. 

The following notation is used to specify branching behavior: 

• A microinstruction is located in control store at its Instruction 
Address, IA. 

• The Next Instruction Address, NIA, is the control store 
address register. 

• The Intermediate Next Instruction Address, INIA, is the 12-
bit goto address present in each microinstruction. 

At every cycle, the condition bits specified by fY (DispBr) and the Link 
register specified by fX are ORed into INIA, thereby producing the 
NIA value used for the next cycle; that is, 

NIA[O-llJ - INIA[O-llJ OR DispBr[O-3J OR Link[O-3J 

For dispatches, target instructions for each possible outcome need not 
be provided. A particular condition bit is ignored when its 
corresponding position in INIA equals 1. This method can also cancel 
unwanted, pending branches. 

Note that, in some cases. there is more than one way to branch on a 
particular bit; note also that a bit on the low half of the X bus can be 
branched on. The NZeroBr allows code to be more readily shared. 

The instruction buffer dispatch (IBDisp) is a special dispatch, since 
more than four bits are ORed into INIA. Consequently, IBDisp can 
occur only in cl or c2, and is restricted by convention to c2. Refer to 
section 2.4.3.7 for a discussion of the instruction buffer. 

Central Processor 
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Assuming that the instruction buffer is full, IBDisp can cause a 256-
way dispatch based on the value of ibFront. NIA[ 4-71 is set to the high 
nibble of ibFront, and the low nibble of ibFront is ORed with INIA[8-
11 I. Except for the four IB-Refill trap values, INIA[O-31 is unaffected 
by the IBDisp. Therefore, up to twelve 256-way dispatch tables can be 
used concurrently. 

If the buffer is not full (ibPtr :;t: full) when an IBDisp is executed, or if 
an interrupt is pending, then an IB-Refill trap occurs. Refer to section 
2.3.3.5. 

A special version of IBDisp (AlwaysIBDisp) never traps to IB-Refill, 
but dispatches on ibFront even if an interrupt is pending (MInt = 1) or 
if the buffer is not full. AlwayslBDisp is used in the emulator refill 
and jump microcode to dispatch on ibFront while the buffer is still 
being filled. AlwaysIBDISP is encoded: 

fY = IBDisp and fZ = IBPtr+-l. 

If the microinstruction executed before an IBDisp or AlwaysIBDisp 
causes an IB-Empty Error trap, or if the microinstruction contains a 
MAR+- and the 2901 computation results in pageCross = 1, then the 
IB dispatch (or possible IB-Refill trap) does not occur and ibPtr 
remains unaffected. Since INIA is not modified in this case, control 
transfers to the first entry of the macroinstruction dispatch table. 
Accordingly, emulator opcode 0 should not be assigned to a 
macroinstruction. 

Interrupt Register The I-bit Interrupt Register interrupts the contiguous execution of 
emulator macroinstructions. When it is set in an antecedent cycle, 
IBDisp traps instead of dispatches. Interrrupt can be set from the 
following sources: 

2.3.3.4 
Link Registers 

Central Processor 

• From microcode with fY = MesaIntRq 
• From the lOP (A/IOPIntMP') or from the AI Interface 

(IntExternal') 
.From Interval Timerl (Timerlnt) 

The interrupt register is reset by microcode with fY = ClrIntTrap. 
Interrupt can also be enabled or disabled by microcode with fY = SetIE 
or fY = ClrIE, respectively. 

The central processor has eight 4-bit link registers which can be 
loaded from the low four bits of the control store address. Generally, 
link registers hold four bits of state information derived directly from 
the flow of control. Thus, previously determined state information can 
be easily recalled by dispatching on a link register. Moreover. 
macroinstructions can share common code at various stages of their 
execution, and link registers can be used for subroutine call and 
return structures. 

The link register addressed by tX is written with the low nibble of 
NIAX (which equals NIA. A link register is written when tX is in 
[0 .. 71 and NIA[7]= 0; that is, 

Link[tX] +- NIAX8-11 
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2.3.3.5 
Microcode Traps 

IS-Refill Traps 

Error Traps 

A link register is ORed into the low nibble ofINIA when fX is in [0 .. 7) 
and NIA[71= 1, causing a potential 16-way dispatch. Since the link 
register is designated by an fX function, the fY field is free to specify 
other condition bits that can be ORed into INIA8-11. 

If a preceding microinstruction does not specify a branch or dispatch 
condition, then the link register is loaded with a constant. However, if 
the prior instruction contains a branch or dispatch, then the value 
loaded depends on the outcome of the branch or dispatch. The low four 
bits of the IS dispatch value can be recorded in this way. 

The two general classes of microcode traps are: 

• IS-Refill - occurs as a result of IBDisp; hence, between 
execution of macroinstructions. 

• Error - occurs in any cycle and al ways traps to location 0 in c 1. 
Error traps have priority over IB-Refill traps and cannot be 
disabled. 

If an IBDisp is executed and ibPtr .e full or MInt = 1, then the 
ibFront dispatch does not occur; instead, an IB-Refill trap is caused. 
Specifically, ibPtr is unaffected, INIA4-11 is not modified, and NIAO-3 
is set to the 4-bit quantity O"I"MInt"ibPtrl. 

Table 2.9 summarizes the interpretation of IS-Refill trap locations. 

Table 2.9. IS-Refill Traps 

NIA[O·3) MInt IbPtr 

4 0 empty 
5 0 not empty (i.e., byte or word) 
6 1 Empty or full 
7 1 Byte or word 

Note: If an IS-Refill trap occurs and MInt = 0, then ibPtr cannot 
equal full. 

AlwaysIBDisp does not trap to IB-Refill; a pageCross branch caused 
by MAR- or an IB-Empty Error trap cancels a potential IS-Refill 
trap. 

Error traps result when one or more predefined error conditions are 
detected in the central processor. All error traps cause the instruction 
at microstore location 0 to be executed in cl by the emulator or 
Kernel , depending on the error type. Error traps cannot be disabled. 
Error traps are reset by the ClrIntTrap command, which also resets 
any pending interrupts. 

Table 2.10 lists, in the order of their priority, the error types encoded 
by TrapO-1 in the Trap Machine. 

Note: The error traps, TrapO-l, are read onto X[8-9) respect ively 
with the ReadMisc' or RdIntStat command. 
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Table 2.10. Error Types 

TrapO-1 (X.08-091 Error Type 

0 not used 
1 Init trap 
2 stackPointer overflow or underflow 
3 IB-Emptyerror 

Stack Pointer Overflow 
or Underflow If a pop or push is executed with the values of the stackPointer given 

in Table,2.11 then a trap to location 0 in c 1 occurs. However, stackP is 
still modified. 

IB-Empty Error 

Central Processor 

To improve detection of stack overflow or underflow, multiple pops 
and pushes can be specified per microinstruction. For example, £Xpop 
(the pop in the £X field), £Zpop, and push executed together leave the 
stackPointer unmodified, yet simulate two pops with respect to stack 
underflow detection. £Xpop with push checks for stack overflow while 
not moving the stackPointer, and, likewise, push and £Zpop check for 
underflow. Table 2.11 lists the cases. 

Table 2.11. Stack Pointer Overflow or Underflow 

functions stackP Trap is ifstackP is 

pop -1 underflow 0 
push +1 overflow 15 
fXpop, push 0 underflow 0 
push, tzpop 0 overflow 15 
fXpop, tzpop -1 underflow o or 1 
fXpop , tzpop, push 0 underflow o or 1 

If the emulator top-of-stack (TOS) element is kept in an R register and 
the rest of the stack is in the U registers, and if it is assumed that TOS 
can always be stored away into the stack, then the values given in the 
table imply a maximum stack size of 14 words. 

If an -ib, -ibNA, -ibLow, or -ibHigh is executed when 
ibPtr=empty, then an IB-Empty error trap occurs to location 0 in cl. 
If the IB-Empty Error occurs in el, then an MDR- in the next cycle is 
canceled. 

In normal operation, the instruction buffer is guaranteed to have 
enough (two) operand bytes before a macroinstruction begins 
executing. However, when the macroprogram counter points to the 
last word of a page, the buffer is intentionally not refilled by the 
Emulator refill microcode and the IB-Empty trap can occur, indicating 
that control has actually proceeded across a page boundary. 

If the IB-Empty error occurs in c1, then control transfers to location 0 
in the next emulator cl. [f the error occurs in c2 or c3, then the 
hardware requires the execution of one additional emulator click 
before the trap at location o. Consequently, an emulator click can 
intervene between the occurrence of the IB-Empty error in c2 or c3 
and the trap code. In particular, if such a click executed an MDR-
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InitTrap 

with an address that was a function of an IB value read in the previous 
c2 or c3, then a random memory location can be written. 

The instruction buffer is not read during c2 or c3 of a 
macroinstruction's last click. A memory write with an MAR- or 
Map- address that is a function of the IB value read in c2 or c3 must 
not immediately follow an +-ib, -ibNA. -ibLow. or -ibHigh 
function executed in c2 or c3. 

Although InitTrap (Initialization Trap) is grouped with IBEmpty 
Trap and Stack Pointer Trap and labeled "Error Traps," it is not an 
error. InitTrap is a signal generated by the MBC mode control logic 
when it exits the Boot mode and enters the Run mode. The signal is 
fed to the Trap Machine to cause a trap to location O. 

Note: The trap machine is a 512-word x 8-bit PROM with the 
following signals: 

ClrlntTrap' 
Cyelel 

Clears error trap which has just been serviced. 
Signal from MCB indicaty cyele 1 ofMBC state machine. 

IBEmptyTrap' Signifies an IB empty error. 
InitTrap' 

StackTrap 
Trap 
Trap.O',l' 

Initial trap after booting. 
Signifies a stak pointer error. 
Traps next address to Bank 0 Location O. 
Error trap bits enabled onto X bus 08 and 09, respectively, by 
either a ReadMisc or a RdlntStat command. (see Section 
2.3.2.5) 

2.4 Registers and Data Paths 

2.4.1 Hardware 

2.4.1.1 
Arithmetic Logic 
Unit 

2·28 

The subsection titled "Hardware" briefly describes the central 
processor registers and their interfaces. The subsection titled "Theory 
of Operation" describes external and internal data paths. The 
subsection titled "Programmer Interface" provides a detailed register 
description at the microcode level. 

Hardware consists of the Arithmetic Logic Unit (ALU), registers, 
instruction buffer state control, and X and Y bus interfaces, Bus 
interfaces are described in section 2.5 titled "Mesa Bus Control." 

The ALU is implemented with four 290lC bit slice microprocessor 
chips. For a detailed description of the the 2901C, refer to the Bipolar 
Microprocessor Logic and Interface 1983 Data Book, Advanced Micro 
Devices. 

