PRELTMINARY DESCRIPTION
of the
UNIVAC

Topyright 9950 by
Eckert-Mauchly Computer Corp.
$0.300-p .1$
February 1956

PRELIMINARY DESCRIPTION OF THE UNIVAC
for ENLC personnel only

1. Introduction

A thorough grasp of the detailed functioning of the UNIVAC depends upon understanding the interrelationships of its various components. For this purpose, a short demonstration routine embodying all instructions will be introduced into the computer, and its execution will be traced, step by step. The level of the treatment is indicated by the detail of Figure U-100. Simplifted Block Diagram of UNIVAC.

The reader should be acquainted with the instruetion code, and have a general knowiedge of the primary purposes of each of the principal units of the UNIVAC System: the UNIVAC (Central Computer), Supervisory Control. UNISERVO, UNIPRINTHR, and UNITYPER.

The System is assumed to be energized and ready to receive a problem. The demonstration routine has been placed on a magnetic tape and this tape is mounted on UNISERVO NO. lo The Clock and Cycling Unit (CU) provide the timing signals required to control the sequencing of the computer.

```
U-300 - p. 2
February 1956
```

2. Initial Read Operation

The problem is started from the Supervisory Controi by setting, the Initial Tape Felector "witch (not shown) to "I", and depressing the Initial Kead Start Button. The next appropriate signal from the Gycling Unit activates the Initial Read Circuits. The Initial Read Tiner steps the Inftial Fead Switch (IRS) to its first position. This prepares the computer to receive data from the UNISERVO. When the IRS is stepped by the $5 R$ Timer to the next position, the first 60 words from UNISERVO No, 1 are transferred over the Read Bus, through the Input Synchronizer, to Fegister I_{0} The Input Synchronizer accumulates the words at the comparatively slow rate of the tape and transfers them to Register I at the much faster speed of the corputer. When the sixtieth word has been transferred to Register I, the RS is stepped to its next position. Next the block of 60 words is transSerred from Register 1 over High Speed Bus No. 1 (Input) (HSBI I), through the High Speed Bus Amplifier, over High Speed Bus No. 2 (memory) (HSB2M), to the first 60 iocations in the memory. The Odd-even Checker counts the pulses of each digit as it passes, and stops the computer if an even count is registered for any digit. The IRS is now stepped to its final position, which starts the computer on its normal cyole of operations.

3. The Four-Stage Cycle of Operation

Each instruction word contains a pair of instructions, cailed the left and right instructions. The computer executes first the left, and then the right. Pricr to executing the instruction-pair, the memory looation containing the word must be determined, the word extracted from the memory, and placed in a special register, the Control Register (CR).

Thus, four events must occur in sequence: (α) determination of the memory location of the instruction word, (β) extracting this word from the memory and transferring it to $\mathrm{CR}_{\mathrm{g}}\left(\mathrm{r}^{\circ}\right)$ executing the left instruction, and (8) executing the right instruction. This sequence is followed until the computer is stopped by an error signal or by a stop instruction o

The Greek letters $\alpha, 3,8, \delta$ indicate the time intervals or cycles during which the operations listed above take place. A special counter called the Cycle Counter (CI) keeps track of the currect cycle。 CI has two binary stages, and thus can count to four. The start circuit provides a signal which clears $C Y$ to α. The termination of each operation produces an ending pulse (EF) which steps CY to the next state.

When $C Y$ is in the α-state, signals are sent to the Function able (FP) which cause the memory location number contained in the Control Counter (C) to be transferred over HSB1A to the HSB smplifier and thence over HSB2A to CR and through a delay line to the Static Register (SR). CY is advanced to the β-state by an ending pulse.

The three decimal digits of the desired menory location are set up in the right part of $S R$, eariy in β otime, ad control the Memory Switcho The tens and hundreds digits select the desired tenword memory channel. To obtain the desired word in the group of ten, use is made of the Time Selection Counter (TSC). This counter muns continuously, counting from zero to nine and repeating. Its reading corresponds to the number of the word next to appesr at the output of the mercury delay line. Tinis is the only word in the group which may be extracted at that particular instanto The units digit in ET is compared with TSC, and when coincidence occurs, a special Time Solection (TS) pulse permits the word to be transferred from the memory over HSB1M to the HSB amplifier and thence over HSB2A to CR_{0}

The Control Counter reading is routed to the adder, while the instruction word is being extracted from the memory. A unit is added to the previous memory location number, providing the number of the next memory location in the nomal sequence, which is returned to C. An ending pulse then advances $C Y$ to the Y-state.

The left instruction of the pair circulating in CR was sent to Sil at the end of β-time, During γ-time, the two instruction digits control the Function Table to initiate the desired operaticn. The three memory location digits control the Menory Switch, to extract the data word which is to be operated upon. At the conclusion of the operation, an ending pulse advances $C Y$ to the 6 -state.

The right instruction passes to $S R$ at the end of γ-time. During B-time, the instruction digits control the Function Table and the memory location digits control the Memory iwitch as described for the left instruction. When the operation prescribed by the right instruction has been executed, an ending pulse steps $C Y$ to the $a-s t a t e$ and the four-cycle sequence is repeated with the next pair of instructions. Instructions may be provided, which alter the normal sequence of memory locations containing instructions, thus permitting choices, iterative routines, etc.

The four-cycle operation of the UNIVAC is summarized in the following table:

Cyele

01 Read out CP memory to CR. Transfer left instruetion to $\mathrm{RR}_{\text {. }}$ Increase C by unity. Ending pulse associated with TS signal.
Execute (left) instruction set up to SR. Transfer right instruction to $S R_{\text {. }}$ Ending pulse associated with instruction executed.
Execute (right) instruction set up in SR. Endine pulse associated with instruction executed.
4. Data Transfers

The first twelve instmctions are contained in memory locations 000 through 00 . These illustrate the varions ways of transferring information from one memory area to another. The following quantities have been introduced fnto the memory and with the instructions constitute the block of 60 vords now in the first 60 memory locations:

Memory Mocation	Quantity	Memory Location	Quantity
042	x_{0}	048	z_{0}
042	Y_{0}	049	21
043	y_{1}	$050-059$	$80-09$

The twelve instructions will (a) transfer x_{0} to memory locations 201 and 301, (b) interchange y_{0} and y_{1} with z_{0} and z_{1}, and (c) transfer © $-\cdots-9$ from 050-059 to 210-219.

Memory Location	Instruction					
000	B	0,1	L	042	$\begin{aligned} & x_{0} \Rightarrow r A \text { and } r X \\ & y_{0} \rightarrow r L \text { and } r X \end{aligned}$	
001	F	043	V	048	$\begin{aligned} & \mathrm{Y}_{1} \rightarrow \mathrm{IF}^{2} \\ & \mathrm{z}_{0}, \mathrm{z}_{1} \rightarrow r V \end{aligned}$	5A unchanged Yo, Yinter-
002	V	042	J	048	$\begin{aligned} & z_{0} \cdot z_{1} \rightarrow 042,043 \\ & y_{0} \rightarrow 048 \end{aligned}$	changed with $z_{0} \cdot z_{1}$
003	a	049	H	201	$\begin{aligned} & y_{1} \rightarrow 049 \\ & x_{0} \rightarrow 201 \end{aligned}$	
004	C	301	K	000	$\begin{aligned} & x_{0} \rightarrow 301 ; 0 \rightarrow r A \\ & 0 \rightarrow r L \end{aligned}$	
005	Y	050	2	210	$\begin{aligned} 0.0 .99 & \Rightarrow r y \\ 00.09 & \rightarrow 210.219 \end{aligned}$	

Returning to the Control Circuits, the stimalation of the start sircuit by the Initial Pead Switch clears CY to C_{2}. The Control Counter is registering 000 , the first memory location. During \mathcal{O}-time, this memory location is transferred through $C R$ to $S R$. During β-time, the instruction pair B. $041=L 042$, located at 000 in the memory (word 0 of channel 00), is transferred to of and the left instruction (B O4l) to SR. A unit is also added to the number in C, so that C contains 001 at the end of $(3$-time. During \bar{f}-time, the menory location digits "O4" select channel "O\&' at the Mencry Switch, and the digit "I" is compored with TSC until TSC reads "I"。 The TS signal, in conjunction with the FT signals called for by the instruetion digit B, now close the clear gate of A, open the memory output gate and the input gate of A. The previous contents of A are cleared out and simaltaneously x_{0} is transferred from memory channel "O4" to A_{0} As soon as the transfer has been completed, the Control Circuits emit a signal called "Time Out" (TO), wich closes the input gate to A, and opens the clear gate in A to permit x_{0} to circulate in A until needed. The TO signal lasts for one ninor oycle, to allow time for the Fr signals of the next instruction to
build up and the old signais to die out. (A minor cycle is the time required for a word to pass a given point in the computer.)

