
G ENE R A L
REFERENCE
MANUAL

U P-3853

This manual is published by the UNIVAC@Division in loose leaf format as
a rapid and complete means of keeping recipients apprised of UNIVAC
Systems developments. The UNIVAC Division will issue updating packages,
utilizing primarily a page-for-page or unit replacement technique. Such
issuance will provide notification of hardware and/or software changes
and refinements. The UNIVAC Division reserves the right to make such
additions, corrections, and/or deletions as, in the judgment of the UNIVAC
Division, are required by the development of its respective Systems.

@ REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1963 • SPERRY RAND CORPORATION

PRINT ED IN U.S.A.

UNIVAC III
UTMOST GENERAL REFERENCE MANUAL UP 3853

SECTION

Section 6
Section 7
Section 8

UPDATING PACKAGE A

1 thru 7
1 thru 4
1 thru 39

December 3, 1963

The first addition to the "UTMOST Composite Manual," UP 3853 is Section 6 -
"Variable Connectors," and suggestions on the use of UNIVAC III System for
variable connectors are contained herein.

Since many programs involve looking up information in the memory, Section 7
"Table Lookup" covers possible table lookup techniques. As an introduction to
this subject, an example table lookup illustration is given.

Section 8 - "UTMOST," details the advanced features of the UTMOST Assembler.
Of special note is the portion on the assembler directive PROC (pages 8-24 to
8-39), specifying how to construct and reference a procedure.

Place the5e pages in the manual in sequence of section numbers. For reference
purposes, place this page directly after INDEX, until revised INDEX is issued.

UNI VAC I II March 9, 1964
UTMOST General Reference Manual, UP-3853

UPDATING PACKAGE "B"

The attached 79 pages contain additions to "UTMOST General Reference Manual",
UP-3853.

This updating package should be utilized in the following manner:

Insert After
Title Pages TAB Labeled

ITEM LEVEL
SECTION 9 Tape File Handling 1 - 55 TAPE FILE HANDLING

SECTION 13 Symbionts 1 - 24 SYMBIONTS

Please notice that no destruction is necessary with this updating package.

UNIVAC III September 29, 1964
UTMOST General References Manual, UP3853

Updating Package "C"

This bulletin announces the release and availability of Updating
Package "C" for the UTMOST General Reference Manual, UP3853, 49 pages.
The pages should be utilized in the following manner:

Destroy Former
Pages Numbered

Section 17-F N.A.

File New
Pages Numbered

1 - 49 *

* These pages should be filed after the tab labeled INPUT/CUTPUT.

UNIVAC III December 10. 1064
UTMOST General Reference Manual, UP 3853

UPDATING PACKAGE "D"

The attached material represents additions and changes for the UNIVAC III UTMOST
General Reference Manual, UP 3853, and should be utilized in the follow~na
manner:

Table of Contents

Section 2-A

Section 5

Appendix E

DESTROY FORMER
PAGES NUIv1BERED

N.A.

21 and 22

5 and 6

N.A.

FILE NEW PAGES
NUMBERED

1 - 13

21 and 22 Rev.l

5 and 6 Rev.l

1 - 3

UP-3853 UNIVA~ III UTIVI05T Lon renrs

SECTION: PAGE:
--____ ~ _____________________L_ _____ __1. _____ ___J __ o ___ , ___ ~_

CONTENTS

l. INTRODUCTION

A. Re lation of UTMOST System to UNIVAC III

B. Programming Languages

C. Principal and Symbiont Programs

2. BASIC PRINCIPLES 2-A-l to 2-C-9

A. Introduction to Computer Data Processing 2-A-l to 2-A-21

B. Introduction to Programm ing 2-B-1 to 2-B-39

C. Introduction to Flowcharting 2-C-l to 2-C-9

D. The UNIVAC III Central Processor

3. EDITING 3-1 to 3-14

A. Shift Instructions 3-1 to 3-3

B. Logical Operation Instructions 3-4

C. Indirect Addressing 3-5

D. Field Selection 3-6 to 3-9

E. The Load Field Instruction 3-10

F. Example 3-11

G. Flowchart 3-12

H. Cod i ng 3-13

I. Student Exercise 3-14

4. INDEX REGISTERS 4-1 to 4-16

A. Example 4-5

B. Coding 4-5 to 4-7

C. F low c h art 4-8 to 4-10

D. Student Exercise 4-10

E. Iterative Versus Straightline Coding 4-10

F. Modular Addressing 4-11 to 4-16

Con tents 2 UNIVAC III UTMOST UP-3853
SECTION: PAGE:

5. SUBROUTINES 5-1 to 5-9

A. Subroutine Flowchart Symbols 5-4

B. Example 5-5

C. Flowchart 5-5

D. Cod i n g 5-6

E. Flowchart Field Notation 5-7 to 5-9

6. VARIABLE CONNECTORS 6-1 to 6-7

A. Example 6-2

B. Flowchart 6-3 to 6-4

C. Coding 6-5 to 6-6

D. Student Exercise 6-7

7. TAB L E L 00 K -U p 7-1 to 7-4

A. Example 7-1

B. Flowchart 7-2

C. Coding 7-3

8. UTMOST 8-1 to 8-39

A. Example 8-1 to 8-2

B. Flowchart 8-2

C. Coding 8-3

D. La be Is 8-4 to 8-6

E. Definition of Terms 8-7

F. Operators 8-7

G. The USE Directive 8-8 to 8-9

H. Student Exercise 8-9

I. Indirect Addressing 8-10

J. Student Exercise 8-10

K. Literals 8-11 to 8-12

L. Student Exercise 8-12

M. The END Directive 8-13

N. Line Control 8-13 to 8-14

O. Other Units 8-14

P. Two Word Constants 8-14 to 8-16

Q. Multiple Word Constants 8-16

R. Other Operators 8-16 to 8-20

S. Other Assembler Directives 8-21 to 8-24

T. Procedures 8-24 to 8-31

U. Example 8-32 to 8-39

UP-3853 UNIVAC III UTMDST

SA. DETAILS OF UTMOST

A.

B.

C.

Coding

1. Label Field

2. Operation Field

3. Operand Field

4. Line Control

Data Expressions

l. Decimal

2. Floating Decimal

3. Oc ta I

4. Alphabetic

Program Instructions

1.

2.

3.

4.

Format

a. Instruction Word

b. Type 0 Instructions

c. Type 1 Instructions

Operators and Expression Arithmetic

Working Registers and Computer Indicators

a. Arithmetic Registers

b. Index Registers

c. Increment and Compare Control Word

d. Computer Indicator Designation

1. Less than, Equal, and Greater than

2. Arithmetic Register Sign

3. Sense Indicators

Instruction Address

a. Label

b. Reflexive

c. Implied

d. Program Independent

e. Multiword

f. Shift Count Designation

g. Computer Control Word Designation

(1) Indirect Address Control Word

(a) Explicit

(b) Implied

Contents 3
SECTION: PAGE:

Contents 4
;ECTION: PAGE:

D.

UNIVAC III UTMOST

(2) Field Select Control Word

(a) Explicit

(b) Implied - FLO Directive

5. Ass i g n men t 0 f C 0 v e r in gin de x Reg is te r s

a. Address Components

b. UTMOST Handling of Addresses

c. USE 0 irective

d. SET Directive

6. Assembly Directives - Basic

a. DO

b. END

c. EQ U

d. FLO

e. FORM

f. GO

g. ICW

h. LIST

i. NACL

j. NAME

k. PROC

i. RES

m. SE T

n. TWC

o. USE

p. Implied Directives

(1) I C Was Imp lie d Con s ta n t

(2) Indirect Address Control Word

(3) Field Select Control Word

Procedures

l. Definition

a. PROC Directive

b. NAME Directive

c. Procedure Parameters

d. GO Directive

e. DO Directive

f. END Directive

2. Utilization

UP-3853

UP-3853 UNIVAC III UTMOST

9. TAPE FILE HANDLI NG

A. Overflow

B. I n val i d 0 p e ra t ion

C. Console Typeouts

D. Console Typeins

E. The UNISERVO IliA Tape Unit

F. Tape Handling

G. End of Job

H. Covering Input/Output Areas

I. Master File Handling

J. Label Handling

K. Processor Errors

L. Re run

9A. OBJ ECT PROGRAM STRUCTURE

A. Da ta Stora ge

1. RES Directive

2. EQU Directive

B. END Directive

C. Segmentation

l. Organization of Program

2. Simple Program

3. Compound Program

a. Main Program

b. Sub-program

4. Complex Program

a. Complete Overlay

b. Partial Overlay

(1) Retention of Control

(2) Transfer of Control

c. Chaining

5. Library Routines

Contents
SECTION: PAG

9-1 to 9-55

9-1 to 9-2

9-2

9-3 to 9-9

9-10 to 9-12

9-13 to 9-16

9-17 to 9-28

9-29 to 9-32

9-33 to 9-36

9-37 to 9-42

9-43 to 9-54

9-54

9-55

Contents 6 UNIVAC III UTMOST
SEC TION: PAGE:

10. PROGRAM CONTROL

A. Overflow

B. Invalid Operation

C. Typewriter Control

1. Typeout

2. Typein

D. Processor Errors

E. Termination - End of Job

11. ITEM LEVEL-TAPE FILE HANDLING

A. Fixed Size Item Handling - ITEMI02

1. Tap e For mats

2. File Description Table

3. Storage Area

a. Pool Control Packet

b. BUFC

4. Calling Sequences

5. Significance of Write-Read

6. Label Checking

7. Checkpoint - Rerun Dumps

B. Variable Size Item Handling VITEMIO

1. Tape Formats

2. File Description Table

3. Storage Areas

4. Calling Sequences

5. Write-Read, Label Checking, and Checkpoint

C. File Call Procedures

D. File Handling and Tape Assignment

12. SORT/MERGE

A. Sort

B. Merge

13. SYMBIONTS

A. Magnetic Tape Computer With Offline Peripheral
Operations

B. Nonconcurrent Computers With Online Peripherals

13-1 to 13-24

13-1 to 13-2

13-3 to 13-4

UP-3853

UP-3853 UNIVAC III UTMOST

C. Concurrent Processing Computers

D. Concurrent Processing on the UNIVAC III \

E. The Card to Tape Symbiont

F. The Tape to Printer Symbiont

13A. CONTROL ROUTINES

A. Ge ne ra I

B. Control of Programs

1. Tape Assignment

2. End of Processing and Chaining of Control Routines

3. Control Items Common to the Control Routines

4. Preparation of Control Tape

5. Alternate Modes of Operation

C. UPCO

1. Control Items

2. Library Creation and Maintenance

a. E Ie men ts

b. Groups

D. ACCO

1. Control Items

2. Simple Assemblies

3. Use of Library Input

4. Library Building

5. Stacked Assemblies

E. DECO

1. Control Items

2. Overlays

F. System Organization

G. S y s te m S y m b ion ts

1. Card to Presto Tape

a. PRESTO

b. PREST90

2. Lis t! Pun c h Tape

a. To Print - TPRS

b. To 80 Col. Card - T PC S

c. To 90 Col. Card - TPCS90

Contents
SECTION: PAGE:

13-5 to 13-9

13-10 to 13-11

13-12 to 13-18

13-19 to 13-24

7

Content 8 UNIVAC III UTMOST UP-3853
SECTION: PAGE:

14. PROGRAM TESTING

A. Data Generation

1. Data Procedure

2. Create Procedures - Test Data Tape Generator

B. TMPO

C. TPO

D. EDUMP

E. FDUMP and DSNAP

F. Composite Loader

G. EXEC Mode of Operation

15. SYMBIONTS

A. Tape to Print - TPRS2

B. FORTRAN Output Tape to Print·FTPRS

C. Card to Tape

1. 80 Col Cards - CTS

2. 90 Col Cards - CTS90/CTS90A/CTS9080

D. FORTRAN Output Tape to Punch

1. 80 Column Cards - TPCSF

2. 90 Column Cards - TPCSF90

E • P a per Tap e to U N IS E R V 0 IliA Tape - P T R S

F. UNISERVO IliA Tape to Paper Tape - PTPS

G. UNISERVO IIA Tape to UNISERVO IliA Tape - U2TOU3

H. UNISERVO IliA Tape to UNISERVO IIA Tape - U3TOU2

I. Tape to FASTRAND Drum - U3TOFR

J. FASTRAND Drum to Tape - FRTOU3

16. MISCELLANEOUS

A. Ma th pa c k

B. Editing Routines

C. Move Procedures

D. Typein Procedure

E. Typeout Procedure

F. JPS, JMS Procedures

G. JNL, JNE, JNG Procedures

H. LAED Procedure

UP-3853 UI"IV~L.i III U I IVI'-'D I Contents LJ
SECTION: PAGE: ______ -1-_______________________ -..1... ______ -"-______ -'-___ .• __ .. _"_.

17 _ INPUT/OUTPUT

A. Genera I

B. Card Readers

l. Hardware

2. Dispatchers

a. General

b. 80 Column Ca rd

c. 90 Column Card

C. Card Punches

l. Hardware

2. Dispatchers

a. Genera I

b. 80 Col u m n Card

c. 90 Column Card

D. Paper Tape Reader/Punch

l. H a rdwa re

2. Dispatchers

a. General

b. Ba s ic

c. Non-Stop

E. Pr inter

l. Hardware

2. Dispatcher

3. Common Print Subroutine

F. FASTRAND

1. Hardware 17-F-l to 17-F-49

2. Basic FASTRAND Dispatcher

3. Data Reconstruction Subroutine ,
G. Communications

1. Hardware

2. Basic Communications Dispatcher

H. UNISERVO IliA

l. H a rdw are

2. Basic Tape Dispatcher

3. Intermediate Level Tape Handling

~on[en[s lU UNIVA~ III UTIVIOI:iT UP-3853
SECTION: PAGE:

I. UNISERVO IIA

1. Hardware

2. Basic UNISERVO IIA Dispatcher

3. UNISERVO IIA Block Advance Routines

J. UNISERVO IIIC

1. Hardware

2. Basic UNISERVO IIIC Dispatcher

APPENDICES

A. Sample Program (to be condensed from released section it)

B. Instruction Summary

C. Executive Communication Summary

D. Typewriter Conventions

E. Data File Conventions E-l to E-3

F. Codedit Listing

G. DECO Listing

H. Basic Memory Layout

I. Auxi I i'a ry Card Dump Routines

J. Systems Philosophy

K. Symbiont Programming

1. Background and Characteristics

2. Programming Symbionts

a. Basic Dispatcher

(1) GP Channels

(2) UNISERVO IliA Channels

b. Typeouts and Typeins

c. Re leas ing

d. Restrictions

e. DECO Considerations

L. Modul0-3 Checking

M. Execution Timing

UP-3853 UNIVAC III UTMOST

1. Multiplication

2. Division

N. Decimal Operations on Non Numeric Data

O. 80 Column Card Codes

P. P r i n te r Tim i n g

Q. Input/Output Equipment Specifications

Con tents
SECTION:

TABLES AND ILLUSTRATION

FIGURE TABLE

2-1 The G en era I Data -Pro c e s sin gOp era t ion 2-A -2

2-2 A Data Processing Operation 2-A-2

2-3 The Sequence of Steps in the Data-
Processing Operation 2-A-3

2-4 The E Ie men ts 0 faD a ta -Pro c e s sin g
Operation 2-A -4

2-5 Work Simplification 2-A -6

2-6 A Punched Card 2-A-7

2-7 Punching the Inventory File into Carrl~ 2-A -8

2-8 Collation of Inventory and Sales Items 2-A-9

2-9 Punched Card Equipment 2-A-ll

2-10 Rea It i me Com p u te r :2--A --13

2 -11 Converting the Inventory File to
Magnetic Tape 2-A-14

2-12 Reading the Information from a Tape into
the Computer via a Tape Handler 2 - A"-15

2-13 Offline Computer 2-A-16

2-14 Concurrent Processing 2-A-17

2 -15 Files, Items, and Fields 2-A-18

2-16 Minimizing Search Time by Ordering Files 2-A-19

2-17 Example of a Process Chart 2-A--20

2-18 6 8 it P r i n ta b Ie C h a r act e r Cod e s 2-8-9

2-19 Assembly in UTMOST Coding Form 2-8-17

1 1

_S_E_C_T_IO_N

L

_: _o_n_te_n_t_s l_p_A_G_E:_l_L ___ -'-______ __ u __ N __ I_V_A. __ &;;; __ I_I_I __ U_T __ IVI_._O __ I:i __ T ___ _,_~::.~3~,~,~., ,'W_

FIGURES TABLES

2-20 Arrangement of Arithmetic Registers 2-B-2:2

2-21 Flowchart Incorporating Boxes and Arrows 2-C-3

2-22 Flowchart Incorporating Symbols 2-C -4

2-23 Flowchart Incorporating Connectors 2-C-5

4-1 English Language Flowchart of Iteration 4-8

4-2 Symbolic Flowchart of Iteration 4-10

4-3 Control Unit Operating Cycle 4-13

5-1 General Program Format 5-1

5-2 Schematic of Control Sequence in Subroutine
Execution 5-4

6-1 Partial Flowchart 6-3

6-2 Flowchart with Variable Connector 6-4

6-3 Flowchart with Variable Connector Settings 6-4

9-1 Console Typewriter Codes 9-3

9-2 Console Keyboard 9-10

9-3 Block Recording 9-14

9-4 Tape Path 9-15

13 -1 Process Chart for a Magnetic Tape Computer
Serviced by Offline Peripherials or Satellite
Computer 13-2

13-2 Process Chart for a Nonconcurrent Computer
with Online Peripherals 13 -3

13-3 Schematic of Concurrent Processing 13 -7

13-4 Card-Feed Path, High ISpeed Reader 13 -13

13 - 5 Data Transfer from Reader to Memory, with
Translation, 80 Column Card 13 -14

13-6 Data Transfer from Reader to Store, without
Translation, 80 Column Card 13 -15

13 -7 Data Transfer from Reader to Store, with
Translation, 90 Column Card 13 -15

13 -8 Hollerith Code, High Speed Reader 13-16

13 - 9 90 Column Card Code, High Speed Reader 13 -16

13 -10 Type Drum, High Speed Printer, Front View 13 -2 0

UP-3853 UNIVAC III UTMOST Contents
SECTION: PAGE:

FIGURES TABLES

13 -11 COBOL-FORTRAN Set 1:\ 21

13 -12 UNIVAC III Standard Set 2i

17-F-l UN IV A C III FASTRAND Mass Storage Unit 1 7 F -- 1

17-F-l FASTRAND Capacity and Access Time Chart 1 7 F --7

17-F-2 FASTRAND Data Storage Concept 1 7 F - 4

17-F-3 Memory Work Area Requirement for execution
of FASTRAND Functions 17 -- F --11

17-F-4 Derivation of Parity Check Character
Positions 1 7-- r 12

17-F-2 FASTRAND Function Specifications 11- F 1 J

17-F-3 Conditions Indicated through the Status Word 17-F-43

17-F-4 Sector Organization F 49

E-l Data Tape Block Formats E tf' F: -,
)

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

2A. INTRODUCTION

TO COMPUTER DATA PROCESSING

A. THE ELEMENTS OF DATA PROCESSING

In most data-processing, there is a set of data that is altered either infrequently or else in a
known and in variable way. This type is referred to as master data. N ames, addresses, badge
num be rs, pay rates, year-to-date gross, year-to-da te wi thholdin g tax, and qua rte r-to-da te soci a1
security tax are examples of master data representing the payroll area; stock numbers, descrip­
tions, on-hand amounts, and uni t 0 f meas ure represen t the in ven tory-con trol area.

Beyon d the master da ta, there is another type of da ta to be fed in to any data-p rocess in g sy stem;
this information differs in that its incidence is essentially random and unpredictable. This typt>
is ca lled transac tion data. H ou rs worked, quan ti ties shipped, and amoun ts in voiced a re exam pIes
from, respectively, the areas of payroll, accounts receivable, and accounts payable.

Processing consists basically of applying the items of transaction data, either singly, as they
come up, or in cumulative batches, to update the master data.

On the other hand, processing may also be constituted by information periodically being produced
from the master data alone. An example, in the accounts-receivable area, is the production of <J

monthly statement.

There is one other major item in the general data-processing operation, the report. In essence,
the report is a by-product of the processing operation in that it reflects in summary or other form
updating of the master data, the latter being the chief function of the data-processing system.
However, for most purposes, the report can be considered the end product and therefore the most
important of the four elements. It abstracts and highlights critical aspects of the business picture
that judicious processing of transaction and master data uncover, and it is looked to by manage­
ment for necessary information for decisions in production, sales, purchasing, finance, and all
other phases of business.

1

2-A
SECTION:

UNIVAC III UTMOST

The schematic in Figure 2-1 relates the four basic elements in the general data-processing

opera tion.

MASTER
DATA

+ t
TRANSACTION PROCESSING

DATA

!
REPORTS

Figure 2-1. The General Data-Processing Operation

Tofu rther in yes ti ga te the elemen ts of a data-p roces sing opera tion, examine the steps in the
solution of a simplified processing application. Consider a company that keeps a record of its
stock in a ledger. Each day a clerk is supplied with a sales form. On the basis of the form, the
clerk brin gs the in yen tory up-to-date by w ri tin g anew column in the ledger. A rep resen ta tion of
this data-processing operation is shown in Figure 2-2.

STOCK NUMBER
NUMBER OF ITEMS

INPUT ~

PROCESSING ~

INVENTORY OF STOCK ITEMS)

STOCK
DATE (

NUMBER 1, ~ ~
OUTPUT ~ 7 1'1 I.J II

i 17 II II

9 Ii II II
Itf ~ ;JI/ ",

- IS" ;13 19 19 - '--... I--r-" ---v

Figure 2-2. A Data-Processing Operation

UP-3853

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

As indicated in Figure 2-2, this data processing operation breaks down into three broad parts:

• INPUT: the information to be processed.

• OUTPUT: the information produced by the processing.

• PROCESSING: the operations required to produce the output from the input.

To do the processing represented in Figure 2-2, the clerk must go through a certain sequence of
steps. One possible sequence is represented in Figure 2-3.

READ THE FIRST
INVENTORY

STOCK NUMBER

IS THERE A SALES
r------------l~ ITEM FOR IT?

READ THE
NEXT ONE

YES I NO

SUBTRACT THE
SALES QUANTITY

FROM THE INVEN·
TORY QUANTITY

IS THIS THE
LAST INVENTORY
STOCK NUMBER?

WRITE THE
INVENTORY

QUANTITY IN THE
NEW COLUMN

PUT THE
NO I YES ~-..... LEDGER

~----~~----~ AWAY

Figure 2·3. The Sequence of Steps in the Data.Processing Operation

To do the steps shown in this Figure:

1. The clerk must be able to do arithmetic (e.g., he must be able to subtract the sales quantity
from the inventory quantity).

2. He must be able to make logical decisions (e.g., he must be able to determine whether or

not there is a sales item for a given product).

3. He must be able to remember information (e.g., after he subtracts the sales quantity from the
inventory quantity he must remember the difference at least until he writes it in the ledger).

4. He must do the steps in the sequence shown or do something logically equivalent to this
sequence of steps.

3

2-A
SECTION:

UNIVAC III UTMDST

These four elements of processing are referred to, respectively, as:

1. Arithmetic.

2. Logical Decision.

3. Memory or Storage.

4. Control.

r----------------------------------,

INPUT

ARITHMETIC

PROCESSING LOGICAL DECISION
STORAGE
CONTROL

OUTPUT

Figure 2·4. The Elements of a Data·Processing Operation

Experience has determined that to do the general data-processing operation, input, arithmetic­
logical decision, storage, control, and output are required. These six elements are shown in
their logical relationship in Figure 2-4.

1. M a nua 1 Da ta-P roces sin g

The above example is a simplification. An actual inventory application is more complex.
Moreover, even in the simplified form presented above, certain basic steps are left out. The
question may be asked: How does the sales form originate? When a sale is made, a sales
slip describing the commodity sold and the units of that commodity sold is prepared. Such
a slip is prepared for each sale made during a day. At the end of the day, the clerk receives
from the sales organization, not the sales form, but a bundle of sales slips, each represent-

UP-3853

ing a transaction. (For purposes of simplicity, assume that each transaction, and consequently,
each sales slip, involves only one commodity). To prepare the sales form from the package of
sales slips, the clerk has to first classify the sales slips by commodity, and at the same time,
or as a separate operation, sort them into stock number order to put them in the same order as
the commodities are listed in the inventory ledger. The clerk is then in a position to summarize
the sales slips by commodity, and, as a final preparatory operation, prepare the sales form.
With the resulting sales form, it is possible for the clerk to carry out the updating procedure
described in the previous section.

UP-3853 UNIVAC III UTMDST 2-A
SECTION: PAGE:

For an operation of low enough volume, the approach described above is adequate. It is pussible
for one clerk to keep the inventory records for the simplified inventory application up to date.
However, as the volume of the company's operations increases, the burden of keeping the in

ventory records up to date will become too heavy for one clerk. It will be necessary to add uther
clerks to handle the increased work load. With the advent of a number of people to maintain the
inventory records, management may adopt the procedure of breaking the inventory maintenance
down into a number of steps and of assigning one person to each one of the steps. Thus, one
clerk might read the sales slips and sort them into the same order the inventory commodities ,He

listed in the inventory ledger. Another clerk might then accept these sorted sales slips from the
first clerk and record the sales on the sales form at the same time as he summarizes the sales
slips by commodity. A third clerk might subtract the entries on the sales form from the balances
on hand and record the differences on the sales form. Finally, a fourth clerk might record tht'se
new balances in the ledger. A schematic of this procedure is shown in Figure 2-5.

The approach shown in Figure 2-5 consists of breaking down the job into a number of simple
steps. These steps fall into categories that constitute the functions of data-processing.

• READI NG

• SORTING

• CALCULA TING

• DECISION MAKING

• RECORDING

When a job is simplified by breaking it down into a series of steps, the data to be processed "He
circulated through this series. Each step is the responsibility of a single person who performs
the step repeatedly on the continuing flow of data.

The approach just described is characteristic of manual data processing systems. Analyzing a
job and dividing it into a series of steps is the first step in the development of a data-processing

system.

2. Key-Driven Devices

5

Some of the functions of data-processing are mechanized in the typewriter and the adding machine.
Each of these office machines performs one of the basic functions. Thus, the typewri ter records,
and the adding machine calculates. For example, in the simplified inventorv application depicted
in Figure 2-5, clerks two and three might use adding machines to summarize and subtract. Clerk
number four might use a typewriter to record the updated inventory.

Since these machines perform only one data processing function, they are "building block"
machines. They can fit into the pattern of analyzing a job into a series of tasks with no loss of
flexibility. Their advantage lies in the fact that they increase both the speed and the accuracy of
their operators.

The mechanization of data-processing functions is the second step in the developmen t of proc­

essing systems.

SECTION:

2-A UNIVAC III UTMDST UP-3853

-
-

CLERK #2:
SUMMARIZE

STOCK

FROM SALES
ORGANIZATION

SALES SLIP

1
I

STOCK QUANTITY

NO.

q 1

CLERK #1:
READ AND SORT

--------------+.-~-~-.\\iai!~~

I
I

SALES SLIP

STOCK QUANTITY

.-----------
I
I
1
1
I
I
I

I
I
I

-

-
-

1 ______ ---------

NO.

7 1
-

SORTED
SALES SLIPS

STOCK ITEMS SOLD

DATE V3
STOCK NUMBER BALANCE

NUMBER OF ITEMS
- 7 1

CLERK #4:
9 'I RECORD SUMMARIZED

SALES FORM

~

1'1
17
18

3
2

--
IS~~~~-------------I

1
I I

- -

I-

..
STOCK ITEMS SOLD \

DATE 1'3
STOCK NUMBER BALANCE

INVENTORY OF STOCK ITEMS

DATE

NUMBER ,/, ~ ~ I NUMBER OF ITEMS

7 J 11
9 Jf III-

IJf 3 .2.1
17 2-

7 19 12- II

i /1 1/ 1/ \

q ,. 18)

I 18

J- ------- '---...J---~ "-'-- .I

Figure 2-5. Work Simplification

CLERK #3:
SUBTRACT

I
I
1
I
I
I
I
I _____ 1

EXTENDED
SALES FORM

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

3. Punched Card Machines

Wi th the keyboard-opera ted typew ri ter or addin g machine, the operator m us t act as an in­
terpreter, taking the results produced by one machine and transferring them, through the
keyboard, to the other. For example, in the simplified inventory application shown in Figure
2-5 clerk number four must take the results produced on the adding machine by clerk number
three and enter these figures on the keyboard of her typewriter to record them on the in­
ventory records. The adding machine produces typed numbers on a paper tape but the type­
writer only "understands" pressure on its keys. Hence, the clerk not only carries the
messages from the adding machine to the typewriter, he also translates from one language
to another.

It is uneconomical for a person to do a substantial amount of this transferring, translating
and copy in g when it can be done mechan ically wi th mo re s peed and accuracy. One solution
to this problem is the punched-card machine, which approaches this problem of communica­
tions in the follow in g way. The medium 0 f comm unica tion in this type of sys tern is a ca rd
on which one column is equivalent to one character of information. Holes punched in
combinations of rows in a column represent these characters in coded form in the same way
as the dots and dashes in Morse code represent characters. Figure 2-6 shows a card with
some codes punched in it.

0123456789 ABCDEFGHIJKLMNOPORSTUVWXYZ

I

000000001 00000000 II1I1 000000000 I 00000000
11) ~ 56 18 lil"121J"'5'61711191071i2;)7~:,~27iI191(:1;, ,'1'16 ,"'\14 !,'"444',.<. 41."C ;1;!',l'>·'~,·8\9W6(6i6)"'6\1ii.6Ii11b90'1';')"';'6 "'9eo

I I I I I 1 1 I 1111 I J 1 I J 1 J 1 J J 1 J J 11 J 1 J J 11 I 111 I I I 1 1 I 1 I 1 1 11 I I 1 I I I I 1 I I 1 I I 11 1 1 1 II 1 I 1 1 I 1 1 1 1 1 I

22222222221222222222222222212222222212222222122222222 2 2 222222222222222 i 222222222

3333333333313333333333333333133333333133333331333333 3 3 3 3333333133133131333333333

44444444444414444444444444444144444444144444441444444444444444414414414144444444

55555555555551555555555555555515555 5 ~ 5 515 5 5 5 5 5 515 5 5 555555555555555 5 ~ 515 ~ j 5555555

666 E 666 G 6 6 6 6 6 61 S 6 6 6 6 6 5 6 6 6 6 {) 6 6 6 616 6 6 6 b 6 6 616 6 6 6 6 6 616 6 6 6 6 G 6666 S 6 6 6 ti 666666 b 6 6666656;)

7777777777777771777777777777777717777777717777777177 7 7 7 717717777777 j 7 77777777777

88888888888888881888888888888888818888888818888888188888888888118118111188888888

99999999999999999199999999999999991999999991999999919999999999999999909999999999
1 2 3 4 5 5 7 • 9 10 11 12 13 14 IS l' 11 l' 1120 21 22232425 2117 21 2130 31 31 33)4 3!i :II)1 31 39 40 41 42 4J 44 41 46 41 .. 41 so 51 52 \J \4 51 ~ II :II 19 10 51 il U .. 15 .. 67 W .t '" :1 ,1 I) ,~ 15 " :, I' " III

Figure 2-6, A Punched Cord

By means of pins which make mechanical contact, a beam of light which activates a photo­
electric cell, or brushes that make electrical contact through the holes punched in the card,
punched-card machines can sense and "understand" the information punched in the card.

7

2-A
SEC TION:

8 UNIVAC III UTMOST
PAGE:

Thus, the machines "communicate" with each other through the medium of the holes in the
punched card. All that is necessary is that, initially, all data to be processed be punched
into cards in the common or "machine language" code. These cards are then used by an
array of specialized punched-card machines: sorters, collators, card reproducers, calcu­
lators, punches, and tabulators. Each of these machines performs one of the data-processing
functions. As a consequence, punched-card machines are also "building block" machines,
able to incorporate a complex of operations formerly dealt with by manual means, and can be
arranged in many ways to perform data-processing operations.

For example, the simplified inventory application might be done on punched-card equipment
in the follow in g way. Initially, the in forma tion in the in ven tory ledger has to be converted to
punched-card form. This operation is executed on a key punch. One card is produced for each
commodity in the inventory. Each such card contains, in coded form, the stock number of the
commodity that this card represents and the current inventory balance for this commodity.
The cards in this deck are kept in stock number order, the same way the stock numbers were
listed in the ledger.

INVENTORY CARD DECK
INVENTORY LEDGER

KEY PUNCH

Figure 2-7. Punching the Inventory File into Cards

Once prepared, this inventory card deck never has to be prepared again, because the punched­
card system maintains the deck in much the same way as the clerk maintained the ledger.

UP-3853

When the sales slips are received from the sales organization, they are punched into cards, one
ca rd for each sales slip, on the key punch. Each card in the sales deck now con tai ns a stock
number and a sales quantity. Another piece of card equipment called a sorter is then used to
sort the cards in to stock num ber order.

Now a piece of equipment called a collator is used. The collator capable of sensing or "read-­
ing" punched-cards has two input magazines. The inventory card deck is placed in one of
these magazines. The sales deck is placed in the other. The collator also has a number of
output stackers in which it stores cards which it has read. For the operation at hand, the
collator is used to match the stock number of the inventory card in the bottom of the inventory
deck magazine with the stock number of the sales card in the bottom of the sales magazine.
If the stock numbers do not match, the inventory card is "not active" and is placed in one
stacker. If the numbers match, the inventory card is active and it, together with the sales card
and all sales cards following having the same stock number, are placed in another ("active")
stacker. This operation of the collator is shown schematically in Figure 2-8.

UP-3853 UNIVAC III UTMOST 2-A 9
SECTION: PAGE:

INVENTORY SALES
FILE FILE

17 17
16 15
15 15
13 12
12 11

INPUT 11 11
MAGAZINES 10 10

08 10
07 07
06 06
05 04
04 04

COLLATOR

17 (SALES)
17 (I NVENTORY)
15 (SALES)
15 (SALES)
15 (INVENTORY)
12 (SALES)
12 (INVENTORY)
11 (SALES)
11 (SALES)

OUTPUT 11 (I NVENTORY)
STACKERS 10 (SALES)

10 (SALES)
10 (I NVENTORY)
07 (SALES)
07 (I NVENTORY)
06 (SALES)
06 (INVENTORY) 16
04 (SALES) 13
04 (SALES) 08
04 (INVENTORY) 05

COLLATED INACTIVE
ACTIVE INVENTORY INVENTORY
AND SALES ITEMS ITEMS

Figure 2-8. Collation of Inventory and Sales Items

2-A
SECTION: I PAGE, 10

UNIVAC III UTMOST UP-3853

At the completion of the collation operation, the collated active inventory and sales cards are
run through a tabulator, which subtracts the sales quanti ties in the sales cards from the on-hand
quan ti ties of th e associa ted in ven tory cards.

Attached to thetabulator is an automatic card punch. For every active inventory card read into
the tabulator, the punch produces from a blank card a new inventory card wi th the same stock
number and the new on-hand amount as supplied by the tabulator.

Finally, the collator is used once mo reo This tim e the updated in ven tory cards are placed in one
input magazine and the previously inacti ve inventory cards are placed in the other. For this
operation, the collator compares the stock numbers of the two cards in the bottom of the two
magazines and places the one with the lower stock number in an output stacker. The collator
then repeats this process over and over until all the cards are in stock number sequence in the
stacker. This operation creates the updated inventory deck, which can be used as the inventory
deck for the next day's operation.

Holes pun ch ed in cards a re not con venien tly in terp reted by persons usin g them. A ma chine
called an interpreter performs this function for the convenience of operating personnel. In
addition, it is necessary in a punched-card installation to have some printing facility for
preparing reports for management. This printing facility is located in the tabulator. In the
case of the simplified inventory application, any necessary reports can be printed by the
tabulator at the same time that it is updating the inventory balances.

A schematic of this system is shown in Figure 2-9.

The pun ched-card also serves as a s to ra ge medium fo r informa tion. In terms of the simplified
inventory, this fact means that the inventory ledger has been replaced by the inventory card
deck. The result of the communications and storage aspects of the punched-card is that data­
processing becomes a materials handling job. The punched-cards are transferred from machine
to machine and can be stored indefinitely for future use.

4. Punched Paper Tape

Punched paper tape is another form of "machine language" medium. The approach here is the
same as in punched-cards: characters are represented in coded form, the code consisting of
various combinations of punched holes. There are three basic differences between punched­
cards and paper tape. First, the medium in which the punching is done is a paper tape of
variable length rather then a fixed sized card. Second, card equipment handles information on
cards a card at a time; paper tape equipment handles information a character at a time. Third,
punched-card code is different from paper tape code.

Paper tape is used to a great extent in communications, the message being sent over wire
and arriving in the form of a punched paper tape. However, the use of paper tape is not re­
stricted to the field of communications. Paper tape punches and readers can be attached to
con ven tional office equipm en t such as typew ri ters or accoun ting machines with the result
that information entered on the keyboard of these machines can be taken off in the form of
punched paper tape. This resulting tape can be read by the same or other equipment. This
reading operation of an already prepared tape allows the processing of the information by the
equipmen t wi thou t the neces si ty for re-en terin g the in form ation on the equipment key boa rd.

UP-3853 UNIVAC III UTMOST

KEY PUNCH

SALES DECK

I r
l

~j
, ,

~"j
~

SORTER

SORTED
SALES DECK

ACTIVE INVENTORY
AND SALES DECK

o
REPORTS

SALES SLIPS

TABULATOR

COLLATOR

SUMMARY PUNCH

UPDATED ACTIVE
INVENTORY DECK

INVENTORY DECK

L::l
INACTIVE

INVENTOR'(DECK

COLLATOR

Figure 2-9. Punched Card Equipment

2-A
SECTION: PAGE:

UPDATED
INVENTORY DECK

11

2-A
SECTION: I PAGE, 12

UNIVAC III UTMDST UP-38S3

There are various types of equipment that read paper tape and produce punched cards and vice
versa. Therefore, paper tape and punched-card equipment can be used cooperatively on the same
batch of informa tion without manually recording it in both paper tape and punched-card form. One
record in g in either form is sufficient. F or exam pie, in the sim plified inventory applica tion, if
the sales organization were geo graphically w idesp read, the sales slip in forma tion mi gh.t be
sent over wire and arrive in the accounting office in the form of paper tape. This paper tape
information can then be converted to punched-cards in which form it can enter the card system
shown in Figure 2-9 at the point where the sales deck is sorted.

S. Magnetic Tape

Besides punched-cards and punched paper tape, a third type of bulk storage and communication
medium.is magnetic tape. Magnetic tape consists of a long strip of plastic material on which
information is recorded in coded form. In this case, the code is a combination of magnetized
spots rather th an punched holes. The da ta-processin g equipmen t reads and w rites the recorded
information by means of tape handlers, each of which is similar to a household tape recorder.
Equipment exists to convert information in magnetic tape form to or from either paper tape or
punched card form.

The advantages of magnetic tape are that it allows (1) a denser packing of information than
does either paper tape or punched-cards; (2) a higher rate of reading and recording. Conse­
quently, more information can be stored in less space, and higher speed data-processing devices
can be utilized.

6. Computers

A common language medium in the form of punched-cards and paper and magnetic tape is the
third step in the development of data-processing systems. Except for data origination and the
handling of bulk data (decks of cards and reels of tape), the human function in a common
language data-processing system is reduced to following the right procedure. The following of
such procedures is handled automatically by the computer, the latest step in the development
of data-processing systems.

a. Real Time Computers

In general, computers are divided into two broad categories. The first is used to apply
transaction data to the master file as the transaction data occurs. In the other type, the
transaction data is batched over a period of time and is applied by the computer to the
master file data in the resulting batches. The first type is known as a real-time computer;
the second, as an offline computer.

To get some idea of the operation of a real time computer, consider the simplified in­
ventory application. If the computer is to reduce the on hand quantity for any commodity
at the time that the commodity is being sold and if any commodity in the line can be
sold at any time, then the computer must have immediate access to the whole inventory
record at all times. This need can be met by recording the inventory information on
some type of "storage" device. One such device resembles a juke box, in which the
information is recorded on the records and the computer has the power to place a record
arm on any part of any record that it desi res. Another consis ts of a drum and has the
information recorded in tracks around the surface of the drum. The computer has the
ability to read information from or record information on any part of any track that it
desires. Such devices are referred to as mass storage devices.

UP-3853 UNIVAC III UTMOST 2-A
SECTION:

Secondly, to perform the operations required, there must be some mechanism to allow
each transaction to be entered into the computer for processing as it occurs. This re­
quirement can be met by some type of keyboard device that allows the salesman to send
the necessary information to the computer at the same time as he is recording the sale
for the customer.

Finally, since all inventory information is stored on the mass storage device and is not
accessible to management, a printer must be available to the computer so that all
required reports can be printed. The computer has the ability to post a transaction to the
proper inventory record when it occurs and to select the proper information for reports. A
schematic of the real-time computer system described above is shown in Figure 2-10.

ENTRY KEYBOARD

FOR

SALESMAN A

ENTRY KEYBOARD

FOR

SALESMAN B

ENTRY KEYBOARD

FOR
SALESMAN n

-r~-- r~ -

~-+--+--+---+-- - f----

.......
COMPUTER

• PRINTER

D
REPORTS

Figure 2-10. Realtime Computer

INVENTORY

FILE

MASS STORAGE

DEVICE

13
PAGE:

2-A
SEC TION: I PAGE, 14

UNIVAC III UTMOST

The advantage of the real-time ,computer is that the application in which it is used in­
volves master data that is up to date. For example, in the simplified inventory application,
the inventory data reflects the current actual inventory situation. However, if the computer
is to apply transaction data to the master data randomly as the transaction data occurs,
all of the master data must always be stored on the mass storage device, and the computer
mus t cons tan tly be a vailable for the updatin g calculations wi thou t interference from other
uses of the computer. For example, in the inventory application, the inventory data must
always be stored on the mass storage device. This fact means that the mass storage device
can be used only for those data-processing applications for which the master data per­
manently stored on it is applicable. Mass storage devices are currently not inexpensive
and, as of now, the applications that can justify such a device on the merits of one
application are relatively few.

b. Off-Line Computers

In the off-line computer, the master data is stored not on a mass storage device, but on
magnetic tape. Consequently, addition of more applications with various master files to
the computer data-processing system is a matter of recording the master files involved. A
consequence of this approach is that no master file is available to the computer in its
entirety. Therefore, transaction data cannot be applied as it occurs. Instead, transaction
da ta is ba tched over a pe riod of tim e and is applied by the compu ter to the mas ter data
in the resulting batches on a cyclical basis. This approach results in the fact that no
master file is ever completely up to date. However, the speed and accuracy with which the
computer operates allows a cyclical updating period of short duration. This short cycle
results in master files, the timeliness and accuracy of which cannot be approached by any
other kind of equipment. The off-line computer is the standard computer used in data­
proces sin g today.

As an example of an off-line computer operation, consider the simplified inventory appli­
cation as it might be applied to an off-line computer.

When the computer is first introduced as the data processor, the inventory tape would have
to be prepared in some way. For example, it might be punched into cards, the punched-card
deck then being converted to tape as shown in Figure 2-11.

Once prepared, this inventory tape would never have to be prepared a gain, because the
compu ter would main tain it in much the same way as the punched-card system maintained
the inform a tion in pun ched-card fo rm.

The company operation generates the sales form for the computer system the same way as
before. However, before the computer system can use the information on the sales form, it
must first be converted to tape in a manner similar to the way in which the inventory tape
is ini tially prepared.

INVENTORY
LEDGER KEY PUNCH

INVENTORY

CARD DECK
CARD TO TAPE

CONVERSION

Figure 2-77. Converting the Inventory File to Magnetic Tape

INVENTORY TAPE

UP-3853

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

The computer then reads this sales data from this sales tape by means of a tape handler
(Figure 2-12). The computer sorts the sales data into stock number order and summarizes
it. This sorted and summarized sales data is then written by the computer on a blank
tape mounted on another tape handler.

@
TAPE HANDLER TAPE

COMPUTER

Figure 2-72. Reading the Information from a Tape into the Computer via a Tape Handler

The proces sin g opera tions of ari thme tic, 10 gical decision, s tora ge, and con trol, which
are necessary to produce the updated inventory from the information given on the current
inventory tape and on the sorted sales tape, are done by the computer. The inventory tape
is read by means of a tape handler. The sales tape is read by means of a second tape
handler.

In the computer system, the computer brings the inventory up to date by producing an
updated inventory tape which is an exact reproduction of the current inventory tape,
except that those changes in stock level required by the information on the sales tape
have been made. The computer records the updated inventory information on a blank tape
already mounted on a third tape handler.

The updated inventory tape produced on one day becomes the inventory input tape on the
next day, while the sales tape con tinues to originate from wi thou t the sy stem.

In any data-processing system, it becomes necessary from time to time to inspect the
results of the processing. Thus, for example, in the manual inventory system previously
described, management will want to see the stock levels for various stock items. Although
many of the purposes for which management would want to make this inspection will be
handled automatically by the computer, with the result that manual reference to files in a
computer system should be significantly less than such reference in any other kind of
system, there will still be occasions when it will be necessary for management to view
the records maintained by the computer. Since tape-recording is neither visible nor
legible, it is necessary in a computer system to have some type of printing equipment to
produce the reports required by management. The computer records the information to
appear in the report on a blank tape mounted on a fourth tape handler. This report tape

is used as input the printer in the production of the report.

A schematic of this computer system is shown in Figure 2-13.

15

2-A
SECTION: I PAGE, 16

• CARD READER

l

COMPUTER

@
INVENTORY

TAPE

+
I

SALES DECK

TAPE HANDLER

TAPE HANDLER

I

L _____ @
UPDATED

INVENTORY TAPE

UNIVAC III UTMOST UP-3853

SALES SLIPS

KEY PUNCH

I--

SALES TAPE TAPE HANDLER COMPUTER

...
COMPUTER TAPE HANDLER

TAPE HANDLER TAPE HANDLER

-
...

COMPUTER

[J
REPORTS

Figure 2-73. Offline Computer

-

TAPE HANDLER

@
SORTED

SALES TAPE

@
REPORT TAPE

TAPE HANDLER

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

c. Concurrent Processing

The power of computers currently being marketed is such that it is possible for the computer
to do different operations at once. For example, the computer can be doing a processing
operation such as was described for updating the inventory tape on the basis of the in­
formation on the sales tape, convert information punched on cards to magnetic tape, and
print information read from a tape onto paper via the printer all at the same time. This
approach to computer data processing is known as concurrent processing and is shown

schematically in Figure 2-14.

@
TAPE TAPE

II
TAPE HANDlERS

PROCESSING

COMPUTER

TAPE HANDLERS

@ @
TAPE TAPE

CARD DECK

II
CARD READER

CARD TO TAPE

CONVERSION

TAPE HANDLER

@
TAPE

Figure 2-74. Concurrent Processing

TAPE

n
TAPE HANDLER

PRINTING

PRINTER

[J
REPORTS

17

SECTION:

2-A I PAGE, 18
UNIVAC III UTMOST

B. BASIC OFF-LINE DATA-PROCESSING

The reading of input data from input tapes, the processing of that data to produce output data,
and the writing of the output data on output tapes is known as a computer run. A computer
data-processing system is always made up of one or more - generally more .- computer runs.

The input and output of a computer run can always be classified into a number of files. For
example, in the simplified inventory run there are two input files, the inventory file and the
sales file; and one ou tpu t file, the updated in ven tory file. (Actually, there are two ou tpu t files,
since the report file must also be considered an output file, but for purposes of this discussion
this file will be ignored). The unit of informati on in a file is called an item, and character­
istically, a file is made up of a series of items. For example, in the simplified inventory run,
the inventory file would be made up of a series of inventory items, each inventory item referring
to one commodity in the company's stock line, and one inventory item appearing on the inven­
tory file for each such commodity. Similarly, the sales file would be made up of a series of
sales items, each referring to a commodity on which there has been activity during the day for
which the sales file has been prepared.

Each item in a file is made up of a set of fields (Figure 2-15). A field is a subunit of information
which describes some aspect of whatever the item containing the field refers to. For example,
each in ven tory item con tains a stock num be r field, which specifies the particular num ber by
which the commodity to which the item refers is known, and a quantity field, which specifies the
number of units of this commodity that the company has on hand. In reality, of course, an in­
ventory item in an actual data-processing application would contain many more fields than are
specified above, but for the simplified inventory run described here, these fields are adequate.

INVENTORY FIL'7
~

/' I I
I

/' I I
5T

./ I I f-

~ ~(o 0
0

f- 5T 0 0 0

r- I STOCK NUMBER QUANTITY

0 0 0 -I 0 - 0

'--I

I NV'!!-::s:J STOCK
NUMBER

FIELD
INVENTORY ITEM

INVENTORY
QUANTITY

FIELD

Figure 2-75. Files, Items, and Fields

N ow that the term s, run, file, i tern, and fi el d have been introduced, the fundamental nature of the
way in which an off-line computer processes data can be described in more detail. This descrip­
tion is presented within the framework of the example of the simplified inventory updating run.
The inventory file is the master file of this run. The sorted sales file is the transaction file. The
items in the sorted sales file are items that have been batched over a period of time and are now
going to be applied to the inventory file to update it. The computer reads information from a tape
by means of the reading head of the tape handler on which the tape is mounted. This fact means
th a t the computer has access to only one item on the in ven tory file and one sales item at a time.

UP-3853

UP-3853 UNIVAC III UTMOST 2-A
SECTION: PAGE:

The compu te r reads the fi rst sales item, and on the basis of the s tock-num be r fie ld w hi ch it
finds in the item, starts a search on the inventory file for the proper item to be updated. If the
items on the inventory and sales files are arranged in random order, the computer is going to
spend a good deal of time passing the inventory tape over the reading head to accomplish this
search. No processing is done during search time. However, if both the inventory and sales items
are arranged in the same order, say ascending order, by stock number, the time spent in search­
ing for the correct inventory item is minimized. The first sales item is read. Items are then read
from the in ven tory file un til the item wi th the rna tchin g stock number is loca ted, at w hi ch point
updating occurs. The next sales item is then read. Because of the way the files are ordered, the
inventory item to be updated by this sales item is either the one updated by the last sales item
or the next active inventory item to be found in moving down the inventory file. In this manner,
the next inventory item to be updated is always the one that is closest to the reading head
(Figure 2-16).

A general characteristic of off-line data processing is that the items in the files involved are
ordered by the field on which searching for updating is to be done. This field is known as the
key of the item. It is not necessary to reorder the master file each time, since the updated
master file from the last cycle becomes the master file for the current cycle. Once the master
file is put in order, the updating process produces the updated master file in the same order
in which the current master file is read. However, the transaction files, such as the sales file,
are generated in random order and must be ordered before being used in a run.

INVENTORY FILE
ITEM

STOCK NUMBERS
1 ,.
2
3 ..
4 ..
5 ,.
6 ..

SALES FILE
ITEM

STOCK NUMBERS
1
3
3
4
5
6

7 .. 7
8 11
9 ~11
10~13
11
12
13

Figure 2-76. Minimizing Search Time by Ordering Files

19

SECTION:

2-A I PAGE, 20
UNIVAC III UTMOST

C. PROGRAMMING THE COMPUTER

The computer, as a data processor, has the ability to read, remember, and write information;
do arithmetic; and make logical decisions. It also has the ability to follow a series of in­
structions that tell it to perform these operations in a particular sequence. However, it is
incapable of preparing this series of instructions for itself; this job must be done by a man
who both understands what output is to be prepared from what input and what sequence of
proces sin g opera tions is required to form the output from the inpu t. This series of ins tructions
that a computer follows in processing data is known as a program, and the man who prepares
programs for the computer is known as a programmer.

When a programmer is assigned to a computer run, he is generally told by the designer of the
data-processing system into which this run fits what input files will be fed into the run and
what output files are expected from it. This information is usually described in terms of a
process chart. A process chart is the laying out of a data-processing system in terms of input,
processing and output. For example, Figure 2-17 is a process chart of the computer inventory
system shown in Figure 2-13. (Production of the report is eliminated in Figure 2-17.) In this
manual, programming exercises will be given in problem - statement form. However, each
problem will specify the same three things as a process chart: input, processing and output.

RUN 1

CONVERT CARDS

TO TAPE

RUN 2

SORT AND SUMMARIZE

SALES ITEMS

RUN 3

UPDATE THE

INVENTORY FILE

Figure 2-77. Example of a Process Chart

UP-3853

UP-3853 UNIVAC III UTMOST 2-A
SECTION:

To a greater or lesser extent theprogrammer will also be given information about the items and
fields in the input and output files he is to process in his run. It is the programmer's responsi­
bility to complete this job of item design. For each item in each file, the programmer must
specify in complete detail what fields make up the item. Hemust sp,,~cify t!H mc!p IlleL th(

PAGE:

fields are to be recorded and how many characters are to be allocated to each field. For example,
for the simplified inventory run (run 3 in Figure 2-17), the programmer must specify the following
file, item and field info"rmation.

The simplified intrentory run involves three files:

1. The inventory file.

2. The (sorted) sales file.

3. The updated inventory file.

Each in ven tory-fi 1 e item consis ts of tw 0 fie Ids:

1. The stock-number field.

2. The quantity-an-hand field.

Each sales-file item consists of two fields:

1. The stock-number field.

2. The quantity-sold field.

Finally, each updated inventory file item consists of two fields:

1. The stock-number field.

2. The quantity-an-hand field.

Not ice t h rt t the fie 1 d s for th e up d ate din ve n tory it e mare ide n tic a 1 tot h e fie Ids 0 f the in v e n tory
item; this situation is as it should be, since the updated inventory file is basically a copy of
the inventory file, the only changes made being those specified by the sales file.

In this manual, item design will be one of the givens in the programming exercises.

Besides completing the item design forthe run he has been assigned to, the programmer must
also figure out the sequence of logical steps that must be gone through to produce output files
from the input files. This job is called the logical analysis of the run. For example, for the
simplified inventory updating run, the logical analysis might be as follows.

The first inventory item and the first sales item are read from their respective files into the
computer's store. The stock number field of the inventory item currently in the store is
then compared with the stock number ~ield of the current sales item. If the two stock numbers
are not equal, the current inventory item is not altered, but instead becomes the current up­
dated inventory item, which is written on theupdated inventory file; the next inventory item is
read from the in ventory file in to the store; a nd the compa rison of s toc k n um be rs is on ce
more made. As long as this comparison does not check out for equality, this process continues,
since the arrangement of the items in the files determines that the current sales item refers to
an inventory item which is further down the inventory file and that all items preceding this

2-A
SECTION:

22 Rev. 1 UNIVAC III UTMOST
PAGE:

inventory item on the inventory file were not active during the period the current sales file was
being compiled. When the stock numbers of the current inventory and sales items prove to be
equal, the quantity-on-hand field of the current inventory item is reduced by the quantity-sold
field of the current sales item, the next sales item from the sales tape is read, and the compar­
ison of stock numbers is resumed. Notice that the inventory item just updated does not immedi­
ately become the updated inventory item, since more than one sales item may refer to it. This
process is continued until there are no more sales items, at which point there are no more
inventory items to be updated, and the inventory items remaining in the inventory file are moved
to the updated inventory file. When there are no more inventory items, the run is complete.

A more formal statement of this logical analysis is shown below.

1. Read The First Inventory Item.

2. Read The First Sales Item.

3. Compare The Stock-Number Field Of The
Current Inventory Item With The Stock­
Number Field Of The Current Sales Item;
If They Are Equal, Go To Step 8.

4. Make The Current Inventory Item The
Current Updated Inventory Item.

5. Write The Current Updated Inventory Item.

6. Read The Next Inventory Item; If There
Are No More, Go To Step 13.

7. Go To Step 3.

8. Subtract The Quantity-Sold Field Of The
Current Sales Item From The Quantity­
On-Hand Field Of The Current Inventory
Item.

9. Read The Next Sales Item; If There Are
No More, Go To Step 11.

10. Go To Step 3.

11. Change Step 7 To Go To Step 4.

12. Go To Step 4.

13. Stop.

UP-3853

UP-3853 UNIVAC III UTMDST 2-8
SECTION: pAGE:

2B. INTRODUCTION TO PROGRAMMING

A. REPRESENTATION OF INFORMATION

Any positive number can be repesented by a row of marks such as 111111111 (or 9), although

all but the smallest numbers become unwieldy in such notation. For ease of manipulation a

positional notation using symbols to represent different rows of marks is more convenient. One

such notation is the Arabic, wh ich uses ten different symbols or digits, 0, 1, 2, 3, 4, 5, 6, 7, 8

and 9.

The number of different digits us ed in a pos ition al notation or sys tern is known as th e base of

the system. Using one digit position, quantities as large as nine can be represented in the

decimal system. To represent a quantity larger than nine another digit position must be used.

Thus, to represent the quantity ten a carry is made into the digit position to the left and the

original digit position reverts to zero. The expansion of this system is exemplified by the

odometer of a car. In positional notation each digit position, or column, implies a power of the

base as a multiplier 0 f the digit in the column. The dec im al number 1076 is pas i tio na 1 no ta tion

for the expres s ion,

(1 x 1000) -+ (0 x 100) + (7 x 10) -I (6 x 1)

The columns imply powers of ten,

1 = 1 10°

10=10 10 1

100 = 10 x 10 10 2

1000 = 10 x 10 x 10 = 10 3

and, appropriately enou gh, are named the units column, the tens column, the hundreds colum n,

and so on.

1

2-B
SECTION:

UNIVAC III UTMOST UP-3853

A computer that represents numbers in decimal notation must have storage elements capable of

assuming ten easily distinguishable stable states, one for each possible digit. While such ele­

ments exist, their cost prohibits the construction of a computer that represents numbers in

decimal notation. Electronic elements lend thems elves most naturally to two-stable-state devices.

Th us, com puters usually represent num bers in the base two or binary system. The binary sys tern

can be built up in a way analogous to the decimal. There are two possible digits, 0 and 1, used
in conjunction with successive powers of two.

2°= 1
21= 2
22= 4
23

= 8

Thus, the binary equivalent of a decimal nine is 1001, which is binary notation for the expression-

(1 x 8) + (0 x 4) + (0 x 2) + (1 x 1)

1. Student Exercises

Write the binary equivalents of the decimal numbers 6, 13, 15, 27 and 43.

2. Binary Addition

The addition table for the binary sys tern is

o + 0=0

o + 1 = 1

1 + 1 = 10

1 +- 1 + 1 = 11

The sum of two binary ones is the binary number 10, the binary equivalent of a decimal two. The

binary number 10 is not what is called ten, which is a decimal, not a binary number. Similar

remarks hold for the sum of three binary ones, which is the binary number 11, not the decimal

number eleven.

a. Example:

b. Student Exercises

Add the following:

1011

1111

DECIMAL

13

14

27

1010

10111

BINARY

1101

1110

11011

11001

10111

UP-3853 UNIVAC III UTMDST 2-B
SECTION: PAGE:

3. Addition of Two Numbers with Opposite Signs

While addi tion of two numb ers with oppos i te sign could be done by use of a subtract ion table,

computers use the method of complementation. For any given number there exists a second

number which when added to the first will produce a sum consisting of a one followed by as

many zeros as there are digits in the first number. The second number is the complement of

the firs t.

• To get the complement of a binary number

1. Replace the ones with zeros and the zeros with one and,

2. Add a binary one to the result.

For example, given 1101 replace ones with zeros and zeros with ones, and add a
binary one

Complement

Proof:

0010

1
0011

1101 + 0011 = 10000

• To add two numbers with opposite signs:

1. Equalize the number of digit positions by inserting non significant zeros in the

number with the smaller absolute value.

2. Take the complement of the absolute value of the smaller in absolute value.

3. Add the absolute value of the other number to the result.

4. Drop the most significant carry and,

5. P refix the sign of the number with the larger a bs olu te va lue to the sum.

a. Example:

Add -101101

Step 1.

+ 1011

-101101

+ 001011

Step 2. The smaller in absolute value is

Step 3.

Step 4.

Step 5.

001011

110100

+ 1

110101

101101

t- 110101

1100010

100010

-100010

3

2-B
SEC TION:

b. Student Exercises

Add the following:

4. Subtraction

-1011
+ 1111

UNIVAC III UTMDST

+ 1010
-10111

-11001
-10111

Subtraction can be accomplished through the use of addition by changing the sign of the
subtrahend and adding the subtrahend to the minuend.

5. Multiplication

Binary multiplication, like decimal multiplication, can be done by a series of additions.

6. Division

Binary division, like decimal division, can be done by a series of additions and subtractions.

123
1

11
111

12 1476
12

27

12
15
12

36
12
24
12 --
12
12

-0-

Thus, division can be done by addition.

7. Coded Binary

Binary representation is used in computers in one of two forms. The first is the binary

notation just described called pure binary representation. The other is called coded
binary representation. In this representation, only the pure binary equivalents of the
ten decimal digits are used.

UP-3853

UP-3853 UNIVAC III UTMOST 2-B
SECTION:

DECIMAL PURE BINARY

8421
0 0000

1 0001
2 0010
3 0011
4 0100
5 0101

6 0110
7 0111
8 1000
9 1001

Any decimal number greater than nine is represented by a combination of the above codes.
For example, the decimal number 147 would be represented as

0001 0100 0111

One modification of coded binary representation is called the excess-three representation.

The excess-three expression of a decimal number is equal to the pure binary representation

of a decimal that is three greater than the number being represented. For example, the

excess-three representation of decimalS is 1000, which in pure binary represents decimal
8 -- or 3 greater than S.

DECIMAL EXCESS-THREE (X S -3)

8421

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010
8 1011

9 1100

Excess-three representation has two advantages over straight coded binary.

1. The addition of two excess-three numbers produces a carry if the addition of
their decimal equivalents produces a carry.

2. An excess-three number can be complemented in the same way as a pure binary

number.

5
PAGE:

2-B
SECTION:

6 UNIVAC III UTMOST
PAGE:

8. Exces s-Three A rithmet ic

If two like signed excess-three digits are added, the decimal equivalent of their sum is not

equal to the sum of the decimal equivalents of the digits.

DECIMAL

5
1
6

EXCESS-THREE

1000

0100
1100

The decimal equivalent of the excess-three digit 1100 is not six, but nine. The reason for

this fact is that if the addition does not produce a carry the sum is not in excess-three

representation, but in excess-six notation. To convert the sum to excess-three representa­

tion it is n eces sary to subtract the pure binary equivalent of a decimal three, 0011. The

complement of the pure binary number 0011 is 1101. Thus, to correct the sum of two excess­

three digits that do not produce a carry, add the pure binary number 1101 to the sum.

1100

1101

1001

The excess-three digit 1001 is the equivalent of a decimal six. However, if the addition of

two excess-three digits produces a carry, the sum is not represented in excess-six.

5

6

~1

1000

1001

~0001

The reason for the above fact is that the carry in the excess-three addition carries the equiva­

lent of a decimal 16 out of the sum. Ten of this 16 is the decimal carry to the next column,

which is desired; three of the 16 is what previously produced an excess-six sum, and its carry

UP-3853

is of no concern; but the last three is what was necessary to produce an excess-three sum. Thus,

the sum comes out in pure binary representation. To convert the sum to excess-three representa­

tion it is necessary to add the pure binary equivalent of a decimal three, 0011, to the sum.

0001

0011

0100

The excess-three digit 0100 is the equivalent of a decimal one. In summary, to add two like

signed excess -three num bers:

1. Add the numbers according to the rules of pure binary addition and

2. Apply "correction factors" to each digit in the sum.

The correction factors are as follows:

UP-3853 UNIVAC III UTMOST 2-B
SECTION:

• If the column in which the digit appears did not produce a carry, add the correction

factor 1101.

• If the colum n produced a carry, add 0011.

a. Example:

b.

Intermedjate sum

Correction factors

Excess-three sum

0100
1001
1101
1101
1010

0111
0110

1010
1000

1110)r" 0010
1101 0011
1011 0101

Since the correction fact~rs apply only to individual digits and not the entire sum, dnV

carry produced is ignored.

Student Exercises

Add 0110 1010 0011
0111 1000 1010

1000 0101 1100
1010 0111 0101

c. Addition of Two Excess-Three Numbers with Opposite Signs

Two excess-three numbers with opposite sign are added in the same way as two pure

binary numbers with oppos i te si gn s.

1) Example:

Add -1010 0111 1001 0100
+ 0100 0110 1100

Step 1. -1010 0111 1001 0100
+- 0011 0100 0110 1100

Step 2. 1100 1011 1001 0011
1

1100 1011 1001 0100

Step 3. 1010 0111 1001 0100
1100 1011 1001 0100

r0111 r0011 r 0010 1000
DOll 0011 0011 1101

r 1010 0110 0101 0101

Step 4. 1010 0110 0101 0101

Step 5. -1010 0110 0101 0101

7
PAGE:

2-B
SECTION:

UNIVAC III UTMOST

2) Student Exercises

Add + 1010 0011 0111
-0101 0011 1010

PROBLEM 1

-0111 1011 1100
+ 1000 0110 0101

PROBLEM 2

9. Decimal Representation

The four-bit binary coded excess-three notation is referred to as decimal representation.

This a llows for sixteen characters whose values range from 0000 to 1111. In this group are

included all the numerics and some special characters, but no alphabetics.

10. Alphanumeric Representation

To represent the twenty-six alphabetic characters the sixteen possibilities of decimal re­

presentation are not sufficient. The refore, in this representation, a two-bit zone is added
and precedes each binary coded excess-three notation. The other four bits are called the

numeric portion.

Each representation in the numeric portion may be preceded by one of four possible zones:

00, 01, 10 or 11. A total of sixty-four different characters may be designated in this format.

Alphanumeric information may be distinguished from decimal information by the zone. It

is poss ible to presen t n ume ric characters in both decimal format and alphanumeric format.

A complete table of character representation can be found in the Character Code Chart,

Figure 2-18.

11. Octal Representation

Consider the following pure binary number.

001101000101011001111100

The length of this binary number written in this notation makes it difficult to both read the

number and transcribe it correctly. Reading and transcription is eased by breaking the number

into groups, as follows:

001 101 000 101 011 001 111 000

Nevertheless, the ntlmber is still difficult to handle. To ease binary number manipulation, a

convention of writing binary numbers in a code is generally adopted. The code used is octal.

Octal notation is a number system with a base of eight. Thus, the coefficients in the octal

num ber system are 0, 1, 2, 3, 4, 5, 6 and 7. The binary equi valen ts of these octal numbers are

as follows:

OCTAL BINARY

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

UP-3853

UP-3853 UNIVAC III UTMOST 2-B 9
SECTION: PAGE:

COBOL - FORTRAN SET

00 01 10 11

0000 /~ blank +

0001 ;) * (

0010 - $ I

.
0011 0 (Apos.)

0100 1 A J /

0101 2 B K S

0110 3 C L T

0111 4 D M U

1000 5 E N V

1001 6 F 0 W

1010 7 G P X

1011 8 H Q y

1100 9 I R Z

1101 : ~-

1110 <

1111 >

Figure 2~78. 6-Bit Printable Character Codes

SEC TION:

2-B UNIVAC III UTMDST

Thus, the octal numbers have as their binary equivalents all binary numbers that can be

represented in three bit pos itions. As ares ult, octal notation is 'a natural as a code for

binary notation, each octal digit standing for a three bit group of binary numbers. For example,

in octal code, the above binary number would be written as follows'

153053170

UP -3853

B. THE CENTRAL PROCESSOR

The focus of the UNIVAC III computer is the Central Processor. The Processor accepts informa­

tion from input units, stores that information, does arithmetic operations, makes logical decisions,

and produces new - or updated - information for output. The information handled in this way
is called data. Stock numbers, inventory quantities, and sales quantities are examples of data.

The arithmetic operations and logical decisions done on the data is called processing.

1. The Storage Unit

To process data, the Processor must have stored In an accessible place three types of informa­

tion:

1. the data itself,

2. ins true tions, and

3. constants.

Instructions are coded units of information which are used to direct the Processor in the process­

ing of data. A program must include an instruction for each operation that the Processor is to do,

such as the subtraction of one quantity from another. Constants are units of information which the

Processor must have to perform certain operations. For example, if a salesman's commission on a

sale is ten percent of the sales price, the processor must multiply the sales price by ten percent to

develop this commission amount. To do this the Processor must have available to it a constant of

ten percent.

Data, instructions and constants are made immediately available to the Processor by storing them in

the Processor's store. The store is made up of storage locations. The amount of store available

on the UNIVAC III is variable at the user's option. Store is obtainable in the following amounts:

• 8192 storage locations,

• 16,384 stora ge lac a tions,

• 24,576 storage locations, and

• 32,768 s tora ge loc ations.

UP-3853 UNIVAC III UTMOST 2-B 11
SECTION: PAGE:

For ease in reference, these store sizes are spoken of as 8K, 16K, 24K and 32K, respectively. Any.

storage location may be used to store data, instructions or constants. The amount of information

that can be stored in one storage location is fixed. This fixed amount of information stored in any

one storage location is called a word. A word consists of 27 binary bits of information. The bit posi­

tions, for reference, are numbered 1 through 27, from right to left. The rightmost bit (bit 1) is the

Least Significant Bit (LSB) and the leftmost bit is the Most Significant Bit (MSB). This 2';'-bit word

is divided into three portions:

1. The Data Portion (bits 1 through 24).

2. The Sign (bit 25).

3. The Checking Portion (bits 26 and 27).

DATA

The sign of the wo rd is us ed in a rithmetic a nd comparison operat ions. In th is pos it ion a bi na ry

o represents a positive value while a binary 1 indicates a negative value.

The checking bits are used by the checking circuitry of the system to assure that there is nu

change in the informa tion content of the word~ because of some malfunction or electron ic

phenomenon as the words are transferred through the circuitry of the system. The type of check­

ing used is modulo 3, residue zero. Since there is no possible access to these bit positions

through programming and they have no value as data, no further reference will be made to them

and only bi ts 1 through 25 w ill be cons ide red.

a. Addressing

Each storage location has a label or address by which its contents may be referenced so

that each may be dis tingu ished from a ny other. The add resses used wi thin the Ce nt ra 1

Processor are in pure binary form. For ease of representation, only their decimal equiva­

lents will be used here. The numbering of these addresses is sequential and the first

storage address of any system is 00000. The highest storage address of a system having

the maximum size store is 32767. This allows for the addressing of a possible 32,768

words.

STORAGE ADDRESS CONTENTS

Word 1 00000 25 bit positions

Word 32768 32767 25 bit positions

2-B
SEC TION: I PAOE. 12

UNIVAC III UTMOST

A given word in a storage location may be referenced as often as desired, because when

it has been stored in that location it remains there until it is "erased" by the transfer

of another word into the same location.

b. Data Word Format

In the UNIVAC III there are three types of data words. All three types use bit position 25

to represent the sign of the word.

1) The Decimal Data Word

5 DIGIT 6 DIGIT 5 DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25 24 21 20 17 16 13 12 9 8 5 4 1

The data that is represented in bit pos itions 1-24 is arranged in six, fixed, 4-bit groups.
These groups are coded in binary excess-3 representation. Bit positions 1 through 4
represent the LSD and bit positions 21 through 24 the MSD.

Example:

UP-3853

= + 956312

2) The Alphanume ric Data Word

5 DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25 24 19 18 13 12 7 6 1

The data is arranged in 4, fixed, 6-bit groups. These groups are coded in binary excess-3

representation with zone. Bit positions 1-6 represent the LSD and bit positions 19-24 the

MSD.

Example:

1 0 10 1 0 1 0 1 11 0 0 1 1 0 11 1 0 1 1 110 0 0 1 1 1

3) The Binary Data Word

I
s I ~4-BIT BINARY VALUE l

1-------+-2524 -----M

::: + BLU4

UP-3853 UNIVAC III UTMOST 2-B
SECTION:

The data is represented as one pure binary 24-bit value ranging from 0 through plus or

m in u s 16,777, 215. (2 24 - 1) .

