
150900

SOLOMON PROJECT TECHNICAL
MEMORANDUM NO ~ 24

SOLOMON II Assembly System

4 November 1963

WESTINGHOUSE DEFENSE AND SPACE CENTER
Defense and Space Systems Operations

Baltimore, Maryland

This technical memorandum is published solely for in­
formation and use by proj ect personnel and is not intended
for external distribution. The material contained herein
is PROPRIETARY.

TABLE OF CONTENTS

1. INTRODUCTION AND DEFINITIONS

Paragraph Page

1. 1 Introduction 1 -1

1. 2 Definitions. 1 - 1

1. 2. 1 Location Counter 1-1

1. 2. 2 Sequence Break . 1-1

2. THE CODING FORM

2. 1 General

2. 2 The T Field

2. 3 The Location Field.

2. 4 The Instruction Field ..

2. 5 The Options Field

2. 6 The Addresses and Com.m.ents Fields

2. 7 The Sequence Field

3. ADDRESSES

3.1 General

3. 2 Types of Addresses

3. 2. 1 Absolute Addresses.

3.2.2 Sym.bolic Addresses

3. 2. 3 Regional Addresses ..

3.2.4 Program. Point Addresses

3. 2. 5 Pool Constant Addresses

3.2.6 Address Arithm.etic •...

@ Computer and Data Systems

2-1

2-1

2-2

2-4

2-4

2-5

2-6

3-1

3-1

3-2

3-3

3-3

3-4

3-5

3-5

i

15090D

Paragraph Page

4. POOL CONSTANTS

4.1 General

4. 2 Types of Pool Constants.

4. 2. 1 Decimal (Fixed Point)

4.2. 2 Floating Point Decimal

4.2.3 Word

4.2.4 Alphanumeric.

4. 2. 5 Octal . .
4.2.6 Hexadecimal

4.2.7 Binary .
4.2.8 Paramete r.

4. 3 Composite ..

5. PSEUDO-INSTRUCTIONS

5.1 General•

5. 2 Detailed Instruction Descriptions

5.3 Summary of Pseudo-Instruction Codes.

LIST OF ILLUSTRA TIONS

Figure

3-1 Program Point Referencing•............

4-1

4-1

4-1

4-1

4-2

4-2

4-2

4-2

4-3

4-3

4-3

5-1

5-1

5-19

Page

3-5

~15~~-9-0D----------- Computer and Data Systems ®

1. INTRODUCTION AND DEFINITIONS

1. 1 INTRODUCTION

This lllanual is designed to teach the SOLOMON asselllbly language to pro­

grallllllers already fallliliar with the SOLOMON systelll. No attelllpt is lllade

to teach anything about SOLOMON; for this purpose, see "SOLOMON II Pro­

grallllller's Reference Manual. "

Unfortunately, there is no silllple way of describing a language. In lllany

cases, it has been necessary in this lllanual to lllention things that are not

yet defined. On the other hand, it is hoped that the arrangelllent of the lllanual

will lllake it suitable for use as a reference m.anual as well.

I. 2 DEFINITIONS

To facilitate full understanding of this lllanual, two basic definitions are

given at the outs et.

1. 2. 1 Location Counter

In order to assign the proper value to each address of a lllelllory location,

the assem.bler uses a special cell called the Location Counter (see SEG in

Pseudo-Instructions). The location counter can be initially set to an arbitrary

value. The first line of the progralll is assigned to this lllemory location.

For each m.achine instruction processed, the Location Counter is increas ed

by 1 norm.ally. Certain instructions, though, may result in an increase of

m.ore than 1.

1. 2. 2 Sequence Break

Any condition, instruction, or pseudo-instruction which causes the Location

Counter to increm.ent by any other num.ber than +1 is called a sequence break,

i. e., a break in the norlllal sequential pattern of assigning lines of a program.

to lllem.ory locations.

~ 1-1/1-2 ® Computer and Data Systems -----------I-S0-9-0-D

2. THE CODING FORM

2.1 GENERAL

This section is to familiarize the reader with the SOLOMON Coding Form;

detailed discussions concerning the various fields of this form are presented

in subsequent sections.

A sample coding form for the assembly language is shown on the following

page. Each line on this coding form represents a single punched card and in

general represents a single instruction. Sometimes, however, an instruction

may require more than one card, or a card may contain something other than

an instruction.

A field on a punched card is defined as a (specified) number of adjacent

columns (special case - a single column) in which ar"e punched a given type of

data. The name of a field is associated with all of the columns of the field.

The card is divided into six fields. The following discussions of the fields

pertain primarily to machine instructions. Pseudo-instructions and others

may require different usage.

2. 2 THE T FIELD

(liT" for "TYPE") specifies the type of card and gives the assembler a

general inaication of the kind of processing that will be required. Five basic

entries may be made in the T field.

a. The field may be left blank. * This specifies that normal assembly

processing is to take place.

~:~ Many symbols have been used in the literature to symbolize a blank column.
In this manual, the symbol U will be used, primarily for its international
orlgm. Other symbols include: #(American typography), ~(Remington
Rand), and)f (IBM).

@ Computer and Data Systems
2-1

15090D

b. The field may be punched with the letter C. This specifies that

the card contains a comment which is to be reproduced in the assembly

listing; it has no other effect on the assembler.

c. The field may be punched with an asterisk (~:~). This card is also

treated as a comment, but the line will be the first line of a new page of the

assembly listing. (This facility allows the programmer to have some sort

of editing of his listings - a useful aid when the assembly listing is to be in­

cluded as a report.)

d. The field may be numbered with a number from I to 9. This speci­

fies that the card is to be considered as a continuation of the previous card.

e. The field may contain the letter X. This indicates that the card is

to be completely ignored by the assembler and is not to appear in the output

listing. This type of field will usually be inserted by the as sembler into

those lines which represent one time pseudo-operations such as LON, TRACE,

and UNTRACE (q. v.).

