
•

•
001 ... 251 P.ev . .31?:'."i

Information Management
System (IMS)
Action Programming in
RPG 11

User Guide

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) Information Management System (IMS) Action Programming in 'RPG II User Guide", UP-9206.

This update for release 8.0 documents guidelines for defining the program information block and buffer size for

local workstations.

Copies of Updating Package A are now available for requisitioning. Either the updating pankj,jge·~nly or the complete
manual with the updating package may be requisitioned by your local Sperry Univac rep~~~aht'!tive. To receive only
the updating package, order UP-9206-A. To receive the complete manual, order UP-9206. «

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A07, A08, BOO, 807, 18, 18U, 19,
19U, 20, 20U, 21, 21 U, 28U, 29U, 75, 75U, 76 and

(Package A to UP-9206, 7 pages plus Memo)

,, ' .. '
;· ·'

--: -,

··~. -

January, 1983

•

·-

•

•

UD 1 -25 l Rev. 3173

Information Management
System (IMS)
Action Programming
IN RPG II

User Guide

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Information Management System (IMS) Action Programming in RPG II User Guide", UP-9206.

The Information Management System (IMS) Action Programming in RPG 11 User Guide is one of five books
replacing the IMS 90 Applications User Guide/Programmer Reference, UP-8614, Rev. 1. Other manuals replacing
UP-8614 are:

• IMS Concepts and Facilities, UP-9205

• IMS Action Programming in COBOL and Basic Assembly Language (BAL) User Guide, UP-9207

• IMS Terminal Users Guide, UP-9208

• IMS Data Definition and UNIQUE User Guide, UP-9209

This manual describes and illustrates how to write RPG II action programs. It is presented in nine sections and four
appendixes as follows:

Section 1.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

Mailing Lists
BZ, CZ and MZ

Setting the Stage

General Rules for Coding Action Programs

Writing an Action Program

Writing a More Complex Action Program

Special Types of Output Messages

Using Screen Format Services for Format Messages

Action Programming in a Distributed Data Processing Environment

Compiling, Linking, and Storing Action Programs

Mailing Lists AOO, A07, A08, BOO, 807, 18, 18U, 19,
19U,20,20U,21,21U,28U,29U,75, 75U, 76,and
76U

(Cover and 287 pages)

Library Memo for
UP-9206

September, 1982

Appendix A. Using Device Independent Control Expressions and Field Control Characters

Appendix B. Generating Edit Tables

Appendix C. Summary of IMS Error Codes

Appendix D. Action Program Coding Restrictions

The complete titles and ordering numbers of the books that form the IMS library are:

• Information Management System (IMS) System Support Functions User Guide, UP-8364, Rev. 7 -·
• Information Management System (IMS) Concepts and Facilities, UP-9205

• Information Management System (IMS) Action Programming in RPG II User Guide, UP-9206

• Information Management System (IMS) Action Programming in COBOL and Basic Assembly Language (BAL)
User Guide, UP-9207

• Information Management System (IMS) Terminal Users Guide, UP-9208

• Information Management System (IMS) Data Definition and UNIQUE User Guide, UP-9209

• IMS/OMS Interface User Guide, UP-8748, Rev. 1

Additional Copies may be ordered by your local Sperry Univac representative.

·-

•

•

•

Information Management System (IMS)

Action Programming in RPG II

•

•
H UNIVAC UP-9206

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

' 1982 - SPERRY CORPORATION

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIV AC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

•

•

•

•

UP-9206

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Acknowledgment 1

Preface 1 thru 3

Contents 1 thru 10

1 1 thru 10

2 1 thru 23
24
25 thru 43

3 1 thru 23

4 1 thru 21

5 1 thru 55

6 1
2 thru 13

7 1 thru 10

8 1 thru 9

9 1 thru 28

Appendix A 1thru15

Appendix B 1 thru 19

Appendix C 1 thru 7

Appendix D 1 thru 4

Index 1 thru 13

User Comment
Sheet

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

PAGE STATUS SUMMARY

ISSUE: Update A- UP-9206
RELEASE LEVEL: 8.0 Forward

Update
Level

Orig.

A

Orig.

Orig.

Orig.

Orig.

Orig.
A
Orig.

Orig.

Orig.

Orig.

A
Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Part/Section
Page

Number
Update

Level Part/Section

PSS 1
Update A

Page
Number

Update
Level

All the technical changes are denoted by an arrow r-J in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow r-J pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

UP-9206

•

•

•

SPERRY UNIV AC OS/3 Acknowledgment 1
IMS ACTION PROGRAMMING IN RPG II

Acknowledgment

We are indebted to the many systems analysts and staff
members of Sperry Univac branch offices and customer
organizations who helped us develop the OS/3 IMS library. They
gave us suggestions, answered numerous questions, reviewed
the manuals, and provided us with "real-life" programming
examples. The customer organizations assisting us include:

• Gay and Taylor Insurance Adjustors, Winston-Salem, NC

• Penn Ventilator Company, Philadelphia, PA

• Victor Valley Community College District, Victorville, CA

The Sperry Univac organizations assisting us include:

• Los Angeles Access Center, Customer Support Services, Los
Angeles, CA

• Charlotte Commercial Branch, Raleigh Office, Raleigh, NC

• Charlotte Commercial
Greensboro, NC

Branch, Greensboro

• Minneapolis Marketing Branch, Minneapolis, MN

• Wellesley General Branch, Wellesley, MA

• Philadelphia Manufacturing Branch, Wayne, PA

• Des Moines Marketing Branch, West Des Moines, IA

Office,

• System 80 Benchmark and Demonstration Services, Blue
Bell, PA

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 Preface 1
IMS ACTION PROGRAMMING IN RPG II

Preface

This manual is one of a series designed to instruct and guide you
in using the SPERRY UNIV AC Information Management System
(IMS) for Operating System/3 (OS/3). It describes and illustrates
how to write RPG II action programs.

This manual is divided into seven sections and four appendixes.
The topics discussed are:

•

•

Section 1 . Setting the Stage

Introduces and defines IMS terminology related to action
programming and discusses how IMS and action programs
interface.

Section 2. General Rules for Coding Action Programs

Discusses special coding considerations in writing action
programs with particular emphasis on the RPG II/IMS
interface areas.

• Section 3. Writing an Action Program

Presents simple programming examples illustrating the
fundamental properties of action programming - processing
input messages and generating output messages.

• Section 4. Writing a More Complex Action Program

•

Presents more complex programming examples illustrating
the use of internal subroutines and screen format services in
action programs.

Section 5. Special Types of Output Messages

Describes and provides programming examples of the many
types of output action programs can generate - namely,
multiple output, continuous output, output-for-input queueing,
and output with message switching.

UP-9206

•

SPERRY UNIVAC OS/3 Preface 2
IMS ACTION PROGRAMMING IN RPG II

Section 6. Using Screen Format Services to Format
Messages

Describes how action programs use screen format services
to format output messages and receive formatted input.

• Section 7. Action Programming in a Distributed Data
Processing Environment

Describes the IMS transaction facility for handling distributed
data processing with IMS.

• Section 8. Compiling, Linking, and Storing Action Programs

Explains how to compile, link, and store action programs for
use during online IMS sessions.

• Section 9. Debugging an Action Program

•

Describes how to interpret data provided in a snap dump for
debugging purposes.

Appendix A. Using Device Independent Control Expressions
and Field Control Characters

Describes the use of device independent control expressions
and field control characters for formatting messages.

• Appendix B. Generating Edit Tables

Explains the use of the edit table generator for converting
unformatted input into fixed formats.

• Appendix C. Summary of IMS Error Codes

Presents all error codes returned by IMS as a result of
function requests made by action programs.

• Appendix D. Action Program Coding Restrictions

Presents IMS restrictions for RPG II coding forms.

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 Preface 3
IMS ACTION PROGRAMMING IN RPG II

As one of a series, this manual is designed to guide you in
programming and using the OS/3 information management
system. Depending on your need, you should also refer to the
current versions of other manuals in the series. Complete manual
names, their order numbers, and a general description of their
contents and use are as follows:

• Information management system (IMS) concepts and
facilities, UP-9205

Describes the basic concepts of IMS and the facilities that
IMS offers.

• Information management system (IMS) system support
functions user guide, UP-8364

•

•

Describes the procedures to generate, initiate, and recover
an online IMS system.

Information management system (IMS) action programming
in COBOL and basic assembly language (BAL) user guide,
UP-9207

Describes how to write action programs in COBOL and BAL,
with extensive examples.

Information management system (IMS) terminal users guide,
UP-9208

Describes terminal operating procedures, standard and
master terminal commands, and special purpose IMS
transaction codes. Also includes UNIQUE command formats
with brief descriptions. The manual is in easel format for
ease of use at the terminal.

• Information management system (IMS) data definition and
UNIQUE user guide, UP-9209

•

Describes how to create defined files for use with UNIQUE
or your action programs and explains how to use UNIQUE.
Includes extensive examples of data definitions and UNIQUE
dialogs.

IMS/DMS interface user guide, UP-8748

Describes how to access a data base management system
(DMS) data base from IMS .

-- --------------------

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

ACKNOWLEDGMENT

PREFACE

CONTENTS

1. SETTING THE STAGE

1.1. INTRODUCING IMS

1.2. INTERACTING WITH IMS

1.3. LET'S DEFINE SOME BASIC IMS TERMS

1.4. HOW YOU STRUCTURE TRANSACTIONS

1.5. WRITING REUSABLE ACTION PROGRAMS

1.6. HOW YOUR PROGRAM TALKS TO IMS

2. GENERAL RULES FOR CODING ACTION PROGRAMS

2.1.

2.2.

2.3.

2.4.

2.5.

CODING ACTION PROGRAMS

IDENTIFYING AN ACTION PROGRAM

DESCRIBING FILES AND INTERFACE AREAS

DEFINING THE INTERFACE AREAS

DEFINING THE PROGRAM INFORMATION BLOCK (PIB)
Structure of the Program Information Block

Contents 1

Contents

1-1

1-1

1-3

1-5

1-9

1-9

2-1

2-1

2-3

2-5

2-7
2-8

UP-9206 SPERRY UNIV AC OS/3 Contents 2
IMS ACTION PROGRAMMING IN RPG II

2.6. HOW PROGRAM INFORMATION BLOCK FIELDS ARE USED 2-9 • Determining Error Status 2-9
Naming a Successor Program 2-11
Specifying Types of Termination 2-11
Record Locking and Rollback 2-14
Transaction Identification 2-16
Defined File Identification 2-16
Standard Message Size 2-16
Work and Continuity Area Sizes 2-17
Success Unit Identification 2-17
Source Terminal Characteristics 2-18
Remote Transaction Type 2-19

2.7. HOW TO READ THE PROGRAM INFORMATION BLOCK 2-20

2.8. HOW TO UPDATE THE PROGRAM INFORMATION BLOCK 2-23

2.9. DEFINING THE INPUT MESSAGE AREA (IMA) 2-25
Format of the Input Message Area Header 2-25
Input Message Header Fields 2-26

2.10. READING THE INPUT MESSAGE AREA 2-27

2.11. USING THE INPUT MESSAGE AREA TO PASS DATA 2-28

2.12. DEFINING THE OUTPUT MESSAGE AREA (OMA) 2-30 • Format of the Output Message Area Header 2-31
Output Message Header Fields 2-31

2.13. FILE SPECIFICATIONS FOR THE OUTPUT MESSAGE AREA 2-33

2.14. HOW TO CODE YOUR OUTPUT MESSAGE AREA 2-35

2.15. DEFINING THE CONTINUITY DATA AREA (CDA) 2-38

2.16. HOW TO USE THE CONTINUITY DATA AREA TO PASS DATA 2-39

2.17. HOW TO VARY CONTINUITY DATA AREA SIZE TO SUIT
AMOUNT OF DATA PASSED 2-41

3. WRITING AN ACTION PROGRAM

3.1. DIFFERENCES BETWEEN ACTION PROGRAMS AND NORMAL
RPG II PROGRAMS 3-1

3.2. PURPOSE OF EXAMPLES 3-1

3.3. HOW TRANSACTIONS ARE INITIATED 3-2

3.4. SAMPLE TRANSACTION (EXTERNAL SUCCESSION) 3-2 •

UP-9206 SPERRY UNIVAC OS/3 Contents 3
IMS ACTION PROGRAMMING IN RPG II

• 3.5. A DESCRIPTION OF WHAT THE SAMPLE TRANSACTION DOES 3-3
RCMENU - Pass 1 3-3
RCMENU - Pass 2 3-4
RCCUST 3-4

3.6. GENERAL OPERATION OF ACTION PROGRAMS 3-5

3.7. EXPLANATION OF THE CODING FOR RCMENU 3-6

3.8. RCMENU - ASSIGNING A NAME TO THE PROGRAM 3-11

3.9. RCMENU - DEFINING THE INTERFACE AREAS (IMA. OMA, and PIB) 3-11

3.10. CONTENTS OF MAIN STORAGE AFTER RCMENU IS SCHEDULED 3-13

3.11. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 1) 3-13

3.12. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 2) 3-14

3.13. HOW RCMENU USES THE OUTPUT MESSAGE AREA 3-16
Generating the Output Message - Pass 1 3-16
Generating the Output Message - Pass 2 3-17
When No Output Message is Generated 3-17

3.14 . HOW RCMENU USES THE PROGRAM INFORMATION BLOCK 3-18

• 3.15. EXPLANATION OF THE CODING FOR RCCUST 3-20

3.16. RCCUST - ASSIGNING A NAME TO THE PROGRAM 3-20

3.17. RCCUST - DEFINING THE INTERFACE AREAS (IMA. OMA. PIB) 3-20

3.18. DEFINING THE INPUT FIELDS 3-21

3.19. CALCULATIONS FOR RCCUST 3-22
Validating Input 3-22
Computing a New Account Balance 3-22

3.20. OUTPUT CODING FOR RCCUST 3-22

4. WRITING A MORE COMPLEX ACTION PROGRAM

4.1. GENERAL DESCRIPTION OF SAMPLE PROGRAM 4-1

4.2. A SUMMARY OF JAMENU'S PROCESSING 4-1

4.3. A SUMMARY OF JAADD1. THE SAMPLE PROGRAM 4-2
JAADD1 - Pass 1 4-12
JAADD1 - Pass 2 4-12

•

UP-9206 SPERRY UNIVAC OS/3 Contents 4
IMS ACTION PROGRAMMING IN RPG II

4.4. USING THE CONTINUITY DATA AREA 4-14 • File Description Form (CDA) 4-14
Input Form Coding (CDA) 4-14
Calculation Form (CDA) 4-15
Output Form (CDA) 4-16

4.5. USING INTERNAL SUBROUTINES 4-17
Subroutine $REFDT 4-17
Subroutine $CUST 4-18
Subroutine $ERROR 4-18

4.6. USING AN ERROR MESSAGE FILE 4-19

4.7. USING SCREEN FORMAT SERVICES 4-20

5. SPECIAL TYPES OF OUTPUT MESSAGES

5.1. DIFFERENT TYPES OF OUTPUT MESSAGES 5-1

5.2. GENERATING MULTIPLE OUTPUT MESSAGES 5-1
Coding the File Description Form 5-3
Coding the File Extension Form 5-3
Coding the Input Form 5-3
Coding the Calculations Form 5-4
Coding the Output Form 5-4 • 5.3. HOW MULTIPLE OUTPUT MESSAGES ARE PROCESSED 5-5

5.4. GENERATING CONTINUOUS OUTPUT 5-9

5.5. DEVICES THAT CAN RECEIVE CONTINUOUS OUTPUT 5-9

5.6. CODING FOR CONTINUOUS OUTPUT 5-9
Directing Continuous Output to a Terminal 5-10
Directing Continuous Output to an Auxiliary Device 5-11

5.7. WRITING A CONTINUOUS OUTPUT PROGRAM 5-13

5.8. THE IMS DELIVERY CODE 5-17

5.9. RECOVERY CONSIDERATIONS WITH CONTINUOUS OUTPUT 5-21

5.10. A SAMPLE CONTINUOUS OUTPUT PROGRAM 5-23
File Description Form Coding 5-25
Input Form Coding 5-25
Calculation Form Coding 5-25
Output Form Coding 5-25

5.11. ANOTHER SAMPLE CONTINUOUS OUTPUT PROGRAM 5-29

5.12. CONTINUOUS OUTPUT AND CASSETTE/DISKETTE USE 5-40 • 5.13. INITIATING A TRANSACTION AT ANOTHER TERMINAL 5-43

UP-9206 SPERRY UNIVAC OS/3 Contents 5
IMS ACTION PROGRAMMING IN RPG II

• 5.14. HOW YOU CODE USING OUTPUT-FOR-INPUT QUEUEING 5-43

5.15. OUTPUT-FOR-INPUT QUEUEING WITH CONTINUOUS OUTPUT 5-46

5.16. OUTPUT-FOR-INPUT QUEUEING WITH A SCREEN BYPASS DEVICE 5-46

5.17. MESSAGE SWITCHING 5-47

5.18. THE IMS SEND FUNCTION AND IMS STATUS CODES 5-49

5.19. DISCONNECTING A LINE FROM AN ACTION PROGRAM 5-52

5.20. SENDING MESSAGES TO THE SYSTEM CONSOLE 5-54
Error Returns on Output to the Console 5-55

6. USING SCREEN FORMAT SERVICES TO FORMAT MESSAGES

6.1. DISPLAYING FORMATTED SCREENS 6-1

6.2. DEVICES SUPPORTING SCREEN FORMAT SERVICES 6-1

6.3. GENERATING SCREEN FORMATS 6-1

6.4. CONFIGURATION REQUIREMENTS 6-2

• 6.5. REQUIREMENTS AT IMS START-UP 6-3

6.6. HOW IMS HANDLES SCREEN FORMATTED MESSAGES 6-5

6.7. USING FORMATTED SCREENS FOR INPUT 6-6

6.8. CODING REQUIRED TO USE SCREEN FORMAT SERVICES 6-9

6.9. GENERATING AN OUTPUT SCREEN WITH NO VARIABLE DATA 6-10

6.10. ERROR CODES RETURNED BY IMS 6-11

6.11. TRANSMITTING FORMATTED SCREENS TO AN AUXILIARY DEVICE 6-12

7. ACTION PROGRAMMING IN A DISTRIBUTED DATA PROCESSING
ENVIRONMENT

7.1. BASIC DDP REQUIREMENTS AND TERMINOLOGY 7-1

7.2. HOW IMS ROUTES REMOTE TRANSACTIONS 7-3

7.3. PROCESSING A REMOTE TRANSACTION 7-5

7.4 . PROCESSING AN OPERATOR-INITIATED REMOTE TRANSACTION 7-7 • 7.5. PROCESSING A PROGRAM-INITIATED REMOTE TRANSACTION 7-8

7.6. USING SCREEN FORMAT SERVICES TO PROCESS REMOTE
TRANSACTIONS 7-9

UP-9206 SPERRY UNIVAC OS/3 Contents 6
IMS ACTION PROGRAMMING IN RPG II

8. COMPILING, LINKING, AND STORING ACTION PROGRAMS • 8.1. PREPARING ACTION PROGRAMS FOR ONLINE PROCESSING 8-1

8.2. COMPILING ACTION PROGRAMS 8-2

8.3. LINK EDITING ACTION PROGRAMS 8-4

8.4. STORING ACTION PROGRAMS IN A LOAD LIBRARY 8-7

8.5. REPLACING ACTION PROGRAMS IN THE LOAD LIBRARY
DURING ONLINE PROCESSING 8-8

9. DEBUGGING AN ACTION PROGRAM

9.1. CONDITIONS FOR A SNAP DUMP 9-1

9.2. TYPES OF SNAP DUMPS 9-1

9.3. LAYOUT OF A SNAP DUMP 9-2

9.4. ANALYZING A SNAP DUMP 9-5

9.5. THE PROGRAM INFORMATION BLOCK (PIB) 9-8
Finding Your Error 9-8 • Finding Other Data in the Program Information Block 9-9

9.6. THE OUTUT MESSAGE AREA 9-9

9.7. THE INPUT MESSAGE AREA 9-10

9.8. ACTION PROGRAM LOAD AREA 9-10

9.9. SINGLE AND MULTITHREAD SNAPS 9-13

9.10. OTHER DEBUGGING RESOURCES 9-25

APPENDIXES

A. USING DEVICE INDEPENDENT CONTROL EXPRESSIONS
AND FIELD CONTROL CHARACTERS

A.1. GENERAL A-1

A.2. FORMATTING MESSAGES A-1
Output Messages A-1
Input Messages A-3

A.3. DICE AND ICAM A-4 • A.4. THE FORMAT OF DICE SEQUENCES A-5

UP-9206 SPERRY UNIVAC OS/3 Contents 7
IMS ACTION PROGRAMMING IN RPG II

• A.5. INTERPRETING DICE SEQUENCES A-9

A.6. USING DICE IN AN RPG II ACTION PROGRAM A-12

A.7. USING FIELD CONTROL CHARACTERS A-14

8. GENERATING EDIT TABLES

B.1. PURPOSE B-1

B.2. STATEMENT CONVENTIONS AND CODING RULES FOR EDIT TABLE
GENERATOR INPUT B-1

B.3. EDIT TABLE GENERATOR PARAMETERS B-5

B.4. EXECUTING THE EDIT TABLE GENERATOR B-10

B.5. ERROR PROCESSING B-12

B.6. ENTERING INPUT MESSAGES FROM TERMINAL B-15

B.7. SAMPLE EDIT TABLE APPLICATION USING POSITIONAL AND
KEYWORD PARAMETERS B-16

• c. SUMMARY OF IMS ERROR CODES

D. ACTION PROGRAM CODING RESTRICTIONS

FIGURES

1-1. A Simple Transaction 1-3
1-2. A Dialog Transaction 1-4
1-3. Normal Termination 1-6
1-4. External Succession 1-6
1-5. Delayed Internal Succession 1-7
1-6. Immediate Internal Succession 1-7
1-7. Dynamic Transaction Structure 1-8
1-8. The Activation Record in Main Storage 1-10
1-9. The Action Program and Its Interface Areas 1-10

2-1. Coding the Control Form 2-2
2-2. Defining Files and Interface Areas 2-5
2-3. Defining the Program Information Block as an Input Demand File 2-20
2-4. Testing Status and Detailed Status Codes 2-21
2-5. Defining the Program Information Block as an Update Demand File 2-23
2-6. Designating a Successor Program and Type of Termination 2-24

• 2-7. Defining the Input Message Area as a Primary Input File 2-27
2-8. Defining the Input Message Area as an Update Demand File 2-28
2-9. Defining the Output Message Area as an Output File 2-33
2-10. Defining th& Output Message Area as an Update Demand File 2-35

UP-9206

2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

Coding the Output Form Determines the Values in Message Length
How Placement of Output Fields Can Cause Incorrect Message-Length Field
Defining the Continuity Data Area when It Saves Data Only
Defining the Continuity Data Area when It Reads and Updates Saved Data
Defining the Continuity Data Area when It Reads Data Only
Coding the File Description Form for Program PROGO 1
Coding the Output Form for Program PROGO 1

3-1. Transaction Code Initiates IMS Transaction
3-2. How RCMENU and RCCUST Process a Transaction
3-3. RCMENU Program
3-4. RCCUST Program
3-5. Main Storage when IMS Schedules RCMENU
3-6. Contents of the Input Message Area - Pass
3-7. Contents of the Input Message Area - Pass 2
3-8. RCMENU's Output Message - Pass 1
3-9. RCMENU's Output Message on Pass 2 for Menu Selection 2
3-10. RCMENU's Output Message when Menu Selection '5-STOP' Is Made
3-11 . Input Message Coming into Program RCCUST

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.

5-1.
5-2.
5-3.

5-4.

5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

Screen Generated by JAMENU
Action Program JAADD 1
Output Generated by JAADD 1 on First Pass
Output Generated by JAADD 1 on Second Pass
Action Program JAADD2
Error Screen Generated for Program JAADD 1

Multiple Output Message Program (LSTLIM)
Coding a Continuous Output Message for the Terminal
Coding a Continuous Output Message for an Auxiliary Device with the
Transfer-All Option
Coding a Continuous Output Message for a Printer with Print-Transparent and
Inhibit Space Suppression
Coding to Move a Value to Continuous-Output-Code
Input Message Returned to Successor Program in Continuous Output Transaction
Continuous Output Program SALES2
Continuous Output Generated for SALES2
Continuous Output Program NCSC
Generating Output Message Using Output-for-Input Queueing
Coding an Output Message with Output-for-Input Queueing
Coding for Message Switching
Generating Switched Output Message
Coding a Line Disconnect from an Action Program

Creating and Using Screen Format
Output Screen Format with Display Constants, Variable Data, and Input Fields
Input Screen Format with Display Constants and Changed Input Fields
Coding the Output Form to Use Screen Format Services
Output Screen Display for Figure 6-4
Coding for a Formatted Screen without Variable Output Data
Coding to Transmit Formatted Screen to a Printer

Contents 8

2-36
2-36
2-39
2-40
2-40
2-42
2-43

3-2
3-5
3-7
3-9
3-13
3-14
3-15
3-16
3-17
3-17
3-21

4-2
4-3
4-7
4-7
4-8
4-20

5-2
5-10

5-13

5-14
5-17
5-18
5-24
5-28
5-29
5-44
5-45
5-47
5-48
5-53

6-4
6-5
6-6
6-8
6-9
6-10
6-12

•

•

•

•

•

•

UP-9206

7-1.
7-2.

8-1.
8-2.
8-3.
8-4.

8-5.
8-6.
8-7.
8-8.
8-9.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.

A-1.
A-2.
A-3 .
A-4.

B-1.
B-2.
B-3.

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

Processing an Operator-Initiated Remote Dialog Transaction
Processing a Program-Initiated Remote Transaction

Compiling an Action Program Using Jproc and Embedded Source Program
Compiling an Action Program Using Jproc and Filed Source Program
Compiling an Action Program Using Standard Job Control and Embedded Source Program
Compiling an Action Program Using Standard Job Control and Filed
Source Program
Link Editing an Action Program Using Jproc
Link Editing an Action Program Using Standard Job Control
Compiling and Linking an Action Program Using Jprocs
Compiling and Linking an Action Program Using Standard Job Control
Recompiling and Linking an Action Program During Online Processing

Layout of a Snap Dump
Relation between THCB and Interface Areas
Sample RPG II Snap Dump
Single-thread Thread Control Block
Multithread Thread Control Block
Single-thread and Multithread Terminal Control Table
Link Map for RCCUST
Symbol Table for RCCUST

Using Terminal-Oriented Control Characters to Format Messages
Using DICE Sequences to Format Messages
Using DICE to Format an Output Message
How DICE Formatted Message in Figure A-3 Appears at the Screen

Edit Table Parameter Description with Positional and Keyword Parameters
Sample Execution of Edit Table Generator
Sample Input to Edit Table Generator and Format of Input Delivered to Action Program

Contents 9

7-7
7-8

8-2
8-2
8-3

8-3
8-4
8-5
8-5
8-6
8-8

9-2
9-4
9-6
9-14
9-18
9-20
9-26
9-28

A-2
A-3
A-12
A-12

B-6
B-10
B-16

TABLES

2-1. Summary of File Types Used by Action Programs 2-3
2-2. Coding Interface Areas on the File Description Form 2-6
2-3. Contents of the Program Information Block 2-8
2-4. Termination Indicators 2-12
2-5. Summary of Action Program Termination Types and Successor-ids 2-13
2-6. Summary of Record Locks and Rollback 2-14
2-7. Input Message Area Control Header Contents 2-25
2-8. Output Message Area Control Header Contents 2-31
2-9. Defining the Continuity Data Area According to How the Action Program Uses It 2-38

3-1. Indicators Set On During Second Pass Through RCMENU and Resultant Output 3-15
3-2. Successor Programs and Type of Termination Corresponding to Each Indicator Set On 3-18
3-3. RCCUST Indicators Set On and Resulting Output 3-23

4-1. JAADD 1 Continuity Data Area 4-16
4-2 . Summary of JAADD 1 Continuity Data Area Update at Output 4-16
4-3. Summary of Error Indicator and Error Messages for JAADD 1 4-19

UP-9206

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

Indicating and Accepting Multiple Output Messages
Settings for Aux-Function Field of the Output Message Header
Print and Transfer Options
Output Delivery Notice Status Codes Returned by IMS
UNISCOPE and UTS 400 Auxiliary Device Condition Code
Settings for Auxiliary Function Field of Output Message Header
user Message Text for Searching Cassette/Diskette
Status Codes and Detailed Status Codes Returned following the Send Function

6-1 . Error Codes Returned by IMS When Using Screen Format Services
6-2. Print/Transfer Options for Writing of Screen Formats to Auxiliary Devices

9-1 . Hexadecimal Equivalents for Function Calls

A-1. DICE Input/Output Commands, Codes, and Device Interpretation
A-2. DICE Primary Devices
A-3. DICE Usage for Auxiliary Devices
A-4. Hexadecimal Codes Used as M in the FCC Sequence
A-5. Hexadecimal Codes Used as N in the FCC Sequence

B-1 . Edit Table Diagnostic Messages
B-2. Description of Sample Input to Edit Table Generator

C-1.
C-2.
C-3.
C-4.
C-5.

Values Returned to the Status-Code Fields after Function Requests
Detailed Status Codes for Defined Record Management Errors (Invalid Key-Status Code
Detailed Status Codes for Invalid Requests
Detailed Status Codes for Internal Message Control Errors (Status Code 6)
Detailed Status Codes for Screen Formatting Errors (Status Code 7)

D-1 . IMS Restrictions for RPG II Coding
D-2. Allowable File Description Specifications for ISAM, MIRAM, DAM, and Defined Files
D-3. Allowable File Description Specifications for Sequential MIRAM and SAM Output Files

Contents 10

5-8
5-10 • 5-11
5-19
5-20
5-40
5-42
5-50

6-11
6-13

9-12

A-6
A-10
A-11
A-14
A-15

B-13
B-16

C-2
1) C-3

C-4
C-6
C-7 •
D-2
D-3
D-4

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 1-1
IMS ACTION PROGRAMMING IN RPG II

INTRODUCTION

1 . Setting the Stage

1.1. INTRODUCING IMS

The SPERRY UNIV AC Information Management System (IMS) is
an interactive, transaction-oriented file processing system. It is
interactive because it carries on a conversation with the terminal
operator; it is transaction-oriented because for each input
message, the terminal operator receives a response or output
message. In this way, operators are constantly informed of the
results of their inquiries .

1.2. INTERACTING WITH IMS

Action programs
process messages

languages used -
BAL, COBOL, RPG II

Purpose of this manual

Read IMS concepts and
facilities first

Application programs, called action programs, interact with IMS
to process input messages from terminals, perform file retrieval
or updating functions, and create output messages.

You can write action programs in RPG II, COBOL, or basic
assembly language (BAL). IMS also provides a set of action
programs called the uniform inquiry update element (UNIQUE) that
performs file retrieval and updating functions through the use of
commands from the terimnal.

This manual tells you how to write action programs in RPG II.
Action programs are similar to standard RPG II programs, but
must follow specific rules because they operate under the control
of IMS.

Before you start writing action programs, you must understand
how IMS works, and what you (or the IMS administrator) must
do to make it work. This information is in the IMS concepts and
facilities manual, UP-9205 (current version). We also assume that
you know RPG II. For more information about RPG II coding,
consult the RPG II user guide, UP-8067 (current version) .

UP-9206

INTRODUCTION

Prerequisites for
using this manual

SPEPIRY UNIVAC OS/3 1-2
IMS ACTION PROGRAMMING IN RPG II

Throughout this manual, we assume you've read and understood
both UP-9205 and UP-8067. However, as required, we briefly
define terms and describe concepts that are directly related to
RPG II action programming.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 1-3
IMS ACTION PROGRAMMING IN RPG II

IMS TERMS

1.3. LET'S DEFINE SOME BASIC IMS TERMS

Action defined

What action programs do

Transaction defined

Example - Simple
transaction

The term action programming comes from the fact that the unit
of work in IMS is the action. An action begins when an operator
enters a message at a terminal and ends when a response to
that message is returned. This is an important point to remember
since the action programs you write are involved primarily with
this activity - processing input messages, performing file retrieval
or updating, and creating output messages.

An action always consists of three activities:

A transaction is one action or a series of actions.

A simple transaction (Figure 1-1) consists of a single action .

r~--------------+ TRANSACTION CODE

INPUT MESSAGE~ { CKACCT 2-412-733----------+- ACCOUNT NUMBER
-0

I ACTION PROGRAM I
= $869.22. -0 { CURRENT ACCOUNT BALANCE

OUTPUT MESSAGE-+--
PROCESSING COMPLETE

Figure 1-1. A Simple Transaction. In this example, one action program processes
the input messsage and produces an output message - the checking
account balance for the account specified and a processing complete
notice .

UP-9206

IMS TERMS

Example - Dialog
transaction

Transaction codes
initiate transactions

Transaction code
defined

SPERRY UNIVAC OS/3 1-4
IMS ACTION PROGRAMMING IN RPG II

A dialog transaction (Figure 1-2) consists of two or more related
actions.

r~--------------'-+- TRANSACTION CODE

INPUT MESSAGE--+- { CUST 35567 ------------->-CUSTOMER NUMBER
0

I ACTION PROGRAM I
0 { AMOUNT DUE = $79. 25.

OUTPUT MESSAGE --+--
ENTER PAYMENT AMOUNT ~

INPUT MESSAGE --1-----------____J__.
0

I ACTION PROGRAM I
0 { NEW BALANCE IS $53.92

OUTPUT MESSAGE -+-
PROCESS I NG COMPLETE

Figure 1-2. A Dialog Transaction. In this example, two action programs are
sequenced to produce amount due information, allow data entry, and
compute a new balance for a specific customer account.

To begin a transaction, the operator enters a 1- to 8-character
transaction code. (In single-thread IMS, the transaction code is 1
to 5 characters.) This code tells IMS the name of the action
program that will process the input message.

Transaction codes are either the entire input message or a part
of it. Transaction codes are defined to IMS at configuration time.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 1-5
IMS ACTION PROGRAMMING IN RPG II

TRANSACTIONS

1 .4. HOW YOU STRUCTURE TRANSACTIONS

Series of action
programs processes
transaction

Types of transaction
termination

Distinction between
termination and
succession

Transaction complete

Sometimes a single action program can process the function
required. But more often than not, a series of action programs is
needed. In either case, we create what we call a transaction
structure.

Transaction structure depends on how you terminate action
programs. There are four major types of termination:

• Normal

• External succession

~ Delayed internal succession

• Immediate internal succession

From here on, we'll call the termination types normal termination,
external, delayed, and immediate succession.

Using the words termination and succession in the same
context can be somewhat confusing. In IMS, termination means
that an action program is finished processing. Whether you
specify normal termination, external, delayed, or immediate
succession, you are telling IMS that the current action program is
finished processing and is now terminating.

Succession means that although the action program is
terminating, the transaction is not complete. A successor action
program will continue processing the transaction.

Normal termination says that the transaction itself is complete.
No more processing occurs.

However, external, delayed, or immediate succession tells IMS
that another action program follows and will resume processing.

Figures 1-3 through 1-6 illustrate these concepts .

-- ---.

UP-9206

TRANSACTIONS

Normal termination

External succession

SPERRY UNIVAC OS/3 1-6
IMS ACTION PROGRAMMING IN RPG II

Figure 1-3. Normal Termination

Use normal termination to tell IMS that once your program
creates an output message, the transaction is complete. When
you don't specify the type of termination, IMS terminates
normally. The last action program in a transaction always ends
with normal termination.

Figure 1-4. External Succession

Use external succession to tell IMS that the current action
program is sending an output message and terminating; however,
the transaction is not complete. When the terminal operator
enters a second input message, the action program you named
as external successor processes the second action, produces an
output message, and terminates.

•

•

•

UP-9206

•

Delayed succession

•

•

SPERRY UNIVAC OS/3 1-7
IMS ACTION PROGRAMMING IN RPG II

TRANSACTIONS

Figure 1-5. Delayed Internal Succession

Use delayed succession to tell IMS that the current action
program has processed an input message and produced an
output message; however, that message isn't going to the
terminal. Instead, it becomes the input message to the action
program you named as successor. The successor program
produces an output message that does go to the terminal and
terminates. With delayed succession, the second action program
uses the output message of the predecessor as its input
message. Even though only one input message and one output
message are seen at the terminal, internally there are two
separate actions, each with an input and output message.

Figure 1-6. Immediate Internal Succession

UP-9206

TRANSACTIONS

Immediate succession

Combining transaction
structures

SPERRY UNIVAC OS/'::- 1-8
IMS ACTION PROGRAMMING .f\J RPG II

Use immediate succession to tell IMS that the current action
program processed an input message but is not producing an
output message. When it terminates, its successor action
program immediately takes up where processing left off,
produces an output message and terminates. In immediate
succession, there is only one input and one output message.
Thus, two action programs are processing a single action.

With these four types of termination or transaction structures
there is a good deal of flexibility in structuring transactions.
There are basically no limitations as to how you can combine
them. For example, you can specify immediate succession,
delayed succession, external succession, and finally normal
termination, all in turn (Figure 1-7).

NOTE:

Connecting lines represent
immediate internal, delayed
internal, or external succession,
or any combination of them.

Figure 1-7. Dynamic Transaction Structure

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 1-9
IMS ACTION PROGRAMMING IN RPG II

ACTION PROGRAM PROCESSING

1.5. WRITING REUSABLE ACTION PROGRAMS

Action programs must be
serially reusable

RPG II turns off
indicators and switches

Action program must
reset fields

You must write action programs so that they are serially
reusable. This allows different terminals specifying the same
transaction code to take turns using the same action programs.
As long as IMS doesn't require the main storage space, action
programs remain there after use and aren't reloaded each time
they are called.

RPG II turns off all indicators and internal switches after each
action program execution. When the same program is again
initialized for use, RPG II sets on only the 1 P indicator.

Since action programs are serially reusable, you must reset all
fields to their original value before reexecuting the program. For
example, you must blank or zero out any fields you expect to be
blank or zero since they may contain values from a previous
execution.

1.6. HOW YOUR PROGRAM TALKS TO IMS

Activation record links
action program to IMS

Interface area usage

More information on
interface areas

Layout of the
activation record
in main storage

To communicate with IMS, an action program must link itself to
IMS. This link is the activation record. The activation record
handles the control and communication of data between IMS and
your action program. The activation record can contain up to six
interface areas as shown in Figure 1-8.

Whether or not you use all six interface areas depends on the
needs of your action program. All the interface areas are
optional. In the case of the program information block, whether
or not you define it in your action program, RPG II automatically
returns values to the status code fields after each 1/0 request.
We'll discuss these fields in Section 2.

Also, in Section 2, we'll discuss when, why, and how you use
the interface areas.

Figure 1-8 shows how main storage looks when the action
program PROG01 is loaded in a multithread IMS system. The
layout of the activation record is slightly different in single-thread
IMS .

UP-9206 SPERRY UNIV AC OS/3 1-10
IMS ACTION PROGRAMMING IN RPG II

AC .-iON PROGRAM PROCESSING

MAIN STORAGE

OUTPUT
MESSAGE

AREA

CONTINUITY
DATA AREA

WORK
AREA

INPUT
MESSAGE

AREA

DEFINED
RECORD

Figure 1-8. The Activation Record in Main Storage

Figure 1-9 shows the relationship between an action program
and its interface areas.

ACTIVATION RECORD

PROGRAM
INFORMATION

BLOCK

OUTPUT
MESSAGE

AREA

CONTINUITY
DATA
AREA

Figure 1-9. The Action Program and Its Interface Areas

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-1
IMS ACTION PROGRAMMING IN RPG II

ACTION PROGRAM CODING RULES

2. General Rules for Coding
Action Programs

2.1. CODING ACTION PROGRAMS

Action programs similar Coding action programs is very similar to standard RPG II coding.
to normal RPG II programs However, there are some differences since action programs

Scope of section

Most differences on
file description form

RPG II form names

operate under the control of IMS.

In this section, the discussion centers around those coding
specifications that distinguish an action program from standard
RPG II programs. We won't discuss the standard RPG II coding
practices with which you are already familiar. For more
information about RPG II coding, consult the report program
generator II (RPG II) user guide, UP-8067 (current version).

A sizeable part of this discussion concerns the file description
form since the major coding differences for action programs
concern this form. In addition, differences in coding for other RPG
forms are covered in this section. Where we don't point out
differences in coding, assume that action programs conform to
the same coding rules as standard RPG II programs. IMS coding
restrictions for all coding forms are listed in Appendix D.

In our discussion of the various coding forms, we refer to them
as the control, file description, file extension, calculations, input,
and output forms.

2.2. IDENTIFYING AN ACTION PROGRAM

'A' on control form
denotes action program

You denote an action program by
placing the letter A in column 7 4 of the
control form. It tells the compiler to
generate a program that interfaces with
IMS.

DENOTES
ACTION

PROGRAM

UP-9206 SPERRY UNIVAC OS/3 2-2
IMS ACTION PROGRAMMING IN RPG II

ACTION PROGRAM CODING RULES

Naming the program

Naming restrictions

Enter the program name in columns 75
through 80. This name is assigned to
your program during compilation. When
you don't specify a name, RPG II
automatically assigns RPGOBJ as the
program name. However, since you will
undoubtedly have numerous action
programs, you will want to give each a
unique name.

Figure 2-1 shows the control form coding.

Figure 2-1. Coding the Control Form

The program name must conform to the following

six characters;

1

start with an alphabetic character (the remainder may be
any alphanumeric characters); and

be left-justified.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-3
IMS ACTION PROGRAMMING IN RPG II

ACCESSING FILES

2.3. DESCRIBING FILES AND INTERFACE AREAS

Define files as in
normal RPG II programs

File types you can access

Where data files are
defined to IMS

File organizations, access
modes, and file types
used by action programs

Use the file description form to describe the files and the
interface areas your action program is going to use. Describe all
the files the action program accesses just as you would in a
standard RPG II program.

Action programs access conventional MIRAM, ISAM, DAM, and
SAM files as well as IMS defined files. (You can access IRAM
files but you must define them to the IMS configurator as MIRAM
files.) Conventional files are data files you create via OS/3 data
management. Defined files are files created by IMS from
conventional files according to user-supplied definitions. For more
information on creating and using defined files, consult the IMS
data definition and UNIQUE user guide, UP-9209 (current
version).

You identify data files used by an action program in the ACTION
section of the IMS configuration and define each of your
conventional files in a FILE section. Table 2-1 summarizes the file
organization, access modes, and file types used in action
programs. See Appendix D for allowable file description form
entries .

Table 2-1. Summary of File Types Used by Action Programs

Indexed

Sequential
{Disk or Tape)

Indexed

Sequential

Random

Sequential

Random

Sequential

Sequential

Random

Sequential

Random

Sequential Sequential
{Disk or Tape)

·For output files, only ADD is allowed.

Input

Input/Update/Output•

Input

Input/Update/Output

Input

Output

Input/Update/Output•

Input

Input/Update/Output

Output

UP-9206

ACCESSING FILES

Where data files are
defined to RPG II

Accessing files in
random mode

Restrictions on file
updating

Accessing files in
sequential mode

Writing to sequential
files

SPERRY UNIVAC OS/3 2-4
IMS ACTION PROGRAMMING IN RPG II

You define all files used by action programs on the file
description form and input/output form.

An action program can access ISAM, DAM, MIRAM, and defined
files in random mode by defining them as chained files on the file
description form (column 16).

Operating under IMS, the action program retrieves one record at
a time. Updating or deleting of the retrieved record must be done
before the next record is retrieved. Records being added to, or
deleted from, a file on which updating is being performed cannot
be added or deleted between the reading and writing of a record
that is being updated. The ADD or DEL specification in columns
16-18 of the output form performs add or delete functions.

An action program can also read ISAM, MIRAM, and defined files
in sequential mode. Define them as primary or secondary files
and use normal cycle input, or as demand files and use the READ
operation on the calculations form.

An action program can write output to a SAM file or dedicated
sequential MIRAM file. Sequential input files (disk or tape) are not
supported. However, you can read a disk MIRAM file sequentially
by defining it as a random file (MODE= RAN) in the FILE section
of the IMS configuration.

Where the differences are The major difference in coding the file description form is the use
of the interface areas or activation record. The interface areas
and how you code them are described in 2.4 through 2.19.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-5
IMS ACTION PROGRAMMING IN RPG II

INTERFACE AREAS

2.4. DEFINING THE INTERFACE AREAS

Activation record

Interface area names

The activation record handles the control and communication of
data between IMS and your action program. The activation
record can contain as many as six interface areas:

~ Input message area (IMA) ~ Continuity data area (CDA)

~ Output message area (OMA) • Work area (WA)

• Program information block (PIB) ~ Defined record area (ORA)

On the file description form, define the interface areas your action
program intends to reference. You never define a work area or a
defined record area, although these areas may be part of your
program· s activation record.

Sample coding of interface Notice in Figure 2-2 that the action program PROGO 1 has defined
areas one data file, CUSTFIL, and four interface areas. This means that

PROGO 1 intends to reference the input message area, output
message area, program information block, and continuity data
area during processing.

Example

Figure 2-2. Defining Files and Interface Areas

UP-9206

INTERFACE AREAS

Assigning interface area
file names

Acceptable entries

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

The interface areas are defined just like
any other file. You assign a unique file
name in columns 7-13 for each interface
area. This file name follows the standard
rules for file names. The file name you
assign can be the same as the interface
area name.

Table 2-2 summarizes the entries you
must make.

2-6

Table 2-2. Coding Interface Areas on the File Description Form. When you define
an interface area, you must make these entries on the file description
form.

I. u F *IMA
size

Any U, 0 D, blank F 16 + message *OMA
size

Any I, U D F Varies *PIB
(70 maximum)

Any I. U, 0 P, S, D, blank F Saved data *CDA
size

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-7
IMS ACTION PROGRAMMING IN RPG II

PROGRAM INFORMATION BLOCK

2.5. DEFINING THE PROGRAM INFORMATION BLOCK (PIB)

Purpose

Size

RPG II checks status
codes

The program information block passes control data between IMS
and the action program after 1/0 and at termination. It is a
predefined 145-character area. Your action program can access
only the first 70 characters. The remaining 75 characters are for
IMS internal use only.

The program information block is always present in the activation
record, but you don't need to define it unless you reference it.
After each 1/0 request, RPG II automatically checks the status
codes and makes them available whether or not you define the
program information block.

Define PIB as input demand You define the program information block in one of two ways:
or update demand file

Type depends on use

~ as an input demand file; or

• as an update demand file

Choose input demand if you intend only to read it for data. If you
intend to update it, you must define it as an update demand file .

UP-9206 SPERRY UNIVAC OS/3 2-8
IMS ACTION PROGRAMMING IN RPG II

PROGRAM INFORMATION BLOCK FIELDS

Summary of program
information block fields

1-2

3-4

5-10

11

12

13-20

13-14

15-16

17-20

21-27

28-34

35-36

37-38

39-40

41-42

43-44

45-46

Structure of the Program Information Block

Before discussing the program information block, let's take a
look at the data it contains. Table 2-3 summarizes the contents
of the program information block; subsection 2.6 is a detailed
description of the fields action programs can reference.

Table 2-3. Contents of the Program Information Block

Status-code 47-48 Continuity-data-area-inc

Detailed-status-code 49-63 Success-unit-id

Successor-id 49-54 Transaction-date

Termination-indicator 49-50 Year

Lock-rollback-indicator 51-52 Month

Transaction-id 53-54 Day

Year 55-63 Time of day

Day 55-56 Hour

Time 57-58 Minute

Data-def-rec-name 59-60 Second

Defined-file-name 61-63 Filler

Standard-msg-line-length 64-69 Source-terminal-chars

Standard-msg-number-lines 64 Source-terminal-type

Work-area-length 65-66 Source-term-msg-line-length

Continuity-data-input-length 67-68 Source-term-msg-number-lines

Continuity-data-output-length 69 Source-term-attributes

Work-area-inc 70 DDP-mode

•

•

•

•
UP-9206 SPERRY UNIVAC OS/3 2-9

IMS ACTION PROGRAMMING IN RPG II

STATUS CODES

2.6. HOW PROGRAM INFORMATION BLOCK FIELDS ARE USED

Status-code

Status-code values

Status-code (positions 1-2) is a half-word binary integer value
returned by IMS indicating the completion status of a request.
Remember that RPG II still sets *ERROR to indicate the error
condition; however, the status code provides more detailed
information. The status-code values are:

Invalid key or record number

End of file or unallocated optional file

Invalid request

1/0 error

Violation of data definition

Internal message control error

• _sc_r_ee_n_f_o_rm_a_t_e_rr_o_r~~~~~~

•

When status-code=3 An invalid request status code is returned when IMS detects an
(invalid request) error in a request before passing the request to data

management, the control system, or the integrated
communications access method (ICAM).

When status-code=4 IMS returns an 1/0 error status code when an unrecoverable error
010 error) is detected by data management, the control system, or ICAM.

When you configure You specify an error return option for each action program at
ERET=YES configuration time. If you choose to accept errors (ERET=YES

specified to the configurator), then, regardless of the status-code
value, the action program regains control when the request is
completed. When an error occurs, *ERROR is set. If you want
more information about the error, you must test for the various
status codes.

When you don't configure If the option to reject errors is chosen or defaulted at
ERET=YES configuration time, IMS returns control to the action program only

when the status code equals 0, 1,or 2. When any other status
code is returned, the action program doesn't regain control.

UP-9206

STATUS CODES

Recommendation

Detailed-status-code

Detailed-status-code
for 1/0 error

Detailed status codes
for other errors

SPERRY UNIVAC OS/3 2-10
IMS ACTION PROGRAMMING IN RPG II

We strongly advise that you specify ERET =YES so that your
program can regain control and terminate orderly.

Detailed-status-code (positions 3-4) is a half-word binary value
returned by IMS following a request when the status code is
invalid request (3), 1/0 error (4), internal message control (6)
error, or screen format (7) error. The detailed status code
provides more detailed information concerning the error. IMS also
returns detailed status codes for invalid key (status code 1) when
you use defined files.

When the status code is 1/0 error (4), the detailed status code
contains either filenameC + 2 or the error code and subcode
returned by the file access method. All file types except MIRAM
return a detailed status code of filenameC + 2. MIRAM files return
an error code (DM) and subcode. You can find these messages in
the system messages programmer/operator reference, UP-8076
(current version).

The detailed status codes for status codes 1, 3, 6 and 7 are
listed in Appendix C.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-11
IMS ACTION PROGRAMMING IN RPG II

PROGRAM SUCCESSION AND TERMINATION

Successor-id Successor-id identifies the action program that takes control
(positions 5-10) when the current program terminates. You must move the name

of the successor action program into successor-id whenever you
terminate with external, delayed, or immediate succession.

Size and name Successor-id is a 6-character field. The name you assign must be
left-justified and zero-filled.

When you specify normal When the action program uses normal termination, don't specify
termination a value for successor-id.

Use to find cause of errors The successor-id field is also used to find and display the cause
of errors. To find the cause of an error, check the status-code
field, associate a successor-id with each possible error condition,
and assign an error code to each condition. When an error
occurs, move the error code to the successor-id field and
terminate your action program abnormally by moving A or S to
the termination-indicator field. IMS sends the error code from the
successor-id field to the terminal after abnormal termination .

Termination-indicator
(position 11)

Default value

Termination-indicator is a 1-character value that shows the type
of termination for the current program. (See 1.4 for a description
of the types of termination.) You select the type of termination
by moving a specific character to the termination-indicator field.

When you don't move a value to termination-indicator, IMS
assumes normal termination.

Table 2-4 lists the character, type of termination it selects, and
IMS operations that take place .

UP-9206 SPERRY UNIVAC OS/3 2-12
IMS ACTION PROGRAMMING IN RPG II

PROGRAM SUCCESSION AND TERMINATION

Termination types and
IMS operations

Termination

External
Succession

Delayed
Succession

Immediate
Succession

Abnormally
without
Snap Dump

Abnormally
with Snap
Dump

Table 2-4. Termination Indicators

Output message is sent to terminal.
All resources, including current action
program, are released. When
you don't move a value to this
field, normal termination is assumed.

Output message is sent to terminal.
Any data saved by this program is stored
in the continuity data file.
All resources, including current action
program, are released. Successor action
program is scheduled when another
input message is received from
originating terminal.

No output message goes to the terminal.
Output message is queued as input message
to successor action program. Any
data saved by the program is stored in
the continuity data file. All
resources, including current action
program are released. Successor
action program is initiated by
normal scheduling process.

No output message goes to the terminal.
Current action program only is released.
Successor action program is immediately
initiated and IMS passes to it (intact)
the interface areas of the predecessor
program.

Sends error message to originating
terminal (includes value moved to
successor-id). All resources are released.
All files are rolled back.

Same as A except a snap dump of current
action program and its activation record
is also provided. To get a snap dump, specify
/ / OPTION DUMP, JOBDUMP, or SYSDUMP
in your IMS job control stream.

Table 2-5 summarizes the types of termination an action
program can specify and the associated successor-id entries.

•

•

•

UP-9206

•
Successor-id Ignored

Termination- N
Indicator

Involuntary termination

Causes

• Result

Obtaining a dump

•

SPERRY UNIVAC OS/3 2-13
IMS ACTION PROGRAMMING IN RPG II

PROGRAM SUCCESSION AND TERMINATION

Table 2-5. Summary of Action Program Termination Types
and Successor-ids

Termination Terminalton code Successor Successor Successor
code program name program name program name

A s D

The termination-indicator field controls voluntary termination of
action programs. Action programs can also terminate
involuntarily. Involuntary termination occurs when IMS encounters
an abnormal condition in the processing of a request issued by
an action program. Involuntary termination occurs when action
program execution causes a program check or when an execution
loop within an action program continues beyond a specified time
limit. When any of these conditions occurs, IMS sends a 3-line
message to the originating terminal and to the system console,
giving the cause of the abnormal termination. Abnormal
termination messages are listed in the system messages
programmer /operator reference, UP-8076 (current version).

A snap dump of the action program and its activation record is
performed only when I I OPTION DUMP, JOBDUMP, or
SYSDUMP is specified in the job control stream for executing
IMS .

UP-9206

LOCK ROLLBACK

lock-rollback-indicator
(position 12)

Default value

Holding of locks

SPERRY UNIVAC OS/3 2-14
IMS ACTION PROGRAMMING IN RPG II

Lock-rollback-indicator is a 1-character value, set by the action
program, that indicates the record lock and rollback functions you
want performed at action program termination. Table 2-6
summarizes the possible entries for this field.

Table 2-6. Summary of Record Locks and Rollback

Holds all locks imposed by the current action program
into the successor program.

Releases all pending locks set by the current action
program. Update locks are held into the successor
program.

Releases all locks for the transaction. Establishes a
new rollback point in the audit file. This is the default
value.

Releases all locks for the action or transaction. Rolls
back all updates for this action or transaction.
Establishes new rollback point in the audit file.

IMS checks the lock-rollback-indicator field at action termination
for external and delayed succession or normal termination. When
you don't specify a value in lock-rollback-indicator, IMS assumes
the value N. Don't confuse this with the N signifying normal
termination.

IMS doesn't check the lock rollback indicator when you terminate
with immediate succession. All records remain locked since there
is only one action taking place in immediate succession and IMS
always holds locks for at least the length of the action.

•

•

•

•

•

•

UP-9206

Caution in using R and H
options

Single-thread restriction

SPERRY UNIVAC OS/3 2-15
IMS ACTION PROGRAMMING IN RPG II

LOCK ROLLBACK

Use the R and H options only when the termination indicator is
set to E for external succession or D for delayed succession. In
long transactions, use R and H with caution. Holding of locks
across action programs in a multithread environment can cause
deadlock. In a single-thread environment, holding locks across
actions can decrease response time. In single-thread IMS, you
can use the R and H indicators only when you specify
RECLOCK=YES in the OPTIONS section of the configuration. See
the IMS system support functions user guide, UP-8364 (current
version).

Advantages of the N option Use the N option for long-running update transactions. The N
option releases all locks when the termination indicator is set to
E for external succession or D for delayed succession. With
normal termination, locks are always released and a new rollback
point is established. This option also establishes additional
rollback points, limits the range of rollback, and reduces the size
of the audit file. The audit file contains the before-image of
records to be updated. By limiting the number of updates in an
action program or by establishing additional rollback points in a
long-running transaction, you reduce the size of the audit file and
save disk space .

Getting ontine file recovery The 0 option activates online file recovery to roll back files to
the previous rollback point. Use the 0 option for external and
delayed succession or normal termination.

lock for update If you specify lock for update (LOCK= UP) for a particular file in
the FILE section at configuration time, IMS releases record locks
when updates are completed rather than at the end of an action.
When you use this option, IMS doesn't save before-images in
the audit file and doesn't roll back updates at abnormal
termination. You can use the R indicator to release locks on
uncompleted updates at the end of an action, or the H indicator
to hold locks on uncompleted updates into the next action .

UP-9206 SPERRY UNIVAC OS/3 2-16
IMS ACTION PROGRAMMING IN RPG II

OTHER PROGRAM INFORMATION BLOCK FIELDS

Transaction-id
(positions 13-20)

Data-def-rec-name
and defined-file-name
(positions 21-34)

IMS places configured
values in these fields

Passing new names to
successor program

Using conventional files
in successor program

Standard-msg-line-length
(positions 35-36)

Transaction-id is a unique identification for a transaction. IMS
sets this value for all action programs that are part of the same
transaction. The first part is the date in Julian form; the second
part is a unique number assigned by IMS. If you require the
accurate date and time in your action program, use the
transaction-date and time-of-day under success-unit-id.

If your action programs access a defined file, the
data-def-rec-name (positions 21-2 7) and defined-file-name
(positions 28-34) fields name the defined file or subfile. Both are
7-character items, left-justified and blank filled. The description of
the defined file is contained in the data definition record in the
NAMEREC file.

When IMS schedules the first action in a transaction, it places:

• the data definition record specified by the DDRECORD
configurator parameter into the data-def-rec-name field; and

• the defined file name specified by the DFILE configurator
parameter into the defined-file-name field.

When your action program terminates in external or delayed
succession and the successor program accesses a different
defined file, you can pass the new data definition record name
and defined file name to the succeeding program either by:

1 . placing the new names in data-def-rec-name and
defined-file-name; or

2. placing zeros in both fields and allowing IMS to insert the
values configured for the successor action.

If the successor program accesses only conventional files, your
action program should place zeros in data-def-rec-name and
defined-file-name. This allows the successor program to access a
conventional file that may have contributed to the defined file
used in the previous action.

Standard-msg-line-length is a half-word binary integer that shows
the maximum line length for a message. IMS obtains this value
from the CHRS/LIN configurator parameter.

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-17
IMS ACTION PROGRAMMING IN RPG II

OTHER PROGRAM INFORMATION BLOCK FIELDS

• Standard-msg-number-tines Standard-msg-number-lines is a half-word binary integer that

•

•

(positions 37-38) shows the maximum number of lines for a message. IMS obtains
this value from the LNS/MSG configurator parameter.

Work-area-length
(positions 39-40)

Work-area-length is a half-word binary integer. It contains the
size of the work area specified at configuration time. You must
configure a work area when your action program uses screen
format services. RPG II uses this work area to store the variable
output fields while the screen is built. This all happens internally.
The action program itself doesn't use the work area.