Example:

PAGE:

10 10 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 r 532637

2. The Arithmetic Unit

The Processor does arithmetic operations and makes logical decisions by means of its

internal arithmetic unit. This unit has characteristics in common with a desk calculator,

since it co ntains an adder to produce the sum or difference of two quantities, and c ircu itry

to use the adder in the development of a product of two quantities or the quotient of one

quantity divided by the other. Additional circuitry allows the Processor to use the adder to

make logical decisions concerning the equality or relative magnitude of two quantities.

To operate on a quantity, the Processor must transfer it from the store to the arithmetic unit.

Four arithme tic registers provide temporary storage for such quantities within the arithmetic

unit. These arithmetic registers are designated by a four bit positional representation. The

designations are 1000, 0100, 0010 and 0001. Since these designations are the pure binary

representations of the decimal numbers 8, 4, 2 and 1, these registers are referred to as AR8,

AR4, AR2 and AR1, where AR stands for arithmetic register. Each register is similar to a

storage location in that it has the capacity to store one word of information.

3. Control Unit

The function of the control unit is to select, in the proper sequence, each instruction from

storage, interpret, and execute it.

The selection of an instruction is performed in a sequential manner. If the instruction just

executed were located in storage address 00698, the next instruction would come from storage

address 00699, and so on sequentially through the store.

Each instruction is a UNIVAC III word and, as such, is 25 bits in length. Its structure 3S

shown in the diagram below, is different from any of the data word formats.

OP CODE m

Of the sections shown only three w ill be considered for the present time.

m The conten ts of bit positions 1 through 10 represent the binary storage address

of the instruction operand. It is the contents of this storage location which will

be operated upon by the instruction. With binary l's in each of these bit posi­

tions the highest storage location that could be indicated in the m portion is

1023. The method of addressing storage locations greater than 1023 will be

discussed later. For the present, consider a store whose size is 1024 words with

an add res s ran ge of 0000 - 1023.

13

SECTION:

2-B 14
PAGE:

AR

ope 00 E

UNIVAC III UTMOST UP-3853

The contents of bit positions 11 through 14 represent the address of an arithmetic

register in the arithmetic unit. Each arithmetic register is a temporary storage
location for one UNIVAC III word and therefore is 25 bits in length. Utilizing bit
positions 11-14, respectively, the addresses are:

AR DECIMAL
8421 EQUIVALENT

1000 8

0100 4

0010 2

0001 1

The contents of bit positions 15 through 20 represent the OPeration Code which

indicates the operation to be performed. Although the Central Processor only

recognizes a binary configuration as the OP Code, for ease of coding, a mnemonic
OP Code will be used to designate each instruction.

C. CODING

Coding is the translation of a logical analysis of a run into an organized series of instructions

that are intelligible to the Processor. An in~truction must be given to the Proc.essor for each

operation it is to do. In the UNIVAC III, an instruction generally specifies three things:

1. The operation to be done.

2. The address of the data to be operated on.

3. The arithmetic register with respect to which the operation is to be done.

These three elements of an ins truction are specified, respectively, in the OP, m and AR portions
of the instruction.

To see h ow coding migh t appear, cons ider the function of adding two quantities together and

storing the resulting sum. The P roc essor would perform th is function in three operations.

1. S elec tone quant ity.

2. Select the second quantity and add it to the first.

3. Store the sum.

For the Processor to do these three operations in the .order indicated, it must have a program of

instructions. The program for this addition problem would consist of three instructions, one for

each of the operations. These particular instructions might have the following mnemonic codes.

• LA - Select the quantity from the storage location specified and transfer it to the AR
specified.

• DA - Select the quantity from the storage location specified and add it to the quantity
in the AR specified, the sum to be returned to that same AR.

UP-3853 UNIVAC III UTMOST 2-B
SECTION: PAGE:

• SA - Store the quantity in the AR specified into the storage location specified.

A corres ponding problem mi ght be s ta ted as follows:

1. Assume that the two quantities to be added are stored In storage locations 800 and

801.

2. Store the sum of these quantities In storage location 802.

The coding needed to execu te the problem might look like the follow ing.

LOCATION OF INSTRUCTION

INSTRUCTION OP AR m

0 LA 8 800

1 DA 8 801

2 SA 8 S02

The first line of coding brings the quantity stored in location SOO into ARS. The second line

adds the quantity stored in location SOl to the quantity now in ARS and stores the resulting

sum in ARS. The last instruction stores in storage location 802 the quantity now in ARS.

The storage location for storage of the first instruction (storage location 0) was chosen

arbitrarily. However, the second a nd third ins tructions were stored, res pective ly, in s tora ge

locations 1 and 2 to assure that the control unit of the Processor would cause the instructions

to be executed in the order written. Only in this order of execution would the instructions effect

the desired result.

Of course, in the computer's store, the op codes would appear as six bit codes (LA happens to
be 001010, DA 010000, and SA 001000), the AR designation would appear as a four bit posi-

tional representation (ARS is 1000), and the m portions would appear as 10 bit binary addresses

(800 is 1100100000, 801 is 1100100001, and 802 1100100010). Therefo re, to be effective in th e

computer, the above instructions would have to be stored in storage locations 0-2 in the follow­

ing form:

IA X OP AR m

0 0000 001010 1000 1100100000

0 0000 010000 1000 1100100001

0 0000 001000 1000 1100100010

Instructions would be hard to write in such form, and would be even harder to read after having

been written. As a consequence, instructions are not written in this object code form, but are

instead written in another source code form. This source code form is the UTMOST language.

A program written in UTMOST language is recorded on tape and fed into a computer program

called the UTMO ST As sem bIer. The Assembler has the function of w ritin g out on anothe r ta pc

object code instructions corresponding to the source code instructions fed into the Assembler

as input. The coding on this object code tape can then be loaded into the computer to do the

operations described by the programmer in source code. All examples in this manual will be

coded in the UTMO ST langua ge.

15

SECTION:
2-8 I.AGE' 16

UNIVAC III UTMOST

UTMOST Coding is written on UTMOST coding paper, an example of which is shown in figure
2-19. The coding paper is essentially nothing more than a series of lines each marked off into
80/90 character segments. Writing of UTMOST code is restricted to the first 72 of these posi­
tions. The coding paper is used in the follow ing way.

In general, one instruction is written per line. The address of the storage location in which an

instruction is to be stored must be justified left in the line on which the instruction is written.

(In actuality, UTMOST uses "labels" rather than storage addresses for this purpose, but

introduction of the concept of labels is delayed until later in this manual.) The address must be

followed by one or more spaces. The number of spaces used is an option of the programmer. The

mnemonic op code for the instruction is then written. The op code must also be followed by one

or more spaces. The AR and m portions of the instruction are then written. They must be

separated by a comma. Following the m portion of an instruction, provided that at least one
space separates the m portion and the comment, the programmer may w rite any comments

about this instruction that he wishes. As indicated, op codes are written in mnemonic form,
AR's are indicated by the decimal equivalent of their pure binary code (8, 4, 2, and 1), and
the addresses in the m portion are written in decimal.

LOAD AR - LA

Transfer the contents of the storage location specified to the arithmetic register specified.

Example:

LABEL OPERATION OPERAND

(AR8) i = 012345 (AR8) f = 987654

(800) i = t 987654 (800) f = + 987654

The notation used in this example is as follows. Parentheses stand for "the contents of".

Thus (800) means "the contents of storage location 800". Parentheses followed by an "i"

stand for "the contents of ___ before ins truction execution". Thus, (800) i means "the

contents of storage location 800 before instruction execution". Parentheses followed by an

"f" stand for "the contents of ___ after instruction execution". Thus, (800)f means "the

contents of storage location 800 after instruction execution. Mnemonically, "i" stands for
"initial", "f" for "final".

UP-3853

UNIVAC ASSEMBLY IN UTMOST UNIVAC III

PROGRAMMING FORM

PROGRAM __________________________ __ PROGRAMMER ________________ _ DATE ____________ _ PAGE ____ OF __ PAGES

LABEL -, OPERATION .\ OPERAND COMMENTS
80 90

I I I I I I

I I I I I I

I I 1 1 I I

I I I I I I

I 1 I I I I

1 1 1 I 1 I

1 I I I I I

I I I I I I

I I I I I I

I I I i I I j

I I I I I I

I I I I I I I

I I I I I

I I I I I I j

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I 1 1 j 1 j j J I j J 1 j j I L 1

I i I I I I

I ! I ! I I I I ! I I I I I I I I ! I ! I ! ! I I

! ! ! I ! ! I I I I I I I I I I j I j I j

I I I' I I I I

I 1 1 1

! ! ! I !

, !