The ending pulse from the control circuits steps $C Y$ to \mathcal{C}, and the right instruction ($L 042$) is executed in a similar manner. This time the TS signal, which initiates the transfer of y_{0}, is given when TSC reads " 2 "s The clear and input gates of Register L are operated by TS and the FT signals are produced by the instruction digit "L" in Sn.

In addition to the operations described, the instruction digits B and L also cause a quantity on the HSB2A to be read into Register K, after its previous contents have been cleared. Thus, at the end of γ-tine, the quantity X_{0} is circulating in both Registers A and X_{0} At the end of δ-time the quantity y_{0} is circulating in both Repisters L and X_{3} whereas X_{0} is now circulating in A oniy, X having been cleared prior to the read-in of $y_{0^{\circ}} \mathrm{CY}$ is now in the $\boldsymbol{\alpha}$-state.

The four-cycle sequence is now repeated with the second instruction paix. 043 - 040) from memory location 001 . At the end of (3 -time, chis instruction word is circulating in $C R$, the left instruction (F O 3) has been sent to $S R$, and C reads 002. The quantity y_{1} is read out of the memory into Register F during f-time, as soon as TSC reads "3"。 The F instruction does not provide a read-in to X.

```
0-300 - pe 8
```

Pebruary 2956

The right instruction（ V 0 8 ）is executed during $\mathbf{3}$－time．This in－ struction reads two successive words from the memory into Register V．Since a basic operation is limited to a single word transfer，the Program Counter （PC）is required when more than one basic operation is needed in the execu－ tion of an instruction．The＂V＂instruction digit in SR in conjunction with PC controls the Function Table to permit two words to be transferred．In this case，the TO signal，which terminates the operation，is delayed by FT until the words in positions＂8＂and＂9＂of channel＂O4＂have passed onto HSBIM through the memory output gate．Likewise the input gate of V is held open for two minor cycles．

As the result of the execution of the first four instructions，x_{0} is circulating in Register A, Y_{0} in L and X, Y_{1} in F_{0} and the pair of words $z_{0}, z_{\text {I }}$ is circulating in V_{0} Ail of these words are also circulating in their original places in channe ${ }^{n} \mathrm{O}_{4}$＂of the memory．

The instruction word（W 042－J 048）from memory location 002 is placed in $C R$ and the two instructions executed during the next，four cycles α, β, γ ． and $5 . C$ is augmented to 003 ．The instruction，W 042，in conjunction with PC，allows the two words，z_{0} and 2_{2} ，to be transferred into channel＂ O 4 ＂of the memory as soon as the TS signai is given。（TSC reading ${ }^{n} 2^{m}$ ）。＂J $048^{\prime \prime}$ causes y_{0} in X to placed in memory channel＂O4＂as word＂8＂。 As any word is read into a memory location，the previous contents are cleared．

The instruction pair 049 - 201 from mamory location 033 brings about the transfer of y_{2} from fegister F to merory channel " K_{4} " as word " $9^{\text {" }}$, and the transfer of x_{0} from A to memory channel "20" as word "1". This compietes the inter change of y_{0}, y_{1} with z_{9}, z_{1} and the transfer of x_{0} from 04 to 202

Memory iocation 0ak yields C 301 - K 000, as the instruction pair next to be executed. The "C" instruction digit operates exactly as the "H" Instruction digit, exeept that it introduces decimal zeros (symbol "z") from the Cycilng Unit into Register A as z_{0} lis passed onto HSBIA. When the "K 000" fostruetion is carried out, the memory gates are kept closed, so that word "o" in channel "OO" is not passed to HSBM. The "K" instruction digit opens the output gate of flegister A, the input gate of Register $\mathcal{L}_{\text {, }}$, thus pernitting the eontente of A to pass nto L, and aiso introduces zinto A from CD to repiace the former contents of A_{0} Thus, registers A and I now both contain decimal zeros, and x_{0} is circulating as word " 2 " in both channels " 20^{n} and "30" of the memory.

The final instruction pair (1 050-Z 210) of this group carries out a ten-word transfer. My 050° causes the entire channel $105^{\prime \prime}$ to be transfiorred to Rogistar T_{0}. The Program Counter is again used to provide tha $T 0$ signal at the end of the ter-word transfer. Again each word continues to eircuiate in memory channe. $05^{\prime \prime}$ in its formar place in addition to entering Yo "Z $210^{0 \prime}$ eauses the ton words in I to bs transferred to memory channea 21". The Control Counter now contains 000°, and next grap of instructions is ready to be carried out.

2s Arithmetio Operations
The secont group of 22 instructions insustrates the execution of the several types of aigebraic addition and the foux shift instructions. Data worde are now located as follows:

Memory Eosetion	Quentity
028	x_{6}
022	z_{0}
043	z_{3}
04,8	30
049	71

The addition instructions are to solve the equation:

$$
\left|x_{0}+y_{0}-2 z_{0}\right|=w_{0}
$$

(It is assumed that x_{0}, y_{0} and x_{0} are all positive quentities.) The four shift instructions are introduced to form the absoiute veiue of the sum and to round-off the sum to eight sigxificant digits.

Nemoxy
Location

006	B	099	c	000	Preparation for possible orerflow in the addition operation
00\%	a	a+1	${ }^{*}$ A		$\mathrm{x}_{0} \rightarrow \mathrm{ra}^{\text {a }}$
				048	$r A=x_{0}+y_{0}$ if overflow go to 000
008	s	02	X	000	$\begin{aligned} & I A=x_{0}+y_{0}-z_{0} \\ & x A=x_{0}+y_{0}-2 z_{0} \end{aligned}$
009	: 2	000	03		Shift (rA) one place zeft, dropping sign
				000	Shift (rA) three places right
00	A	038	- 1. 000		Add round-ofif
					Shift (rA) one more place right
011	03	000			Shist (x A) three places left to reposition after round-off
			9	044	

Remaris

Preparation for possible orerflow in the dition operation
$x_{0} \rightarrow r_{A}$
$r A=x_{0}$ yoi is overfiow go to 000
$I A=x_{0}+y_{0} \cdots z_{0}$
$X_{A}=x_{0}+y_{0}-2 z_{6}$
Shift (rA) one place $2 e f t$, dropping sign

Add rouna-off
Shift (rA) one more piace right
Shist (x f three piaces left to reposition
$(0,44)=w_{0}+\left|x_{0}+y_{0}-2 z_{0}\right|$ with round-af x

000 -i 000 Overflow subroutine: Sidfe (xA) one-place right
033

03	A 03\%	6 Ot 4	Add one unit in MSD position (044) Le $\left(x_{6}+y_{0}\right) / 10$
034	3042	-1000	$\begin{aligned} & (r A)=\$(r A) \text { one place right } \\ & \text { Shift } \end{aligned}$
035	0042	B 04,	$\begin{aligned} & \left(\mathrm{a}_{2}\right)=\mathrm{m}_{\mathrm{o}} / 10 \\ & (\mathrm{~A})=\left(x_{0}+y_{0}\right) / 10 \end{aligned}$
036	00000	7003	Trasafor controd to cos
637	080000	000000	Jnit ix MSD position
038	000000	00000s	Round-of correction
039	-3000	$0 \quad 033$	Overriow instruction

6. Dupriscow

Shosid overfiow occur in the summing operation, the computer wis automatically insert the pair of instructions located in the first memory Tacation ?(000). Consequentiy, an instruction pair to initiate the desired corrective action must be placed in 000 , prior to performing an addition.