Registers on the ALU are the R registers and Q register. The register 
functions are discussed in more detail in section 2.4.3, titled 
"Programmer Interface." 

R registers make up a 16-word, two-port register file . Output ports 
are labeled A and B. R registers are the "fast" registers of the central 

Central Processor 



MSB 
Bits Bits Bits 
0-3 4-7 8-11 

rA.O - -rA.l - -
rA.2 - -
rA.3 - -
rB.O - -
rB.l - -rB.2 - -rB.3 - -
X.OO X.04 X.08 

X.Ol X.OS X.09 

X.02 X.06 X. IO 
X.03 X.07 X.ll 

ShOe I - --+ 

aD.O - --+ 

aD.l - -
aF.O --+ -
aFH.l - aFL.l 
aFH.2 - aFL.2 

aShH.O - aShL.O 

aShH.l - aShL.l 
aShH.2 --+ aShL.2 
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processor, and hold temporaries, memory data and addresses, and 
arithmetic operands. 

The Q register is a I6-bit register which can be written with the ALU 
output or with its old value single-bit shifted left or right. 

Figure 2.10 illustrates the pins and signals for the four 2901C bit slice 
processors. Table 2.12 describes ALU signals. 

LSB -290ls- MSB LSB 
Bits Bits Bits Bits Bits 
12·1S 2901C 0-3 4-7 8-11 12-1S 

- 1 A3 Q3 16 Q.OO Q.0304 Q.0708 Q.1l12 - 2 A2 RAM3 8 R.OO R.0304 R.070S R.1112 - 3 Al - 4 AO QO 21 Q.0304 Q.0708 Q.11l2 Q.lS 

RAMO 9 R.0304 R.0708 R.11l2 R.lS - 20 B3 - 19 B2 Y3 39 Y.OO Y.04 Y.08 Y.12 - 18 Bl Y2 38 Y.Ol Y.OS Y.09 Y.13 - 17 BO Yl 37 Y.02 Y.06 Y.IO Y.14 

YO 36 Y.03 Y.07 Y.11 Y.lS 

X.12 22 03 
X.13 23 02 OE' 40 TestOl - - --+ 

X.14 24 Dl 
X.lS 2S DO G' 32 • 12BitGen' 8BitGen' 4BitGen' 

P' 3S • 12BitPrp' 8BitPrp' 4BitPrp' 

--+ 6 IC8 
--+ 7 IC7 OVR 34 Overflow • • • 
--+ 5 IC6 
--+ 27 ICS 
--+ 28 IC4 F=O 11 FeqO --+ 

--+ 26 IC3 
--+ 14 IC2 
--+ 13 ICI F=3 31 F.OO • • • 
--+ 12 ICO 

12BitCarry 8BitCarry 4BitCarry Carryln 20 CIN COUT 33 CarryOut • • • 
CLKA' - --+ - IS CP 

I =GND=VCC I 
30~O 

GND ~ 
Figure 2.10. 2901C pins and signals 
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Table 2.12. ALU External Signal Description 

Signal 
(AMD signal) 

Type Function 

41S/12BitCarry Input Carry-in to the ALU, as named_ 
(CIN) 

4/S/12BitGen' Output Carry-generate signal of the internal ALU for carry look-ahead. 
(G') 

41S/12BitPrp' Output Carry-propagate signal of the internal ALU for carry look-ahead. 
(P') 

aDOlD1 tIC7-6) Input Indicates that aDO or aDI is to be deposited in the Q register or in the register stack. 

aFO. aFH.1I2 Input Designates the function to be performed (aFO. aFH.112 or aFL.1I2). 
aFL.1I2 
<IC5-3) 

aShH.0-2 Input Instruction control lines identifying data source applied to the ALU. 
aShL.O-2 
tICO-2) 

CarryOut Output Carry-out from internal ALU. 
(COUT) 

CLKA'(CP) Input Clock A input. The Q register and register stack outputs change on the clock low-to-high 
transition. The clock "low" time is the internal write-enable to the 16 x 4 RAM that constitutes 
the master latches of the register stack. While the clock is low. the slave latches on the RAM 
outputs are closed. storing the data previously on the RAM outputs. This scheme allows 
synchronous master-slave operation of the register stack. 

F.OO (F3) Output The most significant ALU output bit. 

FeqO(F=O) Output Open collector that goes high when all data on the outputs FO-3 are low. In positive logic. F = 0 
indicates that the result of an ALU operation is O. 

Overflow Output XOR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the 

(OVR) word. indicates that the result of an arithmetic two's complement operation has overflowed into 
the sign bit. 

Q.O-15 (Q3) VO Shift lines at the MSB of the Q register (Q3) and the register stack (RAM3). Electrically these 

R.0-15 (RAM3) lines are three-state output connected to TTL inputs internal to the device. If ICS-S indicates 
an up shift. then the three-state outputs are enabled; the MSB of the Q register is available- on 
the Q3 pin. and the MSB of the ALU output is available on the RAM3 pin. If IC6-S indicates a 
down shift, then the pins are used as data inputs to the MSB of the Q register and RAM. 

rAO-3 (AO-3) Input Address inputs to the register stack for selection of the register which will have its contents 
displayed through the A-port. 

rBO-3 (BO-3) Input Address inputs to the register stack for selection of the register that will have its contents 
displayed through the B-port. New data can be written into the selected register when the clock 
goes low. 

ShOeIOCS) Input Indicates that Sh is to be deposited in the Q register or register stack. 

TestOl (OE') For test. (IfOE is high. then Y outputs are off. IfOE is low. then Y outputs are active.) 

X.OO-15 (00-3) Input A 4-bit data field that can be selected as one of the ALU data sources for entering data into the 
2901C. DO is the LSB. 

Y.OO-15 (YO-3) Output Three-state output lines. Ifenabled. they display either the four outputs of the ALU or the data 
on the A-port of the register stack. IC6 = S determines the display. 
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Registers 

2.4.1.3 
Instruction Buffer 
State Machine 
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In addition to the ALU registers, the central processor contains the 
registers briefly described below. Section 2.4.3 discusses the registers 
in more detail. 

U registers make up a 25S-word register file which can be written 
from the Y bus and read onto the X bus. These IS-bit, general 
purpose, "slow" registers hold a IS-word stack, virtual page addresses, 
temporaries, counters, and constants. 

U registers are situated between main memory and the R registers. 
They cannot be both read and written in the same cycle, nor can they 
be used as an operand or destination register in IS-bit ALU 
arithmetic. 

The stackP register is a 4-bit stack pointer that addresses one location 
from U register bank. The register can be incremented or 
decremented independently of the 2901. Unlike the U and RH 
registers, stackP can be read and written in the same cycle. 

RH registers, an extension of the R registers of the 2901C, make up 
the IS x 8-bit register file located on the X bus. This small memory 
holds the highest-order memory address bits, and can also be used as 
general purpose storage for flags, counters, temporaries, and 
subroutine return pointers. 

The pelS register is a low-order, I-bit extension of the R register that 
holds the Mesa emulator's macroprogram counter (PC). pelS can be 
used as the byte index of a PC memory address. 

The Instruction Buffer registers consist of three 8-bit registers: 
IB[O] - holds the even code segment byte 
IB[l] - holds the odd code segment bytes 
ibFront- shuffies bytes in even/odd, sequential order 

Four states enumerate the location of data bytes among the holding 
registers. The states are indicated by the 2-bit register ibPtr. 

Constants that are 4- or 8-bit constants can be placed onto the X bus 
for use in branching, can be loaded into X bus destination registers, or 
can be an ALU operand. Constants greater than 8-bit can be 
pre loaded into U registers and, except for timing, are used like normal 
constants. 

Interrupt is a I-bit control register used to interrupt the contiguous 
execution of emulator macroinstructions (see 2.3.3.3). 

A Link register is one of eight 4-bit registers that holds four bits of 
state information deri ved directly from the flow of control. 

Instruction Buffer (IB) state control is implemented on 512 by 8 fast 
ROM. Figure 2.11 illustrates the pins and signals. Table 2.13 
summarizes the IB state control interfaces. 
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5374 I IBPtr.l 

IBPtr.l 19 A8 

IBPtr.O 18 A7 07 14 pIBptr.l 5374 IBPtr.O 
Interrupt 17 A6 06 13 pIBptr.O I 
EnC2Funs 16 A5 05 12 rRIi'M,.. 

IBPtr .... Byte 5 A4 04 11 ~ .. ' 
IBPtr .... Word 4 A3 03 9 ~ n' . 
WriteIB 3 A2 02 8 ,-
ReadlB 2 Al 01 7 
IBOisp 1 AO 00 6 I pIBEmpty 5374 IBEmpty' 

CS' 15 

I l 5374 dGoodlBDisp 

Test07 
512 x 8 fast ROM 

GoodlBOiap 

Interface to: 

ALU Carry & Shift 

Branch and Link 
registers 

IB registers 

MBC 

MOC 

MIR(raw) 

Next Addresa 
register 

Stack Pointer 
register 

Trap Machine 

Enable Cycle2 
Function Logic 
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Figure 2.11. IB state control pins and signals 

Table 2.13. IB 5tate Interfaces 

Signal Functi~n 

PageCross Equals the XOR of page Carry and aF.2. where pageCarry is the carry 
out of the low 8 ALU bits. 

MapPageCross' Equals (mem . Cycle 1 . pageCross)' 

1. ReadIBO'/l' 1. Read instruction buffer register 0 or 1. 
2. Write IBFront 2. Write to the IBFront registers. 

l. Interrupt 1. Sent to Mesa processor. Mesa. lOP. and Timer interrupts are 
grouped into one signal. 

2. MemRer 2. Memory reference. 
3. Cyclel 3. Cycle 1 ofMBC state machine. 

1. IBPtr .... Byte 1. IB pointer gets byte. 

2. IBPtr .... Word 2. IB pointer gets word. 

3. ReadlWriteIB 3. Read from or write to instruction buffer operations. 

4. IBOisp 4. Instruction buffer dispatch. 

5.XLow ..... IB· 5. X bus lower bytes get ibFront, either the full byte or nibbles can be 
read into the X bus, such that all other X bits are set to zero. 

Mem Mem bit. I{el, then MAR+-; ifc2, then MOR .... ; ifc3, then .... MO. 

1. IBPtr.l 1. Instruction buffer pointer bit 1. 
2.IBRefillTrap 2. Instruction buffer refill trap. 
3. GoodlBOisp 3. Good instruction buffer dispatch. 