Continuity-data-input-length Continuity-data-input-length is a half-word binary integer. It
(positions 41-42) contains the size of the continuity data record passed by the

predecessor program.

Continuity-data-output
length
(positions 43-44)

Work-area-inc
(positions 45-46)

Continuity-data-area-inc
(positions 47-48)

Success-unit-id
(positions 49-63)

Continuity-data-output-length is a half-word binary integer that
defines to the current action program the configured size of the
continuity data area. When the current program terminates, this
field contains the size of the continuity data area passed to the
successor program .

Work-area-inc is a half-word binary integer. Move a value to this
field when you need to increase the size of the configured work
area in the successor action program. You do this because you
know the configured size will not be large enough to hold the
screen that the successor program wants screen format services
to build.

Continuity-data-area-inc is a half-word binary integer. Move a
value to this field when you want to increase the configured size
of the continuity data area for the successor action program. IMS
adds this increment value to the length of the continuity data
record that the current action program is saving. It then
compares this value to the configured continuity data area size.
The larger value becomes the size of the continuity data area for
the successor action program.

Success-unit-id provides a calendar date and clock time for your
action program at the beginning of each success unit. Reference
this field when your action program requires an accurate
date/time value .

uP-9206 SPERRY UNIV AC OS/3 2-18
IMS ACTION PROGRAMMING IN RPG II

OTHER PROGRAM INFORMATION BLOCK FIELDS

Source-terminal-type
(position 64)

Source-term-msg-line
length
(positions 65-66)

Source-term-msg-number
lines
(positions 67-68)

Source-term-attributes
(position 69)

Source-terminal-type is a 1-character field containing a type code
for the source terminal. The values set by IMS are:

UTS 400 terminal in native mode (with or without character-protect feature)

UTS 10, OCT 500, OCT 1000, or teletypewriter

UTS 400 terminal in UNISCOPE mode with FCC-protect feature

UTS 400 text editor

UTS 400 terminal in UNISCOPE mode with character-protect feature

UNISCOPE 100 or UNISCOPE 200 terminal

Workstation or UTS 20 terminal

IBM 3270 terminal

UTS 40 terminal

Source-term-msg-line-length is a half-word binary integer that
specifies the number of characters per line for the source
terminal. For hard copy terminals, this is the configured line
length (CHRS/LIN specification in the GENERAL section of the
IMS configuration).

Source-term-msg-number-lines is a half-word binary integer that
specifies the number of lines for the source terminal. For hard
copy terminals, this is the configured number of lines (LNS/MSG
specification in the GENERAL section of the IMS configuration).

Source-term-attributes is a 1-character field defining specific
attributes of the source terminal. The values it can contain are:

Katakana character set

Nonvideo device

Screen bypass feature

None of these attributes

•

•

•

UP-9206

•
DDP-mode (position 70)

•

•

SPERRY UNIVAC OS/3 2-19
IMS ACTION PROGRAMMING IN RPG II

OTHER PROGRAM INFORMATION BLOCK FIELDS

DDP-mode is a 1-character field that identifies the type of remote
transaction in distributed data processing. The values set by IMS
are:

Transaction was initiated because of an
program (program-initiated transaction).

an action

Transaction was initiated by directory or operator routing (operator-initiated
transaction) .

UP-9206 SPERRY UNIVAC OS/3 2-20
IMS ACTION PROGRAMMING IN RPG II

READING THE PROGRAM INFORMATION BLOCK

2.7. HOW TO READ THE PROGRAM INFORMATION BLOCK

Defining PIB as an
input demand file

Using status codes to
determine processing

Sample file description
form coding

Column 19
(file format)

Omit block length

Columns 24-27
(record length)

To read the PIB (but not update it), define it as an input demand
file on the file description form.

Let's assume that in your action program you want to be able to
read the status-code and detailed-status-code fields, and based
on the values they contain, determine what processing is done.
Figure 2-3 shows the file specifications.

Figure 2-3. Defining the Program Information Block as an Input
Demand File

First, name the file. In Figure 2-3, the
file name is PIB. Then, enter an I in
column 15 for file type and a D in
column 16 for file designation.

Enter an F in column 19 for file format.
For RPG II action programs, the file
format entry is always F.

Omit block length (columns 20-23). If
you enter a value, it must equal record
length.

Enter 4 since status-code and
detailed-status-code are the first four
characters of the program information
block. These are the fields you want to
read. If you choose, you can reference
all 70 characters of the program information block by entering 70
for record length. By doing that, you can read any of its fields
during your action program.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-21
IMS ACTION PROGRAMMING IN RPG II

READING THE PROGRAM INFORMATION BLOCK

Considerations in In defining record length, specify at least the number of
determining record length characters up to and including the field or fields in the program

Columns 40-46
(device name)

Input form entries

Specify binary
fields

information block that you want to read.

Specify *PIB. You may not enter any
other name.

To get the values for status-code and
detailed- status-code into your action
program, you have to name these fields
on the input form (Figure 2-4). You can
assign any name you choose, provided
the position you assign to them
corresponds exactly to their position in the program information
block. Program information block fields defined on the input form
that are not read by your action program are flagged at
compilation as unreferenced .

Figure 2-4. Testing Status and Detailed Status Codes

In column 43 of the input form, specify
B, because status-code and detailed
status-code are binary fields .

UP-9206 SPERRY UNIVAC OS/3 2-22
IMS ACTION PROGRAMMING IN RPG II

READING THE PROGRAM INFORMATION BLOCK

Specifying the READ
operation

Testing for
status codes

No end-of-file indicator
set on

In columns 4 7 and 51, specify the
starting and ending positions.

On the calculation form, specify the READ operation for the file
name you assigned to the program information block.

To test the status codes and detailed status codes, specify the
COMP operation for the field names you specify on the input
form. Figure 2-4 shows the coding to test for a status code of 3
and detailed status code of 6.

You may read the program information block as many times as
you want. RPG II doesn't set on the end-of-file indicator.

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 2-23
IMS ACTION PROGRAMMING IN RPG II

UPDATING THE PROGRAM INFORMATION BLOCK

2.8. HOW TO UPDATE THE PROGRAM INFORMATION BLOCK

Defining PIB as an To update the program information block, define it as an update
update demand file demand file. There are many instances when you will need to do

this. The most common reason for updating the program
information block is to specify types of termination - normal
termination, external, delayed, or immediate succession.

Updating successor-id and Let's assume your transaction contains two action programs,
termination-indicator PROGO 1 and PROG02. For processing to continue when PROGO 1

terminates, PROGO 1 must name its successor and the type of
termination. PROG01 does this by updating the program
information block. On the output form, it moves the name of the
successor program, PROG02, into the successor-id field and
moves the termination code, E, 0, or I, depending on the type of
termination desired, to the termination-indicator field. Now let's
take a look at how you code the file description form to allow
for this updating.

Sample file description
form coding

Defining record length

Device name

In Figure 2-5, you see how we defined
the program information block as an
update/demand file in columns 15 and
16, and entered an F for file format in
column 19. For record length, we
specified 11 since termination-indicator
occupies pos1t1on 11 in the program
information block. You must specify at
least 11 character pos1t1ons when
updating the termination-indicator field.

Enter *PIB in columns 40-46. You can't
substitute any other name in these
columns.

Figure 2-5. Defining the Program Information Block as an Update
Demand File

-- ---.

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

UPDATING THE PROGRAM INFORMATION BLOCK

Sample output form coding The actual updating of these fields
occurs at output. Figure 2-6 shows the
output form for PROGO 1 . The file name
is PIB. It matches the name assigned to
the program information block on the
file description form. We defined the
end positions for output as 10 and 11,
respectively. Position 10 is the end
position for successor-id; and 11, for
termination-indicator. In columns 45-70,
we indicated 'PROG02' as the name of
the successor program and T for
immediate succession as the type of
termination. When PROG01 terminates,
'PROG02' is moved to the successor-id
field and T to termination-indicator. IMS
then checks the fields to determine what
processing takes place next.

Figure 2-6. Designating a Successor Program and Type of
Termination

2-24
Update A

No READ operation You don't need to read the program information block before
updating it. RPG II does this for you. However, you must define it
as an update demand file.

You define it as an update demand file so you can change
individual fields. If you define it as an output file, you must supply
all fields or the information contained in the fields you don't
supply will be overlaid by blanks. Therefore, it is much easier to
define it as an update demand file.

When you specify the PIB as update demand and do not supply
input specifications, you receive a warning message that there
are no input specifications. This is only a warning message and
you need not take any action.

When reading the program information block, be aware that the
end-of-file indicator is not set on by RPG II.

•

•

t •

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-25
IMS ACTION PROGRAMMING IN RPG II

INPUT MESSAGE AREA

2.9. DEFINING THE INPUT MESSAGE AREA (IMA)

Defining the input
message area

Size

Control header

Summary of header fields

The input message sent from the terminal goes to the input
message area where it awaits processing by the action program.
You define an input message area if your action program
references it.

Generally, the IMA is defined as a primary input file since the
input message coming in from the terminal often contains data to
be processed by the action program.

The input message area's size is usually specified at configuration
time. When the size isn't specified or the size specified is
inadequate, IMS allocates an area large enough to handle the
entire input message.

In addition to the input message coming in from the terminal, the
input message area also contains a control header. The control
header is 16 characters long and contains data generated by IMS
related to the input message.

Format of the Input Message Area Header

Table 2-7 lists the fields that comprise the input message area
control header.

Table 2-7. Input Message Area Control Header Contents

1-4

5-12

13-14

15

16

CT
C'2"
C'3"
C'4"
C'5'
C'6'
CT
C'8'
c·g·

Source-terminal-id

Date-time-stamp

Text-length

Reserved for system use

Auxiliary-device-id

Device = Aux 1
Device = Aux2
Device = Aux3
Device = Aux4
Device = Aux5
Device = Aux6
Device = Aux7
Device = Aux8
Device = Aux9

UP-9206

INPUT MESSAGE AREA

Source-terminal-id
(positions 1-4)

Message-identifier
(positions 5-12)

Text-length
(positions 13-14)

Auxiliary-device-id
(position 16)

SPERRY UNIVAC OS/3 2-26
IMS ACTION PROGRAMMING IN RPG II

Input Message Header Fields

The input message area control header contains the following
items:

Source-terminal-id identifies the terminal that sent the input
message.

Message-identifier is a unique identifier for each input message.
The first part is the date; the second part is a unique number
assigned by IMS. It is given in binary integers.

Text-length is a binary half-word integer that specifies the length
of the input message text.

Auxiliary-device-id is the configured number of the auxiliary
device transmitting data to the action program. This number is
specified in the communications network definition.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-27
IMS ACTION PROGRAMMING IN RPG II

INPUT MESSAGE AREA CODING

2.10. READING THE INPUT MESSAGE AREA

Defining /MA as
an input file

Sample file description
form coding

Columns 15, 16,24-27

Device name

Read once only

In most circumstances, the input message area is defined as a
primary input file since the input message sent from the terminal
is the first data you want the action program to process.
Consequently, as soon as your action program begins
processing, RPG II reads the input message area. Study Figure
2-7 for a moment.

In Figure 2-7, we define the input
message area as INMSG in columns
7-13, file name. You must give the
input message area a unique name; you
can name it IMA.

We entered IP for primary input in
columns 15 and 16, respectively. The
record length entry is 48. This
designates the size of the input message
(32 characters plus an additional 16
characters for the IMA control header)
that this action program is expecting .

The entry *IMA in columns 40-46 is
required. You may not substitute any
other name.

RPG II reads the input message area
only once. After this, any attempt to
read this area sets the end-of-file
indicator on.

Figure 2-7. Defining the Input Message Area as a Primary Input File

UP-9206 SPERRY UNIVAC OS/3 2-28
IMS ACTION PROGRAMMING IN RPG II

INPUT MESSAGE AREA CODING

2.11. USING THE INPUT MESSAGE AREA TO PASS DATA

Defining /MA as an
update file

Saving data in the input
message area

How to pass data

Successor program using
saved data

Restrictions on reading
input message area

Define the input message area as an update file (Figure 2-8)
when you want to use it to pass data from the current action
program to its successor program.

Normally, you pass data by means of
the continuity data area. However, when
you use immediate succession, you can
pass data to the successor program in
the input message area.

To use the input message area to pass data, define it as an
update file. Then, at termination, output to the input message
area any data you want to save and pass to the successor
program. You would code this operation on the output form as
you would to do output to any file.

The successor program defines the input message area as an
input or update file depending on how it intends to use the data.
To read the data, define it as an input file. To read and update
the input message area, define it as an update file. In either case,
the data saved in the input message area of the predecessor
program is immediately available to the successor program.

Remember, you can only perform a READ operation on the input
message area once. If you try it a second time, the end-of-file
indicator is set on.

Fil! ORGANIZATION

> OVERFLOW

Q:: "' Q INDICATOR

~ ~ 8 IUYFIELD

~ ~ ~ ~~=~:~~ ~

REWIND OPTION

_E CONDITIONERS

~OT PROGRAM

JSEO IDENTIFICATION

Figure 2-8. Defining the Input Message Area as an Update
Demand File

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 2-29
IMS ACTION PROGRAMMING IN RPG II

INPUT MESSAGE AREA CODING

Immediate succession saves When using the input message area to pass data between
interface area contents programs, you must specify immediate succession in the

termination-indicator field of the current action program. Only in
immediate succession does the input message area remain intact
between the time the first action program terminates and the
successor program begins processing. Recall that in normal

All other terminations termination, external and delayed succession, the interface areas,
release interface areas including the input message area, are released at the termination

of the current program. And in the case of external and delayed
succession, the successor program gets its own set of interface
areas. In immediate succession, however, all interface areas
remain intact. Consequently, the data saved in the input message
area of the first program is accessible to the successor program.

To save input message
area

Remember if you want to use the input message area to pass
data:

~ on the file description form, define it as an update file;

• on the output form, move the data to be saved to the input
message area; and

~ specify T for immediate succession in the termination
indicator field .

UP-9206 SPERRY UNIVAC OS/3 2-30
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA

2.12. DEFINING THE OUTPUT MESSAGE AREA (OMA)

Purpose

Size

Control header

The output message area holds the output message that your
action program generates. It remains there until it's sent to the
terminal.

You must define an output message area when your program
produces an output message. The maximum size of the output
message area is specified at configuration.

In addition to the output message sent to the terminal, the output
message area contains a control header. This header is 16
characters long and contains data generated by IMS concerning
the output message.

•

•

•

•

•

•

UP-9206

Summary of header fields

Destination-terminal-id
(positions 1-4)

SPERRY UNIVAC OS/3 2-31

IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA FIELDS

Format of the Output Message Area Header

Table 2-8 lists the fields that comprise the output message area
control header.

Table 2-8. Output Message Area Control Header Contents

1-4

5-6

5

6

7-8

9-12

13-14

15-16

15

16

CT
c·2·
C'3'
c·4·
C'5'
C'6'
CT
C'8'
C'9'

Output Message Header Fields

Destination-terminal-id

SFS-options

SFS-type

SFS-location

Reserved for system use

Continuous-output-code

Text-length

Auxiliary-device-id

Aux-function

Aux-device-no

Device= Aux 1
Device=Aux2
Device=Aux3
Device= Aux4
Device= Aux5
Device= Aux6
Device=Aux7
Device=Aux8
Device= Aux9

The output message area control header contains the following
items:

Destination-terminal-id identifies the terminal to receive the output
message. If you don't move a value to this field, the terminal that
sent the input message receives the output message .

UP-9206 SPERRY UNIVAC OS/3 2-32
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA FIELDS

SFS-type
(position 5)

SFS-location
(position 6)

Continuous-output-code
(positions 9-12)

Text-length
(positions 13-14)

Auxiliary-device-id
(positions 15-16)

When you transmit an input or input/output screen using screen
format services, IMS places a value of I in SFS-type. This means
that the screen format can be used for input in the following
action. You can change the screen to an output-only screen by
placing hexadecimal zero in this field.

To build a screen format in dynamic main storage instead of in
your output message area, move C'D' to SFS-location. Once you
build a screen format in dynamic main storage and you want to
send a message from the output message area, you must move
hexadecimal zero to this field. Screen format services is
discussed in Section 6.

Continuous-output-code is a 4-character field that the action
program uses when generating continuous output. The contents
of this field are returned to the successor program in the input
message area. Continuous output is discussed in Section 5.

Text-length is a binary half-word integer that specifies the length
of the output message. At the start of program execution, this
field contains the configured size of the output message area.
Before the output message actually goes to the terminal, RPG II
enters a new value into the text-length field. It computes this
value by taking the end position for the last field described on
the output form, and subtracting 12 characters (16 characters for
the output message area header minus 4 bytes for the
text-length field). IMS then uses this value to determine the size
of the output message going to the terminal. This procedure is
further described in 2. 14.

Auxiliary-device-id contains two fields: aux-function (15) and
aux-device-no (16). The action program moves a value to
aux-function when it generates continuous output and when it
transmits regular output messages to an auxiliary device.
Aux-device-no identifies the configured number for the auxiliary
device receiving the output message. This number is specified in
the communications network definition.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-33
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA CODING

2.13. FILE SPECIFICATIONS FOR THE OUTPUT MESSAGE AREA

Defining OMA as an
output file

Sample file description
form coding

Columns 15, 16, 19

Columns 24-27

Device name

You can define the output messsage area as an output file or as
an update demand file.

Generally, the output message area is defined as an output file
since most action programs generate output messages. Figure
2-9 shows you how to do this.

HElOROAlJOAtSS TVP{

f It E OHt,ANl/ATIOl\I

> OVlHflOW

~ : § !f\IOKATOH

- Q Q KEVflHD

: ~ ~ ~;::::~~ ~

REWIND OPTION

E CONDITIONERS

IOI PACM..RAlll

SEO IOENTlflCAT10N

Figure 2-9. Defining the Output Message Area as an Output File

The output message area is defined as
OUTMSG in columns 7-13. You must
give it a unique name; you can use the
name OMA.

The file type (column 15) is 0 for
output. Whenever column 15 contains
an 0, leave column 16 blank. The
required entry in column 19 is F for file
format.

In columns 24-27, we entered 143.
This is the configured size of the output
message, including 16 characters for the
control header.

In columns 40-46 (Device), *OMA is the
only acceptable entry .

UP-9206 SPERRY UNIVAC OS/3 2-34
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA CODING

Defining OMA as an update
demand file

Reading text-length

Reading data saved by
predecessor program

Saving data in OMA

Output message area in
immediate succession

Output message area in
delayed succession

Determining maximum
output message area
size

Define the output message area as an update demand file when
you want to do a READ operation on the output message area.
Generally, you read the output message area for one of two
reasons:

To determine the value in the text-length field. This field
contains the output message area size specified at
configuration. Knowing this value is important in determining
the size of the output message your action program can
create.

To get data saved there by a predecessor program using
immediate succession.

You can save data in the output message area with either
immediate or delayed succession.

With immediate succession, all interface areas of the current
action program, including the output message area, remain
intact for the successor program. The successor program
needs only to read the output message area to get this data.

With delayed succession, the output message area of the
current action program automatically becomes the input
message area of the successor program. Thus, the sucessor
program has immediate access to the saved data. If the
successor program defines the input message area as the
primary file, RPG II reads it as soon as processing begins.

In Figure 2-10, all entries are the same
as in Figure 2-9, except for columns 15
and 16 where we defined the output
message area as an update demand file.
We did this in order to read the text-length field to see if the
configured output message area size can handle the
143-character output message this program generates. If the
configured size is smaller than this, a portion of the message is
lost when transmitted to the terminal.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-35
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA CODING

Figure 2-10. Defining the Output Message Area as an Update
Demand File

2.14. HOW TO CODE YOUR OUTPUT MESSAGE

RPG II moves value
to text-length

When an action program generates an output message smaller
than the configured output message area size, RPG II moves a
new value into the text-length field before the message is sent to
the terminal. Also, when an action program generates more than
one message (see Section 5), RPG II moves a value to text-length
before each message is sent.

How output message length RPG II uses the end position of the last field you code on the
is determined output form to determine the length of the output message. For

this reason, be sure to list last the field with the highest end
position. You must also remember to allow 16 characters for the
output message header when calculating the end position of the
first field.

Allowing for output
message header

Example

Suppose your output message has three fields, CUSTNO, NAME,
and ACCT. The first field, CUSTNO, is 14 characters long, but
you must allow 16 characters for the output message header, so
you give the value 30 for the ending position of the first field.
NAME and ACCT are each 30 characters.

In Figure 2-11 the field ACCT has the highest value end position,
90, and is listed last on the output form. RPG II computes the
value of text-length by taking the value 90 and subtracting 12
characters (16 for the output message area header minus 4 for
the text-length field). Consequently, when the output message
goes to the terminal, the three fields CUSTNO, NAME,and ACCT
all appear on the screen since the value in text-length was large
enough to accommodate the three fields .

UP-9206 SPERRY UNIVAC OS/3 2-36
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA CODING

Incorrect text length

Effect of incorrect
text length

Figure 2-11. Coding the Output Form Determines the Value in
Message Length

Now look at Figure 2-12. In this case, RPG II looks at the end
pos1t1on on the output form and determines the output
text-length field value based on position 60. RPG II computes the
value for the text-length field using the end position 60.

Figure 2-12. How Placement of Output Fields Can Cause Incorrect
Message-Length Field

When the output message goes to the terminal, only CUSTNO
and NAME appear on the screen. IMS overlooks ACCT since the
text-length size wasn't big enough. This happens even though
the configured size of the output message area is large enough to
hold the entire message. You control what goes to the terminal
by the way that you list fields on the output form.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-37
IMS ACTION PROGRAMMING IN RPG II

OUTPUT MESSAGE AREA CODING

When program moves value If you wish, you can move a value to the text-length field. This
to text-length value should equal the actual size of your output message plus

four characters for the text-length field itself. RPG II doesn't
override this value no matter what you specify as the last entry
on the output form.

When text-length=O When message-length is set to zeros, IMS puts out the message
TRANSACTION COMPLETE .

UP-9206 SPERRY UNIVAC OS/3 2-38
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA

2.15. DEFINING THE CONTINUITY DATA AREA (CDA)

Purpose

Size

File description form entries

The continuity data area is used to pass data from one action
program to its successor. IMS saves this area on disk at the
termination of the predecessor action program and restores it at
the start of the successor action program. You generally define
a continuity data area when you want to pass data between
action programs.

Continuity data area size is specified at configuration. How you
define it on the file description form depends on how your action
program uses it (Table 2-9).

Table 2-9. Defining the Continuity Data Area According to How
the Action Program Uses It

Saves Data Only

Reads and Updates
Saved Data

Reads Saved Data Only

Blank

P.S,D

P,S,D

In 2.16 we'll consider an example where the continuity data area
is used in the three ways described in Table 2-9.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-39
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

2.16. HOW TO USE THE CONTINUITY DATA AREA TO PASS DATA

Example

Assigning file name and
type

Continuity data file

Record length and
device name

Consider a case where there is a transaction that contains three
action programs - PROG01, PROG02, and PROG03. When it
terminates, PROGO 1 wants to pass data to PROG02. Figure 2-13
shows how you do it.

PAGE
NO. UNE .. FIU

e e e ! 2 ~ Q BLOCK RECORD

~ ~ ~ "' ~ ~ LEJrr•GTH LENGTH ~

AECORO ADDRESS TVPE

FIUORG-llATl()loO

> OVERFLOW
~ ; Q INOICATOfl

~ i) ~ KEYFIHO

~ ~ ~ ~~=~:: g

Figure 2-13. Defining the Continuity Data Area when It Saves
Data Only

The file name is CDA. In column 15, the
entry is 0 for output file because at
output we want to move data to the
continuity data area.

When an action program terminates, in this case PROGO 1, any
data in the continuity data area is moved to the continuity data
file. It is saved there until the successor program is scheduled. In
single-thread IMS, the continuity data file is AUDCONF; in
multithread IMS, it is CONDA TA.

For record length we enter 240; this is
the size of the saved data. In columns
40-46, the required entry is *CDA.

Now, consider Figure 2-14 .

UP-9206 SPERRY UNIVAC OS/3 2-40
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Continuity data area as
an update file

Passing data to PROG02

Passing data to final
successor program

Continuity data area
as an input file

...
NO LlNE

•o ~ ~ ~ O BLOCK RECORD

~ g ~ ,.. ~ ~ LEJtjGTH LElllGTH

Figure 2-14. Defining the Continuity Data Area when It Reads and
Updates Saved Data

Figure 2-14 is the file description form coding for PROG02.
PROG02 is the middle program in this series. It is designed to
read the data saved by PROGO 1 and update it. Notice the
continuity data area is defined as an update/demand file.

When IMS schedules PROG02, it moves the data saved by
PROGO 1 from the continuity data file to the continuity data area
of PROG02. Using the READ operation, this data becomes
available to PROG02 for updating.

When PROG02 terminates, it passes data to its successor,
PROG03. Figure 2-15 is the coding for the file description form
for PROG03, the last program in the transaction.

Figure 2-15. Defining the Continuity Data Area when It Reads
Data Only

Figure 2-15 defines the continuity data area as a primary input
file. When IMS schedules PROG03, it moves the saved data of
PROG02 from the continuity data file to the continuity data area
of PROG03. As soon as PROG03 begins processing, RPG II
begins reading this area. The transaction is complete when
PROG03 terminates normally.

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-41
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Normal flow of saved data In describing this transaction, we said the saved data went to the
continuity data file. This point needs explanation. When an action
program defines a continuity data area, any data saved by that
program goes to that specific area. When the program

continuity data file terminates, the saved data is written to the continuity data file -
AUDCONF in single-thread IMS; CONDA TA in multithread IMS.
When the successor program begins processing, IMS moves the
saved data from the continuity data file to the continuity data
area of the successor program.

Saved data flow in
immediate succession

Other ways to save data

Only in immediate succession is this process different. Since all
interface areas, including the continuity data area, remain intact
between programs, the data stored there is not written to a
continuity data file. It remains in main storage and is immediately
available to the successor program when processing begins.

We might mention again at this point that you can also use the
input and output message areas to pass data when specifying
immediate succession (see 2.11). In addition, you can use the
output message area to pass data when using delayed
succcession since the output message area becomes the input
message area of the successor program (see 2.13) .

2.17. HOW TO VARY CONTINUITY DATA AREA SIZE TO SUIT AMOUNT OF
DATA PASSED

Changing continuity-data
-area-inc value

How IMS determines
continuity data area size

You may need to vary continuity data area size from one action
program to another depending on the size of the data saved. You
do this by changing the value of continuity-data-area-inc in the
program information block. You can only increase the continuity
data area size for the successor action program, not for the
current program.

IMS determines the continuity data area's size at the termination
of each action program based on which length is larger:

~ the CDA length specified at configuration; or

~ the length specified in the continuity-data-area-inc field in the
program information block plus the actual length of the data
saved at the termination of the action program .

UP-9206 SPERRY UNIV AC OS/3 2-42
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Increasing continuity
-data-area size

Updating the program
information block

Example

Moving a value to
continuity-data-area-inc

Let's consider once again a series of three action programs,
PROG01, PROG02, and PROG03. Assume that the configured
continuity data area size is 1536 characters. The data you want
to pass in PROG01 is 1500 characters. You know that PROG02
will be passing the same data plus additional data to PROG03.
Consequently, PROG01 needs to increase the continuity data area
size for PROG02, the successor program. To do this, PROG01
must have already defined the program information block as an
update demand file on the file description form. On the output
form, you specify an increment value for this field.

Consider Figures 2-16 and 2-17.

In Figure 2-16, we defined PIB as an update demand file since
PRO GO 1 updates successor-id, termination-indicator, and for the
purpose of this example, continuity-data-area-inc. Recall that you
do not need to do a READ operation of the program information
block to update it. Also, notice that the CDA is an output file
with a configured size of 1536 characters.

Figure 2-16. Coding the File Description Form for Program PROG01

In Figure 2-17, we show the values output to the PIB file when
PROGO 1 terminates. 'PROG02' is moved to successor-id (end
position 10). T is moved to termination-indicator (end position
11). The hexadecimal value '1 F4' (500) is moved to
continuity-data-area-inc.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 2-43
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Example

Figure 2-17. Coding the Output Form for Program PROG01

Computing continuity-data At termination IMS examines all these fields. It compares the
-area size for successor value of the continuity data length specified at configuration

(1536) to the sum of the continuity-data-area-inc (500) plus the
length of the data saved by PROG01 at termination. Since the
saved data (1500 characters) plus 500 is larger than 1536, IMS
increases the continuity data area size for PROG02 to 2000
characters .

Continuity-data-output
-length and continuity
-data-input-length

When continuity-data
-area=O

The actual length of the saved data is specified in the
continuity-data-output-length field in the program information block
of the current action program. When IMS schedules the successor
program, this value is moved to continuity-data-input-length in the
program information block of the successor program.

When an action program terminates and the value in
continuity-data-output-length is zero, no data is saved in the
continuity data file .

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-1
IMS ACTION PROGRAMMING IN RPG II

SAMPLE TRANSACTION

3. Writing an Action Program

3.1. DIFFERENCES BETWEEN ACTION PROGRAMS AND NORMAL RPG 11
PROGRAMS

Using interface areas

In Section 2, we discussed rules for coding action programs.
You'll recall that the major difference between action programs
and a normal RPG II program is coding the interface areas. These
areas are coded on the file description form. They handle all
communication between IMS and the action program.

3.2. PURPOSE OF EXAMPLES

Scope of section

Key features of action
programs

In this section, we present a series of action programming
examples illustrating the coding principles described in Section 2.
These examples are not complex and they emphasize the points
you need to keep in mind when designing an action program.
Let's summarize these points:

signals the beginning of a
transaction.

~ :t•l:B!!(ll::l'llll:lll\\ ... 1:11 input messages and produce
output messages.

~ for the handling of
input and output messages.

~ ill••ml:l_'.'l:!l1lll!iilll!I - the program information block, input
message area, output message area, and continuity data
area - handle control data passing between your program
and IMS. These areas are described in Section 2. How they
are used is one of the major topics of this section.

you have several
screen format services; device independent
expressions (DICE); and, field control characters
Using device independent expressions and field
characters is discussed in Appendix A. Screen
services is covered in Section 6.

options:
control
(FCCs).
control
format

UP-9206 SPERRY UNIVAC OS/3 3-2
IMS ACTION PROGRAMMING IN RPG II

SAMPLE TRANSACTION

3.3. HOW TRANSACTIONS ARE INITIATED

Entering a transaction
code

How action programs are
scehduled

Example

A transaction begins when the operator enters a transaction
code at the terminal. This code tells IMS what action program to
schedule.

Each transaction code, and the action program that processes it,
is specified at IMS configuration. Whenever a code is entered at
a terminal, IMS checks the transaction table to determine if it's a
valid code. IMS then checks to see what action program was
configured to process this code. Once these steps are
completed, if resources are available, IMS schedules the
appropriate action program.

In our example (Figure 3-1), when the operator keys in the word
'ST ART'. IMS checks the transaction table to verify the code and
find the action program configured to process 'ST ART'. The
name of this program is RCMENU. If resources are available, IMS
schedules RCMENU; if not, the transaction code ST ART is
queued until IMS can handle it.

· START
RC MENU

Figure 3-1. Transaction Code Initiates IMS Transaction

3.4. SAMPLE TRANSACTION (EXTERNAL SUCCESSION)

A sample transaction

In this example, there are six action programs. The first program
generates a menu. The other five programs allow a terminal
operator to:

~ enter an order; ~ bill the customer; and

~ update the customer file; ~ terminate the transaction

~ update the order file;

--------------------------------------······

•

•

•

•

•

•

UP-9206

Summary of processing

Programs RCMENU and
RCCUST

SPERRY UNIVAC OS/3 3-3
IMS ACTION PROGRAMMING IN RPG II

SAMPLE TRANSACTION

The first action program displays a menu on the terminal screen.
The terminal operator selects the operation he wants to perform
by entering the appropriate menu selection. The menu program
validates the selection and displays a template on the terminal
screen. The operator fills in the data requested and another
action program uses the data to perform the requested operation,
such as updating the customer file.

We will describe the operation of two of the action programs,
RCMENU and RCCUST. RCMENU displays the menu screen from
which the terminal operator selects the operation (we assume 2 -
CUSTOMER UPDATE is selected), and RCCUST updates the
customer file. We will describe the operation in detail and show
and explain the two action programs.

3.5. A DESCRIPTION OF WHAT THE SAMPLE TRANSACTION DOES

Our sample transaction begins with the entry of the transaction
code ST ART at the terminal. The transaction consists of three

Structuring the transaction actions. Therefore, there are three input messages entered at the
terminal and three output messages generated by the action
programs. Two programs process this transaction. They are
RCMENU and RCCUST.

Execution of RCMENU

Processing on the
first pass

RCMENU is the first action program in this transaction. The
transaction calls for two passes through this program, i.e.,
RCMENU will execute, be rescheduled, and execute a second
time. Let's look at what happens in each pass.

On the first pass, RCMENU:

1 . Processes the input message coming from the terminal. On
the first pass, the input message is the transaction code -
START.

2. Creates an output message that is the menu screen.

3. Reschedules itself as successor program to validate the
menu selection the terminal operator makes .

UP-9206

SAMPLE TRANSACTION

Processing on the
second pass

Execution of RCCUST

SPERRY UNIVAC OS/3 3-4
IMS ACTION PROGRAMMING IN RPG II

On the second pass, RCMENU:

1 . Processes the input message coming from the terminal. This
time the input message is the number of the menu selection
entered by the terminal operator. In our example, the
selection made is 2 - CUSTOMER UPDATE.

2. Creates an output message that is the customer update
screen. The screen generated relates to the menu selection
made. In this case, it is a screen requesting data to update a
customer account balance file.

3. Schedules the appropriate successor action program to
process the data entered on the second output screen. In
our example, the successor program is the customer update
program RCCUST. If a different menu selection is made,
RCMENU generates the appropriate screen as an output
message and schedules the appropriate successor program
to process it.

When RCMENU terminates after the second pass, RCCUST
begins processing (we are assuming, of course, that the terminal
operator chose menu selection 2). RCCUST:

1 . Processes the data the terminal operator enters on the
customer update screen generated as output by RCMENU on
the second pass.

2. Computes a new balance for the customer account file.

3. Updates the customer account file.

4. Creates an output message containing the new customer
balance to be sent to the terminal.

Figure 3-2 illustrates the processing for RCMENU and RCCUST.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-5
IMS ACTION PROGRAMMING IN RPG II

SAMPLE TRANSACTION

Figure 3-2. How RCMENU and RCCUST Process a Transaction

3.6. GENERAL OPERATION OF ACTION PROGRAMS

Action program design

Common characteristics

Although the actual processing done by RCMENU and RCCUST
differs somewhat, the activities involved are fundamentally the
same. The terminal sends an input message. The action program
processes it and generates an output message. The action
program then schedules a successor program, if needed, and
terminates.

These activities are characteristic of action programming.
Whether one or many action programs are involved, the basic
design is the same. Action programs process input messages
and generate output messages .

UP-9206 SPERRY UNIVAC OS/3 3-6
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING

3.7. EXPLANATION OF THE CODING FOR RCMENU

Formatting output

With this general background, let's now look at the actual coding
for this transaction, beginning with RCMENU. Figures 3-3 and
3-4 show compilation of the RCMENU and RCCUST action
programs.

Note on the output form of both programs that a series of device
independent control expressions and UTS 400 field control
characters are used to format output messages sent to the
terminal. To facilitate our discussion of the action programs
themselves, we'll ignore these sequences for the time being. A
discussion of device independent codes and field control
characters can be found in Appendix A. Section 6 discusses how
action programs use screen format services to format output
messages.

•

•

•

•

•

••

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

!1 5 1 I 13 17 Z1 Z5 ZI n 37 •1 53 17 II • •

UNIVAC OS/3 APGit VEAS 801007
RC MENU
START 81108/11 21lo28

1101
002
003
J'lll
1)05

J06

0'17

J'l8

O'l9

Ohl

llll

012
013
iJ1'1
DlS
016
J17
J18
019
020
021
'1:!2
U2'3
0211
025
::126
J27
&J~8
029
030
o:n
J32
!J33
J3"
035
'136
037
J38
039
0110
0111
0112
11113
01111
0115

H
F'JHA
FOHA
FPIB
tJHA
I

IP F
0 F
UO F
U 2C
u 3r.

•8
sr.u

7C
17 CS 18 CT
17 Cl

Al "C 17 C2

u sr. 11 CJ

U bC 17 Cl!

U 7C 17 CS

u 99

tPtB NS DI

I
I
OOMA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(I

0
0
0
0
0
OOMA
0
0
0
0
0
0
0

0
OR

D

2C

~·

•IMA
•OH&
•PtB

19 Cl

S ID SCRSIC
11 11 TEAM IC

~U X' I (llJA1i1'l6'
25 X'lF'6CF96EF3'
q9 'MENU SELECTION P~OGRIH'
511 X'lFSOF96£F3'
68 'l·ORO[A ENTRY'
73 X'lf11EF96[F3'
91 '2-CUSTOHER UPl!ATE'
96 X'lF60F96EF3'

111 '?•OROEA UPDATE'
116 X'lF'61F96£F3'
125 'll·BILLihG'
130 X'lFFlF96EF3'
136 'S·STllP'
1111 X'lFFllF96EF3'
165 'FNTEQ YOUP SELEClION
17J X'lFF1107F3F2'
1 71 • •
J76 X'lFF6F96£F3'
197 'PLACE CURSOR HERE 10 '
2"!6 'TRANSMIT '
211 X'lFF6t6F3F~'
2 12 • •

:!!) X'l:lO•OI06'
25 X' lf'6CF96£F3'
112 'CUSTOMER UPCATE •
119 •PROGAAM'
511 X'IFllOF96EF!'
77 'FNTE? S•llIGIT CUSTCMEP '
~fl 'NIJl'&ER '

Figure 3-3. RCMENU Program (Part 1 of 2)

3-7

RCMENU CODING

n n II

PAGE

ARCMENU

UP-9206 SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING

!1 I 1 I 13 11 !I U

UNIVAC OS/3 RPGII YERS 801007

.J'l6
0117
0'18
01'9
050
051
(152
U53
JSll
055
056
057
058
059
060
vH
u62
']6!
064
OlS
066
.16 7
168
169
::;70
071
U72
o~J

~71.l

..i~s

. r'6
'P7
1~8

J".'9
ono
Je1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
OP?B
0
0
0
0
0
0
0
0
c
()

0
c
c
0
0
0
0

PB

PESULT:NG ?NnJCATORS

ADDRESS PI

oooi1" 1P
oooo"s 5o
COD087 H2
D0008E H9
UC1Q'19S U7

ADDRESS PI

ll'IC015 LR
U01i052 60
ODCD88 1!3
00008F U 1
COC096 ue

D

0
OR

0

0

a

0

7C

7J

ADCRESS ~I

UC:J:JH 'U
JCO!'.ISC 7J
LJCODll9 ~"
000090 L2

n u n 41 • U 11 II • i 13 11 Ml
STAllT 11101111 20.u

19 X'1'"DE6'3F0°

'" . . 99 x;i~;~E06EF3'
10'1 X'1F5CF96EF3°
128 'ENTER + FOR PAYMEN1 MADE•
133 X'1F'IEF96EF3•
157 'ENT[P - FOR PAYMEN1 OWED'
162 ~'1F6BF96EF3'
1T5 •[NTEO +OR - •
1ea •'1F63C6F3FI!'
1~1 • •
186 X'1F6BC76EF3'
191 X'1F,.BF96EF3°
20'1 'ENT[o AMOUNT '
2~9 X'1FllBC6F3F'I•
2111 •

111 •'ODOO'

lJ 'P.C'4ENU'
11 '[.

10 'ORCENT'
11 'F'

1<1 'RCCUST'
11 '[.

1::1 'ORDRUP'
11 'f •

10 'BILLS'
11 '['

11 '"'.

A:>DRESS RI

:JDDCl 7 01
J0.J07"' 99
:)l'liJC8 A HS
.,i'1Jllf 1 U3

lDDRfSS RI

ODOD2A 20
DDD'l7A LO
(l:J0088 1'6
Ui'IU'.192 Ult

ADDRESS RI

oronH !D
000085 1'0
Oll01'18C l'l
0!!0'193 us

PAGE

3-8

2

ADDRESS PI

Ol!Qn3E 110
:JCDD86 Hl
OODOllD H8
0000911 U6

ADDRESS FIELD ADl'IRESS FIELt' ADDRESS FIELD ADDRESS FIELC AODRESS FIELD

Figure 3-3. RCMENU Program (Part 2 of 2)

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-9
IMS ACTION PROGRAMMING IN RPG II

RCCUST CODING

• ft 5 1 I 13 17 21 25 H 33 37 41 45 • &357111611 73 11 Ml
UNIVAC OS/3 RP611 VfRS 801007 RCCUS 1 81/08/11 20.30 PA&[

Ii ARCCUSl
COi FIHA IP F 100 100 •IHA
002 FOMA 0 F 2SO 2so •OHA
003 f Ple uo r 70 •PlB
C04 rcus rFIL UC r 80R SAI DISK
aos IIMA AA 01
006 I l7 21 cusr
0(17 I 22 22 SIGh 20
008 l a z7 AMOUNT
r.09 lCUSlrIL B~ 02
OlC l CUS TIO
Cll l 6 25 NAM[
012 <b 411 ACOR
c 13 Iii 55 CITY
'.' 14 Sb t.r 2'1P
r1s l p ti b52BALDUf.
Glb l<'IF NS 01
G17 l s Ir SCRSID
CI~ II 11 J[PHID
r l c; l CUST CHllNCllSHlL 3Q
!"'2C' c 3~ GOTO ENQ
~Zl c r.n SIGN CO~P •+• 41
(122 c N2 :N4 l s re, .. COMP ·-· 42

~" 3 c N 2 CN 41 .. 42 SE TON St
02'4 c s: GOTO [I<['
~~r
. L' c TE STN A HC LN T bl
L£b c Nbl SE TON 10
0;:1 c 7C GOTO [Nf
J:A c HOVE AMOUNT AMT !'-L
~.~ 9 (z-
r.3c lOJ, 41 LALO~[Sllb AHT ~l[WbH Q ~·
031 (42 <.AU•llf ADO AHT N[W~AL

c:,2 c l Nu T Ab
'.)33 VOti'!A D _N r:r.3CN SQ
0 34 0 ANO I.II ~2

• 035 (; 20 X •!00Af1ZOO'

~ Jb (, 3C 'UH[- '
037 0 NAH(SCI
':3~ 0 !>4 x •1-.010 ;oo•
03Q c b4 'ADORES~ - .
:l4C c AOOP 79
C41 c 83 X 'I00l04C0°
1)42 c '13 'llTY-ST - .
043 0 CITY 1 OB
044 c 112 x "1001041['
f4S 0 118 '2IP - .
C4b 0 ZIP 123
047 0 127 X 'l 00110 <DO'
0118 c 1111 'tlo BA LANCE - .
0~9 0 BAL OU£ 1S6 ' • • so. t-•
050 ~ lbD x •100110100•
051 0 1711 'lRANSACTJON - .
C!>2 0 A"T 183 ' so. -·

Figure 3-4. RCCUST Program (Part 1 of 2)

•

UP-9206 SPERRY UNIVAC OS/3 3-10
IMS ACTION PROGRAMMING IN RPG II

RCCUST CODING

I• 5 7 • 13 17 21 25 21 33 37 41 45 41 53 57 11 I& • 73 n !I
UNIYAC OS/3 AP&JI VEAS 101007 ACCUS 1 81/01/11 20e30 PAGE 2

053 0 187 x •100110100•
0511 0 201 • •E Iii BA LANCE - .
055 0 NEWBAL 219 • • ' so • t-•
056 0 223 x •1001010&.
057 OCUSlFIL 0 N 70N30N50
058 0 ANO 01
059 0
060 OO"A 0
061 0
062 0
063 0
Obi! OO"A D
065 0
066 0
Ob7 0
01>8 OOl'IA 0
069 0
070 0
071 0
072 OPJB 0
073 0

PIB

RESULTlNb INDICATORS

AO OPE SS RI ADDRESS RI

0000111 lP oao o 1 s LR
D0003f 11 l 0000110 112
OJD08b Hl DDO 087 HZ
oooa8o H8 OOD D8E H9
0000911 U6 000095 U7

flELO NAMES

~OORESS f IELD Al'ORESS

DDOlBD •ERROR GD021 D
Il00220 NA"E OD02311
DD02SC SCRS ID 000262

UTERALS

ADDRESS LITERAL

OD026B
OD0271
CDD289
000298
000283

+
NA"E
x•1Do1011DD'
ZIP --,--,--1.-- -

30

so

10

ADIJR ES S

DODO! 6
DOOOll 8
D~008 6
DDOG8 f
00009 6

FIELD

CUH
ADDA
TERMID

NEWBAL &SP

~(l x 'IOOAOZoo'
39 'lNVALH' CUSTO"EP IO•
113 X'IODICI06•

zc x 'loo•o;oc'
32 'INVALlu SIGN'
3b X 'lOOlC'lOb'

20 x '1oo•c~o;i•
311 'l~VALJD AMOUNT'
3A X 'I001Cl'16'

11 '~.

SY~BOL TAe Lr s

RI AODPES S Ii I

uo OODOl7 Ul
so ~OOOS3 61
H3 COCC89 HI!
Ul (100D90 U2
u9

ADORE SS f IELO

000215 SIGN
G002113 CITY
OD020C END

ADDRESS LITERAL

OOD26C
0DD278
D00280
0002Al
DD02C3

x•100103oo•
CITY-ST -
x•1Do11020D'
1•100110100•

AOl'>ESS RI

OCOGlP 02
CCuu5C 70
GG008A H~

~COO'll U3

ADDRESS f ILLD

G00216 AMCilJNT
C00252 ZIP
(00263 AMT

Figure 3-4. RCCUST Program (Part 2 of 2)

NOT[132

ADDHSS RI AO DRESS

"ODG2A 2C D 0 OD3 II
C'DC07A LG DD0085
C0008B Hb OG008 C
'.J0009' Ull 'JOC09 3

ADORES S fIELD

G0021B CUS TIO
000257 BAL DUE
0002&6 NEW BAL

At'ORESS LITERAL

00021>0
D0027f
OOD297
DDD2AS
DD02C7

X' lOOA 020D'
ADDRESS -
x•10010111E•
OLD BALANCE -
TRANSACTION -

RI

30
liD
Hl
us

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 3-11
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING DESCRIPTION

3.8. RCMENU - ASSIGNING A NAME TO THE PROGRAM

Control form entries

Every action program requires these entries on the control form:

D"igo"" '" •c>ioo pmgcom __J I
Action program name --------~

3.9. RCMENU - DEFINING THE INTERFACE AREAS (IMA, OMA, and PIB)

Define only areas used

Defining the input
message area (/MA)

The file description form describes all interface areas your action
program references. The action program defines only those areas
it intends to use. We describe in detail the use of the interface
areas in Section 2.

RCMENU uses three interface areas - the input message area
(IMA), output message area (OMA), and program information
block (PIB). Since RCMENU does no file processing, no user files
are described; however, the interface areas are treated as files.

The following table describes the file description coding that
defines the IMA, OMA, and PIB associated with RCMENU.

15-16

19

24-27

40-46

Primary input file. As soon as IMS schedules RCMENU, and
assigns its interface areas, it places all data entered at the
terminal in RCMENU's input message area. When RCMENU begins
executing, it immediately reads the data in the input message area
into the program.

This is the configured size of the input message area.

You specify input message area size in the INSIZE parameter in
the ACTION section of the IMS configuration.

RCMENU isn't expecting a message larger than 48 characters.
However, IMS does make allowances to accommodate larger

Required entry whenever defining the input message area.

UP-9206

RCMENU CODING DESCRIPTION

Defining the output
message area (OMA)

Defining the program
information block (PIB)

15-16

19

24-27

40-46

15-16

19

24-27

40-46

SPERRY UNIV AC OS/3 3-12
IMS ACTION PROGRAMMING IN RPG II

User file name assigned to the output message area. You must
define an output message area if the action program creates an
output message. This area holds the output message that
RCMENU creates.

Output file

Required entry

This is the maximum size of the output message RCMENU can
generate. As coded, the program doesn't use all 500 characters.

You specify output message area size in the OUTSIZE parameter
in the ACTION section of the IMS configuration.

Required entry when defining the output message area

User file name assigned to the program information block. You
only define this interface area if you intend to read it or read and
update it in your action program. Whether or not you define it,
RPG II checks the status and detailed status codes fields in the
program information block after each 1/0 request and makes the
values in these fields available to the action program. These
codes inform the action program if the function request made to
IMS was successful or not. If not, both the status- and
detailed-status-code fields (1-4) in the program information block
and •ERROR contain the reason for the failure.

Update demand file. Since RCMENU updates the program
information block, it must define it as an update demand file. At
output, RCMENU moves values into the successor-id and
termination-indicator fields. At action program termination,
successor-id identifies to IMS the name of the successor action
program. Termination-indicator identifies the type of termination
for the current action program.

Required entry

This is the entire program information block area accessible to an
action program. Other areas are for IMS use only. For a complete
list of the program information block fields you can access in your
program, see 2.5.

Required entry whenever defining the program information block

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 3-13
IMS ACTION PROGRAMMING IN RPG II

RCMENU PROCESSING

3.10. CONTENTS OF MAIN STORAGE AFTER RCMENU IS SCHEDULED

When IMS schedules RCMENU, this is the way main storage
looks. Notice in Figure 3-5 that the three interface areas defined
by RCMENU are loaded with the action program.

Figure 3-5. Main Storage when IMS Schedules RCMENU

3.11. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 1)

Reading the input message
area

Contents of the input
message area - Pass 1

Only one input file is defined for RCMENU - IMA or input
message area. When RCMENU begins executing, it reads the
input message area. This area always contains a 16-character
control header (see Table 2-10 for a description of the header)
and the input message transmitted by the terminal operator. On
the first pass through RC MENU, the input message is the word
ST ART. ST ART is the transaction code that signals the beginning
of the transaction and identifies to IMS the name of the first
action program, RCMENU, to process this transaction.

Once RCMENU reads the input message area, it compares
positions 17, 18, and 19 to the characters S, T, and A.
Remember to always allow positions 1-16 for the input message
area header. Any input message (transaction code or other data)
entered at the terminal always starts at position 17 or some
position thereafter .

UP-9206

RCMENU PROCESSING

Characters match,
RCMENU scheduled

/MA contents

SPERRY UNIVAC OS/3 3-14
IMS ACTION PROGRAMMING IN RPG II

In this example, the characters will match since S, T, and A are
the first three letters of the transaction code that caused IMS to
schedule RCMENU. When positions 17, 18, and 19 = S, T, A,
indicator 20 is set on.

Figure 3-6 shows the contents of the input message area when
RCMENU is scheduled.

Figure 3-6. Contents of the Input Message Area - Pass 1

Since there are no calculation specifications for this program,
when indicator 20 is on, detail output is done. The output is the

Menu screen sent to OMA menu screen that goes to the output message area where it
remains until RCMENU terminates. No output message generated
by an action program, be it through exception, detail, or total
time output, ever goes to the terminal before the program

IMS handles 110 finishes all processing. IMS handles the actual input and output of
messages.

Menu screen passed
to terminal

Summary - RCMENU
Pass 1

In this example, when RCMENU generates the menu screen,
processing is also complete. Consequently, the program
terminates, rescheduling itself with external succession, and the
menu screen is transmitted to the terminal.

So, on the first pass RCMENU processes the transaction code
ST ART and produces a menu screen that IMS transmits to the
terminal when RCMENU terminates.

3.12. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 2)

Processing operator menu On the second pass through the program, position 17 of the
choice input message area is matched to the character S. It doesn't

match. The program then tries to match position 17 with the
number 1,2,3,4, or 5. The numbers 1-5 represent possible menu
choices the terminal operator can make.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-15
IMS ACTION PROGRAMMING IN RPG II

RCMENU PROCESSING

Processing input message On the second pass, RCMENU is expecting one of these numbers
area contents - Pass 2 in position 17 of the input message area. If the operator has

followed directions correctly, this is what the program receives. If
not, any other input entered from the terminal sets on indicator
99, which like indicator 20, retransmits the menu screen. The
operator then has another chance to make the correct entry.

Indicator set on

Figure 3-7 shows the contents of the input message area when
the operator enters valid data.

Figure 3-7. Contents of the Input Message Area - Pass 2

When RPG II finds the number 1,2,3,4, or 5 in pos1t1on 17 of the
input message area, a specific indicator is set on and a specific
type of detail output occurs. Once again, there are no calculations
to be done. Table 3-1 summarizes the indicators set on and
resulting output, based on the menu selection made.

Table 3-1. Indicators Set On During Second Pass
through RCMENU and Resultant Output

Order entry screen*

2 Customer update screen

3 Order update screen*

4 Billing screen*

5 Stop

None of the above Menu screen

*Output coding not shown in example

UP-9206 SPERRY UNIVAC OS/3 3-16
IMS ACTION PROGRAMMING IN RPG II

RCMENU PROCESSING

3.13. HOW RCMENU USES THE OUTPUT MESSAGE AREA

RCMENU'S output at
program termination

Two output messages

Message formatting

Screen generated for
Pass 1

Output for action programs is defined the same as for any RPG II
program, even the output message destined for the terminal. The
important point, however, is that no output generated by an
action program goes to the terminal until the program terminates.

Looking at the output form coding (Figure 3-3), you see that
RCMENU generates two output messages destined for the
terminal, one on each pass through the program.

All the hexadecimal sequences interspersed among the output
fields format the message when it appears at the terminal. These
sequences are discussed in Appendix A.

Generating the Output Message - Pass 1

Figure 3-8 shows the output message that goes to the terminal
when RCMENU terminates after the first pass through the
program:

START
SPERRY UNIVAC

MENU SELECTION PROGRAM

1- ORDER ENTRY
2- CUSTOMER UPDATE
3- ORDER UPDATE
4- BILLING
5- STOP

ENTER YOUR SELECTION []

PLACE CURSOR HERE TO TRANSMIT []

Figure 3-8. RCMENU's Output Message - Pass 1

•

•

•

•

•

•

UP-9206

Screen generated for
Pass 2

Menu selections 1, 3,
and 4

Ending the transaction

SPERRY l 'NIV AC OS/3 3 17
IMS ACTION PROGRAMl\,ING Ir RPS II

RCMENU PROCESSING

Generating the Output Message - Pass 2

When the menu selection is 2-CUSTOMER UPDATE, indicator 40
is set on and RCMENU generates the output screen in Figure 3-9.
This occurs on the second pass through RCMENU.

START

SPERRY UNIVAC
CUSTOMER UPDATE PROGRAM

ENTER 5-DIGIT CUSTOMER NUMBER

ENTER + FOR PAYMENT MADE
ENTER - FOR PAYMENT OWED
ENTER + OR -
ENTER AMOUNT

PLACE CURSOR HERE TO TRANSMIT

Figure 3-9. RCMENU's Output Message on Pass 2 for Menu Selection 2

We have not included output message screens when indicators
30,50, and 60 are set on (menu selections 1,3, and 4). Such
screens would be designed on the order of the customer update
screen; however, they would request data relating to order entry
(1), order updating (3), or billing (4).

When No Output Message is Generated

When indicator 70 is set on (menu selection 5), we move zeros
into the text length field of the output message area. This causes
IMS at program termination to send out a standard system
message indicating that the IMS transaction is over. See Figure
3-10.

r
START

TRANSACTION COMPLETE

Figure 3-10. RCMENU's Output Message when Menu Selection "5-STOP' Is Made

-- - ---,
UP-9206 SPERRY UNIVAC OS/3 3-18

IMS ACTION PROGRAMMING IN RPG II

RCMENU PROCESSING

3.14. HOW RCMENU USES THE PROGRAM INFORMATION BLOCK

Updating the program
information block

Defining the location of
program information
block fields

Indicating successor-id
and termination type

The only other output file described on the output form is the
program information block. It shows what values ·RCMENU
moves into successor-id and termination-indicator at output.
Successor-id occupies positions 5-10 of the program information
block and identifies to IMS the name of the successor action
program. Termination-indicator occupies pos1t1on 11 and
indicates to IMS the type of termination for the current action
program. The types of termination are normal, external, delayed,
immediate, abnormal, and abnormal with snap dump. For more
information on these termination types, see 1.4.

Whenever you define program information block fields in your
action program, make sure that their beginning and end positions
correspond exactly to their predefined location in the program
information block. Table 2-6 defines these locations.

Depending on what indicator is set on at output, the appropriate
values are moved to successor-id and termination-indicator in the
program information block. Table 3-2 suml"'larizes the successor
program name and termination type when a specific indicator is
set on.

Table 3-2. Successor Programs and Type of Termination
Corresponding to Each Indicator Set On

ORD ENT External

RCCUST External

ORDRUP External

BILLS External

No Successor Normal (N)

RCMENU External

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-19
IMS ACTION PROGRAMMING IN RPG II

RCMENU PROCESSING

IMS termination procedures When output is complete, RCMENU terminates since there is no
further processing to be done. IMS then checks the output
message area and sends the message to the terminal. IMS also
checks successor-id and termination-indicator to determine if
further processing is required. When the terminal operator
receives the output message and enters data to the screen, IMS
then schedules the successor program to process it.

Determining successor
program and type of
termination

On the first pass through RCMENU, the successor is RCMENU.
On the second pass, the successor corresponds to the menu
selection made. In our example, the successor is RCCUST - the
program that processes the customer update screen. RCMENU
terminates with external succession. This means that IMS waits
for an input message from the terminal before it schedules
RCCUST. That input is the data entered by the terminal operator
on the screen labeled SPERRY UNIV AC CUSTOMER UPDATE
PROGRAM (Figure 3-9). When IMS receives the input message, it
places it in a queue and schedules RCCUST as soon as resources
are available .

UP-9206 SPERRY UNIVAC OS/3 3-20
IMS ACTION PROGRAMMING IN RPG II

RCCUST CODING DESCRIPTION

3:15. EXPLANATION OF THE CODING FOR RCCUST

Processing for RCCUST

Earlier, we summarized what RCCUST does. To refresh your
memory before examining the code, let's review its functions:

entered on the customer update screen

a new balance for the customer account.

~ the customer account file, CUSTFIL.

~ ',11111111 an output message to be sent to the terminal.

3.16. RCCUST - ASSIGNING A NAME TO THE PROGRAM

Control form entries The control form entries are an I• in column 7 4 and the program
name in columns 75-80.

3.17. RCCUST - DEFINING THE INTERFACE AREAS (IMA, OMA, PIB)

Unique set of interface areas The file description form defines the three interface areas and the
for RCMENU and RCCUST one user file, CUSTFIL, referenced by RCCUST. The input

message area (IMA) is defined as in RCMENU. The only
difference is that the configured size is larger - 100 characters
(columns 24-27) - to allow for a larger input message from the
terminal. The output message area (OMA) and program
information block (PIB) are defined exactly as they are in
RCMENU. Remember, however, that although these areas are
defined identically and that RCCUST directly follows RCMENU,
RCCUST has its own unique interface areas assigned by IMS
when the program is scheduled.

Using the same interface
areas

User file - CUSTFIL

The only time a successor program uses the same interface
areas as the predecessor program is when I for immediate
succession is specified in the termination-indicator field of the
predecessor program.

There is only one user file described for RCCUST, CUSTFIL. It is
an indexed file that will be processed randomly using its
5-character key field.