Certain errors are detected by the assembler. The errors which may be

made in the T field are fairly few and will be listed here.

a. If an instruction requires more than one card, the first continuation

card must be numbered 1 in the T field, the second, 2, etc.

b. If the T field is numeric, the LOCATION, rnST, and OPTIONS

Fields must be blank.

c. Only the characters specified in this section (U, C, *, 1, 2, 3, 4,

5, 6, 7, 8, 9 and X) may appear in the T field.

Errors are indicated on the assembly listing. In addition to indicating the

errors in the T field, the assembler will treat the erroneous card (and all

following cards until the next one with the T field blank) as though they were

comment cards. As a consequence, an error in the T field may generate

additional errors in the remainder of the program.

2. 3 THE LOCATION FIELD

The LOCATION Field contains an indication of the location of the line of

coding specified by the card. (Obviously, if the card does not specify a line

2-2 t\iJ\
~15~O~90~D~--------- Computer and Data Systems ®

C")
o
3
~
c ...
CD
~

......
U1
0
--..0
0
tJ

PROGRAM:

T
LOCATION

1 2 9 10

I

llXX:lA.·j

tv
I

V)

@ CODING FORM 2-3

DATE: PROGRAMMER: PAGE OF

INST. OPTIONS ADDRESS AND COMMENTS SEQUENCE
15 16 21 22 7273 80

i

of coding, the LOCATION Field may have other uses.) In general, the

LOCATION Field is blank, which indicates that the line of coding is to be

considered as the immediate successor of the preceding line of coding.

Other types of indications may be written in the LOCATION Field; they are

discussed in the section on Addresses.

2. 4 THE INSTRUCTION FIELD

The INST Field contains, in general, ITlnemonics for the ITlachine opera­

tions to be perforITled.

2. 5 THE OPTIONS FIELD

The OPTIONS Field is used to specify values to appear in the IA, MD,

MV, and G fields of a ITlachine instruction. Symbols which may be used are:

a. ~:~ - Indicates indirect addressing (IA = 1).

b. 0123 - Indicates ITlodes. If an instruction requires both an MD and

MV value, the rightmost digit specifies MV. All other digits specify MD.

If no digits appear and an MD value is required, all ITlodes are assumed.

If an MV value is required and no digits appear, zero is assuITled.

c. A - Indicates the use of all modes in MD. This is equivalent to

0123 or no digits at all.

d. N - Indicates no modes for MD (MD = 0).

e. R - Indicates that row geometric control is to be used.

fo C - Indicates that column geoITletric control is to be used.

g. G - Indicates that both row and column geometric control are to

be used. This is equivalent to writing Re.
h. Boolean Mnemonic - Indicates the Boolean operation which is to

appear in the MD field. (See "SOLOMON II Programmers Reference Manual"

for mnemonics and relevant instructions.)

Except for the MV value relative to MD values and the Boolean mnemonics,

the order of characters in the OPTIONS Field is not significant.

2-4 ~
~15~O~90~D~--------- Computer and Data Systems ~

Examples:

a. Assume a mode setting instruction.

OPTIONS ADDRESSES AND COMMENTS

,I- 0 1 3 R $ 1 'I'

1 ,I- 0 R 3 $ 2 'I'

G 0 $ 3

$ 4

(1) Indirect addressing; use only PE's in modes 0 or 1; set to

mode 3; and use row geometric control.

(2) Equivalent to 1.

(3) Use all PEls; set to mode 0; and use both row and column

geometric control

,I-
'I'

W

,I-
'I'

(4), Use all PEls and set to mode O.

b. Assume a nonmode setting instruction.

OPTIONS ADDRESSES AND COMMENTS

0 1 3 R $ 5

A M ,I- $ 6 '1'

W A M $ 7

$ 8

(5) Indirect addressing; use only PE's in modes 0, 1, or 3; and

use row geometric control.

(6) Indirect addressing; perform the Boolean operation WAM

(only with a valid instruction).

(7) Equivalent to 6.

(8) Use all modes if MD setting is relevant.

2. 6 THE ADDRESSES AND COMMENTS FIELDS

This field is used to specify values to appear in the R, M, and X fields

of a machine instruction. It may also contain comments which are printed

on the listing but do not otherwise affect the program.

2-5

@computerandDataSYstems-----------1-50-9-0-D

The general format is: route, base adr, index, $ comments

route - Indicates the route, when relevant, by one of the route
mnemonics: I, N, E, S, W, B, R, C, or a number 0
through 7. If route is blank and a route value is required,
zero is used.

base adr - Indicates the value to appear in the M field of the instruction.

index

Any of the form.s described in Section 3 m.ay be used.

- Indicates the index register to be used. An absolute or sym.­
bolic address form. (see Section 3) m.ay be used. Address
arithmetic m.ay be used.

If either base adr or index is blank, a value of zero is used. Com.m.as m.ay

be om.itted if the field is blank between them. and the dollar sign. Unless the

instruction requires a route value and the leftm.ost param.eter is an acceptable

route form., the leftm.ost param.eter is base adr. All FE instructions are

considered to require route specifications in this sense.

Exam.ples:

a. Assum.e a FE instruction.

N
,N
SAM
, SAM
N,A,2

ADDRESSES AND COMMENTS

$ R FIELD = N, M FIELD = 0, X FIELD = 0
$ R FIELD = 0, M FIELD = N, X FIELD = 0
$ R FIELD = 0, M FIELD = SAM, X FIELD = 0
$ R FIELD = 0, M FIELD = SAM, X FIELD = 0
$ R FIELD = N, M FIELD = A, X FIELD = 2

b. Assum.e an NCU instruction.

ADDRESSES AND COMMENTS

N M FIELD = N, X FIELD = 0
, N M FIELD = 0, X FIELD = N
N,A M FIELD =N, X FIELD = A

2. 7 THE SEQUENCE FIELD

The final field on the card is the SEQUENCE Field. This field m.ay be

used by the program.mer to identify his cards in any desired manner. It is

reproduced on the as sem.bly listing but has no othe r effect.