The instruetion pair $\langle B 039$ - C 000) from 006 transfers storage 039) to 000 the instructions to Initiato corrective action in case of overfiow The Ieft instruction (B O\&) from OOf brings xo into Register A. The right instruction (${ }^{*} \mathrm{~A} 048$) directs the addition of y_{g} to x_{0}, the sum berng plaoed in A_{0} The asterisk indicates the posibility of overflow

\% Addition

The add instruction (A) is executed in soveral steps First y_{0} is transfarred from 048 to X_{0} The TO signal from the Control Cirouits, which terminates the transfer, steps the Program Counter rather than the gyoie Counter. White the next set of contron signals from the Function Tabie (Initiated jointly by PC-2 and "A") are building up, the quantities $x_{\text {" }}$ in A and y_{0} is X are transferred simultaneously to the Comparator (CF) over special paths Here the relative magnitades and the signs of xo and yo are compared. The Comparator sends aontroi signals to the Adder which appends the sign of the iarger magnitude to the sum, and actuates the complementer If the smailer magnitude has a sigs apposite to that of the Jargexo Duriag the second step, x_{0} from A and y_{0} from X are sent via apedal pathe to the Adder, and the sum is returned to A_{9} again by a speciai patho the ending pulse then advances $0 Y$ to begin the next yye.

```
0-300 - poc3
Febmuary 5996
```

Should a carry ocsur when the most algnifleant decimal digits are
 O. time to admit decimal zeros to HSBSA, instad of the memory location own tained in C_{0} Thus, during (- time, the instruction pair from 000 now - 1000 U 033) is routed to $C R$, rather than that from 008 (the present reading of 0) Purther, the quantity in C is not augmented by a unit, as wouid normally oocur.

8. Duarfiow Rontine

The instruction ${ }^{m}-1$ 000 will sause the decimal digits in A excepo the sign digit, to be shifted one piace righto This is accomplished by routing the word through a delay path which takes one digitanime less than the norma re-circulation patho The aest signifisant digit is dropped, and a decimal zero is supplied from the Cyeilng Onit for the most significant digit of the shifted word. The sign is routed over the normal path, and thus remains ins its proper position.

The instruction "J $033^{\text {n }}$ linterrupts the normal sequence of instructions 1n the following manner: During ${ }^{5}$-time, the Function Table signals set up by " C " transfer the thres memory iocation digits (here "033") from ck to O_{8} aftar ciearing C 。 Thus, the next instruction pair is taken from 033, rather than from 008, the previous number in C.

The inatruction pair (A 037-C 04i), from 03, causes a "one" in the MSD position to be added to the sum in A, thus supplying the digit jost Ln the addition producing the overflow, The instruction $C 0$ of then transm fers the corrected sum to 044 for temporary storage.

$$
\left[1-300-p_{0} .24\right.
$$

February 1956

In order that the decimal polnts may be allgned, the quantity, z_{Q}, which is to be sabtracted from the sum $x_{0}+y_{0}$ mast be shifted right one piace. This is accomplished by the next three instructions. "B $042^{\text {m }}$,
 Register A, dupicating the conditions existing if no overfiow had occurred. The instruction " 00000 " is called the "skip" instruction, as its only effeot is to supply the ending puise which advances CY to the next state thus "skipping" to the next instruction. "U $008^{\prime \prime}$ transfers control baci into the main routine, at the point at which the overfiow occurred. Since control transfers are effective only at α-time, ail control transfer instructions must be righthand instructions. Thus, the "skip" was required to fill in the Iefthand instruction. Register A now contains the sum $x_{0}+y_{0}$, and if overfiow occurred the originai sum was shifted one place right, with a mone" inserted in the new MSD position。

9. Subtraction

The instruction pair (S $042-X 000$, from 008 , is now axecuted. The "S" instruction is carried but in exactiy the same manner as the "A" instruction, with the single exception that the sign of the quautity is reversed as it enters register X on the first step. The "X" instruction utilizes the same procedure as the "A" instruction, except that the first step is omitted. Nothing is read from the memory, but the comparison of magnitudes and signs of X and A by $C D$, and the subsequent addition of the quantities in X and A, are carried outo Register A now contains the sum: $\%_{0}+y_{0}=2 z_{0}$ sinco "-zo" was twice "rdded" from X to A_{0}

10。Shifts

The absolute value of the quantity in A is obtained by the simple expedient of shifting all digits of a one piace left. Thus, the sign is "dropped off" to the left. This is accomplished by the "i 000 " instructiox, which introduces an extra delay of one digit-time in the circulation path of A, and inserts a decimail zero into the LSD position. The ". 3000 " instruction shifts all digits of A three places to the right and inserts decimal zeros in the sign position and the two following positions. This is accomplished by routing the entire word in A over the one-digit-time-shorter path for three successive circulations. The Program Counter is used to controi this shift, which is terminated when the reading of $P C$ agrees with the second instruetion digit (here "3")。

The word from 010 (A 038 . 1000) adds a "5" to the LSD position of the sum in A_{p} producing a carry to the next decimal position if the ISD of the sum was " $5^{\text {m }}$ or greater (round-off) . The second instruction then shifts the result one more piace right. Thus, the result of the round-off addition, except for the possible carry, is dropped.

The final instruction pair (03 000-0 044), brings the sum, wo back to the original decimal point position (if overflow did not occur), and transfers w_{0} to memory Location $0 \mathcal{L}_{4}$. The shift instruction ":3000 might just as well have been used heres since the left-most four digits, prior to the lef't shift, were the decimal aeros inserted by the two previous right shifts. The "On 000 " instruction shifts all digits, except sign digit. "n" places to the lefto

$$
0-300-p_{0} 16
$$

February 1956

Fito Mutiphication
There are three instructions for accomplishing a miltiplications $M_{8} N$ and P_{0} The N instruction differs from the M instruction only in that the sign of the multiplier is reversed at the beginning of the operationo The P instruction is unique in that it omits the round-off correction which is suppiled by the M and \mathbb{N} instwutions and retains the entire 22-digit prodaet. In the following exampie, the Minstruction oniy will be illustrated. and the differences between it and N and P wisi be pointed out at the conQusion.

A compieto multiplieation invoives three instruetions: (1) transferxing the muitipicand from the memory to $L_{\text {g }}$ (2) transferring the multipiler to X and initiating the matipiy operation which delivers the product to $A_{\text {, }}$ and (3) transferring the product from A to memory storage。 In the example chosen, x_{0} will be the multipilcand (abbreviated "icand"), Y_{0} will be the multiplier ("ier") and the product will be delivered to 045. The three in structions, thersfore, become:

Memory Instruction Remarks Losations
0.2
0.3
l. 04
M 0\&8

$$
\begin{aligned}
& x_{0} \Rightarrow x_{i}^{2}\left(x_{0}=0.11111111121\right) \\
& y_{0} \cdot x_{0} \rightarrow\left(y_{0}=-.12345678901\right) \\
& (\mathrm{rA}) \Rightarrow 045((\mathrm{rA})=-.02372 \quad 742100)
\end{aligned}
$$

Taile 2 ahows, at the and of sach minor cycie, the contents of sach register or counter concemed with the maltipiy operation. The Program Counter $\left(P_{0}\right)$ is used to count the steps of the process. F contains the absolute vaiue of three times the muitipicand (on and after step 4), \mathbb{L} contains the multipicand. The produet 30 1cand is built up in A during the first three steps for transfor to F_{c}. The round-off sorrection is placed in A on step ${ }^{4} 0$ Thereafter A sontains the partial product as it is butit up on steps 5 through 15. i initiaily receives the mitipifer, and on stops 5 through 25 tranmits the new alulipifex digit to the MuitipiferQuotient Counter (MQQ), while recsiving the LSO of the oid partial produst from A_{0} MQC recoives the camplement of the new muitipiler digit at the end af each step. This digit is increased to zero each step by sucaessive additions as the multiplies of the "icand" are added. CP receives the signs of "ican" and "ier" on step 3. stores the appropriate sign of the product from steps 4 through 25, and supplies this sign to A and X on step 15.