IBPtr.1I0 Instruction buffer point bits 0 and 1. IBPtr(O:l J is encoded to indicate 
state of the instruction buffer. 

IBEmptyTrap' Signals instruction·buffer·empty error. 

1. enC2Funs 1. Enable Cycle2 functions. 
2. IBEmpty' 2. Instruction buffer empty. 

CLKC' 8 MHz prOcessor clock. 
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" 

16 

,I Ybus 

/L6 , 

L16 

/4 , 

illS 

l-+ 

uay OC~a.K. .l t::l.tHih .. u..t '\.~1tH·tH1Ct: .. u.anua..t 

AL U Theory of Operations 

Figure 2.12 illustrates the register and ALU data paths and is a 
reference figure for the subsections that follow. 

2901C I-d6 

Ybus 

o input 

LRotn 
I~L6 

YO-IS IX bus 
Y4-1S. YO-3 

.16 
Y8·1S, YO-7 , 
Yll-IS. YO-12 

X-bus branchia: 
U .16 

,--
registers XHDlsp X.4"X.O / 

XLDlsp X.8"X.IS 
XwdDlsp X.9"X.10 

Lt-~ rr~ J 
XRefBr X_ll 
XDlsp Xl2-LS 

--- - .4 
stackP , 

~aprefM 

I 
M B/A.23-17 
A 7 /7 ... 

RH f-:-C> ,'R 

p -8 H , registers 
~ 

M 
-,8 A /7 

/ R 
H 

~ 
MemllOref 

~ 
M 
A 111. 

8 p , 
L Map ref 

(0-7) 
~ 

M 
./16., A 

R 
, 

L 
MemllO ref 

Instruction Buffer ;:::= 
M 

~O 0 
R 

~--y ~ -lbHiih byt~ap 
1lIIIE 

BID.IS . 00 .. 
...... ib 'AI bit rename 

MSB LSB 

~W I ilo-tbLow 
, 

,/4 16 ./16 
....3.U.L. 

ibFront 
, 

byte swap 
Iiii bit rename 

tZ (Nibble constant) p 
fY,tZ I Byte constant) ..s , 

lOIn 

Figure 2.12. Daybreak central processor data paths 
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2.4.2.1 
External Data 
Paths The X bus and the Y bus are the two major 16-bit data buses external 

to the 2901. The YH bus, an 8-bit extension of the Y bus, addresses 
memory. 

The X bus is the major system bus and is connected to multiple drivers 
and multiple receivers. The X bus sinks are: D inputs of the 2901, RH 
registers, Instruction Buffer(IB), and branching logic. The X bus 
sources include: U Registers, RH Registers, Instruction Buffer, 
Rotator, constants, Stack Pointer, Trap Status, IB Pointer, and 
Memory Data. The IB and the RH Registers receive data via the X 
bus; they can be loaded from memory in one click. 

Figure 2.13 illustrates specific external paths to the ALU. 

aShH.O-2/aShL_O-2 aF.O.aFL.I:2/aFH.I:2 sh.aD.O-I 

X 

B 
U 
S 

16 

2-32 

OverFlow 
FeqO 
F.OO 

CarryOut ..--
12.S.4.BitGen' 
12.S.4.Bit Prp 

X.OO-IS /16 

t 
ALU ALU Destination 

Source Function Control 

CLK 
ALU A 
4 x 290lC B 

.. 

.. .. 
CLK' 

rA.O-3 
rB.O-3 

Y 

B 
U 
S 

D Input YOutput 
Y.OO-IS /16 

Cin 
.. 12.S.4 Bit Carry 

Carryin 16 

Figure 2.13. ALU external data paths 

Data is passed from the Y bus to the X bus via a 4-bit rotator (LRotn). 
Data can be rotated zero, four, eight, or twelve positions to the left, as 
specified by the fZ field. A zero rotation allows Y bus data to be placed 
unaffected onto the X bus. 

Eight- or four-bit constants are placed onto the X bus directly from the 
fY and/or fZ fields_ The upper 8 or 12 bits of the X bus are set to zero. 

Table 2.14 lists the registers addressable by the central processor and 
the buses to which they interface. 

Table 2.14. Registers Addressed by the Central Processor 

Register Inputs From Register Outputs To 

MAR+- YH"Y +-MD X Memory 
Map+- YH"Y 
IB+- X +-ih. +-ihNA X Instruction Buffer 

+-ibLow. +-ibHigh X[12-lS1 
-ihPtr X[lO-lll 

RH+- X[S·151 +-RH X(S-lSI 
U+- Y +-U X 
stackP+- Y[l2-151 -stackP X 
MDR+- Y ErrTrap X(S-91 
MCt!+- Y +-MStatus X Memory 
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Figure 2.14 illustrates internal data paths of the 2901C. 

2901C Cin, pel 6 

r-------------------1-------, y 
C in', pel6,1 I 

I rL I 
......--I 

I ~TIp-~ F(15],1 0 . f..--
(Ol,Q[O]I Cin,F 

Cin 

s 
Fbus 

I 
I 
I 
I 

B 
U 
S 

L 

: I 
,...L. F ..- I Ybus 

-B 
0 I dispatch 

I YDisp I R A 
I,Cout I T I 

ALU I 
I R registers A·bypass I 

Cin,F[15 

I ~inPut ~ I L _____________ ~---- _____ ~ 

X bus 

ALU branches 
ZeroBr 
NZeroBr 
NegBr 
NibCarryBr 
PgCarryBr 
CarryBr 
PgCrOvDisp 

Computations 

Central Processor 

Figure 2.14. ALU internal block diagram 

Internally, the 2901 Arithmetic Logic Unit (ALU) has three inputs: R, 
S, and Carryin (Cin). The R input can be set to the output of the A 
port, to the value of the X bus, or to zero. The S input can be driven by 
the output of the A or B ports, by the value of the Q register, or by zero. 
Cin can be the value of the single-bit Emulator register (pc16) or can 
be Oor 1. 

The F output of the ALU can be written into an R register, loaded into 
the Q register, or placed onto the Y bus. 

The 2901 performs three arithmetic and five logical operations which 
are specified by the ALU ·Function (aF) field. Arithmetic follows two's 
complement conventions . Three of the logical operations are 
symmetrical with respect to Rand S: logical OR, AND, and XOR. The 
remaining two logical operations complement R: - R XOR Sand - R 
AND S. 

Figure 2.15 illustrates ALU computations as a function of possible as 
and aF values. 
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rA=rB=R 

as (A,Q) (A,B) (O,Q) (O,B) (O,A) (D,A) m,Q) m ,OI (A,B) 

aF Cin 

R+S 
0 A~Q A+B Q B A X+A X+Q X 2R 

1 A+Q+l A+B+l Q+l B+l A+l X+A+l X+Q+l X+l 2R+ 1 

50R 
0 Q-A-l B-A-l Q- l B-1 A-I A-X-l Q-X-l -X-I -I 

1 Q-A B-A Q B A A-X Q-X -X 0 

R-S 
0 A-Q-l A-B-l -Q-l -B-1 -A-I X-A-l X-Q-l X-I -I 
1 A-Q B-A -Q -B -A X-A X-Q X 0 
-

RORS 
AORQ AORB Q B A XORA XORQ X R 

RANDS 
AANDQ AANDB 0 a a XANDA XANDQ 0 R 

-RANDS 
-AANDQ -AANDB Q B A -XANDA -XANDQ a 0 

RXORS 
AXORQ AXORB Q B A XXORA XXORQ X 0 

-RXORS 
-AXORQ -AXORB -Q -B -A -XXORA -x XORQ -X -I 

AXOR-Q AXOR-B XXOR-A XXOR-Q 

Figure 2.15. ALU operations as a function of as, aF, and Cin 

A-Bypass Mode 
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A-bypass mode routes the output-port A of the R register file onto the 
Y bus, which normally receives the F output. 

The 2-bit ALU-Destination (aD) field, in combination with a I -bit 
value (sh), specifies whether Rand/or Q is written and whether F or A
bypass is placed on the Y bus. The sh field is defined by certain 
functions of the microinstruction word (refer to Figure 2.4) . In 
general, when sh = 1, the F output is shifted one bit position before 
being written back into R or Q. The shift is accomplished inside the 
2901 by 3-input multiplexers at the inputs to Rand Q. The type of 
shift is determined by what is shifted into the ends ofR or Q. 

Table 2.15 lists the type of loading that occurs when sh is 
concatentated with aD (sh"aD). 

Table 2.15. sh"aD Actions 

sh .. aD Register Loading Y bus Loading 

000 Q - ALU output ALUoutput 
001 No register loaded ALU output 
010 R - ALU output A-bypass value 
011 R - ALU output ALUoutput 
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xShiftl: 
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Notes: When A-bypass is used, an R register must be written. 
F cannot be written simultaneously to Rand Q. 

Figure 2.16 illustrates the two major types of shift operations: double
word shift of F"Q; and single-word shift of F alone. The two types of 
shifting, combined with two directions, are named by the four values 
of aD when sh = 1. 

function aD tXor IT 

Rshiftl 1 shift 
Lshiftl 3 shift 

RRotl 1 cycle 

-1 I~ 
LRotl 3 cycle 

Cin F Cin 
DARShiftl 0 shift 
DALShiftl 2 shift 

: -I I~ ?DLShiftl 0 cycle 
xRotl: F ?DRShiftl 2 cycle 

DAxShiftl: 

DxShiftl: 

2.4.2.3 

Cout ~ F ~0C>-;J Q I- <}-- Cin 

Cin ~ F ~o~ Q I- <}-- Cin 

Figure 2.16. CP single-bit shifting 

When sh = 1, a single-bit shifting operation is performed on the ALU 
output and/or Q. For single-word shifts the R register receives the 
ALU output shifted one bit to the left or right; the Q register is 
unaffected. The end of F, which is vacated by the shift operation, is 
replaced by Cin or by the bit shifted out of the opposite side of F (a 
single-bit rotate). 

For double-word shifts, the ALU output and the Q register are shifted 
together. The low-order bit of the ALU output is "connected" to the Q 
register high-order bit to form a 32-bit quantity. The high-order bit of 
F, which is vacated by a right double shift, can be written with Cin or 
with the Carryout (Cout) of the current ALU computation. 

Similarly, the low end ofQ is written with the complementofCin (-Cin 
if the shift direction is left). Note that the high bit ofQ is written with 
the complement of the low bit of F. A general rule, then, is that shift 
inputs into Q are complemented. 

Note: A-bypass cannot be used with single-bit · shifts or when 
loadingQ. 

Single-bit rotates (LRotl and RRotl) are applied to the output of the 
ALU; the results can go only to an R register or to the Q register on 
double length shifts. Single bit rotates use the fX or fY field. 