2-6 ~
':"":15~0~90~D~--------- Computer and Data Systems ~

3. ADDRESSES

3.1 GENERAL

An address, as used in this manual, is any way of referring in the assem­

bly language to a memory location in the computer. It may also refer to other

types of parameters (e. g., number of places to shift).

There are five types of addresses which may be used. They are:

a. Absolute

b. Symbolic

c. Regional

d. Program Point

e. Pool Constant

These are discussed in the following sections and summarized in

table 3 -1.

3.2 TYPES OF ADDRESSES

This section lists the types of addresses in table 3-1 and discusses them

on subsequent pages.

Type of Addresses

Blank

Program Point

Absolute

TABLE 3-1

TYPES OF ADDRESSES

LOCATION Field

This line is the physical
successor of previous
line

Defines the program
point

Specific location of the
line

ADDRESS Field

Field not significant,
will assemble as zeros.

Suffix F - forward prog.
pt. reference
B - backward prog.
pt. reference

Assemble to specific ab-
solute address.

3-1

@computerandDataSYstems-----------l-SO-9-0-D

TABLE 3-1 (Continued)

Type of Addresses

Undefined Symbolic

Defined Symbolic

Undefined Regional

Defined Regional

Constant

3. 2.1 Absolute Addresses

LOCA TION Field

Defines Symbolic

Error Indications
Line = Cornment

Error Indication
Line = Comment

First occurrence-lo­
cation of line does not
affect progr,am counter.
Other occurrences -
Line = Cornment

Error Indication
Line = ComITlent

ADDRESS Field

Assembles as 0' s if
never defined - error
indication
Defined Addres s - if ul­
tiITlately defined

Assembles as defined
address

As sembles as defined
addre s s, if ultiITlately
defined or error indica­
tion O's, if never de­
fined.

Assembles as defined
address

Assernbles as the ad­
dress of the memory
location assigned by the
assembler to the speci­
fied constant.

An absolute address is a deciITlal or octal nurnber of not more than six

digitso~:~ This number will be treated modulo the memory size of the compu­

ter. If an absolute address (decimal only) appears in the LOCATION Field

and is not less than the Location Counter, the line is assigned to the specified

absolute address and following lines are assigned to conventional increasing

addresses. If appropriate, a sequence break is indicated on the listing. If

the absolute address is less than the Location Counter, an error is indicated

~:~ In the LOCATION Field, at least two digits must be written to distinguish
absolute addresses from program points.

3-2

~15~0~9~OD~---------- Computer and Data systems@

and the LOCATION Field is ignored. An absolute address in the ADDRESS

Field assernbles as the specified absolute address.

Octal absolute addresses are distinguished frorn decirnal absolute addresses

by being preceded by M/ (e. g., M/34567).

3. 2. 2 Syrnbolic Addres ses

A syrnbolic addres s is any com.bination of characters either alphabetic or

nurneric which is not of a form.at reserved for regional, absolute, or program.

point addresses and, of course, which does not exceed the field size.

a. Undefined Syrnbolic - an undefined syrnbolic address is a syrnbolic

addres s which, when encountered, has not appeared in the LOCATION Field

of the sarne or a previous line of coding.

The occurrence of an undefined syrnbolic address in the LOCATION Field

defines it (i. e., assigns the address into which the line of coding is placed as

the value of the syrnbol) 0

If an undefined syrnbolic address appears in the ADDRESS Field, two

possible results rnay follow. If the syrnbol is later defined, (io e., appears

in the LOCATION Field of sorne later line), then the syrnbol will assernble

as the later defined addre ss. If the syrnbol is never defined, it will as sernble

as zeros and an error indication is given (but see the DEF pseudo-op).

b. Defined Syrnbolic Address - When a syrnbolic address which has

been defined (has appeared in the LOCATION Field of sorne line) is again

encountered in the LOCATION Field of sorne later line, then the later line is

treated as a com.rnent line and an error indication is given. This is an at­

tem.pt to assign two different lines to the same location. The error line will

appear in the listing (but see the NAME pseudo-op).

Obviously, a defined symbolic address in the ADDRESS Field is a norrnal

thing to find and will assem.ble as the defined address.

3. 2.3 Regional Addresses

A regional address is a relative address written in terrns of the base (first

line) in a region (block of memory). Unlike a syrnbolic or a prograrn point

address, a region is defined by a pseudo-instruction (see REG, paragraph

3-3
@computerandDataSYstems-----------1-50-9-0-D

5.2) and not by its occurrence in a LOCATION Field. It is syll1bolized by

one, two, or three alphabetic characters followed by at least three nUll1eric

characters (ABCI234, F234, MG34567).

a. Defined Regional - if a defined regional address occurs in the LO­

CATION Field, the line is assigned to the regional address. Successive

line s are as sell1bled into conventional increasing addre s se s in the sall1e ll1an­

ner as when an absolute address is encountered. The sall1e type of errors

are indicated as are described in Section 3.

A defined regional in the ADDRESS Field assell1bles the regional address

as the corresponding absolute address.

b. Undefined Regional - an undefined regional in the LOCATION Field

results in an error indication and the line is treated as a COll1ll1ent (the line

appears in the listing but does not affect the prograll1).

An undefined regional, when encountered in the ADDRESS Field, can re­

sult in two things. If the undefined regional is defined at SOll1e later point in

the prograll1, the sYll1bol will assemble as the defined address. If the unde­

fined regional is never defined, an error indication is given and the regional

address will assemble as zeros. (The DEF pseudo-op has no effect in this

case.)

3.2.4 Program Point Addresses

A program point is a redefinable reference point for lines of coding which

are (usually) close to each other in the prograll1. A prograll1 point is written

as a single decimal digit and its occurrence in the LOCATION Field defines

the program point.

When a program point occurs in the ADDRESSES AND COMMENTS Field

it is written as a single decimal digit, suffixed by either an F or a B. In

other words, a program point in the ADDRESS Field will have the general

form: 6F, 5B, 5F, etc. If the suffix is F, this means reference is made

forward in the program to the next line having the sall1e number in the LO­

CATION Field as that number appearing before F. The suffix B is the same

except reference is made backward in the program.