Step 1 requiree a variable number of minor cyoles. depending upon the position of the multipiler word in the memory channel, and is terminated at the end of the TS minor eysle, leaving "ier" ins X_{0} Also on this step, A is cleared to decimal zeros, which, along with the absolute value of the "icand" from $L_{\text {i }}$ are sent over special paths to the Adder, the sum being returned to A_{0} Steps 2 and 3 repeat the addition of \mid leand \mid to the contents of A_{0} thus building up 3° |cand in A_{0}

The onntents of A are transferred over the HSB to F on step \& Register A is then claared to decimal zeros, which, along with the round-off correction $(0,50000000000)$, are sent over special paths to the Adder The sum is returned to $A_{\text {. }}$. The "fer" is sent to MQC, where the aine "s complement of the $13 D$ of "ier" (here "-1") is set upo All digits of the "ier", in X, are shifted one place right, a decimal zero being supplied to the sign position.

$$
\text { प-300-p. } 18
$$

February 1956
Tably 2 - Multiplication Example

MOC produces one of three signais, depending on the value of the digit complement it contains. If the digit is the complement of 3 or greater, the $" \geq 3^{\prime \prime}$ signal is produced; if the digit is the complement of 1 or 2 , the " <3 " signal is generated; and if the digit is decimal 0 , the "IER" signal is produced. The " 23^{n} signal, for each minor cycle during which it is present, causes the contents of F ($3 \cdot \frac{\|}{}$ icand $\|$) to be added to the partial product in A, and also admits three pulses to step MQC three times, thus increasing by three the digit compiement stored in MQC. The "<3" signal, for each minor cycle during which it is present, causes the contents of L, less sign (\|icand), to be added to the partial product in A_{*} and admits one puise to step MQC. The "IER" signal, present for one minor cycle only, causes the contents of both A and X to be shifted one place right, the LSD from A becoming the MSD of X , and the LSD from X being sent to MQC.

The example should be traced, minor cycle by minor cycle, until the process controlled by the three signals: " ≥ 3 ", " <3 " and "IER" is understood. It should be noted that the " 0 " multiplier digit requires one minor cycle; a "1" or "3", two minor cycles; a "2", "4" or "6", three; a "5", "7" or "9", four; and an "8", five minor cycles per step. Maltiplication by a null quantity thus requires a minimum of 21 minor cycles.

On the final step (15), the sign of the product, which has been $s t o r e d$ since step 4 in $C P$, is affixed to the rounded product in A and to the modified Low-order product digits in X . The TO signal precedes this step in order to allow time for the FT signals, causing the sign transfer, to rise to their proper value. Should the final multiplier digit be " 0 ", the IER minor cycle of step 15 would follow immediately upon the corresponding cycle of step lif and the sign transfer might not take piace.

The N instruction differs from the M instruction of the above example anly in that it causes the sign of the multipifer to be reversed upon the read-in to X on step to The P instruction differs only in that the addition of the round-off correction in step 4 is omitted. Thus a 22-digit product is correctly registered in A and X, containing respectively the high-order and Lower-order portions of the product.
12. Division

A complete division invoives three instructions: (I) tranaferring the divisor from the memoly to y_{0} (2) transferring the dividend to A and initiating the divide operation which delivers the quotient to A and (3) trans: ferring the quotient from A to memory storage. The example chosen is that of dividing the product o mained in the multipilcation exampie by xo yielding y_{0} as the quotiento. The three instructions are:

It should be noted that x_{0} was left in at the conolusion of the mitiplication, and hence it was not necessary to use the ${ }^{9 ?} \mathrm{~L} 04 \mathrm{Al}^{n}$ instruction of Ine 0.3.

The oomputer employs the non-restoring method of divisiono In this method. the divisor is first subtracted from the shifted dividend until an overdraft ocours. The number of subtractions, aot counting the one which produces overdraft, becomes the first (MSD) quotient digit. The dividend is
again shifted left, and the divisor is added back until overdraft again occurs. In this case, the nine's complement of the number of additions, less the one producing the overdraft, becomes the quotient digit. The sequence of alternate subtractions and additions is continued until 12 quotient digits have been determined. A round-off correction is added to the quotient, which is then shifted right to become the rounded M1-digit quotient.

Table 3 shows, at the end of each minor cycle, the contents of each register or counter concerned with the divide operation. The steps are counted by PC. A Binary Counter is used to keep track of the aiternations of subtraction and addition. L contains the divisor. Register A inftially contains the dividend, and thereafter registers the result of each subtraction or addition as the operation proceeds. Register A also receives the 12-digit quotient on step 15, and the rounded 11-digit quotient on step 26. Register X receives a quotient digit from MQC, in the ISD position, at the end of each step (3 through 14) , after the previous contents of X have been shifted one position left. MQC is cleared to decfmal zero at the start of each step of the division. It is then stepped once for each subtraction or addition except the one which produces overdraft. The Binary Counter so controls the read-out of the quotient digit from MQC to X, that the digit is read out directly following subtraction steps, whereas the nine's complement is read out following addition steps. The Comparator serves the seme function as in multiplication-it datermines and stores the sign of the quotient until needed at step 16 for A and X.

The Binary Counter is initially set to 1, which produces a signal causing the Adder to subtract the absolute value of the divisor（from \mathbb{L} ） from the dividend（from A）。 Since the Adder＂subtracts＂by complementing the subtrahend and adding，a carry from the twelfth digit position is ob－ tained whenever the difference has the sign of the minuend．Hence，the absence of this carry indicates an overdrafto The remainder will be in complement form，indicating a nagative quantity．lhen the divisor is added back to the shifted remainder，a carry will eventually be produced，which then beoomes the overdraft signal on addition Ths overdraft signal from the Adder is used to produce the ${ }^{\text {mon }}$ signai in the Mutipiy－Divide Circuits． The＂OR signal serves the same purpose in tho division as does the＂IER＂ signal in the multiplication－that of terminating the step and preparing for the next step．Ths＂OR＂sigmal thus reverses the output of the Binary Counter， shifts the contents of both A and X one place left，causes the quotient digit to be inserted into the $I S D$ position in X ，and clears MQC to decimal zero．

The 12－digit quotient is registered In X at the end of step L_{4} on step 25，this quotient is transferred from X to A_{0} After ciearing A_{0} the roundeoff correction（000000 000005）is added，and the sum returned to A ，B step 36 ，the rounded quetient in A and the unrounded quotient in X are botbs shifted right one place，and the sign heid in CP is inserted into both quotients．An ending puise is produced on step 16 whish terminates the oper－ ation。

Tabie 3 - Division Example

co	$\begin{aligned} & \mathrm{Min} \\ & \mathrm{Cy} \end{aligned}$	$\begin{aligned} & 812 \\ & 0 t 2 \end{aligned}$	4	A		\%		MQ2	CP
			0212113131	${ }_{2} \times \times \times 0 \times$	xxxxxx	xxxxxa	xcoxxax:		
1	$\frac{1}{T}$	1		-0.37	742100			0	-
2	2			083717	421000				
3	$\begin{gathered} \text { TO } \\ \text { I } \\ 2 \\ \text { OR } \end{gathered}$			$\begin{array}{r} 002600 \\ 99 \pm 49 \\ 9 \pm 495 \end{array}$	$\begin{aligned} & 309889 \\ & 398778 \\ & 987780 \end{aligned}$	20xxxx	x $x \times 0 \times 1$:	
4	$\begin{array}{r} 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}$	0		$\begin{aligned} & 926063 \\ & 93717 \\ & 948828 \\ & 959396 \\ & 970507 \\ & 981618 \\ & 992729 \\ & \hline 003840 \\ & 038408 \end{aligned}$	$\begin{aligned} & 09889 \% \\ & 210002 \\ & 325113 \\ & 432224 \\ & 543335 \\ & 654440 \\ & 765557 \\ & 876668 \\ & 766680 \end{aligned}$	3xxxxx	xxxx ${ }^{2}$	$\begin{aligned} & -9 \\ & -8 \\ & -7 \\ & -6 \\ & -5 \\ & -4 \\ & -3 \\ & -2 \end{aligned}$	
5	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 0 R \end{array}$	$\stackrel{3}{4}$		$\begin{gathered} 027297 \\ 016186 \\ 00507 \\ 499396 \\ 93964 \end{gathered}$	$\begin{aligned} & 655569 \\ & 544458 \\ & 43334 ? \\ & 322236 \\ & 222360 \end{aligned}$	x $\mathrm{x} \times \mathrm{x} \times \mathrm{x}$	x0x 223	$\begin{aligned} & 0 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	
6	$\begin{gathered} 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 0 \end{gathered}$	0		$\begin{gathered} 950752 \\ 96286 \\ 972976 \\ 984087 \\ 995198 \\ 006309 \\ 063098 \end{gathered}$	$\begin{aligned} & 333472 \\ & 434582 \\ & 555633 \\ & 666804 \\ & 77795 \\ & 889026 \\ & 890260 \end{aligned}$	xxxxxx	xx'1234	$\begin{aligned} & -9 \\ & -8 \\ & -7 \\ & -6 \\ & -5 \\ & -6 \end{aligned}$	
7	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ \text { OR } \\ \hline \end{array}$	1		$\begin{array}{r} 05198 \\ 04087 \\ 02976 \\ 02865 \\ 0085 \\ 099643 \\ 96432 \end{array}$	$\begin{aligned} & 779149 \\ & 668038 \\ & 556927 \\ & 448516 \\ & 334705 \\ & 223594 \\ & 235940 \\ & \hline \end{aligned}$	20xxxxx	$x 12345$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	
8	$\begin{gathered} n \\ 2 \\ 3 \\ 4 \\ 0 R \end{gathered}$	0		$\begin{gathered} 97 \pi 83 \\ 986524 \\ 99765 \\ 008766 \\ 087666 \end{gathered}$	347051 458162 069273 680384 803840	2xxxxx	\$23456	-9 -8 -7 -6	

[^0]Table 3 - Division Example (Cont.)