Timing Limitations The architecture of the central processor allows execution of 
microinstructions which will not alway properly complete because of 
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Figure Description 
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slow X bus operands or slow destination registers; that is, certain 
sources cannot be loaded into certain destinations because the source 
value is not stable in time. The delay time of the source plus the setup 
time ofthe destination must be less than the cycle time of 125 ns. The 
microcode assembler flags such instructions with a timing violation 
error. 

If the ALU operation uses an X bus operand (as = D,A, D,Q, 0,0), 
then, depending on the register, the operation may not complete in 
time. In general, all X bus sources can at least be loaded into an R 
register, which is a logical operation (as = 0,0, aF = R OR S). 

All ALU internal register-to-register operations complete on time. 
All Y bus destinations can be loaded as a result of any ALU operation 
that does not use the X bus as an operand (except for the high 12 bits 
of a U register). 

Branching and dispatching have timing different from the basic ALU 
operations, and a potential statement must meet both conditions. In 
general, zero, negative, or overflow branching is not possible with an 
X bus operand. 

Figure 2.17 illustrates allowable X bus operations; use the figure to 
determine whether a microinstruction is legal with respect to X bus 
timing. The figure lists all possible X bus sources and destinations, X
bus-source-to-X-bus-destination, X bus ALU operands, and X bus 
branching and dispatching. In the figure, 

Intersections marked with a W (word), b (lower byte), or n 
(lowest nibble) indicate legal source/destination combinations 
or branching phrases. 
"X + R" represents the three arithmetic operations: aF = 
R + S, S-R, R-S. 
"X or R" represents the five logical operations: aF = R OR S; R 
ANDS; -RANDS; RXORS; -RXORS. 
B- implies the loading of an R register; Q- has the same 
timing. 
pgCross refers to the automatic page cross branch with 
MAR-. 
pageCross and OVR refer to PgCrOvDisp. 

The ALU performs arithmetic at three different speeds, depending on 
which bits of the result are looked at. Thus, Figure 2.17 has three 
numbers for arithmetic operations. ALUO-7 are the slowest bits, since 
they depend on a carry from the lookahead unit. ALU8-11 are faster, 
since they depend on a ripple carry from the low nibble. ALU12-15 
are fastest, since Cin arrives early relative to X bus sources. Thus, the 
low nibble always has the timing of a corresponding ALU logic 
operation. 

Note: Some + 1 or -1 operations do not necessarily imply use of the 
X bus, but use Cin instead. Thus, R-R+ 1, NegBr is legal, 
where R-R + 2, N egBr is not. 

All arithmetic operations with the ALU internal zero as an operand 
(as = O,Q, O,B, O,A, or 0,0) complete on time. 
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a.J ..... , u ............................. A~_'" .................................. _ .................... .. 

X Source 

Clock period = 125 ns X Constants (A OR B) (A ANDBl 

setup U MD RH -ib,StkpA LRotn LRotn LRotn 
A B C D E F G 

106.3 

X Source Time 
79.1 107.72 72.8 57.75 75.3 80.3 106.3 
6l.8) 103.48 (67.28) (47.27) 80.3 

B-XorR I 21 W W W W W -- --
B-X or R, Zero Br 2 64(55) W W W -- --
B-X or R, NZeroBr 3 69 (60) 

B-XorR.NegBr ., 56(47) W W W -- --
B-XorR. YDisp 5 75(53) W -- --
B - LShifU (X or R) 8 38 W W W -- -- --
B - LRotl (X or R) 7 52(46) W W W -- -- --
MAR-XorR 8 40 -- W -- -- --
Map-XorR 9 40 -- W -- -- --

X MDR-XorR 10 40 W -- W W -- -- --
U-XorR II 66 - -- -- --

0 53 
P B-X+R 12 53 n n b W n -- --
e 21 

r B-X + R. ZeroBr 13 88 (79) -- --
a B-X + R, NegBr 14 
t 

85(76) -- --
i B-X+R,OVR 15 85 (76) -- --
0 B-X + R, CarryBr 16 83 (74) W -- --
n B-X + R, NibCarryBrl7 63 (74) n n n -- --s 

B-X+R,PgCarryBr 18 63 (54) b b b -- --
B-X + R, pageCross 19 85 (74) b -- --
MAR-X + R, pgCross 20 71.5 (62.5) b b· b -- --
B-X + R, YDisp 21 75 (53) b -- --

53 
B-RShiftl (X + R) 22 53 n n n -- -- --

38 

67 (61) 
B-RRotl (X + R) 23 67(61) n n n -- -- --

52 (46) 

MAR-X+R 24 69 -- W -- -- --
Map-X+R 25 69 -- -- -- --

69 
MDR-X+R 26 69 n -- n -- -- --

40 

94 
U-X+R 27 94 - -- -- --

65 

Xbus - X, XDisp 28 45(23) W W· W W W W n 

RH-X 29 22 W W- W W W W 

IB-X 30 32 (7) W W W W W W 

W = word b = low byte n = low nibble -- = not applicable 
Number in parentheses is attained using higher-speed parts_ 

Figure 2.17. Allowable X bus operations 
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2.4.3 Programmer Interface 

2.4.3.1 
2901C Registers 

R Registers 

Q Register 

2.4.3.2 
Rotator 

2.4.3.3 
RH Register 
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This section describes the 2901C registers, the rotator, and other 
registers of the central processor, as illustrated in Figure 2.12. 

At each cycle, the contents of the R registers, selected by the rA and rB 
fields of the microinstruction, are available at the respective A and B 
ports. IfrA = rB, then the same data appears at both ports. 

If the aD field (ALU destination) of the microinstruction specifies a 
write back into an R register, then the rB field specifies which R 
register. At the end of the cycle, register B is written with the ALU 
output (F) or is written with F shifted one bit. 

The Q register is implicitly referenced by the as field of the 
microinstruction and can be used for double-word shifting (refer to 
section 2.4.2.2). 

Figure 2.18 illustrates the data paths of the Rotator. 

y 

B 
U 
S 

16 

ROTATOR Y.00-15 
YOO-15 16 4 BIT ROTATOR Y.04-15. Y.00-03 

I 
SHIFT REGISTER Y.08-15.Y.OO-07 

iZ;2;3 n = 0.4.8.12 Y.12-15.Y.00-11 

X Bus .... Rot· 4 x 25S10 

LROTN 16 "- X.00-1S 

Figure 2.18. Rotator data paths 

16 

x 

B 
U 
S 

Data can be rotated zero, four, eight, or twelve positions to the left, as 
specified by the fZ field. 

Zero rotation allows Y bus data to be placed unaffected onto the X bus. 

Four-bit rotations (LRotO, LRot4, LRot8, and LRot12) are done on 
data being moved from the Y bus to the X bus. Four-bit rotations use 
the fZ field. If the result of the rotation is destined for an R register, 
then the data must have been placed onto the Y bus via A-bypass. 
Four-bit rotations are abbreviated LRotn. 

Figure 2. 19i1lustrates the data paths of the RH register. 

The RH registers are addressed by the rB field, and since this field 
names the R register to be written, an RH register can only be written 
into its corresponding R register (or into the Q register). 
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Y 
H 

B 
U 
S 

8 

pe16 Register 

Central Processor 

XOR-15 8 

DATA 

RH 
REGISTERS 

0 o II 
WriteRH' 

16 J: 8 

rBO-3 4 Bipolar RAM 

A I ADDRESS Q ALS244 
I 

(227S07) 

YH.OO-07 18 

Figure 2.19. RH register data paths 

X.08-1S J 8 

IO~lidRli' 

16 

x 

B 
U 
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RH registers cannot be both read and written in the same cycle. An 
RH register is written from the low byte of the X bus when fX = 
RH -, and is read onto X8-15 when fZ = -RH. When the RH register 
is read onto the X bus, the high half of the bus is set to zero. 

At every cycle, the 8-bit YH bus is driven with the value of the 
addressed RH register, thereby supplying the high order memory 
address bits to memory. However, these bits are only used by the 
memory if a MAR- or Map- is specified. An RH register cannot be 
loaded if the microinstruction also executes a MAR- or Map-. 

If fX or fZ is Cin-pe16, then the pe16 bit becomes the carry input of 
the 2901, and pcl6 is inverted at the end of the cycle. Thus, 
Cin-pc16, in combination with ALU addition and subtraction, 
adjusts the byte program counter (PC"peI6) to 17 bits. 

Since Cin is also the shift ends, Cin-pel6 can shift pel6 into the low
order bit of an R register in one cycle, thereby reconstructing a byte 
program counter in an R register. 

Because of the hardware implementation of the carry input, the fX 
version of Cin-pcl6 must be used when the Cin field of the 
microinstruction is O. If Cin = 1, then either the fX or fZ version of 
Cin-pel6 can be specified. 
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2.4.3.5 
U Register Figure 2.20 illustrates the data paths of the U register. 

Y 16 
YOO-15 

0 U 
0 

I DATA 
REGISTER ,4 

x 

; B 
U 
S 

RrAo-a 

, 4 I ~< 4 : UaddrO-3 
UAddrO-7\ 8 A 

B 
U 
S 

2S6xl6 Q 16 '\. X.OO-IS 

NSTKP.O-3 4 Uaddr4-7 ,4 
4 X (256X4l r Bipolar RAM 

F93422 
pt'lO-a '\. 4 

Y.12-1S ",' 4 U 
AltUaddr 

16 

Normal Addressing 
Mode 

2-40 

, 

16 

Figure 2.20. U register data paths 

U registers are situated between main memory and the R registers. 
They cannot be both read and written in the same cycle, nor can they 
be used as an operand or destination register in 16-bit ALU 
arithmetic. 

In addition to the microinstruction fields described below under 
"addressing modes," U registers are controlled by two other 
microinstruction fields: enSU and Cin. The enSU bit is 1 for any cycle 
that either reads or writes a U register. For writing, Cin must be 1; 
for reading, Cin must be O. Thus, if a U register is written and the 
ALU function is addition or subtraction, then the computation 
executes with Cin = 1. Note that normal two's complement 
subtraction implies Cin = 1. 

Figure 2.21 illustrates three ways to form an 8-bit U register address: 
normal, stack pointer, and alternate. The addressing modes are 
described in the following paragraphs. 

r 
3 ~ 1 

I rA I fZ Normal 

0 I stackP I stackPointer 

rA I Y.12-15 I Alternate 

Figure 2.21. U register addressing modes 

In the normal mode, true when fS[2] = 1, the U register address is 
defined by the concatenation of the rA and fl microinstruction fields. 
In general, a U register can be loaded into any R register, since the rB 
field defines the write address. However, an arbitrary U register and 
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Addressing Mode 

Alternate Addressing 
Mode 

2.4.3.6 
stackP Register 

Y 
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an arbitrary R register cannot both be ALU operands unless the upper 
four bits of the U register address equal the R register address. This 
addressing mechanism partitions the U registers into sixteen, 16-
word banks such that, in one cycle, a U register of a bank can be 
combined only with that bank's corresponding R register. 