3-4 ~
..... 15~O-90~D---------- Computer and Data Systems ®

The diagram in figure 3 -1 illustrates program point referencing.

LOCATION FIELD ADDR ESS F IEL D
5 ----________________ __

58

6 5F

INSTRUCTION 68

SEQUENCE
6F

5 68

58
6F

6

SPNI509O-VA-52

Figure 3 -1. Program Point Referencing

It should be clear that any errors made in program point referencing in

general will not be detected. If the programmer neglects to define a program

point and then refers to it, the reference will be made to the next line which

has the same program pointo For example, in figure 3-1, if the second 5

did not appear in the LOCATION Field, then all of the 5 B I S in the ADDRESS

Field would refer to the first 5 in the LOCATION Field and no error would

be detected.

3. 2. 5 Pool Constant Addresses

Constants may be written as pool constants. A pool constant is stored in

a separate section of memory and may be used repeatedly in a program

merely by accessing the memory location at which the constant is stored.

Refer to Section 4 for a detailed de scription of pool constants.

3. 2. 6 Address Arithmetic

Arithmetic expressions involving the operations addition, subtraction,

multiplication, and division are permitted in the ADDRESS AND COMMENTS

Field. Any of the basic address forms except pool constants may be used in
'('

3-5

@computerandoataSystems-----------l-SO-9-0-D

these expressions. Multiplication and division {indicated by ~:~ and:, respec­

tively} are done before addition and subtraction. Operations are perforITled in

left-to-right order with any reITlainders being dropped and with each result

modulo the memory size.

The symbol ~:~ may be interpreted as either an operation {multiplication}

or an operand {the value of the Location Counter} depending on the context.

Example 1:

The current location times two.

Example 2:

SAM + ~:~~:~ 2: J¢ E - M/ 6 7

The current location is multiplied by 2 and divided by the value of J¢E.

This result is added to the value of SAM, and 67 } is subtracted from the
{8

sum.

3-6 t\V\
-lS O-9-0n----------- Computer and Data Systems ®

4. POOL CONSTANTS

4. I GENERAL

The constant pool will contain a given bit configuration only once except

when a p/ occurs in the constant. A new word is added to the pool for every

constant containing a pl. (pi is defined in paragraph 4.2.8.)

4. 2 TYPES OF POOL CONSTANTS

4. 2. I Decirnal (Fixed Point)

D/±d I" d. d" I dE±p'" P Txx

where:

d's are decirnal digits.

p I I I P is the decirnal power of 10 by which the nurnber is rnultiplied.

(If E ± pi I I P is ornitted, zero is assurned.)

xx is a 1- or 2- digit decirnal nurnber which denotes the bit position

(0 through 39) after which the binary point is assurned to follow.

(If Txx is ornitted, 39 is assumed.)

Example:

D/ -63. 8E4

If a sign is ornitted, plus is as surned. If the decimal point is ornitted, an

integral value is assurned. It is not necessary for a digit to appear to the

left of the decimal point.

4. 2. 2 Floating Point Decimal

D/±d lt I d. dill d F± pI" P

where d's and pI s are the same as for decimal. The F rnay not be ornitted

since this distinguishes floating point from fixed point. If no digit follows F,

zero is assumed. Normalized numbers are produced.

Example:

D/397.46F

4-1

@computerandDataSYstems-----------l-SO-9-0-D

4.2.3 Word

W/c"' c

Where c's are SOLOMON characters. There are exactly 6 c' s in this

constant.

Example:

W/C¢ST UU

4.2.4 Alphanumeric

A/ C
lll c

where c's are SOLOMON characters other than plus, comma, semicolon,

and dollar sign. If fewer than 6 characters are written before a plus, com­

ma, semicolon, or dollar sign, the constant word is left justified and then

right filled with zeros.

Example:

A/M9UNT

4. 2. S Octal

(/l/o'" 0 Txx

whe re 0' s are octal digits. If fewer than 13 digits are written, the word is

left filled with zeros. The bit position (0 through 39) which contains the last

binary digit of the converted value is specified by xx (if Txx is omitted, a

value of 39 is assumed).

Example:

<75 /374T20

4.2. 6 Hexadecimal

H/ h'" h Txx

where hIs are hexadecimal digits. The digits for the binary configurations

1010 through 1111 are J, K, L, M, N, and <75. If fewer than 10 digits are

written, the word is left filled with zeros. The bit position (0 through 39)

which contains the last binary digit of the converted value is specified by

xx (if Txx is omitted, a value of 39 is assumed) ..

Example:

H/76L4K2T 18

4-2 ~
--lS"""-O-9-0D----------- Computer and Data Systems ®

4. 2. 7 Binary

Bib" I b. nn Txx

where b l s are binary digits and nn is the number of times the configuration

b l I I b occurs. If. nn is omitted, 1 is assumed. The bit position (0 through

39) which contains the last digit is specified by xx (if Txx is omitted, 39 is

assumed) •

Example:

B/lOl.5T22

4. 2. 8 Parameter

pi symbol, Txx

where symbol is any permissible base adr form other than a constant.

These are:

a. Pure decimal (e. g. , - 7683)

b. Octal location (e. g. , - M/76334)

c. Symbol (e. g. , - ALPHA)

d. C ombina tion (e. g. , - ALPHA + M/76335-7683)

pi is converted to its binary equivalent (e. g., the definition of the symbol,

in case 3). The bit position (0 through 39) which contains the last digit is

specified by xx. The comma and the Txx may not be omitted.

Example:

pi ALPHA, T 30

4. 3 COMPOSITE

Any of the constants except Decimal, Floating Point Decimal, and Word

may be made composite (i. e., several constants of the same or different

type may be converted into a single machine word). The Decimal constant

may be included in a composite constant if it is integral and positive.

The various parts of the constant are separated by plus signs.

Example:

¢/73T12+p/ALPHA + BETS, T30 + D/lO

Note that a plus sign is permitted in a parameter constant, but, since it

occurs between the slash and comma, it cannot be confused with the packed

constant indicator.

