Technical Manual

DRAM512/2M

512Kbyte/2Mbyte DYNAMIC MEMORY MODULE
 for the VMEbus

Revision B

Second Edition
Copyright 1985 by VMEspecialists

The VMEspecialists DRAM512/2M (figure 1) is a series of highperformance dynamic RAM memory modules fully compatible with the VMEbus. These memory modules have the following features:

8, 16, and 32 bit data transfers
24 and 32 bit addressing
512 Kbyte (using 64K DRAMS) and 2 Mbyte (256K DRAMS) capacities
Data retention on power fail
Byte parity
Programmable interrupter
Error logging
Provisions for field upgrade to 2 Mbytes through device replacement/jumper change

Write/read access times: 215/255 ns. typ.

The memory module is constructed on a four layer printed circuit board. Extensive use is made of programmable logic and under the chip, low inductance capacitors. Machine screw sockets are optionally available for memory devices of the DRAM512. With this option, the board can be upgraded in the field to 2 Megabytes.

This series of high performance memory modules are exceptionally well suited for providing economical and reliable, high capacity, general purpose memory for VME-based computer systems.
2. Part Numbers

512Kbyte, 64K RAMS, memories in machine screw sockets: DRAM512-S 512Kbyte, 64K RAMS, without memory sockets: DRAM512-NS

2Mbyte, 256 K RAMS, memories in machine screw sockets: DRAM2M
3. Greetings

All of us at VMEspecialists extend our welcome to you as you join our growing family of customers. We sincerely believe that product support is a crucial element of the product you have purchased. Please do not hesitate to contact us for applications assistance. Of course, the product manual is the most concise and accurate reference and careful attention here will in most instances prepare you for an easy and uneventful installation.


```
Capacity: 512k bytes (with 64k RAMS)
    2M bytes (with 256k RAMS)
Word size: 8, 16, 32 bits
Addressing range: 24 or 32 bits of address (as set by address modifier)
Addressing: In units of board capacity (memory)
In 256 byte increments (control and status)
Error detection: Byte parity (odd)
Access time: 215 ns. typ. (write)
255 ns. typ. (read)
Minimum cycle time: 333 ns. (write)
    460 ns. (read)
    Address and cycle times given above assume a minimum
    time interval between address and data strobes.
Refresh: Automatic, and transparent to user
One 292 ns. cycle approx. every }14\mathrm{ microseconds.
Form factor: VME double height
VME compatibility: SLAVE DATA TRANSFER:
    Memory -- A32, D32 SLAVE
    Control registers: A16, D8 SILAVE
    INTERRUPTER: ANY ONE OF I(k) k=1..7 (STAT)
    PHYSICAL CONFIGURATION: EXP
Operating modes: Memory read/write/read-modify-write
    Refresh
    Interrupt
    write interrupt vector
    read error log
    write control register
Environmental: Operating temperature: O to 55 degrees C
Storage temperature: -40 to 80 degrees C
Operating humidity: 0 to 90% (no condensation)
Storage humidity: 0 to 90% (no condensation)
Operating altizuce: -1000 to 10,000 feet ASL
Storage altitude: -1000 to 20,000 feet ASL
Vibration: Nornal streises of transport
```

Module configured for data retention during power fail:
Standby: 900 mA MAX (675 mA TYP) at +5 SB 2.0 A MAX (1.4 A TYP) at +5 , not required for data retention

Active reading/writing:
1.5 A MAX at +5SB (frequent 16 bit xfrs)
1.2 A TYP at +5SB (1 Mhz. 16 bit
transfers)
2.0 A MAX (1.4 A TYP) at +5 VDC

Module not configured for retention during power fail:
Standby:
2.9 A MAX (2.1 A TYP) at +5 VDC

Active reading/writing:

> 4.4 A MAX at +5 VDC (max rate 32 bit transfers)
> 2.6 A TYP at +5 VDC, 1 Mhz; 16 bit data transfers

SIZE:

WEIGHT:
262 mm. high, 20 mm . wide, 180 mm . deep (viewed from front panel)
$0.52 \mathrm{Kg}, 1.15$ pounds.

6. Installation and Jumper Options

Prior to installation, the board options must be configured by way of jumpers. Options include memory and I/O register addressing, interrupt level selection, and RAM power source selection. In addition, it may be necessary to jumper the VME backplane to insure proper continuity of the interrupt acknowledge daisy chain. Refer to figure 2 for assistance in locating jumper positions.