•

•

•
--------------------------------------·--·-- ·--··--------~

•

•

•

UP-9206 SPERRY UNIVAC OS/3 3-21
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING DESCRIPTION

3.18. DEFINING THE INPUT FIELDS

Defining input fields

Reading the input
message area

CUSTFIL fields

The input form describes input fields for two files: the input
message area (IMA) and the customer file, CUSTFIL. Like other
RPG II programs, action programs only describe input fields they
reference in the program.

When RCCUST begins executing, it reads the input message
area. Indicator 01 is set on. The input message area contains the
data entered by the terminal operator on the customer update
screen. The fields defined as CUST, SIGN, and AMOUNT come
into the program. These fields occupy positions 17 through 27 of
the input message area. The first 16 positions contain the
header. If the field SIGN contains a zero or a blank, indicator 20
is set on. Figure 3-11 shows the contents of the input message
area when RCCUST begins processing.

SPERRY UNIVAC
CUSTOMER UPDATE PROGRAM

ENTER 5-DIGIT CUSTOMER NUMBER

ENTER + FOR PAYMENT MADE
ENTER - FOR PAYMENT OWED
ENTER + OR - :!:

ENTER AMOUNT ~~~~~ -------

PLACE CURSOR HERE TO TRANSMIT [Iii)

Figure 3-11. Input Message Coming into Program RCCUST

The input form also describes input fields for CUSTFIL. CUSTFIL
is the user data file. Its key field CUSTID is a 5-character field
that begins in position 1 . The other five fields described for
CUSTFIL occupy positions 6-65. Notice that the field BALDUE is
a packed decimal field .

UP-9206 SPERRY UNIVAC OS/3 3-22
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING DESCRIPTION

3.19. CALCULATIONS FOR RCCUST

Validating the customer
number field

Validating the sign field

Validating the amount field

Now let's look at the operations RCCUST performs.

Validating Input

The 5-digit customer number entered as input at the terminal is
used to chain into CUSTFIL. The customer number corresponds
to the key field CUSTID in the input message area. If the number
entered at the terminal doesn't match any of the keys in the
index for CUSTFIL, indicator 30 is set on and detail output is
done.

Next, RCCUST compares SIGN to · + · or ·-·. If SIGN equals +,
indicator 41 is set on. If SIGN equals - , indicator 42 is set on. If
SIGN is not +, -, or blank (indicator 20 was set on), indicator 50
is set on and detail output is done.

Next, RCCUST tests AMOUNT to determine if it is numeric. If it
is, indicator 60 is set on; if not, 70 is set on. When 70 is on,
detail output is done. When AMOUNT is numeric (indicator 60 is
set on), RCCUST moves AMOUNT to AMT, the result field.

Computing a New Account Balance

Once the input data is validated, the following calculations take
place:

When a payment is made When indicator 20 or 41 is on (SIGN = blank or +), AMT is
subtracted from BALDUE. The result is NEWBAL. This means
that the customer made a payment to his account. The SUB
operation credits that amount to the customer's account and
computes the new balance.

When a purchase is made When indicator 42 is on (SIGN = -) , AMT is added to BALDUE.
The result is NEWBAL. This means that the customer made
another purchase. The ADD operation adds the amount of the
purchase to the existing balance and computes the new balance.

3.20. OUTPUT CODING FOR RCCUST

Output generated for
RCCUST

Once calculations are complete, detail output occurs. Depending
on what indicators are set on, RCCUST creates an output
message. Table 3-3 shows the output message that goes to the
terminal based on what indicators are set on.

•

•

•

•

•

•

UP-9206

Output messages

SPERRY UNIVAC OS/3 3-23
IMS ACTION PROGRAMMING IN RPG II

RCMENU CODING DESCRIPTION

Table 3-3. RCCUST Indicators Set On and Resulting Output

NAME- SHANA GABRIEL
ADDRESS- APPIAN WAY
CITY-ST- GENEVA, OHIO

43727
OLD BALANCE - $586.25
TRANSACTION - $200.00
NEW BALANCE - $386.25

INV AUD CUSTOMER ID

INV AUD SIGN

INV AUD AMOUNT

was valid. In this case, the
entry for SIGN was + indicating
the customer made a $200.00
payment to her account. The SUB
operation was performed and a
new account balance computed.

The customer number entered at
the terminal was invalid. It didn't
match any of the keys in the
index for CUSTFIL.

The entry for SIGN wasn't +. -
or blank.

The entry for AMOUNT was either
not numeric or was less than five
digits. If the terminal operator
entered more than five digits,
RPG II truncates from the right .

Reinitiating the transaction Line 054 repositions the cursor so that at the end of the
transaction when the output message goes to the terminal, the
cursor is at row 1, column 6. This positions it immediately after
the word START, the transaction code, which is still displayed at
the terminal. By simply pressing TRANSMIT, the transaction code
ST ART is retransmitted to IMS and the whole series begins
again .

•

•

•
------------···········-~

•

•

•

UP-9206 SPERRY UNIVAC OS/3 4-1
IMS ACTION PROGRAMMING IN RPG II

ADVANCED PROGRAMMING EXAMPLE

4. Writing a More Complex
Action Program

4.1. GENERAL DESCRIPTION OF SAMPLE PROGRAM

More detailed examples

A sample transaction

New features presented

Now that we've developed some familiarity with the basic design
of the action program in Section 3, we can study some more
detailed examples. The structure of the action program discussed
in this section is the same as before: it processes input
messages and produces output messages. Now, however, the
coding is somewhat more complex and introduces techniques
that can be very useful to the applications programmer .

As in the example discussed in Section 3, this transaction also
begins with a menu program, JAMENU. Because of its similarity
to the menu program described in detail in Section 3, we won't
discuss JAMENU. Instead, we'll concentrate on its successor
program, JAADD 1. Since we've already given a good deal of
attention to the basic coding of an action program in Section 3,
we won't stress those same features here. Rather we'll
concentrate on the new action programming tools it introduces
and how they are used.

Let's begin by
introduces:

JAADD1

D> JAADDI uses the continuity data area to pass data between
action programs.

I> It also uses internal subroutines.

~ It uses an error message file.

~ And, it uses screen format services to format output
messages .

UP-9206 SPERRY UNIVAC OS/3 4-2
IMS ACTION PROGRAMMING IN RPG II

ADVANCED PROGRAMMING EXAMPLE

4.2. A SUMMARY OF JAMENU'S PROCESSING

Processing the menu
selection

Figure 4-1 shows the output message screen JAMENU generates
on the first pass through the program.

96/23/81 96:49:28 JASMENU

ENTITLEMENT ACCOUNTING SYSTEM

SELECT ONE (1) OF THE FOLLOWING OPTIONS:

1. ADD A NEW CUSTOMER RECORD.

*2. UPDATE CUSTOMER NAME/ADDRESS INFORMATION.

*3. UPDATE BRANCH CUSTOMER INFORMATION.
*4. UPDATE CUSTOMER ENTITLEMENTS.

*5. DELETE A CUSTOMER RECORD.

*6. DISPLAY CUSTOMER INFORMATION.

7. LIST ALL ACCOUNTS CON THE WORKSTATION).

8. ENTER WORKSTATION ACTIVITY RECORDS.

9. LOGOFF SYSTEM.

* INDICATES CUSTOMER NUMBER REQUIRED

MENU SELECTION:

PLACE CURSOR TO TRANSMIT [_]

Figure 4-1. Screen Generated by JAMENU

Like RCMENU, JAMENU schedules itself as successor program
and processes the menu selection entered on the screen. In our
example, we assume the menu selection is 1. ADD A NEW
CUSTOMER. To process this menu selection, JAMENU moves
the name JAADD 1 to successor-id and I to termination-indicator.
When JAMENU completes all processing, the program
terminates. IMS checks the successor-id and termination-indicator
fields and immediately schedules JAADD 1.

4.3. A SUMMARY OF JAADD1, THE SAMPLE PROGRAM

The structure of the
transaction

JAADD 1 is the first of two action programs required to add a
new customer and account record. JAADD 1 validates the data
used in the update. Its successor program, JAADD2 validates
more data and does the actual file updating. We will discuss
JAADD 1 only since the two programs are very similar. However,
we will include the coding for both programs to give you a fuller
appreciation for the entire operation. The coding, output screen
1, and output screen 2 for JAADD 1 are found in Figures 4-2,
4-3, and 4-4, respectively. Figure 4-5 is the coding for
JAADD2.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 4-3
IMS ACTION PROGRAMMING IN RPG II

JAADD1 CODING

11 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 11 sol !lll'
ADO NEW CUSTOMER SOR JAAOD1 rn:
uOOOlH AJUODl
ooor2r•--•JAA~D1
OC003F• THIS PROGRA~ IS THE lST OVERLAY TO BE CALLEO rr THE MFNU •JAADD1
G~OD4F• SELfCT!ON WAS TO ADD A CUSTOMER RECORD. THE lST TTHf THPUr •JAAODl
GOCOSF• THE 'JA~ADDl' SCRfEN WILL BE PUT OUT ANO THIS PROGRAM WILL *JAAODl
~cur6F• SUCCEfD TO !TSELr. AFTER THf SCREEN IS TRANSHJTTEO BACK IN, *JAADDl
orc"7F• THE CUSTOMER ~UMafR AND ACCOuNT CODES ARE CHECKED FOR •JAAODt
uOOC8F• VALJJITY IA~SUMI~G TH:: W/S OPERATOR DIDN'T WANT yo PETUPN •JAA~Dl
u~Or9F• TO THt WENU>. IF THE CATA IS GOOD THE NEXT OVERLAY WILL •JAAOOl
.J,..clo"'• :3"." CALLfD TC DO THE ACTUAL ADDING OF TH:: PE CORDS. '41JAA['I01 1111

JftCllF4--•JAAf'I01 I

~;g!~~= I- -c------- F u ~ c T I 0 N 0 F I N D I c A T 0 R s =~::~g: I nr

~;~::~:--=~::~g: I
L~ul6F.,.

ul"IGl 7"'•
}':'Cl8"•
Gr"Ll9F"•
c.~c·2or=- •
Jl'lJ?lF*
orc?ZF"•
U~J~3r=-.,_

'-'"024F"
i... L25F' +
l.i".'C?6F.,.
~,;\ .. Z.7~•
:i~~;i9r¥

r:.ru?9" •
f_,'"'!L:)jF•

V'LHF•

Ll
1,.;'

..., ..

..;4
1.;C

1...if·

:.. p

...,9

7 -~
71
"9
f ·.~

F=,
F6
~1

F'9
Cr""032r* o:.;
u~C33F4

'_:nw34FPH U"

ur'G 7 5Fl'-'A IF
.JGi.J36F0"A J
JDC37F"CrA Jr
~ru38FCUST~ST IC
Jru?-9FXPEFi IC
u~u4uFSYSCTL Ir
~104lIPI3 ~~

JrQ4£I
G';C.43 I
~nL44!I~A ~s

;,/'1L45J

~~8~H
~..;rc11er

..,nu49!
G~i:C:OI

::iri.:.c:ir

F
F
F
F
F
F
F
.... 1

2=6
I~

64

POO~RAM INFORMATI0N BLOCK
INOUT MfSSAGE AREA
CONTI~UITY DATA AP[A
CUSTO~ER MASTfR RECORP
CUSTOMER ~ECORC DELETED
ACCOUNT CPOSS-RoFfRENCE RECORD
SYSTEM CONTROL ERROR TEXT RfCORO
ERROR TFXT RECORG DFLETf D
lST T!Mf THPU PPOGRAM ICALL::u av JAMENUJ
2ND TIME THPU PPCGRAM
WIS QOEOATOR CH0Sf TO RETUR~ TO THE MfNU
$E\fR~L PU~PO~E I~DICATOR - LnCAL USA~E

CUSTOMER ~UM3fR z~Ro A~n./OR ACCOUNT CODf PLAN~

CUSTOMER NUMBER ALREADY EXISTS IN CUSTMST
ACCOUNT CODE ALREADY EXISTS IN XREFl
G:~~RAL E0 ROR INDICATOR
SYSTEM CONTROL PECOPD NOT FOUND

70 •PJB
135 •I "A

UJ96 •O"'A
148 *CC'A
256° ~Al 9 nrsc s

lJC 4AI 7 DISC s
64P f A'; 1 "I~c s

49 540PBDATE
55 6UOPRT!ME

17 2J II" ACCT

~~ ~Y 11 tM~Y~t
62 ill H'ADRl
Az lJl IMADR2

1 '12 116 I ~CITY
117 118 IMS TE

Figure 4-2. Action Program JAADD1 (Part 1 of 5)

JAAC101 Ji.'
JAAOD!
JAAl'D1
JAAOOl (ii
JAA!'Ol lP
JAAOD! re

~~J JAAPDl '%
JAAl"Ol d
JAA~Ol I~
~::~g~ II!
JAAODl I

mm 1
JA A[lO 1 !I
JA A"D l iW
JAA!'OJ !m

1:~~~
~::gg: Ii'
JAAC'Dl ijj
JAAClOl j(~
JAAPOl mo

JAAf'IDl
JAAOOt
JAAf'Ol
JAAOOl
JAAPOl
JAAOOl

~HR Bl
JAAl'l01
JAAOOl
JAAf'Dt
JAAOOl

UP-9206 SPERRY UNIVAC OS/3 4-4
IMS ACTION PROGRAMMING IN RPG II

JAADD1 CODING

• 11 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 sol
uOi.;52! 119 12 3 01 HZ IP JAAODl
1Jr053I 1211 1260IMAREA JAAf'IDl
;;no511 I 127 1330IMPHON JAAl"IDl
uC055I 1311 1311 IMHENU Ji Af'IDt
on0-3&I 135 135 IMXMIT JAAOOl
.:.,,CSEC['A -.s JAAf'IDl
wnoc,s I l II Cf"PSWO JAAf'IDl
unu59I 5 29 CDMSEL JI A£'101
:.:.ri:;.;cr 30 35:'.!COCUST Jul"Dl
c~:61 I 36 39 CDACCT JAAClOt
Cf'1:~62I 110 II Q'JC DP ASS JAAl'l01
..,:"1(.(31 41 41 C [IS TAT JAA[l01
C,,u64 T 42 II 7 CDcPGM JAAl"Ol.
Jl,;65 rcus n•.c: T -.s ..;4 7 5 6"1'::) Jf.AflOl
~· "1ti6& I n.<

"'"'
JAAC'Dl

~~c67T l 4 CMACCT JAA£'101
;JCQf-SIXh'Ei"l "s i.;6 JAAf'Ol
~/'u69 I 60XlCUST Jf. A('IDl
:,..:;1,,7..;!SYSC"Tl ·~ s 0 64 '• c:; Ji A£'10J
.. " .. 71! (. ~ : .. JAAC'Dl
.., 'l:, 7 2 I 7 5& SCEQR JAADO!
:_:ric; 13r '.I(<:R srNTRY oWHirH P~SS? JAArD!
.... "'..;74C' 7:., OTO BUILD el ST JAA£'10l
w ,,::. 75 r T><VENu o••p '"'' 79 o Rf Tll!?"I TO Ji A!'Dl
:..;'.'C70C H OTC; RrTURfJ eMFNll? JAAf'IDl
..JC'u77r xc: R $CUS T eCUSTll/AC'CT JAAf'tD~

t;nC78C :-.. ? 9 GOTO BUILD oVAL!O? YES JIAOD1.
~":.:;79f ""X ~ R $~RPOQ 0 NCI r:t: T "SG JaAno1.
wl~P.UC GOTO R~TURN JAAODl • '.,"LB l C "JILD TAG JIA£'10!
·,-;uR2C READ PT8 JAAC'lOJ

""Cf' 3 C" ~OVE. PRO Alf WPK6N JAAQDl
l:.'.'GR4C" txSR $rE.l"DT oMAKr:- [IATE Mf"Y JAAl"IDJ
;Jf"'JR5r. "'0VE \;PK6f.I FBuAH JAAClOl
C.O:.iROC PC:: TUPN TAG JAAQDJ
c ;anc EXC'PT Jaano1
[,(li;P.6(" .. JAA£'101
C"'C89C .. DEF I'<S: l;QPK APE. AS JAAflDl

u%QCC• JAAOOl
:,r'CQlCLPNU "'0VC:: x•4r• WPK2 2 JA Al"IDl
l. '"1092CLP~~l~ "'OVE x '4 ;"' w!?K4 4 JAAOOl

cr.:93CLPNL~ MOVE X'4"' WPK6 6 J~A'lDl

G 'l L 9 4 C V' t; l i< ~OVE x • i+n • ioRKSu sa JAAODt
L'.'cCl5CLRf\L::("OVE X'4C' bUlKS 256 JAAODl
CCu9bCLPNL~ "0VE x•Fr• WPK6N 6fl JAAl'Dl
::;"OQ7r .. JAAf'IOl
ur:L;Q&C* CHC::CK CDA FOi< NUMSEP OF TJMES THRU THIS CODE JAAODl
._<"'')99C• JIAl"lOl
uri1rocsP !LNTPY BEG SP JAA£l01
.;r1'11CSP 5ETOF' 7J7189 JAAf\DJ
..;"'ln2CSR PEAD CDA JAAODl

Figure 4-2. Action Program JAADD1 (Part 2 of 5)

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

,, 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

COPASS COMP 0 7DelST TIMF
MOVE 1 CD PASS
GOTO SEN TEX

C0°ASS COMP 1 71
$ENTEX F:NOSP

1.i0103CSR
Q"llf'HtCSP 7iJ
01105CSP 70
O!Jl!'l6CSP
on107CSR
r..n1oac•
u01'19C• CHC::CK
urH lCC•
JClllCSR
C"'ll2CSR
J"11l3csr

CUSTOMEQ MAS Tf.'R + ACCOUl'oT X-REFERENCE FOR DUPLICATES

.. ri 114 cs I?,, 6 5
u"'llSCSR R5
u"'l loCSP
:i::Jl 17C"SPt,2.J
.~.., 118 cs p
[, r.119 cs rt. 8
..,'.'l?JCSc
G:"'l21CS>' ;;:;.
·.J" 1?2C'OP ?&
r· " l ? 3 c c P P. 7
f,1"1174r5p
w~l:'5r•

HUST

IMACCT
; 'ICU ST

H1ACCT

rcusF x

BEG SP
~ETOF

CO"'P x•4r•
CO"'P Ci
f>OTO SCUSEX
CHAilllCUS T"'S T
SETON
C'HAINXDEr-~

SETON
TAG

<;E:TOlll
["4'."'SO

~r1~6C~ s~r [CQQQ ~FS5ASE FCQ [PRCQ ovEPLAy SCREE~

.,Cl':7C4
~',, l? er sr
,,,...1 :'9 (' s p

;)"l'UC'.3" RS
Jrnicsr Po
ul"l 7 2CSI"'. S7
:.i'Jl ?3".'SC
~"l34fSP

~~135CSP

,;'11 7 6C SP
;:. ,, 137 c"'

.,Cl39C•
r :"Jlq()(SP
..inl4lrsP
w'Jl42csr
U"'l43CSP
S!Jl 44CSP
;:rl4$0•

"IOV[L •S::M •
"'OVE ':'3'
"IQVC:: ,,6,

.,~vr ·~1·

"0VELW~K4

CHAINSYSCTL
"'0VE X'L'""3~'
~~rsR

C> E" SQ
"0VELllPK6N
"ULT l!''u
"'0Vt. 11::-1<_2
F~'.'SO

WPK4
:.1PK4
wRK4
WRK4
llRK6

O"'TE"XL 2

w::?K2
llPK6~

WRK6N

858687
85ef!ELDS
85 elOM['ATOPY

80 .DUPLICATE?
Ab .vrs
P,u .ArcT COl'lE
87 eDUPLICATE?

90

.sAVF YEAR

.s~IFT LFFT

.NOW HMOl"YY

J~l46C• SC~E r~PCQ HA5 OCCu~E'- - PUT 0UT fRPOR OVERLAY SCREfN
..irl47C•
i..i:l 48CP IS
(., 11149'1
:..'.JlC:GO
l.C'l5100"A
i...'11c20

F9

89

lC 'JA"ENU'
11 'E'

Jrl53C~ QVERRID[TEXT LFNGTH

Figure 4-2. Action Program JAADD1 (Part 3 of 5)

4-5

JAADD1 CODING

13 11 ao!
JAADDI
JAAODI
JUODt
JUODI
JAAODI
JAAODl
JAA001
JAA001
JAAOOl
JAA001
JAAOOl
JUOOl
J•AODl
J~ADDt
JAAODl
.J' ACID 1
JAA!'IOl
J~A!'[ll

JAAf'IDl
JAAODl
JH!"Ol
JAAOOl
JAAl'lDl
JAAl"Dt
JAAOO!
JAAf\01
JAADOl
JaA!'lDl
JaA!"Dt
JAAl:'Dl
JAAf'IOl
JAAC'Ol
JA A!'ID!
JAA!'IDJ
JAA!'IDt
JAAl'lDl
JAA1'01
JAAl'Dl
JAAPD'
JAAf'Ol
JAADDl
JAA!'IDl
JAAODl
JAAl'lDl
JAA!'IDl
JUDD!
JAA!'Dl
JAAf'Dl
JAAODl
JAAl'lDl
JaAClDl

UP-9206

JAADD1 CODING

5 7 9

Ql")l 540
001 i:;50
u'llSbOCrA
l'Jl570
J'Jl580
c~H 590
u(llf>OO•
u'.'11610• lST
c 'J l "2 o .•
J"H.30P!b

G"l65C
u,..lf>6COi-<A
,,~167~

t:'."'H&O
:'" l ~9()
:J"1l 7'JCCCA
L .,l 71 r
l.~l72C

:Jr'l 73C
L;''.'1740 ...
~: .,1750¥
i~" 1 7 b O•
;,,'1177CPil!
_.r11cc
... ~ l "7 9 0
.!'11 P.COCfiA

' -1Q1 ()
'Jf;l P2C
,J~l "3f
: "1fl4 ('"'

13 17

E

PASS -

E,

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

21 25 29 33 37 41 45 49 53 57 61 65 69

OHTE XL 14
N9Q<;CE"RP f>b

89
4(J •o•
41 x 'FF I

47 I JA. OD 1 I

rALL Y(l~PSELF ANO PUT OuT 1 ST ADD SCREEN

7J

ll. 1 JAAuD1 •
11 'E'

Kb 'JAtAD::ll I

PB'.'\A TE 22
Pf) TPIE 28

7::,
C'DPASS 4 t.:

41 XI J l'J I

47 I JA AD!) l I

O~E~AT~P WA~Tc; TO GC FACK TO THE ~ENUoo• f'!K, T WILL

lv I J/l "ElllU I

11 I I I

79
11u •r•
41 X 1 v CI

47 I JA A JC' l I

O"lFSn~ EV~PYT~I~~ LCOK5 CK - CALL ~EXT OVU'LAY
:;~1%r 01

:.~187C'P~P

.._"lPet:
"',..1g9 (1

:..,~1°10
.._ ". l 9 2 C
l r 1<;3C
._rl941'lCDA
::: n 105('
L.r·l 960
:;n1nr:
..,"'l 960
.:,r1 ~90
L"'.2!.:'00
~r2r.1n

ur2r2c
0"2::!30
;,,"2f'4C'

11·n9!14 f 9

71N79Nf9

0 Bc>ATE
o& Tl "'E

7 lN79NP9
IHfUST
IMACCT
COPA C.S

IM"IAME
Tl-:ADPl
IHAOQ2
THCITY
IHSTE

l ... 'JAADD2'
11 •r•

KS 'JA'SAJD?'
22
?B

3~

39
40
41 XI .:i ['I

47 I JA A DD l I

82
l r' 2
122
137
n9

Figure 4-2. Action Program JAADD1 (Part 4 of 5)

4-6

73 77 eol
1
:11

JA AC'ID 1
JA A!'D 1
JA A!'D 1 .i1.
JA Af'lO l ~:1:1::
JA Af'lD 1 iim

•
JA A f'ID 1 Mi

J • A OD l ;111111

JA AOD J tA
·'.,:.."::

JA AOO l !m·
JA A ("10] ~:::::.

JA AOO 1
;::::::
lF

JA A OD 1 ?
:H

JA A OD t :m
JA A f"lD l %~

J a A no 1 ''-~<=

J A A f'IO l

I JA APO l
JA A f'IO !
JA Af'ID 1
J ,, A f"lD !
JA A no I
J ~ AQO 1 tm
J A A ro I ·¥

='=::r

JA A f'IO l ml
J A A ro I i&~
JA • no] ,,

JA A no 1 't'\'l
JA A no ,_ r\

:::::.:

JA A [10 t
:.:··=::::

J A A OD ! Ii J A A ro 1
J• • f'ID t ;~;I

JA A f'ID t lj~ J A A no 1
•

JA Ar DI
J A A f'IO 1
JA A 00 I
J A A OD I
JA A!"ID 1
JA A n D 1
JA APO !
JA A ("I D 1
JA A no I
JA A ro 1
JA A f'ID l
JA Af"lD I
JA A f'ID 1
JA A ('\ [l I
JA AOO t
J• A no l
JA A ("l[l 1

•

UP-9206

• 11 5 7 9 13 17 21

u!"l2r:i:.o
;:,.r;21t.o
(.;l'.'l2n7o

•

•

SPERRY UNIVAC OS/3 4-7
IMS ACTION PROGRAMMING IN RPG II

JAADD1 CODING AND OUTPUT

25 29 33 37 41 45 49 53 57 61 65 69 73

IM ZIP 142P
TMARf A 14~P

JMPHON 148P

Figure 4-2. Action Program JAADD1 (Part 5 of 5)

96/23/81 t6:49:28

MENU SELECTION 1

THIS SELECTION ADDS A CUSTOMER

NAME AND ACCOUNT RECORDS.

ACCOUNT NUMBER:

CUSTOMER NUMBER:

NAME:

ADDRESS (LINE 1):

ADDRESS (LINE 2>:

CITY/STATE/ZIP:

TELEPHONE NUMBER: (___) --- . -----

JASADD 1 02/99/81

ENTER 'M' TO RETURN TO THE MENU:

PLACE CURSOR HERE TO TRANSMIT -->[_]

Figure 4-3. Output Generated by JAADD1 on First Pass

06/23/81 06:49:28 JASADD2 02/09/81

MENU SELECTION 1

THIS SELECTION ADDS CUSTOMER

NAME AND ACCOUNT RECORDS

BRANCH NUMBER:

SALESMAN NUMBER:

PROJECT MANAGER:

ACCOUNT CONTACT:

DATES

CONTRACT CONVERSION PROPOSED SYSTEM

SIGNED STARTED COMPLETION INSTALLED

I I I I --'--'-- I I I I

PLACE CURSOR HERE TO TRANSMIT -->!_]

Figure 4-4. Output Generated by JAADD1 on Second Pass

77 101
JUODl
JU!"'IDl
J•Af'Dl

UP-9206 SPERRY UNIVAC OS/3 4-8
IMS ACTION PROGRAMMING IN RPG II

JAADD2 CODING

• 11 5 1 9 13 11 21 25 29 33 37 41 45 49 53 57 61 65 69 13 11 sol
ADO NEW CUSTOMER f PART 21 SOP JAA002
DODOlM AJA A OD?
ooao2F•--*JAAPD2
00003F• THIS PROGRAM rs CALLED ~y JAADOl. IT TAKES THf DATA THAT WAS *JAAD02
OOOO~F• ENTERf.O ON THE 'JA$AOD1' SCREEN FROM THE COA PLUS ANY DATA *JAAD02
ooooSF• ENTERED ON THIS SCREEN c•JAAOD2'1 AND ADDS A CUSTOMER HASTEP •JAAOO?
00006F• ANO ACCOUNT CPOSS REFERFNCE RECORD. THE PROGRAM THEN CALLS *JAAODZ
00007F• THE MENU OVERLAY. *JAA002
OOOOSF•--*JAAOO?
00009F• *JAA002
OOOlOF• I- -c------- F U N C T I 0 N 0 F I N D I C A T 0 R S *JAAOO?
OOOllF• *JAA002
00012F•--•JAA002
OD013F• 01 PROGRAM INFORMATION BLOCK JAAOD?
00014F• 02 INPUT MESSAGE AREA JAAOO?
OOOlSF• u3 CONTINUITY rATA AREA JAAOO?
onot6F• G4 CUSTO~Ep MASTER RECORD JAAOO?
00017F• OS CUSTOMER MASTER RECORD fDELETEDI JAAOO?
00018F• 06 ACCOUNT CPOSS-REFfRENCE RECORD JAAOO?.
00Q19F• 08 SYSTEM CONTROL RECORD JAADO?
00020F• C9 SYSTEM CONTROL RECORD l~ELETEDI JAADQ?
00021F• 6il WRITE CUST0"4E.R MASTER RECORD JAAf"l02
COD22F• 61 WRITE ACCOUNT cPOSS-REFERf.NCE RECoRr JAAOD?
00023F• 63 RETURN TO MfNU AFTER ADDS JAAf'ID?
00024F• sa GE~ERAL PURPOSE INDICATOR - LOCAL USAGE JAAf"IO?
0002SF• 86 CUSTOMER NUMBfR ALREADY EXISTS IN CUSTHST JAAf'IO?
00026F• 87 ACCOU~T COOF ALREADY EXISTS IN XREF~ JAADO?
00027F• 89 GE~ERAL ERROR INDICATOR JAAOO?
00028F• Qi) SYSTEM CO~TROL RECORD NOT FOUND JAAf'IO?
00029F• JAAOD?
00030FPIB UD F 144 ~PIB JAAOD2 • OC031FIMA IP F 135 *l"'A JAA[l02
00032FOMA 0 F 40Q6 •OHA JUf"IQ?
00033FCDA UD F 148 "'CC'A JAA(l02
00034FCuSTHST ur F 256 256R 6AI 9 DISC s ~ JAAf"IQ?
00035FXREF1 UC F l(J l;::iq 4AI 7 DISC S f. JllAOO?
OIJ0~6FSYSCTL IC F l,i+ 64'> 6AI 1 DISC S JAAf"IO?
00037IPIB NS 01 JllAOD?
00038! 49 54n?BDAT[JllAflO?
onQ39IIMA NS O? Jf.AOD?
0("1040! 17 2Ci:Jl"'BRAN JAAOD?
00041! 21 26::'1'-'SLSM Jf.A[lO?
OCl0421 :?7 51 !MPMGR Jf.Al"IO?
Qr,Q43I 52 86 IMCCNT Jf.Al"D?
OOG44I rn 920IMSIGN JllA002
00045! 93 98~IMCONV JAAno?
Ql)Q46I q9 lJ40IMCOHP JllAf"ID?
G00471 irs ll~llMINST JAADD?
OOu'+SI 111 llcll"RFU Jf.Af'ID?
IJ''l049I 117 117 l"1XMIT JAA!"O?
OO~SOICOA ~s J! J~Ano?
onGSlI 1 4 CDPS~D JAADD?

Figure 4-5. Action Program JAADD2 {Part 1 of 4)

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

I• 5 7 9

000521
0005 3I
00051tl
000551
0005&1
000571

13 17 21 25 29 33 37

000581• ENu OF STANDARD CDA FIELDS
000591
000601
000611
000621
00063!
00061tI
000651
000661
000671CUSTMST NS
000681 OR
000691
000701XREF1 NS
00071 I
000721SYSCTL NS
000731 OR
000741
00075C
U0076C
00077C
u01.l78C N6J
011079C
ooosoc
OrJ081C N61
00082C
00083C
Q'1Q84C
onossc
U0086C
00087C
oneiasc
U0089C
00090C•

G4 256NCD
ui:

06

OP t>4NCD
09

l'"RPOP

RETUf;N

00091C• DEFINF WOGK A~E4S

uD092C•
ori093CLPNLR
OiJG94CLPl'tU
C".'.G95CU~l'tLR
OCG96Clr.NLR
uOG97CLPNU
OC!J98CLR~LR

(;(IQQ9('•

PEAD PIB
PEAD CDA
EXSR $('UST
GOTO ERROR
fX<;R $PUT
Ex SR $XREF1
roro [PR OR
Ex<;R $PUT
SE TOlll
GO TO RETURN
TAG
SETON
EX"R iERROt:>
TAG
EXCPT

"OVE. x ''I("''
"OVE x. 'I.,.
"0 VE X' t+ r'
MOVE x • 1.1 r •
"'.JVE x•rr•
MOVE X 'F ::''

41 45 49 53 57

5 29 CDMSEL
".'8 350CDCUST
3b 39 C[lACCT
40 40DCDPASS
41 41 CDS TAT
42 47 C[lCPGM

48 82 C DNA ME
83 112 C['1ADR1

1 n3 122 CCADR2
123 137 CDCITY
138 139 CC'STE

p 14u 1420CDZJP
p 143 141tiJCDAREA
p 145 148T'.lCDPHON

9 l4rJCMCUST

b XICUST

7 31 SC[RR

89

Wl'K? 2
111PK4 t+
i..RK6 b
8LNKS ~5b

wPK'O:-. ~..,

lllRK6'1 b~

61 65 69

.DUPLIC-~Tf

eCUSTQMEPll?
.NO f'IMC"UT
eNOW X-RFF

.CALL "4E~U

ODlQOC• CHECK CUSTO~EP MASTER + ACCCUNT X-REFE~ENCE FCR DUPLirATE~

Jr H11C•
GC'l'.:'2CSR

Figure 4-5. Action Program JAADD2 (Part 2 of 4)

4-9

JAADD2 CODING

73 11 sol
JAA£'1D?
JAAf\02
JAAf'IO?
JAAf\02
JllAl"'O?
JUl"'O?
JAAOD2
JAAPO?
JAA£'10?
JAAf\D:'.'
Jf.Afl02
JAAf1[1?
JAA002
Juno?
JAA002
JAAl"'O?
JllAl"ID?
JAAf'D?
JAA[l[l?
JAAl"'D?
JAA['10?
JAA["ID?
JAA["IO?
JAAPD?
JAA["IO?
JAAf'ID?
JllAOO?
JllAl"'D?
JAA[ID?
JAAf'D?
JAAf'ID?
JAAPD2
JAA[10?
JAA[ID">
JllA£'1D?
J~A'"lO?

JAAf1D?
JAl\1"'0?
JAA£'10?
JA llfl[l?
JAAflD?
JAAf'D?
JAAf\D.,
J~ArD?
JllA[lD;>
JA Al"'D?
JAAnD?
J1Af\D?

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

JAADD2 CODING

5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61

CDC UST

SXREF' 1
COACCT

CHAINCUSTHST
SETON
END SR

BEG SR
CHAINXREF'l
SETON
EN'JSR

fO
86

001C3CSR
00101JCSPN6u
00105CSR
00106C•
00107CSR
00108CSP
00109CSRN61
<JOllOCSR
OOlllC•
00112C• ADO
00113C•
OOllllCSP
00115CSR
001 lbCSR
00117CSR

CUSTO"'ER OR ACCOUNT CROSS-REFERENCE RECORr

'tPUT <1EGSP
E'XCPT

OC118C•
00119C• GET
00120C•
00121CSR
(IM122CSP
00123CSP 86
U0121JCSR 87
00125CSR
0012bCSR
Ci0127CSR
00128CSP
001290•
0013GO• SOM[
001310•
001320P IB
0~1330
rl01340

ERROR 11rssAGE FOR ERROR OVERLAY SCREEN

WRK 6

BEG SP
"'OVEL•r::11•
MOVE •r.o•
MOVE •r.7•
MOVELWPKll
CHAill;SYSCTL
"lOVE X'.:;036'
fNl'SP

WRK'+
lllPK'+
wPKll
WRK6

OMTEXL 2

fRPOP HAS OCCUR~[' - PUT OuT ERROR OVERLAY SCRfFN

0013500'4A c..
0'113t>O
001370• OVERRIJf
001380
001390
an111c·OCf'A E

P9

B9

TE xT L:t-.'.'TH

1\9

H .. 'JA ~ENi.J'
11 • r-'

KB 'JA'fEDR'

0"1TE XL 111
!IJ'7v~CfRP f.6

0011110 4~ •n•
0011120 Ill X'FF'
0014 3 0 II 7 • JA A JD 2 1

QOl'+'+C•
CC14SO• ADj cusTC"'Er: MASTr~ + x-REFERENCE ~rcoRcs
O!JlllbO•
OQ1470CUST~ST ~ACJ 6J
i.J'Jl480
0011190
Or115CO
GCl ~·l 0
or1s20
i.;~1530

CC·ACCT
IM 0 RA1'1
CC'CU~T
Cu•: A ~E
C'LADR~

rotor2

4
b

14
119
F--'i
R9

Figure 4-5. Action Program JAADD2 (Part 3 of 4)

65 69

4-10

73 11 aol
JAAl'l02
JAAOD2
JUl'l07
JAA007
JUl'l07
JAADD2
J-Afl07
JAADD7
JUflD?
JAAOD7
JAA002
JAA£'10?
JAAD07
JAAD07
JAAOD?
JAAf'IO?
JAADO?
JAAT'O?
JllAl'O?
Juno2
JIAf'IOi'
JAAOOi'
JAAOO?
JAAl"O?
JAA[IO?
JAAOO?
JAAflDi'
JllAOO:"
JAA('l07
JAA[IQ?
JAA002
JAA£'107
JAAf'ID?
JAA[IO?
JAAf'IO?
JAAOO?
JAAl'lD?
JAAOO:"
JAAflO?
JAA!"IO?
JAAflO?
JAAflO?
JA A!"IO?
JAAf'IO?
JAAOO?
J.ftAflO?
JAAOD?
JAArD?
JAAf'D?
JAA!"O?
JAAf'D?

•

•

•

UP-9206 SPERRY UNIV AC OS/3 4-11
IMS ACTION PROGRAMMING IN RPG II

JAADD2 CODING

• 11 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 sol
00154l0 CDCITY in4 JAADD2
001550 COSTE lrb JAADD?
001560 CD ZIP 109P JAA007
001570 CDAREA lllP JAAD02
001580 CD PH ON 115P JAA007
001590 IM CONT 15() JAADD2
001600• POSITION 151 UNUSED JAA002
001610 IM SL SM 155P JAAl"D?
001620 IMPMGR 181.i JAADO?
001630 IMSIGN 1P4P JAAl"O?
00164l0 IHCONV 1A8P JAAOO?
001650 IHCOMP 192P JAAl"O?
001660 IHINS T lQbP Jol"D7
001670 I HR FU 2C'OP JAAOD?
001680• ENTITLEMENTS JAADO?
001690 WRKSN 203P JAAl"D?
001700 WRK5N 2CbP JAADO?
001710 WRKSN 2r'9P JAAC10?
001720 WRKSN 212P JAA[IO?
001730 WRK5N 215P JAA!'1D?
001740 WRKSN 218P JAA[l02
001750 WRK5N 221P JAA!'107
001760 WRl<5N 22 .. P JAA!'10?
001770 WRKSN 2?7P JAA!'10?
001780 WRK5N 23UP JAA!'10?
001790 WRK5N 2 33P. JllA!'10?
001800 WRK5N 23bP JAAC10?
001810• POSIT IONS 2"!1 - 251 UNUSED JAAOD?
001820 PBDATE 255P JAAOD2 • 001s30 2~b • A• JAAflO?
orH840XPEF l EAQD 61 JAA[l02
001850 CDCUST 6 JAAOD2
U01860 CD ACCT 1 I.) JA A['lO?
on1s10. JAAl"D?
OC1880• RETURN TO THE MENU AFTER ADD JAAC"D2
0'11890• JAArD?
UCH900PI5 £: 63 JAAC102
OClQlO lC 'JA ~E'JU' JAAf\D?
O!H920 1 1 • I• JA AC"O'."'
O')l 930COA t. 63 JAAC"D?
001940 4::, • '1' JAAC"D7
l.J01950 4 l x 'u r •
ca1900 47 'JAAD02'

Figure 4-5. Action Program JAADD2 (Part 4 of 4)

•

UP-9206

JAADD1 PROCESSING

Processing for the
first pass

Processing for the
second pass

SPERRY UNIVAC OS/3 4-12
IMS ACTION PROGRAMMING IN RPG II

There are two passes through JAADD 1 . Let's summarize what
happens in each pass.

1 . Reads data saved by JAMENU.

2. Reads the program information block for data.

3. Calls screen format services to create the output message
screen, JA$ADD 1.

4. Schedules itself as successor program.

1. Reads data entered on the JA$ADD 1 screen.

2. Reads data saved by JAADD 1 on the first pass through the
program.

3. Validates data entered on the JA$ADD 1 screen and
diagnoses errors.

4. Calls on screen format services to create the output
message screen, JA$ADD2.

5. Schedules jAADD2 as successor program and passes data
to it to do the actual adding of the customer and account
records.

Designing IMS transactions Once again you see the same basic design that we saw in
Section 3 - a series of action programs all handling input,
processing, and generating output. Perhaps you've also noticed
that the action programs we're discussing are designed to
accomplish one or two fundamental activities. It's better to link a
series of action programs together to accomplish many small
tasks than it is to try to incorporate all these tasks into a single
program.

•

•

•

UP-9206

• Objectives of IMS

•

•

SPERRY UNIVAC OS/3 4-13
IMS ACTION PROGRAMMING IN RPG II

JAADD1 PROCESSING

In most user environments IMS is chosen for its interactive
capabilities and fast throughput. To maintain speed and a
conversational atmosphere, design your action programs to
perform clearly defined tasks and to yield appropriate and quick
responses.

You'll see that these goals of speed and conversational
atmosphere are at the forefront in the design of all action
programs presented in this manual.

UP-9206 SPERRY UNIVAC OS/3 4-14
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

4.4. USING THE CONTINUITY DATA AREA

Purpose of continuity
data area

Defining the continuity
data area

Seven fields contain
data passed by JAMENU

Now let's focus our attention on the new features of action
programming that JAADD 1 introduces (Figure 4-2).

File Description Form (CDA)

JAADD 1 uses four interface areas. We've already shown you
ways to define the program information block, input message
area, and output message area in Section 2; and in Section 3,
we demonstrated how these areas are used. The use of the
continuity data area, however, is new.

An action program defines a continuity data area in order to read
and/or update data saved there by the predecessor program or
to pass data itself to a successor program. JAADD 1 uses the
continuity data area to read data saved by JAMENU, to update
it, and to pass the updated data to the successor program.

Here is a description of how JAADD 1 defines the continuity data
area in order to use it in the ways we just described:

15-16

19

24-27

40-46

Update demand file. Since JAADD 1 intends to read the continuity
data area to get data passed by JAMENU and to update it, it
must define it as an update demand file. There are many other
ways to define the continuity data area depending on how you
intend to use it. See 2. 15 for a detailed discussion of the entries
you can make in columns 15 and 16.

This is the configured size of the continuity data area for
JAADD 1. JAADD 1 can pass 148 characters of data to its
successor program. An action program can increase the size of
the continuity data area of the successor program by moving a
new value into the field continuity-data-area-inc in the program
information block at output time. See Section 2.

Required entry whenever defining the continuity data area

Input Form Coding (CDA)

As you would expect, the input form describes all input fields
referenced by JAADD 1. Notice, however, that for the continuity
data area there are seven defined fields. They contain data
passed by JAMENU.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 4-15
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Data passed by JAMENU Table 4-1 lists the continuity data area fields passed by JAMENU
to JAAOO 1 and their contents when JAAOO 1 begins processing.

CDA contents

Defining the program
information block input
fields

Using $ENTRY to
read CDA

Determining which pass
through JAADD1

Using the continuity data
area to control processing

5-29

30-35

36-39

40-40

41-41

42-47

Table 4-1. JAADD1 Continuity Data Area

transaction
transaction.

The menu selection made by the terminal operator.

When JAADD 1 begins executing, this field contains
only zeros. JAADD 1 uses this field on the second
pass through the program.

When JAADD 1 begins executing, this field contains
only zeros. JAADD 1 uses this field on the second
pass through the program.

JAADD 1 uses this field to determine which pass it is
through the program.

This field contains a zero when there is no error
condition .

This field contains the name of the current action
program.

The input form also defines fields for the program information
block (PIB) and input message area (IMA). The two program
information block fields defined correspond to transaction-date
and time-of-day. For a complete listing of program information
block fields, see Section 2. The fields defined for the input
message area correspond to data entered on the JA$ADD 1
screen and enter the program on the second pass.

Calculation Form (CDA)

When JAADD 1 begins processing, it calls upon subroutine
$ENTRY. This subroutine reads the continuity data area. The
continuity data area contains data saved by JAMENU. The
purpose of reading the continuity data area first is to determine
whether it is the first or second pass through the program. This
information is contained in the field COPASS. On the basis of
whether COPASS contains a zero (first pass) or 1 (second pass),
all processing is determined.

When CDPASS=O, indicator 70 is set on and 1 is moved to the
field COPASS. When COPASS= 1 initially, indicator 71 is set on .
Indicator 70 triggers processing for the first pass through the
program. Indicator 71 triggers processing for the second pass.
The continuity data area is not used again until output is done.

UP-9206 SPERRY UNIVAC OS/3 4-16
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

Updating the continuity
data area at output

Output Form (CDA)

Table 4-2 summarizes how JAADD1 updates the continuity data
area when output occurs. All data saved in the continuity data
area is passed to the successor program.

Table 4-2. Summary of JAADD1 Continuity Data Area Update at Output

Pass 1 through JAAOOl is complete.

COST AT= 0 No error condition occurred.

COCPGM=JAAOOl Name of the current program

COPASS=O Pass 2 through JAAOOl is complete. COPASS
is reinitialized to zero since all RPG II action
programs are serially reusable.

COST AT= 0 No error condition occurred.

COCPGM=JAAOOl

All fields between
lines 195 and 207
are written.

COPASS=O

Same as for indicator 70

These fields contain the data entered on the
JA$AOO 1 screen and validated on the second
pass through JAAOO 1. Notice that the location
of IMCUST and IMACCT correspond to COCUST
and COACCT described on the input form. This
data is used in the updating of the CUSTMST
and XREF 1 files in program JAA002.

Indicator 79 signifies the operator entered M on
the JA$AOO 1 screen. This means the operator
wants to return to the menu. Consequently,
COPASS must be reinitialized to zero.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 4-17
IMS ACTION PROGRAMMING IN RPG II

INTERNAL SUBROUTINES

4.5. USING INTERNAL SUBROUTINES

A void repetitious code

Reading the program
information block for
data

Defining program
information block size

Executing $REFDT

Reformatting a field

We already briefly touched upon JAADD 1 · s use of internal
subroutines when we discussed $ENTRY. Using internal
subroutines is a common tool of most RPG II programmers. It
avoids tedious repetition of code. Action programs code internal
subroutines in the same way as other RPG II programs.

JAADD 1 uses four internal subroutines in all. We discussed
$ENTRY. which reads the continuity data area and determines
which pass it is through the program. The other three
subroutines are $CUST. $ERROR, and $REFDT. Let's start with
the last one first.

Subroutine $REFDT

Before talking about subroutine $REFDT, let's establish some
necessary background information. In all the action programs
we've discussed so far, we defined the program information
block (PIB) as an update demand file on the file description form.
We did this to move values into successor-id and
termination-indicator when doing output. Other than that, the
programs didn't use the program information block. JAADD 1,
however, does. That explains why the program information block
is also defined on the input form. JAADD 1 references the fields
PBDATE and PBTIME. These fields correspond to
transaction-date (positions 49-54) and time-of-day (positions
55-60) in the program information block.

On lines 082-084 of Figure 4-2, JAADD 1 reads the program
information block. This brings all program information block fields
into the program. The reason all 70 positions of the program
information block become available to JAADD 1 is because they
were defined on the file description form in record length.

Now JAADD 1 moves PBDA TE to a field called WRK6N and
executes subroutine $REFDT.

The purpose of this subroutine is to reformat transaction-date. Its
present format in the program information block is yymmdd. The
$REFDT subroutine moves the two leftmost characters (yy) in
WRK6N to WRK2 (a 2-position field). It then multiplies WRK6N
(containing mmdd) by 100 producing a result field mmddOO. The
$REFDT subroutine then moves WRK2N (containing yy) back to
WRK6N. The result is a reformatted date, mmddyy .

UP-9206

INTERNAL SUBROUTINES

PIB is useful

Validating data

Use screen formats or
action program

When data is invalid

When errors occur

Used to send error
messages to terminal
operator

SPERRY UNIVAC OS/3 4-18
IMS ACTION PROGRAMMING IN RPG II

There is nothing particularly unique about this subroutine. The
reason we presented it is to point out that there is much data in
the program information block that action programs can put to
very good use. This was simply one example.

Subroutine $CUST

The second internal subroutine $CUST validates the data entered
on the JA$ADD 1 screen. Due to the conversational nature of
IMS, there is a continual exchange of data taking place betweeen
IMS and the terminal. As a result, there must be a means for
checking the validity of the data the action program receives.
Screen format services provides a certain amount of validation of
terminal operator entries. However, if you aren't using screen
format services or if your application requires special validation
procedures, the action program must do it. JAADD 1 uses the
subroutine $CUST to do this. This subroutine executes only
during the second pass through the program (when indicator 71
is set on).

First, the values entered (at the terminal) in fields IMCUST and
IMACCT are compared to zeros. If they don't contain zeros, the
value IMCUST is checked against the index for user file
CUSTMST, and the value IMACCT against the index for file
XREF 1. If no key is found for either value, processing continues.
Otherwise, if IMCUST or IMACCT are zeros or if a key already
exists with the same value as IMCUST or IMACCT, then
indicators 85,86, or 87 are set on accordingly. Each of these
indicators in turn sets on indicator 89, the general error indicator.

Subroutine $ERROR

When indicator 89 is set on, before output takes place, a third
internal subroutine takes control; it is $ERROR. Again, here is a
little background information before discussing this subroutine.

Notice that on the file description form (line 040) we defined a
user file, SYSCTL. This MIRAM file contains a series of
user-created error messages to be sent to the terminal operator
at program termination when an error condition occurs. In this
way, terminal operators are kept aware of the status of their
requests. The internal subroutine, $ERROR, uses the SYSCTL file.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 4-19
IMS ACTION PROGRAMMING IN RPG II

INTERNAL SUBROUTINES

4.6. USING AN ERROR MESSAGE FILE

Creating a user error file

Error messages
generated

Selecting error message

When indicator 89 is set on, $ERROR takes control. Depending
on which specific error indicator is set on (85,86,87), RPG II
creates a key that is used to chain into the SYSCTL file. This file
contains error messages related to specific errors that can occur
during JAADD 1 's processing cycle.

Table 4-3 summarizes the error indicators that can be set on
when JAADD 1 is executing, the key that $ERROR creates, and
the error message that goes to the terminal when the program
terminates:

Table 4-3. Summary of Error Indicator and Error Messages for JAADD1

CUSTOMER NUMBER ZERO AND/OR ACCOUNT CODE
BLANK. PLEASE ENTER AGAIN.

CUSTOMER NUMBER ALREADY EXISTS IN
CUSTOMER MASTER FILE. PLEASE ENTER AGAIN .

ACCOUNT CODE ALREADY EXISTS IN X-REFERENCE
FILE. PLEASE ENTER AGAIN.

As we mentioned earlier, indicators 85, 86, and 87 all set on
indicator 89. When output is done for indicator 89 (general error
indicator), the error message identified by the $ERROR subroutine
(Table 4-3) is sent to the terminal. These messages make it easy
for the terminal operator to see the cause of the error and to
correct the mistake and try again .

UP-9206 SPERRY UNIVAC OS/3 4-20
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMATTING

4.7. USING SCREEN FORMAT SERVICES

No DICE or FCCs required

Coding needed to build
screens

Screen control

Work area required

We have now talked about using the continuity data area,
internal subroutines, an error file, and displaying error messages
at the terminal. That leaves one other feature of JAADD 1 to
discuss - using screen format services.

You· ve probably noticed that the output coding for JAADD 1
contains none of the hexadecimal sequences so prevalent in
RCMENU and RCCUST. JAADD 1 formats all its output screens
using screen format services. This is by far the easist way to
format your output messages. The coding required is minimal.

Lines 151-152, 166-167, 190-191 show the coding needed to
build three different screens in the output message area. Which
screen is built depends on which indicator is set on. When
indicator 89 is set on, the error screen JA$ERR is built. When
indicator 70 is set on, JA$ADD 1 is built, and when indicator 71
is set on, JA$ADD2 is built. Figures 4-3 and 4-4 show the
screens JA$ADD1 and JA$ADD2. Figure 4-6 illustrates a typical
error screen when indicator 89 is set on.

r

\

06/23/81 06:49:28

MENU SELECTION 1

THIS SELECTION ADDS A CUSTOMER

NAME AND ACCOUNT RECORDS.

ACCOUNT NUMBER:

CUSTOMER NUMBER:

NAME:

ADDRESS (LINE 1):

ADDRESS (LI NE 2):

CITY/STATE/ZIP:
TELEPHONE NUMBER: (___) ___ • ____ _

JASADD1 02/09/81

ENTER 1 M1 TO RETURN TO THE MENU: _

PLACE CURSOR HERE TO TRANSMIT -->[_)

ACCOUNT CODE ALREADY EXISTS IN X-REFERENCE

FILE. PLEASE ENTER AGAIN.

Figure 4-6. Error Screen Generated for Program JAADD1

)

To use screen format services, you must configure a work area,
although you don't define a work area in your action program.
The work area is specified in the ACTION section of the IMS
configuration (WORKSIZE = n).

•

•

•

•

•

•

UP-9206

Moving variable fields
to work area

Coding for screen
format services

Listing output fields in
order expected by screen
format generator

SPERRY UNIVAC OS/3 4-21
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMATTING

When an action program is ready to create a screen, RPG II
moves all variable fields in the output message area to the work
area before it calls upon screen format services to generate the
screen. The screen format generator then uses the output
message area to build the entire output screen. When the screen
is complete, the variable fields are returned to the output
message area to await program termination. At that point, the
entire contents of the output message area (screen and variable
fields) are transmitted to the terminal.

To use screen format services, you must enter on the output
form:

a K in position 42;

the number of characters in the screen format name in
position 43; and

the format name beginning in position 45.

When listing the variable fields to be output to the screen,
remember to list them in the order in which the screen format
generator is expecting them - that is, in the order they are
defined in the screen format. Also, the first variable field cannot
occupy a position before position 17. The first 16 positions
always contain the output message area header.

For a complete discussion of how action programs can use
screen format services, see Section 6 .

•

•

•

•

•

•

UP-9206

Sections 3 and 4
(summarized)

SPERRY UNIVAC OS/3 5-1
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

5. Special Types of Output Messages

Sections 3 and 4 presented several examples of action programs
performing the fundamental processes of accepting input from
the terminal, processing that input, and producing output. They
showed convenient programming techniques for accomplishing
these activities. After you've studied these examples, you should
be able to write simple action programs.

5.1. DIFFERENT TYPES OF OUTPUT MESSAGES

Types of output

In this section, we describe additional capabilities that IMS
provides for generating output messages. As you become more
experienced, you will find these capabilities very useful. They are
the ability to:

~ lilt!,tlf' multiple output messages;

~ IHd uninterrupted output messages to a terminal or
auxiliary device attached to the terminal (continuous output);

~ ilfijile a transaction at a terminal other than the source
terminal (output-for-input queueing); and

~ jlifld messages to another terminal (message switching).

5.2. GENERATING MULTIPLE OUTPUT MESSAGES

Definition

Example

When an action program generates more than one output
message, we call it multiple output.

Program LSTLIM (Figure 5-1) demonstrates how an action
program generates multiple output messages .

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

001
002
003
0011
DOS
01.16
01'7
008
009
010
011
012

013
Olli
015
016
017
018
019
021.1
0'.'1

022
023
02 ..
025
O~b
027
o::a
0~9
O!O
031
U!2
0~3
0311
035

5 1 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 13 11 sol
H
F•
F• LIST STOCKS BETWEEN LIMITS INPUT FROM !HS INPUT
F• TESTS MULTIPLE OUTPUT USING CALL SEND
F• ANO LIHITS PROCESSING
F•
FIN PUT IP
FSTOCKS ID
FOUTPUT 0
E
!INPUT AA
I
I
I STOCKS Al
I
I
c
c
C• DISPLAY
c • c
c NZU
c NZO
c • c • c • 30
c • c N20
C• Dl~PLAY

c
c N40
OOUTPUT ~
0 OR
0
0
0
0
0
0
0
0
0
0

F
F
F

01

(IZ

LOWL!M

SCREENS
LOOP

KEY

31.1
SOL HI

96u

•IHA
DISK
•OMA

A 1"' 811

SETLLSTOCKS
Z-ADDl

OF 10 RECORDS
TAG

l
EACH

s

Zl 23 LOWLIH
25 27 HGHLIH

3 KEY
81.1 RECORD

20

20
21;

READ STOCKS
COHP HGHLIM
HOVE RHORD
ADD 1

A,I

RESIDUAL
I

n.:
20

COHP 11
fXCPT
Z-A001
GOTO cOOP

SCREEN
COHP 1
EXCPT

I

zo
26
32
55
65
75
85
95

1011
8 9011

3"

X'1"U3U2Ul'
'SYMBOL'
'NAM£'
'RANGE'
'PRICE'
'CHANGE'
• t CHANGE'
'EXCHANGE'
X'10G30301'

SYMBOL TlaLES

ALS TLIH

SET KEY TO LOW LlHIT
INITIALIZf AR PAV

ALSO SET IF HIGH

RESULTING INDICATORS

ADDRESS RI

onoo1q IP
on1>1ur 110

ADDRESS RI

OOJOlS·· L~
UOOi'.17 A LJ

ADDRESS RI

JJJJ16 JO
000085 HO

ADDRESS RI

J00'.117 01
U00086 Hl

ADDRESS RI

urun1e "2
000087 H2

Figure 5-1. Multiple Output Message Program (LSTLIM)

AO!'RFSS PI

11riori2 & ? u
IJl'U1'8A H3

5-2

.;"L"3k ':t0a
Ol'Uf'SO P4

•

•

•

UP-9206

• What LSTLIM does

File definition

•
Array definition

Input field definition

Operator entries

•
Key definition

SPERRY UNIVAC OS/3 5-3
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

LSTLIM sequentially processes an indexed file, STOCKS,
containing stock records. The terminal operator enters as input
low and high limit values that determine where processing of the
file begins and ends. When LSTLIM receives these values, it
begins reading STOCKS at the low limit and continues until the
high limit is exceeded or the end of file is reached. When the
program terminates, the records read are displayed at the
terminal in groups of 10.

Coding the File Description Form

Lines 001-003 contain the file description form coding for the
program. The operations performed are:

LSTLIM uses the input message area defined as the primary file. INPUT.

LSTLIM also uses an input demand file. STOCKS. STOCKS is an indexed file
containing SO-character records on disk. L in column 2S means the file is
processed sequentially within limits. The 3-character key (columns 29-30) is
alphanumeric (column 31) and begins in position 1 (column 35-3S).

LSTLIM uses the output message area defined as the output file, OUTPUT .

Coding the File Extension Form

Line 004 contains the file extension form coding for the program.
The operation performed is:

Array A. defined in column 27. holds the stock records processed. When full,
the array contains ten SO-character records.

Coding the Input Form

Lines 005-010 contain the input form for coding the program.
The operations performed are:

The LOWLIM field (positions 21-23 in the input message area) defines the
lower limit used in processing the file, STOCKS. Positions 1-16 contain the
input message area header; positions 17-19 contain the transaction code,
STK; and positions 20 and 24 contain spaces.