For reading or writing U registers, the fZ field can specify both a U 
register address and another function; for example, fZ can take on 
[OXIn values when fS[2,3] = 3. (Applies also to alternate addressing 
mode.) 

In the stack pointer addressing mode, true when fS[2] = 0, the U 
register is selected by the 4-bit stackPointer register (stackP) from the 
low bank; that is, the address is O"stackP. The stackP is not explicitly 
modified with this addressing mode. If an instruction uses this mode 
and also executes a pop or push function, then the stackP before 
modification is used to access the U register. 

Note: When the stack pointer addressing mode is used, the fZ field can 
be interpreted either as fZNorm or as a nibble . 

The alternate addressing mode provides indirect addressing, and is 
used when fS[2] = 1 and fZ = AltUaddr for the previously executed 
microinstruction. [n alternate mode, the low nibble of the U address 
equals the least significant Y bus nibble for the previously executed 
miroinstruction; that is, the same microinstruction for the AltU addr. 
Thus, the U address is rA"Y[12-15] instead ofrA"fZ. 

Figure 2.22 illustrates the data paths of the stackP register. 

27S29 
PopX.Pop~ 

0 Push 
NSTKP.O-3, " 

x 
+1 

NSTKP.O-:h 4 
-1 

, 
B 
U 
S 

B 
U 
S 

16 

Y.12-1~ 
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, 

y 

4 
STACK CONTROL 

X.12-15 4, 
ALS244 , 

StkPO-3 " , Read Misc' 
, 0 

25S09 

16 

Figure 2.22. stackP data paths 

stackP addresses one location from U register bank and can be 
incremented or decremented independently of the 2901. The pop 
function decrements (modulo 16) and the push function increments 
(modulo 16) the stackP at the end of a cycle. Unlike the U and RH 
registers, the stackP can be read and written in the same cycle. 

The stackP is loaded from Y[12-15] with an fY function. One cycle 
must intervene between a stackP+- and a microinstruction that uses 
the stack pointer addressing mode and that expects a new value. A 
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2.4.3.7 

pop or push can be used in the intervening instruction, and 
appropriately modifies the value loaded. 

Pop and push functions occur throughout the microinstruction 
function fields to improve checking of stack overflow or underflow. 
The push function occurs in all three function fields; the pop function 
occurs in fX and fz. Because of this arrangement, the stackP does not 
change when push is specified in the same microinstruction as pop. 
Multiple pops or pushes can be specified; as long as both are specified, 
the stackP is unaffected. Multiple pops or pushes in the same 
instruction do not decrement or increment the stackP by more than 
one. Multiple pop and push functions check for stack overflow or 
underflow. 

Instruction Buffer 
Registers The instruction buffer (IB) consists of three 8-bit registers: IB[O), 

IB[1], and ibFront. IB[O] holds the even code segment byte; IB[ 1) 
holds the odd code segment byte. The bytes are shuffled through 
ibFront in even/odd, sequential order. 
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Figure 2.23 illustrates the data paths of the instruction buffer. 

18[0] INSTRUCTION BUFFER 

X.OO·07 
ALS373 

ReadlBO' 
D 

DE' ·c Q r-
~ EN ibFront 

"T .. It> ALS374 
NIB.0-7,8 8 IB.0-7 

IBrll 
D Q I 

........ EN ' 4 0 
X.08-11 

X.08-1S 
CK 

fZ.2 D 
ReadlBl' 

·'C OE' Q I- r+ 
ALS373 WritelBFront 

IB.4-7 
IBHigh IU2-15 

XLow-IB' 

X.08:15 8 

Figure 2.23. Instruction buffer data paths 

Four states enumerate the location of data bytes among the holding 
registers. The states are indicated by the 2-bit register ibPtr. 

Figure 2.24 illustrates the instruction buffer states. Cross-hatching 
indicates the position of the data bytes. 

The instruction buffer holds up to three Emulator macroinstructions 
or data bytes, in a first-in , first-out queue. Data loaded into the IB 
from the X bus can be read back onto the X bus, or can be used to 
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ibPtr = full ibPtr=word ibPtr=byte ibPtr=empty 

State Name Btles inIB ibPtr 

full 3 2 
word 2 3 
byte 1 1 
empty 0 0 

Figure 2.24. Instruction buffer states 

define a 256-way dispatch in control store. The IB is loaded by special 
emulator "refill" microcode; the actual control of the registers is 
accomplished by a hardware state machine. 

The Mesa Emulator maintains the instruction buffer in such a way 
that macroinstructions always find the necessary code segment 
operands there. 

In the instruction buffer the 256-way dispatch is made on the next 
macroinstruction to be executed. The dispatch (IBDisp) occurs in c2 so 
that the next macroinstruction begins in c 1, thereby adjoining the 
previous one. 

When IBDisp is executed and the buffer is not full, a microcode trap 
occurs, and the refill microcode loads the buffer with more bytes from 
memory. If an IBDisp is executed and an interrupt (MInt = 1) is 
pending, then special interrupt trap (IB-Refill) microcode runs instead 
of the refill microcode. 

The minimum number of bytes in the buffer required to prevent an IB
Refill trap is three (the maximum size of a Mesa macroinstruction) . A 
trap occurs only between the execution of macroinstructions. If the 
buffer requires two bytes, then the refill code completes in one click. If 
four bytes are needed, then the refill code completes in two clicks. 
Because the buffer is small, the only bytecodes that do not result in an 
IB-Refill trap are single-byte opcodes executed from even memory 
locations. Since the IB-Refill trap runs at memory speed, operand 
bytes are efficiently supplied to the macroinstruction. 

Eight microinstruction functions affect the lB. In general, the 
functions maintain the original even/odd byte ordering while 
updating ibPtr and ibFront. Table 2.16 lists the functions and their 
effect on ibPtr, ibFront, and the X bus. 
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Table 2.16. Effects ofIB-Related Microinstruction Functions 

Function NewibPtr NewibFront Xbus ..... 

.... ib ibPtr-l IF ibPtr[l]=O THEN O"ibFront 
IB[O] ELSE IB[l] 

+-ibNA unchanged unchanged O"ibFront 
+-ibHigh unchanged unchanged 0 .. ibFront[0-31 
-ibLow unchanged unchanged 0"ibFront[4-71 
IBDisp ibPtr-l IB[ibPtr[llJ unaffected 
AlwayslBDisp ibPtr-l IB(ibPtr[l1l unaffected 
IB+- IF empty THEN word IF ibPtr = empty unaffected 

ELSE fuji THENX(0-71 
ELSE unchanged 

IB ..... lbPtr+-l IF empty THEN byte IF ibPtr = empty unaffected 
ELSE full THEN XIS-lSI 

ELSE unchanged 
IbPtr<-O word IB[01 unaffeCted 
IbPtr .... l byte IB[l) unaffected 
-ErrnlBnStkp unchanged unchanged X[lO-lll--ibPtr 

Operating modes for the microinstruction functions listed in the table 
are described below. 

Load. The IB is loaded from the X bus. The high-order, even byte is 
written into IB[O]; the low-order, odd byte is written into IB[l]. If the 
buffer is empty, then the X bus byte passes through IB[O] or IB[l] and 
is loaded directly into ibFront in one cycle. Thus, data can be used 
immediately in the cycle following the IB load. 

Write. The IB write operation defaults to writing ibFront with XO-7. 
However, if IbPtr-1 is coincident with IB-, then ibFront is written 
with X8-15, thereby discarding the even data byte. If one or two bytes 
are in the buffer, then IB(OI and IB(1) are loaded, and no feed-through 
into ibFront occurs. 

Read. ibFront can be read onto the X bus. When -ib or -ibN A is 
specified, ibFront is placed onto X8-15, and the high byte of the X bus 
is set to zero. . 

The basic read can be varied. With the -ibHigh function, ibFront[O-
3) is placed onto X12-15. Analogously, -ibLow places ibFront[4-71 
onto X12-15. In both cases the upper 12 bits of the X bus are set to 
zero. 

Execution. When -ib is executed, a funneling process occurs . 
ibFront is loaded with the next byte from either IB[OI or IB(1), and 
ibPtr is "decremented" by one; that is, ibPtr is gray-code decremented: 
2, 3, 1, and then O. Thus, the low order bit of ibPtr divides the values 
ofibPtr into two classes with respect to refill : empty and not empty. 

~ote: The execution scheme equates the empty and full states; 
however, the buffer is not full when the IB-Refill trap occurs . 

.Microcode. Several of the microcode functions have no effect on the 
state of the buffer. The -ibNA function (reads the IB without 
advancing ibPtr), -ibHigh, and -ibLow do not change ibPtr. 

As with the RH and U registers, simultaneous read and write of IB is 
not possible. Therefore, the combination of IB- and -ib in the same 
cycle does nothing. 
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The functions IBPtr+-O and IBPtr-l, when used alone, merely load 
ibFront from 18(0) or 18(1), respectively. The functions typically 
occur in the cycle after the IB has been loaded with a jump-target 
bytecode, thereby selecting the even or odd destination opcode. 

The complement of ibPtr can be read onto X[12-13] with the 
-ErrnIBnStkp function. 

Figure 2.25 illustrates the data paths for constants. 

" S I X 00.07 

XHigh+-O' 
ALS244 

fYO-3/0 4 I 

XLow-Byte' 
X.DS-ii 

x Low.....const 

ALS2S7 X.OS-IS 

X.12-IS 
IZ.O-3 4 

ALS244 

Figure 2.25. Constants data paths 
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Four-bit constants (Nibble) use the fZ microinstruction field ; 8-bit 
constants (byte) use the IT and fZ field. The upper 12 or 8 bits, 
respectively, are zeroed. 

Larger constants can be pre loaded into U registers and used like 
normal constants. Zero is available inside the ALU and does not use 
the X bus. ALU" + 1" and "-1" operations are also possible without 
the X bus, since they are an artifact of Cin. 

Sixteen-bit constants with identical hal yes can be constructed in two 
cycles instead of the three normally required in the general case. 

2.5 System Memory Addressing 

Central Processor 

The central processor sends memory addresses to the system memory 
controller by way of the Mesa bus. A custom gate array performs bus 
controller functions for the Mesa processor board. This section 
describes memory addressing and Mesa bus control. 