6.1 Memory addressing

For boards of 2Mbyte capacity, REMOVE jumpers: C1
C2
C6
C7
For boards of 512 Kbyte capacity, INSERT jumpers: C6
C7

Memory modules are addressed in units of board capacity. For 512 K boards addressing is based on the values of A19-A31, and for 2Mbyte boards, addressing is based on A21-A31. Address lines are mapped to jumper positions as follows:

A19.... C1	A24 D1
A20 C2	A25 D2
A21 C3	A26 D3
A22 C4	A27 D4
A23 C5	A28 D5
	A29 D6
	A30 D7
	A31 D8

For those systems which are limited entirely to 24bits of address generation, D1-D8 may be ignored. An inserted jumper selects a corresponding address value of "0", a removed jumper selects "1". Boards are ordinarily shipped with a starting address of HEX 000000.

EXAMPLE: 512 Kbyte module, starting address of 00200000 hex:

6.2 Control Register Addressing

The control registers include the interrupt vector register, three error logging registers, and the mode control register. These are accessed using the supervisory short I/0 transfer (16 bits of address). These registers may be entirely neglected if the user does nct desire interrupts on error. However, it is important to be sure that there is no conflict with short I/O addresses of other modules in the VMEsystem.

Memory modules have been configured at the factory for a base I/0 address of FFOO hex. The module occupies 256 bytes of I/0 space.

Select a short I/O base address using jumpers B1-B8:
A15 B7

A14.... B6
A13.... B5
A12.... B4
A11 B3
A10 B2
A9 B1
A8 B8
An inserted jumper selects a corresponding address value of "0", an absent jumper selects "1".

EXAMPLE: Select an I/O base address of 4E00.

Jumper B
A11 . . 3
A10 . . 2
A12 ... 4 The ordering at left matches the A9 .- 1 ordering of jumpers on the board A13 ... 5 from top to bottom.
A14 .-. 6
A15 . . 7
A8 .-. 8
6.3 Interrupt Level Selection

If interrupt capability is desired, it is necessary to jumper a reauest level and an IDENTICAL acknowledge level. Interrupt levels range from 1 to 7, with level 7 having highest priority. Your board has been configured at the factory for interrupt level 6.

Jumper the request level with jumper group A. Wire-wrap a jumper from post "A" to the number of the corresponding interrupt level.

EXAMPLE: Use request level 4.

Use the following table to jumper the corresponding acknowledge level on jumper group E:

Interrupt Level	E1	E2	E3	
1	OUT	IN	IN	
2	IN	OUT	IN	The sequence of
3	OUT	OUT	IN	jumpers on your
4	IN	IN	OUT	board is, from top
5	OUT	IN	OUT	to bottom: E3
6	IN	OUT	OUT	E2
7	OUT	OUT	OUT	E1

6.4 RAM Power Strapping

The VMEbus provides for an optional +5 V standby power supply which can be used to maintain functions such as Time of Day clocks and non-volatile memories. There is a 1.5 Amp limit to the current any single card can draw from that supply. In systems which do not perform longword (32 bit) transfers, the RAM current draw on this dynamic memory board will meet those requirements and those users may choose to power the RAM chips and associated circuitry necessary for data retention from the standby power source. The factory wired configuration uses only the main +5 V . source.

To use the +5V STANDBY power supply: JUMPER W2, REMOVE W1 and W1A.
To power the entire module from the normal +5 V source: JUMPER W1, W1A. REMOVE W2.

6.5 BERR* Assertion Option

As provided by the factory, BERR* is asserted only on an illegal longword transfer. Parity errors result in the generation of interrupts when interrupts are enabled. In this configuration, jumper W3 must be OUT.

You have the option of asserting BERR* on illegal transers or on parity errors. In this case, INSERT W3 and replace the socketed device at location 19B (part number 0204-0003) with part number 0204-0007. Because the cycle acknowledgement must now be delayed until the computation of the parity, this configuration delays the read access time by 80 ns.

6.6 Installation in a VMEsystem

The dynamic memory module connects all bus grants in to the corresponding bus grants out. It remains necessary to be sure of the following:
[1] The slot occupied by this module must have the interrupt acknowledge daisy chain jumper (P1-21A, P1-22A) removed.
[2] All empty slots in the system should provide continuity of the interrupt acknowledge and bus grant daisy chains:

IUMPER ON EMPTY SLOTS, P1 CONNECTOR: 21A-22A IACK
4B-5B BGO
6B-7B BG1
8B-9B BG2
10B-11B BG3

7. Theory of Operation

The memory array is organized as four banks of 64 K (256K) by 18 bits. All memory devices share the same CAS/ address strobe, but there are four RAS/ lines, corresponding to the four banks. During a refresh operation, all four RAS/ lines act in unison. During a byte or word read, only one RAS/ is active and during a longword read, two RAS/ lines are active, to enable a full 36 bit transfer. Writes proceed similarly, except that there are two $W /$ write enable lines, one dedicated to the high byte, and one to the low byte. In this way, high byte, low byte, word, and longword writes are all possible through a combination of RAS/ and W/ signals (figure 3). CAS/ is, of course, active on every cycle except refesh. Those devices which are not selected see a CAS/ ONLY cycle which, in contrast to the RAS/ ONLY cycle, draws no added supply current.

