UNIVAC'III
G ENERAL
REFERENCE

M A N U A L

UP-3853

This manual is published by the UNIVAC®Division in loose leaf fomat as
a rapid and complete means of keeping recipients apprised of UNIVAC
Systems developments. The UNIVAC Division will issue updating packages,
utilizing primarily a page-for-page or unit replacement technique. Such
issuance will provide notification of hardware and/or software changes
and refinements. The UNIVAC Division reserves the right to make such
additions, corrections, and/or deletions as, in the judgment of the UNIVAC
Division, are required by the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1963 . SPERRY RAND CORPORATION

PRINTED IN U.S.A,

December 3, 1963

UNIVAC III
UTMOST GENERAL REFERENCE MANUAL UP 3853

UPDATING PACKAGE A

SECTION ADD NEW PAGCES
Section 6 1 thru 7
Section 7 1 thru 4
Section 8 1 thru 39

The first addition to the "UTMOST Composite Manual,"” UP 3853 is Section 6 -
"Variable Connectors," and suggestions on the use of UNIVAC III System for
variable connectors are contained herein.,

Since many programs involve looking up information in the memory, Section 7 -
"Table Lookup" covers possible table lookup techniques. As an introduction to
this subject, an example table lookup illustration is given.

Section 8 - "UTMOST," details the advanced features of the UTMOST Assembler,
Of special note is the portion on the assembler directive PROC (pages 8-24 to
8-39), specifying how to construct and reference a procedure.

Place these pages in the manual in sequence of section numbers. For reference
purposes, place this page directly after INDEX, until revised INDEX is issued.,

UNIVAC III March 9, 1964
UTMOST General Reference Manual, UP-3853

UPDATING PACKAGE "B"

The attached 79 pages contain additions to "UTMOST General Reference Manual",
UP-3853.

This updating package should be utilized in the following manner:

Insert After

Title Pages TAB Labeled
ITEM LEVEL
SECTION 9 Tape File Handling 1 -55 TAPE FILE HANDLING
SECTION 13 Symbionts 1 - 24 SYMBIONTS

Please notice that no destruction is necessary with this updating package.

UNIVAC TII September 29, 1964
UTMOST General References Manual, UP3853

Updating Package "C"
This bulletin announces the release and availability of Updating

Package "C" for the UTMOST General Reference Manual, UP3853, 49 pages.
The pages should be utilized in the following manner:

Destroy Former File New
Pages Numbered Pages Numbered
Section 17-F N. A. 1 - 49 %

* These pages should be filed after the tab labeled INPUT/CUTPUT.

UNIVAC III

UTMOST General Reference Manual, UP 3853

UPDATING PACKAGE

December 10, 1964

" D"

The attached material represents additions and changes for the UNIVAC III UTMOST
General Reference Manual, UP 3353, and should be utilized in the followina

manner !

Table of Contents
Section 2-A
Section 5

Appendix E

DESTROY FORMER
PAGES NUMBERED

N.A.

21 and 22

5 and 6

N.A.

FILE NEW PAGES
UMBERED

1 -13

21 and 22 Rev.l

5 and 6 Rev.l

1 -3

UP-3853 UNIVAG Il UTIVIODST Lontents

SECTION: PAGE;

1.

2,

3.

INTRODUCTION

A. Relation of UTMOST System to UNIVAC tii

B. Programming Languages
C. Principal and Symbiont Programs

BASIC PRINCIPLES

A. Introduction to Computer Data Processing

. Introduction to Programming

B
C. Introduction to Flowcharting
D

. The UNIVAC {Il Central Processor

EDITING

. Shift Instructions

Logical Operation Instructions
Indirect Addressing

Field Selection

. The Load Field Instruction

. Example

Flowchart

Coding

—_ I O M m O O W

. Student Exercise

INDEX REGISTERS

A. Example

Coding
Flowchart
Student Exercise

m m O O W

. Modular Addressing

Iterative Versus Straightline Coding

CONTENTS

2-A-11t02-C-9

2-A-1to 2-A-21
2-B-1to 2-B-39
2-C-1to 2-C-9

3-1to3-14

3-1to3-3
3-4
3-5
3-6 to 3-9
3-10
3-11
3-12
3~-13
3-14

4-1to 4-16
4-5

4-5to 4-7
4-8 to 4-10
4-10

4-10

4-11 to 4-16

Contents

SECTION: PAGE:

‘ ‘ UNIVAC III

UTMVMOST

UP-3853

5. SUBROUTINES

m O O w

. Subroutine Flowchart Symbols

Example
Flowchart

. Coding

Ftowchart Field Notation

6. VARIABLE CONNECTORS

. Example

Flowchart
Coding
Student Exercise

7. TABLE LOOK-UP

A.
B.
C.

Example
Flowchart
Coding

8. UTMOST

c 4 v WO VO 2 2o X . — T O mMmMmMmogaooO @ >P

Example
Flowchart
Coding
Labels

Definition of Terms

. Operators

The USE Directive
Student Exercise
Indirect Addressing
Student Exercise
Literals

Student Exercise
The END Directive
Line Control

Other Units

. Two Word Constants

Multiple Word Constants

. Other Operators

Other Assembler Directives

Procedures

. Example

5-1 to 5-9

5-4
5-5
5-5
5-6
5-7 to 5-9

6-1to6-7
6-2
6-3 to 6-4
6-5to 6-6
67

7~1to 7-4

8-1 to 8-39
8-1to §-2
8-2

§-3
8-4 to 8-6
8-7

8-7
8-8 to 8-9
8-9

8-10

8-10
8-11 to 8-12
§-12

8-13
8-13 to 8-14
§-14
8-14 to 8-16
8-16
8§~-16 to £-20
8-21 to 8-24
8-24 to 8-31
8-32 to 8-39

UP-3853 UNIVAC Il UTMOST

Contents
SECTION:

PAGE:

8A. DETAILS OF UTMOST
A. Coding

1. Label Field
2. Operation Field
3. Operand Field
4. Line Control

B. Data Expressions

1. Decimal

2. Floating Decimal
3. Octal

4. Alphabetic

C. Program Instructions
1. Format

a. lInstruction Word
b. Type 0 Instructions
c. Type 1 Instructions

2. Operators and Expression Arithmetic
3. Working Registers and Computer Indicators

a. Arithmetic Registers

b. Index Registers

c¢. Increment and Compare Control Word
d. Computer Indicator Designation

1. Less than, Equal, and Greater than
2. Arithmetic Register Sign
3. Sense Indicators

4, Instruction Address

a. Label
b. Reflexive
Implied

(=N (]
. .

Program Independent
. Multiword
f. Shift Count Designation

(3°]

g. Computer Control Word Designation
(1) Indirect Address Control Word

(a) Explicit
(b) Implied

Contents

JECTION: PAGE:

‘ UNIVAC Il UTMOST

UP-3853

5.

(2) Field Select Control Word

(a) Explicit
(b) tmplied — FLD Directive

Assignment of Covering Index Registers

a.
b.
c.
d.

Address Components

UTMOST Handling of Addresses
USE Directive

SET Directive

6. Assembly Directives - Basic

(g2} (=9 o (=2 o
.

DO
END
EQU
FLD
FORM

f. GO

=0 o0a
. .

ICW
LIST

. NACL

NAME

. PROC

RES
SET
TWwC

. USE
. lmplied Directives

(1) ICW as Implied Constant
(2) Indirect Address Control Word
(3) Field Select Control Word

D. Procedures

1.

2.

Definition

o o
o .

—_— @ o o
. . - .

PROC Directive
NAME Directive
Procedure Parameters
GO Directive

DO Directive

END Directive

Utilization

UP-3853 UNIVAC Il UTMOST CTCOHtentS
SECTION: PAGE:
9. TAPE FILE HANDLING 9-1 to 9-55
A. Overflow 9-1to 9-2
B. Invalid Qperation 9-2
C. Console Typeouts 9-3 to 9-9
D. Console Typeins 9-10 to 9-12
E. The UNISERVO IilIA Tape Unit 9-13 to 9-16
F. Tape Handling 9-17 to 9-28
G. End of Job 9-29 to 9-32
H. Covering Input/Qutput Areas 9-33 to 9-36
I. Master File Handling 9-37 to 9-42
J. Label Handling 9-43 to 9-54
K. Processor Errors 9-54
L. Rerun 9-55

9A. OBJECT PROGRAM STRUCTURE

A.

Data Storage

1. RES Directive
2. EQU Directive

. END Directive

. Segmentation

1. Organization of Program
2. Simple Program
3. Compound Program

a. Main Program
b. Sub-program

4., Complex Program

a. Complete Overlay
b. Partial Overlay

(1) Retention of Control
(2) Transfer of Control

c. Chaining
5. Library Routines

Contents
SECTION: PAGE:

UNIVAC 11l UTMOST

UFP-3853

11.

12.

. PROGRAM CONTROL

. Overflow

Invalid Operation

. Typewriter Control

1. Typeout
2. Typein

Processor Errors

. Termination — End of Job

ITEM LEVEL-TAPE FILE HANDLING

A.

C.
D.

Fixed Size Item Handling — ITEMI02

1. Tape Formats
2. File Description Table
3. Storage Area

a. Pool Control Packet
b. BUFC

Calling Sequences
Significance of Write-Read
Label Checking
Checkpoint — Rerun Dumps

~J [op] o =
. . o .

. Variable Size !tem Handling VITEMIO

Tape Formats

File Description Table

Storage Areas

Calling Sequences

Write-Read, Label Checking, and Checkpoint

a0 N
e e e e .

File Call Procedures

File Handling and Tape Assignment

SORT/MERGE

A.
B.

A,

B.

Sort
Merge

. SYMBIONTS

Magnetic Tape Computer With Offline Peripheral
Operations

Nonconcurrent Computers With Online Peripherals

13-1 to 13-24

13-1 to 13-2
13-3 to 13-4

UP-3853 UNIVAC 11l UTMOST Contents [
SECTION: PAGE:
Concurrent Processing Computers 13-5to 13-9

13A.

m m O O

. Concurrent Processing on the UNIVAC 1l .

The Card to Tape Symbiont
The Tape to Printer Symbiont

CONTROL ROUTINES

. General
. Control of Programs

Tape Assignment

End of Processing and Chaining of Control Routines
Control Items Common to the Control Routines
Preparation of Control Tape

wn E=1 wo N —
.

Alternate Modes of Operation

. UPCO

1. Control ltems
2. Library Creation and Maintenance

a. Elements
b. Groups

. ACCO

Control Items
Simple Assemblies
Use of Library Input
Library Building

o -+ w ~No —
B

Stacked Assemblies

DECO

1. Control Items
2. Overlays

System Organization

. System Symbionts

1. Card to Presto Tape

a. PRESTO
b. PRESTS0

2. List/Punch Tape

a. To Print — TPRS
b, To 80 Col. Card — TPCS
c. To90 Col, Card - TPCS90

13-10 to 13-11
13-12 to 13-18
13-19 to 13-24

Content
SECTION: PAGE:

UNIVAC IIl UTMOST

UP-3853

14.

15.

16.

PROGRAM TESTING

A.

O M o m O O

Data Generation

1. Data Procedure
2. Create Procedures — Test Data Tape Generator

TMPO

TPO

EDUMP

FDUMP and DSNAP
Composite Loader
EXEC Mode of Operation

SYMBIONTS

. Tape to Print - TPRS2
. FORTRAN Output Tape to Print-FTPRS
. Card to Tape

1. 80 Col Cards — CTS
2. 90 Col Cards = CTS90/CTS90A/CTS9080

. FORTRAN Output Tape to Punch

1. 80 Column Cards — TPCSF
2. 90 Column Cards — TPCSF90

E. Paper Tape to UNISERVO IlIA Tape - PTRS
F. UNISERVO IIIA Tape to Paper Tape — PTPS
G.
H
|
J

UNISERVO IIA Tape to UNISERVO I1IA Tape — U2T0OU3

. UNISERVO IlHA Tape to UNISERVO IIA Tape — U3TOU?
. Tape to FASTRAND Drum - U3TOFR
. FASTRAND Drum to Tape — FRTOU3

MISCELLANEOUS

T o m m 9O O W P

Mathpack

Editing Routines
Move Procedures
Typein Procedure

. Typeout Procedure
. JPS, JMS Procedures
. JNL, JNE, JNG Procedures

LAED Procedure

UP-3853 WINIVALW 111 WUIIVIWJD | Contents

SECTION: PAGE:

17. INPUT/OUTPUT

A. General
B. Card Readers

1. Hardware
2. Dispatchers

a. General
b. 80 Column Card
c. 90 Column Card

C. Card Punches

1. Hardware
2. Dispatchers

a. General
b, 80 Column Card
¢. 90 Column Card

D. Paper Tape Reader/Punch

1. Hardware
2. Dispatchers

a. General
b. Basic
c. Non-Stop

E. Printer

1. Hardware
2. Dispatcher
3. Common Print Subroutine

F. FASTRAND

1. Hardware 17-F-1to 17-F-45
2. Basic FASTRAND Dispatcher
3. Data Reconstruction Subroutine

G. Communications

1. Hardware
2. Basic Communications Dispatcher

H. UNISERVO Il1A

1. Hardware
2. Basic Tape Dispatcher
3. Intermediate Level Tape Handling

Lontents

SECTION:

PAGE:

v

UNIVAG I UTIVILUDST

UP-3853

I. UNISERVO IIA

1. Hardware
2. Basic UNISERVO A Dispatcher
3. UNISERVO IIA Block Advance Routines

J. UNISERVO 1IC

1. Hardware
2. Basic UNISERVO 11IC Dispatcher

APPENDICES

L.

M.

T oo M m 9 O w I

Sample Program (to be condensed from released section &)

. Instruction Summary
. Executive Communication Summary

. Typewriter Conventions

Data File Conventions
Codedit Listing
DECO Listing

. Basic Memory Layout
. Auxiliary Card Dump Routines
. Systems Philosophy

. Symbiont Programming

1. Background and Characteristics

2. Programming Symbionts
a. Basic Dispatcher

(1) GP Channels
(2) UNISERVO IlIA Channels

b. Typeouts and Typeins
c. Releasing
d. Restrictions

e. DECO Considerations

Modulo-3 Checking

Execution Timing

E-1to E-3

UP-3853 UNIVAC Il UTMMOST

Contents

SECTION: PAGE:

1. Multiplication
2. Division
. Decimal Operations on Non Numeric Data

80 Column Card Codes

Printer Timing

O T o =2

. Input/Output Equipment Specifications

TABLES AND ILLUSTRATIONS

FIGURE TABLE

2-1 The General Data-Processing Operation 2-A-2
2-2 A Data Processing Operation 2-A-2
2-3 The Sequence of Steps in the Data-

Processing Operation 2-A-3
2-14 The Elements of a Data-Processing

Operation 7-A-4
2-5 Work Simplification 2-A-6
2-6 A Punched Card 2-A-7
2~7 Punching the tnventory File into Cards 2-A-8
2-8 Collation of Inventory and Sales ftems 2-A-9
2-9 Punched Card Equipment 2-A-11
2-10 Realtime Computer 2-A-13
2-11 Converting the Inventory File to

: Magnetic Tape 2-A-14

2-12 Reading the Information from a Tape into

the Computer via a Tape Handler 2-A-15
2-13 Qffline Computer 2-A-16
2-14 Concurrent Processing 2-A-17
2-15 Files, Items, and Fields 2-A-18
2-16 Minimizing Search Time by Ordering Files 2-A-19
2-17 Example of a Process Chart 2-A-20
2-18 6 Bit Printable Character Codes 2-B-9

2-19 Assembly in UTMOST Coding Form 2-B-17

cLontents

12

UNIVAG I UTIVIUOST UP.3853
SECTION: PAGE:
FIGURES TABLES
2-20 Arrangement of Arithmetic Registers 2-B-22
2-21 Flowchart Incorporating Boxes and Arrows 2-C-3
2-22 Flowchart Incorporating Symbols 2-C-4
2-23 Flowchart Incorporating Connectors 2-C~-5
4-1 English Language Flowchart of Iteration 4-8
4-2 Symbolic Flowchart of Iteration 4-10
4-3 Control Unit Operating Cycle 4-13
5-1 General Program Format 5-1
5-2 Schematic of Control Sequence in Subroutine
Execution 5-4
6-1 Partial Flowchart 6-3
6-2 Flowchart with Variable Connector 6-4
6-3 Flowchart with Variable Connector Settings 6-4
9-1 Console Typewriter Codes 9-3
9-2 Console Keyboard 9-10
9-3 Block Recording 9-14
9-4 Tape Path 9-15
13-1 Process Chart for a Magnetic Tape Computer
Serviced by Offline Peripherials or Satellite
Computer 13-2
13-2 Process Chart for a Nonconcurrent Computer
with Online Peripherals 13-3
13-3 Schematic of Concurrent Processing 13-7
13-4 Card-Feed Path, High/Speed Reader 13-13
13-5 Data Transfer from Reader to Memory, with
Translation, 80 Column Card 13-14
13-6 Data Transfer from Reader to Store, without
Translation, 80 Column Card 13-15
13-7 Data Transfer from Reader to Store, with
Translation, 90 Column Card 13-15
13-8 Hollerith Code, High Speed Reader 13-16
13-9 90 Column Card Code, High Speed Reader 13-16
13-10 Type Drum, High Speed Printer, Front View 13-20

PAGE:

UP-3853 UNIVAC Il UTMOST .. —ontents
FIGURES TABLES
13-11 COBOL-FORTRAN Set 13-21
13-12 UNIVAC Il Standard Set 1321
17-F-1 UNIVAC HI FASTRAND Mass Storage Unit L7-F-1
17-F-1 FASTRAND Capacity and Access Time Chart 17-F-7
17-F-2 FASTRAND Data Storage Concept 17-F-4
17-F-3 Memory Work Area Requirement for Execution
of FASTRAND Functions 17-F-11
17-F-4 Derivation of Parity Check Character
Positions 17-F-12
17-F=-2 FASTRAND Function Specifications 1/-F-15
17-F-3 Conditions Indicated through the Status Word 17-F-43
17-F-4 Sector Qrganization 17-F-49
E-1 Data Tape Block Formats E-2to E-3

UP-3853 UNIVAC IIl UTIMOST el A
2A.INTRODUCTION
TO COMPUTER DATA PROCESSING
A. THE ELEMENTS OF DATA PROCESSING

In most data-processing, there is a set of data that is altered either infrequently or else in a
known and invariable way. This type is referred to as master data. Names, addresses, badge
numbers, pay rates, year-to-date gross, year-to-date withholding tax, and quarter-to-date social
security tax are examples of master data representing the payroll area; stock numbers, descrip-
tions, on-hand amounts, and unit of measure represent the inventory-control area.

Beyond the master data, there is another type of data to be fed into any data-processing system,
this information differs in that its incidence is essentially random and unpredictable. This type

is called transaction data. Hours worked, quantities shipped, and amounts invoiced are examples
from, respectively, the areas of payroll, accounts receivable, and accounts payable.

Processing consists basically of applying the items of transaction data, either singly, as they
come up, or in cumulative batches, to update the master data.

On the other hand, processing may also be constituted by information periodically being produced
from the master data alone. An example, in the accounts-receivable area, is the production of a
monthly statement.

There is one other major item in the general data-processing operation, the report. In essence,
the report is a by-product of the processing operation in that it reflects in summatry or other form
updating of the master data, the latter being the chief function of the data-processing system.
However, for most purposes, the report can be considered the end product and therefore the most
important of the four elements. It abstracts and highlights critical aspects of the business picture
that judicious processing of transaction and master data uncover, and it is looked to by manage-
ment for necessary information for decisions in production, sales, purchasing, finance, and all
other phases of business.

2-A 2 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

The schematic in Figure 2-1 relates the four basic elements in the general data-processing

operation.

MASTER

DATA
A
\
TRANSACTION >
DATA PROCESSING
Y
REPORTS

Figure 2-1. The General Data-Processing Operation

To further investigate the elements of a data-processing operation, examine the steps in the
solution of a simplified processing application. Consider a company that keeps a record of its
stock in a ledger. Each day a clerk is supplied with a sales form. On the basis of the form, the
clerk brings the inventory up-to-date by writing a new column in the ledger. A representation of
this data-processing operation is shown in Figure 2-2.

INVENTORY OF STOCK ITEMS J STOCK ITEMS SOLD
sTock | PATE { DATE //3
NUMBER // // STOCK | NUMBER
AV NUMBER | OF ITEMS
INPUT ’ 719142 7 /
g 71/ 9 ¥
YAt - 14 3
AEIE] =7 Ny 7 | 2
/5 23| M ‘ 3 g | a
PROCESSING ’
INVENTORY OF STOCK ITEMS }
ST ‘
yll
W8] a
outeut P 7 1911311
g [77|1]n
g |181/8]1#
VAELELEY
/5 |a /
s lalAla L I

Figure 2-2. A Data-Processing Operation

UP-3853

UNIVAC Il UTMOST

SECTION:

As indicated in Figure 2-2, this data processing operation breaks down into three broad parts:

s INPUT: the information to be processed.

s OUTPUT: the information produced by the processing.
m PROCESSING: the operations required to produce the output from the input.

To do the processing represented in Figure 2-2, the clerk must go through a certain sequence of

steps. One possible sequence is represented in Figure 2-3.

1

READ THE FIRST
INVENTORY
STOCK NUMBER

\

IS THERE A SALES

> ITEM FO ?
RAT WRITE THE
L INVENTORY
YES | MO QUANTITY IN THE
NEW COLUMN
)]
SUBTRACT THE
SALES QUANTITY
FROM THE INVEN-
TORY QUANTITY
READ THE
NEXT ONE
] Y
IS THIS THE
LAST INVENTORY
STOCK NUMBER?
PUT THE
No | YES |—» LEDGER
AWAY
Figure 2-3. The Sequence of Steps in the Data-Processing Operation

To do the steps shown in this Figure:

1. The clerk must be able to do arithmetic (e.g., he must be able to subtract the sales quantity

from the inventory quantity).

2. He must be able to make logical decisions (e.g., he must be able to determine whether or

not there is a sales item for a given product).

3. He must be able to remember information (e.g., after he subtracts the sales quantity from the
inventory quantity he must remember the difference at least until he writes it in the ledger).

4. Hemust do the steps in the sequence shown or do something logically equivalent to this

sequence of steps.

SECTION:

2—-A

4 UNIVAC Il UTMOST UP-3853

PAGE:

These four elements of processing are referred to, respectively, as:

1. Arithmetic.

2. Logical Decision.
3. Memory or Storage.
4

Control.

INPUT

ARITHMETIC

— 5| LOGICAL DECISION
PROCESSING STORAGE
CONTROL

OUTPUT

Figure 2-4. The Elements of o Data-Processing Operation

Experience has determined that to do the general data-processing operation, input, arithmetic.
logical decision, storage, control, and output are required. These six elements are shown in
their logical relationship in Figure 2-4.

1. Manual Data-Processing

The above example is a simplification. An actual inventory application is more complex.
Moreover, even in the simplified form presented above, certain basic steps are left out. The
question may be asked: How does the sales form originate? When a sale is made, a sales

slip describing the commodity sold and the units of that commodity sold is prepared. Such

a slip is prepared for each sale made during a day. At the end of the day, the clerk receives
from the sales organization, not the sales form, but a bundle of sales slips, each represent-
ing a transaction. (For purposes of simplicity, assume that each transaction, and consequently,
each sales slip, involves only one commodity). To prepare the sales form from the package of
sales slips, the clerk has to first classify the sales slips by commodity, and at the same time,
or as a separate operation, sort them into stock number order to put them in the same order as
the commodities are listed in the inventory ledger. The clerk is then in a position to summarize
the sales slips by commodity, and, as a final preparatory operation, prepare the sales form.
With the resulting sales form, it is possible for the clerk to carry out the updating procedure
described in the previous section.

UP-3853

2—-A

SECTION:

UNIVAC Il UTMOST ‘

PAGE:

3o}

For an operation of low enough volume, the approach described above is adequate. It is possible
for one clerk to keep the inventory records for the simplified inventory application up to date.
However, as the volume of the company’s operations increases, the burden of keeping the in-
ventory records up to date will become too heavy for one clerk. It will be necessary to add other
clerks to handle the increased work load. With the advent of a number of people to maintain the
inventory records, management may adopt the procedure of breaking the inventory maintenance
down into a number of steps and of assigning one person to each one of the steps. Thus, one
clerk might read the sales slips and sort them into the same order the inventory commodities are
listed in the inventory ledger. Another clerk might then accept these sorted sales slips from the
first clerk and record the sales on the sales form at the same time as he summarizes the sales
slips by commodity. A third clerk might subtract the entries on the sales form from the balances
on hand and record the differences on the sales form. Finally, a fourth clerk might record these
new balances in the ledger. A schematic of this procedure is shown in Figure 2-5.

The approach shown in Figure 2-5 consists of breaking down the job into a number of simple
steps. These steps fall into categories that constitute the functions of data-processing.

m READING

s SORTING

m CALCULATING

w DECISION MAKING
m RECORDING

When a job is simplified by breaking it down into a series of steps, the data to be processed are
circulated through this series. Each step is the responsibility of a single person who performs
the step repeatedly on the continuing flow of data.

The approach just described is characteristic of manual data processing systems. Analyzing a
job and dividing it into a series of steps is the first step in the development of a data-processing
system.,

Key-Driven Devices

Some of the functions of data-processing are mechanized in the typewriter and the adding machine.
Each of these office machines performs one of the basic functions. Thus, the typewriter records,
and the adding machine calculates. For example, in the simplified inventory application depicted
in Figure 2-5, clerks two and three might use adding machines to summarize and subtract. Clerk
number four might use atypewriter to record the updated inventory.

Since these machines perform only one data processing function, they are ‘‘building block’’
machines. They can fit into the pattern of analyzing a job into a series of tasks with no loss of
flexibility. Their advantage lies in the fact that they increase both the speed and the accuracy of
their operators.

The mechanization of data-processing functions is the second step in the development of proc-
essing systems.

2-A 6 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
FROM SALES
ORGANIZATION
I
]
SALES SLIP
CLERK #1:
STOCK | QUANTITY READ AND SORT
NO.
9 1
______________ _’.‘4"_'“ -_-————_'
1
I
|
I
1 |
|
_—L SALES SLIP I
STOCK | QUANTITY |
NO. :
7] I
CLERK #2: @ e U/ le€¥—.-. |
SUMMARIZE |
SORTED
SALES SLIPS

STOCK ITEMS SOLD
DATE /3
STOCK | NUMBER | BALANCE
NUMBER |OF ITEMS
T) ——
CLERK #4: |
RECORD SUMMARIZED 9 4 i CLERK #3:
SALES FORM ’4 3 1 SUBTRACT'
I
17 2 :
18 i
|
- — — ¥
—————————————— | N
v | |
STOCK ITEMS SOLD I
INVENTORY OF STOCK ITEMS &) |
- DATE /3 |
stock |[PAT # STOCK | NUMBER | BALANCE |
NUMBER (17 |1/ |, NUMBER |OF ITEMS I
%% 7 1 71 l
7 Wg2\ey L Tt __ I
9 4 4
g 7iun
9 11818 \ 14 3 21
J 17 2 EXTENDED
78 SALES FORM
) S S
[\-“;\J

Figure 2-5. Work Simplification

UP-3853

UNIVAC Il UTMOST 2-A

SECTION: PAGE:

3. Punched Card Machines

With the keyboard-operated typewriter or adding machine, the operator must act as an in-
terpreter, taking the results produced by one machine and transferring them, through the
keyboard, to the other. For example, in the simplified inventory application shown in Figure
2-5 clerk number four must take the results produced on the adding machine by clerk number
three and enter these figures on the keyboard of her typewriter to record them on the in-
ventory records. The adding machine produces typed numbers on a paper tape but the type-
writer only ‘“understands’’ pressure on its keys. Hence, the clerk not only carries the
messages from the adding machine to the typewriter, he also translates from one language
to another.

It is uneconomical for a person to do a substantial amount of this transferring, translating
and copying when it can be done mechanically with more speed and accuracy. One solution
to this problem is the punched-card machine, which approaches this problem of communica-
tions in the following way. The medium of communication in this type of system is a card
on which one column is equivalent to one character of information. Holes punched in
combinations of rows in a column represent these characters in coded form in the same way
as the dots and dashes in Morse code represent characters. Figure 2-6 shows a card with

0123456789 ABCDEFGHIJKLMNO

POV 213 T4 15 16 Y7 18 1920 21 22 23 24 05 76 27 28 29 i E O R R)

lllllllllllIIIIIlllllllllflllllllllll

i S254 5455 %6 5 %8 59 6O 61 62 6 64 65 66 67 B B G T 1T ') 4 5 %6 T 18 19 80

1lll|l1llllllllll I} IRERERERERERE

some codes punched in it.
i T
000000000 ! \ ooooo0o0o00

]
T“ l,ou|
go0o0o00000 ooooooo0o0
123456708
trrrinnt

2222222222l2222222222222222]22222zzzlzz22z72|22222222222222222222222222222222222
33333333333093333333333333333033333333\93333333033333333333333330 303303 0333333333
'EEEERERTERYY INRY YRR YRRV YYY FENRYREY] FYVENRY) IRYRRRYYYORRYRRRY FuY IYY FY IRRRRRRY)
555655555555550555555555555555505555555505555555055555555555555555555555555555555
66666666666666B566666666665666GM6666666606666666W5666G666665666566666666666665560
ISRRRRERREREREE] PRRRRRRRRRERRRER] RRRRRRRR] RRRRRRE] RRRRRRERERRRRRERRERRRRRRRRRERE]
sssassasssnassaselecssssssansaacechosssosoolescecassMencasscssccBRasNBclBBNsscsssss

9999999999999999909999999999999999H9999999909999999099999999993999999953 9 9 9 93
1234567059 2 ey

10011213 | lSIll Ill’nl‘uﬂl‘ﬁﬂﬂnﬂm]l121]3415!113‘]9“!"lZlJ“lS“ﬂ“"ﬂlSl51535455!57“”"‘151‘)““&57“l! ol 13I8 8T

Figure 2-6. A Punched Card

By means of pins which make mechanical contact, a beam of light which activates a photo-
electric cell, or brushes that make electrical contact through the holes punched in the card,
punched-card machines can sense and ‘‘understand’’ the information punched in the card.

2-A 8 UNIVAC IIl UTMOST UP-3853

SECTION: PAGE:

Thus, the machines ¢

‘communicate’’ with each other through the medium of the holes in the
punched card. All that is necessary is that, initially, all data to be processed be punched
into cards in the common or ““machine language’’ code. These cards are then used by an
array of specialized punched-card machines: sorters, collators, card reproducers, calcu-
lators, punches, and tabulators. Each of these machines performs one of the data-processing
functions. As a consequence, punched-card machines are also ‘‘building block’’ machines,
able to incorporate a complex of operations formerly dealt with by manual means, and can be
arranged in many ways to perform data-processing operations,

For example, the simplified inventory application might be done on punched-card equipment
in the following way. Initially, the information in the inventory ledger has to be converted to
punched-card form. This operation is executed on a key punch. One card is produced for each
commodity in the inventory. Each such card contains, in coded form, the stock number of the
commodity that this card represents and the current inventory balance for this commodity.
The cards in this deck are kept in stock number order, the same way the stock numbers were
listed in the ledger.

INVENTORY CARD DECK

INVENTORY LEDGER

KEY PUNCH

Figure 2-7. Punching the Inventory File into Cards

Once prepared, this inventory card deck never has to be prepared again, because the punched-
card system maintains the deck in much the same way as the clerk maintained the ledger.

When the sales slips are received from the sales organization, they are punched into cards, one
card for each sales slip, on the key punch. Each card in the sales deck now contains a stock
number and a sales quantity. Another piece of card equipment called a sorter is then used to
sort the cards into stock number order.

Now a piece of equipment called a collator is used. The collator capable of sensing or ‘‘read-
ing’’ punched-cards has two input magazines. The inventory card deck is placed in one of
these magazines. The sales deck is placed in the other. The collator also has a number of
output stackers in which it stores cards which it has read. For the operation at hand, the
collator is used to match the stock number of the inventory card in the bottom of the inventory
deck magazine with the stock number of the sales card in the bottom of the sales magazine.

If the stock numbers do not match, the inventory card is ‘“not active’’ and is placed in one
stacker. If the numbers match, the inventory card is active and it, together with the sales card
and all sales cards following having the same stock number, are placed in another (‘‘active’’)
stacker. This operation of the collator is shown schematically in Figure 2-8.

UP-3853 UNIVAC 11l UTMOST 2-A
SECTION: PAGE:
INVENTORY SALES
FILE FILE
- 17 - 17
- 16 - 15
- 15 - 15
——o——— 13 - 12
- 12 - 11
INPUT ¢ 11 f——————— 11
MAGAZINES -« 10 - 10
- 08 - 10
< 07 - 07
- 06 - 06
fe— 05 — 04
- 04 -t 04
COLLATOR
Y \
17 (SALES)
17 (INVENTQORY)
15 (SALES)
15 (SALES)
15 (INVENTORY)
12 (SALES)
12 (INVENTORY)
11 (SALES)
11 (SALES)
OUTPUT 11 (INVENTORY)
STACKERS 10 (SALES)
10 (SALES)
10 (INVENTORY)
07 (SALES)
07 (INVENTORY)
06 (SALES)
06 (INVENTORY) 16
04 (SALES) 13
04 (SALES) 08
04 (INVENTORY) 05
COLLATED INACTIVE
ACTIVE INVENTORY INVENTORY
AND SALES ITEMS ITEMS

Figure

2-8. Collation of Inventory and Sales [tems

2-A

SECTION: PAGE:

10 l | UNIVAC 11l UTMOST 03853

At the completion of the collation operation, the collated active inventory and sales cards are
run through a tabulator, which subtracts the sales quantities in the sales cards from the on-hand
quantities of the associated inventory cards.

Attached to the tabulator is an automatic card punch. For every active inventory card read into
the tabulator, the punch produces from a blank card a new inventory card with the same stock
number and the new on-hand amount as supplied by the tabulator.

Finally, the collator is used once more. This time the updated inventory cards are placed in one
input magazine and the previously inactive inventory cards are placed in the other. For this
operation, the collator compares the stock numbers of the two cards in the bottom of the two
magazines and places the one with the lower stock number in an output stacker. The collator
then repeats this process over and over until all the cards are in stock number sequence in the
stacker. This operation creates the updated inventory deck, which can be used as the inventory
deck for the next day’s operation.

Holes punched in cards are not conveniently interpreted by persons using them. A machine
called an interpreter performs this function for the convenience of operating personnel. In
addition, it is necessary in a punched-card installation to have some printing facility for
preparing reports for management, This printing facility is located in the tabulator. In the
case of the simplified inventory application, any necessary reports can be printed by the
tabulator at the same time that it is updating the inventory balances.

A schematic of this system is shown in Figure 2-9.

The punched-card also serves as a storage medium for information. In terms of the simplified
inventory, this fact means that the inventory ledger has been replaced by the inventory card
deck. The result of the communications and storage aspects of the punched-card is that data-
processing becomes a materials handling job. The punched-cards are transferred from machine
to machine and can be stored indefinitely for future use.

4. Punched Paper Tape

Punched paper tape is another form of ‘““machine language’” medium. The approach here is the
same as in punched-cards: characters are represented in coded form, the code consisting of
various combinations of punched holes. There are three basic differences between punched-
cards and paper tape. First, the medium in which the punching is done is a paper tape of
variable length rather then a fixed sized catd. Second, card equipment handles information on
cards a card at a time; paper tape equipment handles information a character at a time. Third,
punched-card code is different from paper tape code.

Paper tape is used to a great extent in communications, the message being sent over wire
and arriving in the form of a punched paper tape. However, the use of paper tape is not re-
stricted to the field of communications. Paper tape punches and readers can be attached to
conventional office equipment such as typewriters or accounting machines with the result
that information entered on the keyboard of these machines can be taken off in the form of
punched paper tape. This resulting tape can be read by the same or other equipment, This
reading operation of an already prepared tape allows the processing of the information by the
equipment without the necessity for re-entering the information on the equipment keyboard.

UP-3853

UNIVAC Il UTMOST

2—-A

SECTION:

PAGE:

11

KEY PUNCH

L~
SALES SLIPS

SORTED
SALES DECK

ACTIVE INVENTORY
AND SALES DECK

INVENTORY DECK

|

COLLATOR

INACTIVE
INVENTORY DECK

TABULATOR

REPORTS

UPDATED ACTIVE
INVENTORY DECK

Figure 2-9.

COLLATOR

Punched Card Equipment

UPDATED
INVENTORY DECK

2-A 12 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

There are various types of equipment that read paper tape and produce punched cards and vice
versa. Therefore, paper tape and punched-card equipment can be used cooperatively on the same
batch of information without manually recording it in both paper tape and punched-card form. One
recording in either form is sufficient. For example, in the simplified inventory application, if
the sales organization were geographically widespread, the sales slip information might be
sent over wire and arrive in the accounting office in the form of paper tape. This paper tape
information can then be converted to punched-cards in which form it can enter the card system
shown in Figure 2-9 at the point where the sales deck is sorted.

5. Magnetic Tape

Besides punched-cards and punched paper tape, a third type of bulk storage and communication
medium is magnetic tape. Magnetic tape consists of a long strip of plastic material on which
information is recorded in coded form. In this case, the code is a combination of magnetized
spots rather than punchedholes. The data-processing equipment reads and writes the recorded
information by means of tape handlers, each of which is similar to a household tape recorder.
Equipment exists to convert information in magnetic tape form to or from either paper tape or
punched card form.

The advantages of magnetic tape are that it allows (1) a denser packing of information than
does either paper tape or punched-cards; (2) a higher rate of reading and recording. Conse-
quently, more information can be stored in less space, and higher speed data-processing devices
can be utilized.

6. Computers

A common language medium in the form of punched-cards and paper and magnetic tape is the
third step in the development of data-processing systems. Except for data origination and the
handling of bulk data (decks of cards and reels of tape), the human function in a common
language data-processing system is reduced to following the right procedure. The following of
such procedures is handled automatically by the computer, the latest step in the development
of data-processing systems.

a. Real Time Computers

In general, computers are divided into two broad categories. The first is used to apply
transaction data to the master file as the transaction data occurs. In the other type, the
transaction data is batched over a period of time and is applied by the computer to the
master file data in the resulting batches. The fitst type is known as a real-time computer;
the second, as an offline computer.

To get some idea of the operation of a real time computer, consider the simplified in-
ventory application. If the computer is to reduce the on hand quantity for any commodity
at the time that the commodity is being sold and if any commodity in the line can be
sold at any time, then the computer must have immediate access to the whole inventory
record at all times. This need can be met by recording the inventory information on
some type of ‘‘storage’’ device. One such device resembles a juke box, in which the
information is recorded on the records and the computerhas the power to place a record
arm on any part of any record that it desires. Another consists of a drum and has the
information recorded in tracks around the surface of the drum. The computer has the
ability to read information from or record information on any part of any track that it
desires. Such devices are referred to as mass storage devices.

UP-3853

UNIVAC Il UTMOST 2-A 13

SECTION: PAGE:

Secondly, to perform the operations required, there must be some mechanism to allow
each transaction to be entered into the computer for processing as it occurs. This re-
quirement can be met by some type of keyboard device that allows the salesman to send
the necessary information to the computer at the same time as he is recording the sale
for the customer.

Finally, since all inventory information is stored on the mass storage device and is not
accessible to management, a printer must be available to the computer so that all
required reports can be printed. The computer has the ability to post a transaction to the
proper inventory record when it occurs and to select the proper information for reports. A
schematic of the real-time computer system described above is shown in Figure 2-10.

ENTRY KEYBOARD
FOR
SALESMAN A

ENTRY KEYBOARD
FOR
SALESMAN B

INVENTORY
FILE

COMPUTER MASS STORAGE

DEVICE

PRINTER
Y
ENTRY KEYBOARD
FOR
SALESMAN N
REPORTS

Figure 2-10. Realtime Computer

SECTION:

2—-A

14 UNIVAC 11l UTMOST

PAGE:

UP-3853

The advantage of the real-time .computer is that the application in which it is used in-
volves master data that is up to date. For example, in the simplified inventory application,
the inventory data reflects the current actual inventory situation. However, if the computer
is to apply transaction data to the master data randomly as the transaction data occurs,

all of the master data must always be stored on the mass storage device, and the computer
must constantly be available for the updating calculations without interference from other
uses of the computer. For example, in the inventory application, the inventory data must
always be stored on the mass storage device. This fact means that the mass storage device
can be used only for those data-processing applications for which the master data per-
manently stored on it is applicable. Mass storage devices are currently not inexpensive
and, as of now, the applications that can justify such a device on the merits of one
application are relatively few.

Off-Line Computers

In the off-line computer, the master data is stored not on a mass storage device, but on
magnetic tape. Consequently, addition of more applications with various master files to
the computer data-processing system is a matter of recording the master files involved. A
consequence of this approach is that no master file is available to the computer in its
entirety. Therefore, transaction data cannot be applied as it occurs. Instead, transaction
data is batchedover a period of time and is applied by the computer to the master data

in the resulting batches on a cyclical basis. This approach results in the fact that no
master file is ever completely up to date. However, the speed and accuracy with which the
computer operates allows acyclical updating period of short duration. This short cycle
results in master files, the timeliness and accuracy of which cannot be approached by any
other kind of equipment. The off-line computer is the standard computer used in data-
processing today.

As an example of an off-line computer operation, consider the simplified inventory appli-
cation as it might be applied to an off-line computer.

When the computer is first introduced as the data processor, the inventory tape would have
to be prepared in some way. For example, it might be punched into cards, the punched-card
deck then being converted to tape as shown in Figure 2-11.

Once prepared, this inventory tape would never have to be prepared again, because the
computer would maintain it in much the same way as the punched-card system maintained
the information in punched-card form.

The company operation-generates the sales form for the computer system the same way as
before. However, before the computer system can use the information on the sales form, it
must first be converted to tape in a manner similar to the way in which the inventory tape
is initially prepared.

i / \
A

INVENTORY INVENTORY CARD TO TAPE
LEDGER KEY PUNCH CARD DECK CONVERSION INVENTORY TAPE
Figure 2-11. Converting the Inventory File to Magnetic Tape

UP-3853

2-A 15

SECTION: PAGE:

UNIVAC Il UTMOST |

The computer then reads this sales data from this sales tape by means of a tape handler
(Figure 2-12). The computer sorts the sales data into stock number order and summarizes
it. This sorted and summarized sales data is then written by the computer on a blank
tape mounted on another tape handler.

/\

TAPE TAPE HANDLER

COMPUTER

Figure 2-12. Reading the Information from a Tape into the Computer via a Tape Handler

The processing operations of arithmetic, logical decision, storage, and control, which
are necessary to produce the updated inventory from the information given on the current
inventory tape and on the sorted sales tape, are done by the computer. The inventory tape
is read by means of a tape handler., The sales tape is read by means of a second tape
handler.

In the computer system, the computer brings the inventory up to date by producing an
updated inventory tape which is an exact reproduction of the current inventory tape,
except that those changes in stock level required by the information on the sales tape
have been made. The computer records the updated inventory information on a blank tape
already mounted on a third tape handler.

The updated inventory tape produced on one day becomes the inventory input tape on the
next day, while the sales tape continues to originate from without the system.

In any data-processing system, it becomes necessary from time to time to inspect the
results of the processing. Thus, for example, in the manual inventory system previously
described, management will want to see the stock levels for various stock items. Although
many of the purposes for which management would want to make this inspection will be
handled automatically by the computer, with the result that manual reference to files in a
computer system should be significantly less than such reference in any other kind of
system, there will still be occasions when it will be necessary for management to view
the records maintained by the computer. Since tape-recording is neither visible nor
legible, it isnecessary in a computer system to have some type of printing equipment to
produce the reports required by management. The computer records the information to
appear in the report on a blank tape mounted on a fourth tape handler. This report tape

is used as input the printer in the production of the report.

A schematic of this computer system is shown in Figure 2-13.

SECTION:

2-A

16

PAGE:

UNIVAC 11l UTMOST

UP-3853

CARD READER

7

SALES DECK

T T

SALES SLIPS

it —> e
COMPUTER TAPE HANDLER SALES TAPE TAPE HANDLER COMPUTER TAPE HANDLER
INVENTORY SORTED
TAPE TAPE HANDLER COMPUTER TAPE HANDLER SALES TAPE
[)
|

UPDATED
INVENTORY TAPE

TAPE HANDLER

~

REPORT TAPE

TAPE HANDLER

COMPUTER

TAPE HANDLER

REPORTS

Figure 2-13. Offline Computer

UP-3853

2—-A 17

SECTION: PAGE:

UNIVAC Il UTMOST '

C.

Concurrent Processing

The power of computers currently being marketed is such that it is possible for the computer
to do different operations at once. For example, the computer can be doing a processing
operation such as was described for updating the inventory tape on the basis of the in-
formation on the sales tape, convert information punched on cards to magnetic tape, and
print information read from a tape onto paper via the printer all at the same time. This
approach to computer data processing is known as concurrent processing and is shown
schematically in Figure 2-14.

)
)

CARD DECK TAPE

TAPE HANDLERS CARD READER TAPE HANDLER

| |

CARD TO TAPE

P
ROCESSING CONVERSION

PRINTING

R I N ——

I
|
|
|
|
COMPUTER JI

TAPE HANDLERS TAPE HANDLER PRINTER

N | |
NG

TAPE TAPE TAPE REPORTS

Figure 2-14. Concurrent Processing

SECTION:

2-A

PAGE:

18 l ‘ UNIVAC IIl UTMOST

UP-3853

BASIC OFF-LINE DATA-PROCESSING

The reading of input data from input tapes, the processing of that data to produce output data,
and the writing of the output data on output tapes is known as a computer run. A computer
data-processing system is always made up of one or more — generally more — computer runs.

The input and output of a computer run can always be classified into a number of files. For
example, in the simplified inventory run there are two input files, the inventory file and the
sales file; and one output file, the updated inventory file. (Actually, there are two output files,
since the report file must also be considered an output file, but for purposes of this discussion
this file will be ignored). The unit of information in a file is called an item, and character-
istically, a file is made up of a series of items. For example, in the simplified inventory run,
the inventory file would be made up of a series of inventory items, each inventory item referring
to one commodity in the company’s stock line, and one inventory item appearing on the inven-
tory file for each such commodity. Similarly, the sales file would be made up of a series of
sales items, each referring to a commodity on which there has been activity during the day for
which the sales file has been prepared.

Each item in a file is made up of a set of fields (Figure 2-15). A field is a subunit of information
which describes some aspect of whatever the item containing the field refers to. For example,
each inventory item contains a stock number field, which specifies the particular number by
which the commodity to which the item refers is known, and a quantity field, which specifies the
number of units of this commodity that the company has on hand. In reality, of course, an in-
ventory item in an actual data-processing application would contain many more fields than are
specified above, but for the simplified inventory run described here, these fields are adequate.

INVENTORY FILE
— ;
]
1 [
0] (e} o]
ST| o] [} o]

e
ST/

ST

STOCK NUMBER QUANTITY

o o o o
o}

AN

INVENTORY _/_\/_/\
STOCK INVENTORY
NUMBER INVENTORY ITEM QUANTITY
FIELD FIELD

Figure 2-15. Files, Items, and Fields

Now that the terms, run, file, item, and field have been introduced, the fundamental nature of the
way in which an off-line computer processes data can be described in more detail. This descrip-
tion is presented within the framework of the example of the simplified inventory updating run.
The inventory file is the master file of this run. The sorted sales file is the transaction file. The
items in the sorted sales file are items that have been batched over a period of time and are now
going to be applied to the inventory file to update it. The computer reads information from a tape
by means of the reading head of the tape handler on which the tape is mounted. This fact means
that the computer has access to only one item on the inventory file and one sales item at a time.

UP-3853

UNIVAC 11l UTMOST 2-A 19

SECTION: PAGE:

The computer reads the first sales item, and on the basis of the stock-number field which it
finds in the item, starts a search on the inventory file for the proper item to be updated. If the
items on the inventory and sales files are arranged in random order, the computer is going to
spend a good deal of time passing the inventory tape over the reading head to accomplish this
search. No processing is done during search time. However, if both the inventory and sales items
are arranged in the same order, say ascending order, by stock number, the time spent in search-
ing for the correct inventory item is minimized. The fitst sales item is read. Items are then read
from the inventory file until the item with the matching stock number is located, at which point
updating occurs. The next sales item is then read. Because of the way the files are ordered, the
inventory item to be updated by this sales item is either the one updated by the last sales item
or the next active inventory item to be found in moving down the inventory file. In this manner,
the next inventory item to be updated is always the one that is closest to the reading head
(Figure 2-16).

A general characteristic of off-line data processing is that the items in the files involved are
ordered by the field on which searching for updating is to be done. This field is known as the
key of the item. It is not necessary to reorder the master file each time, since the updated
master file from the last cycle becomes the master file for the current cycle. Once the master
file is put in order, the updating process produces the updated master file in the same order

in which the current master file is read. However, the transaction files, such as the sales file,
are generated in random order and must be ordered before being used in a run.

INVENTORY FILE SALES FILE
ITEM ITEM
STOCK NUMBERS STOCK NUMBERS

A

2 /3
3 - 3
4 - 4
5 - 5
6 -- 6
7 --— 7
8

Figure 2-16. Minimizing Search Time by Ordering Files

SECTION:

2—-A

20 UNIVAC Il UTMOST

PAGE:

UP-3853

PROGRAMMING THE COMPUTER

The computer, as a data processor, has the ability to read, remember, and write information;
do arithmetic; and make logical decisions. It also has the ability to follow a series of in-
structions that tell it to perform these operations in a particular sequence. However, it is
incapable of preparing this series of instructions for itself; this job must be done by a man
who both understands what output is to be prepared from what input and what sequence of
processing operations isrequired to form the output from the input. This series of instructions
that a computer follows in processing data is known as a program, and the man who prepares
programs for the computer is known as a programmer,

When a programmer is assigned to a computer run, he is generally told by the designer of the
data-processing system into which this run fits what input files will be fed into the run and
what output files are expected from it. This information is usually described in terms of a
process chart. A process chart is the laying out of a data-processing system in terms of input,
processing and output. For example, Figure 2-17 is a process chart of the computer inventory
system shown in Figure 2-13. (Production of the report is eliminated in Figure 2-17.) In this
manual, programming exercises will be given in problem — statement form. However, each
problem will specify the same three things as a process chart: input, processing and output.

SALES
CARD DECK

RUN 1
CONVERT CARDS
TO TAPE

RUN 2

INVENTORY

SORT AND SUMMARIZE FILE
SALES ITEMS
RUN 3
UPDATE THE

INVENTORY FILE

UPDATED

INVENTORY
FILE

Figure 2-17. Example of a Process Chart

UP-3853

UNIVAC 11l UTMOST 2-A

SECTION: PAGE:

21

To a greater or lesser extent the programmer will also be given information about the items and
fields in the input and output files he is to process in his run. It is the programmer’s responsi-
bility to complete this job of item design. For each item in each file, the programmer must
specify in complete detail what fields make up the item. He must specify the order in which the
fields are to be recorded and how many characters are to be allocated to each field. For example,
for the simplified inventory run (run 3 in Figure 2-17), the programmer must specify the following
file, item and field information.

The simplified inventory run involves three files:
1. The inventory file.
2. The (sorted) sales file.

3. The updated inventory file.

Each inventory-file item consists of two fields:
1. The stock-number field.

2. The quantity-on-hand field.

Each sales-file item consists of two fields:
1. The stock-number field.

2. The quantity-sold field.

Finally, each updated inventory file item consists of two fields:
1. The stock-number field.

2. The quantity-on-hand field.

Notice that the fields for the updated inventory item are identical to the fields of the inventory
item; this situation is as it should be, since the updated inventory file is basically a copy of
the inventory file, the only changes made being those specified by the sales file.

In this manual, item design will be one of the givens in the programming exercises.

Besides completing the item design forthe run he has been assigned to, the programmer must
also figure out the sequence of logical steps that must be gone through to produce output files
from the input files. This job is called the logical analysis of the run. For example, for the
simplified inventory updating run, the logical analysis might be as follows.

The first inventory item and the first sales item are read from their respective files into the
computer’s store. The stock number field of the inventory item currently in the store is
then compared with the stock number field of the current sales item. If the two stock numbers
are not equal, the current inventory item is not altered, but instead becomes the current up-
dated inventory item, which is written on theupdated inventory file; the next inventory item is
read from the inventory file into the store; and the comparison of stock numbers is once

more made. As long as this comparison does not check out for equality, this process continues,
since the arrangement of the items in the files determines that the current sales item refers to
an inventory item which is further down the inventory file and that all items preceding this

SECTION:

2—-A

PAGE:

22 l Rev. 1 | UNIVAC I UTMOST UP-3853

inventory item on the inventory file were not active during the period the current sales file was
being compiled. When the stock numbers of the current inventory and sales items prove to be
equal, the quantity-on-hand field of the current inventory item is reduced by the quantity-sold
field of the current sales item, the next sales item from the sales tape is read, and the compar-
ison of stock numbers is resumed. Notice thatthe inventory item just updated does not immedi-
ately become the updated inventory item, since more than one sales item may refer to it. This
process is continued until there are no more sales items, at which point there are no more
inventory items to be updated, and the inventory items remaining in the inventory file are moved
to the updated inventory file., When there are no more inventory items, the run is complete.

A more formal statement of this logical analysis is shown below.

1. Read The First Inventory ltem.
Read The First Sales |tem.

Compare The Stock-Number Field Of The
Current Inventory Item With The Stock-
Number Field Of The Current Sales |tem;
[f They Are Equal, Go To Step 8.

4. Make The Current Inventory [tem The
Current Updated Inventory ltem.

Write The Current Updated Inventory ltem.

Read The Next Inventory ltem; |f There
Are No More, Go To Step 13.

Go To Step 3.

8. Subtract The Quantity-Sold Field Of The
Current Sales Item From The Quantity-
On-Hand Field Of The Current Inventory

[tem.

9. Read The Next Sales Item; |f There Are
No More, Go To Step 11.

10. Go To Siep 3.

11. Change Step 7 To Go To Step 4.
12, Go To Step 4.

13. Stop.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST I

2B.INTRODUCTION TO PROGRAMMING

A. REPRESENTATION OF INFORMATION

Any positive number can be repesented by a row of marks such as 111111111 (or 9), although
all but the smallest numbers become unwieldy in such notation. For ease of manipulation a
positional notation using symbols to represent different rows of marks is more convenient. One
such notation is the Arabic, which uses ten different symbols or digits, 0, 1, 2, 3, 4,5,6, 7, 8
and 9.

The number of different digits used in a positional notation or system is known as the base of
the system. Using one digit position, quantities as large as nine can be represented in the
decimal system. To represent a quantity larger than nine another digit position must be used.
Thus, to represent the quantity ten a carry is made into the digit position to the left and the
original digit position reverts to zero. The expansion of this system is exemplified by the
odometer of a car. In positional notation each digit position, or column, implies a power of the
base as a multiplier of the digit in the column. The decimal number 1076 is positional notation
for the expression,

(1 x 1000) + (0 x 100) + (7 x 10) + (6 x 1)

The columns imply powers of ten,

1=1 = 10°
10 = 10 = 10!
100 = 10 x 10 = 102

1000 = 10 x 10 x 10 = 10°

and, appropriately enough, are named the units column, the tens column, the hundreds column,
and so omn.

SECTION:

UP-3853

l UNIVAC IIl UTMOST

A computer that represents numbers in decimal notation must have storage elements capable of
assuming ten easily distinguishable stable states, one for each possible digit. While such ele-
ments exist, their cost prohibits the construction of a computer that represents numbers in
decimal notation. Electronic elements lend themselves most naturally to two-stable-state devices.
Thus, computers usually represent numbers in the base two or binary system. The binary system
can be built up in a way dnalogous to the decimal. There are two possible digits, 0 and 1, used
in conjunction with successive powers of two.

20

21= 2
2°= 4
2°= 8

Thus, the binary equivalent of a decimal nine is 1001, which is binary notation for the expression—
1x8)+(0x4)+O0x2)+(1x1)

1. Student Exercises

Write the binary equivalents of the decimal numbers 6, 13, 15, 27 and 43,

2. Binary Addition

The addition table for the binary system is

0+0=0

0+1=1

1+1=10
1+1+1=11

The sum of two binary ones is the binary number 10, the binary equivalent of a decimal two. The
binary number 10 is not what is called ten, which is a decimal, not a binary number. Similar
remarks hold for the sum of three binary ones, which is the binary number 11, not the decimal

number eleven.

a. Example:

DECIMAL BINARY
13 1101
14 1110
27 11011
b. Student Exercises
Add the following:
1011 1010 11001
1111 10111 10111

UP-3853

UNIVAC 11l UTMOST '

2-B

SECTION: PAGE:

Addition of Two Numbers with Opposite Signs

While addition of two numbers with opposite sign could be done by use of a subtraction table,
computers use the method of complementation. For any given number there exists a second
number which when added to the first will produce a sum consisting of a one followed by as
many zeros as there are digits in the first number. The second number is the complement of

the first.
m To get the complement of a binary number
1. Replace the ones with zeros and the zeros with one and,
2. Add a binary one to the result.
For example, given 1101 replace ones with zeros and zeros with ones, and add a
binary one
0010
1
Complement 0011
Proof: 1101 + 0011 = 10000
m To add two numbers with opposite signs:
1. Equalize the number of digit positions by inserting non significant zeros in the
number with the smaller absolute value.
2. Take the complement of the absolute value of the smaller in absolute value.
3. Add the absolute value of the other number to the result.
4. Drop the most significant carry and,
5. Prefix the sign of the number with the larger absolute value to the sum.
a. Example:
Add -101101
+ 1011
Step 1. -101101
+001011

Step 2. The smaller in absolute value is
001011

110100
+ 1

110101

Step 3. 101101
+ 110101

1100010
Step 4. 100010
Step 5. —100010

2-B

4
PAGE:

SECTION:

| UNIVAC IIl UTMOST

UP-3853

b. Student Exercises

Add the following:

-1011

+1111

4. Subtraction

+ 1010 -11001

-10111 -10111

Subtraction can be accomplished through the use of addition by changing the sign of the
subtrahend and adding the subtrahend to the minuend.

5. Multiplication

Binary multiplication, like decimal multiplication, can be done by a series of additions.

6. Division

Binary division, like decimal division, can be done by a series of additions and subtractions.

123

1
11

12)1476
12 -
27
12—
15
12 -
36 <+—— Subtraction
12 —
24
12
12
12 ~-~—
0

Thus, division can be done by addition.

7. Coded Binary

Binaty representation is used in computers in one of two forms, The first is the binary
notation just described called pure binary representation. The other is called coded
binary representation. In this representation, only the pure binary equivalents of the

ten decimal digits are used.

UP-3853 UNIVVAC Il UTMOST 2-B

SECTION: PAGE:

DECIMAL PURE BINARY

8421
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 IO N b Wi O

Any decimal number greater than nine is represented by a combination of the above codes.
For example, the decimal number 147 would be represented as

0001 0100 0111

One modification of coded binary representation is called the excess-three representation.
The excess-three expression of a decimal number is equal to the pure binary representation
of a decimal that is three greater than the number being represented. For example, the

excess-three representation of decimal 5 is 1000, which in pure binary represents decimal
8 —— or 3 greater than 5.

DECIMAL EXCESS-THREE (XS$-3)

8421
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

O 03O0 N1 »Hh W KN = O

Excess-three representation has two advantages over straight coded binary.

1. The addition of two excess-three numbers produces a carry if the addition of
their decimal equivalents produces a carry.

2. An excess-three number can be complemented in the same way as a pure binary
number.

2-B 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

8. Excess-Three Arithmetic

If two like signed excess-three digits are added, the decimal equivalent of their sum is not
equal to the sum of the decimal equivalents of the digits.

DECIMAL EXCESS-THREE
5 1000
1 0100
6 1100

The decimal equivalent of the excess-three digit 1100 is not six, but nine. The reason for
this fact is that if the addition does not produce a carry the sum is not in excess-three
representation, but in excess-six notation. To convert the sum to excess-three representa-
tion it is necessary to subtract the pure binary equivalent of a decimal three, 0011. The
complement of the pure binary number 0011 is 1101. Thus, to correct the sum of two excess-
three digits that do not produce a carry, add the pure binary number 1101 to the sum.

1100
1101
1001

The excess-three digit 1001 is the equivalent of a decimal six. However, if the addition of
two excess-three digits produces a carry, the sum is not represented in excess-six.

5 1000
6 1001

The reason for the above fact is that the carry in the excess-three addition carries the equiva-
lent of a decimal 16 out of the sum. Ten of this 16 is the decimal carry to the next column,
which is desired; three of the 16 is what previously produced an excess-six sum, and its carry
is of no concern; but the last threeis what was necessary to produce an excess-three sum. Thus,
the sum comes out in pure binary representation. To convert the sum to excess-three representa-
tion it is necessary to add the pure binary equivalent of a decimal three, 0011, to the sum,

0001
0011
0100

The excess-three digit 0100 is the equivalent of a decimal one. In summary, to add two like
signed excess-three numbers:

I. Add the numbers according to the rules of pure binary addition and

2. Apply ‘‘correction factors’’ to each digit in the sum.

The correction factors are as follows:

2-B

SECTION:

UP-3853 UNIVAC 11l UTMOST I

PAGE:

m If the column in which the digit appears did not produce a carry, add the correction
factor 1101.

m If the column produced a carry, add 0011.

a. Example.

0100 0111 1010
1001 0110 1000

Intermedjate sum 1101 1110 ,— 0010
Correction factors 1101 1101 0011
Excess-three sum 1010 1011 0101

Since the correction factors apply only to individual digits and not the entire sum, any
carry produced is ignored.
b. Student Exercises

Add 0110 1010 0011
0111 1000 1010

1000 0101 1100
1010 0111 0101

c. Addition of Two Excess-Three Numbers with Opposite Signs
Two excess-three numbers with opposite sign are added in the same way as two pure
binary numbers with opposite signs.
1) Example:

Add -1010 0111 1001 0100
+ 0100 0110 1100

Step 1. —1010 0111 1001 0100
+0011 0100 0110 1100

Step 2. 1100 1011 1001 0011

1100 1011 1001 0100

Step 3. 1010 0111 1001 0100
1100 1011 1001 0100

0111 ,~0011 ,~0010 1000

00i1 0011 0011 1101

,-1010 0110 0101 0101

Step 4. 1010 0110 0101 0101

Step 5. —1010 0110 0101 0101

UNIVAC Il UTMOST

2-B 8 UP-3853
SECTION: PAGE:
2) Student Exercises
Add +1010 0011 0111
PROBLEM 1
-0101 0011 1010
-0111 1011 1100
PROBLEM 2
+1000 0110 0101
9. Decimal Representation
The four-bit binary coded excess-three notation is referred to as decimal representation.
This allows for sixteen characters whose values range from 0000 to 1111. In this group are
included all the numerics and some special characters, but no alphabetics.
10. Alphanumeric Representation
To represent the twenty-six alphabetic characters the sixteen possibilities of decimal re-
presentation are not sufficient. Therefore, in this representation, a two-bit zone is added
and precedes each binary coded excess-three notation. The other four bits are called the
numeric portion.
Each representation in the numeric portion may be preceded by one of four possible zones:
00, 01, 10 or 11. A total of sixty-four different characters may be designated in this format,
Alphanumeric information may be distinguished from decimal information by the zone. It
is possible to present numeric characters in both decimal format and alphanumeric format.
A complete table of character representation can be found in the Character Code Chart,
Figure 2-18.
11. Octal Representation

Consider the following pure binary number.

001101000101011001111100

The length of this binary number written in this notation makes it difficult to both read the
number and transcribe it correctly. Reading and transcription is eased by breaking the number

into groups, as follows:

001 101 000 101 011 001 111 000

Nevertheless, the number is still difficult to handle. To ease binary number manipulation, a
convention of writing binary numbers in a code is generally adopted. The code used is octal.
Octal notation is a number system with a base of eight. Thus, the coefficients in the octal
number system are 0, 1, 2, 3, 4, 5, 6 and 7. The binary equivalents of these octal numbers are

as follows:

OCTAL

0

N OO AW N

BINARY

000
001
010
011
100
101
110
111

UP-3853 UNIVAC Il UTMOST l

SECTION:

COBOL - FORTRAN SET

00 01 10 n
0000 A blank .

0001 ;) * (
0010 - $.
0011 0 (Apos.)
0100 ! A J Y
0101 2 B K s
0110 3 C L T
0 4 D M U
1000 5 E N v
1001 6 F 0 w
1010 7 G P X
1011 8 H Q v
1100 9 | R z
1101 ~

110

1 >

Figure 2-18.

6-Bit Printable Character Codes

2-B 10 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

Thus, the octal numbers have as théir binary equivalents all binary numbers that can be
represented in three bit positions. As a result, octal notation is a natural as a code for

binary notation, each octal digit standing for a three bit group of binary numbers. For example,
in octal code, the above binary number would be written as follows:

153053170

B. THE CENTRAL PROCESSOR

The focus of the UNIVAC III computer is the Central Processor. The Processor accepts informa-
tion from input units, stores that information, does arithmetic operations, makes logical decisions,
and produces new — or updated — information for output. The information handled in this way

is called data. Stock numbers, inventory quantities, and sales quantities are examples of data.
The arithmetic operations and logical decisions done on the data is called processing.

1. The Storage Unit

To process data, the Processor must have stored in an accessible place three types of informa-
tion:

1. the data itself,
2. Instructions, and

3. constants.

Instructions are coded units of information which are used to direct the Processor in the process-
ing of data. A program must include an instruction for each operation that the Processor is to do,
such as the subtraction of one quantity from another. Constants are units of information which the
Processor must have to perform certain operations. For example, if a salesman’s commission on a
sale is ten percent of the sales price, the processor must multiply the sales price by ten percent to
develop this commission amount. To do this the Processor must have available to it a constant of
ten percent,

Data, instructions and constants are made immediately available to the Processor by storing them in

the Processor’s store. The store is made up of storage locations. The amount of store available
on the UNIVAC III is variable at the user’s option. Store is obtainable in the following amounts:

m 8192 storage locations,

16,384 storage locations,

24,576 storage locations, and

m 32,768 storage locations.

UP-3853

2-B

SECTION:

11

UNIVAC IIl UTMOST ‘

PAGE:

For ease in reference, these store sizes are spoken of as 8K, 16K, 24K and 32K, respectively. Any .
storage location may be used to store data, instructions or constants. The amount of information
that can be stored in one storage location is fixed. This fixed amount of information stored in any
one storage location is called a word. A word consists of 27 binary bits of information. The bit posi-
tions, for reference, are numbered 1 through 27, from right to left. The rightmost bit (bit 1) is the
Least Significant Bit (LSB) and the leftmost bit is the Most Significant Bit (MSB). This 27-bit word
is divided into three portions:

1. The Data Portion (bits 1 through 24).
2. The Sign (bit 25).
3. The Checking Portion (bits 26 and 27).

CHE CK
1ECK] 5 DATA
27]26 |25 |24]

The sign of the wordis used in arithmetic and comparison operations. In this position a binary
0 represents a positive value while a binary 1 indicates a negative value.

The checking bits are used by the checking circuitry of the system to assure that there is no
change in the information content of the words because of some malfunction or electronic
phenomenon as the words are transferred through the circuitry of the system. The type of check-
ing used is modulo 3, residue zero. Since there is no possible access to these bit positions
through programming and they have no value as data, no further reference will be made to them
and only bits 1 through 25 will be considered.

Addressing

Each storage location has a label or address by which its contents may be referenced so
that each may be distinguished from any other. The addresses used within the Central
Processor are in pure binary form. For ease of representation, only their decimal equiva-
lents will be used here. The numbering of these addresses is sequential and the first
storage address of any system is 00000. The highest storage address of a system having
the maximum size store is 32767. This allows for the addressing of a possible 32,768
words.

STORAGE ADDRESS CONTENTS

Word 1 00000 25 bit positions

Word 32768 32767 25 bit positions

2-B 12 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
A given word in a storage location may be referenced as often as desired, because when
it has been stored in that location it remains there until it is ‘‘erased’’ by the transfer
of another word into the same location.
b. Data Word Format

In the UNIVAC III there are three types of data words. All three types use bit position 25
to represent the sign of the word.
1) The Decimal Data Word

S| DIGIT 6 DIGIT 5 DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25 |24 21[20 17116 13[12 918 514 1
The data that is represented in bit positions 1-24 is arranged in six, fixed, 4-bit groups.
These groups are coded in binary excess-3 representation. Bit positions 1 through 4
represent the LSD and bit positions 21 through 24 the MSD.
Example:

0f1 100100 0|1 001(0 1 10/01 00|01 0 1] =+956312
2) The Alphanumeric Data Word

S DIGIT 4 DIGIT 3 DIGIT 2 DIGIT 1

25124 19118 13[12 716 1
The data is arranged in 4, fixed, 6-bit groups. These groups are coded in binary excess-3
representation with zone. Bit positions 1-6 represent the LSD and bit positions 19-24 the
MSD.
Example:

0|0 1010110 0110(110111/000 1 11} =+BLU4

3) The Binary Data Word

S 24-BIT BINARY VALUE

25|24 1

UP-3853 UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

The data is represented as one pure binary 24-bit value ranging from 0 through plus or
minus 16,777,215, (2%-1).

Example:

0|0 00010 00O0010O000O0O1O0O011 10 1| =+532637

2. The Arithmetic Unit

The Processor does arithmetic operations and makes logical decisions by means of its
internal arithmetic unit. This unit has characteristics in common with a desk calculator,
since it contains an adder to produce the sum or difference of two quantities, and circuitry
to use the adder in the development of a product of two quantities or the quotient of one
quantity divided by the other. Additional circuitry allows the Processor to use the adder to
make logical decisions concerning the equality or relative magnitude of two quantities.

To operate on a quantity, the Processor must transfer it from the store to the arithmetic unit.
Four arithmetic registers provide temporary storage for such quantities within the arithmetic
unit. These arithmetic registers are designated by a four bit positional representation. The
designations are 1000, 0100, 0010 and 0001. Since these designations are the pure binary
representations of the decimal numbers 8, 4, 2 and 1, these registers are referred to as ARS,
AR4, AR2 and AR1, where AR stands for arithmetic register. Each register is similar to a
storage location in that it has the capacity to store one word of information.

3. Control Unit

The function of the control unit is to select, in the proper sequence, each instruction from
storage, interpret, and execute it.

The selection of an instruction is performed in a sequential manner. If the instruction just
executed were located in storage address 00698, the next instruction would come from storage
address 00699, and so on sequentially through the store.

Each instruction is a UNIVAC III word and, as such, is 25 bits in length. Its structure as
shown in the diagram below, is different from any of the data word formats.

1A

Fs X OP CODE AR m

25)24 2120 1514 11]10 1

Of the sections shown only three will be considered for the present time.

m The contents of bit positions 1 through 10 represent the binary storage address
of the instruction operand. It is the contents of this storage location which will
be operated upon by the instruction. With binary 1’s in each of these bit posi-
tions the highest storage location that could be indicated in the m portion is
1023. The method of addressing storage locations greater than 1023 will be
discussed later. For the present, consider a store whose size is 1024 words with
an address range of 0000 - 1023.

o |
SECTION: PAGE:;

‘ ’ UNIVAC 11l UTMOST UP-3853

AR

OP CODE

C. CODING

The contents of bit positions 11 through 14 represent the address of an arithmetic
register in the arithmetic unit. Each arithmetic register is a temporary storage
location for one UNIVAC III word and therefore is 25 bits in length, Utilizing bit
positions 11-14, respectively, the addresses are:

AR DECIMAL
8421 EQUIVALENT
1000 8
0100 4
0010 2
0001 1

The contents of bit positions 15 through 20 represent the OPeration Code which
indicates the operation to be performed. Although the Central Processor only
recognizes a binary configuration as the OP Code, for ease of coding, a mnemonic
OP Code will be used to designate each instruction.

Coding is the translation of a logical analysis of a run into an organized series of instructions
that are intelligible to the Processor. An inStruction must be given to the Processor for each
operation it is to do. In the UNIVAC III, an instruction generally specifies three things:

1.

The operation to be done.

2. The address of the data to be operated on.

3. The arithmetic register with respect to which the operation is to be done,

These three elements of an instruction are specified, respectively, in the OP, m and AR portions

of the instruction.

To see how coding might appear, consider the function of adding two quantities together and
storing the resulting sum. The Processor would perform this function in three operations.

1,

Select one quantity.

2. Select the second quantity and add it to the first.

3. Store the sum.

For the Processor to do these three operations in the order indicated, it must have a program of
instructions. The program for this addition problem would consist of three instructions, one for
each of the operations. These particular instructions might have the following mnemonic codes.

m LA - Select the quantity from the storage location specified and transfer it to the AR

specified.

m DA — Select the quantity from the storage location specified and add it to the quantity
in the AR specified, the sum to be returned to that same AR.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST '

m SA — Store the quantity in the AR specified into the storage location specified.
A corresponding problem might be stated as follows:

1. Assume that the two quantities to be added are stored in storage locations 800 and
801.

2. Store the sum of these quantities in storage location 802.

The coding needed to execute the problem might look like the following.