The HGHLIM field (positions 25-27 in the input message area) defines the
upper limit used in processing the file, STOCKS. When initiating the
transaction. the operator enters the transaction code, the low limit. and the
high limit. Since LOWLIM and HIGHLIM are the only input fields that LSTLIM
references, they are the only ones defined on the input form.

The STOCKS file contains SO-byte records that begin with a 3-byte key.

UP-9206 SPERRY UNIVAC OS/3 5-4
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

Calculation form coding

Coding the Calculations Form

Lines 011-023 contain the calculations for the program. The
operations performed are:

LSTLIM uses the input field LOWLIM to set the lower limit for processing the
file, STOCKS.

The array index (I) is set to 1 .

The LOOP operation processes 10 STOCKS records before exception output
is done.

RPG II begins reading STOCKS at the lower limit (LOWLIM). If end-of-file is
reached, indicator 20 is set on and processing continues at line 022.

If the end-of-file condition is not met, the field KEY is compared to HGHLIM
to determine if the high limit for file processing was exceeded. If KEY is
greater than HGHLIM, indicator 20 is set on and processing continues at line
022.

end-of-file condition doesn't occur or high limit isn't exceeded, the
record is moved to array, ARY.

The array index is incremented by 1 .

The array index is compared to 11 . If I equals 11 , the array contains 10
records. Indicator 30 is set on.

When indicator 30 is set on, exception output is done. The 10 elements in
the array are moved to the output message area. However. this output
message doesn't go to the terminal until LSTLIM terminates. Once the
contents of the array are moved to the output message area, the array is
blanked out to allow it to receive another set of 10 records.

After exception output is done. processing resumes at line 020 and the array
index is reinitialized to 1. Record processing begins to create another array of
data.

I is less than 11, indicator 30 is not set on. Processing returns to
LOOP to read another record (line 013). This continues until the array is full,
end-of-file condition is reached, or high limit is exceeded.

When indicator 20 is set on by the end-of-file condition or by exceeding the
high limit for file processing, the array index is compared to 1. If it is greater
than 1, exception output occurs.

•

•

•

•

•

•

UP-9206

Output form coding

LSTL/M generates as
many messages as needed

SPERRY UNIV AC OS/3 5-5
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

Coding the Output Form

Lines 024-035 contain the output form coding for LSTLIM. The
operations performed are:

The output message area is OUTPUT. Exception output to the output
message area occurs when the array contains 10 records (indicator 02 is set
on) or when the array is partially full and indicator 20 is set on.

The first output field is a 4-character device independent code (DICE)
sequence ending in position 20. (The output message area header occupies
the first 16 positions.) The DICE code sequence positions the cursor at line 2,
position 1 on the terminal screen.

Heading data is displayed.

This DICE sequence repositions the cursor at line 3, position 1.

The 800-character array (10 records, 80-characters each) is displayed using
blank after. Blank after reinitializes all elements of the array to zeros or blanks.
This is needed because the array may be used many times during execution
of the program depending on how many stock records are processed. When
processing is complete, the array is again blanked out. This is needed
because action programs are serially reusable .

As you can see, LSTLIM can generate as many output messages
as needed. The low and high limits entered as input by the
terminal operator are the sole determinants of the number of
output messages - groups of 10 records each - that are
generated.

5.3. HOW MULTIPLE OUTPUT MESSAGES ARE PROCESSED

When messages
are transmitted

Terminal input

The important point to remember regarding to multiple output
messages, just as with any output message generated by an
action program, is that none of the messages go to the terminal
until the action program terminates. To understand what happens
between the time these output messages are generated and
when they actually appear on the terminal screen, let's use the
action program LSTLIM once again and supply input data.

The input message entered is: illl!lillllllllll1'

STK is the transaction code. It identifies
to IMS the program LSTLIM that
processes this transaction. The entries
EEC and MAN define the lower and
upper limits respectively, for processing
the file, STOCKS.

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

First output message

Second output message

CALL SEND

Moving array contents

Queueing messages

Reading last records
in range

Let's assume that there are 27 records
in STOCKS that fall between these
limits. The first time LSTLIM does
exception output, the 10 records
processed are moved from the array to
the output message area. Each time
exception output is complete, the array
is blanked.

When control returns to the program,
the program reinitializes the array index
to 1 and processes 10 more records.
Indicator 30 is set on, signaling more
exception output.

When the second request to do
exception output is received and the
output message area already contains
data, RPG II issues a SEND function call.
IMS takes the contents of the output
message area and moves it to an ICAM
(communications) queue. Note that the
first set of 10 records was not sent to
the terminal. The output message area
is now free to receive the exception
output. The second set of 10 records in
the array is now moved to the output
message area.

Up to now, 20 records were processed.
LSTLIM generated two output
messages, neither of which was sent to
the terminal. The second message is in
the output message area; the first, in an
ICAM queue.

Once again your program reads
STOCKS. After seven additional records
are processed, indicator 20 is set on.

5-6

•

•

•

UP-9206

• Final output message

CALL RETURN

Output to the terminal

•
Operator action

•

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

The high limit for file processing has
been exceeded. The array index is
compared to 1. It is 8. This signals
more exception output. Again RPG II
checks the output message area. It
contains data. The SEND function call is
repeated and the contents of the output
message area (the second set of 10
records) is moved to the ICAM queue
where the first set of 10 records is
waiting. Now the output message area
receives the seven records in the array.

At this point, processing is complete.
When the action program terminates,
RPG II issues a call to the IMS RETURN
function. IMS moves the last output
message (the seven records) to the
ICAM queue and begins transmitting
output to the terminal.

The data is sent to the terminal in the
order that LSTLIM generated it - that is,
the first screen of 10 records, the
second screen of 10 records, and
finally, the third screen of 7 records.

After the first screen is transmitted, the
message waiting light alerts the terminal
operator that there is more output.
When ready, the operator acknowledges
the signal by pressing the MSG WAIT
key and the next screen of 10 records
is sent to the terminal. This process
continues until all output generated by
the program is sent to the terminal. The
transmission of each output message
after the first is preceded by the
message waiting light and the operator
pressing the MSG WAIT key .

5-7

MULTIPLE OUTPUT MESSAGES

UP-9206 SPERRY UNIV AC OS/3 5-8
IMS ACTION PROGRAMMING IN RPG II

MULTIPLE OUTPUT MESSAGES

Message handling

Operator responses to
multiple output

Whenever the action program creates
more than one output message - using
exception, detail, or total time output -
RPG II and IMS handle the output in the
manner just described. All output
messages, except the final one, are
transmitted using the SEND function.
The last output message is always

. transmitted using a RETURN function
when the program terminates.

Table 5-1 shows how the terminal operator is informed of
multiple output and how the operator acknowledges that output.

Table 5-1. Indicating and Accepting Multiple Output Messages

Display (except IBM 3270) Message waiting light Press message waiting key.

Hard copy (except /CMW or other 4-character message* Press CTRL/G, then press CTRL/C.

OCT 1000)

IBM 3270 Message waiting light or /CMW* Press PA 1 key.

OCT 1000 Message waiting light Press CTRL/G, then XMIT.

*This message is defined by the MSGWAIT operand of the TERM macro in the !CAM network definition.
The default is /CMW

Requirement when using
SEND function

Disk queueing

Message queueing

Multiple output
message limitations

If the action programs you write use the SEND function, you
must specify the UNSOL =YES parameter in the OPTIONS section
of the IMS configuration. If the SEND function is used frequently,
you should also include disk queueing for output messages when
defining your communications network (ICAM). When you specify
disk queueing, IMS queues output messages generated by an
action program on disk each time the SEND function occurs.
These messages are sent to the terminal when the program
terminates. Disk queueing allows for more productive use of main
storage.

If you want to examine each screen of data containing output,

issuing multiple output messages is a good idea. You should not
use it, however, as a substitute for obtaining lengthy output
messages because the operator wastes considerable time
pressing the MSG WAIT key to obtain the entire output.
Instead, use the continuous output feature discussed in 5 .4
through 5.12.

•

•

•

•
UP-9206 SPERRY UNIVAC OS/3 5-9

IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT

5.4. GENERATING CONTINUOUS OUTPUT

Definition

Useful for lengthy reports

Specifying continuous
output in IMS
configuration

The second capability involving output messages is the ability to
transmit a series of output messages to a terminal or more
commonly to an auxiliary device attached to the terminal without
operator intervention. This is called continuous output.

This capability is very useful when you want to print lengthy
reports at an interactive terminal.

To use continuous output, you must specify CONT OUT= YES in
the OPTIONS section of your IMS configuration.

5.5. DEVICES THAT CAN RECEIVE CONTINUOUS OUTPUT

Terminals and auxiliary
devices supported

Action programs can direct continuous output to hard copy
terminals or to auxiliary devices (printer, tape cassette, or
diskette) at display terminals. For a complete list of terminals and
auxiliary devices supported by IMS, see the IMS system support
functions user guide, UP-8364 (current version) .

• 5.6. CODING FOR CONTINUOUS OUTPUT

•

Specifying continuous
output in program

Specifying continuous
output to auxiliary
devices

Aux-function field settings

To distinguish a continuous output message from other output
messages, an action program moves a special value to the
aux-function field (position 15) of the output message area
header. You move this value at the same time as you generate
your output message. When the program terminates, IMS checks
this field and recognizes that the message generated is a
continuous output message.

If that message is to go to an auxiliary device, as opposed to
just going to the display terminal, the program also moves a
value to the aux-device-no field (position 16) of the output
message area header when generating the output message. This
value informs IMS which device receives the continuous output
message. You assign a unique number to each auxiliary device
when you define your communications network.

Table 5-2 summarizes the settings for the aux-function field
when transmitting continuous output to a terminal or to an
auxiliary device. You find those values in columns 6 and 7 of
Table 5-2 .

UP-9206

CONTINUOUS OUTPUT

Continuous output for the
terminal

SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

Table 5-2. Settings for Aux-Function Field of the Output Message
Header (Print/Transfer Options)

C3 00
Print Mode F3 FO

F5 F2

Print Transparent F7 F4

F9 F6

Print Form iESC Hl Cl A 01

C6 06

Transfer All iESC Gl C2 B 02

Cl G 07

Transfer Variable C4 0 04
(ESC Fl CB H 08

Transfer Changed cs 05
iESC [) E8 F8

Directing Continuous Output to a Terminal

5-10

0

p

M
Q

N
8

Looking at the columns labeled Continuous Output in Table 5-2,
you notice that if you're sending continuous output to the
terminal (primary device), you move the character C or a
hexadecimal C3 to the aux-function field. Figure 5-2 shows how
you code the output form to send continuous output to the
terminal.

NO UNt

•o

o 1 o U:T" PJ!lT_1__ 1

! ,\ 15 \ 1C1' 1 l l l .._ j l ~ I j_ I I .L 1 i__l_

: ,z.~ .', 1,\i116iA~,l JZ)}·h', , , , , l

I',

Figure 5-2. Coding a Continuous Output Message for the Terminal

•

•

•

•

•

•

UP-9206

Continuous output for
an auxiliary device

Print and transfer options

SPERRY UNIV AC OS/3 5-11
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT

Directing Continuous Output to an Auxiliary Device

When you are transmitting continuous output to a COP, TP,
cassette, or diskette auxiliary device, Table 5-2 illustrates that
there are numerous values you can move to the aux-function
field. The value you choose depends on the print or transfer
option you want.

Table 5-2 lists the print and transfer options you can select and
their corresponding values. Table 5-3 further defines these
options.

These print and transfer options can be used to transmit
messages to auxiliary devices whether or not you're using the
continuous output feature. Also, some auxiliary functions aren't
allowed if you use screen format services. See Table 6-2.

Table 5-3. Print and Transfer Options

Print Mode

Print Transparent

Print Form (ESC H)

Transfer All (ESC G)

Transfer Variable (ESC F)

Transfer Changed (ESC E)

Message transmitted has the same format as the terminal
screen. Cursor return sequences for the screen apply.

Message transmitted is independent of the terminal screen
format. Whatever format you include with your message
applies.

Message transmitted contains all unprotected characters
from the start-of-entry (SOE or home position) to the cursor.
Field control characters are suppressed.

Message transmitted to the auxiliary device contains all
characters from the start-of-entry character to the cursor
including field control character sequences.

Message transmitted to the auxiliary device contains only
the unprotected characters between the start-of-entry
character and the cursor including field control character
sequences.

Message transmitted to the auxiliary device contains only
the changed characters between the start-of-entry and the
cursor including FCC sequences .

UP-9206

CONTINUOUS OUTPUT

Definition of print
transparent mode

Using transparent mode

SPERRY UNIVAC OS/3 5-12
IMS ACTION PROGRAMMING IN RPG II

One of the more commonly used options is print-transparent
mode. In this mode, although the continuous output message
generated goes through the logic of the primary device, its
format is independent of the terminal screen format. Only device
independent code (DICE) sequences and field control characters
(FCCs) you use to format the continuous output message apply.
The cursor return characters normally inserted by the terminal are
not transmitted. Thus, the length of the lines written to the
auxiliary device is independent of the line length of the screen.

Print transparent mode When using print-transparent mode with a UNI SCOPE 100
with UN/SCOPE 100 display terminal, make sure that the output message generated

doesn't exceed screen capacity. If it does, the excess lines wrap
around and overlay the first few lines. Since the message on the
screen is the message sent to the auxiliary device, the
transmitted result is a message beginning with the excess lines

With other display terminals instead of the original lines. The same consideration applies to all
display terminals; however, the larger screen capacity of most
terminals makes wraparound less likely.

Definition of print mode

Space suppression

Identifying the auxiliary
device

In print mode, the continuous output message transmitted to the
auxiliary device has the same format as the screen - that is,
cursor return characters apply. For further details on print-mode
and print-transparent mode, refer to the UNISCOPE programmer
reference, UP-7807 (current version), and the UTS 400
programmer reference, UP-8359 (current version).

When you choose either print or transfer options, you can allow
or inhibit space suppression (see Table 5-2). When you specify
allow space suppression, the remote device handler suppresses
all nonsignificant spaces in the output message. When you
specify inhibit space suppression, the remote device handler
changes all spaces to DC3 characters making it necessary to
strap the printer to space when it receives a DC3 character in the
output message text.

As we already noted, when you're transmitting continuous output
to an auxiliary device, you must also move a value to the
aux-device-no field. The value you move to the aux-device-no
field identifies that auxiliary device. Each auxiliary device attached
to a terminal has a specific number as defined in the
communications network definition.

•

•

•

•

•

•

UP-9206

Example

SPERRY UNIVAC OS/3 5-13
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT

Let's assume you want to transmit continuous output to a
cassette using the transfer-all option. You would specify
hexadecimal C2 or the character B in the aux-function field. In
aux-device-no, you would put the value configured for the
auxiliary device to which you are directing continuous output.
Figure 5-3 shows how the coding might look:

o UT

• • 0

Figure 5-3. Coding a Continuous Output Message for an Auxiliary Device with the
Transfer-All Option

5.7. WRITING A CONTINUOUS OUTPUT PROGRAM

Using the aux-function
field

You write an action program to generate continuous output as
you would any action program. However, there are some special
and very important considerations to take into account.

First, as we described in 5.6, if you're transmitting continuous
output to the terminal, on the output specifications form you
must move hexadecimal C3 or the character C to the
aux-function field (position 15) of the output message area
header (see Figure 5-2). This informs IMS at action program
termination that this program generated a continuous output
message. It is not very common to direct continuous output to a
terminal exclusively .

UP-9206

CONTINUOUS OUTPUT

Using the aux-device-no
field

Example

Continuous output
limitations

Effect of different
terminal screen sizes

How to generate
lengthy messages

SPERRY UNIVAC OS/3 5-14
IMS ACTION PROGRAMMING IN RPG II

If you're transm1tt1ng the continuous output message to an
auxiliary device attached to the terminal, you move a value to the
aux-function field specifying the print or transfer option you
select. Table 5-2 summarizes these options. In addition, you
enter in the aux-device-no field (position 16) of the output
message area header, the number configured for the auxiliary
device. To illustrate these procedures, Figure 5-4 shows the
output form coding to generate continuous output to a printer
using the print transparent option with inhibit space suppression
when the program terminates.

Figure 5-4. Coding a Continuous Output Message for a Printer with Print
Transparent and Inhibit Space Suppression

Second and most important, an action program can generate only
one continuous output message. This message can be as large
as the screen capacity of the terminal receiving the message will
allow. Of course, this varies depending on the type of terminal or
workstation you're using. Whether the message is destined for
the terminal or for an auxiliary device, it always passes through
the terminal screen first. If the message is larger than the screen,
it wraps around, and when transmitted to the auxiliary device,
the beginning of the message is lost. Consequently, the size
restrictions for the terminal also apply to transmitting continuous
output to an auxiliary device.

The term continuous output, by its very nature, suggests lengthy
output messages. If an action program can produce only one
continuous output message and the largest message can only be
the size of a screen, you're undoubtedly wondering how we
generate long messages.

•

•

•

•

•

•

UP-9206

Continuous output and
successor programs

How a lengthy message
is generated

No operator intervention

Naming a successor
program

External succession
required

Input message to
successor program

Transmitting the
continuous input
message

Other message types
and continuous output

SPERRY UNIVAC OS/3 5-15
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT

That brings us to the third point: to continue generating
continuous output, an action program must name a successor.

The key is that the first program generates its continuous output
message and names a successor program to continue generating
continuous output. That program, in turn, names a successor and
so on, and so forth. One program could reschedule itself
numerous times or the successor program could be a different
program.

Once you identify an output message to IMS as continuous
output, the message is transmitted to the terminal or auxiliary
device and the successor program is scheduled to continue
generating continuous output. There is no need for operator
intervention. This is how lengthy reports can be printed at an
interactive terminal.

To name a successor, the action program moves the successor's
name to the successor-id field (positions 5-10) of the program
information block when the program terminates. This is the same
procedure any action program follows for naming a successor.

The fourth consideration is that the action program must also
move an E (for external succession) to the termination-indicator
field (position 11) of the program information block when the
program terminates in order to continue generating continuous
output.

The reason for specifying external succession (E) as opposed to
other types of termination is that when continuous output takes
place, IMS generates a 5-character message that is sent as input
to the successor program. This program must be prepared to
accept that input. External succession means that the successor
action program is ready to accept an input message.

The fifth and final point to remember when generating continuous
output is that this message must be the final message the action
program creates - that is, it must be transmitted using the IMS
RETURN function when the action program terminates. You can't
use the SEND function to transmit a continuous output message.

This does not mean, however, that an action program generating
continuous output is restricted from using the SEND function
altogether. The program can generate as many output messages
as it chooses prior to creating the continuous output message.
All the prior messages are transmitted using the SEND function.
However, the continuous output message must be the last
message generated and consequently, transmitted using the
RETURN function.

UP-9206 SPERRY UNIV AC OS/3 5-16
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT

Handling output messages You recall that when an action program generates multiple output
messages, all the messages except the last are transmitted using
the SEND function. The last output message generated by an
action program is always transmitted as a RETURN function. For
more detailed information on how output messages are handled,
see 5.3.

Summary

• An action program execution can generate one continuous
output message only.

• The continuous output message can't exceed screen size.

• To continue generating continuous output, you specify a
successor program and external succession.

• The continuous output message must be the final message
the program generates.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-17
IMS ACTION PROGRAMMING IN RPG II

IMS DELIVERY CODE

5.8. THE IMS DELIVERY CODE

Identifies input message Whenever an action program generates a continuous output
message, its successor program receives from IMS a 5-character
input message. The first four characters contain the value placed
in the continuous-output-code field (positions 9-12) of the output
message area header by the previous program. Placing a value in
this field is optional. Generally, this code identifies the previous
program in some way. If the program doesn't move a value to
this field, then it contains binary zeros.

Defining the delivery code The fifth character of the input message is the important one. It
is a delivery code. The delivery code indicates whether ICAM
successfully delivered the continuous output message to its
destination or not.

Indicating a value in
the continuity-output
-code field

Figure 5-5 shows how you code to move a value to the
continuous-output-code field, and Figure 5-6 demonstrates how
IMS returns this value and the delivery code to the successor
action program .

Ji j_ l 1 i _J_ 1 _ _.I._ L___l_ ~u~P=o:r~,,m'-<f--'-'-~L~

l I I 1 l l J. I I 1ME:i.SS~~¥f'--'~~~

I 1 I l l 1 l l l I J""°"E-"-"y:L'-:rLL--'_@;'---j--L-'~~

Figure 5-5. Coding to Move a Value to Continuous-Output-Code

UP-9206

IMS DELIVERY CODE

SPERRY UNIV AC OS/3 5-18
IMS ACTION PROGRAMMING IN RPG II

Figure 5-6. Input Message Returned to Successor Program in Continuous Output
Transaction

How continuous-output-code Figure 5-5 shows that the value moved to
field is used continuous-output-code is ECC 1. ECC 1 identifies the program

generating the message. When the action program terminates,
the continuous output message generated is transmitted. When it
is received and acknowledged by the destination terminal, IMS
schedules the successor action program and the value ECC 1 plus
the delivery code acknowledgment from ICAM are sent as input
to the successor program. The value ECC 1 comes into the
successor program in the input message area in positions 17-20.
The delivery code comes into the program in position 21.

Specifying continuous
output for auxiliary
devices

Continuous output status

Continuous output
status codes

The other two output fields coded in Figure 5-5, aux-function
and aux-device-no, respectively, indicate that the continuous
output message generated by this action program went to an
auxiliary device attached to the terminal. The message is sent
using print-mode with space suppression. The configured number
for the auxiliary device is 3.

Obviously, the fifth character of the input message is the one of
particular interest to the successor action program. It contains a
value indicating the status of the continuous output message sent
by the predecessor program. If the continuous output message
was successfully delivered, the hexadecimal value 81 is returned
to the successor action program. If the lowercase-to-uppercase
translation option was specified for this action program at IMS
configuration, the value 81 is translated to the character A. Any
other value returned in the fifth character of the input message
indicates the continuous output message was not successfully
delivered. Tables 5-4 and 5-5 summarize the output delivery
notice status codes that can be returned to an action program.

•

•

•

•

•

•

UP-9206

Output delivery notice
status codes

SPERRY UNIVAC OS/3 5-19
IMS ACTION PROGRAMMING IN RPG II

IMS DELIVERY CODE

Table 5-4. Output Delivery Notice Status Codes Returned by IMS

Successful output
completion

Line down or
disconnected.
Message deleted
by IMS.

Terminal
marked down.
Message deleted
by IMS.0

Auxiliary
device down.
Message deleted
by IMS .
Output may be
addressed to the
primary device.

Missing or
invalid destination
or auxiliary
specification
in header

No ICAM
network buffer
availableO

Disk error

Invalid output
buffer length

NOTES:

Yes Yes

Yes Yes

Yes Yes

Yes No

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes,
regardless
of delivery

Yes

No

No

Yes

Yes

Yes

Yes

Yes,
regardless
of delivery

Yes

No

No

Yes

Yes

Yes

Yes

810

II

12

40

840

850

870

0 The hexadecimal value 81, indicating successful output completion, is translated to
the character A if the lowercase-to-uppercase translate option is specified for
messages input to the successor action. Similarly, the hexadecimal values 84
through 87, indicating error conditions, are translated to the characters D through G
if the translate option is specified.

When a terminal is marked down, input solicitation (polling) by ICAM continues
automatically. When ICAM receives input from the down terminal, that terminal is
marked up and the input is scheduled for IMS .

If this condition exists, a user action program can try to re-send the last continuous
output message.

UP-9206

IMS DELIVERY CODE

Auxiliary device condition
codes

SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

Table 5-5. UNISCOPE and UTS Auxiliary Device Condition Codes

Ready (good) status 41
but COP /TP write
function inoperative

Device out of paper, 42 2
inoperative, or in
test mode

Data error on TCS 43 3

Device is not 44 4
responding; it may
be disconnected, or
a read of unwritten
tape may have occurred.

5-20

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-21
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT RECOVERY

5.9. RECOVERY CONSIDERATIONS WITH CONTINUOUS OUTPUT

Recovery and restart action Recovery and restart processing are the responsibility of your
program responsibilities action program. When the successor action program receives an

unsuccessful delivery notice, it can continue processing
continuous output or terminate the transaction. When the
successor program continues processing, it can send a regular
output message to the terminal requesting assistance and then
terminate with external succession. Note that when a continuous
output message is unsuccessfully sent to an auxiliary device, only
that device is marked down. You can still send output to the
primary device.

Operator reinitiates
output after error
correction

Program or operator
can control output

Function keys

Terminal type affects
recovery

Polled device
acknowledgment

Nonpolled device
acknowledgment

After the error condition is corrected, the terminal operator can
send an input message to the successor program to reinitiate the
continuous output transaction. In this case, the successor
program must be prepared to accept input from the terminal
when necessary, as well as the delivery notice returned by IMS.
You should consider this possiblity when designing your action
programs.

Both operator-entered input and delivery notice input can cause
attempts to schedule the successor continuous output program .
If operator-entered input exists, IMS processes that input and
discards the delivery notice. You should, therefore, code your
action program to handle keyboard input that can end,
temporarily break, and resume a continuous output transaction.
The best way to interrupt continuous output is to use function
keys as keyboard input. Function keys are faster to use because
they are never locked.

When a delivery attempt is unsuccessful, there are a number of
recovery options. In planning recovery, however, it's important to
realize the difference between polled and nonpolled devices with
respect to unsuccessful delivery notices.

The DCT 1000, UNISCOPE 100 and 200, and UTS terminals are
polled devices and transmit an acknowledgment to ICAM after
receiving a continuous output message; the nonpolled devices,
TELETYPE* and DCT 500 terminals, do not. For nonpolled
devices, a delivery notice is automatically generated; it always
indicates successful delivery regardless of whether or not the
output message was successfully delivered. Only a line-down
condition returns an unsuccessful delivery notice .

*Trademark of Teletype Corporation

UP-9206 SPERRY UNIVAC OS/3 5-22
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT RECOVERY

Problem caused by
nonpolled devices

Some errors
not related to
terminal type

Consequently, IMS almost always receives a successful
completion status from ICAM when a message is delivered to a
nonpolled device. IMS sends this delivery code to the successor
action program which, in turn, generates more continuous output.
As you can see, this is a situation to be avoided. So, in critical
parts of continuous output applications, avoid using nonpolled
devices.

Certain error conditions (the last four entries in Table 5-4) are
detected by ICAM before the message is sent to the terminal.
These errors return an unsuccessful delivery notice regardless of
the device type.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-23
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

5.10. A SAMPLE CONTINUOUS OUTPUT PROGRAM

Example

What SALES1 does

What SALES2 does

So far we have presented a great deal of information concerning
continuous output. Now let's look at an action program that
generates continuous output. The program we will use is the
second in a series of three action programs that make up a
continuous output transaction. Let's begin by what
the first program, SALES 1, does:

• Updates a file, SLSST

• Saves data used in updating the file in the continuity data
area

• Generates a continuous output message giving branch sales
data

• Names a successor program to continue generating
continuous output

• Terminates with external succession

The successor program is SALES2. Figure 5-7 contains the
coding for SALES2. The SALES2 successor program:

• receives the 5-character input message generated by IMS;

• interrogates the fifth character of this message (delivery
code);

• generates a continuous output message;

• names a successor program; and

• terminates with external succession .

UP-9206 SPERRY UNIVAC OS/3 5-24
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

• 11 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 101

UNIVAC OS/3 PPG II VERS ao1oa1 SALES2 81/07/('12 00 ol"'ll

H ASALF"S?
..iCl FPIB uo F 69 •PIB
:ir .. F"IMA IP F lCO •IMA
J"'3 FCOA IO F 250 •COA
JC4 FO!"A 0 r bCO •OMA
uC~ JIMA AA 01
jCb I ?1 :?1 OfL VCO
Jr1 ICOA BB C,;2

:i:c I 1 25 CNAME
)C9 I 26 so SRNAME
..; lu I 51 70 CAO OR
D!l I 71 85 CCI TY -, r 86 9U C71P
:i ! 3 I 91 911 BRNUH
J ! .. r 95 114 SPA 00~
J., t' . "' I 115 129 BRC ITV
Jlb r UC Ult BP2IP
:i ! 7 I l'.!5 lllU INV CE
:: ! 8 I 1111 1116 DLDA TE
Jl9 IPIB cc :3
i:,; 21...1 r 1 2 s re ODE
J:' l I 3 lj OETCOE
J~2 c o::Lvo COMP x•a1• 20GOOD DEL!Vf PV
... :-- 3 c OELVCD COMP x•<i1• 30COP TUPNfD OFF
~ ::"" c OELVCu C0'4P x•42• lluCOP OUT OF PAPF"R
- ~ i:. c N70 GOTO END .,~ -
u:b c PEAD COA
.; ':'7 c F"!llD TAG
u=e ')01'A D ,..~ 20
J::'S. 0 KS 'PRINTOUT' • J ~(J 0 12 •SAL!'
.J :1 '.) 15 • 3.
:i~-_, (') 16 • 1 •
J ~3 0 CNAME lj l
j ~4 0 CAOOll 61
J ~s 0 CCITY 76
J ?b 0 C21P !! 1
.J ~7 0 ~RNUM 85
~ :6 (') !!RA DOR 1n5
:.. ~<; 0 ~RCITY l?D
:, ttc, 0 BR?IP 125
.:: •11 0 INVCF" 131
J ,, 2 c l"ILOA TE 137
J .. 3 r· SRNAME 162
:, 114 0 D r<:N2C
..Ir.:. 0 KB •fRROPF"T'
J4t.. t' ~~

-U 35 'TURN PRINTER ON
J lj 7 0 llC 35 •PE SET PAPER TO HOME'
J t;.;, 0 'iB 'HIT TRANSMIT TO RESTART'
J49 ()P!B 0 03
:,".'~ 0 11 • f.
J~l 0 N20 10 'SALESl' ,...,
.., -' 0 2c 10 'SALES2'

Figure 5-7. Continuous Output Program SALES2

•

•

•

•

UP-9206

Continuity data area

Interaction between
SALES 1 and SALES2

SPERRY UNIVAC OS/3 5-25
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

On the file description form coding, notice that there are four
interface areas. These should be very familiar to you by now.
The continuity data area contains data passed by SALES 1, the
predecessor action program. This is the data that SALES2 will
use to generate its continuous output message when the
program terminates. You recall that an action can generate only
one continuous output message and that message cannot be
larger than the terminal screen size. SALES 1 generated one
continuous output message; but there is still more data to
transmit. So, it scheduled SALES2 as successor to continue
generating continuous output.

This form defines input fields. Notice there are several fields
defined for the continuity data area. These fields contain data
passed by SALES 1 .

In addition, there is one field defined for the input message area,
Describing the delivery code DEL V. DEL V contains the delivery code returned by IMS .

Whenever an action program generates continuous output (in this
case the first program in the transaction, SALES 1), IMS returns a
5-character code as input to the successor program. The fifth

Successful completion character or delivery code indicates whether the first continuous
output was successfully delivered or not. Every successor
program in a continuous output transaction must be prepared to
receive this code.

Continuous-output-code
field

/MA header

Delivery code position

In our example, the first four characters of the input message
returned by IMS are SLS 1 - the value moved to the
continuous-output-code field (positions 9-12) of the output
message area header by action program SALES 1. This value
comes into the input message area of SALES2 in positions
1 7-20. The input message area header occupies positions 1-16.
The action program, SALES2, doesn't define positions 1-20
because these fields are not referenced in the program. However,
it does define position 21 since this position contains the delivery
code generated by IMS, indicating whether the continuous output
message created by SALES 1 was successfully delivered or not.
Before SALES2 generates a continuous output message of its
own, it must determine if the first message was transmitted
successfully. It does this by interrogating the delivery code .

UP-9206 SPERRY UNIVAC OS/3 5-26
IMS ACTION PROGRAMMING ·IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

Interrogating the delivery On the calculation form, the three COMPARE operations
code interrogate the delivery code to determine what processing

occurs next. When DEL V equals hexadecimal 81, the first
continuous output message was successfully delivered. When
this value is returned to the program, indicator 20 is set on and
SALES2 generates continuous output.

Unsuccessful delivery/ When DEL V equals hexadecimal 41, the first continuous output
printer off message was not successfully delivered because the printer was

not turned on. When this value is returned to the program, RPG II
sets on indicator 30 and SALES2 does not generate continuous
output.

Unsuccessul delivery/ When DELV equals hexadecimal 42, once again the first
printer out of paper continuous output messsage was not successfully delivered

because the printer was out of paper. When this value is
returned to the program, indicator 40 is set on and SALES2 does
not generate a continuous output message.

Effect of printer
inoperative delivery
codes

Request for operator
intervention

To reiterate, when DEL V equals hexadecimal 41 or 42, SALES2
does not generate continuous output since the initial continuous
output message generated by SALES 1 was not successfully
delivered. Instead, SALES2 calls SALES 1 as its successor
program to attempt retransmitting the first continuous output
message. You'll recall that the values 81, 41 and 42 were
described in Tables 5-4 and 5-5.

In addition, when the delivery code indicates an unsuccessful
attempt to deliver the first continuous output message, SALES2
generates a regular output message (not continuous output) that
is sent to the terminal operator. When indicator 40 is set on, the
message sent is: RESET PAPER TO HOME. When indicator 30 is
set on, the message sent is: TURN PRINTER ON. By doing this,
SALES2 instructs the terminal operator to correct the situation
that prevented the initial transmission of SALES 1 's continuous
output message.

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 5-27
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

Continuous output message When indicator 03 is set on, (SALES 1 's continuous output
generation message was successfully delivered) and SALES2 generates a

continuous output message of its own. This message is
transmitted as a CALL RETURN when the program terminates.

Naming a successor program SALES2 specifies its successor program, SALES3, by moving
that name to the successor-id field (positions 5-10) of the
program information block. SALES3, which is not presented in
this manual, is designed similar to SALES2 and continues
generating continuous output.

Passing the continuous
output code

Print mode specification

Auxiliary device
specification

Termination

Output to the printer

In addition, when indicator 10 is set on, RPG II moves the
continuous output code SLS2 to positions 9-12 of the output
message area header. This code is transmitted as input by IMS
to the successor program (SALES3) in positions 17-20 of the
input message area, along with the delivery code indicating
whether SALES2 's continuous output message was successfully
delivered or not.

The number 3 in pos1t1on 15 (aux-function field) of the output
message area indicates that this output message is transmitted
as continuous output using the print-mode option. Print-mode
means that the output message takes on the same format as the
terminal screen, that is, cursor return characters for the screen
apply.

The number in position 16 (aux-device-no) of the output
message area indicates the continuous output is sent to an
auxiliary device attached to the terminal. In our example, that
device is a COP printer. The number 1 identifies the device as it
was defined in the communications network definition.

When SALES2 terminates with external succession (E in the
termination-indicator field), the continuous output message is
transmitted to the terminal. It is transmitted as a CALL RETURN
by IMS.

Figure 5-8 shows the continuous output message generated by
SALES2 as it appears on the terminal screen before being
transmitted to the printer .

UP-9206 SPERRY UNIV AC OS/3 5-28
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM SALES2

Terminal screen size
limits message size

6/26/81

:: CENTER CITY SUPPLY CO.
3572 FRANKLIN DRIVE

:: MONROE, NH 72480

BRANCH: 7531
WASHINGTON LANE
CUPERTINO CA 37121

INVOICE: 362418

DELIVERY DATE: 7/31/81

SALES REPRESENTATIVE: GRACE A. MICHELLI

Figure 5-8. Continuous Output Generated for SALES2

You may have noticed that the continuous output message
generated by SALES2 is rather small. The reason for this is that
the installation implementing this application program uses
UNI SCOPE 100 display terminals. Their relatively small screen
size demanded small messages. In the following action program,
you'll notice the continuous output messages generated are much
longer. The installation using this application uses UNI SCOPE 200
display terminals.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-29
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

5.11. ANOTHER SAMPLE CONTINUOUS OUTPUT PROGRAM

Example

11 5

U'llIVAC OS/3

001 01 010
002 01 D30
003 01 030
004 01 032
005 J 1 G33
OD6 JI D40
007 01 D5D
008 01 060

JI ObD
UD9 J2 010
DID n 020
Oil 02 rJ30
:JlZ 02 G'<O
013 02 050
Dl4 J3 D!O
DIS :n 020
016 o~ 030
017 03 04D
018 03 050
019 04 010
02Ll J4 020
021 J4 ()30
022 04 040
D23 04 050
024 05 QlO
025 J5 '.)20
ozc "< .;, r30
U27 05 040
U28 i.l5 050
029 Ob rllO
rJ30 Ob Q20
031 Jb 03Q
032 :lb [)40
033 Gb 0$0
0 34 07 810
fl35 01 ~"rJ

1 9 13

The second example of a continuous output program is NCSC. It
is quite lengthy; but its design is very similar to the program
SALES2 described in 5.10. For that reason, we will point out
only the new coding features it introduces. The coding for NCSC
is in Figure 5-9.

17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 11 •!
flPGII VERS 781109 CO~PIMS 81/03/18 08.29 PAGE

H ANCSC
FCRT IP F SD •I"IA
FOHE.ADE'I IC F 505'1 7A I DISC s
FCUSTMST IC F 249R 5AI DISC s
FNSHPCPY ID F 378Ll3AI DISC s
FPOETAIL UC F 378Rl3AI DISC s
FP IS UD F 4d •PIB
FCGA uo F 3b •COA
FOMA 0 F 1920 •O"A
F* NORTH CAP.OLINA SHOP COPY PROGRA"I
E ITM 4 3
E QTY 4 3 0
E MOO " 10
E OfS 4 l~

E '1A T 4 I
[HP 4 4

E VLT b D
[TYP 4 5
[RP"! 4 4 D
E PLT 4 5 0
E TAG 4 20
['1 T ~ 4 I :J
["10 4 10
r SP 4 10
E BLT 4 10
E SHF 4 b
f bOR 4 b
[AC! 4
[AC2 4
E AC3 4
E AC4 4
E ACS 4
E AC6 4
[AC7 4
[AC8 4
[AC9 4 4

E NOT 4 bO
036 07 030 [OS 4 10
037 07 040 f SIZ 4 2
038 c1 050 r SCH 4 • 0
039 J7 J60 F PRP 4 lG
040 07 070 [LT 4 4
041 07 075 f COE 4 2
042 s 02 070 E TABrRT 5 5 1 TA'3NME 12
043 s JI 2 30 E TABCRO 4 12 2 TABNAM 16
044 12 040 [TABOMT b b 2
045 s i.l8 UlO IC '1 T AA Dl 17 Ci'< 18 cc 19 cs
046 08 020 I 1 7 20 PROG
04 7 :ie 021 22 28 START
04a OR 021 AB 07
049 ;J8 u~5 21 21 OLVCD
050 09 010 I OH[ADER cc 03
051 09 030 I 8 12 CUSTNO

Figure 5-9. Continuous Output Program NCSC (Part 1 of 9)

UP-9206 SPERRY UNIVAC OS/3 5-30
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

• I• 5 7 9 13 17 21 25 Z9 33 37 41 45 49 53 57 81 H .. 73 77 ·~ UNIVAC 0~/3 RPG iI VE RS 781109 C0'1P!MS 81103/18 08.29 PAGE 2

DS2 J9 D'ID l'I 1900ROATE
053 09 nso 3b 38 REPONE
DS'I 09 ObO '13 '15 REPTlllO
OS5 J9 070 50 SS REPORD
05b 09 080 Sb Sb FRT
057 J9 09S S7 58 HOCREO
U5o 09 U9D 113 127 CS TORO
O~Y 09 !DD 128 157 SNA''E
Ob:J J9 110 158 187 SAD'lSl
Dbl 09 12D 188 217 SAORS2
OE:.2 09 13D 218 2'17 SCTY
Db3 J9 l '10 25D 309 Sl\IOTES
Ob'I 09 I Sr! 310 369 MNOTES
Db5 ;)Q 155 37D '129 FNOTES
Obb J9 156 "30 "S'I REPl\IME
D67 s J9 065 '15S '169 Rf:QREO
068 09 Ob 1 "7D 48'1 VIA
CVi !JC:, U70 '191 '192 PH
010 09 075 493 '19'1 MY
D7J 09 080 '19S '196 i.v
C7Z 09 D85 '197 '198 NC
073 09 r9o '199 soo AS
Q7'1 09 I b'.l ICUSTt'ST DD 0'1
075 J9 170 I 11 32 NA'1~

076 D9 180 I 33 511 ACRES!
077 09 190 SS 7b AilRES2
078 09 200 77 93 CTYSTA
079 09 200 lib 12D ZIPCDE
080 s J8 0'10 INS><PCPY BB Q2
DBI 08 050 I 1 3 MEY
D82 JB 050 I 7 ORONO
08 3 08 or) 5 1 2 YR
DB4 J8 056 3 7 NO
OBS 08 CtC B ID PROOCO • 086 J8 D65 1 10 ORO PRO
DB7 08 D7(l 11 l 3 ITEM
Oob 08 080 l'I 170QUANT
089 oe 090 18 27 HODEL
D9J 08 100 I 2B 31 HRSP~R
091 J8 110 I '!;: 31 MTRCOE
092 Uc 12C I 38 3BDFLANT
093 08 130 I ~9 "l SRTCOE
09~ 08 140 I 42 450SCHOTE
09S 08 ISO I '18 49 NOCOOE
096 09 :J8 5 I 97 98 CRCOOE
097 s 08 155 I 109 l!OOPOINTS
D98 08 !f,c I 117 122CVOLT
099 DB 170 I 123 127 TYPE
!DD QB !BD I 12B 128 HATERL
!DI QB 190 I 129 132DRPHS
1D2 s 08 D!O I 138 1117 HOTPLY
103 D8 02D I 1118 157 ORVPLY
1011 D8 030 I 158 1&7 BELT
IDS 08 0110 I 1118 173 SHAFT

Figure 5-9. Continuous Output Program NCSC (Part 2 of 9)

•

UP-9206 SPERRY UNIV AC OS/3 5-31
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

• I• 5 1 9 13 17 21 25 29 33 37 41 45 49 53 57 61 85 .. 73 11 !!I
UNIVAC OS/3 RPGII VERS 781109 CO"'PIMS 81/03/18 01!. 29 PAGE 3

!Ob 08 050 I 11'1 183 MOTOR
107 DB ObC I 184 193 OSCOOE
108 06 070 I 194 1Y7 AC Cl
109 08 080 I 198 201 ACC2
110 08 090 I 202 205 ACC3
111 08 100 I 20& 209 ACC4
112 08 110 I ;:10 213 ACCS
11 3 08 120 I 214 217 AC Cb
114 08 130 I 218 221 ACC7
115 08 140 I 222 225 ACC~

lib C8 l 4 5 I 226 229 ACC9
11 7 08 150 I 230 249 TAGNO
118 ca ieC I 250 309 NOTES
11 9 08 1<>3 31& 321 BOPE
120 08 lb5 330 344 OESCRP
121 08 Jbb 345 34& SIZE
122 08 170 34 7 35& PROP
123 oe HC' 357 3&0 L TCOOE
124 JS 185 3b7 37& TOI~

125 08 200 I POE TAIL GG 08
l2b 08 21C I 3bl 3bbCRUNOTE
177 ;c GIO IP If> EE OS
178 l n c::;: G l 2 ST AT
129 10 030 J 4 DSTH
i 3C IC 040 11 11 TERMO
I 31 10 oou !CDA ff' Ob
l 32 10 070 I l I 3 KCYI
133 10 O&O I 1 10 ORO
134 10 JOO 11 I 3 LINE
135 10 110 I 14 14 HEAD
13b IC J 15 I 15 lb LSTREC
137 11 C04 c SE TOF b5bbb7
I ~ P. IJ 005 c 01 SETO'l JO • J 39 ~ JO ['90 c NOJ OLVCO COMP x. 8 J. JOP'ESSAGE C:l'1P,
140 10 C95 c •1'JO GOTO ENO
14 I 11 005 c READ PIB
142 J J OJO c READ COA
143 s 10 015 c LSTREC COMP '[F • 23['-ID OF FILE ???
J44 10 Olb c 23 SETON 24
J 45 JO 017 c 24 GOTO END
14(, JO 02 c 01 MOVELSTART K[YI
147 10 (13 c • MOVE . KE YI
148 J 0 04 c • "0V[. . HEAD
14 \I J J 020 c K[Yl SETLLP;SHPCPY
J50 11 030 c Z-ADOl A 10
J51 II 040 c HEAD COMP 'l' bSb7bb
J52 11 050 c 67 READ NSHPCPY 25MORE DATA ??

153 I J ObO c b7 ORD!'IO CHAI NOHE ADER b969
154 J I Oo4 c • FRT LOKUPTABFRT TABNME 35
155 11 ObS c • 35 MOVE TA811jM[FIHNM[12
J5b I J D70 c 671'69 CUS TNO CHAINCUSTMST 6868
157 IJ 073 c • HJCREO LOKUPTABOl!T 75NO ADORE SS??
J 5!1 J J 075 c • 75 HJCREO LOKUPTABCRO HBNAM bOCREO STHUS??
J59 JI 078 c • 60 MOVE TABNAM CPEDIT

Figure 5-9 . Continuous Output Program NCSC (Part 3 of 9)

•

UP-9206 SPERRY UNIVAC OS/3

CONTINUOUS OUTPUT PROGRAM NCSC

!1 5 7 9 13 17 21

UNIVAC OS/3 RPGII VEPS 781109

I I 080 C
I I 110 C
11 I 20 C
11 123 c

5 07 115 c
a 1 1 ;:o c
07 I 30 C

s 02 050 c
J2 060 c
02 070 c
11 12 5 C
11 140 C
I I 150 C
11 HC C
11 I 70 C
l I I SC C
12 010 c
12 C2C C
12 C30 C
12 04G C
12 GSO C
12 060 c
!2 C70 C
12 ObC C
12 o~o c
12 !GO C
12 110 c
12 I 15 C
12 120 c
12 130 c
12 140 c
12 150 c
12 160
12 170 c
12 180 c
12 l9C r

SJII//C
13 CID
13 020 c
13 030 c
13 040
13 045 c
13 050 c
13 055 c
13 055 c
13 056 c
13 C60 C
13 Cb! C
13 C80 C
I 3 (190 C
13 I 00 C
13 110 c
13 150 c

b7

N67 ..
$. 20 ..
.. 60

N67 20 ..
•N4D

25
20

*
* ..
*
*
*
*
*
*
*
*
" ..
*
*
*
*
* ..
* ..
*
* ..
*
*
*
*
*
.. 80 ..

20N80Nb7

LOOP

ORO
ORONO
CRCOOE

POINTS
TOIM

~EY

* ORO
25

FI 'l

25

IMS ACTION PROGRAMMING IN RPG II

29 33 37

COMPI"S

GOTO Fii'<
TAG
READ i'<SHPCPY
COMP CRDPRD
CHA INOHEAOER
LOKUPTABCPD
MOVE TABNAM
'1LJL T QUANT
COMP '
'10VE TOIM
SOTO END
MOVE ITEM
"lCVE QUANT
"0VE MODEL
"!OVE DESCRP
"0VE '1ATERL
"0VE HRSP•R
"0VE VOLT
MOVE TYPE
"!OVE RPMS
"0VE PLA'IT
"OVE TAG'lO
MOVE '10TOR
MOVE "0TPLY
'10VE ORVPLY
MOVE BELT
><OVE SHAFT
>'OVE BOpE
MOVE OSCODE
%H ACC!
MOVE ACC2
MOVE ACC 3
MOVE ACC4
"OVE ACCS
MOVE ACC6
"OVE ACC7
MOVE ACCS
MOVE ACC9
"CVE NOTES
"OVE SIZE
MOVE SCHDTE
~OVE PROP
"OVE L TCODE
l"OVE i'<OCODE
CHAINPDETAIL
EXCPT
CO"P
ADD
GOTO

4

I
LOOP

READ NSHPCPY
COMP ORDPRO
GOTO END
TAG

41 45 49 53 57 61 65 69

81/03/J 8 08,29

25i'<ORE DATA ??
20MORE DATA ??

69!>9
TABNAM bDCREDIT STATUS
CREDIT 16
TPTS bD

OSCO DE

ITM,A
QTY,A
i'<OD, A
DES,A
MAT, A
HP,~

VLT,A
TYP,A
RP~,A

PLT,A
TAG,A
MTR,A
MP,A
SP,A
BLT,A
SHF,A
&OR,A
DS,A
AC I, A
AC2,A
AC3,A
AC4,A
ACS.A
AC6,A
AC7,A
AC8,A
AC9,A
NOT,A
SIZ,A
SCH,A
PRP,A
LT,A
CDE,A

A

9999

80

40

25MORE OATA ??
20"0RE DHA ??

73

lbO
lb l
lb2
lb3
)b4
lb5
I b(,

lb7
lbb
169
170
171
172
173
174
175
l7b
I 77
176
179
I BG
181
182
183
184
JBS
166
187
186
189
190
191
192
193
194
195
196
!97
198
!99
200
201
2C2
:.:. c 3
2C4
205
206
207
208
209
210
211
212
213 s 13 110 c MOVE KEY NXTKEY 13 SAVE NEXT RECRD

Figure 5-9. Continuous Output Program NCSC (Part 4 of 9)

5-32

11 aol • PAGE

•

•

•

•

•

UP-9206

,, 579 13 11 21

U~IVAC OS/3 RPGII VERS 781109

214
215
2lt
217
2 1 E.
< l Y
220
n1
222
223
224
225

227
22h
229
2!C
231
232
233
234

23b
237
23&
239
240
21.11
242
243
244
2q~

24L
2t4 7
246
249
2~0

251
25~
25J
254
255
256
257
2°8
259
2b0
261
2b2
:t !
264
2o5
2bb
267

13 115 c
13 lbO t
1 3 110 r
13 180 c
13 190 c
14 OuO OPOETAIL E
14 C02 0
14 C04 0
14 OCo 0
24 050 OOMA D

5 2Ll C2C 0
24 035 0
24 C37 0
24 040 0
24 043 0
24 C45 C
24 050 c
24 055 c
24 Ob(' 0
24 Ob5 0
z4 urn o
24 075 c
24 080 0
24 085 0

S I 4 0 I(! C·OMA
14 011 0
14 C2C C
14 C30 0
14 04C 0
14 [150 0
14 ObD C
14 C7C 0
14 060 c
14 r.83 c
14 CBS 0
l" 09C C1
14 095 0
14 I GO 0
l.. 11 c c
14 J 2 0 (;
l~ 130 0
14 133 0
14 135 0
14 137 0
14 140 G
14 150 0
14 I bO G
14 170 0
l• 180 0
l" J <?t 0
14 200 0

~ 5 CID 0
15 020 0
15 025 0

D

mo
IT"l, 1
ITM,2
I TM ,3
ITM,4

SPERRY UNIVAC OS/3 5-33
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

25 . 29 33 37

TAG
COMP '
COMP I

CO"IP '
COMP '

2DN99

CO"IPIMS

Ul"ONTH
UOAY
UYEAR

NlO 07

b7N24 10

41 45 49 53 57116511

81/03118 08.29

2b26
2727
2828
2929

3b2
!b4
3bb

20 x•lOOA0102'
45 '***MESSAGE INCOMPLETE•••'
49 X'l0040102'
73 •oo ONE OF THE FOLLOWING •
97 'PRINTER CONDITIONS EXIST'

101 X'l0040102'
125 'll OUT OF FORMS
129 X'l0040102'
153 '21 FORMS ~AMMEO

157 X'l00401J2•
181 •31 POwER NOT ON
185 X'l0040102'
209 'CORRECT PROBLEM ANO RE- '
218 'START JOB•

I b • 71'
20 X'lOOAOlOl'

REPONE B 23

N75
75

24 • , •
REPTIOO 27
Rt.PORO 35
REP~M[

OROAHY
FRTNM[
YR

CS TORO
VIA
RE QRED

PROOCD

SNOTES

MN OTES

Fl.OTES

NAME
SNH1E

f>2
72
81>
91
92 ·-.
97

105 X'l0040100'
121
14:J
167
J 74 • (.
177
1 78 'I'
182 X'l0040101'
242
246 x•10040201•
306
310 x•10040201•
370
374 X'l0040302•
396
442
439 'CALL MIKE BOHRER BEFORE'

73 n •H
PAGE 5

Figure 5-9. Continuous Output Program NCSC (Part 5 of 9)

UP-9206 SPERRY UNIVAC OS/3 5-34
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

• 11 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 89 73 77 ·~ UNIVH 0513 RPG!! VE RS 781109 CQMPIMS 81103118 08.29 PAGE &

2&8 15 026 0 75 448 'SHIPPING'
2&9 I 5 (130 0 452 X'l0040002'
270 I~ n4D c AuRESl 4 74
2 71 I 5 050 G ~75 SADR~! 520
272 I 5 055 0 75 bO CREDIT B 51U
273 I 5 ObO c 530 X'l0040002'
274 15 070 0 ACRES2 552
275 I 5 '.J6C 0 "7 5 SA DRS~ 598
2H 15 090 0 &08 X'l0040002'
277 1 s JOO 0 CTYSTA b25
278 l'> I 05 0 Z!PCOE b3l
2H IS I I 0 0 "'75 SC TY b7b
280 I 5 120 0 bBb X'l0040400'
281 lb 01 OO"A 0 &bN24 10
282 16 0 I I n OR b5N2~ IO
283 I b r 11 0 lb • 71 •

284 I b 02C c 20 X'l00b0002'
;:e ~ H 030 c 2b IT" ,J 8 24
26b lb o~o (' 2b OTY,l za ~9

2P7 lb c~c 0 26 "OD, I B oo
288 1 b 06C 0 26 DES, l B 58
289 I 6 nrn 0 26 ~AT, 1 e b2
29C lb Gt u C' 26 HP, I B &8
291 16 090 0 26 VL T, 1 B 77 . 0/ I
292 16 JOO 0 26 TY P, 1 B 83
293 16 I 1 C 0 26 RPM,! ZB SS
294 I b I 1 S n 26 SCH, I YB 9&
295 I b JZG 0 1 Ou X'l0040002'
296 l 6 125 0 2b LT , 1 B 104
297 I b 130 0 26 OS ,J B 115
29E 1 b I 40 0 2b "TR,! B 127
299 1 b ISO 0 2b MP, 1 8 140
30C H J 5 s 0 2b 14 1
301 16 16G 0 2b SHF, 1 B 14 7 • 302 H 170 0 26 SP,! 8 1~9

30 3 lb 1€ D c 26 l&O
304 16 190 0 2b 80R,l B 1&6
305 lb 200 0 2b BLT,! B 17&
306 l 7 ClO c 182 X'l00'+0002'
307 I 7 02C 0 26 S IZ ,J B 164
303 l 7 n .3o 0 Zb AC 1 ,1 B 188
309 1 7 040 0 2b AC3 ,J B)93
310 j 7 050 0 2& AC'+, 1 B 198
311 I 7 ObO 0 26 AC 5, 1 B 203
312 '~ '' 07S 0 2b AC&,l B 208
313 l 7 C88 0 2b AC 7,1 B 213
31 '+ J ~ r,9n 0 2b ACB, 1 B 218
315 l 7 100 0 n AC9, 1 B 223
3lb 1 7 105 0 26 PRP,) B 2 3'+
317 I 7 110 0 2b 241 'TAG:'
318 17 I 2rJ 0 26 TAG,! 6 2&1
319 17 130 0 2&5 X'l00'+0008'
320 1 7 140 0 2b NOT, 1 B 325
321 1 7 I 4 3 0 2b 329 't.

Figure 5-9. Continuous Output Program NCSC (Part 6 of 9)

•

UP-9206 SPERRY UNIVAC OS/3 5-35
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

• !1 5 1 I 13 17 21 25 ZI 33 37 41 45 41 53 57 11 15 • 73 n !I
UNIVAC uS/3 PPGII VEPS 781109 COMP IMS 81/03/18 08.29 PAGE 7

322 1 7 145 0 2b COE,! a 331
323 I 7 !47 0 2b 332 • J.

324 I 7 150 0 337 X'l0040002'
325 18 030 0 27 ll'4,2 e 34 I
32b I b 040 (' 27 orv,2 ZB 34b
327 IS 050 0 27 MQ[),2 B 357
328 19 DbO 0 27 OES,2 B 375
329 18 070 0 ~7 MAT,2 B 379
330 1 8 O&O 0 27 HP,2 a 395
331 18 090 0 27 VL T, 2 B 394 . 0/ I
3)2 18 100 0 27 TYP 0 2 B 400
333 18 llC 0 27 PP'4,2 ZB 405
334 I& ! 15 0 27 SCH,Z YB 413
BS I 8 120 0 417 X'I004000Z'
33& 18 1215. Cl 27 LT,2 a 421
337 18 !3C 0 27 uS,2 B 432
338 18 140 0 27 "l=l '2 8 444
339 1e. 150 0 27 MP,2 B 457
340 18 155 0 27 45& . -.
341 Ill !&O 0 27 SHF,2 B 4&4
342 18 170 0 27 SP,2 B 47b
34 3 lb l ou 0 27 477 ·-·
3'14 18 190 0 27 SOP,:? ~ 483
3lt ~ 18 zoc 0 27 Ill T, 2 tl 11q3

34b 19 [j l 0 0 499 X'l0040002'
34 7 19 020 0 21 SIZ,2 B 501
341: 19 !l?O 0 27 AC 1, 2 B sos
349 19 Qt;C (J 27 AC.~, 2 B 510
350 19 050 0 27 AC<i, 2 ~ 515
351 l9 ['b[l n n ACS,2 3 520
35.i .i 9 070 0 27 ACb,2 B 525
353 jQ OoO 0 27 AC7,2 B 530
354 19 :;90 0 27 AC8,2 a 535 • 355 j 9 l ~l1 c 27 ~t?,2 Es 540
3!:>b 19 !GS 0 27 PRP,2 B 551
357 19 11 c 0 27 558 'TAG:'
358 19 120 0 27 TAG,2 B 578
3~9 19 130 0 582 X'l0040008'
360 19 140 (J 27 ~OT,2 B b42
3bl 19 143 0 27 b4b . (.

.lb2 1 9 14 5 0 27 COE,2 a b48
3b3 19 14 7 0 27 b49 • J.