4-3/4-4

@ Computer and Data Systems 15090D

5. PSEUDO-INSTRUCTIONS

Any legitiITlate entry in the INST Field of the SOLOMON asseITlbly coding

forITl belongs to one of two clas ses: ITlachine instruction (executable during

run tiITle) and nonITlachine instruction. A nonITlachine instruction is called a

pseudo-instruction. These instructions are not executable by the asseITlbled

prograITl. Pseudo- instructions do not cause ITlachine instructions to be gen­

erated although ITlachine constant words ITlay be generated.

5.1 GENERAL

In what follows anything appearing in a box preceding the pseudo-instruc­

tion will appear in the location field, anything appearing in a box following the

pseudo-instruction will appear in the addres s field. All COITlITlas in pseudo­

instruction forITlats are critical, and ~ can be any legitiITlate forITl of an

address as defined in Section 3.

5.2 DETAILED INSTRUCTION DESCRIPTIONS

Location Instruction Address

LOC SEG START, END

The SEG (segITlent) pseudo-instruction is used to define the block of

ITleITlory and a tape record into which the prograITl is to fit. ST ART defines

the ITleITlory location of the first line of the prograITl, and END defines the

location of the last line. The value of the Location Counter will not exceed

the value of END, therefore, effectively reserving a block of ITleITlory size -

END locations.

If START and/ or END are left blank, then the following standard values

are assuITled by the asseITlbler:

If START = U , it is as SUITle d that ST ART = the lowe st available ITleITlory
location after allocation has been ITlade for the loading routine
and any constants needed by the prograITl.

~ 5-1 ® Computer and Data Systems -----------1-50-9-0-D

If END = U , it is as sUITled that END = the location of the ITlachine instruc­
tion preceding the next SEG or END pseudo-instruction.

The s iITlple st forITl of SEG is;

Location Instruction Address

SEG

Here ST ART and END = U, so the standard as sUITlptions will be ITlade and

END - START words is the segITlent length in ITleITlory and the record length

on tape.

There are three other ways SEG could appear, they are:

Location Instruction Addre s s
START I U

SEG START (i. e., END = U)

SEG START, END START I u
(i. e., END 'I U)

SEG , END START = U
(L eo, END 'I U)

LaC is norITlally blank but if an arguITlent appear s in the LOCATION Field,

this defines LaC = START

If no SEG card is used by the prograITlITler, then the as seITlbler will aSSUITle

an LSEG card (See LSEG)

Location Instruction

LaC LSEG

Address

START, END, TAPE #,
NAME, WHERE

LSEG (Load SegITlent) is the saITle as SEG except that it results in an auto­

ITlatic loading routine which will load the tape records into ITleITlory as opposed

to SEG where the prograITlITler is responsible for producing the loading rou­

tine. The three additional sub fields in the ADDRESS Field serve the fol-

lowing purposes:

TAPE # is the prograITlITler's tape nUITlber. If TAPE # = U, then SOITle

standard assuITlption is ITlade (e. go, Tape #1).

5-2 ® ------------ Computer and Data Systems Y:l 15090D

NAME is the identification label for each tape record so that by searching

the tape, the appropriate segment may be selected and read into memory. If

NAME = U, it is assumed to be 12 spaces.

WHERE is the location to which the machine transfer s for its next instruc­

tion after the tape record is loaded. If WHERE = U, it is assumed that

WHERE = START.

The following table summarizes the standard assumptions made if argu­

ments are blank.

IF

TAPE # = U

NAME = U

WHERE =U

THEN IT IS ASSUMED THAT

TAPE # = some established number such as TAPE #1

NAME = twelve blank spaces

WHERE = ST ART

EXAMPLES of possible LSEG pseudo-instructions

Location Instruction Address

LSEG

All standard assumptions are made (i. e. , ADDRESS Field contains 5 blanks

LESG 792, ALPHA, , , 1001

The segment will start at location 792 and end at location ALPHA

(which may have been previously defined or may be defined before the next

SEG or LSEG). The standard tape number will be assumed, the tape records

name will be U U U U U U U U U U U U , and a transfer is made to location

1001 after the tape is automatically loaded.

Location Instruction Addres s

LSEG , , , , 2000

All standard assumptions are made except that a transfer to location

2000 will take place after the tape is loaded into memory.

Location Instruction Address

NAME ARG

5- 3

@computerandOataSystems-----------1-50-9-0-D

In writing a prograITl which requires ITlany sYITlbols, the programITler's

ingenuity ITlay be taxed by having to invent ITlneITlonics which are both unique

and suggestive of their function in the program.

The pseudo-instruction NAME acts as a barrier in the prograITl on either

side of which the same syITlbol ITlay be used for a different address. Each

barrier defines a NaITle Block whose naITle is the sYITlbolic argument ARG

(eight characters or less) which precedes it.

Suppose, for example, a progranuner has written a prograITl with two

Name Blocks (two NAME pseudo-instructions) with names JOE and SAM and

he has used the symbolic argument DIST in each Name Block. If he is in

block SAM, he can refer to DIST as defined in block SAM by writing DIST 0

If he wishe s to refer to DIST as defined in block JOE, he ITlust write JOE.

DIST (i. e., DIST as defined in Name Block JOE).

His coding would be similar to the following:

Location

BETA

DELTA

ZETA

Instruction

NAME

ADD

NAME

MUL

ADD

Address

JOE

ALPHA,S; DIST

SAM

DIST; GAMMA, S

DIST; JOE DIST, S

NAME establishes a barrier between all symbolic addresses but not pro­

gram point and regional addresses. Furthermore, there is no intrinsic re­

lationship between NAME and SEG or LSEG.

Location Instruction Address

REG X, ARG, #

This pseudo instruction is used to define a region. This is done by assign­

ing the base (first line) of the region to a defined ITlemory location. The base

of region X is as signed to location ARG, the regions's 0 positiono # is the

nUITlber of lines in the region, if # = U, (i. e., contains a blank, the region

5-4 ® ------------ Computer and Data Systems Y:l
15090D

is unbounded). The region is referred to modulo #, except where # = U, when

the region is referred to modulo the memory size.