Memory reads or writes are disabled on reset, or when the supply voltage drops below approximately 4.5 V . This minimum voltage for initiating a memory transfer is determined by the zener diode CR1. Transistor 01 provides current gain and correspondingly higher sensitivity to variations in the supply voltage.

Extensive use is made of programmable logic for control and timing. Central to timing of the dynamic memories is a state machine, the device at 19B, clocked at 24 Mhz , which generates such signals as RAS/, CAS/, ROW ADDRESS ENABLE/, COL ADDRESS ENABLE/, RDERR/ (Parity error on memory read), REFRESH/, and DTACK*. Another programmable device at location 5A decodes address modifiers and signals when a memory transfer request: MREQ/ or a control transfer IORQ/ is in progress.

The module responds to memory transfer requests within any selected contiguous 512 or 2048 Kbyte block within a 4 Gbyte total address space. During short I/O control transfers, the module responds to any selected 256 byte block within the 64 Kbyte I/O space.

7.1 Modes of Operation

The memory module is capable of the following functions:

```
Memory read: Byte/Word/Longword
Memory write: Byte/Word/Longword
Memory read-modify-write: Byte/Word/Longword
Refresh
Interrupt
Control register write
Error logging register read
Interrupt vector write
```

All these functions occur in response to commands on the VMEbus except for refresh, which is automatically performed approximately once every 14 microseconds. While a refresh is in progress, requests for memory read or write will be held off until the refresh cycle is complete. During a refresh cycle, one row of all 72 dyanmic RAMS is recharged with a RAS/ only cycle.

Even Word	Odd Word
Address	Address

Even Byte	Odd Byte	Even Byte		
Address	Address	Address	\quad	Odd Byte
:---:				
Address				

D31	C23	D15	D07	D00
	RAS2	RAS1	A18 $=0$	
RAS4	RAS3	A18 $=1$		

W2 W1 W2 W1
Byte Adr XX..X00 XX..X01 XX..X10 XX..X11

BYTE ACCESS

LWORD*	high	high	high	high
AO1	low	low	high	high
DS1*	low	high	low	high
DSO*	high	low	high	low

WORD ACCESS

LWORD*	high		
A01	high		
DS1*	low	high	
DSO*	low	NOTE 1	low

LONGWORD ACCESS

LWORD*	low			
AO1	low	NOTE 2	NOTE 2	NOTE 2
DS1*	low			
DSO*	low			

NOTES:

1. Not legal to access 16 bits of data at an odd byte address
2. Not legal to access 32 bits of data at odd byte or word addresses

Figure 3. Byte, Word, and Longword Addressing

7.2 Error Logging

When a parity error occurs on memory read, and interrupts have been enabled, the memory module generates an interrupt request on the preselected level and latches the offending address into a set of error logging registers which may be read at a later time for diagnostic purposes.

The three error logging registers are accessable through supervisory short-1/0 byte reads. Their addresses (relative to the I/O BASE address defined in section 6.2) and contents are as follows:

ADDRL at address $1 / 0$ BASE +5

A6	A5	A4	A3	A2	A1	DS1/	DS0/

ADDRM at address I/O BASE +3

A14	A13	A12	A11	A10	A9	A8	A7

ADDRH at address I/O BASE + 1

LWORD/ A21	A20	A19	A18	A17	A16	A15

7.3 Using the Control Register

The control register provides programmable control over interrupt enable and self-test functions. It is accessed by supervisory short I/0 byte writes to the I/0 base address (section 6.2) plus an offset of 3 .

x	x	x	x	x	x	IE	FERR

X Don't Care
IE 1: Enable interrupts
0: Disable interrupts
On reset, interrupts are disabled
FERR 1: Force a parity error on subsequent memory reads
0 : No forced parity errors (normal operating mode)
on reset, the module returns to normal mode

The FERR capability aids in the testing of interrupt service software. It can also be used to test the board's interrupter and error logger.

7.4 Defining an Interrupt Vector

The interrupt vector resides in an on-board register. The vector value (0 to 255) may be specified dynamically through supervisory short I/0 byte writes to the I/O base address (section 6.2) plus an offset of 1.