3~4 j 9 l~D o &Sb X'l0040002'
3b~ zo C3C 0 28 ITM,3 B b&O
360 20 04G 0 28 CTY,3 ZB bb5
3b7 20 05C 0 28 MOD,3 B b1b
3bb 2C ObO 0 28 DES,3 Es b94
3&9 2'1 no 0 28 "AT, 3 B b98
370 20 nao 0 28 HP,3 8 704
371 20 090 c 28 VL T, 3 B 713 . DI I
372 20 100 n 28 TYP,3 B 719
373 zo 110 0 28 RPM,3 ZB 724
374 zc 11 ~ 0 28 SCH,3 YB 732
375 ZD 1 ;:c 0 73b X'l0DllDD02'

Figure 5-9 . Continuous Output Program NCSC (Part 7 of 9)

•

UP-9206

CONTINUOUS OUTPUT PROGRAM NCSC

37b
377
376
379
~BC

381
382
383
384
38S
38 b
387
188
389
39('
391
392
39 .5
394
395
396
397
39!3
399
40U
401
402
4~3

4C4
40S
40b
"07
408
40<;
41(
4 l 1
't 12
41:

415
4 lb
41 7
418
<; l 9
42G
"21
422
423
424
42S
42C
427
428
429

5 7 9 13 17 21

U~IVAC 0~/3 PPGII VERS 781109

20 125 0
20 l? f"I 0
20 140 0
20 15C 0
2C !:>5 0
20 lbO 0
20 17C C
20 180 0
20 19[] 0
20 200 0
21 010 0
21 020 0
21 03C 0
2 I 04 0 0
21 G5C 0
21 ObO 0
21 07C 0
21 080 rJ
ZI 090 0
2 I l GO 0
21 105 0
21 I l 0 C
2 l l £lj 0
21 130 0
21 l 40 0
21 l 4 3 0
2 l l 45 0
2 I 14 7 0
2 I l SO 0
22 Q30 0
22 (140 0
22 USO 0

LL CbO c
n 010 o
ZZ CtD 0
22 090 0
22 !CG 0
22 llC 0
2:-? 1 1 ~ 0
22 120 0
22 125 0
22 130 0
22 140 0
22 !SC 0
27 l~O 0
22 lbO 0
22 l"/C 0
22 180 ()
22 190 tJ
22 200 0
23 DID 0
23 020 0
23 G30 0
23 040 0

25

28
28
28
28
2~

28
28
28
28
28

28
29
28
28
za
28
ZR
za
28
28
28
?8

28
28
28
28

29
29
?9
29
29
29
29
29
29
29

29
29
29
29
29
29
29
29
29
29

29
29
29

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

29 33 37 41 45

COMPP!S

LT, 3
05 ,3
MT'l,3
"1P, 3

SHF,3
SP,3

80R, 3
RL T, 3

B 740
s 751
a 11>3
B 776

777
3 783
8 795

796 ·-·
B 802
8 812

49 53

SIZ,3
AC I, 3
AC3,3
AC4,3
ACS ,3
AC6,3
AC7,3
AC 8 , 3
AC 9, 3
PRP,3

818 X'l004:J002'
8 820
a 824
B 829
8 P !4
s 839
3 il4 4
3 849
8 854
s 859
a srn

TAG,3
877 'TAG:'

3 897

"lO T, 3
901 X'l0040008'

B 961
965 • (.

CDE,3 B 967
9b 8 •) •
972 x•1oouooo2•

IT'1,4 8 976
OTY,4 ZB 981
M00,4 B 992
uES,4 3101J
HAT,4 i'llul4
HP,4 81020
VLT,4 81029 ' 0/ I
TYP,4
DPM,4
SCH,4

LT,4
05,4
MTR,4
'4i> '4

SHF,4
SF,4

BOR,4
BLT ,4

SIZ,4
ACl,4
AC3,4

81035
ZB1040
Y8104d

1052
81056
81067
81079
Bl092

1093
81099
BlllO

1111
Blll7
81127

1133
81135
81139
81144

X'l0040002'

·-·
. -.
X'l0040002'

57 61 65 69

81/03/18 08.29

Figure 5-9. Continuous Output Program NCSC (Part 8 of 9)

5-36

• 73 11 sol
?AGE 8

•

•

UP-9206 SPERRY UNIVAC OS/3 5-37
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

• I• 5 7 g 13 17 21 25 29 33 37 41 45 49 53 57 61 65 II 73 77 •!I
UNIVAC OS/3 DPGl! VlllS 78110Q CO"lPIMS 81/03/18 08.29 PAGE 9

4 30 23 050 0 29 AC4,4 Bll49
4?. l 23 ObO 0 29 ACS,4 B 1154
432 23 070 0 29 ACb,4 81159
433 23 080 0 29 AC7,4 a1 I b4
4 34 ?7 090 0 29 AC8,4 Bllb9
435 23 100 c 29 AC9,4 81174
4 3t. 2~ IC~ (J 29 PRP,4 81185
4 3 7 23 11 c 0 29 1192 'TAG:•
43& 23 120 0 29 TAG,4 31212
4 3~ L3 130 0 1216 X'l0040008'
440 23 140 0 29 NV T, 4 Bl27b
441 23 14 3 0 ?9 1280 '('
442 23 145 0 29 CDE,4 812~2
443 23 147 0 29 1263 . , .
444 23 150 c ?n 1287 X'l0060001'
LI 4 5 ? 7 I o 1 0 b5N20 1287 X'l0040202' L•

41;(, 2 :': 152 0 6bN20 1287 X'l0041202'
447 23 155 0 65N2~ 1 3b 3 'CREDIT STATUS .
448 23 15b 0 651';20 I 36 7 X'l0040002'
449 23 15 7 0 65N20 CllEDIT ':l 14 4 3
450 23 158 0 b~N2C 1447 X'l0040002'
451 23 159 0 65N2:J 1523 'OTHER LOCATIONS'
452 23 lbO 0 65N20 15 27 X'l0040002'
453 ;:'3 !62 0 bSN20 PH 81591
4 54 23 lb2 0 b5N20 KY 81594
455 23 lb? 0 b5N20 !JV 81597
456 -. 7 I L2 0 b5N20 "j(BlbO:J L -

457 23 l t>S 0 bbN20 1363 'CREDIT STATUS .
458 23 lbb 0 bbN2r. 1367 X'l0040002'
459 23 107 n ~6N20 CREDIT 01443
460 23 168 0 66N2:J 1447 X'l0040002'
461 23 lb9 0 66N20 1523 'OTHER LOCATIONS'

• 4b2 23 I 7'1 0 &b"i20 1527 X'l0040002'
4b3 23 172 0 bbN2J PH 81591
4&4 23 1 72 0 b&N2J KY 81594
'-65 23 172 0 &bN20 !JV tl1597
Ltbb 23 172 0 bbNZO "j(BlbOO
467 23 172 0 66N20 AS a1&03
<t&e Zli c lf) OO~A 0 24
469 24 C2G 0 20 X'l00A0102'
47u 24 G3;J 0 45 'ENO OF SHOP COPIES .
471 24 035 0 72 'LOAD BILLS OF LADING ANO'
472 24 ~40 0 9'1 'ENTER PROGRAM I NCBLI .
473 19 ObO OCOA D Ob 10
474 1 9 070 0 tOTKEY 13
475 19 080 0 Nb7 l '1
4 7b 19 090 0 b1 14 'I'
417 19 !OD :> ~a b6 l '1 • 2.

"78 19 I GS 0 25 lb 'EF'
479 19 110 OPI3 D 05
4eO 19 150 0 "'?4 ID 11 'E'
481 s 1 z 120 0 24 10 11 'N'
482 12 130 0 N l :J 11 'N'

Figure 5-9. Continuous Output Program NCSC (Part 9 of 9)

•

UP-9206 SPERRY UNIV AC OS/3 5-38
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT PROGRAM NCSC

Output message returned Lines 223-237 of Figure 5-9 show the output message that
by unsuccessful delivery action program NCSC generates when the delivery notice

returned to the program indicates that the previous continuous
output message was not successfully delivered. Notice that this

Issues error message message instructs the terminal operator to examine the printer
to operator for what could be causing the difficulty.

Different continuous
output messages

Saving the key of
next record

Receiving control from
previous action program

Also notice that NCSC generates two different continuous output
messages - lines 238-280 and 281-467 - depending on which
indicators are set on or off, and that the continuous output
messages created are quite lengthy. The only limitation on the
size of the message is the screen size of the primary device to
which the auxiliary is attached. These messages are being
transmitted to a UNISCOPE 200 display terminal.

Note that the program uses the continuity data area to save the
key of the next record to be processed (line 4 7 4) when the
program succeeds to itself (line 480). This is a particularly useful
tool when the continuous output being generated is producing a
report that prints the contents of an entire file. When the
successor program is scheduled, it reads the continuity data area.
It then does a SETLL using the key saved in the continuity data
area. In this way, the successor program begins processing the
file at the point where the predecessor action program left off.

Here is an example of the printed output generated by NCSC:

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 5-39
IMS ACTION PROGRAMMING IN RPG II

FRANKLIN SUPPLY COMPANY
2552 2nd. Street I Baltimore, Md. (215) 762-8800
Rep's. No. Rep. Ord. No. Representative's Name:

001 PH ILA. SALES
Customer Order No.: Ship Via:

SPECIAL INSTRUCTIONS:

MARK FOR

REMARKS

SOLD TO:

J. P. KRANTZ & SON
1662 MEADOWBROOK ROAD
CARSON, DELAWARE 76248

M 1 BB45
DSl(A-1)

19BDD ABS AP

N 2 BB45
DSl A-1)

19BDD AP

Q 1 BB45
DSl A-1

19BDD ABS AP

R 2 BB45
DSl(A-1)

19BDD ABS AP

BB531
DSl A-1

19BDD ABS AP

1 BB45
DSl(A-1)

AP

B/W

DO MEX
9A/Fl

DO MEX
9A/Fl

DO MEX
9A/Fl

DO MEX
9A Fl

DOMEX
9A/Fl

DOMEX
21A/Fl

DO MEX
9A/Fl

CONTINUOUS OUTPUT PROGRAM NCSC

Order Date: Freight:
03/03/81 PREPAID

Delivery Requested:

RUSH

CONSIGNED TO:

J. P. KRANTZ & SON
1662 MEADOWBROOK ROAD
CARSON, DELAWARE 76248

A 1/6 115/1/60
1VP25-l/2" 6.0A-5/8"

TAG:EF-10

A 1/6 115/ 1I60
1VP25-l/2" 6.0A-5/8"

A 1/6
1VP25-l/2"

TAG:EF-14

A 1/6 1
1VP25-l/2"

TAG:EF-15

A 6
1VP25-l/2" 5.0A-5/8"

A 1 6
1VP25-l/2" 6.0A-5/8"

Penn. Order No

(DMX)

640 03/30
4L240

656 03/30
4L240

702 03/30
4L220

495

726 03/30
4L220

924 03/30
4L210

UP-9206 SPERRY UNIVAC OS/3 5-40
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

5.12. CONTINUOUS OUTPUT AND CASSETTE/DISKETTE USE

Functions available

Use

Most options used
only with
continuous output

You can read and write, search, or position data on cassette and
diskette auxiliary devices by using the continuous output feature.
To do this, you move a value to the aux-function and
aux-device-no fields of the output message area header just as
you do when generating a continuous output message to an
auxiliary device. Table 5-6 summarizes the settings for the
aux-function field when reading from cassettes or diskettes.
Print/transfer options in Table 5-2 also apply to cassette/
diskette.

Table 5-6. Settings for Aux-Function Field of Output Message Header
(Read/Search Options)

x Read 09 R

Read Transparent E2 s

Search and Read E3 T

Search and Read E5 v
Transparent

Report Address E6 w

Back ward One 03 L E7
Block

Search and E9 z E4
Position

x

u

Table 5-6 shows that all the options specified, except
backward-one-block and search and pos1t1on, must be used with
the IMS continuous output feature. Backward-one-block and
search and position can be used with continuous output and
regular output by simply moving the appropriate value to the
aux-function and aux-device-no fields.

•

•

•

•

•

•

UP-9206

Input options

Read option

Read transparent option

Search and read option

Search and read transparent
option

SPERRY UNIVAC OS/3 5-41
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

There are four input options used with cassette/diskette: read,
read transparent; search and read; and search and read
transparent. The continuous output feature must be used with all
these input options:

reads a block of data from the
cassette/diskette to the terminal screen. When you specify
this option, don't put any message text in the output
message area. Also, you must move the value 4 to the
text-length field (positions 11-14) of the output message
area header.

reads a block of data from the
cassette/diskette, and the remote device handler deletes the
SOE cursor sequence, carriage return codes, and DICE
codes.

reads a block of data from the
cassette/diskette only if a search argument specified in the
message text of the output message area was satisfied.
When the argument is satisfied, the block of data is moved
to the terminal screen. Your search argument may be in one
of three search and read modes. Table 5-7 shows the
formats for these modes. When you use the search and read
option, only the contents of the output message area
message text should be the search argument in the mode
you choose.

performs the
same function as the search and read option except that the
remote device handler removes all DICE sequences, SOE
cursor sequences, and carriage return characters from the
input message .

UP-9206 SPERRY UNIV AC OS/3 5-42
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

Permissible search and
read arguments

Report address option

Table 5-7. User Message Text for Searching Cassette/Diskette

Ataaaa
or

1taaaa
or

ataaaa

Btaaaa/c ... c
or

2taaaa/c ... c
btaaaa/c ... c

Ct/c ... c
or

3t/c . . c
or

ct/c ... c

Mode search to position the tape to a particular
address and then read one block, where A, 1, or
a is constant, and:

t
Is the track address (1 or 2).

aaaa
Is the address where the tape is to be positioned.

Mode search to position the tape to a particular
address, search for a specific character string,
and read one block, where B, 2, or b is constant,

t

Is the track address (1 or 2).
aaaa

Is the block address.
c ... c

Is the character string. Up to 16 characters can be
specified.

Mode search to find the specified character
string, where C, 3, or c is constant, and:

t
Is the track address (1 or 2).

c ... c
Is the character string. Up to 16 characters can be
specified.

The search starts at the present tape position.

the of the
this

The two other options available for cassette/diskette are the
search-and-position and backward-one-block options. Only these
two options can be used with both continuous and regular output
messages:

Search-and-position option • positions the

Backward-one-block option •

requested in the search
argument that your action program supplies in the output
message text. Your output message text cannot contain any
other entries.

message area must be 4.

repositions the
in reverse. The aux-device-no
text-length field in the output

•

•

•

•

•

•

UP-9206

Continuous output message
identifier code

If no code specified

Using the continuous
output-code field

Delivery notice only for
unsuccessful transmission

SPERRY UNIVAC OS/3 5-43
IMS ACTION PROGRAMMING IN RPG II

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

When performing these functions, you can also insert into the
4-character continuous-output-code field (positions 9-12) of the
output message area header a code that identifies the continuous
output message you generated. This code is, as you know from
our discussion of IMS delivery codes (5.9), returned to the
successor program as part of a 5-character input message. If you
do not specify a code, the first four characters of the input
message contain binary zeros.

The continuous-output-code field assumes special importance
when you use any of the four input options or the report address
option for cassettes and diskettes. When you specify one of
these options in your action program, a delivery notice is
returned to the successor program only if the message was not
successfully delivered. Otherwise, there is no input to the
successor program until a message is transmitted from the
cassette/diskette via the terminal screen, or until the
auto-transmit feature is set on to allow data to be transmitted
from the cassette/diskette.

Screen bypass and the When using a screen bypass terminal, you must first set the
AUTO-TRANSMIT feature control page for that terminal to take advantage of the

auto-transmit capability. If this is not done for any of these five
Effect of not setting options and a successful delivery notice is returned by the
control page cassette/diskette device, the screen bypass terminal will stay in

the interactive mode because no message is sent to IMS.

Importance of continuous
output message code

Because a successor action program may receive as input either
a delivery notice error or an input message from the cassette or
diskette, the CONT-OUTPUT-CODE specified by the predecessor
action program should be easily distinguished from the first four
characters of any input message being read from the cassette or
diskette. In this way, the successor program determines what
type of input message it receives (i.e., delivery notice error or
input message text) and processes it accordingly. In either case,
the successor action program must be capable of handling both
unsuccessful delivery notices and standard input messages .

UP-9206 SPERRY UNIV AC OS/3 5-44
IMS ACTION PROGRAMMING IN RPG II

OUTPUT-FOR-INPUT QUEUEING

5.13. INITIATING A TRANSACTION AT ANOTHER TERMINAL
{OUTPUT-FOR-INPUT QUEUEING)

Definition The third special capability of an output message generated by
an action program is to initiate a transaction at another terminal.
We call this output-for-input queueing. It means that an output
message generated by that program is queued as input to a
terminal other than the source terminal. This terminal is identified
by the action program generating the output message. This
output message is, in fact, a transaction code that intitiates a
transaction at the distant terminal. Figure 5-10 illustrates how
this happens.

Figure 5-10. Generating Output Message Using Output-for-Input Queueing

Configuration requirement To use output-for-input queueing, specify CONTOUT =YES in the
OPTIONS section of the IMS configuration.

When you configure CONT OUT= YES, IMS automatically includes
support for unsolicited output.

5.14. HOW YOU CODE USING OUTPUT-FOR-INPUT QUEUEING

Use CALL SEND to You must transmit any output message that initiates a
transmit output message transaction at a different terminal as a CALL SEND. In addition,

your action program moves the hexadecimal value C9 or the
character I to the aux-function field (position 15) of the output
message area header. This value tells IMS to queue the output

Identifying the terminal message generated as input to another terminal. You identify the
receiving output message terminal receiving the input by moving its configured value to the

destination-terminal-id field (positions 1-4) of the output message
area header. The configured value was specified during
communications network definition. Figure 5-11 shows the
coding required to accomplish these functions.

•

•

•

•

•

•

UP-9206

Transaction code initiates
new transaction

Effect of abnormal
termination

Effect of busy destination
terminal status

Indicating errors to
originating program

Reporting output message
errors

SPERRY UNIVAC OS/3 5-45
IMS ACTION PROGRAMMING IN RPG II

OUTPUT-FOR-INPUT QUEUEING

NO LINE
NO

Destination· terminal-id

Output-for-input queueing

Transaction code

Figure 5-11. Coding an Output Message with Output-for-Input Queueing

The only other requirement is that the output message contains
the transaction code that initiates the new transaction at the
destination terminal. This code, and any other output generated
along with it, is queued immediately as input to the destination
terminal.

If, after issuing the CALL SEND using output-for-input queueing,
the action program terminates abnormally, the new transaction is
still generated at the destination terminal.

If the destination terminal is in interactive mode when the SEND
function is executed, that is, an IMS transaction is already in
progress, or if it already has outstanding input messages queued
for it, a new transaction can't be scheduled. In this case, the
action program issuing the SEND function receives an
unsuccessful status-code in the program information block. See
5.17.

When an action program generates an output message and
requests that it be queued as input to another terminal, IMS
validates the output message area header and the status of the
destination terminal identified to receive the message. Validation
errors are indicated to the originating action program by values
returned to the status-code and detailed-status-code fields in the
program information block. Any errors found while scheduling the
next transaction are reported directly to the destination terminal.
Errors found in the action program processing the new
transaction at the destination terminal are reported to that action
program. As a result, this program must be prepared to handle
such error conditions, and if necessary, to report these
conditions to the originating terminal .

UP-9206 SPERRY UNIVAC OS/3 5-46
IMS ACTION PROGRAMMING IN RPG II

OUTPUT-FOR-INPUT QUEUEING

Error codes

Termination restrictions

For a complete listing of error codes that IMS returns to the
status-code and detailed-status-code fields of your action
program following the SEND function, see Table 5-7.

Generally, a program that generates output using the
output-for-input queueing option terminates with normal
termination; however, it can specify external succession. It can't
terminate with delayed succession.

5.15. OUTPUT-FOR-INPUT QUEUEING WITH CONTINUOUS OUTPUT

Create records at terminal - It is fairly common to use the output-for-input queueing and
print them at another continuous output options together. For instance, one transaction

could create the records you want printed and write them to a
MIRAM file. The last stage of this transaction generates an
output message using output-for-input queueing at a destination
terminal where the printing of the records is actually done. The
transaction initiated at the destination terminal reads the MIRAM
file and prints the message as continuous output.

5.16. OUTPUT-FOR-INPUT QUEUEING WITH A SCREEN BYPASS DEVICE

Screen bypass

Only means of entering
input

Another situation where you can use the output-for-input
queueing is with a screen bypass device on Universal Terminal
System (UTS) terminals. This device is defined to the
communications network (ICAM) as a logical terminal. However,
it has no physical medium for entering input. The only way to
access a screen bypass device is to use the output-for-input
queueing option. Another terminal in the IMS network generates
(through an action program) an output message that initiates a
transaction at the screen bypass device. This could be a
continuous output transaction, and a report could be generated
as output on a printer attached to the screen bypass device.

•

•

•

•

•

•

UP-9206 SPERRY UNIV Al OS/3 5-47
IMS ACTION PROGRAMMING IN RPG II

MESSAGE SWITCHING

5.17. MESSAGE SWITCHING

SWTCH transaction

Action program initiated
message switching

Required coding

Sending messages to the
console

Message size restriction

IMS provides a special action program that switches messages
from one terminal to another. You need only to enter the
transaction code SWTCH at any terminal in your IMS network,
identify the destination terminal for the message, and key in the
message itself. IMS handles the rest. For more information about
this and other terminal commands, consult the IMS terminal users
guide, UP-9208 (current version).

The message switching capability we're interested in here is one
that operates from within your own user action program. For
instance, an action program could direct error messages to the
master terminal when the originating terminal is unable to handle
the error. Or, take the case of an action program that initiates a
transaction at a distant terminal. The distant terminal could send
the originating terminal a message indicating the transaction was
initiated or, as the case may be, successfully completed.

To send messages to other terminals, an action program must
move a value to the destination-terminal-id field (positions 1-4) in
the output message area header. Figure 5-12 shows the coding
to send a message to another terminal.

You can send a message to the system console or master
workstation if console support is configured. To send a message
to the console or master workstation, enter the name · 1 CNS' in
the destination-terminal-id field. When you send a message to
the console, your message may not exceed 120 characters. For
more information about the system console and master
workstation, see the IMS terminal users guide, UP-9208 (current
version).

<
:;::' Ef\jD

::: 'C PQ!>1T10111
,....,....,.-+-.--.-+~-;-------<g ~ ,,..

U C OUTPUT

~ : RECORD

Figure 5-12. Coding for Message Switching

UP-9206 SPERRY UNIVAC OS/3 5-48
IMS ACTION PROGRAMMING IN RPG II

MESSAGE SWITCHING

How IMS handles message IMS transmits the message destined for the distant terminal or
switching console by using the SEND function. The message does not go

to the destination terminal until the program terminates. In this
respect, message switching is handled no differently by IMS than
any other output message. (See Figure 5-13.)

When transaction
terminates abnormally

Figure 5-13. Generating Switched Output Message

If the transaction is terminated abnormally or canceled before the
action program that generated the messages terminates, all
output messages generated are deleted from the output message
queue and no messages are delivered. IMS sends a message
only to the originating terminal indicating the reason for
termination.

Configuration requirements As we previously mentioned when discussing the SEND function,
you should specify disk queueing when generating your
communications network if your action programs use the SEND
function frequently. Also, you must specify the UNSOL= YES
parameter in the OPTIONS section of the IMS configuration to
use the SEND function.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-49
IMS ACTION PROGRAMMING IN RPG II

SEND FUNCTION STATUS CODES

5.18. THE IMS SEND FUNCTION AND IMS STATUS CODES

Selecting notification of In this section, you have seen how many of the output messages
successful SEND function generated are transmitted using the IMS SEND function.

Whenever the SEND function takes place, if you have specified
ERET =YES in the IMS configuration, then IMS notifies the action
program whether or not the SEND function was successful. It
does this by placing binary values in the status-code and
detailed-status-code fields of the program information block.
When control returns to the action program, you should
interrogate these fields to determine the status of the CALL
SEND.

PIB needed to determine To interrogate the status and detailed status code fields, you
SEND function result must define the program information block on the file description

form. Also, you must define the two fields and their location on
the input form. Status-code occupies positions 1-2 of the
program information block; detailed-status-code occupies
positions 3-4.

Action program checks
SEND status

Result of not being notified
of unsuccessful SEND
function

Status codes

Trace values

After the SEND function takes place, the program should read the
status and detailed status code fields to determine whether or
not the SEND was successful. These fields are extremely
important to a programmer when debugging action programs.
Debugging is discussed in detail in Section 7.

If you don't specify ERET=YES, and the CALL SEND isn't
successful, the action program does not regain control and IMS
abnormally terminates your action program. We strongly
recommend that you always configure ERET =YES.

Table 5-8 lists the values that IMS can return after the SEND
function takes place.

IMS returns trace values to the status-code and detailed
status-code fields when ERET=YES is configured .

UP-9206 SPERRY UNIVAC OS/3 5-50
IMS ACTION PROGRAMMING IN RPG II

SEND FUNCTION STATUS CODES

Detailed status code=2

Table 5-8. Status Codes and Detailed Status Codes Returned
Following the Send Function

Parameter error

or CONTOUT YES wasn't
configured, or no process files were created 1n
ICAM network definition.

output-for-input queueing 1s
requested and:

destination terminal 1s in interactive mode;

destination terminal has an input message
on queue;

ZZHLD or ZZDWN command was entered
for destination terminal;

destination terminal is marked physically
down to ICAM; or

IMS can't allocate a main storage buffer
(mult1thread only); INBUFSIZ specif1-
cat1on 1s inadequate.

Dest1nat1on terminal physically or logically down,
message queued

Invalid destination terminal. auxiliary device, or
auxiliary function specified

No !CAM network buffer available

Disk error. or recoverable system error on output
message to console

Invalid length specification

IMS returns a status code of 6 and a detailed status code of 2
only when you use the SEND function to initiate a transaction at
another terminal (output-for-input queueing). The conditions
causing this error are not permanent. The output message header
is valid, and you may be able to retransmit the same message
successfully at a later time.

•

•

•

UP-9206

• Detailed status code= 3

Detailed-status-code =4

•

•

SPERRY UNIVAC OS/3 5-51
IMS ACTION PROGRAMMING IN RPG II

SEND FUNCTION STATUS CODES

Some of the conditions causing a detailed status code of 3 (with
status code 6) are the same as those for a detailed status code
of 2. However, this error is returned when you use the SEND
function for message switching, not output-for-input queueuing.
In this case, the message sent is queued for the destination
terminal and is automatically transmitted when the terminal is
operational.

On the other hand, when internal message control returns the
detailed-status-code value 4 after the SEND function, this means
that the contents of the output message area header are not
valid. Any effort to retransmit the same message is unsuccessful.

When this value is returned, check your action program for one
of the following errors:

• ..:1m1m,11•111111•111,;::r1:1,111•11 (positions 1-4) of the
output message area header is not a valid configured
terminal identification.

• (position 16) of the output

•
message area header is invalid .

(position 15) of the output message
area header contains the hexadecimal value C3, F3, or F7,
indicating that the program attempted to generate continuous
output. You cannot transmit continuous output as a CALL
SEND; it must always be transmitted as a CALL RETURN when
the program terminates (5. 7). If the message was addressed to
the system console (destination-terminal-id 1 CNS), only the
hexadecimal values 00 or C9 are acceptable .

UP-9206 SPERRY UNIVAC OS/3 5-52
IMS ACTION PROGRAMMING IN RPG II

LINE DISCONNECT

5.19. DISCONNECTING A LINE FROM AN ACTION PROGRAM

Purpose The line disconnect feature allows an action program to
disconnect a single-station dial-in line following the delivery of its
output message to enable another terminal to dial in on the same

Configuration requirements line. To use the line disconnect feature, you must include the
continuous output capability in your configuration by specifying

Available only for CONTOUT=YES in the OPTIONS section. The line disconnect
dedicated networks feature is available only in a dedicated ICAM network, not a

global network.

To disconnect a line after message transmission, the action
program must:

Aux-function value, X'C3' • place a continuous output flag
(X'C3') in the aux-function byte
(position 15) of the output message
header; and

Use external succession and •
HANGUP successor-id

specify external succession with
'HANGUP' as the successor by

43 44 45

I r/J 'HANGUP /

HANGUP, IMS action
program

Delivery notice before
scheduling

setting the termination-indicator
(position 11) in the program
information block to E and the
successor-id (position 5) to
'HANGUP'.

' E'

HANGUP is an action program supplied by IMS that terminates
with a special code causing IMS to issue a line release/line
request sequence to ICAM to disconnect the line.

After the output message is sent, no further input is required
from the terminal operator. IMS waits for ICAM notification of
message delivery before scheduling the external successor,
HANGUP. In this way, delivery of the message prior to the line
disconnect is ensured.

Figure 5-14 shows the output specification form coding used to
disconnect a line from an action program.

•

•

•

UP-9206 SPERRY UNIVAC OS/3 5-53
IMS ACTION PROGRAMMING IN RPG II

LINE DISCONNECT

•

Figure 5-14. Coding a Line Disconnect from an Action Program

•

•

UP-9206 SPERRY UNIVAC OS/3 5-54
IMS ACTION PROGRAMMING IN RPG II

SYSTEM CONSOLE

5.20. SENDING MESSAGES TO THE SYSTEM CONSOLE

Configuring
console support

Terminal-id is
1CNS

When IMS session
has a master
workstation

Types of output
you can send

Auxiliary devices
not supported

Message length
restriction

No screen formats

Messages not edited

No message waiting
signal

Your action program can send output messages to the system
console if console support is configured. You configure console
support by specifying OPCOM =YES in the OPTIONS section of
the IMS configuration or by not specifying a master terminal in
any TERMINAL section.

To send output to the system console,
place the terminal-id 1 CNS in the
destination-terminal-id field (positions 1-4)
of the output message header.

Sometimes an IMS session has a master workstation associated
with it. A master workstation is a workstation from which the
IMS start-up job control stream is entered, or it may be defined
in the job control stream. When there is a master workstation
and you use the destination-terminal-id 1 CNS, your output
message goes to the master workstation instead of the console.
When the master workstation logs off or is disabled, then the
message goes to the console.

You can send normal output, multiple output, switched output,
continuous output, and output-for-input queueing messages to
the system console. However, there are certain restrictions on
output to the console:

~ You cannot send output to an auxiliary device at the system
console. The only auxiliary function settings you can use are
hexadecimal 00, C3 (continuous output), or C9
(output-for-input queueing).

The maximum length of the output message
characters, not including the output message
Additional characters are truncated.

is 120
header.

~ Because of the message length restriction, you cannot output
a screen format to the console.

D> Output messages are not edited. DICE functions, FCCs, and
other control characters appear as blanks, or in a few cases
as printable characters.

~ There is no message waiting signal. Switched and multiple
output messages are sent out immediately.

•

•

•

•

•

•

UP-9206

Auxiliary device
error

When console
is down

Switched and
continuous output
messages

Other output
messages

SPERRY UNIVAC OS/3 5-55
IMS ACTION PROGRAMMING IN RPG II

SYSTEM CONSOLE

Error Returns on Output to the Console

IMS returns a status code of 6 and detailed status code of 4
when you attempt to send output to an auxiliary device at the
system console. These are the same codes IMS returns when
you have an invalid destination-terminal-id, auxiliary device, or
auxiliary function specification on output messages to regular
terminals.

When your output message can't be delivered because the
console is physically or logically down, the action IMS takes
depends on the type of output message.

~ With a switched message, IMS returns a status code of 6
and detailed status code of 6. With a continuous output
message, IMS returns a delivery notice status of X'86'.
These codes indicate recoverable system errors.

~ With other types of output messages (such as normal output
in response to input from the console). IMS returns a
successful status code of 0. The reason IMS does this is
that an error status would cause a "TRANSACTION
CANCELLED" message to be sent to the console, and this
could cause an abnormal termination of the IMS session .

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

6-1
Update A

SCREEN FORMAT SERVICES REQUIREMENTS

6. Using Screen Format Services
To Format Messages

6.1. DISPLAYED FORMATTED SCREENS

In Section 4, we briefly discussed using screen format services
to format output messages. The sample action program JAADD 1
used screen format services to generate its output screens.

Saves programming effort With screen format services, generating output screens is easy
because the screens are predefined using the screen format
generator. You don't have to include device control characters in
your action program. In addition, screen format services does
validity checking of input data, thereby reducing the amount of
input validation you must do in your action program.

6.2. DEVICES SUPPORTING SCREEN FORMAT SERVICES

Terminals supporting
screen formats

local workstation
consideration

You can direct screen formats to any display terminal supported
by IMS except the IBM 3270 terminal, and also to auxiliary
devices attached to display terminals. UNI SCOPE 100 and
UNISCOPE 200 terminals must have the screen protection
feature, and UTS 400 terminals operating in native mode must
have the PROTECT /FCC switch set to FCC and the control page
set to XMIT VAR. For local workstations, specify a line buffer
length of at least 900 words on the LBL option of the ICAM
network definition.

6.3. GENERATING SCREEN FORMATS

Screen formats generated
offline

Formats stored for later use

You define your screen formats offline from IMS by executing the
screen format generator. (See the screen format services
concepts and facilities, UP-8802 (current version).) When you
create each screen format, you assign a unique name to it. The
screen format generator stores the formats in the system screen
format library YFMT or other MIRAM disk file. The screen
formats for an IMS session may reside in one or two screen
format files.

t

UP-9206 SPERRY UNIV AC OS/3 6-2
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT SERVICES REQUIREMENTS

NOTE:

To use screen format services, you must generate a supervisor in
consolidated data management (COM) or mixed mode. However,
you can configure IMS in either COM or OTF mode. See the IMS
system support functions user guide, UP-8364 (current version).

6.4. CONFIGURATION REQUIREMENTS

Affected parameters

Number of terminals using
screen formats

Number of resident
screen formats

Work area required

Determining size

When using screen format services, you must give special
consideration to four parameters at IMS configuration:

the parameter;

the

the parameter; and

parameter.

You must include the SFS parameter in the OPTIONS section of
your IMS configuration. With this parameter, you specify the
maximum number of terminals that will use screen formats at the
same time. Be sure to specify a large enough number of
terminals. A screen format is considered in use at a terminal
from the time the operator requests it until the format is
displayed, input entered, and the input acknowledged.

With the RESFMT parameter, also in the OPTIONS section,
specify the number of screen formats you want retained in main
storage between calls to screen format services. The default is 1
for single-thread IMS and 3 for multithread.

You must configure a work area for each action program using
screen format services. The RPG II action program itself does not
use this area, but the compiler does. You include the WORKSIZE
parameter in the ACTION section of the configuration. Its format
is WORKSIZE=n. The n denotes work area size. The size you
specify must be large enough to accommodate all variable output
data generated by the action program plus 99 bytes for the RPG
II indicators.

•

•

•

•

•

•

UP-9206

Maximum OMA size

· Where the screen format
is built

Using output message area

SPERRY UNIVAC OS/3 6-3
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORM4T SERVICES REQUIREMENTS

Specify the OUTSIZE parameter in the ACTION section of the
configuration (OUTSIZE=n). The n denotes the maximum size of
the output message area for a particular action.

When you request a screen format in your action program, you
have it built in the output message area or in dynamic main
storage. If you use the output message area, it must be large
enough to handle the screen format buffer constructed by the
screen format coordinator. This buffer contains all variable output
data, display constants, and device control characters. See the
IMS system support functions user guide, UP-8364 (current
version) for information on calculating the size of the output
message area.

Using dynamic main storage The advantage of building the screen format in dynamic main
storage is that you don't have to calculate the size needed for
the format buffer. You must still allocate an output message area
large enough to contain the output message header and your
variable data fields. The OUTSIZE= ST AN specification will give
you an adequate output message area size .

When OUTSIZE is
insufficient

When the action program requests a screen format and the
output message area is not large enough to contain the format
buffer, IMS returns an error code in the status fields of the
program information block. IMS also places the output message
area size required in the text-length field (positions 13-14) of the
output message area header.

6.5. REQUIREMENTS AT IMS START-UP

Device assignment sets

LFD names

When using screen format services, you must include a device
assignment set for each screen format file in the job control
stream at IMS start-up. Use the LFD name TCO 1 FMTF for the
primary file and TC02FMTF for the secondary file, if there is one.

Figure 6-1 illustrates the steps required to create and use screen
formats with IMS .

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT SERVICES REQUIREMENTS

CREATE SCREENS
USING OS/3

SCREEN FORMAT
GENERATOR

START UP IMS
WITH DEVICE

ASSIGNMENTS FOR
SCREEN FORMAT

FILES

Figure 6-1. Creating and Using Screen Formats

6-4

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 6-5
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT PROCESSING

6.6. HOW IMS HANDLES SCREEN FORMATTED MESSAGES

Retrieves screen format

Variables moved to work
area

Display contents moved
to screen buffer

Variables moved to
screen buffer

Screen displayed on
terminal

Example

Using input and output
screens

Example

When your action program requests a particular screen format,
IMS retrieves the format from the screen format file and places it
in the output message area or in dynamic main storage. (When
you assign two screen format files, IMS checks TCO 1 FMTF first,
then TC02FMTF.)

The variables in the output message area are moved to the work
area defined at configuration. The variables remain there for as
long as it takes the screen format coordinator to construct the
screen in the buffer area.

The screen format coordinator places the output display
constants of the format into their respective locations within the
screen buffer. These constants are always protected.

When the screen is built, the screen format coordinator inserts
the variable data from the work area into the appropriate
locations in the screen buffer.

When the program terminates, the screen format and variable
data are transmitted to the terminal.

Figure 6-2 shows an output screen containing display constants
and variable data. Underlines represent input fields.

PERSONAL CREDIT REPORT

NAME:JOHN DOE
ADDR:1552 MAIN ST.
ACCOUNT N0:193-A564
BALANCE:350.00
PAYMENT:

STATE:PA

DATE: I I

ZIP: 19140

Figure 6-2. Output Screen Format with Display Constants, Variable
Data, and Input Fields

Any field you define as input, or both input and output, in your
action program is an unprotected field. This means that the
terminal operator is free to change that field when making entries
on the screen format. It is protected if you define a variable data
field as output only when you build a screen buffer. In Figure
6-3, the terminal operator has changed the address field and
entered a payment amount and date .

UP-9206 SPERRY UNIVAC OS/3 6-6
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT PROCESSING

r
PERSONAL CREDIT REPORT

NAME:JOHN DOE
ADDR:224 PINE ST.
ACCOUNT N0:193-A564
BALANCE:350.00
PAYMENT:25.00

STATE:PA

DATE:12/23/80

ZIP:19102

Figure 6-3. Input Screen Format with Display Constants and
Changed Input Fields

Output-only screens required When your action program terminates with delayed succession or
for: delayed succession uses continuous output, IMS forces the screen format to be
continuous output
message switching output only. Also, you must use an output-only format for any

Function keys cancel
screens

screen formatted output message switched to a different
terminal.

The message wait key and function keys cancel any screen
format currently effective at the terminal.

When multiple screens are An action program may send multiple formatted messages to the
generated originating terminal; however, only the last format may be used

for entering data as input to the successor program.

6.7. USING FORMATTED SCREENS FOR INPUT

Checking input for terminal
commands

All commands cancel
screens except
ZZRSD

Results when ZZRSD is
entered

When an invalid transaction
code is entered

When the terminal operator fills in input data, the data is
validated before IMS passes control to the successor program.
IMS checks the message for terminal command input before
requesting the screen format coordinator to validate the entries.
If the input message contains a terminal command other than
ZZRSD, IMS processes it accordingly and cancels any screen
format currently effective at the terminal.

Normally, ZZRSD causes the last output message to be sent
again, thus retaining the current screen format. However, if the
screen format is built in dynamic main storage instead of the
output message area, it can't be sent again and the screen
format is canceled. The terminal operator receives a NO MSG IN
QUEUE message and can't enter input on the formatted screen.

When the input message contains a transaction code, IMS
verifies the code and if it is invalid, sends the message back to
the terminal and blinks the transaction code. This does not
cancel the screen format currently effective at the terminal.

•

•

•

•

•

•

UP-9206

Validating input data

No other editing
performed on input

SPERRY NIVAl OS/3 6-7
IMS Ac·, :ON PROGRAMiJllNG IN RPG II

3CREEN FORMAT PROCESSING

When the input message does not contain a terminal command
or invalid transaction code, IMS requests the format coordinator
to validate the message. If the input data filled in by the terminal
operator is valid, IMS places only that data into the input
message area of the successor action program. IMS does not
perform any other editing on this input. Your action program then
begins processing.

When input data is invalid When some of the input data is invalid,
the screen format coordinator blinks the
invalid fields. The terminal operator can
correct the input until the retry count
specified at screen format generation
time is exhausted. (See screen format
concepts and facilities, UP-8802.)

Error codes returned for
invalid data

Specifying type of
termination

Once the retry count is exhausted, the successor program
receives control. At that point, the program information block
contains a status code of 7 and a detailed status code of 0. (See
Table 6-1 for a description of error codes returned when using
screen format services.)

In order for the successor program to receive this data, the
predecessor action program must specify E in the
termination-indicator field (position 11) of the program
information block. If that program terminated with normal
termination (N in the termination-indicator field), the first input
field entered on the screen format must be a valid transaction
code that will schedule the appropriate action program to
process the input data .

UP-9206 SPERRY UNIVAC OS/3 6-8
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT CODING

6.8. CODING REQUIRED TO USE SCREEN FORMAT SERVICES

Output form coding

Required entries

To build screen in
dynamic main storage

Example

To use a formatted screen, you make the following entries on
the output form:

~ The character K in column 42

~ Length of the screen format name
in column 43

~ Screen format name itself in
columns 45-70

To build the screen format in dynamic
main storage, move 'D' to the
SFS-location field (position 6) of the
output message header.

Figure 6-4 illustrates how you code the output form to build a
screen format containing variable data in dynamic main storage.

Figure 6-4. Coding the Output Form to Use Screen Format Services

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 6-9
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT CODING

Defining the screen format You indicate that you are using a screen format on the first field
description for the output file. Only one screen format is allowed
for each output record. In Figure 6-4, the output file is OMA. As
you notice, the screen format is the first field description for the
file. The character K in column 42 indicates you are using screen
format services. The number 6 in column 43 is the length of the
format name. MRKT82 is the format name as it was defined at
screen format generation.

list variable output data
in receiving order

You must list the variable fields in the order that the screen
format expects to receive them. The first field always begins
after position 16. You must allow 16 positions for the output
message area header.

Figure 6-5 shows the screen format described in Figure 6-4 as it
appears at the terminal.

QUARTER 1:
QUARTER 2:

MARKETING SUMMARY 1 82
COLONIAL STEEL CORPORATION

BRANCH: 7018

SALES SUMMARY

$345,678,721
$299,799,838

QUARTER 3:
QUARTER 4:

$322,628,456
$349,798,951

TOTAL SALES: $1,317,905,966
YEARLY QUOTA: $1,288,988,955
RESULTS: $28,916,971 +

Figure 6-5. Output Screen Display for Figure 6-4.

Handling screen formatted IMS handles output messages that use screen format services
output just like any other output message. They can be transmitted

using the SEND or RETURN function. However, they do not
appear at the terminal until the action program terminates. The
terminal operator may then enter data, which is verified and
stored in the successor program's input message area .

UP-9206 SPERRY UNIVAC OS/3 6-10
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT CODING

6.9. GENERATING AN OUTPUT SCREEN WITH NO VARIABLE DATA

When there is no variable
output data

When an action program generates an output screen with no
variable fields, such as an error message screen, you must move
zeros to the text-length field of the output message area header
before specifying the screen format. Figure 6-6 shows how you
code the output form to do this.

Figure 6-6. Coding for a Formatted Screen without Variable Output Data

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 6-11
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT ERRORS

6.10. ERROR CODES RETURNED BY IMS

Errors return status codes
to PIB

When IMS encounters a problem while using screen format
services, it returns values to the status-code and
detailed-status-code fields of the program information block.
Table 6-1 lists and describes these values.

Table 6-1. Error Codes Returned by IMS when Using Screen Format Services

Screen format services not configured

Invalid terminal name or type

Validation error; all error fields within variable data area are replaced by hexadecimal F's.

Format area not large enough. The OUTSIZE=n specification wasn't large enough to handle
screen format, variable data, and device control characters. IMS returns the correct output

area size to the text-length field (positions 13-14) of the output message area

Variable data area not large enough. The WORKSIZE=n specification wasn't large enough
to handle the variable data plus the 99 bytes for RPG II indicators.

Insufficient number of terminals was configured.

Variable data specified for input format is invalid.

Format width is greater than screen width.

Fatal error (1/0 error)

Screen format incorrectly generated

Inadequate main storage available in system; or format contains protected fields and
terminal doesn"t have protect feature or isn"t in protect mode.

Screen format services error

Action program processing DDP transaction attempted to send screen format to initiating
action program.

See Appendix C for a complete listing of status and detailed
status codes in hexadecimal.

UP-9206 SPERRY UNIVAC OS/3 6-12
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMATS AND AUXILIARY DEVICES

6.11. TRANSMITTING FORMATTED SCREENS TO AN AUXILIARY DEVICE

Setting output message
header fields

Aux-function field entries

Example

You can output a screen format to an
auxiliary device - printer, cassette, or
diskette - attached to a display terminal.

To output a screen format to an auxiliary device, you move a
value to the aux-function (position 15) and the aux-device-no
(position 16) of the output message area header before
specifying the screen format required.

Table 6-2 lists the values you move to the aux-function field to
accomplish this. Different values are specified for the aux-function
field depending on whether the action program is using
continuous output or not.

Figure 6-7 shows the coding to transmit a formatted screen to a
printer attached to a UTS 400 display terminal using print mode
with space suppression. The action program involved is not
generating continuous output.

Figure 6-7. Coding to Transmit Formatted Screen to a Printer

NOTE:

When you build a screen in dynamic main storage, all values,
including auxiliary device numbers and functions, must be present
in the output message header before the call is issued to screen
format services. If any header values (except SFS-options) are
changed after the call to screen format services, the new values
are ignored.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 6-13
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMATS AND AUXILIARY DEVICES

Table 6-2. Print/Transfer Options for Writing of Screen Formats to Auxiliary Devices

Print Mode

Print
Transparent

Pnnt Form
(ESC H)

Transfer
All
(ESC G)

Transfer
Variable
(ESC F)

Transfer
Changed
(ESC [)

LEGEND:

F3

F5

F7

F9

Cl

C6

C2

Cl

C4

CB

C5

E8

G) Printer - same format as screen

FO

F2

F4

F6

A 01

06 0

02

G 07

0 04 M

H 08 Q

05 N

F8

@ Printer - same information as screen; no carriage returns

~recommended)CJ:XD
x
(recommended) QXD

lDCD

x©
x©
x
(recommended)®

@ Cassette/diskette - same format as screen; no field control characters

@) Cassette/diskette - same format as screen; only records unprotected fields

X (field control
characters not
supported)

X (held control
characters not
supported)

@ Cassette/diskette - same format as screen; records all fields and all field control characters

@ Cassette/diskette - not available

x
(recommended)Q)

x 2

x
(unpredictable
output at screen
and auxiliary
device)

(unpredictable
output at screen
and auxiliary
device)

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 7-1
IMS ACTION PROGRAMMING IN RPG II

7.

DDP REQUIREMENTS AND TERMS

Action Programming
Distributed Data
Processing Environment

.
1n a

7 .1. BASIC DDP REQUIREMENTS AND TERMINOLOGY

DDP requirements

DDP terminology

IMS handles distributed data processing (DDP) transactions
through the IMS transaction facility. To use distributed data
processing with IMS, you must include the IMS transaction
facility in your software at each OS/3 system and must configure
multithread IMS at each system. Also, you must define a global
ICAM network that supports distributed data processing and
include a LOCAP section in the IMS configuration for each IMS
system where you want to route transactions or which will route
transactions to you. Consult the IMS system support functions
user guide, UP-8364 (current version) for configuration and
network definition requirements.

Let's define some terms we'll be using throughout the discussion
of DDP transaction processing:

LOCAL TRANSACTION

Transaction that is processed at the same IMS system

where it is initiated

REMOTE TRANSACTION

Transaction that is initiated at one IMS system and

processed at another

PRIMARY IMS

IMS system where a remote transaction is initiated. In our
illustrations we call this system IMS 1 .

UP-9206

DDP REQUIREMENTS AND TERMS

SPERRY UNIVAC OS/3 7-2
IMS ACTION PROGRAMMING IN RPG II

SECONDARY IMS

IMS system where a remote transaction is processed.

The action programs processing the transaction and any

files they access are located here. In our illustrations we

call this system IMS2.

LOCAL IMS

Your IMS system, regardless of whether your system is

primary or secondary for a particular transaction

REMOTE IMS

IMS system at another computer

LOCAP-NAME

The 4-character label of a LOCAP macroinstruction in

your ICAM network definition, identifying a local or

remote IMS system

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 7-3
IMS ACTION PROGRAMMING IN RPG II

ROUTING DDP TRANSACTIONS

7.2. HOW IMS ROUTES REMOTE TRANSACTIONS

Transaction routing types

Operator-initiated
transaction

There are three different ways in which the primary IMS can
route a transaction to a secondary system:

R-1 Directory routing

The terminal operator enters a transaction code that identifies a

transaction at a secondary system. The transaction code is defined in the

configurator TRANSACT section.

Operator routing

The terminal operator prefixes the transaction code with a route character

(followed by a period) that routes the transaction to a secondary system.

This route character is defined in the configurator LOCAP section or in a

PARAM job control statement at IMS start-up.

Action program routing

The terminal operator enters a transaction code that initiates a transaction

at the primary system. The action program processing this local

transaction issues an ACTIVATE function call to initiate a transaction at a

secondary system. Action programs initiating remote transactions are

written in COBOL or basic assembly language (BAL).

From the programmer's viewpoint, directory and operator routing
are the same, because they are both initiated by a terminal
operator. Once the transaction is routed to the secondary
system, an action program or series of action programs at that
system interacts with the terminal operator the same way as in a
local transaction. No action programs are involved at the primary
system .

UP-9206 SPERRY UNIVAC OS/3 7-4
IMS ACTION PROGRAMMING IN RPG II

ROUTING DDP TRANSACTIONS

Program-routed transaction With action program routing, action programs at the secondary
system don't interact directly with the terminal operator. They
return a message to the in1t1ating action program or its
successor, which in turn, outputs a message to the terminal
operator.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 7-5
IMS ACTION PROGRAMMING IN RPG II

PROCESSING DDP TRANSACTIONS

7 .3. PROCESSING A REMOTE TRANSACTION

Similar to processing
local transaction

Receiving input message

Determining input
message source

DDP-mode field

Source-terminal-id field

As an RPG II programmer, you may be writing action programs at
a secondary IMS to process transactions initiated by an operator
or an action program at a primary IMS system.

There is little difference between the way you process a remote
transaction and the way you process a local transaction. You can
probably use the same action programs to process both local
and remote transactions .

When the transaction begins, you receive an input message
starting with a 1- to 8-character transaction code, just as with a
local transaction.

You can determine the source of the input message by testing
the DDP-mode field of the program information block and the
source-terminal-id field of the input message header.

The DDP-mode field (position 70 of the program information
block) contains the value 'R' when the transaction is
operator-initiated (either directory routing or operator routing). It
contains the value ·A· when the transaction is initiated by an
action program. When a transaction is local, the DDP-mode field
contains zeros. This field has other possible values but they
apply to action programs at the primary IMS system.

When an action is scheduled to process a transaction at a
secondary IMS, the source-terminal-id field (positions 1-4 of the
input message header) contains the locap-name of the IMS
system originating the transaction rather than a terminal-id. You
can't test for the actual terminal initiating a remote transaction .

UP-9206 SPERRY UNIVAC OS/3 7-6
IMS ACTION PROGRAMMING IN RPG II

PROCESSING DDP TRANSACTIONS

General restrictions

SEND function restriction

Continuous output
restriction

Auxiliary device
restriction

There are a few general restrictions on processing remote
transactions. (There are , several additional restrictions for
program-initiated remote transactions, which we'll discuss a little
later.)

•

•

•

You can't use the ••!fJ:'l:,;11•1 to output a message to the
originating terminal (or any terminal at the remote IMS).
However, you can use the SEND function to output a
message to a terminal at your local IMS. (See 5. 17 .)
Afterwards, clear the destination-terminal-id field (positions
1-4 of the ouput message header) or move the source
locap-name to that field before sending an output message
to the originating terminal.

You can't send .!IBmtl-lto the originating terminal.
Again, you can use the SEND function to initiate continuous
output at a local terminal using output-for-input queueing.

You can't send output to an 1llMJ.!!!Jlfllli attached to the
originating terminal. However,·"••y;u···c;~·~·· s~nd output to an
auxiliary device at a local terminal using the SEND function.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 7-7
IMS ACTION PROGRAMMING IN RPG II

OPERATOR-INITIATED TRANSACTIONS

7.4. PROCESSING AN OPERATOR-INITIATED REMOTE TRANSACTION

Action program
succession

Screen format services
in DDP

With the few exceptions we've already mentioned, you process
an operator-initiated remote transaction the same way as a local
transaction.

You can use any type of action program succession with
operator-initiated transactions. Once the transaction begins, the
IMS transaction facility establishes a communications link which
stays in effect until the transaction ends. When you use external
succession, the terminal operator receives and responds to your
output messages without entering any additional codes.

Figure 7-1 illustrates a remote dialog transaction, using both
internal (either immediate or delayed) and external succession .

Figure 7-1. Processing an Operator-Initiated Remote Dialog Transaction

You can use screen format services with operator-initiated
remote transactions. (See 7 .6.)

UP-9206 SPERRY UNIV AC OS/3 7-8
IMS ACTION PROGRAMMING IN RPG II

PROGRAM-INITIATED TRANSACTIONS

7.5. PROCESSING A PROGRAM-INITIATED REMOTE TRANSACTION

Considerations and
restrictions

Output message
formatting

Screen formatting
restriction

Allowable termination
types

When a remote transaction is initiated by an action program, you
send an output message back to the originating action program's
successor. That action program in turn outputs a message to the
terminal operator.

Because your output message goes to an action program rather
than to a terminal, there are a few additional considerations and
restrictions:

you don't need control characters. Of course,
you may want to use the same output message for either
operator- or program-initiated transactions. In this case, the
action program receiving your message must be prepared to
receive your control characters.

•/•·iillllll
you return to the originating action program or its successor.
However, you can use the SEND function to display a screen
format at a local terminal.

you return an
output message to the originating action program's
successor. You can't use external succession. You can,
however, use immediate or delayed internal succession and
have your successor program return the output message
(Figure 7-2).

Figure 7-2. Processing a Program-Initiated Remote Transaction

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 7-9
IMS ACTION PROGRAMMING IN RPG II

DDP AND SCREEN FORMAT SERVICES

7.6. USING SCREEN FORMAT SERVICES TO PROCESS REMOTE
TRANSACTIONS

Displaying screen format
at initiating terminal

Displaying screen format
at local terminal

When your action program processes an operator-initiated
remote transaction, you can use screen format services to
display a screen format at the initiating terminal (or at an auxiliary
device attached to that terminal).

Whether the remote transaction is operator-initiated or
program-initiated, you can use the SEND function to display a
screen format at a terminal (or auxiliary device) attached to your
local IMS system .

UP-9206 SPERRY UNIVAC OS/3 7-10
IMS ACTION PROGRAMMING IN RPG II

DDP AND SCREEN FORMAT SERVICES

identifying local terminal To display a screen at a terminal attached to your local IMS
system, move the terminal~id to the destination-terminal-id field
(positions 1-4 of the output message header). Remember, you

limitations of SEND can display only an output format when you use the SEND
function function. Afterwards, clear the destination-terminal-id field or

move the locap-name of the primary IMS to that field before
sending an output message to the source terminal.

Termination types allowed When you display an input/output screen format at the source
terminal (at the remote system), you can terminate your program
normally or with external succession. We recommend external
succession.

Receiving formatted input When the terminal operator at the remote system enters input on
the screen format, the successor program you name at your local
IMS system (which could be the same action program) takes
control and receives the input.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 8-1
IMS ACTION PROGRAMMING IN RPG II

PREPARATION FOR ONLINE PROCESSING

8. Compiling, Linking, and
Storing Action Programs

8.1. PREPARING ACTION PROGRAMS FOR ONLINE PROCESSING

What you must do

Scope of section

After you write an action program,

~111:

Compile the action program (8.1).

Link edit the program to create a load module (8.2) .

Store the program in the appropriate load library (8.3).

Identify the program to IMS in a PROGRAM section of the configuration.

(See the IMS system support functions user guide, UP-8364 (current

version).)

111~1 Identify the load library in the job control stream at IMS start up, unless

programs are stored in the system load library, YLOD. (See UP-8364.)

This section tells you how to compile and link your action
programs and where to store them for use during the online IMS
session. For additional information on the job control statements
and procedures shown in the examples, refer to the current
versions of the job control user guide, UP-8065, and the RPG II
user guide, UP-8067 .

UP-9206 SPERRY UNIVAC OS/3 8-2
IMS ACTION PROGRAMMING IN RPG II

COMPILING ACTION PROGRAMS

8.2. COMPILING ACTION PROGRAMS

Action programs compiled You compile action programs the same way as other RPG II
like any other program programs, using the RPG job control procedure Oproc) or the

EXEC RPGll job control statement. Don't use the RPGL jproc to ·
compile and link an action program.

Using RPG jproc with Figures 8-1 and 8-2 show two ways of compiling an action
embedded input program using the RPG jproc. In Figure 8-1, the source program

is embedded in the job control stream.

II JOB PROG1
II RPG
1$

source program

I*
I&
II FIN

Figure 8-1. Compiling an Action Program Using Jproc and Embedded
Source Program

Using RPG jproc with filed In Figure 8-2, the source program, MYPROG, is filed in the
source program system source library, YSRC. When the source program is

filed in a library, you identify the module name in the label field of
the RPG jproc. The IN parameter gives the location of the source
module - in this case, the system source library.

II JOB PROG2
llMYPROG RPG IN=CRES)
I&
II FIN

Figure 8-2. Compiling an Action Program Using Jproc and Filed Source Program

•

•

•

•

•

•

UP-9206

Usng standard job control
with embedded input

SPERRY UNIVAC OS/3 8-3
IMS ACTION PROGRAMMING IN RPG II

COMPILING ACTION PROGRAMS

Figure 8-3 uses the EXEC RPGll job control statement and takes c
source input from the job control stream. You must allocate a
printer and two work files for the compiler.

II JOB PROG3
II DVC 20 II LFD PRNTR
II WORK1
II WORK2
II EXEC RPGII
1$

source program

I*
I&
II FIN

Figure 8-3. Compiling an Action Program Using Standard Job Control and
Embedded Source Program

Using standard job control Figure 8-4 also uses the EXEC RPGll job control statement. In
with filed source program this case, the source program is filed in a user source library,

SRCIN. You identify the source module and library in a PARAM
statement and must also include a device assignment set for the
source library.

II JOB PROG4
II DVC 20 II LFD PRNTR
II DVC 50 II VOL DISK01 11 LBL SRCLIB II LFD SRCIN
II WORK1
II WORK2
II EXEC RPGII
II PAR AM IN=MYPROGISRCIN
I&
II FIN

Figure 8-4. Compiling an Action Program Using Standard Job Control and
Filed Source Program

--------------------------------------.

UP-9206 SPERRY UNIVAC OS/3 8-4
IMS ACTION PROGRAMMING IN RPG II

LINKING ACTION PROGRAMS

8.3. LINK EDITING ACTION PROGRAMS

LINK jproc format

Format for naming load
module

LINK jproc example

After you obtain a clean action program compilation, you must
link edit the program and store it in the appropriate load library.
We discuss load libraries in 8.4.

You can use the LINK job control procedure or the EXEC
LINKEDT job control statement. On the LINK jproc, you must
specify the OUT parameter to store the action program in a load
library:

fl LINK action-program-name, OUT={(vol-ser-no,label>}
CRES,YLOD)

For example:

II LINK MYPROG,OUT=CRES,YLOD)

If you want to give your action program load module a different
name than the object module, use this format:

//load-module-name LINK object-module-name, OUT={(vol-ser-no,label>}
(RES,YLOD)

Figure 8-5 uses the jproc to link edit an object module called
MYPROG and create a load module called CREDIT. Output is to
LOADLIB. You don't need a device assignment for LOADLIB
because the LINK jproc generates it from your OUT specification.

II JOB LINK
//CREDIT LINK MYPROG,OUT=CIMSVOL,LOADLIB)
!&
II FIN

Figure 8-5. Link Editing an Action Program Using Jproc

.

Using standard job control When you execute the linkage editor using standard job control,
you need a LOADM statement to name the load module and
INCLUDE statements for the action program object module and
the IMS link module, ZF#LINK.