LOCATION OF INSTRUCTION

INSTRUCTION oP AR m
0 LA 8 800
1 DA 8 801
2 SA 8 802

The first line of coding brings the quantity stored in location 800 into AR8. The second line
adds the quantity stored in location 801 to the quantity now in ARS8 and stores the resulting
sum in ARS8. The last instruction stores in storage location 802 the quantity now in ARS.

The storage location for storage of the first instruction (storage location Q) was chosen
arbitrarily. However, the second and third instructions were stored, respectively, in storage
locations 1 and 2 to assure that the control unit of the Processor would cause the instructions
to be executed in the order written. Only in this order of execution would the instructions effect
the desired result.

Of course, in the computer’s store, the op codes would appear as six bit codes (LA happens to
be 001010, DA 010000, and SA 001000), the AR designation would appear as a four bit posi-
tional representation (AR8 is 1000), and the m portions would appear as 10 bit binary addresses
(800 is 1100100000, 801 is 1100100001, and 802 1100100010). Therefore, to be effective in the
computer, the above instructions would have to be stored in storage locations (-2 in the follow-

ing form:
IA X oP AR m
0 0000 001010 1000 1100100000
0 0000 010000 1000 1100100001
0 0000 001000 1000 1100100010

Instructions would be hard to write in such form, and would be even harder to read after having
been written. As a consequence, instructions are not written in this object code form, but are
instead written in another source code form. This source code form is the UTMOST language.
A program written in UTMOST language is recorded on tape and fed into a computer program
called the UTMOST Assembler. The Assembler has the function of writing out on another tape
object code instructions corresponding to the source code instructions fed into the Assembler
as input. The coding on this object code tape can then be loaded into the computer to do the
operations described by the programmer in source code. All examples in this manual will be
coded in the UTMOST language.

SECTION:

2-B

PAGE:

6 | | UNIVAC Il UTMOST UP-3853

UTMOST Coding is written on UTMOST coding paper, an example of which is shown in figure
2-19. The coding paper is essentially nothing more than a series of lines each marked off into
80/90 character segments. Writing of UTMOST code is restricted to the first 72 of these posi-
tions. The coding paper is used in the following way.

In general, one instruction is written per line. The address of the storage location in which an
instruction is to be stored must be justified left in the line on which the instruction is written,
(In actuality, UTMOST uses ‘‘labels’’ rather than storage addresses for this purpose, but
introduction of the concept of labels is delayed until later in this manual.) The address must be
followed by one or more spaces. The number of spaces used is an option of the programmer. The
mnemonic op code for the instruction is then written, The op code must also be followed by one
or more spaces. The AR and m portions of the instruction are then written. They must be
separated by a comma. Following the m portion of an instruction, provided that at least one
space separates the m portion and the comment, the programmer may write any comments

about this instruction that he wishes. As indicated, op codes are written in mnemonic form,
AR’s are indicated by the decimal equivalent of their pure binary code (8, 4, 2, and 1), and

the addresses in the m portion are written in decimal.

LOAD AR - LA

Transfer the contents of the storage location specified to the arithmetic register specified.

Example:
LABEL A OPERATION A OPERAND A k
— —_—

(AR8) i = — 012345 (AR8) f = + 987654

il

(800) i

It

+ 987654 (800) f = + 987654

The notation used in this example is as follows. Parentheses stand for ‘‘the contents of’’.

1

Thus (800) means ‘‘the contents of storage location 800’’, Parentheses followed by an ‘i

stand for ‘‘the contents of before instruction execution’’. Thus, (800) i means ‘‘the

contents of storage location 800 before instruction execution’’. Parentheses followed by an
‘‘f? stand for ‘‘the contents of
contents of storage location 800 after instruction execution. Mnemonically, ‘‘i’’ stands for
““initial’’, ““f*’ for ‘“final’’.

after instruction execution’’. Thus, (800)f means ‘‘the

UNIVAC ASSEMBLY IN UTMOST UNIVAC Il

PROGRAMMING FORM

PROGRAM . PROGRAMMER DATE PAGE_____ OF___ _PAGES
LABEL A OPERATION A OPERAND \ COMMENTS
1 80 90|
PR N T T S 0 U U S S T S S G S ST S SR U SV S S W S S S K S S S U S T O VU (WA, SENr A S Y S0 S S S S VT S S A E S Y S S S S Y S V00 S S S BT W
P S N S S U S VS SO S S S S R S W S S S SO A U S S S S ST S N TS S S ST S S S S S S S S S I S S T U S S A S S

LLlJlllllllALklAJAAlllIlJlLl‘lleJJllLJllLJJl l||||lﬂ\ll||il|tlﬂlIlllllllllllleLLlllllll
N S S S i Loy N B S S SR S R)»“.‘|A‘|‘»‘x.‘|...A\‘I.ln‘k.‘nn‘xnnanlxxull
P S RS RS TS S U S S U ST S N N S S S S A S ST U (S ST S ST ST SO VU WA U0 N SN0 S S S SN SIS ST ST S ST S W U ST S S S S 0 S WA SO W U 100 100 W0 SO0 S N ST S ST S
I W N S} IAI‘IIAAIAIAl1AAJIAJIJA1LLJJJLJALIALJlLiLlll);lAlll|AIIIIAA1L1AA|1Alllllllllllﬁlllj
PR U S S S S S S S (VS S S S U S S S S N S S SV S G S S U W G W SV O U SO 0 U S U U S W S S A W W
P U U S S S A S S U (S S S (N S S S S G S G S S G N S S S S S S S ST USROS S VOO S T W SO SV S WU S S S G S S R

S A N S S E U S S N S S S T LSS S Y S U S U U S S S S S S A S S S U U WS SN (A S ST S N VA S0 S SO0 O S VU S SO S S
T S U SO S TS S SO YU SO U S S S S S T SO SO S SV S VA W S O S S S TS Y V0T GO YO0 S A 0TS WS S S G GO S 0 W U G TS U W S T NS S T S S Y U0 T U S VO S T
PSS SR G e [T " TS R S S S S S IS U S U I S i L JU SN TR W R S W W S SV ST S S S S S S0 WY S
PSS S S WU SN A ST S S S U SN NSNS U NN S G N S U SV N VA T S S ST Y SV U U S S S WP FU S S S U S W SO WO SN S SN S0 S SN ST SN0 SO0 VAN VAT A SN Y NN SN0 WO S0 ST WO S0 WS W G0 N W S0 N S |
A S U N N GO G S S S S W SO0 S S S G S US ST WO SO S S S WA WU SO S L O S U S T U S T S S G S S U W0 S S T S U WY S B O S S Wt
IO S N W T U S S I S R U S ST TR U S S U S S S S L PSS S S N U S SN HAT N UG S0 GO U Y S G D U U0 U Ut S U W0 U0 S0 U T B B W
PR GV SIS T NIV S S T I RS R S S | R A Y S S S S S U S G S S Y S ST N S S ST S Y OO0 U WA S U U WO U W S S0 A
U U U S VR U S S T S S S S S U S S S S SO0 W S S U T U G A S U GO S S S W S S GG U U VAU O S0 VAU SO WO T G WU W SO N O I 0 U T G B S S

UP.2507 REV.? {8690 COLUMN FORMI

Figure 2-19. Assembly in UTMOST Coding Form

‘ €S8e-dN

LSOINLNA 111 DYAINN

NOI1LD3s

‘a3ovd

L1

SECTION:

2-B

PAGE:

18 ’

l UNIVAC 11l UTMOST

UP-3853

LOAD AR NEGATIVE - LAN

Transfer the contents of the storage location specified to the arithmetic register specified

and change the sign.

Example:
. LABEL A OPERATION A OPERAND
_—

(AR8) i = - 012345

!

(800) i =+ 987654

STORE AR - SA

(ARS8) f = —987654
(800) f=+987654

Transfer the contents of the arithmetic register specified to the storage location specified.

Example:
' LABEL A OPERATION A OPERAND A >

(AR8) i = — 012345
(800) i =+ 987654

STORE A NEGATIVE - SAN

Transfer the contents of the arithmetic register specified to the storage location specified and

change the sign.

(ARS) f = 012345
(800) f = _ 012345

Example:
jv
LABEL A OPERATION A OPERAND (
lllSlAlNl_‘LE‘I'lslololllllIALgL#lllllllllllllll _J‘l
N\/\/____\/WW

(ARB) i - — 012345
(800) i - 4 987654

(AR8) f - — 012345
(800) f =+ 012345

2-B

SECTION:

19

PAGE:

Up-3853 UNIVAC 1l UTMOST '

DECIMAL ADD - DA

Add the contents of the storage location specified to the contents of the arithmetic register specificd

and store the sum in that arithmetic register. The Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 (decimal “‘digit’’ “‘space’’) will
be treated as a bit combination of 0011 (decimal digit ““zero’’)

Example:

LABEL A OPERATION A OPERAND \ Z

D A

11 1 1 | 18|’l

8010,

(AR8) i - —012345 (AR8) f 1 975309
(800) i -~ :987654 (800) f « 987654

DECIMAL SUBTRACT - DS

Subtract the contents of the storage location specified from the contents of the arithmetic register
specified and store the difference in that arithmetic register. The Processor assumes that the

operands are in decimal format. In the operands a decimal digit with a bit combination of 0000 will
be treated as a decimal zero.

Example:

LABEL A OPERATION A OPERAND \)
| =

DS 18_L.’_18 10[01

|
1 1 i 1 L 1 1 1 l 1 ' i L I A L 1 I 1 1 . 1 i i1 . 1l

(AR8) i~ — 012345 (AR8) f - + 999999
(800) i -+ 987654 (800) f -+ 987654

SECTION:

2-B

PAGE:

20 ‘) UNIVAC Il UTMOST UP-3853

BINARY ADD - BA

Add the contents of the storage location specified to the contents of the arithmetic register specified
and store the sum in that arithmetic register. The Processor assumes that the operands are in binary
format.

Example:
\b
i LABEL A OPERATION A OPERAND A
| o — —— —— —
(AR8) i = — 15053170, (AR8) f = + 45651417,

|

(800) i= + 62724607, (800) f = + 62724607,

Notice that the binary numbers in this example are expressed in octal notation.

BINARY SUBTRACT - BS

Subtract the contents of the storage location specified from the contents of the arithmetic register speci-
fied and store the difference in that arithmetic register. The Processor assumes that the operands are in
binary format.

Example:
LABEL A OPERATION A OPERAND

(AR8) i = - 15053170 (AR8) f= - 77777777,
(800) i =+ 62724607, (800) f=+ 62724607,

UP-3853

UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

21

Example using Preceding Instructions

The onhand quantity of a commodity is stored in location 800, the onorder quantity in location
801, and the expected requirements for the next 60 days in 802. All quantities are in decimal
format. Store the sum of the onhand and onorder quantities reduced by the expected requirements
in location 803.
a. Logical Analysis

1. Add the onorder quantity to the onhand quantity.

2. Reduce the sum by the expected requirements.

3. Store the difference.

b. Coding

LABEL A OPERATION A OPERAND A

0, ., 4L, A .8;,,800 , , ADD|, ONORDER, AND ONHAND {+ = = = |
L ., DA 8,801 .4,,141,.14.1.1..11..1,4_,..1“\
2] . LD|SJ l8 |’ ‘8J012. L LSIUJBIT.RIALC,TL lEIX‘PlEiCl Tl E.01 1R1E|01U1' anEanExN;Tlsj
3, , , ,S,A ,8/,,803, , , S TORE DI FFERENCE | . . | | | ., 1. 15

To produce this coding, the programmer might have approached the problem in the following
manner. As indicated in the logical analysis, the first data-processing step is to add the
onorder quantity to the onhand quantity. Since the quantities are in decimal format, to do an
addition the Processor must be given a DA instruction. This instruction requires that one of
the quantities to be added must be in an arithmetic register. The other quantity must be
selected from the storage location specified. Since both quantities are presently in storage
locations, one of them must be transferred to an arithmetic register before they can be added
together. The choice of the arithmetic register is arbitrary. Suppose ARS8 is chosen. To place
the onhand quantity in ARS8, the Processor must execute an instruction of the form LA 8, 800.

Choice of storage location 0 for storage of the LA instruction is arbitrary. However, it does
require that the next instruction in the program be stored in storage location 1. Following
execution of the LA 8, 800 instruction, the onhand quantity is stored in AR8. To add the on-
order quantity to the contents of ARS8, the Processor should have as its next instruction,
DA 8, 801. This instruction must be stored in storage location 1. After executing the DA
instruction, the Processor has the sum of the onhand and onorder quantities stored in ARS.

The logical analysis indicates that the next operation to be done is the subtraction of the
required quantity from this sum. This step calls for a DS instruction. To execute this
instruction, the desired minuend must be in an arithmetic register and the subtrahend in a
storage location. Since both of these conditions are satisfied, a DS 8, 802 instruction is
stored in storage location 2 to subtract the required quantity from the sum of the onhand
and onorder quantities in ARS.

2-B 22 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
The final step is to store the difference in storage location 803, This operation can be
done by the execution of a SA 8, 803 instruction stored in storage location 3.
2. Student Exercises
(1) A quantity is stored in storage location 800. Store the quantity in storage locations
801, 802 and 803.
(2) Two quantities are stored in locations 800 and 801. Interchange the quantities.
(3) Three quantities are stored in locations 800, 801 and 802 in decimal format. Store
the sum of the quantities in location 803.
(4) Quantities A, B, C and D are stored in locations 800 — 803, respectively, in decimal
format. If
R=-2A -8B+ 3(C + D)
calculate R and store it in location 804.
D. MULTIWORD OPERANDS

Most instructions may specify multiword operands which may be two, three or four words in
length., The number of words in an operand is determined by the number of arithmetic registers
specified in the AR portion of the instruction. For example, suppose it is desired to load a
two word operand in AR’s 8 and 4. The positional notation for ARS8 is 1000, for AR4 0100.
Therefore, the positional notation for AR’s 8 and 4 would be 1100. The decimal equivalent of
the pure binary number 1100 is 12, which happens to be the sum of eight and four. Thus, to
load a two word operand into AR’s 8 and 4, an LA instruction with 12 in its AR portion would
be specified. This convention holds true in all cases. Thus, if it is desired to load a three
word operand into AR’s 4, 2 and 1, an LA instruction with 7 in its AR portion would be
specified. (Seven is the sum of four, two and one.)

The arithmetic registers can be conceived of as being arranged in a line, as shown in Figure

2-20.

ARS8 AR4 AR2 ARI1

Figure 2-20. Arrangement of Arithmetic Registers

Thus, arranged from ‘‘most significant’’ register to ‘‘least significant’’ register the arithmetic
registers are listed as AR8, AR4, AR2 and AR1. When using arithmetic registers in a multi-
word operation, the least significant word of the multiword operand is found in the least
significant register indicated, the next least significant word in the next least significant
regéster, and so on, until the most significant word of the multiword operand is found in the
most significant register.

UP-3853

23

PAGE:

2-B

lSECTION:

UNIVAC IIl UTMOST '

When the AR portion of an instruction calls for a multiword operand, the m portion of the in-
struction specifies the location of the least significant word of the multiword operand, Words
of increasing significance in the multiword operand are found in continguous storage locations
moving ‘‘backword’’ through the store. Thus, if an instruction specifying a three word operand
addresses location 802 in the m portion, the three word operand is found in locations 800, 801
and 802. The most significant word of the three word operand is stored in location 800, the
next most significant word in location 801, and the least significant word in location 802. For

example, the instruction

LABEL A OPERATION A OPERAND A }

w———
——

LA 8|0121 A) R S | Il Il L l 1 I 1 L1 | 1 1 I ! 1 1 | L 1 1 1 1 l 12

/I\‘/;/lil/l\f’\/\/\/_ﬂ—_—/_/\\

would load the contents of location 802 into AR2, the contents of 801 into AR4, and the contents
of 800 into ARS.

Figure 2-20 is misleading in the sense that the arithmetic registers are not physically connected

in any way. Thus, it is not necessary to load a two word operand in AR’s 8 and 4, 4 and 2, or 2

and 1. Any two arithmetic register may be used. For example, the instruction

LABEL A OPERATION A OPERAND A 2
| ———————— — — — =
oo gLy A 1,3,081002 0y b e s e by Ly

would load the contents of location 802 into AR1, the contents of 801 into AR4, and the contents
of 800 into ARS.

Multiword operands may be used with any of the instructions previously defined in this manual.

24 ' ‘ UNIVAC 11l UTMOST UP-3853

2-B
SECTION: PAGE:
1. Example
A quantity is stored in locations 800, 801 and 802. Store the quantity in locations 803, 804
and 805. Do not destroy the contents of AR4.
a. Coding
LABEL A OPERATION A OPERAND A
_—eee————— =
]
01 1 1 1 i ILJAl 11111'1810121 1 L I L [1 L | L 1 | | A1 l 1 1 1 1 1 1 1 1 1 l l!
]LIILLISJAIL]i1Ll1810151lllJliLlllllllllllLlllllll}
/\/\/\/\’\N\—ﬁ/\/\/\/\,—

2. Multiword Arithmetic Instructions

In an arithmetic operation the sign of a multiword operand is determined by the sign of the
least significant word of the operand. Therefore, in an arithmetic operation, if the contents

of storage location m-1 are —~XXXXXX and the contents of m are + XXXXXX, any multiword
instruction addressing m as the least significant portion of an operand will involve a positive
quantity regardless of the signs of the most significant words. After an arithmetic operation,
the correct sign will appear in every word of the result.

Example:

LABEL A OPERATION A OPERAND A

(AR8) i = + 222222 (AR8) f = + 888889
(AR4) i =+ 333333 (AR4) f =+ 177777
(800)i = — 666666 (800) f = — 666666

(801) i =+ 844444 (801) f = + 844444

I

2-B

SECTION:

25

PAGE:

UP-3853 UNIVAC Il UTMOST ‘

DECIMAL ADD HIGHER - DAH

The decimal add higher instruction may be used with one word or two word operands. If a one word
operand is used, two AR’s are specified. If a two word operand is used, all four AR’s are specified.

1. If two AR’s are specified, add the contents of the storage location specified to the contents of
the more significant register specified and store the sum in the less significant register specified.

Example:
LABEL A OPERATION A OPERAND A)
—_— — —

(AR8) i = — 012345 (ARS8) f = — 012345
(AR4) i = + 789012 (AR4) f = + 975309
(800) i = + 987654 (800) f = + 987654

2. If four AR’s are specified, add the storage operand specified by m (the contents of m-1 and m)
to-the contents of AR’s 8 and 4 and store the sum in AR’s 2 and 1.

Example:
LABEL A OPERATION A OPERAND A }
_—e—e—e—e—— = — —

L 1 lDlAlH] 4]L51'1810111 L 1 1 1 1 L LJ L i1 1 1 1 1 l i 1 1 1 1 1 1 1 1 l lf

(AR8) i = + 333333 (AR8) f = + 333333

(AR4) i = + 999999 (AR4) f = + 999999

(AR2) i =+ 444444 (AR2) f = + 555556

(AR1)i=+ 111111 (AR1) f = + 000005

(800) i =+ 222222 (800) f =+ 222222

(801) i =+ 000006 (801) f =+ 000006

In both cases (one or two word operands) the Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 will be treated as a decimal
zero.

2-B

SECTION:

26 ‘ ‘ UNIVAC Il UTMOST UP-3853

PAGE:

DECIMAL SUBTRACT HIGHER - DSH

If two AR’s are specified, subtract the contents of the storage location specified from the contents of the
more significant register specified and store the sum in the less significant register specified. If four
AR’s are specified, subtract the storage operand specified by m from the contents of AR’s 8 and 4 and
store the sum in AR’S 2 and 1. The Processor assumes that the operands are in decimal format. In the
operands, a decimal digit with a bit combination of 0000 will be treated as a decimal zero.

BINARY ADD H!GHER - BAH

If two AR’s are specified, add the contents of the storagelocation specified to the contents of the
more significant register specified and store the sum in the less significant register specified. If
four AR’s are specified, add the storage operand specified by m to the contents of AR’s 8 and 4 and
store the sum in AR’s 2 and 1. The Processor assumes that the operands are in binary format.

BINARY SUBTRACT HIGHER - BSH

If two AR’s are specified, subtract the contents of the storage location specified from the contents
of the more significant register specified and store the difference in the less significant register
specified. If four AR’s are specified, subtract the storage operand specified by m from the contents
of AR’s 8 and 4 and store the sum in AR’s 2 and 1. The Processor assumes that the operands are

in binary format.

3. Student Exercises
(1) Two quantities are stored in locations 800 and 801. Interchange the quantities.
(2) Quantity A is stored in locations 800 and 801, quantity B in locations 802 and 803,

and quantity C in 804 and 805. All quantities are in decimal format. Compute A + B
and store the sum in 806 and 807. Compute A + C and store the sum in 808 and 809.

UP-3853 UNIVAC Il UTMOST l

2-B

SECTION:

27

PAGE

E. MULTIPLICATION AND DIVISION

DECIMAL MULTIPLY - DM

Multiply the contents of the storage location specified by the contents of arithmetic register 8 to
produce a 12 digit product. Store the six most significant digits of the product in arithmetic register

4 and the six least significant digits in arithmetic register 2. Store the sign of the product in the sign
position of both arithmetic register 4 and arithmetic register 2. The Processor assumes that the
operands are in decimal format. In the operands, a decimal digit with a bit combination of 0000 will

be treated as such. It will not be treated as a decimal zero. The programmer has no choice as to which
arithmetic registers to use. Arithmetic register 8 is always used to hold the operand, and arithmetic
registers 4 and 2 to receive the product. As a consequence, in the UTMOST language, no AR portion

need be specified in the instruction.

Example:
LABEL A OPERATION A OPERAND A }
(AR8) i - . 000600 (AR8) f -+ 000600
(AR4) i - — 123456 (AR4) f - + 000002
(AR2)1 - - 987654 (AR2) f - + 400000
(800) i - + 004000 (800) f = + 004000

DECIMAL DIVIDE - DD

Divide a 12 digit dividend in arithmetic registers 8 and 4 by the contents of the storage location
specified to produce a six digit quotient in arithmetic register 4 and a remainder in arithmetic
register 8. The sign of the remainder will be the same as the sign of the contents of arithmetic
register 4 before instruction execution. The Processor assumes that the operands are in decimal
format. In the operands, a decimal digit with a bit combination of 0000 will be treated as such. The
programmer has no choice as to which arithmetic registers to use. As a consequence, in the UTMOST
language, no AR portion need be specified in the instruction.

Example:
LABEL A OPERATION A OPERAND A >
1 1 LDJ Dl laAglol I R B S S S 1 1 1 1 e J L L | i L i l 1 1 L 1 1 1 I 1 1 l
Ww
(AR8) i - - 060000 (AR8) f = — 100000
(AR4) i - - 010000 (AR4) f = — 300000

(800) i - 200000 (800) f ~ - 200000

2-B 28 ’ UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

F. THE DECIMAL POINT

The Processor has been so designed that, in all arithmetic operations, the decimal point of each
operand is considered to be immediately to the left of the most significant digit of the operand.
Consequently, so far as the Processor is concerned, the value of all operands lies between plus

one and minus one, and are, consequently, fractional.

To represent quantities of greater or lesser magnitude than recognized by the Processor, the
programmer must mentally assign the decimal point to a position other than that fixed by the
Processor. This assumed decimal point is called the program decimal point, and in this manual,
is indicated by a carat. Thus, the programmer may mentally assign a decimal point to a one word
operand in decimal format as follows.

006000

To the programmer this operand is the quantity 60.00. However, to the Processor it is the quantity
.006000, and the Processor will treat it as such. Since the Processor ignores the program decimal
point, a record of program decimal points must be maintained by the programmer. The position of
the program decimal point in the results of an arithmetic operation can be determined by means of
the following rules:

1. Rule for Addition and Subtraction

In adding or subtracting quantities in the Processor, the program decimal points must be lined
up in both operands. The program decimal point in the result will be in the same position as in
the operands entering the addition ot subtraction.

Thus, the rule for handling the program decimal point in addition and subtraction is the same as
the rule for handling the decimal point in pencil and paper addition and subtraction.

Example:
PENCIL AND PAPER UNIVAC Il
$3600.05 360005
156.23 0156[23
Sum $3756.28 375628

2. Rule for Multiplication

The Processor multiplies one 6 digit operand by another 6 digit operand to produce a 12 digit
product. As with addition and subtraction, position of the program decimal point in the product
is determined the same way placing the decimal point in pencil and paper multiplication is
effected. The number of decimal places in the product is the sum of the decimal places in the

multiplier and the multiplicand.

Example:
PENCIL AND PAPER UNIVAC Il
2.46 000246
3.29 000329

8.0934 000000080934

UP-3853 UNIVAC 11l UTMOST 2-B

SECTION: PAGE:

3. Rule for Division

Let M be the number of digit positions that the program decimal point is to the right or left

of the Processor decimal point in the dividend. If the program decimal point is to the right of
the Processor decimal point, M is positive; if to the left, M is negative. Let N be the number
of digit positions that the program decimal point is to the right or left of the Processor decimal
point in the divisor. If the program decimal point is to the tight of the Processor decimal point
N, is positive; if to the left N is negative. Then M-N is the number of digit positions that the
program decimal point is to the right or left of the Processor decimal point in the quotient. If
the result of M-N is positive, the program decimal point is to the right of the Processor decimal
point in the quotient. If the result of M-N is negative the program decimal point is to the left

of the Processor decimal point in the quotient.

Example: Divide 000632497100 by 020000

To the Processor this problem appears as follows: Divide .000632497100 by .020000. Thus, the
Processor will come up with a quotient of .031624. In this case M is 5 and N is 2. Therefore,
M-N is 3 and the quotient with the program decimal point is 031624.

To determine the program decimal point of the remainder it is necessary to consider it as being
twelve digits, by adding 6 zeros to the left of the most significant digit position. Then the pro-
gram decimal point would be located in the same position as it was in the twelve digit dividend.

In the case of the above example, the Processor would come up with a remainder of .017100
whereas according to the above, the program decimal point would be 0000Q0017100. As an
example of how this may be used, assume that it is desired to verify the division, similar to
the paper and pencil method, then:

Quotient 031624
Divisor 020000
Partial Dividend m
Remainder 000040017100

Dividend 000632497100

G. NONZERO DIGITS

It is sometimes important for the programmer to determine the maximum number of nonzero digits
that may appear in the result of an arithmetic operation. The following rules are designed to make
this determination.

1. Addition or Subtraction

If two operands are added, or if one operand is subtracted from another, the maximum number of
nonzero digits in the sum or difference is one more than the number of nonzero digits in the
operand having the greater number of nonzero digits. In the following example, nonzero digits

are indicated by X’s.
0XXXX0

00XXX0
XXXXX0

2-B 30 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
2. Multiplication

The number of zeros before the first nonzero digit in the product is equal to the sum of the
number of zeros before the first nonzero digit in the multiplier, added to the number of zeros
before the first nonzero digit in the multiplicand. The maximum number of nonzero digits in
the product is equal to the sum of the number of nonzero digits in the multiplier, added to
the number of nonzero digits in the multiplicand. The remaining digits in the product are
Zeros.
Example: C = OXXX‘XX

D - 0XXX00

C x D - 00XXXXXXXX00
3. Division

If, in the values just prior to dividing, u is the number of zeros before the first nonzero digit
of the dividend and v is the number of zeros before the first nonzero digit of the divisor, then
there will be a minimum of u minus v minus 1 zeros before the first nonzero digit of the
quotient, All the other digits in the quotient may be nonzero. For example, given E and F.

E = OOXX‘XX

F - 0XXX00

E/F = XAXXXXX

sinceu -2 and v - 1

then u minus v minus 1 = 0
In this case, the remainder would have the same format as the divisor F:

0XXX00
Ifu —v — 1= —1 this indicates that the most significant X will be a zero.

H. CONSTANTS

A constant is any UNIVAC III word (or words) which is neither executed as an instruction nor
is a part of the data.

In solving a problem it is often necessary to use values that are not introduced with the data
but are essential to the successful execution of a program. These values are established and
written by the programmer at the time the program is written and, therefore, will be included
with the instructions. Then at the time that the instructions are read into the Processor the
constants necessary for the successful completion are also introduced.

Example:

Company X desires to give every employee a $100.00 bonus. The salary of each employee may
be read into the Processor as a part of the data or may have been computed during a payroll run.
Now the programmer desires to add $100.00 to this pay. He has at his disposal an ADD instruc-
tion to perform the addition but he does not have the value $100.00 as a part of the data. This
value may be established as a constant by writing it on the coding paper and assigning it to a

UP-3853

2-B

SECTION:

UNIVAC 11l UTMOST l

! PAGE:

o)

31

storage location that isnot being used for the data or instructions. Since the constant is to be
placed with the instructions but may not be executed as an instruction the following considera-
tion must be given. UNIVAC III is a sequential processor and when control for execution has
been given to the Processor it will continue to execute each instruction in sequence until some-
thing occurs to break this sequence. It is obvious that a constant may not be placed in direct
line with this execution. Therefore, constants may be listed after a break in sequence with no
fear of the control unit accessing them as instructions. Consideration must also be given by the
programmer to the format of the constant.

In UTMOST language, constants are written in the following way. As is the case with instruc-
tions, the address of the storage location in which the constant is to be stored is left justificd
on the line on which the constant is to be written. This address is followed by one or more
spaces. The next thing to appear on the line is a ““plus sign’’ or a ‘“‘minus sign’’. If the constunt
is to be positive, the ““plus sign’’ is used; if negative, the “‘minus sign’’. The sign may or ma:
not be followed by spaces at the programmer’s option. There then follows the absolute vilue o
the constant.

The programmer has the need to write three formats for constants: alphabetic, decimal and
binary. If it is desired to write a constant word in six bit aphabetic format, the constant is
written with characters and numbers and is surrounded by ‘‘apostrophes’’. In the Processor, vue
word holds four six bit characters. However, in UTMOST language it is not necessary to write
any more characters than is desired. The UTMOST Assembler will take the characters enclosed
in the ‘‘apostrophes”, right justify them in the word into which they are to be stored, and {il!
the rest of the word with six bit space symbols (binary code 000000). The following are som:
examples of the operation of the UTMOST Assembler on alphabetic constants.

LOCATION OF | UTMOST BINARY CODE ALPHABETIC
CONSTANT l LANGUAGE STORED REPRESENTATICHN
0 l + “ ABCD’ 0010100010101010110010111 ABCD
1 + " ABC’ 0000000010100010101010110 + VABC
2 ‘ —"Al’ 10000000000600010100000100 — A\ AL

If it is desired to write a constant in four bit decimal format, the constant is written with Co gl
numbers and is preceded by a ‘““‘colon’’. It is not necessary to write any more numbers thun is
desired. The UTMOST assembler will take the numbers between the colon and the first following
space, right justify them, and fill the rest of the word with four bit space symbols (binary cuode
0000). The following are some examples of the operation of the Assembler on decimal constants.

LOCATION OF UTMOST BINARY CODE DECIMAL
CONSTANT LANGUAGE STORED REPRESENTATION
0 + 1123456 0010001010110011110001001 + 123456

+ 123 0000000000000010001010110 AL
2 —: 14 1000000000000000001000111 ANV 14

32 ’ J UNIVAC III UTIMOST UP-3853

2-B
SECTION: PAGE:
If it is desired to write a constant in binary format, the programmer may write the number in
decimal or in octal. If written in decimal, it is written with decimal numbers alone. The most
significant number may not be a zero. If written in octal, it is written with octal numbers preceded
by a ‘‘zero’. In both cases it is not necessary to write any more numbers than is desired. The
binary equivalent of the numbers written will be right justified and preceded by binary zeros. The
following are some examples of the operation of the Assembler on binary constants.
LOCATION OF UTMOST BINARY
CONSTANT LANGUAGE CODE
0 + 017 0000000000000000000001111
1 + 07007 0000000000000111000000111
2 -9 1000000000000000000001001
3 + 1024 0000000000000010000000000
1. Example:
A dollar amount is stored in location 800 in format OXXAXXO. Add $25.74 to the amount.
a. Coding
LABEL A OPERATION A OPERAND A W
_---—-—-———— —— —— —— —
ol 1 1 1 1) I — lLlAl 1481'1810101 1 l 1 L do 1 I o4 1 1 l i | 1 1 1 1 Il 1 1 |
]lllllll DlAl 181'11A012|311 1AllLJllllllLlllLll
21 1 ¥ 1 1 L 1 lSlAL 1 181’1810101 1 l i i 1 L 1 1 Il 11 LI i 1 i 1 1 | 1 1 l

JlLllllll}LlllllllllLlllllllllllllllllll

2. Student Exercises

(1) If A has the form ,00XXXX, and B the form ,0XXXXX, what is the form of AB?

(2) If A has the form OXX)Q(X, and B the form XX)&XXO, what is the form of AB?
(3) If A has the form 000X XXXXXXXX, and B the form OOXX‘XX, what is the form of A= B?

(4) Three quantities of form + QQQQQQ are stored in locations 800, 801 and 802. Store the
18 digit product of the three quantities in locations 803, 804 and 805.

UP-3853

UNIVAC 11l UTMMOST

PAGE:

33

(5) Given the following:

DATA FORM LOCATION
Quantity A .0XX000 800
Quantity B A0XX000 801
Quantity C L0X X000 802
Quantity D ,0X X000 803

= AB

= AB
9C

= AB -D
9C

Quantity C has a value of .011

locations 804, 805 and 806.

(6)

or greater. Store quantities E, F and G, respectively, in

DATA FORM LOCATION
Income GGGGGGGGO0000 800, 801,
Number of PP,0000 802

Dependents
Deductions other 00AAAAAA0000 803, 804

than for Dependents

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.

Store the unrounded tax in form 0000TTTTTT,TT in locations 805 and 806.

I. Branching

In certain operations, the next instruction to be executed is dependent of the nature of the data
being processed. If, for example, a customer is to receive a discount only on orders of $10,000
or more, the billing procedure must consist of two different paths. One path bills the customer
with a discount, the other bills him without a discount. Decision of which path to take for a
particular customer depends on the amount of his order. The separation of the flow path of the
sequence of instruction execution is called branching. Choice of which branch of instructions to
take is determined by a logical decision. In this case, the logical decision is embodied in the
question: Is the customer’s order amount $10,000 or more? In the Processor, logical decisions
are made on the basis of comparisons.

SECTION:

2-B

34 UNIVAC 11l UTMOST UP-3853

PAGE:

o]

Comparisons

In the Processor, comparison is made between two operands. The results of a comparision is
reflected in the resulting condition of indicators. An indicator has two states: on and off.
There are three comparison indicators: high, low and equal. The first step in the execution

of a comparison instruction is to set all three indicators to off. The comparison between one
operand (in the arithmetic registers) and the other (in storage) is then made. If the two operands
are equal, the equal indicator is turned on. If the operand in the arithmetic unit is larger than
the operand in storage, the high indicator isturned on. If the operand in the arithmetic unit

is smaller, the low indicator is turned on. Once a comparison has been made, the indicators
remain in the state resulting from the comparison until one of the following occurs:

m Another comparison is made.

® An addition or subtraction is made. (A zero sum or difference turns the equal indicator on.
A nonzero sum or difference turns the equal indicator off.)

The Collation Sequence of Characters

There is no question about the meaning of the equal indicator being turned on as the result of
a comparison. Nor is the result ambiguous when the high or low indicator is turned on as the
result of comparing binary or decimal operands. However, some question may arise as to what
a high or low indicator may mean as a result of a comparison of alphabetic operands.

There is an arithmetic relation of relative magnitude with respect to numbers. Thus, two is
larger than one, three is larger than two, and so on. This relation is called the collation

sequence of numbers.

For purposes of comparing two alphabetic operands for relative magnitude, the Processor
recognizes a collation sequence of characters. This collation sequence is as follows. If the
characters are read off of Figure 2-18 by reading down the first column, then down the second,
then down the third, and finally down the fourth, the characters are being read from smallest
in magnitude to largest in magnitude. Thus, ‘“A’’ is larger than ‘3”’, ¢“Q’’ is larger than “‘K’’,
‘U’ is larger than *“ P, and so on.

2-B

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST l

3. Comparison Instructions

COMPARE - C
Compare the operand specified by AR with the operand specified by m and turn the appropriate indica-

tor on. This comparison takes into consideration the signs of the operands and is, consequently, an

algebraic comparison. This instruction allows the use of multiword operands.

Example:
\ LABEL A OPERATION A OPERAND A ?
I 1 Lcl 18‘,48‘0‘01 1 1 1 | L 1 ngl;l N y 1 1 L4 1 1 1 1 1 1 1 | 1 1 l l]
If: (AR8) = + AAAAAA
(800) = +666666

The high indicator is turned on.

If: (AR8) = + AAAAAA
(800) = — 666666

The high indicator is turned on.

If: (ARS) —AAAAAA

-666666

(800)

The low indicator is turned on.

2-B

SECTION: PAGE:

36 | ‘ UNIVAC Il UTMOST UP-3853

COMPARE MAGNITUDE - CM

Compare the operand specified by AR with the operand specified by m and turn the appropriate
indicator on. The signs of the operands are not taken into consideration, and consequently, this is
a comparison of absolute values. This instruction allows the use of multiword operands.

Examples:
LABEL A OPERATION A OPERAND A >
'& —— —— —
1 | lcl lsjﬂJjLOJOI 1 1 i A A e 1 L 1 l I A 1 i L 1 A . 1 1 _— 1 1 1 1 1 1 I J)

If: (AR8) = + AAAAAA
(800) = + 666666

The high indicator is turned on.

If: (AR8) = + AAAAAA

(800) ~-666666

The high indicator is turned on.

If: (AR8) = — AAAAAA

(800)

[}

- 666666
The high indicator is turned on.

COMPARE PRODUCT WITH A - CPA

If the operand specified by m has a one in every bit position where the operand specified by AR

has a one, the equal indicator is turned on., Otherwise, the high indicator is turned on. This instruc-
tion allows the use of multiword operands.

Examples:
\’
) LABEL A OPERATION A OPERAND A j
g — — \b
A A ICJPIAI 18l'l810101 i i i 1 1 LLl 4 L A 1 1 l | 1 yu l 1 i 1 1 1 ! 1 1 1 l lr
/\’\’_\N\—/\M/\/\'/\—\/\/\.—’Jl
If: (AR8) = 0100100000000000000000000
(800) = 0101100000000000000000000

The equal indicator is turned on.

If: (AR8) = 0100100000000000000000000
(800) = 01110000000000000000000000

The high indicator is turned on.

SECTION:

0p-3853 UNIVAC Il UTMOST |

COMPARE PRODUCT WITH ZERO - CPZ
If the operand specified by m has a zero in every bit position where the operand specified by AR has

a one, the equal indicator is turned on. Otherwise, the high indicator is turned on. This instruction
allows the use of multiword operands.

Examples:

LABEL A OPERATION A OPERAND A

If: (ARS8)

1101000000000000000000000
0000100000000000000000000

1

(800)

The equal indicator is turned on.

If: (ARS)

1101000000000000000000000
1100100000000000000000000

n

(800)

The high indicator is turned on.

4. Transfer of Control

The Processor normally executes instructions sequentially. That is, after the instruction in
storage location ¢ is executed, the processor normally executes the instruction in storage
location ¢ + I. To effect branching, this normal sequence must be broken. The sequence is
broken by means of a transfer of control instruction. For example, if the instruction in storage
location c is being executed, and this instruction is an unconditional transfer of control instruc-
tion, the next instruction to be executed is found, not in storage location ¢ + [, but in the storage
location specified in the m portion of the transfer of control instruction.

For brevity, transfer of control instructions are called jump instructions, since they “‘jump’’ the
Processor out of the normal sequence of instruction execution to a new sequence. Once the jump
has been effected, normal sequential execution of instructions resumes.

SECTION:

2-B

PAGE:

3] ‘ UNIVAC Il UTMOST

UP-3853

JUMP - J

The next instruction to be executed is to be found in the storage location specified by m.

Example:

LOCATION OF

INSTRUCTION INSTRUCTION
4 J 10

Normally, the next instruction would be found in storage location 5. Execution of the jump
instruction causes the next instruction to be found in storage location 10.

Notice that the jump instruction has no entry in the AR portion. Consequently, in the UTMOST
language no AR portion is written.

The jump instruction is an unconditional transfer of control. Control is transferred regardless of
any conditions present. As a result, it cannot be used for branching. The following instructions
are conditional transfers of control. They jump only if some specified condition is met. Conse-

quently, they, together with the comparison instructions, provide the means to effect branching.

JUMP EQUAL - JE

If the equal indicator is turned on, jump to m. That is, if the equal indicator is on, the next
instruction to be executed is to be found in the storage location specified by m. If the equal
indicator is off, normal sequential execution of instructions continues. In writing the instruction
in UTMOST language, no AR portion is specified.

JUMP GREATER - JG

If the high indicator is on, jump to m. In writing the instruction, no AR portion is specified.

JUMP LESS - JL

If the low indicator is on, jump to m. No AR portion is specified.

JUMP POSITIVE - JP

If the contents of the arithmetic register specified are positive, jump to m.

NO OPERATION - NOP

This instruction does nothing. The Processor just goes to the next storage location in sequence
to select the next instruction. Although, the NOP instruction involves neither AR or m, in the
UTMOST language it must have an m portion. For example:

NOP 0

Uses of the NOP instruction will become clear later in this manual.

UP-3853 UNIVAC Il UTMOST 2-B

SECTION: PAGE:
5. Example:
DATA FORM LOCATION
Account Number 0AAAAA 800
Delinquent Account 0DDDDD 801

Number

If the account number is equal to the delinquent account number, jump to storage loca-
tion 100. If not, jump to location 200.

a. Logical Analysis

1. Is the account number equal to the delinquent account number?

U S 'Y T W Bl

la. No 1b. Yes.
2. Jump to 200. 2. Jump to 100.
b. Coding
\
, LABEL A OPERATION A OPERAND A COMMENTS)
ENT ?
0 ., ,,, ,t,A 8,800 1S THE ACCOUNT NUMBER EQUAL TO THE DELINQUEN
.., ,¢ . 8,801 , , ACCOUNT NUMBER? | \ |l 4 vttt b)
2, LE A‘IOAOA L njxuanpn lTloA I]lolok I W SN ST SN NN TAE U NN S0 WO WU SN0 ST WS Wl N NV NS ST SN S S WA G U ST S
3 Jl 1 1 l Azlolol 1 1 i lJlUlMIP To 1210101 l 1 1 1 L 1 i 1 1 1 [1 1 1 1 L I Il I i l 1 l 1 1 1 F U S { i &.4.:_>

/_\W\/\,—\/—\A/_a——_/_/__‘/\,q, N‘_/ﬁ«/\’/_ﬂ/&v’““*&

6. Student Exercises

(1) If the absolute value of the contents of storage location 800 are less than the absolute
value of the contents of location 801, add the contents of 802 to the contents of 803 and
jump to 100. Otherwise, subtract the contents of 804 from the contents of 803 and ump
to 200.

(2) lf bit positions 12, 14 and 16 of the contents of storage location 800 are ones and bit
positions 8, 9 and 10 are zeros, add the contents of location 801 to the contents of 802,
store the sum in 803, and jump to 100. Otherwise, subtract the contents of 802 from the
contents of 801, store the difference in 804, and jump to 200.

(3) DATA | FORM LOCATION
Pay PPPEPP 800
Deduction 00DDDD | 801

If the deduction will not reduce the pay below $15.00, make the deduction. Otherwise,
store the deduction in storage location 802. In any case, store the pay to be received
by the employee in location 803. When finished, jump to location 100.

UP-3853 UNIVAC Il UTMOST 2-C

SECTION: PAGE:

2C.INTRODUCTION TO FLOWCHARTING

The subject of flowcharting may be best presented by means of example.

Example:
DATA FORM LOCATION
Days of Medical Absence AA‘OOOO 800
Remaining Days of Medical Leave LL,0000 801
Hourly Rate of Pay R, RR000 802

Update the medical leave and store the medical pay in form PPPPiPP in storage location 803,
Then jump to location 100,

The first step in the solution of the above programming exetcise is to make a logical analysis of
the problem. The logical analysis might take the following form.

1. Is medical absence equal to zero?

la. No. 1b. Yes.
2. Is medical leave equal to zero?

2a. No. 2b. Yes.

3. Is medical leave greater than medical absence?

3a. No. 3b. Yes.

4. Store medical leave in storage. 4. Store medical absence in storage.

5. Store zero in medical leave. 5. Reduce medical leave by medical absence.

6. Multiply storage by eight.
7. Multiply product by rate.

8. Store product in pay. 8. Store zero in pay.

9. Jump to 100.

SECTION:

2-C 2 UNIVAC Il UTMOST UP-3853

While correct, the above analysis is bulky and unwieldy. Consequently, when developing a logical
analysis, the programmer uses a different form of notation called flowcharting, and the form which
his logical analysis takes in this notation is known as a flowchart.

Flowcharts differ from logical analyses in several respects. For one thing, the steps in a flowchart
are typically shown in boxes, and arrows are used to indicate the sequence of steps. For example,
the above logical analysis would be modified to look like the flowchart in Figure 2-21.

Notice that on those boxes in Figure 2-21 which have more than one arrow emerging from the box, the
condition under which each path is taken is indicated on the arrow symbolizing the path. For example,
the second box in Figure 2-21 represents a logical decision and has two paths emerging from it, one
to be taken if the condition being tested for is met, and the other to be taken when the condition is
not met. The two paths are labelled appropriately.

Programmers further reduce the bulkiness of their flowcharts by using symbols to represent fields,
operations and conditions. Thus, the medical absence field might be represented by an ‘“A?’’, the
medical leave field by an “L’’, the pay rate by an ““R’’, storage by an ““S’’, and the pay by a ““‘P’’.
Many algebraic symbols are borrowed from mathematics to represent operations and conditions. Thus.
¢, represents addition, ‘¢ —?’ subtraction, ““x ?’ multiplication, ¢ +?’ division, ““=’’ equal to, ““#?
not egual to, ‘=" greater than, ‘- 7’ less than, ‘* > ’’ greater than or equal to, and ‘<’ less than

or equal to. The operation of storing one field in another field (such as storing the medical absence

in storage) is represented by an arrow. For example, the operation ‘‘store medical absence in storage’’
would be represented as:

A—S§

An arrow is also used to fill out an arithmetic operation. For example, the operation ‘‘reduce medical
leave by medical absence’” would be represented as:

L-A—L

Where the arrow indicates that the new ‘L'’ is constituted by the difference between ¢‘A’? subtracted
from the old ¢‘L'".

The operation of comparing one field with another is represented by a colon. For example, the opera-
tion ‘“is medical leave greater than medical absence’’ is a comparison of medical leave and medical
absence. Consequently, it would be represented as:

By convention, logical decisions are shown on flowcharts in the form of diamonds rather than rec-
tangles. Such a ““logical decision box’’ always has at least two arrows emerging from it, each arrow
being marked by the condition that must hold for the path to be taken.

UNIVAC Ill UTMOST |

UP-3853 2-C
SECTION: PAGE:
START
IS MEDICAL ABSENCE
YES
EQUAL TO ZERO?
NO
| <
IS MEDICAL LEAVE | yco STORE ZERO
EQUAL TO ZERO? IN PAY.
NO
Y
IS MEDICAL LEAVE VES STORE MEDICAL REDUCE MEDICAL
GREATER THAN > ABSENCE IN LEAVE BY
MEDICAL ABSENCE? STORAGE. MEDICAL ABSENCE.
NO
STORE MEDICAL STORE ZERO
> LEAVE IN IN MEDICAL
STORAGE. LEAVE.
J ' y
MULTIPLY STORAGE MULTIPLY PRODUCT STORE PRODUCT
~> JUMP TO 100.

BY EIGHT.

BY RATE.

IN PAY,

Figure 2-21.

Flowchart Incorporating Boxes and Arrows.

SECTION:

.] 1 UNIVAC Il UTMOST

UP-3853

Adopting the conventions described above, the flowchart shown in Figure 2-21 would be modified to
look like the flowchart in Figure 2-22.

Notice that the latter flowchart contains a legend which defines the arbitrary symbols used in the
flowchart. Such a legend is always necessary in order to make a flow chart incorporating symbols
legible.

To make their flowcharts even more compact, programmers make use of a special symbol, called a
connector, to eliminate the long arrows that otherwise crisscross the flowchart to show the logical
line of flow. A connector is a numbered circle. When, in a flowchart, an arrow leads to a connector,
the next operation in the logical line of flow follows the arrow leading out of the connector con-
taining the same number. Using connectors, the flowchart shown in Figure 2-22 would be modified to
look like that in Figure 2-23.

Notice that, to distinguish between different connectors, different numbers are used. Notice also that
a connector containing a given number and having an arrow leading into it can appear in a flowchart
as many times as is necessary, but to avoid ambiguity, only one connector containing the number and
having an arrow leading out of it can appear,

JUMP TO
100

START

')

> L - A=—>L — 8RS—>P

IN

LEGEND

L=—S$S > O=—»L

A - medical absence

L - medical leave

R - pay rate
P - pay
S ~ storage

Figure 2-22. Flowchart Incorporating Symbols

UP-3853 UNIVAC Il UTMOST 2-C

SECTION: PAGE:

In the flowchart in Figure 2-23, the ‘“START’’ legend is shown in an oval. This is conventional,

‘ — o 0

—> L - AL "@-’ 8RS—»P -’@

> L= § O—>L —»@
LEGEND

A - medical absence

L - medical leave

R - pay rate
P - pay
S - storage

Figure 2-23. Flowchart Incorporating Connectors

Figure 2-23 shows the flowchart as a programmer might have originally produced it. Programmers and
installations vary as to the style of flowchart produced. Any cross between the flowchart shown in
Figure 2-23 and the one shown in Figure 2-21 is possible,

The coding for the above exercise is shown on the following page.

6 ‘ ’ UNIVAC Il UTMOST 0p-3853

2-C
SECTION: PAGE:
. LABEL A OPERATION A OPERAND Aj
011n11L1A4|181'|810101111A|:|011llLL|1‘|||| TR R SRR SRR

]1) S 1C1 ! 1481'|]|0A2131 T Y l | Y WS W E SN T U U | 1 | SR U T N S N T T | l 1
24) lJlEl L | []J9l PR SR W SO R NS N SR WO S S 1 11 1 l | WSSO S U WS S W W W | l Il
31 1 1 1 lLlAl L lslllalol]l | lLl: lol L1 i 1 1 1 1 1| l 11 L 1 1 § U l lk
41 i 1 | 1c1 i 1 18l' 111012131 y R S W l N S T . | I\ I\ [l Ll 1 | § RN W N S| 17
5L1 |- 1J1E1 11 I 11191 PR S S VA NS N S T S N | Y N S | | | SR WS W SO TN S N N | l 1}

|
C_

61 l 1 1 lcl) le’lslolol 1 1 lL: Al 1
11161

—

llllllJLll llllll[llll¢llllllllllllll

l4|'|]1012131 0-.-1- -, L 1
9 S A 41’1810111

d A l L Aol A L

-
-
-
—
-
-

S

—
S

]OLI L 1D1M1 o 1810121 L1 18;RASI'1'1’1P1 R S U S | l A T GRS NN WA WO TUN S
1 S, A 4,,1.022,

-
-
-
-
-
-
-
-
-
-
-
-
-
—
-
-

-
-
-
-
-
-
-
-
-
b

12 LA 8;,,1,02 2
3 3 oM 02y by e b
4, (SA L 4.,803 e
5 v vy ty00, ,, TO0, (1,00, L L
6 , , , (DS H, 1”21:1810101 1 1L1'LA1'L'1'1L| T SR Y N 0 YA W SO T S SO N W
17, (LA, 8,800, A [0Sy e b

-

—

—

0 iy A Ay B Ay

—

8 3 o b e b o by g
19 e LLlAl L ISIIA‘L042L3LI nol‘l'l‘xpl AT W VT U SN U U AR S SN S SN AT SN N
2q | lSlTI 118|'1810131 R T BN B R SR N R NN VO W NN S T W N

:-_/'\.J

SN

2y 4 4oy b ooy 040 10 (1,050, oy o b

U SN U S S VO TS WY S N YA NN S S N NN WY G B (AT WS NN SO N NN N G S A B SRR NS SR O
o S S W WA NN W T SR WA AN Y S S S SO SN SN SN SN SN SN S SN SO HUNY S SN S S A W SO S WY N N U M O
1 1 | 1 1 1 1 1 L I 1 1| 11 1 A 1 1 l 1 1 S 1 d 1 1 l 1 1 1 1 1] 1 1 1 l:)
.ILOJ 2111 1 8 OLOIOJOIO 1 1 I 1 1 1 [1 i I 1 d i1 1 1 1 l 1 1 1 1 L 1 L 1 i l l/
11012121 1+Iol 11 1 [SR S WU NS W U I I i WS N W NN SN T W T | l

-

= &

%023 ,4:000000, \ vyl e b

|
L

Up-3853 UNIVAC Il UTMOST ’

.
SECTION:

PAGE:

A. EXAMPLE

DATA FORM LOCATION
YTD FICA Earnings EEEE‘EE 880
YTD FICA Tax oTTT, 7T 881
Current Pay ppppApp 882

Update the year to date FICA earnings and tax, and store the current FICA tax in form OOCC,CC

in location 883, Then jump to 500.

B. FLOWCHART

()

-

START »< 4800 : E o0—C
£
E+ P=»E - 03625P—C | T+C—T
> 4800 —E > 144 — T=—C — 144 =T

-

LEGEND

E-YTD FICA earnings
T-YTD FICA tax

P — current pay

C - current tax

2-C ‘ ‘ UNIVAC Il UTMOST y~ e
sECTION: PAGE
C. CODING
! LABEL A OPERATION A OPERAND A ‘>
_——8 88— ——————— e
0, , , , JL,A, , ,8¢,1,0,2,3, , ,4,8,040 | 4 L | ,t
., ¢, 8,,880 1 Lew L 1.)
2 ., JE | ;1,8 L |, | - L i lk
3, , , 4, ,DS,H 12,880 , 4,800] L L | 1]
4, , , , ,C ., 4),,882 6 | | L — LJ/
5., ., 36 WY T 1 1)
6, , , , LA |, 4y,,1,022 1 44---T i L L | :g
7, ,,, /,DSH 6/.,881 , 1,44 [L | /
8 ,, , ,SA 12,881 |, [Ly L | |[
o . JSA L 020,883 1 L L 1,)
%, ,, .4 , , , |, 500 TO 500 | Ly Ly le
" , ,, LA , 8,882 .03625FP-- [L 0 | J\
2, , ,, ,bM ., . ,1,0021 |, | Ly L | ./
13, , , , SA, |, 4].,883 ., , , , |, | L 4 | 1\
14, , , LA 12,881 +Pl-- - EB; T+C--- T L | /
15 , , , DA , ,1]2,,,8,8,3, |, , | |, | Ly L | ,\
16 |, lSlAl . |]l21’18181]1 L 1, | Ly L ka
7 0 0 0 145490 | 1 | L1 L | 1(
% , , , LA 8,1020 ,0--)-€ | P L1 | l)
9 , , , ,SA , 8, 883 = {, L L L []/
2 . ., . Jd . .. 1,500 , ,TO 500 Ui p/
Lo v by | 11 | L L Il)
PR S SO S NN NS Y S0 YO N S S S SN Y M N |41 | L1 [ll(
el Y
1,020, ,+:,0,00)000, , , , ., |, 1 L L | ,&
1021 1+|:10|316J215101 Dy |, | L - | /
1,0 2 2 01 4400 | ., | Ly L 1 b
1023l 480100011 | { lJ’)
/\/\/\/\/\f\/’\.—W

UP-3853 UNIVAC Il UTMOST l

2-C
SECTION: PAGE:
D. STUDENT EXERCISES
1.
DATA FORM LOCATION
Quantity A + AAAAAA‘ 880
Quantity B +BBBBBB, 881
Quantity C tCcccee, 882
Store the smallest of the three quantities in storage location 883. Then jump to location
500.
2.

DATA FORM LOCATION
Badge Number NNNNNN 880
Bond Deduction OODD‘DD 881
Cumulative Bond Deduction OCCC‘CC 882
Bond Price OF’PP‘PP 883

Update the cumulative bond deduction, and if a bond can be purchased, store the badge

number in storage location 844 and the bond price in location 885. Then jump to 500

SECTION: PAGE:

UP-3853 UNIVAC IIl UTMOST I

3. EDITING

Fields of data fed into the Processor through the input units and put out by the Processor through
output units may vary widely in form and content. A word may contain more than one field of
information. To operate on one of these fields it may be necessary to isolate it from the other
fields in a word. Two fields to be added together may not have their program decimal points lined
up. To add the two fields it is then necessary to shift one or both of the fields to iine up the
decimal points prior to addition. Such field manipulation is acéomplished through the use of editing
instructions.

A. SHIFT INSTRUCTIONS

DECIMAL SHIFT RIGHT - DSR

Shift right the contents of the arithmetic register(s) specified the number of digit positions specified
in m. Signs are not shifted. Digits shifted outside the register(s)’ capacity are dropped. Decimal
zeros are inserted in the vacated digit positions. The contents of one or two arithmetic registers
may be shifted.

Example:
LABEL A OPERATION A OPERAND A (
_
L 1 1 lDlS IRAJ_~I81’ 121 1 1 1 | 1 1 1 i l 1 1 I A J 1 i i l 1 1 1 1 1 1 1 1 L l l(

(AR8) i = + 123456 (ARS8) f = + 001234

DECIMAL SHIFT LEFT - DSL

Shift left the contents of the arithmetic register(s) specified the number of digit positions specified
in m. Signs are not shifted. Digits shifted outside the register(s)’ capacity are dropped. Decimal zeros
are inserted in the vacated digit positions. The contents of one or two arithmetic registers may be

shifted.
Example:
LABEL A OPERATION A OPERAND
| —————— m—
1 i\ 1 lDlS‘LAJ._lal' 121 L i A 1 § W S l i 1 1 1 1 L i1 It l - 1 1 1 1 | 1

(AR8B) i = + 123456 (AR8) f = + 345600

l ‘ UNIVAC IIl UTMOST UP-3853

IECTION: PAGE:

The decimal shift instructions treat operands in four bit groups. In four bits, sixteen different codes
can be represented, as follows.
CODE DECIMAL DIGIT

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

O 00~ O bW~ O

As indicated above, ten of these codes represent the ten decimal coefficients in excess three code.
These ten codes retain their integrity during a decimal shift. The other six, however, change their
nature as follows.

BEFORE AFTER
0000 0011
0001 0011
0010 0011
1101 0011
1110 0100
1111 0101 *

Also, those three codes with an asterisk produce an arithmetic carry into the digit position to the
left when the shift is performed.

ALPHANUMERIC SHIFT RIGHT - ASR

Shift right the contents of the arithmetic register(s) specified the number of characters specified in
m. Signs are not shifted. Characters shifted outside the register(s)’ capacity are dropped. ‘“‘Space”’
characters are inserted in the vacated digit positions. The contents of one or two arithmetic
registers may be shifted.

Example:

. LABEL A OPERATION A OPERAND A f

E================= =
I 1 J;JAIS lR_‘glal' 12I Il i [) N S | . l Il Il 11 1 1 | i 1 l I | 1 1 1 1 i ! 1 l {

L~ T T ————]
(AR8)i = + ABCD (AR8) f = + AAAB

UP-3853 UNIVAC 11l UTMOST]

SECTION: PAGE:

ALPHANUMERIC SHIFT LEFT - ASL

Shift left the contents of the arithmetic register(s) specified the number of characters specified in m
Signs are not shifted. Characters shifted outside the register(s)’ capacity are dropped. ‘“Space’’
characters are inserted in the vacated digit positions. The contents of one or two arithmetic registers
may be shifted.

Example:
" LABEL A OPERATION A OPERAND A 2
| —————— =

BINARY ROTATE RIGHT - BRR

Shift right the contents of the arithmetic register specified the number of bits specified in m. The sign
is shifted. Bits shifted beyond the right band of the registers capacity ‘‘circulate’’ and are reinserted
at the left. The contents of a maximum of one arithmetic register may be shifted.

Example:
\
LABEL A OPERATION A OPERAND A

(ARS8) i

1111111111000000000000000

(ARS8) f = 0000001111111111000000000

1

In the case of any shift instruction, if the number of positions to be shifted, which is specified in m,
exceeds the number of positions in the operand, the result of the shift is unpredictable and useless.
An example of such a useless instruction would be ASR 12, 9 instruction.

UNIVAC Il UTMOST

PAGE:

|

UP-3853

B. LOGICAL OPERATION INSTRUCTIONS

AND

For every bit position containing a zero in the operand specified by m place a zero in the correspond-

ing bit position of the operand specified by AR. Multiword operands may be used. All 25 bit positions
are examined.

Example:

LABEL A OPERATION

OPERAND

—

A JAINIDAL 18111810101 Al L I 1 i

=

(AR8)1i=0111111111111110000000000

(800) i = 0000000011111110000011111
(AR8) f = 0000000011111110000000000
(800) f = 0000000011111110000011111

OR

For every bit position containing a one in the operand specified by m place a one in the
corresponding bit position of the operand specified by AR. Multiword operands may be used.
All 25 bit positions are examined.

Example:

LABEL A OPERATION

OPERAND

1 1 1 10LR1_1£UL810|0| B R G SO S |

(AR8) 1 =0111111111111110000000000

(800) i 0000000011111110000011111
(AR8)f-0111111111111110000011111

(800) f

0000000011111110000011111

SECTION: PAGE:

0P-3853 UNIVAC Il UTMOST ‘

C. INDIRECT ADDRESSING

With the exception of the NOP instruction, all instructions introduced thus far in this manual
have a meaningful m portion. In all these latter cases m has been defined as being used to
specify either the location of an operand, as in the case of the LA instruction, or a shift count,
as in the DSR instruction. This holds true as long as the contents of bit 25 of the instruction
(the indirect address bit) contains a zero. If bit position 25 of the instruction contains a one
instead of a zero, then m specifies, not an operand location or a shift count, but an address at
which the operand location or shift count can be found. Thus, the instruction addresses the
operand not directly, but indirectly. In this case the contents of the storage location specified
by m is called the indirect address control word.

The format of the indirect address control word is as follows.

1. Bits 1-15, the | portion, contain a 15 bit address which corresponds to the m portion of an
instruction without indirect addressing. Thus, it becomes the operand address or shift count.
Notice that, since the | portion of the indirect address control word consists of 15 bits, indirect
addressing provides one means of addressing any location in the store. A more general method
of such addressing will be described later in this manual.

2. Bits 16-20 always contain binary zeros.

3. Bits 21-24 perform a function similar to that which these same bits perform in an instruction
word. This function will be discussed later in this manual.

4. Bit 25 is the indirect address bit just as it is in an instruction word. Thus, if bit 25 is a zero,
then | is an operand address or shift count. If bit 25 is one, then | also is an address at which
the operand address or shift count can be found. This ‘‘cascading’’ of indirect addresses can
be carried as far as the programmer desires.

In UTMOST language, an instruction that is to use indirect addressing is indicated by placing an
asterisk immediately before the m portion of the instruction. An indirect address control word is
written like a constant, that is, a plus or minus sign followed by the 1 portion of the indirect
address control word. If | is preceded by a plus, then | is the operand address or shift count. If |
is preceded by a minus then | also is an indirect address, and cascading results.

Example-
LABEL A OPERATION A OPERAND A e
_ m— — A
(16) = + 800
(AR8) i = + 123456 (AR8) f = + 987654
(800) 1 = + 987654 (800) f - + 987654

Indirect addressing may be used with any instruction in which the m portion of the instruction is
significant.

SECTION:

PAGE:

6 UNIVAC 11l UTMOST

UP-3853

FIELD SELECTION

The mechanism used to achieve indirect addressing is also used to achieve the operation of
field selection. That is, if field selection is to occur during instruction execution, then bit

25 of the instruction word is to be a one. In UTMOST language, this means that the m portion

of the instruction is to be preceded by an asterisk. Whether field selection or indirect addressing
is to result is determined by the word found in the m address. If bits 16-20 of this word are
binary zeros, then indirect addressing is to result. If any of these bits is a one, then field
selection is to result. In this latter case, the word is referred to as a field select control word.

Like an indirect address control word, a field select control word contains the address of the
operand. However, a field select control word also specifies certain bits within the operand
specified by 1. The function of field selection is to allow the Processor to operate on only those
bits of the operand specified by the field select control word.

A field select control word has the following format.

1. Bits 1-10, the 1 portion, contain a 10 bit address which corresponds to the m portion of an
instruction without indirect addressing. Thus, it becomes the operand address.

2. Bits 11-15 specify in XS3 code the rightmost bit within the operand that the instruction is
to operate on.

3. Bits 16-20 specify in XS3 code the leftmost bit within the operand that the instruction is
to operate on.

4. Bits 21-24 perform a function similar to that which these same bits perform in an instruction
word or indirect address control word. This function will be discussed later in this manual.

5. Bit 25 must contain a zero.

In UTMOST language, a field select control word is written in the following way:

where:

m e, is theleftmost bit to be operated on and is written as a decimal number representing the
number of the bit desired.

m e, is the rightmost bit to be operated on, and is written as a decimal number representing
the number of the bit desired.

m e, is the |l operand address, and is written in the usual way. In writing a field select control

word, the programmer may optionally insert one or more spaces after the plus sign and each
of the commas.

Bit positions outside those bits specified in the field select control word are considered as
containing binary zeros. Moreover, sign bits cannot be included in a field select operation. Thus,
all operands field selected become positive when operated on.

UP-3853 UNIVAC Il UTMOST ‘

SECTION: PAGE:

LABEL A OPERATION A OPERAND A }

(16) = + 18, 7, 800
(AR8) i = — ABCD (AR8) f = + AXYA

(800)i = - WXYZ (800) £
Example.

- WXYZ

LABEL A OPERATION A OPERAND \7

(AR8)1i = — ABCD (AR8) f = — AXYA
(800)i = WXYZ (16) -+ 18, 7, 800

Note in the second example that the field selected operand comes from the store with a

positive sign. The operation of the LAN instruction then changes this sign to minus. L AN
with FS always produces a negative quantity.

Field selection has meaning when an operand is to be selected from the store to be operated
on. Thus, field selection is not pertinent with respect to shift instructions, jump instructions,
and store arithmetic register instructions. Also, it is not possible to use field selection with
the multiply or divide instruction. Operation of field selection with respect to the load
arithmetic register instructions is exemplified in the above illustrations.

When field selection is used with addition or subtraction instructions, the field selection

occurs on the operand as it comes from the store. No field selection occurs on the operand
coming from the arithmetic register(s).

Example:

LABEL A OPERATION A

OPERAND \ Z

(16) =+ 20, 5, 800
(AR8) i = + 123456 (ARS8) f = + 223446

(800) i = — 999999 (800) f = — 999999

] l UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

With respect to comparison instructions, field selection operates on both the operand from the
store and the operand from the arithmetic registers. Also, with the C instruction, the sign of
the AR operand also enters the comparison. Execution of all other comparison instructions

with field selection ignores the sign bit.

LABEL A OPERATION A OPERAND A }
| —— — 1
(16) =+ 18, 7, 800

(ARB) = + ABCD

(800) =~ YBCZ

After instruction execution, the equal indicator is turned on.

Example:

1 LABEL A OPERATION A OPERAND A %

| e —— =
(16) =+ 18, 7, 800

(AR8) = - ABCD

(800) = -~ YBCZ
After instruction execution, the low indicator is turned on.

The logical instructions, AND and OR, use field selection in a similar way in that only the
portion of the AR operand specified by the field selection is affected by instruction execution.

SECTION:

UP-3853 UNIVAC Il UTMOST !

Example:

LABEL A OPERATION A OPERAND \ K

(16) =+ 21, 11, 800

!

(AR8) i =0111111111111110001100000
(800) i = 0000000011111110000011111
(ARS8) f

It

0111000011111110001100000
(800) f

H

0000000011111110000011111

When field selection is used with multiword operands, the rightmost bit of the field selected
is to be found in the least significant word of the operand, the leftmost bit in the most
significant word of the operand.

Example:

LABEL A OPERATION A OPERAND \

I
Il
i

LA, ,1.2,1*16,

Al|lJLllllJl#llllllllllllllJ‘

(16) =+ 18,7, 801
(AR8)i = - ABCD (AR8) f = + ATUV
(AR4)i = - EFGH (AR4) f = + WXYA\
(800)i = - STUV (800) f = - STUV
(801)i = - WXYZ (801) f = - WXYZ

SECTION:

10

PAGE:

i l UNIVAC Il UTMOST UP-3853

E. THE LOAD FIELD INSTRUCTION

LOAD FIELD - LF

The LF instruction is similar to the L A instruction in that it causes the operand specified by m to
be loaded into the arithmetic register(s) specified. Multiword operands and indirect addressing may
be used with the LF instruction. The LF instruction differs from the LA instruction in the way it
operates when field selection is specified. With the LA instruction, arithmetic register bit positions
outside the field specified are set to zero. With the LF instruction, the contents of the arithmetic
register bit positions outside of the field specified are undisturbed.

Example:

LABEL A OPERATION A OPERAND A j

(16) v 18, 7, 800
(AR8)1 - - ABCD (AR8) f - AXYD
(800)i1 =+ WXYZ (800) £ -+ WXYZ

If the LF instruction is used without field selection, it operates in the same manner as the LA
instruction except that the sign of the arithmetic register(s) is undisturbed.

Example:

LABEL A OPERATION A OPERAND A 2

I

L F 8,8|00 | | l‘(
J W R W W TN W N SR | | R Y WY SO S SR S S L1 4+ 1 1 4 1 1 L1111 1 1 1 3

(AR8)1i1 = - ABCD (AR8) f = - WXYZ

(800)i =+ WXYZ (800) f - + WXYZ

UP-3853 UNIVVAC Il UTMOST

SECTION:

PAGE:

11

F. EXAMPLE

Given:
LOCATION FORM
880 NNNNNN
881 OLLLLL,
882 LLMMMM
883 MMMVVV
884 VVVVPP
885 PPPEPP
where:
N is a job number
L is the cost of labor for the job
M is the material cost for the job
V is the overhead cost
P is the price the job is contracted for

Create the following

LOCATION FORM
886 NNNNNN
887 AAAAAA,
888 AA0000

where:
is the job number

A is the profit for the job

When done, jump to storage location 500.

SECTION:

PAGE:

12

UNIVAC Il UTMOST

UP-3853

G. FLOWCHART

LEGEN

IN —
ON _
P

> <
|

D

the
the
the
the
the
the
the

IN =—ON

input job number

output job number

contract price

overhead cost

material cost

labor cost

profit

> P_V_-M-L—-A

TO 500

UP-3853 UNIVAC Il UTMOST

SECTION: PAGE:

H. CODING

. LABEL A OPERATION A OPERAND \ }
e -
o . LA 8, ., 880 ‘ l dN-=--O0ON =)
T S A 8, 88 6)
2, kA V2, *1023 L e e e | 1}
3, o sy Y2 R] (
4 DS oy v2., V0422 Ly }
5, ., ,,0s8L | vz ., YL L ‘X
6, 2SS 2. 10120 Jl/
7, s v 2y e b]
8, ., , ,bs o 12, *1020 T

'\ i 1 4 | i1
110121]1 | 1+1 T 1]161’]L3A'18[8131 T S S | 11L1 NS S R
‘1012121 1 1+1 [1]121' 9’1818141 SRR AR SN S S S R |
10 23 + 8 ,1,885
157 I R Lt SIS S SR U S A S S S A S S R

UP-3853 UNIVAC 11l UTMOST '

SECTION: PAGE:

4. INDEX REGISTERS

The user has the option of obtaining his Processor with either 9 or 15 index registers. Index
registers are identified by number. Thus, there is X1, X2, X3, and so on, up through X15, where
““X’’ is a commonly used abbreviation for ‘‘index register’’.

An index register has the capacity to store 16 bits, although for most purposes only the least
significant 15 bits have meaning. Bit positions in an index register are numbered from right to
left as 1 through 16. An index register has no sign bit position. The contents of an index register
are always considered to be a positive binary number.

An instruction, indirect address control word, and field select control word address index
registers by means of bit positions 21-24. The number of the index register to be addressed is
represented in pure binary in these bit positions.

In UTMOST language an index register is addressed by placing a comma after the m portion of an
instruction (or | portion of an indirect address control word or field select control word) and
following the comma by the number of the index register to be addressed. This number is written
in decimal. The programmer may optionally leave one or more spaces between the comma and the
index register specification.

Index registers have the following function. When an instruction is to be executed, the contents
of the index register specified are added to the m portion of the instruction. The sum of this
addition is the address of the operand (or shift count), and is commonly referred to as m’ (m prime).

Example:
LABEL A OPERATION A OPERAND \
llLlLlAl‘LgL'l6lll]llelllltLllllll\)lll]ll\l\l[J_\
(X15) = 10000*
(AR8)i -+ ABCD (AR8) f = - WXYZ
(10006) i1 - - WXYZ (10006) 1 = - WXYZ

If binary zeros are placed in the index register portion of an instruction, no indexing results. In
UTMOST language, binary zeros in the index register portion of an instruction is indicated by not
specifying an index register in the instruction. Thus, all instructions shown thus far in this manual
(with the exception of the one in the last example) do not call for indexing.