! ! !

~~~~~~~~~l-L~~~-~~~~~-~-~~~~LI ~~_L-L~LJ-L~ __ ~~_L~~~_L~I~I_L~~LJ_L~~~l_L_L~L_Lj_L~~LJ_L~~~_L_L~~~_L~~~-L-L1 

I i I I I 1 
..JP.2507 REv. 1 (80-90 COLuMN F=ORMI 

Figure 2-79. Assembly in UTMOST Coding Form 

en 
fT1 
n 
-i 

0 
Z 

'U 
~ 
(;) 

fT1 

c: 
"'0 
I 

W 
00 
(Jl 
W 

C 
2 -
~ 
n ---
C 
-t 
~ 
o 
UJ 
-t 

N 
I 
to 

~ 

'1 



SECTION: 

2-B 
I.AGE' 18 

UNIVAC III UTMOST 

LOAD AR NEGATIVE - LAN 

Transfer the contents of the storage location specified to the arithmetic register specified 
and change the sign. 

Example: 

LABEL OPERATION OPERAND 

1 1 1 Li A 1 N-.l -.l 8 t' 1 8 I 0 I 0 I I I I 1 1 1 1 I I I I I I I I I 1 I I 

~,.---~-----...~-----

(AR8) i = - 012345 

(800) i." + 987654 

STORE AR - SA 

- -
(AR8) f c=: -987654 

(800) f -= T 987654 

.- - - -

Transfer the contents of the arithmetic register specified to the storage location specified. 

Example: 

LABEL OPERATION OPERAND 

-

UP-3853 

) 

I I I ( 

- \ 

I I I I I I I I I I I I I I I I 1 I I I I) 

- ---- - - - -- ---

(AR8) i = - 012345 

(800) i = + 987654 

STORE A NEGATIVE - SAN 

(AR8) f = -012345 

(800) f = _ 012345 

Transfer the contents of the arithmetic register specified to the storage location specified and 

change the sign. 

Example: 

LABEL 

(AR8) i " - 012345 

(800) i = + 987654 

OPERATION 

(AR8) f -= - 012345 

(800) f = 1- 012345 

OPERAND 



UP-3853 UNIVAC III UTMOST 2-R 
SECTION: PA GE: 

DECIMAL ADD - DA 

Add the contents of the storage location specified to the contents of the arithmetic register spt.'cifi( d 

and store the sum in that arithmetic register. The Processor assumes that the operands are in decirn;:d 

format. In the operands, a decimal digit with a bit combination of 0000 (decimal "digit" "spa(''') \1,111 

be treated as a bit combination of 0011 (decimal digit "zero") 

Example: 

LABEL 

(ARS) 

(SaO) 

-012345 

t9S7654 

OPERATION 

(ARR) f 

(SaO) f 

DECIMAL SUBTRACT - OS 

,\ OPERAND 

975309 

9S7654 

Subtract the contents of the storage location specified from the contents of the arIthmetic registpr 

specified and store the difference in that arithmetic register. The Processor assumes that the 

operands are in decimal format. In the operands a decimal digit with a bit combination of 0000 wlll 
be treated as a decimal zero. 

Example: 

LABEL 

(ARS) 1 -­

(SaO) 

,\ 

012345 

987654 

OPERATION 

(ARS) f 

(SOO) f 

OPERAND 

999999 

987654 

\ 

1c) 



SECTION: 

2-8 I PAGE, 20 
UNIVAC III UTMOST 

BINARY ADD - BA 

Add the con ten ts of the s to rage location s peci fied to the con ten ts of the arithmetic re gis ter speci fied 

and store the sum in that arithmetic register. The Processor assumes that the operands are in binary 

format. 

Example: 

LABEL 

(AR8) i = - 15053170 
8 

(800) i == + 62724607 
8 

OPERATION 

(AR8) f = + 45651417
8 

(800) f = + 62724607
8 

OPERAND 

Notice that the binary numbers in this example are expressed in octal notation. 

BINARY SUBTRACT - BS 

UP-3853 

Subtract the contents of the storage location specified from the contents of the arithmetic register speci·, 
fied and s tore the d ifferenc e in th at arithme tic reg is ter. The Processor as sum es th at the operands a re in 
binary format. 

Example: 

LABEL 

~- - -
(AR8) i = - 15053170 g 

(800) i = + 62724607
8 

OPERATION 

I I I Iii I I 1 1 I I I I I 

.--
(AR8) f -= - 77777777/l 

(800) f = + 62724607 H 

--

OPERAND 

I I I I I I I I I 

--



UP-3S53 

o 

2 

3 

UNIVAC III UTMOST 2-8 
SECTION: PAGE: 

1. Example using Preceding Instructions 

The onhand quantity of a commodity is stored in location SOO, the onorder quantity in location 

SOl, and the expected requirements for the next 60 days in S02. All quantities are in decimal 

format. Store the sum of the onhand and onorder quantities reduced by the expected requirements 
in location S03. 

a. Logical Analysis 

1. Add the onorder quantity to the onhand quantity. 

2. Reduce the sum by the expected requirements. 

3. Store the difference. 

b. Coding 

LABEL OPERATION OPERAND 

800 ADD ONORDER 

o A 8, 8 0 

2 SUB 

To produce this coding, the programmer might have approached the problem in the following 

manner. As indicated in the logical analysis, the first data-processing step is to add the 

onorder quantity to the onhand quantity. 'Since the quantities are in decimal format, to do an 

addition the Processor must be given a DA instruction. This instruction requires that one of 

the quantities to be added must be in an arithmetic register. The other quantity must be 

selected from the storage location specified. Since both quantities are presently in storage 

locations, one of them must be transferred to an arithmetic register before they can be added 

together. The choice of the arithmetic register is arbitrary. Suppose ARS is chosen. To place 

the onhand quantity in ARS, the Processor must execute an instruction of the form LA 8, 800. 

Choice of storage location 0 for storage of the LA instruction is arbitrary. However, it does 

require that the next instruction in the program be stored in storage location 1. Following 

execution of the LA S, sao instruction, the onhand quantity is stored in AR8. To add the on­

order quantity to the contents of ARS, the Processor should have as its next instruction, 

DA S, SOL This instruction must be stored in storage location 1. After executing the DA 
instruction, the Processor has the sum of the onhand and onorder quantities stored in AR8. 

The logical analysis indicates that the next operation to be done is the subtraction of the 

required quantity from this sum. This step calls for a DS instruction. To execute this 

instruction, the desired minuend must be in an arithmetic register and the subtrahend in a 

storage location. Since both of these conditions are satisfied, a DS 8, 802 instruction is 

stored in storage location 2 to subtract the required quantity from the sum of the onhand 
and onorder quanti ties in ARS. 

21 



SECTION: 

2-B 22 UNIVAC III UTMOST 
~AGE: 

The final step is to store the difference in storage location 803. This operation can be 

done by the execution of a SA 8, 803 instruction stored in storage location 3. 

2. Student Exercises 

(1) A quantity is stored In storage location 800. Store the quantity In storage locations 

801, 802 and 803. 

(2) Two quantities are stored in locations 800 and 801. Interchange the quantities. 

(3) Three quantities are stored in locations 800, 801 and 802 in decimal format. Store 

the 5um of the quantities in location 803. 

(4) Quantities A, B, C and D are stored in locations 800 - 803, respectively, in decimal 

format. If 

R =- 2 A - B -+ 3 ( C ~ D) 

calculate R and store it in location 804. 

D. MULTIWORD OPERANDS 

Most instructions may specify multiword operands which may be two, three or four words in 

length. The number of words in an operand is determined by the number of arithmetic registers 

specified in the AR portion of the instruction. For example, suppose it is desired to load a 

two word operand in 1\R's 8 and 4. The positional notation for AR8 is 1000, for AR4 0100. 

Then.fore, the positional notation for AR's 8 and 4 would be 1100. The decimal equivalent of 

the pure binary number 1100 is 12, which happens to be the sum of eight and four. Thus, to 

load a two word operand into AR's 8 and 4, an LA instruction with 12 in its AR portion would 

be specified. This convention holds true in all cases. Thus, if it is desired to load a three 

word operand into AR's 4, 2 and 1, an LA instruction with 7 in its AR portion would be 

specified. (Seven is the sum of four, two and one.) 

The arithmetic registers can be conceived of as being arranged in a line, as shown in Figure 

2-20. 

AR8 AR4 AR2 ARl 

Figure 2-20. Arrangement of Arithmetic Registers 

Thus, arranged from "most significant" register to "least significant" register the arithmetic 

registers are listed as AR8, AR4, AR2 and ARl. When using arithmetic registers in a multi­

word operation, the least significant word of the multiword operand is found in the least 

significant register indicated, the next least significant word in the next least significant 

reg~ster, and so on, until the most significant word of the multiword operand is found in the 
most significant register. 

UP-3853 



UP-3853 UNIVAC III UTMOST 2-B 
SECTION: 

When the AR portion of an instruction calls for a multiword operand, the m portion of the in­

struction specifies the location of the least significant word of the multiword operand. Words 

of increasing significance in the multiword operand are found in continguous storage locations 
moving "backword" through the store. Thus, if an instruction specifying a three word operand 
add res ses loc at ion 802 in the m portion, the three word operand is foun d in locat ions 800, 801 
and 802. The most significant word of the three word operand is stored in location 800, the 
next most significant word in location 801, and the least significant word in location 802. For 
example, the instruction 

LABEL ,\ OPERATION OPERAND 

PAGE: 

\ 

would load the contents of location 802 into AR2, the contents of 801 into AR4, and the contents 
of 800 into AR8. 

Figure 2-20 is misleading in the sense that the arithmetic registers are not physically connected 

in any way. Thus, it is not necessary to load a two word operand in AR's 8 and 4, 4 and 2, or 2 

and 1. Any two arithmetic register may be used. For example, the instruction 

LABEL OPERATION OPERAND .\ 

would load the contents of location R02 into ARl, the contents of 801 into AR4, and the contents 
of 800 into AR8. 

Multiword operands may be used with any of the instructions previously defined in this manual. 

23 



SEC TION: 
2-B 

o 

UNIVAC III UTMOST 

1. Example 

A quantity is stored in locations 800, 801 and 802. Store the quantity in locations 803, 804 

and 80S. Do not destroy the contents of AR4. 

a. Coding 

LABEL OPERATION OPERAND 

2. Multiword Arithmetic Instructions 

In an arithmetic operation the sign of a multiword operand is determined by the sign of the 

least significant word of the operand. Therefore, in an arithmetic operation, if the contents 

of storage location m-1 are -XXXXXX and the contents of mare t XXXXXX, any multiword 

instruction addressing m as the least significant portion of an operand will involve a positive 
quantity regardless of the signs of the most significant words. After an arithmetic operation, 
the correct sign will appear in every word of the result. 

Example: 

UP-38S3 

LABEL OPERATION OPERAND I'!.. ( 

~======================================================~~ 
I I I D I AI I 1 12 I' I 8 I 0 I 1. I I I I I I 

-
~--------------------,--------------------~ 

(AR8) i = + 222222 

(AR4) i = + 333333 

(800) i =: - 666666 

(801) i = + 844444 

(AR8) f =: + 888889 

(AR4) f = + 177777 

(800) f = - 666666 

(801) f = + 844444 

~ 
I I I • I I I I I I I I I I I I 

- --,--------~ _~I 



UP-3S53 UNIVAC III UTMOST 2-B 
SECTION: PAGE: 

DECIMAL ADD HIGHER - DAH 

The decimal add higher instruction may be used with one word or two word operands. If a one word 
operand is used, two AR's are specified. If a two word operand is used, all four AR's are specified. 

1. If two AR's are specified, add the contents of the storage location specified to the contents of 

25 

the more significant register specified and store the sum in the less significant register specified. 

Example: 

LABEL OPERATION 

~---------------------~~ -

(ARS) i = - 012345 

(AR4) i = + 7S9012 

(SOO) i = + 9S7654 

-
1 1 1 1 11 1 I 1 1 1 1 I 1 1 

-----------------.-
(ARS) f = - 012345 

(AR4) f = + 975309 

(SOO) f == + 9S7654 

OPERAND 

I I 1 I 1 1 1 I I I I 1 

- ---

2. If four AR's are specified, add the s tora ge operand specified by m (the con tents of m-1 and m) 

to-the contents of AR's Sand 4 and store the sum in AR's 2 and 1. 

Example: 

LABEL OPERATION OPERAND 

1 1 10 I A I HI ~ 1 l 5 i' 1 8 I 0 I 1 I I I I I I I I 1 I 1 1 I I I 1 1 I I 1 

~- --~ - --- -- - - -
(ARS) i == + 333333 (ARS) f == + 333333 

(AR4) i = + 999999 (AR4) f = + 999999 

(AR2) i = + 444444 (AR2) f = + 555556 

(AR1) i = + 111111 (AR 1) f = + 000005 

(SOO) i = + 222222 (SOO) f = + 222222 

(SO 1) i = + 000006 (SOl) f == + 000006 

In both cases (one or two word operands) the Processor assumes that the operands a~e in decimal 

format. In the operands, a decimal digit with a bit combination of 0000 will be treated as a decimal 

zero. 



SECTION: 

2-8 I PAGE, 26 
UNIVAC III UTMOST UP-3853 

DECIMAL SUBTRACT HIGHER - DSH 

If two AR's are specified, subtract the contents of the storage location specified from the contents of the 

more significant register specified and store the sum in the less significant register specified. If four 

AR's are specified, subtract the storage operand specified by m from the contents of AR's 8 and 4 and 

store the sum in AR'S 2 and 1. The Processor assumes that the operands are in decimal format. In the 

operands, a decimal digit with a bit combination of 0000 will be treated as a decimal zero. 

BINARY ADD HIGHER - BAH 

If two A R 's a re specified, add the contents of the st orage loc ation specified to the con tents of the 

more significant register specified and store the sum in the less significant register specified. If 

four AR's are specified, add the storage operand specified by m to the contents of AR's 8 and 4 and 

store the sum in AR's 2 and 1. The Processor assumes that the operands are in binary format. 

BINARY SUBTRACT HIGHER - BSH 

If two AR's are specified, subtract the contents of the storage location specified from the contents 

of the more significant register specified and store the difference in the less significant register 

specified. If four AR's are specified, subtract the s tora ge 0 perand specified by m from the contents 

of AR's 8 and 4 and store the sum in AR's 2 and 1. The Processor assumes that the operands are 

in binary format. 

3. Student Exerc ises 

(1) Two quantities are stored in locations 800 and 801. Interchange the quantities. 

(2) Quantity A is stored in locations 800 and 801, quantity B in locations 802 and 803, 

and quantity C in 804 and 805. All quantities are in decimal format. Compute A + B 

and store the sum in 806 and 807. Compute A + C and store the sum in 808 and 809. 



UP-3853 UNIVAC III UTMOST 2-8 
SECTION: 

E. MULTIPLICATION AND DIVISION 

DECIMAL MUL TIPL Y - OM 

Multiply the contents of the storage location specified by the contents of arithmetic register 8 to 

produce a 12 digit product. Store the six most significant digits of the product in arithmetic register 

4 and the six least significant digits in arithmetic register 2. Store the sign of the product in the sign 

position of both arithmetic register 4 and arithmetic register 2. The P!"ocessor assumes that the 

operands are in decimal format. In theoperands, a decimal digit with a bit combination of 0000 will 

be treated as such. It will not be treated as a decimal zero. The programmer has no choice as to whIch 

arithmetic registers to use. Arithmetic register 8 is always used to hold the operand, and arithmetic 

registers 4 and 2 to receive the product. As a consequence, in the UTMOST language, no AR portion 

need h'e specified in the instruction. 

Example: 

LABEL 

(AR8) i 

(AR4) 

(AR2) 

(800) i 

OPERATION 

, 000600 

123456 

987654 

t 004000 

(AR8) f t 000600 

(AR4) f 000002 

(AR2) f f 400000 

(800) f t 004000 

DECIMAL DIVIDE - DO 

OPERAND \ 

Divide a 12 digit dividend in arithmetic registers 8 and 4 by the contents of the storage location 

specified to produce a six digit quotient in arithmetic register 4 and a remainder in arithmet ic 

register 8. The sign of the remainder will be the same as the sign of the contents of arithmetic 

register 4 before instruction execution. The Processor assumes that the operands are in decimal 

format. In the operands, a decimal digit with a bit combination of 0000 will be treated as such. The 

programmer has no choice as to which arithmetic registers to use. As a consequence, in the UT:\10ST 

language, no AR portion need be specified in the instruction. 

Example: 

LABEL 

(AR8) 

(AR4) 

(800) i 

OPERATION 

060000 

010000 

200000 

(AR8) f 

(AR4) f 

(800) f 

100000 

300000 

200000 

OPERAND .\ 

27 



SECTION: 

2-B I PAGE, 28 
UNIVAC III UTMOST UlP-3853 

F. THE DECIMAL POINT 

The Processor has been so designed that, in all arithmetic operations, the decimal point of each 

operand is considered to be immediately to the left of the most significant digit of the operand. 

Consequently, so far as the Processor is concerned, the value of all operands lies between plus 

one and minus one, and are, consequently, fractional. 

To represent quantities of greater or lesser magnitude than recognized by the Processor, the 

programmer must mentally assign the decimal point to a position other than that fixed by the 

Processor. This assumed decimal point is called the program decimal point, and in this manual, 

is indicated by a carat. Thus, the programmer may mentally assign a decimal point to a one word 
operand in decimal form at as follows. 

To the programmer this operand is the quantity 60.00. However, to the Processor it is the quantity 

.006000, and the Processor will treat it as such. Since the Processor ignores the program decimal 

point, a record of program decimal points must be maintained by the programmer. The position of 

the program decimal point in the results of an arithmetic operation can be determined by means of 
the fo 110w in g ru les : 

1. Rule for Addition and Subtraction 

In adding or subtracting quanti ties in th e Process or, the program decimal points m us t be lined 

up in both operands. The program decimal point in the result will be in the same position as in 
the operands entering the addition or subtraction. 

Thus, the rule for handling the program decimal point in addition and subtraction is the same as 

the rule for handling the decimal point in pencil and paper addition and subtraction. 

Example: 

Sum 

2. Rule for Multiplication 

PENCIL AND PAPER 

$3600.05 

156.23 

$3756.28 

UNIVAC III 

3600.05 

015623 • 

The Processor multiplies one 6 digit operand by another 6 digit operand to produce a 12 digit 

product. As with addition and subtraction, position of the program decimal point in the product 

is determined the same way placing the decimal point in pencil and paper multiplication is 

effected. The number of decimal places in the product is the sum of the decimal places in the 

multiplier and the multiplicand. 

Example: 

PENCIL AND PA PER 

2.46 
3.29 

8.0934 

UNIVAC III 

00000008.0934 



UP-3853 UNIVAC III UTMDST 2-B 
SECTION: 

3. Rule for Division 

Let M be the number of digit positions that the program decimal point is to the right or left 
of the Processor decimal point in the dividend. If the program decimal point is to the right of 
the Processor decimal point, M is positive; if to the left, M is negative. Let N be the number 

PAGE: 

of digit positions that the program decimal point is to the right or left of the Processor dec ima 1 
point in the divisor. If the program decimal point is to the right of the Processor decimal point 
N, is positive; if to the left N is negat ive. Th en M-N is the numbe r of digit posi tions that the 
program decimal point is to the right or left of the Processor decimal point in the quotient. If 
the result of M-N is positive, the program decimal point is to the right of the Processor dec imal 
point in the quotient. If the result of M-N is negative the program decimal point is to the left 
of the Processor decimal point in the quotient. 

Example: Divide 00063;497100 by O~OOOO 

To the Processor this problem appears as follows: Divide .000632497100 by .020000. Thus, the 
Processor will come up with a quotient of .031624. In this case M is 5 and N is 2. Therefore, 
M-N is 3 and the quotient with the program decimal point is 03\.624. 

To determine the program decimal point of the remainder it is necessary to consider it as being 
twelve digits, by adding 6 zeros to the left of the most significant digit position. Then the pro­
gram decimal point would be located in the same position as it was in the twelve digit dividend. 

In the case of the above example, the Processor would come up with a remainder of .017100 
whereas according to the above, the program decimal point would be 0000q0017100. As an 
example of how this may be used, assume that it is desired to verify the division, similar to 
the paper and pencil method, then: 

Quotien t 

Divisor 

Partial Oi vidend 

Remainder 

Di vidend 

03 1624 

O~OOOO 

00063;480000 

0000Q0017100 

000612497100 

G. NONZERO DIGITS 

It is sometimes important for the programmer to determine the maximum number of nonzero digits 

that may appear in the result of an arithmetic operation. The following rules are designed to make 

this determination. 

1. Add ition or Subtraction 

If two operands are added, or if one operand is subtracted from another, the maximum number of 

nonzero digits in the sum or difference is one more than the number of nonzero digits in the 

operand having the greater number of nonzero digits. In the following example, nonzero digits 
are indicated by X's. 

OX~XXO 

o 0 ~XX 0 

XX~XXO 

29 



SEC TION: 

2-B I PAGE, 30 
UNIVAC III UTMOST 

2. Multiplication 

The number of zeros before the first nonzero digit in the product is equal to the sum of the 

number of zeros before the first nonzero digit in the multiplier, added to the number of zeros 

hefore th e fi rs t nonzero digit in the multiplicand. The maximum number of nonzero digits in 

the product is equal to the sum of the number of nonzero digits in the multiplier, added to 

the number of nonzero digits in the multiplicand. The remaining digits in the product are 

zeros. 

Example: 

3. Divis ion 

C 

D 

CxD 

OXXXXX 
A 

0x.xxoo 
OOXXXXXXXXOO 

A 

If, in the values just prior to dividing, u is the number of zeros before the first nonzero digit 

of the dividend and v is the number of zeros before the first nonzero digit of the divisor, then 

there will be a minimum of u minus v minus 1 zeros before the first nonzero digit of the 

quotient. All the other digits in the quotient may be nonzero. For example, given E and F. 

E OOXXXX 
A 

F ~ OXXXOO 
A 

ElF XXXXXX 
A 

since u 2 and v 1 

then u minus v minus 1 -: 0 

In this case, the remainder would have the same format as the divisor F: 

oxx.xoo 

Ifu-v-l - 1 this indicates that the most significant X will be a zero 

H. CONST ANTS 

A constant is any UNIVAC III word (or words) which is neither executed as an instruction nor 
is a part of the data. 

In solving a problem it is often necessary to use values that are not introduced with the data 

but are essential to the successful execution of a program. These values are established and 

written by the programmer at the time the program is written and, therefore, will be included 

with the instructions. Then at the time that the instructions are read into the Processor the 

constants necessary for the successful completion are also introduced. 

Example: 

Company X desires to give every employee a $100.00 bonus. The salary of each employee may 

be read into the Processor as a part of the data or may have been computed during a payroll run. 

Now the programmer desires to add $100.00 to this pay. He has at his disposal an ADD instruc­

tion to perform the addition but he does not have the value $100.00 as a part of the data. This 

value may be established as a constant by writing it on the coding paper and assigning it to a 

UP-3853 



UP-3853 UNIVAC III UTMOST 2-B 
SECTION: 

storage location that is not being used for the data or instructions. Since the constant is to he 

placed with the instructions but may not be executed as an instruction the following con,·;ider:i­

tion must be given. UNIVAC III is a sequential processor and when control for execution has 

been given to the Processor it will continue to execute each instruction in sequence until sonw­

thing occurs to break this sequence. It is obvious that a constant may not be placed in direct 

line with this execution. Therefore, constants may be listed after a break in sequence with rti 

fear of the control unit accessing them as instructions. Consideration must also be given by' he 

programmer to the format of the constant. 

In UTMOST language, constants are written in the following way. As is the case with instru( 

tions, the address of the storage location in which the constant is to be stored is left justifi\·d 

on the line on which the constant is to be written. This address is followed by one or murt' 

spaces. The next thing to appear on the line is a "plus sign" or a "minus sign". If the COil t ilt 

is to be positive, the "plus sign" is used; if negative, the "minus sign". The sign may orl", 

not be followed by spaces at the programmer's option. There then follows the absolute \,lillt' ) 

the constant. 

The programmer has the need to write three formats for constants: alphabetic, decimal and 

binary. If it is desired to wrrte a constant word in six bit aphabetic format, the constant is 

written with cha racters and numbers and is surrounded by "a postrophes". In the Process 0 r, ,'n,' 

word holds four six bit characters. However, in UTMOST language it is not necessary to writl' 

any more characters than is desired. The UTMOST Assembler will take the characters t'nc!o:~,t'd 

in the "apostrophes", right justify them in the word into which they are to be stored, and fil 

the rest of the word with six bit space symbols (binary code 000000). The following are .;l'n1! 

examples of the operation of the UTMOST Assembler on alphabetic constants. 

LOCATION OF UTMOST BINARY CODE ALPHABETlt 

CONSTANT LANGUAGE STORED REPRESENTAT!C 

0 ' ABCD' 0010100010101010110010111 ABeD 

1 I ABC I 0000000010100010101010110 \ABC 

2 I AI' 1000000000000010100000100 \ \ A 1 

,,""-, ..... _-

If it is desired to write a constant in four bit decimal format, the constant i written vv'it~; l !' 

numb ers and is preceded by a "colon". It is not necessary tow rite any more n umbers th n 

desired. The UTMOST assembler will take the numbers between the colon and the first fGl!ow 

space, right justify them, and fill the rest of the word with four bit space symbols (bina! 
0000). The following are some examples of the operation of the Assembler on decimal COtlSLl 

LOCATION OF U T MO S T BINARY CO D E DECIMAL 

CONSTANT LANGUAGE STORED REPRESENTATiO 

"'--'--

0 123456 0010001010110011110001001 ' 1 2 .3 4.Sh 

1 + 123 0000000000000010001010110 j \ \ \ 1..2.i 

2 14 1000000000000000001000111 \\\\14 

1 



2-B 
SEC TION: 

UNIVAC III UTMOST UP-3853 

If it is desired to write a constant in binary format, the programmer may write the number in 

decimal or in octal. If written in decimal, it is written with decimal numbers alone. The most 
significant number may not be a zero. If written in octal, it is written with octal numbers preceded 

by a "zero". In both cases it is not necessary to write any more numbers than is desired. The 

binary equivalent of the numbers written will be right justified and preceded by binary zeros. The 

following are some examples of the operation of the Assembler on binary constants. 

1. Example: 

LOCATION OF 

CONSTANT 

o 

1 

2 

3 

UTMOST 

LANGUAGE 

+ 017 

+ 07007 

-9 

+ 1024 

B IN A R Y 

CODE 

0000000000000000000001111 

0000000000000111000000111 

1000000000000000000001001 

0000000000000010000000000 

A dollar amount is stored in location 800 in format OXXXXO. Add $25.74 to the amount. • 
a. Coding 

LABEL OPERATION OPERAND 

2. Student Exercises 

(1) If A has the form .OOXXXX, and B the form .OXXXXX, what is the form of AB? 

(2) If A has the form OXX\XX, and B the form XX\XXO, what is the form of AB? 

( 3) I f A has the for mOO 0 X X X X \X X X X, and B the fo r mOO X \X X, w hat i s the for m 0 f A ~- B? 

(4) Three quantities of form + QQQQQQ are stored in locations 800,801 and 802. Store the 
18 digit product of the three quantities in locations 803, 804 and 805. 



UP-3853 UNIVAC III UTMOST 2-8 
SECTION: PAGE: 

(5) Given the following: 

(6) 

DATA 

Quantity A 

Quantity B 

Quantity C 

Quantity D 

FORM 

.OXXOOO 

.OXXOOO 

.OXXOOO 

.OXXOOO 

E ::: AB 

F = AB 
.9C 

G = AB - D 
.9C 

LOCATION 

800 

801 

802 

803 

Quantity C has a value of .011 or greater. Store quantities E, F and G, respectively, In 
locations 804, 805 and 806. 

DATA FORM LOCATION 

Income GGGGGG.GGOOOO 800, 80 L 

Number of P p.OOOO 802 
Dependents 

Deductions other OOAAAAAAOOOO 803, 804 • than for Dependents 

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income. 
Store the unrounded tax in form OOOOTTTTTT.TT in locations 805 and 806. 

I. Branching 

In certain operations, the next instruction to be executed is dependent of the nature of the data 

being processed. If, for example, a customer is to receive a discount only on orders of $10,000 

or more, the billing procedure must consist of two different paths. One path bills the customer 

with a discount, the other bills him without a discount. Decision of which path to take for a 

particular customer depends on the amount of his order. The separation of the flow path of the 

sequence of instruction execution is called branching. Choice of which branch of instructions to 

take is determined by a logical decision. In this case, the logical decision is embodied in the 

question: Is the cus tomer's order amount $10,000 or more? In the Processor, 10 gical decis ions 

are made on the basis of comparisons. 

33 



2-B 
SECTION: 

UNIVAC III UTMOST 

1. Comparisons 

In the Processor, comparison is made between two operands. The results of a companslOn is 

reflected in the resulting condition of indicators. An indicator has two states: on and off. 

There are three comparison indicators: high, low and equal. The first step in the execution 

UP-3853 

of a comparison instruction is to set all three indicators to off. The comparison between one 

operand (in the arithmetic registers) and the other (in storage) is then made. If the two operands 

are equal, the equal indicator is turned on. If the operand in the arithmetic unit is larger than 

the operand in storage, the high indicator is turned on. If the operand in the arithmetic unit 

is smaller, the low indicator is turned on. Once a comparison has been made, the indicators 

remain in the state resulting from the comparison until one of the following occurs: 

• Another comparison is made. 

• An addi tion or subtraction is made. (A zero s urn or difference turns the equal indicator on. 

A nonzero sum or difference turns the equal indicator off.) 

2. The Collation Sequence of Char8cters 

There is no question about the meaning of the equal indicator being turned on as the result of 

a compa ris on. N or is the result ambiguous when the hi gh or low indicator is turned on as the 

result of comparing binary or decimal operands. However, some question may arise as to what 

a high or low indicator may mean as a result of a comparison of alphabetic operands. 

There is an arithmetic relation of relative magnitude with respect to numbers. Thus, two is 

larger than one, three is larger than two, and so on. This relation is called the collation 

sequence of num bers. 

F or purposes of co mparing two alphabet ic 0 per and s for re lati ve rna gn itude, the Process or 

recognizes a collation sequence of characters. This collation sequence is as follows. If the 
characters are read off of Figure 2~18 by reading down the first column, then down the second, 

then down the third, and finally down the fourth, the characters are being read from smallest 

in magnitude to largest in magnitude. Thus, "A" is larger than "3". "Q" is larger than "K", 

"U" is larger than" P", an d so 0 n. 



UP-3853 UNIVAC III UTMOST 2-B 
SECTION: PAGE: 

3. Comparison Instructions 

COMPARE - C 

Compare the operand specified by AR with the operand specified by m and turn the appropriate indica­

tor on. This comparison takes into consideration the signs of the operands and is, consequently, an 

algebraic comparison. This instruction allows the use of multiword operands. 

Example: 

LABEL 

If: (AR8) 

(800) 

OPERATION 

+ AAAAAA 

+ 666666 

The high in d i cat 0 r is tu r ned 0 n. 

If: (AR8) 

(800) 

+ AAAAAA 

- 666666 

The higR indicator is turned on. 

If: (AR8) 

(800) 

- AAAAAA 

-666666 

The low ind ic ator is turned on. 

OPERAND ,\ 

35 



SECTION: 

2-8 I PAGE, 36 
UNIVAC III UTMOST 

COMPARE MAGNITUDE - CM 

Compare the operand specified by AR with the operand specified by m and turn the appropriate 

indicator on. The signs of the operands are not taken into consideration, anc consequently, this is 

a comparison of absolute values. This ins truction allows the use of multiword operands. 

Examples: 

LABEL 

If: (AR8) 

(800) 

OPERATION 

+ AAAAAA 

+ 666666 

The high indicator is turned on. 

If: (AR8) 

(800) 

+ AAAAAA 

- 666666 

The high indicator is turned on. 

If: (AR8) 

(800) 

- AAAAAA 

- 666666 

The high indicator is turned on. 

COMPARE PRODUCT WITH A - CPA 

OPERAND 

If the operand specified by m has a one in every bit position where the operand specified by AR 

has a one, the equal indicator is turned on. Otherwise, the high indicator is turned on. This instruc­
tion allows the use of multiword operands. 

Exam pIes: 

LABEL 

If: (AR8) 

(800) 

OPERATION 

0100100000000000000000000 

0101100000000000000000000 

The equal indicator is turned on. 

If: (AR8) 

(800) 

0100100000000000000000000 

01110000000000000000000000 

The high indicator is turned on. 

OPERAND 

UP-3853 



UP-3853 UNIVAC III UTMOST 2-B 
SECTION: PAG E: 

COMPARE PRODUCT WITH ZERO - CPZ 

If the operand specified by m has a zero in every bit position where the operand specified by AR has 

a one, the equal indicator is turned on. Otherwise, the high indicator is turned on. This instruction 
allows the use of multiword operands. 

Examples: 

LABEL 

If: (AR8) 

(800) 

OPERATION 

1101000000000000000000000 

0000100000000000000000000 

The equal indicator is turned on. 

If: (AR8) = 1101000000000000000000000 

(800) = 1100100000000000000000000 

The high indicator is turned on. 

4. Transfer of Control 

OPERAND !\ 

The Process or norma lly executes instructions seq uentia lly. That is, a fter the instruct ion in 

storage location c is executed, the processor normally executes the instruction in storage 

location c + 1. To effect branching, this normal sequence must be broken. The sequence is 

37 

broken by means of a transfer of control instruction. For example, if the instruction in storage 

location c is being executed, and this instruction is an unconditional transfer of control instruc­

tion, the next instruction to be executed is found, not in storage location c + 1, but in the storage 

location specified in the m portion of the transfer of control instruction. 

For brevity, transfer of control instructions are called jump instructions, since they "jump" the 
Processor out of the normal sequence of instruction execution to a new sequence. Once the jump 

has been effected, normal sequent ia I execut ion of ins t ruct ions res urnes. 



SEC TION: 

2-B I PAGE< 38 
UNIVAC III UTMOST 

JUMP - J 

The next instruction to be executed is to be found in the stora,ge location specified by m. 

Example: 

LOCATION OF 
INSTRUCTION INSTRUCTION 

4 J 10 

Normally, the next instruction would be found in storage location 5. Execution of the jump 
instruction causes the next instruction to be found in storage location 10. 

Notice that the jump instruction has no entry in the AR portion. Consequently, in the UTMOST 

language no AR portion is written. 

The jump instruction is an unconditional transfer of control. Control is transferred regardless of 

any conditions present. As a result, it cannot be used for branching. The following instructions 

are conditional transfers of control. They jump only if some specified condition is met. Conse­

quently, they, together with the comparison instructions, provide the means to effect branching. 

JUMP EQUAL - J E 

If the equal indicator is turned on, jump to m. That is, if the equal indicator is on, the next 

instruction to be executed is to be found in the storage location specified by m. If the equal 

indicator is off, normal sequential execution of instructions continues. In writing the instruction 

in UTMOST language, no AR portion is specified. 

JUMP GREATER - JG 

If the high indicator is on, jump to m. In writing the instruction, no AR portion is specified. 

JUMP LESS - JL 

If the low indicator is on, jump to m. No AR portion is specified. 

JUMP POSITIVE - JP 

If the contents of the arithmetic register specified are positive, jump to m. 

NO OPERATION - NOP 

This instruction does nothin g. The Proces sor just goes to the next s tora ge locat ion in seq ue nce 
to select the next instruction. Although, the NOP instruction involves neither AR or m, in the 
UTMOST language it must have an m portion. For example: 

NOP 0 

Uses of the NOP instruction will become clear later in this manual. 

(;'P-3853 



UP-3853 UNIVAC III UTMOST 

5. Example: 

DATA 

Account Number 

Delinquent Account 

Number 

FORM 

OAAAAA 

ODDDDD 

2-B 
SECTION: 

LOCATION 

800 

801 

If the account number is equal to the del inq uent account num ber, jump to s t ora ge loc a­

tion 100. If not, jump to location 200. 

a. Logical Analysis 

1. Is th.e account number equal to the delinquent account number? 

1a. No lb. Yes. 

2. Jump to 200. 2. Jump to 100. 

b. Coding 

LABEL .'i OPERATION OPERAND COMMENTS 

PA GE: 

) 
L A 81, 8 ° ° lSI THE A C COU j ... T ... U MBE R IEQ UA,L, ,T'~l.:~i~.LE! ,D!E!L!I!N!Q,UIE~.\_ .. ) 
C 81, 8 ° 1 A CI CO U N T N U M Bj E R ? '-.J..-'_w...L..-L.-'-_L_L . ..L __ L..l.. J....~_..L...L.~ .l......L._.l. " .. ) 

2 J E 1 1 ° ° 1--=-l.--L...-L-..L.......I--L:....L::..l.......J........J...-'--'--'--'--'-...L......L.....L_J LU...J.I I_M-,-P-'--"--lT _0.L.......J_1..1.........J
0 ,,-0....L' ....Jj'----'--I. L..L....L-L...J.... 1 1 1 j 1 ! ....l........L.L...L.......L.-..l.-L...!.. , 1 ' 1 ! 1 1 ..L j.-_L_..l. ~ .. --1 

1 2 ° ° 1--=-l.--L...-L-..L.......I--L~..l.......J'---'--'--'--'--'---L...-L-.L......J._JLU_..!I_M..L1 P-'I--LI .....lTI_O-'-1 ....J1_2....L1 °_1,-°-'-1 .L..L....J. 1 1 1 I 1 1 1 I 1 1 1 ~--'--....L....L . ..L_LL L._L. 1 1 ' 1 1 _L L_L.-l. L •. \ 

- _ - ____ -~ _____ ---F--_~~.---] - -- ---

6. Student Exercises 

(1) If the absolute value of the contents of storage location 800 are less than the absolute 

value of the contents of location 801, add the contents of 802 to the contents of 803 on 

jump to 100. Otherwise, subtract the contents of 804 from the contents of 803 and [UI11p 

to 200. 

(2) If bit positions 12, 14 and 16 of the contents of storage location 800 are ones and bir 

positions 8, 9 and 10 are zeros, add the contents of location 801 to the contents of 802, 
store the sum in 803, and jump to 100. Otherwise, subtract the contents of 802 from the 

contents of 801, store the difference in 804, and jump to 200. 

(3) DATA 

Pay 

Deduction 

FORM LOCATION 

800 

801 

If the deduction will not reduce the pay below $15.00, make the deduction. Otherwise, 

store the deduction in storage location 802. In any case, store the pay to be received 

by the employ.ee in location 803. When finished, jump to location 100. 

39 



UP-3853 UNIVAC III UTMDST 2-C 
SECTION: PAGE: 

2C. INTRODUCTION TO FLOWCHARTING 

The subject of flowcharting may be best presented by means of example. 

Example: 

DATA FORM LOCATION 

Days of Medical Absence AA .. OOOO 800 

Remaining Days of Medical Leave LL .. 0000 801 

Hourly Rate of Pay R .. RROOO 802 

Update the medical leave and store the medical pay in form 
Then jump to location 100. 

PPPP PP in storage location 803 . .. 

The first step in the solution of the above programming exercise is to make a logical analysis of 
the problem. The logical analysis might take the following form. 

1. Is medical absence equal to zero? 

1a. No. lb. Yes. 

2. Is medical leave equa I to zero? 

2a. No. 2b. Yes. 

3. Is medical leave greater than medical absence? 

3a. No. 3b. Yes. 

4. Store medical leave in storage. 4. Store medical absence in storage. 

5. Store zero in medical leave. 5. Reduce medical leave by medical absence. 

6. Multiply storage by eight. 

7. Multiply product by rate. 

8. Sto re prod uct in pay. 8. Store zero in pay. 

9. Jump to 100. 

1 



SECTION: 

2-C 2 UNIVAC III UTMOST 
PAGE: 

While correct, the above analysis is bulky and unwieldy. Consequently, when developing a logical 
analysis, the programmer uses a different form of notation called flowcharting, and the form which 
his logical analysis takes in this notation is known as a flowchart. 

Flowcharts differ from logical analyses in several respects. For one thing, the steps in a flowchart 
are typically shown in boxes, and arrows are used to indicate the sequence of steps. For example, 
the above logical analysis would be modified to look like the flowchart in F igu re 2-2 L 

Notice that on those boxes in Figure 2-21 which have more than one arrow emerging from the box, the 
condition under which each path is taken is indicated on the arrow symbolizing the path. :for example, 
the second box in Figure 2-21 represents a logica I dec is ion and has tw 0 pa ths e merging from it, one 

to be taken if the condition being tested for is met, and the other to be taken when the condition is 
not met. The two paths are labelled appropriately. 

Programmers further reduce the bulkiness of their flowcharts by using symbols to represent fields, 
opera tions and cond itions. Thus, the medica 1 abs ence fie ld mi ght be represented by an "A)J, the 
medical leave field by an "L", the pay rate by an ceR", storage by an US", and the pay by a "'P". 
Many algebraic symbols are borrowed from mathematics to represent operations and conditions. Thus. 
"+"represents addition, "-" subtraction, "x" multiplication, "-0" division, ":::" equal to, "i" 
not equal to, " " " greater than, ". " less than, ".~ " greater than or equal to, and "~" less than 
or equal to. The operation of storing one field in another field (such as storing the medical absence 

UP-3853 

in stow ge) is rep resented by a narrow. For exam pie, the operation "s tore medical a bsence in storage" 
would be represented as: 

A~S 

An arrow is also used to fill out an arithmetic operation. For example, the operation "reduce medical 
leave by medical absence" would be represented as: 

L - A--"L 

Where the arrow indicates that the new "L" is constituted by the difference between "A" subtracted 
from the old "L". 

The operation of comparing one field with another is represented by a colon. For example, the opera­
tion "is medical leave greater than medical absence" is a comparison of medical leave and medical 
absence. Consequently, it would be represented as: 

L A 

By convention, 10 gical decis ions are sh ow non flowch arts in the form of diam onds rather than rec­
tangles. Such a "logical decision box" always has at least two arrows emerging from it, each arrow 
being marked by the condition that must hold for the path to be taken. 



UP-3853 UNIVAC III UTMOST 2-C 
SECTION: PA GE:: 

START 

IS MEDICAL ABSENCE 
YES 

EQUAL TO ZERO? 

NO 

IS MEDICAL LEAVE YES STOR E ZE RO 

EQUAL TO ZERO? IN PAY. 

NO 

IS MEDICAL LEAVE STORE MEDICAL REDUCE MEDICAL 

GREATER THAN 
YES LEAVE BY ABSENCE IN --.. 

MEDICAL ABSENCE? STORAGE. MEDICAL ABSENCE. 

NO 

STORE MEDICAL STORE ZERO 

LEAVE IN ...... IN MEDICAL I---

STORAGE. LEAVE. 

1 ~ ---- . 

MUL TI PL Y STORAGE MUL TIPLY PRODUCT STORE PRODUCT 
~ --+ JUMP T o 100. 

BY EIGHT. BY RATE. IN PAY. 

-

Figure 2-27. Flowchart Incorporating Boxes and Arrows. 



SECTION: 
2-C UNIVAC III UTMOST 

Adopting the conventions described above, the flowchart shown in Figure 2-21 would be modified to 
look like the flowcha rt in Figure 2-22. 

Notice that the latter flowchart contains a legend which defines the arbitrary symbols used in the 
flowchart. Such a legend is always necessary in order to make a flow chart incorporating symbols 
legible. 

To make their flowcharts even more compact, programmers make use of a special symbol, called a 
connector, to eliminate the long arrows that otherwise crisscross the flowchart to show the logical 
line of flow. A connector is a numbered circle. When, in a flowchart, an arrow leads to a connector, 
the next operation in the logical line of flow follows the arrow leading out of the connector con­
taining the same number. Using connectors, the flowchart shown in Figure 2-22 would be modified to 
look like that in Figure 2-23. 

Notice th at, to dis tingu ish between different conn ectors, different numbers are used. Notice a Iso that 
a connector containing a given number and having an arrow leading into it can appear in a flowchart 
as many times as is necessary, but to avoid ambiguity, only one connector containing the number and 
having an arrow leading out of it can appear. 

START 

LEGEND 

A - medical absence 

L - medical leave 

R - pay rate 

P - pay 

S - storage 

> 
A -5 HI-__ L_-_A_-" __ L_...I~,--__ 8 R_S...,-..r--_P_---J 

Figure 2-22. Flowchart Incorporating Symbols 

JUMP TO 

100 

UP-3853 



UP-3853 UNIVAC III UTMDST 2-C 
SECTION: 

In the flowchart in F igure 2~23, the "START" legend is shown in an ova 1. This is con ven tiona L 

LEGEND 

A - medical absence 

L - medical leave 

R - pay rate 

P - pay 

S - storage 

o .... p 

L - A~L 

Figure 2-23. Flowchart I ncorporat i ng Connec tors 

PAGE: 

Figure 2-23 shows the flowchart as a programmer might have originally produced iL Programmers and 
installations vary as to the style of flowchart produced. Any cross between the flowchart shown in 
Figure 2-23 and the one shown in Figure 2-21 is possible. 

The codin g for the above exercise is shown on the following page. 

5 



2-C UNIVAC III UTMOST UP-3853 
SECTION: 

LABEL OPERATION OPERAND 

I -L-' 

6 I .--1-' 

7 
-L-I 

10 

11 

12 

21 1j 0, I 1 I 0 I 0 ! 

________ ---------1 



UP-3853 UNIVAC III UTMOST 2-C 
SECTION: PAGE: 

A. EXAMPLE 

DATA FORM LOCATION 

YTD FICA Earnings EEEE.EE 880 

YTD FICA Tax OTTT. TT 881 

Current Pay PPPP PP 882 • 

Update the year to date FICA earnings and tax, and s tore the current FICA tax in form oacc. cc 
in location 883, Then jump to 500. 

B. FLOWCHART 

7 

>---------------------~ __ O_~ ___ C __ ~-------------------~.~~ 

< 

LEGEND 

E - YTD FI CA earnings 

T - YTD FICA tax 

P - current pay 

C - current tax 

E + P~E 03625P~C T + C~T 

4800~E 144 - T~C 144~T 



2-C UNIVAC III UTMDST {J ........ n,.. ... 

SECTION: 

C. CODING 

LABEL OPERATION OPERAND 
1 



UP-3853 UNIVAC III UTMOST 2-C 
SECTION: 

D. STUDENT EXERCISES 

1. 

2. 

DATA FORM LOCATION 

Quantity A ± AAAAAAA 880 

Quantity B ± BBBBBB A 881 

Quantity C ± CCCCCCA 882 

Store the smallest of the three quantities in storage location 883. Then jump to location 
500. 

DATA FORM LOCATION 

Badge Number NNNNNN 880 

Bond Deduction OODDADD 881 

Cumulative Bond Deduction OCCCACC 882 

Bond Price OPPP APP 883 

Update the cumulative bond deduction, and if a bond can be purchased, store the badge 
number in storage location 844 and the bond price in location 885. Then jump to 500 

9 
PAGE: 



UP-3B53 UNIVAC III UTMOST 3 
SECTION: PA GE: 

3. EDITING 

Fields of data fed into the Processor through the input units and put out by the Processor through 
output units may vary widely in form and content. A word may contain more than one field of 
in fo rm a tion. To opera te on one of th ese fie Ids it may be neces sary to isola te it from the other 
fields in a word. Two fields to be added together may not have their program decimal points lined 
up. To add the two fields it is then necessary to shift one or both of the fields to line up the 
decimal points prior to addition. Such field manipulation is ac~omplished through the use of editing 
in s tru ction s. 

A. SHIFT INSTRUCTIONS 

DECIMAL SHIFT RIGHT - DSR 

Shift right the contents of the arithmetic register(s) specified the number of digit positions specified 
in m. Signs are not shifted. Digits shifted outside the register(s), capacity are dropped. Decimal 
zeros are inserted in the vacated digit positions. The contents of one or two arithmetic registers 
may be shifted. 

Example: 

LABEL OPERATION OPERAND 

(ARB) i-= + 123456 (ARB) f = + 001234 

DECIMAL SHIFT LEFT - DSL 

Shift left the contents of the arithmetic register(s) specified the number of digit positions specified 
in m. Si gns are not shi fted. Di gi ts shi fted ou tside the regis te r (s)' capaci ty are dropped. Decim a I ze ros 
are inserted in the vacated digit positions. The contents of one or two arithmetic registers mav be 
shi fted. 

Example: 

LABEL OPERATION OPERAND .\ 

i DiS .L 1 l8 l' 12 iii I I I 111 III 1 Iii i I I I I I I 

--- - --- - -- - --
(ARB) i ::: + 123456 (ARB) f ::: + 345600 

'> 
I 



3 
,ECTION: 

UNIVAC III UTMOST 

The decimal shift instructions treat operands in four bit groups. In four bits, sixteen different codes 

can be represen ted, as follows. 
CODE 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

DECIMAL DIGIT 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 

As indicated above, ten of these codes represent the ten decimal coefficients in excess three code. 
These ten codes retain their integrity during a decimal shift. The other six, however, change their 

na tu re as follow s. 

BEFORE AFTER 

0000 00 11 
0001 0011 
0010 0011 
1101 0011 * 
1110 0100 * 
1111 0101 * 

Also, those three codes with an asterisk produce an arithmetic carry into the digit position to the 
left when the shift is performed. 

ALPHANUMERIC SHIFT RIGHT - ASR 

Shift right the contents of the arithmetic register(s) specified the number of characters specified in 
m. Signs are not shifted. Characters shifted outside the register(s)' capacity are dropped. "Space" 
characters are inserted in the vacated digit positions. The contents of one or two arithmetic 
regis ters may be shi fted. 

Example: 

LABEL OPERATION OPERAND 

UP-3853 

I I I I A IS I R I 18 I' 121 I I I I I I I I I I I j I I I I I I I I I I I I I I 

- - -- --- -
(AR8) i = + ABCD (AR8) f = +\,\AB 



UP-3853 UNIVAC III UTMOST 3 
SECTION: PA Gc: 

ALPHANUMERIC SHIFT LEFT - ASL 

Shift left the contents of the arithmetic register(s) specified the number of characters specified in rn 
Signs are not shifted. Characters shifted outside the register(s)' capacity are dropped. "Space" 
characters are inserted in the vacated digit positions. The contents of one or two arithmetic registt'rs 
may be s hi fted. 

Example: 

LABEL OPERATION OPERAND \ 

I I I I A IS lL..l 18 I' 121 I I I I I i ..l i 1 i j I I I I I I I I I I 

} 
I J 

- -- -----------~--~,-------------~------------------------------~-----------------------~-

BINARY ROTATE RIGHT - BRR 

Shift right the contents of the arithmetic register specified the number of bits specified in m. The sign 
is shifted. Bits shifted beyond the right band of the registers capacity "circulate" and are reinserkd 
at the left. The contents of a maximum of one arithmetic register may be shifted. 

Example: 

LABEL OPERATION 

I I 

- - -- -- -

(AR8) i = 1111111111000000000000000 

(AR8) f = 0000001111111111000000000 

OPERAND \ 

I I I I I I I 1 1 1 1 j i 1 1 11 1 I 

-- - -- - -

In the case of any shift instruction, if the number of positions to be shifted, which is specified in m, 
exceeds the number of positions in the operand, the result of the shift is unpredict3ble and useless. 
An example of such a useless instruction would be ASR 12, 9 instruction. 

, 

3 



3 
SECTION: 

UNIVAC III UTMOST 

B. LOGICAL OPERATION INSTRUCTIONS 

AND 

For every bit position containing a zero in the operand specified by m place a zero in the correspond­
ing bit position of the operand specified by AR. Multiword operands may be used. All 2S bit positions 
are examined. 

Example: 

LABEL ,\ OPERATION 

OR 

I I I I 

-- -
(AR8) i 0111111111111110000000000 

(800) i 0000000011111110000011111 

(A R8) f = 0000000011111110000000000 

(800) f -: 0000000011111110000011111 

OPERAND 

I I I I I I I I I I I I I I I I I I \ 

-- - ---

For every bit position containing a one in the operand specified by m place a one in the 
corresponding bit position of the operand specified by AR. Multiword operands may be used. 

All 2S bit positions are examined. 

Example: 

LABEL ,\ OPERATION OPERAND 

UP-38S3 

I I I I I I I I 1 L 1 1 I I I I I I I II 

....-------~ - -
(AR8) i 0111111111111110000000000 

(800) i 0000000011111110000011111 

(AR8) f -= 0111111111111110000011111 

(800) f -= 0000000011111110000011111 

- - - - -



UP-3853 UNIVAC III UTMOST 3 
SECTION: PA GE: 

C. INDIRECT ADDRESSING 

With the exception of the NOP instruction, all instructions introduced thus far in this manual 
have a meaningful m portion. In all these latter cases m has been defined as being used to 
specify either the location of an operand, as in the case of the LA instruction, or a shift count, 
as in the DSR ins truction. This hoI ds true as Ion g as the con ten ts of bi t 25 0 f th e ins tru ction 
(the indirect address bit) contains a zero. If bit position 25 of the instruction contains a one 

instead of a zero, then m specifies, not an operand location or a shift count, but an address at 
which the operand location or shift count can be found. Thus, the instruction addresses the 
operand not directly, but indirectly. In this case the contents of the storage location specified 
by m is called the indirect address control word. 

The format of the indirect address control word is as follows. 

1. Bits 1-15, the 1 portion, contain a 15 bit address which corresponds to the m portion of an 
instruction without indirect addressing. Thus, it becomes the operand address or shift count. 
Notice that, since the 1 portion of the indirect address control word consists of 15 bits, indirect 
addressing provides one means of addressing any location in the store. A more general method 
of such addressing will be described later in this manual. 

20 Bits 16 - 20 always contain binary zeros. 

3. Bits 21- 24 perform a function similar to that which these same bits perform in an instruction 
word. This function will be discussed later in this manual. 

4. Bit 25 is the indirect address bit just as it is in an instruction word. Thus, if bit 25 is a zero, 
then 1 is an operand address or shift count. If bit 25 is one, then 1 also is an address at which 
the operand address or shift count can be found. This "cascading" of indirect addresses CCln 
be carried as far as the programmer desires. 

In UTMOST language, an instruction that is to use indirect addressing is indicated by placing an 
asterisk immediately before the m portion of the instruction. An indirect address control word is 
written like a constant, that is, a plus or minus sign followed by the 1 portion of the indirect 
address control word. If 1 is preceded by a plus, then 1 is the operand address or shift count. If t 
is preceded by a minus then 1 also is an indirect address, and cascading results. 

Example· 

LABEL "~ OPERATION ,~ OPERAND \ ( 1 
J 

I I I ,L ,A, 1
8 

I ' 1* ,1 1
6 

I I I I I ~ 1 I I I I I I I I I I I I i \ 
~ - -- - - - -----"" - -

(16) t 800 

(AR8) i t 123456 (AR8) f co + 987654 

(800) i - + 987654 (800) f = + 987654 

Indirect addressing may be used with any instruction in which the m portion of the instruction is 
significant. 

5 



SECTION: 3 6 UNIVAC III UTMOST 
PAGE: 

D. FIELD SELECTION 

The mechanism used to achieve indirect addressing is also used to achieve the operation of 
field selection. Tha t is, if field selection is to occur during instruction execution, then bit 
25 of the instruction word is to be a one. In UTMOST language, this means that the m portion 
of the instruction is to be preceded by an asterisk. Whether field selection or indirect addressing 
is to result is determined by the word found in the m address. If bits 16 - 20 of this word are 
binary zeros, then indirect addressing is to result. If any of these bits is a one, then field 
selection is to res ul t. In this la tter case, the word is referred to as a field select can tro1 word. 

Like an indirect address control word, a field select control word contains the address of the 
operand. However, a field select control word also specifies certain bits within the operand 
specified by 1. The function of field selection is to allow the Processor to operate on only those 
bits of the operand specified by the field select control word. 

A field select control word has the following format. 

1. Bits 1-10, the 1 portion, contain a 10 bit address which corresponds to the m portion of an 
ins truction wi thou t indirect addres sin g. Thus, it becom es the operand addres s. 

2. Bits 11-15 specify in XS3 code the rightmost bit within the operand that the instruction is 
to operate on. 

3c Bits 16 - 20 specify in XS3 code the leftmost bit within the operand that the instruction is 
to operate on. 

4. Bits 21 - 24 perform a function similar to that which these same bits perform in an instruction 
word or indirect address control word. This function will be discussed later in this manual. 

5. Bit 25 must contain a zero. 

In UTMOST language, a field select control word is written in the following way: 

where: 

• e, is the leftmost bit to be operated on and is wri tten as a decimal number representing the 
number of the bit desired. 

• e 2 is the rightmost bit to be operated on, and is written as a decimal number representing 
the num ber of the bit desired. 

• e 3 is the 1 operand address, and is written in the usual way. In writing a field select control 
word, the programmer may optionally insert one or more spaces after the plus sign and each 
of the commas. 

Bit positions outside those bits specified in the field select control word are considered as 
containing binary zeros. Moreover, sign bits cannot be included in a field select operation. Thus, 
all operands field selected become posi ti ve when opera ted on. 

UP-3853 



UP-3S53 UNIVAC III UTMOST 
PA GE: 

Example', 

, 
LABEL ,\ OPERATION L\ OPERAND \ ) 

1 I 

I I I I L,A, ,8 " ,* 11 ,6, , , , I I 1 I I 1 I I I I 1 I I I I I I ! ~ 

...- - - - ------- --... - - - - - -

Example. 

(ARS) i - ABCD 

(SOD) i - WXY Z 

(16) '" + 18, 7, 800 

(ARS) f = + !\XY ~ 

(800) f = - WXYZ 

LABEL ,\ OPERATION 

I I I IL,A.NI 1
8 , 1* 1 16 I I 1 I 

OPERAND 

I I 1 I I I I I I I I I 

'> \ I 

I 

~- - - ---- ------ ~~ - - ~-

(AR8) 1 ~ ABCD (ARS) f '" \Xy,\ 

(800) i ~ WXYZ (16) + IS, 7, SOO 

Note in the second example that the field selected operand comes from the store with a 

positive sign. The operation of the LAN instruction then changes this sign to minus. LAN 
with FS always produces a negative quantity. 

Field selection has meaning when an operand is to be selected from the store to be operated 

on. Thus, field selection is not pertinent with respect to shift instructions, jump instructions. 
and store arithmetic register instructions. Also, it is not possible to use field selection wIth 

the multiply or divide instruction. Operation of field selection with respect to the load 

arithmetic register instructions is exemplified in the above illustrations. 

When field selection is used with addition or subtraction instructions, the field selection 

occurs on the operand as it comes from the store. No field selection occurs on the operand 
coming from the arithmetic register(s). 

Example: 

LABEL ,\ OPERATION ,\ 

(AR8) i = + 123456 

(800) i = - 999999 

(16) '" + 20, 5, SOO 

(ARS) f = r. 223446 

(800) f = - 999999 

OPERAND \ 

7 



3 
SECTION: I PAGE, 8 

UNIVAC III UTMOST 

With respect to comparison instructions, field selection operates on both the operand from the 
store and the operand from the arithmetic registers. Also, with the C instruction, the sign of 
the AR operand also enters the comparison. Execution of all other comparison instructions 

with field selection ignores the sign bit. 

LABEL OPERATION ,\ OPERAND 

(16) + IS, 7, sao 

(ARS) + ABCD 

(Sao) YBCZ 

After instruction execution, the equal indicator is turned on. 

Example: 

LABEL !\ OPERATION ,~ OPERAND 
1 

.\ 

.i\ 

, , , lei ,8",*,11 6 , , , , I , , , I I I , j I , , , I 1 , , , I I , , , , I 

U P-33S3 

( 

I 
I 

- -- ~ -- - - - -

(ARS) 

(Sao) 

ABeD 

YBCZ 

(16) + IS, 7, sao 

After instruction execution, the low indicator is turned on. 

The logical instructions, AND and OR, use field selection in a similar way in that only the 
portion of the AR operand specified by the field selection is affected by instruction execution. 



UP-3853 UNIVAC III UTMOST 

Example: 

'> 
\ ( LABEL ,\ OPERATION OPERAND 

( 
AND 8 ,* 1 6 

I I I I I I 1 , I I I I I I I I , I I i i j I , I I I I 1 1 I I t J 
- - - _1 ~~---------------~-~------------__ ~.~ --_____ ,---~-----'-------------'--------___ ~-----------'----J 

(16) = + 21, 11, 800 

(AR8) i = 0111111111111110001100000 

(800) i = 0000000011111110000011111 

(AR8) f = 0111000011111110001100000 

(800) f = 0000000011111110000011111 

When field selection is used with multiword operands, the rightmost bit of the field selected 
is to be found in the least significant word of the operand, the leftmost bit in the most 
significant word of the operand. 

Example: 

LABEL OPERATION :\ OPERAND \ ( 

I I I I I I 1 I I I I ~ 1 11 1 I 1 

,---------~-,--~------, -
(16) + 18, 7, 801 

(AR8) i = - ABeD 

(AR4) i = - EFGH 

(800) i = - STUV 

(801) i = - WXYZ 

(AR8) f = + .'\ TUV 

(AR4) f = + WXY\ 

(800) f = - STUV 

(801) f = - WXYZ 

---- - -- --



3 
SECTION: 

UNIVAC III UTMOST 

E. THE LOAD FIELD INSTRUCTION 

LOAD FIELD - LF 

The LF instruction is similar to the LA instruction in that it causes the operand specified by m to 

be loaded into the arithmetic register(s) specified. Multiword operands and indirect addressing may 
be used with the LF instruction. The LF instruction differs from the LA instruction in the way it 
operates when field selection is specified. With the LA instruction, arithmetic register bit positions 
outside the field specified are set to zero. With the LF instruction, the contents of the arithmetic 
register bit positions outside of the field specified are undisturbed. 

Example: 

LABEL .\ OPERATION .\ 

(AR8) i - ABCD 

(800) i - + WXYZ 

(6) + 18,7,800 

(AR8) 

(800) f 

AXYD 

+ WXYZ 

OPERAND 

If the LF instruction is used without field selection, it operates in the same manner as the LA 
instruction except that the sign of the arithmetic register(s) is undisturbed. 

Example: 

LABEL OPERATION OPERAND 

, , , . L. F. .8" .810,0, I • 
, • , I , 

• . . , , , 
• I • • • • 

, . 1 l 

.\ 

I I 

UP-3853 

--- - ..,,-- - --- - - --.I -- ~ -- - - - -

(AR8) i ABCD (AR8)f= - WXYZ 

(800) i + WXYZ (800) f = + WXYZ 



UP-3853 UNIVAC III UTMDST 

F. EXAMPLE 

Gi ven: 

LOCATION 

880 

881 

882 

883 

884 

885 

where: 

N is a job number 

L is the cost of labor for the job 

M is the material cost for the job 

V is the overhead cost 

P is the price the job is contracted for 

Create the following 

where: 

N is the job number 

LOCATION 

886 

887 

888 

A is the profi t for the job 

When done, jump to storage location 500. 

FORM 

NNNNNN 

OLLLLL. 

LLMMMM 

M.MMVVV 

VV.VVPP 

pppp.pp 

FORM 

NNNNNN 

AAAAAA. 

AAOOOO 

SECTION: 
3 

PA GE: 
11 



3 I PAGE, 12 
UNIVAC III UTMOST UP-3853 

SEC TION: 

G. FLOWCHART 

~------~~_IN_~ ___ O_N~------~'I~ ____ p_-_V ____ M ___ L_-' __ A ____ ~-------~ 

LEGEND 

IN - the input job number 

ON - the output job number 

P - the contract price 

V - the overhead cost 

M - the material cost 

L - the labor cost 

A - the profit 



UP-3853 UNIVAC III UTMOST I SECT'ON, 3 I 13 
PA GE: 

H. CODING 

\ 
LABEL ~ OPERATION !\ OPERAND \ } 

1 I 

° I I I 1 I IL IA\ I I 1 I 
,8 , , , 8 18 ,0 , , 1 1 , IINI-~-l-,OIN, , I 1 l ~ 

1 
I I I I IS A I 8 , , 8 18 ,6 1 1 1 I 1 , , 1 I 

21 1 1 1 I IL A1 I , , 1 2 I " *,1,012 ,3 1 , , 1 I 1 I 1PI-IV1-IMI-lll-,-,-,AI 1 

3 1 I I I I 10 IS III I , 1 ,1 ,2 , ' , , 1 , I 12 , , , , I I I 1 I 1 1 1 I 1 1 I 1 1 I 
) 

4 1 I I 1 0 ,S, 1 I 11 12 1 ' , * ,1 ,0 12,2 , I I I 1 I 1 , , , , 1 1 1 , , , , , , , W 

I 

51 1 I I 10 Sill 1 1 1 11 12 I ' 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I I I 1 
6 1 ~ 

, , ,0 IS I 1 1 1 1 11 12 1 ' I 1*111°1211 I I I 1 I 1 1 1 I I 1 1 1 1 1 1 I 1 1_--\ 
71 1 I 1 I 1° S L 1 , 1 2 , ' 1 1 , I ,1 , , I 1 ~ ~ 1 1 1 I I I I I 1 I 1 I I I) 
8 I 1 1° S 1 1 2 * 1 ° I 2 ° , I I I I I , , , , 1 1 1 , , 1 , , 

9
1 I , 1S ,A I I I I 11 12 , 1 , , 81 88 , , , , _1 I I I 1 I I 1 I 1 1 , I , 

Hl1 I , , J 1 , I , , , ,51°,0 , , 1 , I I 1 I 1 1 1 1 , I 1 1 I I I ) 
I 

"I I I I I I 1 1 , I 1 1 1 1 1 , 1 , 1 1 1 1 , 1 1 1 I 1 1 1 1 1 I I I I I 1 I I 

• 1 J 1 J I I 1 , 1 , , , , , , I 1 I 1 1 1 1 , , I 1\ 

"I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 I I I I I I I I 1 1 I I I I 1 II 

1 1 °1 21°1 1 1 + I , 2,0 , ' 1 7, ' 8 18,2, , , 1 , I , 1 1 , I IJ 

1 I 01 21 1 1 I 1 + 1 1 I I , 1 ,1 ,6 1 ' 1 1 13 " ,8 18 1 31 , , 1 I I 1 1 1 I I I I I 1 I 1 1 I I) 
11°1 2.21 + I 11 12 I' 19 " ,8 ,8 141 I j 

\ 
I I 1 I 1 1 1 , 1 , , I 1 1 I 1 1 1 1 I 1 I , 1 I 

1 I ° 1213 
I 

+ 1 1 I 181'111'1818,51 1 1 , I I I 1 I I I • I • 1 I I I 1 I I I I I I I I 

--- - - - -- ) - - - - -



UP-38S3 UNIVAC III UTMOST 4 
SEC TION: PA.GE: 

4. INDEX REGISTERS 

The user has the option of obtaining his Processor with either 9 or 1S index registers. Index 
registers are identified by number. Thus, there is Xl, X2, X3, and so on, up through XIS, where 
"X" is a commonly used abbreviation for "index register". 

An index re gis ter has the cap aci ty to store 16 bi ts, although for m os t purpos es on ly the leas t 
significant 15 bits have meaning. Bit positions in an index register are numbered from right to 
left as 1 th rou gh 16. An index regis ter h as no sign bit posi tion. Th e con ten ts of an index re gis te r 
are alway s considered to be a positive binary n urn ber. 

An instruction, indirect address control word, and field select control word address index 
registers by means of bit positions 21-24. The number of the index register to be addressed is 
represented in pure binary in these bit posi tions. 

In UTMOST language an index register is addressed by placing a comma after the m portion of an 
instruction (or I portion of an indirect address control word or field select control word) and 
follow i n g the com rn a by the n urn be r 0 f the in de x re gi s t e r to be add res sed. T his n u m b e r i s w r itt en 
in decimal. The programmer may optionally leave one or more spaces between the comma and the 

index register specification. 

Index registers have the following function. When an instruction is to be executed, the contents 
of the index register specified are added to the m portion of the instruction. The sum of this 
addition is the address of the operand (or shift count), and is commonly referred to as m' (m prime). 

Example: 

LABEL OPERATION 

(ARB) i t ABeD 

(10006) i - - WXYZ 

(X 15) 

(ARB) f 

(10006) i 

OPERAND 

10000* 

- WXYZ 

WXYZ 

If binary zeros are placed in the inc1ex register portion of an instruction, no indexing results. In 
UTMOST language, binary zeros in the index register portion of an instruction is indicated by not 
specifying an index register in the instruction. Thus, all instructions shown thus far in this manual 
(with the exception of the one in the last example) do not call for indexing. 

Manipulation of the contents of index registers is achieved by means of the following instructions, 
which specify the index register whose contents is to be manipulated in the AR portion of the 
ins truction. 

\ 

Although written here in decimal for ease of presentation, the content6 of index register 15 would actually be the binan" 

equivalent of a decimal 10,000. 

1 



4 
SECTION: 

UNIVAC III UTMOST 

LOA D IN D E X REG 1ST E R - LX 

Load the contents of bits one through 15 of the storage location specified by m 1 in the index register 
specified in AR. Multiword operands are meaningless with this instruction. Indirect addressing may 
be used. However, field selection is not allowed. 

Example: 

UP-3853 

LABEL OPERATION ,\ OPERAND .\ ( 

, , i , I I I I , , I , 1 j 
- - ---

(XIS) i 

(800) i 

15000* 

20000* 

STOR E INDEX REGISTER - SX 

(XI5) f = 20000* 

(800) f = 20000* 

-- -

Store the contents of the index register specified by AR in bits one through 16 of the storage location 
specified by m'. Store binary zeros in the other bit positions of location m'. Actually, bit position 16 
of the index register will always contain a zero. Consequently, this instruction could be defined as 
follows. 

Store the contents of bits one through 15 of the index register specified by AR in bits one through 
15 of the storage location specified by m'. Store binary zeros in the other bit positions of storage 
location m'. 

Mul ti wo rd operands an d fie ld s election are me an in gles s with th is ins truction. Indi rect addressin g may 
be used. 

Example: 

LABEL L\ OPERATION ,\ OPERAND ,\ ( 

, , , ,SIX, ,1 15,/,8,0,0 I I I I I I I I I 1 1 I I I 1 I I I , , 
~- - - -- - -

(XIS) i 15000* (XIS)f= 15000* 

(800) i 20000* (800) f = 15000* 

If a Processor is equipped with nine index registers and index register 10 through 15 is 
specified in the AR portion of a SX instruction, binary ones will be stored in bit positions 1-16 
of the storage location specified by m'. Binary zeros are stored in the other bit positions of 
storage location m'. 

I 

If binary zeros are placed in the AR portion of a SX instruction, binary zeros are stored in the 
storage location specified by m'. UTMOST language provides a special instruction for this operation . 

... Actually binary numbers. Moreover, only the 15 least si~niflcant bits of the contents of storalle location 800 are shown. 

I 

I 



UP-3853 UNIVAC III UTMOST 4 
SECTION: 

STORE ZEROS - SZ 

Store binary zeros in the storage location specified by m'. 

Example: 

LABEL OPERATION OPERAND 

(800) i-ABeD (800) f = +\.\,\ \ 

Since the binary format of a NOP instruction is all binary zeros, the SZ instruction can be used to 

create a NOP instruction in storage location m'. 

INCREMENT INDEX REGISTER - IX 

PAGE: 

\ 

Add, in binary, add the contents of bit positions one through nine of the storage location specified 
by m' to the contents of the index register specified by AR. An algebraic addition which attends to 
the contents of the sign bit of storage location m' is performed. Thus, if the sign of the contents of 

location m' is positive, the contents of the index register specified are increased, or incremented. 
If negative, the contents of the index register are decreased, or decremented. If as a result of this 
addition, a carry is propogated from bit position 15 of the index register, this carry is dropped. 
Thus, the contents of bit position 16 of the index register always remains zero. Multiword operands 
are meaningless with this instruction. Indirect addressing may be used. However, field selection 
is not allowed. 

Example: 

LABEL OPERATION 

(XI5) i 15000* 

(800) i + 10 

(X 1 5) f -: 150 10* 

(800) f = + 10 

OPERAND .\ 

3 



4 
SECTION: I PAGE, 4 

UNIVAC III UTMOST 

INCREMENT n~DEX REGISTER A~<~D COMPARE - IXC 

Add, in binary, add the contents of bit positions one through nine of the storage location specified 
by m I to the contents of the index register specified by AR. The addition takes into consideration 
the contents of the sign bit of storage location mi. Carry from bit position 15 of the index register 
is inhibited. After the index register has been incremented, the contents of bits one through 15 of 
the index register are compared with the contents of bits 10 through 24 of location mi. If the two 
are equal, the equal indicator is turned on. If the contents of bits one through 15 of the index reg­
ister are greater than the contents of bits 10 through 14 of m', the high indicator is turned on. 

UP-38S3 

Otherw ise, the low indi ca tor is tu rned on. M ul ti wo rd ope ran ds and field se lection are meanin gles s with 
this instruction. Indirect addressing may be used. If binary zeros are placed in the AR portion of an 
IXC instruction, no incrementation occurs, and for purposes of comparison the index register is 
considered to contain binary zeros. If a Processor is equipped with nine index registers and index 
register 10 through 15 is specified in the AR portion of an IXC instruction, no incrementation occurs, 
and for purposes of comparison the index register is considered to contain all binary ones. 

The contents of the storage location specified by m' of an IXC instruction is called an increment and 
compare word. In UTMOST language, an increment and compare word is written as follows. 

lew e" e 2 

where: 

1. e, is the comparison amount (bits 10 - 24) usually written in decimal. 

2. e 2 is the inc re men tarn 0 u n t (b its 1 - 9) us u ally w r itt e n in dec i maL 

At least one space must be left between ICW and e,. The programmer may optionally leave one or 
more spaces between the comma and e

2
. If it is desired to decrement, e

2 
is preceded by a minus sign. 

Example: 

LABEL OPERATION OPERAND .\ 

(XIS) i 15000* (XIS) f ::: 15002* 

(800) i ICW 16000,2 (800) f = ICW 16000,2 

At the end of instruction execution, the low indicator is turned on. 



UP-3853 UNIVAC III UTMOST 4 
SECTION: 

A. EXAMPLE 

B. 

0 

2 

3 

4 

5 

6 

There are 100 delinquent account numbers stored in storage locations 400 through 499. If the 
new account number stored in location 500 is delinquent, jump to 300. Otherwise, jump to 350. 

CODING 

This problem could be coded as follows. 

LABEL !1 OPERATION !1 OPERAND !1 COMMENTS 

L A 8 I 500 I S T H E N EW AC C 0 U N T N U M B E R 

C 8 400 TO T H E F IRS T DEL I N Q U E N T 

E 3 0 0 NUM B E R 

C 8 401 I S T E 

J E 300 D E L 

C 8 4 0 2 S T E T H I R D 

J E 300 

9 9 C 4 9 9 I SIT LAS T 

3 0 0 

3 5 0 JUMP TO 350. 

This solution requires 202 lines of coding. Such an approach is referred to as straight lint' 
coding. Study of this codin g may allow reduction of this num ber of lines. 

Notice that the body of this coding consists of a repetition of two lines of the following form. 

LABEL OPERATION OPERAND 

5 
PA GE: 

\ 



4 
SEC TION: 

1 

0 

1 

2 

3 

4 

5 

6 

1 0 

1 0 

UNIVAC III UTMDST 

In each set of two lines, y is one more than it was last time. Thus, in the first set it is 400, 
in the second set 401, in the third 402, and so on. This observation leads to the conclusion 
that this is a natural situation for the use of index registers. The following coding empLoys 
index registers. 

LABEL L'1 OPERATION L'1 OPERAND L'1 COMMENTS 

L X , 1 5 1 o 2 3 , T A KI E T H E FIR S, T DEL I N QUE IN T 

L A , 8 , 5 0 0 I I , , 

C , 8 , 4 0 0 , ,1 5 0 o E,S T H E N E W ,A C CO U N T N U ,M B E 

I 
J E , 3 0 0 I I 

M A TIC H T,H I S D,E,L I N Q U E N, T A,C,C 0 

I X , 1 5 , 1 o 2 2 , T A K, E THE N E X T, DEL I N QUE N ,T A 

I 
NO P , 0 , , , 

I I I I I I 
J , 2 , L o o,p I , 

I , 
, I I I 

, I 

, I I , 
I I I I I I 

, I 1 , I 

2 2 + , 1 I I I I 
, 

I I I I I I I I I I 

2 13 I + I I 0 I I I I 
, I I 

UP-38S3 

) 
A C .\ 

I 
R 

U,N T \ 

CC 
J , 
J 

~ 

I 

\ 
I I 

I I I 

l.---/"- - - - --- ----- - - -
In this coding the instruction in line 0 loads XIS with binary zeros. Line 1 loads the new 
account number into AR8. The m portion of the instruction in line 2 is 400. This instruction 
specifies modification of m by the contents of XIS. Since the contents of XIS are zero, m' is 
400. Thus, the new account number is compared against the first delinquent account number. 

Line 3 tests for equali ty. If the two are not equal, line 4 increases the con tents of XIS by one. 
Thus, XIS now contains one. Line S is a do nothing line, and line 6 returns control to line 2. 
Now m' is 401, since the contents of XIS are one. Thus, the new account number is compared 
with the second delinquent account number. If these are not equal, the contents of XIS are 
again increased by one. On return of control to line 2, m' is now 402, since the contents of 
XIS are now two. Thus, the new account number is compared with the third delinquent account 
number. And so on. 

The above co din g is known as i terati ve codin g. The dis tin guishin g characteris tic of in tera ti ve 
coding is that it processes many items with the same set of coding, which it modifies and loops 
through once for each item. 

The above coding incorporates such an iterative loop. However, it is a "closed" loop. If the 
new account number is unequal to all 100 delinquent account numbers, this coding provides no 
way to exi t from the loop a fter all 100 delinquen t account num bers have been tes ted. 



UP-38S3 

1 

0 

1 

2 

3 

4 

5 

6 

UNIVAC III UTMOST 
SECTION: 

4 
PAGE: 

When all 100 delinquent account numbers have been tested, XIS will contain 99. If an IXC 
instruction is substituted for the IX in line 4, and if the comparison "element" of the associated 
ICW is set at 100, the equal indicator will be set after all 100 delinquent account numbers have 
been tested. The following coding incorporates this change. 

LABEL ,i OPERATION /\ OPERAND \ COMMENTS 

L X , 1 5 1 0 2,3 T,A K E THE F I 1 R S T DEL I N QIU E N T A C 

L A I 8 5 0 10 I I , 
C , 8 4 010 1 5 010 E S THE N EIW A C C 0 U N T ,N U M B E R 

J E , 3 0 ,0 MIA T C H 1 T HII S1 10 ELINQU E N TI IA C C OUN T ) 

I XC , 1 5 , 1 0 2,2 T,A K E THE N E I X T DEL I N Q U, E N T A C C 

J E , 3 5 10 J I U M P T 0 3 5 0 I • 
~I 1 

J I 12 LIO 0 P 1 1 

, 1 , , 1 

, 1 1 1 1 

1 1 , , 1 

1 o 2 2 I C W I 1 o 0 , 1 I 1 , 1 L 

+ 1 0 2 3 
1 ~ I 0 1 I I 1 1 I ~l j L 

1 

0 

1 

2 

3 

4 

5 

6 

1 0 

1 0 

.-... - -- -

A slightly more efficient use of index registers to set up the iterative loop is shown in the 
following coding. 

LABEL to. OPERATION ,"- OPERAND .\ COMMENTS 

L X I 1 5 , 1 o 2 13 T A, K E THE F I R 1ST DEL I N Q UIE N T A C 

L A , 8 5 010 I , I 

C I 8 4 0 I 0 1 5 DO, E S THE N E,W, A C C 0 U N T NI U M B E R 

I 
J E 

1 3 0,0 
i 

IMA1TC H 1 T H 11 S PIE LIN Q U E N T IA I C C 0 U N T 

I X C , 1 5 1 0 212 TAl K E THE N E X, T DEL I N QUE,NT A C C 

J L I 12 L 0 10 P , I 

J I 3 5 10 J U,M P T 0 3 5 o . I , 
, , , 1 1 1 1 I I 

I , I I I 

, , 1 I 1 

2 2 I C W I 1 0 o , 1 I 1 , I 1 

2 3 I + , 0 1 I I I I 1 1 -- --- -- -...-/ - -

( 

) 

r 
) 

\ 

( 
L 

7 



4 
SEC TION: I PAGE, 8 

UNIVAC III UTMOST 

C. FLOWCHART 

An English language flowchart of the previous coding might look like that shown in Figure 4-1. 

TAKE THE FIRST 

DELINQUENT 

ACCOUNT NUMBER 

ITEM 

NO 

T A K E TH E NE X T 

DELINQUENT 

ACCOUNT NUMBER 

ITEM 

Figure 47. English Language Flowchart of Iteration 

UP-3853 



UP-38S3 UNIVAC III UTMOST 4 
SECTION: PAGE: 

Symbols commonly used to show an iterative process in a flowchart are as follows: 

1. A capi tal lette r is used to sym bolize a set of da ta. For example, "0" m i gh t be u sed to 
symbolize the set of 100 delinquent account numbers. 

1. Numeric subscripts to the set symbol are used to distinguish between units in the set. For 
example, 0, would stand for the first delinquent account number item in the set of 
delinquen t accoun t n urn ber items 0, ° 2 stands for the second delinquen t accoun t num be r 
i tern in the set 0, ° 3 stands fo r the thi rd de linquen t accoun t n urn ber item, and so on, un til 
0

100 
stands for the 100th delinquent account number. 

3. The general unit of the set is shown by means of an alphabetic subscript to the set symbol. 
For example, 0i would symbolize the ith delinquent account number item in the set O. The 
i th item is only one item, bu tit is not any parti cular one. The i th i tern is the general i tern. 
Fo r example, the previous codin g is desi gned to pro cess only one delinquen t accoun t num be r 
item. Which one it happens to process depends on the contents of XIS. The coding is designed 
to process the general delinquent account number item, D i . The coding is particularized to 
process a certain delinquent account number item by establishing the contents of XIS. 

4. Ini tially, in the previous pro gram, the con ten ts of XIS are set so the general pro cessin g 
processes the first delinquent account number. Symbolically, this condition is shown as: 

1 

Thus, 0i becomes ° l' 
S. After one delinquent account number has been processed, the contents of XIS are increased 

by one so the general coding which is looped through will process the next delinquent 
account number. Symbolically, this operation is shown as: 

Thus, if 0 6 (Oi with i equal to 6) has just been processed, then D7 (Oi with i equal to 7) is 
the next item to be processed. As shown above, such operations are customarily shown in an 
"operation box" with a double line on the left. 

Using the above symbols, the flowchart in Figure 4-1 might appear as shown in Figure 4-2. Notice 

in this flowchart that initial conditions (in this case, the fact that i is initially equal to one) are 
shown in an assertion flag set on the line of flow at the point at which the assertion shown in 
the flag holds true. 

9 



4 
SECTION: I PAGE, 10 

UNIVAC III UTMOST UP-3853 

- 1 

>------8 

LEG EN 0 

A - the new account number 

D - a set of delinquent account number items 

Di - the ith item in D, icc 1,2,3, ••• ,100 

I 

+ l~i 

Figure 4-2. Symbolic Flowchart of Iteration 

D. STUDENT EXERCISE 

The rea r e 1 00 del i n que n t ace 0 u n t n u m be r sin a see nd i n g 0 r d e r ins tor age I 0 cat ion s 200·· 299. The r e 

are 10 account numbers in random order in locations 300-309. Store the account numbers that are 

delinquent in sequential locations beginning at 310. When Finished, jump to 100. 

E. ITERATIVE versus STRAIGHTLINE CODING 

Section B of this chapter shows both a straightline and an iterative solution to the same coding 
problem. These solutions exemplify the principle characteristics of these two approaches. 

L S trai gh tline codin g requi res many s to ra ge locations but in vol ves few ins t ructions to be executed 
per i tern process ed. 

2. He ra ti ve codin g requires fewe r storage locations but in vol ves more ins tructions to be executed 
per item. 



UP-3853 UNIVAC III UTMDST 4 
SECTION: PAGE: 

F. MODULAR ADDRESSING 

1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

The operation of the index register s pecifie d during ins truction execution is to ha ve its con ten ts 
added to the m portion of the instruction to yield m t , the operand address. The result of this 
addition is a 15 bit operand address. Thus, by means of index registers, any storage location in 
the Processor may be addressed. The following example shows how the index registers are used to 
achieve this addres sin g. 

1. Example 

There are 100 delinquent account numbers stored in storage locations 5120 - 5219. If the new 
account number stored in location 6144 is delinquent, jump to 2000. If not, jump to 1500. Start 
your coding in 1026. Presume that index register 3 contains 1024. (Index register 3 is known as 
a cover index register, since it "covers" the coding. That is, it is the index register whose 
con ten ts allow the ins tructions to addres s each other.) 

2. Coding 

LABEL ('\ OPERATION L\ OPERAND ,\ COMMENTS) 

I I ~ 1 TIH I S I ,S L,O CIA T I 0 N ,1 0 2 41 , 

I I TIH I S I S L 0 CIA T I 0 N 1 0 2 51 

, , L X I 1 5 , 1 o 2 3 1 ' 3 TIH I S I S L 0 CIA T I 0 N 1 0 2 6 I , \ 

L X 1 1 4 , 1 o 2 2 1, 3 I I I I TIH I SI I',S, ,L,O,C,A T, I 0 NI 1
1
0 2 7, I ,t 

L A , 8 
" 01 ' 1,4 TIH I S I S LOCI A T I o N 1 0 2 8 I ,\ 

I C 1 8 01 , 1 5 TIH I S , I S L o CI A., T I O,N 1 0 2 9 I 

J E I 9 7 61, 3 TIH I S , I S L o CI A T I 0 N 1 0 3 01 , ) 
, , ,I XC I 1 5 , 1 o 2 1 I ' 3 T,H I S I S L OqAT , 0 N 1 0 3 11 

J L , 51 ' 3 TJH , S , S L o CI A T, ' 0 N 1 0 3 21 '> 
J I 4 7 6 1 ' 3 T,H , S , S L o CI A T , 0 N 1 0 3 31 

, I I I , . 1 I 

., , , I I , I I , , I 1 , , , , , ,. , , , , , I , 

., I 1 I I 1 I ,/ 

4.7,6, , I I , , , , , TIH , ,S I ,', S L O,C, A T ',O,N ,1 5 0 01 , 1\ , , , , 

1 I I I I \ 
., , , I , , , I , I , , I , , I , , 1 , , 

, , I , , , , I 1 , ~ i i [ 1 1 I J I I , , , , , ,., I , , , , , I , 
} 

9 ,7,6, , I 1 I 1 1 1 1 1 1 TjH I' IS 
, S ,L, 0, CI AI T, ' ,01 N, ,2 1 0,0,0 1 , I , , 1 , 1 

·1 1 , I 1 1 , , 1 I 1 1 , , 1 I I I 1 1 I 1 1 1 I I 1 I I 1 , , , ,., 1 I I I I I I I I I 1 I I 

1 1 I 1 1 

. I , , , , I , I , I 1 I I I 1 I I I I I , , , , , ,. I , I , , , , , I , 

ILIOI CIAIT,'IOINI 12 10 14 
\ 

1,0,2 111 1'1 C W 1 15 121210 I' 111 I I 1 I I I I I I 1 I TIH I' IS I I' IS 1 51 ' \ I I I I 
} 

1 0,2 1 2 , I 1+, , , ,6,1 4,4, I , 1 T1H [' S , , IS, L,O qA,T,I,O N 12 ,0 14 ,6 I 

1 o 2 3 +, I ,5 1 12 10 , , I I I , , I I TJH I' IS , ,I ,S, ,L,O, Cj A,T,I,O, N, ,2 10,4,7 1 ) 
L---- - -- -- - -~ - - - - -

11 



4 
SECTION: I PAG., 12 

UNIVAC III UTMOST 

Notice in this coding that the first entry in a line is no longer the address of the storage 
location in which the instruction or constant is to be stored, but is now the address 

relative to the contents of the cover index register (index register 3, whose contents is 
1024). Thus, storage location 1024 is assigned the relative address 0 (1024 + 0 = 1024). 
location 1030 is assigned the relative address 6 (1024 + 6 = 1030), 2045 is assigned the 
relative address 1021 (1024 + 1021 = 2045), and so on. These relative addresses are the 
ones used in the m portion of the instructions specifying that this m portion should be 
modified by index register 3 to develop m'. From now on this convention will be followed 
in this manual until the concept of labels is introduced. 

In the above exercise the contents of the cover register was given. Suppose that such is 
not the case. It is then the programmer's responsibility to load his cover index registers. 

To demonstrate how this is done, it is necessary to have a finer understanding of how 
the control unit of the Processor works and to have the definition of one more instruc­
tion. These are given below. 

3. Control Unit Operation 

The control unit contains a fifteen bit register called the control counter, customarily 
abbreviated as cc. In general, the control counter contains the address of the instruction 
currently being executed. 

The control unit has an operating cycle depicted in flowchart form in Figure 4-3. The 
operating cycle begins at connector one. 

The flowchart in Figure 4-3 demonstrates how the control unit effects the sequential 
ins truction execution characteris tic of the P rocesso r, and also how the jump ins tru ctions 
interrupt this sequence. It also indicates that, during the execution of any instruction 
other than jump instructions, the control counter contains the address of the storage 
location from which the instruction was selected for execution. 

UP-3853 



UP-3853 UNIVAC III UTMOST 

SELECT THE INSTRUCTION 
STaR ED IN THE STORAGE 
LO CA TION WHOSE ADDR E SS 
IS STORED IN THE CONTROL 
COUNT ER. 

NO 

SECTION: 

IS TH IS 

CONDITION 

SATISF lED? 

NO 

4 
PA GE: 

2 

~----------~----~G) 
STORE THE m' 

GENERATED BY THE 

INSTRUCTION INTO 

TH E CONTROL 

COUNTER 

EXECUTE THE 

INSTR UCTION 

INC R EASE THE 

r--+- CONTENTS OF THE 1 
CONTROL COUNTER 

BY ONE 

F ; 9 u re 4 ~ 3 . Con t r 0 I Un; tOp era t ; ng C y cI e 

13 



4 
SECTION: I PAGE, 14 

UNIVAC III UTMOST 

4. The Store Location Instruction 

STORE LOCATION - SL 

Store the contents of the control counter in bits one through 15 of the storage location 
specified by m'. Store binary zeros in the other bit positions of m'. Multiword operands and 
field selection are meaningless with this instruction. Indirect addressing may be used. 

ExaJTlple: 

LABEL OPE RATION OPERAND 

(cc) 1024* 

(1) + 012345 (1) f 1024* 

5. Loading Cover Index Registers 

Before any cover index registers are loaded, which is the case at the beginning of a 
pro gram, the only s tora ge locations that an ins tru ction may addres s are 10 ca tions 0 - 1023. 
Since the e xecu ti ve rou tine preempts these 10 ca tions, they are not a vaila ble to the program m er. 
However, because of the need to use at least one of these locations until a cover index 
regis ter is loaded, the ex ecu ti ve rou tin e rna kes a va ilable for pro gram me r us e storage locations 

U P-3853 

o and 1. The following example shows how one of these locations might be used to load a cover 
index register 

a. Example 

There are 100 delinquent account numbers stored in storage locations 5120 - 5219. If the 
new accoun t num be r stored in loca tion 6144 is de linquen t, jump to 2000. If not, j urn p to 
1500. Start your coding in 1024. 

* Actually binary numbers. Moreover, only the contents of the 15 least significant bits of the final contents of 

storage location 1 are shown. 



UP-3853 UNIVAC III UTMOST 
SECTION: 

4 

b. Coding 

o 

2 

3 

4 

5 

6 

7 

8 

9 

LABEL OPERATION OPERAND 

c. Student Exercise 

There are 100 delinquent account numbers stored in ascending order in storage 

locations 5120 - 5219. There are 10 account numbers stored in random order in 

locations 6144-6153. Store the account numbers that are delinquent in sequential 

locations beginning at 7168. When finished, jump to location 1500. Start your coding 

at 1024. 

d. Test 

There are 100 consumption items stored in storage locations 5120 - 5319 in the form: 

WORD 

o 
1 

DATA 

NNNNNN 

00 AAAA. 

PAGE: 
IS 

\ 



4 
SECTION: 

16 UNIVAC III UTMOST 
PAGE: 

where: 

N is a meter num ber 

A is a con sum p ti 0 n am 0 un t 

Compute the body of the following table, 

---------------

CONSUMPTION 
TOTAL TOT A L 

RANGE 
CONSUMPTION NUMBER OF 

AMOUNT MET ERS 

0 - 100 

101 - 500 
--~-~--~---------

501 - 1000 
---~---~.-.. -

1000 and over 
---

Store your results in decimal form in eight storage locations. When finished, jump to 
location 1500. Start your coding in 1024. 

UP-3853 



UP-3853 UNIVAC III UTMOST 
SECTION: 5 PAGE: 1 

5. SUBROUTINES 

The general format of a program is shown in Figure 5-1. The processing that is done on input items 
to produce output items is unique to the program. However, the coding required to advance input and 
output items is usually quite standard from one program to the next. This input and output item 
advance coding is, consequently, generally written as units and used by whatever program needs them. 
These units are called subroutines. Thus, there might be an input item advance subroutine and an 
output item advance subroutine. 

,---­ -----------T-----~------I 

I 
I 
I 

NO 

GO TO THE 
END OF THE 

PROGRAM 

I I I 
I PROCESS THE I DELIVER THE I 

DELIVER THE I INPUT ITEM I OUTPUT ITEM I 
INPUT ITEM TO TO CREATE FROM 

PROCESSING AN OUTPUT PROCESSING 
ITEM 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I OUTPUT ITEM I 

L 
INPUT ITEM ADVANCE PROCESSING ADVANCE ~ 

-----------------------------

Figure 5~ 7. General Program Format 

Subroutines are not restricted to input and output item advance handling. Other examples of subroutines 
that are generally useful are rounding subroutines, double prec is ion arithmetic sub routines, £loa ting 
point subroutines, and so on. 



5 
SECTION: 

2 UNIVAC III UTMOST UP-3853 
PAGE: 

Nor is the use of the subroutine concept restricted to functions that are useful across programs. For 

example, a program may need to do a standard type of editing at several points along the chai:1 of pro­

cessing. Rather than code the instructions needed to perform this editing at each point at which it is 
required in the processing chain, the editing can be coded once as a subroutine. Then, whenever in the 
chain of processing it is required to do the editing, the editing subroutine can be "executed". Such a 

subroutine is called a common subroutine, because it is "common" to more than one point in the 

program. 

Subroutines are characteristically executed by means of the store location CJnd jump instruction. 

STORE LOCATION AND JUMP - SLJ 

Add one to the contents of the ~ontrol counter and store the sum in bit positions one through 15 of the 

storage location specified by m'. Set the other bit positions of the location to zero. Jump to m' . 1-
Multiword operands and field selection are meaningless with this instruction. Indirect addressing rna:. 

be used. 

Example: 

LABEL OPERATION OPERAND \ 

\ 
I 

~~,.,~,~,~S_~,L_~IJ~,~,_1~,_6_1~'_J~3~1~~~~~~~~~ __ ~~~~1~~' __ ~L-'L-l~l~'~~L-L-Ll -L-I I I ~\ 
- J 

-----------------------------------------~ 

(1 04 0) = + . \ . \ \ . \ 

The next instruction to be executed is found in storage location 1041. 

The general form of a subroutine which is n . 1 words in length and which begins In storage location 

m is as follows; 

m NOP 

m + 1 

m . n J 

o 

*m 

) coding to perform 
( the function of 

) 
the subroutine. 

Line m of the subroutine is called the return line, line m + 1 the entwnc(-~ line, and line m t- n the exit 

1 ine. 

* Actuall}' in binan', :l'loreover, only the final contents of the 15 least significant bits of storage location 1040 are shown. 



UP-3853 UNIVAC III UTIVICBT 
SECTION: 

5 
PAGE: 

To exemplify the way in which a subroutine is executed, suppose an input item advance subroutine has 
the follow in g characteris tics. 

1. The return line is found In location 1040. 

2. The entrance I ine is found in 1041. 

3. Lines 1041 - 1050 contain the coding required to perform the input item advance. 

4. The exit line is found in 1051 and has the form] * 16,3. 

Suppose further that the sequence of coding of the main chain of the program is such that the programmer 
is now ready to write an instruction that will ultimately be stored in storage location 1027. The pro­
grammer is using index register 3 as a cover index register, and index register 3 contains 1024. He now 
wants to execute an input item advance. Therefore, he should write the instruction SLJ 16,3. 

As a resu lt of the execut ion of th is ins truc t ion, the contents 0 f th e control counter (1027) pI us one will 

3 

be stored in location 1040 (1024 + 16). Thus, 1040 will now contain 1028. Control is transferred to loca­
tion 1041 (m' + 1), where the instructions stored in locations 1041 through 1050 will be executed to perform 
the input item advance. Cont rol th en goes to the ins truc tion stored in location 1051. This ins truction 
(J * 16,3) will transfer control to the address stored in location 1040 (1024 + 16) by means of indirect ad­
dressing. Thus, control returns to the instruction stored in location 1028, the next instruction in sequence 
in the programmer's main chain. A schematic of this sequence of control is shown in Figure 5-2, 



5 
SECTION: I eA"E, 4 

UNIVAC III UTMDST 

A. SUBROUTINE FLOWCHART SYMBOLS 

MAIN 
PROGRAM 

LOCATION 

1024 
1025 
1026 
1027 
1028 
1029 
1030 

1 
SLJ 16,3 

SUBROUTINE 

LOCATION 

1040 
1041 
1042 
1043 

1050 
J * 16,3 1051 

Figure 5-2. Schematic of Control Sequence in Subroutine Execution 

When on the logical line of flow, the programmer wants to execute a subroutine, he shows the 
following symbo1. 

The name of the subroutine to be executed is written inside the subroutine symbol. 

If the programmer wants to flowchart a subroutine itself, the logical operations constituting the 
subroutine are enclosed within the following symbols. 

C __ )~~ logical operations of subroutine 

The symbol on the left indicates the beginning of the subroutine, the symbol on the right the end 
of the subroutine. The name of the subroutine should appear in both the beginning and ending 
symbol. 

UP-3853 



UP-3853 UNIVAC III UTMDST 
SECTION: 

5 
PAGE: 

B. EXAMPLE 

There are 100 delinquent account numbers stored in ascending sequence in storage locations 
5120 - 5219. Executing a input item advance subroutine with an SL] to location 2048 will deliver 
the address of an account num ber in 2100. If the accoun t num ber is de linquen t, store it in an ou tput 
area. Executing an input/output item advance subroutine with an SL] to location 2548 will store in 
an output area the account number whose address is in 2100 and will store the address of the next 
account number in 2100. Start your coding in 1024. 

C. FLOWCHART 

LEGEND 

A - an account number 

D - a set of delinquent account numbers 

D. - the inth del inquent account number in D, 
I 

i=1,2,3 .... ,lOO 
F - an account number found del inquent 

< l---..j 

ADV F l~i 

5 



5 6 
Rev, 1 UNIVAC III UTMOST UP-3853 

SECTION: PAGE: 

D. CODING 

\ 
LABEL ~ OPERATION ,;\ OPERAND ;\ COMMENTS 

° IS I L I 1 I I I L..L \ I 

ILl X 3 
I I I I 111 I I I I I I I I ~ I I I 

2 IS ILl J I I I I 1*111°12131'131 I AIDI VI ,A, 

3 ILl XI 11 15 I' 1*111°12121'131 I I I I I I I 1 , 
4 L X I 114 1 ° 2 1 I , 3 1 I 11 \1 1 I 

5 
I 

L I AI 18 I 1°1 'I 115 I IAI I: 10 III .LL~ 
J 

6 ICI 18 1 10 1'1 1141 • .L...L~ 

7 I J I LI 121, I 3 1 .LL~ 
8 I J I G I I 1 11 I ' I 3 1 I AI I' I DII I I \ I I 

9 S L J I * 1 ° 2 ° I' 3 ADV F I I I I 1 
J 

1 0 I I J I I I I I 1 I I 1 131, 131 I I I I I I I I I I I I .L....L.l.....L.J 
1 11 II I XI C I 1114 I' I 11 1°1 1 19 1, 13 1 III I: I 11 1°1 ° I 'I II +1 111 I I III .1 I I I 

112 J L I 51 ' 3 1 1 1 I . .L....L...L..LJ 
'\, 3 1 I I IJ I I I I I I 1 1 1 I 12 1, 131 I I 1 1 I 1 I 1 1 I I I I I I I I I I I . .L..LlLJ 

I I I 1 I 

• I I I I I I I I I I I I I .L..LlLJ 
1 °11 19 I II 1 C I 

W 15 1212 1° '1 'Ill . .L..L~ I 

1, °121° 1 1 + 1 12
15 1

4 18 I 

~~ 11 °1 2 11 I I + I i 51 1 121 ° 1 

1 0 2 2 + 1 2 1 ° ° I I I 

110 12 13 1 I + I I I 121 ° 14 18 I I 1 I I 1 ~ - ....... - -- - - -- -----



PAGE: 
UP-3853 UNIVAC III UTMOST 5 7 

SECTION: 

E. FLOWCHART FIELD NOTATION 

An item is shown on a flowchart by means of a capital letter, either subscripted ,)[ not, dt'pt'lldirl f; un 

whether the item is an element of a set of items. For example, the letter J might be u:,ed ((I reprt'St'nt 

a job item. 

An item may consis t of several fie Ids. Fie ld s are also symbolized by c api tal lett E'rs, bu t u re w rt tt e n as 
superscripts to their item symbol. Thus, IN might be used to represent the job number field uf lub itt-m, 

JC to represent the contract price field of the job item, JL the labor cost field of the job item. J"1 the 
material cost of the job item, and JV the overhead cost of the job. 

1. Example 

Given a job item of form: 

where: 

N 

C 

L 

M 

V 

WORD 

o 
1 

2 

3 

4 

is the job number 

is the can tract price 

is the labor cost 

is the material cos t 

is the overhead cost 

Produce a profit item of form: 

where: 

WORD 

o 
1 

N is the job number 

A is the profit 

DATA 

NNNNNN 

OCCCCC ... 

OLLLLL ... 
OMMMMM ... 
OVVVVV ... 

DATA 

NNNNNN 

OAAAAA ... 

Execu ting an input item advance subroutine with an SLJ to s tara ge location 2048 w ill de Ii ve r 
the address of the zero word of a job item in location 2100. Executing an output item advance 
subroutine with an SLJ to 2548 will deliver in 2600 the address of the zero word of an output 
area for a profit item. Start your coding in 1024. 



5 
SECTION: 

0 

2 

3 

4 

5 

6 

7 

9 

8 UNIVAC III UTMOST UP-3853 
PAGE: 

2. Flowe hart 

(START}8-< ADV J >-< ADV p)1 IN_pN HL.-_J_C __ J_M_-J_L ___ JV_--"_P_A_~k~ 
LEGEND 

J - a job item 

IN _ the job number of J 

J C _ the contract pri ce of J 

JM _ the material cost of J 

JL _ the labor of J 

J V _ the overhead cost of J 

P - a profit item 

p N _ the job number of P 

pA_ the profit of P 

3. Coding 

LABEL t\ OPERATION 

L X 3 I 

* 

1 5 I * 

S L J * 

L X 4 * 

LA 2 

4 

D S 4 

D S 4 I 

0 S A 2 I 

t\ OPERAND COMMENTS 

1 0 2 3 3 A D V 

0 2 2 3 

1 o 2 1 I 3 

1 0 2 0 3 

5 J N 

5 J C J M 

3 I 1 5 

4 I 5 



UP-3853 UNIVAC III UTMOST 

4. Student Exerc ise 

Given an inventory item of form: 

where: 

WORD 

o 

2 

3 

N IS a stock number 

H IS the onhand quantity 

X is other data 

Also given a sales item of form: 

WORD 

o 

where: 

N is a stock number 

Q is the sales quantity 

DATA 

NNNNNN 
OHHHHH. 
XXXXXX 
XXXXXX 

DATA 

NNNNNN 
OQQQQQ 

5 9 
SECTION: PAGE: 

Executing an input item advance subroutine with an SLJ to storage location 2048 will del iver the 

add res s 0 f the z e r 0 wo r d 0 fan i n v en tor y i t em i n 10 cat ion 2 1 00. E x e cut i n g ani n put i t e mad van c e 

subroutine with an SLJ to 2548 will deliver the address of the zero word of a sales item in location 

2600. Executing an input/output item advance subroutine with an SLJ to 2848 will store in an output 

area the inventory item whose address is in 2100 and will store the address of the zero word of the 

next inventory item in 2100. The first inventory item and the first sales item have the same stock 

number, the second inventory item and second sales item have the same stock number, the th ird 

inventory item and sales item have the same stock number, and so on. Update the inventory. Start 

your coding in 1024. 



UP-3853 UNIVAC III UTMOST 6 
SECTION: PAGE: 

6. VARIABLE CONNECTORS 

A programming technique based on instruction modification is the use of a variable connector. 
This operation is a variation of branching, in which a decision is made to branch between two or 
more alternative lines of processing. In a branch the decision and the branch are made at the same 
point in the program. When a variable connector is used, the decision is made at one point and 
the branch is made at a later point. The result of the decision is stored in the form of the setting 
of a switch, or variable connector, which indicates the branch to be taken at a later point in the 
program. 

A set of instructions that is sometimes used to implement variable connectors is the set of 
instructions which manipulate the sense indicators. A ·sense indicator is similar to the high, 
low and equal indicators. It is a two state device that can be turned on or off and whose setting 
can be tested by means of a jump sense instruction. The Processor provides eight sense indi­
cators, numbered one through eight The instructions that operate on the sense indicators are as 
follows. 

SET SENSE - SS 

Turn the sense indicator specified in the AR portion of the instruction on. The number of the sense 
indicator to be turned on is specified in excess seven binary code in the AR portion. In UTMOST 
language this number is written as a decimal number (8-15). Multiword operands, indirect addressing, 
and field selection are not applicable to this instruction. 

Example: 

LABEL OPERATION OPERAND 

I I I IS I S •• ,8. I , • I I I I I I I I I I I I I I 11 1 1 I I , I I) 

- - - - -- - _ -_- .-- -J - -
At the end of instruction execution, sense indicator one is turned on. 

UTMOST generates this line of coding into 

1 



6 
SECTION: 

UNIVAC III UTMOST 

RESET SENSE - RS 

Turn the sense indicator specified in the AR portion off. The number of the sense indicator is 
specified in excess seven binary code in the A R portion. In UTM OS T language this number is 
written as a decimal number (8-15). Multiword operands, indirect addressing, and field selection are 
not applicable. 

Example: 

LABEL !'l OPERATION !'l OPERAND !'l 

• • • • R.S. •• 8. I •• •• I • 1 t I • • I •• • • • • • • • I 
- - - -

UP··3853 

? 
I 

• t 

-..- - - - - - -
At the end of instruction execution, sense indicator one is turned off. 

UTMOST generates this line of coding into 

'~ FS x OP AR m 

0 0 61 1 0 0 1 0 0 

JUMP SENSE - JS 

If the sense indicator specified in the AR portion is on, jump to m'. Otherwise, go to the next 
instruction. The number of the sense indicator is specified in excess seven binary code. In UTMOST 
language the number is written as a decimal number (8-15). Multiword operands and field selection 
are not applicable. Indirect addressing may be used. 

Example: 

LABEL !'l OPERATION !'l OPERAND !'l 
1 

11 ~ t J I S I I 11.0 I I 11 0 0 I • • I I • ••••••• I • • • • • I • • I I I 

-- -
UTMOST generates this line of coding into 

II~sl x OP AR 

10 

m 

0 60 0 0 -0 0 

Control will be transferred to location 100 if Sense Indicator 3 is set. 

A. EXAMPLE 

There are 100 quantities stored in storage locations 5120 - 5219 in the form OQQQQQ. Add 
25 to the first, fourth, seventh, etc. quantities. Add 50 to the second, fifth, eighth, etc. 
quantities. Add 75 to the third, sixth, ninth, etc. quantities. Process the quantity stored in 
location 5120 first, the quantity in location 5121 second, the quantity in 5122 third, and so 
on. When finished jump to 2000. Start your coding in 1024. 

0 



UP-3853 UNIVAC III UTMOST 6 
SEC nON: 

8. FLOWCHART 

A partial flowchart for this example is shown in Figure 6-1. This flowchart is indeterminate 
at connector one. The first time control reaches this connector, process one should be 

executed. The second time, process two should be executed. The third time process three 
should be executed. The fourth time, process one. And so on. Connector one must be variable. 
This is indicated by subscripting the one with a "v". The connector is then the terminal of a 
switch. The poles of the switch are also indicated by connectors, the connectors being identi­
fied by the same number but being subscripted with successive letters of the alphabet. Figure 
6-2 shows the flowchart in Figure 6-1 with the variable connector included. 

The flowchart in Figure 6-2 is still indeterminate in that it does not show which pole 
connector 1 v is set to. Setting a variable connector is shown in an operation box. The pole 
to which the connector is to be set is written in the operation box and is preceded by a 
period (.), a customary abbreviation for "set" Figure 6-3 shows the flowchart in Figure 

6-2 with the setting of the variable connector included. 

PROCESS 1 

Q. + 25-.Q. 
I I 

PROCESS 2 
+ l-.i 

I Y 0;+50_0; ~ 

~ 
I 

LEGEND LI~ _Q_i _+_75_ ..... _Q_i ....... ~ 
Q a set of quantities 

Q. 
I 

the ith quantity in Q, 1, 2, 3, ... , 100 

Figure 6-1. Partial Flowchart 

3 
PAGE: 



6 I PAGE, 4 
UNIVAC III UTMOST UP-3853 

SECTION: 

+ l .... i 

LEGEND 

Q - a set of quantities 

Q i - the ith quantity in Q, i = 1,2,3, ... ,100 

Figure 6~2. Flowchart with Variable Connector 

i = 1, . 1 a 

Q. + 2S ..... Q. 
I I 

G>1 . 1 c H Q i + SO .... Qi kD + l ..... i 

01 • 1 a H Q. + 7S~Q. 
I I kD 

LEGEND 

Q - a set of quantities 

Q. 
I 

- the ith quantity in Q, i = 1, 2, 3, .•• , 100 

Figure 6-3. Flowchart with Variable Connector Settings 



UP-3853 UNIVAC III UTMOST 6 5 
SECTION: PAGE: 

C. CODING 

LABEL OPERATION OPERAND 

o S L 

L X 3 I 

2 L X 1 5 1 0 2 3 I 3 

5 

6 

7 8 

8 DA 8 , 

9 8 , 0, 1 5 

1 0 I XC 1 5 1 0 2 1 3 1 0 0 



6 UNIVAC III UTMDST UP-3853 
SECTION: 

Another method of coding this example is as follows: 

LABEL t:. OPERATION t:. OPERAND COMMENTS 

0 

L X 3 I 

2 L X 1 5 023 I 3 

1 2 o 2 2 I 3 + 2 5 QI 

8 I 0 1 5 

8 I 0 1 5 

6 S A .. I 3 3 1 B 

7 X C 1 5 

8 J L 

9 J 9 7 6 I 3 



UP-3853 UNIVAC III UTMOST 
SEC TION: 

D. STUDENT EXERCISE 

There are 166 six-word job items stored beginning at storage location 5120 In the form~ 

WORD 

0 

2 

3 

4 

5 

where: 

N is a job number 

S is a salesman's key and may be 

1 fo r s a Ie sma non e 

2 for salesman two 

3 for salesman three 

L is the labor cost 

M is the material cost 

Vis the overh ead co st 

Pis the contract price 

Compute for each salesman: 

1. The g ro s s s a Ie sam 0 un t . 

DATA 

NNNNNN 
SLLLLL • 
LLMMMM 

M.MMVVV 

VVVVpp • 
PPPPPP • 

2. The number of sales netting $1500 or more. 

When finished, jump to location 2000. Start your coding in 1024. 

6 7 
PAGE: 



UP-3853 UNIVAC III UTMOST 7 
SECTION: PA GE: 

7. TABLE LOOKUP 

Many programs involve looking up informatipn in a table stored in the memory. The technique used to 
do such a table lookup varies with the construction and sequence of the table involved. As an intro­
duction to this subject an example table lookup illustration is given. 

A. EXAMPLE 

Storage locations 10,240 - 10,639 contain 400 six digit part numbers listed in ascending sequence. 
Listed in locations 10,640 - 11,039 are the unit costs for the parts whose part numbers are in the 
part number list. Each unit cost is in the form OOCC.CC. The unit cost stored in 10,640 is the unit 
cost of the part 'whose part number is stored in 10,240. The unit cost stored in 10,641 is the unit 
cost of the part whose part number is in 10,241. The unit cost in 10,542 is the unit cost of the part 
whose part number is in 10,242. And so on. Given a sales item of the form: 

where: 

WORD 

K is a key 

N is a part n urn be r 

Q is the quantity sold 

o 
1 

2 

3 

DATA 

KKKKKK 

NNNNNN 

QQQQ.OO 

000000 

Compute the total cost for the sales item and store it in words 2 and 3 of the sales item in the 
form: 

where: 

T is the total cost. 

WORD 

2 

3 

DATA 

QQQ~TT 

TTTT.TT 

If the part number of a sales item cannot be found in the part number list, jump to 2000. Executing 
an input item advance subroutine with an SLJ to 2048 will deliver the address of the zero word of 
a sales item in 2100. Executing an input/output item advance subroutine with an SLJ to 2848 will 
store in an output area the sales item whose address is in 2100 and will store the address of the 
zero word of the next sales item in 2100. Start your coding in 1024. 

1 



7 
SECTION: 

UNIVAC III UTMOST UP-3853 

B. FLOWCH ART 

CST ART )-('-__ A_Dv_S_----J/-01L.....-S_O_C_S N_--+-__ ST-----IK~_A_D_V_U __ --J';_0 

LEGEND 

S - a sales item 

SO - the quantity of S 

SN _ the part number of S 

ST - the total cost of S 

CSN- the price of SN 

U - an updated sales item 



UP-3853 UNIVAC III UTMOST 7 3 
SECTION: PAGE: 

C. CODING 

LABEL A OPERATION ~ OPERAND \ I 1 

0 IS L I 1 I I 

1 IL X 3 , I 1 I I 

2 IS L J * I 1 o 2 3 , 3 A DIV S 

3 IL X 1 5 , * I 1 o 2 2 , 3 I I 

4 IL A, 8 I 1, 1 5 I I 

5 IL A 6 , 11 o 2 1, 3 I I 

6 IS A 4 , 11 0 1 7 , 3 I I 

7 IC 8 , * 11 o 1 7 , 3 I I 

8 IJ L I 9 76 , 3 I I 
) 

9 IS A 2 11 o 1 9 , 3 T AI8 L E L 0 0 K U PI 

1 0 18 A 2 , 11 o 1 7 , 3 I I J 

1 1 18 R R 2 , 1 1 1 I I I ) 

1 2 10 R 2 , 11 o 1 6 , 3 1 I .I 
1 3 IS A 2 , 11 0 1 8 , 3 I I ') 
1 4 IC 8 , * 11 o 1 8 , 3 I I 

1 15 IJ L I 9 , 3 I [ I 

1 6 I J E 1 2 2 , 3 I I I 

1 7 IC I 2 , 11 o 1 7 , 3 I I I I 

1 ,8 1 I IJ E \ 1 9\7 6 , 3 I I I I I [ I I I I 

1 9 IS A 2 , 11 o 1 7 , 3 I I I 

2 0 IB A I 2 , 11 o 1 9 , 3 I I .I 

2 1 I I I I I I I I J I I I I I I I I I I I 11111' 13 I I I I I I I I I I I I I I I I I I 

2 2 18 A 2 , 11 o 1 5 , 3 S QI X C S NI ,- -I S T, 

2 3 IS A 2 , 11 o 1 8 , \ 3 I I 
2 4 I LA 8 , I 2 , 1 5 I 1 I 

2 5 10 S R 8 , \ 2 1 I 

2 6 10 M * 11 0 1 8 , 3 I I I 

2 7 I L F 4 * 11 0 1 4 , 3 I I 

2 8 IS A 6 , I 3 , 1 5 I I 

29 IS L J * I 1 o 1 3 , 3 I I 

30 IJ I 3 , 3 I I 

I I I I 
\ 
J 

1 1 1 I 

I I I I ) 

1 0 1 3 1+ 2 8 4 81 I I " 1 0 1 4 1+ 2 4 , 91, 2 , 1 5 I I / 
1 0 1 5 1+ 4 0 0 I I I 

1 0 1 6 1+ 077717 7 7 7 7 I I 
\ 

1 0 1 7 1+ 0 I BOITTOM I 

1 0 1 8 I 1+ 0 1 MIIDDLE I 

1 0 1 9 1+ 0 1 T 01 P I 

1 0 20 1+ 1 0 2 410 I I 

1 0 2 1 1+ 1 0 6 4 10 I I ) 

1[ 0 2 2 1+ 2 1 0 0 I I 1 I 

1 023 1+ 2 0 4 81 I I -- - - - ---..\ - - - -



7 
SEC TION: I PAGE, 4 

UNIVAC III UTMOST UP··3853 

The table lookup coding at C. is a specific example of a general technique known as log 2 lookup. 
This lookup employs the technique of comparing the middle table argument with the problem argument 
to determine in which half of the table the desired value lies. The selected half of the table is then 
divided to determine in which quarter of the table the desired value lies. This process continues until 
the choice is narrowed down to two values, at which point the desired value is chosen. The name of 
the technique derives from the fact that, if the log of the lowest power of two equal to or greater than 
the number of entries in the table is taken to the base 2, the result is the maximum number of compari,· 
sons required to find a spec ific en try. 

The list of delinquent account numbers used in the delinquent account number example presented earlier 
in this manual can be considered a table. Lookup in this table was done by means of sequential table 
lookup. In sequential table lookup, the first entry in the table is interrogated to see if it is appropriate. 
If not, the second entry is interrogated. Then the third. And so on until the appropriate entry is found or 
the end of the table is reached. 

An example of a third type of table lookup, function table lookup, will be given later in this manual. 



UP-3853 UNIVAC III UTMOST 8 
SECTION: PAGE: 

8. UTMOST 

Up to this point in this manual a restricted subset of the facilities available in the UTMOST 
langu<;lge has been used in the coding of examples" The purpose of this chapter is to introduce 
the programmer to the full range of the UTMOST language., This presentation will be made in 
terms of an illustrative example, the statement of which follows" 

A, EXAMPLE 

Given a taxpayer item of the form: 

WORD 

o 

1 

2 

3 

4 

5 

where: 

N is a taxpayer identification 

G is the income 

p is the num ber of dependents 

A is the deductions other than 

Produce a tax item of the form: 

WORD 

o 

1 

2 

where: 

DATA 

NNNNNN 

GGGGGG~ 

GGOOOO 

P~OOOO 

OOAAAA~ 

AAOOOO 

for dependents 

DATA 

NNNNNN 

OOOOTT 

TTT~TT 

N is the taxpayer identification 

T is the unrounded tax 

1 



8 
SECTION: 

UNIVAC III UTMOST 

A deduction of $600 is allowed for each dependent.. The tax is 20% of the taxable income .. 
Executing an input item advance subroutine with an SLJ to 2048 will deli ver the address of 
the zero word of a taxpayer item in 2100 .. Executing an output item advance subroutine with 
an SLJ to 2548 will deliver in 2600 the address of the zero word of an output area for a tax 
item" Start your coding in 1024. 

B. FLOWCHART 

LEGEND 

P a taxpayer item 

pN the identification of P 
pG - the in com e of P 

pP th e number of dependents of P 
pA the other deductions of P 

T a tax item 

TN th e taxpayer identification of T 
TT the amount of T 

UP-3853 



UP-3853 UNIVAC III UTMOST 8 
SECTION: 

3 
PAGE: 

C. CODING 

As has been done previously in this manual, this example might be coded as follows. 

\ 
LABEL 6. OPERATION 6. OPERAND 6. COMMENT5 

1 

0 5 L 1 I 1 I I I 
J 

1 L X I 3 , I 1 I 1 I 

2 5 L J I * 10 123 3 A 0 V IP 1 I 

3 LX 1 1 5 * 1 012 2 3 I I I I I _I , , , , I , , I 1 \ 
4 5 L J I * 1 012 1 3 A 0 V IT I I f 
5 , L X I 1 4 * 1 012 0 3 I 1 I ,\ 
6 LA I 8 , I 3 1 5 • 2 ( I P G - 600 PIP - P A ) -1- - T T 

7 OM I 1 011 9 , 3 I I , I I , , ) 
8 05 1 6 , I 5 1 5 I I I 

9 OA 1 6 , I 2 , 1 5 I 1 I \ 
I 

1 0 5 A I 6 , 1 011 8 , 3 I 1 I , 
1 , 1 , I I IL A I 8 , 1 011 6 , 3 1 I I I , , , I , , , , I I , , I I ,( 

1 2 o M I 1 011 8 , 3 I I I 

1 3 5 A 1 , 4 , I I 1 1
0 1 11 5 1 ' I 3 1 _1 1 1 , , I I I , , I , , I I I ,II I I I I 1\ 

1 4 o M 1 1 01 1 7 , 3 1 I 1 l 
1 1 5, , I , ,0 A 1 6 , 1 01 1 5 , 3 I , , I I , , , , \ 
1 6 , L A I , 8 , I ,0", 1, 5~1 P N -I - -i ~ T~ N , , , I , , , , , I 

1 7, 5, A , I , , , 1,4 , , 1 ,2",1,41 I , I I 1 I I I I , , , , I , , , , , , , , ,I, , \ 
1 ,8, , , , ,J I , , , , , , , , I ,2",3, , , , , I 1 I I , I , , , , I , , , , , , , , ,I, , , , , , 

1 I 1 I I 

. , , I , , 1 , , 11 1 I 1 1 _1 1 , , , , 1 , , , , ) 

., , , , , , , I , , , , , , , , , 1 , , , '1 I 1 , , , , , I , , I I , , 
1 0 1,4 , ,+ I , ,:,0,0 0,0 0 10 , I , , I , I ) 
1 0 1 5 + I ,0 , , 1 , , , , , , , 1 I , , , , I , , , , , , , , , I , , ,\ 
1 0 1 6 + 1 : o 0 o 0 21 0 I 1 I } 
1 0 1 7 + I 0 , I L I 1 1 , 

1 ,0,1 8, , ,+, I , , ,0 I , 1 , , , , , I , , I , , , , I ,\ 

1 0 1 9 , ,- I , , ,:,0,6 o 0 01 0 I , , I , , , , , I , , , , I I
j 

1 0 2 0 + 1 2 6 0 0 I I I I ) 
1 0 2 1 + I 2 548 I I I 1 ( 
1 0 2 2 + 1 2 1 0 0 I 1 I I \ 
1 0 2 3 + 1 2 0 4 8 I I 1 , , I , J 

t,....--- -- - - - - - - - -L.- ------1 - - - - ...... 



8 

SEC TION: 
IpAGE,4 UNIVAC III UTMDST 

D. LABELS 

UTMOST language relieves the programmer from keeping track of relative addresses. Instead a 
label is used. A label may be from one through sixteen characters long, through only the first 
eight(8) characters are considered by the assembler. The first character may be letters of the 
alphabet or decimal numbers. A label must begin in the first column of a line and must contain no 
spaces, but must be followed by a space. The example used in this chapter is restated below to 
make it appropriate for coding with labels. 

1. Example 

Given a taxpayer item of the form: 

WORD DATA 

0 NNNNNN 

1 GGGGGG ... 
2 GGOOOO 

3 PPOOOO ... 
4 OOAAAA ... 
5 AAOOOO 

where: 

N is a taxpayer identification 

G is the income 

P is the num ber of dependents 

A is the deductions other than for dependents 

Produce a tax item of the form: 

where: 

WORD 

o 
1 

2 

N is the taxpayer identification 

T is the unrounded tax 

DATA 

NNNNNN 

OOOOTT 

TTTTTT ... 

A deduction of $ 600 is allowed for each dependent. The tax is 20 % of the taxable income. 
Executing an input item advance subroutine with an SLJ to the label FRD will deliver the 
the address of th e zero word of a taxpayer item in the storage location labelled FILEP. 

Executing an output item advance subroutine by means of an SLJ FWR will deliver in 
label FILET the address of the zero word of an output area for a tax item. Label the first 
instruction in your program to be executed with the label START. 

UP-3853 



UP-3853 UNIVAC III UTMOST 8 5 
SECTION: PAGE: 

2. Coding 

LABEL ~ OPERATION ~ OPERAND ~ COMMENTS 1 1 

S TAR T S L I 1 I I I I 
LX I 3 , 1 I I I I 

C 1 S L J, * K 1 , 13 A 0 V PI l I I 

i .1 i .1 • 
LX I 1 5 , * K 2 , 13 I I I ( 

S L J I * K 3 , 13i i 1 i A 0 V Tl I I 
) 

L X I 1 4 , * K 4 , 13 I , I I \ 

L A I 8 3 , 1 51 . 2 ( I P G - 6 ° ° P PI - P A ) - -I- T T 

OM I K 5 , 31 I , I I 
\ , , l , , , 

o S I 6 , 5 , 1 51 1 I I J j 
OA I 6 , 2 , 1 51 I I I \ 
S A I 6 , K 7 , 3 I I I , I I .I 

• , I I I , L A I 8 , K8 , 3 I I ~ i 1 I il I iL • 1 il J i i IJ 

i 
OM I K 7 , 3 I I I I J 
S A I 4 , K,l ° , 1 3 , ., , , , , I , , , , , I , , , I , , , ,\ 
o M I K6 , 3 I I I I 

) 

, , o A, I , 6 , K 1 ° , 1 3 , , , , , • , I I , , , , , , I , , , I , , , , 
, L A I , ,8 , ° , 1 5 I • , I PiN ,-.-1- ,T,N I , , , I , , I , 

, I , , , , is 1 AI III 11 i4 i'1 2 , 1 4 I i il 11 1 Iii 1 1 1 I I i 1 I ~ • I I 1 , I I , I I 

I 
• I , I I J 1 

~ 1 I ~ i I J I , , , , CI 1" ,3 1 , , , I , , , , I I , I , I I , I I , I , , I i ~ i , I I , i 1 111 

K 1 + I FRO I I I I ,\ 
KJ 2 1 1 i 11 + I F I, L E P I , , I , , , I , , , I i 1 IJ 

K,3, I , , I 1 +, I I , I~W,R, , I , I , I I I I , I I I I I I I , I I I I I I , , I I I , , , , I , , , , I 

K,4 1 I 1 I I + I F,I,L E T I I , I , I I , I lJ 
K

1
5 , , I , - I : ° 6 ° 0,0,0 I , , I I , I , I 1 1 I tI 

K 6 + I ° I I I I 

Ki7 
1 • 

+ I ° I I I , I I( 

K
I
8

1 I I I L + L 1 I: iO 1° °10i2101i~i , I , , , I I , I I it lJ 
K 9 + I : 0,00,0,0,°1 , , , , , , I , , , , , I , I , I , , I , , I I I , I I 1 I 

K 1 ° + I 1 ° 1 I 1 I I i 1 I L iii iL .1 I 1 III I 1 I I 1\ 

I I I I I I 1 I I I I i .11 L i L I , I I , I 1) 



8 
SECTION: 

3. STUDENT EXERCISE 

Given an input item of the form: 

where: 

N is a key 

A is a quantity 

WORD 

o 
1 

2 

3 

4 

B is another quantity 

UNIVAC III UTMOST 

DATA 

NNNNNN 

OAAOOO • 
088000 • 
OCCOOO • 
ODDOOO • 

C is a third quantity and has a minimum value of .011 

o is a fourth quantity produce 

produce an output item of the form 

where: 

N is the key 

E = AS 

F = AS 
.9C 

G = AS - D 
.9C 

WORD 

o 

2 

3 

DATA 

NNNNNN 

OOEEEE • 
FFFFFF • 
GGGGGG • 

Executing SLJ FDR will deliver the address of the zero word of an input item to FILEI. 
Executing SLJ FWR will deliver in FILEO the address of the zero word of an output area 
for an output item. Label the first instruction in your program START. 

UP-3853 



UP-38S3 UNIVAC III UTMOST 8 
SECTION: PAGE: 

E. DEFINITION OF TERMS 

A line of UTMOST coding consists of three fields, a label, an operation, and an operand. Labels 
have been defined above. 

The operation is the second field on a line. Examples of operations are the mnemonic op codes 
of instructions, the plus or minus sign of a constant, and the ICW of an increment and compare 
word. An operation can contain no spaces within it, must be preceded by at least one space and 
in general, must be followed by at least one space. The plus and minus operations are the sole 
exceptions to this last rule in that, if the programmer desires, the operand of a constant line 
can immediately follow the plus or minus operation with no intervening space. 

The operand constitutes the rest of the UTMOST line. An operand is made up of one or more 
expressions, the expressions being separated by commas. An expression together with its 
following comma can contain ho spaces within it. However, if the programmer so desires, spaces 
may be left between the comm a 0 f one exp res sion and th e beginning of the follow in g exp ression. 
The last expression in an operand has no comma following it. 

F. OPERATORS 

All expressions written thus far in this manual have consisted of one unit. The following are 
examples of units taken from the above coding. 

Cl 

: 060000 

o 

UTMOST allows an expression to consist of two or more units connected by operators. The 
operator describes to the UTMOST assembler how the units making up the expression in 
source code are to be combined to form the expression in obj ect co de. For exam pIe, "+" is 
an operator. It tells the assembler to form the object code expression out of the arithmetic sum 
of the sou rce code units. 

To clarify this explanation, consider the label KS used as the address of the first DM 
instruction in the above coding. In transforming this source coding to object code, the UTMOST 
assembler is going to substitute for KS in this DM instruction the relative address that it 
assigns to the constant - : 060000. 

Now consider the expression KS + 3. This tells the UTMOST assembler to arithmetically add 
together the relative address it assigns to the label K3 and the binary equivalent of the decimal 
number three. The result will be the relative address assigned to the label K8. Thus, in the 
above codin g the exp ressions KS + 3 and K8 are equi valent. Consequen tly, in this codin g the 
instruction LA 8, K8, 3 could have been just as correctly written LA 8, KS + 3, 3. 

Other operators will be described later in this chapter. 

7 



8 
SECTION: 

UNIVAC III UTMOST UP-3853 

G. THE USE DIRECTIVE 

Instead of the programmer specifying the cover index register in instructions addressing the coding 
itself, the USE directive may be employed. A USE directive has the following form: 

USE e, , e 2 , e 3 , ... 

where USE is the operation, and e" e
2

, e
3

, ..• the operand. The expressions e" e 2 , e
3

, •.. 

are index register numbers. 

The UTMOST assembler treats the USE directive in the following way. It interprets the directive 
to mean that the next 1024 lines of coding immediately following the USE directive are to be 
covered by the first index register specified, that the next 1024 lines of coding are to be covered 
by the second index register specified, that the next 1024 are to be covered by the third index 
register specified and so on. On the basis of this assumption, the UTMOST assembler will insert 
the proper cover index register specification into the instructions addressing the coding itself. 

In addition to causing UTMOST to insert cover index register specifications, the USE directive 
also causes the executive routine to properly load a program's cover index registers before turning 
over control to the program. Consequently, once a USE directive has been given, no further concern 
with cover index registers is necessary. 

For efficient index register use, it is recommended that in writing a program, only one USE direc= 
tive be used to specify cover index registers for coding. 

The USE directive is an assembler directive. It is a communication between the programmer and 
the assembler. As a consequence, although it takes up a line of source code, it will not cause the 
generation of any lines of object coding. It is, instead, absorbed by the assembler. 

The follow ing is coding, incorporating the use directive, for the example being used in this 
chapter. 



UP-3853 UNIVAC III UTMDST 8 9 
SECTION: PAGE: 

LABEL tl. OPERATION tl. OPERAND tl. COMMENTS 
) 

1 { 

I USE I 3 I 1 I 1 

S TAR T 1 S L J 1 * K 1 IA 0 V P 1 1 1 

I L X 1 51, * K 2 I 1 I I 

I S L J I * K 3 /A 0 V IT I I I 

1 L X 1 41, * K 4 1 I I I 

I L A 8 , I 3 1 5 I. 2 ( P G - 1600PP - P AI ) - - - T T I 

I OM I K 5 I 1 1 I 

I o S 6 , I 5 , 1 5 I I 1 l 

I o A 6 , I 2 , 1 5 I 1 1 I{ 

1 S A 6 , I K 7 I I 1 t\ 
1 L A 8 , 1 K 8 1 1 1 I I 

1 J 

I I I OM 1 K 7 1 1 1 1 

I S A 4 , I K 1 0 I I l II 
1 OM 1 K 6 1 1 I ~ I I I I 1 I I I I I I I I J 

I o A 6 , I K 1 0 I I I II 

I L A 8 , I o , 1 51 I 1 PIN I-I - - T N 1 1 1 ) 

I I S A 1 4 1, 2 , 1 4 I I 1 
, 

I I i 1 I I J 1 I I 1 I IS TI Al R TI I 1 I 1 1 1\ 

Kill I I I I I I 1+1 I I I I /IRIOI I I I I I I I I 1 I I I I I I I I I I I I I I I I I 1 I I I I I) 

K 2 + FilL E P \ 
I I I I 1 

K 3 
I + I F W1R 1 I 1 I 1 J 

1 I I I I 

K 41 I I I 1 1+ I I F IlL E, T I I 1 I I I I 1 I I I I I 1 I I I I I ]1 

K T 
I 1 -

I I 
: 0 16 o 0 0 0 

1 I I I I I I ] I 

K 6 1 + 0 
1 1 I 1 I I I I I II 

K 7 I + 0 I 1 1 1 1\ 

K 8 1 + : 010 0 0 2 0 I I I I l 
K 9 I + : 0

1
0 0 o 0 0 

I 1 I I I I I I I 1 I I I 1 I 1\ 
K 1 0 I + 0 I I 11 I 1 I I I I I I I I I I I I I I I I 1 

I I I I I I I t! 
I I I J I 1 I I I I I I I 1 I I I I I 1\ 

H. STUDENT EXERCISE 

Code the previously stated student exercise using the USE directive. 



8 
SECTION: I PAGE, 10 

UNIVAC III UTMDST 

I. INDIRECT ADDRESSING 

If the UTMOST assembler encounters a source code instruction addressing a line of coding 
not covered by a USE directive, it will automatically modify this instruction to use indirect 
addressing and fabricate an indirect address control word to effect the proper addressing. 
Consequently, in writing a label as the operand address of an instruction addressing coding, 
there is never any need to worry about whether the label is covered or not. 

The following is coding, taking advantage of this indirect addressing feature of the UTMOST 
assembler, for the example being used in this chapter. 

LABEL !1 OPERATION 
1 

!1 OPERAND !1 COMMENTS 

, USE J 1 , , 1 
S TAR T , S L J , F R D ,A D V P , 1 

I L X 1 5,_ F I L E P I I , 
I S L J , F W R ,A D V T , 1 

, L X 1 41- F I LET , I , 
I L A 8 _ , 

i 
J 1 5 I' 2 ( P G - ,6 ° ° PiP - P A, ) -,- -

, D M 
~ 

K 1 , , , J 

, D S 6 -1 5 1 5 , 
i 

, j 

, D A 6 -1 2 1 5 , , 1 
, S A 6 -1 K J , , 1 
, L A 8 -1 K 4 1 , , , 1 , 

UP-3853 

) 

, 
, 
, 
, \ 
'I 

T T , 
I , 

L\ 
, 
,) 
1 

i 
, D M 1 i K J I 1 iiiii"I" I 1 1 i 1 i i , 1 , 1 1 I 1 

, S A 4 -1 K 6 , , 1 

1 D M 1 K,2 I , 1 i , , 1 1 1 liii , 
I D A 6 -1 K 6 ! I 1 
, L A 8 _I ° 1 5 ,p N - - - T N , 1 
, S A 1 4, _ 2 _ 1 4 , 

..l i.l i i 1 1 I I .1 

-'- iii 
, J, , S TAR T , 

-'-
, 

..l 1 , 
~li i i..1..1 

, - : 0,6 ° 1° 1 01 ° 1 , , , , I I , , , , , I I I I , 

K 2 I + ° 1 I , 1 
KJ I + 

I ° 1 I , 
I I I I I I I I , 

K 4 
I I I ,+ I 1 

: ° 1 ° °i02 101 I I I I IJ 1 I I I I I I 1 I , 

K 5 
1 I + : 0J O ° ° ° ° , 

i ii 1 I II 1 I I I I I I , 

K6 I + ° j I , , I I I 1 1 , --- - - - - -

J. STUDENT EXERCISE 

Code the previously stated student exercise uSing the automatic indirect addressing feature 

of the UTMOST assembler. 

d 
, , I·) 

I 
I 

1 

j 

I 

I I ,\ 

1/ 
I I 

I 1 

1 

1 J 
j 



UP-3853 UNIVAC III UTMOST 8 
SECTION: PAGE: 

K. LITERALS 

Notice, for example, the following coding from the previous example. 

LABEL OPERATION OPERAND 

Coding in this form requires the programmer to create a label for the m portion of an instruction, 
and then, in a separate section of coding, write the label and the desired constant. UTMOST 
language simplifies this process by means of literals. A literal allows the programmer to write 
the desired constant as the m address. This is done by enclosing the desired constant in 
parentheses. Thus the above coding would appear as follows. 

In addition, if the litera I has a plus operation, it is not necessary to w rite the plus. Thus, in the 
UTMOST language the following two lines are identical. 

In a similar fashion, if a literal is used to write the increment and compare word for an IXC instruc­
tion, the operation ICW may be omitted. Thus, the following two lines are identical. 

11 



8 
SECTION: 10AGE' 12 

UNIVAC III UTMDST UP··3853 

When it encounters a literal, the UTMOST assembler will generate the constant described by the 
literal, place it at the end of the programmer's program, and effect the proper address ing. In handl­
ing literals, the assembler does not create duplicate constants. For example, if the following two 
lines appear in a program: 

the assembler generates only one constant of + : 000100 and inserts the address of the storage 
location in which this constant is stored in the m portion of both the LA and the DM instructions. 

An expression that is a literal should not have anything outside the parentheses. 

The following is coding using literals for the example being used in this chapter. 

LABEL i\ OPERATION L'1 OPERAND L'1 COMMENTS ) 1 

1 USE 3 I I I I I 

S TAR T IS L J I FRO I A ° V P I I ....I..-..L. I 

IL X 1 5 , I F I L E P I I I I 1 ....I..-..L. 

IS L J I F W R I A ° V T I I I ] 

IL X 1 4 , I F I LET I I I I 

IL A 8 , I 3 1 5 1 2 ( P GI . 6 ° ° P P PIA ) TTl 

/D M I ( : ° 6 ° ° ° ° I) I I I 

10 S 6 I 5 1 5 1 I I I I 

10 A 6 I 2 1 5 I I I J 
IS A 6 , I K 2 I I I 1\ 

IL A 8 I ( : ° ° ° ° 2 ° ) I _1 I I I I 
10 M I K 2 I I 1 I _1 I I I I , I , , I I I 1 I 
IS A 4 , I K 4 I I I 1\ 

10 M I K 1 I I , I I I I , I , I I I , , I 1/ 

10 A 6 I K 4 I 1 I 1\ 

1 1 1 I 1 lL Ai 8 I ° , 1 5 I I 
P N IT N I I) 

IS A 1 4 , I 2 1 4 I I i 1 I I 1 I I 1 I ,\ , 1 , , 
I I I J I , I S TAR T I I ill 1 1 I 1 I I 1 1 1 _il 

K,1 1 , , I I I + I , , I ,0 I , I , I I , I , , I I I I I , I I I I I , I 1 I 1 1 I I Ii} 

K 2 1+ ° I I I I ~ 
!~ 1 , 1 1 , , , I + 1 1 I I 1 I: ,0,0,°1°,°1°, , 1 1 I , 1 I 1 1 1 , 1 1 , 1 , 1 1 1 1 1 1 1 1 1 1 I I I 1 I I I} 

KI41 I 1 1 1 1 I , I + I 1 1 I I 1 1 ° 1 1 1 , 1 I I 1 I I 1 I I 1 1 I 1 1 I I I I I I 1 I I I 1 1 I 1 I 1 1 I I I II 

~- -- -- - _J - -
L. STUDENT EXERCISE 

Cod e the pre v i 0 U 5 I y 5 tate d 5 t U den t ex ere i 5 e U 5 i n 9 lit era I 5 • 



UP-3853 UNIVAC III UTMOST 8 
SECTION: PAGE: 

M. THE END DIRECTIVE 

Another assembler directive is the END directiveo The END directive is a sentinel that tells the 
assembler that the last line of a program to be assembled has been delivered to the assembler. The 
label of the first line to be executed in the program must be placed in the operand of the END direc­
tive. Th us, the previous codin g should be followed by the line. 

LABEL OPERATION OPERAND ) 
I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I II 

- -- - -- - -
Being a communication between the programmer and the assembler, the END directive, as a con­
sequence, does not cause the generation of any lines of object coding. 

(N ote: A separately assembled subroutine does not have an operand entry in the END 

directive.) 

N. LINE CONTROL 

To the UTMOST assembler a line consists of a lbel, an operation and an operand. This 
assembler line is to be distinguished from the 80 character positions that constitute a line on 
a sheet of UTMOST coding paper. This later type of line will be referred to as a coding line. 

In general, an assembler line begins at the same point as a coding line. The assembler moves 
from left to ri gh talon g the codin g line and picks up characters one by one un til it has isola ted 
a label (or determines that a label is not present for this line), an operation, and as many 
expressions as are called for by the operation to constitute an operand. The next space 
character that the assembler encounters on the coding line constiutes the end of this assembler 
line. The assembler then goes to the first character of the next coding line to begin construction 
of the next as sem bIer line. Thus, the assem bIer will not attend to any characters written on a 
coding line following the space that terminates the assembler line. The programmer may use this 
unused remai nder of a coding line to write any comments he wishes. 

If the assembler reaches the end of a coding line before it finds all the expressions required to 
make up the operand of an assembler line, the assembler gives the remaining expressions a 
value of zero. The programmer can cause the assembler to consider a coding line to be terminated 
at any point along the line he wishes by writing a "period" (. ) followed by space. When the 
assembler encc;>unters thi s "period-space", it considers the coding line complete and goes to the 
next coding line to begin construction of a new assembler line. The only place this device cannot 
be used is in the middle of an alphabetic expression, since in this case the assembler assumes 
that the "period-space" is part of the alphabetic expression. Thus: 

, A. 11 

will not cause termination of an assembler line. 

If the programmer cannot write everything he wants to be considered one assembler line on one 
coding line, he may terminate the first coding line with a "semicolon" (;) and continue writing 

the assembler line on the coding line that follows. Thus, the following two assembler lines are 

identical. 

J 

13 



8 
SECTION: I PAGE, 14 

UNIVAC III UTMDST 

LABEL OPERATION OPERAND 

The only place this continuation mark cannot be used is in the middle of an alphabetic expression. 
Thus: 

UP-3853 

g;:~: : : : ~:~ g: : :;:: : : ~~ : :~ 
will not cause continuation to the next coding line. 

O. OTHER UNfrS 

If a "dollar sign" ( $ ) is written as a unit of an expression in the operand, the UTMOST assembler 
will assign to the unit the binary value equivalent to the address of the storage location in which 
the line including this unit is ultimately stored when the object program is executed. This binary 
value is referred to as the present value of the location counter. 

LABEL OPERATION OPERAND 

1 1 I I 1 1 I I I I 1 I I J I I I I I I I I I I I I I 1\ - --- _ _ - _ _1 

Presuming that at object time the line labelled LaC is stored in storage location 10000, this loca­
tion will c ontain the binary equivalent of a dec imal 10,000 right jus tified in the word and preceded 
by binary zeros. 

P. TWO WORD CONSTANTS 

1 

A two word constant may be generated by placing TWC in the operation and the constant in the operand 
The assembler will generate the value of the operand, right justify this value in two words, fill with 
binary zeros, and assign the address of the first word to the label of the coding line. Both words will 
contain the same sign. For example, the line: 

LABEL OPERATIO~ OPERAND 

Z.EIR.O. I I • ,T, WI CI I °1 1 I I 1 1 I I 1 1 1 I I I I I I I I I I I I I I I I 

,-------------~------------------------~--------~~------------'---------------------------------------~--------~ 



UP-3853 UNIVAC III UTMOST 8 
SECTION: PAGE: 

will generate a two word constant of binary zeros. This constant could be loaded into AR's 8 and 4 
by means of the following instruction. 

A two word constant may be written as a literal. For example, the following is equivalent tv the above 
line of coding. 

A floating point number may be represented in a unit by including a decimal point in the decimal 
value with TWC. The object code value will be in excess 50 floating point format with a ten digit 
mantissa and a two digit characteristic. For example, the line: 

will cause the assembler to generate the following decimal digits: 

51314000000 
-~ 

excess 50 / ~ normalized 
characteristic mantissa 

(In standard floating point notation, this is the value .314 x 10'). These digits are stored in two 
successive storage locations. The label assigned to the source code line is equated to the address 

15 

of the first of the two words. Thus, this floating point number could be loaded into arithmetic registers 
8 and 4 with the following instruction. 

LABEL OPERATION OPERAND ~ ( 

I • • • L. A. I I 1 • 21 , I F I L I 0 1 A I T I + I 1 I I 1 I I I I I l I I I l l I I I I I I I( 

- - j - - - - - - -

A floating decimal number may be written as a literal. For example, the following is equivalent to the 

above line of coding. 



8 
SECTION: I P'GE, 16 

UNIVAC III UTMOST 

Q. MULTIPLE WORD CONSTANTS 

A multiple word constant of a maximum of 78 alphanumeric characters can be generated by 
enclosing the characters in apostrophes. The resulting object code will be left justified 
in a sequence of words and will be filled with binary zeros to an integral number of words. 
For example: 

LABEL OPERATION OPERAND 

M.U.L.T.I.P.L.E • • ' IT.AIX~.C.OIDIE1~1~1~IC1U1S1T.O.M.E.R~IC.O.D.E.' • . . . . 
- - - ,-----------~~-----------------'~ -

The label of a multiple word constant is associated with the zero word of the series of words 
generated in object code. 

A multiple word constant cannot be written as a literal. 

R. OTHER OPERATORS 

The arithmetic difference operator ( - ) may be used to subtract one unit from another. For 
examp Ie, the line: 

would generate a binary 5556 right justified in a binary zero filled word. 

U P-3853 



UP-3853 UNIVAC III UTMDST 8 
SECTION: 

The arithmetic product operator ( * ) may be used to multiply one unit by another. For example, 
the line: 

will generate a binary 151272 right justified in a binary zero filled word. 

The arithmetic quotient operator ( / ) may be used to divide one unit by another. The resulting 
unit will be the quotient of the division. The remainder is dropped. For example, the line: 

will generate a binary 16 right justified in a binary zero filled word. 

The covered quotient operator ( / / ) may be used to divide one unit by another. The covered 
quotient is defined as follows. 

A / / B = (A + B - 1) / B 

The res ult is as follows. 

1. If arithmetic division produces no remainder, the arithmetic quotient and the covered 
quotient are the same. 

2. If arithmetic division produces a remainder, the covered quotient is equal to the arithmetic 
quotient plus one. 

For example, the line: 

will generate a binary 17 right justified in a binary zero filled word. 

The logical sum operator ( + + ) may be used to logically add one unit to another. For example, 
given the line: 

17 
PAGE: 



8 
SECTION: I PA"., 18 

The code for ' A ' is 

The code for' 3' is 

Logical sum 

010100 

000110 

010110 

UNIVAC III UTMDST 

Consequen tly, a binary 22 will be righ t justified in a binary zero filled word. 

The logical difference operator (- -) may be used to logically subtract one unit from another. 
For example, given the line: 

UP-3853 

~:.:.~:~:~~ 
The code for' V ' is 

The code for' T ' is 

Logical difference 

111000 

110110 

001110 

Thus, a binary 14 will be right justified in a binary zero filled word. 

The logical product operator ( * * ) may be used to logically multiply one unit by another. For 
example, given the line: 

The code for' V ' is 

The code for ' T ' is 

Logical product 

111000 

110110 

110000 

Thus, a binary 48 will be right justified in a binary zero filled word. 

The positive exponent operator ( * + ) may be used to generate a two word floating point 
constant in excess 50 notation. A * + B is equivalent to A * lOB. For example, the line: 

LABEL OPERATION OPERAND 

I I I I I I I I I I I 1 11 1 I I I I I I 

J 

- - - ,---------,----------'-----------------~------~------
will generate the two word constant 671000000000. 

A * - B is equivalent to A * 10_B 0 For example, the line: 



UP-3853 UNIVAC III UTMDST 8 
SECTION: 

will generate the two word constant 491500000000. 

The equals operator ( = ), the greater than operator ( > ), or the less than operator ( < ) may be 
used to compare two units. If the condition specified by the operator holds between the units, 
the result is a binary one. Otherwise, the result is a binary zero. For example, given the line: 

PAGE: 

If the binary value assigned to the label AMOUNT is equal to the binary equivalent of the decimal 
number 7083, a binary one will be stored in the word generated for this line. Otherwise, a binary 
zero will be stored. 

The mode of each unit in an expression can be different. One can be alphabetic, another decimal, 
another binary, and so on. As the assembler evaluates each unit a determination of the mode of the 
result is made. The determination depends on the operator and on the modes of the units. For pur­
poses of making this determination, the operators are grouped as follows. 

GROUP OPERATORS 

A = > < 

B ++ -- ** 
C + - * I II 

D *+ *-

The following chart shows the mode resulting from the combination of two units with an operator. 

MODE OF OPERATOR MO DE 0 F MODE OF 

F:IRST UN IT GROUP SECOND UN IT R E SU L T 

Any A Any Binary 

Any B Any Binary 

Binary C Binary Binary 

Binary C BCD XS-3' Binary 

BCD XS-3 C Binary Binary 

BCD XS-3 C BCD XS-3 BCD XS-3 

Any C Floating Floating 

Floating C Any F loa ting 

Any D Any Floating 

19 



8 
SECTION: 

I PAGE, 20 
UNIVAC III UTMOST 

So far in this chapter, all examples of expressions made up of units connected by operators have 
consisted of two units connected by one operatofo However, there is no limit on the number of 
units and operators that may be combined to form an expressiono For example, the following is a 
legitimate expression: 

9 - 2 * 3 

With an expression involving more than one operator, the question of priority of operators ariseso 
For example, in the above illustration, is the expression nine minus the product of two multiplied 
by three, or is it three multiplied by the difference of two subtracted from nine? To assist in re­
moving this ambiguity, the UTM OST assembler assigns priorities to the operators as folLows 0 

PRIORITY OPERATORS 

1 *+ * 

2 * / // 

3 + 

4 ** 

5 ++ 

6 > < 

The priorities are listed above from highest to lowest. Thus: 

9 - 2 * 3 

is nine minus the product of two multiplied by threeo 

The above list indicates that several operators have the same priorityo For example" *" , 
" / " and" / / " all have priority two. This fact raises the question exemplified as follows. 
What is the following expression? 

4*5//2 

Is it four multiplied by the covered quotient of five divided by two, or is it the covered quotient 
of two divided into the product of four multiplied by five? To remove this ambiguity, the UTMOST 
assem bIer interprets operators having the same priority from left to right. Thus: 

4*5//2 

is the covered quotient of two divided into the product of four multiplied by fiveo 

The above rules of priority can be overridden by use of parenthesization. For example, if the 
product of four multiplied by the covered quotient of five divided by two is desired, it may be 
written as follows: 

4*(5//2) 

UP-3853 



UP-3853 UNIVAC III UTMOST 8 21 
SECTION: PAGE: 

S. OTHER ASSEMBLER DIRECTIVES 

1 

The assembler directive EQU in the operation field of a line causes the assembler to equate the 
label in the label field of this line to the value of the expression in the operand field. All suc­
ceeding lines of coding with this label in the operand field will have this value substituted for the 
label. For example, given the following: 

LABEL OPERATION OPERAND 

Then the following two columns of instructions are equivalent. 

The EQU directive is a communication between the programmer and the assembler. As a consequence, 
it will not cause the generation of any lines of coding. 

The EQU directive must appear prior to any use of the label being equated. Notice especially the 
use of a label as truly symbolic (i.e. it need not be related to a line of coding). 

The assembler directive RES causes the assembler to set aside a number of consecutive storage 
locations equal to the value of the operand. They are set aside at the point at which the RES directive 
appears in the coding. For example, the line: 

LABEL OPERATION OPERAND 

PIO I 0 1 L I AI It l 1 I R 1 E I S ~ 1 I 1 1 0 1 8 LO .~ I .~ I It 11 I I 1 I I I 1 I I I I I 1 I I t 

- - - ---- -



8 
SEC TION: 

1 

I PAGE.

22 UNIVAC III UTMOST 

sets aside 1080 consecutive storage locations which can be addressed as POOLA, POOLA + 1, 

POOLA + 2, and so on, through POOLA + 1079. 

UP-3853 

The assembler directive FORM may be used to define a word format, label the format, and allow the 
format to be thereafter referenced by the label used as an operation. This directive must be given a 
label and must have an operand consisting of a series of expressions whose sum is 25. A single ex­
pression of 25 is not permissable. For example: 

The line labelled TAB is a positive constant with the bit code for 'W' in bit positions 19-24, binary 
zeros in bit positions 16-18, and the address assigned to the label TYPE in bit positions 1-15. The 
FORM directive will not cause the generation of any lines of coding. 

The assembler directive FLO may be used to define limits of a field, label this field definition, 
and thereafter use this label to refer to this field definition. This directive must be given a label. 
The operand consists of two expressions. The first specifies the leftmost bit of the field, the 
second the rightmost bit. After a FLO directive has been used to define a field, any succeeding 
line of coding may have an m portion consisting of the label of the FLO directive followed in 
parentheses by the designation of the word or words from which the field is to be selected. For 
example: 

LABEL /). OPERATION /). OPERAND /). ( , 
L,MIT, I IF I L,D, I I 1 1 2 1' 1 I I I I I I I I I I I I I I I I I I I I I I I I I I 

I • I ILIA. 18 , ,L M T , ( V AIL UIE I) I I I • 1 I I • I • I I \ - - ~ --' -- - -- - -
is equivalent to: 

The above line of coding could also be written as follows: 



UP-3853 UNIVAC III UTMOST 8 
SEC TION: PAGE: 

The assembler directive DO may be used to~ generate a line of coding a variable number of times. 
The format of the DO directive is as follows. 

LABEL OPERATION OPERAND 

The expression e specifies how many times the line is to be generated. The expression must be 
followed by a "space-comma". 

The line has a normal form. That is, if it is to be labelled, the label must appear immediately 
after the comma. If not, the comma must be followed by at least one space. For example: 

LABEL OPERATION OPERAND 

is equivalent to 

Notice that both the DO directive and the line may have a label. The assembler treats the label 
of the line as the normal label. It treats the label of the DO directive in a special fashion by 
equating it to the number of times the line has been generated. For example: 

LABEL OPERATION OPERAND } 
, 

I I I I I I I I I I I I I I I' 

~---..--------------, r----________ ~~r--------- ) 

23 



8 
SECTION: I PAGE, 24 

UNIVAC III UTMOST 

is equivalent to: 

The assembler directive NACL may be used to substitute a different mnemonic for the standard 
UTMOST mnemonic used in the operation field of an instruction. The standard mnemonic is written 
in the operand of the NACL directive. The mnemonic to be substituted is written in the label. 
After a NACL directive has been submitted, all following instructions must use the new mnemonic 
at least until the occurence of another NACL directive redefining the mnemonic. For example: 

LABEL OPERATION OPERAND 

is equivalent to: 

T. PROCEDURES 

A part of a program may be written separately as a procedure rather than as an integral piece 
of the overall program. The beginning of a procedure is marked off by a PROC assembler 
directive. The end of a procedure is indicated by an END directive. However, unlike an END 
directive at the end of a program, the END directive at the end of a procedure has no entry in 
the operand. 

The PROC directive must have a label. The operand of a PROC directive may contain two 
expressions. The first can be used to specify the maximum number of "lists" associated 
with the procedure. (What a "list" is will be defined later in this section.) However, this 
operand is optional. The second expression of lines generated by the PROC, if the PROC 
generates a fixed number of lines. This expression is also optional. 

UP-3853 



UP-3853 

1 

UNIVAC III UTMOST 8 
SECTION: PAGE: 

A procedure is not assembled where it is written in a program. Instead, it is assem bled when it 
is "referenced H in the program. A procedure may be referenced by writing its label in the 

operation field of a line. A procedure must appear in the source program before any reference to it. 
For example: 

LABEL OPERATION OPERAND :\ 

is equivalent to: 

Different versions of a process can be written in one procedure. The versions are distinguished by 
beginning them with a NAME assembler directive. The NAME directive must have a label and may 
have any entry desired in the operand. The version of the procedure desired is referenced by 
writing the label of the NAME directive in the operation of a line. Only that part of the procedure 
coding which appears below the NAME directive referenced is assembled at the reference point. 
For example, given the following procedure: 

25 



8 UNIVAC III UTMDST UP-3853 
SECTION: 

LABEL OPERATION OPERAND 

The reference: 

LABEL OPERATION OPERAND 

•••• E,I,G.H,T, I 1 1 ••• 1 1 I. 1 ••• I I • 1 • 1 1 1 1 I 1 I I) 

--------~------------------------------------------------~-
is equivalent to: 

While the reference: 

is equivalent to: 



UP-3853 UNIVAC III UTMDST 8 
SECTION: PAGE: 

The assem bIer directive GO may be used with a procedure to direct the assem bIer to transfer 
control in the assembly of a procedure. The operand of a GO directive must be the label of a 
NAME directive. For example, given the following procedure: 

LABEL OPERATION OPERAND 

The reference: 

is equivalent to: 

While the reference: 

;\ 

27 



8 
SEC TION: I PAGE, 28 

UNIVAC III UTMOST UP-3853 

is equivalent to: 

I 
LABEL /). OPERATION /). OPERAND /). 

1 I 

I I •• I •• , I 1 ,L,A II I ,1.5 1 '1 3 1'1 8
11 I , I 1 • 1 I I 1 I I I , I • I I 

•••• I • 1 S.A 1 1 1 5 ,1 3 1' 9 1 1 1 I 1 • 1 •• I • I 1 \ 

.....,-.. ~ - J 

A procedure may make use of variables, which are submitted to a procedure at the time it is 
referenced. The variables are submitted by means of lists, which make up the operand of the 
line referencing the procedure. A list consists of a series of expressions separated by commas. 
More than one list may follow a procedure reference. Lists are separated by spaces. For 
example, the following is a reference to the NAME directive labelled IT of the procedure 

labelled MOVE. (The MOVE procedure is shown in part S of this section.) 

This procedure reference is followed by four lists, The first contains one expression (IN), as 
does the second (OUT) and third (SO). The fourth list contains two expressions (14, 13) .. In 
this case, the variables being submitted are as follows. 

1. The label of the zero word of the area from which words are to be moved (IN). 

2. Th,e label of the zero word of the area into which words are to be moved (OUT). 

3. The number of words to be moved (SO). 

4. The number of the index register to be used to address the" from" area (14). 

5. The number of the index register to be used to address the "into" area (13). 

Within the procedure coding, variables are referenced by means of the following expressions. 

label (s, e) 

Where "label" is the procedure label, "s" is the number of the list desired, and He" is the 
number of the desired expression within the list. For example, in the following line: 

LABEL OPERATION OPERAND 
\ 

• • • 1 I L~ X. I • 1 • M, 0 VEl ( .4.1 ' ) 1 '. ( 1M. O. VI E I ( I 1. I 11) I ) I I I 
I 

I I I I • I I I 

v---------~- ~ -----------,~--------------------~, - -- - - J -



UP-3853 UNIVAC III UTMOST 8 
SECTION: PAGE: 

MOVE (4, 1) references the first expression in the fourth list of the reference to the MOVE 
procedure. MOVE (1, 1) references the first expression in the first list. Thus, if the reference to 
MOVE procedure is: 

LABEL OPERATION OPERAND 

the line in the procedure becomes: 

To reference, within the procedure, the number of lists supplied by the reference to the 
procedure, the label of the procedure is used, For example, in the following line: 

the num ber of lists supplied by the reference to the procedure is substituted for MOVE. If the 
reference is: 

four is substituted for MOVE. If the reference is: 

three is substituted for MOVE. 

To reference, within a procedure, the number of expressions in a list, the following expression 
is used: 

label (s) 

where "label" is the label of the procedure and "s" is the number of the list desired. For, 
example, in the following line: 

29 



8 
SECTION: 

1 

UNIVAC III UTMOST 

the number of expressions supplied in list one of the reference to the procedure is substituted 
for MOVE (1). Thus, if the reference is: 

one is substituted for MOVE(l). If the reference is: 

two is substituted for MOVE (1). 

To reference, within a procedure, the operand of the NAME directive whose label was used to 
reference the procedure, the label of the procedure followed by (0, 0) is used. For example, the 
first three lines of the MOVE procedure are: 

LABEL ~ OPERATION ~ OPERAND ~ 

•• , , ,M.O, ViE, I .P,R,O, C1 , • I . . . . , , I I I I I I I I I • I I I 
I T I .N A M E I 0 . 1 • I • I I • I ••• . , I ~ 1 I • I 

S T 1 
I 

N AM E •• I 1 
I I , I I I i i 1 I I •• . . . • I , 1 I • • I •• -V-- - ~ -- - ---

In the following line: 

1. If the MOVE procedure is referenced by the label IT, zero is substituted for MOVE (0, 0). 

2. If referenced by tpe label STl, one is substituted for MOVE (0, 0). 

An expression in a list may be proceded by an asterisk (*). For example, suppose the following 
FORM directive, which lays out the "form" of an instruction: 

UP-3853 

\ 
I 

I 

) . , 
) 

I 

.-l 



UP-3853 UNIVAC III UTMOST 8 
SEC TIQN: PAGE: 

1 

Also suppose a procedure labeled FAB containing a NAME directive labeled LOADA whose 
purpose it is to fabricate an LA instruction. This procedure expects one list consisting of the 
following three expressions to be specified in the order listed. 

1. The arithmetic register(s) to be specified. 

2. The label to appear in the m portion of the instruction. If indirect addressing is desired, 
the label is to be preceded by an asterisk. 

3. The index register to be specified. 

Thus, a call on this procedure by means of the NAME directive might appear as follows: 

LABEL OPERATION OPERAND 

I I I I ,L,O,A,DiAI I I , I , ,8 I * I D, A, T IA ,, 3 I Iii I L I I I I I I I I 

V"--_ - - ---- - - -

-

In the procedure, the reference FAB (1, 2) will supply only the label DATA. The preceding 
asterisk is referenced as follows: F AB (1, * 2). If there is an asterisk preceding expression 
2, a binary one will be generated. If not, a binary zero is generated. The procedure FAB 
might appear as follows. 

I T - ~ -------------T--- I -

~ 

I 

-

-
-L--L..L~"____'___BL_, -'---'-I-',___'__~_'_____'__L,P_'_'_R,'__°..LICJ..'__'__L_..L_'____l___'__, L--'-_-L_L_'____l_l-'_-'-_-'- ..L--L.LL-L_L--'- -'----'---'-- 1 I I I I I I I I I J_'_~_-'-----'__-'---L_-'-_L___L __ 

1---'----'----'___'__..LL---'-O~"-'-D-'-"--1·I___'___'__'____'__L_L__'____lN _" L-Ml IIE---"--,'---'--..L--'--'--L-~2 I I I I I I I I I I I I I I -"---'--'- I I I I I I I I I I I 

( 
) 

.\ 
.J 

I I N $1 T F " BI ( 1 , * 2 ) , F" BI ( 1 , 3) , Fit. B ( 1 0 , 0 ) , F ~( 11 I'll I) I' I F~~.L_:2} 

~~---,--~~~_--'----'I---'--~--'--~--'----lE_~N~D-'-I~~~~-'--'--~~_~I~---'--~_''__~..LI-'-I_'_I___'__-'--'--'_~'~' I I I 1" I, ,,1 I I~ 

The above call would result in the generation of object code code equivalent to the following line: 