8 Pc	$\begin{aligned} & \text { Min } \\ & \text { cye } \end{aligned}$	Bin	I	A		X	MQC	CP
9	1 2 3 4 5 6 7 7 8 $0 R$	1	(021111 211211)	076555 692729 065444 581618 054333 470507 043222 359396 032113 248285 021000 137174 009889 026063 $\$ 998777$ 914952 987779 149520	(xxxxxx 40000xI	123456) 234567	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	i-
0	(r $\begin{array}{r}2 \\ 2 \\ \text { OR }\end{array}$	0		998890 260632 200001 200013 7717420	xoxocl2	345678	$\left\lvert\, \begin{aligned} & -9 \\ & -8 \end{aligned}\right.$	
$p 1$	1 2 3 4 5 6 7 8 9 10 10	1		088902 606309 077791 495.98 066680 384087 055569 272976 044458 161865 033347 050754 022235 939643 011124 828532 000013 717421 988902 606310 889026 063300	xccx 123	456789	$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	
22	1 2 3 4 5 6 7 7 8 9 10 09	0		900137 274211 911248 285322 922359 396433 933470 507544 944581 618655 955692 729766 966803 840877 9779.14 951988 989026 063099 14000137 974210 001371 742100	x0x. 1234	567890	$\begin{gathered} -9 \\ -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \end{gathered}$	
23	$\begin{aligned} & 2 \\ & \boldsymbol{R} \end{aligned}$	1		$* 990260630989$ 902606 309890	x 12345	678900	0	
14	1 2 2 3 4 4 5 6 7 9 9 0	0	(011112 111175	933777 421001 924828 532112 935939 643223 947050 754334 958161 865445 969272 976556 980384 087667 991495 198778 $* 002606$ 309889 026063 098890	$l x=2345$ 123456	678900) 789001	-9 -8 -7 -6 -5 -4 -3 -2 -1	
15	${ }^{\text {TO }}$	1		$123456 \quad 789001$			0	
16	T0			$\begin{array}{ll} 123456 & 789006 \\ -12345 & 678900 \end{array}$	-12345	678900		

[^1]There is a special arcuit in MQC which responds to a aarry from the units position in that counter. This carry produees the Overflow signal which operates as previously described under the A instruction. Thus, if ten subtractions of the divisor from the shifted dividend are not enough to produce overdraft, carry occurs at MQC which results in the Overflow responsetransfer of control to 000. Such a result will be produced if the divisor is zero, or is numerically less than or equal to the dividend. In effect, this requires the correct quotient to be a quantity less than one.

13. Extraction

The E instruction permits the replacement of one or more arbitrarily selected digits in one word, with the correspondingly located digit of another word. The compiete extraction operation requires four instructions: (1) transferring into F the word which controls the extraction, (2) bringing into A the word whose digits are to be replaced, (3) transferring from the memory to HSB2A the word which is to furnish the replacement digits, and (4) storing the modified word in the memory.

The four instructions are:

[^2]The operation to be performed is to select one of the ten worda 00.0 . ${ }^{3}$ depending on the key digits (5th and 6th) of 52, and place this word in 400 .

$$
\pi-300-p .26
$$

February 1956

The E instruction operates in the foliowing manner: a signal from FT_{s} produced by the presence of ${ }^{\prime E} E^{n}$ in $S R$ in conjunction with $T S$ causes the word in F to be scanned. Each digit which has a binary "one" as the least significant pulse (all geven decimal digits, $B_{9} D, F$, etc.) produces no effect. Each digit which has a binary "zero" as the least significant pulse (all odd decimal digits, A, C, E, etc.) will cause a special "extract signal", E, to be present for seven pulse times. The "E" signal will ciear the corresponding seven pulses (one computer digit) from the word circulating in A, and admit in its place a computer digit from HSB2A. Thus, on the minor cycle during which the "TS" signal admits a word from the memory to HSB2A, the "E" signal will replace certain computer digits in A with corresponding digits from HSB2A, as determined by the "extractor" word contained in Fo Table 4 illustrates this action for the present example:

Tabie 4 - Extract Example

Digit Position:	12	11	20	9	8	7	6	5	4	3	2	1
Extractor (in P)	0	0	0	0	2	1	0	0	0	0	0	0
Old word in A Word on HSB2A New word in A		$(2$	$\begin{array}{r} 0 \\ 3 \\ 0 \end{array}$		${ }_{1}^{0}$	0						

14. Control Transfers

The next group of instructions to be considered are the controltransfor instructions $U_{0} Q$, and T_{0} The U instruction has already been described, under the A instruction (overflow)。 The Q and T instruction accomplish the transfer of control in exactly the same manner as the \mathbb{U} instruction, but the execution of the transfer is subject to a condition. The condition necessary for the Q instruction is that all 12 digits in A be identical with the 12 digits contained in L_{0} The condition required for the T instruction is that the algebraic magnitude of the quantity rem gistered in A be greater than that of the ouantity held in L_{0} If the quantities in A and L are not numerical, they are compared on the basis of their binary representation in the $C=10$ code; e.g., $G<K, S<Y_{0}$

The example chosen to illustrate the Q and T instructions also involves the remaining instructions to which the computer is responsive. These will be discussed as they arise in the description of the example。

It is assumed that a block of data is to be processed, and the results recorded, both for future use in the computer and for typing out on a UNIPRINTER. One of three input tapes is to be chosen to supply the raw data, the criterion being the relative magnitude of the selected $\mathrm{c}_{\mathfrak{i}}$ (line 017)
and w_{0}. The coding of the example follows:

$\begin{aligned} & \text { Mamery } \\ & \text { somtiom } \end{aligned}$	Tastructions		Temarise
058	± 0 On	+ 027	
089	00000	Q 029	If ce w wo go to 029
020	22000	31120	
0.1	30060	50400	$\begin{aligned} \mathrm{II} \rightarrow & 060_{0}, 0,19 \\ & e_{1} \rightarrow S, Q_{0} \end{aligned}$
022	R 219	ग 60	$\begin{aligned} & \mathrm{U}(\mathrm{~s}+2) \rightarrow 29 \\ & \text { Go to } 060 \end{aligned}$
023	55480	76000	(480...339) $\rightarrow T_{5}$ (100 pulses/inen) $(480.0539) \rightarrow 16(20$ pulses/inch $)$
1024	6.1000	86000	Rewind T_{2} Rewind P_{6} and set interiock
023	. 0000	50043	Breakpoint $S_{0} c_{0} \rightarrow 043$
026	10026	90000	$\begin{aligned} & \mathrm{S}_{\mathrm{C}} \mathrm{C}_{0} \rightarrow 026 \\ & \text { Stop } \end{aligned}$
027	23000	40120	
028	21000	J 02i	$\mathrm{T}_{1} \rightarrow \mathrm{I}_{\mathrm{I}}$ go to 021
029	22000	3120	$\begin{aligned} & \frac{g_{1}=W_{0}}{}: T_{4} \rightarrow I I I_{1} \\ & 2 I \rightarrow 120_{0} \cdot 179: T_{I} \rightarrow r I \end{aligned}$
330	00000	7 02\%	So to 021

The right instruction from line 077 was "H 400 ", which piaced Q1 ($1=0.09$ as selocted by the key digits of y_{1}) in 400 but also left
 to see if $\alpha_{1}>W_{0}$ The T instruction causes the quantities from A and L to be sent to the comparator, where (A) is subtracted from (L) in the Binary Subtractoro If $A \geqslant I_{0}$, carry will secur and the Conditional Transfer (CT) signal will be sent to the Coxitrol Counter to permit it to reseive the memory location digits which have been sent to HSB by GR。Thus, if $a_{1}>$ woe the digits "O27" will repiace " 019 " in C_{9} and the next instruction word executed will be line 02\%. However, if $e_{1} S W_{0}$ the CT signal is absent, and C remains unchanged at $0,9$.