Manipulation of the contents of index registers is achieved by means of the following instructions,
which specify the index register whose contents is to be manipulated in the AR portion of the
instruction.

x
Although written here in decimal for ease of presentation, the contents of index register 15 would actually be the binary
equivalent of a decimal! 10,000.

SECTION:

PAGE:

l | UNIVAC 11l UTMOST UP-3853

LOAD INDEX REGISTER - LX

Load the contents of bits one through 15 of the storage location specified by m’ in the index register
specified in AR. Multiword operands are meaningless with this instruction. Indirect addressing may
be used. However, field selection is not allowed.

Example:
LABEL A OPERATION A OPERAND A e
..1IL.X.J\SL'L‘*B}"Uuull1..“,..141..“.“11
WMI
(X15)i = 15000* (X15) f = 20000%
(800) 1 = 20000%* (800) f - 20000*

STORE INDEX REGISTER - $X

Store the contents of the index register specified by AR in bits one through 16 of the storage location
specified by m’. Store binary zeros in the other bit positions of location m’. Actually, bit position 16
of the index register will always contain a zero. Consequently, this instruction could be defined as
follows.

Store the contents of bits one through 15 of the index register specified by AR in bits one through
15 of the storage location specified by m’. Store binary zeros in the other bit positions of storage
location m-’.

Multiword operands and field selection are meaningless with this instruction. Indirect addressing may
be used.

Example:
LABEL A OPERATION A OPERAND A
—_— — — —
(X15) i = 15000* (X15) f = 15000%*
(800) i = 20000* (800) f = 15000*

If a Processor is equipped with nine index registers and index register 10 through 15 is
specified in the AR portion of a SX instruction, binary ones will be stored in bit positions 1-16
of the storage location specified by m’. Binary zeros are stored in the other bit positions of
storage location m’.

If binary zeros are placed in the AR portion of a SX instruction, binary zeros are stored in the
storage location specified by m. UTMOST language provides a special instruction for this operation.

* Actually binary numbers. Moreover, only the 15 least significant bits of the contents of storage location 800 are shown.

UP-3853 UNIVAC Il UTMOST '

SECTION: PAGE:
STORE ZEROS - SZ
Store binary zeros in the storage location specified by m-.
Example:
. LABEL A OPERATION A OPERAND A ?
—

(800) 1 = - ABCD (800) f = + \AAN

Since the binary format of a NOP instruction is all binary zeros, the SZ instruction can be used to
create a NOP instruction in storage location m’.

INCREMENT INDEX REGISTER - IX

Add, in binary, add the contents of bit positions one through nine of the storage location specified
by m’ to the contents of the index register specified by AR. An algebraic addition which attends to
the contents of the sign bit of storage location m’ is performed. Thus, if the sign of the contents of
location m’ is positive, the contents of the index register specified are increased, or incremented.
If negative, the contents of the index register are decreased, or decremented. If as a result of this
addition, a carry is propogated from bit position 15 of the index register, this carry is dropped.
Thus, the contents of bit position 16 of the index register always remains zero. Multiword operands
are meaningless with this instruction. Indirect addressing may be used. However, field selection
is not allowed.

Example:

LABEL A OPERATION A OPERAND A)

I X 15,1800
| — | S Y

i i L i i 1 l 1 i Lol 1 il L i l 11 1 i3 1 1 1 1 1 l |

(X15) i = 15000%* (X15) f = 15010*
(800)1 = + 10 (800) f = + 10

SECTION:

(‘ UNIVAC Il UTMOST UP-3853

PAGE:

INCREMENT INDEX REGISTER AND COMPARE - IXC

Add, in binary, add the contents of bit positions one through nine of the storage location specified
by m’ to the contents of the index register specified by AR. The addition takes into consideration
the contents of the sign bit of storage location m’. Carry from bit position 15 of the index register

is inhibited. After the index register has been incremented, the contents of bits one through 15 of
the index register are compared with the contents of bits 10 through 24 of location m’. If the two

are equal, the equal indicator is turned on. If the contents of bits one through 15 of the index reg-
ister are greater than the contents of bits 10 through 14 of m’, the high indicator is turned on.
Otherwise, the low indicator is turned on. Multiword operands and field selection are meaningless with
this instruction. Indirect addressing may be used. If binary zeros are placed in the AR portion of an
1XC instruction, no incrementation occurs, and for purposes of comparison the index register is
considered to contain binary zeros. If a Processor is equipped with nine index registers and index
register 10 through 15 is specified in the AR portion of an IXC instruction, no incrementation occurs,
and for purposes of comparison the index register is considered to contain all binary ones.

The contents of the storage location specified by m’ of an IXC instruction is called an increment and
compare word. In UTMOST language, an increment and compare word is written as follows.

where:

1. e, is the comparison amount (bits 10 -24) usually written in decimal.

2. e, is the increment amount (bits 1-9) usually written in decimal.

At least one space must be left between ICW and e,. The programmer may optionally leave one or

more spaces between the comma and e,. If it is desired to decrement, e, is preceded by a minus sign.

2

Example:
LABEL A OPERATION A OPERAND
| — — —_—

I X C 151,800
L I W W T §

(X15) i = 15000* (X15) f = 15002*
(800) i

1

ICW 16000,2 (800)f = ICW 16000, 2

At the end of instruction execution, the low indicator is turned on.

UP-3853 UNIVAC 11l UTMOST

SECTION: PAGE:

A. EXAMPLE

There are 100 delinquent account numbers stored in storage locations 400 through 499, If the
new account number stored in location 500 is delinquent, jump to 300. Otherwise, jump to 350.

B. CODING

This problem could be coded as follows.

LABEL A OPERATION A OPERAND A COMMENTS

01 Lo a1 1L1AL N LT i 1510101 Ll -I A54 ATLHIEA INIEIwI lAlclclolUlNlTl INLULMIBIEIRI AEIQlulAlLA 1

]A 1 1 A 1]CJ A A l 181'1 L 1 A IAAOAOI 1 ITAOA ATIHIEI lFIIIRIslTI |DIEILIIINIQIUIEINITI AAlclclolulNlTl 1)
21 PR U B IJLEL N T S S |3|0|0| L lNlulMlBIEIRl?I Y W T S ST S U R ST ST RO SS W N S S U B S 1\
31 O S | lcl T |8|'1 - 1410111 Ll l'lsl lllTl 1ELQ|U1A1LI Jlol lTlHlEl ISIEACIOANIDL 1 l F S W | 1(
4 JE | 3001 DELINQUIENT ACCOUNT NUMBER? | X
F S D W N S SR T S | TN SRS NS TR S WY S R U R W WO T T B 'Y T T T S S T Tl Bl I S RS T B T S R T | dd

51 U S | 1C;] 181;L| Lo .410121 1 1‘151 1' lTl IEIQIUIAILI |T1 01 1T1H1E1 lTlHil 1R1D1 101N[E1?1 { 1/
6| T T 1J|E1 T B S S S T J310|01 P S N S S U S0 N WA U S H U G S S S O SN N VAT ST A S NS S SR 1)
’111111'114[1'1 PR S U S UL SN S SRS R U Illllllllll lIllllnllL;LllLttllg
‘lAILll'AAA]j‘]Al1||I.lllllljlllllllllIJllIIIIIII\AlIllIIIl(
ke, Lxl'nnnln'nnnnlnn'llnl||41LL111111111111AlnxnllxnllAllT\
]|9|9| | S TS el SO N X l lsl’l 1 I4A9I9] i1 lI|541 1' ITL JE101U1AAL| JAOJ lTIHlEl |L1A|S|Tl lolNlel?l i) l(
2lolol 1 1 lJ1El 1 [) U I N T | 1310l01 11) R TR VS TN W Y I | I W Y W S W I | l | S IR (N W VA N W N § l N S l)
2 01) | 350, JUMP TO 350 . 1 1 |

This solution requires 202 lines of coding. Such an approach is referred to as straight line
coding. Study of this coding may allow reduction of this number of lines.

Notice that the body of this coding consists of a repetition of two lines of the following form.

\ LABEL A OPERATION A OPERAND \
———— —
c : , {
1 1 1 1 1 1 A L i l 1 1 i 1 | L 1 AL . l 1 L L L 1 A 1 I\ L] 1 1 1 1 1 1 1 11 l

SECTION:

UNIVAC Il UTMOST UP-3853

PAGE:

In each set of two lines, y is one more than it was last time. Thus, in the first set it is 400,
in the second set 401, in the third 402, and so on. This observation leads to the conclusion
that this is a natural situation for the use of index registers. The following coding employs

index registers.

A OPERATION OPERAND COMMENTS

JTAKIE THE F IRST DELINQUEINT AC |
1 Loy A 8, 500 e Ly .(
2 Lo LS 8 400,415 DOES THE NEW JALCJC10.U1N1T1 NUMBER |)
3 L |J1E| Ll 13|0 L0J Lyt 1 1 1M1A1TICIH| 1T1H1lls| |D|E1L|||NIQIU1E|N1T| lAlClclolUlNlTl\
4 L lllxl] ‘115‘, ‘]|0L242l T |T1A1K1E1 ATLHIEI 1N|E|X|T| lDIELL4|‘NlQiulEINITl ‘AACICI /
5 l.llN.O.PAl.“.J...O.II..L.l.ul..l...1..1...¢.....|.‘....\
6 vy 20y MO0 e .,111
lll]lLllllllJJllllllllleLlllllllllllllllllllllllllll(
ILLIAAJIAIIIAAIIIIAIlLLJlJlllllllllllllllllllllllljll}
'LA_lj.ll..IA.A.‘n...lle...AAnl..nJlllixllllxljJLlllLt1A¥

1922 ot b N e b

20,23, vyl e Y% b b e v b v b g
/\/\/—/\/\/—\/W/\M_—A/\J

In this coding the instruction in line 0 loads X15 with binary zeros. Line 1 loads the new

account number into AR8. The m portion of the instruction in line 2 is 400. This instruction
specifies modification of m by the contents of X15. Since the contents of X15 are zero, m’ is
400. Thus, the new account number is compared against the first delinquent account number.

Line 3 tests for equality. If the two are not equal, line 4 increases the contents of X15 by one.
Thus, X15 now contains one. Line 5 is a do nothing line, and line 6 returns control to line 2.
Now m’ is 401, since the contents of X15 are one. Thus, the new account number is compared
with the second delinquent account number. If these are not equal, the contents of X15 are
again increased by one. On return of control to line 2, m’ is now 402, since the contents of
X15 are now two. Thus, the new account number is compared with the third delinquent account
number. And so on.

The above coding is known as iterative coding. The distinguishing characteristic of interative
coding is that it processes many items with the same set of coding, which it modifies and loops
through once for each item.

The above coding incorporates such an iterative loop. However, it is a ‘¢

closed’ loop. If the
new account number is unequal to all 100 delinquent account numbers, this coding provides no

way to exit from the loop after all 100 delinquent account numbers have been tested.

UP-3853

UNIVAC 11l UTMOST

SECTION:

PAGE:

When all 100 delinquent account numbers have been tested, X15 will contain 99. If an IXC
instruction is substituted for the IX in line 4, and if the comparison ‘‘element’’ of the associated
ICW is set at 100, the equal indicator will be set after all 100 delinquent account numbers have

been tested. The following coding incorporates this change.

P S Y S SR VN N S S WS U SO SN S AT NN NS S S S WY Y

1 l § W SN WU S S W S |

] LABEL A OPERATION A OPERAND A COMMENTS)

_— —

0 LX ., 15, 1023 TAKE THE FIRST DELINQUENT AC&
Ld i i AR Lottty IR s i I i Tl Tl VO (R Sl Sl S e S S S Sl Sl W SO R T R T R R |

]A 1 1 - lLAAl 1 l i l8| L A lsAolol 1 4 1 1. . 1 i 1 l 1 1 1 1 i 1 4 4 i l A 1 1 A 1 A1 1 " 1 l i i i l i i i AJ
2 11| ICA T xsx’. 1 1410101'11151 F I Y W'Y 101015151 ITIHIEX 1NLE|wl lAchClDAUjNITI lNlUIMlBIEIRI 1 A
3A 111 |J1E1 T R S SR laloloL SN G S S | AM1A1T|C|HI 1T|H1llsl IDAEILIIANIQIUIEANlTl AAAclcxolutNtTn)
4 I.XC | 1,5, 1022 TAKE THE NEXT DELINQUENT ACC‘_X
A e e ! 4 & A i J— I A . A A L s i I A — . 1 i 1 A It I 4 N P A W 1 | e il 4 & & i il "

5 35,0 JUMP TO 350,. ‘_{
R RSl ST R S ST S Pl i T S ST S SE S N W St G S SN Wl Tt ST hV ol e S N N0 SN VY U U S S H S W SA SR

6 J 2 LOOP. ‘)
Lo et S SR N S S S S S ST S ST ES bl S ST SO S O S Wi B e Y N S S S G S S ST S ST SO T G S T S S S G A S L{

-
oo

A slightly more efficient use of index registers to set up the iterative loop is shown in the
following coding.

A OPERATION OPERAND

TAlKE THE
L il SR el

COMMENTS

AFIIARISITI IDIEILXIINlQlUlElNITA AAlCl

11 T W' anAn P 18.'. 15;0]01 PV S N T S S (VS Y S VO S ST S S U SO S S U U SO0 S VAT S S Y S W S W x{
21 1 1 i lcl i i l A lal'l A‘lololllllsl 1 1 IDIOIEISI ITIHIEI lNlElwl |AICLCAOIUINALLNlulMABJElRI A)
3 JE 30,0 MATCH THIS DELINQUENT ACCOUNT‘)
O T - i S T U Rl Rl O W W { 14 l ey e Sy gy S e ey e e ey

4 I X C 15 1022 TAKE THE NEXT DELINQUENT ACC
ekl R W T ST S U S SR Rt H S S S S PR U S Rt T S S S S S Tl STt R
5 JL 2 LOOP .

I P ol W SN S0 0 G S S RO SN U et ST S S0 S S A Y S tht g G AT PRI WY RO U N U T S G S S VA N G NS N SR T
6 J 35,0 JUMP TO 35

T RN N S SO R il ST S Ny P T e e b

JJLLlllLALJIIIIIIileIl]lllllllJ

U .t 1 i
IS s v b v by v e e b ey e b e L
F U S S llAlllllLLllllllllljlllllllllllllllAIAALAAAI'IALLLJLA
1022 1CW | 100, .1 | | | |

IR Nl it R S A P Sl Wl S S S S G TR W S U WA S T S | T T W TS S T SO O | R N Y S N S S | | T T W N N S
1023 + | 0 | |

F I J S N T GRS S N S DU S S) N TS Y S S TSN U T | llllllllllllLlll\LlllLllllL

— A~

SECTION: PAGE: ‘

UNIVAC Il UTMOST

UP-3853

C. FLOWCHART

An English language flowchart of the previous coding might look like that shown in Figure 4-1.

TAKE THE FIRST
DELINQUENT
ACCOUNT NUMBER
ITEM

Figure 4-1.

DOES THE NEW
ACCOUNT NUMBER
MATCH THIS
DELINQUENT
ACCOUNT NUMBER?

YES

IS THIS DELINQUENT
ACCOUNT NUMBER
ITEM THE LAST
DELINQUENT ACCOUNT
NUMBER ITEM?

TAKE THE NEXT
DELINQUENT
ACCOUNT NUMBER
ITEM

English Language Flowchart of [teration

UP-3853

UNIVAC 11l UTMOST (

[SECTION: PAGE:

Symbols commonly used to show an iterative process in a flowchart are as follows:

1. A capital letter is used to symbolize a set of data. For example, ‘“D’’ might be used to
symbolize the set of 100 delinquent account numbers.

1. Numeric subscripts to the set symbol are used to distinguish between units in the set. For
example, D, would stand for the first delinquent account number item in the set of
delinquent account number items D, D2 stands for the second delinquent account number
item in the set D, D, stands for the third delinquent account number item, and so on, until
D,,, stands for the 100th delinquent account number.

3. The general unit of the set is shown by means of an alphabetic subscript to the set symbol.
For example, D; would symbolize the ith delinquent account number item in the set D. The
ith item is only one item, but it is not any particular one. The ith item is the general item.
For example, the previous coding is designed to process only one delinquent account number
item. Which one it happens to process depends on the contents of X15. The coding is designed
to process the general delinquent account number item, D;. The coding is particularized to
process a certain delinquent account number item by establishing the contents of X15.

4. Initially, in the previous program, the contents of X15 are set so the general processing
processes the first delinquent account number. Symbolically, this condition is shown as:

Thus, Di becomes D,.

5. After one delinquent account number has been processed, the contents of X15 are increased
by one so the general coding which is looped through will process the next delinquent
account number. Symbolically, this operation is shown as:

1+ 1—»i

Thus, if Dy (Dy with i equal to 6) has just been processed, then D, (Di with i equal to 7) is
the next item to be processed. As shown above, such operations are customarily shown in an
‘““operation box’’ with a double line on the left.

Using the above symbols, the flowchart in Figure 4-1 might appear as shown in Figure 4-2. Notice
in this flowchart that initial conditions (in this case, the fact that i is initially equal to one) are
shown in an assertion flag set on the line of flow at the point at which the assertion shown in

the flag holds true.

" | 1 UNIVAC IIl UTMOST Up.3853

SECTION: PAGE: |
i- 1

START @ ~{ 70 300

1 TO 350
i+ 1= 7@

LEGEND

A — the new account number

D - a set of delinquent account number items

D, - the ith itemin D, i=1, 2,3, ..., 100

Figure 4-2. Symbolic Flowchart of Iteration

D. STUDENT EXERCISE

There are 100 delinquent account numbers in ascending order in storage locations 200-299, There
are 10 account numbers in random order in locations 300-309. Store the account numbers that are
delinquent in sequential locations beginning at 310. When finished, jump to 100.

E. ITERATIVE versus STRAIGHTLINE CODING

Section B of this chapter shows both a straightline and an iterative solution to the same coding
problem. These solutions exemplify the principle characteristics of these two approaches.

1. Straightline coding requires many storage locations but involves few instructions to be executed
per item processed.

2. Iterative coding requires fewer storage locations but involves more instructions to be executed
per item.

UP-3853

UNIVAC Il UTMOST

SECTION:

PAGE:

11

MODULAR ADDRESSING

The operation of the index register specified during instruction execution is to have its contents
added to the m portion of the instruction to yield m’, the operand address. The result of this

addition is a 15 bit operand address. Thus, by means of index registers, any storage location in
the Processor may be addressed. The following example shows how the index registers are used to

achieve this addressing.

1. Example

There are 100 delinquent account numbers stored in storage locations 5120-5219. If the new
account number stored in location 6144 is delinquent, jump to 2000. If not, jump to 1500. Start
your coding in 1026. Presume that index register 3 contains 1024. (Index register 3 is known as

a cover index register, since it ‘‘covers’’ the coding. That is, it is the index register whose

contents allow the instructions to address each other.)

2. Coding

LABEL A OPERATION A

OPERAND

A COMMENTS

01 PN TR YU A VAT U NN TR0 Y S S S S SOV ST S HNY ST S GG T S R ITIHII Isl Ilsl ILlolclAlTlllolNl 111012A41 L1
11 TN S S T S S U S S W W PRTE R R S S S S T |TlH.I nsn IIISI |L|°|C|A|T|IA01N1 1]|012A5] IT‘
2 L X 15, 1023, 3 THI S 1S LOCATLION 1026

PR WS U SRS WS T Tk S N (Y S S N it Tl I et TR T PR Sl Y Sl el S St Bkl [t Wl S S SR M Bl Sl il A N
3\ I D T | Llel o |]14|'| 11101212\"131 I T | IT‘Hnl ISI llksl ILIOlClAlTlIIOINl 11101217l -
4 LA | L8, 0, 14 THIS () LOCATION 1028,
Lebeandemmbr—e—h— dend | R A VOSSN S N W Ll) 1 | ERS TN N SR T | W' R S '} | FET " 1 A
51 FI S | ICA | 18| LTSN W S N T Lolll‘lsl T W W R 1 1T1Hl| |SL lIISl |L|°1C1A1T1|L04N1 1]1012191 T
6| Lo 1J|E| TR R S S S U N 191716|'131 I S WD G S T { 1T|H1| 151 1'151 1LIOAC|A1T||;°1N1 1]1013101 1
71 U S lllxjcl l 11|5Q¢ 1 1]L01211l'l3l B VS Y W S S ¢ lTlHlI 1SL1|151 lLlolcl ALT1|1°1N1 1]1013111 11
81 [S IJJLI PR S W S S S S 151’131 T T N T | 1T1H1I151 11151 LLLOLCJALT[ILOINl L]AOI3L21 L
9 J 4 76,3 TH I S [LOGATI ON 1033

U S SR U s SUS S R S VA S il I W S S R T 1|1111L111|IL1411141A|11
lllJlJlAllllll]llllllllllllIJllllllLllllllllllllllll

L \/m: ot

L0 QAT ON 2047 |

1 1 1 1) D S T | l L1 I 1 i1 1 I 1 L1 1 | i | 1 1 l | | I L1 110 l L1 L 1 1 1 L 1 L l 1 I
PR Y VT GO VT R T T SO S VT UU S VO S VA VU A A W Y N U Y SO G VT S A N T S Y U S ST Ui S U ST WY SONY VA ST S VAN S A /
41716‘4 A1 S 1 O O | 1 - 11 l -t 1 1 1 L 1 lTlHll |sl Ilsl lLlolclAl TlllolNl 1115101 oLl l\
PSS S VN YO ST SO Y ST U N Y VO VONY NN VAU SNV N ST WS S T SN VAT A SN SO (NN N G SN YA SHNNT U SN Tt S NS NS VA ST ST W WU SRAPU x)
LN U N AN WY SN U U SN AT G SO S S U SO S N SN N O T S A ST S SN N A U SN S U T N O Ut N0 AN Y SO S S ST WA WA J
AR S U TN SO Y A VA Y SN WO N G SO U N G SN S S S VAT SN0 VAN S T S T G S S U S N Sl S NN S S S S SN S WU B il
917161 1 1 1 1 11 l Lo d_1 1 1 Ll 1 1 l)| R S U S | 1 1 ITIHLI ls I |SL lLlol C1A|TlllolNl 121010101 1 J_(
TSNS SN U Y N0 Y VA S [N T T S T S TS NS O A I N W S AV TV T S Tt N S S O Y G O)
P S U NS TS YOS U U A S U N WO SN U T VUV (Y SHNT WY S S TR SR SHY WS S NSO SANS UHNS S SN SR VU W S AU SN T VAT S VT S S G A&
P VN W U U SO S S N YA YO VAN YOS VO S S NGO ST ST O YA CON S S Y (N TSNS S ST AU U S SN ST U S SN WY SO UG TN W OO .)
1027, v Cew 52200 vy g IS s, L9 9ATION 2045) iE
11012|21 | l*l o l6|]l4I41 Lt l) SN W W N N S LJTlHlllsl I lsl lLlol clA1T1|101N1 12L014 161 J/
)

SECTION:

0 \ } UNIVAC Ill UTMOST

PAGE:

UP-3853

Notice in this coding that the first entry in a line is no longer the address of the storage
location in which the instruction or constant is to be stored, but is now the address
relative to the contents of the cover index register (index register 3, whose contents is
1024). Thus, storage location 1024 is assigned the relative address 0 (1024 + 0 = 1024).
location 1030 is assigned the relative address 6 (1024 + 6 = 1030), 2045 is assigned the
relative address 1021 (1024 + 1021 = 2045), and so on. These relative addresses are the
ones used in the m portion of the instructions specifying that this m portion should be
modified by index register 3 to develop m’. From now on this convention will be followed
in this manual until the concept of labels is introduced.

In the above exercise the contents of the cover register was given. Suppose that such is
not the case. It is then the programmer’s responsibility to load his cover index registers.
To demonstrate how this is done, it is necessary to have a finer understanding of how
the control unit of the Processor works and to have the definition of one more instruc-
tion. These are given below.

Control Unit Operation

The control unit contains a fifteen bit register called the control counter, customarily
abbreviated as cc. In general, the control counter contains the address of the instruction
currently being executed.

The control unithas an operating cycle depicted in flowchart form in Figure 4-3. The
operating cycle begins at connector one.

The flowchart in Figure 4-3 demonstrates how the control unit effects the sequential
instruction execution characteristic of the Processor, and also how the jump instructions
interrupt this sequence. It also indicates that, during the execution of any instruction
other than jump instructions, the control counter contains the address of the storage
location from which the instruction was selected for execution.

UP-3853 UNIVAC 11l UTMOST ’

SECTION: PAGE:

SELECT THE INSTRUCTION
STORED IN THE STORAGE
LOCATION WHOSE ADDRESS
IS STORED IN THE CONTROL
COUNTER.

IS THIS
INSTRUCTION AN
UNCONDITIONAL
JUMP INSTRUCTION?

YES
~(2)

IS THIS A
CONDITIONAL JUMP
INSTRUCTION?

IS THIS
CONDITION
SATISFIED?

STORE THE m’

GENERATED BY THE
@—> INSTRUCTION INTO —‘—>@
THE CONTROL
COUNTER

INCREASE THE
@_, EXECUTE THE | CONTENTs OF THE _.®
INSTRUCTION CONTROL COUNTER

BY ONE

Figure 4-3. Control Unit Operating Cycle

SECTION:

y ’ ‘ UNIVAC 1Il UTMOST

PAGE:

UP-3853

4. The Store Location Instruction

STORE LOCATION - SL

Store the contents of the control counter in bits one through 15 of the storage location
specified by m’. Store binary zeros in the other bit positions of m’. Multiword operands and
field selection are meaningless with this instruction. Indirect addressing may be used.

Example:
i LABEL A OPERATION A OPERAND A (
— m—

(cc) = 1024*

(1)1 =+ 012345 (1) f = 1024*

5. Loading Cover Index Registers

Before any cover index registers are loaded, which is the case at the beginning of a

program, the only storage locations that an instruction may address are locations 0 — 1023.
Since the executive routine preempts these locations, they are not available to the programmer.
However, because of the need to use at least one of these locations until a cover index
register is loaded, the executive routine makes available for programmer use storage locations
0 and 1. The following example shows how one of these locations might be used to load a cover
index register

[V

Example

There are 100 delinquent account numbers stored in storage locations 5120-5219. If the
new account number stored in location 6144 is delinquent, jump to 2000. If not, jump to
1500. Start your coding in 1024.

* Actually binary numbers. Moreover, only the contents of the 15 least significant bits of the final contents of

storage location 1 are shown.

UP-3853

UNIVAC I1Il UTMOST

SECTION:

PAGE:

15

b. Coding

C.

Student Exercise

There are 100 delinquent account numbers stored in ascending order in storage
locations 5120 -5219. There are 10 account numbers stored in random order in
locations 6144 - 6153, Store the account numbers that are delinquent in sequential
locations beginning at 7168. When finished, jump to location 1500. Start your coding
at 1024.

Test

There are 100 consumption items stored in storage locations 5120-5319 in the form:

WORD | DATA

0 NNNNNN
1 00AAAA,

. LABEL A OPERATION A OPERAND \ }
m A
01 1 11 1541_54 T S S S A lln [S W S N W NN SO T S S S i J 1?
]1 J. 1 1 1 1L1x1 I l 1 131’A B R VR S U | l]I i Ll 1 1 { 1 1 l 1 | | I SO S J—| I L[
2 L X 15, 1023, 3 l
L0 1oy |- Tty el Wl VTS W SO S N (T S S SN N S SN T Lot
31 R S 1L1X1 T 11141'1 ! 012121’131 N WS U U G| l [U N W U W S IJ
4 L A 8 , 0,114 A DI !
| U S S S [l [VR WA W S S WA | | S S R S RS Dt S U S SN S B | | 1
5 c 8 . 0,15)
R WY SN DU [N N W S T | l | I W U R W WU S W 1 11 1 F I W S | l | Y W N VRS I N S 1 L
61 U W S | |J1E1 [ST N R R S I9L7l61’131 I S S S S | l RS U NN N G G S | 1_\
L W R S | 1IAX|C‘ l 1 |115L'| i 1]1012111'13J F - i1 III:L]LOO '] 1|l+l]L _l—ll}
81 PR VN W | |J1L1 N T I R T T ISL'131 | N U U U N | l N VN A VN R SR B § l A_/
91 a1 IJL N S S S 47l6 ! 3 T SN B T S S S G S | LB
1 1 1 U S | j S l § U W Y U SR U W S | l § I W U I N S . S | L4) S N W S | (S 1 L]
S W Y VS TN U U SN TS YN S S S N N S SN NN HN SO S SN N S SO W SN N T S N S NN SN N M L(
NS VS T VY VS W WA S U WA W U ST S U W S A YT SN S SR O S l) A U W W U S SR | L}
11012111 lllclwl l 15l212101'l11 i l I TR N Y I S S S l | U | 1 J b1 l L\
11012121 l+l i L i 161114441 Ll Ll | 1 L 1 L L 1 l 11 1 L 1 A 1 1 l L/

UNIVAC |1l

SECTION: PAGE:

UTMOST

UP-3853

where:
N is a meter number

A is a consumption amount

Compute the body of the following table.

CONSUMP TION TOTAL TOTAL
RANGE CONSUMPTION NUMBER OF
AMOUNT METERS
0 - 100
101 — 500
501 — 1000
1000 and over

Store your results in decimal form in eight storage locations. When finished, jump to

location 1500. Start your coding in 1024,

UP-3853 UNIVAC Il UTMOST ¢

SECTION: PAGE:

5. SUBROUTINES

The general format of a program is shown in Figure 5-1. The processing that is done on input items

to produce output items is unique to the program. However, the coding required to advance input and
output items is usually quite standard from one program to the next. This input and output item
advance coding is, consequently, generally written as units and used by whatever program needs them.
These units are called subroutines. Thus, there might be an input item advance subroutine and an
output item advance subroutine.

I I I I
| 'S I PROCESS THE | DELIVER THE |

THERE DELIVER THE | | | INPUTITEM | | |outPuT ITEM| |

ANOTHER INPUT INPUT ITEM TO [F1*] TO CREATE [T+ FROM —-r@
ITEM TO BE PROCESSING AN OUTPUT

: PROCESSED ? } TEM : PROCESSING =
| I | |
| | | |
I I I I
I | I I
| GO TO THE | | I
| END OF THE | | I
| PROGRAM | |]
I I I I
| | | OUTPUT ITEM |
L INPUT ITEM ADVANCE | PROCESSING | ADVANCE N

Figure 5-1. General Program Format

Subroutines are not restricted to input and output item advance handling. Other examples of subroutines
that are generally useful are rounding subroutines, double precision arithmetic subroutines, floating
point subroutines, and so on.

UNIVAC 11l UTVOST UP-3853

SECTION: PAGE:

Nor is the use of the subroutine concept restricted to functions that are useful across programs. For
example, a program may need to do a standard type of editing at several points along the chaia of pro-
cessing. Rather than code the instructions needed to perform this editing at each point at which it is
required in the processing chain, the editing can be coded once as a subroutine. Then, whenever in the
chain of processing it is required to do the editing, the editing subroutine can be ‘‘executed’’. Such a
subroutine is called a common subroutine, because it is ““common’’ to more than one point in the

program.

Subroutines are characteristically executed by means of the store location and jump instructicn.

STORE LOCATION AND JUMP - SLJ

Add one to the contents of the control counter and store the sum in bit positions one through 15 of the

storage location specified by m’. Set the other bit positions of the location to zero. Jump to m’ ¢ 1.
Multiword operands and field selection are meaningless with this instruction. Indirect addressing may
be used.
Example:

LABEL A OPERATION A OPERAND \ ?

rl-_g
SLJ 161'1314111llllllilllilllllxllllllll(

1 Lo 1 i i 1 |
o

(X3) - 1024*
(ccy = 1027%
(1040) i = + NNAN (1040)f = 1028*

The next instruction to be executed is found in storage location 1041.

The general form of a subroutine which is n - 1 words in length and which begins in storage location
m is as follows:

m NOP 0O
m -~ 1
coding to perform
the function of
5 the subroutine.
m - n] *m

Line m of the subroutine is called the return line, line m + 1 the entrance line, and line m + n the exit

line.

* Actually in binary. Moreover, only the final contents of the 15 least significant bits of storage location 1040 are shown.

UP-3853 UNIVAC Il UTMOST

SECTION: PAGE:

To exemplify the way in which a subroutine is executed, suppose an input item advance subroutine has
the following characteristics.

1. The return line is found in location 1040.

2. The entrance line is found in 1041.

3. Lines 1041 - 1050 contain the coding required to perform the input item advance.
4. The exit line is found in 1051 and has the form | * 16,3.

Suppose further that the sequence of coding of the main chain of the program is such that the programmer
is now ready to write an instruction that will ultimately be stored in storage location 1027. The pro-
grammer is using index register 3 as a cover index register, and index register 3 contains 1024. He now
wants to execute an input item advance. Therefore, he should write the instruction SLJ 16,3.

As a result of the execution of this instruction, the contents of the control counter (1027) plus one will

be stored in location 1040 (1024 + 16). Thus, 1040 will now contain 1028. Control is transferred to loca-
tion 1041 (m’ + 1), where the instructions stored in locations 1041 through 1050 will be executed to perform
the input item advance. Control then goes to the instruction stored in location 1051, This instruction

(J *16,3) will transfer control to the address stored in location 1040 (1024 + 16) by means of indirect ad-
dressing. Thus, control returns to the instruction stored in location 1028, the next instruction in sequence
in the programmer’s main chain. A schematic of this sequence of control is shown in Figure 5-2.

SECTION: PAGE:

. . UNIVAC 1l UTMOST UP-3853

A. SUBROUTINE FLOWCHART SYMBOLS

MAIN
P ROCRAM SUBROUTINE
LOCATION LOCATION

1024 1040

1025 1041

1026 v —— 1042

1027 SLJ 16,3 1043

1028 _

1029 L2 (1040)

1030 .

v 1050

J*16,3 1051

Figure 5-2. Schematic of Control Sequence in Subroutine Execution

When on the logical line of flow, the programmer wants to execute a subroutine, he shows the
following symbol.

The name of the subroutine to be executed is written inside the subroutine symbol.

If the programmer wants to flowchart a subroutine itself, the logical operations constituting the
subroutine are enclosed within the following symbols.

logical operations of subroutine —’(
N

The symbol on the left indicates the beginning of the subroutine, the symbol on the right the end
of the subroutine. The name of the subroutine should appear in both the beginning and ending
symbol.

UP-3853 UNIVAC IIl UTMOST |

SECTION:

B. EXAMPLE

There are 100 delinquent account numbers stored in ascending sequence in storage locations

5120 - 5219. Executing a input item advance subroutine with an SL]J to location 2048 will deliver
the address of an account number in 2100. If the account number is delinquent, store it in an output
area. Executing an input/output item advance subroutine with an SL]J to location 2548 will store in
an output area the account number whose address is in 2100 and will store the address of the next
account number in 2100. Start your coding in 1024.

C. FLOWCHART

O~{ o D

LEGEND ADV F o l— @

A~ an account number

D ~ a set of delinquent account numbers

D, - the inth delinquent account number in D,
i=1,2,3...,100

F — an account number found delinquent

PAGE:

[Rev. 1 | UNIVAC Il UTMOST UP-3853

SEC TION: PAGE:
D. CODING
LABEL A OPERATION A OPERAND A COMMENTS

llAAJlllA]JlellJllllllllIllllIlllLllIlllI

J i i . lSleJI i [i 1 1 l*l]L01213l'1 1 lAIDIv IAA [1 L L i i L i I\ 1 l 1

L

3
31 1 i 1 LLIXI 11 I 1 1]I5111*1110l21211l3l 1 i Il 1 i 1 1 l 1 L 1 H 1 Il 1 i i I 11 1 1 I 1 1 1 1 l]
44 o W S LLLx14] l 1 l]I411L |]|0|2I]ll|3

III]lIlllllllllllllllllllllllLll

5 o, LA 8y s A D L i
6, . . ¢ .18 v O YA e e
7o e 283 v b e v v b ey ey by k
8 46 Y8 A e D iy (
9, , , , (S, LJ ., 510200 ,3, ADY, F 1, 00 v o b s ,)
1.0..1.1....l.xl...,..3|:.3.lilLJi.lllnlljllLl|....11LLI|Z
vy hxe 04, 1,019,380 s 080 ey s sy gl Il
{

Vo2 o by aSv 20 b v v v v b v e by gy

i

UP-3853 UNIVAC Il UTMOST l -
SECTION: PAGE:
FE. FLOWCHART FIELD NOTATION
An item is shown on a flowchart by means of a capital letter, either subscripted or not, depending on

whether the item is an element of a set of items. For example, the letter] might be used to represent
a job item.

An item may consist of several fields. Fields are also symbolized by capital letters, but are written as
superscripts to their item symbol. Thus, JN might be used to represent the job number field of & job item,
JC to represent the contract price field of the job item, J& the labor cost field of the job item, |M the
material cost of the job item, and JV the overhead cost of the job.

1. Example

Given a job item of form:

WORD DATA
0 NNNNNN
1 OCCC‘CC
2 OLLLALL
3 OMMMMM
4 OVVVVV
where:

N is the job number

C is the contract price

L is the labor cost

M is the material cost

\" is the overhead cost

Produce a profit item of form:

WORD DATA
0 NNNNNN
1 OAAAAA

where:

N is the job number

A is the profit

Executing an input item advance subroutine with an SLJ to storage location 2048 will deliver
the address of the zero word of a job item in location 2100. Executing an output item advance
subroutine with an SLJ to 2548 will deliver in 2600 the address of the zero word of an output
area for a profit item. Start your coding in 1024.

SECTION:

PAG

o

UNIVAC Il UTMOST

UP-3853

2. Flowchart

(1) ADV P MNempN Ll JC_M_jb_ Vs ph
LEGEND
J - ajobitem
JN —~ the job number of J
JC — the contract price of J
JM —~ the material cost of J
JL —~ the labor of J
Jv — the overhead cost of J
P~ a profit item
PN — the job number of P
PA— the profit of P
3. Coding
LABEL A OPERATION A OPERAND A COMMENTS

2, S L2 0423,,,3, ADY U, il L ey e

3, v v g8 X oy V50922003 0 e L] 1(
4, , , S LYoy, o ,0421,,,3 , ADV (P T T | 1}
5 ., ., JLXx 4 14,1020, 3 Ly L Ll i 1(
6, LA 2, vy N e PN] 1)
7, 4 s abs o A 2,0y 3, C LM e e e N e s PAY l\
8, v DSy A L3 S b e b ey e .‘
9 o oS 4 LA S /
e o SA Ly 2 Y N e e e e \
]lll 1 1 IJL - [U T Tt 1 I Il 1 l 121’131 1 1 i i1 l |- { 1 1 1 | | 1 I i i1l 1 ll l>
TR VT S Y S S U S S S S S AU U N ST S S S SRS N T S S SR WA SNV N S SR S Lo ‘(
L. 4 1 1 1 1 1) WD N S T SR S T T & l 1 S U S S W N T . | I | S VY W S W U N S | I I N (N T (S N N Y | I L)
R YU S S S S VU N VU VN D VAN G S AN U VA HNU0 VLD W S S S ST SAO S S N S S S SO S U W YO S (N OT SO S S S S SR 1\
w020 , o+ Ly, 2600,]y e by v e e e] 1}
11012111 1 I+l J— l 1 4 & LzlslAJsALl l Y W D T U N W | l F U W W R S | | l) D N U P VO W T | 1 I l(
]|012121 1 I+l 11 l 11 1 lzlllolol | l N SO WO W I W Y ll | S N T W W S S | [S N W S S G I | l 11
L0923, oy Ly 2094080 0 L e v b g | |i

SECTIiON: PAGE:

UP-3853 UNIVAC IIl UTMOST ‘

4, Student Exercise

Given an inventory item of form:

WORD DATA
0 NNNNNN
1 OHHHHHa
2 XXXXXX
3 XXXXXX
where:
N is a stock number

H is the onhand quantity
X is other data

Also given a sales item of form:

WORD DATA
0 NNNNNN
1 0QQQQQ
where:
N is a stock number

Q is the sales quantity

Executing an input item advance subroutine with an SLJ to storage location 2048 will deliver the
address of the zero word of an inventory item in location 2100. Executing an input item advance
subroutine with an SLJ to 2548 will deliver the address of the zero word of a sales item in location
2600. Executing an input/output item advance subroutine with an SLJ to 2848 will store in an output
area the inventory item whose address is in 2100 and will store the address of the zero word of the
next inventory item in 2100. The first inventory item and the first sales item have the same stock
number, the second inventory item and second sales item have the same stock number, the third
inventory item and sales item have the same stock number, and so on. Update the inventory. Start
your coding in 1024.

6

PAGE:

UP-3853 UNIVAC Il UTMOST ‘

l SECTION:

6. VARIABLE CONNECTORS

A programming technique based on instruction modification is the use of a variable connector.
This operation is a variation of branching, in which a decision is made to branch between two or
more alternative lines of processing. In a branch the decision and the branch are made at the same
point in the program. When a variable connector is used, the decision is made at one point and

the branch is made at a later point. The result of the decision is stored in the form of the setting
of a switch, or variable connector, which indicates the branch to be taken at a later point in the
program.

A set of instructions that is sometimes used to implement variable connectors is the set of
instructions which manipulate the sense indicators. A sense indicator is similar to the high,
low and equal indicators. It is a two state device that can be turned on or off and whose setting
can be tested by means of a jump sense instruction. The Processor provides eight sense indi-
cators, numbered one through eight The instructions that operate on the sense indicators are as
follows.

SET SENSE - SS§

Turn the sense indicator specified in the AR portion of the instruction on. The number of the sense
indicator to be turned on is specified in excess seven binary code in the AR portion. In UTMOST
language this number is written as a decimal number (8-15). Multiword operands, indirect addressing,
and field selection are not applicable to this instruction.

Example:
1 LABEL A OPERATION A OPERAND A ?
| ———————————— —— - |

At the end of instruction execution, sense indicator one is turned on.

UTMOST generates this line of coding into

i
A/Fs x oP AR m

SECTION:

6

. l ' UNIVAC IIl UTMOST UP.3853

PAGE:

RESET SENSE - RS

Turn the sense indicator specified in the AR portion off. The number of the sense indicator is
specified in excess seven binary code in the AR portion. In UTMOST language this number is
written as a decimal number (8-15). Multiword operands, indirect addressing, and field selection are
not applicable.

Example:
LABEL A OPERATION A OPERAND A
——— ———————— =
A 1 lRlsl 1. Isl I 1 i i 1 1 1 1 1 1 I 1 i Lol 1 1 1 I\ i I 1 1 | 1 L1 1 1 1 l 1
P’A’\/WW\M

At the end of instruction execution, sense indicator one is turned off.

UTMOST generates this line of coding into

I
&FS x oP AR m

0 0 61 10 0 110 0

JUMP SENSE - JS

If the sense indicator specified in the AR portion is on, jump to m’. Otherwise, go to the next
instruction. The number of the sense indicator is specified in excess seven binary code. In UTMOST
language the number is written as a decimal number (8-15). Multiword operands and field selection
are not applicable. Indirect addressing may be used.

Example:
| LABEL A OPERATION A OPERAND A !
m

b3S ey vee e b
UTMOST generates this line of coding ir:ol—v g

l%s x oP AR m

0 0 60 1 0 1 01]0 0 1 0 0

Control will be transferred to location 100 if Sense Indicator 3 is set.
A. EXAMPLE

There are 100 quantities stored in storage locations 5120 - 5219 in the form 0QQQQQ, Add
25 to the first, fourth, seventh, etc. quantities. Add 50 to the second, fifth, eighth, etc.
quantities. Add 75 to the third, sixth, ninth, etc. quantities. Process the quantity stored in
location 5120 first, the quantity in location 5121 second, the quantity in 5122 third, and so
on. When finished jump to 2000. Start your coding in 1024.

UP-3853

UNIVAC Il UTMOST 6

SECTION: PAGE:

FLOWCHART

A partial flowchart for this example is shown in Figure 6-1. This flowchart is indeterminate
at connector one. The first time control reaches this connector, process one should be
executed. The second time, process two should be executed. The third time process three
should be executed. The fourth time, process one. And so on. Connector one must be variable.
This is indicated by subscripting the one with a ‘‘v’’. The connector is then the terminal of a
switch. The poles of the switch are also indicated by connectors, the connectors being identi-
fied by the same number but being subscripted with successive letters of the alphabet. Figure
6-2 shows the flowchart in Figure 6-1 with the variable connector included.

The flowchart in Figure 6-2 is still indeterminate in that it does not show which pole
connector 1v is set to. Setting a variable connector is shown in an operation box. The pole
to which the connector is to be set is written in the operation box and is preceded by a
period (.), a customary abbreviation for ‘‘set’” Figure 6-3 shows the flowchart in Figure
6-2 with the setting of the variable connector included.

i=1 PROCESS 1

|
| |

TO 2000

PROCESS 2 .
i+ 1= —»@
L a +50q, __.@

PROCESS 3

|
|
LEGEND L q; +75>q —“‘@

Q

— a set of quantities

Q; - the ith quantity inQ, i=1,2,3,..., 100

Figure 6-1. Partial Flowchart

6

SECTION:

‘ UNIVAC IIl UTMOST l UP-3853

PAGE: I

Q; + 50->Q;

Q, +75+Q, _.@

LEGEND

Q - a set of quantities

Q; — the ith quantity inQ, i =1,2,3,..., 100

Figure 6-2. Flowchart with Variable Connector

TO 2000

|
M o 250,

A B Qs s0-q,

©

i+ 1= _,.()

@— Jda P Q +75+Q,

®

LEGEND
Q - a set of quantities
Q; - the ith quantity inQ, i =1,2,3,..., 100

Figure 6-3. Flowchart with Variable Connector Settings

UP-3853

UNIVAC Il

UTMVMIOST

SECTION:

PAGE:

C. CODING

o

A

OPERATION

OPERAND

LI | IAA'L“.I,I,..L#JLALA,.“..J......,.fx
2 L L X L, vs, 11023 ,3 b =t Ll N lj.)
3......£5..|14,8.+l..|...Lu-llAlu...l...m.l..ll.ﬂ
4 ., LA | - U R Y T L ‘/
5 00 s o8 33 e e by 11 1k
6......115.,1.1.9.'““1‘17“,3‘1....|......‘..14“41..1(
78S 8 b VA AT S N S S T H Y S S L1 J)
8 , , ., /DA | , , 8, 1022,3 QI + 75 —-=-- QI . || - 1(
LA A B S B UL N P S
10 1, XC | L, 415, 1021v,3 I . qro00 ;. 0 o+ g1 === L
]1]1 | S - 1J1L| y | T T S SR | 144’131 T N N § l PR S T A ST TN W VT A W TN M T L1 |L
112‘ Lo a4 L91716L,l3l , l'|'I0I 1210&01 T e (
13, RS b e b v b Li l\
‘.4.LL..5.5..1...9.....|.......UIL,...H;ll“.....,'/
115| Ly lDLAJ L L ’81,1 . IOJZIOL,.3I . 1QII| Lt AS[< 1-1401”#4 L L IJX
16, v v 03 AR B ARAL A AR SR R SN TR B L1 l{
Vi RS LSRRI RS SR A T S A A S S A Ly |1}\
TS B TR SR LIS AR A L LAl B L el B o A B S R S AN TN 11/
‘.9.,11.L,.11..1....1.9¢'.3.1..L11LHH....1.”..AL.LX
[T 0 Y R U S R AU S T SO S S U W S U T T YA T N T T U YUY S WA O SO A SO WO U llnl/
[B B A NN S S O N N N S S S N S TR S U NN T NN T SO Y A DA A O AU O O L1 J&
T S T S A S S S| P S T G S G W [N VOV YU G G U VY U A U VA VO U VO A W S S T W W M W W l)
100V,9 0t 0 | L0 05900050 v b e b 1J_(
1020 + - |:10‘0A0L01215| T T o
102 1 L|_LC.LWI | , 151212101'1 ll T T L
]lolzlzl 1 l+l 11 l 1 l:lololol°l7151 11 L1 1 l | I 11 1o 1 1 1t 1 1 . | l
11012131 1 l+l l_1 l 11 lslllzlolLJ I N W N O | 11 I 111 | | 11 | I R | I i . | J\
IS T ST S T S | U TR Y Y WSO SN S TV S WUV ST OO0 NN AN [ANY AN S ST VAN S0 WA ST S O U0 W0 M ' |
T Y U S W VWU YV U SN S NN WU O N AN WO O YO U NN N T WY S N TN W N TN TN SO SO0 U A WY N Y U U S M WU |

6 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

Another method of coding this example is as follows:

LABEL A OPERATION A OPERAND A COMMENTS

]l 1 A L 1 1 llel | i I A l3lll i 1 1 I I]I 1 1 i I i 1 1 I A 1 . 1 1 1 I 1 i l " 1 L i 1 I 1 i A I I 1 " l)
21 Lo 41 ALixl I]ISI'L L]L012L31'A3;Ll L4 1 lll i 111 PR E N S NS T ST R WO S S ST SR G S |(
31 PR T 1L|A| | L]121’1 lll012121'13|4L i1 lQlll 171 12|51 i Y |Q||| T R S B LLL)
4 DA 8, 0,15 {
W W WS TN VS SR T SO e | 1 GRS T T N TR U W T | B Y Y i NN T U W S | I I O N [N T S S - I | S TR W VRN TN WO S W1 l Ledd
51 O N | ISIALL Lo 4 181'1 Lo 101’11151) I S l | WY T N VU OSSN S | l § VR U N TS W N W | l 1 1 l\
6 S A 4 , 3,3 . 1B /
) N WS T N Y N N l I I WO I WA VU W SR 1 I 1) § W N SO W T S]) I T OO [T | |) [§ W N T [T N S s 1 l J W S
7| Lo1a g |lnxncl L1 lllsl'L A .011161'131 Loy lln 1 1L0401 171 III S 111 Ty lll L1 A\
81 U T N | AJALJ l [I S S W U N S T | I 131’L3|) D W T | I j S W WY WU SN W N l I SR DU S S S W 1 I L1 1)
9 J

11111[!.1llnlnnll||9|7L61113||llllllll;llllllllnllllln;lljg

-

o

L

=

I

L
g N =y %

1016 I CW 5220 ,1

L1 1 1 1 J l i 1 | S U I S 1 l 11 lllLJllI) S T S | | I | | 11 1 1 | | l 1 Lt
1017 + 0000 7,5

1 | T | 1 1 hd I 1 1 A 1) 1 I] 1 l L 1 1 1 i i 1 I Ll 1 1 i i 1 ! 1 I 1 L 1 1 1 I 1 1 i I L } I
llolllal 1 lLlAl l | U | 11121 1 jllolzlzlllal 11 1 1 l L 1 1 L1 1 11 1 l 1 1 1 1 1 1 J l) S -
101 9 + 000050

1 1 i 1 1 l 1 l 1 i 1 11 1 1 Ill 1 1 llllll 1 1 1 1 1 1 1 l 1 1 1 1 141 1 1 Il 1 1
1020 L A | 1 2, 10118,3 l | | \
1 1 1 4 1 1 1 1 1 4§ | L1 1L {1 J N G |) S I S | .1 1 1 1 1 1 j I N | 1 1 T |
1021 R 000025 [
T T N i O S A G PR Wt Soul Sl [S U U T Y SN Y S OO O WO Y U T U U U O AN N W T N S A0 S O MY SR N B
1022 L A 12, 1020 ,3 \
31 1 L & D I L H A i L L 4 I " . L i I ll W S N | L I A 1 1 I Lo 4l 1 Ll i 'l lll | 1
]10|2|31 TR 5,120 Lo v v v by v v o by v vy by j

UP-3853

UNIVAC I UTMOST ’

SECTION:

PAGE:

D. STUDENT EXERCISE

There are 166 six-word job items stored beginning at storage location 5120 in the form:

where:

L
M
v
P

WORD DATA

NNNNNN

LLMMMM
MMMV V'V
VVVVPP
PPPPPP

U A W NN -~ O

is a jobnumber

is a salesman’s key and may be
1 for salesman one

2 for salesman two

3 for salesman three

is the labor cost

is the material cost

is the overhead cost

is the contract price

Compute for each salesman:

1. The gross sales amount.

2. The number of sales netting $1500 or more.

When finished, jump to location 2000. Start your coding in 1024.

SLLLLL,

UP-3853

SECTION: PAGE:

UNIVAC Il UTMOST |

7. TABLE LOOKUP

Many programs involve looking up information in a table stored in the memory. The technique used to
do such a table lookup varies with the construction and sequence of the table involved. As an intro-
duction to this subject an example table lookup illustration is given,

A.

EXAMPLE

Storage locations 10,240 - 10,639 contain 400 six digit part numbers listed in ascending sequence.
Listed in locations 10,640 - 11,039 are the unit costs for the parts whose part numbers are in the
part number list. Each unit cost is in the form OOCCCC. The unit cost stored in 10,640 is the unit
cost of the part whose part number is stored in 10,240. The unit cost stored in 10,641 is the unit
cost of the part whose part number is in 10,241, The unit cost in 10,542 is the unit cost of the part
whose part number is in 10,242, And so on. Given a sales item of the form:

WORD DATA
0 KKKKKK
1 NNNNNN
2 QQQQ00
3 000000
where:
K is a key

N is a part number
Q is the quantity sold

Compute the total cost for the sales item and store it in words 2 and 3 of the sales item in the
form:

WORD DATA

QQQQTT

TTTTTIT
where:

T is the total cost.

If the part number of a sales item cannot be found in the part number list, jump to 2000. Executing
an input item advance subroutine with an SLJ to 2048 will deliver the address of the zero word of
a sales item in 2100. Executing an input/output item advance subroutine with an SLJ to 2848 will
store in an output area the sales item whose address is in 2100 and will store the address of the
zero word of the next sales item in 2100. Start your coding in 1024.

7

SECTION: PAGE:

) , | UNIVAC Il UTMOST UP.3853

B. FLOWCHART

LEGEND

S — a sales item

SQ — the quantity of S
SN — the part number of S
ST — the total cost of S
CN— the price of SN

U - an updated sales item

UP-3853 UNIVAC Il UTMOST 7

SECTION: PAGE:
C. CODING
LABEL A OPERATION A OPERAND A P
OIIIAAlAlAISILleI]IIALIAAIILALAIll]LJLIIlJJIllIJIII}
v, VX3 .]x oo by ey n}

2I 1 1 A1 1 1 A 1 1 JiJLlJLI A i i 1 I*III0I2A3I'I3I 1 IAID|VI ISI 1 1 IJ;LAL)‘ 1 1 1 1 i

]ASIII*I‘IQLZJZI’lsl T U S A S S N S T SO S S N SN U W S S

1 1.5

L WU R U S S S S U WA T S S S S S S

B, 0 bX

S N Sy

PLLLAILJLlLlAlIIAA'ILl)ll

LA L

unl|‘|0|21]1'L3|||||1||||||1|11|Al|

L

L0 7L
J*l]lolll7

TN U S N VU ST S SO S N B S S

6
S A L 4
8

LAlIIJilIICAIIIAl

3l

i) 1'131 111 IALJ W T WY N S W | i N WD WO S S
L.‘...A.A1J.Lju....11.9.7.61,3...11#4“..LHI..“..)
oy . a ISUA ‘2‘,‘ {1.0||‘9J,.3‘ . 'TIAIEJ.LEL ‘L.OIOJK‘ulPl L |l
0 v vy IBA 2, VOV e e b |)
v vy v o IBRRY 20 v by Y ey e b e l\
1,2, L OR 2, Y06, 3 ‘/
L T S . T T JE T LT L I T e T T
1,4, ., , , ., qc 8, *110718,3 0 vl
15 v vy by e b 3 v b e
]I6I | IR S N U N | IJIEI N IO S T | Ll l 1 12I21'13l 1 1 | B0 W N T W S N | l Lo)
YWhooo v e 1S ey 20 Ve Y7 3 b b)
108y oy vy vy WOE v 1R800 3 v by h

]l9llllAlA115AAllllll'l l]IOI‘I7J'J3_LJJI|4A;llAIlLIAIAJIII

~—_

200 oy IBA 20 V993 b

20 0 v vy My ey e L W3 o by v 1‘1\
2,2, L BA 2, V01,5, ,,3, , SQ X CSN e4-- ST | lf
2,3, L ISIA 2, 088 e ;\
2,4, oy qbA 8 2 VS A(
2,5 , 0, IDSRE B Yy 02 by by

2161A11leianMlj_LLxl1J:l]1011181’£11|l|ll|1|1111|11411

2|7| I S Y T S T leFLl V| 14111*111011141'131 | I | l#lllllllllllllll
2.84“..H.IS‘Aluuéu.llL..3.141,5A.1|L“..L.1.t.‘u.j
Y N L N T e LU L R T T D
30 v v e 3

LU Y S R S VR S S N NN U0 U S S S S T SO UG SN W SN SN N T S U0 N SO Y A O N SO NV S O S S W N

kS

LU S N W S S S YO S0 N VA TS VN O SN VOO WA AN SN T SN S ST N S SR SR S0 AN YT VAT S WO S S S S A U S N N
'A_Llllt.nnln--nnxAnllnl11|11|||1||14A4|_LJ1|1|||)
1|0.1.3.,..H|+..,,“2A8‘4.8|...41....1A...“L‘.|A.A...T\
l|0,l,4,,1,,,|+‘,H‘,2,41“91,,2,,,1,51,,,,ll,,,lllll\lll‘lj
1,0,1.5...,Ulh...‘AAOAO.I..LLI....l.A.A..LUlA.llll
vevé, oo,y Ity 077,717, 7,7,7,70 0 0 o L0 b

IB IOLTLTI ol MI

-
L
-

wWoon7 ooy e 9

LMIIIDIDILIEI) W U N W § ‘ N I S

llolllslIlllll+JLlllI011!lllLAll

ITIOLPI 1 Il 1 S l 1 L 1 1 1

LO V9, o e 0

LA L~ — N

110|210|41111|+111_L 1]10121‘101|L111l|l|Llllllq;llllllll

1,02, 1, oy ey 106,400 e

]lolzlzlllllll+llllllzlllololllllllllllllllllllllllli

lnolzlgl1|l|J|+lll|1|2|o|418|l|l|l|111|4Lllllllxl||11|

|

L—d

SECTION:

7

PAGE:

A ‘ | UNIVAC Il UTMOST UP.3853

The table lookup coding at C. is a specific example of a general technique known as log 2 lookup.
This lookup employs the technique of comparing the middle table argument with the problem argument
to determine in which half of the table the desired value lies. The selected half of the table is then
divided to determine in which quarter of the table the desired value lies. This process continues until
the choice is narrowed down to two values, at which point the desired value is chosen. The name of
the technique derives from the fact that, if the log of the lowest power of two equal to or greater than
the number of entries in the table is taken to the base 2, the result is the maximum number of compari-
sons required to find a specific entry.

The list of delinquent account numbers used in the delinquent account number example presented earlier
in this manual can be considered a table. Lookup in this table was done by means of sequential table
lookup. In sequential table lookup, the first entry in the table is interrogated to see if it is appropriate.
If not, the second entry is interrogated. Then the third. And so on until the appropriate entry is found or
the end of the table is reached.

An example of a third type of table lookup, function table lookup, will be given later in this manual.

8

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST l

8 UTMOST

Up to this point in this manual a restricted subset of the facilities available in the UTMOST
language has been used in the coding of examples. The purpose of this chapter is to introduce
the programmer to the full range of the UTMOST language. This presentation will be made in
terms of an illustrative example, the statement of which follows.

A. EXAMPLE

Given a taxpayer item of the form:

WORD DATA
0 NNNNNN
1 GGGGGG,
2 GGOOO0O
3 PRO0O0O
4 OOAAAA,
5 AA0000

where:

N is a taxpayer identification
G is the income

P is the number of dependents
A

is the deductions other than for dependents

Produce a tax item of the form:

WORD DATA
0 NNNNNN
1 OOOOTT
2 TTTTTT

where:

N is the taxpayer identification

T is the unrounded tax

SECTION: PAGE:

2 ‘ ‘ UNIVAC Il UTMOST UP-3853

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.
Executing an input item advance subroutine with an SLJ to 2048 will deliver the address of
the zero word of a taxpayer item in 2100. Executing an output item advance subroutine with
an SLJ to 2548 will deliver in 2600 the address of the zero word of an output area for a tax
item. Start your coding in 1024,

B. FLOWCHART

0 ADV P ADV T pPN—TN 7.2(PG-600PP—PA)—>TT——®

LEGEND

P —-a taxpayer item

PN — the identification of P

PG — the income of P

PP — the number of dependents of P
PA — the other deductions of P

T — a tax item

TN - the taxpayer identification of T

TT - the amount of T

UP-3853

UNIVAC Il UTMOST

SECTION:

PAGE:

CODING

As has been done previously in this manual, this example might be coded as follows.

LABEL

A

OPERATION A

OPERAND

COMMENTS

-

L. U S 0 U RN S S NP \
2, ., 8Ly L 4 ., 10423 ,3 ADYV P L T L .(
3, ., , . bX Ly Y5 10422 03 L Ly L a1y L 1\
4. ., ., ,SLJ N *1021v ,3 ADV ;T T T) |1{
5, ., LX) L, . V4, 10420,,,3 b T L l\
6 ., LA .. .8, . .1 ,3.,15 .2 (PG - I610AOJPIP1 PA) =t=- TT J(
7, ., , ,,DM | R N T e T L L\
LA I B IV L UL L A R S A uJ
9 ., ., DA Coy W8 ¢2|'.l.5. T vy | L ‘X
'||01 L ISIA. , T |].0|l.3|'|3| T T Ll a1 L 1f
11‘1 L1 lLIAI L L1 |8|'| L |]|o|]|6|'|3| PR T ST N0 WA W A S S N N T O Lol J 1(
1.2 |, DM T N L - T e N LAJ
1131 | — | IsIAl 1 11 1 14I'I 1 Illolllsl'lal) O (O U S | I | S RN TN Y O Y S By | l 1 | I T - | lJ L A
| L. N B P L S N RS MR UJ(
VS5 ., /BA Wb VYYS e 8 a L SR R S| Ll A\
16, LA ‘o 8y 49t PN = TN S B L 1<
1171 i lslAl L | - Jll4l'l L1 l 121’1‘l4l I | l | W N N U N W T - | l 1 U B S . | l 1 J - l\
Ve R R S U SRS AT ST RS S N ST S ST ST S S S A A Lo L J
P G S S S T PN YN N VA W U UV SN S S W TN Y S SH WA (N S ST S WY SN WV SN RN S o 1 — .(
| W AN VO WY S U G W | y IS NS W T N S N GO | J I S N U S W R . L) IR VO SN T WO NS N | l 1 y U D U -t l 1 L1 l)
Y ST NN N N GOV S S S S S U A VY Y Y N N OOV YO N S U N T WY S A TS ST L1 1\
1lolll4l 1 |+l 1 4 4 1§ lolololololol B | Lt 11 l 11 | I N N R T l 1 J I S S l 1 11 l)
llolillsl 1 |+l il | S lol U T) lLlJ B I T T S I | l) Y W U T N S W S | ' L) T S SO N 1 1 L1 l\
1016 +, Doy, ,:,0000200 b sy 4 T L 1/
10v7 0ty v by e O b e L NI I 11&
‘Iolllsl 1 l+l 1 1 | lol R S | l R N U T U U S | l | N T W TS NN N W T | | 1 111) 9 l i Ll l\
l|01119| [S W W 1:1016I0|°lolol) W S WY S N W S I | S W T T S W W I 1 | S S T | 1 1 11 l(
1020 + L, ., ,2600 4l i i iy i aaLl T L ‘}
1021 o - 2548 I T N L. 1(
110|2|2| R L ‘2‘1L0.01 T e L L L LX
1023, 4 | 2048 Y N

8

SECTION: PAGE:

4 } ‘ UNIVAC 11l UTMOST UP-3853

D. LABELS

UTMOST language relieves the programmer from keeping track of relative addresses. Instead a
label is used, A label may be from one through sixteen characters long, through only the first
eight(8) characters are considered by the assembler. The first character may be letters of the
alphabet or decimal numbers. A label must begin in the first column of a line and must contain no
spaces, but must be followed by a space. The example used in this chapter is restated below to
make it appropriate for coding with labels.

1. Example

Given a taxpayer item of the form:

WORD DATA

0 NNNNNN
GGGGGG,
GGOO0O
PPO0O0O
OOAAAA,
AAOO00

G b W N

where:

is a taxpayer identification

N

G is the income

P is the number of dependents
A

is the deductions other than for dependents

Produce a tax item of the form:

WORD DATA
0 NNNNNN
1 00O0OTT
2 TTTTIT

where:

N is the taxpayer identification

T is the unrounded tax

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income.
Executing an input item advance subroutine with an SLJ to the label FRD will deliver the
the address of the zero word of a taxpayer item in the storage location labelled FILEP.

Executing an output item advance subroutine by means of an SL] FWR will deliver in
label FILET the address of the zero word of an output area for a tax item. Label the first
instruction in your program to be executed with the label START.

UP-3853 UNIVAC Il UTMOST 8 :
SECTION: PAGE:
2. Coding
LABEL A OPERATION A OPERAND A COMMENTS
slTlAlRlTl leLl I N N Y W S | l]l_._L - IAL W N TN W S W S S l | VS W W WS VS W W Y l 11 U S T S 1 l § W W W S
Y S W |J}Lx4 | 434'4 L]l FURTU USSP URE WS N WA TN W SN NS VA T S S S S S SR SR oo by
c l. i1) xSALn'lI S SN T B | |*|K|]|’131 1 QLAJDIVA IPI) S N T . lLLl | - § VO W W Y l § WS I W S W
TR T N W | |4L|x1 | 1]151 -*lKlzl'lsLl PR S Y WA U WU N SR Y A ST S MO U AR I ST N R L(
il d I L i ISALIJI il l L l i\ I*IKJ3I'131 1 1 L IAIDIv ITI Ll Il) I Y l Lo, A L i i d I N J
T T S R T le‘ | l]L4A'l*l_KL4l’|31 P SN TR U S YA D WO ST R WA SN N SO W S ST U I N ST Lk
RS W W W S JJ-¢A1 | 181’1 131’1 1151 S S S S 121 |(1 lPlGl 16 OAOLPIPI L Al 1)1 il B JTlTl l)
§ S U WO T | lDIMl l J DR R W B | |K|5|'13| | Y W N T U SO S S | l) I T T S S N S T | l 11 F I T T l F I S S L\
BN WO NS W S B | 1Dlsl | |6|'| |5|'|l.51 TSI TR T N WY SR WY G I IS VY TS (N U N SUU SN 1 l 41 L4t l W N 1/
I & i} Il Il 1 IDAAI I o — 161’ I2L'lllsl . l) I l Akl I dedd l 4 I J. 4 1 ;Ll 1 - A A
| I OO [T N | lslAl | - |6|’| |K|7|'|314 I Y S W N T U | l U T S TN N G N S | | Ll B W Y W S | l S B | L/
L1 LA L 8 K8 3 v b] [R B S l\
1 1 1 i 1 I S T | IJ A 1 i IKI7I'I31 1 L i 1 1t 1 l L1 1 i A | I i1 l 1 1 1 1 Il . A l 1 i.L 1 L)
i W | lslAl | |41'| LKl‘lol'lsj T I T N U I B | | P SR N R i N B T I S 1 I N 1&
. dd L 1 IDIMI I Il I I 1 I IKI6I'I3I I L I A A 1 Il L 1 l 4 1 A 1 L 1 I\ 4 4 ' L 1 L I L A A] PR 1 " L_)
B W W U T | LDAAI 4 161'1 1K|]401'134L1 PR S T ST WA ST W AN U N N WY WA WU S S S B O [R E S W S 1(
R T U W | anAn | lleL lol’ulasl [I;LPINI iy I 1T1N| [TR S ool L)
S W S N R I | ISIAI | 1114|'|21’|]|4| PR TN NS T SN0 Y W WA TS Y SN SO TN WA N S WY S A N W I T | l . J
ol AT S ST S ST S S S S N AT S AT ST RN WY NI [I B AR | L)
K| .II Il I 1 L 1+l 4 l A il lFJRlDA I A l b i il I L A 1 A 1 l A 1 1 i Lk R ‘ | - - i i 3 b l 1 4. A 4 l\
K|2| [| PN |F1I|L|ELP1 PR T G T YOO S T OO S T N WA S SO Y WA W0 VA S S WY [R ST B S R l)
K3 oot b R e a s b i L [N B 11&
K|4| AR LSRN N lFillLlELTl PR TS T TN VAN WA O WA T N U0 VRO T U D S S0 N OO N O PRI S SRR BN 13
KS v e by 42®6,90000) b e IR U B R 1{
Kl6| _— L 1 J+1 A l Il Il lol A i PR e l#l il § S S N U T l _— 1 1 A 1 L — l - N d I\ 1 l ¥ A IJ
K171 TSNS S N R 1041 P S G U NN S S S TN N ST OO WO W N O T W ST S S S U S PN S S RS S L(
K18| cr v ot |:|010|°|o|210| TN U W S WY WA W N N VY T N W S B SN AN O O FR R T W N G S S l\
K9 v v v oty vl 0420000000 v b e s L R S U B S L(
Klllol F S | l+l Il | r | 1°| | S S P W1 | F IS W W N N W I S | l | S T TR U U N W Bt l I U B U T | l R L\
[N TN VNS YOO SN SN U WU VAN VNS VO VAN N VN CRNT VNN S A0 VA SN S ST SO ST 0 WA T (N OO0 S S S W MY A A AU LllullLlll)

8

SECTION:

6 ‘ } UNIVAC Il UTMOST UP-3853

PAGE:

3. STUDENT EXERCISE

Given an input item of the form:

WORD DATA
0 NNNNNN
1 L0AAOQO
2 OBBOOO
3 OCCOo00
4 ODbDO0O
where:

N is a key

A is a quantity

B is another quantity

C is a third quantity and has a minimum value of .011

D is a fourth quantity produce

produce an output item of the form

WORD DATA
0 NNNNNN
1 OOEEEE
2 FFFFFF
3 GGGGGG
where:
N is the key
E = AB
F - AB
.9C
G-AB-D
.9C

Executing SLJ FDR will deliver the address of the zero word of an input item to FILEI.
Executing SLJ FWR will deliver in FILEO the address of the zero word of an output area
for an output item. Label the first instruction in your program START.

UP-3853

8

SECTION:

UNIVAC 11l UTMOST |

PAGE:

DEFINITION OF TERMS

A line of UTMOST coding consists of three fields, a label, an operation, and an operand. Labels
have been defined above.

The operation is the second field on a line. Examples of operations are the mnemonic op codes
of instructions, the plus or minus sign of a constant, and the ICW of an increment and compare
word. An operation can contain no spaces within it, must be preceded by at least one space and
in general, must be followed by at least one space. The plus and minus operations are the sole
exceptions to this last rule in that, if the programmer desires, the operand of a constant line
can immediately follow the plus or minus operation with no intervening space.

The operand constitutes the rest of the UTMOST line. An operand is made up of one or more
expressions, the expressions being separated by commas. An expression together with its
following comma can contain no spaces within it. However, if the programmer so desires, spaces
may be left between the comma of one expression and the beginning of the following expression.
The last expression in an operand has no comma following it.

OPERATORS

All expressions written thus far in this manual have consisted of one unit. The following are
examples of units taken from the above coding.

C1

: 060000

UTMOST allows an expression to consist of two or more units connected by operators. The
operator describes to the UTMOST assembler how the units making up the expression in
source code are to be combined to form the expression in object code. For example, ‘“+’’
an operator. It tells the assembler to form the object code expression out of the arithmetic sum
of the source code units.

is

To clarify this explanation, consider the label K5 used as the address of the first DM
instruction in the above coding. In transforming this source coding to object code, the UTMOST
assembler is going to substitute for K5 in this DM instruction the relative address that it
assigns to the constant—:060000.

Now consider the expression K5 + 3. This tells the UTMOST assembler to arithmetically add
together the relative address it assigns to the label K3 and the binary equivalent of the decimal
number three. The result will be the relative address assigned to the label K8. Thus, in the
above coding the expressions K5 + 3 and K8 are equivalent. Consequently, in this coding the
instruction LA 8, K8, 3 could have been just as correctly written LA 8, K5 + 3, 3.

Other operators will be described later in this chapter.

8

SECTION:

g | 1 UNIVAC IIl UTMOST UP-3853

PAGE:

G. THE USE DIRECTIVE

Instead of the programmer specifying the cover index register in instructions addressing the coding
itself, the USE directive may be employed. A USE directive has the following form:
USE e1 , ezy 8,3, ...

where USE is the operation, and e, €, €5, ... the operand. The expressions €, €, €4, 0.
s
are index register numbers,

The UTMOST assembler treats the USE directive in the following way. It interprets the directive
to mean that the next 1024 lines of coding immediately following the USE directive are to be
covered by the first index register specified, that the next 1024 lines of coding are to be covered
by the second index register specified, that the next 1024 are to be covered by the third index
register specified and so on. On the basis of this assumption, the UTMOST assembler will insert
the proper cover index register specification into the instructions addressing the coding itself.