It must be kept in mind that a REG pseudo-instruction does not reserve

space in memory. If the program counter encounters the region while step­

ping through memory locations, it will continue to assign lines to the loca­

tions in the region. A regional address is defined if and only if the region in

question is defined by a REG pseudo-instruction.

Location Instruction Address

END

End of asseTIlbly. If no END card is used, the assembler will generate

one and an error indication will be given.

Location Ins truction Address

LOC BSS #

BSS (block started by symbol) is a way of reserving a number of consecu­

tive lines in a segment which will not have instructions placed in them (as

contrasted with REG).

If the prograTIlTIler, for example, needs to res erve the next 50 words,

he TIlay write

Location Instruction Address

BSS 50

When encountered, this instruction will cause the location counter to be

increased by (50) 10

If it is desired to give the naTIle ALPHA to the first word of the block, the

instruction can be written

Location Instruction Address

ALPHA BSS 50

With BSS, it is not possible to associate location symbols with any words

of the reserved block except the first word.

5-5

@computerandoataSystems-----------1-50-9-0-D

In general it can be said that when BSS is encountered during the assem­

bly, the LOCATION Counter is incremented by #, effectively skipping # con­

secutive memory locations. LOC is the name assigned to the first line of

the block.

Location Instruction Address

LOC BES #

A BES (block ending with symbol) pseudo-instruction is another way of

reserving a block of memory. The difference between BSS and BES is that

where LOC refers to the first line of the reserved block in a BSS; LOC refers

to the last line of the reserved block in a BES.

Location Instruction Address

LOC DEC #IS

DEC (decimal) causes the decimal numbers specified by # in the address

field to be converted to binary and assigned to successive locations beginning

with the current value of the Location Counter. If there is a symbol, LOC,

it is entered in the dictionary with the current value of the Location Counter 0

The first, (left most decimal number specified in the ADDRESS Field) can

be referred to by this location symbol.

EXAMPLE:

Suppose the value in the Location Counter is 3900 when the following in­

struction is encountered:

Location Instruction Address

ALPHA DEC 1,-3,5,7,9

The effect of this instruction is to enter the symbol ALPHA in the diction­

ary with the value 3900. The five integers I, -3, 5, 7, 9 are converted to bi­

nary and assigned to locations 3900, 3901, 3902, 3903, and 3904, respectively.

The value of the Location Counter upon completion will be (3905) 1 O.

lf the programmer wishes to use the decimal number 9 from the above

list as an argument in another instruction he can write

5_-_6 ___________ Computer and Data Systems t!:r
15090D \.:::J

Location Instruction Address

ADD ALPHA + 4; BETA

The deciITlal nUITlbers are separated by COITlITlas and are converted to

appropriate internal forITl (floating point or fixed point binary) and stored in

consecutive ITleITlory locations beginning with location LOC. The forITl in

which deciITlal nUITlbers ITlay be written is described under pool constants ex­

cept that the D/ is oITlitted.

Location Instruction Address

LOC OCT #'s

OCT is essentially the saITle as DEC in that a list of nUITlbers is converted

to binary and stored in consecutive ITleITlory locations starting with LOC.

However, there are four differences between DEC and OCT. In OCT;

a. Octal nUITlbers are used

b. All nUITlbers are fixed point

c. No exponentiation is used

do Fractions and negative nUITlbers are not allowed.

(Note: See Pool Constants, ¢/)

EXAMPLE 1

Location Ins truction

ALPHA OCT

Address

55T30

The octal nUITlber 55 would be stored in location ALPHA and terITlinate

at bit position 30.

Bit Position 0 1 2- - 25 26 27 28 29 30 - - 39

Value o 0 - - 1 0 1 1 0 1 - - - -

EXAMPLE 2

Location Instruction Address

GAMMA OCT 33T16, 472, 37Tll

This list would be stored as follows:

5-7

@computerandDataSYstems-----------1-50-9-0-D

Location Contents Final Bit Pos ition

GAMMA 011011 16

GAMMA + 1 100111010 39

GAMMA + 2 011111 11

Location Instruction Address

LOC HEX #'s

HEX is essentially the same as OCT, except that hexadecimal numbers

are used (Le., 0,1,2,3,4,5,6,7,8,9,J,K,L,M,N,<jS).

(Note: See Pool Constant, HI)

EXAMPLE 1

Location Instruction Address

BETA HEX ¢T31

The hexadecimal number would be stored in location BET A as follows:

Bit Position 0 1

Value

EXAMPLE 2

Location

DELTA

00-

28 29 30 31 - - - 39

1 1 1 1- o

Instruction

HEX

The list would be stored as follows:

Location Contents

DELTA 00111010

DELTA + 1 00011011

DELTA +2 01000100

Location Instruction

LOC ALPH

Address

3 J T 21, 1 K T 20, 44 T 33

Final Bit Position

21

10

33

Address

CHARACTERS $

Following the pseudo-instruction ALPH (alphanumeric) will be a sequence

of characters (including spaces) followed by a dollar sign ($). Each of these

characters except the $ will be changed to its standard 6- bit configuration

(output form) and each group of 6 characters stored in a 40 - bit memory

5-8 @
------------ Computer and Data Systems Y:!
15090D

location starting with bit No. 0 (i. e., left justified). The dollar sign, $,

marks the last character in the sequence and the rest of the line following $

may be used as usual, for comments. If the number of characters is not a

multiple of 6, the remainder of the list word will be filled on the right with

spaces. Continuation cards may be used.

Location Instruction Address

LOC ALPH 7 CHARACTERS

This instruction is identical to ALPH except that characters are changed

into the standard seven-bit configuration. This, of course, limits the pro­

grammer to 5 characters per word with 5 bits left over, but continuation

cards may be used.

Location Instruction Address

LOC TABLE #'s

5-9

@ Computer and Data Systems 15090D

TABLE is a way of composing a table of arbitrary terms. The first

word of the table is named by whatever appears in LaC.