•

•

•

•

•

•

UP-9206

Example using
EXEC LNKEDT

Compile and link example
using jprocs

SPERRY UNIVAC OS/3 8-5
IMS ACTION PROGRAMMING IN RPG II

LINKING ACTION PROGRAMS

Figure 8-6 shows a standard job control stream for the linkage
editor. The linkage editor requires a printer file and one work file.
You can omit the printer file if you assigned one to the compiler
in the same job control stream. Output is to the system load
library, YLOD; a device assignment is not needed for this file.

II JOB LNKEDT
II DVC 20 II LFD PRNTR
II WORK1
II EXEC LNKEDT
II PARAM OUT=YLOD
/$

I*
!&

LOADM CREDIT
INCLUDE MYPROG
INCLUDE ZF#LINK,Y0BJ

II FIN

Figure 8-6. Link Editing an Action Program Using Standard Job Control

Figure 8-7 shows a job control stream for compiling and linking
an action program, using both the RPG and LINK jprocs. The
action program is stored in the LOAD action program library (see
8.4). The LINK jproc generates a device assignment for the load
library.

II JOB RPGL1
//MYPROG RPG IN=CRES)
//CREDIT LINK MYPROG,OUT=CIMSVOL,LOAD)
!&
II FIN

Figure 8-7. Compiling and Linking an Action Program Using Jprocs

Compile and link example Figure 8-8 shows a job control stream for compiling and linking
using standard job control an action program, using standard job control. A device

assignment set is required for the output file, LOADLIB .

UP-9206 SPERRY UNIV AC OS/3 8-6
IMS ACTION PROGRAMMING IN RPG II

LINKING ACTION PROGRAMS

• II JOB RPGLZ
II DVC 20 II LFD PRNTR
II DVC 50 II VOL IMS VOL 11 LBL LOADLIB 11 LFD LOADLIB
II WORK1
II WORKZ

••••••

II EXEC RPGII

••••• ,•
source program

I*
II WORK1
II EXEC LNKEDT

••••• II PA RAM OUT= LOAD LIB
1$

LOADM CREDIT
INCLUDE MYPROG I•
INCLUDE ZF#LINK,Y0BJ •\

I* I
I&
II FIN

>•· • Figure 8-8. Compiling and Linking an Action Program Using Standard
Job Control

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 8-7
IMS ACTION PROGRAMMING IN RPG II

STORING ACTION PROGRAMS

8.4. STORING ACTION PROGRAMS IN A LOAD LIBRARY

One library for action
programs

When you use fast load
feature

Improves performance

Fast loading requires
LOAD library

Action programs loaded
from fast load file

When you do not use
fast load feature

When you link edit an action program, you must specify the load
library where you want it stored. IMS has specific requirements
for storing action programs.

The first requirement is that all your action programs must reside
in the same load library.

The load library you choose depends on whether or not you
configure the fast load feature by specifying FASTLOAD= YES in
the OPTIONS section of your IMS configuration. (See the IMS
system support functions user guide, UP-8364 (current version).)
The fast load feature improves online performance in applications
with large action programs or frequent action program loading.

If you configure fast loading, place all action programs in a
separate action program load library in unblocked format. You
assign this library at IMS start-up with the LFD-name LOAD. At
start-up, you also assign the fast load file, LDPFILE. The first
time a transaction calls on a particular action program, IMS
copies the program from LOAD to the LDPFILE. After that, action
programs are loaded from LDPFILE .

If you don't want fast loading, store your action programs in
either of two libraries (but all in the same library):

the system load library, YLOD; or

the library containing your online IMS load module. This
library is identified at configuration time by the LIBL
parameter of the IMSCONF jproc .

UP-9206 SPERRY UNIVAC OS/3 8-8
IMS ACTION PROGRAMMING IN RPG II

REPLACING ACTION PROGRAMS

8.5. REPLACING ACTION PROGRAMS IN THE LOAD LIBRARY DURING ONLINE
PROCESSING

How to replace programs

Fast load requirement

You can replace action programs in the load library while IMS is
online, whether or not you use the fast load feature.

You replace an action program in the YLOD, LOAD, or other
load library by recompiling and relinking or by applying a patch
(COR). For an explanation of the COR function, see the system
service programs user guide, UP-8062 (current version).

When you use the fast load feature, you must insert the
statement:

II DD ACCESS=EXCR

in the device assignment set for the LOAD library in the compile
and link or COR job control stream.

Recompile and link example The job control stream in Figure 8-9 recompiles and links an
action program for output to the LOAD file. This example
assumes you use the fast load feature.

ZZPCH command

Adding action program
to library

II JOB RECOMP
II DVC 50 // VOL IMSVOL // DD ACCESS=EXCR // LBL LOAD // LFD LOAD
//MYPROG RPG IN=(RES)
//CREDIT LINK MYPROG,OUT=<IMSVOL,LOAD)
!&
II FIN

Figure 8-9. Recompiling and Linking an Action Program During Online Processing

After replacing the action program in the load library, issue the
ZZPCH master terminal command. The next time a transaction
calls on the action program, IMS loads the new version from the
load library. When you use the fast load feature, IMS copies the
new version to the LDPFILE. The ZZPCH master terminal
command is described in the IMS terminal users guide, UP-9208
(current version).

Follow the same procedure to add an action program to the load
library that is missing at start-up. Of course, the program must
be defined in a PROGRAM section of the IMS configuration.

.::

••.·

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 8-9
IMS ACTION PROGRAMMING IN RPG II

REPLACING ACTION PROGRAMS

ALTER statement restricted When you use the fast load feature, do not use ALTER
when using fast loading statements in the job control stream at IMS start-up. When you

do not use fast loading, you can insert ALTER statements in the
start-up job control stream to make temporary changes to action
programs .

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 9-1
IMS ACTION PROGRAMMING IN RPG II

DUMP CONDITIONS

9. Debugging an Action Program

As often as we might wish that nothing would ever go wrong
with our programs, in reality that never seems to be the case.
Since action programs can't use the generate-debug capability
available to other RPG II programs, it is important to be able to
debug your action program using the snap dump feature provided
by IMS.

9.1. CONDITIONS FOR A SNAP DUMP

What causes a snap
dump

IMS provides a snap dump under three conditions:

~ An action program voluntarily terminates abnormally by
moving S to the termination-indicator field (position 11) in
the program information block.

~ An action program terminates abnormally due to a program
check.

~ An action program terminates abnormally due to a
timer-check (time-out due to a loop in the action program).

9.2. TYPES OF SNAP DUMPS

Edited and unedited snap IMS provides both edited and unedited snap dumps. In
dumps single-thread IMS, an edited snap dump is a standard feature.

Multithread IMS users must specify SN APED= YES in the
OPTIONS section of the IMS configuration to obtain an edited
snap dump. The configurator then includes the module
ZG#SNAPM that provides the edited directory for the snap dump .

UP-9206 SPERRY UNIVAC OS/3 9-2
IMS ACTION PROGRAMMING IN RPG II

SNAP DUMP LAYOUT

9.3. LAYOUT OF A SNAP DUMP

Snap dump layout

Snap dump general areas

Figure 9-1 illustrates the general layout of an IMS snap dump.
This same general layout applies to both single-thread and
multithread IMS.

OMA
IMA
WA
CDA

ACTION PROGRAM LOAD AREA

THREAD CONTROL BLOCK (THCB)

TERMINAL CONTROL TABLE (TCT)

Figure 9-1. Layout of a Snap Dump

As you can see, a snap dump is broken down into six general
areas: edited headers, IMS and action program registers,
interface areas, action program load area, thread control block
(THCB), and terminal control table (TCT).

•

•

•

•

•

•

UP-9206

Header data

Register section

Registers saved by a
voluntary snap

Registers saved by an
involuntary snap

Interface areas

Program area

Thread control block

SPERRY UNIVAC OS/3 9-3
IMS ACTION PROGRAMMING IN RPG II

SNAP DUMP LAYOUT

Edited header areas contain: (1) data about which action program
was running at the time of the snap; (2) an allocation map that
provides the relative addresses of areas of interest within the
snap dump; and, (3) a general statement of why the snap dump
occurred - e.g., ACTION PROGRAM REQUESTED ABNORMAL
TERMINATION.

The next section contains registers. There's one or two sets of
registers depending on the reason for the snap dump.

If you voluntarily terminated your action program by moving S to
the termination-indicator field of the program information block,
the snap dump contains one set of registers. These are IMS
registers. They are of little use to an IMS action programmer. To
find the registers belonging to your action program, you must go
to relative location PIB + 4C 16 , which contains a full word
forward pointer. This word is the address of the SA VE area that
contains your action program's registers. Go to this address and
advance three full words. The next full word is register 14, then
15, then registers 0-12. Figure 9-3 illustrates these fields.

If, on the other hand, IMS terminated your action program due to
a program check or time-out, the snap dump contains two sets
of registers, IMS and user action program registers. The user
registers are labeled so they are easily identifiable. In addition, a
duplicate set of user registers can be found at location PIB +
44 16 . At this location in the program information block, you'll find
the 16-byte program status word indicating the address of the
instruction immediately following the one that caused the
abnormal terminatioh. Also, right after the progam status word
are the action program's 16 registers (0-F).

Following the register section, you find the interface areas -
program information block, output message area, input message
area, work area, continuity data area, and defined record area.

The next section of the snap dump is the action program load
area. It contains the executable load module that was output by
the OS/3 linker.

Following the action program area is a section used for the
action program's thread control block. In the thread control
block, most pointers and flags required to control the user
environment are stored for use by IMS and indirectly by the user
action program .

UP-9206

SNAP DUMP LAYOUT

Single and multithread
main storage layout
differences

Terminal control table

--,

SPERRY UNIVAC OS/3 9-4
IMS ACTION PROGRAMMING IN RPG II

Figure 9-2 illustrates the relationship between the IMS thread
control block and the user interface areas for both single-thread
and multithread IMS.

IMS SINGLE-THREAD

OUTPUT MESSAGE AREA
(OMA)

INPUT MESSAGE AREA
(IMA)

WORK AREA (WA)

CONTINUITY DAT A AREA
(CDA)

DEFINED RECORD AREA
(ORA)

OUTPUT MESSAGE AREA
(OMA)

CONTINUITY DAT A AREA
(CDA)

WORK AREA (WA)

INPUT MESSAGE AREA
(IMA)

DEFINED RECORD AREA
(ORA)

Figure 9-2. Relation between THCB and Interface Areas

You will notice that there are pointers within the thread control
block that point to each interface area. The differences between
single-thread and multithread IMS in this area are only in the
location of these pointers and in the relative order of the
interface areas themselves.

The last section in the snap dump is the terminal control table.
The data in this area is relevant to the terminal that initiated the
action and is the least useful section of the dump to the IMS
programmer.

•

•

•
--- - -- __________ __.

•

•

•

UP-9206 SPERRY UNIVAC OS/3 9-5
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

9.4. ANALYZING A SNAP DUMP

Allocation map addresses

No work area or continuity
data area

THCB addresses

location of interface
areas

Reason for snamp dump

One set of registers

SAVE area

-Now we'll discuss in detail Figure 9-3, which is a sample RPG II
snap dump.

The action name is RCCUST and the current program processing
that action is also RCCUST. The term-id (terminal identification)
for this transaction is WS 1 . This is the way the workstation that
initiated the transaction was defined in the communications
network definition. The allocation map that follows contains the
beginning and end locations as well as the lengths of user
interface areas, and other areas included in the snap dump. The
locations refer to relative addresses. Relative addresses are
printed on the far left side of the snap dump.

The directory in Figure 9-3 shows that there are no addresses
for the work area (WA) or continuity data area (CDA). The
reason for this is that these areas were not given values in the
configuration.

If you aren't using an edited snap dump, that is, if it contains no
directory listing, it's still quite easy to locate all the action
program's interface areas. Go directly to the thread control
block, which is at location D016 . The first five full words (40
bytes) contain the relative addresses of the program information
block, input message area, work area, output message area,
continuity data area, and action program load area, in that order.

Following the allocation map on Figure 9-3 is the reason for the
snap dump: ACTION PROGRAM REQUESTED ABNORMAL
TERMINATION. Voluntary termination results when an action
program moves S to the termination-indicator field (position 11)
of the program information block.

The register section contains only one set of registers because
the action program terminated voluntarily. These are IMS
registers. To find RCCUST's registers, go to relative location PIB
+ 4C16 . At that location, you find a full-word address of
RCCUSTS save area. The save area contains the action program
registers.

The save address is 8484 16 . Once at this address, which is in
the action program load area, advance three full words. At
location 849016 you will find register 14, and in the subsequent
full words, registers 15 and 0-12, respectively .

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

·-· _ -·-· -·-·-·-·-· -· .. ·-·-·-·-·-·-·-·-· .. .
1 J1 5 9 0 S N A P 0 LI H P

. -·-·- ·-·-·-·- ·-· ... ·-· -.... ·-·-·-. -. -·-
ACTION NAM£: HCCt15T 00

CURRENT ACTION PROGRAtt: PCCUSTOO .~5)

AllOCATIUt' ,..AP

TO

OOOOAOOO ooooaner
OOOOA298 0000A28l
oooouooo oouonooo
OQQQAf'Hrn 0000A297
00000000 oouunooo
0000A2PP aouor1e1
00000000 00U0021fl
ooooooro oooorrnn
noooo9FHl ouuonA'+l

(.AUS[or SPIAf' ou11p:

SNAP RY lf'IS/90 AT CO'f)bA

Ll~1GTH

uuooooqo
unnooo 1 c
uorioouno
00000208
01JO(l0(Hl0
00002000
u11ono11'4
UUOOOO I U
0! 11)000('+

PHOGUlM INF"0'"1HATION r;LO(K IPltH
IHPIJT 11ESSAGl AREA I JHAI
"'OHK A~[A (WA)

OUTPUT MESSAGl AREA I OMA I
(Ot.TINtdTY DATA AR[A ICOAI
ACT I lJN rHQGHAH LOAD AREA
Ttllol[AQ CONTROL ULOcr ITHC81
f- JU. ALLOCATIO~; HAP
T(J1"1"'.tAL Cn"lllTMnl TARLE ITCTI

ACTln~ PROc,~.a~· ~[~l)[o.;Tln Ao!l/OHf"lL l[RHINATIUN

R[GS 0-7 00001300 OOOn'fAJfl flUUJf(9C fJf)!~LIU!J~ll OrOU'f'fJ(00UO'fS88 UOUOQS9'f uuonO!:>~lll

RfGS 8-F 6000lt>96 A000'f202 Ou1Jn09RU oanGAOf'!j Qnr)1109flU 0UUO't7EU AOUU'fU2'f ilUOOlUYO

SNAP 06A000 TO 06A2BR

PIB SUCCESSOR-ID
STATUS CODE TERMINATION-INDICATOR

9-6

DATE! ul/O"l/U7

l u: ~u: 16

I DET-ST-CODE LOCK-ROLLBACK-INDICATOR

•ooo-o@o~ro-•_D_7_c_7_F_o_.__, uni:, 1n,,,,1 1· 2<tq11·1•J 1 Ul'"'fltionu or.ouooco ououno11u • •••• HPGOJUS'• •• • 1. 1 •••••••••••••• _.,6AUO,.,

tOAn2o-ooc.ionoso oo 1 eouoo uonroono epf8+4C J

:IOAOlfO-OOSOOOl 8 oon flOO OOf'll"lOOOO onooq'fd1

~OA.C\60-0 ooorce OC'OO~'f(l'f UOOGQOnn fln(,, IJAf'C

SOURCE-TERMINAL-ID SAVEaddr-

OOOOODDO OOOOADOO 00000000

f"luU')(''I& 1 llOC"IUU'fO'f O 01J'f I "18

DATE TIME

U00Ull16 • ••• l.••••••••••••odlr1"1U71U!:>ul't.oe1-4•0bAU 2 a

ouounuu •.t. •..................•. M •••••••• -,.,6AlJ'fO

0U0U2l(• • • o H • • • • • • • • • • • • o • • • • • o • • o o 11 o • • U•'16AU60

SOURCE-TERMINAL-ID

DESTINATION-TERMINAL-ID

CONT-OUTPUT-CODE

SFSOPTIONS TEXT-LENGTH

00000000 otrc ouo • s1 ·············06&uao

'fQ'fO'fO'fO 'fO'fOlfO'fQ • •Q6AOAO

111151 • ool•06A280

io A 2 a o -02 !:tJOtt09 §ooo L.r_1_r_1_r_1_r_1 _r _l',E_r_o_r_o __ r_1_r_o_r-'

SNAP 06A28ll TO I 06(288

• • • • • • • • • l I 11 I +00 I On U. • •. •C6A2AO

TEXT-LENGTH

Figure 9-3. Sample RPG II Snap Dump (Part 1 of 2)

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 9-7
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

F'00607Ff' DOOOBlfO'f OC'OOOOOO 00000000 OOOOF'OF'U 00000000 00000000 • • O • 00 • • • • •, H • •,, • • •,, .oo,,, •,, • • •06A288

1oa~oe-oooooooo oooopaoo 00000000 00000000 00000000 00000000 00000000 ouuonooo •·••••••••••••••••••••••••••••····D6A2oa

•••• 06A2f'8 TO 06All8 SAHE AS ABOVE

*ERROR

OD••Sa-00000000 0000•312 00000000 00000000 ic1odo3oelooooel•D oooos100 oooun2Fe •·····•••••••••••T••••••••••••••·-o•••Sa

1oorra-ooo 1 ooos [r 1F1•;F1 F ajJE~o 00000000

RECORD KEY 8002

filename-CUSTFI L

I

00000000 OOOOODOO OODOOOOO 00000000 •,,,,llllJ,,,,,,,,,,,,,,,,,,,,,,,-Q6AFF8

SAVE ADDRESS - - REGISTER E F

'--~~
308lf71-706291FO 3Q8~9202 3}800609 lolSJo8S OOOOAOlflf 000001ac lfQ0UB896 000Ulfllf8 •••• a ••• K •• o ••••••••••••• ········068178

30Blf9B 000000• 00000000 oonoaZ98 onooA2B8 ooooAZBA ooooaooo ooonozaa ooooe7ta •··••••••••••••••••········K····Y-o6B't91

0 2 3 4 5 6 7

>OB'tBB 0000000 ooo~s100 oonoao~'t ooooe692 ooooaa96 ooooa1to't 6oOoB761f •occoooc •··•••••••••••••••••••··"·•••••••-o•a•aa

8 9 A B c

PARAMETER LIST
I

oc I l 8-7'tb1 I Af'f' 58E071f I If 07FEC2C7 600081 BE fOoooAFEB 00008002 IOOOAff~OODOnDOO ••••••••••• aG- •••••• y ••••••••••• ··06(118

DIRECTORY FOR UNEDITED SNAP DUMP

PIB IMA WA OMA CDA

noo OOOOA29B OOIJOOOOO 0000A090 00000000 OOOOA298 00000F9A 00000000 ••••••••••••••••••••••••••••••••••060000

DOOFO 0000000 00000000 00000000 00000000
~=================:::::;-~~~~~

0001f7Dc OOOIFC9C 00000000 ooooo9eo ••••••••••••••••••• 1 ••••••••••••• -06CDF'O

00110-000000 THCB+202ee O'tOOOOOD onoocooo ooooauuo ~.01~1~101ee THCB+74 00000000 ••·Q•••••••••••••••~•••J•••••••••-060110

ooooollOn f~o~O,lA_ o~o-~~~-E8 ooooc 12i] • ••••••••••••••••••••••••••• Y •• a.•0601 JO •DO I 30-00000000 00000000 00000000 000000.00

FILE ALLOCATION MAP

Figure 9-3. Sample RPG II Snap Dump (Part 2 of 2)

UP-9206 SPERRY UNIVAC OS/3 9-8
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

9.5. THE PROGRAM INFORMATION BLOCK (PIB)

Finding Your Error

locating the status codes The program information block begins at address OAOO. The first
word (4 bytes) contains the status-code and det-status-code
fields. IMS returns values to these fields indicating the result of
action program function calls. If the function call is successful,
these fields contain zeros. In Figure 9-3, however, you see that
the function call made to IMS was not successful. The value 03 16

in status-code indicates the action program made an invalid
request. The 08 16 in det-status-code indicates that the file
requested in the function call was not assigned to this action at
IMS configuration. To find out exactly which file is involved, you
must consult the parameter list address in the thread control
block. We will discuss how this is done very shortly.

locating the successor-id
field

locating *ERROR

Interpreting error codes

For a complete listing of the values IMS returns in the
status-code and det-status-code fields, see 2.6.

Looking further into the snap dump at relative location PIB + 4 16 ,

you find the successor-id field. Notice that this field contains
'RPG020'. Whenever RPG II encounters an error, it places the
appropriate error code in the successor-id field prior to requesting
the snap. RPG020 indicates an indexed file error. For a complete
listing and description of error codes, consult OS/3 system
messages, UP-8076 (current version).

A further statement of the error condition can be found in the
field, *ERROR. RCCUST's link relative location or link-org is 0 and
*ERROR is displaced 1 B0, 6 into it. To locate *ERROR, we take the
start location for the action program load area that the allocation
map tells us is A2B8 16 and add 18016 to it. This gives us
location A468 16 or *ERROR. At this location in the snap, we find
E3 16 in the first byte and 03 16 and 08 16 , respectively, in the third
and fourth bytes. You will recognize 03 16 and 08 16 as the
status-code and det-status-code fields. The E3 16 (character T)
can be found in OS/3 system messages, UP-8076 (current
version) and is defined as an RPG020 error.

At this point, it's obvious that the wrong file name was used for
1/0 or the file requested is not available to this action program.
In our example, the file CUSTFIL to which the function call was
made wasn't configured for use by action RCCUST.

•

•

•

•

•

•

UP-9206

locating the
termination-indicator field

locating the
lock-rollback-indicator field

locating other PIB fields

Entire PIB displayed

SPERRY UNIVAC OS/3 9-9
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

Finding Other Data in the Program Information Block

Still in the program information block, at relative location PIB +
A 16 is the field termination-indicator. It contains an E2 16

(character S) for snap dump. The value in this and any other
program information block field varies depending on the action
program and whether the program terminated voluntarily or
involuntarily.

Relative location PIB + 8 16 is the lock-rollback-indicator field. It
contains 05 16 (character N), which is the default value. The value
N establishes a new rollback point in the audit file (before-images
of records to be updated) and releases all locks for this
transaction.

By comparing the program information block fields listed in Table
2-6 to the program information block area of the snap dump,
you can see exactly what values all these fields contained when
the dump occurred. For your convenience, we have noted a few
of these fields in Figure 9-3: transaction-date (810407),
time-of-day (105014), and source-terminal-type (E6 16 or W for
workstation).

All 145-character pos1t1ons of the program information block are
displayed. Remember, however, that only the first 70 positions
are accessible to your action program.

9.6. THE OUTPUT MESSAGE AREA

locating the Using the allocation map, we see the output message area
destination-terminal-id field begins at address A090 16 . This area contains the 16-byte header

and the output message generated by the action program. Since
RCCUST terminated abnormally before generating an output
message, the output message area contains spaces. However,
the header data is displayed. The first word contains the
destination-terminal-id field. This indicates the destination of the
output message had the program not terminated abnormally.
Note that this value is the same as the value in
source-terminal-id, which occupies the first word of the input
message area.

UP-9206 SPERRY UNIVAC OS/3 9-10
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

locating the
message-length field

Also, in the output message area at location A09C 16 or OMA +
C16 is the 2-byte message-length field. This field indicates the
size of the output message to be generated.

Since RCCUST doesn't use screen format services and it isn't a
continuous output program, relative locations A094 16 and
A098 16, respectively, contain zeros.

9.7. THE INPUT MESSAGE AREA

locating the input message The input message area begins at relative address A298 16 . Its
contents include the input message area header (16 bytes) and
the input data entered by the terminal operator. The terminal
input starts at IMA + 11 or A2A8 16 . The terminal operator
entered the customer number 11111 (F 1F1F1F1F1), a plus (+)
sign (4E), and AMOUNT $1.00 (FOFOF 1 FOFO). These entries
correspond to the data requested by the screen format shown in
Figure 3-11 .

9.8. ACTION PROGRAM LOAD AREA

largest section of dump

Using the thread control
block

Since there is no continuity data area, work area, or defined
record area for this particular action program, we will now
discuss the program load area. This is by far the lengthiest
section of the snap dump. Since data contained in the thread
control block is essential to interpreting the program area, we
will discuss the two areas at the same time.

In this example, the thread control block is at location 0016 . It
contains the addresses of all the interface areas and the action
program load area. This data is of value only if you're using an
unedited dump. However, the thread control block does contain
other information very useful to the IMS programmer.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 9-11
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

Locating the file allocation At THCB + 20 16 or in our example location F016, there are four
map full words used for a file allocation bit map. To use this bit map,

you must realize that four full words contain 128 bits. IMS uses
these bits to indicate which specific files a user action program
can access - one file per bit. The file allocation map for
multithread IMS is 8 full words long (256 bits).

When bits are set off In Figure 9-3, no bits are on at location FO. Consequently,
RCCUST could not access any files. If you recall, the
det-status-code field already informed us that the file wasn't
defined at IMS configuration. However, in cases where this same
problem doesn't exist, the file allocation map can be very
valuable in determining exactly which files are being accessed by
an action program.

When bits are set on

THCB + 74

Determining the last
function call

For example, if the high order bit was on, the action program
could access one file - the first file configured. If additional bits
were on, additional files could be accessed. These bits are
maintained in the same relative order as the actual files were
configured .

Moving to relative location 144 or THCB + 7 4 16, we find three
words that in most instances are very useful for debugging
purposes:

0300003A 000004E8 OOOOC128

The first of these words needs to be broken down into individual
bytes. Byte 0 (03) indicates the number of parameters passed on
the last CALL function made by the action program. Bytes 1 and
2 are not used. Byte 3 (3A) indicates what CALL function was
issued. In this case, it was a GETUP function with three
parameters passed.

Although the RPG II action program appears to access files
normally without issuing function calls, RPG II is in fact, issuing
these calls to IMS.

Table 9-1 lists all the IMS function calls and their corresponding
hexadecimal values for use in debugging your action program .

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

Hexadecimal equivalent for
function calls

Table 9-1. Hexadecimal Equivalents for Function Calls

06 RETURN

OA SEND

26 ESE TL

2A SETL

2E INSERT

32 DELETE

36 PUT

3A GETUP

3E GET

4A SNAP

BE SUBPROGRAM

9-12

locating the DTF The second word of this 3-word group is the relative address of
the DTF referenced by the function call if it was an 1/0 function.
This address is not within the range of the user snap dump and
is useful only when a job dump is available.

locating the parameter list The last word of the group is the address of the parameter list
that was passed for the function. In our example, the relative
address of the parameter list is C 12816 . This address is in the
action program load area. Since three parameters were passed in
the call, the next three full words are the addresses of those
parameters. The first address is the file name. It's at location
AFE8 16 in the program area. At this location, we find a 7-byte
constant, CUSTFIL, which was the file RCCUST attempted to
access. The second and third addresses are 8002 16 and AFFC 16 ,

respectively. Address 8002 16 points to the location into which
the CUSTFIL record was to be read. As you can see, there is no
record in this location since the GETUP was never accomplished.
The third address, AFFC 16 , points to the location that contains
the record key, F 1F1F1F1F1 . Both of these locations are in the
user program area.

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC 05/3 9-13
IMS ACTION PROGRAMMING IN RPG II

SINGLE AND MULTITHREAD SNAPS

9.9. SINGLE AND MULTITHREAD SNAPS

Order of interface areas

Different DSECTs

There are two major differences between single-thread and
multithread snap dumps. First, the order of the interface areas is
different. In single-thread, it is: program information block; output
message area; input message area; work area; continuity data
area; and, defined record area. On multithread, it is: program
information block; output message area; continuity data area;
work area; input message area; and, defined record area. Since
the allocation map in an edited dump points directly to these
areas, there should be no difficulty in locating them in either
single or multithread IMS.

The second major difference concerns the thread control block.
The format for single-thread and multithread is totally different.
Figures 9-4 and 9-5 provide listings of the thread control block
DSECTs for both single-thread and multithread IMS. You will see
by examining these figures that although the format is different,
the data they contain is basically the same .

UP-9206 SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

SINGLE-THREAD THREAD CONTROL BLOCK

LOC•

000000

oooooc
ooorioo
00000'1
00000'1
ooono0
000008
oooooc
nooooc
000010
ooon10
'lOOOl'I
CIJOO I 'I
:l'JOO 18
000018
l'OOOIC
GJOIJIC
000020
000020
000010
!!'00030
000030
0000 3'I
0JQ113'1
000031:1
t:'lon3c
ooon3c
'lCOO'IC
noon'l'I
0000'1,8

oooooa
aoooo'I
000002
eoooo1

CCCO'IC
ooon'lo

LINE SOUF<CE STATEMENT

A9Y7<i+
B9YdO+ZT•OTHCb

LM11DTHCB
OSECT

THREAD CONTROL BLOCK I SYSTEM IN~OHMATION BLOCK
BY981+•
89982+•
89Y83+•
8998'1+•
B99B5+•
89986+•
t:J9987+•
89988+•
B99n9+ZTllTPIBA
B9990+ZTllHPIBA
1:1999l+ZT•TIMA
89992+ZTllHIMA
89993+ZTllH'A
B999'1+ZT•HwA
tl99Y<;+ZTllT0MA
89'i96+ZTllH0MA
rl9997+ZT•TCOA
B9998+ZT•HCOA

THREAD CONTROL SECTluN

IN5ERTED EQU'S Tu MATCH OS/7 NAMES

t.ii!U •
OS A PROGRAM INFORMATION BLOCK ADDR
UHJ •
~S A INPUT MESSAGE AKEA AOOR
LQU •
OS A ~ORK AREA AODR
EJu •
us A OUTPUT Mi:.SSAGE ARt.a AuoR
i:.QU •
US A CONTINUITY DATA AKEA AODR

89999+ZTllTORMA E~U

BOOOO+ZT•HDkA US
BOCOl+ZT•ODkEC EQu
UQ002+lT•HODRA DS
HOC03+ZTllSUBFL E~U
t:JOCC'l+ZTllHDFA uS
l:ICC05+ZTllTFAM tQU
B0006+ZTllHfAM DS
bOG07+ZT•H~UMF E~u

BOC08+ZT•TATA EQU
bCCOY+ZT•H~TA OS

hOCI l+ZTllHPTA u~

t:JOCIZ+ZTllTPTA(US
bO~IJ+lTllTTTA i:.WU
Br.Ol'l+ZTllHTTA US
HC~IS+ZTllHIOAV US
HO:l6+ZTllHPLA uS
HOC17+Zl•HPIQP ~S

BOCl8+•

•
A OEFINEu HECOF<D ARt.~ AooR
•
F DATA DEFINITION Rt.CORD AOOR
•
F nErl ... Eo FILE/SuBflLE PKT AODH
•
'IF FILE AlLOtATION MAP
•-ZT•HFAM FILE ALLO~ATION HAP LENGTH
•
f ACTION CONTROL HEt PTR

F PRQu CONTROL TA~Lt. REC PTH
F"

•
f TERM CONTROL TAd KrC PTR
F 5TA~T or VARIABLE 110 AREA
F PRouRAM LOAD AREA ADDRESS
F BYPASS l~TLKKUPT wUEUE PTK

bOCl9+• EQuATLs FOR IST BYTE Of LT11HB1QP
d0020+Zd•SOLSH i:.QU x•ua• SHuToow~ IN PKOCEss
b0:2J+ZHllS0LAS i:.~U
H0~22+ZHll50LCO i:.Qu
HOC2l+ZB•SOL5T tQU
tJOOl'I+•
HCCZS+ZT•H~IQL ~S

l:IC026+ZAAUSER l~U

X1 0'1 1 AUTOMATIC STAlUS
x•o2• ZlUP/7ZUWN COMMAND OUTSTANDING
x'OI• SHuTuowN TIMEn

XLI RYPASSLD INTERRupT QUEUt. LENGTH
•

'OOo'ID OJ BCGL7+ZT•uSEk uC
t10C26+•

x•u• • us•-K FLAG

dOQIY+• MUST ALWAYS Hf ON Ou" l:lYTE t:JUUNDARY

Figure 9-4. Single-thread Thread Control Block (Part 1 of 4)

9-14

•

•

•

•

•

•

UP-9206

LOC•

OOuO'fE
OOOO'fE

coooeo
COOO'fO
000!J20
l!OOOIO
0000011
0001'.lO'f
000002
000001

COOO'f F
aoorieo
!IOOO'f 0
000020
000010
!!ooooa
IJ!)O')O'f
000002
coons'J

tiQ007'f
eooo7'f

!I0007R
:?()01)78
000IJ7C
~CC07C
!!Q(il)R~

':00(18'.!
':!IJOnl'C
t:aoo9'J

''JC09'i
l:CC'JOC

SPERRY UNIVAC OS/3 9-15
IMS ACTION PROGRAMMING IN RPG II

SINGLE-THREAD THREAD CONTROL BLOCK

LI •<E
BOC JO+•

SOURCE STATEMENT

bOG.il+•
t!OQ32+•
tlOC3J+•
tlOOJ'i+•
60035+ZT•Tll<D Hill
oOCJo+ZT•HIND us

•
XLI CONTROL INDICATURS

BU • 110 HAS OCCUkRFD
'fO - INITIAL SETTING FOR USER
00 - IHS ACTIVE

- COUNT F0k TOTAi TIME

oOG37+•
tlOC38+• EWUATES FOR ZTaHINu
BOCJ9+•
tlOC'fU+lT•HINSP 1:.QU
ciG(''IJ+ZT•Hlt<l:.R 1:.~ll

t10C'f2+ZT•Hl~DI l:.WU
bOC•3+ZT•HINEO lWU
tlOC••+ZT•Hl~E.x 1:.QU
ooc•s+ZT•Hl~CN EQu
tl00'16+7TDHINIR ~QU
bDC'17+ZT•HINUP l:.Wu
80C'H1+•
b0C'f9+ZT•SYIND uS
oOOSO+ZT•ILIST 1:.~U

oOCSl+ZT•T0MRJ ~Wu
bQC52+ZT•TRSO 1:.QU
o0QS3+ZT•UTOUT 1:.WU
~~CS'l+ZT•ESETL 1:.Qu

tlC~SS+lT•U~l:.Tx 1:.~U

~~CSb+lT•ZZDP~ EoU
IOCCS7+ZTDPC.5K 1,5
oc;:::S8+•
c>C'l;,9+•
BC'Gi>u+•
bJCol+ZTllTFC
tl'.)('o2+ZT•HFC
Hr:nJ+•
MOGb'l+lT"TUPDA
'iO'.:'i,'o+l T llHUPl-A
RIJGbb+lTl>TCH
H0Go7+ZTllHf•f'LA
u:ic ott+LT urr: ~A
~ci:;,,9+z T l!HF .;A

o".'~70+ZTllO"SL

.1'.)C:/ l+ZTllO~'CA
b;J·:l2+•
b~C.73+• SA v l
l~~':7'i+•

t'IC'C 7;,+ •
H"G/1>+•
HOC• I l+Z l lltiSAu;.1
t1QC'7h+l T llHSA I"
b'"'U"'79+•
1;1f"'l':t10+•
~rir r' I+•

~ .. u
1.JS

t. ·~U
us
L ~LJ

''" LJU
vS
"s
vS

~~lA5

LJ '.:>

us

x•cio• SNAP INDICATO~

x••o• ERRO~ nETURN
x•.20• DELAYED INTt:.1'<1;,L SUCCESSION
X'IL• EXPLICIT ouTPuT
x·u~· EXTE~NAL succ~sSION
X 'U'f • CAt<CE.LLE.lJ
X'U2• INTEkNAL RE~Ul:.ST TO FILE HGHT
x'UI• UPDATE Pl:.~FORMED dY THIS ACTION

XLI cONTkOL l~Ul(ATuRS

x•ao• INff~RUf'T LIST IF SET
)''iO• ' JF UN INLllC~rES HEAu FHOH TOMFOLE
X'20• • HE~ENU • NU
X'l!J• us~:'< TIME. OUT
x 'l:Jtl'
X t oJ 'it

x '02'
9F

USt li-1[TEXT 11, Ui'IA ALTHuUGH JpAr.s WAS CNC
IN~l(ATES TO ~kill ZZOPN TE~M; RECORD

•
r tJYTE 0 : # uF PAflAo1S

RYH. 3

f t' AR A"" L I ·~ T AUD R

Jo f ILE ·1G 0 1T ~OHK A•;FA
A TCT AUU~ OF UMS HwN•UNJT
a JMS - JMLA hUDKlS~

FUNCT I Oi• CODE

ldF ~ATA ~~~Ab~ME~T ~AVE ARLA
!HF l"llE'l"H Rf:l.iUl:.Sl SAVE ARE.A

Figure 9-4. Single-thread Thread Control Block (Part 2 of 4)

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

SINGLE-THREAD THREAD CONTROL BLOCK

LDC•
00012'1
000128
00012c
COOl30
00013'1
000138
COOl3C
0001'1:!
0001'1'1
0001'18
OOOl'IC
0001sc
00015'1
000156
000158
0001sc
000160'
000162
00016'1
000166
000168
000169

ooooeo
0000'1!!

000020
000010
000000
00000'1
000002
000001

LINE SOUkCE STATEMENT
BOC'll2+ZbllSTIDT us F TRANSACT JON CODE T,BLE
tiOOB3+ZBllSAC1 us F ACTION CuNTROL TAbLE
BOCB'l+ZBllSPCT I.IS F PR0GRA11 CONTROL TABLE
t)Q0B5+itl11SFCTI us F FILE CONTROL TAl:!Lt. INDEX
8008b+ZBllSTERM us F TERMINAL CNTL TBL ADDR
1:!0087+ZB11SOCTJ OS F OEF FILE CONTROL TABLE
BOOil8+Zt:!llSFADR us F IMS LOAD ADDRESS
U001l9+ZHllSAVAL vS F AVAILAoLE. LI ST AD..>1<ESS
B0090+ZBllSTCS os F TERM• CONTROL SEC I JON
1:!009J+ZBllSIHB OS F INPUT MESSA(,,£ BUFF ER
B0092+ZBllSIOAE DS F l/O AREA fND ADDR
B0093+ZBllSfSAO ..is A AO Ok IMS SESSION :>TATJSTlcS
b009'1+ZBllLOUTM us H LARGEST OUTPUT MSu •
B0095+ZBllLINM uS ti LA1<GEST 1 NPU T MSG•
t:!009b+ZflllLOMTI OS 'IC LARGEST OUTPUT M:>c, •-TERH 10. NAME
B0097+Zb11LIMTI us 'IC LARGEST INPUT HSG•-TERM JDe NAME
B0098+ZBllSMLL us H STANDARD MESSAc,E LINE LENGTH
t:!0099+ZAllSMNL vS H STANllAr<D MESSAuE r<UHt!ER Of LI "4ES
BC I IJO+Zl:!llS I MBL vS H INPUT MESSAuE !:!UHER LENGTH
rlO I 0 I +lbllTMCCA us H r~uMBER Of TERMS Ii; ICAM CCA
BOl02+ZBllSTOF ..iS XLI . USER TIMEOUT t I Au
flt:llCJ+ZBllS0L0f l)s)(l I CONTROL INLJICATl.lRS fUR AUDIT
BCIO'I+•
b0135+• Et.1UATES FOR ZB11SOLuF
BOIOb+ZbllSOLUP E.QU X'80• UPDAT!Nu PERMITTED
b01~7+Z811S0LAI EQU

BIJ I 'JS+•
BOl09+ltl11SOLKD lt.iU
801 lu+Zt:!llSOLSU EQU
t:!Glll+ZUllSOLTb EQU
an I I Z+ZAllSOL TA [l,IU
80113+ZH11SOLTI EWU
t:!Oll~+ZHllSOLTE EQU

x''IO• AUDIT MODULE INCLUDED
IBEF

x•20• ROLLoACK PROGr<AM I FILE
X'IO• 5UPPkESS UPDATES
x•os• R[FORE IMAGES TkAClD
x•O'I• AFTER IMAGES !RACED
x•o2• INPUT MESSAbES TkACED
X'Oi• l/O ERROR TRACE FILE

!HAGES. TR F!LFSI
UOWN

BOl 15+•
00016' Bol lb+ us

DODI bC
00008:!
0000'10
000020
000160
00008:?
000001
000002
ooo 16£
llOOOCI
000002
OCOOO'I
eoo1"'f
aoooe:i
O'lOO'IQ
00002c

BP I I 7+•
br) i l 8+ZollflG I uS
BOl 19+ZbllSTRIN E.t,;U
b0120+ZHllTCNSH Et,;U
~nl21+Zrl11T£XT ~WU

t:!Cl22+Zu•fLG2 us
o('l 23+lt:HITOMUP t.WU
bO I 2'1+ZUllTrJMEA Et.Ill

H112S+ZollTOMNT lQu
o0126+Z811flu3 vS
nQ 127+lflll I ~JDCL t:.loiU
A".' l lll+ZBll I NOWA t_\,/IJ

UOIL9+lB11JNOCO l~U

dCl30+ZbllfLG'I JS
[I 0 I J I + l d II J 1150 M E. W 11
H~ll2+ZbllD~SD: ~wu

UflJJ+Z~llD~SRU E.~U

X • FLAG! OF STAkTU~

x·~o· • STARTUP ACT1vE
x·~o· ·•1RCFILE•CRA5H
X'20• ••TACFILE•EXT
x •FLAG FO" TOMFILE
X't1C• • fOtiFJLE CONt1i>URED
X'~I• • [Rf.ION ON TUM FILE
i'02• • DO NOT TRACE TUMfiLE
r •FLAG f0N TYPE OF wESTART
A'UI• .SJAkl•CLEAN
X'02• eSTAl<T•WARM
x'O'I• .SJAkT•COLu
X UMS FLAG AYT£
x•eo• IM5 HAS MADE • REt.1UEST TO DMS
x•'IJ• DM5 HAS TERMl~,TED

x•20• OMS ~UN-UNIT t.XISTS

Figure 9-4. Single-thread Thread Control Block (Part 3 of 4)

9-16

•

•

•

•

•

•

UP-9206

LOC•
00001:1
ooorio11
000110
ooooa:.i
OOOO'l'J
?ooon
oooooa
ooor:io'I
000171
tl'JOl7'1
tlOOJ7A
000J7C
000100
000102
00018'1
000J88
000J8C
!tOOIY'l
COOJ9'1
000t9B
COOl9C
000l9C
000J9C
000000

SPERRY UNIVAC OS/3 9-17
IMS ACTION PROGRAMMING IN RPG II

SINGLE-THREAD THREAD CONTROL BLOCK

LINE SOuRCE STATEMlNf
BO I 3'1+ZB11 I "'SNA
l:!C I JS+ZBllDMSNA
f\01 Jb+ZBllFluS

E QLJ X' I 0 • IMS NOT ALLOWE" ACCESS TO OHS
DMS IS NOT THt.RE EQu x•oa•

uS XLI
HC I 37+Zi:lllKAT t:QIJ
BOIJB+ZbllSTATS t:Qu
BCl39+Zb•SFSEN EQU
dOl'iO+ZBllGLB E~U

l:!Cl'll+ZAaoED EQu
801'12+ uS
BOl'IJ+ZdllLPCT DS
l:!Cl'i'i+Z811LACT DS
80l'IS+ZHllLAD DS
d0l'i6+ZBllNLST US
dOl'i7+ CS
l:!Ol'i8+LCllCCA uS
ciOl'i~+ZCllLOCAP ~S

bOISO+ZAllMDICE uS
HI; I !:>I + Z b II U t' :.> E f Li S
BOIS2+ZBllQATE ~S

bCISJ+ZbllSESLN vS
HCIS'i+ZQllTHFIN DS

uw
EQU
CSE CT

bOISS+ZTllHLEN
£:;015b+ZTllTL£N
i3'11">7+lC111 IP

x·~c· KATA~ANA CONF1GUH[D
X1 'iC• STATISTICS AT SHUTDOWN
X'2G• SFS ENABLED
x•os• GLOBAL NETwOR~

X'O'i• DEDICATED NET~nRK
XLJ uNUSED
F LAST PCT ADDRESS
F LAST ACT ADDRESS
F LAST LOAu AREA AOvqESs
H INTLIST•N VALUE
XL2 Ui'.USED
F CCA NAME
F LOCAP NAME
r OlcE-ScREEN CLEAR/µSG POSITION
A POINTER rn TRIOT lo PROCESS uNoEF:TRANS•COnES
F TODAY'S i.JATE
F LENGTH-SESSION TAoLE-ZSTAT
Of • THIS TAG MUST ~TAY AT LND
•-ZTAUTHC& LENGTh D~ THCB
zTiiHLEM

Figure 9-4. Single-thread Thread Control Block (Part 4 of 4)

UP-9206 SPERRY UNIVAC OS/3 9-18
IMS ACTION PROGRAMMING IN RPG II

MUL TITH READ THREAD CONTROL BLOCK

LDC•

000000
000000
00000'1
oooooe
000009
OOOOOA
OOOOOA
000008

oooooc
000010
00001'1
000018
00001c
000020
00002'1
000028
00002c
000030
00003'1
000020
ooooslf
oooose
oooosc
000060
00006'1
000068
00006C
00007'1

D0007S
000076
C00078
00007A

LI NE SOURCE STATEMENT

2628 PRJNT GEN
2629 ZHaDTHCB

A26JO+ZT•DTHC& OSECT
A26JJ+ZT•THQPT OS F • NEXT THREAD JN ~UEUE POINTER
A26J2+lT•NTHCB US F • NEXT THREAD FOR SCHEDULING
A2633+ZT•THURF US X • uRGENT FLAG 0 - ROUTINE
A26J'l+ZT•THRDF US X • THREAD READY FLAG I - READY
A26JS+ZT•OWAIT OS OX BIT 0 INITIAL TH"EAD WAIT FLAG - wAIT
A26J6+ZT•REGRS OS X BIT 7 RESTORE REGISTER FLAG 0 - YES
A26J7+ZT•JECBJ OS X BIT 0 CANCEL FLAG I - CANCEL
A2638+• BIT 2 OUT~uT MESSAGE GENERATED BY 7G•HTHSO
A2639+• ~IT J INTERNAL CANCEL JNITJATEO
A26'10+• b IT 7 I ECt.i FLAG I - 3WORD
A26'1J+ZT•THSVR OS F • THREAD SAVE AREA REGISTER
A26'12+ZT•THRAO us F • THREAD RETURN AunREss
A26'1J+ZT•TPIBA US A PROGRAM JNFORMATIUN BLOCK ADOR
A261f'l+ZT•TIHA OS A INPUT MESSAGE AREA ADDR
A26'1S+ZT•TwA US A WORK AREA ADUR
A26'16+ZT•TOMA US A OUTPUT MESSAGE AR~A AODR
A26'17+ZT•TCDA US A CONTINUITY DATA AKfA ADDR
A26'18+ZT•TDRHA US A DEFINED RECORD ARLA AOOR
A26'19+ZT•ODREC OS A DATA DEFINITION RECORD ADDR
A26SO+ZT•sUBFL us A DEFINED FILE SUB-FILE oEsc ADDR
A26SJ+ZT•TFAH uS SF FILE ALLOCATION MAP
A26S2+ZT•TNUHF LQu •-ZTaTFAH FILE ALLOLATION HAP LENGTH
A26SJ+Zl•TATA us A ACTION CuNTROL TAuLE RECORD AOQR
A26S'l+ZT•TPTA US A PROGRAM CONTROL TABLE RECORD AODR
A2bSS+ZT•TPTAI OS
A26S6+ZT•TTTA US
A26S7+ZT•TIMB OS
A26SB+ZT•TEDIT uS
A26S9+ZT•TRIO US
A2660+ZT•TIND us
A2661+•
A2662+•
A2663+•
A266'1+•

A TERMINAL CONTROL TABLE RECORD ADOR
A INPUT MSG BUFFER AODR
A EDJT TARLE ADDR
CLij TRANSACTION JO
XLI cONTROL INDICATv~S

BIT 0 TERMINATION TYPE

t:ll T 2 ERROR RLTURN

0 NORMAL
I ABNORMAL
0 NO
I YES

A266S+• dlT J-'I INTERNAL MESSAGE CONTROL:
A2666+•
A2667+•
A2668+•
A2669+•
A267oJ+•
A2671+•
A2672+•
A267J+•
A2671f+•
A267S+ZT•TER• US
A2b76+ZT•TES US
A2677+ZC•SFSSC OS
A267B+ZC•ITLN OS

QO ENO ACTION oR ENO T~ANSACTION
OI EXPLICIT OUTPUT
10 DELAYED INTERNAL SUrCESSION
11 CAr-;CELLED

fl IT S JNTERNAL REQUEST

blT 6 OUIPUT JN PROCESS
ulT 7 OUlpUT wAITEO

x ERROR couE NUMBLR
H RELATIVE ACT RECO~n AODR
H INPUT STATUS BYTE COUNT

INOIC FnR FM
0 NO
1 YES

XLI xTION FLO LEN crw-INVALID TRANSAcTION

Figure 9-5. Multithread Thread Control Block (Part 1 of 2)

•

•

•

•

•

•

UP-9206

LOC•
C0007B

t'0008'1
000088
oooo8c

000090
00009'1

0C0098
OOOOA'I
000000
000000
0000F8
oooorc
000118
000160
00018c
000100
00018'1
DOO!BB
000188
0000'10
00000'1
000001
0001ec
0001cc
OOOIC'I
0001ce
0001ce
000000

SPERRY UNIVAC OS/3 9-19
IMS ACTION PROGRAMMING IN RPG II

MUL TITH READ THREAD CONTROL BLOCK

LI NE SOURCE. STATEMENT
A2679+ZC•SFSIO OS CLb SUCCESSOR-ID FOk REBUILD
A2680+• FILE MANAGEMENT ENTRIES
A2681+• PARAMETER LIST FOR SUBTASK
A26B2+ZT•TBA US A BEGIN AOOR
A268J+ZT#TRPLA DS A REQUEST PARAM LIST ADOR

PARA,..S IN LIST A268'1+ZT•TFC US A BYTE 0 - a OF
A26SS+•
A2686+ZT•TUPDA US
A2687+ZT•TCR DS
A2688+• OTHE.R
A2689+ZT•TFwA OS
A26YO+ZT•TSAVI OS
A269l+ZT•TSAV2 us
A2692+Zl#SAVS EQU
A269J+ZT•SAVE6 EQU
A269'1+ US
A269S+ZT•TSAV'I US
A2696+ZT•TSAVJ US
A2697+ZAapSSK
A2698+ZTDTFLA
A2699+ZTDTfl
A2700+ZT•TF2
A2701+ZTDSYIND
A2702+ZT•TOMRO
A270J+lT•ZZOPN
A270'1+ZT•RDF
A27GS+Zl#UOMCA
A2706+ZT•IDMCA
A2707+ZT•SIBA
A2708+

DS
OS
OS
DS

E.Qu
!.QU
l:.Qu
El.Ill
l)S
us
us
PS

A2709+Zl#TLl:.N l:.QU
A27IO+ZOaOU1MT lSECT

A UNpROTECfED DTF AunR
A covER REu

JA woRK AREA
!IA SAVE AREA
11 A
ZT•TsAV2 SAVE AREA S
ZTllSAVS+'!O
7F '0 •
JBA SAVE AkEA 'I
JIA SAVE AREA 3
9F

REQUIRED BY !RAM
F APPL•MANAG•
F FLAG BYTE
ZT•Tf 2 FLAGS
X''IO• INDICATES TOM ~EAO

BYTE 3 - FUNCTION COnE

x'O'I• INDICATES TO ~RITE ZZOPN TERM~ RECORD
X'OI• MIRAM RE.-READ FLAG
A USER PRDuRAM DMCA ADDRESS
A IMS INTE~NAL DMCA ADDRESS
F Sill AUDRESS
Of
•-ZTaOTHCB LENGTH Of CONTROL BLOCK

Figure 9-5. Multithread Thread Control Block (Part 2 of 2)

UP-9206 SPERRY UNIVAC OS/3 9-20
IMS ACTION PROGRAMMING IN RPG II

TERMINAL CONTROL TABLE

Terminal control table The terminal control table for single and multithread IMS is also a
valuable debugging aid. Figure 9-6 shows this table.

LOC•

000000

000000
OQOOO'I
t!00008
oooooc
000010
00001'1
000018
DOOOIA
000010
000010

000080
0000'10
000020
000010
000008
GOOOO'I
000002
000001
000001

00001c

DOOOAt'
0000'10
000020
000010
oooooe
t!OOOO'I
000002
000001

oooolD
OOOOlD

000080
DOOO'lll
t!OOOZJ
=ooo 1 c
oooooe
t!QOOO'I
000002

LI NE SOURCE STATEMENT

2712
A2713+ZC•OTCT
A27 I '1+•
A271S+ZC•LlfllK
A'1716+ZCllTID
A2717+ZCllTAL
A2718+ZC•TALT
A2719+ZC•TTTA
A'1720+ZC•TESR
A2721+ZC•TCOL
A2722+ZC•TLN
A2723+ZC•TTST
A272'1+ZC•TST

ZHaDTCT
DSECT •••• TERMINAL CONTnnL TABLE RECORD

us F ACT LINK fo NEXT TcT IN ~UEUE
US XL'I TERMINAL ID
OS F REL ADDR SOURCE TCT IOS/31
OS F REL ADDR ALTERNATt TCT IOS/31
uS F CORRESPONDING TTT ADDRESS
OS F SUCC ACT REL ADDR - ROLLBACK
OS H CONTINUITY DATA LENGTH
US XLI LINE NUMBER
US XL7 STATUS BYTES
lQU ZC•TTST

A272S+•
A2726+• EQUATES FOR ZC•TTST/ZC•TST

x•so• LAST TCT
x''IO• TEST MODE.
x'20• URGENT MESSAGE., ACTION
X1 10• TERMINAL DOWN
x•os• HOLD TERMINAL
X'O'I• URGENT TERMINA1

••••

A2727+•
A2728+ZC•TTLST EQu
A2729+ZC•TTTMD E.Qu
A2730+ZC•TTUM l~U

A2731+ZC•TTDWN EQu
A2732+ZC•TTHLD EQU
A2733+ZC•TTUT EQU
A273'1+ZC•TMWR E.QU
A273S+ZC•TMTC EQu
A2736+ZC•TOMW EQU
A2737+•
A2738+ZC•TST1 EQU

x•02• MSG wAIT IFOR ZZTSTI RECEIVED
x'OI• MWRITE FOR zzrsT ISINLGE THREAol
X'OI• OUTSTANDING M~RITE IMULTl THREADI

zc11TsT•1,1
A2739+•
A27'10+• EQUATES f OR ZC•TSTI
A27'1 I+•
A27'12+ZCllTTIM lQu
A27'13+ZC•TTMT EQU
A27'1'1+ZCllTALTs EQu
A27'1S+ZC•TlRC EQU
A27'16+ZC•TTMWS EQU
A27'17+ZC•TT8TH EQU
A27'18+ZC•TTRP LQU
A27'19+ZC•TlMS E~U

A27SO+•
A27Sl+ZC•TST2 E~U

A27S2+ZCllTPHSF EQU
A27S3+•

X1 80• INTEkACTIVE MvDE
X''IO• MASTER TERMINAL
x'20 1 ALTEkNATE TERM SPECIFIED
x•to• ROLL8AC~ COMP~rTE.

X1 08t IMS SENT MSG ~All

x'u'I• BATCH TEkMINA~

X1 02• ROLL~ACK IN PKOCESS
x•o1• MSG TO ORIG TE.RM SENT

zc11TsTt•1.i
zC11TsT2

A27S'I+• r~UATES FOR ZCllTST2
A27SS+•
A2756+ZC•TTUNS
A27S7+ZC.:llTTt<EL
A 'l 7 S 8 + Z C II T P t< M !~
A27S9+ZCllTPrlMP
A2760+ZCllTTSTA
A2761+ZC•TCONT
A27b2+ZC"TDE.LN

uw
lQU
EQU
L~U

£ l.111

El.Ill
E."1lJ

X 'clG •
XI 'fQ I

X1 20•
x. I 0 I

x'OB•
XI Qlj I

X' O.l •

MWRllE. ISSUElJ Ft-iOM ZOaUNSHT MODULE.
RELEASE BUFFE" AT MWHITE COMPL
MSG IN G/UEUE
MSG IN PKOCE.S:.
SEND AUTO SlAl11S MESSAC.E
CONTINUOUS OUtpUT 1-!EQUt:STED
DEL NOTICE - ACTION To BE SCHEO

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 1 of 5)

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 9-21
IMS ACTION PROGRAMMING IN RPG II

TERMINAL CONTROL TABLE

LOC•
000001

GOODIE

ooooeo
OOOO'l!J
000020
000010
ooooos
ooooo'I
000002
000001

LINE SOURCE STATEMENT
A276J+ZC•TOIQ EQU X'DI• OUTPUT GENE.RATED FOR INPUT QUEUING
A276'1+•
A276S+ZC•TSTl E.QU
A2766+•

ZC•TST2+ It I

A2767+• EQUATES FOR zc.TSTJ
A2768+•
A2769+ZC•TTDR DISCONNECT REwUESTED IS/Tl E.Qu x•&o•
A2770+ZC•TTQNE TERMINAL'S LO~ QUEUE NOT EMPTY E.Qu x. '10.
A2771+ZC•THORS OUTPUT HEADER ~AVEO E.Qu x•20•
A2772+ZC•TIDN INTERNAL DELIVERY NOTICE Elilu x' I 0 •
A277J+ZC•TIGH IMS GENERATED ERROR MSG l::Qu X'08•
A277'1+ZC•COIP CONTJNUOUS OUTPUT IN PROCESS IMITI EQU x. 0'1.
A277S+ZC•TNRDY NO IMS READY MSG TO THIS TERMINAL EQU X 1 02•
A2776+ZC•TUNAC SEND UNSOLICITED OUTPUT INDICATOR E.Qu X '0 I•
A2777+• FOR SWITCHED MESSAGES AT ACTION END
A2778+•

OQOOIF A2779+ZC•TST'I E.QU ZC•TSTl+I ti

000080
0000'10
000020
000010
coooos
00000'1
000002
00000 I

A2780+•
A2781+•
A2782+•
A278J+ZC•ERHEX
A278'1+ZC•SFSRll
A278S+ZC•ARTDy
A2786+ZC•DYHID
A2787+ZC•SIGN
A2788+ZC•ATTRI
A2789+ZC•CONSL
A2790+LC•CNTRD
A2791+•

EQU
EQu
l::QU
l::Qu
EQU
E.i.IU
EQu
El.IU

000020 A2792+ZC•TSTS Ewu

ooooso
0000'10
DOOO'IO
000020
000020
000010
000000
00000'1
000008
ooooo'I
000002
000001

A279J+•
A279'1+•
A279S+•
A2796+ZC•IMPRT lQU
A2797+ZC•DEPNO E.WU
A2798+ZC•OEPRT E.Qu
A2799+ZC•DMSUP l:."itJ
A280Q+ZC•BND lWU
A280l+ZC•uBPND E.QU
A2802+ZC•OMSRO E.Qu
A2ROJ+ZC•OMSUB E.QlJ
A280'1+ZC•UPDRU lQIJ
A2&0S+ZC•UPOTD l::WU
A2806+ZC•TCALL E.WU
A2807+ZC•OMSDR EQlJ
A2808+•

000021 A2809+ZC•TST6 EQU

x•&o•
x. '10.
X'20•
x' I 0 •
X1 08•
x 'O'I •
x•oz•
X 1 0 I•

AIM GENERATED ERROR MSG•
REBUILD ALLOWE.O BY A/P
ABORT DYNAMIC SESSION
ABORT TERM Wl~oow

SIGN ON FOR DYNAMIC SESSION
TERM HAS CONFIG• ATTRIBUTES
CONSOLE TERMl11jAL
OUTSTA!'jOING TCSIOISKETTE READ FUNCTION

ZC•ITST'l+1, I OMS FLA1>S

x•so• ISSUl::D IMPACT FOR ACTION
X''IO• DEPART PlNDIN~

X''IO• ACTluN ISSUlD nEPART
X'lO• ISSUl::D DSM OP~N FOR UPDATE
x'lD• BOuNu/UNBOul'jD STATE
X'IO• UNBIND PENOINb
X'OH• OHS FOkCED uE~ART wlTH ROLLBACK
x•o~· OMS ttUN UNIT UNBOUND
x'08• OPE.NED FOR UPuATE IN THIS RU!'j-LJNIT
x•O'I• UPDATING RuN-uNIT IN THIS succrss UNIT
x'02• FUNCllOl'j CALL/TERMINATION CALL
x'Ol• OHS KEQUEST VIA DoR•Ho

ZC•TslS+lol OMS FLA1>S EXTENSIOl'j
A2fl IO+•
A2811+• EWUATE.s FOR ZCaTST6

000080
0000'10

A7812+•
A28ll+ZC•DMSER EQU
A'lbl'l+ZC•WRKI E.QU

x'BO• OMS lRROR IN kUN-uNIT
X''IO• TEMPORAkY FLA1> •I

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 2 of 5)

UP-9206 SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

TERMINAL CONTROL TABLE

LOC•
000020
000010

000022

ooooso
DOOO'IO
000020
000010

000023

D00009
ooooc1
0000C3
cooocs

00002'1

ooooao
OOOO'ltl
000020
000010
oooooa

000025

000026
000020
0C002C
000030
00003'1
0C0036
000037
000038
coooH
00003C

LINE SOURCE STATEMENT
A281S+ZC•WRK2 EQU X'20• TEMPORARY FLA~ •2
A2816+ZC.•TTMDF EQu x•10• HOEFER ISSUED ~OR THIS TERMINAL
A2817+• THE FOLLOWING STATUS BYTE TAGS ARE NOT CLEARED WHEN A GI OBAL
A2818+• NETWORK DYNAMIC TERMINAL DOES A SISOFF
A2819+• lCaTTLST
A2820+• ZCaTTUT
A282!+• ZCaTTHT
A2822+• ZCaTNROY
A2823+• ZCaTUNAC
A282'1+• lCaATTRI
A2825+•
A2826+•
A2827+ZC•ODPST OS X DDP STATUS BYTE
A2828+•
A2829+• EQUATES FOR ZCaDDPST
A2830+•
A2831+ZC•,REMTR EQU x•ao• REMOTE TRANS
A2832+ZC•FSOUT
A2833+ZC•PSEDO

EQU
E.Giu

X''IO• FIND SESSION u 11 TSTANOING
x•zo• PSEUDO TCT

A283'1+ZC•ODPOT EQU X'lO• M#RITE FOR liOP
A283S+•
A2836+ZC•ODPMO us X OOP MOOE
A28J7+•
A2838+• EQUATES FOR ZCaDDP MODE
A2839+•
A28'10+ZC•DTR t.QU C'k' DIRECTORY TRAN~.