7.5 Address Modifier Codes

The memory module fully decodes the address modifier lines, and responds to those listed below:

Codes for memory read/write:
3E Standard supervisory program access
3D Standard supervisory data access
3A Standard non-privileged program access
39 Standard non-privileged data access
OE Extended supervisory program access
OD Extended supervisory data access
OA Extended non-privileged program access
09 Extended non-privileged data access

Code for control register read/write:
2D Short supervisory I/O access

Short address uses 15 address lines (A01-A15)
Standard address uses 23 address lines (A01-A23)
Extended address uses 31 address lines (A01-A31)

7.6 Locating a failed RAM device

After an initial period of test, modern dynamic memory devices are remarkably reliable. The most common cause of failure is incorrect insertion into the socket, but devices can also be damaged by electrostatic charges and improper handling. Other possible causes of damage include operation at excessive temperatures or supply voltages. The table below will help in identifying the damaged device.

$$
\text { DATA BIT IN ERROR } \quad \text { A18 }=0 \quad \text { A18 }=1
$$

31	$21 C$	$20 C$
30	$19 C$	$18 C$
29	$19 D$	$18 D$
28	$19 E$	$18 E$
27	$19 F$	$18 F$
26	$21 F$	$20 F$
25	$21 E$	$20 E$
24	$21 D$	$20 D$
23	$17 E$	$16 E$
22	$17 F$	$16 F$
21	$15 E$	$14 E$
20	$17 D$	$16 D$
19	$17 C$	$16 C$
18	$15 C$	$14 C$
17	$15 D$	$14 D$
16	$15 F$	$14 F$
15	$6 F$	$5 F$
14	$6 E$	$5 E$
13	$6 D$	$5 D$
12	$6 C$	$5 C$
11	$4 E$	$3 E$
10	$4 C$	$3 C$
9	$4 D$	$3 D$
8	$4 F$	$3 F$
7	$11 F$	$10 F$
6	$13 F$	$12 F$
5	$13 C$	$12 C$
4	$11 D$	$10 D$
3	$11 E$	$10 E$
2	$11 C$	$10 C$
1	$13 D$	$12 D$
0	$13 E$	$12 E$

PARITY BITS:

DO-D7	$8 D$	$7 D$
D8-D15	$8 C$	$7 C$
D16-D23	$8 E$	$7 E$
D24-D31	$8 F$	$7 F$

8. VMEbus Interface Signals

P1 Connector Assignments:

PIN NUMBER	ROW A SIGNAL MNEMONIC	ROW B SIGNAL MNEMONIC	ROW C SIGNAL MNEMONIC
1	D00	BBSY*	D08
2	D01	BCLR*	D09
3	D02	ACFAIL*	D10
4	D03	BGOIN*	D11
5	D04	BGOOUT*	D12
6	D05	BG1IN*	D13
7	D06	BG10UT*	D14
8	D07	BG2IN*	D15
9	GND	BG20UT*	GND
10	SYSCLK	BG3IN*	SYSFAIL*
11	GND	BG30UT*	BERR*
12	DS1*	BRO*	SYSRESET*
13	DS0*	BR1*	LWORD*
14	WRITE*	BR2*	AM5
15	GND	BR3*	A23
16	DTACK*	AMO	A22
17	GND	AM1	A21
18	AS*	AM2	A20
19	GND	AM3	A 19
20	IACK*	GND	A18
21	IACKIN*	SERCLK	A17
22	IACKOUT*	SERDAT	A16
23	AM4	GND	A15
24	A07	IRQ7*	A14
25	A06	IRQ6*	A13
26	A05	IRQ5*	A12
27	A04	IRQ4*	A11
28	A03	IRQ3*	A10
29	A02	IR02*	A09
30	A01	IR0.1*	A08
31	-12V	+5 STIBY	+12V
32	+5V	+5V	+5V

Notes:
BGIN lines are connected to BGOUT lines on board The following lines are not used: BRSY*, BCLR*, ACFAIL*, SYSFAIL*, BRO*, BR1*, BR2*, BR3*, SERCLK, SERDAT, $-12 \mathrm{~V},+12 \mathrm{~V}$

P2 Connector Pin Assignments:

PIN NUMBER	ROW B SIGNAL MNEMONIC
2	+5V
3	GND
4	RESERVED
5	A24
6	A25
7	A26
8	A27
9	A28
10	A29
11	A30
12	A31
13	GND
14	$+5 V$
15	D16
16	D17
17	D18
18	D19
19	D20
20	D21
21	D22
22	D23
23	GND
24	D24
25	D25
26	D26
27	D27
28	D28
29	D29
30	D30
31	D31
32	GND
	$+5 V$

Notes: Rows A and C are not used.

"×" painito on no toonu citanmonin.