The body of the table is made by converting the words, separated by

commas, from the ADDRESS Field into consecutive machine words. The

words in the ADDRESS Field are written in exactly the same form as pool

constants (q. v.) including the conversion indicator (B/, D., etc}o Packed con

stants are permitted as is pI. The constants appearing in the ADDRESS

Field of a TABLE pseudo-instruction are not pooled o

Continuation cards may be used.

Location Instruction Address

LaC LIB NAME

This instruction (Library Call), though listed among the pseudo­

instructions, is actually a hybrid in that it is converted to a running prograITl

instruction. At the end of an as sembly segment, this pseudo- instruction

(which may appear anywhere in the segment) calls subroutine NAME from the

library. The ps eudo-instruction is then converted to a subroutine call, which

is stored in location LaC, in the running program; it is the programmer IS

re sponsibility to fix the data, linkage, etc, for the subroutine calL

EXAMPLE:

Location Instruction Address

SIGMA LIB COSINE

Location Instruction Address

LIST

UNLIST

These two pseudo-instructions LIST and UNLIST will be discussed together

in that they are analogous to left and right hand parentheses around a block

of coding.

5-10 ~
-15-0-9-0D----------- Computer and Data Systems ~

All lines included between LIST and UNLIST, respectively, will appear

in the listing; all lines included between UNLIST and LIST, respectively, will

not appear in the listing. If no LIST or UNLIST cards are used by the pro­

grammer, then the assembler will assume a LIST card before the first word

of the program and an UNLIST card after END. In other words, the normal

mode of as sembI y is to produce a listing.

Included in a normal listing will be a print out of the symbol table follow­

ing the listing of lines of code. If END is within the scope of LIST (included

within the parentheses), the symbol table will be printed out. This, of

course, includes the case where no LIST or UNLIST cards are used.

If END is within the scope of UN LIST , the symbol table will not be printed

out.

EXAMPLE 1
Location

ALPHA

JOE

PETE

Instruction

ADD

UNLIST

SUB

ADD

LIST

END

Address

BET A;GAMMA, S

KAY;MARY, S

GAMMA;MARY, S

Lines JOE and PETE will not appear in the listing and the symbol table will

be printed out.

5-11
@computerandDataSYstems----------1-5-09-0-D

EXAMPLE 2

Location Instruction Addres s

FIRST LINE OF PROGRAM- ~

END

All lines and the syITlbol table will appear in the listing.

EXAMPLE 3

Location Instruction

First line of prograITl-------- UNLIST

SAM

SUM

LIST

MUL

SUB

UNLIST

END

Addres s

ZETA;IOTA

KAPPA;SAM

Lines SAM and SUM will be the only lines in the listing and the sYITlbol

table will not be printed out.

Location Instruction Address

SRLIST

In the norITlal asseITlbly ITlode, library subroutines do not appear in the

listing. If the prograITlITler desires to have subroutines listed, he can achiev

this by using the SRLIST (subroutine list) pseudo-instruction.

5-12 ~
~15~O~9~OD~---------- Computer and Data Systems \!J

EXAMPLE:

Location

ALPHA

Instruction

SRLIST

LIB

The subroutine for COSINE will appear in the listing.

Address

COSINE

SRLIST may appear anywhere in the program and will result in the listing

of all subroutines.

Location Instruction Address

DEF

By using a DEF (define symbol) pseudo- instruction, the programmer in­

structs the as sembler to assign all undefined symbols in the program to loca­

tions in memory immediately following the program.

It must be kept in mind by the programmer that if DEF is used, no error

indication will be given for the appearance of an undefined symbol in the

ADDRESS Field, since indeed there are no undefined symbols.

Location Instruction Address

LOC EQU ARG

The undefined symbol LOC is defined as equivalent to ARG. ARG may be

an absolute, regional, ,or symbolic address. If the programmer at any point

in the program realizes that memory locations may be conserved by assign­

ing two or more symbols to the same location at different points in the pro­

gram, he may use EQU.

Another example would be its use as a name for something, the precise

nature of which the programmer does not yet know. For example, he might

wish to refer to some instruction which he has not written down and does not

yet want to decide on the name of this instruction. He may be at a point

such that based on the result of a test, he wishes to assign the line to the

symbolic address GOOD or NOGOOD. The programmer can put (for example)

TEST in the LOCATION Field and later, when the result is known to him,

write:

~ 5-13 ® Computer and Data Systems --------------1-50-9-0-0

Location Instruction Address

NOGOOD EQU TEST

Location Instruction Address

ASSYLB NAME

If the programmer wishes to insert a program into the library, he must

use this pseudo-instruction as the first line of the programo The program

will be assembled into library format, added to the library, and given the

subroutine name NAME.

EXAMPLE:

A programmer may write a subroutine to extract a fifth root, and wants

to put it on the library tape. Assume he wants to name this subroutine

FIFRT; he would begin his program with:

Location Instruction Address

ASSYLB FIFRT

In all later as semblies (using this library), he may call this routine by

writing:

Location

LIB

Instruction

EXEC

FIFRT

Address

The assembled program will operate under an executive system. EXEC

must appear in the first line of the program.

Location Instruction Address

LANDGO

A LANDGO (load and go) pseudo-instruction will cause the execution of

the running program immediately following as sembly, provided no serious

errors are detected.

Only one of the pseudo-instructions ASSYLB, EXEC, or LANDGO ITlay

appear in a program, and if one does appear, it ITlust be the fir st card of

5-14 @
-------------- Computer and Data Systems Y:! 15090D

such a progra:m. Certain other pseudo-instructions which :must be "at the

beginning of a progra:m" follow one of the above three, but :must precede any

nonps eudo- instruction.

Location Instruction Address

LON

This pseudo-instruction will result in the production of a listing only,

(no :machine code output fro:m the asse:mbly). LON (listing only) ignores UN­

LIST and will list the na:mes of subroutines called but will not actually call

the:m. LON is used by the progra:m:mer for debugging.