In addition to causing UTMOST to insert cover index register specifications, the USE directive
also causes the executive routine to properly load a program’s cover index registers before turning

over control to the program. Consequently, once a USE directive has been given, no further concern
with cover index registers is necessary.

For efficient index register use, it is recommended that in writing a program, only one USE direc-
tive be used to specify cover index registers for coding.

The USE directive is an assembler directive. It is a communication between the programmer and
the assembler. As a consequence, although it takes up a line of source code, it will not cause the
generation of any lines of object coding. It is, instead, absorbed by the assembler.

The following is coding, incorporating the use directive, for the example being used in this
chapter.

UP-3853

UNIVAC I

UTMOST

SECTION: PAGE:
LABEL A OPERATION A OPERAND A COMMENTS
v 1 USE R B Low v vy b
SATJAIRITA 1 A - l ASLLA Jl i 1 I 1 l*lKIll L 1 IAIDIVI IPI 1 1 l 1 1
RS W N WO WU S R T | Alen 1 Alnsl'n l*lKlzl 1. i | T B 1 I L1 14 l VU L l
1 1 1 1 1 1 1 il I llelJI 1 1 I 1 I.IKI3I 1 1 lAlDLvl]T 1 1 I 1 1 1 1 1 I . l
A Il A A L D, l llel 1 A114l'l l*lKl4l Il 1 l 1 i 1 L 1 L 1 I 1 L 1 L l A Il 4 i
) I G NS S S S T S 1 I 1L|A| Il |3A'| 1 131’1‘ 51 1 |'121 l(l ‘PIG = |61;0¢°1P L 1PLAi - ITATL
i i 1 L 1 1 1 1 1 I IDAMI 1 1 1 I 1 IKISI 1 1 1 l 1 1 1 1 1 1 1 l 1 1 1 ' 1 l A 1 A ll
1 1 1 1 1 1 1 A1 l ADISL 1 I6A'I L Isl'l‘lsl i l 1 i 1 i 1 1 1 l 1 1 1 1 l 1l 1 1 l}
PR S S R SRS | JDlAl It 16"1 L 121'11451 L | DS S S S S | 1 | ol [1 l\
L i ! 1 J s A 1 I ISAAI A I6 I'] s lKI7l 1 L L I Y W NN N | L L L I L 4 A Ll A 1 A l\
1 1 i 1 1 1 A J i I 1 Ll AI 1 LB 't l L 1 Klsl 1 1 1 l 1 1 1 i . 1 l 1 1 1 1 1 l 11 L 1/
TS A AT SRR L AL M IKL7I L Lo 14y 1 | g | Loy l\
AL 1 A " 1 T T o l JslAl i l‘l’l i IKA‘IOI 1 i I 1 1 1 1 i A 1 ‘ L 1 AL 1 A1 L 1 1 - 1\
L DM T L | R S) | o1 | Lt l/
I S S S | lDlAA L 16|’| Il lKl‘lol I | PR S ST Y L L N hed d 1
Lo LA 801, 4,0 415 (PN 11T T TLN L 4y | Ll |
TR T WS S B S N | 151A1 ! 1] 4[' 121'1]141 [| 1 | L | L1
i START \
T S S I T 111 I B S R A S | N 1 [| T |
K1 . F R D)
I I N A N S A A A S| [Lto1 Ly vy 0y 1 | I L L4 |
K LA N el e
K|3| [| l+l - |F|w|R| | - l 1 1 1 1 1} 1 l A1 11 l TR - l/
K14| [S A | 1+1 ST IFIIILIEITI Il 1 L) N N T T | i l - Lo | U - L
T - :
K| YR SN S U SO S W S I R S B 1 |°|6|0|0|0|°| 1 boyva 10 R vy | L1 |
Kl‘l RS T RS |01 | T R R | R I | - | L1
KI7A 1 L i 1 L A [l+l 1 1 lol l A 4 L A 1 1 1 l i i 1 1 L L L L 1 L L L I 1 1 L l\
K 844 1.1 1 1 1.1 l l’l 1 Il 1 lololololzlol 1 l 1 i} 1 1 1 1 1 l i 1 i 1 l — 1 J.{
K9 . : 000000 \
T T S S N SO ST S S S T i MR L Lo vy 1y L [I I |
Kl]loL P T B SR |0| | RT S S Loy vy g i | | (R l}
1 1 1 i 1 1 i 1 1 I J-— 1 1 1 | I 1 1 1 I 1 i 1 I L i 1 i 1 1 1 I 1 L 1 1 l U L/
F TN VO N R S S RV S NI B S S | I ! A | [L J&

H. STUDENT EXERCISE

Code the previously stated student exercise using the USE directive.

8 10 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

I. INDIRECT ADDRESSING

If the UTMOST assembler encounters a source code instruction addressing a line of coding
not covered by a USE directive, it will automatically modify this instruction to use indirect
addressing and fabricate an indirect address control word to effect the proper addressing.
Consequently, in writing a label as the operand address of an instruction addressing coding,
there is never any need to worry about whether the label is covered or not.

The following is coding, taking advantage of this indirect addressing feature of the UTMOST
assembler, for the example being used in this chapter.

1 LABEL A OPERATION A OPERAND A COMMENTS

—

T ST L L U RS S R S S S S S N S SR S |

SJTAAIRLTI L L,SLJ .. .1, . ,FRD L JAD Y P e l’
oy it gy e o V5, FILEP N T l\
I Y RSN llelJ| N LA L1 1A1D|vl T PSS S T T SO YA VAN S SO AN SN VA AN Y ST WA SO0 W0 W W' 11)
ey g b X 14y, FVLET .t,....,”.l...‘..,,.1....U...|/
T L‘L‘A‘ L 181,1 N 13|'|l|51 L I2I l(l ‘PIG‘ = 16;0|0|P|P1 =y lF’ Al 1)‘ et 1TITlT\
N BEL L. A RN Lli.....1..11,....L..|....1,..L1)
I RN BLE LIS RS TR A T T S S R O SR SRR S ST A S A S A A l\
..JH..,A1,°.A......‘.llu.r.'.5..‘.1......l.Al...L.A...JJ,..L....I(
..‘U,..AJAA...,.“.:ILJ&..UL.l..“...,.1.......A.l.“.u“.ﬂ
P W S TN T ST | .L.An P T ' .s.'| 1 |K|‘| RS U U U T SN0 G U YN Y SO S SN ST W SN S ST S SO VA T U WA AT N US Y S S S |(
lllLJllllllDlMllllllllllKl3ll|III|Ijlllllllllllllllllllllllllll')
J.A...AU|A5.A...ALAL'L..K.‘..‘...M...,..l41...4_L....L,U.,_UL.11
Y T (N VO T T N | l DIMI | I TR S S | l | IK12I B IS W S | Ll) TSN T W Y N T | I) T N TS N T N '] l | U S S O N T S | l\
1...|.\‘xl.D.A...|‘.6.llx.K|6....x.l.,....\..l.........l.x......;l(
U W WY WY S SN T T S | l lLlAl L1 1 1 lalll lo 'IIISIJ L1 IPINIJ Jo.1 1 lTlNl I) I N T N T N ' IALJ) I Y S S T N T | l

J I S N R SN N N | l ISIAL) I S L]14l'L42111‘I‘lJ 1 1 l W S S . 1 111 l | TN T WY T N TR W - | I) I W N SO U S N l

) I |) U W S N | LlJl) I S W 1 1t l LlslTlAlRlTl 1 l | S W S T | 11 l 11 1) I 1 L l 1 - | I I T B | l

K o e bt 15%1%,9,9,9,9 L TR T T W T N U Y S Y U W WO B A O l\
K.z..L,.AL,l.h.A..‘ﬁ.IL...“...LL..“..Ul.....t...L.J..liu.l/
Klsllllllllll+lljllll01 l|IlllLJllllllll]llllllJ_Llllllllllllllll

Ki4l | W S T T S W 1 l |+l 1 4 (1 4 I:lololololzlol B | l § G R N T W T T B | I N WO U S E N VO | I | RN U N O T N | I\
KS o v vt ey 47,990,0,000, oo b v v v b e v e b vy

KLéllllIIllll*lllljllollLllJlllllllIlLllILllllIJlllllIlllLllllll

J. STUDENT EXERCISE

Code the previously stated student exercise using the automatic indirect addressing feature

of the UTMOST assembler.

UP-3853 UNIVAC Il UTMOST 8

11

SECTION: PAGE:
K. LITERALS
Notice, for example, the following coding from the previous example.
LABEL A OPERATION A OPERAND A >
1) T - | l;lDlMl L l 4 lKL] ' 1 Il 1 1 ! l 1 1 § I ! T | i | l 1 1 1 1 1 i 1 1 1 l
i W U S W VR NN T 1 I H U WA U N S | L1 l Ll | L1 - l N 1 1l L1 I tS
N | 1 1 1) — 1 l 1 i1 1 | I | T l 1 1 1 1 L 1 1 I | - 1 1 1t 1 1 1 l l{
1 1 L 1 | U lJ § I N W S T | i1 l i1 | IS N S I R | l 1 1 | 1 11 i 1 i 1 l}
KL]l - Ll L_l Ll l 1 l:lol6lolololol I A 1 Ll | S L, I el) e d ol ! . | I LS

Coding in this form requires the programmer to create a label for the m portion of an instruction,
and then, in a separate section of coding, write the label and the desired constant. UTMOST
language simplifies this process by means of literals. A literal allows the programmer to write
the desired constant as the m address. This is done by enclosing the desired constant in
parentheses. Thus the above coding would appear as follows.

L1 1 1 a1 11\

1 i) S W U | i l i

In addition, if the literal has a plus operation, it is not necessary to write the plus. Thus, in the
UTMOST language the following two lines are identical.

L1 1 4 1 lLlAl L1 l 18111(1‘&:40L010101210|)1 j S T G S | l L1 1 1 [N N N N | I i
Co0o0oy LA) 08, G:0,000,02]10) 0y o by g | J

In a similar fashion, if a literal is used to write the increment and compare word for an IXC instruc-
tion, the operation ICW may be omitted. Thus, the following two lines are identical.

1 1 IIJ_XLCL l 1 i 181’|(l|lclwl ILJILMLIJTI 'J]l ol)l I 1 1 1 I’ 11 1 1 Ll
¥ S D N N | l|1x|C1 I o 181'1(4L1|IM1|ITI’11101)| J I 1 I 1 1 1 1 1} 1 L4 l Ll
e e T —— S |

8 12 UNIVAC IIl UTMOST UP-3853

SECTION: PAGE:

When it encounters a literal, the UTMOST assembler will generate the constant described by the
literal, place it at the end of the programmer’s program, and effect the proper addressing. In handl-
ing literals, the assembler does not create duplicate constants. For example, if the following two
lines appear in a program:

A1

T T LleAl 1 l 11 181'1(1:|010lol110101)l) S W T T | I I N NS N T | L1 | I l(
Lnll11D1M11llLJ(l:JoloLoL]lolol)l11111111111111nllll)

MMWW—M

the assembler generates only one constant of + : 000100 and inserts the address of the storage
location in which this constant is stored in the m portion of both the LA and the DM instructions.

An expression that is a literal should not have anything outside the parentheses.

The following is coding using literals for the example being used in this chapter.

LABEL A OPERATION A OPERAND A COMMENTS

|USE | 3,1

VY W Tl Bt

START . (SLJ | FRD L,y ADY P

oy ey e ® VS FVLEPR e e e e ey
N L L T LA L T L L A L T T |!
......A..|'-.X......'.4.:|AF.'.'-.E.T..UL..._.,..411..1.“.,11...1....Lf
llllll;J;LLlAA L ll81,l L3 VS, Ly l(l |P G| |'|6|04L°|P|P1 cGPAL D) e e .TlTII
T L L T I S N L T T l()
T W OO U TS N SR S IDnsn 11-461’1 | 151'11151 PRV U TN YOO YN AN S T W S S ST ST S U SO0 YT S S MU SN0 S 0 W W U0 W0 AT |
ew v 1PA L S 2 NS e b e Y
NI LSRN IV TN BT U R S S S G S SRS |
TR U (NS SR W NN S W N lLlAl Alllal'A I l(l lolglololzlol)l 11 | 1 1 W G ¢ l L1 11 1 1 Jol l 1 L1 F OO WS S S | ll
) S N W T W U S 'l IDIMI L1111 l lKlzlllIlllllllllllllllllllllllllllll]llll
.........15.A......4.'.|.K.4.A.....|.....A.A.ll..‘.t...I.LLJHL.AI\
Ll 1t 1 1 1 1 1 [DIMI) Y S T | JALI JKl‘l 1t) 111 l I N N TR RO T O G | l) N N T I O T | l S W I N T U S T 1/
by 0A S KA e]
Lo a8 A B e Sy PN TN b e]
) I U N T W S W W | 1slAl) U S | 11141'1 121'|1I4l | S l I U IO N S T T T 1 I I T Y T N T S 1 1) I S W R U T B | l
) VN N W N W S T | 1Jl | S T T T N | I lslTIAIRITl 1 JLJ B [T T W S U N l) T U N Y R O W | l) S W DU SO0 N N S §

L. STUDENT EXERCISE

Code the previously stated student exercise using literals.

UP-3853

13

SECTION: PAGE:

UNIVAC IIl UTMOST l

M. THE END DIRECTIVE

Another assembler directive is the END directive. The END directive is a sentinel that tells the
assembler that the last line of a program to be assembled has been delivered to the assembler. The
label of the first line to be executed in the program must be placed in the operand of the END direc-
tive. Thus, the previous coding should be followed by the line.

-—

LABEL A OPERATION A OPERAND A)

END (S TART

Being a communication between the programmer and the assembler, the END directive, as a con-
sequence, does not cause the generation of any lines of object coding.

(Note: A separately assembled subroutine does not have an operand entry in the END

directive.)

LINE CONTROL

To the UTMOST assembler a line consists of a lbel, an operation and an operand. This
assembler line is to be distinguished from the 80 character positions that constitute a line on
a sheet of UTMOST coding paper. This later type of line will be referred to as a coding line.

In general, an assembler line begins at the same point as a coding line. The assembler moves
from left to right along the codingline and picks up characters one by one until it has isolated

a label (or determines that a label is not present for this line), an operation, and as many
expressions as are called for by the operation to constitute an operand. The next space
character that the assembler encounters on the coding line constiutes the end of this assembler
line. The assembler then goes to the first character of the next coding line to begin construction
of the next assembler line. Thus, the assembler will not attend to any characters written on a
coding line following the space that terminates the assembler line. The programmer may use this
unused remai nder of a coding line to write any comments he wishes.

If the assembler reaches the end of a coding line before it finds all the expressions required to
make up the operand of an assembler line, the assembler gives the remaining expressions a

value of zero. The programmer can cause the assembler to consider a coding line to be terminated
at any point along the line he wishes by writing a ‘‘period’’ (.) followed by space. When the
assembler encounters this ‘‘period-space’’, it considers the coding line complete and goes to the
next coding line to begin construction of a new assembler line. The only place this device cannot
be used is in the middle of an alphabetic expression, since in this case the assembler assumes
that the ‘“‘period-space’’ is part of the alphabetic expression. Thus:

rAA

will not cause termination of an assembler line.

If the programmer cannot write everything he wants to be considered one assembler line on one
coding line, he may terminate the first coding line with a ‘““semicolon’’ (;) and continue writing
the assembler line on the coding line that follows. Thus, the following two assembler lines are
identical.

8 14 ' l UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
LABEL A OPERATION A OPERAND
—_— — —_—
LL|1N1E|]1 I S B § | lLlAl 181'1(1:1010101012101)1 I l 11 1
LlllNLEl2l | I N | PR ILIAI 181'L;J I S W NUNUE SR SN N N | l TR |

The only place this continuation mark cannot be used is in the middle of an alphabetic expression.
Thus:

will not cause continuation to the next coding line.

O. OTHER UNITS

If a ‘“dollar sign’’ (§) is written as a unit of an expression in the operand, the UTMOST assembler
will assign to the unit the binary value equivalent to the address of the storage location in which
the line including this unit is ultimately stored when the object program is executed. This binary
value is referred to as the present value of the location counter.

LABEL A OPERATION A OPERAND A)

Presuming that at object time the line labelled LOC is stored in storage location 10000, this loca-
tion will contain the binary equivalent of a decimal 10,000 right justified in the word and preceded
by binary zeros.

P. TWO WORD CONSTANTS

A two word constant may be generated by placing TWC in the operation and the constant in the operand
The assembler will generate the value of the operand, right justify this value in two words, fill with
binary zeros, and assign the address of the first word to the label of the coding line. Both words will
contain the same sign. For example, the line:

LABEL A OPERATION A OPERAND A
| — — — — — —
ZIElRlolIIJCTJnglleJIIIJAIIIlllllllilllllll]ll
WWW\/\NV

8 15

SECTION: PAGE:

UP-3853 UNIVAC Il UTMOST

will generate a two word constant of binary zeros. This constant could be loaded into AR’s 8 and 4
by means of the following instruction.

A two word constant may be written as a literal. For example, the following is equivalent to the above
line of coding.

Lll_LlJLlllAlnl

LA 41121’|(|T|wncl

i S 1 | | I |

A floating point number may be represented in a unit by including a decimal point in the decimal
value with TWC. The object code value will be in excess 50 floating point format with a ten digit
mantissa and a two digit characteristic. For example, the line:

lllllllJLlllllllllllllllllllllilllllllll

FJLlolAlTl_l LlelCI 1: I3J;1]l4l N | I - N U S I N W | l | I S W S | L1 1 l J_)

,\/_/_,v—\/\/\/‘\/\/\,»d

will cause the assembler to generate the following decimal digits:

51314000000
/\,\/‘/\
excess 50 normalized
characteristic mantissa

(In standard floating point notation, this is the value .314 x 10'). These digits are stored in two
successive storage locations. The label assigned to the source code line is equated to the address

of the first of the two words. Thus, this floating point number could be loaded into arithmetic registers
8 and 4 with the following instruction.

1 LABEL A OPERATION A OPERAND
=——-—-—— — =
1 1 1 lLlAIJg l]l2l'lF1LlolAlTl+l]1 I A 1 I | 1 I i I l i i 1 i1 1

A floating decimal number may be written as a literal. For example, the following is equivalent to the
above line of coding.

8

SECTION:

16 l ‘ UNIVAC 11l UTMOST ‘ UP-3853

PAGE:

T T lLIAl 1 lllzl’l(llelCl I:I3L'-I]|4l)l I N N N N | l | S WY N N T N N S | [l<

Q. MULTIPLE WORD CONSTANTS

A multiple word constant of a maximum of 78 alphanumeric characters can be generated by
enclosing the characters in apostrophes. The resulting object code will be left justified
in a sequence of words and will be filled with binary zeros to an integral number of words.
For example:

LABEL A OPERATION A OPERAND A }
”‘LHILITII IPILAEI l‘ lTlAlxlAlclolDlElAlAIAlcl UASlTlOlMIEIRlAlctoIDlEI.l 1 1 1 1 l T)

The label of a multiple word constant is associated with the zero word of the series of words
generated in object code.

A multiple word constant cannot be written as a literal.

R. OTHER OPERATORS

The arithmetic difference operator (—) may be used to subtract one unit from another. For
example, the line:

+ 123 45-617829 e
|||11|1111111111111A111111||1|||llll|

5 ——

would generate a binary 5556 right justified in a binary zero filled word.

UP-3853 UNIVAC 11l UTMOST 8

SECTION: PAGE:

17

The arithmetic product operator (*) may be used to multiply one unit by another. For example,
the line:

will generate a binary 151272 right justified in a binary zero filled word.

The arithmetic quotient operator (/) may be used to divide one unit by another. The resulting
unit will be the quotient of the division. The remainder is dropped. For example, the line:

Llll+ll3L3l/lzlljllllLllllllllJlllllllIIJllllL_(

— 1
—

will generate a binary 16 right justified in a binary zero filled word.

The covered quotient operator (//) may be used to divide one unit by anothet. The covered
quotient is defined as follows.

A//B= (LA+B-1) /B

The result is as follows.

1. If arithmetic division produces no remainder, the arithmetic quotient and the covered
quotient are the same.

2. If arithmetic division produces a remainder, the covered quotient is equal to the arithmetic
quotient plus one.

For example, the line:

11 Ll+l l3l3l/l/lzj | I O N T TR N S | J VRN TSR T OV NN N T T | L4L | S N R W T | I J_)
\/\W\N\N)

will generate a binary 17 right justified in a binary zero filled word.

The logical sum operator (+ +) may be used to logically add one unit to another. For example,
given the line:

SECTION:

PAGE:

18‘

The code for ‘A’ is 010100
The code for 3’ is 000110
Logical sum 010110

‘ UNIVAC Il UTMOST

Consequently, a binary 22 will be right justified in a binary zero filled word.

The logical difference operator (— —) may be used to logically subtract one unit from another.
For example, given the line:

The code for ‘V’ is 111000
The code for ‘T’ is 110110
Logical difference 001110

Thus, a binary 14 will be right justified in a binary zero filled word.

The logical product operator (* *) may be used to logically multiply one unit by another. For
example, given the line:

The code for 'V’ is 111000
The code for ‘T’ is 110110
Logical product 110000

Thus, a binary 48 will be right justified in a binary zero filled word.

The positive exponent operator (* +) may be used to generate a two word floating point
constant in excess 50 notation. A * + B is equivalent to A * 108, For example, the line:

LABEL A OPERATION A OPERAND A
Lot |:41_]lon' IOJ*1+1:L115L PRV B S S T S N S SR ST U SN SN ST EA ST B S S T | 1
W‘W T ——— W\/\-’J

will generate the two word constant 671000000000.

A* — B is equivalent to A * 10-B. For example, the line:

UP-3853

UNIVAC IIl UTMOST 8 19

SECTION: PAGE:

will generate the two word constant 491500000000.

The equals operator (=), the greater than operator (>), or the less than operator (<) may be
used to compare two units. If the condition specified by the operator holds between the units,
the result is a binary one. Otherwise, the result is a binary zero. For example, given the line:

! i 1 l+l IAIMIOIUlNlTI=I7I018131 L1 l 1 IO | 1 i 1 1 1 I 1 — 1 1 1 | W T l A_)

If the binary value assigned to the label AMOUNT is equal to the binary equivalent of the decimal
number 7083, a binary one will be stored in the word generated for this line. Otherwise, a binary
zero will be stored.

The mode of each unit in an expression can be different. One can be alphabetic, another decimal,
another binary, and so on. As the assembler evaluates each unit a determination of the mode of the
result is made. The determination depends on the operator and on the modes of the units. For pur-
poses of making this determination, the operators are grouped as follows.

GROUP OPERATORS
A = > <
B +4+ —— *%*
c + = * /)
D ¥4 ok _

The following chart shows the mode resulting from the combination of two units with an operator.

MODE OF OPERATOR MODE OF MODE OF
FIRST UNIT GROUP SECOND UNIT RESULT
Any A Any Binary
Any B Any Binary
Binary C Binary Binary
Binary C BCD XS-3° Binary
BCD XS-3 C Binary Binary
BCD XS-3 C BCD XS-3 BCD XS-3
Any C Floating Floating
Floating C Any Floating
Any D Any Floating

SECTION:

PAGE:

So far in this chapter, all examples of expressions made up of units connected by operators have
consisted of two units connected by one operator. However, there is no limit on the number of
units and operators that may be combined to form an expression. For example, the following is a
legitimate expression;

9 -2%*3

With an expression involving more than one operator, the question of priority of operators arises,
For example, in the above illustration, is the expression nine minus the product of two multiplied
by three, or is it three multiplied by the difference of two subtracted from nine? To assist in re-

moving this ambiguity, the UTMOST assembler assigns priorities to the operators as follows.,

PRIORITY OPERATORS
1 ¥4 ok _
2 * o/ //
3 + =
4 * %
5 4 — =
6 = > <

The priorities are listed above from highest to lowest. Thus:
9-2%*3

is nine minus the product of two multiplied by three.

The above list indicates that several operators have the same priority. For example ‘“* 7’7 |
““/? and ¢“/ /> all have priority two. This fact raises the question exemplified as follows.
What is the following expression?

4*5//2

Is it four multiplied by the covered quotient of five divided by two, or is it the covered quotient
of two divided into the product of four multiplied by five? To remove this ambiguity, the UTMOST
assembler interprets operators having the same priority from left to right. Thus:

4 *5//2

is the covered quotient of two divided into the product of four multiplied by five.
The above rules of priority can be overridden by use of parenthesization. For example, if the

product of four multiplied by the covered quotient of five divided by two is desired, it may be
written as follows:

4*(5//2)

2 UNIVAC IIl UTMOST J UP-3853

0P-3853 UNIVAC Il UTMOST I

8 t 21
SECTION: PAGE:

S. OTHER ASSEMBLER DIRECTIVES

The assembler directive EQU in the operation field of a line causes the assembler to equate the
label in the label field of this line to the value of the expression in the operand field. All suc-
ceeding lines of coding with this label in the operand field will have this value substituted for the
label. For example, given the following:

. LABEL A OPERATION A OPERAND A
A,(Rl]_‘l;l i 1E,J3lul 181 i 't A 1 1 1 i 1l l 1 1 Lt 1 1 1 1 L I L 1 1 | i | S i 1 I L
A1R121 1 1 IE1Q1U1 141 1 U S | Ao d Lol l A 1 - 1 1 1 1 i I i1 | I N T | [T l i
AlRl3l 1 1 lElolul 121 1 1 1 1 i i 1 i l 1 | 1 1 1 1 I 1 1 l L1 J - 1 L 1 i 1 l IX
AJR14 i 1 1 LEloLUL l]1 | S WU W NN YO TS T | 1) W WS W W SEN W NN S | I) I W N N S SN G l &

i1 LJLIAI lAlRl]l'lDlALTLAI 1 i i I I 1 1 1 1 1 l 1 L1 l 1 j 1 | I | 1 l l)
lLlAl lALRJ] l+lAlR121 ’JDIAITIAI I 1 Il e Il 1 1 I I l 1 A L I 1 L i Il] l I\

The EQU directive is a communication between the programmer and the assembler. As a consequence,
it will not cause the generation of any lines of coding.

The EQU directive must appear prior to any use of the label being equated. Notice especially the
use of a label as truly symbolic (i.e. it need not be related to a line of coding).

The assembler directive RES causes the assembler to set aside a number of consecutive storage
locations equal to the value of the operand. They are set aside at the point at which the RES directive
appears in the coding. For example, the line:

LABEL A OPERATION A OPERAND A

‘PloloLLlAl i S T S | IRIEISL i lllolslol l 1 i [I | | 1 J - l i 11 1 1 t 1 1 l

8

22 ' | UNIVAC IIl UTMOST UP-3853

SECTION: PAGE:

sets aside 1080 consecutive storage locations which can be addressed as POOLA, POOLA + 1,
POOLA + 2, and so on, through POOLA + 1079.

The assembler directive FORM may be used to define a word format, label the format, and allow the
format to be thereafter referenced by the label used as an operation. This directive must be given a
label and must have an operand consisting of a series of expressions whose sum is 25. A single ex-
pression of 25 is not permissable. For example:

TlAlBlzlwlolRlDl 1 IFIOIRIMI 101'161’131’1]151 PR T T NS N W NN WO RO TN WO NN M AN O N |<
TIAIBI edod g lTlAlBlzlwloLRlDL 101’1'Lw1.l’|01’1T1Y1P|E| SR A T | J

/\/\—'\/\/—\A/\M\/_\—'\j

The line labelled TAB is a positive constant with the bit code for ‘W’ in bit positions 19-24, binary
zeros in bit positions 16-18, and the address assigned to the label TYPE in bit positions 1-15. The
FORM directive will not cause the generation of any lines of coding.

The assembler directive FLD may be used to define limits of a field, label this field definition,
and thereafter use this label to refer to this field definition. This directive must be given a label.
The operand consists of two expressions. The first specifies the leftmost bit of the field, the
second the rightmost bit. After a FLD directive has been used to define a field, any succeeding
line of coding may have an m portion consisting of the label of the FLD directive followed in
parentheses by the designation of the word or words from which the field is to be selected. For

example:
LABEL A OPERATION A OPERAND A)
—_———————e e——

LIMITI 1 lFIlLIBl I Iljz]

1r 4

tllllLllJLll#Jllllllllllllll)\

us 1 1 lLlAl Lo L Isl’lLlMLTJ(1v|AlLIUlEl)4 L1 1 I 1 i1 J 1 | L 1 1 1 I i i I Il

is equivalent to:

1] 1 i | Ll l'
KJ‘] 14 l+J i 11 lllzl'lll ’JVIALLIUIEI 1 1) T WO N G | 1 l 11 1 1 11 1 1 1 1 l?
LA 8 ,* K1
1 1 1 1 1 1 I I 1 I | | 1 J1 1 L 1 1 i l Ll | 1] | 1 1 1 L 1 1 Ll 1 1 J I l L

The above line of coding could also be written as follows:

N
i i 1 1 i) W W N | l 1 L1 i 1 1 1 1 1]\1/1141 1 1 1 1 I 1 1 1 1 1 1 L | 1 l 1]
*
(I 1L1A| L4 |81'1 L(Lllzl'1]L'1lelLJUIEI)l T ST T N S ST U A B R R 1)

UP-3853 UNIVAC IIl UTMOST |

8 23
SECTION: PAGE:
The assembler directive DO may be used to generate a line of coding a variable number of times.
The format of the DO directive is as follows.
! LABEL A OPERATION A OPERAND A)
— —ee —
LABEL, DO ,efA, l imne | v v vy vy v v b v v Ly

The expression e specifies how many times the line is to be generated. The expression must be
followed by a ‘‘space-comma’’.

The line has a normal form. That is, if it is to be labelled, the label must appear immediately
after the comma. If not, the comma must be followed by at least one space. For example:

LABEL A OPERATION A OPERAND A)

M,m\/\’w\/__\/\/i
T R T N N S R | 1+101 P S VAN YN YA S NN VAN TN S U SRS WY SN VNN SO NN TN NN N WA SN SN A N N SN
P U R S ST SO (NS TS TSN ST SN SN SN TS NN SN0 VAN VAT ST ST SO UNT SO S (N S SN S WA S A S N 1)
| W W W W UUUNS WIS S S | l |+lol | T U U SR B | l N W SR W WY N S T . | I | U VN NN SR WU VRN N S | l l(
TS U S T S ST ST | l+101 YOS T SN U N NN TR TN WONS VO TN TN U TS WA (N UG WO S NN SN WS W S N G
ST R S S T S R I | l+l0l PN S S VA SN S N R SN SRS S WK VAN T N0 SN SR VAN S WA A ST S SN A N
R R S A R l+loLL A Y S [N SO T VO T S TN SO WA S (O ST SN Y U S S S S N 1

- ——— T —

Notice that both the DO directive and the line may have a label. The assembler treats the label
of the line as the normal label. It treats the label of the DO directive in a special fashion by
equating it to the number of times the line has been generated. For e xample:

LABEL A OPERATION A OPERAND A
_ eeee———e———————
LIAIBIEILI A1 Qlol 161 J LA l+lLlAlBlElLl 1 i A 1 1 1 1 i 1 l 1 1 1 1 1 1 1 1 L l 1

Y

8 24 UNIVAC Il UTIMOST UP-3853
SECTION: PAGE:
is equivalent to:
— 1 1 1 1
) W S | I 1 1 L1 |+ 1]I i L
1 L1 1 1 L i i 1 |+ 12l 1 1 1 l 1 i i l 1 1 1 1 | 1 1 11 l i 1 1 | 1 1 | 1 | [A_(
111111|11|+l3lllllillll4llllljjll11111IIIIJ
1¥1L|L1||+l4llnnlilllL1||||11||l||l1111111(
i 1 1 1 1 | 1 1 I+ l5 i J 1 1 i i 1 1 l 1 1 1 1 | S i 1 1 i 1 1 1 1 | i I 1 l 1\
L 1 | i L1 1 L i [+ 16 1 1 i 1 1 1 1 1 I A1 1 1 1 1 | ! [l 1t [\ i i 1 [i l L<
WWWW
The assembler directive NACL may be used to substitute a different mnemonic for the standard
UTMOST mnemonic used in the operation field of an instruction. The standard mnemonic is written
in the operand of the NACL directive. The mnemonic to be substituted is written in the label.
After a NACL directive has been submitted, all following instructions must use the new mnemonic
at least until the occurence of another NACL directive redefining the mnemonic. For example:
LABEL A OPERATION A OPERAND A
—
TIRL4L I lNIéJE‘LI |SIL1J1 i1 .1 I L L 1 L1 1 1 1 1
11411TIR1 IFIRIDAL llllllllllLlllllllLllthJIl/

is equivalent to:

T. PROCEDURES

A part of a program may be written separately as a procedure rather than as an integral piece
of the overall program. The beginning of a procedure is marked off by a PROC assembler
directive. The end of a procedure is indicated by an END directive. However, unlike an END
directive at the end of a program, the END directive at the end of a procedure has no entry in
the operand.

The PROC directive must have a label. The operand of a PROC directive may contain two
expressions. The first can be used to specify the maximum number of ‘‘lists’’ associated

with the procedure. (What a ‘‘list’’ is will be defined later in this section.) However, this

operand is optional. The second expression of lines generated by the PROC, if the PROC
generates a fixed number of lines. This expression is also optional.

UP-3853 UNIVAC Il UTMOST ‘ 8 25
SECTION: PAGE:
A procedure is not assembled where it is written in a program. Instead, it is assembled when it
is ‘“referenced’’ in the program. A procedure may be referenced by writing its label in the
operation field of a line. A procedure must appear in the source program before any reference to it.
For example:
i LABEL A OPERATION A OPERAND A K
e == —— ——
TIRIALNI | | | IPI Rlolcl i L 1 1 _— l) T G S | 1 1) - l 1 i I\ 1 L1 1 1 1 l I(
TSNS W S W S N SN | 1LIA1 S S S 11151’n31'18| R ST ST KT N S SO Y M SRS 1\
S IA 1 5|, 3.9 | |
BN VRSN WS NN W N U U 1 i | S il T T I T S S W N SN U A 1
L1 1 1 - Lol lElNl Dl § N . | i 11 l L1 j | 1 1 | - l 1 1 | Il i1 | 1 | l l\
I L 1 L L I I\ L Ilej 1 L L i L L 181'1(|RIE|SJEIRLVI'EI)I] 1 I | | L I\ L) 1 l 1
B W W T SN N U T 1L|x| S S N S | |9|'|(1C|U|R|R|E|N1TL)|] [B R T T ll
1 1 1 1 1 1 1 1 lTl RlAlNl 1 | 1 1 1 1 l i 1 1 i 1 i A1 1 1 l 1 1 A i 1 1 1 1 1 l L\
V\—\./\/—\/\”\J \/\—’_3

lLllllllllllillllll‘LlLllIll;lllllllllllll

U W WO W N S |8|"(IRLELSJEIR.LVIEI)J l

RAY |(|C|U|R|R|ELN1T1) L

11 1 .1 1 1 ILIAI 1 | 1 1 1 1 11151’131’181 1 1 1 i1 l | -] 1 1 i 1 i 1 l 1

lllllllllSlAlllJlllI]lsl’l3l'l9llilllllllllllllll

Different versions of a process can be written in one procedure. The versions are distinguished by
beginning them with a NAME assembler directive. The NAME directive must have a label and may
have any entry desired in the operand. The version of the procedure desired is referenced by
writing the label of the NAME directive in the operation of a line. Only that part of the procedure
coding which appears below the NAME directive referenced is assembled at the reference point.
For example, given the following procedure:

8 26 UNIVAC Il UTMOST UP-3853
SECTION: PAGE!
; LABEL A OPERATION A OPERAND A >
| —————— — — —— —

TIRIALNl R S IPlRlolcl PR U U N SN WA U S SN WA S S VNN S ST NN U S SN N N N lA,A

EIGHT NAME
J S T . | j D SN N B N l | MR | L1 1 1 I 1 1 i1 1 j U N Y l 1 1 L L L1 J | 1 I i
U U U N U N R N 8 ILIAI [S S G 11151’171'181 PR SR S NN T Y YN N WS W N N A N
TR T S T A S Y W lSlAl Lo 14]J51’1 vl v o g by e oy oy by

FlolUlRl S S S W | INIAIMIEI o 1 |)
[N U S U SR SO G lLle U R S NN W | 111511131'181 AR S S N T W SR N N W S SR J
§ IR VR WD N SNU SN N G lsle J U N WU S GRS | 11151’431’191 U l RS W U NN UUNEN W U S | l l
| S W U T W PN W S | |E1N1D| | TS WS GO VS U | l § W S N U TS U O S | [| S N U WO N | 11 Ll 1

The reference:

\
LABEL A OPERATION A OPERAND A)
———eeeees— s
] 1 1 IEIl |€£1T1 | 11 I\ i l 1 1 1 I l 1 L i1 | 1 | 1 i l 1 i 1 1 1 1 1 1 1 l |

M_—/\M/VVWJ

is equivalent to:

11 lLlAl TR B 1]151'171’181 R YA SO TN NN NG VAT W VAN (T U YRR NN SR SO TN WO N WO | 1&

[' lSIAl [LL4Ll|1511171 '191 I S W R N S W ST NN ST S N WS WY S SN S SN |I

| S - |L1Al | l 1l 11151'1 L'181 l | W S NS NN N N N S | I { W W WD NN S N W | I 1,

T | ISIAI T 1]1 11 l'|91 | N ST NN T N W N l [R W W WS RN SN S S l 1
- — _— ———

While the reference:

UP-3853 UNIVAC Il UTMOST ' 8
SECTION: PAGE:
The assembler directive GO may be used with a procedure to direct the assembler to transfer
control in the assembly of a procedure. The operand of a GO directive must be the label of a
NAME directive. For example, given the following procedure:
1 LABEL A OPERATION A OPERAND A >
_—] —— — ==
TlRlAINL 1 | — 1 lPlRlolCl l 1 1 1 L i L Il l Il 1 1 J 1 1 l L 1 L 1 1 1 1 1 i I IS
FjoJlJlRl 11 1 1 LNLAIMIEI 1 L i 1 lol 1 L [T | L. | 1 1 l | S 1 | 1 A l J\
T S N B B B ILLLAlj P T B N |1|51'|31'181 PR UR N WY R W SR SRS WO WO NN SO G W O
1 i L 1 1 1 1 L LSLAI 1 i 1 i 1 1 1 lllsl'lal'lql 1 1 1 1 l 1 1 1 ! | 1 1 i 1 J 1

6,0

1 1 ! 1 I

1 L)
lNlAlMlEl) I W | 1 1]I | 1t 1 1 W l | Y | 11 i1 1 l IX,

LA,

1 L1 1 | S 1 1

| U U W N N B S S |SlA| | S W WUNN N GE | Jl|4l'12J'I9I) U N | l | N S U N S R | Ll 4.
E1N1DIP1 .) 1 INIALMLEl 11 i [LJ;I | D W B | Lt 1 l | N W . | | I O I R l 1
J WS WO SR S T lElNlDl I I WA WO I U 1 | I U U U T N U B | l | I TN N SN WA SN S N 1 1_}

B e S ’
/Il\ll L 1 | 1 lil 1 1 I | 1 L 1 1 l 1 L | 1] 1 | 1 1 l I i [\ 1 i L 1 1 1 I)
[R W B S 11L1A| | S N | L1 |‘|41'12|’18| AU WO W N VT T WO N NN S N M 1)
Ll S 4,29 I AN R A B S 1\

While the reference:

SECTION:

28 }

PAGE:

‘ UNIVAC 11l UTMOST ’ UP-3853

is equivalent to:

LABEL A OPERATION A OPERAND A (

— — ——
L A 15,3, 8 (
1 1 1 1 1 i L 1 l A l i l 1 L l A i i 1 L | i i I | 1 1 1 | i 1 1 1 l 1
1 1 1 | 1 | 1 L1 l ASIAA 1 11151 '|3l'191 1 1 1 1 1 i I 1 1 1 1 i | 1 1 1 I l{
V\—___/\ — T —— _,.)

A procedure may make use of variables, which are submitted to a procedure at the time it is
referenced. The variables are submitted by means of lists, which make up the operand of the
line referencing the procedure. A list consists of a series of expressions separated by commas.
More than one list may follow a procedure reference. Lists are separated by spaces. For
example, the following is a reference to the NAME directive labelled IT of the procedure
labelled MOVE. (The MOVE procedure is shown in part S of this section.)

This procedure reference is followed by four lists, The first contains one expression (IN), as
does the second (OUT) and third (50). The fourth list contains two expressions (14, 13). In
this case, the variables being submitted are as follows.

The label of the zero word of the area from which words are to be moved (IN).

The label of the zero word of the area into which words are to be moved (OUT).

The number of words to be moved (50).

The number of the index register to be used to address the ‘“from’’ area (14).

[B - I S

The number of the index register to be used to address the ‘“into’’ area (13).

Within the procedure coding, variables are referenced by means of the following expressions.

label (s, e)

Where ‘‘label’’ is the procedure label, ““s’’ is the number of the list desired, and ‘‘e’’ is the
number of the desired expression within the list. For example, in the following line:

LABEL A OPERATION A OPERAND A

OLVIEI(I4I'I1I)I'I(lMlollel(l]l’lll)l)l

29

UP-3853 UNIVAC Il UTMOST 8

SECTION:

PAGE:

MOVE (4, 1) references the first expression in the fourth list of the reference to the MOVE
procedure. MOVE (1, 1) references the first expression in the first list. Thus, if the reference to
MOVE procedure is:

LABEL A OPERATION A OPERAND
_—————————————— ——— ——
1 1

To reference, within the procedure, the number of lists supplied by the reference to the
procedure, the label of the procedure is used, For example, in the following line:

IIlllIIlllJllLlllllJl

the number of lists supplied by the reference to the procedure is substituted for MOVE. If the
reference is:

three is substituted for MOVE.

To reference, within a procedure, the number of expressions in a list, the following expression
is used:

label (s)

where ‘‘label’’ is the label of the procedure and ‘‘s’’ is the number of the list desired. For,
example, in the following line:

SECTION: PAGE:

3 30 UNIVAC Il UTMOST | UP-3853

the number of expressions supplied in list one of the reference to the procedure is substituted
for MOVE (1). Thus, if the reference is:

two is substituted for MOVE (1).

To reference, within a procedure, the operand of the NAME directive whose label was used to
reference the procedure, the label of the procedure followed by (0, 0) is used. For example, the
first three lines of the MOVE procedure are:

: LABEL A OPERATION A OPERAND
m
MO VE PROC
1 1 1] 1 L1 l 1 1 1 y R W S S . L [L I\ . i i l i | . 1
) I Y 1 lllT¢ - l 1 LNAAAMIEA 1 L1 l 1 i | LL lol JJ I T |
S T1 NAME 1
l I\ 1 L 1 1 1 1 1 I 1 L 1 1 | i I 1 i 1 1 1 1 1 1 i L 1 1 I | SO T

1. If the MOVE procedure is referenced by the label IT, zero is substituted for MOVE (0, 0).
2. If referenced by the label ST1, one is substituted for MOVE (0, 0).

An expression in a list may be proceded by an asterisk (*). For example, suppose the following
FORM directive, which lays out the ‘‘form’’ of an instruction:

UP-3853

8

UNIVAC 1l UTMOST ’

SECTION: PAGE:

31

Also suppose a procedure labeled FAB containing a NAME directive labeled LOADA whose
purpose it is to fabricate an LA instruction. This procedure expects one list consisting of the
following three expressions to be specified in the order listed.

1. The arithmetic register(s) to be specified.

2. The label to appear in the m portion of the instruction. If indirect addressing is desired,
the label is to be preceded by an asterisk.

3. The index register to be specified.

Thus, a call on this procedure by means of the NAME directive might appear as follows:

LABEL A OPERATION A OPERAND A
_— — —
L1 1 lL,lo_l_élDLAl -l | S W . | 1 18 L’l*iDlALTJAlLL3J | I l i I | W | 11 li L

In the procedure, the reference FAB (1, 2) will supply only the label DATA. The preceding
asterisk is referenced as follows: FAB (1, * 2). If there is an asterisk preceding expression
2, a binary one will be generated. If not, a binary zero is generated. The procedure FAB
might appear as follows.

N B e PV S S U VD T SR S S St s S SR VT G P G U VS Y N ar e R e weervs 8 |
FAB PR OC S Y S S S S S S S e
PO O et SR U R S S S Pl o VPSS VO ST H VY SRS 0 S U ST ST SO ST U SO S N SR L1 d 1 . e .
LOADA NAM!E 12
PP U el Rl S b) U VN S ST TS S Sl PO T SV Ul el UL S S S U T S0 NS SO O SO VT S S SO SN WY oo b v B
I NST FAB 1 * 2 , FAB 1 3 FAB 0, A
bt L e YN RARGY 2D FABGT 3D FABGOL 0 FABCY) FABCTY L 2)
TR S E."PJH.A,.AHL.“‘H,L.LHU.,,HUA.“UAJ.AA.“LAJAJ

The above call would result in the generation of object code code equivalent to the following line:

o e o —— Ittt
T —
1[111llil.\llLngL]llllingJ;lll‘LllllllLlll’
» *
1 1 1 lLlAI - l 1 lsl'l lDIAITlAl'l3¥l i i L1 1 1 Ll 1 1 1 1 1 i i 1 1 l i
e — T — T T ~——— —

If a procedure may be referenced with a variable number of lists, as is the case with the
MOVE procedure, then the PROC directive for the procedure has no entry in the operand. As

mentioned previously, the operand of a PROC directive may have no entry even if the number of
lists for the procedure is not variable.

8

SECTION:

32 | ’ UNIVAC Il UTMOST UP-3853

PAGE:

U. EXAMPLE

The MOVE procedure has as its function the movement of a specified number of words from one
storage area to another. It may be referenced by any one of the four following coding lines:

If the MOVE procedure is referenced with the name IT, then iterative coding is used to make the
move. If referenced with ST1, straight line coding is used. An exception to this rule occurs when
iterative coding is called for and the number of words to be moved is less than or equal to 20,
in which case straight line coding is supplied.

The first list specifies the address of the zero word of the area from which the words are to be
moved. This specification can be made either as a label or as the number of an index register
containing the address.

The second list specifies the address of the zero word of the area into which the words are to be
moved. This specification, also, can be made as a label or as an index register number.

The third list specifies the number of words to be moved. If iterative coding is called for, and if
the area locations are specified in label form, then a fourth list consisting of two expressions
is necessary. The first expression specifies the number of the index register to be used to
address the ‘““from’’ area. The second specifies the number of the index register to be used to
address the ‘‘into’’ area.

The coding for the MOVE procedure follows. An explanation of this coding follows the coding.

UP-3853

UNIVAC Il UTMOST

8

33

SECTION: PAGE:

LABEL A OPERATION A OPERAND A COMMENTS \
MOVE | LPIROC ...|..H.A...l.....l.ul.‘.‘....1L.,‘.A.‘.1)
Ve NAME T
S‘T‘] L INIAIMKEII IA‘IIIIIJAIIIA‘IAIllllllllAIAAA |
MJALL||||PIR|°|C41 SN NV N T VA VU SN0 S ST (N ST WA SN ST S T SN U NSO NN S Y AU SO S S S WA ST S S SN SE S SR |
LA 15, A ADD = 1, MOV E T L 20 s e of

L "‘ ERILY - N 11‘51,‘41*LAAD‘D‘—||I,|M10‘VAE|(12.,I2|)‘ Ll L ol In
e, END P S TS S R S N B W
vt PRGOS T I BT A S SR AR |
T N L)) .L.(|‘Lu]L);';M.o‘qu.(l3.'.]A).'|].'1M|°.VIE‘(.I. in)A T |
T 1 L . ILI(|Il'A‘L)I’AM}OAVIEI(J3"|]A)l_|1l ,JMlolle.(l2. n2.)| T ‘J_L(
RN LIL LA T T
Kty o4 PROC |11|||ILIiIIIJllllllJllljllLlllllllllltllll)
o .LlAn L) AIASI'IMIOIVIEI(All'AII)l t|(|4."lCl°‘U‘NLTA‘—1]‘)‘ T A‘J
N N T W S Bt ISIAI [l11151’lMlollel(Azl‘l‘l)I *1‘141*1C|°|UJNITI-|]1)| O T I N R S S S S Al—(
ooy END L T T SV T S LU S S S S S S S S T B SR |
S i PIROC o b v v v v bv v v v ey sy by N R S S SN |
Ly |L1A1 L) I(i(l'll,l]l)l,I&OJV‘El(lIl,‘li)lflMloiv‘E‘(l3i,‘\|)‘—lll |
T WO S D W R S| LSlAll L L AGJ(l1l'l]l)k'lMJ01vIEI(12!'lIl)l*lMloleEl(131'l]l)I-l1| [S S A A B R l(

Lo ENDL lll!llLLlllIIlllllllllllllllllllllltlllilll{
I RO illl.||1\
... DO _MOVE (3.1)**3>0 ., 6 (3**MOVE (3,105 -4
CIO]UINITl J - Dlox I 1 1M|°1v1E1(131'111)|/|4| [lKl) I T N o | l N O U N [B S RS ll
L., (END PR OO G T T U O S S OO N TS S W VOO G S S S S S E A SO ST S RO S |
oo PROC, Lol e L

. .., . D0, _ MOVE (3, ,1)**"3>0 ,, L
ADD DO “M|0|V|E‘(‘3A,I]J)‘/|4. [N lMl L

sy, EIND AT R S SR RN
F ., .., PROC | N N T I e
L le L N lMAOLV.EJ(lll,J|I)I,I(IM|0|V|E|(.'|‘,l'll)l)l [ol ey lﬂ
T L. . MO VE(4,2) , (MOVE (2, 1)) |, , ., , . ol
T ST ST S & 1. YRR L 1,851,333 MO VE G4 V) v v v Ly M SR S T S T
T I L V5,3, MO VYE (4,,12), T e |
T S . _MOVE (4., 1), ((4*(MOVE (3 ,1)/4))+MOVE (1 ,1),4)
L N . L MOIVE (4020 04D L ol [\
ST | L VS 3—14111.L1J
R I | _ MOVE(3.,1)**3>0 , G (3*<*MOVE(3.,1)) " "5-4 M
Loy o (EIND AlllllAAlJJllllllllllllllllllllllllllllllll\
E 4, PIROC, | llAlAAlAllAll‘llllIlllllltllllAllltllkltlll/
N GO T S S N B IDIOA I Bt IlMlolvAEA(lal'lll)l*l*laljlol 11y |L| |(|3l'|‘|M‘lolv|E|(| ! II)I)I‘lsl_I4| L1 1 1‘
NS £ S MOVE (Y20 TEMP .Ll.‘.‘.‘LUA
T T SR 5 . YRR S B TEMP v by e i by |1‘LLLL11111L\
L e BALL L8 (4 (MOVE (31, 1) /4 TN VI B S S S S l)
i1y BIRR LIS LI TR N ST S S S I AU A R ST S S R RO B S R R AJIIAIllIIIll(
ey O FETL IV LT S AU S S S B S R T A B S 0 B A A AR A T S llllllll
b SIALL “8.,1T.E‘M.P..‘...|‘........|......1LL....A..A.|\
IR AT | B L2 e by e b lAlLJlllllllJ(
T1E1M|P|L|LLL*1|111 llollllelllll‘llllllILlllllIIl |1|11||1‘|||l)
T I N S N IO | |L|A| L1] L |I|5|'|3|'|M101v1E|(|]|"2|)| [S S SN U S T A R S |
) W S N 1 1 ISI~ i 1] 1 Illsl'ISI'IMLOIVIEI(IZI'IZJ)I N I] 11 1 i i 1 lllll lllllll
Lo MIXGE L MOVE (V2 TEMP L]

(Continued on next page)

8

SECTION:

34 (| UNIVAC IIl UTMOST UP-3853

PAGE:

(MOVE PROC Continued)

JMiollel(lzl'lzl)l’l(14l)l

) U WU W | 1 l

F— | 1 1 i i 1 l$|_l4| i S IL 1 1 l i i 1 1 1 1 1 I A I l\

U W SR N S N U Tt

11111:11|ElN|D1 lllllllllllllljlllllllljllll7
Dl JE W U N N S LPLRlolcl J U WU W S G | I | S N N U NV SO N | l | U WS (U NN W N N S | 1
W S U N SR S G § lolol U N T S 1M1°|v1EL(§1’ L]l)l>12101 L lFl N TR Y
| S W N (Y N VS S | lDl°1 D U SR G U | 1M|0|v|E|(|3|’|]|)1<121]| [LJIII | I N I | l 1
llllllIIIEJNIDILIJJIIIIIIIllllllllllLLllllll

1 PR OC
L P11

D0
D|0

lMlolleJ(L3]1)1>12|0| 4 E J

L'

1M|°|VAE|(131'|]|)|<|2|]| L H |

1 " 1 L I 1 |

\
/
(
1,...111151NID...1.11.I..11.....I.l.....lll.\
\
/

BJ L1 1 4 11 1P|R1°1c1 [U W S S T N N S S SN l | N W U TR SN NN N | | |
L4 4 141 1D|01 U O VR T S IMLOLVJEI(_II 1! lll)l=lol l'l | W U WU WU GO S S | | 1
| S N S N U S I | 1Dl°1 14 11 1 1 1M1°IVIE1(1]1'|11)1>101 |'| |J1]| L1 11 1 l 1

lDlol | WS W N T W 1 JMlollel(l]l'Jll) - 01 L'L Cl i 1 11 | I 1

1 1

Ll 44 i a0y MOVEGYH LYY >0 B

[R N S S A UL L. 11 U U S U N S S S T U0 VAN SO U A U UOAN TN N A0 N Y S N0 O A A O
|M10|v|E|(|°|’|0|)|=|01 l'

L l Ll L 1 L L), l L

I T WA WA Y JRS W | IDIOI I U S I | lMlollel(lol'lol)l=|]l l'l lBl | IS I I I l 1\

The first three lines in the above coding define the MOVE procedure. There then follows a
number of procedures to determine what coding is to be generated. The last two DO directives
in the MOVE procedure determine whether STraight line or ITerative coding is called for. If
ITerative coding is called for, procedure A is referenced. If STraight line, procedure B.

Procedure A determines whether the ‘‘from’’ and ‘‘into’’ areas are specified in terms of labels
or index registers. If index registers, procedure C1 is referenced. If labels procedure D.

UP-3853

8 35

SECTION: PAGE:

UNIVAC IIl UTMOST |

Procedure B makes the same determination as procedure A. If the areas are specified in terms
of index registers, procedure H is referenced. If in terms of labels, procedure J1.

Procedure C1 determines whether the number of words to be moved is more than 20. If so,
procedure E is referenced. If not, procedure H.

Procedure D makes the same determination as procedure C1, If the number of words is more than
20, procedure F is referenced. If not, procedure J1 is referenced.

Procedure E contains the coding provided if iterative coding is called for, if more than 20
words are to be moved, and if the areas are specified in terms of index registers. The DO
directive at the beginning of procedure E determines whether the number of words to be moved
is a multiple of four. If not, procedure L is referenced to provide coding for the movement of
the remaining words not a multiple of four.

Procedure F contains the coding provided if iterative coding is called for, if more than 20
words are to be moved, and if the areas are specified in terms of labels. The DO directive at
the end of procedures F determines whether the number of words to be moved is a multiple of
four. If not, procedure G is referenced to provide coding for the movement of the remaining
words.

Procedure H contains two DO directives.The first determines whether the number of words to
be moved is a multiple of four. If not, procedure L is referenced. The second DO directive
references procedure M.

Procedure J1 also contains two DO directives. The first determines whether the number of
words to be moved is a multiple of four. If not, procedure G is referenced. The second DO

directive references procedure K.

Procedure G contains the coding to move nonmultiples of four words when the areas are
specified in terms of labels.

Procedure K contains the coding provided to move the multiples of four words when straight
line coding is called for and the areas are specified in terms of labels.

Procedure L contains the coding to move nonmultiples of four words when the areas are
specified in terms of index registers.

Procedure M contains the coding provided to move the multiples of four words when straight
line coding is called for and the areas are specified in terms of index registers.

The above discussion is summarized in the following table.

SECTION:

8

36

PAGE:

) UNIVAC Il UTMOST

UP-3853

ITERATIVE

CODING (A)

STRAIGHT LINE CODING (B)

Areas specified in
terms of Index

Registers (C1)

Areas specified in
terms of

Labels (D)

Areas specified in
terms of Index
Registers (H)

Areas specified in
terms of

Labels (J1)

More than 20
words to be
mOVed.

20 or less
words to be
moved

(H)

More than 20
words to be
moved.

20 or less
words to be
moved.

(J1)

Nonmultiples
of 4 moved

by L; multi- |

ples moved

by E.

(See column

5.)

Nonmultiples{(See column

of 4 moved
by G; multi-
ples moved

by F.

6.)

Nonmultiples of 4
moved by L; multi-
ples moved by M

Nonmultiples of 4
moved by G; multi-
ples moved by K

Column 1

Column 2

Column 3

Column 4

Column 5

Column 6

For example, suppose the MOVE procedure is referenced as follows.

A OPERATION

OPERAND

T T R . | Ll

L B LI N O LD N S R {
) U U N N D T lLlAl L L | J 1 1_]15LI1 l3lll 1 11141 1 l | NS T N W | 1 1 1 1
by oy o SISy W3y 13y N S S S .
o oy oy g X< o, V4., G N+ A8, A .
L . LA EON Y. 0 M T S N | |{
TR S LTS S R ST Ml &S S S S S S S S A R 1
kA e VNS)
Lo SIA 6 90T 49 [R T S N T !

8

SECTION:

UP-3853 UNIVVAC Il UTMOST }

PAGE:

37

If the MOVE procedure is referenced as follows:

. LABEL A OPERATION A OPERAND A
_————————
13 - ,4.0,0

i 11 - | 1 1 l i

the coding supplied would be as follows.

ILABEL A OPERATION A OPERAND A
B e —— — —

4y 44 .51X..4‘....‘.41r. lT.ElM.P. L
...L#l,.,LlA.......LBIIL“T.EJM.PL,..I.J.#uu.li
e A 8y 000D .Lu.,...l.ll)
J.I.LHUB&RM.J..éul.J,éuiu.l.....4...11
L.....J.PIR..J...1&'1“‘141).Lu,t.l.......11\
b SA e 8y (TEMP] (
N ST BRSNS N B STS 20/ PR S S S S B

N TS U W G G | 14LIA1 F IS S VA W W L]lsL'l L31’1‘l41 L1 ll [S W WS SR U URN D N l 17
| S SN U NN U N 1SIAJ S VR VU W A | 1151'1 31'1]131 [ILIJ U WOV IO WO T | l 1(
WO WO W VA NN W W | lllxlcl | WO W T T W]n4['1 jleLMlpi L1 L W SN VN T W R TS | l 1\
/S I U NN SV N S | 1 [1t N IS WO S S W N T | O S U R U U N |

If referenced as follows:

LABEL A OPERATION A OPERAND A

: 38 l ‘ UNIVAC IlIl UTMOST Up-3853
SECTION: PAGE:
the coding would be as follows:
. LABEL A OPERATION A OPERAND
P ——— ————— — —
L IA 5 ' 9, 14 |
1 1 L L 1 1 i 1 1 i A | 1 1 1 1 1 1 1 1 1 1 1 1 i | | I L
IS U U S S SN S AslAl) W S U W SR lsl'l 1 I9L'l 1 L]l3l 1 I [N R I N SO I 1 i 1
§ Y W S WY NN I S | ILIAI | S NN WU N U § 1]151'1 L31'1 1 11141 1 l I W NN N I | i |
| N U B N B | IJSlAI [S GO I S 1‘151'1 131'1 1 |I|3| [Y N N N N |
, . LlA 15|, 7 , 14] &
1 1 1 1 4 1 1 i 1 i i 1 1 1 1 1 1 |] [1 1 1 11 1 1 1] 1
SlA 1 51 , 7 , 13 I)
If referenced as follows:
! LABEL A OPERATION A OPERAND A
W — ——
1 Lol 1 lsl-[L]_l 1 l - 101'1]14L 1 1 1 101'11131 1 Il i lllol | 1 1 1 1 1 1 I L
W \/——\/\—’J
the coding would be as follows.
LABEL A OPERATION A OPERAND A
—
| N WS W S VRN T W | ALIAA | S S | 1 1 1]151'1 II1N1+131 Il 1

SIA llnslln 10|U1T1+13l

J W U W U W N W W'l W (Y YU W W W 1

T 1 . L - T L R AT T e e L l\
T Y L L T N L L N A T L 1)
oy e a a aA L S, N T ol oy Ll

L4 1 4 o oSIA s, ouT e VY Ll

T S . T - I L R I T T T e L

[V W WO WY N N | lSlAl [S S S | lllsl'l 40|U|T|+1]|5|

1 1 1 1 1 1 1 lLlAJv B T | Il 1 L Lllsl'l lllNl+J]l9l L1 I i 1 1 i 1 1 |

ISIAI i L) | Il l]lsl 'l IOIUITI+ 1191

8

SECTION:

39

PAGE:

UP-3853 UNIVAC Il UTMOST ‘

Notice that a procedure may contain labels. For example, the MOVE procedure uses the labels
COUNT, TEMP and ADD. These labels belong to the procedure, the UTMOST assembler
recognizes them as such, and the same labels can be used in a program referencing this
procedure without fear of confusion.

The assembler makes a clear distinction between labels appearing in a procedure and references
in thatprocedure to these labels as opposed to labels appearing in a program and references in
this program to these latter labels.

The MOVE procedure consists of many nested PROCs which the MOVE PROC calls on. The
only lines of coding in the MOVE PROC itself are the two DO lines before the last END line.

M OVE PR O C—
M r—PROC
—— E ND
L —— P RO C
—— E ND
A —— PR OC
—— EN D
Do
DO
END

The first evaluation of a reference to the MOVE PROC occurs at the first DO line of the
MOVE PROC.

UP-3853 UNIVAC 11l UTMOST 9

SECTION: PAGE:

9. TAPE FILE HANDLING

As its title indicates, this section is primarily concerned with programmer handling of magnetic
tape input and output to and from the Processor. However, before discussing this subject, it is
fruitful to spend some time on input and output from and to the console. This subject, in turn,
depends on an understanding of ‘‘overflow’’ and ‘‘invalid operation’’, which will be discussed
first in this section.

A. OVERFLOW

Addition or subtraction resulting in a carry beyond the capacity of the arithmetic register(s)
specified in the addition or subtraction instruction results in a condition called overflow. In
such a situation, the addition or subtraction is completed, and the correct sum or difference,
less the carry causing the overflow, is stored in the arithmetic register(s) specified. It may
be noted that when overflow occurs during addition or subtraction the carry that is lost is
always a one.

Overflow can also occur during division. This will happen when the absolute value of the
operand specified by m’ is less than or equal to the absolute value of the contents of arith-
metic register 8. For example, the following will cause overflow:

LABEL A OPERATION A OPERAND A %

L

DD DI VI SOR,

§ S SO S | I

(AR8)i = 008762

(AR4)i = 900000

il

(DIVISOR)i = 008750

Notice that the absolute values concerned in the determination of whether overflow will occur
are values as viewed by the Processor. The position of program decimal points has no bearing
here.

SECTION:

2 UNIVAC Il UTMOST UP-3853

PAGE:

If overflow occurs during the execution of an instruction, at the end of the instruction execu-

tion cycle (when the next instruction to be executed is normally accessed) there instead occurs
something called interrupt. Interrupt is a hardware feature of the Processor. It causes the contents
of the control counter (the address of the instruction that would normally be executed next) to be
stored in a given storage location, and also causes a fixed address to be stored in the control
counter. Thus, interrupt makes a record of where the program being executed was ‘‘interrupted’’,
and forces control to go to the instruction stored in a given storage location. In the case of an
overflow interrupt, the contents of the control counter are stored in storage location 18, and con-
trol goes to the instruction stored in location 19. An interrupt that performs in this way is called

a contingency interrupt, to distinguish it from other interrupts (to be described later in this section)
which cause control to go to the instruction stored in some other given storage location.

Storage locations 18 and 19 are in low order store, where the executive routine is stored. Thus,
occurrence of interrupt causes control to be passed to the executive routine. Unless the programmer
has planned on this occurrence (in which case he can notify the executive routine of this fact in a
way to be described later in this section), the executive routine will type out on the console type-
writer a message of the form:

CONTING. AmmmmmAOOAO0A0000b

where mmmmm is the address of the storage location in which is stored the instruction whose
execution caused the overflow, b is an indicator.

In the case of overflow, the indicator is al.

INVALID OPERATION

Only certain binary configurations in the operator portion of an instruction word are recognized
by the Processor as instructions. If the Processor accesses a word as an instruction, where the
word has in the operator portion a binary configuration not recognized as an instruction, a condi-
tion called invalid operation occurs. For example, the following word would constitute an invalid
operation if it were accessed as an instruction.

+ 0740000

An invalid operation causes a contingency interrupt. If the invalid operation is unplanned by the
programmet, the executive routine will take the same action as it does with respect to unplanned
overflow. In this case the indicator is a 2.

UP-3853

UNIVAC Il UTMOST 9

SECTION: PAGE:

CONSOLE TYPEOUTS

A program can, via the executive routine, typeout messages on the console typewriter. This
typewriter types characters at a speed of ten characters per second. It is capable of printing

51 different characters and has its format controllable by a carriage return, a tab, and a form
feed. Printing is done on a sprocket-fed continuous form at a horizontal spacing of ten characters
to the inch and a vertical spacing of six lines to the inch. The typewriter is capable of pro-
ducing an original and at least five copies. The maximum number of characters that can be
printed on one line is 72. The attempt to print more characters than the maximum on one line
causes character pileup at the end of the line. The 51 printable characters and the format
controls, together with their excess-three codes, are shown in Figure 9-1.

ZONE

00 01 10 11
0000 A + 5 $
0001 E) * {

comma
0010 - . $;
carriage | bell !
0011 0 return ring [apostiophe)
0100 1 A J /
0101 2 B K S
0110 3 C L T
0111 4 D M u
NUMERIC

1000 5 E N v
1001 6 F 0 w
1010 7 G P X
1011 8 H Q Y
1100 9 I R Zz
1101 : = 2

. form
1110 < - tab feed
1111 > 0 4 U

Figure 9-1. Console Typewriter Codes

9 4 UNIVAC 11l UTMOST UP-3853

SECTION: PAGE:

To type a message on the console, the programmer places the message to be typed in a series
of consecutive words. The first of these words should have a label. Following the last character
of the message should be a carriage return character. This carriage return is recognized by the
executive routine as marking the end of the message. It also is considered part of the message.

To effect a typeout of this message the programmer should load arithmetic register one with an
indirect address control word with an 1 portion consisting of the label of the first word of the
message and a specification of index register one in the index register portion. The programmer
should then force an overflow or invalid operation. If the word immediately following the instruc-
tion that forces overflow or an invalid operation contains + 037777, the executive routine will
recognize the resulting contingency interrupt as a request for a console typeout.

If after receiving this request, the executive routine determines that the typewriter is already
busy, control is returned to the line following the line containing the + 037777 without any
attempt to effect the typeout. This busy return line generally contains a jump back to reinitiate
the typeout request. Thus, the program remains in a loop until the typewriter becomes free and
the executive routine can initiate the typeout. At this point the executive routine returns con-
trol to the line following the busy return line. As a result, a request for a typeout generally
takes the following form, where MESSAGE is the label of the first word of the message.

LABEL A OPERATION A OPERAND L\?
REQUEST LA 1, (MES SAGE, 1) 7
Il 1 1 I L | I U S l 1 S 1 i 1] 1 1 l I Il 1 1 1 Il 44 L 1 i 1 1 1 1 i | 1 l 1
| 1 1 1 1 1 L+l 1 10L7J4101010L0Ll 1 N | 1 1 1 Il I L 1 1 Il 1 | A Il i l L
+ 037777 (

1 i | 1 L1 L1 1 l S S W i 1 Ll l I\ | | 11 i l 1 S W W N I N B L |
D U U U W W S LJ[- lRlEIQIUlElSITl 1 I — | S | ‘ Y NN W SN WS N N S | l 1
RETURN j
ol L | L L A l Ll 1 L I L | L 1 l I L 1 L i L 1 Il 1 I 1 1 L L) S 1 1 l Il

When the request has been serviced by the executive routine, control returns to the instruction
in the line labelled RETURN.

The definition of some instructions that are useful in fabricating typewriter messages are as
follows:

UP-3853 UNIVVAC Il UTMOST

SECTION: PAGE:

LOAD AR CONVERTING TO DECIMAL - LAD

The operand specified by m’ is always three words long. The information stored in these three words
are presumed to be in six bit alphanumeric code. These three words are transferred to the arithmetic
unit. During the transfer the zone bits of the characters are stripped, and the remaining numeric
portions are compressed into two words. These two words are stored in the two arithmetic registers
specified. The sign bits of these registers will contain the sign of the least significant word of the
three word operand. No multiword operands other than that specified above are permissible. Field
selection is not permissible. Indirect addressing may be used.

Example:
1 LABEL A OPERATION A OPERAND A 2
| —————— ——]
(AR8)i = + 012345 (AR8)f = + 123412
(AR4)i = + 678901 (AR4)f = + 345656
(DATA-2)i = — 1234 (DATA-2)f = - 1234
(DATA-l)i = - ABCD (DATA-1) = — ABCD
(DATA)I = + 56EF (DATA)i = + S6EF

STORE AR CONVERTING TO ALPHANUMERIC - SAA

The arithmetic register operand is always two words long, the operand specified by m’ three words
long. The two words constituting the arithmetic register operand are presumed to be in four bit
numeric code. These two words are transferred to the store. During the transfer the words are
expanded from two to three by having 00 zone portions inserted before the numeric portion of each
decimal number. The sign bits of the resulting three words will contain the sign of the least signi-
ficant word of the arithmetic register operand. No multiword operands other than that specified are
permissible. Field selection is not permissible. Indirect addressing may be used.

Example:
LABEL A OPERATION A OPERAND A {
SAA 12,, DA TA &
(AR8)i = — 123412 (AR8)f = — 123412
(AR4)i = + 345656 (AR4f = + 345656
(DATA-2)i = — 123456 (DATA-2)f = + 1234
(DATA-1)i = + ABCD (DATA-1) = + 1234

(DATA) = wWXYZz (DATA) = + 5656

9 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

LOAD AR EDITED - LAE

Load the operand specified by m’ into the arithmetic register(s) specified. The operand from the
store is presumed to be in six bit alphanumeric code. As the operand is transferred, it is scanned
from most to least significant character. As long as only the following characters:

CHARACTER CODE
Space (A) 00 0000
Semicolon (;) 00 0001
Dash (-) 00 0010
Zero (0) 00 0011
Comma (,) 11 0010

are encountered in the scan, each character is replaced by a space (A). As soon as some character
other than the ones listed above is encountered in the scan, this operation of zero suppression
ceases, and the rest of the operand is transferred to the arithmetic register(s) unaltered. Signs are
not affected in this transfer. Multiword operands may be used with this instruction. However, unlike
the addressing of multiword operands with all other instructions, the LAE instruction addresses
multiword operands by specifying in m’ the address of the most significant word of the multiword
operand. Field selection is not permissable with this instruction. Indirect addressing may be used.

Example:

LABEL A OPERATION A OPERAND A 2

L AE l2|, DATA
| — | WS S G S

Il 1 L 1 b1

(AR8B)i = — 012345 (AR8)f f= + AAAA
(AR4)i = — 678901 (ARHf = + AA12
(DATA-1)i = + ABCD (DATA-1)f = + ABCD
(DATA)L = + A;-0 (DATAY = + A;-0

(DATA+1)i = + ,012 (DATA+1)f

n
+

,012

UP-3853

UNIVAC 11l UTMOST 9

SECTION: PAGE:

Example

Given five receipt amounts stored in consecutive storage locations in the form:

+ OXXXXX

type on the console typewriter the sum of the receipt amounts with a dollar sign preceding
the most significant dollar digit, a comma between the thousands dollar digit and the
hundreds dollar digit if the sum is $1,000 or more, and a decimal point between the least
significant dollar digit and the most significant cents digit. Type both cents digits regard-
less of their value. If there are no dollar digits, type the dollar sign immediately before

the decimal point. In any case, type enough spaces before the dollar sign so nine characters
are always typed. The sum of the receipt amounts will never be more than 999999. The ad-
dress of the first receipt amount is stored in label FILEA. Assume that a USE directive has
already occurred in your program. When finished, jump to the label CONTINUE. Label the
first line of your coding TYPEOUT.