Assuming that the test of line 018 fails, the next line introduces firs the skip and then the Q instructions. The Q instruction likewise causes the quantities from A and L (unchanged by the T instruction) to be sent to $C P_{0}$ whore they become inputs to a Hail Adder. if all twelve digits ars identical, no output will be received from the Halif Adder. If any two corresponding digits are dissimilar, the resuiting output from the Half Adder will inhibit setting the filp-fiop which produces the CT signal. Thus, the transfer of contro takes place (as described for the T instruction) if and oniy if the two quantities are identical.
 offect on C. For this alternative, a blook of raw data is to be read from the tape on UNISERVO No. 2 (abbreviated T_{2}), Into memory iveations 120.o.179; a second block of instructions from T_{1} is to be read into $060 . .219$; is to be typed out on the Supervisory Controi printer; and the control is then to
be transferred to the first word (060) of the new instruction block. At the conclusion of the processing of the block of data by the instructions in $060 . . .119$ (whatever they may be), the control is to be returned to line 023.

15. Tape Instructions

The eight tape instructions are executed by the computer under the control of the Central Imput-Output and Interlock Circuits, and either the Input Synchronizer or the Output Synchronizer. Simplified block diagrams of these circuits are shown as Figs. 1, 2, and 3, respectively。

Referring to Fig. I, the tape instruction is assumed to be set up in the Static Register. The first instruction digit is passed to the Main Function Table and also to the First Instruction Digit Auxiliary Function Table. The latter table is designed to produce two of four possible signale. If the digit is " 4 " or le $3 s$, the " $R^{\prime \prime}$ signal (for "read") is produced. The digit "5" or greater produces the "W" signal (for "write"). If the digit is odd, the "pw signal (for tape to move forward) is emitted; an even digit produces the "py" signal (for tape to move backward). To execute the given tape instruction, the first instruction digit, in conjunction with PC, produces the FT signals required.

The second instruction digit passes from SR to the Second Instruction Digit Auxiliary Function Table, from which a selector signal, ${ }^{n} \mathrm{nS}^{\prime}$, is sent to UNISERVO "n" (where "n" is $1,2,0.09,-$). If the selected UNISERVO is free (not engaged in a read, write, or rewind operation), the selector signal is returned as an "FIR" signal, a "BIR" signal, or both. The FIR signal is returned if the last instruction to that UXISERVO involved forward tape movement.

FIf: 2
SIMPLTFIED BLOCK DIAGRAM OR INPUT CIRCUITS

PIG. 3
SIRPLIFIED BLOCK DIAGRAM OF OUS PUT CIRCUITS

The BIR signal denotes prior backward tape movement．The return of both signals indicates that the tape is in the rewound condition．

The $\mathrm{FIR}_{\mathrm{B}} \mathrm{BIR}_{\mathrm{B}} \mathrm{F}$ and B signals are sent to the＂Reversal Mamory＂。 If the combination of signals indicates that the tape is to move in the opposite direction from its last movement，a dalay of 0.6 second is interposed to permit realignment of the tape－tensioning controls for the new direction of movement．

The FIR，BIRs， K and W signals are sent to the＂First Block Memory＂。 Pre－ sence of both FIR and BIR Indicates that the block to be read is the first block on the tape．In chis case，a delay of 100 second is interposed prem ceding the execution of a（forward）read instruction．The delay is i． 5 aeconds if the instruction is＂write＂。 In either case，the tepe is started at the regular time，but the reading or writing is held up until the end of the delay period．

The IR signal is sent to the＂Read Interiock＂．If a previous read inm struction is still in progress，action is delayed until its completione The Wignal is sent to the＂Write Interiook＂，which delays execution of the in－ struction，if necessary，until a previous write operation is completed．

The＂Interilock Reilease＂produces the＂IRP＂signal as soon as the Read Interlock or the Write Interlock permits．This aignal is sent to the Control Circuits to set Time Out and step PG，thus initiating the execution of the tape instruction．On the last stage of PC for the partiaular tape instruction， an ending puise is produced，which clears PC，steps $C Y_{\text {，}}$ sets Time Out，and prepares $S R$ for tho next instruction Although not accomplished in this maner， Interlock Relsase may be considered to produce the ending pulse 3．miliseconds later than IRP。
"Read Forwaxd" is activated by the I and F signals, and the ending pulse as scon as permitted by the 0.6 -sec. or the 1.0 -sec. delay, if either is preaent. "Read Bachuard" ia similarly controlled by the R and B signals, and the ending pulse and either delay. WWrite" is controlled by the W and F signals, and the ending pulse subject to the 0.6-sec. or the 1.5-sec. delays.

The two rewind instructions are subject to the Write Interlock and Reversal Momory. The other controls for these instructions have been omitted from Fig. I。
16. The Read Instructions

Referring to Fig. 2, a "read" instruction energizes the Reading Heads at the earlieat time permitted by the interlock and delay controls. The pulae combination (1-7 puises) constituting each computer digit is tranaferred to "Initial Digit Storage" as each group of magnetic "spots" constituting the digit passes under the Reading Heads. An eighth pulse, called the "sprocket channel pulse" is present in each digit pulse group on the tape. This pulse is delayed approximately one minor cycle after being read from the tape, and is then used as a control signal. TFPA. TFPA causes the transfer of the incoming digit from Initial Digit Storage to Final Digit Storage, and activates the Precessor. The Precessor is effoctively a oneword register containing a single pulse. At the output of the Precessor, this pulse appears as the TFPB signal at the proper instant to cause the transfer of each incoming digit from Final Digit Storage to one of the two Synchronizer Input Registers (SYI or $S I I_{2}$). These registers are used alternatoly, the alterration boing produced by a Binary Counter. The first incoming digit is the "sign" digit, and this is placed in the last digit position of the circulating "word" in SII. For each succeeding digit, the Precessor pulse is ad-
vanced seven pulse times, so that the new digit is placed in SII imediately ahead of its predecessor. Hhen all twelve digits have been accumulated, the Precossor pulse has been advanced sufficiently to appear at a second output of the Precessor to be released as the TFPC signal. TFPC initiates the transfor of the coupletely assembled word from the appropriate SII to Fegiater I, and steps the Binary Counter to alternate the SII registers. (One SII register is filling from the tape while the other transfers its word to I.)

The channel and word position in I, which receives the incoming word from $S I I_{\mathbb{1}}$ or $S I I_{2}$, is determined by the reading of the Synchronizer Input Counter (SIIC) and the Input Tank Counter (ITC). Both counters are cleared to decimal zero at the beginning of each read instruction. The TFPC signal, indicating a word completely assembled in SYI, steps SYIC. The reading of SYIC is compared with that of TSC (in the Memory Switch). On coincidence, the word is transferred to that channel of I determined by the reading of ITC. When ten words have been transferred, SIIC emits a carry pulse which steps TMC, and then clears SYIC itself. When the 59 th word has been transferrec. to \bar{I}_{3} a special circuit is activated which terminates the read operation (nomelly after the 60th word has been read) as soon as a period of one millisecond alapses without a new digit being read. This circuit produces a signal. "RE", which stops the tape, de-energizes the Reading Reads, and, after a delay of 7 milliseconds, resets the Read Interlock. The special circuit is also designed to produce an error indication and prevent the resetting of the Read Interlock if the 60th word is not completed or if a 72lst digit is read before the end of the block is reached.

If a "read backward" instruction is being executed, the Precessor timing is altered to reverse the order in which incoming digits are accurnulated in SYI. The readinga of SYIC and ITC are complemented on read-out, and thus cause the incoming words to be assembled in I in the reverse order.