Figure 2.26 illustrates data paths from the MPB through the Mesa 
bus to main memory. 
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Figure 2.26. Main memory addressing 
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2.5.1 Hardware 

2.5.1.1 

This subsection describes the Mesa bus hardware , principally the 
Mesa bus controller. Associated hardware is the timer and 
miscellaneous logic. The 80186 or A bus and A bus control logic is 
described in "Dove lOP Board Technical Reference Manual." 

Bus interfaces to the backplane are listed in the Section 2.1.2 titled 
"General Board Hardware." 

Mesa Bus 
Controller Chip The Mesa Bus Controller (MBC) is a 68-pin gate array chip. Figure 

2.27 illustrates the pins and signals for the chip. Table 2.17 describes 
the MBC signals. 

TimerCS' 1 PI P68 68 Timer2Clk 

~ P2 P67 67 TimerlClk 

IOB/A.19 3 P3 P66 66 T12Gate 

~ IOB/A.20 4 P4 P65 65 TOGate 
IOB/A.21 5 P5 P64 64 IOWTimer' (not used) , 
IOB/A.23 6 P6 P63 ~ ~ TimerRC' 7 P7 P62 62 CLKEnb , :- P8 P61 61 VCC 

VCC 9 P9 P60 60 GND 
GND 10 P10 P59 59 lOW' 

" Timerlnt 11 Pll P58 58 lOR' 

~ (A/lOPlntMP + Int Externaj)' 12 P12 P57 57 MWT' 

~ Setlnt 13 P13 P56 56 MRD' 

~ ClrlntTrap' 14 P14 P55 55 LoadMAL 

~ IntEnb 15 P15 P54 54 LoadMAH 

~ RdlntStat' 16 P16 P53 53 EnbWO' , 
Interrupt 17 P17 P52 52 LoadWO 
X.15 IntStat.2 18 P18 P51 51 ResetSync' 
X.14 IntStat.1 19 P19 P50 50 Deb Reset' 
X.13 IntStat.O 20 P20 P49 49 AReset' , 

~ P21 P48 48 AResetMPB' " 
MBldie 22 P22 P47 ~ " 
InitTrap' 23 P23 P46 46 Test 16 , 
RunMode 24 P24 P45 45 " -VCC 25 P25 P44 44 RawCLKB 

GND 26 P26 P43 43 VCC 
GND 27 P27 P42 42 MBCHaIt' , 

MBlMemRef 28 P28 P41 41 BlRdy , 
EnbMAPL' 29 P29 P40 40 10 Ref ~ 
EnbMARL' 30 P30 P39 39 MapRef , 
CIFH 31 P3l P38 38 MemRef 

Cycle3 32 P32 P37 ~ 
" 

Cycle2 33 P33 P36 ~ Cyclet 34 P34 P35 35 BALE 

Figure 2.27. MBC pins and signals 
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Table 2.17. MBC Signal Description 

Signal Full Name. Function 

(A/lOPlntMP lOP Interrupt Mesa Processor or External Interrupt from Artificallntelligence interface. 

+ IntExternall' 

AReset' Reset. (includes power UP). 

AResetMPB' Reset MPB. Resets MPB after request through software. 

IOB/A.19,20, Mesa Bus Address. 19,20.21, and 23 latched up and decoded, as follows: 
21.23 

B/A.23 B/A.21 B/A.20 B/A.19 Command -1-- -0-- -0-- -X-- Timer Chip select 
1 0 1 0 Clear TO Gate 
1 0 1 1 Set TO Gate 
1 1 0 0 Clear Tl·T2 Gate 
I I 0 I Set Tl·T2 Gate 

BALE B Bus Address Latch Enable. 

BlRdy B bus Ready. From the OCM; indicates that the B bus is ready for data transfer. 

CIFH Cycle One First Half. Goes into effect during the first half of cycle l. 

CLKEnb Clock Enable. Enables 8 MHz system clock. 

ClrIntTrap' Clear Interrupt Trap. Clears interrupt. 

Cyclel/2/3 Corresponds to cycles 1,2. and 3 ofMBC state machine. 

OebReset' Debugger Reset. Used with Burdock to reset the Mesa processor. 

EnbMAPL' Enable Map Address Low 0·15. Enables low map address. 

EnbMARL' Enable Memory Address Low 0·15. Enables low memory address. 

EnbWD' Enable Write Data. Enables the write data on B bus. 

IntEnb Interrupt Enable. Signal from the decoder chip (MDC) to enable Interrupt. 

Interrupt Interrupt. Output of Interrupt Register. 

InitTrap' Initial Trapping. Generated after the initial booting procedure. Traps the first microcode 
instruction. 

lOR' I/O Read. Generated by MBC; reads the timer on the MPB board. 

10Ref I/O Reference. From the decoder chip (MOC) to indicate an I/O reference instruction. 

lOW' I/O Write. Writes to the Mesa bus I/O, including Timer. 

LoadMAH Load Memory Address High. Loads the high order memory address 17·23. 

Load MAL Load Memory Address Low. Loads the low order memory address 00·15 

LoadWD Load Write Data. Loads write data from Y bus into data register. 

MapRef' Map Reference. From MOC to inform the MBC that a map reference is occurring. 

MBCHalt' Halt. From the lOP to stop the MBC; occurs at the end of cycle 2 or at the beginning of cycle 3 
when bus is idle. 

- more-
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Signal 

MBldle 

MBlMemRef 

MemRef' 

MRD' 

MWT' 

RawCLKB 

RdIntStat' 

ResetSync' 

RunMode 

Setlnt 

TOGate 

T12Gate 

Test 16 

Timer1Clk 

Timer2Clk 

TimerCS' 

Timerlnt 

TimerRC' 

X.13:15 

2.5.1.2 
Control Logic 
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Table 2.17. MBC Signal Description (continued) 

Full Name. Function 

Mesa Bus Idle. Active when B bus is not performing a memory reference, an I/O reference, or a 
Map reference transaction. MBC can only be halted when MBldle is active. 

Mesa Bus Memory Reference. Sent to the DCM to indicate that Mesa bus is requesting a 
memory or map reference. 

Memory Reference. From MDC to signal a memory reference. 

Memory Read. 

Memory Write. 

Raw Clock Buffered. 

Read Interrupt Status. Enables interrupt status bits 0-2 onto X bus 13-15, respectively. 
Interrupt status bit 0 = Mesa interrupt; bit 1 = lOP interupt or External Interrupt from AI 
Interface (if used); bit 2 = timer interrupt. 

Reset Synchronized. Generated from three resets that are synchronized with the system 
clock. 

Run Mode. Indicates that the Mesa Processor is operating in the Run mode. 

Set Interrupt. Sets an interrupt from the decoder chip. 

Timer 0 Gate. Enables timer 0 to begin counting. Note: First clock after gate goes active loads 
the count. 

Timer 1 and 2 Gate. Enables timer 1 and 2 to begin counting. Note: as above. 

For testing. 

Clock input to Timer counter 0 and 1. 

Clock input to Timer counter 2. 

Timer Chip Select. 

Timer Interrupt. An interrupt from timer 0 after one cycle. 

Timer 1 Ripple Carry. Derivation of clock input to timer 2. 

When RdlntStat is true, interrupt status bits 0-2 are enabled onto X bus 13-15. as follows: 
X.13 - IntStat.O, Mesa Interrupt 
X.14 - IntStat.l, lOP or AI Interrupt 
X.15 - IntStat.2, Timer Interrupt 

Figure 2.28 illustrates the Mesa bus interface and control logic. Table 
2.18 describes the signals shown in the figure. 
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Figure 2.28. Mesa bus logic interface and control 
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Table 2.18. B Bus Interface and Control Signals 

Signal Function 

CIFH From MBC. Goes active to indicate first half of MBC state machine cycle 1. 

Cycle2 From MBC. Goes active to indicate cycle 2 ofMBC state machine. 

CLK,CLKC', From MPB clock generation. 
2XCLK' 

EnbMAPH' To address path logic. Enables high order (17 ·23) of MAP Address register. 

EnbMARH' To address path logic. Enables high order (17·23) of Memory Address register. 

EnbRO' To data path logic. Enables ReadData from B bus onto X bus. This signal is activated at the end 
of cycle 2 if the cycle 3 "mem" bit is predicted to be true (pmem = 1) through the instruction 
pipeline, signifying a memory read cycle. 

IORef From MDC to MBC to indicate an UO reference. 

Load MAL From MBC. Loads low order 100·15) of both Memory and Map Address registers. 

LoadWD From MBC. Enables the CLK to load WriteData from Y bus into Write Data register. 

MapRef From MOC to MBC to indicate a map reference. 

MemRef To MBC to indicate a memory reference. 

ResetSync' From MBC. Synchronized reset signal. 

Test13'/14'/15' For testing only. 

2.5.1.3 
Memory Address 
Interfaces Figure 2.29 illustrates in detail the memory address registers shown 

in Figure 2.26. 

Central Processor 

The figure also illustrates the interfaces between the Mesa bus and 
the central processor X and Y buses. 
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Figure 2.29. Mesa bus interface address/data paths 
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2.5.1.4 
Timer 
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The process timeout and interval timer is an Intel 8254-2 interval 
timer/counter. Figure 2.30 illustrates the timer. Table 2.19 describes 
the signals. 

B/A.lS 20 

B/A.17 19" .. 
TimerCS' 21 .. 
lOR' 22 .. 
lOW' 23 

" 
TimerlClk 9 
TOGate ~~: 
Tl2Gate 14 
Timer2Clk ~:: 

I Al D7 l.. Timer07 
I 

06 
.. 

l AO % TimerD6 

I 

D5 
.. 

\: Timer05 
04 

.. 
'\ TimerD4 

I CS' D3 • 
I RD' 

5. TimerD3 
02 " 9.. TImer02 

! WR' Dl 
.. 

7. TimerOI 

I CKO 

DO • 
8. TimerOO .. 

I GO OUTO 10 TimerInt 
I 

i CKI OUTl 13 TimerRC' 
I Gl 

OUT2 I CK2 ~ 
I G2 
I 
: 

Figure 2.30. Process timeout and interval timer pins and signals 

Table 2.19. Timer Signal Description 

Signal Type Function (Intel Signal Name) 

8/A.IS.17 (AI, AQ) Input Selects counter or control register. as follows: 
Al AO Selects 
0 0 Counter 0 
0 1 Counter 1 
1 0 Counter 2 
1 1 Control Word Register 

TimerlClk Input Clock (period = 16 ms) input of counters 0 and 1. Note: First clock 
after gate goes active loads count into counting element. 