AS L 12, 1 00DX DDCA co000
lllll I Illlllllillllll

Coding
LABEL \ OPERATION A OPERAND \ COMMENTS (
TYPEOUT L X 15, F\l L EA SUM AMOUNTS /
PR ol W Sl W W NN U Sl el SV OY Nl Sl S SRS Rl el Sl bl e oy 2 AN 9 T B R S
) U N U N T anAx P l4l'L 1 AOIIJ]AsL] § SN RS W § J SR SRR ISR WS G B W VO & 14 U OREN R TN S SNS SUNN T l | S S W 1)
D A 4 , 1,, 15 \
YRR ST S ST Rt S S S S AT ST STl U0 e S SO W G Y N VO VO T VO U T S U S S VAT ST S ST S VN N SO U S S N
D A 4, 2,,15)
[N0 W U U ST S U A AT S S Sl EL AT el Y ST S U W S VA T T T N S W S NN S S K SO G S
kb) IDLALI I 141’1 L 13i'1]|5| YN T N ST W SRS NN TS VA ST W T SN S T S AN S S SN ST WA SN Y SV S NN SONUY S lT\
| Y S W W IDIAL A4A'1 1 141'J]I51 P Y W T SN W YA SN VO WO YO S W 1D|D10101C1c1 NI B L/
T S S]LlAl L1 |8A'1 L 1(|:10|010|01010x)| P 10101010|0|°l 1D1D|D|DAC1C1 T n\
DS L 12, 3 000DDD DCCOOO }
[T SO WU U b St S U S St A0 WY sl SN SR OO SO W N BN S P Tl Tl Tt St R B B B Sl Bl el T T R R R
S AA 12, T3 000D DDDC cCo000 \
P S SRR S SN ST S Sl AT ST R Rt SR | MR e bl At S Sl iV NP DU SR
" A A A e 1 lLLAL A 4 JJ]4I’L LTLSL3I | Al A . | 1 L LJ I Il i j R I 1 ok 1 L 1 1 i L l A ' i A I i i ‘R)

1 } I N N Y L A 1 i e 1 i
LA 4 , TS 2 00DX DDD,C cCo000 i

Lol Ty Pl Rl L] AT R b I S I R Rl S B S R !

RS S TS S S anFx FE" IBI'A i ‘*IK 11 § U N N WA WA S | l 1 1010101'1 lDlDIDIcl lcl OloiDA NI l R S B S S f
ASL 12, 1 oD ,D DD XA cCo000 \

PR T O ST YN St St SON VO T S S Sl T Y SN U U SO TN S A U kSt W S Y S S il AV A Sl S Rl Rl T B !
LF 4 , * K2 oD, D DDX C co000

) D A 1 1 l L L 4 A It L A J L 1 L A oL L i — S . LJ;JJ;I - L Lllil L 1 - Il III b, T A
LF 4 , * K3 0D, D DD ., C cCo000

i 1 1 1 1 | I 1 1 1 1 i It L. 11 LLJJ] 1 1 1 11 I -) I R T | 1 | 1 1 1 1 1 Il 1 1 i l 1 I 1) i 1

S A 14, TS 3 ZERO SUPPRESS
Illll lllll lllll llllllllllllll llllllll

S S g S P

LAE 12, MES S AGE

1lllillllllllllklllllll lllllllllllllllllllllllllll
S A 12, TS 2 FLOAT DOLLAR S 1 GN

L4 I Y U U G T T S U T U [N WY Sttt St U A B NS N DR U S Bt S N S SO N A B
LA 12, ([TWCA $s°')

lllAllilll N lLllll |l|41|LLIIIIIIlAllll)lllllJLLiL

SECTION:

PAGE:

UNIVAC Il UTMMOST

UP-3853

(Coding Continued)

LABEL A OPERATION \ OPERAND A COMMENTS
e S M2 S22 IR E R S S S R R | | U N SR NS BN S S
N S B S N | 1 lAlsti | \1121'14LIL1 [R | P IR TR N I | 1J1 | I S N B ' LLI Lo x_J
o v e Y T D B S S I [S W S SR 1J
L g OR Y2 TS2 I [R O N T ST R 14&
T LY Y lJ}J’A 14TJ;SL3J] ‘A1N1°1 l|1N ‘Al |C|A1R1R¢IJA|G‘ El [RAELTIUIRKN17
Lo L |AND ‘421“ | 1(101717.0.010‘010.01)1 L Ll T J
Lty ooy JOR 2., (0,2,30000) , | Lo g | [SR 14}
M TS3 oo | I SR 1_\{
C2 L gkA 1 " |(IMIELSJSIA1G]EI ’L]l)l lRIEKQIUIEIS) ITIYIPIELOIUITI ol 1J
Ll 0740000 NSRS | Lol L [T B A I S B ST 1\
T Lo 037777, N B S 1...‘.LL..”J
A N - SR B S mj
TS I R L GONTINUE | PR R S T | PR S S R NS SV ! 1J
Mleli[slAlGlEI T AR 101 PR U R R S W S S S SRS | TR N A S L N S U R 14)
Ts2 NP AL N B R S SR ILJLJiilu.lJ
TS3, e e Y] A | PR R S R U S WS S S |)
A L. JU PR AL ML AL P R S i
Kl 21 i 1 F N D G N | l+l L4 1 L6l’l]l 'lTlslzl 11 4 VI S | l |) 1 1 1 li | - 1. ll) W St 1 14‘_)

K 3
L

) W W W B

[~

UP-3853 UNIVAC Il UTMOST 9

SECTION: PAGE:

3. Student Exercise

Given the following:

WORD DATA
0 + AAAAXAA
1 + BBBBBB
2 + CCCGCC
where

A is an amount

B is another amount

C is a third amount

type on the console typewriter the smallest amount in the form:
$55SS.SS

where S is the smallest amount. The address of the first amount is stored in label
FILEA. Assume that a USE directive has already occurred in your program. When
finished, jump to the label CONTINUE. Label the first line of your coding TYPEOUT.

4. Test

Given the following:

WORD DATA
0 00HHHH,
1 0ONNNN,
2 00RRRR,

where
H is the onhand quantity
N is the onorder quantity

R is the required quantity for the next 60 days.

Type on the console typewriter the quantity, H + N — R, which will be positive and four
digits at a maximum. The address of the onhand quantity is stored in label FILEI. Assume
that a USE directive has already occured in your program. When finished, jump to the label
CONTINUE. Label the first line of your coding TYPEOUT.

10 UNIVAC 11l UTMMOST UP-3853

PAGE:

CONSOLE TYPEINS

The console contains a keyboard as shown in Figure 9-2. From this keyboard messages can be
typed into the store. Typeins are accepted from the console by the executive routine.

SPACE BAR

Figure 9-2. Console Keyboard

The executive routine then routes the message to the proper program by means of a flag
character typed in conjunction with the message.

All typeins to programs begin with the character ““R’’. (An exception will be discussed in
Section 13 Symbionts). The next character typed in is the flag character. A space is typed
next. Then the message is typed.

The program must tell the executive routine what character it wishes to use as its flag. This
is done by storing in the label TABB a word with the desired flag character in bits 19 through
24. This operation must be done before the program expects any typeins. Characteristically,
if a program expects typeins, one of the first operations to be done in the program is to store
its flag in TABB.

At the same time that the flag is delivered to the executive routine, the address of a word in

the program is also delivered. This is the address of the typein word. The typein address is
delivered in bits one through 15 of the word stored in TABB. The typein word is used by the
program to tell the executive routine when it is ready to accept a typein. This is done by

storing binary zeros in the typein word. If the typein word contains anything other than binary
zeros, the executive routine will not deliver a typed in message to the program even if a message
flagged for the program has been received.

UP-3853

UNIVAC Il UTMOST 9 11

SECTION: PAGE:

If the typein word contains binary zeros, when the executive routine receives a message flagged
for the program, it will do an SLJ to the typein address. Consequently, following the typein word
of a program should be a short acceptance routine designed to accept the typein. When the ac-
ceptance routine receives control, index register one will contain the typein address and index
register two will contain the address of the zero word of the area in which the executive routine
has stored the typed in message. No other index registers will be properly loaded. Consequently,
the cover index register for the acceptance routine will be index register one, all index register
specifications in the instructions constituting the acceptance routine must be explicit, and only
expressions involving binary numbers and reflexive addressing (use of the dollar sign element)
can appear in the operands of these instructions. As a censequence, the acceptance routine
should be designed to do little more than transfer the message from the executive routine typein
area to an area in the program and set a connector in the program to indicate that the typein has
been received. Control should then be returned to the executive routine by executing a jump
with indirect addressing to the typein address. It should be noted that, in doing an SL]J to the
typein address, the executive routine changes the contents of the typein word to something
other than binary zeros.

When the executive routine transfers control to the acceptance routine, the zero word of the
executive routine’s typein area will contain ARfA, where f is the program’s flag. Consequently,
the message the program is looking for actually begins in word one of the executive routine’s
typein area. Moreover, before accepting a typein from the console into the typein area, the
executive routine will clear the typein area to all spaces. Consequently, any character positions
following the typein in the typein area will contain space symbols. If proper preparation for
receiving a message has not been programmed, the message will be lost i.e., no indication of
the presence of message is transmitted to the program.

1. Example

A program is designed to execute one of two branches dependent on a typein. If FORCE is
typed in, the program is to jump to the label FORCED. If RECHECK is typed in, the program
is to jump to the label RECHECK. The typein is requested by typing out TYPEIN.

9 12 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:
2. Coding
LABEL A OPERATION A OPERAND A 4)
p— ——
USE 3 \
i 1 1 | F U TS N | l A1 i 1 L 1 1 e L l 1 L i 1 1 ! 1 I 1 I 1 1 | 1 L 1 1 l L A U S N & 1>

TiAJBLBLwlolRIDI 1 I I lFIOI&;MJg;u]J;’I6I'I3I’JiL5J; " l I VS NN S T W WY ngLl) N W S
S TART, LA (,TABBWORD 0 ,*‘W’' 0,TYPEIN),

IR N | | S Wl S S W U B & JSAMLJ Jii}

A

il B Sl e LA N | A T L \
S A 8, TABB /

PR VU NN N RO W N S S DU S Rty 1 T R AT ! RN SRS NN T SR SN ST TN S SN NS T NN NN SO SO W N
CI"l Il L —_— 1 L | l Al lLlALJ;l | A 11}'1 L L(lMl ElslslAJGlElolulTLI]l)l | i I | | L L L 17
P S I YN R S S Sy S S S A #10J7l410l;010101 AT VR N A VY U G SN T WO S SR SN N OO S M 1\
1 1 1 | 1 1 1 1 I J_L+L I W S J;JOAL317I7A7I71_1 S Ll i 1 1 1) ALI 1 y R S | LJ
IS S N R ST R ST N 1J4 TR SN R BT lcl]l e NI B 17
S Y D S 1 A 1 | l 1 ISAJ;ZIALA L1 1 ALJAL;JLYI PIEK'IEL LL B W W B T J_LJ_l 1 1 i 1 1 1\
Cc2 i I X C 01, TYPEI N [| 7

b d L | il 1 l e 4 1 | 4 i 4 A A i L A 1 A A 4 L | ', | 1 I 1 1 [l 4 1 1 - eead, e
VRN OO NN G NN SR W S| l 1 1"1E1 IR T S l 14 51224;1 1 l S W U WA VAN I SN S [B Y S S | z
v v b A 2, MESSAGEIEN L\
1 | 1 It 1 1 1 i 1 l A lc1 1 1 L 1 1 A]lzl ’J l(AllFlolRlclEl’ l)l 1) 1 1 1 11 I 1 1 1 A .4 L\
| JE | FORCED I I 7

T N S U S N U U W A SN Y S N B T S T U S S Y B | TN S U S U S N B | N I N |
S W RN S ! I A L 1 A lcl | | L l 1 l]lzl’l A(l‘ ARIELCIHIE‘CI Kl’l)l | L 4 | L l A L L . L\
S S U S WO R S S A B IJlsl R R T LELCLHJEACLKLL N ST N T RS S WO S NN S T S R L§

1
lllllllLXJLJJ;lll1#1114LJ£ILAL1LL1L1lllLlJILliLJ

MESS AGEOUT + ‘“TYPE"’ \
11|1|11111111|111L1i141111111[111111L14]AIJLJ:!

+

+ ‘I N ! .

O O WO T YOS Y VO WA U N S UOUNN WO TN YUY TN M oy U U U U U VU O Y T U U NN S N Y W B M
TYPEIN + ‘BUSY'’ \
J 1 11 1 1 L i l A J— i 1 L 4 J l L 1 J | I\)| ILI L 1 1 1) 1 llll U U G SR S

2 2 }
S TN U N A SRR A LA Liljzi'l PRl IR Wl NN ST SN TN AN N G SO SN OSSN WS SO NN N SO S RO
S A 1,2 5 1
U N U U WA WA W S NN T o i S W SN WS W N B0 ST Rl S ST ST N S S Y NS T S A B BN N B N N B S
J *0 , 1 |
111L11141_lu¢1 nglllLll 11;1#14@1 N Y U N S | Y S N S |
Ut i) i 1 llJ‘Ll+L14111‘LJOJ;i,_Ll J N S | llLJLlLllLlLJll 1 1 [
MES SAGEI N 01 L X
S J lLJ 44 1 4 e JU | | D S B § I 1 L4 1 I Lol LILLALIAK . T .

UP-3853

UNIVAC IIl UTMMOST 9 13

SECTION: PAGE:

THE UNISERVO IIIA TAPE UNIT

Magnetic tape is the means of introducing and removing large volumes of data to and from the
Processor’s store. The tape handler designed to handle the reading and writing of magnetic
tape is the UNISERVO IIIA tape unit. The tape used on these units has a MYLAR * base, is
one mil thick, is 0.5 inch wide, and has a maximum length of 3600 feet.

Information can be recorded on 3500 of this 3600 feet. The information is recorded on the tape
in frames. A frame is a recording of bits across the width of the tape. Nine bits of information
can be recorded in one frame. Thus, one word of information is recorded in three frames on tape.
A little over 1000 frames of information can be recorded on one inch of tape.

Information is recorded on tape in units called blocks. A block is the unit of information that
the Processor reads from or writes on tape in one operation. A block consists of some number
of words. The number is variable at the programmer’s option. Since it may be necessary to stop
tape movement between the reading or writing of blocks, and since the tape cannot be stopped
instantaneously, blocks are separated on tape by interblock gaps, lengths of tape on which no
data is recorded. The length of this interblock gap is variable and depends on whether the tape
must be stopped between the writing of one block and the writing of the next. If stopping is
required, the interblock gap is about 0.6 inch long. If not required, about 0.4 inch long.

The format in which a block of data is recorded on tape is shown in Figure 9-3. Although both
are completely variable at the programmer’s option; the size in number of words of the items
recorded on one tape and the size in number of items of the blocks recorded on the tape are
generally fixed. Under such circumstances, the approximate number of blocks that can be
recorded on 3500 feet of tape is given by the following formula:

14 x 10°
n(w+ 1) + 333G + 3

where
N is the number of blocks
n is the number of items per block
w is the number of words per item

G is the interblock gap length in inches

For example, a 3500 foot tape blocked at 20 items per block, each item consisting of 25 words,
can hold approximately 20,300 blocks. (For purposes of this calculation an interblock gap
length of 0.5 inch was assumed.)

When being read or written, tape is moved at a speed of 100 inches per second. Time to pass
over the interblock gap varies depending on interblock gap length and on whether the tape is
stopped between blocks. Minimum interblock gap time is 4 milliseconds, maximum 8 milli-
seconds. Given a constant item size, the approximate time to read or write a block is given by
the following formula:

T=003[n(w+1) + 3 1] + g

* Registered trademark of the E.I. du Pont de Nemours & Company, Inc. Wilmington, Delaware.

9 14 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
where
T is block time in milliseconds
n is the number of items in the block
w is the number of words per item
g is. interblock gap time in milliseconds

(THE LENGTH OF THE
BLOCK IN TERMS OF

NUMBER OF ITEMS IS A
PROGRAMMER QP TION)

|

INTERBLOCK

INTERBLOCK
GAP

%

LELLL

S ——

N —————

For example, a 20 item block, each item consisting of 25 words, can be read or writtén in ap-
proximately 21.7 milliseconds. (For purposes of this calculation an interblock gap time of 6
milliseconds was assumed.)

The end of a tape is marked by an end-of-tape warning window. Following the end-of-tape
warning window there is about 25 feet of tape on which information can be recorded.

DATA DESCRIPTOR (ONE WORD LONG)
SEGMENT SEPARATOR (ONE WORD LONG) *

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENT SEPARATOR (ONE WORD LONG) *

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENT SEPARATOR (ONE WORD LONG) *

SEGMENT SEPARATOR (ONE WORD LONG) *

ITEM OF DATA (LENGTH IN WORDS IS A
PROGRAMMER OPTION)

SEGMENT SEPARATOR (ONE WORD LONG)™
DATA DESCRIPTOR (ONE WORD LONG)

Figure 9-3. Block Recording

it is not moved to or from store.

* The one word segment separator is created by the tape synchronizers for tape control;

UP-3853

UNIVAC IIl UTMOST 9 15

SECTION: PAGE:

A schematic of the UNISERVO IIIA Tape Unit is shown in Figure 9-4. Tape is said to be
moving forward when the tape is traveling from the lefthand supply reel to the righthand tape
reel, backward when the tape is traveling from the righthand reel to the lefthand reel. The
righthand reel is permanent. Consequently, a reel of tape to be read from or written on is
mounted on the lefthand hub. The tape is connected to a prethreaded leader fastened to the
righthand reel. Because of the prethreaded leader, removal of a reel and the mounting of a
new reel takes only about 15 seconds. The reel is removed by pressing the center of the hub.

PHOTOCELLS
READ & LOA?\NIIDJOWT
WRITE
END-OF-TAPE VACUUM
HEADS WARNING CAPSTAN

3 10 bt o

SUPPLY REEL TAKE-UP
(QUICK-CHANGE REEL
HUB)
ERASE
TAPE
CLAMP HEAD
TAPE
WIPER
VACUUM VACUUM
COLUMN COLUMN

Figure 9-4. Tape Path

SECTION:

16 UNIVAC Il UTMOST UP-3853

PAGE:

If a reel of tape is read or written in a forward direction and is then to be dismounted, it must
first be rewound onto the left hand reel. A tape of maximum length is rewound in 125 seconds.

Tape may be written forward, read forward, or read backward. When a block is read backward,
the words in each item in the block are stored in the store in the same order as they are stored
when the block is read forward.

As many as 16 UNISERVO IIIA Tape Units may be attached to the Processor by a UNISERVO
IIIA Synchronizer. The Synchronizer has two channels, one for reading and one for reading or
writing. Thus, the Processor can be reading information from one UNISERVO IIIA Tape Unit

at the same time it is writing information on another. In addition, transfer of information between
the store and the UNISERVO IIIA Tape unit is buffered by the Synchronizer. This allows the
reading and writing of tapes to occur simultaneously with the use of the store by the Processor
to execute instructions.

Any number of UNISERVO IIIA Tape Units may be rewound simultaneously. Once rewind on

a UNISERVO IIIA Tape Unit is initiated, the Synchronizer is free to control reading, writing,
and rewinds on other UNISERVO IIIA Tape Units. The UNISERVO IIIA Tape units are identified
by number, the numbers being 0 through 15.

UP-3853

UNIVAC Il UTMOST 9 17

SECTION: PAGE:

TAPE HANDLING

The data making up a tape file may be recorded on one or more tapes. If recorded on one tape, the
file is known as a single reel file. If recorded on many, as a multireel file. Following the last block
of data recorded on the last reel of a tape file are recorded two end-of-file sentinel blocks. Following
the last block of data recorded on an intermediary tape in a multireel file are recorded two end-of-reel
sentinel blocks. Both end-of-reel and end-of-file sentinel blocks are one word blocks, and both are
negative words. Bit positions 25 and 24 of an end-of-reel sentinel block contain 10. Of an end-of-file
sentinel block, 11.

The first block of data on a tape may be preceded by a label block. A label block has the following
format.

WORD CONTENTS
0 A negative binary zero
1 The first four characters of the file
identification
2 The date of cycle in decimal format
3 The reel count in decimal format
4 Free
5 Free
6 Free
7 Free
8 Free
9 Free
10 The last four characters of the file
identification
11 A negative binary zero

The file identification, date of cycle, and reel count make up an identification of the data that
follows on the tape. The file identification is usually arbitrary and is assigned by the user to dis-
tinguish between files. For example, the file identification of the master employee file would be
different from the file identification of the master inventory file. The date of cycle is generally the
date on which the data was written on the tape. The reel count is 000001 for the first reel in a file,
000002 for the second reel, 000003 for the third, and so on. Words four through nine of the label
block are available for whatever use the user wishes to make of them.

Processing of input data to produce output data is a programmer responsibility. Reading of data from
tape into the store and writing of data from memory onto tape can be done by means of standard input/
output routines which, for the time being, can be considered part of the executive routine. (Where
these input/output routines are actually located will be described later in this manual.)

Although input/output handling is not a programmer responsibility, the user must allocate those
areas which will contain the data to be read or written. This function is accomplished by means
of the RES directive. Since information must be read and written a block at a time, sufficient area
to contain one block must be reserved for each input and output area.

9 18 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

To achieve the advantages of simultaneous reading, writing and processing, sufficient area to con-
tain at least two blocks should be reserved for each input and output area. To minimize the possi-
bility of read interlock, area for storage of more than two blocks can be reserved for an input area

if such space is available. (Read interlock occurs when the program is ready to process another
input item and there are no more input items in the store to be delivered for processing. In such a
situation, the Processor must wait in an ‘‘interlocked’’ state until the read of the next block of input
items is completed.) Because of the structure of input tapes (namely, that there are only two senti-
nel blocks at the end of a tape), the maximum area that can be usefully reserved for an input area is
area to hold one less than the number of items in three blocks of input.

To minimize the possibility of write interlock, area for storage of more than two blocks can be resetved
for an output area if such space is available. (Write interlock occurs when the program is ready to de-
liver another item for output and all the output area is already full of items waiting to be written.) There
is no maximum limit to the size of the area reserved for an output area. The zero word of the area
reserved for an input or output area should be labeled.

The input and output routines partition off the input and output areas reserved by the programmer. As
part of the partitioning, the routines use two words per item to store control information. Thus, each
item area reserved for input or output storage must be two words longer than the size of the item to be
stored. Thus, if 20 item blocks are to be read, each item consisting of 25 words, and sufficient input
atea is to be reserved to store two blocks of data, then 1080 words should be reserved.

In addition to reserving input and output areas, the programmer must supply to the input/output routines
a three word control packet for each area reserved. This packet has the following form:

+ 0
1 0
4 X

where x is the number of words in an item. The first word in this packet should be labelled. Manipula-
tion of information in this packet is a function of the input/output routines. The programmer’s sole
responsibility is to provide the packet(s) for these routines.

Finally, for each file to be read or written, the programmer must supply a file description table. This
table is either 16 or 28 words long and is used by the input/output routines in reading and writing files.

The programmer must supply certain information in this table for the routines. The format of the table
is as follows.

Word 0:
Initially binary zeros can be stored here. This word should be labelled.
Word One:

The number of words in the item of the file should be entered here in binary. Maximum item size is
511 words.

Word Two:

The number of items per block of the file should be entered here in binary.

UP-3853

UNIVAC IIl UTMOST 9

SECTION: PAGE:

19

Word Three:

The label assigned to the zero word of the control packet associated with the input/output area to
be used by the file should be entered here.

Words Four-Seven:
Initially binary zeros can be stored here.
Word Eight:

If this is an output file, binary zeros can be stored here. If an input file, the number of additional
item areas, over and above the one initial block, which provide for advance reading of this file.
This entry may be anything from zero through one less than the number of items in two blocks

Word Nine:

If this is an input file and the program is to be notified everytime an input reel is exhausted, a
binary one should be entered in bit position three of this word. If this is an output file and the pro-
gram is to be notified each time an end-of-tape warning window is detected on an output reel, a
binary one should be entered in bit position four of this word. All other bit positions of this word
must have binary zeros in them.

Word Ten:

Starting at storage location 0200 (octal), the executive routine maintains a tape assignment table.
Each word in this table refers to a UNISERVO IIIA tape unit. For the time being, it can be
assumed that the word in storage location 0200 refers to the UNISERVO IIIA tape unit numbered
0, that the word in location 0201 refers to the UNISERVO IIIA tape unit numbered 1, that the
word in 0202 refers to the UNISERVO IIIA tape unit numbered 2, and so on. (This is one possible
arrangement of the tape assignment table. When the table is so arranged, it is referred to as being
canonized.) The entry in word ten of the file description table should be the address of the entry
in the tape assignment table to be associated with this file. Thus, if the tape assignment table is
canonized, and if the first reel of the file is to be found on the UNISERVO IIIA tape unit
numbered 1, the entry in word ten of the file description table should be an octal 0201.

Word Eleven:

Initially binary zeros can be stored here.

Word Twelve:

The first four characters of the file identification to be found in the label block of the file should
be stored here. If the file has no label block, this entry is immaterial.

Word Thirteen:

The last four characters of the file id entification to be found in the label block should be stored
here. If the file has no label block, this entry is immaterial.

SECTION:

9

20 UNIVAC Il UTMOST UP-3853

PAGE:

Word Fourteen:

Initially binary zeros can be stored here. When the input/output routines begin the reading of an
input reel or the writing of an output reel, they will store here the reel number of the reel being
read or written. Note that this is not necessarily the reel number to be found in the label block on
the reel of tape. This is an internal reel count. For example, when an input routine begins the
reading of the first reel of a file, it will store 000001 here. When it moves on to the next reel, it
will store 000002 here. When it moves to the third, it will store 000003. And so on.

Word Fifteen:

If binary zeros are entered here for an input file, the input routine assumes the file has no label
block. If the file has a label block, the label of a closed label check subroutine should be entered
here. When opening the reel of the file, the input routine will read the label block and do an SL]

to the label check routine. The label check routine then has the opportunity to determine if the reel
read has the proper label. On completion of the check, the label check routine returns control to
the input routine by means of a jump with indirect addressing to the labelled line.

If binary zeros are entered here for an output file, the output routine assumes the file is to have no
label blocks. If the file is to have label blocks, the label of a closed label creation subroutine
should be entered here. When opening the reel of a file, the output routine will do an SL] to the label
creation routine. The label creation routine then has the opportunity to create a label for the reel.
(Note: Word Fourteen may be used by the label creation subroutine.) After creation, the label check rou-
tine returns control to the output routine by means of a jump with indirect addressing to the labelled
line, at which point the output routine will write the label created.

Words Sixteen - Twenty Seven:

For an input file with label blocks, the label block will be read into these words. For an output
file with label blocks, the label block will be written from these words. Otherwise, these words
may be omitted from the file description table. Initially binary zeros can be stored here.

For example, the file description table of an input file mounted on UNISERVO tape unit 1, recorded at
20 items per block, an item consisting of 25 words; with labels, an expected file identification of
MASTERAA, a control packet labelled CONTROLA, a label check routine labelled LABELA, and an
input area capable of storing 40 items might appear as follows:

UP-3853 UNIVAC Il UTMOST 9

SECTION: PAGE:
LABEL A OPERATION A OPERAND A }
FIIILIEIAI Lot ! 101 RSSO NS SN VAN S U SN SN VA VOO S YA TN SO WA U A SN ST SN SO SR W W L 1)
- 1 1 11 L+1 1 l 1215A L | L1 1 l i i T 1 ! 1 1 1 ‘ L1 1 11 1 1 L l 1&
S W U TS W S | L+l | 12101 R WY S W VO | ! N DU WA W (S VRN S S | l SR S TSTU SEN W W G S l 1}
O S T B T | 1+1 L 1c101N1 TLRlolLlAJ J S SR U VS N DU W | l S SR U N R N T S S| i 1\
I R S SR N 3 LDiol } 44L 174 1+101 ol I Ll | (Y Y U U S | 1 | S N W S N I l l[
11 1 1 1 i l+l it l 12101 1 1 { 1) I J 1 § I . | 1 1 1 1 I 1 1 1 | 1 i . l l>
PR S T S R U e S JOJ P S S W VAN T S A N W S ST Y VU IO U NN N VAN WS S S S S S ! 1 L(
i1 1 1 JE J+1 1 l lolzlol]1 Ll 1 l L1 1L 1 | L1 1 LgL N W R | | " { l L)
T N R T A 401 PR N S S T WS SN SN SN WA N S U N I N W GRS U N SR S N l L
) U R S W | L+L L ‘ LMlAlsiTj , L J [T VT S S S S W O T T R S A N S N R
F I | 1 11 1+1 1 L 1‘1E1R1A1A1’1 I l 1 1 G S WO DR G S | l | S N 11 1 Lt I L
) S W U B U | 101 T S S WY U S | l D O T Y W UM Y B | [) S N T IS W S N | L L\
[T e LL1A181E1L1A1 coo b e s e Lo L 1{
| U U T S lDlol I 11121 L") Ir*lol 1 I RS VR S U I S S S | l) S (Y S S S| | S - j il
AWM—"’V\/"‘

Before any files may be read or written, the input and output areas must be partitioned and the proper
control set up. This may be done by executing an SL] BUFC for each input and output area reserved.
The SL] BUFC must be followed by three constants written in the order listed.

1. The label of the zero word of the area reserved.
2. The number of words in the area reserved entered in binary.

3. The label of the zero word of the control packet associated with the area reserved.

SECTION:

22 UNIVAC Il UTMOST UP-3853

PAGE:

For example, to execute BUFfer Control for a file whose reserved area is labelled AREAA, in which
1080 words have been reserved, and whose control packet is labelled CONTROLA, the following
coding would be used:

LABEL A OPERATION A OPERAND A

SL J BULFC
Lty 1o

| 1 J+l 1 A IALRlElAlAA 1 1 1 1 1 I 4 1 1 1 1 1 1 L 1 J 1 1 L i 1 1 1 1 1 l
1080
1 | l+l 1 1 | L Ll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 i] i 1 ! i 1 1 l
+ L
I 1 1 1 lclolNlTlR(OL JAl 1l 1 l i 1 1 Il i 1 1 1 1 l 1 1 1 { 1 1 { 1 Il l

After buffer control has been executed, control will be returned unconditionally to the line immediately
following the third constant.

An input file may be opened by executing an SL.] FOIF. This instruction must be followed by a constant
that contains the label of the zero word of the file description table of the file to be opened. Execution
of this instruction will cause the specified file description table to be initialized for reading forward. If
the file is labelled, the label block will be read, and the label check routine executed. If the sign of thg
constant is minus, the tape will be rewound before any reading occurs. If such a rewind is not desired,
the sign of the constant should be plus, For example, to open forward an input file (File Open Input
Forward) with a file description table labelled FILEA, where the tape is not to be rewound before read-
ing occurs, the following coding would be used:

LABEL A OPERATION A OPERAND A 48

SLJ FlolllF|

1 Il 1 J - i L

{ 1 j
11L+11¢1F1|1L1E1A1114411111141L11|[111L111LL14L)

After open of the input file forward has been executed, control will be returned unconditionally to the
line immediately following the constant.

If a tape has been read or written forward and it is now desired to read the tape backward, the file on
this tape must be closed and then the file description table for the file must be initialized for back-
ward reading. This may be done by executing an SLJ FOIB. This instruction must be followed by a
constant that contains the label of the file description table of the file to be opened backward. For
example, to open backward an input file (File Open Input Backward) with a file description table
labelled FILEA, the following coding would be used:

UP-3853 UNIVVAC Il UTMOST 9 23

SECTION: PAGE:

LABEL A OPERATION A OPERAND A {

SLJ F Ol B
1 1

| S W U W W S |

7+ lFlIlLIEIA

114LL4llllllllllllLlllLlllllll

After open of the input file backward has been executed, control will be returned unconditionally to
the line immediately following the constant. Execution of this initialization subroutine does not cause
any tape movement. If the read head of the tape unit is positioned behind the sentinel blocks, these
blocks will be passed over when backward reading begins. Only data blocks will be delivered for
processing. It should be noted that backward reading is not a buffered operation. Thus, backward read-
ing and processing cannot occur simultaneously. (This is a function of the backward read routine. not
the computer hardware.)

After an input file has been opened, either forward or backward, an item to be processed can be acquired
by executing an SL] FRD. This instruction must be followed by a constant that contains the label of
the file description table of the file. For example, to acquire an item to be processed (File ReaD) from
a file with a file description table labelled FILEA, the following coding would be used:

LABEL A OPERATION A OPERAND A e
1 1 J;ISILIJ_I_|FIRID¥L i 4 1 1 L L 1 I 1 ! 1 1 | 1 i i 1 | | 1 1 | | 1 11 1 l/

After the file read has been executed, control is normally returned unconditionally to the second line
following the constant. (This line is called the normal return line.) At this point the program can find
the address of the zero word of the next item to be processed in the zero word of the file description
table. Thus, the base address of the item could be loaded into index register 15 with the following

instruction:

LABEL A OPERATION A OPERAND A)

lF ILLAElAl 1 l 1 S N | i 1 1L1 d i 1 i 1 L1 1 I 1

The item could then be addressed by using index register 15 as its cover index register. The zero word
of the item could also be addressed indirectly by using the contents of FILEA as an indirect address

control word.

Regardless of whether the file is being read forward or backward, items will always be delivered in the
same format. That is, an item will be arranged in sequential storage locations, the zero word of the
item being in the first storage location, the one word of the item being in the second location, the two
word of the item being in the third, and so on.

9 24 UNIVVAC Il UTMOST UP-3853

SECTION: PAGE:

If a file is being read forward, the first SLJ FRD will deliver the address of the first item on the tape,
the second SLJ FRD will deliver the address of the second item, the third SL] FRD will deliver the
address of the third, and so on. If a file is being read backward, the first SL.] FRD will deliver the
address of the last item on the tape (the last item being defined here as the last item in the block
immediately to the left of the read head of the tape unit when the file was opened backward), the second
SLJ FRD will deliver the address of the next to last item, the third will deliver the address of the
second from the last item, and so on.

If when control is transferred to the input routine via an SL] FRD to read a file forward the input
routine discovers that there are no more items on the file, then instead of returning control to the normal
return line, the input routine will return control unconditionally to the line immediately following the
constant. This line is called the end-of-file return line. Thus, a schematic of the coding for an SL] FRD
would appear as follows:

LABEL A OPERATION A OPERAND A }

llelJl lFlRIDl 1 1) W U I SIS S 1 l L I | | L1 4 I 11 1 1 i 1 11 Ll 1

+ FILLEA
| S S S S i

11 - |

end-of-file reme line
1 1 1 1

|| 1 i l 1 i 1 1 1 | I | 1 l { 1 il | 1 1 1 1 l 1 1 1 1 | S 1 1 i 1 1

normal return iine
liilllllLIlllllllllllllllllllllllllllll

The input routine will return control to the end-of-file return line on detection of an end-of-file sentinel
block at the end of a tape in the file.

If a tape is being read backward, no end-of-file notice will be given by the input routine. Consequently,
if a tape is to be read backward at some point in a data processing system,care should be taken so that,
when this tape is initially written, some type of unique item is written at the beginning of the tape so
the program can recognize the beginning of the tape when it is reached. If the tape is labelled, the label
block can be used for this purpose. Notice that a multireel file may be read forward, but only a single
reel file may be read backward.

If a one has been placed in bit position three of word nine of the file description table, then the input
routine will return control to the end of file return line, not only when an end-of-file sentinel block is
detected, but also whenever an end-of-reel sentinel block is detected. Thus, this return line is more
appropriately called the end-of-file (reel) return line. At the time control is returned to the end-of-file
(reel) return line, the sentinel can be checked to determine whether this is an end-of-reel or

an end-of-file return. It is accessed as follows:

LX n, FILE +4 (5th word of file description table)
LAL 1,n

When a programmer desires to close an input file, this may be done by executing an SL] FCIF. This
instruction must be followed by a constant that contains the label of the file description table. If the
sign of the constant is minus, the tape will be rewound. If plus, the tape will not be rewound. For
example, to close an input file (File Close Input File) with a file description table labelled FILEA
where the tape is to be rewound, the following coding would be used:

UP-3853 UNIVAC Il UTMOST 9 25
SECTION: PAGE:
LABEL A OPERATION A OPERAND A)
1115L1J F&'nF 1111111111|1111111111111[1<

- 1F1|1LJELAA

After the file has been closed, control is returned unconditionally to the line immediately following
the constant.

The programmer may close an input file at any time he wishes. However, he should close the file after
an end-of-file return. Normally, in such a situation, the programmer would indicate that the tape is to
be rewound so it can be removed from the UNISERVO tape unit. Exceptions would be if the programmer
subsequently wishes to read the tape backward in either this program or a subsequent program. After an
input file has been closed, it may be reopened, either as an input file or an output file.

If a multireel file is being read forward and an end-of-reel return has not been requested, the input
routine will automatically close a reel and rewind it on detection of end-of-reel sentinels. It will

then automatically open the next reel of the file, execute the label check routine if one is called for,
and deliver the address of the first item on this next reel via the normal return line. However, if an
end-of-reel return has been requested, it then becomes the programmer’s responsibility to see that
these end-of-reel functions are done. This he can do by means of an SLJ FCIR. This instruction must
be followed by a constant that contains the file description table label. For example, to close an input
reel (File Close Input Reel) of a file with a file description table labelled FILEA, the following coding
would be used:

LABEL A OPERATION A OPERAND A ?
1 i I lSlL J lFlclllRl i 1 1 A A l Il 1 i it 1 L1 1 1] | 1 1 | } — 1 1 l 12
I 1+1 1 |F1IIL1E1AA 1 i L i 1 l Il i 1 1 1 | I S T | J I T | T 1 1 i I |>

After the reel has been closed, control is returned unconditionally to the line immediately following
the constant.

An output file may be opened by executing an SL] FOPO. This instruction must be followed by a
constant that contains the file description table label. Execution of this instruction will cause the
specified file description table to be initialized for writing. If the file is to be labelled, the label crea-
tion routine will be executed. On return from the label creation routine, the label created in words
16-27 of the file description table will be written. If the sign of the constant is minus, the tape will

be rewound before any writing occurs. If such a rewind is not desired, the sign of the constant should
be plus. For example, to open an output file (File Open Output) with a file description table labelled
FILEB, where the tape is not to be rewound before writing occurs, the following coding would be

used:

9 26 UNIVAC Il UTIVIOST UF-3853

SECTION: PAGE:
LABEL A OPERATION A OPERAND A 42
S L J FOPO | | |)
i 1 /S S N 1| Lol i | 1 1 O Y SR W S | B | SR S | 11 1

After the output file has been opened, control will be returned unconditionally to the line immediately
following the constant. At this point the program can find in the zero word of the file description table
the address of the zero word of an output item area in which the first output item may be built up.

Thus, the base address of the output item area could be loaded into index register 14 with the follow-
ing instruction:

LABEL A OPERATION A OPERAND A ?

FILEB
| S S W S

The item area could then be addressed by using index register 14 as its cover index register. Tie
zero word of the item area could also be addressed indirectly by using the contents of FILEB as an
indirect address control word.

The address of an output item area in which to build up the next output item can be acquired by
executing an SLJ FWR. This instruction must be followed by a constant that contains the file des-
cription table label. For example, to obtain the address of the next output item area (File WRite) for
a file with a file description table labelled FILEB, the following coding would be used:

LABEL A OPERATION A OPERAND A j

S L J LFleRl) N T W 1 1 L | 1 1 1 I 1 A I 1 l i 1 1 { i 1 1 i I l(

+ lFlllLlEan

After the file write has been executed, control is normally returned to the second line following the
constant (the normal return line). At this point the program can find the address of the zero word of
the next output item area in word zero of the file description table.

UP-3853 UNIVVAC Il UTMOST 9 27

SECTION: PAGE:

If a one has been placed in bit position four of word nine of the file description table, when control
is transferred to the output routine via an SL] FWR and the output routine detects the end-of-tape
warning window on the output tape, then instead of returning control to the normal return line, the
output routine will return control unconditionally to the line immediately following the constant. This
line is called the end-of-reel return line. Thus, a schematic of the coding for an SL] FWR would
appear as follows:

LABEL A OPERATION A OPERAND A >

SLJ FWR
1 U Bt 7 I SR S T | 1
+ 1 1 lFIILLlElBl

1 1 1 1 1

L1 | 1 1 X It I I B N | " 1 1 { I | — 1 | | S 1 l 1

end-of-reel return line
L 1 1 1 i | L 1 L 1 1 1 1 1 i [} 1 1 L 4 { 1 1 i | { | l i i ! 1 i 1 1 1 1 L i

normal return !ine
PR AD S S VA YRS U SN SN A T AN SN WS SN NN Y SO SO SO SHNNN WO DU NN U (NN WO TN WO AN SN WA N A A

When control returns to the end-of reel return line, the address of the zero word of the next output
item area will be in the zero word of the file description table just as it is when control returns to the
normal return line. This end-of-reel return is normally used to allow the program to write a few more
blocks on the tape following the end-of-tape warning window prior to closing the reel. One instance
of this use is where a multireel file to drive the printer is being written and it is desired to have end-
of-reel coincide with the end of a printing form. If an end-of-reel return is not requested, the contents
of the end-of-reel return line are immaterial.

When a program desires to close an output file, this may be done by executing an SL] FCOF. This
instruction must be followed by a constant that contains the file description table label. If the sign of
the constant is minus, the tape will not be rewound. For example, to close an output file with a file
description table labelled FILEB, where the tape is to be rewound, the following coding would be
used:

LABEL A OPERATION A OPERAND A)

SLJ FCEOF
T R L

- IFlllLAEIBl

After the file has been closed, control is returned unconditionally to the line immediately following
the constant. Normally, the programmer would rewind the tape when closing an output file so it can

be removed from the UNISERVO tape unit. Exceptions would be if the programmer subsequently wishes
to read the tape backward in either this program or a subsequent program.

Closing an output file causes the output routine to write two end-of-file sentinel blocks on the tape.
After an output file has been closed, it may be reopened, either as an input file or an output file.

SECTION:

28 UNIVAC 11l UTMOST UP-3853

PAGE:

If a multireel file is being written and an end-of-reel return has not been requested, the output routine
will, on detection of the end-of-tape warning window, automatically close a reel, write end-of-reel
sentinel blocks on the tape, and rewind it. It will then automatically open the next reel of the file,
execute the label creation routine if one is called for, and deliver via the normal return line, the address
of an item area in which the first item to be written on this next reel is to be built up. However, if an
end-of-reel return is requested, it then becomes the programmer’s responsibility to see that these end-
of-reel functions are done. This he can do by means of an SLJ FCOR. This instruction must be followed
by a constant that contains the file description label. For example, to close an output reel (File Close
Output Reel) of a file with a file description table labelled FILEB, the following coding would be used:

LABEL A OPERATION A OPERAND A)

lFl CJOIRI

1.1 Lol 1 1 L

) S | l+l i IFLIILIEIBA I 1 i L 11 l) I W S [| 1 1 l i1 1 1] 1 1 1 . l |J

After the reel has been closed, control is returned unconditionally to the line immediately following the
constant.

The input/output routines use the arithmetic registers; the high, low, equal and sense indicators; and
index registers one and two. Consequently, when the program executes an SL]J to the input/output
routines, it should not have anything significant in these registers and indicators, since their contents
and settings may be destroyed before control is returned to the program.

UP-3853

UNIVAC Il UTMOST

SECTION:

9

PAGE:

29

G. END OF JOB

When a program has completed its work it should turn over control to the executive routine.

This is done by executing an SLJ EO]J.

1.

Example

Given on UNISERVO tape unit 1 a single reel file with no label block and containing six
word items blocked at 83 items per block. The data has the following form:

WORD DATA

NNNNNN
GGGGGG,
GGOO0O
PP,0000
OOAAAA,
AAOO0O

n A W= O

where
N is a taxpayer identification
is gross income

G
P is the number of dependents
A

is the amount of deductions other than for dependents

Produce on UNISERVO tape unit 2 a file with no label block and containing three word items

blocked at 166 items per block. The item has the following form:

WORD DATA
0 NNNNNN
1 0000TT
2 TTTTIT

where
N is a taxpayer identification

T is the unrounded tax

A deduction of $600 is allowed for each dependent. The tax is 20% of the taxable income

taxable income.

9 30 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

2. Flowchart

OIF OPO a
P T
RD
®.‘< p }—PN—»TN > .2(P° - 600PP_PAY=TT __< WTR >—®

J EOF
CIF COF \ . EOJ
P T /
LEGEND
P — a taxpayer item T — atax item
PN _ the identification of P TN_ the taxpayer identification of T
PG_ the gross income of P T'~ the tax of T

PP_ the number of dependents of P

PA_ the amount of the other deductions of P EOF is an abbreviation for End-of-File

UP-3853 UNIVAC 11l UTMMOST 9

SECTION: PAGE:

3. Coding

LABEL A OPERATION A OPERAND A COMMENTS

AREAP RES 1328
) S S S S| Illllllllll

JLJlLlJAI'IIlllIlIlIIIlAAAlelLIIAIIA

AlRlElAlTllllllRlElsA |]|6I6lolll|llIlLlIlllllllAAlIJlllAlAlllllllll

cIOANI.'.IRIOI LIPl

et e e o 0 b e v by e e e b e e by

"
i
S I N P g NP

C|O|N|T|R|°1L‘T| 1 |+| J S ' |0. PR U Y U T S U G S N U S SN N SN ST S SN SO N SO SO U S YU WO ST WY S HAY S U TS U S U |
T T S N TS B N T | |+1 Ly IOA U S S S S T SN N [T SO N W SU S WAV N S WON VAT S S S S VAT WA SN0 W G S W SR
I T W TS S RN SO S | l*n S 131 AU N T WU SN TN T S S SN0 SO G S0 WA N O S T l F NS SN N0 WY Y N Y o | 1) WD SO VAR D S S |
FnluLnE.P1 i S I)rn IS .01 RTINS S S S N W S I N YU U W G U N 'S L) R T S N N T W St |
N VO Y G N SO O S | |*| N WO S| L6L o b e b L l R R O TR0 TS N S
| TR SN S SN N DU S | I+A Lol ‘813‘ N S S R S R l TR S S S SN ST S B § W Y RO N S W B li Lodo L1 1)
Y N Y N W S | 1+1 F R T JclolNlTlRJOlLlPI | S T T 1 I) S T W N T S T T | l N TN N NN N Y S | l S W N N U N W Y
) N S U T T T R | anoj L1 A“A SN L+|ol U 14LL| Y W W S VU S S S N S T S S N SO W l S S W S N W

L~ '\‘_’__,,-._—\‘/ o

8 3
S I TN S WSS W I S | lkl i1) lltlllllllllLl | | SO I S SRS NN S T | I N Y I W U B | l] N S N N B S S 1
+ 0
P Y S Y YO U SR M VT Y SN S ot S O U HNN SN SO VTS SO S WY N W R U O N N S S | | R S S T N S N U E S NS S S
+
S N W R | llllll‘l lolzlolll)N U T I Y TR S N | I) S T N Y U Y W e | I) I NS U NS S U S S | 1 F S NS WU VS TN N S |
IDO 5 ’ l+0 k l l
U U D U S (N S B T T Y T S B S B RN Y Y N S WY U | S VS VA N S N W N | IS SN USROS N S | T S T UV S WY S
FILET [+ 0 l | | l
S Y U TSN N A S S N W SN SN O T S W | N N N VO N S T S | S S N T T TN T | 3 U U GO W SR NS N S | | D N WU U W B S |

+ 3
llllIIlllllllllllllllllllllllllllllllIIILlIlIlllI'liIllliJ_(
+
U,ll....x.u,“.6.6‘1........|.|..H..‘1,‘...“..LHL‘.“A\
[+ CONTROLT | j
) IS VS RN N S SR S | L4 11) S | R T NS T N I N T Y lllllllllllllllllllllllllJl
Do 6 , ,+0 \
lllllllillllllllll]llllllllll]llllll||||IIllL1JJIilllllJlL
+ 020 2 2
lllllll\l'llLl llIILJLIILLL[I]IIII[Il|ll|llll1lllllilliAkl
D 5 + 0 l
lllllll)I]Iolllllll'llllIllllllllllLillll]llllllllllllllklll
U SO SN NS W S S luls|EAA|A3A1|lxllxn11|||||1lAJAL;lnnLLnAnln]:AJAlJLJ_{
START S LJ B UFC | l |)
| N O o N TR D S iy) J S B | L 1 1 | Y Y S N NN N N SO §) I S S N N S S N | W SN SN W SN NN SO S |) W GRS Y SR W U S

AREAP
FED S | 1

-

-

-

-

-
—

[

1328
PR Y el] AN N ST S SN ST T S SR SO H S SO SN WY HOA CHOY Y T T VO TN S S VO S NS U N S S SOV W WU

lclolNlTIRlolLlPI

-
-
-
-

lBIUIFlC'
AR EAT
1 1 1 1 1

P S S WY VU NN YN N T VA SO VNS S T SN W SO NN A ST S ST ST SR S SN NN S ST ST S G Wt

A]I6I6Io|

LljllllllllllllIlll)lllLllLllLllAlJl

L11|11AL+LIAIIIAlclolNlTIRIOALjTilltlllllllllllllllllllnllJ_L141A41
AFlolllFl

-

L

L

L

L
LN

(o

B
°

I

L

L

SECTION:

32

PAGE:

UNIVAC 11l UTIMOST

UP-3853

(Coding Continued)

LABEL \ OPERATION A OPERAND A COMMENTS
1
b i 1 A i A I+L l e " " L 'y lFlllLlﬂPL e i A A 1 L Al l I 1 A i A1 1 JE— d 1 I L A L 1 ' A hed. A I 1 dod L e L 1 l\
R T Y S R R llelJl L AFIOAPJOI B S B0 G S lO‘PlOl |T| PSS G S W T SO VO S ST WY WE SN T S W W S WY S W x)
L FI L ElT | L(
O W S NN S S S Bt N WS SN N W G S W L I R W S B S | I Y OO PO N W | 1 S S WY W N N U . | [I N B I |
Clln P W S T ‘LAxl s 1.“. s |FIIILAEIT| U SN T ST S S U ST U S NN S RNO ST SO W VNN S ST SN RSN AT N T S S AJ
I T VO B B B llelJl T T |F|R|DI Loy o001y 1R10|£1 PNV SN T U S S W WIS U NN N S S S B WO 1_(
P WO S S WO S LA N GO S S S N lFllILAEIPI R S VA S SN S SN S Y S WO SR S ST U TN S SO S TV N S SRS SO S S S U J_)
N W DS G B N | 1"Ll) WY Y S T lEIOLFl[Ll Y VS SN G W S l S R S S W U O | I) N N Y S Y S S | l N O N O W | A
Lo LLXl 1 1]15| 1 1F1|1L1£LPL P S U S G SN T N VA SO W S W AU O S STV S T W NN N A SO U WY SN NOUUN J_)
LAI 8 3 |15 .2 (P G - 6 00PD - P A) - - - TTTJ
U N T SO S N S | I R L R 14 | (IS SR U S I A Sl St SO S SR Tl B Sl et S AT R PSS B Lol
I OM o Y8800 e by A
ST S R N S T { ADJSI I J6|'L¢ 151'5 i 11151 PR G ST WO G S (G VNN TS SN S ST U WA S AU S S S R SR SR A O S T | A_/
) D N VR W W G DlAI 1 161’;1; AZJ'I L J]lsl U N N H N S SO S S SR N B U B B B S B B R S i S T I | A_‘
Ly la1g SAL LS TS e e 1\
A W N T T I ILIAI 1 lai'L i l(lzxololoxolzlol)\ [l R N Y Y TN U S i L § Y N S W N N W | [Y D S T S S | L{
F U S WS N N S Y DAMl S W T W lTlstl | RS T AT ST S AT S S ST A S A N N B S B R B R I R A TN T Y N T B)
N U S VR VY S S § 1SIA1 It L“AIK_LATASﬂAiLL) S S R S W N B l A DU N U WS RN N S N l Y N TS TSNS N (NS SO S | LJ VIR I S N N | 12
i S VD G S S} ADLMI) U S ITlsilx L § G N IS ISR N T S l D W T S S S T T | l IR S Y TR S N SO W | l TN TS S W S W | l)
R N TR T T T IDAAI 1 161' 1T15141 1 U TSN WY S N W W [N N VA N T U B I TN S W T U N T o | I Y OO S Y T | A
LA, 8, 0, 15 PN, - -- TN)
P S VTS S T RO Tt S (N G Y S Uy S S ST O R S S U S S TS ey G S S U0 U N HNNO Y NS S N A U0 N WO A0 N Y A S
GRS S DN WY W S | leAl 1 1'141 L |2L'1 " 1114| F S SR S N W T | IJ;L T R N S SR RN SR U N N | I T W S Y B | l{
[! LSALIJJ L FYR SRR/ DL I A A S AN ST T A S AT S o A S T LJ
R S S ST AT S H S LFlllLiElTA cooee v b v vy b e e b J
I T N U W 1 A+Ll OO S S S | non 1 I N S S A S W S S l YU VN N WU W S S T 1 l) S TR WO N W N W T § l S U U Y T . | A)
1 1 1 1 i 1 1 AJL l L L 1 L 1 ch]l i I 1 1 1 1 1 i 1 1 1 1 1 1 L 1 1 1 1 | 1 l 1 i 1 1 1 1 ! 1 1 I 1 1 L L 1 i 1 i
E1°1F|T 1 1;LSLL|JJ Lo |Flc1|1F‘ L1 JcnllF P Y T T SO YA OO S AN T S S SRS T W W SN ST WS WY SN WU /
- FILEWP x
TR N S S S N S SR o ey b b b
SL J FCOF COoOF T J
PO N T T VO S S SR | PRSSNGS0 Wl YUY SN SN N Y Y N (N O U S ST Y S YA N S N SN VO SO B W U
P S S N WO SRS H VTR IFJ|ALAElTl ooy e b v by ey e by oy L1 AB
U R R S Y A ASLLiJA L 1E10|Jn | FS U N S B |E1°lJ| PR U SN S SIS S SN Y SN ST B S MO L1 u}
T451]| T T B .0. PO S S T S S VO ST S T WO S T S SR YU WA SO SN SN S SRS U T SN S WU SO S Lol x\
Tlslzl - A A1 e x*L l l A L — lol 4 b L L n 1 - A i L 4 A l 1 i Il 1 L L A L J l d A il I L L)l 4 i ‘ 1 A A it 1 it 1 J
TlS|3I 1 1 1 A“J l 't i i i i AOIOAOIDIOIOI 1 i 1 i 1 1 l i 1 1 L 1 1 1 | 1 I 1 1 1 1 1 L 1 1 1 l 1 L 1 J— 1 1 L}
54 TN L R SR v b v v v by ey b A
END START L{
PR S S S G T s G S S S T et SO S S S S Y T S S S G S S O G S GO G U G S G G GG ST S G S N ST S

UP-3853

UNIVAC 11l UTMOST

9

SECTION:

PAGE:

33

H. COVERING INPUT/OUTPUT AREAS

One nuisance in programming is the specification of the index register when addressing an
input or output area. This nuisance can be avoided by using the technique exemplified as
follows, which is a recoding of the above exercise.

LABEL A OPERATION A OPERAND \ COMMENTS ?
TN SN TS VA U0 VO B | lUlleA L ‘1151 PR S S S S S S TS N S N Y S N T T T R S N ‘?
PN 1 BQY T
PG EQU $ -2 \
U U U VRS U WS S | I P T Y S S T S S G U T S O S S ST N0 VN NS S S S RS S B S

+

PID| T W S R T | 1Exonul It Asl L3l PR U U N S VA WA (N S A N N S SO S S AN B RN TR S SO SO SR H S S ,/
PA EQU $ 5 “
U WS D G SR T S T S AR (N SN SN U S M G N T HNY W S N VU S S N Y S E A R B O JE—
ARE AP RES 13238

| VOO S N O W S | Ll B R O B S I R S R 1L4 § U S N T WO B N W B S T P S S AU U W W
U S T G S S S 1 1UAS|E1 a4l L llliLL oo by e e by PR Nt PR
TlTl T S S U 1 1E1Q1UA I $ LZ P S N VI (T W U O S S U SR R S R RS L1
AREAT | RES 116 60 | | |
4 1 i 1 1 i 1 1 1 L A e 1 1 |) I— 1 1 i 1 i L 1 L 1 1 1 1 i 1 1 1 1 A 4 1 1 L 1 L L
CONTROLP + 0
T T TS R | P S S N N0 A ST S SN A S VA S S T S S RS TR T S RS T
TS VN VN WS S O St Li’; Lo 1 10L4 P SV S ST T W VN N U S G S S S W S A S S oo b
/Y S S W E NS T | | l,l T N 1 161 Y N TR O IS T Ll | SN WS W ISR W N S | l S I | S N W | 1 | S W S

|0L411|141

U S U S R SN I I L IR S S T U
i 3
1 i L L I A A J l Il 1 1 1 A L 1 L l . A bl l L i L 1 i l 1 A 1 Il L A 1 1 L l I A i A i i [" 1 A i 1 i
F P t
lliLjEl I\ 1 i l 1 1 1 i 1 1 4 lol N 1 I 1 1 1 1 l 1 1 i 1 [- 1 I i1 1 1 L L 1 1 1 1 L L 1 | L
¥ 6
P S U A U R R | PR S S S U VO VAT T N0 U UUOY G N S S N G N U B S S R R Lol
+ 83
T N S T R S B T PR U W G VA N W N Y N S S N W0 G W SN A S RN B
+ CONTROLP)
[S A R | IR S Bl S e e T T T U U S Y T N O N R S RS !
DO 4 . i 0 \
el L) . A J L L 1 4 I I L do J L A A 1 I e i 1 I i I\ 1 Il | 1 1 It d I I i 4 | 4 i 1 l i | i | i
. 8 3 }
S T W U T W W Lo vy 1 [Ty TR SIS WA NS U S S0 N NS 0 U T ! o TN IO W | l L1 Lol
* 0 1 | r
TS SRR N S N N S0 B S R R AR Sl ST T VYT NS U TN S B N S B S Ll L Ll
+ 0,201 |
P N U N U Loty 0 T U YR VNN U SN T SO S S N N U G T A S B IR Lod e 14y
D i
N TS S U R W | 101_1,,1 . | 151 TR lol AT U T S SO S S VA W N NS Y WA R S TR S S S ST S S S
FILET + 0 |
1 1 H L 1 1 1 4 1 d, A L A i i 1 A 1 A i n e L 1 | 1 e 1 bl J. i 1 1 1 L e A 1 e e L i i i I i
! 3
R N WA N TR N B ¥ | BTSSR ! T Sl N R T Y N S O B W S B TR T A VU W S SR USRS G Y SU VROPRY (PN N S
+ 16 6
S S T S U S ST O N O NN U ot O N B TN SN NS O NN GOSN Y NN U T N N S R SR S SO S N B S N S S
v CONTROLT :
TS S S TN N B L v v S S S S T W O S S N S SN S S S N A R bbbl Lt .
DO 6,] |
N N U VS Y St L B S ' L [VA U SN S O W S S |) N WA U VDN W E OO0 S J S S " 1 T S Lo .
; 012 02 | | |
T U O S S B S | R d L 1] U T N S S N U L Ll

SECTION:

PAGE:

34

UNIVAC 1

UTMOST

UP-3853

(Coding Continued)

LABEL A OPERATION A OPERAND A COMMENTS {

FE R S U | IR IDJOL PR S ! .5[L I‘IOJ R R S TR B T ST R TR 14(
P N N ' | AUASIEA Loy 131 U N S S T S U G R P B e Ly l)
SITLALRKTL Lo | |S|L|J| 1 |81U|FICA Lol LL Y S S S | Y Y l L | S T B l I W W S | 1\
I N FUNS I N S N LALRLELAXPI [T U R I S S T R B R |4x_l
1,328 <

b il PSR ST Y S R PR S Sl Bl VO WS PO WO Y ST A S S S W' R B AN ST WU T SO S SN S S S
ISR W N G R B S \C\OANthR\O\prx Co | T R [PR S T I RS R ST RO S A>
B U S S] L ASLLLJ1 14 LB}AUIFlCl W S S| l J U S T | b4 L - F I S S S| l) N Y S | l(
141 I S T S L JALRLElAiTL R RS S S R I B ST SN ' L)
TR S TR A S S S ‘]l6A6‘0‘ IR B TR RSN R SRR 1\
N S S S el l I SN NS W S S R S ICXOLNLTARAOILATI Il l I R N N L l S I B S Bt l) T W | 1/
D W N W S 1 R — [LsiLlJl I S S| AFlolILFJ § S U N T l 1°||1F1 |P L] l L1 Y T W | I | S G T | K
N IS W S | I — i U N S S 1 1F“1L1E1P1 Ld l I T | Lol | 11 I T O J N DU N | l\
SLJ FOPO OPO T (

[T R T S Sl I P il TSR G DTl T S PRI S S SR R B
FI W Coe Lot s LF”\L\EiTi TS B SR N T I N N S| l I T T | l\
C4]1 JD TR 1lek4l 1114;'1 IFIILLAEITL U T S RV S W S ETERE B! T SR S SR J/
! AT IS LT o FIRD TR B L TR B [R ST B S S S |\
TS G N 1 [B S SR R R |F‘I\L\E1P1 P S U S N N O S L1 1 l 1 N N U S | l I S | 3
N N N lJl I Y S S B | AEloiFLTx U R S ! [B o b IZ
Ll gy ce LavX v FIVEER [R R AR RS 1)
LA 8 , P D .2 (P G - 600PD PA) - - TT(

T G B T B Sl ST S S A SR Bt R S S Sy N A S T N R M R T S N T
L1 Cooa oM 00600000 I I R B RN |\
Loldog Lo L Bs s PA L I B Lo by 1(
J N S S | Lo 1 DAL LéuL L LPJ Gl RN N B R G [R B L\
S A 6. T 52 J

S S S S A U G T S S S S I S S S T S R S U B S S S I B [N BN

TR S S | ILAAA i 18." | i(J:IOLOAOLOAzlol)I I T S ! TESTER IS SRR T L 1/
TS S | :D|Mx TR L 1T{512L ST SRR 1y R T ST I U SR R IJ(
S I S W | T |S|A4 L n4.'1 L 1T|5‘4\ T S O Y B J;L Lo 4o [T S | 11 LLJi)
DM TS 1 ‘

N U S VO G l § NN S U T U AOY VS St];,_i,;,l R S . L_l,L Lood 11 J - l Ll S T S W § l F N TS T W
D A 6 , TS 4 . \

T W S S| IS l A G VNN W VA S D S TS S S BT S WU N S S N WS VY W YR l F P W N | l I O O I S
LA 8 , P N PN - - - TN /

L1y PRV EON S S S S U U NN S A S0 SN S S ST S S M0 G SE S S R R RN S

UP-3853 UNIVAC Il UTMOST 9

SECTION: PAGE:

(Coding Continued)

i LABEL A OPERATION A OPERAND \ COMMENTS e
S A 14, T)
PSS S W SO YO SO VO VA S S U S S S S S Wl Sy S S S U U SN T S U IS G S S S N S RN R S T ST BT
| SLJ F\W R WR |--- T l | \
D TN T TN G SO U Wt N " 1 T W S TR S WU T | O S T S T I S U S S SN VY VR S 't N B S S
+
F U N U WO S ST S S S TN S S S S SR |F|||L|E1T| ey e ey e e ey e ey 1(
+ 0 \
Y W B | P ST SN WS T S VU S N S S S LL OO S T N W S | | N W S Y N SN T | I B S W W N Y B N B | l } S S N
J C1 {
PR N W VT ST N VN0 W SAUOT S VA S SO S S N VU Tt N YO T S U O U S A VT N S S N S S SN S S S S SO S S SO S S ST S UG S
EOFT sLJ F.C1 F CIF P
) WY TN I S T EE T T S TSRS U N W T W 1=) Y G W WU S W lJ VI N TR TS SO S S 1 l D SR U S S WY S B | l D W G W W't
- FIILEP | | I
TR TR VO SN S U N U R SO N TS S E S | E W T S | R S S Y SO S S T S | L1 T RS TR WS W
TR B B I ST | |S|L|J| T T |FICIOIF| Lol 1C|0|F| 1T1 P S S T N N S S R S R S S S S RS ! 1\
e VT AF‘IILIEITA P IS VA ST N N SPENE B S S S S SRR R I B S SRS 1(
T S S W S | ISILAJI Lo |E10LJA il IEL01J|4L P WS S S NN S U R VU R S T N VE A N WA RN Tt]
TS + l
14 | S S WS W l y S W T SO S W W' |0L § WY SN SR W VU W S W | I N RS Y WY TR TR VU T |) S WS S W W SR T U l) D S S S |
Ts 2 + 0 >
| S DS AR TR U WS SO W 1 l VSN SN TS RS NS WD S T | 11) WD S T N T l B I T NS NS T N WS S | l IS S N S IO Y S S | ‘ 1 J
TS 3 + : 000000 (
P T S S S U S U W U WA S S S SR S ST B T s T R Sl PR T S S S S S S U S F S S T S S S S B S S S R S
TS 4 Lt 0 | ! S
) . B U DR R Rt I OO DN U Y S B T { | VR U YU VU S R B | i N N T I | | B S A N T WO VU S N | l S I
END S TART | (
PSR SN T SR S G S S S St A ! A1 PR GO T G (S GO GO ST S WO G G G (S S0 W S Lo 0 PO S S W G

The mechanism used in the above coding works as follows. The USE 15 directive tells the
UTMOST assembler to assume that the address of the line tagged AREAP is stored in index
register 15. The PN EQU $§ directive tells the assembler that the label PN is equivalent to
the label AREAP. The PG EQU § + 2 directive says that the label PG is equivalent to the
expression AREAP + 2. The PP EQU §$ + 3 directive says that label PP is equivalent to the
expression AREAP + 3. And so on. Consequently, when the assembler encounters the label
PN in the m portion of an instruction, it will substitute a binary zero in the m portion of the
instruction and insert a specification of index register 15 in the index register portion of
the instruction. The assembler will do likewise for the other labels defined by the EQU
directives. Since the program keeps the base address of the current taxpayer item in index
register 15, the fields in the item can therefore be properly addressed with the labels
defined by the EQU directives. The USE 14 directive and its associated EQU directives set
up thelabels to address the tax item in a similar fashion.

In the above example more than 1024 storage locations were reserved between the USE 15
directive and the USE 14 directive. Suppose this were not the case. Suppose instead the
situation were as follows:

9 36 UNIVAC III UTMOST UP-3853

SECTION: PAGE:

LABEL A OPERATION A OPERAND COMMENTS

B>

US| E 15 |

TR T Wl S SN URS

AllllliIEAQlUAllxslxtllllljxlLIIIIlllllllkkllikllllllll]AlL

)
PLGLJLIIA1Exolullx1$x*xzxxxltx11||||1|||1|||||li|11L|1|l|llJ|lAJ|§

PDI Y W S B |E|Q\U| L1 I$J+131 L1 LL YU (N S W S W [T) U U SR I B | l DR N TN N N S (N W | I | S S
PlAA T S N S |E10\UA L lsj+15L PR U N S UV A U VAU S N A ST SO S HN N S WS S U0 WU N S SN S RS !
AIRIEIALP I#LRLEJSI - 15A010A T SR R S S S 11 I § WV U VR VS W T W S l FURD S U U SR W SN S|] J S S U W W |
T W S G B U Auxlex L1 1‘}41 S U S S S G S S S (S S S S SO S VS S HE WS O VA S S SR SN HNAN N SR S
TITI Y I S N S |E|QLUL 1L I$I+A2L S 1) WS S S S W W B . | l) Y G WU Y U TR T G | 1 I N N VO S VA S N | 1) S SN W W R

In the above example, the label TT is set equal to a relative address that is covered by both
index registers 14 and 15. Is there any assurance that, when the assembler encounters the
label TT in the m portion of an instruction, it will not insert index register 15 in the index
register portion of the instruction rather than index register 14? Happily, there is.

The assembler keeps a list of cover index registers. This list is always arranged by index
register number. When the assembler encounters a label in the m portion of an instruction it
begins searching down its cover index register list to determine if there is an index register
that covers this label. It always searches the list from top to bottom, and if the list contains
more than one index register that covers the same label, it always selects for insertion into
the index register portion of the instruction the number of the first index register it encounters
which covers the label. Thus, in the above example, the assembler will always find that index
register 14 covers the label TT before it finds that index register 15 covers the label.

UP-3853

UNIVAC IIl UTMOST 9

SECTION: PAGE:

w
~1

MASTER FILE TAPE HANDLING

The above example handled the taxpayer file (a transaction file read into the store but never
written out) and the tax file (a report file written out of memory but never read in). For trans-
action and report files the techniques so far described are adequate. Each file is accociated
with a reserved area, the items in the file are accessed by means of the instruction SLJ] FRD
for input files and SL] FWR for output files, and any information desired from an input item or
desired in an output item is moved out of or into the item by means of LA and SA instructions.

However, now consider the handling of a master file, which is both read into and written out of

store. To handle such a file with the same techniques used for transaction and report files

would require that every master item read in be moved to an output area before it can be written

out. To avoid this movement of master items, the UTMOST system provides a special input/

output technique. Utilization of this technique involves reserving a common input/output area

for both the input and the output master items. To obtain simultaneous read, write, and compute,

this area should have the capacity to hold two blocks of data for each input file sharing the common
area, and one block of data for each output file sharing the common area. To minimize interlock, more
area can be set aside for each input and output file if such space is available. The maximum area
that can be set aside for an input file is an area capable of storing one less than the number of items
in three blocks.

As a consequence of having a common input/output area for both input and output master files,
only one control packet and one SL] BUFC operation is required for the area. However, a file
description table must be provided for each file using the common area.

Each input file using the common area must be opened wth an SLJ] FOIF; be closed with an
SL] FCIF; and if the end of reel return has been requested, each reel of the file must be closed
with an SLJ FCIR. Each output file using the common area must be opened with an SLJ FOPO;
be closed with an SL] FCOF; and if the end of reel return has been requested, each reel must
be closed with an SL] FCOR. If an input item is to be deleted from the master file, it can be
skipped and the address of another input item acquired by means of an SLJ FRD. If an item is
to be added, it may be moved to the current output item area, and the address of another output
item area can be acquired by means of an SL] FWR. For writing a master item that has been
read, the following calling sequence is provided:

LABEL A OPERATION A OPERAND A ?

M=

S L LIFIRIDIWI

| I 1 i 1

¥ .
lLLlJL]LllI]AIAILlI(I\I(Kltllll\lll‘\kll\

+

° \
lllllll;nggllll‘Lgllllll lllLJLLllllLlllllll_{

1er}d Pflﬁlf grefl)lrelfurln l

normal return z
lLIILLlllllllLllxllLJLlllll!llllelLlllL

SECTION:

38 UNIVAC Il UTMOST

PAGE:

UP-3853

where 1 is the label of the zero word of the file description table for an input file and o is the
label of the file description table for an output file. Execution of an SL] FRDW will cause the
output routine to see to it that the item the address of whose zero word is in the zero word of
the input file description table specified is written on the output file whose file description
table is specified. When control is returned to the program, the address of the zero word of the
next input item can be accessed in the zero word of the input file description table. Normally,
control is returned to the normal return line. If end of file sentinels are detected on the input
file, control will return to the end of file (reel) return. If an end of reel return has been requested
for the input file, control will also return to the end of file (reel) return on detection of end of
reel sentinels. If end of reel return has been requested for the output file, control will be returned
to the end of file (reel) return on detection of the end of tape warning window. If end of reel
return has been requested for both the input and the output file, the contents of arithmetic
register 8 can be inspected after an end of file (reel) return to determine whether the input or
output generated this return. If generated by the input, arithmetic register 8 will contain a binary
one. If generated by the output, a binary two. If end of reel occurs on both input and output
simultaneously, arithmetic register 8 will contain a binary three. (See FRD on page 9-24 for a
description of how to distinguish between an end-of-file and an end-of-reel return.)

1. Example

Given on tape unit 1 a single reel file called the A file, on tape unit 2 a single reel file
called the B file. Neither has a label block. Both contain 25 word items blocked at 20 items
per block. The first two words of each item is a key. Each file is in ascending order by key.
Merge the files to produce a new file called file C, on tape unit 3. File C is also blocked

at 20 items per block.

2. Flowchart

OIF RD \ N

CiF 07:S_>AK__>@

OIF RD \ e OPO
/ - ()

EOF

CIF

B 07's—>BK._.> .3b _>®

UP-3853

UNIVAC 11l UTMMOST

9

SECTION: PAGE:

39

LEGEND

A - an item

AK — the key of A
B - another item
B — the key of B

C - a third item

S
07's—-BK 3 __.®
07’'s —==AK v®

—{(EoJ

07’s is an abbreviation for a positive all binary ones.