~~~: : :~~~: : : : :: :: : : : : ~: : : l 
If a procedure may be referenced with a variable number of lists, as is the case with the
MOVE procedure, then the PROC directive for the procedure has no entry in the operand. As
mentioned previously, the operand of a PROC directive may have no entry even if the number of
lists for the procedure is not variable.

31

8
SEC TI ON: I PAGE, 32

UNIVAC III UTMOST

U. EXAMPLE

The MOVE procedure has as its function the movement of a specified number of words from one
storage area to another. It may be referenced by anyone of the four following coding lines:

Lab e 1

I SIT I l-.l~-I!----..l,_L-.J!_a-.J,_b~!Le_~!LI_!L-..L' -LI -LI L----L! _a LI b-LI _eLI _I LI -L.--L--..J.-I _#..1..1 --..J.-1_°..1..I_f ...LI ---'-1_W--'-I_O---""I_'---""I_d_ILS~IL--'IL--'I'--L-L-..L-..L­
~_L-L-~L-ILI~ILT-L-~_L~~~~_~~~-LI0-LI '-L!i-LI_'~! -L-L~-LI_#~I~I_o~lf~I_LWlo!, ,d IS !~,~~~~~

IS IT 11 I I I L_~~~ I' ! I .L-L IO! ' I i I' I ...L..1--1---L,_#-'-,----"-I_o-'-,_f-'-I----'-I_W_--',_O-',_'-','-d-,-I s-LI -'--'-_L.-'--'--L~--'-

If the MOVE procedure is referenced with the name IT, then iterative coding is used to make the
move. If referenced with ST1, straight line coding is used. An exception to this rule occurs when
iterative coding is called for and the number of words to be moved is less than or equal to 20,
in which case straight line coding is supplied.

The first list specifies the address of the zero word of the area from which the words are to be
moved. This specification can be made either as a label or as the number of an index register
containing the address.

The second list specifies the address of the zero word of the area into which the words are to be
moved. This specification, also, can be made as a label or as an index register number.

The third list specifies the number of words to be moved. If iterative coding is called for, and if
the area locations are specified in label form, then a fourth list consisting of two expressions
is necessary. The first expression specifies the number of the index register to be used to
address the "from" area. The second specifies the number of the index register to be used to
address the "into" area.

The coding for the MOVE procedure follows. An explanation of this coding follows the coding.

UP·,3853

UP-3853 UNIVAC III UTMDST 8 33
SEC TION: PAGE:

\
LABEL ,,\ OPERATION

1
t1 OPERAND /\ COMMENTS

M 0 V E PIR 0 C I I I I I

I T N IA ME 0 I I I I I

S T 1 1'1 IA ME 1 I I I I I

M PIR 0 C I I I I I

LIA 1 51. 4*AOO- 1 • MIO V E (1 • 2) I I I(

S IA 1 51. 4*AOO-1 • MIO V E (2 • 2) I I 1\

E IN 0 1 I I I I

L P1R 0 C I I 1 I I

L IA L (11 • 1) • MOVE(13. 1) - 1 • MOVIE (1 2) I I

S IA L (11 • 1) • MOVE(1 3 • 1) - 1 • M 0 VI E (2 • 2) I II

EIN 0 I I 1 I I

K P IR 0 C I I , I I
LIA 151·MOVE (1 1) I + (4 * CO U 1'1 T -11) I 1

S IA 151·MOVE (2 1)1 + (4 * C 0 U 1'1 T -,1) I II

EIN 0 I I 1 I I

G P jR 0 C I I I I I

LIA G (11 • 1) • M 0 V E (11 • 1) +MOVE(1 3 • 1) - 1 I I

S IA G (11 • 1) MOVE(1 2 • 1) +MOVE(1 3 • 1) - 1 , I

EIN 0 I I I] I I I I , , I

J 1 PIR 0 C I J I I 1\

0 10 M O,V E (3 1) * * 3 1> 0 G (3*I*MOVE (3 • 1) I) * 5 - 4 II

C 0 U1N T 01 0 M 0IV E (3 1) I 4 I' K, I I I
EIN 0 I I , I , ,

H P IR 0 C I I I I I

01 0 M 0IV E (3 • 1) * * 31> 0 L (3*I*MOVE(3 • 1)1) * 5 - 4 I.

ADD 01 0 M 0IV E (3 • 1) I 4 I' M I , 1\

EIN 0 I I 1 I I

F PIR 0 C I 1 1 I I

LIX M 0lV E (4 1) · (MIO V E (1 1)) I 1 I

LIX MOl V E (4 • 2) • (MIO V E (2 1)) 1 I I

LIA 1 51 3 MO V E (4 11) I I I

S IA 1 51. 3 .MOVE(4.12) I I I

II XC M 0IV E (4 1) • ((14 * (MOVE(3 .1 1) I 4)) + MOVIE (1 • 1) • 4) II

IIX M 0IV E (4 • 2) • (4 I) I I I

JIL $ -1 4 I I I I

01 0 M 0IV E (3 • 1) * * 31> 0 G (3 *I*MOVE(3 • 1) I) * 5 - 4 II

EIN 0 I I I I 1\

E PIR 0 C I I I I /
01 0 M 0IV E (3 • 1) * * 3e 0 L (3 * I * M,O V E (3 • 1)1), * 5, - 4,

S I X M 0IV E (1 2) • T ElM P I I 1\

LIA 8.ITEMP I I I d
BIA 8 • I (4 * (M 0 V E (3 1, 1) I 4 » J I d
B I R R 8 .11 6 I I I I'

]] , °IR ii 8]. I(4]) I I I I I , ,] I I , I , , , I

S IA 8 .IT EMP I I I I

J I $ +1 2 I I I 1

T E M P +1 0 I] 1] I I l J I I , I I I d
LIA 1 51. 3 • MOVE (1 '12) I I ,

S 1 A. 1 51. 3 • MOVE (2 .12) 1 I I

I I X,C M 0IV E (1 • 2) • T ElM P I I I

....... - - - - _---1 - -
(Continued on next page)

8
SECTION: I PAGE, 34

UNIVAC III UTMDST

(MOVE PROC Continued)

o

B

A

The first three lines in the above coding define the MOVE procedure. There then follows a
number of procedures to determine what coding is to be generated. The last two DO directives
in the MOVE procedure determine whether STraight line or ITerative coding is called for. If
ITerative coding is called for, procedure A is referenced. If STraight line, procedure B.

Procedure A determines whether the" from" and" into" areas are specified in terms of labels
or index registers. If index registers, procedure C 1 is referenced. If labels procedure D.

UP-3853

UP-3853 UNIVAC III UTMOST 8
SECTION:

Procedure B makes the same determination as procedure A. If the areas are specified in terms
of index registers, procedure H is referenced. If in terms of labels, procedure Jl.

Procedure Cl determines whether the number of words to be moved is more than 20. If so,
procedure E is referenced. If not, procedure H.

PAGE:

Procedure D makes the same determination as procedure C 1. If the number of words is more than
20, procedure F is referenced. If not, procedure Jl is referenced.

Procedure E contains the coding provided if iterative coding is called for, if more than 20
words are to be moved, and if the areas are specified in terms of index registers. The DO
directive at the beginning of procedure E determines whether the number of words to be moved
is a multiple of four. If,not, procedure L is referenced to provide coding for the movement of
the remaining words not a multiple of four.

Procedure F contains the coding provided if iterative coding is called for, if more than 20
words are to be moved, and if the areas are specified in terms of labels. The DO directive at
the end of procedures F determines whether the number of words to be moved is a multiple of
four. If not, procedure G is referenced to provide coding for the movement of the remaining
words.

Procedure H contains two DO directives. The first determines whether the number of words to
be moved is a multiple of four. If not, procedure L is referenced. The second DO directive
references procedure M.

Procedure Jl also contains two DO directives. The first determines whether the number of
words to be moved is a multiple of four. If not, procedure G is referenced. The second DO
directive references procedure K.

Procedure G contains the coding to move nonmultiples of four words when the areas are
specified in term s of labels.

Procedure K contains the coding provided to move the multiples of four words when straight
line coding is called for and the areas are specified in terms of labels.

Procedure L contains the coding to move nonmultiples of four words when the areas are
specified in terms of index registers.

Procedure M contains the coding provided to move the multiples of four words when straight
line coding is called for and the areas are specified in terms of index registers.

The above discussion is summarized in the following table.

35

8 UNIVAC III UTMOST UP··3853
SEC TION:

ITERATIVE CODING (A) STRAIGHT LINE CODING (8)

Areas specified in Areas specified In Areas specified in Areas specified in

terms of Index term s of terms of Index terms of

Registers (Cl) Labels (D) R egi sters (H) Labels (Jl)

More than 20 20 or less More than 20 20 or less Nonmultiples of 4 Nonmultiples of 4

words to be words to be words to be words to be moved by L; multi- moved by G; multi-

moved. moved moved. moved. pies moved by M pies moved by K
(H) (J 1)

Nonmultiples (See column Nonmultiples (See column

of 4 moved 5.) of 4 moved 6.)
by L; multi- by G; multi-

ples moved pies moved

by E. by F.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

For example, suppose the MOVE procedure is referenced as follows.

,
LABEL ~ OPERATION ~ OPERAND ~) 1

, , , , II,T, I , I , ,I N , , ,OIU, T, , , , , ,5,0 I , , , ,1,4" ,1 ,3, I , --- - ".,.....,-- - ~ -- - - -
The coding supplied would be as follows

UP-3853 UNIVAC III UTMDST 8 37
SECTION: PAGE:

If the MOVE procedure is referenced as follows:

LABEL OPERATION OPERAND

. . . . , I I I I lilT • •• I •• 0" 1 4, , I I • \

~,-----------------------
- -- ------________ ------~l

the coding supplied would be as follows.

LABEL OPERATION OPERAND

If referenced as follows:

LABEL OPERATION OPERAND

SEC TION:

8 I PAOE,38
UP-3853 UNIVAC III UTMOST

the coding would be as follows:

LABEL OPERATION OPERAND

If referenced as follows:

LABEL OPERATION OPERAND

I 0. ' • 1 3 • I I • I I

-~- - - - --
the coding would be as follows.

LABEL OPERATION OPERAND

UP-3853 UNIVAC III UTMOST 8 39
SECTION: PAGE:

Notice that a procedure may contain labels. For example, the MOVE procedure uses the labels
COUNT, TEMP and ADD. These labels belong to the procedure, the UTMOST assembler
reco gnizes them as such, and the same labels can be used in a program referencing this
procedure wi thout fear of confusion.

The assembler makes a clear distinction between labels appearing in a procedure and references
in that procedure to these labels as opposed to labels appearing in a program and references in
this program to these latter labels.

The MOVE procedure consists of many nested PROCs which the MOVE PROC calls on. The
only lines of coding in the MOVE PROC itself are the two DO lines before the last END line.

M 0 V E

M

L

A

PRO C

· · · · • • · · ·

DO

DO

EN 0--""

The first evaluation of a ref erence to the MOVE PROC occurs at the first DO line of the
MOVE PROC.

UP-3853 UNIVAC III UTMOST 9
SECTION: PA GE:

9. TAPE FILE HANDLING

As its title indicates, this section is primarily concerned with programmer handling of magnetic
tape input and output to and from the Processor. However, before discussing this subject, it is
fruitful to spend some time on input and output from and to the console. This subject, in turn,

depends on an unders tandin g of "overflow" an d "invalid operation", wh ich w ill be di scussed
first in this section.

A. OVERFLOW

Addition or subtraction resulting in a carry beyond the capacity of the arithmetic register(s)
specified in the addition or subtraction instruction results in a condition called overflow. In
such a situation, the addition or subtraction is completed, and the correct sum or difference,
less the carry causing the overflow, is stored in the arithmetic register(s) specified. It may

be noted that when overflow occurs during addition or subtraction the carry that is lost is
always a one.

Overflow can also occur during division. This will happen when the absolute value of the
operand specified by m' is less than or equal to the absolute value of the contents of arith­
metic register 8. For example, the following will cause overflow:

LABEL /\ OPERATION

(AR8)i

(A R4)i

(DIVISOR)i

OPERAND

008762

900000

008750

Notice that the absolute values concerned in the determination of whether overflow will Occur
are values as viewed by the Processor. The position of program decimal points has no bearing
here.

.1\

9
SECTION: I PAGE,

2 UNIVAC III UTMDST UP-3853

If overflow occurs during the execution of an instruction, at the end of the instruction execu-
tion cycle (when the next instruction to be executed is normally accessed) there instead occurs
something called interrupt. Interrupt is a hardware feature of the Processor. It causes the contents

of the control counter (the address of the instruction that would normally be executed next) to be
stored in a given storage location, and also causes a fixed address to be stored in the control
counter. Thus, interrupt makes a record of where the program being executed was "interrupted",
and forces control to go to the instruction stored in a given storage location. In the case of an
overflow interrupt, the contents of the control counter are stored in storage location 18, and con­
trol goes to the instruction stored in location 19. An interrupt that performs in this way is called
a contingency interrupt, to distinguish it from other interrupts (to be described later in this section)
which cause control to go to the instruction stored in some other given storage location.

Storage locations 18 and 19 are in low order s tore, where the executive routine is stored. Thus,
occurrence of interrupt causes control to be passed to the executive routine. Unless the programmer
has planned on this occurrence (in which case he can notify the executive routine of this fact in a
way to be described later in this section), the executive routine will type out on the console type­
writer a message of th-e form:

CONTING .f\.mmm mmf\.OOf\.OOf\.OOOOb

where mmm mm is the address of the s tora ge location in which is s to red the instruction wh ose
execution caused the overflow, b is an indicator.

In the case of overflow, the indica tor is a 1.

B. INVALID OPERATION

Only certain binary configurations in the operator portion of an instruction word are recognized
by the Processor as instructions. If the Processor accesses a word as an instruction, where the
word has in the operator portion a binary configuration not recognized as an instruction, a condi­
tion called invalid operation occurs. For example, the following word would constitute an invalid
operation if it were accessed as an instruction.

+ 0740000

An invalid operation causes a contingency interrupt. If- the invalid operation is unplanned by the
programmer, the executive routine will take the same action as it does with respect to unplanned
overflow. In this case the indicator is a 2.

UP-3853 UNIVAC III UTMDST 9
SEC TION:

C. CONSOLE TYPEOUTS

A program can, via the executive routine, typeout messages on the console typewriter. This
typewriter types characters at a speed of ten characters per second. It is capable of printing

PAGE:

51 different characters and has its format controllable by a carriage return, a tab, and a form
feed. Printing is done on a sprocket-fed continuous form at a horizontal spacing of ten characters
to the inch and a vertical spacing of six lines to the inch. The typewriter is capable of pro­
ducing an original and at least five copies. The maximum number of characters that can be
printed on one line is 72. The attempt to print more characters than the maximum on one line
causes character pileup at the end of the line. The 51 printable characters and the format
controls, together with their excess-three codes, are shown in Figure 9-1.

ZONE

00 01 10 11

0000 ;\ + 5 $

0001) * (,

comma
0010 - $,

carriage be II
,

0011 0 return ring apostrophe

0100 1 A J /

0101 2 B K S

0110 3 C L T

0111 4 0 M U
NUMERIC

1000 5 E N V

1001 6 F 0 W

1010 7 G P X

1011 8 H Q y

1100 9 I R Z

1101 --::-:- 2

1110 - tab form
feed

1111 > 0 4 U

Figure 9-7. Console Typewriter Codes

3

9
SEC TION:

R

UNIVAC III UTMOST

To type a message on the console, the programmer places the message to be typed in a series
of consecutive words. The first of these wo rds should have a label. Follow ing the last character
of the message should be a carriage return character. This carriage return is recognized by the
executive routine as marking the end of the message. It also is considered part of the message.

To effect a typeout of this message the programmer should load arithmetic register one with an
indirect address control word with an I portion consisting of the label of the first word of the
message and a specification of index register one in the index register portion. The programmer
should then force an overflow or invalid operation. If the word immediately following the instruc­
tion that forces overflow or an invalid operation contains + 037777, the executive routine will
recognize the resulting contingency interrupt as a request for a console typeout.

If after receiving this request, the executive routine determines that the typewriter is already
busy, control is returned to the line following the line containing the + 037777 without any
attempt to effect the typeout. This busy return line generally contains a jump back to reinitiate
the typeout request. Thus, the program remains in a loop until the typewriter becomes free and
the executive routine can initiate the typeout. At this point the executive routine returns con­
trol to the line following the busy return line. As a result, a request for a typeout generally
takes the following form, where MESSAGE is the label of the first word of the message.

LABEL OPERATION OPERAND

When the request has been serviced by the executive routine, control returns to the instruction
in the line labelled RETURN.

The definition of some instructions that are useful in fabricating typewriter messages are as
follows:

UP-3853

UP-3853 UNIVAC III UTMOST 9
SECTION: PA GE:

LOAD AR CONVERTING TO DECIMAL - LAD

The operand specified by m' is always three words long. The information stored in these three words
are presumed to be in six bit alphanumeric code. These three words are transferred to the arithmetic
unit. During the transfer the zone bits of the characters are stripped, and the rema ining numeric
portions are compressed into two words. These two words are stored in the two arithmetic registers
specified. The sign bits of these registers will contain the sign of the least significant word of the
three word operand. No multiword operands other than that specified above are permissible. Field
selection is not permissible. Indirect addressing may be used.

Example:

LABEL OPERATION OPERAND

(AR8)i = + 012345 (AR8)f = + 123412

(AR4)i = + 678901 (AR4)f = + 345656

(DATA-2)i = 1234 (DATA-2)f = 1234

(DATA-1)i = ABeD (DATA-1)f = ABeD

(DATA)i = + 56EF (DATA)i = + 56EF

STORE AR CONVERTING TO ALPHANUMERIC - SAA

The arithmetic register operand is always two words long, the operand specified by m I three words
long. The two words constituting the arithmetic register operand are presumed to be in four bit
numeric code. These two words are transferred to the store. During the transfer the words are
expanded from two to three by having 00 zone portions inserted before the numeric portion of each
decimal number. The sign bits of the resulting three words will contain the sign of the least signi­
ficant word of the arithmetic register operand. No multiword operands other than that specified are
permissible. Field selection is not permissible. Indirect addressing may be used.

Example:

LABEL OPERATION OPERAND .\

(AR8)i = 123412 (AR8)f = 123412

(AR4)i = + 345656 (AR4)f = + 345656

(DA TA-2)i = 123456 (DAT A-2)f = + 1234

(DATA-1)i = + ABeD (DAT A-1)f = + 1234

(DATA)i = WXYZ (DATA)f = + 5656

5

9
SECTION:

UNIVAC III UTMOST

LOAD AR EDITED - LAE

Load the operand specified by m' in to the arithmetic register(s) specified. The operand from the
store is presumed to be in six bit alphanumeric code. As the operand is transferred, it is scanned
from most to least significant character. As long as only the following characters:

CHARACTER CODE

Space (/\) 00 0000

Semicolon (;) 00 0001

Dash (-) 00 0010

Zero (0) 00 0011

Comma (,) 11 0010

are encountered in the scan, each character is replaced by a s pace (~). As soon as some character
other than the ones listed above is encountered in the scan, this operation of zero suppression

ceases, and the rest of the operand is transferred to the arithmetic register(s) unaltered. Signs are
not affected in this transfer. Mul tiw ord ope rands may be used with this instruction. However, unlike
the addressin g of m ultiword operands with all other instructions, the LA E ins truction a ddres ses
multiword operands by specifying in m' the address of the most significant word of the multiword
operand. Field selection is not permis sab Ie with th is ins truction. Indirect address in g may be used.

Example:

LABEL OPERATION c\ OPERAND

(AR8)i = 012345 (AR8)f f= + ~~~L~

(AR4)i = 678901 (AR4)f = + ~~12

(OAT A-1)i = + ABCD (DATA-1)f = + ABCD

(OAT A)i = + A;-O (DA TA)f = + ~;-O

(DATA+1)i + ,012 (DA TA+ l)f = + ,012

UP-3853

UP-3853

1

UNIVAC III UTMOST 9
SECTION:

1. Example

Given five receipt amounts stored in consecutive storage locations in the form:

+ OXX~XX

type on the console typewriter the sum of the receipt amounts with a dollar sign preceding
the most significant dollar digit, a comma between the thousands dollar digit and the
hundreds dollar digit if the sum is $1,000 or more, and a decimal point between the least
significant dollar digit and the most significant cents digit. Type both cents digits regard­
less of their value. If there are no dollar digits, type the dollar sign immediately before

PAGE:

the decimal point. In any case, type enough spaces before the dollar sign so nine characters
are always typed. The sum of the receipt amounts will never be more than 9999~9. The ad­
dress of the first receipt amount is stored in label FILEA. Assume that a USE directive has
already occurred in your program. When finished, jump to the label CONTINUE. Label the
first line of your coding TYPEOUT.

2. Coding

LABEL \ OPERATION \ OPERAND \ COMMENTS

TYPEOU T IL X 1 5 F II L E A I SUM AMOUI NT S I
}

I

[L A 4 °1' 1 5 1 [I)
I I I I 1--1

10 A 4 11 ' 1 5 I 1 I

I [0 A 4 2 I' 1 5 I I I
)

[0 A 4 3 I' 1 5 I I I

[0 A 4 4 I' 1 5
1
00 00 1 C C

I
I

[I I I I I I I I~L\

IL A 8 (I: ° ° ° ° ° °) I ° ° ° ° ° ° 1
00 DOC C I

l _I 10 S L 1 2 3 1 I ° ° °10 o 0
1
0 C COO ° ,

IS A A 1 2 TIS 3 , ° ° ° 0 o 0 O,c COO ° I
IL A 1 4 TIS 3 I I ,)
IA S L 1 2 11 I ° ° 0 X DOC 1;\ COO ° I

(

I I I [L A 4
I T, S 121 I I I I °IOIOIX I 101010,C I I CIOI0101 I I I l I[11 J

1 I L F 8 *IK 1 I ° ° 0 , o 0 01 C COO ° , ,(
IA S L 112 I 1 \ I I I I I 1° 1

0
1'1

0 1010IX';\IICI010101 I I I , I

\
I I I I

I L F 4 * I K 2 I ° 0 0 o 0 X1C COO ° I

I [J I I
IL F 4 * I K 3 , I ° 0 0 o 0 ·I C COO 0 , I

,S A 1 4 TIS 3 I , Z E RIO IS U PIP R E S S
I I , I \

I , I I I I _~ 1 1 jLIAIE 1 2 MIE S SAG E I I , , I
)

, , I , I I I ,SIA, , 11 112 ,,[I T jS[2 j I' j I I I j I l JFILjO[AJT j j010jL1L,A1R I ,SlljGjN j I j I j 1 III

IL A 1 2 , (I T W C .\ • $ S •) 1 I

'-- --~ ~ --

7

9 UNIVAC III UTMOST UP-3853
SECTION:

(Coding Continued)

LABEL /\ OPERATION \ OPERAND .\ COMMENTS (
1

C, l
I
C 11 2 TI SI 2 1 I I I I I I ~ I

I I I IAI S ILl 1 2
1'1 III I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I 1 I I I I I I I I I~II I I I

I , I I I J L I I I
C l 1

1 I I I I I I I , I

1 I --L--L-L. 1 ° I R I
1 2

I'
T, S 2

I 1 I_~ I I I I I I I I I I I I 1 I I I 1 I I I I I I I I I I I I I I I I I I

IL A 2 TIS 3 I A N 0 I N AI CAR R I A G E IR E T U RJN~
)

I AINI 01
2

1'1 I (1°,11 7 ;0,0,O,O,0,0,}1 I I_~ I

I I I I I 10lR I I I 12 , 'I I 1(1°12131°1°1°1°1 }I I 1 I I I I I I I I I I I I I ~--L...L-L_~ I I I I I

I
1 4

1'1 I TI SI 3 1 I I ~-L-L-L1.L I I I I I I I I I I I , '---'- I I I I I I I I I I I I I I I I

C 2 .L] I L AI 1 1 (1 M E SIS AG E, ' 1]) I 1 R ,E,Q U E 5 T 1T YJ. PIE I ° I U I T I I IlL I I I I 11

.1 1 .1 .L ~ 1 1+ 1 1 1 ° 714 OJ ° I ° 1°] .1 .1 1] I I 1 1 I I I J

1+ ° 3 7 7717 I I IlL , I I , I

I J CI2 , , , I I , I , I I I I I I I I I I I I I I I I I I l.L I I I I

I J CIO N T I N U E I I I I I I I I I ,(
ME5 51 AGE 1+ ° ~ 1 ~ 1 j] J. 1 I L ~]] I I 1 1 I)

I I I I I I

T 5 2 1+ ° I ~ 1 I I
(

T 5 3 1+ ° I 1 I I I I I I I I l.L I >
K 1 1+ 6 1 , (I' ° °)

I I l.L
K 2 1] 1+ 6 1 , TI 5 2 I I LL)
K 3 1+ 1 2 7 'I(

,
° ° } I I L ~

1..----_ - -~ - - -

UP-3853 UNIVAC III UTMDST

3. Student Exercise

Given the following:

where

A is an amount

B is another amount

C is a third amount

WORD

a

2

DATA

+ AAA\AA

+ BBBB.BB

+ CCC~CC

type on the console typewriter the smallest amount In the form:

$SSSS.SS

9
SECTION:

where S is the smallest amount. The address of the first amount is stored in label

FILEA. Assume that a USE directive has already occurred in your program. When

finished, jump to the label CONTINUE. Label the first line of your coding TYPEOUT.

4. Test

Given the following:

WORD

where

H is the onhand quantity

N is the onorde r q uan ti ty

o
1

2

DATA

OOHHHH.

OONNNN.

OORRRR.

R is the required quantity for the next 60 days.

Type on the cons ole typew ri ter the q uan tity, H + N - R, which will be pos iti ve and four
digits at a maximum. The address of the onhand quantity is stored in label FILE!. Assume
that a USE directive has already occured in your program. When finished, jump to the label
CONTINUE. Label the first line of your coding TYPEOUT.

9
PAGE:

9
SECTION: I P'GE, 10

UNIVAC III UTMOST

D. CONSOLE TYPEINS

The console contains a keyboard as shown in Figure 9-2. From this keyboard messages can be
typed into the store. Typeins are accepted from the console by the executive routine.

Fig ure 9-2. Console Keyboard

The executive routine then routes the message to the proper program by means of a flag
character typed in conjunction with the message.

All typeins to programs begin with the character "R". (An exception will be discussed in
Section 13 Symbionts). The next character typed in is the flag character. A space is typed
next. Then the message is typed.

The program must tell the executive routine what character it wishes to use as its flag. This
is done by storing in the label TABB a word with the desired flag character in bits 19 through
24. This operation must be done before the program expects any typeins. Characteristically,
if a program expects typeins, one of the first operations to be done in the program is to store
its flag in TABB.

At the same time that the flag is delivered to the executive routine, the address of a word in
the program is also delivered. This is the address of the typein word. The typein address is
delivered in bits one through 15 of the word stored in TABB. The typein word is used by the
program to tell the executive routine when it is ready to accept a typein. This is done by
storing binary zeros in the type in word. If the typein word contains anything other than binary
zeros, the executive routine will not deliver a typed in message to the program even if a message
flagged for the program has been received.

UP-3853

UP-3853 UNIVAC III UTMOST 9
SECTION: PAG E:

If the type in word contains binary zeros, when the executive routine receives a message flagged
for the program, it will do an SL] to the typein address. Consequently, follow ing the typein word
of a program should be a short acceptance routine designed to accept the typein. When the ac­
ceptance routine receives control, index register one will contain the typein address and index
register two will contain the address of the zero word of the area in which the executive rou tine
has stored the typed in message. No other index registers will be properly loaded. Consequently,
the cover index register for the acceptance routine will be index register one, all index register
specifications in the instructions constituting the acceptance routine must be explicit, and only
expressions involving binary numbers and reflexive addressing (use of the dollar sign element)
ca n appea r in the ope rands of these in s tru ctions. As a c onseq uence, the ac ceptance rou tin e

should be designed to do little more than transfer the message from the executive routine typein
area to an area in the program and set a connector in the program to indicate that the typein has
been received. Control sh ould then be returned to the executive routine by executing a jump
with indirect addressing to the typein address. It should be noted that, in doing an SL] to the
typein ad,dre ss, the execu ti ve routine ch an ges the contents of the ty pein word to som ethin g
other than binary zeros.

When the executive routine transfers control to the acceptance routine, the zero word of the
executive routine's typein area will contain I~Rf~, where f is the program's flag. Consequently.
the message the program is looking for actually begins in word one of the executive routine's
type in area. Moreove r, before accep ting a typein from the co nsole into the type in area, the
executive routine will clear the typein area to all spaces. Consequently, any character positions
following the typein in the typein area will contain space symbols. If proper preparation for
receiving a message has not been programmed, the message will be lost i.e., no indication of
the presence of message is transmitted to the program.

1. Example

A program is designed to execute one of two branches dependent on a typein. If FORCE is
typed in, the program is to jump to the label FORCED. If RECHECK is typed in, the program
is to jump to the label RECHECK. The typein is requested by typing out TYPEIN.

11

SECTION: I PAGE. 12
UNIVAC III UTMDST UP-3853 9

2. Coding

LABEL \ OPERATION .1 OPERAND Ll) 1

I I I I I I I IUS E I
3 1 , , I I I I I I I I I I , , .

TA B B W O,R 0 , F OR M 1 , , 6 3 , 1 5, I I ,

S~ TIA, R, T, I , L A 8, , (T A B B W ORO, O~ 'l
,

W
,

'101"T,Y,P E I N)

, , I , , , , , , ,S I A , , , ,8",T,A,B,B, , , , , I , I , I , , , I , I , , , , , ,),

C
l

1 I , I I I I I I L, A, , ",11'" ,(,M,E,S,S,A1G,E1OiUlT , 1) , ,

i , , I , , , , + 0,7 4 ° ° ° ° L iii 1 L_l I , , I , , , , , ,

I I , , + 0,3,7 777 , I , , I I I , ,

, I , , , I I I ,J , I , , ,C,l, , , , , I , , , , , 1 I I I I , I , I ,

~ III ,
, S Z , T,Y P E I N I , , I , I I \

C 2 I I X C ° I, T Y P E I N, I , , I I I)

, , , , I I J,E I , ,C,2, , , , I , , , , , , , 1 1 I I , , , , ,(

I , 1 1 1 1 I I , ,L , AI I I , I , 1 12 I ' I 1 M, E, S, S lA, GI E[IINi I 1 II , , , I 1 1 1 , , ,\

, I I C 1 ,2 , (',F OR C,E I' I), , , I I , , , I , \

I , I J,E, , , I I I , ,F,O,R,C,E,O , I , , 1 1 1 I
7

, 1 , , , , , , , , , 1 1 1 , , 1 1 1 , 1 I

I C 1 ,2 , , (
,

R E C, HE, C K,') , , , \
I , , ,

, 1 I 1 I , , , I I , ,J, E, I , , I I I , I ,R, E, C, H, E ,C I Kl 1 1 1 1 1 ~ , , I I I , , , , ,)

, , I , I I , I I I , ,J I , , I , , , I I I ,C,l, I I I , I , I I I , 1 1 I 1 I I I I I 1 I (

M,E,S,S,A,G,E,O,U,T, , 1+1 I , 1'1 T, Y, P, E,' , l 1 I
\

, I I , I , 1 I 1 'J I 1 , I , I 1 , , 1

I I , I I I I I 1 I 1 1 + I 1 I , I 1 I'll, NI ~I 1'1 1 I I I l ~ i 1 I 1 1 I 1 I , I 1 I , 1 I

T Y P E I IN , +
,

,B U S Y , , I , I I , I I ,

I 1 I I I 1 I , , I I I L A I , ,1 12 , ' I ,2" ,2, , , , I I , , I , 1 I I I 1 I I 1 I I I I

1
S A 11 12 I ' I 5

~I I I I I I I I I I I I I I I I 1'1
1

1 I I I I I I I I I I I I I I I , I I I I

J * ° 1
I I I I I I I I I I I , I I I I I I I I 1 I I I 1 ' I I , I I I I I I I I I I I 1 I I I I I I

I , 1 + I 1°1 I I I , I I , I I I I 1 I I 1 I I I I I I I I I I I I I I , I I I I I I I I I I

M,E S,S,A GI Ell IN 0,
{

I I I + I I , I , I I \
\

~ - - -- - -

UP-3853 UNIVAC III UTMOST 9
SECTION: PAGE:

E. THE UNISERVO IlIA TAPE UNIT

Magnetic tape is the means of introducing and removing large volumes of data to and from the
Processor's store. The tape handler designed to handle the reading and writing of magnetic
tape is the UNISERVO IlIA tape unit. The tape used on these units has a MYLAR * base, is
one mil thick, is 0.5 inch wide, and has a maximum length of 3600 feet.

Information can be recorded on 3500 of this 3600 feet. The information is recorded on the tape
in frames. A frame is a recording of bits across the width of the tape. Nine bits of information
can be recorded in one frame. Thus, one word of information is recorded in three frames on tape.
A little over 1000 frames of information can be recorded on one inch of tape.

Information is recorded on tape in units called blocks. A block is the unit of information that
the Processor reads from or writes on tape in one operation. A block consists of some number
of words. The number is variable at the programmer's option. Since it may be necessary to stop
tape movement between the reading or writing of blocks, and since the tape cannot be stopped
ins tan taneous ly, blocks are separated on tape by interblock gaps, len gths of tape on wh ic h no
data is recorded. The length of this interblock gap is variable and depends on whether the tape
must be stopped between the writing of one block and the writing of the next. If stopping is
required, the interblock gap is about 0.6 inch long. If not required, about 0.4 inch long.

The format in which a block of data is rec'orded on tape is shown in Figure 9-3. Although both
are completely variable at the programmer's option; the size in number of words of the items
recorded on one tape and the size in number of items of the blocks recorded on the tape are
generally fixed. Under such circumstances, the approximate number of blocks that can be
recorded on 3500 feet of tape is given by the following formula:

N
n(w +- 1) -t 333G + 3

where

N is the number of blocks

n is the num ber of items per block

w is the number of words per item

G is the interblock gap length in inches

For example, a 3500 foot tape blocked at 20 items per block, each item consisting of 25 words,
can hold approximately 20,300 blocks. (For purposes of this calculation an interblock gap
length of 0.5 inch was assumed.)

When bein g read or written, tape is moved at a s peed of 100 inches per sec and. Tim e to pas s
over the interblock gap varies depending on interblock gap length and on whether the tape is
stopped between blocks. Minimum interblock gap time is 4 milliseconds, maximum 8 milli­
seconds. Given a constant item size, the approximate time to read or write a block is given by
the follow ing formula:

T = 0.03 [n (w + 1) + 3 1 +- g

* Registered trademark of the E. I. du Pont de Nemours & Company, Inc. Wilmington, Delaware.

13

9
SEC TlON:

14 UNIVAC III UTMOST
PAGE:

where

T is block time in milliseconds

n is the num ber of items in th-e block

w is the number of words per item

9 is interblock gap time in milliseconds

For example, a 20 item block, each item consisting of 25 words, can be read or written in ap­
proximately 21.7 milliseconds. (For purposes of this calculation an interblock gap time of 6
milliseconds was assumed.)

The end of a tape is marked bv an end-ai-tape warning window. Following the end-of-tape

warning window there is about 25 feet of tape on which information can- be recorded.

(THE LENGTH OF THE
BLOCK IN TERMS OF
NUMBER OF ITEMS IS A
PROGRAMMER OPTION)

INTERBLOCK ~
GAP ~

I

INTER BLOCK t
GAP f

DATA DESCRIPTOR (ONE WORD LONG)

SEGMENT SEPARATOR (ONE WORD LONG) *

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENT SEPARATOR (ONE WORD LONG) *

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENT SEPARATOR (ONE WORD LONG) *

SEGMENT SEPARATOR (ONE WORD LONG)*

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENTSEPARATOR (ONE WORD LONG)*

DATA DESCRIPTOR (ONE WORD LONG)

Figure 9-3. Block Recording

* The one word sel1ment separator is created by the tape synchronizers for tape control;

it is not moved to or from store.

UP-3853

UP-3853 UNIVAC III UTMOST 9
SEC TtON: PAGE:

A schematic of the UNISERVO IlIA Tape Unit is shown in Figure 9-4. Tape is said to be
moving forward when the tape is traveling from the lefthand supply reel to the righthand tape
reel, backward when the tape is traveling from the righthand reel to the lefthand reel. The
righthand reel is permanent. Consequently, a reel of tape to be read from or written on is
mounted on the lefthand hub. The tape is connected to a prethreaded leader fastened to the
righthand reel. Because of the prethreaded leader, removal of a reel and the mounting of a
new reel takes only about 15 seconds. The reel is removed by pressing the center of the hub.

SUPPLY REEL
(QUICK-CHANGE

HUB)

TAPE
CLAMP

TAPE
WIPER

VACUUM
COLUMN

TAKE UP ---1. ___ - REEL

~-+ ________________ ~r-~~ERASE
HEAD

Figure 9-4. Tape Path

VACUUM
COLUMN

15

9
SECTION: I PAGE, 16

UNIVAC III UTMOST

If a reel of tape is read or written in a forward direction and is then to be dismounted, it must
first be rewound onto the left hand reel. A tape of maximum length is rewound in 125 seconds.

Tape may be written forward, read forward, or read backward. When a block is read backward,
the words in each item in the block are stored in the store in the same order as they are stored
when the block is read forward.

As many as 16 UNISERVO IlIA Tape Units may be attached to the Processor by a UNISERVO
IlIA Synchronizer. The Synchronizer has two channels, one for reading and one for reading or
writing. Thus, the Processor can be reading information from one UNISERVO IlIA Tape Unit
at the same time it is writing information on another. In addition, transfer of information between
the store and the UNISERVO IliA Tape unit is buffered by the Synchronizer. This allows the
reading and writing of tapes to occur simultaneously with the use of the store by the Processor
to execute ins tructions.

Any number of UNISERVO IlIA Tape Units may be rewound simultaneously. Once rewind on
a UNISERVO IlIA Tape Unit is initiated, the Synchronizer is free to control reading, writing,
and rewinds on other UNISERVO IlIA Tape Units. The UNISERVO IlIA Tape units are identified
by number, the numbers being 0 through 15.

UP-3853

UP-3853 UNIVAC III UTMDST 9
SECTION: PAGE:

F. TAPE HANDLING

The data making up a tape file may be recorded on one or more tapes. If recorded on one tape, the
file is known as a single reel file. If recorded on many, as a multireel file. Following the last block
of da ta reco rded on th e last reel of a tape file are reco rded two end-of-fil e sentin el blocks. Follow in g
the last block of data recorded on an intermediary tape in a multireel file are recorded two end-aI-reel
sentinel blocks. Both end-of-reel and end-of-file sentinel blocks are one word blocks, and both are
negative words. Bit positions 2S and 24 of an end-of-reel sentinel block contain 10. Of an end-of-file
sentinel block, 11.

The first block of data on a tape may be preceded by a label block. A label block has the following
format.

WORD

o
1

2

3

4

S

6

7

8

9

10

11

CONTENTS

A neg a t i v e bin a ry zero

The first four characters of the file
identification

The date of cycle in decimal format

The reel count in decim al form at

Free

Free

Free

Free

Free

Free

The last four characters of the file
identification

A negative binary zero

The file identification, date of cycle, and reel count make up an identification of the data that
follows on the tape. The file identification is usually arbitrary and is assigned by the user to dis
tinguish between files. For example, the file identification of the master employee file would be
different from the file identification of the master inventory file. The date of cycle is generally the
date on which the data was written on the tape. The reel count is 000001 for the first reel in a file,
000002 for the second reel, 000003 for the third, and so on. Words four through nine of the label
block are available for whatever use the user wishes to make of them.

Pro ces sin g of inpu t da ta to produce ou tpu t da ta is a program mer responsi bili ty. Readin g of data from

tape into the store and writing of data from memory onto tape can be done by means of standard input/
output routines which, for the time being, can be considered part of the executive routine. (Where
these input/output routines are actually located will be described later in this manual.)

Although input/output handling is not a programmer responsibility, the user must allocate those
areas which will contain the data to be read or written. This function is accomplished by means
of the RES directive. Since information must be read and written a block at a time, sufficient area
to contain one block must be reserved for each input and output area.

17

9
SE C TION: I PAGE, 18

UNIVAC III UTMDST UP-3853

To achieve the advantages of simultaneous reading, writing and processing, sufficient area to con­
tain at least two blocks should be reserved for each input and output area. To minimize the possi­
bility of read interlock, area for storage of more than two blocks can be reserved for an input area

if such space is available. (Read interlock occurs when the program is ready to process another
input item and there are no more input items in the store to be delivered for processing. In such a
situation, the Processor must wait in an "interlocked" state until the read of the next block of input
items is completed.) Because of the structure of input tapes (namely, that there are only two senti­
nel blocks at the end of a tape), the maximum area that can be usefully reserved for an input area is
area to hold one less than the number of items in three blocks of input.

To minimize the possibility of write interlock, area for storage of more than two blocks can be reserved
for an output area if such space is available. (Write interlock occurs when the program is ready to de­
liver another item for output and all the output area is already full of items waiting to be written.) There
is no maximum limit to the size of the area reserved for an output area. The zero word of the area
reserved for an input or output area should be labeled.

The input and output rou tines partition off the input and output areas reserved by the programmer. As
part of the partitioning, the routines use two words per item to store control information. Thus, each
item area reserved fo r inpu t or ou tpu t stora ge must be two words Ion ger th an the size of the item to be
stored. Thus, if 20 item blocks are to be read, each item consisting of 25 words, and sufficient input
area is to be reserved to store two blocks of data, then 1080 words should be reserved.

In addition to reserving input and output areas, the programmer must supply to the input/output routines
a three word control packet for each area reserved. This packet has the following form:

o
+ 0

x

where x is the number of words in an item. The first word in this packet should be labelled. Manipula­
tion of information in this packet is a function of the input/output routines. The programmer's sole
responsibility is to provide the packet(s) for these routines.

Finally, for each file to be read or written, the programmer must supply a file description table. Thi.s
table is either 16 or 28 words long and is used by the input/output routines in reading and writing files.
The programmer must supply certain information in this table for the routines. The format of the table
is as follows.

Word 0:

Initially binary zeros can be stored here. This word should be labelled.

Word One:

The number of words in the item of the file should be entered here in binary. Maximum item size is
511 words.

Word Two:

The num ber of item s per block of the file should be entered here in bin ary.

UP-3853 UNIVAC III UTMOST 9
SECTION: PA GE;

Word Three:

The 1 a bel ass igned to th e zero word of the control packet associ at ed with the inpu t / au tpu t area to
be used by the file should be entered here.

Words Four-Seven:

Initially binary zeros can be stored here.

Word Eight:

If this is an output file, binary zeros can be stored here. If an input file, the number of addition,d

item areas, over and above the one initial block, which provide for advance reading of this file.
This entry may be anything from zero through one. less than the number of items in two blocks

Word Nine:

If t his is ani n put fi 1 e and the p ro g ram i s to ben a t i fie d eve ry tim e ani n put r eel i sex h au s ted, a
binary one should be entered in bit position three of this word. If this is an output file and the pro
gram is to be notified each time an end-of-tape warning window is detected on an output reel, a
binary one should be entered in bit position four of this word. All other bit positions of this word
must have binary zeros in them.

Word Ten:

Starting at storage location 0200 (octal), the executive routine maintains a tapt:' as;,:,ip,nment whit·.