If during the asse:mbly an error indication is given which results in a line

being treated as a co:m:ment (see Section 2), then the re:mainder of the as se:m­

bly will be as if a LON pseudo-instruction were inserted after the error in­

dication. This feature is desirable because an error resulting in a line being

treated as a co:m:ment generally generates addit~onal errors in the progra:m,

which :makes output unusable.

Even though LON produces an exact listing of lines of code, the line con­

taining LON itself will be slightly altered in the listing. The line containing

LON will appear in the listing with an X in its T field. This is necessary

because if the listing, at som.e later ti:me, is used as input, the line contain­

ing LON :must be ignored by the assembler or no output will result. Since

an X in the T field :means, "ignore this line," it is auto:matically affixed to a

LON pseudo-instruction after the first ti:me the asse:mbler encounters it.

The progra:m:mer writes:

T Location Instruction Address

LON

but sees in the listing:

T Location Ins truction Address

X LON

Location Ins truction Address

TRACE

5-15

@computerandDataSYstems-----------1-50-9-0-D

The effect of TRACE is that each instruction in the running progra:m, its

location, the contents of all affected registers, etc, will be put out on tape.

Tracing is used as a debugging technique. Inasmuch as subroutines are

assu:med to be debugged, TRACE will not trace a subroutine o

Just as in the case of LON, an X is inserted by the assembler in the T

field of a line containing TRACE. That is:

T Location Instruction Address

TRACE

will appear in the listing as:

T Location Instruction Address

X TRACE

Location Instruction Address

UNTRACE

This is the counter instruction for TRACE, (if the programmer wishes to

trace only a block of lines, bracketing these lines between a TRACE and an

UNTRACE results in the desired operation) 0

Just as in the case of LON, an X is inserted by the assembler in the T

field of a line containing UNTRACE.

EXAMPLE:

T Location Instruction Address

ALPHA

BETA

TRACE

ADD

MUL

UNTRACE

JILL;JACK, S

DELT A;SAM, S

Lines ALPHA and BETA will be traced and the listing of these lines will

be:

T Location Instruction Addre s s

X

ALPHA

BETA

TRACE

ADD

MUL

UNTRACE

JILL;JACK, S

DELTA;SAM, S

X

5-16

------------ Computer and Data Systems 'Yi'
15090D ~

Location Instruction Address

FILL CHARACTERS

A forward sequence break (see paragraph 1.2.2) causes the program

counter to skip over a block of memory locations. The programmer may fill

these locations as he wishes with a FILL pseudo-instruction.

FILL, is followed by anyone of, but not a com.bination of, these 3 pool

constants; ¢/, B/, or HI (see Section 4) which are assembled into a 40-bit

binary word and stored in a special memory location in the assembler which

could be called word FILL. Now, every time a forward program break in­

struction is encountered, all of the skipped locations will be filled with the

current value of FILL.

EXAMPLE:

Assume the programmer wishes to fill all skipped memory locations with

ones; in the beginning of his prograrn he would write

Location Instruction Address

FILL B/I. 40

If a BSS pseudo-instruction is wanted to increment the program counter

by 10 and the programmer wiShes to fill the first 5 skipped locations with

zeroes and the last five with l' s, he must use 2 BSS instructions and change

the current value of FILL. His coding would appear as follows:

Location Instruction Address

FILL B/o.40

ALPHA BSS 5

FILL B/I. 40

BETA BSS 5

Location Instruction Address

PATCH Tape Unit, START,
END

~ 5-17
~ Computer and Data Systems ----------1-5-09-0-n

PATCH {Combine Patches of tape records} enables the programmer to

use as assembler input parts of previously taped programs.

Assume, for example, a programmer wishes to assemble a 300-line pro­

gram, the first 100 lines of which are new coding, the next 100 lines are

identical to lines 233 through 332 of a previously assembled program, the

next 50 lines 128 through 177 of another previously assembled program.

As sume that the 2 previous tapes are mounted on tape units land 2; then the

card reader would read the following code:

Location

FIRST

FIRST

FIRST + 99

NEXT

NEXT + 1

NEXT + 49

Instruction

PATCH

PATCH

END

Address

1,233,332

2,128,177

Blocks of lines can be patched in any order (a block of lines 326 through

409 can be called before a block from the same tape, lines 25 through 48,

and there is no limit to the number of times patches may be read from a tape)

5-18 ~
~15~0~90~D~---------- Computer and Data Systems ~

If a single line is to be patched then START = END = desired line in the

pseudo- instruction.

When the cards with collated patches are all written onto the listing tape,

PATCH pseudo-instructions will appear with X in the Type Field o

Location Instruction Address

CARDS n

If a CARDS pseudo-instruction card is inserted at the beginning of the

card de ck, the prog ram will as semble 2 to 3 time s faster.

CARDS pseudo-instructions will appear in the listing with an X in the

Type Field.

When a CARDS pseudo-instruction is used, the assembly system uses two

or more tapes for output from the read-in phase of assembly. Each tape

contains the information from an approximately equal number of cards. Re­

winding of the first tapes written can then proceed concurrent with writing of

later tapes.

5.3 SUMMARY OF PSEUDO-INSTRUCTION CODES

SEG Segment

LSEG Load Segment

NAME Name

REG Region

END End

BSS Block Started by Symbol

BES Block Ended by Symbol

DEC Decimal

OCT Octal

HEX Hexadecimal

ALPH Al phanume ric, 6 bits

ALPH 7 Al phanume ric 6 bits per character

TABLE Table

FILL Word Fill

EXEC Executive System

5-19

@computerandDataSystems-----------1-50-9-O-D

DNTRACE Will not Trace

TRACE Trace

LANDGO Load and Go

LON List Only

ASSYLB As seITlble into Library

EQD Equivalent

DEF Define

SRLIST Subroutine Listing

LIST Make Listing

DNLIST Make no Listing

LIB Library Call

PATCH Patch

CARDS Cards

5-20 ~
':""15~0~9~OD~---------- Computer and Data Systems ~

J~a67?~dy

	000
	001
	002
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20