SECTION:

PAGE:

40

UNIVAC Il UTMMOST

UP-3853

3. Coding

LABEL A OPERATION A OPERAND COMMENTS 2
v a o JYSE L Vs FRTINT L L L T L1 l(
AK o 1BQY AN Ll N S Ll)
AREA, , , ., IRES, L2105, TR NI TR L L P SRR L 1‘\
L1y JUSE, LI IR T L1 i Ll T B R Ft J;A‘!)
BJKL F S S S W S T | lElQLUI 1 LsL*l‘l e | 1 il Ll Lol el l) B St el LAL\
Lo a0 JIRES, L 1217,0, U R N LodL L1 Lo [S T) 4_-}
CONTROL, , , [+, L0 R T T J T B S L1 3
S ST T ST LS L0 T SR R L L R Lol L)
T S S S U B S L 25, P S TR Ll L TN T L1 1{
F1 IJLAEIAI J IO S W | I*‘ J A AOL I I S l s U " dd el JI" l L Ll 1\
) S N CUN WS W W S e & l+| F—1 L 215 i Y S 1 1 T - 11 L | 14 1 1L l}
P S R S S RV BT L1210, RIS L1 L L FRE B SNt 4\
1 1 1 1 1 1 A i i l+l 1 1 1 ICIOLNATLRLOKLK T 1 l i L i 1 1 i 1 1 1 1 l 1 L 1 L 1 1 I}
Lo a o 1P0 . RN L] L Ly I R 1 LJ_L‘
1 1 1 L I\ L L J e l+l e A 1 1210‘ A A . L l i . L A A 1 i | i i l A L 4. Ak J_];)
T RN T S N S ST UL S Rt L0 TR I L1 L1 L T R Ll 1(
U VN U W S S W W | l*l 1 L 1012101]1 S | l i L1 L1 i L I L1 J 1)
RN L N I 1 L L1 T R PR
Fl L BBy 4 1 I+ g L a0 IR O [[[S [Lll&
T T S S R 25 I N P Lo N T o
R S T S SR B S L 20 T I L L L T B L 1\
U S N S A ST B4 O L CONTROL, L Ll L1 L TN B L 1(
N S S S U N T 't |D|°1 1 L l‘” 1! I T | J 1 L1 il L1 J | bt | T " \\
S Y S Y S TR E T l+1 Lol e |2\0| i S l L Lol FE—" I Ly J N N /
i A4 A 4 A J L A i 1+| A A i Aol A . . 1 1 i J L 1 L L L A i 1 L . JJ ed 1 IAI_L(>
S SO U S N N U W | I+J L it JOLZIOIZZ I W V| l L I L1 B T ‘ y U - R Al
I VR N WS VA S W W N LD1°41 L 15! LA Y N G | L Ly Lod 1.1 - l § S I 1 lLJ_S
AV LEC 0 v d¥ 10) R ! L L L [B I
S SR S U SN B 205, PRI L Ll L T B L1 14’
A S S SR S S SO B L1210, TR L L L R B N

UNIVAC Il UTMOST

9

41

SECTION: PAGE:

(Coding Continued)
) LABEL A OPERATION A OPERAND \ COMMENTS (
L N ,CIONTROL, | T T Ly L ,(
IS N S R A DO, . o 61 v 10, | I VR TN N AT N PR S ST R NI L L A)
I LSS, 0203, [T N (
S S SR PO Sl v | R R N N N S TR B L L 1/
bt (YUSE Bl | VS S W S S TR - - 1\
START, , | [N 5P M BUFC, , [N R TS B L L J
N LN S AREA [N .1...1“1.11&
S &S 21700, [A SN B ...Hlu.lx,)
PR LA CONTROL, [N N LK
a4 4 (S, LJ, ,FIO I F | ! vy, O L F A T N L ‘\)
T S R T | FIVLEA | I ST S ST S U A R B L Ly 1\
| D W SN NS N N S ¢ llelJl 14 lFlRIDl) l I . 1R1D1 lAJ l 1) RS S W l L1 11 | i)
[I S & S S JFILLEA L | S S S B coc by J
N S S N ¥ TN S (E[O.F AT, , ST S W S S M S NI B ST T T N T S LLJJ
b Xx 15, FLLEA I S S S SN T B NS LLJ)
(S NN SR & T8 T PR (FIOVF, l v v vy JOVF, B} PR ST N T S S L‘LJ&
L e FLLEB [S .1,‘.1...1111/
I S | I S llelJl L1 1 LFlRlDl) U U S § I [S lRlDl lBl 1 | 111 { I l 11 - i 1 l\
T S R N S W S .8 N N N FILEB) T N SO N S S N B A [R S Lol 1/
N NS, EOFBl, [1‘
) I S W N NN S T | llel 1 11141' lFJllLlElBl 11 l) S U W T A S B 't l 1 | VN S o | l 1 1 1l L1 L)
€2, 4o USY (FoPO Lo 14 19%P09 © R B L1 1(
ST SN T G B N [T R (FLLEC | S B U S N A [T L L A)
C3 L uA 2, AK | . JAK ¢ |B T L L K
e 2 (BIK [T S A S S S N PR E B - 11.)
Ly oy e (M2 PR R TS .1.”11..11;/
G0y ISY (FIRDW, , , | bvw v (RDYW A LTI RS AN ARt 1\
) WS W W W N B I+l L1 J N S| lF[IlLlElAl 11 lLLl N S U N ll L1 1 L1 l 11 L) l(
T S S NS S S | SRR FiILLEC | T N G N G ST B oo 1 Ly x)
N B R P (EIOF A | S S R N R B L L1 x\

SECTION: PAGE:

UNIVAC Il UTMOST

UP-3853

(Coding Continued)

LABEL A OPERATION A OPERAND A\ COMMENTS)
e b oS, FVLEA e e e b e e b \
P S U U P AP S RS 3 I 2 U S S ST DO S S VT S VA SN SU EU S W TSR WU ST ST S SO S (

L2 , S+ . FROW i, ,, RDW B |--- C L }
e e e RV YEB i b L Ly 1
R LSRR .FJ'.LIE.C...HAII...[..JIJ.JLuA.lAlH,L.LLX
ey W BIOFBL L b s b e /
Ca e ey o140, FILLEB L vy ey e by e b e l
ey e G e e by ey b b |)
EOFAIN, , , , |SLJ . . FICVF o\ CVECAY ,l,,‘\
e HIVLEA e b e);LIAA}
e bX YL e Twe, 07777777777 T T T T 0TS e A jl

RPN TR R SRS YR PR S IS S VO S YO T T T SN U T TN S S N N D O L
EXO,F,B,I L lSLL‘J‘ L J_LF\C‘l‘F‘ N |C|I|Fx ‘BI T L
e e = g (FILLEB e L ey e b e v ey v by g Loy
. | L X 1,4, ¢1(L(1TLWACA AoALLL7I7l7l7l7l7l7|717|7)7l717x71)I)L1 n lALI'JSl L L ‘B'K‘l
L A 8 NS e 3B by lj
o A8 A B MY e L 11111&
SN RS N VN SN (N N S S § lJLAL S NV W W § \clz\ U S VO W S S T N l B RS Y WOURS U FR P 0 S | l S DR Y W S T S o | lJ J - B T lJ
EOFA oSS RS R b SR A v L [1(
oo v o e HVUEA L e
Lo A% s, Twe ,07,7,7,77,7,7,7777, 77777700 0 TSt AK
J]LJ\A\l\l'jlllllllllcl3illllllll’llllIllllllllllllllllllllLll
EOFB, | , IS4 FIGHE L SR B e b Ll

1 S S B S) U T l_l J R D1 S B S | ’FLIJLLEIBI 1 I S l Y SRS N SO T P T | |J Y NS S T B | | 1 IALJJ 5 I l(
o g b x4, (L TWC 0.7,7,7,7147,7,7,7,7,7,7,7,77,7,7)), , , 0 l7I'AS| R LBLK|>
v g A 8 O E B3 3B TN
S RN £ VRN SV S L S SO S T G S S S S SN SN BT U A S SN Nl BT, LlLLi)
P SR S S SRS . SO S ST SR U SR U SO U S AT R RS NN S S0 SR S S S SR U AU ST N ST RV UR S U AT L]Li{
L3, o o sy o W FICGOFE oy o GO F € g L ,‘)‘
Lo e =y IV EC e b vy e g L1 1j‘
N £ TP PR J L)t DU S SN ST . N VR SR I S ‘)
vy, |ENDL L SITART e e e v b Lj

UP-3853

UNIVAC 11l UTMOST 9

SECTION:

43

PAGE:

J. LABEL HANDLING

How labels are handled is a user option. The following example shows one possible approach.
This example involves reopening a file after it has been closed.

1.

Example

Given on tape unit 1 a file called the A file, on tape unit 3 a file called the B file.
Both contain 25 word items blocked at 20 items per block. The first two words of each item
is a key. The file identification of the A file is MASTERAA, of the B file MASTERBB
date of cycle of each is 630201. If the label is not as is expected, type out:

where

tf
td
tr
pf
pd

pr

is the
is the
is the
is the
is the

is the

LABL IS tf td ttr SHD BE pf pd pr

file identification on the tape

date of cycle on the tape

reel count on the tape

file identification the program expects
date of cycle the program expects

reel count the program expects

. The

Then accept a typein, which may be FORCE or RECHECK. If the typein is FORCE, sub-

stitute the file identification, date of cycle, and reel number on the tape for those that the
program expects, and continue with the program. If the typein is RECHECK, close the file
and reopen it. If anything else is typed in, reinitiate the typeout.

Merge the files to produce a new file, called file C, on tape unit 5. File C is also blocked
at 20 items per block, its file identification is MASTERCC, and its date of cycle 630202.

Subsequent references to this example in later portions of this manual will refer to it as the

two way merge.

44
SECTION: PAGE:

UNIVAC IIl UTMOST

UP-3853

2. Flowchart

“ < 3 } 07's AK
' A -

\

\

RD
B
EOF
CIF —
k < B >‘O7S"B Ll 6

07's =BK

Q7's = AK

®
@
@

UP-3853

UNIVAC Il UTMOST

SECTION:

PAGE:

45

LABEL @ - PP pPF |l PP— PO L PR PR L TFp gF
A a a a Q
\
\

\

S—’PE . »80 ——@
D D R R INPUT
o7 TR o1 [T @

1

> g

To—=PE={ T8—=P S T5—=Ff ABEL

LABEL @ PE——-»PF PP —> PO | o PR—>PR| o TT—>T"
B

\
\

N

- 0
a
INPUT
D D R R
. T Ty—T LABEL 0
15
®;

LABEL
B

9 46

SECTION: PAGE:

UNIVAC 111 UTMMOST

UP-3853

a-—

0l L.@

INPUT
LABEL

LABL IS TF, TP, T® sHD BE P7, PP, PR—» CONSOLE

CONSOLE—K

CREATE
LABEL

an item

the key of A

the expected A label

the file identification of Pgq
the date of cycle of Py

the reel number of Pgq

the A tape label

the file identification of Tq
the date of cycle of Tq

the reel number of T,
another item

the key of B

the expected B label

the file identification of P,
the date of cycle of Py

the reel number of Py

LABEL
C

LEGEND

the B tape label

the file identification of T}
the date of cycle of Ty
the reel number of T

a third item

a general expected label
the file identification of P
the date of cycle of P

the reel number of P

a general tape label

the file identification of T
the date of cycle of T

the reel number of T

a storage

an indicator

a typein

UP-3853 UNIVAC IIl UTIVMOST 9

SECTION: PAGE:

3. Coding

LABEL A OPERATION A OPERAND A COMMENTS 1 K
vt by JYSE NS b e e e e (
A‘K.‘,‘L...x.‘.‘..”E.Qluu...‘m"l.“u‘“AJ...H.“.J.“...‘.Al..,..A.‘..,J./
AREA R ES 25 | A | \
.‘.4‘.‘.‘1“.‘.‘.‘U‘515....‘.LLL..H.,Hm.....,1..1“““,.11“”.“““HX
B E + 1 (
K e EQY Y e e e e
it o vy ooy (RES 0 27000 0 b e b e U)
CONTROWL, vy ooy vy by O v b e e e b e by &
0 \
PO S T SO S S (U S S Y Y SO S SO VO S SO S U A SN N S Y ST WA T U SN S S T SN S S VU VA JHNY S0 U W S ST S S WO H U SN N S G ST SR AT S B!
FILEA et b O e Ve L \
2 (
N S SOl G L P S S S i S S S R B S SR S A R A A S A L
+ 20 \
PRI VO S T SO S S Y AU S S S VANV Yl W N T SN ST WYt SO SN YT W YN YR WY ST TSN ST S SN SN VAN WY ST SOV SN S N SN TSN SN SN ST S S AN SN UE Y WA N WY SN S T AT W !
. CONTROL {
R)
llllﬂllklllllllIIADAOIIIKIAI‘LI’IlIolllllIJLllLllllllll]llllllllllllllllLllJ l)
B
e e b 200 e U {
llllAIlAIjLLlAlkl 1llkljlollllllﬁlllAklilllAIlI\l’IlllllIAklllIlAlllkll ll]
| . 0201 | (
VRS W W S W N B S | IIIIIAALA[IAIAJIAAI ILLAAAlllllAlllAlllllAlllllLllllAlLLlA Ll
lllJIlLJ;llllLJlll lllllllolllllllllllllllllllllllllllllllll‘lllllllllll lll

AT i L

‘ERAAC
Pl)

I
|
L=~

T S S S K SO S RS S S SR S AU N H S S RS S EAT R SV E TS N S S S S A A S S ST S ST S S S U S S W L 12
T G B ST B R RO Lol ILLAIB|EILIAI SRS SN N G RGBS SN S S S S 1 ISR O Y U Y OO O T W T | i x\
FINS N VN N VY N S S S S Y S S S WS R FC ST B R AR R RS S SRR BT R SR DA S L A(
FILEB vl Lo e o O v b v e b v b e L g 11§
P S W R SV S S S LSt EPU S L T N0 S S S S G T VA S S S S E S T T ST ST U E U S S SR i A{
[T B S G ST BN T 71 T S S S G G S S S U U N U S S S S R S S S S S S S S i L 1\
L b v ety by, CONTIROL PN S VA S U SO S U A T G WA W O Y SO0 VA S A SO S AT H S S GV | }

IS
+
| o
-
F

20
!

PSR T R U N S S S T WS H S S OO VU ST N S S S U S O T S S S T Y N S S0 S S S S WAV R S 1

L

F I T S A e 1

0203

L
-
-
-
-
=
-
-
-
-
-

T SR S S S S S N I ST S S S I A S SR S

N

| M| 0 i

IV S G Sl S S

CMAST
Frhalt L

PO S S P U E S S S S S SO S U VA T G T S N SO SO NS WU S ST S SRS WA U Y

b
L
L
b
L
L
L
k
b
s
b
b

PR Y A UAN U W NV SN S YA WA T N Y T YO W S ST S WA S S S S S SR AT S S

i 1 0 | | |] (

v e b e e et by M ABELVB L e U e e e H)
e v e e @9 V2 S e e e b e e e L l
FYLEC v b v v b e e e e ey s b e e L e s \
G RS SV ST NS JL T S S S B S N S S ST B S S S S S SR S S S f

4

ca e by b e 200 e b b e e b e }
| v CONTROL (

W WY SRV R N T N S | TR TS WU VNN TUNS W S ST IAALLIIAIIIII lAllAIIIAJAIIJIIIAAlLlIlA]lllAAlAlAll ‘Al

ID1°I N T S - | I‘I 111 |+I0I

P S WU S ST U N S S W T S VA SR I N S S S S A S A NN N SR N S S R S RS Y

L~

02,05
! Y ° |

F U T T W G T SR G |

1 A | | 1
TR S S SR W U S S S S VL T S SR T G S S G S S S S U U S A S S S U S VAU S S S S S S S SR G S

P S T SO T Y T N S W YO0 W S S U Y VY O S Y NN W I G G ST A SN WA SN ST T S S G

MAST

-
-

AU VA S WS S SV N S ST S S W SN VT U S Y S W ST

l‘ IEIRIclcl.A

P R S TN NS ST S SRS T YN WA S NS S S S S U ST (N S S S S S S S SRS S T

00000V, v e b e e b e e e s

ILIAIBIEJLlcl

U S S U S SR W0l S A A S S S S I S B S SR IR

L

S g S

P SRS S S T S U 0 VO U WA U S S S S ST S U ST Y BT S WV N S S S MR SO GO O

SECTION:

9

PAGE:

48

UNIVAC Il UTMOST

UP-3853

(Coding Continued)

LABEL A OPERATION \ OPERAND A\ COMMENTS 72)
T SRS AL N L NN B R - | R 44“]
o e b ey e JUSEE L 3 e L | L I B
S‘TuA‘R|TA T Anstl“l) ‘BAUAF‘CI e N T L L L L L
e e b e vt ey AREA L L .l .lAJ
b e e Ly 207,000 TR B R R i L L .
MR L CONTIROY,) L | L
TABBWORD, | , , , | | . FOIRM . | ‘ll,,GJ.[3|,‘l‘ 5 N B U A A T R i L L L1 L
T O T S R RS A S U N S cabA o, (8, (T|ABBWOR O w0 TYPELN [| L L L
ey e b e o SN L 8 TMBB L e - l L U B
SV v Ly caS o 082 |1|1|'121A| TR B! 1 | Lt L1 L1
e S FOLF e OV A 1 -
P T T G TR UV SRS SR N R FILEA FEEY T B RS S SE R L 1 P L L
€2 b NP O L - L
R SR LI A FRO s ROA - L L N
P U S SO S T S T S SRR T FLLEA Ly I T SRS S S ST B L | TR P L
e ey e e BORMY L L L\
P T S R R USSR R ST ST SR Job X NS FVLEA L TN SRS TS N R S S Y S G P il L - -x)
LS R B Jt. S ST A T B N - L L ..‘.‘
T B Las by FOLR L.l OVF B L L - L ||(
e b et ey oy FVEEB L - L Lt)
C4 et NOR - | e \
e b SRR R L L N ol
TR T ST N S S R SO ST et by FILER TR S T R S S N B L il L1 N 11)
v b e e e EOREL T B ! L | LL.A\
lllllll\l[ljl 11 Illel I S L‘I‘l'lFlllL(E]BI 1 ||||||Lll||||ll 1 1 ll 11 1 i1 11
CJ-SAJ““‘II“‘ll AASALIJIAIIIAFLolquAkllnl Lll‘ioll"oA ‘C‘.‘lil - L L L L
BT R U N S SV ENS T B T SR cate by FLEEC L I IS AT S S S R R t | L1 L -
Cb v v v vy by LB N2 AR Lol AR BK L | 11t L LL\
v b S N2 B U T R S B R L L L1 1 11\
LTI SR A A R I L L I TR ST A TR B S S EA A B N B R B S L1 L1 Ll T ||(
T ..S.LlJI‘I IIFIRIDAWI L L Ll Dlwl IAI e L] L L l.f
TN T U0 W W R T ST S G ST | ot g FLEEA T SN S S R S I L L il i Ll\

T S RIS S S U Y SN S ot ey IF[I]L[E'CL TS St Illllllllllllll J | Lt 1L Il\
TR T W SN S SN N S S S B A E,OF A Ly T B S S SR S B L | L L 11(
IS SRV B SRS . L LI L L I B S T S SN R Lt Ll L1y JENTI L(
R R S R L VN B S R S S SR SR S it il L W)
L2 e b S LI A I R LI A T L L L L 1}
e a s aa o b v et by FOVEEB L Ly Ly L L1 L1 iL)
TSN ST N N S N SO (N ST S TR FEES FI U N S N ST N S S S S SO0 N S N S IO L1 | L1 L 415
TR S S R S R S SR MR SR |ExonF|B| T S S P SR T S R N R S JE | L1 L1 II\
PN S R R SR S S IILIXJIL]J‘A’ IFLIALlElBl bl PO SN T N N0 SO0 B W N B GV)t | L1 L 11)
A R S P B 7L R BT P - 1 L(
EOFA L @ MR NS) F.CIF L Ll CTFE AL L L1 L Ll .|}
s e be e e s b e e GRVREAL b L | - .\
T S LR X s, O T g 07777711777 777777))), | 0, S AK L 1:}

e e e ey 83 e - L .l

UP-3853

UNIVAC

i UTMOST

49

SECTION: PAGE:
(Coding Continued)

LABEL A OPERATION A OPERAND A COMMENTS 72 2
EOFBI | R L L FCIF N L. N N T T |]
T T TLALL S T T T
T .L.XI lll4l,. |(|(|T|wlc1 |°|7|7|7|7;7|7|7|7x 7‘7‘ |7I7‘7‘ 7‘ I)l)‘ L ‘0‘ I7 "Sl - 181'(1 L 4)
P S SRS ST AL LI A R T N
O T T T
PR . Lo ‘Cl'S‘ o P S S S R S HE S S S S SR U A S S S S S ST R G ST SRS SAT I ST R S L 1\
EOF A v vl S FEY® i SR A e b \)
JIQ'IFILEIAlLll)
T L. T |l15“1 ‘(I(IT‘W|C| Iol7l7l7l7l717l7|7l7l7l717l7|7l7l7|)|)I L |°1 ‘7| lSl LTIt AR L A ‘\
A S A A T N e
EOFB ol N lS‘LIJl N lFAC‘I.FI L ‘Cll‘Fl B [s ‘/
R A B A S B L LA v by e v by v e by L A\
N S R SRR B B S R R T LX ARATRAMALIRAAAARARIRARARRRAR LA B LI i A)
Lo b M 8 G IE IL13|)1 [N A I'I‘lal T S T S A S T Y S A 0 O SN S Y S S B RV RO B Lll
A I L. B L L B T TR S B
TSN R ST i B L B S A AT AT B A ST A A A S A S AR e I A\
Y3 v by e SYY o REOFE L SRS b b Ll(
s v b v e v s by JBRVVEC v b e b b e i ;)
0 VY WO WS U N T B 1 1 § N | - llelJl | I | lEloljl ‘ o T L L1l l 1 AEJOIJI Lol i 1 l 1 Ll Il 1 1 1.1 \ 1.l J—— I R N S | 1 1 J\
LABELA b MOl e e e . ‘)
C8 v e b ey kA MY, FILEAYTY \vF i TAD - - TO) x._1>
P S T S0 N N U SN W TS T S WA SR |L|Al I 1‘1’1 Il |F|I|L1E1A|*12161 TR S| lTLRl [I S S i S B S S S S R U BT S| 1
P S S B i B R |S|Al] llle'l 1T|AAP1E1LIAIBIE1L| T N S R R R | T S T SN S G B S S U S S S S S S 1 1\
Lo v o by oy A V2, FILEALTI | PAF -=- \PF, i PAR | PR i (
e v LA 2, DATENA vy vy, PAD - PD LJ)
e v v v e b ey e, SA VS5, PROGRAMLABEL | N T N \
Ca e e e ey S ENPUTLABEL L WNPUTILABEL, . ‘}
P RS R SUTUNL V170 PO R A S S NI S S FU TR | B S i B SRR LJ
N B L B L L L L A A R SO AT AT A “<
PN B T I PUSN SIS I B S S SRS R PR | B A A L4>
IJEI'-‘ll.llu{
4.......I.A......LA...n...(‘%.clz.aﬂ.H...1..‘..-.2.5Ul.“...u,|.,.‘..U‘,.H}
A L T D R R T T
e e ey LA B8, FILEAYTY4 ol PAR - - Sl LA)
U B, LIS TR T N S B S A PRSI T N Y N T W NN SN0 SO A SO SN SN SN N S B ,L_l}
N U LK. LI L LI b by BB e b x\
I SR IL. 1 B U TN - T B S B B B)
i U T N Y W T 'S I T U W T S S . IJL 1 S S B] I*lLIAlBIEILlAl 1 11 1 1| l 1 Ll 1 Lol 11 l 1 I T T T | 11] 11 | - | WY W S S S | 1 l\
LA4‘ T .L‘Al X .115‘,. l'|"AIP‘E|L‘AIB.EALl N L1'AA1Fl e ‘P,A.F, L .TlAnb C T lFIA‘D‘ X X ‘?
T T . J,2., FILLEA+T3 i vl iy TAR - - PAR L N Jl
Cevaa v by, (SN 2 PATEIA L b e b e b L 12
11 11 | B W S |]) R T T T T ISIAJ L IIL'I 1 IFI'ILIEIAI+III‘| I T | |) I N Y O T SO D S | l 1 1 1 | N T S T S l N U W S W S W T T | 1 lx
TSR TN B AT A A A A O A S EABIELA U VO ST SO R S T T S T G T S T N A S A GO S M G S A,AJ>
C 8B LA B S 8 e e PAR =
Lo vl SN 8 FVUEAYTY e b e) FEN R NG N S R 1 Jk
v b e M8 8y GRA VY G FVLEACYS) e BA L i wB
N SRR R S ST N SRR/ T R ST S S S A S S R T B . L L A\
o v b ey b (S8 b g 41/
DATEA, o b p6 30420 T T N ‘l

SECTION:

PAGE:

50

UNIVAC 11l UTMOST

UP-3853

(Coding

Continued)

LABEL A OPERATION A OPERAND A COMMENTS 7 7
L T RS S S BTSSR N P SR R P U N ST ST T NSO SO S S SN T Y S SO T O SO S S Wt i)
CIZIBI N S T T S RS S lle!J| [.t AFACAIJFl I S R A W AT B i Ackl Fl |A| AT S U S T VA O S ST S Y R A W A SR i\l
MRS S ST S SN S G SV G S VAT S B S R IFllLLlEIAA TN S S B TS S S S (N T T T U S U S WS SO0 SO R NS U B S 1 J/
FY YT SN N E A S S T ST S S0 SV WA S T Acxllxl S SR T S S B! P N T S YT S A N T G AU N S S T S S R R) 12
LABELB, ol NOP e) TN T S RO TN O O S WO T T SN SO S G SN VO NN S N S NN R W ¥ ﬂ
C 12 LA RN AFAILLJEP‘HL?‘ L LLAJ_L‘TABAFJ o i LTIFI iy ‘T‘BlD‘ LTI lTJD‘ L j
N LA 4, FILEB+26 N N ‘T.B.R‘ i TR T ﬂ
bl ey SA 1S, TAPERLABEL | T B T R O 7
il it ey LAy 12, FUILEB+TI ., BBF --- PF i PBR -=-- PR |) |\
A......‘.1.A..“.AL.A1..2..."D.A.T,Elﬂj‘.....‘l..\.,...l.‘..,....x‘..........7
bt e Ly S A 15. PROG RlA‘M‘L‘AAB‘EALl L) T B S T B S A S O S N)
O S 1L A NPUTLABEL | L ‘|1NIPIU|T|L,A‘BlE.L‘ T e 4‘_45
N S SR i B SR GLS PO S S TSR SL FUE PR R S S S A SRS ETaN S
...L#,...i‘..‘....l.il‘.‘.“',HA.BLE.L‘B....HluHu.‘n.,...‘,ul......_u..,\
1LC18('>|L"|17
vt e b S8 MS e b b e b e v i}
Cen i e AL B G S4B T S T/ R B RS S U N I B S SR A A S S 11‘
gL....LL.1.‘..‘..,SAAL“L,...C.h.l..uu,ui.....‘..l.‘...u.‘l..,....H.,..)
cov o e Ly A 8 FVLEIB VS LPBR e S e e T\
,.u.t.“L..‘.....S.Al,.ﬂu...5...1..A,Hu,1“.H..‘l......‘..[.‘.“4_‘......(
I e LA 8L 1(|J| |C1112‘BA)l e N IIIZ‘B‘ | T T e) l\l
e v o v by SAL B GV) R T G R T U T S U S S A S S 7
cov e b v e A by v LA BE LB Lo a Lo U S R U O YA T T R G T H T S Y S NN S WA S S O | Aj
LSy v e b ey A VS50 TAPEILABEL B F s PR B e (PIBD %
T e LY | 12 ., xF‘||L|E|B|’4I|3A T T T ,

) D Y T U W U W W | l S T S T BT | AsAAl 1 Azlll 1 ADLAITLEJ a| L1 1) I W | I 1l B O . | 11 l i L1 F I N S R S 1 l Y TS WO IOV AN S SO W S | i i\
coyv e by vy SAY YV FYLEIBYYVA by e b e e b v v 1(
T S G S i | I e ey M LABIELB L TS T U S R S VU SO S S SN SN S ST RO WA TN o1 1)
CV2B, v L1 b A 8 S b e b S PAR b I 1&
N S S S SRS | ol , SA L, 8, FILEB VA4 FURTUNS YONS Y U S T S S T W SN N W S N T YU S N S S N S W A IJ
T | L LA 8, LA Ilk‘l'JFl|ILLEIBA.III9K)I N 1112|A| T B A S A S e e 1)
[N U B R | Cooa o SAL L 8 SN2) s L PO O S U VO O U T U S N YOO M S B W B 1[
) W S 111 l DU W 1 |Jl l 1l 10| lcl]lzl l § U N U S L1 1 1 JEY SN T T S W S | I 5 WD TR SO S B B 14 I 11 Lol F U N N W | i}
D-‘nrnEnsn v b ey N R 1:16‘3x°l2|0“| TR B P S (N U S T S S T S S S S N T N N A WS L |\
€48 M| L1 A Ll AFICI'AFI I SR L |c|l\ I |B| P Y S S ST SO S Y0 O T A SN SN B A S S T 7
N H.‘,-Lt.u“F.'.LAEIB........1.".....l.u.u‘.1‘114..‘....-1_1
| ‘.‘.J.l..‘u.C.3..|.AH.A...1.4A.H‘.l......‘.l..,,LLJH.“‘)
I NPUTLABEL, N , NOP 0 N N e ﬁ\
Lt L LA 1,5, TAPEILABEL, N LT L T T T J;J
N | L € 0,5 IPARIOAGIR(AlMlLIAABIEILI N N N “‘)
IS | ,.A.,J.Elu..,.'-.7,.1‘....;)..1.‘..u..l‘.....H.l.‘..l....l.‘.}
O | L LS A 12, MESSAGEOUT + 3 , LABL 415 TF, TD, TR SHD BE P F‘,‘\
o b L SA 3L ADIAJLEleNxblklEIELLl oL .P‘Du |P[R| - IciDINISIOALIEI L) ‘]
T | L L, SLyy, , , EDI TIDATEANDREE|L T B O O O ST A O S T R S J
| L L LA 14, OUTPUT N T T T e ,

UP-3853

UNIVAC

UTMOST

9

SECTION: PAGE:
(Coding Continued)

1 LABEL A OPERATION A OPERAND A COMMENTS 72)
N S SA L, V4, MESSAGEOUT 6\ |\ vy P ST SNSRI B L SRR S
M S B A G L |L1Al 1 A‘ASL'I LPJRIOAGIRAALMiLIALB¢ELLJ IS I R S N S N I B! L RO UT R T R
M ST S S B SA L V2, MESSAGEOUT 10 | v vy vl TR L VRS
U T Y W T do 1l 1 1 4 1 ISAA! L ASIIA 1 lDlAlrlElAlNlDARlElEALl 1 1 S W S N N | 1 I 1 11 Lol 1l J 1) L dod 4 oL L

LA 14, OUTPUT
NS S S U ST ST s e T TR N S ST R I T S SN G N SRR [T L L -
| - Lot i 1 -t l L 1 ISIAI 1 11A4|'l lMlElsIslAlGAEKOIUITI4Il131 1) I D W T S W N Ll | Y] Y 1 L1 i T S WS GRS W L.

LA B LR ALY s I(AMIEXSISIAIGAElOIUITl'AIL)] L4 T T B 1 ISR S R
I 11 1 L1 l 11 1 l*l l 1 11 Io|7l4lolololol 1 L 1 1 i \) I U U S S | 1 I i il il L i 1 11 Il 1 L1 4 H i
Lo v b L IR S L L TEA LA L LA R S R S A B B ST ST T TR B L TR U R B
T AP R P L R S BT R R ST NP B
VN (R W RN WO N 1 11 I 11 1 Is|Z| § Y W T | ITAYIPIEI|IN| 1 1 1 Il 4 \ i1 |Cl°|N SIOIL|E\ 1 _l |KI i] i L | il 1 N R Lo

LI‘] [A B G A 1 Allxlcl 1°|'| L 1T1YIP1EII1N1 T S W U B | 1 SRS G W W W | 1 I Lot T l L L TSN T U G |
T ST ST ST U B T o IEL b L L P R v by L U U ST BV
TN N S S R LA V2., MESSIAGEIN L vl K FIORCE | ol L TN S
ST B JC 1 v O FORCE DY e I
AT L LT DU S I SRR U A S S S S R PSR B RS S SRS S
R R S S S 02 4 RECHECK) K JRECHECK i Ltoca oo

I) LA | L
| N S G T S S T 'Y 1L L 1 Lot | L L Y 1 1 11 1.1 1 7S N U U S W | 1 L1l i1 L4 l Ly 1 I TS S S i
S R N ST R ST R L ;Jl [L L AT R S U BT S P I RN S B s coddboadoen)

L7
dd L U I S 1 lLlAl) - | Asl'k(]ol)l ded. | T S Y T l Lt L KOI 1 Ill 1 Aol F- 1 - 1 I W S B | L A |
N A I VNPUTRABEL e NI B SR S

S S T ALK I ARIEA N B Pt BRI R B B

R
P S S S S WA CO P IIINAPIu\TlLIAIBAEILI T TR S R S P NN R L I P L

LT R CRALL L2, R RS . e et BT LI RSN R TP
N e CINPUTLABELY e b e b
N B N B L N N S S S B A SNSRI
NS S S S TN BT P S G ST S S R R S T P NS SR MR S
N S S W S ST B R PR S R S N ST S S SR S i NS L L Lo

TAPELABEL +
A0EEAEES TR B P ST S U E RS S VR ST ST SN SO TR ORI O | TR
NS S SR BT N BT TSI W S VT U S RS S T s M s RN EER AJ\
PN E E SArS R NS B PR NS S WY W AT Y S S S S R - T L TR S
| S S S . | i1 l |- i IQA l Lodo1 1] § U VRN WO NS W B | l WO TSN WOV S S S ¥ Ll L 11 lLiLl L 1 - 1 L L
PROGRAMLABIEL NG N v v b e e 0 P P L L L L

MES SAGEOUT +
MR A IS S S S T RO B S Y P T I TR AP S U
PP S U S S S S O B U R ST S SR R R R R S A\
TR RS ERT E! L TR EER N TS S SN B |x|||\|1AA;ALAJ§
T S S S S S cote b e S SBT P O B L L L x)
M T S TV S R | cote e S BT e e TS T E U U SN H RN S SRPURT S B TS
TN NS WO WY N T S R U B O PO B e S i T I T L U OO O B SRS
TN S Sty o, 0238000000 0 NI SR

EDI,TDATEANDREE CNOPL O e e i BT TR B 1 L1

LA 8, DATEANDREEL -1
[T S R B SR RS W S 1] lillLJJllillllLJ lllllllll el 414Ll\1 i Lol
T S RS B LA A L0, O T S U SO HN T S S S W I B AR L ld
D SR 12, 1
W S S | | - l 11 1.1 J L B N O Y SO W W | 1) I Y WU WIS WY N S Ny | I I 1 I—— llA 1l O ! L " 1
A ND 12, (TwC 0377777774000000
SRR BT N bt MR S S IR ST LT T IRt b bl R Tt A ST S BRI T . L
R S LSMA 12 OV TRUT e A R
[UIN SO N ST S L LA, 8. DATEANDREEL ., I T B i il
TGS S B LSt B 02 s e T TS I BT VO W S B S
PR N U S S R S T LS AAL Y2 TS e L i [B N n L
LA 8, TS
[S U S ST R JETET TR Lo | [S A S WU T S R S S S I SRR A | L

SECTION:

52

PAGE:

UNIVAC Il UTMOST

UP-3853

(Coding Continued)

1 LABEL A OPERATION A OPERAND \ COMMENTS 72 J
S A 8, ouTPUT J_}
TR R S S A T S R N PRt BT st i L MR N S T B S T S S I L1 L L
P S R SR NI R €DV TDATEANDREEL, NS B S S [L .J
P S B R S S B ST [N
DATEANDREE,NL + 0)
il Pttt o ot b e e B v PSR SR U S SR S R SR S 1 ey -t
e by O L .;LL“AJ
P U B S ST B S SRR U S RS S S S S SR S SR B S S L . e
OUTPUT + 0
PG S A RN T Y S S SR P U SV U ST S i S ST S S S S A S N Y S L I B ST S L Y L
L P L P S NS SO S T AT
TS 2 + [
PR TP ST ST PR S S S S S E RV S S ST SNTE PSS T S ST N S S SR G Jn T B T I
TS3 + 0
L T LS oot L e b e e M T SO B SN S R 1 i L
Y PN ey CBYSIYNY [N,
LA 12, 2, A
PR S N S G S ST ST R PO T N S S ST R St ST S N S B S B T TN SR S E N B S I L1La1 1
R EP U RSP It LS PR N LU SN B S SN L. N
.
[llllkllLlA_LllA ILJAllllllLlollll‘llllll||lll| |I||l|||]1|ll1 Il) S T . | |1\
S R L E S R T R L .AS
MES SAGEIN + 0 J_(
S T M R St T el S H A A W R PRI SRR S S ¥ N S HA Y SN S S A SR N R R S ST R T R W [Lo .
LABELC il CNOP O e e [Ly 1)
PR W RN T W ST N S S R WA cbAL B G0 L CREATIE LABEL L [B IA
IS A SIS I SR RO Lol IO FOLREC TS TR B R N N N S SR | 4 Ll 1\‘
S A 8, FILEC™* 27)
P U VS S S S S S S R PR S bl U A S SO L Sl bl ol GtV SN Sl S ST S SR SR RS ST SR S SR SR - PO L
LA 12, FILEC., 13 \
TR S WU S S N A AT S 1 PR St NS S e S NN S ol il Rl S Sl S OO S S R U NS R B S A S| I Ll L1
Lo by SAL B BT EC YT L b g L Ll 1).(
T N N N ST S S N S S S S B Aninil LA 4FA||L1E|C|*L2164 [T B IS T S S S R S N G j L 111 |l\
LA 8, (63,0202) J_f
[S R E R s Ml AR Tl A TR Sl [N B TS U WU W E S WO W SO A J TR U i
e ey VAL 6 FIVLECEN - N)
I W RS WA R SRR S S R SA L Y2 PP LECH N PRI S U SN ETE S S SN ST " L1 11&
.
P S N S S R S S S S S o SR ABELS R R T S R R S S N A [Ll d i1 \I/
E ND START J)
IO ST N W SO SIS S S S SR T e TR St S Sl T WA S S S S S I [N RSN S S A R N B I L
S T R S G T U S SR P S E T S S S S NN S N S S S AR SATE RATU T S ST R R T A R S 1 Lo \l(
TR A S S S i TS TR PN (T S T S WA HRNT TN S N SN S S SO U S WOV M S S BN TR N S S HC N S N R BN - i 1) 11]

Exercise

Given on tape unit 1 a master file, on tape unit 2 a change file. Both are single reel

files; are blocked at 20 items per block; and contain 17 word items, each of the following

form:

WORD

0-1

3-7
8-16

DIGIT

DATA

Policy Number
Billing Code

Mode Code
Identification Code
Name

Address

UP-3853

UNIVAC 1l UTMMOST 9

SECTION: PAGE:

53

In both files there may be several items with the same policy number. Only those items with
an identification code of 1 are to be acted on. All master items with an identification code
other than 1 are to be written on an updated master file on tape unit 3 with no other action
taken. Change items with an identification code other than 1 are to be skipped. For each
policy number in the master file, there is one and only one item with an identification code of
1. Both input files are in ascending order by policy number. If the mode code of an active
change item (a change item with an identification code of 1) is 1, substitute the name field
of the change item for the name field of the active master item with the matching ploicy
number. If the mode code of an active change item is 4, substitute the address field of the
change item for the address field of the active master item with the matching policy number.
If the mode code of an active change item is other than 1 or 4, delete the active master item
with the matching policy number. An active master item may or may not have an active change
item with a matching policy number. However, no active master item has more than one

active change item with a matching policy number. If the policy number of an active change
item is not equal to the policy number of any active master item, add the change item to the
master file. All items written on the updated master file that have an identification code of

1 and a billing code of 0 are also to be written on a billing file on tape unit 4. Both output
files are single reel files and are to be blocked at 20 items per block. The file identification
of the input master file is MASTERAA, the date of cycle 620303. Of the change file CHANGEIN,
620303. The updated master MASTERAA, 620304. The report REPORTOT, 620304. If the
label of an input file is not as is expected, typé out:

LABL IS tf td tr SHD BE pf pd pr

where

tf is the file identification on the tape

td is the date of cycle on the tape

tr is the reel count on the tape

pf is the file identification the program expects

pd is the date of cycle the program expects

pr is the reel count the program expects
Then accept a typein, which may be FORCE or RECHECK. If the typein is FORCE, sub-
stitute the file identification, date of cycle, and reel number on the tape for those that the

program expects, and continue with the program. If the typein is RECHECK, close the file
and reopen it. If anything else is typed in, reinitiate the typeout.

Test

A single reel, unlabeled inventory file mounted on tape unit 1 is blocked at 50 items per
block and contains items of the form:

WORD DATA
0 NNNNNN
1 0 HHHHY

2-9 XXXXXX

9 54 UNIVAC IIl UTMOST UP-3853

SECTION: PAGE:

where

N is the stock number
H is the onhand quantity

X is other data

A single reel, unlabeled sales file mounted on UNISERVO tape unit 2 is blocked at 250 items per
block and contains items of the form:

WORD DATA
0 NNNNNN
1 0QQQQQ,
where
N is the stock number
Q is the sales quantity

The items on both files are arranged in ascending order by stock number. There may be more
than one sales item for a given inventory item. Produce on tape unit 3 a single reel, un-
labeled updated inventory file blocked at 50 items per block. The sales items will exhaust
before the inventory items.

K. PROCESSOR ERRORS

The Processor checks itself against the occurrence of certain failures, or errors. If the Processor
detects the occurrence of such an error, a processor error interrupt occurs. The contents of the
control counter are stored in storage location 16, and control is transferred to the instruction
stored in location 17. As a result of a processor error interrupt, the executive routine will type
out notification of the processor error, the locations at which it occurred and will enter a closed
loop to await operator action.

UNIVAC Il UTMOST 9

UP-3853 55
SECTION: PAGE:
L. RERUN
Under certain circumstances, such as the occurrence of a processor error, it becomes necessary
to start the execution of a program over again. If the time to execute a program is long, it may be
undesirable to always restart the program from the beginning. To protect against such a necessity,
points can be set up during program execution at which the program can be ‘‘restarted’’.
These points are called rerun points. To set up a rerun points, it is necessary to make
a record of:
1) The state of the program at the rerun point.
2) The tapes mounted at the rerun point.
3) The position of the read write head on these tapes at the rerun point.
All this information can be recorded by writing the pertinent contents of the memory on tape. Such a
record is called a memory dump. After a memory dump has been made, if rerun from the memory dump
becomes necessary, all that is required is to reconstitute the store from the dump, mount the proper
tapes, and reposition them.
Taking memory dumps, reconstituting the store from a memory dump, and repositioning tapes are all
functions of the executive routine. The sole programmer responsibility is to request memory dumps
from the executive routine at those points at which the setting up of rerun points is desired. The
request is made by the following calling sequence.
i LABEL A OPERATION A OPERAND \
———
SCAT FORM 1, 9,15
| 1 I\ 1 1 i I [l L 1.1 1 1 1 1 | i l 1 1 - | | A I\ i 1 11 1 1. 11 N S | J L
s LJ | CHKPT | | |
[1 1 1 1 11 - 1 L 1 il) i " U 1 S i ! 1 Il 1 | | N S 1
SCAT n ,a /
[RS S S S S St el B S Tl VL Vet R S SO AT SO A SO SV Sy U VT SN S AN S ST SO TN S NN SHS SO S B
return line | | j

where
a is the label of a list of labels of the zero words of the file description tables in the
program
n is the number of entries in this list

After the executive routine takes the memory dump, control is returned unconditionally to the
return line.

UP-3853 UNIVAC 11l UTMOST 13

SECTION: PAGE:

13. SYMBIONTS

The UNIVAC IIl System can be used in one of two configurations.
1. As a concurrent processor with online peripherals.
2. As a tape processor using the UNIVAC 1050 System as a satellite to handle peripheral operations.

The purpose of this chapter is to discuss the use of the UNIVAC III System in the first of these con-
figurations.

To develop the principles to be stated in this chapter, a simple, abstract computer application is
assumed. This application has the following characteristics. A transaction file is brought to the
computer in the form of a card deck. The transaction file is applied to a master file for updating pur-
poses. The master file is stored on magnetic tape, and the updated master file is produced on the same
medium. As a by product of the updating process, a printed report is prepared.

A. MAGNETIC TAPE COMPUTERS WITH OFFLINE PERIPHERAL OPERATIONS

One common computer hardware configuration is a central processor, the only mass input and out-
put of which is magnetic tape. Typically, such a central processor is serviced by a collection of
peripheral devices each of which has the capability to perform one conversion function between
magnetic tape and some other medium. Thus, there is a card to magnetic tape converter, a printer
driven by magnetic tape, a paper tape to magnetic tape converter, a magnetic tape to card con-
verter, and so on. Or the Central Processor can be serviced by a satellite computer, which com-
bines in its features the ability to do the required conversions: card to magnetic tape, magnetic
tape to printed copy, paper tape to magnetic tape, magnetic tape to card, and so on. The UNIVAC
I and II Systems are examples of such computers with special purpose input/output devices. The
UNIVAC III System used as a tape processor in conjunction with a UNIVAC 1050 System as a
satellite is an example of such a computer with a satellite.

On such a computer configuration, the example application described at the beginning of this
chapter is implemented in the following way. The transaction card deck is converted to tape,
either on the special card to tape converter or on the satellite computer. The resulting trans-
action tape is applied to the master file by the central processor. The output of this processing
is an updated master file and another magnetic tape with the information to be printed in the
report recorded on it. This report tape is then used to produce the printed report, either on the
special magnetic tape driven printer or on the satellite computer. A process chart of this proce-
dure is shown in Figure 13-1.

SECTION:

13

PAGE:

UNIVAC 1l UTMOST

UP-3853

(?RANSACNON

CONVERT

TRANS-
ACTION

UPDATE

UPDATED REPORT
MASTER

PRINT

REPORT

Figure 13-1. Process Chart for a Magnetic Tape Computer Serviced by
Offline Peripherals or Satellite Computer

UP-3853

UNIVAC 11l UTMOST 13

SECTION: PAGE:

NONCONCURRENT COMPUTERS WITH ONLINE PERIPHERALS

Another common computer configuration type is one in which, in addition to having magnetic tape
input and output, all the peripherals units, the card reader, the printer, the paper tape reader, the
card punch, and so on, are online to the computer. In such a configuration the central proeessor

can read information from magnetic tape and directly from cards, paper tape, documents, and so on.
It can write information on magnetic tape, print reports, punch cards and paper tape, and so on,
directly. The utilization of such a computer depends on whether the computer has concurrent pro-
cessing capability. First, consider such a computer that does not have this facility. In such a case,
the computer is continuously under the control of a single program. The UNIVAC Solid State System
is an example of such a computer.

It is possible to use such a computer to perform the simple file maintenance used as an example
here in the same way the computer with offline peripheral equipment is used. In such a case, the
process would be as shown in Figure 13-1. In this case, the computer would first be used as a
card to tape converter to convert the transaction deck to magnetic tape. The computer would then
be used as a magnetic tape computer to update the master file and produce the magnetic tape
report file. Finally, the computer would be used as a magnetic tape driven printer to produce the
printed report. The procedure results in a three run system. It is not hard to see that this approach
is not the best utilization of the equipment.

Another approach to the utilization of a computer with online peripherals is shown in Figure 13-2.
Here the transaction file is read into the updating process in card form. The report is produced

directly on the printer.
ﬁRANSACTION

UPDATE

\

REPORT

UPDATED

MASTER

Figure 13-2. Process Chart for a Nonconcurrent Computer with Online Peripherals

SECTION:

13

4 UNIVAC Il UTMOST

PAGE:

UP-3853

Introduction of timing figures will demonstrate the superiority of the second approach over the
first. Suppose the speed of a card reader and the volume of the transaction file set the time for
reading the card deck at 15 minutes. Suppose the speed of the central processor, the speed of
the magnetic tape units and the volume of the master file set the time for updating this file at
5 minutes. Finally, suppose the printer speed together with the volume of the report file set
printing time at 20 minutes.

Running time for the process shown in Figure 13-1 is the sum of these times, 40 minutes. If

the computer is buffered so that card reading, printing, magnetic tape reading and writing, and
internal computer processing can occur simultaneously, running time for the second approach
shown in Figure 13-2 is the largest of these times, 20 minutes. If the computer is partially or
totally unbuffered, running time for the second approach is greater than 20 minutes but is always
smaller than 40. Clearly, the technique exemplified in Figure 13-2 is the appropriate one for a
nonconcurrent computer with online peripherals.

Such computers are characteristically medium scale with an average instruction execution time
in the range of 200 microseconds. If the card reader of such a computer can read one card in 400
milliseconds, 2000 instructions can be executed in card read time. This is not an unreasonable
number of instructions to perform the housekeeping operations associated with the control of the
tape handlers, card reader, and printer, to do the processing associated with applying the trans-
action to the appropriate master item, and to edit the card image for this application and the one
or more line images required to produce the prescribed information on a printer report. Hence,
such a computer configuration functions as a well balanced system.

However, there are computers with online peripherals whose average instruction execution time

is about 14 microseconds or less. The UNIVAC III System is such a computer. With a 400 milli-
second per card reader, upwards of 28,000 instructions can be executed in card read time. It would
be an unusual application that required this number of instructions to be executed per card. Gene-
rally, such a computer would be hopelessly peripheral limited.

Nevertheless, economy of hardware construction legislates for online peripherals. Consequently,
to achieve the construction economies associated with online peripherals but to avoid the dis-
utility of a seriously peripheral bound computing system, computers with high internal speeds
generally have concurrent processing capability.

UP-3853

UNIVAC Il UTMOST 13

SECTION: PAGE:

CONCURRENT PROCESSING COMPUTERS

Typically, concurrent processing computers have more than one program stored in memory, the
control of the computer periodically switching from one program to another. To achieve this con-
current processing capability, the computer requires the following features.

ma EXECUTIVE SYSTEM

Some type of executive system is required. It may be hardware, software, or more typically,
some combination of the two. This executive system performs several functions.

— The executive system determines which of the several programs in memory is to have com-
puter control. There are two aspects to this control.

1. The executive system must be able to periodically switch control from the program cur-
rently being executed and pass this control on to another program. This feature prevents
one program from dominating control of the hardware system. For example, this feature
prevents a heavily computer bound program from retaining control to a point where the
operation of input/output equipment is slowed. This aspect of executive system control
may be tied in with the interrupt system, another necessity for concurrent processing
which will be noted in further detail below.

2. The executive system must be able to accept control from some program and pass it on to
another. This allows a program that is input or output limited to relinquish control when it
has completed processing on the items currently in memory and is waiting for more items
to be delivered or for the items in the output area to be recorded.

— The executive system generally determines where programs are to be loaded in memory and
loads them there. This feature implies that programs are written in such a form that they are
relocatable. This ability is generally required on a concurrent processing computer because,
at the time of loading a program P into memory, there are usually other programs already
loaded in memory. These previously loaded programs are typically not the same from one
running of program P to another. Consequently, different portions of memory are occupied
from one running of program P to another. Program P must have the ability to be loaded in
that part of memory which is available at the time of its loading.

— Similarly, the executive system generally determines what logical peripheral and magnetic
tape units are to be assigned to program P for each running. This, in turn, implies that pro-
gram P must have the ability to address input/output units symbadlically. The reason for this
necessity is similar to that for relocatability. Program P contains the complement of input,
output equipment required for its running, but it generally cannot predict which logical units
will be available for assignment at running time. As will be pointed out later, this is not
necessarily true. Arrangements can be worked out for fixed input/output assignment to programs.

8 INTERRUPT SYSTEM

A concurrent processing computer requires an interrupt system. An interrupt is a hardware feature
that, as the result of the occurrence of some event, causes control to go to some fixed storage
location. At the very least, there must be one interrupt that periodically returns control to the
executive system so it can cycle control among concurtent programs. More typically, interrupt

is supplied whenever an input/output unit completes a cycle.

13 6 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

1. Use of a Concurrent Processing Computer

One reason for not using a concurrent processing computer in the way shown in Figure 13-2 has
already been stated. The reason is that such a processing scheme generally results in serious-
ly peripheral-bound programs. On the off chance that a program calling for peripheral as well
as tape input/output consumes more computer time than peripheral time, it is still not a good
idea to mix tape units with the peripheral units in this program, since the peripheral units are
then not operated at top effective speed.

The other reason for not mixing tape units with peripherals in one run has to do with schedul-
ing. If any program can require any array of input/output equipment, it is difficult to achieve a
constant program mix on the computer that makes full utilization of the peripheral units. Also,
there will probably be many instances when a particular program will not be able to be loaded
because one or more of the peripheral units it requires are already in use.

The alternative is to design systems in the manner exemplified in Figure 13-1. That is,
application systems for a concurrent processing computer consist of tape to tape runs,
programs utilizing only magnetic tape input and output, and of peripheral runs, programs

with one magnetic tape input or output and one peripheral unit. Thus, peripheral runs are
divided into two types, input peripheral runs and output peripheral runs. In an input peripheral
run, information is read from some peripheral unit such as a card reader or paper tape reader
and is written on magnetic tape. In an output peripheral run, information is read from a mag-
netic tape and is put out on some peripheral unit such as a printer or card punch.

The program mix on a concurrent processing computer then may consist of one tape to tape
run and one or more peripheral runs. For example, the program mix at one point in time might
consist of a tape to tape run from the payroll system, a card to tape run to convert trans-
actions for the inventory system, and a tape to printer run to produce a report for the billing
system. When the tape to tape program reaches completion, it calls in another tape to tape run
as its successor. When the card to tape conversion winds up, its successor is another tape to
card conversion. Another printer program succeeds the current one, and so on. In this manner,
all peripherals are kept busy; and, with the possible exceptions of adequate memory space or
adequate numbers of tape handlers, no program about to be loaded need be delayed because of
adequate facilities being unavailable. Also, all peripherals are kept running at maximum speed.
A schematic of such concurrent processing is shown in Figure 13-3.

2. Tape Unit Assignment on a Concurrent Processing Computer

That each program will find an adequate number of tape handlers available when it becomes time
to be loaded can be guaranteed by installation convention. For example, suppose a configuration
of input/output equipment consists of 14 tape handlers, a printer, a card reader, and a card punch.
The installation is on single shift; and application demands require that the printer be run a full
eight hours, the card reader be run four hours, and the card punch two hours. An instruction tape
is required. Then one tape handler can be set aside for the instruction tape, one to drive the
printer, and one to be used four hours by the card reader and two hours by the card punch. The
installation can then set up as a system design requirement that no tape to tape run be designed
to use more than 11 tape handlers. In this fashion, each program will, on loading, always find
adequate tape handlers available for it.

Some installations may wish to go further and assign a particular logical tape unit to the instruc-
tion tape, to all printer runs, and to all card to tape and tape to card runs. This leaves a specific
11 logical tape handlers available for tape to tape runs. Programs can then address tape handlers
directly, and the executive system function of allocating input/output equipment to programs as
they are loaded becomes unnecessary.

UP-3853 UNIVAC 11l UTMOST 13

SECTION: PAGE:

Y {r

TAPE TO TAPE TAPE TO PRINTER CARD TO TAPE

QQ [

Figure 13-3. Schematic of Concurrent Processing

3. Store Assignment on a Concurrent Processing Computer

Adequate storage space for each program can also be assured by installation convention. In this
case, each run type is assigned a maximum amount of store within which it must be designed.

For example, if the computer’s memory consists of 32,000 locations, 3500 of which are required
by the executive system, 2000 storage locations might be assigned to each peripheral run that
must run concurrently. This would be 2000 for the printer run and 2000 for the card to tape or tape
to card run. Twenty four and a half thousand locations then remain as the upper limit within
which all tape to tape runs must be designed.

To make most effective use of store, a minimum amount of store is usually assigned to each
peripheral program. This leaves a maximum amount available for tape to tape runs. Such an

approach dictates that peripheral runs be limited to little more than straight conversion, all

editing being handled by the tape to tape runs. This also provides further assurance that all
peripherals will operate at maximum speed.

A characteristic of peripheral runs is that they frequently require restarting. Paper in the printer
tears, or a card jam occurs on the card reader. In such instances, the process must be backed up
some number of items and restarted. Restarting procedures are simplified if peripheral runs are
limited to conversion. This simplification leads to smoother and more standard computer center
operating procedures, a desirable system design goal.

Once the store has been partitioned by convention, it becomes possible, if desired, to assign fixed
storage locations to each run type. For example, presuming that the executive system pre-empts
storage locations 0000-03499, locations 03500-27999 can be assigned to tape to tape runs, 28000-
29999 to printer runs, and 30000-31999 to card to tape and tape to card runs. Programs can then be
written with fixed storage locations and the program relocatability function of the executive system
is eliminated.

13 8 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

4. Instruction Tape Handling on a Concurrent Processing Computer

Because it usually cannot be predicted which program currently in the computer will end

first, some rocking of the instruction tape to locate successor runs seems inevitable. One way
to minimize this rocking is to use ‘‘wired in’’ peripheral programs. For example, an installation
may have a sole printer program that requires input in a specified format. All tape to tape runs
producing tapes for this printer program must produce these tapes in the specified format. The
same can be true of the card to tape program and the tape to card program. Then, at the begin-
ning of the shift, the printer and card to tape programs can be read into storage from the front
of the instruction tape. These remain in memory and service all printer and card to tape opera-
tions. The tape to tape programs can be arranged on the instruction tape in the order in which
they are to be run. As a consequence, if the schedule is adhered to, no instruction tape rock-
ing is necessary until the card to tape program is replaced by the tape to card program. After
this has been done, the only other event which can cause instruction tape rocking is a change
in schedule.

5. Multiple Use of Peripherals on a Concurrent Processing Computer

On a concurrent processing computer, there is a temptation to use more than one peripheral
on a peripheral program. For example, if a computer has two printers, there is the possibility
of using both simultaneously to print different reports from information on a single input tape.
This temptation should be avoided.

Peripheral equipment is electromechanical and is subject to more frequent breakdown than
electronic equipment. The more units of peripheral equipment that must be up concurrently
before a run can be executed, the greater the possibility that the run will be delayed because
of equipment failure.

Moreover, such a run design requires that all peripheral gear involved be free before the
ruh can begin to operate. In the above example, both printers must be free and set up before
the run can begin. Both printers will not generally become free at the same time. One printer
will have to remain idle until the other becomes free and set up before the run can begin.

A third reason for avoiding such run design is pertinent when the volumes that the peripheral
gear are to handle are disparate. For example, in the two printer run described above, if one
printer s to produce a detail report of the input tape while the other is to produce a summary
report, the speed of the run is limited by the printer producing the detail report, and the
utilization of the other printer during the run is limited.

6. Mixing of Tape Limited and Computer Limited Runs on a Concurrent Processing Computer

It is sometimes proposed that computer to tape balance can be achieved on a concurrent process-
ing computer by running a tape-limited tape to tape program concurrently with a computer-limited
program. While theoretically possible, there are several considerations that militate against such
an approach.

The proposed approach presumes that two or more tape to tape programs of different charac-
teristics are to be run concurrently. This generally requires an increase in the number of tape
handlers and in the storage size of the computer required. To justify such an acquisition, the
installation must have sufficient computer load to keep several tape to tape runs in the computer
concurrently for the greater part of a shift. Even in such cases it may be less expensive to settle
for a more modest configuration, only run one tape to tape program at a time, and run into over-
time.

UP-3853

UNIVAC Il UTMOST 13

SECTION:

The proposed approach also presumes that, whenever a compute limited run is scheduled,
there is a tape limited run which can be scheduled concurrently, and vice versa. Such a pro-
gram mix is exceptional rather than common. Moreover, even if such programs existed, the
approach presumes a timing fineness, predictability, and static content in scheduling that is
not generally realizable.

Use of Concurrent Processing Computers as Conversion Equipment

Suppose an installation with a concurrent processing computer, a number of tape handlers,
a printer, a card reader, and some other peripheral equipment. Suppose the installation is
on a one shift basis but that the application demand on the printer and card reader is four
hours a day each. During the other four hours of the eight hour shift, the printer and card
reader can be used in a peripheral run to read cards and print the information read. Such
utilization lowers the installation’s need for punched card tabulators. Other combinations
of peripheral gear are possible: paper tape reading to paper tape or card punching, paper
tape to printing, and so on. It should be emphasized that such use of a concurrent process-
ing computer is economical only when there is idle time on the peripherals involved, The
use of the computer as a card reader to printer device is usually particularly well balanced,
since the document speeds of card readers and printers tend to be similar. Such planned
use of the computer still suffers from design deficiencies mentioned earlier and should be
approached cautiously. Simultaneity of availability of the peripherals involved is required.
This is not only a scheduling problem, but also one of peripheral equipment reliability.

13 10 UNIVVAC Il UTMOST UP-3853

SECTION: PAGE:

D. CONCURRENT PROCESSING ON THE UNIVAC III

The executive routine in the UTMOST system is EXEC. It pre-empts approximately the first 3500
storage locations for storage and is in store whenever programs are being executed.

The Processor is equipped with an input/output interrupt. This interrupt stores the contents of
the control counter in storage location 20 and transfers control to the instruction stored in
location 21. Roughly speaking, an input/output interrupt occurs every time a block is read from

or written on tape, everytime a line is printed on the printer, every time a card is read or punched
on the card reader or punch, and, in general, every time an input/output operation occurs on a piece
of input/output equipment. Thus, input/output interrupt retrieves control from whatever program is
being executed when an input/output operation occurs and gives control to EXEC. By means of

a set of indicators, EXEC can determine what input/output operation caused the interrupt and can,
if necessary, route control to the proper program for servicing the input/output operation that has
occurred.

In accordance with good concurrent processing practice, EXEC allows one tape to tape program to
be run concurrently with one or more peripheral programs. In the UTMOST system, peripheral pro-
grams are called symbionts. Unless a SEG control card is included that directs SUCO to do other-
wise, tape to tape programs ate loaded in low order storage contiguous to EXEC. Symbionts are
loaded into high order storage.

Termination of a tape to tape program can cause initiation of a successor program by means of a
NEXT control card. Symbionts are both initiated and terminated by manual action on the console.
Thus, a symbiont may be loaded into store and left there to do as many jobs as is required. For
example, a tape to printer symbiont may be loaded into store, used to print a tape, and then
allowed to remain dormant until another tape is ready to be printed, at which point the symbiont
can be reactivated from the console. As pointed out previously, such an approach minimizes in-
struction tape rocking.

When a symbiont is terminated, the executive routine relocates the remaining symbionts in high
order storage. Thus, at all times the maximum amount of store is kept available for storing tape
to tape programs between EXEC in low order storage and the symbionts in high order storage.
If an installation determines the maximum number of symbionts it plans to run concurrently and
the space each such symbiont requires in storage, it can then determine the maximum amount of
storage a tape to tape program can require and never run into loading problems because of inad-
equate store being available for the loading of the program.

In relocating symbionts when a symbiont is terminated, the executive routine makes use of the tape
to tape program’s DUMP tape. This is why every tape to tape program must specify a DUMP tape
even if rerun memory dumps are not to be made. Executive routine use of the DUMP tdpe in this
fashion in no way prejudices the information being written on this tape by the tape to tape program.

As has been demonstrated by the use of tape assignment cards, allocation of UNISERVO tape
units in the UTMOST system is essentially a fixed allocation. That is, UNISERVO tape units are
addressed logically rather than symbolically. Therefore, it is to the installation’s advantage to
permanently allocate the number of UNISERVO tape units required to symbionts. EXEC pre-empts
UNISERVO tape unit 0 for instruction tape handling. The UNISERVO tape units not used by EXEC
or the symbionts can be allocated for use by tape to tape programs.

UP-3853

UNIVAC Il UTMOST 13

SECTION: PAGE:

11

Also in accordance with good concurrent processing principles, the UTMOST systems provides a
standard set of symbionts, a tape to card symbiont, a card to tape symbiont, a tape to printer sym-
biont, and so on. These symbionts minimize editing operations and confine themselves to con-
version operations. As a consequence, each input symbiont produces a tape in a specified for-
mat. Similarly, each output symbiont expects as input a tape of a specified format. As a con-
sequence, an installation may design and program only tape to tape runs and use the standard
symbionts for peripheral operations. When a tape to ta/pe run expects input produced from an
input symbiont, say the card to tape symbiont, the format in which the tape is read is the fixed,
specified format. Similarly, when a tape to tape run produces output to be used as input to an
output symbiont, for example, the tape to printer symbiont, the format in which the tape is to be
written is the fixed, specified format. All editing — editing of tapes from input symbionts to
increase processing efficiency and editing of tapes for output symbionts — is done in the tape to
tape program.

In the remainder of this chapter, the standard card to tape symbiont and the standard tape to
printer symbiont are discussed as examples of standard input and output symbionts.

SECTION:

13

12 UNIVAC Il UTMMOST

PAGE:

UF-3853

THE CARD TO TAPE SYMBIONT

The High Speed Reader is available as either an 80 column model or a 90 column model. Both
may be included in one UNIVAC IIl System. The synchronizer and power supply for the reader
are housed within the reader cabinet. Cards are read and checked automatically at the rate of
700 cards per minute. The 80 column reader processes standard Hollerith card code and

translates it into the UNIVAC III character code; it can also process any other 80 column card
code. The 90 column reader processes 90 column Remington Rand card code and translates it
into the UNIVAC III character code; it can also process any other 90 column card code.

The card feed path of the reader (Figure 13-4) includes a card input magazine, four card stations,
and three output stackers. In Figure 13-4, cards are shown at the start of an operating cycle.

The card stations are numbered 1 through 4, and the stackers are designated 0, 1, and 2. Card
station 1 is the first read station. Card station 2 is the second read station; card images from
from this station are transferred to memory. Cards are transported by means of continuously
moving rollers which advance cards from the input magazine, through the two read stations, to
card station 3, card station 4, and finally to one of the three output stackers.

UP-3853

UNIVAC Il UTMOST 13 13

SECTION: PAGE:

The cards to be read are moved into the card path by the picker knife, which is program controlled.
At the first read station, the card is brush sensed, and a hole count is stored for checking
purposes. After the card is read at the second read station, hole counts from the two read

stations are compared. If an error is detected, the program testable data error indicator is set and
automatic program interrupt occurs.

Cards to be read are stored in the input magazine, which holds 2000 cards. Excellent card feed
reliability is achieved through the use of a vacuum which helps to position the card to be
engaged by the picker knife. When the input magazine is empty or a misfeed occurs, the unit
stops, the MISFEED light of the reader control panel lights, the program testable operator over-
sight indicator is set, and automatic program interrupt occurs.

Each of the three output stackers holds 1000 cards. When a stacker is full, the STACK FULL
light on the reader control panel lights, the program testable operator oversight indicator is set,
and automatic program interrupt occurs. All cards enter stacker 0 unless the program specifies
stacker 1 or 2.

STATION STATION STATION STATION
4 3 2 1 INPUT
OUTPUT STACKERS READ READ MAGAZINE
(EACH STACKER HOLDS 1000 CARDS)
2000-CARD
CAPACITY

\&i\\\&
Vg

PICKER
KNIFE

STACKER:- TRANSLATION CARD-FEED
0 1 SELECTION BIT o

BITS I

NOTE: ALL ROLLERS ARE CONTINUOUSLY MOVING. .
FS BIT POSITIONS

Figure 13-4. Card-Feed Path, High-Speed Reader

13 14 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

Cards may be read either with or without automatic translation from the card code to the UNIVAC
IIl character code. Figures 13-5 and 13-6 illustrate the data flow for 80 column cards, and Figure
13-7 illustrates the data flow for 90 column cards.

When an 80 column Hollerith code card is automatically translated, the card image occupies 20
UNIVAC III alphanumeric words in store, as indicated in Figure 13-5; an 80 column card image
transferred without translation occupies 40 alphanumeric words. The first untranslated 24 bit
word is represented by a card field in the upper left portion of the card, four columns wide by
six rows deep, as shown in Figure 13-6. Because cards are read without translation, non-
Hollerith codes may be used. For both Hollerith and non Hollerith codes, a 0 bit is placed in
each sign bit position in store when a card is read.

When a 90 column card image is transferred to store, either with or without translation, it occupies
24 alphanumeric words, as shown in Figure 13-7. Binary 0’s are inserted in the three least
significant character positions of the 12th word and of the 24th word of the card image in store.

A O bit is placed in each sign bitposition in store when a card is read.

Hollerith and Remington Rand 90 column card codes are given in Figures 13-8 and 13-9, respectively.

After the synchronizer has completed transferring the data from a card, the number of storage
accesses is checked to verify that an entire card image has been transferred to store. Only the
image from the second read station is transmitted to store. The hole counts from the two read
stations are compared. A modulo 3 check is made on each word that is transferred. If any of these
checks detects an error, a program testable indicator is set, and an automatic program interrupt
occurs.

The standard card to tape symbiont described below is for 80 column cards.

L ADDRESS

L+
mmkmmmm vore. i Lov oxoer ot 1

et PUNCHED AT THE TOP OF THE
CORRESPONDING CARD COLUMN.
(BLACK AREA REPRESENTS LOW

ORDER BIT.)
CHARACTER wzx6PQ8o

Y (12) L | b Li L 1| | n i ll*l "
X (11) 1 1 U RU T TR

0 | 1| np | 1 |1] P

1 ' ' I i i 11
2 R P | Ir o

431 L L+1|L+2 | L+3 | L+4 | L+5 | L+6 | L+7 | L+8 | L+9 [L+10}L+11jL+12| L+ 13| L+ 14| L+15|L+ 16| L+ 17{L+18{L+19
5 P 1 1 I 1 B i i "I

6 ' T dal 1l b Py |8 | 1 @

7 i P i R i il

8 " 1 n i 0 B

9 F o ' 1o i 'R

Figure 13-5. Data Trasfer from Reader to Memory, with Translation, 80-Column Card

UP-3853

UNIVAC Il UTMOST

SECTION:

13

PAGE:

15

L

ADDR

ESS

' BIT PATTERN
011001 011011 [101010] 001010]

AR N STORE

CHARACTER FHP7

Y (12)
X (11)
0

© 0 N O A W N

NOTE: THE LOW ORDER BIT IS PUNCHED
AT THE TOP OF THE CORRESPONDING
CARD COLUMN. (BLACK AREA REPRESENTS

LOW ORDER BIT.)

1 } o |L| " ||~L|L| kl e
11 i TR pojna e g on| ey ogeajna
LI | L+2 [L+4] L+6 | L+8 {L+10{L+12|L+14]L+16| L+18]L+20 1 L+22[L+24|L+26 | L+28|L+30{L+32|L+34| L+36|L+38
e o ' r oy (. ' n
Mg §o|n | |n BN DR R (A
J UL i I N n i 1 LN
T 1 N IP Pl e poof o o 1
mu o L (Y (O R R R T BT
L+1 | L+3 | L+5| L+7 | L+9 [L+11|L+13|L+ 15| L+17 | L+19{L+21{ L+23|L+25|L+27 |L+29| L+31|L+33]L-+35|L+37|L+39
iy (. 1 n " I n
0 I 1o ' Br| oae Pn

I JHEE R L 1 r LI, r |

Q560

L]

BIT PATTERN
MUERE IN STORE

ADDRESS

Figure 13-6. Data Transfer from Reader to Store, without Translation, 80-Column Card

0 (f @ &@J ¢ 0 J QJ& Q* @
1 &2 © T ' 8% @ ee 9l » ®|
3 L L+1 L+42 L+3 L+4 L+5 L+6 L+7 L+8 L+9 L+10 L+11
5 s |@ 9@ ¢ @ B9 ae | & ¢ o8 ¢ oo &
7 eoe »»@:0 'Y see aseen B8 @
°o e @ @ 4 ® ¢ 9 69 & @ ¢ |& #0 B & o6 @
0 sele oe ® e (s@ @ &
1 @ ew ® 0 o9 o © & ae 26 @
3 L+12 L+13 L+4+14 L+415 L+16 L+17 L+418 L+19 L+4-20 L+421 L+22 L+23
5 % #e 88 & (o8 o8 ® e o © | ve es o @
7 |l|les YTy’ ® 2o @ﬂ&oo # 'Y
9o il e |& e @ o qo ®| e ¢ @ e® 8 @ @we @
ADDRESS L L+1 L+2 L+3 L+4 L+5 L+6 L+7 L+8 L+9 L+10 L+11
CHARACTER ' {] : A

ADDRESS L+12 L+13

CHARACTER £

L+1a

B LMNRSUXZI2S

L+15

67

L+16 L4+17 L418 L419
BIAABCFGEMNRSUXZ

Note: The card field arrangement is the same when 90-column cards

are read without tra

nslation,

o

BINARY ZEROS
ARE INSERTED IN THESE
CHARACTER POSITIONS

L+20 L+21 L+22 L+23

1256 789ABCFGLMA

& X

BINARY ZEROS
ARE INSERTED N THESE
CHARACTER POSITIONS

Figure 13-7. Data Transfer from Reader to Store, with Translation, 90-Column Card

13 16 UNIVAC IIl UTMOST UP-3853
SECTION: PAGE:
The upper entry represents the card punching positions. The u . -
The lower ent ts th esponding High-Speed Printer character. pper entry represents the card punch}ng ppsltlons.)
NP e sCods Whah i ot it by e igh Spe Prine. T e ey et e Corteponding g Soeed e charctr
Numeric Zone Bits Numeric Zone Bits
Bits 00 o1 | 10 11 Bits 00 01 10 1
Blank 12 Blank 01357 01579 0179
0000 Space + NP, NS NP, NS 0000 Space + NP NP
1438 12438 11438 0438 1357 1379 01 015
0001 ;) * (0001 ;) * (
11 1238 1138 038 0357 1359 01359 0359
0010 - . H) 0010 - . $,
(Comma) (Comma)
0 438 0 013 0379 1579
oon 0 NP NP ' oon 0 NP NP !
(Apostrophe) (Apostrophe)
1 121 111 01 1 159 135 3579
0100 1 A J / 0100 1 A J /
2 12 2 112 02 19 15 359 157
0101 2 B K S 0101 2 B K S
3 123 113 03 3 07 09 379
o110 3 c L T 0110 3 C L T
4 12 4 114 04 39 035 05 057
mn 4 D M u [1R)} 4 D M U
5 125 115 05 5 03 059 039
1000 5 E N v 1000 5 3 N v
6 12 6 116 06 59 179 13 037
1001 6 F 0 w 1001 6 F 0 w
7 127 117 07 1 57 137 079
1010 1 G P X 1010 1 G P X
8 128 118 08 79 37 357 139
101 8 H Q Y 11 8 H Q Y
9 12 9 119 09 9 35 17 579
1100 9 | R 4 1100 9 1 R Z
468 38 01379 0157 019 0139
1101 : = NP, NS NP, NS 1101 : = NP NP
458 13579 0159 0137 03579
1110 < NP, NS NP NP 110 < NP NP NP
358 0579 013579 017 0135
m > NP, NS NP, NS NP, NS 1 > NP NP NP

Figure 13-8. Hollerith Code,
High-Speed Reader

High-Speed Reader

Figure 13-9. 90-Column Card Code,

UP-3853

UNIVAC Il UTMOST 13

SECTION:

PAGE:

17

The card deck for the standard card to tape symbiont should be formed as follows. The first
four cards should be blank cards. The fifth card should be a label card, which has the
following format:

Column 1: A control punch of 12-0-2.
Column 2: Blank

Columns 3-7: LABEL

Column 8: Blank

Columns 9-16:

Column 17:

In these columns should be punched the eight character file identifica-
tion desired in the tape label block.