Timer2Clk Input Clock input of counter 2. Derived from ripple carry (RC> of counter 1. 
Note: as above. 

TimerCS' (CS') Input Chip Select: enables RD' and WR'; otherwise ignored. 

TimerDO-7 (00-7) VO Tri·state data bus lines. connected to system data bus. 

TOGate. TI2Gate(GO·2) Input Enable corresponding counters 

TimerInt (OUTO) Output Output of counter 0 

TimerRC' Output Output of counter 1 

lOR' (RD') Input Low during CPU read I/O 

IOW'(WR,) Input Low during CPU write I/O 
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2.5.2 Theory of Operations: Mesa Bus Cont~oller 

2 ·54 

This section describes the functions of the Mesa bus controller; that is, 
state machine control of memory addressing, interrupt control, mode 
control, and timer control. 

Figure 2.31 illustrates the functional blocks of the MBC chip. 

INPUTS OUTPGTS 

ResetSync' 

CLKEnb 

AReset' Cyelet 

A , Cycle2 

Cycle3 
DebReset' CIFH 

MemRef 
MBlMemRer 

LoadMAH 
IORef MESA BUS LoadMAL 

MapRer 
CONTROLLER LoadWD 

EnbWD' 
B/Rdy STATE MACHINE MRD' 

MWT' 
lOR' 

lOW' 
BALE 

EnbMARL' 
EnbMAPL' 

MBldle 

~--------IntEnb 

Setlnt 

TimerInt 

(A ". , INTERRUPT CONTROL . Qt. ,(\\ X.13 
+ 

RdIntStat' ,y . Q+a'uc 1) X 14 

ClrIntTraD' 
({nt, punt Qt.,t· 2) X 15 

~--------
MBCHalt' InitTraD' 

Run Mode 
MODE CONTROL 

IOB/A.23 TimerCS' 

rORlA.19 
BOOT -RUN - STOP TimerlClk 

Timer2Clk 
IOB/A.20 TOGat .. 

IOB/A.21 T12 Gate 
TIMER CONTROL 

TimerRC' (not used) IOWTimer' 

TestI6 (Testability) I 
RawCLKB 

Figure 2.31. MBC functional block diagram 
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2.5.2.1 
States of the 
State Machine 
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The MBC state machine is best described with reference to the 
Memory Reference Timing Diagram, Figure 2.32. 

All timing is referenced to the rising edge of 2xCLK' unless otherwise 
specified. 

When a signal is stated to be set or reset, it is set or reset at the end of 
the clock cycle. On the other hand, when a signal is said to be 
generated, it is generated during the clock cycle. 

Note also that some memory bus control signals are generated outside 
the MBC chip, because of timing limitations. 

Figure 2.33 illustrates state transitions of the Mesa bus controller. 
The number at the top of each block is a state number for convenient 
reference in the text and in the flow diagrams that further illustrate 
the states of the state machine. 
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Boot Mode 
State 0, State 6 

Central Processor 
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Figure 2.33. MBC state transitions 

12 
WriteC3SH 

The MBC state machine is initialized to a no-state condition when one 
of the following reset inputs is activated: 

• AReset - hard reset from the lOP. It includes power-up reset 
and system resetJboot button. 

• AResetMPB - software reset from the lOP. 

• DebReset - from the debugger. 

The first Halt (NHalt'/~BCHalt') signal puts the Mesa processor into 
Boot mode. On entering Boot mode, the YIBC state machine enters 
the Cl Wait (Cycle 1 Wait - state 6) state. In this state, the state 
machine sets Cycle 1 and generates a Clear Command signal to clear 
all pending commands. The state machine then enters CIFH (Cycle 1 
First Half - state 0) state. 
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Run Mode 
States 1-5: 

State 7 

State 8 

State 9 

State 10 

2·58 

During booting, the state machine alternates between the Cl Wait and 
CIFH states. When Halt goes inactive, the processor exits Boot mode 
and enters Run Mode. 

In Run mode, when executing a non-reference (NOT memory-, .Map-, 
or I/O-reference) instruction, the state machine sequences through 
Cycle 1 (Cl), Cycle 2 (C2), and Cycle 3 (C3), where: 

CI encompasses Cycle 1 First Half (CIFH) and Cycle 1 Second 
HalfCCISH - state 1); 

C2 encompasses Cycle 2 First Half (C2FH - state 2) and Cycle 2 
Second Half(C2SH - state 3); 

and C3 encompasses Cycle 3 First Half (C3FH - state 4) and Cycle 
3 Second Half(C3SH - state 5). 

A CLKEnb signal is generated in the second half of every cycle to 
enable the system clock. 

For reference instructions, the state machine still sequences through 
CI, C2, and C3, and Cl still encompasses CIFH and CISH. However, 
in CIFH, the signal LoadMAH is generated and B/ALE is set. For 
Map references, the EnbMAPH flip-flop, EnbMAPL, and BlMemRef 
are also set. For Memory references, the EnbMARH flip-flop, 
EnbMARL, and B/MemRef are also set. For I/O references, the 
EnbMarH flip-flop is also set. The state machine then enters ClSH. 

In a reference ClSH, if the reference is an VO reference, then the state 
machine generates the signal LoadMAL and sets the VO Command. 
The state machine then enters RefC2FH (Reference Cycle 2 First Half 
- state 7) instead ofC2FH. 

In RefC2FH, the state machine resets B/ALE at 2xCLK (center of half 
cycle). It also resets EnbMARL or EnbMAPL. In addition, if Mem bit 
is active (MemRef = 1), then WtCmd (Write Command) is set; if Mem 
bit is inactive (MemRef = 0), then RdCmd (Read Command) is set. 
The state machine then enters RefC2SH (Reference C2 Second Half -
state 8). 

In RefC2SH, if pMem = 1, then the state machine sets EnbRD 
(EnableRead Data) . Note: pMem = 1 in Cycle 2 signifies Mem = 1 in 
Cycle 3, indicating a Read instruction. 

If Mem = 1 (MemRef = 1), then the state machine sets EnbWD 
(Enable Write Data) and generates LoadWD (Load Write Data) before 
entering WtC3FH (Write Cycle 3 First Half - State 11). If Mem = 0, 
then the state machine branches into RdC3FH (Read Cycle 3 First 
Half - state 9). 

ReadySyn is the Ready signal BlRdy from memory which is internally 
synchronized with 2xCLK'. It informs the MBC that a memory- or 
map- reference instruction has been completed. 

In RDC3FH, the state machine monitors the RdySyn and loops in 
RdC3FH if RdySyn = O. When RdySyn is active, the state machine 
exits RdC3FH and enters RdC3SH (Read Cycle 3 Second Half - state 
10). 
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State 11 

State 12 

State 13 

State 14 

State 15 

Stop Mode 

Cycles of the 
State Machine 
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In RdC3SH, the state machine resets EnbMARH or EnbMAPH flip
flop (whichever is set) and, if RdySyn is true, then generates a Clear 
Command signal. The state machine then returns to CIFH (state 0) . 

For a write operation, the state machine goes from WtC3FH into 
WtC3SH (Write Cycle 3 Second Half - state 12). 

In WtC3SH, the state machine resets EnbMARH or EnbMAPH flip
flop (whichever is set) . It then monitors the signal Ref + Rdysyn, 
where REF = any reference, memory, map, or VO. If Ref+Rdysyn is 
true, then the machine generates a Clear Command signal and 
returns to C lFH. If Ref + Rdysysn is false, then the machine enters 
C 1 WFH (Cycle 1 Wait First Half - state 13) . 

In ClWFH, if Ref = land Rdysyn = 0, then the state machine loops 
inClWFH. 

If both Ref and Rdysyn are true, then the state machine generates 
Clear Command and returns to ClFH. 

If Ref = ° and Rdysyn = 1, then the state machine generates Clear 
Command and returns to CISH. 

If both Ref and Rdysyn are false, then the state machine enters 
Cl WSH (Cycle 1 Wait Second Half - state 14) . 

In CIWSH, if Rdysyn = 1, then the state machine generates Clear 
Command and returns to C2FH. If Rdysyn = 0, then the state 
machine enters C2WFH (Cycle 2 Wait First Half - state 15). 

The state machine loops in C2WFH until Rdysyn becomes active . It 
then generates Clear Command and returns to C2SH (state 3). 

A Halt signal in Run mode puts the state machine in Stop mode. 
However, in order not to affect the operation in progress, certain 
conditions must be met before the state machine enters Stop mode: 

1. The MBC bus must be idle (MBIdle = 1; that is, no memory 
reference, map reference, or I/O reference pending. 

2. The state machine must enter Stop mode at the end of Cycle 2 
and beginning of Cycle 3. 

During Stop mode, CLKEnb is not generated; that is, all system clocks 
(CLK, CLKA', CLKB', and CLKC') are inhibited. 

When Halt become inactive, the state machine re-enters Run mode 
and resumes normal operation at the beginning of Cycle 3, exactly 
where it had stopped. 

The figures that follow illustrate the sequence of operations at each 
memory cycle, including non-reference cycles. The circled numbers 
refer to the numbered states illustrated in Figure 2.33 and described 
in the text. The figures are: 

• 2.34 
• 2.35 
• 2.36 
• 2.37 

Cyclel 
Cycle 2 
Cycle 3 (Read) 
Cycle 3 (Write) 
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Figure 2.34. Cycle 1: state machine flow 
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Reference Cycle-2 
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Figure 2.35. Cycle 2: state machine flow 
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Figure 2.36. Read Cycle 3: state machine flow 

2·62 Central Processor 



WtC3FH 

Reset EnbMARH ffifset 
Reset EnbMAPH ffifset 

SetCyc1el 

y 

C1WFH , 
SetCyc1el 

ClF 
H 

SetCLKEnb 

Daybreak Technical Reference Manual 

Write Cycle-3 
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Figure 2.37. Write Cycle 3: state machine flow 
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2.5.2.2 
Interrupt Control 

2.5.2.4 
Timer Control 

2 ·64 

The contiguous execution of emulator macroinstructions can be 
interrupted if immediate action is required by the interrupting source. 
Interrupt sources include: 

• Microcode with fY = MesaIntRq 
• lOP or AI Interface 
• Interval TImer 

An interrupt request sets the I-bit Interrupt Register. At the same 
time, it also sets one bit in the Interrupt Status Register. Interrupt 
Status bits are assigned as follows: 

Interrupt Source 
Mesa microcode 
IOPI AI Interface 
Interval Timer 

Interrupt Status 
bit 0 
bit I 
bit 2 

When microcode issues a RdIntStat (Read Interrupt Status) com~and, 
the status bits are enabled onto the X bus as follows: 

Interrupt Status 
bit 0 
bit I 
bit 2 

XBus 
X.13 
X.14 
X.15 

After the interrupt (or interrupts) has been serviced, a ClrintTrap 
(Clear Interrupt Trap) is issued by microcode to clear both the I-bit 
Interrupt Register and the Interrupt Status Register. 