A28'1l+ZC•PTRA E<W C'A' PROGRAM TRANS.
A28'12+ZC•PTRC E.Qu c 'c' PROGRAM TRAN~.

A28'13+ZC•PTRE l::QU C 'E' PROC,RAH TRANS.
A28'1'1+•
A28'1S+ZC•SFLAG OS XLI GENEhAL SFS FLAb
A?8'16+•
A28'17+• EQUATES FOR ZCa5FLAG
A28'18+•
A28'19+ZC•INFMT EIJU X '!IC t INPUT FORMAT
A2850+ZC•OYNM t.~u x' 'IC• DYNAMIC MEHORT
A28!>i+ZC•SFBT! l<.!U 11.' LO• SFS FLAG 1
A2852+ZC•ITCF t::Qu x' 10 • INVALID XTION
A28!>3+ZC•SFBT2 EGIU x•oa• SFS FLAl:i 2
A285'1+•

ROUTING
ROUTING
ROUT IN<.
ROUT INC.

BYTE

A28!>S+ZC•SFIRC us XLI SFS INPUT RETRY ,.OUNT
A28!>6+•
A28!>7+ OS XL2 UNUSED
A28!>8+ZC•TflCTA [)5 A TRcl ADDR
A?A59+ZC•TQE OS F CANCEL l INK
A2860+lC•PRFT us F DI Sl-L TO PROCESS f Ill:: TABLE
A?Abi+ZC•PQCNT DS H PROCESS 1.1UEUE C OUt• T
A2862+ZC•MQCN1 IJS XLI LAST ICAH SVC
A2&63+ZC.•TDELS I.JS XL I DlLIVEttY "'OTICE <;TATUS
A286'1+ZC•L(#CNT DS H LOW QUE.Lil COUNT
A28b!>+ZC•TIN us H TOTAL INPUT COUNT
A?866+ZC•TINT us H TkANSo I !'<PUT COUNT

- ACT I vATE - ABORT/CANCE.L - ENO

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 3 of 5)

9-22

•

•

•

•

•

•

UP-9206

l.OC•
~0003E
0000'11!
0000'1'1
COOO'l8
OOOO'IA
OOOO'IC
ooooso
eooos2
OOOOS'I

COOOS'I
CIOOOS6
ooooS8
oooosc
000060
00006'1
C00068
00006C
000070
00007'1
oooo7c
000080
00008'1
000088
000088
000090
000092
00009'1
000098
000088

000008
000008
DOOOE!>

llOOOEI
DOOOEB
liOOOEF
aoooFO

DOOOFO
OOOOFO
coooF2

·coooF'+
ll'OOOF 6

DOOOF8
llOOOF9
aoooFA

DOOOF8
0000F8

SPERRY UNIVAC OS/3 9-23
IMS ACTION PROGRAMMING IN RPG II

TERMINAL CONTROL TABLE

LI NE SOURCE STATEMENT
A2867+ZC•TTCH DS H TERM COMMAND COUNT
A2868+ZC•TINCH OS F TOTAL NO. INPUT CuARs.
A2869+ZC•TOTCH DS F TOTAL NO. OUTPUT cHARS•
A2870+ZC•TOC US H TOTAL OUTPUT COUNI
A287l+ZC•TOMSZ DS H SOURCE TERM O/P MSG• SIZE
A2872+ZC•TON DS F TIMER LINK
A2873+ZC•IMl. us H INPUT MESSAGE LENurH
A287'1+ZCAOML DS H OUTPUT MESSAGE l.ENGTH
A267S+ZC•TML OS H TIMER MESSAGE LENGTH IOS/3 MoTol
A2876+• OS/3 S•T• USES zC•COSE.Q INSTEAD OF ZC•TMl.
A2877+ZC•COSE~ EQu zC•TML C/0 SEQ COUNT IOS/3 s.T. ONLYI
A2878+ZC•O~L OS H DOP MSG• LENGTH
A2879+ZC•IBF US A INpUT BUFFER ADOk
A2860+ZC•O~F OS A OUTPUT BUFFER ADOh
A288l+ZC•TBF US A TIMER BUFFER ADD~
A2882+ZC•OBF US A DDP BUFFER ADO~

A2883+lC•OPkEL DS A UDP BUFFER REL.EASL ADDR
A288'1+ZC•TDELC OS XL'I uSER CONTINUOUS ~UTPUT CODE
A288S+ZCASFSTC US A SFS TERMINAL. CLAS~ ENTRY ADDR
A2886+ZC•SFSFN US CL8 sFS FORMAT NAME
A2887+ZC•SESAO DS A SESSION STAT TA8LL ADOR
A2888+ZC•SESIO OS F SESSION JD
A2889+ZC•TDMEM DS F SFS DYNAMIC MEMORY ADOR
A2890+ZC•TTRID US CL8 TRANS JD llNITIA, DATE/TIME.I
A289J+ZC•TRID EQu ZC•TTRIO 05/'1 TAG
A2892+ZC•OLCNT US H IMC DEADLOCK DETECTION COUNT
A2893+ OS H UNUSED
A289'1+lC•TC8 OS A THREAD CONTROL Bl.UCK AODR
A289S+ZC•TLI US BF TRANS LOCK INDICATOR
A2896+ZC•TAUM US SF AUDITED UPDATE M~P

A2&97+••• lCITLI AND ZC•TAUM MUST AGREE hJTH ZT•TNUMF IN rHE THCS
A2898+ZC•TTE.XT US CL8 TRANSLATED TERM cMDtTRANS CODE
A2899+ZC•TC00E EQU ZC•TTEXT O~/~ TAG
A2900+ZCllTDORC OS CLI ODR NAME ID CHA~ IHIGH bYTE • X'FD'I
A29Cl+••• THE AeovE FIELD IS DEFINED JN u~/'I BUT NOT TAGGED
A2902+ZC•TDDRN DS CL7 DATA DEF REC NANF
A2903+ZC•TDFN uS CL7 DEFINE.O FILE NArl[
A290~+ OS X UNUSED
A290S+ZC•TE5 US F SUCC ACT RECORD RLl.ATIVE ADDH
A29D6+• MuLTl-TrlkEAD SYSTEMS USE ZC•L5 & zC•CDC IN PLACE OF Zr•TES
A29J7+ ORG ZC•TES
A2908+ZCllE5 US H SUCC ACT RECORD Rt.1 ATIVE ADDR
A2909+ZCllCDL US H CONTINUITY DATA LLNGTH
A29IO+•
A29ll+ZcawAI us H WORK AREA INC
A2912+ZC•COI US " CONTINUITY DATA AhEA INC
A2913+ZC•TTTN US XLI TCT Rf CORD NUMBLR
A291~+ OS XLI uNUSE.D
A2915+ OS H UNuSEO
A2916+• MULTl-THR[AU USES ZC•CDR & ZCaCES INSTEAD OF 7C•TTTN ~ ZC•liNT
A2917+ ORG ZC•TTTN
A2918+ZCllCDk OS H TCT RECO~O NUMbE.R

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 4 of 5)

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

TERMINAL CONTROL TABLE

LDC•
ooooFA
ooooFc

000100
000100
000100
000100
00010'1
000106
0001oe
00010A

0001oc
000110
000110
ooo 111
000112

000000
ooooao
0000'10
000020
000010
oooooB
00000'1
000002

000113

ooooeo
0000'10
000020
000010
oooooa
DOOOO'I

00011'1
000118
00011c
000120
000120
000000

LINE SOURCE STATEMENT
OS H SUCC ACT REL AODR _ ROLLBACK A2919+ZC•CES

A2920+ZCllSCFR
A2921+•
A2922+ZCllTTIR
A2923+ZC•TIR
A292't+
A292S+ZC•TRWA
A2926+ZCllFBPA OS
A2927+ZC•CBPA OS
A2928+ZCllLBPA uS
A2929+ZCllNRBCB OS
A29JO+•
A2931+ZCllTLNAM OS
A2932+ZCllTCHAR OS
A2933+ZCllTTSL
A293't+ZCllTTSW

OS XL'+ COUNT FIELD FOR ROLLBACK

A 2 9 JS+ Z C II TT TY P
A29l6+•

OS
E.Qu
ORG
OS

EColU
EQU
EQU

XLI TERM IND FOR ACTION PROG USING ROLLBACK
ZC•TT IR OS/'I TAG
ZCllT IR
F TRACE WORK AREA
H • FIRST BLOCK OF ~aRTITION

H • CURRENTLY ACCES~ED BLOCK
H • LAST BLOCK OF PARTITION
H •11 OF REMoBYTES IN CURR• BLOCK

CL'I LINE NAME
CL'I TERMINAL CHARACT~RISTICS

ZC•TCHAR SCREEN LEN~TH
ZC•TTSL+l SCREEN WIUTH
zC•TTSW+t TERMINAL TYPE

A2937+• E.QUATt::S FOR ZC•TTTYP
A2938+•
A 29J9+ZC11 TT NFC E.QU x•oo• Ul00/U200/UTSln/TTY
A29'IO+ZCllTT'IPR E.QU x'BO• UTS'IOO PR
A29'tl+ZCllTT'IU2 E.QU x' '10. UTS'IOO CP 1u2 HODEi
A29'12+ZCllTT'IU't £Qu x•20• UTS'IOO CP I U't HODEi OR UTS'IOO
A29'13+ZCllTT 327 E.Qu X' 10 • IBM 3271
A29't'l+ZCllTTU'IC E.QU x•os• UTS'IO
A29'1S+ZC•TTU20 £QU x '0'1' UTS20
A29'16+ZCllTT'l0T t:.Qu x•o2• UTS'IOO TEXT Eu,TOR
A29'17+•
A29'18+ZCllTTATT E.Qu lCllTTTYP+I TERMINAL ATTRIBUTES
A29'19+•
A29SO+• EQUAH.5 FOR ZC•TlATT
A29SI+•
A29S2+ZCllTTKAN t::i.iu x•BO• KATAKANA
A29S3+ZCllTTNV I U.IU x ''10' NON-11IDEO
A29S't+ZCllTTS0T E.l.IU x•20• SCHEE..N IHPASS
A29SS+ZCllTTPKT !:.QU x' I 0 • PACKET PON TE"MINAL
A29S6+ZCllTTCST E.Qu x•oa• CIRCUIT SWITCH PON TERMINAL
A2957+ZC•TTCCT EQU x. 0'1' TERMINAL ON CLuSTER CONTROLLER
A29S8+•
A29S9+ZCllTINEk us F SFS ERROt-< FIELD
A2960+ZCllTRIDA us A PTR TO ltd OT ENTRY FOk CURRENT TR M;SACT I ON
A2961+lC11ALTID us F ALTERNATE TE.RM ID
A2962+ZCllTF"IN us CF THIS MUST ALWAYS "E AT END
A2963+ZCllTL!:.N E.i.iu •-lC11DTCT
A296't+ZO•OUTMT C..SEC T

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 5 of 5)

9-24

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 9-25
IMS ACTION PROGRAMMING IN RPG II

LINK MAP

9.10. OTHER DEBUGGING RESOURCES

Link map and symbol
table

Module RCCUST and
P?IMSOOO

Module ZF#LINK

Module P?SERIAL

Module P?SPLOOO and
P?IMSIXO

Module P?IMSEQO and
P?IMSDOO

*ERROR field

To find the cause of an action program snap dump requires the
use of both the snap dump and user action program compile and
link. Very briefly, we'd like to point out data in the link map and
symbol table of your action program useful in debugging. Figures
9-7 and 9-8 show the link map and symbol table for RCCUST.

Looking at Figure 9-7, the first object module is RCCUST and its
lnk-org is 0. Following RCCUST is P?IMSOOO. This object module
handles initiation and termination procedures for the action
program. It also handles communication between the program
and the interface areas. Its lnk-org is 12AO.

The third object module is ZF#LINK. This module provides the
interface between action program function calls and IMS. Its
lnk-org is 14F8.

The object module P?SERIAL is responsible for making the RPG II
action program serially reusable. It clears all switches and
indicators prior to an action program getting control. However,
the RPG II programmer must reset all fields and arrays prior to
program execution. The important point to remember is that RPG
II action programs must be serially reusable since IMS doesn't
reload a program if it's already in main storage.

The next two object modules included in Figure 9-7 are
P?SPLOOO and P?IMSIXO. They provide 1/0 interfaces between
IMS and the RPG II action program. P?SPLOOO handles all general
1/0 interface needs and P?IMSIXO handles all requests to indexed
files.

Two other object modules not present in Figure 9-7 but which
could have been included are: P?IMSEQO, which handles
sequential file requests; and P?IMSDOO, which handles DAM file
requests. Which modules are actually included depends upon the
specific 1/0 design of the action program.

Figure 9-8 shows the symbol table for RCCUST. The important
data it contains is the location of *ERROR at relative location
180 .

UP-9206 SPERRY UNIVAC OS/3 9-26
IMS ACTION PROGRAMMING IN RPG II

LINK MAP

UNIVAC SYSTE• OS/J LINKAGE EDITOR VEReoo•Ol
DATE• 81/D'l/07 TIME• 10.36

CONTROL STREA• ENCOUNTU£o AND PROCESSED AS FOLLOWS•

•EM~EODED•
•EMREDDEO•
•Et4RFDDEO•
•EM RE ODED•
•EMAEDDFD•

SYMADL •

A001(Y

CLOSE
DELr;Y
ENDCRL
FIND
GET LOAD
I••
KEIRES
OPEN
P71 HA
P70JO
P?SPLOOO
RCCuST
ROI OCL
ROICETC
RDKY I
ROSQC
RDSQ IC
RDSRC
REBUILD
SEND
SNAP
STCRL
SUBPROG
1CR3 JHS

II

I•

TYPE•

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSE CY
CSE CT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

LOAD• RCCUST
INCLUDE RCCUST
INCLUDE P? I •sooo, SYS08J
I NCLUOE ZFIL INK, SYSOIJ
INCLUDE P?SERIALoSYSOIJ
INCLUDE P?SPLDOO o IYSOIJ
INCLUDE P?IMSIXOoSTS08J

•DE,INITIONS

PHASE• ADDRESS. SYMBOL• Typ[,

ROOT 000011 .. AR ET URN ENTRY
MOOT 0DOOl'1C CMDRB ENTRY
ROOT DOODllA8 DLIOR ENTRY
ROOT DDOOl IDC ESETL ENTRY
ROOT 00001920 FREE ENTRY
ROOT 00001 ... GETUP £NTRY
ROOT OOOOODll INSERT ENTRY
ABS 0000IF6A LNKCft ENTRY
ROOT 00001911 OPE NF ENTRY
ROOT 0000110 P?IMSIXO CSE CT
ROOT OQOOISOE P?Pll ENTRY
ROOT 00001tEo Pll ENTRY
ROOT 00000000 RDID ENTRY
ROOT 0000l9ZO ROIDL ENTRY
ROOT 00001 .. 0 RDK£TCL ENTRY
ROOT OOODI IBC ROKY IC ENTRY
ROOT 0000l91C ROSQCL ENTRY
ROOT ooon11E~ RDSOL ENTRY
ROOT 00001910 ROSRCL ENTRY
ROOT 00DOll90 REL REC ENTRY
ROOT DDODI 92" SETL ENTRY
ROOT 0DOD18E• SSLOCK ENTRY
ROOT 00001101 STLMT ENTRY
ROOT 000011&0 UNLOCK ENTRY
ROOT 0000189• Z'•LINK CSECT

DICTIONARY•

PHASE• ADORES$•

ROOT 000018[8
ROOT DODOllED
ROOT DODOl8FC
ROOT 00001908
ROOT OOOOl 90C
ROOT OOOOllF~
ROOT 00001900
ROOT 0000l8AC
ROOT 00001918
ROOT DOODI &SI
ROOT OOOOl 7C8
ROOT 00000D28
ROOT OOOOllFD
ROOT OOOOllF•
ROOT 0000118C
ROOT 00001888
ROOT 0000191~

ROOT 00001•oc
ROOT DOOOllE8
ROOT 00001910
ROOT 000019011
ROOT DOOOllDD
ROGT 000019011
ROOT 0000191•
ROOT 00001888

•• ALLOCATION MAit •e

LOAD MODULE • RCCUST

PHASE NAH[TRANS ADOR LABEL
RCCUSTDO NODE • ROOT
••• START Of AUTO•INCLUDED ELEHENTS •
••• END OF' AUTO•INCLUDED ELEMENTS •

• 81 /0"107 IO•JS • RCCUST

• 80/0S/ 28 l 't.12 •

• BD/02/09 Zl•Ol •

RCCUST

I••
OMA
PIS

P?l•SOOO
P?IMSOOO

no••
lt?JMA
P?CDA
P7Pll
ZFIL INK
Z'•L INK
XRJ IMS
BUILD
REBUILD
GET
GETUP
PUT
DELETE
INSERT
SETL
ESETL
FREE
REL REC
UNLOCK
OPEN
CLOSE
FINO
S[NO
RETURN
A RETURN
SNAP

SIZE •

TYPE £SID

OBJ
CSE CT 01

ENToY 01
ENTRY 01
ENTRY 01

TRF 01
OBJ

CSECT 01
ENTRY DI
ENTRT 01
ENTRY 01
ENTRY 01
OBJ

CSECT 01
ENTRY 01
ENT RT DI
ENTRY 01
ENTRY 01
ENTRY 01
ENTIH 01
ENTRY 01
ENTRY 01
ENTRY 01
ENTRY 01
ENTRY 01
ENTRY 01
Eh TRY 01
ENTRY DI
ENTRY DI
ENTRY DI
ENTRY 01
ENTRT DI
ENTRY 01
ENTRY 01

00D01F6A

LNK ORG
ODODODOD

00000000
DOOOODl8
ODOOOD2D
00000028

ODOOISJO
OOOOISDE
DOOOl 7H
0000179'
OOOOl 7C8

00001888
0000189"
OOOOl88C
00001890
OOODllFO
000018F•
OOOOl lf'I
OOOOIBfC
00001900
0000190'1
00001908
OODOl 90C
UOOOl910
DOODl91•
00001918
OD00191C
00001920
0000192•
00001928
000011£8
DODDllE•

SYMBOL• TYPE, PHASE• ADDRESS•

BUILD ENTRY HOnT 0000188(
D[L£TE ENTRY Rant OUOO l SFC
DLKCP ENTRY ROOT 00001880
ESL MT ENTRY ROnT 00001908
liET ENTRY ROOT 000018FO
GTAOR ENTRY ROoT 0000 1900
KEULP ENTRY AB• 0000lf6A
OMA ENTRY HOOT U000D020
P?CDA ENTRY ROOT 00001796
P?l•SDOO CSE CT ROOT 00001 &JD
P?S£RIAL CSE CT ROnT UU001978
PUT ENTRY ROnT 0U0018f8
RD I DC ENTRY ROOT 0U00192't
RDKET ENTRY ~OnT 0000188'1
RDKEYL ENTRY ROOT ouoo 1888
ROSO ENTRY ROOT uuoO I &Ce
RDSOI ENTRY ROOT DD0018CC
RDSR ENTRY ROOT OOODI ICO
RDSRL ENTRY ROOT ouoo I BC'f
RETURN ENTRY ROnT 00001928
SET LOAD ENTRY ROOT 0000 I 89C
SSUNLK ENTRY ROOT 0000 l BD'f
SUB ENTRY ROOT DODO I BAO
WRID ENTRY ROnT 0U0018F'8

HJAODR LENGTH OBJ ORG
OOUOIF69 OOOOlF6a

DDOO 188J

DDODl917

DEf'ERREn UUOOOOOO
00000018
uooooozo
00000021

••0000 I Sln•• 00000000

0000035"

OOOOOOFn

00000000
OUOOOOAE
OOOOOZl"f
00000266
00000298

00000000
uuoooooc
0000000"1
ouoooooe
00000068
0U00006C
00000010
0U00007"f
000000 7 8
0000007C
uuooooeo
00000081
ouooooee
ouoooosc
00000090
00000091f
U000009B
0000009(
000000 AO
00000060
uooooosc

Figure 9-7. Link Map for RCCUST (Part 1 of 2)

.. , ...

•
••

•••••

I
...

•

••••••

.

•••

•

UP-9206 SPERRY UNIVAC OS/3 9-27
IMS ACTION PROGRAMMING IN RPG II

LINK MAP

• PHASE NAME TRANS AODR FL Ali LABEL TYPE ESIO LNK DR& HI ADDR LENGTH OBJ OR&
SUB ENTRY 01 OOOOIBAO 00000018
RDSQL ENTRY 01 OOOOl90C 000000811
RDIDC ENTRY 01 0000192' 0000009C
ROIOCL ENTRY 01 00001920 00000098
ROSQC ENTRY 01 OOOOl91C 0000009•
ROSQCL ENTRY 01 0000191'1 ooooooac
ROSRC ENTRY 01 00001910 00000088
ROSRCL ENTRY 01 OOOOl8ta 00000060
ROSQ IC ENTRY 01 000011[4 ouoooosc
RDKEYC ENTRY DI 00001890 00000008
RDKEYCL ENTRY 01 0000188C 0000000•
RDKY IC ENTltY 01 00001888 00000000
GTAOR ENTRY 01 00001900 0U000078
OLA OR ENTRY DI OODOlBFC UUOOOU7't
ADDKY ENTRY 01 000018H DOOOOOIC
DEL KY ENTRY 01 000018A8 00000020
LNKCP ENTRY 01 OOOOIBAC 0000002lf
DLKCP ENTRY 01 ODDO 1880 0000002B
WAID ENTRY 01 ODDOl8F8 UC.000U70
RDID ENTRY 01 OOOOlBFO 00000068
RDIOL ENTRY 01 000018FO 0000006(
RDKEY ENTRY 01 OOOOlBB• oooooozc
RDKEYL ENTRY 01 00001888 00000030
ROKYl ENTRY 01 OOODl8BC 00000031
RDSR ENTRY DI DDODl8CO OOU000l8
RDSRL ENTRY DI OOOOl8C. OOODOOJC
RDSQ ENTRY DI ODOOl8CI 000000•0
RDSQI ENTRY 01 000018CC 000000 ..
STLMT ENTRY DI 0000190• 0000007C
ESLMT ENTRY 01 0000190B 00000080
SSLOCK ENTRY DI 000018DO 000000118
SSUNLK ENTRY DI 0000180'1 0000001c
STCRL ENTRY DI 000018D8 ooooooso
ENDCRL ENTRY DI OOOOl8DC 0000005•
CMOAB ENTRY DI 000018EO 00000058
OPE NF ENTRY DI 00001918 00000090
SUBPROG ENTRY 01 OOOOl8AO 00000018
SETLDAD ENTRY 01 OD00189C ooooooi.
GETLOAO ENTRY DI 00001898 00000010

- 79108108 lleQl • P?SERIAL OBJ
P?SERIAL CsEcT 01 00001978 OOOOl90F 000000•• 00000000

- 79108101 11.sa • P7SPLOOO OBJ
P?SPLDDO CSE CT 01 OOOOl9EO 0000 l A.57 0000007A 00000000

- 80103121 l6e50 • P71MSIXO 08J
P71MSIXO CSECT 01 OOODIA58 0000IF69 00000512 00000000

• 00000000

FLAG CODES •
B • BLK DATA CSECT 0 - AUTO•DEL£TEO E • EXCLUSIVE 'A' REF G • GENERATED EXTRN I - INCLUSIVE •v• REF
L • DEFERRED LENGTH " - MULTIPLY DEFINED N • NOT INCLUDED p - 'ROHOTED COMMON R • c;HAREO REC PRODUCED
S • SHARED I TEH u - UNDEFINED REF v - yCON I TEH
•ANy OTHER CODES REPRESENT PROCESS ERRORS•

LINK EDIT OF 'RCCUST' COMPLETED
OAT[• ll/04/07 TIME• 10,37
ERRnRS ENCOUNTERED• 0000 UPS I• X' 40'

Figure 9-7. Link Map for RCCUST (Part 2 of 2)

•

UP-9206 SPERRY UNIV AC OS/3
IMS ACTION PROGRAMMING IN RPG II

SYMBOL TABLE

PIB
SYMBOL TABLES

RESULTING INDICATORS

ADDRESS RI ADDRESS RI ADDRESS RI ADORE SS RI ADDRESS RI ADDRESS

OOODl'I IP 000015 LR 000016 DO 000017 01 000018 02 00002A
OOoOJF 'II 0000'10 "Z 0000'18 50 000053 61 00005C 70 00007l
000086 HI 000087 HZ 000088 HJ 000089 H'I OOOOBA HS 000088
000080 H8 OOOOIE H9 00008F UI 000090 uz 000091 U3 000092
00009'1 U6 000095 U7 000096 U8

FIELD NAMES

ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD

000180 •ERROR 000210 CUST 000215 SIGN 000216 AHOUNT
000220 NAME 00023'1 ADDR 0002'13 CITY 000252 ZIP
ooozoc END ooozsc AMT 00025F NEWBAL

LITERALS

ADDRESS LITERAL ADDRESS LITER AL ADDRESS

000265 + 000266 000267
000269 X'IOOAOZDO' 00026D NAME 000277
000278 ADDRESS • 000215 X'IOOIO'IOO' 000289
000293 X'IOOIO'llE' 000297 ZIP • 000290
OD02AI OLD BALANCE • 0002AF -.---.--1.-- - OOOZBF
0002Cl TRANSACTION • 000201 -1·---- OOOZDA
0002EB ·---.---,--1.-- .

010 CUSTID
ODO

LITERALS

ADDRESS LITERAL ADDRESS LITERAL ADORE SS

000388 X'IDDIDl06' DODJ8C RC MENU 000392
000393 INVALID CUSTOMER ID DOD3l6 INVALID SlliN 000382

NOTE 115 THE NUMBER OF SYMBOLS USED IN THIS PROGRAM CAUSED THE COMPILER TO RUN LESS
EFFICIENTLY THAN IF AN INCREASED MEMORY SIZE WERE ALLDCATEOo

NOTE 132 NO INPUT ANO/OR OUTPUT SPECIFICATIONS FOUND FOR THIS FILE•

NOTE 205 WARNING: FIELD NAME IS UNREFERENCED,

Figure 9-8. Symbol Table for RCCUST

9-28

• NOTE 13?

RI ADDRESS RI

20 ooool'I Jo
LO 000085 HU
H6 ooou8c H7
U'I 000093 u~

ADDRESS FIEtD

000218 CUSTI D
000257 BALOUE

LITERAL

x•ooo3•
x•10010300•
CITY•ST •
x•1oo'lo200•
X'I00'10100'
NEW BALANCE •

NOTE 20~

NOTE I IS

LITERAL

D • INVALID AMOUNT

•

•

•

•

UP-9206

A.1. GENERAL

SPERRY UNIVAC OS/3 A-1
IMS ACTION PROGRAMMING IN RPG II

MESSAGE FORMATTING

Appendix A. Using Device Independent
Control Expressions and
Field Control Characters

Using DICE for formatting You use device independent control expressions (DICE) to format
input and output messages handled by action programs. These
codes control various operations, such as cursor positioning and
carriage return, on the terminal screen.

Scope of section This appendix supplies all DICE sequences and their
interpretations, and describes how to use them in formatting
messages. In addition, it presents limited information concerning
the use of field control characters.

A.2. FORMATTING MESSSAGES

Other ways to format

messages

There are numerous methods for formatting output messages.
The action program can use:

~ Screen format services. For a complete discussion of how to
use screen format services, see Section 6.

• Device independent control expressions

~ Format control expressions with UNI SCOPE 100 and 200
display terminals

~ Field control characters (FCCs) with workstations and
Universal Terminal System terminals

UP-9206 SPERRY UNIVAC OS/3 A-2
IMS ACTION PROGRAMMING IN RPG II

MESSAGE FORMATTING

DICE and FCCs This appendix supplies information on DICE sequences and how
to use them. We will also include limited information concerning
field control characters since one program, RCMENU, presented
in Section 3 of this manual uses this type of formatting. For

Format control expressions detailed information concerning format control expressions,
consult the UNISCOPE display terminal programmer reference,
UP-7807 (current version).

Use of format control
expressions

When a program uses format control expressions, it must include
a different formatting routine for each type of terminal receiving
the output. Figure A-1 illustrates this.

OUTPUT TEXT AND CONTROL CHARACTERS

• ~TEXT~TEXT~ •

.______.• llllllrExrlllllTExrlllll •.______.• lllllmrllllrmlllll•I ~I
LEGEND

Terminal-Oriented
Control Characters

Figure A-1. Using Terminal-Oriented Control Characters to Format Messages

Handling DICE sequences Using DICE sequences to format messages eliminates this
problem. The remote device handler converts DICE sequences to
control characters for each destination terminal, regardless of
type. Some of the control character functions are:

Functions performed • cursor movement to the first space of a new

•
• - cursor to the beginning of the same line

• ITmlJM'.ll':l!IBI to a specific row and column on a
display

•

•

•

UP-9206

• DICE placement

Coding with DICE

•
Using input DICE

Stripping DICE

•

SPERRY UNIV AC OS/3 A-3
IMS ACTION PROGRAMMING IN RPG II

MESSAGE FORMATTING

You can place DICE sequences anywhere in a message. As you
can see in Figure A-2, DICE sequences simplify message
formatting.

USER
PROGRAM

LEGEND:

Terminal-Oriented
Control Characters

OUTPUT TEXT AND DICE

REMOTE
DEVICE •

HANDLERS

Figure A-2. Using Dice Sequences to Format Messages

For input, control characters received in a message are converted
into DICE sequences by the remote device handler. For certain
terminals, your program can analyze these sequences to
determine cursor position. In addition, input DICE is handy for
message switch applications because control characters in each
input message are converted to DICE sequences. The remote
device handler converts these sequences into the appropriate
control characters for the destination terminal.

When you specify EDIT=c or EDIT=tablename in the ACTION
section of the IMS configuration, input DICE is stripped from your
input message. You should specify EDIT=c or EDIT=tablename
in your IMS configuration. (Specify EDIT=tablename only when
you generate an edit table for the action. See Appendix B.)

UP-9206 SPERRY UNIVAC OS/3 A-4
IMS ACTION PROGRAMMING IN RPG II

MESSAGE FORMATTING

A.3. DICE AND ICAM

Defining DICE at network You can turn DICE on or off when you define your
definition communications network with the DICE operand of the TERM

macroinstruction.

DICE=(ON) is
recommended

where:

DICE=<ON)

The remote device handler creates input DICE according
to your input terminal cursor movements: DICEs are
created automatically.

DICE=<OFF)

The remote device handler doesn't create input DICE.

The default is DICE=(ON). We recommend that you specify
DICE= (ON) or omit this operand because many IMS features
require the use of input DICE. Certain terminal commands and
IMS transaction codes aren't available when you specify
DICE= (OFF).

See ICAM concepts and faciltiies, UP-8194 (current version), for
a detailed explanation of input DICE creation, and the IMS system
support functions user guide, UP-8364 (current version), for
specific IMS considerations.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 A-5
IMS ACTION PROGRAMMING IN RPG II

DICE SEQUENCES

A.4. THE FORMAT OF DICE SEQUENCES

DICE format

Text message alignment

Cursor movement

The format of a DICE sequence is:

select function m field field n
character code

where:

select character
Is a hexadecimal character (10) designating the start of
a DICE sequence.

function code
Defines the device control sequence that is recognized
by the remote device handlers on input. On output, this
code is a 1-character field defining the operation to be
performed on the text message. DICE function codes are
listed in Table A-1.

m field and n field
These fields are treated as parameters to the DICE
function code. Their actual definition varies and is
determined by the individual DICE macroinstruction.
Generally, m relates to vertical positioning and n refers
to horizontal positioning.

These fields may be expressed in absolute values (ma
and na) or relative displacement values (mr and nr). The
absolute values align the text message to the actual
location (row and column) on a page or screen. The
relative displacement values give a relative location from
the present position of the cursor, that is, move cursor
two rows down and one column to the right. All values
are expressed in hexadecimal notation .

UP-9206

DICE INTERPRETATION

111.0~ commands

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

Table A-1 illustrates all the
commands and their explanation.

possible

A-6

DICE input/output

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 1 of 4)

ZO#BEG Beginning os .. I 00 00 Carriage return Not used Not used Not used
of current N
line control p

u
T

------- ------- ---------
0 m n Carnage return Move cursor to dvance m Imes. m line feeds and n
u r r followed by m begmnmg of current spaces to the right.
T line feeds and line. Then move
p n spaces to the cursor m lines down
u right and n columns to
T the right.

ZO#TABS Set tab stop os .. I - Not used Not used Not used Not used
at an N
absolute p
position 4 u

T
------ ------- ------ ---------

0 m n No line feed, Set tab stop at row dvance m Imes. Not used
u a a space to right. m and column n.
T
p
u
T

ZO#FORMA Forms control OA 16 I - - Not used Not used Not used Not used
with clear; N
protected/ p
unprotected u
data T

- - - ------ -------- ------- --------
0 m n Action IS Move cursor to row Action 1s optmnal. 2 Action is optional. 0
u a a opttonal.0 m and column n
T and clear pro-
p tected/ unprotected
u data to end of
T screen.

ZO#ERSLN Erase to 08 16 I - - Not used Not used Not used Not used
end of line N

p
u
T

------ -------- ------- ------ ---
0 m n No action Cursor does not Advance 0 lines. Not used
u a a move. Unprotected
T data to the end of a
p line or to the end
u of the first unpro-
T tected field IS

cleared, whichever
comes first

ZO#POS New ltne control 0416 I 00 00 Carriage return, Cursor return Not used Not used
N ltne feed
p
u
T

-------- ------ - -- - - - -- - - - - - -- - - - - - - -
0 m

r
n Carnage return, Move cursor to dvance (m+ 1) line feed, followed

u r hne feed, fol- begmnmg of next lines. by m line feeds and
T lowed by m line lme. Then move n spaces to the
p feeds and n cursor m lines right.
u spaces to the down and n col-
T right. umns to the right

•

•

•

UP-9206

•

ZO#CUR

ZO#CURC

•
ZQ#COORD

ZO#FORM

•

SPERRY UNIVAC OS/3 A-7
IMS ACTION PROGRAMMING IN RPG II

DICE INTERPRETATION

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 2 of 4)

------- -------- ------- ---------
0 m n Carnage return, Same as 0416 ex- dvance (m+ I) Line feed, followed
u r r line feed, fol· cept area between lines. by m line feeds and
T lowed by m line start and end posi- n spaces to the right

feeds and n t1ons ts cleared.
spaces to the
right

Current position 06,, I 01 00 line feed Line feed End of input card Not used
control N

p
u
T

- - ----- -------- -------- ----------
0 m n m lme feeds Move cursor m Imes Advance m Imes Insert n spaces 1t
u r r and n spaces to down and n columns nons1gmf1cant space
T the right to the right suppression 1s allowed.
p If not, insert n DC3
u characters; m 1s not
T interpreted. 0

Current position 0716 - - Not used Not used Not used Not used
control
with clear

- -------- ---------- --------- ----- --- - --
0 m n m line feeds Insert n spaces 11 Advance m Imes Insert n spaces 11
u r r

and n spaces t nons1gmf1cant space nons1gmfirant space
T the right suppressmn 1s suppression 1s allowed.
p allowed. If not, insert If not. insert n DC3
u n DC3 characters; m characters, m 1s not
T is not 1nterpreted.0 interpreted. 0

Set coordinates 01,. I m n Not used m and n represent Not used Not used
N the start-of-entry
p (SOE) cursor
u coordinates.
T

- ------ --------- -------- ------------
0 m n Action 1s Move cursor to row ct1on is optional. 1 Action is optional. 0
u a a opt1ona1.0 m and column n.
T
p
u
T

Forms control 02,, 01 01 Form feed Form feed Not used Not used

-------- -------- ------- -- -
0 m n Form feed, Move cursor to row op of form and Form feed, hne feed,
u a a carnage return, m and column n. advance to line m and advance to
T and advance to (m-1 hne feeds) hne m and column
p line m and n (m-1 line feeds
u column n (m-1 and n-1 spaces to the
T lme feeds and right)

n-1 spaces to
the right)

UP-9206

DICE INTERPRETATION

SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 3 of 4)

ZO#FORMC forms control
with clear
unprotected
data

03 16 I - - Not used
N
p
u
T

Not used Not used Not used

A-8

Move cursor to row cllon IS opt1ona1CD Action IS optional. CD 0 m n Action IS

U a a optional. CD
T
p
u
T

NOTES:

m and column n,
and clear unpro
tected data to
end of screen.

G) Most character-oriented terminals can be strapped to handle the carriage return (CR)
character and the line feed (LF) character as follows:

• CR

•

1. print mechanism moves to beginning of the same line; or

2. print mechanism moves to the beginning of the same line followed by a
line feed.

LF

1. line feed (no column change); or

2. line feed followed by return of the print mechanism to the beginning of
the new line.

To achieve device independence between terminal types, the character-oriented
terminals must use the first option for CR and the first option for LF if the device
macroinstruction is ZO#CUR or ZO#BEG.

Use the first option when the character-oriented terminals are a part of a message
switch environment.

Certain terminals do not have a form feed capability (i.e., some teletypewriters). For
these terminals, the DICE expressions that specify form feed will line feed.

@ The set coordinates macroinstruction (ZO#COORD) or the forms control with clear
macroinstruction (ZO#FORMC). when acted upon by character-oriented or
page-printing terminals, will vary in its action, depending on the usage of the DICE
keyword parameter of the TERM macroinstruction at network definition time:

TERM ... ,DICE? FORMS

When FORMS is specified, the set coordinates macroinstruction is interpreted as the
forms control macroinstruction.

When NEWLINE is specified, the set coordinates macroinstruction and the forms
control with clear macroinstruction result in a carriage return, line feed for
character-oriented terminals, or advance one line for page-oriented terminals; m and
n are not interpreted.

When the DICE parameter is not specified, the default option is NEWLINE.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 A-9
IMS ACTION PROGRAMMING IN RPG II

DICE INTERPRETATION

Table A-1. DICE Input/Output Commands, Codes, and Device

Interpretation (Part 4 of 4)

@ The UNISCOPE display terminal suppresses nonsignificant spaces on each line
(except for the line containing the cursor) when text is transmitted to the processor
or printed locally on the COP or TP.

@)

Your program may send data to the UNISCOPE screen containing significant blank
segments that include the last column of the screen. If this data is transmitted from
the terminal to the processor or is printed locally on the COP or TP, the blank
segments must consist of nonspace characters that are nondisplayable. The DC3
character meets these qualifications. The ICAM interface provides your program
with the capability to prevent nonsignificant space suppression on the UNISCOPE
display terminal. The "current position control with clear" is the only DICE
macroinstruction that can perform a clear function if your program is preventing
nonsignificant space suppression.

NOTE:

The ASCII-to-EBCDIC translation table is modified so that the DC3 character is
translated to space 40,6 for input from the UNISCOPE display terminal.

Using DICE function code 09 16 for setting a tab stop, m=O and n=O results in a
tab stop being placed at the current cursor location (no cursor positioning is
performed). This applies to UNISCOPE and UTS devices only. For teletypewriters
and OCT 500 terminals, a space character is inserted.

When m or n is greater than the maximum allowable m or n, action varies
depending on the remote terminal:

• UNISCOPE display terminals - wraparound occurs on the screen.

• Character-oriented terminals - gives different results depending on device
characteristics.

A.5. INTERPRETING DICE SEQUENCES

Device independent

Factors controlling
interpretation of
DICE sequences

When using DICE, your program doesn't need to be aware of the
terminal type. A particular DICE denotes the same positioning on
any terminal. There are some exceptions that result from terminal
limitations.

The interpretation of a DICE by the remote device handler is
controlled by:

~ DICE function code

~ DICE m and n fields

~ The terminal involved

~ The particular device on the terminal being used

UP-9206 SPERRY UNIVAC OS/3 A-10
IMS ACTION PROGRAMMING IN RPG II

DICE INTERPRETATION

Terminals supporting DICE The remote device handlers currently provide device-independent
support for three classes of remote terminal devices:

Hard copy, 1. Hard copy character-oriented devices, such as the SPERRY
character-oriented devices UNIVAC Data Communications Terminal 475 (OCT 475),

Data Communications Terminal 500 (OCT 500), Data
Communications Terminal 524 (OCT 524), and Data
Communications Terminal 1000 (OCT 1000), and TELETYPE
teletypewriter models 28, 32, 33, 35, 37.

Hard copy, page 2. Hard copy page printer type device, such as the SPERRY
printer devices UNIV AC 1004 Card Processor System, Data

Communications Terminal 2000 (OCT 2000), and
9200/9300 Systems, and the IBM 2780.

CRT terminals 3. CRT-type terminals, such as the UNISCOPE 100 and 200

DICE primary devices

and the UTS 400 Display Terminals.

Table A-2 defines the primary output device and the primary
input device for each terminal type.

Table A-2. DICE Primary Devices

Character-oriented terminals Printer Keyboard

Page printing terminals Printer Card reader

CRT terminals Screen Keyboard

Auxiliary devices supported In addition to the specified primary devices, each terminal has the
ability to support one or more auxiliary devices. The auxiliary
devices suggested by each terminal are listed in Table A-3.

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 A-11
IMS ACTION PROGRAMMING IN RPG II

DICE INTERPRETATION

Table A-3. DICE Usage for Auxiliary Devices

UNISCOPE •
•
•

OCT 1000 •
•

OCT 500/TTY •
OCT 524 •

Batch terminals •

NOTES:

Tape cassette (TCS)
Communications output
printer (COP)
800 terminal printer (TP)

Card reader/card punch
Paper tape reader /punch

Paper tape reader/punch

Tape cassette (TCS) in paper
tape read and write only

Punch

DICE is applied to the
COP. CD

DICE is applied as if the
output/input is to/from
the primary device, even
though it is for the
auxiliary
device.@

DICE is used for
end of network buffer
sentinel.
No forms control action
is taken.

When the print transparent option is not used, DICE is applied to the UNISCOPE
screen even though the output is sent to an auxiliary device of the UNISCOPE
terminal. In this case, the format of the data printed on the COP or TP is identical to
the screen format. Nonsignificant space suppression by the UNISCOPE terminal may
have to be prevented to keep the formats identical.

The full capability of DICE cannot be applied to the COP because of hardware
characteristics. All data to a UNISCOPE auxiliary device passes through the
UNISCOPE terminal. When DICE is applied to the COP, the use of print transparent
mode means that no carriage returns are transferred to the COP. Line feeds and
form feeds take a storage position in the UNISCOPE storage and are nondisplayable.
These characters are passed to the COP where:

• an LF causes a line feed followed by return of the print mechanism to the
beginning of the new line; and

• an FF causes a page eject and positioning of the print mechanism at the
beginning of the first line of the form.

The COP has no tabbing capability.

These characteristics are reflected in the interpretation of DICE output function
codes for the COP as shown in Table A-2.

For messages sent to a UNISCOPE auxiliary device with transparent transfer, the
cursor to home (ESC e) sequence is inserted at the beginning of the text by the
RDH.

The control characters that are generated from the DICE macroinstructions are
always created for the primary device of a character-oriented device, even though
your program is sending to an auxiliary device. The message and these control
characters (carriage returns, line feeds, form feeds, and spaces) will be
punched/written by the output auxiliary device that was specified by your program
or was switch-selected by the terminal operator. If the punched/written data is later
read by the terminal's input auxiliary device, the carriage returns, line feeds, and
form feeds are converted to input DICE as specified in Table A-1.

UP-9206 SPERRY UNIV AC OS/3 A-12
IMS ACTION PROGRAMMING IN RPG II

CODING DICE SEQUENCES

A.6. USING DICE IN AN RPG II ACTION PROGRAM

Coding DICE sequences

Example

To format an output message, you enter DICE sequences on the
output form in columns 45-70, along with the message text. The
remote device handler takes the DICE sequence and converts it
into the form required by the destination terminal. The
4-character DICE sequence determines how the output message
looks when it appears at the terminal. The DICE sequences
themselves never appear on the terminal screen.

Figure A-3 shows how an action program generates a formatted
output message using DICE sequences. Figure A-4 shows how
the message looks when it appears at the terminal.

Figure A-3. Using DICE to Format an Output Message

COLUMN 30 3234 38

ROW

10--t-----vo SE I CE SEQUENCES

12 N THE OUTPUT FORM

14-+--------TO F RMAT YOUR

16 MESSAGE

Figure A-4. How DICE Formatted Message in Figure A-3 Appears at the Screen

•

•

•

•

•

•

UP-92Q6

Description of DICE
sequences (Fig. A-3)

SPERRY UNIVAC OS/3 A-13

IMS ACTION PROGRAMMING IN RPG II

CODING DICE SEQUENCES

Here is a brief description of the DICE sequences used in Figure
A-3.

1QQAQA 1E

10Q10C2Q

1QQ4Q122

1QQ8Q226

The select character 1Q signals the start of the DICE sequence.

The function code (QA) clears all protected and unprotected data from
the terminal screen.

The m field (QA) and the n field (1 E) pos1t1on the cursor to row 1 Q,
column 3Q. Notice that the end position for the DICE sequence is 2Q.
Remember that the DICE sequence is a 4-character code and that the
output message area header occupies positions 1-16.

The select character 1 Q is always the same and signals the start of the
DICE sequence. The function code (Q 1) sets coordinates as directed by
the m and n fields of the DICE sequence.

The m field (QC) and the n field (2Q) position the cursor at row 12,
column 32.

The select character is the same as before. The function code (Q4)
moves the cursor to the beginning of the next line and then sets the
coordinates as directed by the m and n fields.

The m field (Q 1) and the n field (22) position the cursor one row below
where it presently is and in column 34.

The select character is again the same. The function code (Q8) returns
the cursor to the beginning of the current line. The m field (Q2) and the
n field (26) position the cursor two lines below the current line and in
column 38 .

UP-9206 SPERRY UNIVAC OS/3 A-14
IMS ACTION PROGRAMMING IN RPG II

FIELD CONTROL CHARACTERS

A. 7. USING FIELD CONTROL CHARACTERS

The FCC sequence format is:

Field control character format FCC SEQUENCE

TEXT US N TEXT

Characters in the FCC sequence are defined as follows:

Defining FCC characters R

•
Is the control character that signals the start of an FCC
sequence. It corresponds to a hexadecimal 1 F .

Is the number of the row in which the FCC is placed.

Is the number of the column in which the FCC is placed.

Is the hexadecimal value placed in the sequence to
define bits 4, 5, 6, and 7 of the FCC. Table A-4 lists
the hexadecimal codes you can use.

Is the hexadecimal value placed in the sequence to
define bits 0, 1, 2, and 3 of the FCC. Table A-5 lists
the hexadecimal codes you can use.

Table A-4. Hexadecimal Codes Used as M in the FCC Sequence (Part 1 of 2)

0 30 Tab stop, normal intensity, changed field*

31 Tab stop, display off (no intensity), changed field*

2 32 Tab stop, low intensity, changed field*

3 33 Tab stop, blinking display, changed field*

4 34 Tab stop, normal intensity

5 35 Tab stop, display off (no intensity)

6 36 Tab stop, low intensity

7 37 Tab stop, blinking display

8 38 Not tab stop, normal intensity, changed field*

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC o:::,'3 A-15
IMS ACTION PROGRAMMING IN RPG II

FIELD CONTROL CHARACTERS

Table A-4. Hexadecimal Codes Used as M in the FCC Sequence (Part 2 of 2)

9 39 Not tab stop, display off (no intensity), changed field*

3A Not tab stop, low intensity, changed field*

38 Not tab stop, blinking display, changed field*

< 3C Not tab stop, normal intensity

30 Not tab stop, display off (no intensity)

> 3E Not tab stop, low intensity

? 3F Not tab stop, blinking display

• Normally, when an FCC is generated by the host processor, the changed-field designator
is cleared. However, the host processor can generate individual FCCs with the
changed-field designator set; this capability may be used for selective transfer or
transmission of fields which were not in fact changed by the terminal operator. By
sending an ESC u code to the terminal in a text message, the host processor can clear
the changed-field designators in all FCCs without regenerating each FCC and without
altering the data within the fields .

Table A-5. Hexadecimal Codes Used as N in the FCC Sequence

0 30 Any input allowed

31 Alpha only allowed

2 32 Numeric only allowed

3 33 Protected (no entries and no changes allowed)

4 34 Any input allowed, right-justified

5 35 Alpha only allowed, right-justified

6 36 Numeric only allowed, right-justified

For detailed information on using field control characters,
consult the UTS 400 programmer reference, UP-8359 (current
version) .

•

•

•

•

•

•

UP-9206

B.1. PURPOSE

SPERRY UNIVAC OS/3 B-1
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR CODING RULES

Appendix B. Generating Edit Tables

The edit table generator offers a convenient means for
converting unformatted input received from terminal operators
into fixed formats required by action programs and checking this
input for types of data, value ranges, and presence of required
fields.

Edit table generator output The output of the edit table generator is written to the named
record file (NAMEREC). From there it is loaded at the
appropriate time by IMS. Each edit table is associated with a
particular action at configuration time via the EDIT parameter in
an ACTION section. The edit table utility can be run either
before or after configuration, but the NAMEREC file must be
previously initialized.

B.2. STATEMENT CONVENTIONS AND CODING RULES FOR EDIT TABLE
GENERATOR INPUT

Edit table generator input Input to the edit table generator is in the form of keyword
parameters parameters that define the edit table, the fields you want edited,

and the edit criteria for each field.

Statement conventions In the format for edit table parameters, these conventions are
observed:

Capital letters represent entries that must be coded exactly
as shown.

Lowercase words are generic terms representing data that
you must supply.

Entries within braces represent choices, of which you select
one.

UP-9206 SPERRY UNIVAC OS/3 B-2
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR CODING RULES

Data within brackets represents optional entries.

Shaded entries are default values.

To code input to the edit table generator, apply the following
rules:

Sequence numbers 1. Input entries must contain sequence numbers in columns 77
through 80, in ascending order. The lowest permissible
sequence number is 0001.

Where to code parameters 2. Parameters can be coded in any column between 1 and 76.

Spanning lines

Blanks are ignored and are permitted anywhere in the edit
table definition.

Example:

SEP=;ETAB=ETABTST;KEY=1;POS=0;MAN=Y;LEN=5;
KEY=Z;FIL= ;JUS=L;LEN=15;MAN=Y;TYP=A;POS=5;
KEY=3;FIL= ;JUS=L;LEN=20;POS=20;TYP=M;;

77 80

0100
0200
0300

3. Specifications for an edit table and for each field can span
more than one line. However, a keyword and its value must
be contained on one line.

Example:

INCORRECT

SEP=;ETAB=ETABTST;KEY=1;POS= 0100
0;MAN=Y;LEN=5;MAN=Y;LEN=5;; 0200

KEYWORD AND VALUE
NOT ON SAME LINE

CORRECT

SEP=;ETAB=ETABTST;KEY=1;POS=0; 0100

•

•

•

•

•

•

UP-9206

New line

SPERRY UNIVAC OC:/3 B-3
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR CODING RULES

4. A new edit table specification must start on a new line. Each
field need not begin on a new line.

Example:

INCORRECT

SEP=;ETAB=ETABTST;KEY=1;POS=0; 0100
MAN=Y;LEN=5; 0200
KEY=2;FIL= ;JUS=L;LEN=15;MAN=Y; 0300

0400
0500

CORRECT

SEP=;ETAB=ETABTST;KEY=1;POS=0;
MAN=Y;LEN=5;KEY=2;FIL= ;JUS=L;

0100
0200
0300
0400
0500

Field separator character 5. The field separator character specified by the SEP keyword
parameter must be used as the field separator throughout
the edit table specification, as well as the input message to
be edited. Double separator characters indicate the end of

Changing separator character the edit definition. A new edit table can establish a different
separator character .

Example:

INCORRECT

SEP=;ETAB=ETABTST,KEY=1,POS=0; 0100
MAN=Y;LEN=5; 200

END OF EDIT
DEFINITION
NEEDS DOUBLE
SEPARATOR

SAME FIELD
SEPARATOR
NOT USED
THROUGHOUT
EDIT TABLE
DEFINITION

CORRECT

SEP=;ETAB=ETABTST;KEY=1;POS=0;

ESTABLISHES A NEW
SEPARATOR CHARACTER

0100
0200
0300
0400

UP-9206 SPERRY UNIVAC OS/3 B-4
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR CODING RULES

Order of parameters

Numeric values

6. The SEP, ETAB, and KEY parameters must be coded in the
prescribed order; the remaining keyword parameters can be
specified in any order. SEP and ETAB are coded once for
each edit table. The remaining parameters are repeated for
each field in the input message to be edited.

INCORRECT CORRECT

SEP=;POS=0;LEN~=1; 0100 SEP=;ETAB=ETABTST;KEY=1;POS=0; 0100
ETAB=ETABTST;; 0200 MAN=Y;LEN=5;; 0200 ----ETAB AND KEY PARAMETERS

DON'T IMMEDIATELY FOLLOW
SEP

7. Numeric values are pos1t1ve unless preceded by a minus sign
(-). The plus sign (+) is not permitted in numeric values.

Example:

INCORRECT

SEP=;ETAB=TABL1;KEY=1;LEN=5; 0100

PLUS SIGN
NOT ALLOWED

NUMBER OF CHARACTERS
EXCEEDS LENGTH GIVEN
IN LEN PARAMETER

CORRECT

SEP=;ETAB=TABL1;KEY=1;LEN=5;
POS=0;MAX=20000;MIN=-1;;

0100
0200

•

•

•

•

•

•

UP-9206 SPERRY UNIV AC OS/3 B-5
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR INPUT

B.3. EDIT TABLE GENERATOR PARAMETERS

Input parameter format

Separator character
(SEP)

Edit table name
(ETAB)

The input parameters you give to the edit table generator should
follow this format:

SEP=separator-character

ETAB=tablename

KEY={key~o~d }
pos1t1on

LEN=field-length

POS=starting-position

[FIL=fill-character]

[MAX=maximum-value]

[MIN=minimum-value]

The separator parameter specifies the field separator character
for both the edit table definition and the input message to be
edited. It cannot be a blank, equal sign, or minus sign. This
parameter is required, must be the first entry on the first line of
the edit table definition, and can be specified only once per edit
table.

The edit table name parameter names the edit table and must
immediately follow the SEP parameter. This specification
associates the edit table with an action at configuration, via the
EDIT=tablename option in the ACTION section .

UP-9206 SPERRY UNIV AC OS/3 8-6
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR INPUT

Key field identification
(KEY)

Positional fields

Keyword fields

Edited field length
(LEN)

The key field parameter identifies the input message field for
which edit criteria are specified in subsequent parameters and
must be the first parameter specified for each field. The edit
table generator associates all subsequent specifications with this
field until it encounters another KEY parameter. Input fields can
be positional or keyword. Positional fields precede keyword
fields.

KEY= position specifies the relative position of the field as it
appears in the input message. Positional fields must be defined in
numeric order, starting with 1.

KEY= keyword specifies a 1- to 3-character alphanumeric
identification. The first character must be alphabetic for a
keyword field in the input. The terminal operator enters keyword
fields in the form keyword=data. For example, when you specify
KEY=OLD, the terminal operator might enter OLD=57500 for
this field. Once a keyword field is identified in the edit table
definition, all subsequent fields must be defined as keyword
fields.

Figure B-1 shows the correct coding for positional and keyword
parameters to the edit table generator.

SEP=;ETAB=TABL1; EY=1·POS=O;MAN=Y;LEN=5;
~-FIL= ·JUS=L·LEN~15·MAN=Y·TYP=A·POS=5· ~I I I I I I I

{
KEY=NEW;FIL= ;JUS=L;LEN=10;POS=20;TYP=M;
KEY=OLD·FIL= ;JUS=L LEN=10 POS=30 TYP=M

Figure B-1. Edit Table Parameter Description with Positional and Keyword
Parameters

The length parameter specifies the length of the edited field and
is a required parameter. You may specify a maximum of 255
characters for alphanumeric fields and four characters for binary
fields. Ten characters is the maximum length for numeric fields
unless you specify both MIN and MAX parameters for this field.
If you identify a numeric field in the action program as packed
decimal, you can specify up to 16 characters in the LEN
parameter.