Blank

Columns 18-23: In these columns should be punched the date of cycle desired in the tape

label block.

Column 24: Blank

Columns 25, 26: In these columns should be punched the number of card images desired
to make up one data block on tape. The maximum number of images that
can make up one block is 25. If these columns are left blank, a block

size of 25 images is used.

Column 27: Blank

Columns 28, 29: In these columns should be punched the reel number desired in the tape
label block. If these columns are left blank, the reel number in the tape

label block is set to 1.

Following the label card should be the data cards. Following the data cards should be an end of
file card. An end of file card should have a 12-0-2 control punch in column 1 and ENDAOFAFILE
in columns 2-12. Following the end of file card should be four blank cards.

Periodically through the card deck should appear restart cards. A restart card should have a 12-0-2
control punch in column 1, RESTART in columns 2-8, and columns 9-12 should be blank. The
function of restart cards is described later in this section.

The card to tape symbiont is loaded into store by means of a manual operation at the console. Once
loaded, the symbiont remains dormant until activated. The symbiont is activated by typing in
ScASTART, where c is the number of the general purpose channel by which the card reader is
connected to the Processor. (The Processor has eight general purpose channels. Any piece of
peripheral equipment may be connected to the Processor through any of the eight general purpose
channels.) Suppose for purposes of this section that the card reader uses general purpose channel
5. In this case, the form of the above typein is:

SSASTART

Once the symbiont is activated, it begins reading cards and writing tape. The symbiont is designed
to write tape on the UNISERVO whose number is specified to be file number 13. It writes a standard
label block containing the information specified in the label card. It then writes data blocks of the
size specified in the label card. Each card is read in a translated mode and is written as a 20 word
item on tape. This item is a card image as exemplified in Figure 13-5.

SECTION:

13

18 UNIVAC Il UTMOST UP-3853

PAGE:

The symbiont will stack cards in stackers 1 and 2. It stacks 500 cards in one stacker and then
switches to the other.

When the symbiont detects a restart card in the input deck, it writes whatever previously unrecorded
card images it is holding in store on tape as a block, regardless of whether the block is full size.
It then writes four bypass sentinel blocks. Normal card to tape conversion then resumes.

A bypass sentinel block is recognized as such by the input routine which will subsequently read
the tape being produced by the symbiont. It will, in fact, ‘‘bypass’’ these blocks and not deliver
them to the program for processing. Consequently, the existence of bypass sentinel blocks on a
tape has no effect on the processing of the tape. What the symbiont uses the bypass sentinel blocks
for is described later in this section.

When the symbiont detects an end of file card, it writes whatever card images remain in store on
tape, writes end of file sentinel blocks, and rewinds the tape. The message RDR EOF is typed on
the console, and the symbiont then becomes dormant. A new card deck can be placed in the reader,
a new blank tape can be mounted on the output UNISERVO, and a new conversion can be initiated by
an SSASTART typein at any subsequent time.

If a fault or error occurs during conversion, a message to this effect is typed on the console,
conversion ceases, any cards already committed to the reader but not properly read by the symbiont
are selected into stacker zero, and the symbiont becomes dormant. All cards up to and including
the last restart card should then be removed from the stacker and placed at the bottom of the deck
in the input magazine. SSAGO is then typed in at the console. The symbiont repositions the output
tape to the last bypass sentinel blocks written on the tape and recommences the conversion.

If, during restart, the symbiont does not find a restart card at the head of the deck in the input
magazine, it types out NO RESTART and takes the same action as if a fault or error had
occurred. The same recovery action as used for faults and errors should be instituted.

If, during conversion, the symbiont detects the end of tape warning window on the output tape,
it writes end of reel sentinels after the last full data block, rewinds the tape, and becomes
dormant. The output tape should be dismounted, a new blank tape mounted, and S5AGO typed
in at the console. The symbiont then writes a label block on the new tape and continues
conversion.

The standard card to tape symbiont requires a little more than 1500 storage locations.

UP-3853

UNIVAC Il UTMOST 13

F. THE TAPE TO PRINTER SYMBIONT

Under control of the central processor program, the High Speed Printer produces documents
at the rate of 700 lines per minute for alphanumeric data and 922 lines per minute for numeric
data. Lines are composed of 128 characters. In addition to the original, up to five carbon
copies may be produced.

Data flows from the Central Processor to the printer synchronizer through one of the eight
general purpose channels. The synchronizer controls printing of the data. To assure that the
printer operates at full capacity without delaying the operation of the Central Processor, the
automatic program interrupt feature is used.

The High Speed Printer consists of a printer cabinet and an adjoining synchronizer. The
printer cabinet contains a continuously rotating type drum with 128 printing positions, 128
print hammers which correspond to the printing positions, a self reversing ribbon feed
mechanism, and a paper drive mechanism. The synchronizer contains the circuitry that controls
data transfers, paper advance, and printing.

Along the length of the type drum (Figure 13-10) are 128 bands of printing characters. Each band
contains the 51 character print set around the circumference of the drum.

Characters are arranged on the drum in a checkerboard pattern so that they are separated from
characters on adjacent bands by approximately % inch; this space reduces the possibility of
smudging by characters on a band adjacent to the one being printed.

SECTION: PAGE:

SECTION:

13

20 UNIVAC Il UTMOST UP-3853

PAGE:

Two sets of sprocketed tractors — an upper set and a lower set — advance the continuous paper
through the printer under program control. While the paper is being printed, the two sets of

tractors maintain paper tension.

Each of the four tractors is equipped with a tractor locking lever. These levers are pushed in
before the tractors are adjusted; after tractor adjustment, the locking levers are pulled out, thus
locking the tractors to prevent any further lateral motion.

Blank or preprinted paper from 4 to 22 inches wide and up to 22 inches long between folds can
be used with the printer. The original document and up to five carbon copies may be printed,
using paper between approximately 11 and 13.5 pounds in weight, up to a pack thickness of
approximately 15.5 mils; this includes card stock. Vertical spacing, which may be set at the
control panel by the operator, is either 6 or 8 lines per inch; horizontal spacing is 10 characters
per inch. When only 2% inches of paper remains below the print hammers, a signal from the

High Speed Printer alerts the Central Processor and automatic program interrupt occurs. The
Central Processor also is alerted and paper movement stops if paper has advanced continuously
for more than 1.5 seconds.

Thirty-two words from consecutive storage locations are transferred to the printer synchronizer
and modulo 3 checked. They remain in the synchronizer until they are printed according to the
printable character code; sign bits are ignored. The program being executed controls paper
advance and printing only. If editing of the final printed page is desired, it is accomplished
within the 32 consecutive storage locations by the internal program before the order for printing
is given.

\'\:\\‘\\.\,\.\\\7\:‘.\:
\\\\\\\\v v
GG RIEE

Figure 13-10. Type Drum, High-Speed Printer, Front View

After the 32 words are transferred to the synchronizer, each character in the 32 words is printed
in a sequence governed by the order of the characters on the type drum. The determination of
which characters are to be printed next is made in the following way:

1. As the type drum rotates, the printer synchronizer keeps track of which row of characters is
In printing position.

2. The character in printing position is compared with the characters stored in the synchronizer.

UNIVAC Il UTMOST 13

UP-3853 21
SECTION: PAGE:
3. When the character on the drum in printing position matches the characters in the synchro-
nizer, the appropriate print hammers are actuated to drive the paper and ribbon against the
type drum, thereby printing the desired characters onto the paper.
Single spaced numeric information can be printed at the rate of 922 lines per minute; single
spaced alphanumeric information can be printed at the rate of 700 lines per minute. Timing of the
paper advance depends on the number of lines advanced and on whether the line spacing is 6 or
8 lines per inch. For spacing of either 6 or 8 lines per inch, 10 milliseconds are required to
advance the first line of paper; each additional line requires 8.3 milliseconds if the spacing is
6 lines per inch or 6.25 milliseconds if the spacing is 8 lines per inch. After the paper is
advanced, 10 milliseconds are required to stabilize the paper before actual printing begins. When
all the characters stored in the synchronizer have been printed, the line is complete and interrupt
occurs if it was specified. The printed line per minute rate depends on the required paper advance
and on the group of characters to be printed.
The printer can be acquired with either of two sets of printable characters. The COBOL —
FORTRAN set is shown in Figure 13-11, the UNIVAC III Standard Set in Figure 13-12.
NP indicates a code which is not printed by the High-Speed Printer. NP indicates a code which is not printed by the High-Speed Printer.
Numeric Zone Bits Numeric Zone Bits T
Bits oo | o1 | 10 | n Bits o0 | o1 10 | 1
T
0000 Space]I + NP NP 0000 A & NP ‘ NP
0001 H 1) * (0001) : * %
{ Comma Apos-
0010 - ‘ . $) 0010 - . $ trophe
o011 0 NP NP Apostrophe o011 0 NP N |
0100 1 A J / 0100 1 A J } /
0101 2 B K S 0101 2 B K | S
T T -
0110 3 c L T 0110 3 4 L T
——
om 4 ; D M U 0111 4 D | M ‘ U
= — T
1000 5 E N v 1000 5 E N v
. +—
1001 6 F 0 w 1001 6 F 0 : w
1010 1 G P X 1010 7 G (P X
1011 8 H a Y 1011 8 ool a Y
1100 g | R z 1100 9 | L R z
. . (R
101 : = NP NP 101 Comma # [NP NP
| S b e
110 < NP NP NP 110 f i NP } NP NP
S 1) . B
1 > NP NP NP 1m (NP : NP NP

Figure 13-11. COBOL - FORTRAN Set Figure 13-12. UNIVAC Ill Standard Set

SECTION:

13

22 UNIVAC 11l UTMOST

PAGE:

UP-3853

The standard tape to printer symbiont accepts as input a tape with a standard label block and is
terminated by either end of reel or end of file sentinels. Data blocks on the tape may be of

any size up to and including 254 data words. Item size on the tape may be from 2 through 33
words, but all items on the tape must be the same size. The tape to printer symbiont is designed
to read this tape from the UNISERVO tape unit whose number is specified by a typein.

The symbiont assumes that it is printing on forms capable of having 66 lines printed on one form
and that it will leave a blank six line heading and a blank six line footing on each form. These
assumptions can be modified by means to be described later in this section.

Assume a tape of 33 word items. Also assume that the symbiont is ready to print a line on a
form at some point between the heading and footing. The current 33 word item contains the
information to be printed. The zero word of the item is a control word that tells the symbiont
how the line is to be printed. Bit positions 9-15 and 25 of the control word must contain a zero.
Bits 1-7 of the control word specify to the symbiont how many lines the symbiont is to advance
the form in the printer before the item is printed. The specification is made in binary. The last
32 words of the item make up a line image, which is printed after the form advance. Thus, the
first word of the item is printed in print positions 1-4, the second word of the item in print
positions 5-8, the third word in print positions 9-12, and so on.

Bit 16-21 of the control word specify in binary the length of the line image in words. Thus, for
a 33 word item, bits 16-21 of the control word contain a binary 32. If the line image is smaller
than 32 words (amd consequently, the item is smaller than 33 words), the line image will be
left justified in printing. Thus, the first word of the item will be printed in print positions 1-4,
and so on. Print positions to the right, not accounted for in the line image, will have spaces
printed in them automatically by the symbiont.

If form advance causes advance into the footing of a form, the form advance specified in the
control word is ignored, and the line image is printed on the head Iine of the next form, which
is the line immediately below the heading of the form.

To obtain normal form advance, bit position eight of the control word must contain a zero. If it
contains a one, the paper in the printer is advanced to the next form. The line image associated
with such a control word is printed on the line of the new form whose number is specified in bits
1-7 of the control word. Lines on a form are numbered from 1 and are counted starting with the
head line.

Bits 22-24 of a control word are immaterial.

If it is desired to change the symbiont’s assumptions concerning form, heading, and footing
length, the first item on tape should have a control word of the following format:

Bit 25: One

Bits 22-24: Immaterial

Bits 15-21: Number of lines in heading expressed in binary.
Bits 8-14: Number of lines in footing expressed in binary.

Bits 1-7: Number of lines on form expressed in binary.

UP-3853

UNIVAC IIl UTMOST 13

SECTION: PAGE:

23

The contents of the rest of the item is immaterial. Once the Symbiont’s assumptions concerning
heading, footing, and form length have been changed by the above means, these revised assump-
tions are retained by the symbiont until either another change is made or the symbiont is re-
loaded from the instruction tape.

Punch and print images may be intermixed on the tape. The tape to printer symbiont will bypass
all items constituting punch images.

The symbiont is loaded into store by means of a manual operation at the console. Once loaded,
the symbiont remains dormant until activated. The symbiont may be activated and directed to
print any one of a number of ‘‘stacked files’’ on the input tape by typing in

ScASTARTAAAAAAAAA,

where ¢ is the channel number of the general purpose channel by which the printer is connected
to the Processor, and AAAAAAAA is the label ID of the file to be printed. Suppose for purposes
of this section that the high speed printer uses general purpose channel 6. In this case, the
form of the typein is

S6ASTARTAAAAAAAAA.

If the file label ID is omitted from the above typein, the symbiont will print the next file
physically on tape.

The typein SASTARTANNNN acts as an S6ASTART typein, except that it will not print the
first NNNN pages.

None of the above typeins rewinds the tape, but rewind can be initiated by typing in
S6ARW.

When the symbiont is activated, it prints the file ID, date, and reel number of the label (if

present) on the console typewriter, and it prints the first line on the printer. The symbiont

then becomes dormant. The single line of printing (which may be a test pattern) can be used

to position the paper in the printer. This line can be reprinted as many times as is desired
by typing in S6ATEST.

Once the paper has been positioned, normal printing can be started by typing in
S6AGO.

If a form is spoiled because of a tearing of the form or carbon or because of a printer mal-
function, such as a blown fuse, the symbiont can be made dormant by typing in

S6ARELEASE

SECTION:

04 UNIVAC Il UTMOST UP-3853

PAGE:

Then, by typing in

S6ABACKAnN

the symbiont can be reactivated. At this point the symbiont will read the input tape back-
ward enough blocks to reprint approximately the number of forms specified in the typein by
n (1< n<9). The symbiont will then print one line and release. If necessary, the paper can
then be repositioned. Normal printing resumes as a result of a typein of

S6AGO
When the symbiont detects end of reel or end of file sentinels on the input tape, it types
out END PRINTING and becomes dormant. A different file, either on the current tape or

on a newly mounted tape, can then be printed by means of an activating typein.

The tape to printer symbiont requires approximately 1200 storage locations.

UNIVAC [Il UTMOST
SECTION 17-F, UP-3853

FASTRAND

SUBSYSTEM

17-F

SECTION: PAGE:

UP-3853 UNIVAC 1l UTMOST ,

Figure 17-F-1. UNIVAC Ill FASTRAND Mass Storage Unit

1. UNIVAC IIl FASTRAND MASS STORAGE SUBSYSTEM

The UNIVAC FASTRAND * Mass Storage Subsystem (Figure 17-F-1) provides the UNIVAC IIl Data Processing

System with random access external storage capability. Each subsystem is composed of from one to eight
storage units linked to the central processor through a control unit and synchronizer. The control unit
and synchronizer are housed in a single cabinet. Each Mass Storage (drum) Unit requires its own
storage cabinet and power supply. The storage capacity of a full size subsystem is 528,482,304 six-
bit alphanumeric characters. The capacity of a subsyStem with one Mass Storage (drum) Unit attached
is 66,060,288 characters.

Data is recorded around the surface of the drum cylinders in a bit serial format. The basic unit of drum
storage is the sector which contains either 42 or 37 UNIVAC III words depending upon the recording
mode used. 64 sectors per track are accessed serially as the drum rotates. There are 64 read/write
heads located along the length of the drum, allowing the accessing of 64 tracks without changing the
position of the read/write heads. The read/write heads are moveable and can be positioned over any
one of 96 separate tracks. (See Figure 17-F-2 for conceptual presentation).

Each FASTRAND Mass Storage Drum Unit contains two cylinders which revolve at the rate of 880 RPM.
From the programmer’s point of view, these two cylinders can be regarded as a single drum. The
UNIVAC III programmer deals solely with the logical relationship of the various tracks and sectors,
without regard to their physical location. Operation of the unit is entirely under program control.

The functions of the FASTRAND subsystem, like all other input/output components of the UNIVAC III
Computer, are performed under its own control. The central processor action is merely to initiate the
FASTRAND function request, after which it is free to perform operations or calculations as directed

by the operating programs. The FASTRAND control unit controls the execution of all requested
functions, automatically interrupting the central processor when a requested function has been completed.
The capacity of a single drum unit and the various access factors are summarized in Table [7-F-1.

* Trademark of Sperry Rand Corporation

17-F 2 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
PER UNIVAC I} ALPHANUMERIC DECIMAL OCTAL
UNIT WORDS CHARACTERS DIGITS DIGITS
DRUM 16,515,072 66,060,288 99,090,432 132,120,576
DATA CAPACITY - POSITION 172,032 688,128 1,032,192 1,376,256
COMPRESSED
MODE TRACK 2,688 10,752 16,128 21,504
SECTOR 42 168 252 336
DRUM 14,548,992 58,195,968 87,293,952 116,391,936
DATA CAPACITY - POSITION 151,552 606,208 909,312 1,212,416
NORMAL
MODE TRACK 2,368 9,472 14,208 18,944
SECTOR 37 148 222 296
FUNCTION MAXIMUM MINIMUM MEAN
POSITION HEAD BAR 86 milliseconds 30 milliseconds 57 milliseconds
ACCESS FACTORS SWITCH HEAD 20 microseconds 20 microseconds 20 microseconds
(excluding programming
requirements) LOCATE SECTOR 70 milliseconds 0 milliseconds 35 milliseconds
PROCESS SECTOR 1.09 milliseconds 1.09 milliseconds 1.09 milliseconds

Table 17-F-1. FASTRAND Capacity and Access Time Chart

The FASTRAND subsystem is accessible to all programs sharing the computer. Access to the
FASTRAND subsystem is controlled by the Executive Routine which monitors the execution of the
various requests. FASTRAND functions are performed in the sequence in which they are forwarded to
the Executive Routine. A successful completion signal is available for interrogation by the requesting
program to determine that its request has been completed. This feature enables the FASTRAND sub-
system to transfer information between memory and the Mass Storage (drum) Unit at full speed in
parallel with the operation of the central processor and other input/output equipment.

Normally, a system shall contain one UNIVAC III FASTRAND synchronizer control unit. It is always
attached to General Purpose Channel One. FASTRAND functions are executed serially in the order in
which they are received. One order, the positioning of the read/write bar, once initiated for one of the
drum units, can be executed concurrently with the execution of an instruction affecting another drum.

UP-3853

UNIVAC 11l UTMOST 17-F

SECTION: PAGE:

All words transferred between the central processor and the synchronizer are checked for Mod-3 errors.
Data read from the drum to the synchronizer in normal mode receives a Mod-3 check. The transfer of
data in the compressed mode is not Mod-3 checked between the drum and the synchronizer, but Mod-3
parity is formed by the synchronizer before data is transferred to memory. A Read Check instruction
can be employed following write instructions when it is desired to insure the accuracy of recording.

Data is not transferred to the central processor during read checking.

Drum Unit Characteristics

The drum units of the FASTRAND subsystem are each housed in their own cabinet. Each drum
cabinet contains two 24 inch diameter cylinders mounted one above the other. The 64 read/
write heads associated with the drum are attached to a metal bar so that 32 heads service each
cylinder. The bar moves laterally to bring the heads over one of 96 possible positions. The
heads are fixed to the bar and are simultaneously shifted to the same relative track positions
within their 96 track range.

Each track is subdivided into 64 addressable sectors. The capacity of each of these sectors
is 37 or 42 UNIVAC IIl words, depending upon the read/write mode specified. The rotation of
the drum cylinders is 880 RPM bringing each sector under the read/write head once every

70 ms. The average access (latency) time for any sector of a track over which a head has been
positioned is 35 ms.

Information is written on the surface of the drum at a density of 1000 PPI. Each sector con-
tains 1170 bit positions; some of which are used for sentinels, hardware control, and parity
check patterns. Data is transferred between the central processor and the drum at the rate of
1.09 ms. per sector. Up to 128 contiguous sectors may be read or written in a single operation;
up to 64 sectors may be read following a successful search comparison.

The full address of each sector consisting of the drum unit, track, head, and sector is recorded
within the sector itself. The address is placed in the sectors prior to delivery of the sub-
system to the customer. This area of the sector is not accessible to the user programmer. The
instruction address is checked with this pre-recorded address when a read/write instruction is
executed to verify that the proper drum address is being accessed.

17-F 4 UNIVAC Il UTMOST UP-3853

SECTION: PAGE:

b. Drum Storage

Figure 17-F-2 shows how data is recorded in specific locations around the drum surface. Each track
is divided into 64 sectors. Each sector holds up to 168 alphanumeric characters, or 252 deci-

mal characters in addition to control and parity check information. Data records may be extended
over many sectors, or packed within a single sector.

The sector addresses start with zero and run through 63 for any given track. Reading or writing
can be performed over a contiguous drum area ranging from one to 128 sectors. When sector 63
is encountered during the execution of a FASTRAND function, the head address is automatically
incremented. As a result, sector zero of the track at the next higher head address is processed
following sector 63. A continuous read/write instruction should not attempt to process sectors
beyond the 64th head. If an instruction attempts to read beyond sector 63 of head 63, the opera-
tion will be terminated after sector 63 has been processed and a ‘‘head overflow’’ error will be
signalled. A single read/write function must be limited to the range of one head bar setting; it
cannot exceed 128 sectors.

Recording format relative to the bit
positions within UNIVAC HI words.

Data :s recorded i it senal format

i bl44 tracks around the surface / \ -
of the drum. Each track s made up

of €1 sectors. Either 42 or 37 S)
UNIVAC 111 words are tecoided i
each seclor, In th» compressed
mode, the synchionizer reduces the
27 bt words o 29 bits for wreting
them an the dinm and converts the

C This 1s the physical appearance
of the two cyhnders mounted in
the drum cabinet.

6144 TRACKS 24 bit drum words to 27 bits before FiRsT *
PER DRUM N they ate transferred to memory. . 0
@ FIRST E
M WORD L

: N N
| . :) NORMAL™
(> v ‘wooE

—C

This is the program concept with
the two cylinders considered as
asingle gium,

SECOND

WORD
COMPRESSED
SECOND
WORD MODE
NORMAL
MODE

AARRERIIEIARSARRERSNNINRASSAASIRTIRIRERIRINARAAIARRENTRRARRIAANRN]

Each read wnte head arces
tracks. ! the head hai 5

toned over track 4b, track 46 15 This pattern is repeated for
under each of the 61 heads. . the ihird and subsequent words,

head 6446

NORMAL 37 WDS.

64 COMPRESSE(D 42 WD5.

46's

4096 (64x64) sectors. are accessible
at each head bar seifing.

Figure 17-F-2. FASTRAND Data Storage Concept

UP-3853

UNIVAC 11l UTMOST E |

SECTION:

File Organization

The concurrent processing ability of the UNIVAC III greatly reduces the need for optimizing
file organization. Efficient random access will improve the total elapsed time for a given pro-
gram, however, the time saved will be that involved in functions executed under control of the
FASTRAND synchronizer. If the scheduling of program operation is such that the central
processor can be kept busy processing other files and programs, the central processor time
requirement for execution of the FASTRAND programs will be, essentially, the same regardless
of file organization.

When it is desired to organize a FASTRAND application to minimize its elapsed running time,
the physical location of the records must be considered. It will be helpful to regard each of

the drum units as a series of 96 separate drums. The 64 read/write heads are fixed to the
positioning bar which must be set at one of 96 different positions. (See Figure [7-F-2). The in-
formation under each of these heads can be randomly addressed without changing the bar position.

Continuous read/write operations can be performed through the sectors on the tracks serviced
by the head at the next higher address. For example, the head bar might be set to position 47.
All of the data on tracks 47 under each of the 64 read/write heads are available for reading or
writing operations subject only to the latency of rotation. Thus, with this single access move-
ment, 4096 sectors become available. These sectors can then be regarded as constituting an
individual cylinder of information with a capacity of 684,128 alphanumeric characters (See
Figure 17-F-3). The positions to either side of the original setting can be considered as adjacent
cylinders of equal capacity. It can then be seen that an additional 1,368,256 characters can be
accessed by the minimum lateral movement of the head bar.

Recording Modes

Data is recorded on the drum in two modes. The treatment of data differs when transferred
between the central processor and the drum according to the recording mode used.

(1) Normal Mode

The entire 27 bits of each UNIVAC III word are stored on thedrum when data is written in
this mode. The 25 addressable bits and the two Mod-3 check bits are preserved by the
synchronizer, and are transferred intact (See Figure 17-F-4). A total of 37 UNIVAC III words,
plus nine additional bits are stored for each sector written in normal mode. The nine
addition bits are in the form of:

000scc000

where: s is the sign of the 37th word
cc are the two Mod-3 check bits of the 37th word
000...000 are binary zeros.

In multiple sector operations, the 38th word in memory corresponds to the first word of the
next sector, etc.

Note: Data written in the normal mode can be read in the compressed mode without error
indication. Data written in the compressed mode should not be read in the normal
mode because of the likelihood of Mod-3 error indication.

SECTION:

17-F

6 I | UNIVAC Il UTMOST UP-3853

PAGE:

(2) Compressed Mode

This mode provides for the transferring of bit positions 1-24 of each UNIVAC III word
between the central processor and the drum. The sign and Mod-3 check bit positions are
deleted by the synchronizer before the information is recorded. When data is read back to
central processor in this mode, a zero (plus) sign and appropriate Mod-3 check bits (See
Figure 17-F-4) are manufactured by the synchronizer, and are jammed into each word after

24 bits have been read. Recording in this mode permits 42 UNIVAC III words to be stored per
sector. See Figure 17-F-3 for the relationship of UNIVAC III content to data stored on the
drum. In multiple sector operations, the 43rd word corresponds to the first word of the next
sector, etc.

e. FASTRAND Functions

All functions of the FASTRAND are executed under program control. The Executive Routine
executes a LOAD CHANNEL (LC) instruction which sets the standby indicator and furnishes
the address of the function specification to be executed. In most cases the FASTRAND
function specifications must be supplemented by control words. The address of the first
control word is furnished by the function specification. The memory area for use in conjunc-
tion with any particular function must follow directly behind the associated control words

(in successively higher addresses).

(1) Control Words

One of a possible set of control words, the Drum Address control word, furnishes the
FASTRAND synchronizer with the drum area at which the function is to start. Another con-
trol word furnishes the range over which the instruction is to be executed. This Drum Range
control word appears in one of two forms, depending upon the specific function with which

it is associated. A third control word furnishes the search read instructions with the key for
which they are to search. Specific control word requirements will be found in the detailed
description of each function specification.

(2) Control Word Formats

The Drum Address control word may be fabricated for use in a FASTRAND function request

by the source coding. An alternate approach is to establish a table containing a separate
control word for each sector at which a FASTRAND function is to start. If the table technique
is to be used, the programmer must provide the table. The control word must be present at

the address specified by bit positions 1-15 of the associated function specification before
the initiate input/output function instruction is executed (usually by the Executive Routine).

(a) Drum Address Control Word

The Drum Address control word has the following format:

FIELD Must be} Drum Unit o q s Add
NAME Zero Address Head Bar Position Head Address ector ress
BIT

POSITION | 25 24 |23 21 |20 13 |12 716 1

17-F { 7
SECTION: PAGE:

0p-3853 UNIVAC Il UTMOST ‘

Control Word Content:

BITS

1-6 Contain a binary number in the range of 000000 through 111111 indicating
one of 64 sectors with which the specified function is to start; the lowest
order sector is zero.

7-12 Contain a binary number in the range of 000000 through 111111 indicating
the address of one of the 64 heads. This field specifies the track contain-
ing the sector with which the function is to start; the lowest order head is
zero.

13.20 Contain a binary number in the range of 00000000 through 01011111 indicating
one of the 96 track positions to which the head bar must be set to access
the sector with which the function is to start; the lowest order track posi-
tion is zero.

21-23 Contain a binary number in the range of 000 to 111 indicating one of the
eight possible drum units which contains the sector with which the function
is to start; the lowest order drum unit address is zero.

24-25 Must contain zeros.

(b) Drum Range Control Word

A Drum Range control word, when required, must appear in memory immediately follow-
ing the Drum Address control word. This word must be fabricated by the worker pro-
gram. The Drum Range control word must be delivered to the required location before
the associated LC instruction is executed. The Drum Range control word has two
formats.

For other than search functions the following format is used:

FIELP Must be Zeros Sector Count
NAME
BIT
POSITION |25 8|7 1
Control Word Content:
BITS
1-7 Contain a binary number in the range of 0000000 through 1111111 indicating

the number of successive sectors over which the function is to be performed.
The sector processed after 63 will be sector 00 on the track under the read/
write head at the next higher address. If the original number is zero, or if
an attempt is made to process beyond sector 63 of head 63, an error signal
will be given and processing of the function which caused the signal will

be discontinued. When 0000000 appears, the function will be performed over
128 sectors; 0000001 indicates a single sector.

8-25 Must be zero.

. | 1 UNIVAC Il UTMOST UP-3853

17-F
SECTION: PAGE:

For Search 1 and Search 2 instructions, the Drum Range control word will have the fol-
lowing format:

FIELD Must be Zero Head Count Sector Count

NAME

BIT

POSITION 25 11 |10 716 1

(3)

Control Word Content:

BITS

1-6 Contain a binary number in the range of 000000 through 111111 indicating
the number of sectors to be processed after the key has been located. The
number 000000 will be interpreted to mean that 64 sectors are to be proc-
essed. The sector processed after 63 will be sector 00 on the track under
the head at the next higher address. If an attempt is made to process be-
yond sector 63 of head 63, an error signal will be given, and processing of
of the function which caused the signal will be discontinued.

7-10 Contain a binary number in the range of 0000 through 1111 indicating the
number of tracks over which the search is to be made. Zeros in this field
will be interpreted as 16 heads; 0001 indicates a single head.

11-25 Must contain zeros.

(¢c) Drum Search Control Word

A Drum Search control word, when required, must appear in memory immediately fol-
lowing the associated Drum Range control word. This word must be an exact replica of
the word for which the search is to be made. If the data is being searched in compressed
mode, bits 1-24 of the Drum Search control word will be used; if the data is being searched
in normal mode, bits 1-25 will be used.

Positioning the Head Bar

The positioning of the head bar can be omitted from an instruction if it is known that the

bar is already in position. Use of this technique will serve to reduce access time by five ms.
One programming technique which may be utilized when processing a FASTRAND file is to let
the “¥ASTRAND synchronizer determine when head bar positioning is required. Request for
I'.S8 Y'RAND functions can be made without specifying head bar positioning on the assumption
that it will not be required in the usual case. When the synchronizer attempts to execute the
requested function, and cannot find the specified address on the track under the designated
head, a drum address error is signalled. The Executive Routine will automatically resubmit
the request with head bar positioning specified.

UP-3853

UNIVAC Il UTMOST

17-F

SECTION: PAGE:

(4)

()

Writing on the Drum

Four write instructions are available for recording data on a FASTRAND drum when a write
instruction is executed; information stored in a number of consecutive memory locations can
be written on the drum in 37 or 42 word increments depending upon the choice of recording
mode. Up to 128 increments can be written in adjacent drum storage areas during the ex-
ecution of a single instruction.

The drum write instructions (function specifications) must be used in combination with
Drum Address and Drum Range control words. The memory area from which the information
is written immediately follows the control words. A write function specification contains
the m’ (15 bit)* address of the Drum Address control word which, in turn, indicates the area
on the drum at which recording is to start. The Drum Range control word specifies the
number of drum sectors to be written during this operation. All writing functions are per-
formed after the heads have been positioned over the designated track position, and the
appropriate sector has been encountered by the designated head.

Reading from the Drum

Eighteen different instructions are available for reading data recorded on FASTRAND drums.
These instructions fall into several categories, each of which are discussed below. All
reading functions are performed after the heads have been positioned over the designated
track, and after the appropriate sector has been encountered by the specified head.

(a) Reading to Memory

Four instructions are available for reading data from a drum to memory. When a read
instruction is executed, the information stored in the specified drum address (sector,
track, position, and unit) is transferred to memory under control of the synchronizer.
The data is read from the drum serially in either 37 or 42 word increments depending
upon the reading mode specified. Up to 128 increments (sectors) can be read from the
drum into contiguous memory words. During a continuous read, the information is
transferred to memory in ascending order from consecutively higher numbered sectors
until sector 63; data in sector zero of the track under the next higher address head
follows sector 63 in memory. (No additional time is requited for head switching).

The Drum Read instructions (function specifications) must be used in combination with
Drum Address and Drum Range control words. The memory area directly following these
control words will be used as the read input area by the associated function. The Read
Function specification word contains the address of the Drum Address control word.
The Drum Address control word indicates the area of the drum from which the reading is
to start. The Drum Range control word must be in the next higher order memory location
from the Drum Address control word; it specifies the number of drum sectors to be read
to memory.

*m' in this case represents a 15-bit address; the address furnished by a function specification is not
indexed.

SECTION:

17-F

10 ’ ‘ UNIVAC Il UTMOST UP-3853

PAGE:

(b) Read Check

Four instructions are available for verification of data after it has been written on a
drum. This operation does not result in the trensfer of data to the central processor. The
normal mode Read Check instructions perform a Mod-3 check (See Figure 17-F-4) of data
appearing on the drum. With the exception of transferring data to memory, Read Check
instructions are executed in the same fashion as that described for the Read to memory
instructions. The sequence of reading, the drum range, and control word requirements
are the same. The same recording mode should be used for Read Check as was used

for writing the data.

(c) Search Reading

There are eight Search Read instructions for use in reading data from the drum when it
is not convenient to furnish the specific location of the data. An additional control
word (the Search Key control word) provides the FASTRAND synchronizer with a one
word key. The synchronizer searches through from 1 to 16 tracks for the key word and
treads only the information following that word to the central processor.

The Search instructions (function specifications) must be used in combination with Drum
Address and Drum Range control words. The Search Key control word must immediately
follow the Drum Range control word in memory, and it in turn is followed by the input
area into which the drum datais read (See Figure 17-F-3).

Two types of Search instructions are available depending upon the system used for as-
signment of keys and item layouts. The search can be limited to only the first word of
each sector or the data content of entire sectors can be searched. In either case, the
key word is not actually transferred to memory, but the transfer of data starts with the
word immediately following it. The number of sectors to be read after the key is located
is designated by the Drum Range contro! word.

(d) Contingency Read

Two Contingency Read instructions are available for the recovery of information from
the drum under extenuating circumstances. These instructions can be used to force
reading of information to memory after a persistent error condition has blocked the
transfer of data during one of the usual read instructions. These contingency read in-
structions have been provided to ensure against even the remote possibility of losing
data from a FASTRAND file.

(6) Store Status Word and Terminal Drum Address

This instruction has been provided to furnish the programmer with full information con-
cerning the transfer of information between the drum and the central processor. The
FASTRAND synchronizer can be instructed to store two words in memory for programmed
analysis. One of these words (called the status word) supplements the information
provided by the program-testable indicators. It provides the means for determining the
exact nature of any abnormal condition causing the unsuccessful completion indicator

to be set (See Subsection 17-F-1h).

UP-3853 UNIVAC Il UTIVIOST 17-F

SECTION: PAGE:
Dow Lt D 2l w3 w39 | w0 | wa1 | w2 | w43] a4 | omas
| | | i I i
READ DA DR pATA | DATA (i DATA | \exq | | ; | |
NORMAL CONTROL [CONTROL| WORD | WORD { 'y wORD [NEF o | ; i ! !
WORD WORD 1 ‘ KL | , ; ! !
i | | | | | | | i | |
i | i i | | | | i | !
READ DA DR paATA | DATA J!{ DATA | DATA DATA DATA DATA DATA NEXT
COMPRESSED CONTROL | CONTROL | WORD | WORD (;f WORD | WORD WORD WORD WORD woro | (NEXCL
WORD WORD 1 2 37 38 39 10 ! 2 SEC
v i i
’ | r | | i | : | ! |
| I I I
DA DR DATA DATA DATA | i ‘ ; |
N E CONTROL | CONTROL | WORD | WORD \|§ WORD L : j ‘ ‘
WORD WORD 1 2 AL : | | : ‘ ;
' | i ' i | ' ! |
! ! I i 1 | i i . |
WRITE DA DR DATA DATA DATA | DATA DATA DATA DATA | DATA NEXT
COMPRESSED CONTROL | CONTROL | WORD WORD WORD | WORD WORD WORD woro + worD | JMEET
M WORD WORD 1 2 37 38 39 i) iR :
' 1 | | | ; il ' | !
i 1 i t I] H | |
T { 1 i ! | |
DA DR | DATA DATA DATA ‘ i | | |
READ CHECK CONTROL CONTROL| WORD | WORD §|{ WORD | (MNEXT ! ! i ! !
NORMA WORD | WORD | 1 2 37 | | ! | ‘
| | | | | | i i | 1 |
|
DA DR DATA DATA ({ DATA | DATA DATA DATA DATA DATA
R EnDREsscr |conTROL [cONTROL | WORD | WORD WORD | WORD | WORD | woRD | worD | worD | (NMXT
WORD WORD 1 2 Yo 38 39 40 a1 a2 ‘
! | | | | | | | | ! i
- : | 1 i ' |
Ter w DA DR | DS DATA ({ DATA x | i | |
SEARGH NoEvaL |CONTROL |conTROL ‘conTroL | worD). worD | (MNEXT ! ! ! !
WORD WORD | WORD | "2 L - | | | |
| | | f | { l | | ? |
lst WORD DA DR DS 0aTA |/ [DATA | DATA DATA DATA DATA DATA NEXT
SEARCH COMPRESSED |CONTROL [CONTROL |CONTROL | WORD /) WORD | WORD WORD WORD WORD WoRD | (FCTor
WORD WORD WORD *2 Y 38 39 30 a 2 ~CTOR
! i ! ! ! | | | | i |
I | b ' 1 | | i | 1
SEARCH AND DA DR DS DATA } DATA - Only the words follolwmg the key word are re?d to memory‘
REARCH D |CONTROL |CONTROL | CONTROL| WORD {|) WORD | NEXT !) ! ‘ ;
MA WORD WORD WORD | "2 _37-n_|SECTOR | i ‘ !
| | ! | | ! ! !
) \ | i |
DA DR DS DATA (I DATA 1 T J T)
REA?SACROCMHPQEESED CONTROL |CONTROL | CONTROL | WORD "} WORD Only the words following the key word are read to memory SSSTXOTR
WORD WORD WORD | * 2 N 37-n 38-n 39-n | 40-n -0 | 42en -
' ! ! i l | \ | | !
. ! : | ! | ! | !
STORE ADDRESS | STATus |TERMINAL ! ! | | ; i
AND STATUS WORD i : | i . !
ADDRESS , ‘ | | | | : |
' i | i |
i | | | I | | | {
1
DA DATA DATA DATA DATA DATA DATA DATA DATA | PARITY
CONTINGENCY controL | QUMY | worp | worD WORD WORD WORD WORD WORD WORD | WORD
WORD I 1 2 37 38 39 40 al 2 | s
| | | | | | | [i |
I | | | I I i | i [
DA i i | | ‘ | | | Special
POSITION CONTROL ! | | ! | | | panity
HEAD BAR WORD | | ! ! | character
‘ | | | l i o word
‘ | ‘ :
NO INO AREA i | | | ! l | \
OPERATION INEEDED | ‘ | | | | | ,
! | | I | | i
i “ i | : : 1 : ;
DA | '
TEST DRUM CONTROL ! ! ! i | | ‘ ‘l
ADDRESS WORD ! ; | i 1 ; K :
oo S B 1 m3 | m'+39 : m'+ 40 : m'rdl) med2 w43 m44 1 m'45
4 ’ |

*

Data word one is the kev word which is not read into memory.

Figure 17-F-3. Memory Work Area Requirement for
Execution of FASTRAND Functions

SECTION:

17-F

PAGE:

‘ UNIVAC IIl UTMOST

UP-3853

NORMAL MODE COMPRESSED MODE
BIT POSITIONS BIT POSITIONS
WORD IN RECORDI%G FRAME IN RECORDING WORD
NO. SEQUENCE NUMBER SEQUENCE® NO.
24 23 22 21 20 19 1 24 23 22 21 20 19
18 17 16 15 14 13 2 18 17 16 15 14 13 1
1 12 11 10 9 8 7 3 12 11 10 9 8 7
6 5 4 3 2 1 4 6 5 4 3 2 1
25 26 27125 26 27 5 24 23 22 21 20 19
24 23 22 21 20 19 6 18 17 16 15 14 13
2
2 18 17 16 15 14 13 7 12 11 10 9 8 7
12 11 10 9 8 7 8 6 5 4 3 2 1
6 5 4 3 2 1 9 24 27 22 21 20 19
3
/\AJ 24 23 22 21 20 19 10 18 17 16 15 14 13
y
162
e N TN e e e — e — I R N T T
24 23 22 21 20 19 163 12 11 10 9 8 7 41
18 17 16 15 14 13 164 6 5 4 3 2 1
37 12 11 10 9 8 7 165 20 23 22 21 20 19 42
6 5 4 3 2 1 166 18 17 16 15 14 13
2
25 26 27 0 O 0 167 12 11 10 9 8 7
EXTRA (WORD 37) __421___
FRAME 25 26 27 0 O 0 168 6 5 4 3 2 1
SHIFT [© 3 SHIFT
PATTERN 0 0 1 1 0 0 169 0 0 1 1 0 07} PATTERN
PARITY [© @ PARITY
CK.CHRAR. | P P P P P P 170 P P P P P P| ck.cCHAR.

@ The data is

@
©]

Six binary b

NOTE: The bit positions of the various woras are shown in the column above the parity check

charac

read from the drum sectors in the same sequence in which it was recorded.

Binary zeros.

its.

ter position with which they are associated.

Figure 17-F-4. Derivation of Parity Check Character Positions.

UP-3853

17-F

SECTION: PAGE:

UNIVAC IIl UTMOST

13

f.

The other word brought into memory by this instruction furnishes the Terminal Drum
Address. It indicates the last drum sector accessed by the most recently@executed drum
function. Both words are explained in detail in Subsection 17-F-1f(2)-(v). The Executive
Routine executes this instruction when it detects an abnormal condition and makes the
information available to the operating program via a communication packet.

(7) No Operation

The NO OPERATION instruction can be transferred to the FASTRAND synchronizer,
and if the transfer is successful, the successful completion indicator will be set. This
instruction can be used for drum functions in the same capacity as the NO OP instruc-
tion in central processor repertoire. It can be used as a program switch, or to reserve
space for another function which is to be substituted for it during processing.

(8) Drum Test

The DRUM TEST instruction is similar to the NO OPERATION instruction in that its
execution does not result in the transfer of data between the drum and central processor.
It is used to verify that a specific drum address is available to the program before an
instruction to transfer data is given.

(9) Operation of the Synchronizer

The FASTRAND synchronizer/control unit, like other synchronizers used for input/output
media to the UNIVAC III Data Processing System, makes use of the input/output interrupt
feature. When the FASTRAND subsystem is available to perform a function, its synchro-
nizer accesses the memory word reserved for use by its particular channel (channel 1). The
function specification is transferred to the synchronizer where it is checked for Mod-3 parity
and decoded for execution.

If the function specification is one that is to be supplemented by control words, these words
are then transferred to the synchronizer. The control words are also checked for Mod-3
parity, and if found to be correct, the execution of the function will begin. When the execu-
tion of the function has been successfully initiated, the standby interlock indicator will be
reset, clearing the way for the execution of a new LC instruction. If a search function has
been requested, the Drum Search control word is read into the synchronizer from memory
before the standby interlock indicator is reset.

The initiated function will continue under the control of the synchronizer until terminated
by either a successful completion signal, or an error indication. An error signal terminates
the transfer of information between the synchronizer and the central processor.

When bit position 16 of the function specification contains a one, the program testable in-
dicator (bit 2) is set when a function has been completed successfully. If an error signal
has been encountered, indicator (bit 7) is set, and the setting of the successful completion
indicator (bit 2) is inhibited. The synchronizer manufactures a special status word which
particularizes error conditions.

Drum Instruction Format

The FASTRAND function specifications are submitted to the Executive Routine in combination
with other words to form a function request packet. The instruction words discussed below are
the specific formats that must be present for execution by the synchronizer at object time. The
source coding to produce the object code and the associated instruction packets are discussed
in Subsection 17-F-2.

®This address is automatically incremented by one when equality is reached with a given sector’s
‘“dog tag address’’ (See Table 17-F-3). Thus, this word will usually contain a value equal to the
address of the sector following the last sector processed.

17-F J 14 l
SECTION: PAGE:

} UNIVAC Il UTMOST Up-3853

(1) Load Channel Instruction (LC)

The program controls the execution of FASTRAND drum operations through an LC instruction
supplemented by an input/output function specification and one or more control words. The
LC instruction accesses the FASTRAND synchronizer and specifies the location of a
specific input/output function specification which is to be executed.

lLOAD CHANNEL] OP Codes: Alphanumeric — LC
Octal — 70
FUNCTION: Transfer the function specification from the indexed memory location

to the fixed standby location in memory associated with channel one
(designated in bit positions 11-14); set the respective standby
location indicator.

OPERATION (m')—P Channel standby location for channel 1; set channel standby

FLOW: interlock indicator.
EXECUTION 3 cycles
PERIOD:
INSTRUCTION
WORD:
The LC object code word has the following format:
FIELD l@ INDEX OPERATION CHANNEL ADDRESS (Unindexed)
NAME Fs| REGISTER CODE
BIT
POSITION |25 |24 21 120 15 14 11 | 10 1
SPECIFICATION:

Indirect Address/Field Select — Indirect addressing is allowed.

Index Register — Four bit binary value designating index register
whose contents are to be used during the
indexing cycle.

Operation Code — 70 (Octal)

Channel — 0101 (binary) for the FASTRAND Subsystem

Address — Ten-bit value to furnish the unindexed address
of the associated function specification.

NOTES: m The LC instruction places the FASTRAND function specification in the

standby memory location associated with channel one. The program testable
standby interlock indicator associated with channel 1 is set, thereby
alterting the FASTRAND synchronizer that a function specification is
available for execution.

When the channel is free to perform a drum operation, the function
specification is transferred to the synchronizer for execution. The interlock
indicator will not be reset to zero until the necessary number of control
words have also been transferred to the synchronizer.

UP-3853

UNIVAC Il UTMOST

SECTION:

17-F

PAGE:

15

(2) Function Specifications

m The binary value of the channel designation is the address of the standby

location associated with the channel; it is 0101 for channel 1.

m Indirect addressing may be used; field selection may not.

The function specifications which are loaded into the standby locations by the LC in-
struction are explained below. Table 17-F-2 is a compendium of the function specifications
applicable to the subsystem when connected to @ UNIVAC III Computer. For brevity of
presentation, the drum instructions are described in pairs where the operation flow,

instruction format, and notes apply equally to both instructions. The instruction names, their

function codes and function descriptions are shown individually followed by the common

information.

Deviation from the word patterns indicated is not permitted. If the FASTRAND synchronizer

receives a function specification with any but the prescribed patterns while the operating
controls are not properly set, a portion of the data stored on the drum could be destroyed.

- e - - }
HEAD T | { " | MAXIMUM i
| FUNCTION | MODE | CONTROL 7 or | 2CTAL SALT XPAK | UTMOST FORM
BAR ‘ WORDS CODE ; X
| RANGE | |
t i T |
POS. READ NORM. | DA | 07 : L2 ous , FPR, AB0.OF DA | 005, i, ADD.OF DA, |
!
| 1 |
FIXED READ NORM. ‘ DA | DR 12k Coom , FR,AGD.OF DA, ¢ 001, i, ADD.OF DA, ‘
i | ' } !
POS. | READ COMP. | DA ’ Dy | 126 0 10w | 4, FPR, ARD.OF DA, J 105, i, ADD. OF DA, |
! ! ; |
FIXED | READ COMP. . DA ' DR 126 101 | 4, FR, ADD.OF DA, | 101,1, ADD.OF DA, |
POS. WRITE | NORM. DA ' DR e oue CFPW, ADD.OF DA, | 006, 1, ADD.OF DA,
FIXED | WRITE | NORM.. DA OF s | ouz L FW, ADD.OF DA, | 002, i, ADD.OF DA,
: ! |
POS. WRITE L COMP. | DA L O 125 1 196 4, FPW, ALD OF DA, | 108, i, ADD. OF DA,
H i
FIXED | WRITE comp. ! pa | bR L o1w | 4 FW,AUD.OF DA, | 102, 1, ADD OF DA,
POS. RD. CHK. | NORM.| DA | DRI | [FER T . FPRC,ADD.OF DA,i 007, i, ADD. OF DA, |
co ! I
. L i !
FIXED | RD.CHK.| NORM.| DA | DRI - | 2% o0z _FRC, ADD.OF DA, 003, 1, ADD. OF DA,
POS. RD. CHK. | COMP.| DA | DK | 125 107 | 4,FPRC,ADD OF DA | 107, i, ADD.OF DA,
i i i i
FIXED | RD.GHK. | COMP.| DA| DR’ | 125 | 10% | % FRC, ADD.OF DA.| 103, i, ADD. OF DA,
POS. 1st. WD.SER.| NORM.| DA ! DR DS ‘ 51024 ; I _FPS1,ADD.OF DA, 015, 1, ADD. OF DA,
R 6 i
A ‘ S 124 1 ; |
FIXED |lst. wD.SER. NORM.| DA DR DS | 20 ou _FSI, ADD.OF DA, ! Oll. i, ADD OF DA,
! . R H i
POS. | 1st.wD.SER. COMP.| DA DR DS | ° 192 yio | 4 epsi, apD. OF DA, 115, 1, ADD.CF DA,
L PR b : '
! . i
FIXED |1st. WD.SERj COMP,. DA DR ps @ > 02 111 4. FS1, ADD.OF oA, | 111, i, ADD.CF DA, ‘
i R OBS
) H
! ! !
POS. |SER.& RD. | NORM | DA | or ps = > 102 0l (FPS2,AD0.0F DA, 016, i, ADD.OF DA, |
i R - hd H
| |
| . . o i I
FIXED |SER.&RD. | NORM.| DA | DR DS 5 102 012 JFS2, ADD.OF DA, 012, 1, ADD.OF DA, |
i R 63 i ‘
! POS. [SER.&RD. | COMP., DA DR|Ds | = 1923 16 4,EPS2,ADD. OF DA 116, 1, ADR OF DA, |
f | R = 54 |
i ! | .
| FIXED [SER.8RD. | COMP.| DA DRI D5 | 5 * 1924 112 | 4,FS2, ADC.OF DA, ‘ 112, 1, ADD.OF DA,
| i | R 63 i
! —
| pos. HD. BAR - [- 004 FPHB,ADD.OF DA,[004, i, ADD.OF DA, ,
i | ! i
- STAT.& A - o - iooug STSW,WK.AREA ADD, | 014, i WK AREA ADD, |
POS. CONT.RD.| COMP. DA i 1 17 | 4 FPCR, ADD. OF DA, 017, 1, ADD,OF DA, ‘
H ! §
FIXED | CONT.RD.| COMP.| DA| ! 013 | 4, FCR, ADD. OF DA, | 013, 1, ADD.OF DA,
| :
~ NO OP _ - - e CFNOP I ooo, 4, , \
: |
L - 1 TEST ADD - | oa: 20¢ - J 200, i, ADD.OF DA, |
|
[T R

Table 17-F-2.

FASTRAND Function Specifications

17-F 16 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
(1)‘ POSITION "IiEAD.NORMALl OP Codes: Alphanumeric — FPR
Octal — 005
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the
designated head,; read that sector to memory starting atm + 2 of the
address furnished in this instruction word. Continue reading through
successively higher address sectors until the number of sectors
specified by the Drum Range control word have been read.
(b) | FIXED READ-NORMAL& OP Codes: Alphanumeric — FR
Octal — 001
FUNCTION: Locate the specified sector on the track under the designated head;
read that sector to memory starting at m’ + 2 of the address furnished
in this instruction word. Continue reading through successively higher
address sectors for the number of sectors specified by the Drum Range
control word.
OPERATION Read to memory the specified number of sectors from the drum.
FLOW: [S...Sn]=>=m" + 2..m" + 2+ 37n
INSTRUCTION
WORD:
FIEL
D FUNCTION CODE INT. DA CONTROL WORD ADDRESS
NAME
WORD
CONTENT 0 0 0 0 0 0 1 0 1] X X X X X X X X X X X X X X X X
BIT
POSITION | 25 17116 | 15 1
Instruction Word Content:
BITS
1-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically
upon completion of the function; otherwise it is zero.
17-25 Must be one of the octal values 001 or 005.

NOTES: m The address of the sector from which reading is to start is specified by the
Drum Address (DA) control word. The address of the DA control word is
given in bit positions 1-15 of this instruction word.

17-F

UP-3853 UNIVAC Il UTMOST ’

SECTION: PAGE:

m The number of sectors to be read during the execution of this function is
specified by the Drum Range control word. It must be present at m' o+ 1,
relative to the address furnished in bit positions 1-15 of this instruction
word.

m If sector 63 is reached on any track before the full number of sectors have
been read, the operation will continue through the track under the head at
the next higher address. The first sector processed on that track will be
sector zero.

a An attempt to read beyond sector 63 of head 63 will result in an interrupt
signal and the read operation will be terminated.

s If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

m The program testable indicator (bit 7) will be set if reading is terminated
due to an error or if the read/write heads are not properly positioned. If an
error is signaled, the status word will be made available in the synchronizer.
Reading will not start if the heads are not properly positioned.

m 37 UNIVAC III words are transferred from the drum for each sector read.
Information is read in the form of serially recorded bits along the track, with
each 27 hits resulting in a word in memory. In multiple sector operation, the
first word of the sector at the next higher address results in the 38th word
of data in memory, etc.

m A Mod-3 parity check is performed on data transferred between the drum and
the synchronizer.

17-F 18 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
(c) ‘ POSITION READ-COMPRESSE£1 OP Codes: Alphanumeric — 4FPR
Octal — 105
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the designated
head; read that sector to memory starting at m’ + 2 of the address
furnished in this instruction word. Continue reading through successively
higher address sectors for the number of sectors specified by the Drum
Range control word.
(d)| FIXED READ-COMPRESSED OP Codes: Alphanumeric — 4FR
Octal — 101
FUNCTION: Locate the specified sector on the track under the designated head;
read that sector to memory starting at m’ + 2 of the address furnished
in this instruction word. Continue reading through successively higher
address sectors for the number of sectors specified by the Drum Range
control word.
OPERATION Read to memory the specified number of sectors from the drum
FLOW: [S...Sn]=m" + 2..m" + 2 4 42n
INSTRUCTION
WORD:
FIELD
FUNCTION CODE INT. DA CONTROL WORD ADDRESS
NAME
WORD
CONTENT 0 0 1 0 0 0 0 0 1 X X X X X X X X X X X X X X X X
BIT
POSITION 25 17 116 | 15 1

Instruction Word Content:

BITS
115 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically
upon completion of the function; otherwise it is zero.
17-25 Must be one of the octal values 101 or 105,

NOTES: m The address of thesector from which reading is to start is specified by the
Drum Address (DA) control word. The address of the DA control word is
given in bit positions 1-15 of this instruction word.

UP-3853 UNIVAC IIl UTMOST]

SECTION:; l PAGE:

m The number of sectors to be read during the execution of this function is
specified by the Drum Range control word. It must be present atm’ + 1,
relative to the address furnished by this instruction word.

m If sector 63 is reached on any track beforé the full number of sectors have
been read, the operation will continue through the track under the head at
the next higher address. The first sector processed on that track will be
sector zero. An attempt to read beyond sector 63 of head 63 will result in
an error signal and the read operation will be terminated.

m If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

m The program testable indicator (bit 7) will be set if reading is terminated
due to an error or if the read/write heads are not properly positioned. If an
error is signaled, the status word will be made available in the synchronizer.
Reading will not start if the heads are not properly positioned.

@ 42 UNIVAC III words are transferred from the drum for each sector read.
Information is read in the form of serially recorded bits along the track, with
each 24 bits resulting in the low order bits of the word in memory. Bit
positions 25-27 are filled in by the synchronizer. A zero bit is placed in
position 25; the proper Mod-3 check bits are placed in bit positions 26-27.
In multiple sector operation, the first word of the sector at the next higher
address results in the 43rd word of data in memory, etc.

17-F 20 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
(e)| POSITION WRITE-NORMAL OP Codes: Alphanumeric — FPW
Octal — 006
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the
designated head. Write on the located drum sector, the contents of
memory starting at address m’ + 2 relative to that specified in bits
1-15 of this instruction. Write continuously from successively higher
sector addresses over the number of sectors specified by the Drum
Range control word.
0 [FIXED WRITE-NORMAL OP Codes: Alphanumeric — FW
Octal — 002
FUNCTION: Locate the specified sector on the track under the designated head.
Write on the located drum sector, the contents of memory starting at
address m' + 2 relative to that specified in bits 1-15 of this instruction.
Write continuously from successively higher memory locations to
successively higher sector addresses over the number of sectors
specified by the Drum Range control word.
OPERATION Write from memory, through the specified number of sectors
FLOW: [m'+2...m"+2:137n]|==S...Sn
INSTRUCTION
WORD:
FIELD
NAME FUNCTION CODE INT. DA CONTROL WORD ADDRESS
WORD
X X X X X X X X
CONTENT 0 0 0 ©0 0 0 0 1 0 X 1 X X X X X X X
BIT
POSITION | 25 17116 | 15 !

Instruction Word Content:

BITS
115 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically

upon completion of the function; otherwise it is zero.
17-25 =& Must be one of the octal values 002 or 006.

NOTES: m The address of the sector at which writing is to start is specified by the
associated Drum Address (DA) control word. The address of the DA control
word is given in bit positions 1-15 of this instruction word.

UP-3853

UNIVAC IIl UTMOST l

17-F

SECTION: PAGE:

21

The number of sectors to be written during the execution of this function is
specified by the Drum Range (DR) control word. The DR control word must
be present at m’ + 1 relative to the address furnished by this instruction
word.

If sector 63 is reached on any track before the full number of sectors have
been written, the operation continues through the track under the head at
the next higher address. The first sector processed on that track is sector
zero. An attempt to write beyond sector 63 of head 63 will result in an error
signal and the termination of the operatian.

If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

The program testable indicator (bit 7) will be set if writing is terminated
due to the detection of an error or if the read/write heads are not properly
positioned. Writing will not be started if the heads are not properly
positioned.

If an error is signaled the status word will be made available in the
synchronizer.

37 UNIVAC III words are transferred from memory for each sector written.
Information is recorded serially on the specified track, with each word
resulting in 27 bits on the drum. In multiple sector operations the 38th word
in memory corresponds to the first word of the sector at the next higher
address, etc.

22 ‘ ’ UNIVAC Il UTMOST UP-3853

17-F
SECTION: PAGE:
(g) | POSITION WRITE-COMPRESSED OP Codes: Alphanumeric — 4FPM
Octal — 106
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the designated
head. Write in compressed mode on the located drum sector, the contents
of memory starting at address m' + 2 relative to that specified in bits
1215 of this instruction. Write continuously from successively higher
memory locations to successively higher sector addresses over the
number of sectors specified by the Drum Range control word.
(h) l FIXED WRITE-COMPRESSE?I OP Codes: Alphanumeric — 4FW
Octal — 102
FUNCTION: Locate the specified sector on the track under the designated head.
Write in compressed mode on the located drum sector, the contents of
memory starting at address m' + 2 relative to that specified in bits
1-15 of this instruction. Write continuously from successively higher
memory locations to successively higher sector addresses over the
number of sectors specified by the Drum Range control word.
OPERATION Write from memory, through the specified number of sectors
FLOW: [m+2...m:2i42n] = S...Sn
INSTRUCTION
WORD:
FIELD
NAME FUNCTION CODE INT. DA CONTROL WORD ADDRESS
WORD
X X X X X X X X X X X X X X X X
CONTENT 0 0 1 0 0 0 0 1 0
BIT
POSITION | 25 17|16 | 15 !

Instruction Word Content:

BITS
1-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically
upon completion of the function; otherwise it is zero.
17-25 Must be one of the octal values 102 or 106.

NOTES: m The address of the sector at which writing is to start is specified by the
associated Drum Address (DA) control word. The address of the DA control
word is given in bit positions 1-15 of this instruction word.

UP-3853 UNIVAC Il UTVIOST 17-F 23

SECTION: PAGE:

m The number of sectors to be written during the execution of this function is
specified by the Drum Range (DR) control word. The DR control word must
be present at m’ + 1 relative to the address furnished by this instruction
word.

m If sector 63 is reached on any track before the full number of sectors have
been written, the operation continues through the track under the head at
the next higher address. The first sector processed on that track is sector
zero. An attempt td write beyond sector 63 of head 63 will result in an error
signal and the termination of the operation.

m If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

m The program testable indicator (bit 7) will be set if writing is terminated
due to the detection of an error or if the read/write heads are not properly
positioned. Writing will not start if the heads are not in the proper position.

m If an error is signaled, the status word will be made available in the
synchronizer.

m 42 UNIVAC III words are transferred from memory for each sector written.
Information is recorded serially on the track, with each word resulting in
24 bits on the drum; bit positions 25-27 are not written. In multiple sector
operations the 43rd word in memory corresponds to the first word of the
sector at the next higher address, etc.

17-F 24 (‘ UNIVAC IIl UTMOST UP-3853
SECTION: PAGE:
(i) |POSITION READ CHECK-NORMAL| OP Codes: Alphanumeric — FPRC
Octal - 007
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the
designated head. Read the located sector into the synchronizer for
parity and phase shift check, but do not transfer the data to memory.
Read continuously through the number of sectors specified by the
associated Drum Range control word.
G)| FIXED READ CHECK-NORMALJ OP Codes: Alphanumeric — FRC
Octal — 003
FUNCTION: Locate the specified sectors on the track under the designated head.
Read the located sector into the synchronizer but do not transfer the
data to memory. Read continuously through the number of sectors
specified by the associated Drum Range control word.
OPERATION Read from the drum to the synchronizer through the specified number
FLOW: of sectors [S... Sn|=—*synchronizer
INSTRUCTION
WORD:
FIELD
NAME FUNCTI!ON CODE INT. DA CONTROL WORD ADDRESS
WORD 0 0 0 O 0 0 0 1 1 XX X X X X X X X X X X X X X X
CONTENT
BIT
POSITION | 25 17|16 | 15 1

Instruction Word Content:

BITS
1-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically
upon completion of the function; otherwise it is zero.
17.25 Must be one of the octal values 003 or 007.

NOTES: m The address of the sector at which read checking is to start is specified by
the associated Drum Address control word. The address of this control word
is given in bit positions 1-15 of this instruction word.

UP-3853 UNIVAC IIl UTMOST] } 17

PAGE:

m The number of sectors to be checked during the execution of this function
is specified by the Drum Range (DR) control words. The DR control word
must be present in the m’ + 1 address relative to that furnished in bit
positions 1-15 of this instruction word.

m If sector 63 is reached on any track before the full number of sectors have
been checked, the operation will continue through the track under the head
at the next higher address. The first sector processed on that track is
sector zero. An attempt to check beyond sector 63 of head 63 will result in
an error signal and the termination of the operation.

m If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

m The program testable indicator (bit 7) will be set if writing is terminated
due to the detection of an error or if the read/write heads are not properly
positioned.

m If an error is signaled, the status word will be made available in the
synchronizer.

m Drum information is transferred to the synchronizer where it is checked for
phase modulation, longitudinal and Mod-3 parity. It is not read into memory.

m The memory address register which normally controls the transfer of data
between the synchronizer and the central processor will be incremented
as though data were being transferred.

l ’ UNIVAC 11l UTMOST UP-3853

17-F 26
SECTION: PAGE:
k. fPOSITION READ CHECK.COMPRESSED OP Codes: Alphanumeric — 4FPRC
Octal — 107
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sectors on the track under the
designated head. Read the located sector into the synchronizer in
compressed mode, but do not transfer the data to memory. Read
continuously through the number of sectors specified by the associated
Drum Range control word.
I.{ FIXED READ CHECK-COMPRESSED OP Codes: Alphanumeric — 4FPC
Octal — 103
FUNCTION: Locate the specified sector on the track under the designated head.
Read the located sector into the synchronizer in compressed mode, but
do not transfer the data to memory. Read continuously through the
number of sectors specified by the associated Drum Range control word.
OPERATION Read from drum to the synchronizer through the specified number of
FLOW: sectors [S... Sn|=synchronizer
INSTRUCTION
WORD:
FIELD
NAME FUNCTION CODE INT. DA CONTROL WORD ADDRESS
¥ORD 0 0 1 0 0 0 0 1 1 Xrx X X X X X X X X X X X X X X
CONTENT
BIT
POSITION | 25 17|16 | 15 1

Instruction Word Content:

BITS
i-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program isto be interrupted automatically
upon completion of the function; otherwise it is zero.
17.25 Must be one of the octal values 103 or 107.

NOTES: m The address of the sector at which read checking is to start is specified by
the associated Drum Address control word. The address of this control word
is given in bit positions 1-15 of this instruction word.

17-F

UP.3853 UNIVAC Il UTMOST l

SECTION: PAGE:

a The number of sectors to be checked during the execution of this function is
specified by the Drum Range (DR) control words. The DR control word must
be present in the m’ + 1 address relative to that furnished in bit positions
1-15 of this instruction word.

m If sector 63 is reached on any track before the full number of sectors have
been checked, the operation will continue through the track under the head
at the next higher address. The first sector processed on that track is sector
zero. An attempt to write beyondsector 63 of head 63 will result in an error
signal and the termination of the operation.

u If so specified, successful completion interrupt will occur when the function
is completed without encountering an error signal.

m The program testable indicator (bit 7) will be set if writing is terminated
due to the detection of an error or if the read/write heads are not properly
positioned.

m If an error is signaled, the status word will be made available in the
synchronizer.

® Drum information is transferred to the synchronizer where it is checked for
phase modulation and longitudinal parity. It is not read into memory.

m The memory address register which normally controls the transfer of data
between the synchronizer and the central processor will be incremented as
though data were being transferred.

17-F

SECTION: PAGE:

e j ' UNIVAC IIl UTMOST UP.3853

(m) | POSITION FIRST WORD SEARCH AND READ-NORMAL | OP Codes: Alphanumeric — FPSI1
Octal - 015

F UNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been positioned,
locate the specified sector on the track under the designated head.
Read the first word of each sector into the synchronizer and compare
this word with the Drum Search control word until an equal condition
is detected. Upon finding the key word, read the information from the
second and succeeding words of the sector into the central processor
starting at memory location m + 3 relative to the address specified in
bits 1-15 of this instruction. Read continuously from successively
higher address sectors to successively higher memory locations until
the number of sectors specified by bit positions 1-6 of the Drum Range
control word have been read.

(n) | FIXED FIRST WORD SEARCH AND OP Codes: Alphanumeric — FS]
READ-NORMAL Octal — 011

FUNCTION: Locate the specified sector on the track under the designated head.
Read the first word of each sector into the synchronizer and compare
this word with the Drum Search control word until an equal condition
is detected. Upon finding the key word, read the information from the
second and succeeding words of the sector into the central processor
starting at memory location m' + 3 relative to the address specified in
bits 1-15 of this instruction. Read continuously from successively
higher address sectors to successively higher memory locations until
the number of sectors specified by bit positions 1-6 of the Drum Range
control word have been read.

OPERATION Search the first word of each sector on up to 16 tracks. Read to memory
FLOW: the specified number of sectors upon encountering the specified key.
[S...Snl==m" +3...m" + 39 + 37 (n—-1)

INSTRUCTION
WORD:

FIELD
NAME

WORD
CONTENT

BIT
POSITION | 25 17 116 | 15 1

FUNCTION CODE INT. DA CONTROL WORD ADDRESS

Instruction Word Content:

BITS

1-15 Contain a binary value giving the location of the associated Drum Address
control word.

0P-3853 UNIVAC IIl UTMOST I

17-F 29
SECTION: PAGE:

16

17-25

NOTES:

The operating program is interrupted automatically upon completion of all
search functions; bit 16 can be either zero or one.

Must be one of the octal values 011 or 015.

The address of the sector at which the search is to begin is specified by
the associated Drum Address (DA) control word. The address of this control
word is given in bit positions 1-15 of this instruction word.

The number of tracks over which the search is to be conducted is given in
bit positions 7-10 of the Drum Range (DR) control word. 0000 establishes
a search range of 16 tracks.

The number of sectors which are to be read to memory during the execution
of this function, is specified in bits 1-6 of the DR control word. The DR
control word must be present at address m’ + 1 relative to that furnished
in bit positions 1-15 of this instruction word.

If sector 63 is reached on any track before the full number of sectors have
been searched and/or read, the operation continues through the track under
the head at the next higher address. The first sector processed on that
track is sector zero. An attempt to search and/or read beyond sector 63

of head 63 will result in an error signal and the termination of the operation.

The word at address m + 2 relative to that given in bit positions 1-15 of
this instruction word is the Drum Search control word. Before the search is
begun, it is transferred to the synchronizer as if a write instruction was
being executed.

The program testable indicator (bit 7) is set either before or after comple-
tion of this operation. The status word must be brought into memory from
the synchronizer and examined by the program to determine the success of
the operation.

When .sector 63 of the track at the upper limit of the search range is en-
countered before the key word is located, the search is terminated. The
program testable indicator (bit 7) is set.

Bit positions 1-25 of the key word are compared with bit positions 1-25 of
the first word of each sector.

Except for the sector containing the key, 37 UNIVAC III words are brought
into memory of 27 bit increments for each sector read. In multiple sector
reading, the 38th word in memory (starting with the key word) comes from the
first word of the sector at the next higher address, etc.

The second and succeeding words of the sector containing the key are read
to the central processor. These words occupy contiguous memory locations
immediately following the Search Key control word, thus, the resultant input
area appears as if the key word has been read to memory following the DR
control word.

17-F

20]] UNIVAC I1i UTMOST UP.3853

SECTION: PAGE:

(o) | POSITION FIRST WORD SEARCH AND OP Codes: Alphanumeric — 4FPS1
READ-COMPRESSED Octal ~ 115

FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been positioned,
locate the specified sector on the track under the designated head.
Read the first word of each sector into the synchronizer in the com-
pressed mode. Compare this word with the Drum Search control word
until an equal condition is detected. Read in compressed mode the in-
formation from the second and succeeding words of that sector into
memory starting at location m’ + 3 relative to the address specified
in bits 1-15 of this instruction. Read continuously from successively
higher address sectors to successively higher memory locations until
the number of sectors specified by bit positions 1-6 of the Drum Range
control word have been read.

(p) | FIXED FIRST WORD SEARCH AND OP Codes: Alphanumeric — 4F$1
READ-COMPRESSED Octal - 111

FUNCTION: Locate the specified sector on the track under the designated head.
Read the first word of each sector into the synchronizer in the com-
pressed mode. Compare this word with the Drum Search control word
until an equal condition is detected. Read (in compressed mode)
information from the second and succeeding words of thwg sector
into the central processor starting at memory location m + 3
relative to that specified in bit positions 1-15 of this instruction.