Note: All three status bits are cleared by the ClrIntTrap whether or 
not their corresponding interrupts have been serviced. 

Interrupts can also be enabled or disabled by microcode with 
fY = SetIE (Set Interrupt Enable) or ClriE (Clear Interrupt Enable> 
respectively. 

Two Interval timers are implemented using the 8254 timer chips. As 
part of the Mesa Processor VO, both interval timers are clocked by a 
16-microsecond input clock. 

In normal applicaton, only Interval Timer! (TimerO of 8254) is 
programmable and generates an interrupt (timer Interrupt) when the 
programmed count is reached. 

Interval Timer2 is implemented by cascading Timerl and Timer2 of 
the 8254 Timer Chip into one modulo 232 counter. Timer2 input clock 
is derived from the RC (Ripple Carry) output of Timerl. No interrupt 
is generated by Interval Timer2. 

Figure 2.38 illustrates Timer Gate and Timer Clock. Figure 2.39 
illustrates Timerl Ripple Carry Clock and Fig.2.40 illustrates Timer2 
Clock Timing. 
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lOW 

IOWSynl 

IOWSyn2 

TimerIOW 
GateSet 

--------------------~ 

GateSyn (W1th Timor011 

TimerOl 

TimerO;;..8;;;..... ___ ..,7~~~( ___ -..J 

Gate 

Timer08Synl 

Timer08Syn2 

7 

If set. Gate ioe. hiih at 
leadini edit ofTimer08. 
satisfying Gat. setup tim. 

( 
; 
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• 

Time~rC~l=k ______________________________________________________________________ ~~ 

Figure 2.38. Timer gate' and clock timing 

Timer08 

If cleared. Gate goes low 
at trailina- edge of 
Tim.r08. satisfying 

~"""T_-T-____________ -""~<"'(T_+-i~_ ........ ________ ...;G:::a:.:;t. hold time 
r 77 I Gate 

Timer08Synl 

Timer08Syn2 
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~~~ n 
~------------------------~H~+----------------TimerlRC' 
------------------------------------------~ 

RCSyn~l' __________________________________________ ~ 

RCSyn_2' ____________________________________________ ~ 

RCSyn3_' __________________________________________________ ,. 

I 
RCClk 

________________________________ ~n~ ________________ _ 
Figure 2.39. Timer! ripple carry clock 
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• First clock pulse after Gate goes high loads count into counting element 

Figure 2.40. Timer2 clock timing 

2.5.3 Programmer Interface: Main Memory Addressing 

2·66 

Refer also to Daybreak Microcode Reference Manual for detailed 
information. 

The memory system accepts two types of addresses: real and virtual. 
Real references result in a read or write to the addressed location 
itself. Virtual references cause the memory system to ignore the low 
byte of the address. Using the remaining 16 bits, the memory system 
then reads or writes the Map, located at real address 10000 hex. 

For both reference types, a write occurs (MDR+-) when the memory 
operation (mem) field is set in c2; a read occurs (+-MD) when the mem 
field is set in c3. Read and write should not both be specified in the 
same click. Furthermore, if a click specifies an MDR+- or +-MD 
without a corresponding MAR+-, then memory is not written, and a 
potential memory error trap does not occur. 

Microcode instructions for memory addressing are described in this 
subsection. The memory system varies, depending on display memory 
size. In this section, maximum size is assumed; that is, 20-bit real 
addresses and 24-bit virtual addresses. 
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The mem bit true in cycle 1 causes a real reference. A real reference is 
specified by using the MAR- macro in cl. The memory address is 
sent to the OCM from the Y and YH buses via the B bus interface. The 
Y bus can be driven either from the 2901 F bus or by A-bypass; 
addresses can be either pre- or post-modified. The YH bus, which 
supplies the high-order address bits, is always driven by the RH 
register addressed by rB. YH[0-3] are ignored by memory. 

With MAR- the following effects, described below, occur: 

1. The 2901 is divided such that the high half executes a fixed 
function; 

2. a special "address-overflow" branch (pageCross) is enabled; 
3. an MDR- or IBDisp in the next cycle is canceled if the branch 

is taken. 

If mem = 1 in el, then the 2901 is divided such that the high half 
executes with its as and aF inputs equal to (O,B) and (aF OR 3), while 
the low half executes with the as and aF values given by the 
microinstruction. This division causes the high byte of the ALU 
output to equal the high byte of the R register addressed by rB (or its 
complement if aF is in [4-7]). 

As an outcome of the bipartition, a carry out from the low half does not 
propagate into the high half; that is, the high byte of rB remains 
unchanged after a MAR- (unless aF is in [4-7)), even when A-bypass 
is used. 

Figure 2.41 illustrates real address modes. 

4 7 0 7 8 15 

I rhB I I rB[O·7] I F[8·1S] I Normal 

YHbus Ybus 

rhB I I rA[O-lSI A·bypass 

Figure 2.41. MAR Address Types 

If A-bypass is not specified, then the upper 12 bits of the memory 
address (the page address) come from the RhlR pair named by the rB 
field. The lower 8 bits <the page displacement) are defined by the 
desired ALU operation. Assuming the Y bus is driven from the F bus, 
the 20-bit real address is rhB[ 4-7]"rB[O-7]"F[8-15]. 

Note: This feature can be used to combine the real page number, as 
read from the Map in the previous cycle, with a displacement into the 
page. 

If A-bypass is specified, then the lowest 16 address bits come from the 
R register addressed by r A. The 20-bit real address is rhB[ 4-7]"r A[ 0-
15]. 
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If the ALU operation results in a carry out from the low half, then 
MAR- automatically specifies a pageCross branch; 1 is ORed into 
INIA[10]. Thus, although the carry out from the low byte does not 
propagate into the high byte, it can be detected as a transfer of control. 
A true pageCross branch can imply that the real address is invalid, 
and that a remapping of the virtual address originally generating the 
real address is necessary. Since pageCross is not ORed into INIA[ll), 
other simple branches can be specified concurrently. 

pageCross is defined as (pageCarry XOR aF[2]), where pageCarry is 
the carry out from the low 2901 byte. For addition, pageCross equals 
pageCarry. For subtraction, the XOR has the effect of toggling 
pageCarry. 

Notes: l. The aF = (R-S) form of subtraction does not cause 
pageCarry to be inverted, since aF[21 = O. However, the aF = 
(R-S) form covers the most common subtraction requirements. 
2. A complication of pageCross branch is that pageCross can 
equal 1 if the 2901 executes a logical function instead of an 
arithmetic function. 

If pageCross = 1 during a MAR-, then a following MDR-, IBDisp, 
or AlwaysIBDisp in c2 is ignored. This effect increases the need to 
avoid logic functions during a MAR-. 

Note: The cancellation effect can be used to prevent writing into the 
wrong page or to prevent dispatching on the next Emulator 
instruction when the corresponding virtual address should be 
remapped. 

Translation of virtual to real address is done explicitly in microcode. 
Figure 2.42 illustrates virtual-to-real address mapping. 

YHbus Ybus 

o 2 7 0 7 
\ \ ) 
~. --~------~r-------~ 

virtua'(Page 

13FFF 

"- rid /wI 

10000 
./ 

15 

location within page 
(not mapped) 

o 1 2 3 7 0 7 8 15 
~lr~l~d~l~w~l~rp-[0-'41~11~-r-p[-5'-121--~1 ~-rp[-5.1-21--~1 

RH register Rregister 

Figure 2.42. Virtual-to-real address mapping 
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When either the fX or fY field equals MAP.- in cycle 1, a memory 
reference to the virtual-to-real, page-translation map is caused. Map 
is a 16 KWord table whose first entry is at location 10000 hex, just 
after the display bank. During a Map reference, the memory system 
uses the upper 16 bits of the virtual address (14 bits for a 22-bit virtual 
address) to index into the table. Each entry of the table contains a 12-
bit real-page number and three flags pertaining to the virtual page. 

Figure 2.43 illustrates map address types. 

YHbus Ybus 

rhB F[0-lS1 Normal 

0 7 0 15 

rhB I rA[0-lS1 I A-bypass 

Figure 2.43. Map address types 

The virtual address is carried on the Y and YH buses. The low byte of 
the Y bus is ignored, without affecting the ALU. Since the Y bus can 
be driven from the 2901's bus or from A-bypass, addresses can be 
either pre- or post-modified. 

For 24-bit virtual reference, all of the YH bus is used. 

Figure 2.44 illustrates the format of a Map entry. Refer to the 
Daybreak Microcode Reference Manual for a description of how the 
Map flag bits are maintained. 

rp[5-12J I r I d Iw I rp[0-4J 

0 7 8 9 10 11 12 15 

rp[0-12J Real page Number 
r Referenced and Present flag w Write Protect flag 
d Dirty flag 

Figure 2.44. Map Entry Format 

The mem field should not be set in c1 along with a Map'- unless the 
side effects ofMAR.- are explicitly desired. 

Figure 2.45 illustrates the memory address register (MAR). The 
contents ofYH[4-7]"Y[O-15] are used as the memory address. 

i 
i 
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k"H Btl! YBu! 

ignored 

0 4 5 6 7 15 

20·bit real address 

Figure 2.45. Memory Address Register address generation 

MAR- [rhReg, < arithPhrase > 1 designates a real address reference 
to memory. rhReg specifies the RH register that holds the two high 
order address bits. The rB field is set to the value of rhReg; 
< arithPhrase > can be any notation that occurs on the right side of an 
arithmetic clause. 

A map reference occurs when mem is set in cl. The action is the same 
as for MAR- except that the physical address is derived differently. 
An access is started in the 65K . SOK bank of memory; the location 
accessed is specified by the page number. 

Figure 2.46 illustrates the derivation of the physical address. 

IHBus YBus 

~IO~~ ______ 7~1 ~IO ________ ~71~8 ___________ 15~ 
16·bit virtual page number . 

Figure 2.46. Map- address generation 

The memory write data register (MDR) is loaded with the contents of 
the Y bus when mem is set in c2. The contents are written into the 
memory location specified by the contents of MAR loaded during the 
first cycle of the click. If the low 64K bank is selected and is being 
used by the display, then no write occurs. 

Memory Read data (MD) is placed on the X bus when mem is set in c3. 

Before the next memory read (-MD) is done, the status of a given 
read operation can be found in MStatus . 
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