Each word in this table refers to a UNISERVO IlIA tape uni t. For the time being, it can be
assumed that the word in storage location 0200 refers to the UNISERVO IlIA tape unit numbered
0, that the word in location 0201 refers to the UNISERVO IlIA tape unit numbered 1, that the
word in 0202 refers to the UNISERVO IlIA tape unit numbered 2, and so on. (This is one possible
arrangement of the tape assignment table. When the table is so arranged, it is referred to as being
canonized.) The entry in word ten of the file description table should be the address of the entry
in the tape assignment table to be associated with this file. Thus, if the tape assignment table IS

canonized, and if the first reel of the file is to be found on the UNISERVO lIlA tape unit
numbered 1, the entry in word ten of the file description table should be an octal 0201.

Word Eleven:

Initially binary zeros can be stored here.

Word Twelve:

The first four characters of the file identification to be found in the label block of the file should
be stored here. If the file has no label block, this entry is immateria1.

Word Thirteen:

The last four characters of the file id entification to be found in the label block should be stored
here. If the file has no label block, this entry is immateria1.

19

9
SEC TION: I PAGE, 20

UNIVAC III UTMOST

Word Fourteen:

Initially binary zeros can be stored here. When the input/output routines begin the reading of an
input reel or the writing of an output reel, they will store here the reel number of the reel being
read or written. Note that this is not necessarily the reel number to be found in the label block on
the reel of tape. This is an internal reel count. For example, when an input routine begins the
reading of the first reel of a file, it will store 000001 here. When it moves on to the next reel, it
will store 000002 here. When it moves to the third, it will store 000003. And so on.

Word Fifteen:

UP-3853

If binary zeros are entered here for an input file, the input routine assumes the file has no label
block. If the file has a label block, the label of a closed label check subroutine should be entered
here. When opening the reel of the file, the input routine will read the label block and do an SL]
to the label check routine. The label check routine then has the opportunity to determine if the reel
read has the proper label. On completion of the check, the label check routine returns control to
the input routine by means of a jump with indirect addressing to the labelled line.

If binary zeros are entered here for an output file, the output routine assumes the file is to have no
label blocks. If the file is to have label blocks, the label of a closed label creation subroutine
should be entered here. When opening the reel of a file, the output routine will do an SL] to the label
creation routine. The label creation routine then has the opportunity to create a label for the reel.

(Note: Word Fourteen may be used by the label creation subroutine.) After creation, the label check rou­
tine returns control to the output routine by means of a jump with indirect addressing to the labelled
line, at which point the output routine will write the label created.

Words Sixteen - Twen ty Seven:

For an input file with label blocks, the label block will be read into these words. For an output
file with label blocks, the label block will be written from these words. Otherwise, these words
may be omitted from the file description table. Initially binary zeros can be stored here.

For example, the file description table of an input file mounted on UNISERVO tape unit 1, recorded at
20 items per block, an item consisting of 25 words; with labels, an expected file identification of
MASTERAA, a control packet labelled CONTROLA, a label check routine labelled LABELA, and an
input area capable of storing 40 items might appear as follows:

UP-3853

F

UNIVAC III UTMOST 9
SECTION: PA GE:

LABEL OPERATION OPERAND

Before any files may be read or written, the input and output areas must be partitioned and the proper
control set up. This may be done by executing an SL] BUFC for each input and output area reserved.
The SL] BUFC must be followed by three constants written in the order listed.

1. The label of the zero word of the area reserved.

2. The number of words in the area reserved entered in binary.

3. The label of the zero word of the control packet associated with the area reserved.

21

9
SECTION:

22 UNIVAC III UTMOST UP-3853
PAGE:

For example, to execute BUFfer Control for a file whose reserved area is labelled AREAA, in which
1080 words have been reserved, and whose control packet is labelled CONTROL A, the following
coding would be used:

LABEL OPERATION OPERAND

After buffer control has been executed, control will be returned unconditionally to the line immediately
following the third constant.

An input file may be opened by executing an SL] FOIF. This instruction must be followed by a constant
that contains the label of the zero word of the file description table of the file to be opened. Execution
of this instruction will cause the specified file description table to be initialized for reading forward If
the file is labelled, the label block will be read, and the label check routine executed. If the sign of th~
constant is minus, the tape will be rewound before any reading occurs. If such a rewind is not desired,
the sign of the constant should be plus, For example, to open forward an input file (File Open Input
Forward) with a file description table labelled FILEA, where the tape is not to be rewound before read­
ing occurs, the following coding would be used:

LABEL OPERATION OPERAND

After open of the input file forward has been executed, control will be returned unconditionally to the
line immediately following the constant.

If a tape has been read or written forward and it is now desired to read the tape backward, the file on
this tape must be closed and then the file description table for the file must be initialized for back­
ward reading. This may be done by executing an SL] FOIB. This instruction must be followed by a
constant that contains the label of the file description table of the file to be opened backward. For
example, to open backward an input file (File Open Input Backward) with a file description table
labelled FILEA, the following coding would be used:

UP-3853 UNIVAC III UTMOST 9
SECTION: PA GE:

LABEL OPERATION OPERAND

After open of the input file backward has been executed, control will be returned unconditionally to
the line immediately following the constant. Execution of this initialization subroutine does not cause
any tape movement. If the read head of the tape unit is positioned behind the sentinel blocks, these
blocks will be passed over when backward reading begins. Only data blocks will be delivered for
processing. It should be noted that backward reading is not a buffered operation. Thus, backward read­
ing and processing cannot occur simultaneously. (This is a function of the backward read routine. not
the computer hardware.)

After an input file has been opened, either forward or backward, an item to be processed can be acquired
by executing an SL] FRO. This instruction must be followed by a constant that contains the label of
the file description table of the file. For example, to acquire an item to be processed (File ReaD) from
a file with a file description table labelled FILEA, the following coding would be used:

LABEL OPERATION ;\ OPERAND i\

After the file read has been executed, control is normally returned unconditionally to the second 1 ine
following the constant. (This line is called the normal return line.) At this point the program can find
the address of the zero word of the next item to be processed in the zero word of the file description
table. Thus, the base address of the item could be loaded into index register 15 with the followin~~

instruction:

LABEL OPERATION OPERAND

The item could then be addressed by using index register 15 as its cover index register. The zero word
of the item could also be addressed indirectly by using the contents of FILEA as an indirect address

can trol word.

Regardless of whether the file is being read forward or backward, items will always be delivered in the
same format. That is, an item will be arranged in sequential storage locations, the zero word of the
item being in the first storage location, the one word of the item being in the second location, the tW()

word of the item being in the third, and so on.

9
SECTION: I PAGE, 24

UNIVAC III UTMOST U P-3853

If a file is being read forward, the first SL] FRO will deliver the address of the first item on the tape,
the second SL] FRD will deliver the address of the second item, the third SL] FRO will deliver the
address of the third, and so on. If a file is being read backward, the first SL] FRO will deliver the
address of the last item on the tape (the last item being defined here as the last item in the block
immediately to the left of the read head of the tape unit when the file was opened backward), the second
SL] FRO will deliver the address of the next to last item, the third will deliver the address of the
second from the last item, and so on.

If when control is transferred to the input routine via an SL] FRO to read a file forward the input
routine discovers that there are no more items on the file, then instead of returning con trol to the no rmal
return line, the input routine will return control unconditionally to the line immediately following the
constant. This line is called the end-oF-file return line. Thus, a schematic of the coding for an SL] FRO
would appear as follows:

LABEL .\ OPERATION /\ OPERAND /\

The input routine will return control to the end-of-file return line on detection of an end-of-file sentinel
block at the end of a tape in the file.

If a tape is being read backward, no end-of-file notice will be given by the input routine. Consequently,
if a tape is to be read backward at some poin t in a data processing system,care should be taken so that,
when this tape is initially written, some type of unique item is written at the beginning of the tape so
the program can recognize the beginning of the tape when it is reached. If the tape is labelled, the label
block can be used for this purpose. Notice that a multireel file may be read forward, but only a single
reel file may be read backwa rd.

If a one has been placed in bit position three of word nine of the file description table, then the input
routine will return control to the end of file return line, not only when an end-of-file sentinel block is
detected, but also whenever an end-of-reel sentinel block is detected. Thus, this return line is more

appropriately called the end-oF-File (reel) return line. At the time control is returned to the end-of-file
(reel) return line, the sentinel can be checked to determine whether this is an end-of-reel or
an end-of-file return. It is acces sed as follows:

LX n, FILE + 4 (5th word of file description table)

LA 1, 1, n

When a programmer desires to close an input file, this may be done by executing an SL] FCIF. This
instruction must be followed by a constant that contains the label of the file description table. If the
sign of the constant is minus, the tape will be rewound. If plus, the tape will not be rewound. For
example, to close an input file (File Close Input File) with a file description table labelled FILEA
where the tape is to be rewound, the following coding would be used:

UP-3853 UNIVAC III UTMDST 9
SECTION: PA GE:

LABEL OPERATION OPERAND !\

LEA

After the file has been closed, control is returned unconditionally to the line immediately following
the constant.

25

The programmer may close an input file at any time he wishes. However, he should close the file after
an end-of-file return. Normally, in such a situation, the programmer would indicate that the tape is to
be rewound so it can be removed from the UNISERVO tape unit. Exceptions would be if the programmer
subsequently wishes to read the tape backward in either this pro gram 0 r a su bs equen t program. A fte ran

input file has been closed, it may be reopened, either as an input file or an output file.

If a multireel file is being read forwar d and an end-of-reel return has not been requested, the inpu t
routine will automatically close a reel and rewind it on detection of end-of-reel sentinels. It will
then automatically open the next reel of the file, execute the label check routine if one is called for,
and deliver the address of the first item on this next reel via the normal return line. However, if an
end-o f-reel return has been requested, it then becomes the programm er' s respon si bili ty to see th a t
these end-of-reel functions are done. This he can do by means of an SL] FCIR. This instruction must
be followed by a constant that contains the file description table label. For example, to close an inpu t
reel (File Close Input Reel) of a file with a file description table labelled FILEA, the following coding
would be used:

LABEL OPERATION OPERAND

After the reel has been closed, control is returned unconditionally to the line immediately following
the constant.

An output file may be opened by executing an SL] FOPO. This instruction must be followed by a
constant that contains the file description table label. Execution of this instruction will cause the
specified file description table to be initialized for writing. If the file is to be labelled, the label crea­
tion routine will be executed. On return from the label creation routine, the label created in words
16-27 of the file description table will be written. If the sign of the constant is minus, the tape will
be rewound before any writing occurs. If such a rewind is not desired, the sign of the constant should
be plus. For example, to open an output file (File Open Output) with a file description table labelled
FILES, where the tape is not to be rewound before writing occurs, the following coding would be
used:

9
SECTION: I PAGEo 26

UNIVAC III UTMOST UP-3853

LABEL OPERATION OPERAND

After the output file has been opened, control will be returned unconditionally to the line immediately
following the constant. At this point the program can find in the zero word of the file description table
the address of the zero word of an output item area in which the first output item may be built up.
Thus, the base address of the output item area could be loaded into index register 14 with the follow­
ing instruction:

LABEL t\ OPERATION OPERAND

The item area could then be addressed by using index register 14 as its cover index register. 'file
zero word of the item area could also be addressed indirectly by using the contents of FILES as an
indirect address control word.

The address of an output item area in which to build up the next output item can be acquired by
executing an SL] FWR. This instruction must be followed by a constant that contains the file des­
cription table label. For example, to obtain the address of the next output item area (File WRite) for
a file with a file description table labelled FILEB, the following coding would be used:

LABEL OPERATION OPERAND

After the file write has been executed, control is normally returned to the second line following the
constant (the normal return line). At this point the program can find the address of the zero word of
the next output item area in word zero of the file description table.

UP-3853 UNIVAC III UTMOST 9 27
SECTION: PAGE:

If a one has been placed in bit position four of word nine of the file description table, when control
is transferred to the output routine via an SL] FWR and the output routine detects the end-of-tape
warning window on the output tape, then instead of returning control to the normal return line, the
output routine will return control unconditionally to the line immediately following the constant. This
line is called the end-ol-reel return linc Thus, a schematic of the coding for an SL] FWR would
appear as follows:

LABEL OPERATION OPERAND

When control returns to the end-of reel return line, the address of the zero word of the next output
item area will be in the zero word of the file description table just as it is when control returns to the
normal return line. This end-of-reel return is normally used to allow the program to write a few mure
blocks on the tape following the end-of-tape warning window prior to closing the reel. One instance
of this use is where a multireel file to drive the printer is being written and it is desired to have end­
of-reel coincide with the end of a printing form. If an end-of-reel return is not requested, the contents
of the end-of-reel return line are immaterial.

When a program desires to close an output file, this may be done by executing an SL] FCOF. This
instruction must be followed by a constant that contains the file description table label. If the sign of
the constant is minus, the tape will not be rewound. For example, to close an output file with a file
description table labelled FILEB, where the tape is to be rewound, the following coding wo'.dd be
used:

LABEL OPERATION .\ OPERAND

After the file has been closed, control is returned unconditionally to the line immediately following
the constant. Normally, the programmer would rewind the tape when closing an output file so it can

be removed from the UNISERVO tap e unit. Exceptions would be if th e programm er su bsequ en tly wi sh es
to read the tape backward in either this program or a subsequent program.

Closing an output file causes the output routine to write two end-of-file sentinel blocks on the tape.
A fter an ou tput file has been clo sed, it may be reopened, either as an input file or an outpu t fi I e.

9
SECTION: I PAGE, 28

UNIVAC III UTMOST UP-3853

If a multireel file is being written and an end-of-reel return has not been requested, the output routine
will, on detection of the end-of-tape warning window, automatically close a reel, write end-of-reel
sentinel blocks on the tape, and rewind it. It will then automatically open the next reel of the file,
execute the label creation routine if one is called for, and deliver via the normal return line, the address
of an item area in which the first item to be written on this next reel is to be built up. However, if an
end-of-reel return is requested, it then becomes the programmer's responsibility to see that these end­
of-reel functions are done. This he can do. by means of an SL] FCOR. This instruction must be followed
by a constant that contains the file description label. For example, to close an output reel (File Close
Output Reel) of a file with a file description table labelled FILEB, the following coding would be used:

LABEL OPERATION OPERAND

After the reel has been closed, control is returned unconditionally to the line immediately following the
cons tan t.

The inpu t/ output routines use the ari thm etic regi s ters; the high, low, equal and sense indicators; and
index registers one and two. Consequently, when the program executes an SL] to the input/output
routines, it should not have anything significant in these registers and indicators, since their contents
and settings may be destroyed before control is returned to the program.

UP-3853 UNIVAC III UTMOST 9
SECTION: PAGE:

G. END OF JOB

When a program has completed its work it should turn over control to the executive routine.
This is done by execu tin g an SLJ EO J .

1. Example

Given on UNISERVO tape unit 1 a single reel file with no label block and containing six
w 0 r d i t em s b 1 0 c ked at 8 3 i t ems per b 1 0 c k. The d a t a has the follow i n g form:

WORD

0
1
2
3
4
5

where

N is a taxpayer identification

G is gross income

P is the number of dependents

DATA

NNNNNN
GGGGGG.
GGOOOO

P~OOOO

OOAAAA • AAOOOO

A is the amoun t of deductions other than for dependents

Produce on UNISERVO tape unit 2 a file with no label block and containing three word item~
blocked at 166 items per block. The item has the following form:

where

WORD

o
1
2

N is a taxpayer identification

T is the unrounded tax

DATA

NNNNNN
OOOOTT
TTTTTT •

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income
taxable income.

29

9
SEC TION: I PAGE, 30

UNIVAC III UTMOST UP-3853

2. Flowchart

CST A R 0-\,-_O_~_F_--,H,-_O_~_O_--,)-G

IPN~TN~~ __ .2_(_~ ____ 6_0_0_P_D ___ P_A_)~ ___ T_T __ --,~~_W_T_R __ ~~

LEGEND

p - a taxpayer item

(OF

T

pN_ the identification of P

pG_ the gross income of P

pD_ the number of dependents of P

pA_ the amount of the other deductions of P

T - a tax item

TN_ the taxpayer identification of T

T T _ the tax of T

EOF is an abbreviation for End-of-File

UP-3853 UNIVAC III UTMOST 9 31
SECTION: PAGE:

3. Coding

LABEL .\ OPERATION ,\ OPERAND t1 COMMENTS) 1

A R EA P IRE S 1 3 2 81 I I I)
A R EA T IRE S 1 6 6 0 I I I I .\
CON T R ° L P 1+ 0 I 1 I I)

I 1+ 0 1 I I I

It- 6 I I I I ,;
CONTROLT 1+ 0 I I I I

1+ 0 I I I I I
I r 3 I I I I I I

F I L E P 1+ 0 I I I I \
It- 6 I 1 I I

1+ 8 3 I I I I \
1+ CON TIR ° L P

I I(

10 ° 4 1+ 0 I I I

I I I I I Ie I 1
8

1
3

I j I I j j j j j 1 ~ I I ~I \
1+ 0 I I I I

/

1+ 0 2 0 11 I ~ 1 lii j 11 I 1 j j I

10 °1 5 1+ 10 1
)

I j I I I I I I I 1'1 I I I 1 I I I I I I I I I I I I I I I I I I (

F I LET I T I I 0 I I I I I j 1 I j j I I 1 I 1 1 1 1\ - 1 1 1 1 1

I 1 I I I I I + I I I I I 3 I I I I I 1 I I I I I I I I I 1 I /
It 1 6 6 I I I 1 \

I 1 1 1 1 1 I I I 1+1 I I I 1 ,CIOINITIRIOILITI I 1 I I 'I I I j j j 1 I I I I I Il
101 °1 6

1+1
0

1 I I I \ I I I I 1 I I I I 1 I I 1 I I 1 I 1 I 1 1 1 1 I I I 1 1 I 1 I I 1 1 1 I I I I 1 1 1 I 1 I I

1+ 10 1
2

1
0 12 1 I I I I I

)
I I I I I I I I I I I j j 1 I I 1 1 I I

101°1 I I I 5
1'1 1+ 101 I ! I I I I I 1 I I I 1 1 j I I j 1 I I I I 1 I I I I I

IUS E 3 I I 1 I j (

S TAR T S L I J B U F CI I I I
)

+ I A REA IP I I I

+ I 1 3 2 8 I I I I \
+ I C ONTIR ° L P I I j 1 I 1 I

(
S LIJ B U F CI I 1 I \

+ I A R E AIT I I I I 1 / L-.L-L I I I I I I 1

+ 1 1 6 6 0 I I I I \
I

+ I C ON TIR ° L T I I I I

s L I J F 01 F[° II F P I I

...---- ---- - - ---.J - ---- - -- - - -

9
SECTION:

32 UNIVAC III UTIVIOST UP-3853
PAGE:

(Coding Continued)

LABEL OPERATION t,. OPERAND COMMENTS

I F I LEI P I I I

SLIJ FOPOI OPIO T ,I I I , I
)

+ I FI LEIP I I I

lEO F TI I ~ I I' I

~~~~I_~II~-LL~X~:I-LJ-L5~'~LFJ-LL-LE~I_P~-L-L~~-L_l~I-L~~~I_L-"~_~'I-L-L~~_L-L~~-L_~J-~~-L~) 
L,AI I 18 , I 3 11 15 .21 P G I-I , 6 ,OIO,P,D, 1- PA 

I I 
T T T 

! I I I I 
, 

!----;1L-l�_--l-1.1..-1L--1L-J'--l.,_D..l.-,ML-IL-J,I_--l-I-L-I-L-IIL(-'I_-.....l~ 1_:.1..-IOL 1
6
_IL°-'I_°.....lI_°..L IO_LI)---.JIL-lI_..l.-1.1..-IL-JII_--l-I-L-1-L-1L-JII--l.I---l.I_L-IL---.JIIL....J.I_-L-IL--L-'J----LI-----.LI ---L--L-'I-.J,~~.LI --'--'---'--~..I-l---l \ 

I 
I I I 

~L-,L-~L-L.....I,L.....IL-LD-'-A-'·I--l--.l-6--L.:,...1-...1-1..L-
2

..L-..L-.L.-.L.-ll L5_L-IL-"L-'--'--'__l__.l-....l-....lI--LI.-LI--'-1 --'---'---'---'--L_..L-L-L_'__'_-'I_ll__.l--.J.--.J.-....l--L_I~.'---I_'___I-'---L_114 

~_I Ii IS I AI 1
6 

I ' I IT I S 12 I I I I I I I I I I 1----1-1 I I I I \ 

, , , I I L AI 8, : ° ° I ° ° I 2 0) I I I I I I ,I I"" I I I I I I , 
!----;L.....I--'--'--'--'--'--'_D--'--M.....l'I-.....l~~~_L_L_T_'___SL2_L _ _'___IL_L_L.....I_.....l_.....l_.....l_.....l~I_LI~I_L1_L-L-LI-LI-LI-LI-LI ~1--'1L.....I1--'1_.....l_.....l_L~I~I~~_L_J--'--LI-L-L-L_L() 

S AI 4, T S 4 I I I I I 

~L-'--'--'--'--'--'--'-D--'--M.....lI-.....l~~~-L-L-T-'---SL1-L--'---I~~L.....I-~~-'-.....lI-....l-....lI--LI--'---'---'---L_L-L-L-L-L-lI--'I--'--'_ll--.lI--.J.I--.J.I-....l--LI_j~~I~I-LI-L1 _.yl 

!----;,L-'I_j--'I--'I--'--'--'I_D.....lI_A.....lI-.....l~1_6..L1_,..LI_L_L,_TLI_S~_I~I~~~I~I_~~~LI-LI-L_L-L-LI-LI -L-L-L--'----'----'--~L~I_.....l_.....l~~I_j , , I , , I 

~L-'L-JIL-1IL-1I-.....lIL-1--'ILL.....lI-A.....lI-.....l~1-8..L1-,~I-L_L,°-LI_'LI-LI -LI _1IL5~1L-1L.....I1~1~_JI_N-'I--l--.J.-....l-....l-....l_T..LI_N..L,-L_L-L-L-LI -LI -LI _1L-II--'IL-1--'--l--.J.-.....l.-L-LI--LI--LI--'-I_~~I) 
S A I 1 4 , 2, I 1 4 

I I I I I I I I I I , I 

, , , F W R I 
I , I , , , , , I , , 

F I I I I I 

I ° I I I 

C 
I , ! ! I ! I I I 1 I I I ! I I I ! 

J E OFT P 
I I I I I I I I 

- I F I L E IP I I I 

~L-L-L~L.....IL-'I--"--"_S.....l,_L.....lI_J.....lI-....lI-L'--'-_L_LIF_L,C-LI°-L,F-LI-LI -L-LI -l,--l,_.....l,_.....l,_.....lI_C.....l,_°..LI_F..LI-LT_LI-L-L-L_L-L-L_-L_1L.....II_.....l_.....l_.....l_l~~~~_L_l~I--'--'--'~_~ 

~L-'---'------.L---L--L-'---'----'---'---IL-.l---...l.~--'--'-F-'--I--'--L-'--E.L IT-'--'----'---'--'---.JL--'-...L-_J I , I I I I I I I I I 

, SL1J EOJ I , I 

T S 1 I + I ° I I I I ! 

T S 2 
I ° I I I I 

~T_L'S-'-4-',~I~I_~I..L-.L.-L-IL-l--l-....l--L--'--L°-L-'--'-.....lI-....l--'---'--L~-L.~I---l.I--LI-LI-L-L-L--l---l--L--L-.L.-LI -,I--'---'--L--LI--'-I-L-L-L-'---l-..l.-~ _ _'___LI _IL-'-.....l. __ y 
E,NID , , ,S,T,A,RIT , , I , I I , ,I 

...... --



UP-3853 UNIVAC III UTMOST 9 
SECTION: PA GE: 

H. COVERING INPUT jOUTPUT AR EAS 

One nuisan ce in pro gramm in g is the specification 0 f the index regis te r when address in g an 
input or output area. This nuisance can be avoided by using the technique exemplified as 
follows, which is a recoding of the above exercise. 

LABEL OPERATION OPERAND COMMENTS ( 

~~~~~~~~~I~U~S~E~~~~~1~1_5~~~~~~~~I~~~~~~~~I~~~~~.-L-.~~I~~~~~ 
PN EQU $ I

~---L----L-..L-L-L--L-'--L-Jl---'-~-'----'----'----L-'--..L-L-J-I--'---'----'---.J.-----L-'---'---L-J.._L-'I-----L-'--'---L-J..~-----L----L--L-JI-----.l..--'---'---1-J-----L-'---'--L-l--L..-J_J.--.l.--'-- (

t-PLG-'--'----'----'-----'---'-----'---'---'-I----'-...... E--'---Q--'---U--'-----'--'----'---'---'-$JI t--'-2--'--'---'-. ...L-...JI'---.JIL-L-L....JL-L-IL-.LI --,--,--,-----,-----,-----,-1 ----,-I --,-I ----,--I ----,-I ~I. ~J 1 1 1 I 1 1 ~ L--'--.~
PO 1 EQU $1~3 I I

t-'__'__-'---I.l.-I.-'---I.-'---.l...L.....L...-'--..L...--'---..L...--'-----'----'--...l............l.........--'---'---'---'---'-...JL--'---'-...JL...JL...JL...JL...JL--'---'---'---'-...... -'---I'--_'___'___'__.l.-.L......~_'___'__.L... L.l.1~L~.......L. Y

PA IEQU $1+- 5 I 1
I

.... A.......L.R.......L.E.......L.A_....L, P----'--I ----'---'---'---'---'---'.I R...J-, E""" S-'-'--'.--'.'_--'-'...........J............J.1 1 1 3 , 2 , B ,L...........I--'--'--'1'--..1L--1L...~_.1.--'.--'-----'---'-1 . .L .~ ... L 1_...L......L.....L..... .1. _L ... L.......L......l L. "ll.......... . L

IUS Ell 4 I I I 1 1 1 I --L..-~_1-J.........L .~
l-TlLT--'---'---'-_...1L.....Jl............J'---l----1----1I----1 E-'--Q-'--U..L...-'---'---'---'--L$ LI~-'--2__'_-'--...JL-'-.....L.....--'---'-...l.........-'--I-L---,---,---,--.-'----,---,---,--,--,__IJ.............J'---l--'L... . ..1.--L..... 1 IIL........lL .l

....... A-'---R.J......E--'--A~T'---'----'---'--~II'---'-R--'-E~S--'----'---'--'--"---'-Ol....LII_6 -'-6......L.-O ~--'----'--~_~II~--'---'---'---'-----L...--'--..L.......JI--.J...--'--'--.L..........J.----L..........JI--"-I--"---I~ 11 L......L_L

CONTROLP I

t---'---'--'--.l.-_'__..L.-..L.....L......L......-LI----'-----'-----'-----'----'---'---'---'-..........1 °.....lI----'----'~L.....l----'--''--'--'__'__IL_'__'__'__'--'---'----'--.-'---_'___'__I..L..._'___'__.L... . ..1.1LI --'-ILI -...1.1-...1.-...1._...1_ 1....1L L~
..--L-L-L-,.L......I-'--~,~-'-I--'---'-1--'---'---'---'---'-__'_ ~__'_...........J.I 6 1__',__',--'L...........I,.__',--''--..1L--1L--L--L--L--L--L--L--L1.......L.1--1---1-----'-I----'-I--'-----'-I--1-I--1-I--LI -'-1--'-1--'-1--'-1--'-1--'-1--'-_.l~._L.l1
CpN TROLT \

I I I ! I J
1 I ! I I 1 ! ! 1 1 J

~~-.L~-'---L-~-L-~I-L-'--~~~-L-L°~I~I-L~I-L-L~~i-L~I-~I~I~I_~I~_~\~II-~I~I_~I~-L--,--~~~I~-L~-L ...
1 3 1 1 1 I

1 1 1 1 1 1 I-L

t-...1'--1'---'---1.l.-11.-'----,--1..L......l............L....-'-I---'----'----'----'-----'-__..!__..!----'__..! 6-'1---.l1---.l1...........J1L...J1----'--'IL-I'---'---'--'---'---L_'---'---'---L-..LI ----,-I ----,--I ----,-I --,-I ----,--I ----,--I ----'--.....LILILI --'-_LL_LL...... ~
1 1 1 1 I I I 1 I ~ I I .l.1 L 1 1

8 L 3.1 11 I I 1.1 1 I I .l..11 1 1 .1 .1 1 I 1 1.1 1 I .iL.l...........L....1 1 1 1 _L_L

111111 11'1 III II ICIOINITIRIOILIPI I I I111 II I I 1 II 1....L.L ... Jll_L..L..L_L.l......L

I o ° I 0 I I I

I I I I 1 I I 1
B

I

3 I 1 1 1 1 1 ! I I

--..L......L Iii 1 1 f 1 1 1 I 1 ~ . .L.I ---,-I --,---,-I ...J1L1-1L.IL.1 ---,-I --,-I -'-...JI__'I_ ... ~__..!__..!...........J.--'I__'I__'I l_L_L_L ... L.L Jl_...l---'---'-........L_..L.... 1 .. 1.

~'__I'__I'__I'--ll-'---.L......l-'--..L...4--..LI----'-.........L.........L.....L1LI --'....' -,--I -,--IL....! 0 ~.....L........L..L....l_L...L....L.J..........1..........LI __,___,_I IL-L......L...J....J......Ll.............L ... 1 ... 1 1.... 1 1 1

)

J
i .I 1 j 1.1 " . .1... .~

..--'--i __ L...._-'---.L.......L...I . ..L......L........l.........LI--'-.LLL ... _~_ ~ .. -'-_ ... L ...L~ 16 ... !_l 11 L...1 L l..... L .LL L_L......l.......LL.....L...L._L LL...l.......L L 1 1 ~ J. I 1 I I

CONTROLT
~..L~I---,-I--,----,-IL...L......L_I'---lIL...JI..........1I...........lI......-'.I_L.......l...........L......L...l.J l .L.l 1......lL... l. 1. J...........L.....l L..........L....L......L......l L .. l....J...... ... L......L......L...1 j 1.1 1 1

1 I I I . .l j I 1 I 1 I 1 1 1 I I 1 1 1 1 I

33

9
SECTION:

34 UNIVAC III UTMOST UP-3853
PAGE:

(Coding Continued)

LABEL ,", OPERATION OPERAND COMMENTS

~L-L-~~J-J--L-~'-L' _L~,_D~I_0~'~~~L-~~~,5_L1_L,_.~,~_'~,_O~-L-L-L-L,.~I~_J~~L-L_L_L-~~~~'~I~ __ "L_L_~I_L'-L_JI_~~'~L-L-L __ ~

~L-.J _ _J---L---,------,----,---,--,--,----,,_U-L' _S-,-, _E..L.' -,--,--,----"---LI _3 -,-I --,-' -'--'--'---'--~'.~ ----"--'--'--'--'--'---'---'---'--'--L-.J'--1.' __ ~ , " 1 .~-" --'---'---'-----'I)'
... S-'-T-'--A----'----R-'--.T.L....JL-l__'.-----'--_L.-I'-S-'--L----'----J -'--L.....J__'.___'_-----'--B_L1U-'--F-'--C----'----L.....J--'-_L-L, I, I 1 I I I I I 1 1 .L......L.....L~-'-I_"---JI--'---'---'--'--{\)

....... L__'__-'----'--__'____'___-'-__'__I __,__I -L---'-I_' -,-I---I.'--,'--,--,_,--"__.!....I C-LI_O-'-I _N-"-I_T~I_R~I_O~I_L-'I_P-'-, _--'-~I--'I~__'_L_L_L_LI _.L...L..l-.-LL-L...L...L .. ~_.l __ .L.l.-L--'I---'_'_L __ L..J

I s L J B, U F C I I 1 . (
~L-L-L-L--'--L--'---'---'---'---'---'---'---'---'---'---'--~~-'---'---'--~-'---'---'--~~-'---'--~-'---'--~--'---~-L-L--'----L-~-'-I--'---'---'---'---'--I_~-,I---,---,---,_---,-~

~L-L--'---'--~l~j--'--L-L-L-I-'---'---'--~J--L-L-L.-LIA-LIR-LI-E~IA~I-T~I_J~_L_L_~I_LI_LI_LI~_J~I~I_L-L_L_L_~I~I~_~~_IL_LI -L~I .. ~--'I---'_'-L __ ~) ,
~~~L-.L~--'----'----'----'---'I~--'----'---'~~~--1~16~6~O~~~~~~I~~~~~~~~I~~~-'-~-'-I~1--'---~ .. ~_L_~~~) 

I C 10 N T R ° L T I j I j 

~L-.L-L--'--~I--'I--'--LI __,__, -L_LI_S-'-I_L~I_J~I--'~ __ L_~LIF_LI_OL,_I~I_F~I_JI_JI~ __ L_~~I_LI_LI_OLI_I~I_F~I__'_P~I __ L_L_L_L_~I~I~_~~ __ IL_I'__L_L .. ~-'I __ '__"__L_~ 

~~.L....L...L~~I _' ~I--'----'--__'__'I~.I'--'--.!....I _F.LI _I -,-I _L~I_E_'_I_P_'_I----'-'--'---'--'. ~....l.~_ .... I--'I--'I'___LI -,-I __,__I -LI -LI --'-_ _'_--'---'--' __ '__L-.~I _LI __,_I ~I_J--'_-.J-I' \ 

~.l.---'-.-.JL_L~I ~IL_l---'-I_~I-L_'_S~I_L~I_J-'--L.....J__'.~_LIF_'_IO~I_P~I_O~I-LI _'_-'--~_-'--.~__'.I_O~I_PLjO_I~I_T~I___'__L_'_1 ~I__'.I-LI~_~~~I_LI-L-'-I .~~.L-.J~-4 

~L-L--'---'----'----'---'---'----'----'--I-'---'-----'---'-----'----L-'--'---'--' F_LI_ILI_L-'-I_E~I_T~I--'__'~L __ '__L_LI _LI_LI~~--'~_'__L_LI_LI~I~I~_~~~IL_LI -L~_~-'I--''___"__LI.~ 
C 1 I L X 1 4 F 11 LET I I I, ,f 

~L-L_L--'--~J--'--LI -LI _L_LI_S~I_L~I_J~I__'~~L_'--LI F_LI_RLI_O~I_JI~I_J~~'___'--LI -LI _LIR_LI_O~I_JI_P~I~_L_L_LI-LI~I~I~_~__'~IL_IL_L_L-I ~-'1--"--'L-'L-'41 
....... L_L--'---'----'--__'__-'--L__'___-'--I_'__-'----'---'---__'___--'----'-__'____'___F-'--II_'__L-'--E--'--P-'----'---__'___-'-.~__'_I___'_I__'___'___'___'___''--'-'--'-__'__~.Li__'___'_'__'_'----"---'-_~ 1 \ 

liE 1 ° 1 F,T 1 I ..L...L_L_L_LJ_---'---'---'--'---''___'--.LI -LI --,-I ---'----I.I---I.'--'---J-'___L-'---'---'--~-"~'___L-L _ _'_t( 

r-'1--1.1---L1_-'--I-'--I-'--I'--~IL_'I___'_j_L_L,I_X_'__I-'--I~ll-'-5--'1_·~I _ _'__IF_'__II..L.IL_~IE_ILP--,--,--_,__-,---,--~I ~1L_'1---'-1--'------'----'--'--'-_'_-'--_'___'__-'--~.~--'-___'_--'-__'__1--L--'I--'--I--'----'-_~l) 
j j I ! I 

j L A 8 PI 0 2 I ( P G 6 0 0 I PDP A I - - - T T,( 

I 1 ( 1 -, : i 0 ,6 1 O~.O_~I_)-LI__'_---'I__"---''--'__.L....-'--_'__-LI--'I_ ... ---'I--'I'--'I'--_'--.L....-'---'--_'__--'--.. LL-',----.JI'___.!....I -L1-L\4 

~I II 10lSI 161·~~~IA__'__I-L--'-I_L~~l.-'-__'_I__'_I--'-I--"---''___'__L--'---'----'--~,--'-I--1.,~LI--'---'-~--',~.LL-',---',~'------'4( 
__ L_LJ ... ..L..LI __'_--'-~I----.JI~'__LI 0-LI A-LI --,---,-I _6--,-,.:.. ~I __ ,_~L~..LL LL_l .1.. . .1... .... 1 __ ,-1 -'-.1 -,---,---,-__,_---,1---,1---11,--1,---,-1 -,-I -L_L..L....L...l~.LL--'I----'---''--JL---.Jc..\-f 

1 I J I ! 

SA 6. TS2 
__ l....l......L....L..LI ---'----'----'1_-'1 __ '--'-1 -,-I ---,---,----,-I ---,-1--,1 ~~.L.....L...L.. .. L_L _IL-'I----'---'IL---'-I _.....L..-'I __ '___'__LI -LI -.JLI ---,-1--'-1~1--1 __ J_L' -'LI _L---L-L .. l......L...--"---'---'I'--JIL---.Jl.'-t 

~~~~~~~~I~_L~A~~-8~.~~-(~i-:~O~1-O~O~O~2~O~)~-I~~~~~~~~I~~~~~~~_~I~~~~/ 
1. .l.L_J __ ..L.....L .. JI_'--LI ---'-.1 _L.-'-__'_I--'.I ~ __ "~'--.'__'--I .l--L . .L..,....-"......JI'--.L_L_-,\

1 1 1 1 I ..J1 .. 1. ...L.L..LJ..-L.L..L...L_L L...L_..L~ .1.....L-I1---I1'--'--.L1 _.L-'jJ

I L ... _L_L_.L. .. 1J.. S.l ~L ~. 1 1 1 .1 .1 _1.
o M

I I !

f---L-L.....L...LI --'----'---'_''___''___L-.LI°---'-I A--'-I --'----'-_6-'-'_.-'----'--_Ic..
T
-'-1 _S-'-I 4---,-, --,-.--,---,---,---,-1L..-'-I--'---'I---'-I---'---'~'--"__-'--_'___'____'___'__'_I--'I __ J'___'--.!....I -LI --,-__,_ __ ~..L..J......L....L

1 1 1 1 1 j
LA

1
8 • 1

1 1 1 I 1 1 I III 1 I I 1 1 1 1 1

UP-3853 UNIVAC III UTMOST 9
SECTION: PAGE:

(Coding Continued)

LABEL .\ OPERATION \ OPERAND \ COMMENTS (1

I
S A 1 4 TI T I I I

I S L J FIW R W R 1-- - T I I I I I I I I

I -t FII L E T I I I , ----L- I I I I I I I I I
,(

01
\

I +
I

)

I
J C

l
1

I I I

E 0 F T, I S L J FIC I F CI FI P I J 1-1_L.1) I I I I I I I I I I I-L_LI I I I I

I - FII L E P I I I I I I I I I I I , I I I I I I I I I , I I

I I S L J FI CO F C o Fl T I I , I I , -----L-~ I I I I I I I I I I I

I - FJI L E T I I 1

I S L J EIO J E OJ 1 I 1

T S 1 I + 01 I 1 , , I I I I ~--.L.-L I I I I

T S 2 I + o I I I I I I I I I I I I I I I , , , , I \ I , 'I')

T S 3 1 + : 10 0 o 0 0 0 I 1 I
T S 4

I + o I I I I I I I I , , I , , , I , , \
I I I I END SIT A R T I I I

v - ~ ~
-'

The mechanism used in the above coding works as follows. The USE 15 directive tells the
UTMOST assembler to assume that the address of the line tagged AREAP is stored in index
register 15. The PN EQU $ directive tells the assembler that the label PN is equivalent to
the label AREAP. The PG EQU $ + 2 directive says that the label PG is equivalent to the
expression AREAP + 2. The PP EQU $ + 3 directive says that label PP is equivalent to the
expression AREAP + 3. And so on. Consequently, when the assembler encounters the label
PN in the m portion of an instruction, it will substitute a binary zero in the m portion of the
instruction and insert a specification of index register 15 in the index register portion of
the instruction. The assembler will do likewise for the other labels defined by the EQU
directives. Since the program keeps the base address of the current taxpayer item in index
register 15, the fields in the item can therefore be properly addressed with the labels
defined by the EQU directives. The USE 14 directive and its associated EQU directives set
up the labels to address the tax item in a similar fashion.

In the above example more than 1024 storage locations were reserved between the USE 15
directive and the USE 14 directive. Suppose this were not the case. Suppose instead the
situation were as follows:

35

9
SEC TION:

P N

P G

T T

36 UNIVAC III UTMOST

LABEL OPERATION OPERAND

,U S E 5

E Q U $

E Q U $ + 2 , I I J

-L1-L1-L-L-L-LIE~I_Q~I~U~'-J-J'~I~$~,_+~,~3~I~-LI-LI-LI-L' -LI ~'~I~_L-LI-L-L-L~~~~~~~~L-~'-LI-L_L-L-L~~-L-

E Q U $ + 5

, I R, E IS I I 1 5 ,0 ,0 I , I I I I I ~ I I I I I I I I

J J I I I I I I I ~I

In the above example, the label TT is set equal to a relative address that is covered by both
index registers 14 and 15. Is there any assurance that, when the assembler encounters the
label TT in the m portion of an instruction, it will not insert index register 15 in the index
register portion of the instruction rather than index register 14? Happily, there is.

The assembler keeps a list of cover index registers. This list is always arranged by index
register number. When the assembler encounters a label in the m portion of an instruction it
begins searching down its cover index register list to determine if there is an index register
that covers this label. It always searches the list from top to bottom, and if the list contains
more than one index register that covers the same label, it always selects for insertion into
the index register portion of the instruction the number of the first index register it encounters
which covers the label. Thus, in the above example, the assembler will always find that index
register 14 covers the label TT before it finds that index register 15 covers the label.

UP-3853

UP-3853 UNIVAC III UTMOST 9
SECTION:

1. MASTER FILE TAPE HANDLING

The above example handled the taxpayer file (a transaction file read into the store but never
written out) and the tax file (a report file written out of memory but never read in). For trans­
action and report files the techniques so far described are adequate. Each file is accociated
with a reserved area, the items in the file are accessed by means of the instruction SL] FRO
for input files and SL] FWR for output files, and any information desired from an input item or
desired in an output item is moved out of or into the item by means of LA and SA instructions.

PA GE:

However, now consider the handling of a master file, which is both read into and written out of
store. To handle such a file with the same techniques used for transaction and report files
would require that every master item read in be moved to an output area before it can be written
out. To avoid this movement of master items, the UTMOST system provides a special input/
output technique. Utilization of this technique involves reserving a common input/output area
for both the input and the output master items. To obtain simultaneous read, write, and compute,
this area should have the capacity to hold two blocks of data for each input file sharing the common
area, and one block of data for each output file sharing the common area. To minimize interlock, more
area can be set aside for each input and ou tput file if such space is available. The rna xim urn are a
that can be set aside for an input file is an area capable of storing one less than the number of items
in three blocks.

As a consequence of having a common input/output area for both input and output master files,
only one control packet and one SL] BUFC operation is required for the area. However, a file
description table must be provided for each file using the common area.

Each input file using the common area must be opened wth an SL] FOIF; be closed with an
SL] FCIF; and if the end of reel return has been requested, each reel of the file must be closed
with an SL] FCIR. Each output file using the common area must be opened with an SL] FOPO;
be closed with an SL] FCOF; and if the end of reel return has been requested, each reel must
be closed wi th an SL] FCOR. If an input i tern is to be deleted from th e mas ter file, it can be
skipped and the address of another input item acquired by means of an SL] FRO. If an item is
to be added, it may be moved to the current output item area, and the address of another output
item area can be acquired by means of an SL] FWR. For writing a master item that has been
read, the following callin g sequence is provided:

LABEL i\ OPERATION .\ OPERAND \

37

9
SECTION: I 38

PAGE:

UNIVAC III UTMOST

where i is the label of the zero word of the file description table for an input file and 0 is the
label of the file description table for an output file. Execution of an SLJ FRDW will cause the
output routine to see to it that the item the address of whose zero word is in the zero word of
the input file description table specified is written on the output file whose file description
table is specified. When control is returned to the program, the address of the zero word of the
next input item can be accessed in the zero word of the input file description table. Normally,
control is returned to the normal return line. If end of file sentinels are detected on the input
file, control will return to the end of file (reel) return. If an end of reel return has been requested
for the input file, control will also return to the end of file (reel) return on detection of end of
reel sentinels. If end of reel return has been requested for the output file, control will be returned
to the end of file (reel) return on detection of the end of tape warning window. If end of reel
return has been requested for both the input and the output file, the contents of arithmetic
register 8 can be inspected after an end of file (reel) return to determine whether the input or
ou tpu t generated this return. If generated by the inpu t, arithmetic regis ter 8 will con tain a binary
one. If generated by the output, a binary two. If end of reel occurs on both input and output
simultaneously, arithmetic register 8 will contain a binary three. (See FRD on page 9-24 for a
description of how to dis tinguish between an end-of-file and an end-of-reel return.)

1. Example

Given on tape unit 1 a single reel file called the A file, on tape unit 2 a single reel file
called the 8 file. Neither has a label block. 80th contain 25 word items blocked at 20 items
per block. The first two words of each item is a key. Each file is in ascending order by key.
Merge the files to produce a new file called file C, on tape unit 3. File C is also blocked
at 20 items per block.

2. Flowchart

I
I

(s T A RT)-l\,--_O_~_F_-J

OIF
B

OPO
C

UP-3853

UP-3853 UNIVAC III UTMOST 9
SECTION: PAGE:

8---@-, , , , , ,
\
\ , , , , , ,

\
\

r--------........ @
, , , , , ,

\ ,
\ ,
\
\ , , ,

\
\ ,

®-

LEGEND

A - an item

AK - the key of A

B - another item

BK _ the key of B

C - a th ird item

}-----t~ 07' s -+-A Kt--________ +_t

07's is an abbreviation for a positive all binary ones.

39

UP-3853 UNIVAC III UTMOST 9 41
SECTION: PAGE;

(Coding Continued)

LABEL \ OPERATION \ OPERAND \ COMMENTS (
1

I
1+ CIO N TROL I I I l(

10O 61 , + 0 I I I
)

1+ o 12 o 3 I I I ,

100 5 j + 0 I I I ,I

IUS E 31 I I I ,\
S T A R,T IS L J BIU F C I I 1 I I I I I I , I I ~----l

1+ AIR E A I I I 1

1+ 217 0 0 I I ' I

1+ CIO N T R'O L I I I

IS L J FlO I F I 01 F AI I }
I

1+ FII L E A I I I ----l_

, IS L J FI R 0, , , I , , ,R,D, ,A I , , , , , I , , , , , , 1 1 1

, 1+, , , , I , I I I FII, L, E, AI , , I I , I , , , , I , , I I I I I , I I I I I I I , I I , I I I I II

, , IJ I EIO F,A 1 I j I I I I 1 I 1 , , , I , , , , , I , , , 1 1

I L X 1 5 FII LEA I I I
)

C 1 IS L J FlO I F I o I F BI I
\

FII L E B
/

1 1+ I I I

, , I S,L ,J , , FIR,D 1 , , , , , I , I R,D, B I " I I I I \

, I , I , , 1 1 j +1 FII L, E B 11 '1 j I , I , I I I I I I , I I I I I I I , , I I I 1 1 1/
IJ EIO FBI I I I

, , j Lj XI 114 , FJILIEB 1 , , , I I I 1 I I 1 1 , 1 I , , , , I , , , I I , I , ,)
C,2, I I I I I , , lSI LI J I , , I , , I FIO,PIO, I I I I , I I I I I , 1°1 PIO I ICI I I I I I I -'--.l I I I

I 1+ , I Fjl L E C j , I , , j , , , , I I I , I :~~1 C 3 I LA ,1 2 , 1 1 AIK j 1 , I , 1 AK ,:, I B K , ~ j

Ie. 1 2 BI K I 1 I 1)
L 1 1 J G LI 2 I I _---L-_-'_----L-L

, I I , , IS L J , FI R D,W, , , I I I I I , 1 RIDlW, 1AI "'"1" 1 1C , I I I I I I I I I I , ,\
1 1 1 I 1 1 1+ Fj I LEA I I I I I I , , I I I I I I I , , I I I I , , I I I I I , I I ,

1+ FI I L EC 1 j j I)
I IJ Ej ° F A 1 , I , , , , 1 , j , , 1 , 1 I I , 1

9 42 UNIVAC III UTMOST UP-3853
SECTION:

(Coding Continued)

LABEL .\ OPERATION \ OPERAND \ COMMENTS
1

\
IL X 1 5 F II L E A I I , , I I I I ! ! ! I , , ,)

IJ CI3 I I I I I I 1 I----L-...i. I I I I I

L 2 IS L J FIR OW I R 0 W BI CI I I I 1 I----L-...i. I I I I I

1+ F II L E B I , II I I I I I I 1 I.----L-...i. I I I I I

1+ F II L E C I , ,
IJ EIO F B I , I I I I I 1 I ---L-.L I I I ,

'~l IL X 1 4 F II L E B I I I I I I 1 I I I I I I 1----1-.-J

'J CI3 I J I I I I I I I.----L-L I I I 1----1-.-J

EO F A I IS L J FIC I F I C I F AI I I I I I I.-L-L I I I I I I

1- FII L E A I I I

,L X 1 5 (,(T W C 0 7 7 7 7 17 7 7,7 7 7 7 7 ~ 71717 7 j)) 0
?I s A

I I I I.-L-L I I I I~-

I I I I I IJ Cll I I I I I I I I I I I I I I I I I I 1

E 0 F B I IS L J F,C I F I C I F B, I I I I I I.-L-L I I I 1--1-..1.

I 1- FII L E B I I I , , 1 I I I I I I I I I--.LL I I I l--..LJ.i

I L X 1 4 (,(TWC 0 7 7 7 717 7 7 7 7 7 7 7 7 7J 7 7)) 0 7 I! S B K

I LA 8 (IJ E L 3) I I , , 3 B I I
j

I 1 I I I I 1 I 1 I I I I

I I I I IS A 8 LI 1 I I I I I I I I I.....L...L 1 1 1 I~

, I J I I , I
C

I
2

1 I I I I I I I I I I I I I L I J I J I I I I I 1 I I 1 -L....L 1 I 1 I 1 I
I

EI 0 1 FIAI I I I IS L J FIC II F I I I I I I , I C,I I FI I AI I I I I I I I I I I I.-L....L I I I I I I

I- F II L E A I I I I I I 1 I I I I I I I I I

I I I I L X 1 5 (I(T W C 0 7 7 7 71 7 7 7 7 7 7 17 7 7 717 7) I) I 0 /1 s -"" A K
I 1 1 I.~III I 1 1

I I I I I I I 1 I I J I I I I I I I I I CI3 I~ I I I I.......L-L

E 0 F B I IS L J I I FIC I IF I I I , I I I C] I j F~ B1 III l l I I I I I I~I I I I---L-.Lj

I- I J I Fli LIE B I I I I I I I , I L j I J I l I I I I I I 1 1 IL....L I I I I ----L-L(

IL X 1 4 (I(T,W C 0 7 7 7 717 7 7 7 7 7 7 7 7 717 7)) 0 7 I ' s " I" BIK)
I LA 8 , I (IJ E L 3) I I 3 B I I I I 1 'L....L , I, I~~ I

I I I I 1 I I I I 1 SIAl 1 1
8 I' I I I I Llll I ---1-L I I I

:~ I I J I , I I _l I CI3 I I I I I I I I I I I I I I I I ---1-L I I I

L 3 I I IS L J I I I FI CIO I FI I I I 1 I I 1 I I I I ICIOI FI ,Ci I I I I I I I I I I I I I I I I I

I I I I I I- I FII L E C I I , I I ,

E~;:
I

:;:;J IS L J Ej 0 J ,

: lEN 0 SIT A R T I

v--- -r- - --- --

UP-3853 UNIVAC III UTMDST 9
SECTION:

J. LABEL HANDLING

How labels are handled is a user option. The following example shows one possible approach.
This example involves reopening a file after it has been closed.

1'. Example

Given on tape unit 1 a file called the A file, on tape unit 3 a file called the B file.

PAGE:

Both contain 25 word items blocked at 20 items per block. The first two words of each item
is a key. The file identification of the A file is MASTERAA, of the B file MASTERBB. The
date of cycle of each is 630201. If the label is not as is expected, type out:

LABL IS tf td tr SHD BE pf pd pr

where

tf is the file identification on the tape

td is the date of cycle on the tape

tr is the reel count on the tape

pf is the file identification the program expects

pd is the date of cycle the program expects

pr is the reel count the program expects

Then accept a typein, which may be FORCE or RECHECK. If the typein is FORCE, sub­
stitute the file identification, date of cycle, and reel number on the tape for those that the
program expects, and continue with the program. If the typein is RECHECK, close the file
and reopen it. If anything else is typed in, reinitiate the typeout.

Merge the files to produce a new file, called file C, on tape uni t 5. File C is also blocked
at 20 items per block, its file identification is MASTERCC, and its date of cycle 630202.

Subsequent references to this example in later portions of this manual will refer to it as the
two way merge.

43

9
SEC TION:

UNIVAC III UTMOST

2. Flowchart

.6 0 , .80 ' .12 a

801

01

&<

@---
\ , , ,

\
\
\ ,

\ , ,
\
\ ,
\
\
\
\
\
\
\
\
\ , , , , ,

.40 h

OPO
e

.20 K OIF r0!u A r-----0
\
\
\
\
\

\
\
\
\

@-< ClF) A

OIF ~-B

\

\
\
\
\
\

\

Gr< elF) B ~----·0

re
~----------------------~6v

~----------------------~6v

t------------t 6v

UP-3853

UP-3853 UNIVAC III UTMOST
SECTION:

BcQ--@-01 p~-p' Hp~_PDHp~_PRH T~_T' kV
\

\

111-----_<

~S_P:H8o ~

~~p~-P'Hp~-PDHp~-PRHT~-T'~
\

\

15l-----_<

9 45
PAGE:

9
SECTION: I P.OE, 46

UNIVAC III UTMOST

LABL IS T F , T D , TR SHD BE pF, pD, P.B........CONSOLE

CONSOLE-K

~CB E L "'""-----tl CR EA TE ~ I. LABEL

A - an item

A K_ the key of A

P a - the expected A label

P6 - the file identification of P a

P~ - the date of cycle of Pa

P~- the reel number of P a

T a - the A tape label

T6 - the file identification of T a

T~- the date of cycle of T a

T~ - the reel number of T a

B - another item

B K _ the key of B

Pb - the expected B label

P b - the f i lei den t i f i cat ion 0 f Pb

P~ - the date of cycle of Pb

R
Pb - the reel num ber of ~

~----.~
LEGEND

Tb - the B tape label
F

Tb - the file identification of Tb

T~ - the date of cycle of Tb

R
T b - the reel number of T b

C a third item

P - a genera I expected I abe I

pF _ the file identification of P

pD _ the date of cycle of P

pR_ the reel number of P

T -
TF_

TD_

TR_

S

I

a general tape label

the file identification

the date of cyc I e of T

the reel number of T

a storage

ani n d i c a to r

K - a typein

of T

UP-3853

UP-3853 UNIVAC III UTMOST 9
SECTION: PAGE:

3. Coding

LABEL OPERATION OPERAND COMMENTS
72

IUS IE 1 5 I I I I

~A~K~~-L~~~I~~~~~~~Q~II~U~~~~$L+~_~I~~-L~-L~I-L~~~~~~I-L~-L~-L~~~I-L~-L~-L~~+L~
AREA I RE,S 25 I I I I

I-----L~L_L....l.-L_L....l.-'--L....L I-L-'--'--L~-LULS-LI E-L-~-L-L_L....l.-14 L-.L....lI-L~-L-L-L-L..L..l.--lIL_L-L...J--L-L...J--L...L-I_.L.LI-L-.L.L-L-L-.L~L-'--'-I-L~-L-'---'---'---'--'--'-+_ L..L-}
B K I QI U $ + 1 I j I I

F I LEA I ' I I I I I
\

I + I 2 5 I I I I

~--'--~L....l--'--~~_L....lI-L~_L..L-L~IL+~,~I~-L~_-LJI_2LIOJI-L1~I--'--I~I_LI -L-L....l_L-L-LI ~1-L_~~-L~_L~I-LI....l-LIJI_L....l-L....l_LI~I_L1 -L-L....l-L-L-L....l_LI~I....l-1-~
I + I CON TI R 0 L I I I

~-L-'--'---'--i-L-L~LI~....l.-.L.L-LLI-LI-LIDL,OJI-L~I--'--I...L-I,L4LIJIL'LI LI+J1_OL1 ~--LIJI-LLIJI-LI -LIJI--'---LLL-L~L..L....l-~-L-'--'--LLJ-L...L-II-L~~~~~~-r~~)
I + I 2 0 I I I I

I I I I I I I

~--'--~L....l--'--~LJ_LJI-L-L-L..L-L-L-L'~IL..L-L~-L~OL2~Ll~I--'---L-L..L-L-L-LJ-L~lL-L-LLJ_L~LJ'-LI~LJ-L~LJ--'--JI-LI ~LJ-L~~-L~~~~
~~~~~~I-LLL~~-L+~~I~-LLL~~I-LLL~~~L~I.-LJ-LLL~~I~~~-LLL~I~~~~~~-,--+~~ 

~-L~L....l--'--~LJ_LJI--'---L-L..L-L-L-L+~IL..L-L~-L~'LM~ALSJ'I_TLJ-L~LJ--'--....l-L-L-IL..LI-LLJ1_L-LLJ_LJI-L....l-LJ--'--....l-L....l-IL..LI-L~L~IL~I~~L-~l 
I + I ' E R AI A ' I I I 

I + I I I I I 

! I I I I I ! LAB EI L A I I I I I I 

I 1 2 ,I + 0 I I I ,( 

F I L E B I + I I I I I I I I I I I I I ! I J I \ 
I + I 2 5 I I I I J 

1---l-'----'----'----'----L-L-1-L_ILJ-'--'----'----'----LJ-'-_+ L-11-'----'---'---"--L-1_C-'-O-'-N I T I R,O I L I I I I I I I I I I I I I I I I -1{ 
I-----L-LLJ--'---L-L..L_LLJI--'---L-L-L-L-'--'-_DLOJ)I-'-~._L~LLJI_+L....l_LLJ_L....l_L....l~IL_L....l_LJ_L~_L....l_L....lI_LLJ_L....l_LJ_LLJI-L~L....l_LLJ--'---L-,---+_LJ) 

I + I 2 0 I I I I 

I + I I 1 I I 

I + I 0 2 0 31 I I I 

I + I I I I I ) 
I + I'M A SIT ' I I I 

( 

I + I E R BIB I I I I 

I + I I I I I 

I + I LAB ElL B I I I 

IDOl ,I + 0 I I I 

~F~I~LLE~CLJ--,--~,---~I--'--....l-L..L_LLJ~+LJI-LLJ-L....l-~_LLJI--'--~L-L_LLJ-L-L-IL-L-L-'--'---'--~LL-LLJI_L~~LL-LL....i-L1 ~I-L-'--'---'---L-L-'-_LLJ--'--~J) 

I + I I I I I 

I + I I I I I 

I + I CONT1ROL I I I 

IDOl ' 1+ 0 I I I I 

I + I 0205 1 I I I 

I + I I I I I ) 
I + I'M A SI T I I I 

I + I E R CI C I I I ) 

I + I 0000 I I I 

I + I LAB EI L C 1 I I 

----- -- ---- -

47 







9 
SECTION: 

50 UNIVAC III UTMDST UP-3853 
PAGE: 

(Coding Continued) 

LABEL i\ OPERATION OPERAND COMMENTS 
72 

p-'---'---__'___-'-L-JL..J._L...J�L___L_L___L__'__'_______'__'_-L+___L__'_�-'-------'-----'--L-L-_'_-'-------'-----'-_-'-------'�__'_-L___L_-"-_-'----'-"--L, -,I-----'-----L-' ~-'-~ ___ L' ...J'L---LI-L-'--'--'-' _1,-"---,1 __ IL---LI-LI -,--,--,-I _'L-_L...L-L-'--'--'-------''-t_-'--'--\ I 
!--'C::..L.::.2.LB::...L__'___-'-L-JL..J._L...JIL___L_L___L__'__'_______'__'_-LS___L_L...LIJ_LI ___L_-'-_'_______'-----'-I_FLI C-'I,~I.t!l_L_L...L~~---'---.L~L-L_LLLs..!..Y~~l I I I I I I I_L-L___L_-LI__,_I -'----'--_LL.L~~~I 

~---L-l-L-L.L--L-L...L...LI-'----'-L-.L..L-'--'---'---'-LI--'--L-L--'---L-L--'--'-L-'--'EI_A L-"---'---L-,-_L-L- I I I I I I I ~ I I I I I I 1-1.-L1 ___L_-'-.L...JIL___LI ____ LL.L _~ 

~--'---'-----'----'-.L...JL..J.-'-...JIL---L-L---L--'--'-------'--'--LJ---L--'-I-'-------'-----'--'-~-'-CL1-'--'--'-------'[-~.-LI-'-1 -'I--L-'-~_'____~--L-'-_'_-'--'-------'I--'-I-'-I-'I-----'-I-'-I-'I--'I_L 1 I I I L...L-L-'--'-~-+-'-~ 
LABELB 1 N 0IP I I I 1 

C 1 2 I L AI I L E[B .19 1 T B F -1- - T F IT,BID, -1-,-~D~-L...J-----.L-+_-L...J4 

J L AI I L EIB • 26 I T B R -, - - T R I I I 

~L---L-L-L~L-L..J.-'-...JIL..J.-'-~-'--'-------'-----'--'-S-'-A~'I-'--'-1-'-5~L---L-T-'-A-'-P-'-ELIL-LA---L-B-'-ELL-'--'-----'-------'--'--I~--L_'__'__'__~__'___'__'I__'_-L_'_-'--'-------'--' _ __'_-'I--'-I-L-L--'-~_~~~~ 
I L A I F I LEI B + 1 3 _,_______,1_,_1 __'__'__'__L-LI_B-LI B-LI F-'I__'_I _-LI --'I_--LI __'_I P-'I_F-LI _LI ;-'1__'_1 _P LIB_1I_R-L1 -LI ...JIL___LI __ ~ R__'__'_-'--'-tl_----'-'-4 ' \ 

1 L Al 2, 0 A T EI B I 1 1 ( 

I S AI 1 5 PRO GI RAM L A B~-LI _'_-'--'-------'-----'-_'_-'-_'_LI -,I'-"-I-L' -,IL---LI--LI -'--' _ _'__LI ~I--LI _'__'__'____, 

I S LI J I N P UIT LAB ELI I N P UTI LAB E L 

~~~~~...L...J~~I--L-'-~-L-'-~-C~I-L~8-L,...L...J-----.L~-L)-'-~I-L-'-~-~-'-~I~I~-'--L-'--'--'-~-Ll°_'I_L_'_-'--'-L~I_I,__'_I-L---'--'__'__'_~I_ ~-L---'--'__'_~_~ 

~-L-'-~--'--L--L...JL-~IL--L-L-'--'--'--'-~J~E~I--'-~-L...J--'--L·~LLA-'B-1LE~LLB-'-~--'-~-L...J~-'--[L---L--'-~L--L--'-_'_.L-'I--'-_'_L...J--'--L~_L__L__'_~L-'-L._~.__'_...L...J-----.L-+_LJ~\
I C 1 8, 1) 1 1 11 1

I--'-'-L-'-~--'--L-~~I_L_'_L--L__'_-'-.L-'~J~E~I__'_~~L---L-LL~~_L_'I_L_'_~__'___'_~L__'__IL_L__'__'_~_L_'__'__'I__'__'__LL______.L~--'-_'_I_'_-L-'__'_-'-_~-L-'-L--L-+_-'-~

~--'--L--'----'-L...JL..J.-L...JIL---L-L-'--'-L...JL..J.-'-L-LA~I-'---'----'-L...JL..J.-'--L~C-'.L14-LB-'-L-~-...L-1IL---LI-LI -,IL___L-L__'___-LI_LI ·-'1_4.J..:I_BLI_1I__,_I_L_1I__'_I_L-'--LI~I_-'--LI_L1-'--'-L...J~~-L-'--'-~--L-Y
I S A I C 4 1 I 1

~L---L-L-'--'-.L...JL---L-L-'IL---L-'--'--'--'----L---L--LL--'-A-'I--'--L-'--'----L--'-F-'----I.LL-'-EL1B-L'-'-1.L4--'--'--LI-L1_'I__'_I-LI _,I__,_I-LI ...J'--L,_PL,B_,,_R-L'_LI-...JI_--L'_-L,_,I_S_,_'_LI-'I--" _ _L-'--'--'-------'-----'---'--' ~_L__'___.L...J~_L~\
I S A I I I I I(

1--'-'-L-'-_'__'--'-~~_____.LI_L_'_~--'-_'_~_L.LA-'I__'___'_~_____.L_L-'-~C_:LI1_'_2LB_'_)~__'___'_...L...JL__'__IL_L__'__'_L·_'_1L2_'__'__'I__'__'__LL______.L_L~_L--L_L1 -'I__'_-'-L-~-'--'-L--L-+_-'-~

~-L-'-------.L~~~~I--L-'---'--'--'--'-~~SLA~I-L~~-'---'--'C_1-L2-'--'--'I--'--'-~-L-'-~-I-----.L-'--L-'--'--'--'--'--'--'I-L-'-L-'__'_-'-'--'---'---'--'I__'_I_'_~_~-L---'--'__'_~~~

~~~~~~~~IL---L-'---'--'--'--'--'--'-J~I-L-'-~-'-...L·-'-L...LA-'-B.LIE-'-L.LB-'-L-'-L-'-~-I-----.L-'---'--'--'--'--'--'--'--'I_L_'_L-'_L_'_I--'-I_IL___LI-'I--'-_'_~I. _~--'---'--'--'-~~~) 
L 5 I LAI 15 TAPEILABE I 

I S A I 1 2, I L EI B I 1 3 I I I 

I I J [ ! I I I I I ! I 1 I 

I I 1 I 

~--'--L-'--'--'----~--'--L-1I--'--L-'--'--L..J.-'-L-LA~I-'--L-'--'--'--L-'.-'(.LL--'-A-'-.L11--'---'-'-.LF--'-I-'-L~~ I 119 , ) I I I L:_L~_...L2_j'LA~I--,-I-'IL-'.I--'-1 __,_, _,1__,_, -'~_'__'__L---L_'___'_...JI __ L-'--'--'-~_'____'--t_--'---'-{ 

~--'--'--L-'-L-~-'--L-1I--'--L--'----'-L..J.--,--=-SLA:...lL-'---'-~-1~2, 1 I I I I I _L_L_L_,-.L~~.--'--'--LI_LI -,--,-1-,-1 -ll--'---"--I ...J1--'---'---'--'--_LL_L_L_L..LJ __ ---.L..lJ 

I J 1 I C I 1 12 I 1 I I-L---L-l--,--,-I -<-I--LI --,-_,_~I~I. I I I I I '---1--"----'--'-L-LI -l1-L-LL~--L-L{ 
~D-'L-A-'-T-LE-'L-B-'-L-~--'--~I--'---'--'--'--L..J.--'--·-'--'I--'---'--'--'--L-'.-:-'--6L3-'-°.L12-L°-'--'---'--'-~--'--'--'--L-,-__,_--,--,-_,___,__,__,_--,--,I__'_I_LI-'I--'.I_LI-lI--l_--'-I_1I__'___'_-'--'--L-L---'---.L-L-'--'--'-4--L-Y 

I S LI J F C I FI I C I BI L } C" B 

I -1 I L EIB I 1 

I 1 C I I 1 

I N PUT LAB E LI N 0 1 P I I 1 1 

~--'---'--'-.L-1--'---'--'-.L_'IL-.L--'--'-.L_'__,_--,-L-,--A.L_'I--'--L~L-'_T.LA__,_P-,-E_LIL_,_ALB__,_E-,-L--"---'---'--L_'__L-'I--,---,---'--LT-'-.L...JL_'__PL-'I--'--'--'--L-' __ --'--'--L-'I--'-__'_-'-L-L-l_L-'--L_'-f_-'--~ 
I C I PRO GI RAM LAB ELI I 1 

~--'--'--L-'--'--L-L-'--L-'--'--L-L--'--L-'-.J..:I J'---L1 E:...lI_'_-L_'_L...JL-'.I..::.L.J..:1 7--'-1 ~,-,-I_'L_'_'-'-I --'-I -'1_'_' _'_I -'1__'_1---,--1 ~I I I I 1 1 I I I 1 1 1 

~--'---'--'--'--'--L-'---'--lIL..J.--'---'--'--'--L..J.--'-~SLA~.I--'---'-1~2~L-'.~M..LE~S:...l..::.S.LIA~G~E.L0~U~T-'--+~__'__L-'I--'-__'_-'-~LLA~B_'__LLJI..::.I~L-'_T_'__F~~_TLD~,_'__ILT-'-R_'__~S.~__'_B~El_LP1~F~,y 

~--'--'L-'--~---'---'--'-.L-1I--'---'--'-.L-'--'--LS-'-A.L-1I--'--3L,-'--~-D.J..:A--'-T-'--ELIA-'-NLD--'-R-'--ELE-'-L-'--L-'-~1--'-__'__'__LP-'-D~--'-_PLIR-'-L-1--'---'--'-Cl0-'LN_'__SLI'O-'-L.LE__'_-'-L-L-l--'-_'__L_'_;--'-~ 

1--'-'-L-'-~--'---'-~--'-I__'_-'-L-l-L_'__L_'~S£L~I~J--'--'--'--L~CE~D~I~TcID~ALT~ELA~N~D~R~E~E..LIL~~--'--L_'_-'--'-L~I__'__'_L-L___L_L-'--L-'_L-lI--'--'-L-.L_LJ-L_'_~-f_~y 

I L All 4, 0 U T PI UTili 



UP-3853 UNIVAC III UTMDST 9 
SECTION: PAGE: 

(Coding Continued) 

LABEL OPERATION OPERAND .\ COMMENTS 
72 

I AI M SSIAGEOUTt I I I 

~-L-L~~~~-L~I~-L-L~L-~-LL-LA~'I-L-L~~~-P~LO~G~IR-LA~M~L-LA-LB~E~L-L~L_I~_L-L~L_~~_~I~_L-L~L_L~I , , , , , , 

I S AI 12M S SI A G E OUT + 1 0 I I I , 

I , "S,AI ,3"" ,D,A,T,EIA,N,O,R,E,E,L, " " " ,I ! I ! I ! I I I ! ! ! ! L ..... L-L 

I Loll 4.0UTP1UT 1 I I 

I S Al ME S SIA G E OUT j 1 I I I ! I ! ! L_-1 __ L-

C 1 7 I Loll (MESISAGEOUT')I I ,I", "l--L_L c~, 

I + I 0 7 4 01 0 0 0 I I I, """ L . .L ..i_ L 1 
1--l-L--1-L....l--L-L~L-.LI-L-'--.-~---'---'--'---'_j -'---l1L-L-L~L-l-L°--1-3 L7--,-7L 17--,-7-'---'.L_~-'--L-.L---,---,-~I--'----'--'---'L-L-L-'--L-.L_L-.LI---'---'--'---ll--'---L-'--lL-lI-L~.L...l--'-~ 1 _ 11.. 