Read continuously from successively higher address sectors to succes-
sively higher memory locations until the number of sectors specified
by bit positions 1-6 of the Drum Range control word have been read.

OPERATION Search the first word of each sector on up to 16 tracks. Read to memory
the specified number of sectors upon encountering the specified key.
[S...Snl=—=m" + 3..m" + 44 + 42 (n=1)

INSTRUCTION
WORD:

FIELD FUNCTION CODE INT, DA CONTROL WORD ADDRESS
NAME

WORD 0001 0 0 1 0 0 1[X|Xx X X X X X X X X X X X X X X
CONTENT

BIT
POSITION |25 17116 |15

Instruction Word Content:

BITS

1-15 Contain a binary value giving the location of the associated Drum Address
control word.

UP-3853 UNIVADC Il UTIVIODST 17-F 31

SECTION: PAGE:

16

17.25

NOTES:

The operating program is interrupted automatically upon completion of all
search functions; bit 16 can be either zero or one.

Must be one of the octal values 111 or 115.

The address. of the sector at which the search is to begin is specified by
the associated Drum Address (DA) control word. The address of this con-
trol word is given in bit positions 1-15 of this instruction word.

The number of tracks over which the search is to be conducted is given
in bit positions 7-10 of the Drum Range (DR) control word. 0000 establishes
a search range of 16 tracks.

The number of sectors which are to be read to memory during the execution
of this function is specified in bits 1-6 of the DR control word. The DR
control word must be present at address m'+ 1 relative to that furnished in
bit positions 1-15 of this instruction word. 000000 is interpreted to specify
64 sectors to be read.

If sector 63 is reached on any track before the full number of sectors have
been searched and/or read, the operation continues through the track under
the head at the next higher address. The first sector piocessed on that track
is sector zero. An attempt to search and/or read beyond sector 63 of head
63 will result in an error signal and the termination of the operation.

The word at address m’ + 2 relative to that given in bit positions 1-15 of
this instruction word is the Drum Search control word. Before the search is
begun, it is transferred to the synchronizer as if a write instruction was
being executed.

The program testable indicator (bit 7) is set either before or after comple-
tion of this operation. The status word must be brought into memory from
the synchronizer and examined by the program to determine the success of
of the operation.

When sector 63 of the track at the upper limit of the search range is en-
countered before the key word is located, the search is terminated. The
program testable indicator (bit 7) is set.

Bit positions 1-24 of the key word are compared with bit positions 1-24
of the first word of each sector.

Except for the sector containing the key, 42 UNIVAC III words are read

from each sector in 24 bit increments. The synchronizer inserts a zero in

bit position 25 and proper Mod-3 check bits in positions 26 and 27. In
multiple sector reading, the 43rd word in memory (relative to the DS control
word) comes from the first word of the sector at the next higher address, etc.

The second and succeeding words of the sector containing the key are read
to the central processor. These words occupy contiguous memory locations
immediately following the Drum Search control word, thus, the resultant
input area has the same format as if the key word had been read to memory
following the DR control word.

17-F 32 UNIVAC I UTMOST UP-3853

SECTION: PAGE:

(q) | POSITION SEARCH AND READ-NORMAL OP Codes: Alphanumeric — FPS$2
Octal — 016
FUNCTION: Position the head bar of the specified drum unit to bring the read/

write heads over the specified tracks. When the heads have been
positioned, locate the specified sector on the track under the designated
head. Read all words of that and each succeeding sector into the syn-
chronizer and compare each word with the Drum Search control word
until an equal condition is detected. Read the words following the key
word into the central processor starting with location m + 3 relative

to the address specified in bit positions 1-15 of this instruction. Read
continuously from successively higher address sectors to successively
higher memory locations until the number of sectors specified by bit
positions 1-6 of the Drum Range control word have been read.

(r) | FIXED SEARCH AND READ-NORMAL OP Codes: Alphanumeric — FS2
Octal — 012
FUNCTION: Locate the specified sector on the track under the designated head.

Read all words of that and each succeeding sector into the synchronizer
and compare each word with the Drum Search control word until an equal
condition is detected. Read the words following the key word into the
central processor starting with memory location m’ + 3 relative to the
address specified in bit positions 1-15 of this instruction. Read con-
tinuously from successively higher address sectors to successively
higher memory locations until the number of sectors specified by bit
positions 1-6 of the Drum Range control word have been read.

OPERATION Search each sector on up to 16 tracks. Upon encountering the key word,

FLOW: read to memory the remainder of that sector plus additional sectors if
so specified.[Key wd+ 1...Sn! —»m'+3...m"+ (39 minus the no. of wds, pre-
ceeding the key in key sector) + 37 (n—1).

INSTRUCTION

WORD:
FIELD

FUNCTION CODE INT. DA CONTROL WORD ADDRESS

NAME
WORD

0 0 0 0 0 1 0 1 0 X | X X X X X X X X X
CONTENT X X < XX
BIT
POSITION 25 17 |16 |15 1

Instruction Word Content:
BITS

1-15 Contain a binary value giving the location of the associated Drum Address
control word.

UP-3853 UNIVAC Il UTMOST |

17-F 33

SECTION: PAGT:

16

17.25

NOTES:

The operating program is interrupted automatically upon completion of all
search functions; bit 16 can be either zero or one.

Must be one of the octal values 012 or 016.

The address of the sector at which the search is to begin is specified by
the associated Drum Address (DA) control word. The address of the DA
control word is given in bit positions 1-15 of this instruction word.

The number of tracks over which the search is to be conducted is given in
bit positions 7-10 of the Drum Range control word. 0000 in this field
designates the range to be 1€ tracks.

The number of sectors to be read to memory after the key word is located
is specified in bits 1-6 of the DR control word. The DR control word must
be present at address m’ + 1 relative to that furnished in bit positions 1-15
of this instruction. 000000 in this field designates 64 sectors to be trans-
ferred after the key is located.

1
The Drum Search control word at m + 2 is read from memory to the syn-
chronizer in a similar fashion to the execution of a write instruction.

The words immediately following the located key word are read from the
synchronizer to the central processor. This can result in the transfer of
less than a full sector. Drum data will be read to memory starting with
address m’ + 3 relative to that specified in bit positions 1-15 of this in-
struction word.

When data is read to memory, it occupies contiguous memory locations
immediately following the Drum Search control word. Thus, the resultant
input area has the same format as if the key word had been read to memory.

Except for the sector containing the key, 37 UNIVAC III words are brought
from the drum to memory. In multiple sector reading, the 38th word in memory,
adjusted by the number of words read before the key was encountered, comes
from the first word of the sector at the next higher address, etc.

If sector 63 is reached on any track before the full specified number of
sectors have been searched and/or read, the operation continues through
the track under the head at the next higher address. The first section pro-
cessed on that track is sector zero. An attempt to search and/or read
beyond sector 63 of head 63 will result in an error signal and the termina-
tion of the operation.

The program testable indicator (bit7) is set either before or after comple-
tion of the operation. The status word must be examined to determine the
success of the operation.

If the key is found to be the last word in the sector, and only one sector
has been specified for reading, no data will be read to memory.

34

PAGE:

17-F

| L UNIVAC IIl UTMOST UP-3853

SECTION:

POSITION SEARCH AND READ-COMPRESSED OP Codes: Alphanumeric — 4FPS2

(s
Octal — 116

~—

FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been positioned,
locate the specified sector on the track under the designated head. Read
all words of that and each succeeding sector into the synchronizer and
compare each word with the Drum Search control word until an equal
condition is detected. Read the words following the key word into the
central processor starting with memory location m’ + 3 relative to the
address specified in bit positions 1-15 of this instruction. Read con-
tinuously from successively higher address sectors to successively
higher memory locations until the number of sectors specified by bit
positions 1-6 of the Drum Range control word have been read.

(t) IFIXED SEARCH AND READ-COMPRESSED OP Codes: Alphanumeric — 4FSE
Octal — 112

FUNCTION: Locate the specified sector on the track under the designated head.
Read all words of that and each succeeding sector into the synchronizer
and compare each word with the Drum Search control word until an equal
condition is detected. Read the words following the key word into the
central processor starting with memory location m + 3 relative to the
address specified in bit positions 1-15 of this instruction. Read contin-
uously from successively higher address sectors to successively
higher memory locations until the number of sectors specified by bit
positions 1-6 of the Drum Range control word have been read.

OPERATION Search each sector on up to 16 tracks. Upon encountering the key
FLOW: word, read to memory the remainder of that sector plus additional
sectors if so specified. | Key wd + 1...Sn] ==m’ + 3...m +(41 minus the

no. of wds preceding key in key sector) + 42 (n-1).

INSTRUCTION
WORD:

FIELD FUNCTION CODE INT. DA CONTROL WORD ADDRESS
NAME

WORD 000 1 0 0 1 0 1 0/ X|Xx X X X X X X X X X X X X X X
CONTENT

BIT
POSITION |25 17 |16 |15 1

Instruction Word Content:

BITS
1-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 The operating program is interrupted automatically upon completion of all

search functions; bit 16 can be either zero or one.

17-25 Must be one of the octal values 112 or 116.

UP-3853 UNIVAC IIl UTMOST ’

17-F 35

SECTION: PAGE:

NOTES:

The address of the sector at which the search is to begin is specified by
the associated Drum Address (DA) control word. The address of the DA
control word is given in bit positions 1-15 of this instruction word.

The number of tracks over which the search is to be conducted is given in
bit positions 7-10 of the Drum Range (DR) control word. 0000 in this field
designates the range to be 16 tracks.

The number of sectors to be read to memory after the key word is located
is specified in bits 1-6 of the DR control word. The DR control word must
be present at address m’ + 1 relative to that furnished in bit positions 1-15
of this instruction. 000000 is interpreted to specify 64 sectors.

Bit positions 1-24 of the Drum Search control word are compared with bit
positions 1-24 of all the words in the searched sectors. The Drum Search
control word must be present at address m' + 2 relative to that specified in
bits 1-15 of this instruction.

’ .
The Drum Search control word at m + 2 is read from memory to the syn-
chronizer in a similar fashion to the execution of a write instruction.

The words immediately following the key word are transferred from the
synchronizer to the central processor. This can result in the transfer of
less than a full sector. Drum Data will be read to memory starting with
address m’ + 3 relative to that specified in bit positions 1-15 of this in-
struction word.

When data is read to memory, it occupies contiguous memory locations
immediately following the Drum Search control word. Thus, the resultant
input area has the same format as if the key word had been read to memory.

Except for the sector containing the key, 42 UNIVAC III words are brought
from the drum to the synchronizer in 24 bit increments per word. Bit 25 is
set to zero and bits 26 and 27 are set to the proper Mod-3 condition by the
synchronizer before each word is brought into memory. In multiple sector
reading, the 43rd word in memory (adjusted by the position of the key word
within its sector) comes from the first word of the sector at the next higher
address, etc.

If sector 63 is reached on any track before the full specified number of
sectors have been searched and/or read, the operation continues through
the track under the head at the next higher address. The first sector pro-
cessed on that track is sector zero. An attempt to search and/or read be-
yond sector 63 of head 63 will result in an error signal and the termination
of the operation.

The program testable indicator (bit 7) is set either before or after comple-
tion of the operation. The status word must be examined to determine the
success of the operation.

If the key word is the last word in its sector and only one sector has been
specified for reading in the DR control word, no data will be read to memory.

17-F 36 UNIVAC 11l UTMOST UP-3853
SECTION: PAGE:
(u) |POSITION HEAD BAR OP Codes: Alphanumeric — FPHB
Octal — 004
FUNCTION: Initiate positioning of the head bar of the specified drum unit to bring
the read/write heads over the specified track addresses.
OPERATION Set head bar to specified track. No transfer of data takes place.
FLOW:
INSTRUCTION
WORD:
FIELD
FUNCT!ION CODE INT. DA CONTROL WORD ADDRESS
NAME
WORD 0 0 0 0 0 0 1 0 O0]X|[X x x X X X X X X X X X X X X
CONTENT
BIT
POSITION | o5 17 {16 |15 !

Instruction Word Content:

BITS
1.15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically
upon completion of the function; otherwise it is zero.
17-25 Must always be the octal value 004.

NOTES: ® The address of the drum unit and the position to which the head bar is to be set
specified by the associated Drum Address (DA) control word. The address
of the control word is given in bit positions 1-15 of this instruction word.

B The DA control word may contain either zeros or ones in bit positions
1-12.

® No Drum Range control word is required.

® If so specified, successful completion interrupt will occur when position-
ing has been initiated; the program testable indicator (bit 2) will be set.

® If an error is signaled, the status word will be made available in the syn-
chronizer.

® If a requestis received by the synchronizer to position the head bar of a
unit which has not finished the execution of a prior positioning instruction,
the unfinished operation is halted. The bar is then positioned according to
the specification of the most recent instruction.

UP-3853 UNIVAC IIl UTMOST 7.6 37
SECTION: PAGE:
(v)| STORE STATUS WORD AND OP Codes: Alphanumeric — STSW
TERMINAL DRUM ADDRESS Octal - 014
FUNCTION: Transfer two words from the synchronizer to the memory address
specified by bit positions 1-15 of this instruction word. The first of
the two words is the status word. The second word furnishes the drum
unit, position, head, and sector address of the sector immediately
following the last drum area processed.
OPERATION | Synchronizer (two words)|—»m and m 1
FLOW:
INSTRUCTION
WORD:
FIELD
NAME FUNCTION CODE DA CONTROL WORD ADDRESS
WORD 0 0 0 0 0 1 1 0 0 X X X X X X X X X X X X X
CONTENT -
BIT
POSITION | 25 17 |16 | 15 !
Instruction Word Content:
BITS
1-15 Contain a binary value giving the memory location in which the status
word is to be stored.
16 Must be a one bit if the operating program is to be interrupted automuati-
cally upon completion of the function; otherwise it is zero.
17-25 Must always be the octal value 014,

NOTES: m The address word is stored at m + 1 relative to the address specified in
bit positions 1-15 of this instruction.

B The address word is identical in format to the DA control word.

B The address word indicates the sector address of the sector following the
last sector processed. If the last sector processed was sector 63, sector
zero of the track at the next higher head address is given. If the last sector
is sector 63 under the head 63, the head address of the address word will

be zero.

B No Control words are used.

m If so specified, successful completion interrupt will occur if the function
is completed without the -detection of an error signal.

®m See Subsection 17-F-1h for explanation of status word content.

"] (UNIVAC IIl UTMOST UP-3853

17-F
SECTION: PAGE:
(W) POSITION CONTINGENCY READ-COMPRESSED OP Code: Alphanumeric — FPCR
Octal — 017
FUNCTION: Position the head bar of the specified drum unit to bring the read/write
heads over the specified tracks. When the heads have been correctly
positioned, locate the specified sector on the track under the designated
head. Read the contents of this sector into memory in the compressed
mode. The first word of the designated sector is transferred to m' 2
relative to the address specified in bit positions 1-15 of this instruction;
the suceeding words are read to successively higher memory locations.
(x) | FIXED CONTINGENCY READ-COMPRESSED OP Code: Alphanumeric — FCR
Octal — 013
FUNCTION: Locate the specified sector on the track under the designated head.
Read the contents of this sector into memory in the compressed mode.
The first word of the designated sector is transferred to m + 2 relative
to the address specified in bit positions 1-15 of this instruction; the
suceeding words are read to successively higher memory locations.
OPERATION Read to memory IS]'—>m’ +2...m + 45
FLOW:
INSTRUCTION
WORD:
FIELD FUNCTION CODE INT. DA CONTROL WORD ADDRESS
NAME
WORD 000 0 0 0 1 0 1 1 |X|[X X X X X X X X X X X X X X X
CONTENT
BIT 25 17 |16] 15 1
POSITION

Instruction Word Content:

BITS
1-15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Must be a one bit if the operating program is to be interrupted automatically

upon completion of the function, otherwise it is zero.

17-25 Must always be the octal values 013 or 017.

1
UP-3853 UNIVAC Il UTMOST o
section: 17-F pace: 39
NOTES: One sector is transferred to memory each time this instruction is executed.
The address of the sector to be read is furnished by the associated Drum
Address (DA) control word. The address of the DA control word is given in
bit positions 1-15 of this instruction word.
The use of the compressed mode avoids the possibility of halting the transfer
of data due to a Mod-3 parity error signal which may occur prior to the phase
error signal.
43 words are transferred to memory. The data from the drum is placed in bit
positions 1-24 of the first 42 words. The sign (always zero) and Mod-3
check bits of these words, as they appear in memory, are fabricated by the
synchronizer.
The 43rd word contains the six longitudinal parity check bits as they are
read from the drum repeated three times and the phase shift sentinel
character. It has the following format:
:'AEMLED SIGN; PHASE SHIFT SENTINEL LONGITUDINAL PARITY | LONGITUDINAL PARITY LONGITUDINAL PARITY
w
ORD 0 0 0 1 0 0 X X X X X XX X X X X xX|X X X X X X
CONTENT
BIT 25 | 24 19 |18 13112 716 1
POSITION

Word Content:

BITS

13.18

19-24

25

Contain the six longitudinal check bits.
Contain the six longitudinal check bits repeated.
Contain the six longitudinal check bits repeated.

Contain the octal value 14(the shift sentinel). If it is other than 14, a phase
shift would have been indicated.

Is always zero.

The longitudinal parity check character is explained in Subsection 17-F-1j. 168 data
characters, the phase shift sentinel character, and the parity character itself are recorded
on the drum in odd parity.

17-F 40 UNIVAC 11l UTMMOST UP-3853
SECTION: PAGE:
(y) | NO OPERATION OP Codes: Alphanumeric — FNOP
Octal — 00
FUNCTION: This function specification is accessed by the synchronizer and
decoded. It is checked for Mod-3 parity, but results in other action.
OPERATION None.
FLOW:
INSTRUCTION
WORD:
FIELD .
NAME UNCTION CODE NT DA CONTROL WORD ADDRESS
WORD

CONTENT |0 O 0O 0 © 0 0 0 O0OfXx|]O O O 0 0 O 6 0 0 0 0 0 0 0 0O

BIT

25 17 {16 |15
POSITION 1

Instruction Word Content:

BITS
1-15 Will normally be zero, however, any value can be present.
16 Is a one bit if the operating program is to be interrupted upon successful
completion; otherwise it is zero.
17-25 Must always contain the octal value 000.

NOTES: m No control words are required. They will be ignored if they are present at an
address specified in this instruction.

a If so specified, successful completion interrupt will occur when the function
is completed without the detection of an error signal.

® The program testable indicator (Bit 7) will be set if the function is terminated
due to an error.

® If an error is signaled the status word is made available in the synchronizer.

UP-3853 [UNIVAC Il UTMOST I

SECTION: 17-F 19.\65: 41

(z) | TEST DRUM ADDRESS OP Codes: Alphanumeric — FTAD
Octal — 200
FUNCTION: This function specification is accessed by the synchronizer and decoded.

It is checked for Mod-3 parity. The drum address specified by the DA
control word is accessed, but no data is transferred.

OPERATION None.

FLOW:

INSTRUCTION

WORD:
FIELD
NAME FUNCTION CODE INT. DA CONTROL WORD ADDRESS
WORD

coNTENT |0 1 0 0 0 0 0 0 0 |X[X X X X X X X X X X X X X X X

BIT ﬁ

posiTIoN |%° 17,116 115 !

Instruction Word Content:

BITS
1.15 Contain a binary value giving the location of the associated Drum Address
control word.
16 Is a one bit if the operating program is to be interrupted upon successful
completion; otherwise it is zero.
17-25 Must always contain the octal value 200.

NOTES: m A DA control word is required. A DR control word will be ignored if it is
present.

m If so specified, successful completion interrupt will occur when the function
is completed without the detection of an error signal.

a The program testable indicator (Bit 7) will be set if the function is
terminated due to an error.

a If an error is signalled, the status word is made available in the synchronizer.

17-F

42 ‘ ‘ UNIVAC Il UTMOST UP-3853

SEC TION: PAGE:

g. Interrupt Indicators

The interrupt indicators for the FASTRAND subsystem and the codes used in instructions for
testing them are as follows:

INDICATOR CODES FOR USE IN

INDICATOR INSTRUCTIONS INPUT/OUTPUT INTERRUPT INSTRUCTIONS

Standby 1 in bit position 1
Successful Completion 1 in bit position 2
Status word examination necessary 1 in bit position 7

These indicators are tested by the UNIVAC III Executive Routine which furnishes the operating
programs with the same information in a different form. The user, therefore, will not usually be
required to analyze the indicator settings directly, but will use the information supplied by the
Executive Routine. The information provided by the Executive Routine is described in Sub-
section 17-F-2.

(1) Standby Location Interlock Indicator

The standby location interlock indicator can be tested and reset to zero by the execution of
appropriate central processor instructions. This indicator is set when the LC instruction
has delivered a function specification to the memory area associated with channel one (the
channel assigned to the FASTRAND subsystem). It is reset to zero when the function
specification and the associated control words have been successfully transferred to the
synchronizer. In the case of a write instruction, it is not reset until the first two data words
are transferred from memory.

If the standby indicator (bit 1) is set at the time a status word indicator (bit 7) is set, the
resetting of bit 7 alone will cause the synchronizer to attempt again the execution of the
instruction in the standby memory location. This loop continues until bit 1 is reset by the
program. The resetting of indicators 1 and 7 through a single instruction will avoid this
processing loop.

(2) Successful Completion Indicator

The successful completion indicator (bit 2) is set when input/output interrupt is specified

in bit 16 of the function specification word, providing no unusual circumstances are
encountered during the execution of the specified function. When this indicator is found to

be set, there is no need to examine the status word, although a STORE STATUS WORD AND TERMINAL
DRUM ADDRESS may be executed at any time if the terminal drum address is of interest.

‘

The setting of the bit 7 indicator inhibits the setting of the bit 2 indicator. If the
synchronizer finds that bit 2 is already set from the execution of a previous function
specification and has not yet been reset, it will stop executing further function specifications.
When the program resets bit 2 under this condition, the synchronizer will automatically set

bit 2 or 7 for the function completed at the time bit 2 was found to be already set.

UP-3853 UNIVAC Il UTMOST 17.F

SECTION: PAGE:

(3) Status Word Indicator

The setting of this indicator (bit 7) results from either a successful search function or as
the result of an error encountered during the execution of a function. The status word is
described in Subsection 17-F-1h.

The specific condition which causes the status word indicator (bit 7) to be set can be
determined by examining the content of a status word. This status word is manufactured by
the synchronizer and is stored in memory upon the execution of the STORE STATUS WORD AND
TERMINAL DRUM ADDRESS function specification. The cause of the abnormal condition

is specified by one bits in specific bit positions within the status word.

h. Status Word

The status word is manufactured by the synchronizer and is stored in memory upon the execution
of the STORE STATUS WORD AND TERMINAL DRUM ADDRESS function specification. This
word supplements the setting of the status word indicator (bit 7) to establish the specific con-
dition which caused the interrupt. The status word is a pattern code in which the setting of a
specific bit position identifies conditions as described in Table 17-F-3.

BIT POSITION EFFECT ON
PANEL LIGHT SET CONDITION DATA TRANSFER

None None Search Read operation All data transferred.
successfully completed.

None 1 Search Read operation
completed but the key word No data transferred.
was not encountered.

LOAD (Button) 2 Addressing error detected
during read or a Mod-3 Transfer of data halted
parity error detected on at the point the error is
either a read or write detected.
function.

LOAD (Button) 3 Mod-3 parity error en-

countered during transfer
of a function specification,
a control word, or the first
two data words during a

No data transferred.

write operation.

Table 17-F-3. Conditions Indicated through the Status Word

SECTION:

17-F

44

PAGE:

UNIVAC Il UTMOST

UP-3853

BIT POSITION EFFECT ON

PANEL LIGHT SET CONDITION DATA TRANSFER

LOAD (Button) 4 Mod-3 parity error on data Incrementation of the
read from the drum or in the Memory Address Counter
transferof the third and is inhibited. If set by a
succeeding words during a read instruction, data
write function. transfer is halted at the

point the error is detected.
If a write instruction is

in progress, thedata word
being accessed at the time
the error was signalled is
repeated until the sector
is filled.

LOAD (Button) 5 The parity character
generated by the syn- Data transfer is halted
chronizer during a read before a new sector is
function is not equal to read.
that read from the drum.

LOAD (Button) 6 Synchronizer overflow/ Incrementation of the
underflow due to inter- Memory Address Counter
ference from other I/0 is inhibited. If a write
channels. function is in progress, the

data word being accessed
at the time that the error
was signalled is repeated
until the sector is filled.
The write function ceases
at the end of the sector.
If a read function is in
process, transfer of data
stops when the error is
detected.

LOAD (Button) 7 Addressed sector can’t No data transferred.
be located.

LOAD (Button) 8 Change in phase modu- If other than a contingency
lation detected during a read function, transfer of
read function (this error data to memory is halted
may have been preceded if not stopped by a prior
by a Mod-3 parity error). Mod-3 check. If this is a

Contingency Read, a
special word will be
transferred to memory

(See Note 1 for the special
word conditions).

Tobie 17-F-3, Conditions Indicated through the Status Word (continued)

UP-3853 UNIVAC Il UTMOST)
SECTION: 17-F PAGE: 45
BIT POSITION EFFECT ON
PANEL LIGHT SET CONDITION DATA TRANSFER
LOAD (Button) 9 A multiple phase shift has If other than contingency read
been detected. function, data transfer 1s
haited at the time the first
error is detected. On
contingency read function,
an entire sector is brought
into memory including the
! phase shift sentinel and
parity character.
LOAD (Button) 10 The unit, track and head
addresses furnished by the
DA control word are not in No data is transferred.
agreement with the “dog tag”
addresses on the track
under the specified head.
ABNORMAL 11 The éddressed drum unit Transfer of data is halied
CLEAR (Button) st in nlot reac‘iy status at upon the detection of this
some point during the error.
execution of the function.
None 12 Not Used (always zero) None
ABNORMAL 13 Used for maintenance None
CLEAR (Button) purposes only.
None 14 Not Used (always zero) None
None 15 Not Used (always zero) None
ABNORMAL 16 An addressed drum unit
CLEAR (Button) is offline or not in the No data is transferred.
configuration.
ABNORMAL 17 The printed circuit card
CLEAR (Button) is missing from the No data is transferred.
synchronizer.

None 18 The DR control word has The transter of datu is
specified a sector range halted after sector 63
beyond sector 63 of head of head 63 is read,

63. written, or searched.

Table 17-F-3.

Conditions Indicated through the Status Word (continued)

17-F 46 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
BIT POSITION EFFECT ON
ON (0]
PANEL LIGHT SET CONDITION DATA TRANSFER
None 19 DR control word used with
a non-search function has No data is transferred.
other than zeros in bit
positions 8-10.
None 20 Not Used (always zero) None
None 21 Not Used (always zero) None
None 22 Not Used (always zero) None
None 23 Not Used (always zero) None
None 24 Not Used (always zero) None
None 25 Not Used (always zero) None
Table 17-F-3. Conditions Indicated through the Status Word (continued)
Note 1: A special word has been provided for use after the detection of a phase shift error
following a compressed mode read operation. This word can be located by executing a
STORE MEMORY-ADDRESS COUNTER instruction designating General Purpose
Channel 1. The execution of this instruction produces the address of the special word
which has the following format:
FIELD CHAR.
NOT USED
NAME pos. | ERROR CHARACTER
WORD T{X X X X X X X X X X X X X X X X|x x|x x x X X X
CONTENT
BIT 25124 918 716 1
POSITION

Word Content:

BITS
1-6
IIT word.
7-8 Contain a two bit value to which designate

Contain the six bit pattern of one of the four characters within a UNIVAC

s the position of the error

character within its word. The possible codes and the associated bit

positions within the word are:

00 — bit positions 1-6

01 - bit positions 7-12
10 — bit positions 13-18
11 — bit positions 19-24

UP-3853 UNIVAC Il UTMOST o E L a7

9.24 Are not significant.

25 Contains a binary 1; the word is always negative.

i. Modulo-3 Parity

The UNIVAC III word contains 27 bits of which the low order 25 are addressable. Bits 26 and
27 are used internally to check arithmetic operations and the parity of data transfers; these
bits are not normally addressable. Bits 26 and 27 have greater significance to the FASTRAND
programmer than for systems which do not include drum storage. When FASTRAND data is
recorded in the normal mode these bits are written on the drum. If normal mode data is read
back into the central processor through a CONTINGENCY READ instruction, the Mod-3 check
bits will appear in program accessable word areas. Further, the longitudinal parity check
character includes these check bits in its parity count. The programmer must be able to
predict bit positions 26 and 27 in order to verify the accuracy of the longitudinal parity
character.

Instructions, control words, and data are Mod-3 checked between the synchronizer and the
central processor regardless of recording mode. This check is also performed on data
transferred from the drum to the synchronizer in normal mode. If a Mod-3 error is detected
during the transfer of data from the drum to the synchronizer the proper check bits will be
jammed into the error word and the transfer of data will be halted. Data transferred in the
compressed mode will have the appropriate Mod-3 check bits jammed into bit positions 26 and
27 by the synchronizer before the words are transferred to the central processor.

A simple procedure for determining the Mod-3 check bits for a given UNIVAC III word is as
follows:

(a) Ascertain the binary content of the 25 addressable bit positions of the word.
(b) Count the one bits in the even numbered bit positions (2-24).

(c) Multiply this number by two.

(d) Count the one bits in the odd numbered bit positions (1-25).

(e) Add the two numbers (from steps ¢ and d).

(f) Divide the sum by three. The check bits are determined by the remainder in this calculation.
The check bits are the remainder expressed as a two position binary value.

IF THEN THE
THE | cHECK BITS ARE
RE-
MANDER| 2
s
0 0 0
1 0 1
2 1 0

SECTION:

17-F

48

PAGE:

UNIVAC IIl UTMOST

UP-3853

EXAMPLE:

The 27 bits of a UNIVAC III word containing the four alphanumeric characters
WORD would be:

D

27 — 26|25 | 24

19

18

13

Parity Check

The FASTRAND synchronizer generates a longitudinal parity check character for each sector
written. This six bit parity character is written on the drum following the 1008 bit data storage
area (See Table 17-F-4). When data is read back into the synchronizer from the drum during either a
read or search function, a new parity check character is generated for each sector processed.
This new check character is compared to the character read from the drum for equality and if

the two are not equal, an error is signalled. Data transfer is halted at the point the error is

encountered.

The part of the sector over which this parity check is made is illustrated in Table 17-F -4,

Figure 17-F-4 illustrates the arrangement of the UNIVAC III words in the synchronizer and
the method by which the contents of these words are subdivided for recording on the drum.
It can be seen from this figure that the words are treated differently depending upon the re-

cording mode employed.

Each of the parity character bit positions apply to specific bits within the UNIVAC III words
as illustrated in Figure 17-F-4. Note that the Phase Shift Sentinel code is included in the parity
check. To predict the parity bit applicable to each column in the figure, count the one bits in
the bit positions according to the illustrated columns. If there are no one bits or if the count
is an even number, a one bit is inserted in the associated parity word condition. If the one bit

count for a given column is an odd number a zero should appear in the associated parity bit

position.

(1) Normal Mode

Data recorded in the normal mode results in the division of two 27 bit words into nine six
bit frames (See Figure 17-F-4). These frames are transferred to the buffer which controls the
serial recording of the data. One hundred and seventy frames are required to record 37 words
of data, one extra frame, the phase shift pattern, and the odd parity check characters. (The

last three frames are fabricated by the synchronizer).

(2) Compressed Mode

Data recorded in the compressed mode results in the transfer of only the low order 24 bits
of each word to the drum. Each word is divided into four six bit frames (See Figure 17-F-4).
These frames are transferred to the buffer which controls the serial recording of the data.

One hundred and seventy frames are required to record 42 words of data, the phase shift
pattern, and the odd parity check character. (The last two frames are fabricated by the

synchronizer).

*
These fields included in longitudinal parity check

Table 17-F-4. Sector Organization

UP-3853 UNIVAC IIl UTMOST 3
SECTION: 17‘I' PAGE: 49
FIELD NAME NO. OF BITS CONTENTS
Sector Start Pattern 54 111111111 ----+.-. 111111111
Sector Sentinel 6 001100
Recorded Address (dog tag) 24 uuuvutttttttthhhhhhssssss
Phase Check Sentinel A 6 001100
Second Start Pattern 18 1111101 --cceann-n- 11111111
1008
Data Storage (148x6) dddddd------------ dddddd
Shift Check Pattern 6 001100
Longitudinal Parity Character 6 pPppppp
Phase Check Sentine! B 6 001100
Blank Space (50-80 mils) 000000
Next Sector Start Pattern 54 111111110 ------ 111111111
MH\J,N’\/\W;%_’J%_/\/"
LEGEND: uuuu drum unit address (in binary)
tttttttt head bar position address (in binary)
hhhhhh head address (in binary)
SSSSSS sector address (in binary)
dddddd Data
pppppp Parity character

UNIVAC 11l UTMOST
SECTION 17-F, UP-3853

FASTRAND

SUBSYSTEM

UP-3853 UNIVAC IIl UTMOST L Appendix E

SECTION: i A GE:

APPENDIX E. DATA FILE CONVENTIONS

This appendix describes the conventions and tape formats for UNISERVO IIIA data files.
A. LABELS

The first block on a tape reel and in a tape file must be a 12-word label block of the form
shown in Table E-l.(D

B. DATA BLOCKS

The first and last words of each data block must be data descriptor words, as shown in Table
E-1. The maximum acceptable data block size is 4096, including data descriptor words.

C. END-OF-REEL SENTINELS

Each reel of a multireel file except the last, is terminated by two one-word end-of-reel
sentinel blocks (refer to Table E-1), which immediately follow the last data block.

D. END-OF-FILE SENTINELS

The last data block of a file is followed by two one-word end-of-file sentinel blocks of the form
shown in Table E-1.

E. BYPASS SENTINELS

When a file includes information that is not part of the data proper (for example, a rerun
memory dump), the non-data blocks of the file must be preceded and followed by two one-word
bypass sentinel blocks. (Refer to Table E-1.) The information to be bypassed may appear at
any place within the file.

®Tape Files used or created by FORTRAN programs do not contain a label block.

Appendix E 2 UNIVAC Il UTMOST UP-3853
SECTION: PAGE:
WORD | SIGN CONTENT COMMENTS
LABEL BLOCK
0 - 0---0 Minus indicates non-data block.
Binary 0's indicate label block.
: caaa First Four Characters of the Eight Character
* Alphanumeric file ID
2 + Date of cycle All reels of multireel file should
contain same date.
3 + .
000ddd Decimal reel number.
4 + X---X Unused.
9 * X---X Unused.
10 + aaaa Last Four Characters of the Eight Chararta-
Alphanumeric file ID
1 - 0---0 Minus indicates non-data block.
Binary 0's indicate label block.

Table E-1. Data Tape Block Formats

SECTION: PAGE:

|
UP-3853 UNIVAC IIl UTMOST I JAppendix E |

WORD | SIGN CONTENT COMMENTS

DATA BLOCK

0 + bbbbbbbbbbbbccccccccccce Data descriptor word.

b---b = Binary no. of items in block.
c---c = Binary no. of words in block*
Plusindicates data block .

DATA
c-2
c-1 + bbbbbbbbbbbbccccccceccccec Data descriptor word, identical to word 0.
BYPASS SENTINEL BLOCK i
0 - 010---0 Minus indicates non-data block.
Binary 01 indicates bypass sentinel.
END-OF-REEL SENTINEL BLOCK -
10b---b Minus indicates non-data block.
0 - Binary 10 indicates end-of-reel sentinel.
b---b indicates the total number of blocks
recorded on this tape (in binary)
END-OF-FILE SENTINEL BLOCK
0 - 11b---b Minus indicates non-data block.

Binary 11 indicates end-of-file sentinel.
b---b indicates the total number of blocks
recorded on this tape (in binary)

*Including data descriptor words.

Table E.1 Data Tape Block Formats (Continued)

UNIVAC ITI March 28, 1966

UTMOST General Reference Manual, UP-3853
UPDATING PACKAGE "E"

The attached material represents an addition for the UNIVAC 111 General Reference
Manual, UP-3853, and should be utilized in the following manner:

FILE PAGES PLACE AFTER TAB
SECTION NUMBERED LABELED
Appendix F i(Table of Contents) INPUT/OUTPUT

pp. 1 - 18 (following Appendix

E Information)

UTMOST ULLI-418 HANDLER

Section

CONTENTS

EXECUTION PHASES

2. CODING OF THE RESPONSE TABLE

3. DATA AREAS

4. INITIATION OF A PROGRAM

5. COMPLETION OF RESPONSE TRANSMISSIONS
6. INITIATING A UNIVAC III REQUEST

7. COMPLETION OF REQUESTED TRANSMISSIONS
8. TURNING OFF THE HANDLER

9. SELECTION OF REQUESTING PROGRAM

10. CHANNEL ASSIGNMENT

11. FORMATION OF RELOCATABLE LIBRARY

12. SYMBIONT UTILIZATION OF THE HANDLER
Figure

1. UNIVAC III PROGRAM RESPONSE TABLE

2. UNIVAC 413 DATA AREAS

3. REQUEST STATUS KEY

UP-2626.90

Page

~]

fhe UNIVAC [11-418 Handler coding in the executive rcutine provides &2 o e

and no more than two symbionts access to the UNIVAC 41¢ Sycien. 1t oontrole o
single UNIVAC IITI-UNIVAC 418 Computer Intercoupler attached v leneral 2 .oi0
Channel 7. A special version of the executive routine is emcloyed vy, th

UNIVAC I1I1-418 Handler. This version precludes the utilizati n of the o il
Handler. It will operate on UNIVAC IIi systems with 24,274 o0 20,707 wo: i
store.

fo employ the UNIVAC III-UNIVAC 418 system, the user prevarece orougran ca.:o.
Each program pair contains a UNIVAC IIl program and a UNIVAL .
signed to communicate with each other through the UNIVAC T1I-:
UIMOST System) and the UNIVAC IIT Handler (of the ARI Systen)
Each transmission of data from one program to the other reguires
gram make a specific request of the other and that the other :¢
program of a program pair or both, may initiate requects as loro
is designed to respond.

i
e

fhe UNIVAC 111 program defines the responses for which it is vrepared oy toring
a response table in a prescribed format. [he address of this table is 4l
the UNIVAC II1-418 Handler as a part of the initiation procedure. ine L
program initiates a request by loading into the arithmetic reaisters intormat.
relating to the response table and transferring control to the JNIVACZ [0 -471-
Handler.

[he information in the respconse table must be supplemented by storave wore ar-s
for use by the handler in transferring data between the two computer systems.
[he UNIVAC III program is responsible for the allocation of siuch storage area
as well as for any and all processing of the data involved.

1. Execution Phases

Nhen the UNIVAC II1I-418 Handler receives and accepts a rejquest from &
UNIVAC III program it holds the request until it is possivle to initiate
it. When any current UNIVAC III-UNIVAC 418 transmicsion o completed, tho
Handler transmits to the UNIVAC 418 a control message fabricated fror the
UNIVAC 111 program's response table. This three word mescage 1o deccoied

by the UNIVAC 418 which in turn tells the UNIVAC [l Hand.er whether
proceed with its request or not. In the latter case the reacon ‘or thn«
rejection is forwarded to the UNIVAC III program as status informatio

to be acted upon by the program. If the UNIVAC 413 cignaled the Unlval 111
Handler to proceed, the requested data is transmitted {in the -equestod di-
rection) and status information is again made available to the UNTVAL [0
programe.

Uption 1s provided to transfer control to the NIVAZ 111 (roavarn 1o

UP 2626.90

upon completion of the transmission to allow the program to interchange
buffers, if necessary.

When a request is received from the UNIVAC 418, the UNIVAC III Handler either
rejects the request or signals the UNIVAC 418 to proceed. 1In the latter cace
data is transmitted between the two computer systems. When the transmission
is complete, status information is made available to the UNIVAC III program.
The UNIVAC IIT program may analyze this information to determine its next
action. As in the case of UNIVAC III requests, the option is provided to
transfer control to the UNIVAC III program immediately upon completion of

the transmission to facilitate buffer interchange.

Coding of the Response Table

The UNIVAC III program employing the UNIVAC II1-418 Handler must contain a
single response table prepared in the general format shown in Figure 1. The
first five words of the response table are used for major control options
and must always exist. These five words may be followed by an arbitrary
number of three word response packets which are used to define planned data
interchanges with the related UNIVAC 418 program. Following the last three
word response packet an end-of-table sentinel is required.

a. Major Controls

1) Handler Use Key: The first word of the response table must initially
contain binary zero. This word is modified only by the handler. The
UNIVAC III program may test this word to determine whether or not the
UNIVAC III-418 Handler is currently using the table. If the value of
this word is not binary zerc the table is being used by the handler
and variation in the content of the table or operating mode as de-
scribed in subsection 8 should be delayed.

2) Dispatcher Address: The second word of the table must contain the
address of a line in the UNIVAC III-UNIVAC 418 dispatcher. 1In pre-
paring the table the user must write '+U418 RETURN' in this location.

3) Run Identification: The third word of the response table must con-—
tain a two-character run identification in the low order character
positions. While this identification need not be related to the
program ID of the UNIVAC III program it is the program ID of the
related UNIVAC 418 program. Hence, the first character of this
field must be alphabetic. The second must be alphanumeric.

The run identification should be uniquely defined for each UNIVAC
ITI-UNIVAC 418 program pair in order to avoid erroneous transmission
between program pairs.

4) Reguest Status Key: The fourth word of the table must initially be
set to binary zero. The value of this word is modified by the
UNIVAC III-418 Handler only in servicing UNIVAC III program reqgues=sS.
It may therefore by ignored by a UNIVAC III program which has been
designed only to respond to UNIVAC 418 requests.

When the UNIVAC III program makes requests of the UNIVAC I11-418
Handler it may determine the status of the requests by examining this
word. The various values of this word, which are fabricated by the
handler, are summarized in Figure 3. They are discussed subsequently.

UP 2626.9C

UP 2626.90

It should be noted that initiation of a second UNIVAC III crogra
request will alter the value of the request status key. >
user program should not initiate a csubsequent request oricr to d
mining status of the first.

5) User Deactivate Key: The fifth word of the table may Do aood L
signal the Handler that UNIVAC 418 requests are not to Lo accented
for this program. This is necessary if variaticns in the tac C
change in operating mode is effected as deccribed in cubsection c.
If the deactivate key is greater than 0777, the Handler will uce the
table. If not greater than 0777, the handler will not initizte row
actions for the table.

Response Packet

The UNIVAC III program must contain a single recspcnse packot [or owvers
type of transmission it expects. The types of tranemicsicn are dictii-
guished by their direction, the size of the related storace arca and th
type of data to be transmitted. Thus a UNIVAC IIIl program may reguir:
one or more response packets of the form shown in Figure 1.

1) TIransmission Key: The first word of each response packet ic a4 tran
mission key. This 12 bit non-zerc field must be in the low order
positions of the word. The key is used to define a type of trans-
mission allowed by the program. The same key must apr«ar in th
UNIVAC 418 program because the UNIVAC I1I-418 Handler usce thic koy
as the basis for making a request to the UNIVAC 418 or respomndine t
a request from the UNIVAC 418.

Each response packet in the UNIVAC I1I proaram muct contuain o uni
request key.

If the key field is negative, the handler will concider the packe:
to be unavailable. It will accordingly inform the 41t that a
requested interchange cannot yet be instituted.

2) Island Address: The second word of each response packot containe a
15 bit island address, whose use 1s optional. If set tc binary 2.1
completion testing for various transmissions must be done ac deccril. o

in subsections 5 and 7.

If non-zero, the island address is the address of a cliced sube-
routine written by the user which will be entered by the Handle:
immediately upon cempletion of the transmission. Thice cubz
if written in the form described in subsection Sb, will all
rapid reaction such as buffer interchange where the user ¢

3) Buffer Word: The third word of ecach response packet i compr od
three separate fields.

a) DBuffer Address

The addrecs field b is the 12-bit address of a cstorage work
area in the UNIVAC III program to be used for this tvpe of
transmission. Further information on this storage w otk aron
is given in subsection 3.

06°979¢ dn

LABEL OPERATION OPERAND

UF418 FORM 10, 15

MAJOR CONTROLS ORIGIN OF + O . HANDLER USE KEY - SEE 2Al
TABLE + U418RETURN . DISPATCHER ADDRESS - SEE 2A2
+ Orrrr . RUN IDENTIFICATION - SEE 2A3
+ 0 . REQUEST STATUS KEY - SEE 2A4
+ 01000 . USER DEACTIVATE KEY - SEE 2A5
. ONE OR MORE RESPONSE
. PACKETS MUST IMMEDIATELY
. FOLLOW THE MAJOR CONTROL FIELDS
ORIGIN OF + Okkkx . TRANSMISSION KEY - SEE 2Bl
RESPONSE PACKET RESPONSE + ISLAND ISLAND ADDRESS - SEE 2BZ
PACKET UF418 OP,b . BUFFER WORD
. AN END SENTINEL MUST
. FOLLOW IMMEDIATELY
. AFTER LAST RESPONSE PACKET - SEE 2C

END OF TABLE SENTINEL

-0

UNIVAC II1I PROGRAM RESPONSE TABLE

Figure 1

b) Direction of Transmission

The direction field indicates the direction cf the transmic:ion.
If set to O the UNIVAC III program is to send data tc the ULIVACL
A418. If set to 2 the UNIVAC III program is to receive data fron
the UNIVAC 418.

c) Buffer Status

The sign field is used to indicate the status of the accccisted
puffer. If the sign is positive, the buffer ic ready to cerd
(if direction is 0) or receive (if the direction ic 2).

The sign field is employed by the UNIVAC III program to cigral
the Handler as to what response packets may bc used. Since in
completing the transmission the buffer is, at leact temporarily,
not to be used, the Handler sets this word negative.

Thus the UNIVAC III program may determine if a transmic¢sion hac
been completed by testing the sign of this word. If negative,
transmission has been completed and appropriate action should
be taken.

When a new buffer is assigned to the request packet or when the
completed buffer is again ready for use, the UNIVAC III program
should set the sign positive.

c. End of Table Sentinel

The UNIVAC III program indicates the end of the responce table by a
word containing a binary value of -O.

Data Areacs

The UNIVAC III-UNIVAC 418 Intercoupler transmits only twelve bite te or from
the low order positions of the transmission storage buffer in the UNIVAC III
program store. In transmitting to the UNIVAC 418, the 12 high order bit:
are ignored. The sign bit is used to signal the last word to be tranemitted.
In receiving from the UNIVAC 418 data is placed in positions one thrcugh
twelve of each word. All remaining positions are set to zerc.

The first word of each data buffer is reserved for use by the handler. ous
in preparing a data buffer for transmission to the UNIVAC 41& the ucer muct
unpack his data into a series of two character words starting with the
second word of the area. The last word to be transmitted muct be necative.
Figure 2 shows the general form of an output buffer.

When data 1s received from the UNIVAC 418, the first word of the <torage
buffer will contain the address of the last word of data received. Thue the
user may employ this word to determine the length of the mecsage reccive i,
He may then pack the data as he requires for further utilizaticn. Filaur
chews the general format of an input buffer.

Initiation of a Program

Initiation of the UNIVAC III-418 Handler ie¢ required if trancmiccion betweon
the two computer systems is to be allowed. When a program i1¢ firct ctrartoed
.90

or when a rerun is initiated, it is necessary to supply the address of the
response table to the handler by

- loading into ARS8 the positive address of the response table

- executing a transfer of control to the handler; i.e.,

SLJ U418RQ
+7 busy return
+2 accepted return

A typical initiation subroutine is:
Label Operation

LA 8, (TABLE)
SLJ U418RQ

J $. Busy Return - Not entered from Initiate.

. Accepted Return
PROCESS

An initiation entry must be made both when a program is originated and re-
started from a checkpoint. Therefore, the program must initiate the handler
after each entrance to checkpoint.

Completion of Response Transmissions

Once the UNIVAC III-418 Handler has been initiated, requests to or from
the UNIVAC 418 for transmissions indicated in the Response Tadle will be
accepted. The UNIVAC III program is responsible for determining if any
such transmissions have been completed. Two methods of determining com-
pletion are available. The first involves direct testing of the response
table, the second employs the island code option.

a. Response Table Testing

When a transmission is requested by the UNIVAC 418, the UNIVAC III-418
Handler controls its operation until the transmission has been succesc-
fully completed. If it i1s not successfully completed, the UNIVAC 418
program is informed of the cauce and is responsible for any corrective
actions. Only if a response has been successfully completed is the
UNIVAC III program involved.

When a transmission is completed, the last or buffer word of the
associated response packet is cet negative. Testing the last word of
the relevant packets will isolate those transmissions which have been
completed.

b. Island Code Manipulation

If he desires, the user may specify an island code address in the
second word of a response packet. The specification of this option
does not change the logic or the techniques described in section 5a.
The closed subroutine whose address i1s specified is entered from the
handler immediately upon completion of the relevant transmission. The

UpP 2026.0

17
[SRE

tG79C

06

2=SPONSE +042 +027
PACKET +C +0
UF418 2, CQUTPUT UF418 2, INPUT
UF418 FORM 10, 15
QUTPUT +0 .RESERVED FOR HANDLER INPUT INPUT + 7 .ADDRESS OF LAST WORD RECEIVED
.STORED BY HANDLER
BEDA BEDA
TA TA
¥T ¥R
o¥ EC
BE El
KT VE
RA B0,
NS
I
TT
-PPED .SIGHALS LAST

.WORD TO BE
TRANSMITTED

CUTPUT BUFFER LAYOQUT

NPUT BUFFER LAYOQUT

—
I
)

I
—

el
(W)

ey
—

e
=g
v}
in
=
w»

user may therefere include in the closed subroutine coding to inter-
change data buffers and perform similar processing which requirec
quick reaction to the completion of a transmission.

Island coding may appear anywhere in the source program. It is entered
via an SLJ to the specified address. At the time of entry, IR1 contains
the address of the island code and IR2 contains the address of the re-
sponse table entry associated with the completed transmission. The user
is responsible for retenticn of the index register environment and must
store and restore any additional index registers he may require.

When the associated UNIVAC III-418 request is completed, the UIMOST
Executive Routine will execute the following instructions before control
is relinguished.

Index Register 1 will be loaded with the address of the island code.

Index Register 2 will be loaded with the address of the response
packet just completed which specified this island coding.

Control is transferred to the island coding by execution of a
SLJ ISLAND.

The exit from icland coding, with all index registers restored to their
entry state, is accomplished by executing

J *ISLAND

As shown above, the last line of the island coding is an unconditional
transfer to the origin of the island code. This returns program con-
trol to the Executive Routine allowing it to complete its function.
Since island coding is a closed subroutine executed as part of the
Executive Routine, certain restrictions are imposed on it. These
restrictions are listed below.

- Release of control is prohibited.

- All Index Registers must remain intact.

- Requests of the UNIVAC III-418 Handler are prohibited.

Initiating a UNIVAC I1I Request

Should an initiated UNIVAC III prcgram desire to initiate a request, the
user must first assure that a packet related to the desired transmission
is within the response table. He must further assure that the user
deactivate key contains a value greater than +0777; (i.e., that he hac
not deactivated the run) and that the packet is active, i.e., its first
and third words are positive.

UP 2626.90

The request ic¢ then initiated by

- loading into AR8 the negative address of the respon.e packet
describing the requested transmission.

- and transferring control to the handler by executing

SLI U418RQ
+1 . busy return
+2 . accepted return

a. Busy Return

Since only one request will be handled at a time, the urer must provias
for the possibility that the handler is busy and his requect will nnt
be accepted. If the handler is busy it will return contrel te the bury
return. The UNIVAC III program is responsible for determining its next
action and reinitiation, if desired, of the request.

b. Accepted Return

If a request is accepted by the handler, the user will receive ceontrcl
at the accepted return.

A sample initiation is
LABEL OPERATION

LAN 8, (RESPAK4)

SLJ U418RQ

J $-2 .Handler Busy - Try Again
.Accepted Return

7. Completion of Requested Trancmissions

The program which requests a transmission is responsible for cverall
control of the request. Status information beyond that described in
section 5 is given to the UNIVAC III program making the request.

When, and only when, a requested transmission is successfully completec,
the third, or Buffer word of the response packet ic set negative ag
mentioned in section 5. It is possible that the Handler will terminat:«
its processing of a request even though the transmission nac not been
completed. For this reason, the requesting program must contain ccde 1
analyze the status of its request. This status i1s maintained in the
Request STATUS Key of the UNIVAC III Response Table.

Response Table Testing

When the handler accepte a request from a preogram, the Request Status ko
is set to a negative non-zero value. When the handler terminatec a roque
it places a positive octal value in the key. The values of thi< key a»»
summarized in Figure 3.

t.

UP 2626.90

10.

Turning Off the Handler

Through the use of the User veactivate Key, the user may disengage his pro-
gram from the UNIVAC III-418 Handler. By placing a value less than, or

equal to, +0777 in the Deactivate Key he prevents the handler from initiating
any further action. When the Handler Use Key returns to zero, the user

then knows that no UNIVAC 418 activity can affect his program. He must
assure that there is no activity should he desire to modify the size of the
response table or obtain a conventional checkpoint.

Selection of Requesting Program

In most cases major systems considerations will dictate which of the
UNIVAC III-UNIVAC 418 program pair should request and which should respond.

As chart below indicates the number of input-output interrupts varies according

to the choice. Since the number of interrupts provides a guide to the
efficiency of the program pair, these figures might be useful in selecting
the requesting program where this would otherwise be an arbitrary decision.

UNIVAC III Prog. Requests UIII INTS. U418 INTS.
- to send 3 6
- to receive 2 4

UNIVAC III Prog. Responds

- to send 3 6

- to receive 4 8

Channel Assignment

Elements have been placed on the Relocatable Library to facilitate the
users assignment of a channel to programs or symbionts.

10a. Principal Programs: The UNIVAC 418 channel 1s defined by the element
MAINCHAN for principal programs. Including the control card

Z ScLECT MAINCHAN
or
Z LIBE BOss I[II

in the DECO control cards for the program will cause the correct assign-
ment to be made.

70b. Symbionts: A channel number not directly related to the channel to
which the UNIVAC 418 is attached is used for symbionts. A different
"fictitious" channel number must be assigned to each UNIVAC III symbiont
which will concurrently use the UNIVAC ITII-UNIVAC 418 intercoupler.

I‘lements defining these "fictitious" channels are included on the
Relocatable Lihrary and should be selected when the symbiont is
processed by DECO. Since the symbiont channel number is defined durirg
JLCO, the operator must only call the symbiont on the channel defined.

Ub 2626.90

Chart below describes the elements on the Relocatable Library.

ELEMENT NAMZ CHANNEL NUMBER — LETTER USEDL IN OPERATOR CUNM SR 50
MAINCHAN 7 Not Applicable Pri) v
U418U14 14 U 5

U418Y15 15 y

11. Formation of Relocatable Library

The executive routine containing the UNIVAC III-UNIVAC 413 liandler wil
operate on either a 24,576 or 32,768 word store. In order to proviie
the creation of the appropriate system, the user must select the approorilite
elements from the program library when he is building his relocatable library,.
In addition, appropriate versions of U418U14 and U418V15 muct be celecte
The following table will aid in making the selection.

1
f

.oy

[N

Store Size Alias Name Element Name
32,768 U418 Exec U418EX32
U418U14 Ja18U143
U418vV15 Ua18v153
24,576 U418 Exec Ud418EX24
U418U14 Ud418U142
Ua418v15 J418V152

12. Symbiont Utilization of the Handler

If the user desires to prepare a symbiont program which utilizes the
UNIVAC III-UNIVAC 418 Handler, he must also provide for release entries
the handler.

+

Control should be released to the handler when the completion testing
described in sections 9 and 7 indicate the transmissions have been
completed. In order to prevent possible loss of an interrupt, a preven:
interrupt instruction should be performed before performing the appropriite
tests. If no functions are found to be complete, execution of the foll win:
calling sequence will release control:

SLJ *$+1
+1 +U418RL
+2 +SAVE . Address of SAVE area in symnioat
+3 +COVER . Symbiont COVER value
+4 «e...release return

When an interrupt is received on the channel, control is returns=i to tin
symbiont at the release return. Interrupt is not inhibited 1t the ime.
1f the user wishes to have interrupt prevented on release retur:i, he may
execute the instruction

SZ U418RAT

in the symbiont initialization coding.

Ur 2626.90

REQUEST

to the UNIVAC 418 to exceed the
UNIVAC 418 Buffer.

EA! C C
ATUS KEY MEANING TYPICAL PROGRAM ACTION
<C Request being serviced by handler. Do other processing. 2st periodically
until key > O.
+C000 Requested transmission completed Process completed transmission as appropriate
successfully., and continue.
+C3 UNIVAC 418 Program did not have entry Repeat the request by initiating again.
with same transmission key, or did If reply of 03 persicts, former reason
not have reguired buffer ready. probably applies.
+C4 The UNIVACT 418 program reguested Inform operation of situation, then
(see third word of response table) proceed with installation's pro-
has not been loaded into UNIVAC 418 cedure for this contingency.
+C10 Parity error detected while pro- Initiate request again. If error
cessing reqguest. persists, terminate program for
analysis of cause.
+C11 The request caused a transmission Jettison program in order to

analyze cause.

069792 dn

REQUEST STATUS KEY

Figure 3

0679797 dn

LABEL \ OPERATION A OPERAND \ COMMENTS
urs418 |, FORM | (1,0, .15 . -, FORM DEFII NI TION ,FO|R, FUNCTI,ON ,5,PEC,
TABLE |, - 0 1 L - HANDLER, [USE, KEY | | v v v v by
T U411 8RET | L .|, ADDRESS I N U418 DI|SPATCHER , |, ., ., ..
I SRR RGN L LT L B (1o RUN VOENTHFEVER v v by v v v v vy
T l0l Ly L ey, RREQUE ST (KEY 0 0 0 0y vy vl
T l0l L L -, PEACTIVATE KEY | |, L
R1E151PLAIKI]¥I Ll 0k kk ko L .]-, RES PONSE PACKET . MESSAGE KEY| , ,
Coo ey by iysi band) cle e v v b v ey (MSILLAND, ADDRIES S |
Cey ey, VR4 8 elpb el e JFIUNGTULON, SPIEC L
O N R SO S ST U AN S S S W U W S SN A U S S ey
J W i (R B L I VRN SR N U W G N L 1 - P 1 i ‘ [L i 1 1 L1 ‘ SN S U SN WS S I B | 1 § N S WA NN SV DS S W | 1‘ - i I lS
A U S N SN SO T SNS AO S S S Y S S S N N S B SR Illlllxlllll!IlL\lIlllJ‘tlJAlllillI!l(
RESPAKM Lo 0k ki kk | L Ll .th; . R ESPIONSE, PACKEIT | ¢ ¢ ¢ o 4 b 44y
L !)| L1)’ i '4‘ Ji‘sLlJ)Ldl 1L 11 | ‘ L i Il i 11 | I S | l O I L L i L4 l1‘1;,I S N S | d J I S S
N i MF418 opl b cob e .uleLik
"'ll____/&_:\i_’_,‘ -, .0 | T L T, AB LE, END, S, ENT,I,NE L]

rl

06°9Z9Z dn

Sample User Code Elements

LABEL \ OPERATION A OPERAND COMMENTS 72
I N, I T 41,8, LA 8, (TABLE) o [I'NILTIATE HANDLER | |, | o b by

e o iSL i U4V BIRQ e T N S R T R e S S
oo o NGRS e e by 1 U S A R S S RN ST L S W S S S S S S R i
,P,L&OlclElslsl i I - D D Y W G W't l L1 I 1 L i1 l 1] | VI N N 1) 1 1 i1 l) I Lt L1 1 1 J L1 1t 1 Lo V] 1

A S S S U UG S S ST Y S S G S T T R T TG S S S S N S ST W P S S S R U S S S S S SN SO S A S S S B S S S

| RESPTEST |\PI, 0y oo b0y 4o |REQUIRED ONLY I,F USER 1,5 SYMBIIOMNT | | o\ 4 4

e ooo0ooaoyo JLAN 8, RESPAKY 2, o 0 v v | vy P VS O TN VRS VOS VOSSN T S N S S SRR R }
e i 3P L, CGOMPITIO0,) P Y S U S R T TS S S S SR S S S S A S R S S

Lo v iy fLAN 8, RESPAK4 +2 | T B S S R B R A RS
ey 4P Y COMPI4A00, RN N TS ST I S S S S S R S R
N 4 .. LA V2, BUFFS , ,,, . |BUYFFSsS, 6 BUFFS-1 ARE, S ET NON-ZERO ,I,N , I SILAND |\
| S T T T N BN B |c| [181'1 4(14'101)1 R Y Y SRS WS N WAt]clolDlEl lllNlDlllquTlllNlcl rclolMlPlLlElTlllolNJ | l R N TR N IS S S S |
L |4 E o COMP200 T T B) L
Coc v € GO e RSN S RTINS H SN S A S SR S A A E R B RS S A
Ly | E S COMP30,0, N TN S T RN TR N ST SN T AU T R ST L

L Lt gSL ey e, |RRELEASE CODE FOR ,SYMBIONT SHOWN , |, | |,
e *e b4 8 RL i i L4ty |V EF PRINCIPAL PROGRAM RELEASE WoOULD , | |
ol SAYME oy INOT, BE, EFFECTED- OTHER PROCESSIING

[RS S S T BT <SOVvVER | vy gt |9R RETURN TO RESPTES T WOULD BE EXPECTED ,
ey 3 RESPTEST o L SN {;J_;J—L;; T R SRR {
—

C6°9292 dn

LABEL \

OPERATION A

OPERAND \ COMMENTS

COMP 100

|LAN 8 RESPAKIT+ 2

l 1RIELAIclTl|lv|AleEI iRIElSIPIOINlSIEI

P ACKET,

| W S | U
§ U (N D VENY U UM WS B ISLAL 4;18111 LR1E151P1A4K111+12L i1 l N R SR S T N N S lJ_l SRS WU DU SN ST B | 1 F S B I N I S
) I R SR WU S N S 'Y l N VS GO S SN S S N 1 | S R RS U SO SR N N | I | S N N W S S | J;l) S (N Y S U W SO S 1 | S T U S N
L1 1 J U Lt l U S SN WA TR N B N | l S SN SR S W | 11 L_L Il | S W R W | { 14_1 § SR B S S 11 Ll YIS S A R S
M1E1M10LU|M1P1 Ll lslzl N lTJALELLLEL+ 144L1 [N 1-LDLEJ_A|C1T||1VIA1T1§__LI_|ALB_‘_LLE| N
i T Y I S S S T lhAl I lBL’I ATJALBLLIEI | — { 1 | l 11 1 1] I | 1 | L1 1 | L L { [1 1 1 | 1 1 l\
L L 1 1 1 | - 11 ‘CI L 1 |8I’l k(l+l0[)l 1 i 1 1 1 i 1 1 I 1 Il i ! i 1 i 1 i l i1 i i Lttt b l 1] 1 1 1 i
Y S N S N R U S lJJGJ A) 181_111 1J N S R T S S S S S l 1 1H|A1NIDIL1EQRI lBIUISlYI I 1LLJ_1 N S
N W S U SN SIS G S | T W S S S S I_L I VS W WU SN SO WO S | [R SN N S U N n;' F U WSO TN NN WA S S S I I S S S S N |
S SR SN G W S G S I 1 N U WS S WSS WA W B G | l RS WS UV S ES VR S T | I Lo l S WS S WU W S S N l D TN N S § 1L‘
N N S U N N L4L! 1 1'1N1|LT1|1AJTkEl lCLHIEICkKlplolllNlTI S N B | Ilg_l | N N S L { IO S WS S N S |
NS VRS S U NN N SN S I VO W U S T S SO TN S S S B I N N N VO S A S B | 14_1 S S S S U l IS S N N N S
S S S R T & L#l J RS WY R DU NN SO S | L 1 i] S 1 It R | I L1 1 ! i i L 1Ll - 1 I B | 1] i i i1 11) 1}
MLDl R'ET._N R’N‘ iSfLJ.___L,LT‘A‘B_LL'E\‘lL“x NN S AU T TS S T | ['i liRlElAICLTilivtAlTlEJ_LTI Al Bllu_EJ_}L D SO W N | l\
PSS SN S ST S U SRS S T ST S Y S S NS S S | W ST S WS S W TN N | 1,4 T Y WA WO VU SN SN N SN SO SN SN S W S GRS S l PO S S W T 'S
’__,—.__,__.’— e e R R e

91

06°9¢9¢ dn

Sample User Code Elements

LABEL \ OPERATION A OPERAND \ COMMENTS)
L L JLAN 8, RESPAKA4 + 2 | o e L
L /S A 8, RESPAK4 <2 | 4 VIV NLTHLATE UL, REQUESIT
I NI T REQ | L LAN 8, G RRESPAKAA 1) L L
Lo L aSLdy U4 V8RR o e e e b e e b
Ul 3 |$1 -1 s v vy ol s sy 4, |HANDLER BUSY | TRY, A GAII N |
L Lok A 4 TIABILE H30 o e e i J
L L P2, RIEQC OM P L, L L
L4 il s =2 L Ly e WAL T, (FOR COMPLETLION ||,
[REQC OMPL, LG 4 0y e b e e b e e e by e ey by
4 , JE SUCICESS . ., ., |y, 4+ 4 (. -,S5]UCCESSF UL |COMPLETI,ON , ,
I SN S T . SU RS O LT P20 U S RSO N U S G S S S NS S S S S N U S S A S S S SRV O SRNURTE
L1 o8 WV PWNVTREBQ g 40,8 (NOT, RIEAIDY, (- T RY, AGIALIN
Ly e 4 e 04 e e e e e
[R R R L J B NORJUN o ey oy 41,8 (RN NOT] (LOADED | | .
4 g7y e b e b
B N N S W | 1 | 1 lJlEl I L.l lJlE[TITl 11 1 L 1 1t | | . | { { Il I iRlElQlUIElSITI IJIE|T|T|||S|OINIEIDI | | | | l\
TN T Y T N O N | I 1C| L I4J’l 1(l+10|]|0|)1 [N I S R S B A B lPlAlRIIJTlYI lPIRIOIClElSlSIIINLGl N 1}
R c 3B PARYVTY v v b e v b J)
[N B B corvr e e b e v by vy g4 8 BUFFER JEXCGEEDED | | 1_1\
N T S TR R U U S T N O S S S VAN N W A S S O S T S MO S S S SV H SN VU T N S N ST AN S U ST SN RS
[A R A S U TV S S N (S U ST SN S S VA O N U T S R N N S Y N SO S WU HA SN UNN BN

€6°929¢ dn

LABEL A\ OPERATION A OPERAND \ co
UIFI4I]18LJ#| i I 1 IFAOIRIMI 1 . !l Ol’l]lsl | L | 1 l Il 1 1 1 1 i1 1 i I] 1 I 1 1 i1 1
TlAlB|L|E1 1 1 J - l 1 l+1 |0| 1 P | [R R S| 1 L1 I\ 1 l L1 1 L 1l i 1 i I 1 Il L 1 Il |- i

1+s0|4n]|8|R1E|T| [TS W S S S S

3 v
TR Y1- Wi S S S S ST,

1 1 | i 1 | t 1 1

Rl EszplALKl]l I l 11 + 101140 lol I l J D S WS W S o | 1) S WS U S S N N l S i | S !
J I —| | A N [W S | l a1ty 101) S S W | 1 | - J | S N 1' 1 LNl OJ JLlle]AINIDJ XCI OLDI El | 1
| O S T L U | l 1 1U1FI41]|81 L lleLBLUlFlFIIIOIOI 1 I | ! 11 11 | } I WY U S L1 i

RESPAK2 |y, ,+ 0200 [, oo sy s s s s e s sy
T B e N N N [T T
Loy i g4yl VR4 V8 2|, BUFF200, | oy b

RIESPAKI3, | 1 4+, 0300, @ | | o
v ey (VS LANDI2Z v b e
e vyt UFHYTE O, BUFF300,
‘4 e = 0400, 0 ey PIACKET (TINACGTLVE

O T S U SO S U I Ut LV S W S S N S U UNS U U SH SO W G S W W N T S S S S U
i L WF4v8 0, REQBUF |y
R N S U SO Y WS NS N NN N WY NN U 0 Y T N SO SN U KN SO SO S W W

81

06°92Z9¢ dn

LABEL \ OPERATION A OPERAND A COMMENTS 72

! SlLlAJNADI L\ " |J| 1$. U G SO S N Lo F S S S T l I T W N S S Y ' l Y S SN N T S N S | P T S N N U SN NN U SO A N SO Y R S
sy oo \bA V2, (RSIBF200 ey o 1S CIOMPLETED FUNCTION |y

T S S N U G ‘CAMA Ll Lal’l) 121/521 T S S S S N N W S S R 1F101R1 |B|U1F1F1210|01 T B S S S S I R S SR S S SRR
I U T S N B IO B IJLEI J#‘DLOANIEIIIOIOI A S S S T Y SO O WO O O T S U N ST VO SO O S TN N S U S S O SO SO B S S N S A S S U

\SJAANL 4 Ll anslleLzloJol dde L L l S L | B] ISIEITI 12I011]F1 ‘ISJ'I lNlElF]SAHlolwlliNlGl AIJTI iclolMlPALlElTlE

. JE T N SR

Lei i
(TSR VOV TS NN S RV VI St]‘!APL Ll A]A'n ‘$1 'laLl N S T E U T L ||1sl IBJutFAFlzloloi lFL"SlH xPloxslllTlllNlEl |qR1 IFIR\EAEI L1

| EX ot ., iz ,, BUFFS -V 0y ey, SET] BUFFS -1 itlo, ZERO I ,NDICATI NG .COMP
T o SV SLANDT e EX LT
e ASA 822 e e b DT B! -
BT e e T
DONETOO s AN 8, FSBF200 -1 |
JN G R U S S | IJIPI Lol JZL’A I$1'\2l ! | - | S ‘ S N N W | l I I N N S SO S B | | N T N SN T S S W L,L_.,L;,;L S S R O S T

lllllllAllJlljilEleIATllLLl‘LlIIl]llllll]llJlllIl]lAllllllllllJLlJL]lllAJLLI

U TS W T S N W' ‘SKTL - l4l'1 121’]21 B S U T Y B | I S N Y NS T B | 1 I N N N S N |) I I I S DU M S | I Y U S TS N TN B W |
I 1 i i L i i " ‘Jl i i " IEIXIATI 1 L " 1 I — A L | I | L i L L L | i L 1 L L 1 I " t i L | L 1 it 1 L l L | i it L L i il L L
T W S S S S | “‘&jdlllsl i Azx'xBluxF\Flzxoxoi J I - l N |I\F1 lplolsilellllel AB)UlF\FIElRl 1A1VLAL||LlA|BlLAEI S I T S B |

FSABIFIZIOIOJ il 1U|F|4l]x8| i 12|:1B‘U\F\F>2\0|‘1 o b e |||F1 lNlELGLAlTIIIVLEL INlolTl LAIVJAKIILIAIBILJEI I N Y N S S S S |

S

w

Sample User Code Elements

UNIVAC

DIVISION OF SPERRY RAND CORPORATION

UP-3853

	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02a-01
	02a-02
	02a-03
	02a-04
	02a-05
	02a-06
	02a-07
	02a-08
	02a-09
	02a-10
	02a-11
	02a-12
	02a-13
	02a-14
	02a-15
	02a-16
	02a-17
	02a-18
	02a-19
	02a-20
	02a-21
	02a-22
	02b-01
	02b-02
	02b-03
	02b-04
	02b-05
	02b-06
	02b-07
	02b-08
	02b-09
	02b-10
	02b-11
	02b-12
	02b-13
	02b-14
	02b-15
	02b-16
	02b-17
	02b-18
	02b-19
	02b-20
	02b-21
	02b-22
	02b-23
	02b-24
	02b-25
	02b-26
	02b-27
	02b-28
	02b-29
	02b-30
	02b-31
	02b-32
	02b-33
	02b-34
	02b-35
	02b-36
	02b-37
	02b-38
	02b-39
	02c-01
	02c-02
	02c-03
	02c-04
	02c-05
	02c-06
	02c-07
	02c-08
	02c-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	17f-00
	17f-01
	17f-02
	17f-03
	17f-04
	17f-05
	17f-06
	17f-07
	17f-08
	17f-09
	17f-10
	17f-11
	17f-12
	17f-13
	17f-14
	17f-15
	17f-16
	17f-17
	17f-18
	17f-19
	17f-20
	17f-21
	17f-22
	17f-23
	17f-24
	17f-25
	17f-26
	17f-27
	17f-28
	17f-29
	17f-30
	17f-31
	17f-32
	17f-33
	17f-34
	17f-35
	17f-36
	17f-37
	17f-38
	17f-39
	17f-40
	17f-41
	17f-42
	17f-43
	17f-44
	17f-45
	17f-46
	17f-47
	17f-48
	17f-49
	17f-50
	E-01
	E-02
	E-03
	F-000
	F-001
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	xBack