If a " $3 n$ " or " $4 n^{n}$ instruction is being executed, the previous contents of I are emptied into the memory. This process is controlled by SYIC and ITC for Register I and by the Control Register, Static Register and Memory Switch for the Memory. Associated with CR is a timing circuit which causes " 10^{n} to be added to the memory location number held by CR every eleventh minor cycle. If CY is on γ, the left instruction is augmented; if $C Y$ is on σ, the right instruction is augmented. Actually, the word in CR is sent to the adder and the sum returned to CR on every minor cyele. The timing circuit provides decinel zeros as the second adder input on the first nine cycles of each ten, and "000010 000000" or "000000 000010" (CI on Y or δ. respectively) as the second adder input for every tenth minor cycle. Each time SYIC reads "9", a signal is sent to the Control Circuits to stop PC, set TO, clear SR and set up the modified tape instrudtion in SR , thus selecting the next memory channel to receive the ten words from the next I channel. When PC reads"gn, the FT gignale calling for the transfer from I to memory are terminated, and the tape reading begins. For a " 30^{n} or " 40^{n} instruction, the ending pulse terminates the entire operation, as no tape reading is callod for.
37. The Writo Instruction

The write instructions " $5 n^{n}$ and " $7 n$ " bring about the recording of a block of data on UMISERVO "n" at 100 or 20 pulses per inch, respectivelyg The six channels of memory are selected by modification of the instruction in CR as described for
the read ingtructions $3 n$ and 4n. The channels in Register 0 are selected by the Output Tank Selector OIC. When the Interlock Release (Fig. 1) produces the IRG2 signal, the block of data is transferred from the memory to 0_{0} After all gix channels of 0 have been filled, the first word of the first channel is tranaresred to SYO_{1}. This word is then transferred to SH_{2} and the second word to $\mathrm{SHO}_{\mathrm{g}}$ (See Fig. 3).

A "Start Writing" signal is sent to the Output Synchronizer when the tape has come up to its proper speed and the Eriting Heads have been energized. This signal causes a series of pulses, callod TFPD to be produced. For the $5 n$ instrucm tion, the TFPD pulses are produced once every two minor cycles (less pulsetimes), which produces a density of 105 pulses to an inch of tape. The 7n instruction records at a rate one-fifth as fast.

The "Start Writing" signal starts the Precessor so that the Precessor pulse will appear at one output (as a TFPF pulse) at the correct instant to transfer the "sign" digit from SYO_{2} to Digit Storage. The TFPF pulse re-enters the Precessor so as to appear at this same output seven pulse-times earlier on succeeding minor cycles. The Precessor pulse arrives at a second output as a TPPE pulse) after the completion of the writing of the digit (initiated as soon as the digit was set up in Digit Storage), and resets the flip-flop in Digit Storage preparatory to the receipt of the next digit. Thus, the twelve digits of the word in SHO_{2} are successively recorded by the Writing Heads. The 12th TFPF puise (called TFPG) restarts the Precessor for the next word, clears SHO_{2}, and initiates the transfer of the word in SHO_{1} to SHO_{2} and also the next word from 0 to SHO_{1}. SYOC and OTC control the output of O to SHO_{2} in a manner similar to the control of I by SYIC and ITC. The transfer of the last word from

0 to SYO_{2} initiates the generation of a "Write Ending" (WE) pulse, which is sent to the Contral Input-Output Circuits (Fig. 1) to reset the Write Interiock and provide the ending pulse to the Control Circuite to terminate the write poration.

18. The Read Tape Operations

Returning to the example and the coding on page 28, the left instruction of line 020 is "12 000". The first instruction digit, " 1 ", causes the R and F signels to be emitted from the First Instruction Digit Auxiliary Function Table (see Fig. I). In conjunction with PC-I, this digit also stimalates the FT signals required to initiate the interlock tests prior to a read forsard operation. The second instruction digit, " 2 ", causes the " $2 S^{\prime \prime}$ signal to be sent to UIISERVO No. 2, which we will assune is in its rewound condition. Hence, both signals FIR and BIf will be returned to the Central Input-Output Circuits, and, together with R, will acifivate the Firgt Block Memory. The R signal finds the Read Interlock reset, as no read operation is in progress, and hence, the IRP will be produced and sent to the Contral Circuits to set TO and advance PC. Although not accomplished in this manner, the First Block Hemory may be considered to delay the preduction of the HRG2 signal for 1.0 second.

On PO-2, further FT signals are produced to initiate the read forward operation (as soon as permitted by the 1.0 sec. delay) and to provide an ending prise to permit the computer to proceed to the next instruction. Since UNISERVO No. 2 is free, the F signal starts the tape in motion. However, the Reading Beads are not energized until the end of the first-block delay. When this delay has expired, the ITG2 signal, in conjunction with the R and F signals, cause the Reading Heads to be energized and the read operation to be started.

The block of data from T_{2} is now read into $I_{\text {, as already described. }}$

Meanohile, the right instruction "31 $120^{\text {n }}$ has been set up in SR at the beginning of the 6 cycle. The first digit, "3", together with PC-1, produces the FT signals to initiate the interlock tests and the R and F signals. The Read Interlock has not been reset, as the previous read instruction is still in progross. The second digit, " 1 ", causes the iS signal to be sent to UNISERVO No. Is which returns the FIR signal only, since the first block of TI has been read. The Reversal Memory is not set, since the combination F and FIR indicates no reversal is necessary for UNISERVO No. Io

The Read Interlock prevente any further operation of the computer until the completion of the previous read instruction. Eleven milliseconds after the $R E$ signal is omitted by the Input Synchronizer (denoting the completion of the block), the Read Interiock is reset, and permits the present instruction to be carried out.

The IRP now advances PC, whereupon new FT signals cause the contents of I to be transferred to $120 \ldots 179$ in the Memory. PC is advanced each time a chanel has been transferred, so that the augmented instruction in CR will be set up in SR to select the next Memory channel. This transfer requires 66 minor cycles or approximately 2.4 milliseconds. $P C$ is now reading " 8 ", and a third set of FT signala clear SIIC and ITC. The ending pulse initiates the execution of the next instruction. A 3.5-ms delay, initiated on PC-2, is inserted prior to starting tape movements, to allow time for the relays in the selected UNISERVO Eo pick up. Thus, the transfer from I to the Memory is completed before the tape starts to move. A second delay of 6-ms is now inserted to allow the tape to come up to speed and then the Reading Beads are energized and the Input Synchronizer is stimulated to read the block into I。

The chosen block of raw data is now in the memory, and the new block of instructions is in I_{0} The left instruction in line 021 (30060) transfers the milock of instructions from I to 060... 119 in the Memory. Again, the Read Interlock will delay the execution of this instruction until the completion of the previous read. When " $0^{\prime \prime}$ is the second instruction digit, no "nS" selector signal is present. Instead, a signal is sent fram the " 0 " line of the 2nd Instruction Digit Awdiliary FI to the Interlock Release, which replaces the FIR or BIR aignal, and thus actuates the Interlock Helease as soon as the Read Interiock is reset.

19. Supervisory Control Operation

The right instruction of line $021(50400)$ causes the contents of 400 to be printed on the Supervisory Control. The "5" causes the Ist Instruction Digit Auxiliary FPT to generate the W and F signals, and the "O" replaces the "nS" aignal as previously described. As this is the first write operation, the Write Interlock is free and the IRP and IRG2 signals are produced by the Interlock Release without delay.

She "On Ine of the Auxfliary FT also controls the "XOO" Iine of the Main FTY, which, in conjunction with $5^{\text {" }}$, produces FT signals which alter the normal output sequence. HSB2 is connected directiy to SHO_{2}, and "ci" from channel 40 is read to SHO_{2} at TSC ${ }^{\text {WO}}$ 。 The "Start Writing" aignal produces the initial TFPD, and star'ts the Output Synchronizer Precessor, which, in turn, sets up the "sign" digit of a_{1} in the Digit Storage Plip-flops. The TFPE signal from the Precessor clears these flip-flops, which have been supplying the digit pulse to the printer decoding table, from which the solenoid which actuates the selected type bar is controlled. Just before the type bar strikes the platen on the printer, a
contact is closed which produces a "Go-ahead" signal, which becomes the next, TFPD to stimulate the Precessor to produce a TPPF. This TFPF causes the next digit from SHO_{2} to be set up in Digit Storage. The printing proceeds through the first 12 digitso When the "Go ahead" signal following the 12th digit is returned to the Synchranizer it causes a 13 th digit (an "ignore") to be set up in Digit Storage。 This is printed as an " Xn ", if the awitch on the printer is set to "Check Print"; otherwise, the character has no effect. After a 40 , us delay, a WE (Write Ending) signal is given which terminates the operation.