~~~~~~~~I~~~~~~~I~~~~~C~I_7~1~~~~~~~I~~~~~~~~I~~~~~~~1~~~~~~~~~) 
I Zt T Y P Ell , N, I I , , , , ,C,O,N,S,OIL,E, ,-,-,- '~L.-,I_L'~'--L-'-' -L1~-1. 1_1 .L_

I-L-,-6-<-_'--'--'.--'--'--'--LI-,-I-'---'---L-I-'I--L--'-'-'I--L-I_IL-,X-,I_C-LI-,-I0-"_'-LI-,--,,_T-LI_Y.L,P-,,_E-LI_I.L'N-"--'.I--'-'-"'---'-'--L--,--,---,---,--,--,-'-'-I-,I--L-I--'-I. -,1--'.-,--,1--'.1-,-1-,1,---,-1--,--,-[~ I I I I I ! ! ! 1. ._J _..l_

! I ! ! I I ! I , I I ! I 1--l-L~L-L-L-'--L-l~IL-L-L~_L--,-~_JLE~I---'-~L-'--L-,-L-L6~LLI I

~-L--'-~L-.L--'----'-~L-'1--'----'-~L-'~--,-L~AL-'I--,----,-2~'L-'-M-,--ELS~SLIA-LG-,--EL-.L-N-'---l~-L~L-IL-l--'---'-~K_L~:~~~~ 1 I 1 !l!!!~.:..-.----.L __L

1 C 1 2. (. F 01 R C E') 1 I I

I--'-~~---'-...L_L-'--'--~ I--'-~L-'-~-'---.l---,-E-,-: 1-'---'--l--'--'--LL-,-S-'---'---l.I--'---'--JL..L~-'---.l--,--,--IL..L_'__L-'---'--'--l--'---'-L-'-I-L--'--l--'-_'__L-'---L.~.L--'-. ..J.. _'_. -'._'--1 1 j .L

1--l--'--'---'---'L-L--'--'--L-'.�---'--'--L....l---'---'----'---'_C-'--�L-L--'-1-'--2L·-'--L(-'--· -'--l_ELI'C--,---HLE--,---C-,--K~_' L)-'--L....lI---'---'--'---'L-LK--'--'--L-'-_RLIE-,--CLH-,--ELC--,---K-'--L-L.L 1 I I I I '---"--,--L j L

~-L-L~~'---L-'-L-IL-'-L-L~L-~---,---J LE~: I---'----L--'---L.L~.~. I I

I--'---'--L~~-'--L-'___'__L-'I___'_-'--'--'---L-'---,-_J L-'1---,--,--,--,--,--,_C-,--1 .L7-,--,--1'__'--'.--'-->--'--'---L-'_-,---I'--'--'--'--'---'--L-'--'._,__,I---'-~L--'-l.~ .L.L.-'-~.l
L 7 I Loll (0 I) I

~---'---'-~L-'--,----,-~-,---,IL-L-'--'--'--l--,---,-J-'--'---ll--'--'--'-L-'L*~ILN-,-PLIU-LT~L--,-A~B~E-LL~L-'-~ILJ-L_'_~LJ_L--,-~I_L-'-L_L-.L-'-~-'--L-.Ll_L~~LJ---'--'---'-.'--'.--'­

~L-,-SL....l--L--'--'--L-L-,-~I-'--'-~-L-'-~LL-LA-IL-'.-'--'--L-L-'--'--L(--,---I-,--,I)--'----'--'--LJ-L-'--.L...lI-L~-'--'--'--'--'---L--'---L-.LI--'--'---'--'--'--L-'--'-.~-'_~-'-L~~

~---'--L-L~L-~--'--~I-L-'-~-'--LJ~J-'--'I---'--'--'--'--L-'-~ ,N 1 PI U 1 T,L 1 A,B 1 E,L 1

L 9 I Loll S (2 1) I
1 1

I J I * 1 N PI U T LAB ELI I I

I--'~_L-L~L-'--'---'-_L-'I___'__'_-'--'---'--'--L--'-_'__I -'--L-'--'--.L~L-Ll -'---'---.L~-'I--'-I -,1-1.--'--'--'-1 --'---.l_L_ ~.-'--'-_'__'--''---'---'-I -Li_L.L-L--L -' .. _'_

1--'-~L-'--L~--'--'--lI-'--'--~...L_L-'--'--L-LI-'--~_'__~__'__'__l_L-LI_'__L-'-__'_~--'-~I-'-~~_'__'__'__'___'__'I_'___'___.l__'__'__l_L~._'_,_'__L_L_'__"_

I t I I I I It I I!....J-~

~T-'LA~PLE-'LL~A-LB-'-EJ-LL-LJI~-'-~-'--LJ--L--j~I~-"---'L~'--'--'--L-'-~L-'~-L-L~~'--'-'--'-~L-L-'~-"---'-~'__'__'__L_L~_'__L,~._'_I-L--'-~~I~I_ ~

I + I I I I I

~~-'--'L~L-LJ-L-LJI-L-L-'--'--LJ--'--jLJI--'--"---L-'--'--'~-L-L~IL-'--'--L-'-~~LJ-L-ILJ-L-'-~-'--LJ--'--'--'I--'--L-L~L_L~__"__~LL_L_'__'___'__'__1_

~--L-'--L~L-LJ-L-LJI-L-'-~L-LJ--L_jL-'I--L-L-L~L-'--'--L-L~IL-'--'--L-L~~LJ-L-I'--'-L-L~~L-'---'--'--'I--'--L-L~_'__L~l I I I I l~ _L

~P~RL°--'-G-'--RLA-'-M~L.LA-'-B~IE-LL-'--L-1--'---'--'-L+-'--'--IL-'--L-'-~L-'--L~-'--IL-'--L-'-~L-'-L-'-~IL-'-'-_'_~L_'_L-L~I_L_'_L_L_'__L-L~-'I--'-I_L-'-~LJ-L~
MESSAGEOUTI + 1 LABIL I 1

! ! I I ! ! ! !

1 j 1 Sill I

IDOl I t I I I

I tiS HI D • I I ! I ! ! ! I I

~~1---'-~L-L~1---'-I~1---'-~1---'-~L+~I-L~~1---'-~LB~E~l-L~-L~-L..L--L~ILL~-L~-L~_1---'-I~L-L~1---'-~1 I I

I--'___'_-'-_'L~L_'--'--L-_,--,I--L-_"__-,-~~--,-_DLO~'I--'--'--'L-'-'--'--'--L·->--,I_'L_'--'_L-,--,-~,--,_-,--I'--'_L_"__-'-_'__'--'--'_L-'I--'-'-_'_-'-L-L~ II! 1 I !

I j I 02 0 1000 0 0 I 1 I

! ! !

~E-L0~I LT-L0~A_LT-LE~A~N_IL IO~R~E_,_E~L~~~_NLO~II_P~'--'___'__L-L~'--'L..LI_L-L~-'--L-'~_'_-'-L_I~_L_,_-,-~,__,--,-_,__,I--'-_L-L~-'--~--'- . 1 I 1 I I ~_"-___ L_L

I--'___'_-'--'--'-L_L-'---,-_,--,I--L--'--'-_'__'--'--L-L-,-A-,I--,--,-S->-'-,-,--,,-O-,-A-LT-,-E-,:I_A-"-.N->-°..LI_R-"-.I E-'-IE-,,_L-L'_-LI 1--'1--L-1-'-1 --'I--L--,--,--,--,--,--,--,-I ->--,1--,-1 -,--,--,---",--,_1 _l_L..1~ .L_L 1 _1 "_1 L

~-L-L~L-'---'--L-'--'--IL_'__L--'--'--L_'_-LL--,-A-,--IL-L-'-~-'--L(-'---O L)_,_-,--IL-L-L--'-~'--'_L-L-'--I LJ-L-L-'--'--'--'--L-LI-'--'--'--L-L_L-L--'-_..1l-.L.L _"--. l

~--L-L-'--L-'---'--L--,-~IL-L-L--'-~L-L-LD--,-S~J'R-L~IL2--'--'--L-.L-'--LL-IL-L--'---'-~L-'-L-L-,--I'--'--'--L-'---~-L-L~I--,-~L_L-L--'--'-_-'--ILiI-'-1 ~I_~~.l .J_L

I A NID T W CI 0 3 7 7 7 7 7 7 714 0 0 0 0 0 0) I I

~---'---'---~---'--'--'--L....lI---'---'-~--L--'--'--LS-,-A_'L IA-'--Ll-,-2 -,-,-,---,-O_,_U~ U 1 Til 1 1 I 1

~'--'--_L--,-~_,__,--,--,-_,__,I~_'_-L~,__,__,__L LA-L' I ~ 1 I D,A, T,E 1 A, N,D, R I E I E I L, I ! I

! I

.1 1.

~-L-L~~L-LJ.-L_ILJ.-L--'-~L-L-.L-LD-LS~I-LL-LS--'-.'..L.L-L~_L.L.LJ. -'I~I_LI ~I--'-I_LI -LI ~L_~_L_L-'-I---'--I -LI ~I---'--I_LI ~-'-LI -'I__,_I_LI ~I--LI_ -1._ j l_LL 1 . ..1_.1 -'-. j L. J i.

1--'--'--'-'--'_L--'--'--L-LI-L-,-,--,--,--,--,--,_S~A~'IL,A-,--,-1-,-2-'--'-LT-,-SL3-,-,--,I--'--'-~~-'--'-LJI--,--,-~--,--,-~~_I~-'--'-~--'--L~ 1 I I

I L AI S. T S 1 I I I I

)

~j
)

, '{

Sl

9
SEC TION:

52 UNIVAC III UTMOST UP-3853
PAGE:

(Coding Continued)

LABEL ,\ OPERATION OPERAND COMMENTS
72

~-L~~-L~~_~I~~~~-L~SLA~I-L~~-L-L°~ULT~P~ILU~T~~~-L~~_~I-L-L~~-L~~I-L~~-L-L~c-LI~I~-L~I-LI ~I.~~~~-L_~
I I *EDIITDATEANDREIEL I

1 t I I I I (

DATEANDREEIL + I 0, I I
I I I ! ! I ! I I I I ! I

I + I I 1 I I

I , ! I I I I I ! I I

OUTPUT
I til I I I I

T
! !

T S 2

T S 3 I t I I I I I

rT~Y-LP~E-LI~N~-L~I~-L~~~~_t~l-Li-~-L~~B~U~SLIY~~-L~~-LJ-LiI-L~-LJ-~-L~I-L~~-L~~.-L~-L~I-LI~I-L-L.~~4-L~

~~-L~~L-L~-L-LJ-L-~-L-LJ-lIL_ILA~I-LI_'Ll~I_2ll~'1~1_2ll'-L1 ~1-L1_2LI ~I-LI-LI ~L-LI~I-LI-LI ~'-LI-L' ~I-L-LI ~I-LI-LI~I-LI-LI~I~-L~I~I-LI.-L~~~-L~I-L-L.~L-~-L_~
I S AI 1 2 , 11 1 I)

~l-L~~~_1~~l-L-L-L~~1~-L~~*~0~, ~1~l~~~~~~I~~~-L~LLI~~~-L~LLI ~~I~I~I I,-L-L~-L+~~
I t j 1 1 I I (

rM~ELS-LS~A-LG~EL-ILN~~I~-L~~-L-L+~j~-L-L~~-L-L~~I-L-L~~-L-L~~I-L-L~~-L-L~LJI-LJ-~~-L-L_~LI ~I-L_I~I-L~I.-L-L~~~-L~
rL~ALB~E-LL~C~~Ll~I-LJ-~-L~~~NLO~)I~PLl-L~-L~~_LJI-LJ-~-LJ-~~ILi-L~-L-L~-L~I-L~~-LJ-Ll.~ILlI~I-LJ-~~I-L-L~-L~L4