•

•

•

•

•

UP-9206

Field-length longer than
screen width

Binary and packed field
lengths

Transaction codes under
five characters

SPERRY UNIVAC OS,'3 B-7
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR INPUT

NOTES:

1. If the field-length is larger than the width of the screen on
which data is to be entered, IMS removes the DICE code at
the end of each line of terminal input and replaces it with a
blank character. You must provide for these additional blank
characters in the action program and include them in the
field-length specified by the LEN parameter.

2. The length specified for binary (TYP=B) and packed
(TYP=P) fields is the maximum length for the field in the
input message, not the length of the field in your program.
For example, if a field is defined as packed .with a LEN=3,
the largest number the terminal operator can key in is 999,
even though 1000 may be represented in a packed field in 3
bytes.

3. If the transaction code (the first
field in the input message) is less
than five characters, the terminal
operator must key in a space
before entering the separator
character for the next field. You
must include the space in the
field-length specified by the LEN
parameter.

TRANSACTION CODE IS PAY
SO OPERA TOR ENTERS

Transaction code field The length of the first field can be greater than five
larger than five characters characters, but only the first five characters are used in the

transaction code. The LEN parameter should specify the
actual length of the field.

Field starting position The starting pos1t1on parameter specifies the starting pos1t1on of
f POSJ this field as it appears in the edited message and is a required

parameter. The first field starts at 0 .

UP-9206 SPERRY UNIV AC OS/3 B-8
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR INPUT

Fill character
identification (FIL)

Field justification
(JUS)

Mandatory field
(MAN)

The fill character parameter optionally specifies the fill character
inserted in the edited field when the data the terminal operator
enters as input is shorter than the field-length specified by the
LEN parameter. The default fill character is 0. If you want to fill
with spaces (X'40'), code either FIL= or FIL= 6; i.e., you can
include or omit a space before the separator character for the
next field. Binary fields are always filled with binary zeros;
therefore, this parameter is ignored if specified for a binary field.

JUS = L left-justifies this field in the edited message. Binary and
packed fields are always right-justified; therefore, this parameter
is ignored if specified for binary or packed fields.

JUS = R right-justifies this field in the edited message and is the
default assumed.

MAN= N indicates that this field is not mandatory in the edited
message for input to be acceptable.

MAN= Y indicates that this field is mandatory in the edited
message.

Maximum value limitation The maximum value parameter specifies the maximum value
fMAXJ allowed for the field in the input message. This parameter applies

only to numeric fields. The highest value allowed is 2 to the
thirty-first power minus 1 (23 1- 1). The number of characters in
this value must not exceed the length specified by the LEN
parameter.

Minimum value limitation
(MIN)

The minimum value parameter specifies the minimum value
allowed for the field in the input message. This parameter applies
only to numeric fields. The lowest value allowed is minus 2 to
the thirty-first power minus 1 (-(23 1- 1)) . The number of characters
in this value must not exceed the length specified by the LEN
parameter.

•

•

•

UP-9206

•
Data type (TYP)

•

•

SPERRY UNIV AC OS/3 B-9
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR INPUT

The type parameter describes the type of data to be contained in
the edited field.

TYP=A specifies alphabetic data. A field defined to the editor as
alphabetic is treated as an alphanumeric field.

TYP=B specifies binary data.

TYP=M specifies alphanumeric data and is the default value.

TYP=N specifies numeric data.

TYP=P specifies packed decimal data .

UP-9206 SPERRY UNIVAC OS/3 B-10
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR EXECUTION

8.4. EXECUTING THE EDIT TABLE GENERATOR

Job control stream

When execution is
successful

Once you code input parameters describing the edit table format
and the NAMEREC file is initialized, you can execute the ZH#EDT
edit table generator using the control stream illustrated in Figure
B-2.

II JOB ADDEDT,,A000
II DVC 20 II LFD PRNTR
I I OPT ION DUMP
II DVC 50 II VOL DS9999 II LBL NAMEREC,DS9999 II LFD NAMEREC
11 EXEC ZH#EDT
1$

input parameters

I*
I&
II FIN

Figure B-2. Sample Execution of Edit Table Generator

If the input definition is acceptable, the generated edit table is
written to the NAMEREC file and the following message is
issued;

tablename ADDED

Duplicate edit table name If the edit table has the same name as a table already existing in
the NAMEREC file, the new edit table replaces the existing table,
and the following message is issued:

Errors in edit table
generation

TABLE ADDED, DUPLICATE DELETED

If errors cause rejection of the edit table, the following message
is issued:

tablename REJECTED

•

•

•

UP-9206

• UPS/ byte values

•

•

SPERRY UNIVAC OS/3 B-11
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR EXECUTION

Another way to determine edit table errors is to look at the UPSI
byte. The following UPSI byte values pertain to the edit table
error status:

00

40

80

No errors

Warning. ZH#EDT continues processing edit table input
parameters but no edit table is built.

Fatal error. Edit table processing terminates.

UP-9206 SPERRY UNIVAC OS/3 B-12
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR ERRORS

8.5. ERROR PROCESSING

Warning errors

Fatal errors

Error message format

When the edit table generator encounters a file 1/0 error or
certain types of input errors, it terminates and prints a message
in the output listing. The resulting value in the UPSI byte is 80.
Most types of input errors do not cause termination. Processing
and validation continues, but an error message is printed and the
edit table is rejected. Input specifications for the edit table
generator are not printed in the output listing. This type of error
results in an UPSI byte value of 40.

If an 1/0 error occurs while reading input to the edit table
generator, the following message is issued, and the program
terminates with an UPSI byte value of 80:

INPUT READ ERROR, SCAN TERMINATED

If an error occurs while opening, reading, or closing the named
record file, the following error message is issued and the
program terminates with an UPSI byte value of 80:

FILE ERROR, SCAN TERMINATED

Errors in the input statements are reported in the following
format:

nnnn cc error-message-text

where:

nnnn

cc

Is the sequence number in columns 77 through 80 of
the card containing the error.

Is the column number of the beginning of the input text
that is in error. This column number is suppressed if the
error is detected during final validation of all parameters
for a given field.

error-message-text
Is the description of the error as listed in Table B-1.

•

•

•

UP-9206

• Error message example

•

•

SPERRY UNIVAC OS/3 B-13
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR ERRORS

An example of an input statement error and the resultant error
message follows:

Input:

SEP=,ETAB=EDIT1,KEY=1,LEN=5,POS=0,JUS=X,MAN=Y, 0002

Error message:

0002 39 JUSTIFICATION ILLEGAL

Table B-1 lists alphabetically the message texts inserted into the
input statement error message. In each case, processing
continues, unless otherwise indicated in the explanation column.

Table B-1. Edit Table Diagnostic Messages (Part 1 of 2)

B TYPE LENGTH GR THAN 4

CARDS NOT IN SEQUENCE

DOUBLE SEPARATOR MISSING

DUPLICATE NAME

FIELD NOT ACCEPTED, KEYS STARTED

FIELD NOT IN SEQUENCE

FILLER MUST BE SINGLE CHARACTER

ILLEGAL FIELD TYPE

INV AUD MAN SPECIFICATION

INV AUD NAME

INVALID SEPARATOR

JUSTIFICATION ILLEGAL

KEYWORD ET AB MISSING

KEYWORD INVALID

KEYWORD KEY= MISSING

KEYWORD SEP= MISSING

LEN OR POS EXCEEDS MAX

Four characters (one full word) is maximum

Scan terminated, run aborted*

Warning only; end-of-file encountered while
searching for separator

Duplicate name for nonpositional field

Positional parameters not allowed after
nonpositionals started

Positional parameters must be in sequence

Self-explanatory

Only A, B, M, N, or P accepted

Only Y or N accepted

Name too long or contains invalid characters

Scan terminated, run aborted; = and - are not
allowed as separators*

Only R or L accepted

Self-explanatory

Self-explanatory

Self-explanatory

Scan terminated, run aborted*

Maximum length is 255; maximum position is
32,767

UP-9206 SPERRY UNIVAC OS/3 B-14
IMS ACTION PROGRAMMING IN RPG II

EDIT TABLE GENERATOR ERRORS

Table B-1. Edit Table Diagnostic Messages (Part 2 of 2)

LEN OR POS MISSING

LEN ZERO

MAX OR MIN ABSOLUTE VALUE
TOO LARGE

N TYPE LENGTH GR THAN 10

NO DEFAULT FOR THIS FIELD

NO FIELDS DEFINED

P TYPE LENGTH GR THAN 16

RE PEA TED FIELD

SEP ARA TOR CHARACTER MISSING

SEQUENCE NUMBER NOT NUMERIC

= SIGN MUST FOLLOW KEYWORD

TOO MANY FIELDS

xxx OVERLAPS yyy

Required parameters

Length must be at least

2 31 -1 is largest absolute value allowed

Ten characters is maximum unless MAX and
MIN both specified

Parameter value must be specified

Empty table not allowed

Sixteen characters maximum for packed
decimal field

Parameter already specified

Self-explanatory

Scan terminated, run aborted*

Self-explanatory

Scan terminated, run aborted; output buffer
overflow*

Warning only; overlapping fields permitted

* These errors set the UPSI byte to 80; all other errors in this table result in an UPSI
byte value of 40.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC O~ /3 B-15
IMS ACTION PROGRAMMll\IG IN RPG II

ENTERING INPUT MESSAGE

B.6. ENTERING INPUT MESSAGES FROM TERMINAL

When the terminal operator enters an input message for which
you've generated an edit table, an IMS component called the
expanded input editor processes it. The following considerations
apply when entering input messages from the terminal:

Transaction code first • When an input message contains a transaction code, the
transaction code must always be the first field. If the
transaction code is less than five characters, enter a space
before keying in the separator character.

Beginning positional fields •

Omitting positional fields

Keyword fields

Invalid plus sign

Error messages screen
placement

Continuing fields

•

•

•

•

Ending input with positional •
parameters

Positional fields begin with the first nonblank character and
extend to the next separator. Positional fields must appear
in the same order as specified in the edit table definition. If
you omit a positional field, enter an additional separator
character in its position. A positional field entered as input
may not contain an equal sign.

Keywords must be followed by an equal sign with no
intervening blanks. Data starts immediately after the equal
sign and extends to the next field separator .

Numeric values are positive unless preceded by a minus
sign. The plus sign (+) is an invalid character.

Error messages are displayed on the first line of the display
terminal; therefore, we recommend that you start input
messages on the second line so that the input is not erased
by an error message.

If you continue fields from one line to another, IMS
removes the DICE code at the end of each line and replaces
it with a blank character, which it sends to the action
program as part of the data. Always enter on one line
fields that don't exceed the width of the screen. If a field
exceeds the screen width and must be continued from one
line to another, avoid splitting a word between lines.

If the terminal input ends with a positional parameter (no
keyword parameters are specified), enter a separator
character at the end of the input message; otherwise, the
input message could be partially deleted. A correct terminal
entry is:

INFOR,BIOLOGY,CLASS2,MARY J. BLISS,

When terminal input ends with a keyword parameter, this is not
necessary.

UP-9206 SPERRY UNIVAC OS/3 B-16

IMS ACTION PROGRAMMING IN RPG II

SAMPLE EDIT TABLE APPLICATION

B.7. SAMPLE EDIT TABLE APPLICATION USING POSITIONAL AND KEYWORD
PARAMETERS

Example edit table input Figure B-3 and Table B-2 describe sample input to the edit table
generator for an accounts receivable application and the format in

which the edited input is delivered to the action program.

TYP=B,MAN=Y,FIL=O,JUS=R,

0002
0003
0004

Figure B-3. Sample Input to Edit Table Generator and Format of Input Delivered to
Action Program

Table B-2. Description of Sample Input to Edit Table Generator (Part 1 of 2)

ETAB=EDIT1

KEY=1

LEN=5

POS=O

MAN=Y

KEY=2

LEN=20

POS=5

FIL=

JUS=L

MAN=Y

The field separator is a comma for
specification and input from the terminal.

The edit table name is EDIT 1 .

The first field described is positional. It must be the first
field in the input message.

The edited field is five characters long.

In the edited message the field begins in position 0.

The field must be present for the message to be
acceptable.

The field is positional. It must be the second field in the
input message.

The edited field is 20 characters long.

In the edited message the field begins in position 5.

The field is to be blank filled in the edited message.

The field is to be left-justified in the edited message.

The field must be present for the message to be
acceptable.

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 B-17
IMS ACTION PROGRAMMING IN RPG II

SAMPLE EDIT TABLE APPLICATION

Table B-2. Description of Sample Input to Edit Table Generator (Part 2 of 2)

LEN=40

POS=25

FIL=

JUS=L

KEY=AMT

LEN=4

POS=65

MIN=1000

TYP=B

MAN=Y

FIL=O

JUS=R

KEY=SN

LEN=6

POS=69

FIL=

JUS=R

The field is positional. It must be the third field in the input
message.

The edited field is 40 characters long.

In the edited message the field begins in position 25.

The field is to be blank filled in the edited message.

The field is to be left-justified in the edited message.

The field is a keyword field. AMT=n must be specified in
the input message.

The edited field is four characters long.

In the edited message the field begins in position 65.

The minimum level allowed for the message to be
acceptable is $10.00 (entered as 1000).

In the edited message the field is to be converted to binary.

The field must be present for the message to be
acceptable .

The field is to be zero filled in the edit message. (This
parameter could have been omitted.)

The field is to be right-justified in the edited message. (This
parameter could have been omitted.)

The field is a keyword field.

The edited field is six characters long.

In the edited message, the field begins in position 69.

The field is to be blank filled in the edited message.

The field is to be right-justified in the edited message. (This
parameter could have been omitted.)

End of edit definition .

UP-9206 SPERRY UNIVAC OS/3 B-18
IMS ACTION PROGRAMMING IN RPG II

SAMPLE EDIT TABLE APPLICATION

Terminal input

Edited message received
by action program

Terminal input

Edited message received
by action program

Explanation

Terminal input

Output message

Explanation

The following examples show freeform input from the terminal
and the resulting messages sent to the action program in
accordance with the edit table specifications or, in case of error,
the output message displayed at the terminal. Note that in the
edited messages, the 4-character binary field specified for the
AMT entry is represented by an underlined, 4-hexadecimal-digit
field. Spaces between each delimiter and the first character of
the next field are ignored.

Example 1:

PAYMT, JOHN D. SMITH,1112 BREEZE DR. PHILA.PA. 19160,

AMT=2500,SN=123456

PAYMT JOHN6D. 6SMITH666666611126BREEZE6DR. 6PHI LA. 6PA.

61916066666666~2~~123456

Example 2:

PAYMT,JOHN D. SMITH,,SN=123456,AMT=2500

PAYMT JOHN6D. 6SMITH666666666666666666666666666

66666666666666666666~2~~123456

The address field wasn't specified as mandatory in the edit
table input and is omitted here; an additional comma is
coded in its position. The AMT and SN fields are keyword
fields and need not be entered in the order defined in the
edit table input.

Example 3:

PAYMT ,JOHN D. SMITH,1112 BREEZE DR. PHILA. PA. 19160,

AMT=2500,SN=123456

ILLEGAL INPUT

The transaction code field is longer than the LEN
specification.

•

•

•

UP-9206

•
Terminal input

Output message

Explanation

Terminal input

Output message

Explanation

•

•

SPERRY UNIV AC OS/3 B-19
IMS ACTION PROGRAMMING IN RPG II

SAMPLE EDIT TABLE APPLICATION

Example 4:

PAYMT,JOHN D. SMITH,1112 BREEZE DR. PHILA. PA.19160,
AMT=700,SN=123456

AMT IS BELOW MIN

Edit table specifies AMT must be at least 1000.

Example 5:

PAYMT, JOHN D. SMITH,1112 BREEZE DR. PHILA. PA. 19160,
SN=123456

AMT MISSING

AMT was specified as mandatory.

•

•

•

•

•

•

UP-9206

Completion status codes

SPERRY UNIVAC OS/3 C-1
IMS ACTION PROGRAMMING IN RPG II

STATUS AND DETAILED STATUS CODES

Appendix C. Summary of IMS
Error Codes

This appendix presents all the error codes returned by IMS as a
result of function calls made by action programs.

Table C-1 lists and defines the values returned to the
status-code field of the program information block. This value
indicates the completion status of the function request.

Defined record management Table C-2 lists and describes values returned to the
status codes detailed-status-code field with status code 1 (invalid key) when

errors occur on a defined file .

Invalid request status codes Table C-3 lists and describes values returned to the
detailed-status-code field when the status code returned is 3
(invalid request).

Internal message control
status codes

Screen formatting status
codes

Table C-4 lists and describes values returned to the
detailed-status-code field when the status code returned is 6
(internal message control error).

Table C-5 lists and describes values returned to the
detailed-status-code field when the status code is 7 (screen
format services error) .

UP-9206 SPERRY UNIVAC OS/3 C-2
IMS ACTION PROGRAMMING IN RPG II

STATUS CODES

Table C-1. Values Returned to the Status-Code Field after Function Requests •
Invalid key or record number

End of file or unallocated optional file

Invalid request

1/0 error

Violation of data definition

Internal message control error

Screen format error

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 C-3
IMS ACTION PROGRAMMING IN RPG II

DEFINED FILE ERROR CODES

Table C-2. Detailed Status Codes for Defined Record Management Errors
(Invalid Key - Status Code 1)

Identifier too long

Identifier out of range

statement in
the item definition.

Identifier may be from 1 to 30
alphanumeric characters long.

Value entered at terminal isn"t in
range of VALUE clause specified .

UP-9206 SPERRY UNIVAC OS/3
IMS ACTION PROGRAMMING IN RPG II

INVALID REQUEST ERROR CODES

Table C-3. Detailed Status Codes for Invalid Requests (Part 1 of 2)

Function code out of legal
range

Incorrect parameter value

Shared record not in use by
this transaction

File not defined

File not open

Function invalid for type
of file

Record(s) not locked

Function sequence for an
update operation is invalid

Illegal function requested

File not assigned to this

Required module not included
in configuration

Capacity exceeded on ADD
operation

Insufficient space in main

Update not permitted in
configuration

Please submit a software user
report (SUR) or contact your
Sperry Univac representative.

Please submit a SUR or contact
your Sperry Univac representative.

Please submit a SUR or contact
your Sperry Univac representative.

This code does not apply to user
action program requests.

A file named in a request to IMS
was not defined at configuration.

A file named in a request to IMS
was closed by the master terminal
(ZZCLS) or by data management as
the result of an unrecoverable error.

The function specified in a
request to IMS is not valid for
the type of file named. For
example, a SETLL for a nonindexed file.

Please submit a SUR or contact
your Sperry Univac representative.

Input did not precede output.

The requested function is not
consistent with the DTF or RIB
parameters in the configuration.

Same as code 05

A request was made to IMS that
required a module not included in
the IMS load module at
configuration.

A request was made to add a record
to a MIRAM or ISAM file, but there
wasn"t sufficient space.

User must allocate more main
storage space.

A request was made to perform some
update function, but this update
was disallowed at configuration.

C-4

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 C-5
IMS ACTION PROGRAMMING IN RPG II

INVALID REQUEST ERROR CODES

Table C-3. Detailed Status Codes for Invalid Requests (Part 2 of 2)

Trace file down

Record locked by another
transaction (single-thread
only)

The requested update is not
permitted because of an 1/0 error
in the audit file, a file used for
on line recovery.

File recovery is not operational;
no updates are allowed. Only file
displays are allowed.

Under single-thread, an action
tried to add or update a record,
but the record was already locked
by another transaction .

UP-9206 SPERRY UNIVAC OS/3 C-6
IMS ACTION PROGRAMMING IN RPG II

INTERNAL MESSAGE CONTROL ERROR CODES

Table C-4. Detailed Status Codes for Internal Message Control Errors (Status Code 6)

Destination terminal
busy, on hold, or down

Destination terminal
physically or logically
rlown. message queuerl

Invalid specification
Ill output message header

No ICAM network buffer

Disk error. or recoverable
system error on output
to console

Invalid length spec1f1cat1on

dest1nat1on terminal 1s 1n 1nteract1ve mode,

2 dest1nat1on termtnal has an input message on queue,

3. ZZHLD or ZZDWN command was entered for dest1nat1on
terminal,

4. destination terminal is marked physically down to ICAM; or

5 IMS cannot allocate main storage buffer (mult1thread only,
INBUFSIZ spec1f1cat1on inadequate

SEND function was issued for message switching Message 1s
queued at dest1nat1on terminal and 1s transmitted when terminal
becomes operat1onal

Invalid dest1nat1on term1nal-1d or aux1ilary-dev1ce-1d, or. aux-function
field contains X'C3'. X'F3'. or X'F7' (not valid with SEND function)

lnsuff1c1ent buffer space was allocated 1n ICAM network def1n1t1on

Output error occurred on attempt to write a message to disk, error
was passed to IMS by ICAM. On output to console, this error
occurs when console is physically or logically down.

In delayed 111ternal succession or output-for-111put queueing, output
message length was larger than the mput buffer pool.

•

•

•

UP-9206

•

•

•

SPERRY UNIVAC OS/3 C-7
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMATTING ERROR CODES

Table C-5. Detailed Status Codes for Screen Formatting Errors (Status Code 7)

fields in variable data area
are replaced by hexadecimal F's.

Format area not large enough;
IMS places actual length
required for format in the
text-length field

Variable data area not large
enough

Screen format can't be
displayed because no terminal
slots are available

Variable fields specified for
input-only format

Format dimensions are greater
than screen dimensions

Fatal error; 1/0 error reading
format file

Data description in action
program doesn't match screen
format generation

SFS failed

SFS failed during input
conversion

IMS error

Screen format can't be
transmitted because this
is a program-initiated
DDP transaction .

match specifications at
screen format generation.

OUTSIZE= n specification
in ACTION section of
configuration isn't large
enough.

WORKSIZE = n specification in
ACTION section of configuration
isn't large enough.

SFS=n specification in
OPTIONS section of
configuration isn't large
enough.

Screen format was designed
for input only.

Screen format is larger
than source terminal screen .

Get DM error message from
console; refer to system
messages programmer /reference,
UP-8076 (current version).

Screen format was
incorrectly generated.

System error; take dump and
write software user report
(SUR). Can also occur if format
contains protected fields and
terminal doesn't have protect
feature or isn't in protect
mode.

Inadequate main storage in
system; or format contains
protected fields and terminal
doesn't have protect feature or
isn't in protect mode.

Take IMS job dump and submit SUR.

Action program processing
DDP transaction attempted
to send screen format to
initiating action program.

•

•

•

•

•

•

UP-9206 SPERRY UNIVAC OS/3 D-1
IMS ACTION PROGRAMMING IN RPG II

ACTION PROGRAM CODING RESTRICTIONS

Appendix D. Action Program
Coding Restrictions

General coding restrictions Table 0-1 is a summary of coding restrictions for all the RPG II
coding forms.

Coding restrictions for
random files

Coding restrictions for
sequential files

Table 0-2 summarizes allowable entries on the file description
form for random access, MIRAM, ISAM, DAM, and defined files.

Table 0-3 summarizes allowable entries on the file description
form for sequential MIRAM and SAM files .

UP-9206 SPERRY UNIVAC OS/3 0-2
IMS ACTION PROGRAMMING IN RPG II

ACTION PROGRAM CODING RESTRICTIONS

Table 0-1. IMS Restrictions for RPG II Coding •
H Control card specifications 8 Error analysis dump

9 Operator control
15 Generate debug code
41 First page forms alignment

F File description specifications 15 File type (C and D not allowed)
16 Table and array file designation (T) ©
20-23 Block length (Same as record length)®
32 File organization:

ADDROUT (D) ©
Record address (blank)©
Additional 1/0 areas®
Sequential MIRAM and SAM tape/disk input files
ISAM and indexed MIRAM output files

40-46 Device:

CTLRDR
READER
CRP
PUNCH
CONSOLE
PRINTER • WORKSTATION
REMOTE FILES

53 Labels®
54-59 Name of label exit option®
60-65 Size of ISAM index entry®
66 Unordered load
67 Cylinder overflow space percentage®
68-69 Number of extents®
70 Tape rewind®
71-72 File conditioners (U 1-U8)

E Extension specifications© 9-10 Chaining (C 1-C9) tables or arrays

Input format specifications 19-20 Spread card feature (TR)
42 Stacker select

c Calculation specifications 28-32 Display operation (DSPL Y)

0 Output format specifications 16 Stacker select

T Telecommunications specifications -

NOTES:

© Used only with nonindexed MIRAM and DAM files.

® Ignored by RPG II compiler; must be specified in IMS configuration.

•

•

•

•

UP-9206

File description form
entries for /SAM, MIRAM,
DAM, and defined files

SPERRY UNIVAC C' J/3 D-3
IMS ACTION PROGRAMMING IN RPG II

ALLOWABLE FILE DESCRIPTION SPECIFICATIONS

Table D-2. Allowable File Description Specifications for ISAM, MIRAM, DAM,
and Defined Files

Form Type (Column 6)

File Name (Column 7-13)

File Type (Column 15)

File Desgination (Column 16)

Format (Column 19)

Record Length (Column 24-27)

Mode of Processing (Column 28)

Key Field Length (Column 29-30)

Record Address Type (Column 31)

File Organization (Column 32)

Key Field Start Position
(Column 35-38)

Device (Column 40-46)

File Addition (Column 66)

NOTES:

CD
@

@

Indexed files

Nonindexed (relative) files

Sequential processing

F

User-defined name

I, U, or 0

S, R, C, D, orP

F

User" s record size

L, R. or blank

01-99 CD
A or P

~ R
Blank

I

~ D
Blank

0001-99991)

Must be disk device

Blank or A

- - -------------------------.

UP-9206 SPERRY UNIVAC OS/3 D-4
IMS ACTION PROGRAMMING IN RPG II

ALLOWABLE FILE DESCRIPTION SPECIFICATIONS

File description form
entries for sequential
MIRAM and SAM files

Table D-3. Allowable File Description Specifications for Sequential MIRAM
and SAM Output Files

Form Type (Column 6) F

File Name (Column 7-13) User-defined name

File Type (Column 15) 0

Format (Column 19) F

Record Length (Column 24-27) User's record size

Overflow Indicator (Column 33-34) May be specified for line counter files

Line Counter (Column 39) Blank or L

Device (Column 40-46) Must be disk or tape device

•

•

•

UP-9206 SPERRY UNIVAC OS/3 Index 1
IMS ACTION PROGRAMMING IN RPG II

• Index

Term Reference Page Term Reference Page

A Activate function 7.5 7-8
Fig. 7-2 7-8

Abnormal termination
after SEND function 5.14 5-44 Activation record

involuntary 2.6 2-13 description 1.6 1-9

voluntary 2.6 2-13 main storage layout 1.6 1-9

Table 2-4 2-12
Allocation map

Absolute addresses Fig. 9-1 9-2 contents 9.4 9-5

• locating in snap dump 9.8 9-11

Action 1.3 1-3
Array, example of use 5.2 5-3

Action program routing 7.2 7-3 5.3 5-6
Fig. 5-1 5-2

Action programs
coding description 2.1 2-1 Auto transmit feature 5.12 5-43

coding restrictions Table D-1 D-2
Appendix D Aux-device-no field, OMA

compile 8.2 8-2 continuous output use 5.6 5-9

Fig. 8-3 8-3 description 2.12 2-30

Fig. 8-4 8-3
debugging Section 9 Aux-function field, OMA

differences from other RPG continuous-output use 5.6 5-9

programs 3.1 3-1 description 2.12 2-31

example execution 3.6 3-6 print/transfer options 5.6 5-11

Fig. 3-3 3-7 read/search options 5.12 5-40

identification 2.2 2-1 settings Table 5-2 5-10

internal subroutines, use 4.5 4-17 Table 5-3 5-11

link 8.3 8-4
Fig. 8-6 8-5 Auxiliary device

Fig. 8-7 8-5 aux-device-id field 2.12 2-31

load area in snap dump 9.8 9-10 aux-function field settings Table 5-2 5-10

Fig. 9-1 9-2 condition codes Table 5-5 5-20

preparations for online processing 8.1 8-1 continuous output 5.6 5-11
processing 3.6 3-5 identification 5.6 5-12

recompiling 8.5 8-8 supported 5.6 5-9

reusable code 1.5 1-9 supporting DICE codes Table A-3 A-11 • scheduling 3.3 3-2 transmitting formatted screens 6.11 6-12

store 8.4 8-7
Fig. 8-9 8-8 Auxiliary-device-id, IMA header 2.9 2-25

using screen formats 4.2 4-1

UP-9206 SPERRY UNIVAC OS/3 Index 2
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Term Reference Page • B Compiling and linking action programs Section 8

Backward-one-block option, Console, sending messages 5.20 5-54
cassette/ diskette 5.12 5-42

Continuity data area
Binary or packed field lengths, edit as input file 2.16 2-40

table generator B.3 B-7 continuity-data-input-length 2.6 2-17
co ntin u ity-data-o utput-length 2.6 2-17
definition 2.15 2-38

Table 2-9 2-38
file 2.16 2-41
flow of saved data 2.16 2-41
input form coding 4.4 4-14 c passing data 2.16 2-39
purpose 4.4 4-14

Calculations size for successor 2.17 2-43
continuous output example 5.10 5-26 update file 2.16 2-40
for continuity data area 4.4 4-15 Fig. 2-14 2-40
for multiple output messages 5.2 5-4 updated at output 4.4 4-16
sample program calculations 3.19 3-22 use, example 4.4 4-14

used to control processing 4.4 4-15
Cassette/ diskette varying size 2.17 2-41

print/transfer options 5.6 5-11 Fig. 2-3 2-20
read/search options Table 5-6 5-40

5.12 5-40 Continuity-data-area-inc, PIB • search arguments Table 5-7 5-42 description 2.6 2-7
moving value 2.17 2-42

GOA See continuity
data area. Conlin uity-data-in put-length, PIB

description 2.6 2-7
Coding for action programs determining value 2.17 2-41

calculation form 3.19 3-22
GOA size specification on output Continuous output

form Fig. 2-17 2-43 cassette/diskette 5.12 5-40
control form program-id 2.2 2-1 cassette/diskette search arguments Table 5-7 5-42
file description specifications 2.1 2-1 coding 5.6 5-9
input message, pass data 2.11 2-28 configuration specification 5.4 5-9

Fig. 2-8 2-28 continuous-output-code field 5.8 5-18
input message area, reading 2.10 2-27 delivery code 5.8 5-18

Fig. 2-7 2-27 devices receiving 5.5 5-9
interface areas 2.3 2-3 example program 5.11 5-29
naming action programs 2.2 2-2 Fig. 5-9 5-29
output form 3.20 3-22 example program (SALES2) 5.10 5-24
output message area, file Fig. 5-7 5-24

description 2.13 2-33 example with print transparent
Fig. 2-9 2-33 and inhibit space suppression Fig. 5-4 5-14

output message area, output example with transfer all option Fig. 5-3 5-13
form coding Fig. 2-11 2-36 function key use 5.9 5-21

Fig. 2-12 2-36 generating messages 5.4 5-9
program information block 2.5 2-7 5.10 5-27

2.7 2-20 input message return to successor
2.8 2-23 program Fig. 5-6 5-18

screen format coding 4.7 4-20 limitations 5.7 5-14 • message transmission 5.7 5-15
Communications output printer, receiving output-for-input queueing 5.15 5-46

DICE codes Table A-1 A-6 output only screens 6.6 6-6
print/transfer options Table 5-3 5-11
program example 5.10 5-23

5.11 5-29

UP-9206 SPERRY UNIVAC OS/3 Index 3
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

Continuous output (cont) D
read/search options Table 5-6 5-40
recovery 5.9 5-21 Data-def-rec-name 2.6 2-16
restrictions for use with DDP 7.3 7-6
status codes 5.8 5-18 Data files See files.
successor program 5.7 5-15

5.10 5-27 Data type 8.3 B-9
terminal screen size 5.10 5-28
termination 5.10 5-27 Date-time stamp, IMA header 2.9 2-25
to terminal 5.6 5-10

Fig. 5-2 5-10 DDP-mode field, PIB 2.6 2-19
used with cassette/ diskette 5.12 5-40
using aux-device-no field 5.7 5-14 Debugging See dump,
using aux-function field 5.7 5-13 snap.

Continuous-output-code, OMA Defined file name 2.6 2-16
description 2.12 2-32
how used 5.8 5-18 Defined files, identifying 2.6 2-16

Fig. 5-5 5-17
passing it 5.10 5-27 Defined record area (ORA) Fig. 1-9 1-10
when not specified 5.12 5-43

CONTOUT parameter, IMS configuration
Delayed internal succession

description 1.4 1-5
continuous output 5.4 5-9 output only screens required 6.6 6-6

• output-for-input queueing 5.13 5-44

Delivery notice code, continuous output
Control form before line disconnect 5.19 5-52

coding 2.2 2-2 definition 5.8 5-17
entries 3.8 3-11 interrogation 5.10 5-26

status returned Table 5-4 5-19
COP See communications status returned for auxiliary

output printer. devices Table 5-5 5-20
unsuccessful 5.10 5-23

CRT devices, receiving DICE codes A.5 A-10
Table A-1 A-6 Destination-terminal-id, OMA

description 2.12 2-31
locating in snap dump 9.6 9-9

Detailed status codes
defined record management

(status code-1) Table C-2 C-3
internal message control

(status code-6) Table C-4 C-6
invalid requests (status code-3) Table C-3 C-4
1/0 error (status code-4) 2.6 2-9
location in snap dump 9.5 9-8
reading 2.7 2-22
screen formatting (status code-7) Table C-5 C-7

Device independent control expressions
auxiliary devices Table A-3 A-11
coordinate value interpretations Table A-1 A-6

• description A.l A-1
formats A.4 A-5
functions Table A-1 A-6
functions performed A.2 A-2

UP-9206 SPERRY UNIVAC OS/3 Index 4
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Term Reference Page • Device independent control expressions (cont)

interpretation A.5 A-9 edited 9.2 9-1 macroinstructions Table A-1 A-6 error code interpretation 9.5 9-8 primary devices Table A-2 A-10 finding error in PIB 9.5 9-8 stripping A.2 A-3 function call, determining last 9.8 9-11 terminals supporting A.5 A-10 function calls, hexadecimal
use in action program A.6 A-12 equivalent Table 9-1 9-12

Fig. A-3 A-12 interface area, order 9.9 9-13
Fig. A-4 A-12 locating *ERROR in snap dump 9.5 9-8 use in message formatting A.2 A-1 Fig. 9-8 9-28 use with ICAM A.3 A-4 main storage layout 9.3 9-2

parameter list location 9.8 9-12 Dialog transaction 1.3 1-4 PIB field locations 9.5 9-9
registers saved by involuntary

DICE See device snap 9.3 9-3
independent control registers saved by voluntary snap 9.3 9-3
expressions. sample Fig. 9-3 9-6

save area 9.4 9-5 Directory routing 7.2 7-3 single and multithread formats 9.9 9-13
status code location 9.5 9-8 Disconnecting line from action program See line successor-id field location 9.5 9-8

disconnect. terminal control table Fig. 9-6 9-20
termination indicator field

Diskette/ cassette location 9.5 9-9
auto-transmit feature 5.12 5-43 termination indicator to obtain • print/transfer options 5.6 5-11 dump 2.6 2-11
read/search options 5.12 5-41 thread control block Fig. 9-4 9-14

Table 5-6 5-40 Fig. 9-5 9-18
search arguments Table 5-7 5-42 thread control block use 9.9 9-13

types 9.2 9-1
Display constants, output to screen 6.6 6-5 use of input message area 9.7 9-10

Fig. 6-2 6-13 use of output message area 9.6 9-9

Distributed data processing
use of program load area 9.8 9-10

action program requirements 7.1 7-1 Dynamic main storage
action program succession 7.4 7-7 building screen 6.8 6-8 local IMS 7.1 7-2 Fig. 6-4 6-8 locap name 7.1 7-2 description 6.4 6-2 operator-initiated remote

transaction 7.4 7-7
primary IMS 7.1 7-1
program-initiated remote

transaction 7.5 7-8
remote IMS 7.1 7-2
remote transactions 7.3 7-5
routing remote transactions 7.2 7-3
secondary IMS 7.1 7-2
terminology 7.1 7-1

DTF, locating in snap dump 9.8 9-12

Dump, snap
allocation map 9.4 9-5 • analysis 9.4 9-5
conditions 9.1 9-1
debugging resources 9.10 9-25

UP-9206 SPERRY UNIVAC OS/3 Index 5
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

E ETAB See edit
table name.

Edit table generator
coding tor input B.2 B-1 Examples of action programs
description B.l B-1 JAADDI program (file update and
diagnostic messages Table B-1 B-13 internal subroutines 4.3-.7 4-2
duplicate edit table name B.4 B-10 JAMENU program (screen updates) 4.1-.2 4-2
entering input messages from LSTLIM program (multiple output

terminal B.6 B-15 message) Fig. 5-1 5-2
error processing B.5 B-12 Fig. 5-2 5-10
execution B.4 B-10 NCSC program (continuous output) Fig. 5-9 5-29
parameters B.3 B-5 Fig. 5-10 5-44
sample parameter description Fig. B-1 B-6 RCCUST program (file update) 3.5-.20 3-3
transaction codes smaller /larger RCMENU program 3.5-.13 3-4

than five characters B.3 B-7 SALES2 program (continuous output) 5.10 5-23
UPSI byte values B.4 B-11 Fig. 5-7 5-24
use of positional and keyword transaction with external succession 3.4-.9 3-2

parameters B.7 B-16

External succession
Edit table name B.3 B-5 description 1.4 1-5

sample program 3.4 3-2
Edited directory, snap dump 9.2 9-1 to continue generating continuous

output 5.7 5-15
Edited field length B.3 B-6

• ERET parameter
configured 2.6 2-9
specified when using SEND function 5.18 5-49

Error codes, IMS Appendix C
See also status codes and detailed

status codes.

Error message file F
generating error messages 4.6 4-19
sample use 4.6 4-19 Fast load feature

fast load file 8.4 8-7
Error messages, displaying 4.7 4-20 store action programs 8.4 8-7

Error processing FCC See field
detailed status codes 2.6 2-10 control characters.
ERET configurator parameter 2.6 2-9
*ERROR field 9.10 9-25 Field control characters
*ERROR location 9.5 9-8 ASCII characters used Table A-4 A-14
output-tor-input queueing 5.14 5-44 Table A-5 A-15
status codes 2.6 2-9 format A.7 A-14
See also dump, error codes, use in action programs A.7 A-14

status codes, or detailed
status codes. Field justification, edit table generator B.3 B-8

Error status Field separator character, edit table
codes Appendix C generator B.2 B-8

• how to determine 2.6 2-9
Field starting position, edit table

generator B.3 B-7

FIL B.3 B-5

-·-----------------------------.....

UP-9206 SPERRY UNIVAC OS/3 Index 6
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Tenn Reference Page •
File description specifications

allowed for ISAM, MIRAM, DAM,
and defined files Table D-2 D-3 IMA See input

allowed for sequential MIRAM and message area.
SAM output files Table D-3 D-4

coding action programs 2.3 2-3 Immediate internal succession
coding restrictions Table D-1 D-2 description 1.4 1-8
continuity data area 4.4 4-14 saves interface areas 2.11 2-29
continuous output sample program 5.10 5-25
input demand file 2.7 2-20 Indicators, RPG II, setting 3.12 3-15
input message area 2.9-.11 2-25 Table 3-1 3-15
multiple output messages 5.2 5-3
output message area 2.12-.14 2-30 Initiating transactions 3.3 3-2
update demand file 2.8 2-23

Input demand file
File extension form continuity data area 2.16 2-40

coding restrictions Table D-1 D-2 input message area 2.9-.11 2-25
multiple output messages 5.2 5-3 program information block 2.7 2-20

2.5 2-7
Files sample file description form

accessible 2.3 2-4 coding 2.7 2-20
accessing sequential files 2.3 2-3 sample· input form coding 2.7 2-21
allowable file description entries Appendix D
assigning interface area file names 2.4 2-6 Input fields, entered on screen format 6.6 6-5
coding restrictions Table D-1 D-2 Fig. 6-2 6-5 • defined, identification 2.6 2-16
describing in action program 2.3 2-3 Input message
PIB file type depends on use 2.5 2-7 formatted screens for input 6.7 6-7
types used by action programs Table 2-1 2-3 formatting using DICE A.2 A-3
updating restrictions 2.3 2-4 locating in snap dump 9.7 9-10

receiving in remote transaction 7.3 7-5
Fill character identification, edit returned to successor in

table generator B.3 B-8 continuous output Fig. 5-6 5-18

Formatted screens See screen Input message area

format services. auxiliary-device-id 2.9 2-26
control header format Table 2-7 2-25

Function calls date-time stamp 2.9 2-25
determining last from snap dump 9.8 9-11 defining as input file 2.9 2-25
error returns Appendix C definition 2.9 2-25
hexadecimal equivalents Table 9-1 9-12 input fields, defined 3.18 3-21

passing data 2.11 2-28
Function keys, used in continuous output 5.9 5-21 reading 2.10 2-27

3.11 3-13
sample use 3.11-.12 3-13
snap dump 9.7 9-10
source-terminal-id 2.9 2-26
text-length 2.9 2-26

H Input options, cassette/diskette
read 5.12 5-41

Header, control See program read transparent 5.12 5-41
information search and read 5.12 5-41
block, input search and read transparent 5.12 5-41 • message area,
or output
message area.

UP-9206 SPERRY UNIVAC 03/3 Index 7
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

Input specifications form Job streams See job
coding restrictions Table D-1 D-2 control.
continuity data area 4.4 4-14
continuous output 5.10 5-25 JUS specification, edit table generator B.3 B-8
multiple output messages 5.2 5-3

Interface areas
action program 1.6 1-9
activation record 1.6 1-9
coding 2.3 2-3 K continuity data area 2.15 2-38
defined record area 1.6 1-9

KEY field identification, edit table definition 2.4 2-5
example coding, RCCUST 3.17 3-20 generator B.3 B-6

example coding, RCMENU 3.9 3-11
KEY specification, edit table generator B.3 B-5 examples defining 3.9-.17 3-11

input message area 2.9 2-25
layout in snap dump 9.3 9-3

Fig. 9-1 9-2
order in snap dump 9.9 9-13
output message area 2.12 2-31
program information block 2.5 2-7

L relationship to thread control
block Fig. 9-2 9-4

• LEN specification, edit table generator B.3 B-6
Internal subroutines 4.5 4-17

Line disconnect

Internal succession coding example 5.15 5-46
delayed 1.4 1-7 delivery notice before 5.19 5-52
immediate 1.4 1-8 description 5.19 5-52

Invalid request Link jproc 8.3 8-4
detailed status codes Appendix C Fig. 8-5 8-4
status code 3 2.6 2-9

Link map, for debugging 9.10 9-25
1/0 error, status code 4 2.6 2-9 Fig. 9-7 9-26

Load module, naming 8.3 8-4

Local IMS, definition 7.1 7-1

Locap name, definition 7.1 7-1

J Lock-rollback indicator, PIB
default value 2.6 2-14

Job control description 2.6 2-9
compile and link action program Fig. 8-7 8-5 locating in snap dump 9.5 9-9

Fig. 8-8 8-6 online file recovery 2.6 2-15
compiling action program Fig. 8-1 8-2

Fig. 8-2 8-2 Locking
Fig. 8-3 8-3 for update 2.6 2-15
Fig. 8-4 8-3 holding locks 2.6 2-14

• edit table generator execution Fig. B-2 B-10 online file recovery 2.6 2-15
link editing action program Fig. 8-5 8-4 record 2.6 2-14

Fig. 8-6 8-5 releasing locks for action Table 2-6 2-14
recompiling and linking action releasing locks for transaction Table 2-6 2-14

program Fig. 8-9 8-8 rollback indicators Table 2-6 2-14

UP-9206 SPERRY UNIVAC OS/3 Index 8
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Term Reference Page •
M 0

MAN, specification edit table generator B.3 B-8 OMA See output
message

Mandatory field, edit table generator B.3 B-8 area.

Master workstation 5.20 5-54 Operator routing 7.2 7-3

MAX specification, edit table generator B.3 B-8 Output-for-input queueing
coding 5.14 5-45

Maximum value limitations, edit table coding example Fig. 5-12 5-47
generator B.3 B-8 configuration 5.13 5-44

definition 5.13 5-44
Message-length field, locating in identifying terminal for output

snap dump 9.6 9-10 message 5.14 5-44
initiating transaction at another

Message size specification 2.6 2-16 terminal 5.16 5-46
with continuous output 5.15 5-46

Message switching with screen bypass device 5.16 5-46
coding required 5.17 5-47

Fig. 5-13 5-48 Output message area (OMA)
output only screens required 6.6 6-6 building screen formatted messages 6.4 6-3
switch transaction 5.17 5-47 coding 2.14 2-35

continuous-output-code 2.12 2-32
MIN specification, edit table generator B.3 B-8 control header format Table 2-8 2-31 • definition 2.12 2-30
Minimum value limitations, edit table destination-terminal-id 2.12 2-31

generator B.3 B-8 file specifications 2.13 2-33
sample use 3.13 3-16

Multiple output messages SFS-location 2.12 2-32
operator response 5.3 5-8 SFS-type 2.12 2-32
sample use 5.2 5-1 snap dump 9.6 9-9

5.3 5-5 text-length 2.12 2-32
Fig. 5-1 5-2

using SEND function 5.3 5-6 Output message header
field descriptions 2.12 2-31

Multithread snaps See thread format and contents Table 2-8 2-31
control
block. Output messages

continuous output 5.4-.12 5-9
continuous output recovery

returned on unsuccessful
delivery notice code 5.9 5-21

N 5.11 5-38
delivery notice status codes Table 5-4 5-19
determining output message length 2.14 2-35

Naming programs 2.2 2-2 for input queueing 5.13 5-44
formatting using DICE or FCC A.2 A-1

Nonpolled device acknowledgment 5.9 5-21 generating multiple 5.2 5-1
5.3 5-5

Normal termination 1.4 1-6 line disconnect 5.19 5-52
multiple, generating 5.2 5-1
multiple, processing 5.3 5-5 • output-to r-i npu t-q ueuei ng 5.14-.16 5-43
queueing 5.3 5-6

UP-9206 SPERRY UNIVAC OS/3 Index 9
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

Output messages (cont)

recovery with continuous output 5.9 5-21 Print transparent with UNISCOPE 100 5.6 5-12
sample coding 3.20 3-22
sample generation 3.13 3-16 Printer
sample output coding 3.20 3-23 continuous output 5.5 5-8
screen formatted 6.6 6-5 effect with inoperative delivery
switching 5.17 5-47 notice code 5.10 5-26
to system console 5.20 5-54 writing formatted screens 6.11 6-12
types 5.1 5-1
when none generated 3.13 3-17 Program information block (PIB)

coding forms for updating 2.8 2-24
Output specifications form Fig. 2-5 2-23

continuous output 5.10 5-26 Fig. 2-6 2-24
multiple output messages 5.2 5-5 contents (format) Table 2-3 2-8
sample use 5.13 5-44 continuity-data-area-inc 2.6 2-17
screen format messages 6.6 6-5 co nti nu ity-data-i nput-length 2.6 2-17

continuity-data-output-length 2.6 2-17
data-def-rec-name/ defined filename 2.6 2-16
DDP mode 2.6 2-19
DDP-mode field 7.3 7-5
defining fields 3.14 3-18
definition 2.5 2-7
device name 2.7 2-21
input form entries for reading 2.7 2-21
lock-rollback indicator 2.6 2-14 • purpose and use 2.6 2-9

p read 2.7 2-20
reading 2.7 2-20

Packed or binary field lengths, edit sample use 3.14 3-18

table generator B.3 B-7 setting successor-id and
termination type 3.14 3-18

Parameter list, snap dump 9.8 9-12 snap dump 9.5 9-8
source-term-attributes 2.6 2-18

Passing data source-term-msg-line-length 2.6 2-18

continuity data area 2.16 2-39 source-term-msg-number-lines 2.6 2-18

input message area 2.11 2-28 source-terminal-type 2.6 2-18

output message area 2.14 2-35 standard-msg-line-length 2.6 2-16
standard-msg-number-lines 2.6 2-17

PIB See program status code and values 2.6 2-9

information success-unit-id 2.6 2-17

block. successor-id 2.6 2-17
termination indicator 2.6 2-11

Polled device, acknowledgment 5.9 5-21 testing status/ detailed status
codes Fig. 2-4 2-21

POS specification, edit table generator B.3 B-7 transaction-id 2.6 2-16
update 2.8 2-24

Primary IMS, definition 7.1 7-1 3.14 3-18
updating 2.8 2-23

Print form (ESC H) Table 5-3 5-11 work-area-inc 2.6 2-17
work-area-length 2.6 2-17

Print mode Table 5-3 5-11
5.6 5-11 Program name, assigning 3.8 3-11

3.16 3-20 • Print/transfer options Table 5-3 5-11

Print transparent mode 5.6 5-12
Table 5-3 5-11

UP-9206 SPERRY UNIVAC OS/3 Index 10
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Term Reference Page •
Q s

Queueing messages 5.3 5-6 Sample action programs See
examples
of action
programs.

R
Save area, snap dump 9.4 9-5

Saving data
Read option, cassette/ diskette 5.12 5-41 continuity .data area 2.16 2-41

input message area 2.11 2-28
Read/search options output message area 2.13 2-34

description 5.12 5-40
settings for aux-function field Table 5-6 5-40 Scheduling programs, contents of

main storage 3.10 3-13
Read transparent option 5.12 5-41

Screen bypass
RCCUST sample program 3.15-.20 3-20 output-for-input queueing 5.16 5-46

with cassette/ diskette 5.12 5-43
RCMENU sample program 3.5-.13 3-3

Screen format services
Record key, saving next 5.11 5-38 coding required 6.8 6-8

coding to build screens 4.7 4-20
Record length, for PIB 2.7 2-20 6.8 6-8 • Fig. 4-2 4-3
Record locking 2.6 2-14 configuration requirements 6.4 6-2

devices used 6.2 6-1
Register section, snap dump displaying screen formats 6.1 6-1

location 9.3 9-3 distributed data processing 7.6 7-9
more than one set 9.3 9-3 error codes 6.10 6-11
one set 9.3 9-3 Table 6-1 6-11

9.4 9-5 formatted screens for input 6.7 6-6
function keys to cancel screens 6.6 6-6

Relative main storage addresses Fig. 9-1 9-2 generated offline 6.3 6-1
9.3 9-2 generating screen formats 6.3 6-1

IMS start-up requirements 6.5 6-3
Remote IMS, definition 7.1 7-1 invalid input 6.7 6-7

output screen with no variable data 6.9 6-10
Remote transactions See OUTSIZE parameter 6.4 6-3

distributed print/trans!er options, to aux
data devices Table 6-2 6-13
processing. processing remote transactions 7.6 7-9

RESFMT parameter 6.4 6-2
Report address option, cassette/ sample use 4.7 4-20

diskette, continuous output 5.12 5-42 screen format file 7.6 7-9
screen formatted messages,

Return function processing 6.6 6-5
continuous output 5.7 5-16 screen with no variable data 6.9 6-10
last output message 5.3 5-7 Fig. 6-7 6-12

sending formatted screens to
Rollback, specifying 2.6 2-14 aux-device 6.11 6-12

SFS-options field, OMA 2.12 2-32 • Routing SFS parameter 6.4 6-2
action program 7.2 7-3 storing formats for later 6.3 6-1
directory 7.2 7-3
operator 7.2 7-3

UP-9206 SPERRY UNIVAC 05/3 Index 11
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

Screen format services (cont)

variable output data 6.6 6-5 Snap See dump.
6.8 6-9
6.9 6-10 Source-term-attributes 2.6 2-18

work area required 4.7 4-20
6.4 6-2 Source-term-msg-line-length 2.6 2-18

Screen formatted messages See Source-term-msg-number·lines 2.6 2-18
screen
format Source terminal, specifying
services. characteristics 2.6 2-18

Search and position option, cassette/ Source-terminal-id, IMA header
diskette 5.12 5-42 description 2.9 2-25

Search and read option, cassette/
use for processing remote

transaction 7.3 7-5
diskette 5.12 5-41

Search and read transparent, cassette/
Source-terminal-type 2.6 2-18

diskette 5.12 5-41 Space suppression 5.6 5-12

Secondary IMS 7.1 7-2 Standard-msg·line·length 2.6 2-16

SEND function Standard·msg-number-lines 2.6 2-17
configuration requirement 5.3 5-8 • continuous output program 5.7 5-15 Start-up, IMS, screen format
description and status codes 5.18 5-49 requirements 6.5 6-3
message switching 5.17 5-48
multiple output messages 5.3 5-6 Status codes
output-tor-input queueing 5.14 5-44 invalid request 2.6 2-9
restrictions, use for remote IMS 7.3 7-6 1/0 error 2.6 2-10
status codes 5.18 5-49 location in snap dumps 9.5 9-8

Table 5-8 5-50 output delivery notice Table 5-4 5-19
successful 5.18 5-49 SEND function 5.18 5-49

values and interpretation 2.6 2-9
SEP specification, edit table generator 8.3 8-5 Table C-1 C-2

Separator character, edit table Subroutines, internal 4.5 4-17
generator 8.3 8-5

Success-unit-id 2.6 2-17
Serially reusable code

resetting fields 1.5 1-9 Succession, types 1.4 1-5
turning off indicators and switches 1.5 1-9

Successor-id
SFS-location, OMA header 2.12 2-32 locating in snap dump 9.5 9-8

processing errors 2.6 2-11
SFS·options field, OMA 2.12 2-32 updating 2.8 2-23

use 2.6 2-17
SFS·type, OMA header 2.12 2-32 with termination indicators Table 2-5 2-13

Simple transaction 1.3 1-3 Successor program
continuous output 5.7 5-15

Single-thread, snap dump 9.9 9-13 IMS delivery code 5.8 5-17 • See also thread control block. naming 2.6 2-11
using saved data 2.11 2-28
See also successor-id.

UP-9206 SPERRY UNIVAC OS/3 Index 12
IMS ACTION PROGRAMMING IN RPG II

Term Reference Page Term Reference Page •
Switching messages Termination indicator

configuring disk queueing 5.17 5-48 default 2.6 2-11
description 5.17 5-47 involuntary 2.6 2-13
output only screens required 6.6 6-6 locating in snap dump 9.5 9-9
SEND function 5.18 5-49 termination types and successor·id Table 2-5 2-13
status codes for SEND function 5.18 5-49 updating 2.8 2-23

Table 5-8 5-50 values and interpretations Table 2-4 2-12
SWTCH transaction code 5.17 5-47 See also termination.
to console 5.17 5-47

Fig. 5-13 5-48 Terms, IMS 1.3 1-3

SWTCH action program 5.17 5-47 Text-length field, OMA
description 2.12 2-32

Symbol table, for debugging Fig. 9-8 9-28 effect of incorrect length 2.14 2-36
field in IMA header 2.9 2-26

System console 5.20 5-54 field in OMA header 2.12 2-32
moving value 2.14 2-37
reading 2.14 2-35
when zero 2.14 2-37

Thread control block (THCB)
multithread format Fig. 9-5 9-18

T relationship to interface areas Fig. 9-2 9-4
single-thread format Fig. 9-4 9-14 • Terminal control table, single and use, snap dump 9.8 9-10

multithread format Fig. 9-6 9-20
Transaction code

Terminal printer (TP) definition 1.3 1-3
continuous output 5.5 5-9 initiates transaction 3.3 3-2
receiving DICE codes Table A-1 A-6 Fig. 3-1 3-2

invalid, entered on input screen 6.7 6-6
Terminals smaller or larger than five

continuous output 5.5 5-9 characters, edit table generator B.3 B-7
displaying screen formats 6.6 6-5
entering input messages for edit Transaction-id 2.6 2-16

table generation B.6 B-15
identifying local, for remote Transactions

transactions 7.6 7-10 abnormal termination, message
screen bypass 5.16 5-46 switching 5.13 5-44
supporting DICE codes A.5 A-10 codes 1.3 1-4

combined structures 1.4 1-8
Termination completion 1.4 1-5

abnormal Table 2-4 2-12 dialog 1.3 1-4
allowable for program·initiated ending 3.13 3-17

remote transactions 7.5 7-8 external succession example 3.4 3-2
continuous output 5.7 5-13 function 3.5 3-3
definition 1.4 1-5 initiating at another terminal 5.13 5-44
delayed internal succession 1.4 1-7 identification 2.6 2-16
external succession 1.4 1-6 initiation 3.3 3-2
immediate internal succession 1.4 1-8 local 7.1 7-1
IMS 3.14 3-19 operator-initiated 7.2 7-3
indicator to obtain dump 2.6 2-13 7.4 7-7 • involuntary 2.6 2-13 program·initiated 7.2 7-4
normal 1.4 1-6 7.5 7-8
specifying type 2.6 2-11 remote 7.1 7-1

7.2 7-3

UP-9206 SPERRY UNIVAC OS/3 Index 13
IMS ACTION PROGRAMMING IN RPG II

• Term Reference Page Term Reference Page

Transactions (cont)

sample processing 3.5 3-3 User files
Fig. 3-2 3-5 describing 2.3 2-3

simple 1.3 1-3 types 2.3 2-3

structure 4.3 4-2 updating 2.3 2-4
1.4 1-5

Transfer all (ESC G) 5.6 5-11
Table 5-2 5-10

Transfer changed (ESC E) 5.6 5-11
Table 5-2 5-10

Transfer variable (ESC F) 5.6 5-11
Table 5-2 5-10 v

TYP specification, edit table generator B.3 B-9 Variable data
moved to screen buffer 6.6 6-5

moved to work area 6.6 6-5

receiving order 6.8 6-9

screen with no variable data 6.10 6-11
Table 6-1 6-11

u Voluntary abnormal termination
with snap dump Table 2-4 2-12

• UNISCOPE 100 display terminal, without snap dump Table 2-4 2-12

printing continuous output 5.6 5-12

UNSOL parameter, IMS configuration
multiple output messages 5.3 5-8
output-for-input-queueing 5.13 5-44

Unsolicited output
multiple output messages 5.3 5-8
output-for-input queueing 5.13 5-44 w

Update demand file
continuity data area (CDA) 2.16 2-40 Work area

defining record length 2.8 2-23 configuring 4.7 4-20

device name 2.8 2-23 screen format services 4.7 4-20

file description form coding 2.8 2-23
input message area (IMA) 2.11 2-28 Work-area-increment 2.6 2-17

output form coding 2.8 2-24
output message area (OMA) Fig. 2-10 2-35 Work-area-length 2.6 2-17

READ operation 2.8 2-24
updating, PIB 2.8 2-23
updating successor-id 2.8 2-23
updating termination-indicator 2.8 2-23

Updating
continuity data area (CDA) 4.4 4-16
program information block 2.8 2-23
successor-id 2.8 2-23 z • termination indicator 2.8 2-23
user files 2.3 2-4

ZZPCH command, use after recompile 8.5 8-8

UPST byte values, edit table generator B.4 B-11

•

•

•

•

.v
c

Cl
c • 0
"iij ..
::>
u

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

•

•

4i
c:

"'

-~ ::i ()

•

I -
I SF'er«v+uNIVAC

I
I
I
I
I
I
I
I
I
I

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

FOLD

(")
c
-I

•

•

•