Before the printing of c_{i} had begun, an ending pulse was obtained from a FT signal set up by PC-2 and "5", so that the computer could proceed with the next instruction pair without waiting for the completion of the print operation.
20. Record Transfer of Control

Line 022 (r 119 - U 060) is a combination of particular usefulness in programming. The R instruction causes the reading of C (now 023) to be placed in memory location 119 as a D instruction (000000 000023). This is accomplished by reading out of C from two gates. The first, open during the first three digitotimes of the TS minor cycies allows the three digits circulating in C to reach HSBIA. The second, open for the entire minor cycle except the first three and sixth digit-times, provides decimal zeros plus "J" in the sixth digit position to $\operatorname{HSB2A}$ from CU. The U inetruction then transfers the digits "O8O" to C, so that the noxt instruction seiscted will come from 060.

It is assumed that the lines $060-118$ contain a routine which processes the data contsined in 120.o.179, placing the results in 480...539. When line 119 is reached, the transfer instruction 0 will return control to line 0R3.
21. The Write Operations

The left instruction of line 023 (55 480) causes the block of data beginning with 480 to be recorded on T_{5}. If the Supervisory Control printer has not completed the printing of c_{i}, the Write Interlock will delay the IRP from the Interiock Release. Assuming UNISERVO No. 5 is rewound, the $5 S$ signal will be retiurned as both FIR and BIR, so that the First Block Memory will impose a 1.5second delay before the "Start Writing" aignal is produced. The tape on UNISERVO No. 5 will be started 3.5 milliseconds after the IRG2 aignal is generated. During this 3.5 milliseconds period, the six channels of memory, 48-53, will be transforred to Register 0, controlled by SICC and OTC. After atimulation by the "Start Writing" aignal, the Precessor will regulate the auccessive word transfers from 0 to $S H O_{1}$ and from $S H O_{2}$ to SHO_{2}, as well as the digit transfers from SHO_{2} to Mgit Storage and from the latter to the Reading Headso An odd-even check is made during the final transfer. An even pulse count in any recorded digit will cause an error neon on the Supervisory Control to be lighted, and will aiso prevent the resotting of the Write Interlock.

Should a "bed spot" occur on the tape, its presence is indicated by a punched hole, which is detected by a photo-cell. This photocell is locateds with respect to the Writing Heeds, so that the first digit and last words may be recorded without interference. The recording of any other word is delayed $0_{0} 1$ second following the last hole detected.

When recording for tapes to be used in the tape-to-card device, a 10 millisecond delay is interposed after every ten recorded words. This delay is controlled by a selector button on the Supervisory Control.

As previousiy explained, the $5 n$ instruction produces density of approximately 100 pulses to an inch of tape. The 7 n inatruction is executed in the same manner as the 5 n instruction, but TFPD pulses are produced at a rate only one-fifth as fast so that the tape may be used with a ONIPRINTER to print out its data. Hence, the right instruction of line 023 (76 480) records on T6 the same block just recorded on 55 except, for the lower pulse density. The execution of this instruction is held up by the Writo Interlock until the previous write instruction has been completed.
22. The Rewind Instruction

Line 024 (67 $000-86000$) produces the rewinding of T_{1} and T_{6} The execution of the rewind instruction requires either the FIR or the BIR signal from the aelected UNISERVO. (If both are received, the tape is considered already rewound.) In the present case T_{1} is Pree, but T_{6} is still receiving data from the 76 instruction of line 023.
23. The Breakpoint Insicruction
 point Suiteh on the Supervisory Control is set to "Normal". When this switch is set to "Breakpoint", the computer will stop. The stop is effected by setting the Stop flip-flop, which prevents the TO flip-flop from resetting. Thus, the computer remains fan Tine Out until the "Start" bar on the Supervisory Control keyboard is depressed.

In the present example, the breakpoint was supplied to halt the computer if no more data was to be procossed. Assuming that such is not the case, the Ereakpoint Switch would be set at normal and the instruction is then interpreted as a skip.
24. Supervisory Control Input

The right instruction "10 043" calls for a word typed on the Supervisory Control, to be placed in memory location 043. The Supervisory Control Input (SCI) Switch is in its normal position. The Input Synchronizer serves the same function, i.e., to assemble the digits of the typed word as it does for words read from a tape. The "go ahead" signal from the keyboard becomes the TFPA to initiate the reception of a digit. After twelve digits have been typed, the Word Release key is depressed. This causes the printer to print a "period", produces the RE signal, steps PC , and terminates the typing operation. On PC-3, the word is transferred from SYI to the Memory (043), by-passing I, on the following TS cycle. The RE signal initiates the same ending delays (4 ms and 7 ms) used in tape reading.

The left instruction of line 026 (10 026) is executed in a similar manner, after the Read Interlock is reset at the conclusion of the previous 10 instruction. A new value of y_{1} would be typed into 043, and a new instruction pair (or the same one) may be typed into 026. The new instruction pair will not be carried out at this time, since the current pair is in CR, and hence the stop instruction, " 90000 ", will next be carried out. This instruction, like " 0 ", sets the Stop flip-flop and prevents Time Out from ending until the Stop flip-flop is reset by the Start bar on S.C.
25. Tape Reversal

Returning to the test of line 018: If $c_{i}>w_{0}$, control is transferred to Ine 027. The instruction pair "23 $000 \sim 40120^{\prime \prime}$ causes T_{3} to read (the tape running backward) into I, and then the contents of I are read into the Memory. Assuming UNISERVO No. 3 had last operated in the forward direction, the combination of B (from "2") and FIR signals at Reversal Memory will interpose a 0.6 second delay before the tape motor is started. This time is required by the
balancing circuits which control the tonsioning loops, in order that the correct tension be applied to the tape for the new direction of movement. The "don instruction operates exactiy as the "30" instruction, and is interchangeabie with it。
line 028 (11 000 0 O21) causes the new block of instructions from T_{1} to be read into I and chen transfers control to 021 where these instructions are read into the Momory. The main sequence of instructions is now carried out, as already deseribed. It would have been proper to use the instruction $331120^{n \prime}$, in piace of the two instructions, " 40120^{n} and "ll $000^{\text {". The same results would have been }}$ achioved, and in a shorter time interval.

Returning to the test of line 019: If $\mathrm{e}_{\mathrm{f}} \mathrm{w}_{0}$, control is tranaferred to Iine 029, where the next block of T_{4} is read to $120 . \ldots 179$, the new block of instructions is read to I, and control is then transferred to the main routine at line 021.
28. Checks

The computer is provided with several types of cheaks to detect and locate comoutor errors. The basic check is that of the oddness of the pulse count on each camputer digit. Eight binary counters are employed for this purpose: one on the minuend input of one of the duplicated Adders, one on the subtrahend input of the other duplicatod Adder, one on each of the duplicated High Speed Busses, two on the input flip-flops of the Input Synchronizer, and two on the output flip-flops of the Output Synchronizer. Each counter is designed to energize an error circuit shovid any computer digit sampled be found to contain an even number of pulses.

0-300 - poli6

February 1956

There are a number of duplicated units in the computer, the pulse trains of each of which are continuously compared in a like-unlike checking circuit. The A, ${ }_{0} \mathrm{I}$ and X Registers, the Adder, the comparator, ESB2A, and a portion of the Cycling Unit are duplicated. Many clements in the remaining units are duplicated and error circuits are associated with them to stop the computer and indicate the source of the error by lighting a neon on the Supervisory Control.

The Function Tables are designed to decode the checking pulse, and hence each output line requires an odd number of input lines to excite it. A even pulse combination, therefore, results in no excited output line, and the computer stalls. The stall is detected by a delay flop associated with CY, which recovers if no pulse is sent to advance CY during a 2-second interval. The stail is fixdicated by a nean on the Supervisory Control.

The Merrory contents are subjected to a Periodic Memory Check every three seconds. Each tank is read into the HSB, the HSB checirer sempling each digit to insure its oddness. The PND occurs on a-time, thus interrupting the rormal sequence of instructions until completed. The MLC is used to count the minor cyclen. By clearing PGC to binary zeros, the carry is deferred until the 13 th minor cycle, thus insuring that every digit in a channel is subjected to the check.

[^0]: 4 Tndicates overdraft

[^1]: \% Indicates overdrait

[^2]: 017 B 2(00) H 400