~-L~~-L-L~LlI-L~Ll-L~~_LLA~I-L-L8~'-L~~-LO~)LJI-L~~-L-L~_~I~-L~LC~RLE~ALT~'I~E~~L~A~B~E~L~L~I-LI ~I-L~~~I-L-L~-L~L~

t--"-L-L_-L-..LI -LI ~'--l.'-LI -L--L-LI ~I--il-LI ~I~I-LI ~S,_A...1I-L~'L8~IL' LI ~1--iI_F LI ~I 'LL...1IE-L1 C~I~t...1I_1 LI 6~--L-LI -LI ...11-L1 -L...1I-L1 ~1L...11-L1 _1L...11-L1 -LI .ll-L-LI ...11----L1 -LI ...11-1.1 -L,~LLI ...11-1.1 -LI ~...11. ---.L...L-'------l 1,_-,---" 'f--L_~~--\
~~~~~~~~I~~~-L~~_S~A~I-L~~~~F~I~L~E~jC~+~2~7~-L~~~I~-L~-L~~-L~I-L~~~~~-L~I-L~~-L~~~~~~) 
~~-L-LJ-L-~~_LJI~-LJ-~LJ-L_LLA~'I~-L1J-2L-LJ_FL-ILL-LELIC-Lt~1..L3-L-L-L-~--1_~1-L-L-L-L-LJ--1-L~I-L-L-L--L-~~-L-L~I-LI~I~I-LI~IL...1I-L-L.l-LJ-+-L_~ 
t--"~_~-L~I-LI-LI ~I-LI-Ll ~..LI-LI ~L-LI ~1-LIS-LIA...1I-LI-L18~IL'LI-L~I_F..LI_ILIL...11_ELIC-LI+...11_1 LI7-L1 -L-L-LI~I----LI-Ll ~I-LI-LI ~LI-LI ~1~1-L1~1~-LI~I~I-LI-L...1I-L1 ~~I-LI-L...1I-LI-L~I-L-L.L-LJ-+-L~11 

S A I .(, F I L E Ie + 2 6 I I I 1 I 1 1 1 1 1 

~-L~~~-L~~I-L~~-L-L~_S..LA~II-L-L~Ll-L~I-LL~ELle~+LJ1_9~-L-L~L~ILl-L~~-L~~I-L-L~Ll-L~L~-L~~I-LIJI--1I-L-L~-L~~~ 

~.LI -L--'---'---"--'~-L--'-L-LJ~-L~I_J..LI -LI --'1--11 -LI ~-L-! i * I L I A I B IE! Lie I ! I I I I I I I I ! I I I I! I I I I I I I -L..L.J.-~--+--,---J-l\ 
I---'I~I-LI--'I~I-LI-LJ-J.-~-LI~I~-LI_I~I-LIE-LIN~I_Dll-L~I-LI-L~I_SLIT-L,A~,_RLIT_1~I-LI-L~-L-LI ...11-L-L1 ~I-LI_ILJI-LI-LI ~I-LI-LI ~l-LI-LI ...11~-L~I-LI-L~I~I-L1 ...11~1-L1~1~!-L~ . .L--'-L~..L-jI4} 

I I I 1 I I I ! I 

I I I I I I 

Exercise 

Given on tap e unit 1 a master file, on tape unit 2 a change file. Both are single reel 
files; are blocked at 20 items per block; and contain 17 word items, each of the following 

form: 

WORD 

0-1 

2 

2 

2 

3-7 

8-16 

DIGIT 

1 

4 

5 

DATA 

Policy Number 

Billing Code 

Mode Code 

Identification Code 

Name 

Address 

I 



UP-3853 UNIVAC III UTMOST 9 
SECTION: PAGE: 

In both files there may be several items with the same policy number. Only those items with 
an identification code of 1 are to be acted on. All master items with an identification code 
other than 1 are to be written on an updated master file on tape unit 3 with no other action 
taken. Change items with an identification code other than 1 are to be skipped. For each 
policy number in the master file, there is one and only one item with an identification code of 
1. Both input files are in ascending order by policy number. If the mode code of an active 
change item (a change item with an identification code of 1) is 1, substitute the name field 
at the change item for the name field of the active master item with the matching ploicy 
number. If the mode code of an active change item is 4, substitute the address field of the 
change item for the address field of the active master item with the matching policy number. 
If the mode code of an active change item is other than 1 or 4, delete the active master item 
with the matching policy number. An active master item mayor may not have an active change 
item with a matching policy number. However, no active master item has more than one 
acti ve cha nge i te m with a ma tch ing policy num ber. If the policy number of an active change 
item is not equal to the policy number of any active master item, add the change item to the 
master file. All items written on the updated master file that have an identification code of 
1 and a billing code of 0 are also to be written on a billing file on tape unit 4. Both output 
files are single reel files and are to be blocked at 20 items per block. The file identification 
of the input master file is MASTERAA, the date of cycle 620303. Of the change file CHANGEIN, 
620303. The updated master MASTERAA, 620304. The report REPORTOT, 620304. If the 
label of an input file is not as is expected, type out: 

LABL IS tf td tr SHD BE pf pd pr 

where 

tf is the file iden tifica tion on the tape 

td is the date of cycle on the tape 

tr is the reel count on the tape 

pf is the file iden tification the pro gram expects 

pd is the date of cycle the program expects 

pr is the reel count the program expects 

Then accept a typein, which may be FORCE or RECHECK. If the typein is FORCE, sub­
stitute the file identification, date of cycle, and reel number on the tape for those that the 
program expects, and can tin ue with the pro gram. If the typein is R E CH EC K, close t he file 
and reopen it. If anything else is typed in, reinitiate the typeout. 

5. Test 

A single reel, unlabeled inventory file mounted on tape unit 1 is blocked at 50 items per 
block and contains items of the form: 

WORD 

o 
1 

2-9 

DATA 

NNNNNN 

o HHHHJ-i 

xxx XXX 

53 



9 
SEC TION: 

54 UNIVAC III UTMOST UP-3853 
PAGE: 

where 

N is the stock n urn ber 

H is the onhand quantity 

X is other data 

A single reel, unlabeled sales file mounted on UNISERVO tape unit 2 is blocked at 250 items per 
block and contains items of the form: 

where 

N is the stock num ber 

WORD 

o 
1 

Q is the sales quantity 

DATA 

NNNNNN 

o QQQQQ. 

The items on both files are arranged in ascending order by stock number. There may be more 
than one sales item for a given inventory item. Produce on tape unit 3 a single reel, un-
la beled updated in ven tory file blocked at 50 items per block. The sales items will exhaust 
before the inventory items. 

K. PROCESSOR ERRORS 

The Processor checks itself against the occurrence of certain failures, or errors. If the Processor 
detects the occurrence of such an error, a processor error interrupt occurs. The contents of the 
control counter are stored in storage location 16, and control is transferred to the instruction 
stored in location 17. As a result of a processor error interrupt, the executive routine will type 
out notification of the processor error, the locations at which it occurred and will enter a closed 
loop to await operator action. 



UP-3853 UNIVAC III UTIVIOST 9 
SECTION: PA GE: 

L. RERUN 

Under certain circumst8nces, such as the occurrence of a processor error, it becomes necessar~ 

to start the execution of a program over again. If the time to execute a program is long, it may lH' 

undesirable to always restart the program from the beginning. To protect against such a necessitv. 

points can be set up during program execution at which the program can be "restarted", 

These points are called rerun points. To set up a rerun points, it is necessary to make 

a record of: 

1) The state of the program at the rerun point. 

2) The tapes mounted at the rerun point. 

3) The position of the read write head on these tapes at the rerun point. 

All this information can be recorded by writing the pertinent contents of the memory on tape. Such a 
record is called a memory dump. After a memory dump has been made, if rerun from the memory dump 

becomes necessary, all that is required is to reconstitute the store from the dump, mount the propl'r 

tapes, and reposition them. 

Taking memory dumps, reconstituting the store from a memory dump, and repositioning tapes are all 

functions of the executive routine. The s ole program mer res pons i bili ty is to re que st memory dum ps 

from the executive routine at those points at which the setting up of rerun points is desired. Tht' 

request is made by the follow ing calling sequence. 

LABEL 

where 

a 

n 

,\ OPERATION OPERAND \ 

is the label of a list of labels of the zero words of the file description tables in the 

program 

is the number of entries in this list 

After the executive routine takes the memory dump, control is returned unconditionally to the 

return line. 

55 



UP-3853 UNIVAC III UTMOST 13 
SECTION: PA GE: 

13. SYMBIONTS 

The UNIVAC III System can be used in one of two configurations. 

1. As a concurrent processor with online peripherals. 

2. As a tape processor using the UNIVAC 1050 System as a satellite to handle peripheral opeT<.Jtion.,. 

The purpose 0 f this chapter is to dis cuss th e us e of the UNIV A C III System in the fi rs t of thes e con 
figu rations. 

To develop the principles to be stated in this chapter, a simple, abstract computer application is 
assumed. This application has the following characteristics. A transaction file is brought to the 
computer in the form of a card deck. The transaction file is applied to a master file for updating pur­
poses. The master file is stored on magnetic tape, and the updated master file is produced on the same 
medium. As a by product of the updating process, a printed report is prepared. 

A. MAGNETIC TAPE COMPUTERS WITH OFFLINE PERIPHERAL OPERATIONS 

One common computer hardware configuration is a central processor, the only mass input and out­
put of which is magnetic tape. Typically, such a central processor is serviced by a collection of 
peripheral devices each of which has the capability to perform one conversion function between 
magnetic tape and some other medium. Thus, there is a card to magnetic tape converter, a printer 
driven by magnetic tape, a paper tape to magnetic tape converter, a magnetic tape to card con­
verter, and so on. Or the Central Processor can be serviced by a satellite computer, which com­
bines in its featu res the ability to do the required con vers ions: card to magnetic tap e, rna gnet ic 
tape to printed copy, paper tape to magnetic tape, magnetic tape to card, and so on. The UNIVAC 
I and II Systems are examples of such computers with special purpose input/output devices. The 
UNIVAC III System used as a tape processor in conjunction with a UNIVAC 1050 System as d 

satellite is an example of such a computer with a satellite. 

On such a computer configuration, the example application described at the beginning of this 
chapter is implemented in the followin g way. The transaction card deck is con verted to tape. 
either on the special card to tape converter or on the satellite computer. The resulting trans­
action tape is applied to the master file by the central processor. The output of this processing 
is an updated master file and another magnetic tape with the information to be printed in the 
report recorded on it. This report tape is then used to produce the printed report. either on the 
special rna gnetic tape driven printer or on the satellite computer. A process chart of this proce­
dure is shown in Figure 13-1. 

1 



13 
SECTION: 

UNIVAC III UTMOST 

CONVERT 

UPDATE 

PRINT 

REPORT 

Figure 73-7. Process Chart for a Magnetic Tape Computer Serviced by 

Offline Peripherals or Satellite Computer 

UP-3853 



UP-3853 UNIVAC III UTMOST 13 
SECTION: PAGE: 

B. NONCONCURRENT COMPUTERS WITH ONLINE PERIPHERALS 

Another common computer configuration type is one in which, in addition to having magnetic tape 
input and output, all the peripherals units, the card reader, the printer, the paper tape reader, the 
card punch, and so on, are online to the computer. In such a configuration the central proeessor 
can read information from magnetic tape and directly from cards, paper tape, documents, and so on. 
lt can write information on magnetic tape, print reports, punch cards and paper tape, and so on, 
directly. The utilization of such a computer depends on whether the computer has concurrent pro­
cessing capability. First, consider such a computer that does not have this facility. In such a case, 
the computer is continuously under the control of a single program. The UNIVAC Solid State System 
is an example of such a computer. 

It is possible to use such a computer to perform the simple file maintenance used as an example 
here in the same way the computer with offline peripheral equipment is used. In such a case, the 
process would be as shown in Figure 13-1. In this case, the computer would first be used as a 
card to tape converter to convert the transaction deck to magnetic tape. The computer would then 
be used as a magnetic tape compu ter to update the master file and produce the magnetic tape 
report file. Finally, the computer would be used as a magnetic tape driven printer to produce the 
printed report. The procedure results in a three run system. It is not hard to see that this approach 
is not the best utilization of the equipment. 

Another approach to the utilization of a computer with online peripherals is shown in Figure 13-2. 
H ere the transaction file is read in to the updating process in card form. The report is produced 
directly on the printer. 

UPDATE 

REPORT 

Figure 13-2. Process Chart for a Nonconcurrent Computer with Online Peripherals 

3 



13 
SEC TION: I PAGE, 4 

UNIVAC III UTMOST 

Introduction of timing figures will demonstrate the superiority of the second approach over the 
first. Suppose the speed of a card reader and the volume of the transaction file set the time for 
reading the card deck at 15 minutes. Suppose the speed of the central processor, the speed of 
the magnetic tape units and the volume of the master file set the time for updating this file at 
5 minutes. Finally, suppose the printer speed together with the volume of the report file set 
printing time at 20 minutes. 

Running time for the process shown in Figure 13-1 is the sum of these times, 40 minutes. If 
the computer is buffered so that card reading, printing, magnetic tape reading and writing, and 
internal computer processing can occur simultaneously, running time for the second approach 
shown in Figure 13-2 is the largest of these times, 20 minutes. If the computer is partially or 
totally unbuffered, running time for the second approach is greater than 20 minutes but is always 
smaller than 40. Clearly, the technique exemplified in Figure 13-2 is the appropriate one for a 
nonconcurrent computer with online peripherals. 

Such computers are characteristically medium scale with an average instruction execution time 
in the ran ge of 200 microseconds. If the card reader of such a computer can read one card in 400 
milliseconds, 2000 instructions can be executed in card read time. This is not an unreasonable 
number of instructions to perform the housekeeping operations associated with the control of the 
tape handlers, card reader, and printer, to do the proces~ing associated with applying the trans­
action to the appropriate master item, and to edit the card image for this application and the one 
or more line images required to produce the prescribed information on a printer report. Hence, 
such a computer configuration functions as a well balanced system. 

However, there are computers with online peripherals whose average instruction execution time 

UP-3853 

is about 14 microseconds or less. The UNIVAC III System is such a computer. With a 400 milli­
second per card reader, upwards of 28,000 instructions can be executed in card read time. It would 
be an unusual application that required this number of instructions to be executed per card. Gene­
rally, such a computer would be hopelessly peripheral limited. 

Nevertheless, economy of hardware construction legislates for online peripherals. Consequently, 
to achieve the construction economies associated with online peripherals but to avoid the dis­
utility of a seriously peripheral bound computing system, computers with high internal speeds 
generally have concurrent processing capability. 



UP-3853 UNIVAC III UTMOST 13 
SECTION: PAGE: 

C. CONCURRENT PROCESSING COMPUTERS 

Typically, concurrent processing computers have more than one program stored in memory, the 
control of the computer periodically switching from one program to another. To achieve this con­
current processing capa bili ty, the compu ter requires the follow ing features . 

• EXECUTIVE SYSTEM 

Some type of executive system is required. It may be hardware, software, or more typically, 
some combination of the two. This executive system performs several functions. 

The executive system determines which of the several programs in memory is to have com­
puter control. There are two aspects to this control. 

1. The executive system must be able to periodically switch control from the program cur­
rently being executed and pass this control on to another program. This feature prevents 
one program from dominating control of the hardware system. For example, this feature 
prevents a heavily computer bound program from retaining control to a point where the 
operation of input/output equipment is slowed. This aspect of executi ve system control 
may be tied in with-the interrupt system, another neces si ty for concurren t processing 
which will be noted in further detail below. 

2. The executive system must be able to accept control from some program and pass it on to 
another. This allows a program that is input or output limited to relinquish control when it 

has completed processing on the Hems currently in memory and is waiting for more items 
to be delivered or for the items in the output area to be recorded. 

The executive system generally determines where programs are to be loaded in memory and 
loads them there. This feature implies that programs are written in such a form that they are 
relocatable. This ability is generally required on a concurrent processing computer because, 
at the time of loading a program P into memory, there are usually other programs already 
loaded in memory. These previously loaded programs are typically not the same from one 
running of program P to another. Consequently, different portions of memory are occupied 
from one running of program P to another. Program P must have the ability to be loaded in 
that part of memory which is available at the time of its loading. 

Similarly, the executive system generally determines what logical peripheral and magnetic 
tape units are to be assigned to program P for each running. This, in turn, implies that pro­
gram P must have the ability to address input/output units symbolically. The reason for this 
necessity is similar to that for relocatability. Program P contains the complement of input/ 
output equipment required for its running, but it generally cannot predict which logical units 
will be available for assignment at running time. As will be pointed out later, this is not 
necessarily true. Arrangements can be worked out for fixed input/output assignment to programs 

• INTERRUPT SYSTEM 

A concurrent processing computer requires an interrupt system. An interrupt is a hardware feature 
that, as the result of the occurrence of some event, causes control to go to some fixed storage 
location. At the very least, there must be one interrupt that periodically returns control to the 
executive system so it can cycle control among concurrent programs. More typically, interrupt 
is supplied whenever an input/output unit completes a cycle. 

5 



13 
SECTION: 

6 UNIVAC III UTMOST l'P-3853 
PAGE: 

1. Use of a Concurrent Processing Computer 

One reason for not using a concurrent processing computer in the way shown in Figure 13-2 has 
already been stated. The reason is that such a processing scheme generally results in serious­
ly peripheral-bound programs. On the off chance that a program calling for peripheral as well 
as tape input/output consumes more computer time than peripheral time, it is still not a good 
idea to mix tape units with the peripheral units in this program, since the peripheral units are 
then not operated at top effective speed. 

The other reason for not mixing tape units with peripherals in one run has to do with schedul­
ing. If any program can require any array of input/output equipment, it is difficult to achieve a 
constant program mix on the computer that makes full utilization of the peripheral units. Also, 
there will probably be many instances when a particular program will not be able to be loaded 
because one or more of the peripheral units it requires are already in use. 

The alternative is to design systems in the manner exemplified in Figure 13-1. That is, 
application systems for a concurrent processing computer consist of tape to tape runs, 
programs utilizing only magnetic tape input and output, and of peripheral runs, programs 
with one magnetic tape input or output and one peripheral unit. Thus, peripheral runs are 
divided into two types, input peripheral runs and output peripheral runs. In an input peripheral 
run, information is read from some peripheral unit such as a card reader or paper tape reader 
and is written on magnetic tape. In an output peripheral run, information is read from a mag­
netic tape and is put out on some peripheral unit such as a printer or card punch. 

The program mix on a concurrent processing computer then may consist of one tape to tape 
run and one or more peripheral runs. For example, the program mix at one point in time might 
consist of a tape to tape run from the payroll sys tem, a ca rd to tape run to convert trans­
actions for the inventory system, and a tape to printer run to produce a report for the billing 
system. When the tape to tape program reaches completion, it calls in another tape to tape run 
as its successor. When the card to tape conversion winds up, its successor is another tape to 
card conversion. Another printer program succeeds the current one, and so on. In this manner, 
all peripherals are kept busy; and, with the possible exceptions of adequate memory space or 
adequate numbers of tape handlers, no program about to be loaded need be delayed because of 
adequate facilities being unavailable. Also, all peripherals are kept running at maximum speed. 
A schematic of such concurrent processing is shown in Figure 13-3. 

2. Tape Unit Assignment on a Concurrent Processing Computer 

That each program will find an adequate number of tape handlers available when it becomes time 
to be loaded can be guaranteed by ins talla tion con ven tion. For example, suppose a configuration 
of input/output equipment consists of 14 tape handlers, a printer, a card reader, and a card punch. 
The installation is on single shift; and application demands require that the printer be run a full 
eight hours, the card reader be run four hours, and the card punch two hours. An instruction tape 
is required. Then one tape handler can be set aside for the instruction tape, one to drive the 
printer, and one to be used four hours by the card reader and two hours by the card punch. The 
installation can then set up as a system design requirement that no tape to tape run be designed 

to use more than 11 tape handlers. In this fashion, each program will, on loading, always find 
adequate tape handlers available for it. 

Some installations may wish to go further and assign a particular logical tape unit to the instruc·· 
tion tape, to all printer runs, and to all card to tape and tape to card runs. This leaves a specific 
11 logical tape handlers available for tape to tape runs. Programs can then address tape handlers 
directly, and the execu ti ve sys tem function of alloca ting input/ ou tput equipment to program s as 
they are loaded becomes unnecessary. 



UP-3853 UNIVAC III UTMOST 13 
SECTION: PAGE: 

TAPE TO TAPE TAPE TO PRINTER CARD TO TAPE 

Figure 13-3. Schematic of Concurrent Processing 

3. Store Assignment on a Concurrent Processing Computer 

Adequate storage space for each program can also be assured by installation convention. In this 
case, each run type is assigned a maximum amount of store within which it must be designed. 
For example, if the computer's memory consists of 32,000 locations, 3500 of which are required 
by the executive system, 2000 storage locations might be assigned to each peripheral run that 
must run concurrently. This would be 2000 for the prin ter run and 2000 for the card to tape or tape 
to card run. Twenty four and a half thousand locations then remain as the upper limit within 
w hi c hall tap e tot ape ru n s m us t bed e sign e d. 

To make most effective use of store, a minimum amount of store is usually assigned to each 
peripheral program. This leaves a maximum amount available for tape to tape runs. Such an 
approach dictates that peripheral runs be limited to little more than straight conversion, all 
editing being handled by the tape to tape runs. This also provides further assurance that all 
peripherals will operate at maximum speed. 

A characteristic of peripheral runs is that they frequently require restarting. Paper in the printer 
tears, or a card jam occurs on the card reader. In such instances, the process must be backed up 
some number of items and restarted. Restarting procedures are simplified if peripheral runs are 
limi ted to conversion. This simplification leads to smoother and more standard com pu ter cen te r 
operating procedures, a desirable system design goal. 

Once the store has been partitioned by convention, it becomes possible, if desired, to assign fixed 
storage locations to each run type. For example, presuming that the executive system pre-empts 
storage locations 0000-03499, locations 03500-27999 can be assigned to tape to tape runs, 28000-
29999 to printer runs, and 30000-31999 to card to tape an d tape to card runs. Program s can then be 
written with fixed storage locations and the program relocatability function of the executive s)'stem 
is eliminated. 

7 



13 
SECTION: 

UNIVAC III UTMOST UP-38S3 

4. Instruction Tape Handling on a Concurrent Processing Computer 

Because it usually cannot be predicted which program currently in the computer will end 
first, some rocking of the instruction tape to locate successor runs seems inevitable. One way 
to minimize this rocking is to use "wired in" peripheral programs. For example, an installation 
may have a sole printer program that requires input in a specified format. All tape to tape runs 
produci'ng tapes for this printer program must produce these tapes in the specified format. The 
same can be true of the card to tape program and the tape to card program. Then, at the begin­
ning of the shift, the printer and card to tape programs can be read into storage from the front 
of the instruction tape. These remain in memory and service all printer and card to tape opera­
tions. The tape to tape programs can be arranged on the instruction tape in the order in which 
they are to be run. As a consequence, if the schedule is adhered to, no instruction tape rock­
ing is necessary until the card to tape program is replaced by the tape to card program. After 
this has been done, the only other event which can cause instruction tape rocking is a change 
in schedule. 

S. Multiple Use of Peripherals on a Concurrent Processing Computer 

On a concurrent processing computer, there is a temptation to use more than one peripheral 
on a peripheral program. For example, if a computer has two printers, there is the possibility 
of using both simultaneously to print different reports from information on a single input tape. 
This temptation should be avoided. 

Peripheral equipment is electromechanical and is subject to more frequent breakdown than 
electronic equipment. The more units of peripheral equipment that must be up concurrently 
before a run can be executed, the greater the possibility that the run will be delayed because 
of equipment failure. 

Moreover, such a run design requires that all peripheral gear involved be free before the 
run can begin to operate. In the above example, both printers must be free and set up before 
the run can begin. Both printers will not generally become free at the same time. One printer 
will have to remain idle un til the other becom es free and set up before the run can begin. 

A third reason for avoiding such run design is pertinent when the volumes that the peripheral 
gear are to handle are disparate. For example, in the two printer run described above, if one 
printer is to produce a detail report of the input tape while the other is to produce a summary 
report, the speed of the run is limited by the printer producing the detail report, and the 
utilization of the other printer during the run is limited. 

6. Mixing of Tape Limited and Computer Limited Runs on a Concurrent Processing Computer 

It is sometimes proposed that computer to tape balance can be achieved on a concurrent process­
ing computer by running a tape-limited tape to tape program concurrently with a computer-limited 
program. While theoretically possible, there are several considerations that militate against suc', 
an app roach. 

The proposed approach presumes that two or more tape to tape programs of different charac­
teristics are to be run concurrently. This generally requires an increase in the number of tape 
handlers and in the storage size of the computer required. To justify such an acquisition, the 
installation must have sufficient computer load to keep several tape to tape runs in the computer 
concurrently for the greater part of a shift, Even in such cases it may be less expensive to settle 
for a more modest configuration, only run one tape to tape program at a time, and run into over­
time. 



UP-3853 UNIVAC III UTMOST 13 
SECTION: 

The proposed approach also presumes that, whenever a compute limited run is scheduled, 
there is a tape limited run which can be scheduled concurrently, and vice versa. Such a pro­
gram mix is exceptional rather than common. Moreover, even if such programs existed, the 
approach presumes a tim ing fineness , predictability, and s ta tic con tent in schedu ling tha t is 
not generally realizable. 

7. Use of Concurrent Processing Computers as Conversion Equipment 

Suppose an installation with a concurrent processing computer, a number of tape handlers. 
a printer, a card reader, and some other peripheral equipment. Suppose the installation is 
on a one shift basis but that the application demand on the printer and card reader is four 
hours a day each. During the other four hours of the eight hour shift, the printer and card 
reader can be used in a peripheral run to read cards and print the information read. Such 
utilization lowers the installation's need for punched card tabulators. Other combinations 
of peripheral gear are possible: paper tape reading to paper tape or card punching, paper 
tape to printing, and so on. It should be emphasized that such use of a concurrent process­
ing computer is economical only when there is idle time on the peripherals involved, The 
use of the computer as a card reader to printer device is usually particularly well balanced, 
since the document speeds of card readers and printers tend to be similar. Such planned 
use of the computer still suffers from design deficiencies mentioned earlier and should be 
approached cautiously. Simultaneity of availability of the peripherals involved is required. 
This is not only a scheduling problem, but also one of peripheral equipment reliability. 

9 
PA GE: 



13 
SECTION: I PAGE, 10 

UNIVAC III UTMOST 

D. CONCURRENT PROCESSING ON THE UNIVAC III 

The executive routine in the UTMOST system is EXEC. It pre-empts approximately the first 3500 
storage locations for storage and is in store whenever programs are being executed. 

The Processor is equipped with an input/output interrupt. This interrupt stores the contents of 
the control counter in storage location 20 and transfers control to the instruction stored in 
location 21. Roughly speaking, an input/output interrupt occurs every time a block is read from 
or written on tape, every time a line is printed on the printer, every time a card is read or punched 
on the card reader or punch, and, in general, every time an input/output operation occurs on a piece 
of input/output equipment. Thus, input/output interrupt retrieves control from whatever program is 
being executed when an input/output operation occurs and gives control to EXEC. By means of 

UP-3853 

a set of indicators, EXEC can determine what input/output operation caused the interrupt and can, 
if necessary, route control to the proper program for servicing the input/output operation that has 
occurred. 

In accordance with good concurrent processing practice, EXEC allows one tape to tape program to 
be run concurrently with one or more peripheral programs. In the UTMOST system, peripheral pro­
grams are called symbionts. Unless a SEG control card is included that directs SUCO to do other­
wise, tape to tape programs are loaded in low order storage contiguous to EXEC. Symbionts are 
loaded into high order storage. 

Termination of a tape to tape program can cause initiation of a successor program by means of a 
NEXT control card. Symbionts are both initiated and terminated by manual action on the console. 
Thus, a symbiont may be loaded into store and left there to do as many jobs as is required. For 
example, a tape to printer symbiont may be loaded into store, used to print a tape, and then 
allowed to remain dormant until another tape is ready to be printed, at which point the symbiont 
can be reactivated from the console. As pointed out previously, such an approach minimizes in­
struction tape rocking. 

When a symbiont is terminated, the executive routine relocates the remaInIng symbionts in high 
order storage. Thus, at all times the rna ximum amount of store is kept available for storing tape 
to tape programs between EXEC in low order storage and the symbionts in high order sto-rage. 
If an installation determines the maximum number of symbionts it plans to run concurrently and 
the space each such symbiont requires in storage, it can then determine the maximum amount of 
storage a tape to tape program can require and never run into loading problems because of inad­
equate store being available for the loading of the program. 

In relocating symbionts when a symbiont is terminated, the executive routine makes use of the tape 
to tape program's DUMP tape. This is why every tape to tape program must specify a DUMP tape 
even if rerun memory dumps are not to be made. Executive routine use of the DUMP t:3pe in this 
fashion in no way prejudices the in forma tion bein g written on this tape by the tape to tape pro gram. 

As has been demonstrated by the use of tape assignment cards, allocation of UNISERVO tape 
units in the UTMOST system is essentially a fixed allocation. That is, UNISERVO tape units are 
addres sed logi~ally rather th an symbolically. Therefore, it is to the ins tallation 's advantage to 
perm anently allocate the n urn ber of UN ISERVO tape units required to sym bionts. E XE C pre-empts 
UNISERVO tape unit 0 for instruction tape handling. The UNISERVO tape units not used by EXEC 
or the symbionts can be allocated for use by tape to tape programs. 



UP-3853 UNIVAC III UTMDST 13 
SECTION: PAG E: 

Also in accordance with good concurrent processing principles, the UTMOST systems provides a 
standard set of symbionts, a tape to card symbiont, a card to tape symbiont, a tape to printer sym­
biont, and so on. These symbionts minimize editing operations and confine themselves to con­
version operations. As a consequence, each input symbiont produces a tape in a specified for­
mat. Similarly, each output symbiont expects as input a tape of a specified format. As a con­
sequence, an installation may design and program only tape to tape runs and use the standard 
symbionts for peripheral operations. When a tape to ta'pe run expects input produced from an 
input symbiont, say the card to tape symbiont, the format in which the tape is read is the fixed, 
specified format. Similarly, when a tape to tape run produces output to be used as input to an 
output symbiont, for example, the tape to printer symbiont, the format in which the tape is to be 
written is the fixed, specified format. All editing - editing of tapes from input symbionts to 

increase processing efficiency and editing of tape s for output symbionts - is done in the tape to 
tape program. 

In the remainder of this chapter, the standard card to tape symbiont and the standard tape to 
printer symbiont are discussed as examples of standard input and output symbionts. 

11 



13 
SEC TION: 

UNIVAC III UTMOST 

E. THE CARD TO TAPE SYMBIONT 

The High Speed Reader is available as either an 80 column model or a 90 column model. Both 
may be included in one UNIV AC III System. The synchronizer and power supply for the reader 
are housed within the reader cabinet. Cards are read and checked automatically at the rate of 
700 cards per minute. The 80 column reader processes standard Hollerith card code and 
translates it into the UNIVAC III character code; it can also process any other 80 column card 
code. The 90 column reader processes 90 column Remington Rand card code and translates it 
into the UNIVAC III character code; it can also process any other 90 column card code. 

The card feed path of the reader (Figure 13-4) includes a card input magazine, four card stations, 
and three output stackers. In Figure 13-4, cards are shown at the start of an operating cycle. 
The card stations are numbered 1 through 4, and the stackers are designated 0, 1, and 2. Card 
station 1 is the first read station. Card station 2 is the second read station; card images from 
from this station are transferred to memory. Cards are transported by means of continuously 
moving rollers which advance cards from the input magazine, through the two read stations, to 
card station 3, card station 4, and finally to one of the three output stackers. 

UF'-3853 



UP-3853 UNIVAC III UTMOST 13 
SECTION: PAGE: 

The cards to be read are moved into the card path by the picker knife, which is program controlled. 
At the first read station, the card is brush sensed, and a hole count is stored for checking 
purposes. After the card is read at the second read station, hole counts from the two read 
stations are compared. If an error is detected, the program testable data error indicator is set and 
automatic program interrupt occurs. 

Cards to be read are stored in the input magazine, which holds 2000 cards. Excellent card feed 
reliability is achieved through the use of a vacuum which helps to position the card to be 
engaged by the picker knife. When the input magazine is empty or a misfeed occurs, the unit 
stops, the MISFEED light of the reader control panel lights, the program testable operator over­
sight indicator is set, and automatic program interrupt occurs. 

Each of the three output stackers holds 1000 cards. When a stacker is full, the STACK FULL 
light on the reader control panel lights, the program testable operator oversight indicator is set, 
and automatic program interrupt occurs. All cards enter stacker a unless the program specifies 
stacker 1 or 2. 

STATION STATION STATION STATION 
4 3 2 1 INPUT 

OUTPUT STACKERS READ READ MAGAZINE 
(EACH STACKER HOLDS 1000 CARDS) 

2000·CARD 
CAPACITY , L 

~ 
/ 

/ 

~ ~ 

1 
~ 

I 
~ 

PICKER 
KNIFE 

STACKER TRANSLATION CARD·FEED a 2 SELECTION BIT BIT 
BITS 

NOTE: ALL ROLLERS ARE CONTINUOUSLY MOVING. 

FS BIT POSITIONS 

Figure 13-4. Card-Feed Path, High-Speed Reader 

13 



13 
SECTION: I PAGE, 14 

UNIVAC III UTMOST 

Cards may be read either with or without au tomatic translation from the card code to the UNIVAC 
III character code. Figures 13-5 and 13-6 illustrate the data flow for 80 column cards, and Figure 
13-7 illustrates the data flow for 90 column cards. 

When an 80 column Hollerith code card is automatically translated, the card image occupies 20 
UNIVAC III alphanumeric words in store, as indicated in Figure 13-5; an 80 column card image 
transferred without translation occupies 40 alphanumeric words. The first untranslated 24 bit 
word is represented by a card field in the upper left portion of the card, four columns wide by 
six rows deep, as shown in Figure 13-6. Because cards are read without translation, non­
Hollerith codes may be used. For both Hollerith and non Hollerith codes, a 0 bit is placed in 
each sign bi t posi tion in store when a card is read. 

When a 90 column card image is transferred to store, either with or without translation, it occupies 
24 alphanumeric words, as shown in Figure 13-7. Binary O's are inserted in the three least 
significant character positions of the 12th word and of the 24th word of the card image in store. 
A 0 bit is placed in each sign bit position in store when a card is read. 

UP-3853 

Hollerith and Remington Rand 90 column card codes are given in Figures 13-8 and 13-9, respectively. 

After the synchronizer has completed transferring the data from a card, the number of storage 
accesses is checked to verify that an entire card image has been transferred to store. Only the 
image from the second read station is transmitted to store. The hole counts from the two read 
stations are compared. A modulo 3 check is made on each word that is transferred. If any of these 
checks detects an error, a program testable indicator is set, and an automatic program interrupt 
occurs. 

The standard card to tape symbiont described below is for 80 column cards. 

L I L + 1 ADDRESS 

EfII" .. ,II'!lJllIi"'.!.!IIi .. ____ 11111 ~~TS;~RT:ERN NOTE: THE LOW ORDER BIT IS 

PUNCHED AT THE TOP OF THE 

CORRESPONDING CARD COLUMN. 

(BLACK AREA REPRESEN1S LOW 

ORDER BIT.) ----l ==,----------JT 
CHARACTER WZX6 PQ 8 a 

I I Y (12) 

X (11) 

o 
.1 .111 

2 

3 

4 

5 

6 

7 

8 

9 

••• 

L 

• • I • 

• 

I 

I 

L+l L+2 

I 

• 
II 

I 

•••• 
I 

I 

L+3 L+4 

I I 

I I 

I I 

I 

It 
I. II 

I II • 1 
I I 

• I 

L+5 L+6 L+7 L+8 

I I 

• I I 

I I 

I • 1 
I 

• 1 •• 1 II I II 

•• •• III • 
I I III • • 

I • I • • I • I I I 

L+9 L+lO L+ll L+12 L+13 L+14 L+15 L+lS L+17 

I I I I I 

• I I I • I I 

• I I I I 

I I • 
I I I I I 

Figure 13-5. Data Trasfer from Reader to Memory, with Translation, BO-Co/umn Card 

II II 

• I I 

• I 

L+18 L+19 

I 

I 

• 



UP-3853 UNIVAC ••• UTMOST 

L ADDRESS 

..... "" ..... ~~TS;;;;ERN 

I 
CHARACTER FHP7 

Y (12) 

X (11) 

o 

I •• 
• •• 

L L+2 

•• •• •• • 
•• •• 
• •• • •• ... 

• .. .. 
L+l L+3 .. • •• I 

• • • I I 
l+4 l+6 

• • • 
• 

• I 

• 
L+5 L+7 

• • • 

• . .. 
• I 

L+8. L+lO 

I 

• .. 
•• • 

• L+9 L+ll 

• 
• 

• I 
I • I 

l+12 L+14 

• 
• • 

• I • 
• L+13 L+15 .. 

• 

2 

3 

4 

5 

6 

7 

8 

9 • • • • . - I 

Q560 

-I---____ SiT PATTERN 

lW.I:,I,g~t.:IWW.UlWl.!I.W INS TO R E 

L c 1 ADDRESS 

.. I I 

• I I 
L+16 L+18 L+20 

• • • • • .. 
I • 

•• • 
• • 

L+17 L+19 L+21 

I I 

• I 

• 

I' I 
I •• 

l+22 l+24 

• I • 
I ·1 
• 

I I 
L+23 L+25 .. 
• I I 

13 
SECTION: 

NOTE: THE LOW OROER BIT IS PUNCHED 

I 

• .. l+26 

• 
• 

AT THE TOP OF THE CORRESPONDING 

CARD COLUMN. (BLACK AREA REPRESENTS 

LOW ORDER BIT.) 

I II I • I I 
I .. I I I I I I I 

l+28 l+30 l+32 L+34 L+36 L+38 

• • .. 
• • • -. • ... • • • I I 

• • I • I I • • 
• • • • .. • 

L+27 L+29 L+31 L+33 L+35 L+37 L+39 

• • • • .. 
• I • • I I • .. 

I • • • I • 

Figure 13-6. Data Transfer from Reader to Store, without Trans/ation, aO-Co/umn Card 

0 

3 

5 

7 

9 

0 

3 

5 

7 

9 

ADDRESS 

CHARACTER 

• •• 
L 

•• 
• 

0 

• 
• 

L+12 

• • 
• • 

L 

••• •• •• • • 
L+4 

• •• 
• • •• 

•• 
L+16 

• 
• 

L+l L+2 L+3 L+4 

•• 
L+5 

•• 
• • • 
• ••• • 

L+6 L+7 L+8 

0 

0 

L+ll 

•• • •• 0 ., 
•• • 

L+21 L+22 L+23 

• • It • 
••• 

II 

L+9 L+lO L+ll 

'--y--I 
BINARY ZEROS 

ARE INSERTED IN THESE 
CHARACTER POSITIONS 

ADDRESS L+12 L+13 L+14 L+15 L+16 L+17 L+18 L+19 L+20 L+21 L+22 L+23 

CHARACTER 11111£111111111111111111111111111111 
Note: The card field arrangement is the same when gO· column cards 

are read without translation. 

BI NARY ZEROS 
ARE INSERTED IN THESE 
CHARACTER POSITIONS 

Figure 13-7. Data Transfer from Reader to Store, with TraMs/ation, 90-Co/umn Card 

15 
PAGE: 



SECTION: 

13 
I PAGE, 16 

UNIVAC III UTMOST 

The upper entry represents the card punching positions. 
The lower entry represents the corresponding High·Speed Printer character. 
NP indicates a code which is not printed by the High·Speed Printer. 
NS indicates nonstandard codes. 

Numeric 
Bits 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Zone Bits 

00 01 10 

Blank 12 
Space + NP, NS 
148 12 4 8 11 4 8 

) * , 
11 12 3 8 11 3 8 
- $ 

0 
0 NP NP 

1 12 1 11 1 
1 A J 
2 12 2 11 2 
2 B K 

3 12 3 11 3 
3 C L 
4 12 4 11 4 
4 0 M 

5 12 5 11 5 
5 E N 
6 12 6 11 6 
6 F 0 
7 12 7 11 7 
7 G P 
8 12 8 11 8 
8 H Q 

9 12 9 119 
9 I R 

4 6 8 3 8 
= NP, NS 

4 5 8 
< NP, NS NP 

3 5 8 
> NP,NS NP, NS 

Figure 73-8. Hollerith Code, 

High-Speed Reader 

11 

NP, NS 
o 4 8 

( 

038 

(Co~ma) 
4 8 , 

(Apostrophe) 

o 1 
/ 

o 2 
S 

o 3 
T 
o 4 
U 

o 5 
V 
o 6 
W 
o 7 
X 
o 8 
y 

o 9 
Z 

NP, NS 

NP 

NP,NS 

The upper entry represents the card punching positions. 
The lower entry represents the corresponding High-Speed Printer character. 
NP indicates a code which is not printed by the High-Speed Printer-

Numeric 
Bits 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

HOl 

1110 

1111 

Zone Bits 

00 01 10 I 11 

Blank o 1 3 5 7 o 1 5 7 9 o 1 7 9 
Space + NP NP 

1 3 5 7 1 3 7 9 o 1 o 1 5 
) * ( , 

o 3 5 7 1 3 5 9 o 1 3 5 9 o 3 5 9 
- $ 

(Co~ma) 
0 o 1 3 o 3 7 9 1 5 7 9 
0 NP NP , 

(Apostrophe) 

1 1 5 9 1 3 5 
1 A J 

1 9 1 5 3 5 9 
2 B K 
3 o 7 o 9 
3 C L 

3 9 o 3 5 o 5 
4 0 M 
5 o 3 059 
5 E N 

5 9 1 7 9 1 3 
6 F 0 
7 5 7 1 3 7 
7 G P 

7 9 3 7 3 5 7 
8 H Q 

9 3 5 1 7 
9 I R 

o 1 3 7 9 o 1 5 7 o 1 9 
= NP 

1 3 5 7 9 o 1 5 9 o 1 3 7 
< NP NP 

o 5 7 9 013579 o 1 7 
> NP NP 

Figure 73-9. 90-Co/umn Card Code, 

High-Speed Reader 

3 5 7 9 
/ 

1 5 7 
S 

3 7 9 
T 

o 5 7 
U 

o 3 9 
V 

o 3 7 
W 

o 7 9 
X 

1 3 9 
y 

5 7 9 
Z 

o 1 3 9 
NP 

o 3 5 7 9 
NP 

o 1 3 5 
NP 

UP-3853 



UP-3853 UNIVAC III UTMDST 13 
SECTION: 

The card deck for the standard card to tape symbiont should be formed as follows. The first 
four cards should be blank cards. The fifth card should be a label card, which has the 
followin g format: 

Column 1: 

Column 2: 

Columns 3-7: 

Column 8: 

Columns 9-16: 

Column 17: 

A control punch of 12-0-2. 

Blank 

LABEL 

Blank 

In these columns should be punched the eight character file identifica­
tion desired in the tape label block. 

Blank 

PAGE: 

Columns 18-23: In these columns should be punched the date of cycle desired in the tape 
la bel block. 

Column 24: 

Columns 25, 26: 

Column 27: 

Columns 28, 29: 

Blank 

In these columns should be punched the number of card images desired 
to make up one data block on tape. The maximum num ber of images that 
can make up one block is 25. If these columns are left blank, a block 
size of 25 images is used. 

Blank 

In these columns should be punched the reel number desired in the tape 
label block. If these columns are left blank, the reel num ber in the tape 
label block is set to 1. 

Following the label card should be the data cards. Following the data cards should be an end of 
file card. An end of file card should have a 12-0-2 control punch in column 1 and ENDAOFL\FILE 
in columns 2-12. Following the end of file card should be four blank cards. 

Periodically through the card deck should appear restart cards. A restart card should have a 12-0-2 
control punch in column 1, RESTART in columns 2-8, and columns 9-12 should be blank. The 
function of restart cards is described later in this section. 

The card to tape symbiont is loaded into store by means of a manual operation at the console. Once 
loaded, the symbiont remains dormant until activated. The symbiont is activated by typing in 
ScL\ST ART, where c is the num ber of the general purpose channel by which the card reader is 
connected to the Processor. (The Processor has eight general purpose channels. Any piece of 
peripheral equipment may be connected to the Processor through any of the eight general purpose 
channels.) Suppose for purposes of this section that the card reader uses general purpose channel 
5. In this case, the form of the above typein is: 

S5L\START 

Once the symbiont is activated, it begins reading cards and writing tape. The symbiont is designed 
to write tape on the UNISERVO whose number is specified to be file number 13. It writes a standard 
label block containing the information specified in the label card. It then writes data blocks of the 
size specified in the label card. Each card is read in a translated mode and is written as a 20 word 
item on tape. This item is a card image as exemplified in Figure 13-5. 

17 



13 
SECTION: I P •• E. 18 

UNIVAC III UTMDST 

The sym biont will s tack cards in stackers 1 and 2. It stacks 500 cards in one s tacker and then 
switches to the other. 

UP-3853 

When the symbiont detects a restart card in the input deck, it writes whatever previously unrecorded 
card images it is holding in store on tape as a block, regardless of whether the block is full size. 
It then writes four bypass sentinel blocks. Normal card to tape conversion then resumes. 

A bypass sentinel block is recognized as such by the input routine which will subsequently read 
the tape being produced by the symbiont. It will, in fact, "bypass" these blocks and not deliver 
them to the program for processing. Consequently, the existence of bypass sentinel blocks on a 
tape has no effect on the processing of the tape. What the symbiont uses the bypass sentinel blocks 
for is described later in this section. 

When the symbiont detects an end of file card, it writes whatever card images remain in store on 
tape, writes end of file sentinel blocks, and rewinds the tape. The message RDR EOF is typed on 
the console, and the symbiont then becomes dormant. A new card deck can be placed in the reader, 
a new blank tape can be mounted on the output UNISERVO, and a new conversion can be initiated by 
an S5~START type in at any subsequent time. 

If a fault or error occurs during conversion, a message to this effect is typed on the console, 
conversion ceases, any cards already committed to the reader but not properly read by the symbiont 
are selected into stacker zero, and the symbiont becomes dormant. All cards up to and including 

the last restart card should then be removed from the stacker and placed at the bottom of the deck 
in the input magazine. SS~GO is then typed in at the console. The symbiont repositions the output 
tape to the last bypass sentinel blocks written on the tape and recommences the conversion. 

If, during restart, the symbiont does not find a restart card at the head of the deck in the input 
magazine, it types out NO RESTART and takes the same action as if a fault or error had 
occurred. The same recovery action as used for faults and errors should be instituted. 

If, during conversion, the symbiont detects the end of tape warning window on the output tape, 
it writes end of reel sentinels after the last full data block, rewinds the tape, and becomes 
dormant. The output tape should be dismounted, a new blank tape mounted, and S5~GO typed 
in at the console. The symbiont then writes a label block on the new tape and continues 
conversion. 

The standard card to tape symbiont req uires a little more than 1500 storage locations. 



UP-3853 UNIVAC III UTMOST 13 
SECTION: 

F. THE TAPE TO PRINTER SYMBIONT 

Under control of the central processor program, the High Speed Printer produces documents 
at the rate of 700 lines per minute for alphanumeric data and 922 lines per minu te for numeric 
data. Lines are composed of 128 characters. In addition to the original, up to five carbon 
copies may be produced. 

Data flows from the Central Processor to the printer synchronizer through one of the eight 
general purpose channels. The synchronizer controls printing of the data. To assure that the 
printer operates at full capacity without delaying the operation of the Central Processor, the 
automatic program interrupt feature is used. 

The High Speed Printer consists of a printer cabinet and an adjoi ning synchronizer. The 
printer cabinet contains a continuously rotating type drum with 128 printing positions, 128 
print hammers which correspond to the printing positions, a self reversing ribbon feed 
mechanism, and a paper drive mechanism. The synchronizer contains the circuitry that controls 
data transfers, paper advance, and printing. 

PAGE: 

Along the length of the type drum (Figure 13-10) are 128 bands of printing characters. Each band 
contains the 51 character print set around the circumference of the drum. 

Characters are arranged on the drum in a checkerboard pattern so that they are separated from 
characters on adjacent bands by approximately lie inch; this space reduces the possibility of 
smudging by characters on a band adjacent to the one being printed. 

19 



13 
SECTION: 

I PAGE, 20 
UNIVAC III UTMOST 

Two sets of sprocketed tractors - an upper set and a lower set - advance the continuous paper 
through the printer under program control. While the paper is being printed, the two sets of 
tractors maintain paper tension. 

Each of the four tractors is equipped with a tractor locking Lever. These levers are pushed in 
before the tractors are adjusted; after tractor adjustment, the locking levers are pulled out, thus 
locking the tractors to prevent any further lateral motion. 

Blank or preprinted paper from 4 to 22 inches wide and up to 22 inches long between folds can 
be used with the printer. The original document and up to five carbon copies may be printed, 
using paper between approximately 11 and 13.5 pounds in weight, up to a pack thickness of 
approximately 15.5 mils; this includes card stock. Vertical spacing, which may be set at the 
control panel by the operator, is either 6 or 8 lines per inch; horizontal spacing is 10 characters 
per inch. When only 2Y2 inches of paper remains below the print hammers, a signal from the 
High Speed Printer alerts the Central Processor and automatic program interrupt occurs. The 
Central Processor also is alerted and paper movement stops if paper has advanced continuously 
for more than 1. 5 seconds. 

Thi rty-two wo rds from consecu ti ve s tora ge loca tions are trans ferred to the printer synchronizer 
and modulo 3 checked. They remain in the synchronizer until they are printed according to the 
printable character code; sign bits are ignored. The program being executed controls paper 
advance and printing only. If editing of the final printed page is desired, it is accomplished 
within the 32 consecutive storage locations by the internal program before the order for printing 
is given. 

Figure 73-70. Type Drum, High-Speed Printer, Front View 

After the 32 words are transferred to the synchronizer, each character in the 32 words is printed 
in a sequence governed by the order of the characters on the type drum. The determination of 
which characters are to be printed next is made in the following way: 

1. As the type drum rotates, the printer synchronizer keeps track of which row of characters IS 

in printing position. 

2. The character in printing position IS compared with the characters stored in the synchronizer. 

UP-3853 



UP-3853 UNIVAC III UTMDST 13 
SECTION: 

3. When the character on the drum in printing posItIon matches the characters in the synchro­
nizer, the appropriate print hammers are actuated to drive the paper and ribbon against the 
type drum, thereby printing the desired characters onto the paper. 

PAGE: 

Sin gle spaced numeric informa tion can be printed at the rate of 922 lines per m inu te; sin gle 
spaced alphanumeric information can be printed at the rate of 700 lines per minute. Timing of the 
paper advance depends on the number of lines advanced and on whether the line spacing is 6 or 
8 lines per inch. For spacing of either 6 or 8 lines per inch, 10 milliseconds are required to 
advance the first line of paper; each additional line requires 8.3 milliseconds if the spacing is 
6 lines per inch or 6.25 milliseconds if the spacing is 8 lines per inch. After the paper is 
advanced, 10 milliseconds are required to stabilize the paper before· actual printing begins. When 
all the characters stored in the synchronizer have been printed, the line is complete and interrupt 
occurs if it was specified. The printed line per minute rate depends on the required paper advance 
and on the group of characters to be printed. 

The printer can be acquired with either of two sets of printable characters. The COBOL -
FORTRAN set is shown in Figure 13-11, the UNIVAC III Standard Set in Figure 13-12. 

NP indicates a code which is not printed by the High-Speed Printer. NP indicates a code which is not printed by the High-Speed Printer. 

Numeric ~ ___ --r-___ z_o_n_e-,-B_it_s ___ r--___ _ 

Bits 
00 01 10 11 

Numeric ~ ___ ---r ___ Z_o_n_e---r--B_it_s ___ .,--_____ _ 

Bits 00 i 01 10: 11 
'" 

I 

0000 Space + NP NP 0000 & NP I NP 

0001 ) * ( I 

Comma 
0010 - $ , 

, 

0011 0 NP NP Apostrophe 

0001 ) : I --*--r--;-- -
-----4-----+-----,..j-------t--- _0_ 

I 
,Apos-

__ 0_0_10_-+-__ -__ +--___ -t ' $ I trophe 

__ 0_01_1_-t-__ 0_--+ __ N_P __ ~ _ N P ! + 
0100 1 

: 
A J / 

I 
-

0101 2 i B K S 

0110 3 I C l T 

__ 0_10_0 __ +-__ 1_~ ___ A_-+I_ J I ~_ 

__ 0_10_1 __ +-__ 2 __ -+ ____ B_JK __ ~- _ ~ __ _ 
0110 C l T 

0111 4 I D M U 0111 M u 

1000 5 E N V 1000 E V 
------~-------~-------~----~------

1001 6 F 0 W 1001 F o w 
-----+---- ---I- ,-f--------~,-+---,-

1010 7 G P X 1010 G P X 
---

lOll 8 H Q y 
--------~, ~,-----f--------,-" -

y 1011 I Q 
! 

H 
--- ----t---,-,~--t_------- -+- ----

1100 9 I R Z 1100 9 R z 
-~ - "---,,----,-->------" ---

1101 = NP NP 1101 Comma # 
,,- -------~-~ 

1110 < NP NP NP 1110 NP 
-- --- -----~ -,- --- -----

1111 > NP NP NP 1111 NP 

Figure 73-77. COBOL - FOR TRA N Set Figure 73-.72. UNIVAC III Standard Set 

21 



13 
SECTION: 

22 UNIVAC III UTMOST 
PAGE: 

The standard tape to printer symbiont accepts as input a tape with a standard label block and is 
terminated by either end of reel or end of file sentinels. Data blocks on the tape may be of 
any size up to and including 254 data words. Item size on the tape may be from 2 through 33 
words, bu t all item s on the tape m us t be the same si ze. The tape to prin ter sym bion t is designed 
to read this tape from the UNISERVO tape unit whose number is specified by a typein. 

The symbiont assumes that it is printing on forms capable of having 66 lines printed on one form 
and that it will leave a blank six line heading and a blank six line footing on each form. These 
assumptions can be modified by means to be described later in this section. 

Assume a tape of 33 word items. Also assume that the symbiont is ready to print a line on a 
form at some point between the heading and footing. The current 33 word item contains the 
information to be printed. The zero word of the item is a control word that tells the symbiont 
how the line is to be printed. Bit positions 9-15 and 25 of the control word must contain a zero. 
Bits 1-7 of the control word specify to the symbiont how many lines the symbiont is to advance 
the form in the printer before the item is printed. The specification is made in binary. The last 
32 words of the item make up a line image, which is printed after the form advance. Thus, the 
first word of the item is printed in print positions 1-4, the second word of the item in print 
positions 5-8, the third word in print positions 9-12, and so on. 

Bit 16-21 of the control word specify in binary the length of the line image in words. Thus, for 
a 33 word item, bits 16-21 of the control word contain a binary 32. If the line image is smaller 
than 32 words (amd consequently, the item is smaller than 33 words), the line image will be 
left justified in printing. Thus, the first word of the item will be printed in print positions 1-4, 
and so on. Print positions to the right, not accounted for in the line image, will have spaces 
printed in them automatically by the symbiont. 

If form advance causes advance into the footing of a form, the form advance specified in the 
control word is ignored, and the line image is printed on the head line of the next form, which 
is the line immediately below the heading of the form. 

To obtain normal form advance, bit position eight of the control word must contain a zero. If it 
contains a one, the paper in the printer is advanced to the next form. The line image associated 
with such a control word is printed on the line of the new form whose number is specified in bits 
1-7 of the control word. Lines on a form are numbered from 1 and are counted starting with the 
head line. 

Bits 22-24 of a control word are immaterial. 

If it is desired to change the symbiont's assumptions concerning form, heading, and footing 
length, the first item on tape should have a control word of the following format: 

Bit 25: One 

Bi ts 22-24: Immaterial 

Bits 15-21: Number of lines in heading expressed in binary. 

Bits 8-14: Number of lines in footing expressed in binary. 

Bits 1-7: Num ber of lines on form expressed in binary. 

UP-3853 



UP-3853 UNIVAC III UTMOST 13 
SEC TION: PAGE: 

The contents of the rest of the item is immaterial. Once the Symbiont's assumptions concerning 
heading, footing, and form length have been changed by the above means, these revised assump­
tions are retained by the symbiont until either another change is made or the symbiont is re­
loaded from the instruction tape. 

Punch and print images may be intermixed on the tape. The tape to printer symbiont will bypass 
all items constituting punch images. 

The symbiont is loaded into store by means of a manual operation at the console. Once loaded, 
the symbiont remains dormant until activated. The symbiont may be activated and directed to 
print anyone of a number of "stacked files" on the input tape by typing in 

Sc~START~AAAAAAAA, 

where c is the channel number of the general purpose channel by which the printer is con nected 
to the Processor, and AAAAAAAA is the label ID of the file to be printed. Suppose for purposes 
of this section that the high speed printer uses general purpose channel 6. In this case, the 
form of the typein is 

S6~ST ART ~AAAAAAAA. 

If the file label ID is omitted from the above typein, the symbiont will print the next file 
physically on tape. 

The typein S6~START ~NNNN acts as an S6~ST ART typein, except that it w ill not print the 
first NNNN pages. 

None of the above typeins rewinds the tape, but rewind can be initiated by typing in 

S6~RW. 

When the symbiont is activated, it prints the file ID, date, and reel number of the label (if 
present) on the console typewriter, and it prints the first line on the printer. The symbiont 
then becomes dormant. The single line of printing (which may be a test pattern) can be used 
to position the paper in the printer. This line can be reprinted as many times as is desired 

by typing in S6~ TEST. 

Once the paper has been positioned, normal printing can be started by typing in 

S6~GO. 

If a form is spoiled because of a tearing of the form or carbon or because of a printer mal­
function, such as a blown fuse, the symbiont can be made dormant by typing in 

S6~RELEASE 

23 



13 
SEC TION: I PACE, 24 

UNIVAC III UTMOST 

Then, by typing in 

S6ABACK~n 

the symbiont can be reactivated. At this point the symbiont w ill read the input tape back­
ward enough blocks to reprint approximately the number of forms specified in the typein by 

n (1.:; n':; 9). The symbiont will then print one line and release. If necessary, the paper can 
then be repositioned. Normal printing resumes as a result of a typein of 

S6~GO 

When the symbiont detects end of reel or end of file sentinels on the input tape, it types 
out END PRINTING and becomes dormant. A different file, either on the current tape or 
on a newly mounted tape, can then be printed by means of an activating typein. 

The tape to printer symbiont requires approximately 1200 storage locations. 

UP-3853 



UNIVAC III UTMOST 
SECT ION 17-F, U P-3853 

FASTRAND 
SUBSYSTEM 



OP-3853 UNIVAC III UTMDST 17-F 
SECTION: PAGE: 

Figure 77-F-7. UNIVAC III FASTRAND Mass Storage Unit 

1. UNIVAC III FASTRAND MASS STORAGE SUBSYSTEM 

The UNIVAC FASTRAND * Mass Storage Subsystem (Figure 17-F-l) provides the UNIVAC III Data Processing 
System with random access external storage capability. Each subsystem is composed of from one to eight 
storage units linked to the central processor through a control unit and synchronizer. The control unit 
and synchronizer are housed in a single cabinet. Each Mass Storage (drum) Unit requires its own 
storage cabinet and power supply. The storage capacity of a full size subsystem is 528,482,304 six-
bit alphanumeric characters. The capacity of a subsystem with one Mass Storage (drum) Unit attached 
is 66,060,288 characters. 

Data is recorded around the surface of the drum cylinders in a bit serial format. The basic unit of drum 
storage is the sector which contains either 42 or 37 UNIVAC III words depending upon the recording 
mode used. 64 sectors per track are accessed serially as the drum rotates. There are 64 read/write 
heads located along the length of the drum, allowing the accessing of 64 tracks without changing the 
position of the read/write heads. The read/write heads are moveable and can be positioned over any 
one of 96 separate tracks. (See Figure 17-F-2 for conceptual presentation). 

Each FASTRAND Mass Storage Drum Unit contains two cylinders which revolve at the rate of 880 RPM. 
From the programmer's point of view, these two cylinders can be regarded as a single drum. The 
UNIVAC III programmer deals solely with the logical relationship of the various tracks and sectors, 
without regard to their physical location. Operation of the unit is entirely under program control. 

The functions of the FASTRAND subsystem, like all other input/output components of the UNIVAC III 
Computer, are performed under its own control. The central processor action is merely to initiate the 
F ASTRAND function request, after which it is free to perform operations or calculations as directed 
by the operating programs. The FASTRAND control unit controls the execution of all requested 

functions, automatically interrupting the central processor when a requested function has been completed. 
The capacity of a single drum unit and the various access factors are summarized in Table 17-F-l. 

• Trademark of Sperry Rand Corporation 

1 



SECTION: 

17-F 2 UNIVAC III UTMOST UP-3853 

PER UNIVAC III ALPHANUMERIC DECIMAL OCTAL 
UNIT WORDS CHARACTERS DIGITS DIGITS 

DRUM 16,515,072 66,060,288 99,090,432 132,120,576 

DATA CAPACITY - POSITION 172,032 688,128 1,032,192 1,376,256 

COMPRESSED 

MODE TRACK 2,688 10,752 16,128 21,504 

SECTOR 42 168 252 336 

DRUM 14,548,992 58,195,968 87,293,952 1-16,391,936 

DATA CAPACITY - POSITION 151,552 606,208 909,312 1,212,416 
NORMAL 

MODE TRACK 2,368 9,472 14,208 18,?44 

SECTOR 37 148 222 296 

FUNCTION MAXIMUM MINIMUM MEAN 

POSITION HEAD BAR 86 milliseconds 30 milliseconds 57 milliseconds 

ACCESS FACTORS SWITCH HEAD 20 mi crosecond s 20 micros econd s 20 microseconds 
(excluding programming 

requirements) LOCATE SECTOR 70 milliseconds o milliseconds 35 milliseconds 

PROCESS SECTOR 1.09 milliseconds 1.09 milliseconds 1.09 mililiseconds 

Table 77-F-7. FASTRAND Capacity and Access Time Chart 

The FASTRAND subsystem is accessible to all programs sharing the computer. Access to the 
FASTRAND subsystem is controlled by the Executive Routine which monitors the execution of the 
various requests. FASTRAND functions are performed in the sequence in which they are forwarded to 
the Executive Routine. A successful completion signal is available for interrogation by the requesting 
program to determine that its request has been completed. This feature enables the FASTRAND sub­
system to transfer information between memory and the Mass Storage (drum) Unit at full speed in 
parallel with the operation of the central processor and other input/output equipment. 

Normally, a system shall contain one UNIVAC III FASTRAND synchronizer control unit. It is always 
attached to General Purpose Channel One. F ASTRAND functions are execu ted serially in the order in 
which they are received. One order, the positioning of the read/write bar, once initiated for one of the 
drum units, can be executed concurrently with the execution of an instruction affecting another drum. 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: PAGE: 

All words transferred between the central processor and the synchronizer are checked for Mod-3 errors. 
Data read from the drum to the synchronizer in normal mode receives a Mod-3 check. The transfer of 
data in the compressed mode is not Mod-3 checked between the drum and the synchronizer, but Mod-3 
parity is formed by the synchronizer before data is transferred to memory. A Read Check ins truction 
can be employed following write instructions when it is desired to insure the accuracy of recording. 
Data is not transferred to the central processor during read checking. 

a. Drum Unit Characteristics 

The drum units of the F ASTRAND subsystem are each housed in their own cabinet. Each drum 
cabinet contains two 24 inch diameter cylinders mounted one above the other. The 64 read/ 
write heads associated with the drum are attached to a metal bar so that 32 heads service each 
cylinder. The bar moves laterally to bring the heads over one of 96 possible pOSitions. The 
heads are fixed to the bar and are simultaneously shifted to the same relative track positions 
within their 96 track range. 

Each track is subdivided into 64 addressable sectors. The capacity of each of these sectors 
is 37 or 42 UNIVAC III words, depending upon the read/write mode specified. The rotation of 
the drum cylinders is 880 RPM bringing each sector under the read/write head once every 
70 ms. The average access (latency) time for any sector of a track over which a head has been 
positioned is 35 ms. 

Information is written on the surface of the drum at a density of 1000 PPI. Each sector con­
tains 1170 bit positions; some of which are used for sentinels, hardware control, and parity 
check patterns. Data is transferred between the central processor and the drum at the rate of 
1.09 ms. per sector. Up to 128 contiguous sectors may be read or written in a single operation; 
up to 64 sectors may be read following a successful search comparison. 

The full address of each sector consisting of the drum unit, track, head, and sector is recorded 
within the sector itself. The address is placed in the sectors prior to delivery of the sub­
system to the customer. This area of the sector is not accessible to the user programmer. The 
instruction address is checked with this pre-recorded address when a read/write instruction is 
executed to verify that the proper drum address is being accessed. 

3 



17-F 
SECTION: 

4 UNIVAC III UTMOST UP-3853 
PAGE: 

b. Drum Storage 

Figure 17-F -2 shows how data is recorded in specific locations around the drum surface. Each track 
is divided into 64 sectors. Each sector holds up to 168 alphanumeric characters, or 252 deci-
mal characters in addition to control and parity check information. Data records may be extended 

over many sectors, or packed within a single sector. 

The sector addresses start with zero and run through 63 for any given track. Reading or writing 

can be performed over a contiguous drum area ranging from one to 128 sectors. When sector 63 

is encountered during the execution of a FASTRAND function, the head address is automatically 

incremented. As a result, sector zero of the track at the next higher head address is processed 
follow i ng sector 63. A conti n uou s read /w rite in s truction should not a ttem pt to process sectors 

beyond the 64th head. If an instruction attempts to read beyond sector 63 of head 63, the opera­

tion will be terminated after sector 63 has been processed and a "head overflow" error will be 

s i g n a 11 e d . A sir. g 1 ere a d / w r i t e fun c t ion m us t bel i mit edt 0 the ran g e 0 f 0 n e he a d bar se t tin g ; it 

cannot exceed 128 sectors. 

ThiS IS the 
of the two 
thedrurllCdbrnel. 

dppp,J[,lnre 

'lIQuntt'(1 In 

6144 TRACKS 

.
1_ . PER DRUM ~ r- (2 cylinders) -l 

Data '$ rE'cordrd ill bl! ::,erl<ll form.l! 

in 6144 tracks around rflP surfacE' 
ufthrdrlJill. E.lChtri'\(.k IS l'ladr up 
Clf b·1 seLlol,). clther 42 0131 

lJNI\! A.C III Wilids are reCOldi'd II 

pach sector. In th·~ comprp:;sefl 
['lOde, theSynfhrol1lli'1 rt'1lIJCE'<:,1I1t 

?7 bit words lu 24 bits for WI 1.11/1 

thrnl Jrl tht' drlJrll alHi r\lllverts Iht> 

t'4 bit drum wclfds to 27 bits llt'fo[\\ 
: h l' 'y J I P t r d 11 S j rife d t () I~ I e 111 U r y . 

M (J ) 
HEADS _ HHHIIImmHllTImI1IIIIII~ HEAD POSITIONING BAR 

"'~" () ) 
ThIS IS the 
the two 
a SinglE' l1lum. 

conre~t With 

(on ~ Iue! eel <1S 

(J ) 
TTTTUTUITITTTTUUTITTTTITTITTITTTTTtliJUrrTTTTUTTTTTITTTTTT 

Each [pall write 'wall (11 

t I ark s. I f t~r lW,1(l tId I 

'IG 

t, CJ n rd 0 v e r t r ) I ~ ~ b, t r ,1" k 4 (, 1<; 

under ['Mil cf thE' Gl hPdd~,. 

-----------------p-',' ";., 

~------------- ' 

t>ead 64-46 

Recording format relative to the bit 
pOSitions Within UNIVAC III words. 

FIRST 
WORD 
NOI'!MI\L: 
MOllE 

SECOND 
WORD 
NORMAL 
MOOE 

24 • 24 

2:~ 
2:~ _ 22 

2; • 21 

..::!~ 
lq • 19 

.J.!~~ 
I' • 17 

~~ 
~~ 

I·' • 14 

J.:~ 
--.!.~ 
J.:~ 
J.:~ 
~~ 

B • 8 

~ __ ._~7_ 
~~ 
..c~' _._~5_ 

,~ • 4 

I • 3 

! • 2 

-~~-
25 .24 

-.3~ 
-.3~ 
-1~ 
-.3~_ 

J~ 
J~ 
~~ 
~~ 
J~ 

~~ 
-2~ 

This pattern is repealed fOl 

FIRST 
WORD 
COMPRESSEO 
MOO! 

SECONtl 
WORD 
COMPRESSEO 
MOD!:. 

the Ihlfd and subsequent vjQf{js, 

Figure 77-F-2. FASTRAND Data Storage Concept 

NORMAL 37 WDS. 
COMPRESSED 421'105. 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: PAGE: 

c. File Organization 

The concurrent processing ability of the UNIVAC III greatly reduces the need for optimizing 
file organization. Efficient random access will improve the total elapsed time for a given pro­
gram, however, the time saved will be that involved in functions executed under control of the 
F ASTRAND synchronizer. If the scheduling of program operation is such that the central 
processor can be kept busy processing other files and programs, the central processor time 
requirement for execution of the FASTRAND programs will be, essentially, the same regardless 
of file organization. 

When it is desired to organize a F ASTRA ND application to minimize its elapsed running time, 
the physical location of the records must be considered. It will be helpful to regard each of 
the drum units as a series of 96 separate drums. The 64 read/write head~ are fixed to the 
positioning bar which must be set at one of 96 different positions. (See Figure 17-F-2). The in­
formation under each of these heads ~an be randomly addressed without changing the bar position. 

Continuous read/write operations can be performed through the sectors on the tracks serviced 
by the head at the next higher address. For example, the head bar might be set to position 47. 
All of the data on tracks 47 under each of the 64 read/write heads are available for reading or 
writing operations subject only to the latency of rotation. Thus, with this single access move­
ment, 4096 sectors become available. These sectors can then be regarded as constituting an 
individual cylinder of information with a capacity of 684,128 alphanumeric characters (See 
Figure 17-F-3). The positions to either side of the original setting can be considered as adjacent 
cylinders of equal capacity. It can then be seen that an additional 1,368,256 characters can be 
accessed by the minimum lateral movement of the head bar. 

d. Recording Modes 

Data is recorded on the drum in two modes. The treatment of data differs when transferred 
between the central processor and the drum according to the recording mode used. 

(1) Normal Mode 

The entire 27 bits of each UNIVAC III word are stored on the drum when data is written in 
this mode. The 25 addressable bits and the two Mod-3 check bits are preserved by the 
synchronizer, and are transferred intact (See Figure 17-F-4). A total of 37 UNIVAC III words, 
plus nine additional bits are stored for each sector written in normal mode. The nine 
addition bits are in the form of: 

OOOsccOOO 

where: s is the sign of the 37th word 

cc are the two Mod-3 check bits of the 37th word 

000 ... 000 are binary zeros. 

In multiple sector operations, the 38th word in memory corresponds to the first word of the 
next sector, etc. 

Note: Data written in the normal mode can be read in the compressed mode without error 
indication. Data written in the compressed mode should not be read in the normal 
mode because of the likelihood of Mod-3 error indication. 

5 



SECTION: 

17-F 6 UNIVAC III UTMOST 
PAGE: 

(2) Compressed Mode 

This mode provides for the transferring of bit positions 1-24 of each UNIVAC III word 
between the central processor and the drum. The sign and Mod-3 check bit positions are 
deleted by the synchronizer before the information is recorded. When data is read back to 
central processor in this mode, a zero (plus) sign and appropriate Mod-3 check bits (See 
Figure 17-F-4) are manufactured by the synchronizer, and are jammed into each word after 

UP··3853 

24 bits have been read. Recording in this mode permits 42 UNIVAC III words to be stored per 
sector. See Figure 17-F-3 for the relationship of UNIVAC III content to data stored on the 
drum. In multiple sector operations, the 43rd word corresponds to the first word of the next 
sector, etc. 

e. F ASTRAND Functions 

All functions of the F ASTRAND are executed under program control. The Executive Routine 
executes a LOAD CHANNEL (LC) instruction which sets the standby indicator and furnishes 
th e address of the function spec ification to be executed. In most cases the F ASTRAND 
function specifications must be supplemented by control words. The address of the first 
control word is furnished by the function specification. The memory area for use in conjunc­
tion with any particular function must follow directly behind the associated control words 
(in successively higher addresses). 

(1) Control Words 

One of a possible set of control words, the Drum Address control word, furnishes the 
F ASTRAND synchronizer with the drum area at which the function is to start. Another con­
trol word furnishes the range over which the instruction is to be executed. This Drum Range 
control word appears in one of two forms, depending upon the specific function with which 
it is associated. A third control word furnishes the search read instructions with the key for 
which they are to search. Specific control word requirements will be found in the detailed 
description of each function specification. 

(2) Control Word Formats 

The Drum Address control word may be fabricated for use in a F ASTRAND function request 
by the source coding. An alternate approach is to establish a table containing a separate 
control word for each sector at which a F ASTRAND function is to start. If the table technique 
is to be used, the programmer must provide the table. The control word must be present at 
the address specified by bit positions I-IS of the associated function specification before 
the initiate input/output function instruction is executed (usually by the Executive Routine). 

(a) Drum Address Control Word 

The Drum Address control word has the following format: 

FIELD Must be Drum Unit 

NAME Zero Address Head Bar Pos ition Head Address Sector Address 

BIT 

POSITION 25 24 23 21 20 13 12 7 6 1 



UP-3853 

FIELD 
~ 

NAME 

BIT 

POSITION 

UNIVAC III UTMOST 17-F 
SEC TION: PAGE: 

Control Word Content: 

BIT S 

1 -6 Contain a binary number in the range of 000000 through 111111 indicating 
one of 64 sectors wi th which the specified function is to start; the lowest 
order sector is zero. 

7 - 12 Contain a binary numb er in the range of 000000 throu gh 111111 indicatin g 
the address of one 0 f the 64 heads. This field specifies the track contain­
ing the se ctor wi th wh i ch the function is to start; the lowes t order head is 

zero. 

13 -2 0 

21 -23 

24 -25 

Contain a binary number in the range of 00000000 through 01011111 indicating 
one of the 96 track positions to which the head bar must be set to access 
the sector with which the function is to start; the lowest order track posi­
tion is zero. 

Con tain a binary n urn ber in the range of 000 to 111 indicating one of the 
eight possible drum units which contains the sector with which the function 
is to start; the lowest order drum unit address is zero. 

Must contain zeros. 

(b) Drum Range Control Word 

25 

A Drum Range control word, when required, must appear in memory immediately follow­
ing the Drum Address control word. This word must be fabricated by the worker pro­
gram. The Drum Range control word must be delivered to the required location before 
the associated LC instruction is executed. The Drum Range control word has two 
form ats. 

For other than search functions the following format is used: 

Must be Zeros Sector Count 

8 7 1 

Control Word Content: 

BIT S 

1 -7 Con tain a binary n urn ber in the range of 0000000 through 1111111 indicatin g 
the number of successive sectors over which the function is to be performed. 
The sector processed after 63 will be sector 00 on the track under the read/ 
write head at the next higher address. If the original number is zero, or if 
an attempt is made to process beyond sector 63 of head 63, an error signal 
will be given and processing of the function which caused the signal will 
be discontinued. When 0000000 appears, the function will be performed over 
128 sectors; 0000001 indicates a single sector. 

8-25 Must be zero. 

7 



SECTION: 
17-F 

FIELD 

NAME 

BIT 

POSITION 

8 

25 

UNIVAC III UTMOST 

For Search 1 and Search 2 instructions, the Drum Range control word will have the fol­
lowing format: 

Must be Zero Head Count Sector Count 

11 10 7 6 1 

Control Word Content: 

BITS 

1 -6 

7 -10 

11-25 

Contain a binary number in the range of 000000 through 111111 indicating 
the number of sectors to be processed after the key has been located. The 
number 000'000 will be interpreted to mean that 64 sectors are to be proc­
essed. The sector processed after 63 will be sector 00 on the track under 
the head at the next higher address. If an attempt is made to process be­
yond sector 63 of head 63, an error signal will be given, and processing of 
of the function which caused the signal will be discontinued. 

Contain a binary number ln the range of 0000 through 1111 indicating the 
number of tracks over whlch the search is to be made. Zeros in this field 
will be interpreted as 16 heads; 0001 indicates a single head. 

Must contain zeros. 

UP-3853 

(c) Drum Search Control Word 

A Drum Search control word, when required, must appear in memory immediately fol-
lowing the associated Drum Range control word. This word must be an exact replica of 
the word for which the search is to be made. If the data is being searched in compressed 
mode, bits 1-24 of the Drum Search control word will be used; if the data is being searched 
in norma 1 mode, bits 1-25 wi 11 be used. 

(3) Positioning the Head Bar 

The positioning of the head bar can be omitted from an instruction if it is known that the 
bar is already in position. Use of this technique will serve to reduce access time by five ms. 
One programming technique which may be utilized when processing a FASTRAND file is to let 
the b'ASTRAND synchronizer determine when head bar positioning is required. Request for 
r ',S i'RAND functions can be made without specifying head bar positioning on the assumption 
that It will not be required in the usual case. When the synchronizer attempts to execute the 
requested function, and cannot find the specified address on the track under the designated 
he cHi , a drum address error is signalled. The Executive Routine will automatically resubmit 
the request with head bar positioning specified. 



UP-3853 UNIVAC III UTMDST 17-F 
SECTION: PAGE: 

(4) Writing on the Drum 

Four write instruetions are available for recording data on a F ASTRAN D drum when a write 
instruction is executed; information stored in a number of consecutive memory locations can 
be written on the drum in 37 or 42 word increments depending upon the choice of recording 
mode. Up to 128 increments can be written in adjacent drum storage areas during the ex­
ecution of a single instruction. 

The drum write instructions (function specifications) must be used in combination with 
Drum Address and Drum Range control words. The memory area from which the information 
is written immediately follows the control words. A write function specification contains 
the m' (15 bit)* address of the Drum Address control word which, in turn, indicates the area 
on the drum at which recording is to start. The Drum Range control word specifies the 
number of drum sectors to be written during this operation. All writing functions are per­
formed after the heads have been positioned over the designated track position, and the 
appropriate sector has been encountered by the designated head. 

(5) Reading from the Drum 

Eighteen different instructions are available for reading data recorded on F ASTRAND drums. 
These instructions fall into several categories, each of which are discussed below. All 
reading functions are performed after the heads have been positioned over the designated 
track, and after the appropriate sector has been encountered by the specified head. 

(a) Reading to Memory 

Four instructions are available for reading data from a drum to memory. When a read 
instruction is executed, the information stored in the specified drum address (sector, 
track, position, and unit) is transferred to memory under control of the synchronizer. 
The data is read from the drum serially in either 37 or 42 word increments depending 
upon the reading mode specified. Up to 128 increments (sectors) can be read from the 
drum into contiguous memory words. During a continuous read, the information is 
transferred to memory in ascending order from consecutively higher numbered sectors 
until sector 63; data in sector zero of the track under the next higher address head 
follows sector 63 in memory. (No additional time is required for head switching). 

The Drum Read instructions (function specifications) must be used in combination with 
Drum Address and Drum Range control words. The memory area directly following these 
control words will be used as the read input area by the associated function. The Read 
Function specification word contains the address of the Drum Address control word. 
The Drum Address control word indicates the area of the drum from which the reading is 
to start. The Drum Range control word must be in the next higher order memory location 
from the Drum Address control word; it specifies the number of drum sectors to be read 
to memory. 

*m' in this case represents a IS-bit address; the address furnished by a function specificatIon is not 
indexed. 

9 



17-F 
SECTION: I PAGE, 10 

UNIVAC III UTMOST UP-3853 

(b) Read Check 

Four instructions are available for verification of data after it has been written on a 
drum. This operation does not result in the tr2nsfer of data to the central processor. The 
normal mode Read Check instructions perform a Mod-3 check (See Figure 17··F-4) of data 
appearing on the drum. With the exception of transferring data to memory, R,ead Check 
instructions are executed in the same fashion as that described for the Read to memory 
instructions. The sequence of reading, the drum range, and control word requirements 
are the same. The same recording mode should be used for Read Check as was used 
for writing the data. 

(c) Search Reading 

There are eight Search Read instructions for use in reading data from the drum when it 
is not convenient to furnish the specific location of the data. An additional control 
word (the Search Key control word) provides the F ASTRAND synchronizer with a one 
word key. The synchronizer searches through from 1 to 16 tracks for the key word and 
reads only the information following that word to the central processor. 

The Search instructions (function specifications) must be used in combination with Drum 
Address and Drum Range control words. The Search Key control word must immediately 
follow the Drum Range control word in memory, and it in turn is followed by the input 
area into which the drum datais read (See Figure 17-F-3). 

Two types of Search instructions are available depending upon the system used for as­
signment of keys and item layouts. The search can be limited to only the first word of 
each sector or the data content of entire sectors can be searched.. In either case, the 
key word is not actually transferred to memory, but the transfer of data starts with the 
word immediately following it. The number of sectors to be read after the key is located 
is designated by the Drum Range control word. 

(d) Contingency Read 

Two Contingency Read instructions are available for the recovery of information from 
the drum under extenuating circumstances. These instructions can be used to force 
reading of information to memory after a persistent error condition has blocked the 
transfer of data during one of the usual read instructions. These contingency read in­
structions have been provided to ensure against even the remote possibility of losing 
data from a F ASTRAND file. 

(6) Store Status Word and Terminal Drum Address 

This instruction has been provided to furnish the programmer with full information con­
cerning the trans fer of information between the drum and the central processor. The 
F ASTRAND synchronizer can be instructed to store two words in memory for programmed 
analysis. One of these words (called the status word) supplements the information 

provided by the program -tes ta ble indica tors. It provides the means for determining the 
exact na ture of any abnormal condition caus ing the uns uccess ful completion indicator 
to be set (See Sub.c;ection 17-F-lh). 



UP-3853 UNIVAC III UTMOST 17-F 

READ 
NORMAL 

READ 
COMPRESSED 

WRITE 
NORMAL 

WRITE 
COMPRESSED 

READ CHECK 
NORMAL 

READ CHECK 
COMPRESSED 

lstWORD 
SEARCH NORMAL 

SEARCH AND 
READ NORMAL 

READ 

STORE ADDRESS 
AND STATUS 

CONTINGENCY 
READ 

POSI TION 
HEAD BAR 

NO 
OPERATION 

TEST DRUM 
ADDRESS 

m'l m't 2 rn' t 3 m'.39 m'+40 

NEXT 
SECTOR 

NEXT 
SECTOR 

DATA 
WORD 

38 

m',41 

DATA 
WORD 

39 

I I 

SECTION: 

DA TA 
WORD 

41 

m' +44 

DATA 
WORD 

42 

,..----.-...;' , , , 

-0nly the words following the key word ,1re read to memory 

NEXT I: ' 
~ ___ ~ _____ ~ _____ ~ __ -J L-~~~SECTOR : 

I 

INO AR EA 
INEEDED 
I 

DA 
CONTROL 

WORD 

-1 m't 2 m'·3 

DATA 
WORD 
37 - n 

DATA 
WORD 

38 

m"40 

I 

DATA 
WORD 

39 

m' +41 

Figure 77-F-3. iv\emory Work Area Requirement for 

Ex('cution of FASTRAND Functions 

m' +42 m'·43 m' ·44 

PA G E: 

m'·45 

NEXT 
SECTOR 

NEXT 
SECTOR 

NEXT 
SECTOR 

NEXT 
SECTOR 

NfXT 
SEC TOR 

t 
Specl;ll 
pall ty 

(:har actj.-"f 
wClrcj 

m'·45 

11 



17-F 
SECTION: pAGE: 

12 UNIVAC III UTMOST 

NORMAL MODE COMPRESSED MODE 

BIT POSITIONS BIT POSITIONS 
WORD IN RECORDING FRAME IN RECORDING WORD 

NO. SEQUENCEQ) 
NUMBER SEQUENCECD NO. 

~ ~ 

24 23 22 21 20 19 1 24 23 22 21 20 19 

18 17 16 15 14 13 2 18 17 16 15 14 13 
1 

1 12 11 10 9 8 7 3 12 11 10 9 8 7 

6 5 4 3 2 1 4 6 5 4 3 2 1 

25 26 27 125 26 27 5 24 23 22 21 20 19 

24 23 22 21 20 19 6 18 17 16 15 14 13 
2 

2 
18 17 16 15 14 13 7 12 11 10 9 8 7 

12 11 10 9 8 7 8 6 5 4 ~I 2 1 

6 5 4 3 2 1 9 24 27 22 21 20 19 
3 

24 23 22 21 20 19 10 18 17 16 15 14 13 

~ i-. - - --.... - - --11 

~ 
162 

- - - - ~-- - -
24 23 22 21 20 19 163 12 11 10 9 8 7 

41 
18 17 16 15 14 13 164 6 5 4 3 2 1 

37 12 11 10 9 8 7 165 24 23 22 21 20 19 42 

6 5 4 3 2 1 166 18 17 16 15 14 13 
~ 

25 26 27 0 0 0 167 12 11 10 9 8 7 
EXTRA (WORD 37) (2) 

FRAME 25 26 27 0 0 0 168 6 5 4 3 2 1 
SHIFT ~ ... Ci SH 1FT 

PATTERN 0 0 1 1 0 0 169 0 0 1 1 0 0 F'ATTERN 

PAR I T Y -~ ... @ PARITY 
CK.CHAR. P P P P P P 170 P P P P P P CK. CHAR. 

CD The da ta is read from the drum sectors in the same sequence in which it was recorded. 

@ Binary zeros. 

0) Six binan' bi ts. 

NOTE: The bit pos itions of the v8rious woras are shown in the column above the parity check 
charactf'r position with which tlley are associated. 

Figure 77-F-4. Derivation of Parity Check Character Pos i tions. 

UP-3853 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: 

The other word brought into memory by this instruction furnishes the Terminal Drum 
Address. It indicates the last drum s ector access ed by the mos t recen t ly (t)execu ted drum 
fun ction. Both words are e xpla ined in deta il in Subsection 17 -F -1 £(2)-(1l). The Execu ti ve 
Routine executes this instruction when it detects an abnormal condition and makes the 
information available to the operating program via a communication packet. 

(7) No Operation 

The N a OPE RATION ins truction can be transferred to the F ASTRAND synchronizer, 
and if the transfer is successful, the successful completion indicator will be set. This 
instruction can be used for drum functions in the same capacity as the NO OP instruc­
tion in central processor repertoire. It can be used as a program switch, or to reserve 
space for another function which is to be substituted for it during processing. 

(8) Drum Test 

The DRUM TEST instruction is similar to the NO OPERATION instruction in that its 
execution does not result in the transfer of data between the drum and central processor. 
It is used to verify that a specific drum address is available to the program before an 
instruction to transfer data is given. 

(9) Operation of the Synchronizer 

PAGE: 

The F ASTRAND synchronizer/control unit, like other synchronizers used for input/output 
media to the UNIVAC III Data Processing System, makes use of the input/output interrupt 
feature. When the FASTRAND subsystem is available to perform a function, its synchro­
nizer accesses the memory word reserved for use by its particular channel (channell). The 
function specification is transferred to the synchronizer where it is checked for Mod-3 parity 
and decoded for execution. 

If the function specification is one that is to be supplemented by control words, these words 
are then transferred to the synchronizer. The control words are also checked for Mod-3 
pari ty, and if found to be correct, the execution of the function will begin. When the execu­
tion of the function has been successfully initiated, the standby interlock indicator will be 
reset, clearing the way for the execution of a new LC instruction. If a search function has 
been requested, the Drum Search control word is read into the synchronizer from memory 
before the standby interlock indicator is reset. 

The in i tia ted function w ill continue under the control of the synchronize r un ti I term ina te d 
by either a successful completion signal, or an error indication. An error signal terminates 
the trans fer of info rm at ion between the synchronizer and the central processor. 

When bit position 16 of the function specification contains a one, the program testable In­
dicator (bit 2) is set when a function has been completed successfully. If an error signal 
has been encountered, indicator (bit 7) is set, and the setting of the successful completion 
indicator (bit 2) is inhibited. The synchronizer manufactures a special status word which 

particularizes error conditions. 

f. Drum Instruction Format 

The FASTRAND function specifications are submitted to the Executive Routine in combination 
with other words to form a function request packet. The instruction words discussed below are 
the specific formats that must be present for execution by the synchronizer at object time. The 
source coding to produce the object code and the associated instruction packets are discussed 
in Subsection 17-F-2. 

G) This address is automatically incremented by one when equality is reached with a given sector's 
"dog tag address" (See Table 17-F-3). Thus, this word will usually contain a value equal to the 
address of the sector following tht' last sector processed. 

13 



SECTION: 

17-F 14 UNIVAC III UTMOST UP··3853 
PAGE: 

(1) Load Channel Instruction (LC) 

FIELD 
NAME 

BIT 

POSITION 

The program controls the execution of F ASTRAND drum operations through an LC lnstruction 
supplem en ted by an input/ ou tpu t function specification an d one or more control words. The 
LC instruction accesses the FASTRAND synchronizer and specifies the location of a 
specific input/output function specification which is to be executed. 

I LOAD CHANNEL I OP Codes: Alphanumeric 
Octal 

LC 
70 

IA 

~ 
S 

25 

FUNCTION: 

OPERATION 
FLOW: 

EXECUTION 
PERIOD: 

IN STRU eTION 
WORD: 

INDEX 

REGISTER 

24 21 

Transfer the function specification from the indexed memory location 
to the fixed standby location in memory associated with channel one 
(designated in bit positions 11-14); set the respective standby 
location indicator. 

(m')~ Channel standby location for channell; set channel standby 
interlock indicator. 

3 cycles 

The LC object code word has the following format: 

OPERATION CHANNEL ADDRESS (Unindexed) 
CODE 

20 15 14 11 10 1 

SPECIFICATION: 

Indirect Address/Field Select 

Index Register -

Operation Code 

Channel 

Address 

In di rect addressing is allowed. 

Four bit binary value designating index register 
whose contents are to be used during the 
indexing cycle. 

70 (0 ctal) 

0101 (binary) for the FASTRAND Subsystem 

Ten-bit value to furnish the unindexed address 
of the associated function specification. 

NOTES: _ The LC instruction places the F ASTRAND function specification in the 
standby memory location associated with channel one. The program testable 
standby interlock indicator associated with channell is set, thereby 
altertin g the FAST RAN D synch ronizer that a function specification is 
available for execution. 

- When the channel is free to perform a drum operation, the function 
specification is transferred to the synchronizer for execution. The interlock 
indicator will not be reset to zero until the necessary number of control 
words have also been transferred to the synchronizer. 



UP-3853 UNIVAC III UTMOST 17-F 
SEC TION: 

• The binary value of the channel designa tion is the address of the standby 

location associated with the channel; it is 0101 for channel 1. 

• Indirect addressing mav be used; field selection mav not. 

(2) Function Specifications 

PAGE: 

The function speci fi ca tions wh ieh a re loaded in to the stand by locations by the LC in­

struction areexplained below. Table 17~F-2 is a compendium of the function specifications 

applicable to the subsystem when connected to d UNIVAC III Computer. For brevity of 

presentation, the drum instructions are described in pairs where the operation flow, 

ins truction forma t, an d notes a pp 1 y equa lly to both ins tructions. The ins tru ction n am es, thei r 

function codes and function descriptions are shown individually followed by the common 

information. 

Deviation from the wore! patterns Indicated is not permitted. If the F/\STRAND synchronizer 

receives a function s{:>ecification with any but the prescribed ratterns while the operating 
controls are not properly set, a jHJftion of the data stored on the drum could be destroyecl. 

HEAD 

BAR 

POS. 

FIX E 0 

POS. 

FIXED 

POS. 

fiXE 0 

POS. 

FIXED 

POS. 

FIXED 

POS. 

FIX E D 

POS. 

FIXED 

POS. 

FIXE 0 

POS. 

FIXED 

POS. 

r i 

: FUNCTION 

I 

MODE 
CONTROL 

WORDS 

READ NORM. I LlI\ I DR I 

NURM. I !)i\ I II'~ i 

I ' 

RrAD 

READ COMPo I OA IU:' i 

READ COMPo DA: llfi' 

I 

WRITf NORM 0/\ IW 

WRI Tf "HlRM. IlI\ I" 

CC!MP. 1M IH 

WRITE I CUMP. DA UR 

RD. CHK NORM. OA Ill< 

I RD. CHK N()RM. OA DR 

I 

RD, CHV (UMP, OA 

I RD. CHK. i COMPo DA 

Dk' 

DR 

! 151. WD. SER. I NORM OA 

i . I 

I 151. WD.SEf? NORMi Oil 

/151. WD. 'if f.:. CUMP DA 

DH Do 

l)f~ 0" 

U Ii OS 

I 

jlS1. WD. SFR., CUMP OA Ull 0:; 

I

i SER. I\. Rl!. NORM OA 

SER. I\. RD. NURM, D," 

I SER. I\. RD. COMPo DA 

Df~ 0 S 

I 

FIXED: SEE. & RU, COMP DA 

POS. HO, BAR 

STAT.& A 

C(HH.llI! lUMP DA 

FIXED CONT.R[; COMP.' 01\ 

DA 

r 
I MAXIMUM 

i SECTOR 

I RANGE 

121' 

ih 

12~ 

'" 

l1i24 

11'24 

6,1 

I i124 

rj ,~ 

S 1 :)24 

R 61 

1 \ I ~, 4, FPR, ADD.OF DA, 105, I, ADD.OF DA, 

IIII 1 4, FR, ADD.OF OA, I 101, I, ADIl.OF DA, 

0,'(. /1 ,Ff'W, ADD. 'lf DA,I OOG, I, ADI). Of lIll, 

0";' ,FW, ADD.OF DA, I 002, I, ADD.OI DII, 

11£ 

I I, 

011: 

112 

(I:: 

1I11 

01 ( 

112 

0:14 

014 

01 : 

013 

Oi)[ 

lor 

4, FPW, ",['0, nr DA, i 106, I, AIlD, OF Drl, 

4, FW, ADi' OF LlA, 102, " ADD, OF OA, 

, FPRC, .'\f)D.OF OA, 007", AD], OF OA, 

. FRC, ADD. Of~ OA, 003." ADO. Of OA, 

4,FPRC.!loD OF OA I 107,', AD':\OF 0,0., 

4, FRC, AIIO.Or DA.I 103,', AD') OF OA, 

I 

. FPSl, ADD.or OA,: 015,', AD,). OF OA, 

FSI, A[H'. OF DA, 

4 FS1, A{Jfl.OF OA, i 

,FPS2,,\[10.Of DA,I 

,FS2, ADD. (1[' OA, 

4, F.PS2, II liD. or OA,I 
I 

4, FS2, AD[,.(JF OA,I 

OIl. " ADU OF OA, 

Jl), " A [) D. C fDA, 

111, " ADD. OF OA, 

Oil" " liDO. OF DA, 

01i", AOD.Of DA, 

116, " A UO 0 F UA, 

112, "AOO.or OA, 

,FPHB,ADD.Of OA, OG4,', ADD. Of DA, 

,,)fSW,WK.AREA ADD, 014, I,WK o.REA ADD, 

4, f'PCR, A[)D. Of 

4, FCR, ADD. OF OA, 

, FNOP , 

017,', ADO.OF OA. 

013", AOO.OF DA, 

000, " , 

200, " ADD. OF DA, 

Table 77-F-2. FASTRAND Function Specifications 

15 



SECTION: 

17-F 16 UNIVAC III UTIVIOST 
PAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

r--------- -----------~---l 
(1) POSITION RE~D-NOR~~LJ OP Codes: Alphanumeric 

Octal 

FPR 
005 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 

heads over the specified tracks. When the heads have been correctly 

positioned, locate the specified sector on the track under the 

designated head; read that sector to memory starting at mt + 2: of the 

address furnished in this instruction word. Continue reading through 

successively higher address sectors until the number of sectors 

specified by the Drum Range control word have been read. 

(b) @XED READ-NORM~~I OP Codes: Alphanumeric 

Octal 

FR 
001 

0 

25 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

Locate the specified sector on the track under the designated head; 

read that sector to memory starting at m' t 2 of the address furnished 

in this instruction word. Continue reading through successively higher 

address sectors for the number of sectors specified by the Drum Range 

con trol word. 

Read to memory the specified number of sectors from the drum. 
IS ... Sn )--"m' -t 2 ... m' + 2 + 37n 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 0 0 0 0 1 0 1 X X X X X X X X X X X X X X X X 

17 16 15 1 

Instruction Word Content: 

BITS 

1-15 Contain a binary value giving the location of the associated Drum Address 

control word. 

16 

17 -25 

Must be a one bit if the operating program is to be interrupted automatically 

upon completion of the function; otherwise it is zero. 

Must be one of the octal values DOlor 005. 

NOTES: _ The address of the sector from which reading is to start is specified by the 

Drum Address (DA) control wo rd. The address of the DA control word is 

given in bit positions 1-15 of this instruction word. 

UP-38S3 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: 

• The num ber 0 f s ecto rs to be read du rin g the execu tion 0 f th i s function is 
specified by the Drum Range control word. It must be present at m' + 1, 
relative to the address furnished in bit positions 1-15 of this instruction 
word. 

• If sector 63 is reached on any track before the full number of sectors have 
been read, the opera tion w ill con tinue th rou gh the track un der the head at 
the next higher address. The first sector processed on that track will be 
sector zero. 

• An attempt to read beyon d sector 63 of head 63 w ill res u 1 t in an in te rru pt 
signal and the read operation will be terminated. 

PAGE: 

• If so specified, s ucces s ful comp letion in terrupt will occur wh en th e fun ction 
is completed without encountering an error signa 1. 

• The program testable indicator (bit 7) will be set if reading is terminated 
due to an error or if the read/write heads are not properly positioned. If an 

error is signaled, the status word will be made available in the synchronizer. 
Reading will not start if the heads are not properly positioned. 

• 37 UNIVAC III words are transferred from the drum for each sector read. 
Information is read in the form of serially recorded bits along the track, with 
each 27 hits resulting in a word in memory. In multiple sector operation, the 
first word of the sector at the next higher address results in the 38th word 
of data in memory, etc. 

• A Mod-3 parity check is performed on data transferred between the drum and 
the syn ch ronizer. 

17 



17-F 
SECTION: PAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

18 UNIVAC III UTMOST UP-3853 

(C)! POSITION READ-COMPRESSED! OP Codes: Alphanumeric - 4FPR 
Octal 105 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been correctly 
positioned, locate the specified sector on the track under the designated 
head; read that sector to memory starting at m' + 2 of the address 
furnished in this instruction word. Continue reading through successively 
higher address sectors for the number of sectors specified by the Drum 
Range control word. 

(d) I FIXED READ-COMPRESSED! OP Codes: Alphanume:ric 

Octal 
4FR 
101 

0 

25 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

Locate the specified sector on the track under the designated head; 
read that sector to memory starting at m' + 2 of the address furnished 
in this instruction word. Continue reading through successively higher 
address sectors for the number of sectors specified by the Drum Range 
control word. 

Read to memory the specified number of sectors from the drum 
[S ... Snl~m' + 2 ... m' + 2 + 42n 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 1 0 0 0 0 0 1 X X X X X X X X X X X X X X X 

17 16 15 

Instruction Word Content: 

BITS 

1-15 Contain a binary value giving the location of the associated Drum Address 

con t ro 1 word. 

X 

1 

16 Must be a one bit if the operating program is to be interrupted automatically 

upon completion of the function; otherwise it is zero. 

17 - 25 Must be one of the octal values 101 or 105. 

NOTES: _ The address of thesector from which reading is to start is specified by the 

Drum Address (DA) control word. The address of the DA control word is 

given in bit positions I-IS of this instruction word. 



UP-3853 UNIVAC III UTMDST 17-F 
SEC TION: 

• The number of sectors to be read during the execution of this function is 
specified by the Drum Range control word. It must be present at m' + I, 
relative to the address furnished by this instruction word. 

PAGE: 

• If sector 63 is reached on any track before the full number of sectors have 
been read, the operation will continue through the track under the head at 
the next higher address. The first sector processed on that track will be 
sector zero. An attempt to read beyond sector 63 of head 63 will result in 
an error signal and the read operation will be terminated. 

• If so specified, successful completion interrupt will occur when the function 
is completed without encountering an error signal. 

• The program testable indicator (bit 7) will be set if reading is terminated 
due to an error or if the read/write heads are not properly positioned. If an 
error is signaled, the status word will be made available in the synchronizer. 
Reading will not start if the heads are not properly positioned. 

• 42 UNIVAC III words are transferred from the drum for each sector read. 
Information is read in the form of serially recorded bits along the track, with 
each 24 bits res ul tin g in the low order bits 0 f the wo rd in me mo ry. Bi t 
positions 25-27 are filled in by the synchronizer. A zero bit is placed in 
position 25; the proper Mod-3 check bits are placed in bit positions 26-27. 
In multiple sector operation, the first word of the sector at the next higher 
address res ul ts in the 43 rd word 0 f da ta in me mo ry, etc. 

19 



17-F 
SEC TION: PAGE: 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

20 UNIVAC III UTMOST UP··3853 

(e)[ POSITION WRITE-NORMAL l OP Codes: Alphanumeric 
Octal 

FPW 
006 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been correctly 
positioned, locate the specified sector on the track under the 
designated head. Write on the located drum sector, the contents of 
memory starting at address m' + 2 relative to that specified in bits 
1-15 of this instruction. Write continuously from successively higher 
sector addresses over the number of sectors specified by the Drum 
Range control word. 

(f) I FIXED WRITE-NORMALl OP Codes: Alphanumeric - FW 
Octal - 002 

0 

25 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

Locate the specified sector on the track under the designated head. 
Write on the located drum sector, the contents of memory starting at 
address m' + 2 relative to that specified in bits 1-15 of this instruction. 
Write continuously from successively higher memory locations to 
successively higher sector addresses over the number of sectors 
specified by the Drum Range control word. 

Write from memory, through the specified number of sectors 
[m'+2 ... m' t 2 t 37n I ~ S ... Sn 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 0 0 0 0 0 1 0 X X X X X X X X X X X X X X X X 

-

17 16 15 1 

Instruction Word Content: 

BITS 

1-15 Contain a binary value giving the location of the associated Drum Address 
control word. 

16 Must be a one bit if the operating program is to be interrupted automatically 
upon completion of the function; otherwise it is zero. 

17 -2 5 _ Must be one of the octal values 002 or 006. 

NOTES: _ The address of the sector at which writing is to start is specified by the 
associated Drum Address (DA) control word. The address of the DA control 
word is given in bit positions 1-15 of this instruction word. 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: PAGE: 

• The number of sectors to be written during the execution of this function is 
specified by the Drum Range (DR) control word. The DR control word must 
be present at m' + 1 relative to the address furnished by this instruction 
word. 

• If sector 63 is reached on any track before the full number of sectors have 
been written, the operation continues through the track under the head at 
the next higher address. The first sector processed on that track is sector 
zero. An attempt to write beyond sector 63 of head 63 will result in an error 
signal and the termination of the operati')n. 

• If so specified, successful completion in terrupt will occu r when the function 
is completed w ithou t en coun tering an error si gnal. 

• The program testable indicator (bit 7) will be set if writing is terminated 
due to the detection of an error or if the read/write heads are not properly 
positioned. Writing will not be started if the heads are not properly 
posi tioned. 

• If an error is si gnaled the status wo rd w ill be made a vaila ble in the 
s y n c h ro n i z e r. 

• 37 UNIVAC III words are transferred from memory for each sector written. 
Information is recorded serially on the specified track, with each word 
resulting in 27 bits on the drum. In multiple sector operations the 38th word 
in memory corresponds to the first word of the sector at the next higher 
address, etc. 

21 



SECTION: 

17-F 22 UNIVAC III UTMOST UP··3853 
pAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

(g) I POSITION WRITE·COMPRESSED f OP Codes: Alphanumeric - 4FPM 
Octal - 106 

FUNCTION: Pos~tion the head bar of the specified drum unit to bring the read/write 
heads over the specIfied tracks. When the heads have been correctly 
positioned, locate the specified sector on the track under the designated 
head. Write in compressed mode on the located drum sector, the contents 
of memory starting at address m' + 2 relative to that specified in bits 
1~1 5 of this ins truction. W ri te continuously from successively higher 
m em ory locations to s uccessi ve ly hi gher sector addresses over the 
number of sectors specified by the Drum Range control word. 

(h) I FIXED WRITE.COMPRESSED I OP Codes: Alphanumeric 
Octal 

4FW 
102 

0 

25 

FUNCTION: 

OPERATION 
FLOW: 

IN STRUCTION 
WORD: 

Loca te th e specified s ector on the track under the desi gna ted head. 
Write in compressed mode on the located drum sector, the contents of 
memory starting at address m' + 2 relative to that specified in bits 
1·15 of this instruction. Write continuously from successively higher 
memory locations to successively higher sector addresses over the 
number of sectors specified by the Drum Range control word. 

Write from memory, through the specified number of sectors 
[m',2 ... m't2t42nl • S ... Sn 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 1 0 0 0 0 1 0 X X X X X X X X X X X X X X X X 

17 16 15 1 

Instruction Word Content: 

BITS 

1.15 Contain a binary value giving the location of the associated Drum Address 
con trol wo rd. 

16 

17·25 

Must be a one bit if the operating program is to be interrupted automatically 
upon completion of the function; otherwise it is zero. 

Mus t be 0 n e 0 f th e 0 c t a I val u e s 1 02 0 r 1 06. 

NOTES: _ The address of the sector at which writing is to start is specified by the 
associated Drum Address (DA) control word. The address of the DA control 
word is given in bit positions 1-15 of this instruction word. 



UP-3853 UNIVAC III UTIVICBT 17-F 

SECTION: PAGE: 

• The number of sectors to be written during the execution of this function is 
specified by the Drum Range (DR) control word. The DR control word must 
be present at m' t 1 relative to the address furnished by this instruction 
word. 

• If sector 63 is reached on any track before the full number of sectors have 
been written, the opera tion con tin ues throu gh the track under the head at 
the next higher address. The first sector processed on that track is sector 
zero. An attempt td write beyond sector 63 of head 63 will result in an error 
signal and the termination of the operation. 

• If so specified, successful completion interrupt will occur when the function 
is com pie ted wi thou t encoun tering an error si gnal. 

• The program testable indicator (bit 7) will be set if writing is terminated 
due to the detection of an error or if the read/write heads are not properly 
positionea. Writing will not start if the heads are not in the proper position. 

• If an error is signaled, the status word will be made available in the 
synchronizer. 

• 42 UNIV A C III words a re transferred from me mory for each sector w ri tten. 
Information is recorded serially on the track, with each word resulting in 
24 bits on the drum; bit positions 25-27 are not written. In multiple sector 
operations the 43rd word in memory corresponds to the first word of the 
sector at the next higher address, etc. 

23 



17-F 
SECTION: PAGE: 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

24 UNIVAC III UTMOST UP-3853 

(i) I POSITION READ CHECK·NORMAL I OP Codes: Alphanumeric 
Octal 

FPRC 
007 

FUNCTION: Position the head bar of the sp~cified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been correctly 
positioned, locate the specified sector on the track under the 
designated head. Read the located sector into the synchronizer for 
parity and phase shift check, but do not transfer the data to memory. 
Read continuously through the number of sectors specified by the 
associated Drum Range control word. 

U) I FIXED READ CH ECK·NORMA LI OP Codes: Alphanumeric 
Octal 

FRC 
003 

0 

25 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

Locate the specified sectors on the track under the designated head. 
Read the located sector into the synchronizer but do not transfer the 
da ta to memo ry. Read con tinuously th rou gh the number of sectors 
specified by the associated Drum Range control word. 

Read from the drum to the s ynch ronizer throu gh the specified n urn ber 
of sectors [S ... Sn j-"synchronizer 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 0 0 0 0 0 1 1 X X X X X X X X X X X X X X X X 

17 16 15 

Instruction Word Content: 

BITS 

1.15 Contain a binary value gi vin g the location of the associated Drum Address 
control word. 

1 

16 Mus t be a one bi t if the ope ra tin g program is to be in terrupted au toma tically 
upon completion of the function; otherwise it is zero. 

17.25 Must be one of the octal values 003 or 007. 

NOTES: _ The address of the sector at which read checking is to start is specified by 
the associated Drum Address control word. The address of this control word 
is given in bit positions 1-15 of this instruction word. 



UP-3853 UNIVAC III UTMDST 17-F 
SEC TION: 

• The num ber of sectors to be checked during the execution of this function 
is specified by the Drum Range (DR) control words. The DR control word 
must be present in the m' + 1 address relative to that furnished in bit 
positions 1-15 of this instruction word. 

• If sector 63 is reached on any track before the full number of sectors have 
been checked, the operation will continue through the track under the head 
at the next higher address. The first sector processed on that track is 
sector zero. An attempt to check beyond sector 63 of head 63 will result in 
an error signal and the termination of the operation. 

PAGE: 

• If so specified, successful completion in terrupt will occu r when the function 
is completed without encoun terin g an error si gnal. 

• The program testable indicator (bit 7) will be set if writing is terminated 
due to the detection of an error or if the read/write heads are not properly 
positioned. 

• If an error is signaled, the status word will be made available in the 
sy n chronizer. 

• Drum information is transferred to the synchronizer where it is checked for 
phase modulation, Ion gi tudinal an d Mod-3 pari ty. It is not read in to memo ry. 

• The memory address register which normally controls the transfer of data 
between the synchronizer and the central processor will be incremented 
as though data were being transferred. 

25 



17-F 
SECTION: pAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

26 UNIVAC III UTMOST UP-3853 

k. I POSITION READ CHECK-COMPRESSEDI OP Codes: Alphanumeric - 4FPRC 
Octal 107 

FUNCTION: Posi tion the head ba r of the speci fied drum unit to brin g the read/wri te 
heads over the specified tracks. When the heads have been correctly 
positioned, locate the specified sectors on the track under the 
desi gna ted head. Read th e located s ector in to the synchronizer in 
compressed mode, but do not transfer the data to memory. Read 
con tin uously th rou gh the num ber of sectors s peci fied by the associated 
Drum Range control word. 

1.1 FIXED READ CHECK-COMPRESSED I OP Codes: Alphanumeric -- 4FPC 
Octal - 103 

0 

25 

FUNCTION: Locate the specified sector on the track under the designated head. 
Read the located sector into the synchronizer in compressed mode, but 
do not transfer the data to memory. Read continuously through the 
number of sectors specified by the associated Drum Range control word. 

OPERATION 
FLOW: 

Read from drum to the synchronizer through the specified number of 
sectors [S ... Snl~synch ronizer 

INSTRUCTION 

WORD: 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 1 0 0 0 0 1 1 X X X X X X X X X X X X X X X X 

17 16 15 1 

Ins truction Word Content: 

BITS 

1 - 1 5 

16 

17 -25 

Contain a binary value giving the location of the associated Drum Address 
control word. 

Must be a one bit if the operating program is to be interrupted automatically 
upon completion of the function; otherwise it is zero. 

Must be one of the octal values 103 or 107. 

NOTES: _ The address of the sector at which read checking is to start is specified by 
the associated Drum Address control word. The address of this control word 
is given in bit positions I-IS of this instruction word. 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: PAGE: 

• The number of sectors to be checked during the execution of this function is 
specified by the Drum Range (DR) control words. The DR control word must 
be present in the m' + 1 address relative to that furnished in bit positions 
1-15 of this instruction word. 

• If sector 63 is reache d on any track befo re the full num be r of sectors have 
been checked, the operation will continue through the track under the head 
at the next h ighe r add·rass. The firs t sector process ed on that track is sector 
zero. An attempt to write beyond sector 63 of head 63 will result in an error 
signal and the termination of the operation. 

• If so specified, successful completion interrupt will occur when the function 
is completed without encountering an error signal. 

• The program testable indicator (bit 7) will be set if writing is terminated 
due to the detection of an error or if the read/write heads are not properly 
positioned. 

• If an error is si gnaled, the s ta tus word w ill be made a vaila ble in the 
syn ch ronizer. 

• Drum information is transferred to the synchronizer where it is checked for 
phase modulation and longitudinal parity. It is not read into memory. 

• The memory address register which normally controls the transfer of data 
between the synchronizer and the central processor will be incremented as 
though data were being transferred. 

27 



17-F 
SEC TION: PAGE: 

FIELD 
NAME 

WORD 

28 UNIVAC III UTMOST UP-3853 

(m) I POSITION FIRST WORD SEARCH AND READ-NORMALI OP Codes: Alphanumeric-FPS1 
Octal- 015 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been positioned, 
locate the specified sector on the track under the designated head. 

Read the first word of each sector into the synchronizer and compare 
this word with the Drum Search control word until an equal condition 
is detected. Upon finding the key word, read the information from the 
second and s ucceedin g words of the sector in to the cen tral processor 
starting at memory location m' + 3 relative to the address specified in 
bits 1-15 of this instruction. Read continuously from successively 
higher address sectors to successively higher memory locations until 
the number of sectors specified by bit positions 1-6 of the Drum Range 
con trol word have been read. 

(n) FIXED FIRST WORD SEARCH AND 
READ-NORMAL 

OP Codes: Alphanumeric 

Octal 

FS 1 
011 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

Locate the specified sector on the track under the designated head. 
Read the first word of each sector into the synchronizer and compare 
this word with the Drum Search control word until an equal condition 
is detected. Upon finding the key word, read the information from the 
second and succeeding words of the sector into the central processor 

starting at memory location m' + 3 relative to the address specified in 
bits 1-15 of this instruction. Read continuously from successively 
higher address sectors to successively higher memory locations until 
the number of sectors specified by bit positions 1-6 of the Drum Range 
control word have been read. 

Search the first word of each sector on up to 16 tracks. Read to memory 
the specified n urn ber of sectors upon encountering the specified key. 
[S ... Sn l--'m' + 3 ... m' + 39 + 37 (n-l) 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 
--

X X X X X X X X X 
CONTENT 0 0 0 0 0 1 0 0 1 X X X X X X X 

BIT 
POSITION 25 17 16 15 1 

Instruction Word Content: 

BIT S 

1-15 Contain a binary value giving the location of tht= associated Drum Address 
control word. 



UP-3853 UNIVAC III UTMOST 17-F 

16 

17-25 

SEC TION: PAGE: 

The operating program is interrupted automatically upon completion of Cill 

search functions; bit 16 can be either zero or one. 

Must be one of theoctal values 011 or 015. 

NOTES: • The address of the sector at which the search is to begin is specified by 
the associated Drum Address (DA) control word. The address of this control 

word is given in bit positions 1-15 of this instruction word. 

• The number of tracks over which the search is to be conducted is given in 
bi t pos itions 7-10 of the Drum Range (0 R) con tro1 wo rd. 0000 est Ci b 1 is he s 

a search range of 16 tracks. 

• The number of sectors which are to be read to memory during the ex(:'cutiun 
of this function, is specified in bits 1-6 of the DR control word. The DR 
control word must be present at address m' t 1 relative to thCit furnished 

in bit positions 1-15 of this instruction word. 

• If sector 63 is reached on any track before the full number of sectors have 
been searched and/or reCid, the operation continues thruugh the track under 

the head at the next higher address. The first sector processed on that 
track is sector zero. An attempt to search and/ or read beyond sector 63 
of head 63 will result in an error signal and the termination of the uperat IOn. 

• The word at address m' + 2 relative to that given in bit positions 1-15 of 
this instruction word is the Drum Search control word. Before the search is 
begun, it is transferred to the synchronizer as if a write instruction was 

being executed. 

• The program testable indicator (bit 7) is set either before or after comple­
tion of this operation. The status word must be brought into memory from 
the synchronizer and exam ined by the program to determ ine the success of 

the operation. 

• When -sector 63 of the track at the upper limit of the search range is en­
countered before the key word is located, the search is terminated. The 

program testable indicator (bit 7) is set. 

• Bit positions 1-25 of the key word are compared with bit positions 1-25 of 

the first word of each sector. 

• Except for the sector containing the key, 37 UNIVAC III words are brough t 
into memory of 27 bit increments for each sector read. In -multiple sector 
reading, the 38th word in memory (starting with the key word) comes from the 

first word of the sector at the next higher address, etc. 

• The second and succeeding words of the sector containing the key are read 
to the central processor. These words occupy contiguous memory locations 

immediately following the Search Key control word, thus, the resultant input 
area appears as if the key word has been read to memory following the DR 

control word. 

29 



SECTION: 
17-F 

PAGE: 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

30 UNIVAC III UTMOST UP-38s3 

(0) POSITION FIRST WORD SEARCH AND 
READ·COMPR ESSED 

OP Codes: Alphanumeric - 4FPS1 
Octal - 115 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been positioned, 
locate the specified sector on the track under the designated head. 
Read the first word of each sector into the synchronizer in the com­
pressed mode. Compare this word with the Drum Search control word 
until an equal condition is detected. Read in compressed mode the in­
formation from the second and succeeding words of that sector into 
memory starting at location m' + 3 relative to the address specified 
in bits 1-15 of this instruction. Read continuously from successively 
higher address sectors to successively higher memory locations until 
the number of sectors specified by bit positions 1-6 of the Drum Range 
control word have been read. 

(p) FIXED FIRST WORD SEARCH AND 
R EAD-COMPR ESSED 

OP Codes: Alphanumeric .- 4 F S 1 
Octal·- 111 

0 

25 

FUNCTION: 

OPERATION 

IN STRUCTION 
WORD: 

Locate the spec ified sector on the track under the designated head. 
Read the first word of each sector into the synchronizer in the com­
pressed mode. Compare this word with the Drum Search control word 
until an equal condition is detected. Read (in compressed mode) 
information from the second and succeeding words of the sector 
into the central processor starting at memory location m' + 3 
relative to that specified in bit positions 1-15 of this instruction. 
Read continuously from successively higher address sectors to succes­
sively higher mem ory locations until the number of sectors specified 
by bit positions 1-6 of the Drum Range control word have been read. 

Search the first word of each sector on up to 16 tracks. Read to memory 
the specified n urn ber of sectors upon encountering the s pecifie d key. 
l S ... Sn ] ....... m' + 3 ... m' + 44 + 42 (n-I) 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 1 0 0 1 0 0 1 X X X X X X X X X X X X X X X X 

17 16 15 1 

Instruction Word Content: 

BIT S 

1 -1 5 Con tain a bina ry val ue gi v ing the loc at ion of the a ssocia ted Drum Address 
control word. 



UP-3853 UNIVAt;; III UTIYIC5T 17-F 

16 

17.25 

SECTION: PAGE: 

The operating program is interrupted automatically upon completion of all 
search functions; bit 16 can be either zero or one. 

Must be one of the octal values 111 or 115. 

NOTES: • The address. of the sector at which the search is to begin is specified by 
the associated Drum Address (DA) control word. The address of this con­
trol word is given in bit positions 1-15 of this instruction word. 

• The number of tracks over which the search is to be conducted is given 
in bit positions 7-10 of the Drum Range (DR) control word. 0000 establishes 
a search range of 16 tracks. 

• The number of sectors which are to be read to memory during the execution 
of this fun ction is s pecif ied in bits 1-6 of the DR con trol word. The DR 
control word must be present at address m't 1 relative to that furnished in 
bit positions 1-15 of this instruction word. 000000 is interpreted to specify 
64 sectors to be read . 

• If sector 63 is reached on any track before the full number of sectors have 
been searched and/or read, the operation continues through the track under 
the head at the next higher address. The first sector plocessed on that track 

is sector zero. An attempt to search and/or read beyond sector 63 of head 
63 will result in an error Signal and the term ination of the operation. 

• The word at address m' + 2 relative to that given in bit positions 1-15 of 
this instruction word is the Drum Search control word. Before the search is 
begun, it is transferred to the synchronizer as if a write instruction was 

being executed. 

• The program testable indicator (bit 7) is set either before or after comple­
tion of this operation. The status word must be brought into memory from 

the synchronizer and examined by the program to determine the success of 
of the operation. 

• When sector 63 of the track at the upper limit of the search range is en­
cou n tered before the key word is loc Cited, th e se arch is term ina ted. Th e 
program testable indicator (bit 7) is set. 

• Bit positions 1-24 of the key word are compared with bit positions 1-24 
of the first word of each sector. 

• Except for the sector containing the key, 42 UNIVAC III words are read 
from each sector in 24 bit increments. The synchronizer inserts a zero in 
bit position 25 and proper Mod-3 check bits in positions 26 and 27. In 
multiple sector reading, the 43rd word in memory (relative to the OS control 
word) comes from the first word of the sector at the next higher address, etc. 

• The second and succeeding words of the sector containing the key are read 
to the cen tral p races sor. Th ese words occupy con ti gu ou S mem ory 1 oca t ion s 

imm edi ate ly fo llaw in g the 0 rum Sea rc h con trol word, th us, the resu ltan t 
input area has the same format as if the key word had been read to memorv 

following the DR control word. 

31 



17-F 
SECTION: 

32 UNIVAC III UTMOST UP-3853 
PAGE: 

(q) I POSITION SEARCH AND READ.NORMA~ OP Codes: Alphanumeric -- FPS2 
Octal- 016 

FUNCTION: Position the head bar of the specified drum unit to bring the read/ 
write heads over the specified tracks. When the heads have been 
positioned, locate the specified sector on the track under the designated 
head. Read all words of that and each succeeding sector into the syn­
chronizer and compare each word with the Drum Search control word 
until an equal condition is detected. Read the words following the key 
word into the central processor starting with location m + 3 relative 
to the address specified in bit positions I-IS of this instruction. Read 
continuously from successively higher address sectors to successively 
higher memory locations until the number of sectors specifiled by bit 

positions 1-6 of the Drum Range control word have been read. 

(r) I FIXED SEARCH AND READ-NORMALI OP Codes: Alphanumeric 
Octal 

FS2 
012 

FIELD 

NAME 

WORD 
0 

CONTENT 

BIT 

POSITION 25 

FUNCTION: 

OPERATION 

FLOW: 

INSTRUCTION 
WORD: 

Locate the specified sector on the tracK under the designated head. 
Read all words of that and each succeeding sector into the synchronizer 
and compare each word with the Drum Search control word until an equal 

condition is detected. Read the words following the key word into the 
central processor starting with memory location m' + 3 relative to the 
address specified in bit positions I-IS of this instruction. Read con­
tinuously from successively higher address sectors to successively 
higher memory locations until the number of sectors specified by bit 
positions 1-6 of the Drum Range control word have been read. 

Search each sector on up to 16 tracks. Upon encountering the key word, 

read to memory the remainder of th,at sec,tor plus additional sectors if 

so specified.lKey wd + l. .. Sn j ........ m +3 ... m + (39 minus the no. of wds. pre­
ceeding the key in key sector) f- 37 (n-l). 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 0 0 0 1 0 1 0 X X X X X X X X X X X X X X X X 

17 16 15 1 

Instruction Word Content: 

BIT S 

1-15 Contain a binary value giving the location of the associated Drum Address 
control word. 



UP-3853 UNIVAC III UTMOST 17-F 

16 

17 -2 5 

SECTION: PAG::::: 

The operating program is interrupted automatically upon completion of all 
search functions; bit 16 can be either zero or one. 

Must be onE of the octal values 012 or 016. 

NOTES: _ The address of the sector at which the search is to begin is specified by 
the associated Drum Address (DA) control word. The address of the DA 
co n trol word is gi ven in bit pos i tion s 1-15 of this instruct ion word. 

_ The number of tracks over which the search is to be conducted is given in 
bit positions 7~10 of the Drum Range control word. 0000 in this field 
designates the range to be 16 tracks. 

_ The number of sectors to be read to memory after the key word is located 
is specified in bits 1-6 of the DR control word. The DR control word must 
be present at address m ' + 1 relative to that furnished in bit positions 1-15 
of this instruction. 000000 in this field designates 64 sectors to be trans­
ferred after the key is located. 

_ The Drum Search control word at m ' + 2 is read from memory to the syn­
chronizer in a similar fashion to the execution of a write instruction. 

_ The words immediately following the located key word are read from the 
synchronizer to the central processor. This can result in the transfer of 
less than a full sector. Drum data will be read to memory starting with 
address m' + 3 relative to that specified in bit positions 1-15 of this in­
struction word. 

_ When data is read to memory, it occupies contiguous memory locations 
imm ediate ly following the Drum Search control word. Thus, th e re su Itan t 
input area has the same format as if the key word had been read to memory. 

- Except for the sector containing the key, 37 UNIVAC III words are brought 
from the drum to memory. In multiple sector reading, the 38th word in memory, 
adjusted by the number of words read before the key was encountered, comes 
from the first word of the sector at the next higher address, etc. 

_ If sector 63 is reached on any track before the full specified number of 
sectors have been searched and/or read, the operation continues through 
the track under the head at the next higher address. The first section pro­
cessed on that track is sector zero. An attempt to search and/ or read 
beyond sector 63 of head 63 will result in an error signal and the termina­
tion of the operation. 

_ The program testable indicator (bit 7) is set either before or after comple­
tion of the operation. The status word must be examined to determ ine the 
success of the operation. 

_ If the key is found to be the last word in the sector. a nd on ly one sector 
has been specified for reading, no data will be read to memory. 

33 



17-F 
SECTION: PAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

34 UNIVAC III UTMOST UP-3853 

(s) I POSITION SEARCH AND READ-COMPRESSED I OP Codes: Alphanumeric - 4FPS2 
Octal - 116 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 
heads over the specified tracks. When the heads have been positioned, 
locate the specified sector on the track under the designated head. Recld 
all words of that and each succeeding sector into the synchronizer and 
compare each word with the Drum Search control word until an equal 
condition is detected. Read the words following the key word into the 
central processor starting with memory location m' + 3 relative to the 
address specified in bit positions I-IS of this instruction .. Read con­
tinuously from successively higher address sectors to successively 
higher memory locations until the number of sectors specified by bit 
positions 1-6 of the Drum Range control word have been read. 

(t) IFIXED SEARCH AND READ-COMPRESSEDI OP Codes: Alphanumeric 
Octal 

4FSE 
112 

0 

25 

FUNCTION: Locate the specified sector on the track under the designated head. 
Read all words of that and each succeeding sector into the synchronizer 
and compare each word with the Drum Search control word until an equal 
condition is detected. Read the words following the key word into the 
central processor starting with memory location m + 3 relative to the 
address specified in bit positions I-IS of this instruction. Read contin­
uously from successi vely higher address sectors to successively 
higher memory locations until the number of sectors specified by bit 
positions 1-6 of the Drum Range control word have been read. 

OPERATION 

FLOW: 

Search each sector on up to 16 tracks. Upon encountering the key 
word, read to memory the remainder of that sector plus additional 
sectors if so spec ified. l Key wd + 1. .. Sn] ---+- m' + 3 ... mt +( 41 minus the 
no. of wds preceding key in key sector) + 42 (n-l), 

INSTRUCTION 

WORD: 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

0 1 0 0 1 0 1 0 X X X X X X X X X X X X X X X X 

17 16 15 1 

Instruction Word Content: 

BITS 

1-15 Contain a binary value giving the location of the associated Drum Address 
control word. 

16 

17 -2 5 

The operating program is interrupted automatically upon completion of all 
search functions; bit 16 can be either zero or one. 

Must be one of the octal values 112 or 116. 



UP-3853 UNIVAC III UTMOST 17-F 
SECTION: 

NOTES: • The address of the sector at which the search is to begin is specified by 
the associated Drum Address (DA) control word. The address of the DA 
control word is given in bit positions 1-15 of this instruction word. 

PAGE: 

• The number of tracks over which the search is to be conducted is given in 
bit positions 7-10 of the Drum Range (DR) control word. 0000 in this field 
designates the range to be 16 tracks. 

• The number of sectors to be read to memory after the key word is located 
is specified in bits 1-6 of the DR con tro 1 word. Th e DR con trol word m us t 
be present at address m' + 1 relative to that furnished in bit positions 1-15 
of this instruction. 000000 is interpreted to specify 64 sectors. 

• Bit positions 1-24 of the Drum Search control word are compared with bit 
positions 1-24 of all the words in the searched sectors. The Drum Search 
control word must be present at address m' + 2 relative to that specified in 
bits 1-15 of this instruction. 

• The Drum Search control word at m I + 2 is read from memory to the syn­
chronizer in a similar fashion to the execution of a write instruction. 

• The words immediately following the key word are transferred irom the 
synchronizer to the central processor. This can result in the transfer of 
less than a full sector. Drum Data will be read to memory starting with 
address m' + 3 relative to that specified in bit positions 1-15 of this in­
struction word. 

• When data is read to memory, it occupies contiguous memory locations 
immed iate ly fo llow ing the Drum Search control word. Th us, the resultant 
input area has the same format as if the key word had been read to memory. 

• Except for the sector containing the key, 42 UNIVAC III words are brought 
from the drum to the synchronizer in 24 bit increments per word. Bit 25 is 
set to zero and bits 26 and 27 are set to the proper Mod-3 condition by the 
synchronizer before each word is brought into memory. In multiple sector 
reading, the 43rd word in memory (adjusted by the position of the key word 
within its sector) comes from the first word of the sector at the next higher 
address, etc. 

• If sector 63 is reached on any track before the full spec ified num ber of 
sectors ha ve been searched and/or read, the opera tion cont in ues th rough 
the track under the head at the next higher address. The first sector pro­
cessed on that track is sector zero. An attempt to search and/or read be­
yond sector 63 of head 63 will result in an error signal and the termination 
of the operation. 

• The program testable indicator (bit 7) is set either before or after comple­
tion of the operation. The status word must be examined to determine the 
success of the operation. 

• If the key word is the last word in its sector and only one sector has been 
specified for readin g in the DR control word, no data will be read to mem ory. 

35 



17-F 
SECTION: PAGE: 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

36 UNIVAC III UTMOST UP-3853 

(u) I POSITION HEAD BAR I OP Codes: Alphanumeric 
Octal 

FPHB 
004 

a 

25 

FUNCTION: Initiate positioning of the head bar of the specified drum unit to bring 
the read/write heads over the specified track addresses. 

OPERATION 
FLOW: 

Set head bar to specified track. No transfer of data takes place. 

INSTRUCTION 

WORD: 

FUNCTION CODE INT. DA CONTROL WORD ADDRESS 

a a a a a 1 a a x x x x x x x x x x x x )( x x X 

17 16 15 1 

Instruction Word Con ten t: 

BIT S 

1 - 15 

16 

17 -25 

Contain a binary value giving the location of the associated Drum Address 
control word. 

Must be a one bit if the operating program is to be interrupted automatically 
upon completion of the function; otherwise it is zero. 

Must always be the octal value 004. 

NOTES: - The address of the drum unit and the position to which the head bar is to be set 
specified by the associated Drum Address (DA) control word. The address 
of the control word is given in bit positions I-IS of this instruction word. 

- The DA control word may contain either zeros or ones in bit positions 
1-12. 

_ No Drum Range control word is required. 

- If so specified, successful completion interrupt will occur when position­
ing has been initiated; the program testable indicator (bit 2) will be set. 

- If an error is Signaled, the status word will be made available in the syn­
chronizer. 

- If a request is received by the synchronizer to position the head bar of a 
unit which has not finished the execution of a prior positioning instruction, 
the unfinished operation is halted. The bar is then positioned according to 
the specification of the most recent instruction. 



UP-3853 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

UNIVAC III UTMOST 17-F 
SECTION: PAGE: 

(v) STORE STATUS WORD AND 
TERMINAL DRUM ADDRESS 

OP Codes: Alphanumeric 
OcL:il 

STSW 
014 

0 

25 

FUNCTION: Transfer two words from the synchronizer to the mt'mory address 
specified by bit positions 1-15 of this instruction word. The first of 
the two words is the status word. The second word furnishes the drum 

unit, position, head, and sector addn'ss of till' scclt)f immedidkh 

following the last drum ,He;l processed. 

OPERATION 
FLOW: 

! Synchronizer (two wordsl!---..m' and m' 

INSTRUCTION 

WORD: 

FUNCTION CODE DA CONTROL WORD ADDRESS 
---~-~--~-- - ----- -- ------ -- --- -~-- ,-

0 0 0 0 1 1 0 0 X X X X X X X X X X X X X X X X 

----- ---.--- -------------------

17 16 15 

Instruction Word Content: 

BIT S 

1 - 1 5 

16 

17 -2 5 

Contain a binary value giving the memory location In which the st3tus 

word is to be stored. 

Must be a one bit if the operating program is to be interrupted automati­

cally upon completion of the function; otherwise it is zero. 

Must ulways be the octal value 014. 

NOTES: • The address word is stored at In t 1 relative to the address specifit·d in 
bit positions 1-15 of this instruction. 

• The address word is identical in format to the DA contrul word. 

1 

-

,-

• The address word indicates the sector address of the St'ctor following tht., 
last sector processed. If the last sector processed was sector 63, sector 

zero of the track at the next higher head address is given. If the last sectur 
is sector 63 under the head 63, the head address of the address word \vi!1 

be zero. 

• No Control words are used. 

• If so specified, successful completion interrupt will occur if the function 
is completed without the ·detectIOn of an error signal. 

• See Subsection 17-F-Ih for explanation of status word content. 

37 



17-F 
SECTION: PAGE: 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

38 UNIVAC III UTIVIOST UP-3853 

(w) POSITION CONTINGENCY READ-COMPRESSED OP Code: Alphanumeric 

Oct"l 

FPCR 
017 

FUNCTION: Position the head bar of the specified drum unit to bring the read/write 

heads over the specified tracks. When the heads have been correctly 

posi tioned, locate the specified sector on the track under the designated 

head. Read the contents of this sector into memory in the compressed 

mode. The first word of the designated sector is transferred to m' t 2 
relative to the address specified in bit positions 1-15 of this instruction; 

the suceeding words are read to successively higher memory locations. 

(x) I FIXED CONTINGENCY READ-COMPRESSED I OP Code: Alphanumeric 
Octal 

FCR 
013 

0 

25 

FUNCTION: Locate the specified sector on the track under the desi gnated head. 

Read the contents of this sector into memory in the compressed mode. 
The first word of the designa ted sector is transferred to m r + 2 relative 

to the address specified in bit positions 1-15 of this instruction; the 

suceeding words are read to successively higher memory locations. 

OPERATION 

FLOW: 

Rea d tom em 0 ry [S I ...... m' + 2. . . m' + 45 

INSTRUCTION 

WORD: 

FUNCTION CODE 

0 0 0 0 1 0 1 

Ins tru ction Word Con ten t: 

BITS 

INT. 

1 X 

17 16 

DA CONTROL WORD ADDRESS 

X X X X X X X X X X X 

15 

X X X X 

1 

1.1 5 Contain a binary value giving the location of the associated Drum Address 
con trol word. 

16 

17·25 

Must be a one bit if the operating program is to be interrupted automatically 
upon completion of the function, otherwise it is zero. 

Must always be the octal values 013 or 017. 



UP-3853 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

UNIVAC III UTMOST 
SECTION: 17-F PAGE: 39 

NOTES: _ One sector is transferred to memory each time this instruction is execuU·d. 

SIGN 

0 

25 

- The address of the sector to be read is furnished by the associated Drum 
Address (DA) control word. The address of the DA control word is glven in 
bit positions 1-15 of this instruction word. 

- The use of the compressed mode avoids the possibility of halting the transfer 
of data due to a Mod-3 parity error signal which may occur prior to the phdse 
error signal. 

- 43 words are transferred to memory. The d8ta from the drum is placed in bit 
positions 1-24 of the first 42 words. The sign (always zero) and Mod-3 
ch eck bits 0 f these words, as th ey appear in memory, a re fa bric a ted by th e 
synchronizer. 

The 43rd word contains the six longitudinal parity check bits as they are 
read from the drum repeated three times and the phase shift sentinel 
character. It has the following format: 

PHASE SHI FT SENTINEL LONGITUDINAL PARITY LONGITUDINAL PARITY LONGITUDINAL PARITY 
----- t--- ---- -- --

0 0 1 1 0 0 X X X X X X X X X X X X X X X X X X 

--~- -----

24 19 18 13 12 7 6 1 

Word Con ten t: 

BITS 

1-6 

7 - 12 

13·18 

19.24 

25 

Contain the six longitudinal check bits. 

Contain the six longitudinal check bits repeated. 

Con tain the six Ion gi tudinal check bi ts repeated. 

Contain the octal value 14(the shift sentinel). If it is other than 14, a phase 
shift would have been indicated. 

Is always zero. 

The longitudinal parity check character is explained in Sub.<':;t'ctlOtl 17"-F-lj. 168 datil 

characters, the phase shift sentinel character, and the parity character itself are recorded 
on the drum in odd parity. 



SECTION: 

17-F 40 UNIVAC III UTMOST UP-3853 
PAGE: 

(y) I NO 0 PER A T ION I OP Codes: Alphanumeric 
Octal 

FNOP 
00 

FIELD 

NAME 

WORD 

CONTENT 

BIT 

POSITION 

0 

FUNCTION: 

OPERATION 
FLOW: 

INSTRUCTION 

WORD: 

This funct ion sp ecific ation is a ccessed by the s ynch ronizer and 
decoded. It is checked for Mod-3 parity, but results in other action. 

None. 

FUNCTION CODE NT DA CONTROL WORD ADDRESS 

0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 17 16 15 1 

Instruction Word Content: 

BI T S 

1.15 Will normally be zero, however, any value can be present. 

16 Is a one bit if the operating program is to be interrupted upon successful 
completion; otherwise it is zero. 

17·25 Must always contain the octal value 000. 

NOTES: _ No control words are required. They will be ignored if they are present at an 

address specified in this instruction. 

- If so specified, successful completion interrupt will occur when the function 
is completed without the detection of an error signal. 

- The program testable indicator (Bit 7) will be set if the function is terminated 
due to an e rro r. 

- If an error is signaled the status word is made available in the synchronizer. 



UP-3853 UNIVAC III UTMOST 
SECTION: 17-F PAGE: 41 

(z) !TEST DRUM ADDRES~ OP Codes: Alphanumeric 
Octal 

FTAD 
200 

FIELD 
NAME 

WORD 
CONTENT 

BIT 
POSITION 

FUNCTION: This function specification is accessed by the synchronizer and decoded. 
It is checked for Mod-3 parity. The drum address specified by the DA 
control word is accessed, but no data is transferred. 

OPERATION 
FLOW: 

INSTRUCTION 
WORD: 

None. 

FUNCTION CODE NT. DA CONTROL WORD ADDRESS 
.. -.---

0 

25 

1 0 0 0 0 0 0 0 X X X X X X X X X X X X X X X 

17 16 15 

Instruction Word Content: 

BITS 

1.15 Contain a binary value giving the location of the associated Drum Address 

con trol word. 

16 Is a one bi t if th e opera ting program is to be in te rrupted upon success ful 
completion; otherwise it is zero. 

17.25 Must alway s contain th e octal value 20 O. 

NOTES: _ A DA control word is required. A DR control word will be ignored if it is 

presen t. 

X 
--

1 

_ If so specified, successful completion interrupt will occur when the function 

is completed without the detection of an error signal. 

_ The program testable indicator (Bit 7) will be set if the function is 

terminated due to an error. 

_ If an error is signalled, the status word is made available in the synchronizer. 



17-F 
SECTION: 

42 UNIVAC III UTMDST UP-3853 
PA GE: 

g. Interrupt Indicators 

The interrupt indicators for the FASTRAND subsystem and the codes used in instructions for 
testing them are as follows: 

INDICATOR INSTRUCTIONS 
INDICATOR CODES FOR USE IN 

INPUT/OUTPUT INTERRUPT INSTRUCTIONS 

Standby 1 in bit position 1 

Successful Completion 1 in bit position 2 

Status word examination necessary 1 in bit position 7 

These indi ca to rs are tes ted by the UN I V A C III E xecuti ve Rou tine which furnishes the ope ra tin g 
programs with the same information in a different form. The user, therefore, will not usually be 
required to analyze the indicator settings directly, but will use the information supplied by the 
Executive Routine. The information provided by the Executive Routine is described in Sub­
section 17-F-2. 

(1) Standby Location Interlock Indicator 

The standby loca tion in te rlock indi ca tor can be tes ted an d reset to zero by the execu tion 0 f 
appropriate central processor instructions. This indicator is set when the LC instruction 
has delivered a function specification to the memory area associated with channel one (the 
channel assigned to the FASTRAND subsystem). It is reset to zero when the function 
s pe ci fica tion and the asso cia ted con trol words ha ve been successfully tran sferred to the 
synchronizer. In the case of a write instruction, it is not reset until the first two data words 
are transferred from memory. 

If the standby indicator (bit 1) is set at the time a status word indicator (bit 7) is set, the 

resetting of bit 7 alone will cause the synchronizer to attempt again the execution of the 
instruction in the standby memory location. This loop continues until bit 1 is reset by the 
program. The resetting of indicators 1 and 7 through a single instruction will avoid this 
proces s in g loop. 

(2) Successful Completion Indicator 

The successful completion indicator (bit 2) is set when input/output interrupt is specified 
in bit 16 of the function specification word, providing no unusual circumstances are 
encountered during the execution of the specified function. When this indicator is found to 

be set. there is no need to examine the status word, although a STORE STATUS WORD AND TERMINAL 
DRUM ADDRESS may be executed at any time if the terminal drum address is of interest. 

The setting of the bit 7 indicator inhibits the setting of the bit 2 indicator. If the 
synchronizer finds that bit 2 is already set from the execution of a previous function 

specification and has not yet been reset, it will stop executing further function specifications. 
When the program resets bit 2 under this condition, the synchronizer will automatically set 
bit 2 or 7 for the function completed at the time bit 2 was found to be already set. 



UP-3853 UNIVAC III UTMOST 
SECTION: 17-F PAGE: 

(3) Status Word Indicator 

The settin g of this indicator (bit 7) results from ei ther a successful search function or as 
the result of an error encountered during the execution of a function. The status word is 
des cri bed in Subsection 17-F -1 h. 

The specific condition which causes the status word indicator (bit 7) to be set can be 
determined by examining the content of a status word. This status word is manufactured bv 
the synchronizer and is stored in memory upon theexecution of the STORE STATUS WORD AND 
TERMINAL DRUM ADDRESS function specification. The cause of the abnormal condition 
is specified by one bits in specific bit positions within the status word. 

h. Status Word 

The status word is manufactured by the synchronizer and is stored in memory upon the execution 
of the STORE STATUS WORD AND TERMINAL DRUM ADDRESS function specification. ThIs 
word supplements the setting of the status word indicator (bit 7) to establish the specific con­
dition which caused the interrupt. The status word is a pattern code in which the setting of a 
specific bit position identifies condi tions as desc ri bed in T abl e 17-F -3. 

PANEL LIGHT 

None 

BIT POSITION 
SET 

None 

CONDITION 

successfully completed. 

EFFECT ON 
DATA TRANSFER 

All da ta trans fe rred. Search Read ope ra tiorl _~ 

~-----N--o-n-e----------+--------l--------~--S-e-a-r-c-h--R--e-a-d--o-p--eration -----------------------------------1 

completed bu t the key word No data transferred. 
was not encountered. 

~--------------------+----------------~-----------------------------.--r_--------------------------------

LOAD (Button) 2 Addressing error detected 
during read or a Mod-3 
parity error detected on 
ei the r a read or write 
func tion. 

Transfer of data halted 
at the point the error is 
detected. 

I------------------+--------------~---------------------------j.------------ .-.. ----------- .-

LOAD (Button) 3 Mod-3 parity error en­
countered during transfer 
of a function specification, 
a control word, or the first 
two data.words during a 
write operation. 

No data transferred. 

"'--______________ ...L-_____ ______ --L _________________________ ----' __________ .. _ .. --.-.. ---------------- - .... -

Table 77-F-3. Conditions Indicated through the Status Word 

43 



SECTION: 

17-F 44 
PAGE: 

PANEL LIGHT 

LOAD (Button) 

BIT POSITION 
SET 

4 

UNIVAC III UTIVIOST 

CONDITION 

Mod-3 parity error on data 
read from the drum or in the 

transferof the third and 
s u c c ee din g word s d u ri n g a 
write function. 

EFFECT ON 
DATA TRANSFER 

Incrementation of the 
Memory Address Counter 
is inhibited. If set by a 
read instruction, data 
transfer is halted at the 
point the error is detected. 
If a write instruction is 
in progress, thedata word 

being accessed at the time 
the error was signalled is 
repeated until the sector 
is filled. 

UP-3853 

~------------------~----------------+-------------------------------~--------------------------------

LOAD (Button) 5 The parity character 
generated by the syn­
chronizer during a read 
fun ction is not equ al to 
th at read from the drum. 

Data transfer is halted 
before a new sector is 
read. 

~------------------~----------------+------------------------------t-----------------------------------

LOAD (Button) 6 Synch ronizer overflow / 
underflow due to inter­
ference from other I/O 
channels. 

Increm en tation of the 
Memory Address Counter 
is inhibited. If a write 
function is in progress, the 
data word being accessed 
at the time that the error 
was signalled is repeated 
until the sector is filled. 
The write function ceases 
at the end of the sector. 
If a read function is in 
process, transfer of data 
stops when the error is 
detected. 

~-----------------~--------------~----------------------------4----------------------------------

LOAD (Button) 7 Addressed sector can't 
be located. 

No data transferred. 

--------------------+---------------~-------------------------------+----------------------------------

LOAD (Button) 8 Change in phase modu­

lation detected during a 
read function (this error 
may have been preceded 
by a Mod-3 parity error). 

If other than a contingency 
read function, transfer of 
data to memory is halted 

if not stopped by a prior 
M od-3 che ck. If this is a 

Contingency Read, a 

s pecia 1 word w ill be 
transferred to memory 
(See Note 1 for the s pecia 1 
word conditions). 

Tobie 77-F-3. Conditions Indicated through the Status Word (continued) 



UP-3853 UNIVAC III 

PANEL LIGHT 

LOAD (Button) 

I 

I 
I 

BIT POSITION 
SET 

9 

UTMOST 

CONDITION 

A multiple phase shift has 
been detected. 

(~~-t~-~-~)----I- 10 ~~I:r::~~s t;~;:0h~e~~::~he 
DA control word are not in 

LOAD 

addresses on the track 

SECTION: 
17-F 

EFFECT ON 
DATA TRANSFER 

PAGE: 45 

If other than contingency rp;lCi 
function, ddta transfer IS 
halted at the time the fIrst 

error is detected. On 
contingency read functl\)!1, 

an entire sector is brought 

into memory Including tht' 

phase shift sentinel and 

pari t y c h a r act (' r. 

No datCl IS transft'rred. 

I 

agreement with the "dog tag" 

r--___________ -i ____________ +-u nd: __ ~~~_s p ~ c i f I~:~_~e a~ ______ -+-______ _ 

ABNORMAL 

CLEAR (Button) 

11 I The addressed drum unit 

[ WClS In not ready status at 

I :~:ceu ~i~I: to 1~~i; ~ut::tion. 

Transfer uf data is hdlit'd 

upon the detectlun uf thIS 
e rro r. 

None 12 l' Not Used (aIWaYS~~:;-~-=-------=--None 
ABNORMAL 13 Used for maintenance I :'.Jone 
CLEAR (Button) purposes only. 

I 
-------------~------ --------t --- -- --- -- - t 

None 14 Not Used (always zero) ! 

f--------------- ----- -------- ----------------- ----- ------- -- - -- -------- --------------- - 1 

i None I 15 Not Used (always zero) 
...------- -------- -------- ------- ------------------------- -----

ABNORMAL An addressed drum unit 

is offline or not in the 

configuration. 
-----------t----------------- -- ----------

ABNORMAL 17 The printed circuit card 

_
c LE_A __ .R __ C Button) _ is missing from the 

synch ronizer. 
--~ -~- ------~ ----- ------_._-- --

None 18 The DR control word has 

specified a sector range 
beyond sector 63 of head 
63. 

:.J'one 

:'.J one 

No data IS transferred 

No data is transferred 

The t ran s fer 0 f d ~l L liS 

hal ted a fit' r s t' C t U r 0) 
of head 63 is read, 
written, or searched. 

Tab Ie 7 7 - F - 3. Con d it ion 5 In die ate d t h ro ugh the Stu t us W 0 r d (c 0 n tin u e d ) 



17-F 

SECTION: 

46 UNIVAC III UTMOST 
PAGE: 

PANEL LIGHT 
BIT POSITION 

CONDITION EFFECT ON 
SET OAT A TRANSF E R 

None 

None 

None 

None 

None 

None 

None 

Note 1: 

FIELD 
t-.AME 

WORD 1 
CONTENT 

BIT 25 
POSITION 

19 DR control wo rd u sed wi th 
a non-search function has No data is transferred. 
other than zeros in bi t 
positions 8-10. 

20 Not Used (always zero) None 

21 Not Used (always zero) None 

22 Not Used (always zero) None 

23 Not Used (always zero) None 

24 Not Used (always zero) None 

25 Not Used (always zero) None 

Table 77-F-3. Conditions Indicated through the Status Word (continued) 

A special word has been provided for use after the detection of a phase shift error 
following a compressed mode read operation. This word can be located by executing a 
STORE MEMORY-ADDRESS COUNTER instruction designating General Purpose 
Channel 1. The execution of this instruction produces the address of the special word 
which has the following format: 

CHAR. 
NOT USED pas. ERROR CHARACTER 

X X X X X X X X X X X X X X X X X X X X X X X 

24 9 8 7 6 

Word Con ten t: 

BITS 

1-6 Con tain the six bi t pa ttern of one of the fou r cha racters wi thin a UNI V AC 
III word. 

7-8 Contain a two bit value to which designates the position of the error 
character within its word. The possible codes and the associated bit 
positions within the word are: 

00 bit positions 1-6 

01 bi t posi tions 7-12 

10 bit positions 13-18 

11 bi t posi tions 19-24 

X 

1 

UP-3853 



UP-3853 UNIVAC III UTMDST 
SECTION: 17-F PAGE: 47 

Q.24 Are not significant. 

25 Contains a binary 1; the word is always negative. 

1. Modulo-3 Parity 

The UNIVAC III word con tain s 27 bi ts of w hi ch the low 0 rder 25 a re address able. Bi ts 26 and 
27 are used internally to check arithmetic operations and the parity of data transfers; these 
bits are not normally addressable. Bits 26 and 27 have greater significance to the FASTRAND 
programmer than for systems which do not include drum storage. When F ASTRAND data is 
recorded in the normal mode these bits are written on the drum. If normal mode data is read 
back into the central processor through a CONTINGENCY READ instruction, the Mod-3 check 
bits will appear in program accessable word areas. Further, the longitudinal parity check 
character includes,these check bits in its parity count. The programmer must be able to 
predict bit positions 26 and 27 in order to verify the accuracy of the longitudinal parity 
character. 

Ins tru ctions, con trol words, and data are Mod-3 ch ecked between the syn ch roniz er and the 
central processor regardless of recording mode. This check is also performed on data 
transferred from the drum to the synchronizer in normal mode. If a Mod-3 error is detected 
during the transfer of data from the drum to the synchronizer the proper check bits will be 
jammed into the error word and the transfer of data will be halted. Data transferred in the 
compressed mode will have the appropriate Mod-3 check bits jammed into bit positions 26 and 
27 by the synch-ronizer before the words are transferred to the central processor. 

A simple procedure for determining the Mod-3 check bits for a given UNIVAC III word is as 
follows: 

(a) Ascertain the binary content of the 25 addressable bit positions of the word. 

(b) Count the one bits in the even numbered bit positions (2-24). 

(c) Multiply this number by two. 

(d) Count the one bits in the odd numbered bit positions (1-25). 

(e) Add the two numbers (from steps c and d). 

(f) Divide the sum by three. The ch eck bits are determ in ed by the rem ainder in thi s cal eu 1 a t IOn. 
The check bits are the remainder expressed as a two position binary value. 

IF 
THEN THE 

THE 
CHECK BITS ARE 

RE. --
MAINDER 

IS 
27 26 

0 0 0 

1 0 1 

2 1 0 



17-F 

SECTION: 

48 UNIVAC III UTMOST UP-2I853 
PAGE: 

0 

EXAMPLE: The 27 bits of a UNIVAC III word containing the four alphanumeric characters 
WORD would be: 

w 0 R [) 

f---

0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 

27 - 26 25 24 19 18 13 12 7 6 1 

j. Parity Check 

The FASTRAND synchronizer generates a longitudinal parity check character for each sector 
written. This six bit parity character is written on the drum following the 1008 bit data storage 
area (See Table i7-F-.J). When data is read back into the synchronizer from the drum during either a 

read or search function, a new parity check character is generated for each sector processed. 
This new check character is compared to the character read from the drum for equality and if 
the two are not equal, an error is signalled. Data transfer is halted at the point the error is 
encoun teredo 

The part of the sector over which this parity check is made is illustrated in Table 17-F-4. 
Figure 17-F -.J illustrates the arrangement of the UNIVAC III words in the synchronizer and 
the method by which the contents of these words are subdivided for recording on the drum. 
It can be seen from this figure that the words are treated differently depending upon the re­
cording mode employed. 

Each of the parity character bit positions apply to specific bits within the UNIVAC III words 
as illustrated in Figure 17-F -4. Note th at th e Ph ase Sh i ft Sentinel code is in clu ded in the parity 
check. To predict the parity bit applicable to each column in the figure, count the one bits in 
the bit positions according to the illustrated columns. If there are no one bits or if the count 
is an even number, a one bit is inserted in the associated parity word condition. If the one bit 
count for a given column is an odd number a zero should appear in the associated parity bit 
pos i tion. 

(1) Norm aIM 0 d e 

Data recorded in the normal mode results in the division of two 27 bit words into nine six 
bit frames (See Figure i7-F-4). These frames are transferred to the buffer which controls the 
serial recording of the data. One hundred and seventy frames are required to record 37 words 
of data, one extra frame, the phase shift pattern, and the odd parity check characters. (The 
last three frames are fabricated by the synchronizer). 

(2) Compressed Mode 

Data recorded in the compressed mode results in the transfer of only the low order 24 bits 
of each word to the drum. Each word is divided into four six bit frames (See Figure 17-F-4). 
These frames are transferred to the buffer which controls the serial recording of the data. 
One hundred and seventy frames are required to record 42 words of data, the phase shift 

pattern, and the odd parity check character. (The last two frames are fabricated by the 
synchronizer). 



UP-3853 

I 

t 

* ~ 
( 
\ 

UNIVAC III UTMOST 

FIELD NAME NO. OF BITS 

Sector Start Pattern 54 

Sector Sentinel 6 

Recorded Address (dog tag) 24 

Phase Check Sentinel A 6 

Second Start Pattern 18 

1008 
Data Storage (148x6) 

Shift Check Pattern 6 

Longitudinal Parity Character 6 

Phase Check Sentinel B 6 

Blank Space (50-80 mils) 

Next Sector Start Patte rn 54 

LEGEND: uuuu 

tttttttt 

hhhhhh 

ssssss 

dddddd 

pppppp 

----__ c--

drum unit address (in binary) 

head bar position address (in binary) 

head address (in bi nary) 

sector address (in binary) 

Data 

Par i ty c ha racter 

These fields included in longitudinal parity check 

SECTION: 17-F PAGE: 49 

CONTENTS 

111111111-------111111111 

--

001100 

-"-

uuuutttttttthhhhhhssssss 
I 

I 

001 100 .~ 
111111----------11111111 

dddddd------------ d ddddd 

001 100 

"-

p p p p p p 

001 100 I 

o 0 0 000 

1111111 1 1 - - - - - -1 11 1 1 1 III -----------"--

Table 77-F-4. Sector Organization 



UNIVAC III UTMOST 
SECTION 17-F, UP-3853 

FASTRAND 
SUBSYSTEM 



UP-3853 UNIVAC III UTMOST Appendix E 
SECTION: 

APPENDIX E. DATA FILE CONVENTIONS 

This appendix describes the conventions and tape formats for UNISERVO lIlA daLl files. 

A.LABELS 

The first block on a tape reel and in a tape file must be a 12-word label block of the form 
shown in Table E-l.(J) 

B. DATA BLOCKS 

The fir s tan d 1 a s two r d s 0 f e a c h d a tab 10 c k m us t bed a tad esc rip tor word s, a s '-~ how n i n T a II:' 

E-1. The maximum acceptable data block size is 4096, including data descript;H words. 

C. END-OF-REEL SENTINELS 

Each reel of a multireel file except the last, is terminated by two one-word end-of-reel 

sentinel blocks (refer to Table E-1), which immediately follow the last data block. 

D. END-OF-FILE SENTINELS 

The last data block of a file is followed by two one-word end-of-file sentinel blocks of the form 
shown in Table E-l. 

E. BYPASS SENTINELS 

When a file includes information that is not part of the data proper (for example, a rerun 
me mo ry dum p), the non-da ta block s of the file m us t be preceded and followed by two one-wo rd 

bypass se ntine 1 blocks. (Refe r to Table E -1.) The information to be bypassed may appea rat 
any place wi thin the file. 

CD Tape Files used or created by FORTRAN programs do not contain a label block. 

GE: 



Appendix E I PAGE, 2 
UNIVAC III UTMOST ~)-3853 

SECTION: 

WORD SIGN CONTENT COMMENTS 

--
LABEL BLOCK 

0 - 0---0 Minus indicates non-data block. 
Binary O's indicate label block. 

0000 First Four Characters of the Eight Character 
1 + Alphanumeric file 10 

- . .-

2 + Dote of eye I e All reel s of multireel fi Ie s.hould 
contain same date. 

3 + OOOddd Decimal reel number. 

4 ± x---x Unus ed. 

9 ± x---x Unused. 

10 + 0000 Last Four Characters of the E ight CharCi(t:~ 

Alphanumeric file ID 

11 - 0---0 Minus indicates non-data block. 
Binary O's indicate label block. 

Tab leE - 7. 0 a ta Tap e B 10 c k Form a t 5 



UP-3853 UNIVAC III UTMOST Appendix E 
SECTION: PAGE: 

WORD SIGN CONTENT COMMENTS 
t---~-------------------------"--------------------- ---------------- ----

DATA BLOCK 
t-------.------.-----------------,------------------------- ---------- - --

o bbbbbbbbbbbbcccccccccccc Data descriptor word. 

b---b = Binary no. of items in block. 
c---c -= Binary nO. of words in block: 

Plus indicates data block. 

~-1-~--~-----1~----------~-----------------------­

DATA 

c-2 

- --- - --

~--___+----+-------------L--------___+--------------------- ____________ - ---

col t-- bbbbbbbbbbbbcccccccccccc Data descriptor word, identical to word O. 

t-.------'------L---------------------'-------------------------------. 

BYPASS SENTINEL BLOCK 

~-O-~----~~--O-1-0------0--------~~i~~~:~~~-.-~~~1 

END-OF-REEL SENTINEL BLOCK 
t-------.-----.---------------------.----------.. --- ------- .--.---._--.. ----.--- ----------_. --- --

10b---b 

o 
Minus indicates non-data block. 

Binary 10 indicates end-of-reel sentinel. 

b---b indicates the total number of blocks 

t-__ ~ ____ -'--________________ ~ _____ re_c_o_r_d_e_d_o_n_th_is_t_a_p_e_(i __ n_bi:_a_r~___ ~ ....... ~ 
END-OF-FILE SENTINEL BLOCK 

~--___r-----y----------------_,_------------------------.-----.- --

o llb---b 

*Including data descriptor words. 

Minus indicates non-data block. 

Binary 11 indicates end-of-file sentinel. 

b---b indicates the total number of blocks 

recorded on this tape (in binary) 

Table E-7 Data Tape Block Formats (Continued) 



UNIVAC III March 2R, lCJ66 
UTMOST General Reference Manual, UP-3853 

UPDATING PACKAGE "E" 

The attached material represents an addition for th~ UNIVAC III General Refen:c:nce 
Manual, DP-3853, and should be utilized in the following manner: 

SECTION 

Appendix F 

FILE PAGES 
NUMBERED 

i{Table of Contents) 
pp. 1 - 18 

PLACE AFTER TAB 
LABELED 

INPUT/OUTPUT 
(following Appendix 

E Information) 



UTMOST UIII-418 HANDLER 

Section PagL 

CONT ENTS 

1- EXECUTION PHASES 

2. CODING Of THE RESPONSE TABLE 2 

3. DATA AREAS :) 

4. INITIATION Of A PROGRAM ') 

s. COMPLETION Of RESPONSE TRANSMISSIONS 6 

6. INITIATING A UNIVAC III R1:::.QUEST 3 

7. COMPLETION Of REQUEST ED TRANSMISSIONS 9 

8. TURNING Off THE HANDLER 1 ) 

9. S ELECT ION Of REQUESTING PROGRAM \) 

10. CHANNEL ASSIGNMENT 10 

11- fORMATION Of RELOCATABLE LIBRARY 'I 1 

12. SYMBIONT UT ILIZAT ION Of THE HANDLER 11 

figure 

1. UNIVAC III PROGRAM RESPONSE TABLE 4 

2. UNIVAC 418 DATA AREAS 7 

3. REQUEST STATUS KEY \2 

UP-2626.90 



[he UNIVAC lII-418 Handler coding in the executive rout~ne ~! 

and no more than two symbionts access to the U1HIfA\::: 1\1 () SI' i.f' ,. 

single UNIvAC lIT-UNIVAC 418 Computer ]ntercoupler attal;hecJ t. 

Channel !. A special version of the executive routine is (:111:: ~ 

UNIVAC IIl-418 Handler. 1'his version prel-:;ludes the uti izat: [1 

1 t < 1 t 

I 
(, 

Handler. It will operate on UNIVAC III systems with ,'4,~ 't W): I' 

store. 

10 Y the UNIVAC III-UNIVAC 418 system, the user pre:)arf~':, :'r 

Each program pair contains a UNIVAC II] program and a UN[11 
signed t'j communicate with each other through the UN IVAC I!: - ~1 

UfMUSr System) and the UNIVAC III Handler (of the Aj,:! Syster,) re' 

Each transmission of data from one program to the uther H':'-IU: ;c_C) 

gram make a specific request of the other and that th(~ I,ther ; cs 
program of a program pair or both, may initialc' re.j\Jc<t: ,1: ln 
is designed to respond. 

'I" a:l, 

I ia ~vl L (I 

; t i v 
L 

J t_ -

tf ,. 

fhe UNIVAC III program defines the responses for which it i repar,,-j r t r [: 

a response table in a prescribed format. [he address oi thL', tar)~(' J' f 11 

the UNIVAC III-418 Handler as a part of the ini tiati'Jn proced Ire. ,:\( "t\ 

program initiates a request by loading into the arithmetic If: listei' 11: ::ra; 
relating to the response table and transferrin~j control to tIll -,:1 
Handler. 

[he information in the response table must be supplemented 
for use by the handler in transferring data between the two 
Ihe UNIVAC III program is responsible for the allocation of 
as well as for any and all processing of the data involved. 

1. Execution Phases 

,:T:pute :=:)'15:,;:-;'5. 

SilCh ~)t()I'aqf? area 

Nhen the UNIVAC 111-418 Handler receives and accepts a n~ !Uf~ t j 1 () 

UNIVAC III program it holds the request until it is possir,if? L initiate 
it. Nhen any current UNIVAC III-UNIVAC 4-18 tran~;mi!,sio:-l ·'o.::;o:r:p;ete!1, tr 
Handler transmits to the UNIVAC 418 a contrul rnessalje tai,; i ale-·e]! Ul' 
UNIVAC III program's response table. This three WOIO nl',"=' a'3c' i', dc·!> [E'l 

by the UN I VA C 41 8 w hie h i n t lJ r n tell s the UN I 'N\ C ; L i I [a :1 cL e r W h ( U : (? r 
pro c e e d wit hit s r e que s tor not. I nth e 1 a t t e rca e HE) 1 ICc a ( () r. Len t I' 

rejection is forwarded to the UNIVAC III prugranl a'=, staLl' ;!1 1.:.' 

to be acted upon by the program. If the lJNIVi\\~ 41 ~i :';:,1" ~ ~ 1 
Handler to proceed, the requested data is transmitted (in thL' 'E:'qucc;j,r:J 
rection) and status information is again made avai LablE:' t tJlC' ,1./·\' 
pruyram. 

Up t i u n i s pro vi de d tot ran s t e r co n t rJ 1 to t h t,' t; _J 1: 

UP 2626.90 



2 

upon completion of the transmission to allow the program to interchange 
buffers, if necessary. 

When a request is received from the UNIVAC 418, the UNIVAC III Handler either 
rejects the request or signals the UNIVAC 418 to proceed. In the latter case 
data is transmitted between the two computer systems. When the transmission 
is complete, status information is made available to the UNIVAC III program. 
The UNIVAC III program may analyze this information to determine its next 
action. As in the case of UNIVAC III requests, the option is provided to 
transfer control to the UNIVAC III program immediately upon completion of 
the transmission to facilitate buffer interchange. 

2. Coding of the Response Table 

The UNIVAC III program employing the UNIVAC 111-418 Handler must contain a 
single response table prepared in the general format shown in Figure 1. The 
first five words of the response table are used for major control options 
and must always exist. These five words may be followed by an arbitrary 
number of three word response packets which are used to define planned data 
interchanges with the related UNIVAC 418 program. Following the last three 
word response packet an end-of-table sentinel is required. 

a. Major Controls 

1) Handler Use Key: The first word of the response table must initially 
contain binary zero. This word is modified only by the handler. The 
UNIVAC III program may test this word to determine whether or not the 
UNIVAC 111-418 Handler is currently using the table. If the value of 
this word is not binary zero the table is being used by the handler 
and variation in the content of the table or operating mode as de­
scribed in subsection 8 should be delayed. 

2) Dispatcher Address: The second word of the table must contain the 
address of a line in the UNIVAC III-UNIVAC 418 dispatcher. In pre­
paring the table the user must write '+U418 RETURN' in this location. 

3) Run Identification: The third word of the response table must con­
tain a two-character run identification in the low order character 
positions. While this identification need not be related to the 
program ID of the UNIVAC III program it is the program ID of the 
related UNIVAC 418 program. Hence, the first character of this 
field must be alphabetic. The second must be alphanumeric. 

The run identification should be uniquely defined for each UNIVAC 
III-UNIVAC 418 program pair in order to avoid erroneous transmission 
between program pairs. 

4) Request Status Key: The fourth word of the table must initially be 
set to binary zero. The value of this word is modified by the 
UNIVAC 111-418 Handler only in servicing UNIVAC III program reques~s. 
It may therefore by ignored by a UNIVAC III program which has boen 
designed only to respond to UNIVAC 418 requests. 

When the UNIVAC III program makes requc'sts of the UNIVAC 111-41 (3 
Handler it may determine the status of the requests by examining this 
word. The various values of this word, which are fabricated by the 
handler, are summarized in Figure 3. They are discussed subsequently. 

UP 2626.9C 



It ~)hould be noted that initiation of a sccurid ULIVAC III :;: 
request will alter the value of the request ~tdtU:. fkn c>, i Ie 

user program should not initiate a ubsequC'nt rcq\J(:'~t i'l t, d( 
mining status of the first. 

5) User Deactivate Key: The fifth word of the' table [lidY 1 (: t( 
signal the Handler that UNIVAC 4'18 requcst~; an' nc,t tr (" ie. LE' 

for this program. This is neces'::;ary if variation e in UII' tel:> 
change in operating mode is effected as dec,cribed in (:JtJ:(?ctic·n c. 

If the deactivate key is greater than 0777, the Handl( r w~ll Jr.!" '.h 
table. If not greater than 0777, the handler will rwi init.i tl' r~' 

actions for the table. 

b. Response Packet 

UP 26L:6.90 

The UNIVAC III program must contain a single re:=.pcnsc pad:"t I 

t y p e 0 f t ran s m iss ion i t ex p e c t s • The t y p E? S 0 f t ran s rn i : ~~ i (11 cU I ' "- ·.·l i I -

guished by their direction, the size of the related :~tora( dr ' J 

type of data to be transmitted. Thus a UNIVAC III prograrr ~dy 

one or more response packets of the form shown in FiguTE: 1. 
n'iu iI, 

1) Transmission Key: The first word of each response) paeb t l.~ J II il) -

mission key. This 12 bit non-ze~o field mw:t be in tf:< .. l(lw n 

positions of the word. The key is used to define a type nf t;3n:­
mission allowed by the program. The same key mu",t 3P[,.1; i t h· 
UN I V A C 41 8 pro g ram be c a use the UN I V A C I I 1-41 8 Han d 1 (l I : 1 ~ l.': til i' K Y 
as the basis for making a reque~;t to the UtJIVAC 41 b Tf:',! I-jl: ~ 11(; t 
a request from the UNIVAC 418. 

Each response packet in the UNIVAC III procHdrn mu~t Cc I,ll i rl.1 IHli. 

request key. 

If the key field is negative, thE' handler will c(,wiele tl!(· f'1rKI" 
to be unavailable. It will accordingly infcirrn the L[1(: th,n ,) 
requested interchange cannot yet be instituted. 

2) Island Address: The second word of each resp,=,nse pack,t ((';11 lir:' 

1 5 bit i s 1 and add res s, who s e u s co i sop t ion a 1. I f s \::. t ; C b i [) d ; y r I • 

completion testing for various trans,mis~.icln( rnw.t br· Ci.iii ,,-:, : it. 
in subsections 5 and 7. 

If non-zero, the i~)land address is the addTl?s of d cl,' I.d 'tH,_· 

rout i ne wri t t en by the us er whi ch wi 11 be entered by tIlE' t!(1 :ldl.; 
immediately upon ((\mpletion of the tran::,lni:-",ion. Thi' Ut ;It :r.,l. 
if written in the form described in :=ub:cctior1 =,)J, will 1 J t:;--

rapid reaction such as buffer interchangE? whc'Y't'" thc' 1](' T : \ r,. 

3) Buffer Word: The third word of each response racket 
three separate fields. 

a) Buffer Address 

The address fi('ld b is the 1 ='-bi t addrt)~,:= C't- <1 etc 1 j\ 

area in the UNIVAC III program to bE.' u~~ed for thic t'T'c c: 
transmL:;sion. Further inforlTation (in thi~, :t0L:lCJ(' w .:k 
is given in subsection 3. 



LABEL OPERATION OPERAND 

UF418 FORM 10, 15 

MlUOR CONTROLS ORIGIN OF + 0 HANDLER USE KEY - SE~ 2Al 
TABLE + U418RETURN DISPATCHER ADDRESS - SEE 2A2 

+ Orrrr RUN IDENTIFICATION - SEE 2A3 
+ 0 REQUEST STATUS KEY - SEE 2A4 
+ 01000 USER DEACTIVATE KEY - SEE 2A5 

ONE OR MORE RESPONSE 
PACKETS MUST IMMEDIATELY 
FOLLOW THE MAJOR CONTROL FIELDS 

ORIGIN OF + Okkk< TRANSMISSION KEY - SEE 2Bl 
RESPONSE PACKET RESPONSE + ISLAND ISLAND ADDRESS - SEE 2B2 

PACKET UF41B OP,b B UFF':R ''"JORD 

AN END SENTINEL MUST 
FOLLOW IMMEDIATELY 
AFTER LAST RESPONSE PACKET - SEE 2C 

END OF TABLE SENTINEL -0 

UNIVAC III PROGRAM RESPONSE TABLE 

Figure 1 



b) Direction of Transmission 

The direction field indicates the direction of the' tran,~rT:i 'i ,r1. 
If set to 0 the UNIVAC III program i to send data tc tftl U:,I JA 
41 8 • I f set to 2 the UN I VA C I I I pro g ram i s t C' :::' e eel v ( , t.1 r 
the UNIVAC 418. 

c) Buffer Status 

The sign field is used to indicate the status of the' d'!.(cit,d 
buffer. If the sign is po~)itive, the buffer i~~ t, " 
(if direction is 0) or receive (if the direction is ?). 

The sign field is employed by the UNIVAC III program t" : i JI,ll 
the Handler as to what response packets may be u::,ed. Sir1(>:' i: 
completing the transmission the buffer is, at least t'i:::Hr'(,I'3.;ily, 
not to be used, the Handler sets this word negative. 

Thus the UNIVAC III program may determine if a transmi SiO:l >td: 
been completed by testing the sign of this word. If rwg,:l.tivC'. 
transmission has been completed and appropriate action ShOl1Jd 
be taken. 

When a new buffer is assigned to the request packet or whl'l: the 
completed buffer is again ready for use, the U~IVAC III pr~qTdm 
should set the sign positive. 

c. End of Table Sentinel 

The UNIVAC III program indicates the end of the respow(, tablE; by,} 
word containing a binary value of -0. 

3. Data Areas 

The UNIVAC III-UNIVAC 418 Intercoupler transmits only twelve bit~ to 0] ~Icn 

the low order positions of the transmission storage buffer in tho UNIVAC III 
program store. In transmitting to the UNIVAC 418, the 12 high order bit, 
are ignored. The sign bit is used to signal the last word to be tran~~itt0d. 
In receiving from the UNIVAC 418 data is placed in positions one 
twelve of each word. All remaining positions are set to zere. 

The first word of each data buffer is reserved for use by the harldlcr. ,i " )" 

in preparing a data buffer for transmission to the UNIVAC 41b trw we'T fl'l!' t 

unpack his data into a series of two character words startinlj wi tit Ull' 
second word of the area. The last word to be transmi tted muct bl r1l'13(Jt i'/, • 

Figure 2 shows the general form of an output buffer. 

When data is received from the UNIVAC 418, the first word c,1' Ull' : V,rwc 
buffer will contain the address of the last word of data rc;C\::iv('d. rw' tilt' 
user may employ this word to determine the length of the mc::,sal]c r, (Iiv, " 
He may then pack the data as he requires for further utilizatil'n. Fi(:u:, 
shows the general format of an input buffer. 

4. Initiation of a Program 

Initiation of the UNIVAC III-418 Handler i~ required if tr(J.rl'rn~(.( i, tit ":1 

the two computer systems to be allowE?d. When a progra~ 1( Cil t, l.Hf \ i 



6 

or when a rerun is initiated, it i necessary to supply the address of the 
response table to the handler by 

loading into AR8 the positive address of the response table 

executing a transfer of control to the handler; i.e., 

SLJ U418RQ 

+1 busy return 
+2 accepted return 

A typical initiation subroutine 1" c • 
'-' . 

Label 

PROCESS 

Operation 

LA 
Su 
J 

8, (TABLE) 
U418RQ 
$ • Busy Return - Not entered from Initiate • 

• Accepted Return 

An initiation entry must be made both when a program is originated and re­
started from a checkpoint. Therefore, the program must initiate the handler 
after each entrance to checkpoint. 

5. Completion of Response Transmissions 

Once the UNIVAC 111-418 Handler ha been initiated, requests to or from 
the UNIVAC 418 for transmissions indicated in the Response Ta~le will be 
accepted. The UNIVAC III program is responsible for determining if any 
such transmissions have been completed. Two methods of determining com­
pletion are available. The first involves direct testing of the response 
table, the second employs the island code option. 

a. Response Table Testing 

When a transmission is requested by the UNIVAC 418, the UNIVAC 111-418 
Handler controls its operation until the transmission has been succes~­
fully completed. If it is not successfully completed, the UNIVAC 418 
program is informed of the cause and is responsible for a1Y correctivE 
actions. Only if a response has been successfully completed is thE? 
UNIVAC III program involved. 

When a transmission is completed, the last or buffer word of the 
associated response packet is set negative. Testing the last word of 
the relevant packets will isolate those transmissions which have bE?en 
completed. 

b. Island CodE? Manipulation 

If he desires, the user may specify an island code address in the 
second word of a response packet. The specification of this option 
does not change the logic or the techniques described in section 5a. 
The closed subroutine whose address is specified is enterE?d from the 
handler immediately upon completion of the relevant trans~ission. ThE 



:i.=SF00JS::: +042 +027 
F . .'I.:<:::T +0 +0 

UF41B 0, OUTPUT UF418 2, INPUT ~ , 
UF418 FORM 10, 15 

OL'TPUT +:' .RESEr:tVED FOR HANJLER INPUT INPUT + 7 .ADDRESS OF LAST ViORD RECEIVED 
.STORED BY HANDLER 

00JA 00JA 
TA TA 
0T 0R 
00 EC 
BE EI 
P'T VE 
r:tA p'P'J. 
NS 
MI 
TT 

-ppE0 • S =GIJ.\:"'S L~ST 

.vVOr:tJ TO DC 

. TK..'I.IJS!.iITL:J 

fl' fP:_'T 3L'?F:::i. L~ '(OUT r~F'UT 3UFF~R Lil.YOUT 



8 

user may therefore include in the closed subroutine coding to inter­
change data buffers and perform similar processing which requires 
quick reaction to the completion of a transmission. 

Island coding may appear anywhere in the source program. It is entered 
via an SLJ to the specified address. At the time of entry, IR1 contains 
the address of the island code and IR2 contains the address of the re­
sponse table entry associated with the completed transmission. The user 
is responsible for retention of the index register environment and must 
store and restore any additional index registers he may require. 

When the associated UNIVAC 111-418 request is completed, the UTMOST 
Executive Routine will execute the following instructions before control 
is relinquished. 

Index Register will be loaded with the address of the island code. 

Index Register 2 will be loaded with the address of the response 
packet just completed which specified this island coding. 

Control is transferred to the island coding by execution of a 
SLJ ISLANU. 

The exit from island coding, ~ith all index registers restored to their 
entry state, is accomplished by executing 

J *ISLANU 

As shown above, the last line of the island coding is an unconditional 
transfer to the origin of the island code. This returns program con­
trol to the Executive Routine allowing it to complete it:; function. 

Since island coding is a closed subroutine executed as part of the 
Executive Routine, certain restrictions are imposed on it. These 
restrictions are listed below. 

Release of control is prohibited. 

All Index Registers must remain intact. 

Requests of the UNIVAC 111-418 Handler are prohibited. 

6. Initiating a UNIVAC III Request 

Should an initiated UNIVAC III program desire to initiate a request, the 
user must first assure that a packet related to the desired transmission 
is within the response table. He must furthor assure that the user 
deactivate key contains a value greater than +U777; (i.e., that he has 
not deactivated the run) and that tho packet is active, i.e., its first 
and third words are positive. 

UP 2626.90 



The request is then initiated by 

loading into AR8 the negative address of the respon' 
describing the requested transmission. 

and transferring control to the handler by executi~ I 

SLJ 

+1 
+2 

U418RQ 

• busy return 
• accepted return 

a. Busy Return 

Since only one request will be handled at a time, th(C T (c' :nlEt /i 
for the pos~ibility that the handler is busy and hi~~ rr::(;uc:'~t will r: '1 
be accepted. If the handler is busy it will return contrcl tC' the bu' y 
return. The UNIVAC III program is respon~;ible for dete~minir1(J i t c 'ltd 
action and reinitiation, if desired, of the request. 

b. Accepted Return 

If a request is accepted by the handler, the user will receive ccr.i ~'C l 
at the accepted return. 

A sample initiation is 

LABEL OPERATION 

LAN 
SU 
J 

8, (RESPAK4) 
U418RQ 
$-2 

7. Completion of Requested Transmissions 

.Handler Busy - Try Aqain 

.Accepted Return 

The program which requests a transmission is responsible fOl evera 1 
control of the request. Status information beyond that described in 
section 5 is given to the UNIVAC III program making the req\le(;t. 

When, and only when, a requested transmission is successfully completcc. 
the third, or Buffer word of the response packet i set negJtive a~ 

mentioned in section 5. It is possible that the Handler wi:l terminatl 
its processing of a request even though the transmission ha! not been 
comp 1 eted. For thi s rea son, the reques t ing prc'gram mus t cor Ita in cede 
a n a I y z e the s tat us 0 fit s r e qu est. T his s tat u sis m a i n t a i nc din the 
Request STATUS Key of the UNIVAC III Response Table. 

Response Table Testing 

When the handler accepts a request from a program, the Requf st Status ~ 

is set to a negative non-zero value. When the handler terrn:ndtc" (J (:'jt t. 
i t P I ace sap 0 sit i v e 0 c tal val u e in the key. The val u e s I] f t hi, k c' Y :1. 

summarized in Figure 3. 

UP .26.26.90 



10 

8. Turning Off the Handler 

Through the use of the User Jeactivate Key, the user may disengage his pro­
gram from the UNIVAC 111-418 Handler. By placing a value less than, or 
equal to, +0777 in the Deactivate Key he prevents the handler from initiating 
any further action. When the 11andler Use Key returns to zero, the user 
then knows that no UNIVAC 418 activity can affect his program. He must 
assure that there is no activity should he desire to modify the size of the 
response table or obtain a conventional checkpoint. 

9. Selection of Requesting Program 

In most cases major systems considerations will dictate which of the 
UNIVAC III-UNIVAC 418 program pair should request and which ~;hould respond. 
As chart below indicates the number of input-output interrupts varies according 
to the choice. Since the number of interrupts provides a guide to the 
efficiency of the program pair, these figures might be useful in selecting 
the requesting program where this would otherwise be an arbitrary decision. 

UNIVAC III Prog. Requests UIII INTS. U418 INTS. 

- to send 3 6 

- to receive 2 4 

UNIVAC III Prog. Responds 

- to send 3 6 

- to receive 4 8 

10. Channel Assignment 

Elements have been placed on the Relocatable Library to faciJ.itatE the 
users assignment of a channel to programs or symbionts. 

10a. Principal Programs: The UNIVAC 418 channel is defined by the eJ.ement 
MAINCHAN for principal programs. Including the control card 

~ SiLECT MAINCHAN 
or 

~ LliJE BOSS III 

in the DECO control cards for the program will cause the correct assign­
ment to be made. 

10b. Symbionts: A channel number not directly related to the channel to 
which the UNIVAC 418 is attached is used for symbionts. A different 
"f ic t i tiou s" channe 1 number mu~; t be ass igned to each UN IV AC I I I s ymbi on t 
which will concurrently use the UNIVAC III-UNIVAC 418 intercoupler. 

~lements defining these "fictitious" channels are include::] 0;1 the 
Relocatable Library and should be selected when the symbiont is 
processed by J)[CO. Since the symbiont channel number is defined durirg 
~ECU, the operator must only c211 the symbiont on the channel defined. 



ChClrt below describes the elements 0[1 the RellJCatable Licl::'lry. 

l~L[M[NT NAMe 

MAINCHAN 
U418U14 
U418V15 

Ct lANl~ [L NUMLER 

7 
14 
15 

11. Formation of Relocatable Library 

No t Appl ~c lbl e 
U 
v 

The executive routine containing the UNIVAC III-UNIVAC 4Hi l,:!viler w~~l 
operate on either a 24,576 or 32,768 word store. In order to orovl·j f r 

the creation of the appropriate system, the user must ,'3elE:ct the J.pprop; ~ i~, 

elements from the program library when he is building his reLocatJhle 1: C'" 

In addition, appropriate versions of U418U14 and U418V15 :nU'~ bec,electe:1. 
The following table will aid in making the selection. 

Store Size 

32,768 

24,576 

Alias Name 

U418 Exec 
U418U14 
U418V15 
U418 Exec 
U418U14 
U418V15 

12. Symbiont Utilization of the Handler 

Element NJme 

U418lXJ2 
U418U143 
U418V153 
U418EX24 
U418U142 
U418V1:)2 

If the user desires to prepare a symbiont program which util~zes the 
UNIVAC III-UNIVAC 418 Handler, he must also provide for re10 1se erltr~,) t) 
the handler. 

Control should be released to the handler when the completiol te ti,Il'J 
described in sections 5 and 7 indicate the trawmis~,ions havi bC't'n 
completed. In order to prevent possible loss of an interruf"~~, J PI' 
interrupt instruction should be performed before perfor~ing the appropr: lLe 
tests. If no functions are found to be complete, execution ·)f the fo11 
calling sequence will release control: 

+1 
+2 
+3 
+4 

SLJ *$+1 

+U418RL 
+SAV[ • Address of SAV[1I'E~1 i:1 
+COVER • Symbiont l-=OV[;~ v}lue 
..... release return 

When an interrupt is received on the channel, control is retJrIl j t) cll' 
symbiont at the release return. Interrupt is not inhibitej it u;!~ ~ 
If the user wishes to have interrupt prevented on release ::'ellH'ii, he rl.] 

execute the instruction 

S-i U418i{AI 

in the symbiont initialization coding. 

) ,t 



Rc::)UEST MEANING TYPICAL PROGRAM ACTION 
STA TUS <EY 

<:: :: Re~uest be serviced by handler. Do other processing. Test perio1icall '/ 
until key 2- o. 

+::':' RcoquesterJ transmission complete::l Process completerJ transmission as appropriate: 
Sl1cce:ssfully. an::l continue. 

-t-C3 UNIVAC 418 Program di::l not have entry Repeat the request by initiati:Jg again. 
with S3::le trans::1ission key, or ::li::l If reply of 03 persists, former reason 
not have requirer] buffer ready. probably applies. 

+C.1 The U:~IVAC 418 progra'TJ requested Inform operation of situation, then 
(see thirc:l word of response table) proceed with installation's pro-
has not been 10arJerJ in to UNIVAC 418 cedure for this contingency. 

+010 Parity error detecterJ while pro- Initiate request again. If error 
cc.C'ssing request. persists, terminate program for 

analysis of cause. 

+011 The request causec:l a transmission Jettison program in orc:ler to 
to the UNIVAC 418 to exceed the analyze cause. 
UNIVAC 418 Buffer. 

REQUEST STATUS KEY 

Figure 3 



, 
LABEL \ OPERATION \ OPERAND \ COMMENTS ) 

1 

UIFI4~1~81 I I F a R M 11 0 , 1 51 /. I I FlO I R ,M, 1 0 , Ej F I I ,NJ I, T I~O, N, IF 101 R, I F,U ,N,C ,T,I O,NI ,S PI E,C , 

T A B LIE I j 1 I - ° I , I· H A N OIL E R \U $ E K E Y I I , , , , , , , , I ~ ~ I I 

, I , , , ~ ~ / 
t ,Uj411j8jRjEjTj _1 1 ~ ~ 1 ~ I j I' I ,AjD,DjRjE,$,$, II ,Nj U 4 I 1 8

1 10 I 1$ ,P AI TIC H E I R, I , I I I 

I I , I , 1 I 1 I I + I 10Irlrlr,r, I I I , I 1 , , I I I' I ,R IU ,N I II ,DIE, NIT I ,F I IE, R I I I , I , , I 1 J ~ ~ I , , 

I I I ~ , ° I I I I I , I I' R E Q U E SIT I I K, E Y I I 1 I I I I , 

I + ° / /. I p,E,A I CIT,I,V,AIT,E 1 KIE I Y I I I I I 
( 

I j , 1 I j I I I I , I , I , I I , I , I , _1 1 ~ 

R IE S PI A,K, 1 ~ 
.~ 1 I I.e. I O,k k I k k, I I ~ ~ I I I· R,E,S,P,O N $,EI ,P,AC,K,E,T ,MI E, $ 1$ A G E ,K E,YI I I I 

I I , , 1 1 I T I 
i s I a I nl d I I , , I , , I I I I I I , , I I , I I , .J. I , , , " ,I 1$ ,L ,A I N 10 1 J.A.l°l°.J.RJE~$ 5, , , 

J U F 4 1 8 o I P , ,b , 1 1 I I I I I I I I I I , , j • I FlU, N I CI T I I O,N, ,5, PI E C, , , 1 

j 1 j I I I , , .~ ~ j .J. ~ , , I I I 1 I I .J. I , , 

, , , I , I I I I j 1 , 1 , ~ .J. ~ .J. I I I I I , I , , , , I , , , , I , I I I , I , , I , , I 1 I , I I 

, 
I~ 

, i I I , I I I I I I I , I I I I , I I , , I I I I I I , , I I , I , I I I I I I I , I I I , I I , ..L , , I I i..' , , 

R,E,S,P,AK,M, ! ~ ,0, k , k I k, k I I I I I I , ,~~Nrh, I ,R , E,5,PI0 ,N, S,E, ,P,A,C, K,EIT; I I I I , i I I I , I I , , , I I , I I 
, .... i , S I I I a In I d I I I I I ! I I I I I I I 1~1 1 1 I I I I J I I I I I I I I I I I , , , I I I I I I I I I L-L .1 I I I I 

l U F 4 1 ,8 0 pi, b , 1 I I I I I 
I I I , \ I 

) 

f--~-~-"'~" I i 
- , ° I I I I I I I .....L....l-l~. I IT I AI B i L, E I , , i EI NI 0 1 IS,EINIT,IIN,E 1 L/ , I , I , I I _1..._ , I I , I I 

I j 

~ - - --- ----- - -



-.. 
LABEL \ OPERATION \ OPERAND \ COMMENTS 

1 72 

I N I T 4 ] 8 I L A 8 ( T A BIL E ) II N I T I ATE HIA N D L E R I 1 

IS L J U 4 1 81 R Q I 1 1 1 

IN ° P I 1 1 I I 

~L~O C E S S I I I I I I 

1 I 1 I I 1 

RESPTEST 1 P I 1 1 R E Q UI RED 01 N L Y I F U S EI R I S S Y M B 110 N T 

IL A N 8 R E S PIA K ] "' 2 I 1 1 I 

I IJ P ] , COM PI] o 0 1 1 I I 

1 LAN 8 RESPIAK4"2 I I 1 1 1 

IJ P ] COM PI4 0 0 I I I 1 

I IL A ] 2 B ~ FI F S IB U F F S B UIF FI S - ] ARE S EIT NONI-ZE R OJ II NI I S I LAN Dl 

~~I I I ICI I I 1
8

1 ' I I ( I + I 0 I ) I I I I I I I I-I ICIO, DI EI ,1,N,D,I,cIA,T,I,N,G, I c i ° 1 MI PILI E I T I I I ° I N I I I I I I I I I I I I I I I 

IJ E COMP2100 I I I I 

IC 4 ( 1- 01) I I I I I I I I 1 I I I I I I j j I I I I j I I j I 1 I I j L 

I J E COM P 310 0 I \ I I 

IS L J * $ + 1 I j IR E L E1Aj S IE C 01 D E FOR S Y MI B I ° N T S H ° WI N 

I 1+ U 4.1 8 R, LI II F P R I N C I PI A ~ PRO G RAMI IR ELEASE WjOIUjLjD j j I I 1 

~._J._~_L-L_l_ L+lLL~~l~!LJ I I I I I I I I I' IN ° T B E EFFIEICT E D - ° T HI E R I P RI ° C E S Sill NIG I I I I I I L 

I I I I I I j 1 +[ j I C, ° V E R I I 'I 1°1 RI RIE T UIRIN I ITIOI IR EISIP,TIE,SIT, WIOIUILIDI IB,EI,EIX,P,E,CTIE,D, I I 

I J RES P T EI S T 1 I 1 I 

-
Sample User Code Elements 



\ 
LABEL \ OPERATION \ OPERAND \ COMMENTS 

1 

C O,M Pilla lOL-l I / L,AI N 8 , 1 RES 1 P~ A-.1 K 1 t -.1 2~ . / I RI E I AI CI TI I VIA TIEl IR E S P.O N IS EI I P A C KIE TI 

I I I ~ IS A~ 8~ , R~ E Sl P-.1 A K 1-.1 + -.1 2 ~ ..1 ~ I I I I I , / , I .1 I I I i -.1 ..1 

I I I 11 I I I I I I ~ I I I I I I I I 1 1 J 1 ~ 1 i I -.1 i ~ -.1 1 .1 i -.1 ..1 ..1 -.1 ..1 

I I I I I I I I I ~ ..1 -.1 ~ ..1 i ..1 ..1 ..1 1 ..1 ..1 ..1 ..1 ..1 ..1 ..1 ..1 I I I I I I I I I I 1 I I 1 I I I I 1 1 I 11 I ~ 1 ..1 ..1 ..1 

M,E M 0 1 U M P I lSI ZI I I 1 ITJAIBJL~E.l+i4-.l ..1 ..1 --1 --1 / I • ,D,E,A,C,TII IV/AITIE I I TI AIBI L--1E~ JI --1 -.1 -.1 1 

I I I LIAI 8 '_I TJ Al B1 L.l E--1 ..1 --1 ..1 ..1 I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I ~l ..1 IC 8 , ( + a I ) I I I I I i ~ ~ I i ~ ~ i J ..1 ~ ~ 
, 

I I I I I I 1 j 1 I J IG.l -.1 -.18~-~l.l 1 J ..1 --1 ..1 -.l --1 ..1 --1 ..1 I / 1'1 I HI A,N, DILl E, R/ I B, U SI Y I i I I I I I I I I ..1 ..1 ..1 

I I I I ..1 I 1 --1 --.i -.1 ~ i J I I I I I I , I , 1_1 -' 1 ~ I I 

I 1 i i I / I I I I / I I I I 1 I I 1 ..1 

I I ..1 I I I I N I T I A T EI C H E C KjP 0 I J NI Tl I 1 I I I I 
I 

i ..1 ~ ..1 I I I i ..1 I I I 

I I I I II_~~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .1 ..1 ~ 1 1 ..1 ~ ..1 -L ..1 ..1 

kL~_-L----L----- ~ I 1 i .1 I ~ i I I I I i I 1 I 1 

M. 0 1 R, E, .. !~.~~.~~~~!:--" __ L...l!.L~~_L~.' 141 I i _ . ...L.....L-L_.L .. L_ .. ~ I· i I IRIEIAICI TI liVIAITIE I I TI AI BILl El I I I J 1 ..1 ..1 .1 

.1. I 
i 

i 1 ~ i -.1 ..1 ~ J I I I / I 1 

~ - - -- -



LABEL \ OPERATION \ OPERAND \ COMMENTS 
1 

I I I I I I 1 I 1 I IlL A N~ ~ 8~ ,~ Rl E ~ S ~ P ~ A~ K~ 4 ~ + ~ 2~ I I I I I I I I I I I I I I I I I I I I I I , 

I I S A 8 , RIE S P A K 4 +,2 I I I I I I I II N~I~ T11~A~ T E UIIII I R E Q U E SIT ~ ~ 

I I N, I I TI RI E, QI 1 I I L A N 18 , ~ ~ 1 L ~ R ~ E~ $ ~ P ~ A K ~ 4 I I) I I I I I I I I I I I I I I I , I I I , , I I 

I I , , , I I , I I , ,S, LIJ I I ,U [ 41 1 18 1 Rl Ql ~ i i ~ ~ I I I I I , I I , I , I , I I , , I I I , I I , , , , I , ~ i 

I I I J, $ - 1[ 1 I , 11 I 1 ~ ~ I I I 1° I I H, AI N 0, L E R I B UI S, Y TRY A, G,AII N I 

1 , , I , , I , , I I L A 14 , 1 1 T1 Al BI Ll El t-I 3 1 1 1 I I , , 1 1 , , , I 1 1 1 ~ ~ 1 ~ ~ ~ i ~ ~ i ~ i 1 i ..1 i 

I I I , 1 I 1 I J P 2 , RI E, Q COM P L I I 1 I 'I 1 1 ~ 1 ~ ~ 1 ~ i ..1 ~ ..1 ~ i ~ ~ 1 ..1 ~ i 

I , I , , I ..1 I ~ ~J $ - 21 iii ~ i i , I I I I , I I , 10 I WIA,I IT, ,FlO, R, [CIOI M, P,L 1 E1T~ Ii 0i N~ ~ 1 i ~ i 

RJ El Q] C] OJ MI P L I C 4 ( 1+ ° ) ] ~ ~ I I I , , I , , I 1 , I I I , , 

I , , , I J E S UCIC ES S I I 10] $ I U C C E $ S F U L I C, a M PL~E~T,I a NI ~ i 

, , , I , I C 4 , (J+-.l0~3~)~ ~ ~ , I , , , , I , , I I I , , 1 , , , 1 1 1 I , , , [ ~ ~l ~iJi~i 

I J lEI I I I NI II TI RIEl QI 10 14 11 181 I NI 0 1 TI ,RIEIAIOIY, I-I TI RI YI lA1GJA111NJ 
I 

, I , I , , I I , I I I I , I I I I 1 I I I I I I I 

, I I 1 1 -.l ' C-.l 4 , (J + ° 4 ) I I I 1 I 1 1 _1 _1 -.l -.l -.l ~ J ~ _1 i ~ ~ ~ ~ J ~ ~ ~ 

I , , , , , I I 1 I I J I E I I I INIOIRIUINI I I I I I I I 1 I I I I I I I 10 14 11 18 1 I RI UI NI INI a, TI I LI 0 1 AI 0 1 EI 01 I I I I 1 1 

I C 4 ( 1+1° 7 I) I I I I I 
I I I 1 I I , , I 1 I I I , I ~ ..1 I 

\ 

I I I 1 1 1 I , I I I J lEI , I 1 ,J,EIT,T, 11 1 1 i 1 I I 1 I , , I I I I ° I I R, E,Q, U, E, $, T, IJIEITITIII$IOINIEIOI' I I 1 1 , 

I I I I I I I I I I I I CI I I 14 1' I 1(1+1°1 11°1)1 I I I I I I 1 I I I I I I ° I I PI AI R I I I T I Y I 1 PIRIOICIEISIS IIINIGI I I I I 1 1 

1 I 1 1 1 1 I I I I 1 I J 1 E, I , I I P, AI Rl 11 T 1 Vi i iill I I I , , , I , I I I I , I I , I 1 I I I , , 1 I I 1 I 1 i 1 i 1 1 

I 1 I I I I I I , I , I I 1 I I I I ° I I 1 1 I I I I I I 1 I I I I I I I I 1 ° 141 118 I I BI UI F1Fj E1Rj 1 EjXl C1E1EjO 1 Ej DI 1 I 1 1 1 

Ll , I I I 1 ~~ ~ I 1 I I I I I I , I I i i i I I I I 

I I I I 1 I I , I I , I 1 I I 1 _1 iOi 1 i 1. ~ i 1 1. i ~ I I I I , I I I , I , I I I I I I I I , 1 I 1 , I I I i 1. i i 1 1 I I 
~ -

Sample User Code Elements 



LABEL \ OPERATION \ OPERAND \ CO 
1 

UI F,4 1 8, I I 1 , , FOR M, j 11 ° , 1 5~ I I I , , I , , , , j j , 
T AlB L,E , 1 I i+ 0 

~ 1 ~ ~ ~ ~ 1 I , I 

1 1 I 1 1 1 I + 0 4 1 8 R E TI ~ ~ ~ I 1 1 1 , , , , , , I , , , , , , 1 

I J +~ 
, 

~A~6~'1 I , , 1 , , , , , , , 1 , J ~ i ~ ~ ~ ~ ~ ~ J. ~ ~ ~ I I , , , , , , , , , , 
, I , I , I , ,+, ,0, , j j I j ~ _1 J. ~ i ~ ~ I I I I I , I I , , , , 

I I 1 1 , I , + ,0 1 , 1 1 I 1 1 1 1 1 1 I 1 1 1'1 T, AI B L E ,SIEIT, ,A,CITIIIV,EI 

R, E, SIP I A 1 Kill , j I j 1 +~ iO~ 1~0 ° I ~ ~ ~ ~ ~ ~ ~ ~ 1 I I 1 , , 1 1 , 1 , , 1 , , , 

I I , , 1 , 1 1 , I , ,+ , ,01 , , 1 , I 1 1 I 1 J i 1 1 1 I· I ,N,O, ,I ,S, L,A, NI 0, IC 0,0, E, , 

I I 1 I , j I j U F j 4 1 8i 2J, B~U~FJ.F~ 1 O~ O~ ~ 1 I I I I , , I , , , , 1 , 
R IE S P A K 2 I + 02,0 ° I 1 I I I I 

, , I , , I + I S LAN 01 ~1~ ~ J. J. ~ ~ -.l ~ I , , , I , , I , I I , , , , , I , 

I , I , , , , I , 1 I I UI F,4 11,8, I 121, IBIUIFIFI2 1°1°1 I I I I 1 I I I I I I 1 I I I I I I I I 

R,E,S,P,A K 3 I i- o 3 ° ° 1 I , I I I I , 

, I I I 1 I , I , I , i +..1 ..1 1 is 1 LJ.A i NJ. 01 2 i ..1 ..1 i i J. ..1 I , 1 I , , , , , , I , I , I I 1 I I I , 

I , I , j j i 1 _1 U FiHi1,8 J 01 i B u F F 3 i O OJ I 1 I I j , 
, , , , I 1 , , 1 I , 1 - , ,0 14 ,0 ,0 , 1 I I I 1 1 1 I I I I I· I IPIAICIKIEITI II I NI ~ c1 Tl I, VI E, 1 

.J. .. 1 __ ! _i~--.L_~--.L_-'-~ __ L_~_::~ I I I I , I I 1 I , , I I , I 1 , I I , , , , I I 1 I I , I I I 

. .-1--1..~_L-L_l I 1 I 1 I - lUI F, 41 1,8 I , ,01, IRI E,QI BI U1 FI I I 1 I I I I I 1 1 1 1 I I ~.L....l-L.L..i. 

~~.~ •. I I I 1 - 1 .0 
I 1 I I 1 i I i I I I I I 1 I I I I 1 I I ...L...L I I I I I I I I_-L I I , , , , -.- - -



t--' 
(Xl 

LABEL \ OPERATION \ OPERAND \ COMMENTS 1 1 72 

I S L A N D 1 I J $ I 1 I I I 

IL A 1 2 F SIB F 2 o 0 I I S ClaM P L E TED FI U N C T I ON 1 
IC M 8 21, 2 1 FOR I B U F F 2 0 0 I I r--L 

~_~~!L_L_L_A a, N, E, 11 0,0, I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I 

IS A N 4 F SIB F 2 0 0 1 S E TI 2 0 1 F S NI E F S H a w I N G[ 
} 

I T C OM P L E T E 

.L 1_.------L I , I I J I P, I I ,I, ' , ' $,-1 3 , I I I I I I I I I I I 1° I I I I I S I I B I U, F I F I 2 I 0 l-~_--L F I ' 1 S I ' I P I a I S I I I T I I I NI E I ,9 R, ,F, R, E I E 

~~, I I , I S I ZI I , I B I U, F I F, S I-, 1 , I , , I I I , I I 1° I I ,S,E,TI IBIU,FIFISI-II, It 10 I ,Z I E I R,O, ,I,N, DII,C,A , T,I,N,G,~--L-.f 

I J I * I S L I A, NI D, 1 I I E X I TI 1 1 1 j I I , I , , I I I I I I I I I I I I 

IS A 8 2 , 12 I I I I I 

IJ E X I T I J I I I 

DO N E 1 , 0 0 IS A N 8 F S, B F 2 0 0 - 1 1 I I I 

, ---L..L~ I P I , I 12~ri2, I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I L-L_L_l _L l L_L __ L_.1 1 1 l_L_L--L __ L_ 

I J E X I T 1 1 I I 1 

IS T 4 2 ,1 2 I 1 i I I I I I 1 I I I j 

IJ E X, I T I I I I I 

IU F 4 1 8 2 B1 U F F 2 0 0 1 i ii' I F Pia S I T I V E B UI F, F, E Rj jA ViA I Ll~ BiL Ei i i i i i 

F S B, F , 2 , 0 
1
0 I I I lU, F ,4,1 8 2 BIU F F 2 0 1 I I F NI EGA TI V E N OIT A V A I L A B LI E I I I ---

Sample User Code Elements 



UNIVAC 
DIVISION OF SPERRY RAND CORPORATION 

U P-3853 


	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02a-01
	02a-02
	02a-03
	02a-04
	02a-05
	02a-06
	02a-07
	02a-08
	02a-09
	02a-10
	02a-11
	02a-12
	02a-13
	02a-14
	02a-15
	02a-16
	02a-17
	02a-18
	02a-19
	02a-20
	02a-21
	02a-22
	02b-01
	02b-02
	02b-03
	02b-04
	02b-05
	02b-06
	02b-07
	02b-08
	02b-09
	02b-10
	02b-11
	02b-12
	02b-13
	02b-14
	02b-15
	02b-16
	02b-17
	02b-18
	02b-19
	02b-20
	02b-21
	02b-22
	02b-23
	02b-24
	02b-25
	02b-26
	02b-27
	02b-28
	02b-29
	02b-30
	02b-31
	02b-32
	02b-33
	02b-34
	02b-35
	02b-36
	02b-37
	02b-38
	02b-39
	02c-01
	02c-02
	02c-03
	02c-04
	02c-05
	02c-06
	02c-07
	02c-08
	02c-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	17f-00
	17f-01
	17f-02
	17f-03
	17f-04
	17f-05
	17f-06
	17f-07
	17f-08
	17f-09
	17f-10
	17f-11
	17f-12
	17f-13
	17f-14
	17f-15
	17f-16
	17f-17
	17f-18
	17f-19
	17f-20
	17f-21
	17f-22
	17f-23
	17f-24
	17f-25
	17f-26
	17f-27
	17f-28
	17f-29
	17f-30
	17f-31
	17f-32
	17f-33
	17f-34
	17f-35
	17f-36
	17f-37
	17f-38
	17f-39
	17f-40
	17f-41
	17f-42
	17f-43
	17f-44
	17f-45
	17f-46
	17f-47
	17f-48
	17f-49
	17f-50
	E-01
	E-02
	E-03
	F-000
	F-001
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	xBack

